ON THE KINEMATICS OF
SPATIAL MOTION

138904

A Thesis Submitted to the
Graduate School of Natural and Applied Sciences of
Dokuz Eyliil University
In Partial Fulfillment of the Requirements for
the Degree of Doctor of Philosophy in Mathematics

by
Ilhan KARAKILIC
" ‘a‘v??l‘f\? t%?y
Te Bev S
e EEIARTEAD o e
July, 2003

IZMIR



Ph.D. THESIS EXAMINATION RESULT FORM

We certify that we have read this thesis “ON THE KINEMATICS OF
SPATIAL MOTION” completed by ilhan KARAKILIC under supervision of
Prof. Dr. Omer KOSE and that in our opinion it is fully adequate, in scope and in
quality, as a thesis for the degree of Doctor of Philosophy.

Prof, Dr. Omer KOSE

Supervisor
Dog. Do Harnza PaLAT Yard. Dag. Or. Gsthan B 4an
Gt
Jury Member Jury Member
(Thesis Committee Member) (Thesis Committee Member)
Pm/é)rﬂ(%t aa. TF2. Praf de. Suur ATBAME Ly
“ —IA
Jury Member Jury Member

Approved by the

Graduate School ofjﬁnd Applied Sciences

W
Prof Dr. Cahit HEEVACI

Director




ACKNOWLEDGEMENTS

I gratefully acknowledge my supervisor Prof. Dr. Omer KOSE for his
enlightening studies and thoughts on this subject.

Special thanks are due to the members of our department staff for their moral
support. I would also like to thank the library staff especially Cemile Goren for their
helpfulness when books and articles are needed.

I want to dedicate this thesis to my wife Sedef and my sister Canan who were so

helpful and understanding.



ABSTRACT

In this thesis, the special points; the acceleration centers, the Bresse surfaces and

the inflection points of the dual spherical motion X =A% are discussed. Based
upon a canonical frame field the dual spherical motion is studied by using the dual

Darboux vector.



OZET

Bu ¢aligmada, dual kiiresel harekete, X = 4% , ait 6zel noktalar; ivme merkezleri,
Bresse ylizeyleri, biikkiim noktalari tartigilmistir. Kanonik bir Ugyiizlii yardimiyla,
dual Darboux vektorii de kullanilarak, dual kiiresel hareket lizerinde galigilmistur.
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CHAPTER ONE
INTRODUCTION

The usage of dual numbers in spatial kinematics can not be neglected. E. Study

principle is the basic tool in this concept.

In the preliminaries, we study the dual numbers algebra, the dual vectors, the
dual functions and their series expansions (Kose 1974). Then, one to one
correspondence between the straight lines in R*> and the points of the Dual Unit
Sphere , known as the Study Theorem, is given. The angle between the dual vectors
on the Dual Unit Sphere gives the relation between the corresponding straight lines
in R’. These contents are given in Chapter I and Chapter II (Kose 1974 & Miiller
1963 & Bottema et al. 1979).

In Chapter III, relative motion of a straight line adjoint to a ruled surface R is
given. The acceleration center, the Bresse hyperboloid and the inflection surface of
this relative motion are determined by the help of the construction parameters of the
ruled surface R.

In Chapter IV, considering the dual spherical motion K/K' and the associated
spatial motion H/H', the kinematic properties, the acceleration center, the Bresse

congruence and the inflection surface are discussed.

It is believed that the contents of Chapter III and Chapter [V are original.



1.1 The Algebra of Dual Numbers

The algebra of dual numbers was developed by Clifford in the midnineteenth
century. And systematically applied to the kinematics by Study [1891,1903] and
Kotel’nikov[1895].

The dual number system is a “complex” system with two units just as the

ordinary complex number system. In complex number system, an element is denoted

by a+ib,where a and b are real numbers and i’ =-1. An element in dual

number system is denoted by a+&b , where a and b are real numbers and

£1=0.

1.2 Dual Numbers

A dual number 4 can be defined as an ordered pair A4 =(a,a’) of real numbers

a and a’, with operations addition and multiplication defined below. The real

numbers a and o are called the real part and the dual part of 4,

respectively. We can write simply,

Red=a and Dud=a" .

Let us define the set of dual numbers by D ={(a,a’);a,a" € R}. Two dual

numbers A=(a,a’) and B=(b,b") are equal whenever they have the same real
parts and same dual parts. Hence,
(a,a")=(,b") iff a=b and a =b".

The addition operation, @, and the multiplication operation, ®, are defined for

the dual numbers 4=(a,a’) and B=(b,b"), forall 4,Be D asfollows;

(a,aY® (b, )=(a+b,a” +b") (1.2.1)



(a,a")® (b,b") = (ab,ab” +a’b) (1.2.2)
In particular,

(@,a’)=(a,0)®(0,a’) and (O,)®(a’,0)=(0,a") .
Hence (a,a’)=(a,0)®(0,)®(a’,0) (1.2.3)

We will investigate later that (a,0) is to be identified as the real number a.

Taking the ordered pairs (a,0) and (a”,0) as the real numbers a, a” respectively

and denoting by ¢ the dual number (0,1) ( (0,1) isthedualunitin D ), we

can write (1.2.3) as
(a,a’y=a+saa’ .
Also we can note that,

e* =(0,)®(0,))=(0,0) (thezero clement in D ). Thatis,

£¥=0 anditis clear that &*=¢g*=........ =g" =... =0.

Defining the subtraction as the inverse operation of addition , one can easily
obtain that addition, subtraction and multiplication exist for any pair in D and

they are commutative, associative and distributive.

Theorem 1.2.1 The set of dual numbers with respect to addition and

multiplication, < D,®,® >, is a commutative ring with identity.

Proof We prove the theorem in two steps,

i) < D,® > is an abelian group.



ii) Multiplication is associative and it has distributive property over addition

and (1,0) is the multiplicative identity.
i) < D,® > is an abelian group.

R1) It is clear that addition is closed on D. For all 4,Be D we have
A®BeD.

R2) Forall 4=(a,a" ),B=(b,b"),C =(c,c’)e D addition is associative,

(ADBYDC =((a,a")® (5,0) @ (c,c')=(a+b,a" +b)D(c,c’)
=((a+b)+c,(a +b)+c)=(a+ B +c),a +(" +c"))
=(a,a )D(B+c,b" +c)=AD(BDC).

R3) 0=(0,0)e D is the additive identity in D . V(a,a’)e D we have the

requirement  (a,a’)®(0,0)=(a+0,a" +0)=(a,a’).

R4) (-a,—a’)eD is the additive inverse of (a,a’)eD. That is,
(@,a)® (-a,—a’)=(a+(-a),a" +(~a")) =(0,0). If A=(a,a’)eD then

we denote (-a,—a’)eD by —4.
Hence < D,® > is a group.

R5) Moreover for all 4,BeD we have AD®B=B®A. That is,
(a,a")® (b,b")=(a+b,a" +b")=(b+a,b’ +a’)=(5,0")®(a,a’) .

So we can say that < D,@ > is an abelian group.

ii) We can easily check the conditions of second step ;

R6) It is clear that multiplication is closed on D. Forall 4,Be D, we have

A®BeD.



R7) Multiplication is associative. Thatis, forall 4,B,Ce D
(A®B)®C =((a,a’)® (b,b"))®(c,c") = (ab,ab" +a’b)®(c,c’) =
(abc,abc” +ab’c+a’be) = (a,a”)® (be,bc” +b°c)= A®(B® ).

R8) Multiplication is distributive over addition. That is,

(AOB)®C =((a,a")® (B, )®(¢,¢") = (a+b,a’ +5')®(c,c) =
=((a+b)e,(a" +b" )c+(a+b)c’)=(ac+bc,a’c+ac” +b°c+bc’) =
(ac,a’c+ac’)® (be,b'c+bc")=ARCDO®BRC for all 4,B,C e D, the

right distributive property holds. Similarly ARBD®C)=AQBD®ARC
forall 4,B,C e D, the left distributive property holds.

Hence < D,®,® > isaring.

Moreover

R9) Forall4,Be D, wehave A® B=(a,a’)®(b,b") = (ab,ab’ +a’b) =

(ba,ba” +b"a)= B® A. Multiplication is commutative. And,

R10) (1,0) € D is the identity element with respect to multiplication;
(@,a)®1,0)=(1,00®(a,a’)=(a,a"), YVAdeD

Then <D,®,®> is a commutative ring with identity .

Theorem 1.2.2 < D,®,® > is not a field.

Proof It is enough to show that one of the field properties is violated. Let us
discuss the inverse of an element (a,a’) e D with respect to multiplication.

A® X =X ® A=(1,0)



#®

@a)®xx)=(0) = (@ +ax)=@10) = (x,x‘)=(%,_§7),

this result is meaningful when a is different from zero. In other words, a dual
number of the type (0,a’)e D has no inverse. So every element in D does not

have an inverse in D . Then <D,®,8 > is not a field.

One can also check that the multiplication of non-zero dual numbers may give

the zero element. For the case A=(0,a’), B=(0,b")eD , we have

A® B =(0,a")®(0,6™) =(0,0).
Theorem 1.2.3 The set of real numbers is isomorphic to a subset of D which is

consist of the elements with only real parts.

Proof Let us define a function f:R—> D'c D suchthat f:a— (a,0) . Then

f is an isomorphism.

i) f islinear: Va,be R ,
fla+b)=(a+b,0)= (a,0)® (5,0)= f(a)® f()).

With respect to multiplication

f(ab)=(ab,0)=(a,0)®(5,0)= f(a)® f(b) .
ii) S isonetoone: If a#b then (a,0)=(,0) implies f(a)= f(b).
iii) f isonto: V(a,0)eD', JaeR suchthat f(a)=(a,0).
Hence we have proved that R is isomorphic to D’ D. And also we have

seen that D’ consists of the elements of type 4 =(a,0) where Re A is the set of

real numbers and DuAd is only zero.



Using the theorem 1.2.3, areal number a can be defined by (a,0) in the dual

number system.

1.3 Dual Vectors

If »,5° € R® then we can define a dual vector ¥ in three dimensional dual

space, D*, by 7 =7 +5". Theset D* isdefined by D* ={d+sd :4,d" e R*}.

Let V.WeD® and deD, where V=v+e&' , W=w+ep and
d=d, +ed’ with 7,5 .,%% ek, d,d eR.

Then we mention the followings:

1.3.1 Addition of Dual Vectors

V+W=F +w)+e@ +#")

1.3.2 Multiplication of a Dual Vector by a Dual Number
dV =(d, +&ed))F + &) =dy +e(d 7" +d,v)

1.3.3 Dual Scalar(Dot) Product of Dual Vectors
VIW =@+ )i+en’)=vw+e(Gw +9 W) =WV

(Scalar product is commutative)

1.3.4 Dual Vector(Cross) Product of Dual Vectors
VxW =@+ )x(W+eW )=V xw+e@xw +7 xw) =W xV

(Cross product is not commutative).



1.3.5 The Norm of a Dual Vector
“’7” =D =[G+ + gv‘)]” = (37 +289")4

= (”1'5"2 +2eVv )/ [[v“ +e (See also (1.5.5) for the proof).

H H

After defining the norm of a dual vector, now we can discuss the unit dual

vector and normalization of any dual vector.

1.4 The Unit Dual Vector

If the norm of a dual vector is (1,0) then we call that vector the unit dual vector.

—

If V=V+e& is aunitdual vector then ”V“ —”v”+£ vv

5 n G

and which implies [|=1 and ¥3" =0.

As in the real case, we can make any dual vector a unit dual vector by dividing

-

that vector to its norm. Hence taking any Ae D* with “Z" #(0,0), U =“—§|—l isa

dual unit vector.

It is not hard to adapt the properties of real vectors to the dual vectors. For
example, triple product, linear dependence of dual vectors, basis in three
dimensional dual space, orthogonality of dual vectors, Gram-Schimidt process of
orthogonalization, dual matrices and so on. As in the complex numbers system one

can discuss everything done in real numbers also in dual numbers.

We now consider the functions of dual variables.



1.5 Dual Functions

Let F be aset of dual numbers. A function f defined on F is a rule

which assigns to each d in F a dual number 4 e D. The dual number 4 is
called the value of f at d and denoted by f(d); thatis 4= f(d). The set F

is called the domain of definition of f.

Suppose that A =a+éa" is the value of the function f at d =x+ex’; thatis
a+ea = f(x+ex’).

Each of the real numbers a and & depends on the real variables x and x°.

If, forinstance, f(d)=d?, then f(d)=(x+e&')=x>+&2xx" hence a=x’

"
and a =2xx".

This simple sketch illustrates that a function of a dual variable can be

expressed in terms of a pair of real valued functions of real variables x and

X,

f(d)=a(x,x )+ (x,x").

Since &¢" =0, m>1, itisconvenient to obtain a Taylor series expansion
p

with & variable. Hence

fa+ra’)=fx)+e’ f(x).

1.5.1 Series expansion of Dual Functions As we have mentioned above the

Taylor series expansion of a dual function is

f+e')=f(x)+e' f(x).

We can obtain this result by the Taylor series expansion of f(d) at d,=0.

Similar to the real case :
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d-d,) a’) (d d)

(@) = £(dy) + 2 £ () v, L LI A T,

If we write d as d =x+&x  and make Taylor series expansion at d, = 0 then,

x+ex x" +nex™'x"

F1O) e, + I Fal () F =

fx+ax’)=f(0)+

()
SO+ O+ +%'—f(")(O)+....}+ac'{f’(O)+ ..... X oy

(n —1)'

where the first part of the expression is the Taylor series expansion of f(x) and the

second part is the Taylor series expansion of f'(x). Hence we get,
fx+ex)=fx)+ex" f'(x).
In particular, we have ;

cos(x+&x ) =cosx—& sinx

. ® . A
sin(x+& )=sinx+& Cosx
tan(x + &’ ) = tan x + &x” (1 + tan? x)

* * 2
cot(x+ & )=cotx—e&x cosec’x

and consider

(1+d)" =1+md+m(n;_l)d2 m(m-1)..... (m—n+1)d,,+

again if we put x+&x’ instead of d then we have



e —tomer e Dy P Dl
: n
={1+mx+@xz+ ....... +m(m—l)...(|m—n+1)xn+ ....... }+mx"e{l+
: n:
..... f = Dem=ntl) oy
(n-=1)!

Then it is clear that,

A+d)" =1+ x)" +eamx’ (1 +x)™

If we take m = -1 in (1.5.1) then

»

1 1 X

(+d)" = = -& >
1+d (1+x) (1+x)

Ifwetake d =d* in (1.5.2) then

*

1 1 2xx

= &
1+d* 1+x*  (1+x%)?

If we take m = —% in (1.5.2) then

L]

1 __ 1 e
Q+dy?  (+x”%  20+x0)”

and a special case of (1.5.4) is

1

—_— =1-gk .
(1+26)%

11

(x+&x") +..

(1.5.1)

(1.5.2)

(1.5.3)

(1.5.4)
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Depending on these expansions, we can give a simple sketch for the norm of a

dual vector A=d+é&i :

[4|=(4.2)" = (@ + e Y@+ &' = @a+ 2628 =(fa" +26a") "

-

-k
a.a

Jal”

—_ ¥
a.a

d

R L

% =|a(l+¢& ,
7l Jal? El

=[ala+2¢

) (1.5.5)
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CHAPTER TWO
THE SPATIAL MOTION

Definition (Dual Unit Sphere) 2.1.1 The set of the dual points

(X =%+&" ”)_("" =(1,0);%,% € R*} is called the dual unit sphere (D.U.S) in D.

2.1 The E. Study Principle

The dual points on the D.U.S represents the straight lines in R>, and vice

versa.

Theorem (E. Study) 2.1.2 There is a one to one correspondence between the

straight lines in R* and the dual points (not the pure duals, s.t. (0,d")) of the D.U.S.

Proof To define a straight line in R* we need a point , say m € R®, and the
direction vector , say deR®. So the vectorial equation of the straight line is

(¥ —m)xd =0. Here we use ¥ to define the arbitrary points of the straight line and
we take d as a unit vector. Then the vectorial equation, (¥ —it)xd =0, implies
ixd=mxd= c;’o'(let us denote ¥xd and mxd by the vector 30' ). The result
Jo' has a physical meaning that it is the vectorial moment of d with respect to the
origin (hence the moment of the straight line).
Taking the norm of 670’ we have,
|9,"| =[x d| = || d]sin g = || singp =&

which is the smallest distance between the straight line and the origin.
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Figure 2.1 The direction and the moment of a straight line

Our claim is that (c_z", 50‘) eD.U.S defines a unique straight line in R*. Since
c_z’.o‘ =%xd, c?& 1x¥ and 07; 1d. If wetake a plane in R*, passing through origin
and perpendicular to 3; , and draw a circle of radius § which lies in this plane then

the diameter perpendicular to d intersects this circle at two distinct points. If we

draw two straight lines tangent to the circle at these points then we get the straight
lines corresponding to the vector couples (3 ,Ei; ) and (c? ,——c_z"(; ). These two straight
lines are called the spears, in kinematics. Thus we get a unique straight line

corresponds to the couple (c? , c?& ).

Since the dual vector (3,3(; y=d +ed, has the properties, d.d=1 and

dd, =0, (d,d;) is adual vector on D.U.S.

If we define the vector A=d +£c_z”(; then A corresponds to a point on the
D.US. Since d.d=1, instead of (3,—35) we can take (—3,—3; ). This is the
case of taking the direction of the straight line —d instead of d. Defining the
vector —A=—d — 6‘6_1;(; on D.U.S., one can easily observe that the opposite spears

correspond to the diametrical points (Z,—Z) of D.US.
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Since we have restricted ourselves not to take a dual point of (0,a") type (this is
the case that the moment is zero), any dual point (4,d°) on D.U.S. represents a

straight line with direction @ and vectorial moment & (with respect to the origin)

in R’. Thus any dual point of the D.U.S. is the image of a spear.

The six coordinates of the real vectors d and 675 in an orthogonal coordinate

system are called the Pliicker coordinates of the straight line, and the vectors d and

d, satisfy the conditions d.d =1 and d.d; =0.

2.2 The Dual Angle

The angle between the dual vectors is called a dual angle. Similar to the dual

numbers, a dual angle has a real part and a dual part. Let us denote the angle
between the dual unit vectors A=G+&i’ and B=b+&b by ®=¢+ep . Now

we will investigate the geometric notions of ¢ and ¢° (the real part and the dual

part of @, respectively).
By, (1.3.3) and (1.5.1), the inner product of dand Bis;

AB=Gb+e@d" +a h) and

AB= ||Z”.”§H.cos ® =cos®=cosp—£p sing .

Then aGb+e(@h’ +d'h) = cosp—sep sing (2.2.1)
The real part of the (2.2.1) gives ;
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Taking the angle between the real unit vectors a4 and b as @ , and using the

fact that the inner product of two real vectors can be expressed by the cosine of the

angle between them, we have

ab = [[5[[“5 “ COSQ =COSP .

Now we will investigate the dual part, ¢” , of the dual angle @ . We know that

the dual unit vectors A and B represent two straight lines , say [/, and I,
respectively. If we take a unit vector which is perpendicular to both /; and I,

then we can denote it by

A straight line passing through the shortest distance between the straight lines /|

Sy

X

Qi

n=%F

S

X

Qy

and /, intersects these lines at two points, say X and ¥, respectively. On the

other hand, the vectorial moments of the lines /, and /, with respect to the origin

are 4 =%xd and b’ =jxb,respectively. So

&

¥xd)b =3(dxb) (2.2.2)

Sy

Q

~~

Q!

b =d(yxb)=-y(@xb). (2.2.3)
The sum of (2.2.2) and (2.2.3) gives;
a'b+adb" =F-pNaxb) . (2.2.4)

If the shortest distance between the lines /; and [, is measured as ¥, then it is
clear that
- = o dxb
X-y=yFn)=Fy ——”_ 5“ : (2.2.5)
a x

From (2.2.4) and (2.2.5), we get



17

ab' +a b=y (ﬁia_xx_l;,)llz

= ?7/"5 X I;“ =Fysing (2.2.6)
From (2.2.1) and (2.2.6) we get
— @' sing =Fysing 2.2.7)

Taking the suitable sign at the right hand side of (2.2.7), we obtain that the

shortest distance, y,isequalto ¢".

R3

Figure 2.2 The geometric meaning of the dual angle

As a summary, if we denote the dual angle between the dual vectors of D.U.S.
by ®=¢+&p then ¢ is the angle between the straight lines and ¢ is the

shortest distance between these lines.

As a consequence of the last statements, we have the following cases:

1 If AB=0 then 4 and B represent perpendicular intersecting straight lines

in R®.
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2) If AB gives a pure dual number or Gb=0 then 4 and B represent skew

straight lines in R*.

3) If AB hasadual part equal to zero, ie. a'b+ab’ =0 then 4 and B

represent intersecting straight lines.

4) If A.B has a real part equalto +1 or -1 and dual part different from zero

then 4 and B represent parallel lines in R>.

5) If AB has only areal part equal to +1 or -1 (dual part is equal to zero) then

A and B represent coincident two linesin R®.

Since there is a one to one correspondence between the straight lines in R?

and the dual unit vectors of the D.U.S., one parameter motion on D.U.S. (this is a

curve on D.U.S.) represents a ruled surfacein R’.

The motion of a point on D.U.S. is the motion of a dual unit vector oriented

at the origin. If we define the motion on the D.U.S. by the equation
X(@®)=%@t)+& (¢), then at each ¢, X (f) represents a straight line passing
through the point ¥(f)x ¥ (f) with direction %(f).The continuous change of the
point X(f) on the D.U.S. draws a curve on D.U.S. and causes a continuous

change of the represented straight line in R?. This is nothing but the definition of
the ruled surface denoted by m(t,u) = p(t) +ux(¢). Here p(t) is the base curve

and X(¢) is the generator of the ruled surface. Since the moment of the straight line

is independent from the choice of the point on the line, X (¢) = p()x ¥(t). Where

by the rule of vectorial division,

p(t) = -’?—-(“%(’;—)"T(—’) + %) = % () x X(F) + A%(F)

(where A is the parameter and ")'c'(t)" =1).
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Hence the equation of the ruled surface becomes,

m(t,u) = p(t) +ui(r),
m(t,u) =X ()X %)+ A%(@) + ux(t),

=X (XX + (A +u)X().

By using o instead of A +u, we have

mit,u) =X (£) X X(t) + 0i(t),

which is the equation of the ruled surface in R’ represented by the curve

X(@)=%@)+¢&8"(r) onthe D.US.

it ) = ()X " (1) + oa?(f)7

R3

Figure 2.3 The ruled surface of X (f) = %(t) + & (t)

On the other hand, if we take a ruled surface with the equation

m(t,u) = p(t) +ux(t) then, it is clear that this ruled surface is represented by the

curve X (1) = %(t)+€p(r)x %(¢) on the D.U.S.
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Let us fix the variable ¢ and take ¢=¢,. Hence m(t,,u) = p(t,)+ux(t,) isa
straight line passing through the point p(#,) with the direction vector x(,), and u
is the parameter of this line. Then the moment of this line is X' (f,) = p(t,) x ¥(¢,) .
We can determine this line by the dual vector (%(¢,),% (£,)) on D.U.S (Since
[t =1 and %)% (¢,) =0). Here (%(t,), %" (¢,)) = ¥(t,) + & (¢,) . The fixed
variable 7, defines a point on D.U.S. but the change of the free variable ¢ causes

the motion of the straight line in R* hence the motion on the D.U.S. By this motion,

we get the representative curve on D.U.S. And the equation of this curve is then

X@)=3@)+& ().

2.3 The Line Complex

We proved that any dual vector X =%+&" =(x,,%,,%,)+&(x, %, ,%; )

on the D.U.S. determines a straight linein R*. Since X isa vector on the D.U.S.

then the following conditions are satisfied.

- = 2 2 2
1) XXx=x"+x, +x;, =1

*

- - * * #
2) XX =xx% +x%x, +x,x, =0

In addition if there exists another independent condition including the Pliicker

coordinates such that,
3 F(xl,xz,x3;x1‘,x2',x3') =0

Yy . * » %
then we have 6 unknowns, the Pliicker coordinates (x;,x,,x;,x; ,X, ,%; ), and three

equations 1), 2), 3), hence the straight line X has three free parameters.
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Any set of straight lines depending on three free parameters, i.e. ©’ number of

straight lines in R*, is said to be a line complex in R’ .

If wu,v,w denote these parameters of the line complex then X can be written

by X = X(u,v,w)+ & (u,v,w).

2.4 The Line Congruence

If a line complex with three independent conditions

2 2 2
) x"+x,"+x," =1,
# ® *
2) X% +X,%, +x3x; =0,

3) F(xlax2ax3;x1 :xz ’x3 )=O s
has another independent condition such that
4) G(xl,xz,x3;x1',x2‘,x3')=O ,

then we have a set of straight lines with two free parameters, i.e. o’ number of

straight lines, in R*>. Any set of straight lines depending on two free parameters is

called a line congruence in R*.

If wu,v denote these parameters of the line congruence then the unit dual

vector X can be written by X = ¥(u,v)+ & (u,v).

2.5 The Ruled Surface

Including the natural conditions
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D x’+x +x =1,

] ® ®
2) xx; +x,%, +x%; =0

of the dual unit vector X =X+& , if there exists three other independent

conditions

[ e *

3) F(x;,%y,%55% ,X%, ,%3 )=0,
L] * L]

4) G(xlax23x3;x1 ,x2 ,x3 )=O s

* ® *
5) H(xlax2=x3;x1 ’x2 ’x3 )=O b

then the straight line has one free parameter. There are o' number of straight lines

in this case. Any set of straight lines depending on one free parameter is called a
ruled surface in R*. If ¢ denotes the free parameter of the ruled surface then the

unit dual vector X is represented by X =%(¢)+ & (2).

As it is discussed before, the continuous change of ¢ causes a motion of the

straight line in R® i.e., aruled surface. On the other hand, the change of ¢ causes

the motion of the dual unit vector X () onthe D.U.S. and draws a dual curve on

the D.U.S. The dual curve X is the dual spherical image of the ruled surface
X(@).

On the other hand, we can define d¢ =dp+adp’ as the dual arc-element of

the curve X = X(f). For the small increments, it is clear that the angular change is

equal to the vectorial change on the sphere. Hence,

dp.de = dX.dX ,
dp.d¢ = dp.dp+2edp.do” and
dX dX = d%.d% + 2ed%.d%’ imply
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dp* =d%* and dpdep" =d.di .

Here d¢ denotes the angle between the neighbour vectors X(f) and
X(t+dt). Also d¢ measures the distance between the end points of X(¢) and
X(t +df) onthe D.U.S. Depending on the previous discussions, the real part do
and the dual part do" of d¢ represent the angle and the distance between the

neighbour straight lines represented by X(f) and X(t+dt) on the ruled surface,

respectively.

The inner product dX.dX =dids+2edi.di’ is invariant under the
transformations. Then the ratio of the quantities d%.d% and d%.dé is also
invariant under the transformations. This ratio is the differential invariant of the

ruled surface. We denote it by

and ;11; is called the distribution parameter of the ruled surface. (Hereinafter hat

over an alphabet will define a dual vector).

Any motion on a sphere can be represented by a rotation. This can be thought as
the rotation of a moving sphere over a fixed reference sphere. Let us denote the
moving sphere by K, the fixed sphere by K' and the corresponding reference
frames by R and E, respectively. Then we say that R moves with respectto E
and we may interpret this as, the D.U.S. K rigidly connected with R moves over
the D.U.S. K’ rigidly connected with E. The motion is called a dual spherical

motion and will be denoted by K/K' .If x is apoint on K coinciding at the
instant ¢ with the point X on K ', we have;

X =4z, where A= (@)
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is the transformation matrix at the said instant R onto E. A is afunction of ¢.
Infact, since E={e,é,,e;} and R={#,%,/,} are two orthonormal
right handed trihedra defined on K’ and K, respectively, any point on the

D.U.S. can be written unambiguously as a linear combination of ¢,,¢,,é, as well

as of 7,7,,7,. Therefore X € K' and xe€ K canbe written as

>

i‘)?,éi = ix ,. (2.5.1)
i=1 i=1

The components ()? ) X ) X ,) and (%,,%,,%;) are the position vectors
of apoint X withrespectto E and R, respevtively. We obtain from (2.5.1)
that X, =@R)% +@ER)E, +@.R)% , (i=123) and putting

éf, =@,  yields the dual matrix
A=(8,)=(a,) +&(a,) =d+ed" .

Then we see that

~

X =A% and A is an othogonal dual matrix. Then Ad” =1 .

Differentiating both sides of 44T =1  with respect to ¢ (we put dot over a

symbol to denote the differentiation) gives
AT+ 24T =0 . 2.5.2)

(2.5.2) implies AA” =-4 AT . Hence AA” is askew-stmmetric matrix. So we

define AAT as



25

| 0 -W, W
AdT=| W, 0 -—w|=Q . (2.5.3)
W, W 0

[}
%>
1l
™o
>

The dual velocity of the point ¥ on K is defined as v

therefore

p=AATAR=AATR =OF (Veldkamp 1967).
Introducing the vector W givenby W' = (W,,W,,W,), we may write

A

v=X=wxX .

The dual vector w is called dual angular velocity (the dual Darboux vector)
of the motion K/K'. If the D.US. K and K' -correspond to the line spaces
H and H', respectively, Then the dual spherical motion K/K' corresponds
to the spatial motion in 3-space denotedby H/H'.
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CHAPTER THREE
STRAIGHT LINE

ADJOINT TO A RULED SURFACE

A straight line (or a located vector) d(o) adjoint to a ruled surface R in H,
defines a ruled surface depending on the Frenet frame {r,E,,E,,E,} of R. We

can derive the Frenet frame or the natural trihedron of the ruled surface R as

E =L(c) , E2=%, E, =E, xE, (.1.1)

where L(o) isthe unit direction vector of the instantaneous screw axis of R, and

the origin of this Frenet frame is at the center (or sitriction point) of R, represented

by r(o) .

Figure 3.1 The straight line adjoint to a ruled surface
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Then we have the well-known differential formulas of the Frenet frame ;

éi;—_=aEl +7E,,

%=E2, (3.1.2)
%i_—z =-E + PE,,

= =i,

where the coefficients « , f# and y are called the construction parameters or

the curvature functions of R.
Since d(o) draws a ruled surface relative to {E,,E,,E,}, the representative
curve of this ruled surface on the D.U.S. can be obtained. Let us denote this curve

by *(c,) , where o, isthe arc-length parameter on the D.U.S., then we have

#(0,) = (d(0,),d(0,) % d(c,)),
2(0,) = (d(0,),d(0,) % (F(0) + ¥(0,)))s

2(04) = d(0,) + £{d(0,) % (F(04) + ()}

D.U.S.

Figure 3.2 The dual curve on the D.U.S.
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Let do =s then
do,
& & do z,
=——=Xs5,
do, do do,
3 4% (doe) & do 2, 2 7 do
== + ~=x"s "+ 5
do,” do® \do, do do, do,
and
d;é 3 gt = 3 =1,
=ds+e{d'x(F+X)+dx(F' +x)}s ,
do,
27 2 R r -
d x2 ={d"s*+d- Z O;}+a{(d”x(if'+5c’)+2.d’x(7'+5E')+dx(?”+5c’”)).s2
do, do,
S ¥ = 7 =1, =t dzo-
+(d'x(F+X)+dx(F' +%"))- >}
do,

3.1 The Acceleration Center : We want to determine the points that sasisfy the
27

~=0.

do,

condition

The real part of the equation is

2
Frst+d L 7 =0. (.1.3)
do,

(3.1.3) implies 3(0‘) is constant for every 0,0, parameters.
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The dual part of the equation ; since d (o) is constant, from (3.1.3),

d'(c)=d"(c)=0 and

d20' 3 -y . = 2 ¢3 —=n , =
s {dx(F +X)}+s Adx@F"+x)}=0 =
0
2
dx{dO;-(F’+5c")+s2.(7”+5c'”)}=0 =
do,
3 dzo- =1, = 2 fom =
Al —-(F' +X)+s°.(F"+X") or
do,
dZO' -y =y 2 son o=
S +X)+s7(F +X")=0,
Oy

then we can write,

3 dZO' -1 =7 2 /=n =n
kyd= - (F +X)+s"(F"+X") , VkeR, (3.14)
do,
where
r'=ak +yE,,
F'=a'E, +(a—-yB)E, +yE,
and

X=xE +x,E, +x,E, ,
X'=(x —x))E +(x, — s +x)E, +(x; + fx,)E; ,

X" =(x, —2x, —x +B)E +(x, +2x —2px, —~(1+f)x, - B'%,)E,
+(x3 +2fx, +ﬂx1+ﬂ”xz_ﬁzx3)E3 .

Then from (3.1.4), we get
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= ' +X)-F". (3.1.5)
s2 dO_OZ s2
ok d’c . o
Taking —~=k and —~——-—=p and from the expansions of 7',%',7” and
2 2 2
s do,” s

" =kd+p(F +3)-F",

"

(xy —2%, =%, + fey,x, +2x, =2f%, —(1+ B7)x, = Bryx; +2fx, + P, + Bx, - fx,) =

k(d,,d,,d;) + p(B.0y) + p(x —x,x, —frs+x,x;, +fxy) — (a,a-yB,7"),

" 1} r
X, —2x, —x, + fx = kd, +pa+p(x, —x,)-a',

"

x, +2x; —2px, _(1"',32)"2_:6"‘3 = kd, +p(x, —fxs+x)-a+yB,

x, +20x, + P, +f%, —B’x, = kd,+py+p(x, +px,)-y,
xI' = pxll +2x, +x — px, — px, +(kd, + pa—-a'),
X, = =2x +px, +2px, +px1+(l+ﬁ2)x2+(ﬂ’—pﬂ)x3+(kd2—a+yﬂ),

X, = —2[x, +px, —ﬂxl+(pﬂ—ﬂ')x2+,B2x3+(kd3+p7—}/'),

and in matrix form, we have

X p 2 0 * (1 -p -p *)
5 |=|-2 b 28|x [+|p 145 -@F-P)|x |+C
x4 0 =28 p)x, | \B pB-F B X

or
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kd, + pa~a'
X"=AX'+BX+C, where C=| k,+yf-a
kdy + py —y'

The solution can be obtained by transforming the second order system to a first

order system.
Let X(o)=Y,(c) and Yll (0)=Y,(o) then

Y, (6)=Y,(0)

Y, (6)=A(0)Y,(c)+ B(@)Y,(0)+C(c)

or

Z'(0) = Mg(0)-Z(o)+D(o) .

The solution set of this system of differential equations will give the position of

d(o) with respect to the frame field {r,E,,E,,E,}.

<>}
Il
(e
@]

3.2 The Bresse Hyperboloid : The points that satisfy, a.
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S
>

d2

. do,

a.
[9)
(=]

2
5@ + 3y 4 el @@ x "+ 5+ A" (F + D))+
d 2

Ty

2 2
s (@"(d % (7 +F)+d' % (F +F)) + d T (@ @xF +7)+s d g
do, do,

(d'@xF +3))}=0

Since |d(c)|=1, dd=1 and d.d'=0 (wheredLld'). Taking
d(c)=R,, d'(c)=R, and R xR,=R,

we have a frame field {R,R,,R,}, where

R, =R,
R, =-R, "'ﬁRs,
R, =—ER29

and &, /7 ,¥ are the construction parameters of the ruled surface determined by
{x(O'), R15R23R3} ’

Figure 3.3 The ruled surface adjoint to a ruled surface



The real part of the equation is

2 ®
sd'(d"s® + d’d—a;) =0,
do,
then (3.2.1) implies
’ 2
SR, (R, s> + R, LTy =0 =
do,
2
sR,((~R, + BR,)s* + R, i%) =0 =
do,
d*c do d’c
= . =0 =

Sd 2_d d 2
O Oy 4o,

o
= constant .
do,

The dual part is simply
sHd'(@x(F+F)+d"xF+3)}+ s H{d"@dxF+F)+d' x(F+%)} =0

Making the following replacements

X=xR, +x,R, +x,R,
¥'=aR, +7R,

" =aR +(@-P7)R, +7R, into (32.2)

and using the relation nE, +nE, +nE; =AR, +7R, + 7R, , we get

33

(3.2.1)

(3.2.2)
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n E.R, E,R E,R \n
7, |=|E.R, E,R, E,R,|vr, or ¥ =Br
7 E.R, E,R, E,R;)\r

Then Br'=7, Br'=7 and &, pf,7 are the construction parameters of the
3}

ruled surface determined by {X,R,,R,R

Without lost of generality we can take HR1 || = ||R2 || = ]]R3 “ =1. Hence

d'(dx(F"+%")=—R,Br"-¥",

-

d'(d"x (7 + %)) = R,Br + BR.Br + x, + fix, ,

d"(dx(F+X))= ,BRBr+,Bx2,
d"(d'x (7 + X)) = — R,Br — BR,Br —x, — fx, .

So (3.2.2) yields,

{~R,Br"-y'+ R,Br + ﬁRlBr +x; + ,Bxl} + s.{ERzBr + ,Exz — R,Br — R, Br —x, —ﬁxl} =0

or
%, B(A—8)+%,88 +x,(1-8) = —F"+ 7'+ (s = VF, + (s — ) 7. — s /57, .

Taking x, and x, as free parameters we can define a line congruence ;

X = {=sPr, + (s =Dx; + (s D7, +—sPr, + (s = DF -7+ 77},
B (1 s)

X, =X, ,

X3 = X3,

under the conditions s = is a constant different from 1 and g #0.

Oy
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& d’x

3.3 The Inflection Surfaces : The points that satisfy ax9=0 or >
dO'O do'o

& d’x
X 2
do, do,

=0 implies

2

sd’ x (szd"+;‘;’i2d') + e{s2(d'x @ x (7" + F)))+s* (@ x (F' + %)) x d")
Oy

(3.3.1)

2 2

doc = .= .. - do
>(d < (dx(F +x)))+sd 5

o, Oy

+

(dx(F' +%))xd)=0.

From the real part of (3.3.1), we have

d*oc

sd'x s*d" +sd’ x 2c_z"’=0 = §’d'xd"=0 = d/d .

do,

-

Since d-d'=0 and d'//d", d-d"=0.
And from the dual part of (3.3.1),

d'x(dxi"= (d'F"d ,
d'x(dxi"= (d'i"d ,
(dx7)xd"= —(d"Fd ,
(dx3)xd"= —(d"3)d ,
d'x(dx7i)= (d'7)d,
d'x(dxi)= (d'3)d ,
(dx7)xd'= -(d'7)d ,

(dx3"Yxd'= —(d'%).d , then the dual part yields



d*o =, . d*o
~d'(F+X) —s >
O, Oy

(s’d'F+3) —s2d"(F+3) +

or

d’c
2

do,

(s2d'F+%) —s*d"F+%) +(1—9) d'(F+%)}d=0

and which implies the condition that the coefficient is zero,

d*c
do,’

SPAd'F+ %) =2 d"F+%) +(1—s) d'(F+%) =0.

d'(F+3%)}d =0

36
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CHAPTER FOUR
A CANONICAL FRAME FIELD

Let E be the fixed natural frame field of the D.U.S. Consider a moving

orthonormal frame field ,
A =E+gl£,
ado
T
ado
7 =led—L,
ado

as a canonical frame field which is obtained from the following ruled surface

dL

do

=d4a.

m(o,u)=7(c)+ul(c) , where “Z(O')H =1 and

Figure 4.1 The Frenet frame of a ruled surface
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Any point P on the D.US. can be defined by two of the frame fields
E=16,,¢,,6,} and R={#,%,,7}. Thatis 13=Z)?iéi=2£iﬁ. Then we get

A

Xi = (éi”’\l)fl + (éifz)iz + (éi’:3)£3 .

D.U.S.

Figure 4.2 The canonical frame field

Let @&, =é, -7, then A=(4,) where A is an orthogonal matrix

ie. AAT =1 , then

Let us compute the entries of 4

6h = (+eriy,
ado
é -7 = ldll""‘:(_ll),
ado
1, . d dl
e p = —(l, =-] =2 ,
€ n a(de' 3d0')
6 = L+ete

ado
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68 = L .0y,
ado
dl dl
R . N . T
€, r; a(3d0' ldO')
1dl
g, f, = Lt+e——,
€;h 3 0 do
-7y = '1"d13+8(—13),
ado

1, 4d dl
& F = ;(11202-—_12:{;]:)' Then

,
ll_l_glilL lill__gll l(lzﬂ_laﬂ;)w
S AR A
A= 12+3lil_2_ 1_2__6-[2 1(13—(1—1—11—3—) ,
TR
l3+8l—3— l-—3—£l3 -l-(,ﬁ—lz—]—)
ado ado a do “do’)
N /3
where the first conlumn of 4 is L+e—— ,
ado
the second coulumn is ld—L—ai and
ado
the third coulumn is lixd—l’.
a do

Since the transformation is orthogonal, the matrix representation A of the

transformation is a dual orthogonal matrix, i.e.
ATA=44"=1 . (4.1.1)
Taking the derivative of (4.1.1), we get

ATA+ AT A=0 or AT A= AT A= (AT J) .
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A

Therefore ATA is a skew-symmetric matrix. Letus denote 474 by Q.
R moves with respectto E , we may interpret this as follows : The D.U.S K

rigidly connected with R moves over the D.U.S. K' rigidly connected with E.
For sake of simplicity we call K' the fixed and K the moving sphere.

On the other hand, any point X on K' draws a path ¥ on K and

A

$=A"X . Then the velocity of # is,

A A A A

F=ATX=ATIX=ATAATX = A" 4% , hence £=AT4% .
Let W' =(#,W,,w,) then J=%=QfF=Wwx%.

w is the dual angular velocity (the Dual Darboux vector) :

Q=4"Ad=| %, 0 -

Let us denote by b, where o, is the arc-length parameter on the

do,
D.U.S. Then
(dl,  1d% 1d%,  d,. b d¥ 4, )
b =2y prlha_ % 23 |
(da dzz) (adcz)'z ‘90 a * do? 3d202)
3 ldl 1d4, d, b, d4 . di
A=lpe, b~y 2 258 L5y
(da o Pl a do? gda) a( do? ldg'z)
dl ldl 1d4, d, b, d4, ,di
b 4 b 3y 2 1
L (dO' adoz) (ad 2 da) a(lcz’o'2 zdaz))

hence



w

8

Q, O
b, &

w

The multiplication of matrices AT and 4 yields ;
5 dL  1d*L ldL
Qu =b(_’
do do?
dl. 1d*L _1dL -
Q. =b(—+eg——)(———¢l)=ba ,
12 (dO' adaz)(a do )= ba
A dL.  1d*’L_ - 1dL b d’L - dL
O, =+ e— L) (Ix- Ly = 2L 2 (Ix 2
1 (dO' 8ad0'2)( xado 2a’0'2( xda
1L ol
a do?
A 1d*L dL 1 dL
Q= (_;i'_z do )(__O__SL) 0,
a ldL dL ijﬁ_ %dz(Lxﬂ‘-)
b - 1 dL b dL
a=—( __)—— _2 (L _) s
a
A b - L 1 dL b
O, =2 =2
2 a ado ) a’ do? ( )
ﬁsa =2(-‘ a L L dL Hence
a ad
/
0 ba
Q= —ba 0
b d*L - dL b d*L - dL
—_— O — L —_— ___L —_—
2 dor P T der P o)

\

and

41
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. b d’L - dL

=—— Lx—
! 2do'z( dO')
. b d’L - dL
w2=8_2_d0_2(Lxd0.)’
w, =—ba

Then V=wxx implies

b d2
P = {x,ba+¢&(x, ba+x3 R == (Lx —))

b d’L dL b d’L - dL
zd 2(L -d——)+€(—x1 ba+x3 —ZF(LX—)),

%dL di, . bdL; d __))}

daz(LxE) R

—x,ba+x;—

de
2 2% do?

- X,
A * # ®
where X =(x, +&x, ,x, +&, ,X; +&x; ).

2
Z (Lxd—L)-l then

Let

P = {x,ba+ &(x, ba+x, izll) ,—xba+x, izl] +&(—x, ba+x, %l, )
a a a

b « b b
X a_zll +&(x, a_zll —X a_zll)}

The acceleration can be computed by the formula

: . d°L - dL :
After some computations and letting I (Lx d—) =/, , we obtain
o o
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= b2 5 5 b2 ) N . b2 b2
a={x,—L-xba" +e(-x,— " —x, b%a" +x, —I +x,—1,),
a a a a

, . b, b? b? B2 2 e, , b, . b2
=x,(0%a" +—— 1)+l v e(=x, L —x, 1" —x, (B%a" +— 1) +x; 1),
a a a a a a
b? 22 p? . b2 . b? . b2
(x,—1, —x, Pt — 1) +&((=x, +x, )711 - X, 0—4112 —(x, +x, );2—12)}

1

4.1 The Acceleration Center : The poins that satisfy, a=0.

The real part of the acceleration center gives the equations

2
. 2.2 _

2 2
—x,(b%a? +%—zﬁ)+x3 2—212 =0 ,
b2 b2 2 b2
(xlzll_xfa_“li —xza—212)=0 9
and
ll (ll"llz)
X, =X,—5 , X, =% —_— , X, =X;.
1 3a3 2 3 (a(’+llz) 3 3

Since %= (x,,%,,%,)+&(x, ,x, ,x; ) on the D.U.S. satisfies the condition that

2 2 2
X +x, +x" =1,

NG -12)@ +12)

we impose the condition [/, =%
: a

Simplifying the dual part of the acceleration center, we get

LSS
@+’

2

(where a,b,l,, and I, are all different from zero)  then x, =0,



2
* h X, +—2x
X, =——
1 2 3
P 4
2
X, =-—
2 273 2 7
a® +1, a® +1

Using the values of x,, x,,x; from the real part, we obtain

* (11’112) * L *
x, =tx,—, x, =—— , x, =0,
: 3\/(a6+112) *d ?

where this result naturaly satisfies the condition;
xlxl. +x2x2. + x3x3' =0.
Setting x, =u, the acceleration center defines a ruled surfacein R* such that ;

i(u,y)=5c’x5c"+,tﬁc'

2 2 2
= (ul—l,iuz Q —ull——uz %)+y(ui13-,i-u —6_2,1/!)
a a’ +1 a a’ +1 a a’ +1,

= {(u+Dul A+ bl ( —lj-)u—ﬂuz}
pr T a1 T a®+12 7

4.2 The Bresse Congruence : The points that satisfy, 6:3=0. “4.2.1)

The real part of (4.2.1) implies

3 b3 b3
— XX, %lz + x32 a—4[1[2 + x22 -;4—[112 =0 4.2.2)
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Since x’+x,"+x°=1, (422) yields

3 5 b3
—x1x3712+(1—x )a_"lllz =0,

hence

2 2
—x,a° £4x,°a% + 4l

X = ’

2],
X, =i\/;32(—2a6 “D)+1+41 £2x,a%x, 20t +412 (4.2.3)
X;=X; .

After the cancellations of the dual part of (4.2.1), we get

3 3 b’ 233 - b’ . b’ - b
~xx%,b°a” + %%, —1, +x,x, b @’ —xyxy — 1, —x; %, —1, +2x3%, — L], +
a a a

. b3 3

a a

Let x; =h(x;) , x, = hy(x;) at (4.2.3) andlet x3' = x3'.

® *
* . . . . ¢ X, X, +X:X
On the other hand , x;x, +x,x, +x,x, =0 implies, x =-—22—"323

X

Then the dual part is ,

b b’ . b’ "txx, b
hl(xs)hz(xa)(z—iilllz -b%a%) + 1y (x3)%, — = Iy (x3)x, —1, + Py (4y)% + x,%, x3—1, +
a a a h(x;) a
3

. b . .
Iy (x3)x, b’a’ +2a_4[112(h2(x3)x2 +x3%; )=0,

where #,(x,) #0 (since [, #0).
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Let
3 3
hy (x3)x,6°1, +h(x,)b%a’ + 2b lezflz(x3) =d(x,) ,
b (x5)a a
2b° b LB xS’ x, b
hy(x3)h, (xs)(_flllz _b3a3)+hz(x3)x3 —=h(x)x, —I, +=2=3 2
a a a h(x;)a

26°L1,x,x,” .
+ 4 2 =—c(x3,x3 )a

a
then
t_ hy (x4 )c(x3,x3‘) +d(x; )x3x3‘
: d(x;)h (x;)
Py c(xs,x;)
? d(x;) ’
x3' — x3.

is the solution to the dual part.
Setting x, =u and x3' =v, the solution defines a line congruence;

X, v, f) =X XX + px

c(u,v) — hy, (W)e(u,v) +d(uv iy, T (ut) c(u,v) + 1, () h, (u)c(u,v) + d(u)uv
@)’ d(u)h () S dw) d(u)h (v)

+ p(hy (u), hy (u),u)

= (hy (v —u
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c(u,v) by (w)e(u, vV)u + dwuv
) T )
c(u, v) h, (u)
() d(u) d(u)hl(u)

={h,(u)yv—-u

- }H (u)v + ﬂhz (u)a

(By (u)e(u,v) + d(uw)uv) + pu},

4.3 The Inflection Surface : The points that satisfy the condition, axv=0 4.3.1)

The real part of (4.3.1) is equal to zero implies three equations,

2 b’ b’

x’bl + x, ;—z - 2x% =1’ =0, (4.3.2)
3
—x22 o, (4.3.3)
a
b3
—2xx,b°L +x,°0%a° +x,” =17 =0, (4.3.4)
a

from (4.3.3) (since b#0 and I,#0) x,=0 and we get the following

system,
x,=0, (4.3.5)
x’+x’ =1, ' (4.3.6)
2 L’
—2x,3,0, +x%a® + x,° ;—3 =0, (4.3.7)

and from (4.3.6) x, == \/l —x32 , which together with (4.3.7) imply

x (@ +1,")-2a"x,’ +a? =0.
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2a" +4- 44”1}

Let x,”=u then u,= e gives a complex root. This comlex
' 2a“ +1")

root means that we don’t have a real solution to the real part. On the other hand,
since the solution to the dual part depends on the solution of the real part, we also
don’t have a real solution to the dual part. Consequently, we have no solution for

inflection points (See also Kose et al. 2003 p.4).
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