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THE MEAN RESIDUAL LIFE FUNCTION OF SYSTEMS  
 

ABSTRACT 

 

     Most of the fault-tolerant systems such as parallel and k-out-of-n consist of 

components having independent and nonidentically distributed lifetimes. These types 

of system structures have founded wide applications in both industrial and technical 

areas during the past several decades. For the improvement of the reliability of the 

operation of such complex technical systems, the implementation of the structural 

redundancy is widely used. 

 

     In this thesis, we consider the mean residual life (MRL) function of a parallel and 

k-out-of-n systems consisting of n components having independent and 

nonidentically distributed lifetimes. Numerical results are introduced to study the 

effect of increasing the system level and various parameters on the mean residual life 

of the systems. Further, the relation between the mean residual life of the system and 

the mean residual life of its components is investigated. 

 

Keywords : Mean residual life function, Parallel systems, k-out-of-n systems, 

Symmetric functions, Permanents  
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SİSTEMLERİN ORTALAMA GERİYE KALAN YAŞAM FONKSİYONU 

 

ÖZ 

 

     Paralel ve n-taneden-k-tane sistemleri gibi birçok hata önleme sistemi bağımsız ve 

aynı olmayan yaşam zamanı dağılımına sahip bileşenlerden oluşur. Geçen birkaç on 

yıl süresince sistem yapılarının bu tipleri endüstriyel ve teknik alanlarda geniş 

uygulama alanı bulmuşlardır. Bu çeşit karmaşık teknik sistemlerin işlemlerinin 

güvenilirliğinin geliştirilmesi için yapısal yedeklemenin uygulanması yaygın olarak 

kullanılmaktadır. 

 

     Bu tezde n tane bağımsız ve aynı olmayan yaşam zamanı dağılımına sahip 

bileşenlerden oluşan paralel ve n-taneden-k-tane sistemlerinin ortalama geriye kalan 

yaşam fonksiyonu ele alınmıştır. Sistem düzeyinin ve çeşitli parametrelerin, sistemin 

ortalama geriye kalan yaşamı üzerindeki etkisini incelemek için sayısal sonuçlar 

verilmiştir. Ayrıca sistemlerin ortalama geriye kalan yaşamı ile bileşenlerinin 

ortalama geriye kalan yaşamı arasındaki ilişki incelenmiştir. 

 

Anahtar sözcükler : Ortalama geriye kalan yaşam fonksiyonu, Paralel sistemler, n-

taneden-k-tane sistemler, Simetrik fonksiyonlar, Permanents  
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CHAPTER ONE 

INTRODUCTION 

 

     Determination of mean residual life (MRL) function of a system is an important 

problem in statistical theory of reliability. Given that a unit is of age t, the remaining 

life after time t is random. The expected value of this random residual life is called 

the mean residual life at time t. The mean residual life function is a helpful tool in 

model building. It is also used to characterize some special statistical probability 

distributions.  

 

     The concept of mean residual life is based on conditional expectations and has 

been of much interest in the actuarial science, survival studies and reliability theory. 

Reliability engineers, statisticians, and others have shown intensified interest in the 

MRL and derived many useful results. In biomedical sciences, researchers analyze 

survivorship studies by MRL. Actuaries apply MRL to setting rates and benefits of 

life insurance. In economics, MRL is applied for investigating landholding. In 

industrial reliability studies of repair and replacement strategies, the mean residual 

life function may be more relevant than the hazard function.  

 

     In the last two decades, the mean residual life has gathered considerable interest 

and many useful results are derived. The MRL has been employed in life length 

studies by various authors. Bryson & Siddiqui (1969) use a decreasing MRL function 

as one of several possible criteria for aging and develop a chain of implications for 

the various criteria. Hollander & Proschan (1975) develop a test statistic for a 

decreasing MRL function. Hall & Wellner (1981) and Oakes & Dasu (1990) 

characterize the class of distributions with linear mean residual life. Tang, Lu & 

Chew (1999) characterize the general behaviors of the MRL for both continuous and 

discrete lifetime distributions, with respect to their failure rates. Nair & Nair (1989) 

have extended the concept of the bivariate case, and derived relationship between the 

reliability and mean residual life function.  
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     In the next sections, we provide a literature review and some fundamental results 

about the mean residual life function of lifetime of a component. 

 

1.1 The Mean Residual Life (MRL) Function of a Continuous Random Variable 

 

     Let X be a random variable representing the life length. Then, X is a nonnegative 

continuous random variable, and F(x) is the cumulative distribution function of X. 

The survival probability of a unit corresponding to a mission of duration x is 

 

)(xF =1-F(x).                              (1.1) 

 

and let )(xf = )(' xF be the density function.  

 

     The corresponding conditional survival function (or reliability) of tX − , the 

residual lifetime of a unit, at age t is given by, 

 

 F (x|t)=
)(

)(

tF

xtF +
, if )(tF >0.                (1.2) 

 

     The random variable 0≥X  is a continuous random variable with the reliability 

function )(xF , and finite expectation µ . The mean residual life function Fψ  of a 

component, with life distribution function F pertaining to a life length X, is defined 

by the following conditional expectation of X-t given tX > : 

 

 )()( tXtXEtF >−=ψ                  (1.3) 

 

     This means that Fψ (t) is the expected remaining life given survival at age t. The 

MRL function in Equation (1.3) can also be expressed as in Equation (1.4). 

  

ttXXEtF −>= )()(ψ                  (1.4) 
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This function is also interpreted as the conditional expectation of residual life length 

of X, given tX > . Let the random variable )( tXXY >= , and its probability 

density function be as below: 

 

       

tx             

tx        
tF

xf

xfY









<

≥
=

0

)(

)(

)(                   (1.5) 

 

The following elementary equalities yield the MRL function. Equation (1.4) can be 

written as 

  

)(tFψ = ∫
∞

−
t

txxdF
tF

)(
)(

1
.                 (1.6) 

 

The integral expression in (1.6) is computed in the following steps.  

 

∫ ∫
∞ ∞

−−=
t t

xFxdxxdF ))(1()(    

      

    
∞

−−=
t

xFx ))(1( + ∫
∞

−
t

dxxF ))(1( .               (1.7) 

 

Since ))(1(lim xFx
x

−
∞→

=0, then 

  

∫
∞

=
t

xxdF )( t ∫
∞

+
t

dxxFtF )()( .                (1.8) 

 

After all computations, the MRL function is obtained as below. 

 

)(tFψ = tdxxFtFt
tF

t

−







+ ∫

∞

)()(
)(

1
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            )(tFψ = dxxF
tF

t

∫
∞

)(
)(

1
               (1.9) 

 

Here Fψ (.) is nonnegative and Fψ (0)=E(X), i.e. the MRL function at the time origin 

is equal to the ordinary expectation.  

 

     It is known that )(xF  can be recovered from )(tFψ  by the inversion formula 

(Cox, 1962). Using Equation (1.9), the survival function can be obtained by the 

inversion formula. The process is followed by rewriting (1.9) as follows, 

 

 )()( tFtFψ = dxxF
t

∫
∞

)(  .               (1.10) 

 

Derivation of the Equation (1.10) according to t is 

 

 '' ))()(()()( tFttFt FF ψψ + = )(tF−  

 

 
)(

)(
)()('

tF

tf
tt FF ψψ − =

)(

)(

tF

tF
−  

 

 
)(

)(

tF

tf
=

)(

1)('

t

t

F

F

ψ
ψ +

.                (1.11) 

 

Hence in order to obtain the survival function )(xF , we integrate both sides of 

Equation (1.11) on [ ]x,0 : 

 

 ∫
x

tF
dt

d

0

))((ln = ∫
+

−
x

F

F dt
t

t

0

'

)(

1)(

ψ
ψ

 

 

 =)(ln xF ∫
+

−
x

F

F dt
t

t

0

'

)(

1)(

ψ
ψ
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 =)(xF








−− ∫ ∫
x x

FF

F dt
t

dt
t

t

0 0

'

)(

1

)(

)(
exp

ψψ
ψ

 

 

=)(xF








−− ∫ ∫
x x

F

F dt
t

t
dt

d

0 0
)(

1
)(lnexp

ψ
ψ . 

 

Hence the inversion formula is obtained as follows, 

 

=)(xF








− ∫
x

FF

F dt
tx

0
)(

1
exp

)(

)0(

ψψ
ψ

.              (1.12) 

 

1.2 Failure Rate (FR) 

 

     A basic quantity, fundamental in survival analysis is the hazard function. This 

function is also known as the conditional failure rate in reliability, the force of 

mortality in demography, the age-specific failure rate in epidemiology.    

 

     The failure rate, which is defined as the probability that a device will fail in the 

next time unit given that it has been working properly up to time t, is 

 

)(
1

lim)(
0

tTttTtP
t

tr
t

≥∆+<≤
∆

=
→∆

              (1.13) 

 
 

       =
)(

),(1
lim

0 tTP

tTttTtP

tt ≥
≥∆+<≤

∆→∆
. 

 

The conditional failure rate at time t is obtained as below, 

 

)(

)()(1
lim)(

0 tF

tFttF

t
tr

t

−∆+
∆

=
→∆

 

 

       
)(

)(

tF

tf
=                                       (1.14) 
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when f(t) exists and )(tF >0 (Barlow & Proschan, 1975). 

 

      The failure rate is a non-negative function. It tells us how quickly individuals of a 

given age are experiencing the event of interest. This function is particularly useful 

in determining the appropriate failure distributions, and for describing the way in 

which the chance of experiencing the event changes with time. There are many 

general shapes for the failure rate. Some types of failure rates are increasing, 

decreasing, constant and bath-tube shaped. Most often a bath-tube shaped failure is 

appropriate in populations followed from birth (Høyland & Rausand, 1994). 

 

     Life function and failure rate function are useful identities for application. If r(t) is 

known )(xF  can be determined. This useful identity is obtained by integrating both 

sides of (1.14) which is given as below, 

 

 ∫∫ −=
xx

tF
dt

d
dttr

00

)(ln)( .       

  

A related quantity is the cumulative failure rate function defined by,  

 

 ∫ −=
x

xFdttr
0

)(ln)( .        

  

For continuous lifetimes, the following relationship exists, 

 

 







−= ∫

x

dttrxF
0

)(exp)( .               (1.15) 

 

This implies that the failure rate function and the mean residual life function are 

characterizing the distribution function. 
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−= ∫

x

dttrxF
0

)(exp)( =








− ∫
x

FF

F dt
tx

0
)(

1
exp

)(

)0(

ψψ
ψ

 

 

Both failure rate and mean residual life function are conditioned on survival to 

time t. While the failure rate function at t provides information about a small interval 

after time t, the mean residual life function at t considers information about the whole 

interval after t. When both )(tFψ  and r(t) exist, a relationship  

 

1)()()(' −= trtt FF ψψ  

 

between two functions holds. 

 

1.3 Aging Properties of the MRL Function  

  

     Modeling of the aging process of a component or a system can be performed in 

various ways. Some helpful tools commonly used for such modeling are the failure 

rate function and the mean residual life function, as well as the reliability function.  

 

     The set of all lifetime distribution functions has important connections by the 

notion of aging. Monotone aging models are very useful and important in reliability 

applications. For example, the Gamma and Weibull with a shape parameter greater 

than 1 is an IFR (increasing failure rate) model-adverse aging. The Gamma and 

Weibull with a shape parameter that is between 0 and 1 is a DFR (decreasing failure 

rate) model-beneficial aging. Another important subclass is the set of those, which 

have bathtub-shaped (or upside down bathtub-shaped) functions. Bathtub-shaped 

failure rate functions and their corresponding mean residual life functions are faced 

frequently in many practical situations. Such types of life distributions include IDFR 

(increasing decreasing FR), DIFR (decreasing increasing FR), DIMRL (decreasing 

increasing MRL) and IDMRL (increasing decreasing MRL), among others. Guess, 

Hollander & Proschan (1986) define the IDMRL and DIMRL classes and propose a 

testing procedure. The lognormal distributions, used for repair times as well as 

lifetimes, are in the IDFR class. A life distribution with upside down bathtub shaped 
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mean residual life is in the IDMRL class. Human life length can be modeled well by 

this class.  

 

     Although many parametric models have monotone failure rate or mean residual 

life (Gamma and Weibull with a shape parameter greater than 1), there are life 

distributions that exhibit non-monotone properties of failure rate and mean residual 

life. Esary & Proschan (1963) discuss the system failure rate and component failure 

rate associations. Glaser (1980) discusses the relation between the density function 

and trend change in its failure rate. Mudholkar & Srivastava (1993) suggest an 

exponentiated-Weibull distribution which can be DIFR or IDFR depending on the 

parameter values. Lim & Park (1995) discuss the trend change in mean residual life. 

Ghai & Mi (1999) and Xie, Goh & Tang (2004) focus on the underlying associations 

between the mean residual life and failure rate function.    

 

If )(tFψ  is nonincreasing in t, the life distribution F is said to have decreasing 

mean residual life (DMRL). The DMRL class models aging that is adverse. Barlow, 

Marshall & Proschan (1963), note that the DMRL class is a natural one in reliability 

theory and they have studied some properties of this class. The older a DMRL unit is, 

the shorter is the remaining life on the average. If r(t) increases monotonically over 

time, the distribution is said to have increasing failure rate (IFR). For IFR class, the 

aging has an adverse effect on its failure rate. If r(t) decreases monotonically, we 

have decreasing failure rate (DFR). For this class, the aging is beneficial to the 

system. The IFR property is characteristic of devices that consistently deteriorate 

with age, whereas the DFR property is characteristic of devices that consistently 

improve with age. A common description, which is appropriate for modeling human 

lifetimes, shows three phases: an initial phase during which the failure rate decreases, 

followed by a middle phase during which the failure rate is essentially constant, 

concluded by a final phase during which the failure rate increases. Such failure rates 

are usually termed bathtub shaped. More often, the life distributions exhibit such 

failure rates, and are more realistic models than the monotone failure rate models in 

many practical situations. The following classes of life distributions are defined 

which show a trend change in its failure rate. 
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Definition 1.1 A life distribution function F is said to have a DIFR if there exists 

a point t0 such that )(' tr <0 for t<t0,  )( 0
'

tr =0, and )(' tr >0 for t> t0.  

 

Definition 1.2 A life distribution function F is said to have an IDFR if there exists 

a point t0 such that )(' tr >0 for t<t0,  )( 0
'

tr =0, and )(' tr <0 for t> t0. 

 

If  t0=0, then DIFR and IDFR are equivalent to IFR and DFR, respectively. Examples 

of these cases are illustrated in Figure 1.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  Figure1.1 Examples of the trend change in failure rate 

 

There also exists relationship between FR and MRL as: 

• If )(tr  is increasing, then )(tψ is decreasing 

• If )(tr  is decreasing, then )(tψ is increasing 

• If )(tr  is a constant function (i.e, F is an exponential distribution) if and 

only if )(tψ is a constant. 

 

Definition 1.3 A life distribution F is said to have an IDMRL if there exists a 

point t0 such that )('
tψ >0 for t<t0, )( 0

'
tψ =0, and )('

tψ <0 for t>t0. 

IFR 

DFR 

DIFR 

IDFR 

r(t) 

t 
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Definition 1.4 A life distribution F is said to have an DIMRL if there exists a 

point t0 such that )('
tψ <0 for t<t0, )( 0

'
tψ =0, and )('

tψ >0 for t>t0. 

 

If t0=0 IDMRL and DIMRL are equivalent to DMRL and IMRL, respectively. 

 

In the next sections, several well known parametric families of life distributions in 

reliability applications are presented.  

 

1.3.1 Exponential Distribution 

 

The simplest and most important distribution in survival studies is the exponential 

distribution. In the late 1940’s researchers chose the exponential distribution to 

describe the life pattern of electronic systems. It is famous for its unique “lack of 

memory” property which requires that the age of the animals or the individual does 

not affect future survival (Lee, 1992). 

 

The exponential distribution is characterized by a constant hazard rate λ , the only 

parameter. The hazard rate is both IFR and DFR. A large λ  indicates high risk and 

short survival while a small λ  indicates low risk and long survival. When λ =1, the 

distribution is often referred to as the unit exponential distribution.  

 

The distribution function )(tF , failure rate )(tr  and mean residual life )(tFψ  

functions are respectively, 

 

t
etF

λ−−= 1)(  for t≥0 , 0>λ , 

 

)(

)(
)(

tF

tf
tr = = λ  

 

)(tFψ = ∫
∞

t

dxxF
tF

)(
)(

1
=

λ
λ

λ

11
=∫

∞
−

− dxe
e

t

x

t
. 
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1.3.2 Weibull Distribution 

 

The Weibull distribution is a generalization of the exponential distribution. 

However, unlike the exponential distribution, it does not assume a constant hazard 

rate and therefore has broader application. The distribution is characterized by two 

parameters, λ  and α . The value of α  determines the shape of the distribution curve 

and the value of λ  determines its scaling. The distribution function is given by 

  

 
αλ )(1)( t

etF
−−=  for t≥0 where 0, >αλ . 

 

     The failure rate and mean residual life functions are respectively, 

 

)(

)(
)(

tF

tf
tr = = 1)( −αλαλ t  for t>0 

 

)(tFψ = ∫∫
∞

−
∞

−
=

t

x

t
t

dxe
e

dxxF
tF

α

α

λ
λ

)(

)(

1
)(

)(

1
. 

 

The Weibull distribution Fα is IFR and DMRL for a≥1 and DFR and IMRL for 

0<a≤1; for a=1, t
etF

λ
α

−−= 1)( , the exponential distribution which is both DFR and 

IFR as t increases. The failure rate and mean residual life functions of the Weibull 

are plotted in Figure 1.2 and Figure 1.3. The parameter a is called the shape 

parameter; as a increases the failure rate function rises more steeply and the 

probability density becomes more peaked. 

 

 

 

 

 

 

 

 



12 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

          Figure 1.2 Failure rate curves of the Weibull distribution for λ =1 

 

 

 

 

 

 

 

 

 

 

 

  

            Figure 1.3 MRL curves of the Weibull distribution for λ =1. 

 

1.3.3 Gamma Distribution 

 

The gamma distribution, which includes the exponential and chi-square 

distribution, has been used by Brown & Flood, in 1947, to describe the life of glass 

tumblers circulating in a cafeteria. Since then, this distribution has been used as a 

 
0                2                4                   6                  8 

                                  t 

r(t) 
a=2 a=3/2 

a=1 

a=1/2 

 
1 

a=1/2 

 

a=1 

 
a=3/2 
a=2 
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model for industrial reliability problems. The gamma distribution with integer 

parameter a is the distribution of the sum of n independent exponential random 

variables, each with failure rate λ .  

 

t
ettf

λα
αλ λ

α
λ −−

Γ
= 1

, )(
)(

)(  for t≥0 where 0, >αλ . 

 

The failure rate and mean residual life functions for the gamma distribution are, 

 

r(t)= 

∫
−−

−−

Γ
−

Γ
t

x

t

dxex

et

0

1

1

)(
)(

1

)(
)(

λα

λα

λ
α
λ

λ
α
λ

,  t≥0, 

 

∫ ∫
∫

∞
−−

−−











Γ
−

Γ
−

=
t

y

x

t

x

F dxdyey

dxex

t
λα

λα

λ
α
λ

λ
α
λ

ψ 1

0

0

1

)(
)(

1

)(
)(

1

1
)( . 

 

The failure rate and mean residual life functions of the gamma are plotted in 

Figure 1.4 and Figure 1.5. When 0<a≤1 the failure rate decreases monotonically 

from infinity to λ  as time increases from zero to infinity. So there are negative aging 

and IMRL. When a≥1 the failure rate increases monotonically from zero to λ  as 

time increases. There is positive aging and DMRL. For a=1, )(tFα , the exponential 

distribution which is both DFR and IFR. Thus, the gamma distribution describes a 

different type of survival pattern where the hazard rate is decreasing or increasing to 

a constant value as time approaches infinity.  
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                  Figure 1.4 Failure rate curves of the gamma distribution for λ =1 

 

 

 

 

 

 

 

 

 

 

 

              Figure 1.5 MRL curves of the gamma distribution for λ =1 

 

Table 1.1 summarizes the aging properties of MRL and failure rate for various 

distributions. 
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Table 1.1 MRL for some distributions 

FR MRL  
Distribution 

IDFR IFR DFR CFR IMRL DMRL CMRL DIMRL 

 
Exponential 

 

   yes   yes  

Weibull 
 yes 

α >1 

yes 

α <1 

yes 

α =1 

yes 

α <1 

yes 

α >1 

yes 

α =1 

 

Gamma 
 yes 

α >1 

yes 

α <1 

yes 

α =1 

yes 

α <1 

yes 

α >1 

yes 

α =1 

 

 

 

1.4 System Structures of Independent Components 

 

     Applicable system configurations include combinations of series, parallel and     

k-out-of-n. The individual components are assumed to fail independently of one 

another and the lifetimes of the components are continuous.  

 

1.4.1 The Series System 

 

    Assume that system A has a series structure; that is the system functions if and 

only if each component functions. A series structure is shown in Figure 1.6. 

 

 
                         Figure1.6 Series structure 

 

     To indicate the state of the ith component, it is assigned a binary indicator 

variable ix  to component i, 

 

 




=
failed, is i component if

g,functionin is i component if
xi 0

1
 

X1          X2                    Xn 

     ... 
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for i=1,…,n, where n is the number of components in the system. Similarly, the 

binary variable φ  indicates the state of the system (Barlow & Proschan, 1975): 

 





=
failed. is  systemif

g,functionin is   systemif

0

1
φ  

 

     Since the state of the system is determined completely by the states of the 

components, the structure function of the system is written  

 

 φφ = (x), where x= ),...,( 1 nxx . 

 

     The series structure function is given by  

 

 φ (x) )...min( 1
1

ni

n

i

xxx == ∏
=

. 

      

     The survival probability of such a system A corresponding to a mission of 

duration x is  

 

 )(xS =P(X1:n>x)= )(xF
n . 

 

     The corresponding conditional reliability of system having non-failure element at 

time t is 

 

n

nn
tF

xtF
tXxtXPtxS 







 +
=>+>=

)(

)(
)()( :1:1 , if )(tF >0.                    (1.16) 

 

     The mean residual life function of a system A with series structure is defined by 

the conditional expectation of residual life length 

 

 )()( :1:1 tX tXEt nnn >−=ψ , 
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given X1:n >t (all components of A functioning at time t). Now the survival function 

is, 

 

 )(xS = )(xF
n =









− ∫
x

nn

n dt
tx

0
)(

1
exp

)(

)0(

ψψ
ψ

 

and 

=)(xF

n
x

nn

n dt
tx

/1

0
)(

1
exp

)(

)0(





















− ∫ψψ
ψ

,             (1.17) 

 

that is, )(tnψ  defines F for some n. 

 

1.4.2 The Parallel System 

 

     Assume that the system A has a parallel structure; that is, the system goes out of 

service when all of its components fails. A parallel structure is given in Figure 1.7. 

                   

 

             

                       

 

  

                      

 

 

                                   

                                      Figure 1.7 Parallel structure 

     

 The structure function is given by  

 

 φ (x) i

n

i

xC
1=

= )...max( 1 nxx= , 

 

. 

. 

.
 

X1 
 
 
X2 
 

 
 
 
 
Xn 
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where  

 

,)1(1
11

∏
==

−−≡
n

i

ii

n

i

xxC  

 

)1)(1(1 2121 xxxx −−−=∨ . 

 

     Note that C and ∨  bear the same relation to each other as ∑ and + (Barlow 

& Proschan, 1975). 

 

     The survival probability of system corresponding to a mission of duration x is 

 

  )(xS =P(Xn:n>x) = )(1 xF
n−  

 

     The conditional probability of system’s failing in the interval (t, t+x], with no 

failing components at time t is 

 

)()( :1: tXxtXPtxS nnn >+≤=  

 

n

tF

xtF
txS 







 +
−=

)(

)(
1)( , if )(tF >0. 

 

     The conditional expectation of residual life length of the system A having parallel 

structure 

 

)()( :1: tX tXEt nnnn >−=ψ  

 

given X1:n>t is called the mean residual life function of parallel system (Bairamov, 

Ahsanullah & Akhundov, 2002). 
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1.4.3 The k-out-of-n System 

  

    A k-out-of-n structure functions if and only if at least k of the n components 

function. The structure function is given by 

 

    1    if ∑
=

≥
n

i

i kx
1

, 

),...,,( 21 nxxxφ =       

0   if  kx
n

i

i <∑
=1

, 

 

or equivalently, 

 

),...,,( 21 nxxxφ = ∏
=

n

i

ix
1

  for k=n, 

 

while 

 

),...,,( 21 nxxxφ = )...()...()...( 11111 nknkkk xxxxxxx +−+− ∨∨∨ K  

 

                   )}...(),...,...(),...max{( 11111 nknkkk xxxxxxx +−+−≡   

 

for 1≤k≤n, where every choice of k out of the n x’s appears once exactly. It is clear 

that a series structure is an n-out-of-n structure and a parallel structure is 1-out-of-n 

structure.  

 

1.5 Thesis Outline 

 

     This thesis consists of six chapters that investigate methodologies of system mean 

residual life function, important properties and modeling some well known 

distribution functions. We first present a general formulation of the problem. Using 

this framework, a review of relevant papers available in the literature is presented, 

followed by a more detailed problem statement. The remainder of the thesis presents 
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the methodology and results. Chapter 2 presents mean residual life theory existing in 

the literature of parallel system and k-out-of-n system consisting of n identical and 

independent components and their application in some lifetime distribution functions 

with their aging modeling. In Chapter 3 and 4, we present the mean residual life 

function of parallel and k -out-of- n  systems consisting of n  components having 

independent and nonidentically distributed lifetimes and we establish new 

representations of the MRL function for such systems. We give some examples 

related to some lifetime distribution functions. Chapter 5 presents some real problem 

examples and numerical results for evaluating mean residual life of the k-out-of-n 

system with different system level. Finally Chapter 6 gives conclusions of this thesis 

and describes further research issues. 

 

     The most important results interesting to determining the mean residual life 

function of parallel and k-out-of-n systems, consisting of n components having 

independent and identically distributed lifetimes, are studied by Bairamov & et al. 

(2002) and Asadi & Bairamov (2005), (2006). The contribution of this thesis is the 

new representation of mean residual life function for parallel system consisting of n 

components with independent lifetimes having distribution functions (Fi), i=1, 2,…, 

n, respectively. Parallel system of n nonidentical components with exponential and 

power distributed lifetimes is considered and its mean residual life curves under the 

different conditions are examined. A recurrence relation which expresses the mean 

residual life function of n  components in terms of mean residual life function of 

1−n  components is investigated. Another contribution of this study is that the mean 

residual life function of k-out-of-n system consisting of n components having 

independent and nonidentically distributed lifetimes is derived. Finally, the Weibull 

parametric model is examined to show how one can utilize the derived results to 

calculate the mean residual life for practical problems. And the relation between the 

mean residual life of the system and the mean residual life of its components is 

investigated. 
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CHAPTER TWO 

THE MEAN RESIDUAL LIFE FUNCTION OF  

SYSTEMS 

 

         The reliability of a system or component is the probability that an item will 

perform satisfactorily, for a given period, under specified conditions. It is seen that 

reliability is the probability of survival and that reliability can be expressed 

mathematically throughout the entire life of a component. Reliability testing falls 

into two main types: firstly that of one-shot devices, or cases where success is 

defined in qualitative terms, for example a fuse or a parachute cases where the device 

either functions successfully when required to or else it does not; secondly the 

quantitative parameter case where some continuous variable, such as time to failure 

is being measured, and reliability is defined in terms of this variable. But reliability is 

not confined to single component.   

 

     A technical system will normally compromise a number of components that are 

interconnected in such a way that the system is able to perform a set of required 

functions. Determination of mean residual life function of a system is an important 

problem of statistical theory of reliability. To calculate system mean residual life, we 

must have a knowledge about the life distribution functions of those components 

which can cause the system to fail.  

 

     The mean residual life function Fψ  of a component, with life distribution 

function F pertaining to a life length X, is defined by the following conditional 

expectation of X-t given tX > : 

 

 )()( tXtXEtF >−=ψ .                   (2.1) 

 
     It is assumed that a system have n components. Let Xi, i=1, 2,…, n be the survival 

time of ith component, such that nXXX ,,, 21 K  are independent and identically 

distributed random variables with continuous distribution function F. Let also 

nnnn XXX ::2:1 ≤≤≤ L  be the ordered lifetimes of the components 
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This chapter is devoted to presenting necessary definitions and preliminary results 

on the mean residual life function of parallel system and k-out-of-n system. We 

present the MRL function of systems consisting of n identical and independent 

components with life lengths being distributed as well known distributions. 

 

2.1 The Mean Residual Life Function of a Simple Parallel System  

     

     If high reliability is required for a system, the components must be designed in a 

parallel structure. A parallel system functions, if and only if at least one component 

functions. Lifetime of the last element of a parallel system, that is the component 

which have largest lifetime, is represented as nnX : . Assume that at time t, t>0, the 

residual lifetime of a parallel system consisting of n identical and independent 

components is tXtX nnnn >− :: . If S denotes the survival function of this conditional 

random variable then, it can be shown that, for x>0: 

 

)()( :: tXtxXPtxS nnnn >+>=  

 

           = 
)(

),(

:

::

tXP

tXtxXP

nn

nnnn

>
>+>

 

 

           =
)(1

)(1

:

:

tXP

txXP

nn

nn

<−
+<−

 

 

           = [ ])(1
)(1

1
txF

tF

n

n
+−

−
.                (2.2) 

 

Definition 2.1 The mean residual life function of a system having parallel structure 

given tX nn >:  (last element of the system functions at time t) is  

 

)()( :: tX tXEt nnnnn >−=ψ .                            (2.3) 
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Using the survival function in (2.2) the mean residual life function of the system 

defined in (2.3) is given by  

 

∫
∞

=
0

)()( dxtxStnψ [ ]dxtxF
tF

n

n
)(1

)(1

1

0

+−
−

= ∫
∞

  

       [ ]dxxF
tF

n

t

n
)(1

)(1

1
−

−
= ∫

∞

.              (2.4) 

 

Example 2.1 Let F(x) be the exponential distribution function; 

 

),exp(1)( xxF λ−−=     ,0≥x  .0>λ  

 

     Figure 2.1 is plotted to examine the changes of the MRL, several choices of 

number of components n (2, 4) and λ (0.5, 1, 2). MRL function of the system is 

nonincreasing function of t. When λ’s increase then the MRL of the system 

decreases. As the number of components increase then the MRL increases as 

expected.    

 

 

 

 

 

 

 

 

 

 

 

 

      Figure 2.1 MRL of a parallel system consisting of  n (2,4) 

      components having exponential distributed lifetimes. 

n=4, λ=1 
 
n=2 ,λ=1 

n=4, λ=0.5 

n=2, λ=0.5 

n=4, λ=2 
n=2, λ=2 
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Example 2.2 Let the lifetimes of the components be the Weibull distributed random 

variables. The distribution function of a component is  

 

αλ )(1)( xexF −−=  for x≥0 where λ, a >0. 

 

In Figure 2.2, MRL of the system consisting of n (2, 4) components are presented. 

The lifetimes of the components are distributed as Weibull distribution with a (0.5, 

1, 2). It is assumed that the scale parameter λ  is 1. The system has nondecreasing 

MRL for 0<a<1 and nonincreasing MRL for a≥1.  

 

 

 

 

 

 

 

 

 

 

 

 

                 Figure 2.2 MRL of a parallel system consisting of  n (2,4) 

                    components having Weibull distributed lifetimes (λ=1). 

 

Example 2.3 Let the lifetimes of the components be the Gamma distributed random 

variables. The probability distribution function is 

 

xexxf λα
αλ λ

α
λ −−

Γ
= 1

, )(
)(

)(  for x≥0 where 0, >αλ . 

 

Figure 2.3 is plotted to present the changes of the MRL, for several choices of 

number of components n (2, 4) and a (0.5, 1, 2) assuming the scale parameter λ  is 1.  

n=4, a=1 
n=2, a=1 

n=2, a=0.5 

n=4, a=0.5 

n=4, a=2 
n=2, a=2 
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For n=2 and 0<a<1, the MRL function is nondecreasing function of t. For 0<a<1 

and larger n, the mean residual life function is nonincreasing. It is seen that when 

a≥1 there is positive aging and the MRL function decreases monotonically as time 

increases. It is clear that the increasing of number of components n is a negative 

aging factor on MRL of system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                       Figure 2.3 MRL of a parallel system consisting of  n (2,4) 

                       components having Gamma distributed lifetimes (λ=1). 

 

Parameters written on the top of the figure represent each line respectively. 

 

2.2 The Mean Residual Life Function of the Parallel System with Components 

All Alive at Time t  

      

     Let nXXX ,,, 21 K  denote the lifetimes of n components connected in a system 

with parallel structure. It is assumed that Xi’s are continuous, independent and 

identically distributed random variables with common distribution function F and 

survival function FF −= 1 . Let also Xi:n i=1, 2,…, n, be the ith smallest among 

nXXX ,,, 21 K , so that  the lifetimes of the components are ordered, i.e., 

 
n=4, a=2 
n=2, a=2 
n=4, a=1 
n=2, a=1 
n=4, a=0.5 
n=2, a=0.5 
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nnnn XXX ::2:1 ≤≤≤ L . If we denote the survival function of the system at time t by 

S(t), we have 

   

 )(tS =P(Xn:n>t) 

          =1-Fn(t),   t>0.                                       (2.5) 

 

     The conditional probability of survival of system defined as parallel structure 

having no failing component at time t is 

 

)()( :1: tXxtXPtxS nnn >+>= .                 (2.6) 

 

     The conditional probability of system’s failing in the interval (t, t+x], with no 

failing component at time t is 

 

)()( :1: tXxtXPtxF nnn >+≤=  

 

),,,,,,(
)(

1
121 tXtXxtXxtXxtXP

tF
nnn

>>+<+<+<= KK  

 

n

tF

xtFtF







 +−
=

)(

)()(
 

 

=
n

tF

xtF







 +
−

)(

)(
1 ,   if   )(tF >0.               (2.7) 

 

From this point Bairamov & et al. (2002) have given a proposition for exponential 

distribution. 

 

Proposition 2.1 Let F(x) be the exponential distribution function; 

),exp(1)( xxF λ−−=     ,0≥x  .0>λ  
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Using the lack of memory property )()()( xFtFxtF =+  it can be obtain from (2.7) 

 

)()( xFtxF
n= = )( : xXP nn ≤ , 

 

and the conditional survival function, 

 

)()(1)( : xXPxFtxS nn

n >=−= .                          (2.8) 

 

As it is shown in Equation (2.8) for the exponential distribution, it is true that 

 

)()( :1: tXxtXPtxS nnn >+>=  

 

          )()( : xSxXP nn =>= . 

 

It is clear that the exponential distribution is the only one satisfying (2.8).  

 

     Then from Equation (2.7) it can be observed that F satisfying Equation (2.8) must 

be exponential distribution.   

 

Definition 2.2 The conditional expectation of residual life length of a system having 

parallel structure 

 

 )()( :1: tX tXEt nnnn >−=φ                  (2.9) 

 

given X1:n>t (all elements of system function at time t) is called the mean residual life 

function of parallel system (Bairamov & et al., 2002). 

      

     The distribution function of the random variable Y= ( )tXX nnn > :1: , 
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             =
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tFxF
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Differentiating (2.10) with respect to x we obtain  

 

             )( :1: tXxXP
dx

d
nnn >≤ = [ ] 1)()()(

)(

−− n

n
tFxFxf

tF

n
.                      (2.11) 

 

Using the result in (2.11), the mean residual life function of the parallel system is 

obtained as given below. 

      

ttXXEtXtXEt nnnnnnn −>=>−= )()()( :1::1:φ  

 

            ( ) f(x)dxtFxFx
tF

n n

t

n

1)()(
)(

−
∞

−= ∫ -t                        (2.12) 

 

 Example 2.4 Let F(x) be the exponential distribution function; 

 

),exp(1)( xxF λ−−=     ,0≥x  .0>λ  

 

     From Equation (2.12), it can be obtained that the mean residual life function of a 

parallel system consisting of three identical and independent components with 

exponential distribution function. The mean residual life function of the system for 

exponentially distributed lifetimes is 
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λ
φ

6

11
)(3 =t    .0>λ  

 

     Figure 2.4 is plotted to examine the changes of the MRL for several choices of 

number of components n (2, 3) and λ (0.5, 1, 2). It is clear that the MRL function of 

the system consisting of n components does not depend on t. The MRL of the system 

decreases when λ's increase and the number of components decrease. When the 

number of components increases, the MRL increases as it is expected. 

 

 

 

 

 

 

 

 

 

 

 

                          Figure 2.4 MRL of parallel system consisting of  n(2,3)  

                               components having exponential distributed lifetimes.  

 

Example 2.5 Let the lifetimes of the components be the Weibull distributed random 

variables. The distribution function of a component is  

  

αλ )(1)( x
exF

−−=  for x≥0 where λ, a>0. 

 

In Figure 2.5, the MRL function of the system is plotted for several choices of 

number of components n (2, 3) and a (0.5, 1, 2) assuming the scale parameter λ  is 1. 

The system has increasing MRL for 0<a<1 and decreasing MRL for a>1. For a=1 

the system has constant MRL function, which is given as in Example 2.4.  

 

n=2, λ=0.5 

n=3, λ=0.5 

n=2, λ=1 

n=2, λ=2 

n=3, λ=1 

n=3, λ=2 
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         Figure 2.5 MRL of a parallel system consisting of  n (2,3) 

           components having Weibull distributed lifetimes (λ=1). 

 

Example 2.6 Let the lifetimes of the components be the Gamma distributed random 

variables. The probability distribution function is 

 

x
exxf

λα
αλ λ

α
λ −−

Γ
= 1

, )(
)(

)(  for x≥0 where 0, >αλ . 

 

     Figure 2.6 is plotted to examine the changes of the MRL, several choices of 

number of components n (2, 3) and a (0.5, 1, 2) assuming the scale parameter λ  is 1. 

When 0<a<1 there is negative aging and the MRL function increases monotonically 

as time increases. When a>1 there is positive aging and the MRL function decreases 

monotonically as time increases. It is clear that the increasing of number of 

components n is a negative aging factor on MRL of system.  

 
 
 
 
 
 
 
 
 
 
 

n=2, a=0.5 

n=3, a=0.5 

n=3, a=1 
n=2, a=1 

n=3, a=2 
n=2, a=2 
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         Figure 2.6 MRL of a parallel system consisting of  n (2,3) 

         components having Gamma distributed lifetimes (λ=1). 

 

     Bairamov & et al. (2002) obtained that the survival function of a component in 

terms of the mean residual life function of the system which is defined in (2.12).  

 

Theorem 2.1 Let )(tnφ  be the mean residual function of a system having a parallel 

structure and consisting of n identical and mutually independent components with 

continuous life distribution function F. Then the following identity holds 
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             (2.13) 

  

where )(1 tn−φ  is the mean residual life function of similar system having (n-1) 

components. 

 

Proof. From (2.12), the MRL function for the system having (n-1) components we 

have  

 

n=3, a=1 
n=3, a=0.5 

n=3, a=2 
n=2, α=2 

n=2, a=1 
n=2, a=0.5 
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Also from (2.12) one can write 
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n

t

n

n

1)()()()( −
∞
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Differentiating Equation (2.15) with respect to t it is obtained 
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Using the Equation (2.14), the Equation (2.15) may be rewritten as follows 
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After some derivation, one can obtain 
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and 

 

.
)()(

1)(1
))((ln

1

'

tt

t

n
tF

dt

d

nn

n

−−
+

−=
φφ

φ
 

 

Integrating (2.16) over [0, x] and using ,1)0( =F  it is obtained 
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and this completes the proof. 

 

     Asadi & Bayramoglu (2005) extended the definition of the MRL function 

proposed by Bairamov & et al. (2002) and explored its properties. They defined the 

MRL function of a system, under the condition that Xr:n>t, i.e., (n-r+1), r=1,2,…,n, 

components of the system are still working. Also they have showed that when the 

components of the system have a common increasing failure rate distribution then 

)(tM
r

n  is decreasing in t. 

 

Definition 2.3 The MRL function of a parallel system, under the condition that 

Xr:n>t, i.e., (n-r+1) components of the system are still working. 

  

 )()( :: tXtXEtM nrnn
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n >−= ,  r= 1,2,…,n             (2.17) 

 

     It is assumed that the lifetime of the components of the system is independent and 

identically distributed with common distribution function F. A representation 

formula for )(tM
r

n  is given in the following theorem. 

 

Theorem 2.2 If )(tM
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n is the MRL of the parallel system defined as (2.17), then for 
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Proof. If )( txS  denotes the conditional survival of Xn:n at tx +  given that Xr:n is 

greater than t, then 
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This is end of the proof. 
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In Theorem 2.2, if r=1 then, 
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2.3 The Mean Residual Life Function of the k-out-of-n System   

 

     An important method for improving the reliability of a system is to build 

redundancy into it. A common structure of redundancy is the k-out-of-n system. A 

system consists of n components that work (or is good) if and only if at least k of the 

n components work, is called a k-out-of-n:G system. A system consists of n 

components that fails if and only if at least k of the n components fail is called a k-

out-of-n:F system. Based on these definitions, a k-out-of-n:G system is equivalent to 

an (n-k+1)-out-of-n:F system. The term k-out-of-n system is often used to indicate a 

G system. Since the value of n is usually larger than the value of k, redundancy 

generally built into a k-out-of-n system. Both parallel and series systems are special 

cases of the k-out-of-n system. A series system is equivalent to a n-out-of-n system 

while a parallel system is equivalent to an 1-out-of-n system. 

 

     The k-out-of-n system structure is a very popular type of redundancy in fault-

tolerant systems. It finds wide applications in both industrial and military systems. 

Fault tolerant systems include the multidisplay system in a cockpit, the multiengine 

system in an airplane, and the multipump system in a hydraulic control system. For 



36 

 

example, it may be possible to drive a car with a V8 engine if only four cylinders are 

firing. However, if less than four cylinders fire, then the automobile cannot be 

driven. Thus, the functioning of the engine may be represented by a 4-out-of-8 

system. The system is tolerant of failures of up to four cylinders for minimal 

functioning of the engine. In a data processing system with five video displays, a 

minimum of three displays operable may be sufficient for full data display. In this 

case the display subsystem behaves as a 3-out-of-5 system. In the case of an 

automobile with four tires, for example, usually one additional spare tire is equipped 

on the vehicle. Thus, the vehicle can be driven as long as at least 4-out-of-5 tires are 

good condition. Among applications of the k-out-of-n system model, the design of 

electronic circuits such as very large scale integrated and the automatic repairs of 

faults in an on-line system would be the most conspicuous. This type of system 

demonstrates what is called the voting redundancy. In such a system, several parallel 

outputs are channeled through a decision making device that provides the required 

system function as long as at least a predetermined number k of n parallel outputs are 

in agreement.  

 

     There are many papers related to the k-out-of-n system. Arulmozhi (2003) studied 

on simple and efficient computational method for determining the reliability unequal 

and equal reliabilities for components. Barlow & Heidtmann (1984) have presented 

methods to get expressions for reliability methods. Sarhan & Abouammoh (2001) 

have investigated the reliability of nonrepairable k-out-of-n systems with 

nonidentical components subjected to independent and common shocks and the 

relationship between the failure rate of the system and that of its components. Li & 

Chen (2004) studied the aging properties of the residual life length of a k-out-of-n 

system with independent (not necessarily identical) components given that the (n-

k)th failure has occurred at time t≥0. Belzunce, Franco & Ruiz (1999) define new 

aging classes and provide characterizations for a nonparametric class of life 

distributions based on aging, and variability orderings of the residual life of k-out-of-

n systems. Li & Zuo (2002) studied on behaviors of aging properties based upon the 

residual life. They also paid special attention to the residual life of a 1-out-of-n 

(parallel) system given that the (n-r)th failure occurs at time t≥0.     
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     In this section, a detailed coverage on mean residual life evaluation of the k-out-

of-n system is provided. It is assumed that components independent of one another 

and the lifetimes of components are identically distributed.  

 

     If iX  represents the lifetime to the ith component, i=1,2,…, n, the survival 

function of the k-out-of-n system is the same as that of the (n-k+1)th order statistic 

nknX :1+−  from this set of n random variables. The results obtained for order statistics 

hold for k-out-of-n systems, so the study of order statistics plays an important role in 

reliability theory. Recently, Asadi & Bayramoglu (2006) proposed a new definition 

for the mean residual life function of the system, and obtain several properties of that 

system.   

 

     Let nXXX ,,, 21 K  denote the lifetimes of n components connected in a system 

with a k-out-of-n system. Assume that iX  are independent and identically distributed 

random variables with common continuous distribution function F, and survival 

function (reliability function) FF −= 1 . Let also nnnn XXX ::2:1 ≤≤≤ L  be the 

ordered lifetimes of the components. Then nkX : , k=1,2,…,n, represents the lifetime 

of the (n-k+1)-out-of-n system. If we denote the survival function of the system, at 

time t, by S(t), we have 
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The lifetime of a (n-k+1)-out-of-n system is nkX : , the MRL function of a system is 

equal to 
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where nkF :  denotes the survival function of nkX : .  

      

     Asadi & Bayramoglu (2006) have given MRL function of the k-out-of-n system 

assuming that at time t all the components are working, i.e. tX n>:1 . The residual 

lifetime of the system is tXtX nnk >− :1: . If S denotes the survival function of this 

conditional random variable, then it can be shown that, for x>0,  
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The MRL function of the system, given that all components of the system are 

working at time t, is 
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)(tH
k

n  is the MRL of nkX :  at the system level. 

 

Example 2.7 Let F(x) be the exponential distribution function; 

 

),exp(1)( xxF λ−−=     ,0≥x  .0>λ  

 

     From (2.23) it can be obtained that the mean residual life function of a 2-out-of-3 

system consisting of three identical and independent components with exponential 

distribution function 

 

λ6

5
)(2

3 =tH . 

 

The MRL of the system having independent exponential components does not 

depend on t. 

 

     Asadi & Bayramoglu (2006) have shown that when the distribution function F is 

absolutely continuous, then it can be uniquely determined by  )(tH
k

n  and )(1
1 tH

k

n

−
− . 

 

Theorem 2.3 Let the components of the system have a common absolutely 

continuous distribution function F. Let also f and F  denote the density, and survival 

functions corresponding to F, respectively. Then the survival function F  can be 

represented in terms of )(tH
k

n  and )(1
1 tH

k

n

−
−  as 
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On taking the derivative of )(tH
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n  with respect to t,  
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where 
)(

)(
)(

tF

tf
tr =  denotes the hazard rate of F. Hence nttr /)()( η= , the proof is 

completed.  
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     In following theorem Asadi & Bayramoglu (2006) have proved a result showing 

that, when the components have a common IFR (DFR) distribution, then )(tH
k

n  is 

decreasing (increasing) in t. 

 

Theorem 2.4 If the components of the system have a IFR (DFR) distribution 

function F, then )(tH
k

n  is decreasing (increasing) in t.  

 

Proof. Let )(tr  denote the hazard rate of F. Then, )(tr  is increasing (decreasing) if 

and only if for x, t>0, 
)(

)(

tF

txF +
 is decreasing (increasing) in t. From this result, it can 

be easily seen that the survival function )( txS  defined in (2.22) is decreasing 

(increasing) in t. This is turn implies that )(tH
k

n  is decreasing (increasing) in t, and 

the proof is completed. 

 

     A comparison between two systems based on their MRL can be given considering 

their hazard rates. Let the components of system 1 (S1) and system 2 (S2) have the 

distribution function F and G; survival functions F  and G ; and hazard rates )(trF  

)(trG , respectively. If, for t>0,   

 

)(trF ≤ )(trG , then )(1
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n ≥ )(2
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where )(tH
k

n  and )(2
tH

k

n  denote the mean residual life of  S1 and S2, respectively. 

From the assumption that )(trF ≤ )(trG for t>0, it is true that 
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From the equation (2.27), comparison of the systems based on their MRL functions 

in (2.26) is proved.     
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CHAPTER THREE 

THE MEAN RESIDUAL LIFE FUNCTION OF PARALLEL SYSTEMS 

WITH NONIDENTICAL COMPONENTS  

 

     In the study of reliability of the technical systems and subsystems, parallel 

systems play an important role. In this chapter, we consider the mean residual life 

function of parallel system consisting of n  components having independent and 

nonidentically distributed lifetimes. We establish new representations of the MRL 

function for such a system. An effective representation using permanents has been 

provided. Examples utilizing some distribution functions are presented. 

 

3.1 Introduction 

 

     A parallel system, consisting of n  components, is a system which functions if and 

only if at least one of its n  components functions. Assume that nXXX ,,, 21 K  are 

independent, but not identically distributed random variables with distribution 

function iF  and survival function ii FF −= 1 . Let also nnnn XXX ::2:1 ≤≤≤ L  be the 

ordered lifetimes of the components. If we denote the survival function of the system 

at time t  by )()( tF n , we have  
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     Assuming that each component of the system has survived up to time t , the 

survival function of tX i −  given that ,tX i >  ni ,,1K= , is  
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The mean residual life function of each component is  
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     The mean residual life function for the nonidentical case can be expressed in 

terms of so-called symmetric functions and permanents. We describe shortly below 

the definition of symmetric functions and permanents and provide some of their 

useful properties.  

  

Definition 3.1 Let ),,( 1 nxx K=x nℜ∈ , )1( ≥n , the r th )1( nr ≤≤  elementary 

symmetric function denoted by ),,( 1 nr xx Kσ , is the sum of all products of r  distinct 

variables chosen from n  variables (see MacDonald, 1979). That is 

 

rσ (x)= .),,(
1

11
1 r

r

ii

nii

nr xxxx KK
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It is convenient to define 0)( =xrσ  for 0<r  and .nr >  And 1)( =xrσ , when 

0=r . 

 

     The generating function )(xG  for the elementary symmetric function is,  
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     The function )(xG  may be interpreted as the generating function for the subsets 

of the set { }nxx ,,1 K  and )(xrσ  is all −r element subsets. A recurrence relation for 

the symmetric functions can be obtained from (3.4) as (see Oruç & Akmaz, 2004)  

 

).,,(),,(),,( 111111 −−− += nrnnrnr xxxxxxx KKK σσσ             (3.5) 
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     When the variables are independent but not assumed to be identically distributed, 

the usage of the permanents provides an effective technique to handle the case of 

order statistics from nonidentical parents. 

 

     Consider nS  as the set of permutations of n,,2,1 K . If A  is an nn ×  matrix and 

ija  its entries. The permanent of A , denoted by PerA , is defined as: 
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where the summation extends over all permutations of { }n,,2,1 K . And π  is the 

element of set of permutation. 

 

     The permanent does not change when the rows or columns of the matrix are 

permuted. And also, the permanent admits a Laplace expansion along any row or 

column of the matrix. Thus if we denote by ),( jiA  the matrix obtained by deleting 

row i  and column j  of the nn ×  matrix A , then for nji ,,2,1, K=  
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If ,,, 21 Kaa  are column vectors, then  

 

{ {
],,,[

21

21 K

ii

aa  

 

will denote the matrix obtained by taking 1i  copies of 1a , 2i  copies of 2a  and so on 

(Bapat & Beg, 1989). 
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     Vaughan & Venables (1972) have shown that the density of nrX :  is conveniently 

expressed in terms of permanents, when nXXX ,,, 21 K  are order statistics of the 

independent random variables with absolutely continuous distribution functions 

nFFF ,,, 21 K  and densities nfff ,,, 21 K  respectively. The distribution function of 

Xr:n  )1( nr ≤≤  is given by Bapat & Beg (1989) 
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where PerA  denotes the permanent of a square matrix A ; the permanent is defined 

just like the determinant, except that all signs in the expansion are positive. A simple 

argument shows (David, 1981) that  
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where the summation extends over all permutations njj ,,1 K  of n,,1 K  for which 

ijj <<L1  and ni jj <<+ L1 . That is the summation is over all 
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n
 distinct 

combinations of the integers { }n,,2,1 K  taken i at a time such that exactly i of the 

iX ’s greater than t (and remaining iX ’s are less than or equal to t), ri ≥ . 
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3.2 The MRL Function of Simple Parallel System with Nonidentical 

Components 

 

     Assume that at time t , 0>t  the residual lifetime of the system is 

tXtX nnnn >− :: | . If S  denotes the survival function of this conditional random 

variable then, it can be shown that, for 0>x , 
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The mean residual life function is  
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for .,,1 ni K=  The mean residual life function (3.6) can be expressed in terms of 

generating function (3.4) taking 1=x . Let us rewrite the product part of Equation 

(3.6) as 
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Then by Definition 3.1 ,1),,( 10 =nxx Kσ  the mean residual life function can be 

written as follows:  
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For the case when iF ’s are identical, it is easy to see that 
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Hence, )(tnψ  can be written as 
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The following examples illustrate this concept. 

 

Example 3.1 An important life distribution is the exponential distribution. Let  
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The MRL function of such a system containing three components has the following 

form, 
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         Figure 3.1 The MRL of a parallel system consisting of n=3 components having  

       exponential distributed lifetimes.  

     

     In Figure 3.1, we have presented the graphs of the MRL function of a system 

containing three components in which the lifetime of the components are assumed to 

be exponential distribution function with different parameters. 

 

     The MRL function of a system containing n  components has the form 
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(λ1,λ2,λ3)=(0.5,0.8,0.3) 
 
 
 
 
(λ1,λ2,λ3)=(0.5,0.8,1) 
(λ1,λ2,λ3)=(0.5,1,2) 
 
 
 
(λ1,λ2,λ3)=(1,2,3) 
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     For the large values of ,t  the MRL function is, 
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     For identically distributed components, i.e., when ,21 λλλλ ==== nL  the 

mean residual life function of the system in Equation (3.10) is reduced to expression 

given below: 
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For this case, the mean residual life function for large values of t  is 
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Example 3.2 Another important class of life distributions is the power distribution. 

Let  
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     The MRL function of the system consisting of three components is plotted for 

selected values of parameter iθ  in Figure 3.2. When iθ 's increase then the MRL of 

the system decreases. 
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          Figure 3.2 The MRL of a parallel system consisting of n=3 components having  

          power distributed lifetimes.  

 

     In the graph above the curve on the top corresponds to )3.0,8.0,5.0(),,( 321 =θθθ . 

 

     The MRL function of a system containing n  components is given as below. 
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     In the following theorem we present a recurrence formula for the mean residual 

life function defined in Equation (3.7). 

  

Theorem 3.1 Let )(1 tn−ψ  be the mean residual life function of a system having a 

parallel structure and consisting of )1( −n  independent and nonidentical components 

with distribution function iF , 1,,2,1 −= ni K . Then,  
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(θ1,θ2,θ3)=(0.5,0.8,0.3) 
(θ1,θ2,θ3)=(0.5,0.8,1) 
(θ1,θ2,θ3)=(0.5,1,2) 
(θ1,θ2,θ3)=(1,2,3) 
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where,  
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Proof. The mean residual life function of a system consisting of )1( −n  nonidentical 

components is  
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We have,  
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Therefore, 
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The mean residual life function of a system consisting of n  nonidentical components 

is, 
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Hence, we can use the recurrence relations (3.5) and (3.19) in (3.20).  
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It can be shown that the first part of the integral is equal to Equation (3.18). So we 

have,  
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Thus the theorem is proved. Recurrence relation in Equation (3.15) expresses the 

mean residual life function of n  components in terms of mean residual life function 

of 1−n  components. 

 

Remark 3.1 For the case of a system having independent and identically distributed 

lifetimes with distribution function )(xF  from Theorem 3.1, it follows that  
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For large values of t , )(tnψ  is 
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3.3 The MRL Function of a System Having n  Components All Alive at Time t   

 

     Consider a parallel system with independent and nonidentically distributed 

components each following the distribution function iF  and survival function 

(reliability function) ii FF −= 1  , .,,2,1 ni K=  When the system is put into operation 

at time t , all components are working. Let also nnnn XXX ::2:1 ≤≤≤ L  be the 

ordered lifetimes of the components. The consideration of the mean residual life 

function of this system leads us to the following definition.  

 

Definition 3.2 The MRL function of a system under the condition all components 

alive at time ,t  i.e., tX n >:1  , is  
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     In Theorem 3.2 we obtain a representation formula for mean residual life function 

of a parallel system under condition that all components are survived.  

 

Theorem 3.2 Let )(tnφ  be the mean residual life function of a system having a 

parallel structure and consisting of n  independent and nonidentically distributed 

components with distribution function iF , ni ,,2,1 K= , respectively. Given that all 

components of the system are working at time t  then,  
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Proof. We have,  
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From (3.25) we get  
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     Differentiating (3.26) with respect to x  we obtain the probability density function 

of conditional random variable )|( :1: tXX nnn >  as  
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Using the expression (3.27), the mean residual life function given in Definition 3.2 

can be written as,  
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     An argument shows that 
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where the summation extends over all permutations njj K,1  of n,,1K  for which 1j   

and njj <<L2 . The result now follows from the definition of the permanent:  
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Given that all components of the system are working at time t , we obtain  
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Thus the proof is completed. 

 

     Two examples are given for lifetimes which are distributed as exponential and 

power distribution functions. 

  

Example 3.3 Let )(xFi , ni ,,2,1 K=  be the exponential distribution function; 
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Then, using Equation (3.24) one can show that for ni ,,1K= , the MRL function of a 

system containing three components has the following form:  
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     Note that the MRL of a system having independent and nonidentical exponential 

components does not depend on t . When the values of 1≥iλ  then the MRL of the 

system decreases. The MRL function of a system containing n  components has the 

form  
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Example 3.4 Let )(xFi , i = 1, 2,… ,n , be the power distribution function;  
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     Then, the MRL function of the system containing three components has the 

following form:  
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     In Figure 3.3, we have presented the graph of the MRL function of the system 

containing three components in which the lifetime of the components are assumed to 

be power distribution with different parameter values. It is seen that the MRL 

function is a decreasing function of parameters 21,θθ  and .3θ   

 

     As a result, the MRL function of a system containing n  components is,  
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   Figure 3.3 The MRL of a parallel system consisting of n=3 components having  

   power distributed lifetimes.  

 

     Asadi and Bayramoglu (2005) have given an extension of the )(tnφ  as assuming 

that nXXX ,,, 21 K  are independent, identically distributed random variables with 

distribution function F  and survival function FF −=1 . They defined the MRL 

function of a system, under the condition that tX nr >: , i.e., )1( +− rn , nr ,,2,1 K= , 

components of the system are still working as  
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(θ1,θ2,θ3)=(0.5,0.8,0.3) 
(θ1,θ2,θ3)=(0.5,0.8,1) 
(θ1,θ2,θ3)=(0.5,1,2) 
(θ1,θ2,θ3)=(1,2,3) 
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     In the following theorem we define the MRL function of a parallel system, 

assuming that nXXX ,,, 21 K  are independent but nonidentically distributed random 

variables with distribution function iF  and survival function ,1 ii FF −=  

ni ,,2,1 K= , under the condition that tX nr >: , i.e., )1( +− rn , nr ,,2,1 K= , 

components of the system are still working.  

 

Theorem 3.3 Let )(tM
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n  be the mean residual life function of a parallel system 

consisting of n  independent and nonidentically distributed components. Then for 
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Proof. It is clear that  
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The full sum in the denominator is recognizable as the permanent of a matrix, so 

)|( txS  has the form  
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Therefore the proof is completed. 

 



 

61 

CHAPTER FOUR 

THE MEAN RESIDUAL LIFE FUNCTION OF k-OUT-OF-n SYSTEM WITH 

NONIDENTICAL COMPONENTS  

 

4.1 Introduction 

 

     Many technical systems or subsystems have k-out-of-n system structure. The 

entire system is working if at least k  of its n  components are operating. It fails if 

1+− kn  or more components fail. Hence, a k-out-of-n system breaks down at the 

time of the )1( +− kn th component failure. Since all components start working at the 

same time, this approach leads to a kind of redundancy called active redundancy of 

kn −  components. Important particular cases of k-out-of-n systems are parallel and 

series systems corresponding to k=1 and k=n, respectively. 

 

     In this chapter, we provide the results on mean residual life function for k -out-of-

n  systems consisting of n  independent and nonidentical distributed components. 

Parallel and k-out-of-n systems consist of nonidentical components find wide 

applications in both industrial and technical areas. For example, many of the air 

traffic control (ATC) communication systems are multi channel systems with 

identical and nonidentical elements. In a communication system with three 

transmitters, the average message load may be such that at least two transmitters 

must be operational at all times or critical messages may be lost. Thus, the 

transmission subsystem functions as a 2-out-of-3 system. For the improvement of the 

reliability of the operation of such complex technical systems the implementation of 

the structural redundancy is widely used by the method of the k-out-of-n reservation.  
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4.2 The MRL Function of the k-out-of-n System 

 

     Asadi & Bayramoglu (2006) have studied the MRL function of k-out-of-n system 

under the condition that at time t  all the components are working, i.e. tX n >:1 . In the 

following theorem we propose the MRL function assuming that nXXX ,,, 21 K  are 

independent but nonidentically distributed random variables with distribution 

function  iF  and survival function ii FF −= 1 . Let also nnnn XXX ::2:1 ≤≤≤ L  be the 

ordered lifetimes of the components. ,:nkX  k = 2,1 ,…, ,n  represents the lifetime of 

( 1+− kn )-out-of- n  system.  

 

Definition 4.1 The mean residual life function of the k-out-of-n system under the 

condition that all components alive at time ,t  is  
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Theorem 4.1 If )()( tH
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n  is the MRL of the parallel system defined as (4.1), then for 
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Proof. If S  denotes the survival function of conditional random variable 

tXtX nnk >− :1: |  then for 0>x , 
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     Hence the full sum is recognizable as the permanent of a matrix, so )|( txS  has 

the expression as follows.  
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     Given that all the components of the system are working at time ,t  the MRL 

function of the system is 
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Thus the proof is completed. 

 

     The motivation for this structure can be given as an example of the high priority 

freight train, which is structured as a 3 -out-of- 4  system consisting of four 
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locomotives (Nelson, 1982). The train is delayed only if two or more locomotives 

fail. It is assumed that the four locomotives in a train fail independently and times to 

failure for locomotives are distributed as nonidentical exponential distribution. The 

MRL of such a system is, 
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     It is clear that the MRL of the system is a decreasing function of failure rates 

),,,( 4321 λλλλ  as expected. 
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CHAPTER FIVE 

APPLICATION  

 

     Many applications in various areas involve the modeling of lifetime data. In these 

applications the outcome of interest is the time X, until some event occurs. This event 

may be death, the appearance of a tumor, the development of some disease, 

recurrence of a disease, failing of an equipment, and so forth. Life data can be 

lifetimes of products in the marketplace, such as the time the product operated 

successfully or the time the product operated before it failed. These lifetimes can be 

measured in hours, miles, cycles-to-failure, stress cycles or any other metric with 

which the life or exposure of a product can be measured. All such data of product 

lifetimes can be encompassed in the term life data or, more specifically, product life 

data. The subsequent analysis and prediction are described as life data analysis. We 

will limit our examples and discussions to lifetimes of inanimate objects, such as 

equipment, components and systems as they apply to reliability engineering. 

     Before performing life data analysis, the failure mode and the life units (hours, 

cycles, miles, etc.) must be specified and clearly defined. Further, it is quite 

necessary to define exactly what constitutes a failure. In other words, before 

performing the analysis it must be clear when the product is considered to have 

actually failed. This may seem rather obvious, but it is not uncommon for problems 

with failure definitions or time unit discrepancies to completely invalidate the results 

of expensive and time consuming life testing and analysis. 

             

     It is important to define what is considered to be failure. There are light bulbs 

designed for interior use. The useful life (reliability) of an interior bulb is 

significantly decreased when used outside because it is not designed for the 

temperature fluctuations and moisture levels of the outdoor environment. It is being 

utilized outside its prescribed operating conditions.  
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     Consider a system consisting of a light switch and a light bulb. There are two 

components in this system both of which must function in order for the system to 

function. This is an example of a serial system.   

                      

     As the number of components is increased, the reliability of the serial system 

decreases. If we provide a redundant switch and a redundant light bulb, the system 

will provide light if either the primary or backup components function. Providing 

redundant components or systems as back-ups to the primary components or systems 

in complex systems has supplied high reliabilities.   

 

     In this chapter, it is provided some real problem examples and numerical results 

for evaluating mean residual life of the k-out-of-n system with different system level. 

Further, the relation between the mean residual life for the system and the mean 

residual life of its components is investigated.  

 

5.1 The k-out-of-n Parallel Configuration and Examples 

     The k-out-of-n configuration is a special case of parallel redundancy. This type of 

configuration requires that at least k components succeed out of the total n parallel 

components for the system to succeed. For example, consider an airplane that has 

four engines. Furthermore, suppose that the design of the aircraft is such that at least 

two engines are required to function for the aircraft to remain airborne. This means 

that the engines are reliability-wise in a k-out-of-n configuration, where k = 2 and n = 

4. More specifically, they are in a 2-out-of-4 configuration. 
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Figure 5.1 A 2-out-of-4 configuration. 

      

     Even though we classified the k-out-of-n configuration as a special case of 

parallel redundancy, it can also be viewed as a general configuration type. If the 

number of units required is equal to the number of units in the system, it is a series 

system. In other words, a series system of statistically independent components is an 

n-out-of-n system and a parallel system of statistically independent components is a 

1-out-of-n system. 

 

     In the following, it is given some examples to illustrate the applications of the k-

out-of-n systems in various engineering areas. 

Example 1 

     Three hard discs in a computer system are configured reliability-wise in parallel. 

At least two of them must function in order for the computer to work properly. Each 

hard disc is of the same size and speed, but they are made by different manufacturers 

and have different reliabilities. Since at least two hard discs must be functioning at 

all times, only one failure is allowed. This is a 2-out-of-3 configuration. 

The following operational combinations are possible for a system success: 

1. All 3 hard discs operate. 
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2. HD #1 fails, while HDs #2 and #3 continue to operate. 

3. HD #2 fails, while HDs #1 and #3 continue to operate. 

4. HD #3 fails, while HDs #1 and #2 continue to operate. 

 

Example 2 

 

     Communication is one of the most important domains of air traffic control (ATC) 

system from flight safety point of view. The most fundamental and difficult problem 

is providing reliability and fault tolerance of such systems. Many of the ATC 

communication systems are multichannel systems with identical homogeneous 

elements. The examples of such systems are the multichannel radio centers which 

one-type radio stations supply the communication on the various frequency channels, 

the multichannel radio relay lines which several linear paths (channels) supply the 

transmission of the various information flows, the multichannel radio transponders 

and radars, the satellite communication systems with the multistation approach using 

the opportunity of the simultaneous calls of several on-ground station to one satellite 

transceiver and others.  

 

     For the improvement of the reliability of the operation of such kind complex 

technical systems, the implementation of the structural redundancy is widely used by 

the method of the k-out-of-n reservation.  

 

Example 3 

 

     An example is the Active Phased Array Radar (APAR) at the Royal Netherlands 

Navy. This radar has a cubical shape. On each of the four sides, it has a so-called 

face, consisting of thousands of transmit and receive elements. Each face covers a 

quarter of a circle, and together they cover the whole space around the ship of which 

it is a part. The elements on a face are identical and are partly redundant. A certain 

percentage of the total number of elements per face is allowed to fail, without losing 

the function of the specific radar face. Say that this percentage is 10% and that the 
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total number of elements is 3000, then we have a 2700-out-of-3000 system (de 

Smidt-Destombes, van der Heijden & van Harten, 2004). 

 

Example 4 

 

     Another example for which a similar trade-off applies is the active Towed Array 

Sonar (ATAS) for searching mines and submarines. The ATAS consists of several 

tens of hydrophones, let us assume 64 pieces. Say that 10% failed components is 

acceptable for full operation, then we model the ATAS as a 58-out-of-64 system. A 

smaller example is the frigate communication system (say, a 6-out-of-8 system). (de 

Smidt-Destombes & et al., 2004).  

 

Example 5 

 

     Taking a simple telecom application and assuming a constant 8-hour load, it is 

standard practice to divide the required capacity between two or more parallel 

strings. In this case there is no redundancy, but string failures cause the system 

output to be reduced, rather than failing completely. If the reduced output is tolerated 

then the system behave statistically as a k-out-of-n system, where k is the minimum 

acceptable number of functioning strings and n is the total number of strings. 

 

Example 6 

 

     A high-priority freight train required three locomotives for a one day run. If such 

a train arrived late, the railroad had a pay a large penalty. To assess its risks, the 

railroad needed to know the reliability of such trains. Experience indicated that times 

to failure for such locomotives could be approximated with an exponential 

distribution with a mean of 43.3 days. It was assumed that the three locomotives in a 

train fail independently. To reduce the chance of delay, the railroad used trains with 

four locomotives. Then the train was delayed only if two or more locomotives failed 

(Nelson, 1982). Then it can be modeled the freight train as a 3-out-of-4 system. 
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5.2 Numerical Results- A Case Study 

 

     This section introduces a numerical example for the various value of k of n 

components of parallel system. Also the relationship between the mean residual life 

for the system and the mean residual life of its components is investigated.  

 

     Let us consider an airplane that has three engines. Furthermore, suppose that the 

design of the aircraft is such that at least two engines are required to function for the 

aircraft to remain airborne. This means that the engines are reliability-wise in a k-

out-of-n configuration, where k = 2 and n = 3. More specifically, they are in a 2-out-

of-3 configuration. It is assumed that the times to failure of a component iX , i=1, 2, 

3, are Weibull distributed random variables with parameters ),( ii λα , respectively. 

This assumption is coming from a previous study provided by Petit & Turnbull 

(2001), which is performed in order to improve the safety and reliability for the next 

generation of General Aviation Aircraft System. They have indicated that data of an 

engine is distributed as the Weibull distribution function. 

 

     Also this distribution was selected based on the common usage in engineering, 

versatility and to reduce the complexity of the data analysis. The two parameter 

Weibull distribution is a time dependent distribution that is also one of the most 

useful probability distributions in reliability. It can be used to model both increasing, 

and decreasing failure rates. α  is referred to as the shape parameter. If α <1, the 

mean residual life function is increasing over time. If α >1, the mean residual life 

function is decreasing over time. If α =1, the mean residual life function is constant 

over time, that is the exponential distribution. The MRL curves of the Weibull 

distribution for various shape parameter values and λ =1 are shown in Figure 5.2.    

 

     The time to failure X of an engine is said to be Weibull distributed with 

parameters iα >0 and iλ >0 for i=1, 2, 3 if the distribution function is given by  
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                      Figure 5.2 MRL curves of the Weibull distribution for λ =1 

 

     It is assumed that the scale parameter λ  is identical for all components lifetimes. 

It is also assumed that the working of the components is independent of one another. 

The mean residual life of an engine at age t is the average remaining life among 

those engines which have survived until time t. The mean residual life function of the 

2-out-of-3 system under the condition that all components alive at time t  is  
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     Figure 5.3a-e shows the mean residual life function of this system with different 

shape parameter iα , i=1, 2, 3 of lifetime distribution of components when: 

 

a. All components have identically distributed i.e. 321 ααα == . 

b. All components have a linear decreasing mean residual life function i.e. iα >1. 

c. All components have a linear increasing mean residual life function i.e. iα <1. 

a=0.5 
 
 
 
 
 
 
 
 
 

a=1 
 
a=2 
 



72 

 

d. The first component has an increasing mean residual life function while the rest 

two components have a decreasing mean residual life function. 

e. The first and second components have an increasing mean residual life function 

while the third one has a decreasing mean residual life function. 

 

 

 

 

a1=a2=a3=0.5 
 
 
 
 
 
 
 
 
a1=a2=a3=1 
 
a1=a2=a3=2 

 

 
a1=1.1 a2=1.2 a3=1.3 
 
a1=1.1 a2=1.2 a3=1.5 
 
 
 
 
a1=1.1 a2=1.5 a3=2 

 
 

(a) 

(b) 
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Figure 5.3 The MRL curves of the 2-out-of-3 system with Weibull distributed components ( λ =1).  

a1=0.1 a2=0.3 a3=0.5 
 
a1=0.1 a2=0.3 a3=0.8 
 
 
 
 
 
 
 
 
 
a1=0.1 a2=0.5 a3=0.8 

 
 

 
 
 
 
a1=0.1 a2=1.2 a3=1.5 
 
a1=0.1 a2=1.2 a3=1.8 
 
 
 
 
 
a1=0.1 a2=1.5 a3=2 
 
 

 
a1=0.1 a2=0.5 a3=1.2 
 
 
 
 
 
 
 
 
 
 
a1=0.1 a2=0.8 a3=1.5 
 
a1=0.1 a2=0.3 a3=2.5 

 

(e) 

(d) 

(c) 
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     Based on the Figure 5.3 the following conclusions are possible. It is seen from 

Figure 5.3(a) that the components having constant mean residual life functions, i.e. 

a1=a2=a3=1, the mean residual life function of the 2-out-of-3 system is constant. 

When all components identically distributed and iα >1, the system has decreasing 

MRL function, otherwise the system has increasing MRL function. When either all 

the components have a linear decreasing mean residual life function (b), i.e. iα >1, or 

two components have linear decreasing mean residual life function (d), the system 

has a linear decreasing. As the values of iα  get larger, the values of mean residual 

life decrease (b). Either all components have linear increasing mean residual life 

function (c), i.e. iα <1, or two components have linear increasing mean residual life 

function (e), the system has increasing mean residual life function.   

 

     In Table 5.1, a particular case with n=3 and k=1, 2, 3 is analyzed numerically to 

study the effect of increasing the system level and various parameters on the mean 

residual life of the system. The mean residual life of the k-out-of-3 configuration was 

calculated versus different parameters of required units. All the computations were 

done using Maple 5.1.  

 

     A parallel system is equivalent to a 1-out-of-3 system, i.e. the k is equal to 1, 

while a series system is equivalent to a 3-out-of-3 system, i.e., the k is equal to 3. The 

system structure changes from a parallel structure to a 2-out-of-3 structure, then to a 

series structure. In other words, the system structure changes from strong to weak as 

the system level increases. So it is necessary to provide redundant equipment in a 

parallel structure, in cases where the failure of the system is not acceptable. When 

the components have constant mean residual life functions, i.e. coming from the 

exponential distribution; the mean residual life function of the system is constant in 

all system levels. Since the system structure changes from strong to weak as the 

system level increases, the mean residual life decreases for all parameters.  
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Table 5.1 The mean residual life of different system level. 

n=3 321 ,, ααα  t=1 t=2 t=3 t=4 t=5 

1.00, 1.00, 1.00 1.83 1.83 1.83 1.83 1.83 
0.50, 0.50, 0.50 8.39 9.91 11.07 12.06 12.92 
2.00, 2.00, 2.00 0.65 0.40 0.00 0.00 0.00 
1.10, 1.20, 1.30 1.38 1.28 1.21 1.16 1.13 
1.10, 1.50, 2.00 1.12 0.99 0.92 0.88 0.75 
0.30, 0.50, 0.80 25.82 31.04 35.07 38.48 41.52 
0.50, 1.20, 1.50 4.23 4.98 5.58 6.09 6.55 
0.50, 1.50, 2.00 4.12 4.89 5.50 6.02 6.39 
0.50, 0.80, 1.20 4.63 5.41 6.02 6.54 7.00 

k=1 

0.50, 0.80, 2.50 4.55 5.35 5.98 6.51 6.98 
1.00, 1.00, 1.00 0.83 0.83 0.83 0.83 0.83 
0.50, 0.50, 0.50 2.72 3.41 3.94 4.39 4.78 
2.00, 2.00, 2.00 0.34 0.19 0.00 0.00 0.00 
1.10, 1.20, 1.30 0.65 0.58 0.55 0.52 0.50 
1.10, 1.50, 2.00 0.48 0.36 0.30 0.26 0.24 
0.30, 0.50, 0.80 2.78 3.45 3.97 4.41 4.80 
0.50, 1.20, 1.50 0.78 0.72 0.68 0.64 0.62 
0.50, 1.50, 2.00 0.59 0.45 0.38 0.33 0.30 
0.50, 0.80, 1.20 1.18 1.29 1.37 1.43 1.48 

k=2 

0.50, 0.80, 2.50 0.98 1.08 1.18 1.26 1.33 
1.00, 1.00, 1.00 0.33 0.33 0.33 0.33 0.33 
0.50, 0.50, 0.50 0.89 1.17 1.38 1.56 1.71 
2.00, 2.00, 2.00 0.15 0.08 0.00 0.00 0.00 
1.10, 1.20, 1.30 0.27 0.24 0.22 0.21 0.20 
1.10, 1.50, 2.00 0.20 0.13 0.10 0.08 0.07 
0.30, 0.50, 0.80 0.75 0.91 1.03 1.11 1.19 
0.50, 1.20, 1.50 0.30 0.25 0.22 0.20 0.19 
0.50, 1.50, 2.00 0.22 0.15 0.11 0.09 0.07 
0.50, 0.80, 1.20 0.40 0.41 0.41 0.41 0.40 

k=3 

0.50, 0.80, 2.50 0.22 0.12 0.07 0.05 0.03 
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CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATION  

FOR FUTURE RESEARCH 

 

6.1 Conclusions 

 

     The concept of mean residual life of a system has been of much interest during 

the past several decades. Predicting the MRL functions of systems so that 

intervention prevents intolerable decay or outright failure is important in modern life.  

 

     In this thesis, we consider the problem of determining the mean residual life 

function in parallel and k-out-of-n systems consisting of n components having 

independent and nonidentically distributed lifetimes. We establish new 

representations, identities and a recurrence relation of mean residual life function for 

parallel structures consisting of n components with independent lifetimes having 

distribution functions (Fi) and probability density functions (fi), i=1, 2,…, n, 

respectively. Some examples which are satisfied with the results of several lifetime 

distribution functions are given. The results for the MRL function of k-out-of-n 

system consisting of n ordered lifetimes of the components are obtained. We 

examined the Weibull parametric model that shows the mean residual life function of 

k-out-of-n system. We compute the values of mean residual life function and provide 

graphical comparisons for the shape of function for selected combinations of 

parameter values.  

 

     The results for MRL function of concerning structures are derived in general and 

we apply these results to some parametric models such as exponential, power, 

Weibull, gamma distributions. It is concluded that when the components have 

constant mean residual life functions, i.e., distributed as the exponential distribution; 

the mean residual life function of the parallel system is constant in all the system 

level under the condition that all components alive at time t. As the structure of 

system changes from strong to weak, then the mean residual life decreases. 
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Redundant equipment in a parallel structure is an important point when the 

consequence of a failure is high and the probability of a failure is not acceptable. 

 

6.2 Recommendations for Future Research 

 

     In reliability theory, the lifetime of a k-out-of-n system is usually described by the 

(n-k+1)th order statistics nknX :1+−  from the sample nXX ,,1 K , where the random 

variable iX  represents the lifetime or failure time of the ith component of the 

system, ni ≤≤1 . In the conventional modeling of these structures, the component 

lifetimes are supposed to be independent and identically distributed random 

variables. It reflects the assumption that the failure of any component does not affect 

the remaining ones. However, in some systems, a component failure will more or 

less strongly influence the remaining parts of the system. Thus, a more flexible 

model, which is therefore more applicable to practical situations, must take some 

dependence among the system components into account. After each failure the 

remaining components possess a possibly different failure rate than before. That is, 

the underlying failure rate of the remaining components is adjusted according to the 

number of preceding failures.  

 

     Sequential order statistics have been introduced in Kamps (1995) as an extension 

of ordinary order statistics in order to model sequential k-out-of-n systems, where the 

failures of components possibly affect remaining ones. The model of sequential order 

statistics is flexible in the sense that, after the failure of some component, the 

distribution of the residual lifetime of the components at work may change. In order 

to distinguish this concept from the ordinary approach, the respective k-out-of-n 

system is called sequential k-out-of-n system. For a more detailed discussion Cramer 

& Kamps (1996) can be referred. At this point it may be concerned that the aging 

properties of sequential k-out-of-n systems consisting of n components based on their 

mean residual life.  
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