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ABSTRACT 

 

With the trend towards greater synergy between suppliers and customers, and 

since the customers become more sophisticated recently, supply chain inventory 

management has been gaining importance day by day.  

 

In this study, the base stock policy for the firms, which form a two-echelon supply 

chain in the presence of independent but non-stationary (time dependent) demand 

will be discussed. A serial system in multi-period setting is studied. Each stage incurs 

certain holding cost and shortage cost at the end of each period. The system is 

examined under both centralized and decentralized control scheme. In decentralized 

frame, two different game formulations are considered. The first one is the repeated 

game. In each period a one-period game is played and for T-period finite horizon, 

these one-period games are played T times. Each one-period game has a unique Nash 

equilibrium, however when the one-period game is repeated, different equilibrium 

points may be obtained in each period. This fact derives the need for defining 

subgames. By working backward, subgame perfect equilibrium for the repeated 

game can be obtained.  

 

First the case in which the decisions made independently in each period is 

studied, then the case in which the decisions made in the past has influence on 

current decisions is considered. This requires a stochastic game (Markovian game) 

formulation. The solution is found by Markov perfect equilibrium. 

 

Keywords: base stock policy, multi-echelon inventory systems, repeated game, 

stochastic game, Markov perfect equilibrium 

 

 



 

İKİ AŞAMALI TEDARİK ZİNCİRİNDE ENVANTER YÖNETİMİ 

 

ÖZET 

 
Tedarikçiler ve endüstriyel müşteriler arasında giderek artan sinerji ile birlikte ve 

müşteriler geçmiş zamana göre daha bilinçli olduklarından, tedarik zinciri envanter 

yönetimi günden güne önem kazanmaktadır.  

 

Bu çalışmada, iki aşamalı tedarik zincirini oluşturan firmalar için bağımsız ancak 

durağan olmayan talep durumunda, eldeki envanteri belli bir düzeye çıkaracak 

envanter politikasının (base stock policy) incelenmesi hedeflenmiştir. Çok periyot 

durumunda seri bir sistem çalışılmıştır. Her periyot sonunda her aşama belli bir elde 

tutma ve stoksuzluk maliyetine katlanmaktadır. Sistem merkezi ve merkezi olmayan 

karar yapısı altında incelenmiştir. Merkezi olmayan karar yapısında iki tür oyun 

formüle edilmiştir. İlki tekrarlı oyunlardır. Her periyotta tek periyotluk oyun oynanır 

ve T periyotluk sınırlı planlama dönemi için bu tek periyotluk oyunlar T kez oynanır. 

Her tek periyotluk oyunun tek bir Nash dengesi vardır ancak tek periyotluk oyunlar 

tekrar edildiğinde, her periyotta farklı bir Nash dengesi bulunabilir. Bu da altoyun 

tanımını gerektirir. Geriye doğru çalışarak, tekrarlı oyun için altoyun mükemmel 

dengesi bulunabilir.  

 

Her kararın her periyotta bağımsız olarak verildiği durumun yanı sıra, geçmişteki 

kararların verilecek kararları etkilediği durum da düşünülmüştür. Bu stokastik oyun 

formulasyonunu gerektirir. Stokastik oyun için çözüm Markov mükemmel dengesi 

ile bulunur. 

 

Anahtar Sözcükler: Base stock politikası, çok aşamalı envanter sistemleri, tekrarlı 

oyunlar, stokastik oyunlar, Markov mükemmel dengesi 

 

 

 

 

 



 

CONTENTS 

 

 

 

                    Page 

 

THESIS EXAMINATION RESULT FORM………………………………………ii 

ACKNOWLEDGEMENTS………………….…………………………………….iii 

ABSTRACT………………….…………………………………………………….iv 

ÖZ…………………………………………………………………………………..v 

CONTENTS………………………………………………………………………..vi 

 

CHAPTER ONE – INTRODUCTION………………………………………..….1 

1.1.Supply Chain…………………………………………………………..……2 

1.2.Supply Chain Management…………………………………………….…...3 

1.3.Inventory Management in Supply Chain………………………………..….5 

1.4.Competitive World……………………………………………………..…...6 

1.5.Scope of The Study……………………………………………………..…...7 

 

CHAPTER TWO – LITERATURE REVIEW  ………………………….……...9 

2.1. Centralized and Decentralized Systems…………………………….…….10 

2.2. Multi-Echelon Inventory Systems………………………………….……..11 

2.2.1. Series Systems……………………………………………….……..15 

2.2.1.1.Description of Series Systems………………………………….16 

2.2.1.2.Echelons and Echelon Inventories…………………………...…17 

2.2.2. Base-Stock Policy………………………………………………..…19 

2.2.3. Myopic Policy………………………………………………………24 

2.3. Game Theory: Decision Making With Conflicting Objectives…..………25 

2.3.1. Some Basic Concepts ………………………………………………28 

2.3.1.1.Game Setup……………………………………………………...28 

2.3.1.2.Solution Concept………………………………………………..29 

2.3.1.2.1. Best Reply Mappings……………………………………31 



 

2.3.1.2.2. Existence of Equilibrium……………………….……….32 

2.3.1.2.3. Uniqueness of Equilibrium……………………………...33 

2.3.2. Game Theory in Supply Chain Analysis……………………………36 

2.3.3. Multi-stage Game Setup…………………………………………….38 

2.3.3.1.Repeated Games……………………………...…………………39 

2.3.3.1.1. Perfect Equilibrium Points……...……………………….42 

2.3.3.1.2. Subgame Perfect Equilibrium………...…………………43 

2.3.3.1.3. Backward Induction……………..………………………44 

2.3.3.2.Stochastic Games………………………………………………..45 

2.4. Related Work in Literature………………………………………………..49 

2.4.1. Fluctuating Demand in Single Period Setting….……………………51 

2.4.2. Time Series Models in Single Location Models.……………………54 

2.4.3. Competition in One Period Setting………...…….……….…………56 

2.4.4. Decentralized Cost Structure……………..…………………….……57 

2.4.5. Stochastic Games and Dynamic Oligopoly…………………………60 

 

CHAPTER THREE –CENTRALIZED CONTROL SCHEME ……………….62 

3.1.Problem Statement…………………………………………………………..63 

3.2.Base Stock Policy Under Centralized Control Scheme……………………..65 

3.2.1. Formulation……………………………………………………………65 

3.2.2.  Solution……………...………………………………………………..68 

3.2.2.1. One Period Problem…………………………………………….69 

3.2.2.2. Finite Horizon Problem………………...……………………….71 

3.2.2.3. Infinite Horizon Problem……………...………………………..76 

 

CHAPTER FOUR –DECENTRALIZED CONTROL SCHEME ……..………79 

4.1.Base Stock Policy Under Decentralized Control Scheme…………………..78 

4.2.One-Period Game………………………………………….………………..83 

4.2.1. Formulation…………………………………………………………83 

4.2.2. Equilibrium…………………………………………………………84 

4.3.Repeated Game…………………………...…………………………………86 

4.3.1. Formulation…………………………..……………………………...87 



 

4.3.2. Equilibrium………………………………………………………….87 

4.4.Markovian Game……………………………….…………………………...90 

4.4.1. Formulation…………………………………………………………90 

4.4.2. Equilibrium…………………………………………………………95 

 

CHAPTER FIVE – CONCLUSION ……………………………………………101 

5.1.Summary…………………………………………………………..…….…101 

5.2.Limitations………………………………………………………………....102 

5.3.Further Research…………………………………………………………...102 

 

REFERENCES……………………………………………………………………103 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER ONE 

INTRODUCTION 

 

 

 

 

Organizations perform some certain activities that include purchasing and 

material releasing, inbound and outbound transportation, materials handling, 

warehousing and distribution, inventory control and management, demand and 

supply planning, order processing, production planning and scheduling, shipping, 

processing, and customer service. Although companies have been performing these 

activities for many years, they did not consider viewing these activities as 

interrelated activities that need to be coordinated, until recent years. Having 

considered these activities as interrelated, companies needed a concept that could 

increase operating and financial performance, provide new sources of competitive 

advantage, and lead to better managed business. This concept is supply chain 

management. 

 

In addition to this fact, recently as customers become more sophisticated, they 

demand the right product at the right time, at the right price, and at the right place. 

The competitive weapon of the 1980s’ was the quality, but nowadays since the 

differentiator is customer responsiveness; companies need to have some different 

structure to survive in the competitive market. 

 

With the trend towards greater synergy between suppliers and industrial 

customers, most manufacturing enterprises are organized as networks of 

manufacturing and distribution sites that purchase raw materials, transform those 

materials into intermediate and finished products, and also distribute the finished 

goods to customers. Management of such networks (also referred to as “supply 

chains”) has become as a major topic in operations research. 

 

 



 

1.1  Supply Chain 

 

Supply chain is a network of facilities and distributions options that performs the 

functions of procurement of materials, transformation of these materials into 

intermediate and finished products, and the distribution of these finished products to 

customers. Supply chain exists in both service and manufacturing organizations. 

 

A supply chain typically consists of the geographically distributed facilities and 

transportation links connecting these facilities. In manufacturing industry this supply 

chain is the linkage, which defines the physical movement of raw materials (from 

suppliers), processing by the manufacturing units, their storage and final delivery as 

finished goods for the customers. In services, such as retail stores or a delivery 

service like UPS or Federal Express, the supply chain reduces the problem to 

distribution logistics where the start point is the finished product that has to be 

delivered to the client. 

 

A typical supply chain consists of a retail store, which meets the customer 

demand directly, a distribution center or warehouse that supplies goods for retailers, 

a manufacturer that produces goods, and finally suppliers that provide manufacturers 

with raw materials and components for production. These are called elements of 

supply chain and they work with coordination for fulfilling a customer request. 

Figure 1.1 illustrates the elements of supply chain and interactions between them. 

 

Supply chain is dynamic and involves the constant flow of information, product 

and funds between its elements or stages. Each stage of supply chain performs 

different processes and interacts with other stages of the chain. In reality, a 

manufacturer may receive material from several suppliers and then supply several 

distributors. Therefore most supply chains are actually networks, which may be 

called supply networks.  
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Figure 1.1 Elements of a Supply Chain. 

 

 

1.2 Supply Chain Management 

 

Managing the supply chain is coordinating all of the operations of a company with 

the operations of its suppliers and customers. Supply chain management is a set of 

approaches utilized to efficiently integrate suppliers, manufacturers, warehouses, and 

stores, so that merchandise is produced and distributed at the right quantities, to the 

right locations, and at the right time, in order to minimize systemwide cost while 

satisfying service level requirements. 

 

The complexity of decision making across the supply chain network, makes 

supply chain management (planning) as difficult as it is important. It is reported in 

Supply Chain Management Review; May-June 2004 that; today, in United States, a 

typical company’s supply chain related costs can represent more than 80% of 

revenue and 50% of assets. Because of that reason, beyond gaining a competitive 
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advantage, companies need perfect management of supply chain to survive in a 

global marketplace. Mismanaging the supply chain may result in real financial or 

strategic damage for the company.  

 

Since the well-managed supply chain works at the lowest cost, at the highest 

quality and the highest responsiveness, provides important advantages; in 

contemporary world, it is believed that competition will be not among firms, but 

between the supply chains, in which the firms are involved. 

 

Besides these facts, it is hard to manage something that is not measured. In 

managing the supply chain, there may be several decision variables such as: 

 

• Location- of facilities and sourcing points 

• Production –what to produce in which facilities 

• Inventory- how much to order, when to order, safety stocks 

• Transportation –mode of transport, shipment size, routing and scheduling 

 

Mathematical optimization models can be used to describe the relationships 

among decisions, constraints, and objectives for optimizing the supply chain. This 

relationship can be shown as in Figure 1.2.  

 

 

 

 

 

 

 

Figure 1.2 The mechanism which optimizes a supply chain. 

 

 

 

 

INPUT: 
 
*Demand information 
 
*Supplier’s capacity  

PROCESS: 
Mathematical Models 

OUTPUT: 
*maximizing profits 
*maximizing customer service 
*minimizing supply chain costs 
*minimizing lateness 
*satisfying all customer demand 



 

1.3 Inventory Management in Supply Chain 

 

Inventory can be simply defined as stock of items kept to meet internal or external 

customer demand. Usually people think inventory of a final product waiting to be 

sold to a customer. However in supply chain, inventory takes place in every stage. 

Besides finished goods, there may be inventories including raw materials and in-

process products. Since inventory can be kept at every stage of a supply chain, 

management of inventory is quite important for supply chain success. Moreover, it is 

widely known that one of the largest costs come from the inventory or shortages 

(stockouts). For a manufacturer, retailer or distributor; the amount of inventory held 

directly impacts the costs and customer responsiveness.  

 

There are essentially two motives for holding inventories. If the cost of obtaining 

or producing items is expected to rise in the near future, it is advantageous to hold 

inventories in anticipation of the price rise. Inventories may also be retained in 

advance of sales increases. If demand is expected to increase, it may be more 

economical to build up large inventories rather than to increase production capacity 

at a future time. However, it is often encountered that inventory build-ups occur as a 

result of poor sales. Variation in demand increases the challenge of maintaining 

inventory to avoid stockouts or to have inventory build-ups. In other words, the 

problem is complicated by the fact that demand is uncertain, and this uncertainty 

may cause stockouts in which inventory is depleted and orders cannot be filled.  

 

To minimize supply and demand imbalances in the supply chain, there are certain 

methods of inventory management. In our study, we assume a model in which the 

inventory level is reviewed periodically, and orders are placed at regular intervals 

where order amount equal to one. This policy is known as a base stock policy.  

 

 

 

 

 



 

1.4 Competitive World 

 

There are two managerial insights managing the supply chain. Starting with Clark 

and Scarf in 1960, it is considered that there is a central decision maker who has 

ability to reach the inventory position information in different locations and makes 

the inventory decisions for the whole system. The central decision-maker has the 

information about the cost structure and demand pattern for the whole supply chain, 

and has the ability to create a global inventory policy. However, the centralized 

optimization point of view is just an approximation to the real supply chain because 

it is more realistic that a supply chain, works in decentralized mode where more than 

two decision makers optimizing different objectives. Wang et al. (2003) reported 

three important drawbacks of centralized supply chain models: 

 

� Ignoring the independence of the supply chain members. 

� The cost of information processing may be expensive. The central decision 

maker must gather all the information from every supply chain member and 

finally issue instructions to members. 

� The huge capacity of the centralized optimization models. If the problem is 

fairly large and difficult, it may be impossible to model and solve. 

 

Because of these constraints of centralized models and also need for a better 

reflection of real life, decentralized supply chain models have been studied recently. 

 

In decentralized decision structure, independent managers (or decision makers) in 

every inventory location, observes the activities in that location and make the 

decisions. Since the effectiveness of the system decreases in competitive market, 

these decision maker’s behaviors are rational locally, rather than being efficient 

globally. Different from the traditional supply chain structure, the firms in 

decentralized case may have different, even conflicting objectives. Moreover, each 

manager may have his own firm’s cost structure and demand pattern, but have no 

idea about the whole chain. 



 

When two or more decision maker’s objectives are in conflict, there is a 

competitive world. If strategy determining measures of the decision maker are not 

certain and if we do not have any information about probabilities associated with 

these strategies, the problem is a special decision problem under uncertainty. In these 

cases, the decision maker makes the best decision not only according to the situations 

that he encountered, but also according to the strategies, which the opponents of the 

decision maker may choose. Each decision maker wants to optimize his objective 

and this case can be called as a “game”. 

 

Elements, which make up the supply chain, mostly have conflicting objectives 

because in decentralized control scheme, there are different decision-makers in 

different locations who want to optimize their objective. Game theory provides 

suitable methods and techniques for characterizing the behaviors of the firms, which 

have independent decision makers under competitiveness. 

 

1.5 Scope of The Study 

 

In this study, we aim to discuss the base stock policy for the firms, which consist 

of two-echelon supply chain in the presence of independent but non-stationary (time 

dependent) demand. We studied a serial system in multi-period setting. Each stage 

incurs certain holding cost and shortage cost at the end of each period. First, we 

investigate the system in centralized control scheme. In this case, the time horizon is 

divided into two parts where the demand is assumed non-stationary in the finite part 

and stationary in the infinite part. The base stock policies are determined by myopic 

policy. Second, we examine the system under decentralized control scheme. We 

considered that there is a repeated game for the finite horizon problem and it is 

formulated first. In each period there is a one-period game, which has a unique Nash 

equilibrium. In each one-period game there is only one Nash equilibrium but when 

we repeat the one-period game, we may obtain different equilibrium points. This fact 

derives the need for defining a subgame. Since we can find a Nash equilibrium for 

each subgame, we can obtain subgame perfect equilibrium for the whole (repeated) 

game. We assume the horizon is finite; hence it is possible to characterize the 



 

subgame perfect equilibrium using backward induction. The strategies in the last 

period (subgame) must be a Nash equilibrium of the one-period game played in that 

period. And then when we move to the backward, it is possible to find a strategy that 

chooses the action of the each subgame to minimize the expected value of the cost. 

When we reach the initial period, we have the equilibrium of the repeated game. 

Having studied the case in which the decisions are made independently in each 

period, in the next step the case in which the decisions made in the past has influence 

on current decisions is considered. This requires a Markovian game formulation.  

 

In our study, we examined a multi-echelon inventory system, where the retailer 

faces a stochastic customer demand. For this serial system, which consists of one 

supplier and one retailer, firms are considered to follow the base stock policy and the 

optimal inventory policy is searched. The assumption that says demands are 

independent but nonstationary across periods is the one that makes our study 

different from the rest of the literature. In this context, the defined system is 

examined under centralized and decentralized control scheme. Decentralized control 

scheme of the system is examined under a repeated and then a Markovian game 

formulation. Our study differs from Cachon and Zipkin (1999) in that, they give a 

Stackelberg game formulation. Wang et al. (2004) may be considered very similar to 

ours. They study a distribution system with a game theoretical approach and consider 

a cooperative mechanism; in other words contract design to make the system more 

efficient. 

 

Some general information about multi-echelon systems and dynamic games and 

the literature survey on related work will be given in chapter 2. In chapter 3, we 

declare the problem statement and define the model under the centralized control 

scheme. In chapter 4, the defined problem is discussed under the decentralized 

scheme and the game theoretic frame is defined. Finally in chapter 5 we summarize 

the findings and give directions for future research. 

 

 

 



 

CHAPTER TWO 

LITERATURE REVIEW 

 

 

The functions of procuring the raw materials, transforming these raw materials 

into intermediate and finished products, and finally distributing the finished products 

to the customers constitute the supply chain. Supply chain is a dynamic structure and 

involves the constant flow of information, product and funds between stages. Each 

stage of supply chain performs different processes and interacts with other stages of 

the chain. In reality, a manufacturer may receive material from several suppliers and 

then supply several distributors. Therefore most supply chains are actually networks, 

which are also called supply networks. A schematic of a supply chain can be shown 

as in Figure 2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Supply chain network 

 

In supply chain management concept, there are two main decision issues: 

structural and coordination. Structural or strategic issues are longer term decisions 

such as where to locate the factories, warehouses, and retail sites; how many 

facilities to have; what capacity should each of these faculties have; what modes of 
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transportation should be used for which product. The result of these structural 

decisions is a network of facilities designed to produce and distribute the products 

under consideration. 

 

Coordination decisions are usually taken after the structural decisions are made. 

Whereas structural decisions tend to be based on long-term, deterministic 

approaches, coordination decisions include short term issues such as; should 

inventory stocking and replenishment decisions be made centrally or in a 

decentralized fashion; should inventory be held at central warehouses; where should 

inventory be deployed, in other words should most inventory be held at a central 

location, or should it be pushed to the retail level; how should a limited or 

insufficient amount of stock be allocated to different locations that need it. 

 

These decisions are quite complex. In this study, we are interested in coordination 

decisions especially about inventory management in the supply chain. Some models 

and insights will be presented to help decision-makers related with the inventory 

management decisions at different locations. Firstly it is convenient to give some 

information about how the decisions including inventory management are made in 

supply chain system. The following section explains the structure of supply chains 

briefly.  

 

2.1  Centralized and Decentralized Systems 

 

The simplest case, conceptually, is a centralized system. In a centralized system, 

all relevant information in the network flows to a single point, where all decisions are 

made. These decisions are then transmitted throughout the network to be 

implemented. From some point of view, this situation is ideal. It is perfect that there 

is a fully informed decision maker with full control over the whole system. 

 

However in practice, centralization may be dysfunctional. A centralized system 

requires a fast, reliable and perfect communication system, and a powerful 

information-processing capability. And also it requires organizations to act in a 



 

synchronized fashion. For host of technical, economic and cultural reasons, these 

elements are often lacking. For this reason, decentralized systems are considered. 

Decentralized systems are systems where information and control are distributed 

throughout the network. 

 

In decentralized decision structure, the decision–makers in each installation is 

independent each other. Each one observes the activities in his own location and 

make the decisions. Moreover, each manager may have his own firm’s cost structure 

and demand pattern, but have no idea about the whole chain. Different from the 

centralized supply chain structure, the firms which are included in the chain may 

have different, even conflicting objectives. 

 

Besides information flow throughout the network, the structure of the system is 

also important. When there is more than a single stocking point, there exists the 

possibility for many forms of interaction between stocking points. One of the 

simplest forms of interaction involves one stocking point which serves as a 

warehouse for one or more stocking points. This leads to what is referred to as a 

multiechelon inventory system. 

 

2.2  Multi-echelon Inventory Systems 

 

The multi-echelon inventory problem was first motivated by military logistics 

problems and has played a large role in the materials management of the armed 

forces. An item may be stocked in an inventory system at only a single physical 

location, or it may be stocked at many locations.. One possible multiechelon 

inventory system is illustrated in Figure 2.2. The arrows indicate the normal pattern 

for the flow of goods through the system. 



 

Figure 2.2 Multi-echelon inventory system 

 

This might refferred to as a four echelon system since there are four levels. Each 

level is called as echelon. In the system shown, customer demands occur only at the 

stocking points in level 1. These stocking points have their stocks replenished by 

shipments from warehouses at level 2, which in turn receive replenishments for their 

stock from level 3, etc. Figure 2.2 represents only one type of multiechelon system. 

In other cases, customer demands might occur at all levels, or stocking points at any 

level might not only receive shipments from the next highest level but might also get 

replenishments from any higher level or from the source. Also, it might be allowable, 

on occasion to permit redisribution of stocks among various stocking points at a 

given level. 

 

Most inventory systems encountered in the real world are multiechelon in nature. 

However, it is often true that one need not or cannot consider the multiechelon 

system in its entirety. The reason for this is that different organizations operate 

different parts of the system. For example, Figure 2.2 might refer to a production 

distribution system in which the source is a plant where the item is manufactured, 

level 4 is a factory warehouse, level 3 represents regional warehouses, level 2 

4 

3 

2 
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represents warehouses in various cities, and level 1 represents the retail 

establishments which sell the item to the public. In such a system the manufacturer 

might control only the plant and factory warehouse, while different organizations 

operate the regional warehouses and still differet organizations operate the city 

warehouses and the retail establishments. Even at a given level many different 

organizations may be involved. For example, each of the warehouses in different 

cities may be under different ownership. In such a system each organization has the 

freedom to choose the operating doctrine for controlling the inventories under its 

jurisdiction. To sum up, it is tractable to handle the whole system. So, one could not 

attempt to analyse the system as a whole and one decision maker dictate what 

operating doctrine should be used by each stocking point at each level. This is called 

centralized control. Whereas one might be concerned with the best way for one of 

the warehouses at level 2 to control its inventories which is called decentralized 

control. In making the analysis, the customers would be the retailers at level 1 and 

the source from which replenishments are obtained would be the appropriate 

warehouse at level 3.  

 

As explained before, in a supply chain structure, there may be many retail outlets, 

which are replenished from warehouses, and there may be many warehouses, which 

are supplied from a manufacturer. Since this structure is conceptually very similar to 

multi-echelon inventory systems, multi-echelon inventory systems can be used to 

optimize the deployment of inventory in a supply chain. Analyzing the multi-echelon 

system as a whole, may be intractable, there are lots of works in literature, which 

studied a two-echelon system. 

 

Two echelon inventory systems are generally used to provide products and 

services for customers who are distributed over an extensive geographical region. 

Two echelon inventory structure consisting of a warehouse which supplies N retail 

stores is shown in Figure 2.3. The structure is common to many wholesale/retail 

systems today, although there are many variations in the method for their operation. 

The warehouse receives shipments from suppliers and manufacturers, and distributes 



 

them to the stores. In some cases, the warehouse itself also maintains inventory. 

Many retailers consider the role for the warehouse stock to be a strategic issue. 

Echelon   Suppliers manufacturers 

 

   2 

 

 

  1                  Retail stores 

 

         

 IID External  IID External       IID External 

    Demand     Demand          Demand 

 

Figure 2.3 Two echelon inventory system 

 

The defining feature of the multi-echelon structure is that lower-level locations 

are supplied by higher-level locations. However, in this framework, there may be 

many possible variations. Multi-echelon systems can be classified into three main 

groups. Arborescent systems have branches spreading apart, with the products 

flowing to different branches. Coalescent systems have materials coming together 

into one end item. Series systems have locations feeding each other in a direct path. 

These different kinds of systems are illustrated in Figure 2.4. Since the system, 

which will be analyzed in this study, is a series system, this kind of system will be 

explained in detail in the following section. 
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Figure 2.4 Multi-echelon systems: (a) Arborecent systems, (b) coalescent assembly 

systems, (c) series systems 

 

2.2.1  Series Systems 

 

When there are several locations and/or products, the items and relationships 

among them form a network; specifically a directed graph. The nodes represent the 

items and arcs depict the supply-demand relationships. It is important to distinguish 

several broad network structures.  

 

The simplest structure is a series system, which is depicted in Figure 2.5. Here the 

items represent the outputs of successive production stages or stocking points along a 

supply chain. Each product is used as input to make the next one; or each location 

supplies the next one. Only the first item receives supplies from outside the system, 

and only the last one meets exogenous customer demands.  



 

 

 

 

Figure 2.5 Series system 

 

2.2.1.1 Description of Series Systems 

 

Let us assume that there are J items numbered j=1,2,…,J from first to last, as in 

Figure 2.6. The items represent the outputs of successive production stages, or 

stocking points along a supply chain. Demand occurs only for item J, and an external 

source supplies item 1. All other supply links are internal; item 1 supplies item 2, 

item 2 supplies item 3, and so on. Another word for “item” is “stage”. So, a series 

system is sometimes called as a multistage system.  

 

 

             . . .   

      

Figure 2.6. Series system 

 

“Stock moves in discrete batches like in the EOQ model. An order is a decision to 

move a batch to any stage, whether the batch comes from the supplier or a prior 

stage. The stages do not make their own decisions. In other words, it is mostly 

assumed that information is fully centralized. However the system can be operated 

effectively in a decentralized manner. The order decisions must be coordinated; it 

makes no sense to order a batch to be sent to one stage, when the prior stage has 

insufficient inventory. The external supplier always has ample stock available. There 

are economies of scale in the form of fixed costs for all orders.” (Zipkin P.,2000) 

 

The problem is to find a good balance between fixed costs and inventory holding 

costs; like in most of the inventory problems.  
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2.2.1.2 Echelons and Echelon Inventories 

 

The echelon of stage j (or echelon j shortly) comprises stage j itself and all 

downstream stages, i.e., all stages i ≥ j. Echelon inventory at a stocking point includes 

all inventory that either is at that stocking point or has passed through that stocking 

point. The echelons of a four-stage system are indicated by rectangles in Figure 2.7, 

where J=4. This notion that is echelon concept, captures the supply-demand 

relationships in a useful manner: First stage J is its echelon, the external supplier and 

all the prior stages can be viewed as stage J’s supply process. Likewise, echelon J-1 

refers to the last two stages. This is another subsystem, whose supply process 

includes the earlier stages i < J-1. Continuing in this manner, the entire system can 

be viewed as a hierarchy of subsystems, the echelons, each with a clearly defined 

supply process. 

 

 

 

 

 

 

 

Figure 2.7 Echelon structure 

 

Comparing echelon systems with conventional systems, Narasimhan et. al. found 

the following: 

 

1. The same size and frequency of orders will be placed by the stocking 

point farthest from the customer, because the conventional and the 

echelon rates will be the same at this level. 

2. The same total system inventory will be held. The larger lot sizes at the 

levels closer to the customer indicate that lots will not stay long at 

predecessor levels.  

3. Inventories will be shifted toward the retail level. 

 1  2  3  4 



 

 

In a multistage production process, suppose item 1 is a raw material. At each stage 

the material is transformed and another material is obtained. Numerous 

enhancements are added to the material at each stage, until final product J is 

obtained. This means a unit of item i > j includes one of item j. The total system 

inventory of item j comprises not just local inventory of item j, but also the 

inventories downstream. In notation, the prime indicates the local quantity. When we 

define 

 

)(' tI j : Local or installation inventory of item j.  

 )(tI j : Echelon inventory of item j at time t. 

 

The echelon inventory at time t for item j can be expressed by (2.1). 

∑=
≥ ji

ij )t('I)t(I                  (2.1) 

 

When it comes to costs; the echelon holding cost rate at a given inventory 

stocking point is the incremental cost of holding a unit of system inventory at that 

stocking point rather than at an earlier or predecessor point. For example, the echelon 

holding cost at a retailer would be the incremental cost of holding inventory at the 

retailer rather than at the regional warehouse. This relationship is expressed by 

Zipkin (2000) by the following equation: 

 

'
jh : Local inventory-cost rate for item j. 

jh : Echelon inventory-cost rate for item j. 

'
1

'
−−= jjj hhh                   (2.2) 

where 00 =h . Assume that each 0>jh .  

 

The system wide inventory cost rate can be expressed as in Zipkin (2000), as 

follows: 

 



 

∑ ∑=
j j

jj

'

j

'

j )t(Ih)t(Ih   for all t               (2.3) 

 

Thus, the echelon inventories track stocks and their costs throughout the system 

just as well as the local inventories. 

 

2.2.2  Base Stock Policy 

 

The base stock system is a response to the difficulties of each echelon deciding 

when to reorder based only on demand from the next lower echelon.  

 

The policy aims to keep the inventory position at the constant value s (base stock 

level). If the system starts with an inventory position (IP) less than s, or 

equivalently s)0(IP ≤ , we immediately order the difference, so that s)0(IP = . 

Otherwise; or equivalently s)0(IP > , we order nothing until demand reduces )t(IP  

to s. Once )t(IP  hits s, it remains there from then on. And this explains the name of 

base-stock level or base-stock policy. 

 

Widely known (r,q) policy is continuous review inventory policy in which we 

order a quantity q whenever our inventory level reaches a reorder level r. (r,q) policy 

with batch size q=1 is called a base-stock policy. Such a policy makes sense when 

economies of scale in the supply system is negligible relative to the other factors. For 

example, when each individual unit is very valuable, holding and backorder costs 

clearly dominates any fixed order costs. Likewise, for a slow moving product (one 

with a low demand rate), the economy of the situation clearly rules out large batches. 

Also, there is a natural quantity unit for both demand and supply, and in terms of that 

unit it makes sense to set q=1. 

 

Since q is fixed to 1, there is only one remaining policy variable, r. It is 

convenient to use the equivalent variable 

s : base-stock level  

1rs +=   



 

 

To sum up, a base stock policy is an inventory policy consisting of a reorder level 

r, and a base lot size equal to 1. 

 

To find the optimal policy, the cost structure must be constructed first. The cost 

factors are defined as below: 

 

k : fixed cost to place an order 

h : cost to hold one unit in inventory for one unit of time 

b : penalty cost for one unit backordered for one unit of time 

 

All these factors are positive. For a general formulation, also define 

),( qrOF : order frequency 

),( qrI : average inventory on hand 

),( qrB : average backorder 

Then total average cost will be 

 

),(),(),(),( qrbBqrhIqrkOFqrC ++=               (2.4) 

 

The goal is to determine the values of r and q that minimize (2.4). If we assume there 

is no fixed cost to place an order, this case is the one that base stock policy makes 

sense. As we defined, 1rs +=  is the base stock level. The average cost function 

becomes 

 

)()()( sbBshIsC +=                  (2.5) 

 

“Figure 2.8 illustrates this convex function. For small s, )(sI  is negligible and 

)(sB is nearly linear with slope -1; thus C(s) is nearly linear with slope –b in this 

range. For large s, )(sB  goes to zero, while )(sI  becomes linear with slope +1, so 

C(s) becomes linear with slope h.” (Zipkin P, 2000) 



 

 

 

 

 

 

Figure 2.8. Average cost function 

 

C(s) is expressed in another form by Zipkin (2000). The following function is 

defined. 

 

[ ] [ ]−+ += ybyhyC )(ˆ                  (2.6) 

 

for all real y. This is a nonnegative piecewise linear, convex function. Then if we 

denote the demand as D, 

 

[ ])(ˆ)( DsCEsC −=                  (2.7) 

 

is defined again by Zipkin (2000). Since C(s) is a convex function, to minimize C(s), 

all we have to do is to solve the equation 0)(' =sC . 
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Let us consider a series system with J stages. The numbering of stages follows the 

flow of goods. Stage 1 receives the supplies from an outside source. All other links 

are internal; each stage j<J feeds its successor, stage j+1. Each stage has its own 

associated supply system. When stage j-1 sends a shipment toward stage j (or the 

source sends a shipment to stage j=1), the shipment must pass through stage j’s 

supply system before arriving at j. Every stage can hold inventory. Demand is 

stochastic; it occurs only at the last stage, J. In a multistage system, there are two 

types of base-stock policy; local and echelon. 

 

A local base-stock policy is a decentralized control scheme, where each stage 

monitors its own local inventory position, places orders with its predecessor, and 

responds to orders from its successor. Each stage j follows a standard, single-stage 

base-stock policy with parameter 

'

js : local base-stock level for stage j 

a nonnegative integer. The overall policy is described by the vector: 

'
s = 1=jjs )( '  

 

The policy works as follows: Stage J monitors its own inventory position. It 

experiences demands and places orders with stage J-1 using a standard base-stock 

policy with base stock level '

Js . Stage J-1 treats these incoming orders as its own 

demands, filling them when it has stock available and otherwise logging backorders 

to be filled later. It also follows a standard base-stock policy with parameter '

1Js −  to 

determine the orders it places with stage J-2. This mechanism works like that until 

stage 1. Stage 1’s orders go to external source, which fills them immediately. 

 

An echelon base-stock policy is a centralized control scheme. We monitor the 

echelon inventory-order position. We determine the orders and interstage shipments 

so as to keep each inventory-order position constant. In other words, each stage j 

applies a base-stock policy. We can interpret a local base-stock policy in echelon 

terms. We need to define following: 



 

B  : system backorders 

jI  : echelon inventory at stage j 

jIN  : echelon net inventory at stage j 

jIOP  : echelon inventory-order position at stage j 

jITP  : echelon inventory-transit position at stage j 

jh  : echelon inventory holding cost rate at stage j 

js  : echelon base-stock level for stage j 

The overall policy is described by the vector s = J

jjs 1
)(
=
. 

 

An example can explain how the system works more precisely. Given s, if the sj 

are nonincreasing, set 1jj

'

j sss +−=  (where 0s 1J =+ ). In a two-stage system (J=2), 

assume that 21 ss < . Suppose the system starts with no inventory at stage 1 and 

inventory 1s  at stage 2. Stage 2 immediately orders 12 ss − , but stage 1 has no 

inventory, so it backlog the orders. In fact, stage 1’s echelon inventory position is 

already at its base-stock level 1s , so it orders only in response to subsequent 

demands. Thus the initial backlog at stage 1 remains there forever, that is, it remains 

at least 12 ss − . Stage 1 never hold inventory, and the inventory at stage 2 never 

exceeds 1s . 

 

In conclusion every local-base stock policy is equivalent to some echelon base-

stock policy. The expression for the average cost is defined by Zipkin (2000) as 

below: 

∑ ++=
=

J

1j

'

Jjj ]B)hb(INh[E)s(C                (2.8) 

 

An alternative way to organize these calculations is given by Zipkin (2000) as below: 

x(Ĉ j )s = ∑ =++
≥ ji

j

'

Jii ]xINB)hb(INh[E               (2.9) 

y(C j )s = ∑ =++
≥ ji

j

'

Jii ]yITPB)hb(INh[E            (2.10) 



 

x(C j )s = ∑ =++
≥

−
ji

1j

'

Jii ]xINB)hb(INh[E            (2.11) 

 

These functions determine the best echelon base-stock policy: Set 

−
+ += ])[()( '
1 xhbxC jJ

.  

 

For j=J, J-1,…,1, given 1jC + , compute 

)x(Cxh)x(Ĉ 1jjj ++=  

)y(C j = )]Dy(Ĉ[E jj −  

{ })y(Cminargs j

*

j =  

{ }),(min)( * xsCxC jjj
=               (2.12) 

 

At termination, set *
s = )s( *

j  and )s(CC *

11

* = . These quantities describe the optimal 

policy and the optimal cost. The recursion given (2.9) is called the fundamental 

equation of supply chain theory. It reflects the basic dynamics of the series systems.” 

Zipkin (2000). 

 

2.2.3 Myopic Policy 

 

As a dictionary meaning myopic means, “short-sighted”. In the context of this 

study it should be understood that the word “myopic” corresponds to an approach, 

which looks at only the “current” one-period problem. “What we seek is a form of a 

planning-horizon theorem: you need only to solve a one-period problem to know you 

have the optimal decision rule for that period, regardless of the planning horizon of 

the actual problem. This result can be valid both deterministic and stochastic 

problems, stationary and non-stationary.” (Porteus E., 2002) 

 

As stated by Porteus, most dynamic inventory problems that are nonstationary and 

have long planning horizon provide better information about the near term than the 

long term. In general, when the size of the state space gets large, the problem 

becomes intractable. Bellman (1957) calls this phenomenon the curse of 



 

dimensionality. There are several approaches dealing with this curse. One of these 

approaches is to use an exploit special structure.  

 

Myopic policy approach attempts to prove the form of the policy is simple. The 

problem of searching over a huge number of decision rules for each period reduces to 

the problem of finding a small number of parameters, such as the base stock level S 

of an optimal base stock policy. One of the most important and practical approach is 

to attempt to prove that a myopic policy is optimal: the decision rule that optimizes 

the return in a single- period problem with an easily identifiable terminal value 

function for that period is optimal.  

 

2.3 Game Theory: Decision Making With Conflicting Objectives 

 

Game theory studies the behavior of rational players in interaction with other 

rational players. Players are considered to be rational if they maximize their 

objective functions given their thoughts about the environment. They act in an 

environment where other players’ decisions influence their payoffs.  

 

Games can be classified according to number of players, number of strategies and 

behaviors of players. A classification is given in the Figure 2.9. There may be two or 

more players. When summation of the players’ payoffs equals to zero, there is a 

zero-sum game. The number of strategies applicable for each player may be assumed 

to be finite or infinite.  

 

Since von Neumann and Morgenstern’s (1947) fundamental work on game 

theory, it has become tradition to distinguish between cooperative and 

noncooperative game theory. The main difference between these two branches lies in 

the type of questions they try to answer.  

 

 

 

 



 

“Cooperative game theory is concerned with the kind of coalitions a group of 

players will form if different coalitions produce different outcomes and if these joint 

outcomes then have to be shared among the members.” (Jürgen E.,1993) 

 

In contrast, “noncooperative game theory focuses on strategies players will 

choose. In the noncooperative game, attention is focused on the actions that each 

player is able to take, and how these actions jointly determine each player’s payoff.” 

(Friedman J.W.,1986) In noncooperative games players are unable to make 

contractual agreements with one another.  

 

Noncooperative games are often expressed in a fashion that exposes each 

individual move a player can make; this is called the extensive form. Or they are 

expressed in a way that suppresses individual moves but highlights the overall plans, 

or strategies, which are available for players. This form is called the normal form. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 Classification of Games 

Games 

Number of players Sum of Payoff Number of strategy 

Zero  
sum 

Non-zero 
Sum 

N-players Two 
players 

Finite  Infinite 

Behaviour of  
players 

Cooperative  Non-Cooperative 



 

2.3.1 Some Basic Concepts for All Kind of Games 

 

In this section, after defining the basic elements of a noncooperative game, the 

solution concepts will be given. In addition to defining notation and some basic 

terms, assumptions usually made in noncooperative game theory will be also 

stated.  

 

2.3.1.1  Game Setup 

 

Every game has a set of rational decision makers, called players, whose decisions 

are central to the study of game. Players are indexed by i=1,...,n and the set of 

players are denoted by N where { }n,...,2,1N = . Each player has strategies to apply 

for each possible situation of the game. A strategy can be defined as the pre-

determined rules, which tell responses of each player to each possible situation in 

every period of the game. In some cases, it is perfectly easy to write down all the 

different possible situations, which may arise and specify what will be done in each 

case. Such a detail specification of actions is called a pure strategy. However in 

some cases, it is not so easy to choose the best strategy. For these cases, it is 

considered the probability of each strategy. The vector, which specifies the 

probabilities for each strategy, is called mixed strategy vector. 

 

ii Ss ∈  denotes a strategy of player i, where iS  is called a strategy space for 

player i. The strategy space for player i includes all possible strategies that player i 

has.  

 

Cartesian product of the individual strategy spaces, n21 S...SSS ×××= , is called 

the strategy space for the game and denoted by S.  

 

S)s,...,s,s(s n21 ∈= is called a combination, or more formally, a strategy 

combination, and it consists of n strategies, one for each player.  

 



 

There is a payoff function for each player which is scalar valued. ℜ∈)s(Pi is the 

payoff function of player i. And also the payoff vector can be expressed as 

=)( sP
n

n1 )]s(P),...,s(P[ ℜ∈ . 

 

A player’s strategy can be thought of as the complete instruction for which 

actions to take in a game. For example, a player can give his or her strategy to a 

person that has absolutely no knowledge of the player’s payoff or preferences and 

that person should be able to use the instructions contained in the strategy to choose 

the actions the player desires. As a result, each player’s set of strategies must be 

independent of the strategies chosen by the other players. The strategy choice by one 

player is not allowed to limit the feasible strategies of another player. Otherwise the 

game is ill defined and any analytical results obtained from the game are 

questionable. 

 

Another important issue is to be clear concerning the information, which a player 

possesses in a game, and several kinds of information must be distinguished. First, 

concepts of complete information and incomplete information will be described. 

Complete information is obtained when each player knows (a) who the set of players 

is, (b) all actions available to all players, and (c) all potential outcomes to all players. 

By contrast if player i only knows his own payoffs, then there is incomplete 

information. 

 

Secondly, the games in which each player knows exactly what has happened in 

previous moves are called games with perfect information. Games in which there is 

some uncertainty about previous moves are called games with imperfect information. 

 

2.3.1.2 Solution Concept 

 

The first existence proof for equilibrium points in n-person noncooperative games 

is due to Nash (1951). The concept of equilibrium point is a natural generalization of 

von Neumann’s (1928) saddle point equilibrium for zero-sum games. 

 



 

An equilibrium point is a combination, which is feasible (i.e. is contained in 

strategy space S) and for which each player maximizes his own payoff with respect 

to his own strategy choice, given the strategy choices of the other players. The 

equilibrium point was first introduced by Nash (1951). More formally: 

 

DEFINITION 2.1. An equilibrium point is a combination Ss* ∈  that satisfies 

)ss(P)s(P i

*

i

*

i ≥  for all ii Ss ∈ and for all Ni∈ . (Friedman J.W.,1986) 

 

There is a set of common assumptions, which have to be made guarantee to find 

an equilibrium point. Before the assumptions some definitions will be given: 

 

DEFINITION 2.2. A function )x(fy =  is concave if, for any 1x and 2x in the 

domain of the function, and any scalar [ ]1,0∈λ , if the following inequality holds: 

(Friedman J.W.,1986) 

[ ] )x(f)1()x(fx)1(xf 2121 λ−+λ≥λ−+λ             (2.13) 

 

DEFINITION 2.3. A compact set in nℜ is a set that is both closed (i.e., contains its 

own boundary) and bounded (i.e., can be contained within a ball of a finite radius). A 

convex set has the property that the straight line segment connecting any two points 

in the set is also in the set. (Friedman J.W.,1986) 

 

The common assumptions are: 

ASSUMPTION 2.1. m

iS ℜ⊂  is compact and convex for each Ni∈ . 

ASSUMPTION 2.2. ℜ∈)s(Pi  is defined, continuous, and bounded for all Ss∈  and 

all Ni∈ . 

ASSUMPTION 2.3. )ts(P ii  is concave with respect to ii St ∈  for all Ss∈  and all 

Ni∈ .(Friedman J.W.,1986) 

 

Assumptions 2.1 to 2.3 pertain to the structure of the game. There are additional 

conditions relating to the rules of the game and to the information conditions.  



 

RULE 2.1. The players are not able to make binding agreements. 

RULE 2.2. The strategy choice made by each player is made prior to the beginning 

of the play of the game, and without prior knowledge of the strategy choices made by 

other players. (Friedman J.W.,1986) 

 

DEFINITION 2.4. A game of complete information is a game in which each player i 

knows all the strategy sets Nj,S j ∈ , each knows all the payoff functions 

Nj),s(Pj ∈ , all players know that this information is in the possession of each of 

them, and all players know that everyone in the game knows all of these things. 

(Friedman J.W.,1986) 

 

Rule 2.1. defines a noncooperative game. Rule 2.2. states that players may be 

thought of as choosing their strategies simultaneously; however this places no 

restriction on the structure of the game. In this study the games of complete 

information is examined and these games satisfy Assumptions 2.1 to 2.3 and Rules 

2.1 and 2.2. As it is stated in Friedman J.W. 1986, all n-person noncooperative 

games of complete information that satisfy Assumptions 2.1 to 2.3, and Rules 2.1 

and 2.2 have equilibrium points. 

 

2.3.1.2.1 Best Reply Mappings and Their Relationship to Equilibrium Points 

 

The best reply mapping can be called the optimal strategy mapping. Another 

name for this concept is the best response function.  

 

DEFINITION 2.5. The best reply mapping for player i is a set-valued relationship 

associating each strategy combination Ss∈  with a subset of iS  according to the 

following rule: (Friedman J.W.,1986) 

 

( ) ( )








=∈=
∈

'

ii
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iiiii ssPmaxtsPSt)s(r             (2.14) 

 



 

In words, the strategy it  is a best reply for player i to the strategy combination s if it  

maximizes the payoff of player i, given the strategy choices of the others. In general, 

it  need not to be unique. The strategy combination St∈  is a best reply to Ss∈  if 

each component, it , of t is a best reply for player i.  

 

DEFINITION 2.6. The best reply mapping is a set valued relationship associating 

each strategy combination Ss∈  with a subset of S according to the rule ( )srt∈  if 

and only if ( ) .Ni,srt ii ∈∈  Thus ( )sr  is the Cartesian product ( ) ( ) ( )sr...srsr n21 ××× . 

(Friedman J.W.,1986) 

 

The best reply mapping provides a natural way to think about equilibrium points, 

because equilibrium points which satisfy the condition that *s  is an equilibrium point 

if and only if ( )srs* ∈ . That is, an equilibrium point is a best reply to itself, and any 

strategy combination that is a best reply to itself is an equilibrium point. This 

argument can be expressed formally as follows: 

 

LEMMA 2.1. Let ( )P,S,N=Γ  be a noncooperative game. Ss∈  is an equilibrium 

point of Γ  if and only if ( )srs∈ . (Friedman J.W.,1986, page 36) 

 

2.3.1.2.2 Existence of Equilibrium 

 

Non-existence of an equilibrium is potentially a conceptual problem since in this 

case it is not clear what the outcome of the game will be. However, in many games a 

Nash Equilibrium (NE) does exists and there are some reasonably simple ways to 

show that at least one NE exists. The simplest and the most widely used technique 

for demonstrating the existence of NE is through verifying concavity of the player’s 

payoffs. 

 

THEOREM 2.1. (Debreu 1952): Suppose that for each player the strategy space is 

compact and convex and the payoff function is continuous and quasi-concave with 



 

respect to each player’s own strategy. Then there exists at least one pure strategy NE 

in the game. 

 

In addition to the Theorem 2.1, it is possible to prove that a noncooperative n-

person game has an equilibrium point according to the following theorem. 

 

THEOREM 2.2. (Friedman,1986): Let ( )P,S,N=Γ  be a game of complete 

information that satisfies Assumptions 2.1 to 2.3 and Rules 2.1 and 2.2. Then Γ has 

at least one equilibrium point. 

 

2.3.1.2.3 Uniqueness of Equilibrium 

 

It is quite useful to have a game with a unique NE from the perspective of 

generating qualitative insights. If there is only one equilibrium, then one can 

characterize equilibrium actions without much ambiguity. In the case of multiple 

equilibria, it is not clear that players can be expected to coordinate to play an 

equilibrium strategy combination. If they have no means of communication, even if 

each one selects a strategy associated with an equilibrium point, the resulting 

combination may not be an equilibrium point. If the players can communicate, then 

they could agree on a particular equilibrium point, but then we have a problem like to 

figure out which equilibrium point would be selected. 

 

Hence it is important to show the uniqueness of equilibrium. Unfortunately, 

demonstrating uniqueness is generally much harder than demonstrating existence of 

equilibrium. There are several methods for proving uniqueness. No single method 

dominates; all may have to be tried to find the one that works. Furthermore, one 

should be careful to recognize that these methods assume existence; existence of NE 

must be shown separately. 

 

One of the methods to prove the uniqueness of NE requires that Assumption 2.3 

be modified so that the best reply mapping is a single-valued function.  



 

ASSUMPTION 3.2 ′ : )ts(P ii  is strictly concave with respect to ii St ∈  for all Ss∈  

and all Ni∈ . 

 

Strictly concavity means that for any Ss∈ , any i

'

ii St,t ∈  with '

ii tt ≠ , and any 

( )1,0∈λ , the following inequality holds: 

( )[ ] )ts(P)1()ts(Pt)1(tsP '

iiii

'

iii λ−+λ≥λ−+λ  

LEMMA 2.2. For a game ( )P,S,N=Γ  satisfying Assumptions 2.1, 2.2, and 3.2 ′ , 

the set  

  ( ) ( ){ }i'

i

'

iiiiii St all for tsPtsPSt ∈≥∈             (2.16) 

consists of exactly one element for each Ss∈ . (Friedman J.W.,1986 -page 43) 

 

Second method to prove the uniqueness of NE is called contraction mapping 

approach. This approach will be defined briefly. 

 

DEFINITION 2.7. Let my,x ℜ∈ . The distance from x to y, denoted either )y,x(d  

or yx −  is ii
i

yxmax)y,x(d −= . (Friedman J.W.,1986) 

 

DEFINITION 2.8. Let ( )xf  be a function with domain mA ℜ⊂  and range nB ℜ⊂ . 

If there is a positive scalar 1<λ  such that for any Ax,x ' ∈ , 

( ) ( )( ) ( )'' x,xdxf,xfd λ≤  then ( )xf  is a contraction. (Friedman J.W.,1986) 

 

In other words, a contraction leaves the images of the two points closer than were the 

original points themselves.  

 

THEOREM 2.3. (Friedman, 1986): Let ( )P,S,N=Γ  be a game of complete 

information that satisfies Assumptions 2.1, 2.2 and 2.3, and Rules 2.1 and 2.2. If the 

best reply function, ( )sr , is a contraction, then Γ  has exactly one equilibrium point. 

 



 

Another method to prove the uniqueness of NE is called univalent mapping 

approach. This method by contrast to the previous one, does not restrict the best 

reply mapping, but it requires differentiability and places some other restrictions. Let 

o  

S  denote the interior of S. 

 

DEFINITION 2.9. ( )P,S,N=Γ  is a smooth game if the following derivatives exist 

and are continuous on 
o  

S : (Friedman J.W.,1986) 

 

   
jk

i

s

P

∂
∂

,    k=1,…,m,  Nj∈  and 

   
jlik

i

2

ss

P

∂∂
∂

,   k,l=1,…,m,  Nj,i ∈             (2.17) 

exist for all sequences of points in 
o  

S  converging to s′  on the boundary of S. 

 

The second partial derivatives that exist everywhere in S for strictly smooth game 

are precisely the derivatives that appear in the Jacobian of the systems  

 

Ni     m,...,k      ,
S

P

ik

i ∈==
∂

∂
10              (2.18) 

 

This Jacobian, denoted J(s), is a square matrix with m x n rows and columns. Its 

elements are )m,...,l,k and Nj,i(    SS/P jliki 12 =∈∂∂∂ . It is the Jacobian of the 

implicit form of the best reply function, which must obey a special condition 

everywhere on its domain, S.  

 

DEFINITION 2.10. Let A be an nm× matrix. A is negative quasi-definitive if B= 

A+A
T is negative definite. (Friedman J.W.,1986) 

 

The uniqueness theorem requires that J(s) be negative quasi-definite for all Ss∈ , 

and the theorem allowing the proof of uniqueness is the following theorem:  



 

THEOREM 2.4 (Gale–Nikaodo, 1965 univalence theorem): Let f(x) be a function 

from a convex set mX ℜ⊂  to mℜ . If the Jacobian of f is negative quasi-definite for 

all x∈X, the f is one to one. (That is, if ( ) yxf ′=′ , then, for all ( ) yxf,xx ′≠′≠ ). 

 

THEOREM 2.5. Let ( )P,S,N=Γ  be a smooth game of complete information that 

satisfies Assumptions 2.1, 2.2, and 2.3”, and Rules 2.1 and 2.2 Assume that J(s), the 

Jacobian of the implicit from of the best reply function, is negative quasi-definite for 

all 
o

Ss∈ , and that, for any .)(,
o

SsrSs ∈∈ Then Γ has a unique equilibrium point. 

(Friedman J.W.,1986) 

 

2.3.2 Game Theory In Supply Chain Analysis 

 

As explained in the previous sections, game theory is a powerful tool for 

analyzing situations in which the decisions of multiple agents affect each agent’s 

payoff. Since game theory deals with the interactive optimization problems, it plays 

an important role in supply chain analysis. Figure 2.10 illustrates the types of games 

which have found large applications in supply chain area. In this part, the most 

important game types for this study will be explained in detail.  

 

Since the nature of everything is dynamic, dynamic models can reflect the real life 

applications in best way. Thus a significant portion of the Supply Chain Management 

(SCM) literature is devoted to dynamic models in which decisions are made over 

time. In most cases the solution concept for these games is similar to the backward 

induction used when solving dynamic programming problems.  
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Figure 2.10 Classification of Game Theory in Supply Chain Analysis 
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One type of dynamic game arises when both players take actions in multiple 

periods. Since inventory models used in SCM literature often involve inventory 

replenishment decisions that are made over and over again, multi-period games 

should be a logical extension of these inventory models. Two major types of 

multiple-period games exist: without and with time dependence. In the following 

two sections, after defining multi-period or multi-stage games, two types of multi-

period games, which are interested in this study, will be explained.  

 

2.3.3 Multi-Period (Multi-stage) Game Setup 

 

Although this is not always the case, it is often natural to identify the 

“stages” of the game with time periods, as in this study. In the first period of a 

multi-period game (period 0), all players Ni∈  simultaneously choose actions 

from choice sets )h(A 0

i . It is assumed that =0h ∅ be the “history” at the start 

of the play. At the end of each period, all players observe the period’s action 

profile. Let )a,...,a,a(a 0

n

0

2

0

1

0 ≡  be the period–0 action profile. At the beginning 

of period 1, players know history 1h , which can be identified with 0a  given 

that 0h  is trivial. In general, the actions player i has available in period 1 may 

depend on what has happened previously, so we let )h(A 1

i  denote the possible 

second-period actions when the history is 1h . Continuing iteratively, we define 

1kh + , the history at the end of period k, to be the sequence of actions in the 

previous periods, 

( )k101k a,...,a,ah =+               (2.19) 

and let )h(A 1k

i

+  denote the player i’s feasible actions in period k+1 when the 

history is 1kh + . Let K+1 denote the total number of periods in the game, with 

the understanding that in some applications +∞=K , corresponding to an 

infinite number of periods; in this case the “outcome” when the game is played 

will be an infinite history, ∞h . Since each 1kh +  by definition describes an entire 

sequence of actions from the beginning of the game on, the set 1KH +  of all 



 

  

“terminal histories” is the same as the set of possible outcomes when the game 

is played. 

 

In this setting, a pure strategy for player i is simply a contingent plan of how 

to play in each period k for possible history kh . If we let kH  denote the set of 

all period–k histories, and let 

)h(A)H(A k

i
kHkh

k

i
∈

= U              (2.20) 

a pure strategy for player i is a sequence of maps { }K
0k

k

is = , where each 
k

is  maps 

kH  to the set of player i’s feasible actions )H(A k

i  (i.e., satisfies 

)h(A)h(s k

i

kk

i ∈ for all kh ). The sequence of actions generated by a profile of 

such strategies can be found as the following way: The period-0 actions are 

)h(sa 000 = , the period-1 actions are )a(sa 011 = , the period-2 actions are 

)a,a(sa 1022 = , and so on. This is called the path of strategy profile. Since the 

terminal histories represent an entire sequence of play, we can represent each 

player i’s payoff as a function ℜ→+1K

i H:P . 

 

2.3.3.1 Repeated Games 

 

In the multi-period game without time dependence, the exact same game is 

played over and over again; hence the term repeated games is used. Time 

dependence means that the payoff associated with a particular time period 

depends only on the actions of that time period. Since there is no time 

dependence, each period is considered independent each other. 

 

A repeated game is a multi-period game in which the same (ordinary) game is 

played at each time period. The strategy for each player is a sequence of actions 

taken in all periods. In this case, there are no links between successive periods 

other than the player’s memory about the actions taken in all previous periods. All 

players realize they will play a sequence of games and know that this is a common 

knowledge.  



 

  

 

In each time period, the n players simultaneously select moves. These moves 

can be interpreted as strategies in a game confined to the current time period. That 

is, each time period has a payoff function associated with it and a strategy set (set 

of available moves) for each player. A repeated game is a game in which the 

circumstances of the initial time period (payoff functions and sets of available 

moves) repeat themselves identically in each succeeding period. Of course, the 

player does not merely consider each occurrence in isolation; he is interested in 

his overall payoff over the whole time horizon, and he considers strategies that 

direct the choices of each individual period’s action from this global perspective.  

 

Suppose that ( )P,S,N=Γ  is game in strategic from satisfying Assumptions 

2.1 to 2.3, and Rules 2.1 and 2.2; and imagine that the player will engage in this 

game in each of the time periods t= 0,1,2,…,T. Assume, too, that each player 

Ni∈  discounts the future using the discount parameter )1(
1

i
i r+=α , where 

ir >0 is the discount rate. Letting t

is  be the strategy chosen by player i in the tth 

play of the game, and ( )tnt

2

t

1

t s,...,s,ss = , the discounted payoff stream to player i is  

∑α=σ
=

T

0t

t

i

t

ii ),s(P)(G               

(2.21) 

Allowing the possibility that T=∞, the number of plays can be finite or infinite.  

 

DEFINITION 2.11. A repeated game is ( )T,,P,S,N α=Γ  where (N,S,P) satisfies 

Assumptions 2.1 to 2.3 and Rules 2.1 and 2.2, ( )n21 ,...,, ααα=α  satisfies 

]1,0(i ∈α  for all Ni∈  and T is nonnegative. T can be finite or equal to ∞+ . 

(Friedman J.W.,1986) 

 

Something must be specified concerning the flow of information over the time 

horizon. The player is not actually committed to t

is  until time t occurs. That is, 

even if a sequence ,...s,s,s 2

i

1

i

0

i
 is decided at time 0, the player retains the right at 



 

  

any time t to select at that moment any elements of t

i
S . Two natural assumptions 

are: 

 

(a) At each play of the game, Rule 2.2 holds, and after t

is  is chosen for all 

Ni∈ , then all players are informed of ts . 

(b) t

is  must be chosen for all Ni∈  and t= 0,1 ,. . . ,T before any player is 

informed of the choices made by the other players.  

 

These two assumptions are stated as Rule 2.3 and Rule 3.2 ′  respectively.  

RULE 2.3: At each time t, the t

is  Ni∈ , are chosen simultaneously; however, for 

t>0, sτ, τ=0,1,…t-1 is known to all players. (Friedman J.W.,1986) 

 

RULE 3.2 ′ : At each time t, the t

is  Ni∈  are chosen simultaneously. For t>0, 

player i knows τ
is  but does not know 1t,....,1,0),ij(s

j
−=τ≠τ . The realized value 

of )s(P t
i  is not revealed to the players until after all choices are made. (Friedman 

J.W.,1986) 

 

Rules 2.3 and 3.2 ′  have different implications regarding the way the players’ 

strategy spaces should be modeled. Under Rule 3.2 ′ , a player accumulates no 

information as time passes therefore; her choice at any time t cannot be a function 

of the previous actions of the other players. Thus her strategy space is t

i

T

0i S×=Σ . 

Let elements of iΣ  be denoted iσ  and let ( ) Σ∈σσ=σ n1 ,...,  where iNi Σ×=Σ ∈ . 

Under Rule 2.3, the information revealed to each player is the past component 

game pure strategy combination that was chosen. 

 

THEOREM 2.6 (Friedman, 1986): A repeated game ( )T,,P,S,N α=Γ  satisfying 

rule 3.2 ′  has a noncooperative equilibrium. ( )T10 ŝ,...,ŝ,ŝˆ =σ  is a noncooperative 

equilibrium of Γ  if and only if tŝ  is a noncooperative equilibrium for the game 

( )P,S,N=Γ , t= 0,1 ,. . . ,T. 



 

  

 

Theorem 2.6. states that the repeated play of a Nash equilibrium forms a Nash 

equilibrium of the repeated game. Hence there is no existence problem for Nash 

equilibria in repeated games provided that the one-period game has an 

equilibrium.  

 

The concept of Nash equilibrium can be applied to all games however; many 

game theorists doubt that Nash equilibrium is the right solution concept for 

repeated games. The many–move nature of the repeated game introduces a need to 

refine the Nash equilibrium because certain conceivable Nash equilibria are not 

plausible. The fundamental refinement, called perfect equilibrium, applies to both 

single-period and many-period games and this concept will be discussed in the 

following section. 

 

2.3.3.1.1 Perfect Equilibrium Points 

 

There are certain equilibrium points that, on examination, appear implausible. 

In games in which each player has more than one move, some unsatisfactory 

equilibrium points can be interpreted as utilizing threats that are not credible. In 

games in strategic form or games of one move per player, an equilibrium point 

may appear unsatisfactory, because the equilibrium strategy of (at least) one 

player would be far from optimal if the game perturbed in a very slight way. To 

avoid such equilibria, a refinement of Nash equilibria called perfect equilibrium is 

used. A perfect equilibrium point is a Nash equilibrium that satisfies some 

additional properties.  

 

“Selten (1965) was the first to argue that in general extensive games some of 

the Nash equilibria are “more reasonable” than others. He began with the 

example illustrated in Figure 2.11. This is a finite game of perfect information, 

and the solution is that player 2 should play L if his information set is reached, 

and so player 1 should play D. Inspection of the strategic form corresponding to 

this game shows that there is another Nash equilibrium, where player 1 plays U 



 

  

and player 2 plays R. The profile (U,R) is a Nash equilibrium because, given that 

player 1 plays U, player 2’s information set is not reached, and player 2 loses 

nothing by playing R. But Selten argued that this equilibrium is suspect. After all, 

if player 2’s information set is reached, then, as long as player 2 is convinced that 

his payoffs are as specified in the figure, player 2 should play L. And if we were 

player 2, this is how we would play. Moreover, if we were player 1, we would 

expect player 2 to play L, and so we would play D. Thus, the equilibrium (U,R) is 

not credible because it relies on an empty threat by player 2 to play R. The threat 

is empty because player 2 would never wish to carry it out.” (Fudenberg D. and 

Tirole J, 1991) 

 

      U   D 

(2,2) 

    L          R 

         (3,1)           (0,0) 

 

Figure 2.11. An example 

 

There are two versions of perfect equilibrium; subgame perfect equilibrium and 

trembling hand perfect equilibrium. The first one, which is used in this study, will 

be explained briefly in the following section. 

 

2.3.3.1.2 Subgame Perfect Equilibrium 

 

As it is explained in the previous section, to avoid incredible threads, “Selten 

(1975) has proposed that the strategies of the players should be best replies to one 

another for each subgame in the game, and a strategy combination obeying this 

condition is called a subgame perfect equilibrium.” (Friedman J.W.,1986). 

 

In a game, there are certain moments such that, from that moment onward, the 

reminder of the game is, itself, a game. Such a game is a subgame of the original 

game.  

 L R 

U 2,2 2,2 

D 3,1 0,0 

 



 

  

 

DEFINITION 2.12: Let ( )P,S,N=Γ  be a noncooperative game. Then the 

subgame of Γ  at time t with history th  is described by  

 

(a) set of players N 

(b) the strategy spaces τ∞
=τ×= i0tih
AS   

(c) the payoff functions ( )∑α=
∞

=τ

τττ

t
iiith

i aPP  

(d) the history τh . 

This subgame is denoted ( )ththth
P,S,N=Γ . (Friedman J.W.,1986) 

 

For example, there are five subgames in the game consisting of two plays of 

the game in Figure 2.11; the original game and four additional games. Each 

additional subgame is defined to the four possible histories (a1,b1), (a1,b2), (a2,b1), 

and (a2,b2). 

 

Repeated games have perfect information at the beginning of each period. This 

suggests applying the concept of a subgame perfect equilibrium to repeated games 

to eliminate equilibria that rely on incredible threats. In repeated games a subgame 

begins after each history th . In other words, a subgame begins at the beginning of 

each one-period game. 

 

DEFINITION 2.13: Sˆ ∈σ  is a subgame perfect equilibrium point of Γ  if σ̂  is an 

equilibrium point of th
Γ  for ∞= ,...,,t 10  and for all tt Sh ∈ . (Friedman 

J.W.,1986) 

 

According to definition 2.13, σ̂  is subgame perfect if it is an equilibrium point 

for any possible subgame of the original game. That is, the strategy combination 

induced on th
Γ  by σ̂  must be an equilibrium point in each subgame th

Γ , even if 

the subgame th
Γ  would never be encountered when σ̂  is actually played.  



 

  

 

A repeated game strategy combination that has each agent in each one-period 

game, play a Nash equilibrium strategy of the one-period game will be subgame 

perfect. Hence, there is no existence problem for subgame perfect equilibria in 

repeated games. 

 

2.3.3.1.3 Backward Induction 

 

Backward induction can be applied to any finite game of perfect information, 

where finite means that the number of periods is finite and the number of feasible 

actions at any period is finite. And also it can be extended to infinite games of 

perfect information, where there is no last period from which to backward.  

 

The algorithm begins by determining the optimal choices in the final period K 

for each history Kh ; that is, the action for the player on move, given history Kh , 

that maximizes that player’s payoff conditional on Kh  is being reached. Then we 

work back to period K-1, and determine the optimal action for the player on move 

there, given that the player on move at period K with history Kh  will play the 

action we determined previously. The algorithm proceeds to roll back, just as in 

solving decision problem, until the initial period is reached. At this point we have 

constructed a strategy profile, and it is easy to verify that this profile is a Nash 

equilibrium. Moreover, each player’s actions are optimal at every possible history, 

which is called subgame perfect equilibrium. 

 

2.3.3.2 Stochastic Games 

 

In time-dependent multi-period games, players’ payoffs in each period depend 

on the actions in the previous as well as current periods. Typically the payoff 

structure does not change from period to period (so called stationary payoffs). 

Clearly, such setup closely resembles multi-period inventory models in which 

time periods are connected through the transfer of inventories and backlogs. Due 

to this similarity, time-dependent games have found applications in SCM 



 

  

literature. We will only discuss one type of time-dependent multi-period games, 

which is called stochastic games or Markov games, due to their wide applicability 

in SCM.  

 

The basic feature that distinguishes stochastic games from other games is that, 

in each time period, the particular payoff functions to be faced by the players are 

chosen randomly, and the exact probability distribution depends on the actions of 

the players in the previous period as well as on the particular payoff functions that 

were drawn at that time. At the start of each period one of the one-period games 

(one-shot game) is selected at random. The selection is made known to the 

players. 

 

The idea behind a stochastic game is that the history at each period can be 

summarized by a state. Current payoffs depend on this state and on current 

actions. The state follows a Markov process; that is, the probability distribution on 

tomorrow’s state is determined by today’s state and actions.  

 

The setup of the stochastic game is essentially a combination of a static game 

and Markovian decision process: in addition to the set of players with strategies 

which is now a vector of strategies, one for each period, and payoffs, we have a 

set of states and transition mechanism )s,kk(p ′ , probability that transition from 

state k to state k′  given action s. Transition probabilities are typically defined 

through random demand occurring in each period. 

 

The probability distribution governing the choice among the one-shot games to 

be played in period t+1, depends on the actual game played in period t and on the 

actions selected by the players in period t. This probability distribution is called 

the transition mechanism. Since a one-period game corresponds to a state, to say 

that game s was encountered at time t is exactly the same as to say the state at 

time t was state s. 

 



 

  

DEFINITION 2.14: The transition mechanism is )s,kk(p ′ , which is the 

probability that the next state will be k′  when the current state is k and the current 

action is s. (Friedman J.W.,1986) 

 

ASSUMPTION 2.4: The set of states { }K,...,2,1=Ω  is finite. 

ASSUMPTION 2.5: The transition mechanism satisfies the following conditions: 

a) 0)s,kk(p ≥′  for all Ω∈′k,k  and all kSs∈  

b) ∑ =′
Ω∈′k

1)s,kk(p  

 

DEFINITION 2.15: A stochastic game is denoted { }{ }( )αΩ=Γ ,p,P,S,,N kk  where 

( )kk P,S,N  is for each Ω∈k , a game satisfying Assumptions 2.1 to 2.3 and Rules 

2.1 and 2.2. Γ has p as its transition mechanism, Γ  satisfies Assumptions 2.4 and 

2.5, and for each player Ni∈ , the objective function is expected discounted 

payoff using the discount parameter )[ 1,0i ∈α  (Friedman J.W.,1986). 

 

The difficulties inherent in considering non-stationary inventory models are 

passed over to the game-theoretic extensions of these models, so a standard 

simplifying assumption is that demands are independent and identical across 

periods. When only a single decision-maker is involved, such an assumption leads 

to a unique stationary solution (e.g. stationary inventory policy of some form: 

order-up-to, S-s, etc.). In game theory setting, however, things get more 

complicated; just as in the repeated games described in the previous section, non-

stationary equilibria are possible. A standard approach is to consider just one class 

of equilibria –e.g. stationary- since non-stationary policies are hard to implement 

in practice and they are not always intuitively appealing. Hence, with the 

assumption that the policy is stationary the stochastic game reduces to an 

equivalent static game and equilibrium is found as a sequence of NE in an 

appropriately modified single-period game. Another approach is to focus on 

“Markov” or “state space” strategies in which the past influences the future 

through the state variables but not through the history of the play. 



 

  

 

A Markov Perfect equilibrium (MPE) is a profile of Markov strategies that 

yields a Nash equilibrium in every proper subgame. Since the state captures the 

influence of past play on the strategies and payoff functions for each subgame, if a 

player’s opponents use Markov strategies, that player has a best response that is 

Markov as well.  

 

Suppose that there are t+1 periods (t=0,…,T) where T can be finite or infinite. 

At date t, player i (i=1,…,N) knows the history )a,...,a(h 1t0t −  (where 

( )τττ ≡ n1 a,...,aa ) and chooses an action t

ia  in a finite action set ( )tt

i hA . A Markov 

strategy for player i may be conditioned on less than player i’s information. Then 

the summaries or partitions of the history ( ){ } T,...,0t

tt hH =  which, for each date, are 

mappings from the set of histories into a set of disjoint and exhaustive subsets of 

the set of possible histories at that date. Suppose for instance that there are four 

possible histories, at the beginning of date 2. One partition is 

A)h(H)h(H 22 =′= , B)h(H 2 =′′  and C)h(H 2 =′′′ , in which the first two 

histories are lumped in the same summary. The partition can also be written 

{ })h(),h(),h,h( ′′′′′′ .  

 

While summarizing the history, a partition must not be too coarse. That is, at 

each date, the players must be able to recover the strategic elements of the ensuing 

subgame from the element of the partition to which th  belongs. 

 

DEFINITION 2.16: A partition { }
T,...,0t

t(.)H =  is sufficient if, for all t, th , and th
~
 

such that ( ) ( )tttt h
~

HhH = , the subgames starting at date t after histories th , and 

th
~
 are strategically equivalent: 

 

(i) The action spaces (defined on conditionally on action taken from date t 

on) are identical. 



 

  

(ii) The players’ von Neumann-Morgenstern utility functions (or payoff 

functions) conditional on th , and th
~
 are representations of the same 

preferences. (Fudenberg D. and Tirole J, 1991) 

 

DEFINITION 2.17: The payoff-relevant history is the minimal sufficient partition. 

(Fudenberg D. and Tirole J, 1991) 

 

In our example, if the subgames starting at date 2 after histories h,h ′ , and h ′′  (but 

not h ′′′ ) are strategically equivalent, the partition { })h(),h(),h,h( ′′′′′′  is sufficient 

but not minimal. The coarsest sufficient partition is { })h(),h,h,h( ′′′′′′ . 

 

DEFINITION 2.18: A Markov Perfect Equilibrium (MPE) is a profile of 

strategies that are perfect equilibrium and measurable with respect to the payoff-

relevant history. (Fudenberg D. and Tirole J, 1991) 

 

THEOREM 2.7. (Fudenberg D. and Tirole J, 1991): Suppose either that ∞<T , or 

that ∞=T  and the objective functions are continuous at infinity. Then there 

exists an MPE.  

 

Having given some information about multi-echelon inventory systems and 

game theoretic models, related work, which was done in the literature, will be 

given in the following section. 

 

2.4. Related Work in Literature 

 

There are several issues that determine the structure of an inventory model and 

make multi-echelon inventory systems challenging. 

 

The first issue is the depot demand process. It is a unique issue of the multi 

echelon inventory systems. The demand process at the depot (upper stage) is the 

summation of retailers’ (lower stages’) ordering process. That is, the demand 



 

  

process at bases (lower echelon -retailer-), together with the ordering policy 

followed at each base; decide the demand process at the depot (higher echelon). 

 

Second, the type of items affects the complexity of the analysis. Products with a 

limited lifetime are perishable items. If perishable items have been stored in the 

inventory system, after certain periods, those perishable items have to be 

discarded; which will increase the cost of the inventory system. Computer 

software and fashion items can be considered as perishable items. Repairable 

items also complicate the analysis of the inventory system. To deal with 

repairable items, the inventory system has to consider the repair facility, the 

waiting time and the service time of failed items. That is the reason why 

perishable or repairable items make inventory systems more difficult to analyze 

than do consumable items. 

 

The third major issue in multi-echelon inventory systems is the lateral 

transshipment among retailers. It is possible that, a retailer runs out of stock and is 

expecting to receive its orders from the depot while customers who arrive at 

retailers are backlogged. At the same time, any other retailer may have inventory. 

It is reasonable to supply those waiting customers with other retailer’s inventory. 

This is called “lateral transshipment”. Lateral transshipment results in customer 

satisfaction. However, lateral transshipment has its transportation cost and greater 

coordination of retailer’s inventory management is required. With lateral 

transshipment, the demand at any retailer should include the possible demand 

from other retailer’s customers if they run out of stock. 

 

The fourth issue is the assumption of backorders. When a retailer runs out of 

stock, some customers may wait and their demands are backordered while other 

customers may go to its competitors. With backorders allowed, the demand rate at 

a retailer will change according to its inventory level. 

 

One of the earliest multi echelon models was developed by Clark and Scarf 

(1960). They assumed that the system structure consisted of several installations, 



 

  

1,2,…,N; with installation 1 receiving stock from installation 2, installation 2 

receiving stock from installation 3, etc., and with demands originating at echelon 

1 only. They also assumed that the cost of ordering and shipping from any 

installation to the next is a linear function of the amount shipped without any set-

up cost, except at the highest echelon. Finally, positive lead times for shipping 

between echelons and full backordering is assumed. 

 

The Clark and Scarf study was significant for several reasons. It was the first to 

depict the form of an optimal policy for a stochastic demand, multi-period, multi-

echelon model. It also was important for introducing the concepts of echelon stock 

and implied shortage cost, which form the basis for the analysis of more complex 

systems. Clark and Scarf (1960) provides a theoretical foundation for much of the 

research in the increasingly important area of supply chain management. 

However, the assumptions of this model make it unlikely that it would be used to 

manage a real system. For instance, the assumption that all replenishment costs 

are proportional to the size of the replenishment order is somewhat unrealistic. 

When fixed ordering costs were applied at all locations, Clark and Scarf (1960) 

were able to provide only approximately optimal policies. Also the simple serial 

system considered, where items flow through echelons each with a single 

location, has limited applicability in practice since few actual retail distribution 

systems have this type of structure. 

 

2.4.1. Fluctuating Demand in Single-Period Setting 

 

As it is mentioned before, one of the issues which makes the system structure 

more complex and which makes also this study different from the existing 

literature is the demand process. In this section demand is assumed to be 

stochastic or fluctuating over time. The essential paper belongs to Samuel 

Karlin. 

 

Karlin (1960) formulated a dynamic inventory model in which the demand 

distributions may change from period to period. In other words, the demand in 



 

  

each period is assumed to be independent but not necessarily identically 

distributed. Several costs are incurred during each period such as purchase cost, 

holding cost and shortage cost which are assumed linear. There is no fixed cost of 

ordering. Both the cases where excess demand is lost and backlogged were 

considered. Most studies of dynamic inventory models are concerned with 

determining the characteristics of the optimal policy which means the policy that 

minimizes the total expected costs in the future periods are properly discounted. If 

the cost functions of the model are suitably convex, and if demands that arise in 

successive periods are independent and identically distributed random variables 

with known distribution functions, then it is clear that the optimal policy in each 

period is characterized by a single critical number or at most two such numbers. 

The main importance of Karlin’s paper is that he developed qualitative results 

describing the variation of the critical number which describes the optimal policy 

over time as a function of the demand densities in all future periods. Cost 

functions are assumed to be the same in all periods. 

 

Iglehart and Karlin (1962) considered again an inventory model with a 

stochastic demand process but this study is different from Karlin’s paper in that 

this time the distributions of demand in successive periods are correlated. The 

relationship of demands in successive periods regarded as a generalized Markov 

process and the demand process is described by discrete time Markov chain. 

Iglehart and Karlin also consider the case in which costs are nonconvex. 

 

Models have been developed for the situation where the warehouse holds no 

inventory. In these cases, retailers use the warehouse merely as a distribution 

point through which items flow. The first study of this type of system was from 

Eppen and Schrage (1981). Eppen and Schrage’s model is essentially the 

warehouse/store system of two-echelon inventory system. The assumption that the 

warehouse does not hold stock does not mean that the warehouse serves no 

purpose. By ordering centrally, more advantageous quantity discounts can be 

sought. There are also “statistical economies of scale” as observed by Eppen 

(1979) in which savings are achieved by aggregating orders rather than operating 



 

  

N individual inventory systems. Eppen and Schrage show that unless the demand 

at the stores is perfectly correlated, the coefficient of variation of demand (σ/µ) 

for the aggregate system is smaller than for the demand at the individual stores. 

 

Eppen and Schrage (1981) assume deterministic lead times from both the 

supplier to the warehouse and from the warehouse to the stores. Demand 

originates only at the store level and is assumed to follow a normal distribution 

with parameters allowed to differ between stores. Eppen and Schrage call their 

ordering policy an (m,y), where every m periods, the inventory positions raised to 

a base stock of y. The warehouse must have enough stock to resupply the stores so 

that the probability of a stockout at each store is the same. This is shown likely to 

hold when the fixed cost of ordering from the warehouse is high and/or the 

coefficient of variation of demand at the stores is moderate. 

 

Federgruen and Zipkin (1984a) consider the same problem but approach the 

solution differently. Their paper addresses the computational issues of the Clark 

and Scarf model. They showed that the optimal policy established by Clark and 

Scarf for the finite horizon problem, can be extended to the infinite horizon 

versions of the problem under the criterion of discounted cost and for long-term 

average cost. They also establish simpler computational formulas in the infinite 

horizon case. 

 

Federgruen and Zipkin formulate the problem as a dynamic program with a 

state space of very large dimension. The dimension of the problem is at least N+L 

(the number of outlets+the supplier to warehouse lead time), which makes it 

impractical to solve except for small values of N and L. To avoid the “curse of 

dimensionality” they showed that the model can be systematically approximated 

by a single location inventory problem. 

 

Federgruen and Zipkin (1984c) consider other approaches to the problem of 

approximating optimal policies where they assume that the penalty and holding 

costs are proportional. The results of this paper deal with the problem of unequal 



 

  

coefficients of variations of demand at the stores. The approximation techniques 

and results are similar to those of Federgruen and Zipkin (1984a). 

 

Zipkin (1989) considered an infinite-horizon problem with stochastic demands. 

This study is an extension of Karlin (1960) in that Zipkin developed an alternative 

and simpler approach. Zipkin proved the optimality of such policies for the 

average cost case. 

 

Song and Zipkin’s paper (1993) is similar to Iglehart and Karlin (1962). 

However, Song and Zipkin offer simpler computations. And also their demand 

model is specialized and simpler to specify than Iglehart and Karlin’s model 

because for each state Song and Zipkin’s model requires the demand rate whereas 

the others’ requires the full demand density. Many randomly changing 

environmental factors, such as fluctuating economic conditions and uncertain 

market conditions can have a major effect on demand. Song and Zipkin called the 

variables representing the environment as the state of the world (demand state); 

and they modeled the world as a continuous time Markov chain. When the world 

is in state i, demand follows a Poisson process with rate iλ . Then they called the 

demand process as Markov-modulated Poisson process. The demand state can 

affect other parameters of the inventory system such as the cost functions. 

 

Sethi and Cheng (1997), gives a generalization of classical inventory models 

that exhibit (s,S) policies. In other words, this paper is a generalization of Song 

and Zipkin (1993). In the model in Sethi and Cheng (1997), the distribution of 

demands in successive periods is dependent on a Markov chain. The model 

includes the case of cyclic or seasonal demands. Sethi and Cheng considered the 

presence of various constraints on ordering decisions and inventory levels which 

can be seen easily in real life applications. For example periods such as weekends 

and holidays is considered. Furthermore they extended their model to the cases in 

which there is no ordering periods storage and service level constraints. In this 

study both finite and infinite nonstationary problems are considered. It is proved 

that (s,S) policies are optimal for their model. 



 

  

 

Chen and Song (2001) examine for the optimal policy with fluctuating demand 

in multi-period setting. In this study Chen and Song considered a multistage serial 

inventory system with Markov-modulated demand. Random demand arises at 

retailer stage. The demand distribution in each period is determined by the current 

state of an exogenous Markov chain. Backlogging is allowed. All costs incurred 

were assumed to be linear. They found a policy which minimizes the long-run 

average costs in the system. Chen and Song (2001) showed that the optimal policy 

is an echelon base-stock policy with state dependent order-up-to levels.  

 

2.4.2. Time Series Models in Single Location Models 

 

The papers that will be mentioned in this part, examine the demand process 

which are related among time periods. In other words, the assumption of 

independence is not relevant any more. Then it is suitable to use time series 

models. 

The first and one of the fundamental papers is belong to Veinott. Veinott 

(1965) examine a multi-product, dynamic, nonstationary inventory problem. The 

demand process has no stationarity or independence assumptions. Unfilled 

demand can be backlogged. The costs are linear and also may vary over time. 

Veinott aimed in his study to determine an ordering policy that minimizes the 

expected discounted costs over an infinite time horizon. It is proven that the base-

stock ordering policy is optimal and also that base stock levels in each period are 

easy to calculate. Veinott’s paper is quite significant in that; it was the first study 

which attempt to develop sufficient conditions ensuring that the optimal policy 

takes a simple form and to compute the parameters of that policy easily. This 

approach was going to be called myopic policy. The paper derived the solutions 

under the assumption of independence of demand across periods. Also the case of 

dependent demands over time was examined. In this case, the distribution of 

demand in period i depends upon the past history of the system.  

 



 

  

Johnson and Thompson (1975) examined the myopic replenishment rules for 

periodic inventory systems operating under certain dependent demand process. 

This paper shows that the myopic policies are optimal under certain demand 

processes even when demand is not stochastically increasing over time. The 

demand process was characterized by means of the models described and 

analyzed by Box and Jenkins.  

 

Miller (1986) assumed in his study that, the expected value of demand is given 

by exponential smoothing formula and that uncertainty is multiplicative. Miller 

considered a finite horizon inventory model with linear holding, shortage, and 

ordering costs. The demand random variables are dependent, and average demand 

is described by an exponential smoothing formula. This model is formulated as a 

two-state variable (inventory level, weighted past demands) dynamic program. It 

is proven that two-state variable dynamic program can be reduced to one state. 

Also it is shown that dependent demand model orders less than or equal to the 

amount ordered by a comparable independent demand model. 

 

Erkip, Hausmann and Nahmias (1990) extended the studies in which various 

time series models used for the demand process in multi location models. The 

authors consider an extension of the Eppen and Schrage (1981) model to the case 

of correlated demands over time. This work differs from a number of other studies 

in that it is allowed that item demands to be correlated both across warehouses 

and also in time. They observed both high correlations between successive 

monthly demands (around 0.70) and correlations between demands for an item at 

different locations (also about 0.70) in a given time period. They derive an 

explicit expression for the optimal safety stock as a function of the level of 

correlation through time. Erkip et.al’s analysis requires two assumptions:  

1. the allocation assumption 

2. the equal coefficient of variation assumption 

 

2.4.3. Competition in One-Period Setting 

 



 

  

Eppen (1979) considered a multi-location newsboy problem with linear 

holding and penalty cost functions at each location with normal demand. He 

assumed N identical retail outlets that order independently according to a simple 

order-up-to point model obtained by minimizing one period holding and penalty 

costs, and derived an expression for the expected cost each facility. The model is 

used to demonstrate: the expected holding and penalty costs in a decentralized 

system; the magnitude of the savings depends on the correlation of demands, and 

if demands are identical and uncorrelated, the costs increase as the square root of 

the number of consolidated demands. 

 

In many production/inventory related decision problems the presence of 

several decision makers with competing objectives can be observed. When more 

than one decision maker is involved in a decision situation, the classical 

optimization concepts may no longer applicable. Instead, game theoretic ideas 

may be suitable to analyze the possible decision making strategies of different 

players. Using game theory in inventory problems provides a better analysis when 

a decision maker’s problem cannot be treated in isolation from the others’ 

decisions and objectives. 

 

Parlar’s article is the first one which analyzes an inventory problem using 

game theory. Parlar (1988) developed a two-firm competitive newsboy problem 

where the firms face independent random demands. He examined the substitutable 

product problem using concepts from two person continuous games. The decision 

makers were called players who choose order quantities of the products. As the 

demands are random and substitution may exist, the objective function of each 

player depends on the decision variables chosen by the players. The players are 

assumed to have knowledge of the demand densities and all other information 

related with the game and each other. He proved the existence of a unique Nash 

equilibrium in inventory levels when demands are represented by strictly 

increasing and continuous cumulative distributions and showed that the expected 

profit when the firms cooperate exceeds the sum of the competitive profits.   

 



 

  

Lippmann and McCardle (1997) considered a competitive version of classical 

newsboy problem in which a firm must choose an inventory or production level 

for a perishable good with random demand. They also investigate the effect of 

competition on inventory. Prior to realization of demand, firms (players) choose 

an inventory level of perishable good to be sold at a predetermined price. Each 

firm’s strategy is its level of inventory. There is no price competition because 

each charges the preset price. Instead, competition among the firms emanates 

from the fact that they share the industry demand and that an increase in one 

firm’s inventory stochastically reduces the other firm’s sales. Aggregate industry 

demand was allocated among the firms and individual firm demands were 

considered to be correlated in each other. Lippmann and McCardle proved in their 

study that there is an equilibrium and showed that each firm’s equilibrium 

inventory ordering strategy is represented as fractile of the effective demand 

distribution.  

 

2.4.4. Decentralized Cost Structure 

 

In multi-echelon inventory system environment, inventory control policies may 

take one of two approaches. One approach is local inventory control policy where 

each warehouse is responsible for their own stocking policies, independent of 

each other. This approach can be stated as decentralized control scheme. The 

second approach is echelon inventory control policy where inventory control 

parameters are determined simultaneously, taking into account the 

interrelationship between the depot and the warehouses. This approach can be 

called as centralized control scheme. 

 

Muckstadt and Thomas (1980) compare the performance of these two 

approaches. They concluded that it may be worthwhile to implement the optimal 

multi-echelon model, or in other words centralized control policy.  

 

Hausmann and Erkip (1994) considered a multi-echelon inventory system 

which has a central depot and M warehouses. At each location, a continuous 



 

  

review inventory policy (S-1,S) is used. Hausman and Erkip examined the amount 

of suboptimization, which can occur if multi-echelon inventory systems are 

managed as independent single echelon systems or in other words, managed 

locally. They studied Muckstadt and Thomas’s optimal multi-echelon policy and 

an improved version of the local inventory control model.   

 

teraAxs &&  (2001) considered two-echelon inventory system consisting of a 

central warehouse and a number of retailers and gave a framework for 

decentralized control. The final demand occurs at the retailer level. In this paper a 

cost structure that can be used for decentralized control of a multi-echelon 

inventory system is provided. This cost structure means that the warehouse, in 

addition to its local costs, pays a penalty cost for a delay at the warehouse to the 

retailer facing the delay. By minimizing its local costs according to the suggested 

cost structure, an installation can reduce its costs. Then the total system costs are 

reduced by the same amount.  

 

Lee and Whang (1999) mainly examined the incentive problems arising in the 

supply chain system when each decision maker maximizes his/her performance 

metric and discussed performance measures in decentralized supply chain. This 

paper also discussed the cost conservation, incentive compatibility, and 

informational decentralizability properties of the supply chain system. They 

concluded by giving a particular performance measurement scheme. 

 

Chen (1999) considered a series system, which consists of N divisions. 

Customer demand occurs at the last stage, again. The demand is assumed to be 

independent in different periods and has the same probability distribution. 

Backlogging is allowed. The paper considers two models for the system. First the 

model for centralized control scheme is identified. Each installation manager has 

local information. It is proved that for the centralized model, for each installation 

base-stock policy with a determined level is optimal. Secondly, each installation is 

considered as cost centers. Each manager makes his/her decision based on the 

costs incurred in his/her own installation. It was found that decentralized decision-



 

  

making is very beneficial when the owner of the firm does not have perfect 

knowledge about the demand distribution or when the firm faces a fluctuating 

demand environment.  

 

Among applications of stochastic games, one of the papers is written by 

Cachon and Zipkin (1999), which analyzed a two-echelon game with the 

wholesaler and the retailer making stocking decisions. Cachon and Zipkin 

investigate a two-stage serial supply chain with stationary stochastic demand in 

each period. Inventory holding costs are charged in each stage, and each stage 

may incur a consumer backorder penalty cost. It is considered two games such as 

local and echelon games. In both, the stages independently choose base stock 

policies to minimize their costs. The games differ in how the firms track their 

inventory levels. The policies chosen under this competitive regime is compared 

to those selected to minimize total supply chain costs. Cachon and Zipkin showed 

that the games have a unique Nash equilibrium, and it differs from the optimal 

solution. Competition reduces efficiency. And also the authors showed that the 

system optimal solution can be achieved as a Nash equilibrium using simple linear 

contracts.  Cachon and Zipkin (1999) also discuss Stackelberg equilibria. 

 

 

 

2.4.5. Stochastic Games and Dynamic Oligopoly 

 

Kirman and Sobel (1974) developed a dynamic model of oligopoly and 

discussed the existence and characteristics of optimal polices for firms in such a 

model. Inventories play an essential role as the link between successive periods. 

This leads to develop ideas of sequential policies and of an equilibrium point for a 

stochastic game. Inventories may be held from one period to the next, thus a 

firm’s position in the next period depends on its action in the present one. So, the 

authors express the oligopoly model as a stochastic game. Demand was 

considered to be stochastic. The existence of equilibrium is showed. It is the first 

paper which considers a dynamic oligopoly model as a stochastic game. 



 

  

 

In the pair of papers Maskin and Tirole (1988a) and Maskin and Tirole 

(1988b), the authors present a theory of oligopolistic firms that behave over time. 

They present a class of infinite horizon sequential duopoly games. Firms want to 

maximize their sum of single-period profits, and the authors characterized the 

perfect equilibria. The dynamic programming equations associated with an 

equilibrium; Markov perfect equilibrium is derived. The importance of this paper 

is that the authors introduced the concept of Markov strategies and Markov 

perfect equilibrium for dynamic oligopoly problem. Maskin and Tirole (1988a) 

considered quantitiy competition whereas Maskin and Tirole (1988b) considered 

price competition. 

 

Maskin and Tirole (1995) defined Markov strategy and Markov perfect 

equilibrium for games with observable actions, in other words games of perfect 

information or games of perfect monitoring. In such games all players know the 

history of the game before making a decision. The authors considered a sequential 

game (stochastic game) and defined the Markov strategies which only depend on 

payoff-relevant past states of the system. And also the authors defined Markov 

perfect equilibrium (MPE) for the game. It is quite pragmatic to use MPE for the 

solution because of the curse of dimensionality. They proved that MPE is 

successful in reducing a large multiplicity of equilibria in dynamic games, and 

thus enhancing the predictive power of the model. MPE, by preventing non-

payoff-relevant variables from affecting strategic behavior, has allowed 

researchers to identify the impact of state variables on outcomes. A second 

relevant reason for focusing on MPE is that Markov strategies substantially 

reduce the number of parameters to be estimated in dynamic econometric models.  

 

 

 

 

 

 



 

  

CHAPTER THREE 

CENTRALIZED CONTROL SCHEME 

 

 

 

 

As it is mentioned in previous sections, there are several ways to manage a 

supply chain inventory. Supply chain members may desire to optimize the whole 

system performance, and they try to minimize the overall system cost. In other 

words they prefer a centralized control scheme. Although centralized control of 

supply chain is preferred by many organizations, this approach may not yield an 

optimal solution which minimizes each supply chain member’s own costs. In that 

case, firms may behave more personal and prefer a control scheme so as to 

minimize their own costs rather than the overall system cost. This competitive 

approach is a decentralized control scheme.  

 

In the following section, the problem that has been focused on will be 

described. Chapter 3 includes the centralized solution for the described system. 

The basic formulation is given by Zipkin (2000). The defined problem is 

formulated by using this basic formulation.  

 

The part of the study that differs from the existing literature is related with the 

demand process. Customer demand, which occur at retailer, is assumed to be 

stochastic, independent across periods and non-stationary. Most of the studies in 

literature, which assume that demand is non-stationary, express the system via 

time series modeling. What is different from them in our study is that, game 

theory is used and the problem is modeled using two different game setups. 

Finally solution concepts are discussed for each game setup. In this chapter the 

problem is considered and analyzed in a centralized manner, whereas in the 

following chapter, the decentralized control scheme and game behavior of the 

firms is considered. 

 



 

  

3.1.  Problem Description 

 

In this study, we investigate a two-stage serial supply chain with nonstationary 

demand. We consider a one-product inventory system with one supplier and one 

retailer. Stage 2 refers to the retailer whereas stage 1 refers to the supplier. The 

echelon structure for the problem, which will be analyzed in this study, is 

illustrated in Figure 3.1. 

 

There is no fixed cost for placing or processing an order. Purchasing cost does 

not change as the quantity of order changes; in other words there is no quantity 

discounts. The supplier incurs a holding cost per period for each unit in its stock. 

As it is required by echelon relationships, the retailer also incurs a holding cost, 

which is considered in addition to the supplier stage.  

 

Backordering is allowed and all backordered demands are ultimately filled. 

Both the retailer and supplier incur a backorder cost.  

 

There is a fixed lead time for shipments from the external source to the 

supplier, and also a lead time from the supplier to the retailer.  

 

Time is divided into discrete periods. The sequence of events during a period 
can be summarized as follows: 

(1) A replenishment order -if any- is placed 

(2) Replenishments arrive 

(3) Demand occurs during the period  

(4) Inventory and shortage costs are charged at the end of the period 

Each firm uses a base-stock policy. At the beginning of each period, the firm 

orders a sufficient amount that increases the inventory position to the 

predetermined optimal inventory level.  

The goal is to analyze non-cooperative game behavior and search an optimum 

inventory policy for two echelon supply chain under non-stationary demand.  

 



 

  

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1 Echelon structure for defined problem
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Base Stock Policy Under Centralized Control Scheme 

 

In a centralized system, all decisions are made at one particular point and all the 

information flows to that point. The decisions are made by one stage and 

implemented by all stages in the network. While studying the centralized system, the 

planning horizon is considered in two parts as suggested by Zipkin (2000). In the 

first part, in which finite horizon is considered, customer demand is assumed to be 

nonnegative and independent across periods but not necessarily identically 

distributed. However, in the second part of the horizon, which is considered to be 

infinite, random demand is assumed to be independent and identically distributed. 

 

 Formulation 

 

We focus on a two-stage series system (J=2). Information and control are fully 

centralized. Shipments sent to stage j arrive after a lead time of Lj.  

 

)t(d : demand at time t,  t=0,…,T-1 

)(ˆ tx j : echelon net inventory at stage j at time t,  t=0,…,T 

)(tx j : echelon inventory-transit position at stage j at time t 

 

Demand during period t is a random variable. Echelon net inventory at stage j 

equals the difference of echelon inventory at stage j and backorders whereas echelon 

inventory-transit position at stage j equals the summation of echelon net inventory 

and inventory in transit to stage j. 

 

:)(tz j shipments sent to stage j at time t  

 

)(tz j  is a shipment; not an order. The distinction is not important for the supplier 

(stage 1), but it does matter for the retailer (stage 2). The order amount may be 

different from the actual shipments, if there is a stockout. Under centralized control 



 

  

there is no place for stage 2 orders that stage 1 cannot fill immediately. Only actual 

or feasible shipments count. 

 

The state of the system can be characterized by two state variables which are 

)t(x j  and )(tz j . The echelon inventory-transit position at stage j at time (t+1) 

equals the echelon inventory-transit position at stage j at time t plus shipments sent to 

stage j at time t minus demand at time t. Then the dynamics can be expressed as 

follows: 

)()()()1( tdtztxtx jjj −+=+                (3.1) 

 

We desire to determine the inventory position after we order. Inventory level after 

ordering at time t would be equal to echelon inventory-transit position plus 

shipments sent to stage j at time t. 

 

:)(ty j inventory level after ordering at time t.  

)()()( tztxty jjj +=                  (3.2) 

 

Then inventory position at time (t+1) will be 

)()()()1( tdtztxtx jjj −+=+  

  )t(d)t(y j −=                 (3.3) 

 

If we consider the lead time Lj>0 then we should consider the orders in 

transition; that means orders placed but not received yet.  

)t(z jl : shipment in transit to stage j sent l periods ago, i.e. at time t-l, 

l=1,…,Lj-1 

Shipments due to stages will be represented by a vector )( tz j  

)( tz j = ljl ))t(z(  

)1( +tz j = [ ])t(z),...,t(z),t(z 1jL,j1jj −               

(3.4) 



 

  

 

So the echelon inventory transit position at time t will be:  

∑
>

+=
0

)()(ˆ)(
l

jljj tztxtx                 (3.5) 

 

Because of the lead-time, the state of the system can be characterized by two state 

variables which are )(ˆ tx j and )(tz jl . The dynamics are 

)t(d)t(z)t(x̂)1t(x̂ 1jL,jjj −+=+ −                (3.6) 

 

The cost structure is as follows: 

)(tc j : unit variable order cost at time t, for stage j  

)(th j : echelon holding cost per unit for stage j time t.  

1)( −′−′= jjj hhth  

)(tb : system unit backorder-penalty cost rate at time t.  

 

Since we write a dynamic programming equation, future costs are discounted at rate 

γ , so we also define a discount factor. 

γ : discount factor (0<γ <1) 

 

The inventory holding and backorder-penalty cost is assessed on )t(x  and it is 

represented by )x,t(Ĉ , where 

[ ] [ ]−+ += x)t(bx)t(h)x,t(Ĉ                 (3.7) 

 

Since we define )t(y  as the inventory position after ordering, ( ))t(y,tC  

measures the expected inventory-backorder cost. ( ))t(y,tC  can be called as one-

period cost function. This function is defined by Zipkin (2000) as follows: 

( )[ ])t(dy,1tĈE)y,t(C −+=                (3.8) 

 

For two-stage system if we define; 

)t(TSC : Total shipment cost at time t 



 

  

)t(IC : Inventory and backorder cost at time t 

Then, 

)t(z)t(c)t(z)t(c)t(TSC 2211 +=                (3.9) 

 

From the equation (2.5), the inventory and backorder cost at time t can be found 

as below: 

[ ][ ]−′+++= )t(x̂.)t(h)t(b)t(x̂)t(h)t(x̂)t(h)t(IC 222211  

= ))(ˆ,(ˆ)(ˆ)( 2211 txtCtxth +              (3.10) 

where [ ] [ ][ ]−′++= xthtbxthxtC .)()()(),(ˆ 222  

 

Solution 

 

Dynamic programming is a systematic technique for multi-stage problem solving. 

Since it is a useful mathematical technique for making a sequence of interrelated 

decisions, it has been extensively used. There are several interrelated decisions to 

make in the problem that we have defined. After formulating as a dynamic 

programming problem, the base-stock level for the defined problem can be found by 

working backward. Dynamic programming formulation of the defined problem will 

be given in this section. 

 

Figure 3.2 illustrates the time horizon for T periods; when there is a lead time for 

the shipments both to the supplier and to the retailer.  

 

1 2 L+1 T+L -1 T+L TJ     J     J     

There is order, 
but no cost  no orders ; there is cost

 

 

Figure 3.2 Time horizon with lead time 

 

When we assume that shipments sent to stage j arrive after a lead time of Lj, the 

last shipment to stage 1 is sent at time (T-1) and received by stage 1 at time 



 

  

)LT( 11 −+ . Then stage 1 sends stage 2’s shipments at time )LT( 11 −+ , and this 

shipment is received by stage 2 at time 121 −++ LLT . Hence, the horizon extends to 

time 121 −++ LLT ; demands continue to occur and costs to accrue until then. We 

can formulate the dynamic program as follows: Define; 

 

,x̂,t(V
~

1 1z , ,x̂2 )2z : minimal expected discounted costs in periods T,...,1t,t + , 

assuming period t begins with jj xtx ˆ)(ˆ =  and jj ztz =)(  

 

The terminal value will be the discounted cost, which will be found from infinite 

horizon problem. Denote the discounted cost for infinite horizon problem by  

,x̂,t( 1V 1z , ,x̂2 )2z . Then; 

121 x̂,1LLT(V −++ , 1z , 2x̂ , 2z ) = ,x̂,t( 1V 1z , ,x̂2 )2z            (3.11) 

 

and for 121 −++< LLTt , the ,x̂,t(V
~

1 1z , ,ˆ
2x )2z  satisfy the recursion 

,x̂,t(V
~

1 1z , ,ˆ
2x )2z { ++++= )x̂,t(Ĉx̂)t(hz)t(cz)t(cmin 22112211  

[ ]
}122j

22L,2
z,...,21212L,2221L,111111L,11

x̂zx,0z

:))z,z(),t(dzx̂),z,...,z,z(),t(dzx̂,1t(V

≤+≥

−+−++Εγ
−−−−

                   (3.12) 

 

Evidently (3.12) is a very complex dynamic program with a large state space. It 

may be simplified by using myopic policy. As it is described by Zipkin (2000), under 

nonstationary demand, the myopic policy treats the current data as stationary over an 

infinite horizon, and non-stationary over the finite horizon. Hence, the solution 

procedure is as follows: First, we think about the finite horizon problem and the data 

are treated to be nonstationary.  

 

 One-Period Problem 

 

For a single period; T=1, single order decision is made at time 0. During period 0 

a random demand occurs and the order arrives. At time 1, the inventory-backorder 



 

  

cost ( ))1(x,1Ĉ  is assessed and the terminal cost is realized. Because there is only one 

period, we suppress the time index t. That is; 

( )
( )[ ] )y(CdyĈE)y,0(C

)x(Ĉx,1Ĉ 

 ,b)1(b  h,h(1)  ,c)0(c  ,y)0(y ,d)0(d

=−=

=

=====

            (3.13) 

 

This may seem an artificially simple scenario, but it portrays situations where the 

product has a short useful life. Newspapers, magazines, many foods and beverages 

may be examples.  

 

Sometimes, when the planning horizon is finite, it is convenient to include a 

special mechanism to “settle accounts” at the end. When ( ) 0Tx < , we must purchase 

stock to fill the remaining backorders ( )Tx−  at the unit purchase price ( )Tc . Also, if 

( ) 0Tx > , we can sell the leftover stock at the same price; thus, we receive total 

revenue ( ) ( )TxTc , or equivalently, we pay a cost of ( ) ( )TxTc− . In sum, regardless 

of the sign of x(T), there is a terminal cost ( ) ( )TxTc . The terminal cost factor c(T) is 

called the salvage value. 

 

The following optimization problem is faced in the single variable y: 

( ) [ ]( )

xy

.t.s

dEy1c)y(C)xy(cmin

≥

−γ−+−   

             (3.14) 

 

This is easy to solve for any given x. To determine an optimal policy, we must 

solve this optimization problem for every value of x. If we define the following 

function as in Zipkin (2000); 

( ) ( ) [ ]( )
[ ] ( )
[ ] ( )yCycdE)1(c         

);1(ccc              yCcyy)1(cdc(1)E         

dEy)1(cyCcyyH

+−γ=

γ−=++γ−γ=

−γ−+=

+

+           (3.15) 

 



 

  

So the objective of the optimization problem given in (3.14) is ( ) cxyH − . Since 

the term cx is constant, we can equivalently minimize H(y) to minimize the objective 

function. Because C is a convex function and the other terms in H  are linear, H is 

also convex. Thus the smallest y that minimizes H(y) which is denoted by *s  can be 

found easily. 

 

The optimal solution to (3.14) depends on the relation between x and *s . If 

*sx ≤ , then *sy =  is feasible and hence optimal. If *sx > , then the optimal 

solution is xy = , because H(y) is nondecreasing over the entire feasible range 

xy ≥ . This is a base stock policy with base stock level *s . If the initial inventory is 

above *s , don’t order; if it is below *s , order the difference; just enough to raise the 

inventory to *s .  

 

To compute *s , we must solve ( ) 0yH ' = .  

( ) ( ) ( ) ( )yFhbhcyH 0' +−+= +               (3.16) 

 

where 0F  is the ccdf of d. And *s  solves the following: 

( )
hb

hc
yF 0

+
+

=
+

                (3.17) 

 

Let )x(V  denote the optimal cost of problem (3.10) regarded as a function of x.  

( )xVcx)x(V ++−=                 (3.18) 

where  

( ) { }( )x,smaxHxV *=+                (3.19) 

 

Finite Horizon Problem 

 

In this section, finite horizon problem in which demand is assumed to be 

nonstationary is considered. In other words, finite T periods will be considered. The 

terminal value will be the discounted cost, which will be found for infinite horizon 



 

  

problem. The discounted cost for infinite horizon problem is denoted by )(1 yC
+ ; so 

the terminal value of the finite horizon problem is set to )(1 yC
+  and finite horizon 

problem is solved. 

The formulation is derived stage by stage. Customer demand occurs at retailer 

level; in stage 2. Retailer meets the customer demand and he places an order that 

increases his inventory position to a certain base-stock level. After that, supplier 

(stage 1) takes the retailer’s orders as a customer demand and makes a shipment to 

stage 2. Therefore, the formulation is derived for stage 2 first, and then stage 1 

formulation is given.  

 

In this case, there are several interrelated decisions to be made. In choosing y(0), 

the costs in future periods must be considered. And also the decision to be made at 

time t=1 will affect the future costs but at t=0, this decision hasn’t been made yet. As 

it is mentioned in the previous section, dynamic programming is a useful technique 

in these types of situations. 

 

First, time point ( )1T −  is considered. Once we arrive period ( )1T − , no matter 

what may have happened in the past, a single-period problem is faced. This problem 

is defined in section 3.3.2.1, and the solution is found the way defined. Next, period 

( )2T −  is considered and two-period problem is faced. Assuming that it will be acted 

optimally at ( )1T −  according to the policy obtained already, the best decision is 

made. Working backward in this way the initial period is reached. This approach is 

called principle of optimality. Define 

 

)x,t(V j : minimal expected discounted cost for stage j in periods T,...,1t,t + , 

assuming period t begins with x)t(x =  

 

These functions are computed recursively and optimal policy is obtained. Suppose 

we have determined ( )x,1tV j +  along with the optimal policies for points )1t( +  

through )1T( − . To address the problem at time t, given x)t(x = , define 



 

  

( ) ( ) ( )[ ])t(dy,1tVEy,tCy)t(cy,tH jjjj −+γ++=            (3.20) 

 

This quantity measures all the relevant costs if we choose y)t(y = . The first two 

terms represent the costs at time t itself. The last term is the expected value of all 

future costs, assuming we act optimally in the future, since ( ) )t(dy1tx −=+ . The 

problem at time t is to choose y to minimize ( )y,tH j , subject to xy ≥ . The solution 

to this problem for each x gives the optimal policy at time t. Then 

( ) ( ){ }xy:y,tHminx)t(cx,tV jjj ≥+−=             (3.21) 

 

For stage 2 (retailer); 

( )yC)x,T(V 12

+=                (3.22) 

( ) ( ) ( )[ ])t(dy,1tVEy,tCy)t(cy,tH 2222 −+γ++=            (3.23) 

Set )y,t(C2  to )y,t(C l

2  with 2Ll =  where 

[ ]))lt,t[Dy,lt(ĈE)y,t(C 2

ll

2 +−+γ= ; then, 

( ) ( ){ }xy:y,tHminx)t(cx,tV 222 ≥+−=             (3.24) 

 

Since )y,t(C2 is convex in x in y, base stock policy is optimal. Let )t(s*2  denote 

the optimal base stock levels and it is found by ( ) 0y,tH '

2 = . Related with the base-

stock level chosen, the cost )y,t(C 2  which can be defined as follows is incurred by 

the retailer stage. 

{ })y),t(smin,t(H)y,t(C *

222 =              (3.25) 

 

For stage 1 (supplier stage) the optimal cost will be; 

)x,t(Cx)t(h)x,t(Ĉ 211 +=               (3.26) 

[ ]))lt,t(Dy,lt(ĈE)y,t(C 1

ll

1 +−+γ=             (3.27) 

 

The dynamic programming formulations are given as follows for stage 1: 

( )yC)x,T(V 11

+=                (3.28) 

[ ])t(dy,1t(VE)y,t(Cy)t(c)y,t(H 1111 −+γ++=            (3.29) 



 

  

{ }xy:)y,t(Hminx)t(c)x,t(V 111 ≥+−=             (3.30) 

 

Since )y,t(C1 is convex in x in y, base stock policy is optimal. Let )t(s*1  denote 

the optimal base stock levels and it is found by ( ) 0y,tH '

1 = . Related with the base-

stock level chosen, the cost )y,t(C1  which can be defined as follows is incurred by 

the supplier stage. 

{ })y),t(smin,t(H)y,t(C *

111 =              (3.31) 

 

The echelon base stock policy with parameters )t(s*j  is optimal for the system as 

a whole. In other words, to solve the complex dynamic program (3.12), we need 

simpler ones, which are given by (3.23) and (3.29). 

 

This policy describes actual shipments, not orders. For stage 2, it is shipped 

nothing if )t(s)t(x *

22 ≥ , and otherwise it is set )t(z)t(x)t(y 222 +=  to 

{ })t(x̂),t(smin 1

*

2 . 

 

Since the demand is nonstationary, it is better to view each period separately, 

independent of the future periods. Now, myopic policy will be constructed for the 

defined finite horizon problem. Define 

)1t(c)t(c)t(c jjj +γ−=+  and             (3.32) 

[ ] )y,t(Cy)t(c)t(dE)1t(c)y,t(C 2222 +++γ= ++            (3.33) 

 

This equality is found from the following equations: 

[ ])t(yy),t(xx)y,t(C)xy)(t(c)y,t(C 222 ==+−Ε=+           (3.34) 

  [ ])y,t(C)1t(d)1t(y)(t(cy)t(c 222 +−−−Ε+=  

  [ ] )y,t(C)t(d)1t(cy)1t(cy)t(c 2222 +Ε+γ++γ−=  

Since )1t(c)t(c)t(c jjj +γ−=+ , 

[ ] ),()()1()(),( 2222 ytCtdtcytcytC +++= ++ Εγ            (3.35) 

 



 

  

)x,t(V j

+  denotes the optimal cost for stage j for the finite horizon problem. And 

also the terminal value of the finite horizon is the optimal value for the infinite 

horizon, which is as calculated previously:  

 

)y(C)x,T(V 12

+=                (3.36) 

[ ])t(dy,1t(VE)y,t(C)y,t(H 222 −+γ+= ++             (3.37) 

( ){ }xy:y,tHmin)x,t(V 22 ≥=+              (3.38) 

 

That means; 

[ ]{ })1x,1t(VE)y,t(Cmin)x,t(V 222 ++γ+= +++  

   = { [ ] })y(C)y,t(Cmin 12

++ Εγ+             (3.39) 

{ [ ] }xy:))t(dy,1t(V)y,t(C)xy)(t(cmin)x,t(V
2222

≥−+Εγ++−= ++

 }{ )y,t(Cminarg)t(s 22

++ =               (3.40) 

 

Minimizing )x,t(V2

+  to minimizing )y,t(C2

+  over y. Let )t(s2
+  minimize 

)y,t(C2

+  over y. The corresponding base-stock policy minimizes the current cost 

while ignoring the future, so myopic policy is used. Since )y,t(C2

+  is a convex 

function it is easy to optimize. Then the optimal cost function for stage 2 can be 

expressed as following: 

{ }( )y,)t(smin,tC)y,t(C *

222

++ =              (3.41) 

 

Now, the base-stock policy for stage 1 can be considered. The cost function for 

echelon 1; 

)x,t(Cx)t(h)y,t(Ĉ 211

++ +=               (3.42) 

[ ]))lt,t[dy,lt(ĈE)y,t(C 1

ll

1 +−+γ= ++ ;            (3.43) 

set )y,t(C
l

1

+  for )y,t(C1 and write  

[ ] )y,t(Cy)t(c)t(dE)1t[c)y,t(C 1121 +++γ= ++            (3.44) 

}{ )y,t(Cminarg)t(s 11

++ =               (3.45) 



 

  

 

and let )t(s1
+  minimize )y,t(C1

+  over y. then the myopic policy is the echelon 

base-stock policy with base-stock levels )t(s j

+ . In particular, )t(s j

+  solves an 

equation given in (3.46). 

)1t(h)1t(b

)1t(h)t(c
)y(F

j

jj0

)t(d +++

++
=

+

             (3.46) 

 

where )x(F1)x(F 0 −=  is the complementary cumulative distribution function. 

And optimal cost function for stage 1 is given as follows: 

{ }[ ]y),t(smin,tC)y,t(C 111

+++ =              (3.47) 

 

Infinite Horizon Problem 

 

The second part of the horizon is considered to be infinite and the demand along 

this period is assumed to be independent and identically distributed. The formulation 

will be given by myopic policy again. Since the time horizon is considered to be 

infinite, time index is eliminated.  

jjj ccc γ−=+                 (3.48) 

 and 

[ ] )y(Cyc)t(dEc)y(C 2222 ++γ= ++              (3.49) 

 

This equality is found from the following equations: 

[ ])t(yy),t(xx)y(C)xy(c)y(C 222 ==+−Ε=+            (3.50) 

[ ])y(C))1t(d)1t(y(cyc 222 +−−−−Ε=  

[ ] )y(C)t(dcycyc 2222 +Εγ+γ−=  

[ ] )()()1( 222 yCtdcyc ++−= Εγγ   222 ccc γ−=+ ; 

[ ] )y(Cyc)t(dc)y(C 2222 ++Εγ= ++              (3.51) 

where [ ]))LL,L(dy(Ĉ)y(C 2212
2L

2 +−Εγ=  

 



 

  

)x(V j

+  denotes the optimal cost for the infinite horizon problem and (3.52) is 

defined by Zipkin (2000) as: 

 

)x(Vcx)x(V jj +=+                (3.52) 

 

and the terminal value is again assumed to be zero while finding myopic policy: 

 

[ ]))t(dy(VE)y(C)y(H 222 −γ+= ++              (3.53) 

( ){ }xy:yHmin)x(V 22 ≥=+               (3.54) 

 

That means; 

[ ]{ })1x(VE)y(Cmin)x(V 222 +γ+= +++             (3.55) 

}{ )y(Cminargs 22

++ =                (3.56) 

 

Minimizing )x(V2

+  means minimizing )y(C2

+  over y. Let +
2s  minimize )y(C2

+  

over y. The corresponding base-stock policy minimizes the current cost while 

ignoring the future, so it is called as myopic policy. Since )y(C2

+  is a convex 

function it is easy to optimize. Then the following cost function can be defined for 

stage 2, as it is given in (2.12); 

{ }[ ]y,sminC)y(C 222

+++ =               (3.57) 

 

Now the base-stock policy for stage 1 can be considered. The cost function for 

echelon 1; 

)x(Cxh)x(Ĉ 211

++ +=               (3.58) 

[ ]))lt,t(dy(ĈE)y(C 1

ll

1 +−γ= ++ ; set ( )yC
l

1

+  for )y(C1  and write 

[ ] )y(C)t(dcyc)y(C 1111 +Εγ+= ++ .             (3.59) 

 

and let +
1s  minimize )y(C1

+  over y.  

 



 

  

}{ )y(Cminargs 11

++ = .               (3.60) 

 

Then the myopic policy is the echelon base-stock policy with base-stock levels 

+
js . In particular, +

js  solves an equation given in (3.61) 

 

j

jj0

)t(d
hb

hc
)y(F

+

+
=

+

               (3.61) 

 

where )x(F1)x(F 0 −=  is the complementary cumulative distribution function. 

And optimal cost function for stage 1 is given as follows: 

{ }[ ]y,sminC)y(C 111

+++ =               (3.62) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

CHAPTER FOUR 

DECENTRALIZED CONTROL SCHEME 

 

 

In a decentralized system, information and control are distributed throughout the 

network. There is no central decision maker. Each stocking point observes his own 

demand and inventory position and makes his own decision to minimize his own 

costs rather than the whole supply chain’s costs. In this case, according to defined 

problem in chapter 3; the two stages, which refer to the supplier and retailer, can be 

considered as independent firms and they make their own decisions. At this point, as 

it is expressed in chapter 2, the decisions of stages may be conflicting. So, firms can 

be called as “players” and the behaviors of the firms can be best expressed in game 

theoretic models. 

 

In this chapter, the game theoretic framework will be given for the defined 

problem. After giving some general information and definitions for the decentralized 

framework in section 4.2, the game that is played in a single period will be defined in 

section 4.3. When the time horizon consists of finite number of periods, and this one-

period game is played in each period repeatedly, therefore a repeated game, which is 

defined in section 4.4, is occurred. And finally the Markovian game version of the 

defined problem will be given in section 4.5. 

 

Base Stock Policy Under Decentralized Control Scheme 

 

In a decentralized system, decisions are made locally; in other words, decisions 

are made at a stocking point by the decision-maker at that socking point. A local 

base-stock policy is a decentralized control scheme, where each stocking point 

monitors its own local inventory position, places orders with its predecessor, and 

responds to orders from its successors. Each stage j follows a single stage base-stock 

policy with parameter which is a non-negative integer.  

'

js : local base-stock level for stage j 



 

  

The policy works as follows: Stage J monitors its own inventory position. It 

experiences demands and places orders with stage 1J −  just like a single location 

operating alone, using a standard base-stock policy with base-stock level '

Js . Stage 

1J −  treats these incoming orders as its own demands, filling them when it has stock 

available and otherwise logging backorders to be filled later. Stage 1J −  too follows 

a standard base-stock policy with parameter '

1Js −  to determine the orders it places 

with stage 2J − . Stage 2J −  treats these orders as its demands, etc. Stage 1’s orders 

go to external source, which fills them immediately. 

 

Hence, each customer demand triggers a demand at stage 1J − , which in turn 

generates a demand at stage 2J − , and so on. In this way demand propagates 

backward through the system, all the way to the external source. Thus, every stage 

experiences the original demand process.  

 

A local base stock policy can be interpreted in echelon terms. Given '
s ; the vector 

which consists of base stock levels for each echelon, it is known that ∑=
≥ ji

'

ij ss . The 

echelon base-stock policy says that every stage order one unit when a demand 

occurs. Thus, this policy is entirely equivalent to the original local one. 

 

Conversely, every echelon base-stock policy is equivalent to a local one. Given s , 

if the js  are nondecreasing, the local base stock level for echelon j equals the 

difference of echelon  base stock levels for two echelons. In other words, 

1jj

'

j sss +−=  (where 0s 1J =+ ).  

 

“To see this, consider a two-stage system (J=2), and assume 21 ss < . Suppose the 

system starts with no inventory at stage 1 and inventory 1s  at stage 2. Stage 2 

immediately orders 12 ss − , but stage 1 has no inventory, so it backlogs those orders. 

In fact, stage 1’s echelon inventory position is already at its base stock level 1s , so it 

orders only in response to subsequent demands. Thus, the initial backlog at stage 1 

stays there forever, that is it remains at least 12 ss − . Stage 1 never holds inventory, 



 

  

and the inventory at stage 2 never exceeds 1s . In the local policy, 0s'1 =  and 

1

'

2 ss = ” (Zipkin P., 2000). 

 

As a summary, every local base stock policy is equivalent to some echelon base 

stock policy, and the opposite is also true.  

 

In this section, decentralized base-stock policy will be evaluated in echelon terms 

and dynamic programming formulations will be given for the problem defined in 

section 3.2. The planning horizon is considered finite in this chapter. The following 

notation will be used in addition to the previous chapter: 

 

)t(h'

j : inventory holding cost for stage j at time t  

)t(b'

j : backorder-penalty cost rate for stage j at time t.  

 

In addition, recall the following notation defined in chapter 3: 

)(ˆ tx j : echelon net inventory at stage j at time t 

)(tx j : echelon inventory-transit position at stage j at time t 

 

In each period, related with this inventory, the retailer is charged inventory 

holding cost and backorder cost, which can be shown as )t(h'

2  and )t(b'

2  

respectively. Then [ ])t(d)t(x̂,tĈ −22  can be defined as the sum of these costs in 

period t, where  

 

[ ] [ ]−+ += y)t(by)t(h)y,t(Ĉ '

2

'

22                (4.1) 

 

[ ])t(x,tC 22  is defined as the retailer’s expected cost in period 2Lt + , where; 

[ ] [ )( )[ ]122 L,0dy,tĈEy,tC −=                (4.2) 

)t(s2  is the echelon base stock level for retailer at time t that minimizes the 

retailer’s costs, [ ]y,tC2 ; 



 

  

[ ]y,tCminarg)t(s 22 =                 (4.3) 

It can be verified that [ ]y,tC2  is strictly convex, so )t(s2  is determined by 

( )[ ] 022 =ts,tC ' . 

 

In decentralized case, since both stage holds inventory, base stock levels cannot 

be determined independently. Stage 2’s cost depends on both 1s  and 2s . In other 

words, the retailer’s expected cost depends on both its own base stock as well as the 

supplier 2’s base stock. If we define, 

)t(s j : echelon base stock level for stage j at time t 

 

If [ ) )t(sLt,td)t(s 211 ≥+− , then orders of stage 2 (retailer) can be filled 

completely by stage 1 (supplier). This means the echelon inventory position at stage 

2 is )t(s)t(x 22 = . 

 

If [ ) )t(sLt,td)t(s 211 <+−  then orders cannot be filled so the echelon inventory 

position of stage 2 is [ )112 Lt,td)t(s)t(x +−= . 

 

Because the echelon inventory position of stage 2 can be at most the echelon 

inventory position of stage 1, the retailer’s cost function will depend on both base 

stock levels and can be expressed as follows: 

 

( ) [ ){ }[ ])t(s,Lt,td)t(s(minCE)t(s),t(sG 2112212 +−=             (4.4) 

 

[ ])t(d)t(x̂Ĉ −11  is defined as the supplier’s backorder cost at period t, where 

( ) [ ]−= y)t(byĈ '

11                  (4.5) 

 

[ ])t(x,tC 11  is defined as the supplier’s expected backorder cost in period 1Lt + , 

where; 

( ) [ )( )[ ]111 Lt,tdy,tĈEy,tC +−=                (4.6) 

 



 

  

Then the supplier’s expected cost will be: 

( ) ( )( ) [ )( )[ ]12121211 Lt,td)t(s)t(s),t(sĜEts,tsG +−−=              (4.7) 

where 

( )( ) [ )[ ] [ ] { }( )02111111 ,xmin)t(sCx)t(hLt,tdE)t(hx,tsĜ '' ++++= ++             (4.8) 

 

The first term in equation (4.8) is the expected holding cost for the units in transit 

to the retailer, the second term is the expected cost for inventory held at the supplier, 

and the final term corresponds to the expected backorder cost charged to the supplier. 

 

In the following section the game, which is played between two firms in one 

period, will be defined. The cost functions found in this section is going to be used in 

game theoretic frame of the defined problem.  

 

One-period Game 

 

Since there are two stages in the problem setting, there will be two players in the 

game theoretic framework; supplier and retailer. Both players move simultaneously 

in each time period t. Actions chosen refer to the base stock levels.  

 

Formulation 

 

In this section, the notation for one-period game will be introduced.  

 

I : set of players. 

  { }2,1I =  

 

ia : action chosen by player i 

 

Actions chosen refer to the base stock level preferred by each player. The base 

stock levels which are denoted by “s”, will be denoted by “a” from now on. Actions 

chosen by the players will be the action profile of the game.  



 

  

a : action profile of the game 

  )a,a(a 21=  

iA : action space for player i 

 

Action space is assumed to be finite but is sufficiently large that it never 

constraints the players: [0,S] 

 

A : action space for the game 

  21 AAA ×=   

 

)a(Gi : cost function of one-period game for player i ; ℜ→A:Gi  

Cost functions for supplier and retailer are defined precisely below, respectively.  

 

[ ] [ ] { }( )[ ]0,daaminaCEdaaEhdEh)a,a(G 21212111211 −−++−−+=             (4.9) 

[ ] dx)x(f)xa(C)aa(F)a(Cdx)x(f)xaa(hdEh
2a1a

112121

2a1a

0
2111 ∫ −+−+∫ −−+=

∞

−

−

 

{ }[ ]212212 a,da(minCE)a,a(G −=  

= ∫
∞

−

−+−
21

122122

aa

dx)x(f)xa(C)aa(F)a(C             (4.10) 

 

The one-period game can be denoted by { }G,A,I=Γ  

 

Equilibrium 

 

In period t, players choose their base-stock levels ia  and obtain the action profile 

)a,a(a 21= . The action space is limited by a sufficiently large number. After their 

choices, the players implement their policies for only associated period. For each 

period they may have different action profile. 

 



 

  

Supplier and retailer choose their action so that his own cost function is 

minimized. For the one-period game the best reply mappings for players are 

introduced below: 

{ })a,x(Gmin)a,a(GAa)a(r 21
Ax

211121
∈

=∈=             (4.11) 

{ })x,a(Gmin)a,a(GAa)a(r 12
Ax

212212
∈

=∈=             (4.12) 

 

)a,a(a 21=  will be the pure strategy Nash Equilibrium which is a pair of echelon 

base stock levels in the one-period game.  

 

Cachon and Zipkin (1999) showed that supplier’s cost function is strictly convex 

for 0a1 ≥  and 0a2 ≥ . So, supplier’s best response can be determined by first order 

conditions. When we set equal to zero the first derivative of the cost function, we 

find that supplier’s echelon base stock level is always grater than or equal to that of 

retailer’s: 

 2211 a)a(ra ≥=                (4.13) 

 

It is also shown in Cachon and Zipkin (1999) that retailer’s cost function is 

quasiconvex. Retailer’s echelon base-stock level is determined according to the 

supplier’s echelon base-stock level. Recall that 2s  is the base stock level, which 

minimizes the retailer’s cost function, found in chapter 3. 

 

[ ]
         

sa         ,S,a

sa              ,s
)a(ra

211

212

122






<

≥
==             (4.14) 

 

(4.14) says briefly as follows: If  the base stock level ( 2s ) that minimizes the 

retailer’s cost is less than the supplier’s base stock level preference for that period, 

then all the orders from supplier can be met. Hence the retailer set his base stock 

level to 2s . Otherwise, the orders of retailer cannot be met by supplier, so the base 

stock level is equal to the amount that the supplier has; which means 1a . 

 



 

  

THEOREM 4.1 (Fudenberg and Tirole): If the cost functions of a strategic form 

game, whose strategy space iA  are non-empty compact convex subsets of Euclidean 

space, are continuous in a and quasiconvex in ia , there exists a pure strategy Nash 

equilibrium. 

 

Since ( )211 a,aG  is strictly convex in 1a , and ( )212 a,aG  is quasiconvex in 2a , 

there is at least one equilibrium. As it is given in (4.13), there is a requirement such 

as 2211 a)a(ra ≥= . This condition and the second situation in which 21 sa ≤  in 

(4.14), is a contradiction. Hence 21 sa > ; and this implies that ( ) 2122 sara == . 

Therefore there is a unique Nash equilibrium of the one-period game.  

 

Since the planning horizon is assumed to occur T successive periods in the 

problem setting, the defined one-period game is repeated in each period. Thus, a 

repeated game needs to be defined. 

 

 Repeated Game 

 

It is assumed that the time horizon is finite and there are T periods. The players 

choose actions simultaneously in each time period. All players know the actions 

chosen at all previous periods 1,2,…t-1 when choosing their actions in period t.  

 

As it is defined in section 2.3.3.1, a repeated game is a multi-period game in 

which the same (ordinary) game is played at each time period. For finite horizon, 

because the one period game is played over and over again in each time period, this 

can be formulized by repeated game.  

 

Since the repeated game consists of one-period games, a strategy for player i in 

the repeated game consists of action choices in each one-period game Γ .  

 

 

 



 

  

Formulation 

 

The notation related with the repeated game and the repeated game formulation 

will be given in this section. 

iσ : pure strategy chosen by player i 

i

t

i AH: →σ  

tH  denotes the set of all period–t histories, 

 

So we can write a strategy of player i for the repeated game as; 

)a,...,a,a( T

i

2

i

1

ii =σ  

σ : strategy profile of the repeated game 

),( 21 σσ=σ  

i∑ : strategy space for player i 

 iiii A...AA ×××=∑  

  T times 

∑ : strategy space for the repeated game 

21 ∑×∑=∑  

 

Recall that we assume the discount factor 1≤γ , we can compute the cost function 

of the repeated game as follows: 

 

iπ : cost function of the repeated game;   ℜ→π T

i H:  

∑γ=π
=

T

1t

t

i

t

i )a(G                 (4.15) 

So we can denote the repeated game with T periods as ),,I(T π∑=Γ . 

 

Equilibrium  

 

Since we know that there is a unique equilibrium for one-period game, it is 

expected that it is possible to find an equilibrium point for the repeated game also. 



 

  

When exactly the same game is played at each period, the following theorem states 

that there is a Nash equilibrium for the repeated game.  

 

THEOREM 4.2 (Friedman J.W.,1986): Let ),,I(T π∑=Γ  be a repeated game 

with finite T and at each time t the Ii,a t

i ∈  are chosen simultaneously, however for t 

>0 1t,...,2,1,a −=ττ  is known to all players. Let Aâ∈  be the unique equilibrium 

point of { }G,A,I=Γ . Then the only equilibrium point of ),,I(T π∑=Γ  is 

)â,...,â,â(=σ . 

 

However in the defined problem, there is only one equilibrium point for one-

period game but it may be found different equilibrium point in each period. In other 

words equilibrium point is unique, but may change from period to period according 

to the cost functions, since the cost functions may be different in different periods. 

Therefore, it is not possible to use the theorem above to find an equilibrium for the 

repeated game in our problem. 

 

In this context, it is useful to handle the problem as subgames. Just like dynamic 

programming formulation, defining subgames for the whole game makes the 

problem easy to solve because the problem is divided into different parts; subgames. 

In repeated games, a subgame begins at the beginning of each one-period game. 

Hence, a subgame begins after each history th . The formal definition is given by 

Fudenberg and Tirole, 1999. 

 

DEFINITION 4.1 (Fudenberg and Tirole): A proper subgame of an extensive 

form game consists of a single node and all its successors with the property that the 

information sets and costs of the subgame inherited from the original game. 

 

Subgame concept was defined in section 2.1.3.1.2, also. The subgame is denoted 

),,I(
th

ith
ith
π∑=Γ . 

 



 

  

Repeated games have perfect information at the beginning of each period when an 

action, that is a strategy of the one-period game is chosen. This suggests applying the 

concept of a subgame perfect equilibrium to repeated games to eliminate equilibria 

that rely on incredible threats. Having defined the subgames for the repeated game, 

the solution concept, subgame perfect equilibrium should also be defined.  

 

DEFINITION 4.2 (Fudenerg and Tirole): A strategy profile σ  of a multi-period 

game with observed actions is a subgame perfect equilibrium if for every th , the 

restriction to th
Γ is a Nash equilibrium of th

Γ . 

 

In our problem, since the game has fixed number of periods T, we can 

characterize the subgame perfect equilibrium using backward induction. The 

strategies in the last period must be a Nash equilibrium of the corresponding one-shot 

simultaneous move game. 

 

T

1

*

1 a=σ  

T

2

*

2 a=σ       )a,a( T

2

T

1

* =σ⇒  

By moving backward the equilibrium can be found. In a general notation, 

)a( T

ii =σ  

)a,a( T

i

1T

ii

−=σ  

)a,a,a( T

i

1T

i

2T

ii

−−=σ  

M  

)a,a,a,...,a( T

i

1T

i

2T

i

2

ii

−−=σ  

)a,a,a,...,a,a( T

i

1T

i

2T

i

2

i

1

ii

−−=σ                (4.16) 

 

When we reach the initial period, we also reach the equilibrium of the repeated 

game, which is given by (4.16). 

 

 

 



 

  

Markovian Game 

 

As a result of demand uncertainty or some other reasons, price wars and other 

problems related with companies continues to be a challenge. From Friedman (1977) 

and earlier, such kinds of problems have been analyzed as repeated games. A second 

approach was developed by Maskin and Tirole (2001) that of Markov strategies.  

 

The current action of a player could affect his future costs in two ways: first, the 

effect the action has on the environment in which future decisions must be made and, 

second, its impact on the behavior of other players. Markovian games thus extend 

dynamic programming problems (which include only the first effect) and repeated 

games (which include only the second effect); Markovian games can include both.  

 

In the previous section, we studied the case in which the decisions made 

independently in each period, for a finite horizon. That is; in period t, players play a 

one-period game and apply the obtained base stock levels in that period. In period 

t+1, another one-period game is played and base stock levels which does not depend 

on previous period’s decisions for associated period is obtained. Since the games in 

each period played in the same conditions, it was formulated as a repeated game. 

 

In this section, we assume that the game played in period t affects the next 

period’s decisions. In other words, the decisions made in the previous period have an 

influence on current decisions. Since the same game does not repeat across periods 

and the system gains a dynamic structure, this setting of the problem requires 

Markovian game formulation. Markovian game formulation will be introduced in the 

following section. 

 

 

Formulation 

 

The setup of a Markovian game can be considered a combination of a static game 

theory and a Markov decision process. In addition to the elements of a static game, 



 

  

which includes players, strategies, and cost function, a set of states and a transition 

mechanism should be defined. Besides, in this setting “strategies” is a vector of 

strategies, which refers to one for each period, as a difference from a static game. 

Vectors are denoted by bold characters. 

 

Planning horizon consisting of T periods is considered as discrete, as it is assumed 

in previous sections. At the beginning of each period, players simultaneously make a 

decision that determines their base stock levels. 

 

Players:  

There are two players; the supplier and the retailer. Index 2,1i =  will be used for 

the players, respectively. The set of players will be denoted by I. { }2,1I =  

 

States: 

Markovian games posit the existence of a “state” variable that is designed to 

capture the environment of the game at each point in time, but that changes through 

time in response to the actions taken by the players in the game.  

 

Since it gives the state of the system, state variable is defined related with the 

echelon inventory position. 

ts : echelon inventory position of player i in period t 

t
s : vector of individual state variables 

t
s = )s,s( t

2

t

1  

S : state space (includes all possible states)  

 

In Markovian game setting, states refer to one-period games. In each period t, one 

state (one-period game) occurs according to a probability rule, and an action chosen 

for that state in that period. 

 

Actions: 

Since the base stock levels are desired to be determined, actions to be chosen are 

defined related with echelon inventory position after ordering for each player. 



 

  

t

ia : echelon inventory position after ordering for player i 

t
a : vector of individual actions (action profile for period t) 

t
a = )a,a( t

2

t

1  

)s(At

i : all possible actions for player i in period t for state s. 

 

Since actions are determined according to state that occurs in that period and in 

each period t the state space is the same, we can denote the action space as )s(Ai  

A : Action space for the whole game. 

)s(AA i
SsIi ∈∈
∪×=  

)s(A)s(AA
Ss

21 ×∪=
∈

               (4.17) 

 

Both state space and action space are assumed to be finite. It is also assumed that, 

in period t the history th  is known to all players before they choose period t actions. 

The history at time t can be denoted as follows: 

)s,a,s,...,a,s,a,s(h t1t1t2211t −−=              (4.18) 

 

Transition Function: 

In each period t, one state occurs according to a transition function. For our 

problem, transition probabilities are obtained from probability distribution of the 

demand. 

t

iD : demand for player i during period t 

tD : vector of demands for period t 

tD = )D,D( t

2

t

1  

 

The state of the system in period t+1, depends on the action chosen in period t and 

the demand during period t. That is; 

ttt
Das −=+1  

 



 

  

ta

sts
p ',1+

: the probability of being in the state 1+t
s  which is less than '

s  if the current 

state is t
s  and the current action is t

a . 

ta

's,1ts
p + = { } { }ttttttt assDaasss ,Pr,Pr ''1 <−=<+  

{ }tttt assaD ,Pr '−>= =1-F ),( ' tt asa −            (4.19) 

 

At the beginning of each period t, player i observes the history th  and then 

chooses an action t

ia . A decision rule for player i specifies an action )s(a t

i  for each 

state Ss∈ . The decision rule is the equilibrium in the one-period game that occurs 

in period t.  

 

A strategy for player i )( iπ  determines a decision rule for each period. A strategy 

iπ  is a function that assigns a probability distribution to the action space for each 

history th . In other words, a strategy is a specification of a probability distribution, 

at each period and state, over the available actions, conditional on the history of the 

game up to that period.  

 

Cost Function: 

Retailer’s and supplier’s cost functions for the one-stage game are given below, 

respectively: 

[ ] ( ) ∫ −+−+∫ −−+=
∞

−

−

2a1a
112121

2a1a

0
21

t

1

t

1

t

1211 dx)x(f)xa(C)aa(F)a(Cdx)x(fxaahDEh)a,a(G

 

∫ −+−=
∞

− 2a1a
122122212 dx)x(f)xa(C)aa(F)a(C)a,a(G             (4.20) 

 

In a Markovian game, each one-period game refers to a state. According to a 

transition mechanism, one of these one-period games (or one of the states) is played 

(or encountered) and according to the action profile in that period, the associated cost 

( )ttt

i a,aG 21  is incurred. 

 



 

  

Since a Markovian game is a combination of a static game and a Markov decision 

process, the cost structure must be defined as in Markov decision process. 

 

t

iG : inventory holding and shortage cost incurred in period t for player i 

gi ),( as : single period cost function 

gi ),( as = t

iG[E ], aass tt == ,   s  ,S∈ a A∈ , Ii ∈           (4.21) 

 

iL ( s ): terminal value 

iL ( s )= 1+T
iG[E ]ssT =+1  s  ,S∈  Ii ∈             (4.22) 

 

iV ( s ): the sum of discounted costs 

iV ( s )=∑
=

−
T

t

i

t g
1

1γ ),( tt as + i

TLγ )( 1+Ts             (4.23) 

 

t

iv ( s,π ): expected present value of the costs incurred in periods t, t+1,…,T given 

that the game starts period t in state s and strategy π  is implemented. 

t

iv ( s,π ) iV[E= ( s,π ) ss =1 ] 

            =




γ∑
=τ

−τ
T

t

igE
1 +))(,( sas ττ

i

T
L
1+−τγ })( 1+τs           (4.24) 

 

t

if )( s : optimal value function of player i for period t 

t

if )( s = 
Ππ∈

min t

iv ( s,π ) 

{
Aa ti∈

= min gi ),( tt as + })(1∑
∈

+

Sj

ta

sj jfpγ            (4.25) 

where 1+Tf ( s )= iL ( s ) for each Ii  ,Ss ∈∈ . 

 

Having defined the game setup and the cost structure, the solution concept will be 

discussed in the following section. 

 

 



 

  

Equilibrium 

 

When demand is considered non-stationary, there may be many stationary and 

non-stationary equilibria but since the solution is subgame perfect, there is a unique 

Markov Perfect Equilibrium (MPE). An MPE can be characterized as follows: 

starting from any point a player selects the action that minimizes its intertemporal 

cost, given the subsequent moves of itself and its rivals. That is the term “Markov 

perfect” arises from the simple observation that all Nash equilibria in Markovian 

situations are also subgame perfect.  

 

Maskin and Tirole (2001), by making the Markovian assumption, consider only 

those equilibria whose strategies depend on the “payoff-relevant” history. Such 

strategies make behavior in any period dependent on only relatively small set of 

variables rather than on the entire history of the play. 

 

Markov perfect equilibrium is a profile of Markov strategies that yields a Nash 

equilibrium in every proper subgame. A Markov strategy is one that doesn’t depend 

at all on variables that are functions of the history of the game except those that 

affect payoffs.  

 

“The MPE concept’s popularity stems in part from several practical 

considerations. First, MPE is often quite successful in eliminating or reducing large 

multiplicity of equilibria in dynamic games, and thus in enhancing the predictive 

power of the model. Relatedly, MPE, by preventing non-payoff-relevant variables 

from affecting strategic behavior, has allowed researchers to identify the impact of 

state variables on outcomes; it for example has permitted researchers to obtain a 

clean, unobstructed analysis of strategic positioning in industrial organization.” 

Maskin and Tirole (2001). 

 

In a Markovian game, as we have defined in the previous section, in every period 

t player i’s single period cost function depends on both vector of player’s actions and 

the (payoff relevant) state of the system. 



 

  

In period t the history of the game is the sequence of the previous actions and 

states )s,a,s,...,a,s,a,s(h t1t1t2211t −−= . But the only aspect of history that directly 

affects player i’s costs and action sets starting in period t is the state t
s . Hence a 

Markov strategy in this model should make player i’s period t action dependent only 

on the state t
s , rather than on the whole history th .  

 

The state space S is again assumed to be finite. Recall the state of the system as it 

is defined in the previous section: 

t
s : echelon inventory position for player i 

Then the state profile of period t can be denoted as t
s )s,s( tt

21= . 

 

At each period t, each player i chooses an action t

ia  from his finite action space A. 

Actions are defined as in previous section; 

t

ia : echelon inventory position after ordering for player i 

Then, again denote the action profile of period t as t
a )a,a( tt

21= . 

 

Markov strategy definition requires players to make their strategies measurable 

with respect to a certain partition of possible histories. More specifically, this 

partitions, one for each player, must include at each point of time, a player’s 

preferences over his continuation strategies which are the same for any history in a 

given element of his partition provided that the other players use strategies that are 

measurable with respect to their own partitions. Strategies that are measurable with 

respect to this partition are called Markovian, and a subgame perfect equilibrium in 

Markov strategies is called Markov perfect equilibrium. For multiperiod games in 

which the action spaces are finite in any period an MPE exists if the number of 

periods is finite or infinite.  

 

Markov strategies are defined as those that are measurable with respect to the 

maximally coarse consistent partition; in other words the Markov partition. Although 

this is the right definition conceptually, it is a bit cumbersome practically. In 

practice, “how does one go about finding this partition” is still an important question. 



 

  

Maskin and Tirole (2001) claim that for a broad class of games there is a readily 

checked conditions that enable us to determine whether or not two histories belong to 

the same element of the Markov partition. These conditions will be explained below.  

 

Since the action profile of period t is t
a )a,a( tt

21= , the action profile for the whole 

horizon is denoted as ( )Taaaa ,...,, 21= . The history in period t is the sequence of 

actions chosen before period t: =th ( )121 ,...,, −taaa . Let tH  be the set of all possible 

period t histories. History th  is common knowledge in period t. The future in period 

t is the sequence of current and future actions: =tf ( )Ttt aaa ,...,, 1+ . Thus, player i’s 

cost function can be representable by (Gi a )= )f,h(G tt

i . And also let (.)H
~ .  be the 

collection (partition) defined so that, for all t and for all ,Hh
~
,h ttt ∈  ( )ttt hH

~
h
~
∈  if 

and only if 

 

(i)  ( ) ( )tttt

h
~

HhH =  

(ii) for all i there exist scalar 0>α  and function ( ) ℜ→β −
tt

i hA:  such that 

( ) ( ) (f,hGf,h
~

G tttt

i β+α= t

ia− )             (4.26) 

 for all tf . 

 

(i) requires only to verify that action spaces following th  and th
~
 are the same, 

whereas (ii) involves checking that continuation cost functions are appropriate affine 

transformations of one another. 

 

Since each history begins at the beginning of each period t, and in each period the 

action space is the same, the first condition is hold. In other words, the action spaces 

following two possible different histories th  and th
~
, will be the same. And also it 

can be easily shown that the cost functions given in (4.20) can be transformable to 

each other in the problem framework. Thus, all strategies are Markovian and an MPE 

is the same thing as a subgame perfect equilibrium. 

 



 

  

A Markov strategy of player i is denoted by im  which is a function that assigns to 

each feasible state an action.  

im : Markov strategy for player i ; 

AS:mi →  

Markov strategy combination can be denoted by m )m,m( 21= . 

iM : Markov strategy space for player i ; 

21 MMM ×=  

Recall the dynamics given previously, 

tttttt
DaDzss −=−+=+1               (4.27) 

 

Then; ttt
zsa +=  and an action is defined as the function of the payoff-relevant 

state: 

ttt zss +=)(α ; 

=)( sα AS →                (4.28) 

 

ig )](,[ ss α : single period cost function 

),( smv
t

i : expected present value of the costs incurred in periods t,…,T given that 

the game starts period t in state s and a Markov strategy m is implemented. 

=),( smv
t

i





γ∑
=τ

−τ
T

t

igE
1 +))(,( ττ α ss i

T L1+−τγ })( 1+τs            (4.29) 

 

As stated in Maskin and Tirole (2001), a Markov perfect equilibrium is a subgame 

perfect equilibrium in which all players use Markov strategies. In other words, MPE 

is a profile of Markov strategies that yields a Nash equilibrium in every subgame. 

The following definition expresses this idea formally. 

 

DEFINITION 4.3 (Fudenberg and Tirole): A Markov perfect equilibrium is a 

profile of strategies those are a perfect equilibrium and are measurable with respect 

to the payoff-relevant history. 

 



 

  

THEOREM 4.3 (Fudenberg and Tirole): Suppose either ∞<T  or ∞=T  and the 

objective functions are continuous at infinity. Then there exists an MPE. 

 

In the case of infinite horizon game, if the game is continuous at infinity, then 

there exists an MPE. The game is continuous at infinity if players discount future 

payoffs at a constant rate; 0>γ .  

 

DEFINITION 4.4 (Fudenberg and Tirole): A game is continuous at infinity if for 

each player i the cost function iv  satisfies 

 

∞→→−
=

   tas     0)
~
()(sup

~
h s.t. 

~
, t

hvhv ii
hhh t

            (4.30) 

 

This condition says that events in the distant future are relatively unimportant. It 

will be satisfied if the overall costs are a discounted sum of the per-period costs 

)]s(,s[gi α are uniformly bounded. In other words, there is a B such that 

 

B)]s(,s[gmax i
ta,t

<α               (4.31) 

 

Since the action space is bounded, per-period costs and the discounted sum of per-

period costs are uniformly bounded. So we can say that the game is continuous. 

Hence, there exists an MPE and it is found by backward induction. 

 

As stated in Maskin and Tirole (2001), to prove the existence of an MPE for a 

finite horizon game, one can work backwards, and select the same Nash equilibrium 

for all histories in an equivalence class so as to obtain Markov measurability. 

 

At date T, a Nash equilibrium is selected. This Nash equilibrium is the same for 

all histories Th  in the same payoff-relevant history )h(H TT  which means in the 

same Markov partition. The reason that, for all histories with the same payoff 



 

  

relevant history, the last period subgames are strategically equivalent and the sets of 

Nash equilibria are the same. 

 

Folding back, the subgame at period T-1 becomes a one-period game, and the 

Nash equilibrium is selected depending on the payoff-relevant history. By using 

backward induction, the fist period is achieved.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

CHAPTER FIVE 

CONCLUSION 

 

 

In this chapter a summary of the dissertation and also some recommendations for 

future work will be given. 

 

5.1 Summary 

 

The focus of this dissertation is on developing a base stock policy in a serial two 

echelon supply chain, under the consideration of non-stationary demand. The main 

contribution of this thesis is about the demand distribution across periods. The 

demand distribution is assumed to be independent across period, but not necessarily 

identically distributed. Firstly, the problem formulation is done for a centralized 

supply chain. The optimal base stock policy is found by myopic policy. Second, in 

decentralized case since the firms are considered as independent decision makers, 

game theoretic framework is needed.  

 

One of the research objectives was to express the behaviors of the decision 

makers (the supplier and the retailer) under a non-cooperative game. With this 

consideration, this dissertation provides the game theoretic formulation. Game 

theoretic framework is derived for two cases. In the first case, the base stock policy 

chosen in a period hasn’t an effect on the other period’s base stock policy decision 

and cost function. In this case, a repeated game is formulated for the defined problem 

and the solution concept is subgame perfect equilibrium. The second case occurs 

when the base stock decisions made in the past has an influence on the future base 

stock decisions. This requires a stochastic game or Markovian game formulation. 

The solution concept for the stochastic game is Markov perfect equilibrium. In the 

study, the formulations for the solutions of the two different games are derived.  

 

 

 



 

  

5.2 Limitations 

 

In this dissertation, we focus on the game theoretic framework for two echelon 

serial supply chain under the consideration of non-stationary demand. The two 

echelon serial supply chain contains only a single supplier and a single retailer. 

Although this research may shed lights on the related literature, it must be admitted 

that modeling of the dissertation has been limited to the simplest supply chain 

structure. 

 

5.3 Further Research 

 

In this section some new directions for exploring further research avenues will be 

proposed.  

 

As it is addressed just before, in this study the formulation is derived for the 

simplest supply chain. As an extension, an assembly system may be considered. 

Since the optimal policy is quite complex even under stationary data, the shipments 

costs may assume to be linear.  

 

As another extension, a distribution system in which there is one supplier and N 

retailers may be also considered. This also makes the system more complex when the 

stock relationships among retailers are considered. 

 

In the game theoretic framework, some other extensions are also possible. In a 

more complex supply chain design, the supplier may be considered as a leader and 

Stackelberg game framework may be constructed.  

 

Besides, in this dissertation, the order cost is assumed to be linear; depending on 

the order amount, rather than to be fixed. Under the consideration of two-stage 

system, there may be assumed that there is a fixed order cost.  
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