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BUCKLING OF ECONOMICAL COMPOSITE BARS 

 

 

 

ABSTRACT 

 

 

Tadjbakhsk & Keller (1962) and Olhoff & Rasmussen (1977)-Masur (1984) 

obtained different solutions with respect to critical buckling load and optimum form 

for clamped-clamped ends of columns, which have variable cross-section, subjected 

to compressive force. Myers & Spillers (1986) and Barnes (1988) encouraged 

Tadjbaksh & Keller’s solution. In 1977, Olhoff & Rasmussen claimed that the 

optimal solutions given by Tadjbaksh & Keller were incorrect for clamped-clamped 

ends and they obtained optimum solution through application of a numeric method in 

solving the differential equation. Seyranian (1983, 1984), Masur (1984), Overton 

(1991), Cox & Overton (1992), Seyranian, Lund & Olhoff (1994) and Seyranian & 

Privalova also encouraged Olhoff & Rasmussen’s solution with clamped ends of 

columns.  

 

The critical buckling load results of Tadjbaksh & Keller, Olhoff & Rasmussen 

(1977)-Masur (1984) are very closer with each other for clamped-clamped ends. 

However, the difference is originated from optimum shape of the column, especially 

in points of minimum thickness. Tadjbaksh & Keller determined unimodal optimal 

solution, namely, possessing a single buckling mode for columns with clamped ends. 

They found the points of vanishing cross-section to be placed at x=0,25 and x=0,75 

where the column ends x=0 and x=L are assumed to be clamped-clamped ends while 

Olhoff & Rasmussen (1977)-Masur (1984) obtained nonzero cross-section in these 

points with bimodal optimum solution. 

 

In this Ph. D. thesis, it was also proved that the solutions of Tadjbakhsk & Keller 

(1962) and Olhoff & Rasmussen (1977)-Masur (1984) were not optimum for 

columns with clamped ends. True solution then was obtained with both bimodal 
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solution and crushing criteria. In analytic solution, Masur’s bimodal solution was 

used for clamped-clamped case. Both experiments and numeric studies were carried 

out to verify new optimum proposed solution. In this Ph. D. thesis, in order to test the 

accuracy of new optimized composite column with clamped ends, it was used 

materials such as sapele, oak, cedar and manufactured composite materials including, 

glass-epoxy, glass vinylester and glass-polyester with 0, 45 and 90 degree of fiber 

orientation angle with circle cross-sections. The critical buckling load and column’s 

volume obtained from new optimum proposed solution were compared with results 

found by Tadjbakhsh & Keller (1962) and Olhoff & Rasmussen (1977)-Masur 

(1984). New proposed optimum model’s results were in agreement with results 

obtained by numerical analysis and by experiments.  
 

 

Keywords: Buckling, optimum shape design; maximum critical buckling load, 

bimodal solution; unimodal solution; crush strength.  
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EKONOMİK KOMPOZİT ÇUBUKLARIN BURKULMASI 

 

 

 

ÖZ 

 

 

Basmaya zorlanan değişken enine kesitli ankastre-ankastre yataklı çubukların 

kritik burkulma kuvvetleri ve optimum formları Tadjbakhsk & Keller (1962) ve 

Olhoff & Rasmussen (1977)-Masur (1984) tarafından farklı verilmiştir. Tadjbakhsk 

& Keller (1962)’ in sonuçlarını Myers & Spillers (1986) ve Barnes (1988) 

desteklemiştir. Olhoff-Rasmussen, 1977 yılında yapmış olduğu çalışmasında, 

Tadjbakhsk-Keller’in ankastre-ankastre yataklama durumu için bulmuş olduğu 

sonuçların yanlış olduğunu iddia etmiş ve bu durum için problemin optimum 

çözümünü nümerik olarak yapmıştır. Tadjbakhsk & Keller’in ankastre-ankastre 

yataklama durumu için bulmuş olduğu sonuçların yanlış olduğu iddiası, Seyranian 

(1983, 1984), Masur (1984), Overton (1991), Cox & Overton (1992), Seyranian, 

Lund & Olhoff (1994) and Seyranian & Privalova (2003) tarafından da kabul 

görmüştür.  

 

Ankastre-ankastre yataklama durumu için, Tadjbaksh & Keller, Olhoff & 

Rasmussen (1977)-Masur (1984)’un bulmuş olduğu kritik burkulma kuvvetleri, 

birbirine oldukça yakın değerlerdir. Ancak farklılık, optimum formdan, özellikle 

kesitin minimum olduğu noktalardan kaynaklanmaktadır. Tadjbakhsh & Keller 

(1962) unimodal çözüm ile, çubuğun ankastre olarak yataklandığı noktalar x=0 ve 

x=L olmak üzere, x=0,25 ve x=0,75 noktalarında kesiti sıfır olarak bulurken, Olhoff 

& Rasmussen (1977)-Masur (1984) bimodal çözüm ile bu noktalarda sıfırdan farklı 

kesit alanları elde etmişlerdir. 

 

Bu çalışmada, öncelikle değişken enine kesitli optimum çubuklarda kabul gören 

Tadjbakhsh & Keller (1962) ve Olhoff & Rasmussen (1977)-Masur (1984) 

tarafından verilen çözümlerin yanlış olduğu gösterilmiş, ardından da Masur’un 
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analitik çözümüne ezilme kriteri eklenerek doğru çözüm verilmiştir. Çalışmada 

verilen çözüme uygun ankastre-ankastre çubuklar deneysel ve nümerik yöntemlerle 

incelenmiştir. Bu incelemede; daire enine kesitine sahip 0, 45 ve 90° fiber 

oryantasyon açısına sahip glass-epoxy, glass-vinylester ve glass-polyester ile doğal 

kompozit olan sapele, cedar ve meşe çubuklar örnek olarak alınmıştır. Çalışma 

kapsamında yeni çözümle elde edilen kritik kuvvetler ve çubuk hacimleri, 

Tadjbakhsh & Keller (1962) ve Olhoff & Rasmussen (1977)-Masur (1984) 

tarafından verilenler ile karşılaştırılmıştır. Yeni çözümle elde edilen optimum 

çubukların deneysel ve nümerik yöntemle bulunan kritik burkulma kuvvetleri 

örtüşmektedir. 

 

 

Anahtar sözcükler: Burkulma, optimum enine kesit değişimi, maksimum kritik 

burkulma kuvveti, bimodal çözüm, unimodal çözüm, ezilme dayanımı. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Problem Statement 

 

Structural members with variable cross-section are commonly used in mechanical, 

civil and aeronautics engineering to optimize the distribution of weight and strength. 

Especially, it is increasingly used composites in the design of lightweight thin 

flexible structures. However, the design of such structures gives serious challenges 

arising from the problem of structural stability. It is required the stability analysis the 

determination of their practical carrying capacity. In recent years, it has been 

concentrated stability of structure. Many structural elements are becoming thinner 

and more slender by using high strength materials. The design of slender members is 

often governed by stability considerations because of their slenderness. It is very 

important that the structural members have an enough safety against the loss of 

stability. 

 

One form of the loss of stability is the lateral buckling of columns. The buckling 

of elastic structures is one of the most crucial problems in engineering. Mechanical 

buckling is the forthcoming or instantaneous collapse of a structure because of 

internal and/or external loads, which, however, would not be sufficiently intense to 

cause mechanical yield of the material in the structure. Lateral instability that occurs 

while the material is stressed below the yield point means as elastic buckling. On the 

analysis of stress, it has to be considered that the stresses in a beam system do not 

exceed the ultimate strength of materials given. Nevertheless, on the problem of 

stability, the critical load that causes a column to buckle is aimed. Although the 

stresses that occur in the material of a loaded column remain in allowable limits, the 

equilibrium of this column can become unstable under the same critical compressive 

load, which leads the whole system to collapse.  
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Buckling plays a very important role in the design of slender columns. Linear 

buckling of column structures is an important design constraint, especially where 

weight is chief concern. It plays important roles eigenvalues of symmetric matrices 

in many different areas of applied mathematics. For example, it may desirable to 

minimize the largest eigenvalue in a control application, because the size of the 

largest eigenvalue describes system stability. However, it may desirable to maximize 

the smallest eigenvalue in a structure analysis application, because the smallest 

eigenvalue defines a buckling load. It might have an optimization objective in other 

applications, which does not involve eigenvalues, but cover constraints on 

eigenvalues (Overton, 1991). 

 

Optimum design of structures against buckling may be accomplished by finding 

the minimum weight design of a structure, which satisfies the prescribed buckling 

load constraint. On the other hand, it can be maximized the fundamental buckling 

load for a structure while keeping its weight or volume constant. Alternatively, it 

may be to maximize the buckling load for a structure with a given volume, mass, or 

weight. It may be included as well other performance criteria, such as strength and 

stiffness. The designer is often urged to reduce structural mass and/or increase 

buckling load. Additionally, it is maintained safety margins, comfort and 

aerodynamic performance at acceptable levels. 

 

On optimization problems involving eigenvalues, it is considered the problem of 

determining the shape of the strongest column having a given length and volume, as 

other words, maximization of minimum eigenvalue. The model problem is exactly 

useful to many applications. Mathematically, this problem is the least eigenvalue of a 

self-adjoint fourth–order differential operator. The meaning of the least eigenvalue of 

differential equation is that it corresponds to the critical buckling load in model of 

the column. It is to increase the lowest buckling eigenvalue during the optimization 

procedure. It is required Lagrange’s problem the maximization of this least 

eigenvalue, over all possible functions defining the cross-sectional area of the 

column. In other words, it is expressed finding the shape of the domain that 

minimizes the least eigenvalue of the Laplacian.  
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It has been widely discussed in the literature the behavior of axially compressed 

columns with varying cross-section. Columns having variable cross-section are 

widely used in complex structures to accomplish a better distribution of strength and 

weight and sometimes to satisfy architectural and functional requirements. In the 

analysis of such structures, non-linearity may arise due to large deformations and 

material properties. The obtaining of the elastic curve of a column is necessary. 

Because it is required that not only the stresses induced in the column should not 

exceed allowable stress but also the maximum deflection of the column should not be 

greater than a certain predetermined value depending on the operating conditions of 

the column (Anonymous, 2005a). 

 

The problem, especially clamped-clamped case, is a controversial alone which 

mathematicians and structural engineers have addressed. The optimum shape of the 

clamped-clamped column compressed at its ends a given length and volume was first 

dealt with by Tadjbakhsh & Keller (1962). The unimodal solutions obtained by 

Tadjbakhsh & Keller are not optimal because the column buckles by the modes with 

discontinuities of the slope corresponding to the lower critical load. This leads to 

necessity of the bimodal formulation of the optimization problem. 

 

Olhoff & Rasmussen (1977) discovered that the optimum design should be 

bimodal and the critical load is governed by a repeated eigenvalue. They also first 

displayed that the solution by Tadjbakhsh & Keller for clamped ends is not optimum 

due to a buckling mode that becomes critical at a lower value of the axial load than 

the mode considered in the analytical solution of Tadjbakhsh & Keller optimality 

equations. 

 

This Ph. D. thesis deals with shape design of the strongest column with maximum 

buckling load. It was considered the well-known problem of maximizing the critical 

buckling load of an elastic column of variable cross-sectional area and prescribed 

length and volume. The aim was to determine the composite column of least volume 

that has the same critical load. It may be defined the buckling design problem as 
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finding the minimum weight structure that satisfies a prescribed buckling load. The 

initial of a composite column was the design objective. Furthermore it was 

reinvestigated the optimization problem of the clamped-clamped column under 

buckling load, which was previously dealt with by Tadjbakhsh & Keller and Olhoff 

& Rasmussen. The unimodal and bimodal solutions were analyzed for several of 

boundary conditions and it was shown that for nonzero support stiffness they are not 

optimal. The proposed model of the problem according to bimodal solution obtained 

by Masur was set up. An important limit case of a clamped-clamped supported 

column that has caused debate in many publications is analyzed. 

 

Consequently, in this Ph. D. Thesis, the problem of determining the optimum 

shape of an elastic clamped column of given length and volume such that the 

fundamental buckling loads was a maximum was reinvestigated.  

 

1.2 Objectives of Present Research 

 

This thesis have purposed the problem of finding the shape of the strongest 

column which has the largest fundamental buckling load with equal length and 

volume for the clamped–clamped ends. In particular, it is revised the result hitherto 

considered to be optimum solution for unconstrained column with clamped ends. It is 

also reformulated and extended the problem which finding the shape of the strongest 

column with clamped-clamped ends. 

 

This thesis also shows a comparison of the optimal shapes of columns 

investigated in literature. The optimum column cross-sectional area function is 

chosen design parameter. The solution depends on this cross-sectional area function. 

The column cross-sections are assumed to be geometrically similar and a minimum 

value is specified for the cross-sectional area taking into consideration both buckling 

and stability criterion in the points of the minimum thickness. Thus, in order to 

determine the strongest column of given length and volume such that the 

fundamental buckling load is a maximum, it is necessary to take into account both 

buckling and crushing criteria in the points of the minimum thickness. The 
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achievable savings of materials as well as of weight of constructions will found in 

comparison to the systems of columns with constant cross-section. 

 

1.3 Research Methodology 

 

The optimization problem consists in determining the column shape that 

maximizes the fundamental buckling load for given length and volume. This thesis 

can be divided in three main groups:  

 

• Analytical methods, 

• Numerical methods and  

• Experimental investigation.  

 

The results of the analytical model were verified by the experimental data and 

numerical methods. It was used both numerical and experimental methods for new 

solution which based on buckling and crushing criteria. A comparison between 

obtained analytical, experimental and numerical results was accomplished. The 

experimental results were found to be consistent with the experimental data and 

finite element models. Experiments were carried out to determine the effect of the 

fiber orientation angle in different natural and manufactured composite materials 

including, cedar, oak, sapele; glass-epoxy, glass-vinylester and glass-polyester. The 

composite column specimens were designed and manufactured according to uniform 

cross-sections and variable cross-sections. 

 

The proposed model of the composite column, which offered this Ph. D. thesis, 

was determined using Masur’s solution. Shape design of the strongest column had 

been developed taking into consideration the effect of the crushing in points of 

minimum thickness. The performance of shape design was validated through 

experimental results. The optimum eigenvalues and the corresponding eigenfunctions 

with respect to the minimum constraint of cross-sectional area were obtained. The 

buckling characteristics of columns with uniform and variable cross-section were 

investigated for wood composite materials and manufactured composite materials, 
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which consisted of glass-epoxy, glass-polyester and glass-vinylester with different 

fiber orientation angle: 0, 45 and 90 degree of fiber orientation angle. The critical 

buckling load analysis was also performed by the finite element method. Finite 

element models were constructed with different composite columns with variable 

cross-section. Experiments were conducted to verify and validate the analytical and 

finite element results. The proposed design models were found to produce better 

results. 

 

1.4 Literature Review 

 

1.4.1 A review of the Optimization Problem for Columns Subjected to Buckling  

 

The buckling of elastic columns is a fundamental topic in structural mechanics. 

Optimization of columns against buckling is essential to enhance by decreasing the 

possibility of reaching an unstable equilibrium position under any contemplated 

loading. A large number of publications have appeared eigenvalue optimization 

algorithms. Timoshenko & Gere (1961) and Smittses (1976) wrote the most relevant 

books on the stability of columns. 

 

Euler (1744) determined critical buckling loads affecting columns with constant 

cross-section and with four different bearing types. However, the cross-section of the 

column should be variable, if economical as well as lighter constructions must be 

designed. Hence, Ratzersdorfer (1936) executed the first examination for columns 

hinged at both ends, in order to solve the stability problem more extensively for 

obtaining economical as well as lighter constructions. In his study, circular and 

rectangular cross-sections were treated. Furthermore, Keller (1960) was determined 

the shape of the strongest column with simply supported ends. Later, Tadjbaksh & 

Keller (1962) presented the optimum shape for the strongest column of a given 

length and volume with for different support ends “clamped/clamped, clamped/free 

and clamped/slide-hinged case”. Taylor (1967) studied direct and concise energy 

method than that developed by Tadjbakhsh & Keller. Smitses (1973) was the first 
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person to use in finite element analysis and iterative procedure to optimize the shape 

of the columns. 

 

Bauld & Tzeng (1984) presented a Vlasov type theory for thin-walled beams with 

open cross sections made from midplane symmetric, fiber-reinforced laminates. A 

linear theory suitable for stress and deflection determination was presented first, 

followed by a nonlinear theory that was suitable for bifurcation and limit point 

stability analyses of the global buckling modes of beams under different applied 

loads and boundary conditions at end cross sections.  

 

Szyskowski & Watson (1998) optimized single buckling mode columns and 

frames of a given volume to find the highest resistance against buckling. ANSYS 

program was used to solve the eigenvalue problem. 

 

Vaziri & Xie (1992) proposed a new numerical model for analyzing the buckling 

of columns with variable distributed axial loads. The presented method was 

transformed the traditional eigenvalue problem into an initial boundary value 

problem which could be solved by numerical integrations.  

 

Qiusheng, Hong & Guiqing (1994) found the exact solutions for the stability 

analysis of a one-step bar of varying cross-section subjected to concentrate and 

distributed axial loads first. Then the exact solution of that bar was used to derive the 

eigenvalue equation of a multi-step bar of varying cross-section subjected to loads 

that are more complicated by using transition matrices. All of the exact solutions 

were expressed in terms of Bessel's functions and super-geometric series. 

 

Ishidaet & Sugiyama (1995) dealt with the proposal of a new genetic algorithm 

based optimization algorithm and its application to the discrete shape design of the 

strongest column with maximum buckling load of the first mode under constraint of 

constant weight. The buckling load analysis was performed by the finite element 

method. Qiusheng, Hong & Guiqing (1995) demonstrated the exact solutions for 

stability analysis of bars with varying cross sections subjected to simple or 
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complicated loads, including concentrated and variable distributed axial loads. The 

distribution of flexural stiffness of the bar and axial loads acting on the bar were 

expressed as power functions or exponential functions; also, the extracted exact 

solutions are expressed in terms of Bessel functions and super geometric series. Tada 

& Wang (1995) reinvestigated the optimization problem of the clamped-clamped 

column under buckling load, which was previously dealt with by Tadjbakhsh & 

Keller. Both numerical and analytical methods based on the single and bimodal 

formulations were used in investigating the behavior of the optimum eigenvalues and 

the corresponding eigenfunctions with respect to the minimum constraint of cross-

sectional area. The conditional optimum column under the single modal formulation 

was determined. The optimum column together with two mutually symmetrical 

eigenfunctions under bimodal formulation was obtained. 

 

Coello, Christiansen & Farrera (1996) studied the optimum design of axially 

loaded non-prismatic steel columns, in which the objective was to minimize their 

volume under a given load by changing their shape, and assuming that were 

subjected to buckling and strength constraints. They used a genetic algorithm to 

move through the search space of possible column designs, and choose the best one. 

Both floating point and binary representation were used and compared to a more 

traditional optimization technique based on the generalized reduced gradient method. 

Lin, Polyzois & Shah (1996) studied buckling problem of thin-walled composite 

structural members by finite element method. A finite element having seven degrees 

of freedom at each node was developed to study the stability problem of thin-walled 

fiber-reinforced plastic (FRP) structural members. The influence of the in plane shear 

strain on the stability of the members was considered. The shape functions for the 

rotation and unit length rotation induced by warping were derived. The static and 

geometric stiffness matrices of a general beam element were established based on the 

developed shape functions. The bifurcation-buckling problem of thin-walled 

pultruded open-sections subjected to various loading and boundary conditions was 

examined through a number of examples. It was shown that the influence of the shear 

strain on the buckling capacity of the fiber-reinforced plastic structural members was 

significant and must be taken into account in the design of such members.  
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In 1999, Khong presented a multi objective optimal design for uniaxially loaded 

laminated composite panels. The fuzzy theory was utilized in the formulation of the 

multi-objective optimization scheme. The strategy was engaged in different-weight 

age fuzzy membership functions, which was efficient in handling relative importance 

of objectives. Langthjem & Sugiyama (1999) concerned with optimization of a 

damped column subjected to a follower load. Sequential linear programming solved 

the optimization problem. By only including a constraint on the flutter load in the 

volume minimization, a very large volume reduction was possible but the static 

buckling load became very small. Consequently, the volume was minimized with 

constraints on both the flutter load and the static buckling load. 

 

Vinogradov & Derrick (2000) examined the effects of material composition and 

properties on the non-linear buckling response of asymmetric laminated structures. 

The problem was studied through the analysis of asymmetric laminated columns 

composed of an arbitrary number of different material layers. The non-linear 

buckling behavior of the columns subjected to combine compression and bending 

was examined depending on parameters such as the number, orientation and stacking 

sequence. Arpakci (2000) considered the case “one end slide-clamped and the other 

sliding”. 

 

Later on, Fridman & Zyczkowski (2001) considered optimal design of columns 

under concentrated axial force subject to corrosive environment. The initial volume 

of a column was the design objective whereas the constraint refers to elastic buckling 

at a certain prescribed lifetime with corrosive wear of this column taken into account. 

Plane-tapered and uniformly spatially tapered columns were optimized under the 

conditions of plane or spatial corrosion. Variation treatment was led to fourth order 

Euler-Lagrange equations. Final optimal shapes of the columns were shown both 

corrosive wear corresponding to the prescribed lifetime. Elishakoff (2001) presented 

several closed-form solutions for the buckling eigenvalue problem of the columns 

with variable flexural rigidity along the axis. They examined the cases “one end 

sliding and the other hinged or clamped” by using the simplest fourth order 
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polynomial that satisfies boundary conditions. Rong, Xie & Yang (2001) proposed 

for maximizing the critical buckling load of a structure of constant weight, an 

improved for evolutionary structural optimization against buckling. They derived the 

sensivity numbers of the first eigenvalue or the first multiple eigenvalues by 

performing a variation operation. 

 

Maalawi (2002) presented a novel approach of the optimization of flexible 

columns against buckling. The model formulation was considered columns that could 

be practically made of uniform segments with the true design variables defined to be 

the cross-sectional area, radius of gyration and length of each segment. Exact 

structural analysis was performed, ensuring the attainment of the absolute maximum 

critical buckling load for any number of segments, type of cross section and type of 

boundary conditions. Detailed results were presented and discussed for clamped 

columns having either solid or tubular cross-sectional configurations, where useful 

design trends had been recommended for optimum patterns with two, three and more 

segments. It was shown that the developed optimization model, which was not 

restricted to specific properties of the cross section, could give higher values of the 

critical load than those obtained from constrained-continuous shape optimization. In 

fact, the model had achieved in arriving at the global optimal column designs having 

the absolute maximum buckling load without violating the economic feasibility 

requirements.  

 

Lee, Oh & Li (2002) defined the strongest column as the elastic column of given 

both length and volume, which can carry the highest axial load without buckling. A 

numerical method was developed for calculating the buckling loads of tapered 

columns of regular polygon cross-section with constant volume and both clamped 

ends. Pekbey & Ozdamar (2002) calculated variation of cross section with the length 

of the bar and critical buckling loads square, circle and equilateral cross sections for 

the case “one end slide-clamped and the other clamped”. The difference between the 

uniform cross section and the variable cross section solution was compared in terms 

of material saving. 
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Drazumeric & Kosel (2003) considered elastic bar with a changeable cross-

sectional area by using the small-displacement theory. An optimum geometry was 

obtained using the calculus of variation based on a mathematical model of buckling, 

which considered the geometric and boundary conditions. Ying, Li & Teng (2003) 

established based on the geometrically non-linear theory of axially extensible elastic 

rods, the governing equations of post buckling of a clamped-free rod with variable 

cross-sections, subjected to a combined load. The strong non-linear boundary value 

problems were numerically solved by using shooting method. The secondary 

equilibrium paths and the post-buckling configurations of the rod with linearly varied 

cross-sections were presented. Adali, Fene, Duvaut & Chiaruttini (2003) presented 

optimal design of composite laminates under buckling load uncertainty. The problem 

of stacking sequence design of a symmetrically laminated plate was solved for 

maximum buckling load under uncertain biaxial loads which belong to a given 

domain and the optimal stacking sequences were computed for a continuous fiber 

orientation using only 00, 450 and 900 ply angle combinations.  

 

Atanackovic (2004) determined the shape of the lightest compressed rotating rod 

by using Pontryagin’s maximum principle. It was shown that the cross-sectional area 

function was determined from the solution of a linear boundary value problem. The 

optimal shape of a rod was determined by numerical integration. 

 

As seen above, there are several reports in the literature dealing with this topic, 

both from theoretical and experimental standpoints  

 

1.4.2 A review the Optimization Problem for Debatable Case (Clamped-Clamped 

Case) 

 

Euler (1744) determined critical buckling loads affecting columns with constant 

cross-section and with four different bearing types. However, the cross-section of the 

column should be variable, if economical as well as lighter constructions must be 

designed.  
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The minimization of structural weight and the maximization of critical buckling load 

are problems that have been addressed many times. 

 

Tadjbakhsh & Keller (1962) examined the optimal longitudinal cross-sections of 

column under critical buckling loads for different support ends “clamped-clamped, 

clamped-free and clamped-slide-hinged case”. They determined the optimal solution 

of buckling problem for columns with clamped ends analytically, which was 

unimodal, namely, possessing a single buckling mode as the solutions of the other 

cases. They obtained that the column cross-section vanished along with the bending 

moment at the two points. The points of vanishing cross-section and bending 

moment were found to be placed at x=0,25 and x=0,75 where the column ends x=0 

and x=L are assumed to be clamped-clamped. Tadjbakhsh & Keller obtained optimal 

design that exhibits hinges at the quarter points and symmetric buckling mode. The 

buckling load of the column was also noticed to be 52,638; which was 32,795% 

higher than the buckling load of a corresponding uniform column and exceeded by 

one third the dimensionless buckling load for a uniform column. 

 

The results obtained by Tadjbaksh & Keller were not optimal in as much as the 

second buckling mode crossed the first and became critical at a lower load level. The 

true optimal design is bimodal, i.e., the critical load is governed by a repeated 

eigenvalue. It buckles into a single mode optimal statically determinate columns 

while clamped-clamped ends columns may exhibit a dual buckling mode. This 

phenomenon has been remarked first by Olhoff & Rasmussen (1977). 

 

Olhoff & Rasmussen (1977) demonstrated that the unimodal solution obtained by 

Tadjbakhsh and Keller for clamped-clamped ends is incorrect. Olhoff & Rasmussen 

showed that the optimal solution for columns with clamped ends should be bimodal, 

that is to say, possessing two linearly independent buckling modes. Olhoff & 

Rasmussen introduced a “bimodal solution” of the problem of Lagrange, i.e. one that 

would accommodate double eigenvalues. They reformulated and extended the 

problem, including the possibility of the optimum fundamental buckling load being a 

double eigenvalue taking into account a prescribed minimum allowable value for the 
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column cross-sectional area. Their analytical development was based on a functional 

form as the bimodal potential energy of the column in its buckled configuration and 

the bimodal optimization problem was represented through this function. The 

governing equations for the problem were produced by variation analysis. They also 

found that geometrically unconstrained optimum column has finite cross-section 

throughout. It was performed a numerical solution by a finite difference method, 

allowing for possible jumps in the slope and in the shear force at two interior points 

of zero bending moment. Note that the solution found by Olhoff & Rasmussen 

exhibits no hinges. The buckling load of the column was also noticed to be 52,3563; 

which was 32,62% higher than the buckling load of a corresponding uniform 

column. 

 

Myers & Spillers (1986) and Barnes (1988) encouraged Tadjbaksh & Keller’s 

solution. They claimed that the optimal shapes given previously Tadjbaksh & Keller 

were mathematically correct. It was showed that there was no solution within the 

class of shapes for which the mathematical eigenvalue problems was given an 

adequate description of the physical buckling problem. They reported that these 

alternative designs obtained by Olhoff & Rasmussen had come closer and closer in 

both shape and buckling load to the original Tadjbaksh & Keller’s solution. 

 

The optimum bimodal buckling load obtained for the clamped-clamped case was 

later proved correct by many researchers. Researchers have obtained similar results 

for bimodal optimization solutions. 

 

Masur (1984) derived the bimodal optimality conditions for the clamped-clamped 

case and stated an extension to multiple eigenvalues. Optimality was reached with 

the double eigenvalue solution. In addition, previously established by Olhoff & 

Rasmussen double eigenvalue solutions were reinvestigated in the light of singularity 

conditions. It was derived specific necessary and sufficient conditions for local and 

global optimality and explicit optimality criteria were created for double eigenvalues, 

including a geometric interpretation. It was also developed an analytical closed 
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solution for the case of the optimal design of clamped-clamped column. The results 

obtained by Masur were in good agreement with that by Olhoff & Rasmussen. 

 

Szyszkowski, Watson & Fietkiewicz (1989) presented a more general method for 

the optimization of frames using the variation calculus and Lagrangian multipliers. A 

bimodal iterative procedure for optimizing frames of constant volume for maximum 

stability was discussed. The procedure was used the finite element technique and 

allowed treatment of the optimized structure as a potentially bimodal one. For a 

single mode, optimal design for the influence of the second mode was automatically 

eliminated by the iterative procedure. The numerical examples were presented to 

illustrate the convergence of the procedure for frames with both single mode and 

bimodal buckling failures.  

 

Overton (1991) reported the optimal design of columns against buckling with 

extensive with the new algorithm. The problem was discretized, approximating by a 

piecewise constant function. Optimality conditions were derived for an important 

eigenvalue optimization model problem, emphasizing the representation of the 

generalized gradient in terms of dual matrix and given a practical algorithm for 

solving large-scale problems. The most feature of his algorithms was that it was 

computed the optimal dual matrix, which was the key to the verification of 

optimality and to sensivity analysis of the solution. 

 

Cox & Overton (1992) gave the first proof of existence of a solution to the 

clamped-clamped problem. They offered the first systematic numerical results using 

direct optimization techniques that take into account the possibility of a multiple 

eigenvalue. Cox & Overton (1992) derived necessary conditions and constructed an 

algorithm for the maximization of a column’s Euler buckling load under a variety of 

boundary conditions over a general class of admissible designs. They proved that 

symmetric clamped-clamped columns possess a positive first eigenfunction and 

introduced a symmetric rearrangement that was not decreased the columns buckling 

load. Their necessary conditions expressed in the language of Clarke’s generalized 

gradient. Their main contribution to the problem of Lagrange was essentially two 
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hold. It was applied the generalized gradient of Clarke in i) a rigorous derivation of 

the necessary conditions ii) the construction of an efficient algorithm to solve the 

associated finite dimensional optimization problem. They focused on the clamped-

clamped case. Their results for optimum columns are in good agreement with the 

results obtained by Olhoff & Rasmussen. 

 

Szyazkowski (1992) derived a multimodal optimality criterion and used for 

numerical optimization of elastic structures with respect to buckling. It was tried to 

obtain optimum designs for clamped-clamped column using the optimality criteria 

method based on the finite element analysis.  

 

Seyranian, Lund & Olhoff (1994) discussed characteristic features and inherent 

difficulties pertaining to the lack of usual differentiability properties in problems of 

sensivity analysis and optimum structural design with respect to multiple 

eigenvalues. They presented sensivity analysis of multiple eigenvalues based on the 

perturbation technique both multiple eigenvalues and corresponding eigenvectors. 

They considered the case where only a single design parameter was altered and then 

presented a method for efficient calculation of design sensivities of simple and 

multiple eigenvalues when all design parameters were changed simultaneously. 

 

Lewis & Overton (1996) reinvestigated optimization of eigenvalues. They 

supported optimal solution obtained by Olhoff & Rasmussen. Various applications 

that had been especially influential, from structural analysis to combinatorial 

optimization were discussed and algorithmic developments were surveyed. They also 

investigated optimization of convex functions of eigenvalues of symmetric matrices 

subject to linear constraints. They derived a complete mathematical theory and 

presented some apparently new variation results about eigenvalues of 

nonsymmetrical matrices. 

 

Manickarajah, Xie & Steven (2000) presented a simple method using the finite 

element analysis for the optimum design of columns and frames to enhance the 

elastic buckling resistance of structures. They also demonstrated the efficiency and 
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effectiveness of the proposed method for the optimum design of columns, frames 

with single modal, bimodal, and trimodal buckling failures. 

 

Kanno & Ohsaki (2001) derived the necessary and sufficient conditions for global 

optimality for an eigenvalue optimization problem. They considered the problem of 

minimizing the structural volume under constraints on the lowest eigenvalue of the 

generalized eigenvalue problem with real symmetric matrices that was linear 

functions of design variables. The optimization problem was formulated as a semi 

definite programming problem. 

 

Seyranian & Privalova (2003) dedicated to the optimization and post-buckling 

behavior of columns elastically supported at both ends. They proved that the 

unimodal solutions were not optimal and then the bimodal formulation of the 

problem was set up. They studied the initial post-buckling behavior of the bimodal 

optimal column. It was shown that the initial post-buckling behavior was governed 

by four supercritical solutions emanating from the trivial equilibrium state at the 

critical load. The stability of the new equilibrium states was investigated by using the 

second variation of the total potential energy. 

 

Karaa (2003) investigated properties of the first eigenfuctions of the clamped 

column equation. It was mathematically showed that the clamped column equation 

might not possess a positive first eigenfunction.  

 

Kruzelecki & Smas (2004) investigated the problem of the optimal design of 

simply supported columns under loadings controlled by displacements. It was 

searched for cross-sectional area, varying along the axis of the column that leaded to 

the maximal axial displacement caused by compression before the structure buckled. 

The optimal solutions for different constraints of minimal and maximal cross-

sectional area and various elastic foundations were presented and considered the 

unimodal and bimodal problems. 
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Egorov (2004) proposed a new approach for the study of the classical Lagrange 

problem on the optimal form of a column with clamped-clamped ends and fixed 

volume. It was proved that there exists a column with the maximal possible value of 

the eigenvalue and that such a column is unique. 

 

1.5 Thesis Outline 

 

The thesis has six main chapters covering all the aspects of this work including 

the underlying theory upon which it is based. 

 

The thesis begins with an introduction optimization problem followed by need 

and objectives of the present investigation. It is also reviewed the relevant literature 

in this chapter.  

 

In Chapter 2, theoretical development of buckling for uniform cross-sections is 

given. Theoretical buckling equation for composite materials is also presented 

according to classical buckling theory and the first shear deformation theory. 

Properties of composite materials that used in this study are also explained. 

Especially properties of fiber and matrix were given. 

 

Chapter 3 explains theoretical development of buckling for variable cross-

sections. In this chapter, three approaches with respect to variable cross-section 

suggested by Tadjbakhsh & Keller (1962), Olhoff & Rasmussen (1977) and Masur 

(1984) are presented for optimized column against buckling for clamped-clamped 

ends. These approaches are described for six different sets of boundary conditions 

and three different variable cross sections including cross-sectional of circular shape, 

square shaped cross-sections and isosceles triangle cross-sections. In addition, in this 

chapter, new optimum solution is given considering both buckling and crushing 

criteria for clamped-clamped case. An example for glass-epoxy with 0 degree of 

fiber orientation angle is also given to explain new proposed optimum solution, and 

MATLAB program is presented for this example. 
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To verify new proposed optimum solution, it is carried out both experimental and 

numeric study for debatable clamped-clamped case. 

 

In Chapter 4, the details of experimental test set-up, manufacturing and processing 

of composite materials, details of composite columns with variable and uniform 

cross-sections, and loading conditions are given. In Chapter 5, the results of finite 

element analysis are compared with the experimental data for debatable clamped-

clamped case. ANSYS package program is used to obtain numeric analysis. 

 

Finally, the results and conclusions are presented in Chapter 6. 

 
 
 



 19 

 

CHAPTER TWO 

THEORETICAL DEVELOPMENT OF BUCKLING FOR 

UNIFORM CROSS-SECTIONS 

 

2.1  Buckling : General Concepts 

 

2.1.1 General 

 

The selection of structural elements is depended on strength, stiffness and 

stability. It is used to strength to determine failure, while presuming that the elements 

will always be in static equilibrium. However, when certain structural members are 

subjected to compressive loads, they may fail due to lateral deflection or the 

compressive stress exceeding the yield strength. It is not alone sufficient the 

consideration of material strength and stiffness to predict the behavior of a structure. 

The stability considerations could be major in some applications. Lightweight 

structural members have been extensively used in many industrial fields such as in 

civil, mechanical and aerospace engineering. For that reason the stability problems of 

such structural members are of increasing importance. 

 

The stability of the structure is ability to support a given load without 

experiencing a sudden change in its configuration. Stability of equilibrium means 

response of the structure due to a small disturbance from its equilibrium 

configuration.  

 

If a beam element is under a compressive load and its length is called as a column. 

Columns must be designed for strength and stability. Buckling of a structure defines 

failure due to excessive displacements, and/or loss of stability of an equilibrium 

configuration of the structure. In recent years, buckling has become more of a 

problem because the use of high strength material requires less material for load 

support structures and components have become more slender. Buckling failures can 
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be sudden and catastrophic. Consequently, it must be given primary attention design 

of the column so that they can safely support the loads (Anonymous, 2005b, c, d, e). 

 

Buckling is a geometric instability and mode of failure. Buckling is occurred 

about the principal axis having the least moment of inertia, namely it will buckle in 

the direction of smaller (I). Load carrying ability increases as the moment of inertia 

increases, as elastic modulus increases but at length decreases. As a result, it will 

have very low tendency to buckle for short columns made of stiff material. Buckling 

is an important design constrain in the design of many structural systems. A method 

of understanding buckling is to create a safety design whereby applied design load is 

always much less than the theoretical buckling loads. Because the theoretical 

buckling load is determined based on ideal column with assumptions, it must be 

placed a large safety margin between the design load and the calculated critical 

buckling load (Anonymous, 2005f, g, h, i). 

 

The critical buckling load depends on modulus of elasticity (E), the moment of 

inertia (I) and the column’s length (L). There is no advantage of using high strength 

materials for columns subjected to buckling because the critical buckling load is 

independent of the material strength. Columns having higher flexural rigidity (EI) 

will be able to resist buckling better than columns with small flexural rigidity.  

 

The stability of structure is its ability to support a given load without experiencing 

sudden change in its configuration. PCR, critical or maximum axial load on the 

column just before it begins to buckle. It will be observed that if its equilibrium is 

disturbed, the system will be returned to its original equilibrium position. The system 

is said to be stable. Nevertheless, if P>PCR, the system will move away from its 

original position and settle in a new position of equilibrium. In the second case, it is 

said to be unstable. As a result of, the system is stable for P<PCR, namely, for values 

of the load smaller than the critical value, and unstable for P>PCR . 
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The event of mechanical buckling of columns and beams has been studied 

extensively, with various models attempting to account for the vast number physical 

conditions that determine the behavior of the system. Several classical problems have 

been dealt with in the existing literature such as the Euler’s column. Euler presented 

the first accurate stability analysis of a column in 1744. The classical buckling 

analysis is based on the so-called small deflection theory, yielding an eigenvalue 

problem. It is found the eigenvalues together with the eigenvectors, namely the mode 

shapes. The amplitudes of these eigenvectors are not determined. The smallest 

eigenvalue is called the critical buckling load. The critical buckling load for a 

column is dependent on its rigidity and its length.  

 

The effect of shear deformation on critical buckling load is generally small, 

except for short columns. Euler-Bernoulli column theory neglects the effect of 

transverse shear deformation. Shear deformation effect reduces the buckling 

capacities of columns. Timoshenko column theory takes into account shear 

deformation on the buckling capacity of the column under compressive loads. 

 

Two types of column failure modes are well known. Local (flange) buckling 

dominates the behavior of stubby columns. Global (Euler) buckling controls the 

behavior of slender columns. Buckling is typically associated with long slender 

column. The Euler mode involves a sudden lateral deflection without deformation of 

the cross section.  

 

2.1.2 Stability Analysis 

 

Energy approach is one method of analyses in stability. For an elastic system 

subjected to conservative forces, it can be expressed the total potential energy of the 

system as a function of a set of generalized displacements and the external applied 

forces. Conservative forces are known whose potential energy is dependent only on 

the final values of deflection, not the specific paths to reach these final values.  
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To obtain the equilibrium equation of the structure, the stationary point of the 

potential energy needs to be found. If the system is in equilibrium, its total potential 

energy must be stationary. Therefore, it generalized displacement equal to zero by 

setting the first derivative of the total potential energy function with respect to the 

each. If first derivative of the total potential energy function equal to zero, it is called 

as equilibrium conditions of the system. 

 

Now, it is used potential energy for determining stability of structural systems. It 

can be examined the stability of an equilibrium position for any system by examining 

the terms of a Taylor series expansion for the potential energy V at the equilibrium 

position. For a one degree of freedom system: 
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It is defined equilibrium and stability for a structural system in terms of total 

potential energy (Wadee, 2004): 

 

• It is necessary and sufficient a stationary value of the potential energy with 

respect to the degrees of freedom for the equilibrium of the system. 

• It is necessary and sufficient a complete relative minimum of the total 

potential energy with respect to the degrees of freedom for the stability of an 

equilibrium state. 

 

First rule expresses that 
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and so the change in V is 

 



   

  

23

+++=−+ 4
4

4
3

3

3
2

2

2

!4
1

!3
1

!2
1)()( δδδδ

QQQ dQ
Vd

dQ
Vd

dQ
VdQVQV  

...
!

1...
!5

1 5
5

5

+++ n

Q
n

n

Q dQ
Vd

ndQ
Vd δδ    (2.3) 

 

This series in Equation (2.3) has to be positive for any small perturbation δ for V (Q) 

to be minimum namely stable. So, the following observations can be made: 

 

• The first nonzero term must be positive for any δ for a stable system. It must 

be cover an even power of δ with a positive differential coefficient. 

• If the series is zero, all derivates must be zero. This definition means neural 

stability. 

• All other combinations are unstable. 

 

For example if: 
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V is neither maximum nor minimum. However, it also becomes negative which 

implies instability for the negative δ the dominant term in the series. Linearizing 

deflections would only allow the determination of singular points. It would not allow 

analysis of their stability.  

 

A way of visualizing why energy minima implies stable equilibrium is to cause a 

ball on a physical surface in static equilibrium as shown in three examples in Figure 

2.1. It is displayed in Case (1) a ball on a local minimum with perturbing the ball 

away from its position by a small distance causes the ball to roll around about its 

original position, implying that the original position was stable. Case (2) shows a ball 

on a local maximum with perturbing the ball away from the top brings about the ball 

permanently to leave its original position, implying that the original position was 
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unstable. Case (3) shows a ball where one side rises and the other side falls away, 

namely a point of infection. Because this is called a position of neutral stability, it is 

actually unstable, as small perturbations would make it behave identically to case (2).  

 

 

 

 

 

 

 

 

 

 

 

 

For systems of n degrees of freedom, the potential energy profile becomes an n+1 

dimensional surface. It is illustrated systems with two degrees of freedom have the 

stability possibilities in Figure 2.2. Cases (1) and (2) are fundamentally the same as 

for the single degree of freedom case. For systems with two degrees of freedom and 

more, however, it may have a surface in which one direction is a minimum but one 

of the other directions is a maximum; this is a saddle point, it is essentially unstable 

and is shown as case (3) for a two degree of freedom system (Wadee, 2004). 

 

 

a) Potential energy profile b) Ball on a profiled surface 

Figure 2.1 The rolling ball analogy for stability for single degree of freedom systems (Wadee, 2004) 

Case (3) Saddle point Case (2) Local maximum Case (1) Local minimum 

Figure 2.2 The rolling ball analogy for stability for more than one degree of freedom (Wadee, 2004) 
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It can be similarly considered the compressed bar. When a perfect column is 

subjected to a compressive axial force, the only deformation that occurred is a 

shortening of the column. For small value of force, if the column are to be deflected 

laterally by a force perpendicular to the column. Thereafter the lateral force removed, 

the column will return to its straight. This case means condition of stability. A small 

disturbance causes small magnitude of the displacement in the response. If the load is 

increased, when the lateral load is removed, the column will remain in the deformed 

shape and fail from a structural standpoint. A small disturbance causes large 

displacement (Figure 2.3). The structures become unstable. This condition is referred 

to as buckling. Structural instability failures are very hazardous. The critical load 

means the load at which the column starts buckling. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.3 Equilibrium of a compressed column 

 

The critical buckling load for a column is dependent on its rigidity and column’s 

length. As expected, the critical load decreases as the column’s length increases, 

eventually lateral buckling becomes more noticeable. This phenomenon can be 

mathematically modeled by means of finite element methods. When the compressive 

load attains the critical buckling load of the structural element, its total stiffness 

matrix becomes singular. At this point, the structural stiffness matrix has a nonempty 

null space, which means that it could statically undergo infinite displacement through 

the application of any nonzero lateral force. This implies an unstable equilibrium 

 STABLE   STABLE UNSTABLE   
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points. It is determined the shape of the buckled beam by the vectors included within 

the null space of the total stiffness matrix. As the axial load increases beyond the 

critical buckling load, the dimension of the null space increases, and more buckling 

modes occur (Chase & Yim, 1999). 

 

2.1.3 The Euler Formula for Columns 

 

Euler (1744) computed the critical buckling loads for columns with the 

assumption of uniform cross-section for four different support types. Euler accepted 

that a column that is originally perfect column remains straight from the onset of 

loading. The load should reach a critical value for producing a small deflection of the 

column. It would suffer no deflection below this critical value. 
 

The basic equations for analysis of column can be derived by considering the 

column. Consider a simply supported column, with length L and flexural rigidity EI 

loaded axially with a force P (Figure 2.4). 

 

 

 

 

 

 

 

 

 

 
Figure 2.4 Column with pinned ends and free body diagram of upper part of the column 

 

 

Equation moments at the cut end: 
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where w is the lateral deflection at that point and x is the distance of the point from 

any given end. The deflection of the beam is related with its bending moment 

distribution. Bending theory states: M=-EI w ′′  curvature, which from linear bending 

theory can be written: 
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and the governing equation for the buckling of column is then: 
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which simplifies to, 
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This expression is in the form of a second order differential equation of the following 

type: 
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The solution of this equation is: 

 
)()( kxBSinkxACosw +=   (2.10) 

 

where A and B are constants, it can be determined using the column’s kinematics 

boundary condition. It is given boundary condition for both pin-ended columns; 

 
 
 (2.11) 
 
 

 

For x=0 ⇒w=0 A+0=0 giving that A=0 

For x=L⇒  w=0  BSin(kL)=0 
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If B=0, bending moment does not exist, so the only logical solution is for; 

 

 Sin(kL)=0  (2.12) 
 

and the only way that this can happen is if : 

 

kL=nπ, (n=1,2,3,......) (2.13) 
 

since 22 )(
L

n
EI
Pk π

==  

 
then it is written buckling load as : 

 

2

2
2

L
EInP π

=  (2.14) 

 

where n define as the buckling mode shapes, as in Figure 2.5. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.5 First three modes of buckling loads of the column 
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The column buckles at P1 because P1 <P2<P3 and never gets to P2 or P3 unless 

bracing is placed at the points where w=0 to preclude buckling at lower loads. 

Therefore, it is written as the critical buckling load for a pin-ended column: 

 

Pcr
L
EInP == 2

2
2 π  (2.15) 

 

where, I least second moment of area, E, Young’s modulus of elasticity, L, length of 

the column and Pcr, critical or maximum axial load on the column just before it 

begins to buckle. When n=1, it is obtained the smallest value of P so that the critical 

buckling load for the column is: 

 

2

2

L
EIPcr π

=  (2.16) 

 

This equation is known as Euler buckling load. When the load reaches the Euler 

buckling load, buckling suddenly occurs without any further load increase. The 

critical Euler buckling load clearly limits the column’s safe load capacity. Higher 

orders of n may satisfy equilibrium, non-trivial solution and boundary conditions. 

These load levels can be reached, the column has lost it stability of the equilibrium 

state. It will not be capable of carrying on any further loads anymore. The non-trivial 

solution is called the buckling mode. It describes the pattern of the deflection 

immediately after buckling has occurred. The buckling mode shape is valid only for 

small deflections, where the material is still within its elastic limit. The Euler 

equation changes for columns with different end conditions. It is possible to set up 

the differential equation with suitable boundary conditions to obtain the Euler 

buckling.  
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Euler’s formula can be given a general form for an elastic column, 

 

2

2

)(KL
EIPCR

π
=  (2.17) 

 

where KL represents the effective length of the column due to the end conditions and 

following: 

 

• K=2 for fixed-free 

• K=0,5 for fixed-fixed 

• K=0,7 for pinned-fixed. 

 

The effective length is shown in Figure 2.6 for various end conditions of column. 

 

 

 
 

Figure 2.6 Effective lengths for various end conditions 
 

 

Pinned ends Fixed ends Pinned and fixed endsFixed and free ends

K=1 K=0.5 K=0.7 K=2
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2.1.4  Slenderness Ratio for Columns 

 

It is very important subject end restraint and its effect on the load carrying 

capacity of columns. A thin-walled structure is made from a material whose 

thickness is much less than other structural dimensions. Buckling of thin walled 

structures may occur at stress well below the elastic limit. Critical buckling load 

depicts the ultimate capacity for a straight column in the engineering applications. 

There is a greater possibility for failure to occur, as members become more slender 

or thinner. The critical load because of buckling is less than maximum load needed 

for compressive yielding if the column is slender. The limiting value of the 

slenderness ratio is fundamentally a measure of the column’s flexibility. The 

slenderness of a column is a function of effective length and the least radius of 

gyration. It is more useful to express the critical loading condition in terms of stress 

for purposes of design. It is given the following equation: 

 

yield
CR

EP
σ

π=  (2.18) 

 

into the case with both ends pinned, yielding the (Anonymous, 2005j): 

 

yield

e EL
σ

π
ρ

=  and 
A
I

=ρ  (2.19) 

where 

 

ρ       : Radius of gyration calculated from the smallest moment of inertia 

E       : Young’s modulus 

I        : Smallest moment of inertia of the column 

yieldσ : Yield stress of the column 

A       : Cross-sectional area of the column 

Le      : Effective length 
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The term, Le/ ρ  is known as the slenderness ratio and contains information about the 

length and the cross-section. Figure 2.6 also shown the effective length for various 

end conditions of column. According to last equation, it can be seen that buckling 

will always happen about the column axis having the largest slenderness ratio, 

because a large slenderness ratio will give a small critical load. 

 

It can be illustrated transition by plotting between stress and slenderness ratio, as 

shown in Figure 2.7. There is no sharply divided transition among the yielding and 

buckling in reality. The curve can be divided into three regions (Figure 2.8). It is the 

short column region in which yielding occurs when σ=σyield in region A. Region B is 

an intermediate column region in which the column may yield or may buckle and 

empirical relations are used to approximate the resulting curve. It is for long columns 

in Region C. Buckling will occur in this region.  

 

 

 

 

 

 

 

 

 

 
 

Figure 2.7 The relation between stress and slenderness ratio (Anonymous, 2005j) 

 

 

It is valid yieldσσ =  in region A, and ( )22 kLE eCR πσ =  in region C. Region C 

depends material, geometry and loading. It is often used empirical relations such as 
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parabolic approximation in region C. It is to fit a parabola to the σ - ( )ρeL curve 

from yieldσσ =  to yieldσσ = /2 such that. 
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Figure 2.8 The relation between stress and slenderness ratio with parabolic approximation 

(Anonymous, 2005j) 

 

Consequently, the buckling loads and stresses depend on stiffness of material, 

length of the column, cross-section dimensions, cross-sectional shape and end 

conditions (Mahfouz, 1999). 
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2.2 Buckling in Composite Materials 

 

2.2.1 Introduction of Composite Materials 

 

There has been a considerable increase in the use of advanced composite materials 

in various industries in recent years. The reason for this increase can be attributed to 

the great improvement of the stiffness-to-weight ratio and strength-to-weight ratio in 

composite materials. The development of composite materials with reduced weight 

and increased strength relative to the conventional metals or alloys, has played a 

critical role in achieving higher operating performance, long-life and reduced costs. 

 

It can be divided structural elements into four main categories:  

 

• metals,  

• ceramics,  

• polymers and  

• composites.  

 

The composite material is defined as composing of at least two substances in 

heterogeneous mix. It is combined two or more materials on a macroscopic scale in a 

specific way to accomplish desired mechanical properties. Modern technologies 

desire materials with combination of properties that cannot be met by the 

conventional metal alloys, ceramics and polymeric materials. To produce unique 

characteristics such as stiffness, toughness and high temperature strength, it can be 

combined metals, ceramics, glasses, polymers and cement. 

 

Composites have become popular in a number of applications such as aerospace, 

marine applications, chemical industries and sporting goods and other industries. 

Military and commercial aircraft is the major structural applications for composites. 

Because in this field, weight reduction is critical for attaining higher speeds and 

increased payloads. There has been an enormous interest in the composite materials 
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in recent years. It is also selected composites for the purpose of weight saving, which 

in turn increases the fuel economy and payload capacity. It is used composites in 

wing skins, flaps, stabilizers and tail-boxes of advanced aircraft. It is made of 

composites rotor blades in helicopters not only for weight saving but also for better 

control of the twisting frequencies in the blades. It is also used composites the 

manipulator arms, tubes for mid-fuselage truss structure of space shuttles, exterior 

body component of automotive vehicles such as the hoods, door panels, rear leaf 

springs, drive shafts and sporting good industry such as bicycles, canoes racket-ball 

rackets, golf club shafts, racket-ball rackets, fishing rods snow and water skis, 

arrows, archery bows, hockey sticks and marine applications in structures such as 

boat hulls, decks, bulkheads, frames, masts and spars (Hassan, 1998). 

 

Composite materials are used for high-performance applications because of 

desirable properties. Composite materials have been confirmed superior to metals 

such as robotics that used for various tasks. It can be improved strength, stiffness, 

weight reduction, thermal properties, fatigue life, corrosion resistance and wear 

resistance by forming a composite material. The behavior of composite materials 

also depends on many parameters that can be changed  

 

Composite materials are composed of just two phases; one is termed the matrix, 

which is continuous and surrounds the other phase, often called the dispersed phase 

another is termed fiber. The composite is designed to show a combination of the best 

characteristics of each of the component materials. The commonly used composite 

materials are made of high-strength and high-stiffness fibers and held together by a 

matrix.  

 

The performances of the composites depend on the mechanical properties, 

orientation, length, shape and composition of the fibers; the mechanical properties of 

the resin, the bond between the fibers and the matrix. Ease of fabrication, high 

fracture energy and potential for low cost are main features of composites materials 

 



   

  

36

It is used a reinforcement phase and a binder phase, in many cases with more rigid 

and higher-strength fibers in a more compliant matrix. It was started firstly with glass 

fibers, followed by the more recent high-performance fibers. Continuous fibers such 

as glass, aramid and carbon embedded in a thermoset resin matrix (polyester, vinyl 

ester, or epoxy), which holds the fibers together and transfers the load between them. 

A typical example carbon fiber is broadly introduced into aerospace and sporting 

goods applications (Anonymous, 2005k). 

 

There are both natural and manufactured composite materials. Bone, wood, 

bamboo is examples of cellular composites that exist in nature. Muscle tissue is a 

multidirectional fibrous laminate. Wood is the most common natural composite 

material. Wood is a fibrous composite, cellulose fiber in a lignin matrix. The lignin 

matrix joins the fibers and furnishes the stiffness. It is another example bone a 

natural composite that supports the weight of various members of the body. In 

addition to these naturally occurring composites, there are manufactured composite 

materials that have been in use for a very long time. The fiberglass-reinforced plastic 

used in household goods and in many applications is the most common example of a 

composite material. The plastic alone is relatively weak and has a low elastic 

modulus. However, it is very stable chemically and constitutes an excellent matrix 

for the composite. The glass fibers supply the strength and stiffness; their modulus of 

elasticity may be 50 times greater than that of the plastic (Anonymous, 2005k). 

Because the glass fibers can resist a much higher tensile stress before strain or 

yielding happens, they take most of the load when the composite is stressed.  

 

Because fiber has quite different strength and stiffness properties in many cases, it 

must be thought that the fiber will be utilized in conjunction with a matrix. For 

example, the matrix has almost negligible strength and stiffness in comparison to the 

fiber with polymeric matrices. Since volume of fiber in the total composite volume 

(the fiber-volume fraction) will be approximately, say, 60%, the strength and 

stiffness will be diluted by a similar percentage, namely, a 40% loss of stiffness and 

strength will occur. In addition, if the loads are not strictly in one direction, some 

fraction of the fibers will have to be aligned in other than the principal load direction. 
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This further reduces the strength and stiffness in anyone direction. However, 

experience has indicated that meaningful structural advantages can still be acquired. 

Currently, composite applications in aircraft often deliver about 30% weight 

reduction (Anonymous, 2005k). 

 

Composite materials are categorized into three types:  

 

• Fibrous composites,  

• Particulate composites and  

• Laminated composites.  

 

Fibrous composites consist of fibers of one material in a matrix material of 

another. Particulate composites consist of macro size particles of one material in 

matrix of another. Laminated composites composed of layers of different materials 

including composites of the first two types (Reddy, 1997). 

 

Generally, the modeling of composite materials can be investigated from distinct 

levels: macro mechanical and micro mechanical scales. The macro mechanical 

approach is concerned with the contributions of each ply to the overall properties. 

Based on the known properties of the individual layers, the macro mechanical 

modeling involves investigation of the interaction of the individual layers of the 

laminate and their effect on the overall response of the laminate. For a given stacking 

sequence, the stress-strain relations of a composite laminate can be derived, and the 

various coupling mechanisms between in plane and out of plane deformation modes 

of a composite laminate can be explored. The micromechanical approach assumes 

that the complex microstructure of the composite can be replaced by a representative 

volume element or unit cell. The representative volume element has a regularly 

spaced any of parallel cylindrical fibers embedded in the homogeneous matrix 

material of infinite dimensions so that it can be isolated from the whole structure of 

the composite. The representative volume element has the same fiber volume 

fraction as the composite laminate and the respective properties of the fiber and 

matrix can be characterized individually. The individual constituents can then be 
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used together in the representative volume element model such that the overall 

response of the composite can be predicted. 

 

 2.2.1.1 Manufactured Composite Materials 

 

 2.2.1.1.1 Fiber Properties 

 

Fibers are the principal component in composite material. It is fundamental load-

bearing components in composite material. It has the largest volume fraction. Proper 

selection of the type, amount and orientation of fibers is very important because of 

influencing the characteristic of composite materials, such as specific gravity, tensile 

strength and modulus, compressive strength and modulus, fatigue strength, electrical, 

thermal conductivities and cost (Mallick, 1993). 

 

Fibers are grouped into three different classifications based on diameter and 

character:  

 

a) whiskers, 

b) fibers and 

c) wires.  

 

It is whiskers very thin single crystals that have extremely large length-to-

diameter ratios. Because of their small size, it has a high degree of crystalline 

perfection and is virtually flaw free, which accounts for their exceptionally high 

strengths. Whiskers are not used extensively as a reinforcement medium in spite of 

these high strengths. Because it is extraordinarily expensive. Further, it is difficult 

and often impractical to incorporate whiskers into a matrix. It is included whisker 

materials graphite, silicon carbide, silicon nitride and aluminum oxide.  
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Fibers are either polycrystalline or amorphous. Fibrous materials have small 

diameters. It is generally fibrous materials either polymers or ceramics (e.g., the 

polymer aramids, glass, carbon, boron, aluminum oxide and silicon carbide). 

Generally, the fibers are unidirectional or woven.  

 

Fine wires have comparatively large diameters; typical materials include steel, 

molybdenum and tungsten. It is utilized as a radial steel reinforcement in automobile 

tires, in filament wound rocket casings and in wire wound high-pressure hoses 

(Anonymous, 2005k). 

 

It is commercially available a number of fibers. The various types of fibers 

currently in use are glass-fiber, kevlar-fiber, carbon fiber, boron-fiber, silicon 

carbide-fiber and other fibers. They displayed a wide range of structural properties, 

including strength, stiffness and durability. 

 

Among all the fiber materials, glass fibers are the most widely used reinforcement 

for composites. This is because their specific characteristics are relatively well 

known and they can be produced at relatively low cost. Glass fiber with polymeric 

matrices has been used in various commercial products such as piping, tanks, boats, 

and sporting goods. Due to the combination of low cost, corrosion resistance, and in 

many cases efficient manufacturing potential, glass is by far the most extensively 

used fiber. Glass fiber composites show low stiffness, high elongation, and moderate 

strength and weight, and generally lower cost relative to other composites. It has 

been used widely where corrosion resistance is important, such as in piping for the 

chemical industry and in marine applications. It is used as a continuous fiber in 

textile forms such as cloth and as a chopped fiber in less critical applications. It is 

commonly utilized the two types of glass fibers in the industry: E-glass and S-glass. 

Another type, known as C-glass, is used in chemical applications requiring greater 

corrosion resistance to acids than is supplied by E-glass (Anonymous, 2005k and 

Mallick, 1993). 
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Kevlar fibers have the lowest specific gravity and the highest tensile strength-to-

weight ratio among the current reinforcing fibers. Both glass-fiber and kevlar-fiber 

composites display good toughness in impact environments. It is used in many 

marine and aerospace applications where lightweight, high tensile strength and 

resistance to impact damage are important. Kevlar fibers have high tensile strength 

but lower compressive strength. Kevlar is inclined to respond under impact in a 

ductile manner, as opposed to carbon fiber, which tends to fail in a more brittle 

manner (Anonymous, 2005k and Mallick, 1993). 

 

Carbon fibers are widely used in aerospace and some applications of sporting 

goods, taking advantage of the relatively high stiffness-to-weight and high strength-

to weight ratios of these fibers. The high stiffness and strength combined with low 

density and intermediate cost have made carbon fiber second only to glass fiber in 

use. It is ranged the tensile modulus from 207 GPa on the low side to 1035 GPa on 

the high side (Mallick, 1993). Carbon fibers vary in strength and stiffness with the 

processing variables, so that different grades are available such as high modulus or 

intermediate modulus, with the trade-off being between high modulus and high 

strength.  

 

The tensile strength of carbon fiber differs with the specific type being 

considered. Although a typical range of values is on the order of 3,1 to 5,5 GPa (450 

to 800 ksi) for fiber tensile strength, and stiffness on the order of 240 GPa (35 Msi), 

combined with a specific gravity of 1,7. Therefore the fiber itself is stronger than 

7075 T6 aluminum by a factor of 5 to 10, and stiffer by a factor of 3,5 at 

approximately 60% of the weight. It is obvious the potential for advantages in 

mechanical design of high-performance structures (Anonymous, 2005k). 

 

Even though lower-cost carbon fibers have showed on the market, current costs 

for carbon fibers are several times to an order of magnitude or more higher than 

aluminum. The cost differential implies that composite materials will be used in 

demanding applications, where rises in performance justify the higher material cost. 

Nevertheless, the material cost is only part of the story as manufacturing cost also 
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must be bear in mind. It has been possible to form parts of composites with a 

significantly fewer number of individual components compared to metallic structures 

and thus leading to an overall lower-cost structure. On the other hand, it may require 

fiber composite components a meaningful amount of hand labor, and thus have high 

manufacturing costs (Anonymous, 2005k). 

 

Boron fibers show high stiffness-to-weight ratio, and good compressive strength, 

but also at very high cost. Tensile strength of boron fibers ranges of 379-414 GPa. 

Boron was one of the earliest fibers to be introduced into an aerospace application. 

However, whereas the prices of carbon fibers have dropped steadily since the 

introduction in the late 1960s, boron fibers have stayed expensive. Boron fibers have 

a relatively large diameter, typically approximately 200 microns. These fibers have 

been used in specialized applications both in aluminum and in polymeric matrices. 

Boron fibers also provide excellent resistance to buckling, which in turn contributes 

to high compressive strength for boron-fiber –reinforced composites (Mallick, 1993). 

 

It is a number of other fibers under development for use with ceramic matrices to 

get very high-temperature applications such as for engine components. For example, 

it is given silicon carbide fiber, used in whisker form. These fibers may confirm to be 

significant in high temperature applications. It is obvious that their present use is a 

very small fraction of the use of glass, carbon, and Kevlar fibers (Anonymous, 

2005k). 

 

Silicon carbide fibers are utilized primarily in high temperature metal and ceramic 

matrix composites due to their excellent oxidation resistance and high temperature 

strength retention. It is about the same as those of boron at room temperature the 

strength and stiffness of silicon carbide fibers. Silicon carbide whisker reinforced 

metals are also receiving considerable attention as alternatives to unreinforced metals 

and continuous fiber reinforced metals. Silicon carbide whiskers are very small and 

so that standard metal forming processes such as extrusion, rolling and forging can 

be easily used, it is 8-20µ in (20-51nm) in diameter and about 0,03 mm long 

(Gibson, 1994).  
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Properties of some commercially used fibers are listed in the following table 

(Hassan, 1998): 

 
Table 2.1 Properties of commonly used fibers (Hassan, 1998) 

 

Fiber Type 
Specific 

Gravity 

Tensile Modulus 

(GPa) 

Tensile Strength 

(MPa) 

Strain to Failure 

(%) 

E-glass 2,54 72,4 3450 4,8 

S-glass 2,49 86,9 4300 5,0 

Carbon 1,86 380 2700 0,7 

Aramid 

(Kevlar-49) 
1,45 131 3620 2,8 

Boron 2,7 393 3100 0,8 

 

 

 2.2.1.1.2 Matrix Properties 

 

The matrix in composite transfers stresses between the fibers, provides a barrier 

against an adverse environment, and preserves the surface of the fibers from 

mechanical abrasion. It plays a minor role in the tensile load-carrying capacity of a 

composite structure. However, it has a major influence selection of a matrix on the 

interlaminar shear as well as in-plane shear properties of the composite material. The 

matrix yields lateral support against the possibility of fiber buckling under 

compressive loading, therefore influencing to some extent the compressive strength 

of the composite material (Mallick, 1993). 

 

The matrix phase binds the fibers together and acts as the medium by which an 

externally applied stress is transmitted and distributed to the fibers; only a very small 

proportion of an applied load is sustained by the matrix phase. It is essential that the 

matrix material should be ductile. Additionally, the elastic modulus of the fiber 

should be much higher than that of the matrix. It is protected the individual fibers 

from surface damage because of mechanical abrasion or chemical reactions with the 

environment. Further, it is separated the fibers and by virtue of its relative softness 
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and plasticity. The matrix is prevented the propagation of brittle cracks from fiber to 

fiber, which could result in disastrous failure. It is obvious that adhesive bonding 

forces between fiber and matrix be high. Adequate bonding is fundamental to 

maximize the stress transmittance from the weak matrix to the strong fibers. 

Consequently, the matrix holds the fibers together in a structural unit and preserves 

them from external damage, transfers and delivers the applied loads to the fibers, and 

in many cases provides some needed property such as ductility, toughness, or 

electrical insulation (Anonymous, 2005k and Gibson, 1994). 

 

It have been used the thermoset polymers and a large amount of characterization 

data are accessible for these materials. The most common matrix material is resin, 

which includes polymers and epoxies. 

 

Epoxy resins have a wide variety of properties because a larger number of starting 

materials curing agents and modifiers are available. In general, epoxy resins have 

high mechanical properties and excellent adhesion to the fibers. The epoxy resins are 

extensively used thermosets that propose superior performance, but are more costly 

relative to the polyesters. There is a wide range of epoxy resins available 

commercially. It must be consulted manufacturer’s literature be to select the proper 

range of properties needed and the cost required to achieve these objectives. It is 

typical cure temperatures for the epoxies in the range of 121 to 177°C (250 to 

350°F). However, some ambient temperature products are available. Consequently, 

epoxy matrix has many advantages such as, wide variety of properties, absence of 

volatile matters during cure, low shrinkage during cure, excellent resistance to 

chemicals and solvents, excellent adhesion to a wide variety to a wide variety of 

fillers, fibers and other substrates. However, it is the principal disadvantages 

relatively high cost and long cure time. Because of higher viscosity than other resins, 

epoxy resins are relatively expensive. For this reason, their usage became limited in 

some manufacturing processes like pultrusion that requires large quantities of resin 

(Mallick, 1993, Anonymous, 2005k and Hassan, 1998). 
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It is considered variables the inter laminar shear strength, which is a laminate 

property related to the shear strength of the matrix, the brittleness or toughness of the 

matrix, moisture and environmental resistance, and the range of elevated temperature 

properties if that is part of the product requirement. It is emphasized early aerospace 

epoxies used in prepregs resistance to hot, wet conditions, and while performing 

these objectives tended to be brittle and subject to damage from accidental impact. It 

has been more recent developments the high toughness epoxies, available at higher 

cost. Finally, it is listed followed the main characteristics of the property-cured 

product (Homam, 2000): 

 

• excellent chemical resistance; 

• very low shrinkage on cure 

• outstanding adhesion to a variety of substrates, especially metals and concrete 

• high tensile, compressive, and flexural strength 

• excellent electrical insulation properties 

• corrosion resistance 

• ability to cure over a wide temperature range 

 

It is typically limited the epoxies to 1500C or less, depending on the specific 

material. It is available higher-temperature polymers such as bismalimides and 

polymers. However, they typically demonstrate increased brittleness. They are being 

used in applications such as cowlings and ducts for jet engines.  

 

It can be formulated polyester resins in a variety of properties ranging from hard, 

brittle to soft, and flexible. Polyester resins advantages are low viscosity, fast cure 

time and low cost. However, its properties are generally lower than those for epoxies. 

Because of their lower viscosity and faster cure time, their processing is easier than 

most epoxy resins. Polyesters are used in the highest volume because of low cost and 

have adequate mechanical properties and environmental durability. Their high 

volumetric shrinkage is disadvantage as it might cause surface defects upon curing. 

Polyester composites are utilized pipes and tanks, shower stalls and bathtubs, boats 

and automobile components (Mallick, 1997 and Hassan, 1998).  
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Mechanical properties of vinylester resins are between those of epoxy and 

polyester resins. Vinylester resins have higher fracture toughness and better wet-out 

properties than epoxies and better adhesion to glass fibers than polyesters. They are 

also more flexible. Vinylester resins have good characteristics of epoxy resins, such 

as excellent chemical resistance and tensile strength, and of unsaturated polyester 

resins, such as low viscosity and fast curing. However, the volumetric shrinkage of 

vinylester resins is in the range of 5-10%, which is higher than that of the parent 

epoxy resins. It is also exhibited only moderate adhesive strengths compared with 

epoxy resins. It is lower-cost materials polyester and vinylester with similar but 

somewhat improved mechanical properties and developed solvent resistance. It gives 

a higher failure strain than typical polyesters, which in turn gives vinylester 

laminates superior mechanical properties, impact damage resistance and fatigue life 

(Mallick, 1993 and 1997). 

 

It is known phenolics because of their good fire resistance. Due to the introduction 

of more stringent, their usage has increased fire, smoke and toxicity regulations. 

They still find many applications. Their main disadvantage is their highly brittle 

nature because of their low cost and good balance of properties (Hassan, 1998). 

 

Metal matrix composites are being used for higher-temperature use than that 

available with polymeric matrices. It has been utilized aluminum with boron and 

carbon fibers. It is a successful application is that of a metal matrix piston 

manufactured by Toyota in Japan, used for increased wear resistance and high 

thermal conductivity. It has been manufactured over one million of these. Ceramic 

matrix materials are under development for still higher temperature ranges 

(Anonymous, 2005k). 

 

 

 

 

 



   

  

46

 

 2.2.1.1.3 Composite Properties 

 

The need of lightweight, good-strength-characteristics and resistance to thermal 

effects in areas such as aircraft design, robotics, automobile industry and smart 

control have increased interest in composite materials. 

 

Because of producing unique characteristics such as stiffness, toughness and high 

temperature strength, it can be combined metals, ceramics, glasses, polymers and 

cement in composite materials. Figure 2.9 makes a comparison between aluminum, 

steel and composite materials (Chawla, 2001). 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.9 Comparison between materials and composite materials (Chawla, 2001) 

 

 

The advantages of composite material are listed followed (Homam, 2000): 

 

• They can be made with high strength and high specific strength (ratio of 

strength to specific weight) 

• They can be made with high stiffness and high specific stiffness (ratio of 

• stiffness to specific weight) 

• Density is generally low 

• Strength can be high at elevated temperature 

• Impact and thermal shock resistance are good. 

• Fatigue strength is good, often better than the metals 

• Oxidation and corrosion resistance are particularly good 
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• Thermal expansion is low and can be controlled 

• Thermal conductivity and electrical conductivity can be controlled 

• Stress-rupture life is better relative to many metals 

• Predetermined properties can be produced to meet individual needs 

• Fabrication of large components can often carried out at lower cost than for 

metals 

 

It has an important influence the arrangement or orientation of the fibers relative 

to one another, the fiber concentration and the distribution on the strength and other 

properties of fiber-reinforced composites. 

 

 2.2.1.2 Natural Composite Materials (Wood Properties) 

 

Wood can be considered one of nature's complex composite materials. It is 

completely used as a material for many structures, furniture, tools, and decorative 

objects. This material has much utilization in the civil infrastructure and other 

important applications (Tabiei & Wu, 2000).  

 

For comprehension of the mechanical properties, the individual structure 

characteristic of each tree has to be taken into consideration (Reiterer, Burgert, Sinn 

& Tschegg, 2002). Variability, or variation in properties, is common to wood 

materials. Because wood is a natural material and the tree is subject to many 

constantly changing influences (such as moisture, soil conditions, and growing 

space), wood properties vary considerably, even in clear material (Green, 1999). 

 

Investigation of wood can be occurred on many different scales, i.e. structural 

timber level, fiber level, fibril level or cellulose chain level (Poulsen, Moran, Shilr & 

Byskov, 1997). Wood properties exhibit wide variability due to its natural origin. 

These variations are in part the result of the growth conditions of wood brought 

about by environmental factors such as climate, soil, water supply, and available 

nutrients. Wood is assumed to have three mutually perpendicular axes of symmetry 

with respect to its properties: longitudinal, radial, and tangential with reference to the 
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cylindrical bole of a tree (Tabarsa, 1999). Wood is a complex fiber-reinforced 

composite because of the orientation of the wood fibers and the manner in which a 

tree increases in diameter as it grows, properties vary along three mutually 

perpendicular axes: longitudinal, radial and tangential.  

 

The longitudinal axis is parallel to the fiber (grain) direction, the radial axis is 

perpendicular to the grain direction and normal to the growth rings, and the 

tangential axis is perpendicular to the grain direction and tangent to the growth rings 

(Reiterer, Burgert, Sinn & Tshchegg, 2001). Although most wood properties differ in 

each of these three axis directions, differences between the radial and tangential axes 

are relatively minor when compared to differences between the radial or tangential 

axis and the longitudinal axis (Winandy, 1994). Hard woods are fine-grained and 

have a higher compressive strength than softwoods. Wood is unique in that it has two 

compressive strengths; one when loaded parallel to the grain and another when 

loaded perpendicular to the grain. When a wood column crushes the fibers of the 

wood actually split apart. In every case, crushing is a strength failure and does not 

depend upon the shape of the section (Anonymus, 1996l). 

 

2.2.2 Determination of Mechanical Properties of Composite Materials  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Let us consider a thin lamina in which fibers are positioned parallel to each other 

in a matrix, as shown in Figure 2.10. The material coordinate axis (1) is taken to be 

θ

Figure 2.10 Definition of principal axes and loading axes for composite material (Mallick, 1993) 
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parallel to the fiber, the axis (2) transverse to the fiber direction in the plane of the 

composite. It is made following assumptions determining the engineering constants: 

 

• It exists perfect bonding between fibers and matrix 

• Fibers are parallel and uniformly distributed throughout 

• It is isotropic both fibers and matrix  

• It is valid Hooke’s law both fibers and matrix 

• The applied loads are either parallel or perpendicular to the fiber direction 

• Both fibers and matrix behave as linearly elastic material. 

 

It is calculated from followed equations elastic properties of a unidirectional 

continuous fiber 00 lamina (Mallick, 1993): 

 

Longitudinal modulus mmff VEVEE +=⇒ 11  (2.22a) 

 

where Vf and Vm are fiber volume fraction and matrix volume fraction, respectively. 

Equation (2.22a) is written also Equation (2.22b): 
 

A
AE

A
A

EE m
m

f
f +=11 . (2.22b) 

 

It also defined Ef and Em as modulus of the fiber and modulus of the matrix, 

respectively. 

 

 Transverse modulus
fmmf

mf

VEVE
EE

E
+

=⇒ 22  (2.23) 

 

While it is direction to the fibers young modulus of E11, young modulus of the 

direction transverse to the fibers is E22.  
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It expresses shear modulus as G12, and Poisson’s ratio is 12v : 

 

 Shear modulus
fmmf

mf

VGVG
GG

G
+

=⇒ 12  (2.24) 

 

Poisson’s ratio 12
11

22
21 v

E
E

v =⇒  (2.25) 

 

 

It is calculated from followed equations elastic properties of an angle ply lamina 

in which continuous fibers are aligned at an angle θ  with the positive x and y 

direction: 
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θ2cos11211211 2
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⎟⎟
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⎞
⎜⎜
⎝

⎛
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GEE
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EEE
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θ2sin1121
4
1 2

122211

12

1111

12 ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++−=

GEE
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EE
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xy
xx

yy
yx v

E
E

v =  (2.30) 

 

where E11, E22, v12 and G12 are calculated Equations (2.22) through (2.25). 
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The three-dimensional stress-strain relation in reference to the local fiber 

coordinates1, 2 and 3 for a single layer is shown in Equation (2.31) (Mallick, 1993): 
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  (2.31) 

 

where 332211 ,, σσσ  and 332211 ,, εεε  are stresses and strains in the local material 

axes1, 2 and 3 respectively. 231312 ,, σσσ  and 231312 ,, εεε  are shear stresses and 

strains, respectively, in the local material axes 1, 2 and 3. It is found below equations 

the stiffness constants (Cij) from the engineering properties: 

)21/()1( 32211331133223211232231111 vvvvvvvvvvvEC −−−−−=  

 

)21/()1( 32211331133223211231132222 vvvvvvvvvvvEC −−−−−=  

 

)21/()1( 32211331133223211221123333 vvvvvvvvvvvEC −−−−−=  

 

)21/()( 3221133113322321123123211112 vvvvvvvvvvvvEC −−−−+=  

 

)21/()( 3221133113322321123221311113 vvvvvvvvvvvvEC −−−−+=  

 

)21/()( 3221133113322321123112321123 vvvvvvvvvvvvEC −−−−−=  

 

2344 GC =  

 

1355 GC =  

 

1266 GC =   (2.32) 
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It is applicable Equation (2.32) for general 3-D composite materials. It can be set 

to zero G13, G23, G33, v13 and v23 for plain stress thin composite plates. The coordinate 

system 1-2-3 is offset by an angle θ  relative to the global coordinate x-y-z as shown 

in Figure (2.10). Therefore, in order to transfer stresses and the strains to the global 

coordinate system, a transformation matrix should be used as follows (Reddy, 1997): 

 

{ } [ ] { }σσ 1−= T  and { } [ ] { }εε 1−= T   (2.33) 

 

where  
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θθθ
θθθ
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sincossincossincos
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100
2sin0cossin
2sin0sincos

T   (2.34) 

 

It is expressed by substituting Equations (2.33) in (2.32) as follows: 

 

{ } [ ]{ } [ ] [ ] [ ] [ ]CTTCC t 1, −−== εσ  (2.35) 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11 Moments and forces on the laminated plate according to the classical laminated theory 

(Mallick, 1993) 
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In advanced composite materials, several layers are stacked on each other, each of 

which may have different mechanical properties in different directions. Therefore, a 

laminated plate can be reinforced in more than one direction. The relation between 

the forces acting on a laminated plate, and the resulting strains can be found by 

integrating the stiffness coefficients of Equation (2.35), layer by layer, along the 

whole thickness of the laminate. Equation (2.36) shows global force-strain 

relationship of a laminate (Hassan, 1998). 
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where  

∫
−

=
2/

2/

2 ),,1(),,(
h

h
ijijijij dzzzCDBA  (2.37) 

 

[A]=Extensional stiffness matrix for the laminate 

[B]=Coupling stiffness matrix for the laminate 

[D]=Bending stiffness matrix for the laminate 

z = Distance from the midplane in the thickness direction 

 

ijA  terms, form extensional stiffness matrix for the laminate, generate the in-plane 

extensional and the shearing deformations, ijε , when a laminate is subjected to in-

plane forces Nij. Bij terms, form the extension-bending coupling stiffness matrix, 

generate the curvatures, ijκ , when a laminate is subjected to the in-plane forces Nij 

and the bending moments Mij. Dij terms, the bending stiffness matrix generate the 

curvatures, ijκ , when a laminate is subjected to the bending moments Mij. The axial 

stiffness terms A16 and A26 if they exist in a laminate’s stiffness matrix, produce in-
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plane shear strain, xyγ , when the laminate is subjected only to axial force. The 

bending stiffness terms D16 and D26 if they exist in a laminate’s stiffness matrix, 

produce twisting curvature ijκ , when the laminate is subjected to a bending moment 

(Hassan, 1998). 

 

The strains shown in Equations (2.36) and (2.37) are the strains at the mid-plane 

of a laminate. However, the mid-plane strains of each layer are found from Equations 

(2.38). 

 

xxxxxx zk+= 0εε  

 

yyyyyy zk+= 0εε   (2.38) 

 

xyxyxy zk+= 0γγ  

 

 

 2.2.3 Theoretical Buckling Equation for Composite Materials  

 

A beam subjected to axial compressive load remains straight however shortens as 

the load increases from zero to a certain magnitude. The beam is said to be stable if a 

small axial or lateral disturbance applied to the beam keeps it in equilibrium. If the 

small additional disturbance results in a large response and the beam does not return 

to its original equilibrium configuration, namely, the beam is said to be unstable. It is 

called as buckling the onset of instability. It is termed as the critical buckling load the 

magnitude of the compressive axial load which the beam unstable. If the load is 

raised beyond this critical buckling load, the large deflection is occurred and beam 

tries another equilibrium configuration. Therefore, the load is of practical importance 

in the design of structural elements. It is measured buckling deflection onset of 

buckling (Reddy, 1997). 
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In the following section, it is investigated the critical buckling load according to 

both classical and first-order shear deformation theories. 

 

 2.2.3.1 Classical Buckling Theory 

 

In the absence of in-plane forces, as the transverse deflection function w, the 

classical laminated theory constitutive equations for symmetric laminates are given 

by (Reddy, 1997), 
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or inverse form, it has 
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where w indicates the buckling deflection and ijD*  (i, j=1,2,6) denote the elements 

of inverse matrix of ijD .  
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While ijD*  (i, j=1, 2, 6) is defined with Equation (2.34), Equation (2.35) is described  

ijD  matrix depending on plane-stress reduced stiffness ijQ . 
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−

ijQ is defined following equations:  
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)cos(sincossin)22( 44
66

22
6612221166 θθθθ ++−−+=

−

QQQQQQ  
 

θθ 2
55

2
4444 sincos QQQ +=

−

 
 

θθ sincos)( 445545 QQQ −=
−

 

 

θθ 2
44

2
5555 sincos QQQ +=

−

 

 

In these equations, it is defined angle ply lamina in which continuous fibers are 

aligned at an angle θ  with the positive x direction, as shown in Figure 2.10. 

 

The plane-stress reduced stiffness ijQ , is specified with Equation (2.45).  
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11 1 vv

E
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=  
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=  
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E
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=  (2.45) 

 

1266 GQ =  
 

2344 GQ =  
 

1355 GQ =  
 

 

Equation (2.41) displays that the transverse deflection function w, can be 

dependent of the coordinate y due to Poisson effect ( 12
*D ) and anisotropic shear 

coupling ( 16
*D ). These effects can be neglected only for long beams, namely, when 

the length-to-width ratio is large. It is a function of lamination scheme the length-to-

width ratio for which the transverse deflection can be assumed independent of y 

(Reddy, 1997). 
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Figure 2.11 Geometry of beam (Reddy, 1997) 

 

It is also written followed equation: 
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where b is the width and h is the total thickness of the beam, as shown in Figure 2.11.  

 

It can be written followed the equation of motion of symmetrically long beams 

(Figure 2.12), 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.12 Geometry of beams subject to buckling under clamped-free edge conditions (Reddy, 

1997) 
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Using Equation (2.46), the differential equation is obtained following equation: 
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Equation (2.47) is differentiated according to x, it is found Equation (2.48) with 

Equation (2.49). 
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If it is integrated, Equation (2.48) twice with respect to x, it is obtained Equation 

(2.50)  
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The general solution of Equation (2.48) gives Equation (2.51): 
 

4321 cossin)( cxcxcxcxw bb +++= λλ  (2.51) 
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The constants c1 and c2 can be detected using the boundary conditions of the 

beam. It is interested in obtaining the values of bλ for which there exists a nonzero 

solution w(x), namely, when beam experiences deflection. Once such a bλ is noticed, 

it is determine the buckling load from Equation (2.52). 
 

2)( b
yy

b
xx

b
IE

P λ=  (2.53) 

 

The critical buckling load is the smallest value of P, which is given by the 

smallest value of bλ . It is given by w(x) the buckling shape or buckling mode. In the 

following, to determine bλ  and the critical buckling load for each of beam it is 

considered beams with different boundary conditions (Reddy, 1997). 

 

 2.2.3.1.1 Simply Supported Beam 

 
For a simply supported beam, the boundary conditions are written following 

equations (Reddy, 1997): 

 

,0)(,0)0( 00 == aww  (2.54a) 
 

0)()(,0)0()0( 2
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When boundary conditions for simply supported beam are written Equation (2.51), it 

is obtained following equations: 

 

00)0( 42 =+⇒= ccw  
 

0,000)0( 42
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0sin0)( 31 =+⇒= acacaw bλ  
 

00sin0)( 31 =⇒=⇒=′′ cacaw bλ . (2.55) 
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For a nontrivial solution, the condition is 

 
,...2,1,0sin1 ==⇒= nnaac bb πλλ . (2.56) 

 

And the buckling load is written by Equation (2.57): 
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The buckling mode is  
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When n=1, the critical buckling load becomes 
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and the buckling mode or eigenfunction associated with it is 

 

a
xcxw πsin)( 1=  (2.60) 

 

 2.2.3.1.1 Clamped Beam 

 

When the beam is fixed at both ends, the boundary conditions are (Reddy, 1997) 

written following equations: 

 

0)(,0)0(,0)(,0)0( 00 ==== a
dx
dw

dx
dwaww . (2.61) 

 

When boundary conditions for clamped beam are written in Equation (2.51), it is 

obtained following equations: 
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00)0( 31 =+⇒=′ ccw bλ  
 

0cossin0)( 4321 =+++⇒= cacacacaw bb λλ  
 

0sincos0)( 321 =+−⇒=′ cacacaw bbbb λλλλ  (2.62) 
 

It is obtained using Equations (2.62), 
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For a nontrivial solution, it must be zero the determinant of the coefficient matrix of 

the above two equations, 
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It is obtained following equation if it is calculated above determinant: 

 

02cos2sin =−+ aaa bbb λλλ . (2.65) 
 
The solution of the Equation (2.65), known as the characteristic equation, gives the 

eigenvalues abλ  and the buckling load is calculated from Equation (2.52). The 

critical buckling load is obtained followed (Reddy, 1997): 
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 2.2.3.1.1 Clamped-Free Beam 

 

When the beam is clamped-free, the boundary conditions are written following 

equations (Reddy, 1997): 
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When boundary conditions for clamped-free beam are written in Equation (2.51), it 

is obtained following equations: 
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The critical buckling load is also obtained followed equation: 
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Table 2.1 The constants and eigenvalues for buckling of laminated composite beams with various 

boundary conditions (Reddy, 1997) 
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It is contained governing equations in Table 2.1 for various boundary conditions. In 

addition, from this table, it is calculated critical buckling load for different end 

conditions. 

 

 2.2.3.2 First –Order Shear Deformation Theory 

 

The first shear deformation theory known as Timoshenko beam theory. In the 

absence of in-plane forces, the first shear deformation theory constitutive equations 

for symmetric laminates are presented by (Reddy, 1997): 
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or inverse form, it is written Equation (2.72): 
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It is also written xQ , yQ  transverse force resultants following equation with Equation 

(2.74): 
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where K is the shear correction coefficient, ijA*  (i, j=4,5) express elements of the 

inverse of matrix of A , xφ  and yφ  are the rotation functions. 
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It is also written following equation for rotation functions: 
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It is obtained Equations (2.77) and (2.78) from Equation (2.71) and (2.72): 
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According to first order shear deformation theory, the governing equations of 

buckling under compressive loads P are written Equations (2.79) and (2.80) (Reddy, 

1997): 
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If it is solved Equation (2.79) it is obtained Equation (2.81):  
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When Equation (2.81) integrated according to x it is obtained Equations (2.87) with 
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The general solution of Equation (2.87) is obtained following equation with Equation 

(2.89): 
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The constants c1 and c4 can be detected using the boundary conditions of the beam. 

The critical buckling load is obtained with Equation (2.90). 

 

 2.2.3.2.1 Simply Supported Beam 

 

For a simply supported beam, the boundary conditions are expressed the following 

equations (Reddy, 1997): 
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When boundary conditions for simply supported beam are written in Equation (2.88), 

it is obtained following equations: 
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It is obtained c2=c3=c4=0 and 01 ≠c  from Equation (2.92). For this reason, it is 

obtained Equation (2.93):  
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The critical buckling load is obtained followed equation: 
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When Equation (2.95) is rearranged, it is obtained Equation (2.98)  

 
( )( )
( )yy

b
xx

b
xz

b
xzyy

b
xx

IEbhKG

bhKGIE
bP

2

2

λ

λ

−
=  (2.96) 

 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−

⎟
⎠
⎞

⎜
⎝
⎛=

yy
b

xx
b

xz

b
xz

yy
b

xx

IE
a

nbhKG

bhKG
IE

a
nbP

2

2

π

π  (2.97) 

 
 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛+

⎟
⎠
⎞

⎜
⎝
⎛

−⎟
⎠
⎞

⎜
⎝
⎛=

yy
b

xx
b

xz

yy
b

xx

yy
b

xx

IE
a

nbhKG

IE
a

n

IE
a

nbP 2

2

2

1
π

π
π  (2.98) 

 

The critical buckling load is given for n=1. It is obtained Equation (2.100) using 

Equations (2.98) and (2.99) for n=1: 
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As shown in results, it is obvious that shear deformation has the effect of decreasing 

the buckling load. 
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 2.2.3.2.2 Clamped Beam 

 

When the beam is fixed at both ends, the boundary conditions are written as follows: 
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When boundary conditions for clamped beam are written in Equation (2.88), it is 

obtained following equations: 
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Because the value of aλ  is obtained by solving the non-linear equation (2.102), it is 

readily determined the critical buckling load from Equation (2.89) (Reddy, 1997). 
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CHAPTER THREE 

THEORETICAL DEVELOPMENT OF BUCKLING FOR 

VARIABLE CROSS-SECTIONS 

 

3.1 Buckling Optimization 

 

3.1.1 General 

 

Structural use of composite materials have always been extensively used in the 

aeronautical industry, civil engineering appliations because of their strength-to-

weigth and stiffness-to-weight ratios, incresingly low fabrication costs and an 

efficient behaviour under environmental conditions. Consequently, the structural use 

of composite materials are developing in areas where weight saving is most 

benefical. On the other hand, when the thin-walled composite material is subjected to 

in-plane compressive forces, the study of structural instability becomes essential for 

a safely design. In this case, the buckling strength could be main factor for the 

optimum design of composites  

 

Structural optimization produces a significantly superior design than the 

conventional trial and error approach according to today’s timing and budget 

constraints. It can be categorized structural optimization problems: Sizing/shape 

optimization and topology optimization. Topology optimization does not need an 

initial design as input. Given a specified region, loads and boundary conditions, the 

most structurally efficient material layout is detected. The traditional structural 

optimization mainly deals with geometry optimization problems. However, topology 

optimization has drawn more and more attentions recently (Gea & Luo, 2001). 

 

It is called the objective function as the property of the structure to be minimized 

or maximized (weigth, cost, stiffness, strength, etc.).The objective function depends 

on a number of parameters called design variables, such as dimensional parameters 

and material properties; each design variable is defined within a particular range. All 
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these ranges bound a region of all possible designs; the design space. The structure to 

be optimized is typically subjected to some constraints, such as maximum weight, 

minimum stiffness, etc. The constraints set boundaries to the design space, thus 

specifying the feasible space, a space of all possible designs, which do not violate the 

constraints. 

 

Many optimization techniques have been proposed to analyze problems ranging 

from structural to financial. Each technique has its advantages and disadvantages. 

There is no general rule to determine whether a particular technique is best suited to 

a given class of problems. It is the designer's task to select a method or a 

combination of methods based on experience, common sense and the characteristics 

of the problem. Moreover, the way the constraint requirements are treated is often 

decisive to the optimization procedure. 

 

3.1.2 Formulation of Optimization Problem 

 
A typical procedure in the search for the optimal design begins with the selection 

of an initial design; this is arbitrary but must be within the design space. Then, it is 

specified a search direction starting from this design and the minimum of the 

objective function in this direction is sought; such a minimizing point is called an 

intermediate design. This process is repeated until a minimum of the objective 

function is found (Filho, 1997). 

 

The design of composite structures is complicated by the wide variety of matrix 

and fibre reinforcement materials available, the potential of stress concentrations, 

thermal residual stresses from the manufacturing process, the choice of ply 

thicknesses and number of plies and the spatial variation of ply orientation. Other 

design variables related to the structure topology and geometry are also often 

considered. In the design of structural components, a compromise between cost, 

performance and suitability is sought while satisfying prescribed requirements such 

as strength, maximum displacements allowed in certain regions, stress, strain limits, 

critical buckling load, size and esthetics. Whenever several feasible designs are 

available, a comparison between them must be carried out in order to determine 
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which one is the best. The comparison procedure is referred to as optimization; it is 

computationally expensive and time consuming, hence it requires the use of efficient 

methods and heavy computer processing (Faria 2000). 

 

Optimum design of structures against buckling may be achieved by finding the 

minimum weight structure that satisfies a buckling load constraint. Alternatively, it 

may be to maximise the fundamental buckling load for a structure with a given 

volume or weight. In the proposed method, buckling load factor is maximised for 

constant structural weight. During the optimisation process, the main task is to raise 

the lowest buckling eigenvalue. 

 

It is rapidly structural optimization becoming an integral part of the product 

design process. Optimization problems are formulated as the maximization of the 

smallest eigenvalue, which is single or multiple, subject to a global constraint of 

given total volume of material of the structure. Multiple eigenvalues in the form of 

buckling loads often happen in complex structures. For example, stiffner-reinforced 

thin walled plate and shell structures have a dense spectrum of eigenvalues and it is 

taken part multiple eigenvalues. Symmetry of structural systems may also lead to the 

apperance of several linearly independent buckling modes (Seyranian, Lund & 

Olhoff, 1994). 

 

It is more difficult optimisation for maximum stability when the lowest buckling 

eigenvalue of the problem is inherently either multimodal or it becomes multimodal 

because of the optimisation process. During optimisation, it is often seen that while 

the first eigenvalue is increasing, the subsequent eigenvalues are decreasing and 

gradually the first two or more eigenvalues converge to each other, although the 

corresponding eigenvectors may remain totaly different. One of the main problems 

related to repeat eigenvalues is that they are not continuously differentiable. In this 

reason, the eigenvectors corresponding to the repeated eigenvalues are not unique.It 

is constituted diffuculties in finding sensivities of repeated eigenvalues with respect 

to design changes and derivation of necessary optimality condition in optimisation 

(Manickarajah, Xie & Steven, 2000).  



 76

 

The main duty is to raise the lowest the buckling eigenvalue during optimisation. 

Because of optimisation process, the second eigenvalue may become equal to the 

first eigenvalue for some structures. This means a bimodal buckling situation 

(Manickarajah, Xie & Steven, 2000). 

 

Structural eigenvalue problem is followed: 

 

,,........2,1, njMK jjj == φλφ    (3.1) 

 

where K and M are symmetric positive definite matrices, jλ  is the eigenvalue and jφ  

is the corresponding eigenvector. n is the dimension of the problem, hence has n 

solutions composed of eigenvalues jλ  and corresponding eigenvectors jφ . It is real 

all eigenvalues and can be ordered in the following manner: 

 

nj λλλλ ≤≤≤≤≤〈 .......0 21    (3.2) 

 

K and M are also smooth functions of the design variables ai, i=1, 2,....,I. 

 

The optimization problems are written as follows: 

 

jnjaIa λ,...2,1,...1 minmax =    (3.3) 

 

under the constraint  

 

 F(a1,...aI)=0   (3.4) 

 

where F is a smooth scalar fuction of the design variables ai, i=1,2,....I. 
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3.1.2.1 Single Optimum Fundamental Eigenvalue 

 

If the optimum is acquired at the simple lowest eigenvalue 1λ  with 

...321 ≤≤〈 λλλ  then the necessary optimality condition implies linear independence 

of the gradient vectors of 1λ  and F 

 

0001 =−∇ fγλ     (3.5) 
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Moreover, 0γ is a Lagrangian multiplier to be determined from Equation (3.4) 

(Seyranian, Lund & Olhoff, 1994). 

 

3.1.2.2 Double Optimum Fundamental Eigenvalue 

 

When the optimum is obtained at the double lowest eigenvalue 21 λλ = , where 

...321 ≤〈= λλλ  this is the non-differentiable case and it must be used directional 

derivatives. 

 

When the first eigenvalue becomes close to the subsequent eigenvalues, there will 

be interference between the first and subsequent eigenvectors. Thus, the effect on the 

fundamental eigenvalue due to all eigenvectors needs to be included. An eigenvalue 

multiplicity parameter ε  is described and the multimodality of the structure is 

determined by the number of eigenvalues within a ε  distance of the lowest 
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eigenvalue. If for example the distance between 1λ  and 2λ , is within a certain limit, 

say %5=ε  and the distance between 1λ  and 3λ  is greater than %5=ε , it may be 

assumed that the structure has now become bimodal (Manickarajah, Xie & Steven, 

2000). 

 

Taking the vector of varied design variables in the form 1, =+ eea ε , it is 

achieved the directional derivatives 1µ  and 2µ  from (Seyranian, Lund & Olhoff, 

1994) 
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This is a quadratic equation inµ . It is obtained for any direction e by solving 

quadratic equation inµ . 
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The necessary optimality condition for a maximum is 0),min( 21 ≤µµ , for any 

direction e satisfying the condition .00 =ef T  From Equation (3.7), it is seen that if it 

is taken the direction as –e, then both 1µ  and 2µ  will change their signs to the 

opposite ones. This implied that if for some direction e both derivatives 1µ , 2µ  are 

negative, then the design point is not a maximum, because a change in sign of the 

direction e leads to 01〉µ and 02 〉µ , namely a better design. This expresses that the 

necessary optimality condition in the bimodal case is 

 

021 ≤µµ    (3.9) 
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for any admissible variation e, i.e. a variaiton tat satisfies the condition 

 

00 =ef T .  (3.10) 

 

It is stated using Equations (3.7) and (3.8) the necessary optimality condition of 

Eqution (3.9) in the form 

 

0)())(( 2
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for any arbitrary direction e satisfying the condition in Equation (3.10) (Seyranian, 

Lund & Olhoff, 1994). 

 

The nondimensional optimization problem composes of determining the cross-

sectional area function A(x), which for a given value of the foundation modulus 

maximizes the smallest eigenvalue, 

 

jnjxA λ,...2,1)( minmax =   (3.12) 

 

subject to the condition of given column volume, 

 

∫ =
1

0

1)( dxxA   (3.13) 

 

If the maximized smallest eigenvalue 1λ  is simple, i.e. ...321 ≤≤〈 λλλ , then the 

necessary optimality condition takes the form Equation (3.1) with 

 

1,))()((2 0
2

11 =″=∇ fxwxAλ  (3.14) 
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where w is the lateral deflection function. The positive real constant 0γ  in Equation 

(3.1) is a Lagrangian multiplier to be determined by the dimensionless volume 

constraint that expresses Equation (3.13). 

 

Let us consider the bimodal case where the smallest eigenvalue ...321 ≤〈= λλλ is 

associated with two linearly independent eigenfunctions the appropriate boundary 

conditions. If it is considered a varied cross-sectional area function in the form 

)()( xexA ε+ , then the double eigenvalue λλλ ~
21 ==  associated with A(x) will 

generally split into two distinct ones, 

 

2,1,~
=+= jjj εµλλ  (3.15) 

 

It is derived the following equation for determining the two directional derivatives 

ελµµ ∆∆== /11 and ελµµ ∆∆== /22  of the double eigenvalue, 

 

.2,1,;0)()()()(2det
1

0

==⎥
⎦

⎤
⎢
⎣

⎡
−″″∫ ksdxxexwxwxA skks µδ  (3.16) 

 

The boundary conditions and design function A(x) are symetric, A(x) =A (1-x), it 

is useful to inquire symetric and antisymetric eigenfunctions w1(x) =w1 (1-x) and 

w2(x) =-w2 (1-x) in Equation (3.16). Because the arbitrary direction function e(x) 

must be symetric along with A(x), it is seen that the mixed term in Equation (3.16) 

vanishes: 

 

0)()()()(2 2

1

0
1 =″″∫ dxxexwxwxA  (3.17) 

 

because integrang will be antisymetric for any arbitrary admissible function e(x). The 

following equation is simple expressions for the directional derivatives of the double 

eigenvalue: 
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∫ ⎥⎦
⎤

⎢⎣
⎡ ″=

1

0

2

11 )()()(2 dxxexwxAµ  (3.18) 

 

∫ ⎥⎦
⎤

⎢⎣
⎡ ″=

1

0

2

22 )()()(2 dxxexwxAµ  (3.19) 

 

These expressions hold when the double eigenvalue can be treated as an 

intersection of two differentiable functionals, and are identical to those resulting 

from purely single modal formulations. However, in the general case of non-symetric 

boundary conditions and designs, the mixed term in Equation (3.17) does not vanish 

(Seyranian, Lund & Olhoff, 1994). 

 

3.2 Tadjbaksh & Keller’s Solution 

 

Herein, the optimization problem for columns with clamped ends is represented 

according to Tadjbakhsh & Keller (1962).  

 

Let us consider a thin, straight and elastic column with variable cross sections 

defined by the area A(x) and the moment of inertia I(x). As shown in Figure 3.1, the 

section of a given column is deflected under compressive load. The equilibrium of 

moments is arranged, with bending moment My(x), deflection w(x) and compressive 

load P parallel to the x-axis, as follows:  

 

 My(x) = Pw(x) . (3.20) 
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Figure 3.1 Cross-section of the column under compressive load 

 

With the minimum moment of inertia I(x) of the cross-section and with the second 

derivative of the deflection function w"(x), the bending moment follows from the 

equation of the elastic curve to:  

 My(x) = - EI(x)w''(x) . (3.21) 

 

If the Equations (3.20) and (3.21) are equated to each other and differentiated 

twice according to x, the generally valid differential equation of the problem is 

obtained as follows: 

 

 [-EI(x)w''(x)]'' – Pw''(x) = 0 .  (3.22) 

 

It will be assumed that the cross-section planes of the column cannot be deformed. 

Consequently, the following relationship between the area moments of inertia and 

the areas yields according to Tadjbakhsh and Keller (1962): 

 

 I(x) = α A2(x) .  (3.23) 

 

In Equation (3.23) the proportionality factor of the cross-section (α ) depends on the 

cross-section form. Table 3.1 gives the three different cross-section forms.  
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Table 3.1 Form coefficient values of different cross-sections 

 

 

 

 

 

 

 

As w(x) expresses the lateral deflection from its straight position, the equation of 

equilibrium is followed equation: 

 

0=+− xxxx PwM  

 

If the expression (3.23) is put into the differential Equation (3.22), it is obtained 

following equations: 

 

[ ] 0)(2 =+
″

−− xxxx PwwxAEα  (3.24) 

 

[ ] 0)()()(2 =′′+
″′′ xwPxwxAEα  (3.25) 

 

It is introduced the following variables ς  and the new independent function φ( ξ) as 

well as the abbreviation λ to solve differential equations: 

 

 ς = x/L,  (3.26) 

 φ(ς ) = )()(22 LwLAL ςξ ′′ , (3.27) 

 λ =
αE

PL2

,  (3.28) 

 

Cross-section  

Form 

α  

Square shaped  

cross-sections 

Cross-sectional of 

circular shape 

Isosceles triangle 

cross-sections 

Form coefficient c 
12
1

 
π4
1

 
18

3
 



 84

Equation (3.25) is obtained with variable transformation, in which the differentiated 

terms φ&  and φ&&  denote 
ς
φςφ

d
d

=)(&  and 2

2

)(
ς
φςφ

d
d

=&& , respectively: 

 

0
)(

)()(
222 =+

″

⎥⎦
⎤

⎢⎣
⎡

LAL
P

L
E

ς
ςφςφα  

 

[ ] 0)(
)(

)( 222 =+″ ςφ
ς

ςφα
LAL

P
L
E  

 

It is written following equations, if it is made transformation of variation such as, 

Ldx
dLx 1

=⇒=
ςς : 

 

0
)(

)()(
222 =+

′

⎥⎦
⎤

⎢⎣
⎡

LAL
P

dx
d

L
E

ς
ςφςφα  

 

0
)(

)(
222 =+

′

⎥
⎦

⎤
⎢
⎣

⎡
LAL

P
dx
d

d
d

L
E

ς
ςφς

ς
φα , 

 

0
)(

)(1
222 =+

′

⎥
⎦

⎤
⎢
⎣

⎡
LAL

P
Ld

d
L
E

ς
ςφ

ς
φα , 

 

0
)(

)()(1
222 =+

LAL
P

d
d

dx
d

LL
E

ς
ςφ

ς
φα , 

 

0
)(

)()(1
222 =+

LAL
P

d
d

dx
d

d
d

LL
E

ς
ςφ

ς
φς

ς
α  

 

0
)(

)()(11
222 =+

LAL
P

d
d

d
d

LLL
E

ς
ςφ

ς
φ

ς
α  
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0)(
)(222

2

4 =+ ςφ
ςς

φα
LAL

P
d
d

L
E  

 

0)(
)(

4

222

2

=+ ςφ
αςς

φ
E
L

LAL
P

d
d  

 

0)(
)(22

2

=+ ςφ
ς
λ

ς
φ

LAd
d . 

 
Consequently, it is obtained Equation (3.29): 

 

0)()( 2 =+ − ςφλςφςς A .   (3.29) 

 

The problem is now that of solving above equation, i.e. Equation (3.29), for φ  

subject to boundary conditions. This problem will have a nontrivial solution only if 

λ  is an eigenvalue (Tadjbaksh & Keller, 1962). 

 

It is rewritten Equation (3.29) using Equation (3.27): 

 

)()()()()()( 2222 LwLLALwLAL ςςςφςςςφ ′′=⇒′′= −   (3.30) 

 

)()(0)()( 22 LwLA ςλςφςφλςφ ςςςς ′′+⇒=+ −  (3.31) 
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It is taken infinitesimal elements to obtain conditions with respect to different 

supported types. The free body diagram of the infinitesimal element of lenght ds is 

shown in Figure 3.2.  

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

Figure 3.2 Free-body diagram of infinitesimal element 
 

Accordingly, by equilibrium, it is written following equations: 

 

∑ =⇒=⇒=−+⇒= 1

____

000 cNNdNNdNFx  
 

2

_____
000 cQQdQQdQFz =⇒=⇒=−+⇒=∑  

 

∑ =−+−+⇒= 0..0
__

dxQdwNMdMMM  
 

dx
dwN

dx
dMQQ

dx
dwN

dx
dM ____

0 +=⇒=−+ . 

 

 

 

 

 

_
Q  

_
N  

M 

__
QdQ+  

__
NdN+  

M+dM 

ds 
dw 

x 

w,z 

dx 
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In this way, it is obtained Equation (3.32) for )(xQ : 

 

dx
dwP

dx
dMxQQ −=≈ )(

_

. (3.32) 

 

Using Equation (3.23) in Equation (3.32), it yields, 

 
[ ])()()()()()( xwPxwxEIxwxIExQ ′+′′′+′′′−= . (3.33) 

 

Using Equation (3.25) in Equation (3.27), it is written, 

 

)(22 LwLA xx ςφ =−  
 

ςςφ
λ

ς 2

1)(
L

Lwxx
−

= .  (3.34) 

 

It is also derived Equation (3.35) from Equation (3.34) to obtain third derivative of 

the deflection function, )(ςw ′′′ . 

 

ς
θ

ςθ
ςθς

d
d

AL
w

)(sin
)(cos1)( 2

2
1

0
2

−
=′′′   (3.35) 

 

It is now integrated Equation (3.35) once with respect to ς  from: 

 

dx
L

dxLw
x

xx

x

ςςφ
λ

ς ∫∫
−

=
0

2
0

1)( . 

 

If it is made transformation of variation (ς =x/L) in this integral, it is obtained 

following equations: 
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∫∫
−

=
ς

ςς

ς

ςφ
λ

ςς
0

2
0

1)( Ld
L

LdLwxx  

 

This integral is equal to Equation (3.36): 

 

020 (1)( ==
−

= ς
ς

ςς
ς φ

λ
ς L

L
Lwx ) 

 
[ ])()0()()0()( 1 ςφφλς ςς −=− −LwLw xx . (3.36) 

 

For clamped-clamped, clamped-hinged and clamped-free cases, it is 0)0( ==xwx  at 

the end x=0. From this, the solution of differential equation, 

 

[ ])()0()()( 1 ςφφλς ςς −= −LLwx .  (3.37) 
 

It is integrated Equation (3.37) with respect to ς  from 0=ς . 

 

[ ]∫ ∫
= =

− −=
ς

ς

ς

ς
ςς ςςφφλςς

0 0

1 )()0()()( dLdLwx  

 

0

0

)()()0(
=

=

−=⎥
⎦

⎤
⎢
⎣

⎡
−∫ ς

ς
ς

ς

ς

ςφςφς
ς
ςφ

ς
φ d

d
d

d
d  

 

[ ])0()()()0()( 1 φςφςφλς ς +−=− −wLw .  (3.38) 
 

It is 0)( == Lxwx  for clamped-clamped case at the other end x=L, 
 

[ ])0()()0()()( 1 φςφςφλς ς +−= −Lw   (3.39) 
 

The determination of the strongest column is now deriving with following general 

problem. It is investigated that ς(A ) which maximizes the smallest eigenvalue. It is 

searched that function A(x) which maximizes the buckling load among all functions 

satisfying following equation: 
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∫∫ =⇒=
1

00

)()(
L
VdAVdxxA

L

ςς  (3.40) 

 

3.2.1 An Essential Condition for Maximum Eigenvalue of Second-Order Systems  

 

In this section, it is considered an essential condition for maximum eigenvalue of 

second-order systems. This analysis is based upon the fourth-order homogeneous 

differential equation with homogeneous boundary conditions which expresses the 

equilibrium of an elastic rod in the buckled state.  

 

Numerous systems in structural dynamics are self-adjoint with distinct 

eigenvalues. This expresses that such systems have symmetric properties. A self-

adjoint system has real eigenvalues and eigenfuctions. In addition the eigenfunctions 

are orthogonal to each other. However structural systems which continue 

aerodynamics forces, friction forces may lose their symmetries and beceme non-self 

adjoint. In this reason it is no longer applicable to the self-adjoint systems orthogonal 

relations and the expansion theorem which have been developed on the bases of self-

adjoint properties (Jung & Feeny, 2002). 

 

With a suitable change of variables this equation is reduced to a second-order self-

adjoint equation with homogeneous boundary conditions. And then it is applied 

variational techniques to make the first buckling load and optimum shape of the 

column, and it is proved that the stationary eigenvalues determined are actually 

maximal (Tadjbaksh & Keller, 1962).  
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Let )(xφ be a solution of the equation 

 
0)( =+ φλρφ xxx , Lx ≤≤0  (3.41) 

 

and the homogeneous boundary conditions 

 
0)()()0( 321 =++ LLx φαφαφα   (3.42) 

 

0)0()0()( 421 =+− φαφαφα xL .  (3.43) 
 

It is self-adjoint system for the Equations (3.41)-(3.43), hence all the eigenvalues are 

real. It is searched for )(xρ  which maximizes the lowest eigenvalue subject to the 

condition (Tadjbaksh & Keller, 1962) 

 

∫ =
L

n kdxx
0

)(ρ .  (3.44) 

 

Here n and k are given constants. For Vkn =
−

= ,
2
1  and 2−= Aρ , it is rewritten 

Equation (3.44): 
 

∫∫ =⇒=
LL

n VdxxAkdxx
00

)()(ρ  (3.45) 

 

Let us suppose that there exists a function )(0 xρ , which maximizes the lowest 

eigenvalue. It is presented a family of functions ),( ερ x  which depend smoothly on 

ε  and such that )()0,( 0 xx ρρ = . Then, λ  andφ , the lowest eigenvalue and 

ccorresponding eigenfunction Equations (3.41)-(3.43) with ),( ερρ x=  depend 

smoothly onε . Therefore, it may differentiate Equations (3.41)-(3.43) with respect to 

ε  to get, 
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0=′−′−=′+′ ρφλλφρφλρφ xx   (3.46) 
 

0)()()0( 321 =′+′+′ LLx φαφαφα   (3.47) 
 

0)0()0()( 421 =′+′−′ φαφαφα xL   (3.48) 
 

01

0

=′ −∫ dxn
L

ρρ . (3.49) 

 

Equations (3.46) and (3.48) are an inhomogeneous system forφ ′ . The 

correponding homogeneous system is Equations (3.41)-(3.43) which has the 

solutionφ . Hence because φ ′  exists, the rigth side of Equation (3.46) must be 

orthogonalφ . At 0=ε , when 0=′λ and 0ρρ =  by assumption, this orthogonality 

condition is  

 

∫ =′
L

dx
0

2 0φρλ   (3.50) 

 

If 0≠λ , Equation (3.50) shows that 2φ is orthogonal to every functon ρ′ that is 

orthogonal to 1−nρ , according to Equation (3.49). Therefore 2φ must be proportional 

to 1−nρ . Because φ is the solution of a homogeneous problem it may be multiplied by 

a constant which makes the proportionality factor become unity (Tadjbaksh & 

Keller, 1962). Consequently, it is followed as a necessary condition for a maximum, 

the relation 

 
12 −= nρφ  (3.51) 

 

when 
2
1−

=n  and 2−= Aρ this relation get 32 A=φ . 
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To obtain ρφ,  and λ  satisfiying Equations (3.41)-(3.44) and Equation (3.51) it is 

proceeded by using Equation (3.51) to eliminate ρ  from Equation (3.41). Then 

Equation (3.41) becomes, 

 

0)12(1 =+ −+ n
xx λφφ   (3.52) 

 

Upon multiplying Equation (3.52) by xφ  and integrating, it is obtained: 

 

022 1
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2
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=+ −
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dx
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dx
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dx
d n φλφφφ  
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∫∫ dx
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22 0 
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n
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ndx
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1
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0
1

22 )1()1(
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⎠
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⎜
⎝
⎛

n
n

n
n

n
n

n
n

dx
d φλφλφ  

 

1
2

0
1

22 )1()1(
−− −

=
−

+ n
nn

n

x n
n

n
n φλφλφ .  (3.53) 

 

In Equation (3.53), the constant 0φ  indicates the value of )(xφ at a point 

where 0=xφ , if there is one, and if not it is just some constant. It is convenient to 

present the new dependent variable )(xθ , to solve Equation (3.53), defined by  

 

[ ] n
n

xx
1

)(sin)( 0

−

= θφφ .  (3.54) 
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Now Equation (3.53) becomes the following equation for )(xθ : 

 

[ ] +
⎭
⎬
⎫

⎩
⎨
⎧ − −

−
2

11

0 ).(cos)(sin1
dx
dxx

n
n
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n θθθφ
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21
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0 )(sin1)1()).((cos)(sin1

n
n

n
n

n
n

n
n

x
n

n
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n
n θφλθθθφ . 

 

The term 
n

n 1−  may be positive or negative value. It is investigated positive or 

negative value of 
n

n 1−  because of solving Equation (3.53): 

 

a) If 
n

n 1− is positive value, it may be written following equations: 

 

[ ] [ ][ ]2
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2

0
22
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22

0 )(sin1)1()).((cos)(sin)1( x
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dxx

n
n

n
n

n θφλθθθφ −
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−

 

 

Because of 1)(cos)(sin 22 =+ xx θθ , it is written [ ])(cos2 xθ  instead of 

[ ][ ]2)(sin1 xθ− . 

 

[ ] [ ])(cos)1()).((cos)(sin)1( 2
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If it is made necessary improvement, it is obtained following equations: 
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b) If  
n

n 1−  is negative value, it may be written following equations: 

 

[ ] [ ] ⎥⎦
⎤

⎢⎣
⎡ −

−
=

−
−

−
−

−
−

1
21

1
2

0
222)1(2

22
0 )(sin1)1()).((cos)(sin)1( n

n
n
n

n
n

n
n

x
n

n
dx
dxx

n
n θφλθθθφ  

 

[ ] [ ][ ]122
1

2

0
22

42
2 )(sin1)1()).((cos)(sin)1( −−

−
−

−
−

=
− x

n
n

dx
dxx

n
n

n
n

n
n

θφλθθθ  

 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡ −−
=

−
−

−

x
x

n
n

dx
dxx

n
n

nn
n

(sin
1)(sin)1()).((cos)(sin)1( 2

2

1
2

0
22

42
2

θ
θφλθθθ  

 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
=

−
−

−

xdx
dx

n
n

nn
n

(sin
1)()(sin)1( 2

1
2

0
2

42

θ
λφθθ  

 

[ ] 1
2

0
2

22

1
)()(sin −

−

−
= nn

n

n
n

dx
dx φλθθ  

 

[ ] 1
1

0
2

11
)

1
()()(sin −

−

−
= nn

n

n
n

dx
dx φλθθ . 

 

 

 

 

 



 95

Consequently, Equation (3.54) becomes the following equation for )(xθ depending 

onβ : 

 

[ ]
⎪⎩

⎪
⎨
⎧

〈−−

〉−−
=⇒

−
= −

0)1(,)1(

0)1(,1

1
)(sin 1

1

0

2
1

nnn
n

nnn
n

n
dx
d

n βφλθθ β  (3.55) 

 

Let 000 ,, ρλφ  denote a solution of Equation (3.41) and Equation (3.43) satisfying 

Equations (3.44) and (3.51). Then, 0λ is stationary among all eigenvalue of Equations 

(3.41)-(3.43) with ρ satisfying Equation (3.44). It is now proving that there is at 

most one such value 0λ and that is the maximum of the lowest eigenvalues of 

Equation (3.41) and Equation (3.43) when ρ  satisfies Equation (3.44). The lowest 

eigenvalue λ  is the minimum of a certain quotient of quadratic forms by the self-

adjointsness of Equations (3.41)-(3.43) thus for any admissible v , (Tadjbaksh & 

Keller, 1962) 

 

[ ]

∫

∫ +
≤ L

L

x

dxv

Lvvdxv

0

2

0

2 )(),0(

ρ

ψ
λ .  (3.56) 

 

Here, ψ  is defined following equations: 

 

[ ])()()0(2)0(1 2
31

2
4

2

LvLvvv ααα
α

ψ ++= . (3.57) 

 

The admissible fuctions )(xv  are all fuctions satisfying Equation (3.42) and Equation 

(3.43) and having piecewise continuous first derivates. 

 

 

 

 



 96

If 0ρρ =  then equality in Equation (3.56) is acquire when 0φ=v  and 0λλ = . 

Upon inserting 0φ  and 0λ  into Equation (3.56) and making use of Equation (3.44) to 

calculate the denominator, it is obtained, 

 

[ ]

k

Ldx
L

x∫ +
= 0

00
2

0

0

)(),0()( φφψφ
λ   (3.58) 

 

To relate λ to 0λ it is followed the suggestion of H.F. Weinberger to employ the 

Hölder inequality (Tadjbaksh & Keller, 1962). 
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L
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L
pp
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dxgdxffgdx
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))(()(   (3.59) 

 

This inequality holds for any two functions f(x) and g(x) provided that 

111 =′+ pp , 0〉′p  . 

 

Let us set, 
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Then if 1〈n , Equation (3.59) is valid and yields, 
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When Equation (3.60) is used in Equation (3.56), it yields, 
 

[ ]

∫

∫
−−

+
≤ L

nnnn

L

x

dxvk

Lvvdxv

0

11121
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2

)(

)(),0(ψ
λ .  (3.61) 

 

Upon chosing 0φ=v  in Equation (3.61), it is obtained  

 

[ ]

k

Ldx
L

x∫ +
≤ 0

00
2

0 )(),0()( φφψφ
λ   (3.62) 

 

From Equation (3.58), it is seen that the rigth side of Equation (3.59) is 0λ . Thus, 

Equation (3.62) can be written as,  

 

1,0 〈≤ nλλ  (3.63) 
 

It is thus verified that for 1〈n  the stationary value 0λ  is the maximum of the lowest 

eigenvalues Equations (3.41)-(3.43) when ρ  satisfies Equation (3.42). When 

2−= Aρ is used in Equation (3.41) and 
2
1−

=n  and k=V used in Equation (3.44), 

from Equation (3.51), it yields, 

 

 32 A=φ   (3.64) 
 

Thus, Equation (3.54) can be rewritten as,  
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Integrating Equation (3.65), it is obtained as C1 and C2 integration constants: 
 

∫∫
−

= ςφλθθ dd 3
2

0
2

12 )
3

()(sin  

 

2)
3

(1cossin
2
1

2
1

3
2

0
2

1
CC +=+−

−
ςφλθθθ . 

 

It is also written as another constant a=2C1-2C2. Thus, it is obtained Equation (3.66) 

by using Equation (3.64): 

 

ςλθθ 1
0

2
1

)
3

(22sin
2
1 −=+− Aa  (3.66) 

 

In these equations a ve A0 are constants to be determined in each case so that φ  

satisfies the appropriate pair of boundary conditions. When it is taken Vkn =
−

= ,
2
1  

and 2−= Aρ  in equation (3.44), it yields followes equation: 

 

∫∫∫ =⇒=⇒=
1

000

)()()(
L
VdAVdxxAkdxx

LL
n ςςρ . (3.67) 

 

To detectedφ , it is eliminated A from Equation (3.29) by means of (3.64) and obtain, 

 

02
1
=+

−
λφφςς   (3.68) 

 

It is convenient to express to general solution )(ςφ  of (3.68), and the corresponding 

)(ςA determined with the aid of (3.64), in terms of a parameter )(ςθ .  

 

 

 

 

 



 99

 

The solutions are: 

 
)(sin)( 2

0 ςθς AA =   (3.69) 
 

)(sin)( 32
3

0 ςθςφ A=   (3.70) 
 

)(cos).(sin...3 2
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ς
θ

ς
φ

d
dA

d
d

=  (3.71) 
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d
d  

 

)(cos.)..3()(cos.)..3()( 2
1

0
2

1

0 ςθλφςθλ
ς
ςφ

ς AA
d

d
=⇒= . (3.72) 

 

 

3.2.2 Analysed Cases and Boundary Conditions 

 

In this section, it deals with the optimum design of Bernoulli-Euler’s columns 

with variable, geometrically similar cross-sections of given shape (circular, 

quadratic and isosceles cross-sections) for six cases of boundary conditions shown 

in Figure 3.3 (Ozdamar, 1996). The optimum design and associated fundamental 

buckling modes for the clamped-clamped case are debatable case. 
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Figure 3.3 Boundary conditions for column (Ozdamar, 1996) 
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 3.2.2.1 Clamped-Clamped Case (Debatable Case) 

 
 
 
 
 
 
 
 
 
 
 

It is satisfied the two conditions at the end x=0 and at the other end x=L for the 

clamped-clamped case. 
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wwx

x
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It is suitable followed boundary conditions for clamped-clamped case for first 

derivative of the deflection function and lateral deflection x=L, respectively. 
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Using Equation (3.70) and (3.72), it yields followed equations from boundary 

conditions of clamped-clamped case: 
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These equations are satisfied if it is set 

 

2
3)1(,

2
)0( πθπθ =

−
= .  

 

Any other solutions differs from this by the addition of an integer multiple of π  to 

both )0(θ  and )1(θ , or by the addtion of an integer multiple of π2  to )1(θ , or by 

both additions. Since A and φ  given by Equation (3.69) and Equation (3.70) are 

periodic functions of θ  with period π  (ignoring the sign ofφ , which is arbitrary), 

the addition of integer multiplies of π does not yield a different solution. However, 

the addition of an integer multiple of π2  to )1(θ does yield a different solution with 

φ  having additional nodes. As it is searched the lowest eigenvalue, it is considered 

the eigenfuctionφ . By using these values of )0(θ and )1(θ in Equation (3.66), it is 

obtained, 
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Finally, Equation (3.66) becomes, 
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2
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2
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Here )(ςθ  is given by above equation. ς  and ςd  are obtained from )(ςθ : 
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θθ
π

θ
π

θς ddd 2sin1
2

)2cos1( =
−

= . 

 

To determineλ , it is used Equation (3.69) and Equation (3.66) in Equation (3.40) 

which yields 
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Thus LVA 340 =  and then using a and A0 values yields for the eigenvalueλ , 
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V πλλ
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The cross-sectional area )(ςA given by Equation (3.69) can now be written as, 

 

)(sin
3
4)( 2 ςθς

L
VA = . 

 

This equation determines the shape of the strongest column in the clamped-clamped 

case and λ  determines its buckling load. It is interesting to note that this buckling 

load is 4/3 as greater as that of a uniform column, for which the corresponding 

eigenvalue is 22 )(4 L
Vπ (Tadjbaksh & Keller, 1962).  

 

From this equation )(sin
3
4)( 2 ςθς

L
VA = , it is found that 
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It is shown that in Figure 3.4 a graph of )(ςA . It is seen that the column consists of 

three parts. The middle part, from 4
1=ς  to 4

3=ς , contains one-half the total 

volume. Its shape is exactly that of the strongest column of the length 2/L  and 

volume 2/V , and each of the two end parts, from 0=ς  to 4/1=ς  and 4/3=ς  

to 1=ς , coincides with one-half the middle part.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.4 Cross-sectional area of strongest clamped-clamped column as a function of distance along 

column 

 
 

Finally, the optimum (non-dimensional) eigenvalue and critical buckling load for 

clamped-clamped case are given by  
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which gives: 

 

(a) for cross-sectional of circular shape ( πα 4
1= ) 

4

2

1887902,4
L

EVPOPT =  

(b) for square shaped cross-sections ( 12
1=α ) 

4

2

3864908,4
L

EVPOPT =  

(c) for isosceles triangle cross-sections ( 18
3=α ) 

4

2

0650833,5
L

EVPOPT =  

 

 

 3.2.2.2 Clamped-Hinged Case 

 
 
 
 
 
 
 
 
 
 
 
 
 
It is satisfied the two conditions at the end x=0 and at the other end x=L for the 

clamped-hinged case. 
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It is suitable followed boundary conditions for clamped-hinged case for lateral 

deflection and second derivative of the deflection function x=L, respectively. 
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It is obtained following state from second derivative of the deflection function and 

deflection function for x=L: 
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Using Equation (3.60) and (3.72), it is found: 
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To satisfy 0)1(sin =θ , it may choose πθ =)1( . Now Equation (3.63) becomes, for 

0=ς  and 1=ς , 
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It is found that for the lowest eigenvalue, to which corresponds the solution with the 

fewest nodes, )0(θ must lie in the range 0)0(2 〈〈− θπ . Numerical solution of above 

equation, it yields, 

 
4243,1)0( =θ  

 

Finally, it is found following equations for a and A0: 
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When the constants a and A0 are written Equation (3.66) with obtained value from 

above equation, it yields following equation: 
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Here )(ςθ  is given by above equation. ς  and ςd  are obtained from )(ςθ : 
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To determineλ , it is used Equation (3.69) and Equation (3.66) in Equation (3.40) 

which yields: 
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It is obtained for the cross-sectional area of the strongest column for clamped-hinged 

case. 
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It is shown that in Figure 3.5 a graph of )(ςA . 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.5 Cross-sectional area of strongest clamped-hinged column as a function of distance along 

column. 

 

 

Finally, the optimum (nondimensional) eigenvalue and criticalbuckling load for 

clamped-hinged case are given by  
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which gives: 
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(c) for isosceles triangle cross-sections ( 18
3=α ) 

4

2

6192457,2
L

EVPOPT =  

 

 

 3.2.2.3 Clamped-Free Case 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

It is satisfied the two conditions at the end x=0 and at the other end x=L for the 

clamped-free case. 
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In the clamped-free case, the boundary conditions, for x=L, the bending moment and 

shear force must be expressed in point of )(ςφ . 
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Shear force is before obtained from Equation (3.32): 
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It is obtained following equations from shear force: 
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Using Equations (3.70) and (3.72), it is obtained, 
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These equations are satisfied if it is set 0)1(,
2
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−

= θπθ . To obtain a and A0, it is 

used Equation (3.47) using )0(θ  and )1(θ : 
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Finally, it is obtained Equation (3.66) following equation: 
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Here )(ςθ  is given by above equation. ς  and ςd  are obtained in )(ςθ : 
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To determineλ , it is used Equation (3.69) and Equation (3.66) in Equation (3.40) 

which yields: 
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Thus L
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0 =  and then using a and A0 values yields for the eigenvalueλ , 
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The cross-sectional area )(ςA given by Equation (3.69) can now be written as, 
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It is shown that in Figure 3.6 a graph of )(ςA . 

 

 
 

 

 

 

 

 

 

 

 

 
Figure 3.6 Cross-sectional area of strongest clamped-free column as a function of distance along 

column. 
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Finally, the optimum (nondimensional) eigenvalue and critical buckling load for 

clamped-free case are given by  
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which gives: 

(a) for cross-sectional of circular shape ( πα 4
1= ) 

4

2

2617994,0
L

EVPOPT =  

(b) for square shaped cross-sections ( 12
1=α ) 
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2741557,0
L

EVPOPT =  

(c) for isosceles triangle cross-sections ( 18
3=α ) 

4

2

3165677,0
L

EVPOPT =  

 

 3.2.2.4 Hinged-Hinged Case 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is satisfied the two conditions at the end x=0 and at the other end x=L for the 

hinged-hinged case. 
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To obtain necessary conditions, it is utilized Equation (3.36): 
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Now, it is applied boundary conditions for x=0 : 
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It is obtained following equation from second derivative of the deflection function 

for x=0: 
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It is also applied boundary conditions for x=L: 
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Consequently, it is found following equations from boundary conditions for at the 

end x=0 and at the other end x=L: 
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These equations are satisfied if it is set πθθ == )1(,0)0( . To obtain a and A0, it is 

used Equation (3.66) using )0(θ  and )1(θ : 
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Finally, it is obtained Equation (3.66) following equation: 

 

πςθθ =− 2sin
2
1 . 

 

Here )(ςθ  is given by above equation. ς  and ςd  are obtained in )(ςθ : 
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To determineλ , it is used Equation (3.69) and Equation (3.66) in Equation (3.40) 

which yields 
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Thus L
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0 =  and then using a and A0 values yields for the eigenvalueλ , 
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The cross-sectional area )(ςA given by Equation (3.69) can now be written as, 
 

)(sin
3
4)( 2 ςθς

L
VA =

 
 

It is shown that in Figure 3.7 a graph of )(ςA . 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.7 Cross-sectional area of strongest hinged-hinged column as a function of distance along 

column. 

 
 

Finally, the optimum (nondimensional) eigenvalue and critical buckling load for 

hinged-hinged case are given by  
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which gives: 
 

(a) for cross-sectional of circular shape ( πα 4
1= ) 

4

2

0471976,1
L

EVPOPT =  

 
(b) for square shaped cross-sections ( 12

1=α ) 

4

2

0966227,1
L

EVPOPT =  

(c) for isosceles triangle cross-sections ( 18
3=α ) 

4

2

2662708,1
L

EVPOPT =  

 

 

3.2.2.5 Guided-Clamped Case 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

It is satisfied the two conditions at the end x=0 and at the other end x=L for the 

guided-clamped case. 

 

0)()(

0)0()0(0

==⇒=

==⇒=
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Qwx
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x

 

 

It is suitable followed boundary conditions for guided-clamped case. It is written 

following equation Q  for x=0: 

P 
x 

w′B=0 
QB=0 

w′T=0 
wT=0 

w, z 

L 
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)()(.)(, xwxIExM
dx
dwP
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Because, the area moment of inertia is dependent on x, the term 
dx

xdI )(
 is written 

following equations: 
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It yields second derivative of the deflection function: 
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It is also obtained third derivation of the deflection function followed equation: 
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It is applied boundary conditions for x=0: 
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It is also written 0=Q  for x=0 followed equation: 
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When it is placed first derivative of the area moment of inertia, second derivative of 

the deflection function and third derivation of the deflection function to this equation, 

Q is obtained as: 
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If it is made necessary improvement, it yields, 
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According to above equations, it is obtained following conditions: 
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It is applied boundary conditions for x=L, 
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Finally, it is obtained, lateral deflection function, )0(w , for x=0: 
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These equations are satisfied if it is set
2

3)1(,
2

)0( πθπθ == . To obtain a and A0, it is 

used Equation (3.66) using )0(θ  and )1(θ : 
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It is obtained Equation (3.66) followed: 
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Here )(ςθ  is given by above equation. ς  and ςd  are obtained in )(ςθ : 

 

θθ
π

θ
π

ςθ
ππ

θς ddd 2cos2
2
112sin

2
1

−=⇒−=  

 

θθ
π

θ
π

θς ddd 2sin2)2cos1( =
−

=  

 

 

 

 



 123

To determineλ , it is used Equation (3.69) and Equation (3.66) in Equation (3.40) 

which yields: 
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Thus L
VA 3

4
0 =  and then using a and A0 values yields for the eigenvalueλ , 
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The cross-sectional area )(ςA given by Equation (3.69) can now be written as, 

 

)(sin
3
4)( 2 ςθς

L
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It is shown that in Figure 3.8 a graph of )(ςA . 

 

 
 
 

 

 

 

 

 

 

 

 

 
Figure 3.8 Cross-sectional area of strongest guided-clamped column as a function of distance along 

column. 
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Finally, the optimum (nondimensional) eigenvalue and critical buckling load for 

guided-clamped case are given by  
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which gives: 

 

(d) for cross-sectional of circular shape ( πα 4
1= ) 

4

2

0471976,1
L

EVPOPT =  

(e) for square shaped cross-sections ( 12
1=α ) 

4

2

0966227,1
L

EVPOPT =  

(f) for isosceles triangle cross-sections ( 18
3=α ) 

4

2

2662708,1
L

EVPOPT =  

 

The optimum column design with the guided-clamped case boundary conditions is 

simply a scaled version (in the length direction) of half the column with both ends 

clamped and a symmetrical buckling mode (and two inner hinges placed at the 

quarter points). Due to the symmetry at the mid point, the upper half of the interval 

an optimum column and corresponding mode with guided-clamped boundary 

conditions. This optimum guided-clamped column also has the value POPT of its 

buckling load and the same values of E but only half of the and half the volume of 

the clamped-clamped column with the eigenvalue given above, so the optimum 

buckling eigenvalue for the optimum guided-clamped column of length L and 

volume V becomes: 
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Finally, the optimal column for the case guided-clamped ends presents a half the 

optimal column clamped-clamped ends. 

 

 

3.2.2.6 Guided-Pinned Case 

 

 

 

 

 

 

 

 

 

It is satisfied the two conditions at the end x=0 and at the other end x=L for the 

guided-pinned case. 
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It is suitable followed boundary conditions for guided-pinned case. At the end x=0, it 

is also valid results obtained from guided-clamped case.  
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It is applied boundary conditions for x=L, 
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Deflection function and second derivative of the deflection function are written 

following equations, for x=0 and x=L, respectively: 

 

⎥⎦
⎤

⎢⎣
⎡ +−

−
= )0(sin)1(sin)0(cos)3(1)0( 32

3
0

32
3

0
2

1

0 θθθλ
λ

AAAw  

 

0)1(sin0)1()1(sin
)1(sin

1)( 32
3

042
0

2
=⇒=⇒=′′ θφθ

θ
A

AL
Lw  

 

[ ])0()1()0(1)0( φφφ
λ ς +−
−

=w  

 

⎥⎦
⎤

⎢⎣
⎡ +

−
= )0(sin)0(cos)3(1)0( 32

3
0

2
1

0 θθλ
λ

AAw . 

 

These equations are satisfied if it is set πθπθ == )1(,
2

)0( . To obtain a and A0, it is 

used Equation (3.66) using )0(θ  and )1(θ : 
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Finally, it is obtained Equation (3.66) followed: 
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Here )(ςθ  is given by above equation. ς  and ςd  are obtained in )(ςθ : 
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To determineλ , it is used Equation (3.69) and Equation (3.66) in Equation (3.40) 

which yields: 
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Thus L
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0 =  and then using a and A0 values yields for the eigenvalueλ , 
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The cross-sectional area )(ςA given by Equation (3.69) can now be written as, 
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It is shown that in Figure 3.9 a graph of )(ςA . 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.9 Cross-sectional area of strongest guided-pinned column as a function of distance along 

column 

 

Finally, the optimum (nondimensional) eigenvalue and critical uckling load for 

guided-pinned case are given by  
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which gives: 

 

(a) for cross-sectional of circular shape ( πα 4
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(b) for square shaped cross-sections ( 12
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Let us consider the optimum column with both ends simply supported and the 

corresponding buckling mode. The optimum (nondimensional) buckling eigenvalue 

for both ends simply supported is given by, 

 

2
2

)(
3

4
L
Vπλ = . 

 
Cut through at the mid point of the column axis the buckling mode and this 

optimum column with simply supported ends. Due to the symmetry at the mid point, 

the upper half of the interval an optimum column and corresponding mode with 

guided-pinned boundary conditions. This optimum guided-pinned column also has 

the value POPT of its buckling load and the same values of E but only half of the and 

half the volume of the simply supported column with the eigenvalue given above, so 

the optimum buckling eigenvalue for the optimum guided-pinned column of length L 

and volume V becomes, 
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The optimal column for the case guided-pinned ends presents a half the optimal 

column simply supported at both ends. 

 

The solution offered by Tadjbaksh & Keller with six different sets of boundary 

conditions is together displayed in Figure 3.10.  
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As shown in Figure 3.10, the cross-section area shows theoretically in points of 

0,25 L and 0,75 L of column to zero clamped-clamped case. This area in the middle 

of the column decreases towards ends. Hinged-hinged column, the cross-section area 

is the maximum in the middle of the column and its becomes to zero hinged ends. 

The column in guided-pinned case has the maximum cross-section area at the guided 

end and this area decreases towards the hinged end, where it becomes zero. In this 

form, it is valid also optimum clamped-free column. It is reported that the optimal 

column for the case guided-pinned ends presents a half the optimal column simply 

supported at both ends. Guided-clamped ends, the cross-section area yields 

theoretically in the middle of column to zero. The area increases towards both ends, 

where they take the maximum value. It is also obvious that the optimal column for 

the case guided-clamped ends presents a half the optimal column clamped-clamped 

ends. 
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a) Optimum clamped-clamped column 

b) Optimum clamped-hinged column 

c) Optimum clamped-free column 

Figure 3.10 The optimum solution offered by Tadjbaksh & Keller with different ends 
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d) Optimum hinged-hinged column 

e) Optimum guided-pinned column 

f) Optimum guided-clamped column 

Figure 3.10 The optimum solution offered by Tadjbaksh & Keller with different ends (Continue) 
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The critical buckling load is also given in Table 3.2 and 3.3 for optimum columns 

with six different sets of boundary conditions and three different variable cross 

sections. 

 

 

 
Table 3.2 Results obtained with respect to different supported types 
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In order to determine the achieved savings of material volume through the 

longitudinal optimal variation of the cross-section of the column, the respective 

critical buckling loads affecting columns with constant cross-section and with 

variable cross-sections as given in Table 3.3 must be equated to each other. In two 

cases treated in present study, a column having a uniform cross-section is 

additionally compared with another column of the same length that has a variable 

cross-section as well as the same buckling load. It is found that the volume 

relationship of the column with constant cross-section to the column with variable 

cross-section amounts to about 1.15, which is independent of the cross-section form 

Supported types Uniform Cross-
sections 

Cross-sectional 
of Circular 

shape 

Square shaped 
Cross-sections 

Isosceles 
triangle Cross-

sections 
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L

EV  4

2

61925,2
L

EV

 

Hinged-Hinged 
2

2

L
EIπ  4

2

04719,1
L

EV
4

2

09662,1
L

EV  4

2

26627,1
L

EV

 

Guided–Pinned 
2

2

4L
EIπ  4

2

26179,0
L

EV

 
4

2

274155,0
L

EV

 
4

2

31657,0
L

EV

 

Guided-Clamped 
2

2

L
EIπ  4

2

04719,1
L

EV
4

2

09662,1
L

EV  4

2

26627,1
L

EV

 

Table 3.3 The critical buckling load for three variable cross-sections for different supported types 
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and of support type of the column; (i.e. up to 15 percent of the material in 

construction can be spared, if the longitudinal optimal cross-section of a column 

under a critical buckling load is determined).  

 

3.2.3 Tadjbaksh-Keller’s Results for Composite Specimens Specimens for Clamped-

Clamped Case 

 

In this Ph. D thesis, both natural and manufactured composite materials were 

examined for clamped-clamped case. In this section, it is calculated the critical 

buckling laod obtained by Tadjbaksh & Keller for clamped-clamped ends.  

 

Tadjbaksh & Keller found optimum crtical buckling load following equation for 

clamped-clamped case: 

 

2
2

2

2

2

)(
3

16
L
E

L
VP

L
EP

E
PL

OPTOPT
απλα

α
λ =⇒=⇒= . 

 

To calculate of critical buckling load for various composite materials, it is needed 

young modulus for each material according to above equation obtained by Tadjbaksh 

& Keller. Properties of these materials were detailed found in the experimental 

section. Table 3.4 shows young modulus of cedar, oak, sapele and glass-epoxy, 

glass-vinylester, glass-polyester with different fiber orientation angle. 

 
Table 3.4 Young modulus (E) of natural and manufactured composite materials for different fiber 

orientation angle (MPa) 

 
a) 
 

 
 
 
 
 
 
 
 
 
 

 
 

Natural Composite Materials Modulus of Elasticity 

CEDAR 2228,68 

OAK 3426,41 

SAPELE 4257,30 



 136

b) 

 

In calculations, the diameter length of oak and sapele is taken as 25 mm and 750 

mm, respectively, for uniform cross-section, while the diameter of cedar is as 20 mm. 

It is found volume for uniform cross-section followed equation: 

 

3
2

39,368155)750(
4

)25( mmV ==
π  

 

3
2

45,235619)750(
4

)20( mmVCEDAR ==
π  

 

Due to 33,1=
V
AL  for 0=ς , it is obtained the cross-sectional area )(ςA and 

diameter for sapele, oak and cedar respectively: 

 

For sapele and oak wood composite materials: 

 

mmD
D

A

mm
L
VA

V
LA

Variable
Variable 83,2887,652
4

)(

87,652
750

)39,368155(33,133,1)(33,1)(

2

2

=⇒==

===⇒=

π
ς

ςς

 

 

 

 

 

Manufactured 

Composite Materials 

0-degree 

Modulus of 

Elasticity (E) 

45-degree 

Modulus of 

Elasticity (E) 

90-degree 

Modulus of 

Elasticity (E) 

GLASS-EPOXY 9943,86 7938,30 7242,98 

GLASS-VINYLESTER 8123,04 7641,10 6942,40 

GLASS-POLYESTER 7590,10 7254,10 6558,90 
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For cedar wood composite materials: 

 

mmD
D

A

mm
L
VA

V
LA

Variable
Variable

cedar

cedar

1,2383,417
4

)(

83,417
750

)45,235619(33,133,1)(33,1)(

2

2

=⇒==

===⇒=

π
ς

ςς

 

 

Consequently, it is calculated critical buckling load for natural and manufactured 

composite materials according to Tadjbaksh & Keller. Results are given in Tables 

3.5 and 3.6 for three variable cross-sections. 

 
Table 3.5 The analytic critical buckling load according to Tadjbaksh & Keller for wood composite 

materials with variable cross-sections (Duniform=25 mm and Dvariable=28,83 mm for sapele and 

cedar, Duniform=20 mm and Dvariable=23,1 mm for cedar materials) 

 

 

 

 

 

 

 

 

It is obtained similarly equations for manufactured composite materials. In this case, 

the diameter of manufacture composited materials is taken as 22 mm. 

 

For manufactured composite materials 

 

3
2

53,285099)750(
4

)22( mmV ==
π

 

 

 

 

 

 

 

Cross-section form 
Natural Composite 

Materials Circular 
Shape Square Shape 

Isosceles 
triangle cross-

sections 
OAK 6148,1618 6438,3401 7434,3547 

SAPELE 7639,0652 7999,6104 9237,1544 
CEDAR 1637,9990 1715,3085 1980,6677 
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mmD
D

A

mm
L
VA

V
LA

Variable
Variable 37,2557,505
4

)(

57,505
750

)53,285099(33,133,1)(33,1)(

2

2

=⇒==

===⇒=

π
ς

ςς

 

 

Table 3.6 The analytic critical buckling load according to Tadjbaksh & Keller for composite 

materials with variable cross-sections for 0, 45 and 90 degree of fiber orientation angle (Duniform=22 

mm and Dvariable=25,37 mm) 

 

a) Fiber Orientation Angle=0 degree 

 

 

 

 

 

 

 

 
b) Fiber Orientation Angle=45 degree 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Cross-section form 
Manufacture Composite 

Materials Circular 
Shape Square Shape 

Isosceles 
triangle cross-

sections 
GLASS-EPOXY 10700,1937 11205,2167 12938,6697 

GLASS-VINYLESTER 8740,8815 9153,4297 10659,4702 

GLASS-POLYESTER 8167,4059 8552,8874 9876,0237 

Cross-section form 

Composite specimens Circular 
Shape Square Shape 

Isosceles 
triangle cross-

sections 
GLASS-EPOXY 8542,0901 8945,2558 10329,0917 

GLASS-VINYLESTER 8222,2849 8610,3567 9942,3835 

GLASS-POLYESTER 7805,8496 8174,2666 9438,8300 
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c) Fiber Orientation Angle=90 degree 

 

 

 

 

 

 

 

 

 

3.3 Olhoff & Rasmussen’s Solution for Clamped-Clamped Case 

 

Olhoff & Rasmussen (1977) showed that the optimal solution of buckling 

problem for columns with clamped ends should be bimodal, namely, possessing two 

linearly independent buckling modes, and they determined this optimal solution by a 

numerical method. They claimed that the column possesses a buckling mode that 

becomes critical at a lower value of the axial load than the mode considered in the 

analytical class of deflection functions than Tadjbaksh & Keller’s solution. Note that 

the solution found by Olhoff & Rasmussen exhibits no hinges. 

 

The optimal design problem has expressed by finding a structure of minimum 

volume for given lowest eigenvalue constraint. They reconsidered that the optimum 

fundamental buckling load *λ , thus the optimum solution, should be a double 

eigenvalue. The governing equations for solving the problem were presented by 

variational analysis. In Olhoff & Rasmussen, a dimensionless cross-sectional area 

)(* xα  and a buckling load *λ  were introduced as follows:  

 
 
 
 
 
 
 
 
 

Cross-section form 

Composite specimens Circular 
Shape Square Shape 

Isosceles 
triangle cross-

sections 
GLASS-EPOXY 7793,8838 8161,7360 9424,3609 

GLASS-VINYLESTER 7470,4416 7823,0281 9033,2548 

GLASS-POLYESTER 7057,78 7390,8820 8534,2554 
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VLxAx /)()(* =α  (3.73) 
 

2

4
*

EcV
PL

=λ  (3.74) 

 

Due to the consideration of the fundamental buckling load of the optimum column, 

which is a double eigenvalue, it follows: 

 

2,1
1

0

22* =⇒′′= ∫ ∗ idxwiαλ   (3.75) 

 
where w1 (x) and w2 (x) indicate the two buckling modes related to the optimum *λ . It 

is also stated with the clamped end boundary conditions followed for unimodal and 

bimodal solution, respectively: 

 

⇒

⎪
⎪
⎭

⎪⎪
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⎫

=′==′=
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Eigenvalue problem of Unimodal solution
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″−=′′″

2,1

0)1()1()0()0(

)( *2*

i

wwww

ww

iiii

ii λα
 Bimodal solution (3.77) 

 

where the column ends x=0 and x=1. It is also expressed the fixed volume condition 

by,  

∫ =
1

0

1dxα  (3.78) 

 

In addition, it was expressed an additional constraint for the design variable )(* xα , 

i.e. αα ≥)(* x  throughout, assuming the minimum allowable value )10( ≤≤ αα  to 

be given. The real slack variable g(x) gives the minimum constraint by means of: 



 141

 
αα −= )()( *2 xxg  (3.79) 

 

In Equation (3.79), α  that is to be given denotes geometric minimum constraint. 

Olhoff & Rasmussen applied a variational formulation of optimization problem and 

they expressed by, 

 

∫ ∫ ∫ −
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i

i dxgxdxdxw ααµαβη   (3.80) 

 

where Lagrangian multipliers βηγ ),2,1(, =ii  and )(xµ . The governing equations of 

the optimization problem were achieved as Euler-Lagrange equations following from 

the stationarity of the functional **λ  with respect to variation of )(* xα , g(x) and 

w1(x) and w2(x). Variation of )(* xα and g(x) leads to the bimodal optimality 

condition, respectively, which may present the optimum cross-sectional area 

function )(* xα : 

 

0)()1(
2

2

2

1
* =+−

⎭
⎬
⎫

⎩
⎨
⎧ ″+″− xww µβγγα  

 (3.81) 

0)()( =xgxµ  

 

The stationary of *λ  for arbitrary admissible variations of wi (i=1, 2) gives the 

buckling differential equations for wi  after identifying the Lagrangian multipliers iη  

by means of Equation (3.75). The unknowns to be obtained were the optimum double 

buckling eigenvalue *λ , the optimum column cross-sectional area function )(* xα , the 

eigenfunctions w1 and w2 and the Lagrangian multipliers. The method used for 

solving equations of the bimodal eigenvalue optimization problem were consisted of 

a numerical procedure of successive iterations based on a finite difference 
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formulation of equations, in consideration of this geometric minimum constraintα . 

Figure 3.11 and 3.12 show the optimum column shapes for selected values ofα . 

 

It is shown in Figure 3.11, optimum column shapes, represented through *α± , 

with associated fundamental modes w1 (and w2 when optimum *λ  is a double 

eigenvalue) for selected values of
−

α . It is shown in Figure 3.11(c) and (d) the 

fundamental modes w1 (x) and w2 (x) for the double optimum eigenvalue solutions, 

which found out along with the optimum area function )(* xα , eigenvalue *λ  and 

Lagrangian multipliers from the non-linear optimality equations. The modes w1 (x) 

and w2 (x) belonging together were also non-symmetrical. For value of 
−

α  0,7 and 0,4 

respectively, it was found that the optimum buckling load was a simple eigenvalue.  

 

The buckling loads were as 48,690 and 51,775 for 7,0=
−

α and 4,0=
−

α  

respectively. As shown in Figures 3.11(a) and (b), the column parts were mutually 

rigidly connected at the points 
4
1

=x  and
4
3

=x , respectively, where the bending 

moment of the symmetrical mode vanishes, and where the geometric minimum 

constraint was active. For 25,0=
−

α , it was detected that the optimum buckling load 

was a double eigenvalue. The buckling load was as 52,349. Optimum design was 

obtained for 226,00 ≤≤
−

α , and the buckling load was as 52,3563 (Olhoff & 

Rasmussen, 1977). 

 

As shown in Figure 3.12, it is displayed by curve ABCD the dimensionless 

buckling eigenvalue *λ  of the optimum solutions as a function of the minimum 

constraint 
−

α  in the interval 10 ≤≤
−

α , where the end point values correspond to 

geometrically unconstrained and uniform column, respectively. It had been 

determined the second eigenvalues 2
*λ  of the optimum solutions subject to 

1280,0 ≤≤
−

α  by means of a common procedure of calculating eigenvalues and 
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modes. It is displayed obtained results by curve CE in Figure 3.12. The second 

eigenvalue 2
*λ  combined with the fundamental eigenvalue *λ  of the optimum 

column for 280,0=
−

α . The optimum buckling load *λ was associated with two 

modes w1 and w2, by the curve ABC in Figure 3.12. This case was also shown in 

Figures 1(c) and (d). Optimum *λ  increases with decreasing geometric constraint 

for 1226,0 ≤≤
−

α , by the curve BCD in Figure 3.12. In addition, it found that the 

constraint 
−

α  was active in corresponding design. For any value 
−

α  in the 

interval 226,00 ≤≤
−

α , it was obtained the same optimum design and double 

buckling load. Point A was denoted the optimum bimodal buckling load. The points 

H and G described the overestimated and the actual fundamental buckling load, 

respectively. This case is specified solution obtained by Tadjbaksh & Keller (Olhoff 

& Rasmussen, 1977).  
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Figure 3.11 Optimum column shapes and associated fundamental modes according to Olhoff & 

Rasmussen (1977) 
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Figure 3.12 Optimum buckling loads vs. minimum constraint for column cross-sectional area 

according to Olhoff & Rasmussen (1977) 
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Figure 3.13 Optimised cross-sections of column with clamped ends according to the solution of 

Olhoff & Rasmussen 

 

 

Olhoff & Rasmussen have assumed α as a constant in their study. This means that 

the variable cross section consists of a certain constant and a variable term as seen in 

Equation 3.57. Thus, in Olhoff & Rasmussen’s equation, a constant cross section 

assumption prevails at each point of the column, which cannot be equal to zero. 

Hence, the remaining volume is optimized as seen in Figure 3.13.  

 

For this reason, when this constant volume denoted by α  is taken as zero, the 

constant volume requirement vanishes at every point of the column. In this case, both 

solutions of the optimization problems of Tadjbakhsh & Keller (1962) and Olhoff & 

Rasmussen (1977) are identical. Tadjbakhsh & Keller had not investigated the case, 

in which α  is unequal to zero, and therefore, the results of two studies cannot be 

compared with each other. For α =0, the buckling load obtained by Olhoff & 

Rasmussen (1977) with a numeric method was found to be as *λ =52,3563 as 

bimodal buckling load of the optimum column. This result is quite close to the 

analytic solution value as λ=52,638 of Tadjbakhsh & Keller. 

 
 
 
 
 

 
Optimised 
cross- 
section 
area )(ςA  

Constant 
cross-section 
area A  along 
axis  
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3.3.1 Olhoff-Rasmussen’s Solution for Composite Specimens for Clamped-

Clamped Case 

 

The critical buckling load is calculated following equation acoording to Olhoff & 

Rasmussen’s for clamped-clamped case: 

 

4

2

2

4

3563,523563,52
L
VEP

VE
LP

Optimum
Optimum α
α

λ =⇒==  

 

which gives: 

 

(a) for cross-sectional of circular shape ( πα 4
1= ) 

4

2

16639,4
L

EVPOPT =  

(b) for square shaped cross-sections ( 12
1=α ) 

4

2

36302,4
L

EVPOPT =  

(c) for isosceles triangle cross-sections ( 18
3=α ) 

4

2

03799,5
L

EVPOPT =  

 

It is given critical buckling load for natural and manufactured composite materials 

according to Olhoff & Rasmussen in Tables 3.7 and 3.8 for natural and manufactured 

composite materials, respectively, for three variable cross-sections. 

 

 

 

 



 148

 

Table 3.7 The analytic critical buckling load according to Olhoff & Rasmussen for wood composite 

materials with variable cross-sections (Duniform=25 mm and Dvariable=28,83 mm for sapele and 

cedar, Duniform=20 mm and Dvariable=23,1 mm for cedar materials) 

 

 

 

 

 

 

Table 3.8 The analytic critical buckling load according to Olhoff & Rasmussen for composite 

materials with variable cross-sections for 0, 45 and 90 degree of fiber orientation angle (Duniform=22 

mm and Dvariable=25,37 mm) 

 
a) Fiber Orientation Angle=0 degree 

 

 

 

 

 

 

 

 
b) Fiber Orientation Angle=45 degree 

 

 

 

 

 

 

 

 

Cross-section form 
Natural Composite 

Materials Circular 
Shape Square Shape 

Isosceles 
triangle cross-

sections 
OAK 6115,2707 6403,8965 7394,5827 

SAPELE 7598,1981 7956,8144 9187,7379 
CEDAR 1629,2360 1706,1320 1970,0716 

Cross-section form 
Manufactured Composite 

Materials  Circular 
Shape Square Shape 

Isosceles 
triangle cross-

sections 
GLASS-EPOXY 10642,9503 11145,2715 12869,4510 

GLASS-VINYLESTER 8694,1199 9104,4611 10512,9261 

GLASS-POLYESTER 8123,7122 8507,1315 9823,1894 

Cross-section form 
Manufactured Composite 

Materials Circular 
Shape Square Shape 

Isosceles 
triangle cross-

sections 
GLASS-EPOXY 8496,3920 8897,4009 10273,8336 

GLASS-VINYLESTER 8178,2977 8564,2933 9889,1841 

GLASS-POLYESTER 7764,0902 8130,5362 9388,3345 



 149

c) Fiber Orientation Angle=90 degree 

 

 

 

 

 

 

 

 

 

3.4 Masur’s Solution for Clamped-Clamped Case 

 

Tadjbaksh & Keller (1962) obtained an optimal design that displayed hinges at the 

quarter points and symetric-buckling mode. Olhoff & Rasmussen (1977) showed that 

the solution was based on the double eigenvalue and exhibited no hinges and 

antisymetric-buckling mode. Masur (1984) has been reinvestigated for the case of a 

double eigenvalue in the light of singularity conditions. Masur (1984) derived the 

bimodal optimality conditions for the clamped-clamped case and stated an extension 

to multiple eigenvalues. Optimality was reached with the double eigevalue solution. 

In addition, previously established by Olhoff & Rasmussen double eigenvalue a 

solution was reinvestigated in the ligth of singularity conditions. It was derived 

specific necessary and sufficient conditions for local and global optimality and 

explicit optimality criteria were created for double eigenvalues, including a 

geometric interpretation. It was also developed an analytical closed solution for the 

case of the optimal design of clamped-clamped column.the results obtained by Masur 

were in good agreement with obtained by Olhoff & Rasmussen. Masur’s solution is 

show followed: 

 

 

 

 

 

 

Cross-section form 
Manufactured Composite 

Materials Circular 
Shape Square Shape 

Isosceles 
triangle cross-

sections 
GLASS-EPOXY 7752,1884 8118,0727 9373,9429 

GLASS-VINYLESTER 7430,4765 7781,1768 8984,9290 

GLASS-POLYESTER 7020,0150 7351,3426 8488,5992 
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The two buckling modes wi (i=1, 2) are expressed by 
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Let us assume the moment of inertia I is proportional to the square of the cross-

section A and the introduce the non-dimensional variables ς  and η  and buckling 

load parameter λ  through 
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with boundary conditions, 
 

2,1,0)1()1()0()0( ==′==′= iwwww iiii   (3.88) 
 

The design variable )(ςη being symetric with respect to the center of the column and 

with the assumption that w1 is symetric and w2 is antisymetric, optimality condition 

with the introduction of Lagrangian multipliers ijγ ,becomes (Masur, 1984), 
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where ijΩ  is the surface energy densities, and the column buckles into a symetric 

mode of constant curvature kw ±=″1 ,in the central half and in the quarter points.  

 

Masur stated that Equation (3.89) were necessary for local optimality and 

represented a generalization and extension of the conditions first introduced by 

Olhoff & Rasmussen. Additionally, global optimality established restrictions on the 

value of the Lagrangian multipliers ijγ . This condition is stated for the case, 2=n  by 

Masur. 

 

The volume constraint is written as, 
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It is satisfied Equation (3.90) by letting, 
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When Equation (3.92) inserted in Equation (3.87), it is obtained, 
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By multiplying the first these by cos θ  and the second by sin θ  and by taking 

difference, and after integration: 
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which a is the integration constant. Similarly, by multiplying the first of Equation 

(3.93) by sin θ and the second by cos θ and by adding two, and after integration: 
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where b is the another integration constant. These constants are determined from the 

boundary conditions. When Equation (3.87) is integrating, it is showed following 

equations: 
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in which )1()0(0 ηηη =≡  and )0(0 θθ ≡ .It is obtained the final form of Equations 

(3.75) and (3.76), respectively, 
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If 2ς  is described by 22 )( ηςη = , it follows from Equation (3.95) that 
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Similarly again from Equation (3.96), 
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It is noted that )2
1()( 1 =ης from Equation (3.99) with the substitution of Equation 

(3.98), to determine the remaining constants 0η  and 0θ , this means that, 
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It is also 0)0( θθ =  and 2
3)2

1( πθ =  .And integration of Equations (3.96) is 

followed, 
 

∫∫ +=−
1

2

0

2

)(2sin
2
3

2
3

0
3

00

η

η

η

η η
η

η
ηθηθπ

q
d

q
d  (3.101) 

 
which involves elliptic integrals of the first, second and third kind. It is jointly solved 

Equation (3.100) and (3.101) to determine the remaining constants 0η  and 0θ . It is 

also expressed the colume constraint Equation (3.91), 
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Obtained results are shown below (Masur, 1984): 
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The buckling load was 52,3565 by Masur from the bimodal optimum 

solution.Consequently, Masur (1984) showed that the solution was based on the a 

double eigenvalue and exhibited no hinges and antisymetric buckling mode.  

 

 

3.4.1 Masur’s Solution for Composite Specimens for Clamped-Clamped Case 

 

The critical buckling load is calculated following equation acoording to Masur’s for 

clamped-clamped case: 
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which gives: 

 

(a) for cross-sectional of circular shape ( πα 4
1= ) 

4

2

166398788,4
L

EVPOPT =  

(b) for square shaped cross-sections ( 12
1=α ) 

4

2

36304166,4
L

EVPOPT =  

(c) for isosceles triangle cross-sections ( 18
3=α ) 

4

2

03780066,5
L

EVPOPT =  

 

It is given critical buckling load for natural and manufactured composite materials 

according to Masur in Tables 3.9 and 3.10 for natural and manufactured composite 

materials, respectively, for three variable cross-sections. 
 

 

Table 3.9 The analytic critical buckling load according to Masur for wood composite materials with 

variable cross-sections (Duniform=25 mm and Dvariable=28,83 mm for sapele and cedar, Duniform=20 

mm and Dvariable=23,1 mm for cedar materials) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cross-section form 
Natural Composite 

Materials Circular 
Shape Square Shape 

Isosceles 
triangle cross-

sections 
OAK 6115,2940 6403,9209 7394,6109 

SAPELE 7598,2271 7956,8448 9187,7730 
CEDAR 1629,2423 1706,1386 1970,0791 
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Table 3.10 The analytic critical buckling load according to Masur for composite materials with 

variable cross-sections for 0, 45 and 90 degree of fiber orientation angle (Duniform=22 mm and 

Dvariable=25,37 mm) 

 

a) Fiber Orientation Angle=0 degree 

 

 

 

 

 

 

 

 

 

b) Fiber Orientation Angle=45 degree 

 

 

 

 

 

 

 

 
c) Fiber Orientation Angle=90 degree 

 

 

 

 

 

 

 

 

 

 

Cross-section form 
Manufactured Composite 

Materials Circular 
Shape Square Shape 

Isosceles 
triangle cross-

sections 
GLASS-EPOXY 10642,9910 11145,3140 12869,5001 

GLASS-VINYLESTER 8694,1531 9104,4958 10512,9662 

GLASS-POLYESTER 8123,7433 8507,1641 9823,2269 

Cross-section form 
Manufactured Composite 

Materials Circular 
Shape Square Shape 

Isosceles 
triangle cross-

sections 
GLASS-EPOXY 8496,4244 8897,4349 10273,8728 

GLASS-VINYLESTER 8178,3289 8564,3260 9889,2319 

GLASS-POLYESTER 7764,1198 8130,5673 9388,3704 

Cross-section form 
Manufactured Composite 

Materials Circular 
Shape Square Shape 

Isosceles 
triangle cross-

sections 
GLASS-EPOXY 7752,2180 8118,1037 9373,9787 

GLASS-VINYLESTER 7430,5049 7781,2065 8984,9634 

GLASS-POLYESTER 7020,0419 7351,3706 8488,6316 
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3.5 Proposed Optimum Solution for Clamped-Clamped Case 

 

The purpose of this Ph. D. thesis, optimum design of composite structures against 

buckling is achieved by finding the minimum weight structure that satisfies a 

buckling load constraint. In another words, it is thought about determining what 

shape of column has the largest possible buckling load of composite column of a 

given length and volume. The optimization problem is formulated as the 

maximization of the smallest eigenvalue given total volume of material of the 

structure. Alternatively, it may be to maximise the fundamental buckling load for a 

structure with a given volume or weight. For this case, both natural and man-made 

composite materials with different fiber orientation angle were studied for clamped-

clamped ends. 
 

Tadjbakhsh & Keller (1962) examined analytically the optimal longitudinal cross-

sections of column under critical buckling loads for different support ends 

“clamped/clamped, clamped/free and clamped/slide-hinged case”. For clamped-

clamped ends, it was found that points of zero thickness, and consequently of infinite 

stress exist at the columns ends, as shown in Figure 3.14. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.14 Optimal clamped-clamped column according to Tadjbaksh & Keller 
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Olhoff & Rasmussen (1977) displayed that the bimodality of the optimum 

eigenvalue must be taken into account in the mathematical formulation of the 

problem in order to obtain the correct optimum solution and determined numerically 

the optimal solution to the problem.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.15 Optimal clamped-clamped column according to Olhoff & Rasmussen 
 

The solution given by Olhoff & Rasmussen (1977) displayed in Figure 3.15 has a 

double eigenvalue. The optimum bimodal buckling load was later given in Masur 

(1984). Considering clamped-clamped ends, Masur’s solution was allowed bimodal 

optimum condition. Masur’s solution was good agreement with Olhoff & 

Rasmussen’s solution.  

 

There have followed a sequence of alternative designs which have come closer 

and closer in both shape and buckling load to the original Tadjbakhsh & Keller’s 

(1962) solution. Non dimensional buckling load obtained by Tadjbaksh & Keller, 

Olhoff & Rasmussen and Masur was shown in Table 3.11. 
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Table 3.11 Comparison of non dimensional buckling load of given for optimum columns 

 

Prescribed 

Buckling Load 

Tadjbaksh & Keller 

(1962) 

Olhoff & Rasmussen 

(1977) 

Masur 

(1984) 

2

4

VE
NL
α

λ =  52,6379 52,3563 52,3565 

 

However, in these solutions, it is only considered stability criterion in structure. 

Especially in points of minimum thickness which was found with bimodal optimum 

solution is crush occurred but not buckling. Consequently, bimodal solution is not 

practical and optimal since in points of minimum thickness crush occurred but not 

buckling. This leads to the necessity of both stability and crush criterion formulation 

of the optimization problem. 

 

The present contribution of this Ph. D. thesis is that crush is taken into account in 

the formulation of column optimization problem allowing for bimodal optimum 

solution. The criteria will be developed here with the use of both the analytical 

closed solution found by Masur (1984) for clamped-clamped ends and crush criterion 

in points of minimum thickness. True solution that is applicaple to practise was 

obtained that was taken into account crushing criteria to Masur’s analytic bimodal 

solution for clamped-clamped case. 

 

New proposed optimum solution obtained by taking into accounts both stability 

and crush criterion will be verified with numerical analysis and experimental data for 

columns with clamped ends. 

 

In new proposed optimum solution column design given length and volume will 

be resisted both buckling and crush, especially, in points of minimum thickness. To 

understand the verification of the new proposed optimum solution, natural and 

manufactured composite specimens including i.e. cedar (cedrela), sapele 

(entandrophragma cylindricum) oak (quercus spp.), glass-epoxy, glass-vinylester and 
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glass-polyester with 0, 45 and 90 degree of fiber orientation angle were tested 

experimentally and numerically and (Sayman & Pekbey 2004). 
 

In this Ph. D. thesis, it is rearranged in points of minimum thickness in our 

solution obtained by taking into consideration both stability and crush criterion. At 

first, the crushing criterion is considered in points of minimum thickness for an 

assumed initial shape of a column obtained by Masur bimodal solution. In the model 

by Masur, in points of minimum thickness crush occurred but not buckling. For this 

reason, the bimodal solution which obtained by Masur is not optimal and practical. 

An example is shown for this case belowed. The present contribution of this Ph. D. 

thesis is that crush is taken into account in the formulation of column optimization 

problem allowing for bimodal optimum solution. For this reason, it is firstly chosen 

the volume, which satisfied bimodal optimality conditions given by Masur for endure 

buckling and crushing in columns. The chosen volume value is smaller than the 

initial volume that is equal to the uniform column’s volume. Next, it is added 

volume, V∆ , in the points of minimum thickness. The volume that is added, V∆  is 

formulated in MATLAB that is mathematical programe. Such a procedure is 

repeated until the difference between assumed volume and initial volume is zero. 

Flow scheme of new optimum proposed solution is showed in Figure 3.16. 
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Figure 3.16 Flow scheme of new optimum proposed solution 

 

 

 

 

Determing specimen length and diameter for elastic 
buckling and calculating uniform cross-section volume 

Vuniform  

 

Evaluation of the Results 

Finding optimum form and optimum column 
coordinates and diameter according to 

Masur (Dmasur) 

Determining variable cross-section form 
diameter according to Masur but 

Dassumed<Dmasur 
and Vassumed< Vuniform  

 

Calculating in points of minimum thickness and  
∆V= Vuniform - Vassumed 

 

Finding between two points,  
providing V∆  using MATLAB 

 

If ∆V=0, New Optimum solution  
against both buckling and crushing criteris in 

points of minimum thickness 

 

If ∆V≠0, again 
define Dassumed 
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The criteria will be developed here with the use of both the analytical closed 

solution found by Masur (1984) for clamped-clamped ends and crush criterion in 

points of minimum thickness. For this reason, the cross-sections at 
4
1

=ς  and 
4
3

=ς  

have been increased to make it safe against crushing according to the following 

equation: 

 

yield

crN
A

σ
≥  (3.103) 

 

In our new optimum column design given length and volume is resisted both 

buckling and crush, especially, in points of minimum thickness. It is also given an 

example following section depending on new optimum solution.  

 

As a result of this P.h. D. thesis, it was shown that results obtained in the previous 

studies of variation optimum cross-sectional area for columns under compressive 

forces clamped-clamped ends were erroneous. The corrected optimum form was 

obtained, as shown in Figure 3.17, and results were checked by numerical 

calculations and experimental tests of natural and manufactured composite columns. 
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Figure 3.17 Comparisions of optimum shape of clamped-clamped column obtained by Tadjbaksh & 

Keller, Masur and New Proposed Optimum Solution  

 

 

 3.5.1 An Examined Case for Clamped-Clamped ends 

 

Let us define glass-epoxy uniform composite column with circular shape which 

diameter and length of the column is as 22 mm and 750 mm respectively. The critical 

Euler buckling load is obtained followed equation for clamped-clamped case: 

 

N
L

EIPEULER 14,8025
)750(

64
)22()86,9943(4

4
2

4
2

2
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=
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==

ππ
π  

 

Mechanical properties for glass-epoxy are obtained from experiments as follows:  

 

MPaMPaE yield 8,106;86,9943 == σ  
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Now, it is purposed to maximise the fundamental buckling load for the composite 

column with a given volume, i.e. 3
2

53,285099)750(
4

)22( mmV ==
π . 

 

The optimum form was specified in following diameter according to Tadjbaksh & 

Keller and Masur as representing L
x=ς : 

 

Maximum diameter:  

 

mmD
D

V
AL 37,2533,1

53,285099
750

4
33,115,00 .max

2
.max =⇒=⇒=⇒===

π
ς   

 
Table 3.12 The optimum column coordinates according to Tadjbaksh & Keller for diameter of 25,37 

mm with variable circle cross-sections (Dmaximum=25,37 mm, V=285099,53 mm3) 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Radius, mm  
ς  x 

(mm) V
AL  Tadjbaksh & Keller’s 

solution 
0 0 1,33 12,685 

0,1 75 1,20 12,05 
0,2 150 0,7 9,20 
0,25 187,5 0 0 
0,3 225 0,7 9,20 
0,4 300 1,2 12,05 
0,5 375 1,33 12,685 
0,6 450 1,2 12,05 
0,7 525 0,7 9,20 
0,75 562,5 0 0 
0,8 600 0,7 9,20 
0,9 675 1,2 12,05 
1 750 1,33 12,685 
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Masur gave it following equation in points of minimum thickness: 

 

845,85)22583,0(
750

53,285099)22583,0()( ===
L
VA ς  

 

mmDD 454,10845,85
4 min

2
min =⇒=

π  

 

The critical buckling load is written followed: 
 

N
L

EVP KELLERTADJBAKSH 173,10698
)750(

)53,285099)(86,9943(188,4188,4 4

2
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N
L

EVPMASUR 97,10642
)750(
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Table 3.13 The optimum column coordinates according to Masur for diameter of 25,37and 23,64 mm 

mm with variable circle cross-sections  

 

 
 

Masur’s solution 
ς  x 

(mm) V
AL  Radius, mm 

Dmaximum=25,37 mm, 
V=285099,53 mm3 

Radius, mm 
Dmaximum=23,64 mm 
V=247510,968 mm3 

0 0 1,33 12,685 11,82 
0,1 75 1,20 12,05 11,23 
0,2 150 0,7 9,20 8,58 
0,25 187,5 0,22583 5,227 4,871 
0,3 225 0,7 9,20 8,58 
0,4 300 1,2 12,05 11,23 
0,5 375 1,33 12,685 11,82 
0,6 450 1,2 12,05 11,23 
0,7 525 0,7 9,20 8,58 
0,75 562,5 0,22583 5,227 4,871 
0,8 600 0,7 9,20 8,58 
0,9 675 1,2 12,05 11,23 
1 750 1,33 12,685 11,82 
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The force was calculated in points of minimum thickness as follows: 

 
NAP YIELD 25,9168)845,85)(8,106( === σ . 

 
 
This optimum column modeled by Masur does not occur buckling, but crush occur in 

points of minimum thickness because of MASURPP〈 . Now, our new optimum solution 

will be devoleped.  

 

Let us take the column modeled by Masur, but it is defined as Dmaximum=23,64 mm 

in the beginning. The chosen volume value must be smaller than the initial volume 

that is equal to the uniform column’s volume.  

 

 

3
2

968,24751033,1750
4

)64,23(33,1 mmV
VV

AL
=⇒=⇒=

π  

 

Next, it is added volume, V∆ , in the points of minimum thickness because of aiming 

at a given volume, i.e. 3
2

53,285099)750(
4

)22( mmV ==
π .  

 

The volume that is added, V∆  namely 

 
3562,37588968,24751053,285099 mmVVV =−=−=∆ is formulated in MATLAB 

that is mathematical programe. Such a procedure is repeated until the difference 

between assumed volume and initial volume is zero. The MATLAB program is given 

ends of this section. 
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Table 3.14 The optimum column coordinates according to our new optimum solution 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Consequently, the volume obtained with our new solution is equal to the initial 

volume, but this optimal shape endures both buckling and crushing and in points of 

minimum thickness crush does not occurred. To understand the verification of the 

new optimum solution, composite specimens were tested. The results obtained 

experiments will be shown Experimental section. 

 

 

 

x 
(mm) 

Proposed Optimum Solution  
(Dmaximum=23,64 mm,V=285099,53 mm3) 

Radius, mm 
0 11,82 
75 11,23 
150 8,58 

168,75 5,225 
206,25 5,225 

225 8,58 
300 11,23 
375 11,82 
450 11,23 
525 8,58 

543,75 5,225 
581,25 5,225 

600 8,58 
675 11,23 
750 11,82 
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CHAPTER FOUR 

EXPERIMENTAL INVESTIGATION FOR CLAMPED-CLAMPED CASE 

 

4. Introduction 

 

This Ph. D. thesis studied was focused on new proposed optimum model solution 

of column which given length and volume were resisted to both buckling and crush, 

especially, in points of minimum thickness. To understand the verification of the new 

optimum solution, natural composite and manufactured composite specimens were 

sapele (entandrophragma cylindricum) cedar (cedrela), oak (quercus spp.), glass-

epoxy, glass-vinylester and glass-polyester.  

 

Two types of specimens were used to compare buckling load of composite 

column with both uniform and variable cross-sections. It is obtained by taking into 

accounts both stability and crush criterion has been proved with numerical analysis 

and experimental data for columns with clamped ends (Ozdamar & Pekbey 2004, 

Sayman & Pekbey, 2004). Fiber orientation angle which describes the orientation of 

fiber with respect to the loading direction is important parameters. In this thesis, fiber 

orientation angle is changed as 0, 45 and 90 degrees. 

 

In this chapter, the properties of materials used, configuration of specimens, 

fabrication and processing of composites, test setup, and testing details are presented. 

 

4.1 Fabrication and Processing of Composite Columns 

 

All manufacturing methods provide the structural shape for the composite 

material. In the fabrication phase, the fiber reinforcement and matrix material are 

placed into structural form. It is used to heat and pressure to density and consolidate 

the structure during the process phase. In all manufacturing methods, it is required to 

apply temperature and pressure after the fiber and matrix are brought together into 

the desired structural form. While fabrication techniques are independent on the type 
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of the matrix material, it is completely processing condition on the type of the matrix 

material used. For example, thermosets are desired for long processing times, 

whereas thermoplastics need relatively high pressures and temperatures (Hyer, 

1998).  

 

The fibers and matrix material can be commercially obtained in a variety of 

forms. Manufacturing process of composites is varied according to cost, size of 

production, machines and product quality. One of used commercial manufacturing 

processes is the hand lay-up method. The hand lay-up is the oldest and most common 

fabrication method for composite structures although the method has been replaced 

with automated techniques. In this method, its process depends on many factors, such 

as part size and shape, cost and schedule. Because of it’s a reliable process, it is by 

nature very slow and labor intensive. This method depends on the individual skill of 

the operator. 

 

This type of fabrication is the most-time consuming but it results in high quality 

parts. A description of these steps is given in Figure 4.1. The first ply in oriented and 

subsequent plies are placed one upon another, a roller is used to compact the plies 

and remove entrapped air that could later lead to voids or layer separations. Once the 

composite plies are combined with desired shape and orientation, it is necessary to 

apply the temperature and pressure for periods of time to produce composite 

materials. The pressure can be applied on the product while being cured in order to 

consolidate the fiber interaction and reduce the content of voids. 

 

In this Ph. D. Thesis, the composite plies were cured at 180°C for 2 h under a 

pressure of 12 MPa using a pressing machine. The fabrication and processing phases 

of glass fiber-epoxy, glass fiber-vinylester, and glass fiber-polyester are shown in 

Figure 4.1. 
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Figure 4.1 Fabricating and processing of composite materials 
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Figure 4.1 Fabricating and processing of composite materials (Continue) 
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Figure 4.1 Fabricating and processing of composite materials (Continue) 
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Figure 4.1 Fabricating and processing of composite materials (Continue) 
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4.2 Details of Specimens 

 

All specimens were manufactured both uniform and variable cross-sections. The 

length was defined as 750 mm. The diameter of wood composite specimens was 25 

mm for sapele, oak and cedar for circle-cross-sections while the diameter of glass-

epoxy, glass-vinylester and glass-polyester was 22 mm with 0, 45 and 90 degree of 

fiber orientation angle. Every specimen was operated in lathe because of obtaining 

requested diameter. In this way, it was manufactured all natural and manufactured 

composite materials for uniform cross-sections. Other specimens, in other words the 

composite columns with variable cross-sections processed in CNC workbench. This 

procedure was the most-time consuming. Because it was changed thickness every 

points of composite column. Especially, it was very difficult to form the minimum 

thickness of points of composite columns. It was able to manufactured glass-epoxy 

with 0 and 45 degree of fiber orientation angle, glass-vinylester and glass-polyester 

with 90 degree of fiber orientation angle. Numbers of three specimens each of 

materials were fabricated. Three specimens were tested in longitudinal compression 

because of obtaining mechanical properties of composite materials.  

 
Finally, the specimens used in this study were as follows: 

 

• Sapele, cedar and oak wood composite materials with uniform cross-

sections (Figure 4.2) 

• Sapele, cedar and oak wood composite materials with variable cross-

sections (Figure 4.2) 

• Glass-epoxy, Glass-vinylester and Glass-polyester composite materials 

with uniform cross-section and with 0, 45 and 90 degree of fiber 

orientation angle (Figure 4.3) 

• Glass-epoxy composite materials with variable cross-section and with 0, 

45 degree of fiber orientation angle (Figure 4.4) 

• Glass-vinylester and glass-polyester composite materials with variable 

cross-section and with 90 degree of fiber orientation angle (Figure 4.4). 
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The compressive stiffness and critical buckling load were determined using these 

specimens. The specimens were tested in the Laboratory of the University of Ege 

Department of Mechanical Engineering. 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.2 Buckling test specimens with uniform and variable cross-sections for wood composite 

materials 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.3 Buckling test specimens with uniform cross-sections for 0, 45 and 90 degree of fiber 

orientation angle for composite materials 
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Figure 4.4 Buckling test specimens with uniform and variable cross-sections for composite materials 

with different fiber orientation angle  
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4.3 Material Properties and Test Set-up 

 

Experimental studies are performed to verify the validity of the present model. 

The tensile and compressive strength of composites are different, and therefore have 

to be determined separately. Because of the difficulty in avoiding coupon buckling 

during the test, compression testing is a lot more problematic than the tension tests. It 

is interested in determining the compression modulus, yield strength in the 

compression tests. Compression modulus was obtained from a typical stress-strain 

diagram. The stress-strain curve in compression is not perfectly linear to failure, but 

for the purposes of obtaining the properties. Another interesting characterization of 

composites is their behavior under compressive loads. Most often the critical 

buckling loads are determined through an eigenvalue analysis. In this thesis, 

compression tests were carried out on wood composite materials (sapele, oak, and 

cedar), glass-epoxy, and glass-polyester and glass-vinylester composites in order to 

evaluate the critical buckling load. 

 

Mechanical properties of composites depend on the shape and the dimension of 

the reinforcement. The highest stiffness is obtained along the direction of the fibers.  

 

Traditionally, wood characteristic strength values in compression are determined 

using small clear specimens. ASTM (1994) specifies a clear straight-grained 

specimen 203 mm long, 51x51 mm cross sectional area, tested to failure, to obtain 

the compression strength parallel to the grain. Compression strengths of clear wood 

of various species and grades are published in the Wood Engineering Handbook 

(1990) (Lau 2000). The compression strength of lumber with defects is generally less 

than that of clear material of the same species. To address this issue, the traditional 

method of predicting the strength of lumber with defects is to reduce the clear wood 

strength using modification factors to account for the defects. The test method refers 

to the ASTM standard D198-94 (1995), and procedures to establish the allowable 

properties are given in ASTM standard D 1990-91. On the other hand, long members  
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and short members perform differently under compression load. While short 

members will attain the ultimate compression strength, long members will fail in 

buckling. Thus, a lateral instability failure is a characteristic of slender compression 

members. The capacity of long columns depends on the stiffness of the member. For 

this reason, the design codes typically classify compression members into three 

categories short, intermediate and long members, according to the slender ratios, Cc, 

defined by  

 

 
d
LCC =                         (4.1) 

 

where 

L= length of the member, or effective length in case of different boundary conditions 

d= dimension of cross-section of the member in the direction of buckling 

 

Cedar, sapele and oak were chosen for this thesis because they are locally 

available and commercially important species. Compression tests were conducted on 

the wood specimens. For compression testing, three specimens each (which were 

averaged after testing to give a characteristic value), with a length of 40 mm, were 

cut from cedar sapele and oak stick to give a compressive specimen. The low length-

to-width ratio prevented failure of the specimen by Euler buckling (Gindl & 

Teischinger 2002). The specimen consists of a straight piece of cedar, sapele and oak 

wood which is sufficiently short to ensure that failure will occur first in crushing 

(rather than in buckling). 

 

The wood and manufactured composite materials under testing consist of uniform 

and variable cross-sections. It was sized optimized column with variable cross-

section which considered together both bimodal solution and crushing. The 

dimensions of composite columns were also selected different fiber orientation angle. 
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The critical buckling load measurements were made using long, slender circle 

composite columns with uniform and variable cross-sections. The length of the 

column is as L=750 mm. The column is subjected to concentrated compressive force 

at the centroid of the cross-section at the end of the column. The force is increased 

until the column buckles; the corresponding force is called the buckling load. In the 

analysis, it is assumed that the column behaves in a linearly elastic manner and the 

deformations are small. The shear deformations in the plane of the walls are not 

taken into account. 

 

The experiments were designed to provide information on the load deformation 

response and stress-strain characteristics. The experiments were also designed to 

study the effect of fiber orientation angle of composite columns. 

 

Firstly, for these specimens, it was determined modulus of elasticity and yield 

stress. Three specimens were tested in longitudinal compression. Average values 

from each test were recorded and presented in Tables 4.1 for natural and 

manufactured composite materials. 

 

And then, a diameter was calculated for elastic buckling in the uniform column 

for wood and manufactured composite materials. In this diameter value was 25 mm 

and 20 mm for sapele-oak and cedar materials, respectively. It was 22 mm for glass-

epoxy, glass-vinylester and glass-polyester.  

 

 

 

 

 

 

 

 

 



 184

 

 
Table 4.1 Average values of Young modulus (E) and yield stress of natural and manufactured 

composite materials for different fiber orientation angle (MPa) 

 

a) For Natural Composite Materials 

 

 

 

 

 

 

b) For Manufactured Composite Materials 

 

 

 

The composite column specimens were tested by applying compression in a 

hydraulic testing machine. Compression strength was determined on a Shimadzu AG 

100 kN universal testing machine. A typical specimen mounted in the test fixture is 

shown in Figure 4.5. The columns were placed between the moving jaws. The 

specimens were checked for verticality to avoid any initial inclination. The load was 

applied at a constant rate of 0,5 mm/min and load, strains and deformations were 

recorded by universal test machine.  

 

 

 

Natural 

Composite Materials 
E Yieldσ  

CEDAR 2228,68 21,30 

OAK 3426,41 42,48 

SAPELE 4257,30 42,88 

Fiber Orientation Angle 
0 degree 45 degree 90 degree Manufacture Composite 

Materials E Yieldσ  E Yieldσ  E Yieldσ  
GLASS-EPOXY 9943,86 106,80 7938,30 83,92 7242,98 77,2 

GLASS-VINYLESTER 8123,04 86,70 7641,10 78,88 6942,40 74,75 

GLASS-POLYESTER 7590,10 78,50 7254,10 72,52 6558,90 70,70 
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Secondly, compressive tests for wood and man-made composite materials were 

performed to obtain the critical buckling load. A total of two different tests were 

performed to study the behavior of the under compressive loads for uniform cross- 

and variable cross-section. The specimens were tested as clamped-clamped ends 

columns in vertical position loaded with axial compressive load. All specimens were 

loaded slowly until buckling. Buckling modes were also observed. The buckling 

form for wood and man-made composite materials with uniform and variable cross-

section is shown in Figures 4.6 and 4.10. 

 

The applied load and the measured strains were recorded using a data-acquisition 

system. The data-acquisition system saves the recorded data as a file. And then this 

file was imported into Microsoft Excel. In this way, the critical buckling load was 

determined both uniform and variable cross-sections for clamped-clamped ends. 

 

 

 

Figure 4.5 Test apparatus for buckling and compressive tests 
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Figure 4.6 Buckling of natural composite materials for uniform cross-sections 
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Figure 4.7 Buckling form of glass-epoxy composite materials for uniform cross-sections with 0 degree 

fiber orientation angle 
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Figure 4.8 Buckling of glass-epoxy composite materials for variable cross-sections with 0 degree fiber 
orientation angle 
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Figure 4.9 Buckling form of glass-epoxy composite materials for variable cross-sections with 0 degree 
fiber orientation angle (Continue) 
 

 



 190

From the measured load-strain data, it was calculated the critical buckling load for 

uniform and variable cross-section for sapele, oak, cedar; glass-epoxy, glass-

vinylester and glass-polyester with 0, 45 and 90 degree of fiber orientation angle. 

One of result of an experimental measurement was shown in Figure 4.10. The load 

which the initial part of the curve deviated linearity, was taken as the critical 

buckling load. The calculated values are shown in Tables 4.5 and 4.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.10 The critical buckling load obtained from experimental measurements 

 

 

 

In the following subsections, experimental results will be compared in the form of 

load-displacement curves, with the theoretical and numerical calculations. 
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Table 4.5 The critical buckling load (N) results obtained experiments for wood composite materials 

with uniform cross-sections 

 

 

Table 4.6 The critical buckling load (N) results obtained experiments for manufactured composite 

materials with uniform cross-sections 

 

 

 

 

 

 

 
Table 4.7 The critical buckling load (N) results obtained experiments for manufactured composite 

materials with variable cross-sections  

 

 

Natural Composite 

Materials 
Uniform Cross-Section 

Variable Cross-section 

(New Proposed Optimum Model) 

CEDAR 1200 1400 
OAK 4650 5990 

SAPELE 5730 6850 

Fiber Orientation Angle Composite specimens 0° 45° 90° 
GLASS-EPOXY 8074,25 6350,75 5766,50 

GLASS-VINYLESTER 6615,50 6100,00 5475,75 

GLASS-POLYESTER 6227,85 5770,25 5245,50 

Composite Specimens and  

Fiber Orientation Angle 

The Critical Buckling Load (N) 

(New Proposed Optimum Model ) 

GLASS/EPOXY (0 degree) 8750 
GLASS/EPOXY (45 degree) 7000 

GLASS/VİNYLESTER (90 degree) 6250 
GLASS/POLYESTER (90 degree) 5850 
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CHAPTER FIVE 

FINITE ELEMENT ANALYSIS OF THE EXPERIMENTAL 

METHOD FOR CLAMPED-CLAMPED CASE 

 

5. General 

 

It is always preferable to confirm the experimental program. Therefore, the 

experimental and theoretical results can be compared using a numerical method. If 

good agreement between the results, the numerical model can be used broadly to 

conduct a comprehensive study. It is true that numerical modeling is faster and 

cheaper approach of collecting data about a certain problem than depending 

completely on an extensive and expensive, experimental investigation. The finite 

element method (FEM) is most powerful and flexible method because of providing a 

complete solution for elastic and inelastic problems. The goal behind using the finite 

element method is first to simulate the experimental work described in the previous 

chapter. 

 

The finite element method is a numerical procedure intended to provide 

approximate solutions for a broad range of problems which do not admit closed form 

solutions. It originated in the aircraft industry where a reliable tool for both static and 

dynamic analyses required. The method quickly acquired popularity and began to be 

applied in many areas of engineering. 

 

The finite element method has rapidly become a very popular technique for the 

computer solution of complex problems in engineering. This method is used 

practically all fields of engineering analysis. It can be regarded in structures as an 

extension of earlier established analysis techniques, in which a structure is 

represented as an assemblage of discrete elements interconnected a finite number of 

nodal points (Xi, 1998). 

 

Today a solid mathematical foundation supports the finite element method. Its 

convergence characteristics and accuracy have been thoroughly studied and known 
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to be intrinsically associated with the choice of the basis functions and element types. 

In general, the method considers a continuous domain as composed of finite regions 

(finite element) and describes the properties of each region by a finite number of 

parameters. Then, applying the conditions of compatibility between regions, a system 

of simultaneous equations is formed with the parameters. Solution of this system of 

equations along with boundary conditions provides the unknown parameters. The 

finite element method strongly relies on numerical solutions of equations. That 

postponed its usefulness until the sixties when digital computers began to develop. 

Many steps of the finite element solution procedures are repeated and systematic, 

thereby, well suited for computers. Furthermore, it is often the case that the volume 

of data to be handled is large and practically intractable without the aid of computers. 

One of the limiting factors is computation complexity, which requires high speed and 

high capacity computers. With the advance of computer systems, the use of this 

method on highly variable materials 

 

5.1 Fundamentals of Finite Element Method  

 

The finite element method has been widely used in engineering and science in the 

approximate solution of boundary-value problems that cannot be solved analytically 

for a very long time. Over the last decade or so, the finite element method has been 

used and developed as a powerful and standard computational method for the 

solution of structural problems due to mechanical advantages and manifold features. 

It is one of the most effective numerical analysis tools in the engineering and 

efficient computational method for the numerical solution of engineering problems. 

There are several references about finite element and its application. The most 

important advantage of this method is its capability to model various arrangements of 

structural elements, material properties and boundary conditions. 

 

The finite element method is an analytical procedure. The fundamental idea 

underlying this method is that the total structure can be modeled analytically by its 

subdivision into the finite elements in each of which the behavior is explained by a 

separate set of assumed functions illustrating the stresses of displacements in that 
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region, when applied to problems of structural analysis. It is often chosen these sets 

of functions in a form that confirms continuity of the expressed behavior throughout 

the complete continuum. If the behavior of the structure is characterized by a single 

differential equation, then the finite element method, in common with the series and 

finite difference schemes, describes an approach to the approximate solution of that 

equation. If the total structure is heterogeneous, being composed of many separate 

structural forms in each of which the behavior is described by a distinct differential 

equation, the finite element approach continues to be directly applicable 

(Anonymous, 2005k). 

 

This method becomes a powerful tool for the numerical solution of a wide range 

of engineering problems. The finite element method of applications such as 

deformation and stress analysis of automotive, aircraft, building, and bridge 

structures to field analysis of heat flux, fluid flow, magnetic flux, seepage, and other 

flow problems. It can be modeled complex problems with the advances in computer 

technology and CAD systems. It can be tested on a computer several alternative 

configurations before the first prototype is constructed. In this reason, it is important 

understanding the basic theory, modeling techniques, and computational aspects of 

the finite element method. In the finite elements method, it is discredited a complex 

region simple geometric shapes called finite elements. It is regarded as material 

properties and the governing relationships over these elements. The assembly of 

these elements to for the whole structure is physically equivalent to superimposing 

these element equations mathematically. The result is composed of a large set of 

simultaneous equations that can be solved using computers. It is obtained the 

approximate behavior of the continuum by solution of these equations (Anonymous, 

2005k). 

 

The finite element method desires the formation and solution of systems of 

algebraic equations. It is the special advantages of the method in its suitability for 

automation of the equation formation process and in the ability to show highly 

irregular and complex structures and loading situations (Anonymous, 2005k). 
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It is well known that the core aspects of finite element method are: first to divide 

the structure in question into finite small elements, second to establish the 

relationship of forces and displacements in tem of stiffness matrix for each element, 

third to assemble these individual relations to form one relation for the whole 

structure with proper force or displacement boundary conditions and finally to find 

the internal forces (stresses) and strains or displacements of any point within the 

structure from the established relations hip. 

 

The first step in a finite element analysis is to discretize the problem into sets of 

structural components. Each finite element is interconnected with the adjacent 

elements by the nodal points. Nodal forces act at each nodal point which, in turn, is 

subjected to displacements and rotations. A standard set of simultaneous equations 

can be written to relate these physical quantities. Assembling these elements to form 

the whole structure is equivalent physically to superimposing these elements 

equations mathematically. The result is a huge set of simultaneous equations that can 

be solved using computers. From the potential energy formulation, the following 

equation in a matrix form is obtained:  

 

{ } [ ]{ } { } [ ]{ } { } { }PUUKUUKU T
G

T
e

T
P −+=Π

2
1

2
1

   (5.1) 

 

where, P∏  is the potential energy of the system; { }U  is the global displacement 

vector, { }P  is the global load vector: [ ]eK  is the global elastic stiffness matrix; and 

[ ]GK  is the global geometric stiffness matrix. The geometric stiffness matrix is 

included in the analysis to account for the deformed geometry of the elements in the 

equilibrium equations since the problem of angle members under a compressive load 

is a large deflection problem (Shani, 1998).  
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Differentiating with respect to the displacement and equating the result to zero to 

determine the minimum potential energy of the system results in the following: 

 
[ ]{ } [ ]{ } { }PUKUK Ge =+    (5.2) 

 

which can be simplified to the following basic finite element equation relating the 

global displacements and the global loads 
 

[ ]{ } { }PUK =    (5.3) 

 

where, [ ] [ ] [ ]Ge KKK += . 

 

The finite element method can be requested to the evaluation of the elastic critical 

load. This method is based on the use of local functions. Each member of structure is 

subdivided into a series of fairly short elements. It may be defined the deformation 

over each element by a simple polynomial function. If the displacement of each node 

is known, the coefficients of these polynomial functions may be determined. As a 

result, the individual displacements of the structure may be calculated. It may be 

described the behavior of the structure in terms of the displacements of the nodes. It 

must be stationary for equilibrium the increment in total potential energy with 

respect to these nodal displacements (Anonymous, 2005e). This guides to a set of 

linear homogeneous equations, namely, the following eigenvalue problem: 

 

[ ]{ } [ ]{ }ψψλ GE
f KK =    (5.4) 

 

where, ψ  are nodal displacements, fλ is the load factor, KE is the global elastic 

stiffness matrix corresponding to the nodes, KG is the geometric stiffness matrix. The 

smallest value of fλ  is known both the first eigenvalue and the critical load 

factor f
crλ . The structure becomes unstable at f

crλ . 
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The eigenvalue and the eigenfuction are called as buckling load and buckling 

mode, respectively. The eigenvalues and the eigenvectors can be get by applying 

several techniques, such as inverse iteration, forward iteration and Rayleigh quotient 

iteration, transformation methods, likely Jacobi method and generalized Jacobi 

method and the subspace iteration method.  

 

Finally, the problem of buckling can be solved in two ways; 

• By forming a geometric stiffness matrix of the entire structure under a 

fraction of the loading pattern and extracting eigenvalues and mode shapes. 

This is useful only when the structure remain elastic until buckling. 

• By conducting a nonlinear analysis. In this case, buckling is indicated by 

excessive deformations and consequent reduction in load carrying capacity. 

 

5.1.1 Types of Elements Used in the Finite Element Method 

 

It is the simple framework element member of the total family of finite elements. 

It expresses truss and space frame structures, when used in combination with 

elements of exclusively the same type (Anonymous, 2005k). 

 

It is the basic elements in finite element analysis the thin plates loaded by forces 

in their own plane. This case is also described the condition of plane stress. Plane 

stress elements may be triangular and quadrilateral. It is feasible many other 

geometric shapes in this class of element, although such other forms generally serve 

very specialized purposes (Anonymous, 2005k). 

 

It is the solid elements three-dimensional generalizations of the plane stress 

elements. The most common shapes of three-dimensional elements are the 

tetrahedron and hexahedron. It is essential to analytical models of soil and rock 

mechanics problems and of structures for nuclear power (Anonymous, 2005k). 

 

It is the axisymmetric solid elements one of the most important fields of 

application of the finite element method. It is fall a great variety of engineering 
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problems in this category such as concrete and steel tanks, nuclear containment 

vessels, rotors, pistons, shafts, and rocket nozzles (Anonymous, 2005k). 

 

It is the axisymmetric thin shell structures the same range of significance in 

practical application as the axisymmetric solids. Axisymmetric thin shell 

formulations bridge the gap between flat plate bending and stretching and general 

thin shell elements (Anonymous, 2005k). 

 

5.2 ANSYS Program 

 

The finite element can deal with structural engineering which cannot be 

effectively solved using classical methods. The procedure uses the finite element 

method and makes use of the ANSYS program to solve eigenvalue problem. The 

finite element method is very often used as a numerical experiment in order to 

confirm the results obtained in the analytical way. In the finite element method 

model assumed in the analysis with the ANSYS 9.0 package, the composite column 

with uniform and variable cross-sections were modeled. 

 

ANSYS is designed as a general finite element package for numeric modeling of 

structural response in linear and non-linear static and dynamic analysis. This 

computer program runs as a batch application to assemble a data deck that describes 

a problem so that it can be analyzed the structure. A data deck is described finite 

element model, the elements element properties, material definition, nodal 

constraints.  

 

In this thesis, finite element modeling is used to gain further understanding of the 

critical buckling load. ANSYS are used to analyze the critical buckling load of 

various composites natural and man-made composite materials in order to see how 

changes the fiber orientation angle of composite column would affect the buckling 

load.  
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Eigenvalue buckling analysis predicts the theoretical buckling strength of an ideal 

linear elastic structure. It is showed ANSYS program procedure for eigenvalue 

buckling analysis below: 

• Build the model. 

• Obtain the static solution. 

• Obtain the eigenvalue buckling solution. 

• Expand the solution. 

• Review the results. 

 

5.2.1 ANSYS Eigenvalue Analysis Options 

 

 5.2.1.1 Subspace Method 

 

The eigenvalue and eigenvector problem which needs to be solved for mode-

frequency and buckling analyses has the form of (from ANSYS Help Section):  

[ ]{ } [ ]{ }iii MK ϕλϕ =    (5.5) 

where  

[K] = structure stiffness matrix 

{φi} = eigenvector 

λi = ith eigenvalue  

[M] = structure mass matrix. 

 

For prestressed modal analyses, the [K] matrix includes the stress stiffness matrix 

[S]. For eigenvalue buckling analyses, the [M] matrix is replaced with the stress 

stiffness matrix [S]. It is formulated the buckling problem as an eigenvalue problem: 
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[ ] [ ] { } { }0)( =+ ii SK ψλ    (5.6) 

where  

ψi = ith eigenvector of displacements. 

The eigenvectors are evaluated using inverse iteration with shifting. The 

eigenvectors associated with multiple eigenvalues are evaluated using initial vector 

deflation by Gram-Schmidt orthogonalization in the inverse iteration procedure.  

The subspace iteration method algorithm consists of the following steps: 

1. Define the initial shifts: 

The Sturm sequence check computes the number of negative pivots encountered 

during the triangularization of the shifted matrix [K*]. This number will match the 

number of converged eigenvalues unless some eigenvalues have been missed. In that 

case, more iteration vectors must be used or the initial shift (see step 1) was past the 

first mode. For the final Sturm sequence check, the shift used is defined as:  

)(1,0 1 ppps λλλ −+= +    (5.7) 

where:  

λp = eigenvalue of the last requested mode 

λp+1 = eigenvalue of the next computed mode. 

 

2. Initialize the starting vectors [X0]  

 

The number of starting (iteration) vectors used is determined from:  

 

dpq +=  (5.8) 
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where 

p = requested number of modes to extract 

d = number of extra iteration vectors to use. 

 

The q starting vectors [X0] are initialized as follows. For each predefined rigid-body 

motion, define a rigid-body vector:  

1. If a translational rigid-body motion, set the DOF (Degrees of Freedom) slot in 

{X0} to 1.0 ({X0} is a column of [X0]).  

2. If a rotational rigid-body motion, set the DOF (Degrees of Freedom) slot in 

{X0} corresponding to a unit rotation about the global origin corresponding to 

the Dof label.  

The rigid-body vectors are M-orthogonalized (Gram-Schmidt orthogonalization). 

The remainder of the vectors is initialized to random vectors.  

 

3. Triangularize the shifted matrix  

[ ] [ ] [ ]MsKK +=*    (5.9) 

where:  

[K] = assembled stiffness matrix 

[M] = stress stiffness matrix. 

 

4. For each subspace iteration n (1 to NM), do steps 5 to 14:  

 

where:  

NM = maximum number of subspace iterations 

5. Form [F] = [M][Xn-1] and scale [F] by {λn-1}  
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where:  

 

{λn-1} = previously estimated eigenvalues 

 

6. Solve for [ ]nX  

 

[ ][ ] [ ]FXK n =*   (5.10) 

7. Scale the vectors [ ]nX  by { }11 /)( −− − nn s λλ  

 

8. M-orthogonalize the vectors to the previously converged vectors (Gram-Schmidt 

orthogonalization).  

9. Define the subspace matrices [ ]K  and [ ]M : 

[ ] [ ] [ ][ ]n
T

n XKXK =  (5.11) 

[ ] [ ] [ ][ ]n
T

n XMXM =  (5.12) 

10. Adjust for the shift, [ ] [ ] [ ]MsKK +=*  

 

11. Compute the eigenvalues and vectors of the subspace using a generalized Jacobi 

iteration:  

[ ][ ] [ ][ ]{ }nQMQK λ=*  (5.13) 

where:  

[Q] = subspace eigenvectors 

{λn} = updated eigenvalues. 

12. Update the approximation to the eigenvectors:  
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[ ] [ ][ ]QXX nn =  (5.14) 

13. If any negative or redundant modes are found, remove them and create a new 

random vector.  

14. Check for convergence (described below):  

• All requested modes converged? If yes, go to step 15.  

• If a new shift is required (described below), go to step 3  

• Go to the next iteration, step 4  

In order to improve the rate of convergence during the iteration process, a shifting 

strategy is adopted as follows: 

1. If the current converged mode(s) is zero(s) and the next mode i+1 is nonzero, 

shift to just below the nonzero mode:  

⎩
⎨
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2. If the number of iterations since the last shift exceeds NS(minimum number 

of subspace iterations completed before a shift is performed), then shift to just 

below the next unconverged mode i+1 
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The convergence check requires that all of the requested eigenvalues satisfy the 

convergence ratio:  

B
e nini

i
1)()( −−

=
λλ

 (5.15) 

 

if 1+iλ  is close to being converged 

if not 

if 1+iλ  is close to being converged 

if not 
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where:  

(λi)n = value of ith eigenvalue as computed in iteration n 

(λi)n-1 = value of ith eigenvalue as computed in iteration n-1 
 

⎩
⎨
⎧

=
ni

B
)(

1
λ

whichever is greater tol = tolerance value, set to 1.0E-5 

 

15. Perform a final Sturm sequence check if requested 

 

 

  5.2.1.2 Block Lanczos 

 

The Block Lanczos eigenvalue extraction method is available for large symmetric 

eigenvalue problems. Typically, this solver is applicable to the type of problems 

solved using the subspace eigenvalue method, however, at a faster convergence rate 

(From ANSYS Help Section).  

 

The method used by the modal analysis employs an automated shift strategy, 

combined with Sturm sequence checks, to extract the number of eigenvalues 

requested. The Sturm sequence check also ensures that the requested number of 

eigenfrequencies beyond the user supplied shift frequency is found without missing 

any modes.  

 

The Block Lanczos algorithm is a variation of the classical Lanczos algorithm, 

where the Lanczos recursions are performed using a block of vectors, as opposed to a 

single vector.  

 

Use of the Block Lanczos method for solving large models (100,000 DOF: 

Degrees of Fredom, for example) with many constraint equations (CE) can require a 

significant amount of computer memory. This occurs when certain constraint 

equations lead to a huge wave front size. For this reason, the Lagrange Multiplier 

approach is implemented to treat constraint equations in the block Lanczos 

eigensolver, rather than explicitly eliminating them prior to writing. 



 205

 

5.3 Finite Element Model of the Problem for Clamped-Clamped Case 

 

The Finite Element Analysis was conducted to investigate the behavior of wood 

materials (sapele, cedar and oak) and man-made composite materials (glass-epoxy, 

glass-polyester, glass-vinylester) under compressive loads. A model of each 

experimental specimen was analyzed using finite element method. The purpose of 

this analysis is to model the behavior of a built-up column under axial load, hence, 

verify the analysis by the experimental results. A three-dimensional finite element 

model was developed to predict the mechanical behavior of composite materials.  

 

Two different finite element models were obtained. These were uniform and 

variable cross-sections for wood and man-made composite materials. In other words, 

uniform column was formed and optimized column using ANSYS for composite 

materials. The specimen length of the all composites both uniform and variable 

cross-sections were taken as 750 mm.  

 

a) For uniform cross-sections: 

 

The diameters of the wood composites were as 25 mm and 20 mm for sapele-oak and 

cedar wood materials, respectively. In this value for man-made composite materials 

was taken as 22 mm for uniform cross-sections. Fiber orientation angle was also 

changed as 0, 45 and 90 degree for glass-epoxy, glass-polyester, and glass-vinylester. 

 

b) For Variable cross-sections: 

 

The maximum diameter were as 23,64 mm for glass-epoxy, glass-polyester, glass-

vinylester, while it was taken as 27,5 mm and 22,5 mm for sapele-cedar and oak 

materials, respectively . It was also modeled Masur’solution which the maximum and 

minimum diameter was as 23,64 mm and 10,454 mm for composite materials. 

Additionally, the new our optimum solution was modeled, which minimum thickness 
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of points had not been crush occur. Furthermore, all cases were investigated for 

different fiber orientation angle: 0, 45 and 90 degree. 

 

The columns with uniform cross-sections were modeled with the beam elements 

(Ozdamar & Pekbey 2004). But other columns which have variable cross-sections 

were modeled with the solid elements. In the finite element model, the optimum 

element sizes used to obtain accurate results when the models were meshed. It is also 

assumed that the materials are to be isotropic and linearly elastic. 

 

The composite columns were analyzed under clamped-clamped end conditions. 

The boundary conditions were applied to the edge nodes of the columns. A pressure 

of a unit value was applied on the upper areas. The rotations in the xy-, yz- and xy- 

planes are taken zero at the nodes through clamped edges. The boundary and load 

conditions of the column are shown in Figures 5.1 and 5.5. 
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Figure 5.1 The Finite Element Modeling according to considering together buckling and crushing 

criteria 
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Figure 5.2 The finite element mesh model for new proposed optimum solution 
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Figure 5.3 The loading conditions for new proposed optimum model solution 
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Figure5. 4 The buckling mode for new proposed optimum solution 
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5.4 ANSYS Results for Clamped-Clamped Case 

 

Table 5.1 shows the finite element results obtained by ANSYS for uniform and 

the variable cross-sections for natural composite materials.  

 
Table 5.1 The critical buckling load results obtained from numerical method for wood composite 

materials with uniform and variable cross-sections (new proposed optimum model solution) 

 

 

 

 

 

In addition, optimum shape of the column found by Masur was modeled in ANSYS 

for 25,37 mm maximum diameter of variable cross-section of column. ANSYS 

results are shown in Table 5.2.  

 
Table 5.2 The critical buckling load results obtained from numerical method and analytic method 

obtained by Masur for composite materials with variable cross-sections (new proposed optimum 

model solution) 

 

 
 

 

 

 

 

 

Natural Composite 
Materials Uniform Cross-Section Variable cross-section 

CEDAR 1228,49 1402,10 
OAK 4611,20 5829,20 

SAPELE 5729,40 6831,90 

0° 45° 90° 
Manufactured Composite 

Materials Analytic 
 

Finite 
Element 

result 

Analytic 
 

Finite 
Element 

result 

Analytic 
 

Finite 
Element 

result 
GLASS-EPOXY 10642,99 10672,00 8496,42 8519,70 7752,22 7773,40 

GLASS-VINYLESTER 8694,15 8717,90 8178,32 8200,70 7430,50 7450,80 

GLASS-POLYESTER 8123,74 8146,00 7764,1198 7813,50 7020,0419 7039,20 
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Results in Table 5.2 are good agreement with each other; however, the optimum 

solution obtained by Masur is not valid because crush occurs in points of minimum 

thickness. Consequently, it is considered both buckling and crush criteria for 

optimum columns. It is taken into account stability and crush criteria for new 

proposed optimum solution. The critical buckling load is numerically obtained for 

uniform and variable cross-sections for manufactured composite materials. Results 

given in Table 5.3 are new proposed optimum model’s results. 
 

 

Table 5.3 The critical buckling load results obtained from numerical method for composite materials 

with uniform cross-sections and variable cross-sections (new proposed optimum model solution) 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

0° 45° 90° Manufactured Composite 
Materials Uniform Variable Uniform Variable Uniform Variable 

GLASS-EPOXY 8025,30 8692,40 6406,70 6939,30 5845,50 6331,50 

GLASS-VINYLESTER 6555,70 7100,80 6166,80 6679,50 5602,90 6068,70 

GLASS-POLYESTER 6125,70 6634,90 5854,50 5893,20 5293,40 5802,40 
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CHAPTER SIX 

RESULTS AND CONCLUSIONS 

 

6.1 Results 

 

In 1744, Euler treated critical buckling forces for columns with constant cross-

section supported with four different bearing types. If an economical and lighter 

design of these columns is required, their cross-sections must vary longitudinally. In 

1962, Tadjbaksh & Keller examined the optimal longitudinal cross-sections of 

columns under critical buckling loads for different support ends, and they determined 

the optimal solution analytically, which was unimodal, namely, possessing a single 

buckling mode.  

 

Olhoff & Rasmussen also displayed in 1977 that the optimal solution obtained by 

Tadjbaksh & Keller was to be incorrect for columns with clamped ends. They 

developed the bimodal optimal solution for columns with clamped ends, which was 

obtained through application of a numeric method in solving the differential 

equation. These differences depend on the minimal cross-sectional area. Further, the 

optimization problem of columns has been studied by many different authors such as 

one of them Masur (1984). Masur demonstrated the formulation of column 

optimization problems in respect of bimodal solution for columns with clamped 

ends. 

 

The critical buckling load results of Tadjbaksh & Keller, Olhoff & Rasmussen 

(1977)-Masur (1984) is closer with each other for clamped-clamped ends. However, 

the difference is originated from optimum shape of the column, especially in points 

of minimum thickness. Tadjbaksh & Keller found the points of vanishing cross-

section to be placed at x=0,25 and x=0,75 where the column ends x=0 and x=L are 

assumed to be clamped-clamped ends while Olhoff & Rasmussen (1977)-Masur 

(1984) obtained nonzero cross-section in these points with bimodal optimum 

solution.  



 214

 

However, in these solutions, it is only considered stability criterion in structure. 

Especially in points of minimum thickness which was found with bimodal optimum 

solution is crush occurred but not buckling. Consequently, bimodal solution is not 

practical and optimal since in points of minimum thickness crush occurred but not 

buckling. This leads to the necessity of both stability and crush criterion formulation 

of the optimization problem. Thus, in order to determine the optimum column with 

clamped ends, it is necessary to take into consideration the possibility that in points 

of minimum thickness is crush occurred. 

 

The present contribution of this Ph. D. thesis is that crush is taken into account in 

the formulation of column optimization problem allowing for bimodal optimum 

solution. The new proposed optimum model solution in this Ph. D. thesis is based on 

taking into account stability and crush criterion in points of minimum thickness. It is 

emphasized that in the bimodal case, the stress in points of minimum thickness is 

lower than the than critical buckling stress. Thus, the optimum column is crushed in 

the axial force not buckled. The criteria will be developed here with the use of both 

the analytical closed solution found by Masur for clamped-clamped ends and crush 

criterion in points of minimum thickness. And then optimal solution which is 

applicable to practise will be obtained.  

 

The new proposed optimum model solution has been verified with numerical 

analysis and experimental data for columns with clamped-clamped ends.  

 

It is shown the critical buckling loads for natural and manufactured composite 

materials for uniform cross-sections between Tables 6.1 and 6.3. As shown in Tables 

6.2 and 6.4, the difference between analytical results and experimental data is very 

small for uniform cross-sections. Similar results are valid analytical results and 

numerical results. 
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Table 6.1 Comparing to critical buckling load obtained from results analytically, experimentally and 

numerically for uniform cross-sections for wood materials 

 

 

 

 

 

 

 

 

Table 6.2 Error (%) between analytical solution, experimental data and numeric results for wood 

materials for uniform cross-sections 
 

ERROR (%) Natural 
Composite 
Materials Between Analytical solution 

and Experimental data 
Between Analytical solution and 

Numerical results 
CEDAR -2,3199 -0,00081 

OAK 0,8436 0,0021 
SAPELE 0,0104 0,00178 

 

 

Table 6.3 Comparing to critical buckling load obtained from results analytically, experimentally and 

numerically for uniform cross-sections for manufactured composite materials for 0, 45 and 90 degree 

of fiber orientation angle  

 

a) Fiber Orientation Angle=0° 

 

 

 

 

 

 
b) Fiber Orientation Angle=45° 

 

 

 

 

 

Natural Composite 
Materials Analytical Experimental Numerical 

CEDAR 1228,49899 1200 1228,49 

OAK  4611,12051 4650 4611,20 

SAPELE 5729,29782 5730 5729,40 

Manufactured Composite 
Materials Analytical Experimental Numerical 

GLASS-EPOXY 8025,14 8074,25 8025,30 

GLASS-VINYLESTER 6555,66 6615,50 6555,70 

GLASS-POLYESTER 6125,55 6227,85 6125,70 

Manufactured Composite 
Materials Analytical Experimental Numerical 

GLASS-EPOXY 6406,57 6350,75 6406,70 

GLASS-VINYLESTER 6166,71 6100,00 6166,80 

GLASS-POLYESTER 5854,39 5770,25 5854,50 
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c) Fiber Orientation Angle=90° 

 

 

 

 

 

 
Table 6.4 Error (%) between analytical solution, experimental data and numeric results for uniform 

cross-sections for manufactured composite materials for 0, 45 and 90 degree of fiber orientation angle  

 

 
ERROR (%) 

Between Analytical solution 
and Experimental data 

Between Analytical 
solution and Numerical 

results 
Composite Specimens 

0° 45° 90° 0° 45° 90° 
GLASS-EPOXY 0,61 -0,87 -1,35 1,99-03 2,03-03 1,54-03 

GLASS-VINYLESTER 0,91 -1,08 -2,27 6,10-04 1,46-03 1,25-03 
GLASS-POLYESTER 1,67 -1,44 -0,90 2,25-03 1,88-03 1,32-03 

 

 

It is shown in Table 6.5 critical buckling load obtained by Tadjbaksh & Keller, 

Olhoff & Rasmussen and Masur for natural composite materials with variable circle-

cross-section. As shown in Table 6.5, the critical buckling load results are closer with 

each other. However, these solutions only become different in cross-sectional area 

especiallay, in the points of minimum thickness. According to Tadjbaksh & Keller, 

cross-sectional area in the points of minimum thickness is zero whereas cross-

sectional area in the points of minimum thickness is different from zero according to 

Olhoff & Rasmussen and Masur. When these critical buckling load are examined, it 

is seen that highest critical buckling load is obtained for sapele within natural 

composite materials.  

 

In Table 6.5, maximum diameter of variable cross-section is 28,83 mm and 23,1 

mm for sapele, oak and cedar natural composite materials, respectively. Minimum 

diameter of variable cross-section is also calculated as 11,88 mm and 9,504 mm for 

sapele, oak and cedar natural composite materials, respectively, according to Masur’s 

Manufactured Composite 
Materials Analytic Experimental Numeric 

GLASS-EPOXY 5845,41 5766,50 5845,50 

GLASS-VINYLESTER 5602,83 5475,75 5602,90 

GLASS-POLYESTER 5293,33 5245,50 5293,40 
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bimodal optimum solution. In this diamater value is zero according to Tadjbaksh & 

Keller. As shown in Table 6.5, crushing force in points of minimum thickness is 

smaller than buckling force of column designed according to Tadjbaksh & Keller, 

Olhoff & Rasmussen and Masur. For this reason, it occurs crush not buckling in 

points of minimum thickness. Consequently, these designs acquired by Tadjbaksh & 

Keller, Olhoff & Rasmussen and Masur are not practical and optimal. 

 
Table 6.5 The Analytical critical buckling load and crushing force (N) in points of minimum thickness 

for wood composite materials with variable circle cross-section 

 

 

 

The critical buckling load obtained by Tadjbaksh & Keller, Olhoff & Rasmussen 

and Masur is shown in Table 6.6 for manufactured composite materials depending on 

fiber orientation angle for circle-cross-section. When these critical buckling loads are 

examined, it is seen that highest critical buckling load is acquired glass-epoxy within 

manufactured composite materials. It is also seen that highest critical buckling load is 

occured 0 degree of fiber orientation angle after 45 degree and 90 degree of fiber 

orientation angle. Fibers are most effective when the fiber orientation angle is 0 

degree when they are oriented parallel to the loading direction. 

 

In Table 6.6 maximum diameter of variable cross-section is 25,37 mm for 

manufactured composite materials. Minimum diameter of variable cross-section is 

also calculated as 10,454 mm for manufactured composite materials according to 

Masur‘s bimodal optimum solution, while minimum diameter of columns is obtained 

as zero according to Tadjbaksh & Keller. 

 
 

Natural Composite 

Materials 

Tadbaksh & 

Keller 

Olhoff & 

Rasmussen 
Masur 

Crushing 

Force 

CEDAR 1637,9990 1629,2360 1629,2423 1511,2350 

OAK 6148,1618 6115,2707 6115,2940 4709,0779 

SAPELE 7639,0652 7598,1981 7598,2271 4753,3752 
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Table 6.6 The analytic critical buckling load and crushing force (N) in points of minimum thickness 

for variable circle cross-section for manufactured composite materials for 0, 45 and 90 degree of fiber 

orientation angle 

 

a) Fiber Orientation Angle= 0 degree 

 

 
b) Fiber Orientation Angle= 45 degree 

 

 
c) Fiber Orientation Angle= 90 degree 

 

 

 

In this Ph. D. thesis, true optimum solution was obtained that was taken into 

account crushing criteria to Masur’s analytic bimodal solution for clamped-clamped 

case. The new proposed optimum model solution obtained by taking into accounts 

both stability and crush criterion has been verified with numerical analysis and 

Manufactured 

Composite Materials 

Tadbaksh & 

Keller 

Olhoff & 

Rasmussen 
Masur 

Crushing 

Force 

GLASS-EPOXY 10700,1937 10642,9503 10642,9910 9166,9766 

GLASS-
VINYLESTER 

8740,8815 8694,1199 8694,1531 7441,7311 

GLASS-POLYESTER 8167,4059 8123,7122 8123,7433 6737,8995 

Manufactured 

Composite Materials 

Tadbaksh & 

Keller 

Olhoff & 

Rasmussen 
Masur 

Crushing 

Force 

GLASS-EPOXY 8542,0901 8496,3920 8496,4244 7203,1150 

GLASS-
VINYLESTER 

8222,2849 8178,2977 8178,3289 6770,5161 

GLASS-POLYESTER 7805,8496 7764,0902 7764,1198 6224,6175 

Manufactured 

Composite Materials 

Tadbaksh & 

Keller 

Olhoff & 

Rasmussen 
Masur 

Crushing 

Force 

GLASS-EPOXY 7793,8838 7752,1884 7752,2180 6626,3165 

GLASS-
VINYLESTER 

7470,4416 7430,4765 7430,5049 6416,0253 

GLASS-POLYESTER 7057,7800 7020,0150 7020,0419 6068,4012 
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experimental data for columns with clamped ends. Analytical results, experimental 

data and numerical results are shown in Table 6.7 and Figure 6.1 for new proposed 

optimum model solution.  
 

Table 6.7 Comparing to analytic, experimental and numeric critical buckling load according to new 

proposed optimum model for circle-cross-sections  

 

a) Natural Composite Materials 
The Critical Buckling Load (New Proposed Optimum Model) 

Variable cross-section 
Natural 

Composite 
Specimens 

Uniform 
cross-
section 
Pcr (N) 

Experimental 
Data  

Pcr (N) 

Finite Element 
Results 

(ANSYS) 
Pcr (N) 

Crushing Force 
in minimum cross-

section 

CEDAR 1228,5 1400 1402,1 1415,9 

OAK 4611,12 5990 5829,2 6918,3 

SAPELE 5729,4 6850 6831,9 6983,4 

 
b) Manufactured Composite Materials 

The Critical Buckling Load (New Proposed Optimum Model) 
Variable cross-section 

Composite 
specimens and 

fiber orientation 
angle 

Uniform 
cross-
section 
Pcr (N) 

Experimental 
Data  

Pcr (N) 

Finite Element 
Results 

(ANSYS) 
Pcr (N) 

Crushing Force 
in minimum cross-

section 

Glass-Epoxy 
(0 degree) 8025,14 8750 8692,40 9159,96 

Glass-Epoxy 
(45 degree) 6406,57 7000 6939,30 7197,60 

Glass-Vinylester 
(90 degree) 5602,83 6250 6068,70 6411,12 

Glass-Polyester 
(90 degree) 5293,33 5850 5802,40 6063,76 

 
Table 6.8 Error (%) Between, Experimental data and Numeric results for new proposed optimum 

model for circle-cross-sections  

Composite specimens and fiber 
orientation angle 

% ERROR 
(Experimental data- Finite 

Element results) 
Glass-Epoxy(0 degree) -0,66 

Glass-Epoxy(45 degree) -0,87 
Glass-Vinylester (90 degree) -2,9 
Glass-Polyester (90 degree) -0,81 

Cedar 0,15 
Oak -2,68 

Sapele -0,26 



 220

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
B

uc
kl

in
g 

Lo
ad

 a
nd

 C
ru

sh
in

g 
Fo

rc
e 

(N
)

Glass-Epoxy  0
Degree

Glass-Epoxy  45
Degree

Glass-Vinylester 
90 Degree

Glass-Polyester
90 Degree

Uniform Experimental Numerical Crushing Force

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. 1 Comparing to critical buckling load for uniform and variable cross-sections with circle 

cross-sections form for new proposed optimum model (Duniform=22 mm, Dmaximum=23,64 mm) 

 

As shown in Table 6.8, the difference between experimental data and finite 

element results for new proposed optimum solution is very small. Another words, it 

is good agreement between finite element model and experimental data for proposed 

optimum solution which takes into account both stability and crush criterion. 

Consequently, the accuracy of new optimized composite column is proved for 

clamped ends. 
 

For other composite columns which have different fiber orientation angle, it is 

only compared with results obtained by finite element and analytic method (Table 

6.9 and Figure 6.2). 
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Table 6.9 Comparing to numeric critical buckling load according to new proposed optimum model for 

circle-cross-sections 
 

The Critical Buckling Load (New Proposed Optimum Model) (N) 
Variable cross-section 

Composite specimens 
and fiber orientation 

angle 

Uniform cross-
section 

Pcr  

Finite Element 
Results  

(ANSYS) 
Pcr  

Crushing Force in 
minimum cross-

section 

Glass-Vinylester  
(0 degree) 6555,66 7100,80 7436,04 

Glass-Polyester 
 (0 degree) 6125,55 6634,90 6732,74 

Glass-Vinylester  
(45 degree) 6166,71 6679,50 6765,34 

Glass- Polyester  
(45 degree) 5854,39 5893,20 6219,85 

Glass- Epoxy 
(90 degree) 5845,41 6331,50 6621,25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.2 Comparing to critical buckling load for uniform and variable circle cross-sections for new 

proposed optimum model (Duniform=22 mm, Dmaximum=23,64 mm) 

 
 

 



 222

It is also noted that there are discrepancies between the experimental results and 

those calculated by the theoretical relations. This is attributed to the manufacturing 

related anomalies such as fiber misalignment, void content and residual stresses in 

the composite that were not accounted for in the theoretical equations, which were 

developed based on some idealized assumptions. Improving the manufacturing 

process would significantly reduce these defects and produce composites of higher 

properties. 

 

In this Ph. D. thesis, it is also compared to critical buckling load for cross-

sectional of circular shape, square shaped cross-section and isosceles triangle cross-

section. These comparisons are given between Figures 6.3 and 6.17 for natural 

composite materials and manufactured composite materials.  

 

It is shown that the highest critical buckling load is obtained for isosceles triangle 

cross-sections. The column with isosceles triangle cross-section can be loaded with 

the maximum buckling force in clamped-clamped case where all columns have the 

same length as well as the same volume. The highest critical buckling load is 

occurred sapele and glass-epoxy among natural manufactured composite materials, 

respectively. It is acquired the lowest critical buckling load for cross-section of 

circular shape. If the maximum buckling load for the column with circle cross-

section is assumed to be 100 percent any supported types maximum buckling loads 

yield for the column with square cross-section and with isosceles triangle cross-

section to 104,27 percent and to 121 percent, respectively. 
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Figure 6.3 Comparing to critical buckling load according to Tadjbaksh & Keller for uniform with 

circle cross-section and variable cross-sections with different cross-sections form for sapele and oak 

wood composite materials (Duniform=25 mm, Dmaximum=28,83 mm) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 Comparing to critical buckling load according to Olhoff & Rasmussen for uniform with 

circle cross-section and variable cross-sections with different cross-sections form for sapele and oak 

wood composite materials (Duniform=25 mm, Dmaximum=28,83 mm) 
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Figure 6.5 Comparing to critical buckling load according to Masur for uniform with circle cross-

section and variable cross-sections with different cross-sections form for sapele and oak wood 

composite materials (Duniform=25 mm, Dmaximum=28,83 mm) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.6 Comparing to critical buckling load according to Tadjbaksh & Keller for uniform with 

circle cross-section and variable cross-sections with different cross-sections form for cedar wood 

composite materials (Duniform=20 mm, Dmaximum=23,1 mm) 
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Figure 6.7 Comparing to critical buckling load according to Olhoff & Rasmussen for uniform with 

circle cross-section and variable cross-sections with different cross-sections form for cedar wood 

composite materials (Duniform=20 mm, Dmaximum=23,1 mm) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.8 Comparing to critical buckling load according to Masur for uniform with circle cross-

section and variable cross-sections with different cross-sections form for cedar wood composite 

materials (Duniform=20 mm, Dmaximum=23,1 mm) 
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Figure 6.9 Comparing to critical buckling load according to Tadjbaksh & Keller for uniform with 

circle cross-section and variable cross-sections with different cross-sections form for 0-degree of 

fiber orientation angle for glass-epoxy, glass-vinylester and glass-polyester (Duniform=22 mm, 

Dmaximum=25,37 mm) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.10 Comparing to critical buckling load according to Olhoff & Rasmussen for uniform with 

circle cross-section and variable cross-sections with different cross-sections form for 0-degree of 

fiber orientation angle for glass-epoxy, glass-vinylester and glass-polyester (Duniform=22 mm, 

Dmaximum=25,37 mm) 
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Figure 6.11 Comparing to critical buckling load according to Masur for uniform with circle cross-

section and variable cross-sections with different cross-sections form for 0-degree of fiber 

orientation angle for glass-epoxy, glass-vinylester and glass-polyester (Duniform=22 mm, 

Dmaximum=25,37 mm) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.12 Comparing to critical buckling load according to Tadjbaksh & Keller for uniform with 

circle cross-section and variable cross-sections with different cross-sections form for 45-degree of 

fiber orientation angle for glass-epoxy, glass-vinylester and glass-polyester (Duniform=22 mm, 

Dmaximum=25,37 mm) 
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Figure 6.13 Comparing to critical buckling load according to Olhoff & Rasmussen for uniform with 

circle cross-section and variable cross-sections with different cross-sections form for 45-degree of 

fiber orientation angle for glass-epoxy, glass-vinylester and glass-polyester (Duniform=22 mm, 

Dmaximum=25,37 mm) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.14 Comparing to critical buckling load according to Masur for uniform with circle cross-

section and variable cross-sections with different cross-sections form for 45 degree of fiber 

orientation angle for glass-epoxy, glass-vinylester and glass-polyester (Duniform=22 mm, 

Dmaximum=25,37 mm) 
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Figure 6.15 Comparing to critical buckling load according to Tadjbaksh & Keller for uniform with 

circle cross-section and variable cross-sections with different cross-sections form for 90 degree of 

fiber orientation angle for glass-epoxy, glass-vinylester and glass-polyester (Duniform=22 mm, 

Dmaximum=25,37 mm) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.16 Comparing to critical buckling load according to Olhoff & Rasmussen for uniform with 

circle cross-section and variable cross-sections with different cross-sections form for 90-degree of 

fiber orientation angle for glass-epoxy, glass-vinylester and glass-polyester (Duniform=22 mm, 

Dmaximum=25,37 mm) 
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Figure 6.17 Comparing to critical buckling load according to Masur for uniform with circle cross-

section and variable cross-sections with different cross-sections form for 90-degree of fiber 

orientation angle for glass-epoxy, glass-vinylester and glass-polyester (Duniform=22 mm, 

Dmaximum=25,37 mm) 

 

In this Ph. D. thesis, comparisons are made according to Tadjbaksh & Keller, 

Olhoff & Rasmussen and Masur for natural and manufactured composite materials 

with 0, 45 and 90 degree of fiber orientation angle. It is given comparison of 

buckling loads obtained by Tadjbaksh & Keller, Olhoff & Rasmussen and Masur 

between Figures 6.16 and 6.20. Highest critical buckling load is occurred along the 

direction of the fibers. The lowest critical buckling load is obtained 90 degree of 

fiber orientation angle. As shown between Figures 6.18 and 6.22, it is especially seen 

that Olhoff & Rasmussen solution is much closed Masur’s solution. 
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Figure 6.18 Comparing to critical buckling load for uniform and variable cross-sections with circle 

cross-sections form for sapele and oak wood composite materials (Duniform=25 mm, Dmaximum=27,50 

mm) 

0
500

1000
1500
2000
2500
3000
3500

4000
4500
5000
5500
6000
6500
7000
7500

8000
C

rit
ic

al
 B

uc
kl

in
g 

Lo
ad

 (N
)

OAK SAPELE

Uniform Tadjbaksh-Keller Olhoff-Rasmussen Masur

Figure 6.19 Comparing to critical buckling load for uniform and variable cross-sections with circle 

cross-sections form for cedar wood composite materials (Duniform=20 mm, Dmaximum=22,50 mm) 
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Figure 6.20 Comparing to critical buckling load for uniform and variable cross-sections with circle 

cross-sections form for 0 degree of fiber orientation angle for glass-epoxy, glass-vinylester and 

glass-polyester (Duniform=22 mm, Dmaximum=25,37 mm) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.21 Comparing to critical buckling load for uniform and variable cross-sections with circle 

cross-sections form for 45 degree of fiber orientation angle for glass-epoxy, glass-vinylester and 

glass-polyester (Duniform=22 mm, Dmaximum=25,37 mm) 
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Figure 6.22 Comparing to critical buckling load for uniform and variable cross-sections with circle 

cross-sections form for 90 degree of fiber orientation angle for glass-epoxy, glass-vinylester and 

glass-polyester (Duniform=22 mm, Dmaximum=25,37 mm) 

 
 

6.2 Conclusions 

 

The objective of this Ph. D. thesis was to develop and design optimized composite 

column against buckling. It is thought about determining what shape of column has 

the largest possible buckling load of composite column of a given length and 

volume. The optimization problem was formulated as the maximization of the 

smallest eigenvalue given total volume of material of the structure.  

 

It was also proved that the solution of Tadjbakhsh & Keller, Olhoff & Rasmussen 

and Masur was not optimum for columns with clamped ends. It was showed that the 

new proposed optimum model was given the optimum solution for clamped-clamped 

case. The present contribution of this paper is that crush is taken into account in the 

formulation of column optimization problem allowing for bimodal optimum solution.  
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True solution is obtained that was taken into account crushing criteria to Masur’s 

analytic bimodal solution for clamped-clamped case. The cross-sectional area is 

changed through column. This area in the middle of the column decreases towards 

ends. The cross-sectional area which is different from zero in points of minimum 

thickness must be buckled according to new proposed optimum form of column.  

 

It is firstly chosen the volume, which satisfied bimodal optimality conditions 

given by Masur for clamped-clamped ends. The chosen volume value is smaller than 

the initial volume that is equal to the uniform column’s volume. Next, it is added 

volume, V∆ , in the points of minimum thickness. Consequently, new proposed 

optimum column buckles in highest critical buckling load in comparison with 

uniform cross-section given length and volume 

 

In this Ph. D. thesis, it is rearranged in points of minimum thickness in new 

proposed optimum model solution obtained by taking into consideration both 

stability and crush criterion. It is shown in Figure 6.23 optimum clamped-clamped 

column shape obtained by Tadjbaksh & Keller, Masur and new proposed optimum 

solution for half of the column. 

 

 

 

 

 

 

 

 

 

 

 

 



 235

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.23 Comparisons of optimum shape of clamped-clamped column obtained by Tadjbaksh & 

Keller, Masur and New Proposed Optimum Solution  

 

To test the accuracy of our new optimized composite column with clamped ends, 

experimental data were compared to numerical analysis using ANSYS. Both 

necessary and sufficient optimality conditions were derived. In this study, it was used 

both natural and manufactured composite materials. New proposed optimum model’s 

results are in agreement with results obtained by numerical analysis and by 

experiments.  

 

It was obtained natural and manufactured composite columns, which has largest 

possible buckling load and was stronger against crush in the points of minimum 

thickness, given volume and length in this Ph. D. thesis. 

 

As a result of this Ph. D. thesis, it was shown that results obtained in the previous 

studies of variation optimum cross-sectional area for columns under compressive 

forces clamped-clamped ends was erroneous. The corrected optimum form was 

obtained and results checked by numerical calculations and experimental tests of 

natural and manufactured composite columns. 
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