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December, 2005
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WEAKLY AND COFINITELY WEAK

SUPPLEMENTED MODULES OVER DEDEKIND

DOMAINS

ABSTRACT

The main purpose of this thesis is to study some classes of modules includ-

ing supplemented, weakly supplemented, totally weak supplemented (briefly tws-

modules) and cofinitely weak supplemented (briefly cws-modules) modules over

commutative noetherian rings, in particular, over Dedekind domains. A module

over a semilocal Dedekind domain is weakly supplemented if and only if it is a

tws-module. If R is a non-semilocal Dedekind domain then an R-module is a

tws-module exactly if it is torsion and weakly supplemented. Over a non-local

Dedekind domain a module is supplemented if and only if it is torsion and a tws-

module. Weakly supplemented modules and tws-modules coincide for finitely

generated modules over Dedekind domains. If R is a local Dedekind domain

and every weakly supplemented module is supplemented then R is complete. An

integral domain R is one dimensional if and only if every R/I-module is sup-

plemented, for every nonzero ideal I of R. The class of weakly supplemented

modules is not closed under extensions. A module M is weakly supplemented if

and only if U has a weak supplement in M , U and M/U are weakly supplemented,

for some submodule U of M . An integral domain R is h− semilocal if and only

if every torsion R-module is a cws-module if and only if every torsion R-module

with small radical is weakly supplemented.

Keywords: Noetherian ring, Dedekind domain, supplemented, weakly sup-

plemented, totally weak supplemented, cofinite submodule, cofinitely weak sup-

plemented, h−semilocal domain.
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ZAYIF VE ZAYIF DUAL SONLU TÜMLENEN

MODÜLLERİN DEDEKIND BÖLGELERİ ÜZERİNDE

İNCELENMESİ

ÖZ

Bu tezde temel olarak tümlenen, zayıf tümlenen, tamamen zayıf tümlenen

(kısaca tws), ve dual sonlu zayıf tümlenen (kısaca cws) modüllerini içeren bazı

modül sınıflarını değişmeli noether halkalar, özel olarak Dedekind tamlık bölgeleri,

üzerinde çalışılması amaçlanmaktadır. Yarı-yerel Dedekind tamlık bölgesi üzerinde

bir M modülü zayıf tümlenendir ancak ve ancak M bir tws-modül dir. R yarı-

yerel olmayan bir Dedekind tamlık bölgesi ise bir M modülü tws-modüldür ancak

ve ancak M burulmalı ve zayıf tümlenendir. R yerel olmayan bir Dedekind tamlık

bölgesi ise, bir M modülü tümlenendir ancak ve ancak M burulmalı ve tws-

modüldür. Dedekind tamlık bölgesi üzerinde sonlu üretilmiş mödüller için zayıf

tümlenen modüller sınıfı ile tws-modüller sınıfı çakışır. R yerel bir Dedekind

tamlık bölgesi ve R üzerindeki her zayıf tümlenen modül tümlenen ise R tamdır.

Bir R tamlık bölgesinin bir boyutlu olması için gerek ve yeter şart sıfırdan farklı

her I ideali için her R/I-modülünün tümlenen olmasıdır. Zayıf tümlenen modüller

sınıfı genişletme altında kapalı değildir. Bir M modülünün zayıf tümlenen olması

için gerek ve yeter şart bir U ⊆ M için, U ’nun M ’de bir zayıf tümleyene sahip

olması, U ve M/U modüllerinin zayıf tümlenen olmasıdır.

Bir R tamlık bölgesi h − yarıyerel’dir ancak ve ancak her burulmalı R-modül

cws-modül dir ancak ve ancak radikali küçük olan her burulmalı R-modül zayıf

tümlenendir.

Anahtar Sözcükler: Noether halka, Dedekind tamlık bölgesi, tümlenen,

zayıf tümlenen, tamamen zayıf tümlenen, dual sonlu alt modül, dual sonlu zayıf

tümlenen, h−yarıyerel tamlık bölgesi.
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NOTATION

R an associative ring with unit unless otherwise stated

Z, Z+ the ring of integers, the set of all positive integers

Q the field of rational numbers

Zp∞ the Prüfer (divisible) group for the prime p

K field of quotients of a (commutative) domain

R-module left R-module

6 ideal

∼= isomorphic

HomR(M,N) all R-module homomorphisms from M to N

M ⊗R N the tensor product of the right R-module M and the left

R-module N

Ker(f) the kernel of the map f

Im(f) the image of the map f

E(M) the injective envelope (hull) of a module M

T(M) the torsion submodule of a module M

Soc(M) the socle of the R-module M

Rad(M) the radical of the R-module M

J(R) the Jacobson radical of the ring R

P (M) the sum of all radical submodules of a module M

(R, m) R is a local ring with the unique maximal ideal m

Ω the set of all maximal ideals of a ring

u. dim(M) the uniform dimension (=Goldie dimension) of M

h. dim(M) the hollow dimension (=dual Goldie dimension) of M

⊆ submodule

¿ small (=superfluous) submodule

E essential submodule

viii



CHAPTER ONE

INTRODUCTION

In module theory, the problem of decomposition of a module into a direct sum

of its submodules is a fundamental one, and a wide area of module theory is

related with this problem. It is well known that a submodule of a module need

not be a direct summand. Moreover, we can not state that for every submodule

U of a module M there is a minimal submodule V of M satisfying U + V = M.

If this is the case (that is there is no submodule Ṽ of V such that Ṽ $ V but

still U + Ṽ = M ), V is called a supplement of U. Minimality of V is equivalent

to U ∩ V ¿ V . Reducing the last condition to U ∩ V ¿ M, we get the

definition of a weak supplement. If every submodule of M has a supplement (weak

supplement), we say that M is supplemented (respectively, weakly supplemented).

M is called totally supplemented (totally weak supplemented) if every submodule

of M is supplemented (respectively, weakly supplemented). A submodule U is

called cofinite if M/U is finitely generated. M is called cofinitely supplemented

(cofinitely weak supplemented) if every cofinite submodule of M has a supplement

(weak supplement).

The classes of supplemented modules and weakly supplemented modules are

well-studied in the literature. In a series of papers from 1974, H. Zöschinger con-

sidered the class of supplemented modules (Zöschinger, 1974a,b,c, 1979b, 1982a,b,

1986).

In recent years, the research on related concepts has regained interest; see Ku-

ratomi (2003), Idelhadj & Tribak (2003b,a), Alizade & Büyükaşık (2003), Tugan-

baev (2002), Keskin (2002b,a), Ganesan & Vanaja (2002), Keskin & Xue (2001),

Alizade et al. (2001), Smith (2000), Keskin (2000b,a), Lomp (1999), Keskin et al.
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(1999), Harmancı et al. (1999), Oshiro & Wisbauer (1995), Xin (1994), Vanaja

(1993), Fieldhouse (1985), Oshiro (1984b,a), Inoue (1983), Hausen & Johnson

(1983b,a), Hausen (1982), Mermut (2004).

In this thesis, we study the classes of supplemented modules, weakly supple-

mented modules, totally weak supplemented modules and cofinitely weak supple-

mented modules. We consider these modules over commutative rings, in partic-

ular over Dedekind domains, one dimensional domains, and more generally over

noetherian rings.

Throughout this thesis all rings are associative and have an identity. If not

stated otherwise, the symbol R, stands for a ring, and when R is a domain, K

for its field of quotients.

In this chapter we introduce our basic terminology for rings and modules, as

well as the fundamental results to be used in this thesis. In chapter 2, we shall

investigate some well known results about the structure of supplemented mod-

ules over commutative noetherian rings which are mainly due to Zöschinger and

his student Rudlof. In Chapter 3, we study weakly supplemented modules over

commutative noetherian rings mainly over noetherian rings with finite Krull di-

mension. In Section 3.3, under a certain condition we prove that the class of

weakly supplemented modules is closed under extensions. As a consequence of

this we obtain some conditions equivalent to be weakly supplemented, for modules

over Dedekind domains, one dimensional domains and commutative noetherian

rings. In Chapter 4, we investigate totally weak supplemented modules. We

characterize these modules over Dedekind domains and over semilocal noetherian

rings. We also examine and determine the relation between totally weak sup-

plemented, weakly supplemented and supplemented modules over Dedekind do-

mains. In Chapter 5, we deal with cofinitely weak supplemented modules (briefly

cws-modules). We give a characterization of cws-modules over (not necessarily
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commutative) noetherian rings. We characterize h− semilocal domains in terms

of cws-modules. For some certain modules over Dedekind domains we give some

conditions equivalent to being a cws-module.

1.1 Noetherian rings

In this section we recall the definition of a noetherian ring and state some re-

sults. As a consequence of Krull’s theorem we see that a commutative noetherian

semilocal ring has finite Krull dimension (see Sharp (2000), Büyükaşık (2003)).

Definition 1.1.1. A ring R is said to be noetherian if it satisfies the following

three equivalent conditions:

(i) Every non-empty set of ideals in R has a maximal element,

(ii) Every ascending chain of ideals in R is stationary,

(iii) Every ideal in R is finitely generated.

Definition 1.1.2. Let R be a commutative ring. A sequence,

P0 $ P1 $ ... $ Pn

in which Pi is a prime ideal for all 1 5 i 5 n, is called a chain of prime ideals of

R; n is the length of this chain.

The Krull dimension of R is defined to be

sup{n ∈ N| there exists a chain of prime ideals of R of length n}

if this suppremum exists, and ∞ otherwise.
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Note that a ring has Krull dimension zero if and only if every prime ideal is a

maximal ideal.

A ring R is called an artinian ring if every descending chain of ideals in R is

stationary.

A relation between artinian, noetherian and Krull dimension of a commutative

ring is given in the following theorem.

Theorem 1.1.3. (by Atiyah & Macdonald (1994, Theorem 8.5)) Let R be com-

mutative ring. Then R is artinian if and only if R is noetherian and Krull

dimension of R is zero.

Note that if the zero ideal of a commutative artinian ring R is prime then R

must be a field. Therefore every commutative and artinian integral domain is a

field.

The following theorem shows that any artinian ring is noetherian and also

when the converse also holds.

Theorem 1.1.4. (by Anderson & Fuller (1992, Theorem 15.20)) Let R be a ring

with Rad(R) = J . Then R is left artinian if and only if R is noetherian, J is

nilpotent (i.e. Jn = 0 for some n ∈ Z+), and R/J is semisimple.

Definition 1.1.5. Let P be a prime ideal of a commutative ring R. Then the

height of P , denoted by ht(P ) is defined to be the supremum of the lengths of

the chains:

P0 ⊂ P1 ⊂ .... ⊂ Pn

of prime ideals of R for which Pn = P.

Let I be a proper ideal of a ring R. A prime ideal P in R is called a minimal

prime ideal of I if I ⊆ P and there is no prime ideal P ′ with I $ P ′ $ P .
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Krull’s Generalized Principal Ideal Theorem shows that in a commutative

noetherian ring every ideal has finite height. Moreover, this height has an upper

bound.

Theorem 1.1.6. Sharp (2000, Theorem 15.4)(Krull’s Generalized Principal Ideal

Theorem) Let R be a commutative noetherian ring and let I be proper ideal of R

which can be generated by n elements. Then ht(P ) 5 n for each minimal prime

ideal P of I.

Remark 1.1.7. Let R be commutative noetherian semilocal ring (i.e. a ring with

finitely many maximal ideals) with maximal ideals P1, ..., Pk. Then by Theorem

1.1.6, ht(Pi) < ∞ for every 1 5 i 5 k. Thus R has finite Krull dimension which

is equal to sup{ht(Pi)|1 5 i 5 k}.

The following Lemma holds over an arbitrary commutative ring.

Lemma 1.1.8. Sharp (2000, Lemma 3.55) Let P be a prime ideal of a commu-

tative ring R, and let I1, ..., In be ideals in R. Then the following are equivalent.

(i) Ij ⊆ P for some j with 1 5 j 5 n,

(ii)
n⋂

i=1

Ii ⊆ P,

(iii)
n∏

i=1

Ii ⊆ P.

1.2 Hollow and uniform modules

Definition 1.2.1. A submodule K of a module M is essential or large in M

if K ∩ L 6= 0 for all non-zero submodules L of M . We will denote essential

submodules by K E M . In this case M is called an essential extension of K.
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In the following definition dual definitions for essential submodules and essen-

tial extension are introduced.

Definition 1.2.2. A submodule K of M is small in M provided K + L 6= M

holds for all proper submodules L of M . We will denote small submodules by

K ¿ M . The radical of a module M is the sum of all small submodules of M ,

equivalently intersection of all maximal submodules of M . We shall denote the

radical of M by Rad M as usual. A module N is a small cover of a module M if

there exists an epimorphism f : N → M such that Ker(f) ¿ N . N is called a

projective cover of M if N is a small cover and N is projective.

A module is called uniform if every non-zero submodule of M is essential in

M . Dually, M is called hollow if M 6= 0 and every proper submodule of M is

small in M .

Definition 1.2.3. A module M is said to have uniform dimension (or Goldie

dimension) n (written u. dim M = n) if there is an essential submodule V ⊆ M

that is a direct sum of n uniform submodules. If no such an integer n exist, we

write u. dim M = ∞.

For a torsion-free abelian group G uniform dimension and (torsion-free) rank

of G coincide (see, Fuchs (1970, Lemma 16.1, 16.2)). For any torsion-free module

M over a domain, as in abelian groups, torsion-free rank of M is defined and this

also coincides with uniform dimension of M .

Proposition 1.2.4. (by Lam (1999, Exercise 6.10)) Let R be a domain with

quotient field K. For any R-module M ,

dimKM ⊗R K = u. dim(M/T (M));
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this number is called the ”torsion-free rank” of M . If u. dim T (M) < ∞, then

torsion-free rank of M is u. dim M − u. dim T (M).

We will use the uniform dimension only for torsion-free modules over domains.

The following formula will be helpful for our task.

Proposition 1.2.5. (by Lam (1999, Proposition 6.14)) Let R be a domain with

quotient field K. For any torsion-free R-module M , we have

u. dim M =dimK(M ⊗R K).

Proof. Since M is torsion-free we may think of M as embedded in M⊗R K. First

assume u. dim M = ∞. In this case, M contains U1 ⊕ U2 ⊕ . . . with Ui 6= 0, so

M ⊗R K contains (U1 ⊗R K)⊕ (U2 ⊗R K) . . . ; hence dimK(M ⊗R K) = ∞.

Now, assume that u. dim M < ∞. Then same argument as above gives dimK(M⊗R

K) > n. If this is a strict inequality, there would exist a direct sum

V1 ⊕ . . .⊕ Vn+1 ⊆ M ⊗R K,

where the Vi’s are nonzero K-subspaces. Then we see that the M ∩ Vi’s are

nonzero R-submodules of M , and

(M ∩ V1)⊕ . . .⊕ (M ∩ Vn+1) ⊆ M

gives a contradiction. Therefore dimK(M ⊗R K) = n.

From now on without any ambiguity, for torsion-free modules, we will use the

uniform dimension and the torsion-free rank instead of each other.
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1.3 Local and semilocal rings

A module is local if it has a greatest proper submodule. Equivalently, a module

is local if and only if it is cyclic, non-zero, and has a unique maximal proper

submodule.

Proposition 1.3.1. (by Facchini (1998, Proposition 1.10)) The following condi-

tions are equivalent for a ring R.

(i) R/ Rad(R) is a division ring,

(ii) RR is a local module (that is, R has a unique maximal proper left ideal),

(iii) the sum of two non-invertible elements of R is non-invertible,

(iv) Rad(R) is a maximal left ideal,

(v) Rad(R) is the set of all non-invertible elements of R.

If R is a ring satisfying the equivalent conditions of Proposition 1.3.1, R is

called a local ring.

Definition 1.3.2. A ring R is said to be semilocal if R/ Rad(R) is a semisimple

ring.

Proposition 1.3.3. (by Lam (2001, Proposition 20.2)) For a ring R, consider

the following two conditions:

(i) R is semilocal,

(ii) R has finitely many maximal ideals.

We have, in general, (ii) ⇒ (i). The converse holds if R/ Rad(R) is commutative.
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From Proposition 1.3.3 we see that, a commutative ring R is semilocal if and

only if R has finitely many maximal ideals.

Let R be a semilocal ring with Jacobson radical J . Then for every R-module

M we have Rad M = JM . Thus M/ Rad M is a semisimple R/J-module. Hence

M/ Rad M is a semisimple R-module (see, Anderson & Fuller (1992)).

1.4 Coclosed submodules

A submodule N of a module M is said to be closed if N has no proper essential

extension in M , i.e. if N E K for some K ⊆ M then K = N . Dually we define:

Definition 1.4.1. A submodule N of a module M is coclosed in M , if whenever

N/K ¿ M/K for some K ⊆ M implies that N = K.

A submodule N of an R-module M is called a complement of a submodule

L in M if it is maximal with respect to N ∩ L = 0. By Zorn’s Lemma every

submodule has a complement. A submodule is a complement if and only if it is

closed in M (see, Dung et al. (1994, pp.6)).

As a dual notion of complements we define notion of supplements.

Definition 1.4.2. Let N and L be submodules of M , we call N a supplement

of L in M if N is minimal with respect to N + L = M . Equivalently N is a

supplement of L if and only if N + L = M and N ∩ L ¿ N (see,Zöschinger

(1974a)). A submodule is called a supplement in M if it is a supplement of some

submodule in M . Following Zöschinger (1978) we call N a weak supplement of L

in M if N + L = M and N ∩ L ¿ M . N is called a weak supplement in M if N

is a weak supplement of some submodule of M . It is clear from definitions that

every supplement is a weak supplement.
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The classes of complements and closed submodules are the same. The relation

between supplements and coclosed submodules is given in the following proposi-

tion (see, Keskin (2000b, Lemma 1.1), or Lomp (1996, Proposition 1.2.1)).

Proposition 1.4.3. Let N be a submodule of M . Consider the following state-

ments:

(i) N is a supplement in M ,

(ii) N is coclosed in M ,

(iii) for all K ⊆ N , K ¿ M implies K ¿ N .

Then (i) ⇒ (ii) ⇒ (iii) holds and if N is a weak supplement in M , then (iii) ⇒
(i) holds

Definition 1.4.4. An R-module M is said to be supplemented if every submodule

has a supplement in M . M is called amply supplemented if for every submodules

N and L of M with N + L = M , N contains a supplement of L in M . Clearly

amply supplemented modules are supplemented.

1.5 Weak supplements

Following Zöschinger (1978) we say that M is weakly supplemented if every sub-

module of M has a weak supplement. A module is called semilocal if M/ Rad M

is semisimple.

Proposition 1.5.1. (by Lomp (1999, Proposition 2.1)) Let M be an R-module

and N a proper submodule of M . The following statements are equivalent.

(i) M/N is semisimple,
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(ii) for every L ⊆ M there exists a submodule K ⊆ M such that L + K = M

and L ∩K ⊆ N ,

(iii) there exists a decomposition M = M1 ⊕ M2 such that M1 is semisimple,

N E M2 and M2/N is semisimple.

In the following Proposition we collect some results for weakly supplemented

modules.

Proposition 1.5.2. (by Lomp (1999, Proposition 2.2)) Assume M to be weakly

supplemented. Then,

(i) M is semilocal,

(ii) M = M1 ⊕M2 with M1 semisimple, M2 semilocal and Rad M E M2

(iii) every factor module of M is weakly supplemented,

(iv) any small cover of M is weakly supplemented,

(v) every supplement in M and every direct summand of M is weakly supple-

mented.

1.6 Coatomic modules

A submodule N of a module M is said to be radical if Rad N = N .

Let P (M) =
∑{N ⊆ M | Rad N = N}. The module M is called reduced if

P (M) = 0.

Definition 1.6.1. A module M is said to be coatomic if Rad(M/U) 6= M/U for

every proper submodule U of M or equivalently every proper submodule of M is

contained in a maximal submodule of M .
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It is clear from the definition that every factor module of a coatomic module

is coatomic. Finitely generated modules and semisimple modules are coatomic.

Note that for every coatomic module M we have Rad M ¿ M .

In general the class of coatomic modules is not closed under submodules as the

following example shows.

Example 1.6.2. Consider the ring,

R = {

 a b

0 c


 | a, c ∈ Z, b ∈ Q}

Then RR is coatomic as it is finitely generated. Consider the submodule

M =


 0 Q

0 0




The left R-module structure of M is completely determined by the left Z-module

structure of Q. Then M is not coatomic since ZQ is not coatomic: Z ⊆ Q is a

proper submodule and ZQ has no maximal submodule.

A module M is injective if for every monomorphism f : A → B and homo-

morphism g : A → M there exists a homomorphism h : B → M such that

h ◦ f = g.

We shall show that over a commutative noetherian ring every submodule of a

coatomic module is coatomic. The proof of this is based on the following theorem

due to Matlis.

Theorem 1.6.3. (by Matlis (1960, Proposition 3)) Let R be a commutative

noetherian ring and M be an R-module. Then the following are equivalent.

(i) M is artinian,
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(ii) M is a submodule of E1⊕ ...⊕En, where Ei = E(R/Pi) with Pi a maximal

ideal of R.

Lemma 1.6.4. For every non-zero module U there exists a nonzero homomor-

phism f : U → E, where E is the injective hull of a simple module.

Proof. Let 0 6= a ∈ U. Then Ra has a maximal submodule, say K. Then Ra/K

is a simple module. Consider the injective hull E = E(Ra/K) of Ra/K. Since E

is injective we have the following commutative diagram:

0 // Ra
incl //

π
²²

U

f

¦¦®
®

®
®

®
®

®
®

Ra/K

incl

²²
E

Observe that f(a) 6= 0.

Theorem 1.6.5. (by Zöschinger (1980, Lemma 1.1)) Let M be a coatomic module

over a commutative noetherian ring. Then every submodule of M is coatomic.

Proof. Suppose U has a nonzero radical factor module,then by Lemma 1.6.4 there

exists a nonzero homomorphism f : U → E with E injective hull of a simple

module. Then Im(f) is also radical. By Theorem 1.6.3 E is artinian. Hence

every coatomic submodule T of E is finitely generated (since T/ Rad T is finitely

generated and Rad T ¿ T ). Since E is injective we have a homomorphism

g : M → E with Im(f) ⊆ Im(g). Then Im(g) is a coatomic submodule of E, hence

Im(g) is finitely generated. But then Im(f) is finitely generated, contradiction.

Hence U is a coatomic submodule of M .
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1.7 Dedekind domains

By an (integral) domain we will mean a commutative ring without zero divisors.

Let R be such a ring and M be an R-module. The submodule T (M) = {m ∈
M | rm = 0 for some 0 6= r ∈ R} of M is called torsion submodule of M . If

T (M) = M then M is said to be a torsion module, and if T (M) = 0 then M is

said to be a torsion-free module. Let P be a prime ideal of R. The submodule

{m ∈ M | P nm = 0 for some n ≥ 1} is said to be P-primary part of M . This

submodule usually is denoted by TP (M).

By RS, MS we denote the localization of R and M respectively at the multi-

plicatively closed set S ⊆ R, (see Fuchs & Salce (2001) or Cohn (2002)).

A commutative ring R is a valuation ring if its ideals are totally ordered by

inclusion. If, in addition, R is an integral domain, it is said to be a valuation

domain. A noetherian valuation domain is said to be discrete valuation ring

(DVR) . If R is a DVR then all its non-zero ideals are: R > Rp > ... > Rpn > ...

for some p ∈ R, (see (Fuchs & Salce, 1985, Proposition 1.7 (b))).

A DVR is said to be complete if it is complete in its p-adic topology, see, for

example, Kaplansky (1965) or Sharpe & Vamos (1972).

Let R be an integral domain, K be its field of fractions. An element of K is said

to be integral over R if it is a root of a monic polynomial in R[X]. A commutative

domain R is integrally closed if the elements of K which are integral over R are

just the elements of R.

An integral domain satisfying any of the equivalent conditions in the following

theorem is said to be a Dedekind domain .
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Theorem 1.7.1. (by Cohn (2002, Propositions 10.5.1,4,6)) For a commutative

domain R, the following are equivalent:

(i) Every ideal of R is projective,

(ii) R is Noetherian and RP is a DVR for all maximal ideals P of R,

(iii) R is Noetherian, integrally closed and every nonzero prime ideal of R is

maximal,

(iv) Every ideal of R can be expressed uniquely as a finite product of maximal

ideals,

(v) Every ideal of R can be expressed as a finite product of prime ideals.

A module M over an integral domain is divisible if rM = M for every 0 6= r ∈
R.

Every injective module is divisible. Over Dedekind domains these notions

coincide, moreover we have the following (see, Alizade et al. (2001, Lemma 4.4)

and Sharpe & Vamos (1972, Proposition 2.10)).



16

Lemma 1.7.2. Let R be a Dedekind domain. For an R-module M the following

are equivalent:

(i) M is injective,

(ii) M is divisible,

(iii) M = PM for every maximal ideal P of R,

(iv) M does not contain any maximal submodule.

Theorem 1.7.3. (by Cohn (2002, Propositions 10.6.6)) A finitely generated mod-

ule over a Dedekind domain is projective if and only if it is torsion-free.

Theorem 1.7.4. (by Cohn (2002, Propositions 10.6.7)) Let M be a finitely

generated module over a Dedekind domain. Then M = T (M) ⊕ P where P is a

torsion-free submodule of M and T (M) is the torsion submodule.

Theorem 1.7.5. (by Cohn (2002, Propositions 10.6.8)) Any finitely generated

torsion module over a Dedekind domain is a direct sum of cyclic modules.

For a ring R let Ω be the set of all maximal ideals of R.

Theorem 1.7.6. (by Cohn (2002, Propositions 10.6.9)) Any torsion module M

over a Dedekind domain is a direct sum of its primary parts, in a unique way:

M =
⊕
P∈Ω

TP (M)

and when M is finitely generated, only finitely many terms on the right are dif-

ferent from zero.
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1.8 Main results of the thesis

In chapter 2, we review some results for supplemented modules over commutative

noetherian rings. The results which are obtained in this chapter are mainly based

on a Theorem due to Rudlof (Theorem 2.3.1).

Zöschinger has proved that over a DVR a module M is supplemented if and

only if Rad M is supplemented (Theorem 2.1.1). As a consequence of a Theorem

due to Rudlof (Theorem 2.3.1) we show that Theorem 2.1.1 holds for all modules

over commutative semilocal noetherian rings (Theorem 2.3.6). More generally,

we obtain that a commutative semilocal noetherian ring R with Jacobson radical

J is artinian if and only if Rad M is supplemented for every R-module M if and

only if for every R-module M , JnM is supplemented for some n ∈ Z+.

If R is a Dedekind domain then an R-module M is supplemented if and only if

InM is supplemented for some nonzero ideal I of R and n = 0 (Corollary 2.3.12).

It is well known that a ring R is left perfect if and only if every left R-module

is supplemented (see, Mohamed & Müller (1990)). We obtain that a semilocal

noetherian ring R with Jacobson radical J is artinian if and only if for every R-

module M there exists n = 0 such that JnM is supplemented (Corollary 2.3.7).

It is well known that supplemented modules are not closed under submodules

(see, Zöschinger (1974a)).We obtain that a reduced module is supplemented if

and only if every submodule is supplemented (Corollary 2.3.18).

In Chapter 3, we study weakly supplemented modules. In Section 3.1 we

present a Theorem due to Zöschinger, in which characterization of weakly sup-

plemented is given for modules over a Dedekind domain R 6= K (Theorem 3.1.1).

As a consequence of this we show that a torsion R-module is weakly supplemented
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if and only if it is supplemented (Corollary 3.1.5).

In addition, if R is semilocal then an R-module M is weakly supplemented if and

only if T (M) and M/T (M) are weakly supplemented (Corollary 3.1.6). If R is a

DVR then an R-module is weakly supplemented if and only if it can be embedded

in a supplemented module (Corollary 3.1.7).

In Section 3.3 we examine whether the class of weakly supplemented modules is

closed under extensions i.e. if U and M/U are weakly supplemented for a module

M and a submodule U of M then M is weakly supplemented. We give an example

in order to show that this need not be true in general (Example 3.3.6). Under

a certain condition we prove that the class of weakly supplemented modules is

closed under extension (Theorem 3.3.1). Then Proposition 3.3.7, Corollary 3.3.8

and Proposition 3.3.10 are proved as a consequence of Theorem 3.3.1.

In Chapter 4, we investigate totally weak supplemented modules (or briefly

tws-modules). In Section 4.1, we determine the structure of tws-modules over a

Dedekind domain R 6= K. If R is semilocal, then a module is a tws-module if

and only if it is weakly supplemented (Theorem 4.1.5). If R is non-semilocal then

a module is a tws-module if and only if it is supplemented (Corollary 4.1.16).

In Theorem 4.1.21, we determine the explicit structure of a weakly supple-

mented module over a DVR.

Rudlof proved that if R is a complete DVR then every weakly supplemented

module is supplemented. With the help of Theorem 4.1.21 we show that: If R

is a DVR and every weakly supplemented R-module is supplemented then R is

complete.

Over (non-semilocal) Dedekind domains the class of weakly supplemented is

strictly larger than the class of tws-modules (see, Remark 4.1.6). We prove that
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a finitely generated module is weakly supplemented if and only it is a tws-module

(Theorem 4.1.5, Corollary 4.1.34).

In Section 4.2, We give some sufficient conditions equivalent to being a tws-

module over a semilocal noetherian ring (not necessarily commutative) (Theorem

4.2.2). For a module over a commutative semilocal noetherian ring some condi-

tions equivalent to being a tws-module are proved (Theorem 4.2.3).

Lomp has proved that a ring R is semilocal if and only if every R-module

with small radical is weakly supplemented (Lomp (1999, Theorem 3.5)). For a

commutative noetherian ring R we show that R is semilocal if and only if every

R-module with small radical is a tws-module (Corollary 4.2.11).

In Chapter 5, we study cofinitely weak supplemented modules (briefly cws-

modules) over noetherian rings. In Section 5.2 we prove that a module M is a

cws-module if and only if M/U is a cws-module for some submodule U ⊆ Rad M

(Theorem 5.2.2). This leads to the characterization of cws-modules given in

Corollary 5.2.4.

For a module M with Rad M ¿ M we prove that M is finitely weak sup-

plemented if and only if M is weakly supplemented if and only if every cyclic

submodule of M has a weak supplement in M (Corollary 5.2.7).

If every cyclic submodule of M/ Rad M is a direct summand then M is a finitely

weak supplemented module (Proposition 5.2.8).

In Section 5.3, it is shown that a domain R is h−semilocal if and only if every

torsion R-module is a cws-module (Theorem 5.3.2). As a consequence, for some

certain modules over Dedekind domains, we prove some conditions equivalent to

being a cws-module (Corollary 5.3.4 and Corollary 5.3.5).



CHAPTER TWO

SUPPLEMENTED MODULES

In this chapter we will review some results on supplemented modules over

some commutative rings including Dedekind domains and commutative noethe-

rian rings. For more general results on supplemented modules we refer to Wis-

bauer (1991).

2.1 Supplemented modules over discrete valuation rings

In this section R is a discrete valuation ring (DVR), unless otherwise stated.

Theorem 2.1.1. (by Zöschinger (1974a, Lemma 2.1)) For an R−module M , the

following are equivalent:

(i) M has a small radical,

(ii) M is coatomic,

(iii) M is a direct sum of a finitely generated free submodule and a bounded

submodule,

(iv) M is reduced and supplemented.

Note that property (iii) is inherited by submodules. Hence a reduced module

is supplemented if and only if every submodule is supplemented.

20
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The following theorem gives the complete structure of a supplemented module.

Recall that DVR is a local ring and its unique maximal ideal is of the form Rp

for some p ∈ R.

Theorem 2.1.2. (by Zöschinger (1974a, Theorem 2.4)) A module M is supple-

mented if and only if M = M1⊕M2⊕M3⊕M4 where M1
∼= Rn1 ,M2

∼= Kn2 ,M3
∼=

(K/R)n3 and pn4M4 = 0 for some integer ni ≥ 0.

Theorem 2.1.3. (by Zöschinger (1974a, Lemma 2.2 and Lemma 2.5)) For a

module M the following hold.

(i) Rad M is supplemented if and only if M is supplemented.

(ii) M is supplemented if and only if T (M) and M/T (M) are supplemented.

Theorem 2.1.4. (by Zöschinger (1974a, Satz 2.6)) For a module M , the follow-

ing are equivalent:

(i) M can be embedded in a supplemented module,

(ii) M is an extension of a supplemented module by a supplemented module,

(iii) Every U ⊆ M with U ⊆ Rad M has a supplement in M ,

(iv) The torsion part of M is supplemented, and M/T (M) has finite rank.

Note that any supplemented module satisfies the equivalent conditions of The-

orem 2.1.4. But the converse is not true, unless R is complete (see, (Zöschinger,

1974b, Theorem 2.2)).

In general the class of supplemented modules is not closed under submodules

see (Zöschinger, 1974b, Satz 2.1 Bemerkung). If every submodule of a module

M is supplemented M is said to be totally supplemented (see, Rudlof (1991)).

Totally supplemented modules are characterized in the following theorem.
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Theorem 2.1.5. (by Zöschinger (1974a, Folgerung p.51)) For a DVR, the fol-

lowing are equivalent:

(i) Every submodule of a supplemented module is supplemented,

(ii) Every extension of a supplemented module by a supplemented module is itself

supplemented,

(iii) If every submodule of the radical of a module M has a supplement then M

is supplemented,

(iv) Every torsion free reduced module with finite rank is free.

The conditions in 2.1.5 are also equivalent to R is a complete DVR, (see,

Zöschinger (1974a)).

2.2 Supplemented modules over Dedekind domains

Throughout this section R is a Dedekind domain with quotient field K 6= R.

Note that Lemma 2.2.1, Lemma 2.2.2 and Lemma 2.2.4 are stated without

proof in the proof of Theorem 3.1 in Zöschinger (1974a).

Lemma 2.2.1. If the R-module RK is supplemented then it is hollow.

Proof. Let U be a submodule of RK and V be a supplement of U . Since V is a

supplement we have Rad V = V ∩ Rad K = V ∩K = V i.e. V does not contain

any maximal submodule. Then by Lemma 1.7.2, V is injective. Therefore V is a

direct summand of RK. But RK is indecomposable, so V =R K. Now suppose

U + L =R K for some submodule L of RK. Then by minimality of RK we must

have L =R K. Hence U ¿R K. Therefore RK is hollow.
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Lemma 2.2.2. If the R-module RK is hollow then R is local.

Proof. Since hollow modules are closed under factor modules K/R is hollow. By

Theorem 1.7.6 we have,

K/R =
⊕
P∈Ω

TP (K/R).

As K/R is hollow we must have |Ω| = 1, i.e. R is local.

Remark 2.2.3. K/R is a cogenerator in the category of R-modules (see, Wisbauer

(1991)).

Lemma 2.2.4. Every supplement of a maximal submodule of a module M is a

local module.

Proof. Let K be a maximal submodule of M and L be a supplement of K in M

i.e. K + L = M and K ∩ L ¿ L. Then we have:

M/K ∼= L/(K ∩ L).

Since M/K is simple, K∩L is a maximal submodule of L. Then Rx+K∩L = L

for some x ∈ L. Since K∩L ¿ L, we have Rx = L. If T is a maximal submodule

of L then K ∩L ⊆ T because K ∩L ¿ L, so we must have K ∩L = T i.e. L has

a unique maximal submodule. Therefore L is a local module.

Theorem 2.2.5. (by Zöschinger (1974a, Theorem 3.1)) Let R be a non-local

Dedekind domain. An R−module M is supplemented if and only if it is torsion

and every primary part is supplemented.

Proof. (⇒) Let R be a non-local Dedekind domain and RM be supplemented.

Then the module M/T (M) is radical: If U is a maximal submodule of M with

T (M) ⊆ U , then U has a supplement V in M . Since U is maximal, V is a local

module, hence it is cyclic i.e. V ∼= R/I. On the other hand since R is non-local
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I 6= 0 i.e. V is a torsion submodule so V ⊆ T (M), a contradiction. Hence

M/T (M) is radical i.e. it has not any maximal submodule. Then by Lemma

1.7.2 M/T (M) is injective, and since it is torsion-free, we have:

M/T (M) ∼= K(J).

Then K(J) is also supplemented as it is isomorphic to a factor module of a sup-

plemented module. Then K is also supplemented as a direct summand of a

supplemented module. In this case by Lemma 2.2.1 and Lemma 2.2.2 we have

J = ∅. Therefore M is torsion, and so

M = T (M) =
⊕
P∈Ω

TP (M)

every primary component is a direct summand, hence supplemented.

(⇐) Conversely suppose RM is torsion and every primary component MP is

supplemented. Then since M is torsion, M has the decomposition

M =
⊕
P∈Ω

MP

and this decomposition has the property that

X =
⊕
P∈Ω

X ∩MP

for every X ⊆ M . Let U ⊆ M . Then since MP is supplemented for every P ∈ Ω,

U ∩MP has a supplement VP in MP . Then
∑

P∈Ω

VP is a supplement of U in M :

U =
⊕
P∈Ω

U ∩MP , V =
⊕
P∈Ω

VP .

Then

U + V =
⊕
P∈Ω

(U ∩MP + VP ) =
⊕
P∈Ω

MP = M.
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Suppose U ∩ V + X = V =
⊕
P∈Ω

VP for some submodule X of V . Then we have

⊕
P∈Ω

U ∩MP +
⊕
P∈Ω

XP =
⊕
P∈Ω

VP

So we get ⊕
P∈Ω

(U ∩MP + XP ) =
⊕
P∈Ω

VP .

Then

U ∩MP + XP = VP .

Therefore XP = VP for all P ∈ Ω, which means that X =
⊕
P∈Ω

VP = V .

Theorem 2.2.6. (by Zöschinger (1974a, Satz 3.4)) For a noetherian domain R,

the following are equivalent.

(i) Every coclosed module is closed,

(ii) Every closed module is coclosed,

(iii) R is Dedekind.

2.3 Supplemented modules over noetherian rings

Throughout this section R is a commutative noetherian ring.

Theorem 2.3.1. (by Rudlof (1991, Proposition 2.6)) Let U ⊆ M be a submodule

such that M/U is reduced. The following statements are equivalent.

(i) M is supplemented,

(ii) U and M/U are supplemented.

Since coatomic modules are closed under factor modules and submodules (over

noetherian rings) we get the following corollary.
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Corollary 2.3.2. Let M a coatomic R-module and U ⊆ M . Then M is supple-

mented if and only if U and M/U are supplemented.

Proof. Clearly M/U is coatomic. Then by Theorem 1.6.5 every submodule of

M/U is coatomic. Therefore every submodule of M/U contains a maximal sub-

module i.e. P (M/U) = 0. This means that M/U is reduced. Now the proof is

clear by Theorem 2.3.1.

Definition 2.3.3. A subset A of a ring R is called left T-nilpotent if, for any

sequence of elements {a1, a2, ...} ⊆ A, there exists an integer n ≥ 1 such that

a1 · a2 . . . an = 0.

A ring R is a left perfect ring if R/ Rad(R) is semisimple and Rad(R) is left

T-nilpotent.

Theorem 2.3.4. (by Mohamed & Müller (1990, Theorem 4.41)) The following

are equivalent for a ring R.

(i) R is left perfect,

(ii) Every R-module is supplemented,

(iii) Every free R-module is supplemented.

If R is a left perfect ring then by (Anderson & Fuller, 1992, Theorem 28.4)

every non-zero left R-module contains a maximal submodule i.e. P (M) = 0 for

every R-module and this implies that every R-module is reduced. Every left

artinian ring is perfect (Anderson & Fuller, 1992, Corollary 28.8).
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Lemma 2.3.5. If R is a noetherian perfect ring then R is artinian.

Proof. Let J be the Jacobson radical of R. Since R is noetherian, J is finitely

generated, say J = Ra1 + Ra2 + ... + Ran for some ai ∈ J . Now since R is a

perfect ring, for every ai, i = 1, ..., n there exist ki such that aki
i = 0. Therefore

for sufficiently large m ∈ Z+ we have Jm = 0. Then by Anderson & Fuller (1992,

Theorem 15.20) R is artinian.

In Theorem 2.1.3 we have seen that over a DVR a module M is supplemented

if and only if Rad M is supplemented. By using Theorem 2.3.1 we obtain the

following.

Theorem 2.3.6. Let R be a commutative noetherian semilocal ring with maximal

ideals P1, . . . , Pn, Jacobson radical J and M be an R-module. The following are

equivalent:

(i) M is supplemented.

(ii) P k1
1 . . . P kn

n M is supplemented for some ki > 0.

(iii) JmM is supplemented for some m = 0.

(iv) Rad M is supplemented.

Proof. (i)⇔(ii) The ring R/P k1
1 . . . P kn

n is noetherian as R is noetherian, and every

prime ideal is maximal: for if P/P k1
1 . . . P kn

n is a prime ideal of R/P k1
1 . . . P kn

n then

P is a prime ideal of R and P k1
1 . . . P kn

n ⊆ P, hence by Lemma 1.1.8, Pi ⊆ P for

some i = 1, ..., n, i.e. P is a maximal ideal of R, hence P/P k1
1 . . . P kn

n is a maximal

ideal of R/P k1
1 . . . P kn

n . Therefore the ring R/P k1
1 . . . P kn

n is artinian by Theorem

1.1.3. In this case M/P k1
1 . . . P kn

n M is a reduced and supplemented R-module.

Then Therorem 2.3.1 completes the proof.
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(i)⇔(iii) The Jacobson radical of R is J = P1 ∩ . . .∩ Pn = P1 . . . Pn by Atiyah

& Macdonald (1994, Proposition 1.10 (i)). Then Jm = Pm
1 . . . Pm

n and from the

proof of (i)⇔(ii) we get the ring R/Jm is artinian. Thus M/JmM is reduced and

supplemented. Then Theorem 2.3.1 completes the proof.

(i)⇔(iv) Since R is semilocal, R/J is semisimple and Rad M = JM . Then

M/JM is a semisimple and hence a supplemented R-module. Then we are done

by Theorem 2.3.1.

Corollary 2.3.7. Let R be a semilocal ring with Jacobson radical J . Then the

following are equivalent.

(i) R is an artinian ring,

(ii) for every R-module M there exists n ∈ N such that JnM is supplemented,

(iii) for every R-module M , Rad M is supplemented,

(iv) every R-module is supplemented.

Proof. (i)⇒(ii) Clear, since R is a perfect ring.

(ii)⇒(iii) By Theorem 2.3.6.

(iii)⇒(i) Let M be an R-module. Then by Theorem 2.3.6 M is supplemented.

Therefore R is a perfect ring. Hence R is artinian, by Lemma 2.3.5.

(iv)⇔(i) By Theorem 2.3.4

To prove Corollary 2.3.7, for an arbitrary ring we shall assume Rad S = R for

some R-module S. Rings with this property are considered in Generalov (1983).
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Corollary 2.3.8. Let R be a ring. Suppose Rad S = R for some R-module S.

Then the following statements are equivalent.

(i) R is artinian,

(ii) Rad M is supplemented for every R-module M .

Proof. (i)⇒(ii) By Theorem 2.3.4.

(ii)⇒(i) By hypothesis R is supplemented. Then R is a semiperfect ring (see,

Wisbauer (1991, 42.6)). Therefore R is semilocal. Then R is an artinian ring by

Corollary 2.3.7.

We shall call the domain R one dimensional if R is not a field and R/I is

artinian for every non-zero ideal I of R. The domain R is h-semilocal if R/I is a

semilocal ring for every nonzero ideal of R.

Lemma 2.3.9. A domain R is one dimensional if and only if R is noetherian

and every non-zero prime ideal of R is maximal.

Proof. (⇒) Let

I1 ⊆ I2 ⊆ . . .

be an ascending chain of ideals of R. If Ii = 0 for every i ∈ Z+, then there is

nothing to prove. Suppose Ii 6= 0 for some i ∈ Z+. Since R is one dimensional

R/Ii is artinian, hence R/Ii is noetherian by Theorem 1.1.3. Therefore the chain

of ideals

Ii+1/Ii ⊆ Ii+2/Ii ⊆ ...

of R/Ii is stationary, which implies that the chain

I1 ⊆ I2 ⊆ . . .

is stationary. Hence R is noetherian.

If P is a non-zero prime ideal of R then R/P is an integral domain. By hypothesis
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R/P is an artinian ring, then by Theorem 1.1.3 R/P is a field i.e. P is a maximal

ideal.

(⇐) Let I be a nonzero ideal of R. Then R/I is noetherian and every prime

ideal in R/I is maximal i.e. Krull dimension of R/I is zero. Then by Theorem

1.1.3 R/I is artinian.

Note that by Theorem 1.7.1 and Lemma 2.3.9 Dedekind domains are one di-

mensional.

Theorem 2.3.10. Let R be a noetherian domain. Consider the following state-

ments:

(i) R is one dimensional,

(ii) for every non-zero ideal I of R every R/I-module is supplemented,

(iii) for every non-zero ideal I of R, and for every R/I-module M , Rad M is

supplemented.

Then (i)⇔(ii)⇒(iii), and if R is h− semilocal (iii)⇒(ii) hold.

Proof. (i)⇒(ii) Let I be a nonzero ideal of R. Then R/I is an artinian ring

because R is one dimensional. By Theorem 2.3.4 every R/I-module is supple-

mented.

(ii)⇒(i) Let I be a nonzero ideal of R. By hypothesis every R/I-module is

supplemented. Then R/I is a perfect ring by Theorem 2.3.4, so by Lemma 2.3.5

R/I is artinian. Hence R is one dimensional.

(ii)⇒(iii) Let I be a nonzero ideal of R. By hypothesis R/I is supplemented.

Then R/I is a semiperfect ring (see, Wisbauer (1991) 42.6). Hence R/I is semilo-



31

cal. Therefore by Theorem 2.3.6 Rad M is supplemented for every R/I-module

M .

(iii)⇒(ii) If R is h-semilocal and I is a nonzero ideal of R then R/I is semilocal.

Let M be an R/I-module. Then by hypothesis Rad M is supplemented. Therefore

by Theorem 2.3.6 M is supplemented.

Proposition 2.3.11. Let R be a one dimensional domain and M be an R-module.

Suppose K ⊆ M and rnM ⊆ K for some 0 6= r ∈ R and n = 0. Then K is

supplemented if and only if rnM is supplemented.

Proof. Clearly (Rrn)M ⊆ K. Since R is a domain rn 6= 0 for every n > 0, and by

hypothesis R/Rrn is artinian. Hence K/(Rrn)M is a reduced and supplemented

R-module. Then the proof is clear by Theorem 2.3.1.

Corollary 2.3.12. Let R be a one dimensional domain and M be an R-module.

Then M is supplemented if and only if rnM is supplemented for some 0 6= r ∈ R

and n = 0.

Corollary 2.3.13. Let R be a one dimensional and I be a nonzero ideal of R.

The following are equivalent.

(i) M is supplemented,

(ii) every submodule K ⊆ M with InM ⊆ K for some n = 0 is supplemented.

In a Dedekind domain every nonzero ideal is a product of finitely many maxi-

mal ideals (see, Theorem 1.7.1). Hence we have the following corollary.

Corollary 2.3.14. Let R be a Dedekind domain and M be an R-module. Then

M is supplemented if and only if rnM is supplemented for some 0 6= r ∈ R and

n = 0.
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Proposition 2.3.15. Let M be a semilocal module. Then M is supplemented if

and only if Rad M is supplemented.

Proof. Since M is semilocal M/ Rad M is semisimple. Semisimple modules are

reduced and supplemented. So the proof is clear by Theorem 2.3.1.

Weakly supplemented modules are semilocal. So we obtain the following corol-

lary.

Corollary 2.3.16. Let M be a weakly supplemented module then M is supple-

mented if and only if Rad M is supplemented.

Theorem 2.3.17. (by Zöschinger (1982b, Lemma 2.6)) If M is a supplemented

module then every submodule X of M with P (M) ⊆ X ⊆ M is supplemented.

As a consequence of Theorem 2.1.1 we have seen that over a DVR every sub-

module of a reduced and supplemented module M is supplemented, i.e. M is

totally supplemented. Using Theorem 2.3.17 we have the following corollary.

Corollary 2.3.18. Let M be a reduced module (i.e P (M) = 0). Then the follow-

ing are equivalent:

(i) M is supplemented,

(ii) M is totally supplemented.

A module M is said to be a max module if every submodule of M contains

a maximal submodule or equivalently Rad U $ U for every submodule U ⊆ M .

Therefore for a max module M we have P (M) = 0. By definition coatomic

modules contain maximal submodules. Over a noetherian ring every submodule

of a coatomic module is coatomic (see, Zöschinger (1980, Lemma 1.1)). Hence

coatomic modules are max modules.
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Corollary 2.3.19. Let M be a max module. Then M is supplemented if and only

if M is totally supplemented.

The following is a consequence of Theorem 2.3.1 and Corollary 2.3.19.

Corollary 2.3.20. For a coatomic module M the following are equivalent.

(i) M is supplemented,

(ii) M is totally supplemented,

(iii) U and M/U are supplemented for some submodule U of M .



CHAPTER THREE

WEAKLY SUPPLEMENTED MODULES

In this chapter, some results on weakly supplemented modules are reviewed

and some new results are proved. Mainly we shall consider weakly supplemented

modules over Dedekind domains and commutative noetherian rings. For more

general properties of weakly supplemented modules we refer to Rudlof (1991),

Lomp (1996) and Lomp (1999). Section 3.1, we remind a structure theorem on

weakly supplemented modules over Dedekind domains which is due to Zöschinger

(Theorem 3.1.1) . Section 3.2, mainly include some review of the results on weakly

supplemented modules. In Section 3.3, we give an example in order to show that

the class of weakly supplemented modules need not be closed under extension.

Then we give a sufficient condition under which weakly supplemented modules

are closed under extension.

3.1 Weakly supplemented modules over Dedekind do-

mains

Let R be Dedekind domain which is not a field. In this section we present a theo-

rem due to Zöschinger, in which characterization of weakly supplemented is given.

As a consequence we show that, a torsion R-module is weakly supplemented if

and only if it is supplemented. If R is semilocal then an R-module M is weakly

supplemented if and only if T (M) and M/T (M) are weakly supplemented. If

R is a DVR then an R-module is weakly supplemented if and only if it can be

embedded in a supplemented module.

34
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In the following theorem Zöschinger characterizes weakly supplemented over

Dedekind domains (see, Zöshinger (1986)).

Theorem 3.1.1. Let R be a Dedekind domain and M an R-module. Then M is

weakly supplemented if and only if

(i) M/ Rad M is semisimple,

(ii) M/T (M) has a finite Goldie dimension (finite rank),

(iii) TP (M) is a direct sum of an Artinian and a bounded submodule for every

P ∈ Ω.

Lemma 3.1.2. (by Lam (1999, Exercise 6.34)) Let R be a domain and M be an

R-module. Then the torsion submodule T (M) of M is closed in M .

Proof. Suppose T (M) E K for some K ⊆ M . Let k ∈ K, then since T (M) is

essential in K we have 0 6= rk ∈ T (M) for some r ∈ R. Then srk = 0 for some

0 6= s ∈ R. Since R is a domain sr 6= 0. Therefore k ∈ T (M) i.e. K = T (M).

Hence T (M) is closed in M .

From Theorem 3.1.1 and Lemma 3.1.2 we get the following theorem:

Theorem 3.1.3. Let R be a Dedekind domain and M be an R-module. Then M

is weakly supplemented if and only if

(i) M/ Rad M is semisimple,

(ii) T (M) and M/T (M) are weakly supplemented.

Proof. (⇒) (i). By Theorem 3.1.1, M/ Rad M is semisimple.

(ii). M/T (M) is weakly supplemented as a factor module of a weakly supple-

mented module. By Lemma 3.1.2, T (M) is a closed submodule of M . Then by
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Theorem 2.2.6 T (M) is a coclosed submodule of M . By (Lomp, 1996, Proposition

1.2.1) T (M) is a supplement in M . Every supplement in M is weakly supple-

mented by (Lomp, 1999, Proposition 2.2). Hence T (M) is weakly supplemented.

(⇐) M/T (M) is weakly supplemented so it has finite rank by Theorem 3.1.1.

Since T (M) is weakly supplemented, TP (M) is a direct sum of an artinian and

a bounded submodule for every P ∈ Ω. Now by Theorem 3.1.1, M is weakly

supplemented.

Over a semilocal ring M/ Rad M is semisimple for every R-module. So a

torsion-free module over such a ring is weakly supplemented if and only if it has

finite rank.

Now the following corollary is clear by Theorem 3.1.1

Corollary 3.1.4. Let R be a semilocal Dedekind domain. Then an R-module is

weakly supplemented if and only if

(i) M/T (M) has finite rank,

(ii) TP (M) is a direct sum of an artinian and a bounded submodule for every

P ∈ Ω.

Let R be a Dedekind domain. Suppose R is not a complete DVR. Then the class

of weakly supplemented modules is strictly larger than the class of supplemented

modules. For torsion modules one has the following Corollary.

Corollary 3.1.5. Let R be a Dedekind domain and M be a torsion R-module.

Then M is weakly supplemented if and only if it is supplemented.

Corollary 3.1.6. Suppose R is semilocal. Then an R-module M is weakly sup-

plemented if and only if T (M) and M/T (M) are weakly supplemented.
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Proof. M/ Rad M is semisimple as R is semilocal. Then the proof is clear by

Theorem 3.1.3.

From Theorem 2.1.4, Corollary 3.1.4 and Corollary 3.1.5 we get the following:

Corollary 3.1.7. Let R be a DVR and M be an R-module. Then the following

are equivelent.

(i) M is weakly supplemented,

(ii) M can be embedded in a supplemented module,

(iii) M is an extension of a supplemented module by a supplemented module,

(iv) Every U ⊆ M with U ⊆ Rad M has a supplement in M ,

(v) The torsion part of M is supplemented, and M/T (M) has finite rank.

Note that (ii) is also inherited by submodules. Therefore over a DVR the class

of weakly supplemented modules is closed under submodules.

3.2 Weakly supplemented modules over noetherian rings

Throughout this section R is a noetherian ring, unless otherwise stated. In Section

3.1 we have seen some characterization of weakly supplemented modules over

Dedekind domains. Dedekind domains are one-dimensional. Rudlof extended

this characterization to an arbitrary noetherian ring with finite Krull dimension

(see, Rudlof (1991) and Rudlof (1992)).
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A module M is semiartinian if every factor module of M contains a minimal

submodule (see, Dung et al. (1994)). Over a noetherian ring a module M is

semiartinian if and only if every finitely generated submodule of M is artinian.

M is a minimax module if there exists a finitely generated submodule U of M

with M/U is artinian.

Note that supplemented is called complemented in Rudlof (1991).

Theorem 3.2.1. (by Rudlof (1991, Theorem 3.1)) Let (R, m) be a local ring and

M be an R-module. Then the following are equivalent:

(i) M is weakly supplemented,

(ii) In every submodule V of M , mV has a supplement in V ,

(iii) M is a small cover of a supplemented module,

(iv) Every semiartinian factor module of M is supplemented,

(v) M is an extension of a supplemented module by a supplemented module,

(vi) M = A + B with a minimax module A and a discrete module B.

Note that the condition Theorem 3.2.1 (ii) is inherited by submodules. There-

fore, over a local ring R, the class of weakly supplemented modules is closed under

submodules.

Lemma 3.2.2. Let R be one dimensional. Then every torsion R-module is semi-

artinian.

Proof. Let M be a torsion R-module and U be a finitely generated submodule of

M . Then U = Ru1 + ... + Run for some ui ∈ R. We may assume that each ui

is non-zero. Then Rui
∼= R/Ii for some 0 6= Ii ≤ R. Since R is one dimensional,

Rui is artinian. Hence U is artinian i.e M is semiartinian.
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In Corollary 3.1.4, we have seen that, over a Dedekind domain, every torsion

and weakly supplemented module is supplemented. This fact has the following

generalization to one dimensional domains.

Proposition 3.2.3. (by Rudlof (1991, Proposion 3.3 (b))) If M is semiartinian

and weakly supplemented then M is supplemented.

From Lemma 3.2.2 and Proposition 3.2.3 we obtain the following Corollary.

Corollary 3.2.4. Let R be a one dimensional domain and M be a torsion R-

module. Then M is weakly supplemented if and only if M is supplemented.

Proposition 3.2.5. (by Rudlof (1991, Proposition 3.4)) For a radical module

M , the following are equivalent,

(i) M is weakly supplemented,

(ii) M is a small cover of a supplemented module,

(iii) M is an extension of a coatomic module by a semiartinian supplemented

module,

(iv) MP is an RP minimax module for all P ∈ Ω,

(v) MP is a weakly supplemented RP -module for all P ∈ Ω.

Theorem 3.2.6. (by Rudlof (1991, Theorem 3.5)) Let R be a ring with finite

Krull dimension. Then the following statements are equivalent for an R-module

M :

(i) M is weakly supplemented,

(ii) M is a small cover of a supplemented module,

(iii) M has a small, coatomic submodule U such that M/U is semiartinian and

supplemented.



40

(iv) M/ Rad(M) is semisimple and every every semiartinian factormodule of M

is supplemented.

(v) M/ Rad(M) is semisimple and the RP -module MP is weakly supplemented

for all P ∈ Ω.
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3.3 Extension of weakly supplemented modules

A class M of modules is closed under extension if whenever U, M/U ∈ M, M is

also contained in M. In general the class of weakly supplemented modules need

not closed under extension.

Theorem 3.3.1. Let 0 → L → M → N → 0 be a short exact sequence. If L and

N are weakly supplemented and L has a weak supplement in M then M is weakly

supplemented.

If L is coclosed then the converse holds; that is if M is weakly supplemented

then L and N are weakly supplemented.

Proof. Without restriction of generality we will assume that L ⊆ M . Let S be a

weak supplement of L in M i.e. L + S = M and L ∩ S ¿ M . Then we have,

M/L ∩ S ∼= L/L ∩ S ⊕ S/L ∩ S

L/L ∩ S is weakly supplemented as a factor module of L which is weakly sup-

plemented. On the other hand S/L ∩ S ∼= M/L ∼= N is weakly supplemented.

Then M/L∩S is weakly supplemented as a sum of weakly supplemented modules.

Therefore M is weakly supplemented by Lomp (1999, Proposition 2.2 (4)).

If L is coclosed then L ∩ S ¿ L by Lomp (1996, Proposition 1.2.1) i.e L

is a supplement of S in M . Then by Proposition 1.5.2 L and N are weakly

supplemented.

We will give an example of a module M for which there exists a submodule

U such that U and M/U are weakly supplemented but M is not weakly supple-

mented. First we need some results which are necessary to present these example.
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Lemma 3.3.2. (by Santa-Clara & Smith (2004, Lemma 1.)) Let P be a finitely

generated ideal of a commutative ring R and let an R-module M =
∏

i∈I Mi be

the direct product of R-modules Mi(i ∈ I). Then PM =
∏

i∈I(PMi).

Proof. It is clear that PM ⊆ ∏
i∈I(PMi). Conversely, let m ∈ ∏

i∈I(PMi). Then

m = (mi), where mi ∈ PMi(i ∈ I). There exist a positive integer k and elements

pi ∈ P (1 5 i 5 k) such that P = Rp1 + ... + Rpk. For each i ∈ I, mi ∈
PMi = p1Mi + ... + pkMi, so that mi = p1mi1 + ... + pkmik, for some elements

mij ∈ Mi(1 5 j 5 k). It follows that m = p1(mi1) + . . . + pk(mik) ∈ PM.

Proposition 3.3.3. (by Santa-Clara & Smith (2004, Proposition 2.)) Let R

be commutative domain which contains an infinite collection of distinct finitely

generated maximal ideals Pi(i ∈ I) such that
⋂
i∈J

Pi = 0, for every infinite subset

J of I. Let the R-module M =
∏
i∈I

(R/Pi) be the direct product of the simple R-

modules R/Pi(i ∈ I). Then the torsion submodule of M is not a direct summand

of M .

Proof. Let Mi = R/Pi(i ∈ I). Clearly the torsion submodule T of M is the direct

sum of the modules R/Pi (i ∈ I), i.e., T =
⊕
i∈I

(R/Pi). Suppose that M = T ⊕M ′,

for some submodule M ′ of M . Clearly M ′ 6= 0. Let 0 6= x ∈ M ′. Then x = (xi),

where xi ∈ Mi(i ∈ I) and xj 6= 0, for some j ∈ I. Note that PjMi = Mi, for all

i ∈ I \ {j}, and hence, by Lemma 3.3.2, PjM ∼= ∏
i∈I\{j}

Mi. In particular, note

that M/PjM ∼= Mj, so M/PjM is simple. But M/PjM ∼= (T/PjT )⊕ (M ′/PjM
′)

and T 6= PjT . Thus M ′ = PjM
′ and in particular, we have x = (xj) ∈ PjM

′, so

that xj = 0, a contradiction. Thus T is not a direct summand of M .

Lemma 3.3.4. Let R be a Dedekind domain and let {Pi}i∈I be an infinite set of

distinct maximal ideals of R. Then
⋂
i∈I

Pi = 0.



43

Proof. This is clear because in a Dedekind domain every non-zero ideal is a prod-

uct of finitely many maximal ideals in a unique way (see, Theorem 1.7.1).

Proposition 3.3.5. Let R be a Dedekind domain and {Pi}i∈I be an infinite col-

lection of distinct maximal ideals of R. Let M =
∏
i∈I

(R/Pi) be the direct product

of the simple R-modules R/Pi and T be the torsion submodule of M . Then the

following hold,

(i) M/T is divisible, i.e. M/T ∼= K(J) for some index set J ,

(ii) Rad M = 0.

Proof. (i) Let P be a maximal ideal of R. Then P (M/T ) = (PM + T )/T . Now

if P is not one of the ideals {Pi}i∈I then PM + T = M and so P (M/T ) = M/T .

Suppose P ∈ {Pi}i∈I , say P = Pj for some j ∈ I, then PM =
∏

i∈I\{j}
(R/Pi). In

this case we also have PM + T = M and hence P (M/T ) = M/T . Therefore by

Lemma 1.7.2 M/T is divisible.

(ii) Clearly Mj =
∏

i∈I\{j}
(R/Pi) is a maximal submodule of M for every j ∈ I.

Then

Rad M ⊆ ⋂
j∈I

Mj = 0.

Hence Rad M = 0.

Now, we give an example in order to prove that the class of weakly supple-

mented modules need not be closed under extensions.

Example 3.3.6. Let R and M be as in Proposition 3.3.5 and T be the torsion

submodule of M . Let N be a submodule of M such that N/T ∼= K. Then T is

weakly supplemented because it is semisimple, also N/T is weakly supplemented
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by Theorem 3.1.1. But N is not weakly supplemented: Rad N = 0 by Propopo-

sition 3.3.5 and N is not semisimple since N/T ∼= K is not semisimple, now by

Lomp (1999, Corollary 2.3), N is not weakly supplemented.

Proposition 3.3.7. Let R be a Dedekind domain and M be an R-module. If

T (M) has a weak supplement in M then M is weakly supplemented if and only if

T (M) and M/T (M) are weakly supplemented.

Proof. (⇒) By Theorem 3.1.3.

(⇐) By Theorem 3.3.1.

Corollary 3.3.8. If Rad T (M) ¿ T (M) then M is weakly supplemented if and

only if T (M) has a weak supplement in M and M/T (M) is weakly supplemented.

Proof. By Corollary 4.1.2 T (M)/ Rad T (M) is semisimple. Then T (M) is weakly

supplemented by Proposition 1.5.2. Now the proof is clear by Proposition 3.3.7.

Lemma 3.3.9. Let R be a ring, I 6 R and M be an R-module. If IM has a

weak supplement K in M , then K is a weak supplement of InM in M for every

n = 1.

Proof. By hypothesis IM + K = M. Then we have I2M + IK = IM , so I2M +

IK + K = IM + K which gives I2M + K = M. Continuing in this way we get:

InM + K = M and InM ∩K ⊆ IM ∩K ¿ M.

This means that K is a weak supplement of InM in M .

Proposition 3.3.10. Let R be a one dimensional domain and M be an R-module.

Suppose I is a nonzero ideal of R. Then M is weakly supplemented if InM is

weakly supplemented and IkM has a weak supplement in M for some k 5 n.
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Proof. Since R is a domain and I 6= 0, then In 6= 0. So R/In is artinian ring. Then

M/InM is a (weakly) supplemented R/In-module, hence it is also a supplemented

R-module. By Lemma 3.3.9, InM has a weak supplement in M . Therefore by

Theorem 3.3.1, M is weakly supplemented.



CHAPTER FOUR

TOTALLY WEAK SUPPLEMENTED MODULES

In this Chapter, we investigate totally weak supplemented modules and study

these modules over Dedekind domains and commutative noetherian rings. In

Section 4.1, we characterize totally weak supplemented modules over Dedekind

domains. The relation between totally supplemented, supplemented and weakly

supplemented modules is determined for modules over Dedekind domains. An

example is given to show that a weakly supplemented module need not be to-

tally weak supplemented over a Dedekind domain. On the other hand for finitely

generated modules we obtain that totally weak supplemented and weakly supple-

mented modules coincide over Dedekind domains. In Section 4.2, some results

are proved for totally weak supplemented modules over commutative noetherian

rings. It is shown that a commutative noetherian ring R is semilocal if and only

if every R-module M with Rad M ¿ M is totally weak supplemented.

4.1 Totally weak supplemented modules over Dedekind

domains

A module M is said to be totally weak supplemented (briefly tws-module) if

every submodule of M is weakly supplemented. In this section we determine

the structure of tws-modules over Dedekind domains. It is shown that over a

semilocal Dedekind domain a module is a tws-module if and only if it is weakly

supplemented, and over a non-semilocal Dedekind domain a module is a tws-

module if and only if it is supplemented. A finitely generated module over a

46
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Dedekind domain is a tws-module if and only if it is weakly supplemented.

By Ω we denote the set of all maximal ideals of a ring R.

We begin with the following lemma.

Lemma 4.1.1. Let R be a domain and P a maximal ideal of R. Then for every

P -primary R-module M , M/ Rad M is semisimple.

Proof. Since R is commutative we have

Rad M =
⋂
Q∈Ω

QM.

First we will show that QM = M for every Q ∈ Ω \ {P}.
Let x ∈ M , then P nx = 0 for some n ∈ N. Since P n + Q = R, we have 1 = p + q

for some p ∈ P n and q ∈ Q. So we get x = xp+xq = xq ∈ QM , hence M = QM .

Therefore

Rad M =
⋂
Q∈Ω

QM = PM.

Then since R/P is a field M/ Rad M = M/PM is a semisimple R/P -module,

and so it is semisimple as an R-module.

Corollary 4.1.2. Let R be a Dedekind domain and M be a torsion R-module,

then M/ Rad M is semisimple.

Proof. Since R is a Dedekind domain and M is a torsion R-module, we have

M =
⊕
P∈Ω

TP (M).
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Then

M/ Rad M = [
⊕
P∈Ω

TP (M)]/[
⊕
P∈Ω

Rad TP (M)]

∼=
⊕
P∈Ω

[TP (M)/ Rad TP (M)]

is semisimple by Lemma 4.1.1.

Lemma 4.1.3. Let R be a Dedekind domain and M be P -primary for some

P ∈ Ω. Then M is divisible if and only if M = PM .

Proof. (⇒) By Alizade et al. (2001, Lemma 4.4.), PM = M .

(⇐) From the proof of Lemma 4.1.1 we have M = QM for every Q ∈ Ω\{P}.
Therefore by Alizade et al. (2001, Lemma 4.4.) M is divisible.

Lemma 4.1.4. Let R be a Dedekind domain and M be a P -primary R-module.

Suppose M is a direct sum of an artinian submodule and a bounded submodule.

Then every submodule of M is a direct sum of an artinian submodule and a

bounded submodule.

Proof. Suppose

M = A⊕B

with A an artinian and B a bounded submodule of M .

Let U be a submodule of M and D the divisible part of U . Then U = D ⊕ C

where C is a reduced submodule of U .

Let

π : A⊕B → B

be the canonical projection, then π(D) is a divisible submodule of B as a ho-

momorphic image of the divisible submodule D. Since B is bounded it has no

nonzero divisible submodule i.e. π(D) = 0. Therefore D ⊆ A, and hence D is
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artinian.

Since B is bounded then P nB = 0 for some n ∈ N. Then

P nC ⊆ P nM = P nA,

so P nC is artinian. Then for the descending chain

P nC ⊇ P n+1C ⊇ ... ⊇ P n+kC ⊇ ...

there exists t ∈ N such that P n+tC = P n+t+1C. Then by Lemma 4.1.3 P n+tC is

a divisible submodule of C, but C is reduced, so we must have P n+tC = 0, which

shows that C is bounded.

Now we are able to give a characterization of tws-modules over semilocal

Dedekind domains.

Theorem 4.1.5. Let R be a semilocal Dedekind domain and M be an R-module.

The following are equivalent.

(i) M is a tws-module,

(ii) M is weakly supplemented,

(iii) M/T (M) has finite Goldie dimension and TP (M) is a direct sum of an

artinian submodule and a bounded submodule for every P ∈ Ω.

Proof. (i)⇒(ii) Clear.

(ii)⇒ (iii) By Theorem 3.1.1.

(iii)⇒ (i) Let U be a submodule of M . Since R is semilocal, then U/ Rad U is

semisimple.

[U +T (M)]/T (M) has finite Goldie dimension as a submodule of M/T (M), then

U/T (U) ∼= [U + T (M)]/T (M)
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also has finite Goldie dimension.

By Lemma 4.1.4 TP (U) is a direct sum of an Artinian submodule and a bounded

submodule. Therefore by Theorem 3.1.1 U is weakly supplemented, hence M is

a tws-module.

Remark 4.1.6. If R is a non-semilocal Dedekind domain then a weakly supple-

mented module need not be a tws-module, e.g. the Z-module Q is weakly sup-

plemented by Theorem 3.1.1, but it is not a tws-module since the submodule Z

of Q is not weakly supplemented.

Corollary 4.1.7. Let R be a semilocal Dedekind domain and M be an R-module.

The following are equivalent.

(i) M is a tws-module,

(ii) M is weakly supplemented,

(iii) For some nonzero ideal of R, InM is weakly supplemented and has a weak

supplement in M .

Proof. By Proposition 3.3.10 and Theorem 4.1.5.

A weakly supplemented module over a non-semilocal domain need not be tor-

sion (see Remark, 4.1.6). The following proposition shows that over such a domain

a tws-module is necessarily torsion.

Proposition 4.1.8. Let R be a non-semilocal domain and M be an R-module.

If M is a tws-module then M is torsion.

Proof. Suppose Rm ∼=RR for some m ∈ M . Since Rm is weakly supplemented,

RR is also weakly supplemented. Then by Lomp (1999, Corollary 3.2), R is a

semilocal ring, a contradiction. Hence M is a torsion module.
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In the following theorem we give a characterization of tws-modules over non-

semilocal Dedekind domains.

Theorem 4.1.9. Let R be a non-semilocal Dedekind domain. Then an R-module

M is a tws-module if and only if M is torsion and TP (M) is a direct sum of an

artinian submodule and a bounded submodule for every P ∈ Ω.

Proof. (⇒) By Proposition 4.1.8 M is a torsion module. Since M is weakly

supplemented, then by Theorem 3.1.1 TP (M) is a direct sum of an Artinian

submodule and a bounded submodule for every P ∈ Ω.

(⇐) Let U be a submodule of M . Then by Lemma 4.1.2 U/ Rad U is semisim-

ple. Since M is torsion we have U = T (U) and so U/T (U) has finite Goldie

dimension. By Lemma 4.1.4 TP (U) is a direct sum of an Artinian submodule

and a bounded submodule. Then by Theorem 3.1.1 U is weakly supplemented.

Therefore M is a tws-module.

Corollary 4.1.10. Let R be a Dedekind domain and M be a torsion R-module.

Then the following are equivalent.

(i) M is weakly supplemented,

(ii) M is a tws-module,

(iii) TP (M) is a direct sum of an Artinian submodule and a bounded submodule

for every P ∈ Ω.

Proof. If R is semilocal then this follows by Theorem 4.1.5.

If R is non-semilocal, Theorem 3.1.1 and Theorem 4.1.9 complete the proof.

Any small cover of a weakly supplemented module is weakly supplemented (see,
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Lomp (1999)). The following example shows that a small cover of a tws-module

need not be a tws-module.

Example 4.1.11. The Z-module Q is a small cover of Q/Z. Since Q is weakly

supplemented, Q/Z is also weakly supplemented as a factor module of Q. Then

Q/Z is a tws-module by Corollary 4.1.10. But Q is not a tws-module by remark

4.1.6.

Now, we obtain the following:

Proposition 4.1.12. Let R be a Dedekind domain and M be a torsion module.

Suppose M/L is weakly supplemented for some L ¿ M . Then M is a tws-module.

Proof. M is weakly supplemented because M is a small cover of M/L with the

canonical epimorphism f : M → M/L. Hence by Corollary 4.1.10 M is a tws-

module.

An immediate consequence of Proposition 4.1.12 is the following:

Corollary 4.1.13. Let R be a Dedekind domain and M be a torsion R-module

with Rad M ¿ M . Then M is a tws-module.

Proof. By Corollary 4.1.2 M/ Rad M is semisimple, so it is weakly supplemented.

Then M is weakly supplemented since M is a small cover of M/ Rad M . Therefore

by Proposition 4.1.12 M is a tws−module.

Now we determine the relation between supplemented modules and tws-modules.

First we state the following observation:

Corollary 4.1.14. Let R be a non-local Dedekind domain. Then an R-module

M is supplemented if and only if M is totally supplemented.
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Proof. (⇒) Let U be submodule of M . By Theorem 2.2.5 M is torsion and every

primary component is a direct sum of an artinian submodule and a bounded

submodule. Then U is torsion as a submodule of a torsion module, and by Lemma

4.1.4 every primary component of U is a direct sum of an artinian submodule and

a bounded submodule. Hence U is supplemented by Theorem 2.2.5. Therefore

M is totally supplemented.

(⇐) Clear.

Corollary 4.1.15. Let R be a non-local Dedekind domain and M be a torsion

R-module. Then M is supplemented if and only if M is a tws-module.

Proof. By Corollary 4.1.10 and Theorem 2.2.5.

Corollary 4.1.16. Let R be a non-semilocal Dedekind domain and M be an

R-module. Then the following are equivalent.

(i) M is supplemented,

(ii) M is totally supplemented,

(iii) M is a tws-module.

Proof. By Theorem 2.2.5, Theorem 4.1.9 and Corollary 4.1.14.

The following is an immediate consequence of Corollary 3.2.4.

Corollary 4.1.17. Let R be a one dimensional domain and M be a torsion R-

module. Then M is a tws-module if and only if M is totally supplemented.
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Proposition 4.1.18. Let R be a Dedekind domain and M be an R-module. Sup-

pose either R is semilocal or M is torsion. The following are equivalent.

(i) Rad M is weakly supplemented and has a weak supplement in M,

(ii) M is weakly supplemented,

(iii) M is a tws-module.

Proof. (i)⇒(ii) In both cases M/ Rad M is semisimple and so weakly supple-

mented. Then by Theorem 3.3.1 M is weakly supplemented.

(ii)⇔(iii) By Theorem 4.1.5 if R is semilocal. By Corollary 4.1.10 if R is

non-semilocal.

(iii)⇒(i) Clear.

Now we describe the structure of weakly supplemented modules over DVR and

determine when a weakly supplemented module is supplemented over a DVR.

From Theorem 2.1.2, we see that over a DVR a reduced torsion-free module is

supplemented if and only if it is free.

Lemma 4.1.19. Let R be a DVR and M be a torsion R-module. Then M is

weakly supplemented if and only if it is supplemented.

Proof. (⇐) Clear.

(⇒) By Theorem 3.2.1, M is an extension of a supplemented module by a

supplemented module i.e there exists a supplemented submodule U of M such

that M/U is supplemented. Then by Zöschinger (1974a, Lemma 2.5) M is sup-

plemented.
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To determine the structure of weakly supplemented modules over DVR, we use

the following lemma.

Lemma 4.1.20. Let R be a DVR and M torsion R-module. Then the following

are equivalent.

(i) M is supplemented,

(ii) M is totally supplemented,

(iii) M is weakly supplemented,

(iv) M is a tws-module,

(v) The divisible part of M is artinian and the reduced part is bounded.

Proof. (i) ⇔ (ii) By Zöschinger (1974a, Lemma 2.5).

(i) ⇔ (iii) By Lemma 4.1.19.

(iii) ⇔ (iv) By Theorem 4.1.5.

(i) ⇔ (v) By Theorem 2.1.2.

Let R be a domain and M be an R-module. A submodule U of M is called

pure (in the sense of Kaplansky) in M if rU = U ∩ rM for every r ∈ R. Clearly

the torsion submodule of M is a pure submodule of M . Over a DVR a bounded

and pure submodule is a direct summand (see, Kaplansky (1965)).

Theorem 4.1.21. Let R be a DVR and M be an R-module. Then M is weakly

supplemented if and only if M = Kn1 ⊕ (K/R)n2 ⊕ B ⊕N , where B is bounded,

N is reduced torsion-free with finite rank and ni > 0.
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Proof. (⇒) For the module M we always has the decomposition

M = K(I) ⊕ (K/R)(J) ⊕ L

with L is reduced. In this decomposition all three summands are weakly supple-

mented as a direct summand of M since M is weakly supplemented. Therefore

by theorem 3.1.1, the torsion free module K(I) has finite rank i.e. I is finite, and

by Lemma 4.1.20 the divisible submodule (K/R)(J) is artinian i.e. J is finite. By

Theorem 4.1.5 M is a tws-module, hence the torsion submodule T (L) is weakly

supplemented. Then by Lemma 4.1.20, T (L) is bounded. Now, T (L) is a bounded

and pure submodule of L, then

L = T (L)⊕N

(see, Kaplansky (1965)), where N is reduced and torsion free. Hence we have the

desired decomposition for M .

(⇐) If

M = Kn1 ⊕ (K/R)n2 ⊕B ⊕N,

then Kn1⊕(K/R)n2⊕B is supplemented by Theorem 2.1.2, hence weakly supple-

mented, and by Theorem 3.1.1 N is weakly supplemented. Therefore M is weakly

supplemented as a direct sum of finitely many weakly supplemented modules.

The following corollary is an immediate consequence of Theorem 2.1.2 and

Theorem 4.1.21.

Corollary 4.1.22. Let R be a DVR and M a module whose reduced part is

torsion. Then M is weakly supplemented if and only if M is supplemented.
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Corollary 4.1.23. (by Rudlof (1991, Corollary 3.2))Let R be complete DVR and

M be an R-module. Then the following are equivalent.

(i) M is totally supplemented,

(ii) M is supplemented,

(iii) M is weakly supplemented,

(iv) M is a tws-module.

Now we want to determine, when a weakly supplemented module is supple-

mented over DVR. By using Theorem 2.1.2, Theorem 4.1.21 and 4.1.22 we see

that it is sufficient to determine when a reduced torsion-free module of finite rank

is free. If R is a DVR then each rank one torsion-free module, which is not iso-

morphic to K, is isomorphic to an ideal of R (see, Fuchs & Salce (1985)). In a

DVR it is well known that every ideal is cyclic. Therefore every rank one reduced

torsion-free module is free.

In Matlis (1966), a domain is called a D-domain if every torsion-free module

of finite rank is a direct sum of modules of rank one. Since every torsion-free

divisible module is a direct sum of modules of rank one, R is a D-domain if and

only if every reduced torsion-free module of finite rank is a direct sum of modules

of rank one.

A DVR is a D-domain if and only if it is complete (see, Fuchs & Salce (2001,

pp. 497 and pp. 501).

Now our question is reduced to determine when a reduced torsion-free module

with finite rank is free. From the remarks above we have the following Corollary:

Corollary 4.1.24. Let R be a DVR. Then R is complete if and only if every

weakly supplemented R-module is supplemented.
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More generally from Theorem 2.1.5 and Corollary 4.1.24 we have the following

observation:

Corollary 4.1.25. Let R be a DVR. Then the following are equivalent.

(i) R is complete,

(ii) every weakly supplemented module is supplemented,

(iii) every supplemented module is totally supplemented.

Corollary 4.1.26. If R is a Dedekind domain and M a torsion R-module then

the following are equivalent.

(i) M is supplemented,

(ii) M is weakly supplemented,

(iii) M is a tws-module,

(iv) M has a small submodule U such that M/U is weakly supplemented.

Proof. (i)⇒(ii) Clear.

(ii)⇒(iii) By Corollary 4.1.10.

(iii)⇒(i) By Lemma 4.1.20 and Corollary 4.1.15.

(ii)⇔(iv) By Lomp (1999, Proposition 2.2).

Now we mention some consequences of Corollary 4.1.26.

Corollary 4.1.27. Let R be a non-local Dedekind domain and M be an R-module.

Then M is supplemented if and only if M is torsion and M/L is weakly supple-

mented for some L ¿ M .
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Proof. Suppose first that M is supplemented. Then by Theorem 2.2.5 M is

torsion, and clearly M/L is weakly supplemented.

Converse is by Corollary 4.1.26.

In any module the zero submodule is a small submodule. Therefore we have

the following corollary.

Corollary 4.1.28. Let R be a non-local Dedekind domain and M be an R-module.

Then M is supplemented if and only if M is torsion and weakly supplemented.

We have seen that over a semilocal Dedekind domain a module is a tws-module

if and only if it is weakly supplemented. But a weakly supplemented module over

a non-semilocal Dedekind domain need not be a tws-module (see, Remark 4.1.6).

We prove that every finitely generated weakly supplemented module is a tws-

module.

We begin with the following lemma.

Lemma 4.1.29. Let R be a domain with R 6= K and M be a torsion-free weakly

supplemented module with Rad M = 0. Then M = 0.

Proof. By Lomp (1999, Corollary 2.3) M is semisimple. Then M =
⊕
i∈I

Si where

Si is a simple module for every i ∈ I. Then Si
∼= R/Pi for some maximal ideal Pi

of R. Since M is torsion-free either Pi = 0 or Si = 0. If Pi = 0 then R is a field,

a contradiction. Hence we must have Si = 0 for every i ∈ I, and so M = 0.
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Let R be a ring with Jacobson radical J and let P be a projective R-module.

Then Rad P = JP (see, Anderson & Fuller (1992)). Therefore we have that

Rad P = 0 for every projective module over a non-semilocal Dedekind domain R.

Corollary 4.1.30. Let R be a non-semilocal Dedekind domain. If P is a projec-

tive and weakly supplemented R-module then P = 0.

Proof. Since R is a non-semilocal Dedekind domain we have J(R) = 0, and so

Rad P = 0. Then P = 0 by Lemma 4.1.29.

Theorem 4.1.31. Let R be a non-semilocal Dedekind domain and M a finitely

generated R-module. If M is weakly supplemented then it is torsion.

Proof. Let M be a finitely generated R-module. Then M/T (M) is finitely gen-

erated and torsion-free. Therefore M/T (M) is projective as R is a Dedekind

domain. So

M = T (M)
⊕

M/T (M).

Now, since M is weakly supplemented then M/T (M) is also weakly supplemented.

By Corollary 4.1.30 we have M/T (M) = 0. Hence M is torsion.

Corollary 4.1.32. Let R be a non-semilocal Dedekind domain and M be a finitely

generated R-module. Then the following are equivalent,

(i) M is supplemented

(ii) M is a tws-module

(iii) M is weakly supplemented

(iv) M is torsion

Proof. (i)⇔(ii) By Corollary 4.1.16.
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(ii)⇒(iii) Clear.

(iii)⇒(iv) By Theorem 4.1.31.

(iv)⇒(i) Let M = Rm1 + ...Rmk for some mi ∈ M and k ∈ N. Then Rmi
∼=

R/Ii(1 5 i 5 k) for some 0 6= Ii ⊆ R. Since R is a Dedekind domain R/Ii is

artinian and hence supplemented R-module. Then M is supplemented.

The following example shows that if R is a semilocal Dedekind domain, then

a finitely generated tws-module need not be supplemented.

Example 4.1.33. Let Z be the ring of integers and p, q be two different primes

in Z. Let R be the localization of Z at S = Z\(pZ ∪ qZ). Then R is a semilocal

Dedekind domain. RR is weakly supplemented by Lomp (1999, Corollary 2.2),

hence it is a tws-module by Theorem 4.1.5. Note that RR is not torsion, hence

it is not supplemented by Theorem 2.2.5.

The following is a consequence of Theorem 4.1.5 and Corollary 4.1.32.

Corollary 4.1.34. Let R be a Dedekind domain and M be a finitely generated

R-module. Then M is weakly supplemented if and only if M is a tws-module.

4.2 Totally weak supplemented modules over noetherian

rings

In Sec 3.2, as a consequence of Theorem 3.2.1, we have seen that over a local

noetherian ring a module is weakly supplemented if and only if it is a tws-module.

We will see that this is also the case for modules over semilocal noetherian rings.
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Recall that a noetherian semilocal ring has finite Krull dimension (see Remark

1.1.7).

Theorem 4.2.1. Let R be a noetherian semilocal ring. Then for an R−module

M the followings are equivalent:

(i) M is totally weak supplemented,

(ii) M is weakly supplemented,

(iii) the RP−module MP is weakly supplemented for every maximal ideal P of

R.

Proof. (i)⇒(ii) Clear.

(ii)⇒(iii) Since R is semilocal then M/ Rad M is semisimple, and by Theorem

3.2.6 the RP−module MP is weakly supplemented for every maximal ideal P of

R.

(iii)⇒ (i) Let U be a submodule of M . Then U/ Rad U is semisimple. Since

RP is a local ring, the RP−module MP is totally weak supplemented by Theorem

3.2.1. So UP is weakly supplemented as an RP -module, hence by Theorem 3.2.6,

U is weakly supplemented. Therefore M is totally weak supplemented.

Theorem 4.2.2. Let R be a semilocal ring (not necessarily commutative) with

Jacobson radical J and M be an R-module. Then the following hold:

(i) If JM is weakly supplemented and has a weak supplement in M then M is

weakly supplemented.

If in addition, R is noetherian then

(ii) If JM has a weak supplement in M and JnM is weakly supplemented for

some n = 0 then M is weakly supplemented.
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(iii) Suppose either JnM ¿ M or JnM is weakly supplemented and has a weak

supplement in M . Then M is weakly supplemented.

Proof. (i) Since M/JM is semisimple it is weakly supplemented. Then by The-

orem 3.3.1, M is weakly supplemented.

(ii) Now if R is noetherian then R/Jn is artinian. Therefore M/JnM is a

weakly supplemented R-module. On the other hand by Lemma 3.3.9 JnM has a

weak supplement in M . Then M is weakly supplemented by Theorem 3.3.1.

(iii) Suppose JnM ¿ M . From the proof of (ii), M/JnM is weakly supple-

mented. Then by Proposition 1.5.2, M is weakly supplemented. The other part

is clear by Theorem 3.3.1.

Theorem 4.2.3. Let R be a commutative semilocal noetherian ring with Jacobson

radical J and M be an R-module. The following are equivalent:

(i) M is weakly supplemented,

(ii) M is a tws-module,

(iii) JnM is weakly supplemented for some n = 0, and has a weak supplement

in M .

Proof. (i)⇔(ii) By Theorem 4.2.1.

(ii)⇒(iii) Obvius.

(iii)⇒(i) By Theorem 3.3.1.

Now we prove some results for coatomic modules. Coatomic modules have

small radical, but the converse need not be true in general. For example the Z-

module Z(N) has zero (small) radical but it is not coatomic, because Z(N)/N ∼=Z Q
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for some proper submodule N of Z(N) (see, Güngörog̃lu (1998)). For semilocal

modules we have the following.

Lemma 4.2.4. Let M be a semilocal module. Then M is coatomic if and only if

Rad M ¿ M .

Proof. (⇒) Clear.

(⇐) Let U be a proper submodule of M . Since Rad M ¿ M , we have U +

Rad M 6= M . Since M/ Rad M is semisimple (U+Rad M)/ Rad M is contained in

a maximal submodule K/ Rad M of M/ Rad M . Then K is a maximal submodule

of M contaning U . Hence M is coatomic.

Corollary 4.2.5. Let M be a semilocal module. Suppose Rad M is coatomic.

Then M is coatomic.

Proof. We have Rad M ¿ M . Then by Lemma 4.2.4 M is coatomic.

The following is an immediate consequence of Lemma 4.2.4 and Lemma 1.6.5.

Corollary 4.2.6. Let R be a commutative noetherian ring and M be a semilocal

R-module. The following are equivalent.

(i) Rad M is coatomic,

(ii) M is coatomic,

(iii) Every submodule of M is coatomic.
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Corollary 4.2.7. Let R be a commutative noetherian semilocal ring with Jacob-

son radical J and M be an R-module. The following are equivalent.

(i) JnM is coatomic for some n > 1,

(ii) M is coatomic,

(iii) Every submodule of M is coatomic.

Proof. (i)⇒(ii) Since R is a semilocal ring, Rad(Jn−1M) = J(Jn−1M) = JnM ,

and Jn−1M/JnM is semisimple, then by Corollary 4.2.5, Jn−1M is coatomic.

Continuing in this way we get Rad M = JM is coatomic, therefore again by

Corollary 4.2.5 M is coatomic.

(ii)⇒(iii) By Lemma 1.6.5.

(iii)⇒(i) Clear.

Over one dimensional domains the Jacobson radical J in Corollary 4.2.7 can

be replaced by any nonzero ideal, as the following theorem shows.

Theorem 4.2.8. Let R be a one-dimensional domain, I a nonzero ideal of R

and M be an R-module. The following are equivalent.

(i) InM is coatomic for some n ∈ Z+,

(ii) M is coatomic.

Proof. (i)⇒(ii) Since R is one dimensional the ring R/In is artinian for every

n ∈ Z+, so R/In is a perfect ring. Then M/InM is a coatomic R/In-module,

hence M/InM is a coatomic R-module. Then by Güngörog̃lu (1998, Lemma

3(2)), M is a coatomic module.
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(ii)⇒(i) R is a commutative noetherian ring. Then by Lemma 1.6.5 InM is

coatomic for every n ∈ Z+.

It has been proved in Lomp (1999, Theorem 3.5) that a ring R is semilocal if

and only if every R-module M with small radical is weakly supplemented. The

following example shows that if R is a semilocal ring and M is an R-module with

small radical i.e weakly supplemented, then M need not be a tws-module.

Example 4.2.9. Let R be a Dedekind domain but not a field and P be a maximal

ideal in R. Consider the ring RP obtained by localization of R at P . Then RP

is a DVR, so it is weakly supplemented. If K is the field of fractions of RP and

I an infinite index set then the RP -module K(I) is not weakly supplemented by

Theorem 4.1.21. Now consider the ring:

S =


 RP K(I)

0 RP




Then SS is a semilocal ring, so it is weakly supplemented, and has small radical

as it is finitely generated. Consider the submodule:

M =


 0 K(I)

0 0




Then M is not a weakly supplemented S-module, because the structure of M as

an RP -module and as an S-module is same. Thus SS is not a tws-module.

We will show that over a commutative noetherian semilocal ring R, every R-

module with small radical is a tws-module.

Theorem 4.2.10. Let R be a commutative noetherian ring and M an R−module.

The following are equivalent:

(i) Rad M ¿ M and M/ Rad M is semisimple,
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(ii) M is a coatomic module and M/ Rad M is semisimple,

(iii) Rad M is a coatomic submodule of M and M/ Rad M is semisimple,

(iv) M is weakly supplemented and Rad M ¿ M.

Proof. (i) ⇒ (ii) We must show that Rad(M/U) 6= M/U for every proper sub-

module U of M or equivalently every proper submodule U of M is contained in

a maximal submodule of M . Let U be a proper submodule of M , then since

Rad M ¿ M we have U + Rad M 6= M. Then (U + Rad M)/ Rad M is proper a

submodule of M/ Rad M . Hence (U +Rad M)/ Rad M is contained in a maximal

submodule of M/ Rad M , say K/ Rad M. Then K is a maximal submodule of M

containing U. Therefore M is a coatomic module.

(ii)⇒(iii) By Lemma 1.6.5 Rad M is a coatomic submodule of M.

(iii)⇒(iv) Let N = Rad M . Suppose N + K = M for some proper submodule

K of M . Then

M/K ∼= N/N ∩K.

Since N ∩K is a proper submodule of U , it is contained in some maximal sub-

module of U . Thus K is contained in a maximal submodule T of M . On the

other hand, by definition N is also contained in T . We get,

M = N + K ⊆ T,

a contradiction. Thus Rad M ¿ M .

Now M/ Rad M is semisimple, so it is weakly supplemented. Thus M is weakly

supplemented because it is a small cover of M/ Rad M .

(iv)⇒(i) Clear.
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Corollary 4.2.11. Let R be a commutative noetherian ring. Then the following

are equivalent.

(i) R is a semilocal ring,

(ii) Every R-module M with Rad M ¿ M is weakly supplemented,

(iii) Every R-module M with Rad M ¿ M is totally weak supplemented,

(iv) Every coatomic R-module is weakly supplemented,

(v) Every coatomic R-module is totally weak supplemented,

(vi) Every projective coatomic R-module is weakly supplemented,

(vii) Every projective coatomic R-module is totally weak supplemented.

Proof. (i) ⇔ (ii) By Lomp (1999, Theorem 3.5).

(ii)⇒(iii) Let M be an R-module with Rad M ¿ M . By hypothesis M is

weakly supplemented. Then by Theorem 4.2.10 M is coatomic and hence every

submodule of M is coatomic by Theorem 1.6.5. Therefore for every submodule

U of M, Rad U ¿ U . Now by hypothesis U is weakly supplemented. Hence M

is totally weak supplemented.

(iii)⇒(iv) Coatomic modules have small radicals.

(iv)⇒(v) By Theorem 1.6.5 every submodule of a coatomic module is coatomic.

Hence by the hypothesis coatomic modules are totally weak supplemented.

(v) ⇒(vi) Clear.

(vi)⇒(i) RR is projective, and coatomic since it is finitely generated. Hence

by hypothesis RR is weakly supplemented. Hence R is semilocal by Lomp (1999,

Corollary 3.2).
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(vii)⇒(vi) Clear.

(iv)⇒(vii) Clear.



CHAPTER FIVE

COFINITELY WEAK SUPPLEMENTED MODULES

Let R be a ring and M be an R-module. A submodule U of M is called cofinite

if M/U is finitely generated. A module M is called cofinitely supplemented if ev-

ery cofinite submodule of M has a supplement in M (see, Bilhan (1999), Alizade

et al. (2001)).

A module M is called cofinitely weak supplemented (briely cws-module) if every

cofinite submodule of M has a weak supplement in M (see, Büyükaşık (2001),

Alizade & Büyükaşık (2003)). In section 5.1 we shall summarize main properties

of cws-modules, and we state the results which we shall use in this chapter.

In section 5.2 we prove some equivalent conditions for a module to be a cws-

module over a noetherian ring (not necessarily commutative).

In section 5.3, we study cws-modules over some commutative domains. We char-

acterize h−semilocal domains as the domains over which every torsion R-module

is a cws-module. We also give a sufficient condition for an arbitrary module to

be a cws-module over an h− semilocal domain.

5.1 Cofinitely weak supplemented modules

Proposition 5.1.1. (by Alizade & Büyükaşık (2003)) Let R be a ring and M be

a cws-module. Then the following holds.

(i) Every homomorphic image of M is a cws-module,

(ii) Any small cover of M is a cws-module,
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(iii) Every cofinite submodule of M/ Rad M is a direct summand,

(iv) Any M-generated module is a cws-module.

Arbitrary sum of cws-modules is a cws-module. A ring R is semilocal if and

only if every R-module is a cws-module (see, Alizade & Büyükaşık (2003)).

Theorem 5.1.2. Let 0 → L → M → N → 0 be a short exact sequence. If L and

N are cws-modules and L has a weak supplement in M then M is a cws-module.

Proof. Let S be a weak supplement of L in M i.e. L + S = M and L ∩ S ¿ M .

Then we have,

M/L ∩ S ∼= L/L ∩ S ⊕ S/L ∩ S

L/L ∩ S is cws as a factor module of L which is a cws-module. On the other

hand

S/L ∩ S ∼= M/L ∼= N

is a cws-module. Then M/L ∩ S is cws as a sum of cws-modules. Therefore M

is a cws-module, because M is a small cover of M/L ∩ S.

For a module N, let Γ be the set of all submodules K such that K is a weak

supplement for some maximal submodule of N and let cws(N) denote the sum

of all submodules from Γ. As usual cws(N) = 0 if Γ = ∅.

Theorem 5.1.3. (by Alizade & Büyükaşık (2003, Theorem 2.16)) For a module

N, the following statements are equivalent.

(i) N is a cws-module,

(ii) Every maximal submodule of N has a weak supplement,

(iii) N/cws(N) has no maximal submodules.
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Theorem 5.1.4. (by Alizade & Büyükaşık (2003, Theorem 2.21)) Let M be an

R-module with Rad M ¿ M . Then the following statements are equivalent.

(i) M is a cws-module,

(ii) M/ Rad M is a cws-module,

(iii) Every cofinite submodule of M/ Rad M is a direct summand,

(iv) Every maximal submodule of M/ Rad M is a direct summand,

(v) Every maximal submodule of M/ Rad M is a weak supplement,

(vi) Every maximal submodule of M is a weak supplement.

5.2 Cofinitely weak supplemented modules over noethe-

rian rings

Throughout this section R is a noetherian ring, unless otherwise stated.

Lemma 5.2.1. Let M be a module and U be a finitely generated submodule of

M contained in Rad M . Then U is small in M .

Proof. Let U = Ru1+Ru2+...+Run and Rad M =
∑
i∈I

Si, where I is a some index

set and Si ¿ M for every i ∈ I. Since U ⊆ Rad M , uk ∈
∑

i∈Fk

Si for some finite

subset Fk ⊆ I, for every k ∈ {1, . . . , n}. Then Ruk ⊆
∑

i∈Fk

Si, hence U ⊆ ∑
i∈F

Si,

where F =
n⋃

i=1

Fk is a finite subset of I. Then
∑
i∈F

Si ¿ M and U ¿ M by

(Anderson & Fuller, 1992, Corollary 15.18).

Theorem 5.2.2. Let M be an R-module and X ⊆ Rad M . Then M is a cws-

module if and only if M/X is a cws-module.



73

Proof. ⇒ Clear, since factor modules of cws-modules are cws.

⇐ Let K be a maximal submodule of M , then by hypothesis X ⊆ Rad M ⊆ K,

so K/X is a maximal submodule of M/X. Then K/X has a weak supplement

N/X in M/X i.e.

K/X + N/X = M/X and (K ∩N)/X ⊆ Rad(M/X) = Rad M/X

(the last equality follows from the fact that X ⊆ Rad M) and so K∩N ⊆ Rad M .

By (Alizade & Büyükaşık (2003, Lemma 2.1)) without loss of generality we may

suppose N/X is cyclic. Then N = Rn + X for some n ∈ N .

We get

M = K + N = K + Rn + X = K + Rn and K ∩Rn 6 K ∩N 6 Rad M .

Now since R is noetherian, Rn is noetherian so K ∩ Rn is finitely generated.

Therefore K ∩ Rn ¿ M by Lemma 5.2.1. Hence Rn is a weak supplement of K

in M . Thus M is a cws-module by Theorem 5.1.3.

Theorem 5.2.3. Let M be an R-module. Then M is a cws-module if and only

if every maximal submodule of M/ Rad M is a direct summand.

Proof. (⇒) By Proposition 5.1.1.

(⇐) We will show that every maximal submodule of M has a weak supplement.

Let K be a maximal submodule of M . Then K/ Rad M is a maximal submodule

of M/ Rad M , hence by hypothesis

K/ Rad M ⊕ S/ Rad M = M/ Rad M
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for some submodule S/ Rad M ⊆ M/ Rad M . Then since K is a maximal submod-

ule of M , M/K ∼= S/ Rad M is a simple module, therefore Rad M is a maximal

submodule of S, and so Rs + Rad M = S for some s ∈ S \ Rad M . We get

S/ Rad M = (Rs + Rad M)/ Rad M ∼= Rs/(Rs ∩ Rad M)

which is a simple module; hence Rs ∩ Rad M is a maximal submodule of Rs.

Clearly,

M = K + S = K + Rad M + Rs = K + Rs.

Then we get

M/K = (Rs + K)/K ∼= Rs/(Rs ∩K),

so (Rs ∩K) is a maximal submodule of Rs.

Since Rs ∩ Rad M ⊆ Rs ∩ K and both are maximal submodules of Rs we get

Rs ∩ Rad M = Rs ∩K.

Now, since R is noetherian, Rs is noetherian, then Rs∩K is a finitely generated

submodule of M . Hence by Lemma 5.2.1 Rs ∩K ¿ M . Therefore Rs is a weak

supplement of K in M . Hence M is a cws-module by Theorem 5.1.3.

As a consequence we obtain the following. Note that the following corollary

is proved in Alizade & Büyükaşık (2003, Theorem 2.21) for a module M with

Rad M ¿ M .

Corollary 5.2.4. For an R-module M , the following are equivalent.

(i) M is a cws-module,

(ii) M/X is a cws-module for some X ⊆ Rad M ,

(iii) M/ Rad M is a cws-module,

(iv) Every cofinite submodule of M/ Rad M is a direct summand,

(v) Every maximal submodule of M/ Rad M is a direct summand,
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(vi) Every maximal submodule of M/ Rad M is a weak supplement,

(vii) Every maximal submodule of M is a weak supplement.

Proof. (i)⇔(ii)⇔(iii) by Theorem 5.2.2 and Theorem 5.2.3.

(iii)⇒(iv) is obvious since Rad(M/ Rad M) = 0.

(iv)⇒(v) maximal submodules are cofinite.

(v)⇔(vi) is obvious.

(v)⇒(iii) By Theorem 5.2.3.

(vii)⇔(i) By Theorem 5.1.3

Corollary 5.2.4 has the following consequence.

Corollary 5.2.5. Let M be an R-module. If M is semilocal, then M is a cws-

module.

Proof. Since M is semilocal M/ Rad M is semisimple. Then every submodule

of M/ Rad M is a direct summand. Therefore by Corollary 5.2.4 M is a cws-

module.

In Alizade & Büyükaşık (2003), a module M is called finitely weak supple-

mented (briefly fws-module) if every finitely generated submodule of M has a

weak supplement in M . The class of fws-modules is properly contained in the

class of weakly supplemented modules (see, Alizade & Büyükaşık (2003, Propo-

sion 3.9). We are going to prove that over a noetherian ring, every fws-module

with small radical is weakly supplemented. First we need the following lemma.
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Lemma 5.2.6. Let M be an R-module. If every finitely generated submodule of

M is a direct summand of M then M is semisimple.

Proof. Let K = Soc M . We want to show that K = M . Suppose K $ M .

Then there exist m ∈ M \K. Now, since Rm is noetherian Rm ∩K is a finitely

generated submodule of M , and hence by hypothesis

M = (Rm ∩K)⊕N.

Then by modular law we get Rm = (Rm ∩K)⊕ T for some nonzero submodule

T of M . T is noetherian as a submodule of Rm, so there is a maximal submodule

L of T , and by hypothesis M = L⊕S for some S ⊆ M. Then by modular law we

get T = L⊕T ∩S. Since L is maximal in T , T ∩S is a nonzero simple submodule

of T . Then

T ∩ S ⊆ T ∩K = T ∩ (Rm ∩K) = 0,

contradiction. Thus Soc M = K = M , i.e. M is semisimple.

Corollary 5.2.7. Let M be an R-module with Rad M ¿ M . Then the following

are equivalent.

(i) M is weakly supplemented,

(ii) Every cyclic submodule of M has (is) a weak supplement,

(iii) Every finitely generated submodule of M/ Rad M is a direct summand,

(iv) M is a fws-module,

(v) M is semilocal.

Proof. (i)⇔(ii) Clear.

(ii)⇔(iii)⇔ (iv) by Alizade & Büyükaşık (2003, Thorem 3.8).
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(iii)⇔(v) Rad(M/ Rad M) = 0. Now Lemma 5.2.6 gives the proof.

(v)⇒(i) By Lomp (1999, Thorem 2.7).

Proposition 5.2.8. Let M be an R-module. Suppose every cyclic submodule of

M/ Rad M is a direct summand. Then M is a fws-module.

Proof. Let K be a finitely generated submodule of M . By Lemma 5.2.6 M/ Rad M

is semisimple. Then

(K + Rad M)/ Rad M ⊕N/ Rad M = M/ Rad M.

We get

M = K + Rad M + N = K + N and K ∩N ⊆ Rad M .

Since K is finitely generated then by hypothesis K ∩N is also finitely generated,

so by Lemma 5.2.1 K ∩ N ¿ M . Hence N is a weak supplement of K in M .

Thus M is a fws-module.

Note that any semilocal module satisfies the hypothesis in Proposition 5.2.8.

Corollary 5.2.9. Every semilocal module is an fws-module. supplemented.
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5.3 Cofinitely weak supplemented modules over commu-

tative domains

In Lomp (1999) it has been proved that every finite sum of weakly supplemented

modules is weakly supplemented. But arbitrary sum of weakly supplemented

modules need not be weakly supplemented (see, Alizade & Büyükaşık (2003,

Example 2.14)).

Proposition 5.3.1. Let M =
∑
i∈I

Mi, where Mi is weakly supplemented for every

i ∈ I. If Rad M ¿ M then M is weakly supplemented.

Proof. Let N =
⊕
i∈I

Mi. Then we have an epimorphism f : N → M , and

N/ Rad N =
⊕
i∈I

Mi/ Rad Mi is semisimple i.e. N is semilocal. Therefore M

is semilocal, and hence M is weakly supplemented by Lomp (1999, Theorem

2.7)

In Matlis (1966), a domain S is called h-local if every non-zero ideal of S is

contained in only finite number of maximal ideals and S/P is a local ring for

every non-zero prime ideal P of S. A domain S is h-semilocal if every non-zero

ideal I of S is contained in only finitely many maximal ideals of S i.e. S/I is

a semilocal ring. Clearly Dedekind domains and h-local domains are h-semilocal

domains.

In Alizade et al. (2001), it is proved that a commutative domain R is h-local

if and only if every torsion R−module is cofinitely supplemented. We prove the

following theorem.
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Theorem 5.3.2. The following statements are equivalent for a commutative do-

main R.

(i) R is h-semilocal,

(ii) Every cyclic torsion R-module is weakly supplemented,

(iii) Every torsion R-module M with Rad(M) ¿ M is weakly supplemented,

(iv) For every torsion R-module M , every maximal submodule of M has a weak

supplement in M ,

(v) Every torsion R-module is a cws-module.

Proof. (i)⇒ (ii) Let M ∼= R/I for some 0 6= I 6 R. Then R/I is a semilocal R/I-

module, so R/I is a semilocal R-module, hence weakly supplemented by Lomp

(1999, Corollary 3.2). Therefore M is weakly supplemented.

(ii)⇒(iii) Let M be torsion R-module with Rad M ¿ M . By hypothesis Rm

is weakly supplemented, hence semilocal for every m ∈ M . Since M =
∑

m∈M

Rm,

then by Proposition 5.3.1, M is weakly supplemented.

(iii)⇒(v) Let M be a torsion module. Then Rm is torsion and Rad Rm ¿ Rm

by Anderson & Fuller (1992, Theorem 10.4), so by hypothesis Rm is weakly

supplemented. Therefore M =
∑

m∈M

Rm is a cws-module by Alizade & Büyükaşık

(2003, Proposition 2.12).

(iv)⇔(v) By Alizade & Büyükaşık (2003, Theorem 2.16).

(v)⇒(i) Let 0 6= I 6 R. Then R/I is a torsion R-module and hence it is

a weakly supplemented R-module. Then R/I is a weakly supplemented R/I-

module. Therefore by Lomp (1999, Corollary 3.2), R/I is semilocal. Then by
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Proposition 1.3.3 I is contained only in finitely many maximal ideals. Hence R is

h-semilocal.

Corollary 5.3.3. Let R be an h-semilocal domain, M be an R-module and T (M)

be the torsion submodule of M . Suppose T (M) has a weak supplement in M and

M/T (M) is a cws-module. Then M is a cws-module.

Proof. By Theorem 5.3.2, T (M) is a cws-module. Then by Theorem 5.1.2 M is

a cws-module.

Let R be a Dedekind domain and M be an R-module. Note that R is noethe-

rian. Denote by D(M) the divisible part of M . Then D(M) is injective by

(Sharpe & Vamos (1972, Proposition 2.10), hence M = D(M)⊕N for some sub-

module N of M . In this case N is called reduced part of M . By Alizade et al.

(2001, Lemma 4.4), D(M) has no maximal submodule and hence D(M) is the

only cofinite submodule of D(M). Thus D(M) is a cws-module. In this case,

from Alizade & Büyükaşık (2003, Proposition 2.5 and Proposition 2.12) we get,

M is a cws-module if and only if the reduced part of M is a cws-module. Hence

using Corollary 5.2.4 we have the following corollary.

Corollary 5.3.4. Let R be a Dedekind domain, M be an R-module and N be the

reduced part of M . Then the following are equivalent.

(i) M is a cws-module,

(ii) N is a cws-module,

(iii) every maximal submodule of N/ Rad N is a direct summand.

Corollary 5.3.5. Let R be a Dedekind domain and M be an R-module . Suppose

the reduced part N of M is torsion. Then M is a cws-module.



81

Proof. Since R is h-semilocal, N is a cws-module by Theorem 5.3.2. Therefore

by Corollary 5.3.4 M is a cws-module.
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