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DESIGN OF MANUFACTURING CELLS FOR UNCERTAIN PRODUCTION 

REQUIREMENTS 

 

 

ABSTRACT 
 

Cellular manufacturing has been seen as an effective strategy to the 

changing worldwide competition. Most of the existing cell design methods 

ignore the existence of stochastic production requirements and routing 

flexibility. In this study, a simulation based Fuzzy Goal Programming model is 

proposed for solving cell formation problems considering stochastic production 

requirements and routing flexibility. The model covers the objectives of 

minimizing the number of exceptional elements, maximizing system utilization, 

minimizing mean tardiness and minimizing the percentage of tardy jobs. The 

simple additive method and max-min method are used to handle fuzzy goals. A 

tabu search based solution methodology is used for solution of the proposed 

models and the results are presented. 
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ÜRETİM İHTİYAÇLARININ BELİRSİZ OLDUĞU DURUMDA İMALAT 
HÜCRELERİNİN TASARIMI 

 
 

ÖZ 
 

 

Hücresel imalat firmaların rekabet gücünü artıracak etkin bir strateji olarak 

değerlendirilmektedir. Hücresel imalat çalışmalarında genellikle göz ardı edilen 

ancak tasarım kararları üzerinde etkisi bulunan iki önemli etken üretim 

gereksinimlerindeki belirsizlik ve alternatif süreç planlarının varlığıdır. Bu 

çalışmada, belirsizlik ve alternatif proses planlarının varlığını dikkate alarak hücre 

tasarımını gerçekleştiren,  benzetim modelleri ile entegre edilmiş hibrid bir bulanık 

hedef programlama modeli geliştirilmiştir. Modelin çözümü, tabu arama algoritması 

kullanılarak gerçekleştirilmiş, elde edilen sonuçlar çalışma kapsamında sunulmuştur.  

 
 
 
 

Anahtar sözcükler: Hücresel imalat, bulanık hedef programlama, tabu arama 

algoritması, benzetim 
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CHAPTER ONE 

INTRODUCTION 

 
 

1.1 Cellular Manufacturing 

 
Shorter life-cycles, unpredictable demand and customized products have forced 

manufacturers to improve the efficiency and productivity of their production 

activities. Manufacturing systems must be able to produce items with low production 

costs and high quality as possible in order to meet the customers’ demand on time. 

Moreover manufacturing systems have gone through major changes during recent 

years mainly due to advances  in technology and new strategies to deal with the 

technology. Informational vagueness in parameter estimates is being recognized as a 

reality in most of the problems in manufacturing system design. Manufacturing 

systems, today, should be able to respond quickly to changes in product design, 

product demand, technology etc. Traditional manufacturing systems such as job 

shops and flow lines are not capable of satisfying such requirements. The concept of 

cellular manufacturing (CM) is one of the most effective strategies to the changing 

worldwide competitive environment. 

 

Job shops are the most common manufacturing systems in the world. Job shops 

are designed to achieve maximum flexibility in order to produce a wide variety of 

products with small lot sizes. In this type of production system, parts require 

different processing operations and sequences. Parts are released to the job as batches 

and general purposed machines are utilized. In general, machines are grouped 

according to their functions. Figure 1.1 illustrates a typical job shop layout. This type 

of machine layout is also known as functional layout. 
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Figure 1.1 Job shop manufacturing 

 

In job shop layout, products must flow from one department to another through its 

various processing steps. This results in long waiting times and difficulties in 

production scheduling and control. Therefore parts are moved in batches to make 

processing more economical. Each part in a batch has to wait for remaining parts of 

its batch before it is   moved to next processing step. The end result is higher 

inventory costs, larger scraps and less customer satisfaction due to long delivery 

times. In job shops, jobs spend  95% of their time in non-productive activities such as 

waiting in queue, waiting for machine setups etc.(Aksin & Standridge,  1993) 

 

 
Figure 1.2. Flow line Manufacturing 
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In contrast to job shops, flow lines are designed for high volume industries and 

require high capital commitments while retaining little production flexibility. A flow 

line is organized according to the processing sequence of a product. Specialized 

machines dedicated to the manufacture of utilized to achieve high production rates. 

Figure 1.2 shows an example of a flow line. 

 

Job shops and flow lines are not able to meet today’s production requirements 

where manufacturing systems are often required to reconfigured to respond to 

changes in product design and demand. Cellular manufacturing (CM), an application 

of group technology (GT) offers a middle-ground alternative to the traditional job 

shops or flow lines. GT is defined as a manufacturing philosophy identifying and 

grouping similar parts in part families in order to take advantage of similarities in 

both design and manufacturing (Selim, Askin and Vakharia, 1998). The driving force 

behind CM is the need in a wide variety of industries to simplify production 

requirements while still ensuring production flexibility. The job shop in Figure 1.1 

can be converted into Cellular manufacturing system (CMS) as shown in Figure 1.3. 

The benefits gained by such a conversion are improved competitiveness by reduction 

of lead times (primarily reduction of times associated with movement of parts), less 

work in process (WIP), less transport distance for materials, improved plant capacity 

and flexibility by reducing the setup time.  

 

 
Figure 1.3. Cellular manufacturing system 
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CM is a hybrid system linking the advantages of job shops and flow lines.  As 

seen from Figure 1.3, in CM, machines are dedicated to a part family and located 

into close proximity. This provides the efficient flow and high production rate similar 

to flow lines. On the other hand, similar to job shops, the use of general purpose 

machines and equipments provide flexibility in producing a variety of products. 

Generally, CM production environments are less complex to manage than job shops, 

but usually less flexible than job shops. Conversely, cell based production is more 

flexible than flow lines, but requires additional organization and management 

compared with dedicated transfer lines that manufacture single product types.  

 

 
Figure 1.4 Applicability of Cellular Manufacturing 

 

In conclusion, CM is a manufacturing system that can produce medium 

volume/medium variety part types more economically than other manufacturing 

systems (Black, 1983). Figure 1.4 shows the applicability of CM approach in terms 

of volume and variety of products. CM is a manufacturing strategy to global 

competition by reducing manufacturing costs, improving quality and by reducing the 

delivery lead times of products in a high variety, low demand environment. Hence 

CM has become popular among manufacturers in the last several decades. 
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1.2 Benefits of Cellular Manufacturing 

 

The benefits of CM in comparison with traditional manufacturing systems in 

terms of system performance can be summarized as follows: 

 

1. Material Handling: In Cellular Manufacturing a part is completely processed 

within a cell. Since the machines in a cell are located in a close proximity, 

part travel times and distance between machines are minimal.  

2. Setup time:  Since a manufacturing cell is dedicated to parts having similar 

design and manufacturing attributes, it is possible to use the same fixtures and 

tools. Generic fixtures for part family can be also developed and the time 

required for changing the fixtures can be reduced. The parts should also 

require similar tooling, which further reduces the setup time. In the press 

shop at Toyota, for example, workers routinely change dies in 3-5 minutes. 

The same job at GM may take 4-5 h. (Black, 1983). 

3. Batch Size: In CM, since the setup times are greatly reduced, small lot 

production becomes economical. Small lots also smooth the production flow. 

4. Work in process: In job shop, the economic order quantity for different parts 

varies due to the differences in setup and inventory costs. A level of stock up 

to 50% of annual sales is not unusual for batch production (Askin & 

Standridge, 1993). In CM, the WIP levels can be reduced with smaller lot 

sizes and reduced setup times. 

5. Throughput time: In a traditional job shop, a part moves between different 

machines in a batch through its processing steps.  However in CM, each part 

is immediately transferred to the next station after it has finished operation. 

Hence the waiting times are reduced. 

6. Machine utilization: Since the setup times are decreased, the effective 

capacity of the machines is increased. This leads lower machine utilization. 

The general level of utilization of cells (except for key machines) is of the 

order of 60-70% (Nanua & Rajamani, 1996) . However this is not a 

disadvantage as is often stated. This is working smart and short. In job shops, 

the primary objective is to use the machines at full capacity. However undue 
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emphasis on high machine utilization results in excessive WIP and long 

throughput times.  

7. Labor: Due to lower utilization in CM, it is possible to assign more than one 

machine to a worker. This leads job enrichment and also forms the basis for 

total quality management. 

8. Quality: Since the parts are processed as single units (or small batches) and 

completed in a small region, the feedback is immediate and the corrective 

actions can be easily taken. 

9. Space: Due to the decrease in WIP and finished goods, there will be floor 

space available for adding machines and for expansion. 

10. Production control and scheduling: In a job shop, parts have to travel from 

one department to another through its processing steps. This results in 

complicated material control and scheduling. In CM, parts travel in a cell 

instead of the whole manufacturing plant. This results in easier scheduling 

and production control. 

 

The benefits gained from implementing CM also have been reported. Northern 

Telecom, the leading supplier of digital communications systems applied CM to the 

DMS-100 Switching Division and gains more than $2 million in annual cost savings 

from the reduction of WIP inventory (by 82 %), as well as improvement in 

throughput ( by more than 50%). 

 

In an Indian engineering Company, the number of machines employed has been 

reduced from 120 to 94 and the shop floor space requirement is reduced by 21%. 

 

Howard and Newman (1993), reported the results of implementing CM at PMI 

Food equipment Group. Some of the benefits included doubling of capacity for part 

families due to cell configuration, $25.000 in labor savings from setup reductions, 

over $ 2 million savings in finished goods inventory, improved customer service, and 

an improved quality of employee work life. 
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Table 1.1. Reported performance improvements from Cellular manufacturing (Wemmerlov &Johnson, 

1997) 

Performance  

Measure 

Average %  

Improvement 

Minimum  % 

Improvement 

Maximum %  

Improvement 

1. Reduction of move distance/time 61.3 15.0 99.0 

2. Reduction in throughput time 61.2 12.5 99.5 

3. Reduction of response time to orders 50.1 0.0 93.2 

4. Reduction in WIP inventory 48.2 10 99.7 

5. Reduction in setup times 44.2 0.0 96.6 

6. Reduction in finished goods inventory 39.3 0.0 100.0 

7. Improvement in part/product quality 28.4 0.0 62.5 

8. Reduction in unit costs 16.0 0.0 60.0 

  

Wemmerlov and John (1997) conducted a survey in performance improvements 

of CM at 46 firms from different industries ( electronic products and components, 

machinery and machine tools, heating and cooling products, tools, engines and 

bearings) Table 1.1 Shows the reported performance improvements. As seen form 

the results of this survey, the major improvements are achieved in part movement 

distance (times), throughput time, response time, WIP and set-up times. 

 

CM is also considered a basis for Just-in-Time (JIT) manufacturing philosophy. 

CM is well suited for the JIT requirements such as little or zero setup time, working 

with small lot sizes and low WIP etc. Black (1983) emphasized that CM is the first 

critical step to achieve JIT manufacturing. 

 

1.3 Design of Cellular Manufacturing Systems  

 

The design of CMS has been called as cell formation (CF), part family/Machine 

cell formation and manufacturing cell design. The design of CMS is a complex, 

multi-criteria problem. This problem is NP-complete even under fairly restrictive 

conditions (Ballakur, 1985). The CF problem consists of two main tasks: 

1. Part family formation: Parts are grouped into part families according to their 

processing requirements. 
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2. Machine cell formation: Machines are grouped into manufacturing cells. 

 

These two tasks are not necessarily performed in the above order or sequentially. 

Part families and machine cells can be also formed simultaneously. After the above 

steps are completed, manufacturing cell configuration is obtained. Manufacturing 

cell configuration is constituted of machines which are dedicated to part families. 

The arrangement of machines within a cell is a layout design problem and is not 

considered in this study. 

 

In the design of CMSs the design objectives must be specified. The design 

objectives can be classified as cost oriented and performance oriented (Mansouri, 

Moattar, Husseini and Newman, 2000). Cost oriented objectives are in the form of 

minimization.  Common objectives are minimizing inter-cell movement costs, 

minimizing exceptional parts (parts that require processing from more than one cell). 

An example of seven machines and seven part types are used to describe the 

terminology. A part-machine matrix represents the processing requirements of parts 

on machines as shown in Figure 1.5. A 1 entry on row i and column j indicates that 

part type j has an operation on machine type i. For example part type 1 has 

operations on machines M2 and M5. 

 

 
Figure 1.5 Part /machine matrix and optimal clustering 

 

Three cells are formed according to part-machine matrix given in Figure 1.3. The 

first cell is composed of machines M2 and M5 and produces parts P1, P7. The 

second cell consists of machines M3, M4, M6 and produces P3, P4 and P6. Machines 

M1 and M7 constitute Cell3 and produces parts P2 and P5.  However, part P3 has an 
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operation on machine M2 which is assigned to cell 1. Therefore an inter-cell 

movement (from cell 2 to cell 1) is required for manufacturing part P3. The symbol 

(*) represents an inter-cell movement and part P3 called as “exceptional part” so 

these two machine cells are called “partially separable”. The machine M2 is one that 

is required for more than one cell is called as bottleneck machine.  The 0 s in the 

diagonal blocks are referred to as “voids”.  A void indicates that a machine assigned 

to a cell is not required for the processing of a part in the cell. For example in Table 

1.3, machine M7 is not required for processing part P5 in cell 2. The presence of 

voids leads to inefficient large cells which leads additional intra-cell material 

handling costs and complex control requirements. 

 

In addition to inter-cell material handling cost, other cost oriented objectives such 

as minimizing equipment costs, minimizing inventory costs, minimizing operating 

costs, minimizing machine relocation costs, minimizing machine duplication costs 

have been widely used in cell formation literature. 

 

Performance oriented objectives can be in the form of maximization or 

minimization. Maximizing cell utilization, maximizing system throughput, 

minimizing cell workload unbalance, maximizing flexibility are the common 

performance oriented objectives in cell literature. 

 

In the last two decades lots of research papers and practical reports have been 

published in the field of  the design of CMSs. Reviews existing CM literature can be 

found in ( Greene & Sadowski, 1984; Kamrani, Parsaie, and Chaudhry, 1993; 

Offodile, Mehrez, and Grznar, 1994; Joines, King and Culbreth, 1996;  Agarwal 

&Sarkis, 1998; Shanker & Vrat, 1999; Mansouri et al., 2000; Pierreval, Caux & 

Viguier, 2003; Car & Mikac, 2006; Balakrishnan & Cheng, 2007) According to those 

reviews , the existing CM methods can be classified into following categories: 

 

1. Array based techniques: Array based clustering is the most commonly used 

techniques in CF. These techniques operate on a 0-1 part machine matrix. A 

part /machine incidence matrix consists of elements aij=1 if part j requires 
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processing on machine i, otherwise aij=0. These techniques try to create small 

clustered blocks by performing a series of column and row manipulations on 

0-1 part machine matrix (see Figure 1.5). In these techniques, part families 

and machine groups are formed simultaneously. Any tightly clustered blocks 

represent the candidate part families and machine groups. The most common 

array based techniques are Bond Energy algorithm (Mc Cormick, Schweitzer 

and White, 1972), Rank Order Clustering (King, 1980), Direct clustering 

(Chan & Milner, 1982) 

 

2. Hierarchical Clustering techniques: These techniques operate on an input data 

set described in terms of similarity or distance function and produce a 

hierarchy of clusters or partition (Joines, King and Culbreth, 1996). Unlike 

the array based techniques, part families and machine cells do not form 

simultaneously. Since the similarity measures can incorporate manufacturing 

data other than 0-1 binary part machine matrix, lots pf similarity measures 

have been defined. These similarity measures are used to form part families 

and machine cells based on the methods such as single linkage cluster (Mc 

Auley, 1972), average linkage method (Seifoddini, 1986) complete linkage 

clustering (Mosier, 1989) etc. 

 

3. Graph Theoretic approaches: These approaches structure the cell formation 

problem in the form of networks, bipartite graphs etc. In these methods, 

machines and/ or parts are represented by nodes, whereas processing of parts 

or similarity among machines are indicated by arcs. These approaches aim at 

obtaining disconnected sub-graphs from a machine-machine or machine-part 

graph in order to form machine cells and allocate part families to machines. 

4. Mathematical programming approaches: These approaches have been widely 

used in the design of CMSs since they incorporate ordered sequence of 

operations, alternative process plans, setup and processing times etc. They 

can be further classified into four categories as linear programming (LP), 

linear and quadratic programming (LQP), dynamic programming (DP) and 

goal programming (GP).  
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5. Artificial Intelligence based methods: Researchers have applied AI 

techniques to design of CMS. Artificial neural networks, simulated annealing, 

tabu search, genetic algorithms, fuzzy logic are common AI based techniques 

applied to cell formation problems. These approaches are generally used as 

alternatives to mathematical programming approaches when computational 

time is prohibitive.  

 

1.4 Important Issues in Designing CMS 

 

Current CM design methods have some drawbacks. First is the lack of 

consideration of uncertainty in design parameters. Second is the lack of accounting 

for the presence of routing flexibility. Third is the lack of design methods that 

considers performance oriented objectives such as mean tardiness, average time in 

the system, percentage of tardy jobs etc. Fourth is the lack of usage of solution 

approaches that considers subset of non-dominated solutions from which the 

designer could select.  

 

1.4.1 Uncertainty in Design Parameters 
 

There are three basic types of models available for the analysis of 

manufacturing cells. (Kamrani et. al, 1998) 

1. Static or deterministic models 

2. Queuing models 

3. Simulation models 

 

Deterministic or static models use a set of deterministic equations in order to 

obtain gross estimates of system parameters such as utilization, capacity, throughput 

etc. Relaxations in modeling assumptions such as infinite production rates, certainty 

of cost factors, deterministic demand and deterministic processing time situations 

etc. affects the implementation of cellular manufacturing systems designs. Most of 
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the current cell formation methods assume a static, deterministic production 

environment. However, real manufacturing systems tend to have uncertainty or 

vagueness in system parameters. Deterministic models are not able to provide good 

estimates of more probabilistic operating characteristics such as queue waiting time, 

machine breakdowns, demand fluctuations etc.  

 

Queuing models are based on mathematical theory of queues. These models 

permit the involvement of some dynamic system characteristics  such as fluctuations 

in queue levels. These characteristics are complex and probabilistic in nature  

however the queuing models predict these aspects of system performance only in a 

general way and for simple situations  

 

There is a growing need to address some practical manufacturing considerations 

associated with uncertainty and vagueness in system parameters. Unfortunately a few 

works in the design of CMSs have addressed the uncertainty in design parameters. 

Seifoddini (1990) proposed a probabilistic modeling of CMS design by incorporating 

the probability of product mix. CMS design under uncertainty has been modeled 

through chance constrained programming by Shanker and Vrat (1996) for choosing 

the best strategy to deal with exceptional elements and bottleneck machines.  

 

One of the most important tasks for complex organizations is to manage 

uncertainty. Many system parameters are difficult to capture by determinism, as 

traditionally considered in the mathematical programming approaches. Simulation is 

an useful tool for analyzing such systems. Dynamic and stochastic system 

characteristics can be incorporated into models easily. So a high degree of realism 

can be achieved. Since simulation is not an optimization tool, simulation studies 

performed in CF literature are generally focused on analyzing the performance of 

manufacturing cells ( Gupta & Tompkins, 1982; Morris & Tersine, 1990; Shafer & 

Charnes, 1993; Kannan & Gosh, 1996; Lagendran & Talkington, 1997, Kamrani, 

Hubbard, Parsaei and Leep, 1998; De Los, Irrizary, Wilson and Trevino, 2001; 

Djasssemi, 2005 ). With the use of hybrid simulation-analytical  optimization 

approaches, the stochastic nature of some system parameters (such as stochastic 
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demand rate, processing times, material transport times etc)  can be implied and  

more realistic CMS designs can be obtained. 

 

Application of fuzzy sets to multi-objective optimization problems allows for 

handling linguistic vagueness in the estimates of system parameters. Fuzzy clustering 

techniques has been applied in  the area of cell formation (Xu & Wang, 1989; Chu 

&Hayya,1991; Zhang &Wang, 1992; Gindy, Ratchev and Case, 1995; Gill &Bector, 

1997; Susanto, Kennedy and Price,1999; Josien &Liao, 2000; Lozano, Dobado, 

Larrrenta and Onieva, 2002; Yang, Hungand Chen, 2006; Li, Chu, Wang and Yan, 

2007 ). However a few works  in the design of CMS have used fuzzy modeling in a 

mathematical programming framework. Fuzzy clustering problem is different from 

the fuzzy programming problem. In fuzzy clustering problems, fuzzy membership 

functions of a machine (and/or part) with respect to a cell (and/or part family) are 

defined and hierarchical clustering is performed to design CMSs. In fuzzy 

mathematical programming, linguistic vagueness in many other design parameters 

may be modeled and  the solution is obtained by applying mathematical 

programming tools such as LP, GP etc. GP is one of the most powerful, multi-

objective decision making approaches in practical decision making. This method 

requires the decision maker (DM) to set goals for each objective that he/she wishes 

to attain. In a standard GP formulation, goals and constraints are defined precisely. 

However, one of the major drawbacks for a DM in using GP is to determine 

precisely the goal value of each objective function. Applying fuzzy set theory (FST) 

into GP has the advantage of allowing for the vague aspirations of a DM.  Goal 

Programming, as a mathematical programming tool, has been applied most to multi-

criteria cell design problems ( Gongaware & Ham, 1984; Sankaran, 1990; Shafer & 

Meredith, 1991, 1993; Min & Shin, 1993; Baykasoglu & Gindy, 1998). However, 

applying fuzzy goal programming to CF is a relatively new attempt (Tsai, 1996, 

1997). 
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1.4.2 Routing Flexibility 
 

Most of the current CF methods assume that each operation of a part can be 

processed only on a one specific machine type. This is not valid when machines are 

capable of performing different processes. The use of such machines results in 

alternate machine routings for each operation. When a part type is processed on a 

multiple routings, it is referred to as “routing flexibility” (Sethi & Sethi, 1990). In the 

presence of routing flexibility each part will have more than one process plan. In 

such situations the problem of “searching for the best routing” arises. The existence 

of alternative process plans for parts can improve the groupability of parts and 

increase the utilization of machines (Mungwattana, 2000). On the other hand the 

presence of routing flexibility also increases the number of ways to form 

manufacturing cells. Ignorance of routing flexibility may result in an increased 

operation cost and additional investment in machines (Defersha, 2006). 

 

1.4.3 Performance Oriented Objectives 
 

There have been many efforts towards the design of manufacturing cells 

considering only a single criterion such as minimizing inter-cell movements of parts. 

However, there has been a growing pressure on the today’s manufacturing firms to 

improve their performances with regard to such measures such as shorter delivery 

lead times, wider range of products, shorter set-up times, lower prices etc. This leads 

to a number of conflicting criteria on which performance is evaluated. Thus the 

design of CMSs is critical to the efficient performance of the business. As stated in 

the previous section, the objectives used in cell design can be classified into two 

groups as cost oriented and performance oriented. Minimizing inter-cell and intra-

cell costs, minimizing operating costs, minimizing setup costs are the most common 

cost oriented objectives. Maximizing utilization, minimizing cell load unbalance, 

maximizing flexibility are the most common performance oriented objectives used in 

CF literature. The performance oriented objectives such as minimizing mean 
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tardiness, minimizing the percentage of tardy jobs, minimizing average time spent in 

the system etc. are also important for the manufacturing systems which operate under 

just-in time manufacturing philosophy. However, such objectives are not considered 

by the most current CF approaches probably due to the complexity of the general CF 

problems. Analytic representation of such objectives is difficult and also leads to 

computationally complex models which are not practical for real applications.  The 

hybrid analytic-simulation models in which some of the objectives are obtained by 

simulation model can be employed to overcome such difficulties. 

1.4.4 Solution Approaches That Consider a Subset of Non-Dominated Solutions 
 

The most common solution approaches in the multi-criteria problems are 

weighting method and goal programming.  These approaches are able to find a single 

non-dominated solution. If the solution is not good enough to satisfy the 

requirements of the system designer, the model should be resolved with different set 

of parameters. The application of other solution approaches that works with a rich 

subset of true non-dominated solutions allows for dealing with many alternative 

solutions from which system designer can select. Employing meta-heuristic 

approaches like genetic algorithms, tabu search, simulated annealing etc. may be an 

efficient way to find non-dominated solutions. Tabu search (TS) (Gloover, 1989) is a 

global optimization heuristic and can handle any type of objective function and any 

type of constraints. The solution process of TS involves working with more than one 

solution (neighborhood solutions) at a time. Baykasoglu (1999, 2002), noted that this 

feature of TS gives a great opportunity to deal with multiple objectives or goals 

simultaneously. 

 

1.5 Problem statement 

 

Although the benefits of CM are substantial current cell formation methods have 

some shortcomings as mentioned in previous section. The motivation of this research 

is to develop a novel cell design method considering the stochastic production 

requirements and the existence of routing flexibility. 
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Research question: How can we design cellular manufacturing systems in 

stochastic production environments, exploiting the routing flexibility? 

 

1.6 Research objectives 

 

A new design methodology that addresses the problems discussed in section 1.4 is 

needed. The objectives of this thesis  can be summarized as follows: 

 

1. Develop a design methodology for cellular manufacturing systems in 

stochastic production environment which employs routing flexibility. 

  

2. Consider multiple performance oriented objective combinations of 

minimizing inter-cell movements, minimizing mean tardiness, 

minimizing percentage of tardy jobs, maximizing utilization etc. which 

have not been considered  by current CF approaches. 

 

1.7 Research Approach 

 

In this study, to achieve the development of the new CM design methodology that 

addresses the problems discussed in section 1.4, a hybrid simulation-analytic fuzzy 

goal programming model (FGP) is developed. In this model, the achievement levels 

of goals which are difficult to represent analytically are obtained by simulation 

model whereas the achievement levels of other goals are calculated analytically. The 

stochastic nature of the manufacturing system is also reflected by simulation model. 

Part demand rates, part processing and transfer times are all stochastic. Proposed 

hybrid simulation-analytic FGP model is solved by using simple tabu search 

algorithm. 

 

 The research approach consists of the following steps: 

 

1. Mathematical representation of the CF problem. 
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2. Implementing tabu search procedure for solving fuzzy goal programming 

models. 

 

3. Development of computer program of tabu search procedure for solving 

fuzzy goal programming models. 

 

4. Application of tabu search procedure for solving fuzzy goal programming 

CF models (with analytic objectives and deterministic design parameters) 

 

5. Comparison of TS solutions with  LINGO solutions for validation of the 

proposed TS procedure for CF. 

 

6. Integration with simulation model. 

 

7. Application of tabu search procedure for solving hybrid analytic-

simulation fuzzy goal programming models. 

 

8. Solution of different sized example problems for examining the 

performance of the proposed method.  

 

9. Solution of problems from literature 

 

10. Drawing conclusions and discussion of the future work. 

 

1.8 Outline of Document 

 
The remainder of this dissertation is organized as follows. Chapter 2 reviews the 

existing cell formation literature. Chapter 3 divided into two main sections. The first 

section gives a brief explanation about fuzzy mathematical programming, fuzzy 

linear programming and fuzzy goal programming. In the second section, a hybrid 

analytic-simulation fuzzy goal programming model is proposed for cell formation. 
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Chapter 4 presents a tabu search based solution approach. The applicability of the 

solution approach is tested on several deterministic test problems. In Chapter 5, the 

tabu search based solution approach is extended to solve hybrid analytic-simulation 

fuzzy goal programming models for cell formation. Finally Chapter 6 presents the 

conclusions, contributions and future research.   



 

CHAPTER TWO 

LITERATURE REVIEW 
 
 
The survey of literature is divided into areas that seem to major impact in defining 

and solving the problem. These areas are: 

1) Design approaches to multi-criteria cell formation 

2) Uncertainty issues in cell formation 

3) Tabu Search in cell formation 

 

2.1. Design Approaches to Multi-Criteria Cell Design 

 

As stated in the previous chapter, the identification of part families and machine 

groups in the design of cellular manufacturing is referred to as “cell formation” or 

“manufacturing cell design”. Lots of models and solution approaches have been 

developed to deal with the problem of cell formation since 1980s. There have been 

many efforts to the design of manufacturing cells considering only one criterion such 

as minimizing inter-cell movements or maximizing parts (or machines) similarities 

etc. However, under the pressure of worldwide competition,  today’s manufacturing 

industries should improve their performances with regard to  performance measures 

such as shorter delivery times, lower costs, lower setup times, wider range of 

products, shorter lead times etc. The pressure forces the manufacturing firms to 

evaluate a number of conflicting criteria in cell formation decisions. Hence the cell 

formation decisions depend on several criteria. 

 

From a system designer’s point of view, it is important to reach an optimal 

solution with respect to the all criteria considered. However it may be impossible 

since some of these criteria are contradictory. 

 19



 20

   

 

For example, we can increase the number of machines to reduce the part traffic 

between cells and to create independent cells. But, increasing the number of 

machines may increase operating costs and may lead to lower utilization. Thus, the 

new solution will be good for the part flow criterion; however, this solution will be 

worse for the other criteria such as cost. The difficulty in the multi-criteria problem is 

to find a consistent cost function representing a single measure of quality for a 

solution. A value for each criterion to be optimized can be computed and the 

difficulty is then to choose a solution, which ‘‘is good for each criterion’’.  

Moreover, each criterion may have a particular importance, expressed by weight. 

These types of problems are known as multi-criteria decision problems. The design 

of manufacturing cells considering multiple criteria has been an attractive research 

area.  

 

Lots of studies have been performed in the research area of cellular manufacturing 

systems since 1970s. There have also been some comprehensive review papers for 

cell formation. Wemmerlov and Hyer (1986) reviewed 70 papers and categorized 

them into two main groups based on the main data for grouping as either part 

attributes or part routings. Chu (1989) provided a comprehensive literature survey for 

cell formation and partitions the literature into design oriented and production 

oriented approaches. The production oriented approaches are further partitioned into 

array based, hierarchical, non hierarchical, mathematical, graph theoretic and 

heuristic approaches. Offodile et al (1994) divided all the methods for identifying 

part-machine families into three groups as visual methods, parts coding and analysis 

and production flow analysis. The models in the latter class are further divided into 

sub-groups considering their solution approach, decision variables, objectives and 

constraints. Joines et al. (1996) provided a comprehensive review and classification 

of techniques to manipulate part routing sequences for manufacturing cell formation. 

The cell formation approaches are aggregated into methodological groups including 

array-based methods, hierarchical clustering, non-hierarchical clustering, graph 

theoretic approaches, artificial intelligence based approaches, mathematical 
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programming, and other heuristic approaches. Selim et al. (1998) provided a review 

based on solution methods. They classified cell formation studies into five main 

groups as descriptive procedures, cluster analysis, graph partitioning, artificial 

intelligence, mathematical programming. Mansouri et al. (2000) provided a review 

and comparison of the approaches to multi-criteria decision making in the design of 

manufacturing cells. The authors reviewed selected papers and a structured scheme is 

outlined which allows comparison of inputs, criteria, solution approaches and outputs 

across selected models. 

 

2.1.1 Review of the Papers 
 

In this section, 32 selected papers which consider the cell formation problem as a 

multi criteria decision-making problem will be reviewed briefly. The main criterion 

for the selection of papers is the consideration of at least two criteria simultaneously 

in the solution approach of the model. Hence the studies based on single criterion are 

not included in this review. The classification schema used in this section is partially 

influenced by the works of Mansouri et al (2000) and Joines et al. (1996). The 

comparison of the multi-criteria cell design models is carried out their inputs, criteria 

and solution approaches as in the work of Mansouri et. al (2000). The sub-groups of 

solution methods are structured as in the work of Joines et al (1996). The brief 

review of the selected papers is given below: 

 

Wei and Gaither (1990) developed a four objective cell formation model to 

minimize the bottleneck cost, maximize average cell utilization, minimize intra-cell 

load imbalances and minimize inter-cell load imbalance. The authors developed a 0-

1 programming model to solve small problems and a heuristic to solve larger 

problems. 

 

Sankran (1990) developed a cell formation procedure considering multiple goals. 

The set of goals considered by the author includes minimum similarity of parts based 

on their needed machines and tools (two goals), available machining capacity, 
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minimum and maximum number of total parts movements (two goals), the optimal 

capital investment on machines and the optimal operating cost. 

 

Shafer and Rogers(1991)  applied goal programming in three unique situations: 

setting up an entirely new system and purchasing all new equipment, reorganizing 

the system using only existing equipment, and reorganizing the system using existing 

and some new equipment. The criteria considered in this study are minimizing set-up 

times, minimizing intercellular movements, minimizing investment in new 

equipment, and maintaining an acceptable level of machine utilization level. The 

proposed goal programming models combine the p-median (for identifying part 

families) and the traveling salesman problem (for determining the optimal sequence 

of parts).  

 

Venegopal and Narendran (1992) proposed a bi-criteria mathematical model for 

cell formation. The authors consider the objectives of minimizing inter-cell moves 

and cell load variations. They used a genetic algorithm based solution approach in 

order to find a compromise solution. 

 

Logendran (1993) developed a model to minimize total inter-cell and intra-cell 

movements of parts and to maximize cell utilization. These objectives are unified in 

a single objective by using weighting approach. The original model is formulated as 

a quadratic binary programming model and then converted into a linear binary 

programming model. 

 

Min & Shin (1993) developed an integer goal programming model to form 

machine cells and human cells simultaneously. The goals are concerned with the 

level of parts similarity, available machine processing time, machine capabilities / 

operator skills matching and the difference between the wages of cells operators and 

the rest of the operators. 

 

Gupta, Gupta, Kumar & Sundram (1995) developed a model that considers the 

minimization of inter-cell and intra-cell movements. The authors performed the part 
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assignment procedure considering minimum acceptable level of machine utilization. 

They used a genetic algorithm in order to solve the model. 

 

Liang and Taboun (1995) developed a bi-criterion non-linear programming 

model. The objectives of the model are to maximize system flexibility, and to 

maximize system efficiency. They used the weighting approach to unify the 

objectives. Then a heuristic which composed of two phases is proposed for solution. 

 

Suresh, Slomp & Kaparthi. (1995) employed a hierarchical approach which 

consists three phase. In phase I, a neural network clustering technique is used to 

identify part families and machine groups. In phase II a mixed integer goal 

programming model is used to assign individual machines to specified cells. Phase 

III aims to satisfy conflicting goals of maximizing cell independence, minimizing the 

purchase of new equipment and maximizing the routing flexibility. 

 

Boctor (1996) developed a mixed integer model for designing manufacturing 

cells. The objective function is composed of two cost terms i.e. machine duplication 

and inter-cell movement costs. The author unified these two conflicting goals 

through the weighting approach. Then simulated annealing is used for solution of the 

model. 

 

Rajamani, Singh & Aneja (1996) developed a mixed integer programming model 

with the assumption of flexible process plans for parts. The objective of the weighted 

sum of three cost functions as sum of investment, process and material handling 

costs. Authors used a column generation scheme and a branch and bound technique 

for solution of the relaxed linear model. 

 

Hoo & Moodie (1996) developed a two stage solution approach considering 

flexible part routings. In stage 1, part families are formed. In stage II, machines are 

allocated to the part families using a mixed integer programming model. The 

objective function of stage II is composed of three cost functions: operation costs, 
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machine duplication costs and inter-cell movement cost. They used the weighting 

approach to unify these three cost functions. 

 

Lee & Chen (1997) used a three stage solution methodology which determines 

machine cells and part families and allows for machine duplication when necessary. 

They employed a weighting approach to combine two criteria i.e. minimizing inter-

cellular movements and maximizing workload balance among duplicated machines. 

 

Su & Hsu (1998) proposed a mathematical model considering three objectives. 

These objectives are minimizing total cost of inter-cell part transportation, intra-cell 

part transportation and machine investment; Minimizing intra-cell load imbalance; 

and minimizing inter-cell load imbalance. The authors unified these three objectives 

through weighting method and solve the model by means of parallel simulated 

annealing. 

 

Vakharia & Chang (1999) developed a multi objective model considering the 

objectives of total cost of the machines and material handling cost. They used tabu 

search and simulated annealing for solution of the model and compared the results. 

 

Shanker & Vrat (1998) presented fuzzy goal programming models for the design 

of cellular manufacturing systems. A multi-objective formulation is also presented to 

handle informational vagueness. The objective function minimizes the total costs 

associated with exceptional elements and bottleneck machines, such as 

subcontracting cost, inter-cell transfer cost and discounted cost of machines acquired. 

 

Lozano, Gerrero, Eguia & Onieva (1999) proposed a two-phased approach for cell 

design and loading in the presence of alternative routing. In the first phase, machine 

cells are created using two different alternative clustering approaches. In the second 

phase, cell loading problem is modeled as a multi-period linear programming model. 

They used objective function that minimizes the total inter-cellular transportation 

cost and inventory holding cost. 
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Zhao & Wu (2000) presented a genetic algorithm approach for cell formation with 

the multiple objectives: minimizing costs due to inter-cell and intra-cell part 

movements; minimizing cell load variations; and minimizing exceptional elements. 

Manufacturing cells are formed based on production data, e.g. part routing sequence, 

production volume and workload. 

 

Baykasoglu & Gindy (2000) proposed a preemptive goal programming model for 

cell formation problem considering the objectives: minimizing dissimilarity of parts, 

maximizing capacity, minimizing cell load imbalance and maximizing flexibility. 

They solved the model specially developed tabu search algorithm. 

 

Suresh & Slomp (2001) proposed a hierarchical methodology for the design of 

manufacturing cells which includes labor-grouping considerations in addition to 

part/machine grouping. The procedure includes three phases. In Phase I, part families 

and associated machine types are identified through neural network methods. Phase 

II involves a prioritization of part families identified, along with adjustments to 

certain load-related parameters. Phase III involves interactive goal programming for 

regrouping machines and labor into cells. In machine grouping, factors such as 

capacity constraints, cell size restrictions, minimization of load imbalances, 

minimization of inter-cell movements of parts, minimization of new machines to be 

purchased, provision of flexibility, etc. are considered. In labor grouping, the 

functionally specialized labor pools are partitioned and regrouped into cells. Factors 

such as minimization of hiring and cross-training costs, ensuring balanced loads for 

workers, minimization of inter-cell movements of workers, providing adequate levels 

of labor  flexibility, etc. are considered in a pragmatic manner. 

 

Saad, Baykasoglu & Gindy (2002) developed an integrated framework for 

reconfiguring manufacturing cells. The cell creation module of the framework is 

integrated with the simulation model of the manufacturing system. Authors used a 

hybrid analytic-simulation preemptive goal programming model for cell formation. 

In this model some objectives are calculated analytically whereas other objectives are 

obtained by the simulation model. The goals of the model are: acceptable level of 
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inter-cell movement, acceptable level for tardiness, desired level of overall system 

utilization, desired level of system throughput.  

 

Khoo, Lee & Yin (2003) developed a genetic algorithm based solution approach 

for solving cell formation problems subject to objective functions such as gross part 

movement (inter-cell and intra-cell), cell load variations and machine set-up costs. 

 

Jayaswal & Adil (2004) developed a mathematical model that incorporates 

operation sequences, alternative routings, cell size, production volume and allocating 

units of identical machines into different cells. The objectives of the proposed model 

are minimizing the sum of costs of inter-cell moves, machine investments and 

machine operating costs. They used simulated annealing for solution of the proposed 

model. 

 

Solimanpur, Vrat & Shankar (2004) proposed a multi-objective integer 

programming model for cell formation problem considering different process plans 

for parts. The objectives of the models are to maximizing total similarity between 

parts, minimizing total processing cost, minimizing total processing time, and 

minimizing total investment needed for acquisition of machines. They used 

weighting approach to unify these objectives and solved the models using genetic 

algorithms. 

 

Kim, Baek and Baek (2004) proposed a two phase heuristic to deal with multi-

objective cell formation problem. The objective is to minimizing inter-cell part 

movements and machine workload imbalance. Together with the objective function, 

alternative part routes and machine sequences of part routes are considered. Part 

routes are determined in phase 1 using the look-ahead method. Machine groups are 

constructed in phase 2 using the maximum density rule.  

 

Mehrabad & Safeai (2005) proposed a nonlinear integer model of cell formation 

under dynamic conditions. Authors applied a neural approach based on mean filed 

theory for solving the proposed model. In this approach, the network weights are 
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updated by an interaction procedure. The objective function is a cost function which 

is the sum of machine amortization, inter-cell material handling cost, and machine 

relocation cost. 

 

Vin, De Lit & Delchambre (2005) proposed an integrated approach based on a 

multiple objective genetic algorithm for solving cell formation problems with the 

presence of alternative routes and machine capacity constraints. The main objective 

is to minimize the inter-cellular traffic while respecting machine capacity constraints. 

  

Lei and Wu (2006) presented a Pareto optimality based multi-objective tabu 

search algorithm to the cell formation problems with multiple objectives: minimizing 

the weighted sum of inter-cell and intra-cell moves, and minimizing total cell load 

variation. 

 

Tsai, Chu, & Wu (2006) developed a multi objective fuzzy mathematical 

programming model for cell formation problems. The first objective of the model is a 

cost function that is the sum of cost of duplicating machines, inter-cell part transfer 

and subcontracting. The second objective is to maximize similarity between a pair of 

parts and machines. They also proposed a heuristic genetic algorithm for solving 

large scale fuzzy multi-objective cell formation problems. 

 

Hu & Yasuda (2006)   proposed a genetic algorithm approach in order to solve the 

cell formation problems with alternative routes. The objective function is composed 

of the weighted sum the amount of inter-cell and intra-cell movements. The proposed 

genetic algorithm approach is also capable of solving cell formation problems 

without predetermination of the number of cells. 

 

Mahesh & Srinivasan (2006) consider multiple objectives (minimization of cycle 

time for an equivalent part, minimization of cell workload imbalance, and 

minimization of total work content for an equivalent part) for incremental cell 

formation and develop a lexicographic based simulated annealing algorithm. The 
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performance of the algorithm is tested over several data sets by taking different 

initial feasible solutions generated using different heuristics. 

 

Defersha & Chen (2006) proposed a comprehensive mixed integer programming 

model for design of CMS based on tooling requirements of the parts and tooling 

available on the machine. The model incorporates dynamic cell configuration, 

alternative routings, lot splitting, sequence of operations, multiple units of identical 

machines, cell size limits. The objective function is a cost function which is the sum 

of machine maintenance and overhead costs, machine procurement cost, inter-cell 

material handling cost, machine operating cost, tool consumption cost, setup cost, 

machine relocation cost and part subcontracting cost.  

 

2.1.2. Comparison of the Models and Research Direction 
 

The comparison of the above models is carried out based on their inputs, criteria 

and solution approaches. 

 

2.1.2.1 Comparison based on the inputs 
 

The input data of the previously discussed models are divided into four categories 

as in the work of Mansouri et al. (2000): part related data, machine related data, 

constraints and general features. The data related to parts and machines are further 

categorized based on the type of data as: quantitative data and cost data. Figure 

2.1shows the classification of these categories. According to this classification 

scheme, the input data of the previously discussed models are illustrated in Table 2.1. 

As seen from Table 2.1 the most common input data used in the models are required 

machines, production capacity of machines, maximum and minimum cell size and 

demand. Other relatively common inputs are the number of available machines, 

predetermined number of cells, fixed process flow of the parts, the inter-cell 

transportation cost and the acquisition cost of machines. 
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Figure 2.1 Classification of the input data (Mansouri et al, 2000) 

  

As it could be traced in Table 2.1, fixed process flow has been becoming less 

important especially in recent studies mainly due to the increasing importance of 

flexibility that allows system designers to consider more alternatives in process route 

of the parts.  Uncertainty issues in design parameters in and dynamic reconfiguration 

of cells are other features that which take attention from researchers in recent years. 

The studies that cover the uncertainty issues in cell formation will be discussed in 

Section 2.2. 

2.1.2.1.1 General Considerations and Future direction: Input Data. Most of the 

reviewed studies depends on deterministic or static models in which a set of 

deterministic equations and inputs in order to obtain gross estimates of system 

parameters such as utilization, capacity, throughput etc. As stated in Chapter 1, 

relaxations in modeling assumptions such as infinite production rates, certainty of 

cost factors, deterministic demand and deterministic processing time situations etc. 

affects the implementation of cellular manufacturing systems designs. Majority of 

the methods assume a static, deterministic production environment. However, real 

manufacturing systems tend to have uncertainty or vagueness in system parameters. 

Deterministic models are not able to provide good estimates of more probabilistic 

operating characteristics such as queue waiting time, machine breakdowns, demand 

fluctuations etc.  
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As can be seen from Table 2.1, the demand fluctuations have becoming more 

important in the studies performed after 90s. However the stochastic nature of other 

input data such as processing times, part transfer times etc. is not addressed in most 

of the studies. There is a growing need to address some practical considerations 

associated with the stochastic nature of production environment which directly 

affects the implementation of cellular manufacturing systems. 

 

Flexibility in process flows is significant feature of modern manufacturing 

systems. Most of the current CF methods assume that each operation of a part can be 

processed only on a one specific machine type. However, this is not valid when 

machines are capable of performing different processes. The flexible machines which 

are capable of different operation are generally employed in today’s manufacturing 

systems. Hence the use of such machines results in alternate machine routings for 

each operation. When a part type is processed on a multiple routings, it is referred to 

as “routing flexibility” (Sethi & Sethi, 1990). In the presence of routing flexibility 

each part will have more than one process plan. In such situations the problem of 

“searching for the best routing” arises. As stated in previous chapter, the existence of 

alternative process plans for parts can improve the groupability of parts and increases 

the number of ways to form manufacturing cells. Ignorance of routing flexibility may 

result in an increased operation cost and additional investment in machines. Hence it 

is important to consider such an important factor by quantifying alternative routes 

and flexible machining processes in the process of cell formation. As can be traced 

from Table 2.1, the existence of alternative process plans and machines takes much 

attention in the recent cell formation literature.  

  

2.1.2.2. Comparison Based on the Criteria  
 

The criteria used in reviewed models have been classified by the authors into 

“objectives” and “goals”. The objectives can be classified as “cost oriented” and 

“performance oriented”. Cost oriented objectives are in the form of minimization. 

Performance oriented objectives can be in the form of minimization or maximization. 
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The goal programming models aim to minimize deviations from predetermined 

goals. The classification scheme of objective and goals are given in Figure 2.2. 

 

Table 2.2 gives the comparison of the models based on objectives / goals. 

Minimizing the machine duplication cost, minimizing the inter-cell transport cost, 

minimizing the number of inter-cell movements, minimizing the cell load imbalance 

are the most common objectives.  Objectives such as minimizing the machine 

duplication cost, minimizing intra-cell transportation cost and maximizing flexibility 

take attention from researchers. 

 

Criteria

Objectives

Goals

Cost oriented

Performance 
oriented

Cost oriented

Performance 
oriented  

Figure 2.2. Classification of criteria 

 

2.1.2.2.1 General Considerations: Criteria-Objectives/Goals. Majority of the 

research on cell design aims to develop models with a different combination of 

objectives that have not been considered previously. The performance oriented 

objectives such as minimizing mean tardiness, minimizing the percentage of tardy 

jobs, minimizing average time spent in the system etc. are important especially for 

today’s manufacturing systems which operate under just- in time manufacturing 

philosophy. However, such objectives are not considered by the most current CF 

approaches probably due to the complexity of the general CF problems. Analytic 

representation of such objectives is difficult and also may lead to computationally 

complex models which are not practical for real applications. Developing more 

efficient solution tools enabling system designers to consider such objectives and to 
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achieve good solutions in a reasonable time is a possible trend for the research in cell 

formation.  

 

2.1.2.3 Comparison Based on Solution Approaches 
 

The solution approaches of the reviewed models are classified based on their 

solution approaches as in Figure 2.3.  

 

Solution approach

Mathematical 
Programming

Artificial Intelligence 
based approaches

Other heuristics

Weighting approach

Goal programming

Neural networks

Fuzzy Logic

Genetic algorithms

Simulated annealing

Tabu search
 

Figure 2.3 Classification of the solution approaches 
 

 

The solution approaches used in the models are compared in Table 2.3. As seen 

from Table 2.3, Mathematical programming approaches are the most common 

solution approach. The mathematical programming methods weighting method and 

goal programming have been applied most to cell formation problems. Due to the 

complex nature of the cell formation problem, other search techniques such as 

genetic algorithms, simulated annealing, neural networks, tabu search etc. have been 

employed to solve large scale real world problems.   
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Other than the mathematical programming techniques, most cell formation methods 

are heuristics. However, most of those methods have been placed into the aggregate 

category of AI based approaches. Other than these heuristics are grouped into the 

class of “other heuristics”.  

2.1.2.3.1 General Considerations: Solution Approaches. The most common 

solution approach in the mathematical programming is the weighting method. These 

approaches are able to find a single non-dominated solution. If the solution is not 

good enough to satisfy system designer needs, the model should be resolved with 

different system parameters. However, in multi-objective optimization problems, it is 

essential to work with multiple non-dominated solutions where system designer 

could select the most suitable solution among a subset of non-dominated alternative 

solutions. The use of solution techniques such as genetic algorithms, tabu search etc. 

which work with more than one solution at a time is a new trend for solving multi-

objective cell formation problems. The use of fuzzy set theory in cell formation is 

another potential research area in cell formation. The detailed literature review of 

tabu search and fuzzy set theory in cell formation will be given in the following 

sections. 

 

2.2 Uncertainty Issues in Cell Formation 

 

Most of the current cell formation methods assume a static, deterministic 

production environment. However, real manufacturing systems tend to have 

uncertainty or vagueness in system parameters. Deterministic models are not able to 

provide good estimates of more probabilistic operating characteristics such as queue 

waiting time, machine breakdowns, demand fluctuations etc. Deterministic or static 

models use a set of deterministic equations and inputs in order to estimate system 

parameters such as utilization, capacity, throughput etc. Relaxations in modeling 

assumptions such as infinite production rates, certainty of cost factors, deterministic 

demand and deterministic processing time situations etc. affects the implementation 

of cellular manufacturing systems designs. 
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In recent years, uncertainty issues in cell formation process have been popular 

among the researchers. In this section, the studies that cover uncertainty issues in cell 

formation are reviewed. 

 

There is a growing need to address some manufacturing considerations associated 

with uncertainty and vagueness in system parameters. Unfortunately a few works in 

the design of CMSs have addressed the uncertainty in design parameters. Seifoddini 

(1990) proposed a probabilistic modeling of CMS design by incorporating the 

probability of product mix. CMS design under uncertainty has been modeled through 

chance constrained programming by Shanker and Vrat (1996) for choosing the best 

strategy to deal with exceptional elements and bottleneck machines.  

 

Most of the recent studies have focused on multi period cell creation and loading 

according to demand fluctuations. However, in these studies, the demand levels of 

each period are considered as deterministic. Hence the stochastic production 

requirements are again omitted. 

 

The stochastic nature of the manufacturing systems is generally reflected by 

queuing models and simulation. Queuing models are based on mathematical theory 

of queues and it allows for analyzing dynamic characteristics of manufacturing 

systems such as fluctuations in queue levels which are complex and probabilistic in 

nature. However queuing models estimates these characteristics only in a general 

way and for simple situations. 

Another tool for dealing with uncertainty in design parameters is fuzzy sets. 

Application of fuzzy set theory to multi-objective optimization problems allows for 

handling linguistic vagueness of system parameters. Linguistic vagueness of fuzzy 

type has been modeled in many areas of production research. The cell formation 

studies using simulation and fuzzy sets will be reviewed in following sections. 
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2.2.1. Simulation Studies in Cell Formation 
 

Simulation is a useful tool for analyzing the characteristics of manufacturing 

systems considering the stochastic nature of design parameters. Some researchers 

have focused on the effect of conversion from a job-shop into a cellular 

manufacturing system by using simulation. Gupta and Tompkins (1982) used 

computer simulation to study the effects of routing flexibility in response to product 

mix variations. Mahmoodi et al. (1990) examined the different order releasing 

policies in a cellular manufacturing environment to reduce workload imbalance. 

Morris and Tersine (1990) examined the effects of the ratio of setup to process time, 

the time to transfer materials between work centers, the variability of demand, and 

the flow of work within cells. Suresh (1992) and Durmusoglu (1993) addressed set-

up time reduction as a key element for conversion. Kannan and Gosh (1996) 

compared cellular manufacturing to process layout under a wide range of different 

conditions. Logendran and Talkington (1997) perform a comprehensive study to 

compare the performance of cellular and functional layouts by considering two 

significant environmental factors: machine breakdowns and batch size.  Abino and 

Garavelli proposed a simulation model to analyze costs and benefits of routing 

flexibility referring to the concept of limited flexibility. Shambu and Suresh (1998) 

compare the performance of hybrid cellular manufacturing systems (the 

manufacturing system that contains the characteristics of both functional and cellular 

manufacturing systems) and functional layout considering different scheduling rules 

under a variety of shop operating conditions. Djassemi (2005) examined the 

performance of cellular manufacturing systems in a variable demand and flexible 

work force environment using simulation modeling. They conclude that the practice 

of flexible cross trained operators can improve the flexibility of CMS in dealing with 

an unstable demand. 

 

The simulation studies, discussed so far, focused on the performance comparison 

of cellular manufacturing systems and analyzing the effects of factors in cell 

formation. Simulation is not performed as a part of cell formation process in these 

studies. A few researchers construct simulation studies as the part of cell formation 
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process. Kamrani et. al (1998) presented a simulation based methodology which uses 

both design and manufacturing attributes. The methodology includes three phases. In 

phase I, parts are grouped into part families based on design and manufacturing 

dissimilarities. Phase 2 groups the machines into machine cells based on operational 

costs. Phase I and phase 2 depend on integer and mixed integer mathematical 

programming. Finally in Phase III, simulation model of the proposed system is built 

and run in order to evaluate results obtained from phase I and Phase II. Irrizary, 

Wilson and Trevino (2002) present a general manufacturing-cell simulation model 

for evaluating the effects of world class manufacturing practices on expected cell 

performance. They formulated a comprehensive annualized cost function for 

evaluation of alternative cell designs. The authors also presented a two phase 

approach to design of manufacturing cells based on simulation experimentation and 

response surface methodology using a general manufacturing-cell simulation model. 

 

In both studies, simulation models have not been included in cell formation phase. 

Simulation has been used to evaluate the performance of cell formation alternatives 

which are obtained by mathematical programming or heuristic approaches. Hence the 

stochastic nature of the manufacturing system has not been reflected in the design 

process of cellular manufacturing systems. 

 

Saad, et al. (2002) developed an integrated framework for reconfiguring 

manufacturing cells. The cell formation module of the framework is integrated with 

the simulation model of the manufacturing system. Authors used a hybrid analytic-

simulation preemptive goal programming model for cell formation. In this model 

some objectives are calculated analytically whereas other objectives are obtained by 

the simulation model.  Hence the simulation is used as a part of cell formation 

process in this study. However uncertainty issues in design parameters are not 

addressed in this study. For example, the part demands for planning periods are taken 

deterministic.  

 

Simulation is a useful tool for analyzing such systems. Dynamic and stochastic 

system characteristics can be incorporated into simulation models easily. Hence a 
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high degree of realism can be achieved though the use of simulation. However 

simulation is not an optimization tool. As stated above, the simulation studies 

performed in the CF literature are generally focused on analyzing the performance of 

manufacturing cells.  With the use of hybrid simulation-analytical  optimization 

approaches, the stochastic nature of some system parameters (such as stochastic 

demand rate, processing times, material transport times etc)  can be implied in design 

process of manufacturing cells and  more realistic CMS designs can be obtained. 

Hence, in this dissertation, a hybrid analytic-simulation model will be proposed for 

cell formation. 

 

2.2.2 Fuzzy Sets in Cell Formation 
 

Another tool for dealing with uncertainty is fuzzy sets which allows for handling 

linguistic vagueness of system parameters. Linguistic vagueness of fuzzy type has 

been modeled in many areas of production research including cell formation. 

 

Fuzzy clustering techniques have been widely used for cell formation since 1980s. 

Xu and Wang (1989) incorporated uncertainty in the measurement of similarity of 

parts by using fuzzy mathematics. Chu and Hayya (1991) used the fuzzy c-mean 

clustering to identify part families. Zhang and Wang (1992) provided a fuzzy version 

of single linkage clustering and rank order clustering. Ben Arieh and Trianthaphyllou 

(1992) used fuzzy set theory for data quantification in group technology. Gindy, 

Ratchev & Case (1995) used a fuzzy c-mean algorithm and defined a validity 

measure for cell formation. Gill and Bector (1997) proposed an approach based on 

fuzzy linguistics to quantify part feature information for cell formation problems.  

Josien and Liao (2000) presented an approach which integrates two fuzzy clustering 

techniques: fuzzy c-means and fuzzy k-nearest neighbors. Lozano et al. (2002) 

propose a modified fuzzy c-means algorithm that groups components and machines 

in parallel. Josien & Liao (2002) proposed an integrated approach that is capable of 

simultaneous classification of parts and machines. Yang, Hung & Cheng (2006) 

applied a mixed variable fuzzy clustering algorithm called “mixed-variable fuzzy c-
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means algorithm” to cell formation problems. Chu, Wang and Yen (2007) proposed 

an improved fuzzy c-mean algorithm for solving large scale cell formation problems.  

 

None of the above referred works in the design of manufacturing cells has used 

fuzzy modeling in a mathematical programming framework. The fuzzy clustering is 

different from fuzzy mathematical programming. In fuzzy clustering problems, the 

fuzzy membership functions of a machine (and or part) with respect to a cell (and / or 

part family) is defined and hierarchical clustering is performed for designing 

manufacturing cells. On the other hand, in fuzzy mathematical programming models, 

linguistic vagueness in many other design parameters can be modeled and the 

solution can be obtained by application of mathematical tools such as linear 

programming, goal programming etc. In a fuzzy environment, fuzzy constraints, 

vague goals, and ambiguous parameters can be taken into consideration in the 

mathematical programming model. Several membership functions can be used to 

incorporate fuzziness for fuzzy objective functions or parameters (Zimmerman, 

1991). 

 

Although the fuzzy clustering techniques have been widely used in cell formation 

problems, the application of fuzzy mathematical programming approaches is a 

relatively new research area in cell formation. There are relatively limited works that 

use fuzzy mathematical programming models in cell formation literature. The 

following studies use fuzzy mathematical models for cell formation problems: 

 

Shanker and Vrat (1998) developed fuzzy goal programming models for handling 

linguistic vagueness in the design of cellular manufacturing systems. A multi-

objective formulation is also presented to handle informational vagueness. The 

objective function minimizes the total costs associated with exceptional elements and 

bottleneck machines, such as subcontracting cost, inter-cell transfer cost and 

discounted cost of machines acquired. 

 

Szwarc, Rajamani and Bector (1997) proposed fuzzy mathematical models to 

optimally determine machine groupings and part assignment under fuzzy demand 
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and machine capacity. They consider a single objective function which is the sum of 

the costs of material handling and processing.  

 

Tsai et al. (2006) developed a multi objective fuzzy mathematical programming 

model for cell formation problems. The first objective of the model is a cost function 

that is the sum of cost of duplicating machines, inter-cell part transfer and 

subcontracting. The second objective is to maximize similarity between a pair of 

parts and machines. They also proposed a heuristic genetic algorithm for solving 

large scale fuzzy multi-objective cell formation problems. 

 

As discussed above, the use of fuzzy mathematical programming models in cell 

formation is a relatively new research area. Hence the use of fuzzy mathematical 

programming models in cell formation is a potential research   area in the field of 

cellular manufacturing. The use of fuzzy goal programming models may be a 

possible trend for the research in this field. 

 

In all these studies in which fuzzy mathematical programming approaches are 

employed, the cost oriented objective functions have been used.  As stated in earlier 

sections, the design of manufacturing systems considering performance oriented 

objectives also important for today’s manufacturing systems. Hence, employing 

fuzzy mathematical programming models with performance based objectives could 

be another new research area in cell formation. Moreover comparisons of the 

effectiveness of models using different fuzzy operators (simple additive, max-min, 

preemptive etc.)  should be also addressed. 

 

2.3 Tabu Search in Cell Formation 

 

Tabu search (TS) is a stochastic neighborhood solution approach which was first 

proposed by Glover (1989, 1990). TS is a global optimization heuristic and can 

handle any type of objective function and any type of constraints. The basic TS 

algorithm operates in the following way: It starts with a randomly chosen or a known 
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solution vector.  A set of neighborhood solution N is generated from starting solution 

by using different move strategies. The objective function is evaluated for each 

neighbor solution in N. The best one replaces the current solution although it may be 

worse than the current one. In this way, algorithm escapes from local minima (or 

maxima). To avoid recycling, certain attributes of the last replaced solutions are 

stored in a list called “tabu list”. The neighbors of the current solution given by the 

tabu list are eliminated unless they meet an aspiration criterion. Hence the algorithm 

is forced to select a point not recently selected. TS is an adaptive search procedure 

that has been employed for solving combinatorial optimization problems and cell 

formation problem a well. The cell formation studies in which TS algorithm is used 

for solution are briefly reviewed below: 

 

Vakharia and Chang (1999) developed a multi objective model considering the 

objectives of total cost of the machines and material handling cost. They used TS and 

simulated annealing for solution of the model and compared the results. 

 

Baykasoglu and Gindy (2000) proposed a preemptive goal programming model 

for cell formation problem considering the objectives: minimizing dissimilarity of 

parts, maximizing capacity, minimizing cell load imbalance and maximizing 

flexibility. They solved the model specially developed TS algorithm. 

 

Onwubolu and Songore (2000) presented a TS based cell formation procedure 

which allows for the simultaneous creation of part families and machine cells. They 

consider two models one for minimizing cell load variation objective and one for 

minimizing inter-cell movements. 
 

Saad, Baykasoglu and Gindy (2002) developed an integrated framework for 

reconfiguring manufacturing cells. The cell creation module of the framework is 

integrated with the simulation model of the manufacturing system. Authors used a 

hybrid analytic-simulation preemptive goal programming model for cell formation. 

In this model some objectives are calculated analytically whereas other objectives are 

obtained by the simulation model. The goals of the model are: acceptable level of 

inter-cell movement, acceptable level for tardiness, desired level of overall system 
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utilization, desired level of system throughput. They solved the cell formation 

problem using TS algorithm. 

 

Cao and Chen (2004) proposed an integrated approach for manufacturing cell 

formation with fixed charge cost. A mixed integer non-linear programming model is 

formulated to solve the problem. The NP-hardness of the problem makes direct 

solution computationally prohibitive for real-life applications. A TS algorithm was 

developed to solve the computationally complex cell formation problem efficiently.  

 

Scheller (2005) proposed a two phased TS procedure for a cell formation integer 

programming model. Author used a cost function which composed of the cost of 

intra-cell and inter-cell moves and the cost of the equipment used in the cells. 

 

Lei and Wu (2004) presented a Pareto optimality based multi-objective TS 

algorithm to cell formation problems with multiple objectives: minimizing the 

weighted sum of inter-cell and intra-cell moves and minimizing total cell load 

variation.  

 

TS algorithm is generally used for the solving NP-Complete cell formation 

problems in most of the studies. However in recent studies (Baykasoglu et al. 2000, 

Saad et al 2002, Lei & Wu, 2004) TS algorithm is used for solving multiple objective 

cell formation problems. The idea of applying TS algorithm to multiple-objective 

optimization comes from its solution process. TS works with more than one solution 

at a time. Baykasoglu (2000, 2002) noted that this feature of TS gives a great 

opportunity to deal with multiple objectives or goals.  

 

According to the reviewed literature, the primary reasons that TS has been used for 

the design of CMS are: 

1) TS obtains efficient solutions in a reasonable time. According to the 

previous studies from different research areas, the solution quality of TS is 

also promising. 
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2) TS allows for handling any type of objectives and constraints.(Linear or 

nonlinear) 

 

3) The feature of working with more than one solution at a time which is 

essential for dealing with multiple objective optimization problems.    

 

These lead us to employ TS algorithm as a part of solution approach for the design of 

CMSs. 

 

2.4 Limitations of the Existing Literature 

 

In this section, limitations of the existing literature and how some of the 

limitations will be overcome by the proposed research will be discussed. 

 

Cell formation literature is classified and reviewed in this chapter. Considering the 

coverage of the study, the survey of literature is performed into three categories: (1) 

Design approaches to multi-criteria cell formation. (2) Uncertainty issues in cell 

formation, and (3) Tabu search in cell formation. These comparisons and evaluations 

lead us to the following critical evaluation of the prior research: 

 

1) Most of the current studies depend on deterministic models. Stochastic nature 

of the manufacturing systems is generally omitted. However, relaxations in 

modeling assumptions such as certainty of cost factors, deterministic demand, 

deterministic processing times etc. affects the implementation of cellular 

manufacturing systems. Such relaxations lead to cell designs that are far from 

meeting the requirements of real world applications. In this sense, simulation 

is a useful tool in representing stochastic nature of the manufacturing 

systems. However, in most of the studies simulation is not used in the design 

process of manufacturing cells. Instead, simulation is generally used for 
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evaluating and comparing the performance of cellular manufacturing systems 

under different production conditions and defining the effects of factors.   

 

Fuzzy set theory is another tool for representing probabilistic and linguistic 

vagueness and uncertainty. The applications of fuzzy set theory in cell 

formation are common. However in most of these studies fuzzy clustering 

methods are used for identifying manufacturing cells and part families. Fuzzy 

mathematical programming is different form fuzzy clustering. In Fuzzy 

clustering approaches the fuzzy membership of a machine (or part) with 

respect to a cell (or part family) is defined and hierarchical clustering is done 

for designing CMS. On the other hand, by employing FMP models, linguistic 

vagueness in information pertaining to many other design parameters can be 

modeled and the solution may be obtained by using mathematical 

programming tools such as linear programming, goal programming etc. 

Application of fuzzy mathematical programming approaches to cell 

formation is a relatively new research area. 

 

2) In most of the reviewed studies, a majority of the models used cost function 

unified through weighting approach in the form of single objective. 

Considering the requirements of today’s manufacturing systems,  

performance measures such as mean tardiness, number of tardy jobs, system 

utilization etc. are also important for evaluating the performance of 

manufacturing cells. However, the combination of performance oriented 

objectives  such as minimizing mean tardiness, maximizing utilization, 

minimizing the number of tardy jobs etc. have not been considered 

simultaneously in previous studies probably because the mathematical 

representation of such objectives may lead computationally complex models.  

 

3) In some studies, it is assumed that each operation of a part can be processed 

only on a one specific machine type. However this assumption is not valid 

when machines are capable of performing different processes. The use of 
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flexible machines which can perform different operations results in alternate 

machine routings for each operation. In the presence of routing flexibility 

each part will have more than one process plan. In such situations the 

problem of “searching for the best routing” arises. According to the recent 

studies it is reported that the existence of alternative process plans for parts 

can improve the groupability of parts and increase the increases the number 

of ways to form manufacturing cells. It is also noted that the ignorance of 

routing flexibility may result in an increased operation cost and additional 

investment in machines. Hence it is important to consider such an important 

factor by quantifying alternative routes and flexible machining processes in 

the process of cell formation.  

 

4) The most common solution approach in the mathematical programming 

models has been the weighting method and goal programming. These 

approaches are able to find a single non-dominated solution. If the solution is 

not good enough to satisfy the requirements of the system designer, the model 

should be resolved with different set of parameters. The use of meta-

heuristics such as Tabu search, genetic algorithms etc. which works with 

more than one solution at a time and aim at searching individuals in the set of 

non-dominated solutions gives a great opportunity to deal with multiple 

objective cell formation problems. Using such methods, the selection strategy 

may favor non-dominated solutions while maintaining a sufficient diversity. 

 

Considering the issues discussed above, in this thesis, a hybrid simulation-analytic 

fuzzy goal programming model (FGP) is developed in order to achieve the 

development of the new CM design methodology that addresses the uncertainty 

issues and routing flexibility,. In this model, the goals which are difficult to represent 

analytically are obtained by simulation model whereas other goals are calculated 

analytically. The stochastic nature of the manufacturing system is also reflected by 

simulation model. Part demand rates, part processing and transfer times are all 
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stochastic. Proposed hybrid simulation-analytic FGP models are solved by using a 

tabu search algorithm. 

 

 

 

 



 

CHAPTER THREE 

APPROACH: SIMULATION BASED FGP MODEL FOR CELL 
FORMATION 

 
 

The aim of this chapter is to develop a new cell formation methodology which 

addresses the issues of uncertain production requirements and routing flexibility. For 

this purpose, in this section, a hybrid analytic-simulation fuzzy goal programming 

model will be proposed. In this model, the goals which are difficult to represent 

analytically are obtained by simulation model whereas other goals are calculated 

analytically. The stochastic production requirements such as stochastic demand, 

processing times, transfer times etc. are also represented by simulation model.  Since 

the target levels of goals are fuzzy, the proposed model also allows for the vague 

aspiration levels of decision makers. The issue of routing flexibility is also 

considered in the proposed model. 

 

This chapter is divided into three sections. Section 3.1 gives a brief explanation 

about fuzzy mathematical programming, fuzzy linear programming and fuzzy goal 

programming. Section 3.2 presents the proposed Fuzzy Goal programming model for 

cell formation. The summary of Chapter 3 is given in Section 3.3 

 

3.1 Fuzzy Mathematical Programming 

 

Estimating the exact values of the coefficients, the right hand side values of 

constraints, the target values of goals are difficult tasks in modeling multi objective 

decision making problems. The uncertainty still exists in the problem even if all 

information is either given by a decision maker subjectively or by statistical 

inference from historical data. Therefore, reflecting this uncertainty one needs to 

construct a model with inexact coefficient, constraints and goals. Some researchers 

considered this problem as a Fuzzy Linear Programming with fuzzy coefficients of 

which a membership function was defined for each fuzzy coefficient. Thus, a fuzzy  

Solution can be obtained (Wang & Wang, 1997). 
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Inuiguchi & Ramik (2000) stated that two major different types of uncertainty, 

ambiguity and vagueness exist in the real life. Ambiguity is related with the 

situations in which the choice between two or more alternatives is left unspecified 

(e.g., “processing time of a job takes about 8 min” phrase shows that one value 

around 8 is true but not known exactly). On the other hand, vagueness is associated 

with the difficulty of making sharp or precise distinctions in the world; that is, some 

domain of interest is vague if it cannot be delimited by sharp boundaries (e.g., 

“decision maker wants to make profit substantially larger than $ 5100” phrase shows 

that values around 5100 and larger than 5100 are to some extent and completely 

satisfactory, respectively). 

 

Inuiguchi & Ramik (2000) classified the fuzzy mathematical programming 

methods into three categories considering the types of uncertainty incorporated in the 

method: 

 

• Fuzzy mathematical programming with vagueness: it treats decision 

making problem under fuzzy goals and constraints, 

• Fuzzy mathematical programming with ambiguity: it treats ambiguous 

coefficients of objective functions and constraints but does not treat fuzzy 

goal and constraints, 

• Fuzzy mathematical programming with vagueness and ambiguity: it treats 

ambiguous coefficients as well as vague decision maker’s preference. 

 

There are lots of fuzzy mathematical programming types. As discussed in the first 

chapter, in this dissertation, we use Fuzzy Goal Programming in order to form 

manufacturing cells. Thus, we will restrict ourselves to describe only the two types of 

fuzzy mathematical programming. These are Fuzzy Linear Programming (FLP) and 

Fuzzy Goal Programming (FGP). In the next section a brief overview of them is 

given. 
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3.1.1 Fuzzy Linear Programming 
 

Consider a linear programming (LP) model, 

 

0

min

≥
≤

=

x
bAxtosubject

cxzimize
 (3.1) 

 

where c= (c1, c2, ..., cn) is the n dimensional row vector of coefficients of objective 

function, x is an n-dimensional column vector of the decision variables, A is an m x n  

matrix of constants, and b is an m-dimensional column vector of right-hand side 

constants. Considering the imprecision of the decision maker’s judgment, 

Zimmerman adopted the fuzzy version of the model (3.1) as shown below: 
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Where the symbols “  and f ” denote the fuzzified versions of “≤  and ≥ ” and 

can be read as “essentially less (greater) than or equal to”, respectively. 
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In order to solve (3.2), Zimmermann (1978) suggested a linear membership 

function for the goal )(1 cxμ , where 
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And another linear membership function )(2 Xaiiμ is suggested for the ith constraint 

in the system constraints, where 
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Where d1 and d2i (i=1, 2,..., m) are chosen constants of admissible violations, and 

ai is the ith row of the matrix A (Mohamed, 1997). )(1 cxμ  and ))((2 ii Axμ represent 

the degree of the membership of goals and constraints. It is assumed that the value of 

the ith membership function should be 1 if the ith constraint is very well satisfied, 0 if 

the ith constraint is strongly violated its limit d2i, and linear from 0 to1 (Sakawa, 

1992). Figure 3.1 illustrates the “essentially less than or equal to” type linear 

membership function. 
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Figure 3.1 “essentially less than or equal to” type linear membership function 

 

The degree of the membership of goals and constraints represents the satisfaction 

level of the decision maker. Hence the value of the membership functions should be 

maximized (Wang & Wang, 1997). Following the fuzzy decision theorem of 

Bellman and Zadeh (1970), the maximizing decision is then defined as: 
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Introducing a new variableλ , this problem can be equivalently transformed as: 
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According to above membership functions, FLP for (3.2) can be rewritten as 

(Mohamed, 1997): 
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It is obvious that FLP model can be easily extended to fuzzy multi-objective 

linear programming (FMOLP) by defining a membership function for each objective 

functions. Assume that there are k linear objective functions to be minimized; the 

corresponding FMOLP model can be defined as 
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The construction of the linear membership functions is a difficult task. 

Zimmerman (1978) suggested the use of pay-off table in order to overcome this 

difficulty. The use of pay-off table operates in the following way: The first objective 

is set as objective and MOLP model is solved. Then the second, third and other 

objective functions are set as objective and MOLP models is solved for each of the 

objectives one by one. For each step, the value of the objectives and other objective 

function values are recorded. Then the payoff table is constructed as shown in Table 

3.1. 
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Table 3.1 The payoff table  

 The objective function 
Value 

1Z  2Z  … MZ  

1Z  11Z  12Z  … MZ1  

2Z  
21Z  22Z  … MZ 2  

…
 

… … … … 

MZ  
1MZ  2MZ  … MMZ  

 

Examining the figures in Table 3.1, the best lower bound (lk) and the worst upper 

bound (uk) are determined. Then the membership functions of each objective can be 

defined as follows: 
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Although the fuzzy description is hypothetical and membership values are 

subjective, various types of membership functions can be used to support the fuzzy 

analytical framework (Wang & Wang, 1997). 

  

3.1.2 Fuzzy Goal Programming 
 

Goal programming (GP) is one of the most powerful, multi-objective decision 

making approaches in practical decision making. GP requires the decision maker 

(DM) to set precise aspiration values of each objective that he/she wishes to achieve. 

GP solution technique aims at minimizing the deviations from each goal, subject to 

the goal constraints and system constraints. In a standard GP formulation, goals and 

constraints are defined precisely. However, the major difficulty for a DM in using 
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GP is to determine precisely the goal value of each objective function. (Arikan and 

Gungor, 2001).  

 

Zadeh (1965) introduced FST that is a generalization of conventional set theory as 

a mathematical way to represent vagueness in everyday life. A fuzzy set A can be 

characterized by a membership function (MF), usually denoted by μ, which assigns 

to each object of a domain its grade of membership in A. The nearer the value of MF 

to unity, the higher the grade of membership of element or object in a fuzzy set A. 

Various types of membership functions can be used to represent the fuzzy set.   

 

 Applying fuzzy set theory into GP has the advantage of allowing for the vague 

aspirations of a DM, which can then be qualified by some natural language terms. In 

other words, FGP is specified in an imprecise manner. A fuzzy goal is considered as 

a goal with an imprecise aspiration level. 

 

GP aims to minimize the distance between  and an aspiration level (target 

value of the objective function)

kZ

kZ , which is expressed by the deviational variables. 

In FGP, membership function values of the each objective replace by the deviational 

variables (Mohamed, 1997). 

 

Narasimhan (1980) fist introduced fuzzy goal programming approach to specify 

imprecise aspiration levels of fuzzy goals. Yong, Inzigo and Kim (1991) formulated 

FGP with non-linear membership functions. FGP technique has been applied to 

various fields such as structural optimization (Rao, Sundaraju, Prakash and 

Balakrishna, 1992), agricultural planning (Sinha, Rao and Mangoraj, 1988), forestry 

(Pickens and Hof, 1991), cellular manufacturing (Shanker and Vrat, 1999), aggregate 

production planning (Baykasoglu, 2006).  

 

A typical FGP problem formulation can be stated as follows: 

 

Find  nixi ,...,2,1=

to satisfy 
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Where  

)( im xZ  = the mth goal constraint, 

)( ik xZ  = the kth goal constraint, 

)( im xZ  = the target value of the mth goal,  

)( ik xZ  = the target value of the kth goal, 

)( ij xg  = the jth inequality constraint, 

jb  = the available resource of inequality constraint j. 

 

In formulation (3.10), the symbols “ ” and “ ” denote the fuzzified versions of 

“ ” and “ ” and can be read as “approximately less (greater) than or equal to”. For 

“approximately less than or equal to” situation, the goal m is allowed to be spread to 

the right-hand-side of 

p f

≤ ≥

mZ ( mm lZ =  where denote the lower bound for the mth 

objective) with a certain range of (

ml

mr mZ + r = , where denote the upper bound 

for the mth objective). Similarly, with “approximately greater than or equal to”,  is 

the allowed left side of 

m um mu

kp

kZ ( kZ - = , andk lp k kukZ = ) (Wang and Fu, 1997). 

 

As can be seen from the explanations given so far, GP and FGP have some 

similarities. Both GP and FGP need an aspiration level for each objective. These 

aspiration levels are determined by the decision maker. Furthermore,  FGP needs 

max-min limits ( ) for each goal (Mohamed, 1997). After determining the 

fuzzified aspiration levels with respect to the linguistic terms of “approximately less 

than or equal to”, and “approximately greater than or equal to”, the fuzzy 

membership functions can be written for each goals as follows: 

kk lu ,

 

For “approximately less than or equal to”; 
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For “approximately greater than or equal to”; 
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Figure 3.2 illustrates both types of membership functions. 

 
Figure 3.2 Membership functions of fuzzy goals 

 

According to the approach suggested by Belman and Zadeh (1970), the feasible 

fuzzy solution set is obtained by the intersection of the all the membership functions 

representing the fuzzy goals. This feasible fuzzy solution set is then characterized by 

its membership μF(x) as following: 

 

)](),....,(),(min[)()....()()(
2121

xxxxxxx
kk ZZZZZZF μμμμμμμ =∩∩=  (3.13) 

 

Then the optimum decision can be determined to be the maximum degree of 

membership for the fuzzy decision:  
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Zimmermann (1978) first used the maximin-operator of Bellman and Zadeh 

(1970). By introducing the auxiliary variableλ , which is the overall satisfactory 

level of compromise, By introducing the auxiliary variableλ , which is the overall 

satisfactory level of compromise, formulation (3.10) can be equivalently transformed 

as: 
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The model mentioned above commonly use the min- operator for aggregating 

goals to determine the decision set, and then to maximize the set. Tiwari, Dharmar 

and Rao (1986) presented a simple additive model to formulate an FGP problem.  

The simple additive model is formulated as: 
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      (3.16) 

 

With the use of an additive model, the maximum sum of goals’ achievement 

degrees can be obtained. The achievement degree of  some goals will not be decrease 

because of a particular goal that is difficult to achieve. This advantage makes the 

additive model appealing(Chen & Tsai, 2001). 
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Since some goals may be more important than the others, consideration of 

different importance and priority levels of the goals is also important in FGP. For this 

purpose, the weighted average of deviations from aspiration levels is generally used 

in conventional GP. Hannan (1981) used this approach to formulate objective 

function of an FGP with fuzzy priority. Tiwari et al. (1987) proposed a weighted 

model that incorporates each goal’s weight into the objective function in an additive 

fashion. Using Tiwari et al. (1987)’s approach, the model (3.10) can written as 

follows: 
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             (3.17) 

Where  denotes the weight of the kth fuzzy goal, and kw 1=∑ kw . Weights in the 

model show the relative importance of the fuzzy goals. 

Chen and Tsai (2001) formulated the same problem with a preemptive structure 

using additive model. They incorporate the preemptive priority structure into this 

formulation to find a set of solutions that maximize the sum of each fuzzy goal’s 

achievement degree. 

  To illustrate the formulation, an example with five goals is given below: 

• Priority level 1: Goal 1 and 3; 

• Priority level 2: Goal 2; 

• Priority level 3: Goal 4 and 5; 

According to the above preemptive priority structure, the following relationship 

exits for the respective achievement degrees for the goals: 
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After addicting the above relationship to the model (3.10), the FGP can be 

formulated as; 
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             (3.18) 

 

As described in Section 2.2.2, although the fuzzy clustering techniques have been 

widely used in cell formation, the application of FMP is a relatively new research 

area in cell formation. After brief definitions about FLP and FGP, a fuzzy goal 

programming model for cell formation will be presented in the following section. 

 

3.2. Proposed Hybrid FGP Model for Cell Formation 

 

As mentioned in Chapter 2, most of the current CF studies depend on 

deterministic models which are based on the assumption of certainty of cost factors, 

deterministic processing times, deterministic demand etc. Such relaxations affects the 

design and implementation of cellular manufacturing systems and may lead to cell 

designs that are far from meeting the requirements of real world applications. Real 
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manufacturing systems have stochastic nature and tend to have uncertainty and 

vagueness in system parameters. Fuzzy set theory gives the opportunity to deal with 

uncertainty and vagueness. Simulation is another tool for representing the stochastic 

nature of the manufacturing systems. By simulation models, system parameters such 

as demand rate, processing times etc. can be modeled in stochastic manner. 

 

Routing flexibility is another important issue in cell formation. In the presence of 

routing flexibility, each part can have different process plans. Exiting studies in CF 

literature shows that the ignorance of the existence of alternative process plans 

results in increased operation cost and additional investment in machine.  

 

The aim of this study is to develop a cell design methodology that capture two 

important characteristics of manufacturing cells: (1) the existence of stochastic 

production requirements (2) the existence of routing flexibility. For this purpose, in 

this thesis, a hybrid analytic-simulation fuzzy goal programming (FGP) model is 

proposed in order to support the cell formation process. In the proposed hybrid 

analytic-simulation model, the stochastic nature of the production system is reflected 

by a simulation model. The part processing times, intercellular part movement times 

and the part arrivals are all stochastic. The objectives of maximizing system 

utilization, minimizing mean tardiness and minimizing the percentage of tardy jobs 

which are difficult to represent analytically are also obtained by simulation model. 

The other objective of minimum number of exceptional elements is obtained by an 

analytical equation. The proposed model also incorporates alternative process plans 

for parts. The fuzzy goals will be handled by using both simple additive method and 

max-min method.  The mathematical model is developed under the following 

assumptions: 

 

Assumptions: 

 

• The product mix is known. 

• Each part have equal number of operations ( This assumption will be relaxed 

later) 
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• Parts moved between cells in batches. 

• The upper and lower bounds on a quantity of machines in a cell need to be 

specified. 

• Each machine type can perform one or more operations. Likewise, each 

operation can be performed on one or more machine types with equal (or 

different) times. 

• Set-up times are not considered. 

• Machine breakdowns are not considered. 

• Batch size is constant for all productions.  

 

3.2.1 Notation and Mathematical Formulation 
 

The mathematical formulation for the design of CMS is developed  such that part 

families and machine cells are formed simultaneously. According to existing CF 

literature, the use of simultaneous part-machine grouping strategy generally yields 

better results than sequential strategies. The mathematical formulation for the design 

of CMS is presented next. Note that, the stochastic production requirements such as 

stochastic demand, stochastic processing times etc. are not included in mathematical 

formulation. Such characteristics of manufacturing system will be incorporated in 

simulation model. The detailed explanations about simulation model and integration 

of the mathematical model with simulation will be given in Chapter 4. 

 
Indices 
 
i =1,2,…,I  Jobs 
 
o =1,2…O  Operations 
 
c=1,2,…C  Cells 
 
m=1,2,…M  Machines 
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System and Input Parameters: 

 
 Piom : Set of machines that can perform o th operation of part i. 
 

{10 if oth operationof job i can be performed on machine m
iom Otherwise

P =  

 
K: A big number 

 

Mmin: Min number of machines in order to form a cell 
 
Mmax: Max number of machines that can be included in a cell. 
 
goalint: Aspiration level for goal_1 
 
goalutil: Aspiration level for goal_2 
 
goaltardiness: Aspiration level for goal_3 
 
goaltardyjobs: Aspiration level for goal_4 
 
 
Product demand: Product demand is the quantity of each part type in the product mix 

to be produced. The product demand of each part is expected to be varied across the 

planning horizon. Since the proposed model is a hybrid analytic-simulation model, it 

is possible to define demand distribution of a part instead of deterministic demand. 

The distribution of part demand will be defined in simulation model. 

 

Operating time: Operating time is the time required by a machine to perform an 

operation on a part type. Similar to part demand, it is possible to define the 

distribution of part processing times instead of deterministic part processing times. 

Hence operating times are not included in the mathematical models. They are 

reflected by the simulation model. 

 

Transfer Time:  Similar to processing times, the distribution of inter-cell part transfer 

times will be considered in simulation model. 
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Decision variables: 
 
 

1
( )

0
if cell is formed

Q c
Otherwise

⎧
= ⎨
⎩

     (3.19) 

 
1 .
0

ioc
if oth op of job i is performed in cell c

Otherwise
Z =

⎧
⎨
⎩

   (3.20) 

 

{1 .
1

0
ioc

if oth oper of job i is performed inanother cell
Otherwise

D =   (3.21) 

 
1 .
0

iocm
if oth op of job i is assigned to machine m in cell c

X
Otherwise

⎧
= ⎨
⎩

  (3.22) 

 
1
0cm

if mahine m is assigned to cell c
Y

Otherwise
⎧

= ⎨
⎩

    (3.23) 

 

Decision variable Qc shows whether the cell c is formed or not. Zioc and D1ioc used 

for calculating the number of exceptional elements.  Xiocm represents the assignment 

of oth operation of  part i to a machine  m which is allocated to cell c. Variable Ycm 

represents the assignment of machine type m to cell c. 

 
Fuzzy goals and other system constraints: 
 
 

1
_1 :

ioc excpt
Goal D goal

o ci
∑∑∑ p      (3.24) 

 
_ 2 : utilGoal system utilization goalf     (3.25) 

 
_ 3 : tardinessGoal mean tardiness goalp     (3.26) 

 
_ 4 : tardyjobsGoal percentage of tardy jobs goalp   (3.27) 
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In this study, combination of multiple performance oriented goals which is not 

considered in current CF literature will be considered. These objectives are as 

follows: 

• Exceptional elements: In CMS, it is desired to complete al operations of a 

part in the same cell. However, in real applications, parts can visit different 

cells when it requires processing on a machine that is not available in the 

allocated cell of a part. Such parts are called as “exceptional elements” and 

require inter-cell movements. Inter-cell movements result in extra 

transportation costs and requires more coordinating efforts between cells as 

well. Thus, exceptional elements and inter-cell movements are undesirable 

and should be minimized in CMS. 

 

• Utilization: Utilization is another important performance measure in 

determining manufacturing cell formation. Since the set-up times are 

decreased, the effective capacity of the machines is increased thus leading to 

lower utilization. Demand fluctuations can also lead to lower utilizations. The 

general level of utilization of cells is of the order of 60-70%. Hence the 

maximization of system utilization is an important objective for cellular 

manufacturing systems. 

 

•  Mean tardiness: mean tardiness objective is important when customers 

tolerate smaller tardiness but become rapidly and progressively more upset 

for larger ones. 

 

• Percentage of tardy jobs: percentage of tardy jobs is important when 

customers simply refuse to accept tardy jobs, so that the order is lost. 

 

Last two objectives are especially important for the manufacturing system that 

works with Just in Time manufacturing philosophy. However, these objectives have 

not been considered in most of the existing studies probably due to the complex 

nature of cell formation problems. As stated above, in this study, a hybrid analytic-

simulation FGP model which allows us to represent the stochastic nature of 

 



 68

manufacturing system and to consider objectives such as utilization, mean tardiness, 

number of tardy jobs etc. is proposed. In this proposed hybrid model, the objective of 

minimizing the number of exceptional elements is obtained by an analytic equation 

(Eq.3.24) whereas other three objectives which are difficult to obtain analytically are 

obtained by simulation model. The structure of the simulation model and how we 

integrated with mathematical model will be explained in the next chapter.  

 

In formulation (3.24-3.27), the symbols “ ” and “ ” denote the fuzzified 

versions of “

p f

≤ ” and “ ” and can be read as “approximately less (greater) than or 

equal to”. The objectives of the mathematical model are minimizing the number of 

exceptional elements (3.24), maximizing system utilization(3.25), minimizing mean 

tardiness(3.26) and minimizing the percentage of tardy jobs (3.27). The number of 

exceptional elements should be substantially smaller than goalexcpt, system utilization 

should be substantially greater than goalutil, the mean tardiness should be 

substantially smaller than goaltardiness and the percentage of tardy jobs should be 

substantially smaller than goaltardyjobs. Other system constraints are as follows: 

≥

 

 
1iocm iom

c m
X P =∑∑       (3.28) 

 

1cm
c

Y m= ∀∑    (3.29) 

 
.iocm cmX K Y i o c≤ , , ,m∀

, , ,m∀

  (3.30) 
 

.iocm iocX K Z i o c≤   (3.31) 
 

1 ,ioc
c

Z i o= ∀∑    (3.32) 

 

1 1 , ,iocioc ioc iocZ Z D D i o−− = − ∀ c   (3.33) 
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maxcm c
m

Y M Q≤ ∀∑ c

c

]

   (3.34) 

 

mincm
m

Y M Qc≥ ∀∑    (3.35) 

 

1, , , , , [0,1iocm cm ioc c ioc iocX Y Z Q D D =    (3.36) 
 
 
 
 

  Equation (3.28) ensures that the operation of a job is assigned to a machine in a 

cell. Equation (3.29) ensures that each machine is assigned to only one 

manufacturing cell. Equation (3.30) indicates that if an operation in a cell c is 

assigned to a machine m, this machine is assigned to cell c. Equation(3.31) indicates 

that if  the oth operation of part i  is assigned to  machine m in a cell c, operation o is 

assigned to cell c. Equation (3.32) ensures that an operation is assigned to only one 

cell. Equation (3.33) controls whether the consecutive two operations of a job is 

performed in the same cell. Instead of using predefined number of cells, in the 

proposed model, lower and upper bounds on the number of machines that can be 

included by a manufacturing cell is used. Equation (3.34-3.35) constraints the 

number of machines assigned to each cell if it is formed.  

 
The fuzzy membership functions can be written for each goals as follows :  
 

 

1 1

1 1
1

1 1

1 1

1

0

if f L

U f
if L f U

U L

if f U

μ

≤

−
≤ ≤

−

≥

⎧
⎪⎪= ⎨
⎪
⎪⎩

1 1 1   (3.37) 

  

2 2

2 2
2

2 2

2 2

1

0

if f U

f L
i 2 2 2f L f U

U L
if f L

μ

≥⎧
⎪

−⎪= ⎨
−⎪

⎪ ≤⎩

≤ ≤   (3.38) 

 

 



 70

3 3
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4 4
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The shapes of the membership functions are given in Figure 3.3. For instance, in 

Figure3.3, the first goal is allowed to be spread to the right-hand side of L1 with a 

certain range of r1 ( r1 = U1 - L1). 

 

 

µi µi 

(a)     (b) 
Figure 3.3. (a) The shape of membership function for objectives 1,3 and 

4(minimization) (b) The shape of membership function for  objective  2 

(maximization)  

 

After defining membership functions, using the max-min operator (3.15) λ, 

which is the overall satisfactory level of compromise, the standard goal programming 

formulation can be equivalently transformed as: 

 

1 
1 1 

Li Li Ui Ui 
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1 2 3 4

subject to
, , ,

and other system constraints(3.28 3.36)

MaxZ λ

μ μ μ μ λ

= ⎫
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⎪
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⎬
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⎪−
⎪
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  (3.41) 

 

Using the additive method (3.16), standard goal programming formulation can be 

equivalently transformed as: 
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1 2 3 4
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and other system constraints(3.28-3.36)
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   (3.42) 

 

The proposed models differ from the existing cell formation approaches in three 

ways: 

First, application of FGP to cell formation problem allows for the vague 

aspirations of a DM. As mentioned in the previous chapter, GP approaches have been 

widely used in cell formation. However, defining precise aspiration levels is a 

difficult task especially for real applications. FGP has the advantage of allowing for 

the vague aspirations of a DM. Unlike GP, there is a limited number of works in 

which FGP approaches used for cell formation (See section 2.2.2).  

 

Second, the proposed hybrid FGP models consider the stochastic production 

requirements such as stochastic demand, process times and part transfer times. The 

stochastic nature of the manufacturing system will be reflected by a simulation 

model. 
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Third, the combination of multiple performance oriented goals which have not 

been considered by the current CF literature is included in the proposed models. 

Instead of analytic representation, the values of some goals are obtained by 

simulation model. This also leads to decrease in complexity of the model. 

 

Since the proposed model is a hybrid analytic-simulation model in which some 

objectives are obtained from simulation, classical solution approaches such as 

simplex based methods are not appropriate for solution. In the next chapter, a tabu 

search based solution methodology for  solving hybrid FGP will be presented. 

  

3.3 Chapter Summary   

 

As stated in Chapter 2, the existence of stochastic production requirements and 

the existence of routing flexibility are two important characteristics of CMS design 

problem which are generally omitted by researchers. The most of the current CF 

approaches based on deterministic models. Relaxation in modeling assumptions such 

as deterministic product demand, deterministic processing times etc. affects the 

design and implementation process of manufacturing cells. Real manufacturing 

systems tend to have uncertainty and vagueness in system parameters. Hence, the 

issue of uncertainty should be considered in the design process of manufacturing 

cells in order to have more realistic cell designs. Fuzzy set theory gives the 

opportunity to deal with uncertainty and vagueness. Simulation is another tool for 

representing the stochastic nature of the manufacturing systems. 

 

Routing flexibility is another important characteristic for manufacturing cells.  In 

the presence of routing flexibility, parts can have more than one process plan. The 

existence of alternative process plans for the parts can improve the groupability of 

parts. The ignorance of routing flexibility may result in an increased operation cost 

and additional investment in machines. So, it is important to consider such an 

important factor by quantifying alternative routes and flexible machining processes 

in the process of cell formation.  
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The aim of the research proposed in this dissertation is to develop a cell design 

methodology considering the existence of uncertain production requirements and 

routing flexibility.  For this purpose, a hybrid simulation-analytic FGP models using 

additive method and max-min method are presented in this chapter. In proposed 

hybrid analytic-simulation model, the stochastic nature of the production system is 

represented by a simulation model. The part processing times, intercellular part 

movement times and the part arrivals are all stochastic. In proposed models the 

combination of multiple performance oriented goals which have not been considered 

by the current CF literature are also included. Since the classical solution approaches 

are not appropriate for solving the proposed hybrid FGP model, a tabu search based 

solution methodology for solving FGP models will be presented in the following 

chapter. 



 

CHAPTER FOUR 

SOLUTION METHODOLOGY: A TABU SEARCH BASED SOLUTION 
METHODOLOGY FOR FGP MODELS 

 

 

 

Since the FGP model developed in the previous chapter have some objectives 

determined by a simulation model, classical solution techniques such as simplex 

based methods are not appropriate for solution. As stated in Section 2.3, TS is an 

adaptive search procedure that has been employed for solving combinatorial 

optimization problems. TS can handle any type for variables (integer, binary, 

discrete etc) and constraints (linear or nonlinear). TS algorithm is also used for 

solving multiple objective optimization problems. TS works with more than one 

solution at a time (neighborhood solutions). Among these solutions, a DM can 

choose any solution that satisfies his/her requirements best. This feature of TS is 

important in dealing with multiple objectives or goals.  Hence a tabu search based 

solution methodology is used for solution. In this chapter, the TS procedure used for 

solving FGP models will be presented. 

 

This chapter is divided into five sections. Section 4.1 gives general explanation 

about basic TS algorithm. Section 4.2 presents a TS algorithm for solving FGP 

models. In Section 4.3 the effectiveness of TS algorithm is tested on FGP models 

from literature. The results are compared with the results of optimization software 

LINGO. In section 4.4 the deterministic form of FGP model for cell formation 

proposed in Chapter 3 is solved by TS and the results are compared with LINGO 

results. The summary and conclusions of Chapter 4 is given in Section 4.5. 

4.1 Basic Tabu Search Procedure 

 

Classical solution approaches to mathematical programming problems have some 

limitations. The effectiveness of these approaches are depended on the parameters 

such as the size of the 
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solution space, number and type of constraints and variables. Since most of the   

classical solution techniques are local optimization techniques it is not possible to 

find global optimum or near optimum when the problem size gets larger. Model 

independent modern heuristic approaches such as genetic algorithm, TS, simulated 

annealing, neural networks etc. have been proposed to overcome these difficulties. 

  

TS (Glover, 1986) is a stochastic neighborhood solution heuristic that can handle 

any type of objective function and any type of constraints. The basic TS algorithm is 

as given below: 

 

k:=1 /* k is the number  of iteration */ 

generate initial solution s0∈S, where S is a discrete set of feasible solutions 

WHILE the terminating condition is not met DO 

identify N(s). /*Neighborhood set*/ 

identify T(s, k).  /*Tabu set*/  

identify A(s, k). /*Aspirant set*/  

choose the best  s*∈  N(s, k) = {N(s) – T(s, k) A(s, k)} ∪

memorize s* if it improves the previous best known solution 

s:= s* 

k:= k + 1 

END WHILE 

  

The steps of the TS procedure are: initial seed (solution), generation of 

neighborhood solutions, selection of new seed (solution), aspiration, updating tabu 

list and current best solution list, and terminating (Figure 4.1). These steps are 

described below. 

• Initial solution: The algorithm starts with a randomly created or a known 

feasible solution vector s0. Starting with a known good solution vector can 

decrease the computation time. 

• Generation of neighborhood solutions: A set of neighborhood solution set 

N(s) is created using predefined move strategies. These move strategies are 
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generally depend on the type of variables. The number of solutions in 

neighborhood called as “neighborhood size”. 

• Selection: The objective function is evaluated for each neighborhood solution 

in N(s). The best solution is selected as a new seed. 

• Updating Tabu list and current best solution list:  The current best 

solution list is updated when the solution is improved. An iteration of the TS 

is said to be completed when the entire neighborhood of a current solution is 

evaluated. In order to avoid recycling a list called “tabu list” is used to forbid 

a predefined number of recent moves. The number of the entries in the tabu 

list is referred o as “tabu list size”. When iteration is performed, the move 

implemented is added to the tabu list as the new entry and the oldest one is 

removed from the list.  

• Aspiration: If a move is the best move within the neighborhood of the 

current solution, it is implemented even if it is in tabu list. 

• Termination: If a predefined number of iteration is reached or if there is no 

improvement in the current best move list in the last “t” iterations the 

algorithm terminates. 

In TS, the parameters maximum number of iterations, tabu list size, neighborhood 

size should be determined. They depend on problem size, type of variables. Hence 

there is no certain rule for determining these parameters. It is a common practice to 

solve the problem with different parameter sets to find best parameter combination. 

If the variables are spread in a wide range it is suggested to work with higher number 

of neighborhood solutions. Otherwise, smaller number of neighborhood solutions can 

be safely used (Baykasoglu, 1999). The number of iterations should be big enough to 

assure convergence. For tabu list size, minimum 7 and maximum 11 is suggested 

(Glover and Laguna, 1993). 
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Figure 4.1 Flowchart of the basic tabu search procedure 

 

TS is an adaptive search procedure that has been employed for solving 

combinatorial optimization problems from different research areas such as resource 

planning, telecommunications, financial analysis, scheduling, energy distribution, 

molecular engineering, logistics, flexible manufacturing, waste management, 

biomedical analysis, cell formation etc.  

 

As stated in section 2.3,  the inherent solution process of TS that involves working 

with more than one solution at a time (neighborhood solutions) gives great 

opportunity to deal with multiple objectives or goals easily (Baykasoglu, 2001). In 
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the next section, a tabu search algorithm for solving the proposed FGP model will be 

presented. 

  

4.2 Solution of Fuzzy Goal Programming Models Using Tabu Search 

 

The solution process of TS involves working with more than one solution 

(neighborhood solutions) at a time. Baykasoglu (1999, 2001, and 2006) noted that 

this feature of TS gives a great opportunity to deal with multiple objectives or goals 

and proposed TS based solution methodology for multi-objective optimization 

problems and fuzzy goal programming models. In this dissertation, TS procedure 

will be used for solving FGP cell formation models. The steps of Tabu search 

algorithm used for solving FGP models is similar to original TS procedure except for 

selecting step. The steps of the TS procedure used for solving FGP models are as 

follows: 

 

• Initial solution: Algorithm starts with a randomly generated feasible solution 

vector. Starting with a known good solution vector can decrease the 

computation time. 

 

• Generation of neighborhoods: Different move strategies have been 

presented in TS literature. The move strategies depend on the type of 

variables. Since all variables are 0-1 variables in our cell formation model, 

the move strategy suggested by Baykasgolu (1999) is used for generation of 

neighborhoods. 

 

*

1 0

0 1

i

i

i

if x
x

if x

=⎧
⎪= ⎨
⎪ =⎩

       (4.1) 
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Where xi = Value of the i th variable prior to the neighborhood move, xi
* = Value of 

the ith variable after the neighborhood move. 

 

• Selection: 

o  For simple additive method, the membership values of goals are 

calculated and summed. The neighbor with the highest sum (Σµ) is 

selected as the current best solution.  

o For max-min method, the membership functions and λ values are 

calculated for each neighborhood solution. The solution with the 

highest λ value is selected as a new seed. If   there is more than one 

solution with the same λ value, check the Σµ values and select one 

with the highest Σµ as a new seed. 

o For preemptive method, the membership function values are 

calculated. Then the membership value that belongs to the first 

priority goal is checked for each neighborhood solution. The solution 

with the highest membership value is selected as a new seed. If there 

is more than one solution with the same membership value for the 

first priority goal, the membership values for other goals are checked 

in the order of priority levels.  

 

The preemptive method aims to maximize the satisfaction level of the 

highest priority goal. Therefore the results of the preemptive method 

are different form other two methods given above and depend on the 

priority levels. Hence the max-min method and additive method are 

used and compared in the experiments.    

 

• Updating Tabu list and current best solution list: The current best solution 

list is updated when a better solution is obtained. A predefined number of 

previous moves are recorded in tabu list. Tabu list is updated at each iteration. 

When it is full, the first item of the list is removed and replaced with a new 

one. 
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• Termination: If a predefined number of iteration is reached or if there is no 

improvement in the current best move list in the last t iterations the algorithm 

terminates. 

 

 

  
Figure 4.2  Illustrative example for TS procedure used for solving FGP models 

 

An example is given in Figure 4.2. Assume that there are two goals, the 

neighborhood size and the tabu list size is 3. As seen from Figure 4.2, in the first 

neighborhood solution, the value of fourth variable in the initial solution is changed 

from 0 to 1. Hence this move becomes tabu. The second neighbor solution is 

generated by changing the seventh variable of the initial solution and this move is 

also recorded in tabu list. For generating the third solution in neighborhood, the first 

element of the initial solution vector is changed and this move becomes tabu. Now 

there are 3 different solutions in neighborhood. For selecting stage of TS process, the 

corresponding Σµ (λ for max-min method) values are calculated for each 

neighborhood solution. For additive method, the first neighborhood solution is 

chosen as a new seed since it has the highest  Σµ value (1.45). For max-min method, 

the second neighbor solution which has the highest λ value (0.70). New 

neighborhood solutions are generated from the new seed and the other steps of TS 

procedure are repeated until termination conditions are satisfied. 

 



  81

4.2.1. Examples and Comparative Study 

Before solving hybrid simulation-analytic FGP models that was proposed in 

Chapter 3, the effectiveness of TS procedure will be tested on several test problems 

selected from the literature to show the applicability of TS for solving FGP models.  

For each test problem, a C program is developed for solving FGP models using tabu 

search. The results are compared with the results obtained by LINGO commercial 

optimization software. Note that, since the cell formation model under consideration 

is a 0-1 FGP model, we will restrict ourselves with solving 0-1 FGP models. As 

mentioned in previous section, TS algorithm is able to deal with any type of variables 

and constraints. 

4.2.1.1 Test Problem 1 (Baykasoglu et al, 1999) 

Test problem 1 is taken form the study of Baykasoglu et al. (1999). The model is a 

standard GP model in its original form. It is adapted to FGP model and solved with 

tabu search algorithm given in previous section. The upper and lower bounds for 

membership functions are found by using payoff tables as mentioned in Section 

3.1.1.  
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The optimum solution obtained by LINGO is: 

x1= 0, x2=1, x3=0, x4=1, x5=0, x6=3, x7=2, x8=1, x9=1, x10=0, x11=0, x12=0, x13=0, 

x14=1 

μ1=0.80, μ2=1.0 and λ=0.80.  

The solution obtained by TS algorithm is given in table 4.1: 

Table 4.1 Solution for test problem 1. (Max-min method) 
Parameter 
set 

Tabu list size(T)=7; neighborhood size(N)=10; number of 
iterations(iter)=1000 

CPU time 3sec 
Solution x1= 0, x2=1, x3=0, x4=1, x5=0, x6=3, x7=2, x8=1, x9=1, x10=0, x11=0, x12=0, 

x13=0, x14=1, μ1=0.80, μ2=1.0 and λ=0.80.  

As can be seen from table 4.1, tabu search algorithm found the optimum solution. 

According to solution, the first goal is satisfied with 0.80 and the second goal is fully 

satisfied. So the overall satisfaction level λ is found as 0.80. 

If we use additive model in which the sum of achievement degrees of goals are 

maximized, the optimum solution is found as in Table 4.2. LINGO also gives the 

same solution with TS.  
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Table 4.2. Solution of test problem 1 (additive method) 
Parameter 
set 

Tabu list size(T)=7; neighborhood size(N)=10; number of 
iterations(iter)=1000 

CPU time 4 sec. 
Solution x1= 4, x2=0, x3=0, x4=0, x5=0, x6=1, x7=4, x8=1, x9=1, x10=0, x11=0, x12=0, 

x13=1, x14=1, μ1=0.80, μ2=1.0 and Σ μ =1.80.  

 

4.2.1.2 Test Problem 2 (Baykasoglu et al., 1999) 

Below test problem is also adopted from Baykasoglu et.al (1999). The original GP 

problem is modified in order to adopt FGP model. The upper and lower bounds for 

membership functions are obtained by pay-off tables. The modified model contains 8 

fuzzy goals. 
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The optimum solution found by LINGO is: x1= 0, x2=1, x3=1, x4=1, x5=0 

μ1=0.75, μ2=0.83, μ3=1, μ4=0.75, μ5=0.75,μ6=0.68, μ7=76 , μ8=0.84 , and λ=0.68. 

The same problem is solved using TS algorithm. TS found the optimum solution. 

The TS parameters and the obtained solution are given in Table 4.3.   
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Table 4.3 The solution of test problem 2  
Parameter 
set 

Tabu list size(T)=7; neighborhood size(N)=4; number of 
iterations(iter)=300 

CPU time 4 sec. 
Solution x1= 0, x2=1, x3=1, x4=1, x5=0 μ1=0.75, μ2=0.83, μ3=1, μ4=0.75, 

μ5=0.75;μ6=0.68, μ7=76 , μ8=0.84 , and λ=0.68.  

 

4.2.1.3 Test Problem 3 (Gen, Ida, Tsujimira and Kim, 1993) 

Gen et al (1993) proposed a 0-1 FGP model for solving reliability problems. They 

formulated the model as a preemptive FGP. This model is modified and formulated 

using max-min method. This modified model is solved by TS algorithm. The 

mathematical model is given as follows: 
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The optimum solution obtained by LINGO is: x1=0; x2=0; x3=1; x4=0; x5=1; x6=0; 

x7=0; x8=0; x9=0; x10=1; x11=0; x12=0; μ6=0.68, μ7=0.76, μ8=0.84 and λ=0.68. 

Using max-min method, TS algorithm found the optimum solution given Table 4.4. 

The same solution vector is obtained by using additive method with Σμ=6.36. 

Table 4.4  Solution of test problem 3 (max-min method) 
Parameter 
set 

Tabu list size(T)=7; neighborhood size(N)=4; number of 
iterations(iter)=100 

CPU time 5 sec. 
Solution x1= 0, x2=1, x3=1, x4=1, x5=0 μ1=0.75, μ2=0.83, μ3=1, μ4=0.75, μ5=0.75 

μ6=0.68, μ7=0.76, μ8=0.84, and λ=0.68. 
 

 

The results that have been presented above have shown us, the TS algorithm can 

be effectively used for solving FGP models. In the next section the deterministic 

version of cell formation model proposed in Chapter 3 will be solved by TS 

algorithm and the results are compared with LINGO results. 
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4.3 Solution of FGP Model for Cell Formation Using TS Algorithm 

(Deterministic Case) 

In this section, a cell formation problem in which operations can be performed in 

alternative machines is solved by TS algorithm and LINGO to prove the applicability 

of TS in solving FGP models.  

The manufacturing system considered in numerical example consists of 5 

machines and performs three different jobs. Each job has three sub-operations and 

these operations can be performed in alternative machines. The machine 

requirements and the processing times of operations on alternative machines are 

given in Table 4.5. The minimum and maximum numbers of machines that can be 

included in a cell is given as 2 and 3 respectively. Aspiration levels for goals are 

given in Table 4.5 

Table 4.5 Alterative process plans and processing times 

Job Operation Alternative 
process plan 

Processing time 
(min.) 

A1 1, 4, 5 5 - 4 -  2 
A2 3, 4 4 – 8 JOB1 
A3 1, 5 7 – 6 
B1 4,5  4 – 7 
B2 1, 2, 3 3 – 5 – 6 JOB2 
B3 5 4 
C1 4, 5 5 – 7 
C2 1, 4 4 – 4 JOB3 
C3 1,2, 5 3 – 2 – 5 

 

For the solution, FGP model developed in Section 3.2 is used. However for 

comparing the results of TS with LINGO, the goals obtained by simulation models 

such as utilization, mean tardiness etc. are not included and two analytic goals are 

employed in solving numerical example. Instead of stochastic demand and 

processing times, deterministic inputs are also used for comparing the results with 

LINGO. The LINGO model is given in Appendix A1. 

Table 4.6 Aspiration levels for goals 
Goal Min-Max limits 
Number of exceptional elements 0 3 
Total completion time of parts 35 40 
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The model is same with the model build in section 3.2 except for goals. The goals 

of the model are obtained by following equations: 

11
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( )

( )
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iom iocm

i o c m

g D number of exceptional elements

g A X total completion time of parts
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 (4.1) 

Where Aiom = The time required to accomplish the o th operation of i th job. 

 

The membership functions of the goals are; 
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The FGP model for cell using max-min method is as given below: 

 

MaxZ
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λ=
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And other system constraints (Equations 3.28 - 3.36 in page 68 of Chapter 3). 
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Where goal_a and goal_b represents the aspiration levels for g1 and g2 respectively.  

 
Table 4.7 LINGO solution for test problem 4 

Q1=1, Q2=1 

Y12=1; y14=1;y21=1,y23=1;y25=1 

X1125,  X1223, X1325, X2114, X2221, X2325, X3114, X3214, X3312=1  

μ1=0.6667; μ1=1 and 

λ=0.6667 

 

LINGO solution is illustrated in Table 4.7. According to LINGO solution, 2 cells 

are formed. The cell formations and part assignments are given in Table 4.8. The first 

cell is composed of machines 2 and 4 and the second cell composed of machines 1, 3 

and 5. According to cell formation and part assignments obtained from LINGO, the 

number of exceptional element is 1. Hence the satisfaction level of the first goal is μ1 

= 0.6667 (μ1 = (3-1) / (3-0)). Total completion time for parts is found as 35 min. So 

the satisfaction level of goal 2, μ2 = 1. The overall satisfaction level is λ is found as 

0.6667. 

 
Table 4.8 Cell formation and part assignments (LINGO solution) 

CELL 1 CELL 2 
Machines Operations Machines Operations 
2 C3 1 B2 
4 B1, C1, C2 3 A2 
  5 A1, A3, B3 

 

Then the same problem is solved using TS algorithm.  The solution vector for TS 

algorithm is composed of Xiocm variables which show the assignment of parts to the 

specific machine in a cell. 

1
0

th
iocm

if o operationof job j is assigned to machine m incell c
X

Otherwise
⎧

= ⎨
⎩  

For example if X1114=1, the first operation of the 1st job is assigned to Machine 4 in 

cell 1. Considering the alternative routes and maximum number of cells, the solution 

vector is as given below: 
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Xiocm= [ X1111, X1114, X1115, X1121, X1124, X1125, X1213, X1214, X1223, X1224, X1311, X1315, 

X1321, X1325, X2114, X2115, X2124, X2125, X2211, X2212, X2213, X2221, X2222, X2223, X2315, 

X2325, X3114, X3115, X3124, X3125, X3211, X3214, X3221, X3224, X3311, X3312, X3315, X3321, 

X3322, X3325] 

The solution can be divided into 9 intervals each of which shows the assignment 

of an operation of a job. The intervals are illustrated in Figure 4.3.   

  

 
Figure 4.3 The structure of a solution vector. 

According to the hard constraints of the model developed in 3.2, an operation can 

be assigned to a specific machine. Batch splitting or preemption is not allowed. 

Hence, in applying move strategy given by equation 1, only one Xiocm in each 

interval can take 1 value at a time. Other Xiocm variables in interval should be 0.  By 

this way, we do not have to control the all constraints of the mathematical model in 

the solution process of TS algorithm. In other words, in TS solution, only the 

constraints (3.29), (3.33), (3.34), (3.35) and goal constraints are controlled for 

checking the feasibility of a solution. For instance in LINGO formulations of the 

model, 225 constraints are used. In TS, the problem is represented by 40 decision 

variables and 22 constraints. This relaxation will decrease the complexity of the 

model. 

At each iteration, a predefined number of neighborhood solutions are generated 

from the initial solution. The generation process is illustrated in Figure 4.4.  These 

neighbor solutions must be feasible. In other words, generated neighbor solution 

should satisfy the constraints (eq.3.29; eq.3.33; eq.3.34 and eq.3.35) of the model. 

For instance, assuming the neighborhood size is equal to 2, 1st neighbor solution is 

generated from the initial solution by changing the value of first interval. The 1 is 
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moved from first digit to third digit. This means that the assignment of 1st operation 

of job 1 is changed from machine 1 in cell 1 to machine 5 in cell 2.  This move 

recorded in tabu list and the corresponding λ value is calculated as 0.2 for that 

neighbor solution. The second neighbor is generated from the initial solution by 

changing the assignment of 2nd operation of job 2 from machine 5 in cell 2 to 

machine 4 in cell 2. This move is also recorded in tabu list. The corresponding λ 

value is calculated as 0.35. Hence the second neighborhood solution with highest λ 

(highest Σμ for additive method) value is taken as a new seed. Since the λ value of 

the new seed (λ =0.35) is better than the previous solution (λ =0.00). The best λ value 

is updated as 0.35. The nest neighborhood solutions are generated from this new 

seed. This process is repeated until termination conditions are reached. 

Figure 4.4 Neighborhood generation process 

 

TS algorithm found the best solution at 67th step. The solution vector and 

corresponding µ and λ values are given in Table 4.9. According to the optimum 

solution, the first goal (min. number of exceptional elements) is fully satisfied and 

the satisfaction level of the second goal is μ2=0.6667. The overall satisfaction level is 

λ=0.6667. The cell formation and the part assignments are same with the solution 

obtained by LINGO (see Table 4.8). 
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Table 4.9 Solution obtained by TS 
Parameter 
set 

Tabu list size(T)=7; neighborhood size(N)=4; number of iterations(iter)=150 

CPU time 5 sec. 
Solution X1115, X1213, X1315, X2124, X2211, X2315, X3124, X3224, X3322 = 1 

μ1=1.00 , μ2=0.6667 , and λ=0.6667.  

In addition to optimum solution, TS algorithm gives the alternative solutions with 

the λ=0.6667. For instance the solution found in 45th step (see Figure 4.5) is also 

optimum (λ=0.6667). This solution is presented in Table 4.10.  
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Figure 4.5. The behavior of λ (for max-min method) 

According to this alternative solution, machine groups and part assignments are as 

shown in Table 4.11. As can be seen from Table 4.10, although this solution gives 

optimum λ value (0.6667), the satisfaction level of goal 1 is 0.80 which is lower than 

the solution presented in Table 4.9.  

Table 4.10. An alternative solution obtained by TS algorithm 
Parameter 
set 

Tabu list size(T)=7; neighborhood size(N)=4; number of 
iterations(iter)=150 

CPU time 5 sec. 
Solution X1115, X1213, X1315, X2124, X2222, X2315, X3124, X3224, X3322 = 1 

μ1=0.80, μ2=0.6667, and λ=0.6667.  
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Table 4.11 Cell formation and part assignments for alternative solution 
CELL 1 CELL 2 
Machines Operations Machines Operations 
3 A2 1 C2 
5 A1, A3, B3 2 B2, C3 
  4 B1, C1 

Hence, when there is more than one solution with the same λ level, selecting the 

solution with the best Σμ would be a good way for tie-breaking rule. For instance, 

although the solution presented in Table 4.9 and  the solution given in Table 4.10 

have same λ value (0.6667) the first solution has Σμ=1.6667 and the second one has 

Σμ=1.4667. Hence we can conclude that, the first solution is better than the first one.  

Using additive method, LINGO and TS algorithm found same solution at 51st 

iteration (see Figure 4.6) with Σµ=1.6667. The corresponding solution vector is same 

with the solution presented in Table 4.6.  
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Figure 4.6. The behavior of  Σµ (additive method) 

In this section, FGP models from the literature and the deterministic form of cell 

formation model developed in Chapter 3 are solved with LINGO optimization 

software and TS algorithm. In comparing results, both additive and max-min models 

are considered. The results showed us, TS algorithm can be used for solving FGP 

models effectively. In the next Chapter, hybrid simulation-analytic FGP model for 
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cell formation in which some of goals are obtained by simulation model will be 

solved by TS.    

4.5. Chapter Summary & Conclusions 

 

Since the FGP model developed in Chapter 3 is a hybrid analytic-simulation 

model in which some of goals are obtained by a simulation model, the use of model 

independent solution approach such as tabu search, genetic algorithm, simulated 

annealing etc is required instead of classical solution approaches. 

TS is an adaptive search procedure that can handle any type of variables and 

constraints. TS works with more than one solution at a time (neighborhood 

solutions). Among these solutions, a DM can choose any solution that satisfies 

his/her requirements best. This feature of TS is important in dealing with multiple 

objectives or goals. Hence, in this dissertation, a tabu search based solution 

methodology is used for solution of FGP models. 

In this chapter, TS algorithm for solving FGP models is presented. The 

effectiveness of the algorithm is tested on several test problems from the literature. 

The results are compared with the results obtained by LINGO optimization software. 

Finally, the deterministic form of the FGP cell formation model developed in 

Chapter 3 is solved by TS algorithm considering two analytic goals (number of 

exceptional elements and total completion time for parts) and the results are again 

compared with results obtained by LINGO. Results showed that TS algorithm can be 

effectively used for solving both additive and max-min FGP models. 

In the next chapter, TS algorithm will be used for solving the hybrid analytic-

simulation FGP models in which some of goals are obtained by a simulation model.   

  



 

CHAPTER FIVE 

SOLUTION OF SIMULATION BASED HYBRID FGP MODELS FOR CELL 
FORMATION 

 

 

In the previous chapter, a C-program was coded for solving FGP models. The 

effectiveness of TS based solution approach was also tested on several test problems. 

In this chapter, the solution approach will be extended for solving hybrid analytic-

simulation FGP cell formation models. The general structure of the hybrid model 

was given in Chapter 3. As mentioned in Chapter 3, in this hybrid model, the 

achievement levels of some goals which are hard to represent analytically are 

obtained by a simulation model whereas the achievement levels of other goals are 

calculated analytically. As stated in earlier chapters, hybrid model also allows us to 

reflect the stochastic nature of the manufacturing system under consideration. The 

input such as processing times, part transfer times or part demand patterns can be 

easily reflected by simulation model which is integrated with TS based solution 

framework.  Moreover, the goals such as mean tardiness, utilization etc. that are hard 

to represent analytically can be calculated by simulation model. 

 

In Section 5.1 a base model is presented for illustrating the solution of hybrid FGP 

models using TS. Section 5.2 gives a brief explanation about ARENA simulation 

software and simulation models. The integration of TS based solution methodology 

with simulation will be discussed in Section 5.3. The structure of the C-program 

which is coded for solving hybrid analytic-simulation FGP models is presented in 

Section 5.4. The methodology is demonstrated on a small numerical example in 

Section 5.5. In this example, a manufacturing system which produces 3 different part 

types and consists of 5 machines is considered. The base hybrid model built in 

Section 5.1 which reflects the stochastic nature of the manufacturing system and 

routing flexibility is used for solution. Part demand rates, part processing times and 

part transfer times are all stochastic.  The steps of TS algorithm for solving proposed 

hybrid model which is integrated with simulation model are illustrated on this 

numerical example. 

95 
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 Sections 5.6 through 5.10 cover the application of solution methodology for 

models with different objectives and assumptions. 

 

In section 5.6, a manufacturing system which composed of 6 machines is 

considered. Six different jobs each of which have 3 sub-operations are performed. 

Each part can have different process plans. The processing times of operations on 

alternative machines are assumed to be equal. The base model built in Section 5.1 is 

used with the following fuzzy objectives: minimization of exceptional elements, 

maximization of system utilization, and minimization of time spent in the system. 

The achievement level of the first goal is calculated analytically whereas others are 

obtained from simulation. Max-min method and simple additive method are used for 

solution and the results are compared. 

 

In Section 5.6, more complex manufacturing system which consists of 10 

machines and 10 different part types (each part type is assumed to have 3 sub-

operations).  Again the base model built in Section 5.1 is used for solution. The 

solutions obtained by max-min method and additive method are compared. 

 

Section 5.8 covers a numerical example in which a manufacturing system that 

composed 8 machines and 8 different parts. In this example the assumption of “equal 

number of sub-operations for each part type” is relaxed. In this example, parts can 

have different number of sub-opertions. The base model is adapted to the new 

assumption and used for solution. The max-min and simple additive methods are 

again used for solution and the results are compared. 

 

In Section 5.9, a numerical example which composed of 6 machines and 6 

products is presented. In this example, the base model is used with the following 

objectives: minimizing number of exceptional elements, maximizing system 

utilization, minimizing mean tardiness, and minimizing the percentage of tardy jobs. 

The achievement level of the first goal is calculated analytically whereas others are 

obtained from simulation. The simulation model and the C-codes are adapted for new 
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objectives. The results obtained by max-min method and additive method are 

compared. 

 

Section 5.10 contains a numerical example taken from Vin & De Lit (2005) and 

considers 12 parts and 6 machines.  Number of operations for each part type varies 

between 1 and 3. Moreover, the processing times on alternative machines are also 

different. The model with tardiness objectives built in Section 5.9 is used for solution 

considering the max-min and additive methods and the results are compared. 

 

Chapter summary and the conclusions obtained from experimental study are given 

in Section 5.11. 

5.1. Solution of Simulation Based FGP Models for Cell Formation (Base model) 

In this section, a base model will be used for illustrating the solution methodology 

and integration issues. The base model is similar to the model developed in Chapter 3 

except for the goals. After illustrating the solution approach, models will be extended 

for new objectives and experiments. 

 The base model used to illustrate solution process contains three goals as given 

below: 

int
_1 : 1

ioc
Goal D goal

o ci
∑∑∑ p  5.1 

_ 2 : utilGoal system utilization goalf  5.2 

_ 3 : . timeGoal avg time spent in system goalp  5.3 

 

The objectives of the mathematical model are minimizing exceptional elements 

(Eq.5.1), maximizing system utilization (5.2), and minimizing time spent in the 

system (5.3). The first objective is determined by an analytical equation whereas 

other two objectives are determined by simulation model. The inter-cell movements 

should be substantially smaller than goalexcpt, system utilization should be 

substantially greater than goalutil, and the average time spent in the system should be 

substantially smaller than goaltime. Where, goalint, goalutil, goaltime represent the 
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aspiration levels for goals. The other constraints of the model are same with the 

model developed in Chapter 3. 

 

Constraints 
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The membership functions of the goals are given below: 
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Where, fi is the value of the ith objective function; Ui and Li are maximum and 

minimum limits of objectives.   

 

The shapes of the membership functions are given in Figures 5.1. For example, in 

Figure1, the first goal is allowed to be spread to the right-hand side of L1 with a 

certain range of r1 ( r1 = U1 - L1). 

 
 

µ2 µ1 

1 1 

U2 L1 L2U1 

 
(a) The membership function of  goal 1.               (b) The membership function of  goal 2. 
 

 
(c) The membership function of goal 3 

µ3 

1 

U3 L3

Figure 5.1. The membership functions of goals. 

As stated in Chapter 3, using the max-min operator λ, which is the overall 

satisfactory level of compromise, the standard goal programming formulation can be 

equivalently transformed as: 
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MaxZ λ=   

1μ λ≥   

2μ λ≥   

3μ λ≥   

And constraints (3.28-3.36). 

In this hybrid model, the production the distributions of part processing times, part 

arrivals and part transfer times are included in simulation model. The goals such as 

system utilization and average time spent in the system are also obtained from 

simulation model. Number of exceptional elements is calculated using equation 5.1.  

The general structure of the simulation models will be given in the next section. 

 

5.2. The General Structure of Simulation Models  

 

Simulation models of manufacturing system are built in SIMAN-ARENA 3.0 

simulation software. Arena is simulation and automation software developed by 

Rockwell Automation. It uses the SIMAN processor and simulation language. 

Systems are typically modeled in ARENA using a process orientation where we 

model a particular system by studying the entities that flow through the system. The 

model consists of a graphical representation of the processes through which the 

entities move as they progress through the system. 

 

 

http://en.wikipedia.org/wiki/Simulation
http://en.wikipedia.org/wiki/Automation
http://en.wikipedia.org/wiki/Rockwell_Automation
http://en.wikipedia.org/w/index.php?title=SIMAN&action=edit
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Figure 5.2 Sample model built in ARENA 3.0 

 

The models are built in ARENA by placing and interconnecting modules to 

represent the process through which entities flow (Figure 5.2). Such models typically 

contain at least one source module that creates entity arrivals to the system and one 

or more sink modules that provide for the departure of these entities from the system. 

A complete SIMAN-ARENA model consists of a MODEL frame and an 

EXPERIMENT frame. The model frame describes the logical flow of events within 

the system. Statements in the MODEL file are called “blocks”. The model file is a 

text file with the extension MOD (i.e. filename.mod). An example model file is given 

in Figure 5.3. 
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0$            CREATE,        
1,0:expo(12,1):MARK(time); 
1$            ASSIGN:        
jt=disc(0.333,1,0.666,2,1,3,2): 
                             picture=jt: 
                             ns=jt: 
                             m=dummy; 
2$            ROUTE:         0.0,seq; 
 
 
3$            STATION,       1-5; 
17$           ASSIGN:        control=0; 
4$            QUEUE,         m; 
5$            SEIZE,         1: 
                             m,1; 
6$            DELAY:         processtime(jt,is); 
7$            RELEASE:       m,1; 
9$            BRANCH,        1: 
                             If,is==3,11$,Yes: 
                             Else,15$,Yes; 
11$           TALLY:         t1,int(time),1; 
10$           DISPOSE; 
 
15$           BRANCH,        1: 
                                     
If,hucre(m)==hucre(rota(jt,is+1)),16$,Yes: 
                             Else,8$,Yes; 
16$           ASSIGN:        control=1; 
8$            ROUTE:         
(control==1)*0+(control==0)*expo(2,3),seq; 
 
 
12$           CREATE,        1,tfin:,1:MARK(time); 
13$           WRITE,         file1,"%7.5f %8.3f\n": 
                             davg(11), 
                             tavg(1); 
14$           DISPOSE; 
 

Figure 5.3. Example MODEL file 

The Experiment Frame specifies the experimental conditions for executing the 

model. Statements in the experiment file are called “elements”.  The experiment file 

is a text file with the extension of exp (i.e., filename.exp). An example experiment 

file is given in Figure 5.4. 

MODEL, EXPMT, and LINKER, translate SIMAN programs into a form the 

computer can understand. SIMAN itself takes these transformed programs and does 

the simulation. OUTPT then analyzes the output of the simulation. (Figure 5.5) 
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SEQUENCES:    
 
 

 
 
 
ATTRIBUTES:   1,jt: 
              2,time: 
              3,control; 
 
FILES:        1,file1,"c:\endustri\arena\deneozg.txt",Sequential(),Free 
Format,Error,No,Hold; 
 
VARIABLES:   
 
 
QUEUES:       5,buffers,FirstInFirstOut; 
 
RESOURCES:    5,machines,Capacity(1,),-,Stationary; 
 
STATIONS:     5,workcenter: 
              6,dummy; 
 
TALLIES:      1,t1; 
 
EXPRESSIONS:  1,processtime(3,3),5,7,7,8,6,4,7,4,5: 
              10,rota(3,3),5,4,4,3,2,1,1,5,5; 
 
DSTATS:       1,nq(1): 
              2,nq(2): 
              3,nq(3): 
              4,nq(4): 
              5,nq(5): 
              6,nr(1): 
              7,nr(2): 
              8,nr(3): 
              9,nr(4): 
              10,nr(5): 
              11,nr(1)+nr(2)+nr(3)+nr(4)+nr(5); 
 
OUTPUTS:      1,davg(11): 
              2,tavg(1); 
 
REPLICATE,    1,0.0,100000,Yes,Yes,10000; 
 

1,seq1,5&3&1:          
2,seq2,4&2&5:          
3,seq3,4&1&5; Part routing 

data 

 1,hucre(5),1,2,1,2,2; 

Cell 
formation 
data 

 Figure 5.4. An example experiment file. 
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Figure 5.5  ARENA-SIMAN runtime procedure. 

As stated above, the TS based solution approach presented in Chapter 3 is 

extended to solve hybrid simulation –analytic FGP models in which some goals are 

obtained by simulation model. For this purpose, the solution methodology is 

integrated with simulation model. The integration issues will be explained in next 

chapter. 

5.3 The Integration with Simulation Model 

  A TS based solution procedure presented in previous chapter is used for solving 

the hybrid model. Since the hybrid-model is integrated with simulation model, the 

solution approach is extended to include the interactions between simulation model 

and solution approach.  The codes of the developed C-program are given in 

Appendix A2. The flowchart of C program is illustrated in Figure 5.6.  
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Figure 5.6  TS algorithm for solving hybrid analytic-simulation FGP model. 

As seen in Figure 5.6, simulation model uses the part routing data and cell 

formation data. When TS algorithm creates neighborhood solutions, the part routing 

data and cell formation data is sent to the simulation model and the simulation model 

is modified for new conditions automatically. The interactions between TS algorithm 

and Simulation are illustrated in Figure5.7. When TS algorithm creates a new 

neighborhood solution ARENA experiment file is modified automatically. As can be 

seen from Figure 5.4, the modifications are take place in part routes (in Sequences 

Element) and cell formation data (in Variables Element). When a new solution is 

created, part routes and cell formation are changed in experiment file.  
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Figure 5.7 The interactions between TS algorithm and simulation model (Data flow diagram)  

 

After the simulation model is updated automatically, ARENA simulation software 

executes the simulation model and provides the simulation based objectives such as 

utilization, average time spent in system etc. The other objective (number of 

exceptional element) is calculated using analytic equation (eq.5.1) by C-program. 

Then the membership functions and Σµ values (λ values for max-min method) for 

each neighborhood solution are calculated. The solution with the highest Σµ value 

(highest λ value for max-min method) is selected as a new seed. The procedure is 

terminated when termination conditions are reached. 

 

5.4 The General Structure of the C-Program 

 

The developed C-program consists of several functions. The main functions are as 

follows: 

 

• InitialX:  This function creates a feasible initial solution that satisfies the 

constraints of the model. The developed model also allows us to start with 

a known good solution. 
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• GenerateX: This function generates new solutions (neighborhood 

solutions) from initial solution using move strategy given in Section 4.2. 

Note that, the feasibility of neighborhood solution is also checked. 

 

• Encode1: This function specifies the part assignments according to the 

solution under consideration. The machines that perform operations are 

specified and coded as to be recognized by simulation model. 

 

•  Encode2: Similar to Encode function, this function specifies the cell 

formation according to the neighborhood solution under consideration. 

 

•  Change: This function makes the necessary modifications on default 

experiment file of ARENA. The default experiment file contains the 

elements that are identical for all solutions. SEQUENCES element that 

contains part routes and VARIABLES element that contains machine cell 

formation data are modified according to solution under consideration. 

Other parts of the experiment file remain same for all solution. In default 

experiment file, the elements that will be modified are marked with 

character “ * ” (Figure 5.8). The change function of the C-Program opens 

the default experiment file and scans for “ * ” characters. The part routes 

are written in the field where the first “ * “ is encountered (in 

SEQUENCES  element). Then the change function writes the cell 

formation info where the second “ * “ character is encountered in default 

experiment file. Part routes should be also included in rota expression in 

EXPRESSIONS element. Hence the change function writes the part route 

information in the field where the third ” * “ is encountered. Then modified 

experiment file is stored as a new file. Note that we can modify other 

elements in the same way if it is needed. For example if the processing 

times of alternative machines are different we should modify the 

“processtime” in EXPRESSION experiments according to the current 

solution. After the modified experiment file is obtained, the simulation 
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software ARENA runs and provides the simulation based objective 

function values for the solution under consideration. 

 
SEQUENCES:    * 

ATTRIBUTES:   1,jt: 

              2,time: 

              3,control; 

FILES:        1,file1,"c:\endustri\arena\deneozg.txt",Sequential(),Free Format,Error,No,Hold; 

VARIABLES:    1,hucre(5),* 

QUEUES:       5,buffers,FirstInFirstOut; 

PICTURES:     1,p1: 

              2,p2: 

              3,p3; 

RESOURCES:    5,machines,Capacity(1,),-,Stationary; 

STATIONS:     5,workcenter: 

              6,dummy; 

TALLIES:      1,t1; 

DSTATS:       1,nq(1): 

              2,nq(2): 

              3,nq(3): 

              4,nq(4): 

              5,nq(5): 

              6,nr(1): 

              7,nr(2): 

              8,nr(3): 

              9,nr(4): 

              10,nr(5): 

              11,(nr(1)+nr(2)+nr(3)+nr(4)+nr(5))/5; 

OUTPUTS:      1,davg(11): 

              2,tavg(1); 

REPLICATE,    1,0.0,100000,Yes,Yes,10000; 

EXPRESSIONS: 

processtime(3,3),unif(5,9),unif(6,8),unif(5,9),unif(8,9),unif(7,9),unif(7,8),unif(6,9),unif(6,8),unif(7,9): 

The fields 
marked with * 
are written 

hen a new 
lution is 

w
so

             rota(3,3),* 

Figure5.8 Default EXPERIMENT file 

 

•  Processoutfile: The performance measures (goals) obtained by simulation 

model is recorded in a text file called “output.txt” for each replications. 

Processoutfile function reads output.txt file and obtains the replication 

averages of performance measures. 
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The general structure of the c-program and the interactions with the simulation 

model are demonstrated on the following numerical example. 

 

5.5 An Illustrative Example 

 

The manufacturing system under consideration consists of 5 machines and 

performs 3 different jobs. Each job consists of 3 operations and can have alternative 

process routes. The alternative routes for operations and processing times are given 

in Table 5.1. Processing times are uniformly distributed; part arrivals are 

exponentially distributed with a mean of 9 min. The minimum and maximum 

numbers of machines that can be assigned to a manufacturing cell are 2 and 3 

respectively. Inter-cell part transfer times are exponentially distributed with a mean 

of 2 and the intra-cell transfer times are negligible. The base model in Section 5.1 

will be considered for solving this example. Since the achievement levels of some 

goals are obtained by simulation model, the maximum and minimum levels of the 

goals are determined by pilot simulation runs. For this purpose, a number of 

simulation models that belong to different cell formations and part assignments are 

executed. The warm-up period for simulation runs is also determined by pilot 

studies. The variance reduction technique of common random numbers (Pegden, 

Shannon and Sadowski, 1990) is used for synchronization of random numbers so that 

the solutions are compared under similar conditions.  

 
Table 5.1. Alternative routes and process times 

Job Operation Alternative 
process plan 

Processing time 
(min.) 

A1 1, 4, 5 Unif (5, 9) 
A2 3, 4 Unif (6, 8) JOB1 
A3 1, 5 Unif (5, 9) 
B1 4,5  Unif (8, 9) 
B2 1, 2, 3 Unif (7, 9) JOB2 
B3 5 Unif (7, 8) 
C1 4, 5 Unif (6, 9) 
C2 1, 4 Unif (6, 8) JOB3 
C3 1,2, 5 Unif (7, 9) 
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The tolerance values (min-max. limits) of goals are given in Table 5.2. The 

simulation model is built, tested and validated. The warm-up period is 10.000 and the 

replication length is chosen as 100.000 time units. Five independent replications for 

each alternative are performed. 
 

Table 5.2 Aspiration levels for goals 

Goal Min-Max limits 
Min. Inter-cell movements 0 38 
Max. System utilization 0.40 0.50 
Min. Time spent in the 
system 

 30 40 

 

5.5.1 Determination of TS Parameters 
 

The TS parameters such as maximum number of iterations, tabu list size, 

neighborhood size should be determined. As stated in previous chapter, these 

parameters depend on the problem, type of constraints and variables. There is no 

certain rule for determining these parameters. These parameters are generally 

determined trial and error. 

 

The maximum number of iterations should be big enough to assure convergence. 

The number of iterations should be increased for larger problems. 

 

If variables are spread in a wide range, it is suggested to work with higher number 

of neighborhood solutions. Otherwise, smaller number of neighborhood solutions can 

be used. Since our model uses 0-1 variables, the small neighborhood sizes are used 

for solving the proposed models. As stated above, the related simulation model is run 

for predefined number of replication. So higher the number of neighborhood 

solutions longer the computation time. Plot studies showed that keeping the 

neighborhood size in range of 5-8 is enough for solving our examples.  

 

In our experiments, tabu list size, minimum 7 and maximum 11 which is 

suggested by Glover and Laguna (1993). 
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For this example, tabu list size and neighborhood size are chosen as 7 and 5 

respectively. Maximum number of iterations is chosen as 200. 

 

5.5.2 Solution 
 

Considering the alternative routes and maximum number of cells, the solution 

vector is composed of Xiocm variables (See Section 3.2)  as given below: 

S= [X1111, X1114, X1115, X1121, X1124, X1125, X1213, X1214, X1223, X1224, X1311, X1315, X1321, 

X1325, X2114, X2115, X2124, X2125, X2211, X2212, X2213, X2221, X2222, X2223, X2315, X2325, X3114, 

X3115, X3124, X3125, X3211, X3214, X3221, X3224, X3311, X3312, X3315, X3321, X3322, X3325] 

 

At the first step, the default simulation model of the manufacturing system is built 

using ARENA 3.0. The parts of the default experiment file that will be modified are 

marked with the “ * ” character.  As stated above, when TS creates a new solution 

(neighborhood solution) SEQUENCES (part routes) and VARIABLES (cell 

formations) elements in experiment file are modified. Assume that we started with 

the following initial solution:  

 

S1=[1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,1,0,0,0,0] 

 

The part assignments and machine cells that correspond to the initial solution are 

given in Table 5.3. 

 
Table 5.3 Part assignment & cell formation (Initial solution) 

CELL 1 CELL 2 
Machines Operations Machines Operations 
1 A1, A3, C2 4 B1 
2 B2, C3 5 B3, C1 
3 A2   

 

 

Encode 1 and Encode 2 functions of the C-Program convert the binary initial 

solution vector to part routes and machine cells that can be recognized by ARENA 
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model. The change function of the C-program makes the necessary modifications on 

the default experiment file. Part routes and cell formations according to initial 

solution is written in the fields that is marked with “ * “ character in the default 

experiment file. The modified experiment file is as given in Figure 5.9 

 
SEQUENCES:     

 

 

 

ATTRIBUTES:   1,jt: 

              2,time: 

              3,control; 

FILES:        1,file1,"c:\endustri\arena\deneozg.txt",Sequential(),Free Format,Error,No,Hold; 

VARIABLES:    1,hucre(5),  

QUEUES:       5,buffers,FirstInFirstOut; 

PICTURES:     1,p1: 

              2,p2: 

              3,p3; 

RESOURCES:    5,machines,Capacity(1,),-,Stationary; 

STATIONS:     5,workcenter: 

              6,dummy; 

1,seq1,1&3&1:          
2,seq2,4&2&5:          
3,seq3,4&1&2; 

  1,hucre(5),1,1,1,2,2; 

The 
modified 
experiment 
file  

TALLIES:      1,t1; 

DSTATS:       1,nq(1): 

              2,nq(2): 

              3,nq(3): 

              4,nq(4): 

              5,nq(5): 

              6,nr(1): 

              7,nr(2): 

              8,nr(3): 

              9,nr(4): 

              10,nr(5): 

              11,(nr(1)+nr(2)+nr(3)+nr(4)+nr(5))/5; 

OUTPUTS:      1,davg(11): 

              2,tavg(1); 

REPLICATE,    1,0.0,100000,Yes,Yes,10000; 

EXPRESSIONS: 

processtime(3,3),unif(5,9),unif(6,8),unif(5,9),unif(8,9),unif(7,9),unif(7,8),unif(6,9),unif(6,8),unif(7,9):   1,4,4,3,2,1,1,5,2:

             rota(3,3), 

Figure 5.9 Modified EXPERIMENT file 
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After the modifications are made, the modified experiment file is stored as a new 

file. After the modified experiment file is obtained, the simulation software ARENA 

runs and provides the simulation based objective function values (i.e. system 

utilization, average time spent in the system). The other objective (the number of 

exceptional elements) is calculated analytically by the C-Program. The objective 

functions for the initial solution are as follows: 

 

G1 (number of exceptional elements) = 3; µ1=0: 

G2 (System utilization-obtained from simulation) = 0.4945; µ2= 0.9450: 

G3 (Avg. Time spent in the system-obtained from simulation) = 48.5960; µ3= 0: 

 

Hence λ = Min (µ1, µ2, µ3) = 0. 

 

Then the feasible neighborhood solutions are created from initial seed. Assume 

that the below neighborhood solution is created.  

 

S2= [0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0 ] 

 

The part assignments and the cell formation that correspond to this solution are 

given in Table 5.4. 

 
Table 5.4 

CELL 1 CELL 2 
Machines Operations Machines Operations 
1 A3, C2 3 A2, B2 
2 C3 4 A1, B1 
  5 B3, C1 

 

Part routings and machine cell formations are again written on default experiment 

file and the model for this solution is created automatically. ARENA executes the 

model and the objective function values for this solution are obtained as: 

 

G1 (number of exceptional elements) = 2; µ1=0.3333: 

G2 (System utilization) = 0.4965; µ2= 0.4965: 
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G3 (Avg. Time spent in the system) = 32.5860; µ3= 0.7140: 

The overall satisfaction level λ = min (µ1, µ2, µ3) =0.3333. 

 

The same steps are performed for each solution in a neighborhood. The solution 

with the highest λ (Σµ for additive method) is selected as a new seed. The other steps 

of the algorithm are same with original TS algorithm. Note that all these calculations 

are performed by C-program automatically. 

 

The best solution is found at 38th iteration. The TS and simulation parameters and 

the best solution are given in Table 5.5. 

 
Table 5.5 TS and simulation parameters and the best solution obtained. 

Parameter set 
(TS) 

Tabu list size(T)=7; neighborhood size(N)=5; number of 
iterations(iter)=150 

Parameter set 
(Simulation) 

Replication length:50000 min.; Number of replications:5: Warm up period: 
10000 min. 

CPU time 98 sec. 
Solution X1121, X1223, X1321, X2124, X2222, X2325, X3115, X3214, X3312 = 1 

g1=0 ; g2=0.5030; g3=31.2650 
μ1=1.0000, μ2=1.0000, μ3= 0.8735 and λ=0.8735.  

 

According to the best solution, machine cell formation and part assignments are 

given in Table 5.6. As can be seen from Table.5.6, two machine cells are formed. 

The first cell is composed of machines 2, 4 and 5. The second cell covers the 

machines 1 and 3. According to the best solution, there are no exceptional elements 

and the membership function of goal1, μ 1=1.0000. The utilization level is obtained 

form the simulation model as 0.5030 which is greater than the upper limit of goal 2. 

Hence the membership function value of the second goal is   μ2=1.0000. The average 

time spent in the system is 31.265 min. Hence the membership function value of the 

third goal is μ3= 0.8735. The overall satisfaction level of the system λ = min (µ1, µ2, 

µ3) = 0.8735. 
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Table 5.6 Part assignment and cell formation according to the best solution. 

CELL 1 CELL 2 
Machines Operations Machines Operations 
2 B2, C3 1 A1, A3 
4 B1, C2 3 A2 
5 B3, C1   

 

 

5.6 Numerical Example 1 (6 machines- 6 parts) 

 

In this example, a manufacturing system which composed of 6 machines is 

considered. 6 different jobs each of which have 3 sub operations are performed in 

this manufacturing system. The alternative routes for operations and processing times 

are given in Table5.7. Processing times are uniformly distributed; part arrivals are 

exponentially distributed with a mean of 7 min. The minimum and maximum 

numbers of machines that can be assigned to a manufacturing cell are 2 and 3 

respectively. Inter-cell part transfer times are exponentially distributed with a mean 

of 2 and the intra-cell transfer times are negligible. The tolerance values (min-max. 

limits) of goals are given in Table 5.8.  

 

Note that, in this example, it is assumed that the processing times of alternative 

machines are same (i.e. alternative machines are identical). The number of operations 

for each job is also assumed to be equal (i.e. each job has 3 sub-operations). These 

assumptions will be relaxed in the next sections. It is also assumed that the parts 

arrive the system with batch size of 1. Job types are assigned with the discrete 

probability distribution as disc (0.1667, 1, 0.3333, 2, 0.5, 3, 0.6667, 4, 0.8333, 5, 1, 

6). This means that the probability of all part types are equal (p = 0.1667). 

 

The goals considered in this model are: number of exceptional elements 

(minimization.), system utilization (maximization), and time spent in the system 

(minimization), the first goal is determined by an analytical equation whereas others 

are obtained by simulation model. The Simulation model is built using ARENA 3.0 

Simulation Software, tested and validated. 
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 The warm-up period for simulation model is determined as 10.000 min. and the 

replication length is chosen as 100.000min. for this example. The number of 

independent replications is chosen as 5 for each alternative. The parameter set of 

tabu search algorithm is chosen by trial and error. Tabu list size and neighborhood 

size are chosen as 8 and 5 respectively. Maximum number of iterations is chosen as 

300. 

 
Table 5.7  Alternative process plans and processing times. 
Job Operatio

n 
Alternative 
process plan 

Processing 
time 

 
A1 1, 5, 6 Unif(10, 13) 
A2 3, 4 Unif(7, 9) JOB1 
A3 1, 5 Unif(6, 9) 
B1 5, 6 Unif(8, 9) 
B2 1, 2, 3 Unif(8,10) JOB2 
B3 5 Unif(7, 9) 
C1 4,5 Unif(8,11) 
C2 1, 4 Unif(6,8) JOB3 
C3 1, 2, 5 Unif(8,10) 
D1 2 Unif(7, 9) 
D2 2, 3 Unif(7, 8) JOB4 
D3 3 Unif(7,10) 
E1 1, 2 Unif(8,10) 
E2 3 Unif(7, 9) JOB5 
E3 1, 4 Unif(7, 8) 
F1 4, 6 Unif(7,10) 
F2 6 Unif(8, 9)  

JOB6 F3 3 Unif(9,10) 
 
 
Table 5.8 Aspiration levels for goals 
Goal Min-Max limits 
Min. Inter-cell movements 3 8 
Max. System utilization 0.30 0.75 
Min. Time spent in the 
system 

40 45 

 
 
The proposed methodology was applied to the above case. The best solution is found 

at 89th iteration. The TS and simulation parameters and solution vector is given in 

Table 5.9 
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Table 5.9 TS and simulation parameters and the best solution obtained. 

Parameter set 
(TS) 

Tabu list size(T)=7; neighborhood size(N)=5; number of 
iterations(iter)=300 

Parameter set 
(Simulation) 

Replication length:100000 min.; Number of replications:5: Warm up 
period: 10000 min. 

CPU time  262 sec. 
Solution X1126, X1224, X1315, X2126, X2211, X2315, X3115, X3211, X3312 , X4112 , X4212, 

X4323, X5111, X5223, X5324, X6124, X6226, X6323= 1 
g1 = 4 ; g2 = 0.5927; g3 = 41.0875 
μ1= 0.7500 , μ2= 0.6504 , μ3= 0.7825  and λ= 0.6504.   

 

Using the max-min method, the best λ value is found as 0.6504. The solution is 

summarized in Table 5.10. According to the solution vector, 2 cells are formed. The 

first cell is composed of machines 1-2-5 and the second cell is composed of 

machines 3-4 and 6. There are 4 inter-cell movements and the satisfaction level of 

the first goal  µ1 = 0.75. The system utilization level is found as 0.5927 and 

µ2=0.6504. The average time spent in the system is found as 41.0875 min and 

µ3=0.7825. So the overall satisfaction level is λ=0.6504. 

Table 5.10  Machine Cells formation and part assignments according to the solution (max-min 
method) 
CELL 1 CELL 2 
Machines Operations Machines Operations 
1 B2, C2, E1 3 D3, E2, F3 
2 D1, D2, C3 4 A2, E3, F1 
5 A3, B3, C1 6 A1, B1, F2 

 

The proposed methodology is applied to the above case using simple additive 

method. The best solution is found at 197th iteration. The best Σµ value is found as 

2.6180. The solution is summarized in Table 5.11. According to the solution 

obtained using additive method, there are 2 inter-cell movements and the satisfaction 

level of the first goal  µ1 = 1. The system utilization level is found as 0.5781 and 

µ2=0.6180.  The average time spent in the system is found as 39.376 min. and µ3=1.  

According to the solution obtained by max-min method, the achievement level of 

goal_2 (0.6504) is higher than simple additive method (0.6180). However, the 

achievement levels of other goals (µ1=1 and µ3=1) are higher than max-min method 

(µ1=0.75, µ3=0.7825). In simple additive method, the achievement levels of some 
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goals will not decrease because of a particular goal that is difficult to achieve. This 

advantage makes the simple additive method appealing. As a whole, the sum of 

achievement levels of goals in the solution obtained by simple additive method is 

greater than max-min method. 

Table 5.11 Machine Cells formation and part assignments according to the solution (additive method) 
CELL 1 CELL 2 
Machines Operations Machines Operations 
1 A3, B2, C2 3 D3, E2, F3 
2 D1, D2, E1 4 A2, E3, F1 
5 B1, B3, C1, C3 6 A1, F2 

5.7 Numerical Example 2 (10 machines-10 parts) 

In this example, manufacturing system is composed of 10 machines and performs 

10 jobs. Each job consists of 3 sub-operations. The alternative routes for operations 

and processing times are given in Table5.12. Processing times are uniformly 

distributed; part arrivals are exponentially distributed with a mean of 5 min.  
 
Table 5.12 Alternative process plans and processing times. 
Job Operation Alternative process 

plan 
Processing time 

 
A1 1, 3, 10 Unif(4, 7) 
A2 2, 5, 7 Unif(5, 8) JOB1 
A3 4 Unif (6, 9) 
B1 6, 8, 10 Unif (7,10) 
B2 4, 8 Unif (8, 9) JOB2 
B3 9 Unif (2, 5) 
C1 2, 4, 7 Unif (6, 9) 
C2 6, 9 Unif (5, 7) JOB3 
C3 1, 3 Unif (4, 6) 
D1 4, 6 Unif (4, 7) 
D2 2, 4, 7 Unif (7, 9) JOB4 
D3 1, 5 Unif (6, 8) 
E1 5 Unif (8, 9) 
E2 3, 6, 10 Unif (7, 9) JOB5 
E3 9 Unif (6, 8) 
F1 8 Unif (7, 8) 
F2 5, 7, 9 Unif (8, 9) 

 
JOB6 

F3 3, 8 Unif (9, 11) 
G1 1, 2 Unif (5, 8) 
G2 3, 4, 6 Unif (8, 9) JOB7 
G3 6 Unif (5, 9) 
H1 2, 8, 9 Unif (6, 8) 
H2 10 Unif (8, 9) JOB8 
H3 7, 9 Unif (7, 8) 
I1 5, 6, 7 Unif (8, 9) 
I2 1, 2 Unif (7, 9) 

 
JOB9 

I3 3, 8 Unif (6, 8) 
J1 1 Unif (5, 9) 
J2 4, 7, 8 Unif (4, 7) 

 
JOB1
0 J3 4 Unif (3, 6) 
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The minimum and maximum numbers of machines that can be assigned to a 

manufacturing cell are 2 and 4 respectively. Inter-cell part transfer times are 

exponentially distributed with a mean of 2 and the intra-cell transfer times are 

negligible. The tolerance values (min-max. limits) of goals are given in Table 5.13.  

 
Table 5.13 Aspiration levels for goals 
Goal Min-Max limits 
Min. Inter-cell movements 0 5 
Max. System utilization 0.30 0.65 
Min. Time spent in the 
system 

50 60 

 

The proposed methodology was applied to the above case. The best solution is found 

at 311th iteration. The TS and simulation parameters and solution vector is given in 

Table 5.14. 

 
Table 5.14 TS and simulation parameters and the best solution obtained. 

Parameter set 
(TS) 

Tabu list size(T)=7; neighborhood size(N)=5; number of 
iterations(iter)=300 

Parameter set 
(Simulation) 

Replication length:50000 min.; Number of replications:5: Warm up 
period: 10000 min. 

CPU time  493 sec. 
Solution X1111, X1212, X1314, X2128, X2228, X2329, X3137, X3236, X3333 , X41124, X4212, 

X4311, X5125, X522 10, X5329, X6128, X6225, X6328, X7111, X7214, X7336, X8129, X822 

10, X8329, X9137, X9212, X9333, X10 111, X10 214, X10 314= 1 
g1 = 3 ; g2 = 0.5800; g3 = 52.9644 
μ1= 0.6000 , μ2= 0.8000 , μ3= 0.7036  and λ= 0.7036   

 

Using the max-min method, the best λ value is found as 0.7036. The solution is 

summarized in Table 5.15. According to the solution vector, 3 cells are formed. The 

first cell is composed of machines 1-2-4, the second cell is composed of machines 5-

8-9-10 and cell 3 includes machines 3-6-7. There are 3 inter-cell movement and the 

satisfaction level of the first goal  µ1 = 0.6000. The system utilization level is found 

as 0.5800 and µ2=0.8000. The average time spent in the system is found as 52.9694 

min. and µ3=0.7036. So the overall satisfaction level is λ=0.7036. The additive 

method gives the same solution with  Σµ=2.104. 
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The problem size is depend on the number of alternatives for each operation, 

number of operations for each job, number of part types and the number of that can 

be formed .As can be seen from the solution, the computation time is increased when 

the problem size gets larger.  

 
Table 5.15 Machine Cells formation and part assignments according to the best solution 

CELL 1 CELL 2 CELL 3 

Machines Operations Machines Operations Machines Operations 
1 A1, D3, G1, J1  5 F1, F2 3 C3, I3 
2 A2, D2, I2 8 B1, B2, F1, F3 6 C2, G3 
4 A3, D1, G2, J2, J3 9 B3, E3, H1, H3 7 C1, I1 
  10 E2, H2   

 

5.8 Numerical Example 3 (8 machines-8 parts) 

 

In this example, the manufacturing system is composed of 8 machines and 

performs 8 jobs. The alternative routes for operations and processing times are given 

in Table5.16.  

 
Table 5.16 Alternative process plans and processing times 

Job Operatio
n 

Alternative 
process plan 

Processing time 
 

A1 1, 2, 8 Unif(6,8) 
A2 3,  Unif(8,10) JOB1 
A3 1, 7 Unif(7,9) 
B1 3, 4 Unif(5,8) JOB2 B2 1, 3, 5 Unif(4,7) 
C1 3, 4 Unif(8,10) JOB3 C2 1, 6 Unif(9,10) 
D1 6, 8 Unif(6,7) 
D2 4, 5 Unif(4,7) JOB4 
D3 4 Unif(5,8) 
E1 7, 8 Unif(7,8) JOB5 E2 6, 7 Unif( 4,6) 
F1 1, 4, 8 Unif(9,11) 
F2 5, 7 Unif(8,10)  

JOB6 F3 3, 6 Unif(9,10) 
G1 1, 2 Unif(7,10) 
G2 2, 3 Unif(6,9) JOB7 
G3 4 Unif(5,8) 
H1 5 Unif(5,7) 
H2 5, 6 Unif(7,8) 
H3 3, 6 Unif(8,11) JOB8 

H4 2, 5 Unif(9,10) 
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Note that in this example, the number of sub-operations varies in the range of 2-4 

for each job. Hence this example differs form the previous one by relaxing the 

assumption of “equal number of sub-operations”. Processing times are uniformly 

distributed, part arrivals are exponentially distributed with a mean of 7 min.  

 

The minimum and maximum numbers of machines that can be assigned to a 

manufacturing cell are 2 and 3 respectively. Inter-cell part transfer times are 

exponentially distributed with a mean of 2 and the intra-cell transfer times are 

negligible. The tolerance values (min-max. limits) of goals are given in Table 5.17. 

 
Table 5.17 Aspiration levels for goals 

Goal Min-Max limits 
Min. Inter-cell movements 2 6 
Max. System utilization 0.30 0.60 
Min. Time spent in the 
system 

30 50 

 

The proposed methodology is applied to the above case. The best solution is found at 

121st iteration. The TS and simulation parameters and solution vector is given in 

Table 5.18. 

 
Table 5.18 TS and simulation parameters and the best solution obtained. 

Parameter 
set (TS) 

Tabu list size(T)=7; neighborhood size(N)=5; number of 
iterations(iter) = 300 

Parameter 
set 
(Simulation) 

Replication length:100000 min.; Number of replications:5: Warm up 
period: 10000 min. 

CPU time  315 sec. 
Solution X1112, X1213, X1311, X2112, X2225, X3114, X3211, X4126, X4214 , X4314, X5128, 

X5227, X6128, X6225, X6326, X7112, X7212, X7314, X8125, X8225,X8326,X8425= 
1 
g1 = 3 ; g2 = 0.4689; g3 = 34.2260 
μ1= 0.7500 , μ2= 0.5630 , μ3= 0.7887  and λ= 0.5630   

 

Using the max-min method, the best λ value is found as 0.5630. The solution is 

summarized in Table 5.19. According to the solution vector, 2 cells are formed. 

Machines 1-2-3-4 constitute Cell1 and the second cell is composed of machines 5-6-

7-8.  According to the solution, there are 3 inter-cell movements and the satisfaction 
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level of the first goal  µ1 = 0.7500. The system utilization level is found as 0.4689 

(µ2=0.5630). The average time spent in the system is found as 34.2260 min 

(µ3=0.7887). So the overall satisfaction level is λ=0.5630. 

 
Table 5.19 Machine Cells formation and part assignments according to the best solution (max-min 

method) 

CELL 1 CELL 2 
Machines Operations Machines Operations 
1 C2 5 B2, F2, H1, H2, H4 
2 A1, B1, G1 6 D1, F3, H3 
3 A2, C1, G2 7 A3, E2 
4 D2, D3, G3 8 E1, F1 

 

Using simple additive method the best solution is found at 220th iteration. The best 

Σµ value is found as 2.3970. The solution is summarized in Table 5.20. According to 

the bet solution obtained by using additive method, there are 2 inter-cell movement 

and the satisfaction level of the first goal  µ1 = 1. The system utilization level is 

found as 0.4507 and µ2=0.5025.  The average time spent in the system is found as 

32.9100 min and µ3=0.8546. In additive method, the satisfaction levels of firs and 

third goal are better than max-min method. The satisfaction level of the second goal 

which is hard to achieve is higher in max-min method. 

 
 Table 5.20 Machine Cells formation and part assignments according to the best solution (additive 

method) 

CELL 1 CELL 2 
Machines Operations Machines Operations 
1 A3, C2 5 B2, F2, H1, H2, H4 
2 A1, B1, G1, G2 6 D1, F3, H3 
3 A2 7 E2 
4 C1, D2, D3, G3 8 E1, F1 

 

5.9. Numerical Example 4 (model with tardiness objectives) 

 

This numerical example is taken from Eski and Özkarahan (2007). In previous 

examples, the base model in which the number of exceptional elements, system 

utilization and average time spent in the system are considered as goals was used. In 
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this example, the tardiness based objectives as in the model proposed in chapter 3 

will be considered for solution. The goals considered in this model are: 

 

1 i
_1 :

ioc
Goal D goal

o ci
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nt
 

5.4 

_ 2 : utilGoal system utilization goalf  5.5 

_ 3 : tardinessGoal mean tardiness goalp  5.6 

_ 4 : tardyjobsGoal percentage of tardy jobs goalp  5.7 

 

The number of exceptional elements (eq. 5.4), mean tardiness (eq. 5.6) and the 

percentage (eq. 5.7) of tardy jobs will be minimized whereas system utilization (eq. 

5.5) will be maximized in minimum and maximum limits. The first objective is 

determined by an analytical equation whereas other objectives are determined by 

simulation model. The number of exceptional elements should be substantially 

smaller than goalexcpt, system utilization should be substantially greater than goalutil, 

the mean tardiness should be substantially smaller than goaltardiness and the percentage 

of tardy jobs should be substantially smaller than goaltardyjobs. 

Table5. 21 Alternative routes (process plans) and Processing times of operations. 

Job Operation Alternative 
process plan 

Processing time 
(min.) 

A1 1, 5, 6 Unif(6,7) 
A2 3, 4 Unif(5,8) JOB1 
A3 1, 5 Unif(4,7) 
B1 5, 6 Unif(5,6) 
B2 1, 2, 3 Unif(5,6) JOB2 
B3 5 Unif(6,7) 
C1 4, 5 Unif(5,8) 
C2 1, 4 Unif(3,4) JOB3 
C3 1, 2, 5 Unif(5,7) 
D1 2 Unif(7,8) 
D2 2, 3 Unif(5,6) JOB4 
D3 3 Unif(6,7) 
E1 1, 2 Unif(5,7) 
E2 3 Unif(7,9) JOB5 
E3 1, 4 Unif(6,8) 
F1 4, 6 Unif(7,8) 
F2 6 Unif(4,5) JOB 6 
F3 3 Unif(4,6) 

 

The manufacturing system under consideration consists of 6 machines and 

performs 6 different jobs. Each job consists of 3 sub-operations and can have 
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alternative process routes. The alternative routes for operations and processing times 

are given in Table 5.21. Processing times are uniformly distributed, part arrivals are 

exponentially distributed with a mean of 5 min. The minimum and maximum 

numbers of machines that can be assigned to a manufacturing cell are 2 and 3 

respectively. Inter-cell part transfer times are exponentially distributed with a mean 

of 2 and the intra-cell transfer times are negligible. The tolerance values (min-max. 

limits) of goals are given in Table 5.22.  

Table 5.22 The tolerance values of goals 

Goal Min-Max limits 
Inter-cell movements 2 5 
System utilization 0.30 0.75 
Mean tardiness 0 7 
Percentage of tardy jobs 10 30 
 

5.9.1 Due Date Assignment 
 

For tardiness objectives, it is needed to assign due dates of parts. The type of due 

date assignment that allows the producer the freedom to set due dates are known as 

endogenous due date assignment. Sabuncuoğlu and Hommertzheim [10] found Total 

work content (TWK) rule (Blackstone et al., 1982) effective and it has been widely 

used in job shop studies. In these experiments, TWK rule is used to set part due dates 

using the following definition: 

 

.D TNOW k P= +  (5.8) 

 
Where, D is the due date of job, TNOW is the release time of the job, P is the total 

processing time of the job and k is the parameter specified by the management (k≥1). 

In this study, parameter k is taken as 3 (i.e. due date of a job is three times greater 

than its total processing time).  
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5.9.2 Solution 
 

The warm-up period is determined as 5.000 min. and the replication length is 

chosen as 50.000min.The number of independent replications is chosen as 5 for each 

alternative. The parameter set of tabu search algorithm is chosen by trial and error. 

Tabu list size and neighborhood size are chosen as 8 and 5 respectively. Maximum 

number of iterations is chosen as 300. 

 
The simulation model is extended in order to reflect due date assignment 

procedure and the objectives of mean tardiness and percentage of tardy jobs. The 

Model and experiment frames of the extended simulation model are given in 

Appendix A3. The C-program is also modified in order to employ new objectives 

(number of tardy jobs and percentage of tardy jobs). 

 

First the TS based solution methodology is applied to case using max-min 

method. The best solution is found in 183rd iteration. The solution is summarized in 

Table 5.23. According to the solution using max-min method two cells formed. The 

first machine cell consists of machines 1-4-6 and the second cell composed of 

machines 2-3-5.The best λ value is found as 0.6517(µ1=1; µ2=0.6517; µ3= 0.6611; 

µ4= 0.8325). 

Table 5.23 Machine Cells formation and part assignments according to the solution (max-min 
method) 

CELL 1 CELL 2 
Machines Operations Machines Operations 
1 A3, C2, C3 2 D1, D2, E1,E3 
4 A2, C1, F1 3 B2, D3,E2, F3 
6 A1,  F2 5 B1, B3 

 

Then the proposed methodology is applied to the above case using simple additive 

method. The best solution is found at 233rd iteration. The best Σµ value is found as 

3.28. The solution is summarized in Table 5.24. According to the solution vector, 2 

cells are formed. The first cell is composed of machines 1-4-5 and the second cell is 

composed of machines 2-3 and 6. There are 2 inter-cell movement and the 

satisfaction level of the first goal  µ1 = 1. The system utilization level is found as 
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0.5820 and µ2=0.6267. The mean tardiness is found as 1.9541 min.  and µ3=0.7208. 

The percentage of tardy jobs is found as 11.35% and µ4=0.9325.  

Table 5.24 Machine Cells formation and part assignments according to the solution (Simple additive 
method). 

CELL 1 CELL 2 
Machines Operations Machines Operations 
1 A3, B2, C3 2 D1, D2, E1 
4 A2, C2, E3 3 D3, E2, F3 
5 A1, B3, C1 6 B1, F1, F2 

 

Based on the solution obtained by simple additive method, the achievement 

degrees of the second goal (max. of system utilization) is small (0.6267) because it is 

difficult to achieve. However the achievement levels of other goals are between 

0.7208 and 1. According to the solution obtained by max-min method, the 

achievement level of goal_2 (0.6517) is higher than simple additive method. 

However the achievement levels of goal_3 and goal_4 are lessen.  

 

The proposed methodology is applied to the same case using the preemptive method 

(priority level 1: goal_2; Priority level 2: goal_3; priority level 3: goal_4; priority 

level 5: goal_1). The best solution obtained by preemptive method is given in Table 

5.25. 

Table 5.25 Machine Cells formation and part assignments according to the solution (Preemptive 
method). 

CELL 1 CELL 2 
Machines Operations Machines Operations 
1 B2, E1 2 D1, D2 
5 A3, B3, C1 3 C2, D3, E2, F3 
6 A1, B1, F2 4 A2, C3,E3, F1 

 

According to the solution obtained by preemptive method, 2 cells formed. The 

first cell is composed of machines 1-5-6 and the second cell is composed of 

machines 2-3 and 4. There are 5 inter-cell movements and the satisfaction level of 

the first goal  µ1 = 0. The system utilization level is found as 0.6034 and µ2=0.674. 

The mean tardiness is found as 2.544 min. and µ3=0.6365. The percentage of tardy 

jobs is found as 13.43% and µ4=0.8295. As stated in Section 4.2, the preemptive 

method aims to maximize the satisfaction level of the highest priority goal. Therefore 
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the results of the preemptive method are different form other two methods given 

above and depend on the priority levels. As can be seen from the results, the 

achievement level of the second goal (system utilization) which has the highest 

priority is higher than max-min method and additive method. However the 

achievement levels of other goals are lessen.  

 

It is obvious that a decision maker can find different cell configurations by using 

different tolerance limit sets. The changes in the part arrival rates or part processing 

times or k parameter also lead different part assignments and cell configurations. 

Since the proposed model is based on a parametric simulation model, the system can 

be easily modified for different production requirements. For example when k 

parameter in TWK rule is taken as 2 instead of 3 the manufacturing cells would form 

as in table 5.26.  In this case, Σµ value is found as 2.6854 (µ1= 1; µ2=0.6502; µ3= 

0.4408; µ4= 0.5944). It is obvious that, the achievement levels of mean tardiness and 

percentage of tardy jobs are decreased when tight due dates are used. 

Table 5. 26 Machine Cells formation and part assignments (k = 2) 

CELL 1 CELL 2 
Machines Operations Machines Operations 
1 A1, C3 2 D1, D2, E1 
4 A2, C2,E3 3 B2, D3, E2,F3 
5 A3,  B3, C1 6 B1,F1, F2 
 

5.10 Numerical Example 5 (6 machines-12 parts) 

 

This example is taken from Vin and De Lit (2005) and considers 12 parts and 6 

machines. Some data about processing times has been modified in order to get all 

information needed by the solution approach. The data used in this example is 

presented in Table 5.27. In previous examples, we assumed that the processing times 

of alternative machines are same (identical machines). As can be seen from the table, 

in this example, the processing times of alternative machines are different. The 

number of operations is also different for each job. The number of operations varies 

between 1and 3 for each operation.  
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Table 5.27 Alternative process plans and processing times 

Op. Alternative machines & op.times  Op. Alternative machines & op.times 
O1-1 m1:unif(6,8) m3:unif(5,8)  O7-1 m3:unif(6,8) m4:unif(8,9)   
O1-2 m1:unif(4,7) M3:unif(6,8)   O7-2 m1:unif(5,7) m3:unif(5,8)   
O1-3 m3:unif(4,6)    O7-3 m2:unif(6,8) m3:unif(6,9)   
O1-4 m4:unif(3,7) m5:unif(4,7)   O8-1 m1:unif(6,9) m3:unif(7,8)   
O2-1 m4:unif(3,7) m5:unif(4,7)   O8-2 m1:unif(7,8) m4:unif(5,7)   
O2-2 m1:unif(4,9) m4:unif(5,8)   O8-3 m1:unif(4,8) m5:unif(7,8)   
O2-3 m5:unif(3,7)    O8-4 m2:unif(6,8) m3:unif(7,9)   
O3-1 m4:unif(6,8) m5:unif(5,7)   O9-1 m2:unif(7,8) m3:unif(4,9)   
O3-2 m3:unif(6,8) m4:unif(5,9)   O9-2 m3:unif(7,9) m4:unif(6,7)   
O4-1 m2:unif(4,8) m6:unif(7,9)   O9-3 m1:unif(4,8) m3:unif(5,6)   
O4-2 m2:unif(4,8) m4:unif(5,8)   O10-1 m4:unif(5,9) m5:unif(4,8)   
O4-3 m6:unif(5,7)    O10-2 m2:unif(5,8) m5:unif(6,9)   
O4-4 m1:unif(5,7) m2:unif(4,8) m6:unif(4,7)  O10-3 m2:unif(7,9) m5:unif(5,8)   
O5-1 m2:unif(5,9) m3:unif(6,8)   O10-4 m5:unif(5,7)    
O5-2 m1:unif(4,6) m3:unif(5,8)   O11-1 m1:unif(6,8) m3:unif(5,9)   
O5-3 m1:unif(4,6) m2:unif(3,7)   O11-2 M1:unif(6,8) M3:unfi(6,7)   
O5-4 m1:unif(5,6) m3:unif(4,7)   O11-3 m1:unif(4,6) m3:unif(6,8) m5:unif(6,7) 
O6-1 m2:unif(3,8) m6:unif(5,8)   O12-1 m3:unif(4,6) m4:unif(6,8) m5:unif(6,9) 
O6-2 m2:unif(4,6) m6:unif(5,8)   O12-2 m4:unif(5,9) m5:unif(8,9)   
O6-3 m1:unif(4,7) m3:unif(3,7)   O12-3 m4:unif(6,8) m5:unif(7,9)   
O6-4 m2:unif(7,9) m3:unif(5,8) m6:unif(6,9)          
 

Part arrivals are exponentially distributed with a mean of 7 and the part types are 

assigned with the probabilities given in Table 5.28. 

 
Table 5.28 Part assignment probabilities 

Part 

Type 

Probability Part 

type 

Probability 

Part 1 0.110 Part 7 0.100 
Part 2 0.120 Part 8 0.050 
Part 3 0.080 Part 9 0.050 
Part 4 0.150 Part 10 0.090 
Part 5 0.050 Part 11  0.050 
Part 6 0.060 Part 12 0.090 

 

In previous examples, the processing times are written in simulation model in 

advance. In this case, like part routes and cell formation data, processing times 

should be also updated according to the alternative machine selected.  The c-program 

and the experiment file of the ARENA model are modified according to the new 
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conditions. In ARENA experiment file, the field where the processing times are 

written in is marked with “ * ”  character. the change function of the c-code is also 

modified in order to write the processing time of the related machine in 

EXPRESSIONS element of experiment file. 
 

The objectives considered for solving the problem are: minimizing number of 

exceptional elements, maximizing system utilization, minimizing mean tardiness and 

minimizing the percentage of tardy jobs. The maximum and minimum limits of the 

goals are determined by pilot simulation studies as in Table 5.28. 

 
Table 5.28 Aspiration levels for goals 

Goal Min-Max limits 
Inter-cell movements 2 5 
System utilization 0.30 0.75 
Mean tardiness 0 30 
Percentage of tardy jobs 10 40 

 

The warm-up period is determined as 10.000 min. and the replication length is 

chosen as 100.000min.The number of independent replications is chosen as 5 for 

each alternative. The parameter set of tabu search algorithm is chosen by trial and 

error. Tabu list size and neighborhood size are chosen as 7 and 5 respectively. 

Maximum number of iterations is chosen as 300. The k parameter is chosen as 2 for 

TWK rule. 

 
Then the proposed methodology is applied to the above case using simple additive 

method. The best solution is found at 211th iteration. The best Σµ value is found as 

2.5277. The solution is summarized in Table 5.29. According to the solution vector, 

3 cells are formed. The first cell is composed of machines 4-5. The second cell is 

involves machines 2 and 6 and the third cell is composed of machines 1 and 3.  

According to the solution, there are 3 exceptional elements and the satisfaction level 

of the first goal  µ1 = 0.6667. The system utilization level is found as 0.5994 and 

µ2=0.6654. The mean tardiness is found as 12.910 min.  and µ3=0.5700. The 

percentage of tardy jobs is found as 21.23% and  µ4=0.6256.  
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Table 5.29 Part assignment and cell formation according to the best solution 
CELL1 CELL2 CELL3 

Mach. Operations Mach. Operations Mach. Operations 

4 O1-4,O2-1,O2-2,O3-

1,O3-2,O7-1,O10-1 

2 O4-2, O6-1,O4-4 1 O1-1, O1-2, O5-2, O8-1, 

O8-2, O8-3, O9-3, O11-

1,O11-2,O11-3 

5 O2-3, O10-2, O10-3, O10-

4, O12-1, O12-2, O12-3 

6 O4-1, O4-3, O6-2 3 O1-3, O5-1, O7-2, O7-

3,O8-4,O9-1, O9-2 

 

5.11 Chapter Summary & Conclusions 

 
In this chapter, the solution approach presented in Chapter 4 is extended for 

solving the proposed hybrid FGP models for cell formation. The applicability of the 

proposed models and the solution approach were tested on several numerical 

examples. First, the base model with three fuzzy goals (number of exceptional 

elements, system utilization and average time spent in the system) is considered in 

examples in Section 5.6 and Section 5.7 .The assumption of “equal number of 

operations for each part” is relaxed in the example presented in Section 5.8. Then the 

model with tardiness objectives (mean tardiness and percentage of tardy jobs) is 

considered for solving the example in Section 5.9. Finally a numerical example taken 

from the literature was solved by proposed solution approach in Section 5.10. In this 

example, the assumptions of “equal number of operations for each part” and “equal 

processing times for alternative operations” were relaxed.  

 

The results of the numerical examples show that the proposed hybrid FGP models 

can be effectively solved with TS algorithm.  In numerical examples, The Max-min 

and additive methods were considered in handling fuzzy goals. The results of 

experiments shown us, the results of the additive method generally dominate the 

result of max-min method. The superiority of additive method is significant when the 

goals that are difficult to achieve are considered. In additive method, the 

achievement levels of some goals will not decreased because of a particular goal that 

is difficult to achieve. 
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As stated before, in the hybrid FGP models, the achievement levels of some goals 

that are hard to represent analytically are obtained from simulation model. This 

feature decreases the complexity of mathematical models. The goals that are difficult 

to represent analytically can be easily obtained from simulation model. Moreover, 

the stochastic nature of the manufacturing system can be also reflected by simulation 

models. This feature of the hybrid FGP models leads more realistic cell designs. 

Moreover, since the proposed hybrid model is integrated with a parametric 

simulation model, the system changes such as changes in demand rate, processing 

times etc. can be easily reflected 

. 



 

CHAPTER SIX 

CONCLUSIONS AND FUTURE RESEARCH 
 
 

6.1 Conclusions 

 

The researches have been extensively conducted in design of manufacturing cells 

since 1970’s. However, there is limited number of publications that have addressed 

uncertain production requirements. Another important issue which is rarely 

addressed in designing manufacturing cells is the existence of alternative process 

plans which is common in real world applications. The primary goal of this research 

was to develop a design methodology that addresses the uncertain production 

requirements and the existence of alternative process plans. 

 

The most of the current researches depend on deterministic models. Stochastic 

nature of the manufacturing systems is generally omitted. However, relaxations in 

modeling assumptions such as certainty of cost factors, deterministic demand, 

deterministic processing times etc. effects the implementation of cellular 

manufacturing systems. Such relaxations lead to cell designs that are far from 

meeting the requirements of real world applications.  Simulation and fuzzy set theory 

are useful tools in dealing with uncertainty. The stochastic nature of the 

manufacturing systems is generally reflected by simulation models. Moreover, the 

performance measures, which are hard to obtain by analytically, can be easily 

obtained by simulation models. Fuzzy set theory is used for representing 

probabilistic and linguistic vagueness and uncertainty. By employing fuzzy 

mathematical programming models, linguistic vagueness in information pertaining  

to many other design parameters can be modeled and the optimal or near optimal 

solutions may be obtained by using mathematical programming tools such as linear 

programming, goal programming etc. Application of fuzzy mathematical 

programming approaches to cell formation is a relatively new research area. 
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Considering the gaps in the current cell formation literature as mentioned in 

Chapter 2, in this research, a hybrid simulation-analytic fuzzy goal programming 

model was developed in order to achieve the development of the new CM design 

methodology that addresses the uncertainty issues and routing flexibility. In this 

model, the achievement levels of some goals which are difficult to represent 

analytically are obtained by simulation model whereas other goals are calculated 

analytically. The stochastic nature of the manufacturing system is also reflected by 

simulation model. Part demand rates, part processing and transfer times are all 

stochastic. A tabu search based solution approach was used since the classical 

solution approaches are not appropriate for solving the proposed hybrid simulation-

analytic FGP models.  

 

In the first chapter of the study, brief explanations about cellular manufacturing 

were given.  

 

In the second chapter, the existing cell formation literature was classified and 

categorized.  

 

General explanations about fuzzy mathematical programming and fuzzy goal 

programming were given in Chapter 3. The hybrid FGP model was also proposed in 

the third chapter.  

 

The TS based solution approach was presented in the fourth chapter. The 

applicability of the TS based solution approach is also tested on several deterministic 

models from the literature. The results are compared with the results obtained by 

optimization software LINGO. The results shown us TS based solution approach can 

be effectively used for solving FGP models. 

 

In the fifth chapter, TS based solution approach was extended to solve hybrid FGP 

models in which the achievement level of some of the goals are obtained from 

simulation model. The integration with simulation models were explained and 

illustrated in detail. Then the proposed hybrid FGP models were solved using TS 
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based solution approach. Then the effectiveness of proposed models and solution 

approach were tested on the numerical examples with different sizes under different 

assumptions. 

 

The results of the numerical examples show that the proposed hybrid FGP models 

can be effectively solved with TS algorithm. The proposed algorithm differs from the 

existing approaches in three ways: 

 

First the application of FGP to cell formation problem allows for the vague 

aspirations of a decision maker. The main difficulty related with Goal Programming 

is the need for the precise aspiration levels. FGP models have the advantage of 

allowing vague aspirations of a decision maker and provide solutions considering 

uncertainty in target levels of design objectives.    

 

Second, the proposed hybrid FGP models consider the stochastic nature of 

manufacturing system under consideration. The stochastic nature of the 

manufacturing system is reflected by simulation models. Demand patterns, process 

times and part transfer times are stochastic. Most of the current approaches in cell 

formation based on the relaxations in modeling assumptions such as deterministic 

product demand, deterministic processing times etc. However, real manufacturing 

systems tend to have uncertainty and vagueness in design parameters. Hence the 

issue of uncertainty is important and has to be considered in design process of 

manufacturing cell.  High realism can be achieved by this way. The proposed 

methodology handles the issue of uncertainty in cell formation process by integrating 

two powerful tools as Fuzzy set theory and Simulation. 

 

Third, the routing flexibility which is an important feature for manufacturing cells 

when flexible machines are utilized. In the presence of routing flexibility, parts can 

have different process plans. This feature can improve the groupability of parts. The 

ignorance of routing flexibility may lead increases in operation costs and additional 

investment in machines. Covering the issue of routing flexibility also increases the 

way of forming manufacturing cells. This also increases the complexity of the 
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problem. The proposed methodology covers the issue of routing flexibility in cell 

formation process. 

 

In conclusion, proposed methodology can be used for solving cell formation 

problems considering the uncertainty in design parameters (stochastic, demand, part 

processing times and part transfer times) and vagueness in target levels of design 

objectives. The issue of routing flexibility is also considered in proposed 

methodology.    

 

In numerical examples presented in section 5.6 and 5.8, the effectiveness of the 

proposed algorithm is tested with different sized problems. Although the CPU time is 

increased when the problem size gets larger, proposed algorithm provides good 

solutions considering the stochastic nature of manufacturing systems and the routing 

flexibility.  Since the proposed model is a hybrid analytic-simulation model, any 

objectives that are hard to represent analytically can be evaluated by simulation 

model.  In Section 5.9 and 5.10 the objectives such as mean tardiness and percentage 

of tardy jobs are considered. These objectives have not been considered in most of 

the current CF literature probably due to the complex nature of cell formation 

problems.  The proposed methodology allows us to consider such objectives in cell 

formation process. 

 

Since the proposed model is integrated with a parametric simulation model, the 

system can be easily adapted for different production requirements. Part demand 

rates, part processing times, part routes etc. can be easily changed from parametric 

simulation model and then, corresponding cell formations can be obtained. 

 

In numerical examples given in Chapter 5, the Max-min and additive methods 

were considered in handling fuzzy goals. The results of experiments showed us, the 

results of the additive method generally dominate the result of max-min method. The 

superiority of additive method is significant when the goals that are difficult to 

achieve are considered. In additive method, the achievement levels of some goals 

will not decreased because of a particular goal that is difficult to achieve. 
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The proposed methodology has also some shortcomings. The pilot simulation runs 

are required to determine the upper and the lower limits of fuzzy goals. 

Determination of some simulation parameters such as the length of warm-up period 

also requires some pilot simulation runs.  

 

Determination of TS parameters is another difficulty related with solution 

approach. There is no certain rule for determining TS parameters such as tabu list 

size, neighborhood size, number of iterations etc.  A trial and error process is also 

required for determining these parameters.  

 

6.2 Contributions 

 
The original contributions of this research can be summarized as follows: 
 
 

1) A hybrid analytic-simulation fuzzy goal programming model that considers 

the uncertain production requirements and the existence of alternative process 

plans was developed.  

 

2) The performance based objectives such as system utilization, time spent in 

the system, mean tardiness and percentage of tardy jobs, which are not 

considered by the exiting studies in cell formation are considered. 

 

3) The TS based solution approach was used for solving hybrid analytic-

simulation FGP models. 

 

6.3 Future Research 

 

Although the several beneficial conclusions and observations were made according 

to experimental study, the research can be improved as follows: 
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1) Since the classical solution approaches such as simplex based methods are 

not appropriate, a TS based solution approach was used to solve hybrid 

analytic simulation FGP models. TS algorithm works with more than one 

solution at a time and the previous studies concluded that this feature of TS is 

important in dealing with multiple objectives. However, other meta-heuristics 

such as simulated annealing, genetic algorithms etc. can be also used for 

solving hybrid FGP models. The effectiveness of the algorithms should be 

tested and compared. 

 

2) Since the hybrid model is integrated with simulation model, the computation 

time is increased when the complexity of the simulation models are 

increased. AI based techniques such as neural networks which are trained by 

simulation results can be employed instead of simulation model. Hence the 

performance measures can be obtained by neural networks in a reasonable 

computation time. 

 

3) Machine breakdowns, part transfer systems (AGV, conveyor etc.), worker 

skills and movements which are hard to cover with mathematical 

programming models can be included in the hybrid FGP model. Hence, more 

realistic cell designs can be obtained. 

  

4) Reconfiguration issues are not addressed in this research. The model should 

be extended to make multi period cell formation decisions under changing 

circumstances. 
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APPENDICES 
 

A1. LINGO Model of Numerical Example 4. 3 

 
MODEL: 
! ; 
 SETS: 
  JOB/1..3/; 
 
  OPERATION/1..3/; 
 
  CELL/1..2/:Q; 
 
  MACHINE/1..5/:R; 
 
  SET1(CELL,MACHINE):Y,T; 
  SET2(JOB,OPERATION,MACHINE):A,P; 
  SET3(JOB,OPERATION,CELL):Z,D1,D; 
  SET4(JOB,OPERATION,CELL,MACHINE):X; 
  SET5(JOB,OPERATION):; 
   
ENDSETS 
 
DATA: 
P=1 0 0 1 1  
  0 0 1 1 0  
  1 0 0 0 1 
  0 0 0 1 1 
  1 1 1 0 0 
  0 0 0 0 1 
  0 0 0 1 1 
  1 0 0 1 0 
  1 1 0 0 1; 
 
MMAX=3; 
MMIN=2; 
A=5 0 0 4 2 0 0 4 6 0 7 0 0 0 6 
  0 0 0 4 7 3 5 6 0 0 0 0 0 0 4 
  0 0 0 5 7 4 0 0 4 0 3 2 0 0 5; 
 
ENDDATA 
Max=lamda; 
 
lamda<=((3-Intcell)/(3-0)); 
lamda<=((40-totalt)/(40-32)); 
lamda<=1; 
 
@SUM(SET3(I,O,C):D1(I,O,C))=Intcell; 
@sum(set4(I,O,C,M):A(I,O,M)*X(I,O,C,M))=totalt; 
@FOR(SET5(I,O):(@SUM(SET1(C,M):X(I,O,C,M)*P(I,O,M)))=1); 
@FOR(MACHINE(M):(@SUM(CELL(C):Y(C,M)))=1); 
@FOR(SET4(I,O,C,M):X(I,O,C,M)<=1000*Y(C,M)); 
@FOR(SET4(I,O,C,M):X(I,O,C,M)<=1000*Z(I,O,C)); 
 
@FOR(SET5(I,O):(@SUM(CELL(C):Z(I,O,C)))=1); 
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@FOR(SET3(I,O,C)|O#GT#1:(Z(I,O,C)-Z(I,O-1,C))=D1(I,O,C)-D(I,O,C)); 
 
@FOR(CELL(C):@SUM(MACHINE(M):Y(C,M))<=MMAX*Q(C)); 
@FOR(CELL(C):@SUM(MACHINE(M):Y(C,M))>=MMIN*Q(C)); 
 
@FOR(SET4(I,O,C,M):@BIN( X(I,O,C,M))); 
@FOR(SET1(C,M):@BIN( Y(C,M))); 
@FOR(SET3(I,O,C):@BIN(Z(I,O,C))); 
@FOR(CELL(C):@BIN( Q(C))); 
@BIN(intcell); 
END 
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A2. C Codes of  Numerical Example 5.5 
 
(The functions initialX, GenerateX, GenYZDQ, Change, and Processoutfile are not 
included.) 
 
#include<stdio.h> 
#include<conio.h> 
#include<stdlib.h> 
#include<time.h> 
#define REP 5 /* the number of replications */ 
#define K 99  /*the number of Xiocm variables*/ 
#define M 7   /* Tabu list size */ 
#define N 5   /* neighborhood size */ 
#define INTERVAL 18 /* number of intervals in a seed */ 
#define MU1LL 0  /* lower limit for goal_1*/ 
#define MU1UL 3  /* upper limif for goal_1*/ 
#define MU2LL 40 
#define MU2UL 60 
#define MU3LL 0.3 
#define MU3UL 0.75 
#define ITER 300   /*maximum number of iterations 
*/ 
#define MIN(a,b) (((a)<(b))?(a):(b)) 
FILE *fp,*fp1,*fp2,*fp3; 
 
char mak[6]; /*machine index*/ 
char ad[ ]="c:\\endustri\\arena\\output6.txt"; /*output 
file*/ 
char file1[ ]="c:\\endustri\\arena\\deneme6.exp"; /*the 
path of default ARENA EXPERIMENT file*/ 
char file2[]="c:\\endustri\\arena\\deneme66.exp"; 
/*modified ARENA EXPERIMENT FILE*/ 
char file3[ ]="c:\\endustri\\arena\\deneme6.txt"; /* 
ARENA output document*/ 
double per[N][2]; 
char result[18]; 
double tabul[M][K],neil[M][K]; 
double lamda[N][K+1]; 
double tindex,nindex=0; 
double dlam[N]; 
char char Y[18]={0},Z[54]={0},D[36]={0},Q[3]={0}; 
char X[K]={0}; 
char XC[K]={0}; 
 
char 
sinir[INTERVAL][2]={0,8,9,14,15,20,21,26,27,35,36,38,39,4
4,45,50,51,59,60,62,63,68,69,71,72,77,78,80,81,86,87,92,9
3,95,96,K-1}; 
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void initial(char a[ ],char b[ ]) 
{ 
int i; 
for(i=0;i<K;i++) 
   a[i]=b[i]; 
} 
 
void initialX(char a[ ]) /* creates an initial solution*/ 
 
void generateX(char a[ ]) /*generates neighborhood 
solutions from initial seed */ 
 
void genYZDQ() /*calculates Y, Z, D and Q variables */ 
 
char constraints() /*constraints of the model */ 
{ 
char k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12; 
char kisit1=0,kisit2=0; 
char result; 
k1=Y[0]+Y[6]+Y[12]; 
k2=Y[1]+Y[7]+Y[13]; 
k3=Y[2]+Y[8]+Y[14]; 
k4=Y[3]+Y[9]+Y[15]; 
k5=Y[4]+Y[10]+Y[16]; 
k6=Y[5]+Y[11]+Y[17]; 
k7=Y[0]+Y[1]+Y[2]+Y[3]+Y[4]+Y[5]-3*Q[0]; 
k8=Y[6]+Y[7]+Y[8]+Y[9]+Y[10]+Y[11]-3*Q[1]; 
k9=Y[12]+Y[13]+Y[14]+Y[15]+Y[16]+Y[17]-3*Q[2]; 
k10=Y[0]+Y[1]+Y[2]+Y[3]+Y[4]+Y[5]-2*Q[0]; 
k11=Y[6]+Y[7]+Y[8]+Y[9]+Y[10]+Y[11]-2*Q[1]; 
k12=Y[12]+Y[13]+Y[14]+Y[15]+Y[16]+Y[17]-2*Q[2]; 
if((k1==1)&&(k2==1)&&(k3==1)&&(k4==1)&&(k5==1)&&(k6==1)) 
kisit1=1; 
if((k7<=0)&&(k8<=0)&&(k9<=0)&&(k10>=0)&&(k11>=0)&&(k12>=0
)) kisit2=1; 
result=kisit1*kisit2; 
return result; 
} 
 
int objective1() /*calculate the objective of number of 
exceptional elements by an analytic equation */ 
{ 
int sum=0,i; 
for(i=0;i<36;i++) 
   sum+=D[i]; 
return sum; 
} 
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double mu1() /*calculate the the membership function of 
the first goal */ 
{ 
return ((MU1UL-objective1())/(double)(MU1UL-MU1LL)); 
} 
 
double mu2(double x) /* calculate the membership function 
of the second goal*/  
{ 
return ((MU2UL-x)/(double)(MU2UL-MU2LL)); 
} 
 
double mu3(double x) /* calculate the membership function 
of the third goal*/ 
{ 
return ((x-MU3LL)/(double)(MU3UL-MU3LL)); 
} 
 
double compare(char a[], double c[][K], double p) 
{ 
int i,j,z; 
double l=1; 
for(i=0;i<p;i++) 
   { 
   z=0; 
   for(j=0;j<K;j++) 
      { 
      if(a[j]==c[i][j]) z++; 
      } 
   if(z==K) {l=0;break;} 
   else l=1; 
   } 
return l; 
} 
 
double findmax(double a[], int b) 
{ 
 double max1; 
 int i; 
 max1=a[0]; 
  for (i=1;i<b;i++) 
   if (a[i]>max1) max1=a[i]; 
    return max1; 
} 
 
void encode1(char c[]) /* part routes are sepecified */ 
{ 
char i,l; 
for(i=0;i<K;i++) 
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   if((i>=0)&&(i<=8)) 
      { 
      if(c[i]==1) 
  { 
  l=i%3; 
  if(l==0) result[0]=1; 
  else if(l==1) result[0]=5; 
  else if (l==2) result[0]=6; 
  else; 
  } 
      } 
   else if((i>=9)&&(i<=14)) 
      { 
      if(c[i]==1) 
  { 
  l=i%2; 
  if(l==0) result[1]=4; 
  else if(l==1) result[1]=3; 
  else ; 
  } 
      } 
   else if((i>=15)&&(i<=20)) 
 { 
      if(c[i]==1) 
  { 
  l=i%2; 
  if (l==0) result[2]=5; 
  else if (l==1) result[2]=1; 
  } 
      } 
   else if((i>=21)&&(i<=26)) 
  { 
      if(c[i]==1) 
  { 
  l=i%2; 
  if(l==0) result[3]=6; 
  else if(l==1) result[3]=5; 
  else ; 
  } 
      } 
 else if((i>=27)&&(i<=35)) 
  { 
      if(c[i]==1) 
  { 
  l=i%3; 
  if(l==0) result[4]=1; 
  else if(l==1) result[4]=2; 
  else if (l==2) result[4]=3; 
  else ; 
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  } 
      } 
 
 else if((i>=36)&&(i<=38)) 
 { 
      if(c[i]==1) 
  { 
  result[5]=5; 
   } 
      } 
else if((i>=39)&&(i<=44)) 
{ 
      if(c[i]==1) 
  { 
 l=i%2; 
 if (l==0)  result[6]=5; 
 else if (l==1) result[6]=4; 
  } 
      } 
 
 else if((i>=45)&&(i<=50)) 
 { 
      if(c[i]==1) 
  { 
  l=i%2; 
  if(l==0) result[7]=4; 
  else if(l==1) result[7]=1; 
  else ; 
  } 
      } 
 else if((i>=51)&&(i<=59)) 
 { 
      if(c[i]==1) 
  { 
  l=i%3; 
  if(l==0) result[8]=1; 
  else if(l==1) result[8]=2; 
  else if(l==2) result[8]=5; 
  else ; 
  } 
       } 
 else if((i>=60)&&(i<=62)) 
 { 
      if(c[i]==1) 
  { 
   result[9]=2; 
   } 
       } 
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else if((i>=63)&&(i<=68)) 
 { 
      if(c[i]==1) 
  { 
  l=i%2; 
  if(l==0) result[10]=3; 
  else if(l==1) result[10]=2; 
  else ; 
  } 
      } 
 
 else if((i>=69)&&(i<=71)) 
 { 
      if(c[i]==1) 
  { 
   result[11]=3; 
 
  } 
      } 
  else if((i>=72)&&(i<=77)) 
 { 
      if(c[i]==1) 
  { 
  l=i%2; 
  if(l==0) result[12]=1; 
  else if(l==1) result[12]=2; 
  else ; 
  } 
       } 
 else if((i>=78)&&(i<=80)) 
  { 
  if(c[i]==1) 
  { 
  result[13]=3; 
  } 
       } 
 
 else if((i>=81)&&(i<=86)) 
 { 
      if(c[i]==1) 
  { 
  l=i%2; 
  if(l==0) result[14]=4; 
  else if(l==1) result[14]=1; 
  else ; 
  } 
 } 
 else if((i>=87)&&(i<=92)) 
 { 
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      if(c[i]==1) 
  { 
  l=i%2; 
  if(l==0) result[15]=6; 
  else if(l==1) result[15]=4; 
  else ; 
  } 
 } 
 else if((i>=93)&&(i<=95)) 
 { 
      if(c[i]==1) 
  { 
  result[16]=6; 
  } 
 } 
else if((i>=96)&&(i<=98)) 
 { 
      if(c[i]==1) 
  { 
  result[17]=3; 
  } 
 } 
 
} 
 
void change() /* modify the default experiment file */ 
 
void processoutfile(int x) /* obtains simulation based 
objectives from the output file of ARENA*/ 
 
 
main() 
{ 
double mini,lam,lamdabest; 
int i,j=0,k,z,w,q,k1,k2,k3; 
long l; 
clrscr(); 
randomize(); 
fp=fopen(ad,"w"); 
do 
{ 
initial(X,XC);         
initialX(X);genYZDQ(); /*create an initial solution and 
calculate Y, Z, D, Q variables */ 
}while(constraints()!=1);  
initial(XC,X); 
for(i=0;i<K;i++) 
   tabul[0][i]=XC[i]; 
tindex=1; 
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for(l=1;l<=ITER;l++) 
{ 
j=0;z=0; 
while(j<N) 
   { 
   if (z>1000) break; 
   else 
      { 
      initial(X,XC); 
      generateX(X); /*generate neighborhood solution from 
initial seed*/ 
      genYZDQ();    /*calculate Y, Z, D, Q */ 
      nindex=(int)nindex%N; 
      k1=k2=k3=0; 
      if(compare(X,neil,nindex)==1) k1=1; /* check the 
neighborhood list */ 
      if(constraints()==1) k2=1;    /*check  
constraints */  
      if(compare(X,tabul,tindex)) k3=1;   /*check tabu 
list*/ 
      if(k1*k2*k3==1)       /* the 
solution is feasible if above conditions are met, 
otherwise create a new neighbor solution*/  
  { 
  j++; 
  for(i=0;i<K;i++) 
     lamda[nindex][i]=neil[nindex][i]=X[i]; 
  
encode(X);encode2(Y);change();system("c:\\endustri\\arena
\\tabu4.bat");processoutfile(nindex); /* call functions/ 
execute ARENA model for current solution/obtain 
simulaiton based objectives */ 
 
  mini=mu1()+mu2(per[nindex][1])+mu3(per[nindex][0]); 
/*calculate sum of membership functions- for additive 
method */ 
 
   lamda[nindex][K]=mini; 
  nindex++; 
  } 
      else z++; 
      } 
   } 
for(i=0;i<N;i++) 
   dlam[i]=lamda[i][K];   
lam=findmax(dlam,N-1); /* find the solution with the 
highest total mu in a neighborhood*/ 
if(l==1) lamdabest=lam; 
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if(lamdabest<lam) lamdabest=lam; /* if the solution is 
the current best, keep the solution */ 
for(i=0;i<N;i++) 
   if(lam==lamda[i][K]) 
      { 
      for(j=0;j<K;j++) 
  { 
  XC[j]=lamda[i][j]; 
  } 
      if(tindex<M) 
  { 
  for(j=0;j<K;j++) 
     tabul[tindex][j]=XC[j]; /* if the tabu list is 
not full, put the last move in tabu list */ 
  tindex++; 
  } 
      else 
  { 
  for(k=1;k<M;k++)         /* if the tabu list is 
full, replace the current move with the oldest one in 
tabu list*/  
     for(j=0;j<K;j++) 
        tabul[k-1][j]=tabul[k][j]; 
  for(j=0;j<K;j++) 
     tabul[k-1][j]=XC[j]; 
  } 
      break; 
      } 
if(lam==lamdabest) /* keep the best solutions in 
output.txt file */ 
   { 
   printf("%6ld ",l); 
   fprintf(fp,"%6ld ",l); 
   for(i=0;i<K;i++) 
      { 
      printf("%d",XC[i]); 
      fprintf(fp,"%d,",XC[i]); 
      } 
    printf(" %11.9lf %11.9lf \n",lam,lamdabest); 
    fprintf(fp," %11.9lf %11.9lf \n",lam,lamdabest); 
   } 
} 
fclose(fp); 
return 0; 
} 
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A3. ARENA Model File of Example 5.9 

 
 
0$            CREATE,        1:expo(9,1):MARK(time); 
1$            ASSIGN:        
jt=disc(0.1667,1,0.3333,2,0.5,3,0.6667,4,0.8333,5,1,6,2): 
                             picture=jt: 
                             ns=jt: 
                             m=dummy: 
                             
tps=processtime(jt,1)+processtime(jt,2)+processtime(jt,3)
: 
                             dd=tnow+k*tps; 
2$            ROUTE:         0.0,seq; 
 
 
3$            STATION,       1-6; 
17$           ASSIGN:        control=0; 
4$            QUEUE,         m; 
5$            SEIZE,         1: 
                             m,1; 
6$            DELAY:         processtime(jt,is); 
7$            RELEASE:       m,1; 
9$            BRANCH,        1: 
                             If,is==3,11$,Yes: 
                             Else,15$,Yes; 
11$           TALLY:         t1,int(time),1; 
18$           BRANCH,        1: 
                             If,tnow>dd,19$,Yes: 
                             Else,20$,Yes; 
19$           COUNT:         c1,1; 
20$           COUNT:         c2,1; 
21$           ASSIGN:        tar=tar+(tnow>dd)*(tnow-dd): 
                             meantar=tar/nc(c2); 
10$           DISPOSE; 
 
15$           BRANCH,        1: 
                             
If,hucre(m)==hucre(rota(jt,is+1)),16$,Yes: 
                             Else,8$,Yes; 
16$           ASSIGN:        control=1; 
8$            ROUTE:         
(control==1)*0+(control==0)*expo(2,3),seq; 
 
 
12$           CREATE,        1,tfin:,1:MARK(time); 
13$           WRITE,         file1,"%7.5f %8.3f %8.0f 
%8.2f\n": 
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                             davg(13), 
                             tavg(1), 
                             tar, 
                             meantar; 
14$           DISPOSE; 
 
 
 
 

A.4 Default ARENA Experiment file of example 5.9 
 
 
 
SEQUENCES:    * 
 
ATTRIBUTES:   1,jt: 
              2,time: 
              3,control: 
              dd: 
              tps; 
 
FILES:        
1,file1,"c:\endustri\arena\denemed.txt",Sequential(),Free 
Format,Error,No,Hold; 
 
VARIABLES:    1,hucre(6),* 
              meantar: 
              k,1: 
              tar; 
 
QUEUES:       6,buffers,FirstInFirstOut; 
 
 
RESOURCES:    6,machines,Capacity(1,),-,Stationary; 
 
STATIONS:     6,workcenter: 
              7,dummy; 
 
 
COUNTERS:     1,c1,,Replicate: 
              2,c2,,Replicate; 
 
TALLIES:      1,t1,"c:\endustri\arena\t1.dat"; 
 
DSTATS:       1,nq(1): 
              2,nq(2): 
              3,nq(3): 
              4,nq(4): 
              5,nq(5): 
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              6,nq(6): 
              7,nr(1): 
              8,nr(2): 
              9,nr(3): 
              10,nr(4): 
              11,nr(5): 
              12,nr(6): 
              13,(nr(1)+nr(2)+nr(3)+nr(4)+nr(5)+nr(6))/6; 
 
OUTPUTS:      1,davg(13): 
              2,tavg(1): 
              meantar: 
              tar; 
 
REPLICATE,    5,0.0,22000,Yes,Yes,10000; 
 
EXPRESSIONS:  
1,processtime(6,3),unif(11,14),unif(7,10),unif(6,11),unif
(7,10),unif(8,10),unif(8,10),unif(7,9),unif(8,11), 
              
unif(8,11),unif(9,12),unif(7,9),unif(6,10),unif(8,11),uni
f(7,9),unif(7,8),unif(7,10),unif(8,9),unif(9,11): 
              35,rota(6,3),* 
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