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SUFFIX TREE INDEXING FOR MUSIC INFORMATION RETRIEVAL 

ABSTRACT 

 

This thesis intended for fast and reliable data retrieval from music databases. It 

introduces new data reduction and indexing approaches for both polyphonic and 

monophonic music sequences.  

 

The study contributes to the literature from three aspects. These are data 

reduction, suffix tree indexing and tree alignment on external memory. In terms of 

data reduction, we present a new melody extraction approach for polyphonic music 

sequences. The new melody extraction approach considers the pitch histogram, and 

entropy of music sequences. Consequently, accompany channels of the MIDI music 

sequences are determined for data reduction.  In terms of indexing, we present a new 

suffix tree construction approach for streaming music sequences. Current suffix tree 

construction algorithms have leaks about indexing music sequences. Hence, we 

adapted the physical structure of suffix trees for music notes.  At last, we consider 

balance and alignment of suffix trees. In music, alphabet size of music is large. 

Therefore, we present clustering of music sequence. Therefore each sequence cluster 

can be indexed by a separate suffix tree to balance the tree.  

 

 Both our melody extraction and suffix tree construction approaches are tested in 

detail and discussed. Our evaluation metrics are based on cognition, mathematical 

proofs and simulations. Experimental results showed that our approaches 

outperforms. 

 

Keywords : Music Information Retrieval, MIDI, Melody Extraction, Clustering, 

Time Series Indexing,  Online Suffix Tree Construction, Streaming Sequences. 

.
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MÜZİKSEL BİLGİ ERİŞİM SİSTEMLERİNDE SONEK AĞACI İLE 

DİZİNLEME 

 

ÖZ 

 

Bu tez çalışması, müziksel veri tabanlarından hızlı ve güvenli veri erişimi 

hedeflemiştir. Bu amaçla gerek tek sesli, gerekse çok sesli müzik dosyalarında veri 

indirgeme ve dizinleme yaklaşımları önermiştir.  

 

Çalışmanın literatüre katkısı üç alt konudandır. Bunlar veri indirgeme, sonek 

ağacıyla dizinleme ve ağacın dışsal bellekte yerleşimi. Veri indirgeme sürecini temin 

etmek amacıyla yeni bir ezgi çıkarım algoritmaları önermekteyiz. Geliştirdiğimiz 

ezgi çıkarım algoritması nota perdelerinin histogram ve entropisini dikkate 

almaktadır. Süreç sonunda ezgiye katkıda bulunmadığı tespit edilen notalar veri 

setinden atılmaktadır. Dizinleme açısından ise akışkan müziksel nota serilerinin 

dizinlenmesini sağlayacak yeni bir sonek ağacı önermekteyiz. Gözlemlerimize göre 

mevcut sonek ağaçları müzik verilerini dizinlemek amacıyla tasarlanmamıştır. Bu 

eksikliği gidermek amacıyla sonek ağacının fiziksel yapısı, müziğe göre 

uyarlanmıştır. En son olarak sonek ağacının dengesiz yapısı ve belleğe yerleşimi 

irdelenmiştir. Daha açık bir ifade iler dışsal belleğe erişimi azaltmak için müziksel 

verilerin dizinlenmeden önce sınıflandırılması önerilmiştir. Böylece her bir sınıfa ait 

müzik verileri ayrı bir ağaçta dizinlenecektir. 

 

Gerek melodi çıkarma, gerekse sonek ağacı inşasına ilişkin yaklaşımları detaylı 

şekilde test edilmiş ve tartışılmıştır. Deneylerin değerlendirilmesi için müzik kulağı, 

matematiksel ispatlar ve simulasyon kullanılmıştır. 

 

Anahtar sözcükler Müziksel Bilgi Erişim, MIDI, Ezgi Ayıklama, Kümelendirme, 

Zaman Serilerinin Dizinlenmesi, Eşzamanlı Sonek Ağacı oluşturma, Akışkan 

Dokumanlar. 
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ABBREVIATIONS 

 

MIR     Music Information Retrieval  

MIDI    Musical Instrument Digital Interface 

DNA    Deoxyribonucleic acid 

BM     Boyer Moore String Matching Algorithm 

KMP    Knuth Morris Pratt String Matching Algorithm 

Shift-OR   Shift-OR String Matching Algorithm 

GST     Generalized Suffix Tree 

OGST   Online Generalized Suffix Tree 

FIFO    First In First Out 

LRU    Least Recently Used 

PAAL   Parent Address Appended List 
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1CHAPTER ONE -  

INTRODUCTION 

1.1 Motivation  

 In the last two decades, storage capacity of the computers has increased 

drastically. Accordingly, computers can store multimedia applications such as music 

and video. Besides, network communication on the net has increased the importance 

of computers on multimedia. Especially commercial multimedia companies have 

interested in storage and retrieval abilities of computers. 

 

Storing huge amount of music documents triggers new problems to be solved. In 

the last 20 years, disk access time keeps constant over this time. In fact, storage 

devices include mechanical devices and situation limits enhancements on disk access 

(Salzberg, 1998). In order to overtake the pitfall, software based solutions have been 

proposed. Concretely, information retrieval techniques remedy the drawbacks of disk 

access. 

 

There are varieties of information retrieval techniques to handle large data sets. 

Most commonly used ones are effective buffering on memory, indexing, data 

reduction, data transformation, and fast string processing (Baeza-Yates and Neto, 

1999). However, there is no unique retrieval strategy; instead each application may 

have specific properties and need a different indexing, or buffering methodology. 

 

Currently, music databases are very common and people demand fast access from 

these databases. For instance, musicologist, students, art lovers, businessmen and 

even lawyers have tendency to access to music databases for different reasons. Here 

we briefly explain the fundamental reasons: 

 

• Musicologists want to analyze current music pieces from a large music library. 

Such analysis may require complicated queries. For instance, a query may include C 

major music sequence using instruments violin, flute and harp. Later on, the 
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musicologist may want to do analysis, comparisons on the query results.  Such 

process on a large database should ensure satisfactory retrieval speed. 

 

• Students need to learn music cognition facts. As a result, computers and music 

databases are educational tools for students. Displaying music pieces for demanded 

characteristics is appreciated by students. Therefore complex queries from a large 

database are indispensable. 

 

• Art lovers want to find their favorite music fragments for listening. In some cases, 

they may know what they are looking. For instance name and the artist of a music 

file. However, they may want to query music by whistling or humming.  Moreover, 

they may search for similar music pieces to a certain file. In fact, searching similar 

music files from a database has a high computation cost. 

 

• Commercial firms want to sell their new musical products to the customers. 

Therefore, they need to present the best service. For companies, customer 

satisfaction and easy access to the product are indispensable. Also they need to 

present effective and fast interfaces to increases their sales. 

 

• Music similarity can be fairly used in ethics. Every year huge number of new 

musical product put into the music market, it is very hard to catch all cheating events. 

Moreover, music cognition is subjective; decision of cheating may depend on the 

listener. Hence, it is difficult to prove that a new music piece violate copyright law. 

However, computational musicology can solve those pitfalls satisfactorily, if search 

on music databases can be processed in a fair time. In this respect, faster query 

search algorithms are able to present results in acceptable time. Moreover, computer 

based similarity searches are objective since similarity rules are determined before 

similarity search starts. Therefore prejudice becomes impossible.   
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1.2 Music Terminology 

 In this section, we briefly explain music and its fundamental terms. George Sand 

said that goal of music was enthusiasm. He adds that none of the remaining arts 

could generate such exalted feeling in human sense (Feridunoğlu, 2004). Basic 

elements of the music are rhythm, melody and harmony. Rhythm is the division of 

time into equal or non-equal intervals. In music, consecutive rhythm events lead to 

regularity and organization.  Meanwhile melody is the musical idea, which 

influences the listener by its own letters. Finally harmony means accordance of 

different sounds between time intervals.  

 

Music alphabet is composed of notes. (Lemstrom, 2000) explains the note as 

follows: “When a musical instrument is played, it evokes a tone sensation in listener. 

Tone sensation is comprised of attributes salience, pitch, timbre, onset time and 

duration. The written instructions to play the tone are called a note”.  One of the most 

effective properties of a note is pitch, and it is the perceived frequency of a note. 

 

Music can be represented as sequence of notes. This fact can be illustrated by 

MIDI music format. MIDI is an acronym for Musical Instrument Digital Interface 

and it is the common protocol which enables communication between digital music 

devices and computers (General MIDI – Wikipedia, n.d.). In MIDI, music format is 

composed of note sequences and some meta data information. While notes keep pitch, 

duration and volume information, meta data handles general information of a 

sequences such as tempo, metronome ticks or instrument.  

 

Music can be either in monophonic or polyphonic form. Polyphony is the 

occurrence of multiple notes at a time (Temperley, 2001). In other words, polyphony 

permits appearance of several notes simultaneously. In contrast, monophonic music 

has strict constraints, where there can be only one note at a time to be played. 

 

The pitch distance between any two notes is named as interval and the smallest 

interval in western music is described as semitone.  In western music there exist 12 
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semitones and it is called as octave. Interestingly, music can be represented by 12 

notes; which is an octave. When difference between two pitches is 12, then the 

pitches share the same octave. Hence it is possible to represent music by an octave.  

Recall that MIDI music format has 128 pitch frequencies; so it can represent 10 

different octaves 

1.3 Music Information Studies  

 Common MIR Studies can be separated into five different sub fields: These are 

preprocessing, indexation, string matching, extraction, and interface design. 

 

• Preprocessing: Natural music is based on signals. The instrument that is playing a 

note can be detected by its frequency. The signal processing applications tries to 

convert sound into music files. At the same time, compression algorithms can be 

necessary, since multimedia applications take high amount of space. 
 

• Indexation: Indexing is an alternative way for fast data search on large databases. 

In general, a music database may contain thousands or even millions of music files. 

Search and retrieval processes on large music databases can be very slow without 

optimization. For instance, music files can be clustered for fast search. Concretely, 

music sequences with common properties can be can be grouped. In addition, tree 

and hashing index methods are possible.  

 

• String Matching: Music similarity is a common search method in MIR 

applications. User submits a sequence of notes as a query, and query is matched to 

the all sequences in the databases. Since both query and database are represented by 

string sequences, string matching algorithms can be implemented. String matching 

problem can be divided into exact matching and approximate matching. Common 

algorithms are Boyer-Moore (Boyer and Moore, 1977), Knuth-Morris-Pratt (Knuth et. 

Al., 1977) and bit parallel string matching (GusfieldBook, 1997). String matching 

algorithms are very important in bioinformatics and search engines. 
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• Extraction: Music is a combination of melody and accompanies notes. In general, 

human perception focuses on melody of music and memorizes easily. Because of this 

fact, most of the search operations on music databases interests in melody. Based on 

this fact, melody extraction is a common study topic in MIR (Uitdenbogert and 

Zobel, 1998). For instance, cognitive studies denotes that memory is generally takes 

place in higher pitches. In addition, harmony, key, or rhythm information of a music 

file can be extracted using artificial intelligence techniques. In order to do this, 

musical rules and facts should be taught to the computers. 

 

• Interface design: Improvements on computer hardware devices are fascinating. 

For instance hardware devices can handle large amount of music data. Similarly, file 

transfer rate on internet has increased drastically in the last ten years. In parallel to 

hardware evolution, new software components are highly demanded. Recently, 

music has been represented in different digital format. Processing on music databases 

become common. However, recent software’s do not satisfy user demands since 

current interface application are not mature yet. Therefore interface design on 

musical database is a hot research topic.   

1.4 Contributions 

 Contribution of this thesis is threefold. First, we present a new melody extraction 

approach which will be used for data reduction in music databases. Our second 

contribution is about sequence indexing with online suffix trees. In this respect, we 

modify the physical node representation of Ukkonen’s online suffix tree. Finally, we 

present a sequence clustering approach to index sequences with multiple suffix trees. 

We present that multiple suffix trees can be efficiently used if the alphabet size of 

sequence database is large. 

 

 In terms of melody extraction, the thesis analyzes cognitive studies on the field 

and introduces a new approach based on pitch histogram and cognition. Our survey 

on early melody extraction algorithms showed that early studies mainly focused on 

cognitive studies. However, those studies did not consider pitch histogram of MIDI 
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channels deeply. We present that the performance of the melody extraction can be 

extended by considering channel clustering based on pitch histogram   

 

In contrast to early studies, our approach is able to select multiple melody 

channels from a sequence. Depending on the pitch histogram of MIDI channels, we 

present a clustering approach and determine total melody channels of music. 

  

In the second phase, we consider indexing music sequences. We present that fast 

sequence search on music databases can be ensured by suffix trees. We show that 

advantage of a suffix tree comes into prominence when fast subsequence query 

search on a large database is the fundamental requirement. Also we denote that 

online suffix trees are very important for streaming music sequences. As a result, we 

present an approach which enhances the performance of suffix trees for music 

sequences. 

 

In contrast to suffix trees, classic string matching techniques fail when the 

database is very large. For a simple search, all elements of the database should be 

read and compared with query. Such cost cannot be paid by large databases. Hence, 

tree structures are preferred. In literature, there exist many different sequence 

indexing methods such as Suffix trees, suffix arrays, string-b trees, hashing, etc.. 

However, the fastest query response can be yielded by suffix trees (Ferragina et. Al, 

1998), (Farach et. al, 1998), (Manber and Myers, 1993). 

 

 Suffix trees are composed of nodes and edges. While nodes represent a unique 

suffix in the sequence database, and edges connect the nodes. Here, physical 

alignment of the tree nodes can cause deep impact over tree construction cost. It is 

possible to align the sibling nodes of the tree inside an array or in a linked list. Even 

more, sibling nodes can be aligned by hash or tree.  

 

 We present that suffix trees have three common drawbacks of suffix trees. These 

are poor memory locality, high space consumption and unbalanced tree structure. 

Because of these three drawbacks, suffix tree construction is difficult. 
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Poor memory locality is the result of random ordered node generation of suffix 

tree. As a result of poor memory locality, nodes of a common path are aligned into 

different pages of the disk. When the path is traversed during construction or search, 

so many disk pages should be fetched coerciblely.    

 

Our contribution on suffix trees is about its physical node representation. The new 

node representation ensures fast access to child and parent nodes. Also our node 

model is space efficient. In other words space and page requirement of online suffix 

trees is acceptable for our model. 

  

Another contribution of the thesis is that, we determine the frequently accessed 

nodes of the suffix tree. As a result, we can align those nodes in a special way to 

accelerate their retrieval time. We present that node access to frequently accessed 

nodes of the tree can be estimated by alphabet properties. 

 

 In this study, we insert MIDI music sequences into the suffix tree. Since MIDI 

alphabet can return 128 different pitches, MIDI alphabet has 128 letters too. When 

compared with other alphabets, MIDI alphabet has medium size. For instance DNA 

has only four letters and Turkish alphabet contains 29. On the other hand some Time 

Series applications may contain thousands of letters (Keogh and Kasetty, 2002). It is 

not to see that different physical node representations yield different performance for 

each case. 

  

 Final contribution of the thesis is about sequence clustering be due to densely 

populated pitches of a sequence. Since MIDI alphabet is large, a MIDI sequence may 

contain few of possible pitches. For instance, pitch average of accompany channels 

are decently low and they rarely contain high-pitch nodes. Because of this fact, 

indexing all sequences by one suffix tree may not yield best performance. Hence we 

present multiple suffix tree construction approach.  
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In this study, each of our proposals is supported by experimentation. Both melody 

extraction and suffix tree construction approaches are tested on selected MIDI 

datasets. Musicology department has contributed on MIDI dataset generation. 

1.5 Thesis Organization 

 The thesis consists of five chapters.  

 

 Chapter 2 presents our on Melody Extraction approach. Initially, we present the 

preliminaries and basic concepts of Melody Extraction. Then, we introduce the 

common pitfalls of early melody algorithms.  Next, we explain the importance of the 

pitch histogram over melody extraction. Finally, we present a new melody extraction 

approach which not only considers cognitive aspects of music, but also pitch 

histogram and  hierarchical clustering of music channels. 

 

 Chapter 3 ensures a bridge between the Music Information Retrieval and Time 

Series Similarity studies. Although MIR is a young research topic, Time Series 

Studies have long history and mature experience on data management and indexing. 

Hence, learning the early experiences from another research field should ease the 

problem in MIR. In this chapter, we also analyzed the pros and cons of indexing and 

similarity approaches. Hence we can route our study destination. 

 

 In Chapter 4, we introduce our indexing approach. That is to say, we index 

streaming music sequences by an online suffix tree. Suffix tree introduces fast 

sequence search on large databases. However, suffix tree construction on external 

memory has common pitfalls. These are (1) poor memory locality, (2) high space 

consumption and (3) unbalanced tree structures. Moreover music sequences have an 

important constraint: Every day, database should be updated with new music 

sequences. In order to solve the problems, we introduce a new online suffix tree 

construction approach for streaming music sequences. 
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In Chapter 5, we consider poor memory locality on suffix trees in detail. Here we 

analyze the factors causing poor memory locality. The chapter analyzes the cost of 

node swapping on the tree. While node swapping solves the poor memory locality 

problem, it is very expensive. Hence it is necessary to present a trade-off for using 

node swapping. In addition, we introduce the contribution of multiple suffix tree 

construction on a database. In this way, suffix trees can be more balanced. 

 

 Finally, the conclusions are introduced in Chapter 6. The chapter also presents key 

contributions and fundamental findings of this thesis. Also, the thesis looks at the 

future of MIR research, data reduction, indexing and external suffix tree 

construction. 
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2CHAPTER TWO -  

TIME SERIES SIMILARITY AND INDEXING 

2.1  Introduction 

 Time Series are a sequence of values, ordered in time. Almost all temporal events 

in the nature can be seemed as Time Series Implementation. Music sequences are not 

an exception. During a certain time and order, notes of music start playing and stops. 

Occurrence order of the notes between limited time interval leads to Time Series 

implementation. This fact is very important since Time Series Similarity is a deep 

and mature research field in Computer Science. As a result, we can make use of early 

experience from the field and introduce new enhancements. 

 

 Studies on Time Series Similarity subject try to understand the underlying theory 

of the successive data points(Agrawal, 1993), (Keogh et. al., 2005).  They attempt to 

determine which dynamics generate the structure. However, most of the Time Series 

implementations cannot be formulated. For instance, there is no magic formula to 

estimate climate changes over a year. Instead, scientists estimate future by early 

experiences. Another example is daily stock market records. Daily values of stock 

market are reported in a 2-d graphics. In order to estimate the future, economist seeks 

for similar 2-d events occurred in the past. In Figure 2.1-a, stock behaviors’ of 

Arcelik is observed in 2005. Interestingly, the stock plotted similar graphics in 2006 

and shown in Figure 2.1-b (cnnturk.com, 2007). 

2.2 Time Series Studies 

 Searching similar events on a Time Series database is one of the goals of 

computer science. This is a very difficult job since (1) all early experiences should be 

stored inside a database, (2) size of the most databases overtakes terabytes, (3) 

database should be eligible to extension for new experiences, and (4) database should 

handle approximate matching (Keogh and Kasetty, 2002). 

 

 



11 

 

 

 

 
                           Figure 2.1 Time Series Analyis of two similar events; a-) Values changes of a  

                          stock after Jan 2005 b-) Values changes of a stock after Jan. 2006.  

                          (Arcelik-Cnnturk.com, n.d.) 

 

 String matching operations on very long strings are time consuming. In order to 

handle large datasets, Time Series studies consider data reduction, segmentation, and 

indexing (Keogh and Kasetty, 2002).  

2.2.1  Data Reduction  

Goal of the data reduction is to represent data with less number of symbols 

without loosing core information. Some of the most popular data reduction methods 

are Discrete Fourier Transform, Discrete Wavelet Transform, Piecewise Linear 

Approximation, and Singular Value Decomposition (Shatkay, 1995), (Stollnitz, 

1994), (Keogh and Kasetty, 2002). 
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 In terms of seismologic, economic and weather data, above data reduction 

techniques make sense. Nonetheless, music is an exception. Fourier or similar 

transformations interfere music cognition. On the other hand, music introduces its 

own data reduction techniques. By using melody extraction algorithms, music 

sequences can be represented by less number of notes. A musical data reduction is 

shown in Figure 2.2. As in the figure, some of the notes are eliminated since they do 

not contribute to the melody of the music sequence. Detailed analysis of melody 

extraction is presented in Chapter 4.  

2.2.2  Segmentation  

 It divides music sequence into meaningful fragments. As a result, each fragment 

can be processed separately (Keogh, 2001). There are three types of segmentation 

techniques in the literature. These are Sliding Window, Top Down and Bottom up 

approaches. Sliding window approach starts with the atomic fragments or points. 

Iteratively segment will be expanded until an error bound is encountered. Later, next 

free point starts to issue a new segment and do the same process. Top Down 

approach recursively partitions the Time Series data until some predetermined 

criteria has been encountered. Bottom Up approach issue smallest possible segments 

initially. Later on short segments are merged until some error bound has been 

encountered. 

2.2.3  Indexing  

 Storing data in a clever way speeds up access time on a database (Salzberg, 1998), 

(Folk et. al., 1997). That is the goal of indexing. In a clever indexing mechanism, a 

simple search query does not scan entire data set. Instead, it will minimize scanning.  

 

 There are various indexing techniques in computer science field. The simplest 

approach is ordering. Similar to dictionary, all data is alphabetically ordered. On the 

other hand, there exist complex indexing mechanisms as well. Inverted Files, 

Signature Files, B-trees, Multidimensional Indexing methods and Suffix Trees are 
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commonly used indexing mechanisms in the field (Beckmann et. al, 1990), (Bayer 

and McCreight,  1972), (Gaede and Gunther, 1998). 

2.3 Indexing with Multidimensional Access methods 

 Given a sequence S as [s1,s2, …,sn] multidimensional structures attempt to index si 

in the ith dimension. As a consequence, S can be indexed in n-dimensional index 

structure. The multidimensional sequences can be indexed by R-tree, R*-tree, bsp-

trees, and quad-trees (Beckmann et. al, 1990), (Gaede and Gunther, 1998). In 

literature, R*-tree is a common technique to index multidimensional index structures. 

R*-trees do not index time series directly; instead the trees index user defined 

envelops of the time series. As shown in the Figure 2.3, algorithms determine 

meaningful envelops to index sequences. In the tree envelops are indexed as 

multidimensional points.  

 
          Figure 2.2 Data Reduction in a MIDI music sequences. In Figure a, all sequences are 

          shown. In Figure b, Notes coming from the accompany channel are removed from the 

          sequence set without reliability concerns. 

 

 The queries are assumed as a set of multidimensional points in the space. When a 

query hits an envelope in the tree, then there is a probability that query may take 

place in the database. For such cases, detailed comparisons can be made in the 

relevant time series sequence. 
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 Multidimensional indexing has a common pitfall. They expose poor performance 

when dimensions are greater than 12. In such cases, dimensionality reduction 

techniques can be used for some data sets. For instance, features of the stock market 

data can be extracted by DFT (Shatkay, 1995). It is a fact that DFT can extract most 

effective coefficients of a time series. On the other hand, less effective coefficients 

can be dropped during indexing. Such approach really makes sense for stock data. 

 

 
           Figure 2.3 Generation of Minimum Bounding Rectangles on a sequence. 

 

 In contrast to stock data, music sequences cannot be reduced to 12 dimensions. 

Otherwise cognition of the music will be lost. Therefore multidimensional indexing 

methods fail when music sequences are considered. Moreover, inverted lists are not 

convenient since occurrence of each musical sequence is generally one.  

2.4 Indexing with Signature files 

 In terms of music sequences, signature files can be tried (Jönsson, 1999). 

Signature files contain hashed terms from documents. The hashed terms are called 

signatures and used as probabilistic filters for initial text search. A signature file 

example is denoted in Figure 2.4. In contrast to R-tree, signature files can handle 

large dimensions. Nonetheless, signature files have a common pitfall. Size of a 

signature file is large as well. It is said that size of the signature files is around 10% 

of the size of the original file (Jönsson, 1999). Hence for each query, 10% of the 

document should be scanned. Such fact is against the definition of indexing. Recall 

that indexing aims to store data in a clever way to speed up access time. This cannot 

be achieved by scanning 10 % of a text. 
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Text  Simple  signature  file  example 
Word Signature  0101 0011 1111 0110 
Document Signature  0101 0011 110110110

          Figure 2.4 Representing sequences with signatures 

  

 Suffix trees are assumed as an alternative indexing technique for Time Series data 

(Huang and Yu, 1999), (Lin et. al., 2003). In fact, they can handle larger dimensions. 

At the same time, they do not cause a common pitfall as Signature Files yield. 

However, suffix trees are popular since they minimize the scan process.  Because of 

these facts, suffix trees are well known string processing implementations. Certainly 

they have important drawbacks as well. 

2.5 Similarity 

 Goal of Time Series indexing is fast data retrieval. The user inputs a query and the 

query is searched in the database (Chakrabarti, 2001). Here, search process is based 

on similarity. Therefore, it is necessary to determine what does similar means. 

 

 Definition of similar is fuzzy. Two objects are assumed similar if they have 

common characteristics. For instance, grass and leaves have green color. In terms of 

color, two objects are similar. In contrast, size of a grass and a leaf is different.  

Hence, two objects are not similar when we look at them from a different aspect.  

 

 It is also necessary to define the similarity ranking of objects. In some cases, we 

may not find absolutely similar objects. Hence, quantifying the similarity between 

two objects becomes necessity. For instance, in Figure 2.5, three Time Series data 

looks similar. However, last two series has more common properties and they are 

more similar to each other. 
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2.5.1 Edit Distance 

 In information theory, similarity is defined by a relevant edit distance. Edit 

distance computes the total process requirement to transform one sequence to other. 

In terms of sequence transformations, letter substitutions are the overall process 

costs. Let  “abdcaa” and  “abccaa” are two sequences. In order to transform first 

sequence to the second one, its third letter should be changed.  

 

 

 
 

 
                  Figure 2.5 Time Series Similarity of three sequences (Arcelik-Cnnturk.com, n.d.). 

 

 There are several algorithms which define the edit distance metric. Most 

commonly used ones are Hamming Distance, Levenshtein distances (Navarro, 1998), 



17 

 

 

(Navarro, 2001) The Levenshtein distance between two string is determined by total 

letter insertion, deletion or substitution of one letter. For instance if we need to 

transform “money” to “core” we need to process to substitute and delete process. 

 

2.5.2 String Matching 

 String matching is an alternative retrieval strategy to search similar documents 

from databases. While edit distance metrics introduce transformation rules, they do 

not present fast process times. The string matching studies ensure fast sequence 

search on large databases. 

 

 String matching algorithms are common in our life. For instance search engines 

make use of string matching technique to introduce query result to the user faster. 

Although, size of the searched database can be more than terabytes and  the scan 

operations ends up in milliseconds. In addition, human genome project is solved by 

string matching algorithms as well. So that large human DNA can be understood for 

possible cures.  

   

 In order to process string matching on large sequences, classic string matching 

algorithms are not eligible. In fact, terabytes of net information or 3-gigabyte human 

DNA cannot be processed with a brute-force string matching algorithm. Using a 

brute force approach, similarity search on large DNA sequences will take no less 

than a minute. Because of this fact, new string matching algorithms are proposed. 

 

 String matching can be divided into two sections. These are exact string matching 

and approximate string matching. Exact string matching algorithms search exactly 

similar patterns of a query. In contrast, approximate string matching algorithms 

consider errors.   

 

 Let text, T, be a set of strings where  
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Σ  and | T | = n,                                                                                            (2.1) 

 

and pattern, P, be a set of strings where  

 

Σ   and | P | = m.                                                                                          (2.2) 

 

 To be more concrete, 

 

 T= T[1], T[2]… T[n] and P = P[1], P[2]… P[m]                                             (2.3) 

 

 The exact string matching problem search the pattern in the text under the 

condition that 

 

   P[1] = T[i], P[2] = T[i+1], … P[m] = T[i+m-1]                                                 (2.4) 

 

 In contrast approximate string matching accepts limited number of errors. Instead, 

limited number of inequalities is accepted. If, for instance, error limit is 1, all below 

possibilities should be assumed as approximately similar. 

 

   P[1] ≠ T[i], P[2] = T[i+1], … P[m] = T[i+m-1] or 

   P[1] = T[i], P[2] ≠ T[i+1], … P[m] = T[i+m-1] or 

. 

. 

. 

    P[1] = T[i], P[2] = T[i+1], … P[m] ≠ T[i+m-1]                                             (2.5) 

 

2.6 Transforming Time Series Data into Discrete Form 

 During the nineties, Time Series Studies became mature for static data sets 

(Keogh and Kasetty, 2002). However, the situation was still new for streaming data 
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set. In the last decade, Time Series Studies focused on Suffix Trees and their 

applications. 

2.6.1 Adaptive Query Processing for Time-Series Data 

 Huang and Yu claimed that it is less controllable by the end user when data is 

transformed from time domain to frequency domain (Huang and Yu, 1999). They 

proposed to convert time series data into discrete form, they founded equivalent 

strings. What they did was finding the difference between consecutive positions and 

defines a letter for each difference value. Their work is based on two sections. First 

section is the preprocess stage. Here, the time series data is transformed into strings. 

It is application dependent, how many strings will be used by application. They 

introduce “numsegment” parameter for this. In addition, “min” and “max” are 

bounds of changes. 

 

 Preprocess stage continues by index phase. Here authors tried a suffix tree 

construction method. Their suffix tree construction algorithm is based on Mc Creight 

suffix tree method. In addition, they used additional ID and position parameters. 

2.6.2 SAX 

 A more popular time series, suffix tree indexing has been proposed by Li, Keogh 

(Keogh et. al 2005), (Lin et. al., 2003). They converted the time series into string 

form. Later they tried to find the surprising patterns of the strings without a prior 

experience. Their goal was creating an approximation of data which can fit in 

memory such that it can maintain essential features.  . 

 

 SAX method considers surprising patterns without knowing what is surprising.  In 

order to do this, they tried Markov models. They used a random projection method to 

find the most attractive motifs..  Randomly selected masks computes the similarities 

of substrings and assigns the similarities into collision matrices. 
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 In their research they also presented colored bitmap of  time sequences.  As a 

result, before doing a comparison between two sequence, approximate representation 

of two sequences are compared. So that search time reduces. 

  

 In their study, Keogh et al believed that future of time series is beyond SAX. Also 

they believe that classical time series are mature at the moment; however there is still 

work to do for streaming time series applications.  

2.7 String Matching Algorithms 

Indexing data is the core part of the researches. However it does not compensate all 

difficulties. Recall that query results can be returned by comparison. Hence, it is 

necessary to mention about string matching algorithms.  

2.7.1 Brute Force Text Matching 

Discussions about string matching start with the brute force method. This method 

aligns the leftmost end of P with the leftmost T. Later, from left to right all characters 

are compared from left to right until mismatch character occurs or we encounter the 

end of pattern. This approach is very slow. Let m and n be the size of pattern and text 

respectively, the computation cost of the comparisons take O(mn) time in the worst 

case. 

 

 As an example assume that T = “ababababac” and P = “abac”. Initially brute force 

matching encounters that  

 

T[1]  P[1] 

 

As a result, matching for T[1] fails. In the second step, algorithm restart 

comparing by T[2] and P[1]. Since first letter of the pattern is matched, algorithm 

tries to match T[3] and P[2]. Since a match occurs, third letter of the pattern is tested 

with T[4]. Nevertheless, fourth letter of the pattern does not match. While failure was 



21 

 

 

obvious in the second step, it took extra cycles to find the unmatched. Hence 

unnecessary comparisons would be made. 

  Although the problem can be solved in 10 comparisons, brute force algorithm 

ends up with 19 comparisons. 

 

2.7.2 Boyer-Moore Algorithm 

 Boyer Moore has three clever ideas which do not take place in the brute force 

approach. These are bad character rule, scan from right to left and good suffix rule 

(Boyer and Moore, 1977). When a bad character is encountered in the text, next 

pattern comparison can be shifted until the bad character is avoided. In order to use 

bad character effectively, characters are searched from left to right. 

  

 Good suffix rule determines shifting position after a mismatch occurrence. In case 

a mismatch occurs, matched characters can be aligned as the suffix of the matched 

sequence. As a result, next available position computed by good suffix.  

2.7.3 Knuth-Morris-Pratt (KMP) Algorithm  

 The KMP algorithm is based on preprocessing of the pattern before string 

matching starts up (Knuth et. al, 1977). Like the brute force method, KMP algorithm 

scans the text from left to right. Similar to Boyer Moore algorithm, KMP is based on 

preprocessing of the pattern. However, KMP matching procedure operated from left 

to the right. In case a mismatch occurs a preprocess table determines the number of 

characters to shift. It based on the common strings.  

2.7.4 Shift-Or Bitwise matching algorithm 

 Bitwise shift-or algorithm makes use of the intrinsic parallelism of bitwise 

operators on the memory. In general,  it yields satisfactory results when word size is 

less than memory word size of the machine. pattern length and alphabet size do not 

affect search time. An important point about shift or algorithm is that, it is adaptable 

to approximate string matching. 
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2.8 Suffix Tree Construction 

 

Data search on large sequences is an important problem for two reasons. Firstly, it 

may be necessary to scan the whole database for a simple user query. Secondly, user 

queries on the database may occur very frequently. Hence scanning the database for 

each query should drown the information retrieval mechanism. 

Suffix trees solve the query handling problem satisfactorily. If the sequence 

database is indexed by a suffix tree, query time depends on the length of the query. 

Hence the optimal query retrieval time will be ensured. 

 

In order to reduce query search time, the tree indexes all possible suffixes of 

sequences. Given that the length of a sequence is n, then the sequence will have n 

different suffixes. Therefore possible n suffixes of the sequence will be indexed by 

the suffix tree. 

 

Inside suffix trees, a common prefix is represented by a single node. Also 

hierarchical alignments of the nodes are interesting. A parent node always represents 

a sub sequence, which is a prefix of a sequence that is represented by its all child 

nodes. Such alignment strategy ensures fast subsequence search on sequence 

databases. 

 

While suffix trees ensure fast access to the queries, their construction time and 

space consumption could be high. Because of its drawbacks, suffix trees could not 

become popular before seventies. Afterwards a new tree construction algorithm 

attracted researchers (Weiner, 1973).  The algorithm ensured linear time construction 

of the suffix trees. In addition space requirement reduced to linear time.  

 

Before the new century, suffix trees mainly indexed in random access memory. 

Nevertheless, they denoted poor performance on external memory applications. 

There were three common pitfalls, which reduce the performance of suffix trees. 
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These are poor memory locality, high space consumption, and non-balanced tree 

structure. 

 

Until now, especially poor memory locality is the most important problem of 

suffix trees. In terms of external memory applications, disk access time is the 

bottleneck of the computers, since hard disks contain mechanical parts. 

 

 We believe music sequences can be indexed by suffix tree efficiently. When 

compared with biological data, music sequences are shorter. Hence depth of the 

suffix tree will be moderate for music. 

 

Suffix trees introduce valuable options for music. For instance, dynamic sequence 

insertions are supported by suffix trees. So that new music albums can be updated in 

a suffix tree very fast. 
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3 CHAPTER THREE -  

MELODY EXTRACTION AS A DATA REDUCTION METHOD 

 

 Music files are mostly in polyphonic form, where multiple notes sound 

simultaneously. However, human have tendency to memorize only melody of the 

music, where melody is a linear, recognizable musical unit. In order to determine 

melodic lines from polyphonic music files, Melody Extraction Algorithms have been 

issued. 

  

 In this section, we present a new Melody Extraction approach and make 

experiments on MIDI file format. Depending on pitch histogram and cognitive 

features of music, we eliminate the MIDI channels which are potentially lack of 

melodic content. To do this, firstly, we determine the highest pitch line of each MIDI 

channels and compute pitch histogram. Next, we present an agglomerative 

hierarchical clustering technique, and gather the channels with similar histogram 

features. Depending on music cognition facts, we select best channel from each 

cluster as melody and discard the rest. Lastly, we implement early Melody Extraction 

algorithms in the reduced MIDI set. 

 

 For evaluation, we selected 31 MIDI music files. Selected files disclose different 

musical features such as pitch frequency, tremolo, arpeggio, glissando and rest.  

3.1  Introduction 

 Recently music files have been converted into digital format, leading to digital 

music databases. Consequently, fast and reliable music retrieval algorithms have 

been demanded from industrial, educational and judicial communities. In order to 

design efficient music retrieval algorithms, interdisciplinary studies have been 

focused on polyphonic nature of music, where polyphony is the simultaneous sound 

of notes. Melody Extraction is a research field, which generates monophonic 

equivalent of polyphonic files, where monophony guarantees linear sequence of 
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notes (Meek, 2001). Hence, output of Melody Extraction takes less space in 

databases but contains genuine part of the music. 

 

 In 1995, (Ghias et. al., 1995) presented that percussion channel never contributes 

to melody. As a result, elimination of percussion channel not only enhances the 

relevancy of the search, but also speeds up the retrieval time. In 1998, a breakthrough 

paper proposed music manipulation approach. (Uitdenbogerd, 1998). Uitdenbogerd 

and Zobel pointed out that retrieval on monophonic music files is comparably easy, 

whereas dealing with polyphonic files require significant endeavor. They put forward 

four different techniques to generate monophonic equivalent of polyphonic files and 

made experiments in MIDI music files. Their first technique, Skyline Algorithm, 

collected the notes of a MIDI file into single MIDI channel. Thereupon, algorithm 

followed the highest pitch line of the note sequence as the melody. In order to keep 

more notes in the final output, Skyline Algorithm modified note durations. Their last 

three algorithms attempted to select the best MIDI channel which keeps melody 

(Uitdenbogerd, 1998), (Uitdenbogerd, 1999). In order to determine best channel, they 

presented cognitive criterions such as pitch average or entropy of a channel. 

Remainder of MIDI channels were entitled as accompaniment and discarded. 

However, all four algorithms led a main drawback; features of the music files were 

determining the performance of each algorithm.  

 

 In order to enhance Melody Extraction, Chai presented Revised Skyline 

Algorithm (Chai, 2000). Having sorted notes based on pitch level, she eliminated low 

pitch notes until monophony is obtained. Moreover, Chan claimed that average 

volume of the channel may disclose the location of melodic content (Chan, 2002). 

Nevertheless, none of the melody extraction algorithms overtook feature 

dependency. In contrast, each algorithm succeeded in a special data set. In fact, multi 

cultural progression of music was leading to complex cognitive rules, consequently 

causing obstacle against melody extraction. 

 

 In order to overtake feature dependency, we combine the Melody Extraction 

techniques from literature. Initially, we cluster MIDI channels, be a result of pitch 
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histogram.  Consequently, each cluster contains MIDI channels maintaining specific 

histogram features. Next, we select the best channels of the clusters as melody and 

eliminate remaining channels from MIDI file. Finally, we implement early Melody 

Extraction algorithms in the reduced MIDI set. Experiments acknowledge our 

method; implementing Skyline over the reduced MIDI set outperforms. Moreover, a 

combined channel selection approach overtakes the previous channel selection 

algorithms. 

 

 The remainder of the paper is organized as follows; section 2 describes the 

definitions and related work. Section 3 presents Partial Skyline approach. Section 4 

exposes experimental results and makes comparisons. Section 5 concludes the paper 

and gives a look to the further study on this subject.  

3.2 Related work 

 MIDI is an acronym for Musical Instruments Digital Interface. For simplicity, 

musical notes are stored in 16 channels, where each MIDI channel represents an 

instrument. Let M be a MIDI file composed of channels. Formally,  

 

M = { c1 ,c2 ,….., c16 } .                                                        (3.1) 

 

 We assume that each channel, ci, be a set, containing k notes. Mathematically, 

 

ci = { ni1, ni2, …. nik}  where  1 ≤ i ≤16                                             (3.2) 

 

 Melodic content of the music might be distributed among channels. However, 

(Ghias et. al., 1995) showed that percussion channel never contained melodic 

information. As a result, elimination of percussion channel, c10, from M did not ruin 

melodic robustness.  

 

 Interestingly, average frequency of percussion channel was low. Cognitive studies 

showed that it was not a coincidence. (Dowling, 1982), (Temperley, 2001). On the 
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contrary, human have tendency to memorize high frequency notes. Based on this fact, 

Uitdenbogerd and Zobel followed the highest pitch line of the M. If multiple notes 

occur simultaneously, they eliminated the notes exposing low frequency.  

 

 For our case, there are three important note properties: pitch, note onset time and 

note offset time; respectively pij, sij, and eij. Formally, we define a note  as: 

 

nij  = { pij, sij ,  eij }  1 ≤ pij ≤ 128                                                  (3.3) 

 

 By nature, MIDI notes are sorted based on note onset time. Therefore,   

 

∀ nij, ni(j+1)  ∈  ci  ; sij  ≤   si(j+1) .                                                    (3.4) 

 

 However, there is no constraint for offset time. If subsequent note’s onset is 

earlier than preceding note’s offset, then polyphony will occur. Formal definition of 

polyphony is: 

 
∃ nij, ni(j+1)   ∈  ci ; eij  >  si(j+1)                                                                           (3.5) 

 

3.2.1 Skyline Algorithms 

 (Uitdenbogerd, 1998), and (Uitdenbogerd, 1999) presented four techniques to 

generate monophonic equivalent of polyphonic files. Their first technique, Skyline 

Algorithm, collects all notes of M into one channel and follows the highest pitch line. 

In addition Skyline Algorithm manipulates note durations. Skyline Algorithm is 

explained in Algorithm 3.1. At the first line of the algorithm, first note is selected. 

Fourth line of the algorithm considers all notes that have the sane onset time. In case 

multiple notes have same onset time, note with maximum pitch frequency will be 

kept, whereas rest of notes will be eliminated (line 5-10). Therefore monophony can 

be ensured. On the other hand, monophony can be obtained by shortening the 

duration of notes. If a new note onsets before preceding note offsets, offset of 
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preceding note is rearranged in line 11-12. In order to illustrate the algorithm, Figure 

3.1 denotes Skyline algorithm.  

  

 Although Skyline yielded impressive results, three critics have been mentioned. 

Firstly, manipulating the note durations can change music properties. Secondly, 

collecting all notes into one channel removes rest. In other words, silent intervals 

between notes may carry on hidden melody. To consolidate the problem, we 

introduce the Skyline algorithm in Figure 3.1. Lastly, we may encounter music 

samples where melody is maintained by low pitches. Depending on the note 

durations, some notes are eliminated from the set in figure 3.1-b. 

 
Algorithm 1 Skyline  

begin 

1. j := 1; i =1; 

2. for each nij ∈ M do 

3.  k := j + 1 

4.  while ( sij = sik ) 

5.   if ( pij < pik )   

6.    eliminate pij 

7.    j := k 

8.   else 

9.    eliminate pik 

10.   k := k + 1 

11.  if eij >  sik  then eij =  sik  

12.   j := k  

13. end for 

end 
 

 It is a fact that, keeping the original durations of notes was a solvable issue. (Chai, 

2000) presented the Revised Skyline Algorithm, where note elimination starts from 

the lowest pitch and continues until monophony is ensured. Nevertheless, solution to 

the last two critics required channel elimination. So, proper channel elimination 

techniques were needed to decompose channels which contain accompaniment 

information. Here, cognitive studies were expected for participation  
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3.2.2 Channel Selection Algorithms 

 Uitdenbogerd and Zobel attempted to select best MIDI channel to represent 

melody of M. Their first algorithm, Top Channel, obtains Skyline output of each 

MIDI channel. Later on, algorithm computes average pitch frequency, ai, of ci. At the 

end, Top Channel algorithm eliminates all MIDI channels except ci possessing 

maximum ai. Their second algorithm, Entropy Channel, was quite similar to Top 

channel. But Entropy Channel Algorithm considers first order predictive entropy of 

ci as channel selection criterion. In music sequences, predictive entropy can be 

defined as a measure of uncertainty between consecutive sequence letters. Here, we 

define bi as the entropy of ci. Lastly, they used heuristics to find the channel with 

maximum bi, which was very similar to Entropy Channel Algorithm. Channel 

Selection algorithm is illustrated in Figure 3.1-c. Notes of the second channel are 

eliminated from the set. 

a) 

 
b) 

 
c) 

 
           Figure 3.1 Notes of Alla Turka a)- Original Notes are decomposed in two MIDI channels,  

            b)- Notes after Skyline Algorithm, c)- Having eliminated notes from secondary channel,  

           both melody and rests will be maintained. Because we eliminated only accompany notes. 
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 In addition, volume information could reveal some hints about melodic content. 

Chan presented that there was a relation between high volume and melody (Chan, 

2002). Therefore he selected the channel which has maximum average volume.  

Experiments show that performance of channel selection algorithms depends on the 

data set. Moreover, channel selection algorithms have a common pitfall. If perceived 

melody circulates around channels, selection of one melody channel will lead to loss 

of melodic information. We believe that there are still cognition facts which are not 

unraveled yet. If a music expert could select melodic line by premonition, then 

optimum melody extraction algorithm should be able to do so.  

3.3 PARTIAL SKYLINE APPROACH 

 We believe that combining chief melody extraction algorithms in a new approach 

will outperform. Furthermore, pitch histogram of a channel reveals basic motifs of 

the melodic content. Thereupon, we can cluster channels which expose similar 

histograms. Here, we also consider histogram similarities between MIDI and its 

channels. 

 

 We prefer to implement three primary melody extraction operations before 

computing pitch histogram. Our first preliminary operation eliminates percussion 

data which is stored in c10. Secondly, we apply Skyline Algorithm to all channels. So, 

only perceptively attractive notes make contribution to histogram. Thirdly we 

represent MIDI notes by 12 semitones. In order to achieve this, we computed modulo 

12 equivalents of pitches(Lemstrom, 2000). As a result, pitch histogram of channels 

takes place in 12-dimensional space. 

3.3.1 Analyzing Pitch Histogram of MIDI Channels 

 A histogram is the graphical version of a table that shows what proportion of 

cases fall into each of several or many specified categories (Histogram-wikipedia, 

n.d.). Let hi is the pitch histogram of ci , then we can define histogram set H as  
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H  =  { h1 , h2 , …., h16 }                                                      (3.7) 

 

 Average histogram of all channels, hA, can be computed as: 

 

 
∑                                                                             (3.8) 

 

 Instead of searching for a standardized pitch histogram, our reference point is 

reached by hA. Let di  is the Euclidian distance between hi and hA.  

 

di = d (hi, hA)                                                                     (3.9) 

 

 Than we define distance set, D, such that : 

 

D  =  { d1 , d2 , …., d16 }                                                           (3.10)

   

 It is a fact that di exposes histogram similarity between M and ci. In other words, 

channels with similar di frequently reveal similar music features. Having clustered 

channels based on di, each cluster keeps a peculiar feature of music file.  

 

In order to illustrate the significance of pitch histogram, we present Bon Jovi’s 

favourite son “Always”. Table 3.1 clarifies the histogram based distance features of 

channels. In terms of distances, there are two sudden increase occur between 

consecutive rows. Hence, channels can be decomposed into three basic clusters. Any 

well designed algorithm should be able to cluster the channels in proper manner. 
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Table 3.1 Histogram related distance features of “Always” from Bon Jovi. 

Channel 
 

Contain 
melody 

Distance  consecutive 
difference 

Group No 

c1  Y  0.0885 ‐‐‐ 1 

c6  ‐  0.0935 0.005 1 

c3  ‐  0.0974 0.003 1 

c9  ‐  0.1065 0.009 1 

c4  ‐  0.1092 0.002 1 

c8  Y  0.1609 0.051 2 

c5  Y  0.2070 0.046 3 

c2  ‐  0.2149 0.007 3 

c11    0.2174  0.002  3 

 

  

3.3.2  MIDI Channel Classification 

 In order to collect the channels with similar property at one cluster, we implement 

agglomerative clustering approach. In addition, we present a technique which 

computes a threshold. So that clustering approach iterates until the threshold value. 

In general average, median or standard deviation features are used to stop 

agglomerative clustering. However, such techniques require satisfactory amount of 

samples. On the contrary, M contains at most 16 channels. Therefore, such threshold 

determination techniques do not make sense. 

 

In order to present a better threshold for our purpose, we compute weighted 

average pitch histogram of M. Recall that ci contains ti notes. Than weighted average 

histogram, hW, will be,  

 

 ∑                                                                          (3.11) 
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We determine the threshold, r, as 

 

 ,
                                                                      (3.12) 

 

 Logic behind our threshold is as follows: If all channels have equal number of 

notes, than r will be zero. Therefore, clusters contain one channel. On the contrary, if 

a channel contains 99 % of the notes, it will lead a big threshold value and one 

cluster collects all the channels. Consequently, all but one channel from clusters will 

be eliminated.  

 

 For the sample song threshold, r, is 0.0214. Consequently, agglomerative 

clustering iterates until distance between merging clusters are smaller than threshold. 

Table 3.2 shows the decomposition of clusters after agglomerative clustering. 

 

3.3.3 Combined Channel Selection Approach 

 Having clustered similar featured MIDI channels, we select best MIDI channel 

from each cluster and eliminate the rest of channels from MIDI. Here we present a 

combined Channel Selection algorithm which is a mixture of Top Channel and 

Entropy Channel algorithms.  

 

 Recall that predictive entropy can be defined as a measure of uncertainty between 

consecutive sequence letters (Uitdenbogert, 1999). Correspondingly, we let ai and bi 

be the pitch average and predictive entropy of ci; combined channel selection 

criterion, xi, is computed as: 

 

xi = ai +  bi 128                                                                (3.13) 

 

 Pitch average of MIDI channel, ai, can range between 1 and 128. On the contrary 

predictive entropy, bi, ranges between 0 and 1. Therefore multiplying bi by 128 

balances the weight of ai and bi. 
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 Table 3.3 and 3.4 show that Top Channel and Entropy Channels are 

supplementary to each other. There are examples where either Top Channel or 

Entropy Channel selects the convenient channel. Meanwhile, Combined Selection 

Algorithm chooses the best of Top Channel or Entropy Channel. Consequently, it 

overtakes all previous channel selection algorithms. 

 

 Having benefit from Combined Selection approach, we compute xi values of all 

channels and determine the best channel from each cluster. In Table 3.2, c1 has the 

maximum xi value in the first cluster and selected as melody channel. In the same 

way, c8 and c5 are selected as melody and rest of the channels are eliminated from the 

M. 

 
 Table 3.2 Decomposition of MIDI channels consequently, channel selection in clusters. 

Channel 
 

Is Optimal 
Melody Channel 

Cluster No  xi  Combined approach selects 

c1  Y  1  154.8 X 
c6  ‐  1  100.1  
c3  ‐  1  107.7  
c9  ‐  1  98.6   
c4  ‐  1  94.0   
         
c8  Y  2  102.8 X 
         
c5  Y  3  78.6  X 
c2  ‐  3  49.5   
c11    3  74.9  

 

  

 Our example, approach yields three clusters. Rarely, files can yield five or more 

clusters so, do melody channels.  In such cases, considering channels of the four 

clusters which show shorter di suffices. Because, melody clusters have tendency to 

expose shorter di values. 
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 Finally, in our sample, Partial Skyline approach keeps important melodic 

contents, although some channels do not expose attractive pitch, entropy or volume 

properties. An example of this situation occurs in the sample song in Figure 3.2. 

 

 

 
           Figure 3.2 Piano roll of 5th channel from “Always”. Although channel contains  

           decent melodic information, it is eliminated by pitch frequency, entropy and 

           volume techniques. 

 

3.3.4 Summing up Partial Skyline Approach. 

In order to summarize our study, we present the 8 basic steps Partial Skyline Approach  

1. Apply Skyline Algorithm to all Channels 

2. Mci ∈∀ , compute ai  and bi  

3. Mci ∈∀ , combined channel selection criterion is : xi = ai + bi  128  

4. Represent music with 12 semitones. 

5. Compute clustering threshold. 

6. Iterate Agglomerative Hierarchical Clustering on distance set, until threshold is 

encountered. 

7. Apply Combined Selection approach in clusters. Eliminate remaining MIDI 

channels. 

8. Apply Skyline Algorithm in the reduced MIDI set. 



36 

 

 

3.4  Test Results 

Features of the music files have deep impact on the performance of Melody 

Extraction Algorithms. For instance, if a database consist of music files where accompany 

has high frequency, then worst performance will be generated by Skyline and Top Channel. 

However, such judgement cannot be generalized. In contrast, Skyline entitled as the most 

successful melody extraction algorithm. 

3.4.1 MIDI Test bed 

In order to represent music universe, a test bed should consider all aspects of music 

features and consequently collect files. In our test bed , considered features are high 

frequency, accompany has high frequency, Melody change instrument, Rest, 

Arpeggio, tremolo, volume, and glissando. In this respect, we selected samples 

where each selected feature is dominant at least in three music files. Selected files 

and their properties are revealed in Table 3.5. 

3.4.2 Evaluation Methodology 

Evaluation of a Melody Extraction Algorithms is collaborative study of both 

computational and musical science. Firstly, researchers from musicology department  

selected the music sequenced to be analyzed. The data set is illustrated in Table 3.5. 

Later, manually selected the channels where melodic contents take place. 

Additionally, musicologists determined weights, when multiple melody channels 

takes place in the same file. Because, finding the channel which has densely melodic 

content is a desirable property. 

 

 Later we compared the results between manual selections and the selection of the 

melody extraction algorithms. Computational evaluation was based on recall and 

precision. In addition, final outputs have been appraised by music experts. 
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3.4.3 Evaluation of Channel Selection Algorithms 

 In our test bed, Top Channel and Entropy Channel Algorithms expose yield 

similar performances. Depending on the data set features, each algorithm overtakes 

other. Meanwhile, in table 3.4, average velocity algorithm, which is based on volume 

average of notes, exposes unsatisfactory output in our test bed.  

Test results in Table 3.4 shows that combining multi features of the channels can 

show impressive enhancement. Covering the whole scope of data sets can be possible 

when all cognitive features of music are considered. Consequently, we Combined 

obtained best performance from our Combined Channel Selection Approach.  

3.4.4  Evaluation of Skyline Algorithms 

 Recall that Partial Skyline approach eliminates the channels which are potentially 

accompaniment; consequently implements Skyline Algorithm on selected MIDI 

channels. Thus, performance depends on the correctly decomposition of accompany 

channels. Table 3.4 shows that Partial Skyline algorithm exposes good performance 

in terms of Recall and Precision. In addition, we observed that partial skyline 

algorithm rarely miss weighted melody channels. 

 

 We believe that evaluation based on recall and precision is not enough for music 

files. Moreover, outputs should be analyzed perceptively. Table 3.3 explains the 

fundamental pros and cons of Skyline Algorithms.  

 
Table 3.3 Evaluation of Skyline Algorithms 

Algorithm    Comments 
Skyline  Pros  Melody Changes instrument and melody has high frequency.

Cons  Remove Rests, modify note durations, include accompany.
 
Revised 
Skyline 

Pros  Melody Changes instrument and melody has high frequency. In 
terms of rests, overtakes Skyline. 

Cons  Not convenient for tremolo and arpeggio. Worst, when 
accompany has high frequency. 

 
Partial 
Skyline 

Pros  Lessens the interference from accompany channels. 
Compensate all deficiencies of Skyline Algorithms. 

Cons  Elimination of melodic content is possible.   
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3.4.5 Effect of the Feature over Partial Skyline 

 In some music samples, determining the borders of clusters are very sharp. 

Consequently Partial Skyline approach runs properly. For instance tremolo, which is 

the rapid succession of the same note, exposes sharp histogram distances. On the 

contrary, if the borders of clusters are fuzzy and accompany has high frequency, 

Partial Skyline will not guarantee generating satisfactory outputs. Furthermore, notes 

which have short durations are fatal to elimination if Revised Skyline Algorithm is 

considered. 

 

 Arpeggio, rapid succession of notes rather than concurrent notes, is successfully 

determined by Partial Skyline approach. In addition, channel elimination improves 

Skyline Algorithms, when note durations are very short. Because short durations of 

notes leads to densely population of concurrent pitches. Similarly, channel 

elimination is beneficial to keep rests as well. 

 

 Glissando, continues sliding of consequent notes, does not cause any effect on the 

histogram, neither do on partial Skyline approach. However, glissando is a hint for 

melodic content. We believe combining glissando into melody selection criterions 

enhance melody extraction. 

 
Table 3.4 Comparison of Channel Selection Algorithms.  Best Recall is obtained from Partial Skyline 

approach, whereas Combined Selection approach is the best in terms of Precision. 

Recall  Precision  Weighted Recall 
Partial Skyline  0.769  Combined 

Selection 
0.935 Partial Skyline  0.769

Top Rank  0.681  Entropy  0.774 Top Rank  0.687
Combined 
Selection 

0.593  Top Chan  0.741 Combined 
Selection 

0.603

Entropy C  0.477  Partial Skyline  0.653 Top Ch  0.487
Top Chan  0.465  Velocity  0.516 Entropy  0.470
Velocity  0.377  Top Rank  0.5  Velocity  0.374
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Table  3.5 MIDI Testbed 

ID  Name  Description  ci  Optimals 

1G1  Mozart Alla Turka  Melody has high frequency  2  1 

1G2  Chopin ‐ Etud Op. 12  "  1  1 

1G3  Mozart ‐12 Variations  "  2  1 

2G1  Beethoven 5. Symph  Meody change instrument  12  8,3,5,1 

2G2  Mozart ‐12 Variations  "  2  1,2 

2G3  Mozart‐Concerto  "  9  1,2,6,9 

3G1  Madonna Frozen  Accomp. has  high frequency  11  4 

3G2  Roxette‐ It must be love  "  8  2 

3G3  R.Martin ‐ Maria  "  8  16,3 

4G1  Bach ‐ Goldberg  Rest  1  1 

4G2  Barry Manilov‐C.Cabana  "  3  7,2 

4G3  Yanni ‐ Themes  "  4  1,12 

5G1  Green Sleeves  Arpeggio  1  1 

5G2  Rodgers ‐ Romant  "  3  1 

5G3  Albeniz ‐ Asturias  "  2  2 

6G1  Pulp Fiction  Tremolo  4  6 

6G2  Vivaldi ‐ Concerto  "  6  1 

6G3  Empire Strikes Back  "  10  3,9,4 

7G1  Tschaikovski ‐ 1812  Volume  15  1,6,13,4,7 

7G2  F. Lizst ‐ Totantanze  "  4  1,4 

7G3  M. Jackson ‐ Thriller  "  7  4 

8G1  C. Dion ‐ All By Myself  Glissando  5  7,8,1 

8G2  Tears in heaven  "  5  5 

8G3  Congo  "  15  2,1,5 

MG1  Mozart – 40 Symph.  Mixed  11  12,3,1,4,2 

MG2  Tears in heaven  "  8  4,5 

MG3  C.D. All By myself  "  9  4,7,8,1 

MG4  Beethoven ‐ Pastoral  "  11  11,2,3,4,12 

MG5  Bye bye love  "  6  4 

MG6  C.D. All Coming back  "  14  13,6,1,15,7 

MG7  Bon Jovi  Always  "  10  8,5,1 

  

Performance of Melody Extraction Algorithms depends on the data set. Due to 

multi cultural structure of the music, different criterions are essential for different 
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data sets. In order to design global Melody Extraction algorithm, we combine the 

criterions from literature. In addition, we analyzed the pitch histogram to decompose 

melody and accompaniment MIDI channels. Our test bed contains MIDI music files 

which cover common features of Western music.  

 

 Test results show that our combined approach overtakes when data set covers all 

important music features. However, results do not expose 100 % reliability. In order 

to present best melody extraction algorithm, cultural progressions and cognitive 

studies should be analyzed.  
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4CHAPTER FOUR -  

ONLINE GENERALIZED SUFFIX TREE CONSTRUCTION ON DISK 

 

 

 In section study, we present an online generalized suffix tree construction 

algorithm on disk, where multiple sequences are indexed by a single suffix tree. 

Typically, performance of suffix tree construction on disk suffers from poor memory 

locality and high space consumption problems, especially when alphabet size is 

large. In order to overcome these problems, we propose a novel suffix tree 

construction algorithm which (1) takes letter frequencies into consideration and (2) 

involves an alternative physical node representation. We run a series of 

experimentation under various buffering strategies and page sizes. Experiment 

results showed that our algorithm outperforms existing approaches.  

4.1 Introduction 

 Suffix trees, are versatile data structures which enable fast pattern search on large 

sequences. The large sequence, data set, can be a DNA sequence of a human, whose 

length is 3 billion; or it can be a collection of musical fragments, where number of 

fragments in the collection is large but average length of each fragment is moderate[. 

In both sequence cases, total size of the data set may be extremely large. For such 

large sequence sets, suffix trees introduce a fundamental advantage; sequence search 

time does not depend on the length of the data set. 

 

 Concept of suffix tree construction was initiated before the seventies by a brute 

force approach (Gusfield, 1997). For each suffix insertion, brute force approach 

preceded a common prefix search operation in the tree. Nevertheless, it was not 

practical since computational cost of the brute force suffix tree construction was at 

least exponential. In the seventies, linear time suffix tree construction algorithms 

were introduced using suffix links and tested on memory. (Wiener, 1973) and 

(McCreight, 1976). In these algorithms, suffix links functioned as shortcuts, which 

enable fast access to the suffix insertion positions of the tree. In other words, they 
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hold the address of a node, which contributes to the next suffix insertion position. As 

a result, traversing the tree for each suffix insertion was not necessary; instead suffix 

links from the previous step supplied the direct address. Due to this strong advantage, 

linear time suffix tree construction became possible. (Gusfield, 1997). 

 

 Although early suffix tree construction algorithms ensure linear time construction, 

they share a common pitfall: the offline property. For instance, in McCreight 

algorithm all letters of the sequence should be scanned before suffix tree construction 

procedure starts up. Such situation may cause an important constraint, if, for 

example, the occurrence of the rightmost letter is delayed. Twenty years after 

McCreight, Ukkonen has presented an online version (Ukkonen, 1995). In the online 

construction algorithm, the scanned part of the sequence can be projected to the 

suffix tree whereas; it is possible to extend the suffix tree by reading the next letter 

from the sequence. 

 

 Advancement on the suffix tree construction took a step by Generalized Suffix 

Tree (GST) (Bieganski et. al., 1994). Bieganski looked at the problem from a 

different aspect and pointed out the importance of indexing multiple sequences in a 

single suffix tree. In GST, it was necessary to identify the origin of each sequence. 

Hence extra node identifiers were added within leaf nodes. As a result of GST, most 

of the symbolic representations of Time Series could be indexed by a single suffix 

tree (Huang, 1999).  

4.2  External Memory Suffix Tree Construction 

 We believe suffix tree construction algorithms on memory are almost mature. 

However, suffix tree construction applications on disk lead to important difficulties 

such as high space consumption and poor memory locality. Concretely, space 

consumption of a suffix tree node is high and less number of nodes can fit into a 

page. If a suffix tree contains large number of nodes, disk page requirement of a 

suffix tree will be large as well. On the other hand, poor memory locality is 

inevitable since suffix tree nodes are generated in random order and nodes of a 
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selected path are generally spread across different pages. Because of this, traversal 

on a path frequently leads to indispensable page misses. 

 

 Recently, some researches have pointed out disk based suffix tree algorithms. In 

1997, Farach-Colton proposed a theoretical algorithm, which ensures linear time 

construction, (Farach et. al, 1998) but his algorithm has not supported by practical 

results. A popular platform, PJama suggests a reduction in space cost by removing 

suffix links from suffix tree (Hunt et. al., 2001). In addition suffixes were grouped 

according to their common prefixes. Finally, suffixes in the same group are inserted 

to the tree together. Hence both poor memory locality and space consumption 

drawbacks were improved. Recently, new studies have followed a similar path 

(Cheung et. al., 2005), ( Phoophakdee and Zaki, 2007), (Tian et. al., 2005), (Wong et. 

al., 2007). Nevertheless, these algorithms did not consider online property of suffix 

trees and put constraints on dynamic sequence insertions. By the same token, GST 

could not consider online suffix tree construction since it was proposed before 

Ukkonen algorithm. 

 

 In 2004, Bedathur and Haritsa presented a fast online suffix tree construction on 

disk and made experiments on DNA and protein sequences(Bedathur, 2004). Based 

on Ukkonen’s strategy, they presented a flexible algorithm, which enables dynamic 

modification on the suffix tree and considered physical node representations. In 

addition, they presented a buffering strategy, which considers probabilistic behaviors 

of path generation.  However, the algorithm did not consider indexing multiple 

sequences in a suffix tree. In other words, they did not consider online GST.  

  

 In this study, we present an Online Generalized Suffix Tree (OGST) algorithm on 

disk. To the best of our knowledge, this is the first study dealing with OGST 

construction on secondary memory. Briefly, contribution of this study is threefold: 

The first, we modify the suffix tree nodes, so that the size of each tree node increases 

but direct access to parent becomes possible. Second, we introduce a frequency 

based sequence insertion strategy to enable fast access of frequent nodes of the tree. 

This requires knowing the occurrence frequency of alphabet letters before sequence 
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insertion. Third, we show that buffering performance will be increased, if the letter 

frequency distribution of available sequences is taken into consideration. In order to 

evaluate this approach, we make use of a popular Western folk musical database (Yet 

another Digital Tradition page, n.d.) which contains four thousand musical 

sequences, where alphabet size is 128 and average sequence length is sixty.  

 

 The remainder of the section is organized as follows: section 4.3 introduces some 

basic definitions and explains alignment of online suffix tree construction on 

memory. In Section 4.4, we introduce a new physical node representation. Also, we 

analyze the contribution of alphabet letter frequencies. Consequently, we present an 

improved sequence insertion order strategy. Test results are demonstrated in Section 

4.5.  Finally, Section 4.6 concludes the paper and gives a look to further studies on 

this subject. 

4.3  Online Generalized Suffix Tree Construction 

This section provides an overview of Online Generalized Suffix Trees (OGST) and 

analyzes the factors affecting the performance of disk based suffix trees.  

4.3.1  Definitions 

Suffix trees enable fast string processing on large data sequences. As shown in 

Figure 4.1, suffix tree is composed of edges, internal nodes, and leaf nodes. In 

particular, edges connect the nodes of tree and represents subsequence of a suffix. 

From root to an internal node, following the edges of a specific path may lead to a 

common prefix. In the tree, each common prefix is represented by a unique internal 

node and every internal node will branch to children nodes. Particularly, suffixes are 

represented by leaf nodes. That is to say, a leaf node addresses a unique suffix from 

data set. 
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There are several ways to construct suffix trees. One of them is online construction, 

where scanned part of the sequence can be immediately projected to the suffix tree. 

Besides, generalized suffix trees index multiple sequences.  

 

 In this subsection, some of the preliminary definitions about OGST are given to 

clarify the notation used throughout the thesis. Let us assume that we have a 

collection of sequences, S, such that  

 

  S = { S1, S2, …, Sk }                                                                                       (4.1) 

 

 Here, an arbitrary sequence, Sj, is defined as an ordered set containing all possible  

suffixes defined in alphabet, Σ. More formally, an arbitrary sequence Sj is defined as 

follows: 

 

, , … ,                                                                      (4.2) 

 

ect$ fect$ ffect$ ct$ 

$ 

t$ct$ f e

0

5 3 7 8

9

1 6 2 4

ect$fect$ff ct$

$

t$ct$fe

0

5 3 7 8

9

1 6 2 4

1 11

ect$ ort$

a) b)

Figure 4.1 a) Suffix tree after inserting all suffixes of the sequence “effect$”. Inside the rectangles, 

node generation orders are pointed out. The delimiter character, $, is used to maintain the end of a 

sequence. b) The suffix tree after insertion of the suffix: “effort$”.   
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where an arbitrary suffix,
j

is , is a sequence containing the only last (n-i+1) letters of 

Sj in the same order. Meanwhile, the alphabet of the data set containing letters, Σ, is 

defined as follows:  

 

 Σ = { σ1, σ2 ,…,  σγ }                                                                                         (4.3) 

 

 where the alphabet size is equal to γ, (i.e., |Σ|=γ). 

 

4.3.2 Online Generalized Suffix Tree Construction on Disk 

 While suffix trees introduced salient enhancements on string processing, most of 

the major research in this area were concentrated on memory aspects (McCreight, 

1977), (Ukkonen, 1995). A decade ago, it was widely believed that disk based 

implementations were not feasible due to memory bottleneck (Bedathur, 2004). Here 

we first analyze the main reasons of memory bottleneck and later propose a new 

solution to enhance it in the next section. 

 

 The memory bottleneck is due to two factors. First one is high space consumption. 

Indeed, space cost of suffix trees range within 17n to 65n bytes (Wong et] al., 2007). 

For this reason, suffix trees can not fit into memory for large sequences. The second 

factor to cause memory bottleneck is the poor memory locality of nodes inside the 

tree. When a new common prefix occurs among suffixes, a representative internal 

node is generated and inserted into tree. Since generation order of the internal nodes 

are random and solely depends on the common prefix occurrences, random 

distribution of suffix tree nodes are indispensable and leads to poor memory locality.  

 

 Figure 4.1 illustrates a typical suffix tree. In Figure 4.1-a, suffixes of “effect” are 

indexed by a suffix tree. While dashed circles represent leaf nodes, flat circles denote 

internal nodes. The edges, which connect nodes, represent subsequences of a suffix. 

In order to illustrate poor memory locality, we illustrate node generation orders 

inside of circles. Therefore, we assume that initially root is generated and its 
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generation order becomes 0. In the tree, nodes of the paths have irregular node 

generation order. Figure 4.1-b shows the tree after inserting a new suffix, “effort”. 

Due to new common prefix between new suffix and the tree, a new internal will be 

generated. Since largest generation order in the tree was 9, generation order of the 

new node becomes 10. In the next sections, we will illustrate that node generation 

orders have decent impact over disk based suffix tree construction.  

 

 Tree travel is a technique for processing the connected nodes of a tree in some 

order (Tree Traversal – NIST, n.d.). For each suffix insertion, it is necessary to 

follow a top down tree traversal path which starts from root. Nevertheless, if the 

depth of the tree is big, following single path and inserting a single node takes O(n) 

time. Therefore, suffix tree construction becomes expensive. Instead, a shortcut from 

the previous node generation step can enable direct access to the demanded tree 

position. Here, corresponding shortcuts are named as suffix links. For a detailed 

description of linear time suffix tree construction and suffix links, reader is referred 

to read (Gusfield, 1997)  

 

 In an online suffix tree construction algorithm, physical node representations take 

more attention. An internal node may have so many children, or it may have only 

two children. Furthermore, total children of an internal node may increase during the 

suffix tree construction. Although it is possible to prepare a node for the worst case 

and align space to address maximum number children, it may not be space efficient.  

 

4.3.3  Physical Representation of Suffix Tree Nodes 

 In a suffix tree, there are two fundamental choices for the physical representation 

of the suffix tree nodes: Linked-list Representation and Array Based Representation 

(Bedathur, 2004). We denote the physical node structures of both representations in 

Figure 4.2. The former strategy reduces space cost of an internal node; therefore it 

will be convenient for limited memory applications. However, from a disk based 

aspect, priorities change. Performance on disk depends solely on total pages misses 

(Salzberg, 1988). The latter strategy enforces nodes to contain more information 
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about children addresses; as a result, it ensures less number of hops to access to the 

next node in the path. The tradeoff between two strategies is an important factor for 

disk based application. 

 

 During the node generation, an internal node initially obtains two branches to 

handle child nodes. In other words, an internal node initially contains two child 

pointers and corresponding branches. While suffix tree construction proceeds, the 

node may obtain new children and consequent branches. For each new child, the 

node will need to keep an extra pointer. Henceforth, space requirement of an internal 

node increases. For instance, in Figure 4.1-b, the root node has five branches and 

consequent children nodes. Certainly, there is a limit on maximum branches from a 

node. If |Σ|=5, than an internal node will contain maximum five children.  

 

 In the suffix tree, alphabet size determines the maximum number of child 

pointers. It is the maximum possible sequences, which do not have common prefixes. 

The difficulty is holding possible |Σ| branches in each internal node; at the same time, 

we have to optimize the  ratio of used/unused child pointers.  

 

4.3.4 Array Node Representation 

 

 Array Based Representation is a static data structure. By the time of an internal 

node generation, all possible |Σ| child pointers will be arranged within an internal 

node; no matter how many of them are used. So, array-based representation 

simplifies the future modifications on the internal nodes. In Figure 4.2-a, alphabet 

has |Σ| letters, rightmost |Σ| pointers address possible branches. Start offset and edge 

length fields are aligned to represent subsequence of the sequence. In brief, each 

internal node of a generalized suffix tree requires 4+|Σ|  pointers. 

 



49 

 

 

 
 

 Array based representation has both advantages and disadvantages. First, it is the 

simplest child access method and it enables direct access to the children nodes and 

consequent branches. In contrast to these advantages, it may lead to unproductive 

space consumption since some of the reserved child pointers for branching. In the 

worst case, |Σ|-1 letters of the alphabet may occur only once in the data set. Hence, 

almost all of the reserved child pointers waste space. 

 

4.3.5  Linked List Based Node Representation 

 In contrast to array based representation, Linked-List representation does not hold 

the address of all possible children. Figure 4.2-b denotes the physical layout of an 

internal node where interconnection between nodes is maintained by child and 

sibling pointers. As it shown in Figure 4.3, children of a common parent are linked 

with sibling pointers and leads to a linked list. Recall that first letter of each child 

node is unique and represented by σi. We name the linked list in the figure as sibling 

lists throughout this study. In figure 4.3, only head of the sibling list is able to access 

to its sibling nodes. For instance, in order to access to vi2, parent firstly need to 

access to vi1. In brief, parent node need to hold only one child node, which is the head 

of sibling list.  

 

a) 

Figure 4.2 Two different way of physical representation of an internal 

node. a) Linked-list b) Array based. 

b) 

Start 

Offset 

Edge 

Length

Child Sibling 

Parent Start 

Offset 

Edge 

Length
σ1 σ2 ... σγ 
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  In terms of List Based Representation, handling parent address does not cause 

extra space consumption. Instead, we can handle the parent address with sibling 

pointer. Recall that tail of the sibling list does not address any sibling. Using such 

unused space for parent address supports a reduction in space consumption. Because 

of this fact, Linked List representation minimizes the space consumption. 

 

 Although Linked List representation minimizes space consumption, it increases 

total node fetches during child access. This fact may cause a trouble in a disk based 

suffix tree if nodes of a sibling list take place in the different pages. As a result, child 

access time on a sibling list may be expensive.  

 

4.4 Fast and Space Efficient Suffix Tree Construction Algorithm on Disk 

 In a disk based OGST implementation, we believe that three issues are very 

important: (1) memory utilization, (2) fast access to a child node and (3) fast access 

to parent. Here, we present a technique which has two legs. In the first leg, we deal 

with direct access to a parent node. In the second leg, we sacrifice direct access to the 

child node for the sake of space utilization. However we can still present a strategy 

which enables fast access to a child node. To do this, we consider occurrence 

frequency of letters and probabilistic sequence occurrences.  

 

Figure 4.3 Parent to child and child to parent traversals on the suffix tree. 

tail head sibling sibling . . . vi vi
vi

e1=σ1X1 
e2=σ2X2 eNγ=σNγXγ 

vi 

parent 

Parent 
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4.4.1 Direct Access to Parent and Children Nodes 

 In order to optimize space utilization, we prefer a Linked List based node 

representation. However, we modify the nodes of Linked List by appending a parent 

address pointer and ensure direct access to parent node, named as Parent Address 

Appended List Representation (PAAL). As a result of this modification, size of an 

internal node will be increased by 25%. We assume that the extra space cost would 

be justified since it reduces total traversals on linked lists. In Figure 4.4, we denote 

PAAL as an alternative physical node representation.  

 

 In contrast to direct access to parent, direct access to children is problematic. 

Although reserving a pointer for each possible child is possible; it may not be 

feasible due to additional space overhead. As aforementioned, reserving a child 

pointer for each letter is not feasible. Instead, we prefer space efficient linked list 

node representation where sibling nodes are connected. However, we aim to place 

the most frequently accessed nodes to the head side of linked lists. Therefore, we 

maintain a speed up on access time of frequently access nodes. On the other hand, we 

try to align rarely referenced nodes at the tail of sibling list and venture their 

expensive access cost.  

 

4.4.2 Impact of Alphabet Size on Tree Construction  

 Alphabet size may have deep impact over the suffix tree construction 

performance. In a static array node representation, large alphabets increase the size 

of internal nodes whereas; in a linked list representation they lead to an increase on 

the length of sibling lists. We need to mention that most of the studies from literature 

aim to index DNA sequences where alphabet size is only four. Therefore, space 

Start  

Offset 

End 

Offset 

Child Sibling Parent 

Figure 4.4 Physical Node Representation of PAAL 
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utilization of array based representation leads to acceptable ratios. Nevertheless, 

conditions are different when alphabet size is large. For instance MIDI alphabet 

contains 128 letters [32]. Together with a delimiter character, alphabet size becomes 

129. 

 

 Table 4.1 denotes space consumption of internal nodes for both array based and 

list based representations given that alphabet size is 129. As shown in the table, 

space consumption for the array based representation is fairly high; consequently less 

number of nodes can fit into a page. In contrast, Linked list representation is more 

efficient. As a result, a page contains optimal number of nodes. 

 

 
 

 If we assume that nodes of a common parent are stored in the same disk page, 

Linked List based representation outperforms. Nonetheless poor memory locality of 

nodes reduces performance on disk. As in Figure 4.3, access to viγ can be very 

expensive when alphabet size is large, since each node access may cause a page miss 

to disk. 

 

4.4.3  Impact of Letter Frequency Distribution on Tree Traversal 

 Probabilistic occurrences of letters in the alphabets are generally different. The 

English language is a good example. In English, ‘E’ is the most frequently used 

letter. In contrast, ‘Q’ is the letter whose occurrence frequency is the least (Morse 

 

Representation 
Pointer Size 

(bytes) 

Internal Node Size 

(bytes) 

Leaf Node Size 

(bytes) 

Array Based 4 532 16 

Array Based 8 1064 32 

Link List Based 4 20 16 

Link List Based 8 40 32 

Table 4.1 Space cost of suffix tree nodes for MIDI, where alphabet size is |Σ|= 129.  

MIDI alphabet contains 128 letters plus delimiter character, $. 
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Code – Wikipedia, n.d. ). In 1830’s, Morse alphabet is inspired by such information. 

Similarly learning such information from a domain expert can enhance suffix tree 

construction as well.  

 

 In PAAL node representation, child access cost depends on traversals on sibling 

lists. We illustrate the situation in Figure 4.5, where children of a common parent are 

linked in sibling lists. In the Figure, the node which is the head of the sibling list, vi1, 

can be accessed by one hop. However, accessing the node viN, which is the tail of 

sibling list causes extra traversal costs. It is preferred to see that vi1 is the most 

frequently referenced node, whereas access to the viN is very rare. 

 

 In the suffix tree, a less frequently used letter constitutes comparably simpler 

branches. As a result, depths of the relevant branches are comparably shallow and 

short. In contrast, branches those starts with dominant letters are complex and deep. 

Therefore, probability of reading such braches in the future is comparably higher  

 

4.5 Probabilistic Occurrence of Longest Common Prefix 

 

 In this section, we explain which nodes of the suffix tree are accessed frequently. 

To do this we consider letter occurrence probabilities. Namely, we set about 

occurrence probability of all possible common prefixes. Computing such occurrence 

probability is very important since each common prefix is represented by an internal 

node. Therefore frequently accessed nodes can be estimated while suffix tree 

construction proceeds.   

 

Lemma 1: Given the two sequences S1 and S2, 
1

1
+Σ

−Σ
x

 is the probability that first x 

letters of both sequences are common but their (x+1)th letter is different.  
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Proof: The probability that first x letters of S2 is equal to S1 is 
xΣ

1

 and probability 

that S2 has different letter on the (x+1)th position is: (|Σ| - Σ
1

). Hence probability 

occurrence of branching at the xth element of S1 is 
1

1
+Σ

−Σ
x

 

 

Lemma 4.1 implies that probability of branching after reading the first letter of a 

suffix path is quite high. In a large data set, we can find many suffixes whose 

common prefix length is one. On the other hand, probability of common prefix 

occurrence reduces when value of x becomes larger. In other words, edge lengths in 

deeper side of the tree have tendency to be long.  

 

Lemma 4.2: For a given depth of a node is, p, the sequence between root and this 

node has at least p letters. 

 

Proof: Since depth of a node is p, there exist exactly p edges to connect nodes on the 

same path. As it mentioned in suffix tree components section, edges contain at least 

one letter. Hence the sequence between root and this node has at least p letters. 

 

 Lemma 2 implies that depth of a node in the tree leads decent impact over the 

sibling list length. Nodes in the higher end side of the tree commonly have more 

siblings and length of the sibling list in the higher end side of the tree is long. 

Therefore access to the tail of a sibling list more number of node access. On the other 

hand, sibling list are shorter in deeper side no matter the length of the alphabet. For 

this reason, the probability of a common prefix comes into prominence in a tree level 

and length of the corresponding sibling list comes to the prominence. 
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4.5.1 Alignment of Sibling Nodes to Enhance Memory Locality 

 In order to reduce side effects of poor memory locality, we preprocess the 

available sequences before inserting them into tree. More concretely, we try to 

postpone constructing the specific branches of the tree by delaying the insertion of 

relevant sequences. In this way suffix tree nodes can have comparably better memory 

locality. In order to illustrate this, we present a primitive alphabet and respective data 

set and make the following assumptions to denote a primitive case. Let there exist 

two alphabets, Σ1 and Σ2 satisfying the following properties: 

 

Σ1 ∪ Σ2 = Σ  

Σ1 ∩ Σ2 = Ø  

and | Σ1| = | Σ2| =  | Σ |/2 

 

 We also assume that there exist three sequences, S1, S2, and S3. All letters of S1 

and S2 comes from Σ1 and Σ2, respectively. On the other hand, S3 contains letters 

from Σ. In order to introduce the effect of data set size, we assume that length of S1 is 

longer than the length of S2. All three sets are planned be inserted to the same suffix 

tree.  

 

Lemma 3: Maximum tree construction performance will be obtained, if we insert 

sequences of sets in the following order: First insert S1, later S2, and finally S3.   

 

Proof: Performance of tree construction depends on total node accesses in a sibling 

list. In general, cost of an unsuccessful node search depends on the length. The 

shorter the sibling list, the faster the search time. In the first phase, we insert S1, 

where length of siblings list cannot exceed |Σ|/2.  Hence inserting the S1 can be done 

quickly.  

 

 In the second phase we insert the set S2 into tree and maximum length of the 

sibling list will be extended to |Σ|. Still, cost of a successful search is O(|Σ|/2), since 

nodes which are generated in the first phase takes place in tail side of sibling list and 
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successful searches never visit them. However, cost of an unsuccessful search time 

increases to O(|Σ|). Because of this fact large sequence set, S1, should be inserted to 

the tree before S2. 

  

 In the third set, S3 will encounter longest sibling list. Prior, most frequently 

referenced sibling lists should have already contained |Σ| elements. Hence, both 

successful and unsuccessful search time will be proportional to |Σ| and searches lead 

more page misses. That is to say, the third phase does not introduce any performance 

gains. 

 

 
 

4.5.2 Computing the Rank of a Sequence and Inserting to the Suffix Tree 

 As aforementioned, access probabilities of two sibling nodes are different; 

resulting from the alphabet letter frequencies. Therefore, aligning most frequently 

accessed node as the head of a sibling is preferred. When a new node is generated, it 

will be appended to the relevant sibling list as the new head. Correspondingly, rarely 

accessed nodes should be generated first to takes place in tail side of sibling lists. In 

this section, we ensure this by introducing a sequence insertion order strategy.  

 

 As in the English letters, we assume that average occurrence frequency of each 

letter and its corresponding histogram is known. We name such histogram as 

tailhead siblingsibling . . . . . vi1 vi2
viγ

Least Frequently 

Accessed Sibling Node 

Parent address 

vi parent 

Most Frequently 

Accessed Sibling Node 
Figure 4.5 Sibling list for a common parent. While direct access to the first child is 

possible, access to requires traversal on sibling list. 
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centroid. Later on, we compute the letter occurrence frequencies of the available 

sequences and compute their Euclidian distance to centroid as their rank. In contrast 

to expectations, we insert sequences which are dissimilar to the centroid. Namely, 

sequences those yield higher rank are inserted to the tree earlier than those with a 

lower rank. Therefore nodes representing the rarely used letters will be inserted first. 

On the other hand, generation of the frequently accessed nodes of the tree will be 

delayed. Consequently frequently accessed nodes can stand as the head of the sibling 

lists of tree after inserting a group of sequences into tree.  

 

 We need to emphasize that each internal node becomes head of a sibling list just 

after its generation. We prefer that all accesses to the new node should be processed 

before another node is appended to the same sibling. In other words, we should try to 

construct all sections of a branch before locating to another branch. This can be 

achieved if sequences which have common characteristics are inserted to tree back to 

back. Therefore, computing the rank of a sequence seriously enhance performance 

 

 In the future, dynamic sequence insertions may continue and lead to generation of 

new nodes in random order. However, it will not cause a big problem since nodes in 

higher end side of the tree will have been already organized. Meanwhile future 

sequences mostly reference frequently accessed nodes in the tree where those nodes 

will have already taken head of sibling lists. 

4.6 Experimental Results 

 In this section, we present the experimentations, which evaluate the physical node 

representation techniques on a disk based suffix tree. Besides, we consider the effect 

of buffering techniques and page size. Our evaluation criterion is based on page hits 

and misses. In our experiments, cost of a pointer is four bytes. Since space 

consumption of internal nodes and leaf nodes are different, we distinguish internal 

and leaf nodes in disk. In other words, a page is composed either all leaf nodes or 

internal nodes. Unless mentioned, we assume that size of a page is 4096 bytes. 

However, compare the performances of different page sizes.  
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 In order to test the algorithms, we make use of Digital Tradition Folk Music 

Database, containing nearly 4000 music files (Yet Another Digitial Tradition Page, 

n.d.).  In the data set, MIDI music file format is used. The data set is composed of 

approximately 250.000 letters and standard MIDI alphabet contains 128 letters. After 

insertion of all sequences into tree, we observed that tree contained 126192 internal 

nodes and 229681 leaf nodes. We need to mention that sequence length is not 

necessarily equal to the total leaf nodes in the tree. This is because two sequences 

can have common suffixes and both will be indexed by a unique leaf node.   

 

4.6.1 Comparison of Physical Node Representation Approaches 

 In Figure 4.6-a, we denote the space consumption of various node representation 

techniques. In the figure, Linked List representation ensures the best space 

utilization. Meanwhile, PAAL representation yields satisfactory space utilization as 

well, since it causes only 25% extra cost. The reason of the space overhead is the 

retention of parent node address in each node. However, space consumption of the 

Static Array Representation is quite high. Basic factor of the worst space utilization 

is the overheads in internal nodes. As aforementioned, an internal node needs to 

maintain |Σ|+4 pointers. In terms of MIDI sequences, high space consumption is 

indispensable since alphabet size is quite large (i.e., |Σ| = 128). Due to this fact, 

performance of Static Array is even worse if the alphabet size increases.  

 

 In terms of suffix tree construction speed, total page miss occurrence comes into 

prominence. Concretely, the fewer the page misses, the faster the algorithm is. In 

Figure 4.6-b, we denote the total page misses caused by physical node representation 

techniques when buffering is not considered.  Although Linked List node 

representation is space efficient, it leads to high amount of page misses; hence it 

cannot be feasible on disk. Basic factor behind the performance loss is the node 

traversals on sibling lists. On the other hand, Static Array outperforms and ensures to 

least number of page misses. In fact, Static Array Representation enables direct 
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4.6.2 Effect of Buffering 

 In terms of suffix tree indexing, page requirement of a large file is enormous. For 

instance; human DNA leads to 3 billion leaf nodes and at least 750 million internal 

nodes. Consequently, data will be aligned into millions of pages. Due to random 

distribution of the nodes; probability of finding two consecutive nodes in the same 

page is very small. The chance can be increased by buffering. In this section, we 

evaluate the effect of buffering on both vertical and horizontal traversals and discuss 

the contribution of letter frequency based sequence insertions on buffering.  

 

 Here, we compare the performance of three physical node representations using 

the following page replacement  policies (Tanenbaum, 2006): 

 

Least Recently Used (LRU): If a page fault encounters, least recently used page will 

be replaced.  

First In First Out (FIFO): In case a page fault occurs, the page which stayed longest 

in buffer is replaced.   

TOP_Q : Replaces the page if the average depth of the nodes in the page is the 

highest. In addition, replaced nodes will not be dropped immediately; instead they 

are processed in a FIFO fashioned buffer. We assume that 20 % of the buffer is 

reserved for FIFO buffer. 

 

 In Figure 4.7, we compare three physical node representations approaches and 

obtain results when the buffer contains 16, 64, 256 and 1024 pages. Test results 

imply that, no matter the page management strategy in all conditions, Linked List 

Representation yields the worst page miss ratio.  In contrast, Static Array 

Representation outperforms and ensures least page misses when buffer contain 16 

pages. However, increasing the total pages in buffer does not enhance its 

performance decently. Instead, increasing size of the buffer drastically rehabilitates 

the performance of PAAL.  All in Figures 4.7-a,b,c we observe that PAAL ensures 

least number of page misses when buffer contains 1024 pages, hence outperforms. 
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From the results, we can conclude that buffering cannot expose its positive effect if 

the disk space is used extravagantly as in Static Array node representation. 

 

4.6.3 Vertical and Horizontal Traversal on Buffering 

 We denote parent to child or child to parent access as vertical traversal. On the 

other hand, following the paths routed by suffix links are named as horizontal 

traversals.  Online Suffix Tree Construction includes both horizontal and vertical 

moves. Thus, control of memory locality becomes even more complex and difficult. 

Here we can find an interesting advantage if consecutive sequences have long 

common prefixes. As a consequence, respective sequences follow the same path and 

nodes. Hence contribution of buffering over page hits will be more effective.  

 

 In the data set, inserting sequences with similar characteristics increase page hits. 

Figure 4.7 denotes that PAAL positively affects the paging performance. In all three 

buffering strategies, frequency based insertions outperforms. The reason of the 

performance improvement is as follows: Initially, sequences contain least frequently 

used letters and average lengths of the sibling lists are short. Moreover, consequent 

sequences should have similar letter characteristics and generally tries to access the 

same pages. The same condition occurs in the second phase, where we insert 

sequences those contain frequently used letters, so that frequently accessed nodes of 

the tree can take place at the head side of the sibling lists and average child access 

time reduces.  

 

4.6.4 Effect of the Page size 

 Currently, disk based suffix trees are mostly tested on 4K pages. In this section, 

we want to analyze the contribution of page size over construction speed. For a 

constant buffer space, we compared the performance of variable page sizes. If page 

size is doubled, then less number of pages can fit into buffer space.  In Figure 4.8, we 

evaluate performance of variable page size. In particular, we compare the 
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performance of 2K, 4K, 8K and 16K and reveal page miss occurrences under 

variable buffer management strategies.  In this section, our performance criteria 

should be data transfer time (dtt) since page miss cost of 2K and 16 K is not same. 

We compare page sizes for each node representation.  

 

 
a-) LRU Buffer 

 
FIFO Buffer 

 
TOP_Q Buffer 

           Figure 4.7 Comparison of the node representation algorithms in terms of 

           page misses*1000. a) LRU buffering b) FIFO buffering   c) TOP_Q buffering 
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 Figure 4.8-a, illustrates the performance under the condition that physical node 

representation is based on PAAL. In the figure, we see that large page size reduce 

total page misses. However, data transfer time of a 16K page is eight times more than 

a 2K page. Hence small page size outperforms. Similarly, Figure 4.8-b and 4.8-c 

support the same result as well. Besides, Figure 4.8 illustrates that buffer 

management strategies yield different outcomes when underlying physical node 

representation changes. For instance, Figure 4.8-c denotes that Static Array 

Representation prefers TOP_Q buffering strategy.  In contrast, TOP_Q is not 

convenient for Linked List Representation and illustrated in Figure 4.8-b.  

 

 To sum up, we proposed a novel approach for Online Generalized Suffix Tree 

(OGST) construction on secondary memory. We showed that poor memory locality 

is indispensable when online generalized suffix tree construction is implemented. 

Moreover, we showed that large alphabet size drops the performance drastically on 

secondary memory. To solve this problem, we presented a space efficient physical 

node representation, named as PAAL, to enable direct access to the parent. However, 

it does not ensure direct access to the child node for the sake of space optimization. 

In order to speed up child access time, we estimated the most frequently accessed 

children of a parent node. Therefore, children of a common parent are aligned on a 

sibling list depending on their estimated access frequencies. In this study, we 

estimate the access probability of child nodes by letter occurrence frequencies of the 

alphabet. In contrast to expectations, we assign higher insertion priority to the 

sequences those contain least frequently used letters of the alphabet. Consequently, 

least frequently used children of a common parent are aligned at the tail side of 

sibling lists. In this way, new sequence insertions to the suffix tree yield better 

performance. 

 

 In this area there exist a number of research problems. The poor memory locality 

problem using suffix links is the most important one. Handling dynamic changes on 

data set makes the problem even more complicated. We believe bulk loading should 

make sense on a disk based suffix tree construction. Furthermore, constructing 

multiple suffix trees should be studied if data set contains multiple sequences and 
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5 CHAPTER FIVE -  

BALANCING SUFFIX TREE AND ALIGNMENT 

 

 

  The section explains random node generation inside a suffix tree and its three 

unwanted yields: unbalanced tree structure, poor memory locality and high space 

consumption. Later on, we explain possible recruitment techniques. We present that 

classification of sequences and indexing with multiple suffix trees should reduce 

total page touches and speed up construction time for large sequences. Also 

properties of the data set can present its own conveniences. Especially music has 

some properties which eases the indexing problem. At the end of the section, we 

illustrate our techniques with experiments and denote test results.  

 

5.1 Introduction  

 Suffix trees not only introduce the fastest search on sequence databases, but also 

cause very complicated alignment strategy. These advantages and disadvantages are 

the yield of nodes that represent common prefixes. Indeed, in a data set, so many 

sequences and their suffixes have common prefixes. Hence representing all common 

prefixes by a unique node saves time and space. In this respect, common prefix 

representation is very important. Nevertheless such representation introduces its own 

difficulties into the field as well. Basically, a dataset cannot contain all possible 

common prefixes for a fixed depth since length of the suffixes inside a tree varies.  

 

 It is important to estimate node occurrence behaviors and their connections inside 

suffix tree. As a result, we can realize the importance of the problem and its 

difficulty. In this section, we explain probabilistic node occurrence behaviors inside 

suffix tree.  So that we can understand factors causing unbalanced tree structure and 

poor memory locality.  
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 Node generation behaviors have direct effect on poor memory locality as well 

(Schürmann and Stoye). Occurrence of a new common prefix between multiple 

sequences is random and consequent node generations are complex. Such event is the 

fundamental factor of poor memory locality. Hence analyzing the probabilistic 

behaviors of the tree is important to reduce poor memory locality problem. 

 

 In a file processing application, page touches are the fundamental performance 

concern (Folk et. al., 1997). Concretely, the more the page touches the slower the 

query speed is. As a result alignment strategy of suffix tree nodes is critical. We 

prefer that accessed nodes are stored mostly in a common page. While it is 

theoretically easy to implement such node alignment, practical suffix tree 

construction algorithms include leakages. Main leak is the common prefix 

occurrence and consecutive node generation inside the tree. In this the next 

subsections, we analyze the common prefix occurrence, corresponding node 

generation events, their probabilistic behaviors. 

5.2 Definitions 

 In order to show the unbalanced structure of a suffix tree, use a data set where 

every sequence has the same length. So, we can show all possible paths and 

respective nodes of a tree. We assume that each sequence, SJ, has n letter. Let’s 

assume that we insert enough number of sequences into tree, so that all possible 

common prefixes are represented by a unique node. 

 

Given that alphabet, ∑, has d letters. Therefore, each internal node of the tree will 

have absolutely d children. This fact is shown in Figure 5.1.  
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Since each internal node has σ children, total nodes in a depth level increase be a 

consequence of its depth. In other words, nodes in a depth level increase 

exponentially.  If the first d level of the nodes have exactly σ nodes, there exist σ d 

nodes in level d.  

 

Lemma 5.1: Total nodes of the tree, Td, until depth d is: 

 

Td = 1 + σ 2 +  ... + σ d                                                                                       (5.1) 

 

Proof: At depth d, there exist exactly σ d nodes. Similarly depth d-1 has σ d-1 nodes. 

Hence lemma is proved. 

 

Lemma 5.2: Total leaf nodes of a tree are always more than total non-leaf nodes. 

 

Depth of the leaf nodes is always more than non-leaf nodes. If the lemma is true, 

then,  

 

σ d > 1 + σ 2 +  ... + σ d-1                                                                                                                                   (5.2) 

 

parent 

Child1 Child2 Childσ  …….. 

Figure 5.1 Node of a balanced suffix tree: Parent and its children of an 

internal node. Since alphabet size is , each node has  exactly nodes 

inside the tree. 
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By induction we can prove this. 

Basic step; Given that 2 ≤ d and 2 ≤ γ 

 

σ 2 > 1 + σ 1   Basic step is proved. 

 

Induction step: we assume that  γd > 1 + γ2 +  ... + γd-1 

 

= σ σ d-1 >  σ ( σ
1

1 + σ 1 +  ... + σ d-2 ) 

 

  =  σ d-1 >  ( σ
1

1 + σ 1 +  ... + σ d-2 )                                                                    (5.3) 

 

Hence induction is proved. 

 

Lemma 5.1 and 5.2 are important for two reasons: 1) A suffix tree may have 

enormous number of node at higher depths. 2) Alignment and balance of these nodes 

are extremely difficult.  The suffix tree will have σ d nodes at depth σ. This is a very 

serious problem; since σ depends on the length of the sequences.  For instance, even 

shorter sequences contain 100 letters. This leads to at least 105 nodes at depth 100. 

This is a very serious problem; since σ depends on the length of the sequences.  For 

instance, even shorter sequences contain 100 letters. This leads to at least 105 nodes 

at depth 100. As a result of aligning 105 nodes on disk, the small sequence length 

demands petabytes of memory. Because of this fact, reserving enough space for all 

possible nodes is not wise. Instead nodes should be generated, whenever they occur.  

 

 The alphabet size has decent effect on the total nodes in the tree as well (Gusfield, 

1997). When alphabet size increases, the problem becomes even more extravagant. 

Recall that total nodes of a tree will be σ d  nodes at depth σ.  Increasing the σ value 

on the formula leads more nodes. 
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 As it mentioned in section 4, node generation order of the suffix tree is random. 

Collecting interconnected nodes in a page is not possible during construction.  While 

page addresses of nodes can be swapped afterwards; it causes high computation 

costs. In the next subsection we consider the node alignment of suffix tree nodes 

inside pages 

5.3 Suffix example 

For a given suffix tree, there exists only one possible suffix tree representation. 

Hence it is deterministic. On the other hand, alignment orders of the nodes may vary. 

For instance tree nodes can be randomly distributed among disk pages.  

 

As an illustration of generalized suffix trees, we let there exists threee sequences 

to be indexed.  

 

S1 = “ABCACBBCCC$” 

S2 = “ACABBACCBAB$” 

S3 = “AAABAACCBAB$” 

 

The alignment of the sequences on disk is illustrated in Figure 5.2. The sequences 

are distinguished by a delimiter character. The second row of the figure denoted the 

alignment orders. Therefore, a subsequence can be represented by it onset and offset. 

For instance [12, 23] represent S2 
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Figure 5.2  Sequences on disk and their alignment. 
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5.3.1 Suffix List View 

 

We illustrate the suffixes of all sequences in Figure 5.3. We expect that a suffix 

tree should index all possible suffixes of the sequences. Recall that there exists 35 

different suffixes to be indexed. Nevertheless, some suffixes of the set are same. For 

instance suffixes with ID’s 17 and  29 are same. Hence both suffixes should be 

represented by a single path. We also need to mention that if two sequences are same 

their corresponding suffixes will same as well. Hence corresponding suffixes will be 

represented by a single path once as well.  

 

ID  Suffix  ID  Suffix  ID  Suffix 
1  ABCACBBCCC$ 12 ACABBACCBAB$ 24 AAABAACCBAB$ 
2  BCACBBCCC$  13 CABBACCBAB$  25 AABAACCBAB$ 
3  CACBBCCC$  14 ABBACCBAB$  26 ABAACCBAB$ 
4  ACBBCCC$  15 BBACCBAB$  27 BAACCBAB$ 
5  CBBCCC$  16 BACCBAB$  28 AACCBAB$ 
6  BBCCC$  17 ACCBAB$  29 ACCBAB$ 
7  BCCC$  18 CCBAB$  30 CCBAB$ 
8  CCC$  19 CBAB$  31 CBAB$ 
9  CC$  20 BAB$  32 BAB$ 
10  C$  21 AB$  33 AB$ 
11  $  22 B$  34 B$ 
    23 $  35 $ 
           

                  Figure 5.3 Suffixes of the tree sequences. 

 

5.3.2 Suffix Tree View 

 

In a suffix tree, the suffixes are represented by leaf nodes. Meanwhile, internal 

nodes represent common prefixes. For each suffix insertion, a leaf node will be 

aligned into disk page. During this process, a common prefix search will be made. 

When new common prefixes occur by a new suffix insertion, corresponding internal 

nodes should be generated and inserted into the tree. 
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Root of the suffix tree contains only one child address. Other children of the root 

are accessed by sibling pointers. The situation is illustrated in Figure 5.4. As an 

example, if we want to access to the node, “2:3”,  we need to access to “2:1” and 

then follow the sibling pointers. Since each node does not contain addresses of all its 

children, decent amount of space is preserved. 

 

 
In the figure, dashed lines represent suffix links. The links depend on the leftmost 

letter of the edge. We need to mention that occurrence of node access using suffix 

links are comparably less. As a result, impact of a page miss due to a suffix link 

access may not be very hard. On the other hand sibling access is frequently occurs. 

Basic factor is parent to child accesses and for such accesses sibling lists are used. As 

in Figure 5.4, we would rather access single page during tree traversal. As an 

example, we need to fetch six different nodes to access “3:9”.  

 

 

 

A

A
A

1:1

2:3 2:22:1 

5:1 4:34:24:13:3 3:2 3:1 5:2 5:3

A B C

B
C

A

B
A

C B

C
C

C
A

A C

A
C

C

Figure 5.4 A suffix tree where alphabet is Σ = {A, B, C, D}. In the figure, insertion order of 

nodes are illustrated inside the nodes.
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5.3.3 Planar View  

Recall that above formulas are computed for the case where access probability of 

every node is same. Recall that access frequency of each node may not be same. This 

depends on the occurrence frequency of alphabet letters. 

 

 

 

 

 

 

 

 

 

 
Figure 5.5 In the best case, disk layout of file containing internal nodes. 

5.4 Alignment of Suffix Tree on Disk 

Suffix tree is a deterministic tree. In other words, node hierarchy only depends on 

the sequence. Nevertheless, alignment order of the nodes on disk is not deterministic. 

As shown in Figure 5.6, 5.7, and 5.8 same nodes of the tree can be aligned to disk in 

different ways. Hence, alignment order strategy of nodes may determine the total 

page misses. 

 

 

 

 
 

 

 

Figure 5.6 In the disk case, disk layout of file containing leaf  nodes. 

null  null  null  72  null  null 
  ‐  ‐  ‐  ‐   
  ‐  ‐  ‐  ‐   
  ‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐  
1  1  0  144  96  0 
2  2  0  216  120  0 
3  3  0  288  null  0 
  ‐‐‐‐‐‐‐‐  ‐‐‐‐‐‐‐‐  ‐‐‐‐‐‐‐‐  ‐‐‐‐‐‐‐‐   
25  25  72  0L  168  72 
2  2  72  72L  192  96 
13  13  72  144L  null  120 

26  35  144  20  24 
27      35  144  40  25 
30  35  144  null  28 
  ‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐  
         
         
         

1:1 
 
 
2:1 
2:2 
2:3 
3:1 

3:3 
3:2 

0 
20 
40 
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Since node generation order of a suffix tree is random, memory locality needs to 

be enhanced. This can be achieved by two different ways. Either alignment order of 

nodes will be changed or node generation inside tree will not be made sequentially. 

Instead group of nodes will be inserted together using bulk loading or clustering. 

 

 

 

 

 

 

 

 

 

Figure 5.7 In the worst case, disk layout of file containing internal nodes. 

 

Aligning all nodes inside a single page is impossible for large databases. Even 

more aligning a selected path into a single page does not make sense. Remaining 

paths cannot be aligned optimally inside tree. In the best case, we try to align a node 

and its children in the same page. Therefore each traversal cost causes d/2 page 

misses. We believe this is acceptable amount.  

 

 

 

 

 
 

 

Figure 5.8 In the worst case, disk layout of file containing leaf  nodes 

 

A parent may have σ children and σ 2 grandchildren. Given that σ is large, aligning 

all children on the same page may not be feasible due to available page size. 

null  null  null  72  null  null 
  ‐  ‐  ‐  ‐   
  ‐  ‐  ‐  ‐   
‐‐‐‐‐‐‐‐  ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ 
1  1  0  144  216  0 
2  2  0  288  340  0 
3  3  0  432  504  0 
‐‐‐‐‐‐‐‐  ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ 
25  25  72  0L  168  72 
2  2  72  72L  192  96 
13  13  72  144L  null  120 

26  35  144  216L  24 
27  35  144  340L  25 
30  35  144  null  28 
‐‐‐‐‐‐‐‐‐‐‐‐‐  ‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐ 
         
         
         

1:1 

 
2:1 
2:2 
2:3 

3:1
3:2
3:3

0 
20 
40 
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In the worst case, each node access leads to  a page misses. In a static array node 

representation, totally d page misses occur. However, in a linked list node 

representation, the situation is terrible. In average d. σ /2 page misses occur. 

 

  Static Array     Linked List 

Best case    d / 2 misses.   d / 2 

 

Worst case  d misses     dσ/2 

 

Without manual contribution, tree nodes are randomly distributed among pages. 

However, sequence insertion order and swapping the nodes of the tree is able to 

change address. Here we consider the cost of related action. In the first phase, we 

consider the sequence insertion order approach.  

 

5.5 Swapping the nodes 

 

A node addresses a parent, a child, a suffix link and a sibling. If address of any of 

each changes, than the node should be modified. In other words, if we change the 

address of a node, we should search all nodes those addressing it as parent, child, 

suffix link or sibling. Although finding parent or child links easily; finding the node 

which addresses it as suffix link may be very hard. 

 

In Figure 5.9, physical node representation is denoted. As shown in Figure 5.9, a 

tree node links to four different addresses. Hence changing the address of a node 

leads to address changes in other nodes. For instance assume we have changed the 

address of the node at position 2:2 in Figure 3. Hence we need to access to all of its 

children and change their parent address. Similarly, we need to access to the node at 

position 2:1.  Finally we need to find a node whose suffix link addresses node at 2:2. 
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Access time to child nodes can be made in satisfactory time if all children are 

aligned to the same disk page. Iteratively each node’s parent address can be modified 

and written to the relevant page. Hence modification of child nodes can be made in 

O(1)  time.  

 

A node will be addressed by an either a child pointer or sibling pointer. In both 

cases, we need to access to the parent. In Figure 5.4,  2:2 is accessed by a sibling 

pointer. Later on 2:1 is accessed. Without buffering the procedure cost two page 

touches. However, within a single buffer space page miss number can be reduced to 

one, since 2:1 and 2:2 can be aligned in the same page.  

 

Modification the address of the node whose connection is due to suffix link is 

problematic. Actually brute force search is necessary. Hence its cost is O(n). Here we 

can present our solution to reduce this number to O(1). 

 

Lemma : Path traversal with suffix links ends up at the root.   

 

Proof:  After each suffix link access, length of the suffix decrease at least once. This 

fact is illustrated in Figure  

After a single step, the new node will represent a suffix of the previous node. Hence 

after each move, length of the represented prefix reduces. Finally, length of the 

common prefix becomes zero and it is represented by the root node. 

 

 

 

 

 

Start  

Offset 

End 

Offset 

Child Suffix 

Link 

 

Parent 

Figure 5.9 Physical Node Representation of PAAL 

Sibling 
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Changing the address of a node requires updates at other tree nodes. Let’s assume 

that we changed the address of Child21. After such change, we need to update nodes 

those addressing Child21 as a parent, child, sibling or suffix link.  Hence all necessary 

nodes should be accessed  during address change procedure. 

 

In the suffix tree, parent access, child access and sibling access time is limited by 

the alphabet size. Therefore, each node updates can be processed in constant time. 

However, searching the node which addresses Child12 as suffix link is expensive. For 

such case, brute force node search is indispensable. As a consequence node search 

time depends on the depth of the tree. Concretely, its computational cost is O(n). 

 

Two approaches can be presented to solve this problem. First, we can drop suffix 

links from the suffix tree and sacrifice its advantages. Secondly, we can do address 

changes on the higher end side of the tree. 

 

Dropping suffix links from the suffix tree may speed up suffix tree construction 

for static sequences such as DNA. Also dropping them reduce the space cost. 

However, streaming sequences require suffix links. Basically, suffix links enables 

Suffix link

b
b

Suffix link

w

αw

root

Child

Child

Figure 5.10 Objective of suffix links inside suffix tree. α, w, b are three 

sequences. If we insert the suffix αwb into tree, then we will need to insert 

Child
Child
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dynamic sequence insertions in linear time.  Therefore first approach, which drop 

suffix links fails for streaming sequences. 

 

Address changes only at higher end side of the tree should be very effective. Like 

all tree data structures, higher end side of the tree is frequently accessed. Hence rich 

memory locality on higher end side of the tree speeds up the performance decently. 

In contrast, access to nodes at lower end side of the tree is rare. It should be wise to 

sacrifice their cost. 

 

Fast address change techniques on a suffix tree can have important contributions 

to the string processing researches.  In some cases, multiple suffix trees construction 

can be necessary. Therefore, merging suffix trees become essential. In the next 

section we consider merging suffix tree approach and its importance for music 

sequences.  

 

5.6 Multiple Suffix Tree Construction 

 

In some special cases, multiple suffix tree construction should make sense. 

Depending on the data set, sequences can be classified into groups and each 

sequence set can be indexed by different suffix tree. Especially, multiple suffix tree 

construction should make sense when alphabet size is large. Music can be a good 

example.   

 

Multiple suffix trees leads to efficiency when alphabet size is large. Although 

letter range is wide, a sequence may not include all possible letters. Music is a good 

example. For instance MIDI music alphabet has 128 letters (MIDI-Wikipedia, n.d.). 

In such case, static array fails since each internal node reserves 128 child pointers 

during its generation. As shown in Figure 5.11, size of an internal node will be 

terribly large due to child pointers. Similarly, linked list node representations cause 

failures since child access may cause 128 page access. 
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Multiple suffix trees can speed up the suffix tree construction and search time. 

Using with a wise classification technique, internal nodes may have less number of 

children to address. In this way, performance can be enhanced clearly. However, 

indexing with multiple suffix trees have different effect on linked list and array based 

node representation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parent 

Child1 Child2 Childσ  …….. 

Figure 5.11 Space curse on static array physical node representation 

for large alphabets. All possible children of an internal node should be 

reserved during construction. 

1 2 . .  . 

parent 

Child1 Child2 Childσ  …….. 

Figure 5.12 Page access curse on linked list  node representation for 

large alphabets. Direct access to the child node may not be possible. 

Length of the sibling list depends on the alphabet size. 
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5.6.1 Multiple Suffix Trees and Array Based Node Representation 

As it mentioned before, array based node representation reserve maximum space 

at the beginning. In order to see enhancements on array based representation, 

alphabet size should be reduced for a data set. It is the mission of sequence 

classification algorithm to collect sequences in a well formed. 

 

In the dataset, sequences are generally large. In this respect, introducing 

constraints on letter usage is difficult. As a result, classification algorithms generally 

cannot reduce the alphabet sizes so much. 

 

In music, octave equivalence makes the array based representation as an efficient 

implementation. The octave equivalence enables to represent music with 12 notes. 

Therefore, music sequences can be fit inside a alphabet which has 12 letters. Our 

analysis show that performance of suffix tree increases when alphabet size shrinks 10 

times. Basic factor behind this enhancement is based on shorter alphabet size. 

Therefore, space consumption of suffix array can be reduced ten times. 

 

5.6.2 Multiple Suffix Trees and List Based Node Representation 

Multiple suffix tree construction can be convenient for List based node 

representations. In such representation, exceptional letters can take place in the data 

set. In contrast to array based representation, those exceptional letters do not cause 

any space cost. Instead these letters leads to few extra nodes which take place in the 

sibling list. Assuming that these nodes take place at the tail of the sibling list, their 

extra cost may be almost zero.  

 

 In terms of linked list node representation, data set should be clustered before 

insertion (Jain and Dubes, 1997). The clustering algorithm should discriminate 

sequences be a result of their alphabet usage. Later on each tree indexes the 

sequences with a specific cluster. Since each tree focus on a set of letters, alphabet 

size can be shrinking with few exceptions.  
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 The clustering mechanism can be illustrated by a MIDI music sequences. MIDI 

pitches range between 0 and 127; in other words alphabet size 128. However, each 

sequence does not contain all letters of the alphabet. For instance, music sequences 

contain 12 different notes. As a result of this fact, sequences can be clustered by their 

letter histograms. 

 

  Multiple suffix tree has certain drawbacks as well. First of all, a search operation 

should be made in each suffix trees. Secondly, the structure leads to extra space cost. 

When a query is demanded, it should be searched in each suffix tree. Therefore, 

search time increases. Moreover, multiple suffix tree requires extra nodes. In each 

tree, common prefixes are generated independently. Hence, two nodes of 

distinguished trees may have similar function and represent same common prefix.  

  

We believe that it is worth to pay to the drawbacks of multiple suffix trees if the 

alphabet size is large and sequences generally contain less number of letters. Since 

sequences generally contain few different letters, they can be clustered easily.  

 

Let’s assume that a unique suffix tree indexed a sequence data set where it consumes 

η amount of space and average search time on the tree become φ. If we index the 

same sequence set with g suffix trees, total space consumption of all trees will be less 

that η g.  Similarly, average search time will be less that g φ. Since g is a small, extra 

costs on space cost and search time can be acceptable. Practically, space cost and 

search time of multiple suffix tree will be more comfortable than their maximum 

values.  

 

5.7 Experimentation 

 

 In this section, we analyze the factors which cause unbalanced tree structure. In 

order to ensure balanced tree structure, we considered multiple suffix tree 

construction on MIDI music sequences.  
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