

DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

SUFFIX TREE INDEXING FOR MUSIC

INFORMATION RETRIEVAL

by

Gıyasettin ÖZCAN

March, 2008

İZMİR

SUFFIX TREE INDEXING FOR MUSIC

INFORMATION RETRIEVAL

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylul University

In Partial Fulfillment of the Requirements for the Degree of Doctor of

Philosophy in Computer Engineering, Computer Engineering Program

by

Gıyasettin ÖZCAN

March, 2008

İZMİR

ii

Ph.D. THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “SUFFIX TREE INDEXING FOR MUSICAL

INFORMATION RETRIEVAL” completed by GIYASETTİN ÖZCAN under

supervision of ASSISTANT PROF. DR. ADİL ALPKOÇAK and we certify that in

our opinion it is fully adequate, in scope and in quality, as a thesis for the degree of

Doctor of Philosophy.

 Assistant Prof. Dr. Adil ALPKOÇAK

 Supervisor

Assistant Prof. Dr. Damla KUNTALP Instructor Dr. M. Kemal ŞİŞ

 Committee Member Committee Member

 Professor Dr. Alp KUT Professor Dr. Şaban EREN

 Jury Member Jury Member

 Prof. Dr. Cahit HELVACI

 Director

Graduate School of Natural and Applied Sciences

iii

ACKNOWLEDGMENTS

 First of all, I would like to express my sincere appreciation to my advisor,

Assistant Prof. Dr. Adil ALPKOÇAK, for his strong support, encouragement,

patience, valuable insights. In addition to bringing this research work to a successful

completion, he also contributed in all aspects of my academic life. During this time,

he devoted his time and energy to improve this thesis despite his busy schedule.

 I extend my thanks to the members of my committee, Prof. Dr. Yetkin ÖZER,

Instructor Dr. M. Kemal ŞİŞ, and Asst. Prof. Dr Damla KUNTALP for their useful

comments and suggestions during my Ph.D. study.

 During this study, I have obtained valuable suggestions and help from Musicology

department. I would like to thank to Dr. Cihan Işıkhan for his knowledge and

contributions.

 I thank all my friends and professors during my study;. Especially Semih UTKU,

Hulusi Baysal, Tolga Berber, Zeki Yetgin and Taner Danışman.

 I need to remark valuable suggestions and proofreading’s of Dr. Osman S.

ÜNSAL. He is more than a friend for me.

 I owe a special debt of gratitude to my parents, Naci and Necla ÖZCAN. I would

not have been able to get this far without their constant support and encouragement.

Finally I need to mention thanks to my wife Özlem for her patience, courage,

recommendation, and love. We shared so much things during this time.

Gıyasettin ÖZCAN

iv

SUFFIX TREE INDEXING FOR MUSIC INFORMATION RETRIEVAL

ABSTRACT

This thesis intended for fast and reliable data retrieval from music databases. It

introduces new data reduction and indexing approaches for both polyphonic and

monophonic music sequences.

The study contributes to the literature from three aspects. These are data

reduction, suffix tree indexing and tree alignment on external memory. In terms of

data reduction, we present a new melody extraction approach for polyphonic music

sequences. The new melody extraction approach considers the pitch histogram, and

entropy of music sequences. Consequently, accompany channels of the MIDI music

sequences are determined for data reduction. In terms of indexing, we present a new

suffix tree construction approach for streaming music sequences. Current suffix tree

construction algorithms have leaks about indexing music sequences. Hence, we

adapted the physical structure of suffix trees for music notes. At last, we consider

balance and alignment of suffix trees. In music, alphabet size of music is large.

Therefore, we present clustering of music sequence. Therefore each sequence cluster

can be indexed by a separate suffix tree to balance the tree.

 Both our melody extraction and suffix tree construction approaches are tested in

detail and discussed. Our evaluation metrics are based on cognition, mathematical

proofs and simulations. Experimental results showed that our approaches

outperforms.

Keywords : Music Information Retrieval, MIDI, Melody Extraction, Clustering,

Time Series Indexing, Online Suffix Tree Construction, Streaming Sequences.

.

v

MÜZİKSEL BİLGİ ERİŞİM SİSTEMLERİNDE SONEK AĞACI İLE

DİZİNLEME

ÖZ

Bu tez çalışması, müziksel veri tabanlarından hızlı ve güvenli veri erişimi

hedeflemiştir. Bu amaçla gerek tek sesli, gerekse çok sesli müzik dosyalarında veri

indirgeme ve dizinleme yaklaşımları önermiştir.

Çalışmanın literatüre katkısı üç alt konudandır. Bunlar veri indirgeme, sonek

ağacıyla dizinleme ve ağacın dışsal bellekte yerleşimi. Veri indirgeme sürecini temin

etmek amacıyla yeni bir ezgi çıkarım algoritmaları önermekteyiz. Geliştirdiğimiz

ezgi çıkarım algoritması nota perdelerinin histogram ve entropisini dikkate

almaktadır. Süreç sonunda ezgiye katkıda bulunmadığı tespit edilen notalar veri

setinden atılmaktadır. Dizinleme açısından ise akışkan müziksel nota serilerinin

dizinlenmesini sağlayacak yeni bir sonek ağacı önermekteyiz. Gözlemlerimize göre

mevcut sonek ağaçları müzik verilerini dizinlemek amacıyla tasarlanmamıştır. Bu

eksikliği gidermek amacıyla sonek ağacının fiziksel yapısı, müziğe göre

uyarlanmıştır. En son olarak sonek ağacının dengesiz yapısı ve belleğe yerleşimi

irdelenmiştir. Daha açık bir ifade iler dışsal belleğe erişimi azaltmak için müziksel

verilerin dizinlenmeden önce sınıflandırılması önerilmiştir. Böylece her bir sınıfa ait

müzik verileri ayrı bir ağaçta dizinlenecektir.

Gerek melodi çıkarma, gerekse sonek ağacı inşasına ilişkin yaklaşımları detaylı

şekilde test edilmiş ve tartışılmıştır. Deneylerin değerlendirilmesi için müzik kulağı,

matematiksel ispatlar ve simulasyon kullanılmıştır.

Anahtar sözcükler Müziksel Bilgi Erişim, MIDI, Ezgi Ayıklama, Kümelendirme,

Zaman Serilerinin Dizinlenmesi, Eşzamanlı Sonek Ağacı oluşturma, Akışkan

Dokumanlar.

vi

ABBREVIATIONS

MIR Music Information Retrieval

MIDI Musical Instrument Digital Interface

DNA Deoxyribonucleic acid

BM Boyer Moore String Matching Algorithm

KMP Knuth Morris Pratt String Matching Algorithm

Shift-OR Shift-OR String Matching Algorithm

GST Generalized Suffix Tree

OGST Online Generalized Suffix Tree

FIFO First In First Out

LRU Least Recently Used

PAAL Parent Address Appended List

vii

CONTENTS

 Page

THESIS EXAMINATION RESULT FORM .. ii

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. iv

ÖZ .. v

CHAPTER ONE - INTRODUCTION .. 1

1.1 Motivation ... 1

1.2 Music Terminology ... 3

1.3 Music Information Studies .. 4

1.4 Contributions ... 5

1.5 Thesis Organization .. 8

CHAPTER TWO - TIME SERIES SIMILARITY AND INDEXING 10

2.1 Introduction ... 10

2.2 Time Series Studies ... 10

2.2.1 Data Reduction .. 11

2.2.2 Segmentation ... 12

2.2.3 Indexing .. 12

2.3 Indexing with Multidimensional Access methods .. 13

2.4 Indexing with Signature files .. 14

2.5 Similarity ... 15

2.5.1 Edit Distance ... 16

2.5.2 String Matching ... 17

2.6 Transforming Time Series Data into Discrete Form ... 18

2.6.1 Adaptive Query Processing for Time-Series Data 19

2.6.2 SAX ... 19

viii

2.7 String Matching Algorithms ... 20

2.7.1 Brute Force Text Matching ... 20

2.7.2 Boyer-Moore Algorithm ... 21

2.7.3 Knuth-Morris-Pratt (KMP) Algorithm .. 21

2.7.4 Shift-Or Bitwise matching algorithm .. 21

2.8 Suffix Tree Construction ... 22

CHAPTER THREE - MELODY EXTRACTION AS A DATA REDUCTION

METHOD ... 24

3.1 Introduction ... 24

3.2 Related work ... 26

3.2.1 Skyline Algorithms ... 27

3.2.2 Channel Selection Algorithms .. 29

3.3 PARTIAL SKYLINE APPROACH ... 30

3.3.1 Analyzing Pitch Histogram of MIDI Channels 30

3.3.2 MIDI Channel Classification .. 32

3.3.3 Combined Channel Selection Approach ... 33

3.3.4 Summing up Partial Skyline Approach. .. 35

3.4 Test Results ... 36

3.4.1 MIDI Test bed ... 36

3.4.2 Evaluation Methodology ... 36

3.4.3 Evaluation of Channel Selection Algorithms .. 37

3.4.4 Evaluation of Skyline Algorithms ... 37

3.4.5 Effect of the Feature over Partial Skyline ... 38

CHAPTER FOUR - ONLINE GENERALIZED SUFFIX TREE

CONSTRUCTION ON DISK ... 41

4.1 Introduction ... 41

4.2 External Memory Suffix Tree Construction ... 42

4.3 Online Generalized Suffix Tree Construction... 44

ix

4.3.1 Definitions ... 44

4.3.2 Online Generalized Suffix Tree Construction on Disk 46

4.3.3 Physical Representation of Suffix Tree Nodes 47

4.3.4 Array Node Representation ... 48

4.3.5 Linked List Based Node Representation ... 49

4.4 Fast and Space Efficient Suffix Tree Construction Algorithm on Disk 50

4.4.1 Direct Access to Parent and Children Nodes .. 51

4.4.2 Impact of Alphabet Size on Tree Construction 51

4.4.3 Impact of Letter Frequency Distribution on Tree Traversal 52

4.5 Probabilistic Occurrence of Longest Common Prefix 53

4.5.1 Alignment of Sibling Nodes to Enhance Memory Locality 55

4.5.2 Computing the Rank of a Sequence and Inserting to the Suffix Tree ... 56

4.6 Experimental Results .. 57

4.6.1 Comparison of Physical Node Representation Approaches.................. 58

4.6.2 Effect of Buffering .. 60

4.6.3 Vertical and Horizontal Traversal on Buffering 61

4.6.4 Effect of the Page size ... 61

CHAPTER FIVE - BALANCING SUFFIX TREE AND ALIGNMENT 65

5.1 Introduction ... 65

5.2 Definitions ... 66

5.3 Suffix example .. 69

5.3.1 Suffix List View .. 70

5.3.2 Suffix Tree View ... 70

5.3.3 Planar View ... 72

5.4 Alignment of Suffix Tree on Disk .. 72

5.5 Swapping the nodes .. 74

5.6 Multiple Suffix Tree Construction .. 77

5.6.1 Multiple Suffix Trees and Array Based Node Representation 79

5.6.2 Multiple Suffix Trees and List Based Node Representation 79

5.7 Experimentation .. 80

x

CHAPTER SIX - CONCLUSIONS AND WORK ... 87

REFERENCES ... 89

APPENDICES .. 95

1

1CHAPTER ONE -

INTRODUCTION

1.1 Motivation

 In the last two decades, storage capacity of the computers has increased

drastically. Accordingly, computers can store multimedia applications such as music

and video. Besides, network communication on the net has increased the importance

of computers on multimedia. Especially commercial multimedia companies have

interested in storage and retrieval abilities of computers.

Storing huge amount of music documents triggers new problems to be solved. In

the last 20 years, disk access time keeps constant over this time. In fact, storage

devices include mechanical devices and situation limits enhancements on disk access

(Salzberg, 1998). In order to overtake the pitfall, software based solutions have been

proposed. Concretely, information retrieval techniques remedy the drawbacks of disk

access.

There are varieties of information retrieval techniques to handle large data sets.

Most commonly used ones are effective buffering on memory, indexing, data

reduction, data transformation, and fast string processing (Baeza-Yates and Neto,

1999). However, there is no unique retrieval strategy; instead each application may

have specific properties and need a different indexing, or buffering methodology.

Currently, music databases are very common and people demand fast access from

these databases. For instance, musicologist, students, art lovers, businessmen and

even lawyers have tendency to access to music databases for different reasons. Here

we briefly explain the fundamental reasons:

• Musicologists want to analyze current music pieces from a large music library.

Such analysis may require complicated queries. For instance, a query may include C

major music sequence using instruments violin, flute and harp. Later on, the

2

musicologist may want to do analysis, comparisons on the query results. Such

process on a large database should ensure satisfactory retrieval speed.

• Students need to learn music cognition facts. As a result, computers and music

databases are educational tools for students. Displaying music pieces for demanded

characteristics is appreciated by students. Therefore complex queries from a large

database are indispensable.

• Art lovers want to find their favorite music fragments for listening. In some cases,

they may know what they are looking. For instance name and the artist of a music

file. However, they may want to query music by whistling or humming. Moreover,

they may search for similar music pieces to a certain file. In fact, searching similar

music files from a database has a high computation cost.

• Commercial firms want to sell their new musical products to the customers.

Therefore, they need to present the best service. For companies, customer

satisfaction and easy access to the product are indispensable. Also they need to

present effective and fast interfaces to increases their sales.

• Music similarity can be fairly used in ethics. Every year huge number of new

musical product put into the music market, it is very hard to catch all cheating events.

Moreover, music cognition is subjective; decision of cheating may depend on the

listener. Hence, it is difficult to prove that a new music piece violate copyright law.

However, computational musicology can solve those pitfalls satisfactorily, if search

on music databases can be processed in a fair time. In this respect, faster query

search algorithms are able to present results in acceptable time. Moreover, computer

based similarity searches are objective since similarity rules are determined before

similarity search starts. Therefore prejudice becomes impossible.

3

1.2 Music Terminology

 In this section, we briefly explain music and its fundamental terms. George Sand

said that goal of music was enthusiasm. He adds that none of the remaining arts

could generate such exalted feeling in human sense (Feridunoğlu, 2004). Basic

elements of the music are rhythm, melody and harmony. Rhythm is the division of

time into equal or non-equal intervals. In music, consecutive rhythm events lead to

regularity and organization. Meanwhile melody is the musical idea, which

influences the listener by its own letters. Finally harmony means accordance of

different sounds between time intervals.

Music alphabet is composed of notes. (Lemstrom, 2000) explains the note as

follows: “When a musical instrument is played, it evokes a tone sensation in listener.

Tone sensation is comprised of attributes salience, pitch, timbre, onset time and

duration. The written instructions to play the tone are called a note”. One of the most

effective properties of a note is pitch, and it is the perceived frequency of a note.

Music can be represented as sequence of notes. This fact can be illustrated by

MIDI music format. MIDI is an acronym for Musical Instrument Digital Interface

and it is the common protocol which enables communication between digital music

devices and computers (General MIDI – Wikipedia, n.d.). In MIDI, music format is

composed of note sequences and some meta data information. While notes keep pitch,

duration and volume information, meta data handles general information of a

sequences such as tempo, metronome ticks or instrument.

Music can be either in monophonic or polyphonic form. Polyphony is the

occurrence of multiple notes at a time (Temperley, 2001). In other words, polyphony

permits appearance of several notes simultaneously. In contrast, monophonic music

has strict constraints, where there can be only one note at a time to be played.

The pitch distance between any two notes is named as interval and the smallest

interval in western music is described as semitone. In western music there exist 12

4

semitones and it is called as octave. Interestingly, music can be represented by 12

notes; which is an octave. When difference between two pitches is 12, then the

pitches share the same octave. Hence it is possible to represent music by an octave.

Recall that MIDI music format has 128 pitch frequencies; so it can represent 10

different octaves

1.3 Music Information Studies

 Common MIR Studies can be separated into five different sub fields: These are

preprocessing, indexation, string matching, extraction, and interface design.

• Preprocessing: Natural music is based on signals. The instrument that is playing a

note can be detected by its frequency. The signal processing applications tries to

convert sound into music files. At the same time, compression algorithms can be

necessary, since multimedia applications take high amount of space.

• Indexation: Indexing is an alternative way for fast data search on large databases.

In general, a music database may contain thousands or even millions of music files.

Search and retrieval processes on large music databases can be very slow without

optimization. For instance, music files can be clustered for fast search. Concretely,

music sequences with common properties can be can be grouped. In addition, tree

and hashing index methods are possible.

• String Matching: Music similarity is a common search method in MIR

applications. User submits a sequence of notes as a query, and query is matched to

the all sequences in the databases. Since both query and database are represented by

string sequences, string matching algorithms can be implemented. String matching

problem can be divided into exact matching and approximate matching. Common

algorithms are Boyer-Moore (Boyer and Moore, 1977), Knuth-Morris-Pratt (Knuth et.

Al., 1977) and bit parallel string matching (GusfieldBook, 1997). String matching

algorithms are very important in bioinformatics and search engines.

5

• Extraction: Music is a combination of melody and accompanies notes. In general,

human perception focuses on melody of music and memorizes easily. Because of this

fact, most of the search operations on music databases interests in melody. Based on

this fact, melody extraction is a common study topic in MIR (Uitdenbogert and

Zobel, 1998). For instance, cognitive studies denotes that memory is generally takes

place in higher pitches. In addition, harmony, key, or rhythm information of a music

file can be extracted using artificial intelligence techniques. In order to do this,

musical rules and facts should be taught to the computers.

• Interface design: Improvements on computer hardware devices are fascinating.

For instance hardware devices can handle large amount of music data. Similarly, file

transfer rate on internet has increased drastically in the last ten years. In parallel to

hardware evolution, new software components are highly demanded. Recently,

music has been represented in different digital format. Processing on music databases

become common. However, recent software’s do not satisfy user demands since

current interface application are not mature yet. Therefore interface design on

musical database is a hot research topic.

1.4 Contributions

 Contribution of this thesis is threefold. First, we present a new melody extraction

approach which will be used for data reduction in music databases. Our second

contribution is about sequence indexing with online suffix trees. In this respect, we

modify the physical node representation of Ukkonen’s online suffix tree. Finally, we

present a sequence clustering approach to index sequences with multiple suffix trees.

We present that multiple suffix trees can be efficiently used if the alphabet size of

sequence database is large.

 In terms of melody extraction, the thesis analyzes cognitive studies on the field

and introduces a new approach based on pitch histogram and cognition. Our survey

on early melody extraction algorithms showed that early studies mainly focused on

cognitive studies. However, those studies did not consider pitch histogram of MIDI

6

channels deeply. We present that the performance of the melody extraction can be

extended by considering channel clustering based on pitch histogram

In contrast to early studies, our approach is able to select multiple melody

channels from a sequence. Depending on the pitch histogram of MIDI channels, we

present a clustering approach and determine total melody channels of music.

In the second phase, we consider indexing music sequences. We present that fast

sequence search on music databases can be ensured by suffix trees. We show that

advantage of a suffix tree comes into prominence when fast subsequence query

search on a large database is the fundamental requirement. Also we denote that

online suffix trees are very important for streaming music sequences. As a result, we

present an approach which enhances the performance of suffix trees for music

sequences.

In contrast to suffix trees, classic string matching techniques fail when the

database is very large. For a simple search, all elements of the database should be

read and compared with query. Such cost cannot be paid by large databases. Hence,

tree structures are preferred. In literature, there exist many different sequence

indexing methods such as Suffix trees, suffix arrays, string-b trees, hashing, etc..

However, the fastest query response can be yielded by suffix trees (Ferragina et. Al,

1998), (Farach et. al, 1998), (Manber and Myers, 1993).

 Suffix trees are composed of nodes and edges. While nodes represent a unique

suffix in the sequence database, and edges connect the nodes. Here, physical

alignment of the tree nodes can cause deep impact over tree construction cost. It is

possible to align the sibling nodes of the tree inside an array or in a linked list. Even

more, sibling nodes can be aligned by hash or tree.

 We present that suffix trees have three common drawbacks of suffix trees. These

are poor memory locality, high space consumption and unbalanced tree structure.

Because of these three drawbacks, suffix tree construction is difficult.

7

Poor memory locality is the result of random ordered node generation of suffix

tree. As a result of poor memory locality, nodes of a common path are aligned into

different pages of the disk. When the path is traversed during construction or search,

so many disk pages should be fetched coerciblely.

Our contribution on suffix trees is about its physical node representation. The new

node representation ensures fast access to child and parent nodes. Also our node

model is space efficient. In other words space and page requirement of online suffix

trees is acceptable for our model.

Another contribution of the thesis is that, we determine the frequently accessed

nodes of the suffix tree. As a result, we can align those nodes in a special way to

accelerate their retrieval time. We present that node access to frequently accessed

nodes of the tree can be estimated by alphabet properties.

 In this study, we insert MIDI music sequences into the suffix tree. Since MIDI

alphabet can return 128 different pitches, MIDI alphabet has 128 letters too. When

compared with other alphabets, MIDI alphabet has medium size. For instance DNA

has only four letters and Turkish alphabet contains 29. On the other hand some Time

Series applications may contain thousands of letters (Keogh and Kasetty, 2002). It is

not to see that different physical node representations yield different performance for

each case.

 Final contribution of the thesis is about sequence clustering be due to densely

populated pitches of a sequence. Since MIDI alphabet is large, a MIDI sequence may

contain few of possible pitches. For instance, pitch average of accompany channels

are decently low and they rarely contain high-pitch nodes. Because of this fact,

indexing all sequences by one suffix tree may not yield best performance. Hence we

present multiple suffix tree construction approach.

8

In this study, each of our proposals is supported by experimentation. Both melody

extraction and suffix tree construction approaches are tested on selected MIDI

datasets. Musicology department has contributed on MIDI dataset generation.

1.5 Thesis Organization

 The thesis consists of five chapters.

 Chapter 2 presents our on Melody Extraction approach. Initially, we present the

preliminaries and basic concepts of Melody Extraction. Then, we introduce the

common pitfalls of early melody algorithms. Next, we explain the importance of the

pitch histogram over melody extraction. Finally, we present a new melody extraction

approach which not only considers cognitive aspects of music, but also pitch

histogram and hierarchical clustering of music channels.

 Chapter 3 ensures a bridge between the Music Information Retrieval and Time

Series Similarity studies. Although MIR is a young research topic, Time Series

Studies have long history and mature experience on data management and indexing.

Hence, learning the early experiences from another research field should ease the

problem in MIR. In this chapter, we also analyzed the pros and cons of indexing and

similarity approaches. Hence we can route our study destination.

 In Chapter 4, we introduce our indexing approach. That is to say, we index

streaming music sequences by an online suffix tree. Suffix tree introduces fast

sequence search on large databases. However, suffix tree construction on external

memory has common pitfalls. These are (1) poor memory locality, (2) high space

consumption and (3) unbalanced tree structures. Moreover music sequences have an

important constraint: Every day, database should be updated with new music

sequences. In order to solve the problems, we introduce a new online suffix tree

construction approach for streaming music sequences.

9

In Chapter 5, we consider poor memory locality on suffix trees in detail. Here we

analyze the factors causing poor memory locality. The chapter analyzes the cost of

node swapping on the tree. While node swapping solves the poor memory locality

problem, it is very expensive. Hence it is necessary to present a trade-off for using

node swapping. In addition, we introduce the contribution of multiple suffix tree

construction on a database. In this way, suffix trees can be more balanced.

 Finally, the conclusions are introduced in Chapter 6. The chapter also presents key

contributions and fundamental findings of this thesis. Also, the thesis looks at the

future of MIR research, data reduction, indexing and external suffix tree

construction.

10

2CHAPTER TWO -

TIME SERIES SIMILARITY AND INDEXING

2.1 Introduction

 Time Series are a sequence of values, ordered in time. Almost all temporal events

in the nature can be seemed as Time Series Implementation. Music sequences are not

an exception. During a certain time and order, notes of music start playing and stops.

Occurrence order of the notes between limited time interval leads to Time Series

implementation. This fact is very important since Time Series Similarity is a deep

and mature research field in Computer Science. As a result, we can make use of early

experience from the field and introduce new enhancements.

 Studies on Time Series Similarity subject try to understand the underlying theory

of the successive data points(Agrawal, 1993), (Keogh et. al., 2005). They attempt to

determine which dynamics generate the structure. However, most of the Time Series

implementations cannot be formulated. For instance, there is no magic formula to

estimate climate changes over a year. Instead, scientists estimate future by early

experiences. Another example is daily stock market records. Daily values of stock

market are reported in a 2-d graphics. In order to estimate the future, economist seeks

for similar 2-d events occurred in the past. In Figure 2.1-a, stock behaviors’ of

Arcelik is observed in 2005. Interestingly, the stock plotted similar graphics in 2006

and shown in Figure 2.1-b (cnnturk.com, 2007).

2.2 Time Series Studies

 Searching similar events on a Time Series database is one of the goals of

computer science. This is a very difficult job since (1) all early experiences should be

stored inside a database, (2) size of the most databases overtakes terabytes, (3)

database should be eligible to extension for new experiences, and (4) database should

handle approximate matching (Keogh and Kasetty, 2002).

11

 Figure 2.1 Time Series Analyis of two similar events; a-) Values changes of a

 stock after Jan 2005 b-) Values changes of a stock after Jan. 2006.

 (Arcelik-Cnnturk.com, n.d.)

 String matching operations on very long strings are time consuming. In order to

handle large datasets, Time Series studies consider data reduction, segmentation, and

indexing (Keogh and Kasetty, 2002).

2.2.1 Data Reduction

Goal of the data reduction is to represent data with less number of symbols

without loosing core information. Some of the most popular data reduction methods

are Discrete Fourier Transform, Discrete Wavelet Transform, Piecewise Linear

Approximation, and Singular Value Decomposition (Shatkay, 1995), (Stollnitz,

1994), (Keogh and Kasetty, 2002).

12

 In terms of seismologic, economic and weather data, above data reduction

techniques make sense. Nonetheless, music is an exception. Fourier or similar

transformations interfere music cognition. On the other hand, music introduces its

own data reduction techniques. By using melody extraction algorithms, music

sequences can be represented by less number of notes. A musical data reduction is

shown in Figure 2.2. As in the figure, some of the notes are eliminated since they do

not contribute to the melody of the music sequence. Detailed analysis of melody

extraction is presented in Chapter 4.

2.2.2 Segmentation

 It divides music sequence into meaningful fragments. As a result, each fragment

can be processed separately (Keogh, 2001). There are three types of segmentation

techniques in the literature. These are Sliding Window, Top Down and Bottom up

approaches. Sliding window approach starts with the atomic fragments or points.

Iteratively segment will be expanded until an error bound is encountered. Later, next

free point starts to issue a new segment and do the same process. Top Down

approach recursively partitions the Time Series data until some predetermined

criteria has been encountered. Bottom Up approach issue smallest possible segments

initially. Later on short segments are merged until some error bound has been

encountered.

2.2.3 Indexing

 Storing data in a clever way speeds up access time on a database (Salzberg, 1998),

(Folk et. al., 1997). That is the goal of indexing. In a clever indexing mechanism, a

simple search query does not scan entire data set. Instead, it will minimize scanning.

 There are various indexing techniques in computer science field. The simplest

approach is ordering. Similar to dictionary, all data is alphabetically ordered. On the

other hand, there exist complex indexing mechanisms as well. Inverted Files,

Signature Files, B-trees, Multidimensional Indexing methods and Suffix Trees are

13

commonly used indexing mechanisms in the field (Beckmann et. al, 1990), (Bayer

and McCreight, 1972), (Gaede and Gunther, 1998).

2.3 Indexing with Multidimensional Access methods

 Given a sequence S as [s1,s2, …,sn] multidimensional structures attempt to index si

in the ith dimension. As a consequence, S can be indexed in n-dimensional index

structure. The multidimensional sequences can be indexed by R-tree, R*-tree, bsp-

trees, and quad-trees (Beckmann et. al, 1990), (Gaede and Gunther, 1998). In

literature, R*-tree is a common technique to index multidimensional index structures.

R*-trees do not index time series directly; instead the trees index user defined

envelops of the time series. As shown in the Figure 2.3, algorithms determine

meaningful envelops to index sequences. In the tree envelops are indexed as

multidimensional points.

 Figure 2.2 Data Reduction in a MIDI music sequences. In Figure a, all sequences are

 shown. In Figure b, Notes coming from the accompany channel are removed from the

 sequence set without reliability concerns.

 The queries are assumed as a set of multidimensional points in the space. When a

query hits an envelope in the tree, then there is a probability that query may take

place in the database. For such cases, detailed comparisons can be made in the

relevant time series sequence.

14

 Multidimensional indexing has a common pitfall. They expose poor performance

when dimensions are greater than 12. In such cases, dimensionality reduction

techniques can be used for some data sets. For instance, features of the stock market

data can be extracted by DFT (Shatkay, 1995). It is a fact that DFT can extract most

effective coefficients of a time series. On the other hand, less effective coefficients

can be dropped during indexing. Such approach really makes sense for stock data.

 Figure 2.3 Generation of Minimum Bounding Rectangles on a sequence.

 In contrast to stock data, music sequences cannot be reduced to 12 dimensions.

Otherwise cognition of the music will be lost. Therefore multidimensional indexing

methods fail when music sequences are considered. Moreover, inverted lists are not

convenient since occurrence of each musical sequence is generally one.

2.4 Indexing with Signature files

 In terms of music sequences, signature files can be tried (Jönsson, 1999).

Signature files contain hashed terms from documents. The hashed terms are called

signatures and used as probabilistic filters for initial text search. A signature file

example is denoted in Figure 2.4. In contrast to R-tree, signature files can handle

large dimensions. Nonetheless, signature files have a common pitfall. Size of a

signature file is large as well. It is said that size of the signature files is around 10%

of the size of the original file (Jönsson, 1999). Hence for each query, 10% of the

document should be scanned. Such fact is against the definition of indexing. Recall

that indexing aims to store data in a clever way to speed up access time. This cannot

be achieved by scanning 10 % of a text.

15

Text Simple signature file example
Word Signature 0101 0011 1111 0110
Document Signature 0101 0011 110110110

 Figure 2.4 Representing sequences with signatures

 Suffix trees are assumed as an alternative indexing technique for Time Series data

(Huang and Yu, 1999), (Lin et. al., 2003). In fact, they can handle larger dimensions.

At the same time, they do not cause a common pitfall as Signature Files yield.

However, suffix trees are popular since they minimize the scan process. Because of

these facts, suffix trees are well known string processing implementations. Certainly

they have important drawbacks as well.

2.5 Similarity

 Goal of Time Series indexing is fast data retrieval. The user inputs a query and the

query is searched in the database (Chakrabarti, 2001). Here, search process is based

on similarity. Therefore, it is necessary to determine what does similar means.

 Definition of similar is fuzzy. Two objects are assumed similar if they have

common characteristics. For instance, grass and leaves have green color. In terms of

color, two objects are similar. In contrast, size of a grass and a leaf is different.

Hence, two objects are not similar when we look at them from a different aspect.

 It is also necessary to define the similarity ranking of objects. In some cases, we

may not find absolutely similar objects. Hence, quantifying the similarity between

two objects becomes necessity. For instance, in Figure 2.5, three Time Series data

looks similar. However, last two series has more common properties and they are

more similar to each other.

16

2.5.1 Edit Distance

 In information theory, similarity is defined by a relevant edit distance. Edit

distance computes the total process requirement to transform one sequence to other.

In terms of sequence transformations, letter substitutions are the overall process

costs. Let “abdcaa” and “abccaa” are two sequences. In order to transform first

sequence to the second one, its third letter should be changed.

 Figure 2.5 Time Series Similarity of three sequences (Arcelik-Cnnturk.com, n.d.).

 There are several algorithms which define the edit distance metric. Most

commonly used ones are Hamming Distance, Levenshtein distances (Navarro, 1998),

17

(Navarro, 2001) The Levenshtein distance between two string is determined by total

letter insertion, deletion or substitution of one letter. For instance if we need to

transform “money” to “core” we need to process to substitute and delete process.

2.5.2 String Matching

 String matching is an alternative retrieval strategy to search similar documents

from databases. While edit distance metrics introduce transformation rules, they do

not present fast process times. The string matching studies ensure fast sequence

search on large databases.

 String matching algorithms are common in our life. For instance search engines

make use of string matching technique to introduce query result to the user faster.

Although, size of the searched database can be more than terabytes and the scan

operations ends up in milliseconds. In addition, human genome project is solved by

string matching algorithms as well. So that large human DNA can be understood for

possible cures.

 In order to process string matching on large sequences, classic string matching

algorithms are not eligible. In fact, terabytes of net information or 3-gigabyte human

DNA cannot be processed with a brute-force string matching algorithm. Using a

brute force approach, similarity search on large DNA sequences will take no less

than a minute. Because of this fact, new string matching algorithms are proposed.

 String matching can be divided into two sections. These are exact string matching

and approximate string matching. Exact string matching algorithms search exactly

similar patterns of a query. In contrast, approximate string matching algorithms

consider errors.

 Let text, T, be a set of strings where

18

Σ and | T | = n, (2.1)

and pattern, P, be a set of strings where

Σ and | P | = m. (2.2)

 To be more concrete,

 T= T[1], T[2]… T[n] and P = P[1], P[2]… P[m] (2.3)

 The exact string matching problem search the pattern in the text under the

condition that

 P[1] = T[i], P[2] = T[i+1], … P[m] = T[i+m-1] (2.4)

 In contrast approximate string matching accepts limited number of errors. Instead,

limited number of inequalities is accepted. If, for instance, error limit is 1, all below

possibilities should be assumed as approximately similar.

 P[1] ≠ T[i], P[2] = T[i+1], … P[m] = T[i+m-1] or

 P[1] = T[i], P[2] ≠ T[i+1], … P[m] = T[i+m-1] or

.

.

.

 P[1] = T[i], P[2] = T[i+1], … P[m] ≠ T[i+m-1] (2.5)

2.6 Transforming Time Series Data into Discrete Form

 During the nineties, Time Series Studies became mature for static data sets

(Keogh and Kasetty, 2002). However, the situation was still new for streaming data

19

set. In the last decade, Time Series Studies focused on Suffix Trees and their

applications.

2.6.1 Adaptive Query Processing for Time-Series Data

 Huang and Yu claimed that it is less controllable by the end user when data is

transformed from time domain to frequency domain (Huang and Yu, 1999). They

proposed to convert time series data into discrete form, they founded equivalent

strings. What they did was finding the difference between consecutive positions and

defines a letter for each difference value. Their work is based on two sections. First

section is the preprocess stage. Here, the time series data is transformed into strings.

It is application dependent, how many strings will be used by application. They

introduce “numsegment” parameter for this. In addition, “min” and “max” are

bounds of changes.

 Preprocess stage continues by index phase. Here authors tried a suffix tree

construction method. Their suffix tree construction algorithm is based on Mc Creight

suffix tree method. In addition, they used additional ID and position parameters.

2.6.2 SAX

 A more popular time series, suffix tree indexing has been proposed by Li, Keogh

(Keogh et. al 2005), (Lin et. al., 2003). They converted the time series into string

form. Later they tried to find the surprising patterns of the strings without a prior

experience. Their goal was creating an approximation of data which can fit in

memory such that it can maintain essential features. .

 SAX method considers surprising patterns without knowing what is surprising. In

order to do this, they tried Markov models. They used a random projection method to

find the most attractive motifs.. Randomly selected masks computes the similarities

of substrings and assigns the similarities into collision matrices.

20

 In their research they also presented colored bitmap of time sequences. As a

result, before doing a comparison between two sequence, approximate representation

of two sequences are compared. So that search time reduces.

 In their study, Keogh et al believed that future of time series is beyond SAX. Also

they believe that classical time series are mature at the moment; however there is still

work to do for streaming time series applications.

2.7 String Matching Algorithms

Indexing data is the core part of the researches. However it does not compensate all

difficulties. Recall that query results can be returned by comparison. Hence, it is

necessary to mention about string matching algorithms.

2.7.1 Brute Force Text Matching

Discussions about string matching start with the brute force method. This method

aligns the leftmost end of P with the leftmost T. Later, from left to right all characters

are compared from left to right until mismatch character occurs or we encounter the

end of pattern. This approach is very slow. Let m and n be the size of pattern and text

respectively, the computation cost of the comparisons take O(mn) time in the worst

case.

 As an example assume that T = “ababababac” and P = “abac”. Initially brute force

matching encounters that

T[1] P[1]

As a result, matching for T[1] fails. In the second step, algorithm restart

comparing by T[2] and P[1]. Since first letter of the pattern is matched, algorithm

tries to match T[3] and P[2]. Since a match occurs, third letter of the pattern is tested

with T[4]. Nevertheless, fourth letter of the pattern does not match. While failure was

21

obvious in the second step, it took extra cycles to find the unmatched. Hence

unnecessary comparisons would be made.

 Although the problem can be solved in 10 comparisons, brute force algorithm

ends up with 19 comparisons.

2.7.2 Boyer-Moore Algorithm

 Boyer Moore has three clever ideas which do not take place in the brute force

approach. These are bad character rule, scan from right to left and good suffix rule

(Boyer and Moore, 1977). When a bad character is encountered in the text, next

pattern comparison can be shifted until the bad character is avoided. In order to use

bad character effectively, characters are searched from left to right.

 Good suffix rule determines shifting position after a mismatch occurrence. In case

a mismatch occurs, matched characters can be aligned as the suffix of the matched

sequence. As a result, next available position computed by good suffix.

2.7.3 Knuth-Morris-Pratt (KMP) Algorithm

 The KMP algorithm is based on preprocessing of the pattern before string

matching starts up (Knuth et. al, 1977). Like the brute force method, KMP algorithm

scans the text from left to right. Similar to Boyer Moore algorithm, KMP is based on

preprocessing of the pattern. However, KMP matching procedure operated from left

to the right. In case a mismatch occurs a preprocess table determines the number of

characters to shift. It based on the common strings.

2.7.4 Shift-Or Bitwise matching algorithm

 Bitwise shift-or algorithm makes use of the intrinsic parallelism of bitwise

operators on the memory. In general, it yields satisfactory results when word size is

less than memory word size of the machine. pattern length and alphabet size do not

affect search time. An important point about shift or algorithm is that, it is adaptable

to approximate string matching.

22

2.8 Suffix Tree Construction

Data search on large sequences is an important problem for two reasons. Firstly, it

may be necessary to scan the whole database for a simple user query. Secondly, user

queries on the database may occur very frequently. Hence scanning the database for

each query should drown the information retrieval mechanism.

Suffix trees solve the query handling problem satisfactorily. If the sequence

database is indexed by a suffix tree, query time depends on the length of the query.

Hence the optimal query retrieval time will be ensured.

In order to reduce query search time, the tree indexes all possible suffixes of

sequences. Given that the length of a sequence is n, then the sequence will have n

different suffixes. Therefore possible n suffixes of the sequence will be indexed by

the suffix tree.

Inside suffix trees, a common prefix is represented by a single node. Also

hierarchical alignments of the nodes are interesting. A parent node always represents

a sub sequence, which is a prefix of a sequence that is represented by its all child

nodes. Such alignment strategy ensures fast subsequence search on sequence

databases.

While suffix trees ensure fast access to the queries, their construction time and

space consumption could be high. Because of its drawbacks, suffix trees could not

become popular before seventies. Afterwards a new tree construction algorithm

attracted researchers (Weiner, 1973). The algorithm ensured linear time construction

of the suffix trees. In addition space requirement reduced to linear time.

Before the new century, suffix trees mainly indexed in random access memory.

Nevertheless, they denoted poor performance on external memory applications.

There were three common pitfalls, which reduce the performance of suffix trees.

23

These are poor memory locality, high space consumption, and non-balanced tree

structure.

Until now, especially poor memory locality is the most important problem of

suffix trees. In terms of external memory applications, disk access time is the

bottleneck of the computers, since hard disks contain mechanical parts.

 We believe music sequences can be indexed by suffix tree efficiently. When

compared with biological data, music sequences are shorter. Hence depth of the

suffix tree will be moderate for music.

Suffix trees introduce valuable options for music. For instance, dynamic sequence

insertions are supported by suffix trees. So that new music albums can be updated in

a suffix tree very fast.

24

3 CHAPTER THREE -

MELODY EXTRACTION AS A DATA REDUCTION METHOD

 Music files are mostly in polyphonic form, where multiple notes sound

simultaneously. However, human have tendency to memorize only melody of the

music, where melody is a linear, recognizable musical unit. In order to determine

melodic lines from polyphonic music files, Melody Extraction Algorithms have been

issued.

 In this section, we present a new Melody Extraction approach and make

experiments on MIDI file format. Depending on pitch histogram and cognitive

features of music, we eliminate the MIDI channels which are potentially lack of

melodic content. To do this, firstly, we determine the highest pitch line of each MIDI

channels and compute pitch histogram. Next, we present an agglomerative

hierarchical clustering technique, and gather the channels with similar histogram

features. Depending on music cognition facts, we select best channel from each

cluster as melody and discard the rest. Lastly, we implement early Melody Extraction

algorithms in the reduced MIDI set.

 For evaluation, we selected 31 MIDI music files. Selected files disclose different

musical features such as pitch frequency, tremolo, arpeggio, glissando and rest.

3.1 Introduction

 Recently music files have been converted into digital format, leading to digital

music databases. Consequently, fast and reliable music retrieval algorithms have

been demanded from industrial, educational and judicial communities. In order to

design efficient music retrieval algorithms, interdisciplinary studies have been

focused on polyphonic nature of music, where polyphony is the simultaneous sound

of notes. Melody Extraction is a research field, which generates monophonic

equivalent of polyphonic files, where monophony guarantees linear sequence of

25

notes (Meek, 2001). Hence, output of Melody Extraction takes less space in

databases but contains genuine part of the music.

 In 1995, (Ghias et. al., 1995) presented that percussion channel never contributes

to melody. As a result, elimination of percussion channel not only enhances the

relevancy of the search, but also speeds up the retrieval time. In 1998, a breakthrough

paper proposed music manipulation approach. (Uitdenbogerd, 1998). Uitdenbogerd

and Zobel pointed out that retrieval on monophonic music files is comparably easy,

whereas dealing with polyphonic files require significant endeavor. They put forward

four different techniques to generate monophonic equivalent of polyphonic files and

made experiments in MIDI music files. Their first technique, Skyline Algorithm,

collected the notes of a MIDI file into single MIDI channel. Thereupon, algorithm

followed the highest pitch line of the note sequence as the melody. In order to keep

more notes in the final output, Skyline Algorithm modified note durations. Their last

three algorithms attempted to select the best MIDI channel which keeps melody

(Uitdenbogerd, 1998), (Uitdenbogerd, 1999). In order to determine best channel, they

presented cognitive criterions such as pitch average or entropy of a channel.

Remainder of MIDI channels were entitled as accompaniment and discarded.

However, all four algorithms led a main drawback; features of the music files were

determining the performance of each algorithm.

 In order to enhance Melody Extraction, Chai presented Revised Skyline

Algorithm (Chai, 2000). Having sorted notes based on pitch level, she eliminated low

pitch notes until monophony is obtained. Moreover, Chan claimed that average

volume of the channel may disclose the location of melodic content (Chan, 2002).

Nevertheless, none of the melody extraction algorithms overtook feature

dependency. In contrast, each algorithm succeeded in a special data set. In fact, multi

cultural progression of music was leading to complex cognitive rules, consequently

causing obstacle against melody extraction.

 In order to overtake feature dependency, we combine the Melody Extraction

techniques from literature. Initially, we cluster MIDI channels, be a result of pitch

26

histogram. Consequently, each cluster contains MIDI channels maintaining specific

histogram features. Next, we select the best channels of the clusters as melody and

eliminate remaining channels from MIDI file. Finally, we implement early Melody

Extraction algorithms in the reduced MIDI set. Experiments acknowledge our

method; implementing Skyline over the reduced MIDI set outperforms. Moreover, a

combined channel selection approach overtakes the previous channel selection

algorithms.

 The remainder of the paper is organized as follows; section 2 describes the

definitions and related work. Section 3 presents Partial Skyline approach. Section 4

exposes experimental results and makes comparisons. Section 5 concludes the paper

and gives a look to the further study on this subject.

3.2 Related work

 MIDI is an acronym for Musical Instruments Digital Interface. For simplicity,

musical notes are stored in 16 channels, where each MIDI channel represents an

instrument. Let M be a MIDI file composed of channels. Formally,

M = { c1 ,c2 ,….., c16 } . (3.1)

 We assume that each channel, ci, be a set, containing k notes. Mathematically,

ci = { ni1, ni2, …. nik} where 1 ≤ i ≤16 (3.2)

 Melodic content of the music might be distributed among channels. However,

(Ghias et. al., 1995) showed that percussion channel never contained melodic

information. As a result, elimination of percussion channel, c10, from M did not ruin

melodic robustness.

 Interestingly, average frequency of percussion channel was low. Cognitive studies

showed that it was not a coincidence. (Dowling, 1982), (Temperley, 2001). On the

27

contrary, human have tendency to memorize high frequency notes. Based on this fact,

Uitdenbogerd and Zobel followed the highest pitch line of the M. If multiple notes

occur simultaneously, they eliminated the notes exposing low frequency.

 For our case, there are three important note properties: pitch, note onset time and

note offset time; respectively pij, sij, and eij. Formally, we define a note as:

nij = { pij, sij , eij } 1 ≤ pij ≤ 128 (3.3)

 By nature, MIDI notes are sorted based on note onset time. Therefore,

∀ nij, ni(j+1) ∈ ci ; sij ≤ si(j+1) . (3.4)

 However, there is no constraint for offset time. If subsequent note’s onset is

earlier than preceding note’s offset, then polyphony will occur. Formal definition of

polyphony is:

∃ nij, ni(j+1) ∈ ci ; eij > si(j+1) (3.5)

3.2.1 Skyline Algorithms

 (Uitdenbogerd, 1998), and (Uitdenbogerd, 1999) presented four techniques to

generate monophonic equivalent of polyphonic files. Their first technique, Skyline

Algorithm, collects all notes of M into one channel and follows the highest pitch line.

In addition Skyline Algorithm manipulates note durations. Skyline Algorithm is

explained in Algorithm 3.1. At the first line of the algorithm, first note is selected.

Fourth line of the algorithm considers all notes that have the sane onset time. In case

multiple notes have same onset time, note with maximum pitch frequency will be

kept, whereas rest of notes will be eliminated (line 5-10). Therefore monophony can

be ensured. On the other hand, monophony can be obtained by shortening the

duration of notes. If a new note onsets before preceding note offsets, offset of

28

preceding note is rearranged in line 11-12. In order to illustrate the algorithm, Figure

3.1 denotes Skyline algorithm.

 Although Skyline yielded impressive results, three critics have been mentioned.

Firstly, manipulating the note durations can change music properties. Secondly,

collecting all notes into one channel removes rest. In other words, silent intervals

between notes may carry on hidden melody. To consolidate the problem, we

introduce the Skyline algorithm in Figure 3.1. Lastly, we may encounter music

samples where melody is maintained by low pitches. Depending on the note

durations, some notes are eliminated from the set in figure 3.1-b.

Algorithm 1 Skyline

begin

1. j := 1; i =1;

2. for each nij ∈ M do

3. k := j + 1

4. while (sij = sik)

5. if (pij < pik)

6. eliminate pij

7. j := k

8. else

9. eliminate pik

10. k := k + 1

11. if eij > sik then eij = sik

12. j := k

13. end for

end

 It is a fact that, keeping the original durations of notes was a solvable issue. (Chai,

2000) presented the Revised Skyline Algorithm, where note elimination starts from

the lowest pitch and continues until monophony is ensured. Nevertheless, solution to

the last two critics required channel elimination. So, proper channel elimination

techniques were needed to decompose channels which contain accompaniment

information. Here, cognitive studies were expected for participation

29

3.2.2 Channel Selection Algorithms

 Uitdenbogerd and Zobel attempted to select best MIDI channel to represent

melody of M. Their first algorithm, Top Channel, obtains Skyline output of each

MIDI channel. Later on, algorithm computes average pitch frequency, ai, of ci. At the

end, Top Channel algorithm eliminates all MIDI channels except ci possessing

maximum ai. Their second algorithm, Entropy Channel, was quite similar to Top

channel. But Entropy Channel Algorithm considers first order predictive entropy of

ci as channel selection criterion. In music sequences, predictive entropy can be

defined as a measure of uncertainty between consecutive sequence letters. Here, we

define bi as the entropy of ci. Lastly, they used heuristics to find the channel with

maximum bi, which was very similar to Entropy Channel Algorithm. Channel

Selection algorithm is illustrated in Figure 3.1-c. Notes of the second channel are

eliminated from the set.

a)

b)

c)

 Figure 3.1 Notes of Alla Turka a)- Original Notes are decomposed in two MIDI channels,

 b)- Notes after Skyline Algorithm, c)- Having eliminated notes from secondary channel,

 both melody and rests will be maintained. Because we eliminated only accompany notes.

30

 In addition, volume information could reveal some hints about melodic content.

Chan presented that there was a relation between high volume and melody (Chan,

2002). Therefore he selected the channel which has maximum average volume.

Experiments show that performance of channel selection algorithms depends on the

data set. Moreover, channel selection algorithms have a common pitfall. If perceived

melody circulates around channels, selection of one melody channel will lead to loss

of melodic information. We believe that there are still cognition facts which are not

unraveled yet. If a music expert could select melodic line by premonition, then

optimum melody extraction algorithm should be able to do so.

3.3 PARTIAL SKYLINE APPROACH

 We believe that combining chief melody extraction algorithms in a new approach

will outperform. Furthermore, pitch histogram of a channel reveals basic motifs of

the melodic content. Thereupon, we can cluster channels which expose similar

histograms. Here, we also consider histogram similarities between MIDI and its

channels.

 We prefer to implement three primary melody extraction operations before

computing pitch histogram. Our first preliminary operation eliminates percussion

data which is stored in c10. Secondly, we apply Skyline Algorithm to all channels. So,

only perceptively attractive notes make contribution to histogram. Thirdly we

represent MIDI notes by 12 semitones. In order to achieve this, we computed modulo

12 equivalents of pitches(Lemstrom, 2000). As a result, pitch histogram of channels

takes place in 12-dimensional space.

3.3.1 Analyzing Pitch Histogram of MIDI Channels

 A histogram is the graphical version of a table that shows what proportion of

cases fall into each of several or many specified categories (Histogram-wikipedia,

n.d.). Let hi is the pitch histogram of ci , then we can define histogram set H as

31

H = { h1 , h2 , …., h16 } (3.7)

 Average histogram of all channels, hA, can be computed as:

∑ (3.8)

 Instead of searching for a standardized pitch histogram, our reference point is

reached by hA. Let di is the Euclidian distance between hi and hA.

di = d (hi, hA) (3.9)

 Than we define distance set, D, such that :

D = { d1 , d2 , …., d16 } (3.10)

 It is a fact that di exposes histogram similarity between M and ci. In other words,

channels with similar di frequently reveal similar music features. Having clustered

channels based on di, each cluster keeps a peculiar feature of music file.

In order to illustrate the significance of pitch histogram, we present Bon Jovi’s

favourite son “Always”. Table 3.1 clarifies the histogram based distance features of

channels. In terms of distances, there are two sudden increase occur between

consecutive rows. Hence, channels can be decomposed into three basic clusters. Any

well designed algorithm should be able to cluster the channels in proper manner.

32

Table 3.1 Histogram related distance features of “Always” from Bon Jovi.

Channel

Contain
melody

Distance consecutive
difference

Group No

c1 Y 0.0885 ‐‐‐ 1

c6 ‐ 0.0935 0.005 1

c3 ‐ 0.0974 0.003 1

c9 ‐ 0.1065 0.009 1

c4 ‐ 0.1092 0.002 1

c8 Y 0.1609 0.051 2

c5 Y 0.2070 0.046 3

c2 ‐ 0.2149 0.007 3

c11 0.2174 0.002 3

3.3.2 MIDI Channel Classification

 In order to collect the channels with similar property at one cluster, we implement

agglomerative clustering approach. In addition, we present a technique which

computes a threshold. So that clustering approach iterates until the threshold value.

In general average, median or standard deviation features are used to stop

agglomerative clustering. However, such techniques require satisfactory amount of

samples. On the contrary, M contains at most 16 channels. Therefore, such threshold

determination techniques do not make sense.

In order to present a better threshold for our purpose, we compute weighted

average pitch histogram of M. Recall that ci contains ti notes. Than weighted average

histogram, hW, will be,

 ∑ (3.11)

33

We determine the threshold, r, as

 ,
 (3.12)

 Logic behind our threshold is as follows: If all channels have equal number of

notes, than r will be zero. Therefore, clusters contain one channel. On the contrary, if

a channel contains 99 % of the notes, it will lead a big threshold value and one

cluster collects all the channels. Consequently, all but one channel from clusters will

be eliminated.

 For the sample song threshold, r, is 0.0214. Consequently, agglomerative

clustering iterates until distance between merging clusters are smaller than threshold.

Table 3.2 shows the decomposition of clusters after agglomerative clustering.

3.3.3 Combined Channel Selection Approach

 Having clustered similar featured MIDI channels, we select best MIDI channel

from each cluster and eliminate the rest of channels from MIDI. Here we present a

combined Channel Selection algorithm which is a mixture of Top Channel and

Entropy Channel algorithms.

 Recall that predictive entropy can be defined as a measure of uncertainty between

consecutive sequence letters (Uitdenbogert, 1999). Correspondingly, we let ai and bi

be the pitch average and predictive entropy of ci; combined channel selection

criterion, xi, is computed as:

xi = ai + bi 128 (3.13)

 Pitch average of MIDI channel, ai, can range between 1 and 128. On the contrary

predictive entropy, bi, ranges between 0 and 1. Therefore multiplying bi by 128

balances the weight of ai and bi.

34

 Table 3.3 and 3.4 show that Top Channel and Entropy Channels are

supplementary to each other. There are examples where either Top Channel or

Entropy Channel selects the convenient channel. Meanwhile, Combined Selection

Algorithm chooses the best of Top Channel or Entropy Channel. Consequently, it

overtakes all previous channel selection algorithms.

 Having benefit from Combined Selection approach, we compute xi values of all

channels and determine the best channel from each cluster. In Table 3.2, c1 has the

maximum xi value in the first cluster and selected as melody channel. In the same

way, c8 and c5 are selected as melody and rest of the channels are eliminated from the

M.

 Table 3.2 Decomposition of MIDI channels consequently, channel selection in clusters.

Channel

Is Optimal
Melody Channel

Cluster No xi Combined approach selects

c1 Y 1 154.8 X
c6 ‐ 1 100.1
c3 ‐ 1 107.7
c9 ‐ 1 98.6
c4 ‐ 1 94.0

c8 Y 2 102.8 X

c5 Y 3 78.6 X
c2 ‐ 3 49.5
c11 3 74.9

 Our example, approach yields three clusters. Rarely, files can yield five or more

clusters so, do melody channels. In such cases, considering channels of the four

clusters which show shorter di suffices. Because, melody clusters have tendency to

expose shorter di values.

35

 Finally, in our sample, Partial Skyline approach keeps important melodic

contents, although some channels do not expose attractive pitch, entropy or volume

properties. An example of this situation occurs in the sample song in Figure 3.2.

 Figure 3.2 Piano roll of 5th channel from “Always”. Although channel contains

 decent melodic information, it is eliminated by pitch frequency, entropy and

 volume techniques.

3.3.4 Summing up Partial Skyline Approach.

In order to summarize our study, we present the 8 basic steps Partial Skyline Approach

1. Apply Skyline Algorithm to all Channels

2. Mci ∈∀ , compute ai and bi

3. Mci ∈∀ , combined channel selection criterion is : xi = ai + bi 128

4. Represent music with 12 semitones.

5. Compute clustering threshold.

6. Iterate Agglomerative Hierarchical Clustering on distance set, until threshold is

encountered.

7. Apply Combined Selection approach in clusters. Eliminate remaining MIDI

channels.

8. Apply Skyline Algorithm in the reduced MIDI set.

36

3.4 Test Results

Features of the music files have deep impact on the performance of Melody

Extraction Algorithms. For instance, if a database consist of music files where accompany

has high frequency, then worst performance will be generated by Skyline and Top Channel.

However, such judgement cannot be generalized. In contrast, Skyline entitled as the most

successful melody extraction algorithm.

3.4.1 MIDI Test bed

In order to represent music universe, a test bed should consider all aspects of music

features and consequently collect files. In our test bed , considered features are high

frequency, accompany has high frequency, Melody change instrument, Rest,

Arpeggio, tremolo, volume, and glissando. In this respect, we selected samples

where each selected feature is dominant at least in three music files. Selected files

and their properties are revealed in Table 3.5.

3.4.2 Evaluation Methodology

Evaluation of a Melody Extraction Algorithms is collaborative study of both

computational and musical science. Firstly, researchers from musicology department

selected the music sequenced to be analyzed. The data set is illustrated in Table 3.5.

Later, manually selected the channels where melodic contents take place.

Additionally, musicologists determined weights, when multiple melody channels

takes place in the same file. Because, finding the channel which has densely melodic

content is a desirable property.

 Later we compared the results between manual selections and the selection of the

melody extraction algorithms. Computational evaluation was based on recall and

precision. In addition, final outputs have been appraised by music experts.

37

3.4.3 Evaluation of Channel Selection Algorithms

 In our test bed, Top Channel and Entropy Channel Algorithms expose yield

similar performances. Depending on the data set features, each algorithm overtakes

other. Meanwhile, in table 3.4, average velocity algorithm, which is based on volume

average of notes, exposes unsatisfactory output in our test bed.

Test results in Table 3.4 shows that combining multi features of the channels can

show impressive enhancement. Covering the whole scope of data sets can be possible

when all cognitive features of music are considered. Consequently, we Combined

obtained best performance from our Combined Channel Selection Approach.

3.4.4 Evaluation of Skyline Algorithms

 Recall that Partial Skyline approach eliminates the channels which are potentially

accompaniment; consequently implements Skyline Algorithm on selected MIDI

channels. Thus, performance depends on the correctly decomposition of accompany

channels. Table 3.4 shows that Partial Skyline algorithm exposes good performance

in terms of Recall and Precision. In addition, we observed that partial skyline

algorithm rarely miss weighted melody channels.

 We believe that evaluation based on recall and precision is not enough for music

files. Moreover, outputs should be analyzed perceptively. Table 3.3 explains the

fundamental pros and cons of Skyline Algorithms.

Table 3.3 Evaluation of Skyline Algorithms

Algorithm Comments
Skyline Pros Melody Changes instrument and melody has high frequency.

Cons Remove Rests, modify note durations, include accompany.

Revised
Skyline

Pros Melody Changes instrument and melody has high frequency. In
terms of rests, overtakes Skyline.

Cons Not convenient for tremolo and arpeggio. Worst, when
accompany has high frequency.

Partial
Skyline

Pros Lessens the interference from accompany channels.
Compensate all deficiencies of Skyline Algorithms.

Cons Elimination of melodic content is possible.

38

3.4.5 Effect of the Feature over Partial Skyline

 In some music samples, determining the borders of clusters are very sharp.

Consequently Partial Skyline approach runs properly. For instance tremolo, which is

the rapid succession of the same note, exposes sharp histogram distances. On the

contrary, if the borders of clusters are fuzzy and accompany has high frequency,

Partial Skyline will not guarantee generating satisfactory outputs. Furthermore, notes

which have short durations are fatal to elimination if Revised Skyline Algorithm is

considered.

 Arpeggio, rapid succession of notes rather than concurrent notes, is successfully

determined by Partial Skyline approach. In addition, channel elimination improves

Skyline Algorithms, when note durations are very short. Because short durations of

notes leads to densely population of concurrent pitches. Similarly, channel

elimination is beneficial to keep rests as well.

 Glissando, continues sliding of consequent notes, does not cause any effect on the

histogram, neither do on partial Skyline approach. However, glissando is a hint for

melodic content. We believe combining glissando into melody selection criterions

enhance melody extraction.

Table 3.4 Comparison of Channel Selection Algorithms. Best Recall is obtained from Partial Skyline

approach, whereas Combined Selection approach is the best in terms of Precision.

Recall Precision Weighted Recall
Partial Skyline 0.769 Combined

Selection
0.935 Partial Skyline 0.769

Top Rank 0.681 Entropy 0.774 Top Rank 0.687
Combined
Selection

0.593 Top Chan 0.741 Combined
Selection

0.603

Entropy C 0.477 Partial Skyline 0.653 Top Ch 0.487
Top Chan 0.465 Velocity 0.516 Entropy 0.470
Velocity 0.377 Top Rank 0.5 Velocity 0.374

39

Table 3.5 MIDI Testbed

ID Name Description ci Optimals

1G1 Mozart Alla Turka Melody has high frequency 2 1

1G2 Chopin ‐ Etud Op. 12 " 1 1

1G3 Mozart ‐12 Variations " 2 1

2G1 Beethoven 5. Symph Meody change instrument 12 8,3,5,1

2G2 Mozart ‐12 Variations " 2 1,2

2G3 Mozart‐Concerto " 9 1,2,6,9

3G1 Madonna Frozen Accomp. has high frequency 11 4

3G2 Roxette‐ It must be love " 8 2

3G3 R.Martin ‐ Maria " 8 16,3

4G1 Bach ‐ Goldberg Rest 1 1

4G2 Barry Manilov‐C.Cabana " 3 7,2

4G3 Yanni ‐ Themes " 4 1,12

5G1 Green Sleeves Arpeggio 1 1

5G2 Rodgers ‐ Romant " 3 1

5G3 Albeniz ‐ Asturias " 2 2

6G1 Pulp Fiction Tremolo 4 6

6G2 Vivaldi ‐ Concerto " 6 1

6G3 Empire Strikes Back " 10 3,9,4

7G1 Tschaikovski ‐ 1812 Volume 15 1,6,13,4,7

7G2 F. Lizst ‐ Totantanze " 4 1,4

7G3 M. Jackson ‐ Thriller " 7 4

8G1 C. Dion ‐ All By Myself Glissando 5 7,8,1

8G2 Tears in heaven " 5 5

8G3 Congo " 15 2,1,5

MG1 Mozart – 40 Symph. Mixed 11 12,3,1,4,2

MG2 Tears in heaven " 8 4,5

MG3 C.D. All By myself " 9 4,7,8,1

MG4 Beethoven ‐ Pastoral " 11 11,2,3,4,12

MG5 Bye bye love " 6 4

MG6 C.D. All Coming back " 14 13,6,1,15,7

MG7 Bon Jovi Always " 10 8,5,1

Performance of Melody Extraction Algorithms depends on the data set. Due to

multi cultural structure of the music, different criterions are essential for different

40

data sets. In order to design global Melody Extraction algorithm, we combine the

criterions from literature. In addition, we analyzed the pitch histogram to decompose

melody and accompaniment MIDI channels. Our test bed contains MIDI music files

which cover common features of Western music.

 Test results show that our combined approach overtakes when data set covers all

important music features. However, results do not expose 100 % reliability. In order

to present best melody extraction algorithm, cultural progressions and cognitive

studies should be analyzed.

41

4CHAPTER FOUR -

ONLINE GENERALIZED SUFFIX TREE CONSTRUCTION ON DISK

 In section study, we present an online generalized suffix tree construction

algorithm on disk, where multiple sequences are indexed by a single suffix tree.

Typically, performance of suffix tree construction on disk suffers from poor memory

locality and high space consumption problems, especially when alphabet size is

large. In order to overcome these problems, we propose a novel suffix tree

construction algorithm which (1) takes letter frequencies into consideration and (2)

involves an alternative physical node representation. We run a series of

experimentation under various buffering strategies and page sizes. Experiment

results showed that our algorithm outperforms existing approaches.

4.1 Introduction

 Suffix trees, are versatile data structures which enable fast pattern search on large

sequences. The large sequence, data set, can be a DNA sequence of a human, whose

length is 3 billion; or it can be a collection of musical fragments, where number of

fragments in the collection is large but average length of each fragment is moderate[.

In both sequence cases, total size of the data set may be extremely large. For such

large sequence sets, suffix trees introduce a fundamental advantage; sequence search

time does not depend on the length of the data set.

 Concept of suffix tree construction was initiated before the seventies by a brute

force approach (Gusfield, 1997). For each suffix insertion, brute force approach

preceded a common prefix search operation in the tree. Nevertheless, it was not

practical since computational cost of the brute force suffix tree construction was at

least exponential. In the seventies, linear time suffix tree construction algorithms

were introduced using suffix links and tested on memory. (Wiener, 1973) and

(McCreight, 1976). In these algorithms, suffix links functioned as shortcuts, which

enable fast access to the suffix insertion positions of the tree. In other words, they

42

hold the address of a node, which contributes to the next suffix insertion position. As

a result, traversing the tree for each suffix insertion was not necessary; instead suffix

links from the previous step supplied the direct address. Due to this strong advantage,

linear time suffix tree construction became possible. (Gusfield, 1997).

 Although early suffix tree construction algorithms ensure linear time construction,

they share a common pitfall: the offline property. For instance, in McCreight

algorithm all letters of the sequence should be scanned before suffix tree construction

procedure starts up. Such situation may cause an important constraint, if, for

example, the occurrence of the rightmost letter is delayed. Twenty years after

McCreight, Ukkonen has presented an online version (Ukkonen, 1995). In the online

construction algorithm, the scanned part of the sequence can be projected to the

suffix tree whereas; it is possible to extend the suffix tree by reading the next letter

from the sequence.

 Advancement on the suffix tree construction took a step by Generalized Suffix

Tree (GST) (Bieganski et. al., 1994). Bieganski looked at the problem from a

different aspect and pointed out the importance of indexing multiple sequences in a

single suffix tree. In GST, it was necessary to identify the origin of each sequence.

Hence extra node identifiers were added within leaf nodes. As a result of GST, most

of the symbolic representations of Time Series could be indexed by a single suffix

tree (Huang, 1999).

4.2 External Memory Suffix Tree Construction

 We believe suffix tree construction algorithms on memory are almost mature.

However, suffix tree construction applications on disk lead to important difficulties

such as high space consumption and poor memory locality. Concretely, space

consumption of a suffix tree node is high and less number of nodes can fit into a

page. If a suffix tree contains large number of nodes, disk page requirement of a

suffix tree will be large as well. On the other hand, poor memory locality is

inevitable since suffix tree nodes are generated in random order and nodes of a

43

selected path are generally spread across different pages. Because of this, traversal

on a path frequently leads to indispensable page misses.

 Recently, some researches have pointed out disk based suffix tree algorithms. In

1997, Farach-Colton proposed a theoretical algorithm, which ensures linear time

construction, (Farach et. al, 1998) but his algorithm has not supported by practical

results. A popular platform, PJama suggests a reduction in space cost by removing

suffix links from suffix tree (Hunt et. al., 2001). In addition suffixes were grouped

according to their common prefixes. Finally, suffixes in the same group are inserted

to the tree together. Hence both poor memory locality and space consumption

drawbacks were improved. Recently, new studies have followed a similar path

(Cheung et. al., 2005), (Phoophakdee and Zaki, 2007), (Tian et. al., 2005), (Wong et.

al., 2007). Nevertheless, these algorithms did not consider online property of suffix

trees and put constraints on dynamic sequence insertions. By the same token, GST

could not consider online suffix tree construction since it was proposed before

Ukkonen algorithm.

 In 2004, Bedathur and Haritsa presented a fast online suffix tree construction on

disk and made experiments on DNA and protein sequences(Bedathur, 2004). Based

on Ukkonen’s strategy, they presented a flexible algorithm, which enables dynamic

modification on the suffix tree and considered physical node representations. In

addition, they presented a buffering strategy, which considers probabilistic behaviors

of path generation. However, the algorithm did not consider indexing multiple

sequences in a suffix tree. In other words, they did not consider online GST.

 In this study, we present an Online Generalized Suffix Tree (OGST) algorithm on

disk. To the best of our knowledge, this is the first study dealing with OGST

construction on secondary memory. Briefly, contribution of this study is threefold:

The first, we modify the suffix tree nodes, so that the size of each tree node increases

but direct access to parent becomes possible. Second, we introduce a frequency

based sequence insertion strategy to enable fast access of frequent nodes of the tree.

This requires knowing the occurrence frequency of alphabet letters before sequence

44

insertion. Third, we show that buffering performance will be increased, if the letter

frequency distribution of available sequences is taken into consideration. In order to

evaluate this approach, we make use of a popular Western folk musical database (Yet

another Digital Tradition page, n.d.) which contains four thousand musical

sequences, where alphabet size is 128 and average sequence length is sixty.

 The remainder of the section is organized as follows: section 4.3 introduces some

basic definitions and explains alignment of online suffix tree construction on

memory. In Section 4.4, we introduce a new physical node representation. Also, we

analyze the contribution of alphabet letter frequencies. Consequently, we present an

improved sequence insertion order strategy. Test results are demonstrated in Section

4.5. Finally, Section 4.6 concludes the paper and gives a look to further studies on

this subject.

4.3 Online Generalized Suffix Tree Construction

This section provides an overview of Online Generalized Suffix Trees (OGST) and

analyzes the factors affecting the performance of disk based suffix trees.

4.3.1 Definitions

Suffix trees enable fast string processing on large data sequences. As shown in

Figure 4.1, suffix tree is composed of edges, internal nodes, and leaf nodes. In

particular, edges connect the nodes of tree and represents subsequence of a suffix.

From root to an internal node, following the edges of a specific path may lead to a

common prefix. In the tree, each common prefix is represented by a unique internal

node and every internal node will branch to children nodes. Particularly, suffixes are

represented by leaf nodes. That is to say, a leaf node addresses a unique suffix from

data set.

45

There are several ways to construct suffix trees. One of them is online construction,

where scanned part of the sequence can be immediately projected to the suffix tree.

Besides, generalized suffix trees index multiple sequences.

 In this subsection, some of the preliminary definitions about OGST are given to

clarify the notation used throughout the thesis. Let us assume that we have a

collection of sequences, S, such that

 S = { S1, S2, …, Sk } (4.1)

 Here, an arbitrary sequence, Sj, is defined as an ordered set containing all possible

suffixes defined in alphabet, Σ. More formally, an arbitrary sequence Sj is defined as

follows:

, , … , (4.2)

ect$ fect$ ffect$ ct$

$

tct f e

0

5 3 7 8

9

1 6 2 4

ect$fect$ff ct$

$

tctfe

0

5 3 7 8

9

1 6 2 4

1 11

ect$ ort$

a) b)

Figure 4.1 a) Suffix tree after inserting all suffixes of the sequence “effect$”. Inside the rectangles,

node generation orders are pointed out. The delimiter character, $, is used to maintain the end of a

sequence. b) The suffix tree after insertion of the suffix: “effort$”.

46

where an arbitrary suffix,
j

is , is a sequence containing the only last (n-i+1) letters of

Sj in the same order. Meanwhile, the alphabet of the data set containing letters, Σ, is

defined as follows:

 Σ = { σ1, σ2 ,…, σγ } (4.3)

 where the alphabet size is equal to γ, (i.e., |Σ|=γ).

4.3.2 Online Generalized Suffix Tree Construction on Disk

 While suffix trees introduced salient enhancements on string processing, most of

the major research in this area were concentrated on memory aspects (McCreight,

1977), (Ukkonen, 1995). A decade ago, it was widely believed that disk based

implementations were not feasible due to memory bottleneck (Bedathur, 2004). Here

we first analyze the main reasons of memory bottleneck and later propose a new

solution to enhance it in the next section.

 The memory bottleneck is due to two factors. First one is high space consumption.

Indeed, space cost of suffix trees range within 17n to 65n bytes (Wong et] al., 2007).

For this reason, suffix trees can not fit into memory for large sequences. The second

factor to cause memory bottleneck is the poor memory locality of nodes inside the

tree. When a new common prefix occurs among suffixes, a representative internal

node is generated and inserted into tree. Since generation order of the internal nodes

are random and solely depends on the common prefix occurrences, random

distribution of suffix tree nodes are indispensable and leads to poor memory locality.

 Figure 4.1 illustrates a typical suffix tree. In Figure 4.1-a, suffixes of “effect” are

indexed by a suffix tree. While dashed circles represent leaf nodes, flat circles denote

internal nodes. The edges, which connect nodes, represent subsequences of a suffix.

In order to illustrate poor memory locality, we illustrate node generation orders

inside of circles. Therefore, we assume that initially root is generated and its

47

generation order becomes 0. In the tree, nodes of the paths have irregular node

generation order. Figure 4.1-b shows the tree after inserting a new suffix, “effort”.

Due to new common prefix between new suffix and the tree, a new internal will be

generated. Since largest generation order in the tree was 9, generation order of the

new node becomes 10. In the next sections, we will illustrate that node generation

orders have decent impact over disk based suffix tree construction.

 Tree travel is a technique for processing the connected nodes of a tree in some

order (Tree Traversal – NIST, n.d.). For each suffix insertion, it is necessary to

follow a top down tree traversal path which starts from root. Nevertheless, if the

depth of the tree is big, following single path and inserting a single node takes O(n)

time. Therefore, suffix tree construction becomes expensive. Instead, a shortcut from

the previous node generation step can enable direct access to the demanded tree

position. Here, corresponding shortcuts are named as suffix links. For a detailed

description of linear time suffix tree construction and suffix links, reader is referred

to read (Gusfield, 1997)

 In an online suffix tree construction algorithm, physical node representations take

more attention. An internal node may have so many children, or it may have only

two children. Furthermore, total children of an internal node may increase during the

suffix tree construction. Although it is possible to prepare a node for the worst case

and align space to address maximum number children, it may not be space efficient.

4.3.3 Physical Representation of Suffix Tree Nodes

 In a suffix tree, there are two fundamental choices for the physical representation

of the suffix tree nodes: Linked-list Representation and Array Based Representation

(Bedathur, 2004). We denote the physical node structures of both representations in

Figure 4.2. The former strategy reduces space cost of an internal node; therefore it

will be convenient for limited memory applications. However, from a disk based

aspect, priorities change. Performance on disk depends solely on total pages misses

(Salzberg, 1988). The latter strategy enforces nodes to contain more information

48

about children addresses; as a result, it ensures less number of hops to access to the

next node in the path. The tradeoff between two strategies is an important factor for

disk based application.

 During the node generation, an internal node initially obtains two branches to

handle child nodes. In other words, an internal node initially contains two child

pointers and corresponding branches. While suffix tree construction proceeds, the

node may obtain new children and consequent branches. For each new child, the

node will need to keep an extra pointer. Henceforth, space requirement of an internal

node increases. For instance, in Figure 4.1-b, the root node has five branches and

consequent children nodes. Certainly, there is a limit on maximum branches from a

node. If |Σ|=5, than an internal node will contain maximum five children.

 In the suffix tree, alphabet size determines the maximum number of child

pointers. It is the maximum possible sequences, which do not have common prefixes.

The difficulty is holding possible |Σ| branches in each internal node; at the same time,

we have to optimize the ratio of used/unused child pointers.

4.3.4 Array Node Representation

 Array Based Representation is a static data structure. By the time of an internal

node generation, all possible |Σ| child pointers will be arranged within an internal

node; no matter how many of them are used. So, array-based representation

simplifies the future modifications on the internal nodes. In Figure 4.2-a, alphabet

has |Σ| letters, rightmost |Σ| pointers address possible branches. Start offset and edge

length fields are aligned to represent subsequence of the sequence. In brief, each

internal node of a generalized suffix tree requires 4+|Σ| pointers.

49

 Array based representation has both advantages and disadvantages. First, it is the

simplest child access method and it enables direct access to the children nodes and

consequent branches. In contrast to these advantages, it may lead to unproductive

space consumption since some of the reserved child pointers for branching. In the

worst case, |Σ|-1 letters of the alphabet may occur only once in the data set. Hence,

almost all of the reserved child pointers waste space.

4.3.5 Linked List Based Node Representation

 In contrast to array based representation, Linked-List representation does not hold

the address of all possible children. Figure 4.2-b denotes the physical layout of an

internal node where interconnection between nodes is maintained by child and

sibling pointers. As it shown in Figure 4.3, children of a common parent are linked

with sibling pointers and leads to a linked list. Recall that first letter of each child

node is unique and represented by σi. We name the linked list in the figure as sibling

lists throughout this study. In figure 4.3, only head of the sibling list is able to access

to its sibling nodes. For instance, in order to access to vi2, parent firstly need to

access to vi1. In brief, parent node need to hold only one child node, which is the head

of sibling list.

a)

Figure 4.2 Two different way of physical representation of an internal

node. a) Linked-list b) Array based.

b)

Start

Offset

Edge

Length

Child Sibling

Parent Start

Offset

Edge

Length
σ1 σ2 ... σγ

50

 In terms of List Based Representation, handling parent address does not cause

extra space consumption. Instead, we can handle the parent address with sibling

pointer. Recall that tail of the sibling list does not address any sibling. Using such

unused space for parent address supports a reduction in space consumption. Because

of this fact, Linked List representation minimizes the space consumption.

 Although Linked List representation minimizes space consumption, it increases

total node fetches during child access. This fact may cause a trouble in a disk based

suffix tree if nodes of a sibling list take place in the different pages. As a result, child

access time on a sibling list may be expensive.

4.4 Fast and Space Efficient Suffix Tree Construction Algorithm on Disk

 In a disk based OGST implementation, we believe that three issues are very

important: (1) memory utilization, (2) fast access to a child node and (3) fast access

to parent. Here, we present a technique which has two legs. In the first leg, we deal

with direct access to a parent node. In the second leg, we sacrifice direct access to the

child node for the sake of space utilization. However we can still present a strategy

which enables fast access to a child node. To do this, we consider occurrence

frequency of letters and probabilistic sequence occurrences.

Figure 4.3 Parent to child and child to parent traversals on the suffix tree.

tail head sibling sibling . . . vi vi
vi

e1=σ1X1
e2=σ2X2 eNγ=σNγXγ

vi

parent

Parent

51

4.4.1 Direct Access to Parent and Children Nodes

 In order to optimize space utilization, we prefer a Linked List based node

representation. However, we modify the nodes of Linked List by appending a parent

address pointer and ensure direct access to parent node, named as Parent Address

Appended List Representation (PAAL). As a result of this modification, size of an

internal node will be increased by 25%. We assume that the extra space cost would

be justified since it reduces total traversals on linked lists. In Figure 4.4, we denote

PAAL as an alternative physical node representation.

 In contrast to direct access to parent, direct access to children is problematic.

Although reserving a pointer for each possible child is possible; it may not be

feasible due to additional space overhead. As aforementioned, reserving a child

pointer for each letter is not feasible. Instead, we prefer space efficient linked list

node representation where sibling nodes are connected. However, we aim to place

the most frequently accessed nodes to the head side of linked lists. Therefore, we

maintain a speed up on access time of frequently access nodes. On the other hand, we

try to align rarely referenced nodes at the tail of sibling list and venture their

expensive access cost.

4.4.2 Impact of Alphabet Size on Tree Construction

 Alphabet size may have deep impact over the suffix tree construction

performance. In a static array node representation, large alphabets increase the size

of internal nodes whereas; in a linked list representation they lead to an increase on

the length of sibling lists. We need to mention that most of the studies from literature

aim to index DNA sequences where alphabet size is only four. Therefore, space

Start

Offset

End

Offset

Child Sibling Parent

Figure 4.4 Physical Node Representation of PAAL

52

utilization of array based representation leads to acceptable ratios. Nevertheless,

conditions are different when alphabet size is large. For instance MIDI alphabet

contains 128 letters [32]. Together with a delimiter character, alphabet size becomes

129.

 Table 4.1 denotes space consumption of internal nodes for both array based and

list based representations given that alphabet size is 129. As shown in the table,

space consumption for the array based representation is fairly high; consequently less

number of nodes can fit into a page. In contrast, Linked list representation is more

efficient. As a result, a page contains optimal number of nodes.

 If we assume that nodes of a common parent are stored in the same disk page,

Linked List based representation outperforms. Nonetheless poor memory locality of

nodes reduces performance on disk. As in Figure 4.3, access to viγ can be very

expensive when alphabet size is large, since each node access may cause a page miss

to disk.

4.4.3 Impact of Letter Frequency Distribution on Tree Traversal

 Probabilistic occurrences of letters in the alphabets are generally different. The

English language is a good example. In English, ‘E’ is the most frequently used

letter. In contrast, ‘Q’ is the letter whose occurrence frequency is the least (Morse

Representation
Pointer Size

(bytes)

Internal Node Size

(bytes)

Leaf Node Size

(bytes)

Array Based 4 532 16

Array Based 8 1064 32

Link List Based 4 20 16

Link List Based 8 40 32

Table 4.1 Space cost of suffix tree nodes for MIDI, where alphabet size is |Σ|= 129.

MIDI alphabet contains 128 letters plus delimiter character, $.

53

Code – Wikipedia, n.d.). In 1830’s, Morse alphabet is inspired by such information.

Similarly learning such information from a domain expert can enhance suffix tree

construction as well.

 In PAAL node representation, child access cost depends on traversals on sibling

lists. We illustrate the situation in Figure 4.5, where children of a common parent are

linked in sibling lists. In the Figure, the node which is the head of the sibling list, vi1,

can be accessed by one hop. However, accessing the node viN, which is the tail of

sibling list causes extra traversal costs. It is preferred to see that vi1 is the most

frequently referenced node, whereas access to the viN is very rare.

 In the suffix tree, a less frequently used letter constitutes comparably simpler

branches. As a result, depths of the relevant branches are comparably shallow and

short. In contrast, branches those starts with dominant letters are complex and deep.

Therefore, probability of reading such braches in the future is comparably higher

4.5 Probabilistic Occurrence of Longest Common Prefix

 In this section, we explain which nodes of the suffix tree are accessed frequently.

To do this we consider letter occurrence probabilities. Namely, we set about

occurrence probability of all possible common prefixes. Computing such occurrence

probability is very important since each common prefix is represented by an internal

node. Therefore frequently accessed nodes can be estimated while suffix tree

construction proceeds.

Lemma 1: Given the two sequences S1 and S2,
1

1
+Σ

−Σ
x

 is the probability that first x

letters of both sequences are common but their (x+1)th letter is different.

54

Proof: The probability that first x letters of S2 is equal to S1 is
xΣ

1

 and probability

that S2 has different letter on the (x+1)th position is: (|Σ| - Σ
1

). Hence probability

occurrence of branching at the xth element of S1 is
1

1
+Σ

−Σ
x

Lemma 4.1 implies that probability of branching after reading the first letter of a

suffix path is quite high. In a large data set, we can find many suffixes whose

common prefix length is one. On the other hand, probability of common prefix

occurrence reduces when value of x becomes larger. In other words, edge lengths in

deeper side of the tree have tendency to be long.

Lemma 4.2: For a given depth of a node is, p, the sequence between root and this

node has at least p letters.

Proof: Since depth of a node is p, there exist exactly p edges to connect nodes on the

same path. As it mentioned in suffix tree components section, edges contain at least

one letter. Hence the sequence between root and this node has at least p letters.

 Lemma 2 implies that depth of a node in the tree leads decent impact over the

sibling list length. Nodes in the higher end side of the tree commonly have more

siblings and length of the sibling list in the higher end side of the tree is long.

Therefore access to the tail of a sibling list more number of node access. On the other

hand, sibling list are shorter in deeper side no matter the length of the alphabet. For

this reason, the probability of a common prefix comes into prominence in a tree level

and length of the corresponding sibling list comes to the prominence.

55

4.5.1 Alignment of Sibling Nodes to Enhance Memory Locality

 In order to reduce side effects of poor memory locality, we preprocess the

available sequences before inserting them into tree. More concretely, we try to

postpone constructing the specific branches of the tree by delaying the insertion of

relevant sequences. In this way suffix tree nodes can have comparably better memory

locality. In order to illustrate this, we present a primitive alphabet and respective data

set and make the following assumptions to denote a primitive case. Let there exist

two alphabets, Σ1 and Σ2 satisfying the following properties:

Σ1 ∪ Σ2 = Σ

Σ1 ∩ Σ2 = Ø

and | Σ1| = | Σ2| = | Σ |/2

 We also assume that there exist three sequences, S1, S2, and S3. All letters of S1

and S2 comes from Σ1 and Σ2, respectively. On the other hand, S3 contains letters

from Σ. In order to introduce the effect of data set size, we assume that length of S1 is

longer than the length of S2. All three sets are planned be inserted to the same suffix

tree.

Lemma 3: Maximum tree construction performance will be obtained, if we insert

sequences of sets in the following order: First insert S1, later S2, and finally S3.

Proof: Performance of tree construction depends on total node accesses in a sibling

list. In general, cost of an unsuccessful node search depends on the length. The

shorter the sibling list, the faster the search time. In the first phase, we insert S1,

where length of siblings list cannot exceed |Σ|/2. Hence inserting the S1 can be done

quickly.

 In the second phase we insert the set S2 into tree and maximum length of the

sibling list will be extended to |Σ|. Still, cost of a successful search is O(|Σ|/2), since

nodes which are generated in the first phase takes place in tail side of sibling list and

56

successful searches never visit them. However, cost of an unsuccessful search time

increases to O(|Σ|). Because of this fact large sequence set, S1, should be inserted to

the tree before S2.

 In the third set, S3 will encounter longest sibling list. Prior, most frequently

referenced sibling lists should have already contained |Σ| elements. Hence, both

successful and unsuccessful search time will be proportional to |Σ| and searches lead

more page misses. That is to say, the third phase does not introduce any performance

gains.

4.5.2 Computing the Rank of a Sequence and Inserting to the Suffix Tree

 As aforementioned, access probabilities of two sibling nodes are different;

resulting from the alphabet letter frequencies. Therefore, aligning most frequently

accessed node as the head of a sibling is preferred. When a new node is generated, it

will be appended to the relevant sibling list as the new head. Correspondingly, rarely

accessed nodes should be generated first to takes place in tail side of sibling lists. In

this section, we ensure this by introducing a sequence insertion order strategy.

 As in the English letters, we assume that average occurrence frequency of each

letter and its corresponding histogram is known. We name such histogram as

tailhead siblingsibling vi1 vi2
viγ

Least Frequently

Accessed Sibling Node

Parent address

vi parent

Most Frequently

Accessed Sibling Node
Figure 4.5 Sibling list for a common parent. While direct access to the first child is

possible, access to requires traversal on sibling list.

57

centroid. Later on, we compute the letter occurrence frequencies of the available

sequences and compute their Euclidian distance to centroid as their rank. In contrast

to expectations, we insert sequences which are dissimilar to the centroid. Namely,

sequences those yield higher rank are inserted to the tree earlier than those with a

lower rank. Therefore nodes representing the rarely used letters will be inserted first.

On the other hand, generation of the frequently accessed nodes of the tree will be

delayed. Consequently frequently accessed nodes can stand as the head of the sibling

lists of tree after inserting a group of sequences into tree.

 We need to emphasize that each internal node becomes head of a sibling list just

after its generation. We prefer that all accesses to the new node should be processed

before another node is appended to the same sibling. In other words, we should try to

construct all sections of a branch before locating to another branch. This can be

achieved if sequences which have common characteristics are inserted to tree back to

back. Therefore, computing the rank of a sequence seriously enhance performance

 In the future, dynamic sequence insertions may continue and lead to generation of

new nodes in random order. However, it will not cause a big problem since nodes in

higher end side of the tree will have been already organized. Meanwhile future

sequences mostly reference frequently accessed nodes in the tree where those nodes

will have already taken head of sibling lists.

4.6 Experimental Results

 In this section, we present the experimentations, which evaluate the physical node

representation techniques on a disk based suffix tree. Besides, we consider the effect

of buffering techniques and page size. Our evaluation criterion is based on page hits

and misses. In our experiments, cost of a pointer is four bytes. Since space

consumption of internal nodes and leaf nodes are different, we distinguish internal

and leaf nodes in disk. In other words, a page is composed either all leaf nodes or

internal nodes. Unless mentioned, we assume that size of a page is 4096 bytes.

However, compare the performances of different page sizes.

58

 In order to test the algorithms, we make use of Digital Tradition Folk Music

Database, containing nearly 4000 music files (Yet Another Digitial Tradition Page,

n.d.). In the data set, MIDI music file format is used. The data set is composed of

approximately 250.000 letters and standard MIDI alphabet contains 128 letters. After

insertion of all sequences into tree, we observed that tree contained 126192 internal

nodes and 229681 leaf nodes. We need to mention that sequence length is not

necessarily equal to the total leaf nodes in the tree. This is because two sequences

can have common suffixes and both will be indexed by a unique leaf node.

4.6.1 Comparison of Physical Node Representation Approaches

 In Figure 4.6-a, we denote the space consumption of various node representation

techniques. In the figure, Linked List representation ensures the best space

utilization. Meanwhile, PAAL representation yields satisfactory space utilization as

well, since it causes only 25% extra cost. The reason of the space overhead is the

retention of parent node address in each node. However, space consumption of the

Static Array Representation is quite high. Basic factor of the worst space utilization

is the overheads in internal nodes. As aforementioned, an internal node needs to

maintain |Σ|+4 pointers. In terms of MIDI sequences, high space consumption is

indispensable since alphabet size is quite large (i.e., |Σ| = 128). Due to this fact,

performance of Static Array is even worse if the alphabet size increases.

 In terms of suffix tree construction speed, total page miss occurrence comes into

prominence. Concretely, the fewer the page misses, the faster the algorithm is. In

Figure 4.6-b, we denote the total page misses caused by physical node representation

techniques when buffering is not considered. Although Linked List node

representation is space efficient, it leads to high amount of page misses; hence it

cannot be feasible on disk. Basic factor behind the performance loss is the node

traversals on sibling lists. On the other hand, Static Array outperforms and ensures to

least number of page misses. In fact, Static Array Representation enables direct

access to

between S

 F

 b

 So far,

the next se

outperform

the child o

Static Array

Figure 4.6 Com

buffering a) To

we did not

ection we w

ms when bu

0

1000

2000

3000

4000

L

0

200

400

600

Lin

Page touchx10

Space cost

(byte)

or parent no

and Linked

mparison of p

otal page miss

t consider th

will introduc

uffering is u

Linked List
St

Page M

nked List
Sta

Space Cost

000

ode. Meanw

d List.

a-)

b-)

phyiscal node r

s occurence. b

he impact o

ce page man

used.

tatic Array

Misses (x1000

atic Array

of a node in b

while our P

)

)

representation

b) Total page r

of buffering

nagement st

PAAL

0)

PAAL

byte

PAAL intro

n algorithms w

requirement.

on suffix t

trategies an

Leaf Node

Internal

Leaf Node

Interna

oduces com

without

tree constru

nd show how

s

Nodes

es

l Nodes

59

mpromise

uction. In

w PAAL

60

4.6.2 Effect of Buffering

 In terms of suffix tree indexing, page requirement of a large file is enormous. For

instance; human DNA leads to 3 billion leaf nodes and at least 750 million internal

nodes. Consequently, data will be aligned into millions of pages. Due to random

distribution of the nodes; probability of finding two consecutive nodes in the same

page is very small. The chance can be increased by buffering. In this section, we

evaluate the effect of buffering on both vertical and horizontal traversals and discuss

the contribution of letter frequency based sequence insertions on buffering.

 Here, we compare the performance of three physical node representations using

the following page replacement policies (Tanenbaum, 2006):

Least Recently Used (LRU): If a page fault encounters, least recently used page will

be replaced.

First In First Out (FIFO): In case a page fault occurs, the page which stayed longest

in buffer is replaced.

TOP_Q : Replaces the page if the average depth of the nodes in the page is the

highest. In addition, replaced nodes will not be dropped immediately; instead they

are processed in a FIFO fashioned buffer. We assume that 20 % of the buffer is

reserved for FIFO buffer.

 In Figure 4.7, we compare three physical node representations approaches and

obtain results when the buffer contains 16, 64, 256 and 1024 pages. Test results

imply that, no matter the page management strategy in all conditions, Linked List

Representation yields the worst page miss ratio. In contrast, Static Array

Representation outperforms and ensures least page misses when buffer contain 16

pages. However, increasing the total pages in buffer does not enhance its

performance decently. Instead, increasing size of the buffer drastically rehabilitates

the performance of PAAL. All in Figures 4.7-a,b,c we observe that PAAL ensures

least number of page misses when buffer contains 1024 pages, hence outperforms.

61

From the results, we can conclude that buffering cannot expose its positive effect if

the disk space is used extravagantly as in Static Array node representation.

4.6.3 Vertical and Horizontal Traversal on Buffering

 We denote parent to child or child to parent access as vertical traversal. On the

other hand, following the paths routed by suffix links are named as horizontal

traversals. Online Suffix Tree Construction includes both horizontal and vertical

moves. Thus, control of memory locality becomes even more complex and difficult.

Here we can find an interesting advantage if consecutive sequences have long

common prefixes. As a consequence, respective sequences follow the same path and

nodes. Hence contribution of buffering over page hits will be more effective.

 In the data set, inserting sequences with similar characteristics increase page hits.

Figure 4.7 denotes that PAAL positively affects the paging performance. In all three

buffering strategies, frequency based insertions outperforms. The reason of the

performance improvement is as follows: Initially, sequences contain least frequently

used letters and average lengths of the sibling lists are short. Moreover, consequent

sequences should have similar letter characteristics and generally tries to access the

same pages. The same condition occurs in the second phase, where we insert

sequences those contain frequently used letters, so that frequently accessed nodes of

the tree can take place at the head side of the sibling lists and average child access

time reduces.

4.6.4 Effect of the Page size

 Currently, disk based suffix trees are mostly tested on 4K pages. In this section,

we want to analyze the contribution of page size over construction speed. For a

constant buffer space, we compared the performance of variable page sizes. If page

size is doubled, then less number of pages can fit into buffer space. In Figure 4.8, we

evaluate performance of variable page size. In particular, we compare the

62

performance of 2K, 4K, 8K and 16K and reveal page miss occurrences under

variable buffer management strategies. In this section, our performance criteria

should be data transfer time (dtt) since page miss cost of 2K and 16 K is not same.

We compare page sizes for each node representation.

a-) LRU Buffer

FIFO Buffer

TOP_Q Buffer

 Figure 4.7 Comparison of the node representation algorithms in terms of

 page misses*1000. a) LRU buffering b) FIFO buffering c) TOP_Q buffering

0
500

1000
1500
2000
2500
3000
3500

16 64 256 1024

Buffered Pages

Linked List

Static Array

PAAL

0
500

1000
1500
2000
2500
3000
3500

16 64 256 1024

Page Size

Linked List

Static Array

PAAL

0
1000
2000
3000
4000
5000

16 64 256 1024

Page Size

Linked List

Static Array

PAAL

Touchx1000

Touchx1000

Touchx1000

63

 Figure 4.8-a, illustrates the performance under the condition that physical node

representation is based on PAAL. In the figure, we see that large page size reduce

total page misses. However, data transfer time of a 16K page is eight times more than

a 2K page. Hence small page size outperforms. Similarly, Figure 4.8-b and 4.8-c

support the same result as well. Besides, Figure 4.8 illustrates that buffer

management strategies yield different outcomes when underlying physical node

representation changes. For instance, Figure 4.8-c denotes that Static Array

Representation prefers TOP_Q buffering strategy. In contrast, TOP_Q is not

convenient for Linked List Representation and illustrated in Figure 4.8-b.

 To sum up, we proposed a novel approach for Online Generalized Suffix Tree

(OGST) construction on secondary memory. We showed that poor memory locality

is indispensable when online generalized suffix tree construction is implemented.

Moreover, we showed that large alphabet size drops the performance drastically on

secondary memory. To solve this problem, we presented a space efficient physical

node representation, named as PAAL, to enable direct access to the parent. However,

it does not ensure direct access to the child node for the sake of space optimization.

In order to speed up child access time, we estimated the most frequently accessed

children of a parent node. Therefore, children of a common parent are aligned on a

sibling list depending on their estimated access frequencies. In this study, we

estimate the access probability of child nodes by letter occurrence frequencies of the

alphabet. In contrast to expectations, we assign higher insertion priority to the

sequences those contain least frequently used letters of the alphabet. Consequently,

least frequently used children of a common parent are aligned at the tail side of

sibling lists. In this way, new sequence insertions to the suffix tree yield better

performance.

 In this area there exist a number of research problems. The poor memory locality

problem using suffix links is the most important one. Handling dynamic changes on

data set makes the problem even more complicated. We believe bulk loading should

make sense on a disk based suffix tree construction. Furthermore, constructing

multiple suffix trees should be studied if data set contains multiple sequences and

total letter

is still an o

Figure 4.8 C

 c) TOP_Q b

In orde

inside App

0

5000

10000

15000

0

2000

4000

6000

8000

Touchx1

0

200

400

600

800

touchx100

Touchx1

rs of alphab

open proble

Comparison pa

buffering

er to find d

pendice.

0

0

0

0

2K

0

0

0

0

0

2K

000

2K

00

1000

et is large. W

em.

age size over p

detailed sta

4K

4K

4K

We also bel

PAA

LRU

TOP_

performance.

atistical ana

8K

8K

8K

lieve that m

AL

U

_Q

a) LRU buffe

alysis of the

16K

16K

16K

merging two

ering b) FIFO

e tests, we

suffix trees

buffering

denote all

TOP_Q

FIFO

LRU

TOP_Q

FIFO

LRU

TOP_Q

FIFO

LRU

64

s on disk

 results

65

5 CHAPTER FIVE -

BALANCING SUFFIX TREE AND ALIGNMENT

 The section explains random node generation inside a suffix tree and its three

unwanted yields: unbalanced tree structure, poor memory locality and high space

consumption. Later on, we explain possible recruitment techniques. We present that

classification of sequences and indexing with multiple suffix trees should reduce

total page touches and speed up construction time for large sequences. Also

properties of the data set can present its own conveniences. Especially music has

some properties which eases the indexing problem. At the end of the section, we

illustrate our techniques with experiments and denote test results.

5.1 Introduction

 Suffix trees not only introduce the fastest search on sequence databases, but also

cause very complicated alignment strategy. These advantages and disadvantages are

the yield of nodes that represent common prefixes. Indeed, in a data set, so many

sequences and their suffixes have common prefixes. Hence representing all common

prefixes by a unique node saves time and space. In this respect, common prefix

representation is very important. Nevertheless such representation introduces its own

difficulties into the field as well. Basically, a dataset cannot contain all possible

common prefixes for a fixed depth since length of the suffixes inside a tree varies.

 It is important to estimate node occurrence behaviors and their connections inside

suffix tree. As a result, we can realize the importance of the problem and its

difficulty. In this section, we explain probabilistic node occurrence behaviors inside

suffix tree. So that we can understand factors causing unbalanced tree structure and

poor memory locality.

66

 Node generation behaviors have direct effect on poor memory locality as well

(Schürmann and Stoye). Occurrence of a new common prefix between multiple

sequences is random and consequent node generations are complex. Such event is the

fundamental factor of poor memory locality. Hence analyzing the probabilistic

behaviors of the tree is important to reduce poor memory locality problem.

 In a file processing application, page touches are the fundamental performance

concern (Folk et. al., 1997). Concretely, the more the page touches the slower the

query speed is. As a result alignment strategy of suffix tree nodes is critical. We

prefer that accessed nodes are stored mostly in a common page. While it is

theoretically easy to implement such node alignment, practical suffix tree

construction algorithms include leakages. Main leak is the common prefix

occurrence and consecutive node generation inside the tree. In this the next

subsections, we analyze the common prefix occurrence, corresponding node

generation events, their probabilistic behaviors.

5.2 Definitions

 In order to show the unbalanced structure of a suffix tree, use a data set where

every sequence has the same length. So, we can show all possible paths and

respective nodes of a tree. We assume that each sequence, SJ, has n letter. Let’s

assume that we insert enough number of sequences into tree, so that all possible

common prefixes are represented by a unique node.

Given that alphabet, ∑, has d letters. Therefore, each internal node of the tree will

have absolutely d children. This fact is shown in Figure 5.1.

67

Since each internal node has σ children, total nodes in a depth level increase be a

consequence of its depth. In other words, nodes in a depth level increase

exponentially. If the first d level of the nodes have exactly σ nodes, there exist σ d

nodes in level d.

Lemma 5.1: Total nodes of the tree, Td, until depth d is:

Td = 1 + σ 2 + ... + σ d (5.1)

Proof: At depth d, there exist exactly σ d nodes. Similarly depth d-1 has σ d-1 nodes.

Hence lemma is proved.

Lemma 5.2: Total leaf nodes of a tree are always more than total non-leaf nodes.

Depth of the leaf nodes is always more than non-leaf nodes. If the lemma is true,

then,

σ d > 1 + σ 2 + ... + σ d-1 (5.2)

parent

Child1 Child2 Childσ ……..

Figure 5.1 Node of a balanced suffix tree: Parent and its children of an

internal node. Since alphabet size is , each node has exactly nodes

inside the tree.

68

By induction we can prove this.

Basic step; Given that 2 ≤ d and 2 ≤ γ

σ 2 > 1 + σ 1 Basic step is proved.

Induction step: we assume that γd > 1 + γ2 + ... + γd-1

= σ σ d-1 > σ (σ
1

1 + σ 1 + ... + σ d-2)

 = σ d-1 > (σ
1

1 + σ 1 + ... + σ d-2) (5.3)

Hence induction is proved.

Lemma 5.1 and 5.2 are important for two reasons: 1) A suffix tree may have

enormous number of node at higher depths. 2) Alignment and balance of these nodes

are extremely difficult. The suffix tree will have σ d nodes at depth σ. This is a very

serious problem; since σ depends on the length of the sequences. For instance, even

shorter sequences contain 100 letters. This leads to at least 105 nodes at depth 100.

This is a very serious problem; since σ depends on the length of the sequences. For

instance, even shorter sequences contain 100 letters. This leads to at least 105 nodes

at depth 100. As a result of aligning 105 nodes on disk, the small sequence length

demands petabytes of memory. Because of this fact, reserving enough space for all

possible nodes is not wise. Instead nodes should be generated, whenever they occur.

 The alphabet size has decent effect on the total nodes in the tree as well (Gusfield,

1997). When alphabet size increases, the problem becomes even more extravagant.

Recall that total nodes of a tree will be σ d nodes at depth σ. Increasing the σ value

on the formula leads more nodes.

69

 As it mentioned in section 4, node generation order of the suffix tree is random.

Collecting interconnected nodes in a page is not possible during construction. While

page addresses of nodes can be swapped afterwards; it causes high computation

costs. In the next subsection we consider the node alignment of suffix tree nodes

inside pages

5.3 Suffix example

For a given suffix tree, there exists only one possible suffix tree representation.

Hence it is deterministic. On the other hand, alignment orders of the nodes may vary.

For instance tree nodes can be randomly distributed among disk pages.

As an illustration of generalized suffix trees, we let there exists threee sequences

to be indexed.

S1 = “ABCACBBCCC$”

S2 = “ACABBACCBAB$”

S3 = “AAABAACCBAB$”

The alignment of the sequences on disk is illustrated in Figure 5.2. The sequences

are distinguished by a delimiter character. The second row of the figure denoted the

alignment orders. Therefore, a subsequence can be represented by it onset and offset.

For instance [12, 23] represent S2

A B C A B B B C C C $ A C A B B A C C B A B $ A A A B A A C C B A B $

1 2 3 4 5 6 7 8 9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2
2
3
2
4
2
5
2
6
2
7
2
8
2
9
3
0
3
1
3
2
3
3
3
4
3
5

Figure 5.2 Sequences on disk and their alignment.

70

5.3.1 Suffix List View

We illustrate the suffixes of all sequences in Figure 5.3. We expect that a suffix

tree should index all possible suffixes of the sequences. Recall that there exists 35

different suffixes to be indexed. Nevertheless, some suffixes of the set are same. For

instance suffixes with ID’s 17 and 29 are same. Hence both suffixes should be

represented by a single path. We also need to mention that if two sequences are same

their corresponding suffixes will same as well. Hence corresponding suffixes will be

represented by a single path once as well.

ID Suffix ID Suffix ID Suffix
1 ABCACBBCCC$ 12 ACABBACCBAB$ 24 AAABAACCBAB$
2 BCACBBCCC$ 13 CABBACCBAB$ 25 AABAACCBAB$
3 CACBBCCC$ 14 ABBACCBAB$ 26 ABAACCBAB$
4 ACBBCCC$ 15 BBACCBAB$ 27 BAACCBAB$
5 CBBCCC$ 16 BACCBAB$ 28 AACCBAB$
6 BBCCC$ 17 ACCBAB$ 29 ACCBAB$
7 BCCC$ 18 CCBAB$ 30 CCBAB$
8 CCC$ 19 CBAB$ 31 CBAB$
9 CC$ 20 BAB$ 32 BAB$
10 C$ 21 AB$ 33 AB$
11 $ 22 B$ 34 B$
 23 $ 35 $

 Figure 5.3 Suffixes of the tree sequences.

5.3.2 Suffix Tree View

In a suffix tree, the suffixes are represented by leaf nodes. Meanwhile, internal

nodes represent common prefixes. For each suffix insertion, a leaf node will be

aligned into disk page. During this process, a common prefix search will be made.

When new common prefixes occur by a new suffix insertion, corresponding internal

nodes should be generated and inserted into the tree.

71

Root of the suffix tree contains only one child address. Other children of the root

are accessed by sibling pointers. The situation is illustrated in Figure 5.4. As an

example, if we want to access to the node, “2:3”, we need to access to “2:1” and

then follow the sibling pointers. Since each node does not contain addresses of all its

children, decent amount of space is preserved.

In the figure, dashed lines represent suffix links. The links depend on the leftmost

letter of the edge. We need to mention that occurrence of node access using suffix

links are comparably less. As a result, impact of a page miss due to a suffix link

access may not be very hard. On the other hand sibling access is frequently occurs.

Basic factor is parent to child accesses and for such accesses sibling lists are used. As

in Figure 5.4, we would rather access single page during tree traversal. As an

example, we need to fetch six different nodes to access “3:9”.

A

A
A

1:1

2:3 2:22:1

5:1 4:34:24:13:3 3:2 3:1 5:2 5:3

A B C

B
C

A

B
A

C B

C
C

C
A

A C

A
C

C

Figure 5.4 A suffix tree where alphabet is Σ = {A, B, C, D}. In the figure, insertion order of

nodes are illustrated inside the nodes.

72

5.3.3 Planar View

Recall that above formulas are computed for the case where access probability of

every node is same. Recall that access frequency of each node may not be same. This

depends on the occurrence frequency of alphabet letters.

Figure 5.5 In the best case, disk layout of file containing internal nodes.

5.4 Alignment of Suffix Tree on Disk

Suffix tree is a deterministic tree. In other words, node hierarchy only depends on

the sequence. Nevertheless, alignment order of the nodes on disk is not deterministic.

As shown in Figure 5.6, 5.7, and 5.8 same nodes of the tree can be aligned to disk in

different ways. Hence, alignment order strategy of nodes may determine the total

page misses.

Figure 5.6 In the disk case, disk layout of file containing leaf nodes.

null null null 72 null null
 ‐ ‐ ‐ ‐
 ‐ ‐ ‐ ‐
 ‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐
1 1 0 144 96 0
2 2 0 216 120 0
3 3 0 288 null 0
 ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐
25 25 72 0L 168 72
2 2 72 72L 192 96
13 13 72 144L null 120

26 35 144 20 24
27 35 144 40 25
30 35 144 null 28
 ‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐

1:1

2:1
2:2
2:3
3:1

3:3
3:2

0
20
40

73

Since node generation order of a suffix tree is random, memory locality needs to

be enhanced. This can be achieved by two different ways. Either alignment order of

nodes will be changed or node generation inside tree will not be made sequentially.

Instead group of nodes will be inserted together using bulk loading or clustering.

Figure 5.7 In the worst case, disk layout of file containing internal nodes.

Aligning all nodes inside a single page is impossible for large databases. Even

more aligning a selected path into a single page does not make sense. Remaining

paths cannot be aligned optimally inside tree. In the best case, we try to align a node

and its children in the same page. Therefore each traversal cost causes d/2 page

misses. We believe this is acceptable amount.

Figure 5.8 In the worst case, disk layout of file containing leaf nodes

A parent may have σ children and σ 2 grandchildren. Given that σ is large, aligning

all children on the same page may not be feasible due to available page size.

null null null 72 null null
 ‐ ‐ ‐ ‐
 ‐ ‐ ‐ ‐
‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐
1 1 0 144 216 0
2 2 0 288 340 0
3 3 0 432 504 0
‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐
25 25 72 0L 168 72
2 2 72 72L 192 96
13 13 72 144L null 120

26 35 144 216L 24
27 35 144 340L 25
30 35 144 null 28
‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐

1:1

2:1
2:2
2:3

3:1
3:2
3:3

0
20
40

74

In the worst case, each node access leads to a page misses. In a static array node

representation, totally d page misses occur. However, in a linked list node

representation, the situation is terrible. In average d. σ /2 page misses occur.

 Static Array Linked List

Best case d / 2 misses. d / 2

Worst case d misses dσ/2

Without manual contribution, tree nodes are randomly distributed among pages.

However, sequence insertion order and swapping the nodes of the tree is able to

change address. Here we consider the cost of related action. In the first phase, we

consider the sequence insertion order approach.

5.5 Swapping the nodes

A node addresses a parent, a child, a suffix link and a sibling. If address of any of

each changes, than the node should be modified. In other words, if we change the

address of a node, we should search all nodes those addressing it as parent, child,

suffix link or sibling. Although finding parent or child links easily; finding the node

which addresses it as suffix link may be very hard.

In Figure 5.9, physical node representation is denoted. As shown in Figure 5.9, a

tree node links to four different addresses. Hence changing the address of a node

leads to address changes in other nodes. For instance assume we have changed the

address of the node at position 2:2 in Figure 3. Hence we need to access to all of its

children and change their parent address. Similarly, we need to access to the node at

position 2:1. Finally we need to find a node whose suffix link addresses node at 2:2.

75

Access time to child nodes can be made in satisfactory time if all children are

aligned to the same disk page. Iteratively each node’s parent address can be modified

and written to the relevant page. Hence modification of child nodes can be made in

O(1) time.

A node will be addressed by an either a child pointer or sibling pointer. In both

cases, we need to access to the parent. In Figure 5.4, 2:2 is accessed by a sibling

pointer. Later on 2:1 is accessed. Without buffering the procedure cost two page

touches. However, within a single buffer space page miss number can be reduced to

one, since 2:1 and 2:2 can be aligned in the same page.

Modification the address of the node whose connection is due to suffix link is

problematic. Actually brute force search is necessary. Hence its cost is O(n). Here we

can present our solution to reduce this number to O(1).

Lemma : Path traversal with suffix links ends up at the root.

Proof: After each suffix link access, length of the suffix decrease at least once. This

fact is illustrated in Figure

After a single step, the new node will represent a suffix of the previous node. Hence

after each move, length of the represented prefix reduces. Finally, length of the

common prefix becomes zero and it is represented by the root node.

Start

Offset

End

Offset

Child Suffix

Link

Parent

Figure 5.9 Physical Node Representation of PAAL

Sibling

76

Changing the address of a node requires updates at other tree nodes. Let’s assume

that we changed the address of Child21. After such change, we need to update nodes

those addressing Child21 as a parent, child, sibling or suffix link. Hence all necessary

nodes should be accessed during address change procedure.

In the suffix tree, parent access, child access and sibling access time is limited by

the alphabet size. Therefore, each node updates can be processed in constant time.

However, searching the node which addresses Child12 as suffix link is expensive. For

such case, brute force node search is indispensable. As a consequence node search

time depends on the depth of the tree. Concretely, its computational cost is O(n).

Two approaches can be presented to solve this problem. First, we can drop suffix

links from the suffix tree and sacrifice its advantages. Secondly, we can do address

changes on the higher end side of the tree.

Dropping suffix links from the suffix tree may speed up suffix tree construction

for static sequences such as DNA. Also dropping them reduce the space cost.

However, streaming sequences require suffix links. Basically, suffix links enables

Suffix link

b
b

Suffix link

w

αw

root

Child

Child

Figure 5.10 Objective of suffix links inside suffix tree. α, w, b are three

sequences. If we insert the suffix αwb into tree, then we will need to insert

Child
Child

77

dynamic sequence insertions in linear time. Therefore first approach, which drop

suffix links fails for streaming sequences.

Address changes only at higher end side of the tree should be very effective. Like

all tree data structures, higher end side of the tree is frequently accessed. Hence rich

memory locality on higher end side of the tree speeds up the performance decently.

In contrast, access to nodes at lower end side of the tree is rare. It should be wise to

sacrifice their cost.

Fast address change techniques on a suffix tree can have important contributions

to the string processing researches. In some cases, multiple suffix trees construction

can be necessary. Therefore, merging suffix trees become essential. In the next

section we consider merging suffix tree approach and its importance for music

sequences.

5.6 Multiple Suffix Tree Construction

In some special cases, multiple suffix tree construction should make sense.

Depending on the data set, sequences can be classified into groups and each

sequence set can be indexed by different suffix tree. Especially, multiple suffix tree

construction should make sense when alphabet size is large. Music can be a good

example.

Multiple suffix trees leads to efficiency when alphabet size is large. Although

letter range is wide, a sequence may not include all possible letters. Music is a good

example. For instance MIDI music alphabet has 128 letters (MIDI-Wikipedia, n.d.).

In such case, static array fails since each internal node reserves 128 child pointers

during its generation. As shown in Figure 5.11, size of an internal node will be

terribly large due to child pointers. Similarly, linked list node representations cause

failures since child access may cause 128 page access.

78

Multiple suffix trees can speed up the suffix tree construction and search time.

Using with a wise classification technique, internal nodes may have less number of

children to address. In this way, performance can be enhanced clearly. However,

indexing with multiple suffix trees have different effect on linked list and array based

node representation.

Parent

Child1 Child2 Childσ ……..

Figure 5.11 Space curse on static array physical node representation

for large alphabets. All possible children of an internal node should be

reserved during construction.

1 2 . . .

parent

Child1 Child2 Childσ ……..

Figure 5.12 Page access curse on linked list node representation for

large alphabets. Direct access to the child node may not be possible.

Length of the sibling list depends on the alphabet size.

79

5.6.1 Multiple Suffix Trees and Array Based Node Representation

As it mentioned before, array based node representation reserve maximum space

at the beginning. In order to see enhancements on array based representation,

alphabet size should be reduced for a data set. It is the mission of sequence

classification algorithm to collect sequences in a well formed.

In the dataset, sequences are generally large. In this respect, introducing

constraints on letter usage is difficult. As a result, classification algorithms generally

cannot reduce the alphabet sizes so much.

In music, octave equivalence makes the array based representation as an efficient

implementation. The octave equivalence enables to represent music with 12 notes.

Therefore, music sequences can be fit inside a alphabet which has 12 letters. Our

analysis show that performance of suffix tree increases when alphabet size shrinks 10

times. Basic factor behind this enhancement is based on shorter alphabet size.

Therefore, space consumption of suffix array can be reduced ten times.

5.6.2 Multiple Suffix Trees and List Based Node Representation

Multiple suffix tree construction can be convenient for List based node

representations. In such representation, exceptional letters can take place in the data

set. In contrast to array based representation, those exceptional letters do not cause

any space cost. Instead these letters leads to few extra nodes which take place in the

sibling list. Assuming that these nodes take place at the tail of the sibling list, their

extra cost may be almost zero.

 In terms of linked list node representation, data set should be clustered before

insertion (Jain and Dubes, 1997). The clustering algorithm should discriminate

sequences be a result of their alphabet usage. Later on each tree indexes the

sequences with a specific cluster. Since each tree focus on a set of letters, alphabet

size can be shrinking with few exceptions.

80

 The clustering mechanism can be illustrated by a MIDI music sequences. MIDI

pitches range between 0 and 127; in other words alphabet size 128. However, each

sequence does not contain all letters of the alphabet. For instance, music sequences

contain 12 different notes. As a result of this fact, sequences can be clustered by their

letter histograms.

 Multiple suffix tree has certain drawbacks as well. First of all, a search operation

should be made in each suffix trees. Secondly, the structure leads to extra space cost.

When a query is demanded, it should be searched in each suffix tree. Therefore,

search time increases. Moreover, multiple suffix tree requires extra nodes. In each

tree, common prefixes are generated independently. Hence, two nodes of

distinguished trees may have similar function and represent same common prefix.

We believe that it is worth to pay to the drawbacks of multiple suffix trees if the

alphabet size is large and sequences generally contain less number of letters. Since

sequences generally contain few different letters, they can be clustered easily.

Let’s assume that a unique suffix tree indexed a sequence data set where it consumes

η amount of space and average search time on the tree become φ. If we index the

same sequence set with g suffix trees, total space consumption of all trees will be less

that η g. Similarly, average search time will be less that g φ. Since g is a small, extra

costs on space cost and search time can be acceptable. Practically, space cost and

search time of multiple suffix tree will be more comfortable than their maximum

values.

5.7 Experimentation

 In this section, we analyze the factors which cause unbalanced tree structure. In

order to ensure balanced tree structure, we considered multiple suffix tree

construction on MIDI music sequences.

 In orde

which con

with the m

almost al

multidime

Here, each

action, we

tree. The p

5.17.

 F

 F

er to evalua

ntains nation

most popula

ll files are

ensional for

h MIDI cha

e have obtai

properties o

Figure 5.13 N

Figure 5.14 To

0
1000
2000
3000
4000
5000

0
200000
400000
600000
800000

1000000
1200000
1400000

Notes

Sequenc

ate multiple

nal anthems

ar 219 film

e in polyp

rm. In this

annel is tran

ined 9236 m

of the seque

Number of Seq

otal Notes in e

All

0
0
0
0
0
0
0
0

All

 suffix tree

s of 190 cou

soundtracks

phonic form

s respect, M

nsformed int

monophonic

ences are sh

quences. 10%

each set.

Melo
Instru

Seque

Me
Instr

Total N

e constructio

untries. In a

s and 208 p

m. As a r

Melody Ext

to a differen

c sequence

hown in Fig

of the sequen

odic
ment

Pe

ences

