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3G WIRELESS MULTICASTING 
SERVICE DESCRIPTION, DISCOVERY AND TRANSPORT 

 

ABSTRACT 

 

Wireless Multicasting is a technology that enables data and multimedia services to 

be delivered from a single source to a group of mobile receivers particularly for the 

actors in the broadcasting and telecommunication world. Although multicasting has 

been extensively researched in the past, the wired IP Multicast model has not picked 

up due to various limitations. The new generation wireless counterpart of this 

technology is receiving tremendous interest from all over the world. 

 

In this work, first we have provided a survey of recent technological 

improvements for wireless multicasting in both cellular and broadcast world. Then, 

one of the 3G wireless multicasting architecture, 3GPP’s MBMS (Multimedia 

Broadcast Multicast Services) in UMTS (Universal Mobile Telecommunication 

System) networks, is investigated with a focus on reliable download mechanism. We 

have provided an end to end download prototype for MBMS. Our prototype, called 

MBMS legacy download, also covers an implementation of a Service Discovery 

Architecture. As a unique contribution the thesis provides the gain of using 

progressive download instead of legacy download and proposes ways to increase the 

gain for streamable multimedia files for MBMS. With progressive download, 

downloadable media can be streamed earlier after some waiting time, while the 

downloading still continues in the background. First we provide optimizations of the 

parameters for an efficient MBMS legacy download. Then based on these 

optimizations, we provide experimental analyses to show the gain in using 

progressive download in MBMS. Finally in order to further increase the progressive 

download performance, we apply our application layer interleaving strategy to our 

MBMS download systems and give a performance comparison of the legacy, 

interleaved and progressive download delivery.  This work has has been fully funded 

by TUBITAK and Vidiator Technology US under the project EEEAG 104E163. 

 

Keywords: 3G, MBMS, Interleaving, Progressive Download. 
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ÜÇÜNCÜ NESİL KABLOSUZ ÇOKLU DAĞITIM 
SERVİS TANIMI, KEŞFİ VE İLETİMİ 

 

ÖZ  

Kablosuz çoklu dağıtım tek bir kaynaktan, hareketli bir grup alıcıya, veri ve çoklu 

ortam dağıtımını özellikle telekomünikasyon ve yayımsal dünya aktörleri için 

mümkün kılan bir teknolojidir. Çoklu dağıtım geçmişte kapsamlı bir şekilde 

çalışılmasına rağmen, kablolu IP çoklu dağıtım modeli birçok kısıtlamalardan dolayı 

başarılı olamamıştır. Bu teknolojinin yeni nesil kablosuz sürümü dünyanın her 

yerinden olağanüstü bir ilgi almıştır. 

 

Bu tezde ilk olarak hücresel ve yayımsal dünyada, kablosuz çoklu dağıtımın son 

teknolojik gelişmelerini ortaya çıkardık. Sonra, UMTS (Universal Mobile 

Telecommunication System)  ağlarda 3. nesil kablosuz çoklu dağıtım mimarilerinden 

biri olan 3GPP‘nin MBMS (Multimedia Broadcast Multicast Services) teknolojisini 

güvenilir yükleme üzerinde durarak inceledik. MBMS’in uçtan uca yükleme 

prototipini geliştirdik. Bu prototipimizi MBMS kalıt yükleme olarak isimlendirdik. 

Prototipimize aynı zamanda servis keşif mimarisinin bir uygulamasını da ekledik. 

Prototipi daha da geliştirerek aşağıdaki yenilikleri tezde sunduk. Tez MBMS’te 

duraksız çoklu ortam için, kalıt yükleme yerine gelişimsel yükleme kullanımının 

getirdiği kazancı sunar ve bu kazancı attırmak için yeni metotlar önerir. Gelişimsel 

yükleme ile yükleme işlemi arka planda devam ederken, belli bir bekleme 

zamanından sonra yüklenebilir çoklu ortam dosyaları duraksız olarak oynatılabilir. 

Önce verimli bir MBMS kalıt yükleme için parametrelerin en iyilemelerini gösterdik. 

Sonra bu en iyilemelerin üstüne, MBMS gelişimsel yükleme kullanılarak elde edilen 

kazancı göstermek için deneysel analizler sunduk. Son olarak gelişimsel yükleme 

verimliliğini daha da artırmak için, uygulama katmanında “interleaving” 

mekanizması kullandık. Kalıt Yükleme ile Gelişimsel ve “Interleaved” Yükleme 

arasında verimlilik kıyaslaması yaptık. Bu çalışma TUBITAK ve Vidiator 

Technology US firması tarafından EEEAG 104E163 proje numarası altında 

desteklenmiştir. 

 

Keywords: 3G, MBMS, Serpiştirim, Gelişimsel Yükleme. 
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CHAPTER ONE 

 

INTRODUCTION 

 

1.1  Introduction 
 

The recent development in multimedia applications with the parallel progress in 

transport technologies has brought real-time or non-real time multimedia distribution in 

the form of multicasting or broadcasting for both wired and wireless environments. 

Multimedia distribution is rapidly evolving with effective multimedia compression 

techniques and higher speed wireless networks. Hence mobile services are getting 

better with the decreasing delivery cost day by day. Such mobile services include 

streaming, downloading and progressive downloading (BenQ Mobile, 2006) services 

for on-demand video, mobile TV, short clips for news, football results, software 

updates and more. IP multicasting that refers to IP layer wired multicasting case has not 

succeeded due to many limitations. The new generation wireless counterpart of this 

technology is receiving tremendous interest from all over the world. The term 

“Broadcast” refers to the ability to deliver content to all users. Known examples are 

radio and TV services, which are broadcasted over the air, such as terrestrial or via 

satellite, or over cable networks. Multicasting, on the other hand, refers to services that 

are solely delivered to users who have joined a particular multicast group. Both 

multicasting and broadcasting are synonyms regarding to communication in that they 

deliver data over point-to-multipoint communication where data packets are transmitted 

from a single source to multiple destinations.  

 

Today many mobile operators launched streaming type services such as mobile TV 

services, which allow mobile users to watch TV on their mobile terminals or 

downloading type services such as MMS. In Europe, a number of operators have 

launched sports information services that push short video clips to the mobile terminals. 

Vodafone (Germany, the Netherlands), TIM (Italy and Greece), Three (Italy and 

Sweden) and Sprint (US) have all launched mobile TV services and continue to do so in 
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different countries. Multimedia services are still offered to consumers over point-to-

point wireless connections. Large scale media distribution makes this point-to-point 

service delivery inefficient especially for wireless networks. Furthermore, the cost of 

point-to-point services is expensive. Although the technology already realized the 

service delivery over one-to-many multicast channels, with sufficient quality of service, 

consumer market is not deployed yet due to it’s still in transition from 2.5 G to 3G. 

Several technologies that provide multicasting for 3G wireless networks are 3GPP 

MBMS (Third Generation Partnership Project Multimedia Broadcast and Multicast 

System; 3GPP TSG 26.346, 2007), 3GPP2 BCMCS (Third Generation Partnership 

Project 2 Broadcast and Multicast System; 3GPP2 BCMCS, 2005), DVB-H (Digital 

Video Broadcast for Handhelds), and MediaFLO among others (Mobile TV WG, 

2006). Beside scability problem, each service type has its own problems. While real 

time services expose delivery of packets in a timely manner, downloading type of 

services requires reliable delivery of content, where the same content is sent reliably to 

a large number of users. 

 

 Recently, 3GGP and 3GGP2 began addressing broadcasts / multicast services in 

GSM/WCDMA and CDMA2000 respectively. 3GPP is currently introducing support 

for IP multicasting services into the UMTS architecture namely the multimedia 

broadcast and multicast service (MBMS). Using these standards, multimedia services 

such as audio, video and TV-like services as well as large software updates could be 

provided to thousands of users simultaneously in a point-to-multipoint manner. In 

3GPP2 the same work item is called Broadcast and Multicast Service (3GPP2 BCMCS, 

2005). They have much common functionality where Open Mobile Alliance 

Broadcasting (OMA BCAST) is working around. OMA BCAST is working on the 

specification of broadcast/multicast related service-layer functionalities that can be 

applied to mobile and non-mobile digital broadcast networks. For instance, OMA 

BCAST addresses content protection, service and program guides, and transmission 

scheduling.   

 

Although 3G mobile networks are much more powerful than that of existing 

traditional networks, they have still limitations in the transmission of larger files or 
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streams to a large number of users. Some broadcast technology such as DVB-H come 

up with more powerful multicast streaming or multicast downloading. Trial tests of 

DVB-H platform have been already started at some countries. The main limitation in 

this type of broadcast networks is that they have only unidirectional communication 

architecture with no back channel support. Because of this problem, DVB convergence 

of the broadcast and mobile services group (ETSI TS, 2007) has recently begun 

specifying the protocols and the codecs above IP so that a new work item to converge 

both networks into a more powerful hybrid network with back channel support is 

started. However more serious criticism of deployment of DVB-H in mass market is 

that network requirements and related deployment cost for providing coverage 

comparable to that of mobile networks. In most countries virtually all suitable DVB-H 

spectrum is being used by analog or digital TV services. Even if the spectrum in this 

band were made available for DVB-H, in many countries this spectrum is assigned to 

TV services only. It means it cannot be used for other types of IP datacast service. 

Because of such limitations in broadcast world primarily in DVB-H, we believe that 

3GPP MBMS will take off earlier than DVB-H.  

 

Our research focuses on reliable download including progressive download in 

MBMS. The downloading in MBMS is based on FLUTE (File Delivery over 

Unidirectional Transport) protocol (Paila T. & Others, 2004). FLUTE is a protocol used 

to deliver files, particularly over unidirectional systems from one sender to many 

receivers. Since FLUTE uses an unreliable transport protocol, an application layer FEC 

is coupled with FLUTE to recover from packet losses, making a reliable service. The 

most popular FEC codes are Raptor codes, as initially introduced by Shokrollahi A. 

(2003) and Reed Solomon codes (Rizzo L., 1998). For the MBMS system, Raptor 

codes have been selected due to their high performance, relative to others. 

Consequently, 3GPP has mandated the support of Raptor codes (3GPP TSG 26.346, 

2007) for their terminals that use the MBMS service.  

 

There are two ways considered to play the media in MBMS download delivery. First 

is to wait for the download to complete and then play the media. Second is to wait for 

some initial startup time and then play the media while downloading it. First one is 
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called Legacy Download while the latter is called Progressive Download. Hence 

progressive download is important in that it reduces the waiting time substantially, 

which will be demonstrated in this work.  There are two important parameters for 

MBMS download; transmission cost and waiting time.  Minimum waiting time, called 

downloading time optimization, and minimum FEC cost, called Transmission cost 

optimization, with reliability requirement are the targets for an acceptable service. 

Transmission cost optimization minimizes the FEC overhead required for a reliable 

download. However downloading time optimization minimizes the initial startup delay 

as well as the download duration. In this thesis we provide three contributions to 

decrease the waiting time as well as FEC overheads for a reliable and efficient MBMS 

download service: i) Progressive Download Approach ii) Downloading Optimizations 

and iii) Application Layer Interleaving.  

 

1.2 Progressive Download Approach 
 

Today MBMS has two delivery modes which correspond to streaming and 

downloading services over point to multipoint bearers. Downloading mode can be also 

referred to as “download and play” mode when the content includes continuous media 

such as audio, video and presentations. Downloading mode consumes less radio 

resources despite its longer time of service consumption with respect to streaming. In 

this thesis we focus on progressive download which combines the advantages of 

streaming and download in terms of time and bandwidth.  Progressive download can be 

referred to as “play while download”. With progressive download, downloadable 

content can be streamed sooner, after some initial startup delay, also called waiting time 

in the thesis, while the downloading still continues in the background. By its nature, 

MBMS progressive download is a software overlay on top MBSM download mode.  

 

We believe that MBMS should enable the use of progressive download for three 

reasons; the first reason is while the media content is being downloaded in the 

background the user is waiting for the download to complete. Instead of waiting for the 

download to complete the user experience can be enriched if media play started earlier. 

The second reason is the optimization of radio resources. Download mode uses less bit 

rate compared to streaming and progressive download provides the benefits of 



5 

 

download in terms of bit rate utilization. The download and play mode allows 

download of media contents at much lower bit rates than the streaming bit rates. The 

third reason, adding progressive download capability to any multicast delivery system 

will not require many changes in the infrastructure or software components since 

progressive download will utilize the existing download delivery mode.  

 

MBMS Progressive download is still an open issue in 3GPP and related discussions 

are postponed to future MBMS releases. One of the issues is the gain to be obtained 

from having progressive download. Our aim in the thesis is to show that using 

progressive download compared to legacy download we have satisfactory gain with 

respect to waiting time. We target progressive download of small 3gp multimedia files, 

instead of big files, which require long waiting time that is not acceptable for user 

experience. We considered constant bit rate encoding since variable bit rate makes 

waiting time prediction difficult in MBMS progressive download and requires more 

capability at receiver side. We consider enhanced AAC+ and H.264 AVC (3GPP TSG 

26.346, 2007; ITU-T Recommendation H.264, 2005) coding with total 128 kbps media 

play rate. 

 

1.3 Downloading Optimizations 
 

During the MBMS FLUTE transport, a file is partitioned into source blocks (SBs), 

each of which is encoded in FEC layer and then carried as a set of symbols in Multicast 

IP datagrams over the IP backbone to the destination network.  IP datagrams are 

mapped to SDU (Service Data Unit) blocks and each SDU packet is mapped to RLC 

(Radio Link Layer) blocks across the UMTS core network. Each RLC block is carried 

as PDU (Protocol Data Unit) packets to receivers in the Radio Access Network. This 

partitioning and mapping process requires allocating proper block sizes wherever they 

are sent throughout the route from sender to a destined multicast area. Furthermore, the 

sizing considerations in the IP network (IP packet size), core network (SDU and PDU 

size) and FEC Layers (SB size) all affect the cost of the download reliability and hence 

there should be a combination of the size choices that lead to a target-optimized result, 

such as the reliability with minimum FEC overhead and minimum waiting time with 

reliability. 
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1.4 Interleaving Approach 
 

Another technique to increase efficiency of the MBMS download as well as 

progressive download delivery is the use of application layer interleaving. Interleaving 

can be used in digital communications systems to enhance the error correcting 

capabilities of FEC mechanism. Interleaving changes the transmission order of symbols 

in an attempt to minimize the loss of symbols belonging to the same source block. In 

practice, packet losses occur as error bursts. One lost packet may cause one or more 

consecutive packets to be lost. The interleaving mechanism can substantially reduce the 

negative effects of packet losses that belong to the same FEC block, thus providing an 

increase in download efficiency. Interleaving transmission strategy is important in that 

if not properly selected it may cause randomization of source blocks which prevents 

progressive download.   

 

1.5 The Problem Definition 
 

Discussions related to progressive download in MBMS are postponed to future 

MBMS releases. One of the important reason, among many, is there is no clear work 

that show our gains from having progressive download in MBMS. The main problem 

addressed in this thesis is to show the possible gains from having progressive download 

in MBMS and to show our contributions to improve the gains further by our 

optimizations and our application layer interleaving strategy. We studied four solutions 

to reduce the waiting time and FEC overhead for reliable MBMS downloads in the 

thesis. The reductions are identified as gains from MBMS Download optimizations, 

gains from Application Layer Interleaving, gains from Progressive Download and gains 

from the Interleaved-Progressive Download in MBMS. Gain is described in terms of 

waiting time and FEC overhead for full reliability. So optimizations are based on 

waiting time and as well as on transmission cost. To the best of our knowledge these 

topics have not been studied in the literature and our work is providing a leading path 

for future research. 
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1.6 Main Contributions 
 

Four contributions are provided to decrease the waiting time of the MBMS 

download service in the thesis. First the work provides optimizations for efficient and 

reliable download services for 3GPP’s MBMS that also supports progressive 

downloading. Since MBMS download mechanism uses unreliable multicast, Forward 

Error Correction (FEC) is used to recover from packet losses. Reed Solomon FEC 

coding is used in our work as underlying protection method. Two optimizations; 

downloading time optimization and FEC overhead optimization are introduced to 

investigate an efficient and reliable MBMS download service. Experimental analyses 

are provided to show the gain in downloading time as well as the gain in FEC overhead 

from our optimizations. Trading between the two optimizations is investigated under 

MBMS network conditions. Instead of considering only FEC cost optimization as 

legacy MBMS downloads do, downloading time optimization is recommended for 

efficient MBMS download services.  

 

Second, based on the optimizations, Reliable Download analyses with and without 

interleaving in MBMS is studied to provide the gain in FEC overhead as well as the 

gain in download duration from the application layer interleaving approach in MBMS. 

Then a performance comparison of the legacy and the interleaved download delivery is 

provided.   

 

Third, based on the optimizations, we provide the progressive download approach to 

provide the gain in download duration from the progressive download instead of legacy 

download for streamable media files for MBMS. For this, a legacy MBMS download 

system optimized for waiting time to play the media is provided first. Then a 

progressive MBMS download system is provided to compare the gain in waiting time.  

 

Finally, we combined the approaches in order to further increase the system 

performance, hence we applied our application layer interleaving strategy to our 

MBMS Progressive download system, so called Interleaved Progressive Download,  

and gave a performance comparison of the legacy and the interleaved progressive 

download delivery. 
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The results encourage the usage of progressive download instead of legacy 

download mechanism where the data file is streamable, for improved user experience 

for 3G wireless multicasting systems. The results of this study will also provide 

guidelines to designers to fine-tune MBMS download service parameters for an 

efficient and reliable download service. 

 

1.7 Scope of the Thesis 
 

 

 

 

      Figure 1.1 Scope of the PhD work. 

 

The scope of the work aimed in the thesis is shown in Figure 1.1. We have provided 

an end to end download prototype for MBMS. Our prototype, called MBMS legacy 

download, also covers an implementation of a Service Discovery Architecture.  

 

Closely related to service descriptions is their announcement (push) to subscribers. 

There must be a way for subscribers to learn service descriptions so that they can join 

and start playing the multicast media or start downloading the multicast data. Service 

discovery is a mechanism for subscribers to get service descriptions before the start of 

the service. MBMS does not restrict the delivery method of service descriptions. It can 

be via MBMS multicast download sessions such as broadcast or multicast over FLUTE 
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protocol or any other means such as cell-broadcast, http, even via emails. Delivering 

the service descriptions for a session is vital but not enough alone for a successful 

deployment of service discovery/announcement mechanism onto a mass. During the 

course of time, service descriptions may change, expire or corrupt, so suitable metadata 

structures are needed to maintain service discovery/announcement process.  Currently 

MBMS delivers service descriptions as a set of metadata fragments each of which 

coupled with a metadata envelope that has a time-validity and other properties to 

maintain the actual metadata fragment. Our prototype covers generation of these 

metadata fragments, their maintanence and their transport to subsribers. 

 

The protocol stack for our MBMS download systems are shown in Figure 1.1. The 

layers above the FLUTE protocol that inlude interleaving, FEC and progressive content 

are considered in the application layer. With the interleaving and progressive 

downloading methods the IP / UDP / FLUTE packet may contain interterleaved or 

progressive content or the interleaved progressive content where combination of both 

methods is applied.   

 

1.8 Organization of the Thesis 
  

The thesis is organized as follows; chapter two gives a brief overview of MBMS 

download delivery and its main components; FEC and File Delivery over 

Unidirectional Transport (FLUTE) Protocol. It discusses gains from MBMS 

progressive download and gains from interleaving with providing existing works. In the 

third chapter FLUTE protocol is investigated in detail while FLUTE usage in MBMS is 

provided in chapter four.  The system models that our work is based including an 

analytical model to formulize the problem are provided in chapter five. In chapter six 

we show the experimental results of four MBMS download system proposed in this 

thesis: (i) Legacy downloads with waiting time and transmission cost optimizations, (ii) 

Progressive download, (iii) Interleaved download, and (iv) Interleaved Progressive. 

Then we compared proposed systems with legacy download and give a conclusion and 

future directions in the final chapter. Our ptototype and its enhancements for our 

solutions are provided in Appendix A while Appendix B shows figures from the 

intermediate works during the experimental analyses. 
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CHAPTER TWO 

 

BACKGROUND AND RELATED WORK 

 

2.1  Background 
 

Third Generation (3G) is the generic name for next-generation mobile networks such 

as the Universal Telecommunications System (UMTS) or IMT-2000; 3G wireless 

networks offer faster data transfer rates than current networks. As indicated in Table 

2.1, the first generation of wireless (1G) networks is analog cellular. The second 

generation (2G) networks are digital cellular, featuring integrated voice and data 

communications. 2.5G networks offer incremental speed increases. 3G networks offer 

dramatically improved data transfer rates, enabling new wireless applications such as 

streaming media. Services and their speeds in each phase of this evolution are given in 

Table 2.1.  

 

Table 2.1 Service types and their speeds in 3G (CNET Asia). 

   1G   2G   2.5G   3G   3.5G   4G and beyond  

Technology AMPS GSM 
CDMA 

GPRS 
1xRTT 
EDGE 

UMTS 
1xEV-
DO 

HSDPA (upgrade 
for UMTS) 
1xEV-DV 

WiMax* 

Speeds n/a Less than 
20Kbps 

30Kbps to 
90Kbps 

144Kbps 
to 2Mbps 

384Kbps to 
14.4Mbps 

100Mbps to 1Gbps 

Features Analog 
(voice 
only) 

Voice; 
SMS; 
conference 
calls; caller 
ID; push to 
talk 

MMS; 
images; 
Web 
browsing; 
short 
audio/video 
clips; 
games, 
applications, 
and ring 
tone 
downloads 

Full-
motion 
video; 
streaming 
music; 
3D 
gaming; 
faster 
Web 
browsing 

On-demand 
video; 
videoconferencing 

High-quality 
streaming video; 
high-quality 
videoconferencing; 
Voice-over-IP 
telephony 

          

At the time this thesis is being written, the deployment of 4G, which is a 

combination of broadband wireless and cellular wireless, has just started. It is forseen 

that the near future will focus on 4G technologies and challenges. The 1990s marked 
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the arrival of two digital networks: Code Division Multiple Access (CDMA), popular in 

the United States and a few other countries; and GSM, the dominant technology in 

Europe. These 2G networks replaced the analog communication with the digital one. 

By further upgrading existing components in 2G network and by adding packet-

switching features GPRS technology progressed. 

 

The Global System for Mobile Communications (GSM) is a wireless network 

system is used at three different frequencies: GSM900 and GSM1800 are used in 

Europe, Asia, and Australia, while GSM1900 is deployed in North America and other 

parts of the world. 

 

GPRS is an enhancement to existing GSM networks that introduces packet data 

transmission, enabling "always on" mobility. This means that users can choose to be 

permanently logged on to e-mail, Internet access and other services, but do not have to 

pay for these services unless sending or receiving information. It is a new non-voice 

value added service that allows information to be sent and received across a mobile 

telephone network. It supplements today’s Circuit Switched Data and Short Message 

Service. GPRS allows customers to maintain a data session while answering a phone 

call, which is a unique and exclusive feature to GSM technologies. GPRS also provides 

an "always-on" data connection where users don’t have to log on each time they want 

data access, and the packet architecture means they only pay for the data itself rather 

than for the airtime used to establish a connection and download data.  

 

EDGE (Enhanced data rates for GSM evolution) upgrades to GPRS systems that 

require new base stations and claim to increase bandwidth to 384 kbps. HSCSD (High-

speed circuit-switched data) software upgrade for cellular networks that gives each 

subscriber 56K data. 

 

CDMA is a cellular technology widely used in the world. There are currently three 

CDMA standards: CDMA One, CDMA2000 and W-CDMA. CDMA One and 

CDMA2000 are widely used in North America while W-CDMA is used in Europe, 
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Asia and Australia. CDMA technology uses UHF 800Mhz-1.9Ghz frequencies and 

bandwidth ranges from 115Kbs to 2Mbps. 

 

 

Figure 2.1 3G evolution paths (UMTS Forum, 2005). 

 

CDMA One  also known as IS-95, is a 2nd generation wireless technology and 

supports speeds from 14.4Kbps to 115K bps. CDMA2000, also known as IS-136, is a 

3rd generation wireless technology and supports speeds ranging from 144Kbps to 

2Mbps. In general CDMA technology spreads voice calls across several wireless 

spectrums, making for more reliable connections that are much harder for hackers to 

intercept. More importantly, CDMA and GSM networks are also capable of sending a 

sliver of data along with voice signals, making possible for such features as text 

messaging (SMS), caller ID, and conference calling. 

 

Figure 2.1 shows different evolution paths for 3G systems. Wideband Code-Division 

Multiple Access (W-CDMA), also known as IMT-2000, is a 3rd generation wireless 

technology and supports speeds up to 384Kbps on a wide-area network, or 2Mbps 

locally. UMTS is a standard that will provide cellular users a consistent set of 

technologies no matter where they are located worldwide. UMTS utilizes W-CDMA 

technology. EDGE is the result of a joint effort between TDMA operators, vendors and 

carriers and the GSM Alliance. TDMA is used by Digital-American Mobile Phone 

Service (D-AMPS), GSM and Personal Digital Cellular (PDC). However, each of these 

systems implements TDMA in a somewhat different and incompatible way.  
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Crucially, 3G/UMTS has been specified as an integrated solution for mobile voice 

and data with wide area coverage, Universally standardized via the Third Generation 

Partnership Project (www.3gpp.org). Symmetry between uplink and downlink data 

rates when using paired (FDD) spectrum also means that 3G/UMTS is ideally suited for 

applications such as real-time video telephony – in contrast with other technologies 

such as ADSL where there is a pronounced asymmetry between uplink and downlink 

throughput rates. Ongoing technical work within 3GPP will see further increases in 

throughput speeds of the WCDMA Radio Access Network (RAN). High Speed 

Downlink Packet Access (HSDPA) and High Speed Uplink Packet Access (HSUPA) 

technologies are already standardized and are undergoing network trials with operators 

in the Far East and North America. Promising theoretical downlink speeds as high as 

14.4 Mbps (and respectively 5.8 Mbps uplink), these technologies will play an 

instrumental role in positioning 3G/UMTS as a key enabler for true ‘mobile 

broadband’. Offering data transmission speeds of the same order of magnitude as 

today’s Ethernet based networks that are a ubiquitous feature of the fixed-line 

environment, 3G/UMTS will offer enterprise customers and consumers all the benefits 

of broadband connectivity whilst on the move (UMTS Forum, 2005, s.4). 

 

Building on current investments in GSM/GPRS, 3G/UMTS offers mobile operators 

significant capacity and broadband capabilities to support greater numbers of voice and 

data customers –especially in urban centres – plus higher data rates at lower 

incremental cost than 2G. The choice of eight out of the world’s ten biggest operators 

who have been awarded licenses to launch 3G services, UMTS represents the natural 

evolutionary route from 2G to 3G for more than 90% of the world’s mobile users – 

spanning 1.2 billion GSM customers as well as subscribers to second generation 

TDMA and PDC networks. Taking use of radio spectrum in bands identified by the 

ITU for Third Generation IMT-2000 mobile services and subsequently licensed to 

operators, 3G/UMTS uses a 5 MHz channel carrier width to deliver significantly higher 

data rates and increased capacity compared with second generation networks. This 5 

MHz channel carrier provides optimum use of radio resources, especially for operators 

who have been granted large, contiguous blocks of spectrum – typically ranging from 
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2x10 MHz up to 2x20 MHz – to reduce the cost of deploying 3G networks. This 

contrasts with the 1.25 MHz channel carrier width specified for the CDMA2000 system 

that was developed initially to serve North American mobile markets with more limited 

access to large, contiguous blocks of radio spectrum than operators in Western Europe. 

This means that 3G/UMTS offers greater cost efficiencies in terms of carrying network 

traffic than other mobile technologies, allowing operators to support larger numbers of 

simultaneous users and offer greater data speeds. (UMTS Forum, 2005, s.3) 

 

2.2  Current State of Wireless Multicasting 
 

Multicasting has been extensively researched in the past (Almeroth K.C, 2000; 

Obraczka K., 1998; Diot C. & Others, 2000). First introduced in 1988, IP multicasting 

has not been as successful as WWW, a technology of the same age. The two main 

reasons for the failure of IP multicasting are: 

 

1. the lack of a well defined business model and services 

2. the need for network intelligence 

 

The need for network intelligence has shifted the research focus on multicast routing 

and transport protocols. This shift has provided significant source for academic 

research, but it did not impact the success of multicasting. With the lack of a well 

defined business model and services, wired Internet multicast simply did not take off as 

expected. 

 

The wireless multicast (Varshley U., 1999) research began around 1994. The 

mobility of the user and the characteristics of the wireless channel made multicasting 

even more challenging. Varshley (2002) provides a review of the challenges of wireless 

multicasting, Figure 2.2. Varshley divides wireless multicasting architectures into two 

as infrastructure based and ad-hoc. Infrastructure-based wireless architectures have a 

base-station and a fixed topology but the user nodes are mobile. For ad-hoc wireless 

multicasting both the routers and the users are mobile, where in most cases the nodes 

have routing capabilities. The challenges for each model are different. Ad hoc wireless 

multicasting has a very important yet very limited application area such as military or a 
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disaster connectivity scenario. Hence, in this project we will concentrate on 

infrastructure based wireless multicasting. 

  

 

Figure 2.2 Challenges of wireless multicasting (Varshley U., 2002). 

 

Infrastructure based multicasting means wireless (cellular) and mobile multicasting. 

In the work (Gossain H., 2002), the challenges of infrastructure based multicasting are 

studied further but it focuses mostly on the network layer issues of wireless 

multicasting and does not address the impact of these issues to higher level protocols 

and applications. Dutta (2003) addresses the impact of wireless multicasting on 

streaming applications. Dutta identifies the following areas as major challenges: 

 

1. diverse wireless network support: different networks with different 

characteristics should be supported 
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2. intradomain mobility: the user should keep it’s multicast group connectivity 

while moving from cell to cell 

3. scalability: the application should support scalable multicast groups. 

4. load balancing: the application should support load balancing depending on the 

number of users or location of content. 

5. Quality of service: the user should keep it’s QoS while moving from cell to cell. 

 

Li X. & et.al (1999) provide a comprehensive overview of video multicasting 

challenges and it’s possible solutions. Li reviews layering and rate adaptation and 

provides results for tests on MBone, the well-known IP multicast overlay network. 

However Li fails to provide any overview for the challenges specific to wireless 

multicasting.  

 

In the research of Mukhtar R. G. (2003), although wireless multicasting is not being 

addressed directly, Mukthar reviews the challenges for wireless traffic management. 

Radio link layer characteristics are identified along with higher layer transport protocol 

issues.  

  

Wan T. & Subramanian R. K. (2004) provide a very good comparison of traditional 

QoS metrics and wireless multicast QoS metrics. It also reviews application layer QoS 

adaptation techniques, where feedback based adaptation with predictive adaptation is 

compared. However, it does not address how different wireless networks can be 

accommodated with the proposed model and how reliability can be added.  

 

In addition to the work presented in the literature review, there are two major groups 

for wireless multicasting work: 

 

1. Standards based wireless multicasting work 

a. 3GPP MBMS (3GPP TSG 26.346, 2007; 3GPP TSG 26.946, 2007) 

b. 3GPP2 BMCS  (Wang J. & Others, 2004) 

c. OMA BCAST (2004) 

d. DVB-H 
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2. Commercial (proprietary) architectures: MediaFlo (Qualcom), Bamboo 

Mediacast, Crown Castle (About CrownCastle), etc. 

 

MBMS is a point-to-multipoint service in which data is transmitted from a single 

source entity to multiple recipients. Transmitting the same data to multiple recipients 

allows network resources to be shared. MBMS user services can be built on top of the 

MBMS bearer service.  

 

 

M B M S  B e a r e r  B e a r e r  P T P  B e a re r  

S tre a m in g  D e liv e r y  D o w n lo a d  

P S S  A p p lic a t io n  M M S  O th e r  . .  

 

Figure 2.3 Functional layers for MBMS service delivery (3GPP TSG 26.346, 2007). 

 

There are two delivery methods for the MBMS user services: download and 

streaming. Examples applications using the download delivery method are news and 

software upgrades.  Delivery of live music is an example of an application using the 

streaming delivery method.   

 

Figure 2.4 MBMS architecture as defined by 3GPP (3GPP TSG 26.346, 2007). 

 



18 

 

Functional layers for MBMS service delivery is shown in Figure 2.3 and the 

architecture diagram for MBMS is shown in Figure 2.4. Existing packet switched 

entities such as GGSN, SGSN, UTRAN/GERAN and UE are upgraded to provide 

MBMS bearer services. Additionally a new entity called BMSC (Broadcast Multicast 

Service Center) is placed as an entry point between content provider and operator 

network. 

 

BMSC task is very critical in MBMS. It provides a set of functions for MBMS user 

services such as bearer control signalling, bearer establishment and bearer maintenance 

through Gmb interface, scheduling among MBMS sessions, delivery of IP datagrams 

through Gi interface to UEs with a specified QoS, authentication and authorization of 

UEs and 3rd party content providers, delivering of service descriptions to UEs, 

maintaining UE subscription information etc. 

 

2.3  MBMS Download 
 

This section gives brief overview of MBMS Download delivery and its main 

components FEC and FLUTE protocol. An example of the MBMS Download Service 

is given in Figure 2.5 where subscribers are announced previously for the upcoming 

service and its contents. When the service descriptions are available to the subscribers 

they may join the service. Joining to a service does not mean that the service starts 

soon. The service always starts at the time as it is previously announced to the 

subsribers. The service start and end times are provided in session descriptions (SDP) 

of the service. As shown in Figure 2.5 the MBMS download service occurs as 

unidirectional transport. So for the receiver, there is no way to feedback the lost packets 

during the download session but after the download. Associated delivery description 

components describe how to request the missing packets after the download session. 

Optionally the associated delivery procedure descriptions may provide for the server to 

collect statistical report from clients. 

 

MBMS download delivery is based on FLUTE (Paila T. & Others, 2004) protocol 

used to deliver files particularly over unidirectional systems from one sender to many 

receivers. FLUTE is an IETF protocol based on Asynchronous Layered Coding (ALC) 
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protocol (Luby M., Gemmell J. & Others, 2002) that makes the FLUTE well scalable 

and hence preferable for unidirectional systems.   

 

 

Figure 2.5 MBMS download service flow. 

 

ALC is an instantiation of Layered Coding Transport (LCT) (Luby M., Gemmell J. 

& Others, 2002) for FLUTE.  LCT manages how to transport an object identified by 

Transport Object Identifier (TOI) within a session identified by Transport Session 

Identifier (TSI). ALC inherits LCT with asynchronous and FEC coding selection as 

underlying coding technique. Finally the FLUTE protocol inherits the ALC and 

provides capabilities carried in-band or via FDT instances (File Delivery Table) to 

signal the properties of the file including FEC coding descriptions and map them to the 

ALC protocol. 

 

With FLUTE, the only built-in reliability mechanism is provided by FEC 

mechanism. FEC provides reliable delivery of media content by appending repair 

symbols to the original data called source block prior to transmission across 

communication network. If some symbols are lost during transmission FEC allows 
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receiver to use repair symbols to recover the original source block without 

retransmission.   

 

 

Figure 2.6 MBMS download protocol stack. 

 

Figure 2.6 (Gasiba T. & Others, 2006) shows a detailed view of the protocol stack 

for MBMS download delivery. A file in application layer, called object in ALC 

terminology, is partitioned into source blocks (SB) each of which is further divided into 

“k“ source symbols of size “T” each. Each SB is forwarded to the FEC/FLUTE layer, 

where Raptor FEC encoding is individually applied to each source block. The result is 

an encoding block (EB) of “n” encoding symbols, “n - k” of which is repair symbols.  

Each encoding symbol is identified by the couple: a source block number (SBN) and an 

encoding symbol identifier (ESI). A group of G consecutive encoding symbols that 

share the same SBN is appended to an ALC/FLUTE header (LHF =16 bytes). The result 

is a FLUTE packet with payload P = G×T. The FLUTE header contains FEC payload 

ID that is the ESI and SBN of the first symbol, Transport Session Identifier (TSI), 

Transport Object Identifier (TOI), as specified by FLUTE protocol. User datagram 

protocol (UDP) over IP is used to distribute the FLUTE packets.  
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Further headers are appended to the original packet at the UDP, IP, Logical Link 

Layer (LLC)/Subnetwork Data Convergence Protocol (SNDCP) or Packet Data 

Convergence Protocol (PDCP). At the Radio Link layer (RLC), Protocol Data Units 

(PDU) are obtained and forwarded to the physical layer as usual, where the data is 

encoded with a convolutional code, is interleaved and transmitted in small bursts. Due 

to the lower layer interleaver, the RLC-PDUs can be assumed to be lost with link loss 

rates as high as 10% or even more. (Gasiba T. & Others, 2006). 

 

2.3.1 Forward Error Correction  

 

Some part of the original data may be lost during transmission. A FEC scheme 

allows receiver to use the additional redundant data to recover the original data without 

retransmission. FEC codes are divided into two sub categories: 

 

1. Systematic FEC codes: An (n, k) systematic FEC block code preserves the k 

source symbols and appends (n –k) repair symbols. 

2. Nonsystematic FEC Codes: An (n, k) non-systematic FEC block code creates n 

encoding symbols from k source symbols without necessarily preserving all the 

source symbols. 

 
 

 
 

Figure 2.7 (n, k) FEC block code. 

 

Figure 2.7 shows a FEC block code which is specified as an (n, k) code, for each “k” 

input symbols the encoder produces “n” output symbols. A source block is a fragment 

of the original object (media). Each source block contains several source symbols. A 

block of “k” source symbols constitute a source block. Decoding algorithms allow the 

recovery of the “k” source symbols from any set of the “n” received symbols. While 



22 

 

“k” is a number of source symbols, “n” is a number of encoding symbols, “n – k” is 

the number of repair symbols which are encoding symbols that are not source symbols.  

 

2.3.1.1  Reed Solomon versus Raptor 

 

Important factors of FEC mechanisms are their encoding/decoding efficiency and 

their time complexity. Algorithm time complexity particularly affects the processing 

ability of limited handsets. Raptor FEC scheme computational complexity is about O(1) 

time to generate an encoding symbol and O(k) time to decode a message of length “k”. 

Reed Solomon encoding algorithm computational complexity depends on the current 

source block length (k) and number of encoding symbols (n) generated for the relevant 

source block. These parameters are carried by the FEC Object Transmission 

Information (FEC OTI) to receiver side to execute the decoding algorithm. 

 

Raptor provides linear encode/decode time (Luby M., 2005). Raptor is a fountain 

code, i.e. as many symbols as needed can be created unlike Reed Solomon, which has a 

block size of 255 symbols. Raptor decoding time is independent of packet loss patterns. 

However, Reed Solomon decoding time is loss dependent. Raptor is based on irregular 

low-density parity-check code (LDPC), since the LDPC codes allow data transmission 

close to the theoretical maximum (Luby M., 2005). Both Raptor and Reed Solomon 

codes are systematic so the original source symbols are sent intact from sender to 

receiver. 

 

2.3.2  Interleaving Effect on FEC performance 

 

With application layer interleaving, FEC performance increases greatly. This fact 

can be observed in the example in Figure 2.8. The cross sign indicated that the symbol 

is lost.  Without interleaving all symbols belonging to source blocks will be sent 

sequentially in the order of source block number. That is, symbols of SB1 are sent first, 

symbols of SB2 next and so on. With interleaving, symbols in a block are sent in 

different times in a changing order of source block numbers. There can be many 

different ways of changing transmission order of symbols. One way is the 
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randomization of the transmission order of all symbols. In the example in Figure 2.8, 

different transmission strategy is used to show the effect of interleaving.  
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Figure 2.8 Interleaving effect on FEC performance. 

 

After each transmission by skipping next symbol, 3 symbols from SB1, 3 symbols 

from SB2 and 2 symbols from SB3 are sent in first round, 3 symbols from SB1, 2 

symbols from SB2 and 3 symbols from SB3 are sent next round, 2 symbols from SB1, 

3 symbols from SB2 and 3 symbols from SB3 are sent in final round. The result is a 

reduction in necessary FEC overhead from 63% to 25% for reliability. 

 

2.4 Related Work 
 

Recently progressive download of 3gp media files in MBMS is studied in 3GPP 

working groups (BenQ Mobile, 2006). According to 3GPP PSS (packet-switched 

streaming service) specification (3GPP TS 26.234, 2007), PSS clients already support 

progressive download of 3GP media files with HTTP connection over TCP/IP. 

However, PSS is based on IETF RTSP (Real Time Session Protocol)/SDP and requires 
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bidirectional connectivity between sender and clients. Progressive download in MBMS 

is still in debate and currently few works (BenQ Mobile, 2006; Yetgin Z., Seckin G., 

March 2008; Yetgin Z., Seckin G., April 2008) exist to support MBSM progressive 

download. 

 

Yetgin Z., Seckin G. (2007) studied MBMS downloading optimization for minimum 

FEC overheads for both Reed Solomon and Raptor FEC.  In MBMS, FEC mechanisms 

have been studied on two layers, namely physical layer and application layer, in a 

complementary way. The tradeoff in applying one or the other or suitable combinations 

of the two is addressed in (Luby M., Watson M., Gasiba T., Stockhammer T., 2006; 

Watson M. & Stockhammer T., n.d). Interleaving in MBMS is also studied on these 

two layers. On the physical layer, Turbo coding with interleavers is used as a standard 

in 3GPP. Turbo codes emerged in 1993 (Berrou C., Glavieux A., & Thitimajshaima P., 

May 1993) and have since increased its popularity in communications research. In 

(Rekh S., Rani S.S. & Shanmugam A., 2005), some of those works are referred and the 

behavior of Turbo codes for various interleaver size and structure is analyzed. Luby M., 

Watson M., Gasiba T. & Stockhammer T. (October 2006) investigated the tradeoffs 

between the assignment of physical layer resources for UMTS turbo code and 

application layer resources for the MBMS download delivery service. 

  

MBMS download delivery has already been analyzed in 3GPP working groups. 

Reed-Solomon codes with and without interleaving (Siemens, March 2005; Yetgin Z., 

Seckin G., 2007) and Raptor codes, also investigated in (Luby M., Watson M., Gasiba 

T., Stockhammer T., and Xu W., January 2006; Watson M. & Stockhammer T., n.d) for 

MBMS, are used in these analyses. Generally interleaving mechanism above FEC layer 

is studied as random transmission of symbols (Siemens, March 2005). However 

random transmission strategy disables the progressive download. Our recommendation 

is to use an interleaving strategy that also enables progressive downloading. This issue 

is also addressed in the work by Yetgin Z., Seckin G. (2007). The strategy used to 

support progressive download, just after sending each source block, it’s repair symbols 

are sent and a group of consequitive blocks are interleaved at a time. 
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From the MBMS service delivery point of view, progressive download is a 

download because it uses MBMS download delivery mode based on FLUTE protocol. 

From the end user point of view, it is streaming because while the download continues 

in the background, media can be played in parallel with the downloading. Download 

delivery mode is very cost effective compared to streaming in that less bandwidth 

consumption is required in downloading since there is no real time requirement.  As an 

alternative to the streaming,  Siemens AG (August 2006) presents an intermediate 

delivery mode that constitute an actual bridge between streaming and downloading and 

based on MBMS download delivery mode, called “Preload Delivery Mode”, for 

multimedia of limited duration. However, adding new network elements and 

requirement for a standardization effort are some of the critics, which make the 

proposed approach difficult to be deployed in practice. 

 

Jenkac H., Stockhammer T., Xu W. (March 2006) provides an asynchronous and 

reliable solution for streaming, conceptually more suitable for progressive download. 

The proposal stands on partitioning of the media into segments and segment protection 

with fountain codes over FLUTE. Partitioning of the media into segments is not a new 

concept and is previously studied. In harmonic-broadcast based approaches such as 

Pyramid Broadcasting, studied by Hu A. (2001) and Engebretsen L., Sudan M. (2002), 

such segments are mapped onto different channels and mainly proposed for streaming 

type of applications. The drawback of these approaches is their expectation from the 

receiver to be capable of handling many channels in parallel. Repetition of these 

segments with FEC redundant-symbols over FLUTE is proposed by Jenkac H., 

Stockhammer T., Xu W. (March 2006) and Jenkac H., Stockhammer T., Xu W., Abdel 

Samad W. (May 2006)  for streaming applications on a few channels where each 

segment is repeated at different frequency. By repeating the early parts of the media 

more frequently, users are expected to catch the overall stream from the beginning with 

acceptable initial startup delay. The solution can be equally or more suitably applied to 

the progressive download where missing the initial portions similarly causes the 

streaming to fail.  

 



26 

 

For the reliability issues, FEC is the only built-in mechanism in FLUTE. MBMS 

download reliability has already been analyzed in 3GPP working groups. Generally 

existing works analyses the download reliability to discover the minimum FEC 

overhead among a small set of the sizing parameters such as source block size, symbol 

size, IP packet size, SDU (Service Data Unit) and PDU (Protocol Data Unit) size and so 

on. However, Yetgin Z., Seckin G. (2007) studied minimum waiting time with 

minimum FEC overheads to discover the reliability among a large set of sizing 

parameters. According to MBMS specification, 3GPP TSG 26.346 (2007), the FEC 

repair symbols are sent after all the source blocks are sent to the clients. However, this 

approach is not suitable for progressive download application, since lost packets are 

recovered after the file download and client must wait for all source blocks to be sent. 

As studied in (Siemens, March 2005) Random transmission strategy of FEC repair 

symbols is not suitable from the same reason for progressive download too. Reliable 

download analyses supporting progressive download is recently studied by BenQ 

Mobile (2006) and Yetgin Z., Seckin G. (October 2007). 

 

Apart from FEC reliability, some of the works use data carousal technique over 

FLUTE, Peltotalo J., Peltotalo S., Harju J. (July 2005), in which files are transported in 

loops and missing portions can be caught in next loops. This approach is not useful for 

playing the stream for the receiver who missed a portion in current loop and waiting for 

the following loop to recover. So once a portion is missed, the receiver has to wait the 

loop that serves the missed portion. This means the receiver can download but cannot 

play it during the download. However, data carousal technique is still important in that 

receivers missing a loop can still have a chance to use this technique for progressive 

download in subsequent loops.  

 

Another way to guarantee the download reliability apart from FEC is to use MBMS 

repair procedure, one of the associated delivery procedures as defined in MBMS, 3GPP 

TSG 26.346 (2007), in which missing portions can be requested over ptp (point to 

point) or ptm (point to multipoint) repair sessions are configured. Again, this is not 

suitable for progressive download, since this procedure starts after the session ends or 

transmission of the object is finished.   
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In our analyses in the thesis, we try to find optimum combination among many that 

leads to minimum waiting time. Then, we provided an analysis of the progressive 

download delivery considering Reed Solomon and Raptor to find the best gain in 

waiting time for a large set of system parameters under various MBMS network 

conditions. Finally, we provided an analysis of the interleaved download delivery 

considering Reed Solomon and Raptor to find the best gain in FEC overhead for a large 

set of system parameters under various MBMS network conditions. 

 

Four MBMS download systems are proposed in this thesis: (i) Legacy downloads 

with waiting time and transmission cost optimizations, (ii) Progressive download, (iii) 

Interleaved-legacy download, (iv) Interleaved-progressive download. Then we 

compared proposed systems with legacy download and give a conclusion in final 

section. Sequentially we did following steps: 

 

1. Optimizations for Legacy-Download delivery are done to explore Reed 

Solomon FEC protected MBMS from the progressive download point of view.  

2. Analysis for the Interleaved-Download delivery is done to find the gain in 

downloading time and transmission cost.  

3. Analysis of the Progressive-Download is done to find the gain in waiting time. 

4. Analysis for the Interleaved-Progressive-Download delivery is done to find the 

possible gain in waiting time and transmission cost.  

5. Comparision of the legacy and the proposed download systems are provided. 
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CHAPTER THREE 

 

FLUTE PROTOCOL 

 

3.1 Overview 
 

In multicast networks, especially in wireless environments, scability is the primary 

issue. For downloading in such environments, a necessity of reliability brings an extra 

challenge.  So there is a requirement to achieve transport of content delivery in a 

unidirectional manner while preserving reliability and scability at the same time.  

 

Typical multicast data streams are sent using UDP. TCP is not used because it is 

designed for one-to-one unicast streams of data. Multicast data streams sent over UDP 

are inherently unreliable because UDP does not provide guaranteed delivery or 

retransmission of lost packets. Lost packets in UDP-based multicast data streams 

cannot be detected or recovered, unless reliability is provided by the upper layer 

protocol. 

 

There are many protocol standards that provide reliable multicast at the transport or 

application layers. Existing reliable multicast protocols fall into the following four 

categories (Microsoft, 2003): 

 

1. Negative acknowledgement (NACK)-only  

Receivers use NACK packets to request, from the sender, the retransmission of 

missing packets in the multicast data stream. NACK-only protocols do not require any 

additional support from routers in the network. 

 

2. Tree-based acknowledgement (ACK)  

Receivers use positive acknowledgments to indicate multicast data packets that are 

successfully received. 

 

3. Asynchronous Layered Coding (ALC)  



29 

 

Senders provide forward error correction (FEC) with no messages from receivers or 

the routers of the network. 

 

4. Router assist  

Receivers use NACK packets. Routers in the network assist with retransmitting lost 

packets. 

 

Router assist category adds network-centric requirements while other categories 

require bi-directional connectivity between sender and receivers. FLUTE and NORM 

are two IETF (The Internet Engineering Task Force) protocols. FLUTE is an ALC 

based protocol and it differs from other categories in that no messages are required 

from receivers to senders. That is, it requires a connection from sender to receivers but 

does not require a connection from receivers to sender. FLUTE has unidirectional 

property, fewer requirements, less overhead reliable transmissions, most scalability and 

interoperability.  

 

NORM is designed to provide reliable transport of data from one or more sender(s) 

to a group of receivers over an IP multicast network.  “The primary design goals of 

NORM are to provide efficient, scalable, and robust bulk data (e.g., computer files, 

transmission of   persistent data) transfer across possibly heterogeneous IP networks 

and topologies.….NORM is a protocol centered around the use of selective NACKs to 

request repairs of missing data.” (Adamson B. & Others, 2004). 

 

 IETF Reliable Multicast Transport Working group (RMT WG) believes that variety 

of applications and orthogonal requirements these applications exhibit makes a "one 

size fits all" protocol unable to meet the requirements of all applications. 

 

3.1.1 Target Environment 
 

One of the desing goals for FLUTE is its massive scability to a large number of 

multicast receivers particularly in wireless environments. FLUTE is applicable to in 

both fixed networks such as IP multicast and wireless networks such as MBMS in 

UMTS and DVB-H in real broadcast networks as well as in satelite networks. Besides 
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its scability, it can also provide reliability through re-transmission besides Forward 

Error Correction. However, FLUTE re-transmission reliability is not used in MBMS. 

 

FLUTE can be used for both multicast and unicast content delivery, but it is 

primarily designed for unidirectional multicast content delivery. FLUTE can support 

IP4 and IP6 environments. There is no IP specific part in FLUTE headers. FLUTE 

supports Any Source Multicast (ASM) model in which many senders concurrently send 

to same multicast group and receiving side discriminate packets by looking at source 

addresses and  Source Specific Multicast (SSM) models in which there is only one 

sender source in a multicast session.  

 

FLUTE provides reliability using the FEC building block.  This will reduce the error 

rate but does not guarantee a complete success. “Because, FLUTE does not provide a 

method for senders to verify the reception success of receivers, the specification of such 

a method is completely application specific.” (Paila T. & Others, 2004).  For example 

in MBMS, after the session, a receiver may request missing parts that was not 

downloaded with associated delivery procedures. 

 

3.1.2 FLUTE Basics 

 
 

FLUTE is an IETF standardized protocol for unidirectional delivery of files over 

UDP protocol, which is particularly suited to multicast networks. FLUTE is built on top 

of the Asynchronous Layered Coding protocol instantiation as shown in Figure 3.1 that 

uses LCT (Layered Coding Transport Protocol) to carry transport parameters such as 

session identifier and it allows receiver to discriminate among packets by TOI 

(transport object identifier). So a FLUTE packet can be destined for a specific TOI in a 

specific session identified by TSI (Transport Session Identifier) by using LCT session 

and object concept. However LCT alone can not handle the transport of objects, 

because the size of objects is unknown to it. It can generally transport binary objects of 

finite or indeterminate length. All files are referred as objects in LCT concept and 

hence in this document. 
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F L U T E

A L C

L C T F E CC C
 

Figure 3.1 Building block structure of FLUTE. 

 

FLUTE overlays its own headers so that each object with TOI is further described by 

file attributes such as file size, file name, encoding and as well as by transport 

descriptions such as FEC description parameters. All the files that are to be transported 

in a FLUTE session must be described in File Description Table (FDT). FDT table is an 

XML file stored local to sender. Example of a FDT table is given in Figure 3.2 for two 

files: A.3gp and B.txt. If a file is not described in FDT, it does not belong to that 

session. FDT is transported as FDT Instances with TOI=0. A FDT Instance can 

describe one or more files in FDT. FDT Instance carries a running index of files and 

their essential reception parameters in-band of a FLUTE session. 

  

3.1.3 File Description Table (FDT) 

 
 

 
 

Figure 3.2 Symbolic example of a FDT. 

 

TOI is used as an index to FDT table that matches file description (saving) 

parameters such file name possibly with URL, Content type that identifies the type of 

content as a MIME type. Expire means reference to those object descriptions is valid 

until its expiry time. While file size shows the size of file before any encoding (if exist) 

is applied, transfer length shows the size of the object in compressed form such as 
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“gzipped”. If any FEC coding is used for an object, it can be described in FDT. We will 

describe FEC and other file description parameters later in this section. 

 

3.1.4 Sending FDT 
 

 
 

Figure 3.3 Four files described by one FDT instance. 

 

FDT can be sent completely in one FDT Instance, in this case optional parameter 

“complete” can be used to indicate no more different file parameters will be described 

in any upcoming FDT Instance. In Figure 3.3, FDT describing four files are sent with 

one FDT Instance. Each file description in FDT can be separately sent in different FDT 

Instance. Figure 3.4 shows an example of this case. Four files are described in four 

FDT Instances in Figure 3.4.  

 

 

Figure 3.4 Four files described by four FDT instances. 

 

Many combinations can be created. One FDT instance carries at least one file 

description at most complete FDT. During the session, FDT Instances can appear at any 

moment of time. However, it is recommended FDT Instances should be sent prior to 

beginning of transmission of actual object that it describes. 
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At any moment of time during the session, FDT Instances can be duplicated as 

shown in Figure 3.5, or re-described by any subset, superset of a FDT Instance. 

However, any FDT Instance cannot change file descriptions with a specific TOI that 

previously sent in any other FDT Instance. Figure 3.5 shows a datacarausal approach 

where session files are sent in a loop until session ends. 

 

 
 

Figure 3.5 Four files described by one FDT Instances in a loop. 

 
 

3.1.5 Flute Session Concept 

 
 

A FLUTE session is actually an ALC/LCT session consisting of one or more 

ALC/LCT channels sharing a single sender. Sender’s IP address and TSI (Transport 

Session Identifier) uniquely identify a FLUTE session. Each channel in a session is 

defined by a tuple of sender IP address and an address associated with the channel. 

Channels are used with a suitable congestion control building block. In the case of 

multiple channels, multiple rate receiver-driven congestion control protocol is used. A 

receiver must join to a channel in order to receive data sent to the channel by the 

sender. Similarly the receiver leaves the channel to stop receiving data packets from the 

channel. 

 

3.1.6 General FLUTE Protocol Flow 

 

At the beginning, both sender and receiver side know session description parameters 

so that sender knows when and which multicast group it will send to, similarly receiver 

knows sender IP address, the time to join to session, and other session parameters. 

However, receiver does not need to know file parameters in advance of session startup. 

FLUTE protocol allows receiver gradually to learn file descriptions required for 

download. This is achieved by FDT Instances as stated before. Diagram in Figure 3.6 
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shows an example that a multicast session is taking place from sender to receiver. 

Sender has already sent a FDT Instance describing only A.3gp and now sending source 

blocks belonging to A.3gp after which FDT instance describing the file B.3gp will be 

sent next. 

 

Sender has 3 files A.3gp and B.txt, which are described in FDT.xml file. Partitioning 

of A.3gp is achieved by a blocking algorithm that depends on FEC Scheme used. 

Blocking algorithm partitions the file into source blocks so that sizes of source blocks 

are as close each other as possible. In the diagram shown in Figure 3.6 source blocks 

are symbolically indicated as cells. Thus, a source block, SBi, is converted to an 

encoding block, EBi, by FEC encoder. Encoding block EBi includes same or larger 

number of encoding symbols than the source block SBi.  

 

Now sender has to transmit the EBi. However, sender may not send a complete 

encoding block at once. So a group of G consecutive encoding symbols in the EBi, 

called ESG (Encoding Symbol Group), are placed into FLUTE payload with a marker 

in the FLUTE header that shows the starting index, j, of the ESGi in the encoding 

block, called FLUTE Payload ID = (i, j) here to indicate starting index j in Encoding 

Block i.  

 

Now constructed FLUTE packet is transmitted over UDP/IP within a FLUTE 

session. Receiver behavior is quite simple, when it receives a FLUTE packet carrying 

ESGj, it checks which TOI owns the packet. If TOI is zero, it means, ESGj belongs to a 

FDT Instance so receiver will update current FDT database. Otherwise, ESGj belongs 

to a file, so receiver decodes and possibly uncompresses the ESGj if it received enough 

number of encoding symbols and then process results in original source block i, as 

Figure 3.6 shows. 
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Figure 3.6 Example of the FLUTE flow diagram. 

 

Meanwhile, if a packet comes with TOI=2, receiver behaviour is completely application 

dependent. Because receiver doesn’t know file description information of TOI 2. 
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Simplest solution is to ignore the packet. Another possible solution is to put packet to a 

buffer, wait for a FDT Instance that describe it. Hence in Figure 3.6, the question marks 

indicate that the receiver behaviour is application dependent. 

 

3.1.7 Flute Packetization/Depacketization 
 

3.1.7.1 Partitioning 

 

Partitioning of a file is achieved by a blocking algorithm that depends on FEC 

Scheme used. Blocking algorithm computes file fragmentation structure. It decides how 

to partition the file to source blocks so that sizes of source blocks are as close to each 

other as possible. It must be divided in such a way that first number of source blocks 

are of the same larger length, and remaining second number of source blocks are of the 

same smaller length as shown in Figure 3.7. Z=ZL+ZS shows the number of source 

blocks that file is partitioned into. ZL shows the left larger part, ZS shows the rigth 

smaller part. KL is the number of source symbols in a source block that is at left side 

(larger part) KS is the number of source symbols in a source block that is at right side 

(smaller part). At any moment of time, a source block includes either KL or KS source 

symbols. Blocking algorithm computes above parameters ZL, ZS, KL and KS depending 

of the FEC Scheme used.  

 

With FEC, “the data stream is transformed in such a way that reconstruction of data 

object does not depend on the reception of specific data packets, but only on the 

number of different packets received.” ( Luby M., Gemmell J & Others, 2002). FEC 

requires that the object is partitioned into source blocks that sufficient enough in size to 

be able to be stored and processed in FEC buffer. Source Block consist of K source 

symbols. Each source block is independently given to FEC algorithm as input. For each 

source block that given to FEC algorithm, some N redundant symbols are generated, 

which is called repair symbols. When FEC decoder gathers any K of K+N encoding 

symbols, it can recover the original source block.  
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3.1.7.2 Packetization 

 

FLUTE Packetizer receives packet payload as input creates a complete FLUTE 

Packet as output. In Figure 3.7, FLUTE packet is shown within an IP packet. FLUTE 

payload is actually a group of consequtive encoding symbols (ESG) identified by a 

single ID, ESI (Encoding Symbol ID). 

 

 

 

Figure 3.7 FLUTE packetization. 

 

ESI is the starting index of the first symbol of ESG in the Encoding Block (EB). ESI 

together with the SBN (Source Block Number) describes the FLUTE Payload ID. For 
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example in Figure 3.7, the ESG = EBj, EBj+1,... EBj+G is referred as ESGj, and its ESI is 

j. With SBN = i, FEC Payload ID becomes (i, j). 

 

 

 

Figure 3.8 FLUTE de-packetization. 

 

3.1.7.3 De-Packetization 

 

FLUTE De-Packetization process is shown in Figure 3.8. Receiver receives an 

IP/UDP packet that includes FLUTE Packet as UDP payload. FLUTE payload is 
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extracted and its content ESG, a group of consequtive encoding symbols identified by 

ESI (Encoding Symbol ID), placed into FEC Buffer. When enough encoding symbols 

are collected (K of K+N), process is delivered to FEC decoding. FEC decoder decodes 

the Encoding Block EBi and restores the original Source Block, When all source blocks 

are received, file reception is completed. 

 

3.2 FLUTE Details 
 

FLUTE is built on top of the Asynchronous Layered Coding protocol 

instantiation, a massively scalable reliable content delivery protocol that combines 

the Layered Coding Transport (LCT) building block, a congestion control building 

block and the Forward Error Correction (FEC) building block to provide congestion 

controlled reliable asynchronous delivery of content to an unlimited number of 

concurrent receivers from a single sender. (Luby M. & Others, 2002). 

 

As Figure 3.1 shows, LCT is not an overlay over CC and FEC instead it provides 

place holders to be aligned and compatible for CC and FEC. 

 

3.2.1 Layered Coding Transport Block (LCT) 
 

LCT (Luby M., Gemmell J. & Others, 2002) defines the basic transport mechanism 

for FLUTE. It defines session concept, channel concept and object concept in that it 

includes a unique TOI (Transport Object Identifier) for each object. FLUTE defines 

objects further to form a complete object definition by specifying download parameters 

for each object: object name, location, object saving parameters, etc. An LCT session 

consists of one or more logically grouped LCT channels sharing a common sender 

source in LCT headers. An LCT channel is defined by a combination of a sender and an 

address associated with the channel by the sender. There are currently two models of 

multicast delivery: Any Source Multicast (ASM) and Source Specific Multicast (SSM). 

LCT works with both multicast models. FLUTE adopts these transport level definition 

of LCT. 
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LCT supports transport level functions in sender or receiver applications by in-band 

signaling of transport parameters in LCT header. FLUTE uses the session management 

functionality defined in LCT. LCT includes general support for congestion control that 

provides multiple rate or single rate delivery to receivers but does not specify which 

congestion control is to be used. “LCT is also compatible with coding techniques that 

possibly provide reliable delivery of content” (Luby M., Gemmell J. & Others, 2002) 

but does not specify which coding technique to use. In LCT concept, a session can be 

composed of many layers each of which can be coded independently. LCT even does 

not require the coding technique to be used should enable reliability. ALC and hence 

FLUTE define more specificly some of these open issues, and finally FLUTE forms a 

complete protocol. ALC adopts to use a coding technique that also enables reliability 

by means of forward error correction. 

 

LCT provides a number of fields and supports functionality commonly required by 

many protocols. For example LCT provides TSI (transport session identifier) that 

uniquely identify a session, TOI (Transport Object Identifir) that uniquely identify an 

object, Congestion Control Information (CCI) which allows the receiver to perform the 

required congestion control on the packets received. Default LCT header fields is given 

in Figure 3.9. The format of Header Extensions is given in Figure 3.10. 

 

Within an LCT session each packet has an “LCT header”. The LCT header format in 

Figure 3.9 is the default format. “This format is the recommended for use by protocol 

instantiations to ensure a uniform format across different protocol instantiations. “ 

(Luby M., Gemmell J. & Others, 2002). If default LCT header is not used, position and 

length of each header fields must be specified. LCT header attributes are explained in 

following list. 

 

- Default LCT header is of variable size. The length of the overall header is given 

by “HDR_LEN” field. When constructing an LCT packet, all padding and 

reserved (indicated as ‘r’) bits must be set to “0”. All integer types are put into 

“big-endian” or “network order” format.  
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Figure 3.9 Default LCT header format (Luby M., Gemmell J. & Others, 2002). 

 

- V (4 bits): LCT version number 

- C (2 bits): Congestion Control flag. It defines the length of CCI field. 

  C=0�CCI=32 bits 

  C=1�CCI=64 bits 

  C=2�CCI=96 bits 

  C=3�CCI=128 bits 

- S (1 bit): Transport Session Identifier flag. It partially defines the length of TSI 

field; 

  S=0�TSI=0 or TSI=16 bits 

  S=1�TSI=32 or TSI=48 bits 

- O (1 bit): Transport Object Identifier flag. It partially defines the length of TOI 

field; 

  O=0�TOI=0 or TOI=16 bits 

  O=1�TOI=32 or TOI=48 bits 

- H (1 bit): Half-word flag. It allows TSI and TOI field lengths to be multiple of 16 

bits; 

- T (1 bit): Sender Current Time present flag. It decides whether SCT field is 

present;  

  T=0�SCT is NOT present 

  T=1�SCT is present 
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- R (1 bit): Expected Residual Time present flag. It decides whether ERT field is 

present; 

  R=0�ERT is NOT present 

  T=1�ERT is present 

- A (1 bit): Close Session flag. It indicates that session is about to end. Once it is set 

to 1 by the sender, in following packets it must be set to 1 until session is 

closed. 

- B (1 bit): Close Object flag. It indicates that delivery of an object identified by 

TOI in the header is about to finish. Once it is set to 1 by the sender, in 

following packets for the same TOI it must be set to 1 until the object 

transmission is finished. 

- HDR_LEN (8 bits): Total length of the LCT header that must be multiple of 32 

bits. 

- CP (8 bits): Codepoint. It gives coding information of LCT payload. It is similar 

to payload type field in RTP protocol header. In FLUTE, this field corresponds 

to FEC Payload ID. 

- TOI (variable length) : Transport Object Identifier. Depending on the S and H bits 

it can be 0, 16, 32, 48, 64, 80, 96, 112 bits. In LCT each packet carries content 

belonging to only one object identified by TOI. 

- SCT (variable length): Sender Current Time. Depending on the S and H bits it can 

be 0 or 32 bits. It represents the time when the packet was transmitted at the 

sender, local to session start time,. If SCT reaches 2^32-1, it start from zero 

again. 

- ERT (variable length): Expected Residual Time. Depending on the S and H bits it 

can be 0 or 32 bits. It represents the expected time after which the current 

session or current object transmission is finalized, from the sender point of 

view. If packet containing ERT field also contain TOI, ERT applies to that 

object otherwise applies to session.  

- CCI (variable length): Congestion Control Information. Depending on the S and 

H bits it can be 32, 64, 96 or 128 bits. It is used to carry congestion control 

information. 
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- TSI (variable length): Transport Session Identifier. Depending on the S and H bits 

it can be 0, 16, 32, or 48 bits. In LCT TSI is scoped by sender IP address. 

Thus, the IP address of the sender together with the TSI uniquely identifies a 

session. TSI must be unique among all sessions served by the sender during 

the period when session is active. 

- Header Extensions (Variable Length) : It gives a way for upper layer protocols to 

add their specific header information as well as used as container for optional 

header  fields that are not always used or have variable size, for example 

extended-size versions of already contained header fields. 

 

 

Figure 3.10 Format of extension headers (Luby M., Gemmell J. & Others, 2002). 

 

- HET (8 bits): Header Extension Type. HET values from 0 to 127 are used for 

variable length header extensions. HET values from 128 to 255 are used for 

fixed length 32 bit header extensions. Following general header extension 

types that must be supported by all senders and receivers are defined:  

- EXT_NOP=0: No operation extension that must be ignored by the receivers, 

EXT_AUTH=1: Packet Authentication Extension that is used to authenticate 

the sender of the packet. It must be recognized by senders and receivers. 

However its contents may not be able to be parsed by them.  

- There may be header extension types that upper layer protocol using LCT 

defined. For example ALC adds FEC OTI (object transmission information) 

Extension header and Content Encoding Extension Headers. FLUTE adds 

FDT (File delivery table) extension headers.  
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- HEL (8 bits): Header Extension Length. The length of the whole header extension 

field is expressed in multiple of 32 bits.   

- HEC (variable length): Header Extension Content. For fixed length header 

extensions, HEC is 24 bits, for variable length header extensions HEC is 

variable in size depending on the HEL field. 

- ALC and hence FLUTE strengthen the transport concept in LCT and uses the 

default LCD header specified here. 

 

3.2.2 Congestion Control Building Block 
 

Congestion Control Building Block needed to enable co-existing of FLUTE and 

TCP traffic on the internet. ”FLUTE is applicable to both internet use with a suitable 

congestion control building block and provisioned\controlled systems, such as delivery 

over wireless broadcast radio systems. ” (Digital Fountains & Others, May 2004).  

 

Multiple rate or single rate congestion control protocol can be used with LCT. For 

multiple rate procols, receiver driven approach is used. A session consists of more than 

one channel (layer) each of which is possibly coded. Sending rate of each channel does 

not depend on receiver current state. At any moment of time, receiver explores its 

available bandwidth and joins or drops channels dynamically upon the available 

bandwidth independently of other receivers. For single rate protocols, sender driven 

approach is used where a session consist of one channel and during the course of time, 

sending rate changes based on feedback from receivers. Reception rate of each receiver 

may vary dynamically but in cordination with all receivers. This approach requires 

feedback from receivers. 

 

ALC protocol hence FLUTE potentially can use both single rate and multiple rate 

approach. Because of its massive scalability, and its suitability for reliable content 

delivery, feed-back free multiple rate congestition controls are adopted by ALC. 

Additionally by using FEC coding technique, reconstruction of an object, does not 

depend on the reception of specific data packets, rather than the number of different 

packets received, which may be gathered from multiple channels. As a result by 

increasing number of channels, the receiver can reduce the transfer time accordingly 
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without giving any concession from reliability. However if single channel is to be used, 

the effect of using multiple rate congestion control with single channel implies no 

congestion contol where the control is provided by other means. 

 

In summary, four scenarios are possible with FLUTE: i) use of single channel and 

single rate congestion control protocol, ii) use of multiple channels and multiple rate 

congestion control protocol, iii) use of single channel without congestion control 

provided by ALC but possibly provided by other means, iv) use of multiple channels 

without any congestion control supplied by ALC but possibly by other means. Possible 

Congestion Control Building Blocks are Wave and Equation Based Rate Control 

(WEBRC) Building Block (Luby M., & Goyal V., April 2004),  Receiver Driven and 

among others (Welzl M., & Eddy V., March 2007). 

 

3.2.3 Forward Error Correction (FEC) Building Block 

 

LCT does not specify which coding technique to use, and even does not require a 

coding technique that enables reliability such as forward error correction. But the 

natural definition of its layered concept advantageously can be used with a coding 

technique that also enables reliability.  The concept of LCT can be naturally extended 

to reliable content delivery protocols by using forward error correction coding 

technique. ALC and FLUTE does not specify which FEC algorithm is to be used. But 

they define sufficient place holders to encompass any FEC algorithm to be used by 

defining FEC specific ALC extension headers.  

 

A FEC algorithm or equivalently a FEC scheme can be specified by a tuple of FEC 

Encoding ID and FEC Instance ID (=0 for Fully-Specified FEC Scheme). FEC schemes 

can be classified into Fully-Specified FEC Scheme and Under-Specified FEC Scheme. 

In Fully-Specified FEC Scheme, the algorithm is fully specified and opened to other 

implementors. In Under-Specified FEC Scheme, the algorithm is either not fully 

specified or not opened to other implementors. FEC Enc. ID also specifes the format of 

header extension fields that carry FEC OTI in ALC packet. Different FEC algorithms 

need different sets of encoding parameters. So there is FEC-Enc. specific part in 

General FEC OTI extension header as shown in Figure 3.11. 
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  Figure 3.11 General EXT_FTI format (Luby M., Gemmell J. & Others, 2002). 

 
LCT concept gives upper layer protocol to add their protocol specific extension 

headers in LCT extension concept. ALC uses FEC OTI Extension Header, the format of 

which is shown in Figure 3.11. FEC OTI Extension Header with FEC Enc. ID specific 

part carries complete FEC OTI information. FEC encoding algorihms sharing the same 

FEC Enc. ID uses the same FEC Enc. ID Specific Format. FEC Enc. ID is a number 

between 0 to 255, 0 to 127 are reserved for Fully-Specified FEC Scheme, 128 to 255 

are used for Under-Specified FEC Scheme. For Fully-Specified FEC Scheme, only 

FEC Encoding ID is used to specify FEC algorithm with FEC Instance ID set to 0. For 

Under-Specified FEC Scheme, both FEC Encoding ID and FEC Instance ID are used to 

specify FEC codec to be used.  

 

The use of FEC in Reliable Multicast is defined in RFC 3453 (Luby M., Vicisano L., 

& Others, 2002). Possible FEC Encoding algorithms are as follows: 

 
-   XOR FEC 
-   Reed Solomon 
-   Parity Checked Matrix-Based FEC 
        Low Density Parity Check FEC 
        Low Density Generator Matrix FEC 
                — LDGM-Staircase 
                — LDGM-Triangle 
-   Raptor FEC 
 

With FLUTE, the default FEC is Compact-No Code FEC (NULL FEC) that does not 

encode or decode objects. It simply equalizes source symbols and encoding symbols. 
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3.2.4 FEC OTI Information 
 

FEC OTI Information is signalled in-band either with EXT_FTI extension header 

and CP (code point) that carries FEC Encoding ID or using FDT where FEC OTI 

parameters can be specified for objects of TOI > 0.  EXT_FTI format inherits from 

ALC and its general format is shown in Figure 3.12.  The complete format of this 

header depends on the FEC scheme used.  

 

 
 

 

 
 
 

(A) (B) 
 

 
 
 
 

 

                     (C) 

  

Figure 3.12 FEC OTI Examples for different FEC Encoding IDs  A) FEC Enc. ID=0,128,130 specific 

format B) FEC Enc. ID=129 specific format C) MBMS specific format. 

 

Figure 3.12 gives 3 examples for 3 different FEC schemes. For FDT Instance objects 

(TOI=0), FEC OTI information must be provided using EXT_FTI. For non-FDT 

instance objects (TOI>0), both EXT_FTI and FDT can be used to deliver FEC OTI 

information. FEC OTI Information required to be delivered is dependent on the FEC 

scheme used. FEC Enc. ID specifies the format of FEC Enc. specific part in General 

EXT_FTI format. 

 

Following FEC information is common in all FEC Schemes: 

 

- FEC Encoding ID 
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- FEC Instance ID 

- Transfer Length (Object size that is being transferred). 

 

Following FEC OTIs are dependent on FEC Scheme used: 

 

- Encoding Symbol Length (A,B,C) 

- Maximum number of source symbols in a source block (A,B) 

- Maximum number of encoding symbols for a source block (B) 

- Number of source blocks (C) 

- Number of sub-blocks (C), when a source block size cannot be fit into FEC 

buffer, sub- blocks are used. 

- Symbol Alignment parameter (C), ensures that Symbols in a source block and 

sub-symbols contained in a sub-block are multiple of Alignments in size. 

 

3.2.5 Asychronous Layered Coding (ALC) Protocol 
 

Asynchronous Layered Coding combines the Layered Coding Transport (LCT) 

building block, a multiple rate congestion control building block and the Forward Error 

Correction (FEC) building block to provide congestion controlled reliable 

asynchronous delivery to concurrent receivers. The most prominent overlays that ALC 

specifies over LCT concepts are FEC as coding technique and Congestion Control 

adaptation. Hence in ALC packet format, content type of payload is the FEC encoding 

type used; hence in default LCT header CP (codepoint) field carries FEC Encoding ID. 

ALC also forces TSI (Transport Session ID) length not to be zero. It means a session 

concept in LCT is more strengthen in ALC. We have already explained LCT, FEC and 

CC building blocks over which ALC is built. So we will not repeat them here and we 

have also given ALC adaptions as much as possible in previous sections. 

 

The overall ALC packet format is given in Figure 3.13. Default LCT header is given 

previosly in detail in Figure 3.9. ALC packet resides in UDP payload. ALC headers are 

Default LCT headers and Fec Payload ID. Encoding symbols reside in ALC payload. 

FEC payload ID is a tuple of Source Block Number and Encoding Symbol ID. So FEC 
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payload ID specifies which source block packet belongs to and enables differentiation 

among encoding symbols by Encoding Symbol ID. 

 

 
 

Figure 3.13 Overall ALC packet format (Luby M., Gemmell J. & Others, 2002). 

 

When a source block is encoded into an encoding block by FEC encoder, encoding 

block may not be able to be put into a single ALC payload at once. So a group of G 

consequtive encoding symbols are placed into ALC payload and sent until encoding 

block is transmitted. These consequtive G encoding symbols, called encoding symbol 

group, identified by a single Encoding Symbol ID that is the encoding symbol ID of the 

first encoding symbol in the payload. 

 

3.2.6 FLUTE Packet Format 
 

FLUTE is built on top of ALC. ALC provides the basic trasport for FLUTE. So 

FLUTE is an overlay on ALC that inherits all properties of ALC and further define the 

object concept by in-band signaling of object properties together with the delivered 

object. The core of FLUTE specification over ALC is to define how object properties 

such as file-name, location, file-type, content encoding type, security properties, and 

other saving parameters are carried in-band during a session. This property is important 

in that it allows a FLUTE session to start without knowing the actual object that is 

being transferred. So a FLUTE session may gradually define object parameters during a 

session. 
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FLUTE adds two extension headers in LCT extension concept: EXT_FDT and 

EXT_CENC and also uses EXT_FTI inherited from ALC. FLUTE packet can be 

decomposed to four abstractions: Transport Information, FEC OTI Information, FDT 

Instance Information, Content Encoding Information. Transport Information is what 

ALC over LCT concept provides. Following sections provides the other abstractions. 

 

3.2.6.1 FDT Instance Information 

 

FDT (File Delivery Table) information is contained in an XML file local to sender. 

It describes all the files with corresponding file attributes and saving parameters related 

to delivery of files during the session. Each FLUTE session requires a FDT file local to 

sender and a file that is not described in FDT, cannot belong to that session. FDT file 

can include the following object–level information: 

 

- TOI, uniquely identifies the file during the session. It is scoped by concerning 

session (obligatory) 

- FEC OTI Information,(described in FEC Object Tranmission Information section) 

- Transfer-Length, Object size that is transferred 

- File Name and Location identified by the URL (obligatory) 

- Content-Type, MIME media type of file 

- Content-Length, File Size 

- Content Encoding, Encoding of File if compression is applied 

- Content-MD5, Message digest of file 

- Additionally FDT Instances include following instance-level information that 

applies to FDT Instance: 

- Expires, A FDT Instance is valid until its expiration time (obligatory) 

- Complete, a boolean value to indicate no new FDT intances will be provided 

anymore until the end of the session 

- Content-Type, MIME media type of files 

- Content-Encoding, Encoding of Files 

- FEC OTI Information 
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  Figure 3.14 FLUTE packet format (Luby M., Gemmell J. & Others, 2002). 

 

Each file in a FLUTE session must be associated with a TOI >0 in the scope of that 

session. Hence TOI and URL information are obligatory, others are optional. FDT is 

carried as FDT instances during the session. Each FDT instance is carried as transport 

objects TOI= 0. Within a FLUTE session, any TOI=0 means that packet carries a FDT 

instance describing one or more files in FDT. A FDT instance can be subset, superset, 
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dublication, or complement of any other FDT Instances. Each FDT instance is 

identified by FDT Instance ID. FLUTE adds FDT Instance specific extension header, 

EXT_FDT, with HET=192. In EXT_FDT as shown in Figure 3.14, FDT Instance ID 

reserves 20 bits. For each FLUTE session, FDT Instances starts from zero and it is 

incremented by one for each subsequent FDT Instances. 

 

A receiver of a FLUTE session keeps a FDT database that reflects the current state 

of receiver knowledge of the FDT. Upon receiving a new FDT Instance, receiver 

updates its FDT database. In FLUTE specification, FDT Insances are recommended to 

be delivered before the files that are described by those FDT Instances. However 

receiver should assume that a FDT Instance may appear at any time during the session. 

 

3.2.6.2 Content Encoding Information 
 
 

Content Encoding Information is signalled in-band for FDT instances (TOI=0) using 

EXT_CENC extension header as shown in Figure 3.14. That is, FDT instance itself can 

be content encoded and EXT_CENC is used to deliver which content encoding 

algorithm is to be performed to extract original FDT instance.  

 

For non-FDT instance objects (TOI>0), content encoding information is carried 

using FDT. In Figure 3.14, EXT_CENC format is shown. FLUTE identifies this 

extension header by giving a header extension type, HET=193. CENC (8 bits) carries 

content encoding algorithm used in FDT Instance payload. Possible content encoding 

algorithms inludes implementations of Deutsch P. (May 1996):  ZLIB, GZIP, and 

DEFLATE. 

 

3.2.7 FLUTE Session Descriptions 

 

A FLUTE session is identified by a sender IP address and TSI (Transport Session 

Identifier). Each channel in a session is defined by a tuple of sender IP address and an 

address associated with the channel.  
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Receiver needs session descriptors to initiate a service. Service descriptors for 

FLUTE I-D (Walsh R., & Others, January 2007) specifies session description attributes 

for FLUTE. Sender must also know session descriptions in order to begin, send to and 

end the session. Sender must send all files described in a FDT XML file that is local to 

sender. Session descriptions and FDT information are explained in following sections. 

 

3.2.7.1 Session Descriptions 

 

Session description must be known by both sender and client side. Sender must 

know when, how and to whom it will send the data, similarly receiver must know 

when, how and from whom it will get the data. Service Description is a meta data (such 

as SDP or XML based) that contains required information for both side to initiate a 

service. For receiver it is obligatory to have a Service Description service component. 

To describe a FLUTE session, following transport parameters must be provided in 

Session Descriptions: 

 
- The Source IP Address 

- Number of channels in the session 

- Destination IP Address (Multicast IP) and port number for each channel in the 

session 

- Transport Session Identifier (TSI) that is unique in the scope of that session. 

 

Optionally following parameters should be provided to the receiver 

 

- Start time and End time of the session 

- FEC OTI Information 

- FEC Encoding ID 

- FEC Instance ID 

-  FEC Encoding ID Specific Information (Encoding Symbol Length, Maximum 

number of symbols in a source block, Maximum number of source blocks, etc) 

- Content Encoding Format 
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How service description parameters can be described is out of the scope of FLUTE 

specification. It can be a description syntax such as SDP or XML based. How session 

description information is acquired is again out of scope of the FLUTE specification. It 

can be via some transport protocols such as HTTP, email, SIP, Session Announcement 

Protocol, manual pre-confugaration,etc.  

 

An example of Session description with SDP syntax is given in the text below that 

describes 2 channels identified by two IP6 addresses and two corresponding port 

numbers: Address1=FF1E:03AD::7F2E:172A:1E24, port1=4001 and Address2= 

FF1E:03AD::7F2E:172A:1E25 and port2=4002. Both channels are FEC Protected. 

First channel uses FEC Encoding ID=0, second one uses FEC Encoding ID 128 and 

Instance ID=0.  

  

v=1 

o=user_zeki 2890844526 2890842807 IN IP6 2201:056D::112E:144A:1E24 

s=Zeki File delivery session example 

i=More information 

t=1160636400 1192172400 

a=source-filter: incl IN IP6 * 2001:210:1:2:240:96FF:FE25:8EC9 

a=flute-tsi:1 

a=flute-ch:2 

a=FEC-declaration : 0 encoding-id = 0 

a=FEC-declaration : 0 encoding-id = 128 ; instance-id = 0 

m=application 4001 FLUTE/UDP 0 

c=IN IP6 FF1E:03AD:7F2E:172A:1E24 

a=FEC:0 

m=application 4002 FLUTE/UDP 0 

c=IN IP6 FF1E:03AD:7F2E:172A:1E25 

a=FEC:1 

 

Source address is an IP6 address=2001:210:1:2:240:96FF:FE25:8EC9 together with 

session ID=1 uniquely identify the session. 

 

3.2.7.2 File Delivery Table (FDT) Description 

 

We have already explained FDT. Here we will explain how it is described. FDT is 

an XML file that contains file description entries. During the session it is sent as one 

ore more FDT instances, each of which describes at least one, at most the complete 

FDT (all files). The XML code below specifies the XML Schema for FDT Instance: 
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   <?xml version="1.0" encoding="UTF-8"?> 
<xs:schema  

 xmlns="urn:IETF:metadata:2005:FLUTE:FDT"  

 xmlns:xs="http://www.w3.org/2001/XMLSchema"  

 targetNamespace="urn:IETF:metadata:2005:FLUTE:FDT"  

 elementFormDefault="qualified"> 

 <xs:element name="FDT-Instance" type="FDT-InstanceType"/> 

 <xs:complexType name="FDT-InstanceType"> 

  <xs:sequence> 

   <xs:element name="File" type="FileType" 

maxOccurs="unbounded"/> 

   <xs:any namespace="##other" processContents="skip" 

minOccurs="0" maxOccurs="unbounded"/> 

  </xs:sequence> 

  <xs:attribute name="Expires" type="xs:string" 

use="required"/> 

  <xs:attribute name="Complete" type="xs:boolean" 

use="optional"/> 

  <xs:attribute name="Content-Type" type="xs:string" 

use="optional"/> 

  <xs:attribute name="Content-Encoding" type="xs:string" 

use="optional"/> 

  <xs:attribute name="FEC-OTI-FEC-Encoding-ID" 

type="xs:unsignedLong" use="optional"/> 

  <xs:attribute name="FEC-OTI-FEC-Instance-ID" 

type="xs:unsignedLong" use="optional"/> 

  <xs:attribute name="FEC-OTI-Maximum-Source-Block-Length" 

type="xs:unsignedLong"  

   use="optional"/> 

  <xs:attribute name="FEC-OTI-Encoding-Symbol-Length" 

type="xs:unsignedLong" use="optional"/> 

  <xs:attribute name="FEC-OTI-Max-Number-of-Encoding-

Symbols" type="xs:unsignedLong"  

   use="optional"/> 

  <xs:attribute name="FEC-OTI-Scheme-Specific-Info" 

type="xs:base64Binary" use="optional"/> 

  <xs:anyAttribute processContents="skip"/> 

 </xs:complexType> 

 <xs:complexType name="FileType"> 

  <xs:sequence> 

   <xs:any namespace="##other" processContents="skip" 

minOccurs="0" maxOccurs="unbounded"/> 

  </xs:sequence> 

  <xs:attribute name="Content-Location" type="xs:anyURI" 

use="required"/> 

  <xs:attribute name="TOI" type="xs:positiveInteger" 

use="required"/> 

  <xs:attribute name="Content-Length" type="xs:unsignedLong" 

use="optional"/> 

  <xs:attribute name="Transfer-Length" 

type="xs:unsignedLong" use="optional"/> 

  <xs:attribute name="Content-Type" type="xs:string" 

use="optional"/> 

  <xs:attribute name="Content-Encoding" type="xs:string" 

use="optional"/> 

  <xs:attribute name="Content-MD5" type="xs:base64Binary" 

use="optional"/> 

  <xs:attribute name="FEC-OTI-FEC-Encoding-ID" 

type="xs:unsignedLong" use="optional"/> 
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  <xs:attribute name="FEC-OTI-FEC-Instance-ID" 

type="xs:unsignedLong" use="optional"/> 

  <xs:attribute name="FEC-OTI-Maximum-Source-Block-Length" 

type="xs:unsignedLong"  

   use="optional"/> 

  <xs:attribute name="FEC-OTI-Encoding-Symbol-Length" 

type="xs:unsignedLong" use="optional"/> 

  <xs:attribute name="FEC-OTI-Max-Number-of-Encoding-

Symbols" type="xs:unsignedLong"  

   use="optional"/> 

  <xs:attribute name="FEC-OTI-Scheme-Specific-Info" 

type="xs:base64Binary" use="optional"/> 

  <xs:anyAttribute processContents="skip"/> 

 </xs:complexType> 

</xs:schema> 

 

In the schema, there is a sing root element “FDT-Instance”. The “FDT-Element” 

must contain “Expires” attribute that indicates expiry time of the FDT Instance. The 

“File” element defined in a “sequence” structure means, one or more files can be 

described and each can be parsed with “File” element name. Each “File” element has 

same property definitions such as TOI, Content-location, Content-type,etc, which are 

explained before. After the “sequence” definition, there are a group of attributes that 

apply to the complete instance, in the document, we called it as “instance-level” 

attributes, for the file element attributes, we used the term “object-level” attributes. 

“Expires” attribute is an “instance-level” attribute because it characterizes the complete 

FDT Instance.  

 

One example of the FDT based on the XML schema above is given below where 

two files “track1.mp3” and “track2.mp3” are described; 

 

<?xml version="1.0" encoding="iso-8859-1"?> 

<FDT-Instance Expires="1197446400" 

FEC-OTI-FEC-Encoding-ID="129" 

FEC-OTI-FEC-Instance-ID="0" 

FEC-OTI-Maximum-Source-Block-Length="180" 

FEC-OTI-Max-Number-of-Encoding-Symbols="246" 

FEC-OTI-Encoding-Symbol-Length="948"> 

<File TOI="1" 

Content-Location="file:///files/track1.mp3" 

Content-Length="101888“ 

Content-Type=“audio/mp3” 

Content-MD5=“Eth76GIkJU45sghK”/> 

<File TOI="2" 

Content-Location="file:///files/track2.mp3" 

Content-Length="101888“ 

Content-Type=“audio/mp3”  
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Content-Encoding=“gzip” 

Transfer-Length=“68552”/> 

</FDT-Instance> 

 

 As the FDT instance shows if all the files share a group of file attribute values, they 

can be put into instance-level means applies to all files. FEC OTI parameters are 

described as instance-level. That is both mp3 files are protected with the same FEC OTI 

parameters. Content-protection with “md5” is applied to “track1.mp3” and content-

compression with “gzip” is applied to “track2.mp3”. 

 

3.2.8 Service Delivery Model 
 

FLUTE can support several service delivery models. Two examples of them are 

Push Service Model and On-Demand Service Delivery Model. A push model is a 

sender initiated concurrent delivery of objects to a selected set of receivers. One way 

a push service model can be used for reliable content delivery is to deliver a series of 

objects.  The sender could send a Session Description announcement to a control 

channel and receivers could monitor this channel and join a session whenever a 

Session Description of interest arrives.  Upon receipt of the Session Description, 

each receiver could join the session to receive packets until enough packets have 

arrived to reconstruct the object, at which point the receiver could report back to the 

sender that its reception was completed successfully.  The sender could decide to 

continue sending packets for the object to the session until all receivers have 

reported successful reconstruction or until some other condition has been satisfied. 

(Luby M., Gemmell J. & Others, 2002). 

 

For an on-demand content delivery service model, senders typically transmit for 

some given time period selected to be long enough to allow all the intended 

receivers to join the session and recover a single object.  For example a popular 

software update might be transmitted using ALC for several days, even though a 

receiver may be able to complete the download in one hour total of connection time, 

perhaps spread over several intervals of time. In this case the receivers join the 

session at any point in time when it is active. Receivers leave the session when they 

have received enough packets to recover the object. The receivers, for example, 
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obtain a Session Description by contacting a web server (Luby M., Gemmell J. & 

Others, 2002). 

 

There may be other reliable content delivery service models that can be supported 

by ALC.  The description of the potential applications, the appropriate delivery 

service model, and the additional mechanisms to support such functionalities when 

combined with ALC is beyond the scope of this document. (Luby M., Gemmell J. & 

Others, 2002). 
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CHAPTER FOUR 

 

MBMS DOWNLOAD SERVICE 

 

4.1  MBMS Download Service 
 

MBMS download delivery method uses the FLUTE protocol that is described in 

Chapter 3. However MBMS do not use all features of FLUTE, for example it uses a 

single channel for a download session, where in FLUTE number of channels in the 

session is limited but not restricted. So following sections will exhibit how MBMS 

selects capabilities and features of FLUTE protocol specification. A summary of 

MBMS download in MBMS Release 7 specification are extracted from 3GPP TS 

26.346 (2007) and 3GPP TS 26.946 (2007). For up-to-date information check the 

current state of MBMS specification (3GPP TS 26.346 & 26.946).  

 

4.1.1  MBMS Service Descriptions 
 

4.1.1.1  Service Discovery/Announcement  

 

Service Discovery / Announcement provide service description information, which 

may be delivered via the Session and Transmission function or via the Interactive 

Announcement function in MBMS. Service discovery is a mechanism for subscribers to 

get a list of service descriptions while service announcement is a mechanism for the 

sender to announce the list of service descriptions to subscribers. The latter is sender-

initiated while the former is receiver-initiated process.  

 

MBMS download delivery method or MBMS Interactive announcement function 

can be used to deliver service descriptions to subscribers. MBMS Interactive 

announcement functions provide service descriptions to the UE using HTTP. Other user 

service announcement and discovery mechanisms by other means than MBMS defined 

are also possible, for example SAP, SIP, email, SMS Cell Broadcast and so on. 
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4.1.1.2  Service Descriptions 

  

Service descriptions are sets of metadata that describe sufficient number of 

properties of a service to be initiated by the receiver and sender. Service descriptions 

can be in the form of XML-based or SDP based as well as HTTP/MIME headers. 
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Figure 4.1 MBMS download delivery service description fragments (3GPP TSG 
26.346, 2007). 

 

A Service is described by one or more descriptive data, each of which is an 

identifiable block of metadata, called fragment. Each fragment describes some aspect of 

the service and it can be discriminated with identifiers. Figure 4.1 shows these service 

description fragments. Session description fragment is an SDP file that is mandatory 

and describes the session parameters. Others are optional XML files that describe 

details of service protection and associated delivery procedure.  Three metadata 

fragments: Associated delivery description, session description and security description 

are referenced in a user service description fragment, which is another XML file.  

 

One or more services may be bundled together. In this case the root fragment, user 

service bundle description will encompass all service descriptions in separate 

userServiceDescription section in XML as shown in the user service description XML 

example below. All services that form a bundle are described with local or remote 
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references of other fragments. UserServiceDescription section must include at least one 

delivery method, at most many. XML Schema definition of user service bundle 

description is given in (3GPP TSG 26.346, 2007, p.82).  

 

The MBMS Release 7 schema extension provides new attributes for UEs starting 

and terminating behaviour of the service. An initiationRandomization element and 

terminationRandomization element carries the parameters to be used by the MBMS UE 

to randomize their initiation and/or termination operations over time. If the 

initiationRandomization element is present, all MBMS UEs shall randomize the 

inititation time as defined by the attributes of the elements. If the 

terminationRandomization element is present, all MBMS UEs shall randomize the 

termination time as defined by the attributes of the elements. (3GPP TSG 26.346, 2007, 

p.83).  

 

<?xml version="1.0" encoding="UTF-8"?> 

<bundleDescription 

 xmlns="www.example.com/3gppUserServiceDescription" 

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

 

<userServiceDescription 

  serviceId="urn:3gpp:1234567890coolcat"> 

   <name lang="EN">Welcome</name> 

   <name lang="DE">Willkommen</name> 

  <name lang="FR">Bienvenue</name> 

   <name lang="FI">Tervetuloa</name> 

   <serviceLanguage>EN</serviceLanguage> 

   <serviceLanguage>DE</serviceLanguage> 

   <deliveryMethod 

            accessGroupId="1" 

   

 sessionDescriptionURI="http://www.example.com/3gpp/mbms/session1

.sdp"/> 

  

<deliveryMethod 

 sessionDescriptionURI="http://www.example.com/3gpp/mbms/session2

.sdp"   

 associatedProcedureDescriptionURI= 

 "http://www.example.com/3gpp/mbms/procedureX.xml"/> 

 

<deliveryMethod 

 sessionDescriptionURI="http://www.example.com/3gpp/mbms/session3

.sdp" 

 associatedProcedureDescriptionURI= 

   "http://www.example.com/3gpp/mbms/procedureY.xml"/> 

 

<deliveryMethod 
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   accessGroupId="2"         

   

 sessionDescriptionURI="http://www.example.com/3gpp/mbms/session4

.sdp"/> 

 

   <accessGroup id="1"> 

            <accessBearer>3GPP.R6.GERAN</accessBearer> 

            <accessBearer>3GPP.R6.UTRAN</accessBearer> 

   </accessGroup> 

   <accessGroup id="2"> 

            <accessBearer>3GPP.R6.UTRAN</accessBearer> 

   </accessGroup> 

 

 </userServiceDescription> 

</bundleDescription> 

 

 

Above XML code provides an example of MBMS Service description. There is one 

userServiceDescription section; it means the bundle describes only one service. Each 

service has a name and identity so that it can be identified among other services. Name 

and ServiceID attributes are used in this purpose. DeliveryMethod specifies either 

streaming or downlading method used. A single session can be either a streaming 

session or a downloading session. Within the DeliveryMethod section, at least 

sessionDescripitonURI must be provided, and possibly other fragments 

AssociatedProcedureDescriptionURI and ProtectionDescriptionURI can be provided. 

Several Delivery Methods may refer to same AssociatedProcedureDescriptionURI or 

same ProtectionDescriptionURI.  

 

Each service can provided for some radio access network such as UTRAN or 

GERAN. Furthermore, releases of RAN can be specified so that a client within the 

specified release of RAN can use the service. This feature is described by a 

AccessGroup and AccessGroupID. The session described by session4.sdp is provided 

only for 3GPP.R6.UTRAN. It means a client in Release 5 UTRAN will not be able to 

use the service. 

 

4.1.1.3  Security Descriptions 

 

The security description is referenced by the protectionDescriptionURI of the 

deliveryMethod element. A FLUTE channel can be protected using key management 

mechanism. A client needs to know some server addresses that managing key 
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distribution. Each channel in the session is mapped to a specific key ID. Since MBMS 

FLUTE uses single channel, there should be a single mapping of a key ID to a 

download channel specified by a multicast address and a port. KeyId element in XML 

does such a mapping as shown in security description example below. Requesting for 

actual keys that will be used for protection and their distribution by the key server, will 

be using MIKEY packets over point to point bearers on UDP  or point to multipoint on 

UDP (not over FLUTE). When point to multipoint bearers are used, FEC protection can 

applied to MIKEY distribution channel.  Using FEC requires FEC Encoding ID, FEC 

Instance ID and FEC Object Transmission Information specific to FEC Encoding ID. 

They are provided within fecProtection element in the XML. MBMS Service 

Protection Description Example (3GPP TSG 26.346, 2007) is given below. 

 

<?xml version="1.0" encoding="UTF-8"?> 

<securityDescription  

 xmlns="www.example.com/3gppSecurityDescription"  

 xmlns:xs="http://www.w3.org/2001/XMLSchema-instance" 

 confidentialityProtection="true"  

 integrityProtection="true"  

 uiccKeyManagement="true"> 

 <keyManagement 

  offsetTime="5" 

  maxBackOff="10"> 

  <serverURI ="http://register.operator.umts/"/> 

  <serverURI ="http:// register2.operator.umts/"/> 

 </keyManagement> 

 <keyId identity="<someMSKidA>" mediaFlow=224.1.2.3:4002 /> 

 <fecProtection 

  fecEncodingId="130" 

  fecInstanceId="0" 

  fecOtiExtension="1SCxWEMNe397m24SwgyRhg=="/> 

</securityDescription> 

 

Both MBMS client and server request a secret key from the key servers, which 

are available in the specified addresses within keyManagement element, using same 

initial keys given in the security description. Since many receivers or servers may 

request key materials from key servers at the same time, key management procedure 

involves some kind of randomization that is managed by offsetTime and 

maxBackOff. Key servers respond them with a secret key using MIKEY packets, 

with which a single download channel can be protected later. (3GPP TSG 26.346, 

2007) 
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4.1.1.4  Associated Delivery Procedure Descriptions 

 

The Associated Delivery Procedure Descriptions is referenced by the 

AssociatedProcedureDescriptionURI of the deliveryMethod element. An example of 

MBMS Associated Delivery Description (3GPP TSG 26.346, 2007) is given below. 

Associated Delivery Procedure for a FLUTE session mostly means file repair procedure 

as well as reception reporting option. Reception reporting procedure is used to report 

the complete reception of one or more files. By its nature, FLUTE may not provide a 

complete transmission of files to a mass. Some of the files may have corrupted or lost 

blocks. If a receiver determines that some files are not completely received and file 

repair option is also available in the description, specified by postFileRepair element in 

the XML, then it starts Associated Delivery Procedure. 

 

<?xml version="1.0" encoding="UTF-8"?> 

<associatedProcedureDescription 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  

   xsi:schemaLocation="http://www.example.com/mbms-associated-

descrition.xsd"> 

 <postFileRepair 

   offsetTime="5" 

   maxBackOff="10"> 

  <serverURI>http://mbmsrepair.operator.umts/"</serverURI> 

  <serverURI>http://mbmsrepair1.operator.umts/"</serverURI> 

  <serverURI>http://mbmsrepair2.operator.umts/"</serverURI> 

 </postFileRepair> 

 <bmFileRepair 

sessionDescriptionURI="http://www.example.com/3gpp/mbms/session1.sdp"/

> 

  

</associatedProcedureDescription> 

 

Since many clients may request file repair procedure from repair servers about same 

time, some a mechanism is needed to prevent repair servers from being bottleneck. The 

offsetTime and maxBackOff are used in this purpose. The MBMS client Calculates a 

random back-off time and selects a file repair server randomly out of a list, specified in 

postFileRepair element and sends a repair request  message to the selected file repair 

server at the calculated time. 

 

If file repair option is available, MBMS client should wait for repair data in the 

defined MBMS download session, possibly current session or a different session 
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defined in bmFileRepair element. The existence of a broadcast/multicast file repair 

session is signalled by the inclusion of the optional bmFileRepair procedure in the 

updated Associated Delivery procedure description. This is signalled by the 

bmFileRepair element with a single "sessionDescriptionURI" attribute. In the cases 

where the same IP addressing is used for the broadcast/multicast repair session as the 

original download session, the MBMS client simply not leaves the group. Otherwise, 

the client must join to defined session using the specified SDP. A broadcast/multicast 

file repair session behaves just as an MBMS download session, and the determination 

of end of files and session, and use of further associated delivery procedures uses the 

same techniques as specified for the MBMS download delivery method. Then the file 

repair server responds with a repair response message containing the repair data, or at 

worst, describing an error case or some other alternative case. 

 

4.2  MBMS Service Description Transport 
 

Service Descriptions are transported using association of metadata envelope and 

metadata fragment, both of which are XML coded objects. Envelope is a metadata that 

give high-level description of its associated fragment so that it manages transport of 

service descriptions independent of the fragment syntax. “The metadata envelope and 

metadata fragment objects are transported as file objects in the same download session 

either as separate referencing files or as a single embedding file.” (3GPP TSG 26.346, 

2007). A metadata envelope shall be associated with a metadata fragment by one of two 

methods: 

 

1. Embedded: The metadata fragment is embedded within the metadata envelope. 

2. Referenced: The metadata fragment is referenced from the metadata envelope. 

 

The attributes for a metadata envelope and their description defined in 3GPP TSG 

26.346 (2007) as follows: 

 

- metadataURI: A URI providing a unique identifier for the metadata fragment. 

The metadataURI  attribute is obligatory as indicated in the metadata envope 

schema below. 
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- version: The version number of the associated instance of the metadata fragment.  

The version number should be initialized to one.  The version number must be 

increased by one whenever the metadata fragment is updated. The version 

attribute is used for this purpose and it is obligatory. 

- validFrom: The date and time from which the metadata fragment file is valid. The 

validFrom attribute may or not be present. If not present, the UE should 

assume the metadata fragment version is valid immediately. 

- validUntil: The date and time when the metadata fragment file expires. The 

validUntil attribute may or not be present. If not present the UE should assume 

the associated metadata fragment is valid for all time, or until it receives a 

newer metadata envelope for the same metadata fragment describing a 

validUntil value. 

- contentType: The MIME type of the metadata fragment which shall be used as 

defined for "Content-Type" in RFC 2616. The contentType attribute shall be 

present for embedding metadata envelopes.  The contentType attribute may be 

present for referencing metadata envelopes. For example, security description 

fragment uses application/mbms-protection-description. 

 

The formal schema for the MBMS metadata envelope is defined as an XML Schema 

as follows (3GPP TSG 26.346, 2007);  

 
<?xml version="1.0" encoding="UTF-8"?> 

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 

 elementFormDefault="qualified" 

 attributeFormDefault="unqualified"> 

 <xs:element name="metadataEnvelope" type="metadataEnvelopeType" 

minOccurs="1" 

      maxOccurs="unbounded"/> 

<xs:complexType name="metadataEnvelopeType"> 

  <xs:sequence> 

   <xs:element name="metadataFragment" 

      type="xs:string" 

      minOccurs="0" 

      maxOccurs="1"> 

   </xs:element> 

  </xs:sequence> 

  <xs:attribute name="metadataURI" 

      type="xs:anyURI" 

      use="required"/> 

  <xs:attribute name="version" 

      type="xs:positiveInteger" 

      use="required"/> 
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  <xs:attribute name="validFrom" 

      type="xs:dateTime" 

      use="optional"/> 

  <xs:attribute name="validUntil" 

      type="xs:dateTime" 

      use="optional"/> 

  <xs:attribute name="contentType" 

      type="xs:string" 

      use="optional"/> 

  <xs:anyAttribute processContents="skip"/> 

 

 </xs:element> 

</xs:schema> 

 

4.3  Congestion Control 
 

MBMS uses single FLUTE channel with single rate transport. No congestion control 

algorithms are needed in this case. 

 

4.4  Content Encoding of Files 
 

Files may be content encoded for transport, using the generic GZip algorithm 

described by Deutsch P. (May 1996).  UEs shall support GZip content decoding of 

FLUTE files. However content encoding of FDT is not used in MBMS. That is, FDT 

Instances are not content encoded hence FDT_CENC extension header is not used at all 

in MBMS. 

 

4.5  Signaling of Parameters 
 

MBMS Download parameters are carried in FLUTE Headers including Flute 

Extension Headers and FDT Instances.  

 

4.5.1  Flute Mandatory Headers (3GPP TSG 26.346, 2007) 
 

FLUTE and ALC mandatory header fields are explained already in detailed FLUTE 

section. MBMS adds following additional specializations: 

 

- The length of the CCI (Congestion Control Identifier) field shall be 32 bits and it 

is assigned a value of zero (C=0). 
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- The Transmission Session Identifier (TSI) field will be of length 16 bits (S=0, 

H=1, 16 bits). 

- The Transport Object Identifier (TOI) field should be of length 16 bits (O=0, 

H=1). 

- Only Transport Object Identifier (TOI) 0 (zero) will be used for FDT Instances. 

- The following features may be used for signalling the end of session and end of 

object transmission to the receiver: 

 The Close Session flag (A) for indicating the end of a session. 

 The Close Object flag (B) for indicating the end of an object. 

- The T flag indicates the use of the optional "Sender Current Time (SCT)" field 

(when T=1). 

- The R flag indicates the use of the optional "Expected Residual Time (ERT)" 

field (when R=1). 

- The LCT header length (HDR_LEN) shall be set to the total length of the LCT 

header in units of 32-bit words. 

- For "Compact No-Code FEC scheme" ], the FEC Payload ID shall be such that a 

16 bit SBN (Source Block Number) and then the 16 bit ESI (Encoding Symbol 

ID) are given. 

- For “MBMS FEC scheme”, the FEC Payload ID shall be set according to MBMS 

FEC Scheme definition below. 

 

4.5.2  Flute Extension Headers (3GPP TSG 26.346, 2007) 
 

MBMS uses FLUTE extension header fields EXT_FDT, EXT_FTI , EXT_CENC as 

follows: 

 

- EXT_FTI must be included in every FLUTE packet carrying symbols belonging 

to any FDT Instance. 

- FLUTE packets carrying symbols of files (not FDT Instances) shall not include an 

EXT_FTI. 

- FDT Instances shall not be content encoded and therefore EXT_CENC shall not 

be used. 
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- EXT_FDT is in every FLUTE packet carrying symbols belonging to any FDT 

Instance. 

- FLUTE packets carrying symbols of files (not FDT instances) do not include the 

EXT_FDT. 

 

4.5.3  FDT Instances 
 

MBMS uses FDT Instances elements as follows described in detail in 3GPP TSG 

26.346 (2007): 

 

- Content-Location (URI of a file) 

- TOI (Transport Object Identifier of a file instance) 

- Expires (expiry data for the FDT Instance) 

- Content-Length (source file length in bytes) 

- Content-Type (content MIME type) 

- FEC Encoding ID 

 

Other FEC Object Transmission Information specified by the FEC scheme are: 

 

- FEC-OTI-Maximum-Source-Block-Length 

- FEC-OTI-Encoding-Symbol-Length 

- FEC-OTI-Max-Number-of-Encoding-Symbols 

- FEC-OTI-Scheme-Specific-Info 

 

Following FDT attributes are optinal in MBMS: 

 

- Complete  

- Content-Encoding 

- Content-MD5 

 

“The FEC-OTI-Scheme-Specific-Info FDT Instance data element contains 

information specific to the FEC scheme indicated by the FEC Encoding ID encoded 

using base64.” (3GPP TSG 26.346, 2007). 



70 

 

 

4.6  FDT Schema 
 

MBMS uses IETF FLUTE FDT Schema as well as 3GPP FDT extensions as defined 

in (3GPP TSG 26.346, 2007, p.35, p.37) for FDT Instances. The extension of the IETF 

FLUTE FDT schema is done using the following schema definition (3GPP TSG 

26.346, 2007, p.35): 

 

<?xml version="1.0" encoding="UTF-8"?> 

<xs:schema  

 xmlns="urn:3GPP:metadata:2005:MBMS:FLUTE:FDT"  

 xmlns:xs="http://www.w3.org/2001/XMLSchema"  

 targetNamespace="urn:3GPP:metadata:2005:MBMS:FLUTE:FDT"  

 elementFormDefault="qualified"> 

 <xs:complexType name="MBMS-Session-Identity-Expiry-Type"> 

  <xs:simpleContent> 

   <xs:extension base="MBMS-Session-Identity-Type"> 

    <xs:attribute name="value" 

type="xs:unsignedInt" use="required"/> 

   </xs:extension> 

  </xs:simpleContent> 

 </xs:complexType> 

 <xs:simpleType name="MBMS-Session-Identity-Type"> 

  <xs:restriction base="xs:unsignedByte"/> 

 </xs:simpleType> 

 <xs:simpleType name="groupIdType"> 

  <xs:restriction base="xs:string"></xs:restriction> 

 </xs:simpleType> 

</xs:schema> 

 

Most of the data elements in the FDT instances are described previously in Chapter 

3. FEC related parameters in IETF FDT Schema will be described in following 

sections. Grouping attribute in FDT Schema is used to logically group one or more files 

so that downloading of the one in the group automatically triggers other files in the 

same group. Most of the time files downloaded are related to each other. For example, 

downloading a web page component that has many references to other components, 

software packages, and the referencing metadata envelopes and their metadata 

fragments are related. A FLUTE receiver should download all the files belonging to all 

groups where one or more of the files of those groups have been requested. However, a 

UE may instruct its FLUTE receiver to ignore grouping to deal with special 

circumstances, such as low storage availability. The usage of the MBMS Session 

Identity is optional.  Each MBMS session may be activated using a different MBMS 
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session identifier. The MBMS UE determines, based on the MBMS Session Identity 

value, whether the files of the upcoming MBMS download session were already 

received. If the files have already been completely received, the MBMS UE does not 

respond to the notification of the MBMS Session (3GPP TSG 26.346, 2007). 

 

The following schema (3GPP TSG 26.346, 2007, p.37) is given as a 3GPP extension 

of FDT Schema, new in MBMS Release 7, it defines new elements; 

 

<?xml version="1.0" encoding="UTF-8"?> 

<xs:schema  

 xmlns="urn:3GPP:metadata:2007:MBMS:FLUTE:FDT"  

 xmlns:xs="http://www.w3.org/2001/XMLSchema"  

 targetNamespace="urn:3GPP:metadata:2007:MBMS:FLUTE:FDT"  

 elementFormDefault="qualified"> 

  

 <xs:element name="Cache-Control"> 

  <xs:complexType> 

   <xs:attribute name="no-cache" use="optional" 

type="xs:boolean"/> 

   <xs:attribute name="max-stale" use="optional" 

type="xs:boolean"/> 

   <xs:attribute name="Expires" use="optional" 

type="xs:unsignedInt"/> 

   <xs:anyAttribute processContents="skip"/> 

  </xs:complexType> 

 </xs:element> 

</xs:schema> 

 

A file download service may indicate the caching recommendations for a specific 

file or set of files that are delivered using FLUTE. The caching functionality defines 

three different caching directives: 

 

- no-cache: this directive is used to indicate to the receiver not to cache a specific 

file (or set of files). This is probably useful in the case where the file is expected to be 

highly dynamic (changes to the file occur quite often) or if the file will be used only 

once by the receiver application. 

- max-stale: this directive indicates to the FLUTE receiver that a specific file (or set 

of files) should be cached for an indefinite period of time, if possible. The file has no 

expiry date. 
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- Expires: this directive is used by the server to indicate the expected expiry time of 

a specific file (or set of files). It indicates a date and time value in the HTTP date 

format or in the NTP timestamp format. (3GPP TSG 26.346, 2007, p.38) 

 

4.7  MBMS FEC Scheme Definition 
 

MBMS uses Raptor Encoding algorithm which is a fully-specified FEC Scheme and 

uses FEC Encoding ID=0, and NULL FEC Encoding Algorithm which uses FEC 

Encoding ID=0. 

 

4.7.1  FEC Payload ID 
  

Figure 4.2 provides the FEC Payload ID format and its place in FLUTE packet. FEC 

payload ID is a tuple of Source Block Number and Encoding Symbol ID. It specifies 

which source block packet belongs to and enables differentiation among encoding 

symbols by Encoding Symbol ID.  

 

 
 
 
 
    

Figure 4.2 FEC payload ID in MBMS FLUTE. 

 

“The FEC Payload ID shall be a 4 octet field defined as follows: 

 

- Source Block Number (SBN), (16 bits): An integer identifier for the source block 

that the encoding symbols within the packet relate to.  

Source Block Number (SBN) Encoding Symbol ID (ESI) 
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- Encoding Symbol ID (ESI), (16 bits): Starting index of the first encoding symbol 

within a group of consecutive encoding symbols in Encoding Block.”  (3GPP 

TSG 26.346, 2007, p.38). 

 

4.7.2  FEC Object Transmission Information (FEC OTI) 
 

 

MBSM FEC Object Transmission information consists of: 

 

- The FEC Encoding ID=0, FEC Instance ID=0 are used to define raptor encoding 

- The Transfer Length (F), is the size of object that is being transferred 

- The parameters T, Z, N and A  

T- Encoding Symbol Length  

Z- Number of source blocks 

N- Number of sub-blocks, when a source block size cannot be fit into FEC 

buffer, sub- blocks are used 

A- Symbol Alignment parameter ensures that symbols in a source block and 

sub-symbols contained in a sub-block are multiple of Alignments (A) in 

size. 

 

There are two ways to communicate FEC OTI: FDT Instances or Session 

Description Protocol (SDP). Session Description provides FEC OTI at session level for 

MBMS. It means all objects can be sent using one FEC OTI configuration in SDP. 

However, FDT can provide FEC OTI at object-level. It means each object can be sent 

using different FEC OTI configuration and in that case any previously known 

configuration for that object will be overwritten.  

 

General EXT_FTI format Encoding Symbol Length (T) 
 Number of Source Blocks (Z)  Number of Sub-Blocks 

(N) 
Symbol Alignment 

Parameter (A) 
 

Figure 4.3 MBMS FEC specific EXT_FTI format. 

 

When FDT is used to communicate FEC OTI, the FEC Encoding ID will be carried 

in CodePoint (CP) portion of Flute packet (Figure 3.14), FEC Instance ID and Transfer 
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Length will be communicated in General EXT_FTI (Figure 3.14). The other parameters 

shall be encoded in the FEC Encoding ID specific portion of the EXT_FTI field as 

shown in Figure 4.3 below.  

 

The parameters T and Z are 16 bit unsigned integers, N and A are 8 bit unsigned 

integers. The remaining parameters Z, N, A, shall be encoded as a 4 byte field within 

the FEC-Scheme Specific format field. 

 

4.8  MBMS Fragmentations 
 

4.8.1  Fragmentation of Files 
 

Fragmentation is a mechanism that decides how to divide a file into partitions in 

sender side, as well as decides how to augment these partitions to the original file in 

receiver side. It requires two steps; First is the partitioning a file into source blocks, 

possibly, further dividing source blocks into sub-blocks. Second is the partitioning of a 

block into encoding symbols. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4 MBMS fragmentation. 
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Step-1 will be provided by blocking algorithms, step-2 will be provided by FEC 

encoding algorithms. There are two blocking algorithms; one for Compact No-Code 

FEC scheme that is described in FLUTE specification (Luby M. & Others, 2002), and 

one for Raptor-Encoding FEC scheme that will be described in later section. As Figure 

4.4 shows both blocking algorithms and encoding algorithms needs FEC-encoding 

scheme as input parameter. It means partitioning criteria will be described by FEC 

Scheme and file size. While encoding criteria is defined by only FEC scheme used. 

Step-1 results in Z number of Source symbols, ZL of which has KL number of source 

symbols, ZS of which has KS number of source symbols. Step 2 results in K+N number 

of encoding symbols, N of which are repair symbols. 

 

4.8.2  Blocking Algorithm 
 

Blocking algorithms is affected by file size, FEC Scheme and some 

recommendations based on file size and FEC Scheme. Since MBMS uses raptor 

encoder, definition in Figure 4.4, Blocking_Algorithm (File Size, FEC Scheme) can be 

replaced by MBMS_Blocking_Alg (File Size, Recommendations), where MBMS 

specific recommendations will be put into a structure called Recommendations. 

 

In order to apply the Raptor encoder to a source file, the file may be broken into Z ≥ 

1 blocks, known as source blocks. The Raptor encoder is applied independently to each 

source block. As Figure 4.5 shows each source block is identified by a unique integer 

Source Block Number (SBN), where the first source block has SBN zero, the second 

has SBN one, etc. Each source block is divided into a number, K, of source symbols of 

size T bytes each.  Each source symbol is identified by a unique integer Encoding 

Symbol Identifier (ESI), where the first source symbol of a source block has ESI zero, 

the second has ESI one, etc. 

 

Each source block with K source symbols is divided into N ≥ 1 sub-blocks, which 

are small enough to be decoded in the working memory.  Each sub-block is divided into 

K sub-symbols of size T’. Figure 4.5 shows an example source block placed into a two 

dimensional array, where each entry is a T’-byte sub-symbol, each row is a sub-block 

and each column is a source symbol.  For example, the sub-symbol numbered K 
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contains bytes T’·K through T’·(K+1)-1 of the source block.  Then, source symbol i is 

the concatenation of the ith sub-symbol from each of the sub-blocks, which corresponds 

to the sub-symbols of the source block numbered i, K+i, 2·K+i,…, (N-1)·K+I as shown 

in Figure 4.5. That is, source symbol i is the concatenation of N number of sub-symbols 

in column i. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5 Source block construction.  

 

In general, each source block shall be divided into N = NL + NS contiguous sub-

blocks, the first NL sub-blocks each consisting of K contiguous sub-symbols of size of 

TL ·A and the remaining NS sub-blocks each consisting of K contiguous sub-symbols of 

size of TS ·A. The symbol alignment parameter A ensures that sub-symbols are always a 

multiple of A bytes.  

 

So blocking algorithm must determine 8 quantities: ZL, ZS, KL, KS, NL, NS, TL, TS 

based on the five input parameters: 
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- F  the size of the file, in bytes 

- A a symbol alignment parameter, in bytes 

- T the symbol size, in bytes, which must be a multiple of A 

- Z the number of source blocks 

- N the number of sub-blocks in each source block 

 

These input parameters T, Z, N will be adjusted according to some parameter 
derivation algorithms that use some recommendations.  

 
(IL, IS, JL, JS) = Partition (I, J) 

  Begin 

       IL = ceil (I/J) 

      IS = floor (I/J) 

      JL = I – IS · J 

     JS = J - JL 

  End; 

 

Recommendatations is Struct 

Begin 

    W,P,A, KMAX ,KMIN ,GMAX 
End 

 

[T,Z,N] = Parameter_Derivation_Alg (F, Recommendatitons) 
Begin 

      G = min {ceil (P ·KMIN/F), P/A, GMAX}      

      T = floor (P/ (A·G)) ·A   

      Kt = ceil (F/T)        

    

      Z = ceil (Kt /KMAX) 

     N = min{ceil(ceil( Kt/Z)·T/W ), T/A} 

End 

 

[(KL, KS, ZL, ZS), (TL, TS, NL, NS)] = MBMS_Blocking_Alg (F, 

Recommendations) 

 Begin 

   [T,Z,N]=Parameter_Derivation_Alg (F, Recommendations)    

   Kt = ceil(F/T) 

   (KL, KS, ZL, ZS) = Partition[Kt, Z ] 

        (TL, TS, NL, NS) = Partition[T/A, N ] 

 End ; 

 

 

Parameter Derivation Algorithm recommends for the derivation of the four transport 

parameters, A, T, Z and N. This recommendation is based on the following input 

parameters: 

 

- F  the file size, in bytes 

- W, a target on the sub-block size, in bytes 
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- P , the maximum packet payload size, in bytes, which is assumed to be a 

multiple of A 

- A , the symbol alignment factor, in bytes 

- KMAX, the maximum number of source symbols per source block. 

- KMIN, a minimum target on the number of symbols per source block 

- GMAX, a maximum target number of symbols per packet 

 

The values of G and N derived above should be considered as lower bounds. It may 

be advantageous to increase these values, for example to the nearest power of two. In 

particular, the above algorithm does not guarantee that the symbol size, T, divides the 

maximum packet size, P, and so it may not be possible to use the packets of size 

exactly P. If, instead, G is chosen to be a value which divides P/A, then the symbol 

size, T, will be a divisor of P and packets of size P can be used. 

 

Recommended settings for the input parameters, W, A, KMIN and GMAX are as 

follows: W = 256 KB; A = 4; KMIN = 1024; GMAX = 10. 

  
4.9  MBMS Download Flow 
 

Detailed flow diagram, shown in Figure 4.6, for the receiver side is given in (3GPP 

TSG 26.946, 2007, p.15). Repair procedure and reporting are also showed in detail in 

the diagram. Diagram identifies four states of the MBMS receiver: 

 

- The ‘Object Reception’ state reflects the state of the MBMS UE, in which the 

MBMS client is receiving data for any kind of objects, files or FDT instances. 

TOI identifies the object. If client should receive a FDT Instance related to the 

current file being downloaded, it should update corresponding information for 

that file in FDT database. In general, a received FDT Instance results in 

updating current view of FDT database. 

- The ‘defer file repair’ state reflects the state of the MBMS UE, in which the 

MBMS UE deferring the file repair request message.  
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Figure 4.6 Detailed SDL diagram for the file download process of MBMS UE (3GPP TSG 26.946, 2007, 

p.15). 
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- The ‘defer reception reporting’ state reflects the state of the MBMS UE, in which 

the MBMS UE deferring the file repair request message. (TSG 26.946, 2007, 

p.15). 

 

In stand by state, receiver is ready to receive a packet; this packet should include either 

FDT instance fragments or file fragments described in a previously received FDT 

instance. Whenever a new FDT instance is received, a timer is started for those files in 

that FDT instance. Each timer is possibly a separate thread that triggers FDT instance 

expire event so that it can decide when to start repair procedure (associated delivery) 

for the files in that FDT instances. However, a FDT instance may be duplicated, subset 

or superset of a previously received one. It means, a timer startedfor a file described in 

FDT instance i, can be reset if the same file (possibly with new TOI or with the old 

ones) is described in a newly received FDT Instance i+1. So each timer cares one or 

more of objects for the starting time of repair procedure of those objects.  

 

When a timer expires, client checks which repair options are available if any. If a ptp 

repair is available, it starts soon a request to the selected server specified in list of the 

associated procedure description within the current session. Selection of server and 

contacting time is determined based on some randomization principle as explained 

before. Depending of the situation of the server and incoming request for the missing 

parts, client may be redirected to a pmp repair procedure. This case may occur if the 

requested symbols of files are also requested for many clients. Pmp repair procedure 

requires either new session establishment (creation of new MBMS multicast bearers) or 

using the current one.  

 

When session expired or session close flag is received, same procedure above must 

be executed if any missing symbols in files exist. Whether everything is okey or not, 

client may request reporting (reception or statistical one) at the end of the repair 

procedure if any repair is defined and required or at the end of the session if no repair is 

required.  
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CHAPTER FIVE 

 

SYSTEM MODELS 

 

This section provides system models of the proposed MBMS download deliveries, 

which are the legacy download delivery model and the interleaved download delivery 

model as well as an analytical model to show how we formulate the problem and how 

we derive equations for Raptor.  

 

 
 

Figure 5.1 Vidiator MBMS prototype software modules. 

 

The legacy download system is based on Vidiator (Vidiator Technology US) MBMS 

download prototype based on (3GPP TS 26.346, 2007; Digital Fountain, Ericsson & 

Others, May 2004; Nortel Networks, April 2004), which uses Reed Solomon FEC 

coding. System architecture of the legacy download is shown in Figure 5.1. Other 

proposed systems are upgraded from the legacy download system. In each step, Raptor 

results are derived using the experimental results of the Reed Solomon, our analytical 

model and the works in Siemens (March 2005) and 3GPP TSG SA WG#4 (June 2005). 

So for Raptor the results are approximated. To emulate MBMS link conditions we 

implemented a transmission rate and packet loss control module. The MBMS link 
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conditions are aligned with Digital Fountain, Ericsson & Others (May 2004), Nortel 

Networks (April 2004) and 3GPP TSG 26.946 (2007). Mobility issues are discarded, 

hence group management procedures joining and leaving to multicast group occurs 

before the session start and session end respectively. 

 

5.1  The Legacy Download Delivery Model 
 

The system model for the legacy download delivery is shown in Figure 5.2. In order 

to support progressive downloading we assumed that repair symbols are sent just after 

source symbols.  

 

 

Figure 5.2 System model for the legacy download delivery. 

 

In Figure 5.2, after each SBi is delivered to FEC layer the result is EBi that includes 

N encoding symbols (ES). Each encoding symbols is uniquely identified by the couple 

of its Source Block Number (SBN) and Encoding Symbol ID (ESI). A group of G 
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consecutive encoding symbols (ESG) starting from encoding symbol ID = j for SBi is 

denoted as ESGi,j and identified by the couple (SBN,ESI) of the first encoding symbol, 

here (i , j). The ESGs are packed into FLUTE payload just after the place reserved for 

FLUTE Payload ID that is assigned to ESG ID, here (i, j) and transported until no more 

encoding symbols to send. 

 

5.2  The Interleaved Download Delivery Model 
 

The system model for the interleaved download delivery is shown in Figure 5.3. It 

shows the sender side flow of the download delivery with the SB Interleaving of block-

size b that we considered in our work.  

 

 

Figure 5.3 System model for the interleaved download delivery. 

 

That is, b consecutive SBs constitute an interleaver-block and are sent in parallel in the 

order of ESIs. All encoding symbols in the interleaver-block with ESI=1 will be sent 

first, and so on. One more requirement of our interleaving strategy is that each FLUTE 
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packet must include one encoding symbol at a time. However, this process requires all 

the b EBs to be in memory before they are sent. So the parameter b and SB size can be 

used to adapt to different service conditions. 

 

Minimally the interleaver-block size should be two otherwise interleaving cannot be 

applicable. However, increasing the interleaver-block size consumes much more 

memory and complicates the cost of the download process. Hopefully in our work we 

have caught a threshold point upon which increasing the interleaver-block size no 

longer gives benefit. In our work we have caught best results with b=3 for MBMS link 

conditions and under our assumptions. Considering a fixed b, we have to adjust SB size 

accordingly so that the interleaver-block should be filled with always b SBs at a time. 

This is easily accomplished if the interleaver-block divides the number of SBs. So with 

the interleaving strategy that we discussed, partitioning of files into source blocks and 

determining the source block and symbol length will be affected by an extra parameter 

b. Since we have studied on small-scale file size we could not experimentally discover 

the overall aspect of the SB interleaving considering high file sizes. 

 

5.3  Analytical Model 
 

In this section we provide the formulization of the problem, hence 4 parameters: 

Waiting Time, Transmission Cost, Gain in waiting time and Gain in transmission cost 

for the proposed MBMS systems. To do so we define waiting time as “the minimal 

waiting time required to start playing the media on the terminal after the initialization 

of the MBMS download service”. So the term “waiting time” implies the initial startup 

time in progressive based downloads while it refers the downloading time in non-

progressive downloads. In order to predict the initial startup delay, two types of 

receivers; Analyzing Receiver, and Actual Receiver are considered. Analyzing 

receivers estimate the initial startup delays for the target environment for the actual 

receiver. The initial startup delay is maintained on the sender side and sent to the 

receiver. The way that the sender has the estimated initial startup delays priori to the 

service and signaling of initial startup delays to receivers is out of scope of our work 

but it is studied by BenQ Mobile (2006). 
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We considered four environments corresponding to the system models studied: 

Time-Optimized and FEC-Optimized downloading environments, interleaved 

downloading environment and progressive downloading environment. For Progressive 

download types we implicitly assumed downloading time optimization. Since we have 

not Raptor code implementation, we are unable to work on the optimizations for Raptor 

FEC OTI parameters. So FEC overheads for Raptor are taken from the works by 

Siemens (March 2005) and 3GPP TSG SA WG#4 (June 2005) for different MBMS link 

conditions. From the same reason, we cannot study the effect of interleaved progressive 

download for Raptor.  The gain functions allows us to identify how much savings in 

waiting time or in transmission cost can be gained from using the interleaved download 

delivery, progressive download delivery and interleaved progressive download delivery 

as well as from our optimizations. The file transmission is organized such that repair 

packets are transmitted after each source blocks to support progressive download. 

 

F (File Size)

T (time)
Ti-1 Ti

Fi-1

Fi

D = Td Tz

Fz

 

Figure 5.4 Download size as a function of time. 

 

Figure 5.4 shows a worst case analyzing receiver obeying two assumptions: 

reliability and timely manner property where sending rate is less than media play rate 

and both playing and downloading ends at the same time. By considering the worst case 

scenario, analyzing receivers estimate the worst case waiting time for the actual 

receivers. Timely manner property implies that sender transmits symbols approximately 

at some constant rate and the receiver capability is sufficient enough to handle the 
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decoding of blocks without causing any overflow in the receiver buffer. Timely manner 

property is also explained in Figure 5.5. On receiver side, each time a source block is 

decoded, i is incremented and Ti is assigned to a timestamp, the time of writing the 

source block to the file. At time Td media can be started to play progressively. With 

such a property and with a reliable delivery property, receivers can be assumed to play 

the media at some constant rate after waiting D time unit.  

 

Figure 5.4 shows the linearity approximation between time and downloaded media. 

Congestion and buffering in the network decides the linearity approximation between 

time and downloaded media size. If the client suffers much from the buffering delays 

the linearity approximation is good otherwise it will be bad. However, for the receiver 

doing a progressive download, there is a complete linearity between time and played 

media size as long as 100% reliability is provided and suitable initial startup delay is 

given as indicated in the report by BenQ Mobile (2006). So we define partial receiving 

rate ri as the size of source block decoded within a consecutive times Ti-1 and Ti.  
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ii
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∆F
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FF
=r

1-

1-

-

-
        (1) 

 

where F0 = 0, T0=0; Fi denotes downloaded file size in KB and ri denotes partial 

reception rate in Kbps at time Ti, i: 1...z, z is the total number of the source blocks. 

 

R is defined as Expected Average Receiving Rate (EARR) computed at time Tz by 

the analyzing receiver that predicts the average receiving rate of the actual receiver. 

The analyzing receiver should use all ri sequences up to Tz to find a single rate R that 

best estimates the actual average receiving rate of the receiver.  That is the focus is the 

expected average receiving rate in near future, let’s say after time Tz. In order to predict 

the initial startup delay D as well as the download duration for the actual receiver, an 

EARR function is defined. Choosing a good EARR function is not critical regarding to 

its effect on waiting time for small file sizes. So our choice is as follows:  
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1-ii

i

R+r
=R          (2) 

 

where Ri is our choice for the EARR at Ti , R0 = r1; i: 1...z. 

 

The reason behind our choice for such an EARR function, consider another EARR 

function that averages all ri sequences. Let r1=50, r2=60, r3=70 kbps where z=3. Then 

Eq.2 results in R3 = 62.5 kbps however the averaging EARR results in R3 = 60 kbps. 

Our choice more reacts to the recent changes in ri sequences. That is, it is more reactive 

to the network conditions such as network congestion and buffering delays.  

 

From Figure 5.4, we can construct the following approximation for the downloading 

time;  

 

z

z
R

F
=T           (3) 

 

The environments that we worked under are denoted as superscript words: “time” 

and “FEC” to mean downloading time optimization and transmission cost optimization. 

The word “INT” is used as subscript to denote that the system is interleaved while the 

word “PROG” is used to indicate progressive download. Other subscripts “RS” and 

“Raptor” are used to indicate which FEC methods are used. So we define gain timeG to 

denote the gain in downloading time for downloading time optimization while 

FECG denotes the gain in FEC overhead for transmission cost optimization. timeG can be 

computed using Eq.2 and Eq.3 as follows: 
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where time
RST  and time

INTRST ,  denote the downloading times (in sec.) of the legacy and the 

interleaved downloading deliveries respectively, time
RSR  and time

INTRSR ,  denote the Expected 

Average Receiving Rate (in Kbps) of the legacy and the interleaved downloading 

deliveries respectively, time
RSG  indicates the gain in downloading time from downloading 

time optimization while time
INTRSG ,  denotes the gain in downloading time from the 

interleaved download all of which is for Reed Solomon coding. 

 

The gain in FEC overhead FECG can be computed as follows: 
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Where FEC
RSC and FEC

INTRSC ,  denote necessary FEC overheads (in percent) for reliability 

of the legacy and the interleaved downloading deliveries under transmission cost 

optimization respectively while time
RSC  indicates the necessary FEC overhead for 

reliability of the legacy download under downloading time optimization. Gain in FEC 
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overhead from the transmission cost optimization of the legacy download and the 

interleaved download using Reed Solomon coding, are denoted as FEC
RSG and FEC

INTRSG ,  

respectively.   

 

For Reed Solomon all C, R and T values are experimentally discovered during 

emulations. Using the FEC OTI parameters, FEC overhead is calculates as follows;  

 

C = 100* (max_nb_encoding_symbols - max_sb_len)  / max_sb_len  (11) 

 

where max_nb_encoding_symbols indicates maximum number of encoding symbols 

in an encoded block and max_sb_len indicates maximum number of source symbols in 

a source block. 

 

       

 

 

 

 

Figure 5.5 Receiving rate approximation. 

Under the same network, same link conditions and same FEC partitioning with Reed 

Solomon we can produce analytical approximations for C, R and T values for Raptor.   

 

For Raptor, we assumed that there is single FEC overhead selection for both 

optimizations which means the amount of FEC overhead is always selected to be 

minimum to provide 100% reliability. That is, transmission cost optimization and 

downloading time optimization uses the same FEC overheads for Raptor which are 

taken from the works by Siemens (March 2005) and 3GPP TSG SA WG#4 (June 2005) 

for different MBMS link conditions.  So for Raptor the results are approximated using 

our analytical model here.  

 

To formulize the problem for Raptor coding we need to consider few other details. 

Since transmission of a source block and its repair symbols follow each other, decoding 

(k+ r)*t  (k+ r)*t  (k+ r)*t  

Decoding Decoding Decoding 
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process of the block must start within the time interval (k + r)* t as shown in Figure 

5.5, where k is the number of source symbols in the block, r is the number of repair 

symbols for the block and t denotes symbol period under reliability assumption; the 

average time between receiving of two consecutive symbols for an object. So symbol 

period depends on symbol size and transmission rate. However, decoding process may 

not be expected to be completed in this interval. The reason is that while decoding 

process continues the receiver can collect the symbols belonging to the next source 

block in parallel. That is, computation and communication can be overlapped during 

decoding.   

 

If the receiver is overloaded or incapable of handling decoding processes in timely 

manner, such overlapping may occur. If the overlapping causes the decoding of the next 

source block to be failed we say that the timely manner property is not satisfied.   So 

throughout the formulizations for Raptor as well as to support progressive downloading 

we assume that sender transmit symbols approximately at constant rate, hence a 

constant symbol period and the receiver satisfies the timely manner property. 

 

Since each source block means extra repair symbols total time needed to download 

the media is total symbols including repair symbols multiplied by t: 

 

  t
C

+
sk

k
F=tr)+(k

sk

F
=T *)

100*
(* *

*
    (12) 

 

where s is the symbol size in bytes, k is the number of source symbols, r is the 

number of repair symbols, C is FEC overhead in percent and t is the symbol period. 

 

In order to have downloading time and gain approximations for Raptor we have 

assumed that for a source block size of k*s, while Reed Solomon requires CRS percent 

transmission overhead, Raptor requires CRaptor percent transmission overhead and 

symbol period t = tRaptor = tRS since symbol sizes and transmission rates are same. Based 

on such an assumption and using Eq.12, if we subtract TRaptor from TRS we can arrive at 

following for Raptor: 
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where X € {FEC, time}. 

 

From Eq.12,     
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where X € {FEC, time}.  

 

As shown in Figure 5.5, for every time interval of (k+r)*t exactly one source block 

is decoded. So the Expected Average Receiving Rate is computed as follows: 
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where X € {FEC, time}.  

 

While FEC overheads and gain from interleaving for Reed Solomon are 

experimentally explored in this study, Raptor FEC overheads are taken from the work 

by Siemens (March 2005) and 3GPP TSG SA WG#4 (June 2005). Since interleaving 

deals with packet loss patters, under the same network conditions with the same 

interleaving technique we can get the same interleaving gain in transmission cost for 

Raptor FEC protected download delivery system.  
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To formulize the problem for Progressive Download Delivery we considered 

Downloading time optimization. From Eq.15, we can derive the Expected Average 

Receiving Rate for progressive download using Raptor FEC as follows: 

 

time
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time
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=R

*
100*

1
 ,      (16) 

 

where CRaptor denotes the necessary FEC overheads for reliability, which is derived 

from the work by Siemens (March 2005) and 3GPP TSG SA WG#4 (June 2005).  

 

From Figure 5.4, we can construct the following approximation for the download 

duration: 
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Using Eq.17 the Expected Average Receiving Rate and initial startup delay 

approximated at the end of file download using Reed Solomon is as follows; 
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where time
PROGRSD ,  denotes initial startup delay, Rmedia denotes media play rate in Kbps; 

F is media file size in KB; time
PROGRSR , = Rz is the Expected Average Receiving Rate 

computed using emulation results of Reed Solomon FEC protected Progressive 

Download under downloading time optimization. Similarly for Raptor, the initial 

startup time is derived as follows: 
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where time
PROGRaptorD ,  denotes initial startup delay, Rmedia denotes media play rate in 

Kbps; F is media file size in KB; time
PROGRaptorR , = Rz is the Expected Average Receiving 

Rate computed using the analytical model here. 

 

We define gain time
PROGRSG ,  as the time gain of using progressive download compared 

to legacy download in terms of initial startup delay. Gain can be computed using R and 

T as follows: 
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where time
RST  (Eq.4) denotes the duration of the legacy download of the media in 

seconds and G is the gain with progressive download.  Similarly following is derived 

for Raptor: 
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where time
RaptorT  (Eq.13) denotes the duration of the legacy download of the media in 

seconds. Similarly we can compute the Gain from Interleaved Progressive Download 

Delivery compared to legacy download in terms of initial startup delay as follows: 
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where time
RST  (Eq.4) denotes the duration of the legacy download of the media in 

seconds and time
PROGINTRSD ,,  is the initial startup time observed during the emulations of 

Interleaved Progressive Download Delivery.  

 

5.4  Simulation Environment 
 

The prototype in Figure 5.1 is extended to simulate MBMS network conditions. 

Hence a database is designed including two tables: “Configuration” and 

“Simulation_Results”. Simulation is configured mostly by setting the parameters in 

configuration table. Actually configuration table maintain the sizing parameters in 

application layer, FEC layer, IP layer, core network and RLC link layer.  

 

 

 

Figure 5.6 Configurations of the simulation. 

 

Figure 5.6 shows an example of three set of configuration parameters for the 512 KB 

(fscale=2) file distribution. Each set of configuration parameters is identified by the 

configuration ID. In the example, configuration ID 2 identifies that RLC link layer lost 

is 5% (lllost), PDU size is 1280 bytes and the others, which are as follows: 

 

- “fscale” identifes the file to download. There are two files of 100 KB and 512 KB, 

which are identified by “fscale =1” and “fscale =2” respectively. 

- “bbloss” is IP backbone loss ratio. 

- “ccloss” is cell congestion loss ratio. 

- “llloss”  is link layer loss ratio (RLC PDU loss) 

- “cmloss” is cell mobility loss ratio. 

- “ccdelay” is maximum cell congestion delay in second. Once a cell is congested it 

stays congested for randomly changing duration up to “ccdelay” seconds. 
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- “cmdelay” is maximum cell mobility delay in second (max. cell change delay).  

Cell mobility takes a random duration upto “cmdelay” seconds. 

- “max_sb_len”, “es_len” and “max_nb_es” are maximum source block length, 

encoding symbol length and maximum number of encoding symbols respectively, 

which are FEC OTI (Object Transmission information) parameters.  

 

Burst errors are created using the algorithm for simulating the SDU loss pattern 

taken from the work by Digital Fountain, Ericsson & Others (May 2004), which is 

shown below. The function transport_block_lost() simulates the transmission/reception 

of a transport block, returning TRUE or FALSE according to whether the transport 

block is lost or received successfully respectively. 

 

Initialise variable spare_octets to zero 

Initialise variable last_block_lost to FALSE 

Let block_length be the transport block length 

FOR each SDU 

Let sdu_length be the length of the SDU 

sdu_lost := (spare_octets != 0) & last_block_lost 

IF (sdu_length <= spare_octets) THEN 

spare_octets := spare_octets – sdu_length 

ELSE 

remaining_octets := sdu_length – spare_octets 

blocks := Integer part of 

remaining_octets/block_length 

IF (blocks > 0) 

FOR i := 1 TO blocks 

 sdu_lost := transport_block_lost() | 

sdu_lost 

END FOR 

ENDIF 

last_block_lost := transport_block_lost() 

sdu_lost := sdu_lost | last_block_lost 

spare_octets := block_length – (remainder of 

remaining_octets/block_length) 

ENDIF 

IF (sdu_lost) THEN 

 Report SDU as lost 

END IF 

END FOR 

 

Other parameters such as SDU size, mapping of PDU losses to SDU losses that is 

given in above algortihm are implemented inside the code. After an iteration of the 

download, the simulation results are saved in Simulation_Result table shown in Figure 

5.7. Figure 5.7 shows the simulation results of six iterations for the configuration ID = 
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2, which is set previously in configuration table. Each record shows a download result 

and identified by “id”, “fscale” and “iter”.  “Id” intentifies the configuration parameters 

set in configuration table. “Iter” identifies the current iteration of the download. Total 

number of iterations is set by the “iterations” in configuration table. Other attributes are 

as follows: 

 

- “A”,”B”,”C” and “D” identifies the lost distribution among IP backbone losses, 

cell congestion losses, RLC PDU losses and cell mobility losses, which are defined in 

the report by Digital Fountain, Ericsson, NEC, Nokia, Nortel, Siemens (May 2004). In 

the example in Figure 5.7, all the losses belong to “C”, which are RLC PDU losses. 

 

 
 

Figure 5.7 Entries in Simulation_Results Table. 

 

-  “expecteddelay” is the expected delay identifying the downloading duration in 

MBMS download or initial waiting time in MBMS progressive download. 

- “rxsymbolper” is the percent of the received symbols without caring the successful 

or unsuccessfull decoding of source blocks. 

- “rxpercent” is the the downloaded percent of the media with successful decoding 

of source blocks. 

 - “rxrate” is the average receiving rate under the configured network and link 

conditions.  

- “txrate” is the transmission rate.  

 

In the example in Figure 5.7, although transmission rate is 128 kbps, because of 5% 

RLC PDU losses, the average receiving rate is reduced to 98, 97 or 96 kbps under 20% 

FEC transmission.   
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The simulation flow at server side can be summarized as follows; 

 

FOR each Item in Configurations_Table DO 

 MBMS_Download = New Download ( Item) 

 FOR i:=1 to Item.Iterations DO 

   MBMS_Download.Send() 

 END FOR 

END FOR 

 

The simulation flow at receiver side can be summarized as follows; 

 

FOR each Item in Configurations_Table DO 

 MBMS_Download = New Download ( Item) 

 FOR i:=1 to Item.Iterations DO 

   Result_Item = MBMS_Download.Receive (New 

MBMS_Link_Conditions (Item)); 

        Add_To_Simulation_Results_Table (Result_Item); 

 END FOR 

END FOR 

 

MBMS_Download.Receive and MBMS_Download.Send functions are FLUTE sender 

and FLUTE receiver that are based on Vidiator MBMS download prototype, which 

uses Reed Solomon FEC coding. The receive function takes the MBMS link conditions 

as parameters since the transmission rate and packet loss control module are 

implemented at the receiver side. After each download the receiver adds the simulation 

record, denoted as Result_Item in the flow, to the Simulation_Results table. 

 

The configuration database is manually preconfigured before running the simulation. 

There can be many runs of the simulation. After each run of the simulation, 

Simulation_Results table are examined and new set of configuration parameters are 

produced. This process repeats until all sizing effects of the parameters are explored by 

repeating the pre-configuring and running sequence.  

 

Experiments are done on a set of computers. Each computer runs the simulation for 

different configuration parameters which are given in Table 5.1. The MBMS download 

system consists of a single server and a single client. Considering server and client on 

the same machine allows the full control of our simulations. Both client and server 

maintain a database and create a record after each download. The record contains 
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evaluated target parameters for the selected set of configuration parameters shown in 

Table 5.1. Several sets of configuration parameters are scheduled to initiate several 

downloads with different characteristics. Each download experiment for one set of 

configuration parameters has 100 download iterations over which our target parameters 

such as waiting time and initial startup delay are computed using the average of the 

values. After performing all the combinations of the configuration parameters, local 

databases in each computer are merged into a single database. Experimental results are 

produced using that merged database.  
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CHAPTER SIX 

 

EXPERIMENTAL RESULTS 

 

This section is divided into four parts. First part shows the results of our 

experimental analyses for the legacy-download under two optimizations: Downloading 

time optimized versus transmission cost optimized reliability.  

 

Table 6.1 Parameters studied accross layers. 

 
 

In second part gains obtained from the legacy download is further extended by 

Application Layer Interleaving mechanism. Third part shows progressive download 

approach. Hence third part shows our progressive download analyses to explore the 

gain in waiting time. In final section the gain obtained from the progressive download 
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is further improved by combining our application layer interleaving mechanism and 

progressive download. Hence the final section shows the results of analyses of 

Interleaved-Progressive download delivery. Here after, the term legacy download refers 

to the downloading time optimized legacy download unless otherwise stated.  

 

6.1  Experimental Results for Legacy-Download Delivery 
 

This section shows the results of our experimental analyses targeting two 

optimizations for legacy download delivery: Downloading time optimization and 

transmission cost optimization. Each optimization satisfies the reliability requirement.  

Finally we compare them by providing the gains in downloading time as well as in 

transmission cost for different network conditions described by the parameters. The list 

of parameters analyzed in this study across layers is summarized in Table 6.1. 
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Figure 6.1 Transmission cost optimization for 100 KB file. 

 

Reed Solomon FEC performance is very bad at small source block size. As shown in 

Figure 6.1, to Figure 6.4 increasing source block size will decrease the FEC overhead 
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required for reliability, hence causes an increase in FEC performance. However, the 

source block size exceeded a threshold value makes the downloading time increase in 

spite of still reducing the FEC overhead. This property provides trades off between 

downloading time and FEC overhead. Together with source block size, effects of other 

sizing parameters, such as symbol length, RLC block size (Radio Link Layer) and SDU 

(Service Data Unit) size all should be considered together.  
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Figure 6.2 Download time optimization for 100 KB file. 

 

By analyzing many possible combinations of the size choices we have been able to 

catch those cases that lead to download time optimized reliability. Download time 

optimized reliability aims the fastest download with reliability, which also provides 

savings in initial startup time for progressive download delivery. 

 

We observed that as SB (Source Block) size increases FEC overheads dramatically 

decreases around up to SB size of 80 symbols thereafter the decrease slows. 

Additionally the small size file transport shows less deterministic behavior in terms of 
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FEC overhead cost required for reliability. These fluctuations can be seen in Figure 6.1 

and Figure 6.2. With FEC overhead cost optimizations, shown in Figure 6.1 and Figure 

6.3, FEC overhead is reduced with the decreased SDU sizes and increased SB size, 

hence increased number of symbols per block. This will increase the downloading time 

as shown in Table 6.2 and Table 6.3. With downloading time optimizations, shown in 

Figure 6.2 and Figure 6.4, downloading time is reduced with the increased SDU sizes 

and decreased SB sizes, hence decreased number of symbols per block with compared 

to FEC cost optimization. This will cause the FEC overhead to increase as shown in 

Table 6.2 and Table 6.3. 
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Figure 6.3 FEC overhead cost optimization for 512 KB file. 

 

Comparing to both optimizations, FEC overhead optimized reliability is usually 

obtained at same or less SDU sizes and smaller symbol length but higher SB size. It is 

interesting while our recommended SDU size, among the set shown in Table 6.1, for 

FEC overhead optimized reliability is the one that is high but smaller than the RLC 

block size, for downloading time optimized reliability, it is the one that is small but 
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higher than the RLC block size. This gives us clue that in general, recommended SDU 

size should be equal to RLC block size. More detailed comparisons are given in Table 

6.2 and Table 6.3, which also shows the trade off values between FEC and time costs, 

where they occur are shown as labels in the Figure 6.1 to Figure 6.4.  
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Figure 6.4 Download time optimization for 512 KB file. 

 

For example, for RLC block size 640 B, SDU sizes are found mostly 400 and 600 B 

for the FEC optimized reliability, while it is mostly 800 and 1000 B for the download 

time optimized reliability. It seems mysterious that increased FEC overhead results in 

reduction in downloading time. Normally as FEC overhead increases downloading time 

increases too. The mystery lies in that fact that FEC performance increases as SB size 

increases with the cost of decoding time. In order to catch reliability at minimum FEC 

overhead, SB size should be properly selected as well as with the other sizing 

parameters. So higher FEC overhead but the smaller source block size possibly with the 
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other size choices for the sizing parameters changed can trade each other for 

downloading time and FEC overhead. 

 

 Comparisons under different optimizations are given in Table 6.2 for Reed Solomon 

and in Table 6.3 for Raptor. For small files the results shows not deterministic behavior 

and optimization effect is very small hence ignorable. Two type of gain is considered: 

Time and FEC overhead. Usually the gain in one causes a cost in the other.  

 

Table 6.2 Comparison of optimizations for different transmission rates for Reed Solomon. 

 

For example, in Table 6.2 for file 512 KB and 256 Kbps transmission rate the couple 

(Time,FEC)=(2,5) indicates that the downloading time optimization compared to the 

transmission cost optimization gives 2% gain in downloading time with the cost of 

increased FEC overhead. The reverse is also correct, the transmission cost optimization 

compared to the downloading time optimization provides 5% gain in FEC overhead 

with the cost of increased downloading time. 

 

Table 6.3 shows the similar results for Raptor that are obtained under the same size 

selections of the sizing parameters for Reed Solomon, which characterize the same 

network, the same link conditions and the same source block partitioning. So Table 6.2 

and Table 6.3 consider the same conditions for both Reed Solomon and Raptor. Since 

Raptor code implemantation is not free and available upon a huge cost, the analyses of 

the FEC OTI parameters for Raptor is not studied but the effect of network parameters 

are studied. So for Raptor we assumed that there is single FEC overhead selection for 

both optimizations where FEC overheads for different MBMS conditions are selected 

from the works by Siemens (March 2005) and 3GPP TSG SA WG#4 (June 2005). As a 
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100 1 10 3.7 12 3.4 8 17 10 7.4 12 6.8 7 17 10 15.3 12 13.8 10 17 

100 5 23 4.4 23 3.7 17 0 23 8.8 23 7.4 17 0 24 18.5 32 15.3 17 25 

100 10 38 4.8 43 4.0 17 12 38 9.7 43 8.1 17 12 42 21.3 53 17.5 18 21 

512 1 7 18.5 7 18.5 0 0 7 37.0 7 36.9 0 0 8 82.7 8 74.5 10 0 

512 5 18 21.4 19 20.9 2 5 18 42.9 19 41.4 4 5 20 88.3 21 85.3 3 5 

512 10 34 23.7 37 23.5 1 8 34 47.9 37 47.1 2 8 37 104.2 41 99.9 4 10 
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consequence, the results for Raptor are approximated using our analytical model in 

which our assumptions for Raptor are given in detail. 

 

Table 6.3 Comparison of optimizations for different transmission rates for Raptor. 

 

The following is a summary of general observations for optimizations for legacy 

download in MBMS, where results for 100 KB file size is ignored: 

 

- As source block size increases the legacy download system performance increases 

up to a point. Around that point a trade off between FEC overhead and 

downloading time can be provided for Reed Solomon by adjusting the size 

selections of the parameters described in different layers in Table 1. 

- The sizing parameters describing the network that enable optimum downloading 

time for Reed Solomon also enable the optimization in downloading time for 

Raptor.  

- Maximum savings in downloading time is around up to %10 with the 

downloading time optimization compared to the transmission cost 

optimization. 

- Maximally 8.3 seconds gain in downloading time is provided by the downloading 

time optimization with regards to the transmission cost optimization. 

- Maximum savings in FEC overhead is around up to %10 with the transmission 

cost optimization compared to the downloading time optimization for Reed 

Solomon. 

- Maximum reduction in FEC overhead percent is around up to 4 units with the 

transmission cost optimization compared to the downloading time 

optimization for Reed Solomon. 
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100 10 35 4.7 35 3.8 19 35 9.5 35 7.6 20 39 20.9 39 15.9 24 

512 1 4 18.0 4 18.0 0 4 35.9 4 35.9 0 4 79.7 4 71.7 10 

512 5 12 20.3 12 19.7 3 12 40.7 12 38.9 4 14 83.9 14 80.4 4 
512 10 22 21.6 22 21.0 3 22 43.6 22 41.9 4 26 95.9 26 89.3 7 
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6.2  Experimental Results for Interleaved Download Delivery  
 

6.2.1 Experimental Results Under Transmission Cost Optimization 
 

This section shows the gain in FEC overhead when we apply our application layer 

interleaving to the transmission cost optimized legacy download delivery. This means 

the legacy download and the interleaved download are under the transmission cost 

optimization. 

 

Table 6.4 Gains from the interleaved download under FEC optimization for Reed Solomon. 

 

The results for Raptor are approximated using both the analytical model and the 

experimental results for Reed Solomon. The list of parameters analyzed in this section 

is summarized in Table 6.1.  Savings in FEC overhead from the interleaved download 

delivery using Reed Solomon and Raptor are given in Table 6.4 and Table 6.5 

respectively. 

 

Table 6.5 Gains from the interleaved download under FEC optimization for Raptor. 
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100 10 35 4.7 30 3.9 14 35 9.5 30 8.0 14 39 20.9 29 17.4 26 

512 1 4 18.0 3 17.3 25 4 35.9 3 34.6 25 4 79.7 3 76.7 25 

512 5 12 20.3 10 18.3 17 12 40.7 10 36.6 17 14 83.9 12 82.2 14 
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The following is a summary of general observations for the interleaved download 

under transmission cost optimization in MBMS, where results for 100 KB file size are 

ignored because of its small effect on both transmission size and downloading time: 

 

- As file sizes increase, the necessary FEC transmission overhead decreases 

particularly for the network with RLC block = 1280 B. Generally RLC 640 B 

network requires more FEC overhead compared to the RLC 1280 B networks. 

- For 100 KB file, results are not much deterministic where there are more 

fluctuations in gain with regards to 512 KB file. 

- The gain from the transmission cost optimized interleaved download can save 

FEC overhead around up to 29% for Reed Solomon and 25% for Raptor with 

regards to transmission cost optimized legacy download. 

- For Reed Solomon the gain in FEC overhead from the transmission cost 

optimized interleaved download is slightly higher then that of Raptor, where 

the gain difference is around up to 4%. 

- The transmission cost optimized interleaved download provides up to 12% 

savings in downloading time for Reed Solomon and around up to 10% for 

Raptor with regards to the transmission cost optimized legacy download. 

 

6.2.2 Experimental Results under Downloading Time Optimization 

 

This section shows the gain in downloading time when we use the interleaved 

download delivery under downloading time optimization. This means the legacy 

download and the interleaved download are under the downloading time optimization. 

The results for Raptor are approximated using both the analytical model and the 

experimental results for Reed Solomon.  

 

The list of parameters analyzed in this section is summarized in Table 6.1. Savings 

in downloading time from the interleaved download delivery using Reed Solomon and 

Raptor are given in Table 6.6 and Table 6.7 respectively.  
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Table 6.6 Gains from the interleaved download under downloading time optimization for Reed Solomon. 

 

Table 6.7 Gains from the interleaved download under downloading time optimization for Raptor. 

 

The following is a summary of general observations for the interleaved download 

under downloading time optimization in MBMS, where results for 100 KB file size are 

ignored because of its small effect on both transmission size and downloading time: 

 

- As file sizes increase, the downloading time increases as well particularly for the 

network with RLC block = 640 B since RLC 640 B network requires more 

FEC overhead compared to the RLC 1280 B networks. 

- For 100 KB file, results are not much deterministic where there are more 

fluctuations in gain with regards to 512 KB file. 

- The gain from the downloading time optimized interleaved download can save 

downloading time around up to 11% for Reed Solomon and 10% for Raptor 

with regards to the downloading time optimized legacy download. 

- For Reed Solomon the gain in downloading time from the downloading time 

optimized interleaved download is slightly higher then that of Raptor, where 

the gain difference is around up to 2%. 

 
Transmission Rate 

256 Kbps 
Transmission Rate 

128 Kbps 
Transmission Rate 

64 Kbps 

  
Legacy 

Download 
Interleaved 
Download 

 Legacy 
Download 

Interleaved 
Download 

 Legacy 
Download 

Interleaved 
Download  

File 
Size 
(KB) 

PDU 
Loss 
(%) 

FEC 
O. 
(%) 

D. 
Time 
(sec) 

FEC 
Ov. 
(%) 

D. 
Time 
(sec) 

D. 
Time 
Gain 
(%) 

FEC 
Ov. 
(%) 

D. 
Time 
( sec) 

FEC 
Ov. 
(%) 

D. 
Ttime 
( sec) 

D. 
Time 
Gain 
(%) 

FEC 
Ov. 
(%) 

D. 
Time 
( sec) 

FEC 
Ov. 
(%) 

D. 
Time 
( sec) 

D. 
Time 
Gain 
(%) 

100 1 12 3.4 12 3.4 0 12 6.8 12 6.8 0 12 13.8 10 13.9 0 

100 5 23 3.7 22 3.7 0 23 7.4 22 7.3 1 32 15.3 20 15.5 0 

100 10 43 4.0 36 4.0 0 43 8.1 36 8.0 1 53 17.5 38 17.1 2 

512 1 7 18.5 5 17.6 5 7 36.9 5 35.3 4 8 75..3 7 71.7 5 
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- The downloading time optimized interleaved download provides up to 29% 

savings in FEC overhead for Reed Solomon and around up to 25% for Raptor 

with regards to the downloading time optimized legacy download. 

 

6.2.3 General Comparisons 
 

This section combines the gain in downloading time and the gain in FEC overhead 

from the interleaved download to make cross comparisons between transmission cost 

and downloading time optimizations for both Reed Solomon and Raptor FEC methods. 

 

Table 6.8 General comparisons. 

 

Table 6.8 shows these comparisons using maximum and average gains in FEC 

overhead and in downloading time, where the results for 100 KB files are ignored 

because of its small effect on both transmission size and downloading time. Average 

values are computed using the results for 256, 128 and 64 Kbps transmission rates. 

 

The following is a summary of general observations for the interleaved download 

considering both optimizations in MBMS, where results for 100 KB file size are 

ignored because of its small effect on both transmission size and downloading time: 

 

- The transmission cost optimized interleaved download under Raptor FEC 

protection makes reduction in FEC overhead at the average 50% with regards 

to the downloading time optimized legacy download under Reed Solomon 

FEC protection.  
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- The downloading time optimized interleaved download under Raptor FEC 

protection makes reduction in downloading time at the average 15% with 

regards to the transmission cost optimized legacy download under Reed 

Solomon FEC protection.  

- In general Reed Solomon has more benefits from interleaving with regards to 

Raptor. 

 

6.3  Experimental Results for Progressive Download Delivery. 
 

This section shows waiting time analyses for 100% reliability and provides the 

savings in waiting time from progressive download delivery in MBMS. This section 

provides further increase in the gain obtained from downloading time optimized legacy 

download by progressive downloading. Here after, the term legacy download refers to 

the downloading time optimized legacy download unless otherwise stated. Progressive 

download delivery is also considered to be under downloading time optimiziation. 

MBMS download implies Raptor FEC protected MBMS download unless specified 

otherwise. The list of parameters analyzed in this study across layers is summarized in 

Table 6.1. 

 

First we observe the initial startup delay for 100% reliability for various Reed 

Solomon SB sizes. Figure 6.5 and Figure 6.6 show initial startup delay analyses 

observed for small and medium file sizes respectively, transmitted over 256 kbps, 128 

kbps and 64 kbps, under 1%, 5% and 10% link loss ratios for Reed Solomon FEC 

protected download. The SDU size is selected to be the optimum for these conditions as 

well as the SB to provide 100% reliability. We observed that for as the SB size 

increases the initial startup delay decreases. The amount of FEC overhead increases as 

the PDU loss ratio increases. As the FEC overhead increases it is expected that the 

initial startup delay increases too. 
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Figure 6.5 Initial startup delay analyses for 100 KB file. 

 

 

Figure 6.6 Initial startup delay analyses for 512 KB file. 
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Figure 6.7 Initial startup delay for various PDU loss ratios. 

 

For very small files the difference in initial startup delay between Reed Solomon and 

Raptor is around a few seconds which is negligible due to the small file sizes. Using the 

analytical model and experimental results here we provide comparative observations 

between Raptor and Reed Solomon FEC protected progressive downloads at different 

transmission rates that are listed in Table 6.9, Table 6.10 and Table 6.11. 

 

Table 6.9 Progressive download gain comparisions for  MBMS at 256 Kbps. 
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D.(sec.) 
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Gain 
(%) 

Waiting time 
difference in 
Progressive D.  
(Reed 
Solomon -  
Raptor) (sec.) 

100 1 12 0 3.4 100 8 0 3.3 100 0 

100 5 23 0 3.7 100 21 0 3.6 100 0 

100 10 43 0 4.0 100 35 0 3.8 100 0 

512 1 7 0 18.5 100 4 0 18.0 100 0 

512 5 19 0 20.9 100 12 0 19.7 100 0 

512 10 37 0 23.5 100 22 0 21.0 100 0 
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Table 6.10 Progressive download gain comparisions for  MBMS at 128 Kbps. 

File 
Size 
(KB) 

PDU 
Loss 
(%) 

Reed 
Solomon 

FEC 
Overhead 
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Waiting 
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e D.(sec) 
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Waiting 
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D.(sec.) 
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Download 

Gain 
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FEC 
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Raptor 
Waiting 
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D.(sec) 

Raptor 
Waiting 
time in 
Legacy 
D.(sec.) 

Raptor 
Progressive 
Download 

Gain 
(%) 

Waiting time 
difference in 
Progressive D.  
(Reed 
Solomon -  
Raptor) (sec.) 

100 1 12 0.6 6.8 92 8 0.3 6.6 95 0.2 

100 5 23 1.1 7.4 85 21 1.0 7.2 86 0.1 

100 10 43 1.8 8.1 77 35 1.4 7.6 82 0.5 

512 1 7 4.9 36.9 87 4 3.9 35.9 89 1.0 

512 5 19 9.4 41.4 77 12 6.9 38.9 82 2.4 

512 10 37 15.1 47.1 68 22 9.9 41.9 76 5.2 

 

Table 6.11 Progressive download gain comparisions for  MBMS at 64 Kbps. 

File 
Size 
(KB) 

PDU 
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(%) 

Reed 
Solomon 

FEC 
Overhead 
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Reed 
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Waiting 
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e D.(sec) 
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Progressive 
Download 

Gain 
(%) 

Raptor 
FEC 

Overhead 
(%) 
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Waiting 
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Progressive 
D.(sec) 

Raptor 
Waiting 
time in 
Legacy 
D.(sec.) 

Raptor 
Progressive 
Download 

Gain 
(%) 

Waiting time 
difference in 
Progressive D.  
(Reed 
Solomon -  
Raptor) (sec.) 

100 1 12 7.5 13.8 45 8 7.1 13.3 47 0.5 

100 5 32 9.0 15.3 41 22 7.9 14.1 44 1.2 

100 10 53 11.3 17.5 36 39 9.7 15.9 39 1.6 

512 1 8 42.5 74.5 43 4 39.7 71.7 45 2.8 

512 5 21 53.3 85.3 38 14 48.4 80.4 40 4.9 

512 10 41 67.9 99.9 32 26 57.3 89.3 36 10.6 
 

 

The following is a summary of our observations for MBMS Progressive download 

discarding results for the 100 KB file: 

 

- For higher transmission rates, higher gain from progressive download is obtained. 

Gain obtained for 256, 128 and 64 Kbps transmission rates are around 100%, 

80% and 40% on the average respectively. 

- In general, progressive download provides savings in waiting time from 36% up 

to 100% gain, up to 32 seconds with compared to legacy download. 

- In general, progressive download using Reed Solomon provides savings in 

waiting time from 32% up to 100% gain, up to 32 seconds with compared to 

legacy download. 

- Progressive download using Reed Solomon provides savings in waiting time from 

% 45 up to % 100 gain, up to 40 seconds, with compared to FEC optimized 

legacy download. 
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- Progressive download with Raptor has savings in initial startup delay from 7% up 

to 33%, which is up to 11 seconds with regards to progressive download with 

Reed Solomon. 

 

6.4  Experimental Results for Interleaved Progressive Download Delivery. 
 

This section shows the gain in initial startup delay as well as in FEC overhead when 

we use interleaving in progressive download delivery using Reed Solomon FEC 

protection. We did not study interleaving effect in progressive download for Raptor. 

The interleaved progressive download delivery is considered to be under downloading 

time optimization where service and network parameters are selected to minimize the 

download duration hence initial startup delay. 

 

We tried to find the optimum interleaver-block size and hence made experiments for 

the interleaver-block size of 2, 3 and 4 source blocks. As a result we have caught best 

results with an interleaver-block size of 3 under both MBMS link conditions. We 

explored the MBMS network from the interleaving point of view by jointly analyzing 

the interleaving effect of the parameters listed in Table 6.1 on the minimum waiting 

time as well as its effect on the FEC overhead for 100% reliability.  

 

The results provided us the gain in FEC overhead as well as waiting time from 

having application layer interleaving in MBMS network conditions. So using the 

analytical model and the experimental results we obtained comparative observations for 

Reed Solomon FEC protected interleaved download delivery that are provided in Table 

6.12, Table 6.13, and Table  5.14. These tables also provide the overall results and 

gains for our four proposed MBMS download systems.   

 

The following is a summary of our general observations for Reed Solomon FEC 

protected MBMS downloads discarding results for the 100 KB file: 

 

- Gain from the interleaving can save FEC overhead up to 29% and save initial 

sartup delay up to 40% in progressive download delivery. 
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Table 6.12 Summary for Reed Solomon protected MBMS at 256 Kbps. 

 

 

Table 6.13 Summary for Reed Solomon protected MBMS at 128 Kbps. 

 
 

Table 6.14 Summary for Reed Solomon protected MBMS at 64Kbps. 

 

 

- Gain in waiting time from interleaved progressive download obtained for 256, 

128 and 64 Kbps transmission rates are around 100%, 85% and 45% on the 

average respectively, when compared to legacy download. 

- In general, interleaved progressive provides savings in waiting time up to 42 

seconds, from % 42 up to % 100 gain with compared to legacy download. 
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- Interleaved Progressive download provides savings in waiting time up to 46 

seconds, from % 49 up to % 100 gain, when compared to FEC optimized 

legacy download. 
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CHAPTER SEVEN 

 

CONCLUSIONS 

 

In this thesis we focused on 3GPP’s MBMS download delivery with new novel 

methodologies applied on it. We provided a survey of the competing wireless multicast 

technologies with a focus on reliable download. We studied application layer solutions 

to increase the performance of the MBMS download delivery. Hence, we provided 

mechanisms to increase the user satisfaction of the download service such as waiting 

time.  The mechanisms studied in this thesis to reduce the waiting time are the 

application layer interleaving mechanism and progressive download mechanism as well 

as optimizations. To the best of our knowledge these topics have not been studied in the 

literature and our work is providing a leading path for future research.  

 

We analyzed and compared four MBMS download systems: a legacy download 

delivery, an interleaved download delivery, progressive download delivery and 

interleaved progressive download delivery under our optimizations. We considered 

downloading time and transmission cost optimization for both Reed Solomon and 

Raptor FEC protected MBMS systems. While our results for Reed Solomon are 

experimentally exact the results for Raptor are approximated using our analytical model 

more or less to see Raptor behavior against interleaving and progressive downloading 

mechanisms.  

 

First we explored what benefits can be obtained from both optimizations in legacy 

download. We have explored MBMS from the download point of view by analyzing 

many combinations of service parameters as well as network parameters for an efficient 

download service under various MBMS link conditions. Then based on these 

optimizations, we provide experimental analyses to show the gain in using application 

layer interleaving in MBMS. Finally in order to further decrease the waiting time, 

progressive downloading is used with the interleaved download systems. Finally we 

provided performance comparisons of the legacy and the enhanced download deliveries 
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such as progressive download and interleaved progressive download under our 

optimizations. 

 

We consider small 3G mobile media with 128 kbps constant media play rate. With 

our results, the optimizations provides around up to %10 gain in both FEC overhead 

and waiting time with compared to MBMS legacy download. In general, interleaving 

provides savings in FEC transmission cost up to 29% and provides savings in 

downloading time up to 10% in MBMS legacy download delivery and savings in initial 

startup delay up to 40% in MBMS progressive download delivery. We see that Reed 

Solomon FEC protected download system has more benefits from application layer 

interleaving. While MBMS progressive download provides 36% up to 100% gain and 

saves up to 32 seconds in waiting time, the MBMS interleaved progressive download 

delivery provides 45% to 100% gain and saves up to 40 seconds in waiting time with 

compared to MBMS legacy download.  

 

We expect that progressive download support should be provided in MBMS. This 

work will pioneer to support progressive download in MBMS. The results of this study 

will provide guidelines to designers to fine-tune MBMS download service parameters 

for reliability and encourage new works on progressive download and application layer 

interleaving in MBMS. Our work will also be beneficial for 3G wireless multicast 

download and streaming service providers for identifying various issues, resolving 

them and optimizing the system performance. 

 

Future Work 
 

Our progressive download mechanism is a direct extension of the MBMS 

downloading mechanism. However, new mechanims can be used to increase the power 

of the progressive download in MBMS. Since we have no Raptor FEC codes available, 

our results for Raptor are approximated and might be far from the actual values. So we 

recommend using the Raptor FEC code implementation to get exact values. In our 

work, we used small file sizes and 128 Kbps media play rates, same work can be 

extended to the cases for high file sizes and different media play rates.  The thesis 
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encourages novel approaches to support progressive download in MBMS, which will 

be dominant download method in future.   
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APPENDIX A 

 

TEMPORAL ANALYSES 

 

A.1 Detailed Transmission Cost Analyses  
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Figure A.1 Transmission cost analyses for Filesize 100KB, Data Rate 128-256 Kbps, PDU Size 1280 

Bytes, PDU Loss %1. 
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Figure A.2 Transmission cost analyses for Filesize 100KB, Data Rate 128-256 Kbps, PDU Size 1280 Bytes, 

PDU Loss %5 
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Filesize 100KB, Data Rate128-256 Kbps,  PDU Size 1280 Bytes,PDU Loss %10 
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Figure A.3 Transmission cost analyses for Filesize 100KB, Data Rate 128-256 Kbps, PDU Size 1280 

Bytes, PDU Loss %10. 
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Figure A.4 Transmission cost analyses for Filesize 512KB, Data Rate 128-256 Kbps, PDU Size 1280 

Bytes, PDU Loss %1. 
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Filesize 512KB, Data Rate128-256 Kbps, PDU Size 1280 Bytes, PDU Loss %5 
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Figure A.5 Transmission cost analyses for Filesize 512KB, Data Rate 128-256 Kbps, PDU Size 1280 

Bytes, PDU Loss %5. 
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Figure A.6 Transmission cost analyses for Filesize 512KB, Data Rate 128-256 Kbps, PDU Size 1280 

Bytes, PDU Loss %10. 
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Filesize 100KB, Data Rate 64 Kbps,  PDU Size 640 Bytes, PDU Loss %1 
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Figure A.7 Transmission cost analyses for Filesize 100KB, Data Rate 64 Kbps, PDU Size 640 Bytes, 

PDU Loss %1. 
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Figure A.8 Transmission cost analyses for Filesize 100KB, Data Rate 64 Kbps, PDU Size 640 Bytes, 

PDU Loss %5. 
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Filesize 100KB, Data Rate 64 Kbps,PDU Size 640 Bytes, PDU Loss %10
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Figure A.9 Transmission cost analyses for Filesize 100KB, Data Rate 64 Kbps, PDU Size 640 Bytes, 

PDU Loss %10. 
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Figure A.10 Transmission cost analyses for Filesize 512KB, Data Rate 64 Kbps, PDU Size 640 

Bytes, PDU Loss %1. 
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Filesize 512KB, Data Rate 64 Kbps,PDU Size 640 Bytes, PDU Loss %5

0

20

40

60

80

100

120

140

0 50 100 150 200 250

SB Size (Number of Symbols)

F
e

c
 O

v
e

rh
e

a
d

400 600
800 1000

SDU Size (Bytes)

 

 

Figure A.11 Transmission cost analyses for Filesize 512KB, Data Rate 64 Kbps, PDU Size 640 

Bytes, PDU Loss %5. 
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Figure A.12 Transmission cost analyses for Filesize 512KB, Data Rate 64 Kbps, PDU Size 640 

Bytes, PDU Loss %10. 
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A.2 Detailed Initial Startup Time Analyses  

 

Filesize 100KB, Data Rate 256 Kbps, Media Rate 128 Kbps, PDU Size 1280 Bytes, PDU Loss %1 
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Figure A.13 Initial startup time analyses for Filesize 100KB, Data Rate 256 Kbps, PDU Size 1280 

Bytes, PDU Loss %1. 
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Figure A.14 Initial startup time analyses for Filesize 100KB, Data Rate 256 Kbps, PDU Size 1280 

Bytes, PDU Loss %5. 
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Filesize 100KB, Data Rate256 Kbps, Media Rate128 Kbps, PDU Size 1280 Bytes,  PDU Loss %10 
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Figure A.15 Initial startup time analyses for Filesize 100KB, Data Rate 256 Kbps, PDU Size 1280 

Bytes, PDU Loss %10. 

 

Filesize 100KB, Data Rate 128 Kbps, Media Rate128 Kbps,PDU Size 1280 Bytes, PDU Loss %1 

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250

SB Size  (Number of Symbols)

In
it

ia
l 

S
ta

rt
u

p
 D

e
la

y
 (

s
e

c
)

600 800 1000SDU Size(Bytes)

 

 

Figure A.16 Initial startup time analyses for Filesize 100KB, Data Rate 128 Kbps, PDU Size 1280 

Bytes, PDU Loss %1. 
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Filesize 100KB, Data Rate 128 Kbps, Media Rate128 Kbps,PDU Size 1280 Bytes, PDU Loss %5 

0

2

4

6

8

10

12

0 50 100 150 200 250

SB Size  (Number of Symbols)

In
it

ia
l 

S
ta

rt
u

p
 D

e
la

y
 (

s
e

c
)

600 800 1000SDU Size(Bytes)

 

 

Figure A.17 Initial startup time analyses for Filesize 100KB, Data Rate 128 Kbps, PDU Size 1280 

Bytes, PDU Loss %5. 
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Figure A.18 Initial startup time analyses for Filesize 100KB, Data Rate 128 Kbps, PDU Size 1280 

Bytes, PDU Loss %10. 
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Filesize 100KB, Data Rate 64 Kbps, Media Rate 128 Kbps,PDU Size 640 Bytes, PDU Loss %1 
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Figure A.19 Initial startup time analyses for Filesize 100KB, Data Rate 64 Kbps, PDU Size 640 

Bytes, PDU Loss %1. 
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Figure A.20 Initial startup time analyses for Filesize 100KB, Data Rate 64 Kbps, PDU Size 640 

Bytes, PDU Loss %5. 
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Filesize 100KB, Data Rate 64 Kbps, Media Rate 128 Kbps,PDU Size 640 Bytes, PDU Loss %10
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Figure A.21Initial startup time analyses for Filesize 100KB, Data Rate 64 Kbps, PDU Size 640 

Bytes, PDU Loss %10. 
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Figure A.22 Initial startup time analyses for Filesize 512KB, Data Rate 256 Kbps, PDU Size 1280 

Bytes, PDU Loss %1. 
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Figure A.23 Initial startup time analyses for Filesize 512KB, Data Rate 256 Kbps, PDU Size 1280 

Bytes, PDU Loss %5. 
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Figure A.24 Initial startup time analyses for Filesize 512KB, Data Rate 256 Kbps, PDU Size 1280 

Bytes, PDU Loss %10. 
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Figure A.25 Initial startup time analyses for Filesize 512KB, Data Rate 128 Kbps, PDU Size 1280 

Bytes, PDU Loss %1. 
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Figure A.26 Initial startup time analyses for Filesize 512KB, Data Rate 128 Kbps, PDU Size 1280 

Bytes, PDU Loss %5. 
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Filesize 512KB, Data Rate 128 Kbps, Media Rate 128 Kbps, PDU Size 1280 Bytes, PDU Loss %10
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Figure A.27 Initial startup time analyses for Filesize 512KB, Data Rate 128 Kbps, PDU Size 1280 

Bytes, PDU Loss %10. 
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Figure A.28 Initial startup time analyses for Filesize 512KB, Data Rate 64 Kbps, PDU Size 640 

Bytes, PDU Loss %1. 
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Filesize 512KB, Data Rate 64 Kbps, Media Rate 128 Kbps,  PDU Size 640 Bytes,PDU Loss %5
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Figure A.29 Initial startup time analyses for Filesize 512KB, Data Rate 64 Kbps, PDU Size 640 

Bytes, PDU Loss %5. 
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Figure A.30 Initial startup time analyses for Filesize 512KB, Data Rate 64 Kbps, PDU Size 640 

Bytes, PDU Loss %10. 
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APPENDIX B 

 

PROTOTYPE 

 

B.1 Prototype Service Modules  
 

 

 

 

Figure B.1 User interface of the download service of the prototype when a new download service is 

scheduled. 

 

Figure B.1 shows the creation of a download service that will distribute two 

multimedia files “exp1.3gp” and “exp2.3gp” to a multicast group identified by 

Destination Multicast IP and Transport Session Identifier.  

 

Figure B.2 shows creation of an announcement service for the download service 

newly scheduled. This announcement service will distribute the service description 

metadata of the actual download service to the multicast group identified by 

Destination Multicast IP and Transport Session ID in announcement section of Figure 

B.2. 
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Figure B.2 User interface of the download service of the prototype when an announcement service is 

scheduled. 

 

 
 

Figure B.3 Scheduled services in services database prior to sessions start. 

 

Figure B.3 shows the content of the service database just after the creation of the 

download and its announcement services while Figure B.4 shows the content just after 

the services are started. 

 

 
 

 

Figure B.4 Scheduled services in services database just after sessions start. 
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Figure B.5 User service description envelope file created for the 

download service. 

 
 

Figure B.6 User service description file created for the download service. 

 

 
 

Figure B.7 Session description envelope file created for the download 

service. 
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Figure B.8 Session description file created for the 

download service. 

 

 
 

Figure B.9 File description table file created for the 

download service. 

 

Figure B.5 and Figure B.6 show envelope and metadata fragment association of the 

user service description metadata fragment. They are created at the phase of scheduling 

of the download service shown in Figure B.1 

 

Figure B.7 and Figure B.8 show envelope and metadata fragment association of the 

session description metadata fragment. They are created at the phase of scheduling of 

the download service shown in Figure B.1 
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Figure B.9 shows file description table created for the download service. It is also 

created at the phase of scheduling of the download service shown in Figure B.1.  

 

 

 

Figure B.10 Receiver user interface when announcement session is activated. 

 

Now services are ready to start when their session start time comes. Server is 

running. Now Figure B.10 shows the receiver side user interface that is newly join to 

the announcement channel. There are no available services known by the user. In order 

to automatically receive the announcement, the user has to join to the announcement 

channel. As soon as the announcement channel is joined, corresponding information 

becomes available to the user in active session section of the user interface. 

 

Figure B.11 shows the situation when a new service is available from the 

announcement channel and the user leaves the announcement channel. There are four 

service description files downloaded from the announcement channel. These files are 

metadata files and they update the receiver side service database, the content of which 

is shown in Figure B.12. 
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Figure B.11 Receiver user interface when a new service is available. 

 

 

 

Figure B.12 Receiver service announcement database after a new service is available. 

 

Figure B.12 indicates service announcement descriptions. As new envelopes or 

metada fragments come from the announcement channel, it updates the corresponding 

entries in database.  

 

Figure B.13 shows the situation when the user is joined to the actual download 

service available and used that service. 
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Figure B.13 Receiver user interface after the download service is used. 

 

B.2 Prototype Enhancement for MBMS Emulations  
 

The prototype is extended to emulate progressive download as well as interleaved 

download or interleaved progressive download under MBMS network conditions. 

Hence a database is designed including two tables: “configuration” and “entries” 

(girisler). Emulation is configured mostly by setting the attributes in configuration 

table. However, some of the attributes are controlled inside the code. 

 

Figure B.14 shows the current state of the emulation for the example of a download 

service distributing two 3gp media files. In active downloads section “Iter” provides 

iteration related information. In the example there are 100 iterations, now the emulation 

just finished iteration 3.  It means 6 downloads are done. MBMS link and MBMS 

network conditions are identified by the configuration ID, which is shown in Figure 

B.15 in detail. In the example, configuration ID 2 means RLC link layer lost is 5% 

(lllost), PDU size is 1280 bytes. Other informations are as follows: 
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Figure B.14 Emulation user interface of the receiver side media download. 

 

 

 

Figure B.15 Configuration of the emulation in emulation database. 

 

- “bbloss” is IP backbone loss ratio. 

- “ccloss” is cell congestion loss ratio. 

- “llloss”  is link layer loss ratio (RLC PDU loss) 

- “cmloss” is cell mobility loss ratio. 

- “ccdelay” is maximum cell congestion delay in second. Once a cell is congested it 

stays congested for randomly changing duration up to “ccdelay” seconds. 

- “cmdelay” is maximum cell mobility delay in second (max. cell change delay). 

Cell mobility takes a random duration upto “cmdelay” seconds. 
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Other parameters such as SDU size, Transmission rate and mapping of PDU lossess 

to SDU losses are implemented inside the code. With each iteration our emulation 

calculates and saves following information shown in B.16. Each record (iteration 

information) is identified by “id”, “fscale” and “iter”.   

 

 

 

Figure B.16 Entries in emulation database. 

 

“Id” intentifies the configuration parameters set for MBMS network conditions in 

configuration table while “fscale” identifes the media file downloaded. There are two 

files of small and medium sizes, which are identified by “fscale =1” and “fscale =2” 

respectively. “Iter” identifies the current iteration of the download. Total number of 

iterations is set by the “iter” in configuration table. Other informations are as follows: 

 

“A”,”B”,”C” and “D” identifies the lost distribution among IP backbone losses, cell 

congestion losses, RLC PDU losses and cell mobility losses, which are defined in the 

report by Digital Fountain, Ericsson, NEC, Nokia, Nortel, Siemens (May 2004). In the 

exaple in Figure B.16 all the losses belong to “C”, which are RLC PDU losses. 

 

- “expecteddelay” is the expected delay identifying the waiting time or initial 

startup time in MBMS download. 

- “rxsymbolper” is the received symbols percent without caring the successful or 

unsuccessfull decoding of source blocks. 

- “rxpercent” is the the downloaded percent of the media with successful decoding 

of source blocks. 
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- “max_sb_len”, “es_len” and “max_nb_es” are maximum source block length, 

encoding symbol length and maximum number of encoding symbols 

respectively, which are FEC OTI informations.  

- “rxrate” is the average receiving rate under the configured network and link 

conditions.  

- “txrate” is the transmission rate.  

 

In the example in Figure B.16, although transmission rate is 128 kbps, because of 

5% RLC PDU losses, the average receiving rate is reduced to 98, 97 or 96 kbps under 

20% FEC transmission cost with other FEC OTIs shown in the table, 1280 bytes RLC 

block size, 800 bytes SDU size as well as other parameters.  

 

 


