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HIGH FREQUENCY VIBRATIONS OF THIN PLATES 

 

ABSTRACT 

                

In the analysis of high frequency dynamics of vibrating systems, an averaged 

prediction of energy is generally of interest to describe the response level. However, 

energetic response parameters do not include modal information and thus exhibit 

smooth characteristics. Therefore, it is obvious for systems subjected to high 

frequency excitations that an efficient tool is required. This doctorate study mainly 

deals with the development of such an approach.  

 

In this regard, a novel scheme for the discrete high frequency response analysis is 

introduced in the presented thesis. The scheme is based on Discrete Singular 

Convolution (DSC) and Mode Superposition (MS) methods. The accuracy of the 

DSC-MS is validated for thin beams and plates by comparing with available 

analytical solutions. The performance of the DSC-MS is evaluated by predicting 

spatial distribution and discrete frequency spectra of the vibration response of thin 

plates with two different boundary conditions.  

 

As a secondary study, this thesis introduces two different application procedures 

for the classical DSC method. The first one is an algorithm for free vibration analysis 

of symmetrically laminated composite plates. The second one is an implementation 

for free vibrations of thick beams and plates. Comprehensive comparisons with open 

literature state that both procedures presented for the DSC are rather effective and 

accurate. 

 

 

Keywords: High frequency, Thin plate, Discrete response, DSC, DSC-MS, Free 

vibration, Forced vibration, Laminated composite, Timoshenko beam, Mindlin plate. 
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İNCE PLAKALARIN YÜKSEK FREKANS TİTREŞİMLERİ 

 

ÖZ 

                

Titreşen sistemlerin yüksek frekans dinamiğinin analizinde, cevap düzeyini 

tanımlayabilmek için genellikle ortalama enerji kestirimi göz önüne alınır. Ancak, 

cevabın enerji parametreleri ile ifadesi modal bilgi içermediğinden dolayı düzgün bir 

karakteristik sergiler. Bu yüzden, yüksek frekans zorlamalarına maruz kalan 

sistemler için etkili bir araca ihtiyaç duyulduğu açıktır. Bu doktora çalışması temelde 

böyle bir yaklaşım geliştirmekle ilgilenir.  

 

Bu bağlamda, sunulan tezde ayrık yüksek frekans cevap analizi için yeni bir 

yaklaşım tanıtılmıştır. Yaklaşım ayrık tekil konvolüsyon (DSC) ve mod 

süperpozisyonu metodlarına (MS) dayanmaktadır. İnce çubuk ve plakalar için DSC-

MS’ nin doğruluğu varolan analitik çözümlerle karşılaştırılarak kanıtlanmıştır. DSC-

MS’ nin performansı iki farklı sınır koşuluna sahip ince plakaların titreşim cevabının 

uzamsal dağılım ve ayrık frekans spektrum kestirimleri yapılarak değerlendirilmiştir.  

 

İkincil bir çalışma olarak, bu tez klasik DSC yöntemi için iki farklı uygulama 

yordamı ortaya koymuştur. Birincisi simetrik olarak tabakalı kompozit plakaların 

serbest titreşim analizleri için bir algoritma, diğeri kalın çubuk ve plakaların serbest 

titreşimleri için bir uygulamadır. Açık literatür ile yapılan kapsamlı karşılaştırmalar 

DSC için ortaya konulan her iki yordamın da oldukça etkili ve başarılı olduğunu 

göstermektedir.  

 

 

Anahtar Sözcükler: Yüksek frekans, İnce plaka, Ayrık cevap, DSC, DSC-MS, 

Serbest titreşim, Zorlanmış titreşim, Tabakalı kompozit, Timoshenko çubuğu, 

Mindlin plakası.  
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CHAPTER ONE 

INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Literature Survey for Vibro-acoustic Methods 

 

In this section, some of the conventional methods for the prediction of vibro-

acoustic response are reviewed regarding excitation frequency range classification. 

As an overall consideration, some of the specifications and capabilities of these 

methods are tabulated in Table 1.1. Besides, as an alternative to the conventional 

approaches, some of the semi-analytical, meshless and grid-based approaches for 

plate vibrations are also reviewed. 

 

1.1.1 Introduction 

 

Vibration analysis is one of the most important issues in the engineering design, 

since the phenomenon of the resonance may lead to the failure of structures such as 

bridges, buildings, or airplane wings. Vibration of structures also induces noise. The 

physical nature of the sound is generally determined by vibration characteristics. 

Therefore, in order to establish a less noisy environment, vibration analysis should be 

primarily performed. In modern vibration analysis, numerical simulations and 

algorithms are being efficiently used as an alternative to analytical and experimental 

methods.  

 

In the science of vibro-acoustics, vibration and acoustic problems are classified 

according to their frequency range as, low, medium and high frequency problems. 

Since dynamic behaviour of systems changes with regard to the excitation frequency, 

adaptive approaches are required for reliable solutions. In practice, it is not 

mentioned about definite boundaries separating frequency ranges from each other 

due to the fact that they may change from system to system. However, Rabbiolo, 

Bernhard & Milner (2004) have put forward an indicator for approximately defining 

high-frequency thresholds based on “modal overlap count (modal overlap factor)” of 

simple structures such as beams, plates and acoustical spaces. 

1
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It is known that modelling high frequency dynamic systems using deterministic 

techniques such as Finite Element Method (FEM) and Boundary Element Method 

(BEM) is numerically expensive. Besides, since the vibro-acoustic response is very 

sensitive to the changes in system parameters at higher frequencies, some 

uncertainties are encountered. Therefore, deterministic techniques are feasible only 

for low frequency analysis. In the low frequency range, the response of physical 

subsystems such as beams, plates, and acoustic enclosures are usually dominated by 

resonant modes that exhibit large responses. For the analysis of high frequency 

behaviour of structural-acoustic systems, averaged predictions of energy are often 

used as the variable of interest to describe the response level. The Statistical Energy 

Analysis (SEA) developed by Lyon and Maidanik in 1962 has proved its validity for 

high frequency analysis (Lyon & DeJong, 1995). However, SEA is based on some 

pre-assumptions restricting its efficiency and capacity. Therefore, several alternative 

energy-based techniques have been developed. Among them, Energy Flow Analysis 

(EFA) and its finite and boundary element implementations, Energy Finite Element 

Method (EFEM), Energy Boundary Element Method (EBEM) are common 

approaches in service. However, since all these methods consider average prediction 

of energy as system variable to describe the response level, they disregard modal 

information and thus, loose discrete frequency response behaviour of the structure.  

 

1.1.2 Methods of Low Frequency Analysis 

 

1.1.2.1 Modal Analysis 

 

Modal analysis is the most classical and well-established method for vibration 

analyses. The principle of modal superposition is that the response of a continuous 

system is the summation of the individual responses of the system. Each natural 

mode contributes a different amount to the response. This principle was first noted in 

1747 by Bernoulli and proven in 1753 by Euler. At low frequencies, modal analysis 

is usually very efficient for deriving solutions to vibration problems. As the 

excitation frequency increases, more modes should be included to obtain a good 

approximation, hence the computational effort increases. Analytical modal solutions 
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are available for a limited number of cases where the structure is simple and the 

boundary conditions are idealized. For practical problems, measurements are often 

conducted to determine lower-order modes of a structure. This is called experimental 

modal analysis, and can be used to validate modal predictions. However, for high 

frequency modal analysis, many more measurements are needed and the reliability of 

the measurements is often limited by the accuracy of the test instrument and the 

methodology of the experiment. Therefore experimental modal analysis is generally 

limited to low frequencies due to computational and experimental limitations.  

 

1.1.2.2 Finite Element Method (FEM) and Boundary Element Method (BEM) 

 

 Finite Element Method (FEM) is one of the most popular approaches to model 

and solve complex engineering problems in a wide range of fields. FEM is 

extensively used for predictions of both structural and acoustic low frequency 

responses. In this method, the continuum domain is discretized into small elements. 

Since field variables within each element are described in terms of shape functions, a 

substantial amount of elements must be used in order to keep the approximation error 

within acceptable levels. The wavelength of the displacement decreases with 

increasing frequency, so in order to keep this dependence the size of elements must 

be decreased. In addition, the FEM is derived as a discretization of some 

approximate continuum mechanical theory such as the thin plate theory. In this case 

it is known that a characteristic wavelength of considered motions should be well 

above 5-10 element widths for sufficient agreement between numerical and 

analytical solutions (Wachulec, Kirkegaard & Nielsen, 2000). All these restrictions 

impede the FEM to be used accurately in higher frequencies. Finite element method 

is used to predict the structural-acoustic behaviour for coupled structures such as 

liquid storage tanks, thin walled cavities (car like cavities, box structures etc.) excited 

by low frequencies (Everstine, 1997; Cho, Lee & Kim, 2002; Kim, Lee & Sung, 

1999; Song, Hwang, Lee, & Hedrick, 2003; Lim, 2000; Cummings, 2001). The 

Boundary Element Method has been utilized to predict acoustic radiation from 

vibrating structures. The main advantage of BEM is that only the boundary of the 

domain is discretized, allowing the solution of problems with fewer elements 
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compared to FEM. For high frequency analysis, like the FEM, BEM is inappropriate 

due to the huge number of degrees of freedom needed, which results in prohibitive 

computational cost, and uncertainty of structural acoustic systems at these 

frequencies.  

 

1.1.2.3 Coupled FEM\BEM  

 

 For the numerical simulation of the radiation and scattering of sound, the BEM is 

superior to the FEM in many cases which needs considerably smaller effort to model 

the infinite domain. For finite element analysis the entire volume is discretized 

whereas in boundary element method only the surface of the volume is discretized. 

However, the FEM has superiority compared to the BEM in respect of the 

computation time and system matrix holding less memory. In fluid-structure 

interaction problems, especially, in low frequencies, FEM and BEM may be 

implemented simultaneously to the structure-fluid system by using the superiorities 

of both methods. A detailed review and methodologies on the implementation of the 

coupled FEM\BEM to structural-fluid-interaction problems have been presented in 

literature (Mariem & Hamdi, 1987; Kopuz, 1995; Vlahopoulos, Raveandra, 

Vallance, & Messer, 1999; Chen, Hofstetter & Mang, 1998; Coyette,1999; Gaul & 

Wenzel, 2002; Fritze, Marburg & Hardtke, 2005). 

 

1.1.3 Methods of Mid-Frequency Analysis 

  

 In recent years, a vast amount of research has been performed for an adequate 

solution of mid-frequency vibro-acoustic problems. In the mid-frequency range, 

deterministic techniques and energy based approaches can not predict valid response 

behaviour due to their capabilities. Therefore, in general, hybrid methods have been 

developed and used for this range. The detailed discussion for the mid-frequency 

analysis and the review of hybrid methods predicting mid-frequency structural-

acoustic response may be found in literature, e.g., (Wachulec et al., 2000; Desmet, 

2002).  
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1.1.4 Methods of High Frequency Analysis 

 

1.1.4.1 Statistical Energy Analysis (SEA)  

 

In the SEA, a complex structure is modelled as a composition of many coupled 

substructures. The Statistical Energy Analysis (SEA) is a statistical technique 

considering energy flow between the substructures. The theory of SEA modelling is 

mainly based on the following two issues: Statistical modelling of the modal 

behaviour of each subsystem and setting a dynamic energy flow balance between 

these coupled subsystems. A basic requirement for the analysis of vibro-acoustic 

problems by means of the SEA is the knowledge of modal densities of considered 

subsystems. The successful application of the SEA depends strongly upon high 

Modal Density (MD) and high Modal Overlap (MO) count (factor) of a structure. 

There are several assumptions used for SEA which is reported by Wang (2000) in 

literature survey of his PhD thesis. Some of these are: 

 

“Coupling between subsystems is ‘weak’ so that the modal behaviour of each 

subsystem does not change much because of the other subsystems” (Wang, 2000). 

This assumption strictly restricts the use of SEA in modeling the strongly coupled 

structural-acoustic systems accurately, for instance, in modeling small cavities 

enclosed by thin walled structures.  

 

“The internal damping in each subsystem is ‘light’” (Wang, 2000). 

 

“The damping is proportional to mass density so that the equation of motion of each 

subsystem can be uncoupled” (Wang, 2000). The assumption restricts the modelling 

of local damping treatments. 

 

“The power and energy variables are averaged across a small frequency band” 

(Wang, 2000). 
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“The frequency band contains many resonant modes” (Wang, 2000). This 

assumption limits the use of the SEA accurately only at higher frequencies leading to 

high MD and MO. 

 

In this regard, it is important to determine how these assumptions affect the 

modeling of a real coupled system by SEA. SEA modelling is not sufficient in a 

system for which the local variables (e.g., the acoustic pressure or displacement 

distributions on an acoustic or structural element in a single subsystem) are important 

regarding design purposes.   

 

1.1.4.2 Energy Flow Analysis (EFA), Energy Finite Element Method (EFEM), 

Energy Boundary Element Method (EBEM) 

 

Energy Flow Analysis (EFA) is a more recent tool for the prediction of the 

vibrational behaviour of structures in the high frequency range. Energy Flow 

Analysis, like SEA, predicts mechanical energy based on energy equilibrium 

equations. But EFA also predicts the spatial variation of the mechanical energy in the 

structure. Energy flow analysis is able to model local effects such as localized power 

inputs and local damping treatments. The energy distribution and the energy flow of 

different waves are predicted in some basic components like beams, plates, acoustic 

cavities etc. An important advantage is that the energy equations in these basic 

components are conceptually similar to the equations of static heat flow.  

 

The energy distribution and energy flow within the basic components can thus 

easily be computed with existing finite element codes for thermal computations. This 

is called the Energy Finite Element Method (EFEM). Like SEA, EFEM predicts 

mechanical energy based on energy equilibrium equations for which SEA uses macro 

subsystems whereas EFEM uses infinitesimal subsystems. Since the database 

required for EFEM is similar to that of FEM, a low frequency FEM analysis can be 

easily extended to high frequency band analysis by EFEM. The boundary element 

implementation of the energy flow analysis (EBEM) is also used recently for high 

frequency structural-acoustic problems together with EFEM. Considerable studies 
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have been performed on developing and improving EFA, EFEM and EBEM (Cho, 

1993; Bitsie, 1996; Han, 1999; Han, Bernhard & Mongeau, 1997, 1999; Wang, 2000; 

Dong, 2004; Langley, 1992, 1995; Smith, 1997; Carcaterra & Sestieri, 1997; Sestieri 

& Carcaterra, 2001; LeBot, 1998; Chae & Ih, 2001). Moens, Vandepitte & Sas 

(2002) presented a fundamental study of the validity of the Energy Finite Element 

Method for differently shaped plates with uniform hysteresis damping. The 

wavelength criterion deduced by Fahy in 1992 and Gur in 1999 for SEA and EFEM 

analysis was validated by Moens et al. (2002). In this criterion, a non-dimensional 

parameter is defined as the ratio of the characteristic length of the plate to the 

wavelength of the flexural waves at a certain frequency. These ratios have been 

stated as 2.47 by Fahy and 2.43 by Gur and they are close to each other. If a non-

dimensional parameter of a system is larger than these levels, EFEM can be used to 

analyze plate structure.  

 

1.1.4.3 Ray Tracing Method (RTM)  

 

RTM is a recursive technique used generally in the prediction of transient sound 

field in room acoustics (Schroeder, 1969). However, Vorlaender (1989) used this 

technique in steady state response of sound fields and Chae et al. (2001) firstly used 

the Ray Tracing Method (RTM) in the prediction of high frequency time-averaged 

vibrational energy distribution in thin plates. In this method, the vibration field in a 

waveguide is decomposed to direct field and reverberant field. Direct field is 

discretized by a number of ray tubes and its reflections from specular boundaries are 

also represented by ray tubes for the total vibrational response. Chae et al. (2001) 

stated that, the time-averaged spatial energy distribution predicted by RTM yields 

more accurate results compared with those of SEA and EFEM.  
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 Table 1.1 Specifications and capabilities of conventional vibro-acoustic methods  

 

Criterion FEM, BEM SEA EFA (EFEM) RTM 

Principle -Energy 

minimisation  

principle 

 

 

-Energy (Power) 

flow balance 

principle 

-Statistical 

modeling 

principle 

-Vibration 

conduction 

principle 

-Energy flow 

balance principle 

-Directional  

energy flow 

balance principle 

 

 

Element 

modelling 

-Using finite and 

boundary elements 

-Using modal or 

geometrical 

macro elements 

-Using finite and 

boundary elements 

-Circular ray 

tubes  

Requirements -Sufficient number 
of small elements  
-Sufficient HD 
and CPU 
 

-High modal 
density  
-High modal 
overlap count 
-Accurate 
determination of 
CLF  and DLF 

-High modal 
density  
-High modal 
overlap count 
 -Sufficient HD 
and CPU 
 

-High modal 
density  
-High modal 
overlap count 
-Specular 
boundaries  

Excitation 
frequency range 

-Low frequency -High frequency -High frequency -High frequency 

Frequency 
bandwidth 

-Discrete or 
narrow bandwidth  

-Wide bandwidth -Wide bandwidth -Wide bandwidth 

Response 
characteristics 

-Discrete (time, 
space, frequency) 

-Average (time, 
space, frequency) 

-Discrete (space) 
-Average (time, 
frequency) 

-Discrete 
(directional, 
space) 
-Average (time, 
frequency) 

Loss of local 
information 

-Low -High -Low -High 

Strong fluid-
structure 
interaction 

√ - √ ? 

Response 
parameters 

-Displacement 
-Velocity 
 -Acceleration  

-Modal energy -Modal energy -Modal energy 

Prediction of 
modal 
behaviour 

√ - - - 

Applications -Simple  
-Complex 
structures 

-Simple  
-Complex 
structures 

- Simple  
-Complex 
structures 

-Simple 
structures 

Numerical 
algorithm 

-Meshing 
-Standard equation 
solver 

-Sub-structuring 
-Standard 
equation solver 

-Thermal FEM 
algorithm 
-Standard equation 
solver 

-Efficient ray 
tracing algorithm 

Computation 
time 

-Depending on the 
number of 
elements 

-Low -Depending on the 
number of 
elements 

-High 
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1.1.4.4 Some Other Energy Based Methods  

 

Langley (1992) presented a method called Wave Intensity technique for the 

analysis of high frequency vibrations based on energy balance equations. In this 

method, the vibration of each component of a system is defined in terms of a 

homogeneous random wave field. The directional dependency of the wave intensity 

in each component is represented by a finite Fourier series. Langley (1992) pointed 

out that if a single term of Fourier series is used then the standard form of the SEA is 

obtained. Therefore, wave intensity technique can be considered as a natural 

extension of conventional SEA and can predict directionality of the response beyond 

the SEA. 

 

Carcaterra & Sestieri (1997) and Sestieri & Carcaterra (2001) developed and 

improved a new model called Complex Envelope Displacement Analysis (CEDA) to 

predict the high frequency structural acoustic response for one dimensional system. 

CEDA was introduced in these presented studies through several enhancements and 

treatments based on the other envelope techniques. The analysis, like the other high 

frequency techniques, predicts averaged levels rather than the solution itself. In this 

analysis, the envelope trend of field variables (energy or displacement) is described. 

The envelope is obtained by an appropriate use of Hilbert transformation procedure. 

The procedure removes the oscillating part of the solution while keeping its main 

trend along the structure. LeBot (1998) developed a vibro-acoustic model for high 

frequency analysis based on energetic quantities and energy balance by conserving 

the spirit of the SEA. But he stated that this model considers local variables on the 

contrary of the SEA. However, in this model, a smooth frequency response is 

predicted which can be interpreted as the frequency average response.  

 

1.1.5 Alternative Approaches for Vibration Analysis 

 

As an alternative to the works based on local methods such as the FEM and BEM, 

many free vibration studies performed by semi-analytical, meshless and grid based 

global approaches exist in the literature. Analysis principle of these methods is based 
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on the numerical solution of differential equation of a structural vibration. These 

methods show very good accuracy compared to local methods. However, handling 

complex structures and complex boundary conditions by global methods are 

restricted. 

 

Together with the increase in the use of composite materials, recent studies are 

generally based on free vibration analysis of composite structural elements. Semi-

analytical approaches such as Ritz, p-Ritz and Rayleigh-Ritz approaches are 

successfully employed in the vibration analysis of laminated plates (Hearmon, 1959; 

Leissa & Narita, 1989; Liew & Lim, 1995; Liew, 1996; Liew, Lam & Chow, 1989; 

Chow, Liew & Lam, 1992; Hung, Liew, Lim, & Leong, 1993; Dawe & Roufaeil, 

1980; Venini & Mariani, 1997). Differential quadrature technique introduced by 

Bellman, Kashef & Casti (1972) has been also commonly applied in vibration 

analysis for both isotropic and composite plates (Bert & Malik, 1996; Zeng & Bert, 

2001; Zhang, Ng & Liew, 2003; Liew, Huang & Reddy, 2003; Lanhe, Hua & 

Daobin, 2005; Liew, Wang, Ng, & Tan, 2004). Besides, some meshless methods, 

pseudospectral and radial basis function methods have been increasingly used for 

free vibration analysis of isotropic and composite structures (Wang, Liew, Tan, & 

Rajendran, 2002; Dai, Liu, Lim, & Chen, 2004; Lee & Schultz, 2004; Ferreira & 

Fasshauer, 2006; Liu, Chua & Ghista, 2007).  

 

In the last decade, a novel approach called Discrete Singular Convolution (DSC) 

has been introduced by Wei (1999, 2000a, 2000b, 2000c). This is a powerful method 

for the numerical solution of differential equations. The solution technique of the 

DSC is based on the theory of distribution and wavelets. The DSC has local 

methods’ flexibility and global methods’ accuracy. This approach has been 

successfully used in various free vibration analyses of isotropic thin simple structures 

with several boundary conditions (Wei, 2001a, 2001b, 2001c; Wei, Zhao & Xiang, 

2001, 2002a; Xiang, Zhao & Wei, 2002; Zhao, Wei & Xiang, 2002a, 2005). Hou, 

Wei & Xiang (2005) have used DSC-Ritz method for free vibration analysis of thick 

plates. Civalek (2007a, 2007b, 2007c, 2007d) has applied the DSC to the free 

vibration and buckling analyses of different laminated shells and plates. Seçgin, Atas 
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& Sarıgül (2007) have used the DSC for free vibration of fiber-metal laminated 

composite plates. Seçgin & Sarıgül (2008) have presented open algorithm of the 

DSC and have shown the superiority of the DSC over several numerical techniques 

for free vibration analysis of symmetrically laminated composite plates.  

 

Moreover, for high frequency free vibration analysis, Wei, Zhao & Xiang (2002b) 

and Zhao, Wei & Xiang (2002b) have obtained ten thousands of vibration modes for 

thin beams and plates. Lim, Li & Wei (2005) have used DSC-Ritz approach for high 

frequency modal analysis of thick shells. Ng, Zhao & Wei (2004) have pointed out 

that the DSC yields more accurate prediction compared to differential quadrature 

method for the plates vibrating at high frequencies.  

 

1.2 Objective of the Thesis 

 

…. the prediction of medium to high frequency vibration levels is a particularly 

difficult task. …. there is no single technique which can be applied with 

confidence to all types of aerospace structures. Furthermore, there are certain 

problems of pressing practical concern for which it is not possible at present to 

make a reliable design prediction of high frequency vibration levels. …. (Wei et 

al., 2002b). 

 

As Wei et al. (2002b) stated by quoting from Professors Langley and Bardell, 

there is not any method which can discretely predict spatial and frequency responses 

of a structure subjected to high frequency excitation without missing detailed local 

and modal information. Furthermore, there is not any unique method valid for all 

frequency ranges to perform response analysis.  

 

The main objective of this thesis is to develop an efficient approach for high 

frequency response analysis of thin plates. The success of the DSC in high frequency 

free vibration analysis inspires that this method would be reliably used for discrete 

high frequency response analysis without handling averaged energetic parameters 

unlike available high frequency approaches. For this purpose, it is considered that 
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obtaining sufficient number of vibration modes by the DSC and accounting the 

contribution of these discrete modes to the response are key points in the 

development of an accurate method.  

 

1.3 Thesis Organization 

 

This thesis comprises nine chapters including introduction and conclusions, and 

appendices.  

 

Chapter 1 mainly discusses the importance of vibro-acoustic analysis and presents 

a comprehensive literature review for conventional and state of art vibro-acoustic 

techniques. Besides, it presents an overall tabulation for conventional high frequency 

methods and deterministic techniques.  

 

Chapter 2 gives a briefing on theoretical foundations of classical plate equations.  

 

Chapter 3 presents the theory, discretization and boundary condition 

implementation procedures of Discrete Singular Convolution (DSC) method in 

detail. 

 

Chapter 4 introduces a novel scheme named as Discrete Singular Convolution-

Mode Superposition (DSC-MS) approach for high frequency response analysis of 

thin beams and plates.  

 

Chapter 5 presents several verification and convergence tests of the DSC and 

DSC-MS. 

 

Chapter 6 gives free and forced vibration analyses of thin plates. Besides, it 

demonstrates the capabilities of the DSC-MS in the discrete high frequency response 

prediction by performing self-explanatory numerical applications. 
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Chapter 7 presents implementation procedure of the DSC for composite plates. 

The accuracy of the approach is verified by comparing the DSC free vibration results 

with exact ones and those of some distinguished studies in the open literature. 

Furthermore, some specific free vibration applications of thin composite plates are 

given in detail. 

 

Chapter 8 introduces a DSC representation for thick structures. The accuracy of 

the given approach is displayed by several comparison studies.  

 

Chapter 9 gives a short review and underlines the outcomes of the Doctorate 

thesis with further suggestions. 

 

Appendix A presents a brief information on the wavelet and wavelet analysis, 

Appendix B displays matrix representation of DSC algorithm, Appendix C shows a 

comparison between the DSC and FEM for higher vibration modes and Appendix D 

presents DSC codes for free vibration analysis of isotropic beams and plates. 
 



CHAPTER TWO 

CLASSICAL PLATE THEORY (CPT)  

 

2.1 Introduction 

 

In engineering, structural elements such as string, rod, beam, membrane and plate 

are main elements to build a complex structure. These elements have particular 

mechanical characteristics to guide a wave motion. The mathematics of the motion of 

these structural elements is arranged by strength-of-material theories. Table 2.1 

represents the types of waves supported by some of the structural elements.  

 

Thin structure theories are based on some assumptions on the kinematics of 

deformation. The term “thin” implies that the thickness of a structure is quite small 

compared to a characteristic length of that structure. In a thin structure, shear 

deformation and rotary inertia effects are neglected. This provides that a straight line 

perpendicular to the neutral axis of the beam or plate is inextensible, remains straight 

and only rotates about the undeformed axis (Figure 2.1).  

 

 
Figure 2.1 Mid-plane displacements of a bending thin plate. 
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 Table 2.1 Wave guides and types of waves they support 

Wave Guide Supporting Wave Types 

String Transverse 

Thin rod Longitudinal 

Membrane Transverse 

Thin beam (Bernouilli- Euler Beam Theory) Longitudinal, Bending, Torsional  

Thin plate (Classical Plate Theory) Flexural, Torsional 

 

 

2.2 Classical Plate Equations in Rectangular Coordinates  

 

Figures 2.2.a and 2.2.b show separately force and moment resultants. It is 

assumed that mid-surface of the plate is subjected to distributed loads ,  and  

as shown in Figure 2.2.c.   

xq yq zq

 

 

 

 

 

 

 

a)         b)         c) 
Figure 2.2 Representation of a) Force resultants b) Moment resultants c) Force balance in x direction, 

on a plate. 

 

The equilibrium equations, for example, in x direction can be written as 
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VF xyx
yx
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x

xx . (2.1) 

 

The same force equilibrium in Equation (2.1) can be written for the other two 

directions (y and z). Hence five equilibrium equations in terms of force and moment 

resultants are obtained as follows: 
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By using strength of material principles providing stress-strain and stress-

displacement relations, bending and twisting moments are related to the 

displacements;  
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⎝
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2

0 y
w

y
wDM y  ,                (b) (2.3) 
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where the flexural rigidity  can be defined in terms of the elasticity modulus, E 

and the Poisson’s ratio, ν ,  as follows 

0D

 

 
)1(12 2

3

0
ν−

=
EhD  .                         (2.4)  

 

Transverse shear forces are given by 

 

 



 17

( w
x

DQx
2

0 ∇
∂

)∂
−=  ,                         (2.5.a) 
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and in-plane shear forces are 

 

y
M

QV xy
xx ∂

∂
+=  ,                      (2.6.a) 

x
M

QV xy
yy ∂

∂
+=   .                      (2.6.b) 

 

By employing in-plane equilibrium equations given in Equation (2.2) with the 

definitions of Equations (2.3) and (2.6), the differential equation of motion for the 

transverse displacement of a plate is obtained as (Leissa, 1969): 

 

0),,(),,( 2

2
4
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∂

∂
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t
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The operator  denotes 4∇
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Time-harmonic free vibration displacement may be assumed in the form 

 
tjeyxWtyxw ω= ),(),,(                    (2.9) 

 

where  is the displacement depend on position coordinates. Substituting 

Equation (2.9) into Equation (2.7) yields 

),( yxW

 

( ) 044 =Ω−∇ W  .                       (2.10) 
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Frequency parameter Ω  is defined as  

 

2

0

02 ω
ρ

=Ω
D

h
 .                       (2.11) 

 

For thin plates, some classical boundary conditions at the boundaries (x(0, a),   

y(0, b)) are given as: 

 

Fully simply-supported (SSSS): 

 

,0),0(),0( 2

2
==

dx
ywdyw   0),(),( 2

2
==

dx
yawdyaw ,          (2.12.a)   

,0)0,()0,( 2

2
==
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2
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dy
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Fully clamped (CCCC): 

 

,0),0(),0( ==
dx
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dx
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,0)0,()0,( ==
dy
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CHAPTER THREE 

DISCRETE SINGULAR CONVOLUTION (DSC) APPROACH 

 

3.1 Introduction 

 

Discrete Singular Convolution (DSC) approach was originally introduced by Wei 

(1999, 2000a, 2000b, 2000c). The mathematical basis of the DSC is the distribution 

theory and wavelets. Although, the method numerically solves differential equations 

in a spatial domain as the other global methods, the DSC can be regarded as a unique 

method having both; local methods’ flexibility and global methods’ accuracy. The 

method requires a grid representation to define a structure with several grid points 

and utilizes certain auxiliary points so that a symmetric computational domain is 

being created. The DSC uses wavelet scaling functions as a convolution kernel to 

accommodate an interpolation function between structure and auxiliary points.  

 

This approach has been successfully used for numerical solutions of several 

differential equations and various free vibration analyses of simple structures as 

stated in Chapter 1. Especially for high frequency free vibration analysis, thousands 

of modes are accurately obtained by the DSC. Therefore, in the present doctorate 

study, the DSC is mainly considered as a numerical tool to solve high frequency free 

and forced vibration analyses. In this chapter, the theory, discretization and boundary 

condition implementation procedures of the DSC are presented in detail.  

 

3.2 The Discrete Singular Convolution (DSC) 

 

3.2.1 Theory of the DSC 

 

Singular convolution is defined by the theory of distributions. Let T be a

distribution and )(tη be an element of the space of test functions. Then, a singular 

convolution can be given by (Wei, 1999) 

 

( ) ∫
∞

∞−
η−=η= dxxxtTtTtF )()()(*)( . (3.1) 
19



20

Here, the sign * is the convolution operator, F(t) is the convolution of η and T,

)( xtT − is the singular kernel of the convolution integral. Delta kernel is an 

interpolation function essential for the numerical solution of partial differential 

equations;  

 

L,2,1,0)()( =δ= nxxT n . (3.2) 

 

Delta kernels given in Equation (3.2) are proper for use in vibration analysis. 

However, these kernels are singular; thus, they can not be digitized directly in 

computer. In order to avoid this problem, sequences of approximations αT of the 

distributions T can be constructed such that αT converge to T:

)()(lim
0

xTxT →α
α→α

(3.3) 

 

where 0α is a generalized limit. With a good approximation, a Discrete Singular 

Convolution (DSC) can be determined as  

 

∑ −= αα
k

kk xfxxTxF )()()( . (3.4) 

 

Here, )(xFα is an approximation to )(xF and { }kx is an approximate set of discrete 

points on which the DSC in Equation (3.4) is well defined. )(xf is used here as the 

test function replacing the original test function )(xη . A sequence of approximation 

can be improved by a regularizer in order to increase the regularity of convolution 

kernels. Gaussian regularizer is a typical delta regularizer and it is in the form of 

 
22 2)( σ−

σ = xexR (3.5) 

 

Delta kernel with sampling parameter α approximately in the form, 
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x
xT

π
α=α

sin  (3.6) 

 

is known as Shannon father wavelet (scaling function). Wavelets and wavelet 

analysis are briefly introduced in Appendix A. In vibration analysis, a discretized 

form of Equation (3.6), which is sampled by Nyquist frequency ( ∆π=α ) and 

improved by Gaussian regularizer, can be chosen as the kernel function of the DSC 

(Wei, 1999): 
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)(, ( )22 2)(exp σ−− kxx . (3.7) 

 

Here, ∆ is determined by considering required precision of the analysis. The DSC 

expression in Equation (3.4) can be rewritten by using Regularized Shannon Delta 

Kernel (RSDK) given in Equation (3.7): 
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As seen in Equation (3.8), since DSC approach is defined in an infinite region, the 

kernels must be bounded in a sufficient computational domain for numerical 

determination. This can be practically achieved by a spatial truncation of the 

convolution kernel. A translationally invariant symmetric truncation algorithm can 

be used in an efficient bandwidth ( )12 +M as follows; 
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Here, mx is the specific central point considered and ( )xn)(
, σ∆πδ is the nth derivative of 

( )xδ given in Equation (3.7) with respect to x. First, second, third and fourth order 

derivatives of the RSDK can be analytically given respectively by 
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The values of these differentiated kernels at km xx = are obtained as follows: 
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3.2.2 DSC Discretization of Operator 

 

In the DSC implementation to any differential equation, a linear DSC operator L

having a differential part D and a function part F is written as, 

 

L = D + F . (3.18)  

 

It is essential to define a grid representation so that the function part of the operator 

is diagonal. Hence, the grid discretization is simply given by a direct interpolation: 

 

F(x)→ F(xk) )()0(
, km xx −δ σ∆π (3.19) 

 

where )()0(
, km xx −δ σ∆π is the RSDK given in Equation (3.7). The differential part of 

the operator on the coordinate grid is then represented by functional derivatives; 
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where nd is a coefficient. Finally, linear DSC operator L can be rewritten by 

summing Equations (19) and (20): 

 

L( km xx − ) = ( )km
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n
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, km xx −δ σ∆π , 0≠n . (3.21) 

 

3.2.3 Grid Discretization in DSC Algorithm 

 

A thin beam having length a is illustrated in Figure 3.1 as an example to DSC grid 

discretization. Structure points ( 110 ,,, −Nxxx L ) are defined with uniform interval 

)1/( −=∆ Na . The function derivatives on these points are approximated by a linear 

summation of function values on the 2M+1 points centred at those points. Since the 

summation requires function values at the points outside the structural domain, M



25

auxiliary points can be fictitiously positioned both on the left and right side of the 

structural domain. For an effective algorithm, three indices; 1,,2,1,0 −= Ni L ,

MMk ,,0,, LL−= and MNMj +−−= 1,,0,, LL may be determined with the 

condition that 1+≥ MN . Regarding these determinations, DSC given in Equation 

(3.9) can be rewritten as  
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By using translationally invariant algorithm, a set of ( )12 +M coefficients for 

{ }1,,1,0 −∈∀ Ni K points is obtained ( )()()( 110 kNkk xxxxxxk −==−=−=∆ −K ): 
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Thus, the DSC reduces to  
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Similar representations and notations can be properly defined for other structures 

such as plates and acoustic enclosures. 

 

Figure 3.1 Computational domain representation for a beam structure in DSC algorithm. 
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3.2.4 Boundary Condition Implementation in DSC Algorithm 

 

The numerical scheme of the DSC is completed by implementing appropriate 

boundary conditions to a system of equation. As an example, for a beam structure, 

the boundary implementation procedure is given by making an assumption on the 

relation between the auxiliary points and structure points shown in Figure 3.1. The 

relation between the left-right ghost domains and the computational domain may be 

expressed as (Wei, 2001a, 2001b, 2001c) in terms of a displacement function W:

For left boundary,      ( )[ ])()()()( 00 xWxWAxWxW ppp −=−− . (3.25) 

 

For right boundary, ( )[ ])()()()( 1111 −−−−+− −=− NpNpNpN xWxWBxWxW . (3.26) 

 

Here p is an arbitrary index (p = 1,…, M). pA and pB are determined by using 

boundary conditions. After rearrangement, Equations (3.25) and (3.26) become  

 

( ) )(1)()( 0xWAxWAxW pppp −+=− (3.27) 

 

and 

 

)()1()()( 111 −−−+− −+= NppNppN xWBxWBxW , (3.28) 

 

respectively. According to DSC definition given in Equation (3.24), the first and 

second derivative of a displacement function W at the left boundary ( 0x ) can be 

approximated by using Equation (3.27) as:  
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and  
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By performing the same operations for the right boundary yields  

 

( )kN

M

Mk
kN xWCx

dx
dW

+−
−=

− ∑≈ 1
)1(

1)(

( ) ( )kN

M

k
kNkN

M

k
k xWCxWCxWC −−

=
−−+−

=
∑∑ ++= 1

1

)1(
1

)1(
01

1

)1( )(

{ } ( )kN

M

k
kNNpkNp

M

k
k xWCxWCxWBxWBC −−

=
−−−−

=
∑∑ −+−+= 1

1

)1(
1

)1(
011

1

)1( )()()1()(

∑∑
=

−−−
=

−−







−+=

M

k
kNpkN

M

k
pk xWBCxWBCC

1
1

)1(
1

1

)1()1(
0 )()1()()1( (3.31) 

 

and  
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Equations (3.29)-(3.32) are constructed by the fact that )1()1(
kk CC −=−

and )2()2(
kk CC =− . For classical boundary conditions, since 0)()( 10 == −NxWxW ,

selecting 1−=== ABA pp and 1+=== ABA pp , for all p, satisfies simply 

supported and clamped boundary conditions, respectively. Displacements of 

auxiliary points in the whole ghost domain can be written in terms of displacements 

of structural points in the computational domain for any differentiation degree (n). 

Then Equation (3.24) may be decomposed for each of structure points by using the 

relations given in Equations (3.27) and (3.28): 
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and Equation (3.33.a) leads to 
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Finally, Equation (3.33.b) becomes 
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Similarly, for i = 1;  
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For i = N-2; 
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For i = N-1; 
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General DSC matrix representations formed by Equations (3.33)-(3.36) for an 

eigenvalue problem are illustrated in Appendix B.  

 



CHAPTER FOUR 

DISCRETE SINGULAR CONVOLUTION-MODE SUPERPOSITION 

(DSC-MS) APPROACH 

 

4.1 Introduction 

 

It is known that the DSC is able to accurately predict very higher number of 

natural modes for a structural system. As proper for the objective of the thesis, it was 

purposed to reliably use this high amount of modes for the discrete prediction of high 

frequency vibration response by utilizing mode superposition (MS) technique. The 

MS is a common approach assuming a solution that all system modes discretely 

contribute to local displacement response. In this chapter, a novel scheme based on 

the DSC and MS is introduced in detail.  

  

4.2 Discrete Singular Convolution-Mode Superposition (DSC-MS) Scheme 

 

4.2.1 Mode Superposition (MS) Technique for Thin Plates 

 

The mathematical foundation of the MS is based on the separation of variables. 

Bending displacement response of a plate  can be expressed by infinite 

summation of the product of two variables; 

),,( tyxw

,(xp )yφ , and  (Timoshenko, 

Young & Weaver, 1971): 

)(twp

 

∑
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pp yxtwtyxw   .                                                             (4.1) 

 

Equation (4.1) can be approximately written in terms of sufficient number of 

modes P contributing the response: 
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The equation of bending motion of a thin plate, given in Equation (2.7), with 

internal loss factor 1<ζ  and harmonic forced term  can be rewritten as 

follows: 

),,( tyxf
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42 tyxf
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ρ

=+∇ζ+ &&                           (4.3)  

 

where hDD 00
2 ρ= . By applying Equation (4.2) to the homogenous part of 

Equation (4.3) yields, 
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Equation (4.4) leads to following equations: 
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Here  is always a positive number which represents the square of the natural 

frequency of the pth mode, 

pk

pω . 

 

For multi excitations, point force  (( )∑∑
= =

−δ−δ=
N

i

N

j
jiji yyxxtftyxf

1 1
, )()(),,( δ  is 

the Dirac-delta function) can be identified as 
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4.2.2 DSC-MS Implementation 

 

Defining a full mode shape function  and applying DSC expression 

in Equation (3.22) or (3.24) to Equation (4.6) by introducing the non-dimensional 

parameters;

∑
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Here, the subscripts x and y of indices i, j denote direction of discretization points. Ω  

is the diagonal natural frequency parameter matrix. The mode shape vector of the 

plate is formed as: 

 

Φ
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This discretization is illustrated in Figure 4.1. 

 

DSC kernels in Equation (4.9) can be written in a DSC matrix form as (r = x or y); 
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Figure 4.1 DSC grid representations for plates. 

 

The numerical scheme of the DSC-MS is completed by implementing the 

boundary conditions to Equation (4.9). Any auxiliary point can be written in terms of 

structure points by using one of the proper relations in Equations (3.25) and (3.26). 

Then by using the DSC expression given in Equation (3.24) one can obtain the 

coefficients as  for SSSS and 1−=A 1=A  for CCCC plates. For these plates, after 

implementation of the displacement boundary condition 0)()( 10 == −Nrr ΦΦ , 

Equation (4.9) can be reconstructed by DSC matrices as an eigenvalue equation: 

 

)( 2ΩΤ − 0=Φ   .                              (4.12) 

 

Here  matrix can be expressed as, Τ
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yΓ⊗                    (4.13)  

 

where is the DSC characteristic matrix, Ir is the identity matrix. For square 

plates ; Ix = Iy. A characteristic matrix is obtained by applying specific 

boundary conditions to the DSC matrix  defined in Equation (4.11). 
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From Equation (4.12), one can obtain natural frequencies ( )Pωωω ,,, 21 L  and the 

corresponding mode shapes ( )Pφφφ ,,, 21 L

( )

 by using a standard solver.  

 

Equation (4.7) can be reconstructed by the force term: 
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Assuming a harmonic response in the form of , the steady-state 

frequency response can be obtained as follows;  

p tw =)(
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where )(, ωjiF is the Fourier transform of . Substituting Equation (4.15) into 

Fourier transform of Equation (4.2), one can obtain a space-frequency dependent 

response equation for thin plates as follows; 
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4.3 High Frequency Concept 

 

In vibro-acoustics, modal overlap count is an indicator of the threshold of high 

frequency region. This count is defined as (Rabbiolo, Bernhard & Milner, 2004): 
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A schematic representation for these parameters is given in Figure 4.2. Rabbiolo et 

al. (2004) have defined three different high frequency thresholds based upon the 

approximate modal overlap counts; 1=OM  for beams, 5.2=OM  for plates and 

3=OM  for acoustic enclosures. Modal overlap count is also defined as follows 

(Fredö, 1997); 

 

( )fnfMO cζ=  .                                      (4.18) 

 

 

 

 

 

 

 

 

 
Figure 4.2 Representation of modal parameters in a bandwidth. 

 

Modal density is the number of modes in a considered frequency bandwidth i.e., 

( ) fPfn Δ= . For simple structures, modal density can be analytically determined. 

For instance, modal density for plates is given as (Harris & Piersoll, 2002a) 

 

hD
A

n s

00 /4
)(

ρπ
=ω  .                            (4.19) 

 

It is noted that )(2)( ωπ= nfn . Generally, if  given in Equation (4.18) is higher 

than unity, the energy based approaches such as Statistical Energy Analysis (SEA) 

and Energy Finite Element Method (EFEM) can be reliably used in this region (Fahy 

& Mohammed, 1992). Equations (4.17) and (4.18) indicate that the modal overlap 

count is determined only for damped systems with a sufficiently wide frequency 

band. Therefore, for an undamped system solution, the modal overlap count can not 

be used as an indicator of high frequency range.  

MO



CHAPTER FIVE 

VERIFICATION AND CONVERGENCE STUDIES OF 

THE DSC AND DSC-MS 

 

5.1 Introduction 

 

In this chapter, in order to expose the accuracy of DSC and DSC-MS methods, 

several verification and convergence tests are presented.   

5.2 Verification and Convergence Study for the DSC 

 

5.2.1 Verification of Natural Frequency Parameters and Mode Shapes 

 

Table 5.1 compares natural frequency parameters predicted by the DSC with those 

of the analytical solutions for simply-supported thin beams and plates. Natural 

frequency parameters of the plates were defined as 22 / πΩ for numerical facility. 

Table 5.1 shows that as the number of grid points (N) increases the discrepancy 

between the DSC prediction and analytical results decreases. For beams, even with 

low grid numbers such as 11=N , the first few natural frequency parameters are 

accurately predicted by the DSC. For 31=N grid points, analytical results are 

obtained up to the computed one ten-thousandth digits for the considered number of 

modes. Table 5.1 also shows an excellent prediction of frequency parameters for 

plates especially with 2121×=N grid points. This perfect agreement clearly 

verifies the accuracy of the DSC. 

 

Figure 5.1 displays well-known first four mode shapes of simply supported beam 

obtained by the DSC using 31=N grid points. In addition, a simple comparison 

demonstrating the accuracy of the DSC and finite element method (FEM) for high 

frequency analysis of beams is given in Appendix C.  
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Table 5.1 Verification and convergence study of DSC method for thin beams and plates  

 

5.2.2 Convergence of Natural Frequency Parameters 

 

In order to demonstrate the convergence of natural frequency parameters obtained 

by the DSC, three different number of discretization points N associated with three 

different discretization parameters r are considered. The relative error is defined as 

( ) ADA ΩΩ−Ω× /100 , where AΩ and DΩ are non-dimensional frequency 

parameters obtained analytically and by the DSC, respectively. 

 

Beam (SS) Square Plate (SSSS) 

Beam Length: π=a meters. 
 

Natural frequency parameter: 

EI
A0ρω=Ω

1=λ , 1== φγ DD ,

0== βα DD .

Natural frequency parameter: 

D
ha 0

2

2
2 ρ

π
ω=πΩ

DSC DSC Mode 
Number N=11 N=21 N=31 

Analytical 
(Timoshenko, 
Young & 
Weaver, 
1971) 

Mode 
Number 
(p, q) 

N=11×11 N=21×21
Analytical 
(Whitney, 
1987) 
 

1 1.0050 1.0000 1.0000 1 (1,1) 2.0051 2.0000 2 
2 3.9994 4.0000 4.0000 4 (1,2) 5.0006 5.0000 5 
3 9.0095 9.0000 9.0000 9 (2,1) 5.0006 5.0000 5 
4 16.0764 16.0000 16.0000 16 (2,2) 7.9993 8.0000 8 
5 25.4813 25.0000 25.0000 25 (1,3) 10.0092 10.0000 10 
6 38.0834 36.0000 36.0000 36 (3,1) 10.0092 10.0000 10 
7 55.0104 49.0000 49.0000 49 (2,3) 13.0066 13.0000 13 
8 75.1793 64.0000 64.0000 64 (3,2) 13.0066 13.0000 13 
9 92.8390 81.0002 81.0000 81 (1,4) 17.0728 17.0000 17 
10 - 100.0022 100.0000 100 (4,1) 17.0728 17.0000 17 
11 - 121.0168 121.0000 121 (3,3) 18.0102 18.0000 18 
12 - 144.1010 144.0000 144 (2,4) 20.0628 20.0000 20 
13 - 169.4850 169.0000 169 (4,2) 20.0628 20.0000 20 
14 - 197.8500 196.0000 196 (3,4) 25.0560 25.0000 25 
15 - 230.5612 225.0000 225 (4,3) 25.0560 25.0000 25 
16 - 269.0423 256.0000 256 (1,5) 26.4671 26.0000 26 
17 - 312.5090 289.0000 289 (5,1) 26.4671 26.0000 26 
18 - 355.4072 324.0000 324 (2,5) 29.4290 29.0000 29 
19 - 387.8306 361.0000 361 (5,2) 29.4290 29.0000 29 
20 - - 400.0000 400 (4,4) 32.0854 32.0000 32 
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The discretization parameter for regularization r is defined as a ratio depending on 

the regularization parameter σ and the discretization interval ∆ , i.e., ∆σ=r . In 

addition to the selection of high number of discretization points, the reliable modal 

prediction also directly depends on the appropriate selection of discretization 

parameter. However, adapting very low and very high r values may cause some 

numerical instability. The proper selection of r value can be made by trial and error 

method. Actually, Qian & Wei (2000) have presented a mathematical estimation for 

the relative selection of r, σ and M in a reliable wide range. According to this 

estimation, η>∆−π 61.4)( Br and η> 61.4
r

M should be satisfied for reliable 

DSC analysis. Here, B is the frequency bound for a function of interest. η is the 

order of approximation error leading to the error value of )0(,10 >ηη− for the 

considered function. Some brief statements for this estimation can also be found in 

(Wei, 2001c; Wei et al., 2002a; Zhao et al., 2002a). 

 

Figure 5.1 The first four mode shapes of simply supported thin beam predicted by the DSC (N = 31). 

 

Figures 5.2.a, b and Figures 5.3.a-c show relative error for frequency parameters 

of simply supported beams whereas Figures 5.4.a-i present errors for simply 

supported plates. In Figure 5.2, r values are selected as 2.1 for 11=N and 3.1 for 
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101=N , respectively. Since the influence of the discretization parameter is more 

important for higher number of modes compared to lower numbers, three different r

values were considered for higher numbers as shown in Figure 5.3 and 5.4. These 

values were selected as from 4.1 to 8.1, 6.1 to 10.1 and 8.1 to 12.1 corresponding to 

1001=N , 2001=N and 3001=N respectively, for beams and corresponding to 

5151×=N , 6161×=N and 7171×=N respectively, for plates. As Figures 5.3.a-c 

are examined, it is clearly seen that increasing r decreases the relative errors for each 

of N values; and also increasing N decreases the error values of considered modes. 

For N=3001 with r=12.1, the first 2999 natural modes of beams can be obtained by 

maximum error of 0.018%. However, N=1001 grid points corresponding to the first 

999 natural modes state the error under 0.07%. Actually, this score is also reliable for 

high frequency analysis. The same effect of r is also realized for plates as Figures 

5.4.a-i are examined. The first 4761 modes are accurately obtained for 7171×=N

with r=12.1; and approximately 1% error is observed for the first 4750. Selecting 

5151×=N for each r, predicts at least the first 1000 modes with zero error. This 

amount of modes also indicates high frequency region. 

 

Figure 5.2 Convergence test for the DSC modal predictions of 

simply supported beams a) 11=N , b) 101=N .
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Figure 5.3 Convergence test for the DSC modal predictions of simply 

supported beams a) 1001=N , b) 2001=N , c) 3001=N .
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Figure 5.4 Convergence test for the DSC modal predictions of simply supported plates. 

 

5.3 Verification Study for the DSC-MS 

 

5.3.1 Vibration Displacement Response for a Thin Beam 

 

Analytical solution for the displacement response of a simply-supported 

undamped beam subjected to a point force F applied at the centre is (Harris & 

Piersoll, 2002b), 
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1 220
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In the analysis, the beam was discretized by N=3001 grid points with r = 12.1 

providing P = 2999 natural modes; and a harmonic point force in the form of 

)200sin(100 tF π= N was applied. The physical properties of the beam are 

followings; 1=a m, 27000 =ρ kg/m3, A= 4101 −× m2, 10101.7 ×=E N/m2,

I -1010 8.33 ×= m4 and the natural frequency parameters are given as  

 
2







 π=ρ

ω=Ω
a

n
EI
A

nn , L,3,2,1=n . (5.3) 

 

Figure 5.5 Comparison of the spatially distributed displacement response predicted by the DSC-

MS with analytical results for simply supported beam with 0=ζ .

Figure 5.5 shows the perfect match between the vibration displacement response 

predictions of DSC-MS approach and analytical expression given in Equation (5.1) 

for the frequency 100=f Hz.  

 

5.3.2 Vibration Displacement Response for a Thin Plate 

 

Analytical expression of the non-dimensional natural frequency parameter of a 

simply supported thin plate is given as (Leissa, 1969); 
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)( 222
, nmnm +π=Ω , L,3,2,1, =nm . (5.4) 

 

In the present analysis, the plate was discretized by 7171×=N grid points and 

discretization parameter r was chosen as 12.1. The plate with side lengths of 1m×1m 

has the following parameters: 79000 =ρ kg/m3, h=0.001 m, 11101.2 ×=E N/m2.

Figure 5.6 displays the relative error of the first 4761 (P = 4761) modes of the simply 

supported plate predicted by the DSC, corresponding up to almost 21200 Hz. The 

region including the first 4750 modes can be thought as acceptable frequency range, 

since the maximum absolute error is approximately 1% here. However, when 

comparing the predicted results with the analytical frequencies, it was noticed that 

after 3253th mode (=10355 Hz), having 0.127% error, some predicted natural modes 

shift to the position of subsequent analytical modes. This phenomenon arising due to 

high modal density causes the loss of some modal information. It is observed from 

this comparison that the situation is actually caused due to numerical illnesses. 

Accommodating better computational configurations, this limit can be extended to 

higher frequencies. For definitely reliable solutions, only up to the first 3254 modes 

were considered in all the present plate analyses. However considered number of 

modes can be regarded as rather sufficient for an acceptable high frequency analysis. 

 

Figure 5.6 Relative error of DSC solutions compared to the analytical results for simply-supported 

plate. 
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Since there is no analytical solution for the vibration response of finite plates, the 

comparison study has been performed by using the approximate analytical solution 

of infinite plates. The plate with 1m×1m dimensions is sufficiently large to 

approximately simulate an infinite plate. Displacement field of an infinite, thin, 

transversely vibrating plate subjected to a harmonic point force F(t) applied at the 

centre is examined by the wave propagation and the response is given with the far 

field assumption ( 1>>kr ) as (Cremer, Heckl & Ungar, 1998):  

 

)4/(
2

0

2
)1(8

)( π+−ω

πζ+
≈ krtje

krkjD
jFrw . (5.5) 

 

Here r is the distance between excitation point ),( ff yx and observation point 

),( yx , i.e., 22 )()( ff yyxxr −+−= . For 1<<ζ ,

2/0 γ−= jkk (5.6) 

 

The damping coefficient is gcωζ=γ . The group velocity is defined as 

4
00 /2 hDcg ρω= . It is seen that in Equation (5.5), the response leads to an 

asymptotic behaviour near the excitation point and it yields an infinite value at the 

excitation point. However, a finite maximum value of )(rw can be obtained by 

determining an initial radius satisfying the condition of )0()( 0 wrw = as follows,   

γ+
π

≈−

2
1

0
k

r . (5.7) 

 

At that point, the response approximately leads to:  
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In the verification study, the central excitation had an amplitude of F=100 N and 

its frequency was varied between 102 Hz and 104 Hz. The DSC-MS response at the 

centre of the plate is presented in Figures 5.6.a-c for three internal damping factors 

0=ζ , 01.0=ζ and 1.0=ζ , respectively together with analytical solutions.  

 

It is observed in Figure 5.7 that DSC-MS results accurately follow the general 

tendency of the infinite plate response. Since Equation (5.5) does not include natural 

frequency information, the response of infinite plate exhibits a decreasing smooth 

line with increasing excitation frequency. However, the DSC-MS predicts the 

response peaks corresponding to natural modes of undamped system discretely as 

shown in Figure 5.7.a. When damping is included, response peaks rapidly disappear 

(Figure 5.7.b) and DSC-MS results become perfectly matching with the analytical 

solutions for higher internal damping factors (Figure 5.7.c). 
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Figure 5.7 Comparison of the frequency response spectra predicted by the DSC-MS 

and approximate analytical solution for infinite plates a) 0=ζ , b) 01.0=ζ , c) 

1.0=ζ .



CHAPTER SIX 

NUMERICAL STUDIES 1:  

HIGH FREQUENCY FREE AND FORCED VIBRATION ANALYSES  

OF THIN PLATES BY THE DSC-MS 

 

6.1 Introduction 

 

In this chapter, comprehensive numerical studies for high frequency free and 

forced vibrations of thin plates with two different boundary conditions by using the 

DSC and DSC-MS are presented. In the previous chapter, since convergence tests 

were given in terms of error values of frequency parameters, free vibration analysis 

is generally considered here from the point of view of mode shapes. This chapter of 

the study shows the capabilities of the DSC-MS method in the discrete high 

frequency response analysis. In all numerical applications, the same plate parameters 

given in the verification study in Chapter 5 were used. 

  

6.2 Free Vibration Analysis  

 

A simply-supported thin plate was represented by 7171×== yx NN = 5041 DSC 

grid points. Figure 6.1 presents computed first few mode shapes of the plate. Figure 

6.2 shows higher mode shapes with high resolution. These figures clearly show the 

validity of the DSC also in the computation of mode shapes.  

 

6.3 Forced Vibration Analysis  

 

For the spatial and frequency response analyses, fully simply supported and fully 

clamped boundary conditions were considered, respectively.  
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Figure 6.1 The first few mode shapes of the simply supported plate a) 

Mode 1, b) Mode 2-3, c) Mode 4, d) Mode 5-6. 
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Figure 6.2 Several higher mode shapes of the simply-supported plate a) Mode 100, 

b) Mode 500, c) Mode 1000,  d) Mode 2000, e) Mode 2500, f) Mode 3000. 

 

6.3.1 Spatial Response Analysis 

 

DSC-MS approach was used for spatially distributed displacement response of 

fully simply-supported undamped thin plate subjected to time-harmonic point forces 

with different frequency content and having an amplitude of F=100 N.  
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Figure 6.3 Spatially-distributed vibration response of simply supported plate subjected to 

single central excitation a) 100=f Hz, b) 1000=f Hz, c) 5000=f Hz (f: excitation 

frequency). 

 

 

 



 51

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.4 Six different spatially-distributed vibration responses of simply supported 

plate subjected to three different excitations. 
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Figures 6.3.a-c show the spatially distributed response of the plate to the single 

harmonic central excitations at 100 Hz, 1000 Hz and 5000 Hz frequencies, 

respectively. Figure 6.4 presents response contours of the plate subjected to three 

point forces with several frequencies and frequency combinations.  

 

In Figure 6.4, excitation locations , ,  are defined as, m, 

m, m and excitation frequencies are as follows: 

1e 2e 3e )75.0,25.0(1 =e

)5.0,5.0(2 =e )25.0,75.0(3 =e

a) Hz, b)100321 === fff 1000321 === fff Hz, c) 2000321 === fff  Hz, 

d) Hz, e)5000321 === fff 100031 == ff Hz, 1002 =f Hz, f) Hz, 

Hz. These embroidered contours show the versatility of the DSC-MS on 

predicting spatially distributed response field. 

100031 == ff

20002 =f

 

6.3.2 Frequency Response Analysis 

  

The frequency response analysis of a fully clamped thin plate was performed by 

DSC-MS approach for the time-harmonic excitation forces for which frequency 

spectra are given in Figure 6.5. The analysis included low, mid and high frequency 

regions. The excitation forces were applied to the centre of the plate. 

 

Firstly, an excitation in the form of ideal white noise throughout 0-100 Hz as 

shown in Figure 6.5.a was applied. In this analysis, P = 25 modes (= 8.9357 Hz 

to113.79 Hz) were sufficiently contributed to the response.  

 

Secondly, an excitation again in the form of ideal white noise but in a much wider 

range, throughout 0-10000 Hz, was considered (Figure 6.5.b).  

 

Finally, for high frequency band analysis, a 1/3 octave band of the previous 

excitation at the 1000 Hz centre frequency was applied (Figure 6.5.c). In the last two 

cases, P=3254 modes (= 8.9357 Hz to10561 Hz) were taken into account. 
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Figure 6.5 Time-harmonic excitation force spectra a) Ideal white noise (0-100 Hz), b) Ideal white 

noise (0-7500 Hz), c) 1/3 octave band-limited white noise ( Hz,891=lowf 1000=centf  

Hz,  Hz). 1123=highf

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 6.6 Frequency response spectra of the clamped plate subjected to 

central harmonic point force acting at 0-100 Hz. a) Displacement of the 

excitation point, b) Mean (spatially averaged) displacement. 

 

Figure 6.6 shows the frequency response of the undamped plate to the first 

excitation. The resonant modes are clearly observed as disturbances for the excitation 

point response in Figure 6.6.a. Since spatial averaging causes some weak modal 
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information to be lost, the mean value spectrum in Figure 6.6.b includes only 

stronger modes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.7 Frequency response spectra of the clamped plate subjected to a central harmonic point 

force acting at 0-10000 Hz. a) Displacement of the excitation point, b) Mean (spatially averaged) 

displacement. 

 

The response spectra of the undamped plate to the second excitation are given in 

Figure 6.7. It is clearly seen that the DSC-MS is capable of predicting vibration 

response for the entire frequency range (0-10000 Hz). In contrast to the smooth 

response predicted by the conventional high-frequency methods, the present scheme 

yields discrete high frequency response. The spectra at high frequencies can be better 

visualized by focusing into 7500 Hz-10000 Hz and 9900 Hz-10000 Hz frequency 

ranges as displayed in Figures 6.8 and 6.9, respectively.  
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Figure 6.8 The focused part of Figure 6.7 in the range of 7500-10000 Hz. a) Displacement of the 

excitation point, b) Mean (spatially averaged) displacement. 

 

The analysis in a limited frequency band shown in Figure 6.5.c for the last 

application is generally performed by energy-based methods. These methods use the 

modal energy within a bandwidth to predict an average response along the band. 

However, in order for these methods to be valid in a frequency region, the considered 

band must include sufficient number of modes, i.e. the band must have high modal 

density. The DSC-MS results obtained for undamped ( 0=ζ ) and slightly-damped 

( 01.0=ζ ) plates are presented in Figure 6.10.  

 

The modal overlap count for plates can be derived by using Equations (4.18) and 

(4.19):  

c
s f
D

A
MO ζ=

2
                                     (6.1) 
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For 01.0=ζ  and Hz, MO is calculated as 3.2047; that is greater than 

Rabbiolo’s plate criterion i.e., 

1000=cf

OM = 2.5. Therefore, the frequency band with the 

1000 Hz centre frequency may be regarded as high frequency band for the plate at 

hand. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.9 The focused part of Figure 6.7 in the range of 9900-10000 Hz. a) Displacement of the 

excitation point, b) Mean (spatially averaged) displacement. 

 

In Figure 6.10, it is clearly seen that undamped high frequency behaviour 

predicted by the DSC-MS yields the discrete response peaks as much as accurately 

obtained in the low frequency analysis. However, the damping decreases resonance 

peaks and therefore the response spectra provide weak modal information. 
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Figure 6.10 Frequency response spectra of the clamped plate subjected to central harmonic point force 

acting at 1000 Hz with 1/3 octave band a) Displacement of the excitation point, b) Mean (spatially 

averaged) displacement. 

 

In practice, all systems have damping and for a realistic design, damping 

behaviour must be adapted to the vibro-acoustic model. The modal content of any 

real high frequency system can be discretely obtained by the DSC-MS. The other 

advantage of the present scheme is that it does not require any pre-condition for the 

modal density and damping.  



CHAPTER SEVEN 

NUMERICAL STUDIES 2: 

FREE VIBRATION ANALYSIS OF SYMMETRICALLY  

LAMINATED THIN COMPOSITE PLATES BY THE DSC  

 

7.1 Introduction 

 

Laminated composites are increasingly used in various mechanical structures and 

industrial applications such as aircrafts, automobiles, marines, buildings and several 

house-hold appliances due to their, in particular, higher stiffness and higher strength 

to weight ratio compared to isotropic or wooden materials. Composite plates 

generally are made of alternating layers of fiber-reinforced polymer prepregs or 

different combinations of polymer prepregs and metals. The material type and 

orientation angle of the layers drastically change the modal characteristics of the 

composites beside the mechanical properties such as strength, roughness, durability, 

fatigue and fracture behaviour. Since the application of composite materials to real 

life structures have been accelerated, the researches on vibrational characteristics of 

composite structures, including thin plates became important. In this regard, free 

vibration analysis of symmetrically laminated thin composite plates was performed 

by using the DSC algorithm. 

 

 In this chapter, an implementation procedure of the DSC for the composite plates 

is introduced. The accuracy of the code is verified by comparing the DSC free 

vibration results with the exact ones for specially orthotropic plates, and some 

symmetrically laminated thin composite plates orientated as become specially 

orthotropic. In addition, free vibrations of several laminated thin composite plates 

which have no analytical solution are examined by the DSC for different boundary 

conditions and ply numbers. The results are compared with the published solutions of 

different methods.  

 

Furthermore, some specific free vibration applications of thin composite plates 

based on Discrete Singular Convolution (DSC) approach are presented. As the first 
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application, a parametric analysis is performed on the bases of number of lamination, 

boundary condition and orientation angle of symmetrically laminated composite 

plates. Secondly, the effects of material type, boundary condition and stacking 

sequence on the modal characteristics of laminated plates made of E-glass/epoxy, 

Kevlar/epoxy and Carbon/epoxy are investigated. Thirdly, linear modal 

characteristics of fiber metal laminates (FML) are specifically analysed due to their 

common use in aircraft design. Hybrid composites offer superior mechanical 

properties over conventional composite laminates and high-strength metal alloys. 

Specifically, fiber metal laminates (FML) combine the good fatigue and fracture 

behaviour of polymer composites with the excellent durability, toughness and impact 

resistance of metals in addition to the weight and cost reductions. Due to these 

excellent properties, FMLs are being used in commercial aircrafts and advanced 

aerospace structures.  

 

Design parameters are material type, orientation angle of stacks, stacking 

sequence, number of lamination and boundary condition. Three case studies are 

independently considered for practical purposes. Firstly, symmetrically laminated 

three-ply, four-ply and five-ply composite plates with six different boundary 

conditions are considered in order to examine the effects of number of lamination, 

boundary condition and orientation angle of stacks on natural frequency parameters. 

Secondly, the effects of material type and stacking sequences on the modal 

characteristics of laminated plates made of E-glass/epoxy, Kevlar/epoxy and 

Carbon/epoxy with two different boundary conditions are investigated. Finally, due 

to their practical importance, fiber metal laminates (FML) are specifically considered 

on a linear base in order to compare the effects of material type of fiber, boundary 

condition and orientation angle of stacks on natural frequency parameters. The 

results are evaluated together with those of monolithic aluminium alloys.  

 

7.2 DSC Implementation for Symmetrically Laminated Plates 

 

Time-independent differential equation of harmonic bending vibration for a 

symmetrically laminated thin composite plate is given as follows (Whitney, 1987);  
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Here, 11D , 12D , 22D , 66D  are the bending rigidities in the principle material 

directions whereas 16D  and 26D  are the bend-twist coupling stiffnesses. For fully 

simply supported (SSSS) and fully clamped (CCCC) edges the following boundary 

conditions are applicable: 

 

For SSSS;  
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For CCCC;  

at 0=x , a :    0=w   ;    0=
∂
∂

x
w

,                                        (7.3.a) 

at  0=y , b :   0=w   ;     0=
∂
∂

y
w

.                             (7.3.b) 

 

Introducing new non-dimensional parameters; axX /= , byY /= , awW /= , 

ba=λ , )/( 2211 DDD =γ , 226612 /)2( DDDD +=φ , )/( 2216 DDD =α , 

)/( 2226 DDD =β , Equation (7.1) can be rewritten in the following form: 
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Here, natural frequency parameter is 22
2 Dha ρω=Ω . For specially orthotropic 

plates (SOP) and isotropic plates (IP), Equation (7.4) can be simplified based on the 

following two features: 

 

- For specially orthotropic plates (SOP): The composite is symmetrically 

laminated and has only plies in the 0 and 90-degree directions; therefore, 

φγ ≠ DD  and 0== βα DD  (i.e., 02616 == DD ). 

 

- For isotropic plates (IP): The rigidities 1== φγ DD  and 0== βα DD  

(i.e., ( )23
2211 112 υ−=== EhDDD  and 02616 == DD ).  

 

For fully simply supported SOP; natural frequency parameter qp,Ω  is analytically 

given by (Whitney, 1987); 

 

4422242
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02
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ω=Ω φγ qDqpDp
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aqpqp    �,3,2,1, =qp  .   (7.5) 

 

By applying linear DSC operator L defined in Equation (3.18), that performs the 

DSC approach in Equation (3.24), to Equation (7.4); one can obtain a discretized 

governing equation of symmetrically laminated composite plates in a non-

dimensional form: 
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After applying boundary conditions as defined in Chapter 3, a vector for a discretized 

plate is obtained: 

 

W ={ }T
NNNNN WWWWWW 1,10,11,10,11,00,0 ,,,,,,,,,, −−−−− ����� .             (7.7) 

 

Finally, after implementation of displacement boundary 

conditions 0)()( 10 == −NrWrW , Equation (7.6) can be reconstructed by DSC 

matrices as an eigenvalue equation for symmetrically laminated composite plates: 

 

{ ⊗γ
)4(( xD ΓΓΓΓ  Iy) ()(2 4)2()2(2 λ+⊗λ+ φ yxD ΓΓΓΓΓΓΓΓ Ix ))4(

yΓΓΓΓ⊗  

})(4)(4 )3()1(3)1()3(
yxyx DD ΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓ ⊗λ+⊗λ+ βα  W 2ΩΩΩΩ=  W .       (7.8) 

 

7.3 Comparison Study for Laminated Composite Plates 

 

7.3.1 Verification of Natural Frequency Parameters 

 

Here, natural frequency parameters of specially orthotropic square thin plates 

(SOP) are presented for a simple verification of the DSC. These frequency 

parameters are compared with analytical results for SSSS and approximate results for 

CCCC given by Whitney (1987) in Table 7.1. The comparison shows perfect 

agreement. Here, natural frequency parameters of the plates were defined as 2πΩ  

for numerical facility.  
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Table 7.1 Natural frequency parameters of specially orthotropic plates (SOP) ( ,1=λ  DSC: 

,2121×=N  ( ) ,220
222 Dha ρπω=πΩ  ,10=γD  ,1=φD  0== βα DD ) 

 SSSS: CCCC: 
Mode Number  
(p, q) 

Present: DSC Analytical 
(Whitney, 1987)  

Present: DSC Whitney (1987)  

(1,1) 3.6056 3.6056 7.7199 7.7221 
(1,2) 5.8310 5.8310 10.0990 10.102 
(1,3) 10.4403 10.4403 15.0440 15.0475 
(2,1) 13.0000 13.0000 20.1740 20.1835 
(2,2) 14.4222 14.4222 21.7380 21.7402 
(1,4) 17.2627 17.2627 22.4670 22.4673 

 

Secondly, natural frequency parameters of three-ply laminates predicted by DSC 

approach are compared with those of some selected studies in Table 7.2-7.4: Leissa 

& Narita (1989) use Ritz method; Chow et al. (1992) utilize Rayleigh-Ritz approach; 

whereas Dai et al. (2004) introduce a mesh free technique and present results from 

classical laminated plate theory (CLPT) and also Reddy’s third order shear 

deformation theory (TSDT). (i.e., )1/( 2112
3

11,0 νν−= hED  ). In this comparison, 

natural frequency parameter is determined as 1,0
2

1 Dha ρω=β by means of an 

arbitrary rigidity expression 45.2/ 21 =EE , 212 48.0 EG = , 23.012 =υ , 

0939.021 =υ , 38000 −⋅=ρ mkg , mh 06.0= , 006.0/ =ah  (i.e., a typical thin plate).  

 

Table 7.2 gives frequency parameters of the plates with fully simply supported 

(SSSS), Table 7.3 with fully clamped (CCCC) and Table 7.4 with simply supported-

clamped (SCSC) boundary conditions. Tabulated frequency parameters computed by 

the DSC yield good agreement with those of the compared studies. 
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Table 7.2 Natural frequency parameters 1,0
2

1 Dha ρω=β  of fully simply supported (SSSS) 

square three-ply laminates with several orientations ( 1=λ , DSC: 2121×=N ) 
 
Three-ply Resource Mode Sequence Number 

Ply angle  1 2 3 4 5 6 

SSSS:        

( 00,  00, 00 )  Analytical (Whitney, 1987) (CLPT: 
SOP) 

15.171 33.248 44.387 60.682 64.457 90.145 

    Present: DSC 15.171 33.248 44.387 60.682 64.457 90.145 
 Dai et al. (2004) (CLPT) 15.17 33.32 44.51 60.78 64.79 90.42 
 Dai et al. (2004) (TSDT) 15.22  33.76  44.79  61.11  66.76  91.69 
 Chow et. al (1992) (CLPT) 15.19 33.31 44.52 60.79 64.55 90.31 
 Leissa and Narita (1989) (CLPT) 15.19 33.30 44.42 60.78 64.53 90.29 
        
( 150,  -150, 150 ) Present: DSC 15.469 34.153 43.879 60.954 66.635 91.393 
 Dai et al. (2004) (CLPT) 15.40 34.12 43.96 60.91 66.92 91.76 
 Dai et al. (2004) (TSDT) 15.45  34.54  44.25  61.36  68.68  92.99 
 Chow et. al (1992) (CLPT) 15.37 34.03 43.93 60.80 66.56 91.40 
 Leissa and Narita (1989) (CLPT) 15.43 34.09 43.80 60.85 66.67 91.40 
        
( 300,  -300, 300 ) Present: DSC 16.058 36.060 42.743 61.757 71.849 85.780 
 Dai et al. (2004) (CLPT) 15.87 35.92 42.70 61.53 71.10 86.31 
 Dai et al. (2004) (TSDT) 15.92  36.28  43.00  62.05  73.55  87.37 
 Chow et. al (1992) (CLPT) 15.86 35.77 42.48 61.27 71.41 85.67 
 Leissa and Narita (1989) (CLPT) 15.90 35.86 42.62 61.45 71.71 85.72 
        
( 450,  -450, 450 ) Present: DSC 16.348 37.146 42.033 62.234 77.213 80.130 
 Dai et al. (2004) (CLPT) 16.10 37.00 41.89 61.93 77.99 80.11 
 Dai et al. (2004) (TSDT) 16.15  37.33  42.20  62.45  78.96  81.55 
 Chow et. al (1992) (CLPT) 16.08 36.83 41.67 61.65 76.76 79.74 
 Leissa and Narita (1989) (CLPT) 16.14 36.93 41.81 61.85 77.04 80.00 
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Table 7.3 Natural frequency parameters 1,0
2

1 Dha ρω=β  of fully clamped (CCCC) square three-

ply laminates with several orientations ( 1=λ , DSC: 2121×=N ) 
 

Three-ply Resource Mode Sequence Number 

Ply angle  1 2 3 4 5 6 

CCCC:        

( 00,  00, 00 )  Present: DSC 29.087 50.792 67.279 85.629 87.112 118.50 
 Dai et al. (2004) (CLPT) 29.27 51.21 67.94 86.25 87.97 119.3 
 Dai et al. (2004) (TSDT) 30.02 54.68  70.41  89.36  92.58  123.6 
 Chow et. al (1992) 

(CLPT) 
29.13 50.82 67.29 85.67 87.14 118.6 

        
( 150,  -150, 150 ) Present: DSC 28.897 51.405 65.911 84.515 89.712 119.21 
 Dai et al. (2004) (CLPT) 29.07 51.83 66.55 85.17 90.56 120.0 
 Dai et al. (2004) (TSDT) 29.85  55.25  69.14  88.53  94.92  124.3 
 Chow et. al (1992) 

(CLPT) 
28.92 51.43 65.92 84.55 89.76 119.3 

        
( 300,  -300, 300 ) Present: DSC 28.522 53.124 62.683 83.821 95.158 114.13 
 Dai et al. (2004) (CLPT) 28.69 53.57 63.26 84.43 96.15 115.5 
 Dai et al. (2004) (TSDT) 29.51  56.84  66.17  87.83  100.5  118.9 
 Chow et. al (1992) 

(CLPT) 
28.55 53.15 62.71 83.83 95.21 114.1 

        
( 450,  -450, 450 ) Present: DSC 28.337 54.623 60.430 83.658 101.94 105.60 
 Dai et al. (2004) (CLPT) 28.50 55.11 60.94 84.25 103.2 106.7 
 Dai et al. (2004) (TSDT) 29.34  58.19  64.14  87.67  107.4  110.6 
 Chow et. al (1992) 

(CLPT) 
28.38 54.65 60.45 83.65 102.0 105.6 

 

Table 7.4 Natural frequency parameters 1,0
2

1 Dha ρω=β  of simply supported-clamped (SCSC) 

square three-ply laminates with several orientations ( 1=λ , DSC: 2121×=N ) 
 
Three-ply Resource Mode Sequence Number 

Ply angle  1 2 3 4 5 6 

SCSC:        

   ( 00,  00, 00 ) Present: DSC 20.402 45.638 46.998 69.434 83.677 95.247 
 Dai et al. (2004) (CLPT) 20.48 46.04 47.15 70.12 84.54 95.85 
 Dai et al. (2004) (TSDT) 21.08 47.73 49.64 72.05 89.25 96.97 
        
( 150,  -150, 150 ) Present: DSC 20.791 45.514 47.739 70.200 85.623 93.210 
 Dai et al. (2004) (CLPT) 20.85 45.56 48.14 70.66 86.47 94.00 
 Dai et al. (2004) (TSDT) 21.42 46.78 51.04 72.63 91.01 95.04 
        
( 300,  -300, 300 ) Present: DSC 21.786 44.476 50.622 71.73 87.959 91.845 
 Dai et al. (2004) (CLPT) 21.84 44.42 51.03 71.89 88.96 92.82 
 Dai et al. (2004) (TSDT) 22.35 45.31 54.09 73.93 90.07 96.85 
        
( 450,  -450, 450 ) Present: DSC 23.059 43.047 54.979 72.655 82.688 101.21 
 Dai et al. (2004) (CLPT) 23.15 43.07 55.44 72.78 83.90 102.26 
 Dai et al. (2004) (TSDT) 23.63 43.84 58.36 74.82 85.04 106.01 
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Thirdly, natural frequency parameters of four-ply and five-ply laminates are 

compared in Table 7.5 and Table 7.6, respectively with those of Leissa & Narita 

(1989) and Chow et al. (1992). Here, the frequency parameter and plate parameters 

are the same as given in the second case. These DSC predictions also exhibit very 

good harmony with the compared results. 

 

Table 7.5 Natural frequency parameters 1,0
2

1 Dha ρω=β  of fully simply supported (SSSS) and 

clamped (CCCC) square four-ply laminates with several orientations ( 1=λ , DSC: 2121×=N ) 
 

Four -ply Resource Mode Sequence Number  

Ply angle  1 2 3 4 5 6 

SSSS:        

( 00,  00, 00 , 00)  Analytical (Whitney, 
1987) (CLPT: SOP) 

15.171 33.248 44.387 60.682 64.457 90.145 

    Present: DSC 15.171 33.248 44.387 60.682 64.457 90.145 
 Chow et. al (1992) 

(CLPT) 
15.19 33.31 44.52 60.78 64.55 90.31 

 Leissa and Narita 
(1989) (CLPT) 

15.19 33.30 44.42 60.77 64.53 90.29 

        
( 150,  -150, -150, 150) Present: DSC 15.490 34.235 43.904 61.333 66.520 91.446 
 Chow et. al (1992) 

(CLPT) 
15.40 34.15 43.84 61.23 66.48 91.47 

 Leissa and Narita 
(1989) (CLPT) 

15.47 34.21 43.91 61.28 66.57 91.47 

        
 ( 300,  -300, -300, 300) Present: DSC 16.117 36.426 42.696 62.764 71.737 85.828 
 Chow et. al (1992) 

(CLPT) 
15.94 36.23 42.52 62.46 71.45 85.79 

 Leissa and Narita 
(1989) (CLPT) 

16.02 36.30 42.62 62.57 71.68 85.81 

        
( 450,  -450, -450 , 450) Present: DSC 16.424 37.837 41.766 63.540 77.644 79.646 
 Chow et. al (1992) 

(CLPT) 
16.17 37.62 41.52 63.15 77.33 79.40 

 Leissa and Narita 
(1989) (CLPT) 

16.29 37.71 41.63 63.29 77.56 79.60 

CCCC: 
 

       

( 00,  00, 00 , 00) Present: DSC 29.087 50.792 67.279 85.629 87.112 118.50 
 Chow et. al (1992) 

(CLPT) 
29.13 50.82 67.29 85.67 87.14 118.6 

        
( 150,  -150, -150, 150) Present: DSC 28.940 51.528 65.959 85.07 89.53 119.88 
 Chow et. al (1992) 

(CLPT) 
28.98 51.56 65.97 85.11 89.57 119.9 

        
( 300,  -300, -300, 300) Present: DSC 28.648 53.597 62.720 85.093 95.088 114.26 
 Chow et. al (1992) 

(CLPT) 
28.69 53.62 62.74 85.09 95.15 114.3 

        
( 450,  -450, -450 , 450) Present: DSC 28.503 55.534 60.197 85.254 102.52 105.18 
 Chow et. al (1992) 

(CLPT) 
28.53 55.56 60.22 85.25 102.6 105.2 
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Table 7.6 Natural frequency parameters 1,0
2

1 Dha ρω=β  of fully simply supported (SSSS) and 

clamped (CCCC) square five-ply laminates with several orientations ( 1=λ , DSC: 2121×=N ) 
 
Five-ply Resource Mode Sequence Number  

Ply angle  1 2 3 4 5 6 

SSSS:        

( 00,  00, 00 , 00 ,00)  
Analytical (Whitney, 
1987) 

15.171 33.248 44.387 60.682 64.457 90.145 

    Present: DSC 15.171 33.248 44.387 60.682 64.457 90.145 

 
Chow et. al (1992) 
(CLPT) 15.19 33.31 44.52 60.78 64.55 90.31 

 
Leissa and Narita 
(1989) (CLPT) 15.19 33.30 44.42 60.77 64.53 90.29 

        
( 150, -150, 150, -150, 150) Present: DSC 15.506 34.296 43.922 61.630 66.419 91.485 

 
Chow et. al (1992) 
(CLPT) 15.46 34.24 43.88 61.59 66.42 91.52 

 
Leissa and Narita 
(1989) (CLPT) 15.50 34.30 43.93 61.62 66.48 91.51 

        
 ( 300, -300, 300, -300, 300) Present: DSC 16.161 36.705 42.652 63.561 71.598 85.864 

 
Chow et. al (1992) 
(CLPT) 15.98 36.58 42.53 63.37 71.43 85.86 

 
Leissa and Narita 
(1989) (CLPT) 16.10 36.64 42.62 63.45 71.60 85.88 

        
( 450, -450, 450, -450, 450) Present: DSC 16.480 38.436 41.478 64.563 77.958 79.223 

 
Chow et. al (1992) 
(CLPT) 

16.29 38.30 41.32 64.35 77.77 79.09 

 
Leissa and Narita 
(1989) (CLPT) 16.40 38.37 41.40 64.41 77.94 79.23 

CCCC: 
  

      

( 00,  00, 00 , 00 ,00) Present: DSC 29.087 50.792 67.279 85.629 87.112 118.50 

 
Chow et. al (1992) 
(CLPT) 

29.13 50.82 67.29 85.67 87.14 118.6 

        
( 150, -150, 150, -150, 150) Present: DSC 28.972 51.620 65.995 85.527 89.350 120.40 

 
Chow et. al (1992) 
(CLPT) 29.00 51.65 66.01 85.55 89.40 120.5 

        
( 300, -300, 300, -300, 300) Present: DSC 28.740 53.951 62.741 86.097 94.968 114.35 

 
Chow et. al (1992) 
(CLPT) 28.78 53.98 62.76 86.09 95.04 114.4 

        
( 450, -450, 450, -450, 450) Present: DSC 28.624 56.308 59.917 86.486 102.95 104.81 

 
Chow et. al (1992) 
(CLPT) 28.68 56.34 59.94 86.48 103.0 104.9 

 

Finally, another comparison is given for (00, 900, 00) fiber orientation in Table 7.7. 

Here the reference studies are Liew (1996) using p-Ritz approach; Ferreira & 

Fasshauer (2006) introducing radial basis function-pseudospectral approach; and 

Lanhe et al. (2005) utilizing moving least squares-differential quadrature method. In 

this case, natural frequency parameter is determined as 2,0
22

2 Dha ρπω=β by 
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means of another arbitrary rigidity expression (i.e., )1/( 2112
3

22,0 νν−= hED ). The 

plate parameters are 40/ 21 =EE , 212 6.0 EG = , 25.012 =υ , 00625.021 =υ , 

mh 001.0= , 001.0/ =ah . DSC solutions for fully simply supported (SSSS) and 

fully clamped (CCCC) plates are very close to the compared results. 

 

Table 7.7 Natural frequency parameters 2,0
22

2 Dha ρπω=β  of fully simply supported (SSSS) 

and fully clamped (CCCC) square three-ply laminates with ( 00,  900, 00 ) orientation ( 1=λ , 
DSC: 2121×=N ) 
 

Three-ply   (00, 900, 00) Mode Sequence Number 

Resource  1 2 3 4 5 6 7 8 

SSSS:         
Analytical (Whitney, 
1987) (CLPT: SOP) 6.6254 9.4473 16.2056 25.1181 26.5017 26.6585 30.3175 37.7892 
Present: DSC  6.6254 9.4473 16.2056 25.1181 26.5017 26.6585 30.3175 37.7892 
Liew (1996) 6.6252  9.4470 16.2051 25.1146 26.4982 26.6572 30.3139 37.7854 
Ferreira and Fasshauer 
(2006)  6.6180  9.4368  16.2192  25.1131  26.4938  26.6667  30.2983  37.7850 
Lanhe et al. (2005) 6.632 9.464 16.364 25.325 26.886 - - - 
         
CCCC:         
Present: DSC  14.6692 17.6191 24.5235 35.5614 39.1818 40.7945 44.8174 50.3613 
Liew (1996) 14.6655  17.6138  24.5114  35.5318  39.1572  40.7685  44.7865  50.3226 
Ferreira and Fasshauer 
(2006)  14.8138 17.6181  24.1145  36.0900  39.0170  40.8323  44.9457  49.0715 
Lanhe et al. (2005) 14.674  17.668  24.594  35.897  39.625 - - - 

 

Moreover, as seen from Tables 7.2, 7.5, 7.6 and 7.7, in the given number of digits, 

DSC predictions completely match with the analytical results of simply supported 

laminates orientated as become specially orthotropic. This implies the superiority of 

the DSC compared to the other techniques. It is known that thin plate theory is not 

very accurate in the vibration analysis of laminated plates. However, the presented 

DSC results based on CLPT are sensitive because of sufficiently small thickness to 

length ratio of the considered plates; as seen the same predictions of exact CLPT and 

SOP cases.  

 

7.3.2 Verification of Mode Shapes 

 

In Figure 7.1, the first four mode shapes of SOP by the DSC are given together 

with symbolic nodal line representations given by Whitney (1987).  
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Figure 7.1 The first four mode shapes of simply supported specially orthotropic thin plate:         

a) Analytical (Whitney, 1987), b) DSC ( 2121×=N ). 

 

For the verification of mode shapes of laminated plates, five-ply fully simply 

supported composite plates having { }θθ−θθ−θ ,,,,  sequence with four orientation 

angles 0000 45,30,15,0=θ  are considered. In Figure 7.2, the first eight mode 
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shapes ( 8,,2,1 �=n ) corresponding to the first eight natural frequency parameters 

( 1,0
2

1 Dha ρω=β ) tabulated in Table 7.8 are compared with those of Chow et al. 

(1992). Here the material properties are ,4.15/ 21 =EE  ,79.0 212 EG =  ,3.012 =υ  

0195.021 =υ . These consistent mode shapes simply verify the accuracy of the DSC 

for composite plates.  

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2 The first eight mode shapes of simply supported five-ply composite plates: a) Chow 

et al. (1992), b) DSC ( 2121×=N ) (n: Mode sequence number, :θ Orientation angle). 
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Table 7.8 Natural frequency parameters 1,0
2

1 Dha ρω=β  corresponding to the first eight mode 

shapes of fully simply supported (SSSS) square five-ply laminates with several orientations ( 1=λ , 

DSC: 2121×=N ) 

Five-ply Mode Sequence Number 

Ply angle 

Resource 

1 2 3 4 5 6 7 8 

( 00,  00, 00 , 00 , 00) Present DSC  11.29 17.13 28.68 40.74 45.15 45.78 54.06 68.14 
 Chow et al. (1992) 11.30 17.13 28.70 40.77 45.18 46.23 54.98 69.64 
( 150, -150, 150, -150, 150) Present DSC  12.01 20.07 33.38 39.78 47.80 51.75 61.44 74.27 
 Chow et al. (1992) 11.82 19.76 32.93 39.53 47.42 52.73 61.11 74.08 
( 300, -300, 300, -300, 300) Present DSC  13.40 25.83 37.41 43.60 53.80 66.50 76.06 77.23 
 Chow et al. (1992) 12.98 25.21 36.97 42.65 52.83 66.48 75.76 77.65 
( 450, -450, 450, -450, 450) Present DSC  14.06 29.38 35.36 49.94 60.22 66.19 75.31 89.17 
 Chow et al. (1992) 13.61 28.75 34.68 48.90 59.25 65.34 74.28 88.86 
 

7.4 Case Studies for the Effects of Composite Plate Design Parameters  

 

In all applications, linear vibration analyses were performed. The plates were 

assumed to be thin, square, and discretized by using 2121×=N  grid points.  

 

7.4.1 The Effects of Number of Plies, Orientation Angle and Boundary Conditions 

on Natural Frequency Parameters of Thin Composite Plates 

 

The DSC predictions of the first ten natural frequency parameters of three-, four- 

and five-ply laminates are tabulated in Tables 7.9-7.11 respectively, for six different 

boundary conditions and four different stacking sequences. The orientations of the 

stacks are considered as ( )θθ−θ ,,  for three-, ( )θθ−θ−θ ,,,  for four- and 

( )θθ−θθ−θ ,,,,  for five-ply laminates. Stacking sequences are labelled as P1 

for 00=θ , P2 for 015=θ , P3 for 030=θ and P4 for 045=θ . Boundary conditions 

are labelled as BC1, BC2,…, BC6 as presented in Tables 7.9-7.11. The natural 

frequency parameter 0
2 Dha ρω=β  is determined by means of the 

rigidity )1/( 2112
3

10 νν−= hED . The plate parameters are 45.2/ 21 =EE , 

212 48.0 EG = , 23.012 =υ , 0939.021 =υ .  

Figure 7.3 demonstrates the variation of the first natural mode with respect to 

number of lamination, boundary condition and stacking sequence. Figure 7.4 shows 
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the variation of the tenth natural mode with respect to the same parameters. Figure 

7.3 is an indicator of lower modes whereas Figure 7.4 reflects the feature of higher 

modes.  

 

� For P1: Number of lamination and boundary condition do not influence 

frequencies.  

� For P2: Number of lamination becomes to be effective on the frequency 

parameters regardless the type of boundary condition. Simply, increase in the 

number of lamination increases the natural frequency parameters.  

� For P3: Except BC4, number of lamination is quite effective for the other 

conditions. 

� For P4: In this sequence, number of lamination affects only BC2, BC4 and 

BC5 plates. 
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                Table 7.9 Natural frequency parameters of three-ply laminates ( )θθ−θ ,,   with six different boundary conditions ( 0
2 Dha ρω=β ) 

 
Three-ply Mode Sequence Number 

Ply angle 

Boundary  

Condition 1 2 3 4 5 6 7 8 9 10 

 P1:  (00,  00, 00 ) BC1 15.171 33.248 44.387 60.682 64.457 90.145 93.630 108.46 108.97 132.99 
 BC2 17.354 38.989 45.511 64.670 73.628 94.356 97.646 111.76 120.97 142.36 
 BC3 21.398 41.419 55.176 72.474 75.276 103.68 109.26 122.20 125.22 148.83 
 BC4 20.402 45.638 46.998 69.434 83.677 95.247 106.06 115.06 134.34 148.94 
 BC5 27.007 44.856 66.216 77.465 81.733 110.94 123.75 125.49 140.12 154.50 
 BC6 29.087 50.792 67.279 85.629 87.112 118.50 126.18 136.87 142.84 165.84 
            
P2: (150, -150, 150 ) BC1 15.469 34.153 43.879 60.954 66.635 91.393 91.659 108.96 111.12 132.52 
 BC2 17.707 39.813 45.192 65.290 75.599 92.211 98.975 112.30 123.59 140.57 
 BC3 21.471 42.213 54.243 72.187 77.563 104.87 106.45 124.16 125.31 148.40 
 BC4 20.791 45.514 47.739 70.200 85.623 93.210 106.82 116.38 137.04 148.24 
 BC5 26.731 45.417 64.738 77.841 82.626 111.57 121.97 126.43 138.63 155.18 
 BC6 28.897 51.405 65.911 84.515 89.712 119.21 122.74 139.30 141.93 165.24 
            
P3: (300,  -300, 300 ) BC1 16.058 36.060 42.743 61.757 71.849 85.780 94.096 109.23 119.25 133.47 
 BC2 18.495 41.053 45.229 66.506 81.026 86.983 100.81 114.13 132.19 140.98 
 BC3 21.629 44.109 52.052 72.280 82.937 99.361 106.91 123.28 133.61 148.77 
 BC4 21.786 44.476 50.622 71.730 87.959 91.845 107.41 120.40 146.07 148.10 
 BC5 26.046 46.935 61.041 78.224 86.059 113.03 113.03 132.74 137.05 156.28 
 BC6 28.522 53.124 62.683 83.821 95.158 114.13 120.64 138.58 149.10 164.97 
            
P4: (450,  -450, 450 ) BC1 16.348 37.146 42.033 62.234 77.213 80.130 95.076 109.48 130.82 132.82 
 BC2 19.214 40.331 47.506 67.279 80.153 89.555 101.05 116.67 133.04 141.37 
 BC3 21.707 45.480 50.521 72.467 89.174 92.119 107.84 122.75 146.60 148.55 
 BC4 23.059 43.047 54.979 72.655 82.688 101.21 106.97 125.16 134.84 148.71 
 BC5 25.247 48.930 56.869 78.013 92.264 102.55 114.18 130.64 148.89 156.83 
 BC6 28.337 54.623 60.430 83.658 101.94 105.60 121.41 137.29 163.18 165.04 

C 
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S BC2 

C 
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S 

C BC3 

C 
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S BC4 
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      Table 7.10 Natural frequency parameters of four-ply laminates ( )θθ−θ−θ ,,,   with six different boundary conditions ( 0
2 Dha ρω=β ) 

 
Four-ply Mode Sequence Number 

Ply angle 

Boundary  

Condition 1 2 3 4 5 6 7 8 9 10 

  P1: (00,  00, 00, 00) BC1 15.171 33.248 44.387 60.682 64.457 90.145 93.630 108.46 108.97 132.99 
 BC2 17.354 38.989 45.511 64.670 73.628 94.356 97.646 111.76 120.97 142.36 
 BC3 21.398 41.419 55.176 72.474 75.276 103.68 109.26 122.20 125.22 148.83 
 BC4 20.402 45.638 46.998 69.434 83.677 95.247 106.06 115.06 134.34 148.94 
 BC5 27.007 44.856 66.216 77.465 81.733 110.94 123.75 125.49 140.12 154.50 
 BC6 29.087 50.792 67.279 85.629 87.112 118.50 126.18 136.87 142.84 165.84 
            
P2: ( 150,  -150, -150, 150) BC1 15.490 34.235 43.904 61.333 66.520 91.446 92.217 109.11 111.03 133.86 
 BC2 17.731 39.934 45.186 65.615 75.559 92.259 99.620 112.33 123.57 141.99 
 BC3 21.506 42.315 54.281 72.645 77.427 105.48 106.51 124.40 125.19 149.82 
 BC4 20.817 45.790 47.588 70.517 85.617 93.250 107.64 116.25 137.04 149.59 
 BC5 26.772 45.525 64.795 78.272 82.550 112.22 122.04 126.40 138.81 156.34 
 BC6 28.940 51.528 65.959 85.070 89.530 119.88 122.82 139.41 141.96 166.70 
            
P3: ( 300,  -300, -300, 300) BC1 16.117 36.426 42.696 62.764 71.737 85.828 96.009 109.47 119.07 136.76 
 BC2 18.568 41.621 45.017 67.500 81.072 86.958 102.96 114.14 132.16 144.38 
 BC3 21.730 44.521 52.062 73.413 82.855 99.451 108.97 123.64 133.46 152.29 
 BC4 21.874 44.957 50.539 72.771 88.109 91.747 109.71 120.32 146.19 148.09 
 BC5 26.164 47.306 61.152 79.525 85.867 113.24 114.99 133.53 136.67 159.79 
 BC6 28.648 53.597 62.720 85.093 95.088 114.26 122.85 139.08 148.93 168.72 
            
P4: ( 450,  -450, -450 , 450) BC1 16.424 37.837 41.766 63.54 77.644 79.646 97.783 109.65 131.13 132.43 
 BC2 19.316 40.909 47.419 68.692 80.174 89.503 103.80 117.00 132.94 145.76 
 BC3 21.840 46.273 50.291 73.908 89.667 91.704 110.77 123.00 146.95 148.22 
 BC4 23.190 43.540 55.058 74.218 82.562 101.30 109.67 125.91 134.51 153.18 
 BC5 25.396 49.593 56.824 79.572 92.345 102.55 117.16 131.07 148.85 161.50 
 BC6 28.503 55.534 60.197 85.254 102.52 105.18 124.59 137.64 163.64 165.32 
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        Table 7.11 Natural frequency parameters of five-ply laminates ( )θθ−θθ−θ ,,,,   with six different boundary conditions ( 0
2 Dha ρω=β ) 

 
Five-ply Mode Sequence Number 

Ply angle 

Boundary 
Condition 

1 2 3 4 5 6 7 8 9 10 

P1: ( 00,  00, 00 , 00 ,00) BC1 15.171 33.248 44.387 60.682 64.457 90.145 93.630 108.46 108.97 132.99 
 BC2 17.354 38.989 45.511 64.670 73.628 94.356 97.646 111.76 120.97 142.36 
 BC3 21.398 41.419 55.176 72.474 75.276 103.68 109.26 122.20 125.22 148.83 
 BC4 20.402 45.638 46.998 69.434 83.677 95.247 106.06 115.06 134.34 148.94 
 BC5 27.007 44.856 66.216 77.465 81.733 110.94 123.75 125.49 140.12 154.50 
 BC6 29.087 50.792 67.279 85.629 87.112 118.50 126.18 136.87 142.84 165.84 
            

P2: ( 150, -150, 150, -150, 150) BC1 15.506 34.296 43.922 61.630 66.419 91.485 92.642 109.21 110.98 135.01 
 BC2 17.749 40.026 45.180 65.861 75.526 92.295 100.12 112.33 123.56 143.21 
 BC3 21.533 42.391 54.310 73.009 77.303 105.94 106.56 124.57 125.11 151.00 
 BC4 20.837 46.036 47.436 70.757 85.610 93.280 108.29 116.11 137.04 150.69 
 BC5 26.803 45.605 64.837 78.613 82.472 112.71 122.10 126.36 138.95 157.25 
 BC6 28.972 51.620 65.995 85.527 89.350 120.40 122.87 139.48 142.00 167.91 
            

P3: ( 300, -300, 300, -300, 300) BC1 16.161 36.705 42.652 63.561 71.598 85.864 97.550 109.52 118.94 139.55 
 BC2 18.622 42.109 44.792 68.264 81.065 86.946 104.75 113.93 132.12 147.17 
 BC3 21.806 44.830 52.065 74.303 82.738 99.517 110.61 123.79 133.35 155.27 
 BC4 21.939 45.330 50.459 73.569 88.172 91.688 111.68 120.00 146.26 148.10 
 BC5 26.251 47.580 61.232 80.620 85.587 113.34 116.58 134.07 136.34 162.73 
 BC6 28.740 53.951 62.741 86.097 94.968 114.35 124.61 139.33 148.80 171.89 
            

P4: ( 450, -450, 450, -450, 450) BC1 16.480 38.436 41.478 64.563 77.958 79.223 100.09 109.47 131.32 132.14 
 BC2 19.391 41.354 47.333 69.808 80.102 89.468 106.09 116.98 132.85 146.63 
 BC3 21.940 46.954 50.024 75.025 90.027 91.337 113.26 122.86 147.20 147.98 
 BC4 23.286 43.905 55.110 75.506 82.324 101.37 111.85 126.28 134.24 156.97 
 BC5 25.504 50.101 56.768 80.794 92.317 102.55 119.62 131.11 148.79 163.48 
 BC6 28.624 56.308 59.917 86.486 102.95 104.81 127.27 137.56 163.95 165.06 
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Figure 7.3 Natural frequency parameters of composite plates with respect to number of 

lamination, boundary condition and stacking sequence for Mode Sequence: 1. 

 

 
Figure 7.4 Natural frequency parameters of composite plates with respect to number of lamination, 

boundary condition and stacking sequence for Mode Sequence: 10. 
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7.4.2 The Effects of Material, Stacking Sequence and Boundary Conditions on 

Free Vibration Characteristics of Polymer Based Thin Composite Plates 

 

In this application, three different polymer materials with six stacking sequences 

and two boundary conditions are considered. Modal behaviours of composite plates 

with various combinations of these three main variables are examined. Computed 

results are presented in Figures 7.5-7.10. The materials are E-glass/epoxy, 

Kevlar/epoxy and Carbon/epoxy. Physical properties of these materials are given in 

Table 7.12. The examined boundary conditions are fully simply supported and fully 

clamped. In the analysis, stacking sequences are labelled as S1, S2,…, S6. These are,  

 

� Symmetric cross ply (S1): [0/90]2S 

� Quasi-isotropic (S2): [0/90/45/-45]S 

� Symmetric angle ply (S3-S6): [�/-�] 2S 

 

where � = 150, 300, 450 and 600 corresponding to stacking sequences S3, S4, S5 and 

S6 respectively. It is assumed that plates are composed of eight layers. In this 

analysis, the natural frequency parameter is defined as 22
22 Dha ρω=πΩ  for 

numerical facility.  

 

Table 7.12 Physical properties of the polymer prepregs (Daniel & Ishai, 1994) and aluminium alloy 

(Harras, Benamar & White, 2002) 

Properties E-glass/epoxy Kevlar/epoxy Carbon/epoxy 
(AS4/3501-6) 

Aluminium 
alloy 

Fiber volume ratio (Vf) 0.55 0.60 0.63 - 
Density (�. kg/m3) 2100 1380 1580 - 
Longitudinal modulus (E1, GPa) 39 87 142 72.39 
Transverse modulus (E2, GPa) 8.6 5.5 10.3 72.39 
In-plane shear modulus (G12, GPa) 3.8 2.2 7.2 27.2 
Major Poisson’s ratio (�12) 0.28 0.34 0.27 0.33 
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Figure 7.5 a) Natural frequencies b) Natural frequency parameters ( 22
22 Dha ρω=πΩ ) of simply 

supported composite plates with several stacking sequences for Mode Sequence: 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6 a) Natural frequencies b) Natural frequency parameters ( 22
22 Dha ρω=πΩ ) of 

clamped composite plates with several stacking sequences for Mode Sequence: 1. 
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Figure 7.7 a) Natural frequencies b) Natural frequency parameters ( 22
22 Dha ρω=πΩ ) of simply 

supported composite plates with several stacking sequences for Mode Sequence: 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.8 a) Natural frequencies b) Natural frequency parameters ( 22
22 Dha ρω=πΩ ) of 

clamped composite plates with several stacking sequences for Mode Sequence: 2. 
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Figure 7.9 a) Natural frequencies b) Natural frequency parameters ( 22
22 Dha ρω=πΩ ) of simply 

supported composite plates with several stacking sequences for Mode Sequence: 10. 

 

 

Figure 7.10 a) Natural frequencies b) Natural frequency parameters ( 22
22 Dha ρω=πΩ ) of 

clamped composite plates with several stacking sequences for Mode Sequence: 10. 
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Figure 7.11 Discrepancies of natural frequency parameters ( 22
22 Dha ρω=πΩ ) 

of composite plates with S5 sequence made of a) E-glass/epoxy, b) Kevlar/epoxy 

and c) Carbon/epoxy materials, from an isotropic plate. 
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Tables 7.13-7.15 present the first ten natural frequency parameters of the 

considered plates. Figures 7.5.a-7.10.a display natural frequencies whereas Figures 

7.5.b-7.10.b show frequency parameters of the plates for Mode Sequences 1, 2 and 

10, respectively. Since similar variation trends for frequencies are observed in 

Figures 7.5-7.10, these modal features may be generalized to the other modes. Table 

7.16 presents non-dimensional bending and bend-twist rigidity values which may 

give useful information for the examination of modal characteristics in detail. Table 

7.17 displays the first twenty mode shapes of an isotropic plate and compares them 

with the first ten mode shapes of composite plates. When Figures 7.5-7.10 and 

Tables 7.16 and 7.17 are examined together; the following conclusions can be drawn: 

 

� The variation of natural frequencies with respect to stacking sequences is very 

similar for the three composites for a specific boundary condition.  

 

- Natural frequencies of the plates made all of the examined three materials are 

not considerably affected by selecting S1 or S2 stacking sequences. This is due 

to the fact that materials with S1 and S2 have non-dimensional plate 

rigidities γD  and φD  in the same order of magnitude. On the contrary, 

symmetric angle ply sequences drastically influence natural frequencies 

depending on the orientation angle (Figures 7.5.a-7.10.a, Table 7.16).  

- The same natural frequencies are obtained for S4 and S6 due to the fact that 

their orientation angles are complementary angles of each others (Figures 7.5.a-

7.10.a). 

- Apparently, the plate made of Carbon/epoxy has the highest natural frequencies 

and therefore is determined as the most rigid one. Kevlar/epoxy is less rigid and 

evidently the most elastic one is E-glass/epoxy (Figures 7.5.a-7.10.a). This 

property also may be inspected from Table 7.16 as E-glass/epoxy having 

generally the lowest non-dimensional rigidities. 

 

� The change of boundary condition highly affects natural frequency-stacking 

sequence relation especially in the first mode, which is the most boundary 

condition-dependent mode (Figures 7.5.a and 7.10.a). 
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- The first natural frequencies of angle-plied plates (S3-S6) are higher than those 

of S1 and S2 plates for SSSS and vice versa for CCCC conditions. It may be 

stated that the change of boundary condition completely reverses the variation 

trend of the first natural frequency with respect to S1-S6 sequences. 

- S5 plate made of Carbon/epoxy is the most rigid plate among simply supported 

plates (Figures 7.5.a, 7.7.a and 7.9.a) whereas S2 plate made of Carbon/epoxy 

is the most rigid one among the clamped plates (Figures 7.6.a, 7.8.a and 

7.10.a). In particular, the plate with S2-Carbon/epoxy-clamped combination has 

the highest natural frequencies.   

 

� Mode shapes clearly show that some modal replacements are encountered in 

composite plates, generally, after the first two modes. 

 

- Considerable mode shape replacements with isotropic plates are observed in 

particular for angle ply sequences (except S5) compared to S1 and S2 

sequences (Table 7.16). This is because S1 and S2 sequences have 

comparatively close rigidities to isotropic plates (Table 7.16).  

-  Stack S5 shows resembling modal characteristics to isotropic plates since it has 

equal rigidities in both directions ( γD = 1) (Tables 7.16 and 7.17).  

- Having close γD  and φD  values, stacks S1 and S2 have the same mode shapes 

and are shown together (Tables 7.16 and 7.17). 

- Having complementary orientation angles, stacks S4 and S6 show inverse nodal 

lines with respect to each other except for diagonally symmetric mode shapes 

(Table 7.17). 

- The same mode shapes are obtained for Carbon/epoxy and Kevlar/epoxy and 

they are shown together in Table 7.17. These two materials have similar 

rigidities as shown in Table 7.16. Natural frequencies are affected by small 

differences in variables but mode shapes are not. 

- For these materials and orientations, boundary conditions do not considerably 

affect the mode shapes and thus, similar shapes are obtained for SSSS and 

CCCC conditions (Table 7.16). 
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- There is almost an explicit relation between mode shapes in Table 7.17 and 

non-dimensional rigidities in Table 7.16. For instance, 1≠γD  implies that the 

rigidity of the plate in a direction is higher than the other one. The other non-

dimensional rigidities φD , αD  and βD  reflect a coupling behaviour between the 

two directions. This coupling leads to small shape changes compared to isotropic 

plate; however, these small differences are not considerable in such a general 

analysis. 

 

� Stacking sequences considerably change the deviation of a composite plate from 

an isotropic plate (Figures 7.5.b-7.10.b). 

 

- Plates with S1 and S2 sequences approximately have the same frequency 

parameters with an isotropic plate (Figures 7.5.b-7.10.b). 

- In the angle plies, S3 and S4 have higher positive deviations from isotropic 

plate. S5 is the least deviated angle ply, whereas S6 negatively deviates. 

- Frequency parameters of plates with 45° orientation angle (S5) are very close to 

those of an isotropic plate (Figures 7.5.b-7.10.b). The discrepancy for CCCC 

plates is less, as obviously seen from the modal spectra in Figure 7.11.  
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Table 7.13 Natural frequency parameters of composite plates made of E-glass/epoxy ( 22
22 Dha ρω=πΩ ) 

Isotropic Symmetric cross ply 
(S1)  

Quasi isotropic 
(S2) 

Symmetric angle ply  

SSSS  CCCC 
Orientation Angle (Degree)  Orientation Angle (Degree) Mode 

Sequence 
Number 

SSSS CCCC SSSS CCCC SSSS CCCC 

15 
(S3) 

30 
(S4) 

45 
(S5) 

60 
(S6)  

15 
(S3) 

30 
(S4) 

45 
(S5) 

60 
(S6) 

1 2.000 3.647 1.929 3.897 1.948 3.830 2.885 2.823 2.366 1.828  5.522 4.907 3.936 3.177 
2 5.000 7.439 4.690 7.326 4.769 7.350 5.776 6.022 5.371 3.900  8.840 8.700 7.702 5.634 
3 5.000 7.439 5.607 8.660 5.451 8.348 8.817 7.596 5.808 4.919  13.344 11.090 8.203 7.182 
4 8.000 10.971 7.716 11.232 7.780 11.145 10.688 10.810 9.217 7.001  14.482 14.375 12.085 9.309 
5 10.000 13.340 9.615 13.108 9.722 13.185 11.560 11.546 10.647 7.477  16.262 15.257 13.912 9.880 
6 10.000 13.403 11.952 16.218 11.452 15.495 16.195 15.347 10.884 9.939  21.262 20.369 14.215 13.191 
7 13.000 16.733 12.098 16.257 12.306 16.343 17.754 16.469 14.206 10.665  22.439 20.778 17.764 13.456 
8 13.000 16.733 13.685 18.276 13.517 17.885 18.752 18.303 15.503 11.853  25.255 22.767 19.161 14.744 
9 17.000 21.350 16.586 21.018 16.699 21.111 21.378 19.411 17.728 12.570  27.983 24.533 21.998 15.887 
10 17.000 21.350 17.361 22.451 17.462 22.325 22.975 23.490 17.877 15.212  28.674 28.577 22.186 18.506 
 

Table 7.14 Natural frequency parameters of composite plates made of Kevlar/epoxy ( 22
22 Dha ρω=πΩ ) 

Isotropic Symmetric cross ply 
(S1)  

Quasi isotropic 
(S2) 

Symmetric angle ply  

SSSS  CCCC 
Orientation Angle (Degree)  Orientation Angle (Degree) Mode 

Sequence 
Number 

SSSS CCCC SSSS CCCC SSSS CCCC 

15 
(S3) 

30 
(S4) 

45 
(S5) 

60 
(S6) 

 15 
(S3) 

30 
(S4) 

45 
(S5) 

60 
(S6) 

1 2.000 3.647 1.841 3.997 1.884 3.899 4.558 3.862 2.630 1.772  9.003 6.508 4.143 2.986 
2 5.000 7.439 4.427 7.184 4.581 7.242 7.511 7.490 5.672 3.437  11.946 10.515 7.933 4.825 
3 5.000 7.439 5.865 9.224 5.637 8.764 12.458 10.669 6.371 4.896  17.229 15.410 8.703 7.072 
4 8.000 10.971 7.365 11.199 7.513 11.092 15.286 12.684 9.846 5.821  23.275 16.445 12.678 7.547 
5 10.000 13.340 9.307 12.861 9.508 13.020 18.181 15.435 11.117 7.083  24.789 20.162 14.307 9.252 
6 10.000 13.403 11.282 15.704 11.703 15.907 19.380 19.536 11.769 8.965  26.065 24.172 14.981 11.092 
7 13.000 16.733 12.867 17.565 12.128 16.496 23.087 21.629 15.059 9.926  30.944 27.110 18.529 12.441 
8 13.000 16.733 13.836 18.874 13.620 18.318 28.143 22.012 16.787 10.101  34.416 28.570 20.427 13.110 
9 17.000 21.350 16.261 20.725 16.468 20.910 30.126 27.003 18.358 12.392  38.073 33.469 22.531 15.359 
10 17.000 21.350 16.570 22.116 16.792 21.916 33.219 27.927 18.907 12.815  44.833 33.773 23.074 15.498 
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Table 7.15 Natural frequency parameters of composite plates made of Carbon/epoxy ( 22
22 Dha ρω=πΩ ) 

Isotropic Symmetric cross ply 
(S1)  

Quasi isotropic 
(S2) 

Symmetric angle ply  

SSSS  CCCC 
Orientation Angle (Degree)  Orientation Angle (Degree) Mode 

Sequence 
Number 

SSSS CCCC SSSS CCCC SSSS CCCC 

15 
(S3) 

30 
(S4) 

45 
(S5) 

60 
(S6) 

 15 
(S3) 

30 
(S4) 

45 
(S5) 

60 
(S6) 

1 2.000 3.647 1.904 4.030 1.929 3.922 4.271 3.582 2.533 1.764  8.343 6.098 4.061 3.003 
2 5.000 7.439 4.541 7.278 4.663 7.311 7.255 7.059 5.530 3.476  11.389 9.999 7.807 4.924 
3 5.000 7.439 5.917 9.247 5.673 8.774 12.213 9.904 6.184 4.877  16.762 14.357 8.537 7.070 
4 8.000 10.971 7.615 11.401 7.694 11.240 14.077 12.134 9.569 5.976  21.384 15.841 12.401 7.801 
5 10.000 13.340 9.431 12.979 9.598 13.104 17.052 14.366 10.928 7.075  24.282 18.859 14.139 9.288 
6 10.000 13.403 11.674 16.052 11.987 16.164 19.113 18.795 11.469 9.256  24.357 23.396 14.721 11.522 
7 13.000 16.733 12.874 17.538 12.123 16.460 22.058 20.107 14.632 9.902  29.317 25.651 18.112 12.632 
8 13.000 16.733 14.096 19.084 13.807 18.463 27.705 20.755 16.355 10.221  33.950 26.604 19.985 13.101 
9 17.000 21.350 16.389 20.853 16.562 21.001 29.296 25.062 18.113 12.342  36.650 31.451 22.316 15.489 
10 17.000 21.350 17.134 22.611 17.207 22.291 30.478 26.786 18.530 13.191  41.068 32.259 22.754 15.887 

 

Table 7.16 Non-dimensional bending rigidities ( γD , φD ) and bend-twist coupling rigidities ( )βα DD ,  of composite plates consisting of eight layers with different 

material properties and stacking sequences 
 

E-glass/epoxy Kevlar/epoxy Carbon/epoxy Stacking Sequences 

γD  φD  αD  βD  γD  φD  αD  βD  γD  φD  αD  βD  

Symmetric cross ply (S1) 1.6298 0.5457 0 0 1.9869 0.2014 0 0 1.9598 0.3324 0 0 
Quasi isotropic (S2) 1.4583 0.6694 0.0382 0.0382 1.7099 0.4255 0.0592 0.0592 1.6867 0.5224 0.0572 0.0572 
Symmetric angle ply             
15o  (S3) 3.9594 1.6972 0.2873 0.0331 12.8470 3.5654 1.1865 0.0960 10.7140 3.3425 0.9341 0.1175 
30o   (S4) 2.3845 2.3264 0.3278 0.1219 4.7487 4.7148 0.9076 0.3099 4.1234 3.9620 0.7346 0.2798 
45o  (S5) 1.0000 1.8269 0.1693 0.1693 1.0000 2.5246 0.2911 0.2911 1.0000 2.2663 0.2648 0.2648 
60o   (S6) 0.4194 0.9756 0.0511 0.1375 0.2106 0.9929 0.0653 0.1911 0.2425 0.9609 0.0679 0.1781 
Isotropic 1.0000 1.0000 0 0         
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Table 7.17 Isotropic plate bending mode shapes (1-20) and corresponding laminated composite plate bending mode sequences (1-10) 
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7.4.3 The Effects of Material, Orientation Angle and Boundary Conditions on 

Natural Frequency Parameters of Thin FML Plates 

 

Natural frequency parameters of aluminium/E-glass-epoxy, aluminium/Kevlar-

epoxy and aluminium/Carbon-epoxy plates with five stacking sequences orientated 

by various fiber angles shown in Figure 7.12 were obtained in this application. 

Tables 7.18-7.20 show frequency parameters ( 2πΩ ) for fully simply supported and 

fully clamped FML plates. Figures 7.13-7.16 display the summary of all results given 

in Tables 7.18-7.20 and hence exhibit the effects of material, boundary condition and 

fiber orientation on natural frequency parameters. Figures 7.13 and 7.14 for Mode 1 

generally reflect the characteristics of the first few modes whereas Figures 7.15 and 

7.16 for Mode 10 reflect the feature of higher modes. The following observations 

may be made from Figures 7.13-7.16: 

 

� For the first few modes of all polymer prepregs, S3 plates with simply supported 

and S1 plates with clamped boundary conditions have higher frequency 

parameters. However, for higher modes, stacks having small orientation angles 

(S1, S2) provide higher frequency parameters independent of the boundary 

conditions.  

 

� Frequency parameters of S4 plates seem to be very close to those of monolithic 

aluminium alloy plates, except for the first few modes of simply supported plates 

shown in Figure 7.13. This similarity is mostly encountered at higher modes 

where boundary conditions lose their effect.    

 

� In general, aluminium/polymer prepregs have higher frequency parameters 

compared to monolithic aluminium alloys.  

 

� In general aluminium/Carbon-epoxy plates have higher frequency parameters 

than the other FMLs.  
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� The exception to the previous two observations is the variation of S5. This stack 

triggers different modal tendencies from the others. Therefore, S5 should be 

exclusively taken into consideration in engineering design. 

 

 

Figure 7.12 Schematic representation of five different stacking sequences of FML composite 

plates (Al.: aluminium, Pr.: prepregs). 
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Figure 7.13 Natural frequency parameters ( 22
22 Dha ρω=πΩ ) of simply supported 

FML composite plates with several stacking sequences for Mode Sequence: 1. 

 

 

Figure 7.14 Natural frequency parameters ( 22
22 Dha ρω=πΩ ) of clamped FML 

composite plates with several stacking sequences for Mode Sequence: 1. 
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Figure 7.15 Natural frequency parameters ( 22
22 Dha ρω=πΩ ) of simply supported 

FML composite plates with several stacking sequences for Mode Sequence: 10. 

 

 

Figure 7.16 Natural frequency parameters ( 22
22 Dha ρω=πΩ ) of clamped FML 

composite plates with several stacking sequences for Mode Sequence: 10. 
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Table 7.18 Natural frequency parameters ( 22
22 Dha ρω=πΩ ) of FML composite plates made of 

aluminium/E-glass/epoxy 
 

S1 S2 S3 S4 S5 Mode  
Sequence 
Number 

SSSS CCCC SSSS CCCC SSSS CCCC SSSS CCCC SSSS CCCC 

1 2.027 3.718 2.031 3.715 2.036 3.700 2.022 3.665 1.992 3.6537 
2 5.013 7.478 5.025 7.485 5.042 7.491 5.035 7.471 4.978 7.4267 
3 5.160 7.699 5.152 7.677 5.115 7.601 5.035 7.471 5.019 7.4886 
4 8.107 11.157 8.125 11.163 8.142 11.147 8.088 11.054 7.966 10.963 
5 10.008 13.395 10.022 13.405 10.045 13.418 10.040 13.377 9.974 13.345 
6 10.399 13.925 10.361 13.866 10.240 13.689 10.040 13.441 10.083 13.505 
7 13.072 16.864 13.108 16.890 13.160 16.916 13.122 16.849 12.932 16.685 
8 13.317 17.185 13.320 17.168 13.281 17.076 13.122 16.849 13.000 16.774 
9 17.007 21.369 17.021 21.381 17.046 21.400 17.041 21.390 16.972 21.326 
10 17.738 22.292 17.656 22.181 17.412 21.862 17.041 21.390 17.176 21.584 

 

 
Table 7.19 Natural frequency parameters ( 22

22 Dha ρω=πΩ ) of FML composite plates made of 
aluminium/Kevlar/epoxy 
 

S1 S2 S3 S4 S5 Mode 
Sequence 
Number 

SSSS CCCC SSSS CCCC SSSS CCCC SSSS CCCC SSSS CCCC 

1 2.067 3.832 2.081 3.826 2.096 3.790 2.060 3.696 1.975 3.661 
2 5.028 7.537 5.063 7.558 5.116 7.580 5.097 7.527 4.938 7.402 
3 5.412 8.113 5.394 8.057 5.305 7.866 5.097 7.527 5.043 7.559 
4 8.267 11.446 8.324 11.470 8.382 11.441 8.242 11.200 7.898 10.936 
5 10.015 13.431 10.056 13.463 10.123 13.508 10.110 13.442 9.926 13.312 
6 11.032 14.800 10.937 14.652 10.629 14.195 10.110 13.507 10.202 13.688 
7 13.169 17.059 13.277 17.140 13.433 17.229 13.335 17.053 12.805 16.590 
8 13.813 17.900 13.831 17.866 13.747 17.642 13.335 17.053 12.980 16.818 
9 17.010 21.392 17.054 21.430 17.126 21.487 17.115 21.460 16.921 21.283 
10 18.601 23.220 18.702 23.302 18.077 22.688 17.115 21.460 17.437 21.933 
 

 
Table 7.20 Natural frequency parameters ( 22

22 Dha ρω=πΩ ) of FML composite plates made of 
aluminium/Carbon/epoxy 
 

S1 S2 S3 S4 S5 Mode 
Sequence 
Number 

SSSS CCCC SSSS CCCC SSSS CCCC SSSS CCCC SSSS CCCC 

1 2.114 3.944 2.131 3.931 2.143 3.864 2.083 3.715 1.969 3.675 
2 5.059 7.606 5.106 7.633 5.173 7.652 5.134 7.561 4.919 7.395 
3 5.654 8.496 5.618 8.402 5.462 8.090 5.134 7.561 5.077 7.630 
4 8.455 11.748 8.525 11.766 8.573 11.682 8.333 11.285 7.878 10.947 
5 10.041 13.481 10.097 13.525 10.183 13.579 10.152 13.481 9.903 13.297 
6 11.609 15.591 11.455 15.355 10.960 14.629 10.152 13.547 10.318 13.858 
7 13.317 17.294 13.460 17.396 13.648 17.480 13.463 17.176 12.749 16.559 
8 14.316 18.595 14.317 18.516 14.128 18.112 13.463 17.176 13.013 16.903 
9 17.033 21.433 17.093 21.485 17.188 21.556 17.159 21.502 16.896 21.263 
10 19.023 23.806 19.180 23.892 18.647 23.399 17.159 21.502 17.670 22.183 
 



CHAPTER EIGHT 

NUMERICAL STUDIES 3: 

FREE VIBRATION ANALYSES OF  

THICK BEAMS AND PLATES BY THE DSC 

 

8.1 Introduction 

 

It is known that thin structure theories yield inaccurate results when the thickness 

of structure is not negligible compared to one of the size length of that structure. In 

this case, thick structure theories, Timoshenko for beams and Mindlin for plates, 

considering the effects of rotary inertia and transverse shear must be of interest for 

reliable dynamic analyses. 

 

Several studies have been performed for free vibration analysis of thick structural 

elements. Discretization techniques such as finite element and finite difference 

methods are the most widely used methods in this field of engineering. However, 

various alternative techniques such as Rayleigh-Ritz, differential quadrature, 

pseudospectral and radial basis function methods were also commonly used in 

several studies for thick structural elements as stated in Chapter 1. In this chapter, a 

collocation scheme for the DSC is introduced for thick structures. The accuracy of 

the given approach is discussed by comparing DSC results with those of the some 

published studies. 

 

8.2 DSC for Timoshenko Beams 

 

The equations of motion of a homogeneous rectangular thick beam in [ ]ax ,0∈  

are given based on Timoshenko theory as (Lee & Schultz, 2004), 

 

( ) ( ) ( ) ( )xIx
dx

xdw
hG

dx

xd
EI θρω−=�

�

�
�
�

� θ−α+θ 2
2

2

 ,                    (8.1.a) 

( ) ( ) ( )xhw
dx

xwd
hG

dx
xd

hG ρω−=α+θα− 2
2

2

                         (8.1.b) 
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where α  is the shear coefficient. The boundary conditions are given as:  

 

Simply supported (S) : ,0=
∂
θ∂
x

 0=w  .                                     (8.2.a)  

Clamped (C) :   ,0=θ  0=w   .                                    (8.2.b) 

 

Applying appropriate boundary conditions with the definitions of 

{ }T
N 110 ,,, −θθθ= �ΘΘΘΘ , { }T

Nwww 110 ,,, −= �ΧΧΧΧ and { }110 ,,, −ωωω= Ndiag �ΩΩΩΩ , one 

can obtain following DSC system of equations: 

 

ΘΘΘΘΩΩΩΩΙΘΙΘΙΘΙΘΧΧΧΧΓΓΓΓΘΘΘΘΓΓΓΓ 22)1(2)2(2 −=−+ bba xx  ,                            (8.3.a) 

 

ΧΧΧΧΩΩΩΩΧΧΧΧΓΓΓΓΘΘΘΘΓΓΓΓ 2)2(2)1(2 −=+− xx cc                                          (8.3.b) 

 

where ρ= Ea , IhGb ρα= and ρα= Gc . The matrix )(n
pΓΓΓΓ ( 2,1=n , p is the 

direction of differentiation) is obtained by boundary condition implementation of 

)(n
pΨΨΨΨ given in Equation (4.11). Equations (8.3.a) and (8.3.b) can be represented by 

following eigenvalue equation: 

 

ΥΥΥΥΩΩΩΩΤΥΤΥΤΥΤΥ 2=  .                           (8.4) 

 

Here elements of the matrix ΤΤΤΤ  can be evaluated as 

 

ΙΙΙΙΓΓΓΓΤΤΤΤ 2)2(2
11 ba x +−= ,  )1(2

12 xb ΓΓΓΓΤΤΤΤ −= ,                   (8.5)(a, b) 

 )1(2
21 xc ΓΓΓΓΤΤΤΤ = ,     )2(2

22 xc ΓΓΓΓΤΤΤΤ −=  .                    (8.5)(c, d)  
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The vector Y is in the form { }TTT ΧΧΧΧΘΘΘΘΥΥΥΥ ,= , where ΘΘΘΘ  and ΧΧΧΧ  are column vectors. 

  

Solving Equation (8.4) yields natural frequencies and mode shapes of 

Timoshenko beams. DSC solutions of thin and thick beam theories for beams with 

various thickness to length (h/a) ratios, simply supported and clamped at both ends 

are presented in Tables 8.1 and 8.2, respectively. As it is expected, thin beam 

solutions diverge from those of the thick beams as the beams get thicker and mode 

number gets higher. Tables 8.1 and 8.2 also compare the thick beam natural 

frequency parameters with the results in the literature.  

 

The results of Ferreira & Fasshauer (2006) for simply supported beams show 

considerable differences with the other two solutions when the thickness increases. It 

is clearly seen that thick beam DSC solutions are the same as Lee & Schultz’s 

pseudospectral method results at least up to the one thousandths digit. Therefore, 

natural frequency parameters for relatively thick beams calculated by the DSC and 

tabulated in Table 8.3 may be reliably used for different applications.  

 

The accuracy of the DSC algorithm is mostly dependent on the optimum selection 

of DSC parameters such as number of structure nodes, number of fictitious nodes 

and discretization parameter for regularization r. Therefore for a more accurate 

analysis, the convergence of results may be examined with regard to the variation of 

discretization parameter. In all analyses performed in this study, DSC parameters 

were selected utilizing convergence curves. 
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Table 8.1 Natural frequency parameters ( ( ) 2/1
0

42 / EIAa ρω=Ω ) of Timoshenko beams simply supported at both ends ( 3.0=υ , 6/5=α ) 

h/a=0.01 h/a =0.02 h/a =0.1 h/a =0.2 

Mode 
Number 

Thin 
Beam 
Theory 
DSC 

Thick 
Beam 
Theory 
DSC 

Lee & 
Schultz 
(2004) 

Ferreira & 
Fasshauer 
(2006) 

Thick 
Beam 
Theory 
DSC 

Lee & 
Schultz 
(2004) 

Ferreira & 
Fasshauer 
(2006) 

Thick 
Beam 
Theory 
DSC 

Lee & 
Schultz 
(2004) 

Ferreira & 
Fasshauer 
(2006) 

Thick 
Beam 
Theory 
DSC 

Lee & 
Schultz 
(2004) 

Ferreira  
& 
Fasshauer 
 (2006) 

1 3.141592 3.141331 3.14133 3.1413 3.140532 3.14053 3.1405 3.11568 3.11568 3.1112 3.04533 3.04533 2.3124 
2 6.283195 6.281061 6.28106 6.2811 6.274711 6.27471 6.2747 6.09066 6.09066 5.9102 5.67155 5.67155 4.2672 
3 9.424781 9.417612 9.41761 9.4176 9.396322 9.39632 9.3963 8.84052 8.84052 7.9769 7.83952 7.83952 6.4193 
4 12.56637 12.54941 12.5494 12.5494 12.49941 12.4994 12.4994 11.34310 11.3431 10.0102 9.65709 9.65709 8.2855 
5 15.70796 15.67492 15.6749 15.6749 15.57841 15.5784 15.5784 13.61317 13.6132 12.1817 11.22204 11.222 9.9037 
6 18.84956 18.79263 18.7926 18.7926 18.62823 18.6282 18.6282 15.67904 15.679 14.2427 12.60221 12.6022 11.3487 
7 21.99115 21.90107 21.9011 21.9011 21.64431 21.6443 21.6443 17.57050 17.5705 16.1520 13.03233 13.0323 12.6402 
8 25.13274 24.99881 24.9988 24.9988 24.62267 24.6227 24.6226 19.31418 19.3142 17.9226 13.44427 13.4443 13.4567 
9 28.27433 28.08450 28.0845 28.0845 27.55993 27.5599 27.5597 20.93255 20.9325 19.5727 13.84329 13.8433 13.8101 
10 31.41593 31.15682 31.1568 31.1568 30.45331 30.4533 30.4529 22.44408 22.4441 21.1187 14.43776 14.4378 14.4806 
 

Table 8.2 Natural frequency parameters ( ( ) 2/1
0

42 / EIAa ρω=Ω ) of Timoshenko beams clamped at both ends ( 3.0=υ , 6/5=α ) 

h/a =0.01 h/a =0.02 h/a =0.1 h/a =0.2 

Mode 
Numbe
r 

Thin 
Beam 
Theory 
DSC 

Thick 
Beam 
Theory 
DSC 

Lee & 
Schultz 
(2004) 

Ferreira 
& 
Fasshauer 
(2006) 

Thick 
Beam 
Theory 
DSC 

Lee & 
Schultz 
(2004) 

Ferreira 
 & 
Fasshauer 
(2006) 

Thick 
Beam 
Theory 
DSC 

Lee & 
Schultz 
(2004) 

Ferreira 
& 
Fasshauer 
(2006) 

Thick 
Beam 
Theory 
DSC 

Lee & 
Schultz 
(2004) 

Ferreira 
& 
Fasshauer 
(2006) 

1 4.730041 4.728451 4.7284 4.7284 4.723509 4.72350 4.7235 4.579547 4.57955 4.5795 4.242014 4.24201 4.2420 
2 7.853212 7.846992 7.8469 7.8469 7.828194 7.82817 7.8282 7.331219 7.33122 7.3312 6.417938 6.41794 6.4179 
3 10.99563 10.98007 10.9800 10.9800 10.93415 10.9341 10.9341 9.856114 9.85611 9.8561 8.285317 8.28532 8.2853 
4 14.13720 14.10631 14.1062 14.1061 14.01546 14.0154 14.0154 12.14535 12.1454 12.1454 9.903723 9.90372 9.9037 
5 17.27883 17.22478 17.2246 17.2246 17.06792 17.0679 17.0679 14.23243 14.2324 14.2324 11.34874 11.3487 11.3487 
6 20.42047 20.33407 20.3338 20.3338 20.08685 20.0868 20.0868 16.14875 16.1487 16.1487 12.64025 12.6402 12.6402 
7 23.56213 23.43277 23.4325 23.4325 23.06824 23.0682 23.0682 17.92148 17.9215 17.9215 13.45674 13.4567 13.4567 
8 26.70380 26.51948 26.5192 26.5192 26.00866 26.0086 26.0086 19.57235 19.5723 19.5723 13.81014 13.8101 13.8101 
9 29.84550 29.59291 29.5926 29.5926 28.90529 28.9052 28.9052 21.11852 21.1185 21.1185 14.48056 14.4806 14.4806 
10 32.98722 32.65180 32.6514 32.6513 31.75589 31.7558 31.7557 22.57351 22.5735 22.5735 14.93829 14.9383 14.9383 96 
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Table 8.3 Natural frequency parameters ( ( ) 2/1
0

42 / EIAa ρω=Ω ) of simply supported-simply supported, clamped-clamped and clamped-simply supported 

Timoshenko beams ( 3.0=υ , 6/5=α ) 

Simply supported-Simply supported Clamped-Clamped Clamped-Simply supported 

h/a h/a h/a 

Mode 
Number 

0.1 0.2 0.4 0.6 0.8 0.1 0.2 0.4 0.6 0.8 0.1 0.2 0.4 0.6 0.8 

1 3.11568 3.04533 2.83578 2.61317 2.41427 4.57955 4.24201 3.55151 3.04901 2.69507 3.85176 3.66561 3.20897 2.81892 2.52012 
2 6.09066 5.67155 4.82855 4.20074 3.25808 7.33122 6.41794 5.04024 4.21888 3.68421 6.73057 6.07268 4.95186 4.21626 3.56608 
3 8.84052 7.83952 6.30111 4.34411 3.74414 9.85612 8.28532 6.36636 5.23248 4.28774 9.36591 8.07437 6.32012 4.64066 3.79202 
4 11.34310 9.65709 6.51616 5.22255 4.23961 12.14536 9.90372 7.13217 5.33500 4.67985 11.75841 9.78617 6.72837 5.33488 4.67090 
5 13.61317 11.22204 7.21888 5.34138 4.69820 14.23243 11.34875 7.58405 6.27304 5.46804 13.93309 11.28676 7.46915 5.86404 4.89480 
6 15.67904 12.60221 7.48829 6.26426 5.46751 16.14875 12.64025 8.30773 6.48016 5.47672 15.92091 12.62393 7.84982 6.27382 5.47672 
7 17.57050 13.03233 8.47921 6.49763 5.47693 17.92149 13.45674 8.66554 7.07881 6.15871 17.75055 13.14153 8.49994 7.01456 6.00890 
8 19.31418 13.44427 8.50096 7.05843 6.15187 19.57235 13.81014 9.34180 7.60538 6.51763 19.44613 13.78451 9.10718 7.13886 6.16335 
9 20.93255 13.84329 9.39639 7.66511 6.53585 21.11853 14.48056 9.78960 7.82242 6.77357 21.02729 13.95633 9.41323 7.76445 6.75363 
10 22.44408 14.43776 9.74645 7.76638 6.75651 22.57352 14.93829 10.19255 8.39419 7.29470 22.50985 14.90650 10.18335 8.19845 7.01992 
11 23.86391 14.97658 10.20727 8.41164 7.30944 23.94787 15.69964 10.93608 8.72700 7.48778 23.90648 15.10788 10.37213 8.41779 7.31100 
12 25.20442 15.66764 10.93501 8.71447 7.47540 25.24786 16.00404 10.95343 9.00522 7.81975 25.22661 15.99984 10.95343 9.00409 7.81724 
13 26.06465 16.02413 10.95386 9.00868 7.82225 26.28307 16.96209 11.65781 9.56802 8.30278 26.11891 16.33126 11.48567 9.20450 7.91199 
14 26.28141 16.95842 11.64957 9.56712 8.30270 26.45954 16.99988 12.01780 9.66497 8.31882 26.45166 16.99988 11.66253 9.56805 8.30278 
15 26.47583 17.00192 12.04048 9.66746 8.31906 26.92368 17.93568 12.32670 10.09804 8.75800 26.57075 17.59154 12.29869 10.07804 8.70736 
16 26.88855 17.92180 12.30375 10.09375 8.75633 27.56903 18.21437 12.89353 10.51971 9.08233 27.29895 17.93807 12.56680 10.12943 8.76130 
17 27.68657 18.24190 12.92319 10.54346 9.08952 27.91266 18.82647 13.09855 10.61671 9.19426 27.69326 18.74656 12.92527 10.59323 9.18688 
18 27.78724 18.79278 13.07170 10.59353 9.18723 28.67525 19.40266 13.50725 11.06621 9.59597 28.31082 18.91640 13.49703 10.95489 9.45177 
19 28.84371 19.49290 13.51301 11.07027 9.59855 29.04726 19.71075 14.03985 11.35975 9.80418 28.84570 19.61756 13.57798 11.07298 9.59940 
20 28.87553 19.62186 14.03881 11.35712 9.80225 29.81301 20.36670 14.07683 11.52616 9.99226 29.46095 20.09759 14.07683 11.52605 9.99212 
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Figure 8.1 Convergence curves for the first natural frequency parameter of beams simply supported at both ends (h/a=0.01 and 0.1). 

 

 
Figure 8.2 Convergence curves for the first natural frequency parameter of beams clamped at both ends (h/a=0.01 and 0.1). 
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As an example, some convergence curves for the fundamental modes of simply 

supported-simply supported and clamped-clamped beams are presented in Figures 

8.1 and 8.2, respectively. These curves represent the variation of fundamental 

frequency parameter with respect to discretization parameter when the number of 

structure and fictitious nodes are held constant. For an accurate analysis, 

discretization parameter should be selected as one of the values in the range where 

frequency results are not sensitive. 

 

8.3 DSC for Mindlin Plates 

 

Based on Mindlin plate theory, the governing equations for free vibration of 

isotropic rectangular thick plates are given as follows (Liew et al., 2003; Ferreira & 

Fasshauer, 2006): 
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The mass inertias iI  are defined as (Liew et al., 2003) 

 



−

ρ=
2/

2/
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h

dzI ,  

−
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2
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h

h

dzzI  .                                          (8.7)(a, b) 
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The boundary conditions for plates are given as (Han & Liew, 1997):  

 

Simply supported (S) :  0=w , ,0=
∂
θ∂

+
∂
θ∂

υ
yx

yx ,0=θ x                 (8.8.a) 

Clamped (C)        :   0=w , ,0=θ x  0=θ y  .                                             (8.8.b) 

 

Equations (8.6.a)-(8.6.c) can be expressed by DSC matrices with similar matrix 

demonstrations given in Section (8.2) as follows: 

 

xxxxyyyxxx ssgfd ΘΘΘΘΩΩΩΩΧΧΧΧΓΓΓΓΙΘΙΘΙΘΙΘΘΘΘΘΓΓΓΓΘΘΘΘΓΓΓΓΓΓΓΓΘΘΘΘΓΓΓΓ 2)1(2
2

2
2

)2(2)1()1(2)2(2 −=−−++  ,      (8.9.a) 

 

yyyyyxyxyx ssdfg ΘΘΘΘΩΩΩΩΧΧΧΧΓΓΓΓΙΘΙΘΙΘΙΘΘΘΘΘΓΓΓΓΘΘΘΘΓΓΓΓΓΓΓΓΘΘΘΘΓΓΓΓ 2)1(2
2

2
2

)2(2)1()1(2)2(2 −=−−++  ,      (8.9.b) 

 

ΧΧΧΧΩΩΩΩΘΘΘΘΓΓΓΓΘΘΘΘΓΓΓΓΧΧΧΧΓΓΓΓΧΧΧΧΓΓΓΓ 2)1(2
0

)1(2
0

)2(2
0

)2(2
0 −=+++ yyxxyx ssss                           (8.9.c) 

 

where 2IDd = , 2
3

2 12// IGhIDf +υ= , 2
3 12/ IGhg = , ii IGhs /2κ=  

( 2,0=i ). Equations (8.9.a)-(8.9.c) can be rewritten in the following form: 

 

ΥΥΥΥΩΩΩΩΤΥΤΥΤΥΤΥ 2=                          (8.10) 

 

where { }TTT
y

T
x ΧΧΧΧΘΘΘΘΘΘΘΘΥΥΥΥ ,,= . yx ΘΘΘΘΘΘΘΘ ,  and ΧΧΧΧ  are column vectors. Here the 

elements of matrix T can be determined as 

 

( ) ( ) ( )yxyxyx sgd ΙΙΙΙΙΙΙΙΓΓΓΓΙΙΙΙΙΙΙΙΓΓΓΓΤΤΤΤ ⊗+⊗−⊗−= 2
2

)2(2)2(2
11  ,         (a) 

( ))1()1(2
12 yxf ΓΓΓΓΓΓΓΓΤΤΤΤ ⊗−=   ,                  (b)  (8.11) 

( )yxs ΙΙΙΙΓΓΓΓΤΤΤΤ ⊗= )1(2
213  ,                     (c) 
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( ))1()1(2
21 yxf ΓΓΓΓΓΓΓΓΤΤΤΤ ⊗−=  ,                       (d) 

( ) ( ) ( )yxyxyx sgd ΙΙΙΙΙΙΙΙΙΙΙΙΓΓΓΓΓΓΓΓΙΙΙΙΤΤΤΤ ⊗+⊗−⊗−= 2
2

)2(2)2(2
22  ,                      (e)   

( ))1(2
223 yxs ΓΓΓΓΙΙΙΙΤΤΤΤ ⊗=  ,                     (f) 

( )yxs ΙΙΙΙΓΓΓΓΤΤΤΤ ⊗−= )1(2
031  ,                   (g)  (8.11) 

( ))1(2
032 yxs ΓΓΓΓΙΙΙΙΤΤΤΤ ⊗−=  ,                   (h) 

( ) ( ))2(2
0

)2(2
033 yxyx ss ΓΓΓΓΙΙΙΙΙΙΙΙΓΓΓΓΤΤΤΤ ⊗−⊗−=  .               (i) 

 

Finally, natural frequencies and mode shapes of Mindlin plates can be obtained by 

solving Equation (8.10). 

 

In this analysis, fully simply-supported and fully clamped square Mindlin plates 

are considered. Table 8.4 compares frequency parameters predicted by the present 

DSC and DSC-Ritz approaches. The DSC-Ritz results presented by Hou et al. have 

been obtained by using Gauss kernel. The results of both approaches are relatively 

close to each other.   

 

Tables 8.5 and 8.6 present some other calculated natural frequency parameters 

together with those of some published studies in the open literature. In these studies, 

Ferreira & Fasshauer (2006) use RBF-pseudospectral approach; Liew et al. (2004) 

utilize a mesh free method based on the first order shear deformation theory whereas 

Dave & Roufaeil (1980) perform Rayleigh-Ritz approach. Additionally, Mindlin 

closed form solutions for fully simply supported plates presented in Ferreira & 

Fasshauer (2006) are also tabulated.  
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Table 8.4 Comparison of frequency parameters ( ( ) 2/1
0

2 / Dha ρω=Ω ) of the present DSC and DSC-

Ritz approaches for square Mindlin plates ( 3.0=υ , 6/5=κ ) 

 

Computed DSC results present good agreement with those of the compared 

studies and show less than 4% deviation from the Mindlin solutions (Table 8.5). The 

discrepancy values exhibit an unstable behaviour with respect to the sequence of 

modes.  

 

 

 

 

 SSSS   h/a =0.1 CCCC   h/a =0.1 CCCC   h/a =0.2 
Mode 
Sequence 
Number 

Present DSC 
( )99×=N  

Shannon 

DSC-Ritz  
(Hou et al., 
2005) 

( )99×=N  
Gauss 

Present DSC 
( )99×=N  

Shannon 

DSC-Ritz   
(Hou et al., 
2005) 

( )99×=N  
Gauss 

Present DSC 
( )99×=N  

Shannon 

DSC-Ritz  
(Hou et al., 
2005) 

( )99×=N  
Gauss 

1 1.9290 1.9317 3.2812 3.2956 2.6549 2.6875 
2 4.5658 4.6084 6.2690 6.2867 4.6587 4.6908 
3 4.5658 4.6084 6.2690 6.2867 4.6587 4.6908 
4 6.9590 7.0716 8.7900 8.8122 6.2577 6.2988 
5 8.4713 8.6162 10.4233 10.3794 7.2103 7.1767 
6 8.4713 8.6162 10.5085 10.4783 7.2886 7.2760 
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Table 8.5 Natural frequency parameters ( ( ) 2/1
0 / Ga ρω=Ω ) of SSSS square Mindlin plates ( 3.0=υ , 6/5=κ ) 

h/a =0.01 h/a =0.1 
Mode  
Sequence 
Number 

DSC 
( )1313×=N  

 

Ferreira & 
Fasshauer  (2006) 

( )1313×=N  

Liew  
et al. 
(2004) 

Mindlin1 %  
Discrepancy2 

DSC 
( )1313×=N  

 

Hou et al. 
(2005)3 

 

Ferreira & 
Fasshauer  (2006) 

( )1313×=N  

Liew et 
al.  
(2004) 

Mindlin1 % 
 Discrepancy2 

1 0.0960 0.0963 0.0961 0.0963 0.3115 0.929   0.930 0.930 0.922 0.930 0.10753 
2 0.2405 0.2406 0.2419 0.2406 0.0416 2.203   2.219 2.219 2.205 2.226 1.03324 
3 0.2405 0.2406 0.2419 0.2406 0.0416 2.203   2.219 2.219 2.205 2.226 1.03324 
4 0.3835 0.3847 0.3860 0.3848 0.3378 3.353   3.406 3.406 3.337 3.406 1.55608 
5 0.4847 0.4807 0.4898 0.4809 -0.7902 4.104   4.149 4.149 4.139 4.149 1.08460 
6 0.4847 0.4807 0.4898 0.4809 -0.7902 4.104   4.149 4.149 4.139 4.149 1.08460 
7 0.6256 0.6246 0.6315 0.6249 -0.1120 5.106 - 5.204 5.170 5.206 1.92086 
8 0.6256 0.6246 0.6315 0.6249 -0.1120 5.106 - 5.204 5.170 5.206 1.92086 
9 0.8480 0.8156 0.8447 0.8167 -3.8325 6.458 - 6.530 6.524 6.520 0.95092 
10 0.8480 0.8156 0.8447 0.8167 -3.8325 6.458 - 6.530 6.524 6.520 0.95092 
1: Closed form solution (Ferreira & Fasshauer, 2006) , 2: % Discrepancy of the DSC and Mindlin solutions 
3: The original work presents frequency parameters as ( ) 2/1

0
2 / Dha ρω=Ω  

 
Table 8.6 Natural frequency parameters ( ( ) 2/1

0 / Ga ρω=Ω ) of CCCC square Mindlin plates ( 3.0=υ , 8601.0=κ ) 

h/a =0.01 h/a =0.1 Mode 
Sequence 
Number 

DSC 
( )1313×=N  

 

Ferreira & 
Fasshauer  (2006) 

( )1313×=N  

Liew  
et al.  
(2004) 

Dave &  
Roufaeil 
(1980) 

DSC 
( )1313×=N  

 

Ferreira &  
Fasshauer  (2006) 

( )1313×=N  

Liew  
et al.  
(2004) 

Dave &   
Roufaeil  
(1980) 

1 0.1759 0.1754 0.1743 0.1754 1.5896   1.5910 1.5582 1.5940 
2 0.3530 0.3574 0.3576 0.3576 3.0430   3.0389 3.0182 3.0390 
3 0.3530 0.3574 0.3576 0.3576 3.0430   3.0389 3.0182 3.0390 
4 0.5214 0.5265 0.5240 0.5274 4.2695   4.2625 4.1711 4.2650 
5 0.6443 0.6399 0.6465 0.6402 5.0675   5.0247 5.1218 5.0350 
6 0.6472 0.6430 0.6505 0.6432 5.1096   5.0723 5.1594 5.0780 
7 0.8054 0.8018 0.8015 - 6.1149 6.0798 6.0178 - 
8 0.8054 0.8018 0.8015 - 6.1149 6.0798 6.0178 - 
9 1.0309 1.0227 1.0426 - 7.5681 7.4123 7.5169 - 
10 1.0309 1.0227 1.0426 - 7.5681 7.4123 7.5169 - 
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CHAPTER NINE 

CONCLUSIONS 

 

9.1 Introduction 

 

In vibro-acoustics, the resonance phenomenon may cause unwanted structural 

deformations and failure of many vital machine parts or structures. Besides, due to 

the further improvements in industrial applications and increasing consumer 

demands on comfort, vibro-acoustic specifications of products have become one of 

the most important design criteria. Nowadays, vibration analysis is generally 

performed by either experimental methods or numerical algorithms simulating the 

real-life system. However, especially for the systems subjected to high frequency 

excitation, performing experimental tests and using available numerical techniques 

give no efficient vibration data for a realistic design.  

 

Conventional high frequency approaches are generally based on energy 

equilibrium between substructures or structural elements. These methods consider 

average prediction of energy as a system variable to describe the response level. 

Therefore, they disregard modal information and thus, loose discrete response 

behaviour. This generally characterized high frequency data is not sufficient for 

developing comprehensive, detailed, reliable, high-technology, high-frequency 

engineering products. In spite of the great effort in the past few decades, the 

prediction of high-frequency vibrations is still a challenging task. There is a 

consensus in the literature on the lack of a sufficient approach which can reliably 

predict high frequency vibrations. This thesis mainly purposes to develop such an 

efficient tool for predicting discrete high frequency response without any restriction 

for the frequency range of the operation.  

 

9.2 Review of the Thesis 

 

Present doctorate study firstly considered a recent technique, the DSC, due to its 

capabilities for predicting very higher order vibration modes.  
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Secondly, the thesis introduced a novel scheme “DSC-MS approach” for the 

prediction of spatially distributed and discrete frequency response of structures 

subjected to time-harmonic point forces. The comparisons with the analytical 

solutions of thin beams and plates showed that the present approach can be reliably 

used for discrete high frequency vibration analysis.  

 

By this powerful approach, for the first time in literature, it became possible to 

disregard the energetic parameters and to consider primary response variables for 

high frequencies. The scheme DSC-MS coming on the scene in the present doctorate 

study showed a perfect resolution for frequency response spectra and spatial 

distribution. The scheme also proved its accuracy to precisely sweep the entire 

audible frequencies without any pre-conditioning of modal density and damping. 

DSC-MS approach promises new horizons on recovering uncertainties at high 

frequencies by providing basic system characteristics such as discrete bending 

displacements, velocities, accelerations and modal contents of damped systems. 

 

Due to their high quality mechanical properties, composite materials have 

substituted for plastic and metal alloys. Therefore, on the last decade, researchers 

have been increasingly dealing with dynamic analysis of structural elements made of 

various polymer and/or polymer-metal materials. In this regard, thirdly, as a 

contribution to studies on the DSC and composite plate vibrations, DSC 

implementation for free vibration analysis of composite plates was introduced. Here 

the DSC scheme is adapted to solve differential equation of symmetrically laminated 

composite plates. Then verification of the DSC was clearly presented by performing 

comprehensive comparisons with several distinguished studies in the open literature. 

Very accurate predictions have been obtained for composite plates by using small 

grid numbers leading to very small computation time and memory. Moreover, very 

good agreement between the DSC and other approaches used in the selected 

references has been obtained for symmetrically laminated composite plates. The 

perfect match between the DSC and exact solutions promises that DSC approach can 

be reliably used in vibration analysis of composite plates having no analytical 

solution. Besides, in order to show the practical applicability of the DSC for 
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vibration analysis of thin composites, various composite plates were considered on 

the basis of three free vibration applications. Effects of material type and orientation 

angle along with boundary conditions on the modal characteristics of various 

symmetrically laminated composite plates were examined in detail.  

 

Finally, as a new contribution, the classical DSC technique is introduced for free 

vibration analysis of thick beams and plates. The results showed that the DSC is also 

capable of solving more than one differential equation in a single domain 

simultaneously. This ability promises that the DSC can also be improved for the 

coupled problems such as structure-structure and fluid-structure interactions. 

However, the DSC still has challenging issues for implementing complex 

boundaries.  Therefore, it needs further studies to cure drawbacks of the DSC.  

 

9.3 Contributions of the Thesis 

 

It is congruous to remark the following three main contributions of this Doctorate 

study to the literature: 

 

- A novel scheme named as DSC-MS was introduced for the discrete high 

frequency vibration response analysis for the first time in literature and the 

scheme has been accurately verified. 

-  The classical DSC method was extended by implementing the approach to 

free vibration analysis of thin composite plates. The superiority of the DSC 

for composites over several numerical techniques has been clearly 

demonstrated. Besides, practical applicability of the DSC was displayed by 

performing several case studies for composite plates. 

- The classical DSC method was improved for free vibrations of thick 

structures based on Timoshenko and Mindlin theories. This is the first 

implementation of the classical DSC for thick structures. 

 

 

 

 



 

 

107

9.4 Suggestions for the Future Work 

 

For future works, in order to spread the use of DSC and DSC-MS methods in 

vibro-acoustic engineering, the following improvement and development studies can 

be performed:  

 

- Boundary condition implementation procedure of DSC method can be 

generalized to treat complex boundaries such as stiffened and damped ends 

and impedance boundaries.  

 

- Then, structure-structure and fluid-structure interaction models can be 

constructed by the DSC. Therefore, high frequency structural-acoustic 

coupling problems can be treated by the DSC and DSC-MS. 

 

- As a global method, a unified approach can be developed to treat build-up 

structures by implementing transform and assembly algorithms. 

 

- DSC-MS approach can be applied to high frequency vibration analyses of 

thick beams and plates by using better computational configurations. 

 

- The DSC-MS can be implemented to high frequency analyses of composite 

structures based on CLPT or higher-order plate theories. In this regard, the 

effects of composite plate parameters on their vibration response may be 

examined.  

 

- As an alternative to energy based high frequency techniques, DSC method 

can be applied to energy flow differential equations; and therefore, averaged 

energetic parameters also can be predicted.  
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APPENDIX A 

WAVELET TRANSFORMS 

 

A.1 Wavelet, Wavelet Analysis 

 

A wavelet is a waveform of effectively limited duration that has an average value 

of zero. Comparing the wavelets with sine waves, which are the basis of Fourier 

analysis, sinusoids are smooth and do not have limited duration, they extend from 

minus to plus infinity. However, wavelets tend to be irregular and asymmetric as 

shown in Figure A.1. 

 

Figure A.1 Comparison of a sine wave and a wavelet (db10 type wavelet) 

(Misiti, Misiti, Oppenheim, & Poggie , 2005). 

 

Wavelet analysis is a mathematical technique which can be used to split a signal 

into different frequency bands or components so that each one can be studied with a 

resolution, matching its scale. Thus it provides higher frequency and spatial 

resolution.  

 

Figure A.2 Graphical representation of the comparison of Fourier Analysis 

and Wavelet Analysis (Misiti, Misiti, Oppenheim, & Poggie , 2005). 
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Fourier analysis consists of breaking up a periodic signal into sine waves of 

various frequencies. Similarly, wavelet analysis is the breaking up of any signal into 

shifted and scaled versions of the original wavelet (Figure A.2). Since the wavelets 

have local extensions, local features of a signal such as sharp peaks, irregularities or 

non-smoothness can be described well with wavelets.    

 

A.2 Continuous Wavelet Transform (CWT) 

 

Mathematically, the process of continuous Fourier analysis is the Fourier 

transforms (Rao & Bopardikar, 1998). 

 

∫
∞

∞−

ω−=ω dtetfF ti)()( (A.1) 

 

which is the integration over all time of the signal )(tf multiplied by a complex 

exponential tie ω− . Similarly the process of continuous wavelet analysis is the 

Continuous Wavelet Transform (CWT) and defined as;  

 

dtttfbaW ba∫
∞

∞−

≡ )()(),( *
,ψ (A.2) 

 

where )(, tbaψ is a wavelet  (also called mother wavelet),  * denotes complex 

conjugation and ),( baW is the wavelet transform which is a function of two 

variables; a and b are scale and position parameters respectively.  A wavelet can be 

determined in the following form by scaling with a and translated with b;







 −

ψ≡ψ
a

bt
a

tba
1)(, (A.3) 

 

This real or complex valued continuous-time function )(tψ has the following 

properties; 
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1. The function integrates to zero: 0)( =ψ∫
∞

∞−

dtt (A.4) 

2. It has a finite energy:   ∞<ψ∫
∞

∞−

dtt 2)( . (A.5) 

A wavelet also satisfies the following condition known as the admissibility condition,

∞+<ω
ω

ωϕ
≡ ∫

∞

∞−

dC
2)(

. (A.6) 

Here )(ωϕ is the Fourier transform of )(tψ . The admissibility condition implies that 

the Fourier transform of )(tψ vanishes at the zero frequency, i.e. 

0)( 0
2 =ωϕ =ω (A.7)  

This condition means that wavelets must have a band-pass like spectrum. A zero at 

the zero frequency also means that the average value of the wavelet in the time 

domain must be zero as presented in Equation (A.4), and therefore it must be 

oscillatory. In other words, )(tψ must be a wave. The inverse wavelet transform can 

be constructed as  

dbdatbaW
aC

tf ba
a b

)(),(11)( ,2 ψ= ∫ ∫
∞

−∞=

∞

−∞=

(A.8) 

Another condition for a wavelet is the regularity condition. It states that the 

wavelets should have some smoothness and concentration in both time and frequency 

domains. Regularity is a quite complex concept, however, a simple explanation can 

be found in (Kaiser, 1999). Scaling a wavelet is directly related with the frequency. 

A low scale (lower a) wavelet reflects higher frequency behaviour whereas the 

higher scales (higher a) imply low frequencies (Figure A.3).  
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Figure A.3 Scale and frequency relation in wavelets (Misiti, Misiti, 

Oppenheim, & Poggie , 2005). 

 

There is a lot of mother wavelets determined and used in the signal analysis. A few 

wavelet, which are called by their shapes or names of their creators, is demonstrated 

in Figure A.4. 

 

(a)           (b)           (c) 

Figure A.4 (a) Mexican hat wavelet,  (b) Meyer wavelet, (c) Morlet wavelet. 

 

A.3 Discrete Wavelet Transform (DWT) 

 

A.3.1 Discrete Wavelets 

 

The wavelet transform has three difficulties in the direct application of Equation 

(A.2). The first is redundancy of CWT. In Equation (A.2), the wavelet transform is 

calculated by continuously shifting (continuous b) continuously scalable function 

(continuous a) over a signal and continuously calculating the wavelet coefficients (a 

kind of correlation coefficients between original signal and wavelets). A non-

redundant wavelet representation, which demonstrates a discrete wavelet by making 

dyadic sampling both for time and frequency axes, can be introduced as 

 








 −
ψ≡ψ j

j

jkj
ktt

2
2

2

1)(, . (A.9) 
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Here j and k are integers. The dyadic samplings state that the scale parameter a and 

translational parameter b in Equation (A.3) are discretized as ja 2= and kb j2= ,

respectively. Equation (A.9) is the non-redundant version of Equation (A.3). In order 

to complete the removal of the redundancy, the discrete wavelets should satisfy the 

orthogonality, 

 





=ψψ∫ 0
1

)()( ,, dttt nmkj otherwise
nkandmjif ==

. (A.10) 

 

An arbitrary signal can be reconstructed by summing the orthogonal wavelet basis 

functions, weighted by the wavelet transform coefficients ),( kjW :

∑ ∑
∞

−∞=

∞

−∞=

ψ=
j k

kj tkjWtf )(),()( , . (A.11) 

 

Equation (A.11) shows the Inverse Wavelet Transform (IWT) for discrete wavelets.  

 

A.3.2 Scaling Function (Father Wavelet) 

 

Although the removal of the redundancy of CWT is completed by using discrete 

wavelets, there are still an infinite number of wavelets in the wavelet transforms. 

This is the second difficulty in CWT and it can be solved by reducing the number of 

wavelets to a sufficient count by introducing scaling functions. Wavelets are also 

defined by a scaling function )(tφ (also called father wavelet). The mother wavelet 

is in effect a band-pass filter and scaling it for each level in dyadic sampling 

(stretching it with a factor of 2) in the time domain halves its bandwidth in frequency 

domain. This creates a problem that entire spectrum must be covered by an infinite 

number of levels. The scaling function filters the lowest level of the transform and 

ensures the entire spectrum is covered. The scaling function can be decomposed with 

wavelet components, as being just a signal in Equation (A.11); 
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∑ ∑
∞

−∞=

∞

−∞=

ψ=φ
j k

kj tkjWt )(),()( , . (A.12) 

 

A scaling function has the following properties; 

 

1. The function integrates to unity:  .1)( =φ∫
∞

∞−

dtt (A.13) 

2. It has unit energy:       .1)( 2 =∫
∞

∞−

dttφ (A.14) 

 

If one analyzes a signal using the combination of scaling function and mother 

wavelets, the scaling function covers the wavelets up to any scale j, while the rest is 

done by the mother wavelets. In this way, the number of wavelets is limited from an 

infinite number to a finite number (Figure A.5).  

 

Figure A.5 How an infinite set of wavelets is replaced by one scaling 

function (Kaiser, 1999) (n: the number of wavelets, j: scale, ω : frequency). 

As an example, the Shannon scaling function 
xn

xnx
π
π=φ

sin)( and mother wavelet 

xn
xnxnx

π
π−π=ψ

sin2sin)( for n = 1 are presented in Figure A.6. 
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(a)                   (b) 

 Figure A.6. (a) Shannon scaling function (father wavelet), (b) Shannon wavelet (mother wavelet). 
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APPENDIX B 

DSC MATRIX REPRESENTATION 

 

B.1 DSC Matrix  

 

The DSC matrix representation for an eigenvalue equation can be written by the 

following form: 

 

D =W W2Ω (B.1) 

 

where  
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Applying boundary conditions by using Equations (3.34)-(3.37), the DSC matrix D

becomes 
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Finally, eigenvalue equations in a matrix representation reduce to the following equality:

D’ =W W2Ω (B.7)
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APPENDIX C 

COMPARISION OF THE DSC AND FEM 

 

C.1 The DSC and Finite Element Method (FEM) at Higher Frequencies 

 

Figure C.1 shows high frequency accuracies of the exact solutions given in 

Equation (4.22) by comparing them with DSC and FEM. The first 999 natural 

frequencies of a simply supported beam are presented in Figure C.1. In this 

demonstration, beam’s physical properties are chosen as a=1m, A= 610− 2m ,

79300 =ρ 3/ mkg , 11101.2 ×=E 2/ mN , 1210 0.0833 I ×= 4m .

Figure C.1 Comparison of the DSC and FEM results for the first 999 natural frequencies 

of simply supported beam. 

 

It is obviously seen from Figure C.1 that, FEM results hugely diverge from the exact 

results after the Mode 200. However, even at higher modes, DSC results show 

almost exact values. This indicates that the FEM can not be reliably used in high 

frequency analysis. In order to demonstrate the low and mid-frequency behaviour of 

the methods, the comparison for the first 50 modes and 51 to 101 modes are 

presented in Figure C.2 and Figure C.3, respectively.  
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Figure C.2 The comparison of the DSC and FEM results for the first 50 natural 

frequencies of simply supported beam.  

 

Figure C.3 The comparison of the DSC and FEM results for 51 to 101 natural frequencies 

of simply supported beam. 

According to Figure C.2, FEM predicts reliable results until Mode 35. After that 

mode, a discrepancy is observed; however, the first 50 modes can be acceptable for 

low frequency analysis. Figure C.3 displays a considerable discrepancy of the FEM 

from the exact results all through the spectrum. However, DSC exhibits totally exact 
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behaviour. Figure C.4 indicates the relative error of FEM and DSC in comparison 

with the exact results by calculating from the expression 

n

DSCFEMn

f
ff

Error ,100%
−

⋅= where nf represents the exact result. These figures 

clearly imply that the FEM can only be reliably used in low frequencies.  

 

Figure C.4 Relative errors of FEM and DSC results. 
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APPENDIX D 

COMPUTER CODES FOR THE DSC  

 

D.1 Introduction 

 

In the present study, DSC codes for free and forced vibration analyses are 

developed by using MatLAB® for isotropic beams and plates, and composite plates 

separately. In this chapter, only the codes for thin isotropic beams and plates are 

presented with utilized functions.   

 

D.2 The DSC Code for Isotropic Beams and Plates 

 

D.2.1 main_beam.m 
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D.2.2 main_plate.m 
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D.2.3 DSC Functions 

 

D.2.3.1 shn_d2.m 
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D.2.3.2 shn_d4.m 
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D.2.3.3 app_bc_beam.m 

 

D.2.3.4 app_bc_sec.m 
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D.2.3.5 app_bc_prim.m 
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APPENDIX E 

LIST OF SYMBOLS 

 

a length of beam or a side length of plate 

A area of beam cross-section 

sA surface area of plate 

b the other side length of plate 

gc group velocity 

0D flexural rigidity 

ijD flexural rigidity of composite plate in i, j principle material directions 

E elasticity modulus 

cf center frequency 

hf higher frequency 

lf lower frequency 

nf natural frequency 

G shear modulus 

h total thickness 

I moment of inertia 

k complex wavenumber 

0k wavenumber in the absence of damping 

M number of fictitious nodes 

MO modal overlap count 

xM bending moment per unit length about  y axis 

yM bending moment per unit length about  x axis 

xyM twisting moment per unit length in x axis 

yxM twisting moment per unit length in y axis 

)( fn modal density in a frequency bandwidth 

N number of structure nodes 

P number of modes in a frequency bandwidth 
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q load 

xQ transverse shear force per unit length in x axis 

yQ transverse shear force per unit length in y axis 

r discretization parameter for regularization 

xV in-plane force per unit length in x axis 

yV in-plane force per unit length in y axis 

xyV in-plane shear force per unit length 

w flexural displacement 

(x, y) cartesian coordinates 

α sampling parameter 

fδ average modal spacing between two adjacent modes in a frequency 

bandwidth 
)(nδ nth degree delta kernel  

∆ grid spacing 

nf∆ modal bandwidth 

pφ pth mode shape 

γ damping coefficient 

κ shear correction factor 

λ aspect ratio 

ν Poisson’s ratio 

xθ rotation of normal x axis 

yθ rotation of normal y axis 

ρ average mass density of a composite plate 

0ρ mass density 

σ standard deviation 

ω circular frequency 

Ω frequency parameter 

ζ internal loss factor 

⊗ tensorial product 
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