
DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

EXACT AND HEURISTIC ALGORITHMS FOR THE
VARIANTS OF THE VEHICLE ROUTING PROBLEM

by

Pınar MIZRAK ÖZFIRAT

November, 2008

İZMİR

EXACT AND HEURISTIC ALGORITHMS FOR

THE VARIANTS OF THE VEHICLE ROUTING

PROBLEM

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Doctor of

Philosophy in Industrial Engineering, Industrial Engineering Program

by

Pınar MIZRAK ÖZFIRAT

November, 2008

İZMİR

ii

Ph.D. THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “EXACT AND HEURISTIC ALGORITHMS

FOR THE VARIANT OF THE VEHICLE ROUTING PROBLEM” completed

by PINAR MIZRAK ÖZFIRAT under supervision of Prof. Dr. HASAN ESKİ

and we certify that in our opinion it is fully adequate, in scope and in quality, as a

thesis for the degree of Doctor of Philosophy.

Prof. Dr. Hasan ESKİ

Supervisor

Prof. Dr. Miraç BAYHAN Prof. Dr. Tatyana YAKHNO

Thesis Committee Member Thesis Committee Member

Prof. Dr. İrem ÖZKARAHAN

Second Supervisor Examining Committee Member

Examining Committee Member Examining Committee Member

Prof.Dr. Cahit HELVACI
Director

Graduate School of Natural and Applied Sciences

iii

ACKNOWLEDGMENTS

Firstly, I would like to express my deepest gratitude to my advisor, Prof. Dr. İrem

Özkarahan for her continous support, guidance and patience throughout my PhD.

This dissertation could not have been written without Prof. Dr. İrem Özkarahan who

is a dedicated and encouraging advisor. Also, I would like to thank to my second

advisor, Prof. Dr. Hasan Eski who helped me throughout the progress of this

dissertation.

I would also like to thank to my committee members Prof. Dr. Miraç Bayhan and

Prof. Dr. Tatyana Yakhno for their helpful comments and advice. In addition, I

would like to say that I am grateful to all my instructors and professors in Middle

East Technical University and Dokuz Eylul University for them equipping me with

their knowledge and academic skills.

I also want to specially thank to my friends, Rahime Sancar Edis, Özlem Uzun

Araz, Emrah Edis and Ceyhun Araz for their friendship, encouragement and support.

Special thanks to my parents, Eser and Yavuz Mızrak, and my brother, Çınar

Mızrak, for their love, support and understanding. Finally, I would like to express my

special gratitude to my husband, M. Kemal Özfırat, for his love, encouragement,

endless patience and support throughout all my PhD years and to my son Ege Özfırat

for him not creating me any trouble during the writing process of this dissertation.

Pınar MIZRAK ÖZFIRAT

iv

EXACT AND HEURISTIC ALGORITHMS FOR THE VARIANTS OF THE

VEHICLE ROUTING PROBLEM

ABSTRACT

As the world is globalizing, distribution of goods and services becomes an

inevitable part of both trade and daily life. Distribution of goods and services from a

supply point to various demand points is called logistics. A complete logistics system

includes transporting materials from a number of suppliers to the factory plant for

manufacturing, transporting the products to warehouses and finally distributing them

to the customers. Both the supply and distribution procedures require effective

transportation planning. Good transportation planning can save a company a

considerable amount of its total distribution costs.

Vehicle Routing Problem (VRP) basically considers transportation planning and

has received a lot of attention in operations research literature due to its commercial

value. VRP consists of designing m vehicle routes to minimize total cost, each

starting and ending at the depot such that each customer is visited exactly once. Since

VRP was first introduced in literature, many variations have appeared by including

additional assumptions into the problem.

In this dissertation, three of the variants of VRP, which are faced quite often in

real life distribution problems, are considered. These are heterogeneous VRP

(HVRP), split delivery VRP (SDVRP) and VRP with time windows (VRPTW). A

novel Threshold Algorithm is developed for HVRP, SDVRP and small scale

VRPTW. For large scale VRPTW, a SetCovering Algorithm is developed.

In order to see the efficiency and performance of these algorithms, they are tested

on the literature benchmark problems. The results of the computational experiments

indicate that the proposed methodologies are useful tools especially for large scale

real life problems where fast decision making is of crucial importance. In addition to

performance tests, the proposed methodologies are employed to solve the real life

v

fresh goods distribution problem of a retail chain store. The results achieved are

presented to the firm and new distribution strategies are offered.

Keywords : Heterogeneous Vehicle Routing Problem, Split Delivery Vehicle

Routing Problem, Vehicle Routing Problem with Time Windows, Interactive Fuzzy

Goal Programming, Constraint Programming.

vi

ARAÇ ROTALAMA PROBLEMİ TİPLERİ İÇİN KESİN VE SEZGİSEL

ALGORİTMALAR

ÖZ

Dünyanın globalleşmesi ile, ürünlerin ve hizmetlerin dağıtımı hem ticaretin hem

de günlük hayatın kaçınılmaz bir parçası haline gelmiştir. Ürünlerin ve hizmetlerin

dağıtımına kısaca lojistik denilebilir. Bütün bir lojistik sistemi, malzemeleri

tedarikçilerden fabrika binasına üretime ya da işlenmeye götürmeyi, ardından

ürünleri depolara taşımayı, ve son olarak da depolardan müşterilere ulaştırmayı

kapsamaktadır. Hem tedarik hem de dağıtım işlemleri etkili taşıma planlamasını

gerektirir. İyi bir taşıma planı, firmaların toplam dağıtım maliyetlerinin önemli bir

kısmını azaltabilir.

Araç Rotalama Problemi (ARP) temel olarak dağıtım planlaması ile ilgilenir ve

ticari önemi sayesinde yöneylem araştırması literatüründe çok ilgi toplamıştır. ARP

toplam dağıtım maliyetlerini minimize etmek amacıyla, tümü depoda başlayıp

depoda biten ve her müşteriye sadece bir defa uğrayan m adet rota tasarlama

işleminde kullanılır. ARP literatürde ilk tanımlandığından bu yana, probleme çeşitli

varsayımlar eklenerek birçok değişik tipi elde edilmiştir.

Bu tez çalışmasında, gerçek yaşam dağıtım problemlerinde sıkça karşılaşılan

ARP’nin üç farklı tipi ele alınmıştır. Bunlar sırasıyla, heterojen filolu ARP (HARP),

bölünmüş dağıtımlı ARP (BDARP) ve zaman pencereli ARP’dir (ZPARP). HARP,

BDARP ve küçük ölçekli ZPARP için yeni bir Eşik Algoritması geliştirilmiştir.

Büyük ölçekli ZPARP için ise yine orjinal olan KümeKaplama Algoritması

geliştirilmiştir.

Bu algoritmaların verimliliğini ve performansını ölçmek için, literatürde bulunan

test problemleri üzerinde deneyler yapılmıştır. Elde edilen sonuçlar önerilen

algoritmaların özellikle hızlı karar vermenin çok önemli olduğu problemlerde faydalı

olabileceğini göstermiştir. Literatür deneylerine ek olarak, geliştirilen algoritmalar

vii

bir market zincirinin taze gıda dağıtımı problemine uygulanmıştır. Elde edilen

sonuçlar firmaya sunulmuş ve yeni dağıtım stratejileri önerilmiştir.

Anahtar Kelimeler: Heterojen Filolu Araç Rotalama Problemi, Bölünmüş Dağıtımlı

Araç Rotalama Problemi, Zaman Pencereli Araç Rotalama Problemi, Interaktif

Bulanık Hedef Programlama, Kısıt Programlama.

viii

CONTENTS

 Page

Ph.D. THESIS EXAMINATION RESULT FORM ... ii

ACKNOWLEDGMENTS .. iii

ABSTRACT.. iv

ÖZ ...vi

CHAPTER ONE - INTRODUCTION ..1

1.1 Background and Motivation...2

1.2 Research Objectives and Original Contributions4

1.3 Organization of the Thesis ...6

CHAPTER TWO - LITERATURE REVIEW ON THE VEHICLE ROUTING

PROBLEM ..8

2.1 Capacitated Vehicle Routing Problem ...15

 2.1.1 Optimization Approaches Applied to CVRP ... 16

2.1.2 Classical Heuristic Approaches Applied to CVRP............................... 18

2.1.3 Metaheuristic Approaches Applied to CVRP .. 20

2.2 Heterogeneous Fleet Vehicle Routing Problem ...22

2.3 Split Delivery Vehicle Routing Problem..27

2.4 VRP With Time Windows ...29

2.5 Real Life Applications of VRP ..38

CHAPTER THREE - OVERVIEW OF THE TOOLS EMPLOYED IN THE

PROPOSED APPROACH ...39

3.1 Constraint Programming ..42

3.1.1 Basic Problems of CSP... 44

3.1.2 Concepts to Solve CSP ... 46

3.1.3 CP Working Procedure ... 55

3.1.4 Applications ... 56

ix

3.1.5 Trends .. 60

3.2 Interactive Fuzzy Goal Programming.. 60

3.2.1 Fuzzy Sets... 61

3.2.2 Fuzzy Numbers ... 63

3.2.3 Fuzzy Mathematical Programming ... 64

CHAPTER FOUR - THRESHOLD ALGORITHM73

4.1 Proposed Algorithm ...73

4.1.1 Splitting into Subproblems .. 75

4.1.2 Vehicle Assignment... 78

4.1.3 Routing Phase.. 86

4.2 Tests On Sample Instances ... 90

4.2.1 Splitting into Subproblems .. 91

4.2.2 Vehicle Assignment... 92

4.2.3 Routing Phase.. 93

4.3 Computational Results ... 95

4.4 Application of the Proposed Algorithm To Real Life Case: Fresh Goods

Distribution of a Retail Store... 97

4.4.1 Problem Definition... 97

4.4.2 Splitting the Problem into Subproblems.. 98

4.4.3 Vehicle Assignment to Subproblems.. 99

4.4.4 Routing Phase.. 101

CHAPTER FIVE - THRESHOLD ALGORITHM FOR SPLIT DELIVERY

VEHICLE ROUTING PROBLEM...104

5.1 Modified Threshold Algorithm for Split Delivery Vehicle Routing

Problem ...106

5.1.1 Splitting the Problem... 107

5.1.2 Vehicle Assignment... 108

5.1.3 Routing Phase.. 110

5.2 Test on Sample Instances of SDVRP...119

x

5.2.1 Splitting into Subproblems .. 120

5.2.2 Vehicle Assignment... 120

5.2.3 Routing Phase.. 121

5.3 Computational Results of Split Delivery Test Problems............................122

5.4 Modified Threshold Algorithm for HVRP with Split Deliveries...............124

5.5 Test on Sample Instances of HVRP with Split Deliveries126

5.6 Fresh Goods Distribution of a Retail Store : Employing Split Delivery

Strategy ...128

5.6.1 Routings Under Split Delivery Strategy .. 129

CHAPTER SIX - THRESHOLD ALGORITHM FOR VRP WITH TIME

WINDOWS ..131

6.1 Proposed Algorithm for VRPTW...1322

6.1.1 Threshold Algorithm Modifications ... 1333

6.1.2 Set Covering Based Algorithm... 138

6.2 Performance Tests on Benchmark Problems..147

6.2.1 Tests on Clustered Problems (C Series)... 1511

6.2.2 Tests on R Series Problems ... 154

6.2.3 Tests on RC Series Problems ...156

6.3 Conclusion..159

CHAPTER SEVEN - CONCLUSION ..161

7.1 Summary ..161

7.2 Original Contributions of the Dissertation ...164

7.3 Future Direction of Research ...166

REFERENCES..167

APPENDICES ...179

1

CHAPTER ONE

INTRODUCTION

Logistics may be defined as the distribution of goods and services from a supply

point or supply points to various demand points. A complete logistics system includes

transporting materials from a number of suppliers to the factory plant for manufacturing

or processing, transporting the products to warehouses or depots and finally distributing

them to the customers. Both the supply and distribution procedures require effective

transportation planning. Good transportation planning can save a company a

considerable amount of its total distribution costs.

One of the major items in the total distribution costs is the traveling and fixed costs of

distribution vehicles. Transportation management, and more specifically vehicle routing,

has a considerable economical impact on all logistic systems. Effective vehicle routing

can save a considerable amount of distribution costs for the company. Optimization of

routes for vehicles given various constraints is the origin of vehicle routing problem

(VRP). In a practical aspect, this problem contributes directly to a real opportunity to

reduce costs in the area of logistics.

The standard version of the VRP which is called the capacitated VRP (CVRP) is easy

to state and very difficult to solve. The problem is to generate a sequence of deliveries

for each vehicle in a homogeneous fleet based at a single depot so that all customers are

serviced and the total distance traveled by the fleet is minimized. Each vehicle has a

fixed capacity and must leave from and return to the depot. Each customer has a known

demand and is serviced by exactly one visit of a single vehicle. The standard vehicle

routing problem was introduced in the operations research and management science

literature about 50 years ago. Since then, the vehicle routing problem has attracted an

enormous amount of research attention.

2

In the following section of this chapter, the background of VRP and the motivation

behind this dissertation is given. The research objectives and the original contributions

are listed in Section 1.2. Finally, in Section 1.3, the organization of this dissertation is

outlined.

1.1 Background and Motivation

In 1959, a paper by Dantzig and Ramser appeared in the Journal of Management

Science concerning the routing of a fleet of gasoline delivery trucks between a bulk

terminal and a number of service stations supplied by the terminal. The distance between

any two locations is given and a demand for a certain product is specified for the service

stations. The problem is to assign service stations to trucks such that all station demands

are satisfied and total mileage covered by the fleet is minimized. The authors imposed

the additional conditions that each service station is visited by exactly one truck and that

the total demand of the stations supplied by a certain truck does not exceed the capacity

of the truck. The problem formulated in the paper by Dantzig and Ramser was given the

name “truck dispatching problem”. Later on, this problem is referred as the vehicle

routing problem and this name has caught on in the literature.

Today, in the globalizing world of technology, transportation has become an

inevitable part of both daily life and business life. Since in every type of transportation

problem, time and budget constraints appear, effective scheduling of vehicles can only

be made by scientific methods. Therefore assignment of vehicles to routes has become a

major interest of many researchers due to its relevance in practice.

Designing the optimal set of routes for a fleet of vehicles in order to serve a given set

of customers is simply called VRP. It is one of the hardest combinatorial optimization

problems. There are many variations of VRP both in real life applications and literature

studies.

3

CVRP which is the classical version of VRP is the one which has found interest most

widely in literature. In CVRP, the vehicle fleet is homogeneous. That is, all vehicles are

identical in capacity and cost. However, in real life problems, this is not the case most of

the time. There may exist different types of vehicles with different capacities in the

vehicle fleet. Also these vehicles may have different fixed and variable traveling costs.

When this is the case, the problem is formulated as a heterogeneous VRP (HVRP).

HVRP is a variation of CVRP in which there is a heterogeneous fleet of vehicles for

distribution. Although, heterogeneous vehicle fleet assumption is more realistic, HVRP

has not received much attention in the literature. This may be due to the fact that it is

more challenging to solve.

One common assumption in CVRP and HVRP is that a customer demand must be

satisfied by one visit of a vehicle. In other words, splitting the delivery of a customer

among vehicles is not allowed. However, split delivery distribution strategy may

decrease distribution costs since it is a relaxation of non-split delivery strategy.

Therefore, the effect of incorporating split deliveries into VRP should be studied

profoundly. When split deliveries are allowed in VRP, the problem is called split

delivery VRP (SDVRP).

In addition to HVRP and SDVRP, another important variation of VRP is VRP with

time windows (VRPTW). VRPTW is a well-known and complex combinatorial

optimization problem where nodes to be visited require specified time intervals for the

visit. VRPTW has started to gain attention in literature recently. This is because as

competition increases in business markets, customer requests become more important. In

order to gain a competitive edge, companies should deliver the products within

requested time intervals of customers. Many of the earlier exact and heuristic methods

developed for CVRP has also been applied to VRPTW. However, heuristic methods do

not perform well due to their limitations in the search space. Exact methods on the other

hand are able to solve small size problems but inefficient for large scale problems.

4

The main motivations behind this research are the discussions given above. In the

light of these discussions, finding efficient and effective solutions for HVRP, SDVRP

and VRPTW constitute the main objective of this dissertation.

1.2 Research Objectives and Original Contributions

In this dissertation, a novel Threshold Algorithm is developed which is a cluster first

route second type of algorithm (Laporte and Semet, 2002). Both the clustering phase and

the routing phase of the algorithm employs advanced tools and has special design

characteristics for each of the variations of VRP considered; HVRP, SDVRP and

VRPTW. The objectives of the research and the novelties proposed to achieve these

objectives are given in the following.

• The main challenge in all types of VRPs lies in the subtour elimination

constraints. A subtour is the tour of a vehicle without visiting the depot node

which is undesirable (Eg. The route of a vehicle Node 1-Node 2-Node 1 is a

subtour). If subtours are not considered, VRP can be solved through

mathematical modeling to optimum. However, insertion of subtour constraints

makes the problem np-hard.

In this research, a novel subtour elimination algorithm (SEA) is proposed. SEA

is an iterative algorithm which is integrated into a mathematical model. It

completely removes subtour constraints from the mathematical model at the very

first iteration. Then, it adds only the anticipated subtour constraints at each

iteration. By this way, the model can be solved to optimum.

• In HVRP, there is one more point that makes the problem even more

challenging. That is as the vehicles with different capacities and fixed costs are

included in the problem, a tradeoff between total fixed costs and total traveling

costs arises.

5

As the capacity of a vehicle increases, its fixed cost also increases in HVRP.

That is, vehicles in larger capacity are more expensive than smaller ones.

Therefore, if larger capacity vehicles are selected, fixed costs increase. In this

case, number of tours visiting the depot is smaller and hence traveling costs

decrease. On the other hand, if smaller capacity vehicles are selected, fixed costs

decrease but traveling costs increase. Therefore the conflict between these two

cost terms should be worked out.

When there exist multiple objectives in a problem and the degree of fulfillment

of these objectives is vague, fuzzy mathematical programming may be a useful

tool to handle the problem (Zimmerman, 1978). Therefore in this dissertation, an

interactive fuzzy goal programming (IFGP) approach is designed to deal with the

heterogeneous vehicle fleet. To the best of our knowledge, this is the first study

that incorporates fuzzy goal programming into HVRP.

• SDVRP is a relaxation of CVRP since it relaxes the assumption that “each node

should be visited by only one vehicle”. However, when this constraint is

released, the search space becomes larger. Though it becomes harder to find the

optimum solution or an efficient solution.

In order to deal with this challenge, the SEA developed for HVRP is modified

according to split delivery distribution strategy. By this way, the size of the

problem is decreased and though it becomes easier to find solutions.

• Due to the special characteristics of VRPTWs, these problems cannot be split

into clusters. Therefore, it is necessary to handle VRPTW under two categories.

VRPTW, which is already in clusters (small scale), and large scale VRPTW.

The Threshold Algorithm employed for the other variations of VRP can only be

used for clustered VRPTW. For large scale VRPTW, an original SetCovering

6

Algorithm is developed in this dissertation, which is able to find optimum

solutions.

In summary, within this dissertation four original methodologies are developed in

order to deal with the four challenges defined above. The outline of the research can be

seen in Figure 1.1.

Figure 1.1 Study frame of the dissertation

1.3 Organization of the Thesis

The following chapters of the dissertation are organized as follows.

In Chapter 2, firstly, VRP and its variations are defined. In addition, an overview of

solution approaches employed for CVRP is provided. Then a detailed literature review

is provided on HVRP, SDVRP and VRPTW, which are the main concerns of this

dissertation.

In Chapter 3, the tools employed in the algorithms developed in this dissertation are

reviewed comprehensively. Firstly, basics of constraint programming methodology and

7

application are explained. Then, a brief overview on fuzzy sets and fuzzy numbers is

given. Finally, IFGP approach, which is one of the fuzzy mathematical modeling

techniques, is described in this chapter.

Chapter 4 presents the novel Threshold Algorithm which is designed for HVRP in

this dissertation. Also, performance tests on the benchmark instances from the literature

are given. In addition, the algorithm is applied to the real life fresh goods distribution

problem of a retail chain store. The case, application and the solutions are also provided

in this chapter.

In Chapter 5, SDVRP is handled under two states. First one assumes a homogeneous

vehicle fleet. The second one assumes a heterogeneous fleet. In other words, the second

case combines HVRP with split deliveries. The Threshold Algorithm is modified

according to both cases and the performance tests are carried out. Lastly, split delivery

strategy is employed for the real life distribution problem handled in Chapter 4.

Chapter 6 is devoted to VRPTW. VRPTW is again considered under two cases,

which are clustered problems and large scale problems respectively. For clustered

problems, the Threshold Algorithm is modified according to time window assumption.

For large scale problems, a novel SetCovering Algorithm is developed. Similar to other

problems, tests on VRPTW are given in this chapter.

Finally, Chapter 7 includes the concluding remarks of this dissertation and identifies

future directions of research.

8

CHAPTER TWO

LITERATURE REVIEW ON THE VEHICLE ROUTING PROBLEM

The main focus of this dissertation is the distribution of goods between depots and

final users. These problems are generally known as the Vehicle routing problems (VRP)

in literature. VRP has received a lot of attention in the Operations Research (OR)

literature for its commercial value. Basically, it consists of designing a set of vehicle

routes, each performed by a single vehicle starting and ending at its own depot such that

all requirements of customers and all the operational constraints are satisfied, and the

total transportation cost is minimized. The two main elements of this problem are the

customers to be visited and the vehicles to perform the visits. These elements have some

common characteristics in all VRPs.

Common characteristics of customers are given in the following:

• Each customer is located at a vertex on the road graph.

• Each customer requires an amount of goods (demand), which must be delivered

or collected.

• Some customers may require the delivery to be at a certain period of the day.

• There exists a service time required to load or unload the goods at the customer

location.

Distribution of goods is performed by a fleet of vehicles whose composition and size

can be fixed or variable. Common characteristics of vehicles are given in the following:

• Each vehicle has an originating depot and there is a possibility that its route may

end in another depot than the originating one.

• Each vehicle has a capacity restriction which expresses the maximum amount of

goods it can load.

• There exists a cost associated with utilization of the vehicle.

9

Evaluation of the global costs of the routes needs knowledge of the travel cost or

travel time between each pair of customers and between the depots and the customers.

Each customer and depot is located at a vertex on the road graph. For each pair of

vertices i and j, and arc (i, j) is defined whose distance dij is the distance of the shortest

path from node i to node j and the corresponding cost is cij. Also, for each arc (i, j), a

travel time tij is defined which is the traveling time of the shortest path from node i to

node j. Several objectives can be considered for the VRPs. These objectives are usually

contrasting with each other. Some of them can be listed as:

• minimization of the total transportation cost which depends on the total distance

traveled and/or fixed costs of vehicles in use,

• minimization of the number of vehicles required to serve all customers,

• balancing the routes for travel time and vehicle load,

• minimization of the penalties associated with partial service of the customers,

• or any weighted combination of these objectives.

VRP was first introduced by Dantzig and Ramser in 1959 as the truck dispatching

problem. The authors proposed the first mathematical programming formulation and

algorithmic approach for the solution of the problem. A few years later, Clark and

Wright developed a greedy heuristic which improved Dantzig and Ramser’s approach

(Toth, Vigo, 2002). Since then, many researchers have dedicated their researches to

develop efficient algorithms for dealing with VRP and its extensions. Many models,

exact and heuristic approaches have been proposed to find optimal and/or approximate

solutions to VRPs.

The very basic version of VRP is called the Capacitated VRP (CVRP) in which

demands of customers are deterministic and may not be split; all vehicles are identical in

capacity and cost. The objective is to find a number of vehicle routes to minimize cost

such that

(i) each route visits the depot node,

10

(ii) each customer node is visited exactly by one route,

(iii) the sum of the demands on a route does not exceed the capacity of the

vehicle.

By incorporating different assumptions to CVRP, variations of VRP are created.

Some of the variants of VRP, which have been studied in literature, are listed below.

• Distance Constrained VRP (DCVRP): In DCVRP, in addition to CVRP

assumptions, a maximum route length or maximum route time is

incorporated. That is the vehicles should complete their routes within a

specified time or the routes should not exceed a specified length.

• VRP with Time Windows (VRPTW): VRPTW is an extension of CVRP

where a time interval [ei,li] and a service time si is associated with each

customer. In addition to CVRP constraints, each customer should be visited

within its specified time window ([ei,li]) and the vehicle stops at node i for si

time units to complete service.

• VRP with Backhauls (VRPB): In VRPB, the customer set is divided into two

groups. The first subset, L, contains n linehaul customers, which require a

given quantiy of product to be delivered. The second subset, B, contains m

backhaul customers, which require a given quantity of products to be picked

up. Customers are numbered so that L={1, 2,…, n} and B={n+1, n+2,…,

n+m}. The assumption, which regulates the service to these customers, state

that if a route contains linehaul and backhaul customers, all linehaul

customers must be served before backhaul customers. So, in addition to

CVRP constraints,

(i) in each route, linehaul customers precede backhaul customers,

(ii) the total demands of linehaul and backhaul customers on a route

should not exceed, seperately, the vehicle capacity.

• VRP with Pickup and Delivery (VRPPD): In VRPPD, two quantities, di and

pi, are associated with each customer i stating the quantity of products to be

delivered to customer i and picked up from customer i respectively. That

11

means there is a net demand of di-pi at customer i. Though it may be positive

or negative. Also, for each customer i, Oi denotes the node which is the

origin of the delivery quantity and Di denotes the node which is destination

of the pick up quantity. That is the delivery quantity to node i is picked up

from Oi, and the quantity picked up from node i is delivered to Di. Therefore

in addition to CVRP constraints,

(i) the load of the vehicle at any time must be nonnegative and must be

not exceed the vehicle capacity,

(ii) for each customer i, customer Oi, if different from the depot node,

must be served on the same route before customer i,

(iii) for each customer i, customer Di, if different from the depot node,

must be served on the same route after customer i,

• Heterogeneous VRP (HVRP): In HVRP, there exists a heterogeneous fleet of

vehicles. That is the capacities and the costs of vehicles may be different for

each vehicle. Therefore, the total demand of a route should not exceed the

capacity of the vehicle scheduled to that route.

• Stochastic VRP (SVRP): SVRP is the extension of CVRP where some

components of the problem are stochastic. For example, travel times or

demand quantities or customer nodes may be stochastic.

• Split Delivery VRP (SDVRP): SDVRP can be considered as a relaxation of

CVRP. In CVRP a customer can only be visited by exactly one vehicle (as

long as the demand does not exceed the capacity of the vehicle). On the other

hand, in SDVRP the deliveries of a customer can be split between two or

more vehicles. In other words a customer node can be visited by more than

one vehicle.

All of the extensions of VRP listed above are directly derived from CVRP. In

addition to these variants, there exist other studies in the literature which incorporate

more than one assumption at the same time. In other words, intersections of these

extensions are also studied. For example by assuming backhauling and time windows

12

together, VRP with backhauls and time windows (VRPBTW) is derived. In Figure 2.1,

the direct extensions of CVRP and their interconnections can be seen. In the figure, the

ones which are well known in the literature are listed. However, the trend in VRP is to

incorporate more assumptions on the same problem. That is, there will be more

interconnections which will be handled in the literature in the future. In Figure 2.1, there

is one more thing to be pointed. For the extensions given in region I, popular and widely

used test instances exist in the literature. The studies in this region mostly concern these

test instances. However, in region II, real life applications take place since there are not

well known test instances for these type of problems.

Figure 2.1 Extensions of CVRP and their interconnections

13

In this dissertation, the VRPs which are shaded in Figure 2.1 are handled. These are

HVRP, SDVRP and VRPTW from region I. Also, VRP which allows split deliveries and

heterogeneous fleet together is considered (from region II).

Firstly, HVRP is taken into consideration. In real life distribution problems, most of

the companies own a heterogeneous fleet of vehicles. Therefore, heterogeneous vehicle

fleet assumption is more realistic for most cases. However, HVRP is not studied much in

the literature. The reason to this situation may be because it incorporates more

restrictions into VRP. The main conflict in HVRP arises from the tradeoff between

vehicle fixed costs and total traveling costs. As the capacity of vehicles decrease, fixed

costs also decrease. But in this case, number of required vehicles increases. Hence, total

traveling cost increases. On the other hand, as larger capacity vehicles are selected,

number of required vehicles and hence total traveling cost decreases. But this time, fixed

costs increase. The tradeoff between these two terms should be worked out to find an

efficient solution to HVRP. Therefore, it cannot be handled with the approaches

developed for CVRP. HVRP requires specially designed algorithms. In short, it can be

said that due to

• its realistic assumptions

• limited interest in literature

• the challenge between vehicle fixed costs and traveling costs

HVRP is firstly considered in this dissertation.

SDVRP is the second extension of VRP which is considered in this research. When

the demand of a customer exceeds the capacity of vehicles, allowing split delivery is a

must. Other than this case, allowing split deliveries is determination of a distribution

strategy. Therefore, in a distribution problem, both distribution strategies (allowing split

deliveries or allowing non-split deliveries) should be compared in terms of distribution

objectives. One of them should be selected according to the results. Allowing split

delivery strategy can be considered as a relaxation of non-split delivery strategy.

Therefore, it is likely that distribution costs would decrease under split delivery

14

assumption. But still, the research in this area is very limited in the literature. There are

very few studies considering SDVRP. So, due to the

• need to compare the two distribution strategies

• limited reaserch in this area

SDVRP is handled in this dissertation.

Another variation of VRP considered is VRPTW. VRPTW started to gain attention

since the beginning of 90s. This is due to the increase in competition in service industry.

As competition increases, distributors started taking into care not only the demand

quantities of customers but also the delivery requirements. Therefore, time windows of

deliveries started to be more important. Hence, VRPTW became the interest of

researchers. Although there are quite many studies in this area, to the best of our

knowledge, there is no exact algorithm for VRPTW. Still, many researchers are studying

VRPTW to develop effective and efficient algorithms. Therefore, due to the

• increase in VRPTW applications in real life

• need for effective and efficient algorithms in this area

VRPTW is handled in this dissertation.

In addition to these three main extensions of VRP, distribution which handles both

heterogeneous fleet of vehicles and split deliveries is considered. In other words, split

delivery heterogeneous VRP (SDHVRP) is studied. To the best of our knowledge, there

are no studies in the literature which merges these two assumptions together. So by

SDHVRP, a distribution strategy (allowing split deliveries or not) can be determined for

HVRP.

In order to be able to design effective algorithms for these extensions of VRP, firstly

the very basic version, which is CVRP, should be understood and the research carried

out in this area should be studied. Then the literature on HVRP, SDVRP and VRPTW

should be examined. Sections 2.1, 2.2, 2.3 and 2.4 are devoted to these subjects

respectively.

15

2.1 Capacitated Vehicle Routing Problem

CVRP can be simply stated as the problem of determining optimal routes through a

set of locations and defined on a directed graph G = (N, A) where N = (n0, n1,…, nn) is a

vertex set and A= ((ni, nj) : ni , nj Є N, i≠j) is an arc set. Vertex n0 represents a depot

node where a fleet V =(v1,…, vn) of vehicles exist with an identical and uniform

capacity Q. All remaining vertices represent customers. A non-negative (distance/cost)

matrix C=(cij) is defined on A. A non-negative weight di is associated with each vertex

to represent the customer demand at ni, and the total demand assigned to any route may

not exceed the vehicle capacity Q. Thus, CVRP aims at determining vehicle routes of

minimal total cost, each starting and ending at the depot, so that every customer is

visited exactly once. A typical mathematical formulation for the single depot CVRP is

given in the following where Xijv is a binary decision variable indicating whether vehicle

v goes from ni to nj.

i)(VvNjiX

h)(VvNjiZX

g)(VvQ*dX

f) (VvNkXX

e)(VvX

d)(VvX

c) (NjX

b) (NiX

to Subject

a)(cXMinimize

ijv

ijv

i
i j

ijv

j
kjv

i
ikv

j
jv

i
vi

i
ijv

v

j
ijv

v

i
ij

j
ijv

v

1.2,,}1,0{

1.2,,

1.2

1.2,

1.21

1.21

1.21

1.21

1.2*

0

0

∈∀∈∀∈

∈∀∈∀∈

∈∀≤

∈∀∈∀=

∈∀≤

∈∀≤

∈∀=

∈∀=

∑ ∑

∑∑

∑

∑

∑∑

∑∑

∑∑∑

(2.1)

16

In the objective function of Formulation 2.1 (Equation 2.1a), the total distance

traveled is minimized. By constraints (2.1b) and (2.1c), each node is visited exactly

once. Constraint (2.1d) and (2.1e) state that every vehicle must go out of and into the

depot node. Constraints (2.1f) assure that a vehicle ingoing to a node must leave that

node. (2.1g) states that the capacities of vehicles should not be exceeded. Constraint set

(2.1h) eliminates subtours where,

{ } BVBBX(XZ
Bi Bj

ijvijv

≥⊆∀−≤= ∑∑
∈ ∈

2;0/,1:)

Finally, constraints (2.1i) are cardinality constraints.

2.1.1 Optimization Approaches Applied to CVRP

CVRP is one of the most studied versions of VRP in the literature. Both exact and

heuristic approaches exist for CVRP. The most popular approach, which solves CVRP

to optimality, is branch and bound. However, the size of the problems, which can be

solved optimally, is restricted with a couple of tens of vertices (at most 50 vertices).

Some of the older relaxations are based on assignment problem (Laporte et.al., 1986)

and minimum spanning tree (Christofides et. al., 1981, Fisher, 1994). In addition to these

there are some more recently used bounding approaches. One of these is the additive

approach (Fischetti and Toth, 1989), which allows different bounding procedures.

Fischetti et. al. (1994) describes two relaxations using additive approach. The first one is

based on disjunction of infeasible arc sets and the second one is based on minimum cost

flow respectively (Toth and Vigo, 2002).

Langrangian lower bounds are also recently proposed, sophisticated bounds which

allow us to solve larger problems in size. For example, Fisher was able to solve the

symmetric CVRP problem with 100 or less customers with 99% close to optimality

using a Langrangian lower bound (1994) (Toth and Vigo, 2002).

(2.2)

17

Although branch and bound is an often used method, it has some drawbacks. If the

problem consists of a large number of linear constraints, branch and bound cannot be

employed. This is because such a large constraint system cannot be fed into an LP

solver. In this case, branch and cut approach is used.

The research on application of branch and cut on VRP is quite limited. Some of the

studies in this area belong to Achuthan et. al. (1997), Augerat et al.(1998), Blasum and

Hochstattler (2000), Ralphs (2003), Longo et. al. (2006).

Among these studies, Augerat et al. (1998) handled VRP’s with upto 135 customers.

The authors first separated capacity constraints using tabu search. Then they applied

branch and cut procedure. Very few of the instances could be solved optimally. Others

obtained very close solutions to optimal.

Blasum and Hochstattler (2000) modified the branching tree and separation procedure

of Augerat et al. (1998). They were able to decrease computation time in a recognizable

way (Naddef and Rinaldi, 2002).

Ralphs (2003) described a parallel procedure for branch and cut algorithms. The

author tested the procedure on instances with 100 customers and has shown that optimal

solution could be achieved for some of the problems. It is seen that branch and cut

algorithms provide quite good results which is encouraging for future research.

However, it is still very limited for large scale problems.

Another attempt to solve CVRP optimally is done by Ghiani and Improta (2000).

They transformed the problem into a capacitated arc routing problem for which an exact

algorithm and several approximate algorithms exist in the literature. When the exact

algorithms are incapable of handling VRP, such as in very large scale problem sizes,

heuristic approaches are employed. Heuristic approaches are practical, fast and provide

not optimal but good solutions. Heuristics can be split into two categories as classical,

18

developed mostly between 1960 and 1990, and metaheuristics, developing and growing

since early 90’s.

2.1.2 Classical Heuristic Approaches Applied to CVRP

There are quite a number of studies handling VRP by heuristic approaches in the

literature. Some of them are listed here.

Classical heuristic approaches are divided into three: Constructive heuristics, two-

phase heuristics, and improvement methods. Constructive heuristics build a feasible

solution step by step while tracking the objective value. In two phase heuristics,

clustering and routing phases appear either in a “cluster first - route second” or “route

first - cluster second” way. Finally improvement heuristics try to upgrade the quality of a

feasible solution by exchanging edges or vertices.

Clark and Wright (1964) Savings Algorithm is the oldest and most known heuristic

for CVRP. It is a constructive heuristic based on computation of savings of each possible

edge and inserting the one with the best saving into the route. This algorithm has

become the basis of many studies as Gaskell (1967), Yellow (1970), Golden et. al.

(1977), Paessens (1988), Nelson et al.(1985) (Laporte and Semet, 2002). Also different

modifications of Clark and Wright algorithm are developed by Desrochers and Verhoog

(1991) and Wark and Holt (1994) (Laporte and Semet, 2002).

Among the constructive heuristics, there are sequential insertion heuristics in the

literature. Two of these are known as Mole and Jameson (1976) algorithm and

Christofides algorithm (Christofides et. al., 1979) (Laporte and Semet, 2002).

When two phase algorithms are considered, “cluster first - route second” version took

more attention then “route first - cluster second” in the literature. Sweep algorithm

developed by Wren in 1971 and Fisher and Jaikumar algorithm (1981) are well known

“cluster first - route second” algorithms. An extension of the sweep algorithm is the

19

petal algorithm applied by Gillett and Miller (1974), Foster and Ryan (1976), Agarwal

et. al. (1989), Ryan et. al. (1993), Renaud et. al. (1996) (Laporte and Semet, 2002).

“Route first cluster second” algorithm was first put forward by Beasley (1983). The

first phase constructs a giant tour and the second phase becomes a shortest path problem.

Haimovich and Kan (1985) showed that this algorithm is optimal when all customers

have unit demand but not for general demands (Laporte and Semet, 2002).

All algorithms in “cluster first - route second” set have computational comparisons in

the literature. However, to the best of our knowledge, there exists no comparative study

for “route first - cluster second” algorithm in the literature.

The improvement heuristics can be handled in two ways: Either considering each

vehicle route separately or handling multiple routes at a time. When single route is

considered, the problem turns into a traveling salesman problem (TSP). Lin has

proposed λ-opt algorithm (1965) for TSP which can also be applied to CVRP. In this

algorithm, λ edges are removed from the feasible solution and any other profitable

connection is inserted into the route. Most of the improvement heuristics developed base

on this mechanism such as Lin and Kerninghan (1973), Or (1976), Renaud et. al. (1996)

(Laporte and Semet, 2002).

When multi routes are considered in parallel, edge exchanges between routes are

performed. Some of the heuristics base on this idea belong to Thompson and Psanottis

(1993), Van Breedam (1994) (Laporte and Semet, 2002), and Kindervater and

Savelsbergh (1997).

Classical heuristics provide quick solutions. However, the quality of the solutions are

surpassed by those of the metaheuristics. Until today, simulated annealing (SA), tabu

search (TS), genetic algorithms (GA), ant systems (AS), and neural networks (NN), have

been applied to CVRP.

20

2.1.3 Metaheuristic Approaches Applied to CVRP

Among the metaheuristic approaches applied to CVRP, TS is the most widely used

heuristic and provides the most promising results. Some of the algorithms are developed

by Osman (1993), Gendreau et. al. (1994), Taillard (1993), Xu and Kelly (1996)

(Gendreau et. al., 2002), Barbarosoglu and Ozgur (1999).

In Osman’s algorithms (1993), the neighborhoods are defined based on

2-interchange generation mechanism. Tabu Route algorithm of Gendreau et. al. (1994)

allows infeasible solutions in iterations. By this way, the search can be diversified into a

broader area. Taillard’s algorithm (1993) is based on a distinctive idea. The problem is

decomposed into subproblems. Each subproblem is solved independently. After a

constant number of iterations, some of the vertices should be moved to adjacent

subproblems. Xu and Kelly (1996) consider swaps of vertices between two routes in

neighborhood generation. In addition, they try to position some of the vertices optimally

by solving a network flow model (Gendreau et. al., 2002). TS algorithm of Barbarosoglu

and Ozgur (1999) use λ-interchange in neighborhood generation and give priority to

vertices which are far from the center of their current route but close to the center of the

new route.

In addition to these studies, Rochat and Taillard (1995) introduced the adaptive

memory concept into TS (Adaptive memory property can be incorporated into other

metaheuristics too). Adaptive memory is the process of extracting best routes from

existing solutions. However, one should be careful not to include same vertices in the

new solution (Gendreau et. al., 2002).

Another concept in this area is granular TS (GTS) developed by Toth and Vigo

(1998). It is based on the idea that longer edges on a graph are less likely to belong to

the optimal solution. Therefore, in GTS, a granularity threshold is set and the edges

longer than this threshold are not considered at all. By this way, computation times are

decreased considerably (Gendreau et. al., 2002). When all these TS algorithms are

21

compared on the same benchmark instances, it is found that Taillard’s algorithm (1993)

achieved the highest number of best solutions, and GTS of Toth and Vigo (1998)

provided the best computation times (Gendreau et. al., 2002).

Adaptive memory property is also employed by other researchers. One of these

studies is done by Tarantilis (2005). The author develops an adaptive memory

programming method called “Solutions Elite Parts Search”. The method first generates

initial solutions and stores these in an adaptive memory. A constructive heuristic merges

route components kept in the adaptive memory. Finally TS is used to improve the

solution.

Application of other metaheuristic approaches on VRP is rather limited. Osman

applied SA to the symmetric version of CVRP (1993). He tested the approach on some

benchmark problems. Very few of the solutions were able to provide the value of the

best known solution in the literature. Also, it is seen that computation times were quite

long.

GA’s are thought to be ineffective for VRP since the beginning of 2000’s. But two of

the recent studies provided competitive results compared to TS for some benchmark

studies. One of these studies belong to Baker and Ayechew (2003). A hybrid GA

method with neighborhood search method is applied to CVRP in this paper. The other

study belongs to Prins (2004). The author proposed a GA without trip deliminiters and

which uses a local search procedure.

Ant algorithms have also found application in CVRP by Bullnheimer et. al. (1999)

and Mazzeo and Loiseau (2004). The result of these studies were quite close to the best

known solutions. The last of the metaheuristics employed to solve CVRP is NN. One of

the studies belong to Ghaziri (1996). The algorithm proposed is tested on benchmark

problems and the computational results have shown that it produces relatively good

solutions but far away from best TS applications (Gendreau et. al., 2002).

22

Other than these techniques, constraint programming approach is used by Shaw

(1998) for CVRP. He proposed a local search method called large neighborhood search.

This method explores a large neighborhood by removing some of the edges from the

graph and reinserting these using a constraint based tree search. The results are

encouraging to apply constraint programming technology to VRP.

An extension of large neighborhood search is presented by Pisinger and Ropke

(2007) by adding an adaptive layer to the method. The new algorithm called adaptive

large neighborhood search is employed to solve several different versions of VRP

including CVRP. The method chooses among a number of insertion and removal

heuristics adaptively which provides robustness according to the problem type.

More recently, researchers started to look for solutions to real life problems which are

very large scale. In such problems, the main point is to find an efficient solution in an

effective time. One of the studies carried out belong to Li et. al. (2005). The authors

developed instances with up to 1200 customers. They proposed a method called variable

length neighbor list, which is able to reduce some of the unproductive computations.

2.2 Heterogeneous Fleet Vehicle Routing Problem

Heterogeneous VRP (HVRP) is a variation of CVRP in which there is a

heterogeneous fleet of vehicles for distribution. In CVRP, all vehicles are assumed to be

identical with capacity Q. However, in real life problems, this is not the case most of the

time. There may exist different types of vehicles with different capacities. Also these

vehicles may have different fixed and variable traveling costs. Since HVRP impose

more restrictions over CVRP, it is also np-hard. Due to the complexity of the problem,

there has been no exact algorithm developed to solve it yet.

HVRP is studied in two different versions in the literature. Some of the researchers

make an assumption that there is an unlimited number of vehicles of each type. They try

to find the optimal set of vehicles to be scheduled in the problem. This is called the fleet

23

size and mix VRP (FSMVRP). On the other hand, some researchers study the case

where there is a fixed vehicle fleet. They try to schedule this fleet of vehicles to the

customers in an optimal way. This problem is called heterogeneous fixed fleet VRP

(HFVRP). Although HFVRP is more realistic than FSMVRP, it has attracted less

attention in the literature.

One of the earliest papers studying HVRP belongs to Golden et. al.(1984). The

authors employed several simple heuristics, such as Clark and Wright heuristic,

improvement heuristics etc., on FSMVRP. They derived 20 literature problems from

Christofides and Eilon (1969) and Clark and Wright (1964) (Golden et. al. 1984). They

tested the heuristics on these problems. The problem data is given in Table 2.1.

However, coordinates of eight of these 20 problems are hardly available in the literature.

The other 12 of the 20 problems are the most widely used HVRP test problems in the

literature. Since 1984, many researchers have tested the performance of their algorithms

on these problems.

Another earlier study in this area belongs to Ulusoy in 1985. In this study, both

FSMVRP and HFVRP cases are considered. A four phase solution procedure is

developed. In the first phase, Chinese postman problem is solved and the arcs requiring

service are found under the objective of minimizing total distance traveled. By this way,

a giant tour is obtained. In the second phase, this giant tour is split into vehicle subtours

with respect to the capacity constraints of vehicles. The third phase handles each of the

vehicle tours and solves a shortest path problem within the existing demand points.

Finally, a post processor is applied in the last phase to improve solutions.

HVRP is also studied by Desrochers and Verhoog (1991). They proposed an

approach to find the best composition of vehicles to serve the customers efficiently

(FSMVRP). They presented a savings heuristic based on route fusion. At each step, the

best route is selected by solving a weighted matching problem. The algorithm is tested

on a set of benchmark problems.

24

Table 2.1 Problem data of the 20 test instances published in Golden et. al. (1984)

Vehicle A Vehicle B Vehicle C Vehicle D Vehicle E Vehicle F

Problem

Instance

Number

of

Nodes

C
ap

ac
ity

C
os

t

C
ap

ac
ity

C
os

t

C
ap

ac
ity

C
os

t

C
ap

ac
ity

C
os

t

C
ap

ac
ity

C
os

t

C
ap

ac
ity

C
os

t

1 12 15 20 35 50 60 100

2 12 30 60 40 90 110 300

3 20 20 20 30 35 40 50 70 120 120 225

4 20 60 1000 80 1500 150 3000

5 20 20 20 30 35 40 50 70 120 120 225

6 20 60 1000 80 1500 150 3000

7 30 40 150 100 500 140 800 200 1200 300 2000

8 30 10 15 50 50 150 200 400 600

9 30 40 30 100 100 140 160 200 240 300 400

10 30 40 30 100 100 140 160 200 240

11 30 30 60 80 200 200 700 350 1500

12 30 30 40 50 80 75 150 120 300 180 500 250 800

13 50 20 20 30 35 40 50 70 120 120 225 200 400

14 50 120 100 160 1500 300 3500

15 50 50 100 100 250 160 450

16 50 40 100 80 200 140 400

17 75 50 25 120 80 200 150 350 320

18 75 20 10 50 35 100 100 150 180 250 400 400 800

19 100 100 500 200 1200 300 2100

20 100 60 100 140 300 200 500

In 1999, a tabu search heuristic is presented for FSMVRP by Gendreau et al. At first

step of the Tabu Search which is constructing the initial solution, a generalized insertion

heuristic (GENIUS developed by Gendreau et. al., 1992 for traveling salesman problem)

is applied. After initialization, main search goes on with neighboring and evaluating the

neighbors in terms of the objective function. In this paper, the objective function is the

weighted sum of total cost and vehicle overcapacity. In other words, the objective is

penalized with a percentage of vehicle overcapacity. By this way, infeasible solutions

25

are allowed during main search diversifying the search into new areas. After termination

the best solutions achieved goes through post optimization. In this procedure, the

solutions are tried to be improved by exchanging two vertices or changing the fleet. The

whole procedure is applied to the 12 test problems from Golden et. al.(1984) and it is

compared with other approaches offered for FSMVRP.

Other studies which proposed competitive solution approaches for the 12 of the test

problems published in Golden et. al.(1984) are Taillard (1999), Wassan and Osman

(2002) and Choi and Tcha (2007).

Taillard (1999) proposed a heuristic column generation approach for FSMVRP. The

column generation procedure works iteratively generating columns by tabu search at

each iteration. Wassan and Osman (2002) developed new variants of tabu search

metaheuristic. These variants use a mix of different components of tabu search,

including reactive tabu search, variable neighborhoods and special data memory

structures. Choi and Tcha (2007) also proposed a column generation technique for

FSMVRP. The authors developed a tight integer programming model and solved its

linear relaxation by column generation technique. Then with the tight lower bounds

achieved, they employed branch and bound procedure to obtain an integer solution.

These two studies provided some of the new best known solutions to the 12 test

problems. The best known solutions to the 12 test instances published in Golden et. al.

(1984) are given Table 2.2. The studies who achieved these best known solutions are

referred in the table as: Taillard (1999) (T); Gendreau et. al.(1999) (GLMT); Wassan

and Osman (2002) (WO); Choi and Tcha (2007) (CT).

26

Table 2.2 Best known solutions to the 12 instances published in Golden et. al. (1984)

Problem No Number of Nodes Solution Cost Authors

3 20 961,03 T; GLMT; WO; CT

4 20 6437,33 T; GLMT; WO; CT

5 20 1007,05 GLMT; WO; CT

6 20 6516,47 T; GLMT; WO; CT

13 50 2406,36 CT

14 50 9119,03 T; GLMT; CT

15 50 2586,37 T; GLMT; WO; CT

16 50 2720,43 CT

17 75 1744,83 CT

18 75 2371,49 CT

19 100 8659,74 WO

20 100 4039,49 CT

Salhi and Sari proposed a multi-level composite heuristic for FSMVRP. Their study

considered multiple depots (1997). The heuristic simultaneously allocates customers to

depots and determines the best fleet composition for the delivery routes. It is tested on

benchmark problems where up to 360 customers and five vehicle types exist. FSMVRP

is also addressed by Ochi et al. (1998). The researchers used parallel GA together with

scatter search to solve the problem.

Liu and Shen (1999) presented a route construction method for FSMVRP based on

several different insertion heuristics. The case also handles time window constraints.

The methods are tested on 100 customer problems in the literature and compared within

each other.

Recently more sophisticated methods are started to be applied. For example Lima et.

al. (2004) proposed a GA hybridized with GENIUS (Gendreau et. al., 1992) and λ-

interchange mechanism for FSMVRP.

27

As stated before, the other version of HVRP is where there is a heterogeneous fixed

fleet of vehicles. There exist fewer studies in the literature for HFVRP compared to

FSMVRP. One of these is Tarantilis and Kironoudis’s study on distribution of perishable

foods (2001). They proposed a metaheuristic algorithm in order to solve the VRP of a

diary in Athens distributing fresh milk to 299 customers daily. The diary had three

different types of vehicles. The objective of the study was to determine the set of

customers to be served by each vehicle and the corresponding routes to minimize the

total distance traveled. The authors proposed an adaptive threshold accepting algorithm.

The difference of the presented algorithm to classical threshold accepting algorithms is

that the threshold can be both lowered or raised from one iteration to the other. The

developed algorithm is proved to be quite efficient in the paper.

Burchett and Campion applied tabu search to HFVRP in grocery supply industry

(2002). Their algorithm is a combination of several other algorithms in the literature.

Initial solutions are found by Salhi and Rand’s saving values heuristic (1987).

Neighborhood scheme is based on Wassan and Osman’s algorithm (2002). The problem

assumes stochastic customer demands. It is solved for different delivery periods and the

results are compared.

Moghaddam et. al. (2006) proposed a linear integer-programming model for the

HFVRP. They solved the model using SA hybridized with nearest neighborhood

heuristic.

2.3 Split Delivery Vehicle Routing Problem

SDVRP is a relaxation of the classical VRP. In CVRP a customer can only be visited

by one vehicle (as long as the demand does not exceed the capacity of the vehicle). On

the other hand, in SDVRP the deliveries of a customer can be split between two or more

vehicles. However, including this assumption does not make the problem easier to be

solved. It is still np-hard.

28

There are very few studies concerning SDVRP in the literature. These studies

consider VRP where all vehicles are identical and allow split delivery assumption. This

problem has been first introduced by Dror and Trudeau (1989). The authors have

showed the savings that can be achieved by allowing split deliveries (Archetti et al.,

2006). Dror et al. (1994) have formulated the problem as an integer linear program.

Then branch and bound algorithm is applied with the relaxation of constraints. The

authors developed seven main test instances. They applied the proposed procedure on

these test problems and their derivations. Archetti et. al. (2006) has proposed three

alternative tabu search algorithms for SDVRP and also tested them on the Dror and

Trudeau problems. The comparison of Archetti (2006) and Dror and Trudeau (1994)

results for these seven problems are given in Table 2.3. The solutions in bold are the best

known solutions published for these problems.

Table 2.3 Comparison of Archetti (2006) and Dror and Trudeau (1994) results. Solutions in bold are best

known solutions in the literature.

 Archetti et. al. (In Press) Dror and

Trudeau (1994) SPLITABU SPLITABU-DT FAST-SPLITABU

Problem n z z z z

1 50 5866899 5300570 5335535 5335535

2 75 8948212 8516729 8495410 8495410

3 100 9022361 8461844 8356191 8357361

4 150 11307108 10621988 10698369 10883100

5 199 13757272 13678177 13428515 13463934

6 120 10842373 10847331 10560148 10560148

7 100 9517122 8226045 8253184 8253184

Frizzel and Giffin (1995) developed three heuristics for SDVRP and tested these on

some benchmark problems. Sierksma and Tijssen (1998) have constructed a column

generation technique for a real life application of SDVRP (Belenguer et al., 2000).

Belenguer et al. (2000) developed an efficient lower bound for SDVRP where the

quantities delivered to customers are integer numbers.

29

SDVRP is formulated as a dynamic program (DP) with infinite number of states and

solution spaces by Lee et al. (2002). Ho and Haugland (2004) considered SDVRP with

time windows. They presented a tabu search algorithm to solve the problem and

analyzed the performance of the approach on problems with 100 distribution points.

More recently, Archetti et al. (2008) have studied and identified the distribution

environments in which allowing split deliveries are more beneficial. Moghaddam et al.

(2007) also studied split deliveries and developed a simulated annealing approach.

2.4 VRP With Time Windows

VRPTW has started to gain more attention since the beginning of 90s. This is mainly

due to the fast growth in service industry. To gain a competitive in service industry,

distributors should make their planning according to customer requirements including

their time window demands. This fact has led researchers to find more efficient solutions

to VRPTW.

Many of the studies in this area is carried out to develop a new solution procedure

first, and then its performance is tested on the benchmark problems in the literature.

Benchmark problems which have been most commonly chosen to be evaluated belong to

Solomon (1987). Solomon introduced 56 problems which have 100 nodes. Then 25 node

and 50 node instances are derived from these 56 problems which makes up totally 168

test instances. These problems are split into three sets. The first one is made up of

clustered problems, which is named as C series. The nodes in the second set, which is

called R series, are spread on the X-Y coordinates evenly. The third set called RC series

is made up of an intersection of the first two (Cordeau et. al., 2002).

In the literature, there exits both exact and heuristic approaches for these problems.

Among the exact approaches, Kohl et. al. (1999) solved 70 of the 87 short horizon

problems to optimality. Four additional problems were solved by Larsen (1999). Also

six more are solved by Cook and Rich (1999) and Kallehauge et. al., (2000) (Cordeau et.

al., 2002).

30

When the 81 problems in the long horizon set are considered, Larsen (1999) was the

first to provide exact solutions to problems in this set. He solved 17 of the problems.

Cook and Rich (1999) was able to provide solution to 13 other problems and Kallehauge

et. al. (2000) was able to solve 16 more of them to optimality (Cordeau et. al., 2002).

The solutions achieved for C series, R series and RC series are given in Tables 2.4,

2.5 and 2.6 respectively. The authors in the tables are denoted as follows: Kohl et. al.

(1999) (KDMSS); Larse (1999) (L); Kallehauge et. al. (2000) (KLM); Cook and Rich

(1999) (CR). However, all the solutions obtained in this table are found by multiplying

the distances by ten and truncating the result. Hence some routes may not satisfy all time

window constraints when real distances are used. Therefore these solutions are optimal

solutions with approximate distances or they can be called as approximate optimal

solutions.

More recently, Kallehauge et. al.(2006) developed another exact approach. In this

study, the authors have considered the Langrangian relaxation and handled it with a

stabilized cutting plane algorithm. The algorithm is embedded in a branch and bound

search and strong valid inequalities are introduced. By this procedure the authors were

able to solve two benchmark problems to optimality which are the largest problems to be

solved up to date.

Another exact approach in this area is constraint programming. Aminu and Eglese

(2006) have considered the Chinese postman problem with time windows. They have

transformed the problem into an equivalent VRPTW and developed a constraint

programming model. The results indicated that when the time windows are tight,

optimal solutions can be achieved. But as time windows grow wider, constraint

programming takes quite long time to find the optimal solution. A detailed research

about exact algorithms on VRPTW can be found in Kallehauge (2008).

31

Table 2.4 Optimal solutions on C series problems.

Problem No Solution Cost Authors Problem No Solution Cost Authors

C101-25 191,3 KDMSS C201-25 214,7 CR; L

C101-50 362,4 KDMSS C201-50 360,2 CR; L

C101-100 827,3 KDMSS C201-100 589,1 CR; KLM

C102-25 190,3 KDMSS C202-25 214,7 CR; L

C102-50 361,4 KDMSS C202-50 360,2 CR; KLM

C102-100 827,3 KDMSS C202-100 589,1 CR; KLM

C103-25 190,3 KDMSS C203-25 214,7 CR; L

C103-50 361,4 KDMSS C203-50 359,8 CR; KLM

C103-100 826,3 KDMSS C203-100 588,7 KLM

C104-25 186,9 KDMSS C204-25 213,1 CR; KLM

C104-50 358,0 KDMSS C204-50 350,1 KLM

C104-100 822,9 KDMSS C204-100 -

C105-25 191,3 KDMSS C205-25 214,7 CR; L

C105-50 362,4 KDMSS C205-50 359,8 CR; KLM

C105-100 827,3 KDMSS C205-100 586,4 CR; KLM

C106-25 191,3 KDMSS C206-25 214,7 CR; L

C106-50 362,4 KDMSS C206-50 359,8 CR; KLM

C106-100 827,3 KDMSS C206-100 586 CR; KLM

C107-25 191,3 KDMSS C207-25 214,5 CR; L

C107-50 362,4 KDMSS C207-50 359,6 CR; KLM

C107-100 827,3 KDMSS C207-100 585,8 CR; KLM

C108-25 191,3 KDMSS C208-25 214,5 CR; L

C108-50 362,4 KDMSS C208-50 350,5 CR; KLM

C108-100 827,3 KDMSS C208-100 585,8 KLM

C109-25 191,3 KDMSS

C109-50 362,4 KDMSS

C109-100 827,3 KDMSS

32

Table 2.5 Optimal solutions on R series problems.

Problem No Solution Cost Authors Problem No Solution Cost Authors

R101-25 617,1 KDMSS R201-25 463,3 CR; KLM
R101-50 1044,0 KDMSS R201-50 791,9 CR; KLM
R101-100 1637,7 KDMSS R201-100 1143,2 KLM
R102-25 547,1 KDMSS R202-25 410,5 CR; KLM
R102-50 909,0 KDMSS R202-50 698,5 CR; KLM
R102-100 1466,6 KDMSS R202-100
R103-25 454,6 KDMSS R203-25 391,4 CR; KLM
R103-50 772,9 KDMSS R203-50
R103-100 1208,7 CR; L R203-100
R104-25 416,9 KDMSS R204-25
R104-50 625,4 KDMSS R204-50
R104-100 R204-100
R105-25 530,5 KDMSS R205-25 393 CR; KLM
R105-50 899,3 KDMSS R205-50 690,9 KLM
R105-100 1355,3 KDMSS R205-100
R106-25 465,4 KDMSS R206-25 374,4 KLM
R106-50 793,0 KDMSS R206-50
R106-100 1234,6 CR; KLM R206-100
R107-25 424,3 KDMSS R207-25 361,6 KLM
R107-50 711,1 KDMSS R207-50
R107-100 1064,6 CR; KLM R207-100
R108-25 397,3 KDMSS R208-25 330,9 CR; KLM
R108-50 617,7 CR; KLM R208-50
R108-100 R208-100
R109-25 441,3 KDMSS R209-25 370,7 KLM
R109-50 786,8 KDMSS R209-50
R109-100 1146,9 CR; KLM R209-100
R110-25 444,1 KDMSS R210-25 404,6
R110-50 697,0 KDMSS R210-50
R110-100 1068,0 CR; KLM R210-100
R111-25 428,8 KDMSS R211-25 350,9
R111-50 707,2 CR; KLM R211-50
R111-100 1048,7 CR; KLM R211-100
R112-25 393,0 KDMSS
R112-50 630,2 CR; KLM
R112-100

33

Table 2.6 Optimal solutions on RC series problems

Problem No Solution Cost Authors Problem No Solution Cost Authors

RC101-25 461,1 KDMSS RC201-25 360,2 CR; L
RC101-50 944,0 KDMSS RC201-50 684,8 L; KLM
RC101-100 1619,8 KDMSS RC201-100 1261,8 KLM
RC102-25 351,8 KDMSS RC202-25 338,0 CR; KLM
RC102-50 822,5 KDMSS RC202-50 -
RC102-100 1457,4 CR; KLM RC202-100 -
RC103-25 332,8 KDMSS RC203-25 356,4 KLM
RC103-50 710,9 KDMSS RC203-50 -
RC103-100 1258,0 CR; KLM RC203-100 -
RC104-25 306,6 KDMSS RC204-25 -
RC104-50 545,8 KDMSS RC204-50 -
RC104-100 - RC204-100 -
RC105-25 411,3 KDMSS RC205-25 338,0 L; KLM
RC105-50 855,3 KDMSS RC205-50 631,0 KLM
RC105-100 1513,7 KDMSS RC205-100 -
RC106-25 345,5 KDMSS RC206-25 324,0 KLM
RC106-50 723,2 KDMSS RC206-50 -
RC106-100 - RC206-100 -
RC107-25 298,3 KDMSS RC207-25 298,3 KLM
RC107-50 642,7 KDMSS RC207-50 -
RC107-100 - RC207-100 -
RC108-25 294,5 KDMSS RC208-25 -
RC108-50 598,1 KDMSS RC208-50 -
RC108-100 - RC208-100 -

Other than exact approaches, some authors were able to achieve good near optimal

solutions in short competition times by use of metaheuristics. Two of these studies

belong to Rochat and Taillard (1995) and Taillard et. al. (1997). The heuristics of

Homberger and Gehring (1999) were also competitive. Kilby et al. (1998) and Chiang

and Russel (1997) generated particularly good results for a few problems with long

distances. In addition, Cordeau et. al. (2000) produced some best solutions for a number

of instances (Cordeau et. al., 2002).

The best solutions achieved by heuristic approaches can be seen in Table 2.7. The

studies are referred in the Table as follows: Rochat and Taillard (1995) (RT); Taillard et.

34

al. (1997) (TBGGP); Homberger and Gehring (1999) (HG); Kilby et al. (1998) (KPS);

Chiang and Russel (1997) (CRu); Cordeau et. al. (2000) (CLM) (Cordeau et. al., 2002).

Table 2.7 Best known solutions achieved by heuristic approaches.

Short Horizon Problems Long Horizon Problems

Problem No Solution Cost Authors Problem No Solution Cost Authors

R101 1650,8 RT R201 1252,37 HG
R102 1486,12 RT R202 1197,66 CLM
R103 1292,85 HG R203 942,64 HG
R104 982,01 RT R204 849,62 CLM
R105 1377,11 RT R205 998,72 KPS
R106 1252,03 RT R206 912,97 RT
R107 1113,69 CLM R207 914,39 CRu
R108 964,38 CLM R208 731,23 HG
R109 1194,73 HG R209 910,55 HG
R110 1125,04 CLM R210 955,39 HG
R111 1099,46 HG R211 910,09 HG
R112 1003,73 HG
C101 828,9 RT C201 591,6 RT
C102 828,9 RT C202 591,6 RT
C103 828,1 RT C203 591,2 RT
C104 824,8 RT C204 590,6 RT
C105 828,9 RT C205 588,9 RT
C106 828,9 RT C206 588,5 RT
C107 828,9 RT C207 588,3 RT
C108 828,9 RT C208 588,3 RT
C109 828,9 RT
RC101 1696,94 TBGGP RC201 1406,94 CLM
RC102 1554,75 TBGGP RC202 1389,57 HG
RC103 1262,02 RT RC203 1060,45 HG
RC104 1135,48 CLM RC204 799,12 HG
RC105 1637,15 HG RC205 1302,42 HG
RC106 1427,13 CLM RC206 1156,26 KPS
RC107 1230,54 TBGGP RC207 1062,05 CLM
RC108 1139,82 TBGGP RC208 832,36 CLM

35

As artificial intelligence techniques became popular, many researchers have applied

them to VRPTW. One of these studies is Garcia et. al.(1994). The authors have applied

TS heuristic in parallel, which runs several neighborhoods of a solution on parallel

processors at the same time. Badeau et. al.(1997) have proposed another parallel TS

algorithm for VRPTW. They have shown that parallel application does not decrease

solution quality while increasing solution speed.

In 1999, Liu and Shen developed a two stage metaheuristic algorithm. They have

handled neighborhood construction in two stages. Valuable information is extracted

from first stage of parallel neighborhood construction and used to build higher quality

neighborhoods in the second stage. Tests of the algorithm have brought out competitive

results.

Tan et. al. (2001) have applied several artificial intelligence techniques to the 56 test

problems of Solomon. Among these techniques appear some well known local search

methods, a hybrid heuristic of simulated annealing and Tabu Search (developed by the

authors) and genetic algorithms. The results yielded competitive solutions for 23 of the

test problems.

Lau et al. (2003) have studied VRPTW where exists a limited number of vehicles.

They also allowed time windows to be relaxed by introducing a penalty cost for lateness.

The authors have employed TS for this problem and tested it on the benchmark

problems in the literature.

Another study of VRPTW belongs to Berger and Barkaoui (2004). They have

proposed a parallel hybrid genetic algorithm for the problem. The algorithm evolves two

populations simultaneously where one of them aims to minimize total distance traveled

and the other minimizes time window violations to get a feasible solution.

Computational results on benchmark instances showed that the proposed algorithm

provides some new best known solutions.

36

Braysy et. al.(2004) developed an approach based on multi start local search (MSLS)

and several new improvement heuristics. The authors have also introduced a new speed

up technique and post optimized the solutions found by MSLS. They tested the approach

on quite a large problem space.

In 2005, Zhong and Cole included backhauls into VRPTW. They considered the two

cases where all linehauls are performed before backhauls and where linehauls and

backhauls are performed simultaneously. The proposed approach first constructs an

initial feasible solution then improves it through guided local search. Mester and Braysy

(2005) have also employed guided local search. But they hybridized guided local search

with evolution strategies in an iterative two stage procedure. The authors carried out a

local search in the first stage and they formed the neighborhood by evolution strategies

in the second stage. The algorithm is tested both on CVRP and VRPTW.

Homberger and Gehring (2005) have proposed a two phase hybrid metaheuristic. In

the first phase, they try to minimize number of vehicles and in the second phase, the

objective is to minimize total distance traveled by TS. In the study of Bouthillier and

Crainic (2005), different evolutionary algorithms and TS works in parallel and the

solutions achieved are collected in a solution warehouse. The exchanges are performed

in this warehouse then parallel processes rework independently. By this procedure the

authors were able to achieve the better solution of either the evolutionary algorithms or

TS.

Russell and Chiang (2006) have used scatter search framework for VRPTW. Scatter

search is a metaheuristic approach that combines solutions from a reference set to

achieve improved solutions. In this study, the authors have developed a robust method

which benefits from a set covering model to combine vehicle routes. Then a reactive TS

and TS with a recovering feature is used to improve solutions. Alvarenga et al. (2007)

have proposed a hybrid heuristic by employing GA and set partitioning together.

37

Hashimoto et al. (2006) allow time windows and traveling time constraints to be

flexible by treating both of them as cost functions. Then the authors determine the routes

of vehicles by local search. The latter problem is to determine the optimal start times of

services. Finally, this problem is addressed by dynamic programming in the paper.

More recently, researchers started to incorporate other real life assumptions into

VRPTW. One of these studies belong to Bent and Hentenryck (2006). The authors have

handled the pick up and delivery problem with time windows. The paper proposes a

hybrid two stage algorithm in which simulated annealing is used in the first stage to

decrease number of routes and large neighborhood search is employed to decrease total

traveling cost in the second stage. Fabri and Recht (2006) has also proposed an efficient

heuristic for the pickup and delivery problem with time windows. The pick up and

delivery problem with time windows has also been addressed by Doerner et. al. (2008).

The authors have also incorporated the assumption that time windows are dependent on

pick up times. The paper proposes several constructive heuristics and a branch and

bound algorithm applied for the Austrian Red Cross logistics problem.

Azi et. al. (2007) also handled VRPTW but where a single vehicle performs several

tours to serve all customers. The paper proposes a shortest path algorithm with resource

constraints. Kim et. al. (2006) considers a problem similar to Azi et. al.(2007). They

handle the waste collection problem with time windows where each vehicle performs

more than one tour. A capacitated clustering based waste collection algorithm is

developed for the solution where the aim is to minimize total traveling time, number of

vehicles as well as balancing workload.

Hsu et. al. (2007) inserted randomness of food delivery process into VRPTW and

studied the stochastic version. The authors considered not only the transportation and

fixed costs but also the inventory and penalty costs of violating time windows. In

addition to these studies, Dondo and Cerda (2007) studied the VRPTW with

heterogeneous fleet and multiple depots. In the paper, a three phase heuristic is

38

introduced where the problem is split into clusters in the first phase. Vehicles are

assigned to clusters by mixed integer linear programming. Finally, vehicle arrival times

to customer nodes are scheduled by also mixed integer linear programming.

2.5 Real Life Applications of VRP

As stated before, most of the studies listed in CVRP, HVRP, SDVRP and VRPTW

sections are based on theory and test problems in the literature. In other words they

appear in Region I of Figure 2.1. However, there also exist many case studies in the

literature, which deal with real life applications. All these applications contain

characteristics of the basic VRP (such as vehicle numbers and capacities, demand

satisfaction etc.). But each of them may have different side constraints (such as time

windows, periodic deliveries, multi depots, split deliveries etc.). That is, they appear in

Region II of Figure 2.1. Some of the case studies and their application areas are given in

Table 2.8 below.

Table 2.8 Some Vehicle Routing Applications

Application Location Researhers Year

Newspaper distribution Australia Holt and Watts

(Golden et. al., 2002)
1988

Food distribution Alberta Canada Erkut and McLean

(Golden et. al., 2002)
1992

Waste collection Hanoi Vietnam Tung and Pinnoi 2000

Daily milk distribution Athens Greece Tarantilis and Kiranoudis 2001

Collection of recycling papers Almada Portugal Baptista et. al. 2002

Fresh meat distribution Athens Greece Tarantilis and Kiranoudis 2002

Network planning of parcel services Austria Wasner and Zapfel 2004

Routing of urban bus lines Sao Paulo Brazil Rodrigues et. al. 2006

Mail distribution Australia Hollis et. al. 2005
Fresh goods distribution Izmir, Turkey Mizrak Ozfirat, Ozkarahan 2007

39

CHAPTER THREE

OVERVIEW OF THE TOOLS EMPLOYED IN THE PROPOSED APPROACH

The main challenge in all types of vehicle routing problems (VRP) lies in the subtour

elimination constraints. If subtours are not considered, the problem can be solved

through mathematical modeling to optimum. However, insertion of subtour constraints

into a mathematical model inflates the model very much and makes the problem

np-hard.

Integer programming (IP) models cannot handle these constraints and the model does

not start the solution procedure at all. We cannot achieve even an initial solution since IP

offers us only the optimum when possible. However, by constraint programming (CP)

not only the optimum solution but all solutions (or at least one solution) satisfying the

constraints can be achieved. So, using CP instead of IP may provide more alternative

ways to find a good or optimum solution to VRP. Therefore, in this dissertation study

CP is employed to find the routes of vehicles.

Application of CP in VRP problems is very limited. One of the earlier studies in this

area belong to Shaw (1998). The author proposed a local search method called large

neighborhood search. This method explores a large neighborhood by removing some of

the edges from the graph and reinserting these using a constraint based tree search. An

extension of large neighborhood search is presented by Pisinger and Ropke (2007) by

adding an adaptive layer to the method. The new algorithm called adaptive large

neighborhood search is employed to solve several different versions of VRP. Aminu and

Eglese (2006) have considered the Chinese postman problem with time windows. They

have transformed the problem into an equivalent VRPTW and developed a constraint

programming model. The results indicated that when the time windows are tight,

optimal solutions can be achieved.

40

To the best of our knowledge, these studies are the only ones, which employ

constraint programming in VRP. The results found in all three studies are encouraging to

apply constraint programming technology to VRP.

In HVRP, there is one more point that makes the problem even more challenging.

That is as the vehicles with different capacities and fixed costs are included in the

problem, a tradeoff between total fixed costs and total traveling costs arises.

That is, as the capacity of a vehicle increases, the fixed cost also increases. If we try

to minimize total fixed cost in the assignment of vehicles to subproblems, smaller

vehicles in capacity would be selected. Hence the number of vehicles would increase

(total number of tours visiting the depot increases) and total distance traveled would

increase accordingly.

On the other hand, if the objective function is minimizing total number of vehicles

(instead of fixed cost) in the vehicle assignment, then the algorithm would tend to select

higher capacity but more expensive vehicles. In this case total traveling cost would

decrease but total fixed cost would increase. The tradeoff between fixed cost and

traveling cost can be seen in Figure 3.1.

When there exist multiple objectives in a problem and the degree of fulfillment of

these objectives is vague, fuzzy mathematical programming may be a useful tool to

handle the problem (Zimmerman, 1978). Therefore in the proposed approach, interactive

fuzzy goal programming (IFGP) is employed to assign vehicles to nodes.

41

Figure 3.1 Tradeoff between total fixed cost and total traveling cost

Very few studies exist in literature, which consider fuzzy methods for VRPs. These

studies can be grouped into two. In the first group, there exists a fuzzy component in the

problem. Therefore, fuzzy methods are employed for the solution. For example,

Teodorovic and Pavkovic (1996) considered CVRP where the demand at nodes are

fuzzy. They proposed a heuristic based on the Sweep algorithm and fuzzy logic. Another

study in this group belongs to Zheng and Liu (2006). The authors handled VRPTW with

fuzzy traveling times and developed a fuzzy optimization model for the problem.

In the second group of fuzzy studies, authors employ fuzzy clustering in order to

cluster the customer nodes and achieve solvable size VRPs. Some of the studies in this

group are Hu and Sheu (2003), Sheu (2007) and Saez et. al. (2008). Hu and Sheu (2003)

develops a fuzzy clustering method based on customer demand rather than geographical

locations. Sheu (2007) employs the same approach and in addition uses multiobjective

programming to solve the clustered problems. Saez et. al (2008), on the other hand,

develops a fuzzy clustering method and employs it to solve the dynamic pick up and

delivery problem. As can be seen from these studies, there is a lot more to explore in the

use of fuzzy methods for VRPs.

In this chapter, CP and IFGP is explained respectively so that one can understand the

advantages of these tools and how they will be applied in the proposed study in this

dissertation.

42

3.1 Constraint Programming

In the last few years, CP has attracted high attention among experts from many areas

because of its potential for solving hard real life problems. Not only it is based on a

strong theoretical foundation but it is attracting widespread commercial interest as well,

in particular, in areas of modeling heterogeneous optimization and satisfaction problems.

Constraints arise in most areas of human endeavor. They formalize the dependencies

in physical worlds and their mathematical abstractions naturally and transparently. A

constraint is simply a logical relation among several unknowns (or variables), each

taking a value in a given domain. The constraint thus restricts the possible values that

variables can take, it represents partial information about the variables of interest.

Constraints can also be heterogeneous, so they can bind unknowns from different

domains, for example the length (number) with the word (string). Constraints naturally

have several properties:

• Constraints may specify partial information, i.e., the constraint need not

uniquely specify the values of its variables, (constraint X>2 does not specify the

exact value of variable X, so X can be equal to 3, 4, 5 etc.)

• Constraints are heterogeneous, i.e., they can specify the relation between

variables with different domains (for example X = length(Y))

• Constraints are non-directional, typically a constraint on two variables X, Y can

be used to infer a constraint on X given a constraint on Y and vice versa,

(X=Y+2 can be used to compute the variable X using X:=Y+2 as well as the

variable Y using Y:=X-2)

• Constraints are declarative, i.e., they specify what relationship must hold

without specifying a computational procedure to enforce that relationship,

• Constraints are additive, i.e., the order of imposition of constraints does not

matter, all that matters at the end is that the union of constraints.

• Constraints are rarely independent, typically constraints in the constraint store

share variables.

43

• Constraints can be stated either implicitly, e.g., an arithmetic formula, or

explicitly, where each constraint is expressed as a set of values that satisfy the

constraint. An example of an implicitly stated constraint on the integer variables

x and y is x < y. An example of an explicitly stated constraint on the integer

variables x and y with domains {1, 2, 3} and {1, 2, 3, 4} is the set {(1, 1), (2, 3),

(3, 4)}.

CP is the study of computational systems based on constraints. The idea of constraint

programming is to solve problems by stating constraints (requirements) about the

problem area and, consequently, finding solution satisfying all the constraints.

CP aims to solve combinatorial optimization problems. Often these

combinatorial optimization problems are solved by defining them as one or

several instances of the Constraint Satisfaction Problem (CSP). An instance of a CSP

is described by a set of variables, a set of possible values for each variable, and a set of

constraints between the variables. The set of possible values of a variable is called the

variable's domain. A constraint between variables expresses which combinations of

values for the variables are allowed. The question to be answered for an instance

of the CSP is whether there exists an assignment of values to variables, such that

all constraints are satisfied. Such an assignment is called a solution of the CSP.

In short, a CSP consists of:

• a set of variables X={x1,...,xn},

• for each variable xi, a finite set Di of possible values (its domain),

• and a set of constraints restricting the values that the variables can

simultaneously take.

A solution to a CSP is an assignment of a value from its domain to every variable, in

such a way that every constraint is satisfied. The objective may be to find:

• just one solution, with no preference as to which one,

44

• all solutions,

• an optimal, or at least a good solution, given some objective function defined in

terms of some or all of the variables; in this case the problem is called Constraint

Optimization Problem (COP).

3.1.1 Basic Problems of CSP

Solutions to a CSP can be found by searching systematically through the possible

assignments of values to variable. Search methods divide into two broad classes, those

that traverse the space of partial solutions (or partial value assignments), and those that

explore the space of complete value assignments (to all variables) stochastically.

Some of the basic problems of CSP are the graph (map) colouring, N-queens, and

crypto-arithmetic problems. These problems reflect the typical characteristics of a CSP

so that one can understand the logic of CP.

• N-Queens: The N-queens problem is a well know puzzle among computer

scientists. Given any integer N, the problem is to place N queens on squares in an N*N

chessboard satisfying the constraint that no two queens threaten each other (a queen

threatens any other queens on the same row, column and diagonal).

One possible representation of this problem is by using n decision variables as

x1,..,xn, each with domain [1..n]. The idea is that xi denotes the row number that the

queen on column i stands. The appropriate constraints to state that no two queens

threaten each other are:

� xi≠ xj (no two queens in the same row);

� xi - xj ≠ i-j (no two queens in each South-West – North-East diagonal);

� xi - xj ≠ j-i (no two queens in each North-West – South-East diagonal);

where iЄ[1..n-1] and jЄ[i+1..n]. (Apt, 2003).

45

• Graph (map) colouring: Another problem, which is often used to demonstrate

potential areas of CP and to explain concepts and algorithms for the CSP is the colouring

problem. Given a graph (a map) and a number of colours, the problem is to assign

colours to those nodes (areas in the map) satisfying the constraint that no adjacent nodes

(areas) have the same colour assigned to them.

This problem is modeled naturally by labeling each node of the graph with a variable

(with the domain corresponding to the set of colours) and introducing the non-equality

constraint between each two variables labeling adjacent nodes. An example of this

problem can be seen in Figure 3.2.

Figure 3.2 (a)A variable is associated with each of the A, B, C and D regions.

(b)The lines connecting adjacent nodes are inequality constraints.

• Crypto-arithmetic: Given a mathematical expression where letters are used

instead of numbers, the problem is to assign digits to those letters satisfying the

constraint that different letters should have different digits assigned and the

mathematical formulae holds. Here is a typical example of the crypto-arithmetic

problem:

SEND + MORE = MONEY (3.1)

Here, the problem can be modeled by identifying each letter with a variable. Since S

and M are leading digits, their domain is [1..9]. Domain of all other variables is [0..9].

The constraints of the problem are:

46

},,,,,,,{},,,,,,,,{,
10100100010000
101001000
101001000

YROMDNESyYROMDNESxyx
YENOM
EROM
DNES

∈∈≠
++++=
++++
+++

(3.2)

(Apt, 2003).

3.1.2 Concepts to Solve CSP

In general, the tasks posed in the CSP paradigm are np-hard. Some of these tasks are

listed in the following:

• Consistency techniques: In CP, various consistency techniques were introduced

to prune the search space. The consistency techniques are node-consistency,

arc-consistency and path consistency.

• Constraint propagation: The process of actively using constraints to come to

certain deductions is called constraint propagation.

• Systematic search algorithm: A CSP can be solved using generate-and-test

paradigm (GT) that systematically generates each possible value assignment and

then it tests to see if it satisfies all the constraints. A more efficient method uses

the backtracking paradigm (BT) that is the most common algorithm for

performing systematic search. Backtracking incrementally attempts to extend a

partial solution toward a complete solution, by repeatedly choosing a value for

another variable.

• Constraint optimization: A typical real-life problem is not only about finding a

solution satisfying all the constraints. Frequently, some optimization is involved

and the customers are asking for good solutions. The optimization nature of the

problem can be integrated by an objective function defined in terms of problem

variables. Many constraint satisfaction algorithms can be extended to solve

optimization problems.

47

3.1.2.1 Consistency Techniques

The first approach to solving CSP is based on removing inconsistent values from

variables’ domains until the solution is achieved. These methods are called consistency

techniques and they were introduced first in the scene labeling problem (Bartak, 1999).

Mainly there are three types of consistency techniques. Node consistency is the first one

which deals with unary constraints. Arc consistency deals with binary constraints and

finally path consistency deals with more than one constraint at a time (Apt, 2003).

• Node Consistency: Node consistency is the most common notion of consistency.

It deals with unary constraints.

Definition: A CSP is called node consistent if for every variable x every unary

constraint on x coincides with the domain of x.

Example: Consider a CSP of the form

{ }NxNxxxC nn ∈∈≥≥ ,.....,;0,.....,0, 11 (3.3)

where C does not contain unary constraints and N denotes the set of natural numbers.

This CSP is node consistent since for each variable, its unary constraint is satisfied by all

the values in the variable’s domain.

Example: Consider a CSP of the form

{ }ZxNxNxxxC nnn ∈∈∈≥≥ − ,,.....,;0,.....,0, 111 (3.4)

where C does not contain unary constraints and Z denotes the set of all integers. This

CSP is not node consistent since for the variable xn, the constraint xn≥0 is not satisfied

by the negative integers in its domain.

• Arc Consistency: Arc consistency deals with binary constraints. Basically, it can

be said that a binary constraint is arc consistent if every value in each domain

48

participates in the solution. In addition, a CSP is said to be arc consistent if all its binary

constraints are arc consistent.

Definition 2: Given a constraint C over n variables x1,….., xn and a domain d(xi) for

each variable xi, C is said to be arc-consistent if and only if for any variable xi and any

value vi in d(xi), there exist values v1,…., vi-1, vi+1,…, vn in d(x1),…, d(xi-1), d(xi+1),…,

d(xn) such that C(v1,…., vn) holds.

Example: Consider the CSP which consists of only one constraint, x<y, where

domain of x, Dx=[5..10] and domain of y, Dy =[11..15]. This CSP is arc consistent since

for every value in domain of x, there exists a value in domain of y which satisfies the

constraint.

Example: Consider the same CSP which consists of only one constraint, x<y, where

domain of x, Dx=[5..10] and domain of y, Dy =[3..7]. This CSP is not arc consistent. For

instance, consider the value 8 in domain of x. In domain of y, there is no value b that

satisfies 8<b.

• Path consistency: The first two methods of inconsistency deal with constraints

on their own. However using only these two may be very time consuming. For example

consider the following CSP:

{ } { } { }{ }100000..1,100000..1,100000..1,,, ∈∈∈ zyxxzzyyx ppp (3.5)

If we are trying to prove that this CSP is inconsistent, we can use arc consistency.

First, the constraint, x<y is considered. Then the CSP becomes:

{ } { } { }{ }100000..1,100000..1,99999..1,,, ∈∈∈ zyxxzzyyx ppp (3.6)

Next, the constraint, z<x is considered. Then the CSP becomes:

{ } { } { }{ }99998..1,100000..1,99999..1,,, ∈∈∈ zyxxzzyyx ppp (3.7)

49

Similarly, the process will go on iteratively until the CSP fails. But, to understand

that this CSP is inconsistent would take a huge number of steps by arc consistency.

Therefore, path consistency is introduced which deals with two constraints at a time. In

order to understand path consistency, three notions will be introduced first.

Definition:

• A CSP is called normalized if for each pair x, y of its variables at most one

constraint on x and y exists in the CSP.

Given a normalized CSP and a pair x, y of its variables, Cx,y denotes, the

constraint on x and y if it exists. Otherwise, it represents the relation on x and y

that equals the Cartesian product of the domains of the variables x and y.

• A CSP is called standardized if for each pair x, y of its variables, a unique

constraint on x and y exists in the CSP.

• A CSP is called regular if for each sequence X of its variables, a unique

constraint on X exists in the CSP. CX denotes the unique constraint on X.

Definition: A normalized CSP is path consistent if for each subset {x, y, z} of its

variables,

zyyxzx CCC ,,, ×⊆ (3.8)

holds.

In other words, a normalized CSP is path consistent if for each subset {x, y, z} of its

variables the following holds:

If (a, c) Є Cx,z , then there exists b such that (a, b) Є Cx,y and (b,c) Є Cy,z.

Example: Consider the following normalized CSP,

[] [] []{ }10..6,5..1,4..0,,, ∈∈∈ zyxzxzyyx ppp (3.9)

50

The graphical representation of the CSP can be seen in Figure 3.3.

Figure 3.3 A path consistent CSP.

This CSP is path consistent since the following three relations hold:

[] []{ }
[] []{ }
[] []{ }10..6,5..1,),(

10..6,4..0,),(

5..1,4..0,),(

,

,

,

∈∈=

∈∈=

∈∈=

cbcbcbC

cacacaC

bababaC

zy

zx

yx

p

p

p

(3.10)

Example: Consider now the following normalized CSP,

[] [] []{ }10..5,5..1,4..0,,, ∈∈∈ zyxzxzyyx ppp (3.11)

This CSP is not path consistent since the following relation does not hold:

[] []{ }10..5∈,5..1∈,),(, cbcbcbC zy p= (3.12)

All above mentioned consistency techniques are covered by a general notion of K-

consistency and strong K-consistency. A constraint graph is K-consistent if for every

system of values for K-1 variables satisfying all the constraints among these variables,

there exits a value for arbitrary Kth variable such that the constraints among all K

variables are satisfied. A constraint graph is strongly K-consistent if it is J-consistent for

all JЄK. It should be noted that

• node consistency is equivalent to strong 1-consistency,

• arc consistency is equivalent to strong 2-consistency,

• path consistency is equivalent to strong 3-consistency.

51

Clearly, if a constraint graph containing N nodes is strongly N-consistent, then a

solution to the CSP can be found without any search. But the worst case complexity of

the algorithm for obtaining N-consistency in an N-node constraint graph is exponential

(Bartak, 1999).

Algorithms exist for making a constraint graph strongly K-consistent for K>2 but in

practice they are rarely used because of efficiency issues. Although these algorithms

remove more inconsistent values than any arc-consistency algorithm they do not

eliminate the need for search in general.

3.1.2.2 Constraint Propagation

In general, CSPs can be solved by enumeration, but this approach is not practical

since the search space grows exponentially with the dimension of the problem. One of

the key ideas of CP is that constraints can be used actively to reduce the computational

effort needed to solve combinatorial problems. This process of actively using

constraints to come to certain deductions is called constraint propagation. Thus, CSPs

greatly benefit from the reduction of the search space performed by constraint

propagation.

Example: y > x

 x > 8 (3.13)

y < 9

x and y integers

Looking at the first two constraints, it can be said that the value of y is greater than 9.

Then by using the constraint y < 9, a contradiction is detected.

The algorithms that achieve local consistency (node consistency, arc consistency,

path consistency) are called constraint propagation algorithms. In the literature, several

other names exist for constraint propagation algorithms such as local propagation,

consistency enforcing, filtering and narrowing algorithms etc.

52

The propagation algorithm is part of the constraint itself, and it is triggered when

an event takes place due to a domain modification of one of the variables. The

modification in the domain can be one of the following:

• reduction of a domain bound,

• removal of a value,

• domain may be reduced to a single value (instantiation of a variable).

As soon as one constraint produces a modification on the domain of a variable X,

all constraints involving X are triggered to perform propagation according to the

change in the domain of X. During computation, constraints are propagated in order to

reduce variable domains by removing inconsistent values. If a domain becomes empty

then a failure is faced and backtracking takes place.

Example: One of the basic propagation algorithms is the one to achieve arc

consistency. Consider the variables x and y where Dx=[1..10] and Dy=[4..18] linked via

the constraint x>y. This constraint is not arc consistent. Values of 1, 2, 3 and 4 for

variable x do not have a support in y. Similarly, values 10 to 18 in y do not have a

support in x. Therefore these values should be removed from the domains in order to

make the constraint arc consistent. New Dx=[5..10] and new Dy=[4..9].

3.1.2.3 Systematic Search

In the result of constraint propagation process, three alternative situations may

arise:

• a domain becomes empty and failure occurs

• a solution is found

• some domains contain more than one value.

In the third case, constraint propagation is not complete. Consequently, one needs to

perform some kind of search to determine if the CSP instance at hand has a solution or

53

not. Most commonly, search is performed by means of a tree search algorithm. One

widely used way for the search is called labeling which means that one variable is

selected and one value in its domain is assigned to the variable itself. For example,

consider the selected variable is xi in problem P and its domain is Di which contains

the values v1i, …, vbi. By labeling, the problem is partitioned into b subproblems where

{ }
{ }

{ }biib

ii

ii

vxPSP

vxPSP
vxPSP

=∪=

=∪=
=∪=

......
22

11

(3.14)

The constraints {xi=vki} are called branching constraints (Representation of a search

tree can be seen in Figure 3.4). During the search, constraints are taken into account

and propagated in order to prune the search space as much as possible. A variable

instantiation triggers all constraints involving that variable and propagation process

starts again.

Figure 3.4 Representation of a search tree

The way the variables are selected and the order of its values greatly effects the

performance of the tree search. Some of the well known search strategies are listed

below (ILOG, 2003):

� Best First Search (BFS): This strategy maintains all unexplored nodes

and goes on exploring the one with the best lower bound. It is a good

strategy where there exist precise lower bounds.

54

� Slice Based Search (SBS): This is a strategy which assumes the existence

of a good heuristic. It searches the solution space, allowing different

decisions for the heuristic. The decisions allowed to change are called

discrepancies. It is effective in problems where strong heuristics exist.

� Depth Bounded Discrepancy Search (DDS): This strategy is similar to

SBS. In addition it favors the discrepancies which occur in the lower

levels of the search tree.

� Depth First Search (DFS): This search strategy progresses by expanding

the first child node of the search tree that appears and thus goes deeper

and deeper until a goal node is found, or until a node that has no children

appears. Then the search backtracks, returning to the most recent node it

had not finished exploring.

� Interleaved Depth First Search (IDFS): This strategy simulates a parallel

depth first search exploration.

The way search space is explored greatly influences the performance of the overall

constraint based computation. All CP languages have high level backgrounds allowing

to easily write search heuristics. This leads to the development of sophisticated

branching methods for many type of problems allowing to solve them effectively.

3.1.2.4 Constraint Optimization

The quality of solution is usually measured by the objective function. The goal is to

find such solution that satisfies all the constraints and minimize or maximize the

objective function respectively. Such problems are referred as Constraint Optimization

Problems (COP).

A Constraint Optimization Problem (COP) consists of a standard CSP and an

optimization function that assigns every solution to a numerical value.

55

The most widely used algorithm for finding optimal solutions is Branch and Bound

(B&B) and it can be applied to COP as well. The efficiency of B&B is determined by

two factors: the quality of the heuristic function and whether a good bound is found

early. Observations of real-life problems show also that the “last step” to optimum, i.e.,

improving a good solution even more, is usually the most computationally expensive

part of the solving process. Fortunately, in many applications, users are satisfied with a

solution that is close to optimum if this solution is found early. B&B algorithm can be

used to find suboptimal solutions as well by using the second “acceptability” bound. If

the algorithm finds a solution that is better than the acceptability bound then this

solution can be returned to the user even if it is not proved to be optimal.

3.1.3 CP Working Procedure

By using constraint propagation, search procedures and inconsistency techniques, the

way CP works is given in Figure 3.5. Once the problem is defined, the constraints and

variables are turned into a partial solution. Then, in addition to these, CP tools offer

ways to define new constraints using constraint propagation that can be used with the

predefined constraints. Also, CP tools specify the search heuristic and backtracking

strategy (or give the user to specify these). This procedure works iteratively until a full

solution is achieved (or optimal solution in case of COP).

Figure 3.5 The behavior of CP system (Baptiste et. al., 2003)

56

One advantage of CP is the existence of global constraints. Global constraints are

expressive and powerful constraints embedding constraint dependent filtering

algorithms. A typical global constraint is the

alldifferent([X1,, Xn]) (3.15)

available in most CP solvers. This constraint holds if and only if all variables are

assigned a different value. Thus, it is declaratively equivalent to a set of (n*(n-1)/2)

binary inequality constraints. An extension of the alldifferent is the global cardinality

constraint:

gcc([X1,, Xn], [v1,, vm], [l1,, lm], [u1,, um]) (3.16)

which holds if and only if the number of variables in [X1, ... ,Xn] which assume value

vi is within 1i and ui. A further extension of the global cardinality constraint is the

global sequencing constraint:

gsc([X1,, Xn], [v1,, vm], min, max, q, [l1,, lm], [u1,, um]) (3.17)

This constraint holds if and only if each vi appears a number of times between li

and ui and for each sequence Si of q consecutive variables, each vi appears a number

of times between min and max. Other important constraints in CP have the form:

 atmost(i, [X1,, Xn], v)

atleast(i, [X1,, Xn], v) (3.18)

 exactly(i, [X1,, Xn], v)

meaning respectively that at most, at least and exactly i variables in the list assume

the value v.

3.1.4 Applications

Constraints have recently emerged as a research area that combines researchers from

a number of fields, including artificial intelligence, programming languages, symbolic

57

computing and computational logic. Constraint networks and CSPs have been studied in

artificial intelligence starting from the seventies. Due to its potential to model and solve

real-life problems naturally and efficiently, CP has been successfully applied in

numerous domains. CP can also serve as a roof for combination of different approaches,

like integer programming and operation research.

There are two main reasons for choosing to represent and solve a problem as a CSP

rather than a mathematical programming problem.

• First, the representation as a CSP is often much closer to the original problem:

the variables of the CSP directly correspond to problem entities, and the

constraints can be expressed without having to be translated into linear

inequalities. This makes the formulation simpler, the solution easier to

understand, and the choice of good heuristics to guide the solution strategy more

straightforward.

• Second, although CSP algorithms are essentially very simple, they can

sometimes find solution more quickly than integer programming methods.

Recent applications include computer graphics, natural language processing, database

systems, operations research problems, molecular biology, business applications,

electrical engineering, circuit design, etc. It proves itself to be well adapted to solving

real life problems because many application domains involve constraints naturally.

Current research in this area deals with various foundational issues, with implementation

aspects, and with new applications of CP.

There are a lot of companies providing solutions based on constraints like PeopleSoft,

i2 Technologies, InSol, Vine Solutions or companies providing constraint-based tools

like ILOG, IF Computer, Cosytec, SICS, or PrologIA.

58

The constraint programming techniques can be used in many real-life problems.

Among these are:

• time-tabling

• workforce management

• course scheduling

• stuff scheduling

• nurse scheduling

• crew rostering problem

• planning and scheduling

• transport planning

• on-demand manufacturing

• car sequencing

• resource allocation

• forest treatment scheduling

• well activity scheduling

• airport counter allocation

• analysis and synthesis of analogue and digital circuits

• option trading analysis

• cutting stock

• DNA sequencing

• chemical hypothetical reasoning

• warehouse location

• network configuration

Assignment problems were perhaps the first type of industrial application that were

solved with the constraint tools. A typical example is the stand allocation for airports,

where aircraft must be parked on the available stand during the stay at airport (Dincbas,

Simonis, 1991) or counter allocation for departure halls (Chow and Perett, 1997).

Another example is berth allocation to ships in the harbor (Perett, 1991).

59

Another typical constraint application area is personnel assignment where work rules

and regulations impose difficult constraints. The important aspect in these problems is

the requirement to balance work among different persons. Applications in this area

consist of rosters for nurses in hospitals, crew assignment to flights or staff assignment

in railways companies (Focacci et. al. 1997).

Probably the most successful application area for finite domain constraints is

scheduling problems, where, again, constraints express naturally the real life limitations.

The usage of constraints in advanced planning and scheduling systems increases due to

current trends of on-demand manufacturing.

Extensive application usage of CP in solving real-life problems includes a number of

limitations and shortcomings.

As many problems solved by CP belong to the area of NP-hard problems, the

identification of restrictions that make the problem tractable is very important both from

the theoretical and the practical points of view. However, as with most approaches to

NP-hard problems, efficiency of constraint programs is still unpredictable and the

intuition is usually the most important part of decision when and how to use constraints.

The most common problem stated by the users of the constraint systems is stability of

the constraint model. Even small changes in a program or in the data can lead to a

dramatic change in performance.

Another problem is choosing the right constraint satisfaction technique for particular

problem. In addition, a particular problem in many constraint models is the cost

optimization. Sometimes, it is very difficult to improve an initial solution, and a small

improvement takes much more time than finding the initial solution. There is a trade off

between any solution and best solution.

60

3.1.5 Future Research Trends

The shortcomings of current constraint satisfaction systems mark the directions for

the future development. Among them, modeling looks one of the most important. The

discussions started about using of global constraints that encapsulate primitive

constraints into a more efficient package (e.g., alldifferent constraint). A more general

question concerns modeling languages to express constraint problems. Currently, most

CP packages are either extensions of a programming language or libraries that are used

with conventional programming languages. Some of the well known CP tools are ILOG

SOLVER (Puget, 1994; Puget and Leconte, 1995), CHIP (Hentenryck, 1999; Adhikary

et. al. 1997; Johansen, 1997), PROLOG III, IV (Colmerauer, 1990), ECLiPSe (Wallace

et. al., 1997), CLAIRE (Caseau and Laburthe, 1996) and Choco (Laburthe, 2000)

(Baptiste et. al., 2003).

The study of interactions of various constraint solving methods is one of the most

challenging problems. The hybrid algorithms combining various constraint solving

techniques are under study by many researchers (Jacquet-Lagreze, 1998). The

combination of constraint satisfaction techniques with traditional OR methods like

integer programming is another challenge of current research. Finally, parallelism and

concurrent constraint solving (Hentenryck, 1992) are studied as methods for improving

efficiency.

3.2 Interactive Fuzzy Goal Programming

The main objective of this section is to review the basic concepts of IFGP which is

employed in the proposed methodologies in this research. In order to understand the

basics of IFGP, firstly, fuzzy set theory (FST) proposed by Zadeh (1965), is introduced

briefly. Then, fuzzy linear programming (FLP) and fuzzy goal programming (FGP) are

explained so that the logic and working procedure of IFGP can be understood.

61

3.2.1 Fuzzy sets

Fuzzy sets are a generalization of conventional set theory that was introduced by

Zadeh in 1965 as a mathematical way to represent vagueness in everyday life (Bezdek,

1993). Since then, a huge number of fuzzy methods have been developed by the

researchers who study operations research and artificial intelligence, and quite a number

real-world problems have been successfully solved using fuzzy methods.

In real life, some information can only be approximately determined. For instance,

“The temperature is about 37°C” shows that one value around 37 is true but not known

exactly. This situation can be defined by an ordinary set in which the set of numbers L

from 36 to 38 is crisp, and, can be written as; { }3836| ≤≤ℜ∈= rrL . And also, the

characteristic function of this set is as follows (Bezdek, 1993):

 ≤≤

=
otherwise

r
rCL

0

38361
)(and { }1,0: →ℜLC (3.19)

The values of CL is equal to 1, when r is in L; otherwise CL is equal to zero. So

ordinary sets correspond to two–valued logic: 1 or 0 (Bezdek, 1993).

Unlike the ordinary set, this situation can be defined by a fuzzy set using the

membership function concept. The membership function of a fuzzy set has values

between 0 and 1, which denote the degree of membership of a member in the given set.

In general, a fuzzy set is defined as follows (Sakawa, 1993):

“Let X denotes a universal set. Then a fuzzy set F in X is defined as a set of ordered

pairs { }XxxxF F ∈= |))(,(µ , where,)(xFµ is called the membership function for the

fuzzy set F. The)(xFµ represents the grade of membership of x in F. Thus, the nearer

the value of)(xFµ is unity, the higher the grade of membership of x in F.”

62

When X is a finite set whose elements are x1, x2,…, xn, a fuzzy set F on X is expresses

as (Sakawa, 1993):

))}(,(),....,(,()),(,{(2211 nFnFF xxxxxxF µµµ= (3.20)

In literature, there are very different ways to state fuzzy sets. For example, Zadeh

(1965) states this fuzzy set as:

∑
=

=+++=
n

i
iiFnnFFF xxxxxxxxF

1
2211 /)(/)(,....,/)(/)(µµµµ (3.21)

 Before defining the basic operations in FST, basic definitions about fuzzy sets should

be given as follows (Zimmerman, 1996):

• “The support of a fuzzy set F, S(F), is the crisp set of all x∈X such that

0)(>xFµ .

• A fuzzy set with a membership function that has a grade of 1 is called normal.

In other words, A is called “normal” 1)(max =↔
∈

xFXx
µ .

• A fuzzy set F is convex if

[]1,0,,)},(),(min{))1((212121 ∈∈≥−+ λµµλλµ Xxxxxxx FFF

• The crisp set of elements that belong to the fuzzy set F at least to the degree α

is called the α-level set:

})(|{ αµα ≥∈= xXxF F

})(|{ αµα >∈= xXxF F is called strong α-level set or strong α-cut”.

3.2.1.1 Basic operations in fuzzy set theory

Union, intersection, and complement are the basic operations in classical set theory.

Fuzzy sets have also similar operations; however, these operations are defined using the

membership functions as follows (Sakawa, 1993; Zimmerman, 1996):

• Intersection: The intersection of two fuzzy sets A and B is defined by the

membership function)(xCµ of the intersection BAC ∩= as follows:

63

Xxxxx BAC ∈=)},(),(min{)(µµµ ,

• Union: The union of two fuzzy sets A and B is defined by the membership

function)(xDµ of the union BAD ∪= as follows:

Xxxxx BAD ∈=)},(),(max{)(µµµ ,

• Complementation: The membership function of the complement of a

normalized fuzzy set A, denoted by A , is defined as follows:

Xxxx AA ∈−=),(1)(µµ .

3.2.2 Fuzzy numbers

For a normal and convex fuzzy set, if a weak α-cut (α level-set) is a closed interval, it

is called a fuzzy number (Terano et al., 1992). Fuzzy numbers are used to characterize

imprecise numerical information such as “about 7” or “approximately less than 7”. A

fuzzy number can be expressed in some membership function forms. Two important and

widely used membership functions are linear triangular and linear trapezoidal. Figure 3.6

and 3.7 illustrate these membership functions, respectively.

)(~ xTµ

Figure 3.6 Triangular fuzzy number

64

)(~ xTµ

Figure 3.7 Trapezoidal fuzzy number

3.2.3 Fuzzy Mathematical Programming

When modeling a problem with multiple objectives, estimating exact values of the

coefficients, the right hand side values of constraints, the target values of goals are

difficult tasks. Even if all information can be provided by a decision maker, the

uncertainty may still exist in the problem. Many researchers considered these type of

problems with fuzzy mathematical programming methods.

Inuiguchi and Ramik (2000) classified the fuzzy mathematical programming methods

into three categories considering the kinds of uncertainties treated in the method:

• Fuzzy mathematical programming with vagueness: it treats decision

making problem under fuzzy goals and constraints,

• Fuzzy mathematical programming with ambiguity: it treats ambiguous

coefficients of objective functions and constraints but does not treat fuzzy

goal and constraints,

• Fuzzy mathematical programming with vagueness and ambiguity: it treats

ambiguous coefficients as well as vague decision maker’s preference.

65

There are a lot of fuzzy mathematical programming types. In this research, IFGP is

employed to handle the Heterogeneous Vehicle Routing Problem with and without split

deliveries. Therefore, only the three types of fuzzy mathematical programming methods,

FLP, FGP and IFGP, are explained under this section.

3.2.2.1 Fuzzy linear programming

Consider an LP model,

0≥

≤

=

x

bAxtosubject

cxzminimize

(3.22)

where c= (c1, c2, ..., cn) is the n dimensional row vector of coefficients of objective

function, x is an n-dimensional column vector of the decision variables, A is an m x n

matrix of constants, and b is an m-dimensional column vector of right-hand side

constants. According to Zimmermann (1978), fuzzy version of the model (3.22) can be

adopted as follows;

≥ 0

0

x
bAx
zcx

p

p

(3.23)

where the symbols “p and f ” denote the fuzzified versions of “≤ and ≥ ” and can be

read as “essentially less (greater) than or equal to”.

Zimmermann (1978) defined a linear membership function,)(1 cxµ for the goal as

follows:

66

+≥

+≤≤−−
≤

=

10

10010

0

1

0
,/)(1

,1
)(

dzcxif
dzcxzifdzcx

zcxif
cxµ (3.24)

Zimmerman (1978) also proposed a linear membership function)(2 Xaiiµ to treat the

ith fuzzy constraint as follows:

+≥
+≤≤−−

≤
=

,0
/)(1

1
))((

2

222

iii

iiiiiii

ii

ii

dbxaif
dbxabifdbxa

bxaif
Axµ (3.25)

Where d1 and d2i (i=1,2,...,m) are chosen constants of admissible violations of the

goal and the set of constraints, respectively (Mohamed, 1997).)(1 cxµ and

))((2 ii Axµ denote the degree of the membership of goals and constraints. It is assumed

that the ith membership function should be 1 if the ith constraint is very well satisfied, 0 if

the ith constraint strongly violated its limit d2i, and linear from 0 to1 (Sakawa, 1993).

Figure 3.8 illustrates the “essentially less than or equal to” type linear membership

function.

ib′ ii db +′
iBx)(

))((ii Bxµ

µ

Figure 3.8 “p ” type linear membership function

67

The degree of the membership of goals and constraints express the satisfaction of the

decision maker with the solution, so membership functions value must be maximized

(Mohamed, 1997).

After defining the linear membership functions, the maximizing decision is then

defined by using the fuzzy decision theorem of Bellman and Zadeh (1970):

))(),...,(),...,(min(max 21211 xaxacx mmx µµµ (3.26)

Introducing one new variableλ , this problem can be transformed as:

0
,...,2,1)(

)(
max

2

1

≥
=≥

≥

x
mixa

cxtosubject

ii λµ
λµ

λ

(3.27)

According to above membership functions, FLP for (3.22) can be rewritten as

following (Mohamed, 1997):

.0,0
,...2,1/)(1

/)(1
max

2

10

≥≥

=−−≤
−−≤

x
midbxa

dzcxtosubject

iii

λ
λ
λ
λ

(3.28)

FLP model can be easily extended to fuzzy multi-objective linear programming by

defining a membership function for each of objective functions. Assume that there are k

linear objective functions to be minimized; the corresponding model can be defined as

.0,0
,...,2,1/)(1
,...,2,1/)(1

max

2

10

≥≥

=−−≤
=−−≤

x
midbxa
kkdzxctosubject

iii

kkk

λ
λ
λ
λ

(3.29)

68

3.2.2.2 Fuzzy Goal Programming

Goal programming (GP) is one of the most powerful multi-objective decision making

approaches. A standard GP formulation requires that the target values of the goals and

the parameters of the constraints are precisely known. However, one of the major

drawbacks for a decision maker in GP is to determine the goal value of each objective

function precisely.

The main idea behind GP is to minimize the distance between the objective value kZ

and an aspiration level (target value of the objective function) kZ , which is expressed by

the deviational variables. In FGP, membership function values of each objective are

replaced by the deviational variables (Mohamed, 1997).

In general, a typical FGP problem can be formulated as follows:

Find nixi ,...,2,1=

to satisfy

.,...,2,10

,,...,2,1)(
,,...,2,1)(

,,...,2,1)(

nix
Jjbxg

KMMkZxZ
MmZxZ

i

jij

kik

mim

=≥

=≤
++=

=
f

p

(3.30)

where

)(im xZ = the mth goal constraint,

)(ik xZ = the kth goal constraint,

)(im xZ = the target value of the mth goal,

)(ik xZ = the target value of the kth goal,

)(ij xg = the jth inequality constraint,

jb = the available resource of inequality constraint j.

69

In formulation (3.30), the symbols “p ” and “f ” denote the fuzzified versions of “≤ ”

and “≥ ” and can be read as “approximately less (greater) than or equal to”. These two

types of linguistic terms have different meanings. Under “approximately less than or

equal to” situation, the goal m is allowed to be spread to the right-hand-side of

mZ (mm lZ = where ml denote the lower bound for the mth objective) with a certain range

of mr (mZ + mr = mu , where mu denote the upper bound for the mth objective). Similarly,

with “approximately greater than or equal to”, kZ is allowed to go to the left side of

kZ (kZ - kp = kl , and kk uZ =) (Wang and Fu, 1997).

After constructing fuzzified aspiration levels with respect to the linguistic terms of

“approximately less than or equal to”, and “approximately greater than or equal to”,

appropriate fuzzy membership function can be developed for each goal as follows:

For “approximately less than or equal to”;

≥

≤≤
−
−

−

≤

=

.)(0

,)()(1

,)(1

)(

mm

mmm
mm

mm

mm

z

uxZif

uxZlif
lu

lxZ
lxZif

x
m

µ (3.31)

For “approximately greater than or equal to”;

≤

≤≤
−

−
−

≥

=

.)(0

,)()(1

,)(1

)(

kk

kkk
kk

kk

kk

z

lxZif

uxZlif
lu

xZu
uxZif

x
k

µ

(3.32)

Figure 3.8 illustrates both types of membership functions.

70

Figure 3.8 Membership functions of fuzzy goals, (a) “approximately less than or equal to”

(b)“approximately greater than or equal to”.

Using Bellman and Zadeh (1970)’s fuzzy decision theorem, the fuzzy solution is

obtained by the intersection of the all the membership functions representing the fuzzy

goals. The membership function µF(x) which characterizes the fuzzy solution can be

defined as follows (Sakawa, 1993):

)](),....,(),(min[)()....()()(
2121

xxxxxxx
kk ZZZZZZF µµµµµµµ =∩∩= (3.33)

Then the optimum decision is one that maximizes the minimum membership function

values (Sakawa, 1993):

)](),....,(),(min[max)(max
21

xxxx
kZZZ

Fx
F

Fx
µµµµ

∈∈
= (3.34)

By introducing the auxiliary variableλ , formulation (3.30) can be transformed to:

∈

=≥

==≤

=≤

].1,0[

,...,10

,...,1,,...,1)(

,...,1
subject to

maximize

λ

µλ

λ

nix

Jjnibxg

Kk

i

jij

Zk

(3.35)

71

3.2.2.3 Interactive Fuzzy Goal Programming

In the FLP and FGP approaches discussed in the above sections, the fuzzy decision of

Belman and Zadeh (1970) is used to present the fuzzy preferences of the decision maker.

Sakawa (1993) stated that the use of the fuzzy decision may not be appropriate in

practice and consequently it becomes evident that an interaction with the decision maker

is necessary. Also it is pointed out by Sakawa (1993) that fuzzy mathematical

programming approaches can be strengthened by incorporating the desirable features of

the interactive approaches into fuzzy approaches.

If the decision maker is not satisfied with the current optimal solution, IFGP

approaches allows the decision maker to act on this solution by updating the

membership functions (Abd El-Wahed and Lee, 2006).

Abd El-Wahed and Lee (2006) stated that the main advantage of interactive

approaches is that the decision maker controls the search directions during the solution

procedure until a preferred compromise solution is obtained.

The solution procedure of IFGP which belongs to El-Wahed and Lee (2006) is given

in the following:

“Step 1: Develop a multi-objective linear programming model.

Step 2: Solve the first objective function as a single objective problem. Continue this

process K times for the K objective functions. If all the solutions are the same, select one

of them as an optimal compromise solution and go to Step 8. Otherwise, go to Step 3.

Step 3: Evaluate the objective function at the Kth solution and determine the best

lower bound (lk) and the worst upper bound (uk).

Step 4: Define the membership function of each objective function and also the initial

aspiration level.

Step 5: Use model formula that is given in (3.35) and solve it as a linear

programming problem.

72

Step 6: Present the solution to the decision maker. If the decision maker accepts it, go

to Step 8. Otherwise, go to Step 7.

Step 7: Evaluate each objective function of the solution. Compare the upper bound of

each objective with the new value of the objective function. If the new value is lower

than the upper bound, consider this as a new upper bound. Otherwise, keep the old one

as is. Repeat this process K times and go to Step 4.

Step 8: Stop.”

The IFGP procedure used in this research is slightly different than from the one

described by El-Wahed and Lee (2006). In their approach, the iterations stop when the

decision maker is satisfied with the solution. In the proposed approach, iterations go on

automatically until the difference in the objective function value of the last two iterations

is less than an expected value. The IFGP procedure used in the proposed methodology is

discussed in detail in Chapter 4 of this dissertation.

73

73

CHAPTER FOUR

THRESHOLD ALGORITHM

In real life distribution problems, most of the companies own a heterogeneous fleet of

vehicles. If this is the case, the distribution planning problem is called heterogeneous

vehicle routing problem (HVRP). The purpose of this chapter is to propose an algorithm

specifically designed for HVRPs considering the special characteristics of the problem.

The algorithm proposed in this study is a cluster first route second type of algorithm

(Laporte and Semet, 2002). These types of algorithms are based on the idea of splitting a

large size problem into subproblems and solving them faster. The success of these

algorithms mainly depends on how well the clusters are formed. Throughout this

research, in order to form effective clusters, a distance threshold level is used together

with an interactive fuzzy goal programming (IFGP) approach. Then each cluster is

solved to optimum by constraint programming (CP).

The clustering phase is based on a distance threshold level and it is increased

gradually at every iteration until a solution is achieved which is satisfactory for the

decision maker. Therefore, the proposed approach will be referred as the “Threshold

Algorithm” throughout the study.

In the first section of the chapter, Threshold Algorithm is explained in detail. Then

the performance of the proposed algorithm is tested on a group of benchmark problems

in the literature. After performance tests, Threshold Algorithm is employed to solve the

fresh goods distribution problem of a national retail chain store.

4.1 Proposed Algorithm

In the clustering phase of the proposed approach, integer programming (IP) is used to

solve a set covering problem. Then, from the sets selected, clusters are formed and

74

vehicles are assigned through an IFGP approach. In the finalization of the proposed

approach, subproblems are solved through constraint programming (CP). The flow of

the proposed algorithm can be seen in Figure 4.1 (Mizrak Ozfirat, Ozkarahan, 2007).

Figure 4.1 Flow diagram of the proposed algorithm(nv: Number of vehicles;

nc: Number of nodes)

75

4.1.1 Splitting into Subproblems

The first part of the algorithm is splitting the main problems into clusters. The

algorithm is given in the following.

Step 1: Start

Step 2: Select a threshold T. Let there be “nc” customers to be served.

Step 3: Develop the neighborhood sets of each customer within distance T to the

customer. In other words, a set belonging to each customer covering all other

customers, which are at most “T” km. away from itself, is developed. This makes up

totally “nc” sets (A sample is given in Figure 4.2).

Figure 4.2 Let nc=15, the 15 sets developed

within distance T to each customer

Step 4: Set Covering: In this phase, among the “nc” sets developed in Step 3, a

number of them are selected to cover all customers in the most centralized way. In

other words the neighborhood points in the sets selected are closer to the center of

their neighborhood. An IP model, called Model SC given in Formulation 4.1, is used

76

in this step. The notation used in the model is given in Table 4.1. (OPL Code is

given in Appendix A).

Table 4.1. Notation used in Model SC

(4.1b) j in Nodes tM
to subject

(4.1a) tDMzMin
SC Model

i
Sets i

ij

i
Sets i

ijij
Setsj

1

∀>=

=

∑

∑∑

∈

∈∈

1

:

(4.1)

According to the objective function (4.1a) the sets selected are not arbitrarily the

minimum number of sets but rather, the minimum number of sets which are most

centralized. Constraints (4.1b) state that all nodes should be covered at least once.

With the objective function (4.2), the total number of sets selected can be minimized.

However, instead of (4.2), objective function (4.1a) is used where the distances between

the nodes of selected sets are considered.

 tz i
Sets i
∑
∈

= (4.2)

{ }

ci

c

ccij

ccij

c

..n , i:
otherwise

subproblem abetoselected isiset if
t

Variables Decision
nNodes

Sets

njni
eotherwis

 .ers node j if set i
M

njnijnodenode i to from DistanceD
served betoodesnofNumbern

Parameters

1
0

1
:

:
,.....,2,1

:

...1:,..1:,
0

cov1
:

...0:,..0:,:
.:

:

=

77

To state the difference in between the two objective functions, an example problem is

given in the following:

Sample Problem: Let there be 4 nodes. Let distance matrix D and coverage matrix M

be as follows.

Matrix M where,

eotherwis
 j.customer covers if set i

M ij 0
1

:

=

1001
0111
0110
1101

M

Distance Matrix D where,

Dij: Distance from node i to node j.

=

032455
3201525
4515040
525400

D

Looking at matrix M, the neighborhood sets of the four nodes are as follows:

{ }4,3,11 =Set ; { }3,22 =Set ; { }3,2,13 =Set ; { }4,14 =Set

In Model SC, if Dij is not considered in the objective function as in (4.2), one of the

following solutions would cover all nodes:

• Set 1 and Set2

• Set 1 and Set 3

• Set 2 and Set 4

• Set 3 and Set 4

However when Dij is included, then:

If t1= 1 then ΣM1j D1j t1 = 30

If t2= 1 then ΣM2j D2j t2 = 15

If t3= 1 then ΣM3j D3j t3 = 40

If t4= 1 then ΣM4j D4j t4 = 5

Hence the solution would be:

• Set 2 and Set 4 where ΣMij Dij ti = 15+5=20

78

A sample output of Model SC (when the input is the problem in Figure 4.2) is given

in Figure 4.3.

Figure 4.3 The selected sets to make the number

minimum and to cover all customers

4.1.2 Vehicle Assignment

 Step 5: Vehicle Assignment: The sets selected in Step 4 may be intersecting. These

should be turned into non-intersecting sets, and the necessary vehicles should be

assigned to each set in order to develop subproblems. When assigning the vehicles their

fixed costs should be taken into consideration. However, considering fixed costs without

thinking of its effect on the traveling cost would bring out inefficient solutions.

That is, as the capacity of a vehicle increases, the fixed cost also increases. If we try

to minimize total fixed cost in the assignment of vehicles to subproblems, smaller

vehicles in capacity would be selected. Hence, the number of vehicles would increase

(total number of tours visiting the depot increases) and total distance traveled would

increase accordingly.

On the other hand, if the objective function is minimizing total number of vehicles

(instead of fixed cost) in the vehicle assignment, then the algorithm would tend to select

79

higher capacity but more expensive vehicles. In this case total traveling cost would

decrease but total fixed cost would increase. The tradeoff between fixed cost and

traveling cost can be seen in Figure 4.4.

Figure 4.4 Tradeoff between total fixed cost and total traveling cost

Therefore in vehicle assignment, the conflict between these two cost terms should be

worked out. When there exist multiple objectives in a problem and the degree of

fulfillment of these objectives is vague, fuzzy mathematical programming may be a

useful tool to handle the problem (Zimmerman, 1978). Therefore in the proposed

approach, a novel IFGP approach is built.

The IFGP approach considers the two objective functions, which are minimizing total

fixed cost and minimizing total number of vehicles, together. A fuzzy goal

programming (FGP) model is built which adds these two objective functions as fuzzy

constraints. Then, this model is solved iteratively until the difference between two

consecutive iterations satisfy a prespecified rule. The main difference of this approach

from other IFGP approaches in the literature is that it is independent from the decision

maker. In other words, IFGP approach works not to satisfy the decision maker but to

satisfy a prespecified state of the problem. In addition, to the best of our knowledge, this

approach is the first one which adds fuzziness into HVRP. The proposed IFGP approach

is explained detailly in the following.

80

The formulation of the FGP model, which is called the Model VA, is given in

Formulation 4.5. The notation used in Model VA is given in Table 4.2 (OPL code of

the model is given in Appendix A).

Table 4.2 Notation used in the vehicle assignment model

The two goals considered are:

• To minimize total number of vehicles,

 wMin. z iv
i v
∑∑:1 (4.3)

• To minimize total fixed cost of vehicles,

 wCostMin. z iv
i v

v∑∑:2 (4.4)

{ }
{ }

{ }
{ }

.model gprogramminlfuzzy goable of thevaria Auxillary

...ns ,v:Subproblem,i
otherwise

iubproblem igned to se v is ass if vehicl
w

Nodes.s ,jSubproblem ,i
blem i in subprot includeder j is no if custom

 i subproblemsigned to er j is as if custom
y

Variables Decision
nVehicles

 tNodesisSubproblem
model covering sethetofsolution Optimum NodesitT

nNodes
Sets

costof fixed mum level maxi andtion levelthe aspirae between :Differencd
f vehiclesf number oum level omaxim andtion levelthe aspirae between :Differencd

tixed :Minimum fz
ehicles.umber of v:Minimum nz

nvvvehicle oftFixed Cost
 nvvvehicle ofCapacityCap

njjodenof:DemandDemand
 ehicles.vofNumbern

served.betoodesnofNumbern
Parameters

viv

ij

v

i

i

c

vv

vv

cj

v

c

:

1
0

1
:

0
1

:

:
,.....,2,1

.1:

.::

,.....,2,1
:

cos

...1:,cos:
...1:,:

...0:,
:
:

:

*

**

2

1

min2

min1

λ

∈

∈∈

=
=∈=

∈=

=

81

{ }
{ } j)(Nodes jsSubproblemiy

i(Vehicles vsSubproblemiw

h)(Vehicles vw

g)(sSubproblemiDemandywCap

f)(Nodes s,jSubproblemiMy

e)(Nodes jy

d) (1

c)(
d

zwt
-1

b)(
d

zw
-1

subject to
a)(Min

VAModel

ij

iv

sSubproblemi
iv

Nodesj
jij

Vehiclesv
ivv

ijij

sSubproblemi
ij

i v
ivv

i v
iv

5.4,1,0
)5.4,1,0

5.41

5.4

5.4

5.41

5.40

5.4
*cos

5.4

5.4.
:

2

min2

1

min1

∈∀∈∀∈
∈∀∈∀∈

∈∀≤

∈∀≥

∈∈∀≤

∈∀=

≤≤

−
≤

−
≤

∑

∑∑

∑

∑∑

∑∑

∈

∈∈

∈

λ

λ

λ

λ

(4.5)

where:

z1min : Aspiration level of goal 1.

z2min: Aspiration level of goal 2.

d1: Limit acceptable to exceed aspiration level of goal 1.

d2: Limit acceptable to exceed aspiration level of goal 2.

The objective function (4.5a) belongs to fuzzy approach and the constraints (4.5b),

(4.5c) and (4.5d) are fuzzy constraints. In addition to fuzzy constraints, system

constraints appear in the model with (4.5e) to (4.5j). The model assigns each customer to

only one of the sets (found in Step 4) in which it appears. This is stated in the model by

constraints (4.5e) and (4.5f). Constraints (4.5g) assure that the total capacity of vehicles

assigned to a subproblem must be greater than or equal to the total demand of customers

82

in that subproblem. Constraint (4.5h) states that a vehicle can only be allocated to one

subproblem. Finally, binary decision variable constraints are given by (4.5i) and (4.5j).

The output of the model determines the subproblems as well as the vehicles assigned to

each one to have a number of NP-complete subproblems.

4.1.2.1 Setting Fuzzy Parameters of the Interactive Fuzzy Goal Programming

Approach: z1min, z2min, d1, d2

Firstly, Model VA is solved only with the system constraints (constraints 4.5e to 4.5j)

for the objective functions z1 and z2 (Equation 4.3 and 4.4) respectively. Let the

minimum values of these objectives be z1min and z2min respectively. That is, z1min is the

minimum number of vehicles necessary and z2min is the minimum vehicle fixed cost.

The aspiration levels of these two goal are set to be z1min and z2min respectively. Let the

corresponding fixed cost to z1min (minimum number of vehicles) be z2
0 and the

corresponding number of vehicles to z2min (minimum fixed cost) be z1
0.

Then, fuzzy constraints 4.5b, 4.5c and 4.5d are added to Model VA. The limit which

is acceptable to exceed total number of vehicles (d1) is set to be 1 and the limit on total

fixed cost (d2) is set to be (z2
0- z2min).

Then the fuzzy model is solved to give the corresponding fixed cost of z1min+1

vehicles. Let the fixed cost of this solution be z2
1. In the next iteration, the limit on the

number of vehicles is increased by one. The new limit on the fixed cost is set to be z2
1-

z2min. The model is resolved with z1min+2 vehicles to give the fixed cost of this solution

which is z2
2. The iterations go on in this manner.

The difference between the fixed costs of two consecutive iterations is a negative

number. In other words, at every iteration, the fixed cost will decrease by (z2
i+1- z2

i).

83

However, as fixed cost decreases, number of vehicles and hence the traveling costs are

expected to increase (The relation between the fixed cost and the number of vehicles can

be seen in Figure 4.5). The expected increase in the traveling cost when the number of

vehicles is increased by one is called the ExpectedLoss.

Throughout the iterations of IFGP, at a certain point, the expected increase in the

traveling cost (ExpectedLoss) would be higher than the decrease in the fixed cost. After

this point the total cost would start increasing. Therefore, the iterations stop there and

the solution of the ith iteration is accepted. Since the FGP model is operated iteratively

until a certain condition is satisfied, it is an interactive FGP algorithm. The flow of the

algorithm can be seen in the following.

IFGP Algorithm:

1. Start;

2. Solve Model VA with constraints 4.5e to 4.5j to minimize z1 and z2

respectively;

3. z1min :=minimum of z1;

z2min :=minimum of z2;

4. z2
0:=corresponding cost of z1min;

z1
0:=corresponding number of vehicles of z2min;

5. d1:= 1 ; d2:= z2
0- z2min;

6. Solve Model VA;

 z2
i:=Total Fixed Cost;

7. If (z2
i- z2

i-1)>= ExpectedLoss, then 8; else 10.

8. d1:= d1+1; d2:= z2
i- z2min;

9. Go to 6;

10. Stop;

84

Figure 4.5 The model is solved iteratively until (z2
i+1- z2

i)<ExpectedLoss.

To explain the operation of the IFGP approach more clearly, Figure 4.5 is given. At

the very beginning, points 1 and 2 on the graph are found. (Point 1 is found by

minimizing z2 and Point 2 is found by minimizing z1.) Then the iterations start from

point 1 and follow the order of points 3, 4, and so on. At iteration i+1, when

(z2
i+1- z2

i)<ExpectedLoss (4.6)

the procedure stops. The solution achieved in iteration i is accepted. In the solution, the

nodes of all subproblems as well as the vehicles assigned to them are obtained.

One important question in this procedure is how to set ExpectedLoss. After a number

of experiments, this value is assumed to be the maximum of distances of all nodes to the

depot node.

In order give a better view of IFGP, a sample problem is provided in the following.

85

Sample Problem: Let ExpectedLoss be 37. Let the results of minimizing the two

goals be as in Table 4.3.

Table 4.3 Sample problem data

 Number of

vehicles

Fixed Cost

of Vehicles

Minimize Z1 z1min = 6 1945

Minimize Z2 42 z2min = 1050

When the fuzzy model is solved iteratively, the solutions in the Table 4.4 are

achieved:

Table 4.4 Iterations of the fuzzy model, sample problem

Iteration

No

Number of

Vehicles

Fixed Cost

of Vehicles

Difference Between The

Last Two Iterations

0 6 1945 -

1 7 1895 50

2 8 1855 40

3 9 1820 35

It can be seen from Table 4.4 that the decrease in fixed cost at iteration 1 is 50 units.

At second iteration the decrease turns out to be 40 and at third iteration, it is 35. Since

the ExpectedLoss value (expected increase in traveling cost as number of vehicles

decrease by one) is assumed to be 37, iterations stop at third one (Decrease in fixed

cost=35<37=ExpectedLoss). Then the results of iteration number 2 is selected.

Step 6: When the main problem is decomposed into subproblems, each one will be

handled on its own. However, there is a drawback of this algorithm. Every time the

threshold is increased, the subproblems get larger in size. Hence, the solution time

86

increases considerably. The expected behavior of solution time against the threshold

level can be seen in Figure 4.6.

Figure 4.6 Expected behavior of solution time against threshold level. As

threshold increases, solution time is expected to increase quadratic ally

After a certain level of threshold T, the optimal solution cannot be found with the

existing technology. Therefore stop the algorithm at that level of T. Take the existing

solution.

The level to stop the algorithm is found by trial and error method. Through a number

of experiments, that level is determined to be nc >= 20 (number of nodes) or nv >= 5

(number of vehicles). In other words if nc >= 20 or nv >= 5 for any one of the

subproblems then the procedure STOPS. The solution achieved in the previous iteration

is accepted. However, if no solution is achieved at the very first iteration, then the

procedure goes on by lowering the threshold and to Step 2.

4.1.3 Routing Phase

Step 7: This step is the routing phase of the algorithm. In order to solve the

subproblems obtained in Step 5, a CP model, called the Model CPM, is built and each

subproblem is solved by this model. The Model CPM is given in Formulation 4.7. (OPL

87

code of the model is given in Appendix A). Notation used in Model CPM is given in

Table 4.5.

Table 4.5 Notation used in model CPM

f)(Vehicles vCap)*Demandv(X

e) (TotaliXX

d) (Vehicles vv)(X

c) (Vehicles vv)(X

b) (Nodesj)(X

a) (Nodesi)(X

Solve

CPM Model

vj
Totali i,jTotalj

ij

k
Totalj

ji
Totalj

ij

Totalj
j

Totali
i

k
Totali

ij

k
Totalj

ij

k k

kk

k

k

k

k

7.4

7.4

7.41

7.41

7.410

7.410

:

0

0

∈∀≤=

∈∀=

∈∀==

∈∀==

∈∀=>

∈∀=>

∑ ∑

∑∑

∑

∑

∑

∑

∈ ≠∈

∈∈

∈

∈

∈

∈

(4.7)

{ }
{ }

{ }
{ }

{ }

=
∪=

∈∀=∈∀=∈=

∈∈=

=

node j. node i to vels from ehicle tra if no v
node j. node i to vels from e that trathe vehiclNumber of

 X

Variables Decision
nVehicles

node depot denotes ""NodesTotal
sSubproblemkaNodes LetsSubproblemkyNodesjNodes

 Model VA.olution of:Optimum sNodesjsSubproblemiyY
nNodes

Sets
vvehicle ofCapacityCap

jnode ofDemandDemand
vehicles ofNumbern

served.betoodesnofNumbern
Parameters

ij

v

kk

kkkjk

ij

c

v

j

v

c

0
:

:
,.....,2,1

.0;0

;1:

,:

,.....,2,1
:

.:

.:
.:

:
:

*

**

88

Constraints (4.7a) and (4.7b) assure that each customer is visited exactly once. In

addition, each vehicle should visit the depot once since the vehicles assigned to the

problem are known in advance (from Model VA, given in Formulation 4.5). This is

included in the model with constraints (4.7c) and (4.7d). Constraint set (4.7e) provides

that a vehicle visiting a customer should leave that customer. Finally, it is stated by

constraint set (4.7f) that capacity of vehicles should not be exceeded.

If a single vehicle is assigned to the subproblem, then it becomes a traveling salesman

problem. In this case constraint set (4.7f) becomes invalid. However, if the subproblem

requires more than one vehicle, than it is a VRP and all constraints are applicable. The

model is written and solved in OPL Studio 3.7 (ILOG, 2003).

In Formulation 4.7, one can easily notice that objective function and the subtour

elimination constraints are missing. A subtour is the tour of a vehicle without visiting the

depot node. Without subtour elimination constraints, solutions as shown in Figure 4.7

can be obtained which are not desirable.

Figure 4.7 Examples of subtours

However, the number of these constraints increases non-polynomially as the number

of nodes increase. Therefore, VRPs are NP-hard due to subtour elimination constraints.

In the proposed approach, these are handled with an OPL Script algorithm (ILOG,

89

2003). The flow of the Subtour Elimination Algorithm (SEA) can be seen in the

following.

OPL Script SEA:
1. Start;

2. MinimumDistance:=MaximumInteger;

3. Let S be the next solution of model CPM;

4. If S≠∅ then 5, else 9;

5. Distance:=Total Distance Traveled in S;

6. If S is a full solution (does not contain sub-tours), then 7, else 8

7. If Distance<MinimumDistance, then MinimumDistance:=Distance;

8. Go to 3;

9. Stop;

SEA written in OPL Script language handles the first possible solution of the

constraint programming model (Model CPM). It controls whether the solution consists

of a subtour. If it is a full solution (does not contain any subtours), the value of total

distance traveled is recorded as MinimumDistance. Then the algorithm takes the next

possible solution (of Model CPM) and makes subtour controls. If it is not a subtour and

the total distance traveled belonging to this solution is less than MinimumDistance, it is

recorded as the new MinimumDistance. The procedure goes on in the same way until

all possible solutions are handled. Once enumeration is completed, the final

MinimumDistance value turns out to be the optimum solution of the problem. The OPL

code of the SEA is given in Appendix A.

• Speeding Up CP: OLP Studio offers several search procedures in order to

decrease computation time of large scale models. These are Best First Search (BFS),

Slice Based Search (SBS), Depth Bounded Discrepancy Search (DDS), Depth First

Search (DFS), Interleaved Depth First Search (IDFS).

90

SBS and DDS are thought to be suitable to the nature of VRPs since there exist many

good heuristics. Both of them are tested on several problems. SBS is found to be provide

better computation times. Therefore, all computations are made using SBS.

Step 8: If all subproblems are finished then go to Step 9, else go to Step 7.

Step 9: Combine the solutions of all subproblems to give the solution of the main

problem.

Step 10: Increase threshold by ‘s’ units, T:=T+s. Go to Step 3.

4.2 Tests On Sample Instances

To the best of our knowledge, there are no lower bounds for HVRP in the literature.

Neither there exists an exact approach for all HVRP problems. The only way to test

newly developed algorithms is to try them on benchmark instances given in the literature

and compare the solutions with other known techniques.

In this study, ten instances are solved which are taken from Gendreau et al. (1999).

They are also solved by Golden et al.(1984), Osman and Salhi (1996) (Gendreau et. al.,

1999), Taillard (1999), Li et al. (2006) and Choi and Tcha (2007) . Golden et al.(1984)

and Li et al. (2006) only considered total traveling cost, leaving total fixed cost of

vehicles out. On the other hand, Osman and Salhi (1996) (Gendreau et. al., 1999),

Taillard (1999), Gendreau et al. (1999), Choi and Tcha (2007) considered both traveling

and fixed costs. Similar to these studies, both cost terms are considered in this research.

The benchmark instances employed are 20 node, 50 node and 75 node instances

respectively. Distance values are all found analytically from the coordinates of customer

nodes. The details of problem data are given in Table 4.6. Numbering schemes of the

problems are similar to Gendreau et al.(1999). All problems contain vehicle dependent

fixed costs. However, variable costs are set to be one in all problems. In other words,

total solution cost is the sum of fixed costs and total distance traveled.

91

Table 4.6 Data belonging to test instances

 A B C D E F

Test

Instance

Number

of

Nodes
C

ap
v

C
os

t v

C
ap

v

C
os

t v

C
ap

v

C
os

t v

C
ap

v

C
os

t v

C
ap

v

C
os

t v

C
ap

v

C
os

t v

3 20 20 20 30 35 40 50 70 120 120 225

4 20 60 1000 80 1500 150 3000

5 20 20 20 30 35 40 50 70 120 120 225

6 20 60 1000 80 1500 150 3000

13 50 20 20 30 35 40 50 70 120 120 225 200 400

14 50 120 100 160 1500 300 3500

15 50 50 100 100 250 160 450

16 50 40 100 80 200 140 400

17 75 50 25 120 80 200 150 350 320

18 75 20 10 50 35 100 100 150 180 250 400 400 800

The test instances listed in Table 4.6 are solved using the proposed approach in

Section 4.1. The solutions belonging to Test Instance 4 are given in the following

sections. All other solutions can be found in the Appendix B.

4.2.1 Splitting into Subproblems

The threshold is set to be 36 at the first iteration. Then it is gradually increased by 2

units at each iteration. Model SC is solved to give two subsets at this threshold level.

The iterations and the number of subproblems can be seen in Table 4.7.

Table 4.7 Threshold levels and the number of subproblems of Test Instance 4

Iteration Threshold No. of subproblems

1 36 2

2 38 2

3 40 1

92

As seen from Table 4.7, when threshold is increased to 40 units, the problem is not

split. Rather, it stays as a whole. Therefore, the iterations stop at threshold level 40.

4.2.2 Vehicle Assignment

In the IFGP algorithm, which is employed in vehicle assignment step, firstly the two

conflicting objectives (number of vehicles and fixed cost of vehicles given in Equations

4.3 and 4.4) are minimized with the system constraints of Model VA (Formulation 4.5).

The solutions belonging to these two objectives can be seen in Table 4.8. In the vehicle

assignment phase, the minimum number of vehicles and fixed cost turned out be 3 and

6000 respectively (Table 4.8). For both threshold levels, the same values are achieved.

Table 4.8 Minimum values of z1 and z2

Number of Vehicles Fixed Cost of Vehicles

Minimize z1 3 7000

Minimize z2 6 6000

Then the IFGP algorithm is operated. The solutions of the iterations can be seen in

Table 4.9.

Table 4.9 Iterations of fuzzy goal programming phase belonging to Test Instance 4

Iteration

No

Number of

Vehicles

Fixed Cost

of Vehicles

Difference Between the

Last Two Iterations

0 3 7000 -

1 4 7000 0

2 5 6500 500

3 6 6000 500

93

The ExpectedLoss is calculated to be 33 (maximum of distance values to the depot

node). As seen from Table 4.9, the difference in fixed cost between any of the two

consecutive iterations is greater than the ExpectedLoss. Therefore, the procedure stops

when minimum fixed cost is reached (z2min). The solution of the last iteration (Table 4.9)

is selected. The subproblems can be seen in Figure 4.8 (The triangle in red denotes the

depot node).

Subproblems of Instance 4

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

Figure 4.8 The two subproblems of Test Instance 4

4.2.3 Routing Phase

Each subproblem is solved by Model CPM (Formulation 4.7). The results at different

threshold levels can be seen in Table 4.10. As expected, the best solution is achieved at

threshold level 38 (higher threshold level). Therefore, this solution is the solution of Test

Instance 4. The total traveling cost is 437,33; total fixed cost is 6000 (from Table 4.9)

which makes total cost of 6437,33. The subproblem solutions at threshold level 38 can

be seen separately in Table 4.11.

94

Table 4.10 Solutions belonging to Test Instance 4 at different threshold levels

Iteration Threshold
No. of

Subproblems

No. of

Vehicles

Fixed

Cost

Traveling

Cost

Total

Cost

1 36 2 6 6000 538,34 6538,34

2 38 2 6 6000 437,33 6437,33

Table 4.11 Solutions of subproblems belonging to Test Instance 4
Number

of Nodes

(n)

Number of

Vehicles

(v)

Number of

Variables

X[0..n,0..n] : K

Number of

Allowable Values

(0,1,…..,v) : M

Possible

Combinations

MK

Fixed

Cost

Traveling

Cost

Computation

Time (sec.)

10 3 121 4 4121 3000 212,43 32

10 3 121 4 4121 3000 224,90 13

The subproblems are solved in parallel. Therefore, the computation time of the

complete problem is the maximum of the computation times of subproblems. The

computation time of Test Instance 4 is 32 seconds (max[13 ; 32]).

It is known that as the number of variables and their allowable values increase, the

complexity of the problem increases. The complexity of the subproblems belonging to

Test Instance 4 is 4121.

Some of the alternative combinations are infeasible. Among the feasible ones,

complete enumeration is made by OPL Script algorithm and the optimum solution to

each subproblem is found. The routes of Test Instance 4 can be seen in Figure 4.9.

95

Routes of Instance 4

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

Figure 4.9 Routes of Instance 4. The routes belonging

to the two subproblems are shown in different colors.

All test instances from Gendreau et. al. (1999) are solved. Detailed solutions can be

seen in Appendix B.

4.3 Computational Results

All test instances are solved and the results are compared with the best known

solutions in the literature (Table 4.12).

It can be seen from Table 4.12 that the Threshold Algorithm is able to find the best

known solutions in the literature for some of the instances (Instance 4 & 6). For others

the solution cost turned out to be within at most 3% deviation from the best known. On

the other hand, solution times of the threshold algorithm and the literature solutions

cannot be compared. This is due to the fact that the computer systems employed in the

procedures are completely different. However, it can be said that solution times of the

96

proposed procedure are quite reasonable. So, the threshold algorithm provides solutions

in practically usable solution times.

Table 4.12 Comparison of Threshold algorithm and the best known solutions in the literature

Threshold Algorithm
Problem

No

Number of

Nodes

Taillard

1999

Gendreau et.

al. 1999

Choi and

Tcha 2007
Cost

Deviation

in Cost

Solution

Time

3 20 961,03 961,03 961,03 983,1 2,24% 52

4 20 6437,3 6437,33 6437,3 6437,33 0,00% 32

5 20 1008,59 1007,05 1007,05 1052,15 4,29% 102

6 20 6516,5 6516,47 6516,5 6516,47 0,00% 131

13 50 2413,78 2408,41 2406,36 2440,78 1,41% 113

14 50 9119,03 9119,03 9119,03 9138,25 0,21% 374

15 50 2586,37 2586,37 2586,37 2620,54 1,30% 200

16 50 2741,5 2741,5 2720,43 2746,30 0,94% 243

17 75 1747,24 1749,5 1744,83 1783,33 2,16% 340

18 75 2373,63 2381,43 2371,49 2394,16 0,95% 442

19 100 8661,81 8675,16 8664,29 8734,35 0,83% 453

20 100 4047,55 4086,76 4039,49 4139,80 2,42% 261

Also, it should be noticed that the deviation in solution cost is independent from the

number of nodes in the problem. In addition, as the number of nodes increases the

computation time of the Threshold Algorithm stays same on the average. This is due to

the clustering phase of the algorithm. The number of clusters increase but the size of the

clusters are approximately equivalent. Therefore the computation time does not increase

noticeably.

97

However, the approaches presented by Taillard 1999, Gendreau et al. 1999 and Choi

and Tcha (2007) are global and hence computation time increases quadratically as the

size of the problem increases. In other words, these approaches handle the full size

problem without splitting into subproblems. So, as the problem size increases,

computation times of these approaches would increase much more. Therefore it is

expected that, for larger scale problems, the Threshold Algorithm will provide good

solutions within competitive time compared to global approaches. In conclusion, it can

be said that for real life cases where there are several hundreds of demand points to be

handled, Threshold Algorithm may be functional to apply.

4.4 Application of the Proposed Algorithm To Real Life Case: Fresh Goods

Distribution of a Retail Store

The real life fresh goods distribution problem of a retail chain store is handled with

the Threshold Algorithm in this section (Mizrak Ozfirat, Ozkarahan, 2006).

4.4.1 Problem Definition

In this study the distribution of fresh meat from a central depot to retail stores is

handled. The depot belongs to a retail chain store located in Izmir Turkey. There are 41

demand points to which the depot should deliver meat weekly (Figure 4.10).

The distances between demand points are in kilometers and measured from main

roads. In other words, since there exist physical road and land restrictions, some of the

distance figures may not satisfy triangle inequality. The firm owns nine vehicles

assigned for this distribution. The data belonging to vehicles are given in Table 4.13.

98

Figure 4.10 Demand points of the real life distribution problem

Table 4.13 Data belonging to real life distribution problem

Vehicle Capacity Fixed Cost Vehicle Capacity Fixed Cost

1 11484 1148,4 6 11824 1182,4

2 11144 1114,4 7 10514 1051,4

3 14314 1431,4 8 15724 1572,4

4 10514 1051,4 9 12000 1200

5 9980 998

4.4.2 Splitting the Problem into Subproblems

The problem is designed as a fixed fleet heterogeneous vehicle routing problem. The

first threshold level is taken to be 80km. When set covering model is solved, 13 sets are

selected. This means that at least 13 vehicles are required. In this case the solution is

infeasible (since there exist 9 vehicles). Therefore threshold is increased to 100km. and

after that it is increased by 20 km at each iteration.

99

The threshold levels at each iteration and the number of subproblems found by Model

SC (Formulation 4.1) can be seen in Table 4.12. At the first three iterations, the solution

is infeasible since the number of subproblems exceed the number of vehicles. The first

feasible solution is achieved at the 4th iteration when threshold level is set to 140km.

There exist 6 subproblems at this threshold level. So, at east 6 vehicles are necessary. In

the next step of the procedure, vehicles are assigned to subproblems.

Table 4.14 Solutions of Model SC for real life case

Iteration Threshold
No. of

subproblems

Min. No. of Vehicles

Necessary

1 80 13 13

2 100 12 12

3 120 10 10

4 140 6 6

5 160 6 6

6 180 5 5

7 200 4 4

8 220 4 4

9 240 4 4

4.4.3 Vehicle Assignment to Subproblems

At this step, as explained previously, there exist two conflicting objectives. These are

number of vehicles and fixed cost of vehicles respectively. In the IFGP algorithm, which

is employed in vehicle assignment step, firstly the two objectives (given in Equation 4.3

and 4.4) are minimized with the system constraints of Model VA (Formulation 4.5). The

solutions belonging to these two objectives can be seen in Table 4.15.

100

Table 4.15 Solutions of Model VA when z1 and z2 are minimized

Iteration
Threshold

Level

Objective

Function
Number of

Vehicles

Fixed Cost

of Vehicles

Minimize z1 6 7010
4 140

Minimize z2 6 6544

Minimize z1 6 7435
5 160

Minimize z2 6 6793

Minimize z1 5 6153
6 180

Minimize z2 5 5645

Minimize z1 4 5299
7 200

Minimize z2 4 5052

Minimize z1 4 5102
8 220

Minimize z2 4 4769

Minimize z1 4 5236
9 240

Minimize z2 4 4311

Since the first feasible solution can be achieved at threshold level 140, the first

vehicle assignment takes place at this iteration. As seen from Table 4.15, the two

objectives are not conflicting in this case. In other words, the number of vehicles turns

out to be equal when both objectives are minimized. Therefore, at threshold level 140,

the solution in Table 4.15, which minimizes the vehicle fixed costs, is selected.

Similarly, at all threshold levels, the solution which minimizes vehicle fixed costs are

selected. The subproblems belonging to iteration 9 (threshold level 240) can be seen in

Figure 4.11. The subproblems belonging to all other iterations are in Appendix C.

101

Figure 4.11 Subproblems at threshold level 240 km

4.4.4 Routing Phase

All subproblems are solved using Model CPM (Formulation 4.7) together with the

OPL Script (ILOG, 2003) SEA. The solutions of all iterations can be seen in Table 4.16.

Table 4.16 Solutions of Model CPM for real life case.

Iteration Threshold
No. of

Subproblems

No. of

Vehicles

Fixed

Cost

Traveling

Cost

Total

Cost

1 80 13

2 100 12

3 120 10

Infeasible

4 140 6 6 6544 4659 11203

5 160 6 6 6793 4853 11646

6 180 5 5 5645 4774 10419

7 200 4 4 5052 4369 9421

8 220 4 4 4769 4072 8841

9 240 4 4 4311 3792 8103

102

When threshold level is set to 260km, one of the subproblems turn out to be

insolvable. Therefore, the iterations stop at threshold level 240. The solution of this

iteration is the best solution achieved in the procedure. The routes belonging to this

threshold level can be seen in Figure 4.12 and Table 4.17.

Figure 4.12 Routes of real-life distribution problem

Table 4.17 Final solution of real life distribution problem (Total solution cost=8103)

Vehicle
Distance

Traveled

Solution

Time (sec.)
Route

2 1286 1 0-6-22-24-7-2-0

5 767 243 0-4-21-18-9-12-19-5-14-13-10-35-1-25-0

3 816 2 0-38-28-20-26-11-27-17-36-0

4 923 33 0-15-40-33-31-23-34-37-30-8-29-16-3-3-32-39-0

Overall 3792 243

103

As seen from Table 4.17, total traveling cost is 3792 and total cost is 8103. In the

current operation of the firm, 5 vehicles are employed with total fixed cost of 5362.

Total cost of the current performance of the firm is 3902. The comparison between the

current performance of the firm and the threshold algorithm can be seen in Table 4.18.

Table 4.18 Comparison of current performance of the firm and the threshold algorithm

 No. of

Vehicles

Allocated

Fixed

Cost

(YTL)

Traveling

Cost

(YTL)

Total

Cost

Solution

Time

Improvement

(%)

Current Performance

of the firm
5 5362 3908 9270 - -

Threshold Algorithm 4 4311 3792 8103 243 12,59

In conclusion, the proposed algorithm in this research provided improvement for the

fresh goods distribution of the retail store in terms of both fixed cost and traveling cost.

The new solution offered to the retail store provides 12,59% overall improvement. It can

be said that the decrease in fixed cost is mainly provided by decreasing the number of

vehicles. Also, traveling cost is decreased by changing the routes of vehicles by help of

the CP model.

104

CHAPTER FIVE

THRESHOLD ALGORITHM FOR SPLIT DELIVERY

VEHICLE ROUTING PROBLEM

In the classical vehicle routing problem (VRP) a fleet of homogeneous vehicles is

available to serve a set of customers with known demand. Each customer is required to

be visited by exactly one vehicle and the objective is to minimize the total distance

traveled. In the split delivery vehicle routing problem (SDVRP), introduced by Dror and

Trudeau (1989), the restriction that each customer has to be visited exactly once is

removed, i.e., split deliveries are allowed. Therefore, SDVRP can be considered as a

relaxation of the capacitated VRP (CVRP). An example distribution plan of CVRP and

SDVRP can be seen in Figure 5.1.

Figure 5.1 Example of a (a) CVRP distribution plan (b) SDVRP distribution plan. The triangle represents

the depot node.

Recently, there has been an increase in interest for the SDVRP. It is a challenging

variant of the vehicle routing problem with significant potential for practical

implications. Since SDVRP is a relaxation of CVRP, it is expected to provide decreased

delivery costs. Recently, Archetti et al. (2006) have shown that SDVRP provides

delivery costs less than or equal to CVRP. In addition, the authors have proved that the

reduction in delivery costs will be at most 50% (Equation 5.1).

105

CVRPSDVRP
CVRP onCostsDistributionCostsDistributi

onCostsDistributi
≤≤

2
(5.1)

As seen from Equation 5.1, the cost of an optimal solution when split deliveries are

allowed is always greater than half the cost of an optimal solution when splitting of

deliveries is not allowed. However, there are also some disadvantages of this system

such as higher customer inconvenience, more complex administration and accounting.

Therefore, companies need to carefully evaluate these trade-offs.

SDVRP can be divided into two main groups where

• split deliveries are inevitable where demands are larger than the vehicle

capacity.

• split deliveries are allowed where demands are smaller than the vehicle

capacity.

In the first case, there is no alternative than splitting the deliveries. The rear case is

the one which is referred generally as SDVRP in the literature. And hence, it is the

subject of this research.

In the first section of this chapter, the Threshold Algorithm, which is proposed in

Chapter 4 for HVRP, is modified according to split deliveries. Section 2 gives the

performance tests on SDVRP literature problems.

In section 3, the Threshold Algorithm for HVRP (from Chapter 4) and SDVRP (from

Section 5.1) are combined to handle the VRP both considering a heterogeneous fleet and

split deliveries. That is HVRP with split deliveries is considered. To the best of our

knowledge, this dissertation is the first research which considers HVRP with split

deliveries. In the next section, HVRP test instances from the literature are solved under

split delivery assumption. Since there are no studies in the literature considering HVRP

106

with split deliveries, these test instances are important in the sense to provide some

benchmark values for the literature.

Finally, the Threshold Algorithm proposed for HVRP with split deliveries is applied

to the fresh goods distribution problem of the retail chain store discussed in Chapter 4.

The two distribution strategies, which are non-split and split delivery strategies

respectively, are compared in terms of solution cost and solution time. A distribution

strategy based on the findings is offered to the firm.

5.1 Modified Threshold Algorithm for Split Delivery Vehicle Routing Problem

The Threshold Algorithm developed for HVRP in Chapter 4 is modified according to

SDVRP. The flow of the modified Threshold Algorithm for SDVRP can be seen in

Figure 5.2 (Mizrak Ozfirat, Ozkarahan, 2007).

The main differences in between the two algorithms lie in the vehicle assignment and

routing phases. Basically, due to the characteristics of SDVRP, integer programming

(IP) is employed in the vehicle assignment phase. In the routing phase of the algorithm,

firstly constraint programming (CP) approach is employed. However, due to some

inefficiencies of the CP approach, an IP based approach is developed and applied to

SDVRP.

107

Figure 5.2 Modified Threshold Algorithm for SDVRP

5.1.1 Splitting the problem

The beginning steps of the algorithm are same as the Threshold Algorithm developed

for HVRP (in Chapter 4).

Step 1: Start

Step 2: Select a threshold T. Let there be “nc” customers to be served.

Step 3: Develop the neighborhood sets of each customer within distance T to the

customer.

Step 4: Set Covering: The same model as in Model SC of Chapter 4 (Formulation 4.1,

page 76) is employed. Similar to HVRP, minimum number of sets are selected in the

most centralized way.

108

5.1.2 Vehicle Assignment

For HVRPs, there exists a conflict between the number of vehicles and the fixed cost

of vehicles at vehicle assignment step of the algorithm. In order to deal with this conflict

an interactive fuzzy goal programming (IFGP) procedure is developed and used.

However, for SDVRPs, the vehicle fleet is assumed to be homogeneous. That is all

vehicles are identical in capacity and fixed cost. There is no conflict between the number

of vehicles and their fixed costs. As the number of vehicles selected increases, fixed cost

increases directly proportional to the number. Therefore, there is no need for the IFGP

approach. Instead, an IP model, which minimizes the total number of vehicles selected,

is employed for the vehicle assignment step of SDVRP.

Step 5: The IP model, called SplitDeliveryVehicleAssignment (Model SDVA), is

given in Formulation 5.2 and the notation used is given in Table 5.1.

Table 5.1 Notation used in vehicle assignment model for SDVRP

{ }

{ }
{ }

{ }

...ns ,v:Subproblem,i
otherwise

iubproblem igned to se v is ass if vehicl
w

Nodes.s ,jSubproblem ,i
blem i in subprot includeder j is no if custom

 i subproblemsigned to er j is as if custom
y

Variables Decision

nVehicles

tNodesisSubproblem

4.1) on(Formulati model covering sethetofsolution Optimum NodesitT

nNodes

Sets

 nvvvehicle ofCapacityCap

njjodenof:DemandDemand

 ehicles.vofNumbernodes.nofNumbern

Parameters

viv

ij

v

i

i

c

vv

cj

vc

1
0

1
:

0
1

:

:

,.....,2,1

.1:

.::

,.....,2,1

:

...1:,:

...0:,

::

:

*

**

∈

∈∈

=

=∈=

∈=

=

109

In Formulation 5.2, the objective function (5.2a) minimizes the total number of

vehicles selected. Constraints (5.2b) state that all nodes should appear in exactly one of

the subproblems and constraints (5.2c) state each node must be assigned to a subproblem

within its neighborhood. Capacity restrictions are included in the model with constraints

(5.2d). Constraint set (5.2e) assures that each vehicle is used only once. Finally, binary

constraints are given by (5.2f) and (5.2g).

It should be realized that Model SDVA is derived from Model VA of HVRP

(Chapter 4, Formulation 4.5, page 81). There are two objectives in HVRP. These are to

minimize total number of vehicles and to minimize total fixed cost respectively. In

SDVRP, since these two bring out the same solution, the objective function is set to

minimize total number of vehicles (Equation 5.2a). In addition, constraints (5.2b) to

(5.2g) are the system constraints of Model VA. In other words, Model SDVA is

achieved by turning the fuzzy goal programming model (Model VA) of HVRP into an

IP model.

Once this model is solved, the subproblems and the vehicles assigned to each

subproblem are obtained.

(5.2)

110

Step 6: Similar to HVRP, the conditions to stop the algorithm are determined to be

nc >= 20 (number of nodes) or nv >= 5 (number of vehicles).

5.1.3 Routing Phase

In the routing phase of the Threshold Algorithm for HVRP, CP is employed. In this

section, firstly, this model is modified according to split delivery assumptions. However,

this model turned out to be unsuccessful for SDVRP. Hence, an IP model is also built

for the routing phase. Both CP and IP approaches are explained in this section.

5.1.3.1 Routing by Constraint Programming

Step 7: In SDVRP, the delivery of a customer can be split between two or more

vehicles. Therefore, the model (Model CPM given in Formulation 4.7 of Chapter 4, page

87) which finds out the routes of the vehicles should be revised considering this

assumption. Firstly, another decision variable is necessary:

.: inode toallocated vvehicle ofCapacityAiv

The new routing model, called the SplitDeliveryModel (Model SDM) is given in

Formulation 5.3. The notation used is same as in Model CPM (Table 4.5, page 87).

i) (Vehicles vNodesivXA

h)(Vehicles vNodesivXBA

g) (NodesiDemandA

f)(Vehicles vCapA

e)(TotaliXX

d) (Vehicles vv)(X

c) (Vehicles vv)(X

b) (Vehicles vNodesjv)(X

a) (Vehicles vNodesiv)(X

Solve

MDSModel

k
Totalj

ijiv

k
Totalj

ijiv

ki
Vehiclesv

iv

v
Nodesi

iv

k
Totalj

ji
Totalj

ij

Totalj
j

Totali
i

k
Totali

ij

k
Totalj

ij

k

k

k

kk

k

k

k

k

3.5,)(

3.5,)(

3.5

3.5

3.5

3.51

3.51

3.5,1

3.5,1

:

0

0

∈∈∀=≥

∈∈∀=≤

∈∀=

∈∀≤

∈∀=

∈∀==

∈∀==

∈∈∀≤=

∈∈∀≤=

∑

∑

∑

∑

∑∑

∑

∑

∑

∑

∈

∈

∈

∈

∈∈

∈

∈

∈

∈

(5.3)

111

Constraints (5.3a) and (5.3b) allow split deliveries. In addition, each vehicle should

visit the depot once since the vehicles assigned to the problem are already known from

the vehicle assignment step. This is included in the model with constraints (5.3c) and

(5.3d). Constraint set (5.3e) provides that a vehicle visiting a customer should leave that

customer. Capacity and demand requirements are stated using the decision variable A in

(5.3f) and (5.3g). That is, constraints (5.3f) state that the goods carried in a vehicle

should be less than or equal to its capacity and (5.3g) state that the goods carried in all

vehicles for a node must be equal to its demand. Finally, the relationship between

variables A and X are built by constraints (5.3h) and (5.3i). In constraints (5.3h), B

represents a big number. It is stated that if vehicle v does not visit node i then, the

capacity of vehicle v allocated to node i should be 0 (Constraints 5.3h). On the other

hand, if vehicle v leaves node i, then the capacity of vehicle v allocated to node i should

be a positive number (Constraints 5.3i). The model is written and solved in OPL Studio

3.7 (ILOG, 2003). The code of the model is given in Appendix D.

Similar to HVRP formulation, subtour elimination constraints are also missing in this

model in order to decrease computation time. Subtour Elimination Algorithm (SEA)

which is defined in Chapter 4 (page 89) is modified according to split delivery

assumption and employed for SDVRP. Shortly, it can be said that SEA makes complete

enumeration among the feasible solutions of Model SDM and finds the minimum

distance solution which does not contain any subtours. The flow of SEA can be seen in

the following. The OPL code of SEA is given in Appendix D.

OPL Script SEA for Model SDM:

1. Start;
2. MinimumDistance:=MaximumInteger;
3. Let S be the next solution of model SDM;
4. If S≠∅ then 5, else 9;
5. Distance:=Total Distance Traveled in S;
6. If S is a full solution (does not contain sub-tours), then 7, else 8
7. If Distance<MinimumDistance, then MinimumDistance:=Distance;
8. Go to 3;
9. Stop;

112

Allowing split deliveries in a VRP relaxes the constraint that all nodes should be

visited exactly once. Therefore, the search space enlarges in a considerable way. When

the CP procedure is employed to solve the SDVRP benchmark instances in the literature,

it is seen that the problems with three or more vehicles are insolvable. Therefore, the

procedure failed to provide any solution for any one of the benchmark problems. Since

CP approach turned out to be unsuccessful, an IP approach is developed for SDVRP.

5.1.3.2 Routing by Integer Programming

Revised Step 7: Model SDM, which is a CP model, is replaced with an IP model to

find the routes of the vehicles. The new model is referred as IntegerProgrammingModel

(Model IPM) and given in Formulation 5.4. The notation used is given in Table 5.2. The

OPL code of Model IPM is given in Appendix D.

Table 5.2 Notation used in Model IPM

{ }

{ }
{ }

{ }

{ }

.:

...1:,..0:,..0:,
0
1

:

:

,...,1

},...,2,1{

.0;0

;1:

,:

,.....,2,1

:

.:1

...1:,:

lg

:

.:.:

::

:

*

**

inode toallocated vvehicle ofCapacityA

nvnjni
Otherwise.

 j. i to node from node v travelsIf vehicle
 X

Phase RoutingVariables Decision

nVehicles

rsNoofsubtougeSubtourran

node depot denotes ""NodesTotal

sSubproblemkaNodes LetsSubproblemkyNodesjNodes

 Model VA.olution of:Optimum sNodesjsSubproblemiyY

nNodes

Sets

number big ABours...Noofsubtr t, t:eak subtoualue to brllowable v:Maximum arhs

rsNoofsubtouttour tded in subh is inclu node whicThe isubtours

.ing phase)ch of rout IP approaorithm (In Script Aby the OPLdentified subtours irs: No of Noofsubtou

v. vehicle ofCapacity Cap

jnode ofDemandDemandjnode toinode from DistanceD

vehicles. ofNumbernserved.betonodes ofNumbern

Parameters

iv

vccijv

v

kk

kkkjk

ij

c

t

th
ti

v

jij

vc

=

=

∪=

∈∀=∈∀=∈=

∈∈=

=

113

{ } (5.4m) Vehicles vNodesjiX

lVehicles v,nge SubtourratrhsX

kVehicles v,nge SubtourratrhsX

j(Vehicles vNodesiXA

i) (Vehicles vNodesiXBA

h) (NodesiDemandA

g)(Vehicles vCapA

f) (Vehicles vTotalkXX

e)(Vehicles vX

d)(Vehicles vX

c(Vehicles vNodesjX

b) (Vehicles vNodesiX
Solve

a)(DXMinimize
IPM Model

kijv

t
ai

vtisubtourstisubtours

t
ai

vtisubtourstisubtours

k
Totalj

ijviv

k
Totalj

ijviv

ki
Vehiclesv

iv

v
Nodesi

iv

k
Totalj

kjv
Totali

ikv

Totalj
jv

Totali
vi

k
Totali

ijv

k
Totalj

ijv

Totali
ij

Totalj
ijv

Vehiclesv

k

k

k

k

k

k

k

k

k

k k

∈∀∈∀∈

∈∀∈∀≤

∈∀∈∀≤

∈∀∈∀≥

∈∀∈∀≤

∈∀=

∈∀≤

∈∀∈∀=

∈∀=

∈∀=

∈∀∈∀≤

∈∀∈∀≤

∑

∑

∑

∑

∑

∑

∑∑

∑

∑

∑

∑

∑ ∑ ∑

∈
+

∈
+

∈

∈

∈

∈

∈∈

∈

∈

∈

∈

∈ ∈ ∈

,,1,0

)4.5(

)4.5(

)4.5,

4.5,*

4.5

4.5

4.5,

4.51

4.51

)4.5,1

4.5,1

4.5*
:

]..1[
1

]..1[
1

0

0

The objective function (5.4a), minimizes total distance traveled. Constraints (5.4b)

and (5.4c) state that each customer can be visited by one or more vehicles (split

deliveries). In addition, each vehicle should visit the depot once. This is included in the

model with constraints (5.4d) and (5.4e). Constraint set (5.4f) provides that a vehicle

visiting a customer should leave that customer. Constraints (5.4g) state that the goods

carried in a vehicle should be less than or equal to its capacity and (5.4h) state that the

goods carried in all vehicles for a node must be equal to its demand. Constraints (5.4i)

(5.4)

114

and (5.4j) build the relationship between variable A and X. Constraints (5.4k) and (5.4l)

are subtour elimination constraints. However, it is not possible to include all subtour

constraints into the IP model.

When all subtour constraints are included, the model becomes insolvably large.

Therefore, an effective procedure to handle the subtour constraints is necessary.

However, this procedure cannot be similar to the Subtour Elimination Algorithm of

Model SDM. One difference between CP and IP is that in a CP model, all alternative

optimum solutions can be found. However, in an IP model only one optimal solution is

provided. Therefore, it is not possible to make complete enumeration between all

optimal solutions of an IP model (since only one solution would be provided).

Previously, in SEA (of Model SDM), the minimum cost routes which do not contain any

subtours are found through complete enumeration on the solutions of the CP model. But,

since we cannot make complete enumeration on the solutions of Model IPM, a new

subtour elimination algorithm (SEA for Integer Programming) is developed for Model

IPM. The new algorithm is also written in OPL Script. The algorithm looks at the

solution of Model IPM, finds the subtours (if there are) and adds constraints back into

Model IPM in order to avoid these subtours (Constraints 5.4k and 5.4l). The flow of

SEA for Integer Programming is given in the following:

1. Start;

2. Solve Model IPM, let S be the solution;

3. If S does not contain any subtours then go to 7;

4. Identify subtours;

5. Add corresponding subtour elimination constraints to Model IPM (Constraints 5.4k & 5.4l);

6. Go to 2;

7. S is the optimum solution;

The connection between the SEA Algorithm for Integer Programming and Model

IPM is built by constraints 5.4k and 5.4l. The subtours matrix (employed in 5.3k and

5.3l) contains a subtour in each of its rows (eg. 1-2-3-1). The matrix is empty at the very

first iteration. That is, Model IPM is solved without any subtour constraints at the

115

beginning. Then OPL Script algorithm takes this solution, identifies the subtours and

adds them to the subtours matrix. Model IPM is resolved with these subtour constraints

(5.4k and 5.4l). The procedure goes on iteratively until no subtours exist in the solution,

S. Then, S becomes the optimum. The OPL code of SEA for Integer Programming is

given in Appendix D.

The finalization steps of the algorithm are similar to the threshold algorithm

developed for HVRP (in Chapter 4 of this dissertation).

Step 8: If all subproblems are finished then go to Step 9, else go to Step 7.

Step 9: Combine the solutions of all subproblems to give the solution of the main

problem.

Step 10: Increase threshold by ‘s’ units, T:=T+s. Go to Step 3.

5.1.3.3 Comparison of CP and IP in the Routing Phase

In the routing phase of the Threshold Algorithm developed for HVRP, CP is

employed. All subproblems are solved to optimum by the CP approach (from Section

4.1.3, page 86). However, when solving SDVRP, CP approach failed to provide any

solution to problems with two or more vehicles. Therefore, an IP approach is developed

for the routing phase of SDVRP problems. Test problems from the literature are

successfully solved by the IP approach (Performance tests are given in Section 5.2).

In summary, two different models (IP and CP) are proposed for two different

problems, HVRP and SDVRP. This is shown in the following:

i. CP employed for HVRP: Subproblems are solved successfully to optimum.

ii. CP employed for SDVRP: No solution could be achieved.

iii. IP employed for HVRP: Since CP is successful for HVRP, there is no need to

solve the same problems with IP. Only comparison on computation time is

necessary.

iv. IP employed for SDVRP: Subproblems are solved successfully to optimum.

116

Looking at the case (i) and (iii) given above, it is clear that a comparison between CP

and IP is necessary. It is known that both approaches are able to achieve the optimum

solutions. Therefore, a comparison on solution time is necessary. Hence, a complexity

analysis is done between IP and CP models both for HVRP and SDVRP.

• Complexity analysis for HVRP: The analysis on IP and CP models can be seen in

Table 5.3. It is assumed that there exist “n” nodes to be served.

Table 5.3 Comparison on the complexities of IP and CP approaches on HVRP

 IP CP

No.of

Vehicles

No.of

Variables

No.of Available

Values for Each

Variable

Complexity

Function

No.of

Variables

No.of Available

Values for Each

Variable

Complexity

Function

1 n2 2 2n2 n2 2 2n2
2 2n2 2 2n22 n2 3

2n3
3 3n2 2 2n32 n2 4

2n4
4 4n2 2 2n42 n2 5

2n5

It can be seen from the table that, for a single vehicle case, the complexity functions

are similar. For two or more vehicles, complexity function of IP takes values greater

than the complexity function of CP for any value of “n”. To see this more clearly, the

complexity functions are graphed in Figure 5.3.

117

Complexity Comparison
No. of Vehicles = 2

1

10

100

1000

10000

100000

1000000

0 1 2 3 4
No. of Nodes

C
om

pl
ex

ity
Va

lu
e

IP

CP
(a)

Complexity Comparison
No. of Vehicles = 3

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

0 1 2 3 4
No. of Nodes

C
om

pl
ex

ity
Va

lu
e

IP

CP
(b)

Figure 5.3 Complexity functions of IP and CP when no. of vehicles is (a) 2 and (b) 3

According to Figure 5.3, it can be stated that complexity of IP model is larger than

CP model for all n>0. Also, it is seen from the graph that as n or the number of

vehicles increases, the difference between complexities increases quadratically.

Therefore, it is expected that solution time of IP approach would be much larger

than CP approach in HVRP problems.

• Complexity analysis for SDVRP: Similarly, we need to compare the two

approaches for SDVRP problems. In Table 5.4, the complexity analysis between IP

and CP on SDVRP problems can be seen. It is assumed that there exist “n” nodes to

be served, and “di” is the demand of node i. It should be noted that in SDVRP

models, in addition to the variable (X), which determines routes, there exists another

variable (A), which determines the amount of capacity of each vehicle allocated to

each node.

118

Table 5.4 Comparison on the complexities of IP and CP approaches on SDVRP

 IP CP

No.of

Vehicles
No.of

Variables

No.of Available

Values for Each

Variable

Complexity Function
No.of

Variables

No.of

Available

Values for

Each

Variable

Complexity Function

X : n2 2 X: n2 21

A: n max[di]+1 []()n
i

n d 1max2
2

+⋅ A: n max[di]+1 []()n
i

n d 1max2
2

+⋅

X: 2n2 2 X: n2 32

A: 2n max[di]+1 []() n
i

n d 22 1max2
2

+⋅ A: 2n max[di]+1 []() n
i

n d 21max3
2

+⋅

X: 3n2 2 X: n2 43

A: 3n max[di]+1 []() n
i

n d 33 1max2
2

+⋅ A: 3n max[di]+1 []() n
i

n d 31max4
2

+⋅

X: 4n2 2 X: n2 54

A: 4n max[di]+1 []() n
i

n d 44 1max2
2

+⋅ A: 4n max[di]+1 []() n
i

n d 41max5
2

+⋅

As seen from Table 5.4, complexity functions of the two approaches are similar

when there is a single vehicle. As the number of vehicles increases, IP complexity

increases much faster than CP complexity. Therefore, it is expected that IP approach

provides much longer solution times than CP approach. However, in CP model for

SDVRP (Model SDM) there exists both linear constraints and CP constraints. In this

case, the model fails to provide any solution with two or more vehicles. Therefore, IP

solutions are the only solutions that can be achieved.

The comparison between CP and IP approaches in terms of solution time and cost

can be summarized in Figure 5.4.

Figure 5.4 Results of IP and CP approaches for HVRP and SDVRP

119

In summary, it can be said that CP approach is more suitable for HVRP since it

provides solutions equal in cost but smaller in time compared to IP. On the other

hand IP approach is more suitable for HVRP with split deliveries since no solution

can be achieved by CP.

5.2 Test on Sample Instances of SDVRP

SDVRP has been first introduced by Dror and Trudeau (1989). The authors have

showed the savings that can be achieved by allowing split deliveries (Archetti et al.,

2006) and developed seven main test instances (Dror and Trudeau, 1994). These

problems have also been solved by Archetti et. al. (2006).

In this dissertation, these seven test instances are considered in order to test the

performance of Threshold Algorithm on SDVRP. The details of problem data are

given in Table 5.5. Numbering schemes of the problems are similar to Archetti et. al.

(2006). All vehicles are identical. For this reason vehicle fixed costs are not

considered in the solution costs.

Table 5.5 Problem data of the seven test instances from Dror and Trudeau (1994)

Test

Instance

Number of

Nodes

Number of

Vehicles

Capacity of

Vehicles

1 50 6 160

2 75 10 140

3 100 8 200

4 150 12 200

5 199 16 200

6 120 7 200

7 100 10 200

The test instances listed in Table 5.5 are solved using the proposed approach in

Section 5.1 (In the routing phase, integer programming is employed). The solutions

belonging to Test Instance 1 are given in the following sections. Details of all other

solutions can be found in the Appendix E.

120

5.2.1 Splitting into Subproblems

The threshold is set to be 26 at the first iteration. Then it is gradually increased by

2 units at each iteration. Model SC (Formulation 4.1, page 76) is solved to give three

subsets at this threshold level. The iterations and the number of subproblems can be

seen in Table 5.6. As seen from Table 5.6, when threshold is increased to 30 units,

two subsets are formed. At this threshold level, one of the subproblems turn out to be

very large (Number of nodes = 42). Therefore, the iterations stop at iteration 3. The

algorithm goes on with threshold level 28 and the corresponding subsets.

Table 5.6 Threshold levels and the number of subproblems of Test Instance 1

Iteration Threshold No. of subproblems

1 26 3

2 28 3

3 30 2

5.2.2 Vehicle Assignment

Model SDVA (Formulation 5.2) is employed to solve Test Instance 1 of Dror and

Trudeau (1994) to give three subproblems and the vehicles assigned to each one.

The subproblems can be seen in Figure 5.5 (The red square denotes the depot node).

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70

Figure 5.5 The two subproblems of test instance 1

121

5.2.3 Routing Phase

Each subproblem is solved by Model IPM (Formulation 5.4). The results at

different threshold levels can be seen in Table 5.7. As expected, the best solution is

achieved at threshold level 28 (higher threshold level). Therefore, this solution is the

solution of Test Instance 1. The detailed solutions at threshold level 28 can be seen

separately in Table 5.8.

Table 5.7 Solutions belonging to Test Instance 1 at different threshold levels

Iteration Threshold
No. of

Subproblems

No. of

Vehicles

Solution

Cost

1 26 3 6 571,86

2 28 3 5 536,13

Table 5.8 Solutions of subproblems belonging to Test Instance 1

Number of

Nodes (n)

Number of Vehicles

(v)

Solution

Cost

Computation

 Time (sec.)

21 2 212,51 71

12 1 141,76 11

17 2 181,87 32

The subproblems are solved in parallel. Therefore, the computation time of the

complete problem is the maximum of the computation times of subproblems. The

computation time of Test Instance 1 is 71 seconds (max[71, 11, 32]). The routes of

Test Instance 1 can be seen in Figure 5.6.

122

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70

Figure 5.6 Routes of Test Instance 1

All test instances from Dror and Trudeau (1994) are solved. Detailed solutions

can be seen in Appendix E.

5.3 Computational Results of Split Delivery Test Problems

All seven test instances from Dror and Trudeau (1994) are solved. These test

problems are also handled by Archetti et. al. (2006). Archetti et. al. (2006) has

proposed three alternative tabu search algorithms for SDVRP which are referred as

“Split Tabu”, “Split Tabu-DT” and “Fast Split Tabu” respectively. The comparison

of the results achieved in this dissertation with Archetti et. al. (2006) and Dror and

Trudeau (1994) results are given in Table 5.9 and 5.10. The solutions in bold are the

best known solutions published for these problems.

123

Table 5.9 Comparison of the Threshold Algorithm and the literature solutions on the solution cost

Archetti et. al. (2006)
D & T

(1994)
SPLITABU

SPLITABU-

DT

FAST-

SPLITABU

Threshold

Algorithm Problem n

z z z z z

Difference

with the Best

Known (%)

1 50 587 530 534 534 536 1,13

2 75 895 852 850 850 884 3,92

3 100 902 846 836 836 877 4,76

4 150 1131 1062 1070 1088 1103 3,71

5 199 1376 1368 1343 1346 1392 3,53

6 120 108,4 108,5 105,6 105,6 106,2 0,55

7 100 952 823 825 825 825 0,24

Table 5.10 Comparison of the Threshold Algorithm and the literature solutions on the solution time

Archetti et. al. (2006)

Problem n

D & T

(1994)

(sec.)
SPLITABU

(sec.)

SPLITABU-DT

(sec.)

Threshold

Algorithm (sec.)

1 50 0 17 13 71

2 75 0 64 36 501

3 100 0 60 58 615

4 150 0 440 389 407

5 199 0 1900 386 563

6 120 1 40 38 229

7 100 0 86 49 59

As seen from Table 5.9, the algorithms developed by Archetti et. al. (2006)

provide the best known solutions for these test problems. However, among the three

algorithms developed by Archetti et. al. (2006), none of them dominates the others

totally in terms of solution cost. When the results achieved by the Threshold

Algorithm are considered, it is seen that none of the solution costs are better than the

best known. However, they dominate all Dror and Trudeau (1994) solutions and

some of the Archetti et. al. (2006) solutions.

On the other hand, when solution times are considered (Table 5.10), it can be

stated that Threshold Algorithm offers solution times independent from the size of

124

the problem. This is due to the clustering characteristic of the Threshold Algorithm.

Since the main problem is split into subproblems, the size of the subproblems do not

vary due to the size of the main problem. As the main problem enlarges, the number

of subproblems increase but not their size. Therefore, the solution times do not vary

much by the size of the main problem.

Also, it is seen from Table 5.10 that for test instances 6 and 7, the solution times

are relatively small. This is because these problems are in natural small clusters.

Hence it takes short time to solve these problems by the Threshold Algorithm.

Solution costs achieved for these problems are also very close to the best known.

Therefore, it can be said that Threshold Algorithm is especially beneficial for

naturally clustered problems.

5.4 Modified Threshold Algorithm for HVRP with Split Deliveries

As stated earlier, to the best of our knowledge, none of the HVRP studies in the

literature handle split delivery assumption and none of the SDVRP studies handle

heterogeneous fleet assumption. Therefore, this dissertation is the first study which

considers both heterogeneous fleet and split delivery assumptions together. The

problem is referred as HVRP with split deliveries.

HVRP and SDVRP are handled on their own by the Threshold Algorithm in the

previous sections of this dissertation. In this section HVRP with split deliveries is

considered. HVRP with split deliveries brings the two assumptions (heterogeneous

fleet of vehicles and allowing split deliveries) together in a single problem.

The Threshold Algorithm is modified according to the two assumptions of HVRP

with split deliveries. In other words, the methods used to handle the heterogeneous

fleet and the methods used to handle split deliveries are combined. When considering

the heterogeneous fleet, the main problem is to work off the tradeoff between vehicle

fixed costs and the number of vehicles. In order to solve this conflict an IFGP

approach is proposed in the vehicle assignment phase of the Threshold Algorithm

(Section 4.1.2, page 78). On the other hand, when split deliveries are allowed, an IP

125

approach is proposed in the routing phase of the Threshold Algorithm (Section

5.1.3.2).

Therefore, when these two assumptions are brought together, the IFGP approach

should be applied in the vehicle assignment phase (for the heterogeneous fleet

assumption) and IP approach should be applied in the routing phase (for split

delivery assumption) of the Threshold Algorithm. All other steps of the algorithm

remain the same as in HVRP and SDVRP. The flow of the Threshold Algorithm for

HVRP with split deliveries can be seen in Figure 5.7.

Figure 5.7 The flow of Threshold Algorithm for HVRP with split

deliveries

126

5.5 Test on Sample Instances of HVRP with Split Deliveries

Since this is the first study which considers both heterogeneous fleet and split

delivery assumptions in the literature, there exists no benchmark instances for this

problem. Therefore, the benchmark instances belonging to HVRP (from Gendreau et.

al., 1999) are solved under the split delivery assumption. It is known that allowing

split deliveries is a relaxation of non-split delivery problem. Therefore, it is expected

that solution costs under split delivery assumption would be at least as good as non-

split delivery solution costs. The test problems (Test Instance 3 to Test Instance 20

from Gendreau et. al. 1999) are solved using the Threshold Algorithm proposed in

Section 5.4. The results of HVRP with split deliveries are compared with the results

of HVRP (achieved by the Threshold Algorithm in Chapter 4, page 96) in Table

5.10.

Table 5.10 Comparison of HVRP with split deliveries and HVRP

Problem

No

Number

of Nodes

Threshold Algorithm

Non-Split Deliveries

Threshold Algorithm

Split Deliveries

Deviation in

Cost

3 20 983,1 970,53 -1,28%

4 20 6437,33 6421,88 -0,24%

5 20 1052,15 998,74 -5,08%

6 20 6516,47 6514,09 -0,04%

13 50 2440,78 2440,78 -0,00%

14 50 9138,25 9138,25 -0,00%

15 50 2620,54 2616,11 -0,17%

16 50 2746,3 2719,89 -0,96%

17 75 1783,33 1783,33 -0,00%

18 75 2394,16 2394,16 -0,00%

19 100 8734,35 8722,49 -0,14%

20 100 4139,80 4130,48 -0,23%

The third column in Table 5.10 lists the solutions achieved by the Threshold

Algorithm for HVRP under non-split delivery assumption (from Chapter 4, page 96).

The fourth column lists the solutions achieved under split delivery assumption. As

127

seen from the table, by allowing split deliveries, better solution costs are achieved in

instances 3, 4, 5, 6, 15, 16, 19 and 20. For instance 13, 14, 17 and 18, no

improvement is achieved by split deliveries. That is all solution costs under split

deliveries are either superior or equal to non-split delivery solution costs. This shows

that allowing split deliveries in a distribution problem may lead to considerable

decrease in distribution costs. The detailed solutions belonging to each test instance

can be seen in Appendix F.

The solutions achieved for HVRP with split deliveries are also compared with the

best known solutions in the literature. However, the best solutions in the literature

assume non-split delivery strategy. As stated before, there are no benchmark

instances and solutions considering both heterogeneous fleet and split deliveries

together. Since allowing split deliveries in HVRP is a relaxation of HVRP, the

solutions achieved in this dissertation are compared with the best known literature

solutions for HVRP. The comparison is given in Table 5.11. The authors column lists

the studies which have obtained the best known solution. T refers to Taillard (1999),

GLMT refers to Gendreau et. al. (1999), and CT refers to Choi and Tcha (2007).

Table 5.11 Comparison of HVRP with split deliveries and best known literature solutions for HVRP

Problem

No

Number

of Nodes

Best

Known
Authors

Threshold

Algorithm

Deviation

in Cost

3 20 961,03 T, GLMT, CT 970,53 0,98%

4 20 6437,3 T, GLMT, CT 6421,88 -0,24%

5 20 1007,05 CT 998,74 -0,83%

6 20 6516,47 GLMT 6514,09 -0,04%

13 50 2406,36 CT 2440,78 1,41%

14 50 9119,03 T, GLMT, CT 9138,25 0,21%

15 50 2586,37 T, GLMT, CT 2616,11 1,14%

16 50 2720,43 CT 2719,89 -0,02%

17 75 1744,83 CT 1783,33 2,16%

18 75 2371,49 CT 2394,16 0,95%

19 100 8661,81 T 8722,49 0,67%

20 100 4039,49 CT 4130,48 2,20%

128

As seen from Table 5.11, solution costs achieved in instances 4, 5, 6, and 16

dominate the solution costs of best known solutions. Solution costs achieved for the

other test instances are within reasonable limits with the best known solutions.

These test problems have not been considered under split delivery assumptions

before. There is no information if the previous studies (Taillard 1999, Gendreau et.

al. 1999, Choi and Tcha 2007) can handle split deliveries or not. Therefore, the

solutions achieved for test instances 4, 5, 6 and 16 provide new benchmark values for

the future studies in this area. In summary, according to the performance test results,

it can be said that the Threshold Algorithm is also quite successful to handle and

solve HVRP with split deliveries.

5.6 Fresh Goods Distribution of a Retail Store: Employing Split Delivery

Strategy

The fresh goods distribution problem of the retail chain store (located in Izmir,

Turkey) is handled employing the non-split delivery strategy in Chapter 4 of this

dissertation. The problem is a fixed fleet HVRP. In this section, the same distribution

problem is solved under split delivery assumption. In other words, the split delivery

distribution strategy is employed for the retail chain store fresh goods distribution.

Splitting the problem into subproblems and vehicle assignment of the split

delivery case is similar to the non-split delivery case. Since split deliveries are

allowed in the routes of vehicles, only the routing phase differs. Therefore, the

subproblems and the vehicles assigned to each subproblem are just as same as HVRP

(under non-split delivery assumption, from Chapter 4). The subproblems can be seen

in Figure 5.8.

129

Figure 5.8 Subproblems of the retail chain

store distribution problem

5.6.1 Routings Under Split Delivery Strategy

All subproblems are solved by Model IPM (Formulation 5.4). The results of non-

split delivery and split delivery strategies together with the current performance of

the retail chain store can be seen in Table 5.12. (Mizrak Ozfirat, Ozkarahan, 2007).

Table 5.12 Comparison of different distribution strategies and the current performance of the firm

No. of

Vehicles

Allocated

Fixed

Cost

(YTL)

Traveling

Cost

(YTL)

Total

Cost

(YTL)

Solution

Time

(sec.)

Improvement

(%)

Current

Performance

of the firm

5 5362 3908 9270 __ __

Non-split

deliveries
4 4311 3792 8103 36 12,59

Split

deliveries
4 4311 3705 8016 657 13,53

As seen from Table 5.12, both strategies decrease the current distribution costs of

the firm in a considerable way. However, split delivery strategy leads to 13,53%

improvement in the current distribution performance and dominates non-split

130

delivery strategy in terms of solution cost. This is expected in the sense that splitting

deliveries is relaxation of the problem.

The improvement is achieved in the traveling cost. In other words, routes have

changed so that traveling costs have decreased. The routings can be seen in Figure

5.9. However, when solution times are considered, it is seen that solution under split

delivery strategy is obtained in a much longer time than non-split delivery strategy

solution. This is mainly due to the approach employed. CP is employed for the non-

split delivery strategy whereas IP is employed for the split delivery strategy.

Therefore, it can be said that CP is able to achieve faster solutions compared to IP.

Figure 5.9 Routes of retail chain store according to (a) non-split deliveries (b) split deliveries

Looking at Figure 5.9, it can be seen that there is only one demand node which is

visited by two vehicles. That is, demand of only one node is split between two

vehicles. However, the overall solution cost turns out to have improved. In summary,

by allowing split deliveries, even a slight change in the routes may lead to

considerable improvement in the solution cost. Therefore, the solutions achieved in

this dissertation are presented to the retail chain store and split delivery strategy is

advised to the firm.

131

CHAPTER SIX

THRESHOLD ALGORITHM FOR VRP WITH TIME WINDOWS

Vehicle routing problems are important and well-known combinatorial

optimization problems occurring in many transport logistics and distribution systems

of considerable economic significance. The vehicle routing problem with time

windows (VRPTW) has recently received a lot of attention in the literature. Firstly,

because VRPTW is still one of the most difficult problems in combinatorial

optimization and consequently presents a great challenge. Secondly, because of the

wide applicability of time window constraints in real-world cases. Mainly, due to

these two reasons, the objective of this chapter is develop an effective procedure for

VRPTW which can be both employed in practical real life applications and

theoretical problems in the literature.

In the VRPTW, the objective is to find a set of minimum-cost vehicle routes,

which start at a central depot, service a set of customers with known demands, and

return to the depot. Each customer must be serviced once by a vehicle, and the total

demands of the customers serviced by the vehicle must not exceed the capacity of the

vehicle. Moreover, each customer must be serviced within a specified time window.

If a vehicle arrives at a customer earlier than the lower bound of the customer’s time

window, the vehicle must wait until the service is possible. In some applications,

service after the upper bound of the time window is also allowed, but a penalty is

set for the service. The depot has also a time window, and all the vehicles must

return by the closing time of the depot. The objective is to minimize the number of

tours or routes, and then for the same number of routes, to minimize the total traveled

distance. VRPTW has a wide range of applications such as Chinese Postman

Problem, bank deliveries, school bus routing and so on.

Within this chapter, the Threshold Algorithm is modified according to time

window assumptions and its performance on VRPTW is tested. In the first section of

the chapter, the modifications made on the Threshold Algorithm are defined.

However, clustering phase of the algorithm turned out to be inapplicable when time

132

windows are incorporated into the problem. Therefore, Threshold Algorithm can

only be employed when the problem is already in clusters. In other words, a large

scale VRPTW cannot be split into clusters and hence, it is not solvable by the

Threshold Algorithm.

Since, large scale VRPTWs cannot be handled by the Threshold Algorithm, a set

covering based algorithm is developed for these type of problems. This algorithm is

defined in Section 6.1.2. In Figure 6.1, the classification made on VRPTW and the

proposed algorithms in this chapter can be seen.

Figure 6.1 Classification on VRPTW and the

corresponding algorithms proposed in this

dissertation

The performance of the proposed algorithms are tested on the well known

Solomon benchmark instances from the literature (Cordeau et. al., 2002).

Computational results of performance tests are given in Section 6.2. Finally,

concluding remarks on VRPTW are given in Section 6.3.

6.1 Proposed Algorithm for VRPTW

Due to the special characteristics of time windows, VRPTW is considered under

two cases as clustered problems and large scale problems. For clustered problems,

the Threshold Algorithm is modified according to time window assumptions. On the

other hand, for large scale VRPTW, a novel SetCovering Algorithm is developed.

Both algorithms are explained in detail in this section.

133

6.1.1 Threshold Algorithm Modifications

The Threshold Algorithm, which is used to handle HVRP and SDVRP, is

modified according to time window assumptions. However, there exist some

problems in the clustering phase of the algorithm due to the special characteristics of

time window assumptions.

In VRPTW, each node has a certain time window. When dividing the main

problem into subproblems, time window requirements should be consistent with each

other. Otherwise subproblem would turn out to be infeasible. In the clustering phase

of the algorithm, however, there is no way to consider time windows of nodes. This

is due to the decision variables defined in the clustering phase, which are (Refer to

Table 4.2 from Chapter 4, page 80):

otherwise
jsubproblem toassigned isvehiclevif

w

otherwise
jsubproblem toassigned isinode if

y

vj

ij

0
.1

:

0
.1

:

There are no time and distance dimensions in the clustering phase. In order to

handle time windows, decision variables, which define routes, are necessary such as:

otherwise
jodenotinode from travels vvehicle if

X ijv 0
.1

:

However, this decision variable is the subject of the routing phase. Therefore, it is

not possible to handle VRPTW with cluster first route second algorithms.

The clustering phase is not applicable. However, as long as the problem size is

convenient, VRPTW can be solved by constraint programming (CP) approach in the

routing phase of the proposed algorithm. The size of the problems cannot be

decreased by splitting up the problem. But, VRPTW has also some advantages to

reduce the search space and hence decrease the problem size. Since, all nodes require

to be visited within a certain time window, some of the arcs on the graph are

eliminated due to inconsistent time windows. In order to define these inconsistencies,

some of the notation belonging to VRPTW should be given:

134

.inode attime ServiceService

.inode toarrive can vehicle atime LatestLatest

inode toarrive can vehicle atime EarliestEarliest

i

i

i

:

:

.:

The inconsistencies according to time window requirements can be defined as

follows:

i. If the latest time of node j is smaller than the earliest time of node i, then

no vehicle is allowed to travel from node i to node j.

Example:
Node Earliest Time Latest Time

i 110 150

j 10 90

In this case no vehicle is allowed to travel from node i to node j since

Latestj<Earliesti.

ii. If latest time of node j is smaller than the sum of leaving time of node i

and traveling time from node i to node j, then no vehicle is allowed to

travel from node i to node j.

Example:
Node Earliest Time Latest Time Service Time Traveling Time

(i to j)

i 110 150 10 20

j 100 130 10 20

The earliest possible time to leave node i = Earliesti +Servicei =120

The earliest possible arrival time to node j from node i = 120+ Traveling

Time=140

Since the earliest possible arrival time to j from i is greater than Latesti

(140>130), no vehicle is allowed to travel from node i to node j.

Since the second case covers the first one, only the second case is set as a rule.

Considering this rule, a matrix M is built where,

 ≤++

otherwise
LatestTravelingServiceEarliest if

M jijii
ij 0

1
:

135

Using matrix M, the search space of variables can be reduced. Considering time

window assumptions and the inconsistency rule, a constraint programming (CP)

model, called Time Window Model (Model TWM), is built. The notation used in the

model is given in Table 6.1 and the model is given in Formulation 6.1. As stated

previously, the clustering phase of the Threshold Algorithm is inapplicable to

VRPTW. Routing phase is applied directly. Model TWM is the CP model of the

routing phase of Threshold Algorithm, which is modified according to time window

assumptions (Mizrak Ozfirat and Ozkarahan, 2008a).

Table 6.1 Notation used in model TWM

{ }
{ }

()
...0:,

0
:

...0:,:

...0:,..0:,
0

:

:

,.....,2,1

.0;0

},....,2,1{

:

.:

,
0
1

:

,:

.,:

.,:

.,:

:

...1:,:

.:

...0:,

:

.:

:

c
iiii

i

ci

ccij

v

c

cc
jijii

ij

ccij

ci

ci

ci

ccij

vv

j

cj

v

c

ni
otherwise

EarliestTifTEarliest
inode attime WaitingW

niinode totime ArrivalT

njni
node j. node i to vels from ehicle tra if no v

node j. node i to vels from e that trathe vehiclNumber of
 X

Variables Decision

nVehicles

node depot denotes ""StoresTotal

nStores

Sets

tour its complete should vehicle atime LatestReady

.0..n:j,0..n:i
otherwise

LatestTravelingServiceEarliest if
M

.0..n:j,0..n:ijnode toinode from time TravelingTraveling

0..n:iinode attime ServiceService

0..n:iinode toarrive can vehicle atime EarliestEarliest

0..n:iinode toarrive can vehicle atime LatestLatest

.0..n:j,0..n:ij,node toinode from DistanceD

nvvvehicle ofCapacityCap

jroute ofdemand TotalRoutecap

njjodenof:DemandDemand

ehicles.vofNumbern

served betoodesnofNumbern

Parameters

 −

=

=

∪=

=

 ≤++

p

136

Constraints (6.1a) and (6.1b) assure that each customer is visited exactly once. In

addition, each vehicle should visit the depot once. This is included in the model with

constraints (6.1c) and (6.1d). Constraint set (6.1e) provides that a vehicle visiting a

customer should leave that customer. It is stated by constraint set (6.1f) that capacity

of vehicles should not be exceeded. Constraints (6.1g) and (6.1h) assure that each

node is visited within its specified time window. Constraints (6.1i) state that arrival

time to a node must be greater than or equal to the sum of arrival time to the previous

node, waiting time and service time there and the traveling time in between. Similar

() ()

() ()

())1m(Total jiMX

)1l(W

)1k(T

1j(Vehicles vReadyTravelingServiceWTvX

)1i (Stores jTTravelingServiceWTvX

)1h(Stores iEarliestWT

)1g(Stores iLatestWT

)1f(Vehicles vCap)*Demandv(X

)1e(Total iXX

)1d(Vehicles vv)(X

)1c(Vehicles vv)(X

)1b(Stores j)(X

)1a(Stores i)(X

Solve

TWMModel

ijij

jjjj
Storesj

j

j
Vehicles v Totali

ijiiiij

iii

iii

vj
Totali iTotal,jj

ij

Totalj
ji

Totalj
ij

Totalj
j

Totali
i

Totali
ij

Totalj
ij

.6,0

.60

.60

.6*

.6*

.6

.6

.6

.6

.61

.61

.610

.610

:

0

0

00

0

0

∈∀≤>

=

=

∈∀≤+++=

∈∀≤+++=

∈∀≥+

∈∀≤+

∈∀≤=

∈∀=

∈∀==

∈∀==

∈∀=>

∈∀=>

∑

∑ ∑

∑ ∑

∑∑

∑

∑

∑

∑

∈

∈ ∈

∈ ≠∈

∈∈

∈

∈

∈

∈

(6.1)

137

to these constraints, (6.1j) states that arrival time to the depot node must be less than

or equal to the maximum tour completion time (Ready). Initialization of T and W

variables are included in the model with (6.1k) and (6.1l). Finally, constraints (6.1m)

assure Xij to take the value of “0” if it is not possible to move from i to j due to their

time windows (due to inconsistent time windows).

In Formulation 6.1, the objective function and the subtour elimination constraints

are missing. Subtour elimination constraints are handled with the Subtour

Elimination Algorithm (SEA) (previously employed for HVRP in Chapter 4 of this

dissertation, page 89). The flow of the SEA can be seen in the following.

OPL Script SEA:
1. Start;

2. MinimumDistance:=MaximumInteger;

3. Let S be the next solution of model TWM;

4. If S≠∅ then 5, else 9;

5. Distance:=Total Distance Traveled in S;

6. If S is a full solution (does not contain subtours), then 7, else 8

7. If Distance<MinimumDistance, then MinimumDistance:=Distance;

8. Go to 3;

9. Stop;

SEA handles the first possible solution of the Model TWM. It controls whether

the solution consists of a subtour. If it is a full solution (does not contain any

subtours), the value of total distance traveled is recorded as MinimumDistance. Then

the algorithm takes the next possible solution (of Model TWM) and makes subtour

controls. If it is not a subtour and the total distance traveled belonging to this solution

is less than MinimumDistance, it is recorded as the new MinimumDistance. The

procedure goes on in the same way until all possible solutions are handled. Once

enumeration is completed, the final MinimumDistance value turns out to be the

optimum solution of the problem. Shortly, it can be said that SEA makes complete

enumeration among the feasible solutions of Model TWM and finds the minimum

distance routes which do not contain any subtours. The OPL code of Model TWM

is given in Appendix G (OPL code of SEA can be found in Appndix A).

138

6.1.2 Set Covering Based Algorithm

As stated before, Model TWM in the proposed algorithm can only be employed as

long as the size of the problem permits. When the problem size increases, it becomes

unsolvable with the Threshold Algorithm. Therefore, for larger scale problems, a set

covering based algorithm is developed. The algorithm depends on covering all nodes

only by using allowable movements. An allowable movement from one node to

another is defined by the time window requirements of the two nodes. Movement

from i to j is allowed only if

jijii LatestTravelingServiceEarliest ≤++

The matrix M, which defines the allowable movements according to time

windows, is built (as in Section 6.1.1).

 ≤++

otherwise
LatestTravelingServiceEarliest if

M jijii
ij 0

1
:

A binary IP model, called the Model SetCovering, is built, which solves a set

covering problem on matrix M. The notation used in the model is given in Table 6.2.

Model SetCovering is given in Formulation 6.2.

Table 6.2 Notation used in Model SetCovering

{ }

...0:,..0:,
1

:

:
.0;0

},....,2,1{
:

,
0
1

:

,:
.,:

.,:
.,:

:
:

.:
:

ccij

c

cc
jijii

ij

ccij

ci

ci

ci

ccij

v

c

njni
otherwise0

electedsisjtoiarc if
Y

Variables Decision
node depot denotes ""StoresTotal

nStores
Sets

.0..n:j,0..n:i
otherwise

LatestTravelingServiceEarliest if
M

.0..n:j,0..n:ijnode toinode from time TravelingTraveling
0..n:iinode attime ServiceService

0..n:iinode toarrive can vehicle atime EarliestEarliest
0..n:iinode toarrive can vehicle atime LatestLatest
.0..n:j,0..n:ij,node toinode from DistanceD

ehicles.vofNumbern
served betoodesnofNumbern

Parameters

∪=
=

 ≤++

139

{ } (6.2g) Y

(6.2f) TotaljiMY

(6.2e) nY

(6.2d) YY

(6.2c) StoresiY

(6.2b) StoresjY

to subject

(6.2a) DYminimize

gSetCoverin Model

ij

ijij

v
Totalj

0j

Totali
i0

Totalj
0j

Totalj
ij

Totali
ij

ij
Totali Totalj

ij

1,0∈
∈,∀≤

≤

∈∀1

∈∀1

*

:

∑
∑∑

∑
∑

∑ ∑

∈

∈∈

∈

∈

∈ ∈

=

=

=

The model tries to minimize total distance traveled (6.2a) while covering all

nodes exactly once (6.2b, 6.2c). In addition, constraint (6.2d) state that the number of

arcs (vehicles) leaving the depot node should be equal to the number of incoming

arcs.

According to this, (6.2e) assures the number of arcs outgoing from the depot node

should not exceed the number of available vehicles. Finally, constraints (6.2f)

provide only to select the allowable movements from matrix M.

Within Model SetCovering, subtours, capacity requirements, and maximum tour

completion requirement are not considered. These are not considered within the

model in order to decrease problem size and to speed up the procedure. All of these

concepts are handled by an OPL script algorithm given below.

(6.2)

140

OPL Script Algorithm:

1. Start;

2. Solve Model SetCovering, let S be the solution;

3. If S does not contain any subtours then go to 7;

4. Identify subtours;

5. Add corresponding subtour elimination constraints to Model SetCovering;

6. Go to 2;

7. Identify overcapacities in S;

8. Add corresponding overcapacity elimination constraints to Model SetCovering;

9. Identify overtimes in S;

10. Add corresponding overtime elimination constraints to Model SetCovering;

11. Identify time window violations in S;

12. Add corresponding time window violation elimination constraints to Model

SetCovering;

13. If there are no overcapacity, overtime and time window violations go to 15;

14. Go to 2;

15. STOP, S is the optimum solution;

The script algorithm solves the Model SetCovering. The solution is identified

whether it contains any subtours or not. If subtours exist then corresponding subtour

constraints are included in Formulation 6.2 and the model is resolved. The model is

solved iteratively in this manner until a solution without any subtours is achieved

(Steps 2 to 6). When a full solution is achieved, it is controlled in terms of

overcapacities, overtimes and time window violations. If these are identified, the

corresponding constraints are added back into Formulation 6.2 and the model is

resolved.

To integrate the script algorithm and the SetCovering model, additional

constraints, which belong to subtours, overcapacities, overtimes and time windows,

are included into Formulation 6.2. Necessary notation is given in Table 6.3.

141

Table 6.3 Additional notation for SetCovering model

Additional constraints to SetCovering model to work together with OPL Script

algorithm:

()
()

(6.2p) OutrangetrhsY

(6.2n) OutrangetrhsY

(6.2m) ngeOvertimeratrhsY

(6.2l) ngeOvertimeratrhsY

(6.2k) geOvercaprantCapacityDemandY

(6.2j) geOvercaprantCapacityDemandY

(6.2i) geSubtourrantrhsY

(6.2h) geSubtourrantrhsY

t
ni

outoftwoutoftw

t
ni

outoftwoutoftw

t
ni

imeexceedingtmexceedingtie

t
ni

imeexceedingtmexceedingtie

emandexceedingd
ni

emandexceedingdmandxceedingdee

emandexceedingd
ni

emandexceedingdmandxceedingdee

t
ni

subtourssubtours

t
ni

subtourssubtours

c

it1it

c

1itit

c

it1it

c

1itit

ti

c

it1it

ti

c

1itit

c

it1it

c

1itit

∈∀≤

∈∀≤

∈∀≤

∈∀≤

∈∀≤

∈∀≤

∈∀≤

∈∀≤

∑

∑

∑

∑

∑

∑

∑

∑

−∈

−∈

−∈

−∈

−∈

−∈

−∈

−∈

+

+

+

+

+

+

+

+

3

3

2

2

*

*

}1,..,0{

}1,..,0{

}1,..,0{

}1,..,0{

}1,..,0{

}1,..,0{

}1,..,1{

}1,..,1{

}.,...,2,1{

}.,...,2,1{

}.,...,2,1{

}.,...,2,1{

:

13

12

1

...1:,:

...1:,:

...1:,:

...1:,:

.lg

.lg

.lg

.lg

:

ionoftwviolatNoOutrange

ofovertimeNongeOvertimera

cityofovercapaNogeOvercapran

ofsubtoursNogeSubtourran

Sets

olation...Nooftwvi t:violation, window oid timealue to avllowable v:Maximum arhs

time...Noofover t, t:overtime oidalue to avllowable v:Maximum arhs

vehicles . ofapacityCapacity:C

ours...Noofsubtr t, t:eak subtoualue to brllowable v:Maximum arhs

ationNooftwviolttviolation window eded in timh is inclu node whicThe ioutoftw

meNoofovertitrtime tded in oveh is inclu node whicThe iimeexceedingt

pacityNoofovercattrcapacity ded in oveh is inclu node whicThe iemandexceedingd

rsNoofsubtouttour tded in subh is inclu node whicThe isubtours

orithmAPL Script d by the O identifieviolations window of timeation: No Nooftwviol

orithm Script Aby the OPLdentified overtime ime: No of Noofoverti

orithm Script Aby the OPLdentified pacities i of overcapacity: NoNoofoverca

orithm Script Aby the OPLdentified subtours irs: No of Noofsubtou

Parameters

t

t

t

th
ti

th
ti

th
ti

th
ti

=

=

=

=

142

By this procedure, all the subtour, capacity, overtime and time window constraints

are excluded from the model at the very first iteration. Hence the problem size is

reduced in a considerable way. Then at every iteration, the solution is checked for all

these violations. If there exist any of them, then the belonging constraints are added

back into Model SetCovering and the model is resolved. With this algorithm, only

the constraints (subtour, capacity, time window and overtime), which affect the

global optimum, are considered. All other constraints are excluded and the problem

is reduced to a solvable size.

(6.2h) and (6.2i) are subtour elimination constraints. (6.2j) and (6.2k) are

overcapacity constraints. Overtime constraints are included by (6.2l) and (6.2m).

Finally, constraints (6.2n) and (6.2p) belong to time window violations. The flow of

algorithm can be seen in Figure 6.2. The OPL Script code is given in Appendix G.

Figure 6.2 Flow of SetCovering Algorithm

143

SetCovering Algorithm provides the global optimum. That is, if a problem is

solvable by the SetCovering Algorithm, then the solution achieved to that problem is

the global optimum. This is shown in the following section (Mizrak Ozfirat and

Ozkarahan, 2008b).

6.1.2.1 Demonstrating that SetCovering Algorithm Provides Global Optimum

In a VRPTW mathematical model, all of the subtour, overcapacity, overtime and

time window violation constraints should exist in order to achieve a feasible solution.

However, at the very first step of the SetCovering Algorithm, all of these constraints

are excluded from the SetCovering Model (Formulation 6.2, page 139). Then, every

solution achieved by the SetCovering Model is controlled by the script algorithm

whether it contains any of these violations. If there are any, then the solution

achieved is not feasible. And hence, these are included back into the model as

constraints. All the constraints included are valid cuts of the model. The model is

solved iteratively in this manner until a feasible solution is achieved. This feasible

solution is also the global optimum since the total traveling cost is minimized as the

objective.

• Firstly, consider a VRPTW with 2 demand nodes where “0” denotes the

depot node.

Figure 6.3 Two node VRPTW

example problem

There can be only two subtours in this problem and both contain only a single

node. These are 1-1 and 2-2 subtours as shown in Figure 6.4a and 6.4b.

Figure 6.4 Possible subtours of a

two node VRPTW

144

The constraints which break these two subtours should exist in the mathematical

model of a VRPTW.

• Next, consider a VRPTW with 3 demand nodes where “0” denotes the depot

node.

Figure 6.5 Three node VRPTW

example problem

In this problem, there can be three subtours with a single node and three subtours

with two nodes. These are:

Subtours of 1 node Subtours of 2 nodes

1-1 1- 2-1

2-2 1- 3-1

3-3 2- 3-2

Figure 6.6 Possible subtours of a three node VRPTW

145

Representation of the subtours can be seen in Figure 6.6. Similar to the two-nodes

problems, the constraints which break these subtours should exist in the

mathematical model of a VRPTW.

• These examples can be generalized to a problem of n nodes. In Table 6.4, the

number of subtours according to the number of nodes in the problem can be

seen.

Table 6.4 Number of subtours according to the number of demand nodes

Number of

Nodes (i)

Subtour of

1 node

Subtour

of 2 nodes

Subtour

of 3 nodes

Subtour of 4

nodes

Subtour of

5 nodes
… Subtour of

(n-1) nodes

2

1
2

- - - - - -

3

1
3

2
3

- - - - -

4

1
4

2
4

3
4

- - - -

5

1
5

2
5

3
5

4
5

- - -

……… - -

n

1
n

2
n

3
n

4
n

5
n …

−1n
n

As seen from Table 6.4, number of subtour constraints increase quadratically as

number of nodes increase. When there are n demand nodes in the problem, including

all subtour constraints makes the problem np-hard and hence, it may be insolvable.

Therefore, in the SetCovering Algorithm proposed in this dissertation, the aim is to

decrease problem size by removing the constraints, which in fact do not affect the

optimum solution.

In the traditional VRPTW mathematical models, together with all subtour

constraints, a feasible region is constituted for the problem. Then the model searches

146

this region to find the optimum solution. A representative figure of the feasible

region is given in Figure 6.7a. Assume that Lines 1 to 5, which form the feasible

region (shaded region in Figure6.7a) belong to subtour constraints. The optimum

solution is within this region. SetCovering Algorithm is able to find the optimum

solution within this region faster.

Figure 6.7 Demonstration of how SetCovering Algorithm works

The flow of the SetCovering algorithm is explained by a demonstrative example:

i. In the SetCovering Algorithm, by excluding all the subtour constraints, the

feasible region is enlarged (Figure 6.7b). Model SetCovering (Formulation

6.2, page 139) is solved. Let the optimum solution be at Point A. However,

this point is not feasible for the original problem (Figure 6.7a) .

ii. The script algorithm identifies the subtours, which causes infeasibility and

adds these constraints back into Model SetCovering (Line 1 in Figure 6.7c).

The feasible region becomes as in Figure 6.7c. Model SetCovering is

resolved. Let the new optimum solution be Point B, which is again infeasible.

147

iii. The script algorithm adds again the necessary subtour constraints back

into Model SetCovering (Line 2 in Figure 6.7d). The new feasible region

becomes as in Figure 6.7d. Model SetCovering is solved once more. Let the

optimum solution be Point C. This solution is also feasible according to the

original feasible region (Figure 6.7a). Therefore, it is the global optimum

solution of the problem.

As seen from the example, by use of SetCovering Algorithm, on the way to the

optimum solution, some of the subtour constraints are not considered at all (Lines 3,

4 and 5 from Figure 6.7a) since they do nor affect the optimum solution. In other

words, the advantage of SetCovering Algorithm is to decrease problem size and lead

to faster solutions. Overcapacity, overtime and time window constraints are treated

just as similar to subtour constraints. That is, the overcapacity, overtime and time

window constraints, which do not affect the optimum solution, are not considered at

all. In conclusion, it can be said that, when a solution is achieved by the SetCovering

Algorithm, it is the global optimum solution.

6.2 Performance Tests on Benchmark Problems

The routing part of the Threshold algorithm (Section 6.1.1) can be employed

when the problem is already in clusters. In other words, a time windowed VRP

cannot be split into clusters. But if the problem is naturally clustered then routing

procedure can be applied. For other problems, the SetCovering Algorithm is

employed (Section 6.1.2).

In the literature, the most popular test problems for VRPTW are known as

Solomon test problems (Cordeau et. al., 2002). These problems appear in three sets.

First set is the clustered problems set. Second set consists of problems, which have

evenly distributed nodes. The third set is an intersection of the first two. The data

belonging to these set of test problems are given in Table 6.5, 6.6 and 6.7

respectively.

148

Table 6.5 Data belonging to C series problems

Problem
Number

of Nodes

Number

of

Vehicles

Capacity

of

Vehicles

Due

Date
Problem

Number

of Nodes

Number

of

Vehicles

Capacity

of

Vehicles

Due

Date

C101-25 25 10 200 1236 C201-25 25 10 700 3390
C101-50 50 15 200 1236 C201-50 50 15 700 3390
C101- 100 25 200 1236 C201-100 100 25 700 3390
C102-25 25 10 200 1236 C202-25 25 10 700 3390
C102-50 50 15 200 1236 C202-50 50 15 700 3390
C102- 100 25 200 1236 C202-100 100 25 700 3390
C103-25 25 10 200 1236 C203-25 25 10 700 3390
C103-50 50 15 200 1236 C203-50 50 15 700 3390
C103- 100 25 200 1236 C203-100 100 25 700 3390
C104-25 25 10 200 1236 C204-25 25 10 700 3390
C104-50 50 15 200 1236 C204-50 50 15 700 3390
C104- 100 25 200 1236 C204-100 100 25 700 3390
C105-25 25 10 200 1236 C205-25 25 10 700 3390
C105-50 50 15 200 1236 C205-50 50 15 700 3390
C105- 100 25 200 1236 C205-100 100 25 700 3390
C106-25 25 10 200 1236 C206-25 25 10 700 3390
C106-50 50 15 200 1236 C206-50 50 15 700 3390
C106- 100 25 200 1236 C206-100 100 25 700 3390
C107-25 25 10 200 1236 C207-25 25 10 700 3390
C107-50 50 15 200 1236 C207-50 50 15 700 3390
C107- 100 25 200 1236 C207-100 100 25 700 3390
C108-25 25 10 200 1236 C208-25 25 10 700 3390
C108-50 50 15 200 1236 C208-50 50 15 700 3390
C108- 100 25 200 1236 C208-100 100 25 700 3390
C109-25 25 10 200 1236
C109-50 50 15 200 1236
C109- 100 25 200 1236

149

Table 6.6 Data belonging to R series problems

Problem
Number

of Nodes

Number

of

Vehicles

Capacity

of

Vehicles

Due

Date
Problem

Number

of Nodes

Number

of

Vehicles

Capacity

of

Vehicles

Due

Date

R101-25 25 10 200 230 R201-25 25 10 1000 1000
R101-50 50 15 200 230 R201-50 50 15 1000 1000
R101-100 100 25 200 230 R201-100 100 25 1000 1000
R102-25 25 10 200 230 R202-25 25 10 1000 1000
R102-50 50 15 200 230 R202-50 50 15 1000 1000
R102-100 100 25 200 230 R202-100 100 25 1000 1000
R103-25 25 10 200 230 R203-25 25 10 1000 1000
R103-50 50 15 200 230 R203-50 50 15 1000 1000
R103-100 100 25 200 230 R203-100 100 25 1000 1000
R104-25 25 10 200 230 R204-25 25 10 1000 1000
R104-50 50 15 200 230 R204-50 50 15 1000 1000
R104-100 100 25 200 230 R204-100 100 25 1000 1000
R105-25 25 10 200 230 R205-25 25 10 1000 1000
R105-50 50 15 200 230 R205-50 50 15 1000 1000
R105-100 100 25 200 230 R205-100 100 25 1000 1000
R106-25 25 10 200 230 R206-25 25 10 1000 1000
R106-50 50 15 200 230 R206-50 50 15 1000 1000
R106-100 100 25 200 230 R206-100 100 25 1000 1000
R107-25 25 10 200 230 R207-25 25 10 1000 1000
R107-50 50 15 200 230 R207-50 50 15 1000 1000
R107-100 100 25 200 230 R207-100 100 25 1000 1000
R108-25 25 10 200 230 R208-25 25 10 1000 1000
R108-50 50 15 200 230 R208-50 50 15 1000 1000
R108-100 100 25 200 230 R208-100 100 25 1000 1000
R109-25 25 10 200 230 R209-25 25 10 1000 1000
R109-50 50 15 200 230 R209-50 50 15 1000 1000
R109-100 100 25 200 230 R209-100 100 25 1000 1000
R110-25 25 10 200 230 R210-25 25 10 1000 1000
R110-50 50 15 200 230 R210-50 50 15 1000 1000
R110-100 100 25 200 230 R210-100 100 25 1000 1000
R111-25 25 10 200 230 R211-25 25 10 1000 1000
R111-50 50 15 200 230 R211-50 50 15 1000 1000
R111-100 100 25 200 230 R211-100 100 25 1000 1000
R112-25 25 10 200 230
R112-50 50 15 200 230
R112-100 100 25 200 230

150

Table 6.7 Data belonging to RC series problems

Problem

Number

of

Nodes

Number

of

Vehicles

Capacity

of

Vehicles

Due

Date
Problem

Number

of

Nodes

Number

of

Vehicles

Capacity

of

Vehicles

Due

Date

RC101-25 25 10 200 240 RC201-25 25 10 1000 960

RC101-50 50 15 200 240 RC201-50 50 15 1000 960

RC101-100 100 25 200 240 RC201-100 100 25 1000 960

RC102-25 25 10 200 240 RC202-25 25 10 1000 960

RC102-50 50 15 200 240 RC202-50 50 15 1000 960

RC102-100 100 25 200 240 RC202-100 100 25 1000 960

RC103-25 25 10 200 240 RC203-25 25 10 1000 960

RC103-50 50 15 200 240 RC203-50 50 15 1000 960

RC103-100 100 25 200 240 RC203-100 100 25 1000 960

RC104-25 25 10 200 240 RC204-25 25 10 1000 960

RC104-50 50 15 200 240 RC204-50 50 15 1000 960

RC104-100 100 25 200 240 RC204-100 100 25 1000 960

RC105-25 25 10 200 240 RC205-25 25 10 1000 960

RC105-50 50 15 200 240 RC205-50 50 15 1000 960

RC105-100 100 25 200 240 RC205-100 100 25 1000 960

RC106-25 25 10 200 240 RC206-25 25 10 1000 960

RC106-50 50 15 200 240 RC206-50 50 15 1000 960

RC106-100 100 25 200 240 RC206-100 100 25 1000 960

RC107-25 25 10 200 240 RC207-25 25 10 1000 960

RC107-50 50 15 200 240 RC207-50 50 15 1000 960

RC107-100 100 25 200 240 RC207-100 100 25 1000 960

RC108-25 25 10 200 240 RC208-25 25 10 1000 960

RC108-50 50 15 200 240 RC208-50 50 15 1000 960

RC108-100 100 25 200 240 RC208-100 100 25 1000 960

151

6.2.1 Tests on Clustered Problems (C Series)

The locations of nodes in clustered problems can be seen in Figure 6.8.

Nodes of C100 Problems

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

(a)

Nodes of C200 Problems

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100
(b)

Figure 6.8 The nodes of C100 series can be seen in (a) and C200 series can

be seen in (b)

152

Since the problems in this set are in natural clusters, the routing phase of the

Threshold Algorithm (Section 6.1.1) is employed. In other words, each cluster is

solved by Model TWM (Formulation 6.1). Computational results can be seen in

Tables 6.8 and 6.9. In Table 6.8, the solutions achieved are compared with the

approximate optimal solutions in the literature and in Table 6.9, comparison with the

best known heuristic solutions are given.

Table 6.8 Performance of the proposed algorithm compared with best known solutions in the literature

Proposed Algorithm Proposed Algorithm
Problem

No

Approx.

Optimal

Solutions
Cost

Deviation

in Cost

Time

(sec.)

Problem

No

Approx.

Optimal

Solutions
Cost

Deviation

in Cost

Time

(sec.)

C101-25 191,3 191,7 0,23% <=1 C201-25 214,7 215,5 0,39% <=1
C101-50 362,4 363,2 0,21% <=1 C201-50 360,2 361,8 0,44% 118
C101-100 827,3 828,9 0,19% <=1 C201-100 589,1 591,6 0,42% 281
C102-25 190,3 190,7 0,19% <=1 C202-25 214,7 215,5 0,39% 46
C102-50 361,4 362,1 0,19% <=1 C202-50 360,2 361,8 0,44% 166
C102-100 827,3 828,9 0,19% 4 C202-100 589,1 591,6 0,42% 484
C103-25 190,3 190,7 0,19% <=1 C203-25 214,7 215,5 0,39% 21
C103-50 361,4 362,1 0,19% <=1 C203-50 359,8 361,8 0,55% 206
C103-100 826,3 828,9 0,31% 27 C203-100 588,7 591,2 0,42% 415
C104-25 186,9 190,7 1,97% 45 C204-25 213,1 215,5 1,13% 183
C104-50 358,0 362,1 1,13% 62 C204-50 350,1 361,8 3,23% 361
C104-100 822,9 828,9 0,72% 89 C204-100 - 591,6 1024
C105-25 191,3 191,7 0,23% <=1 C205-25 214,7 215,5 0,39% <=1
C105-50 362,4 363,2 0,21% <=1 C205-50 359,8 361,8 0,55% 141
C105-100 827,3 828,9 0,19% <=1 C205-100 586,4 591,6 0,88% 278
C106-25 191,3 191,7 0,23% <=1 C206-25 214,7 215,5 0,39% 44
C106-50 362,4 363,2 0,21% <=1 C206-50 359,8 361,8 0,55% 92
C106-100 827,3 828,9 0,19% <=1 C206-100 586 591,6 0,95% 396
C107-25 191,3 191,7 0,23% <=1 C207-25 214,5 215,5 0,48% 61
C107-50 362,4 363,2 0,21% <=1 C207-50 359,6 361,8 0,61% 177
C107-100 827,3 828,9 0,19% <=1 C207-100 585,8 591,6 0,98% 485
C108-25 191,3 191,7 0,23% <=1 C208-25 214,5 215,5 0,48% 79
C108-50 362,4 363,2 0,21% <=1 C208-50 350,5 361,8 3,12% 403
C108-100 827,3 828,9 0,19% 4 C208-100 585,8 591,6 0,98% 561
C109-25 191,3 191,7 0,23% <=1
C109-50 362,4 363,2 0,21% <=1
C109-100 827,3 828,9 0,19% 9

The column “Approximate Optimal Solutions” in Table 6.8 lists the costs of the

optimal solutions found in the literature. However, these solutions were computed

153

with approximate distances obtained by multiplying the real distances by 10 and

truncating the result. Hence, the authors state that some routes may not satisfy all

time window constraints if real distances were used. Therefore, these solutions are

approximate optimal solutions. As seen from Table 6.8, the solutions achieved by the

Threshold Algorithm are very close to these values. The average deviation in

solution cost from the approximate optimal solutions is 0,55%. This can be

interpreted as some of the solutions achieved may be the real optimum though cannot

be proved. In addition, since the problems are in clusters, problem sizes are not very

large. Therefore, the solution times are very good.

Table 6.9 Performance of the proposed algorithm compared with best known heuristic solutions on C

series problems

Proposed Algorithm
Problem

No

Number

of Nodes

Best Known

By Heuristics Cost
Deviation

in Cost

Solution

Time (sec)

C101 100 828,9 828,9 0,00% <=1
C102 100 828,9 828,9 0,00% 4
C103 100 828,06 828,9 0,10% 27
C104 100 824,8 828,9 0,49% 89
C105 100 828,9 828,9 0,00% <=1
C106 100 828,9 828,9 0,00% <=1
C107 100 828,9 828,9 0,00% <=1
C108 100 828,9 828,9 0,00% 4
C109 100 828,9 828,9 0,00% 9
C201 100 591,6 591,6 0,00% 281
C202 100 591,6 591,6 0,00% 484
C203 100 591,2 591,2 0,00% 415
C204 100 590,6 591,6 0,17% 1024
C205 100 588,9 591,6 0,46% 278
C206 100 588,5 591,6 0,52% 396
C207 100 588,3 591,6 0,56% 485
C208 100 588,3 591,6 0,56% 561

As seen in Table 6.9, in 10 of the 17 problems best known solutions in the

literature are achieved by the proposed approach. Also, the solution times for these

problems turned out to be very promising. For the other seven problems, very close

solutions to the best known are achieved.

154

The routes achieved by the proposed approach for C series problems can be seen

in Appendix I .

6.2.2 Tests on R Series Problems

The locations of nodes in R series problems can be seen in Figure 6.9.

Nodes of R100 Problems

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80

Figure 6.9 The nodes of R series problems

Since these problems cannot be divided into subproblems due to time window

inconsistencies, they are solved by the SetCovering Algorithm developed (Section

6.2.2). Computational results can be seen in Table 6.10.

155

Table 6.10 Performance of the proposed algorithm compared with approximate optimal solutions on R

series problems

Proposed Algorithm
Problem No

Approximate

Optimal Solutions Cost Deviation in Cost

R101-25 617,1 618,3 0,20%

R101-50 1044,0 1046,7 0,26%

R101-100 1637,7 1642,9 0,32%

R102-25 547,1 -

R102-50 909,0 -

R102-100 1466,6 -

R103-25 454,6 -

R103-50 772,9 -

R103-100 1208,7 -

R104-25 416,9 -

R104-50 625,4 -

R104-100 - -

R105-25 530,5 531,5 0,20%

R105-50 899,3 -

R105-100 1355,3 -

The SetCovering Algorithm provides the optimum solution when solvable. It can

be seen from Table 6.10 that the optimum solutions are provided to R101, 25, 50 and

100 node problems and R105-25 node problem. Also, it is known that the optimal

solutions in the literature are achieved with approximate distances. But, with the

SetCovering approach proposed in this dissertation, real optimal solutions to the

Solomon R101 problems and R105-25 problem are provided. Solution times range

between a few minutes and a few hours depending on the problem size. These four

solutions provide the real optimums for the literature.

The other problems could not be handled with the proposed approach but to the

best of our knowledge, 22 of the R series problems could not be solved with exact

approaches in anyway until now. Detailed solutions on R series problems can be seen

in Appendix I.

156

Also, when time windows are tight in a problem, then nearly no subtours exist in

the solution. Time window requirements already eliminate subtours since you cannot

go back in time. In this case, the number of iterations in the SetCovering algorithm is

very small. Hence, it takes negligible time to solve the problem. The procedure turns

out to be very beneficial for such problems.

6.2.3 Tests on RC Series Problems

The locations of nodes in RC series problems can be seen in Figure 6.10.

Nodes of RC Problems

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

Figure 6.10 The nodes of RC series problems

As stated before, RC series consists of an intersection of the R series and C series

nodes. Therefore, this problem can be treated as it is split into six clusters. The

smaller size clusters (from Figure 6.10) are solved by Model TWM as the C series

157

problems. The large size problem (from Figure 6.10) is solved by the SetCovering

approach as in R series problems. Computational results can be seen in Table 6.11.

Table 6.11 Performance of the proposed algorithm compared with approximate optimal solutions on

RC series problems

Proposed

Algorithm

Proposed

Algorithm Problem

No

Optimal

Solutions
Cost

Deviation

in Cost

Problem

No

Optimal

Solutions
Cost

Deviation

in Cost
RC101-25 461,1 482,3 4,39% RC201-25 360,2 361,2 0,29%

RC101-50 944,0 968,8 2,56% RC201-50 684,8 737,3 7,12%

RC101-100 1619,8 RC201-100 1261,8

RC102-25 351,8 352,9 0,32% RC202-25 338,0 338,8 0,24%

RC102-50 822,5 840,3 2,12% RC202-50 - 615,0

RC102-100 1457,4 RC202-100 -

RC103-25 332,8 334,1 0,39% RC203-25 326,4 327,7 0,39%

RC103-50 710,9 736,3 3,45% RC203-50 - 595,7

RC103-100 1258,0 RC203-100 -

RC104-25 306,6 307,1 0,18% RC204-25 - 300,2

RC104-50 545,8 616,9 11,53% RC204-50 - 523,7

RC104-100 - RC204-100 -

RC105-25 411,3 412,4 0,26% RC205-25 338,0 338,9 0,27%

RC105-50 855,3 890,4 3,94% RC205-50 631,0 632,0 0,16%

RC105-100 1513,7 RC205-100 -

RC106-25 345,5 346,5 0,29% RC206-25 324,0 325,1 0,34%

RC106-50 723,2 730,4 0,98% RC206-50 - 611,7

RC106-100 - RC206-100 -

RC107-25 298,3 298,9 0,22% RC207-25 298,3 298,9 0,22%

RC107-50 642,7 645,6 0,45% RC207-50 - 561,4

RC107-100 - RC207-100 -

RC108-25 294,5 295,0 0,17% RC208-25 - 295,0

RC108-50 598,1 599,2 0,18% RC208-50 - 518,5

RC108-100 - RC208-100 -

Within RC series problems, solutions are provided to 32 out of 48 problems with

the proposed approach. For 17 of the 32 solved problems, results achieved have

158

solution costs less within 1% deviation to the approximate optimum solutions in the

literature (shown in red in Table 6.11). However, since these optimum solutions are

obtained by approximate distances and the results achieved (by the proposed

approach) are very close to them, some of these may be the real optimum solutions.

But, this cannot be proved because the proposed approach for RC series problems is

not a global approach but a partially clustered approach. In addition, from the 32

solved problems, solutions are provided to 8 of the unsolved problems in the

literature (shown in bold in Table 6.11). Also, all solution times are within a few

seconds.

The solution costs of the other seven solved problems are quite worse than the

optimum solutions in the literature. These differences are caused by the difference in

the number of vehicles employed. That is, the number of vehicles found by the

proposed approach turned out to be more than the number of vehicles found in the

literature solutions. Hence, the solution costs exceed the literature solution costs in a

recognizable way. But still, the average deviation in solution cost from the

approximate optimal solutions is 1,69% which is quite reasonable.

On the other hand 16 of the RC series problems could not be handled with the

proposed approach. However, 11 of these problems have remained unsolved in the

literature until now. Detailed solutions on RC series problems can be seen in

Appendix I.

In Tables 6.12 and 6.13, the summary of the results achieved for these three sets

of problems can be seen.

Table 6.12 Comparison of the results in this dissertation and the literature solutions

Number of Test

Problems

Number of

Solved

Number of

Unsolved

Literature 51 50 1
Threshold Algorithm

C
51 51 -

Literature 69 47 22
Set Covering

R
69 4 65

Literature 48 29 19
Threshold Alg.&Set Covering

RC
48 32 16

159

Table 6.13 Summary of the results achieved by the proposed approaches

 No. of Solutions to

Unsolved Problems

No. of Optimum

Solutions

No. of Solutions<1%

Cost to Optimum

C 1 - 45

R - 4

RC 8 - 17

In Table 6.12, it is seen that there exist 51 test problems in C series. All 51 test

problems in C series are solved by the Threshold Algorithm. However, in the

literature, one of these test problems have remained unsolved. That is, among the

solutions provided by the Threshold Algorithm, a solution is provided to a problem,

which was previously unsolved in the literature. Solution costs and the solution times

in this set turned out to be very competitive compared to literature solutions.

In R series problems, there exist 69 test instances (Table 6.12). With the

SetCovering Algorithm proposed in this dissertation, only four of them could be

solved. However, the solutions to these four problems are global optimum solutions

(Table 6.13). In the literature, there exist optimum solutions with approximate

distances. Therefore, to best of our knowledge, these four solutions will be recorded

in the literature as the new optimum solutions.

Finally, there exist 48 test instances in RC series problems (Table 6.12). Among

these instances, eight problems which were unsolved in the literature are solved

(Table 6.13) with the proposed procedure in this dissertation. Similar to C series, the

solution costs and times are again competitive compared to the literature solutions.

6.3 Conclusion

In this chapter, VRPTW is handled. The threshold algorithm, which was proposed

for HVRP previously, is modified according to time window assumptions. But due to

time window restrictions, main problem cannot be split into clusters as done in

HVRP. Therefore, if the problem has a solvable size or if it is in natural clusters, it is

160

handled with the Threshold Algorithm. However, for other problems a new approach

based on set covering logic is proposed. The new approach, which is called the

SetCovering Algorithm, runs an IP model, which finds the routes according to time

window restrictions. The solution achieved from the IP model is handled by a script

algorithm, which looks for subtours and capacity violations in the solution. If there

are any, these are included back into the IP model as constraints and the model is

rerun. This procedure goes on until no subtours and capacity violations appear in the

solution. By this procedure, optimum solution can be achieved.

The popular test problems in the literature, known as Solomon test problems

(Cordeau et. al., 2002), are handled with the SetCovering Algorithm (newly

designed) and the Threshold Algorithm (previously designed for HVRP and

SDVRP). The first set of problems, which is C series problems (clustered problems),

are handled by the Threshold Algorithm. Secondly, R series problems (distributed

evenly) are considered with the SetCovering Algorithm. Finally, for RC series

problems (intersection of R and C series problems), Threshold Algorithm and

SetCovering Algorithm are employed partially.

The computational results showed that Threshold Algorithm performs quite well

both in terms of solution cost and time for clustered problems. In addition,

SetCovering Algorithm achieved some optimum solutions for large scale problems,

which are known to be the first optimum solutions in literature.

161

CHAPTER SEVEN

CONCLUSION

In this chapter, the work carried out throughout the research is summarized and

the original contributions, which have appeared within the dissertation are explained.

7.1 Summary

Vehicle Routing Problem (VRP) is concerned with the determination of the

optimal routes used by a fleet of vehicles to serve a set of customers. It is one of the

hardest combinatorial optimization problems and hence, is one of the most studied

among the combinatorial optimization problems, due to both its practical relevance

and its considerable difficulty.

Many additional requirements and operational constraints may be imposed on the

route construction of the VRP. For example, the service may involve both deliveries

and collections, the load along each route must not exceed the given capacity of the

vehicles, the total length of each route must not be greater than a prescribed limit, the

service of the customers must occur within given time windows, the fleet may

contain heterogeneous vehicles, precedence relations may exist between the

customers, the customer demands may not be completely known in advance, the

service of a customer may be split among different vehicles, and demands or the

travel times, may vary dynamically.

The basic version of the problem, known as the capacitated VRP (CVRP), the

following assumptions are considered:

• vehicles are homogeneous with known capacities,

• the number of vehicles is unrestricted,

• each customer is visited once and by only one vehicle, and its demand is

totally satisfied,

• the customers visited on each route have total demand less than or equal to

the capacity of the vehicle assigned to that route,

162

• each vehicle makes one trip only,

• the objective is to find the set of routes to minimize total distance traveled.

However, many of these assumptions are not realistic for practical applications.

For example, the number of vehicles would be limited and the vehicle fleet may be

heterogeneous for many of the real life applications. VRP that incorporates

heterogeneous vehicle fleet assumption is called heterogeneous VRP (HVRP). Since

HVRP is more realistic and has more practical applications, HVRP is one of the

challenging problems to be studied.

Another assumption of CVRP, which has an alternative strategy, is that “each

customer is visited once and by only one vehicle”. In CVRP, split deliveries are not

allowed. However, allowing split deliveries may decrease distribution costs.

Therefore, split delivery VRP (SDVRP) may provide benefits and should be studied.

In addition to CVRP assumptions, an important variation, which finds application

as competition in the markets increase, is the addition of time window requirements

of customers. In other words, deliveries are required to be made within certain time

windows. When this is the case, the problem is called VRP with time windows

(VRPTW).

In the light of the above discussions, HVRP, SDVRP and VRPTW are the basic

concerns of this dissertation.

To the best of our knowledge, there is no exact algorithm designed to solve

HVRPs to optimum. The proposed algorithm in this dissertation for HVRP is called

the Threshold Algorithm. The Threshold Algorithm is a cluster first route second

type of algorithm, which integrates advanced mathematical programming tools in

each of its phases.

In the clustering phase of the algorithm, in order to work out the tradeoff between

number of vehicles and fixed cost of vehicles, an interactive fuzzy goal programming

(IFGP) approach is developed. By this approach, HVRP is split into non-intersecting

163

clusters and vehicles are assigned to each cluster to have a number of NP-complete

subproblems.

In the routing phase of the algorithm, to construct the routes of each subproblem,

a constraint programming (CP) model is built, which works together with a unique

subtour elimination algorithm (SEA). SEA is a novel algorithm, which makes

complete enumeration among the feasible solutions of the CP model and eliminates

the ones, which consist of a subtour and finds the minimum cost solution.

Since there exist no optimum solutions or lower bounds for HVRP in the

literature, the newly developed algorithms are tested on benchmark instance from the

literature. Therefore, Threshold Algorithm is tested on the 12 instances from Golden

et. al. (1984), which are also solved by Taillard (1999), Gendreau et. al. (1999) and

Choi and Tcha(2007). The solutions achieved by the Threshold Algorithm are

compared with the best known solutions in the literature. Computational results

showed that Threshold Algorithm is able to find the best known solutions for some

of the test instances. In addition, benefits are provided in terms of computation time

for large scale problems. Therefore, for large scale real life HVRPs, Threshold

Algorithm may be useful.

Secondly, SDVRP is considered under two cases, which are homogeneous and

heterogeneous vehicle fleet. Threshold Algorithm is modified according to the split

delivery assumption. For the homogeneous fleet case, vehicle assignment is made by

integer programming (IP). For heterogeneous fleet, IFGP approach is employed. In

addition, in the routing phase, CP turned out to be unsuccessful for split deliveries.

Therefore an IP model is built and SEA is modified to operate with the IP model.

Literature problems are again handled with the proposed algorithm and results

showed that split deliveries provide beneficial distribution costs.

Finally, VRPTW is handled. Due to some of the special characteristics of time

windows, these problems cannot be clustered. Therefore, VRPTW is again

considered under two cases as clustered VRPTW and large scale VRPTW. The

164

routing phase of the Threshold Algorithm is modified to work with clustered

VRPTW. For large scale VRPTW, a novel SetCovering Algorithm is developed.

Similar to previous VRPs, the well known Solomon test problems (Cordeau et. al.,

2002) from the literature are solved using the proposed approaches. Some of the

problems are solved to optimum, which are known to be the first optimum solutions

in the literature.

The summary of the studies within the research can be seen in Figure 7.1

Figure 7.1 Summary of the research carried out in this dissertation

7.2 Original Contributions of the Dissertation

As seen in Figure 7.1, three different variations of VRP are considered in this

dissertation, which are HVRP, SDVRP and VRPTW, respectively. In addition to

these three variations, HVRP with split deliveries is handled in the dissertation,

which to the best we know is the first time that this problem is studied in the

literature.

165

Within the dissertation, a novel Threshold Algorithm is developed and different

modifications of this algorithm is employed to solve these variations of VRP. In

addition, for large scale VRPTW, which cannot be handled with the Threshold

Algorithm due to its special characteristics, an original SetCovering Algorithm is

developed. All the methodologies proposed are tested on the well known benchmark

instances from the literature and the results are compared with the best known

solutions in the literature. Some of the solutions constitute optimum and new best

known solutions in the literature.

Additional contributions achieved in this dissertation are listed below.

• In order to deal with the subtour elimination constraints in VRPs, which

constitute the main challenge to solve these problems, a novel subtour

elimination algorithm (SEA) is proposed. SEA is an iterative algorithm,

which operates together with the mathematical model in Threshold

Algorithm. Firstly, subtour constraints are completely removed from the

mathematical model. Then with SEA, only the subtour constraints, which

may appear in the optimum solution, are added back. By this way, the

problem can be solved to optimum.

• In HVRPs, there is one more point that makes the problem even more

challenging. That is, as the vehicles with different capacities and fixed costs

are included in the problem; a tradeoff between total fixed costs and total

traveling costs arises. In order to deal with this tradeoff, an IFGP approach is

designed in this dissertation. The IFGP approach tries to balance these two

objectives by finding the effect of increasing number of vehicles on the fixed

cost. To the best of our knowledge, this is the first research, which

incorporates fuzzy goal programming into HVRP.

166

7.3 Future Direction of Research

While this research was conducted, several areas that can be investigated in the

future have become clear. Topics worth for future investigation are shown as

follows:

• Split delivery assumptions and time window assumptions can be handled

together. That is SDVRP and VRPTW can be combined to give SDVRP with

time windows. Threshold Algorithm can again be applied to this variation of

VRP with necessary modifications. However, there exist no benchmark

instances for this problem. Hence, the developed procedure can only be

employed for real life cases.

Similarly, heterogeneous vehicle fleet and time window assumptions can be

combined in a single problem to give HVRP with time windows. These two

assumption are the two realistic assumptions of VRPs. Therefore, this

problem may find many real life applications. Threshold Algorithm can again

be applied to these problems.

• Metaheuristic approaches become very popular in the literature for VRPs.

The two algorithms proposed in this dissertation, Threshold Algorithm and

SetCovering Algorithm may be integrated with metaheuristic approaches. By

this way, the fast search provided by metaheuristics and searching for

optimum provided by Threshold Algorithm and SetCovering Algorithm can

be combined.

The newly developed procedures may be especially beneficial for VRPTWs.

This is because search space can be reduced in a recognizable way due to the

special characteristics of time windows.

• There are many other variations of VRPs such as VRP with pickup and

delivery, VRP with backhauls, stochastic VRP etc. Threshold Algorithm can

be modified according to these variations of VRPs and tested to see its

performance.

167

REFERENCES

Abd El-Wahed, W. F., & Lee, S. M. (2006). Interactive fuzzy goal programming for

multi-objective transportation problems. Omega, 34 (2), 158-166.

Achuthan, N. R., Caccetta, L., & Hill, S.P. (1997). On the vehicle routing problem.

Proceedings of 2nd World Congress of Nonlinear Analysis, 30, 4277-4288.

Alvarenga, G. B., Mateus, G. R., & Tomi, G. (2007). A genetic and set partitioning

two-phase approach for the vehicle routing problem with time windows,

Computers & Operations Research, 34, 1561-1584.

Aminu, U. F., & Eglese, R. W. (2006). A constraint programming approach to the

Chinese postman problem with time windows. Computers & Operations

Research, 33, 3423-3431.

Apt, K. (2003). Principles of Constraint Programming. Cambridge, UK: Cambridge

University Press.

Archetti C., Speranza M. G., & Hertz A. A. (2006). Tabu search algorithm for the

split delivery vehicle routing problem. Transportation Science, 40(1), 64-73.

Archetti C., Savelsbergh M. W. P., & Speranza M.G. (2008). To split or not to split:

That is the question. Transportation Research Part E, 44(1), 114-123.

Augerat, P., Belenguer, J. M., Benavent, E., Corberan, A., & Naddef, D. (1998).

Seperating capacity constraints in the CVRP using tabu search. European Journal

of Operations Research, 106, 546-557.

168

Azi, N., Gendreau, M., & Potvin, J. Y. (2007). An exact algorithm for a single-

vehicle routing problem with time windows and multiple routes, European

Journal of Operational Research, 178, 755-766.

Badeau, P., Guertin, F., Gendreau, M., Potvin, J. Y., & Taillard, E. (1997). A Parallel

tabu search heuristic for the vehicle routing problem with time windows.

Transportation Research Part C, 5(2), 109-122.

Baker, B. M. & Ayechew, M. A. (2003). A genetic algorithm for the vehicle routing

problem. Computers & Operations Research, 30, 787-800.

Baptista, S., Oliveria, R. C., Zuquete, E. (2002). Discrete Optimization: A period

vehicle routing case study. European Journal of Operations Research, 139, 220-

229.

Baptiste, P., Le Pape, C., & Nuijten, W. (2003). Constraint Based Scheduling

Applying Constraint Programming to Scheduling Problems. London: Kluwer.

Barbarosoglu, G. & Ozgur, D. (1999). A tabu search algorithm for the vehicle

routing problem. Computers & Operations Research, 29, 255-270.

Bartak, R. (1999). Constraint Programming: In Pursuit of the Holy Grail.

Proceedings of the Week of Doctoral Students (WDS99) Part IV, 555-564.

Beasley, J. E. (1983). Route first - Cluster second methods for vehicle routing.

Omega, 11, 403-408.

Belenguer J. M., Martinez M. C., & Mota E. (2000). A lower bound fort he split

delivery vehicle routing problem. Operations Research, 48(5), 801-810.

Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment.

Management Science, 17, 141-164.

169

Bent, R., & Hentenryck P. V. (2006). A two-stage hybrid algorithm for pickup and

delivery vehicle routing problems with time windows. Computers & Operations

Research, 33, 875-893.

Berger, J., & Barkaoui, M. (2004). A parallel hybrid genetic algorithm for the vehicle

routing problem with time windows. Computers & Operations Research, 31,

2037-2053.

Bouthillier, A., & Crainic, T. G. L. (2005). A cooperative parallel meta-heuristic for

the vehicle routing problem with time windows. Computers & Operations

Research, 32, 1685-1708.

Braysy, O., Hasle, G., & Dullaert, W. (2004). A multi-start local search algorithm for

the vehicle routing problem with time windows. European Journal of Operational

Research, 159, 586-605.

Bullnheimer, B., Hartl, R. F., & Strauss, C. (1999). An improved ant system

algorithm for the vehicle routing problem. Annals of Operations Research, 89,

319-328.

Burchett, D., & Campion, E. (2002). Mix fleet vehicle routing problem - An

application of tabu search in the grocery delivery industry. Management Science

Honors Project.

Choi, E., & Tcha, D. W. (2007). A column generation approach to the heterogeneous

fleet vehicle routing problem. Computers & Operations Research, 34(7), 2080-

2095.

Chow, K. P., & Perett, M. (1997). Airport Counter Allocation using Constraint Logic

Programming. Proceedings of Practical Application of Constraint Technology

(PACT97).

170

Cordeau, J. F., Desaulniers, G., Desrosiers, J., Solomon, M. M., & Soumis, F.

(2002). VRP with Time Windows. In P. Toth, D., Vigo, (Eds.). The vehicle

routing problem (157-193). Philadelphia, USA: SIAM.

Desrochers, M., & Verhoog, T. W. (1991). A new heuristic for the fleet size and mix

vehicle routing problem. Computers & Operations Research, 18, 263-274.

Dincbas, M., & Simonis, H. (1991). APACHE - A Constraint Based, Automated

Stand Allocation Systems. Proceedings of Advanced Software Technology in Air

Transport (ASTAIR91).

Doerner, K. F., Gronalt, M., Hartl, R. F., Kiechle, G., & Reimann, M. (2008). Exact

and heuristic algorithms for the vehicle routing problem with multiple

interdependent time windows. Computers & Operations Research 35(9), 3034-

3048.

Dondo, R., & Cerda, J. (2007). A cluster-based optimization approach for the multi-

depot heterogeneous fleet vehicle routing problem with time windows. European

Journal of Operational Research, 176, 1478-1507.

Dror, M., Laporte, G., & Trudeau, P. (1994). Vehicle routing with split deliveries.

Discrete Applied Mathematics, 50, 239-254.

Fabri, A., & Recht, P. (2006). On dynamic pickup and delivery vehicle routing with

several time windows and waiting times. Transportation Research Part B, 40,

335-350.

Focacci, F., Lamma, E., Mello, P., & Milano, M. (1997). Constraint Logic

Programming for the Crew Rostering Problem. Proceedings of Practical

Application of Constraint Technology (PACT97).

171

Frizzell, P. W., & Giffin, J. W. (1995). The split delivery vehicle scheduling problem

with time windows and grid network distances. Computers & Operations

Research, 22, 655-667.

Garcia, B. L., Potvin, J. Y. Rousseau, J. M. (1994). A parallel implementation of the

Tabu search heuristic for vehicle routing problems with time window constraints.

Computers & Operations Research, 21(9), 1025-1033.

Gendreau, M., Laporte, G., Musaraganyi, C., & Taillard, E. D. (1999). A tabu search

heuristic for the heterogeneous fleet vehicle routing problem. Computers &

Operations Research, 26, 1153-1173.

Gendreau, M., Laporte, G., & Potvin, J. Y. (2002). Metaheuristics for the capacitated

VRP. In P. Toth, D., Vigo, (Eds.). The vehicle routing problem (129-154).

Philadelphia, USA: SIAM.

Ghiani, G., & Improta, G. (2000). An efficient transformation of the generalized

vehicle routing problem. European Journal of Operations Research, 122, 11-17.

Golden, B. L., Assad, A. A., Levy, L., & Gheysens, F. (1984). The fleet size and mix

vehicle routing problem. Computers & Operations Research, 11, 49-66.

Golden, B. L., Assad, A. A., & Wasil, E. A. (2002). Routing vehicles in the real

world: Applications in the solid waste, beverage, food, dairy, and newspaper

industries. In P. Toth, D., Vigo, (Eds.). The vehicle routing problem (245-286).

Philadelphia, USA: SIAM.

Hashimoto, H., Ibarakib, T., Imahoric, S., & Yagiuraa, M. (2006). The vehicle

routing problem with flexible time windows and traveling times. Discrete Applied

Mathematics, 154, 2271-2290.

172

Ho, S. C., & Haugland, D. (2004). A tabu search heuristic for the vehicle routing

problem with time windows and split deliveries. Computers & Operations

Research, 31, 1947-1964.

Hollis, B. L., Forbes, M. A., & Douglas, B. E. (2006). Vehicle routing and crew

scheduling for metropolitan mail distribution at Australia Post. European Journal

of Operational Research, 173(1), 133-150.

Homberger, J., & Gehring, H. (2005). A two-phase hybrid metaheuristic for the

vehicle routing problem with time windows. European Journal of Operational

Research, 162, 220-238.

Hu, T. L., & Sheu, J. B. (2003). A fuzzy-based customer classification method for

demand-responsive logistical distribution operations. Fuzzy Sets and Systems,

139, 431-450.

Hsu, C. I., Hung, S. F., & Li, H. C. (2007).Vehicle routing problem with time-

windows for perishable food delivery. Journal of Food Engineering, 80, 465-475.

ILOG S.A. (2003). ILOG OPL Studio 3.7 Language Manual, France.

Kallehauge, B. (2008). Formulations and exact algorithms for the vehicle routing

problem with time windows. Computers & Operations Research, 33(7), 2307-

2330.

Kallehauge, B., Larsen, J., & Madsen, O. B. G. (2006). Lagrangian duality applied to

the vehicle routing problem with time windows. Computers & Operations

Research, 33, 1464-1487.

Kim, B. I., Kim, S., & Sahoob, S. (2006). Waste collection vehicle routing problem

with time windows. Computers & Operations Research, 33, 3624-3642.

173

Kindervater, G. A. P., & Savelsbergh, M. W. P. (1997). Vehicle Routing: Handling

Edge Exchanges. In E. H. L. Aarts, J. K. Lenstra (Eds.). Local search in

combinatorial optimization (337-360). Chichester, UK: John Wiley and Sons.

Jacquet-Lagreze, E. (1998). Hybrid Methods for Large Scale Optimization Problems:

an OR Perspective. Proceedings of Practical Application of Constraint

Technology (PACT98).

Laporte, G., & Semet, F. (2002). Classical heuristics for the capacitated VRP. In P.

Toth, D., Vigo, (Eds.). The vehicle routing problem (109-128). Philadelphia,

USA: SIAM.

Lau, H. C., Sim, M., & Teo, K. M. (2003). Vehicle routing problem with time

windows and a limited number of vehicles. European Journal of Operational

Research, 148, 559-569.

Lee, C. G., Epelman, M., White, C. C. & Bozer, Y. A. (2002). A Shortest Path

Approach to the Multiple-Vehicle Routing Problem with Split Pick-Ups. 17th

International Symposium on Mathematical Programming.

Li, F., Golden, B., & Wasil, E. (2005). Very large scale vehicle routing: new test

problems, algorithms, and results. Computers & Operations Research, 32, 1165-

1179.

Lima, C. M. R. R., Goldbarg, M. C., & Goldbarg, E. F. G. (2004). A memetic

algorithm for the heterogeneous fleet vehicle routing problem. Electronic Notes in

Discrete Mathematics, 18, 171-176.

Liu, F. H., & Shen, S. Y. (1999). A method for vehicle routing problem with multiple

vehicle types and time windows. Proceedings of National Science Council ROC,

23, 526-536.

174

Liu, F. H. F., & Shen, S.Y. (1999). A route-neighborhood-based metaheuristic for

vehicle routing problem with time windows. European Journal of Operational

Research, 118, 485-504.

Longo, H., Aragao, M. P., & Uchoa, E. (2006). Solving capacitated arc routing

problem using a transformation to the CVRP. Computers & Operations Research,

33, 1823-1837.

Mazzeo, S., & Loiseau, I. (2004). An ant colony algorithm for the capacitated vehicle

routing. Electronic Notes in Discrete Mathematics, 18, 181-186.

Mester, D., & Braysy, O. (2005). Active guided evolution strategies for large-scale

vehicle routing problems with time windows. Computers & Operations Research,

32, 1593-1614.

Mizrak Ozfirat, P., & Ozkarahan, I. (2006). A cluster first route second algorithm for

the heterogeneous vehicle routing problem. Proceedings of the 26th National

Conference on Operations Research and Industrial Engineering, in Turkish.

Mizrak Ozfirat, P., & Ozkarahan, I. (2007). Comparison of Non-Split and Split

Delivery Strategies for the Heterogeneous Vehicle Routing Problem. Journal of

Industrial Engineering, 18(4), 2-13.

Mizrak Ozfirat, P., & Ozkarahan, I. (2008a). A Heuristic Based on Constraint

Programming for the Vehicle Routing Problem with Time Windows.

International Journal of Computers, Information Technology and Engineering,

2(1), 45-51.

Mizrak Ozfirat, P., & Ozkarahan, I. (2008b). A Set Covering Approach for the

Vehicle Routing Problem with Time Windows. Proceedings of the Symposium on

Modern Scientific Methods’08, in Turkish.

Moghaddam, R. T, Safaei, N., & Gholipour, Y. (2006). A hybrid simulated annealing

for capacitated vehicle routing problems with independent route length. Applied

Mathematics and Computation, 176(2), 445-454.

175

Moghaddam R. T., Safaei N., Kah M. M. O., & Rabbani M. (2007). A New

Capacitated Vehicle Routing Problem with Split Service for Minimizing Fleet

Cost by Simulated Annealing. Journal of The Franklin Institute, 344, 406-425.

Mohamed, R. H. (1997). The relationship between goal programming and fuzzy

programming. Fuzzy Sets and Systems, 89, 215-222.

Naddef, D., & Rinaldi, G. (2002). Branch-and-cut algorithms for the capacitated

VRP. In P. Toth, D., Vigo, (Eds.). The vehicle routing problem (53-84).

Philadelphia, USA: SIAM.

Nelson, M. D., Nygard, K. E., Griffin, J. H., & Shreve, W. E. (1985).

Implementation techniques for the vehicle routing problem. Computers &

Operations Research, 12, 273-283.

Ochi, L. S., Vianna, D. S., Drummond, L. M. A., & Victor, A. O. (1998). A parallel

evolutionary algorithm for the vehicle routing problem with heterogeneous fleet.

Future Generation Computer Systems, 14, 285-292.

Osman, I. H. (1993). Metastrategy simulated annealing and tabu search algorithms

for the vehicle routing problem. Annals of Operations Research, 41, 421-451.

Perett, M. (1991). Using Constraint Logic Programming Techniques in Container

Port Planning. ICL Technical Journal, 537-545.

Pisinger, D., & Ropke, S. (2007). A general heuristic for vehicle routing problems.

Computers & Operations Research, 34(8), 2403-2435.

Prins, C. (2004). A simple and effective evolutionary algorithm for the vehicle

routing problem. Computers & Operations Research, 31, 1985-2002.

Ralphs, T. K. (2003). Parallel Branch and cut for capacitated vehicle routing.

Parallel Computing, 29, 607-629.

176

Rodrigues, M. M., Souza, C. C., Moura, A. V. (2006). Vehicle and crew scheduling

for urban bus lines. European Journal of Operations Research, 170(3), 844-862.

Russell, R. A., & Chiang, W. C. (2006). Scatter search for the vehicle routing

problem with time windows. European Journal of Operational Research, 169,

606-622.

Saez, D., Cortes, C., & Nunez, A. (2008). Hybrid adaptive predictive control for the

multi-vehicle dynamic pick-up and delivery problem based on genetic algorithms

and fuzzy clustering. Computers and Operations Research, 35(11), 3412-3438.

Sakawa, M. (1993). Fuzzy sets and interactive multiobjective optimization. NY:

Plenum Press.

Salhi, S., & Sari, M. (1997). A multi level composite heuristic for the multi depot

vehicle fleet mix problem. European Journal of Operations Research, 103, 95-

112.

Shaw, P. (1998). Using Constraint Programming and Local Search Methods to Solve

Vehicle Routing Problems. Proceedings of the Fourth International Conference

on Principles and Practice of Constraint Programming (CP'98), 417-431.

Sheu, J. B. (2007). A hybrid fuzzy-optimization approach to customer grouping-

based logistics distribution operations. Applied Mathematical Modeling, 31, 1048-

1066.

Taillard, E. D. (1999). A Heuristic Column Generation Method For The

Heterogeneous Fleet VRP. RAIRO, 33, 1-4.

Tan, K. C., Lee, L. H., & Ou, K. (2001). Artificial intelligence heuristics in solving

vehicle routing problems with time window constraints. Engineering Applications

of Artificial Intelligence, 14, 825-837.

177

Tarantilis, C. D. (2005). Solving the vehicle routing problem with adaptive memory

programming methodology. Computers & Operations Research, 32, 2309-2327.

Tarantilis, C. D., & Kiranoudis, C. T. (2001). A meta-heuristic algorithm for the

efficient distribution of perishable foods. Journal of Food Engineering, 50, 1-9.

Tarantilis, C. D., & Kiranoudis, C. T. (2002). Distribution of fresh meat. Journal of

Food Engineering, 51, 85-91.

Teodorovic, D., & Pavkovic, G. (1996). The fuzzy set theory approach to the vehicle

routing problem when demand at nodes is uncertain. Fuzzy Sets and Systems,

82(3), 307-317.

Toth, P., & Vigo, D. (2002). Branch and Bound Algorithms for the Capacitated VRP.

In P. Toth, D., Vigo, (Eds.). The vehicle routing problem (29-51). Philadelphia,

USA: SIAM.

Tung, D.V, & Pinnoi, A. (2000). Vehicle routing-scheduling for waste collection in

Hanoi. European Journal of Operations Research, 125, 449-468.

Ulusoy, G. (1985). The fleet size and mix problem for capacitated arc routing.

European Journal of Operations Research, 22, 329-337.

Wang, H. F., & Fu, C. C. (1997). A generalization of fuzzy goal programming with

preemptive structure. Computers & Operations Research, 24, 819-828.

Wasner, M., & Zapfel, G. (2004). An integrated multi-depot hub location vehicle

routing model for network planning of parcel service. International Journal of

Production Economics, 90, 403-419.

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338-353.

178

Zheng, Y., & Liu, B. (2006). Fuzzy vehicle routing model with credibility measure

and its hybrid intelligent algorithm. Applied Mathematics and Computation, 176,

673-683.

Zhong, Y., & Cole, M. H. (2005). A vehicle routing problem with backhauls and

time windows: a guided local search solution. Transportation Research Part E,

41, 131-144.

Zimmermann, H. J. (1978). Fuzzy programming and linear programming with

several objective function. Fuzzy Sets and Systems, 1, 45-55.

179

APPENDIX A

OPL STUDIO CODES OF THRESHOLD ALGORITHM FOR

HETEROGENEOUS VEHICLE ROUTING PROBLEM
A1. CODE OF MODEL SC

SheetConnection sheet("C:\prob7.xls");

range Sets 1..30;

range Cities 0..30;

int Matris[Sets,Cities]from SheetRead(sheet,"cover");

int Matris2[Sets,Cities]from SheetRead(sheet,"distance2");

var int X[Sets] in 0..1;

minimize sum(i in Sets) sum(j in Cities) (X[i]*Matris2[i,j]*Matris[i,j])

subject to

{

forall(j in Cities) sum(i in Sets) (X[i]*Matris[i,j])>=1;

};

180

A2. CODE OF MODEL VA

SheetConnection sheet("C:\prob12.xls");

int customers=30;

int numbervehicles=75;

int subsets=2;

range stores 1..customers;

range subproblems 1..subsets;

range vehicles 1..numbervehicles;

int ymatris[subproblems,stores] from SheetRead(sheet,"matris50");

float demand[stores] from SheetRead(sheet,"demand");

int cost[vehicles] from SheetRead(sheet,"cost");

int cap[vehicles] from SheetRead(sheet,"capacity");

var int y[subproblems,stores] in 0..1;

var int w[subproblems,vehicles] in 0..1;

var float+ lambda;

maximize lambda

subject to

{

//Fuzzy constraints;

 lambda<=1-(((sum(i in subproblems, v in vehicles) w[i,v])-5)/1);

 lambda<=1-(((sum(i in subproblems, v in vehicles) cost[v]*w[i,v])-1520)/1430);

 lambda<=1;

 //Every store must be assigned to exactly one sub-problem;

 forall(j in stores) sum(i in subproblems) y[i,j]=1;

 //The subproblem to which a store is assigned should be within its neighborhood;

 forall(i in subproblems, j in stores) y[i,j]<=ymatris[i,j];

 //The total demand of a subproblem must be greater than or equal to the total

capacities of vehicles assigned to that problem;

 forall(i in subproblems) (sum(v in vehicles) (cap[v]*w[i,v])>=sum(j in stores)

(y[i,j]*demand[j]));

 //Each vehicle can be allocated to at most one sub-problem;

 forall(v in vehicles) sum(i in subproblems) w[i,v]<=1; };

181

A3. CODE OF MODEL CPM

setting searchStrategy = SBS;

SheetConnection sheet("C:\probb13.xls");

int Demandpoints = 14;

int Noofvehicles=3;

range Stores 1..Demandpoints;

range Total 0..Demandpoints;

range Vehicles 1..Noofvehicles;

float Distance[Total, Total] from SheetRead(sheet,"distance28sub1");

int Demand[Total] from SheetRead(sheet,"demand28sub1");

int Capacityofvehicle[Vehicles] from SheetRead(sheet,"cap2");

var int X[Total,Total] in 0..1;

solve

{

//Each city is visited exactly once;

forall (i in Stores) sum (j in Total) (X[i,j]>0)=1;

forall (j in Stores) sum (i in Total) (X[i,j]>0)=1;

//The depot is visited at least once;

forall (v in Vehicles) sum (i in Total) (X[i,0]=v) = 1;

forall (v in Vehicles) sum (j in Total) (X[0,j]=v) = 1;

//A vehicle leaves the city that it enters;

forall (i in Total) (sum (j in Total) (X[i,j]) - sum (j in Total) (X[j,i]))=0;

//Capacity of vehicles should not be exceeded;

forall(v in Vehicles)

 (sum(i in Total) Demand[i]*(sum(j in Total) (X[i,j]=v))) <=Capacityofvehicle[v];

};

182

A4. SCRIPT CODE OF SUBTOUR ELIMINATION ALGORITHM
(SEA) FOR HVRP

Model m("cpvrpfull.mod");

int n:=m.Demandpoints;

range Total 0..n;

range Vehicles 1..m.Noofvehicles;

int matris[1..m.Noofvehicles, 1..n+1];

int i:=0;

int say:=0;

float dist:=0;

int k:=1;

int j:=0;

int gecici:=0;

int bb:=0;

float mindist:=maxint;

ofile pinar("pinar.txt") ;

while m.nextSolution() do

{

forall(v in Vehicles)

 forall(t in 1..n+1)

 matris[v,t]:=0;

forall(v in Vehicles)

 {i:=0;

 k:=1;

 j:=0;

 repeat

 {if m.X[i,j]=v then {dist:=dist+m.Distance[i,j];

 say:=say+1;

 matris[v,k]:=i;

 i:=j;

 k:=k+1;

183

j:=0;

 if i=0 then break;}

 else j:=j+1; }

 until j>n;}

if say=n+m.Noofvehicles then if mindist>dist then

 { mindist:=dist;

 forall(v in Vehicles)

 {forall(t in 1..n+1)

 {cout << matris[v,t] << " - ";

 pinar << matris[v,t] << " - ";}

 cout << endl;

 pinar << endl;}

 cout << "Total Travelled= " << dist << endl;

 cout << "Time= " << m.getTime() << endl;

 pinar << "Total Travelled= " << dist << endl;

 pinar << "Time= " << m.getTime() << endl; }

 say:=0;

 dist:=0;}

 pinar.close();

184

APPENDIX B
DETAILED SOLUTIONS OF HETEROGENEOUS VEHICLE

ROUTING PROBLEM TEST INSTANCES

B1. TEST INSTANCE 3

Threshold Level= 38

Table B1.1: Minimum values of z1 and z2 for Instance 3.

 Number of
Vehicles

Fixed Cost
of Vehicles

Minimize
Z1 3 675

Minimize
Z2 18 360

ExpectedLoss= 33

Table B1.2: Iterations of fuzzy goal programming phase. Iteration in bold is
selected.

Iteration
No

Number of
Vehicles

Fixed Cost of
Vehicles

Difference Between
The Last Two

Iterations
0 3 675 -
1 4 675 0
2 5 600 75
3 6 580 20

Subproblems of Instance 3

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

Figure B1.1 Subproblems of Test Instance 3.

185

Routes of Instance 3

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

Figure B1.2 Routes of Test Instance 3.

Table B1.3: Solutions of subproblems.

N
um

be
r

of
N

od
es

(n
)

N
um

be
r

of
V

eh
ic

le
s

(v
)

N
um

be
r

of
V

ar
ia

bl
es

X
[0

..n
,0

..n
]:

K

N
um

be
r

of
A

llo
w

ab
le

V
al

ue
s

(0
,1

,..
...

,v
):

M

Po
ss

ib
le

C
om

bi
na

tio
ns

M
K

Tr
av

el
in

g
C

os
t

C
om

pu
ta

tio
n

Ti
m

e

R
ou

te

0-4-15-5-0 9 2 100 3 3100 154 15,23
0-6-18-13-19-17-12-0
0-16-2-20-3-8-1-0
0-7-14-011 3 144 4 4144 228 51,56
 0-10-9-11-0

186

B2. TEST INSTANCE 4

Threshold Level= 38

Table B2.1: Minimum values of z1 and z2 for Instance 4.

Number of
Vehicles

Fixed Cost
of Vehicles

Minimize Z1 3 7000
Minimize Z2 6 6000

ExpectedLoss= 33

Table B2.2: Iterations of fuzzy goal programming phase. Iteration in bold is selected

Iteration
No

Number of
Vehicles

Fixed Cost
of Vehicles

Difference Between The
Last Two Iterations

0 3 7000 -
1 4 7000 0
2 5 6500 500
3 6 6000 500

Figure B2.1 Subproblems of Test Instance 4.

Subproblems of Instance 4

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

187

Figure B2.2 Routes of Test Instance 4.

Table B2.3: Solutions of subproblems.

N
um

be
r

of
N

od
es

(n
)

N
um

be
r

of
V

eh
ic

le
s

(v
)

N
um

be
r

of
V

ar
ia

bl
es

X
[0

..n
,0

..n
]:

K

N
um

be
r

of
A

llo
w

ab
le

V
al

ue
s

(0
,1

,..
...

,v
):

M

Po
ss

ib
le

C
om

bi
na

tio
ns

M
K

Tr
av

el
in

g
C

os
t

C
om

pu
ta

tio
n

Ti
m

e

R
ou

te
0-8-1-2-0
0-16-20-3-0 10 3 121 4 4121 212 32,17
0-11-9-10-5-0
0-4-19-15-17-12-0
0-18-7-0 10 3 121 4 4121 224 12,59
0-6-14-13-0

Routes of Instance 4

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

188

B3. TEST INSTANCE 5

Threshold Level= 38

Table B3.1: Minimum values of z1 and z2 for Instance 5.
Number of

Vehicles
Fixed Cost
of Vehicles

Minimize Z1 3 675
Minimize Z2 14 400

ExpectedLoss=54

Table B3.2: Iterations of fuzzy goal programming phase. Iteration in bold is selected

Iteration
No

Number
of

Vehicles
Fixed Cost of

Vehicles

Difference Between
The Last Two

Iterations
0 4 675 -
1 5 600 75
2 6 590 10

Subproblems of Instance 5

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

Figure B3.1 Subproblems of Test Instance 5.

189

Routes of Instance 5

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

Figure B3.2 Routes of Test Instance 5.

Table B3.3: Solutions of subproblems.

N
um

be
r

of
N

od
es

(n
)

N
um

be
r

of
V

eh
ic

le
s

(v
)

N
um

be
r

of
V

ar
ia

bl
es

X
[0

..n
,0

..n
]:

K

N
um

be
r

of
A

llo
w

ab
le

V
al

ue
s

(0
,1

,..
...

,v
):

M

Po
ss

ib
le

C
om

bi
na

tio
ns

M
K

Tr
av

el
in

g
C

os
t

C
om

pu
ta

tio
n

Ti
m

e

R
ou

te

8 2 81 3 381 203,08 2 0-14-7-0
0-4-8-6-18-13-19-0
0-12-15-0
0-5-11-0 12 3 169 4 4169 249,07 101
0-17-10-9-16-2-20-3-
1-0

190

B4. TEST INSTANCE 6

Threshold Level= 38

Table B4.1: Minimum values of z1 and z2 for Instance 6.
Number of

Vehicles
Fixed Cost of

Vehicles
Minimize Z1 3 7000
Minimize Z2 6 6000

ExpectedLoss=54

Table B4.2: Iterations of fuzzy goal programming phase. Iteration in bold is selected

Iteration
No

Number of
Vehicles

Fixed Cost
of Vehicles

Difference Between The
Last Two Iterations

0 3 7000 -
1 4 7000 0
2 5 6500 500
3 6 6000 500

Subproblems of Instance 6

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

Figure B4.1 Subproblems of Test Instance 6.

191

Routes of Instance 6

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

Figure B4.2 Routes of Test Instance 6.

Table B4.3: Solutions of subproblems.

N
um

be
r

of
N

od
es

(n
)

N
um

be
r

of
V

eh
ic

le
s

(v
)

N
um

be
r

of
V

ar
ia

bl
es

X
[0

..n
,0

..n
]:

K

N
um

be
r

of
A

llo
w

ab
le

V
al

ue
s

(0
,1

,..
...

,v
):

M

Po
ss

ib
le

C
om

bi
na

tio
ns

M
K

Tr
av

el
in

g
C

os
t

C
om

pu
ta

tio
n

Ti
m

e

R
ou

te

0-13-14-6-0
0-15-5-12-0 9 3 100 4 4100 171,97 11
0-19-18-4-0
0-10-9-8-7-0
0-16-20-3-0 11 3 144 4 4144 344,5 131
0-17-11-2-1-0

192

B5. TEST INSTANCE 13

Threshold Level= 28

Table B5.1: Minimum values of z1 and z2 for Instance 13.
Number of

Vehicles
Fixed Cost
of Vehicles

Minimize
Z1 6 2225

Minimize
Z2 42 1050

ExpectedLoss=37

Table B5.2: Iterations of fuzzy goal programming phase. Iteration in bold is selected

Iteration
No

Number of
Vehicles

Fixed Cost
of Vehicles

Difference Between The Last
Two Iterations

0 6 1945 -
1 7 1895 50
2 8 1855 40
3 9 1820 35

Subproblems of Instance 13

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70

Figure B5.1 Subproblems of Test Instance 13.

193

Routes of Instance 13

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70

Figure B5.2 Routes of Test Instance 13.

Table B5.3: Solutions of subproblems.

N
um

be
r

of
N

od
es

(n
)

N
um

be
r

of
V

eh
ic

le
s

(v
)

N
um

be
r

of
V

ar
ia

bl
es

X
[0

..n
,0

..n
]:

K

N
um

be
r

of
A

llo
w

ab
le

V
al

ue
s

(0
,1

,..
...

,v
):

M

Po
ss

ib
le

C
om

bi
na

tio
ns

M
K

Tr
av

el
in

g
C

os
t

C
om

pu
ta

tio
n

Ti
m

e

Route

11 1 144 2 2144 110,27 21 0-2-28-22-1-43-42-41-23-16-33-6-0
11 1 144 2 2144 101,11 32 0-45-29-5-15-20-37-36-47-21-48-30-0

0-4-0
0-46-8-35-7-0 14 3 225 4 4225 153,15 56
0-26-10-38-11-14-19-13-27-34-0
0-17-44-0
0-3-32-0 14 3 225 4 4225 221,25 112
0-49-24-18-50-25-31-9-39-40-12-0

194

B6. TEST INSTANCE 14

Threshold Level= 30

Table B6.1: Minimum values of z1 and z2 for Instance 14.
Number of

Vehicles
Fixed Cost of

Vehicles
Minimize Z1 6 10000
Minimize Z2 7 8500

ExpectedLoss=37

Table B6.2: Iterations of fuzzy goal programming phase. Iteration in bold is selected

Iteration
No

Number of
Vehicles

Fixed Cost
of Vehicles

Difference Between The
Last Two Iterations

0 6 10000 -
1 7 8500 1500

Subproblems of Instance 14

0

10

20

30

40

50

60

70

80

0 20 40 60 80

Figure B6.1 Subproblems of Test Instance 14.

195

Routes of Instance 14

0

10

20

30

40

50

60

70

80

0 20 40 60 80

Figure B6.2 Routes of Test Instance 14.

Table B6.3: Solutions of subproblems.

N
um

be
r

of
N

od
es

(n
)

N
um

be
r

of
V

eh
ic

le
s

(v
)

N
um

be
r

of
V

ar
ia

bl
es

X
[0

..n
,0

..n
]:

K

N
um

be
r

of
A

llo
w

ab
le

V
al

ue
s

(0
,1

,..
...

,v
):

M

Po
ss

ib
le

C
om

bi
na

tio
ns

M
K

Tr
av

el
in

g
C

os
t

C
om

pu
ta

tio
n

Ti
m

e

R
ou

te

0-33-1-43-42-41-23-49-16-0 13 2 196 3 3196 171,8 87
0-6-22-28-21-2-0
0-3-24-18-50-32-26-0
0-17-40-9-39-12-0 18 3 361 4 4361 252,03 233
0-44-25-31-10-38-11-7-0
0-30-48-47-36-5-45-0
0-34-46-8-19-14-35-0 19 3 400 4 4400 214,42 373
0-4-29-37-20-15-13-27-0

196

B7. TEST INSTANCE 15

Threshold Level= 28

Table B7.1: Minimum values of z1 and z2 for Instance 15.

Number of
Vehicles

Fixed Cost of
Vehicles

Minimize Z1 6 2350
Minimize Z2 16 1600

ExpectedLoss=43

Table B7.2: Iterations of fuzzy goal programming phase. Iteration in bold is selected

Iteration
No

Number of
Vehicles

Fixed Cost of
Vehicles

Difference Between The Last
Two Iterations

0 6 2350 -
1 7 2100 250
2 8 2000 100
3 9 2000 0
4 10 1900 100
5 11 1850 50
6 12 1850 0
7 13 1800 50

Subproblems of Instance 15

0

10

20

30

40

50

60

70

80

0 20 40 60 80

Figure B7.1 Subproblems of Test Instance 15.

197

Routes of Instance 15

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70

Figure B7.2 Routes of Test Instance 15.

Table B7.2: Solutions of subproblems.

N
um

be
r

of
N

od
es

(n
)

N
um

be
r

of
V

eh
ic

le
s

(v
)

N
um

be
r

of
V

ar
ia

bl
es

X
[0

..n
,0

..n
]:

K

N
um

be
r

of
A

llo
w

ab
le

V
al

ue
s

(0
,1

,..
...

,v
):

M

Po
ss

ib
le

C
om

bi
na

tio
ns

M
K

Tr
av

el
in

g
C

os
t

C
om

pu
ta

tio
n

Ti
m

e

R
ou

te

0-32-2-22-0 10 2 121 3 3121 162,89 20
0-31-28-3-36-35-20-29-0
0-18-4-0
0-44-17-47-0 12 3 169 4 4169 211,08 36
0-15-45-42-19-40-41-13-0
0-25-14-0
0-27-48-6-0 12 3 169 4 4169 184,36 76
0-23-24-43-7-26-8-1-0
0-5-12-0
0-11-16-21-34-50-38-46-0 16 3 289 4 4289 212,21 200
0-49-9-30-10-39-33-37-0

198

B8. TEST INSTANCE 16

Threshold Level= 34

Table B8.1: Minimum values of z1 and z2 for Instance 16.

Number of
Vehicles

Fixed
Cost of

Vehicles
Minimize Z1 7 2600
Minimize Z2 10 2100

ExpectedLoss=43

Table B8.2: Iterations of fuzzy goal programming phase. Iteration in bold is selected

Iteration
No

Number of
Vehicles

Fixed Cost
of Vehicles

Difference Between
The Last Two

Iterations
0 7 2500 -
1 8 2200 300
2 9 2000 200

Subproblems of Instance 16

0

10

20

30

40

50

60

70

80

0 20 40 60 80

Figure B8.1 Subproblems of Test Instance 16.

199

Routes of Instance 16

0

10

20

30

40

50

60

70

80

0 20 40 60 80

Figure B8.2 Routes of Test Instance 16.

Table B8.3: Solutions of subproblems.

N
um

be
r

of
N

od
es

(n
)

N
um

be
r

of
V

eh
ic

le
s

(v
)

N
um

be
r

of
V

ar
ia

bl
es

X
[0

..n
,0

..n
]:

K

N
um

be
r

of
A

llo
w

ab
le

V
al

ue
s

(0
,1

,..
...

,v
):

M

Po
ss

ib
le

C
om

bi
na

tio
ns

M
K

Tr
av

el
in

g
C

os
t

C
om

pu
ta

tio
n

Ti
m

e

R
ou

te

0-13-41-40-19-42-0
0-4-17-44-45-33-15-37-0 16 3 289 4 4289 227,74 118
0-47-12-5-46-0
0-6-25-24-43-23-0
0-18-14-48-0 17 3 324 4 4324 252,64 243
0-27-7-26-8-31-28-22-2-32-0
0-29-20-35-36-3-1-0
0-38-50-34-9-49-0 17 3 324 4 4324 265,92 197
0-10-39-30-21-16-11-0

200

B9. TEST INSTANCE 17

Threshold Level= 30

Table B9.1: Minimum values of z1 and z2 for Instance 17.

Number of
Vehicles

Fixed Cost
of Vehicles

Minimize Z1 5 1260
Minimize Z2 28 700

ExpectedLoss=43

Table B9.2: Iterations of fuzzy goal programming phase. Iteration in bold is selected

Iteration
No

Number
of

Vehicles
Fixed Cost
of Vehicles

Difference Between The
Last Two Iterations

0 5 1260
1 6 1190 70
2 7 1080 110
3 8 1005 75
4 9 1000 5

Subproblems of Instance 17

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

Figure B9.1 Subproblems of Test Instance 17.

201

Routes of Instance 17

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

Figure B9.2 Routes of Test Instance 17.

Table B9.3: Solutions of subproblems.

N
um

be
r

of
N

od
es

(n
)

N
um

be
r

of
V

eh
ic

le
s

(v
)

N
um

be
r

of
V

ar
ia

bl
es

X
[0

..n
,0

..n
]:

K

N
um

be
r

of
A

llo
w

ab
le

V
al

ue
s

(0
,1

,..
...

,v
):

M

Po
ss

ib
le

C
om

bi
na

tio
ns

M
K

T
ra

ve
lin

g
C

os
t

C
om

pu
ta

tio
n

T
im

e

Route

10 1 121 2 2121 108,22 19 0-46-8-14-59-19-54-13-52-27-45-0
14 1 225 2 2225 140,24 76 0-51-16-63-23-49-24-18-55-25-50-44-3-12-17-0

0-4-75-0 16 2 289 3 3289 137,95 110
0-29-5-15-57-37-20-70-60-71-69-36-47-48-30-0
0-74-21-61-28-2-68-0 17 2 324 3 3324 187,73 114
0-6-73-62-22-64-42-41-56-43-1-33-0
0-32-39-72-58-65-66-11-53-35-34-0 18 2 361 3 3361 204,62 340
0-67-7-38-10-31-9-40-26-0

202

B10. TEST INSTANCE 18

Threshold Level= 30

Table B10.1: Minimum values of z1 and z2 for Instance 18.

Number of
Vehicles

Fixed Cost
of Vehicles

Minimize Z1 5 2580
Minimize Z2 49 815

ExpectedLoss=43

Table B10.2: Iterations of fuzzy goal programming phase. Iteration in bold is selected

Iteration
No

Number of
Vehicles

Fixed Cost of
Vehicles

Difference Between The
Last Two Iterations

0 5 2580 -
1 6 2280 300
2 7 2160 120
3 8 2095 65
4 9 2010 85
5 10 1930 80
6 11 1740 190
7 12 1630 110
8 13 1550 80
9 14 1505 45

10 15 1460 45
11 16 1370 90
12 17 1345 25

Subproblems of Instance 18

0

10

20

30

40

50

60

70

80

0 20 40 60 80

Figure B10.1 Subproblems of Test Instance 18.

203

Routes of Instance 18

0

10

20

30

40

50

60

70

80

0 20 40 60 80

Figure B10.2 Routes of Test Instance 18.

Table B10.3: Solutions of subproblems.

N
um

be
r

of
N

od
es

(n
)

N
um

be
r

of
V

eh
ic

le
s

(v
)

N
um

be
r

of
V

ar
ia

bl
es

X
[0

..n
,0

..n
]:

K

N
um

be
r

of
A

llo
w

ab
le

V
al

ue
s

(0
,1

,..
...

,v
):

M

Po
ss

ib
le

C
om

bi
na

tio
ns

M
K

Tr
av

el
in

g
C

os
t

C
om

pu
ta

tio
n

Ti
m

e

Route

0-2-30-0
0-68-22-64-42-41-43-73-0 14 3 225 4 4225 208,00 171
0-74-21-61-28-62-0
0-6-33-0
0-1-56-23-63-16-51-0 14 3 225 4 4225 205,01 95
0-49-24-18-50-3-17-0
0-40-12-0
0-58-72-31-55-25-9-0 15 3 256 4 4256 227,57 147
0-7-53-38-10-39-32-44-0
0-4-75-0
0-29-70-60-71-69-36-47-48-016 3 289 4 4289 197,55 442
0-57-15-20-37-45-0
0-26-67-0
0-34-46-0
0-52-27-13-54-19-8-0

16 4 289 5 5289 203,05 378

0-35-14-59-66-65-11-0

204

B11. TEST INSTANCE 19

Threshold Level= 38

Table B11.1: Minimum values of z1 and z2 for Instance 19.

Number of
Vehicles

Fixed Cost
of Vehicles

Minimize Z1 8 9100
Minimize Z2 15 7500

ExpectedLoss=47.

Table B11.2: Iterations of fuzzy goal programming phase. Iteration in bold is selected.

Iteration
No

Number
of

Vehicles

Fixed Cost
of Vehicles

Difference
Between The Last

Two Iterations
0 8 9100 -
1 9 8900 200
2 10 8700 200
3 11 8500 200
4 12 8300 200
5 13 7900 400
6 14 7700 200
7 15 7500 200

Subproblems of Instance 19

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80

Figure B11.1 Subproblems of Test Instance 19.

205

Routes of Instance 19

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80

Figure B11.2 Routes of Test Instance 19.

Table B11.3: Solutions of subproblems.

N
um

be
r

of
N

od
es

(n
)

N
um

be
r

of
V

eh
ic

le
s

(v
)

N
um

be
r

of
V

ar
ia

bl
es

X
[0

..n
,0

..n
]:

K
N

um
be

r
of

A
llo

w
ab

le
V

al
ue

s
(0

,1
,..

...
,v

):
M

Po
ss

ib
le

C
om

bi
na

tio
ns

M
K

Tr
av

el
in

g
C

os
t

C
om

pu
ta

tio
n

Ti
m

e

R
ou

te

0-1-9-71-65-66-20-70-0 15 2 256 3 3256 216,11 131
0-10-11-64-63-90-32-30-69-0
0-33-81-79-3-77-76-0 13 2 196 3 3196 154,51 99
0-28-68-78-34-35-51-50-0
0-27-31-88-7-48-0 10 2 289 3 3289 161,17 53
0-47-36-49-19-62-0
0-6-60-5-93-99-94-0 16 2 289 3 3289 147,2 113
0-52-82-8-46-45-17-84-83-18-

9 1 100 2 2100 95,24 24 0-26-4-25-55-54-24-29-80-12-0
0-41-23-67-39-56-0 12 2 289 3 3289 159,89 107
0-21-72-75-22-74-73-40-0

8 1 81 2 381 73,67 17 0-53-58-2-57-15-43-42-87-0
0-96-86-91-37-98-92-97-95-0
0-100-85-61-59-0 17 3 324 4 4324 226,56 453
0-13-14-38-44-16-0

206

B12. TEST INSTANCE 20

Threshold Level= 38

Table B12.1: Minimum values of z1 and z2 for Instance 20.
 Number of

Vehicles
Fixed Cost
of Vehicles

Minimize Z1 9 3500
Minimize Z2 25 2500

ExpectedLoss=47.

Table B12.2: Iterations of fuzzy goal programming phase. Iteration in bold is selected

Iteration
No

Number of
Vehicles

Fixed Cost
of Vehicles

Difference Between The
Last Two Iterations

0 9 3500 -
1 10 3400 100
2 11 3300 100
3 12 3200 100
4 13 3100 100
5 14 3100 -
6 15 3100 -
7 16 3000 33,3

Subproblems of Instance 20

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80

Figure B12.1 Subproblems of Test Instance 20.

207

Routes of Instance 20

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80

Figure B12.2 Routes of Test Instance 20.

Table B12.3: Solutions of subproblems.

N
um

be
r

of
N

od
es

(n
)

N
um

be
r

of
V

eh
ic

le
s

(v
)

N
um

be
r

of
V

ar
ia

bl
es

X
[0

..n
,0

..n
]:

K

N
um

be
r

of
A

llo
w

ab
le

V
al

ue
s

(0
,1

,..
...

,v
):

M
Po

ss
ib

le
C

om
bi

na
tio

ns
M

K

Tr
av

el
in

g
C

os
t

C
om

pu
ta

tio
n

Ti
m

e

R
ou

te

0-13-57-2-40-53-0 16 2 289 3 3289 102,2 201
0-97-42-43-15-41-22-23-75-73-21-58-0
0-54-76-50-28-0 14 2 225 3 3225 160,29 153
0-77-3-79-78-34-29-24-68-80-12-0
0-52-19-47-36-49-64-11-62-88-0 12 2 169 3 3169 151,51 89
0-7-48-82-0
0-6-96-84-17-45-46-8-83-0 12 2 169 3 3169 106,90 67
0-5-60-18-89-0

9 1 100 2 2100 100,6 5 0-26-4-55-25-67-39-56-74-72-0
9 1 100 2 2100 172,89 11 0-31-10-63-90-32-66-20-30-70-0

10 1 121 2 2121 138,39 23 0-27-69-1-51-9-71-65-35-81-33-0
0-94-95-92-98-91-0
0-99-59-93-85-37-87-0 18 3 361 4 4361 206,99 261
0-100-44-14-38-86-16-61-0

208

APPENDIX C
 SUBPROBLEMS OF DIFFERENT THRESHOLD LEVELS IN RETAIL

CHAIN STORE DISTRIBUTION PROBLEM

209

APPENDIX D
OPL STUDIO CODES OF THRESHOLD ALGORITIHM FOR

SPLIT DELIVERY VEHICLE ROUTING PROBLEM

D1. CODE OF MODEL SDM

setting searchStrategy = SBS;
SheetConnection sheet("C:\archettitest1.xls");

int Demandpoints = 17;
int Noofvehicles=2;

range Stores 1..Demandpoints;
range Total 0..Demandpoints;
range Vehicles 1..Noofvehicles;

float Distance[Total, Total] from SheetRead(sheet,"distance30sub1");
int Demand[Total] from SheetRead(sheet,"demand30sub1");
int Capacity[Vehicles] from SheetRead(sheet,"cap30sub1");

var int X[Total,Total] in 0..2;
var int A[Stores,Vehicles] in 0..28;

solve
{
//Each city can be visited by more than one vehicle (Split deliveries are allowed);
forall(v in Vehicles) forall (i in Stores) sum (j in Total) (X[i,j]=v)<=1;
forall(v in Vehicles) forall (j in Stores) sum (i in Total) (X[i,j]=v)<=1;

//Every vehicle must visit the depot;
forall (v in Vehicles) sum (i in Total) (X[i,0]=v) = 1;
forall (v in Vehicles) sum (j in Total) (X[0,j]=v) = 1;

//A vehicle leaves the city that it enters;
forall(v in Vehicles,i in Total) (sum (j in Total) (X[i,j]) - sum (j in Total) (X[j,i]))=0;

//Capacity constraints;
forall(v in Vehicles) (sum(i in Stores) (A[i,v])-Capacity[v]<=0);

//Demand satisfaction;
forall(i in Stores) sum(v in Vehicles) (A[i,v]) -Demand[i]=0;

//Relation between A and X;
forall(i in Stores,v in Vehicles)(A[i,v]-10000*(sum(j in Total) (X[i,j]=v))<=0);
forall(i in Stores,v in Vehicles) (A[i,v]-(sum(j in Total) (X[i,j]=v))>=0);
};

210

D2. SCRIPT CODE OF SUBTOUR ELIMINATION ALGORITIHM FOR
SPLIT DELIVERIES
Model m("sdvrp.mod");

int n:=m.Demandpoints;

range Total 0..n;

range Vehicles 1..m.Noofvehicles;

int matris[1..m.Noofvehicles, 1..n+1];

int i:=0;

int say:=0;

float dist:=0;

int k:=1;

int j:=0;

int gecici:=0;

int ek:=0;

int tekrar:=0;

float mindist:=maxint;

ofile pinar("pinar.txt") ;

cout << "merhaba" << endl;

while m.nextSolution() do

{

forall(v in Vehicles)

 forall(t in 1..n+1)

 matris[v,t]:=0;

forall(v in Vehicles)

 {i:=0;

 k:=1;

 j:=0;

 repeat

 {if m.X[i,j]=v then {dist:=dist+m.Distance[i,j];

 say:=say+1;

 matris[v,k]:=i;

211

i:=j;

 k:=k+1;

 j:=0;

 if i=0 then break;}

 else j:=j+1; }

 until j>n;}

forall(i in 1..n)

 {forall(v in Vehicles)

 if m.A[i,v]>0 then tekrar:=tekrar+1;

 if tekrar>1 then ek:=ek+tekrar-1;

 tekrar:=0;}

if say=n+m.Noofvehicles+ek then if mindist>dist then { mindist:=dist;

 forall(v in Vehicles)

 {forall(t in 1..n+1)

 {cout << matris[v,t] << " - ";

 pinar << matris[v,t] << " - ";}

 cout << endl;

 pinar << endl;}

 cout << "Total Distance Travelled= " << dist <<

endl;

 cout << "Time= " << m.getTime() << endl;

 pinar << "Total Distance Travelled= " << dist <<

endl;

 pinar << "Time= " << m.getTime() << endl; }

 say:=0;

 dist:=0;}

 pinar.close();

212

D3. CODE OF MODEL IPM
setting searchStrategy = BFS;
SheetConnection sheet("C:\archettitest3.xls");
int Demandpoints =23;
int Noofvehicles =2;
range Stores 1..Demandpoints;
range Total 0..Demandpoints;
range Boolean 0..1;
range Vehicles 1..Noofvehicles;
float Distance[Total, Total] from SheetRead(sheet,"distancedeneme");
int Demand[Total] from SheetRead(sheet,"demanddeneme");
int Capacityofvehicle[Vehicles] from SheetRead(sheet,"capdeneme");

import int nosubtour;
import int rhs[0..nosubtour];
import int subtours[0..nosubtour,Stores];
range subtourrange 0..nosubtour;

var int X[Total,Total,Vehicles] in 0..1;
var int A[Stores,Vehicles] in 0..41;

minimize sum(i in Total, j in Total, v in Vehicles) (Distance[i,j]*X[i,j,v])
subject to
{//Each city can be visited by more than one vehicles (Split deliveries are allowed);
forall(v in Vehicles, j in Stores) sum(i in Total) X[i,j,v]<=1;
forall(v in Vehicles, i in Stores) sum(j in Total) X[i,j,v]<=1;

//A vehicle leaves the city that it enters;
forall(k in Total) forall(v in Vehicles)

((sum(i in Total) X[i,k,v]) - (sum(j in Total) X[k,j,v]))=0;

//All vehicles should visit the depot node once;
forall(v in Vehicles) sum(j in Stores) X[0,j,v]=1;
forall(v in Vehicles) sum(i in Stores) X[i,0,v]=1;

//Subtour elimination constraints;
forall(t in subtourrange) forall(v in Vehicles)

sum(i in 1..Demandpoints-1) (X[subtours[t,i],subtours[t,i+1],v])<=rhs[t];
forall(t in subtourrange) forall(v in Vehicles)

sum(i in 1..Demandpoints-1) (X[subtours[t,i+1],subtours[t,i],v])<=rhs[t];

//Capacity constraints;
forall(v in Vehicles) ((sum(i in Stores) (A[i,v]))-Capacityofvehicle[v]<=0);

//Demand satisfaction;
forall(i in Stores) (sum(v in Vehicles) (A[i,v])) -Demand[i]=0;

//Relation between A and X;
forall(i in Stores, v in Vehicles) A[i,v]- 10000*(sum(j in Total) X[i,j,v])<=0;
forall(i in Stores, v in Vehicles) A[i,v]- (sum(j in Total) X[i,j,v])>=0 ; };

213

D4. CODE OF SEA FOR SPLIT DELIVERY INTEGER
PROGRAMMING MODEL

int n:=23;
int Noofvehicles:=2;
range Total 0..n;
range Vehicles 1..Noofvehicles;
range Stores 1..n;
int say:=1;
int saygenel:=1;
int rhsgecici:=0;
int subtour:=0;
int generalsubtour:=0;
int nosubtour:=-1;
int matris[Stores];
int k:=0;
int j:=0;
int i:=1;

Open int subtours[0..nosubtour,Stores];
Open int rhs[0..nosubtour];
ofile pinar("pinar.txt") ;

repeat{
Model main("sdvrpip.mod");
 main.solve();
i:=1;
generalsubtour:=0;
cout << main.objectiveValue() << endl;
pinar << main.objectiveValue() << endl;
 while i<=n do
 { k:=i; say:=1; subtour:=0;
 forall(v in 1..Noofvehicles)
 {j:=0;
 while j<=n do
 {if main.X[k,j,v]=1 then {matris[say]:=k;
 k:=j;
 if j=0 then {say:=1; k:=i;subtour:=0;
 break;}
 if k=matris[1] then {rhsgecici:=say-1;
 say:=say+1;
 while say<=n do
 {matris[say]:=k;
 say:=say+1;}
 subtour:=1;
 break;}
 j:=-1;
 say:=say+1;}

214

j:=j+1;}
 if subtour=1 then {nosubtour:=nosubtour+1;
 subtours.addh();
 rhs.addh();
 rhs[nosubtour]:=rhsgecici;
 forall(t in Stores)
 subtours[nosubtour,t]:=matris[t];
 generalsubtour:=1; say:=1;}}
 i:=i+1;}

if generalsubtour=0 then {forall(v in 1..Noofvehicles)
 {cout << "Vehicle number:" << v << endl;
 forall(i in Total)
 {forall(j in Total)
 {cout << main.X[i,j,v] << " " ;
 pinar << main.X[i,j,v] << " " ;}
 cout << endl;
 pinar << endl;}}
 cout << main.objectiveValue();
 pinar << main.objectiveValue();
 break;}

}until 0;

215

APPENDIX E

DETAILED SOLUTIONS OF DROR AND TRUDEAU (1994)

TEST INSTANCES
E1. TEST INSTANCE 1

Threshold Level= 28

Subproblems of Instance 1

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70

Figure E1.1 Subproblems of Dror and Trudeau test instance 1.

Routes of Instance 1

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70

Figure E1.2 Routes of Dror and Trudeau test instance 1.

216

Table E1.1:Solutions of subproblems.

Number
of Nodes

(n)

Number of
Vehicles

(v)

Traveling
Cost

Computation
Time Route

0-11-38-9-50-34-30-39-10-49-5-0
21 2 212,07 71 0-1-22-3-36-35-20-29-21-16-2-32-0
12 2 141,76 11 0-17-37-15-33-45-44-42-19-40-41-13-4-0

0-14-25-18-47-12-46-0
17 2 181,87 32 0-27-48-8-28-31-26-7-43-24-23-6-0

217

E2. TEST INSTANCE 2

Threshold Level= 30

Subproblems of Instance 2

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

E1.1 Subproblems of Dror and Trudeau test instance 1.

Routes of Instance 2

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

E2.2 Routes of Dror and Trudeau test instance 2.

218

Table E2.1:Solutions of subproblems.

Number
of

Nodes
(n)

Number
of

Vehicles
(v)

Traveling
Cost

Computation
Time Route

0-26-58-10-31-39-9-72-12-0
0-3-32-50-18-55-25-9-40-0

23 3 281,56 501 0-17-44-24-49-56-23-16-51-0
0-67-8-34-52-27-13-57-15-0
0-46-54-19-59-14-35-7-0

20 3 249,08 227 0-38-65-66-11-53-0
0-6-33-63-43-41-42-64-73-0

16 2 187,30 164 0-68-2-74-28-61-22-1-62-0
0-4-45-29-5-47-48-30-0

16 2 166,26 202
0-4-37-20-70-60-71-36-69-21-
75-0

219

E3. TEST INSTANCE 3

Threshold Level= 32

Subproblems of Instance 3

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80

E1.1 Subproblems of Dror and Trudeau test instance 1.

Routes of Instance 3

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80

E3.2 Routes of Dror and Trudeau test instance 3.

220

Table E3.1:Solutions of subproblems.

Number
of

Nodes
(n)

Number
of

Vehicles
(v)

Traveling
Cost

Computation
Time Route

11 1 76,55 54 0-27-50-33-81-34-78-79-3-77-76-28-0
14 1 115,25 189 0-89-18-82-47-46-8-45-17-84-83-60-5-96-6-0

0-2-41-22--23-67-39-25-55-24-29-68-80-12-0
25 2 210,34 554 0-53-58-40-21-73-72-74-75-56-4-54-26-0

0-95-59-98-91-16-86-61-85-93-99-0

24 2 191,50 599
0-94-97-92-37-100-44-38-14-42-43-15-57-87-
13-0
0-69-31-70-30-32-20-66-65-35-71-9-51-1-0

26 2 283,72 615 0-52-7-48-36-49-64-19-11-63-32-90-10-62-88-0

221

E4. TEST INSTANCE 4

Threshold Level= 20

Subproblems of Instance 4

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80

E1.1 Subproblems of Dror and Trudeau test instance 1.

Routes of Instance 4

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80

E4.2 Routes of Dror and Trudeau test instance 4.

222

Table E4.1:Solutions of subproblems.

Number

of
Nodes

(n)

Number
of

Vehicles
(v)

Traveling
Cost

Computation
Time Route

12 1 102,19 58 0-102-6-57-132-98-24-97-86-43-99-23-46-0

16 1 118,34 167
0-27-138-48-112-69-7-61-114-113-26-140-82-31-8-60-
81-0
0-63-37-44-107-65-93-42-92-137-147-17-145-144-12-0

26 2 173,93 325 0-142-87-150-64-88-40-94-19-141-135-148-109-12-0
0-76-49-30-105-75-117-89-39-54-10-71-90-5-0

27 2 186,96 407 0-103-123-122-124-106-73-125-33-72-91-45-15-52-108-0
0-56-55-13-136-41-66-111-143-4-149-146-0

24 2 172,00 290 0-139-68-133-14-58-96-95-25-67-134-18-110-47-0
0-101-3-116-115-121-59-83-2-100-11-0

20 2 177,34 272 0-77-119-1-120-80-28-70-22-51-32-0
0-131-20-36-85-35-84-128-29-129-53-127-126-0

25 2 172,32 301 0-38-62-9-104-34-74-79-21-130-50-118-16-78-0

223

E5. TEST INSTANCE 5

Threshold Level= 30

Subproblems of Instance 5

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80

E1.1 Subproblems of Dror and Trudeau test instance 1.

Routes of Instance 5

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80

E5.2 Routes of Dror and Trudeau test instance 5.

224

Table E5.1:Solutions of subproblems.

Number
of

Nodes
(n)

Number
of

Vehicles
(v)

Traveling
Cost

Computation
Time Route

0-95-3-181-73-18-146-135-92-148-163-110-25-56-32-0
24 2 191,85 327 0-76-187-97-161-118-72-147-106-44-55-3-0

0-60-26-100-71-119-10-80-131-129-169-50-12-168-81-126-
0

26 2 171,42 455 0-126-17-130-39-109-57-189-31-162-75-9-40-0
0-175-46-176-35-180-69-84-134-85-164-170-11-150-0

22 2 206,02 209 0-38-77-165-52-11-108-132-7-51-149-0
0-4-87-111-58-27-153-79-15-154-83-123-13-99-179-34-0

27 2 166,92 490 0-34-65-8-102-178-78-177-14-133-19-128-70-167-0
0-120-171-47-155-36-122-166-138-48-30-54-0

23 2 181,09 200 0-127-125-98-45-29-124-20-138-37-88-103-5-59-0
0-152-139-172-173-174-82-121-21-140-94-64-28-101-2-0

28 2 162,79 563
0-112-66-196-186-22-141-91-113-142-114-156-93-86-157-
2-0
0-42-68-143-137-89-185-90-41-115-160-184-192-0

24 2 158,4 291 0-53-198-158-197-184-190-43-199-136-191-1-194-193-0
0-151-117-63-107-24-145-144-74-49-182-16-96-6-0

25 2 153,51 303 0-6-61-33-105-195-104-23-62-116-183-67-159-188-0

225

E6. TEST INSTANCE 6

Subproblems of Instance 6

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100 110

E1.1 Subproblems of Dror and Trudeau test instance 1.

Routes of Instance 6

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100 110

E6.2 Routes of Dror and Trudeau test instance 6.

226

Table E6.1:Solutions of subproblems.
N

um
be

r
of

N
od

es
(n

)

N
um

be
r

of
V

eh
ic

le
s

(v
)

Tr
av

el
in

g
C

os
t

C
om

pu
ta

tio
n

Ti
m

e

R
ou

te

16 1 134,96 80 0-88-2-1-3-4-5-6-7-9-10-11-15-14-13-12-8-0
21 1 207,51 113 0-92-21-20-23-26-28-32-35-29-36-34-31-30-33-27-24-22-25-19-16-17-0
16 1 199,62 88 0-40-43-45-48-51-50-49-46-47-44-41-42-39-38-37-93-0
16 1 213,63 62 0-100-52-54-57-59-65-61-62-64-66-63-60-56-58-55-53-0
15 1 144,41 56 0-67-69-70-71-74-75-72-78-80-79-77-68-76-73-103-0

0-82-111-86-87-89-91-90-18-118-114-109-108-83-113-117-84-85-112-81-119-0
36 2 161,75 229 0-120-105-106-107-104-116-98-110-115-97-94-96-99-101-102-95-87-86-0

227

E7. TEST INSTANCE 7

Subproblems of Instance 7

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

E7.1 Subproblems of Dror and Trudeau test instance 7.

Routes of Instance 7

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

E7.2 Routes of Dror and Trudeau test instance 7.

228

Table E7.1:Solutions of subproblems.

Number
of Nodes

(n)

Number of
Vehicles

(v)
Traveling

Cost
Computation

Time Route
9 1 96,04 7 0-13-17-18-19-15-16-14-12-10-0

11 1 56,17 56 0-75-1-2-4-6-9-11-8-7-3-5-0
11 1 50,8 16 0-21-22-23-26-28-30-29-27-25-24-20-0
9 1 97,23 57 0-34-36-39-38-37-35-31-33-32-0

13 1 64,81 59 0-47-49-52-50-51-48-46-45-44-40-41-42-43-0
8 1 101,88 2 0-59-60-58-56-53-54-55-57-0

11 1 59,4 36 0-69-66-68-64-61-72-74-62-63-65-67-0
9 1 127,3 7 0-81-78-76-71-70-73-77-79-80-0

10 1 76,07 20 0-91-89-88-85-84-82-83-86-87-90-0
9 1 95,94 17 0-99-100-97-93-92-94-95-96-98-0

229

APPENDIX F
DETAILED SOLUTIONS OF HVRP TEST INSTANCES UNDER SPLIT

DELIVERY STRATEGY
F1. TEST INSTANCE 3

Routes of Instance 3

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60
(a)

Routes of Instance 3 With Split Deliveries

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60
(b)

Figure F1.1: Graphical solutions of (a) non-split (b) split delivery strategy.

Table F1.1: Solutions of subproblems

Number
of Nodes

(n)

Number of
Vehicles

(v)
Traveling

Cost
Computation

Time Route
0-5-12-0

9 2 144,84 17 0-12-15-17-4-19-13-18-6-0
0-11-16-9-10-0
0-14-7-0

11 3 225,69 88 0-1-8-3-20-2-11-0

230

F2. TEST INSTANCE 4

Routes of Instance 4

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

(a)

Routes of Instance 4 With Split Deliveries

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60
(b)

Figure F2.1: Graphical solutions of (a) non-split (b) split delivery strategy.

Table F2.1: Solutions of subproblems

Number
of Nodes

(n)

Number of
Vehicles

(v)
Traveling

Cost
Computation

Time Route
0-8-2-11-0
0-1-3-20-2-0

10 3 211,3 101 0-11-16-9-10-5-0
0-18-12-0
0-12-17-15-19-13-4-0

10 3 210,6 198 0-18-14-7-6-0

231

F3. TEST INSTANCE 5
Routes of Instance 5

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

(a)
Routes of Instance 5 With Split Deliveries

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60
(b)

Figure F3.1: Graphical solutions of (a) non-split (b) split delivery strategy.

Table F3.1: Solutions of subproblems
Number

of
Nodes

(n)

Number
of

Vehicles
(v)

Traveling
Cost

Computation
Time Route

0-19-13-4-0
8 2 149,7 10 0-18-14-7-8-6-4-0

0-12-15-0
0-5-11-0

12 3 249,07 223
0-17-10-9-16-2-20-3-
1-0

232

F4. TEST INSTANCE 6

Routes of Instance 6

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

(a)
Routes of Instance 6 With Split Deliveries

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60
(b)

Figure F4.1: Graphical solutions of (a) non-split (b) split delivery strategy.

Table F4.1: Solutions of subproblems

Number of
Nodes (n)

Number of
Vehicles (v)

Traveling
Cost

Computation
Time Route

0-12-5-15-0
0-4-6-14-18-0

9 3 169,59 14 0-19-13-18-0
0-10-9-8-7-0
0-16-20-3-0

11 3 344,5 281 0-17-11-2-1-0

233

F5. TEST INSTANCE 13

Routes of Instance 13

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70

Figure F5.1: Graphical solutions of non-split delivery strategy. Split deliveries do not affect the
solution.

F6. TEST INSTANCE 14

Routes of Instance 14

0

10

20

30

40

50

60

70

80

0 20 40 60 80

Figure F6.1:Graphical solutions of non-split delivery strategy. Split deliveries do not affect the
solution.

234

F7. TEST INSTANCE 15

Routes of Instance 15

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70

(a)
Routes of Instance 15 With Split Deliveries

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70

(b)
Figure F7.1: Graphical solutions of (a) non-split (b) split delivery strategy.

235

Table F7.1: Solutions of subproblems

Number of
Nodes (n)

Number of
Vehicles (v)

Traveling
Cost

Computation
Time Route

0-32-2-22-0
10 2 162,89 34 0-31-28-3-36-35-20-29-0

0-47-17-44-45-15-0
0-18-47-0

12 3 206,6 53 0-42-19-40-41-13-4-47-0
0-25-14-0
0-27-48-6-0

12 3 184,36 99 0-23-24-43-7-26-8-1-0
0-5-12-0
0-11-16-21-34-50-38-46-0

16 3 212,21 247 0-49-9-30-10-39-33-37-0

236

F8. TEST INSTANCE 16

Routes of Instance 16

0

10

20

30

40

50

60

70

80

0 20 40 60 80

(a)

Routes of Instance 16 With Split Deliveries

0

10

20

30

40

50

60

70

80

0 20 40 60 80

(b)
Figure F8.1: Graphical solutions of (a) non-split (b) split delivery strategy.

237

Table F8.1: Solutions of subproblems

Number
of

Nodes
(n)

Number
of

Vehicles
(v)

Traveling
Cost

Computation
Time Route

0-13-41-40-19-42-0
0-4-17-44-45-33-15-37-0

16 3 227,74 257 0-47-12-5-46-0
0-48-23-43-24-14-6-0
0-14-25-18-0

17 3 237,23 409 0-27-7-26-8-31-28-22-2-32-0
0-29-20-35-36-3-1-0
0-38-9-30-39-10-49-0

17 3 254,92 346 0-38-50-34-21-16-11-0

238

F9. TEST INSTANCE 17

Routes of Instance 17

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

Figure F9.1:Graphical solutions of non-split delivery strategy. Split deliveries do not affect the
solution.

F10. TEST INSTANCE 18

Routes of Instance 18

0

10

20

30

40

50

60

70

80

0 20 40 60 80

Figure F10.1:Graphical solutions of non-split delivery strategy. Split deliveries do not affect the
solution.

239

F11. TEST INSTANCE 19

Routes of Instance 19

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80
(a)

Routes of Instance 19 With Split Deliveries

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80
(b)

Figure F11.1: Graphical solutions of (a) non-split (b) split delivery strategy.

240

Table F11.1: Solutions of subproblems

Number of
Nodes (n)

Number of
Vehicles (v)

Traveling
Cost

Computation
Time Route

0-9-71-65-66-20-1-69-0 15 2 215,74 183
0-69-70-30-32-90-63-64-11-10-0
0-33-81-79-3-77-76-0 13 2 154,51 139
0-28-68-78-34-35-51-50-0
0-27-31-88-7-48-0 10 2 161,17 76
0-47-36-49-19-62-0
0-6-60-5-93-99-94-0 16 2 147,2 165
0-52-82-8-46-45-17-84-83-18-89-0

9 1 95,24 65 0-26-4-25-55-54-24-29-80-12-0
0-41-23-67-39-56-0 12 2 159,89 112
0-21-72-75-22-74-73-40-0

8 1 73,67 30 0-53-58-2-57-15-43-42-87-0
0-96-86-91-37-98-92-97-95-0
0-100-85-61-59-0 17 3 226,56 566
0-13-14-38-44-16-0

241

F12. TEST INSTANCE 20

Routes of Instance 20

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80
(a)

Routes of Instance 20 With Split Deliveries

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80

(b)

Figure F12.1: Graphical solutions of (a) non-split (b) split delivery strategy.

242

Table F12.1: Solutions of subproblems

Number of
Nodes (n)

Number of
Vehicles (v)

Traveling
Cost

Computation
Time Route

0-13-57-2-40-53-0
16 2 102,2 201 0-97-42-43-15-41-22-23-75-73-21-58-0

0-54-76-50-28-0
14 2 160,29 153 0-77-3-79-78-34-29-24-68-80-12-0

0-52-19-47-36-49-64-11-62-88-0
12 2 151,51 89 0-7-48-82-0

0-6-96-84-17-45-46-8-83-0
12 2 106,9 67 0-5-60-18-89-0
9 1 100,6 5 0-26-4-55-25-67-39-56-74-72-0
9 1 172,89 11 0-31-10-63-90-32-66-20-30-70-0

10 1 138,39 23 0-27-69-1-51-9-71-65-35-81-33-0
0-94-59-99-0
0-94-95-92-93-85-91-98-37-87-0

18 3 206,99 261 0-100-44-14-38-86-16-61-0

243

APPENDIX G
OPL STUDIO CODES OF THRESHOLD ALGORITIHM FOR

VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

G1. CODE OF MODEL TWM
setting searchStrategy = SBS;

SheetConnection sheet("C:\C102.xls");

int Demandpoints = 12;

int Noofvehicles=1;

int Ready=1236;

range Stores 1..Demandpoints;

range Total 0..Demandpoints;

range Vehicles 1..Noofvehicles;

float NewDistance[Total, Total] from SheetRead(sheet,"distancesub1");

int Latest[Stores] from SheetRead(sheet,"latest");

 int Earliest[Stores] from SheetRead(sheet,"earliest");

 int Service[Total] from SheetRead(sheet,"service");

 var int X[Total,Total] in 0..Noofvehicles;

var int T[Total] in 0..1236;

var int W[Total] in 0..0;

solve

{

//Each city is visited exactly once;

forall (i in Stores) sum (j in Total) (X[i,j]>0)=1;

forall (j in Stores) sum (i in Total) (X[i,j]>0)=1;

//Each vehicle visits the depot exactly once;

forall (v in Vehicles) sum (i in Total) (X[i,0]=v) = 1;

forall (v in Vehicles) sum (j in Total) (X[0,j]=v) = 1;

//A vehicle leaves the city that it enters;

forall (i in Total) (sum (j in Total) (X[i,j]) - sum (j in Total) (X[j,i]))=0;

244

//Capacity of vehicles should not be exceeded;forall(v in Vehicles)

 (sum(i in Total) Demand[i]*(sum(j in Total) (X[i,j]=v))) <=Capacityofvehicle[v];

T[0]=0;

W[0]=0;

//If going from node i to node j is infeasible, then corresponding variable should be

0;

forall (i in Total, j in Total) X[i,j]<=50*M[i,j];

//Arrival time to a node must be within its speciefied time window;

forall(i in Stores) (T[i]+W[i])<=Latest[i];

forall(i in Stores) (T[i]+W[i])>=Earliest[i];

//Arrival time to a node must be greater than or equal to (arrival time of the previous

node+waiting time+service time+traveling time);

forall(j in Stores) (sum (v in Vehicles, i in Total)

((X[i,j]=v)*(T[i]+W[i]+Service[i]+NewDistance[i,j])))<=T[j];

//Arrival to the depot must be greater than or equal to (arrival time of the previous

node+waiting time+service time+traveling time);

forall(v in Vehicles) (sum(j in Stores)

 ((X[j,0]=v)*(T[j]+W[j]+Service[j]+NewDistance[j,0])))<=Ready;

};

245

APPENDIX H
OPL STUDIO CODES OF SETCOVERING ALGORITIHM FOR

VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

H1. CODE OF MODEL SETCOVERING
int Demandpoints = 25;

int Noofvehicles=10;

range Stores 1..Demandpoints;

range Total 0..Demandpoints;

import int noofovercapacity;

import int exceedingdemand[0..noofovercapacity,0..Demandpoints];

import int noofovertime;

import int exceedingtime[0..noofovercapacity,0..Demandpoints];

import int rhs[0..noofovertime];

import int noofouts;

import int outoftimewindow[0..noofovercapacity,0..Demandpoints];

import int rhs2[0..noofouts];

import int nosubtour;

import int rhs3[0..nosubtour];

import int subtours[0..nosubtour,Stores];

import int M[Total,Total] ;

import float NewDistance[Total, Total] ;

import int Demand[Total] ;

range subtourrange 0..nosubtour;

range outrange 0..noofouts;

range overtimerange 0..noofovertime;

range overcaprange 0..noofovercapacity;

var int X[Total,Total] in 0..1;

minimize sum(i in Total, j in Total) ((X[i,j])*NewDistance[i,j])

subject to

{//All nodes should be visited exactly once;

 forall (i in Stores) sum (j in Total) X[i,j]=1;

 forall (j in Stores) sum (i in Total) X[i,j]=1;

246

//Number of vehicles should not be exceeded;

sum(j in Total) X[0,j]<=Noofvehicles;

sum(j in Total) X[0,j]=sum(i in Total) X[i,0];

//A vehicle can go from a node only to one of its time window satisfactory

neighbours;

 forall (i in Total, j in Total) X[i,j]<=M[i,j];

//Elimination of overcapacities;

 forall(t in overcaprange) sum(i in 0..Demandpoints-1)

(X[exceedingdemand[t,i],exceedingdemand[t,i+1]]*Demand[exceedingdemand[t,i]])<=1000;

forall(t in overcaprange) sum(i in 0..Demandpoints-1)
(X[exceedingdemand[t,i+1],exceedingdemand[t,i]]*Demand[exceedingdemand[t,i]])<=1000;

//Elimination of overtimes;

 forall(t in overtimerange) sum(i in 0..Demandpoints-1)

 (X[exceedingtime[t,i],exceedingtime[t,i+1]])<=rhs[t];

forall(t in overtimerange) sum(i in 0..Demandpoints-1)

(X[exceedingtime[t,i+1],exceedingtime[t,i]])<=rhs[t];

//Elimination of time window violations;

forall(t in outrange) (sum(i in 0..Demandpoints-1)

(X[outoftimewindow[t,i],outoftimewindow[t,i+1]])<=rhs2[t]);

 forall(t in outrange) (sum(i in 0..Demandpoints-1)

(X[outoftimewindow[t,i+1],outoftimewindow[t,i]])<=rhs2[t]);

//Elimination of subtours;

 forall(t in subtourrange) sum(i in 1..Demandpoints-1)

(X[subtours[t,i],subtours[t,i+1]])<=rhs3[t];

 forall(t in subtourrange) sum(i in 1..Demandpoints-1)

(X[subtours[t,i+1],subtours[t,i]])<=rhs3[t];};

247

H2. CODE SCRIPT ALGORITM FOR MODEL TWM

SheetConnection sheet("C:\C204.xls");

int n:=25;

int vehicles:=10;

range Stores 1..n;

range Total 0..n;

int M[Total,Total] from SheetRead(sheet,"nereye2");

float NewDistance[Total, Total] from SheetRead(sheet,"newdistance2");

int Demand[Total] from SheetRead(sheet,"demandtotal2");

int Latest[Stores] from SheetRead(sheet,"latest2");

int Earliest[Stores] from SheetRead(sheet,"earliest2");

int Service[Total] from SheetRead(sheet,"service2");

int due:=230;

int capa:=200;

int j:=0;

int i:=0;

int k:=0;

int v:=0;

int l:=1;

int p:=0;

int z:=0;

int z1:=0;

int z2:=0;

int nj:=0;

int deger:=0;

int deger2:=0;

int solution:=0;

int solution2:=0;

int solution3:=0;

int toplamdemand:=0;

float totaltime:=0;

int noofovercapacity:=-1;

248

int noofovertime:=-1;

int noofouts:=-1;

int matris[1..vehicles, 0..n];

float arrive[1..n];

float leave[1..n];

int count:=0;

ofile pinar("pinar.txt") ;

int say:=1;

int saygenel:=1;

int rhsgecici:=0;

int subtour:=0;

int generalsubtour:=0;

int nosubtour:=-1;

int matrisilk[Stores];

int matrisgenel[Stores];

k:=0;

j:=0;

i:=1;

Open int exceedingdemand[0..noofovercapacity,0..n];

Open int exceedingtime[0..noofovertime,0..n];

Open int outoftimewindow[0..noofouts,0..n];

Open int subtours[0..nosubtour,Stores];

Open int rhs[0..noofovertime];

Open int rhs2[0..noofouts];

Open int rhs3[0..nosubtour];

//Model m("twdecomposition.mod") editMode;

repeat

{

repeat{

 Model m("twdecomposition.mod");

 m.solve();

249

forall(m in Stores)

 matrisgenel[m]:=0;

saygenel:=1;

i:=1;

generalsubtour:=0;

cout << m.objectiveValue() << endl;

pinar << m.objectiveValue() << endl;

while i<=n do

 {count:=0;

 forall(m in 1..n)

 if i=matrisgenel[m] then {count:=1; break;}

 if count=0 then

 {k:=i; say:=1; subtour:=0;

 j:=0;

 while j<=n do

 {if m.X[k,j]=1 then

 {matrisilk[say]:=k;

 matrisgenel[saygenel]:=k;

 saygenel:=saygenel+1;

 k:=j;

 if j=0 then {say:=1; k:=i;

 break;}

 if k=matrisilk[1] then {rhsgecici:=say-1;

 say:=say+1;

 while say<=n do

 {matrisilk[say]:=k;

 say:=say+1;}

 subtour:=1; break;}

 forall(m in Stores)

 if k=matrisgenel[m] then {count:=1; break;}

 if count=1 then break;

250

j:=-1;

 say:=say+1;}

 j:=j+1;}

 if subtour=1 then {nosubtour:=nosubtour+1;

 subtours.addh();

 rhs3.addh();

 rhs3[nosubtour]:=rhsgecici;

 forall(t in Stores)

 subtours[nosubtour,t]:=matrisilk[t];

 generalsubtour:=1;}}

 i:=i+1;}

if generalsubtour=0 then {forall(i in Total)

 {forall(j in Total)

 cout << m.X[i,j] << " " ;

 cout << endl;}

 cout << m.objectiveValue();

 break;}

}until 0;

cout << "full solution" << endl;

j:=0;

i:=0;

k:=0;

Model m("twdecomposition.mod") ;

forall(i in 1..vehicles)

 forall(j in 0..n)

 matris[i,j]:=0;

i:=0;

j:=0;

v:=0;

k:=0;

l:=1;

251

p:=0;

while m.solve() do

{

while v<vehicles do

 {while j<=n do

 {if m.X[i,j]=1 then

 {cout << i << "-" ;

 pinar << i << "-" ;

 matris[l,p]:=i;

 p:=p+1;

 if i=0 then k:=j;

 i:=j;

 if j=0 then

 break;

 j:=-1;}

 j:=j+1;}

 j:=k+1; i:=0; v:=v+1; l:=l+1; p:=0;

 cout << endl;

 pinar << endl;

 cout << v << endl;

 pinar << v << endl;}

break;

 }

cout << "Objective value=" << m.objectiveValue() << endl;

solution:=noofovercapacity;

forall(i in 1..vehicles)

 {forall(j in 0..n)

 {z:=matris[i,j];

 toplamdemand:=toplamdemand+Demand[z];}

 if toplamdemand>capa then

 {noofovercapacity:=noofovercapacity+1;

 exceedingdemand.addh();

252

cout << "deneme" << endl;

 forall(nj in 0..n)

 exceedingdemand[noofovercapacity,nj]:=matris[i,nj];}

 toplamdemand:=0;}

solution2:=noofovertime;

forall(i in 1..vehicles)

 {forall(j in 0..n-1)

 {z1:=matris[i,j];

 z2:=matris[i,j+1];

 totaltime:=totaltime+NewDistance[z1,z2];

 if z2=0 then break;

 if Earliest[z2]>totaltime then

 totaltime:=Earliest[z2];

 arrive[z2]:=totaltime;

 totaltime:=totaltime+Service[z2];

 leave[z2]:=totaltime; }

 if totaltime>due then

 {noofovertime:=noofovertime+1;

 exceedingtime.addh();

 rhs.addh();

 forall(nj in 0..n)

 exceedingtime[noofovertime,nj]:=matris[i,nj];

 nj:=1;

 deger:=0;

 repeat{

 deger:=deger+1;

 nj:=nj+1;

 if nj=100 then {deger:=deger+1; break;}}

 until (matris[i,nj]=0);

 rhs[noofovertime]:=deger;}

 totaltime:=0;}

forall(j in 1..n)

253

{cout<< "Arrival to " << j << " = " << arrive[j] << " Leave from " << j << " = " <<

leave[j] << endl;

 pinar<< "Arrival to " << j << " = " << arrive[j] << " Leave from " << j << " = " <<

leave[j] << endl;}

solution3:=noofouts;

forall(j in 1..n)

 {if arrive[j]>Latest[j] then

 {forall(i in 1..vehicles)

 forall(k in 0..n)

 if matris[i,k]=j then

 {noofouts:=noofouts+1;

 outoftimewindow.addh();

 rhs2.addh();

 forall(nj in 0..n)

 outoftimewindow[noofouts,nj]:=matris[i,nj];

 nj:=1;

 deger2:=0;

 repeat{

 deger2:=deger2+1;

 nj:=nj+1;

 if nj=100 then {deger2:=deger2+1; break;}}

 until matris[i,nj]=0;

 rhs2[noofouts]:=deger2;

 break;}

 }}

cout << endl;

if noofovercapacity=solution then

 if solution2=noofovertime then

 if noofouts=solution3 then {cout << endl << "true

 solution" << endl;

break;}

}until 0;

254

APPENDIX I

DETAILED SOLUTIONS TO SOLOMON TEST INSTANCES
I1. Subproblems of C100 Series

Subproblems of C100 problems-25nodes

40

50

60

70

80

90

0 10 20 30 40 50

Figure I1.1 Subproblems of C100-25 nodes

Subproblems of C100 problems-50nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50

Figure I1.2 Subproblems of C100-50 nodes

255

Subproblems of C100 problems-100nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

Figure I1.3 Subproblems of C100-100 nodes
.

256

I2. C101, C105, C106, C107, C108, C109

Solutions of C101, C105, C106, C107, C108 and C109 are same.

Routes of C101-25nodes

40

50

60

70

80

90

0 10 20 30 40 50

Figure I2.1: Routes of 25 node problems

Routes of C101-50nodes

20

30

40

50

60

70

80

90

0 10 20 30 40 50

Figure I2.2: Routes of 50 node problems

257

Routes of C101-100nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

Figure I2.3: Routes of 100 node problems

Table I2.1: Solutions of subproblems

Problem

Number
of Nodes

(n)

Number
of

Vehicles
(v)

Traveling
Cost

Computation
Time Route

11 1 59,49 <=1 0-5-3-7-8-10-11-9-6-4-2-1-0
8 1 95,81 <=1 0-13-17-18-19-15-16-14-12-0 C101-25
6 1 36,44 <=1 0-20-24-25-23-22-21-0

11 1 59,49 <=1 0-5-3-7-8-10-11-9-6-4-2-1-0
8 1 95,81 <=1 0-13-17-18-19-15-16-14-12-0

11 1 50,80 <=1 0-20-24-25-27-29-30-28-26-23-22-21-0
9 1 97,23 <=1 0-32-33-31-35-37-38-39-36-34-0

C101-50

11 1 59,84 <=1 0-43-42-41-40-44-46-45-48-50-49-47-0
12 1 59,62 <=1 0-5-3-7-8-10-11-9-6-4-2-1-75-0
8 1 95,81 <=1 0-13-17-18-19-15-16-14-12-0

11 1 50,80 <=1 0-20-24-25-27-29-30-28-26-23-22-21-0
9 1 97,23 <=1 0-32-33-31-35-37-38-39-36-34-0

13 1 64,81 <=1 0-43-42-41-40-44-46-45-48-51-50-52-49-47-0
8 1 101,88 <=1 0-57-55-54-53-56-58-60-59-0

11 1 59,4 <=1 0-67-65-63-62-74-72-61-64-68-66-69-0
9 1 127,3 <=1 0-81-78-76-71-70-73-77-79-80-0

10 1 76,07 <=1 0-90-87-86-83-82-84-85-88-89-91-0

C101-100

9 1 95,94 <=1 0-98-96-95-94-92-93-97-100-99-0

258

I3. C102, C103, C104

Solutions of C102, C103 and C104 are same.

Routes of C102-25nodes

40

50

60

70

80

90

0 10 20 30 40 50

Figure I3.1: Routes of 25 node problems

Routes of C102-50nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50

Figure I3.2: Routes of 50 node problems

259

Routes of C102-100nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

Figure I3.3: Routes of 100 node problems

Table I3.1: Solutions of subproblems

Problem

Number
of

Nodes
(n)

Number
of

Vehicles
(v)

Traveling
Cost

Computation
Time Route

11 1 58,41 <=1 0-7-8-10-11-9-6-4-2-1-3-5-0
8 1 95,81 <=1 0-13-17-18-19-15-16-14-12-0 C102-25
6 1 36,44 <=1 0-20-24-25-23-22-21-0

11 1 58,41 <=1 0-7-8-10-11-9-6-4-2-1-3-5-0
8 1 95,81 <=1 0-13-17-18-19-15-16-14-12-0

11 1 50,80 <=1 0-20-24-25-27-29-30-28-26-23-22-21-0
9 1 97,23 <=1 0-32-33-31-35-37-38-39-36-34-0

C102-50

11 1 59,84 <=1 0-43-42-41-40-44-46-45-48-50-49-47-0
12 1 59,62 <=1 0-5-3-7-8-10-11-9-6-4-2-1-75-0
8 1 95,81 <=1 0-13-17-18-19-15-16-14-12-0

11 1 50,80 <=1 0-20-24-25-27-29-30-28-26-23-22-21-0
9 1 97,23 <=1 0-32-33-31-35-37-38-39-36-34-0

13 1 64,81 4 0-43-42-41-40-44-46-45-48-51-50-52-49-47-0
8 1 101,88 <=1 0-57-55-54-53-56-58-60-59-0

11 1 59,4 <=1 0-67-65-63-62-74-72-61-64-68-66-69-0
9 1 127,3 <=1 0-81-78-76-71-70-73-77-79-80-0

10 1 76,07 <=1 0-90-87-86-83-82-84-85-88-89-91-0

C102-100

9 1 95,94 <=1 0-98-96-95-94-92-93-97-100-99-0

260

I4. Subproblems of C200 Series

Subproblems of C200 problems-25nodes

40

50

60

70

80

90

0 10 20 30 40 50 60 70

Figure I4.1 Subproblems of C200-25 nodes

Subproblems of C200 problems-50nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70

Figure I4.2 Subproblems of C200- 50 nodes

261

Subproblems of C200 problems-100nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

Figure I4.3 Subproblems of C200- 100 nodes

262

I5. C201, C202, C204, C205, C206, C207

Solutions of C201, C202, C204, C205, C206 and C207 are same.

Routes of C201-25nodes

40

50

60

70

80

90

0 10 20 30 40 50 60 70

Figure I5.1: Routes of 25 node problems

Routes of C201-50nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70

Figure I5.2: Routes of 50 node problems

263

Routes of C201-100nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

Figure I5.3: Routes of 100 node problems

Table I5.1: Solutions of subproblems

Problem

Number
of

Nodes
(n)

Number
of

Vehicles
(v)

Traveling
Cost

Computation
Time Route

6 1 70,72
<=1

0-5-2-1-7-3-4-0 C201-25

19 1 144,83
<=1 0-20-22-24-6-23-18-19-16-14-12-15-17-

13-25-9-11-10-8-21-0

6 1 70,72
<=1

0-5-2-1-7-3-4-0

11 1 95,78
<=1

0-49-40-44-46-45-50-47-43-42-41-48-0 C201-50

33 1 195,30
118

0-20-22-24-27-30-29-6-32-33-31-35-37-
38-39-36-34-28-26-23-18-19-16-14-12-
15-17-13-25-9-11-10-8-21-0

33 1 195,30
118

0-20-22-24-27-30-29-6-32-33-31-35-37-
38-39-36-34-28-26-23-18-19-16-14-12-
15-17-13-25-9-11-10-8-21-0

32 1 158,05
126

0-67-63-62-74-72-61-64-66-69-68-65-
49-55-54-53-56-58-60-59-57-40-44-46-
45-51-50-52-47-43-42-41-48-0

C201-100

35 1 238,21
281

0-93-5-75-2-1-99-100-97-92-94-95-98-
7-3-4-89-91-88-84-86-83-82-85-76-71-
70-73-80-79-81-78-77-96-87-90-0

264

I6. C203, C208

Solutions of C203 and C208 are same.

Routes of C203-25nodes

40

50

60

70

80

90

0 10 20 30 40 50 60 70

Figure I6.1: Routes of 25 node problems

Routes of C203-50nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70

Figure I6.2: Routes of 50 node problems

265

Routes of C203-100nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

Figure I6.3: Routes of 100 node problems

Table I6.1: Solutions of subproblems

Problem

Number
of

Nodes
(n)

Number
of

Vehicles
(v)

Traveling
Cost

Computation
Time

Route
6 1 70,72 <=1 0-5-2-1-7-3-4-0

C203-25
19 1 144,83 21 0-20-22-24-6-23-18-19-16-14-12-15-17-

13-25-9-11-10-8-21-0
6 1 70,72 <=1 0-5-2-1-7-3-4-0

11 1 95,78 <=1 0-49-40-44-46-45-50-47-43-42-41-48-0
C203-50

33 1 195,30 206
0-20-22-24-27-30-29-6-32-33-31-35-37-
38-39-36-34-28-26-23-18-19-16-14-12-
15-17-13-25-9-11-10-8-21-0

33 1 195,30 206
0-20-22-24-27-30-29-6-32-33-31-35-37-
38-39-36-34-28-26-23-18-19-16-14-12-
15-17-13-25-9-11-10-8-21-0

32 1 157,66 188
0-67-63-62-74-72-61-64-66-69-68-65-
49-55-54-53-56-58-60-59-57-40-44-46-
45-51-50-52-47-42-41-43-48-0

C203-100

35 1 238,21 415
0-93-5-75-2-1-99-100-97-92-94-95-98-
7-3-4-89-91-88-84-86-83-82-85-76-71-
70-73-80-79-81-78-77-96-87-90-0

266

I7. Nodes of R100 Series

Nodes of R100 Problems

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80

Figure I7.1: Nodes of R 100 problems

267

I8. R101

Routes of R101-25nodes

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

Figure I8.1: Routes of R101-25 nodes

Routes of R101-50nodes

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70

Figure I8.2: Routes of R101-50 nodes

268

Routes of R101-100nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80

Figure I8.3: Routes of R101-100 nodes

Table I8.1: Solutions of subproblems

Problem
Traveling

Cost Route Problem
Traveling

Cost Route
0-2-21-3-24-25-0 0-2-21-73-41-56-4-0
0-5-16-6-0 0-5-83-61-85-37-93-0
0-7-8-17-0 0-12-76-79-3-54-24-80-0
0-11-19-10-0 0-14-44-38-43-13-0
0-12-9-20-1-0 0-27-69-30-51-20-32-70-0
0-14-15-13-0 0-28-29-78-34-35-77-0
0-18-0 0-31-88-7-0

R101-25 618,33

0-23-22-4-0 0-33-81-50-68-0
0-2-21-40-50-1-0 0-36-47-19-8-46-17-0
0-5-16-37-0 0-39-23-67-55-25-0
0-11-19-49-48-0 0-40-53-26-0
0-14-44-38-43-13-0 0-45-82-18-84-60-89-0
0-27-18-6-0 0-52-6-0
0-28-12-3-24-25-0 0-59-99-94-96-0
0-31-30-20-32-0 0-62-11-90-10-0
0-33-29-9-34-35-0 0-63-64-49-48-0
0-36-47-7-10-0 0-65-71-9-66-1-0
0-39-23-22-4-0 0-72-75-22-74-58-0
0-42-15-41-26-0 0-92-42-15-87-57-97-0

R101-50 1046,70

0-45-8-46-17-0

R101-100 1642,88

0-95-98-16-86-91-100-0

269

I9. R105

Routes of R105-25 nodes

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

Figure I9.1: Routes of R105-25 nodes

Table I9.1: Solutions of subproblems

Problem
Traveling

Cost Route
0-2-15-13-0
0-5-14-16-6-0
0-7-18-8-17-0
0-12-9-3-24-0
0-19-11-10-20-1-0

R105-25 531,54

0-21-23-22-4-25-0

270

I10. Subproblems of RC Series

Subproblems of RC-25nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50

Figure I10.1: Subproblems of RC-25 nodes

Subproblems of RC-50 nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

Figure I10.2: Subproblem of RC-50 nodes

271

I11. RC101

Routes of RC101-25 nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50

Figure I11.1: Routes of RC101-25 nodes

Routes of RC101-50nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

Figure I11.2: Routes of RC101-50 nodes

272

Table I11.1: Solutions of subproblems

Problem

Number
of Nodes

(n)
Number of
Vehicles (v)

Traveling
Cost Route

8 1 121,07 0-5-2-7-6-8-3-1-4-0
0-22-20-0

8 2 184,37 0-23-21-19-18-25-24-0
0-12-11-9-10-0

RC101-25

9 2 176,84 0-14-15-16-17-13-0
0-27-29-31-34-50-0

10 2 238,74 0-33-30-28-26-32-0
0-2-7-6-8-46-4-0

10 2 171,51 0-45-5-3-1-0
0-12-11-9-10-0

10 2 179,01 0-14-47-15-16-17-13-0
0-19-49-22-20-24-0

10 2 192,03 0-23-21-18-48-25-0
0-39-36-40-38-41-0

RC101-50

10 2 187,51 0-42-44-43-37-35-0

I12. RC102

Routes of RC102-25nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50

Figure I12.1: Routes of RC102-25 nodes

273

Routes of RC102-50nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

Figure I12.2: Routes of RC102-50 nodes

Table I12.1: Solutions of subproblems

Problem

Number
of Nodes

(n)

Number
of

Vehicles
(v)

Traveling
Cost Route

8 1 129,26 0-21-23-19-18-22-20-25-24-0
9 1 123,96 0-12-14-11-15-16-9-10-13-17-0 RC102-25
8 1 99,72 0-2-7-6-8-4-5-3-1-0

10 1 105,95 0-1-3-45-5-8-7-6-46-4-2-0
10 1 128,99 0-14-47-11-15-16-9-10-13-17-12-0

0-33-26-28-30-32-50-0
10 2 236,254 0-34-31-29-27-0

0-19-23-48-18-21-25-24-0
10 2 183,6131 0-22-49-20-0

0-39-36-40-38-41-0

RC102-50

10 2 185,4752 0-42-44-43-35-37-0

274

I13. RC103

Routes of RC103-25nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50

Figure I13.1: Routes of RC103-25 nodes

Routes of RC103-50nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

Figure I13.2: Routes of RC103-50 nodes

275

Table I13.1: Solutions of subproblems

Problem

Number
of

Nodes
(n)

Number
of

Vehicles
(v)

Traveling
Cost Route

8 1 99,7157 0-2-7-6-8-4-5-3-1-0
9 1 116,0812 0-12-15-11-9-10-13-16-17-14-0 RC103-25
8 1 118,318 0-20-19-18-21-23-22-25-24-0

0-33-27-30-32-28-26-29-31-34-0
10 2 213,4102 0-50-0

0-39-36-35-37-0
10 2 179,3061 0-42-43-44-40-38-41-0
10 1 105,3784 0-2-45-46-8-7-6-4-5-3-1-0
10 1 117,0741 0-12-14-15-11-9-10-13-16-17-47-0

RC103-50

10 1 121,15845 0-20-18-48-21-23-22-49-19-25-24-0

I14. RC104

Routes of RC104-25 nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50

Figure I14.1: Routes of RC104-25 nodes

276

Routes of RC104-50nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

Figure I14.2: Routes of RC104-50 nodes

Table I14.1: Solutions of subproblems

Problem

Number
of

Nodes
(n)

Number
of

Vehicles
(v)

Traveling
Cost Route

8 1 95,8847 0-2-6-7-8-4-5-3-1-0
9 1 109,3717 0-10-11-15-16-9-13-17-14-12-0 RC104-25
8 1 101,8826 0-20-19-18-21-23-25-24-22-0

0-34-31-29-27-26-28-30-32-33-0
10 2 197,9799 0-50-0
10 1 95,8847 0-2-6-7-8-46-4-45-5-3-1-0
10 1 111,6178 0-12-14-15-11-10-9-13-16-17-47-0
10 1 108,9005 0-22-20-49-19-23-21-18-48-25-24-0

RC104-50

10 1 102,5455 0-42-44-43-38-37-35-36-40-39-41-0

277

I15. RC105

Routes of RC105-25nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50

Figure I15.1: Routes of RC105-25 nodes

Routes of RC105-50nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

Figure I15.2: Routes of RC105-50 nodes

278

Table I15.1: Solutions of subproblems

Problem

Number
of Nodes

(n)

Number
of

Vehicles
(v)

Traveling
Cost Route

8 1 109,1418 0-2-5-3-1-8-6-7-4-0
0-11-9-10-0

8 2 177,316 0-12-14-16-15-13-17-0
RC105-25

9 1 125,9189 0-19-23-18-22-20-21-25-24-0
0-28-26-27-29-31-34-0

10 2 230,6094 0-33-30-32-50-0
10 1 111,283 0-2-45-5-8-6-7-46-4-3-1-0

0-11-9-10-0
10 2 179,485 0-12-14-47-15-16-13-17-0

0-19-23-48-18-21-25-24-0
10 2 183,6131 0-22-49-20-0

0-39-36-37-38-41-0

RC105-50

10 2 185,3919 0-42-44-40-35-43-0

I16. RC106

Routes of RC106-25nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50

Figure I16.1: Routes of RC106-25 nodes

279

Routes of RC106-50nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

Figure I16.2: Routes of RC106-50 nodes

Table I16.1: Solutions of subproblems

Problem

Number
of

Nodes
(n)

Number
of

Vehicles
(v)

Traveling
Cost Route

8 1 107,9241 0-2-5-8-7-6-4-3-1-0
8 1 118,474 0-11-15-16-14-12-10-9-13-17-0 RC106-25
9 1 120,1073 0-23-21-18-19-20-22-25-24-0

0-31-29-27-26-28-34-0
10 2 230,7873 0-33-30-32-50-0
10 1 113,6867 0-2-45-5-8-7-6-46-3-1-4-0
10 1 126,2691 0-11-12-14-47-15-16-9-10-13-17-0
10 1 126,125 0-23-21-18-19-49-20-22-48-25-24-0

RC106-50

10 1 133,5089 0-42-39-38-36-40-44-41-43-37-35-0

280

I17. RC107

Routes of RC107-25nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50

Figure I17.1: Routes of RC107-25 nodes

Routes of RC107-50nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

Figure I17.2: Routes of RC107-50 nodes

281

Table I17.1: Solutions of subproblems

Problem

Number
of

Nodes
(n)

Number
of

Vehicles
(v)

Traveling
Cost Route

8 1 98,0035 0-2-6-7-8-5-3-1-4-0
9 1 97,2272 0-12-14-17-16-15-13-9-11-10-0 RC107-25
8 1 103,7192 0-25-23-21-18-19-20-22-24-0

0-31-29-27-28-26-30-32-34-33-0
10 2 211,6658 0-50-0
10 1 101,5918 0-2-6-7-8-5-3-1-45-46-4-0
10 1 100,9798 0-11-12-14-47-17-16-15-13-9-10-0
10 1 122,6876 0-25-23-21-18-19-49-20-22-48-24-0

RC107-50

10 1 108,6571 0-41-38-39-42-44-43-40-37-35-36-0

I18. RC108

Routes of RC108-25nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50

Figure I18.1: Routes of RC108-25 nodes

282

Routes of RC108-50nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

Figure I18.2: Routes of RC108-50 nodes

Table I18.1: Solutions of subproblems

Problem

Number
of Nodes

(n)

Number
of

Vehicles
(v)

Traveling
Cost Route

8 1 95,88 0-2-6-7-8-4-5-3-1-0
9 1 97,23 0-12-14-17-16-15-13-9-11-10-0 RC108-25
8 1 101,88 0-22-20-19-18-21-23-25-24-0

0-33-32-30-28-26-27-29-31-34-0
10 2 197,98 0-50-0
10 1 95,88 0-2-6-7-8-46-4-45-5-3-1-0
10 1 97,23 0-12-14-47-17-16-15-13-9-11-10-0
10 1 103,72 0-25-23-21-48-18-19-49-20-22-24-0

RC108-50

10 1 104,36 0-41-42-44-43-40-38-37-35-36-39-0

283

I19. RC201

Routes of RC201-25nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50

Figure I19.1: Routes of RC201-25 nodes

Routes of RC201-50nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

Figure I19.2: Routes of RC201-50 nodes

284

Table I19.1: Solutions of subproblems

Problem

Number
of

Nodes
(n)

Number
of

Vehicles
(v)

Traveling
Cost Route

8 1 112,97 0-2-5-8-7-6-3-1-4-0
9 1 124,74 0-14-12-16-15-11-9-10-13-17-0 RC201-25
8 1 123,53 0-23-21-18-19-22-20-24-25-0

10 1 118,21 0-5-45-2-6-7-8-46-3-1-4-0
10 1 127,50 0-14-47-16-15-12-11-9-10-13-17-0
10 1 130,52 0-23-21-18-19-49-22-20-24-25-48-0

0-39-36-40-38-41-0
10 2 185,48 0-42-44-43-35-37-0

RC201-50

10 1 175,59 0-33-31-29-27-30-28-26-34-50-32-0

I20. RC202

Routes of RC202-25nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50

Figure I20.1: Routes of RC202-25 nodes

285

Routes of RC202-50nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

Figure I20.2: Routes of RC202-50 nodes

Table I20.1: Solutions of subproblems

Problem

Number
of Nodes

(n)

Number
of

Vehicles
(v)

Traveling
Cost Route

8 1 95,88 0-2-6-7-8-4-5-3-1-0
9 1 119,41 0-12-14-16-15-11-9-10-13-17-0 RC202-25
8 1 123,53 0-23-21-18-19-22-20-24-25-0

10 1 102,55 0-1-3-5-45-6-7-8-46-4-2-0
10 1 120,72 0-12-14-47-16-15-11-9-10-13-17-0
10 1 123,75 0-23-21-48-18-19-49-22-20-24-25-0
10 1 133,85 0-42-39-37-36-44-41-38-40-35-43-0

RC202-50

10 1 134,16 0-50-33-28-26-27-29-31-30-32-34-0

286

I21. RC203

Routes of RC203-25nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50

Figure I21.1: Routes of RC203-25 nodes

Routes of RC203-50nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

Figure I21.2: Routes of RC203-50 nodes

287

Table I21.1: Solutions of subproblems

Problem

Number
of

Nodes
(n)

Number
of

Vehicles
(v)

Traveling
Cost Route

8 1 95,88 0-2-6-7-8-4-5-3-1-0
8 1 113,49 0-11-15-9-10-13-16-17-14-12-0 RC203-25
9 1 118,32 0-20-19-18-21-23-22-25-24-0

10 1 101,48 0-1-3-5-45-46-8-7-6-4-2-0
10 1 113,49 0-11-15-9-10-13-16-17-47-14-12-0
10 1 119,50 0-20-23-21-48-18-19-49-22-25-24-0
10 1 129,23 0-42-39-36-43-44-41-38-40-35-37-0

RC203-50

10 1 132,02 0-34-31-29-27-26-28-33-30-32-50-0

I22. RC204

Routes of RC204-25nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50

Figure I22.1: Routes of RC204-25 nodes

288

Routes of RC204-50nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

Figure I22.2: Routes of RC204-50 nodes

Table I22.1: Solutions of subproblems

Problem

Number
of Nodes

(n)

Number
of

Vehicles
(v)

Traveling
Cost Route

8 1 95,88 0-2-6-7-8-4-5-3-1-0
9 1 102,47 0-12-14-17-16-15-11-9-13-10-0 RC204-25
8 1 101,88 0-20-19-18-21-23-25-24-22-0

10 1 95,88 0-2-6-7-8-46-4-45-5-3-1-0
10 1 102,47 0-12-14-47-17-16-15-11-9-13-10-0
10 1 101,88 0-20-49-19-18-48-21-23-25-24-22-0
10 1 95,94 0-42-44-43-40-36-35-37-38-39-41-0

RC204-50

10 1 127,56 0-50-33-32-30-28-26-27-29-31-34-0

289

I23. RC205

Routes of RC205-25nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50

Figure I23.1: Routes of RC205-25 nodes

Routes of RC205-50nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

Figure I23.2: Routes of RC205-50 nodes

290

Table I23.1: Solutions of subproblems

Problem

Number
of Nodes

(n)

Number
of

Vehicles
(v)

Traveling
Cost Route

8 1 98,00 0-2-6-7-8-5-3-1-4-0
9 1 119,41 0-12-14-16-15-11-9-10-13-17-0 RC205-25
8 1 121,52 0-23-21-18-19-22-20-25-24-0

10 1 108,32 0-2-45-5-3-1-8-7-6-46-4-0
10 1 120,72 0-12-14-47-16-15-11-9-10-13-17-0
10 1 123,04 0-19-23-21-48-18-49-22-20-25-24-0
10 1 137,26 0-42-39-36-44-40-38-41-37-35-43-0

RC205-50

10 1 142,64 0-33-30-27-28-26-29-31-32-34-50-0

I24. RC206

Routes of RC206-25nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50

Figure I24.1: Routes of RC206-25 nodes

291

Routes of RC206-50nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

Figure I24.2: Routes of RC206-50 nodes

Table I24.1: Solutions of subproblems

Problem

Number
of Nodes

(n)

Number
of

Vehicles
(v)

Traveling
Cost Route

8 1 107,92 0-2-5-8-7-6-4-3-1-0
9 1 112,91 0-12-14-11-9-15-16-17-13-10-0 RC206-25
8 1 104,27 0-22-19-18-21-23-25-24-20-0

10 1 109,32 0-2-45-5-46-8-7-6-4-3-1-0
10 1 115,27 0-12-14-47-16-15-11-10-9-13-17-0
10 1 120,36 0-22-23-21-49-19-18-48-25-24-20-0
10 1 126,86 0-42-44-39-38-36-40-43-41-35-37-0

RC206-50

10 1 139,87 0-33-30-31-29-27-28-26-32-34-50-0

292

I25. RC207

Routes of RC207-25nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50

Figure I25.1: Routes of RC207-25 nodes

Routes of RC207-50nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

Figure I25.2: Routes of RC207-50 nodes

293

Table I25.1: Solutions of subproblems

Problem

Number
of

Nodes
(n)

Number
of

Vehicles
(v)

Traveling
Cost Route

8 1 98,00 0-2-6-7-8-5-3-1-4-0
9 1 97,23 0-12-14-17-16-15-13-9-11-10-0 RC207-25
8 1 103,72 0-25-23-21-18-19-20-22-24-0

10 1 101,59 0-2-6-7-8-5-3-1-45-46-4-0
10 1 97,23 0-12-14-47-17-16-15-13-9-11-10-0
10 1 116,90 0-22-25-23-21-19-49-18-48-20-24-0
10 1 105,83 0-41-42-44-40-36-35-37-38-39-43-0

RC207-50

10 1 139,87 0-33-30-31-29-27-28-26-32-34-50-0

I26. RC208

Routes of RC208-25nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50

Figure I26.1: Routes of RC208-25 nodes

294

Routes of RC208-50nodes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

Figure I26.2: Routes of RC208-50 nodes

Table I26.1: Solutions of subproblems

Problem

Number
of Nodes

(n)

Number
of

Vehicles
(v)

Traveling
Cost Route

8 1 95,88 0-1-3-5-4-8-7-6-2-0
9 1 97,23 0-12-14-17-16-15-13-9-11-10-0 RC208-25
8 1 101,88 0-20-19-18-21-23-25-24-22-0

10 1 95,88 0-1-3-5-45-4-46-8-7-6-2-0
10 1 97,23 0-12-14-47-17-16-15-13-9-11-10-0
10 1 101,88 0-20-49-19-18-48-21-23-25-24-22-0
10 1 95,94 0-42-44-43-40-36-35-37-38-39-41-0

RC208-50

10 1 127,56 0-50-33-32-30-28-26-27-29-31-34-0

