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REGRESSION CONTROL CHART FOR AUTOCORRELATED DATA

ABSTRACT

With the growing of automation in manufacturingp@ess quality characteristics
are being measured at higher rates and data aelikely to be autocorrelated. The
residual charts or control charts with modified tcohlimits for autocorrelated data
are widely used approaches for statistical proamsmitoring in the case of
autocorrelated process data. Data sets collecvea iindustrial processes may have
both a particular type of trend and autocorrelatomong adjacent observation. To
the best of our knowledge there are not any scheénatsnonitor autocorrelated and
trending process observations directly to deteet mhean shift in the process
observations. In this thesis, a new regressionrgbahart which is able to detect the
mean shift in a production process is presenteds Thart is designed for
autocorrelated process observations having a lyeacreasing trend. Existing
approaches may individually cope with autocorrelaietrending data. The proposed
chart requires the identification of trend statignéirst order autoregressive (trend
AR(1) for short) model as a suitable time serieslehdor process observations.
this thesis an integrated neural network structwtech is composed of appropriate
number of linear vector quantization networks, maler perceptron networks, and
Elman networks, is proposed to recognize the auteleded and trending patterns.
The neural based system performance is evaluatesins of the classification rate.
After recognizing the trending and autocorrelatathdy means of neural networks,
proposed modified regression control chart for eomeelated data is used for
different magnitudes of the process mean shifteuride presence of various levels
of autocorrelation, to determine whether the tregdind autocorrelated process is in-
control or not. The performance of proposed charevaluated in terms of the

accurate signal rate and the average run length.

Keywords: Statistical process control, Regression conttwr; Artificial neural

network (ANN), Autocorrelated processes, Pattecogeition, Trend AR(1) model.



OTOKORELASYONLU GOZLEMLER ICIN REGRESYON KONTROL
KARTI

Oz

Uretimde otomasyonun ggtesiyle birlikte, surec kalite karakteristikleri rda
yuksek oranlarda olcilmekte ve veriler ggalukla otokorelasyonlu olmaktadir.
Residual kartlari veya otokorelasyonlu veriler ignodifiye edilmi limitli kontrol
kartlar1 otokorelasyonlu streg¢ verilerinin istakisel sire¢ kontrolinde yaygin
olarak kullanilan yakkamlardir. Endustriyel streclerden toplanan verilem belirli
bir trende hem de ardk gozlemler arasi otokorelasyona sahip olabilir.
Otokorelasyonlu ve trend goésteren siure¢ goézlemierortalamadan sapmalarini
tespit etmek icin gozlemleri direkt olarak goruetgn bir kartin mevcut olguna
iliskin bir bilgiye sahip dgliz. Bu tezde Uuretim surecinde meydana gelen
ortalamadan sapmalarstes edebilen yeni bir regresyon kontrol karti sunuliadkr.
Bu kart dgrusal artan trend gosteren otokorelasyonlu gozlemie tasarlanmstir.
Eski yontemler otokorelasyonlu ve trend gosteremlerée ayri ayri grasmaktadir.
Onerilen Kart siire¢ gozlemleri icin uygun zamarnssenodeli olarak trend dugan
birinci dereceden otoregresif (kisaca Trend AR¢hpdelin taninmasini gerektirir.
Bu tezde ayrica trend gdsteren otokorelasyonlutdlémn taninmasinda kullaniimak
Uzere uygun sayida gausal vektor parcalamagsiari, cok katmanl algilayicigar
ve Elman glarindan olgan biitiinlgik ag yapisi 6nerilmektedir. Onerilen yapay sinir
agl tabanli sistemin performansi @a siniflandirma  ylzdesine gore
deserlendirilmektedir. Trend gdsteren otokorelasyowmérilerin yapay sinir gari
yardimiyla tghisinden sonra, otokorelasyonlu veriler icin dreritegresyon kontrol
karti, farkh seviyelerdeki otokorelasyonun vgrlaltinda farkli bayutkltklerdeki
ortalamadan sapmalar igin, trend gosteren otokeyeldu surecin kontrol altinda
olup olmadgini belirlemek amaciyla kullaniimaktadir. Onerileartin performansi,

dogru sinyal orani ve ortalama gam uzunlgu dikkate alinarak hesaplanmaktadir.

Anahtar sozcukler: istatistiksel suire¢ kontrol, Regresyon kontrol kafaipay sinir

agl (YSA), Otokorelasyonlu sirecler, Oriintii tanimegnid AR(1) model.
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CHAPTER ONE

INTRODUCTION

In this chapter, the background, motivation anceotdyes of this work are stated,

and the organization of this dissertation is oetlin

1.1 Background and Motivation

If a product is to meet customer requirements, ghyat should be produced by
a process that is stable or repeatable where tthesirable variability does not exists.
More precisely, the process must be capable ofatipgr with little variability
around the target or nominal dimensions of the petd quality characteristics.
Statistical process control (SPC) is a powerfulemtion of problem-solving tools
useful in achieving process stability and improvaapability through the reduction
of variability. Control charts are statistical pess control tools used to determine
whether a process is in-control. Since the firgtticm chart has been proposed by
Shewhart in 1931, lots of charts have been devdlapel then improved to be used
for different process data. In its basic form, atoml chart compares process
observations with a pair of control limits. Therstard assumptions that are usually
cited in justifying the use of control charts ahattthe data generated by the in-
control process are normally and independently ridiged. However the
independency assumption is not realistic in practithe most frequently reported
effect on control charts of violating such assummiis the erroneous assignment of
the control limits. Most of the control chart aaliions displayed incorrect control
limits and more than half of these displacementsewdue to violation of the
independence assumption. Misplacement of contnolitdi was due to serial
correlation (i.e., autocorrelation) in the datawdwer, many processes such as those
found in refinery operations, smelting operatiomgod product manufacturing,
waste-water processing and the operation of nucleactors have been shown to

have autocorrelated observations.



When there is significant autocorrelation in a @ss; traditional control charts
with iid (independent and identically distributea3sumption can still be used, but
they will be ineffective. These charts will reswith poor performance like high
false alarm rates and slow detection of proced$ssidecause of this reason some
modifications for traditional control charts arecassary if autocorrelation cannot be
ignored. Therefore, various control charts havenbdeveloped for monitoring
autocorrelated processes. In the literature thememl approaches are recommended
for autocorrelated data: (i) fit ARIMA model to datnd then apply traditional
control charts such as Shewhart, cumulative sumSl@M), exponentially-weighted
moving average (EWMA) to process residuals, (ii)nitar the autocorrelated
process observations by modifying the standardrobtitnits to account for the
autocorrelation (iii) eliminate the autocorrelatiby using an engineering controller
(Montgomery, 1997).

A common approach to detect a possible process stetinn the autocorrelated
data is to use residual control charts, also knasnthe special cause chart (SCC),
which are constructed by applying traditional SPi@arts (Shewhart, CUSUM,
EWMA, and etc.) to the residuals from a time senesdel of the process data
(Zhang, 2000). In these charts, forecast erromeharesiduals, are assumed to be
statistically uncorrelated. An appropriate time ieser model is fitted to the
autocorrelated data and the residuals are platt@dcontrol chart. For this reason all
of the well-known control schemes can be transform® the residual control
scheme. The main advantage of a residual chataisit can be applied to any
autocorrelated data whether the process is stajiaranot. However, there are also
some disadvantages such as time series modelingvidtige is needed for
constructing the ARIMA model, and in addition, tdetecting capability of the
residual chart is not always great. In the relevhtetrature, to overcome the
disadvantages of the residual control charts, nestli€ontrol chart that is based on
applying the original control chart methodology hwit little modification is
proposed. In this method, autocorrelated data el us original control chart by
adjusting its control limits. Modified control chiarsuch as moving centerline
exponentially-weighted moving average (MCEWMA), EWMfor stationary



process (EWMAST), autoregressive moving averageMAR and other control
charts that were firstly proposed for autocorrelgteocess observations are widely
employed to deal with the disadvantages of theduesi charts for stationary
autocorrelated process data (Montgomery, 1997). édew since rearrangement of
the control limits for autocorrelated data is noteasy and application of modified
charts is more complicated then the residual cooharts.

On the other hand, if independent process datdixdn underlying trend due to
systemic causes, usually control charts based dmary least squares (OLS)
regression are used for monitoring and controlndiseare usually due to gradual
wearing out or deterioration of a tool or some ottrétical process components. In
chemical processes linear trend often occurs becalusettling or separation of the
components of a mixture. They can also result frmman causes, such as operator
fatigue or the presence of supervision. Finallgntéis can result from seasonal
influences, such as temperature. The traditionalrobcharts with horizontal control
limits and a center line with a slope of zero haveven unreliable when systemic
trend exists in process data. A device useful fonitering and analyzing processes
with trend is the regression control chart (see dé4r{1969)). A regression based
control chart which is the combination of the camv@nal control chart and
regression analysis is designed to control a vgr{iather than a constant) average
of trending process, and assumes that the valuabeofdependent variable are
linearly (causally) related with the values of thdependent variable. Rather than
using standard control charts, practitioners typicanplement regression based
control charts to monitor a process with systemend (Utley & May, 2008).
Quesenberry (1988) points out that these approadsestially assume that resetting
the process is expensive and that they attempitriomze the number of adjustments
made to keep the parts within specifications rathan reducing overall variability.
However, since the Mandel’'s regression control tthvas developed for independent
data, it is not an effective tool for monitoringopess shift in autocorrelated process

observations.

In addition to autocorrelated or trended observetionany industrial processes

give such data that exhibit both trend and autetation among adjacent



observations. In other words the types of industseries (especially chemical
processes) frequently exhibit a particular kind todnd behavior, that can be
represented by a trend stationary first order agi@ssive (trend AR(1)) model.
Much recent research has considered performanceartsuon of control charts for
residuals of autocorrelated processes in termsearage run length (ARL) criterion,
which is defined as the number of observations thas$t be plotted before a point
indicates an out-of-control condition. Although wede a comprehensive review,
there appears to be no chart that directly monitbesoriginal data which exhibit
both increasing linear trend and serial correlatibhis observation has been the
motivation for the present work on developing a nmegression control chart that
cope with autocorrelated observations (RCCA for8ho which observation values
increase with respect to time. The RCCA requiresitlentification of trend AR(1)
model as a suitable time series model for obsemstiln this thesis, for a wide range
of possible shifts and autocorrelation coefficieperformance of the proposed chart
is evaluated by simulation experiments. Average lemgth (ARL) and average

correct signal rate are used as performance eiteri

1.2 Research Objective

In this thesis, it is aimed to develop a new regjmas control chart that can be
used to detect the different magnitudes of thegs®enean shift, under the presence
of various levels of autocorrelation in a proceswihg both autocorrelated and
trending data. By this way it is aimed to determiieether the given process is in-

control or not. The specific approaches are asvidl

* To develop a new regression control chart thatcdirenonitors the original

data which exhibit both increasing linear trend aotbcorrelation.

e To give a comprehensive literature review on thentrmd charts for
autocorrelated data.



« To propose an efficient neural network structure recognize the

autocorrelated and trending input patterns of psedahart.

1.3 Organization of the Thesis

This dissertation is organized as follows. In ckaptwo, the basic concepts of
statistical process control charts, autocorrelateomd time series models are
described. Then conventional regression controttdhat is designed to control a
varying (rather than a constant) average is disclusAlso, a review of the recent
works on regression control charts and control tcapplications in autocorrelated
processes are given. Construction steps of theopeapregression control chart with
an illustrative example are given in chapter thRr®posed neural network structure
that is used for recognizing trending and autodatred patterns are presented in the
same chapter. Performance evaluation of the propcisart is given in chapter four.

Finally, the conclusions are pointed out in chafites.



CHAPTER TWO

STATISTICAL PROCESS CONTROL CHARTS

In this chapter, the basic concepts of statistigalcess control charts and
definition of autocorrelation and time series madate given before examining
control charts for autocorrelated data. Then cotioeal regression control chart is
discussed. A review of the recent works on conteblart applications in
autocorrelated processes and regression contrd applications are also given in

chronological order.

2.1 The Basic Concepts

If a product is to meet customer requirements, ghyat should be produced by
a process that is stable or repeatable where tthesirable variability does not exists.
More precisely, the process must be capable ofatipgr with little variability
around the target or nominal dimensions of the pectd quality characteristics. In
any production process, regardless of how wellgiesi or carefully maintained it is;
a certain amount of inherent or natural variabityl always exist. The sources of
variability can be broken down into two main categ® Shewhart calls these
categoriechangeandassignable cause®eming callscommonandspecial causes
of variability (Levine, Ramsey, & Berenson, 199H).only common causes are
operating on the system, the process is said io bestate of statistical control. A
process that is in a state of statistical contsotonsidered to be stable. In another
words, a stable process is in a state of statistararol and has only common causes
of variability operating on it. Any attempt to maédjustment to a stable process and
threat common causes as special causes constantpering and will only result in
increased variability. If special causes are opregathe system is considered to be
out of statistical control and invertation or changermits reduction of process
variability. In other words, a process is said &dut of statistical control if one or

more special causes are operating on it (Levine)deg, & Berenson, 1995).



A major objective of statistical process controlaquickly detect the occurrence
of assignable causes of process shifts so thatstige¢éion of the process and
corrective action may be undertaken before manycowiorming units are
manufactured. The control chart is an on-line pseasontrol technique widely used
for this purpose. Control charts may also be usedstimate the parameters of a
production process, and through this informationdédermine process capability.
The control chart may also provide information us&f improving the process. The
eventual goal of statistical process control is ¢fienination of variability in the
process. It may not be possible to completely elataé variability, but the control
chart is an effective tool in reducing variabildg much as possible (Montgomery,
1997).

Run chart is basic form for control chart. A ruraghwhich is shown in Figure
2.1, is a very simple technique for analyzing thecpss in the development stage or,
for that matter, when other charting techniques raveapplicable. One danger of

using a run chart is its tendency to show everiatian in data as being important.

/\\// \ AN
Y

Sample average

Time (or sample number)

Figure 2.1 A typical run chaBegterfield, Besterfield-Michna, Besterfield,
& Besterfield-Sacre, 2003).

A control chart is a special type of run chart withits. It shows the amount and
nature of variations in the process over timeldb &nables pattern interpretation and
detection of changes in the process (Ross, 199%rder to indicate when observed
variations in quality are greater than could betleichange, the control chart method
of analysis and representation of data is used.céh&ol chart method for variables



iIs a means of visualizing the variations that octurthe central tendency and
dispersion of a set of observations. It is a gregdhrecord of the quality of a
particular characteristic (Besterfield et al., 2D08 typical control chart is shown in
Figure 2.2. This chart plots the averages of memsents of a quality characteristic
in samples taken from the process versus timen@sample number). The chart has
a center line (CL) and upper and lower control t&{lJCL and LCL in Figure 2.2).
The center line represents where this process ceaistic should fall if there are no
unusual sources of variability present. The conliroits are determined from some
simple statistical considerations. Classically,toaincharts are applied to the output
variable(s) in a system such as in Figure 2.2. Hewein some cases they can be

usefully applied to the inputs as well (Montgomek997).

LA A
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LCL

Sample averace

Time (or sample number)

Figure 2.2 A typical control chéivlontgomery, 1997).

Stable systems are in a state of statistical cbatrd exhibit only variability due
to common causes. Control charts are based orathéhiat change variation follows
known patterns. These patterns are the statisefatence distributions such as the
normal distribution (Levine, Ramsey, & Berenson93p According to the normal
distribution, the proportion area of normal disttibn curve falls into segments
defined by 1, 2, and 3 standard deviations fromntlean. 99.73 percent of the area
under a normal curve falls between plus and minstadard deviationst@o) from
the mean fr). This means only 0.0027 or 0.27 percent of tlea dies beyondt3o0

from the mean. If only change or common cause®peeating, it is expected that to

be beyond the range af3c range is only 0.0027. This is considered to be a



sufficient small probability for us to suspect trstmething other than change is
operating and that a special cause may be prekemingé, Ramsey, & Berenson,
1995). Moreover, in many cases, the true distrdyubdf the quality characteristic is
not known well enough to compute exact probabliityits. Some analysts suggest
using two sets of limits on control charts. Theeodimits, say at3c, are the usual

action limits that is, when a point plots outside of this limit search for an

assignable cause is made and corrective acticaakentnecessary. The inner limits,

usually at2g, are calledvarning limits(Montgomery, 1997).

There is a close connection between control chemts hypothesis testing. To
illustrate this connection, suppose that the valtaxis in Figure 2.2 is the sample
averageX . If the current value ok plots between the control limits, this means that

the process mean is in-control; that is, it is éqaasome valueg,. On the other

hand, if X exceeds either control limits, this means thatgieecess mean is out-of-

control; that is, it is equal to some valpe# (. In a sense, then the control chart is

a test of the hypothesis that the process is itate ®f statistical control. A point
plotting within the control limits is equivalent failing to reject the hypothesis of
statistical control, and a point plotting outside tcontrol limits is equivalent to
rejecting the hypothesis of statistical control (NMgomery, 1997). In another words

the aim of quality monitoring is to test the nufjpothesisH, : s=0 (in-control state
of the process) against the alternative hypothésiss# 0 (out-of-control state of

the process) (Pacella & Semeraro, 2007), wiserepresents the mean shift. This
hypothesis-testing framework is useful in many wdysg there are some differences
in viewpoint between control charts and hypothéssss. For example, when testing
statistical hypothesis, the validity of assumptians usually checked, while control
charts are used to detect departures from an asisstage of statistical control.
Furthermore, the assignable cause can result iry miffierent types of shifts in the
process parameters. For example, the mean could isstiantaneously to a new
value and remain there (this is sometimes callsdstainedshift); or it could shift
abruptly but the assignable cause could be shad land the mean could then return

to its nominal or in-control value; or the assigieabause could result in a steady
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drift or trend in the value of the mean. Only thustained shift fits nicely within the

usual statistical hypothesis testing model (Montgom1997).

Specifying the control limits is one of the critickecisions that must be made in
designing a control chart. By moving the contratits further from the center line,
the risk of a typeterror is decreased - that is, the risk of a paafitnfy beyond the
control limits, indicating an out-of-control conidih when no assignable cause is
present. However, widening the control limits vailso increase the risk of a type-
error - that is, the risk of a point falling betwethe control limits when the process
is really out-of-control. If the control limits am@oved closer to the center line, the
opposite effect is obtained: the risk of typerror is increased, while the risk of
type-ll error is decreased. It is occasionally helpful uee the operating
characteristic curve of a control chart to disgtayprobability of typetl error. This
would be an indication of the ability of the contohart to detect process shifts of

different magnitudes (Montgomery, 1997).

There are a wide variety of control charts that deeeloped to use in different
processes. And also each of them has differentictexistics and structure. So many
different kinds of control charts developed frore first creation of the control chart
and then they are improved to solve different kifidjuality problems. The quality
of a product can be evaluated using eithentnbute of the product or aariable
measure. An attribute is a product characterisiichsas color, surface texture, or
perhaps smell or taste. Attributes can be evalugteckly with a discrete response
such as good or bad, acceptable or not, or ye® qRuossell & Taylor, 1998). The
types of control charts are classified into twougp® These include control charts for
qualitative variables and control charts for quattre variables measured at the
interval or ratio level. Control charts such assth@ppropriate for characteristics
measured as qualitative variables are referred tmatrol charts for attributesand
control charts such as those appropriate for cltenatics measured on an interval or
ratio scale of measurement are referred tooas$rol charts for variablesRegression
control charts (the control chart that we aim todifyoit for autocorrelated data) are

classified into the second classes thatcamtrol charts for variablesEach kind of
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control chart has a corresponding method of detengithe center line and control

limits. Control charts such as those appropriate dioaracteristics measured as
qualitative variables are referred to as contrarthfor attributes; in general they
include control charts for (Tanya, 1999; Levine,nRRay, & Berenson, 1995;

Montgomery, 1997; Swift, Ross, & Omachonu, 1998):

1. Fraction nonconforming (p chart)

2. Number nonconforming (np chart)
3. Number of nonconformities (c chart)
4. Nonconformities per unit (u chart)

5. Demerits per unit (U chart)

Control charts such as those appropriate for ckeniatics measured on an
interval or ratio scale of measurement are refetoeas control charts for variables;

for example they include:

. Control chart for the mearx( chart)

. Control chart for the standard deviati@chart)

. Control chart for the rang&(chart)

. Control chart for individual unitx(chart)

. Cumulative sum control chart for the process m&inSUM chart)

. Exponentially weighted moving average control ciB®W/MA chart)
. Geometric moving average control chart (GMA)

. Regression control chart

© 00 N O O A W N PP

. Modified control charts
10. Acceptance control chart

11. Hotelling's T control chart and its variations

Each of these control charts has a correspondintpadeof determining the
center line and control limits. SPC methods arealigwapplied in an environment
when periodic sampling and rational subgroupingpfcess output is appropriate

(Yourstone & Montgomery, 1989). Construction of arigble chart begins by
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selecting samples or subgroups of process outpukevaluation on a variables
measure of a quality characteristic of interestnéasure of central tendency, such as
the mean, and a measure of variability, such agahge or standard deviation are
then calculated for each subgroup and these #tatiate used to construct trial
control limits. However, before begining to sameyeral decisions must be made
such as: sample size and frequency of samplingifee\Ramsey, & Berenson,
1995).

A sampleis a subset of observations selected from a ptpaoléontgomery &
Runger, 1999). In designing a control chart, bdta dample sizdo use and the
frequency of samplinust be specifiedn general, larger sample size will make it
easier to detect small shifts in the process. Wiaosing the sample size, the size
of the shift that we are trying to detect must leptkin mind. If the process shift is
relatively large, then we use smaller sample dilzas those that would be employed
if the shift of interest were relatively small (Mgomery, 1997). Also the frequency
of sampling must be determined. The frequency wiltich samples are drawn is
directly related to the control chart’s ability detect the precence of special causes
or process shifts and inversely related to the titakes to detect a shift once it
occurs. In other words, the more frequently samplesdrawn, the more sensitive
the chart will be to the precence of special caws®sthe more quickly a shift in
process average will be detected. The probabifityetecting shifts quickly could be
increased by using large sample sizes and sampteguently. However, the
practical constraints of most situations require tasbalance sample size and
frequency of sampling against budgetary requiremdhe, and the costs of falling
to detect a shift in the process (Levine, RamseyB&enson, 1995). The most
desirable situation from the point of view of deteg shifts would be to take large
samples very frequently; however, this is usualbf aconomically feasible. The
general problem is one aflocating sampling effortThat is, either small samples at
short intervals or larger samples at longer intsnare taken. Current industry
practice tends to favor smaller, more frequent dasyparticularly in high-volume
manufacturing processes, or where a great manys tgpeassignable causes can

occur. Furthermore, as automatic sensing and measumt technology develops, it is
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becoming possible to greatly reduce sampling frages. Ultimately, every unit can
be tested as it is manufactured. Automatic measemesystems and microcomputers
with statistical process control is an increasingfiective way to apply statistical

process control (Montgomery, 1997).

A control chart may indicate an out-of-control caiwh either (i) when one or
more points fall beyond the control limits or (When the plotted points exhibit some
nonrandom pattern of behavior. If the points am@lytrrandom, a more even
distribution of them above and below the centee lime expected. Also if following
consecutive points in a row increase in magnitwdehiserved, this arrangement of
points is called aun. Since the observations are increasing, this eanatied as a
run up. Similarly, a sequence of decreasing pagtalled a run down. This control
chart has an unusually long run up and an unuslally run down. In general a run
is defined as a sequence of observations of the $goe. In addition to runs up and
runs down, the types of observations are defindti@se above and below the center
line, respectively, so that two points in a rowabthe center line would be a run of
length 2. A run of length 8 or more points has gyVew probability of occurrence in
a random sample of points. Consequently, any tyfpeuro of length 8 or more is
often taken as a signal of an out-of-control canditFor example, eight consecutive
points on one side of the center line will indic#ttat the process is out-of-control
(Montgomery, 1997).

Figures 2.3b and 2.3c represent trends in the aladaare characterized by the
overall movement of points in one direction. Whesregbservations in a sequence
are the same type (for example, all increasinglategreasing or all above the center
line or all below the center line), that set of misiis called a run. Figure 2.3b
represents a run up (increasing trend), while ig213c represents a run down
(decreasing trend). The special causes underlyiaget patterns include fatigue of
personel or equipment, systematic environmentalngés, buildup of waste
products, or settling or separation in a chemicalcess (Levine, Ramsey, &
Berenson, 1995).
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Figure 2.3 Typical patterns in control chart (afial pattern, (b) Increasing trend pattern,
(c) Decreasing trend pattern, (d) Upward shifteratt () Downward shift pattern, (f) Cyclic
pattern (Periodical shifting).

Control charts are among the most important managegontrol tools; they are
as important as cost controls and material contMtslern computer technology has
made it easy to implement control charts in anyetgp process, as data collection
and analysis can be performed on a microcomputarlocal area network terminal
in real-time, on-line at the work center. The perfance of control charts are
measured viaverage run lengtfARL). Essentially, the ARL is the average number
of points that must be plotted before a point iaths an out-of-control condition.

ARL will be discussed in chapter four later.
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As mentioned above, the fundamental assumptioheotontrol charts is that the
observations of the process are independent andtiagd®ty distributed (iid).
However, the independency assumption is not realist practice due to various
reasons, and process observations become aut@ted.eln the next subsections the
autocorrelation, time series and control charts &otocorrelated data will be
examined, and regression and the conventional seigre control chart will be

discussed.

2.2 Autocorrelation and Time Series Models

The standard assumptions that are usually citgdsitifying the use of control
charts are that the data generated by the procless W is in-control are normally
and independently distributed. Unfortunately, trssusmption of uncorrelated or
independent observations is not even approximatgigfied in some manufacturing
processes. Examples include chemical processesevdogisecutive measurements
on process or product characteristics are oftehlyigorrelated or automated test
and inspection procedures, where every qualityityuetharacteristic is measured on
every unit in time order of production. Basicalbll manufacturing processes are
driven by internal elements, and when the intebetlveen samples becomes small
relative to these forces, the observations on tbegss will be correlated over time
(Montgomery, 1997).

Autocorrelation is a state of having relationshiptvieen the consecutive
observations. In another words, autocorrelatiothés correlation of one variable a
one point in time with observations of the samdakde at prior time points. When
there is significant autocorrelation in a procesaditional control charts will be
ineffective because control charts are constructeder the assumption of using
random observations which are independent and iyt distributed. Within the
framework of the Box-Jenkins methodology, time egrmodels are characterized by
their autocorrelation functions. The correlationtweEen two random random

variables, sayV andZ, is defined as
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Thus the autocorrelation at ldg refers to the correlation between any two
observations in a time series that kigeriod apart (Montgomery & Johnson, 1976).
That is,

_ _CovX% X) _ N (2.2)

P NGOV e

is the autocorrelation at ldg where , is the autocovariance ary is the variance
of autocorrelated process. A graphical displaym®f versus the lad is called the
autocorrelation function{p,} of the process. The autocorrelation function is
dimensionless and that<p, <1. Furthermore,p, = po_, that is, the autocorrelation
function is symmetric. So that it is necessary tmsider only positive lags. In
general, when observatioksags apart are close together in valpe,is found close

to 1.0. When a large observation at time followed by a small observation at time

t+k, p, is found close to -1.0. If there is little relatghip between observatioks
lags apart,p, is found approximately zero. Another useful cortéeithe description

of time series models is partial correlation. Cdesithe three random variabM§ Y,
andZ. If the joint density function oV, Y, andZ be f (W, Y, 2), then the conditional

distribution of W andY givenZ is

h(W, Y| 2 =— fw.Y, 2 (2.3)

0

j j f(W,Y, 2) dwdy

-0 -0

The correlation coefficient betwee®/ and Y in the conditional distribution

h(W,Y| 2 is called the partial (or conditional) correlationefficient. That is the

partial correlation betweew andY is just the simple correlation betwe@handY

with the effect of their correlation with Z removdd terms of a time series, it is
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convenient to think of the partial autocorrelatamnlagk as the correlation between

x. and x,, with the effects of the intervening observations,,(X.,,...,X.c_1)

removed. Notationally, thi th partial autocorrelation coefficient shall béered as

@.. A plot of g, versus the lag is called the partial autocorrelation functifig, }.

It must be noted thag, = p, =1 and @, = p, (Montgomery & Johnson, 1976).

The matter of how to monitor an autocorrelated dags been discussed
frequently in recent years. In order to use contoblarts effectively, the
autocorrelation in the data must be removed. Ondhade to remove the
autocorrelation in the data is to fit the data ton@e series model. Aime seriegs a
data set in which the observations are recordeélderorder in which they occur (Box
& Jenkins, 1976). In another words, a time sees sequence of observations on a
variable of interest. The variable is observedistréte time points, usually equally

spaced.

Time series analysis involves describing the pre@esphenomena that generate
the sequence. A central feature in the developroértime series models is an
assumption of some form of statistical equilibrivtnparticular assumption of this
kind is that of stationarity. In analyzing a timerigs, it is regarded as a realization of
a stochastic process. A very special class of siahprocesses, called stationary
processes, is based on the assumption that thegsras in a particular state of

statistical equilibrium (Box & Jenkins, 1976). ItaBonary processes the mean and
the variance of the measured valugs) (nust be constant (Mills, 1990). Stationary
time series are modeled by autoregressive movingrage (ARMA) models.
Autoregressive model (AR model) is a special case of ARMA models. The
autoregressive process can be represented by tthel gigen in Equation (2.4) (Box
& Jenkins, 1976).

X SCHAX T B G FE (2.4)
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Equation (2.4) is called an autoregressive probesause the current observation

X is regressed on previous realizations, X_,,...,X_, of the same time series. The
process containg unknown parameterg, @, ....¢, (apart from¢ and the unknown

varianceo?) and as a result Equation (2.4) is refered asusoregressive process of

order p, abbreviated ARg). If p =1 then Equation (2.4) becomes the first-order

autoregressive or AR(1) process that is the reptatee model used in this thesis

X =¢+HaAX . tE (2.5)

The AR(1) process is often called the Markow predescause the observation at
time t depends only on the observation at tinel. We must have |qq| <1 for
stationarity (Montgomery & Johnson, 1976; Box & Kiexs, 1976). The mean,

variance and autocovariance of the AR(1) processgaren, respectively in the

following (Box & Jenkins, 1976):

_ _ ¢
,U—E(Xt)—q (2.6)
_ — )2 = 0'82
Vo =E(X —4) -7 (2.7)
Vi = E(% = EOO) %~ B X)) =¢flf—fﬁ (2.8)

In an AR(1) model, the autocorrelation at lagan be found easily from the
Equations (2.7) and (2.8) (Box & Jenkins, 1976):

. 2.9
=, dq (2.9)

wherek =0.
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2.3 Control Charts for Autocorrelated Processes

When there is significant autocorrelation in a gss; traditional control charts
with iid assumption can still be used, but they will beffeaive. When
autocorrelation is presented, there are problem®t€ing “special causes” that do
not exist and not detecting “special causes” thatytexist, implying a high
probability of false positives and / or false negzg (Eleni, Demetrios, & Leonidas,
2005). In other words these charts will resultsrp®BL performance like high false
alarm rates and slow detection of process shiftsaifig, 2000). Because of this
reason some modifications for traditional controhads are necessary if
autocorrelation cannot be ignored. Therefore, wari@ontrol charts have been

developed for monitoring autocorrelated processes.

A common approach to detect a possible process sfefinn the autocorrelated
data is to use residual control charts, also knagnhe special cause chart (SCC),
which are constructed by applying traditional SPiaarts (Shewhart, CUSUM,
EWMA and etc.) to the residuals from a time semesdel of the process data
(Zhang, 2000). In these charts, forecast errom\eharesiduals, are assumed to be
statistically uncorrelated. An appropriate time ieer model is fitted to the
autocorrelated data and the residuals are platt@dcontrol chart. For this reason all
of the well-known control schemes can be transforn@ the residual control

scheme.

In this study, we made a comprehensive review dosemved that different
charting techniques for residuals were developeddoommodate autocorrelated
data. Alwan & Roberts (1988) introduced the commanse chart (CCC) which is
applied by forming an ARIMA model for the autocdated process. CCC is not a
control chart actually, because it does not hawecamtrol limits. It consists of only
plotted data which have been modeled with an ARIM@del. The CCC is a plot of
the fitted values or forecasts obtained when datafited with appropriate time
series model. It was intended to give a representatf the predicted state of the

quality characteristic without any control limitSgmanta & Bhattacherjee, 2001).
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Furthermore, Alwan & Roberts (1988) developed adied Shewhart chart and
called it the special cause chart (SCC). The bmga in the SCC method is to
transform the original autocorrelated data to addetresiduals” and monitor the
residuals. Shewhart, CUSUM or EWMA control charts #he most frequently used
control charts for residuals.

Shewhart chart, firstly introduced by Dr. Walter 8hewhart (1931), attracted
many scientists’ interest. Since the first statadtcontrol chartx, X and R, X and
S, were introduced by Shewhart, these charts atedcdle Shewhart control charts.
The Shewhartx and R chart which is the basis for many control chasts/éry

simple and easy to use. ¥ are sample of size, then the average of this sample is

X and it is well known thaX is normally distributed with meaw and standard

deviationo, , whereo, = o/+/n. Then the best estimator of, the process average,

is the grand average, s&. Then the center line (CL), upper control limitGU),
and lower control limit (LCL) of the chart for th& standard deviations from the
centerline are given below in Equation (2.10-2./Epectively (Montgomery, 1997;
Oakland, 2003):

= .0

UCL=X+3-~ 2.10
n (2.10)

CL=%X (2.11)
g

LCL=X-3— 2.12
n (2.12)

where X =(X + X, +..+ %)/ 1T, X=(X+X+..+ x)/n, &:%Z, R=X_ —X.

and R=(R+ R+..+ R)/ n. If the production rate is too slow to allow sampl

sizes greater than one then individual measurensptsised. For the control chart

for individual measurements, the parameters are
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UCL:7<+3W (2)13
d,

CL=%X (2.14)

LCL:Y—3$ (2.15)

where MR is the moving range andMR is the range between consecutive

observations. If the observations are autocorr@jdtee formulations are modified by

using{g} instead of{x} . For residual charts, the residual from a time series

model of{ x} is defined as

6=x-% (2.16)

where %, is the prediction of x} from the time series model at tinteVarious
residual charts are constructed basedzodepending on the traditional charts used.
For a Shewhart residual chart, the chart is cooby chartingg instead of x} .

Also the other residual control charts such as CMSEsidual, EWMA residual and

GMA residual charts are constructed by applyingitranal CUSUM, EWMA and
GMA charts respectively t{)q} (Zhang 2000; Montgomery, 1997; Montgomery &
Runger, 1999; Montgomery & Johnson, 197@).s the centerline of the Shewhart

residual control chart. If the least squares regoesis used to fit the relationship

betweenx andy, theng& =0. The 35, control limits are used for the shewhart cause
selecting chart wherer, is the standard deviation of the process errorsi (&
Tsung, 2000).e shows normal distribution with mean zero and wethnstant

variance. Now, conventional Shewart control chart be applied to residuals.
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Shewhart control charts have been used in prafiiicdecades because they do
not need deep statistical knowledge and they asg gause and interpret. Beside
these advantages, Shewhart charts have also ssawvdntages. The first drawback
is, it takes much longer for a Shewhart chart ttectethe mean shift. The second
drawback of a Shewhart control chart is that, @ussue of any Shewhart control
chart is that it only takes into consideration i plotted point, and can not contain
information about the whole process. In anotherdsdhese charts typically do not
take into account previous data points, excepbéncase of using run rules. Because
of this feature, Shewhart charts are usually dffector detecting large shifts but
ineffective for detecting small shifts (about 1.6less) in process parameters. An
important shortcoming for Shewhart charts is toiredffective for detecting small
shifts. To overcome this disadvantage two differeamntrol charts, CUSUM and
EWMA, are proposed (Montgomery, 1997). They arerappate for detecting small
shifts, because they give smaller weight to the gata. A CUSUM chart is able to
look at historic data to determine if the data dresthows a shift in the data. The
CUSUM chart is widely used to monitor the mean @iracess. It is better than the
standard Shewhart chart in that it is able to dedawall deviations from the mean
(Kudo, 2001). By the choice of weighting factot, (also known as ‘smoothing
constant’), the EWMA control procedure can be mselesitive to a small or gradual
drift in the process. However, they do not reaclame shifts as quickly as the

Shewhart chart.

The CUSUM chart was firstly introduced by Page 4. The basic purpose of
a CUSUM chatrt is to track the distance betweerattiaal data point and the grand
mean. Then, by keeping a cumulative sum of thestarties, a change in the process

mean can be determined, as this sum will contireténg larger or smaller. These

cumulative sum statistics are called the upper datiwe sum C) and the lower

cumulative sumC, ). They are defined by Equation (2.17) and Equatib18):

CtJr =max[0,x = [t + K)+ c:t+—1] (2.17)
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C, =max[0, (i, - K )= x + G ] (2.18)

where 1, is the grand mean ari{l is the slack value which is often chosen about
halfway between the target, and the out-of-control value of the mean that we

are interested in detecting quickly (Montgomery97;90akland, 2003; Wetherill &
Brown, 1991). So, if the shift is expressed in dtad deviation units as

=ty +d0 (or 0=~ |/ o), thenK is one-half the magnitude of the shift or

K :(50)/2:(‘;11—;100/2. It is important to select the right value fiér since a

large value oK will allow for large shifts in the mean withouttdetion, whereas a
small value oK will increase the frequency of false alarms. Ndim&«K is selected
to be equal to Ocb

The tabular CUSUM is designed by choosing valueste reference valuk
and the decision intervél. Define K =ko and H =ho, where g is the standard
deviation of the sample variable used in forming @JSUM. Usingh=4 orh=5 and
k=1/2 will generally provide a CUSUM that has gooRIlAproperties against a shift
aboutlo in the process mean (Montgomery, 1997). For CUS¥sidual chart, the

residuals are calculated using Equation (2.16) @lgershows normal distribution

with mean zero and with constant variance. Themyveotional CUSUM control
chart can be applied to the residuals using thadéas given in Equation (2.17) and
Equation (2.18). CUSUM control chart is especiatffective with processes whose
sample sizes are on@=1l). Due to this feature of CUSUM control chart,ist
effectively used in individual observations one lsugs chemical and process
industries, and discrete parts manufacturing witbomatic measurement of each

part.

The EWMA chart was proposed by Roberts in 1959.eLBUSUM chatrt,
EWMA is suitable for detecting small process shiE8VMA chart uses smoothing
constant where the smoothing constanis that 0<A <1 (Shu, Tsung, & Tsui, 2005).
The EWMA is a statistic for monitoring the procékat averages the data in a way

that gives less and less weight to data as theyuatteer removed in time. By the
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choice of weighting factod , the EWMA control procedure can be made sensitive
a small or gradual drift in the process. The diatthat is calculated is (Montgomery,
1997):

z=Ax+@1-A)z7, (2.19)

where z is the moving average at timeThe value ofA can be between zero and
one, but it must often chosen between 0.05 andTh&.initial value ofz (i.e. z) is
set to the grand meany() (Montgomery, 1997, Oakland, 2003; Wetherill &

Brown, 1991). If the observations, are independent random variables with

varianceo?, then the variance daf will be

o2 =0? (2%1)[1— (1-A)] (2.20)

Therefore the EWMA control chart would be constedcby plottingz, versus

the timet (or sample number). The center line and controité for the EWMA

control chart are as follows:

UCL:/JO+La\/(z_/])[l—(l—A)t] (2.21)

CL=y, (2.22)
o A

LCL = 4, La\/(z_/‘)[l 1-1)*] (2.23)

where L is the number of standard deviations from the exine (width of the
control limits). Choise of weight factor is anothproblem. The parameteA
determines the rate at which 'older' data enter the calculation of the EWMA

statistic. A value ofd = 1 implies that only the most recent measurem&hiances
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the EWMA (degrades to Shewhart chart). Thus, a laehee of A= 1 gives more
weight to recent data and less weight to older;datmall value ofA gives more
weight to older data. The value df is usually set between 0.2 and 0.3 although this
choice is somewhat arbitrary. Lucas & Saccucci ()3five tables that help the user
to select A. The term [L-(1-A)*] in Equation (2.21) and Equation (2.23)
approaches unity dsgets larger. This means that after the EWMA corthalrt has
been running for several time periods, the cortmits will approach steady-state
values given by (Montgomery, 1997)

[

UCL=p,+ Lo 2.24

Ho 2-1) (2.24)
A

(2.25)

However, in the literature, it is strongly recomrdersing the exact control limits
in Equation (2.21) and (2.23) for small valuest.ofhis will greatly improve the
performance of the control chart in detecting drtarfiget process immediately after
the EWMA is started up (Montgomery, 1997). For EWMeésidual chart, the
residuals are calculated using Equation (2.16) hed, tconventional EWMA control
chart can be applied to the residuals using thad&a given in Equation (2.19). The
EWMA is a statistic for monitoring the process thaerages the data in a way that
gives less and less weight to data as they arkeiuremoved in time. CUSUM and
EWMA are appropriate for detecting small shifts, daexe they give smaller weight
to the past data. However, they do not react tgelshifts as quickly as the Shewhart

chart.

Another residual charts, geometric moving averaGdMA) and geometric
moving range (GMR) control charts were studied bguitone & Montgomery
(1989). The geometric moving range between sucaegsirs of residuals is used to
track the dispersion of the process quality datthereal-time SPC algorithm. The

geometric moving range allows the user of the dlgorto alter the sensitivity of the
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moving range filter through adjustments to the stniog constant. Two years later,
in 1991, they proposed two innovative control chathe sample autocorrelation
chart (SACC) and the group autocorrelation chad@G) which are shown to be
particularly effective control schemes when useatrad chart for the residuals of the
time series model of the real time process datas@taharts are based on the
autocorrelation function of autocorrelated data. BACC as well as the GACC
detect shifts in the mean as well as shifts inatii@correlative structure. The GACC
chart detects the shift before the SACC since tA€G detects fluctuations over all
lags of the sample autocorrelation. The SACC wghai shifts through a change in
the pattern of the plots of the sample autocoiimeiads well as through plots meeting
or exceeding the control limits. The GACC will ddtebifts that impact the sample
autocorrelations as a group (Yourstone & Montgom8@1). When compared with
the previous methods, SACC is less sensitive irdafigig mean and variance shifts
but very competitive in detecting changes in theapeeters of ARMA model
(Atienza, Tang, & Ang, 1997).

Today, many industrial products are produced byrs¢dependent process steps
not just one step. However, conventional SPC teghas focus mostly on individual
stages in a process and do not consider dissengnatformation throughout the
multiple stages of the process. They are shown tdnb#ective in analyzing
multistage processes. A different approach to fingblem is the cause-selecting
chart (CSC), proposed by Zhang (1984). The CSC basdtle output adjusted for
the effect of the incoming quality shows promiseifereasing the ability to analyze

multistage processes (Yang & Yang, 2006).

On the other hand, the traditional practice in gghre control charts to monitor a
process is to use a fixed sampling rate (FSR) whakks samples of fixed sample
size (FSS) with a fixed sampling interval (FSI) récent years, several modifications
adopting the variable sampling interval (VSI), afte sample size (VSS) and
variable sampling rate (VSR) or variable samplmigival and sampling size (VSSI)
in the X control chart have been suggested to improvetioadl FSI policy and

have been shown to give better performance thardhgentionalX charts in the
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sense of quick response to process change in @dgygeontrol literature. The VSSI
features are extended to CUSUM and EWMA charts. Xdang, & Tsung (2008)
suggested using a variable sampling scheme at firegs (VSIFT) to enhance the
efficiency of theX control chart for the autocorrelated data. Two tshare under
consideration, that is, the VSIFX chart and variable sampling rate with sampling at
fixed times VSRFTX charts. These two charts are calleed/SFT charts.

Traditional residual based charts, such as a Shew?ldSUM, or EWMA on the
residuals, do not make use of the information doethin the dynamics of the fault
signature. In contrast, methods such as the cuivellatore (Cuscore) changhich
are presented by Box & Ramirez (1992) or generdlldelihood ratio test (GLRT)
do incorporate this information. Traditional contoblarts are intended to be used in
high volume manufacturing. In a short run situatidimere is not enough data
available for the estimation purposes. In procesgese the length of the production
run is short, data to estimate the process parasnatel control limits may not be
available prior to the start of production, and @ese of the short run time,
traditional methods for establishing control charémnot be easily applied. Many
sampling difficulties arise when applying standaahtrol charts in low volume
manufacturing horizonQ charts have been proposed to address this probjem b
Quesenberry (1991) (Castillo & Montgomery, 1994).

The basic idea in the SCC method is to transfornotiggnal, autocorrelated data
to a set of "residuals” and monitor the residu@l®e minimum mean squared error
(MMSE) predictor used in the SCC chart is optimalreducing the variance of the
residuals but is not necessarily best for the mepoof process monitoring.
Furthermore, the MMSE predictor is closely tied tooaresponding MMSE scheme
in feedback control problems. Despite a huge liteeaon MMSE-based feedback
control, the class of proportional integral denvat(PID) control schemes is more
common in industry (see Box, Jenkins, & Reinsel9@)9 Astrom & Hagglund
(1995) refered from (Jiang, Wu, Tsung, Nair, & T€2002)). Jiang et al. (2002) used
an analogous relationship between PID control &edcbrresponding PID predictor

to propose a new class of procedures for processtonmg. As in SCC charts, they
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transformed the autocorrelated data to a set afidwals” by subtracting the PID

predictor and monitoring the residuals.

When the literature is reviewed for 1997-2010 yeenge, it is clearly observed
that the following studies are remarkable for realccontrol charts. After reviewing
residual control charts, the review for modifiedhtrol charts will be presented in the
consequent paragraphs. Kramer & Schmid (1997) desalithe application of the
Shewhart chart to residuals of AR(1) process anthénsame year Reynolds & Lu
(1997) compared performances of two different type&EWMA control charts for
residuals of AR(1) process. Yang & Makis (1997) pamned the performances of
Shewhart, CUSUM, EWMA charts for the residuals of(ARprocess. Zhang (1997)
remarked that the detection capability obamsidual chart was poor for small mean
shifts compared to the traditionalchart, EWMA, and CUSUM charts for AR(2)
process. Two years Lu & Reynolds (1999) comparedpgréormances of EWMA
control chart based on the residuals from the #wevalues of AR(1) process and
EWMA control chart based on the original observatiohuceno & Box (2000)
studied the One-sided CUSUM chart. Rao, Disney gn&liello (2001) focused on
the integral equation approach for computing the. At CUSUM control charts for
AR(1) process. They studied the ARL performance ugeilength of the sampling
interval between consecutive observations for tedglof AR(1) process. Jiang et al.
(2002) proposed proportional integral derivativelD(P charts for residuals of
ARMA(1,1) process. Kacker & Zhang (2002) studied thn length performance of
ShewhartX for residuals of IMA@,o) processes. Shu, Apley, & Tsung (2002)
proposed a CUSUM-triggered Cuscore chart to redbeemismatch between the
detector and fault signature. A variation to theSTW/-triggered Cuscore chart that
uses a GLRT to estimate the mean shift time of @eage is also discussed. They
used ARMA(1,1) process to test the performancerop@sed chart. It is shown that
the triggered Cuscore chart performs better thanstandard Cuscore chart and the
residual-based CUSUM chart. Ben-Gal Morag, & Shwdo (2003) presented
context-based SPC (CSPC) methodology for staterdigme discrete-valued data
generated by a finite memory source and testegehfermance of this new modified
chart for AR(1), AR(2), MA(1) processes. SnousshoGrabi, & Limam (2005)
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studied on residuals for short run autocorrelatsad of autocorrelated process. They
compared the performances of ShewhaytCUSUM, and EWMA control charts for
residuals of AR(1) process. They also compared émopnances of CUSUM, and
EWMA control charts with Q statistics (EWMA Q chariaCUSUM Q chart) for
residuals of AR(1) process. Kim, Alexopoulos, Galds, & Tsui (2006) considered
a CUSUM process as their monitoring statistic tisaa bit different than that of
Johnson & Bagshaw (1974), and they approximate @ESUM process by a
Brownian motion process. Noorossana & Vaghefi (3088estigated the effect of
autocorrelation on performance of the MCUSUM conttoart. Triantafyllopoulos
(2006) has developed a new multivariate controttdbased on Bayes’ factors. This
control chart is specifically aimed at multivariasutocorrelated and serially
correlated processes and tested for AR(1) prodt&ssy & Yang (2006) considered
the problem of monitoring the mean of a qualityreleteristicx on the first process
step and the mean of a quality characterigtin the second process step, in which
the observationg can be modeled as an AR(1) model and observatiacen be
modeled as a transfer function wfsince the state of the second process step is
dependent on the state of the first process stepefiiextively distinguish and
maintain the state of the two dependent procegs,stee Shewhart control chart of
residual and the cause selecting chart (CSC) apoped. They showed that the
proposed control charts are much better than tiseisei Hotellingr control chart
and the individual shewhart chart. Ghourabi & LimgR2007) proposed a new
method of residual process control, the PatternrtClrad tested this new chart for
AR(1) process and compared its ARL values with B@rt. Costa & Claro (2008)
considered the double sampling (D¥) control chart for monitoring processes in
which the observations can be represented as ARMAfhodel. Zou, wang, &
Tsung (2008) suggested using a variable samplingnselat fixed times (VSIFT) to
enhance the efficiency of tie control chart for the autocorrelated data. Two tshar
are under consideration, that is, the VSIKT and variable sampling rate with
sampling at fixed times (VSRFK) charts. These two charts are calledvVSFT
charts. The authors used AR(1) model as represeatatodel for their study. An
integration equation method combined with a Markoecess model was developed

to study the performance of these charts. Sheu &0D09) examined a GWMA with
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a time-varying control chart for monitoring the meaf a process based on AR(1)
process and they compared ARL performance of GWM& BWMA charts. Weiss
& Testik (2009) investigated the CUSUM control dhfar monitoring autocorrelated
processes of counts modeled by a Poisson intedieeevautoregressive model of
order 1 (Poisson INAR(1)). Knoth, Morais, Pachetd&Gchmid (2009) discussed the
impact of autocorrelation on the probability of haaling signals (PMS) of
simultaneous Shewhart and EWMA residual schemethéomean and variance of a
AR(1) process. Lu & Ho (2010) compared the ARL perfance of various GWMA
control charts between observations and residwalsonsider how ARL differ in
each case.

The main advantage of a residual chart is that it ba applied to any
autocorrelated data whether the process is stayiaranot. Residual control charts
are the ease of interpretation and straightfonimmementation that requires only a
least-squares regression computer program to @dbesdata prior to constructing
the control charts (Zhang, 2000). Although thedweal charts have some advantages
by using them for autocorrelated processes, thexesame problems. One of the
most important disadvantages of residual chartthas the time series modeling
knowledge is needed for constructing the ARIMA nlogled some residual charts
which based on two valid time series models sigifédrently. The another problem
is due to the detection capability of the residobbart. Harris & Ross (1991)
recognized that the CUSUM control chart and EWMAtedl chart for the residuals
from a first-order autoregressive (AR(1)) process/rhave poor capability to detect
the process mean shift. Wardell, Moskowitz, & Péa(lt994) showed that Shewhart
charts are not completely robust to deviations frtra assumption of process
randomness; namely when observations are correlBWW#A chart is very good at
detecting small shifts, and performs well for lagjefts at only the case when the
autoregressive parameter is negative and the maxegage parameter is positive.
No other chart is obviously dominant under evenmydition. They showed that when
the processes were positively autocorrelated @ffitbt lag), the residual chart did
not perform very well. Zhang (1997) also studieddetection capability of residual

chart for autocorrelated data. In his study, Zhdefjned a measure of the detection
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capability of the residuat-chart for the general stationary process and stdhat
the detection capability of a residual chart for(BRprocess was small compared to
the detection capability of the chart (Zhang, 1998). The detection capability of a
Shewhart residual chart is smaller than the trawigti Shewhart chart and other
residual charts, EWMA and CUSUM residual charts (lda& Ross, 1991,
Longnecker & Ryan, 1992; Wardell, Moskowitz, & Pi@an1994; Zhang, 1998).

To overcome the disadvantages of residual-basedaotartarts, monitoring the
autocorrelated observations by modifying the stesh@antrol limits to account for
the autocorrelation is suggested. This second apipraaodified control chart, is
based on applying the original control chart mettogy with a little modification.
Autocorrelated data is used in original control rthey adjusting its control limits.
Control charts such as MCEWMA, EWMAST, and ARMA tleate proposed for
autocorrelated process observations are introdteceléal with the disadvantages of
the residual charts and effectively used for stetig autocorrelated process data.
Since rearrangement of the control limits for aotoelated data is not so easy,

application of modified charts is more complicatieein the first approach.

MCEWMA control chart is used for individual obseneais and proposed by
Montgomery and Mastrangelo in 1991. The MCEWMA chiartbased on the
familiar EWMA chart that is also standard in ther#ture; however, it adapts the
EWMA for the autocorrelated data given by the ARIMAsturbance model
(Nembhard, Mastrangelo, & Kao, 2001). Montgomer&strangelo (1991) point
out that it is possible to combine information abihe state of statistical control and
process dynamics on a single control chart. EWMASTtrob chart has been
introduced by Zhang in 1998 to deal with the disativges of the residual charts.
EWMAST chart is an extension of the traditional EWMMAad and basically
constructed by charting the EWMA statistics for istadry process. EWMAST chart
is a EWMA chart for stationary processes. Zhang (198&arked that the limits of
the EWMAST chart are different from that of the ttamial EWMA chart when the
data are autocorrelated. When the process is yalgitautocorrelated, the limits of
the EWMAST chart are wider than that of the ordirABWMA chart. Zhang showed
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that a EWMA of a stationary process is asymptotycallstationary process. The
autocovariance function of EWMA is derived when fitecess is stationary. Then
the EWMAST chart for general stationary process iabdished. The control limits
of the EWMAST chart are analytically determined b throcess variance and
autocorrelation. When the process is nonstationaryear nonstationary with strong
and positive autocorrelations, residual chartslmamsed. When the mean shifts are
small, however, the performance of the residuattcisastill satisfactory. Actually,
no process control chart performs well in this cdsgeneral, nonstationarity or near
nonstationarity with positive autocorrelation i&elly to occur when the data are
acquired at high frequency. In this case the langeontrol ARLs (such as those of
the EWMAST chart) are often desirable, and the cpomeding large out-of-control
ARLs are much less a problem (zZhang, 1998). SCQt éhahown to be effective
when detecting large shifts. The EWMAST chart perfobater than the SCC chart
when the process autocorrelation is not very stramg the mean changes are not
large. On the other hand, the EWMAST chart appliesBWMA statistic directly to
the autocorrelated process without identifying pinecess parameters and shown to
be efficient in some parameter regions (Jiang, ,J&WNVoodal, 2000). An obvious
advantage of using EWMAST chart is that there is eednto build a time series
model. The EWMAST chart is easy to implement juse lits special case, ordinary
EWMA chart. On the other hand, implementation oksidual chart needs a time

series modeling algorithm (Zhang, 1998).

By integrating the advantages of SCC chart and EWMARKart and taking into
account the autocorrelation structure of the uryidtegl process, a family of control
charts, the ARMAchart is proposed by Jiang, Tsiu, & Woodal (2000)sTharting
technigue based on an autoregressive moving aveiR)dA) statistic and provides
a more flexible choise of parameters to relate ahwcorrelation structure of the
statistic to the chart performance and includessihecial cause chart (SCC) chart
and the EWMAST chart as special cases. It is showh ah ARMA chart with
appropriate parameter values will outperform bo#n $CC and EWMAST charts for
autocorrelated processes. Jiang et al. (2000)hgssame notation of the EWMAST
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chart proposed by Zhang (1998), and denote the ARNBAXt as the ARMAST chart
that is proposed for stationary processes.

On the other hand, the limitations of distributioised procedures can be
overcome by distribution-free SPC charts. RungeM@llemain (R&W) (1995)
organized the sequence of observations of the wreeit process into adjacent
nonoverlapping batches of equal size; and their $RECedure called unweighted
batch means (UBM) is applied to the correspondeguence of batch means. They
choose a batch size larger enough to ensure tadiatth means are approximately
iid normal, and then they apply to the batch meamss of the classical SPC charts
developed for iid normal data, including the Shestvhad tabular CUSUM charts. In
contrast to this approach, Johnson & Bagshaw (J&BY4) and Kim, Alexopoulos,
Goldsman, & Tsui (2006) presented CUSUM based msthththt use raw
(unbatched) observations instead of batch meansipGung the control limits for
the latter two procedures requires an estimatehef viariance parameter of the
monitored process that is the sum of covariancedl &gs (see Kim et al. (2006) for

experimental evaluations of R&W chart and J&B chart

Kim et al. (2006) considered a CUSUM process as thenitoring statistic that
is a bit different than that of Johnson & Bagshd@74), and they approximate this
CUSUM process by a Brownian motion process. By @kph the known properties
of Brownian motion, they derive a new model-free SIIM chart called the MFC
Chart. The proposed SPC procedure requires the éstyonyariance constant which
is the sum of covariances of all lags, the prooedsrcompletely model-free -
including the design of control limits and charrgraeters - with the help of non-
parametric variance estimation techniques populéine simulation community. The
MFC chart can be used with raw observations ortbateans of any size, so using
large batches can be avoided. Also this procedugiges a convenient way to
compute control limits like the Shewhart chart d¢ksn et al., 2006). Another
distribution-free chart is run sumhart proposed by Willemain & Runger (1998)
(Willemain & Runger, 1998). Their use of run sumsesival of an earlier idea. The

use of coded run sums for iid data was describelddberts (1996), who cited earlier



34

work by Toda (1958), who in turn cited Imaizuma (BP%and Reynolds (1971)
presented a simplified overview (Willemain & Rung&®898). The rursum chart
proposed by Willemain & Runger (1998) differs frahese earlier works in two
significant ways. First, they consider the autoelated data characteristic of data-
rich environments. Second, they use the sums obliservations directly, whereas
earlier work coded the data values into integerextefore summing. Most SPC
methods are not suitable for monitoring nonlinead atate-dependent processes.
Another approach to developing distribution-freeCSéharts is taken by Ben-Gal,
Morag, & Shmilovici (2003). They presented conteaséd SPC (CSPC)
methodology for state-dependent discrete-valued daherated by a finite memory
source. The key idea of the CSPC is to monitor thtstical attributes of a process
by comparing two context trees at any monitoringique of time. The first is a
reference tree that represents the “in-controlénmefice behavior of the process; the
second is a monitored tree, generated periodidallsn a sample of sequenced
observations that represents the behavior of thegss at that period. The Kullback—
Leibler (KL) statistic is used to measure the re&at'distance” between these two
trees, and an analytic distribution of this statisé derived. Monitoring the KL
statistic indicates whether there has been anyifsignt change in the process that
requires intervention. The proposed CSPC extendsdbpe of conventional SPC
methods. It allows the operators to monitor varylierggth state-dependent processes
as well as independent and linear ones. The CSkiiis generic and less model-
biased with respect to time series modeling. Theomdrawback of CSPC is
relatively large sample size required during thenitowing stage. Therefore, it should
be applied primarily to processes with high samphrequency, such as the buffer-
level monitoring process. The CSPC is currently tihi to discrete and single-
dimensional processes (Ben-Gal, Morag, & Shmilg\2€i03). For distribution free
processes “distribution free charts” are suggestadh, Alexopoulos, Tsui, &
Wilson (2007) proposed a distributidree tabularCUSUM (DFTC) chart to detect
mean shifts of autocorrelated observations. Theoasitthefined the proposed chart as
“a generalization of the conventional tabular CUSIdNart that is designed for iid

normal random variables”.
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The following studies are remakable for modified teoin charts for
autocorrelated data. As refered before, Zhang (1988posed EWMAST control
chart, which is a modified control chart for autoetated data, and tested this new
chart for AR(1), AR(2), ARMA(1,1) processes. Willam & Runger (1998)
proposed run sum chart which is a distribution-tthart and examined the residuals
of AR(1) and ARMA(1,1) processes. Apley & Shi (1938esented an on-line SPC
technique, based on a GLRT, for detecting and eStimamean shifts in
autocorrelated processes that follows a normakyriduted ARIMA(4,0,3) model.
The GLRT is applied to the uncorrelated residualghef appropriate time-series
model. The performance of GLRT is compared to Shewdrat CUSUM charts. By
integrating the advantages of SCC chart and EWMAS&Ft@nd taking into account
the autocorrelation structure of the underlyinggess, a family of control charts, the
ARMA chart is proposed by Jiang, Tsiu, & Woodal (@P0They compared the
performances of ARMA, ARMAST, EWMAST, EWMA, CUSUM anch@&wvhart
control charts for AR(1), ARMA(1,1) processes. lrate(2001) jiang performed the
average run length computation of ARMA charts foatienary processes and
developed a Markow chain model for evaluating tine length performance of the
ARMA chart applied to an ARMA[,q) process. By exploiting the known properties
of Brownian motion, they derive a new model-free SLIM chart called the MFC
Chart and tested this new chart for AR(1) procééskel & Zhang (2004) compared
the performances of EWMA for the residuals of ARfrpcess and EWMAST
control charts for AR(1) process. Brence & Mastelng(2006) explored the
capabilities of the tracking signals and the MCEWMHBAen the smoothing constants
are varied and a shift is introduced into the AR{AYl ARMA(1,1) processes. Kim et
al. (2007) proposed a distribution free tabular QWS(DFTC) chart to detect mean
shifts in autocorrelated and normal distributed cpss observations. Stationary
AR(1) and AR(2) processes are used to test itopradnce. Cheng & Chou (2008)
used ARMA control chart in a real-time inventoryctd#on system using Western
Electric run rules. They monitored the data of demtiadl presents a pattern of time
series. They employed ARMA chart to monitor the mearklemand that is
autocorrelated and used individual control charhtimitor the inventory level. Issam

& Mohamed (2008) proposed to apply support veactgrression (SVR) method for



36

construction of a residual multivariate CUSUM (MQOUE) chart, for monitoring
changes in the process mean vector. Koksal, Kartida, & Testik (2008)
investigated the effect of Phase | sample sizehenrtin length performance of
Residual chart, modified Shewhart chart, EWMAST cleartt ARMA chart for
monitoring the changes in the mean of AR(1) pracess

In recent years, researchers have been investigtia use of artificial neural
networks (NNs) in the application of control chpgttern (CCP) recognition with
encouraging results. A neural network is an appgraacata processing that does not
require model or rule development. When compareatt®r methodologies the
neural network approach has certain advantages.miduel development is much
simpler than that for most other approaches. Ids@fatheoretical analysis and
development for a new model, the neural networorsiitself to the training data.
The model can be refined at any time with the aoldiof new training data (Cheng,
1997). Also note that, a traditional control chesnsiders only the current sample
when determining the status of a process and hdaes not provide any pattern
related information. NN based process control shean classify patterns that the
traditional charting methods for autocorrelatedadeannot properly handle (Guh,
2008). Because of these advantages applicationNsf td SPC has great interest in
recent years. Although there are some disadvantages as training requires
considerable computation and training of these MMIsrequire many datasets; the
recall process is very fast (Cheng, 1997). The aagptin of NNs to SPC can be
commonly classified into two categories: (i) cohirbart pattern recognition and (ii)
detection of unnatural behavior (Pacella & Semera@@7). In the second category,

NN used to diagnose the shift in the mean of a rizawring process.

Few studies on mean shift detection of autocomedlgirocesses by a neural-
based approach were presented. West, Mangiamélihé&n (1999) investigated the
ability of radial basis function NNs to monitor andntrol complex manufacturing
processes that exhibit both auto and cross-coiwalaThey demonstrated that the
radial basis function network is superior to thra@ntrol models proposed for

complex manufacturing processes: multivariate SletviMEWMA, and a feed
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forward NN with logistic units trained by backprgadion (often called a back
propagation neural network (BPN)). They used veaR(1) (VAR(1)) model as the
representative process model for their work. C@ilnen, & Lee (2001) used BPN to
identify shifts in process parameter values from(BYRprocess. Pacella & Semeraro
(2007) proposed Elman recurrent neural network fanufacturing processes quality
control. For a wide range of possible shifts andoearrelation coefficients,
performance comparisons between the neural-basgdrithim, SCC chart,
EWMAST chart,X chart and ARMAST are presented for ARMA(1,1) mod&ilih
(2008) presented a learning vector quantization @) \based system that can
effectively recognize CCPs in real time for varidesels of autocorrelation for
AR(1) model and compared its ARL performance wit@CSchart,X chart and
EWMA chart. Hwarng & Wang (2010) proposed a neuetivork based identifier
(NNI) for multivariate autocorrelated processes.rather extensive performance
evaluation of the proposed scheme is carried oemctimarking it against three
statistical control charts, namely the Hotellingcbntrol chart, the MEWMA chart
and the Z chart.

Over the last two decades, control charts for autetated observations have
been applied to an increasing number of real-wprttblems. In this section, control
chart applications for the autocorrelated processa® reviewed, and the historical
progression in this field was emphasized in ordehélp the interested researchers
and practitioners get informed about the referemmeshe relevant research in this
field, regarding the design, performance and appbos of control charts for
autocorrelated processes. Recent research studresautocorrelated data are
summarized in Table 3.1 in a chronological order,omder to see the gradual

development in these works.

Table 3.1 Evolution of control charts for autoctated data

Year  Author(s) Control Charts Autocorrelation
Structure
1974  Johnson & Bagshaw J&B AR(1)
1988 Alwan & Roberts Shewhartx , CCC, SCC IMA(1,1), ARMA(1,1)
1989  Yourstone & GMA, GMR ARMA(2,1), AR(2)
Mongomery

1991 Harris & Ross EWMA, CUSUM AR(1)



1991

1991

1992
1994
1995

1995
1996
1997
1997
1997
1997
1997
1998
1998

1999
1999
1999
2000

2000
2001
2001
2001
2002
2002

2002
2003
2004
2005

2005
2005
2006
2006
2006
2006
2007
2007
2007

2008
2008
2008
2008
2008

2008
2009
2009
2009
2010

Montgomery &
Mastrangelo
Yourstone &
Mongomery
Wardell et al.
Wardell et al.
Mastrangelo &
Montgomery

Runger & Willemain
Runger & Willemain
Kramer & Schmid
Reynolds & Lu
Yang & Makis
Zhang

Atienza et al.
Willemain & Runger
Zhang

Apley & Shi

Lu & Reynolds
West et al.
Jiang et al.

Luceno & Box
Jiang

Rao et al.

Chiu et al.

Jiang et al.
Kacker & Zhang

Shu et al.
Ben-Gal et al.
Winkel & Zhang
Snoussi et al.

Winkel & Zhang
Kim et al.
Yang & Yang

Brence & Mastrangelo
Noorossana & Vaghefi

Triantafyllopoulos
Kim et al.

Ghourabi & Limam
Pacella & Semeraro

Costa & Claro

Zou et al.

Cheng & Chou
Issam & Mohamed
Koksal et al.

Guh

Weiss & Testik
Sheu & Lu
Knoth et al.
Hwarng & Wang
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MCEWMA AR(1)
SACC, GACC AR(4), ARMA(2,4)
EWMA ARMA(1,1)
Shewhartx , EWMA AR(1)
MCEWMA IMA(1,1),
ARIMA(1,1,1), AR(2),
AR(2), ARMA(1,1)
R&W AR(1)
UBM AR(1)
Shewhartx AR(21)
EWMA AR(1)
Shewhartx , CUSUM, EWMA AR(1)
Shewhartx AR(2)

SACC, SCC, CUSUM
Run sum chart

AR(1), MA(1)
AR(1), ARMA(L

EWMAST AR(1), AR(2),

ARMA(1,1)
Cuscore charts ARIMA(4,0,3)
EWMA AR(1)

Multivariate Shewhart, MEWMA, BPNAR(1)
ARMA, ARMAST, EWMAST, AR(1), ARMA(1,1)
EWMA, CUSUM, ShewhariX

One-sided CUSUM AR(1)
ARMA ARMA(1,1)
CUSUM AR(1)
BP Neural Network AR(1)
PID ARMA(1,1)
Shewhartx IMA(A,0)
CUSUM-triggered Cuscore ARMA(1,1)
CSPC AR(1), AR(2), MA(1)
EWMA, EWMAST AR(1)
Shewhartx , CUSUM, EWMA, AR(1)
EWMA Q, CUSUM Q
EWMAST, EWMA AR(1)
MFC AR(1)

CSC, Shewhart , Hottelling T AR(1)
MCEWMA AR(1), ARMA(1,1)
MCUSUM AR(1)

A new Multivariate Conti@hart AR(21)

DFTC AR(1), AR(2)

Pattern Chart, SCC AR(1)
SCCchart, EWMAST, ARMAST ARMA(1,1)

Elman NN

DS X ARMA(1,1)

VSIFT X, VSRFT X AR(1)

ARMA ARMA(1,1)
MCUSUM VAR(1)
Residual chart, modified Shewvhar ~ AR(1)

EWMAST, ARMA

SCCX chart, EWMA, LVQ NN AR(1)

CUSUM Poisson INAR(1)
GWMA, EWMA AR(1)

Shewhart, EWMA AR(1)
Hotelling T MEWMA, Z chart, NN VAR(1)

Identifier
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We briefly summarize our conclusions from this dethreview in the following:

e Since the first control chart is proposed by Shewim1931, lots of charts
have been developed and then improved to be useliffierent process data.

e Control charts for autocorrelated processes adidastientists’ attention in
1970s. Scientists studied the effect of autocaiimeieon the existing charts,

initially. Later, they proposed charts for autoetated data.

* Many scientists have studied the residual contnalrts more than modified
charts due to their simplicity. Scientists proposedjinal and innovative
control charts in earlier years. But in recent gearost of the proposed

control charts are enhanced versions of existirgtsh

* According to the Table 3.1 AR(1) and ARMA(1,1) preses are the most

commonly used models in the literature.

2.4 Regression Control Chart

In this subsection the basic concepts of linearegsion are explained before
discussing conventional regression control chad arbrief review on regression

control chart is given.

2.4.1 Linear Regression

In many problems two or more variables are inhdéyen¢lated, and it is
necessary to explore the nature of this relatigndRegression analysis is a statistical
technique for modeling and investigating the relaship between two or more
variables (Montgomery & Runger, 1999). Regressibartcis designed to control a
varying (rather than a constant) average, and assutimat the values of the
dependent variable are linearly (causally) relatéti the values of the independent

variable. Note that control limits of conventionedgression control chart are
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regression lines. In statistics, linear regresssam regression method that models the
relationship between a dependent variapjeifdependent variabl)(and a random

terme :

Ve =B+ BX1t BoX ot B X T E t=12,..N (2.26)

where the errorg, is assumed to be an independently and identichfiyributed

normal variable with a mean of zero and constariamaes?. The first subscriptt)
denotes the index of the observation and the sesobskcript ifn) denotes the index
of the input quality characteristic (Shu, Tsung, &pkir, 2004). Simple linear
regression considerssangle regressoor predictor xand a dependent oesponse
variabley. It is assumed that each observatipncan be described by the model

(Montgomery & Runger, 1999) given in Equation (2.27)
y=pFtBx+e (2.27)

In simple linear regression it is aimed to find thteaight line for which the

differences (or residuals) between the actual wabie, and the predicted values

from the fitted model are as small as possible. &heamatical technique which

determines the values @& and S, other than those determined by the least squares

method would lead to a greater sum of squaredrdiffees between the actual and

predicted values of (Levine, Ramsey, & Berenson, 1995). The estimate§,cand
B, should result in a line that is (in some senskjest fit” to the data. The German
scientist Karl Gauss (1977-1855) proposed estirgétie parameterg, and 5, in

Equation (2.29) and (2.30) in order to minimize $hen of the squares of the vertical

deviations in estimated regression model (MontggmeRunger, 1999).

V.= B,+Bx+e€, t=12,..N (2.28)
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The least square estimatesf the S, (intercept) andf, (slope) in the simple

linear regression model are

Y-
B = (2.29
Z(xt ~X)?

A A

£ =y-Bx (2.30)

1

<l

wherey = (1/ N)ZtN:1 y andXx = (1/ N)ZtN:1 x (Montgomery & Runger, 1999).

The residual describes the error in the fit of thedel to thetth observationy, .

Residuals are calculated by the formgla y, - ;.

2.4.2 Conventional Regression Control Chart

If independent process data exhibit an underlyregd due to systemic causes,
usually control charts based on ordinary least IguéOLS) regression are used for
monitoring and control. The traditional control disawith horizontal control limits
and a center line with a slope of zero have prawereliable when systemic trend
exists in process data. A device useful for momitpand analyzing processes with
trend is the regression control chart. A regressiased control chart which is the
combination of the conventional control chart amdression analysis was first
proposed by Mandel in 1969. This chart is desigoecbntrol a varying (rather than
a constant) average, and assumes that the valuéise ofiependent variable are
linearly (causally) related with the values of tinelependent variable. This chart
assumes that thevalues (the dependent variable) are linearly edlgtausally) to
the x values (the independent variable). For each specialue, it is assumed that
they values are normally and independently distribwtéti a mean value estimated

from the regression line, and with a standard emfuich is independent of the value
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of x and is estimated from the deviations of the aatbakrvations from thgvalues
estimated from the regression line. Mandel usedl&niinear regression for this
chart. Rather than using standard control charagtiioners typically implement
regression based control charts to monitor a psoeeth systemic trend (Utley &
May, 2008). Quesenberry (1988) points out thatetsgsproaches essentially assume
that resetting the process is expensive and tlegtattempt to minimize the number
of adjustments made to keep the parts within sjgatibns rather than reducing

overall variability.

A regression control chart that integrates lineagression and control chart
theory has proven useful and applicable in a widdgety of applications, as it
requires only a least squares regression compubtgrgnme to process the data
prior to constructing the control chart (Shu, Tsu&glsui, 2004). However, since
the Mandel’'s regression control chart was develdpedndependent data, it is not

an effective tool for monitoring process shift it@correlated process observations.

2.4.3 A Review on Regression Control Charts

A regression based control chart which is the cowtimn of the conventional
control chart and regression analysis was firsppsed by Mandel in 1969. Mandel
used regression control chart to monitor the vardtpostal management problems.
The modified regression control chart is also usé@mwthe process exhibits tool
wear (Montgomery, 1997), (see also Duncan (1974) lanuele (1945) for a
detailed discussion on control charts for tool Wweadvlandel also devised a
simplification of the regression control chart. Teieplification functioned as a
residual chart because the values that were plotteitl were the residuals from the
regression analysis (Utley & May, 2009). Zhang addgMandel’s idea of a residual
control chart for statistical process control datahe cause selecting chart (CSC) in
1984. The CSC, which is a type of a regression begetitol chart, is constructed for
an outgoing quality characteristic only after itshaeen adjusted for the effect of
incoming quality characteristic. Hawkins (1991) eeped a procedure called

regression adjustment. The scheme essentially stsrai plotting univariate control
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charts of the residuals from each variable obtaimken that variable is regressed on
all the others (Montgomery, 2009). A very importaagplication of regression
adjustment occurs when the process has a distiacrbhy of variables, such as a
set of input process variables and a set of owtprébles. Sometimes this situation
is called a cascade process. If the proper seamdles is included in the regression
model, the residuals from the model will typicallg uncorrelated, even though the
output variable exhibited correlation. The regrassidjustment procedure has many
possible applications in chemical and process plarttere there are often cascade
processes with several inputs but only a few ogtpand where many of the
variables are highly autocorrelated at low lags iikgomery, 2009). Two years later,
Hawkins applied regression control chart to casqadeesses and cited CSC as a
particularly useful methodology for controlling diyin cascade processes. If linear
regression is used to model a cascade processihibearalues plotted on the cause
selecting control chart are actually the standadliresiduals from the regression
relationship (Sulek, Marucheck & Lind, 2006). Ireteame year, Wade & Woodall
(1993) reviewed the concepts of the CSC and exairtime relationship between the
CSC and multivariate Hotelling? chart. In their opinion, the cause selecting
approach is an improvement over the use of sep&iadsvhart control charts for
each of two related quality characteristics. A egvpf the literature on control charts
for multivariate quality control (MQC) is given yowry & Montgomery (1995), by
discussing principal components and regressionsadgnt of variables in MQC.
Haworth (1996) used a multiple regression contrbart to manage software
maintenance. A quality control tool was developed managers of complex
software maintenance processes that can be modéteda multiple regression
model. Kalagonda & Kulkarni (2003) proposed a d@siit procedure called-
technique' to detect the nature of shift. For thispose, two sets of regression
equations, each consisting of regression of a blrian the remaining variables, are
used to characterize the 'structure' of the ‘inromprocess and that of the 'current’
process. To determine the sources responsible foutaf-control state, it is shown
that it is enough to compare these two structusasguhe dummy variable multiple
regression equation. In the same year, Omura &eS(2003) constructed Mandel’'s

regression control chart for apparent viscosity anerage shear rate data. According
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to the authors, no standardized test existed tectisgly assess flow behavior of
fluid foods with large particulates. Therefore, t@mtor the process data using a
regression control chart could be useful for gyationtrol. In the following year;
Shu, Tsung, & Tsui (2004) studied the run-length qgrembnce of EWMAREG
(EWMA chart for regression residuals) and SheREG \(®het chart for regression
residuals) with estimated parameters of regressipration, and used these charts for
monitoring multistage processes where process utally follow a multivariate
normal distribution. The authors also studied the@ tangth performance of
regression control charts. However, Zhang (1984) Wwade & Woodal (1993)
considered the CSC with sample size one, whilestbdies about construction of
cause-selecting charts with sample size greater tme are discussed by Yang
(2005) for jointx and€ cause-selecting charts. Yang & Yang (2005) comsitléhe
problem of monitoring the mean of a quality chagastic x on the first process
step, and the mean of a quality characterigtion the second process, in which the
observationsx can be modeled as an ARMA model and observagomran be
modeled as a transfer function »fsince the state of the second process is dependent
on the state of the first process. In the followyear (in 2006) they addressed the
X-< and€- ¢ charts for two dependent process steps with otjeisted means
and variances. Sulek, Marucheck, & Lind (2006) examth the CSC as a
methodology to monitor and identify potential prail areas in an actual cascade
service process. The authors utilized the CSC aapanopriate methodology for
analyzing the performance of a down stream staga imultistage process by
controlling the effect of performance in the upairestage. Yang & Su (2007)

constructed an adaptive sampling intenZgl control chart to monitor the quality

variable produced by the first process step, amd tise adaptive sampling interval
Z, control chart to monitor the specific quality \abie produced by the second
process step. Asadzadeh, Aghaie, & Yang (2008gwed CSC for monitoring and
diagnosing multistage processes. The following y@ar2009) they proposed a
robust CSC to monitor multistage processes whetleemiare presented in historical
dataset. In the same year, Yang & Chen construtted/ariable sampling interval

(VSl) Z, -2, and Z, - Zse2 control charts in order to effectively monitor theality
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variable produced by the first process step witlolirect adjustment and the quality
variable produced by the second process step mgthriiect adjustment, respectively.
When the residual terms are not normally distriduten alternative method for
estimating the regression line is needed. Oneratime method is the least absolute
value (LAV) regression model. In contrast to theSDapproach, which minimizes
the sum of the squared residuals, the LAV modelimizes the sum of the absolute
values of the residuals. Utley & May (2009) prombsecontrol chart methodology

for residual control charts that is based on labsblute value (LAV) regression.

In this section, control charts for autocorrelaigdcesses and conventional
regression control chart were reviewed, and thohésl progression in this field
was emphasized. Brief information about artifiar@ural networks is given in the
following chapter. In this thesis, neural networlse used to recognize the
autocorrelated and trended process observatiorsebeking proposed regression

control chart.



CHAPTER THREE

PROPOSED REGRESSION CONTROL CHART FOR AUTOCORRELATE D
DATA (RCCA)

In this thesis, a new regression control chart &utocorrelated process
observations (RCCA for short) which is able to detee mean shift in a production
process is presented. This chart is designed farcautlated process observations
having a linearly increasing trend. Existing apphmscmay individually cope with
autocorrelated and trending data. To the best okoowledge there appears to be no
chart that directly monitors the original data whiexhibit both increasing linear
trend and serial correlation. The proposed chartGRequires the identification of
trend AR(1) model as a suitable time series modelpfocess observations. For a
wide range of possible shifts and autocorrelatioefficients, performance of the
RCCA is evaluated by simulation experiments. Simmoa results are given in
chapter four. The average correct signal rate amdithulated average run length are
used as performance criteria. Recognition of autetated and trending process
observations is performed by using neural netwoext subsection describes the
integrated neural based structure that we usegmdse autocorrelation through the
trending process observations. After presentingnéh@ral based pattern recognizer,
construction steps of the proposed chart will vegiwith an illustrative example.

3.1 Recognition of Autocorrelated and Trending DatdJsing Neural Networks

3.1.1 Background

In this subsection, before implementing RCCA, desigd implementation of the
combined neural network structure (CNN), that imposed of appropriate number
of linear vector quantization (LVQ) and multi layeerceptron (MLP) (also known
as the ‘feedforward backpropagation network’) neumetworks that are used to
recognize the trend in process data, is describégr recognizing the trending

pattern, the Elman’s recurrent neural network (ENBl)used to diagnose the
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autocorrelation through the trending data. When litezature is reviewed, it is

observed that there is not any integrated neurtlaré& structure that combines
LVQ, MLP and Elman networks together to recognize ttocorrelated and

trending patterns. The proposed control chart caanygloyed to detect the shift in
process data after recognition of autocorrelatet teending pattern as described in
section 3.2 and section 3.3 with an illustrativaraple.

Researchers have investigated the use of artifr@alal networks (NNs) in the
application of control chart pattern recognitionCER) (Guh, 2008). Different
statistical tools (such as least squares for teemalysis and time series analysis for
calculating autocorrelation coefficients) can beilgamplemented to process data to
recognize the trend or autocorrelation in procests hut when compared to other
methodologies the neural network approach has iseddvantages which are
mentioned in section 2.3. The Appendix 1 describedetail the process simulator
for generating the CCP examples and etc. In retiognproblems, NNs can recall
patterns learned from noisy or incomplete repregemts, which makes them
suitable for CCPR because CCPs are generally comged by common cause
variations (Guh, 2008). Pattern recognition proside mechanism for identifying
different types of predefined patterns in real tiore the series of process quality
measurements. The recognized patterns then sertlee ggimary information for

identifying the causes of unnatural process behgacella & Semeraro, 2007).

Various studies have demonstrated the utility ofsNiNidentifying CCPs. Pham
& Oztemel (1992a, 1994) used a backpropagation or&twWBPN) and learning
vector quantization (LVQ) network to recognize shifend and cycle patterns on
control charts. Their Back Propagation (BP) and LNM&works achieved 95% and
97.7% accuracy, respectively. Hwarng & Hubele (3988tensively investigated
CCPR by training back propagation networks (BPNsjlétect six unnatural CCPs
suddenshift, trend, cycle, stratification, systeamaand mixture. Cheng (1997)
developed a NN approach for the analysis of cordnalrt patterns. Anagun (1998)
organized the training data in two different wagséct representaion and histogram

representation) before introducing them to the giesi NN applied to pattern
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recognition in statistical process control. Guh &iiack (1999) tried to investigate
the feasibility of an NN to recognize concurrenhicol chart patterns (where more
than one pattern exists together, which may becedsd with different causes).
Pham & Chan (2001) described in their paper, the afsunsupervised adaptive
resonance theory ART2 neural networks for recoggizpatterns in statistical
process control charts. Pham & Sagiroglu (2001kgmted an overview of four
algorithms used for training MLP networks and thesults of applying those
algorithms to teach different MLPs to recognisetoanchart patterns and classify
wood veneer defects. The algorithms studied are @Rckprop (QP), Delta-Bar-
Delta (DBD) and Extended-Delta-Bar-Delta (EDBD). Tiesults have shown that,
overall, BP was the best algorithm for the two agtions tested. Al-Assaf (2004)
used multi-resolution wavelets analysis (MRWA) tetract distinct features for
unnatural patterns by providing distinct time-freqay coefficients. Gauri &
Chakraborty (2006) developed two feature-basedoaghes using heuristics and
articial neural network, which are capable of retmipg eight most commonly
observed CCPs including stratication and systengatiterns. In the following year
(2007), they presented potentially useful 32 fesguwhich provide an opportunity
for understanding the behaviours of the CCPs iaid&they demonstrated a simple
approach for designing the optimal feature-basedistec using the classification
and regression trees (CART) algorithm, which is bégpaf detecting all of the eight
basic CCPs using a considerable smaller number bsergations. Gauri &
Chakraborty (2008) selected a set of seven shagiarés so that their magnitudes
will be independent of the process mean and stdndaviation. Based on these
features, all the eight commonly observed CCPsrecegnized by using a MLP.
Jiang, Liu, & Zeng (2009) used a BPN to recogniztimwl chart patterns
preliminarily and then they adopted numerical riti method to estimate the
parameters and specific types of the patterns, wisidifferent from the traditional
neural network-based control chart pattern recagnitnethods. Recently, pattern
recognition techniques based on artificial neuratwork (ANN) are limited to
recognize simple CCPs arising from single type ohatural variation. In other
words, they are incapable to handle the probleoooturrent CCPs where two types

of unnatural variation exist together within thematacturing process. Wang, Dong,
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& Kuo (2009) presented a hybrid approach based mategendent component
analysis (ICA) and decision tree (DT) to identifyncarrent CCPs. Without loss of
generality, six types of concurrent CCPs are usedatidate the proposed method.
Recognition of various control chart patterns (CIC€an significantly reduce the

diagnostic search process. Feature-based approaahefcilitate efficient pattern

recognition. In the same year, a set of seven oseful features is selected by Gauri
& Chakraborty (2009), using a classification andression tree (CART)-based
systematic approach for feature selection. Basedthese features, eight most

commonly observed CCPs are recognized using hieuaustd MLP network.

Figure 3.1 displays the NN aided pattern recogmitamd process monitoring
procedure of the RCCA. As can be seen, for recagmihe trend and autocorrelated
patterns, a combined NN architecture is used twigeoa collective authority in
decision for trended data, and call it combinedralenetwork recognizer (CNNR),

then employ ENN to recognize the autocorrelation ithéiltered by CNNR.

Sample data from
the process

RunRCCAfor process
observations

Exit |——g—————}b———— ——

Construct thd(RCCA

Yes

Are the data

Identify theRCCAparameters autocorrelated?

Is diagnosed
CCP an
increasing
trend

ENN t Exit

Figure3.1 NN aided pattern recognition and process mdnggrocedure of the RCCA.

Topologies of MLP and LVQ are given in Figure 3.2dafigure 3.3,
respectively. Each neuron, represented by truncgti@aders in a layer, is connected
with all neurons of the next layer by arcs. Eachtas a weight. Threshold value

prevents the neurons to produce zero value. Inr€&idu3, the weights of arcs
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between Kohonen and output layers are equal tqsmeeOztemel (2003) and Gauri
& Chakraborty (2008) for details). The output of MBRd LVQ is one of the control
chart patterns (CCP). The desired CCP for LVQ andPMadr the input data under
consideration is increasing linear trend that i® af the six CCP types (naturel
pattern: NP; upward shift: US; downward shift: Di&;reasing trend: IT; decreasing
trend: DT; periodic shift: PS).

Input Hidden Layer Output
Layer Layer

Decision
I::>on one of
the CCP

types

Process =

data

Figure 3.2 Feedforward MNR architecture (Oztemel, 2003; Gauri &
Chakraborty, 2008).

Input Kohonen Laye Output
Layer Layer

: Decision

IZ> on one

D
CCpP

types

data

Processp—», )

Figure 3.3 LVQ NN architectf@ztemel, 2003; Ham & Costanic, 2001).

Learning rules of MLP and LVQ networks are given Appendix 2 and
Appendix 3, respectively. The combined NNs that @iref three or more NNs give
more successful solutions when compared with siNglestructure (Oztemel, 2003).
The inputs are presented to each NN independentyatso each NN are trained

independently, and the outputs of them are obtaimedhis thesis appropriate
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numbers of LVQ and MLP networks are combined toawbtmore successful
solutions. Components of CNNR are displayed in Fag8i4. Each of the NN was
trained independently from others. The outputs e6éhNNs were combined and by
the help of a collective decision making module D) a collective decision was

performed. A CDMM depends on unanimity.

ANN1(LVQ)
\4
ANN2(LVQ) > c
Inputs D »/  Outputs
M
ANN3(MLP) » M

Figure 3.4 Components of the CNNR.

Operation of CDMM is given in Appendix 4. After mnizing the trended
pattern, the Elman’s recurrent neural network (ENNJswsed to diagnose the
autocorrelation through the trending data. A rezatrfENN where the recurrency
allows the network to remember cues from the repast is suitable for recognizing
time series data and monitoring process shiftshan gresence of autocorrelation
(Pacella & Semeraro, 2007). ENN is especially usedniodeling first ordered linear
systems. ENN has the ability of processing the ttethare time dependent and also
can transform the results that are obtained atiquewtime to a one step ahead. ENN
considers relations that are time dependent. Songstiwork is used to estimate the
future by considering its behaviours today (OzteréD3). ENN is similar to MLP
when its construction is considered but differsnfréLP at having the dynamic
memory property which brings this algorithm a spegnportance to recognize time
series data. The ENN employs feedback connectionsadddesses the temporal
relationship of its inputs by maintaining an int@rstate. In ENNs input layer does
not include transfer function like MLP. Topology BNN is given in Figure 3.5.
Learning rules of ENN are given in Appendix 5. Theéput of ENN is that if the
trended process data filtered by CNNR is autocateel or not.
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Input Hidden Layer Output
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Process = -—<yeU o ______ Decision on
LO;ZS?::> I (:O ( ‘ ) =—> independency

Context -
Unit

——————

Figure 3.5 ENa&tchitecture (Ham & Kostanic, 2001; Oztemel, 2003).

In the relevant literature, for the autocorrelaj@cesses, NNs are used to
recognize if the input pattern is one of the CCPRegy (first task) and is it
autocorrelated (second task), simultaneously. Bmxaof the complexity of
autocorrelated processes with one of CCP typedrdireng process of networks can
be hard, while the correct classification rate dases. By the proposed integrated
structure, the mentioned two tasks are distribtaedifferent networks. The first task
is performed by CNNR that is composed of appropriaimber of LVQ and MLP
networks, while the second task is performed by EMN that is advisable to
recognize autocorrelation. Executing only one of tgwen tasks, correct
classification rate of each network increases amihihg these networks are
simplified; and then by combining the results otleaetwork, the performance of
proposed network structure is increased when itdmpared with the results

represented in the literature.

3.1.2 Generating Sample Data

In this section how training and testing data sets generated is explained.
Generated data sets are used in training and gesinnetworks and also calculating
the performance of RCCA. The process simulator cad®&dATLAB 7.4.0 was used
for generating the training data sets. The detdilgrocess simulator are given in

Appendix 1.
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For each type of the six CCPs 400 sample datanssts generated. Each data set

is composed of 500 observations. While one halthef sets are uncorrelated, the

other half contains both correlated and uncorrdlatata sets. The former sets are

collected in setl, and the latter in set2. For €2ClP type in set2, 40 data sets were

generated using each of fiye values such as 0.95, 0.475, 0.0, -0.475, and -0.95

That is, the first 40 sets were simulated usipg0.95, the second 40 sets for

@=0.475, and so on. Setl and set2 were generatelffbyent process simulators

that are given in Appendix 1. Setl and set2 weesl usgether for training of MLP

and LVQ. Parameter values used for process simuéaio displayed in Table 3.1.

Table 3.1 Details of the CCP training example &mtshe LVQ and MLP networks

Pattern type

Parameter range $etl

Parameter range feet2

Set name and

number of
observations
Normal t=[1,500], =10, 0=2, t=[1,500], =0, x =10, Set1:200
distribution |, = Uniforn{0,1] £~N(0,4) Set2:200
:0.95,0.475,0.6; 0.475, 0O.!
Increasing g = unifornj0.1,0.125 d=0.2 Set1:200
trend (for the first 100 data set) Set2:200
g =0.2 (otherwise)
Decreasing  (—g) (-d) Set1:200
trend Set2:200
Sliding up Kgiging =0 (if t < 50) Kqiging =0 (if t < 150) Set1:200
Kyqng =1 (if t = 50) Kygng =1 (if t= 150) Set2:200
Sdisplacememz Uniforn{z' 4] Sdisplacement: (45)
S"ding ( _ksliding ) (_ksliding ) Set1:200
down Set2:200
Periodical N =500 N =500 Set1:200
shifting 71=500 1=500 Set2:200
@ periogic= randint [0,30 @ perioaic=(0.25,1.0,3.0)

3.1.2.2 Training Data Set for ENN

To train ENN, both autocorrelated and uncorrelated dats, with increasing and

decreasing linear trend, were generated. Each sminposed of 500 data points.

Underlying model for autocorrelated process is giveAppendix 1. Totally 800 sets

were generated for autocorrelated process; oneftraihcreasing trend and other
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half for decreasing trend. On the other hand, d&hof autocorrelated sets have a
specific ¢ value (p:0.95,0.475; 0.475; 0.9 listed in Table 3.2. Underlying model

for uncorrelated process with increasing trendvsrybelow.

X, =l +& +dt (3.1)

For the process with decreasing trend sign ofdhan Equation (3.1) will be
negative. 400 sets were generated for each of elated process with increasing
trend and decreasing trend, respectively. Pararnatees used for CCP training data

sets are depicted in Table 3.2.

Table 3.2 Details of the CCP training example eetlie ENN

Parameter range for AR(1) process data Paramege far uncorrelated process data
§=0, x =10, £~N(0,4), t =[1,500] &£~ N(0,4), t=[1,500]

:0.95,0.475; 0.475; 0.¢

d = 0.2 (for increasing trend) g = 0.2 (for increasing trend)

(=d) (for decreasing trend) (-9) (for decreasing trend)

3.1.3 Recognition of Trend and Autocorrelation in [@ta

3.1.3.1 CNNR to Detect Six Unnatural CCPs

Three different ANN based recognizers were develogast two of these
recognizers (ANN1 and ANN2) use LVQ algorithm. Aitelstures of ANN1 and
ANNZ2 differ in number of neurons at Kohonen lay€he third member of CNNR
uses MLP structure. Configurations of the LVQ amel MLP networks which are the
members of the CNNR are depicted in Table 3.3 anbleT8.4, respectively.
Preliminary investigations are conducted to chaseitable network topology and
training algorithm for each member of CNNR. Accoglio the experimental design
performed for investigating the appropriate netwiogologies of LVQ networks, the
design parameters for learning rate (0.01, 0.036,00.09) respect to number of
neurons at Kohonen layer (from 4 to 40 neuronse@®ing four by four) are used
and minimum mse (mean square error) is reachedthgtidesign parameters that are

given in Table 3.3. Similarly, for MLP network, tkdesign parameters for number of
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hidden layers (from 1 to 4 increasing one by onejmnber of neurons at each layer
(from 8 to 72 increasing eight by eight), learnnages (0.01, 0.02) and momentum
constants (from 0.02 to 0.05 increasing with step 6.01) are used and minimum

mse is reached for the design parameters thaiae o Table 3.4.

Table 3.3 Network configurations for LVQ NNs

Members of CNNR :  ANN1 ANN2
Type of ANN LVQ LVQ
Number of neurons at Kohonen layer 24 36
Learning rate 0.01 0.01
Training example set Setl+ Set2 Setl+ Set2

Training example set class percentages are samegamdito (1/6) for each of six CCP type
Network training parameters
Error goal :  1x13'(1e-17) 1x107 (1le-17)
Maximum number of epochs : 200 200

Table 3.4 Network configuration for MLP NN
Members of CNNR:  ANN3

Type of ANN MLP
Number of hidden layers 3
Number of neurons at each hidden layer respectively 12, 64, 64
Number of neurons at output layer 1
Functions
Transfer (activation) functions of hidden layerspectively: Purelin, Tangent sigmoid, Tangent
sigmoid

Transfer (activation) @tion of output layer : Purelin
Backpropagation network training function : TRAING®Eradient descent back
propagation
Backpropagation weight/bias learning function : LEMGD Gradient descent
weight/bias learning function
Performance function : mse (mean square error)
Training set Setl+ Set2
Network training parameters
Error goal : 1x10?
Maximum number of epochs : 30000

Momentum constant: 0.4
Learning rate : 0.01

The generated data were presented to each NN indieiiyn and also each NN
was trained independently. The coding is performedVIATLAB 7.4.0. Then
outputs of these NNs were combined and by the diedpcollective decision making
module (CDMM) a collective decision is performeeddOztemel (2003) and Gauri
& Chakraborty (2008) for detailed information). Ttnaining was stopped whenever
either the error goal is achieved or the maximutowalble number of training

epochs is met. Now verification sets are neededesting the performance of NNs
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which are the members of CNNR. New sets of vetificasamples of size 2400 each
were generated by using the parameters given ineTaldl again. The generated
samples for verification were used to test theqrertbnce of CNNR members. The
recognition performance of all these ANN-based geters was tested using
different sets of test samples. The verificatiorultssof the ANN-based recognizers
are displayed through Table 3.5 - Table 3.7, aedpgrformance of CNNR is given

in Table 3.8. The elements in these tables are tassitication rates (CR) of

networks by percentages. The columns representxipected classification for the

input pattern, while rows represent the actualstli@ation rate of network for the

given test set. For example in Table 3.5, for thestficolumn the expected

classification is NP, but as it can be seen froel#st row of Table 3.5, the correct
classification rate of ANN1 is 92.5%.

Table 3.5 Testing results of the ANN1 for autoctated data

CR (%) Required classification
NP uUs DS IT DT PS

o s PS 0.0000 0.0000 0.0000 0.0000 0.0000 0.7565
5 § DT 0.0000 0.0000 0.0052 0.0000 0.9982  0.0000
= =T 0.0000 0.0105 0.0000 0.9884 0.0000 0.0000
2 @ DS 0.0750 0.0020 0.9848 0.0000 0.0018  0.0000
RV 0.0000 0.9875 0.0000 0.0116 0.0000 0.0000

NP 0.9250 0.0000 0.0100 0.0000 0.0000 0.2435

NP: natural pattern; US: upward shift; DS: downward sShift; IT:@asing trend; DT: decreasing trend; PS: periodic Shift

Table 3.6 Testing results of the ANN2 for autoctated data

CR (%) Required classification
NP us DS IT DT PS
N _5 PS 0.0000 0.0000 0.0000 0.0000 0.0000 0.7550
5 § DT 0.0000 0.0000 0.0010 0.0000 0.9975 0.0000
H g IT 0.0000 0.0000 0.0000 0.9876 0.0000 0.0000
% @ Ds 0.0600 0.0150 0.9990 0.0000 0.0025 0.0000
©  Us 0.0000 0.9850 0.0000 0.0124 0.0000 0.0000
NP 0.9400 0.0000 0.0000 0.0000 0.0000 0.2450
NP: natural pattern; US: upward shiff; DS: downward shift; IT.@aémg trend; DT: decreasing trend; PS: periodic shift
Table 3.7 Testing results of the ANN3 for autoctated data
CR (%) Required classification
NP us DS IT DT PS
N _5 PS 0.0000 0.0100 0.0000 0.0000 0.0000 0.9990
5 § DT 0.0000 0.0050 0.0100 0.0350 0.9950 0.0000
H g IT 0.0050 0.0000 0.0000 0.9500 0.0000 0.0000
% @ Ds 0.0000 0.0350 0.9900 0.0150 0.0050 0.0000
©  Us 0.0000 0.9500 0.0000 0.0000 0.0000 0.0000
NP 0.9950 0.0000 0.0000 0.0000 0.0000 0.0010

NP: natural pattern; US: upward shiff; DS: downward Shift; IT:gasing trend; DT: decreasing trend; PS: periodic shift
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Table 3.8 Testing results of the CNNR for autodatesl data

CR (%) Required classification
NP us DS IT DT PS

o _5 PS 0.0000 0.0000 0.0000 0.0000 0.0000 0.7650
5 § DT 0.0000 0.0000 0.0024 0.0000 0.9968 0.0000
= =0T 0.0000 0.0090 0.0000 0.9947 0.0000 0.0000
2 @ DS 0.0600 0.0000 0.9976 0.0000 0.0032  0.0000
S uUs 0.0000 0.9910 0.0000 0.0053 0.0000 0.0000

NP 0.9400 0.0000 0.0000 0.0000 0.0000 0.2350

NP: natural pattern; US: upward shift; DS: downward sShift; IT:@asing trend; DT: decreasing trend; PS: periodic Shift

As can be seen from these tables, at the trainimd) \gerification phases,
recognition performances of three members of CNIRgaod for trended patterns.
The overall mean percentage values of correct rettognat the training and
verification phases for trended patterns are higbdyrect for all NN based
recognizers. As can be seen from Table 3.8, thecctassification rate of CNNR
is higher then its members and 99.47% for incrgpgmend. These correctly

recognized trended patterns are used as inputNdt. E

3.1.3.2 Network Configuration of ENN

Configuration for ENN is given in Table 3.9. Initigllall weight values were

chosen randomly and then they were optimized duhadraining stage.

Table 3.9 Network configuration for ENN

Number of neurons at each layer respectively GHidden layer), 1 (for output layer)
Functions
Transfer (activation) function of hiddexyer : Tangent Sigmoid
Transfer (activation) function of output layer Purelin
Backpropagation network training function : TRAINGISradient descent
w/momentum & adaptive Ir
backpropagation
Backpropagation weight/bias learning functionLEARNGDM Gradient descent
w/momentum weight/bias learning
function
Performance function : mse (mean square error)
alming example set: Presented in Table 3.2
Network training parameters
Error goal : 1x10?
Maximum number of epochs : 500

Desired output of ENN is either 1 if the autocortiela has been detected or 0
otherwise. Due to the random noise and to differaities of actual inputs, the

output of ENN is a number ranging approximately lestw 0 and 1. Therefore, an
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activation cut off value must be defined to releasealarm if the network output is
greater than the cutoff. Similar to the approackdusy Pacella & Semeraro (2007),
we defined a cut off value (C) 0.60 for increastirgnd and 0.5290 for decreasing
trend. If the trained NN signals greater than anaédqo cutoff value, point out that

the tested data set has serial correlation, otkertvas no serial correlation.

1.6

1.4

1.2+

o.8 -
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Figure 3.6 A test solution for an example testodetutocorrelated and

uncorrelated trended dhta have been shown to EIman NN twise.

Table 3.10 summarizes the performance of ENN for cautelated data with

increasing linear trend that is filtered by CNNR.

Table 3.10 Testing results of the ENN

Required classification

5 Autocorrelated Uncorrelated
<3
2 2 Autocorrelated  0.9846 0.0003
° 2
Z s

O Uncorrelated 0.0154 0.9997

The results displayed in Table 3.10 indicate thab@artelated increasing trend
is recognized with 98.46% accuracy rate for theffutalue 0.60. This means that
autocorrelation has been detected by ENN with 98.46@tracy through the set that
is correctly recognized by CNNR (see Table 3.1GhwW0.47% accuracy from trend
AR(1) test set. In this case the network did ayagood job with only 6 neurons in
the recurrent layer, and 500 training epochs. Ma®urrent neurons and longer
training times could be used to increase the nétwa@ccuracy on the training data.
Training the network on more amplitude will resuita network that generalizes
better. Based on preliminary investigation, no ewmtdimprovement in performance

was attained by extending the training set beydittlekamples for each type.
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3.2 Construction of the Proposed Chart

After the linear trend and serial correlation weiragnosed by means of NNs, the
RCCA was used for different magnitudes of the meaift, under the presence of
various levels of autocorrelation. Performancehef RCCA was evaluated in terms
of the average correct signal rate and the simailateerage run length (ARL). An
autoregressive process of lag 1, AR(1), is theesgmtative model for autocorrelated
processes. In an AR(1) process, the current obsenva correlated with its previous
observation. Past studies emphasize the role oflAR{ocesses in process control
(Guh, 2008). An AR(1) model can be expressed dsvst

X =E+PX, +E (3.2)

wheret is the time of samplingx, is the sample value at timeé is the constanty
is the autoregressive coefficient (4<1), andg, is the independent random error
term (common cause variation) at tirnéollowing N =(0,07). Let autocorrelated

process observationsc( with an increasing linear trend (trend AR(1) @ss) be

represented by:

)(t =x+ dt (33)

whered is the trend slope antlis the time step (or observation number), and

autocorrelated and trending process observati®n$ \ith a mean shift be depicted

by:

Z =X +0, (3.4)

where d, is the magnitude of upward mean shift. In thisifieour aim is to test for

an upward shift in the mean ¢Z, By using the RCCA. Notations are listed in

Appendix 6. The RCCA is constructed in the followihg steps;
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Step 1Fit a simple linear regression model to the data.

The center line of the RCCA is a regression liness&s a conventional regression

chart. So the parametef (slope) andg, (intercept) need to be estimated by

2 (Z=Z)(t=T)

B, = (3.5)
2 (t=T)
/}o = Z_:él_ (3-6)

whereN represents the sample siz&, is thetth observationZ the mean value of

Z ,t=1,2,...,NandT the mean value of

N
_ 24

Z =11 and 0= .
N [¢:
N
Dt
T =t (3.8)

N

Step 2Calculate the RCCAariation parameter (RCCAVP for short).

(1
RCCAVP= |4, (WJ (3.9)

where

(3.10)
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is the standard deviation ofe{} which is the difference between expected and

observed values of, ,

&=24-¢4,, (3.11)

and € is the sample mean off}

M=
D

ol
1
0

(3.12)

Step 3Calculate the time dependent EWMAARZ parameter idew the control
limits up. The aim is to obtain an acceptable falsem rate.

N
z Oewma g
t=1

EWMAARZ = I (3.13)
where
o ewmay — d ef +(1l-a )a-EWM/(\ +1) 13)

and Jgyyay =0, During the comprehensive experiments we conducieds
observed that the RCCA gives better performance dor0.80. J.,, is the

estimated smoothed standard deviatiorZpfand shows similar characteristics with

the smoothed variance in moving centerline EWMA (MO&#®) chart. As can be
seen in (3.13), EWMAARZ is affected by the processiduals, and implicitly by the

autoregressive parameter. As depicted in Equation (3.11), residuals getdaigr

¢ <0 and vice versa.
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Step 4CalculateC* (C ") to widen (narrow) the upper control limit if theis an

upward (downward) shift in the mean of the process.

There is an upward (downward) shift in the processamif C* (C ) continues

to get larger (smaller).

$ +
_ ZCRCCA(I)
cr==__ 3.15
N (3.15)
N —_
_ ZCRCCA(I)
C == (3.16)
N

where ey =0, Croeuy =0, Cicany ={max(0,Z,~ (M, + K} ,

Crecny ={min(0,Z, - (M.~ K] (3.17)
and

a7t — Do . —

Mo—¢127+,81t t=12,..N (3.18)

denotes the target varying mean for process obs@ngaat each time stapn the

CUSUM control chart, deviations from the constargét mean f,) are used to
calculate accumulating deviations. In the preséssedtation, with a similar purpose,

M, is used as a reference value for the process\atigmrs. The distance between

each process observation alv?ti is calculated in each time stefOn the other hand,

if the conventional regression control chart tisghioposed by Mandel is considered,
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the center line formulated by:,f?O +ﬁ’lt also represents the target varying mean.

Intercepts show difference betweéﬁ) and the target varying mean in the Mandel’s

regression control chart.

The intercept inl\7|f) is formulated axf%. Calculations foD, are given in Table

3.11. For positive autocorrelation, because ofrtaeire of the process, a relatively
large observation at the previous time step tendbet followed by another large

value at the current time step. RCCA adjusts itgrod limits’ width with respect to

the autocorrelated process observations by u€lifigand C~. For this purpose,

RCCA takes into consideration the sign of autodatien and the magnitude of
autocorrelation coefficient. The functional role®f andC ™, that are the means of

calculatedCqcx, andCpecy, Values, will be given in detail at the followingges.

As mentioned beforeC..,, and Cp..,, represent derivations from the target

varying mean at each time stepBy usingC ' and C~ the width of the control

limits are decreased. In other words,” and C~ have decreasing effect on the
width between upper and lower control limits. Fogak autocorrelation cases we

expect the control limits to get narrower when st dompared with the strong

autocorrelation. So the calculated values @jf.,, and Cg..,, are expected to be
smaller for strong autocorrelation to get largentoal limits. As it can be observed
from the formulations ofC;..,, and Cg..,, that are given in Equation (3.17), this
can be provided by determining Iargl}ﬁeé to get smallercgccm values for strong

autocorrelation and vice versa. By including theasg of autocorrelation coefficient
in the intercept, it is aimed to have larger (respaller) target varying mean when
observations are strongly autocorrelated (resp.kheautocorrelated) in order to
increase the correct signal rate.

While calculatingCpec,, and Cpecqy. @ Slack valuek is used to prevent the

inclusion of small deviations from the process mdarthe relevant literature is
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often chosen as a halfway between the target medrhe out-of-control value of
the mean (Montgomery, 1997). It is important teesethe right value fok since a
large value ofk will allow for large shifts in the mean without tdetion, while a
small value ofk will increase the frequency of false alarms. Focoamventional
CUSUM chart, k is selected to be equal to 6.5During our comprehensive

experiments, we observed that the RCCA gives bpédormance fok:Mj .

Calculations foiD, in Equation (3.18) are given in Table 3.11, below.

The reason for calculatin@qc,, and Cqecy, iS Similar to that ofC” (upper

cumulative sum) andC; (lower cumulative sum) statistics in CUSUM chart

(Montgomery 1997). The basic purpose of a CUSUMrtcisato track the distance
between the actual data point and the grand meakeBping a cumulative sum of

these distances, it can be determined if theredsaage in the process mean. But,

becauseCrccy, and Cqceyy display some distinct characteristics fraji and C;,

they are time dependent, and are not affected fiwair previous values, and we

select the minimum value while calculating tRg..,, (as depicted in Equation

(3.17)), not the maximum value as in the calcutatdC, (Montgomery, 1997).

Step SCalculate the other parameters required for coasig theRCCA

These parameters and the formulas used for calmugagére given in Tables 3.11

through 3.14. As can be seen in Table 3.11 andeTall2, to calculate, B,, Do;

and B,,B,, L, Dy, D3, D4, andDs, distinct formulas are employed due to the sign of
,f?o and of @, respectively. On the other hand, signs of bﬁ’ghand ¢ determine
which formulas will be used foD, and D, . As can be seen in Table 3.13¢if> 0,

while deciding which formula will be used fdp,, magnitude of,f3O is compared
with @§RCCAVF. According to our comprehensive experiments, ti@&CR gives

better performance in terms of false alarm ratd ihie parameters given in Tables
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3.11 through 3.14, and the false alarm probahsitpwer when,f?O and ,5’1 have the
same sign than when these parameters have oppagite Also big values o€*
increase the correct alarm rate for upward shift @ce versa. The magnitude and
the sign of,@o directly affect the control chart performancethié data have positive
autocorrelation, unless the shift size is not clednghe performance gets better

(worse) as the magnitude of positi\[% (negative ,f?o) gets bigger, vice versa for

negative autocorrelation. It is because the signﬁ’ooand ¢ affect the performance

of the RCCA thafTables 3.11 through 3.14 are arranged in respetiteosigns of
these parameters. Because the RCCA has severahgiara, the design procedure
seems to be complicated. However, as can be se€abies 3.11-3.14, specifying
values for some parameters can decrease the nushbRCCA parameters and
reduce the calculation complexity. Tables 3.11143how these special cases of the
RCCA.

Table 3.11 Parameter calculations according tcsitdpe of ,5’0

If B, <0 If 3=0
B=0 B; =0 B;=1 B; =1
) 2 . 2 B =0 B =0
_— +(EWI\/I_AARZ) ) +( EWI\/lAARZj
e e
D, = -RCCAVF D, = RCCAVF

Table 3.12 Parameter calculations according tcite of ¢

If ¢ >0 If ¢ <0
51 8 -1 i . A
a2 A

L=3.0 L=15

D,=0D,=1D,=1 D, =1 Dlzﬁ D,=3L¢’ D,=-15 D5=|<4

B;=1 B =1 B/ =ld B =l4
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Table 3.13 Parameter calculations Bprwhen ¢ >0

£y>0 A, >¢ RCCAVF b= bo v B nC

27 @L/2) L(RCCAVP K

D; = A, Py (L/2)i+:f’¢2
@L/2) L(RCCAVP

1

B, <¢ RCCAVF D} =B, +¢@3LC - (1/3)C" (1/p)
D, = @3, +#3LC ™ +(1/3)C" (L/p)

B <0 D; =¢2L(C -5,

D; =¢2L(C" - ;)

Table 3.14 Parameter calculations Bprwhen ¢ < 0

’80>O +_ [30 :éo i 6_[31 C+_6_
D, =( 1/3)?+(L)(L(RCCAVB) ( (/)2 J+|(/1 ?
__B 4 Y(TAH)..C T
D, =2+ (L p Ry i
s ’(uRCCAVB) [ 7 J PR
B,<0 D; =g2L(C -4,

D; =g2L(C" - /3,)

Step 6Calculate control limits and the center line.

Control limits and the centre line of the RCCA aegression lines as given

below.

Center line:
Y. =5, + Bt (3.19)
Upper control limit (UCL):

D,DZC*

3.20
7 (3.20)

UCLt :YUCLprq + L( RCCAV|?|(4 B+ I;)_
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where

Yocos = B + B, + D|d B + B |d EWMAARZ f3, (3.21)

Lower control limit (LCL):

LCL =Y,qp — L RCCAVRg B- p+%§6_ (3.22)
where
Yo =~B ~ BA,~ D|¢ 86 - B¢ EWMAARZ 3, (3.23)

The simple linear regression equation with intetc(eﬁ’a) and slope )@1) is used

to represent the centre line of the RCCA. Also ntitat, if a relatively low
observation from the autocorrelated process atptiegious time step tends to be
followed by another low value at the current timeps and a relatively large
observation at the previous time step tends toobewed by another large value at
the current time step, then this type of behavisr imdicative of positive
autocorrelation. Naturally, the direct contrary imdicative of negative
autocorrelation. So the pattern on control chartegaaccording to the sign of the
autocorrelation. To adjust control limits of the &€ and consequently to provide a

high correct signal rate, the calculations showpaligies according to the
combinations of the signs of intercep%oo and autocorrelation coefficienp). For

positive autocorrelation wider control limits areeded. The control limits’ width
should be narrower as the magnitude of positiveocutelation coefficient
decreases. For negative autocorrelation, controitdi width should be narrower
with respect to the case of positive autocorretatiand when strong negative
autocorrelation exists it should be larger compavél the limits for weak negative
autocorrelation. Control limits of the RCCA arealsffected from the magnitude

and the sign ot@’o.
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To adjust continuously the distance between theéecdme and upper control
limit due to the variations in observations thaenst from the effect of

autocorrelation, the parameter®, and L are employed. For a negative
autocorrelation, with the effect of3,, control limits get narrower while the
autocorrelation decreases. If there is positiveo@utelation between process
observations, ther3, has no effect on control limits. Paramet&$, D, and D,

are also used to reflect the effect of deviatiohslwservations from target varying

mean with the combined effect of autocorrelatione Effect ofD, on upper control
limit varies according to the signs ﬁ and ¢. For a positive strong autocorrelation,

if the sign of,/3"0 is positive then the upper control limit will beder than WheryéO

is negative. This effect begins to turn in direonitadiction with the decreasing

autocorrelation between process observations. #rethis a strong negative

autocorrelation and if the sign (13’0 Is positive then the upper control limit will be

narrower than when@’O IS negative. The same effect continues for theedsing
negative autocorrelation from strong to weak wébslimpact.D, and D, decrease

the width of upper control limit for negative autoelation since they have no
impact on it for positive autocorrelation cases.other parameter that is used for

determining the width of upper control limit ¥,c pre . Which changes with

respect td. For Yyc|pre » Dy Using parameterg” and 4, , the effect of smoothed

standard deviation of the shifted process that nigpeon exponentially weighted
residuals (EWMAARZ for RCCA) are taken into conseteon. The sign of,[;’O
affects the width of the control limits. This eftas reflected in the calculations of

YUCLpret by £ and S, . By considering the magnitude qffo and exponentially

weighted residuals, control charts’ upper limitgyearrower for negative,[}O values

while it gets wider for positive values. By usifg and B;, combined effect of

autocorrelation and exponentially weighted resigaak added to the mathematical

formulation of upper control limitD, and B; show disparities according to the sign
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of the autocorrelation coefficieny. YycLprg, has an effect on determining the

width of the upper control limit by reflecting tle@mbined effect of exponentially
weighted residuals as regards the signs[?pfand @. The same approaches are

employed in the calculations of the lower limit thie RCCA given in Equations
(3.21-3.22).

3.3 lllustrative Example for the RCCA

Figure 3.7 and Figure 3.8 display the RCCA for@.@nd 0.50 mean shifts,
respectively. In these figures while the dashed lieapresents the shifted process,
unshifted process is indicated by a solid line.llistrate how this chart signals, the
design procedure of the chart is computerized MB&TLAB 7.4.0, and applied it to
a sample of 500 observations generated using Eouédi4). Design of the chart for
these sample data was completed in 0.64s (lesslgjaof CPU time on a personal
computer (AMD turion, 1.79 GHZ, 2.87 GB Ram). To debassignable causes, a

shift is added in the mean & in (3.4) starting at observation 51. The parameter

values employed for building the chart, degree esfa$ correlation, magnitudes of
the mean shifts added to the®5dbservation, and simulation results (the average
number of points before an out-of-control signabliserved) are listed in Table 3.15.
As can be seen in Figures 3.7 - 3.8, the chartsgoug-of-control signals at time

steps 11 and 19 after the mean shift occurs.

Table 3.15 Parameter values and the run lengtlt fesuhe illustrative example

Parameter 0.50 3.00

@ 0.95 0.95

L 3.0 3.0

,5’1 0.1768 0.1976
:éo 6.9341 19.0294
X, 10.2000 10.2000
e 2.7054 3.6066
RCCAVF 6.6163 6.7144
o 7.5301 15.9814
C- 3.9357 0.7747
EWMAARZ 5.0509 5.6830

Run length 19 11
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CHAPTER FOUR

PERFORMANCE EVALUATION OF THE PROPOSED CHART

The performance of control charts are measurecwesage run lengtifARL).
Essentially, the ARL is the average number of @othiat must be plotted before a
point indicates an out-of-control condition. Whéere is a significant change in the
process, it is desirable to have a low ARL so thatchange will be detected quickly;
when the process is in-control, it is desirablédave a large ARL so that the rate of
false alarms produced by the chart is low (Lu & Ragls, 1999). A desired control
chart should have large in-control ARLs and smattaf-control ARLs (Winkel &
Zhang, 2004). The presence of significant autotation in the process observations
can have a large impact on traditional control thadeveloped under the
independence assumption. A typical effect of aut@tation is to decrease the in-
control average run length (ARL), which leads tagher false alarm rate than in the
case of independent observations, and to incréasente required to detect changes
in the process. The ARL results indicate how fastaverage, the charts respond to
process changes. However, these ARL results dayinet a picture of the charts
when actually applied to data. To provide a visueture of different types of charts
responding to various kinds of process changesasacbset of simulated data,
modified in specific ways to correspond to specgrocess changes, was used. In
general, no single control chart will give optinp@Erformance across a wide variety
of situations. However, a control chart can be ehas perform well for a particular
type and magnitude of process change in an apipiicdLu & Reynolds, 1999).
After the linear trend and serial correlation wedragnosed by means of NNs, the
RCCA was used for different magnitudes of the melaift, under the presence of
various levels of autocorrelation. Performancehef RCCA was evaluated in terms

of the average correct signal rate and the sindilaerage run length (ARL).
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In this chapter, the average correct signal rat the simulated average run
length (ARL) performance of the RCCA are evaludigdising the following design
parametersé =0, x =10, &£~ N(0,4), N=500, andd=0.2. To investigate the

performance, data sets are generated by using iBqu&t4), as we did in chapter
three, and employing a wide range of possible shiftd autocorrelation coefficients.
Each data set involves 500 observations. To mosiEbmable causes, a sustained

shift of magnituded, is induced in the mean &, in Equation (3.4) starting at the

51% observation of the system. The considered shifjnitades and autocorrelation
coefficients ared,= 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, apd 0.95, 0.475, -0.475, -

0.95, respectively. For the sake of simplicity, el@ssified shift magnitudes in three
groups as smallg,= 0.5, 1.0), moderated(= 1.5, 2.0), large §,= 2.5, 3.0), and

autocorrelation coefficients as weag= 0.475, -0.475) and strong€ 0.95, -095).

For each data set 1000 simulation replicationsparéormed. Simulation results are
explained in detail below. If the test statistic afshifted process does not fall
between the control limits or the test statisticaof unshifted process falls between
the control limits it is said that the control ctmrsignal is correct (Montgomery,
1997). In this context, the average correct signales for several shift-
autocorrelation combinations are computed, whiehdigplayed in Table 4.1. As can
be seen from this table, signals of the chart hoeoughly accurate for all shift
magnitudes in the presence of strong and weak inegatitocorrelation. Its correct
signal performance is also very good for large tgbokitive autocorrelation

combinations.

Table 4.1 Average correct signal rate

)
9, (0.95)  (0.475) (- 0.475) (- 0.95)
0.0 0.8310 0.9350 1.0000  0.9990
0.5 0.3475 0.5833 1.0000  0.9965
1.0 0.5101 0.7547 1.0000  0.9981
15 0.6159 0.8105 1.0000  0.9984
2.0 0.6876 0.8132 1.0000  0.9986
2.5 0.7388 0.8803 1.0000  0.9988

3.0 0.7675  0.9180 1.0000  0.9989
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The simulated ARL performance of the RCCA is shawrTable 4.2. In this
table, ARL for,=0.0 indicates ARG, in-control performance of the chart. It can be

seen from Table 4.1 that the chart has large inrobARL but small out-of-control

ARL. That is, when the process has no mean stefARL is very large, and when a
mean shift occurs the ARL decreases to indicateotfweirrence of the mean shift
quickly (Winkel & Zhang, 2004; Zhang, 2000). Congenqtly, we can say that the
proposed chart has an ARL performance of what a&alds chart should have.
About the overall ARL performance of the RCCA we cay that it performs well

for large shifts, and shows its best ARL perforneaf@r negative autocorrelation

cases. For moderate shifts its ARL performance@ldor strong autocorrelation.

Table 4.2 ARL performance of the RCCA

@

Z (0.95)  (0.475) (-0.475) (- 0.95)
0.0 388.3 4114 4490 4490
0.5 466  212.6 4490 57.5
1.0 343 182.1 1653 22.9
15 13.7 417 17.9 12.6
2.0 9.6 36.4 4.4 7.1
2.5 3.2 8.1 1.7 3.6
3.0 1.2 3.6 1.1 1.1

According to the simulation results, the false rmlgrobability wheng, and S,
have the same sign is lower than when they haverdift signs. Also highe€*
increases the alarm rate for upward shift and versa. The magnitude and the sign
of 5, directly effects the control chart's performantae performance of proposed
chart increases for highef, values for the same shift size when the positive

autocorrelation occurs and vice versa for negaiv®correlation. The performance
of proposed chart decreases for negafiyevalues. This experience is also valid for

negative autocorrelation.



CHAPTER FIVE

CONCLUSION

In this thesis a new regression control chart tiaat be used to detect the shift in
process having autocorrelated and trending dapaioigosed. This chart can handle
data in which observations are both autocorrelatetitheir values linearly increase
with respect to time. The standard assumptionsatteatisually cited in justifying the
use of control charts are that the data generatedh® in-control process are
normally and independently distributed. However théependency assumption is
not realistic in practice. Many processes suchhase found in refinery operations,
smelting operations, wood product manufacturingsteravater processing and the
operation of nuclear reactors have been shown e hatocorrelated observations.
When there is significant autocorrelation in a @sx; traditional control charts with
iid (independent and identically distributed) asption can still be used, but they
will be ineffective. These charts will result wighoor performance like high false

alarm rates and slow detection of process shifts.

On the other hand, if independent process datd@xdn underlying trend due to
systemic causes, usually control charts based dmary least squares (OLS)
regression are used for monitoring and controlndseare usually due to gradual
wearing out or deterioration of a tool or some ottrétical process components. In
chemical processes linear trend often occurs becalusettling or separation of the
components of a mixture. They can also result frmrman causes, such as operator
fatigue or the presence of supervision. Finallgntis can result from seasonal
influences, such as temperature. The traditionalrobcharts with horizontal control
limits and a center line with a slope of zero haveven unreliable when systemic
trend exists in process data. A device useful fonitoring and analyzing processes
with trend is the regression control chart. Howewence the Mandel's regression
control chart was developed for independent data&s not an effective tool for

monitoring  process  shift in  autocorrelated  proces®sbservations.
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In addition to autocorrelated or trended observationany industrial processes
give such data that exhibit both trend and autetation among adjacent
observations. In other words the types of induistsieries (especially chemical
processes) frequently exhibit a particular kind todnd behavior, that can be
represented by a trend stationary first order agi@ssive (trend AR(1)) model.
Existing approaches may individually cope with @otoelated and trending data.
Although we made a comprehensive review, there app& be no chart that
monitors data which exhibit both increasing lindeend and serial correlation
directly. This observation has been the motivationthe present dissertation on
developing a new regression control chart (RCCA ébiort) that cope with
autocorrelated observations in which observatiolues increase with respect to

time.

Before presenting the proposed chart; the basicepia of statistical process
control charts, autocorrelation and time series efgdre described in chapter two.
Also conventional regression control chart thatdesigned to control a varying
(rather than a constant) average is discussed.rd@ocharts for autocorrelated
processes and conventional regression control alead reviewed, and the historical
progression in this field was emphasized.

In chapter three, the proposed regression contiatt (RCCA) is presented. This
chart requires the identification of trend AR(1)daebas a suitable time series model
for process observations. Therefore at first, aut@tated and trending data set that
corresponds with trend AR(1) process are generdikdn, to recognize trend in
data, two LVQ and one MLP networks are combined] #ren ENN is used to
diagnose autocorrelation through the trended dsteen the literature is reviewed, it
is observed that there is not any combined newslark structure that combines
LVQ, MLP and ENN networks together to recognize al¢ocorrelated and trended
patterns. Different statistical tools (such astlemgiares for trend analysis and time
series analysis for calculating autocorrelatiorflfocients) can be easily implemented
to process data to recognize the trend or autdetioe in process data but when

compared to other methodologies the neural netwapproach has certain
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advantages. First of all, the model developmemhugh simpler than that for most
other approaches. Instead of theoretical analysisdevelopment for a new model
the neural network tailors itself to the trainingtal The model can be refined at any
time with the addition of new training data. Aftexcognizing autocorrelated and
trending data by the means of proposed neural mitvstructure, proposed
regression control chart (RCCA) is applied to thatad and its operating
characteristics are experimented. The construdieps of RCCA to detect shift in
autocorrelated and trending process observationsasviewed with an illustrative

example.

The average correct signal rate and the ARL perdone of the chart are
investigated by simulation approach in chapter .foBased on the results of
simulation, it is safe to say that the RCCA is astderably powerful chart. As it is
known, no single control chart will give optimalrf@mance across a wide variety
of situations. In this sense, we tried to explaihew the proposed control chart
performs well for several types of autocorrelat&iructures and shift magnitudes.
The proposed control chart produces desirable teesulder given assumptions and
parameter design.

It is well known that the same two designs usirgggame chart parameters based
on two different input sets may produce very ddfdr chart performance. The
proposed chart gives good ARL results; all thesutes are based on an assumption
that the regression model relating the processubw@pd the external covariate(s) is
exactly known. In practice, the regression modebipeeter estimation, sign of the
estimated parameters, starting value of the indég@nvariable, the observation
number that shift in process mean occurred, andlitleetion of shift may seriously
affect the charting performance of proposed regyasscontrol chart for

autocorrelated data.

As it is known, a traditional residual chart takes account only the current
sample when determining the status of a processhande does not provide any

pattern-related information. By using the RCCA pitamers will be able to monitor
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current samples of an autocorrelated and trendiogess directly and to observe the
progress of the process. Practitioners can easitypaterize and directly apply this
chart to original data. This study could be extehdlar autocorrelated data with

decreasing trend.
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APPENDICES

Appendix 1. The Process Simulator

The process simulator for generating the uncoedl@@CP examples is given
below in Equations (Al1.1 - A1.5) (Oztemel, 2003):

Pattern formulation of normal distribution:

Y, = U+ (AL1)

r, =/-2In(u)cos 2u (A1.2)
where u is uniform [0,1] random variablet, is the observation number (or time

step), andr is the Pi constant.

Pattern formulations of increasing or decreasiaegdr
Y, = U+ Lo F gt (A1.3)

where gis the trend slope of uncorrelated process.

Pattern formulation of sliding up or sliding down:

yt = ,U + rta-1 ksliding Sdisplacemen (A14)
where kg4, i the sliding coefficient at the sliding momeand thes; . cne, IS the

displacement of process mean in terms of standariiion.

Pattern formulation of periodic shifting:

y,=ut+tro+a sin(2t IN) (A).

periodic

wherea .4 IS the dimension of the periodic shiftig@ndom integer variable), and

N is the number of observations.
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The process simulator for generating the CCP exasnipl the AR(1) process is
given below at Equations (A1.6 - A1.11) (Guh, 2008

X =§+@x.,tég (A1.6)
X, =x+d (A1.7)

whered; isthe special disturbance at timgero when no unnatural pattern present).

Pattern formulation of normal distribution:

d =0 (A1.8)

Pattern formulations of increasing or decreasiagdr
d, =+dt (A1.9)

whered is the trend slope of autocorrelated process.

Pattern formulation of sliding up or sliding down:

dt =% ksliding Sdisplacemen (AllO)

Pattern formulation of periodic shifting:

d; = & perioaic SIN(21L /N) (A1.11)
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Appendix 2. Learning Rules of the MLP NN

MLP learns by generalized form of Delta learninggerwhich depends on least
squares method. Delta rule composed of two phasesfirst phase is ‘feedforward’
and the second phase is ‘back propagation’. Iditeephase the output of the NN is
calculated and in the second phase, the weighéscsfare recalculated to minimize

the error term.

Phase 1 The data processing is started with presentinignaut to the NN from input

layer. There is no data processing in the inputrap the inputs are sent to hidden
layer without changing. The output &th process elemeny, in input layer is

calculated by the formula given in Equation (A2.1):
Y = L (A2.1)

where |, is the input fokth process element of input layer. Each procesaeasiéin

the hidden layer gets the information from inputelaby the effect of connection

weights. The net input that comes to process el@meh hidden layer () is

calculated by:

N
uj =)W ¥ (A2.2)
k=1
where w,; is the weight betweekth input layer process element gtidhidden layer
process element. Output of any neuron that is septed byu, is calculated by

using one of the transfer functions that are givefnable A2.1.
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Table A2.1. Activation functions

Activation Formula Activation Formula

function function

Sigmoid Sinus F(u)=Si

g Fu)=—L () = Sir(y)
function l+e ™ function
Linear F(u,)=u, Threshold 0if u<o0
S

function value Fu) =1y, if 0<u,<1
function 1 else

Step )2 1if u, >threshold@,) Hyperbolic Fu)= el +e'

function () = 0 else tangent g gt
function

Phase I The output of the network for the given inputdempared with the
expected value of the network’s output. Becausth®fexpected value of the output
for each input that is represented to the netwsrknown, MLP is known as a
supervised learning algorithm. The error fath process element in the output layer

is calculated by:
e, = E[ o] = Va (A2.3)

where E[ ym] is the expected output arg] is the error occured at the outputnah

process element. This error term is multiplied tgy differention of output value and
by this way the error ratioso() that will be distributed to weights are deternsine
The J that will be distributed to weights for tineth process element is calculated by

the formula given in Equation (A2.4)
5, = f'(u)e, (A2.4)

If the output function is sigmoid than tle that will be distributed to weights for
themth process element is

On = Yd= Vi) &, (A2.5)
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wherey_(1-y,) is the differention of sigmoid function. If the aomt of change for

the weights between hidden layer and output lageecalculating than thé will be:

g =f'ud aw, (A2.6)

The amount of change for weightdtt iteration is:

Aw, (1) =49, y; +adw, (t-1) (A2.7)

where Aw, (1) is the amount of change for the weight betwgkrprocess element of

hidden layer andnth process element of output layer at tinger tth iteration), A is
the learning rate, and is the momentum coefficient. Note that, the moment
coefficient (&) provides the neural network not to delay on alaptimum point
(Oztemel, 2003). After calculating the amount ofehe, the new values of the
weights atth iteration is:

Wi, (1) = Wi, (t=1) + Aw,, (1) (A2.8)

Other weights for other layers are calculated by shhme way. Similarly the
weights of the threshold unit have to be modifiEde output of this unit is fixed and
equal to 1. So the amounts of changes for the wseigftithreshold unit of the process
element at the output layer are

Ab (1) = AJ, +ahb_(t-1) (A2.9)

After calculating the amount of change, the newueal of the weights &th
iteration is:

b (t) = b, (t-1)+Ab_ (1) (A2.10)
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where b (t) is the new value of the weight between thresholid andmth process

element of output layer. The other weights areutated by the same way. Figure
A2.1 displays a sample network topology for a basgpgation network. For the
sake of simplicity, a MLP network with two hiddeaykrs is derived.

fu)

fu)

f(u,) fu) |[— Y

fu)

f(u)

Figure A2.1. A sample MLP architecture for the gidata set.

The notation is given below:

b,b .,k : Weights for threshold values
W, W, W © Weights for the neurons
Y, ¥;» ) : Outputs of the transformation functions

u, U,y : Total entries to the neurons

The formulation is given below:
E=%Ze§ (A2.11)
k

&=HY¥l-¥% (A2.12)

for qul

Feedforward 1y, = f(u,) anduy, :(ij xj+0j b (A2.13)
t



Feedforward 2:y = f(y) andu :[z W,y j+égp
j

Feedforward 3:y, = f(u) andu, = (z ky}+0 o)

For sigmoid functionsf (u) :1+1e‘” and f(u)'= f(uy@- f(u)

Back Propagation 1.:
OE _ OE 0g, 9y, dy,
oW, 0§ 0y 0y 0w
o=fu)@a- f(u)e

=6 (D) f'(u)y

o =e f'(u)
OF
e (-1 f(u)y=-4
aw, (D' u)y=-5.y
aw, =-12E = a5y,
Wi

If the momentum coefficient is used not to delayadncal optimum:

AW, (t) = A3y, + abw, (t - 1)

OE _ OE dg 0y, 0y, _ ,
OE 08 0% 04 _ g (-1 f Yy )(+1)
b, o oy ayag < Uk

JoE

a-‘exf(tk)——
—/]—— AJ,

Ab, = o, +

if the momentum coefficient is used not to delayadocal optimum:

Ab,(1) = A, + abh,(t -1)
W, (new) = w, (old) + Aw,
b, (new) = b (old) + Ab,
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(A2.14)

(A2.15)

(A2.16)

(A2.17)

(A2.18)
(A2.19)

(A2.20)

(A2.21)

(A2.22)

(A2.23)

(A2.24)

(A2.25)

(A2.26)
(A2.27)
(A2.28)



Back Propagation 2:

a_E:Ea_Q(aykaq(ﬂau: -1 f' f!
T TR T T AR G AACOCRACORY

n

a—E=—[f'(ui)Zowk}yj

6Wji

g=1wXaw,
K

O0E

— =90V

aWJI IyJ

Aw; = A0y,

OE _ 0E dg 0y, dy dy oy _ | |
~ T, c&Df f +1
dh 09e dy 0y dyouap g (=1 f'(u)w F'(y)(+1)

Y =
Ab _AE

w; (new) = w; (old) + Aw

b (new) = b (old) + Ah

Back Propagation 3:
OE _ OE 0, 0y 0u 0y 04 0y; 04
ow, 0g 0y 0y odyouoyoud yw

o8 :—[fxu,-)za.w“}x and 5,-:[f 4 ZJ.WJ

i

Awy =/‘5j>$

OF _ OE 0 0y, 04 0y 0y %, 9,
ob, 0g dy0yoyoudyouodp

2 -6 P (W) W f(Y)=-3
j
Ab, = A3

w; (new) = W (old) + Aw

b, (new) = b, (old) + Ab,

=&(=D) Fludwe Fy)w Fy) x

=&(-D fu)we F(y)w F(y)ED)
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(A2.29)

(A2.30)

(A2.31)

(A2.32)

(A2.33)

(A2.34)

(A2.35)

(A2.36)

(A2.37)

(A2.38)

(A2.39)

(A2.40)

(A2.41)

(A2.42)

(A2.43)
(A2.44)

(A2.45)
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Steps of the Process:

1) Assign random values tg;, b, w; , b, w , p for A>0
2) Calculate the values of;, yi, . by using Equations (A2.13-A2.15)

3) Calculate the error by using Equations (A2.111&2

4) Calculate the values @, 9, 9;,Aw, ,Aw; ,Aw;,Ab, ,Ab, Ab;
5) Update the weights by using Equations A2.27,282 A2.36, A2.37, A2.44,
A2.45
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Appendix 3. Learning Rules of the LVQ NN

LVQ learning rule is so called Kohonen learningerudnd depends on
competition between the process elements in Kohdeygr. Competition depends
on calculating the Euclid distancel) (between input vector and weight vector
(reference vector). The distance for ttleprocess element is calculated by the

d= WA= 2% (A3.1)

where w; is thejth value of the weight vector anglis thejth value of the input

vector. If the winner process element is the menabehe right class, then the new

weight vector is recalculated by
W(t) = W(t=1)+ A (x= W(t-1)) (A3.2)
and otherwise

w(t) = W(t—1) = A (x- w(t-1)) (A3.3)

For the y* is the output of each process element at kohoager,| then the
output forith process element at Kohonen laygr is equal to one if the process

element wins the competition and equal to zeroratise. The output of the network
is calculated by using Equation (A3.4) by multiplyi the outputs of process
elements at Kohonen layer by the weights that cosnghese process elements to

output layer:

Yi :Z y;(aki (A3.4)

where a is the weight of arcs between the output layer Eotionen layer. The

value of @ is constant and equals to 1. Equation A3.4 mdam®utput value of the
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winner competitive process element of Kohonen layequal to one and the output
value of other competitive process elements araldquzero. The process elements
in Kohonen layer are connected to only one outpement. If the result is true than

the reference vector of winner approximated toitipeit vector as given in Equation

(A3.2), and the others are banished as given iratimu (A3.3). These calculations

are repeated until all of the samples are corré@itemel, 2003).
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Appendix 4. Operation of theCDMM

Before explaining the operation of the CDMM, outpof the each network are
coded as described in Table A4.1. During the operaif CDMM, the outputs that
are produced by the members of CNNR are rearrabge@-1 binary values. For
example if the third member of CNNR produces valtiéwo as output, this means
that this member’s decision is that the patternshimcreasing trend (this numerical

code is our assumption). So this result is revathasB, =1 by CDMM as given at
Table A4.1 and the other output values of the tmember at CDMM 4, B,, C,,

E,, and F;) are revaluated as zero. The detailed informatiam be refered from

(Oztemel, 2003) and (Gauri & Chakraborty, 2008).

Table A4.1 Outputs of the members of CNNR

NN Outputl Output2 Output3 Output4 OutputS Output6
NP IT DT DS us PS

1. Member of CNNR (LVQ) A B, C D, E F

2. Member of CNNR (LVQ) A B, C, D, E, F,

3. Member of CNNR (MLP) A B, C, D, E, F,

Biasl (For step 1) T,=2

Bias2 (For step 2) T,=2

NP: naturel pattern; US: upward shift; DS: downward Shift; IT:@asing trend; DT: decreasing trend; PS: periodic Shift

The bias values that are given in Table A4.1 reprethe minimum number of
the members that must produce the same resulbflactve decision. For example

two of three membersT(=2) must agree on the same result to accept the r@sult

correct for Step 1. Operation ofZDMM is described below:

Step 1.The outputs that are produced by each NN are suhfnypenatching the same
type of outputs together.

A=A+A+A;B=B+B+B;C=C+C+C;D=D,+D,+D,;
E=FE+E+E; F=F+F,+F, (A4.1)
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O, =max(A,B,C,D,E,F) (A4.2)

If O, >T, then setO, =1 and the others take zero value. For examp(®, if B

than this means that a collective decision is peréal and a unique solution that
takes value of 1 is obtained. The collective dedisis that the pattern shows
increasing trend (represented Byat Table A4.1) soA,C, D, E, and F takes zero

value. The class which has taken value oBX() is the collectively decided result.

If there are more than one output that are grehter T, value or any of the output

values does not exceedisvalue, then th&tep s performed.

Step 2:The outputs of the NNs are summed by pairs:
For outputl:

O,=A+A; O3=A+A; Oy=A+A; O, =max(0,,0,;,0,) (A4.3)
OXX :maX(QX ’OZX’QX’QX’QX’QX} (A4'4)

If O,>T, then setQO, =1 and the others take zero value. This means a

collective decision is performed and a unique sofuthat takes value of 1 is
obtained which means that the presented inputbedomg to the class that the output
element’s class, which produced value of 1 valuetédel, 2003; Gauri &
Chakraborty, 2008).
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Appendix 5. Learning Rules of the ENN

Topology of ENN is given in Figure A5.1 and Figui.2 in detail. It is a
recurrent supervised neural network like MLP. Butlike MLP, it has the dynamic
memory property and its input layer does not inelucansfer function. The ENN
employs feedback connections and addresses theotalhplationship of its inputs

by maintaining an internal state.

Input Layer Hidden Layer Output Layer
=2 —
Proces% ‘ Decision on
data X(t) : y(t) independenc
| .

Context
units

Figure A5.1 An example of a ENN atetture (Ham & Kostanic, 2001; Oztemel, 2003).

Input Layer Hidden Layer Output Layer

Context
units

Figure A5.2 Connection weights of EIman NN (Ozten2€i03).
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If the activation function that is used in eachdistep is sigmoid than the outputs
of hidden layer members are calculated by the ftangiven in Equation (A5.1)
(Oztemel, 2003):

1

X (t) = Tret® (A5.1)

where u, (t) is the net input foith process element at time stedhe net input @)

that is used in Equation (A5.1) is calculated bgsidering the feedbacks that comes
from hidden layer and differs from conventionalccdditions by MLP learning rules
for net input (1) in this aspect. The net inputi { is calculated by the formula given
in Equation (A5.2) (Oztemel, 2003).

u(t) = WA x(1) + w x( t=1) (A5.2)

If the open form of the formula given in EquatiofA5(2) is written, then the
Equation (A5.3) is obtained.

u, () =ZN:V\/J.?><(t)+i W x(t-1) (A5.3)

where N represents the number of input neurons &mhds the number of hidden

layer neurons.

The output of the NN is calculated by running tle¢ input (1) value that comes
to output element through the linear function. Imother words, the activation
functions of output elements are linear, so thaieadf output element that is in
output layer at time step, is calculated by using the weights and the owgtmit

hidden layer elements as given in Equation (A5.4)

y(t) = W (1) X(Y) (A5.4)
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where W (t)is the weight andx (t) is the output of hidden layer elements at time

stept. The output ofth element at time stepis calculated by the Formula given in
Equation (A5.5)

Y, (=2 w(Ox(D (A5.5)

Because of the expected value of the output fohn @gaut that is represented to

the NN is known, the error occurs at time stap calculated by
e =E[ y()]- y( (A5.6)

where E[yj(t)] is the expected output for each input at time dteand e is the

error occured at time step. This error term is multiplied by the differentiaf
output value and by this way the error rati@ds) ¢hat will be distributed to weights
are determined. Thé that will be distributed to weights at time stepwhere the

output function is sigmoid, is calculated by thenfala given in Equation (A5.7)
a(t) = y(t) —[1- y(B)] E() (A5.7)

The weight alternation is performed as mentionefipgtendix 2 by the Equation
(A2.7) and Equation (A2.8). These alternation valage added to the weights. There
is no difference at weight alternation in Elman MiHen compared with MLP NN.
The weight values of recurrent elements (Contextsurare fixed and do not
alternates. In other words, while alternating thesghit values the weights of context
units are not considered. These weights are usedrtgpose the inputs of context
units while processing the data forwardly. If theights of recurrent elements are
not considered and the context units are accepsethut elements that Elman

network is same as MLP (Oztemel, 2003).



Appendix 6. Abbreviations and Notation

The abbreviations and notations used in this dizgen are as follows:

'3
@
£
g,
d
Z
J

u

D

Constant of AR(1) process
Autoregressive coefficient

Random error term

Standard deviation of residuals

Trend slope of trend AR(1) process
Shifted trend AR(1) process variable

Magnitude of upward mean shift
Residual (difference between expected and obsetalees ofZ, )

Sample size

Intercept in a simple linear regression model
Slope in a simple linear regression model

Smoothing constant
Standard deviation of a sample from trend AR(Drpss
Estimated target value for process mean at time

Reference value (allowance, or the slack value)
Mean of deviation abové '

Mean of deviations below

Upper control limit for proposed chart at tine

Lower control limit for proposed chart at tihe
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