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REGRESSION CONTROL CHART FOR AUTOCORRELATED DATA 
 

ABSTRACT 

 

With the growing of automation in manufacturing, process quality characteristics 

are being measured at higher rates and data are more likely to be autocorrelated. The 

residual charts or control charts with modified control limits for autocorrelated data 

are widely used approaches for statistical process monitoring in the case of 

autocorrelated process data. Data sets collected from industrial processes may have 

both a particular type of trend and autocorrelation among adjacent observation. To 

the best of our knowledge there are not any schemes that monitor autocorrelated and 

trending process observations directly to detect the mean shift in the process 

observations. In this thesis, a new regression control chart which is able to detect the 

mean shift in a production process is presented. This chart is designed for 

autocorrelated process observations having a linearly increasing trend. Existing 

approaches may individually cope with autocorrelated or trending data. The proposed 

chart requires the identification of trend stationary first order autoregressive (trend 

AR(1) for short) model as a suitable time series model for process observations. In 

this thesis an integrated neural network structure, which is composed of appropriate 

number of linear vector quantization networks, multi layer perceptron networks, and 

Elman networks, is proposed to recognize the autocorrelated and trending patterns. 

The neural based system performance is evaluated in terms of the classification rate. 

After recognizing the trending and autocorrelated data by means of neural networks, 

proposed modified regression control chart for autocorrelated data is used for 

different magnitudes of the process mean shift, under the presence of various levels 

of autocorrelation, to determine whether the trending and autocorrelated process is in-

control or not. The performance of proposed chart is evaluated in terms of the 

accurate signal rate and the average run length. 

 

Keywords: Statistical process control, Regression control chart, Artificial neural 

network (ANN), Autocorrelated processes, Pattern recognition, Trend AR(1) model. 
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OTOKORELASYONLU GÖZLEMLER ĐÇĐN REGRESYON KONTROL 

KARTI 

 

ÖZ 

 

Üretimde otomasyonun gelişmesiyle birlikte, süreç kalite karakteristikleri daha 

yüksek oranlarda ölçülmekte ve veriler çoğunlukla otokorelasyonlu olmaktadır. 

Residual kartları veya otokorelasyonlu veriler için modifiye edilmiş limitli kontrol 

kartları otokorelasyonlu süreç verilerinin istatistiksel süreç kontrolünde yaygın 

olarak kullanılan yaklaşımlardır. Endüstriyel süreçlerden toplanan veriler hem belirli 

bir trende hem de ardışık gözlemler arası otokorelasyona sahip olabilir. 

Otokorelasyonlu ve trend gösteren süreç gözlemlerinin ortalamadan sapmalarını 

tespit etmek için gözlemleri direkt olarak görüntüleyen bir kartın mevcut olduğuna 

ili şkin bir bilgiye sahip değiliz. Bu tezde üretim sürecinde meydana gelen 

ortalamadan sapmaları teşhiş edebilen yeni bir regresyon kontrol kartı sunulmaktadır. 

Bu kart doğrusal artan trend gösteren otokorelasyonlu gözlemler için tasarlanmıştır. 

Eski yöntemler otokorelasyonlu ve trend gösteren verilerle ayrı ayrı uğraşmaktadır. 

Önerilen kart süreç gözlemleri için uygun zaman serisi modeli olarak trend durağan 

birinci dereceden otoregresif (kısaca Trend AR(1)) modelin tanınmasını gerektirir. 

Bu tezde ayrıca trend gösteren otokorelasyonlu örüntülerin tanınmasında kullanılmak 

üzere uygun sayıda doğrusal vektör parçalama ağları, çok katmanlı algılayıcı ağları 

ve Elman ağlarından oluşan bütünleşik ağ yapısı önerilmektedir. Önerilen yapay sinir 

ağı tabanlı sistemin performansı doğru sınıflandırma yüzdesine göre 

değerlendirilmektedir. Trend gösteren otokorelasyonlu verilerin yapay sinir ağları 

yardımıyla teşhisinden sonra, otokorelasyonlu veriler için önerilen regresyon kontrol 

kartı, farklı seviyelerdeki otokorelasyonun varlığı altında farklı büyüklüklerdeki 

ortalamadan sapmalar için, trend gösteren otokorelasyonlu sürecin kontrol altında 

olup olmadığını belirlemek amacıyla kullanılmaktadır. Önerilen kartın performansı, 

doğru sinyal oranı ve ortalama koşum uzunluğu dikkate alınarak hesaplanmaktadır.  

 

Anahtar sözcükler: Đstatistiksel süreç kontrol, Regresyon kontrol kartı, Yapay sinir  

ağı (YSA), Otokorelasyonlu süreçler, Örüntü tanıma, Trend AR(1) model. 
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CHAPTER ONE 

INTRODUCTION 

 

In this chapter, the background, motivation and objectives of this work are stated, 

and the organization of this dissertation is outlined. 

 

1.1 Background and Motivation 

  

If a product is to meet customer requirements, generally it should be produced by 

a process that is stable or repeatable where the undesirable variability does not exists. 

More precisely, the process must be capable of operating with little variability 

around the target or nominal dimensions of the product’s quality characteristics. 

Statistical process control (SPC) is a powerful collection of problem-solving tools 

useful in achieving process stability and improving capability through the reduction 

of variability. Control charts are statistical process control tools used to determine 

whether a process is in-control. Since the first control chart has been proposed by 

Shewhart in 1931, lots of charts have been developed and then improved to be used 

for different process data. In its basic form, a control chart compares process 

observations with a pair of control limits. The standard assumptions that are usually 

cited in justifying the use of control charts are that the data generated by the in-

control process are normally and independently distributed. However the 

independency assumption is not realistic in practice. The most frequently reported 

effect on control charts of violating such assumptions is the erroneous assignment of 

the control limits. Most of the control chart applications displayed incorrect control 

limits and more than half of these displacements were due to violation of the 

independence assumption. Misplacement of control limits was due to serial 

correlation (i.e., autocorrelation) in the data. However, many processes such as those 

found in refinery operations, smelting operations, wood product manufacturing, 

waste-water processing and the operation of nuclear reactors have been shown to 

have autocorrelated observations.  
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When there is significant autocorrelation in a process, traditional control charts 

with iid (independent and identically distributed) assumption can still be used, but 

they will be ineffective. These charts will result with poor performance like high 

false alarm rates and slow detection of process shifts. Because of this reason some 

modifications for traditional control charts are necessary if autocorrelation cannot be 

ignored. Therefore, various control charts have been developed for monitoring 

autocorrelated processes. In the literature three general approaches are recommended 

for autocorrelated data: (i) fit ARIMA model to data and then apply traditional 

control charts such as Shewhart, cumulative sum (CUSUM), exponentially-weighted 

moving average (EWMA) to process residuals, (ii) monitor the autocorrelated 

process observations by modifying the standard control limits to account for the 

autocorrelation (iii) eliminate the autocorrelation by using an engineering controller 

(Montgomery, 1997). 

 

A common approach to detect a possible process mean shift in the autocorrelated 

data is to use residual control charts, also known as the special cause chart (SCC), 

which are constructed by applying traditional SPC charts (Shewhart, CUSUM, 

EWMA, and etc.) to the residuals from a time series model of the process data 

(Zhang, 2000). In these charts, forecast errors, namely residuals, are assumed to be 

statistically uncorrelated. An appropriate time series model is fitted to the 

autocorrelated data and the residuals are plotted in a control chart. For this reason all 

of the well-known control schemes can be transformed to the residual control 

scheme. The main advantage of a residual chart is that it can be applied to any 

autocorrelated data whether the process is stationary or not. However, there are also 

some disadvantages such as time series modeling knowledge is needed for 

constructing the ARIMA model, and in addition, the detecting capability of the 

residual chart is not always great. In the relevant literature, to overcome the 

disadvantages of the residual control charts, modified control chart that is based on 

applying the original control chart methodology with a little modification is 

proposed. In this method, autocorrelated data is used in original control chart by 

adjusting its control limits. Modified control charts such as moving centerline 

exponentially-weighted moving average (MCEWMA), EWMA for stationary 
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process (EWMAST), autoregressive moving average (ARMA) and other control 

charts that were firstly proposed for autocorrelated process observations are widely 

employed to deal with the disadvantages of the residual charts for stationary 

autocorrelated process data (Montgomery, 1997). However, since rearrangement of 

the control limits for autocorrelated data is not so easy and application of modified 

charts is more complicated then the residual control charts.   

 

On the other hand, if independent process data exhibit an underlying trend due to 

systemic causes, usually control charts based on ordinary least squares (OLS) 

regression are used for monitoring and control. Trends are usually due to gradual 

wearing out or deterioration of a tool or some other critical process components. In 

chemical processes linear trend often occurs because of settling or separation of the 

components of a mixture. They can also result from human causes, such as operator 

fatigue or the presence of supervision. Finally, trends can result from seasonal 

influences, such as temperature. The traditional control charts with horizontal control 

limits and a center line with a slope of zero have proven unreliable when systemic 

trend exists in process data. A device useful for monitoring and analyzing processes 

with trend is the regression control chart (see Mandel (1969)). A regression based 

control chart which is the combination of the conventional control chart and 

regression analysis is designed to control a varying (rather than a constant) average 

of trending process, and assumes that the values of the dependent variable are 

linearly (causally) related with the values of the independent variable. Rather than 

using standard control charts, practitioners typically implement regression based 

control charts to monitor a process with systemic trend (Utley & May, 2008). 

Quesenberry (1988) points out that these approaches essentially assume that resetting 

the process is expensive and that they attempt to minimize the number of adjustments 

made to keep the parts within specifications rather than reducing overall variability. 

However, since the Mandel’s regression control chart was developed for independent 

data, it is not an effective tool for monitoring process shift in autocorrelated process 

observations.  

 
In addition to autocorrelated or trended observations, many industrial processes 

give such data that exhibit both trend and autocorrelation among adjacent 
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observations. In other words the types of industrial series (especially chemical 

processes) frequently exhibit a particular kind of trend behavior, that can be 

represented by a trend stationary first order autoregressive (trend AR(1)) model. 

Much recent research has considered performance comparison of control charts for 

residuals of autocorrelated processes in terms of average run length (ARL) criterion, 

which is defined as the number of observations that must be plotted before a point 

indicates an out-of-control condition. Although we made a comprehensive review, 

there appears to be no chart that directly monitors the original data which exhibit 

both increasing linear trend and serial correlation. This observation has been the 

motivation for the present work on developing a new regression control chart that 

cope with autocorrelated observations (RCCA for short) in which observation values 

increase with respect to time. The RCCA requires the identification of trend AR(1) 

model as a suitable time series model for observations. In this thesis, for a wide range 

of possible shifts and autocorrelation coefficients, performance of the proposed chart 

is evaluated by simulation experiments. Average run length (ARL) and average 

correct signal rate are used as performance criteria.   

 

1.2 Research Objective 

 

In this thesis, it is aimed to develop a new regression control chart that can be 

used to detect the different magnitudes of the process mean shift, under the presence 

of various levels of autocorrelation in a process having both autocorrelated and 

trending data. By this way it is aimed to determine whether the given process is in-

control or not. The specific approaches are as follows: 

 

• To develop a new regression control chart that directly monitors the original 

data which exhibit both increasing linear trend and autocorrelation. 

 

• To give a comprehensive literature review on the control charts for 

autocorrelated data. 
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• To propose an efficient neural network structure to recognize the 

autocorrelated and trending input patterns of proposed chart.  

 

1.3 Organization of the Thesis 

 

This dissertation is organized as follows. In chapter two, the basic concepts of 

statistical process control charts, autocorrelation and time series models are 

described. Then conventional regression control chart that is designed to control a 

varying (rather than a constant) average is discussed. Also, a review of the recent 

works on regression control charts and control chart applications in autocorrelated 

processes are given. Construction steps of the proposed regression control chart with 

an illustrative example are given in chapter three. Proposed neural network structure 

that is used for recognizing trending and autocorrelated patterns are presented in the 

same chapter. Performance evaluation of the proposed chart is given in chapter four. 

Finally, the conclusions are pointed out in chapter five.  
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CHAPTER TWO 

STATISTICAL PROCESS CONTROL CHARTS 

 

In this chapter, the basic concepts of statistical process control charts and 

definition of autocorrelation and time series models are given before examining 

control charts for autocorrelated data. Then conventional regression control chart is 

discussed. A review of the recent works on control chart applications in 

autocorrelated processes and regression control chart applications are also given in 

chronological order.  

 

2.1 The Basic Concepts 

 

If a product is to meet customer requirements, generally it should be produced by 

a process that is stable or repeatable where the undesirable variability does not exists. 

More precisely, the process must be capable of operating with little variability 

around the target or nominal dimensions of the product’s quality characteristics. In 

any production process, regardless of how well designed or carefully maintained it is; 

a certain amount of inherent or natural variability will always exist. The sources of 

variability can be broken down into two main categories. Shewhart calls these 

categories change and assignable causes. Deming calls common and special causes 

of variability (Levine, Ramsey, & Berenson, 1995). If only common causes are 

operating on the system, the process is said to be in a state of statistical control. A 

process that is in a state of statistical control is considered to be stable. In another 

words, a stable process is in a state of statistical control and has only common causes 

of variability operating on it. Any attempt to make adjustment to a stable process and 

threat common causes as special causes constitutes tampering and will only result in 

increased variability. If special causes are operating, the system is considered to be 

out of statistical control and invertation or change permits reduction of process 

variability. In other words, a process is said to be out of statistical control if one or 

more special causes are operating on it (Levine, Ramsey, & Berenson, 1995). 
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A major objective of statistical process control is to quickly detect the occurrence 

of assignable causes of process shifts so that investigation of the process and 

corrective action may be undertaken before many nonconforming units are 

manufactured. The control chart is an on-line process control technique widely used 

for this purpose. Control charts may also be used to estimate the parameters of a 

production process, and through this information to determine process capability. 

The control chart may also provide information useful in improving the process. The 

eventual goal of statistical process control is the elimination of variability in the 

process. It may not be possible to completely eliminate variability, but the control 

chart is an effective tool in reducing variability as much as possible (Montgomery, 

1997). 

 

Run chart is basic form for control chart. A run chart, which is shown in Figure 

2.1, is a very simple technique for analyzing the process in the development stage or, 

for that matter, when other charting techniques are not applicable. One danger of 

using a run chart is its tendency to show every variation in data as being important. 

 

 
                   Figure 2.1 A typical run chart (Besterfield, Besterfield-Michna, Besterfield, 

                   & Besterfield-Sacre, 2003). 

 

A control chart is a special type of run chart with limits. It shows the amount and 

nature of variations in the process over time. It also enables pattern interpretation and 

detection of changes in the process (Ross, 1999). In order to indicate when observed 

variations in quality are greater than could be left to change, the control chart method 

of analysis and representation of data is used. The control chart method for variables 
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is a means of visualizing the variations that occur in the central tendency and 

dispersion of a set of observations. It is a graphical record of the quality of a 

particular characteristic (Besterfield et al., 2003). A typical control chart is shown in 

Figure 2.2. This chart plots the averages of measurements of a quality characteristic 

in samples taken from the process versus time (or the sample number). The chart has 

a center line (CL) and upper and lower control limits (UCL and LCL in Figure 2.2). 

The center line represents where this process characteristic should fall if there are no 

unusual sources of variability present. The control limits are determined from some 

simple statistical considerations. Classically, control charts are applied to the output 

variable(s) in a system such as in Figure 2.2. However, in some cases they can be 

usefully applied to the inputs as well (Montgomery, 1997).  

 

 
                  Figure 2.2 A typical control chart (Montgomery, 1997). 

 

Stable systems are in a state of statistical control and exhibit only variability due 

to common causes. Control charts are based on the fact that change variation follows 

known patterns. These patterns are the statistical reference distributions such as the 

normal distribution (Levine, Ramsey, & Berenson, 1995). According to the normal 

distribution, the proportion area of normal distribution curve falls into segments 

defined by 1, 2, and 3 standard deviations from the mean. 99.73 percent of the area 

under a normal curve falls between plus and minus 3 standard deviations (3σ± ) from 

the mean (µ ). This means only 0.0027 or 0.27 percent of the area lies beyond 3σ±  

from the mean. If only change or common causes are operating, it is expected that to 

be beyond the range of 3σ±  range is only 0.0027. This is considered to be a 
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sufficient small probability for us to suspect that something other than change is 

operating and that a special cause may be present (Levine, Ramsey, & Berenson, 

1995). Moreover, in many cases, the true distribution of the quality characteristic is 

not known well enough to compute exact probability limits. Some analysts suggest 

using two sets of limits on control charts. The outer limits, say at 3σ , are the usual 

action limits; that is, when a point plots outside of this limit, a search for an 

assignable cause is made and corrective action is taken necessary. The inner limits, 

usually at 2σ , are called warning limits (Montgomery, 1997). 

 

There is a close connection between control charts and hypothesis testing. To 

illustrate this connection, suppose that the vertical axis in Figure 2.2 is the sample 

average x . If the current value of x  plots between the control limits, this means that 

the process mean is in-control; that is, it is equal to some value 0µ . On the other 

hand, if x  exceeds either control limits, this means that the process mean is out-of-

control; that is, it is equal to some value 1 0µ µ≠ . In a sense, then the control chart is 

a test of the hypothesis that the process is in a state of statistical control. A point 

plotting within the control limits is equivalent to failing to reject the hypothesis of 

statistical control, and a point plotting outside the control limits is equivalent to 

rejecting the hypothesis of statistical control (Montgomery, 1997). In another words 

the aim of quality monitoring is to test the null hypothesis 0 : 0H s =  (in-control state 

of the process) against the alternative hypothesis 1 : 0H s ≠  (out-of-control state of 

the process) (Pacella & Semeraro, 2007), where s represents the mean shift. This 

hypothesis-testing framework is useful in many ways, but there are some differences 

in viewpoint between control charts and hypothesis tests. For example, when testing 

statistical hypothesis, the validity of assumptions are usually checked, while control 

charts are used to detect departures from an assumed state of statistical control. 

Furthermore, the assignable cause can result in many different types of shifts in the 

process parameters. For example, the mean could shift instantaneously to a new 

value and remain there (this is sometimes called a sustained shift); or it could shift 

abruptly but the assignable cause could be short lived and the mean could then return 

to its nominal or in-control value; or the assignable cause could result in a steady 
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drift or trend in the value of the mean. Only the sustained shift fits nicely within the 

usual statistical hypothesis testing model (Montgomery, 1997).  

 

Specifying the control limits is one of the critical decisions that must be made in 

designing a control chart. By moving the control limits further from the center line, 

the risk of a type-Ι error is decreased - that is, the risk of a point falling beyond the 

control limits, indicating an out-of-control condition when no assignable cause is 

present. However, widening the control limits will also increase the risk of a type-ΙΙ  

error - that is, the risk of a point falling between the control limits when the process 

is really out-of-control. If the control limits are moved closer to the center line, the 

opposite effect is obtained: the risk of type-Ι error is increased, while the risk of 

type-ΙΙ  error is decreased. It is occasionally helpful to use the operating 

characteristic curve of a control chart to display its probability of type-ΙΙ  error. This 

would be an indication of the ability of the control chart to detect process shifts of 

different magnitudes (Montgomery, 1997). 

 

There are a wide variety of control charts that are developed to use in different 

processes. And also each of them has different characteristics and structure. So many 

different kinds of control charts developed from the first creation of the control chart 

and then they are improved to solve different kind of quality problems. The quality 

of a product can be evaluated using either an attribute of the product or a variable 

measure. An attribute is a product characteristic such as color, surface texture, or 

perhaps smell or taste. Attributes can be evaluated quickly with a discrete response 

such as good or bad, acceptable or not, or yes or no (Russell & Taylor, 1998). The 

types of control charts are classified into two groups. These include control charts for 

qualitative variables and control charts for quantitative variables measured at the 

interval or ratio level. Control charts such as those appropriate for characteristics 

measured as qualitative variables are referred to as control charts for attributes; and 

control charts such as those appropriate for characteristics measured on an interval or 

ratio scale of measurement are referred to as control charts for variables. Regression 

control charts (the control chart that we aim to modify it for autocorrelated data) are 

classified into the second classes that are control charts for variables. Each kind of 
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control chart has a corresponding method of determining the center line and control 

limits. Control charts such as those appropriate for characteristics measured as 

qualitative variables are referred to as control charts for attributes; in general they 

include control charts for (Tanya, 1999; Levine, Ramsey, & Berenson, 1995; 

Montgomery, 1997; Swift, Ross, & Omachonu, 1998): 

  

1. Fraction nonconforming (p chart) 

2. Number nonconforming (np chart) 

3. Number of nonconformities (c chart) 

4. Nonconformities per unit (u chart) 

5. Demerits per unit (U chart)  

 

Control charts such as those appropriate for characteristics measured on an 

interval or ratio scale of measurement are referred to as control charts for variables; 

for example they include: 

 

1. Control chart for the mean (x  chart) 

2. Control chart for the standard deviation (S chart) 

3. Control chart for the range (R chart) 

4. Control chart for individual units (x chart) 

5. Cumulative sum control chart for the process mean (CUSUM chart) 

6. Exponentially weighted moving average control chart (EWMA chart) 

7. Geometric moving average control chart (GMA) 

8. Regression control chart 

9. Modified control charts 

10. Acceptance control chart 

11. Hotelling's T2 control chart and its variations 

 

Each of these control charts has a corresponding method of determining the 

center line and control limits. SPC methods are usually applied in an environment 

when periodic sampling and rational subgrouping of process output is appropriate 

(Yourstone & Montgomery, 1989). Construction of a variable chart begins by 



 

 

 12 
 

selecting samples or subgroups of process output for evaluation on a variables 

measure of a quality characteristic of interest. A measure of central tendency, such as 

the mean, and a measure of variability, such as the range or standard deviation are 

then calculated for each subgroup and these statistics are used to construct trial 

control limits. However, before begining to sample, several decisions must be made 

such as: sample size and frequency of sampling (Levine, Ramsey, & Berenson, 

1995). 

 

A sample is a subset of observations selected from a population (Montgomery & 

Runger, 1999). In designing a control chart, both the sample size to use and the 

frequency of sampling must be specified. In general, larger sample size will make it 

easier to detect small shifts in the process. When choosing the sample size, the size 

of the shift that we are trying to detect must be kept in mind. If the process shift is 

relatively large, then we use smaller sample sizes than those that would be employed 

if the shift of interest were relatively small (Montgomery, 1997). Also the frequency 

of sampling must be determined. The frequency with which samples are drawn is 

directly related to the control chart’s ability to detect the precence of special causes 

or process shifts and inversely related to the time it takes to detect a shift once it 

occurs. In other words, the more frequently samples are drawn, the more sensitive 

the chart will be to the precence of special causes and the more quickly a shift in 

process average will be detected. The probability of detecting shifts quickly could be 

increased by using large sample sizes and sampling frequently. However, the 

practical constraints of most situations require us to balance sample size and 

frequency of sampling against budgetary requirements, time, and the costs of falling 

to detect a shift in the process (Levine, Ramsey, & Berenson, 1995). The most 

desirable situation from the point of view of detecting shifts would be to take large 

samples very frequently; however, this is usually not economically feasible. The 

general problem is one of allocating sampling effort. That is, either small samples at 

short intervals or larger samples at longer intervals are taken. Current industry 

practice tends to favor smaller, more frequent samples, particularly in high-volume 

manufacturing processes, or where a great many types of assignable causes can 

occur. Furthermore, as automatic sensing and measurement technology develops, it is 
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becoming possible to greatly reduce sampling frequencies. Ultimately, every unit can 

be tested as it is manufactured. Automatic measurement systems and microcomputers 

with statistical process control is an increasingly effective way to apply statistical 

process control (Montgomery, 1997). 

 

A control chart may indicate an out-of-control condition either (i) when one or 

more points fall beyond the control limits or (ii) when the plotted points exhibit some 

nonrandom pattern of behavior. If the points are truly random, a more even 

distribution of them above and below the center line are expected. Also if following 

consecutive points in a row increase in magnitude is observed, this arrangement of 

points is called a run. Since the observations are increasing, this can be called as a 

run up. Similarly, a sequence of decreasing points is called a run down. This control 

chart has an unusually long run up and an unusually long run down. In general a run 

is defined as a sequence of observations of the same type. In addition to runs up and 

runs down, the types of observations are defined as those above and below the center 

line, respectively, so that two points in a row above the center line would be a run of 

length 2. A run of length 8 or more points has a very low probability of occurrence in 

a random sample of points. Consequently, any type of run of length 8 or more is 

often taken as a signal of an out-of-control condition. For example, eight consecutive 

points on one side of the center line will indicate that the process is out-of-control 

(Montgomery, 1997). 

 

Figures 2.3b and 2.3c represent trends in the data and are characterized by the 

overall movement of points in one direction. Whenever observations in a sequence 

are the same type (for example, all increasing or all decreasing or all above the center 

line or all below the center line), that set of points is called a run. Figure 2.3b 

represents a run up (increasing trend), while Figure 2.3c represents a run down 

(decreasing trend). The special causes underlying these patterns include fatigue of 

personel or equipment, systematic environmental changes, buildup of waste 

products, or settling or separation in a chemical process (Levine, Ramsey, & 

Berenson, 1995). 
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          (a)    
 

 
                        (b) 
 

   
                          (c) 
 

   
                          (d) 
 

 
                        (e) 
 

  
                        (f) 

Figure 2.3 Typical patterns in control chart (a) Natural pattern, (b) Increasing trend pattern, 

(c) Decreasing trend pattern, (d) Upward shift pattern, (e) Downward shift pattern, (f) Cyclic     

pattern (Periodical shifting). 

 

Control charts are among the most important management control tools; they are 

as important as cost controls and material controls. Modern computer technology has 

made it easy to implement control charts in any type of process, as data collection 

and analysis can be performed on a microcomputer or a local area network terminal 

in real-time, on-line at the work center. The performance of control charts are 

measured via average run length (ARL). Essentially, the ARL is the average number 

of points that must be plotted before a point indicates an out-of-control condition. 

ARL will be discussed in chapter four later.  
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As mentioned above, the fundamental assumption of the control charts is that the 

observations of the process are independent and identically distributed (iid). 

However, the independency assumption is not realistic in practice due to various 

reasons, and process observations become autocorrelated. In the next subsections the 

autocorrelation, time series and control charts for autocorrelated data will be 

examined, and regression and the conventional regression control chart will be 

discussed.  

 

2.2 Autocorrelation and Time Series Models   

 

The standard assumptions that are usually cited in justifying the use of control 

charts are that the data generated by the process when it is in-control are normally 

and independently distributed. Unfortunately, the assumption of uncorrelated or 

independent observations is not even approximately satisfied in some manufacturing 

processes. Examples include chemical processes where consecutive measurements 

on process or product characteristics are often highly correlated or automated test 

and inspection procedures, where every quality quality characteristic is measured on 

every unit in time order of production. Basically, all manufacturing processes are 

driven by internal elements, and when the interval between samples becomes small 

relative to these forces, the observations on the process will be correlated over time 

(Montgomery, 1997).  

 

Autocorrelation is a state of having relationship between the consecutive 

observations. In another words, autocorrelation is the correlation of one variable a 

one point in time with observations of the same variable at prior time points. When 

there is significant autocorrelation in a process, traditional control charts will be 

ineffective because control charts are constructed under the assumption of using 

random observations which are independent and identically distributed. Within the 

framework of the Box-Jenkins methodology, time series models are characterized by 

their autocorrelation functions. The correlation between two random random 

variables, say W and Z, is defined as  
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WZ =ρ                    (2.1) 

 

Thus the autocorrelation at lag k refers to the correlation between any two 

observations in a time series that are k period apart (Montgomery & Johnson, 1976). 

That is, 
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= =                   (2.2) 

 

is the autocorrelation at lag k, where kγ  is the autocovariance and 0γ  is the variance 

of autocorrelated process. A graphical display of kρ  versus the lag k is called the 

autocorrelation function { }kρ  of the process. The autocorrelation function is 

dimensionless and that -1≤ kρ ≤1. Furthermore, kρ = k−ρ  that is, the autocorrelation 

function is symmetric. So that it is necessary to consider only positive lags. In 

general, when observations k lags apart are close together in value, kρ  is found close 

to 1.0.  When a large observation at time t is followed by a small observation at time 

t+k, kρ  is found close to -1.0. If there is little relationship between observations k 

lags apart, kρ  is found approximately zero. Another useful concept in the description 

of time series models is partial correlation. Consider the three random variables W, Y, 

and Z. If the joint density function of W, Y, and Z be ( , , )f W Y Z , then the conditional 

distribution of W and Y given Z is 

 

( , , )
( , )

( , , )

f W Y Z
h W Y Z

f W Y Z dWdY
∞ ∞

−∞ −∞

=

∫ ∫
                 (2.3) 

 

The correlation coefficient between W and Y in the conditional distribution 

( , )h W Y Z  is called the partial (or conditional) correlation coefficient. That is the 

partial correlation between W and Y is just the simple correlation between W and Y 

with the effect of their correlation with Z removed. In terms of a time series, it is 
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convenient to think of the partial autocorrelation at lag k as the correlation between 

tx  and t kx +  with the effects of the intervening observations (1 2 1, ,...,t t t kx x x+ + + − ) 

removed. Notationally, the k th partial autocorrelation coefficient shall be refered as 

kkφ .  A plot of kkφ  versus the lag k is called the partial autocorrelation function }{ kkφ .  

It must be noted that kkφ = 10 =ρ  and 111 ρφ =  (Montgomery & Johnson, 1976). 

 
The matter of how to monitor an autocorrelated data has been discussed 

frequently in recent years. In order to use control charts effectively, the 

autocorrelation in the data must be removed. One method to remove the 

autocorrelation in the data is to fit the data to a time series model. A time series is a 

data set in which the observations are recorded in the order in which they occur (Box 

& Jenkins, 1976). In another words, a time series is a sequence of observations on a 

variable of interest. The variable is observed at discrete time points, usually equally 

spaced.  

 

Time series analysis involves describing the process or phenomena that generate 

the sequence. A central feature in the development of time series models is an 

assumption of some form of statistical equilibrium. A particular assumption of this 

kind is that of stationarity. In analyzing a time series, it is regarded as a realization of 

a stochastic process. A very special class of stochastic processes, called stationary 

processes, is based on the assumption that the process is in a particular state of 

statistical equilibrium (Box & Jenkins, 1976). In stationary processes the mean and 

the variance of the measured values (tx ) must be constant (Mills, 1990). Stationary 

time series are modeled by autoregressive moving average (ARMA) models. 

Autoregressive model (AR(p) model) is a special case of ARMA models. The 

autoregressive process can be represented by the model given in Equation (2.4) (Box 

& Jenkins, 1976).  

 

1 1 2 2 ...t t t p t p tx x x xξ φ φ φ ε− − −= + + + + +                 (2.4) 
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Equation (2.4) is called an autoregressive process because the current observation 

tx  is regressed on previous realizations 1 2, ,...,t t t px x x− − −  of the same time series. The 

process contains ρ  unknown parameters 1 2, ,..., pφ φ φ  (apart from ξ  and the unknown 

variance 2σ ) and as a result Equation (2.4) is refered as an autoregressive process of 

order ρ , abbreviated AR(ρ ). If 1=ρ  then Equation (2.4) becomes the first-order 

autoregressive or AR(1) process that is the representative model used in this thesis 

 

1 1t t tx xξ φ ε−= + +                       (2.5) 

 

The AR(1) process is often called the Markow process because the observation at 

time t depends only on the observation at time 1t − . We must have  11 <φ  for 

stationarity (Montgomery & Johnson, 1976; Box & Jenkins, 1976). The mean, 

variance and autocovariance of the AR(1) process are given, respectively in the 

following (Box & Jenkins, 1976): 
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                   (2.6) 
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                 (2.8) 

 

In an AR(1) model, the autocorrelation at lag k can be found easily from the 

Equations (2.7) and (2.8) (Box & Jenkins, 1976): 

 

1
0

kk
k

γρ φ
γ

= =                                  (2.9) 

 

where 0k ≥ .  
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2.3 Control Charts for Autocorrelated Processes 

 

When there is significant autocorrelation in a process, traditional control charts 

with iid assumption can still be used, but they will be ineffective. When 

autocorrelation is presented, there are problems of noticing “special causes” that do 

not exist and not detecting “special causes” that truly exist, implying a high 

probability of false positives and / or false negatives (Eleni, Demetrios, & Leonidas, 

2005). In other words these charts will results poor ARL performance like high false 

alarm rates and slow detection of process shifts (Zhang, 2000). Because of this 

reason some modifications for traditional control charts are necessary if 

autocorrelation cannot be ignored. Therefore, various control charts have been 

developed for monitoring autocorrelated processes.  

 

A common approach to detect a possible process mean shift in the autocorrelated 

data is to use residual control charts, also known as the special cause chart (SCC), 

which are constructed by applying traditional SPC charts (Shewhart, CUSUM, 

EWMA and etc.) to the residuals from a time series model of the process data 

(Zhang, 2000). In these charts, forecast errors, namely residuals, are assumed to be 

statistically uncorrelated. An appropriate time series model is fitted to the 

autocorrelated data and the residuals are plotted in a control chart. For this reason all 

of the well-known control schemes can be transformed to the residual control 

scheme.  

 

In this study, we made a comprehensive review and observed that different 

charting techniques for residuals were developed to accommodate autocorrelated 

data. Alwan & Roberts (1988) introduced the common cause chart (CCC) which is 

applied by forming an ARIMA model for the autocorrelated process. CCC is not a 

control chart actually, because it does not have any control limits. It consists of only 

plotted data which have been modeled with an ARIMA model. The CCC is a plot of 

the fitted values or forecasts obtained when data are fitted with appropriate time 

series model. It was intended to give a representation of the predicted state of the 

quality characteristic without any control limits (Samanta & Bhattacherjee, 2001). 
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Furthermore, Alwan & Roberts (1988) developed a residual Shewhart chart and 

called it the special cause chart (SCC). The basic idea in the SCC method is to 

transform the original autocorrelated data to a set of "residuals" and monitor the 

residuals. Shewhart, CUSUM or EWMA control charts are the most frequently used 

control charts for residuals. 

 

Shewhart chart, firstly introduced by Dr. Walter A. Shewhart (1931), attracted 

many scientists’ interest. Since the first statistical control charts x , x  and R , x  and 

S , were introduced by Shewhart, these charts are called the Shewhart control charts. 

The Shewhart x  and R  chart which is the basis for many control charts is very 

simple and easy to use. If tx  are sample of size n, then the average of this sample is 

x  and it is well known that x  is normally distributed with mean µ  and standard 

deviation xσ , where /x nσ σ= . Then the best estimator of µ , the process average, 

is the grand average, say x . Then the center line (CL), upper control limit (UCL), 

and lower control limit (LCL) of the chart for the 3 standard deviations from the 

centerline are given below in Equation (2.10-2.12) respectively (Montgomery, 1997; 

Oakland, 2003): 

 

3UCL x
n

σ= +                             (2.10)    

 

CL x=                                                          (2.11) 

 

3LCL x
n

σ= −                                                             (2.12) 

 

where 1 2( ... ) /mx x x x m= + + + , 1 2( ... ) /nx x x x n= + + + , 
2

R
dσ =⌢ , max minR x x= −  

and 1 2( ... ) /mR R R R m= + + + . If the production rate is too slow to allow sample 

sizes greater than one then individual measurements are used. For the control chart 

for individual measurements, the parameters are 
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2

3
MR

UCL x
d

= +                                               (2.13) 

 

CL x=                                                                                   (2.14) 

 

 
2

3
MR

LCL x
d

= −                                                                       (2.15) 

 

where MR  is the moving range and MR  is the range between consecutive 

observations. If the observations are autocorrelated, the formulations are modified by 

using { }te  instead of { }tx . For residual charts, the residual te  from a time series 

model of { }tx  is defined as   

 

ˆt t te x x= −                                                                       (2.16) 

 

where tx
⌢

 is the prediction of { }tx  from the time series model at time t. Various 

residual charts are constructed based on te  depending on the traditional charts used. 

For a Shewhart residual chart, the chart is constructed by charting te  instead of { }tx . 

Also the other residual control charts such as CUSUM residual, EWMA residual and 

GMA residual charts are constructed by applying traditional CUSUM, EWMA and 

GMA charts respectively to { }te  (Zhang 2000; Montgomery, 1997; Montgomery & 

Runger, 1999; Montgomery & Johnson, 1976). te  is the centerline of the Shewhart 

residual control chart. If the least squares regression is used to fit the relationship 

between x and y, then te =0. The 3ˆeσ  control limits are used for the shewhart cause 

selecting chart where eσ  is the standard deviation of the process errors (Shu & 

Tsung, 2000). te  shows normal distribution with mean zero and with constant 

variance. Now, conventional Shewart control chart can be applied to residuals.   
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Shewhart control charts have been used in practice for decades because they do 

not need deep statistical knowledge and they are easy to use and interpret. Beside 

these advantages, Shewhart charts have also some disadvantages. The first drawback 

is, it takes much longer for a Shewhart chart to detect the mean shift. The second 

drawback of a Shewhart control chart is that, crucial issue of any Shewhart control 

chart is that it only takes into consideration the last plotted point, and can not contain 

information about the whole process. In another words these charts typically do not 

take into account previous data points, except in the case of using run rules. Because 

of this feature, Shewhart charts are usually effective for detecting large shifts but 

ineffective for detecting small shifts (about 1.5 or less) in process parameters. An 

important shortcoming for Shewhart charts is to be ineffective for detecting small 

shifts. To overcome this disadvantage two different control charts, CUSUM and 

EWMA, are proposed (Montgomery, 1997). They are appropriate for detecting small 

shifts, because they give smaller weight to the past data. A CUSUM chart is able to 

look at historic data to determine if the data trend shows a shift in the data. The 

CUSUM chart is widely used to monitor the mean of a process. It is better than the 

standard Shewhart chart in that it is able to detect small deviations from the mean 

(Kudo, 2001). By the choice of weighting factor, λ  (also known as ‘smoothing 

constant’), the EWMA control procedure can be made sensitive to a small or gradual 

drift in the process. However, they do not react to large shifts as quickly as the 

Shewhart chart.  

 

The CUSUM chart was firstly introduced by Page in 1954. The basic purpose of 

a CUSUM chart is to track the distance between the actual data point and the grand 

mean. Then, by keeping a cumulative sum of these distances, a change in the process 

mean can be determined, as this sum will continue getting larger or smaller. These 

cumulative sum statistics are called the upper cumulative sum ( tC+ ) and the lower 

cumulative sum ( tC− ).  They are defined by Equation (2.17) and Equation (2.18): 

 

0 1max[0, ( ) ]t t tC x K Cµ+ +
−= − + +                  (2.17) 
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0 1max[0,( ) ]t t tC K x Cµ− −
−= − − +                  (2.18) 

 

where 0µ  is the grand mean and K is the slack value which is often chosen about 

halfway between the target 0µ  and the out-of-control value of the mean 1µ  that we 

are interested in detecting quickly (Montgomery, 1997; Oakland, 2003; Wetherill & 

Brown, 1991). So, if the shift is expressed in standard deviation units as 

1 0µ µ δσ= +  (or 1 0 /δ µ µ σ= − ), then K is one-half the magnitude of the shift or 

( ) ( )1 0/ 2 / 2K δσ µ µ= = − . It is important to select the right value for K, since a 

large value of K will allow for large shifts in the mean without detection, whereas a 

small value of K will increase the frequency of false alarms. Normally, K is selected 

to be equal to 0.5σ. 

 

The tabular CUSUM is designed by choosing values for the reference value K 

and the decision interval H. Define K kσ=  and H hσ= , where σ  is the standard 

deviation of the sample variable used in forming the CUSUM. Using h=4 or h=5 and 

k=1/2 will generally provide a CUSUM that has good ARL properties against a shift 

about 1σ  in the process mean (Montgomery, 1997). For CUSUM residual chart, the 

residuals are calculated using Equation (2.16) where te  shows normal distribution 

with mean zero and with constant variance. Then, conventional CUSUM control 

chart can be applied to the residuals using the formulas given in Equation (2.17) and 

Equation (2.18). CUSUM control chart is especially effective with processes whose 

sample sizes are one (n=1). Due to this feature of CUSUM control chart, it is 

effectively used in individual observations one such as chemical and process 

industries, and discrete parts manufacturing with automatic measurement of each 

part.   

 

The EWMA chart was proposed by Roberts in 1959. Like CUSUM chart, 

EWMA is suitable for detecting small process shifts. EWMA chart uses smoothing 

constant where the smoothing constant λ  is that 0<λ ≤1 (Shu, Tsung, & Tsui, 2005). 

The EWMA is a statistic for monitoring the process that averages the data in a way 

that gives less and less weight to data as they are further removed in time. By the 
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choice of weighting factor λ , the EWMA control procedure can be made sensitive to 

a small or gradual drift in the process. The statistic that is calculated is (Montgomery, 

1997):  

 

1(1 )t t tz x zλ λ −= + −                                       (2.19) 

 

where tz is the moving average at time t. The value of λ  can be between zero and 

one, but it must often chosen between 0.05 and 0.3. The initial value of z (i.e. z0) is 

set to the grand mean (0µ ) (Montgomery, 1997; Oakland, 2003; Wetherill & 

Brown, 1991). If the observations tx  are independent random variables with 

variance 2σ , then the variance of tz  will be 

 

2 2 21 (1 )
2t

t
z

λσ σ λ
λ

   = − −   − 
                                         (2.20) 

 

Therefore the EWMA control chart would be constructed by plotting tz  versus 

the time t (or sample number). The center line and control limits for the EWMA 

control chart are as follows: 

 

2
0 [1 (1 ) ]

(2 )
tUCL L

λµ σ λ
λ

= + − −
−

                                   (2.21) 

 

0µ=CL                              (2.22) 

 

2
0 [1 (1 ) ]

(2 )
tLCL L

λµ σ λ
λ

= − − −
−

                         (2.23) 

 

where L is the number of standard deviations from the centerline (width of the 

control limits). Choise of weight factor is another problem. The parameter λ  

determines the rate at which 'older' data enter into the calculation of the EWMA 

statistic. A value of λ = 1 implies that only the most recent measurement influences 
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the EWMA (degrades to Shewhart chart). Thus, a large value of λ = 1 gives more 

weight to recent data and less weight to older data; a small value of λ  gives more 

weight to older data. The value of λ  is usually set between 0.2 and 0.3 although this 

choice is somewhat arbitrary. Lucas & Saccucci (1990) give tables that help the user 

to select λ . The term 2[1 (1 ) ]tλ− −  in Equation (2.21) and Equation (2.23) 

approaches unity as t gets larger. This means that after the EWMA control chart has 

been running for several time periods, the control limits will approach steady-state 

values given by (Montgomery, 1997) 

 

0 (2 )
UCL L

λµ σ
λ

= +
−

                                     (2.24) 

 

0 (2 )
LCL L

λµ σ
λ

= −
−

                                     (2.25) 

 

However, in the literature, it is strongly recommend using the exact control limits 

in Equation (2.21) and (2.23) for small values of t. This will greatly improve the 

performance of the control chart in detecting an off-target process immediately after 

the EWMA is started up (Montgomery, 1997). For EWMA residual chart, the 

residuals are calculated using Equation (2.16) and then, conventional EWMA control 

chart can be applied to the residuals using the formula given in Equation (2.19). The 

EWMA is a statistic for monitoring the process that averages the data in a way that 

gives less and less weight to data as they are further removed in time. CUSUM and 

EWMA are appropriate for detecting small shifts, because they give smaller weight 

to the past data. However, they do not react to large shifts as quickly as the Shewhart 

chart.  

 

Another residual charts, geometric moving average (GMA) and geometric 

moving range (GMR) control charts were studied by Yourstone & Montgomery 

(1989). The geometric moving range between successive pairs of residuals is used to 

track the dispersion of the process quality data in the real-time SPC algorithm. The 

geometric moving range allows the user of the algorithm to alter the sensitivity of the 
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moving range filter through adjustments to the smoothing constant. Two years later, 

in 1991, they proposed two innovative control charts, the sample autocorrelation 

chart (SACC) and the group autocorrelation chart (GACC) which are shown to be 

particularly effective control schemes when used control chart for the residuals of the 

time series model of the real time process data. These charts are based on the 

autocorrelation function of autocorrelated data. The SACC as well as the GACC 

detect shifts in the mean as well as shifts in the autocorrelative structure. The GACC 

chart detects the shift before the SACC since the GACC detects fluctuations over all 

lags of the sample autocorrelation. The SACC will signal shifts through a change in 

the pattern of the plots of the sample autocorrelation as well as through plots meeting 

or exceeding the control limits. The GACC will detect shifts that impact the sample 

autocorrelations as a group (Yourstone & Montgomery, 1991). When compared with 

the previous methods, SACC is less sensitive in detecting mean and variance shifts 

but very competitive in detecting changes in the parameters of ARMA model 

(Atienza, Tang, & Ang, 1997). 

 

Today, many industrial products are produced by several dependent process steps 

not just one step. However, conventional SPC techniques focus mostly on individual 

stages in a process and do not consider disseminating information throughout the 

multiple stages of the process. They are shown to be ineffective in analyzing 

multistage processes. A different approach to this problem is the cause-selecting 

chart (CSC), proposed by Zhang (1984). The CSC based on the output adjusted for 

the effect of the incoming quality shows promise for increasing the ability to analyze 

multistage processes (Yang & Yang, 2006).  

 

On the other hand, the traditional practice in using the control charts to monitor a 

process is to use a fixed sampling rate (FSR) which takes samples of fixed sample 

size (FSS) with a fixed sampling interval (FSI). In recent years, several modifications 

adopting the variable sampling interval (VSI), variable sample size (VSS) and 

variable sampling rate (VSR) or variable sampling interval and sampling size (VSSI) 

in the x  control chart have been suggested to improve traditional FSI policy and 

have been shown to give better performance than the conventional x  charts in the 
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sense of quick response to process change in the quality control literature. The VSSI 

features are extended to CUSUM and EWMA charts. Zou, Wang, & Tsung (2008) 

suggested using a variable sampling scheme at fixed times (VSIFT) to enhance the 

efficiency of the x  control chart for the autocorrelated data. Two charts are under 

consideration, that is, the VSIFT x  chart and variable sampling rate with sampling at 

fixed times VSRFT x  charts. These two charts are called x -VSFT charts.  

 

Traditional residual based charts, such as a Shewhart, CUSUM, or EWMA on the 

residuals, do not make use of the information contained in the dynamics of the fault 

signature. In contrast, methods such as the cumulative score (Cuscore) charts which 

are presented by Box & Ramirez (1992) or generalized likelihood ratio test (GLRT) 

do incorporate this information. Traditional control charts are intended to be used in 

high volume manufacturing. In a short run situation, there is not enough data 

available for the estimation purposes. In processes where the length of the production 

run is short, data to estimate the process parameters and control limits may not be 

available prior to the start of production, and because of the short run time, 

traditional methods for establishing control charts cannot be easily applied. Many 

sampling difficulties arise when applying standard control charts in low volume 

manufacturing horizon. Q charts have been proposed to address this problem by 

Quesenberry (1991) (Castillo & Montgomery, 1994).  

 

The basic idea in the SCC method is to transform the original, autocorrelated data 

to a set of "residuals" and monitor the residuals. The minimum mean squared error 

(MMSE) predictor used in the SCC chart is optimal for reducing the variance of the 

residuals but is not necessarily best for the purposes of process monitoring. 

Furthermore, the MMSE predictor is closely tied to a corresponding MMSE scheme 

in feedback control problems. Despite a huge literature on MMSE-based feedback 

control, the class of proportional integral derivative (PID) control schemes is more 

common in industry (see Box, Jenkins, & Reinsel (1994); Astrom & Hagglund 

(1995) refered from (Jiang, Wu, Tsung, Nair, & Tsui, 2002)). Jiang et al. (2002) used 

an analogous relationship between PID control and the corresponding PID predictor 

to propose a new class of procedures for process monitoring. As in SCC charts, they 
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transformed the autocorrelated data to a set of "residuals" by subtracting the PID 

predictor and monitoring the residuals. 

 

When the literature is reviewed for 1997-2010 year range, it is clearly observed 

that the following studies are remarkable for residual control charts. After reviewing 

residual control charts, the review for modified control charts will be presented in the 

consequent paragraphs. Kramer & Schmid (1997) discussed the application of the 

Shewhart chart to residuals of AR(1) process and in the same year Reynolds & Lu 

(1997) compared performances of two different types of EWMA control charts for 

residuals of AR(1) process. Yang & Makis (1997) compared the performances of 

Shewhart, CUSUM, EWMA charts for the residuals of AR(1) process. Zhang (1997) 

remarked that the detection capability of an x residual chart was poor for small mean 

shifts compared to the traditional x chart, EWMA, and CUSUM charts for AR(2) 

process. Two years Lu & Reynolds (1999) compared the performances of EWMA 

control chart based on the residuals from the forecast values of AR(1) process and 

EWMA control chart based on the original observations. Luceno & Box (2000) 

studied the One-sided CUSUM chart. Rao, Disney & Pignatiello (2001) focused on 

the integral equation approach for computing the ARL for CUSUM control charts for 

AR(1) process. They studied the ARL performance versus length of the sampling 

interval between consecutive observations for residuals of AR(1) process. Jiang et al. 

(2002) proposed proportional integral derivative (PID) charts for residuals of 

ARMA(1,1) process. Kacker & Zhang (2002) studied the run length performance of 

Shewhart x  for residuals of IMA(λ ,σ ) processes. Shu, Apley, & Tsung (2002) 

proposed a CUSUM-triggered Cuscore chart to reduce the mismatch between the 

detector and fault signature. A variation to the CUSUM-triggered Cuscore chart that 

uses a GLRT to estimate the mean shift time of occurrence is also discussed. They 

used ARMA(1,1) process to test the performance of proposed chart. It is shown that 

the triggered Cuscore chart performs better than the standard Cuscore chart and the 

residual-based CUSUM chart. Ben-Gal Morag, & Shmilovici (2003) presented 

context-based SPC (CSPC) methodology for state-dependent discrete-valued data 

generated by a finite memory source and tested the performance of this new modified 

chart for AR(1), AR(2), MA(1) processes. Snoussi, Ghourabi, & Limam (2005) 
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studied on residuals for short run autocorrelated data of autocorrelated process. They 

compared the performances of Shewhart x , CUSUM, and EWMA control charts for 

residuals of AR(1) process. They also compared the performances of CUSUM, and 

EWMA control charts with Q statistics (EWMA Q chart and CUSUM Q chart) for 

residuals of AR(1) process. Kim, Alexopoulos, Goldsman, & Tsui (2006) considered 

a CUSUM process as their monitoring statistic that is a bit different than that of 

Johnson & Bagshaw (1974), and they approximate this CUSUM process by a 

Brownian motion process. Noorossana & Vaghefi (2006) investigated the effect of 

autocorrelation on performance of the MCUSUM control chart. Triantafyllopoulos 

(2006) has developed a new multivariate control chart based on Bayes’ factors. This 

control chart is specifically aimed at multivariate autocorrelated and serially 

correlated processes and tested for AR(1) process. Yang & Yang (2006) considered 

the problem of monitoring the mean of a quality characteristic x on the first process 

step and the mean of a quality characteristic y on the second process step, in which 

the observations x can be modeled as an AR(1) model and observations y can be 

modeled as a transfer function of x since the state of the second process step is 

dependent on the state of the first process step. To effectively distinguish and 

maintain the state of the two dependent process steps, the Shewhart control chart of 

residual and the cause selecting chart (CSC) are proposed. They showed that the 

proposed control charts are much better than the misused Hotelling T2 control chart 

and the individual shewhart chart. Ghourabi & Limam (2007) proposed a new 

method of residual process control, the Pattern Chart and tested this new chart for 

AR(1) process and compared its ARL values with SCC chart. Costa & Claro (2008) 

considered the double sampling (DS) x  control chart for monitoring processes in 

which the observations can be represented as ARMA(1,1) model. Zou, wang, & 

Tsung (2008) suggested using a variable sampling scheme at fixed times (VSIFT) to 

enhance the efficiency of the x  control chart for the autocorrelated data. Two charts 

are under consideration, that is, the VSIFT x  and variable sampling rate with 

sampling at fixed times (VSRFT x ) charts. These two charts are called x -VSFT 

charts. The authors used AR(1) model as representative model for their study. An 

integration equation method combined with a Markov process model was developed 

to study the performance of these charts. Sheu & Lu (2009) examined a GWMA with 
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a time-varying control chart for monitoring the mean of a process based on AR(1) 

process and they compared ARL performance of GWMA and EWMA charts. Weiss 

& Testik (2009) investigated the CUSUM control chart for monitoring autocorrelated 

processes of counts modeled by a Poisson integer-valued autoregressive model of 

order 1 (Poisson INAR(1)). Knoth, Morais, Pacheco, & Schmid (2009) discussed the 

impact of autocorrelation on the probability of misleading signals (PMS) of 

simultaneous Shewhart and EWMA residual schemes for the mean and variance of a 

AR(1) process. Lu & Ho (2010) compared the ARL performance of various GWMA 

control charts between observations and residuals to consider how ARL differ in 

each case.  

 

The main advantage of a residual chart is that it can be applied to any 

autocorrelated data whether the process is stationary or not. Residual control charts 

are the ease of interpretation and straightforward implementation that requires only a 

least-squares regression computer program to process the data prior to constructing 

the control charts (Zhang, 2000). Although the residual charts have some advantages 

by using them for autocorrelated processes, there are some problems. One of the 

most important disadvantages of residual charts is that the time series modeling 

knowledge is needed for constructing the ARIMA model and some residual charts 

which based on two valid time series models signal differently. The another problem 

is due to the detection capability of the residual chart. Harris & Ross (1991) 

recognized that the CUSUM control chart and EWMA control chart for the residuals 

from a first-order autoregressive (AR(1)) process may have poor capability to detect 

the process mean shift. Wardell, Moskowitz, & Plante (1994) showed that Shewhart 

charts are not completely robust to deviations from the assumption of process 

randomness; namely when observations are correlated. EWMA chart is very good at 

detecting small shifts, and performs well for large shifts at only the case when the 

autoregressive parameter is negative and the moving average parameter is positive. 

No other chart is obviously dominant under every condition. They showed that when 

the processes were positively autocorrelated (at the first lag), the residual chart did 

not perform very well. Zhang (1997) also studied on detection capability of residual 

chart for autocorrelated data. In his study, Zhang defined a measure of the detection 
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capability of the residual x-chart for the general stationary process and showed that 

the detection capability of a residual chart for AR(2) process was small compared to 

the detection capability of the x chart (Zhang, 1998). The detection capability of a 

Shewhart residual chart is smaller than the traditional Shewhart chart and other 

residual charts, EWMA and CUSUM residual charts (Harris & Ross, 1991; 

Longnecker & Ryan, 1992; Wardell, Moskowitz, & Plante, 1994; Zhang, 1998). 

 

To overcome the disadvantages of residual-based control charts, monitoring the 

autocorrelated observations by modifying the standard control limits to account for 

the autocorrelation is suggested. This second approach, modified control chart, is 

based on applying the original control chart methodology with a little modification. 

Autocorrelated data is used in original control chart by adjusting its control limits. 

Control charts such as MCEWMA, EWMAST, and ARMA that are proposed for 

autocorrelated process observations are introduced to deal with the disadvantages of 

the residual charts and effectively used for stationary autocorrelated process data. 

Since rearrangement of the control limits for autocorrelated data is not so easy, 

application of modified charts is more complicated then the first approach.  

 

MCEWMA control chart is used for individual observations and proposed by 

Montgomery and Mastrangelo in 1991. The MCEWMA chart is based on the 

familiar EWMA chart that is also standard in the literature; however, it adapts the 

EWMA for the autocorrelated data given by the ARIMA disturbance model 

(Nembhard, Mastrangelo, & Kao, 2001). Montgomery & Mastrangelo (1991) point 

out that it is possible to combine information about the state of statistical control and 

process dynamics on a single control chart. EWMAST control chart has been 

introduced by Zhang in 1998 to deal with the disadvantages of the residual charts. 

EWMAST chart is an extension of the traditional EWMA chart and basically 

constructed by charting the EWMA statistics for stationary process. EWMAST chart 

is a EWMA chart for stationary processes. Zhang (1998) remarked that the limits of 

the EWMAST chart are different from that of the traditional EWMA chart when the 

data are autocorrelated. When the process is positively autocorrelated, the limits of 

the EWMAST chart are wider than that of the ordinary EWMA chart. Zhang showed 
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that a EWMA of a stationary process is asymptotically a stationary process. The 

autocovariance function of EWMA is derived when the process is stationary. Then 

the EWMAST chart for general stationary process is established. The control limits 

of the EWMAST chart are analytically determined by the process variance and 

autocorrelation. When the process is nonstationary or near nonstationary with strong 

and positive autocorrelations, residual charts can be used. When the mean shifts are 

small, however, the performance of the residual chart is still satisfactory. Actually, 

no process control chart performs well in this case. In general, nonstationarity or near 

nonstationarity with positive autocorrelation is likely to occur when the data are 

acquired at high frequency. In this case the large in-control ARLs (such as those of 

the EWMAST chart) are often desirable, and the corresponding large out-of-control 

ARLs are much less a problem (Zhang, 1998). SCC chart is shown to be effective 

when detecting large shifts. The EWMAST chart performs better than the SCC chart 

when the process autocorrelation is not very strong and the mean changes are not 

large. On the other hand, the EWMAST chart applies the EWMA statistic directly to 

the autocorrelated process without identifying the process parameters and shown to 

be efficient in some parameter regions (Jiang, Tsui, & Woodal, 2000). An obvious 

advantage of using EWMAST chart is that there is no need to build a time series 

model. The EWMAST chart is easy to implement just like its special case, ordinary 

EWMA chart. On the other hand, implementation of a residual chart needs a time 

series modeling algorithm (Zhang, 1998). 

 

By integrating the advantages of SCC chart and EWMAST chart and taking into 

account the autocorrelation structure of the underlying process, a family of control 

charts, the ARMA chart is proposed by Jiang, Tsiu, & Woodal (2000). This charting 

technique based on an autoregressive moving average (ARMA) statistic and provides 

a more flexible choise of parameters to relate the autocorrelation structure of the 

statistic to the chart performance and includes the special cause chart (SCC) chart 

and the EWMAST chart as special cases. It is shown that an ARMA chart with 

appropriate parameter values will outperform both the SCC and EWMAST charts for 

autocorrelated processes. Jiang et al. (2000) use the same notation of the EWMAST 
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chart proposed by Zhang (1998), and denote the ARMA chart as the ARMAST chart 

that is proposed for stationary processes. 

 

On the other hand, the limitations of distribution-based procedures can be 

overcome by distribution-free SPC charts. Runger & Willemain (R&W) (1995) 

organized the sequence of observations of the monitored process into adjacent 

nonoverlapping batches of equal size; and their SPC procedure called unweighted 

batch means (UBM) is applied to the corresponding sequence of batch means. They 

choose a batch size larger enough to ensure that the batch means are approximately 

iid normal, and then they apply to the batch means one of the classical SPC charts 

developed for iid normal data, including the Shewhart and tabular CUSUM charts. In 

contrast to this approach, Johnson & Bagshaw (J&B) (1974) and Kim, Alexopoulos, 

Goldsman, & Tsui (2006) presented CUSUM based methods that use raw 

(unbatched) observations instead of batch means. Computing the control limits for 

the latter two procedures requires an estimate of the variance parameter of the 

monitored process that is the sum of covariances at all lags (see Kim et al. (2006) for 

experimental evaluations of R&W chart and J&B chart). 

 

Kim et al. (2006) considered a CUSUM process as their monitoring statistic that 

is a bit different than that of Johnson & Bagshaw (1974), and they approximate this 

CUSUM process by a Brownian motion process. By exploiting the known properties 

of Brownian motion, they derive a new model-free CUSUM chart called the MFC 

Chart. The proposed SPC procedure requires the asymptotic variance constant which 

is the sum of covariances of all lags, the procedure is completely model-free - 

including the design of control limits and chart parameters - with the help of non-

parametric variance estimation techniques popular in the simulation community. The 

MFC chart can be used with raw observations or batch means of any size, so using 

large batches can be avoided. Also this procedure provides a convenient way to 

compute control limits like the Shewhart chart does (Kim et al., 2006). Another 

distribution-free chart is run sum chart proposed by Willemain & Runger (1998) 

(Willemain & Runger, 1998). Their use of run sums is revival of an earlier idea. The 

use of coded run sums for iid data was described by Roberts (1996), who cited earlier 
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work by Toda (1958), who in turn cited Imaizuma (1955) and Reynolds (1971) 

presented a simplified overview (Willemain & Runger, 1998). The run sum chart 

proposed by Willemain & Runger (1998) differs from these earlier works in two 

significant ways. First, they consider the autocorrelated data characteristic of data-

rich environments. Second, they use the sums of the observations directly, whereas 

earlier work coded the data values into integer scores before summing. Most SPC 

methods are not suitable for monitoring nonlinear and state-dependent processes. 

Another approach to developing distribution-free SPC charts is taken by Ben-Gal, 

Morag, & Shmilovici (2003). They presented context-based SPC (CSPC) 

methodology for state-dependent discrete-valued data generated by a finite memory 

source. The key idea of the CSPC is to monitor the statistical attributes of a process 

by comparing two context trees at any monitoring period of time. The first is a 

reference tree that represents the “in-control” reference behavior of the process; the 

second is a monitored tree, generated periodically from a sample of sequenced 

observations that represents the behavior of the process at that period. The Kullback–

Leibler (KL) statistic is used to measure the relative “distance” between these two 

trees, and an analytic distribution of this statistic is derived. Monitoring the KL 

statistic indicates whether there has been any significant change in the process that 

requires intervention. The proposed CSPC extends the scope of conventional SPC 

methods. It allows the operators to monitor varying-length state-dependent processes 

as well as independent and linear ones. The CSPC is more generic and less model-

biased with respect to time series modeling. The major drawback of CSPC is 

relatively large sample size required during the monitoring stage. Therefore, it should 

be applied primarily to processes with high sampling frequency, such as the buffer-

level monitoring process. The CSPC is currently limited to discrete and single-

dimensional processes (Ben-Gal, Morag, & Shmilovici, 2003). For distribution free 

processes “distribution free charts” are suggested. Kim, Alexopoulos, Tsui, & 

Wilson (2007) proposed a distribution free tabular CUSUM (DFTC) chart to detect 

mean shifts of autocorrelated observations. The authors defined the proposed chart as 

“a generalization of the conventional tabular CUSUM chart that is designed for iid 

normal random variables”. 
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The following studies are remakable for modified control charts for 

autocorrelated data. As refered before, Zhang (1998) proposed EWMAST control 

chart, which is a modified control chart for autocorrelated data, and tested this new 

chart for AR(1), AR(2), ARMA(1,1) processes. Willemain & Runger (1998) 

proposed run sum chart which is a distribution-free chart and examined the residuals 

of AR(1) and ARMA(1,1) processes. Apley & Shi (1999) presented an on-line SPC 

technique, based on a GLRT, for detecting and estimating mean shifts in 

autocorrelated processes that follows a normally distributed ARIMA(4,0,3) model. 

The GLRT is applied to the uncorrelated residuals of the appropriate time-series 

model. The performance of GLRT is compared to Shewhart and CUSUM charts. By 

integrating the advantages of SCC chart and EWMAST chart and taking into account 

the autocorrelation structure of the underlying process, a family of control charts, the 

ARMA chart is proposed by Jiang, Tsiu, & Woodal (2000). They compared the 

performances of ARMA, ARMAST, EWMAST, EWMA, CUSUM and Shewhart 

control charts for AR(1), ARMA(1,1) processes. Later in (2001) jiang performed the 

average run length computation of ARMA charts for stationary processes and 

developed a Markow chain model for evaluating the run length performance of the 

ARMA chart applied to an ARMA (p,q) process. By exploiting the known properties 

of Brownian motion, they derive a new model-free CUSUM chart called the MFC 

Chart and tested this new chart for AR(1) process. Winkel & Zhang (2004) compared 

the performances of EWMA for the residuals of AR(1) process and EWMAST 

control charts for AR(1) process. Brence & Mastrangelo (2006) explored the 

capabilities of the tracking signals and the MCEWMA when the smoothing constants 

are varied and a shift is introduced into the AR(1) and ARMA(1,1) processes. Kim et 

al. (2007) proposed a distribution free tabular CUSUM (DFTC) chart to detect mean 

shifts in autocorrelated and normal distributed process observations. Stationary 

AR(1) and AR(2) processes are used to test its performance. Cheng & Chou (2008) 

used ARMA control chart in a real-time inventory decision system using Western 

Electric run rules. They monitored the data of demand that presents a pattern of time 

series. They employed ARMA chart to monitor the market demand that is 

autocorrelated and used individual control chart to monitor the inventory level. Issam 

& Mohamed (2008) proposed to apply support vector regression (SVR) method for 
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construction of a residual multivariate CUSUM (MCUSUM) chart, for monitoring 

changes in the process mean vector. Koksal, Kantar, Ula, & Testik (2008) 

investigated the effect of Phase I sample size on the run length performance of  

Residual chart, modified Shewhart chart, EWMAST chart and ARMA chart for 

monitoring the changes in the mean of AR(1) process. 

 

In recent years, researchers have been investigating the use of artificial neural 

networks (NNs) in the application of control chart pattern (CCP) recognition with 

encouraging results. A neural network is an approach to data processing that does not 

require model or rule development. When compared to other methodologies the 

neural network approach has certain advantages. The model development is much 

simpler than that for most other approaches. Instead of theoretical analysis and 

development for a new model, the neural network tailors itself to the training data. 

The model can be refined at any time with the addition of new training data (Cheng, 

1997). Also note that, a traditional control chart considers only the current sample 

when determining the status of a process and hence does not provide any pattern 

related information. NN based process control charts can classify patterns that the 

traditional charting methods for autocorrelated data cannot properly handle (Guh, 

2008). Because of these advantages application of NNs to SPC has great interest in 

recent years. Although there are some disadvantages such as training requires 

considerable computation and training of these NNs will require many datasets; the 

recall process is very fast (Cheng, 1997). The application of NNs to SPC can be 

commonly classified into two categories: (i) control chart pattern recognition and (ii) 

detection of unnatural behavior (Pacella & Semeraro, 2007). In the second category, 

NN used to diagnose the shift in the mean of a manufacturing process.  

 

Few studies on mean shift detection of autocorrelated processes by a neural-

based approach were presented. West, Mangiameli, & Chen (1999) investigated the 

ability of radial basis function NNs to monitor and control complex manufacturing 

processes that exhibit both auto and cross-correlation. They demonstrated that the 

radial basis function network is superior to three control models proposed for 

complex manufacturing processes: multivariate Shewhart, MEWMA, and a feed 
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forward NN with logistic units trained by backpropagation (often called a back 

propagation neural network (BPN)). They used vector AR(1) (VAR(1)) model as the 

representative process model for their work. Chiu, Chen, & Lee (2001) used BPN to 

identify shifts in process parameter values from AR(1) process. Pacella & Semeraro 

(2007) proposed Elman recurrent neural network for manufacturing processes quality 

control. For a wide range of possible shifts and autocorrelation coefficients, 

performance comparisons between the neural-based algorithm, SCC chart, 

EWMAST chart, X chart and ARMAST are presented for ARMA(1,1) model. Guh 

(2008) presented a learning vector quantization (LVQ) based system that can 

effectively recognize CCPs in real time for various levels of autocorrelation for 

AR(1) model and compared its ARL performance with SCC chart, X chart and 

EWMA chart. Hwarng & Wang (2010) proposed a neural network based identifier 

(NNI) for multivariate autocorrelated processes. A rather extensive performance 

evaluation of the proposed scheme is carried out, benchmarking it against three 

statistical control charts, namely the Hotelling T2 control chart, the MEWMA chart 

and the Z chart. 

 

Over the last two decades, control charts for autocorrelated observations have 

been applied to an increasing number of real-world problems. In this section, control 

chart applications for the autocorrelated processes were reviewed, and the historical 

progression in this field was emphasized in order to help the interested researchers 

and practitioners get informed about the references on the relevant research in this 

field, regarding the design, performance and applications of control charts for 

autocorrelated processes. Recent research studies for autocorrelated data are 

summarized in Table 3.1 in a chronological order, in order to see the gradual 

development in these works.  

 

Table 3.1 Evolution of control charts for autocorrelated data 

Year Author(s) Control Charts Autocorrelation 
Structure 

1974 Johnson & Bagshaw J&B AR(1) 
1988 Alwan & Roberts Shewhart x , CCC, SCC IMA(1,1), ARMA(1,1) 
1989 Yourstone & 

Mongomery  
GMA, GMR ARMA(2,1), AR(2) 

1991 Harris & Ross EWMA, CUSUM AR(1) 
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1991 Montgomery & 
Mastrangelo  

MCEWMA AR(1) 

1991 Yourstone & 
Mongomery 

SACC, GACC AR(4), ARMA(2,4) 

1992 Wardell et al. EWMA ARMA(1,1) 
1994 Wardell et al. Shewhart x , EWMA AR(1) 
1995 Mastrangelo & 

Montgomery 
MCEWMA IMA(1,1), 

ARIMA(1,1,1), AR(1), 
AR(2), ARMA(1,1) 

1995 Runger & Willemain R&W AR(1) 
1996 Runger & Willemain UBM AR(1) 
1997 Kramer & Schmid  Shewhart x  AR(1) 
1997 Reynolds & Lu  EWMA AR(1) 
1997 Yang & Makis  Shewhart x , CUSUM, EWMA AR(1) 
1997 Zhang  Shewhart x  AR(2) 
1997 Atienza et al. SACC, SCC, CUSUM AR(1), MA(1) 
1998 Willemain & Runger Run sum chart AR(1), ARMA(1,1) 
1998 Zhang EWMAST AR(1), AR(2), 

ARMA(1,1) 
1999 Apley & Shi  Cuscore charts ARIMA(4,0,3) 
1999 Lu & Reynolds  EWMA AR(1) 
1999 West et al. Multivariate Shewhart, MEWMA, BPN VAR(1) 
2000 Jiang et al. ARMA, ARMAST, EWMAST, 

EWMA, CUSUM, Shewhart x  
AR(1), ARMA(1,1) 

2000 Luceno & Box  One-sided CUSUM AR(1) 
2001 Jiang ARMA ARMA(1,1) 
2001 Rao et al. CUSUM AR(1) 
2001 Chiu et al. BP Neural Network AR(1) 
2002 Jiang et al. PID ARMA(1,1) 
2002 Kacker & Zhang Shewhart x  IMA( λ ,σ ) 
2002 Shu et al. CUSUM-triggered Cuscore ARMA(1,1) 
2003 Ben-Gal et al. CSPC AR(1), AR(2), MA(1) 
2004 Winkel & Zhang EWMA, EWMAST AR(1) 
2005 Snoussi et al. Shewhart x , CUSUM, EWMA, 

EWMA Q, CUSUM Q  
AR(1) 

2005 Winkel & Zhang EWMAST, EWMA AR(1) 
2005 Kim et al. MFC AR(1) 
2006 Yang & Yang CSC, Shewhart-x , Hottelling T2 AR(1) 
2006 Brence & Mastrangelo  MCEWMA AR(1), ARMA(1,1) 
2006 Noorossana & Vaghefi MCUSUM AR(1) 
2006 Triantafyllopoulos A new Multivariate Control Chart AR(1) 
2007 Kim et al. DFTC AR(1), AR(2) 
2007 Ghourabi & Limam Pattern Chart, SCC  AR(1) 
2007 Pacella & Semeraro SCC, X chart, EWMAST, ARMAST 

Elman NN 
ARMA(1,1) 

2008 Costa & Claro DS x   ARMA(1,1) 
2008 Zou et al. VSIFT x , VSRFT x  AR(1) 
2008 Cheng & Chou  ARMA ARMA(1,1) 
2008 Issam & Mohamed  MCUSUM VAR(1) 
2008 Koksal et al. Residual chart, modified Shewhart, 

EWMAST, ARMA 
AR(1) 

2008 Guh SCC, X chart, EWMA, LVQ NN AR(1) 
2009 Weiss & Testik CUSUM Poisson INAR(1) 
2009 Sheu & Lu GWMA, EWMA AR(1) 
2009 Knoth et al. Shewhart, EWMA AR(1) 
2010 Hwarng & Wang Hotelling T2, MEWMA, Z chart, NN 

Identifier  
VAR(1) 
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We briefly summarize our conclusions from this detailed review in the following: 

 

• Since the first control chart is proposed by Shewhart in 1931, lots of charts 

have been developed and then improved to be used for different process data.  

 

• Control charts for autocorrelated processes attracted scientists’ attention in 

1970s. Scientists studied the effect of autocorrelation on the existing charts, 

initially. Later, they proposed charts for autocorrelated data.  

 

• Many scientists have studied the residual control charts more than modified 

charts due to their simplicity. Scientists proposed original and innovative 

control charts in earlier years. But in recent years most of the proposed 

control charts are enhanced versions of existing charts.  

 

• According to the Table 3.1 AR(1) and ARMA(1,1) processes are the most 

commonly used models in the literature.  

 

2.4 Regression Control Chart  

 

In this subsection the basic concepts of linear regression are explained before 

discussing conventional regression control chart and a brief review on regression 

control chart is given.  

 

2.4.1 Linear Regression 

 

In many problems two or more variables are inherently related, and it is 

necessary to explore the nature of this relationship. Regression analysis is a statistical 

technique for modeling and investigating the relationship between two or more 

variables (Montgomery & Runger, 1999). Regression chart is designed to control a 

varying (rather than a constant) average, and assumes that the values of the 

dependent variable are linearly (causally) related with the values of the independent 

variable. Note that control limits of conventional regression control chart are 
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regression lines. In statistics, linear regression is a regression method that models the 

relationship between a dependent variable (y), independent variable (x) and a random 

term ε :  

 

0 1 1 2 2 ...t t t m tm ty x x xβ β β β ε= + + + + +  1,2,...,t N=                                  (2.26) 

 

where the error tε  is assumed to be an independently and identically distributed 

normal variable with a mean of zero and constant variance σ2. The first subscript (t) 

denotes the index of the observation and the second subscript (m) denotes the index 

of the input quality characteristic (Shu, Tsung, & Kapur, 2004). Simple linear 

regression considers a single regressor or predictor x and a dependent or response 

variable y. It is assumed that each observation, y, can be described by the model 

(Montgomery & Runger, 1999) given in Equation (2.27). 

 

0 1y xβ β ε= + +                                                                                              (2.27) 

 

In simple linear regression it is aimed to find the straight line for which the 

differences (or residuals) between the actual values of ty  and the predicted values ˆty  

from the fitted model are as small as possible. A mathematical technique which 

determines the values of 0β  and 1β  other than those determined by the least squares 

method would lead to a greater sum of squared differences between the actual and 

predicted values of y (Levine, Ramsey, & Berenson, 1995). The estimates of 0β  and 

1β  should result in a line that is (in some sense) a “nest fit” to the data. The German 

scientist Karl Gauss (1977-1855) proposed estimating the parameters 0β  and 1β  in 

Equation (2.29) and (2.30) in order to minimize the sum of the squares of the vertical 

deviations in estimated regression model (Montgomery & Runger, 1999).  

 

0 1
ˆ ˆˆ ,t t ty xβ β ε= + +   1,2,...,t N=               (2.28) 
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The least square estimates of the 0β (intercept) and 1β (slope) in the simple 

linear regression model are 
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N
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x N x

=
= ∑  (Montgomery & Runger, 1999). 

 

The residual describes the error in the fit of the model to the tth observation ty . 

Residuals are calculated by the formula ˆt t ty yε = − . 

 

2.4.2 Conventional Regression Control Chart 

 

If independent process data exhibit an underlying trend due to systemic causes, 

usually control charts based on ordinary least squares (OLS) regression are used for 

monitoring and control. The traditional control charts with horizontal control limits 

and a center line with a slope of zero have proven unreliable when systemic trend 

exists in process data. A device useful for monitoring and analyzing processes with 

trend is the regression control chart. A regression based control chart which is the 

combination of the conventional control chart and regression analysis was first 

proposed by Mandel in 1969. This chart is designed to control a varying (rather than 

a constant) average, and assumes that the values of the dependent variable are 

linearly (causally) related with the values of the independent variable. This chart 

assumes that the y values (the dependent variable) are linearly related (causally) to 

the x values (the independent variable). For each specific x value, it is assumed that 

the y values are normally and independently distributed with a mean value estimated 

from the regression line, and with a standard error which is independent of the value 
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of x and is estimated from the deviations of the actual observations from the y values 

estimated from the regression line. Mandel used simple linear regression for this 

chart. Rather than using standard control charts, practitioners typically implement 

regression based control charts to monitor a process with systemic trend (Utley & 

May, 2008). Quesenberry (1988) points out that these approaches essentially assume 

that resetting the process is expensive and that they attempt to minimize the number 

of adjustments made to keep the parts within specifications rather than reducing 

overall variability.  

 

A regression control chart that integrates linear regression and control chart 

theory has proven useful and applicable in a wide variety of applications, as it 

requires only a least squares regression computer programme to process the data 

prior to constructing the control chart (Shu, Tsung, & Tsui, 2004). However, since 

the Mandel’s regression control chart was developed for independent data, it is not 

an effective tool for monitoring process shift in autocorrelated process observations.  

 

2.4.3 A Review on Regression Control Charts 

 

A regression based control chart which is the combination of the conventional 

control chart and regression analysis was first proposed by Mandel in 1969. Mandel 

used regression control chart to monitor the variety of postal management problems. 

The modified regression control chart is also used when the process exhibits tool 

wear (Montgomery, 1997), (see also Duncan (1974) and Manuele (1945) for a 

detailed discussion on control charts for tool wear). Mandel also devised a 

simplification of the regression control chart. The simplification functioned as a 

residual chart because the values that were plotted on it were the residuals from the 

regression analysis (Utley & May, 2009). Zhang adopted Mandel’s idea of a residual 

control chart for statistical process control data to the cause selecting chart (CSC) in 

1984. The CSC, which is a type of a regression based control chart, is constructed for 

an outgoing quality characteristic only after it has been adjusted for the effect of 

incoming quality characteristic. Hawkins (1991) developed a procedure called 

regression adjustment. The scheme essentially consists of plotting univariate control 
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charts of the residuals from each variable obtained when that variable is regressed on 

all the others (Montgomery, 2009). A very important application of regression 

adjustment occurs when the process has a distinct hierarchy of variables, such as a 

set of input process variables and a set of output variables. Sometimes this situation 

is called a cascade process. If the proper set of variables is included in the regression 

model, the residuals from the model will typically be uncorrelated, even though the 

output variable exhibited correlation. The regression adjustment procedure has many 

possible applications in chemical and process plants where there are often cascade 

processes with several inputs but only a few outputs, and where many of the 

variables are highly autocorrelated at low lags (Montgomery, 2009). Two years later, 

Hawkins applied regression control chart to cascade processes and cited CSC as a 

particularly useful methodology for controlling quality in cascade processes. If linear 

regression is used to model a cascade process, then the values plotted on the cause 

selecting control chart are actually the standardized residuals from the regression 

relationship (Sulek, Marucheck & Lind, 2006). In the same year, Wade & Woodall 

(1993) reviewed the concepts of the CSC and examined the relationship between the 

CSC and multivariate Hotelling T2 chart. In their opinion, the cause selecting 

approach is an improvement over the use of separate Shewhart control charts for 

each of two related quality characteristics. A review of the literature on control charts 

for multivariate quality control (MQC) is given by Lowry & Montgomery (1995), by 

discussing principal components and regression adjustment of variables in MQC. 

Haworth (1996) used a multiple regression control chart to manage software 

maintenance. A quality control tool was developed for managers of complex 

software maintenance processes that can be modeled with a multiple regression 

model. Kalagonda & Kulkarni (2003) proposed a diagnostic procedure called 'D-

technique' to detect the nature of shift. For this purpose, two sets of regression 

equations, each consisting of regression of a variable on the remaining variables, are 

used to characterize the 'structure' of the 'in-control' process and that of the 'current' 

process. To determine the sources responsible for an out-of-control state, it is shown 

that it is enough to compare these two structures using the dummy variable multiple 

regression equation. In the same year, Omura & Steffe (2003) constructed Mandel’s 

regression control chart for apparent viscosity and average shear rate data. According 
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to the authors, no standardized test existed to objectively assess flow behavior of 

fluid foods with large particulates. Therefore, to monitor the process data using a 

regression control chart could be useful for quality control. In the following year; 

Shu, Tsung, & Tsui (2004) studied the run-length performance of EWMAREG 

(EWMA chart for regression residuals) and SheREG (Shewhart chart for regression 

residuals) with estimated parameters of regression equation, and used these charts for 

monitoring multistage processes where process data usually follow a multivariate 

normal distribution. The authors also studied the run length performance of 

regression control charts. However, Zhang (1984) and Wade & Woodal (1993) 

considered the CSC with sample size one, while the studies about construction of 

cause-selecting charts with sample size greater than one are discussed by Yang 

(2005) for joint x  and e  cause-selecting charts. Yang & Yang (2005) considered the 

problem of monitoring the mean of a quality characteristic x  on the first process 

step, and the mean of a quality characteristic y  on the second process, in which the 

observations x  can be modeled as an ARMA model and observation y  can be 

modeled as a transfer function of x  since the state of the second process is dependent 

on the state of the first process. In the following year (in 2006) they addressed the 

2x s−  and 2
ee s−  charts for two dependent process steps with over-adjusted means 

and variances. Sulek, Marucheck, & Lind (2006) examined the CSC as a 

methodology to monitor and identify potential problem areas in an actual cascade 

service process. The authors utilized the CSC as an appropriate methodology for 

analyzing the performance of a down stream stage in a multistage process by 

controlling the effect of performance in the upstream stage. Yang & Su (2007) 

constructed an adaptive sampling interval xZ  control chart to monitor the quality 

variable produced by the first process step, and used the adaptive sampling interval 

eZ  control chart to monitor the specific quality variable produced by the second 

process step. Asadzadeh, Aghaie, & Yang (2008) reviewed CSC for monitoring and 

diagnosing multistage processes. The following year (in 2009) they proposed a 

robust CSC to monitor multistage processes where outliers are presented in historical 

dataset. In the same year, Yang & Chen constructed the variable sampling interval 

(VSI) 2x s
Z Z−  and 

2e
e sZ Z−  control charts in order to effectively monitor the quality 
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variable produced by the first process step with incorrect adjustment and the quality 

variable produced by the second process step with incorrect adjustment, respectively. 

When the residual terms are not normally distributed, an alternative method for 

estimating the regression line is needed. One alternative method is the least absolute 

value (LAV) regression model. In contrast to the OLS approach, which minimizes 

the sum of the squared residuals, the LAV model minimizes the sum of the absolute 

values of the residuals. Utley & May (2009) proposed a control chart methodology 

for residual control charts that is based on least absolute value (LAV) regression.   

 

In this section, control charts for autocorrelated processes and conventional 

regression control chart were reviewed, and the historical progression in this field 

was emphasized. Brief information about artificial neural networks is given in the 

following chapter. In this thesis, neural networks are used to recognize the 

autocorrelated and trended process observations before using proposed regression 

control chart. 
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CHAPTER THREE 

PROPOSED REGRESSION CONTROL CHART FOR AUTOCORRELATE D 

DATA (RCCA) 

 
In this thesis, a new regression control chart for autocorrelated process 

observations (RCCA for short) which is able to detect the mean shift in a production 

process is presented. This chart is designed for autocorrelated process observations 

having a linearly increasing trend. Existing approaches may individually cope with 

autocorrelated and trending data. To the best of our knowledge there appears to be no 

chart that directly monitors the original data which exhibit both increasing linear 

trend and serial correlation. The proposed chart (RCCA) requires the identification of 

trend AR(1) model as a suitable time series model for process observations. For a 

wide range of possible shifts and autocorrelation coefficients, performance of the 

RCCA is evaluated by simulation experiments. Simulation results are given in 

chapter four. The average correct signal rate and the simulated average run length are 

used as performance criteria. Recognition of autocorrelated and trending process 

observations is performed by using neural networks. Next subsection describes the 

integrated neural based structure that we used to diagnose autocorrelation through the 

trending process observations. After presenting the neural based pattern recognizer, 

construction steps of the proposed chart will be given with an illustrative example. 

 

3.1 Recognition of Autocorrelated and Trending Data Using Neural Networks 

 

3.1.1 Background 

 

In this subsection, before implementing RCCA, design and implementation of the 

combined neural network structure (CNN), that is composed of appropriate number 

of linear vector quantization (LVQ) and multi layer perceptron (MLP) (also known 

as the ‘feedforward backpropagation network’) neural networks that are used to 

recognize the trend in process data, is described. After recognizing the trending 

pattern, the Elman’s recurrent neural network (ENN) is used to diagnose the
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autocorrelation through the trending data. When the literature is reviewed, it is 

observed that there is not any integrated neural network structure that combines 

LVQ, MLP and Elman networks together to recognize the autocorrelated and 

trending patterns. The proposed control chart can be employed to detect the shift in 

process data after recognition of autocorrelated and trending pattern as described in 

section 3.2 and section 3.3 with an illustrative example. 

 

Researchers have investigated the use of artificial neural networks (NNs) in the 

application of control chart pattern recognition (CCPR) (Guh, 2008). Different 

statistical tools (such as least squares for trend analysis and time series analysis for 

calculating autocorrelation coefficients) can be easily implemented to process data to 

recognize the trend or autocorrelation in process data but when compared to other 

methodologies the neural network approach has certain advantages which are 

mentioned in section 2.3. The Appendix 1 describes in detail the process simulator 

for generating the CCP examples and etc. In recognition problems, NNs can recall 

patterns learned from noisy or incomplete representations, which makes them 

suitable for CCPR because CCPs are generally contaminated by common cause 

variations (Guh, 2008). Pattern recognition provides a mechanism for identifying 

different types of predefined patterns in real time on the series of process quality 

measurements. The recognized patterns then serve as the primary information for 

identifying the causes of unnatural process behavior (Pacella & Semeraro, 2007).  

 

Various studies have demonstrated the utility of NNs in identifying CCPs. Pham 

& Oztemel (1992a, 1994) used a backpropagation network (BPN) and learning 

vector quantization (LVQ) network to recognize shift, trend and cycle patterns on 

control charts. Their Back Propagation (BP) and LVQ networks achieved 95% and 

97.7% accuracy, respectively. Hwarng & Hubele (1993) extensively investigated 

CCPR by training back propagation networks (BPNs) to detect six unnatural CCPs 

suddenshift, trend, cycle, stratification, systematic, and mixture. Cheng (1997) 

developed a NN approach for the analysis of control chart patterns. Anagun (1998) 

organized the training data in two different ways (direct representaion and histogram 

representation) before introducing them to the designed NN applied to pattern
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recognition in statistical process control. Guh & Tannock (1999) tried to investigate 

the feasibility of an NN to recognize concurrent control chart patterns (where more 

than one pattern exists together, which may be associated with different causes). 

Pham & Chan (2001) described in their paper, the use of unsupervised adaptive 

resonance theory ART2 neural networks for recognizing patterns in statistical 

process control charts. Pham & Sagiroglu (2001) presented an overview of four 

algorithms used for training MLP networks and the results of applying those 

algorithms to teach different MLPs to recognise control chart patterns and classify 

wood veneer defects. The algorithms studied are BP, Quickprop (QP), Delta-Bar-

Delta (DBD) and Extended-Delta-Bar-Delta (EDBD). The results have shown that, 

overall, BP was the best algorithm for the two applications tested. Al-Assaf (2004) 

used multi-resolution wavelets analysis (MRWA) to extract distinct features for 

unnatural patterns by providing distinct time-frequency coefficients. Gauri & 

Chakraborty (2006) developed two feature-based approaches using heuristics and 

articial neural network, which are capable of recognizing eight most commonly 

observed CCPs including stratication and systematic patterns. In the following year 

(2007), they presented potentially useful 32 features which provide an opportunity 

for understanding the behaviours of the CCPs in detail. They demonstrated a simple 

approach for designing the optimal feature-based heuristic using the classification 

and regression trees (CART) algorithm, which is capable of detecting all of the eight 

basic CCPs using a considerable smaller number of observations. Gauri & 

Chakraborty (2008) selected a set of seven shape features so that their magnitudes 

will be independent of the process mean and standard deviation. Based on these 

features, all the eight commonly observed CCPs are recognized by using a MLP. 

Jiang, Liu, & Zeng (2009) used a BPN to recognize control chart patterns 

preliminarily and then they adopted numerical fitting method to estimate the 

parameters and specific types of the patterns, which is different from the traditional 

neural network-based control chart pattern recognition methods. Recently, pattern 

recognition techniques based on artificial neural network (ANN) are limited to 

recognize simple CCPs arising from single type of unnatural variation. In other 

words, they are incapable to handle the problem of concurrent CCPs where two types 

of unnatural variation exist together within the manufacturing process. Wang, Dong, 
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& Kuo (2009) presented a hybrid approach based on independent component 

analysis (ICA) and decision tree (DT) to identify concurrent CCPs. Without loss of 

generality, six types of concurrent CCPs are used to validate the proposed method. 

Recognition of various control chart patterns (CCPs) can significantly reduce the 

diagnostic search process. Feature-based approaches can facilitate efficient pattern 

recognition. In the same year, a set of seven most useful features is selected by Gauri 

& Chakraborty (2009), using a classification and regression tree (CART)-based 

systematic approach for feature selection. Based on these features, eight most 

commonly observed CCPs are recognized using heuristic and MLP network. 

 

Figure 3.1 displays the NN aided pattern recognition and process monitoring 

procedure of the RCCA. As can be seen, for recognizing the trend and autocorrelated 

patterns, a combined NN architecture is used to provide a collective authority in 

decision for trended data, and call it combined neural network recognizer (CNNR), 

then employ ENN to recognize the autocorrelation that is filtered by CNNR. 

 

 

Figure 3.1 NN aided pattern recognition and process monitoring procedure of the RCCA.  
 

Topologies of MLP and LVQ are given in Figure 3.2 and Figure 3.3, 

respectively. Each neuron, represented by truncated cylinders in a layer, is connected 

with all neurons of the next layer by arcs. Each arc has a weight. Threshold value 

prevents the neurons to produce zero value. In Figure 3.3, the weights of arcs 
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between Kohonen and output layers are equal to one (see Oztemel (2003) and Gauri 

& Chakraborty (2008) for details). The output of MLP and LVQ is one of the control 

chart patterns (CCP). The desired CCP for LVQ and MLP for the input data under 

consideration is increasing linear trend that is one of the six CCP types (naturel 

pattern: NP; upward shift: US; downward shift: DS; increasing trend: IT; decreasing 

trend: DT; periodic shift: PS).  

 

 

                        Figure 3.2 Feedforward MLP NN architecture (Oztemel, 2003; Gauri &  

                        Chakraborty, 2008). 
 

 

                    Figure 3.3 LVQ NN architecture (Oztemel, 2003; Ham & Costanic, 2001). 

  

Learning rules of MLP and LVQ networks are given in Appendix 2 and 

Appendix 3, respectively. The combined NNs that consist of three or more NNs give 

more successful solutions when compared with single NN structure (Oztemel, 2003). 

The inputs are presented to each NN independently and also each NN are trained 

independently, and the outputs of them are obtained. In this thesis appropriate 
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numbers of LVQ and MLP networks are combined to obtain more successful 

solutions. Components of CNNR are displayed in Figure 3.4. Each of the NN was 

trained independently from others. The outputs of these NNs were combined and by 

the help of a collective decision making module (CDMM) a collective decision was 

performed. A CDMM depends on unanimity.  

 

 
              Figure 3.4 Components of the CNNR. 

 
Operation of CDMM is given in Appendix 4. After recognizing the trended 

pattern, the Elman’s recurrent neural network (ENN) was used to diagnose the 

autocorrelation through the trending data. A recurrent ENN where the recurrency 

allows the network to remember cues from the recent past is suitable for recognizing 

time series data and monitoring process shifts in the presence of autocorrelation 

(Pacella & Semeraro, 2007). ENN is especially used for modeling first ordered linear 

systems. ENN has the ability of processing the data that are time dependent and also 

can transform the results that are obtained at previous time to a one step ahead. ENN 

considers relations that are time dependent. So this network is used to estimate the 

future by considering its behaviours today (Oztemel, 2003). ENN is similar to MLP 

when its construction is considered but differs from MLP at having the dynamic 

memory property which brings this algorithm a special importance to recognize time 

series data. The ENN employs feedback connections and addresses the temporal 

relationship of its inputs by maintaining an internal state. In ENNs input layer does 

not include transfer function like MLP. Topology of ENN is given in Figure 3.5. 

Learning rules of ENN are given in Appendix 5. The output of ENN is that if the 

trended process data filtered by CNNR is autocorrelated or not. 
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                      Figure 3.5 ENN architecture (Ham & Kostanic, 2001; Oztemel, 2003). 
 

In the relevant literature, for the autocorrelated processes, NNs are used to 

recognize if the input pattern is one of the CCP types (first task) and is it 

autocorrelated (second task), simultaneously. Because of the complexity of 

autocorrelated processes with one of CCP types, the training process of networks can 

be hard, while the correct classification rate decreases. By the proposed integrated 

structure, the mentioned two tasks are distributed to different networks. The first task 

is performed by CNNR that is composed of appropriate number of LVQ and MLP 

networks, while the second task is performed by the ENN that is advisable to 

recognize autocorrelation. Executing only one of the given tasks, correct 

classification rate of each network increases and training these networks are 

simplified; and then by combining the results of each network, the performance of 

proposed network structure is increased when it is compared with the results 

represented in the literature. 

 

3.1.2 Generating Sample Data  

 

In this section how training and testing data sets are generated is explained. 

Generated data sets are used in training and testing the networks and also calculating 

the performance of RCCA. The process simulator coded in MATLAB 7.4.0 was used 

for generating the training data sets. The details of process simulator are given in 

Appendix 1.  
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3.1.2.1 Training Data Set for CNNR  

 

For each type of the six CCPs 400 sample data sets were generated. Each data set 

is composed of 500 observations. While one half of the sets are uncorrelated, the 

other half contains both correlated and uncorrelated data sets. The former sets are 

collected in set1, and the latter in set2. For each CCP type in set2, 40 data sets were 

generated using each of five φ  values such as 0.95, 0.475, 0.0, -0.475, and -0.95. 

That is, the first 40 sets were simulated using φ =0.95, the second 40 sets for 

φ =0.475, and so on. Set1 and set2 were generated by different process simulators 

that are given in Appendix 1. Set1 and set2 were used together for training of MLP 

and LVQ. Parameter values used for process simulator are displayed in Table 3.1.

  

Table 3.1 Details of the CCP training example sets for the LVQ and MLP networks 

Pattern type Parameter range for set1 Parameter range for set2 Set name and 
number of 
observations 

Normal 
distribution   

[1,500]t = , 10µ = , 2σ = , 

[0,1]u Uniform=    

[1,500]t = , 0ξ = ,  1 10x = , 

~ (0,4)Nε ,

: 0.95,0.475,0.0, 0.475, 0.95φ − −   

Set1:200  
Set2:200  

Increasing 
trend     

[0.1,0.125]g uniform=      

(for the first 100 data set) 
0.2g =  (otherwise) 

0.2d =  Set1:200 
Set2:200 

Decreasing 
trend  

( )g−  ( )d−  Set1:200 
Set2:200 

Sliding up 0slidingk =   (if t < 50) 

1slidingk =    (if t ≥ 50) 

[2,4]displacements Uniform=   

0slidingk =   (if t < 150) 

1slidingk =   (if t ≥ 150) 

(4.5)displacements =   

Set1:200 
Set2:200 

Sliding 
down  

( slidingk− ) ( slidingk− ) Set1:200 
Set2:200 

Periodical 
shifting 

500N =  
500π =  

= randint [0,30]periodicα  

500N =  
500π =  

=(0.25,1.0,3.0) periodicα   

Set1:200 
Set2:200 

 

3.1.2.2 Training Data Set for ENN 

 

To train ENN, both autocorrelated and uncorrelated data sets, with increasing and 

decreasing linear trend, were generated. Each set is composed of 500 data points.  

Underlying model for autocorrelated process is given in Appendix 1. Totally 800 sets 

were generated for autocorrelated process; one half for increasing trend and other 
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half for decreasing trend. On the other hand, each 100 of autocorrelated sets have a 

specific φ  value ( : 0.95,0.475, 0.475, 0.95φ − − ) listed in Table 3.2. Underlying model 

for uncorrelated process with increasing trend is given below. 

 

t t tX dtµ ε= + +                               (3.1) 

 

For the process with decreasing trend sign of the dt  in Equation (3.1) will be 

negative. 400 sets were generated for each of uncorrelated process with increasing 

trend and decreasing trend, respectively. Parameter values used for CCP training data 

sets are depicted in Table 3.2.  

 
Table 3.2 Details of the CCP training example set for the ENN 

Parameter range for AR(1) process data Parameter range for uncorrelated process data 
0,ξ =  1 10x = , ~ (0,4)Nε , [1,500]t =  

: 0.95,0.475, 0.475, 0.95φ − −  

0.2d =  (for increasing trend) 
( )d−       (for decreasing trend) 

~ (0,4)Nε , [1,500]t =  

 
0.2g =  (for increasing trend) 

( )g−       (for decreasing trend) 

 

3.1.3 Recognition of Trend and Autocorrelation in Data  

 

3.1.3.1 CNNR to Detect Six Unnatural CCPs 

 

Three different ANN based recognizers were developed. First two of these 

recognizers (ANN1 and ANN2) use LVQ algorithm. Architectures of ANN1 and 

ANN2 differ in number of neurons at Kohonen layer. The third member of CNNR 

uses MLP structure. Configurations of the LVQ and the MLP networks which are the 

members of the CNNR are depicted in Table 3.3 and Table 3.4, respectively. 

Preliminary investigations are conducted to choose a suitable network topology and 

training algorithm for each member of CNNR. According to the experimental design 

performed for investigating the appropriate network topologies of LVQ networks, the 

design parameters for learning rate (0.01, 0.03, 0.06, 0.09) respect to number of 

neurons at Kohonen layer (from 4 to 40 neurons increasing four by four) are used 

and minimum mse (mean square error) is reached with the design parameters that are 

given in Table 3.3. Similarly, for MLP network, the design parameters for number of 
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hidden layers (from 1 to 4 increasing one by one), number of neurons at each layer 

(from 8 to 72 increasing eight by eight), learning rates (0.01, 0.02) and momentum 

constants (from 0.02 to 0.05 increasing with step size 0.01) are used and minimum 

mse is reached for the design parameters that are given in Table 3.4. 

 

Table 3.3 Network configurations for LVQ NNs 
Members of CNNR : ANN1 ANN2 

Type of ANN LVQ LVQ 
Number of neurons at Kohonen layer 24 36 
Learning rate 0.01 0.01 
Training example set  Set1+ Set2 Set1+ Set2 
Training example set class percentages are same and equal to (1/6) for each of six CCP type 
Network  training parameters   

Error goal : 1x10-17 (1e-17) 1x10-17 (1e-17) 
Maximum number of epochs : 200 200 

 

Table 3.4 Network configuration for MLP NN 

Members of CNNR :  ANN3 
Type of ANN MLP 
Number of hidden layers 3 
Number of neurons at each hidden layer respectively  12, 64, 64 
Number of neurons at output layer 1 
Functions   
   Transfer (activation) functions of hidden layers respectively:  

                       
                          Transfer (activation) function of output layer : 

Purelin, Tangent sigmoid, Tangent 
sigmoid 
Purelin 

Backpropagation network training function : TRAINGD Gradient descent back 
propagation 

Backpropagation weight/bias learning function : LEARNGD Gradient descent 
weight/bias learning function 

Performance function : mse (mean square error) 
Training set  Set1+ Set2 
Network  training parameters  

Error goal :  1x10-2 
Maximum number of epochs : 30000 

Momentum constant : 0.4 
Learning rate : 0.01 

 

The generated data were presented to each NN independently and also each NN 

was trained independently. The coding is performed in MATLAB 7.4.0. Then 

outputs of these NNs were combined and by the help of a collective decision making 

module (CDMM) a collective decision is performed (see Oztemel (2003) and Gauri 

& Chakraborty (2008) for detailed information). The training was stopped whenever 

either the error goal is achieved or the maximum allowable number of training 

epochs is met. Now verification sets are needed for testing the performance of NNs 
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which are the members of CNNR. New sets of verification samples of size 2400 each 

were generated by using the parameters given in Table 3.1 again. The generated 

samples for verification were used to test the performance of CNNR members. The 

recognition performance of all these ANN-based recognizers was tested using 

different sets of test samples. The verification results of the ANN-based recognizers 

are displayed through Table 3.5 - Table 3.7, and the performance of CNNR is given 

in Table 3.8. The elements in these tables are the classification rates (CR) of 

networks by percentages. The columns represent the expected classification for the 

input pattern, while rows represent the actual classification rate of network for the 

given test set. For example in Table 3.5, for the first column the expected 

classification is NP, but as it can be seen from the last row of Table 3.5, the correct 

classification rate of ANN1 is 92.5%.  

 
Table 3.5 Testing results of the ANN1 for autocorrelated data  

CR (%) Required classification 
 NP US DS IT DT PS 
PS 0.0000 0.0000 0.0000 0.0000 0.0000 0.7565 
DT 0.0000 0.0000 0.0052 0.0000 0.9982 0.0000 
IT 0.0000 0.0105 0.0000 0.9884 0.0000 0.0000 
DS 0.0750 0.0020 0.9848 0.0000 0.0018 0.0000 
US 0.0000 0.9875 0.0000 0.0116 0.0000 0.0000 
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et
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rk
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as
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at
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n
 

NP 0.9250 0.0000 0.0100 0.0000 0.0000 0.2435 
NP: natural pattern; US: upward shift; DS: downward shift; IT: increasing trend; DT: decreasing trend; PS: periodic shift 

 
Table 3.6 Testing results of the ANN2 for autocorrelated data 

CR (%)  Required classification 
 NP US DS IT DT PS 
PS 0.0000 0.0000 0.0000 0.0000 0.0000 0.7550 
DT 0.0000 0.0000 0.0010 0.0000 0.9975 0.0000 
IT 0.0000 0.0000 0.0000 0.9876 0.0000 0.0000 
DS 0.0600 0.0150 0.9990 0.0000 0.0025 0.0000 
US 0.0000 0.9850 0.0000 0.0124 0.0000 0.0000 

N
et

w
o

rk
  

cl
as
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fic

at
io

n
 

NP 0.9400 0.0000 0.0000 0.0000 0.0000 0.2450 
NP: natural pattern; US: upward shift; DS: downward shift; IT: increasing trend; DT: decreasing trend; PS: periodic shift 

 
Table 3.7 Testing results of the ANN3 for autocorrelated data 

CR (%)  Required classification 
 NP US DS IT DT PS 
PS 0.0000 0.0100 0.0000 0.0000 0.0000 0.9990 
DT 0.0000 0.0050 0.0100 0.0350 0.9950 0.0000 
IT 0.0050 0.0000 0.0000 0.9500 0.0000 0.0000 
DS 0.0000 0.0350 0.9900 0.0150 0.0050 0.0000 
US 0.0000 0.9500 0.0000 0.0000 0.0000 0.0000 

N
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o

rk
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fic

at
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n
 

NP 0.9950 0.0000 0.0000 0.0000 0.0000 0.0010 
NP: natural pattern; US: upward shift; DS: downward shift; IT: increasing trend; DT: decreasing trend; PS: periodic shift 
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Table 3.8 Testing results of the CNNR for autocorrelated data 

CR (%)  Required classification 
 NP US DS IT DT PS 
PS 0.0000 0.0000 0.0000 0.0000 0.0000 0.7650 
DT 0.0000 0.0000 0.0024 0.0000 0.9968 0.0000 
IT 0.0000 0.0090 0.0000 0.9947 0.0000 0.0000 
DS 0.0600 0.0000 0.9976 0.0000 0.0032 0.0000 
US 0.0000 0.9910 0.0000 0.0053 0.0000 0.0000 

N
et

w
o

rk
  

cl
as
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fic

at
io

n
 

NP 0.9400 0.0000 0.0000 0.0000 0.0000 0.2350 
NP: natural pattern; US: upward shift; DS: downward shift; IT: increasing trend; DT: decreasing trend; PS: periodic shift 

 
As can be seen from these tables, at the training and verification phases, 

recognition performances of three members of CNNR are good for trended patterns. 

The overall mean percentage values of correct recognition at the training and 

verification phases for trended patterns are highly correct for all NN based 

recognizers. As can be seen from Table 3.8, the correct classification rate of CNNR 

is higher then its members and 99.47% for increasing trend. These correctly 

recognized trended patterns are used as input for ENN.  

 

3.1.3.2 Network Configuration of ENN 

 

Configuration for ENN is given in Table 3.9. Initially, all weight values were 

chosen randomly and then they were optimized during the training stage.   

 
Table 3.9 Network configuration for ENN 

Number of neurons at each layer respectively  6 (for hidden layer), 1 (for output layer) 
Functions   
           Transfer (activation) function of hidden layer : 

Transfer (activation) function of output layer : 
Tangent Sigmoid 
Purelin 

Backpropagation network training function : TRAINGDX Gradient descent 
w/momentum & adaptive lr 
backpropagation 

Backpropagation weight/bias learning function :  LEARNGDM Gradient descent 
w/momentum weight/bias learning 
function 

Performance function : mse (mean square error) 
                                                 Training example set : Presented in Table 3.2 
Network  training parameters                                               

Error goal :  1x10-2 
Maximum number of epochs : 500 

 

Desired output of ENN is either 1 if the autocorrelation has been detected or 0 

otherwise. Due to the random noise and to different values of actual inputs, the 

output of ENN is a number ranging approximately between 0 and 1. Therefore, an 
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activation cut off value must be defined to release an alarm if the network output is 

greater than the cutoff. Similar to the approach used by Pacella & Semeraro (2007), 

we defined a cut off value (C) 0.60 for increasing trend and 0.5290 for decreasing 

trend. If the trained NN signals greater than or equal to cutoff value, point out that 

the tested data set has serial correlation, otherwise has no serial correlation.  
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Figure 3.6 A test solution for an example test set of autocorrelated and  

                          uncorrelated trended data that have been shown to Elman NN twise. 

 

Table 3.10 summarizes the performance of ENN for autocorrelated data with 

increasing linear trend that is filtered by CNNR. 

 

Table 3.10 Testing results of the ENN  

                           Required classification 
 Autocorrelated Uncorrelated 
 
Autocorrelated 

 
0.9846 

 
0.0003 

N
et
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o

rk
  

C
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tio
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Uncorrelated 

 
0.0154 

 
0.9997 

  

The results displayed in Table 3.10 indicate that autocorrelated increasing trend 

is recognized with 98.46% accuracy rate for the cutoff value 0.60. This means that 

autocorrelation has been detected by ENN with 98.46% accuracy through the set that 

is correctly recognized by CNNR (see Table 3.10) with 99.47% accuracy from trend 

AR(1) test set. In this case the network did a fairly good job with only 6 neurons in 

the recurrent layer, and 500 training epochs. More recurrent neurons and longer 

training times could be used to increase the network's accuracy on the training data. 

Training the network on more amplitude will result in a network that generalizes 

better. Based on preliminary investigation, no evident improvement in performance 

was attained by extending the training set beyond 400 examples for each type.  
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3.2 Construction of the Proposed Chart 

 

After the linear trend and serial correlation were diagnosed by means of NNs, the 

RCCA was used for different magnitudes of the mean shift, under the presence of 

various levels of autocorrelation. Performance of the RCCA was evaluated in terms 

of the average correct signal rate and the simulated average run length (ARL). An 

autoregressive process of lag 1, AR(1), is the representative model for autocorrelated 

processes. In an AR(1) process, the current observation is correlated with its previous 

observation. Past studies emphasize the role of AR(1) processes in process control 

(Guh, 2008). An AR(1) model can be expressed as follows:  

  

1t t tx xξ φ ε−= + +                                                                               (3.2) 

 

where t is the time of sampling, tx  is the sample value at time t, ξ  is the constant, φ  

is the autoregressive coefficient (-1<φ <1), and tε  is the independent random error 

term (common cause variation) at time t following 2(0, )N εσ= . Let autocorrelated 

process observations (tx ) with an increasing linear trend (trend AR(1) process) be 

represented by: 

 

 t tX x dt= +                                                       (3.3) 

 

where d is the trend slope and t is the time step (or observation number), and 

autocorrelated and trending process observations (tX ) with a mean shift be depicted 

by: 

 

t tZ X µδ= +                                                            (3.4) 

 

where µδ  is the magnitude of upward mean shift. In this thesis, our aim is to test for 

an upward shift in the mean of }{ tZ  by using the RCCA. Notations are listed in 

Appendix 6. The RCCA is constructed in the following five steps; 
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Step 1 Fit a simple linear regression model to the data.  

 

The center line of the RCCA is a regression line as is in a conventional regression 

chart. So the parameters 1β  (slope) and 0β  (intercept) need to be estimated by 
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0 1
ˆ ˆZ Tβ β= −                                                                           (3.6) 

 

where N represents the sample size, tZ  is the tth observation, Z  the mean value of 

tZ , t=1,2,…,N and T  the mean value of t  
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Step 2 Calculate the RCCA variation parameter (RCCAVP for short).  

 

2

1
ˆ

1eRCCAVP σ
φ

 =  − 
                                                    (3.9) 
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is the standard deviation of {te } which is the difference between expected and 

observed values of tZ , 

   

1t t te Z Zφ −= − ,                                                                      (3.11) 

 

and e  is the sample mean of {te } 

 

 1

N

t
t

e
e

N
==
∑

                                        (3.12) 

 

Step 3 Calculate the time dependent EWMAARZ parameter to widen the control 

limits up. The aim is to obtain an acceptable false alarm rate.  

 

( )
1

ˆ
EWMAARZ

N

EWMA t
t

N

σ
==
∑

                                                         (3.13) 

 

where 

  

2
( ) ( 1)ˆ ˆ(1 )EWMA t t EWMA teσ α α σ −= + −                                                 (3.14) 

 

and (1)ˆ ˆEWMA eσ σ= . During the comprehensive experiments we conducted, it is 

observed that the RCCA gives better performance for α =0.80. ˆEWMAσ  is the 

estimated smoothed standard deviation of tZ  and shows similar characteristics with 

the smoothed variance in moving centerline EWMA (MCEWMA) chart. As can be 

seen in (3.13), EWMAARZ is affected by the process residuals, and implicitly by the 

autoregressive parameter φ . As depicted in Equation (3.11), residuals get larger for 

φ  < 0 and vice versa.  
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Step 4 Calculate +C ( −C ) to widen (narrow) the upper control limit if there is an 

upward (downward) shift in the mean of the process.  

 

There is an upward (downward) shift in the process mean if +C ( −C ) continues 

to get larger (smaller).  

 

( )
1

N

RCCA t
t

C
C

N

+

+ ==
∑

                                                              (3.15) 

 

( )
1

N

RCCA t
t

C
C

N

−

− ==
∑

                                                            (3.16) 

 

where (1) 0RCCAC+ = , (1) 0RCCAC− =  , { }( )
ˆmax[0, ( )]t

RCCA t t oC Z M k+ = − + ,                                                                 

 

{ }( )
ˆmin[0, ( )]t

RCCA t t oC Z M k− = − −                                                             (3.17) 

 

and          

 

2
1̂

ˆ 1,2,...,
2

t o
o

D
M t t Nφ β= + =                                                                     (3.18) 

 

denotes the target varying mean for process observations at each time step t. In the 

CUSUM control chart, deviations from the constant target mean ( 0µ ) are used to 

calculate accumulating deviations. In the present dissertation, with a similar purpose, 

ˆ t
oM  is used as a reference value for the process observations. The distance between 

each process observation and ˆ t
oM  is calculated in each time step t. On the other hand, 

if the conventional regression control chart that is proposed by Mandel is considered, 
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the center line formulated by 0 1
ˆ ˆy tβ β= +  also represents the target varying mean. 

Intercepts show difference between ˆ t
oM  and the target varying mean in the Mandel’s 

regression control chart.  

 

The intercept in ˆ t
oM  is formulated as 2

2
oDφ . Calculations for Do are given in Table 

3.11. For positive autocorrelation, because of the nature of the process, a relatively 

large observation at the previous time step tends to be followed by another large 

value at the current time step. RCCA adjusts its control limits’ width with respect to 

the autocorrelated process observations by using +C  and −C . For this purpose, 

RCCA takes into consideration the sign of autocorrelation and the magnitude of 

autocorrelation coefficient. The functional role of +C  and −C , that are the means of 

calculated ( )RCCA tC+  and ( )RCCA tC−  values, will be given in detail at the following pages. 

As mentioned before ( )RCCA tC+  and ( )RCCA tC−  represent derivations from the target 

varying mean at each time step t. By using +C  and −C  the width of the control 

limits are decreased. In other words, +C  and −C  have decreasing effect on the 

width between upper and lower control limits. For weak autocorrelation cases we 

expect the control limits to get narrower when it is compared with the strong 

autocorrelation. So the calculated values for ( )RCCA tC+  and ( )RCCA tC−  are expected to be 

smaller for strong autocorrelation to get larger control limits. As it can be observed 

from the formulations of ( )RCCA tC+  and ( )RCCA tC−  that are given in Equation (3.17), this 

can be provided by determining large ˆ t
oM  to get smaller ( )RCCA tC+  values for strong 

autocorrelation and vice versa. By including the square of autocorrelation coefficient 

in the intercept, it is aimed to have larger (resp. smaller) target varying mean when 

observations are strongly autocorrelated (resp. weakly autocorrelated) in order to 

increase the correct signal rate. 

 

While calculating ( )RCCA tC+  and ( )RCCA tC− , a slack value k is used to prevent the 

inclusion of small deviations from the process mean. In the relevant literature, k is 
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often chosen as a halfway between the target mean and the out-of-control value of 

the mean (Montgomery, 1997). It is important to select the right value for k since a 

large value of k will allow for large shifts in the mean without detection, while a 

small value of k will increase the frequency of false alarms. For a conventional 

CUSUM chart, k is selected to be equal to 0.5σ. During our comprehensive 

experiments, we observed that the RCCA gives better performance for k=
6

RCCAVP
. 

Calculations for Do in Equation (3.18) are given in Table 3.11, below. 

  

The reason for calculating ( )RCCA tC+  and ( )RCCA tC−  is similar to that of tC+  (upper 

cumulative sum) and tC−  (lower cumulative sum) statistics in CUSUM chart 

(Montgomery 1997). The basic purpose of a CUSUM chart is to track the distance 

between the actual data point and the grand mean. By keeping a cumulative sum of 

these distances, it can be determined if there is a change in the process mean. But, 

because ( )RCCA tC+  and ( )RCCA tC−  display some distinct characteristics from tC+  and tC− , 

they are time dependent, and are not affected from their previous values, and we 

select the minimum value while calculating the ( )RCCA tC−  (as depicted in Equation 

(3.17)), not the maximum value as in the calculation of tC−  (Montgomery, 1997).  

 

Step 5 Calculate the other parameters required for constructing the RCCA.  

 

These parameters and the formulas used for calculations are given in Tables 3.11 

through 3.14. As can be seen in Table 3.11 and Table 3.12, to calculateB , 2B , D0; 

and 3B , 4B , L, D1, D3, D4, and D5, distinct formulas are employed due to the sign of 

0β̂ and of φ , respectively. On the other hand, signs of both 0β̂  and φ  determine 

which formulas will be used for +
2D  and −

2D . As can be seen in Table 3.13, if φ  > 0, 

while deciding which formula will be used for 2D , magnitude of 0β̂  is compared 

with RCCAVPφ . According to our comprehensive experiments, the RCCA gives 

better performance in terms of false alarm rate with the parameters given in Tables 
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3.11 through 3.14, and the false alarm probability is lower when 0β̂  and 1̂β  have the 

same sign than when these parameters have opposite signs. Also big values of C+  

increase the correct alarm rate for upward shift and vice versa. The magnitude and 

the sign of 0β̂  directly affect the control chart performance. If the data have positive 

autocorrelation, unless the shift size is not changed, the performance gets better 

(worse) as the magnitude of positive 0β̂  (negative 0β̂ ) gets bigger, vice versa for 

negative autocorrelation. It is because the signs of 0β̂  and φ  affect the performance 

of the RCCA that Tables 3.11 through 3.14 are arranged in respect of the signs of 

these parameters. Because the RCCA has several parameters, the design procedure 

seems to be complicated. However, as can be seen in Tables 3.11-3.14, specifying 

values for some parameters can decrease the number of RCCA parameters and 

reduce the calculation complexity. Tables 3.11 - 3.14 show these special cases of the 

RCCA.  

 

Table 3.11 Parameter calculations according to the sign of 0β
⌢

  

If 0β̂  < 0 If 0β̂ ≥  0 

2 0B+ =     2 0B− =  2 1B+ =    2 1B− =  

2

ˆ
o

EWMAARZ
B

e
β+  = +  

 
         

2

ˆ
o

EWMAARZ
B

e
β−  = − +  

 
 

0B+ =     0B− =  

0D RCCAVP= −  0D RCCAVP=  

 

Table 3.12 Parameter calculations according to the sign of φ   

If φ  > 0 If φ  < 0 

3 1B+ =    3 1B− =  
1

3

0

ˆ

ˆ
B

β
φ β

+ =         1
3

0

ˆ

ˆ
B

β
φ β

− =  

3.0L =  1.5L =  

1 0D =  3 1D =  4 1D =  5 1D =    
1

1
D

φ
=  2

3 3D Lφ=  4 1.5D = −  5D φ=  

4 1B+ =       4 1B− =  4B φ+ =      4B φ− =  
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Table 3.13 Parameter calculations for D2 when φ  > 0 

0β̂ > 0 0β̂  >φ RCCAVP 0 0
2

1

ˆ ˆ
( / 2)

ˆ( / 2) ( )

C
D L

L L RCCAVP

β β
φ β

−
+ = +  

  
20 0

2

1

ˆ ˆ
( / 2) 3

ˆ( / 2) ( )

C
D L C

L L RCCAVP

β β φ
φ β

−
− −= + +  

 
0β̂  ≤φ RCCAVP 2

2 0
ˆ 3 (1/ 3) (1/ )D LC Cφβ φ φ+ − += + −  

  2
2 0

ˆ 3 (1/ 3) (1/ )D LC Cφβ φ φ− − += + +  

   

0β̂ ≤  0  
2 0

ˆ2 ( )D L Cφ β+ −= −  

  
2 0

ˆ2 ( )D L Cφ β− += −  

 
Table 3.14 Parameter calculations for D2 when φ  < 0 

0
ˆ 0β >  2

0 0 1
2 2 2 2

ˆ ˆ ˆ
( 1/ 3) ( )

( )

C C C
D L

L RCCAVP

β β β
φφ φ φ

− + −
+    

= − + + −     
  

 

 2

0 0 1
2 2

ˆ ˆ ˆ
( ) 2

( )

C C C
D L L

L RCCAVP

β β β
φ φ φφ

− − +
−    

= + + −     
  

 

  

0
ˆ 0β ≤  2 0

ˆ2 ( )D L Cφ β+ −= −  

 
2 0

ˆ2 ( )D L Cφ β− += −  

 

Step 6 Calculate control limits and the center line. 

 

Control limits and the centre line of the RCCA are regression lines as given 

below.   

 

Center line:        

      

0 1
ˆ ˆ

t̂Y tβ β= +                                                              (3.19) 

 

Upper control limit (UCL):                   

 

2
3 5

4 2 2
( )

tt UCLpre

D D C
UCL Y L RCCAVP B Dφ

φ

+
+ += + + −                                  (3.20) 
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where             

 

2 0 1 1 3 1
ˆ ˆ ˆˆ

tUCLpreY B B D B EWMAARZ tβ φ β σ φ β+ + += + + + +                                  (3.21) 

 

Lower control limit (LCL): 

 

2
4 5

4 2 2
( )

tt LCLpre

D D C
LCL Y L RCCAVP B Dφ

φ

−
− −= − − +                                  (3.22)                                   

 

where            

 

2 0 1 1 3 1
ˆ ˆ ˆˆ

tLCLpreY B B D B EWMAARZ tβ φ β σ φ β− − −= − − − − +                                   (3.23) 

 

The simple linear regression equation with intercept ( 0β̂ ) and slope ( 1̂β ) is used 

to represent the centre line of the RCCA. Also note that, if a relatively low 

observation from the autocorrelated process at the previous time step tends to be 

followed by another low value at the current time step, and a relatively large 

observation at the previous time step tends to be followed by another large value at 

the current time step, then this type of behavior is indicative of positive 

autocorrelation. Naturally, the direct contrary is indicative of negative 

autocorrelation. So the pattern on control chart varies according to the sign of the 

autocorrelation. To adjust control limits of the RCCA and consequently to provide a 

high correct signal rate, the calculations show disparities according to the 

combinations of the signs of intercept (0β̂ ) and autocorrelation coefficient (φ ). For 

positive autocorrelation wider control limits are needed. The control limits’ width 

should be narrower as the magnitude of positive autocorrelation coefficient 

decreases. For negative autocorrelation, control limits’ width should be narrower 

with respect to the case of positive autocorrelation, and when strong negative 

autocorrelation exists it should be larger compared with the limits for weak negative 

autocorrelation. Control limits of the RCCA are also affected from the magnitude 

and the sign of 0β̂ .  
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To adjust continuously the distance between the center line and upper control 

limit due to the variations in observations that stem from the effect of 

autocorrelation, the parameters 4β +  and L are employed. For a negative 

autocorrelation, with the effect of 4β + , control limits get narrower while the 

autocorrelation decreases. If there is positive autocorrelation between process 

observations, then 4β +  has no effect on control limits. Parameters 2D+ , 3D  and 5D  

are also used to reflect the effect of deviations of observations from target varying 

mean with the combined effect of autocorrelation. The effect of 2D+  on upper control 

limit varies according to the signs of 0β̂  and φ . For a positive strong autocorrelation, 

if the sign of 0β̂  is positive then the upper control limit will be wider than when 0β̂  

is negative. This effect begins to turn in direct contradiction with the decreasing 

autocorrelation between process observations. If there is a strong negative 

autocorrelation and if the sign of 0β̂  is positive then the upper control limit will be 

narrower than when 0β̂  is negative. The same effect continues for the decreasing 

negative autocorrelation from strong to weak with less impact. 3D  and 5D  decrease 

the width of upper control limit for negative autocorrelation since they have no 

impact on it for positive autocorrelation cases. Another parameter that is used for 

determining the width of upper control limit is 
teUCLY Pr , which changes with 

respect to t. For 
teUCLY Pr , by using parameters β +  and 2β + , the effect of smoothed 

standard deviation of the shifted process that depends on exponentially weighted 

residuals (EWMAARZ for RCCA) are taken into consideration. The sign of 0β̂  

affects the width of the control limits. This effect is reflected in the calculations of 

teUCLY Pr  by β +  and 2β + . By considering the magnitude of 0β̂  and exponentially 

weighted residuals, control charts’ upper limit gets narrower for negative  0β̂  values 

while it gets wider for positive values. By using 1D  and 3B+ , combined effect of 

autocorrelation and exponentially weighted residuals are added to the mathematical 

formulation of upper control limit. 1D  and 3B+  show disparities according to the sign 
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of the autocorrelation coefficient φ . 
teUCLY Pr  has an effect on determining the 

width of the upper control limit by reflecting the combined effect of exponentially 

weighted residuals as regards the signs of 0β̂  and φ . The same approaches are 

employed in the calculations of the lower limit of the RCCA given in Equations 

(3.21-3.22).  

 

3.3 Illustrative Example for the RCCA 

 

Figure 3.7 and Figure 3.8 display the RCCA for 3.0σ  and 0.5σ  mean shifts, 

respectively. In these figures while the dashed line represents the shifted process, 

unshifted process is indicated by a solid line. To illustrate how this chart signals, the 

design procedure of the chart is computerized with MATLAB 7.4.0, and applied it to 

a sample of 500 observations generated using Equation (3.4). Design of the chart for 

these sample data was completed in 0.64s (less than 1s) of CPU time on a personal 

computer (AMD turion, 1.79 GHZ, 2.87 GB Ram). To model assignable causes, a 

shift is added in the mean of tZ  in (3.4) starting at observation 51. The parameter 

values employed for building the chart, degree of serial correlation, magnitudes of 

the mean shifts added to the 51st observation, and simulation results (the average 

number of points before an out-of-control signal is observed) are listed in Table 3.15.  

As can be seen in Figures 3.7 - 3.8, the chart gives out-of-control signals at time 

steps 11 and 19 after the mean shift occurs. 

 
Table 3.15 Parameter values and the run length result for the illustrative example 

Parameter 0.5σ   3.0σ  
 φ  0.95 0.95 
 L 3.0 3.0 

1̂β  0.1768 0.1976 

0β̂  6.9341                            19.0294   

1X  10.2000 10.2000 

e  2.7054 3.6066    

RCCAVP 6.6163  6.7144          

C+  7.5301 15.9814      

C−  3.9357 0.7747    

EWMAARZ 5.0509 5.6830   
 Run length  19 11 
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          Figure 3.7 The RCCA for the 3.0σ  shift. 
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            Figure 3.8 The RCCA for the 0.5σ  shift. 

                      Figure 3.9 The RCCA for the 0.5σ  shifted process data displayed in Figure 3.8  

                      (widen image). 
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CHAPTER FOUR 

PERFORMANCE EVALUATION OF THE PROPOSED CHART 

 

The performance of control charts are measured via average run length (ARL). 

Essentially, the ARL is the average number of points that must be plotted before a 

point indicates an out-of-control condition. When there is a significant change in the 

process, it is desirable to have a low ARL so that the change will be detected quickly; 

when the process is in-control, it is desirable to have a large ARL so that the rate of 

false alarms produced by the chart is low (Lu & Reynolds, 1999). A desired control 

chart should have large in-control ARLs and small out-of-control ARLs (Winkel & 

Zhang, 2004). The presence of significant autocorrelation in the process observations 

can have a large impact on traditional control charts developed under the 

independence assumption. A typical effect of autocorrelation is to decrease the in-

control average run length (ARL), which leads to a higher false alarm rate than in the 

case of independent observations, and to increase the time required to detect changes 

in the process. The ARL results indicate how fast, on average, the charts respond to 

process changes. However, these ARL results do not give a picture of the charts 

when actually applied to data. To provide a visual picture of different types of charts 

responding to various kinds of process changes, a basic set of simulated data, 

modified in specific ways to correspond to specific process changes, was used. In 

general, no single control chart will give optimal performance across a wide variety 

of situations. However, a control chart can be chosen to perform well for a particular 

type and magnitude of process change in an application (Lu & Reynolds, 1999). 

After the linear trend and serial correlation were diagnosed by means of NNs, the 

RCCA was used for different magnitudes of the mean shift, under the presence of 

various levels of autocorrelation. Performance of the RCCA was evaluated in terms 

of the average correct signal rate and the simulated average run length (ARL).  
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In this chapter, the average correct signal rate and the simulated average run 

length (ARL) performance of the RCCA are evaluated by using the following design 

parameters 0ξ = , 1 10x = , ~ (0,4)Nε , N=500, and d=0.2. To investigate the 

performance, data sets are generated by using Equation (3.4), as we did in chapter 

three, and employing a wide range of possible shifts and autocorrelation coefficients. 

Each data set involves 500 observations. To model assignable causes, a sustained 

shift of magnitude µδ  is induced in the mean of tZ  in Equation (3.4) starting at the 

51st observation of the system. The considered shift magnitudes and autocorrelation 

coefficients are µδ = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and φ = 0.95, 0.475, -0.475, -

0.95, respectively. For the sake of simplicity, we classified shift magnitudes in three 

groups as small (µδ = 0.5, 1.0), moderate (µδ = 1.5, 2.0), large (µδ = 2.5, 3.0), and 

autocorrelation coefficients as weak (φ = 0.475, -0.475) and strong (φ = 0.95, -095).  

For each data set 1000 simulation replications are performed. Simulation results are 

explained in detail below. If the test statistic of a shifted process does not fall 

between the control limits or the test statistic of an unshifted process falls between 

the control limits it is said that the control chart’s signal is correct (Montgomery, 

1997). In this context, the average correct signal rates for several shift-

autocorrelation combinations are computed, which are displayed in Table 4.1. As can 

be seen from this table, signals of the chart are thoroughly accurate for all shift 

magnitudes in the presence of strong and weak negative autocorrelation. Its correct 

signal performance is also very good for large shift-positive autocorrelation 

combinations.  

 

Table 4.1 Average correct signal rate  

        φ  

       µδ  
 
(0.95) (0.475) (- 0.475) (- 0.95) 

0.0 0.8310 0.9350 1.0000 0.9990 

0.5 0.3475 0.5833 1.0000 0.9965 

1.0 0.5101 0.7547 1.0000 0.9981 

1.5 0.6159 0.8105 1.0000 0.9984 

2.0 0.6876 0.8132 1.0000 0.9986 

2.5 0.7388 0.8803 1.0000 0.9988 

3.0 0.7675 0.9180 1.0000 0.9989 
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The simulated ARL performance of the RCCA is shown in Table 4.2. In this 

table, ARL for µδ =0.0 indicates ARL0, in-control performance of the chart. It can be 

seen from Table 4.1 that the chart has large in-control ARL but small out-of-control 

ARL. That is, when the process has no mean shift the ARL is very large, and when a 

mean shift occurs the ARL decreases to indicate the occurrence of the mean shift 

quickly (Winkel & Zhang, 2004; Zhang, 2000). Consequently, we can say that the 

proposed chart has an ARL performance of what a desirable chart should have. 

About the overall ARL performance of the RCCA we can say that it performs well 

for large shifts, and shows its best ARL performance for negative autocorrelation 

cases. For moderate shifts its ARL performance is good for strong autocorrelation. 

 

Table 4.2 ARL performance of the RCCA 

        φ  

       µδ  
 
(0.95) (0.475) (- 0.475) (- 0.95) 

0.0 388.3 411.4 449.0 449.0 

0.5 46.6 212.6 449.0 57.5 

1.0 34.3 182.1 165.3 22.9 

1.5 13.7 41.7 17.9 12.6 

2.0 9.6 36.4 4.4 7.1 

2.5 3.2 8.1 1.7 3.6 

3.0 1.2 3.6 1.1 1.1 

 

According to the simulation results, the false alarm probability when 0β  and 1β  

have the same sign is lower than when they have different signs. Also higher C+  

increases the alarm rate for upward shift and vice versa. The magnitude and the sign 

of 0β  directly effects the control chart’s performance. The performance of proposed 

chart increases for higher 0β  values for the same shift size when the positive 

autocorrelation occurs and vice versa for negative autocorrelation. The performance 

of proposed chart decreases for negative 0β  values. This experience is also valid for 

negative autocorrelation. 
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CHAPTER FIVE 

CONCLUSION 

 

In this thesis a new regression control chart that can be used to detect the shift in 

process having autocorrelated and trending data is proposed. This chart can handle 

data in which observations are both autocorrelated and their values linearly increase 

with respect to time. The standard assumptions that are usually cited in justifying the 

use of control charts are that the data generated by the in-control process are 

normally and independently distributed. However the independency assumption is 

not realistic in practice. Many processes such as those found in refinery operations, 

smelting operations, wood product manufacturing, waste-water processing and the 

operation of nuclear reactors have been shown to have autocorrelated observations. 

When there is significant autocorrelation in a process, traditional control charts with 

iid (independent and identically distributed) assumption can still be used, but they 

will be ineffective. These charts will result with poor performance like high false 

alarm rates and slow detection of process shifts.  

 

On the other hand, if independent process data exhibit an underlying trend due to 

systemic causes, usually control charts based on ordinary least squares (OLS) 

regression are used for monitoring and control. Trends are usually due to gradual 

wearing out or deterioration of a tool or some other critical process components. In 

chemical processes linear trend often occurs because of settling or separation of the 

components of a mixture. They can also result from human causes, such as operator 

fatigue or the presence of supervision. Finally, trends can result from seasonal 

influences, such as temperature. The traditional control charts with horizontal control 

limits and a center line with a slope of zero have proven unreliable when systemic 

trend exists in process data. A device useful for monitoring and analyzing processes 

with trend is the regression control chart. However, since the Mandel’s regression 

control chart was developed for independent data, it is not an effective tool for 

monitoring process shift in autocorrelated process observations. 
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In addition to autocorrelated or trended observations, many industrial processes 

give such data that exhibit both trend and autocorrelation among adjacent 

observations. In other words the types of industrial series (especially chemical 

processes) frequently exhibit a particular kind of trend behavior, that can be 

represented by a trend stationary first order autoregressive (trend AR(1)) model. 

Existing approaches may individually cope with autocorrelated and trending data. 

Although we made a comprehensive review, there appears to be no chart that 

monitors data which exhibit both increasing linear trend and serial correlation 

directly. This observation has been the motivation for the present dissertation on 

developing a new regression control chart (RCCA for short) that cope with 

autocorrelated observations in which observation values increase with respect to 

time.  

 

Before presenting the proposed chart; the basic concepts of statistical process 

control charts, autocorrelation and time series models are described in chapter two. 

Also conventional regression control chart that is designed to control a varying 

(rather than a constant) average is discussed. Control charts for autocorrelated 

processes and conventional regression control chart were reviewed, and the historical 

progression in this field was emphasized.  

 

In chapter three, the proposed regression control chart (RCCA) is presented. This 

chart requires the identification of trend AR(1) model as a suitable time series model 

for process observations. Therefore at first, autocorrelated and trending data set that 

corresponds with trend AR(1) process are generated. Then, to recognize trend in 

data, two LVQ and one MLP networks are combined, and then ENN is used to 

diagnose autocorrelation through the trended data. When the literature is reviewed, it 

is observed that there is not any combined neural network structure that combines 

LVQ, MLP and ENN networks together to recognize the autocorrelated and trended 

patterns. Different statistical tools (such as least squares for trend analysis and time 

series analysis for calculating autocorrelation coefficients) can be easily implemented 

to process data to recognize the trend or autocorrelation in process data but when 

compared to other methodologies the neural network approach has certain 
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advantages. First of all, the model development is much simpler than that for most 

other approaches. Instead of theoretical analysis and development for a new model 

the neural network tailors itself to the training data. The model can be refined at any 

time with the addition of new training data. After recognizing autocorrelated and 

trending data by the means of proposed neural network structure, proposed 

regression control chart (RCCA) is applied to the data and its operating 

characteristics are experimented. The construction steps of RCCA to detect shift in 

autocorrelated and trending process observations is overviewed with an illustrative 

example.  

 

The average correct signal rate and the ARL performance of the chart are 

investigated by simulation approach in chapter four. Based on the results of 

simulation, it is safe to say that the RCCA is a considerably powerful chart. As it is 

known, no single control chart will give optimal performance across a wide variety 

of situations. In this sense, we tried to explain when the proposed control chart 

performs well for several types of autocorrelation structures and shift magnitudes. 

The proposed control chart produces desirable results under given assumptions and 

parameter design.  

 

It is well known that the same two designs using the same chart parameters based 

on two different input sets may produce very different chart performance. The 

proposed chart gives good ARL results; all their results are based on an assumption 

that the regression model relating the process output and the external covariate(s) is 

exactly known. In practice, the regression model parameter estimation, sign of the 

estimated parameters, starting value of the independent variable, the observation 

number that shift in process mean occurred, and the direction of shift may seriously 

affect the charting performance of proposed regression control chart for 

autocorrelated data.  

 

As it is known, a traditional residual chart takes into account only the current 

sample when determining the status of a process and hence does not provide any 

pattern-related information. By using the RCCA practitioners will be able to monitor 
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current samples of an autocorrelated and trending process directly and to observe the 

progress of the process. Practitioners can easily computerize and directly apply this 

chart to original data. This study could be extended for autocorrelated data with 

decreasing trend.  
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APPENDICES 

Appendix 1. The Process Simulator 

 

The process simulator for generating the uncorrelated CCP examples is given 

below in Equations (A1.1 - A1.5) (Oztemel, 2003): 

  

Pattern formulation of normal distribution: 

t ty rµ σ= +                                (A1.1) 

2ln( )cos 2tr u uπ= −                           (A1.2) 

where u  is uniform [0,1] random variable, t  is the observation number (or time 

step), and π  is the Pi constant. 

 

Pattern formulations of increasing or decreasing trend: 

t ty r gtµ σ= + ∓                 (A1.3) 

where g is the trend slope of uncorrelated process. 

  

Pattern formulation of sliding up or sliding down: 

t t sliding displacementy r k sµ σ= + ∓                                  (A1.4) 

where slidingk  is the sliding coefficient at the sliding moment, and the displacements  is the 

displacement of process mean in terms of standard deviation. 

 

Pattern formulation of periodic shifting: 

sin(2 / )t t periodicy r t Nµ σ α π= + +                                                (A1.5) 

where periodicα  is the dimension of the periodic shifting (random integer variable), and 

N is the number of observations. 
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The process simulator for generating the CCP examples in the AR(1) process is 

given below at Equations (A1.6 - A1.11)  (Guh, 2008): 

1 1t t tx xξ φ ε−= + +                 (A1.6) 

t t tX x d= +                   (A1.7) 

where dt  is the special disturbance at time t (zero when no unnatural pattern present). 

 

Pattern formulation of normal distribution: 

0td =                   (A1.8) 

 

Pattern formulations of increasing or decreasing trend: 

td dt= ±                  (A1.9) 

where d  is the trend slope of autocorrelated process. 

 

Pattern formulation of sliding up or sliding down: 

t sliding displacementd k s= ±               (A1.10) 

 

Pattern formulation of periodic shifting: 

sin(2 / )t periodicd t Nα π=              (A1.11) 
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Appendix 2. Learning Rules of the MLP NN 

 

MLP learns by generalized form of Delta learning rule which depends on least 

squares method. Delta rule composed of two phases. The first phase is ‘feedforward’ 

and the second phase is ‘back propagation’. In the first phase the output of the NN is 

calculated and in the second phase, the weights of arcs are recalculated to minimize 

the error term. 

 

Phase I: The data processing is started with presenting an input to the NN from input 

layer. There is no data processing in the input layer so the inputs are sent to hidden 

layer without changing. The output of kth process element ky  in input layer is 

calculated by the formula given in Equation (A2.1): 

 

k ky I=                  (A2.1) 

 

where kI  is the input for kth process element of input layer. Each process element in 

the hidden layer gets the information from input layer by the effect of connection 

weights. The net input that comes to process elements of hidden layer (ju ) is 

calculated by:  

 

1

N

j kj k
k

u w y
=

=∑                  (A2.2) 

 

where kjw  is the weight between kth input layer process element and jth hidden layer 

process element. Output of any neuron that is represented by qu  is calculated by 

using one of the transfer functions that are given in Table A2.1.  
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Table A2.1. Activation functions  

Activation 

function 

Formula Activation 

function 

Formula 

Sigmoid 

function 

1
( )

1 qq u
F u

e
−=

+
 

Sinus 

function 

( ) ( )q qF u Sin u=  

Linear  

function  

F( qu )= qu  Threshold 

value  

function 

0 0

( ) 0 1

1

q

q q q

if u

F u u if u

else

 ≤
= < <



 

Step 

function 

1 ( )
( )

0

q q

q

if u threshold
F u

else

θ >= 


 
Hyperbolic 

tangent  

function 

( )
q q

q q

u u

q u u

e e
F u

e e

−

−

+=
−

 

 

Phase II: The output of the network for the given input is compared with the 

expected value of the network’s output. Because of the expected value of the output 

for each input that is represented to the network is known, MLP is known as a 

supervised learning algorithm. The error for mth process element in the output layer 

is calculated by: 

 

[ ]m m me E y y= −                 (A2.3) 

 

where [ ]mE y  is the expected output and me  is the error occured at the output of mth 

process element. This error term is multiplied by the differention of output value and 

by this way the error ratios (δ ) that will be distributed to weights are determined. 

The δ  that will be distributed to weights for the mth process element is calculated by 

the formula given in Equation (A2.4)  

 

'( )m mf u eδ =                  (A2.4) 

 

If the output function is sigmoid than the δ  that will be distributed to weights for 

the mth process element is 

 

(1 )m m m my y eδ = −                  (A2.5)  
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where (1 )m my y−  is the differention of sigmoid function. If the amount of change for 

the weights between hidden layer and output layer are calculating than the δ  will be: 

 

'( )j m jm
m

f u wδ δ= ∑                 (A2.6) 

 

The amount of change for weights at tth iteration is: 

 

( ) ( 1)jm m j jmw t y w tλδ α∆ = + ∆ −               (A2.7) 

 

where ( )jmw t∆ is the amount of change for the weight between jth process element of 

hidden layer and mth process element of output layer at time t (or tth iteration), λ  is 

the learning rate, and α  is the momentum coefficient. Note that, the momentum 

coefficient (α ) provides the neural network not to delay on a local optimum point 

(Oztemel, 2003). After calculating the amount of change, the new values of the 

weights at tth iteration is: 

 

( ) ( 1) ( )jm jm jmw t w t w t= − + ∆                (A2.8) 

 

Other weights for other layers are calculated by the same way. Similarly the 

weights of the threshold unit have to be modified. The output of this unit is fixed and 

equal to 1. So the amounts of changes for the weights of threshold unit of the process 

element at the output layer are 

 

( ) ( 1)m m mb t b tλδ α∆ = + ∆ −                (A2.9) 

 

After calculating the amount of change, the new values of the weights at tth 

iteration is: 

 

( ) ( 1) ( )m m mb t b t b t= − + ∆              (A2.10) 
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where ( )mb t  is the new value of the weight between threshold unit and mth process 

element of output layer. The other weights are calculated by the same way. Figure 

A2.1 displays a sample network topology for a backpropogation network. For the 

sake of simplicity, a MLP network with two hidden layers is derived.  

 

 
Figure A2.1. A sample MLP architecture for the given data set.  

 

The notation is given below: 

, ,i j kb b b : Weights for threshold values 

, ,ik ji tjw w w  : Weights for the neurons 

, ,i j ky y y : Outputs of the transformation functions   

, ,i j ku u u : Total entries to the neurons  

 

The formulation is given below: 

E= ∑
k

ke2

2

1
                                    (A2.11) 

[ ]k k ke E y y= −               (A2.12) 

 

for 1qθ =  

Feedforward 1: ( )j jy f u=  and j tj t j j
t

u w x bθ = + 
 
∑                               (A2.13) 

∑ 

∑ 

∑ 

( )jf u

( )jf u

( )jf u

∑ 

∑ 

( )if u

 

( )if u

∑ ( )kf u  

jθ  

iθ

ky

y  

jb  

tjw  
jiw  

ikw  

ju  

iu  

ku  

kθ  
ib  

kb  

jy

iy

tx  
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Feedforward 2: ( )i iy f u=  and i ji j i i
j

u w y bθ
 

= + 
 
∑                               (A2.14) 

Feedforward 3:  ( )k ky f u=  and k ik i k k
i

u w y bθ = + 
 
∑                     (A2.15) 

For sigmoid functions 
1

( )
1 u

f u
e−=

+
 and ( ) ' ( )(1 ( ))f u f u f u= −                     (A2.16) 

 

Back Propagation 1: 

( 1) '( )k k k
k k i

ik k k k ik

e y uE E
e f u y

w e y u w

∂ ∂ ∂∂ ∂= = −
∂ ∂ ∂ ∂ ∂

                                (A2.17) 

( )(1 ( ))f u f u eδ = −                          (A2.18) 

'( )k k ke f uδ =                                     (A2.19) 

( 1) '( )k k i k i
ik

E
e f u y y

w
δ∂ = − = −

∂
                       (A2.20) 

ik
ik

ik y
w

E
w λδλ +=

∂
∂−=∆                         (A2.21) 

 

If the momentum coefficient is used not to delay on a local optimum: 

)1()( −∆+=∆ twytw ikikik αλδ             (A2.22) 

( 1) '( )( 1)k k k
k k

k k k k k

e y uE E
e f u

b e y u b

∂ ∂ ∂∂ ∂= = − +
∂ ∂ ∂ ∂ ∂

                      (A2.23) 

'( )k k k
k

E
e f u

b
δ∂ = − = −

∂
             (A2.24) 

k
k

k b

E
b λδλ +=

∂
∂−=∆               (A2.25) 

 

if the momentum coefficient is used not to delay on a local optimum: 

)1()( −∆+=∆ tbtb kkk αλδ              (A2.26) 

ikikik woldwneww ∆+= )()(               (A2.27) 

kkk boldbnewb ∆+= )()(              (A2.28) 
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Back Propagation 2: 

( 1) '( ) '( )k k k i i
k k ik i i

ji k k k i i ji

e y u y uE E
e f u w f u y

w e y u y u w

∂ ∂ ∂ ∂ ∂∂ ∂= = −
∂ ∂ ∂ ∂ ∂ ∂ ∂

                    (A2.29) 

'( )i k ik j
kji

E
f u w y

w
δ∂  = −  ∂  

∑                         (A2.30) 

'( )i i k ik
k

f u wδ δ= ∑               (A2.31) 

i j
ji

E
y

w
δ∂ = −

∂
               (A2.32) 

jiji yw λδ=∆                (A2.33) 

( 1) '( ) '( )( 1)k k k i i
k k ik i

i k k k i i i

e y u y uE E
e f u w f u

b e y u y u b

∂ ∂ ∂ ∂ ∂∂ ∂= = − +
∂ ∂ ∂ ∂ ∂ ∂ ∂

                              (A2.34) 

i
i b

E
b

∂
∂=∆ λ                (A2.35) 

ijijji woldwneww ∆+= )()(              (A2.36) 

iii boldbnewb ∆+= )()(              (A2.37) 

 

Back Propagation 3:  

( 1) '( ) '( ) '( )j jk k k i i
k k ik i ji j t

tj k k k i i j j tj

y ue y u y uE E
e f u w f u w f u x

w e y u y u y u w

∂ ∂∂ ∂ ∂ ∂ ∂∂ ∂= = −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

         (A2.38) 

'( )j i ji t
itj

E
f u w x

w
δ∂  = −  ∂  

∑       and    '( )j j i ji
i

f u wδ δ =  
 

∑                        (A2.39)      

tj j tw xλδ∆ =                (A2.40) 

( 1) '( ) '( ) '( )( 1)j jk k k i i
k k ik i ji j

j k k k i i j j j

y ue y u y uE E
e f u w f u w f u

b e y u y u y u b

∂ ∂∂ ∂ ∂ ∂ ∂∂ ∂= = − +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

       (A2.41) 

'( ) '( ) '( )k k ik i ji j j
j

E
e f u w f u w f u

b
δ∂ = − = −

∂
           (A2.42) 

j jb λδ∆ =                (A2.43) 

tjtjti woldwneww ∆+= )()(              (A2.44) 

jjj boldbnewb ∆+= )()(              (A2.45) 
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Steps of the Process: 

1)  Assign random values to , , , , ,tj j ji i ik kw b w b w b for λ >0          

2) Calculate the values of , ,j i ky y y  by using Equations (A2.13-A2.15) 

3) Calculate the error by using Equations (A2.11-A2.12) 

4)  Calculate the values of jiktjjiikjik bbbwww ∆∆∆∆∆∆ ,,,,,,,, δδδ  

5)  Update the weights by using Equations A2.27, A2.28, A2.36, A2.37, A2.44, 

A2.45 
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Appendix 3. Learning Rules of the LVQ NN 

 

LVQ learning rule is so called Kohonen learning rule and depends on 

competition between the process elements in Kohonen layer. Competition depends 

on calculating the Euclid distance (d) between input vector and weight vector 

(reference vector). The distance for the ith process element is calculated by the  

 

2( )i i ij j
j

d w x w x= − = −∑               (A3.1) 

 

where ijw is the jth value of the weight vector and xj is the jth value of the input 

vector. If the winner process element is the member of the right class, then the new 

weight vector is recalculated by   

 

( ) ( 1) ( ( 1))w t w t x w tλ= − + − −                          (A3.2) 

 

and otherwise  

 

( ) ( 1) ( ( 1))w t w t x w tλ= − − − −                          (A3.3) 

 

For the ky  is the output of each process element at kohonen layer, then the 

output for ith process element at Kohonen layer k
iy  is equal to one if the process 

element wins the competition and equal to zero otherwise. The output of the network 

is calculated by using Equation (A3.4) by multiplying the outputs of process 

elements at Kohonen layer by the weights that connects these process elements to 

output layer: 

 

k
i j ki

j

y y α=∑                  (A3.4) 

 

where α  is the weight of arcs between the output layer and Kohonen layer. The 

value of α  is constant and equals to 1. Equation A3.4 means the output value of the 
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winner competitive process element of Kohonen layer is equal to one and the output 

value of other competitive process elements are equal to zero. The process elements 

in Kohonen layer are connected to only one output element. If the result is true than 

the reference vector of winner approximated to the input vector as given in Equation 

(A3.2), and the others are banished as given in Equation (A3.3). These calculations 

are repeated until all of the samples are correctly (Oztemel, 2003). 
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Appendix 4. Operation of the CDMM  

 

Before explaining the operation of the CDMM, outputs of the each network are 

coded as described in Table A4.1. During the operation of CDMM, the outputs that 

are produced by the members of CNNR are rearranged by 0-1 binary values. For 

example if the third member of CNNR produces value of two as output, this means 

that this member’s decision is that the pattern shows increasing trend (this numerical 

code is our assumption). So this result is revaluated as 3 1B =  by CDMM as given at 

Table A4.1 and the other output values of the third member at CDMM ( 3A , 3B , 3C , 

3E , and 3F ) are revaluated as zero. The detailed information can be refered from 

(Oztemel, 2003) and (Gauri & Chakraborty, 2008).     

 

Table A4.1 Outputs of the members of CNNR 
NN Output1 

NP 

Output2 

IT 

Output3 

DT 

Output4 

DS 

Output5 

US 

Output6 

PS 

1. Member of CNNR (LVQ)  
1A  1B  1C  1D  1E  1F  

2. Member of CNNR (LVQ) 
2A  2B  2C  2D  2E  2F  

3. Member of CNNR (MLP) 
3A  3B  3C  3D  3E  3F  

Bias1 (For step 1) 
1 2T =       

Bias2 (For step 2) 
2 2T =       

NP: naturel pattern; US: upward shift; DS: downward shift; IT: increasing trend; DT: decreasing trend; PS: periodic shift 

 

The bias values that are given in Table A4.1 represent the minimum number of 

the members that must produce the same result for collective decision. For example 

two of three members (1 2T = ) must agree on the same result to accept the result as 

correct for Step 1. Operation of a CDMM is described below: 

 

Step 1: The outputs that are produced by each NN are summed by matching the same 

type of outputs together. 

 

1 2 3A A A A= + + ; 1 2 3B B B B= + + ; 1 2 3C C C C= + + ; 1 2 3D D D D= + + ; 

1 2 3E E E E= + + ; 1 2 3F F F F= + +               (A4.1) 
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max( , , , , , )xO A B C D E F=                           (A4.2) 

                                                                                          

If 1xO T>  then set 1xO =  and the others take zero value. For example if xO B=  

than this means that a collective decision is performed and a unique solution that 

takes value of 1 is obtained. The collective decision is that the pattern shows 

increasing trend (represented by B  at Table A4.1) so , , ,A C D E, and F  takes zero 

value. The class which has taken value of 1 (1B = ) is the collectively decided result. 

If there are more than one output that are greater than 1T  value or any of the output 

values does not exceeds 1T  value, then the Step 2 is performed. 

 

Step 2: The outputs of the NNs are summed by pairs: 

For output1: 

12 1 2O A A= + ; 13 1 3O A A= + ; 23 2 3O A A= + ; 1 12 13 23max( , , )xO O O O=          (A4.3) 

1 2 3 4 5 6max( , , , , , )xx x x x x x xO O O O O O O=              (A4.4) 

 

If 2xxO T>  then set 1xxO =  and the others take zero value. This means a 

collective decision is performed and a unique solution that takes value of 1 is 

obtained which means that the presented inputs are belong to the class that the output 

element’s class, which produced value of 1 value (Oztemel, 2003; Gauri & 

Chakraborty, 2008).   
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Appendix 5. Learning Rules of the ENN 

 

Topology of ENN is given in Figure A5.1 and Figure A5.2 in detail. It is a 

recurrent supervised neural network like MLP. But, unlike MLP, it has the dynamic 

memory property and its input layer does not include transfer function. The ENN 

employs feedback connections and addresses the temporal relationship of its inputs 

by maintaining an internal state.  

 
               Figure A5.1 An example of a ENN architecture (Ham & Kostanic, 2001; Oztemel, 2003). 

 

 

Figure A5.2 Connection weights of Elman NN (Oztemel, 2003). 
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If the activation function that is used in each time step is sigmoid than the outputs 

of hidden layer members are calculated by the formula given in Equation (A5.1) 

(Oztemel, 2003):  

 

'
( )

1
( )

1 ii u t
x t

e−=
+

                (A5.1) 

 

where ( )iu t  is the net input for ith process element at time step t. The net input (u ) 

that is used in Equation (A5.1) is calculated by considering the feedbacks that comes 

from hidden layer and differs from conventional calculations by MLP learning rules 

for net input (u ) in this aspect. The net input (u ) is calculated by the formula given 

in Equation (A5.2) (Oztemel, 2003).   

 

'( ) ( ) ( 1)g iu t w x t w x t= + −                (A5.2) 

 

If the open form of the formula given in Equation (A5.2) is written, then the 

Equation (A5.3) is obtained. 

 

'

1 1

( ) ( ) ( 1)
N M

g i
i ji ij

j i

u t w x t w x t
= =

= + −∑ ∑               (A5.3) 

 

where N represents the number of input neurons and M is the  number of hidden 

layer neurons. 

 

The output of the NN is calculated by running the net input (u) value that comes 

to output element through the linear function. In another words, the activation 

functions of output elements are linear, so the value of output element that is in 

output layer at time step t , is calculated by using the weights and the outputs of 

hidden layer elements as given in Equation (A5.4) 

 

'( ) ( ) ( )ay t w t x t=                 (A5.4) 
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where ( )aw t is the weight and '( )x t  is the output of hidden layer elements at time 

step t. The output of jth element at time step t  is calculated by the Formula given in 

Equation (A5.5)  

 

'

1

( ) ( ) ( )
M

a
j i i

i

y t w t x t
=

=∑                            (A5.5) 

 

Because of the expected value of the output for each input that is represented to 

the NN is known, the error occurs at time step t  is calculated by 

 

( ) ( )j j je E y t y t = −                             (A5.6) 

 

where ( )jE y t    is the expected output for each input at time step t  and je is the 

error occured at time step t . This error term is multiplied by the differention of 

output value and by this way the error ratios (δ ) that will be distributed to weights 

are determined. The δ  that will be distributed to weights at time step t , where the 

output function is sigmoid, is calculated by the formula given in Equation (A5.7)  

 

[ ]( ) ( ) 1 ( ) ( )t y t y t E tδ = − −                 (A5.7) 

 

The weight alternation is performed as mentioned at Appendix 2 by the Equation 

(A2.7) and Equation (A2.8). These alternation values are added to the weights. There 

is no difference at weight alternation in Elman NN when compared with MLP NN. 

The weight values of recurrent elements (Context units) are fixed and do not 

alternates. In other words, while alternating the weight values the weights of context 

units are not considered. These weights are used to compose the inputs of context 

units while processing the data forwardly. If the weights of recurrent elements are 

not considered and the context units are accepted as input elements that Elman 

network is same as MLP (Oztemel, 2003).   
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Appendix 6. Abbreviations and Notation 

 

The abbreviations and notations used in this dissertation are as follows: 

 

ξ  Constant of AR(1) process  

φ  Autoregressive coefficient  

ε  Random error term  

eσ  Standard deviation of residuals 

d Trend slope of trend AR(1) process 

tZ  Shifted trend AR(1) process variable  

µδ  Magnitude of upward mean shift 

te  Residual (difference between expected and observed values of tZ ) 

N  Sample size 

0β  Intercept in a simple linear regression model 

1β  Slope in a simple linear regression model  

α  Smoothing constant 

σ  Standard deviation of a sample from trend AR(1) process  

ˆ t
oM  Estimated target value for process mean at time t   

k  Reference value (allowance, or the slack value)   

C+  Mean of deviation above ̂ t
oM    

C−  Mean of deviations below ̂ t
oM   

tUCL  Upper control limit for proposed chart at time t   

tLCL  Lower control limit for proposed chart at time t   


