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İZMİR





ACKNOWLEDGEMENTS

I would like to express my gratitude to all those who gave me the possibility to
complete my Ph.D. study.

I owe my most deep and sincere gratitude to my supervisor Prof. Dr. İsmail
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THE ELECTRICAL AND THERMAL BREAKDOWN OF THE INTEGER
QUANTIZED HALL EFFECT: A MICROSCOPIC SELF-CONSISTENT

INVESTIGATION

ABSTRACT

In this thesis, spatial distributions of the electron temperature were investigated
employing thermohydrodynamic theory in quantum Hall effect observed in two di-
mensional electron systems subjected to low temperatures and strong magnetic fields.
This theory was described by equations of conservation with number and thermal flux
densities.

In the linear-response regime, spatial distributions of the electron temperature re-
lated to the incompressible strips were calculated. The importance of the electron
temperature was shown in various phenomena, such as breakdown of the quantum
Hall effect. After calculating the electron temperature, the effects of the electron tem-
perature deviation on distributions of the current density were discussed.

In the second part of the thesis, the changes of the incompressible strips with the
deviation of the electron temperature from the lattice temperature were presented. Po-
sition dependencies of the electrostatic potential and electron density were calculated
with the electron temperature using the self-consistent Thomas-Fermi-Poisson approx-
imation. Also electrochemical potential and current density were obtained from a local
version of Ohm’s law. These results were compared with those obtained by the lattice
temperature.

Keywords: Quantum Hall effect, linear-response regime, thermohyrodynamics the-
ory, local equilibrium.
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TAMSAYILI KUANTİZE HALL ETKİSİNİN ELEKTRİKSEL VE TERMAL
KIRILMASININ MİKROSKOPİK ÖZUYUMLU OLARAK İNCELENMESİ

ÖZ

Bu tezde, düşük sıcaklıklara ve güçlü manyetik alanlara bağlı iki boyutlu elek-
tron sistemlerinde gözlenen kuantum Hall etkisindeki termohidrodinamik teori uygu-
lanarak elektron sıcaklığının uzaysal dağılımı incelendi. Bu teori sayı ve termal akı
yoğunluğu denklemleri ile tanımlandı.

Lineer-tepki sistemi altında, sıkıştırılamaz şeritlere bağlı elektron sıcaklığının
uzaysal dağılımı hesaplandı. Elektron sıcaklığının önemi, kuantum Hall etkisinin
kırılması gibi çeşitli fenomenlerde gösterildi. Elektron sıcaklığının hesaplanmasından
sonra, elektron sıcaklık değişiminin akım yoğunluğu üzerindeki etkileri tartışıldı.

Tezin ikinci kısmında, elektron sıcaklığının örgü sıcaklığından sapmasıyla
sıkıştırılamaz şeritlerin değişimleri sunuldu. Elektrostatik potansiyelin ve elektron
yoğunluğunun konuma bağımlılıkları, öz-uyumlu Thomas-Fermi-Poisson yaklaşımı
kullanılarak elektron sıcaklığı altında hesaplandı. Ayrıca elektrokimyasal potansiyel
ve akım yoğunluğu yerel Ohm yasası ile bulundu. Bu sonuçlar örgü sıcaklığından elde
edilen sonuçlarla karşılaştırıldı.

Anahtar sözcükler: Kuantum Hall etkisi, lineer-tepki sistemi, termohidrodinamik
teori, yerel denge.
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CHAPTER ONE

INTRODUCTION

The Hall Effect was discovered by Edwin Herbert Hall in 1879 while working on

his doctoral degree at Johns Hopkins University in Maryland, USA. The Hall effect

is the production of a voltage difference, which is called the Hall voltage, across an

electrical conductor, transverse to an electric current in the conductor and a magnetic

field perpendicular to the current (Hall, 1879). The discovery of Quantum Hall Effect

(QHE) by Klaus von Klitzing in 1980 is a remarkable achievement in condensed mat-

ter physics. QHE is a striking set of phenomena which occur at low temperatures (≤ 4

K) in a high mobility two dimensional electron gas in a strong transverse magnetic

field (typically, B ∼ 1− 30 T). The quantization was observed in the Hall resistance

RH, which exhibited plateaus at values of RH = h/ie2, where h is Planck’s constant, e

is the electron charge and i is an integer. This integer represents the number of com-

pletely filled Landau levels (LLs). The resistance quantum RK = h/e2 is named as the

von Klitzing constant and corresponds to the value of 25812.807 Ω (Klitzing, Dorda,

& Pepper, 1980). In 1990, this resistance is accepted as an international resistance

standard. For his discovery, von Klitzing was awarded the Nobel prize in physics in

1985 (Klitzing, 1986). In 1982 D.C.Tsui, H.L.Störmer, and A.C.Gossard discovered

the existence of Hall steps with rational fractional quantum numbers, which is called

the fractional QHE. R.B.Laughlin’s wave functions established a very good, though

not yet perfect understanding of this phenomenon. Today, the study of quasi parti-

cles of fractional charge and fractional statistics are still active areas of research (Tsui,

Stormer, & Gossard, 1982; Stormer et. al., 1983).

Most studies of the QHE have been performed on a two dimensional electron sys-

tem (2DES) in a semiconducting device, realized with a Silicon metal-oxide semi-

conductor field-effect transistor (MOSFET) at liquid Helium temperatures and high

magnetic fields (Klitzing, Dorda, & Pepper, 1980). The QHE is studied by analyzing

the electrical breakdown, the time resolved transport, the edge channels and the be-

havior of composite fermions. The 2DES resides, primarily, in a narrow potential well
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(inversion layer) near the interface by the electrostatic attraction to a positively charged

layer somewhere away from the interface in the other material. The first measurements

performed with Si-MOSFETs were done by Fowler et al. in 1966. Although SiO2-Si

interface was used initially, then heterojunctions, especially (GaAs-AlxGa1−xAs) het-

erojunctions, have come to be more widely used since they can be made with higher

mobilities.

Shortly after the discovery of the QHE, experiments were performed to determine

the physical limits of the effect (Ebert, Klitzing, Ploog, & Weimann, 1983). The

sample temperature and the electrical current through the 2DES are important for the

formation of the quantum Hall (QH) plateaus like electron density and electron mobil-

ity. The studies in QHE, if the temperature is increased, the longitudinal resistivity ρxx

increases smoothly and the Hall resistivity ρxy deviates from the plateau values. When

the sample current is small, ρxx is extremely in QHE which occurs. If the current is

increased up to a critical value, ρxx increases by several orders of magnitude within

a narrow range of the current, and the QHE breaks down (Ebert, Klitzing, Ploog, &

Weimann, 1983; Cage et al., 1983; Kuchar, Bauer, Weimann, & Burkhard, 1984).

On the other hand, theoretically, as a mechanism of the breakdown, a hot electron

model (Ebert, Klitzing, Ploog, & Weimann, 1983; Komiyama, Takamasu, Hiyamizu,

& Sasa, 1985) has been proposed, which assembles electron heating and the high

electron temperature dependence of ρxx. Gurevich and Mints in 1984 have proposed a

hydrodynamic equation based on the hot-electron model to calculate spatio-temporal

variations of in quantum Hall systems (QHS) (Akera, & Suzuura, 2005).

In this thesis, spatial dependence of the electron temperature is investigated in QHS

with the compressible and incompressible strips using the thermohyrodynamic theory

in the linear response regime. Spatial variation of the electron temperature is taken

into account in order to calculate the physical quantities, such as electron and current

densities. This thesis is structured as follows:
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• Chapter 2: contains the fundamentals of a 2DES formed in GaAs/AlGaAs het-

erostructures, which leads to the QHE through the Landau quantization in mag-

netotransport measurements. A description of the integer quantum Hall effect

(IQHE) and the electrical breakdown of the IQHE is given.

• Chapter 3: introduces Thomas Fermi approximation for the self-consistent cal-

culation. Typical results based on this approach are presented. In these calcula-

tions, the electron temperature is taken into account uniformly in QHS.

• Chapter 4: describes the investigated model, processes and macroscopic vari-

ables. Then, the thermohydrodynamic theory is determined using equations of

conservation and thermal flux densities.

• Chapter 5: gives results of numerical calculations for spatial distribution of

the electron temperature and current density depending on lattice temperature,

magnetic field and sample parameters. The effect of a heat transfer due to the

electron phonon scattering on the spatial variation of electron temperature is

discussed. Then, influences of the electron temperature on the compressible and

incompressible strips are obtained including the heat transfer.

• Chapter 6: includes Hall resistances within a local version of the Ohm’s law

and numerically investigate the dependencies of the overshoot on lattice temper-

ature and magnetic field.

• Chapter 7: summarizes the present work.



CHAPTER TWO

TWO DIMENSIONAL ELECTRON SYSTEM AND THE QUANTUM HALL

EFFECT

2.1 Two Dimensional Electron System (2DES)

The quantum Hall effect is closely related to technological advances in the fabri-

cation of 2DES with high electronic mobilities. 2DES is a formed at the interface of a

heterostructure in which the electrons are completely confined in the potential well in

the z-direction, however they are quasi free to move in the x− y plane. Thus, the total

energy is given by

E = E0
z +

h̄2(k2
x + k2

y)
2m∗ , (2.1.1)

where E0
z is energy of the first subband, kx and ky are the wave vector components

in the momentum space and m∗ is the effective electron mass. In the z-direction, the

wave function of the electrons is localized in GaAs, since the potential well is quite

asymmetric.

These systems are assembled of different materials. The first studies of the integer

quantum Hall effect were performed using MOSFET. A metallic layer is separated

from a semiconductor, typically silicon doped, by an insulating oxide such as SiO2

layer (Klitzing, Dorda, & Pepper, 1980). A common heterostructure that is fabricated

is shown in Figure 2.1(a). The system is grown on the GaAs substrate wafer, typically

∼ 0.5 mm thick. A thick buffer layer of GaAs is grown on it to create a smooth sur-

face and move the important layers away from the defects and impurities present on

the wafer surface. On top of the substrate, a cleaning superlattice is grown consisting

of ∼ 100 alternating AlGaAs, followed by GaAs layers which getter and trap impu-

rities at the GaAs/AlGaAs interfaces. Another thick GaAs layer is grown and then

the GaAs/AlGaAs interface for the 2DES. The Si dopants are placed remotely from

this interface (modulation doped). A layer of AlGaAs separates the 2DES from the

sample surface. A thin cap of GaAs is grown on the surface to prevent oxidation of

4
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the AlGaAs. This arrangement of the layers along vertical axis produces conduction

band shown on Figure 2.1(b).

Figure 2.1 (a) A typical modulation doped GaAs/AlGaAs heterostruc-
ture and (b) its conduction band.

If the Schrödinger and the Poisson equations are solved self-consistently to obtain

the energy band diagram of the structure, then a triangular potential well occurs at the

heterojunctions and its thickness is equal or smaller than the de Broglie wavelength of

the electrons.



6

Figure 2.2 (a) 2D electrons in a perpendicular magnetic field (QHS). (b)
Classical Hall resistance as a function of the magnetic field.

2.2 The Physical System

The quantum Hall effect occurs in two-dimensional electron systems in the limit

of strong perpendicular magnetic fields at very low temperatures. These systems do

not occur naturally, but it has become possible to produce them by using advanced

technology and production techniques developed within semiconductor electronics.

To understand physical properties of a two dimensional electron gas in a perpendic-

ular magnetic field, we consider the Hall bar geometry shown in Figure 2.2 (a). There

is six ohmic contacts, which are contacted to the 2DES. An electric field Ex applied

between C1 and C4 contacts causes an electric current I flowing in the Hall bar. A lon-

gitudinal voltage VL is measured between C5 and C6 contacts and a Hall voltage VH

is measured between C3 and C6 contacts. However, when a perpendicular magnetic

field is applied, electrons accumulate on one edge of the Hall bar. This leaves equal

and opposite charges exposed on the opposite edges until the transverse electric force

FE =−eE becomes equal to Lorentz force FL =−e(E+v×B).
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2.3 Magnetotransport in the Classical Regime

The first observation of the classical Hall effect has been carried out by E. H.

Hall in 1879. He observed that when a metal plate (in the x− y plane) is placed in

a perpendicular magnetic field, B = Bẑ, and a current, I, is Hall effect in the driven

in the x-direction as illustrated in Figure 2.2 (a). This effect is known as classical

electromagnetism. After the imposition of a current along the x-direction he observed

a longitudinal resistance independent of the magnetic field and a transverse voltage

which defines a transverse resistance, known as Hall resistance, linear in magnetic

field through the relation Figure 2.2 (b),

RH =
B

nelq
, (2.3.1)

with nel the electron density and q the carrier charge. The Drude model is applied

for diffusive transport in a metal to explain the experimental observation (Ashcroft, &

Mermin, 1984; Kittel, 1953).

The two dimensional motion of N free electrons are considered in the xy plane sub-

jected to a perpendicular magnetic field in z-direction, which is homogeneous along

the plane, i.e. independent of x and y directions. The free electron system dimen-

sions are Lx and Ly along the x and y directions respectively. So the two dimensional

electron density is given by

nel =
N

LxLy
. (2.3.2)

After the electric field is applied, the drift velocity of the electrons is deflected in

the y-direction because of the magnetic field. Therefore electrons accumulate on one

edge of the Hall bar, and a positive ion excess is established on the opposite edge until

the transverse electric force FE just cancels the Lorentz force FL due to the magnetic
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field. In a uniform magnetic field B the Lorentz force on an electron is

FL =−e [E+v×B] , (2.3.3)

where v is the velocity of the electrons. In this equation, the first and second terms

depend on the electric and magnetic fields respectively. The effect of scattering is

introduced via a relaxation time τ . The Newtonian equation of motion for such a

classical electron can be written as

m∗
(

dv
dt

+
v
t

)
=−e [E+v×B] , (2.3.4)

where m∗dv/dt is the free electron acceleration term and m∗v/τ is the effect of colli-

sions with τ . In steady state we get

m∗ v
τ

=−e [E+v×B] . (2.3.5)

For the uniform electric field in the x− y plane, E = (Ex,Ey,0) and the magnetic field

to be along the z-direction, B = (0,0,B), m∗v/τ term of the above equation can be

written in matrix form as


 Ex

Ey


 =


 −m∗/eτ −B

B −m∗/eτ





 vx

vy


 . (2.3.6)

The presence of this two components implies the existence of two different potentials

with VH for the transversal direction and VL for the longitudinal direction of the Hall

bar. These potential components can be written as

VL = ExLx,

VH = EyLy. (2.3.7)
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In terms of the current following along the sample

I = JxLy, (2.3.8)

they become

VL =
m∗

nele2τ
I
Lx

Ly
,

VH = − B
nele

I. (2.3.9)

The resistances are defined as

RL =
VL

I
=

(
m∗

nele2τ

)
Lx

Ly
,

RH = −VH

I
=

B
nele

. (2.3.10)

As it is seen, RL does not depend on the magnetic field B, but RH which is called the

Hall resistance, increases linearly with magnetic field B. This is called the classical

Hall effect. This effect is seen in Figure 2.3 , where the classical Hall effect is observed

between 0 and 0.4 T. The Hall effect is used as a conventional method to determine

the electron concentration and the mobility of a 2DES by using the Equation 2.3.10.

By introducing the current density

J =−enelv, (2.3.11)

the conductivity tensor can be identified as

σ =


 σxx σxy

σyx σyy


 =




nele2τ
m∗ −nele

B
nele
B

nele2τ
m∗ .


 (2.3.12)

=
σ0

1+(ωcτ)2


 1 −ωcτ

ωcτ 1


 . (2.3.13)
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where σ0 = nele2τ/m∗ is the classical Drude conductivity and eB/m∗ is the cyclotron

frequency. From the above equation it is clear that σxx = σyy and σxy = −σyx. The

resistivity tensor is the inverse of the conductivity tensor ρ̂ = σ̂−1 and written as

ρ =


 ρxx ρxy

ρyx ρyy


 =

1
σ2

xx +σ2
xy


 σxx −σxy

σxy σxx


 , (2.3.14)

= ρ0


 1 ωcτ

−ωcτ 1


 , (2.3.15)

with ρ0 = 1/σ0 the resistivity tensor components obey the same Onsager symmetry re-

lations, such that ρxx = ρyy and σxy =−σyx. From this tensor relation the longitudinal

and the transverse resistivity components are given by

ρxx =
1

neleµ
,

ρxy =
B

nele
, (2.3.16)

where µ = eτ/m∗ is the mobility which determines the quality of the 2DES.

2.4 Landau Level Quantization in High Magnetic Fields

The origins of the quantum Hall effect can be only found by quantum mechanical

calculations. For this, a starting point is Schrödinger equation for an electron in a

constant magnetic field:

[
1

2m∗ (p̂+ eA)2 + eV (x,y)
]

Ψ(x,y) = εΨ(x,y). (2.4.1)

In this equation the electron-electron interaction and the spin are neglected. The mag-

netic field is applied in z−direction and Landau gauge is used for the vector potential

A = (−By,0,0) =−By î. This gauge is appropriate for systems with translational sym-
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metry along y axis. If the external potential is assumed to vanish (V (x,y) = 0, no

electric field) and Landau gauge symmetry is introduced, the Schrödinger equation is

rewritten as
1

2m∗
[
(p̂x− eBy)2)+ p̂2

y
]

Ψ(x,y) = εΨ(x,y). (2.4.2)

The operator p̂x commutes with the Hamiltonian ([Ĥ, p̂x] = 0) and the problem sepa-

rates into two independent subspaces for x and y. The operator p̂x and p̂y in the x and

y subspace are expressed by p̂x = −ih̄∂/∂x and p̂y = −ih̄∂/∂y. The wave function

Ψ(x,y) is written as

Ψ(x,y) = φn(y)exp(ikx). (2.4.3)

Then substituting the wave function in Equation 2.4.1, Schrödinger equation is rewrit-

ten as
1

2m∗
[
(h̄kx− eBy)2− h̄2∂ 2/∂y2]φn(y) = εnφn(y). (2.4.4)

This equation describes an effective one dimensional harmonic oscillator

[
− h̄2

2m∗
∂ 2

∂y2 +
1
2

m∗ω2
c (y−Y )2

]
φn(y) = εnφn, (2.4.5)

with a cyclotron frequency ωc = eB/(m∗) and a center coordinate Y = −l2ky. Here

l =
√

h̄/eB is the magnetic length, depending only on the magnetic field B. The

eigenvalues εn of this harmonic oscillator is

εn = h̄ωc

(
n+

1
2

)
, n = 0,1,2, . . . (2.4.6)

The energy eigenvalues are called Landau levels. This equation shows how 2DES

energy spectrum is quantized due to the magnetic field. From the quantization of

the energy spectrum, density of states (DOS) that is constant at zero magnetic field,

becomes discretized at high magnetic field

D(ε) = nL ∑
n,s

δ (ε− εn,s). (2.4.7)
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Here nL is number of the electrons in each Landau level given by

nL = 2
eB
h

(without spin splitting). (2.4.8)

This is also called the degeneracy factor of the Landau levels, which is independent of

the semiconductor parameters such as effective mass. If the spin splitting is taken into

account, the degeneracy of a spin split Landau level becomes

nL =
eB
h

. (2.4.9)

This is called filling factor and gives the number of filled Landau levels

ν =
nel

nL
=

hnel

eB
. (2.4.10)

2.5 Magnetotransport in the Quantum Regime

In the classical regime, we see the linear dependence of the Hall resistance RH or

Hall resistivity ρH on the strength of the magnetic field B at low magnetic fields where

the number of filled Landau level’s (LL) is larger. If the magnetic field is increased

the magnetic field and LL’s are reduced, the Hall resistance or Hall resistivity shows

a different behavior that is given in Figure 2.3. This figure shows a typical magne-

totransport curve with its three important regimes. The first regime is the classical

that is seen at low magnetic fields, up to 0.4 T for this sample. The Hall resistivity in-

creases linearly with the magnetic field (ρH ∝ B, according to Equation 2.3.16) and the

longitudinal resistivity remains more or less constant with a slight decrease with the

magnetic field. As the magnetic field is increased above 0.4 T up to 1.2 T, the 2DES

leaves the classical regime and enters a new regime that is called Shubnikov-de Haas

regime. In this regime, the Hall resistivity starts to deviate from the previous linear

behavior and the longitudinal resistivity oscillates strongly with magnetic field. These
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Figure 2.3 A typical magnetotransport curve taken at a QH device with
Hall bar geometry. (a) The classical regime: at low magnetic fields the
classical Hall effect is observed. (b) Shubnikov-de Haas regime: at high
fields the 2DES starts behaving quantum mechanically, such that both
Hall resistivity and longitudinal resistivity develop oscillations. (c) The
QHE regime: at higher fields longitudinal resistivity goes to zero, and
Hall resistivity develops plateaus (Vasile, Ph.D.Thesis, 2007).

oscillations are called Shubnikov-de Haas oscillations which increase with magnetic

field. As the magnetic field is further increased, the 2DES enters the quantum Hall

effect regime. In this regime, Hall resistivity develops plateaus and the longitudinal

resistivity drops to zero.

2.5.1 Integer Quantum Hall Effect (IQHE)

Increasing the magnetic field above 1.2 T, the Hall resistance and longitudinal re-

sistance show the IQHE which was first observed by K. von Klitzing, G. Dorda and
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M. Pepper (1980). The IQHE occurs at high magnetic fields and Hall resistance RH

shows some plateaus that are equal to a quantized resistance of h/(e2i) with an in-

teger i = {1,2, . . .}. At the same time the longitudinal resistance goes to zero. One

astonishing feature of the IQHE is that a quantized Hall resistance does not depend on

the sample geometries and materials. This resistance is only related to two universal

constants that are Planck’s constant h and elementary charge e. The Hall plateau resis-

tance is measured as RK−90 = 25812.807 Ω and named as the von Klitzing constant. It

is accepted as an international resistance standard since 1990. For his discovery, von

Klitzing was awarded the Nobel prize for physics in 1985 (Klitzing, 1986).

2.5.2 Localized and Extended States

The above discussions of integral quantum Hall effect suggests that the measure-

ments under quantum conditions of temperature and magnetic field the Hall resistance

is accurately quantized at 25813.802 Ω whether or not the semiconductor is of very

high purity and perfection. In real crystals the sharp Landau Levels are broadened

due to scattering of electrons (Figure 2.4). These scattering centers (impurities or the

positively charged donors) are distributed randomly throughout the 2DES and cause

energy fluctuations at the Landau levels. This means that the energy of a Landau level

moves up and down throughout the sample (Figure 2.5 (a)). The average magnitude

of the fluctuations is equal to the broadening of the Landau levels as shown with the

connection lines between in Figure 2.5 (a) and Figure 2.5 (b).

There are two classes of states: delocalized states at the centers of Landau levels,

in which the electrons move through the 2DES and localized states, in the tails of the

Landau levels, which are captured in the isolated puddles. When the chemical poten-

tial µ is in the localized states between the Landau level centers, both the longitudinal

resistivity and conductivity become zero σxx = ρxx = 0, and the Hall resistivity ρxy is

quantized. However, when the chemical potential µ is in the extended states, close to
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Figure 2.4 Density of states in a 2D electron gas in a strong
magnetic field (Ideal crystal) (Stormer, Tsui, & Gossard,
1999).

the Landau level centers, both σxx and ρxx are finite, and ρxy is not quantized.

Figure 2.5 Density of states in a 2D electron gas in a strong magnetic
field.( Real 2D crystal) (a) Spatial energy fluctuations caused by disor-
der. (b) Localized and delocalized states (Sagol, Ph.D.Thesis, 2003).
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2.5.3 Excitation and Relaxation of Hot Electrons

The Fermi energy is between two adjacent Landau levels (that is band gap) for

T = 0 K with an integer filling factor ν . The presence of the Fermi level in the band

gap leads to a vanishing resistivity ρxx = 0. The resistivity ρxx is assumed proportional

to the number of excited electrons across the band gap.

Figure 2.6 The excitation and relaxation be-
tween two Landau levels (Vasile, Ph.D.Thesis,
2007).

In Figure 2.6, electrons are excited to the upper LL with a characteristic gain rate

due to the Joule heating, and the electrons relax after a certain relaxation time τrelax

to the lower LL due to energy loss (electron-phonon scattering). In a real system, the

Landau energy levels broaden because of the the presence of impurities and disorders

(Figure 2.7(a)). The electrons can be excited to upper LLs with the thermal excitation

(Figure 2.7(b)). With increasing the temperature of the electron system, their energies

increases by the thermal energy kBT that is comparable with the energy gap between

two LLs.

The presence of impurities and disorders induces potential fluctuations (locally en-

hanced electrical potentials) (Kawaji et al., 1994; Kawaguchi et al., 1995). The po-

tential fluctuations lead to a decrease of the average separation between the LLs. The

effects of screening generate quasi-metallic and insulator regions that are called com-

pressible and incompressible strips (Figure 2.8). The electron density is constant and
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Figure 2.7 (a) Density of states with broad LLs due to the
impurities. (b) Thermal excitation in order to excite elec-
trons between 2 LLs.

potential drop occurs. The compressible region do not contribute the flow of current

and reduce the effective width of the incompressible regions (strips). The excited

electrons to the upper LL come from the IS(s) since the electrons in the compress-

ible regions are localized and do not contribute to the dissipationless current. Since

in time, the electrons are excited more and more to the upper LL, the area and the

effective width of the IS(s) decreases while the area of compressible regions increases

practically linearly with the number of the excited electrons. The shrink of the IS(s)

stops when the effective width becomes too small to carry dissipationless current. At

this critical moment the density of excited electrons in the upper LL reaches the critical

value at which the breakdown of the QHE is complete.

2.5.4 Breakdown of the QHE

Shortly after the discovery of the QHE, the physical limits of the QHE which is

called the breakdown phenomenon of the QHE, were investigated in experimentally.

The breakdown of the QHE due to high current densities still remains a subject of
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Figure 2.8 Simple sketch of the incompressible strips and compress-
ible regions. In reality this picture would be more complicated since
enlarging a compressible region by excitation of electrons from in-
compressible regions involves always two compressible regions (e.g.
a hole-like and an electron-like) with a potential difference equal to
the cyclotron energy. Moreover, the compressible regions are induced
by local potential landscape and can therefore be of noncircular form
(Vasile, Ph.D.Thesis, 2007).

much theoretical and experimental work. On one hand the phenomenon attracts atten-

tion because of its importance for the understanding of the QHE. On the other hand,

knowledge of the breakdown is crucial for the resistance standard based on the QHE

where a critical current as high as possible is aimed at for maximum resolutions (Jeck-

elman, & Jeanneret, 2003).

The first experimental study included the current breakdown of the QHE was pub-

lished by Ebert et al. in 1983. The authors measured the critical current in a series of

low mobility GaAs Hall bar devices with different carrier concentrations.

In QHS’s, diagonal conductivity σxx vanishes in the low current regime while the

Hall conductivity σxy is quantized to integer multiples of e2/h (Klitzing, Dorda, &

Pepper, 1980; Akera, 2000; Akera, 2001). With increasing the current up to a critical

value, σxx increases by several orders of magnitude within a narrow range of the cur-

rent and the QHE breaks down (Ebert, Klitzing, Ploog, & Weimann, 1983; Cage et al.,

1983; Kuchar, Bauer, Weimann, & Burkhard, 1984; Akera, 2002.).
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Theoretically, otherwise, a hot electron model describes the breakdown of the QHE.

It is proposed in this model that the electron heating is responsible for the decrease of

σxx at the breakdown and the electron temperature Te is the key variable in determining

σxx (Güven et al., 2002; Kaya, Nachtwei, Klitzing, & Eberl, 1998; Ise, Akera, &

Suzuura, 2005; Komiyama, Sakuma, Ikushima, & Hirakawa, 2006).

Uchimura and Uemura have applied the hot-electron theory and the self-consistent

Born approximation to explain the electric-field dependence of the diagonal conduc-

tivity, observed by Kawaji and Wakabayashi, in two-dimensional systems under quan-

tizing magnetic fields (Kawaji, & Wakabayashi, 1976).

Figure 2.9 Critical current Ic versus device
width d for a sample with lower mobilities
(Kawaji, Hirakawa, & Nagata, 1993).

Several groups investigate the breakdown current of the QHE as a function of the

sample width and obtain two main features. A linear increase of critical current Ic with

the sample width was found for samples with low and medium mobilities (typically

of the order 105cm2/Vs) that is shown in Figure 2.9. On the other hand a sublinear

dependence for Ic versus sample width was observed for samples of higher mobility

(Figure 2.10).
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Figure 2.10 Critical current Ic versus device
width d for a sample with higher mobilities.



CHAPTER THREE

FUNDAMENTALS OF THE SCREENING THEORY

3.1 Introduction

The spatial distribution of the Hall potential strongly depends on the applied mag-

netic field B, such that if the system is out of the plateau regime Hall potential varies

linearly across the sample resembling the classical Hall effect (Siddiki, & Gerhardts,

2004). In contrast, within the plateaus, the potential presents strong non-linear distri-

butions: At the high B field side of the plateau the potential drop is spread all across the

sample indicating that the current is carried at the bulk, meanwhile at the low field side

one observes sharp variations at the opposing edges, whereas the potential is constant

at the bulk. This behavior is attributed to edge state transport. The spatial variation

of the potential drop as a function of B field shows that, while decreasing the field

the edge states move towards the physical ends of the sample until the plateau disap-

pears. A simple calculation of the spatial distribution of the edge states, following the

original work of Chklovskii et al, shows that the position of the potential drop almost

perfectly matches with the position of the edge states. The theoretical work takes into

account electron-electron interactions within a Thomas-Fermi approximation (TFA)

and provides estimations of the widths and the positions of the compressible and the

incompressible strips, for a fixed depletion length. There, it is assumed that the 2DES

is separated into compressible (where the Fermi energy is pinned to one of the Landau

levels) and incompressible strips (where Fermi energy falls into Landau gap) (Siddiki,

& Gerhardts, 2004; Siddiki, Ph.D.Thesis, 2005).

3.2 Thermal Equilibrium

Following Ref.(Chklovskii, Matveev, & Shklovskii, 1993; Oh, & Gerhardts, 1997,

Güven, & Gerhardts, 2003) 2DES is modeled as a Hall bar in the z = 0 plane, which is

subjected to a perpendicular magnetic field B = (0,0,B), together with a translational

21
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invariance in x direction.

The electrons are assumed to be confined by the background potential Vbg(y) gen-

erated due to ionized donors, which are distributed uniformly in the xy plane. The

local electron (number) density is described by nel(y). To describe the experimental

geometries, boundary conditions are imposed such that two metallic gates reside at

the physical edges, following Chklovskii et al (Chklovskii, Shklovskii, & Glazman,

1992; Chklovskii, Matveev, & Shklovskii, 1993). The effective potential within the

semi-classical approximation can be written as

V (y) = Vbg(y)+VH(y), (3.2.1)

with the confinement potential

Vbg(y) =−E0
bg

√
1−

( y
d

)2
, E0

bg =
2πe2

κ
n0d, (3.2.2)

and the Hartree potential

VH(y) =
2e2

κ

∫ d

−d
dy

′
K(y,y

′
)nel(y

′
). (3.2.3)

Here κ is the dielectric constant, n0 is the donor density and 2d is the sample width.

Kernel K(y,y
′
) solves the Poisson’s equation considering the above mentioned bound-

ary conditions (Siddiki, & Gerhardts, 2004; Güven, & Gerhardts, 2003)

K(y,y
′
) = ln

∣∣∣∣∣

√
(d2− y2)(d2− y′2)+d2− y

′
y

(y− y′)d

∣∣∣∣∣ . (3.2.4)

Note the fact that the boundary conditions used in this study result in different Kernel

compared to Ref.(Akera, 2001; Kanamaru, Suzuura, & Akera, 2006) and affect the

strength of interactions considerably.
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The electron density is, in turn, determined by the effective potential V (y) and is

calculated within the TFA

nel(y) =
∫

dED(E) f (E +V (y)−µec), (3.2.5)

where D(E) is DOS, f (E) is the Fermi function and µec is the electrochemical po-

tential that is constant in the equilibrium state (Gerhardts, 2008; Güven, & Gerhardts,

2003; Siddiki, & Gerhardts, 2004).

3.3 Local Equilibrium with Imposed Current

In this work, the local equilibrium approximation, used commonly to describe

similar systems is applied (Akera, & Suzuura, 2005). In local equilibrium, the energy

distribution of an electron is defined by the Fermi function

f (ε,µec,Te) =
1

{exp[(ε−µec)/kBTe]+1} , (3.3.1)

where ε is the energy and Te is the electron temperature. In local equilibrium approx-

imation, the lattice temperature TL remains unchanged in the presence of an applied

current. If an external current is imposed the electrochemical potential µec(r) depends

on position and its gradient E = ∇µec(r)/e satisfies the local Ohm’s law

ρ̂(r)jnel(r) = E(r), (3.3.2)

hence local current densities can be obtained if local resistivities are provided. In

Eq. 3.3.2, the components of current density jnely and electric field Ex must be constant

due to the translation invariance in the x direction.

jnely(y)≡ 0, Ex(y)≡ E0
x . (3.3.3)
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The other components are written as

jnelx(y) =
1

ρl(y)
E0

x , Ey(y) =
ρH(y)
ρl(y)

E0
x , (3.3.4)

in terms of the longitudinal component ρl and the Hall component ρH of the resistivity

tensor ρ̂ = σ̂−1. The dissipative current I is the integral of current densities over the

sample,

I =
∫ d

−d
dy jnelx(y). (3.3.5)

According to the applied current, the constant electric field component along the Hall

bar and the Hall voltage across the sample are written as,

E0
x = I

[∫ d

−d
dy

1
ρl(y)

]−1

, (3.3.6)

VH =
∫ d

−d
dyEy(y) = E0

x

∫ d

−d
dy

ρH(y)
ρl(y)

, (3.3.7)

respectively.

3.4 Result: Lattice Temperature at Position Independent Electron Temperature

Fig. 3.1 and Fig. 3.2 show the filling factor, current density, electrostatic and elec-

trochemical potentials of the Hall bar calculated for different lattice temperatures at

fixed magnetic field, h̄ωc/E0
F = 0.909. Fig. 3.1(a) presents the electron density, with

two IS(s) located symmetrically near x/d =0.55 and the surrounding compressible

regions. All the electron densities are expressed in terms of local filling given by

ν(y) = 2πnel(y)l2. The width of the IS(s) shrinks with increasing temperature. For

kBTL/E0
F = 0.02 and 0.03 clearly visible IS(s) exist. As it seen in Fig.3.1(b) the cur-

rent density is proportional to the electron density at the highest temperature. With

decreasing temperature the 2DES develops IS(s) with low longitudinal resistivity and

the current density is increasingly confined to the incompressible regions. Simulta-
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Figure 3.1 (a) Filling factor ν(y) and (b) current density jnel(y)
profiles for the magnetic field h̄ωc/E0

F = 0.909 at five differ-
ent temperatures, t = kBTL/E0

F . The inset shows the enlarged
plateau region.

neously the potentials [Fig.3.2] develop a steplike behavior with variation across the

IS(s) and plateaus in the compressible regions.

Fig. 3.3 shows the filling factor profile for varying magnetic field, Ωc/E0
F. For the

larger B value, the local filling factor ν(y) is everywhere in the Hall bar less than 2,

and the 2DES is completely compressible. At Ωc/E0
F ≈ 1, the center of the sample

becomes incompressible and the local filling factor ν(y) = 2. For the lower B value,

the filling factor in the center increases and IS(s) with ν(y) = 2 move towards the

sample edges and become narrower. At Ωc/E0
F ≈ 0.5, IS(s) with local filling factor

ν(y) = 4 occur in the center and then move towards the edges. For the lower lattice

temperature, this behavior is seen at the lower values of magnetic field.
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Figure 3.2 Calculated electrostatic V (y) and electrochem-
ical potentials µec(y) for the magnetic field h̄ωc/E0

F =
0.909 at five temperatures, kBTL/E0

F with Hall bar width
2d = 1µm.

Fig. 3.4 shows the current distribution for different values of magnetic field, Ωc/E0
F =

1.05,1.0,0.91 and 0.83. For the high magnetic field values Ωc/E0
F > 1.0 there exists

no incompressible strip and the current density simply follows the electronic distribu-

tion. With decreasing the magnetic field, the current is confined to the intervalss where

the incompressible strip occurs.
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CHAPTER FOUR

THERMOHYDRODYNAMIC THEORY IN QUANTUM HALL SYSTEMS

4.1 Introduction

Akera and his co-workers developed a theory of thermohydrodynamics in QHS.

They described spatial variations of the electron temperature and the chemical poten-

tial in the local equilibrium including the nonlinear transport regime with use of the

equations of conservation.

4.2 Model, Processes and Macroscopic Variables

4.2.1 Drift and Hopping Processes

Akera and his co-workers consider two types of energy exchange between different

locations which are the drift and hopping processes (Akera, 2000; Akera, 2001; Kana-

maru, Suzuura, & Akera, 2006). Drift motion perpendicular to the local electric field

transfers electrons in extended states between neighboring regions, giving the Hall

current perpendicular to the macroscopic electric field (Akera:2001; Akera:2002; Ise,

Akera, & Suzuura, 2005; Kanamaru, Suzuura, & Akera, 2006). In the hopping pro-

cess, a localized wave packet of electron hops in intra-Landau level due to a scattering

from other electrons. Therefore, the total number flux density is given by

jnel = jdrift
nel

+ jhop
nel

. (4.2.1)

4.2.2 Model

We consider a 2DES in the plane z = 0, with translation invariance in the x direc-

tion and an electron density nel(y) confined to the interval −d < y < d. The electrons

28
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are confined in the potential generated due to ionized donors that are distributed uni-

formly in the x−y plane. We assume local equilibrium, which imposes that the energy

distribution of electrons is determined by the Fermi distribution function

f (ε,µec,Te) =
1

{exp[(ε−µec)/kBTe]+1} , (4.2.2)

with the electron temperature Te and the electrochemical (potential) energy µec. And

also we assume that the phonons are in equilibrium with the lattice temperature TL and

does not change under the applied current.

4.2.3 Macroscopic Variables

Spatial variations of macroscopic variables are taken into account in the thermo-

hydrodynamic theory. These variables are the electron temperature Te(x,y), the elec-

trochemical energy µec(x,y) and the total potential energy V (x,y) which is the influ-

enced by the applied current. Instead of solving V (x,y) using electrostatics, V (x,y)

is determined by the approximation so that the chemical potential energy is written

as µ = µec−V . The variables Te and µec are determined using two hydrodynamic

equations given below (Ise, Akera, & Suzuura, 2005).

4.3 Thermo-hydrodynamical Equations

Two hydrodynamic equations are considered and assumed that the electron number

and the total energy of the system at hand is conserved. The conservation of the

electron number is given by
∂nel

∂ t
=−∇.jnel , (4.3.1)



30

where the number flux density is jnel . The energy conservation is formulated by

∂ε
∂ t

=−∇.jε −PL, (4.3.2)

with the energy flux density jε and the energy loss per unit area PL due to the heat

transfer between electrons and phonons (Akera, & Suzuura, 2005). The time evo-

lution of the entropy density s is derived by using Eqs. (4.3.1), (4.3.2), and by the

fundamental thermodynamical equation

Teds = dε−µecdnel, (4.3.3)

that yields

Te
∂ s
∂ t

=
∂ε
∂ t
−µec

∂nel

∂ t
= −∇.jε −PL + µec∇.jnel

= −∇.jε + µec∇.jnel +∇µec.jnel −∇µec.jnel −PL

= −∇.jε +∇(µecjnel)−∇µec.jnel −PL

= −∇(jε −µecjnel︸ ︷︷ ︸
jq

)−∇µec.jnel −PL

Te
∂ s
∂ t

= −∇.jq−∇µec.jnel −PL, (4.3.4)

where the thermal flux density jq is described by

jq = jε −µecjnel. (4.3.5)
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4.3.1 Hopping Components of the Total Flux Densities

4.3.1.1 The Number Flux Density

First we obtain the number flux between neighboring regions due to the hopping

process. It is denoted by Jhop
nel and is given by

jhop
nel

= ∑
α

jhop
nelα , (4.3.6)

with the Landau level index α . Each jhop
nelα is induced by the difference of the elec-

tron temperature Te and of in the electrochemical potential µec between neighboring

regions. In a first order approximation of ∆Te and ∆µec, jhop
nelα can be written as

jhop
nelα = Aα∆µec +Bα∆Te, (4.3.7)

with the coefficients Aα and Bα . These coefficients are related to each other in the

hopping process. In the hopping process, the transition rate is ignored when the dis-

tance between the wave packets is much large than the magnetic length. Because of

this, the wave packets are the corresponding coefficients in the vicinity of the bound-

ary between two regions. The energies of these wave packets are confined within an

energy range around εα(x,y) = ε0
α +V (x,y) with width Γhop ∼ Γl/lfluc where Γ is the

width of the broadened Landau level and lfluc is the fluctuation length scale. So the

occupation probability is given by

fα = f (εα ,µec,Te) (4.3.8)

when Γhop ¿ kBTe. According to the hopping process between two neighbor regions,

jhop
nelα is written as

jhop
nelα =−Cα [ f (εα ,µec +∆µec,Te +∆Te)− f (εα ,µec,Te)]. (4.3.9)
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The hopping number flux density jhop
nel averaged in the macroscopic scale is written as

jhop
nel

=−∑
α

Dα

(
∂ fα
∂ µec

∇µec +
∂ fα
∂Te

∇Te

)
, (4.3.10)

with the translation rate of each hopping process Dα . Because of the screening, it

depends on the disorder potential that is a function of µ and Te. If the transport coef-

ficients L11
xx and L12

xx are taken into account, jhop
nel is rewritten as

jhop
nel

=−L11
xx ∇µec−L12

xx T−1
e ∇Te. (4.3.11)

These coefficients can be solved from Eq. 4.3.10. First L11
xx transport coefficient can

be solved as following:

∂ fα
∂ µec

=
∂

∂ µec

(
1

exp[(ε−µec)/kBTe]+1

)
(4.3.12)

{(
1

eu +1

)′

=− u
′
eu

(eu +1)2

}

∂ fα
∂ µec

= −
(− 1

kBTe
exp[(ε−µec)/kBTe]

(exp[(ε−µec)/kBTe]+1)2

)

= (kBTe)−1 exp[(ε−µec)/kBTe]︸ ︷︷ ︸
(1− f )/ f

1
(exp[(ε−µec)/kBTe]+1)2
︸ ︷︷ ︸

f 2

= (kBTe)−1 fα(1− fα) (4.3.13)

L11
xx =

σxx

e2 = (kBTe)−1 ∑
α

Dα fα(1− fα). (4.3.14)

Next the L12
xx transport coefficient can be solved, and obtained as

∂ fα
∂Te

=
∂

∂Te

(
1

exp[(ε−µec)/kBTe]+1

)
(4.3.15)
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∂ fα
∂Te

=
∂

∂Te

(
exp

[(
ε−µec

kB

)
T−1

e

]
+1

)−1

=
(

exp
[(

ε−µec

kB

)
T−1

e

]
+1

)−2

︸ ︷︷ ︸
f 2

((
ε−µec

kBTe

)
T−1

e

)
exp

[(
ε−µec

kB

)
T−1

e

]

︸ ︷︷ ︸
(1− f )/ f

= (ε−µec)(kBTe)−1T−1
e fα(1− fα) (4.3.16)

L12
xx = (kBTe)−1 ∑

α
Dα fα(1− fα)(ε0

α −µ). (4.3.17)

Therefore, the number flux density depending on hopping component jhop
nel is obtained

including the transport coefficients L11
xx and L12

xx

jhop
nel

=−L11
xx ∇µec−L12

xx T−1
e ∇Te. (4.3.18)

The L11
xx and L12

xx coefficients are functions of Te and µ . In the linear response regime,

these coefficients are to be evaluated in equilibrium.

4.3.1.2 The Thermal Flux Density

The thermal flux density is given by

jq = jε −µecjnel

= (εα −µec)jnel . (4.3.19)

In hopping process, this equation is written as

jhop
q =−∑

α
(εα −µec)Dα

(
∂ fα
∂ µec

∇µec +
∂ fα
∂Te

∇Te

)
. (4.3.20)
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This equation means that an electron in the Landau level carries a thermal energy

(εα −µec). This equation is rewritten as

jhop
q =−L21

xx ∇µec−L22
xx T−1

e ∇Te, (4.3.21)

related to the L21
xx and L22

xx transport coefficients. In order to solve L21
xx transport coeffi-

cient, the following expression

∂ fα
∂ µec

= (kBTe)−1 fα(1− fα) (4.3.22)

is substituted in Eq. 4.3.20. Then L21
xx transport coefficient is obtained as

L21
xx = (kBTe)−1 ∑

α
Dα fα(1− fα)(ε0

α −µec) (4.3.23)

and this expression shows that L21
xx = L12

xx .

L22
xx transport coefficient is calculated by using

∂ fα
∂Te

= (ε0
α −µec)(kBTe)−1T−1

e fα(1− fα). (4.3.24)

Substituting this expression in Eq. 4.3.20, L22
xx transport coefficient is given by

L22
xx = (kBTe)−1 ∑

α
Dα fα(1− fα)(ε0

α −µ)2. (4.3.25)

4.3.2 Drift Components of the Total Flux Densities

The local potential Vloc contains the random potential, so that the local flux density

fluctuates spatially due to the drift motion. The macroscopic flux density is determined

by using the average of the local flux density. In order to obtain the macroscopic

number flux density jdrift
nelα in the Landau level α , the drift velocity v should be rewritten
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as

v =
E×B

B2 .

E×B =




î ĵ k̂

Ex Ey Ez

0 0 Bz


 = î(EyBz)− ĵ(ExBz)

Ex =
1
e

∇xVloc, Ey =
1
e

∇yVloc

E×B =
1
e


 0 1

−1 0





 ∇xVloc

∇yVloc


B

ε̂ =


 0 1

−1 0


 , sB =

B
|B| and l2 = h̄/(eB)

v =
1

eB
B
B

ε̂∇Vloc (4.3.26)

=
l2

h̄
sBε̂∇Vloc. (4.3.27)

After substituting the drift velocity v in j =−nelev, jdrift
nelα is obtained as

jdrift
nelα =< f (ε0

α +Vloc,µec,Te)h−1sBε̂∇Vloc >av . (4.3.28)

The occupation probability of localized states can be replaced by that of extended

states, since localized states have no contributions to the macroscopic flux density.

Therefore, the number flux density in the Landau level jdrift
nel

is given by

jdrift
nelα = f (ε0

α +V,µec,Te) < h−1sBε̂∇Vloc >av . (4.3.29)
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Since the spatial average of ∇Vloc is equal to ∇V , the number flux density jdrift
nel

which

is the sum of the Landau levels, is given by

jdrift
nel

= L11
yx ε̂∇V. (4.3.30)

It is clearly seen that L11
yx transport coefficient is

L11
yx =

σyx

e2 =
sB

h ∑
α

fα . (4.3.31)

The thermal flux density

jdrift
qα = (ε0

α −µ) f (ε0
α +V,µec,Te) < h−1sBε̂∇Vloc >av (4.3.32)

includes K21
yx transport coefficient which is given by

K21
yx =

sB

h ∑
α

(ε0
α −µ) fα . (4.3.33)

Accordingly the transport coefficients L11
yx and K21

yx are rewritten as

L11
yx = sB

2πl2

h
n0, (4.3.34)

K21
yx = sB

2πl2

h
(Tes0), (4.3.35)

with the thermohydrodynamic quantities n0, Ω0 and s0. Here Ω0 is the thermodynamic

potential density given by

Ω0(Te,µ,B) =−kBTe

2πl2 ∑
α

ln
[

1+ exp
(
−ε0

α −µ
kBTe

)]
. (4.3.36)

The electron density n0 is defined as

n0 =−
(

∂Ω0

∂ µ

)

Te,B
, (4.3.37)
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and the entropy density s0 is determined as

s0 =−
(

∂Ω0

∂Te

)

µ,B
. (4.3.38)

The electron density n0 is obtained as following:

n0 =−
(

∂Ω0

∂ µ

)

Te,B
(4.3.39)

=− ∂
∂ µ

(
−kBTe

2πl2 ∑
α

ln
[

1+ exp
(
−ε0

α −µ
kBTe

)])

=
kBTe

2πl2 ∑
α

∂
∂ µ

(
ln

[
1+ exp

(
−ε0

α −µ
kBTe

)])

=
kBTe

2πl2 ∑
α

∂
∂ µ

(
1+ exp

(
− ε0

α−µ
kBTe

))
(

1+ exp
(
− ε0

α−µ
kBTe

))

=
kBTe

2πl2 ∑
α

(kBTe)−1 exp
(
− ε0

α−µ
kBTe

)
(

1+ exp
(
− ε0

α−µ
kBTe

))

=
kBTe

2πl2 ∑
α

(kBTe)−1
(

fα
1− fα

)
(1− fα)

n0 =
1

2πl2 ∑
α

fα .

(4.3.40)

By substituting this into Eq.4.3.34, the transport coefficient L11
yx is rewritten as

L11
yx = sB

2πl2

h
1

2πl2 ∑
α

fα ,

L11
yx =

sB

h ∑
α

fα . (4.3.41)
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Similarly, the entropy density s0 can be expressed as

s0 =−
(

∂Ω0

∂Te

)

µ,B
(4.3.42)

=− ∂
∂Te

(
−kBTe

2πl2 ∑
α

ln
[

1+ exp
(
−ε0

α −µ
kBTe

)])

=
kBTe

2πl2 ∑
α

∂
∂Te

(
ln

[
1+ exp

(
−ε0

α −µ
kBTe

)])

=
kBTe

2πl2 ∑
α

∂
∂Te

(
1+ exp

(
− ε0

α−µ
kBTe

))
(

1+ exp
(
− ε0

α−µ
kBTe

))

=
kBTe

2πl2 ∑
α

(ε0
α −µ)(kBTe)−1T−1

e exp
(
− ε0

α−µ
kBTe

)
(

1+ exp
(
− ε0

α−µ
kBTe

))

=
kBTe

2πl2 ∑
α

(
(ε0

α −µ)(kBTe)−1T−1
e

)(
fα

1− fα

)
(1− fα)

s0 =
T−1

e
2πl2 ∑

α
(ε0

α −µ) fα .

(4.3.43)

Additionally by substituting this into Eq.4.3.35, the transport coefficient K21
yx is found

as

K21
yx = sB

2πl2

h
(Ω0 +Tes0)

= sB
2πl2

h
Te

(
−kBTe

2πl2 ∑
α

ln
[

1+ exp
(
−ε0

α −µ
kBTe

)]
+

Te ∑
α

kB

2πl2 ln
[

1+ exp
(
−ε0

α −µ
kBTe

)]
+

∑
α

kBTe

2πl2 (kBTe)−1(ε0
α −µ) fα

)

=
sB

h ∑
α

(ε0
α −µ) fα . (4.3.44)
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4.3.3 Total Flux Densities

The number flux density jnel is caused by the transitions of the electrons. On the

other hand the thermal flux density is generated by the motion of the electrons. The

total flux density is defined by

jnel = jhop
nel

+ jdrift
nel

,

jq = jhop
q + jdrift

q . (4.3.45)

in terms of the drift and hopping components. Utilizing the above equations that

describe the drift and hopping processes, the total flux densities can be summarized as

(Akera, & Suzuura, 2005)

jnel(x) =−L11
xx ∇xµec +L11

yx ∇yV −L12
xx T−1

e ∇xTe, (4.3.46)

jnel(y) =−L11
yx ∇xV −L11

xx ∇yµec−L12
xx T−1

e ∇yTe, (4.3.47)

jq(x) =−L12
xx ∇xµec +K21

yx ∇yV −L22
xx T−1

e ∇xTe, (4.3.48)

jq(y) =−K21
yx ∇xV −L12

xx ∇yµec−L22
xx T−1

e ∇yTe. (4.3.49)
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4.3.4 Transport Coefficients

The transport coefficients are defined as

L11
xx = e−2σxx = 2(kBTe)−1 ∑

α
Dα fα(1− fα), (4.3.50)

L12
xx = L21

xx = 2(kBTe)−1 ∑
α

Dα(εα −µ) fα(1− fα), (4.3.51)

L22
xx = 2(kBTe)−1 ∑

α
Dα(εα −µ)2 fα(1− fα), (4.3.52)

L11
yx = e−2σyx =

2
h ∑

α
fα , (4.3.53)

K21
yx =

2
h ∑

α
(εα −µ) fα . (4.3.54)

with the energy of the α-th Landau level without the potential εα = h̄ωc(α +1/2) and

the chemical potential µ = µec−V . The occupation probability fα is defined by

fα = f (εα ,µ ,Te), (4.3.55)

with the electron temperature Te. The coefficient Dα is due to hopping process and is

written as

Dα = (2α +1)D0, (4.3.56)

with D0 coefficient for α = 0.The parameter D0 gives the saturation value of the con-

ductivity σxx in the high temperature limit (kBTe À h̄ωc). D0 is taken 23.3×10−3E0/h̄

from the experimental results by Komiyama et al (Kanamaru, Suzuura, & Akera,

2006).

4.3.5 Boundary Conditions and Edge Current

The translation invariance in the x direction is assumed in this study. Therefore the

electron temperature Te and the chemical potential µ are independent of x direction.
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Also electric field Ex in x direction becomes Ex = ∇x(∆V )/e because of ∇x(∆µ) =

0. The boundary conditions must be applied to the equations of conservation. In

this system, the electrons are confined by the potential produced by the donors. This

potential is infinite outside the sample, V (y) = ∞ for |y| > d. Therefore, the flux is

absent in this region. Then, the boundary conditions at −d < y < d are defined by

jnely = 0, (4.3.57)

jqy = −eExJedge
nel

, (4.3.58)

with the number flux Jedge
nel along the edge of the sample . (Kanamaru, Suzuura, &

Akera, 2006).

The fluxes at the edge regions are called drift fluxes. The coordinates (ξ ,η) are

introduced for each boundary of the 2DES. The unit vector is labeled by n. The η

and the ξ axes along the boundary are taken in the direction of n and ε̂n, respectively.

The fluxes are calculated in the edge region ηedge < η < ηedge +∆η . The electron and

the flux densities can be ignored in the region η > ηedge + ∆η . The hopping flux is

ignored in the edge region, since ∆η is small in the present steep confining potential.

So that the drift flux is taken into account. The gradient of the confining potential is

large (Akera, & Suzuura, 2005). The drift number flux is defined by

Jedge
nel =

∫ ηedge+∆η

ηedge

jdrift
nel

dη . (4.3.59)

jdrift
nel

and L11
yx are given by

jdrift
nel

= L11
yx ε̂∇V, L11

yx =
sB

h ∑
α

fα ,
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respectively. Using these equations, Jedge
nel should be rewritten as

Jedge
nel

=
sB

h ∑
α

∫ ηedge+∆η

ηedge

dη
∂V
∂η

f (ε0
α +V,µec,Te)

︸ ︷︷ ︸
Knel

ε̂n (4.3.60)

Knel =
sB

h ∑
α

∫ ηedge+∆η

ηedge

dη
∂V
∂η

f (ε0
α +V,µec,Te) (4.3.61)

Jedge
nel

= Knel ε̂n. (4.3.62)

η dependence of µec and Te can be ignored, so that only energy dependence is taken

into account.

Knel =
sB

h ∑
α

∫ ∞

εα
f (ε,µec,Te)dε

=
sB

h ∑
α

∫ ∞

εα

1

exp
(

ε−µec
kBTe

)
+1

dε (4.3.63)

Knel = −sB

h
kBTe ∑

α

[
ln

(
1+ exp

(
−εα −µec

kBTe

))]

=
sB

h
kBTe ∑

α

[
ln

(
1+ exp

(
−ε0

α −µ
kBTe

))]
(4.3.64)

Using Eq. 4.3.36 Knel should be rewritten as

Knel = −sB

h
2πl2Ω0, (4.3.65)

with the thermodynamic potential density Ω0. According to this equation, ∂Knel/∂ µ

is obtained as
∂Knel

∂ µ
=−sB

2πl2

h
∂Ω0

∂ µ
. (4.3.66)
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Using the following equation

(
∂Ω0

∂ µ

)

Te,B
=−n0 =− 1

2πl2 ∑
α

fα ,

∂Knel/∂ µ should be rewritten as

∂Knel

∂ µ
=

sB

h ∑
α

fα ,

= L11
yx . (4.3.67)

Similarly, ∂Knel/∂Te can be written as

∂Knel

∂Te
=−sB

2πl2

h
∂Ω0

∂Te
. (4.3.68)

(
∂Ω0

∂ µ

)

Te,B
=−s0 =− T−1

e
2πl2 ∑

α
(ε0

α −µ) fα

Substituting this expression in Eq. 4.3.68, ∂Knel/∂Te is found as

∂Knel

∂Te
=

1
Te

sB

h ∑
α

(ε0
α −µ) fα ,

=
1
Te

L12
yx . (4.3.69)

Finally,

L12
yx = K21

yx +Kn.

4.3.6 Energy Loss

The boundary conditions presented in the previous section, are used in the equa-

tions of conservation, Eq.4.3.1 and 4.3.2;

∆ jnely = 0 (−d < y < d), (4.3.70)
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∇y(∆ jqy)+ eEx jnelx +PL = 0. (4.3.71)

with the deviations from the equilibrium values. Here PL is the energy loss due to the

heat transfer between electron and lattice. It is a function of µ , Te and TL and defined

by (Akera, & Suzuura, 2005).

PL = Cp(Te−TL), (4.3.72)

with

Cp = C0
p

∫
dερ(ε)

(
−∂ f (ε +V,µec,Te)

∂ε

)
. (4.3.73)

Cp includes the density of state ρ(ε) written as

ρ(ε) =
1

πl2 ∑
α

1√
πΓL

exp
[
−(εα − ε)2

Γ2
L

]
, (4.3.74)

where ΓL is the Landau level broadening (Kanamaru, Suzuura, & Akera, 2006). The

coefficient C0
p is defined by the transition rate due to electron-phonon scattering and is

estimated to be 1.4×10−5 kBE2
0/h̄ from the experimental results by Komiyama et al

(Komiyama, Takamasu, Hiyamizu, & Sasa, 1985).



CHAPTER FIVE

POSITION DEPENDENT ELECTRON TEMPERATURE - RESULTS

5.1 Introduction

The spatial distribution of the current density and the electrochemical potential

under quantizing magnetic fields at low temperatures in 2DES, are extensively investi-

gated in recent years (Ise, Akera, & Suzuura, 2005; Komiyama, Sakuma, Ikushima, &

Hirakawa, 2006; Akera, & Suzuura, 2005). Güven and Gerhardts calculated the spa-

tial distribution of the current density jnel(x,y) and position-dependent electrochemical

potential µec(x,y) utilizing a local version of the Ohm’s law, starting from the elec-

trostatic quantities obtained within a self-consistent Thomas-Fermi-Poisson approxi-

mation (TFPA) to include classical electron-electron (Hartree) interaction (Sıddiki, &

Gerhardts,2003; Sıddiki, 2007; Sıddiki, & Marquardt, 2007). This approach is known

as the screening theory of the integer quantized Hall effect and it was briefly discussed

in Chapter 3. In screening theory, heating effects were neglected hence the electron

temperature Te is assumed to be uniform through the system and equals to the lat-

tice temperature TL (Gerhardts, 2008). Subsequently Akera and his co-workers imple-

mented the above mentioned calculation scheme, however, also by solving the thermo-

hydrodynamical equations they were able to describe dissipative effects and thereby

obtain the spatial distribution of the electron temperature (Kanamaru, Suzuura, & Ak-

era, 2006). They showed that, the current carrying IS(s) strongly affect the electron

temperature. The electrostatic boundary conditions imposed in this work are viable

mainly for a homogeneous system, however, becomes questionable when considering

realistic samples. In any case, this approach opens a new window to investigate the

heating effects at a microscopic level and provides reasonable estimates when com-

pared to experiments.

In this chapter, the spatial dependence of electron temperature is represented in

QHS, where compressible and incompressible strips are present as a result of inter-

actions. To investigate the spatial distribution of the local electron temperature, the

45
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theory of thermo-hydrodynamics which is bound by conservation of electron number

and thermal flux densities is employed following Akera and his co-workers (Akera,

2000; Akera, 2001; Kanamaru, Suzuura, & Akera, 2006). This investigation differs

from these pioneering works, since the realistic boundary conditions are imposed and

therefore describe experimental systems accurately. This enables us to predict an un-

expected behavior that can be observed in the QHS based Aharonov-Bohm interfer-

ence experiments, which is dictated by the local electron temperature variations.

5.2 Electron Temperature and Current Density

5.2.1 Lattice Temperature Dependence

While presenting the results, Fermi energy at the center E0
F of the 2DES is consid-

ered as the energy scale, since this quantity remains constant once the sample proper-

ties (e.g. depletion length, n0 etc.) are fixed, whereas the cyclotron frequency ωc =

eB/(mc) is used to denote the field strength. The magnetic length ` =
√

eB/h̄ pro-

vides a length scale, quantifying the importance of quantum mechanical effects such

as the width of the wave function. As commonly used, the filling factor ν = 2π`2nel

describes the occupation of the Landau levels. If electron density exactly equals to

the magnetic flux (number) density, the Landau level is fully occupied and ν is an

integer. This situation is called an incompressible state, where no states are available

at the Fermi energy. Hence, within an incompressible state, electron density distribu-

tion is constant. It is straightforward to define the local version of the filling factor by

ν(x,y) = 2π`2nel(x,y).

First the effects of lattice temperature on the physical quantities, such as electro-

static potential, electron and current densities, are investigated using TFA for the

self consistent calculation. According to these results, the electron temperature is
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Figure 5.1 (a) Electrostatic potential V (y), (b) filling factor ν(y), (c)
current density jnel (y) and (d) electron temperature Te(y) at three tem-
peratures, t = kBTL/E0

F . The density of donor n0 = 3.6×1011cm−2 and
Hall bar of width 2d = 1µm at the center of the filling factor ν(0) = 2.0.

obtained for different lattice temperatures. The temperature effect on the calculated

filling factor for the magnetic field 1.0, measured in units of h̄ωc/E0
F (h̄ωc ≡Ωc) with

E0
F = 10.81 meV is shown in Fig. 5.1, considering a 1 µm wide sample. With the

center filling factor ν(0) = 2.0, the potential shows non-linear spatial variations. As

it is known, the dependence of the potential profile on the filling factor already sug-

gests the important role of the electron-electron interactions, leading to finite widths

of both compressible and incompressible strips. This figure shows that, when the ν(0)

becomes very close to two, the two IS(s) merge at the bulk and all the current flows

from the incompressible bulk. And also the electron temperature deviation with the

non-linear potential is shown in Fig. 5.1. It shows the oscillating pattern reflecting the

relative position of the electrochemical potential to the Landau levels. There exist the

peak and dip structures in the electron temperature located near y/d =±0.1.
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Figure 5.2 Filling factor ν(y) versus position for
four values of the lattice temperature, kBTL/E0

F =
0.03,0.04,0.06 and 0.1. Hall bar of width is 2d = 1µm
and the magnetic field is Ωc/E0

F = 0.83. The inset
shows the plateau region.

In Fig. 5.2, the spatial variation of the filling factor is plotted considering four dif-

ferent lattice temperatures. The magnetic field B strength is fixed as Ωc/E0
F = 0.83,

where the bulk filling factor ν(0) is above 2. Here, Fermi energy at the bulk is calcu-

lated to be 10.81 meV. At the highest lattice temperature (kBTL/E0
F = 0.1), the elec-

tronic system is in a pure compressible state since both the lowest and next Landau

levels are partially occupied due to the fact that the thermal energy of the electrons

exceed the Landau gap. Therefore, no IS(s) are formed. Once lowering the temper-

ature, it is observed that density distribution presents plateaus (i.e. is constant within

a finite spatial interval) at opposing edges, which are the expected IS(s), where Fermi

energy falls within the Landau gap locally hence, screening is poor and electrons can-

not be redistributed. For the lowest lattice temperature, the IS(s) become even larger

and stable.

If the spatial distributions of the electrostatic and electrochemical potentials are
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known, the electron temperatures can be obtained. In the following results, the elec-

tron temperature is obtained starting from the results of the screening theory. Note that,

the imposed current is assumed to be sufficiently small to guarantee that system is still

within the linear response regime, hence, both the induced potential and the variations

of the local electron temperature do not influence the electronic distribution.

-1 0 1

-0.236

-0.232

-1 0 1
-0.4

-0.2

0.0

0.2

0.4

-1.0 -0.5 0.0 0.5 1.0

-0.2

-0.1

 

 

         (0)=2.4
 t=0.03
 t=0.04 
 t=0.06 
 t=0.1 

 

 

V(
y)

y/d

ec (y) 

 

y/d

Figure 5.3 Calculated potential V (y) and electrochemical potential
µec(y) versus position at four lattice temperature, t = kBTL/E0

F . (2d =
1µm, Ωc/E0

F = 0.83 and ν(0) = 2.4 ).

Next the electrostatic and electrochemical potentials are obtained for the center fill-

ing factor ν(0) = 2.4. The existence of the ISs is related to the gap between to adjacent

broadened LL’s, provided that the temperature is low enough. With decreasing tem-

perature, 2DES develops IS(s) with low longitudinal resistivity and the current density

is increasingly confined to the incompressible regions. In the other words, the width

of ISs increases monotonically and it has apparently a finite width for T → 0. At the

highest temperature (TL = 0.1 E0
F/kB) Drude-like behavior is observed. As it is shown

in Fig. 5.3, electrochemical potential increases nearly linearly across the 2DES.

The electron temperature variation as a function of spatial coordinate is shown in
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Figure 5.4 Spatial distributions of the electron temperature
Te−TL for several values of lattice temperature, t = kBTL/E0

F .
The insets show the variations of the electron temperature en-
larged for both sides of the sample. (2d = 1µm, Ωc/E0

F = 0.83
and ν(0) = 2.4).

Fig. 5.4, where the electron and potential profiles are shown in Figs. 5.2 and 5.3. As

it is shown, assuming a higher lattice temperature results in small variations at the

local electron temperature. This is expected, since at higher temperatures the IS(s) are

not well developed, hence, current is spread all over the sample. Therefore, heating

effects take place almost at the entire sample. Most interestingly, one observes that

one side of the sample heats up, whereas the opposing edge is cooled down. This

effect is nothing but the Peltier effect (Ahlswede, Weitz, Weis, Klitzing, & Eberl,

2001; Ahlswede, Weis, Klitzing, & Eberl, 2002). Although there is no net charge

transfer in the y direction the thermal flux is transferred by the conservation of energy.

Lowering the lattice temperature yields stronger IS(s), hence, current is more confined

to these regions. As a direct consequence, the local electron temperature starts to vary

stronger.

The calculated result of the current density j(y) is given in Fig. 5.5. According to
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Figure 5.5 Spatial distributions of the current density
jx(y) at four lattice temperature, t = kBTL/E0

F . The inset
shows the incompressible strip enlarged for the left side of
the sample. (2d = 1µm, Ωc/E0

F = 0.83 and ν(0) = 2.4).

Ohm’s law, ∆ jx = Ex/ρxx with ρxx longitudinal resistivity and the amplitude of current

density depends on the value of 1/ρxx. When µec exists between two Landau levels,

ρxx becomes small, therefore jx increases. The peaks observed in ISs are same since

TL is uniform in the system. However at lowest TL, the peaks are large and narrow.

With increasing the TL, the peaks become smaller and wider. At sufficiently high TL,

jx spreads in 2DES since ISs disappear.

5.2.2 Magnetic Field Dependence

Now the effect of magnetic field on the electron temperatures is calculated for

different values of magnetic field. Fig. 5.6 shows density profiles, electrostatic and

electrochemical potentials obtained for four different magnetic fields at low temper-

ature, kBTL/E0
F = 0.03. At sufficiently large B with the local filling factor ν(y) < 2,

the 2DES is completely compressible. For the lower B with the local filling factor
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Figure 5.6 Calculated filling factor, electrostatic and electro-
chemical potentials for different magnetic fields, Ωc/E0

F . The
sample parameters are 2d = 1µm, n0 = 3.6× 1011cm−2 and
kBTL/E0

F = 0.03.

ν(y) = 2, the center of the sample becomes incompressible, while ν(y) gradually de-

creases outside the incompressible center and falls off to zero in the depletion regions

at the sample edges. When B is decreased, the center filling factor increases and ISs

with ν(y) = 2 move towards the sample edges and become narrower. This effect is

seen clearly for low enough lattice temperature.

In this study the variation of Te in y direction is considered, since Te is uniform in

x direction. In the linear response regime, Te is proportional to the current density in

QHS depending on compressible and incompressible strips. Fig. 5.7 shows the mag-

netic field dependence of Te. The results for the lattice temperature TL = 0.03 E0
F/kB

at B = 1.0,0.91,0.83 and 0.74 Ωc/E0
F are shown in Fig. 5.7. It is seen that the electron

temperature Te shows spatially antisymmetric behavior that is obviously relevant to the
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Figure 5.7 Spatial distributions of the electron tempera-
ture Te(y) for different values of magnetic field, Ωc/E0

F =
1.0,0.91,0.83 and 0.74.

thermal flux in the y direction. Especially, transport coefficient including gradient of

the electrochemical potential ∇µec is effective. Therefore the direction of this thermal

flux is defined by the transport coefficient L12
xx . Also it is shown that, the spatial de-

pendence of the electron temperature strongly depends on magnetic field. The width

of IS(s) decreases slowly with decreasing magnetic field since it is proportional to the

magnetic field and ISs approach the sample edge. ISs become wider and move away

from the sample edges with increasing the magnetic field.

Fig. 5.8 shows the spatial distribution of current densities for different magnetic

field values. The sample width is 2d = 1 µm. Data are shown for TL = 0.03 E0
F/kB

as well as four values of the magnetic field (Ωc/E0
F = 0.1,0.91,0.8 and 0.74). Since

spatial distribution of Te varies strongly in ISs, the peaks are observed in these strips

for different magnetic field, as shown in Fig. 5.8. As known, width and position of ISs

change with different magnetic field values. This is the reason why, these peaks are

located at different positions and have different magnitude in y direction corresponding
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Figure 5.8 Spatial distributions of the current density
jx(y) for different values of magnetic field, Ωc/E0

F =
1.0,0.91,0.83 and 0.74 at fixed lattice temperature, TL =
0.03 E0

F/kB.

to ISs. For smaller B values, the ISs shrink and finally vanish, and the current density

expands in 2DES. As a result, it is shown that the current densities are observed in ISs

corresponding to the magnetic field values.

5.2.3 Sample Parameter Dependence

In QHS, the spatial distribution of electron temperature does not only depend on

the magnetic field or the lattice temperature, but also on the sample parameters, such

as sample width d, depletion length b and averaging length λ , since these parameters

affect the width of the ISs. The effect of the sample width on the variation of electron

temperature is indicated in Fig. 5.9. Here three sample widths, 2d = 1.6,2.4 and 3.0

µm are used with fixed magnetic field Ωc/E0
F = 0.8 and lattice temperature TL = 0.05

E0
F/kB. With increasing the sample width, the strips move towards the sample edges

and become narrower. Thus, the deviation of electron temperature Te−TL increases
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Figure 5.9 Spatial distributions of (Te − TL) for different
values of sample widths, 2d = 1.6,2.4 and 3.0 µm. The
lattice temperature TL = 0.03 E0

F/kB and magnetic field
Ωc/E0

F = 0.8.

and moves from the center towards the sample edges.

The influence of averaging length is investigated for a magnetic field value corre-

sponding to the central filling factor ν(0) = 2.4. The effect of averaging length on

the local filling factor ν(y) and electron temperature is demonstrated in Figs. 5.10 and

5.11. Fig. 5.10 shows that the averaging length yields changes in the width of the ISs

at the lattice temperature TL = 0.04 E0
F/kB and fixed magnetic field, Ωc/E0

F = 0.83.

With increasing the averaging length, ISs becomes narrower. This affects the variation

of electron temperature depending on ISs. The result shows that with increasing λ ,

only the value of Te changes, but the position is constant in y direction.

The no electron region is called depletion region and the electron density is affected

by the depletion length, b. For the narrow depletion length the bulk density profile is

nearly flat, whereas for the wide depletion length a bending profile is observed. These

affect the existence of the ISs. Fig. 5.12 shows the deviation of electron tempera-
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Figure 5.10 Filling factor profile for different values of the
averaging length λ with the magnetic field Ωc/E0

F = 0.83.
The sample parameters are 2d = 2 µm, n0 = 4.0×1011cm−2

and kBTL/E0
F = 0.04.

ture for different values the depletion length, b = 80,100,150,200 and 250 nm. With

decreasing the depletion length, the deviation of electron temperature Te − TL also

decreases and moves from the center towards the sample edges.

5.3 Effects of the Energy Loss on the Electron Temperature

The results discussed in this section are calculated considering the energy loss that

is given in Eq. 4.3.72. In this equation, a coupling between electrons and phonons is

represented by C0
p . The electron temperature deviations are shown in Fig. 5.13 for dif-

ferent values of C0
p at (a) ν(0) = 2.0 and (b) ν = 2.5. The solid, dash, dot and dash dot

lines represent the results for C0
p = 3×10−3, 5×10−2 and 8×10−2. kB(E0

F)/h̄ is used

for scaling the coefficient. The lattice temperature is TL = 0.15E0
F/kB with E0

F = 9.615

meV. The variation of the electron temperature without electron phonon interaction is
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Figure 5.11 Spatial distributions of the electron temperature
Te(y) for different values of the averaging length λ with the
magnetic field Ωc/E0

F = 0.83 at fixed lattice temperature,
TL = 0.04 E0

F/kB. The inset shows the variation of Te en-
larged for the left side of the sample.

larger than the variation of the electron temperature with the interactions. Since a part

of the energy is converted to the heat energy between electrons and phonons because

of the interaction. With introducing the interaction, the heat transfer occurs between

electron-phonons. So that C0
p coefficient reduces |Te−TL|. In the strong interaction

limit between electrons and phonons, i.e. C0
p coefficient is infinite, |Te−TL|= 0. It is

obtained that |Te−TL| decreases with increasing the coefficient. This effect is clearly

shown in the vicinity of the peak and dip structure at y/d ≈±0.37 for ν(0) = 2.0 and

at y/d ≈±0.6 for ν(0) = 2.5.
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Figure 5.12 Spatial distributions of the electron tempera-
ture Te(y) for different values of depletion length, b =
80,100,150,200 and 250 nm with Ωc/E0

F = 0.8. The sample
parameters are 2d = 1.6 µm, n0 = 4.0× 1011cm−2, λ = 33 nm
and kBTL/E0

F = 0.05.

5.4 Effects of the Electron Temperature on the Compressible and the Incom-

pressible Strips

The changes in the local electron temperature Te with increasing filling factor at

fixed lattice temperature TL = 0.03 E0
F/kB are presented in Fig. 5.14. This figure shows

that the electron temperature oscillates as a function of the lattice temperature in the

ISs. And also it indicates that, the electron temperature strongly depends on the filling

factor. The ISs shrink slowly with increasing the filling factor since it is inversely

proportional to the filling factor and ISs approach the sample edges.

In Fig. 5.15, the filling factor and the current density profiles are compared for the

temperature and electron temperatures. In the filling factor figure, where the lattice

temperature is taken into account, ISs are same since TL is uniform in the system.
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Figure 5.13 The electron temperature versus position, calcu-
lated for different center filling factor at fixed lattice tempera-
ture TL = 0.15 E0

F/kB. The sample parameters are 2d = 2.2 µm,
n0 = 3.6×1011cm−2 and the Fermi energy E0

F = 9.62 meV cor-
responding to the electron density at the center.
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Figure 5.14 The electron temperature versus position,
calculated for ν(0) = 2.4 at fixed lattice temperature
TL = 0.03 E0

F/kB. The black and red lines represent the
results for the without energy loss and with energy loss,
respectively.

If the electron temperature is used to calculate the filling factor, the quantum Hall

plateaus show different behavior. Since right side of the sample heats up, while the

left side of the sample is cooled down. This effect is more evident at ν(0) = 2.4, so

we show the results for ν(0) = 2.4. As expected, the width of the incompressible strip

increases monotonically with decreasing temperature.

The result shows that when the electron temperature becomes smaller than the lat-

tice temperature (left side), the 2DES develops IS(s) with low longitudinal resistivity

and the current density is increasingly confined to the IS(s). Therefore in the left side

of the sample, the red peak is larger than the black one. The other side of the sample

is opposite.

In Fig. 5.16, the energy loss a positive PL is considered in order to investigate the

filling factor and current density profile using the electron temperature. As expected,
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Figure 5.15 The filling factor and current density versus
position for ν(0)= 2.4 at fixed lattice temperature TL = 0.03
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F/kB. The insets show the enlarged plateau regions (in-
compressible strips). For calculations we use the lattice
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Figure 5.16 The filling factor and current density versus
position for ν(0) = 2.4, 2.5 and 2.7 at fixed lattice temper-
ature TL = 0.03 E0

F/kB.

with increasing the central filling factor, the quantum Hall plateaus become smaller

and move from the center towards the edges. But depending on the electron tempera-

ture, incompressible strip that occurs at the right side of the sample becomes narrow

for each central filling factor. Since at the right side of the sample, the electron temper-
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ature becomes larger than the lattice temperature. As known, the width of the quantum

Hall plateaus decreases with increasing the temperature. Also the current density is

dependent on this effect. Therefore the difference between two ISs are shown for each

center of the filling factor. This difference is larger at ν(0) = 2.4, since the variation of

electron temperature is much bigger, as it is seen from Fig. 5.14. The variation of the

electron temperature becomes smaller at ν(0) = 2.7, so the difference between two

ISs nearly disappears.



CHAPTER SIX

TEMPERATURE DEPENDENT BREAKDOWN OF THE

QUANTUM HALL RESISTANCE

6.1 Introduction

In Hall measurements on high mobility, two dimensional electron gas samples the

resistance at the quantized plateaus is given by RH = h(νe2). The resistivity of a ma-

terial is usually determined by its intrinsic properties, however, these properties might

also depend on the external parameters such as temperature T , external magnetic field

B etc. Moreover, if the sample is subject to a perpendicular B field and the transverse

resistivity (namely the Hall resistivity) is measured, one can also determine the type

and the number density of the charge carriers. The Hall resistivity is linear in B for

a typical three-dimensional materials, which is drastically altered at two-dimensional

systems to a stepwise behavior. However in some samples and for special tempera-

tures the resistance increases with increasing magnetic field to a value above that of

the quantized plateau before it returns and stabilizes at h/(νe2) (Wang et al., 2000).

This is called quantum Hall resistance overshoot in which the transverse resistivity

exhibits an unusual behavior.

Resistance overshoot is experimentally investigated in relatively narrow samples

and the results are discussed in the context of interaction induced IS(s) in a phe-

nomenological manner (Sailer, Wild, Lang, Siddiki, & Bougeard, 2010). If a 2DES

is subject to a perpendicular B field, by the virtue of Landau quantization and direct

Coulomb interactions, the electronic system is composed of compressible and incom-

pressible strips. The Fermi energy is pinned to one of the Landau levels at the com-

pressible regions and falls in between quantized levels at the incompressible regions

(Chklovskii et al., 1992). Note that the local filling factor ν(y) = 2πl2nel(y) is an inte-

ger at the incompressible strips, where l =
√

h̄/eB is the magnetic length and nel(y) is

the local electron number density. These co-existing strips change the intrinsic prop-

erties (e.g. screening, conductivity) of the electronic system considerably (Lier, &
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Gerhardts, 1994). The compressible regions behave like a metal, due to high density

of states (locally), whereas the incompressible can be considered as insulators. The

existence and transport properties of these regions strongly depend on the temperature

and B mainly, among other system parameters (Siddiki, & Gerhardts, 2004).

6.2 Model and Results

The Hall bar is considered as a 2DES in the plane z = 0, with translation invariance

in the x direction and electron density nel(y) confined to the interval −d < y < d. The

confinement potential Vbg(y) due to donor and Hartree potential VH due to electrons

are given in Chapter 3. The solution involves the self-consistent determination of the

electron density via

nel(y) =
∫

dED(E) f (E +V (y)−µ∗) (6.2.1)

which is valid in the approximation of a slowly-varying potential, the namely TFA.

The density of states D(E) is to be taken from self-consistent Born approximation

(Ando, Fowler, & Stern, 1982) and µ∗ is the constant equilibrium electrochemical

potential. Since, the overshoot effect is independent of the actual origin of the single

particle gap, from now on we assume spin degeneracy and neglect Zeeman splitting.

DOS and local conductivities are determined assuming an impurity potential having a

Gaussian form (Ando, Fowler, & Stern, 1982)

V (r) =
VI

πR2 exp(− r2

R2 ), (6.2.2)

where the range R is of the order of the spacing between 2DES and doping layer,

together with the impurity strength VI . In strong magnetic fields, the Landau levels are
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broadened due to the scattering from the impurities and the level width is given by

Γ2 = 4πn2
I V 2

I /(2πl2) = (2/π)h̄ωch̄/τ, (6.2.3)

where nI is the number density of the impurities and τ is the momentum relaxation

time. We express the widths by the magnetic energy to characterize the impurity

strength by the dimensionless ratio γ = Γ/h̄ωc and define the strength parameter as

calculated at 10 T as

γI = [(2nIV 2
0 m∗/π h̄2)(1.73 meV)]1/2. (6.2.4)
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Figure 6.1 Magnetic field dependence of the Hall resistance RH at different
scaled temperatures Θ = kBT/E0

F with the sample width of 2d = 8 µm,
γI = 0.3.

The above set of equations allow us to determine the electron density, electrostatic

potential and local conductivities in a self-consistent manner when solved numerically



67

by means of successive iterations.

In Figs. 6.1 and 6.2 Hall resistance as a function of B are shown where two different

sample widths are used at various temperatures. One can clearly see the overshoot at

the expected B intervals. The overshoot is smeared by the increase of the electron

temperature, since the evanescent incompressible strip assuming ν = 2 is washed out

due to the condition a2 < l. This finding also coincides with the experimental results

showing that, the overshoot disappears with increasing temperature.
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Figure 6.2 Magnetic field dependence of the Hall resistance RH at different
scaled temperatures Θ = kBT/E0

F with the sample width of 2d = 12 µm,
γI = 0.3.

Fig. 6.3 shows the effect of temperature on the overshoot in a more detailed manner

in, considering a 10 µm wide sample and for three characteristic values of the B field.

One sees that, the Hall resistance is impregnable to small temperature variations if the

system is out of the overshoot regime (black solid line with boxes). Meanwhile at
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the overshoot interval RH depends strongly on the temperature, broken lines, which is

even pronounced at the peak maximum.
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Figure 6.3 Calculated Hall resistance RH versus scaled temperature (Θ),
for different values of magnetic field, (Ωc/E0

F). The sample parameters are
2d = 10 µm and γI = 0.05.

6.3 Conclusion

In the light of above results and discussions we predict that, for the smooth edge

defined samples the overshoot effect should be enhanced. The reason is: To have co-

existing evanescent incompressible strips the condition l < ak,ak+1 < λF should be

satisfied, this can only happen if the electron density varies slowly. Hence the strip

becomes large. The experimental test can be as follows, one can define two narrow

(e.g. 2d ∼ 10 µm) Hall bars residing parallel to each other, where one of the Hall bars

is defined by shallow etching and the other by deep etching. Since, in principle, all the
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intrinsic properties of the material would be the same for both samples the observed

difference at the overshoots (enhanced at the shallow sample) would point out the

effects due to the formation of wide evanescent incompressible strips. A gate defined

sample can be utilized as well, similar to the ones reported in the literature (Horas,

Siddiki, Moser, Wegscheider, & Ludwig, 2008).



CHAPTER SEVEN

CONCLUSION

The main aim of this thesis is to investigate spatial dependence of the electron

temperature considering a 2DES under quantized Hall conditions when compressible

and incompressible strips are formed. In order to obtain the electron temperature, ther-

mohydrodynamic theory introduced by Akera et al. is used in linear response regime.

This theory is described by equations of conservation with number and thermal flux

densities.

The spatial distribution of the current density and electrochemical potential were

calculated from a local version of Ohm’s law. The electron density profile and elec-

trostatic potential were obtained within a self-consistent TFPA to include classical

electron-electron (Hartree) interaction. This approach is known as the screening the-

ory of IQHE. In screening theory, heating effects are neglected since the electron tem-

perature is assumed to be uniform through the system. In the other words, the electron

temperature is taken into account as a lattice temperature.

In this thesis, one of the purposes is to calculate the spatial dependence of the elec-

tron temperature in IQHS, where compressible and incompressible strips are present

as a result of interactions. The spatial distribution of the electron temperature was ob-

tained by employing the theory of thermohyrodynamics that is bound by conservation

of electron number and thermal flux densities, following Akera and his co-workers.

This investigation differs from these pioneering works, as the realistic boundary con-

ditions are performed. This leads to describing experimental systems accurately. Also

this enables to predict an unexpected behavior that can be observed in the QHS based

Aharonov-Bohm interference experiments, which is dictated by the local electron tem-

perature variations.

The calculated results show that the current carried by the incompressible strips

heats the electron system locally. Hence at low temperatures and at the low field
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side of the quantized Hall plateau the heating is mainly local, whereas at the high

field end of the plateau heating effect is spread all over the sample. This situation is

altered at high lattice temperatures, since there are no well developed incompressible

strips. Interestingly, one side of the sample heats up, whereas the opposite side is

cooled down. From these observations, as expected, the edge-state transport is highly

sensitive to formation of the incompressible strips. This leads to conclude that, even

at low currents local heating effects may become important.

The other result discussed in the deviation of the electron temperature was cal-

culated considering the energy loss. Energy loss represents a heat transfer due to

electron-phonon scattering. Taking into account scattering in the linear response regime,

the variation of the electron temperature becomes smaller than without the scatter-

ing. Since a part of the energy is converted to the heat energy between electrons and

phonons because of the interaction.

Another purpose is to calculate the electron and current densities depending on the

position in the presence of the electron temperature using the self-consistent TFPA.

Nowadays, these quantities are investigated using the lattice temperature that is uni-

form in the system. Since in the linear response regime spatial variation of the electron

temperature varies in the incompressible strips, the existence of electron temperature

at quantizing magnetic fields at low lattice temperatures in 2DES changes the electron

density profile and the spatial distribution of current density. The distributions of elec-

tron and current densities show that both side of the sample have symmetric plateau

regions due to the uniform temperature. These plateau regions are modified with the

electron temperature, since one side of the sample heats up, whereas the opposing

edge is cooled down.

In summary, the electron temperature was indicated firstly for the realistic bound-

ary conditions using the self-consistent TFPA. Thus, in QHS the experimental sys-

tems such as Aharonov-Bohm interference experiments can be described accurately.
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Finally, effects of the electron temperature variation on distributions of the electron

and current densities were discussed in the linear response regime.

Another interesting study is the quantum Hall resistance overshoot effect. The tem-

perature and magnetic field effects on the overshoot resistance were investigated con-

sidering the GaAs/GaAlAs heterojunction. The results show that with increasing the

temperature the overshoot peak decreases. The calculations show that the overshoot

resistance as a function of magnetic field depends strongly on the edge electrostatics

of the sample. Observation of enhanced resistance overshoot considering integer and

fractional states is predicted by manipulating the edge potential profile.
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APPENDIX A

A.1 Background (Free Electron Theory of Metals)

A.1.1 Drude model

The Drude model of electrical conduction was developed at the turn of the 20th

century by Paul Drude to explain the transport properties of electrons in materials.

Kinetic theory and Boltzmann distribution were used in Drude model and applied to

the electrons in metals. It assumes that the material contains immobile positive ions

and an “electron gas” of classical, non-interacting electrons of density, each of whose

motion is damped by a frictional force, due to collisions of the electrons with the ions.

Drude achieved to explain the thermal as well as the electrical and optical properties

of metals by the movement of electrons. He assumed that matter consists of free

and bound electrons; conductors have a larger number of free electrons compared to

insulator. The charge of the electrons is a multiple of the elementary charge; in fact,

Drude was talking about positive and negative charged particles. The free electrons

can be treated as particles of an ideal gas which all move with the same velocity. The

kinetic energy is proportional to the temperature. The electrons are scattered at the

ions. The electrical conductivity is proportional to the concentration of electrons, the

mean free path, and inversely proportional to the mass and the velocity of the electrons.

A.1.2 Electrical conductivity

Based on the assumptions in Drude model and the application of kinetic theory,

Ohm’s law can de driven. Consider a segment of a metal wire which includes a large

number of electrons and has a uniform electric field. These electrons have different
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speeds in different directions (Fig. A.1). The velocity of an electron between two

collisions is defined by Newton’s second law:

m
dv
dt

=−eE, (A.1.1)

where

v = v0− e
m

Et, (A.1.2)

with velocity after the last collision v0 and time elapsed from the last collision t. The

average velocity is given by;

< v >=−eτ
m

E, (A.1.3)

with the mean free time of the electrons τ .

Figure A.1 Conduction in a metal wire.

This is a typical transport problem with vD proportional to the force. The mobility

coefficient is µe = τ/m. The current density due to all the electrons in the wire is a

sum over all the velocities;

J =−e∑
v

n(v)v =−ne < v >, (A.1.4)

with the electron numbers per unit volume in the wire n(v) and electron concentration

n. The negative sign represents the negative charge of the electrons. Finally, the local

form of Ohm’s law is written;

J = σE, (A.1.5)
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with the electrical conductivity σ which is defined by;

σ =
ne2τ

m
. (A.1.6)

A.1.3 Thermal conductivity

Figure A.2 An electron crossing
the plane x = x0 at an angle θ to

the x-axis.

The thermal current depends upon temperature gradient ∇T and thermal conduc-

tivity of the material. If ∇T is nonzero, the average thermal energy which is given by
1
2

mv2
0 depends on the local temperature T (x). The thermal energy of an electron is

related to the last collision. An electron crossing the plane x = x0 at an angle θ to the

x-axis has its last collision at x = x0−v0τ cosθ and its energy E(x) = E(x0−v0τ cosθ)

(Fig. A.2). The number of such electrons crossing a unit area at x0 is nv0 cosθdΩ/4π

giving for the energy flux through a unit area at x0;

j(x0) =
∫

E(x0− v0τ cosθ)nv0 cosθdΩ/4π (A.1.7)

while the energy is extended and the equation is integrated over θ from 0 to π , it

becomes;

j(x) =−1
3

nv2
0τ

(
∂E
∂x

)
. (A.1.8)



82

Since ∂E
∂x = ∂E

∂T
∂T
∂x can be written, the thermal conductivity is given by;

κ =− j
∂T/∂x

=
1
3

nv2
0τ

dE
dT

=
1
3

v2
0τCv, (A.1.9)

where Cv is the heat capacity per unit volume and is defined by

Cv = n
dE
dT

. (A.1.10)

Figure A.3 Solid angle d in which
electrons moving to cross the plane
x = x0 at an angle θ to the x-axis.

A.2 Wiedemann-Franz law

The Wiedemann-Franz law states that the ratio of the electronic contribution to the

thermal conductivity κ and the electrical conductivity σ of a metal is proportional to

the temperature T
κ
σ

=
1
3v2

0τCv
ne2τ

m

. (A.2.1)

Drude applied the classical gas laws to evaluation of v2
0 and Cv, < 1/2mv2

0 >= 3/2kBT

and Cv = 3/2nkB. Then it gives
κ
σ

= L T, (A.2.2)
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where L is the proportionality constant, known as the Lorentz number, is equal to

L =
3
2

(
kB

e

)2

= 1.24×10−13esu. (A.2.3)

A.3 Thermoelectric Cooling and Heating

A thermoelectric cooler, sometimes called a thermoelectric module or Peltier cooler,

is a semiconductor-based electronic component that functions as a small heat pump.

By applying a low voltage DC power source to a thermoelectric cooler module, heat

will be moved through the module from one side to the other. One module face, there-

fore, will be cooled while the opposite face simultaneously is heated. It is important

to note that this phenomenon may be reversed whereby a change in the polarity (plus

and minus) of the applied DC voltage will cause heat to be moved in the opposite

direction. Consequently, a thermoelectric module may be used for both heating and

cooling thereby making it highly suitable for precise temperature control applications.

The Seebeck, Peltier, and Thomson Effects, together with several other phenomena,

form the basis of functional thermoelectric modules.

• Joule heating: Heating occurs in a conductor carrying an electric current. Joule

heat is proportional to the square of the current, and is independent of the current

direction.

• Seebeck effect: A voltage (Seebeck EMF) is produced in a thermoelectric ma-

terial by a temperature difference. The induced voltage is proportional to the

temperature difference. The proportionality coefficient is know as the Seebeck

coefficient.

• Peltier effect: Cooling or heating occurs at the junction of two dissimilar ther-

moelectric materials when an electric current flows through the junction. Peltier



84

heat is proportional to the current, and changes sign if the current direction is

reversed.

• Thomson effect: Heat is absorbed or released in a non-uniformly heated ther-

moelectric material when electric current flows through it. Thomson heat is

proportional to the current, and changes sign if the current direction is reversed.

A.4 Fermi Dirac Distribution Function

At zero temperature, the Fermi Dirac distribution function can be written as a

function of energy ε:

f (ε) =





1 ε < εF

1 ε > εF
(A.4.1)

where εF is Fermi energy. At a finite temperature, it is given by;

f (ε) =
1

e(ε−εF )/kBT
(A.4.2)

with the Boltzmann constant kB. The Fermi Dirac distribution function is plotted in

the figure below.

Figure A.4 Fermi Dirac distribution
function at two different temperatures
as a function of the energy.
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A.5 Thermodynamic Potential

Thermodynamic potentials are used to measure the energy of a system in terms of

different variables. The functions that are commonly used in statical mechanics are:

internal energy U ,

Helmholtz free energy F = U−T S,

Thermodynamic potential Ω =−PV ,

Enthalpy H = U +PV ,

Gibbs free energy G = U−T S +PV .

For the above functions, the fundamental equations are expressed as:

dU = T dS−PdV +∑
i

µidNi, (A.5.1)

dF = −SdT −PdV +∑
i

µidNi, (A.5.2)

dH = T dS +V dP+∑
i

µidNi, (A.5.3)

dG = −SdT +V dP+∑
i

µidNi. (A.5.4)

By using these definitions together with Euler’s relation:

U = T S−PV +∑
i

µidNi, (A.5.5)

and the second law of thermodynamics:

Substituting into expressions for the other main potentials, the following expres-
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sions for the thermodynamic potentials are written as;

F = −PV +∑
i

µidNi, (A.5.6)

H = T S +∑
i

µidNi, (A.5.7)

G = ∑
i

µidNi. (A.5.8)

By using Eqs. A.5.1 and A.5.5 and Ω =−PV , one can obtain

dΩ =−SdT −PdV −∑
i

Nidµi. (A.5.9)

From Eq. A.5.9 the entropy S, pressure P and particle number N can be obtained from

the thermodynamic potential Ω

S = −
(

∂Ω
∂T

)

V,µi

, (A.5.10)

P = −
(

∂Ω
∂V

)

T,µi

, (A.5.11)

N = −
(

∂Ω
∂ µi

)

V,T
. (A.5.12)
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APPENDIX B

B.6 Density of States with Magnetic Field

To investigate thermodynamic functions one should calculate DOS in a magnetic

field. The kinetic energy of two dimensional electrons in k space is described by

Ek =
h̄2

2m∗ (k
2
x + k2

y). (B.6.1)

In the ground state the electrons of the 2DES can be represented as points inside a

circle in the k space (Fig. B.1). The energy at the edge of the circle is called the Fermi

energy EF and given by

EF =
h̄2

2m∗ k2
F , (B.6.2)

with the magnitude of the wavevectors kF at the Fermi circle. There is only one point

in the area element A = (2π/Lx)(2π/Ly) of the k space. The number of electrons Nel

existing in the Fermi circle is given by

Nel =
2πk2

F
(2π/Lx)(2π/Ly)

=
k2

F
2π

A, (B.6.3)

where the factor 2 comes from the allowed spin-up and spin-down state. Thus, the

electron density of 2DES is derived

nel =
Nel

A
=

k2
F

2π
. (B.6.4)

Using the EF , this equation is rewritten as

nel =
m∗

h̄2π
EF . (B.6.5)
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This equation gives two important knowledge; (i) the electron density is independent

of temperature, (ii) the Fermi energy decreases to keep the number of electrons in the

system constant.

Figure B.1 A schematic diagram represents
the Fermi circle.The points symbolize the two
dimensional electrons in the k space.

Another very important characteristic of the 2DES is the density of states D(E) that

describes the distribution of energies

D(E) =
∂nel

∂E
=

∂
∂E

[
m∗

h̄2π
En

]

=
∂

∂E

[
m∗

h̄2π
h̄ωc

(
n+

1
2

)]

=
eB
h̄π

∞

∑
n=0

δ (E−En). (B.6.6)

By substituting magnetic length l =
√

h̄/(eB) into this equation, DOS is obtained as

D(E) =
gs

2πl2

∞

∑
n=0

δ (E−En), (B.6.7)

with degeneracy factor gs. According to the DOS, the electron density can be obtained.

nel =
∫

dE f (E)D(E). (B.6.8)
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Here f (E) is the Fermi function and given by

f (E,µ ,T ) =
1

exp
[

(E−µ)
kBT

]
+1

.

Using
∫

f (E)δ (E−En)dE = f (En), the electron density is found as

nel(E,µ,T ) =
gs

2πl2

∫
d(E) f (E)

∞

∑
n=0

δ (E−En)

=
gs

2πl2

∞

∑
n=0

f (En). (B.6.9)

Eq. B.6.9 shows that electron density can be written as a function of the temperature.

Thus, DOS should also depend on temperature.

D(E,µ,T ) =
dnel

dµ
=

gs

2πl2
d

dµ

[
∞

∑
n=0

f (En)

]

=
∞

∑
n=0

gs

2πl2
d

dµ
[ f (En)]

=
∞

∑
n=0

gs

2πl2
d

dµ


 1

exp
(

(En−µ)
kBT

)
+1




=
∞

∑
n=0

gs

2πl2


exp

(
E−n−µ

kBT
+1

)

︸ ︷︷ ︸
(1/ f (En))−2




2 


1
kBT

exp
(

(En−µ)
kBT

)

︸ ︷︷ ︸
(1− f (En))/ f (En)




=
∞

∑
n=0

gs

2πl2 f (En)2
(

1− f (En)
f (En)

)

=
∞

∑
n=0

gs

2πl2
1

kBT
f (En)[1− f (EN)] (B.6.10)
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Figure B.2 Density of states for different values
of temperature with fixed magnetic field.

Figure B.3 Electron density profile versus for
different values of temperature with fixed

magnetic field.

ABBREVIATIONS and SYMBOLS
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2DES Two-dimensional electron system.

2d Sample width.

B Magnetic field.

b Depletion length.

DOS Density of states.

εα energy of the α-th Landau level without the potential.

e Electron charge.

E0
bg = 2πe2n0d/κ̄ Pinch-off energy.

E0
F Fermi energy at the center.

ΓL Landau level broadening.

h Planck’s constant.

IQHE Integer Quantum Hall effect.

IS(s) Incompressible strip(s).

jnel number flux density.

jq Thermal flux density.

κ Dielectric constant.

kB Boltzmann’s constant.

` =
√

h̄/m∗ωc Magnetic length.

LL(s) Landau level(s).

m∗ Effective electron mass.

µ Chemical potential.

µec Electrochemical potential.

ν Filling factor.

ν(0) Filling factor at the center.

n0 Donor density.

nel Electron density.

PL energy loss.
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QHE Quantum Hall effect.

QHS Quantum Hall system.

TFA Thomas-Fermi approximation.

TFPA Thomas-Fermi-Poisson approximation.

TL Lattice temperature.

Tel Electron temperature.

ωc = eB/mc Cyclotron frequency.

Ωc ≡ h̄ωc Cyclotron energy.

vD Drift velocity.

Vbg Background potential energy.

VH Hartree potential energy.




