DOKUZ EYLUL UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED
SCIENCES

RULE-BASED NATURAL LANGUAGE PROCESSING
METHODS FOR TURKISH

by
Ozlem AKTAS

September, 2010
iZMiR

RULE-BASED NATURAL LANGUAGE PROCESSING
METHODS FOR TURKISH

A Thesis Submitted to the
Graduate School of Natural and Applied Sciences of Dokuz Eyliil University
In Partial Fulfillment of the Requirements for the Degree of Doctor of
Philosophy in Computer Engineering

by
Ozlem AKTAS

September, 2010
iZMiR

Ph.D. THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “RULE-BASED NATURAL LANGUAGE
PROCESSING METHODS FOR TURKISH” completed by OZLEM AKTAS
under supervision of PROF. DR. YALCIN CEBI and we certify that in our opinion

it is fully adequate, in scope and in quality, as a thesis for the degree of Doctor of

Philosophy.
Prof. Dr. Yal¢in CEBI
Supervisor
Prof. Dr. Alp KUT Prof. Dr. Giirer GULSEVIN
Thesis Committee Member Thesis Committee Member
Asst.Prof.Dr. Banu DIRI Asst.Prof.Dr. Adil ALPKOCAK
Examining Committee Member Examining Committee Member

Prof. Dr. Mustafa SABUNCU
Director

Graduate School of Natural and Applied Sciences

1

ACKNOWLEDGEMENTS

I would like to thank to my advisor Professor Dr. Yalgin CEBI, thesis tracking
committee members Professor Dr. R.Alp KUT and Professor Dr. Giirer GULSEVIN,
and also my friends and colleagues, Instructor Dr. Kékten Ulas BIRANT, Research
Assistant Emel ALKIM, Research Assistant Cagdas Can BIRANT, and linguists,
Instructor Dr. Ozden FIDAN and Research Assistant Dr. Ozgiin KOSANER, in
Dokuz Eyliil University Natural Language Processing Research Group for
contribution to this study and sharing their ideas during the development and writing

phases of the thesis.

I would also like to thank to Specialist Belgin AKSU and Turkish Linguistic
Association (Tiirk Dil Kurumu, TDK) for their contribution and support to this study.

The infrastructure of this work is supported by Dokuz Eylul University Scientific
Research Projects (Bilimsel Arastirma Projeleri, BAP) Coordination Unit, numbered
as 2007-KB-FEN-043.

I have special thanks to my parents and my husband Cenk AKTAS for their

support, patience and making me encouraged during the development and writing

phase of the thesis.

Ozlem AKTAS

111

RULE-BASED NATURAL LANGUAGE PROCESSING METHODS FOR
TURKISH

ABSTRACT

In order to determine morphological properties of a language, a corpus which
represents that language should be created. Many large scale corpora generated and
have been used for Natural Language Processing (NLP) applications on many
languages, such as English, German, Czech, etc, but any large scale Turkish corpora

have not be generated yet.

In this study, natural language processing methods for Turkish were developed by
using rule-based approach, and also an infrastructure, Rule-Based Automatical
Corpus Generation (RB-CorGen), to use the new developed methods was
implemented. For testing RB-CorGen on Turkish, the roots, stems and suffixes were
obtained from Turkish Linguistic Association (Tirk Dil Kurumu, TDK) and Dokuz
Eylul University, College of Literature Linguistic Department, the defined tags and
grammatical rules were stored in XML formatted file, and documents, include nearly
95 million wordforms, were collected from five Turkish newspapers in electronic
environment. The average success rates of Rule-Based Sentence Boundary Detection
(RB-SBD) and Rule-Based POS Tagging (RB-POST) methods were determined as
99.66% and 92% respectively. It was seen that the success rate of RB-CorGen

increases with the increasing number of rules.

Keywords: Turkish, Corpus, Rule-based, Sentence Boundary Detection,

Morphological Analyzer, Part of Speech Tagger.

v

TURKCE iCiN KURAL-TABANLI DOGAL DiL iSLEME YONTEMLERI

0z

Dillerin bigimbilimsel 6zelliklerinin belirlenmesi i¢in, dilin 6zelliklerini temsil
edebilecek bir derlem gereklidir. ingilizce, Almanca, Cekce gibi bir¢ok dil icin
biiyiik 6lgekli derlemler gelistirilmekte ve Dogal Dil Isleme (DDI) alanlarinda

kullanilmaktadir, ancak, biiyiik 6l¢ekli bir Tiirkge derlem heniiz gelistirilmemistir.

Bu ¢alismada kural-tabanh bir yaklasim kullanilarak Tiirkge i¢in Dogal Dil Isleme
yontemleri gelistirilmis ve yontemleri gergeklestirmek i¢cin Kural-Tabanli Otomatik
Derlem Olusturma (en.: Rule-Based Automatically Corpus Generation (RB-
CorGen)) admnda bir altyapr olusturulmustur. RB-CorGen uygulamasmni Tiirkce
iizerinde test etmek amaciyla, elektronik ortamda bulunan gazetelerden yaklasik 95
milyon kelimelik kose yazilar1 derlenmis, Tiirkce kokler, govdeler ve ekler, Tiirk Dil
Kurumu (TDK) ve Dokuz Eylil Universitesi Edebiyat Fakiiltesi Dilbilim
Boliimii’nden temin edilmis, etiketler ve dilbilgisi kurallar1 da dilbilimi uzmanlar1
tarafindan olusturularak XML yapisinda kaydedilmistir. Kural-Tabanli Cliimle Sonu
Belirleme (RB-SBDT) ve Kural-Tabanli Kelime Tiirii Belirleme (RB-POST)
yontemlerinin basar1 oranlar1 sirasiyla %99,66 ve %92 olarak belirlenmistir.

Olusturulan kural sayis1 arttik¢a basar1 oranlarmin da arttig1 gézlenmistir.

Anahtar sozciikler: Tiirk¢e, Derlem, Kural-Tabanli, Ciimle Sonu Belirleme,

Bi¢imbilimsel Coziimleyici, Kelime Tiirli Etiketleyici.

CONTENTS

Page

THESIS EXAMINATION RESULT FORMoovviiiiiiiiieeieeeeeee e 1
ACKNOWLEDGEMENTS ...ttt erae e e e 111
ABSTRACT e ettt e et e e eaeee e v
OZ ettt v
CHAPTER ONE - INTRODUCTIONccciiiinueriensssaeniosssssessossssssssssssssssssssssssssssses 1
Lol OVETVIEW ..ottt e e e ettt e e e e e ettt e e e e e e e s s atbaeaeaeeeeessnsasaaeaeaeeeeennnnnes 1
1.2 ATM O TRESIS ...evvviiiiieeeeeeeiiieee et e e et e e e e e e e e taraaeeeeeeeeennnens 4
1.3 ThesiS OrganizZation.........cccuuuviieeeeeeeriiiiiiieeeeeeeeeseserereeeeeeeeessnsnrareeeseeessnnnnns 5

CHAPTER TWO - WORKS ON CORPORA DEVELOPMENT FOR SPOKEN

LANGUAGES ...ttt ettt e ettt e et e et eeenbee e 6
2.1 COTPUS.cetiieeeeeeeeiiittte e e e e e e ettt e e e e e e e e aaaaeeeeeeeeeesasssaaaaeeeeeeessasnssseaeeeeeeannnnnns 6
2.2 SAMPLE COTPOTA....uriiiiieeeeeiiiiiiiiieeeeeeeeesirieeeeeeeeeesseaaaeeeeeeeeesssnnrreeaeeeeeeassnnes 6

2.2.1 ENgliSh COTPOracvviiiiieieeeieiiiiieeee e e e e e e e e 6
2.2.1.1 BTOWN COTPUS...eiiieeeiiiiiiiiieeeeeeeeiiiiieeeeeeeeeeeeiaraeaeeeeeeessnnnnsanaeeeeeens 6
2.2.1.2 British National Corpus (BNC).........eveviiiiieiiiiiiiiiieeeeeeeivieeeee e 8
2.2.1.3 The Bank of Englishcccooiiiiiiiiiiiiiiiiieeeeeeeee e 13
2.2.1.4 English Gigaword............oeeiiieiiiiiiiiiiiiiee e e 14
2.2.1.5 American National Corpus.........ccccuvririreeeeeriiiiiiiiieeeeeeeeiiiieeeeeeeens 14

2.2.2 Turkish COTPOTa......cuuviiiieeeeieiiiiiiiiieee e e e ettt e e e e e eeere e e e e e e e eeraaeees 15
2.2.2.1 KOItuKSUZ COTPUSeeiviiiiiiieeeeeeiiiiieeee et e e e e eevaeeee e 15
2.2.2.2 Yildiz Technical University (YTU) COrpus......ccceveeeeeeeeccivreveeeeennn. 15
2.2.2.3 DalKilic COTPUS....cceeeiiiiiiiiiieeeeeeeiiiiiiete e e e e e et eeeeeeeeeiarrareeaeeeens 15
2.2.2.4 METU TurkiSh COTrpuUScceeeeeiiiiiiiiiiiee et eeeiireee e e 16
2.2.2.5 TurCo Turkish COTPUSceeeeeeiiiiiiiiiiieee e e e e 17

vi

2.2.3 Corpora of Other Languagescceeeeerviiiiiiiieeeeeeiiiiiieeeeeeeeeeiveeees 19

2.2.3.1 The Czech National Corpus (CNC)......ccceevvriiviiiieeeeeeeiiiiiiiieeeeennnn 19
2.2.3.2 Croatian National Corpus........cceccuurriirieeeeeeniiiiiiiieeeeeeeeeiviieeeeeee 19
2.2.33 PAROLE ..ot 20
2.2.3.4 FTencCh COTPUS ...cceeeeiiiiiiiiiee e e e ettt e e e e ee sttt ee e e e e e e eebaaneeeeeeees 21
2.2.3.5 COSMAS (Corpus Search Management Analysis System) 22

CHAPTER THREE - COMMONLY USED METHODS FOR NATURAL

LANGUAGE PROCESSING APPLICATIONS ...ttt 23
3.1 Sentence Boundary Detection...........ccuvviiiiiiieeiiiiiiiiiiieeee e 23
3.2 SEEIMIMETSeeiiiiiiiieeiiie ettt e et e e et e e e eaaeeee s 27
3.3 Part of Speech (POS) Tag@INgcccoovvvviiiiiieeeeeiiiiieeeee e eeeeiveee e e e 35
3.4 Other WOTKS ...coueiiiiiiie e 39

CHAPTER FOUR - INFRASTRUCTURE AND DATABASE MODEL FOR

RB-COTGeI ..ot e 41
4.1 Used TeChNOIOZIESeevvieeeiiiiiiiiiiieee e e e e e e 41
4.2 USEA TaZS.ceiiieiiiiiiiiiieeee e e e ettt e e e e e e ettt e e e e e e e e e atataeeeeeeeeennnsnsanaeaaeeeens 42
4.3 RUIE LISES .ttt e 46
4.4 Database MOdel.......ccooouiiiiiiiiiiiiii e 48

4.4.1 The Table “KoKIer”...........ooiiiiiii e 49
4.4.2 The Table “KoklerSanal”cccooiiiiiiiiiiiieeen 50
4.4.3 The Table “GOVAE™ccoiuiiiiiiiiiiiiee e 51
4.4.4 The Table “Kelimeler”cccuiiiiiiiiiiiiiiiii e 52
4.4.5 The Table “GIup™......cuveeeeeeeeeeiiiiiiieee e e e eeeireee e e e e e e eearreeeeeeeeeeeseesraees 54
4.4.6 The Table “EK™ooiiiiiiiiieeee e 54
4.4.7 The Table “EKIEr”ccoouiiiiiiiiie e 56

vil

CHAPTER FIVE - ALGORITHMS AND SOFTWARE STRUCTURE OF RB-

COTGOI ... ettt e et e e e et e e e e iaae e s 57
5.1 Getting and Storing Datacceeveviiiiiiiiiieiee e 59
5.2 Rule-Based Sentence Detectioncoocveeeiiiiiiiiiiiiiiieiiniiieeeecee e, 60
5.3 Rule-Based Morphological ANalysis..........ceeeeeeviiiiiiiieeeeeeeeiiiiiiiieeeeeeeeeens 66
5.4 Rule-Based Part of Speech (POS) Taggingccccvvvvveeeeeeeniiiiiiiiieeeeeeeees 70

5.4.1 Rule Parser Module...........coocuuiiiiiiiiiiiiiiiiiiie e 72
5.4.2 Stem Reader Module..........ooouiiiiiiiiiiiii e 73
5.4.3 Tagger ModUIe.........ooviiieiiiiiiiieieee e e 73
5.5 SoftWare SIUCLUTEviiiiiiiiie e 77

CHAPTER SIX - CASE STUDY ..uuuciiiriiiineiisseinsssnescssaeecsssesssssssssssssssssssssssssssssns 85
6.1 Dataset GENEIAtIONccooiuiiiiiiiiiiiee ettt e 85
6.2 Rule-Based Sentence Boundary Detection (RB-SBD)..........ccccvvvvveeiieennnin, 87
6.3 Rule-Based Morphological Analyser (RB-MA)ccccccevveviiiiiiiiiieeeeeeees 90
6.4 Rule-Based POS Tagging (RB-POST)......cccoviiiiiiiiiiiiiieeeeeeeeiiieeee e 95
6.5 Performance OVETVIEWccoiiiiiiiiiiiiiieieeiiiiee ettt 97

6.5.1 Rule-Based Sentence Boundary Detection (RB-SBD) Module 97
6.5.2 Rule-Based Morphological Analyser (RB-MA) Module...................... 102
6.5.3 Rule-Based POS Tagging (RB-POST) Module.............cevveeeeeriennnnnnn. 104

CHAPTER SEVEN - USAGE AND USER INTERFACES OF RBCorGen....106

7.1 Document Downloader............cooiuiiiiiiiiiiiiiiiie e 106
7.2 Automatic Corpus GENETatioNccuvvrrrieeeeeeriiiiiiiiireeeeeessiianrereeeeeeeesnnnnns 113
7.2.1 Generating SENtENCE COTPUS.....uvrrreeeeerriiriririeeeeeeeriirrrrreeeeeeesnnnnreeees 115
7.2.2 Corpus GENETATIONeeeeeeeeiiiiiiiieeeeeeeeeiiiieeeeeeeeeessnarrrreeeeeeesennnnnreeees 119
7.2.3 RUIE LISES .eeiiiieiiiieeiiie et 121
7.2.4 Other OPEratiOnS........cceeeeereuvriiieeeeeeeeeiiiiireeeeeeeeeessarrrreeeeesessssnnnseeeees 121

viil

CHAPTER EIGHT- CONCLUSION....cccitiinuernsnennsneecssnnessssnesssseessssesssssesnns 123

8.1 CONCIUSION ettt ettt e e et e e e saaee s 123
8.2 FUtUre WOTKSeeiiiiiiiie e 125
REFERENCESooiiiiie ettt ettt et e e eas 127
APPENDICESt et e e 138
A Turkish Grammatical Rules...........ccooooiiiiiiiiii 138
B RUIES ... e 144
B.1 Sentence Boundary Detection Rulescccouveviiieieeiiiiiiiiiiiieeeeeees 144
B.2 Stem/ Root Parsing Rulescccovviiiiiiiiniiiiieeeeeeeee e, 145
B.3 POS Tagging RUIES.........cceviiieiiiiiiiiiiiieee e e e 146

O 53] £ S OO PP PP UPPRPPT 151
C.1 Abbreviation List........ccccuuiiiiiiiiiiiiiiiie e 151
C.2 Root and Stem LiStseeeeiiiiiiiiiiiiiiieiiie e 152
C.2.1 SamPple ROOS...ccceeeeiiiiiiiiieeee et e e e 152
C.2.2 SAMPLE SEEIMS eeeeeeeeiiiiiiiieeeeeeeeeiieee e e e e e e e e e e e eerrareeeeeeeas 153
C.2.3Sample Modified Roots / Stems According to Morphophonemic
PrOCESSES...ceiiiiiii e 155

(O30 T TSP UUUURSP 156
C.4 Sample OULPULSevvviiiieeeeeeiiiiieeee e e e e e e e e e e e e e eeeraaees 161
C.4.1 Sentence Boundary Detectioneeeeeeeriiiiieeeeeeeeeniiiiiieeeeeennn 161
C.4.2 WOTd DEteCHION ...ttt 170

C.4.3 POS Tagging Module..........ccoovviiiiiiiiiiieeeeeiiiiieee e 191
C.4.4 Sample OULPUL 2 ... errare e e e e 194
C.4.5 Sample OUtPUL 3 ... e 197

D Metadata 0f DOCUMENLScccoiiiiiiiiiiiiiieiiiiice e 201

X

CHAPTER ONE
INTRODUCTION

1.1 Overview

Proportional to the tendency of continuous improvement of the computer
technology during the last few decades, the computer applications and the way of the
communication between people and computers are changing fast. The usage of
computers has been increased exponentially in many areas in the daily life of people,
such as “Communication”, “Data Transferring”, ‘“Natural Language Processing

(NLP)”, etc.

“Natural Language Processing (NLP)”, which is one of the application areas of
computer technologies, can be defined as the construction of a computing system that
processes and understands human natural language. The word “understand” means
that the observable behavior of the system must make people assume that it is doing
internally the same, or very similar, things that people do when they understand
language (Giingordii, 1993). Basically, NLP aims to let computers to understand

human’s natural language and even to let them to generate it.

In fact, the studies in NLP are almost old as the development of first computers.
Many studies and methods on NLP application areas have been developed, and this

field becomes more popular.

Generally, computers are used to process natural language to study in:

e Speech synthesis: The process of converting written text into machine-
generated synthetic speech (Sagisaka et al, 1992; Black et al, 1994;
Greenwood, 1997; Huang et al, 2001; Sak et al., 2006). A computer system
used for converting written text to speech is called a speech synthesizer.

e Speech recognition: The process of converting a continuous signal to words

(speech-to-text systems) (Zue et al., 2005).

e Automatic summarization: the creation of a shortened version of a text by a
computer program (Mani, 2001).

o Natural language generation: The process of generating appropriate responses
to any unpredictable inputs by making decisions about the words, word
types, word order in the natural language by the system (Hennecke et al.,
1997).

e Machine translation (MT): Machine translation (MT) was the first computer-
based application related to natural language, which translates one NL into
another (Booth, et. al., 1957; Coxhead, 2002).

e Optical character recognition (OCR): The translation of scanned images of
handwritten, typewritten or printed text into a form that the computer can
manipulate (for example, into ASCII codes) (What is optical character

recognition?, (n.d.)).

Natural Language Processing consists of four main analysis levels where each

level is strongly related to others: Morphology, Syntax, Semantics and Pragmatics.

Morphology is directly related to word based analysis, which aims to define the
structure of words, such as investigation of word types (verb, noun, adjective, etc.),
analyzing parts of the words (root, suffix or prefix). The results of morphological

analysis are used for further processing in higher level analysis.

Syntactic analysis is generally based on sentences which are more complex
components of natural languages than words, and used to determine the structure of
sentences and occurrences of words. Syntactic analysis also uses statistics, which can
be done in two ways; on letters and words. Letter analysis includes researches such
as consonant and vowel letter placements, letter frequencies, relationship between
letters such as letter positions according to each other, etc. Word analysis includes
researches such as investigation of number of letters in a word, the order of the

letters in a word, word frequencies, word orders in a sentence, etc.

Semantic analysis finds out the real structures of sentences and words by using
meaning of structures obtained by syntactic analysis and meanings of the words used

in the sentence.

Pragmatic analysis lies at the top level of analysis and is a much more complex
study than the Morphology, Syntactic and Semantic Analysis. It aims to determine

the meaning of discourse involving the contextual information.

In order to carry out NLP studies on any natural language, a representative corpus
of that language is needed. There are many definitions about corpus; some of them

are listed below:

e “Corpus is a collection of linguistic data, either written texts or a
transcription of recorded speech, which can be used as a starting-point of
linguistic description or as a means of verifying hypotheses about a

language.” (Crystal, 1991).

e “A collection of naturally occurring language text, chosen to characterize a

state or variety of a language.” (Sinclair, 1991).

A corpus must be large and representative of the language. A representative
corpus has samples of every topic in the language, such as technical words,
medicine, spoken language, etc.; large corpus has the large number of data taken
from any topic of the language. Both corpora can be used in NLP applications. And
also, corpora can be divided into two categories: “Balanced”, and “Unbalanced”. A
“Balanced Corpus” is representative. It should include sample of texts from every
topic in the language. This corpus should also include these texts in equal weights
depending on the quantity of the usage in the language. Large corpus represents
“Unbalanced Corpus”, which has large amount of data in one topic or different areas
in the language. An unbalanced corpus may be turned into balanced by taking large
amount of data from all topics in the language that makes the corpus a

“representative” of the language. In fact, it is very difficult to take equal, small pieces

of samples from different areas of a natural language into a corpus. Since unbalanced
corpus consists of many words from any areas in a language, instead of creating a
balanced corpus, an unbalanced corpus may be generated and used for better
performance. Whether they are balanced or not, small sized corpora are good enough
to carry out letter analysis on it. However, when word analysis is required, a large
scale corpus is necessary. Especially to handle some extraordinary words, which are
used rarely in the language, an unbalanced corpus is more powerful than the

balanced corpus.

1.2 Aim of Thesis

Nowadays, large scale corpus is needed for every language to be able to make
analysis on the language and get reliable results about the properties of it. While
generating a large scale corpus, it is very important to determine sentences, also
stem, root and suffixes of the words in a correct way. Although, large scale corpora
have been generated and used for different languages, such as English, German,

Czech, etc., large scale corpora for Turkish could not have been developed, yet.

The main goal of this study is to develop an infrastructure with rule-based
approach to generate large scale Turkish corpus. This infrastructure can be adapted to
any Turkish dialects by the given rules of the Turkish Dialect to be analyzed. During
the studies carried out for this thesis, appropriate methods to find the sentences and

wordforms in the text; root and suffixes of the words have been developed.

Considering the grammar and rule-based structure of Turkish, the rule-based
method has been chosen. Since Turkish is an ‘agglutinative language’ like Finnish,
Hungarian, Quechua and Swahili, new words are formed by adding suffixes to the
end of roots by using a specific grammatical rule, and there are grammatical rules for
suffixes, which of them may follow which other and in what order they will be
(Appendix A). The meaning, also type of words are changed or extended by this
concatenation. This suffix concatenation can result in relatively long words, which

are frequently equivalent to a whole sentence in English.

1.3 Thesis Organization

This thesis is divided into 8 chapters and 6 appendices. The motivation of the
thesis and the general description of corpus is given in Chapter 1. Corpora generated
for English, Turkish and other languages are told briefly in Chapter 2. Also, Natural
Language Processing studies used for both corpora development and linguistic
studies, such as sentence boundary detection, stemming, part-of-speech analysis,

author detection, etc. are given in Chapter 3.

The infrastructure of Rule-Based Corpus Generation (RBCorGen) software
includes database model, structure of used tags, rules and lexicon, is explained
briefly in Chapter 4. The algorithms developed for all steps of the RBCorGen are

given in details with explanation of implemented classes and methods in Chapter 5.

The results and performance overview of RBCorGen are given in Chapter 6 with
the properties of generated data set. The usage of RBCorGen is given briefly in
Chapter 7, and finally, the conclusion, in which brief summary and results of this

thesis are given in Chapter 8.

CHAPTER TWO
WORKS ON CORPORA DEVELOPMENT FOR SPOKEN LANGUAGES

2.1 Corpus

A corpus can be defined as a special database that includes analysed and tagged
texts, and allows specialized processes in Natural Language Processing area such as

retrieving the words and suffixes quickly.

By using the corpus, different analyses can be done, such as character recognition
operations, cryptanalytical procedures, spell corrections (Church & Gale, 1991), etc.
Also, some processes depending on n-gram analysis, such as different word usage
statistics, frequencies of letters (Shannon, 1951) and words (Jurafsky & Martin,
2000; Cebi & Dalkilig, 2004) etc., can be done by using corpus in NLP applications.
N-gram analysis is one of the common statistical methods carried out on a corpus.
Besides the letter and word frequencies, language model probabilities can be
estimated and used in speech recognition systems (Nadas, 1984) by n-gram analysis.
It can be used in correcting words by detecting misspelled words and it is useful for
OCR (Optical Character Recognition) (Kukich, 1992). And it is commonly used in
data compression and encryption. And also, missing words can be estimated for a

given text by calculating word n-grams.

2.2 Sample Corpora

There are lots of corpora created for different languages. Some of them are

representative, and some are large.

2.2.1 English Corpora

2.2.1.1 Brown Corpus

The Brown Corpus is the first computer-readable general corpus of texts prepared
for linguistic research on modern English (Brown Corpus, (n.d.)), which was

developed in 1960s, and announced in 1963-1964 at Brown University. In 1964, it

included 1 million words with 61,805 different words and in a later edition in 1992;
the new Brown corpus included 583 million words with 293,181 different words
(Jurafsky & Martin, 2000). The samples in corpus have a wide range of varieties of
scripts. Sentences in poems were not included on it because of having special
linguistic problems different from scripts. Also drama was excluded, but fiction was
included. Making available a carefully chosen and prepared body of material of
considerable size in standardized format was aimed while generating Brown Corpus.
Samples were chosen for their representative quality. The selection process was done
in two phases: an initial subjective classification and decision as to how many
samples of each category would be used. The data in the Brown University Library
and the Providence Athenaeum were used in most categories. Also, some data were
taken from the daily press, for example, the list of American newspapers of which
the New York Public Library keeps microfilms (with the addition of the Providence
Journal), and some periodical materials in the categories Skills and Hobbies and
Popular Lore from the contents of magazine stores in New York City (Table 2.1,

Figure 2.1) (Lindebjerg, 1997).

Table 2.1 Text categories in the Brown Corpus (Leech, et al., 2009)

Genre group Category Content of category No. of
sampl
es
I. Informative Press (88) A Reportage 44
prose (374)
B Editorial 27
C Review 17
General Prose | D Religion 17
(206)
E Skills, trades and hobbies 36
F Popular lore 48
G Belles lettres, biographies, | 75
essays
H Miscellaneous 30
Learned (80) J Science 80
II. Imaginative | Fiction (126) K General fiction 29
prose (126)
L Mystery and detective Fiction | 24
M Science fiction 6
N Adventure and Western 29
P Romance and love story 29
R Humor 9
TOTAL 500

Press [88)

Fiction {128)

Learnsd (80)
General Prose

(208

Figure 2.1 Genres represented in the Brown
Corpus (CORD The Brown Corpus, (n.d.) a)

Sample tags used in Brown Corpus are given in Table 2.2.

Table 2.2 Sample list of tags in Brown Corpus (CORD The Brown Corpus, (n.d.) b)

Tag Description Examples

. Sentence closer 2!

(Left parenthesis

) Right parenthesis

* Not

s Comma

ABL Pre-qualifier Quite, rather
ABN Pre-quantifier Half, all

AP Post-determiner Many, several, next, a, the, no
CC Coordinating conjunction And, or

CD Cardinal numeral One, two

DT Singular determiner This, that
DTS Plural determiner These, those
RP Adverb/particle About, off, up

2.2.1.2 British National Corpus (BNC)

The British National Corpus is a very large (over 100 million words) corpus of
modern English, both spoken and written. However, non-British English and foreign
language words do occur in the corpus (Burnard, 2000). This is a project of Oxford
University Press, also including some other members: Longman Group UK Ltd.,
Chambers, Lancaster University's Unit for Computer Research in the English
Language (UCREL), Oxford University Computing Services (OUCS), and the
British Library. It was built in four years, and completed in 1994. It was released in

February 1995. There are over 6,000,000 sentence units in the whole corpus, which

occupies 1.5 gigabytes of disk space 90% of BNC is a written part including extracts
from newspapers, journals, academic books, school and university essays, and 10%
spoken part includes a large amount of unscripted informal conversation. The text
type structure of BNC is given in Table 2.3 (The British National Corpus: facts and
figures, (n.d.).

Table 2.3 The text type structure of BNC

BNC Text Type (%)
90
Books 60

Periodicals (regional and national newspapers, specialist periodicals 25
Written corpus and journals for all ages and interests)
Other published materials (brochures, advertising leaflets, etc.) 5-10
Unpublished materials (personal letters and diaries, school and
university essays, etc.)

Written to be spoken (political speeches, play texts, broadcast scripts, | <5

etc.)
10
Spoken corpus Transcriptions of natural spontaneous conversations 50
Transcriptions of recordings made at four specific types of meeting 50

or event: Educational, Business, Institutional, and Leisure.

Corpus-oriented Text Encoding Initiative (TEI)-conformant mark-up format
known as CDIF (Corpus Document Interchange Format) was used for tagging BNC,
but within this format many different formats (e.g. segmentation into words and

sentences) were added to make the corpus more readable (Leech et al., 1994).

TEI (Text Encoding Initiative) is an international and interdisciplinary standard,
announced in 1987, which helps publishers, scholars, libraries to represent all kinds
of linguistic texts for research, by using an encoding scheme. TEI Consortium was
set up to maintain and develop this standard in 2000. Until 2002, SGML (Standard
Generalized Mark-up Language) was used in TEI standard, which allows us to define
elements, specific features of elements, and hierarchical/structural relations between
elements, and specifies them in a “Document Type Definition” (DTD) , which

makes software to be able to help annotators to make annotation consistently.

Each element in SGML must have a unique name and must be explicitly tagged,
such as <element> and </element> pairs that are called as start and end tags.

Elements can have attributes with associated values used in tagging, such as id,

10

name, etc. (Sperberg-McQueen & Burnard, 1994). In 2002, XML (Extensible
Markup Language) has been used as TEI standard to make the annotations more
efficient and readable. XML is more descriptive, that means it can define structure of
texts rather than defining what can be done with the text, and independent from
Application Development Environment and any platforms (Encoding the British

National Corpus, (n.d.)).

The basic document structure of BNC is given in the Figure 2.2.

bnc I

teiHeader I

bncDoc

.......................

teiHeader :extl 51:3,(1 I

Figure 2.2 Basic document structure of BNC

“wtext” and “stext” contains “written” and “spoken” parts of corpus, and parsed
by using XML structure (Figure 2.3). There are 6,026,284 tagged sentences and
98,363,784 tagged words in the BNC.

div

6,026,284

98,363,784

Figure 2.3 XML structure used in BNC

11

Written texts are organized hierarchically into various kinds of division such as;

<div level="1">
<div level="2">... </div>
<div level="2">...</div>
</div>

where divisions can be chapter, section, story, subsection, column, front, part, recipe,

leaflet, etc. All spoken texts are divided into “conversations”.

In XML structure of BNC, paragraphs of written part are tagged as in Table 2.4.

Table 2.4 Paragraph tags used in BNC for written part

Tag Meaning

<p> Paragraph

<head> headings or captions
<list> lists

<quote> quotes

<lg> verse lines

<hi> typographic highlighting
<corr> corrected passages
<gap> deliberate omissions
<pb/> page breaks

Spoken texts are also organized hierarchically, by using the tags given in Table

2.5.

Table 2.5 XML tags used in BNC for spoken part

Tag Meaning

<u who="XXX"> A stretch of speech initiated by speaker identified as XXX

<align with="XXX"/> a synchronization point

<shift> changes in voice quality (e.g. whispering, laughing, etc.)

<vocal> non-verbal but vocalised sounds (e.g. coughs, humming noises etc.)

<event> non-verbal and non-vocal events (e.g. passing lorries, animal noises,
and other matters considered worthy of note.)

<pause> significant pauses (silence)

<unclear> unclear passages (passages that are inaudible or incomprehensible)

Also, detailed information on speakers is given in the text header of spoken part.

An unannotated example of a raw BNC text is given in Figure 2.4.

12

<bncDoc i1d=BDFX8 n=093802>
<header type=text creator='natcorp' status=new update=1994-07-13>
<fileDesc>
<titStmt>
<title>
General Practitioners Surgery -- an electronic transcription
</title>
<respStmt>
<resp> Data capture and transcription </resp>
<name> Longman ELT </name>
</respStmt>
</titsStmt>
<ednStmt n=1> Automatically-generated header </ednStmt>
<extent kb=7 words=128> </extent>
<pubStmt>
<respStmt>
<resp> Archive site </resp>
<name> Oxford University Computing Services </name>
</respStmt>
<address>
13 Banbury Road, Oxford 0OX2 6NN U.K.

Internet mail: natcorp@ox.ac.uk

</address>

<idno type=bnc n=093802> 093802 </idno>

<avail region=world status=unknown>
Exact conditions of use not currently known to
the archiving agency.

Distribution of any part of the corpus must
include a copy of the corpus header.
</avail>
<date value=1994-07-13> 1994-07-13 </date>
</pubStmt>
<srcDesc>
<recStmt>
<rec type=DAT>
</rec>
</recStmt>
</srcDesc>
</fileDesc>
<profDesc>
<creation date='?'> Origination/creation date not known </creation>
<partics>
<person age=X educ=0 flang=EN-GBR i1d=PS22T n=W0001] sex=m soc=AB>

</person>

<person id=FX8PS000 n=W0000> ... </person>
<person id=FX8PS001 n=W0002> ... </person>
</partics>
</bncDhoc>

Figure 2.4 An unannotated example of a raw BNC text

13

2.2.1.3 The Bank of English

The Bank of English is a collected from samples in modern English language,

which is held on computer for using in linguistics (Jarvinen, 1994).

The Bank of English was started to be collected in 1980 by COBUILD, which
was based within the School of English at Birmingham University, and launched in
1991 by COBUILD and The University of Birmingham. The aim was making the
scale of the corpus to 200 million words and 103 million words were collected and
tagged until 1993. It had 450 million words in January 2002, 525 million words as of
2005and it continues to grow. It has spoken and written part as in BNC. The written
part contains books, newspapers, magazines, letters, etc. and the spoken part includes
speech from BBC World Service radio broadcasts, and the American National Public
Radio, meetings, conversations, etc. The data are either collected from electronic
environment or from scanning some books. Whole corpus is divided into 11
subcorpora or text-type categories. Abbreviations used for subcorpora are given in

Table 2.6 (The Bank of English User Guide, (n.d.)).

Table 2.6 Abbreviation list of subcorpora in the Bank of English Corpus

Abbreviation Full Title

0ZNnews Australian news
ukephem UK ephemera
ukmags UK magazines
Ukspok UK spoken
usephem US ephemera

bbc BBC World Service
npr National Public Radio
ukbooks UK books

usbooks US books

times Times newspaper
today Today newspaper

14

2.2.1.4 English Gigaword

It is an English corpus having 1,756,504,000 words and 4,111,240 documents. It
is a product of Linguistic Data Consortium. It includes data from Agence France
Press English Service, Associated Press Worldstream English Service, The New

York times Newwire Service and Xinhua News Agency English Service (Parker et

al., 2009).

Sample text from English Gigaword corpus is given in Figure 2.5.

<DOC id="LTW_ENG 20081201.0001" type="story" >

<HEADLINE>

Road Map in Irag: When Mr. Obama Takes Office, a Sovereign Iragi
Government and a U.S. Withdrawal Timetable Will Be in Place
</HEADLINE>

<TEXT>

<p>

The following editorial appeared in Sunday's Washington Post:

</P>

<p>

Barack Obama recently reiterated his campaign promise to order up a plan
for the withdrawal of U.S. forces from Iraqg. But the Iragi parliament
has beaten him to it. Its ratification Thursday toward that goal.
</P>

</TEXT>

</DOC>

Figure 2.5 Sample tagged text from English Gigaword

2.2.1.5 American National Corpus

The American National Corpus (ANC) is aimed to contain a core corpus of at
least 100 million words, including both written and spoken (transcripts) data. The
genres in the ANC are expanded from BNC to include new types of language data
that have become available in recent years, such as web blogs and web pages, chats,
email, and music lyrics. In Spring 2010, the ANC produced its second release of over
22 million words of American English, where it was 11 million in the first release in

2003 (Ide & Suderman, 2003).

15

2.2.2 Turkish Corpora

Some Turkish corpora are listed below:

e Koltuksuz Corpus

¢ Yildiz Technical University (YTU) Corpus
e Dalkilic Corpus

e METU Turkish Corpus

e TurCo Turkish Corpus

There are also other corpora for Turkish (Giingor, 1995).

2.2.2.1 Koltuksuz Corpus

Koltuksuz Corpus can be called as the first corpus generated for Turkish
language, used for letter statistics and to find out some of the characteristics of
Turkish Language. It has 6,095,457 characters and formed of 24 novels and stories of
22 different authors (Koltuksuz, 1995).

2.2.2.2 Yildiz Technical University (YTU) Corpus

YTU Corpus has 4,263,847 characters from 14 different documents: 3 Novels, 1
PhD Thesis, 1 Transcription, 9 Articles and created for compression based

morphology study by Diri (2000).

2.2.2.3 Dalkilic Corpus

There are two different corpora prepared by Dalkilic (2001) and Dalkilic and
Dalkilic (2001). They are;

e Dalkilic Corpus: It has 1,473,738 characters from the newspaper “Hurriyet”
web archive (01/01/1998 — 06/01/1998 mainpage and 01/01/1998 —
06/30/1998 authors) and generated for letter statistics and defining the
characteristics of Turkish language (Dalkilig, 2001).

16

e Dalkilic Corpus: 1t is the combination of some the previous Turkish corpora
(Koltuksuz, YTU and Dalkilic corpora) with a size of 11,749,977 characters
(Dalkili¢ & Dalkilig, 2001).

2.2.2.4 METU Turkish Corpus

It is a collection of over one million words of post-1990 written Turkish samples

(METU Turkish Corpus Project, (n.d.); Say, Zeyrek, et al., 2002; Say, Ozge, et al.,

2002).

The document types in METU Corpus are listed in Table 2.7.

Table 2.7 Document types in METU Corpus

Genre Percentage of entire corpus (%)
Novel 24

Story 21

Article 16

Essay 14

Research 12

Travel Writing 4

Conversation 2

Others (Biography, Auto-biography, 7

Reference, Diary, etc.)

For tagging process of paragraphs, quotas, lists, and other elements’ citation

information XCES, one of the application of TEI, is used. Some tags used in corpus

are given in the following table.

Table 2.8 Tags in METU Corpus

Tag Name Meaning

<text> Tags texts

<body> Tags the unit of texts

<opener> Tags the data in the introduction part of texts, such as Date, Keywords, etc.
<head> Indicates the header of the structures like text, poem, etc.
<p> Paragraph

<q> Quotas

<poem> Poems

<table> Table

<list> List

<abbr> Abbreviation

<date> Date

<hi> Highlighted words and phrases like bold, underlined, etc.

Sample tagged text in METU corpus is given in the following figure.

17

- <Set sentences="1">
- <S No="1">
<W IX="1" LEM="" MORPH="" IG="[(1,"so§uk+Adj") (2, "Adv+Ly")]"
REL="[2,1, (MODIFIER)] ">So§ukca </W>
<W IX="2" LEM="" MORPH="" IG="[(l,"yanitlat+Verb+Pos+Past+Alsg")]"
REL="[3,1, (SENTENCE)]1"> yanitladim </W>
<W IX="3" LEM="" MORPH="" IG="[(1l,".+Punc")]" REL="[, ()]">. </W>
</S>
</Set>

Figure 2.6 Sample tagged text in METU Corpus

2.2.2.5 TurCo Turkish Corpus

TurCo is known as first corpus created for word statistics, which has a capacity of

362.449MB, and 50,111,828 words (Dalkilic & Cebi, 2002).

TurCo consists of text data taken from 11 different websites, and novels and

stories in Turkish that belong to more than 100 authors, which parts were collected

from websites (98.11%) and novels and stories (1.89%).

In order to make TurCo larger, to include more words, it is generated as

unbalanced corpus. The document types in the corpus have different sizes as given in

Table 2.9.

Table 2.9 NOW (Number of Words), files’ size and distribution % in TurCo

. . Corpora Files’ Percentage of
Site # Web Sites NOW Si;)es‘ (MB) | entire COI'plng (%)

1 www.tbmm.gov.tr 23,396,817 170.747 46.69
2 www.stargazete.com.tr 9,746,093 69.103 19.45
3 www.hurriyet.com.tr 9,415,716 69.140 18.79
4 Turkish novels and stories 4,668,306 33.571 1.89
5 www.die.gov.tr 948,116 6.387 9.32
6 www.arabul.com 753,571 4,994 1.50
7 WWWw.pcmagazine.com.tr 527,757 3.722 1.05
8 www.bilimteknoloji.com.tr 203,620 1.450 0.41
9 www.abgs.gov.tr 160,562 1.249 0.32
10 www.lazland.com 135,519 0.954 0.27
11 WwwWw.yeniasir.com.tr 96,857 0.707 0.19
12 www.pankitap.com 58,894 0.425 0.12
TOTAL 50,111,828 362.449 100.00

" Includes only Turkish alphabet and space character

18

In TurCo, Number of Words (NOW), number of different words (NODW) and
Different Word Usage Ratio (DWUR) are calculated and given in Table 2.10.
NODW in all sites are 1,235,056, but some words are repeated in different sites.
These words are picked up from TurCo and calculated again. The result of this,

NODW in TurCo is 686,804. According to this result, DWUR in TurCo is 1.37%.

Table 2.10 NOW, NODW and DWUR in TurCo

Site# | NOW | NOW Ratio (%) | NODW | NODW Ratio (%) | DWUR (%)
1 23.396.817 46,69 | 342.544 27,74 1,46
2 9.746.093 1945 255.024 20,65 2,62
3 9.415.716 18,79 99.432 8,05 1,06
4 4.668.306 9,32 309.030 25,02 6,62
5 948.116 1,89 20.760 1,68 2,19
6 753.571 1,50 42.208 3,42 5,60
7 527.757 1,05 46.743 3,78 8,86
8 203.620 0,41 29.228 2,37 14,35
9 160.562 0,32 13.103 1,06 8,16
10 135.519 0,27 37.057 3,00 27,34
11 96.857 0,19 25.294 2,05 26,11
12 58.894 0,12 14.633 1,18 24,85
Total | 50.111.828 100,00| 1.235.056 100,00 2,74
TurCo | 50.111.828 686.804 1,37

19

2.2.3 Corpora of Other Languages
2.2.3.1 The Czech National Corpus (CNC)

The Czech National Corpus (CNC) is a non-commercial, academic project,

which contains written Czech (Kucera, 2002).

The idea of CNC was first mentioned in 1990, and the work is started in 1994
when Faculty of Arts at Charles University, Prague, founded the Czech National
Corpus Institute. It was signed by 8 signatories, representatives of the some
institutions such as, Faculty of Mathematics and Physics, Charles University,
Masaryk University, Palack University, Institute of Czech Language, Academy of

Sciences, etc.

It has synchronous and diachronic parts. Some parts of the synchronous are:
Database and dictionaries (Electronic databases and dictionaries), SYN2000
(Balanced representative of contemporary written Czech and contains about 100

million words), ORAL (Spoken Czech) (Czech National Corpus, (n.d.)).

2.2.3.2 Croatian National Corpus

It has 30 million words and 101.3 million tokens as of March O3th, 2010 and is
still growing. It includes contemporary Croatian covering different media, genres,
styles, fields and topics (Croatian National Corpus: Home Page, (n.d.)). The

document types used in the corpus is given in Table 2.11.

Table 2.11 Document types in Croatian National Corpus

20

Genre Percentage of entire corpus (%)
Informative Texts 74
Newspapers (37%)
Daily 22
Weekly 9
Bi-weekly 6
Magazines, journals (16%)
weekly 9
monthly 4
bi-, tri-monthly 3
Books, brochures,
correspondence... (21%)
publicistics 4
popular texts 3.5
correspondence, 0.5
ephemera
arts and sciences 13
Imaginative texts (fiction): 23
prose
novels 13
stories 5
essays 4
diaries, 1
(auto)biographies...
Mixed texts 3

2.2.3.3 PAROLE

PAROLE has collection of modern Dutch texts, which are younger than 1980.
The data included in PAROLE is given in Table 2.12 (PAROLE CORPUS-
Information, (n.d.)), which has over 20,000,000 words.

Table 2.12 Document types in Dutch PAROLE.

Distribution according to publication medium Number of words Percentage of entire
corpus (%)
Books 3,247,136 15.98 %
Newspapers articles 12,970,841 63.85%
quotations 217,500 1.07 %
Periodicals Local papers quotations 52,235 0.26 %
Periodicals articles 1,201,721 592 %
quotations 176,962 0.87%
Miscellaneous | Pamphlets quotations 163,022 0.80 %
8 o'clock news 1,280,986 6.31 %
Jeugdjournaal (News for young 1,005,079 495%
people)
Total 20,315,482 100 %

21

Some of tags used in the corpus are given in Table 2.13.

Table 2.13 Tags for POS Tagging

Abbreviation Meaning
ADJ Adjective
ADP Adposition
ADV Adverb
ART Article
CON Conjunction
DET Determiner
INT Interjection
NOU Noun

NUM Numeral
PRN Pronoun
RES Residual
UNIQUE Unique Membership Class
VRB Verb

PAROLE was improved to be multilingual, which contains the languages Belgian
French, Catalan, Danish, Dutch, English, French, Finnish, German, Greek, Irish,

Italian, Norwegian, Portuguese and Swedish. It has 20,000 entries per language.

2.2.3.4 French Corpus

The French Corpus that includes the tagging of the anaphors was created by the
CRISTAL-GRESEC (Stendhal-Grenoble 3 University, France) team and XRCE
(Xerox Research Centre Europe, France) in the framework of the call launched by
the DGLF-LF (national institution for the French language and the languages spoken
in France). This corpus has over 1 million annotated words from scientific and
human science articles, books (some stored in CD-ROM), newspapers (especially Le
Monde newspaper), periodicals (HERMES and CNRS-Infos), etc. (Modern French
Corpus, (n.d.)). The data in the corpus are:

e Two books, edited by the CNRS, which have 77.591 and 124.990 words.
e 204 articles, extracted from CNRS Info, a magazine which contains short

popular scientific articles from the CNRS laboratories (201.280 words).

22

e 14 articles dealing with Hermés Human Sciences (111.886 words).

e 136 articles, extracted from "Le Monde", dealing with economics (roughly
180 760words).

e 13 booklets of the Official Journal of the European Communities (roughly
337.000 words).

The annotation scheme was defined in XML format and the annotation process

was done manually by two qualified linguists.

2.2.3.5 COSMAS (Corpus Search Management Analysis System)

It is a German corpus having more than 3,750,000,000 running words, into which
new words are added each day, and world’s largest collection of German texts. It was
created in 1964 and still growing. The texts are younger than 1950, and covers all
time to the present. Only 1.1 billion words are available to public because of
copyright restrictions. It is a product of “Institut fiir Deutsche Sprache, Mannheim”
(COSMAS, German Corpus, (n.d.)). Deutsches Referenzkorpus (DeReKo) is the

official name of the full corpus archive since 2004.

CHAPTER THREE
COMMONLY USED METHODS FOR NATURAL LANGUAGE
PROCESSING APPLICATIONS

In order to generate a corpus, some main processes must be done, such as;

e Sentence boundary detection,
e Stemming and root finding,

e Part-of-Speech examination.

3.1 Sentence Boundary Detection

The first process of generating a corpus, which is a representative of the language,
is determination of sentences, which is very complicated and hard to solve, but an

important part of the corpus generation.

Different approaches have been tried to find out sentence boundaries in some
languages. The most known approaches are “Rule Based” and “Machine Learning”.
Manually collected rules, which are usually encoded in terms of regular expression
grammars, and supplementary lists of abbreviations, common words, proper names,
and appropriate feature sets of syntactic information, are used in rule-based approach
such as in the study of Aberdeen et al. (1995), in which sentence-splitting module
that contains nearly 100 regular-expression rules. Developing a good rule base
system is an ambiguous task itself and hard to design. So, different approaches are
developed to solve the sentence boundary disambiguation by using “Machine
Learning”, such as Maximum Entropy approach of Reynar & Ratnaparki (1997), the
Decision Tree Classifier approach of Riley (1989), and Neural Network approach of
Palmer & Hearst (2000). Also, there are hybrid systems such as the Mikheev’s work
(1997), which integrates part-of-speech tagging task based on Hidden Markov model

of the language and the Maximum Entropy into sentence boundary detection.

23

24

For English, a module named Sentence in Lingua library, which is used for
splitting text into sentences, was developed in Perl and distributed freely in 2001
(Yona, 2001). This module contains the function get sentences that splits text

into its sentences by using regular expression and a list of abbreviations.

get sentences(Stext)
add_acronyms (@acronyms)
get acronyms ()

set acronyms(@my acronyms)
get EOS()

set EOS(Snew EOS string)
set locale($new locale)

Figure 3.1 Functions in Sentence module

The Bondec system (Wang & Huang, 2003) is a sentence boundary detection
system for English, which has three independent applications (Rule-based, HMM,
and Maximum Entropy). Three files were created, train.dat, test.dat, and
heldout.dat, from Palmer’s raw data files, the Wall Street Journal (WSJ) Corpus
(Palmer & Hearst, 1997). The train.dat file is used for training purpose in HMM
and ME. There are 21,026 sentences in this training set, 95.25% (20,028) of them are
delimited by a period; 3.47% (727) of them ends with a quotation mark and 0.69%
(146) of them ends with a question mark. The heldout.dat file has 9721
sentences, which was used for cross-validation and performance tuning; while the
test set, which has 9758 sentences, was only available for final performance
measurements. Maximum Entropy Model is the main method of this system, which
achieved an error rate less than 2% on part of the WSJ Corpus. The performances of

these three applications are given in Table 3.1.

Table 3.1 Performance comparison of three methods

Method Precision Recall Fl1 Error Rate
RuleBased [99.56% 76.95% 86.81% 16.25%
HMM 91.43% 94.46% 92.92% 10.00%
MaxEnt 99.16% 97.62% 98.38% 1.99%

25

An ontology based approach on sentence boundary detection for Turkish was
developed by Temizsoy and Cigekli in 1998. In the same year, a new method, in
which simple Turkish sentences were generated, was developed by Cicekli and
Korkmaz (1998). They used a functional linguistic theory called Systemic-Functional
Grammar (SFG) to represent the linguistic resources, and FUF (Functional

Unification Formalism) text generation system as a software tool to carry out them.

Other well-known study on sentence boundary detection for Turkish is developed
by Dinger and Karaoglan (2004), in which a rule-based approach was used. This
study was tested on a collection of Turkish news texts having 168,375 tokens,
including punctuations, and 12,026 sentences, which are morphologically analyzed
and disambiguated by Hakkani-Tiir et. al. (2002) and success rate was measured as
96.02%. The rules were generated as all combinations around a dot with a triple. For
example, [w * W] denotes the situation where a letter sequence w which starts with
a lower-case character, is followed by a dot (represented by asterisk “*”’) which is
then followed by a letter sequence W which starts with an uppercase character. The

symbols and their meanings are listed in Table 3.2.

Table 3.2 Notation

Symbol Meaning

w All letter sequences starting with a lowercase character.

\\% All letter sequences start with an uppercase character

All number sequences. (Real, integer cardinal or ordinal, date, time, telephones,
etc.)

T Apostrophe ()

TT Quote character ()

K Dash (-)

\Y Comma (,)

(Open parentheses

) Close parentheses
Colon

; Semi colon

P All punctuation including not listed ones such as %, &, $, etc.

EOS End of Sentence

~EOS Not End of Sentence

o All kind of tokens (w, W, #, T, TT, K, V, “(*,)", P)

The well-known highest success rate for Turkish sentence boundary method was

denoted by Kiss & Strunk (2006) for multilingual sentence boundary detection

26

including Turkish, which was measured as 98.74% mean value of eleven languages’
test results, English, Brazilian Portuguese, Dutch, Estonian, French, German, Italian,
Norwegian, Spanish, Swedish, and Turkish (Table 3.3). For Turkish, it has the
success rate of 98.69%. It was implemented by using the log-likelihood ratio
algorithm by Dunning (1993) and tested on the part of METU Turkish Corpus (Say
et.al, 2002), which only included Turkish newspaper, Milliyet.

Table 3.3 Statistical properties of the test corpora

Corpus Tokens | Tokens with | Abbr Abbr. Abbr
Final Periods | Tokens | Tokens % | Types

B. Portuguese 321,032 15,250 451 3.15% 102
Dutch 340,238 20,075 1,270 6.33 % 141
English - W5] 469,396 26,980 7,297 27.05 % 196
English — Brown | 1,105,348 54,722 5,586 10.21 % 215
English — Foe 324,247 11,247 GO0 5.33 % 59
Estonian 358,894 25,825 2,517 9.75 % 248
French 369,506 12,590 375 291 % 51
German 547,207 38,062 3,603 947 % 139
Italian 312,398 11,561 442 3.82% 156
Norwegian 479,225 28,368 1,852 6.63 7% 242
Spanish 322,773 13,015 570 4387% 54
Swedish 335,948 19,724 769 3.90 % 100
Turkish 333,451 21,047 598 2.84 % 103

Error rates in this study are given in Table 3.4.

Table 3.4 Error rates

Error <5
Corpus Cases | MxTerm. | Punkt Corpus Cases | MxTerm. Punkt
B. Portuegese | 13,725 LI0% | T.11 % | Ttalian 10,405 2.45% 113 %
Dutch 18,068 1L13% | 0.97 % | Norwegian | 25,531 1.347% 08T
English 24,282 153 % | 1.65 % | Spanish 11,714 1.60 % 1.06 %
Estonian 23,243 279% | 212 % | Swedish 17,752 2.39 % 1.76 %
French 11,601 266 7% | 1.54% | Turkish 18,942 1.77 % 1.31%
German 34,256 0.63% | 0.35% | Mean Error | MxTerm.: 1.76 %, Punkt: .26 %

27

3.2 Stemmers

The process of reducing derived/inflected words to their stem or root is called
“Stemming”. There are many algorithms generated for stemming in many languages,
such as Porter Stemming Algorithm for English (Porter, 1980), Stemming Engine for
Polish (Weiss, 2005), Swedish, German, Spanish, Greek Stemming Algorithms, etc.

Some of the algorithms that determine root or stem of words in Turkish such as
Identified Maximum Match (IMM) Algorithm (Koksal, 1975), AF Algorithm (Solak
& Can, 1994), Longest-Match (L-M) Algorithm (Alpkogak et al., 1995), Root
Finding Method without Dictionary (Cebiroglu & Adali, 2002), FindStem Algorithm
(Sever & Bitirim, 2003), Extended Finite State Approach (Oflazer, 2003), etc. are

investigated and summarized.

Identified Maximum Match (IMM) Algorithm is developed by Koksal in 1975. It
is left-to-right parsing algorithm, which tries to find the maximum length substring
that is matched with in a root lexicon. If a match is found, the remaining part of the
word is considered as the suffixes, this part is searched in a suffix morpheme forms

dictionary and morphemes are identified one by one until there is no element.

In 1993, Solak and Oflazer developed an algorithm which used a dictionary that
has 23,000 words based on the Turkish Writing Guide as the source (Solak and
Oflazer, 1993). The words are listed in a sorted order in an ordered sequential array
to be able to make fast search. Each entry of the dictionary contains a root in Turkish
and a series of flags showing certain properties of that word. If the bit corresponding
to a certain flag is set for an entry, it means that the word has the property
represented by that flag. 64 different flags are reserved for each entry, but only 41

flags have been used. Some of the flags are given in the Table 3.5.

Table 3.5 Example of flags

28

Flag Property of the word for which this flag is set Examples
CL NONE | Belongs to none of the two main root classes RAGMEN, VE
CL_ISIM Is a nominal root BEYAZ, OKUL
CL FIIL Is a verbal root SEV, GEZ
IS OA Is a proper noun AYSE, TURK
IS OC Is a proper noun which has a homonym that is not a proper noun | MISIR, SEVGI
IS SAYI Is a numeral BIR, KIRK
IS KI Is a nominal root which can directly take the relative suffix -KI | BERI, OBUR
IS SD Is a nominal root ending with a consonant which is softened | AMAC,PARMA
when a suffix beginning with a vowel is attached. K, PSIKOLOG
IS SDD Is a nominal root ending with a consonant which has homonym | ADET, KALP
whose final consonant is softened when a suffix beginning with
a vowel is attached.

The root of the word is searched in the dictionary using a maximal match
algorithm. In this algorithm, first the whole word is searched in the dictionary, if it is
found then it is assumed that the word has no suffixes and it does not need to be
parsed. If not, then right-to-left parsing is done. A letter from the right is removed
and the left letters are searched as a word if it exists in the dictionary. This step is
repeated until the root is found. If no root is found after the letter at the beginning or
the word 1s removed, the word’s structure is accepted as incorrect. In order to obtain
reliable results from this parser, all of the rules and their exceptions must be

implemented. But they could not obtain all rules and exceptions in Turkish language.

AF algorithm works with a lexicon that includes actively used stems for Turkish
in which each record is explained with 64 tags (Solak & Can, 1994). The examined
word is looked up in the lexicon iteratively by pruning a letter from right at each
step. If the character array matches with any of the root words in the lexicon, then the
morphological analysis for that word is finished. The process is repeated until a

single letter is left from the word. The AF algorithm is summarized as:

1. Remove suffixes that are added with punctuation marks from
the word.

2. Search the word in dictionary.

3. If a matched root found, add the word into root words list.
4. If the word remained as a single letter, the root words list
is empty then go to step 6, if root words list has at least one

element then go to step 7.

29

Remove the last letter from the word and go to step 2.
Add the examined word into unfounded record and exit.
Get the root word from the root words list.

Apply morphological analysis to the root word.

O 0w ~J o O

If the result of morphological analysis is positive then add
the root word to the stems list.

10. If there is any element(s) in root words list then go to
step 7.

11. Choose the all stems in the stems list as a word stem.

Although, this algorithm finds all possible stems of the word, it is far away to find

“correct” stem.

Longest-Match (L-M) Algorithm is based on the word search logic over a lexicon
that covers Turkish word stems and their possible variances (Kut et al., 1995). Here

is the algorithm:

1. Remove suffixes that are added with punctuation marks from
the word.

2. Search the word in the dictionary.

3. If a root is matched, go to step 5.

4. If the word remained as a single letter, go to step 6.
Otherwise, remove the last letter from the word and go to
step 2.

5. Choose the found root as a stem and go to step 7.

6. Add the examined word into unfounded records.

7. Exit.

This algorithm finds the first stem matched with character array that is gained by
removing the last letter iteratively. This algorithm is far away to find “correct” root

or stem, because first matched substring of word may not be the correct stem.

In 2002, a new method is developed in which roots can be found without
dictionary by Cebiroglu and Adali. It is claimed and proved that by analyzing a
word, its root and suffixes can be formulated. The suffixes, which can be attached to

a root, are divided into groups and finite state machines are formed by formulating

30

the order of suffixes for each of these groups. A main machine is formed by
combining these machines specific to the groups. In the morphological analysis, the
root is obtained by extracting the suffixes from the end to the beginning of word. The

abbreviations that are used in suffixes are:

U 1,1i,u,1 C Cc,C
A ’ I: 1,1
D: d,t () : the letters not obligatory

where “-cu” canbe -c1, -ci, -cu, -ci.

In this method, it was assumed that the morphological rules can be determined
with finite state machines. Rules may be interpreted from right to left and from last
to beginning to reach to the root of the word. Different modules are developed for all
sets dependent to each other. Table 3.6 shows the affix-verbs in Turkish that is

determined as a set of the affix-verbs.

Table 3.6 The affix-verbs in Turkish

1 —(y)Um 6 —-m 11 —cAsInA
2 —sUn 7 -n 12 —(y)bU
3 —(y)Uz 8 —k 13 —(y)sA

4 —sUnUz 9 —nUz 14 —(y)mUs
5 —1Ar 10 -DUr 15 —(y)ken

The finite state machine of the implementation of the data in Table 3.6 is given in

Figure 3.2.

31

10,12,13,14
5

1,2,3,4,5

1,2,3,4,5

Figure 3.2 Finite state machine of Table 3.6.

For example, the word “caliskan-mis-smiz” is examined by this finite state

machine as;
e - suUnUz affix moves from A to B state,
e - (y)mUs affix moves from B to F state

e [fthe last affix -n is tried to move anywhere from F state, it is not possible to

move, so the process is stopped.

Since F state is final; the root is accepted as “caligkan” in the example given

above. But the correct root is “calis-”, so this algorithm gave wrong result.

For all sets like the affixes that are used for nouns and verbs new finite state
machines are implemented. They are all combined in one finite state machine at the

end and the roots are found. The main finite state machine is given in Figure 3.3.

werh
inflexional
F.hi.

detivational

naun
inflexional
F.h.

Figure 3.3 The main finite state machine

32

In 2003, a method by extended finite state approach is developed by Oflazer. In

this approach, a Turkish word is represented as a sequence of Inflectional Groups

(IGs), separated by “DBs denoting derivation boundaries, in the following general

form:

root + Infll1”"DB+Infl2”DB+.... “"DB+Infl,

where ITnfl; denotes relevant inflectional features including the part-of-speech for

the root, or any of the derived forms. For example, the derived determiner

“saglamlastirdigimizdaki” (en: (the thing existing) at the time we caused (something)

to become strong) would be represented as:

saglam+Adj

“"DB+Verb+Become "DB+Verb+Caus+Pos

~"DB+Adj +PastPart+Plsg”DB

+Noun+Zero+A3sg+Pnon+Loc”DB+Det

This word has 6 IGs:

AN

saglam+Adj
+Verb+Become
+Verb+Caus+Pos
+Adj+PastPart+Plsg

+Noun+Zero+A3sg +Pnon+Loc

33

A sentence then would be represented as a sequence of the IGs. When a word is
considered as a sequence of IGs, syntactic relation links only emanate from the last
IG of a (dependent) word, and land on one of the IG's of the (head) word on the right

(with minor exceptions) (Figure 3.4).

;l .
(SR w)

Figure 3.4 Links and inflectional groups

A dependency tree for a sentence laid on top of the words segmented along 1G

boundaries is given in Figure 3.5.

Det Pos Subyj
' [l
Mod Det Mod
Ril) Yo 'y
leski e-d il-i le ||biliyid si |herkes-i| cokjletkile-di
(Bufeski)fbahg) bdyle)(biyii]+fme-siherkes-)(goRf)
.~
D AD] N D N ADV v N PN ADV WV

Last line shows the final POS for each word.

Figure 3.5 Dependency links in an example Turkish sentence

The approach relies on augmenting the input with channels that reside above the
IG sequence and /aying links representing dependency relations in these channels.
The parser, which was implemented for this approach, has a number of iteration. A
new empty channel is on top of the input in each iteration, and any possible links are
established by using these channels, until no new links can be added. The symbol “0”
indicates that the channel segment is not used while “1” indicates that the channel is
used by a link that starts at some 1G on the left and ends at some 1G on the right, that
is, the link 1s just crossing over the 1G. If a link starts from an IG (ends on an 1G),

then a start (stop) symbol denoting the syntactic relation is used on the right (left)

34

side of the IG. The syntactic relations (along with symbols used) that are encoded in

the parser are the following:

4 S (Subject), 0 (Object), M (Modifier, adv/adj), P (Possessor), C (Classifier),
D (Determiner), T (Dative Adjunct), L (Locative Adjunct), A: (Ablative Adjunct),
I (Instrumental Adjunct).

In 2003, Sever & Bitirim developed a new method called FindStem. This method
contains a pre-processing step that converts all letters of the word into their cases and
singles out the letters after the punctuation mark in the word. It has three

components;”’Find the Root”, “Morphological Analysis” and “Choose the Stem”.

In “Find the Root” component, all possible roots of the examined word are found
by starting with the first character of the examined word and searching the lexicon
for this item. Then the next character is appended to the item and searched in the
lexicon again. This operation continues until the item becomes equal to the examined
word or until the system understands that there are no more relevant roots for the
examined word in the lexicon. Then, found roots and production rules are used to
derive the examining word. In lexicon, the class of all words and possible syntactic
changes during combining a root with suffix is coded for the Morphological Analysis

component.

A morphological analyzer is used in “Morphological Analysis” component. All

possible stems can be found by using this component.

In the last component, “Choose the Stem”, the stem is chosen by a selection

between derivations in the derivations list.

This algorithm finds all possible stems of the word by eliminating the stems that

are not in the derivation list. The algorithm is:

35

1. Remove suffixes that are added with punctuation marks from
the word.

2. Find all possible roots of the word in a lexicon and add
them into root words list.

3. If root words list is empty, add the word into unfounded
records and exit.

4. Get the root word from root words list.

5. Apply morphological analysis to the root word.

6. After morphological analysis, add the formed derivations
into derivations list.

7. If there is any element(s) in root words list then go to
step 4.

8. Choose the stem by a selection between derivations in the

derivations list.

3.3 Part of Speech (POS) Tagging

In a sentence, words are grouped into classes according to their similar syntactic
behavior by linguist. Those word classes are called Parts-of-Speech (POS) of which

well-known three are: noun, verb and adjective (Manning & Schutze, 1999).

Part-of-speech tagging is defined as “a process in which a part-of-speech label is
assigned to each of words in sequence” (Jurafsky & Martin, 2000, p. 314). The POS

tagging process is simply given in Figure 3.6.

Words Tags

iyi
(good)
arkadasi
(his friend)
bugiin

Sifat (Adjective)

eve
(to home)
geldi

Edat (Particle)

Zarf(Adverb)

Figure 3.6 Part-of-Speech tagging

36

POS tagging has many practical uses in full text searching, information retrieval,

speech synthesis and pronunciation and high level text analysis.

There are many aspects about classifying POS tagging processes, such as Guilder
announced in 1995, in which a distinction among POS taggers were made according
to taggers’ automation degree in training and tagging process (Guilder, 1995). Two

approaches in this classification are:

1. Supervised Tagging
2. Unsupervised Tagging

In supervised methods, users check out the results and accept one result as true
and generally require pre-tagged corpora to be used in the tagging process. In
unsupervised methods, the results are checked out automatically by computers and
the appropriate solution is chosen as true, unsupervised taggers do not require pre-

tagged corpora.

Another classification in POS tagging has been done according to characteristics

of POS taggers. There are three basic approaches in this classification:

1. Rule-based Tagging
2. Stochastic Tagging
3. Combination (hybrid) Tagging

Rule-based approaches generally use a lexicon and a list of hand-written
grammatical rules of natural language. This method basically applies the rules to a
word group including words with several possible word classes (e.g. both adjective
and noun) for word class disambiguation (e.g. Greene & Rubin, 1971; Brill, 1992;
Oflazer & Kuruoz, 1994; Voutilainen, 1995a).

37

Stochastic tagging approach aims to resolve the ambiguities of word classes by
computing probabilities and frequencies. Some stochastic tagging models include
Hidden Markov Models (HMM) to tag words of documents (e.g. DeRose, 1988;
Church, 1988; Cutting et al., 1992; Charniak, 1993).

Combination (Hybrid) tagging approach combines the advantages of both
approaches to improve the overall performance of the tagging system (e.g. Cutting et
al., 1992; Tapanainen & Voultilainen, 1994; Brill, 1995; Garside, 1987, 1997,
Altinyurt et. al, 2006).

Research on part-of-speech tagging may have begun with the development of the
Brown Corpus in 1960s, because first POS tagging studies were based on it. By
creating a large corpus of English, the researchers aimed to make some analysis on
the language in electronical environment. The Brown Corpus includes complete
sentences gathered from various resources including about 1,000,000 English words.
One of the first studies in POS tagging was a deterministic rule-based tagger which
focused on tagging the words in the Brown Corpus (Greene & Rubin, 1971). The
tagger (TAGGIT) achieved an accuracy of 77%.

There are various POS tagging approaches that rely on stochastic methods, such
as DeRose (1988), Church (1988), Charniak (1993), etc. Modern stochastic taggers
are mostly based on Hidden Markov Model (HMM) to choose the appropriate tag for
a word. The Xerox POS tagger is also based on a HMM with a result of 96%
accuracy (Cutting et al., 1992).

Brill’s simple rule-based part-of-speech tagger achieved an accuracy of 96% in
1992 (Brill, 1992). The accuracy of this tagger was improved to 97.5% with some
changes in 1994 by the author himself (Brill, 1994). Another well known research on
rule-based POS tagging is the ENGTWOL tagger (Voutilainen, 1995b) that uses the

Constraint Grammar approach of Karlsson et al. (1995).

38

The well-known hybrid tagging system is Brill’s transformation-based tagger
(Brill, 1995). This tagger determines ambiguous word classes using rules like other
rule-based taggers. Also, it includes a machine learning mechanism like stochastic

taggers, which provides rules to be constructed from the text.

CLAWS is also a hybrid tagger which is based on a HMM with a rule-based
component to handle idioms (Garside, 1987, 1997). This tagger reports the accuracy
of 97%. Another hybrid tagger developed by Tapanainen & Voultilainen (1994),
which uses ENGCG: Constraint Grammar Parser of English (Karlsson et al., 1995)
and the Xerox Tagger (Cutting et al., 1992) to tag the same document and combine

the results independently.

Studies on Turkish POS tagging are quite limited. A rule-based tagging tool for
Turkish that is implemented on the PC-KIMMO environment (Antworth, 1990) was
published by Oflazer & Kuruoz in 1994.

In 2006, a composite approach for part of speech tagging in Turkish, which
combines rule-based and statistical approaches with use of some characteristics of
the language in terms of heuristics, such as frequencies and n-gram (unigram,
bigram, and trigram) probabilities, was announced by Altinyurt et. al. In this work, it
was shown that using hybrid approach increases the accuracy between 12% and 17%

as to using only morphological analyzer.

Besides, TurPOS, a new rule-based part-of-speech tagger system that was
developed for Turkish by Hallag¢ in 2007. TurPOS uses a text corpora produced by a
morphological analyzer as the input document and a rule file that contains the list of
grammatical Turkish rules. This makes the system usable for tagging other
languages, by simply modifying the rule file according to the grammar of the

language.

39

3.4 Other Works

There are many works in natural language processing area, such as author
detection systems, translation systems between languages, spell checkers and

correctors, etc.

In 2003, an automatic author detection system was developed by Diri & Amasyali
for Turkish. In this system, 18 authors were used for training by figuring out 22 style
markers for each author. The success rate was detected as 84% in average, which
was the highest rate until 2008. In 2008, a new study was released, which is called
“Determination of Author Characteristics”, developed by Giindii (Glindii, 2008). In
this work, three different training sets and two test sets were generated from two
Turkish newspapers with different specifications. In this system, 10 authors were
used for training by figuring out 17 different style markers. While examining the
text, all authors were scored by looking at the similarity between their texts and the
unknown text. The success rate was detected as 86% and it was increased to 92% by
adding a different parameter, called as Average Number of Wordforms in a Sentence
(ANWS) parameter. Also, this work showed that using author scoring process with

similarity coefficients and n-grams increases accuracy as 10%.

In 2004, researchers from Bogazi¢i and Sabanci Universities built an open-source
software platform called “A natural language processing infrastructure for Turkish”,
which served as a common infrastructure that can be used in the development of new
applications involving the processing of Turkish (Say et. al.,2004). This platform has
some variant features such as a lexicon, a morphological analyzer/generator, and a
Definite Clause Grammar (DCG) parser/generator that translates Turkish sentences
to predicate logic formulas, and a knowledge base framework. One of the developed
applications by this study is a natural language interface for generating SQL queries

and JAVA code.

For detecting misspelled words in Turkish texts, a study was released by using
syllable n-gram frequencies in 2007 (Asliyan et. al.). In this work, three databases of

syllable monogram, bigram and trigram frequencies are constructed using the

40

syllables that are derived from five different Turkish corpora. Then, the system takes
words in Turkish text as an input and gives the result for each word as “Misspelled
Word” or “Correctly Spelled Word” by computing the probability distribution of
words. If the probability distribution of a word is zero, it is decided that this word is

misspelled. This system reached 97% success rate to detect misspelled words.

Also, many works on translation systems between Turkic languages were done,
such as “4 Prototype Machine Translation System between Turkmen and Turkish”
(Tantug et. al., 2006), “Machine Translation between Turkic Languages” (Tantug et.
al., 2007), “Tiirk Dilleri Arasi Ceviri Altyapisi (eng: An Infrastructure for
Translation between Turkic Languages)” (Alkim et. al., 2009).

CHAPTER FOUR
INFRASTRUCTURE AND DATABASE MODEL FOR RB-CorGen

4.1 Used Technologies

The project was developed as Windows application in Microsoft .NET Visual
Studio 2005 (.NET Framework 2.0) environment by using the C# programming
language, and MS SQL Server was used to store data such as lexicon, tags, etc.
Additionally, Crystal Reports application is used in Getting and Storing Data step of
the project. Some reports are designed by using this application, which are used for

evaluation for downloaded documents.

The rule list should be stored in a format that can be parsed efficiently by the
system. And also, the list should be in a form that users can read, understand and
modify easily. Consequently, the performance of the system can be improved by
adding new rules into or removing incorrect rules from the rule list. This also makes
the system more flexible and scalable. Considering this issues, rule files based on the
XML (Extensible Markup Language) standards was designed in this project (Ray,
2003). The advantages for using an XML based rule file can be listed as the

following:

- Increased human readability provides easy modification,

- A simple text editor is sufficient for rule list modifications instead of
programs/tools,

- Parsing rules from text based file is faster than parsing from complex tables in
a database,

- Removing/changing only one rule is possible since rules are independent from
each other,

- Rule list has no limit on number of rules it contains.

41

4.2 Used Tags

42

The tags for suffixes in Turkish Language have been created by linguists

according to the structure of language. Full list of the tags, which are used in Stem /

Root Parsing, are given in Appendix C3 and some samples are given in Table 4.1.

Table 4.1 Sample tags used in Stem / Root Parsing step

Suffix Tag Meaning Expression
2. Grup 1. Tekil | Du E K Gr2 Tl
Kisi Eki
-(y)Im DuEKGr2T1 Dilbilgisi 1.Tekil
2.Group 1. Person | Ulami Eylem | Kisi 2.Grup
Inflectional Suffix (Grammatical | (Verb) | (Person) (2. (Ist
Category) Group) | Singular)
DuEC Cat1 Ekleri Grubu
(Voice Morphemes
Group)
%]
(DuECEt (Etken (Active) Du E C
1I/(Dn
DuECEdil Edilgen (Passive) Dilbilgisi
Ds Ulamu Cat1 Eki
DuECDonus | Doniisli (Grammatical | Eylem | (Voice
(A, Dr DuECIstes (Reflexive) Category) (Verb) | Morpheme)
/(A, Dt Istes (Reciprocal)
/ (A,Drt | DuECEttir)
/ Dir Ettirgen
(Causative))
Addan A('i Yapan B A A
Yapim Eki Grubu
-CA TBAA (Nominal
1k (TBAA-ca Derivational Tiiretim Ad Ad
TBAA-lik...) Bi¢imbirim (Noun) | (Noun)
Morphemes Derivational
Group) (Derivationa
Morphemes)
Addan Equm B A E
Yapan Yapim Eki
TBAE (Verbal
-A/E (TBAE-a Derivational Tiiretim Ad Eylem
-(A)k TBAE-k...) Bigimbirim (Noun) | (Verb)
Morphemes Derivational
Group) (Derivationa
Morphemes)

Abbreviations are used, which were chosen according to the semantic or structural

meaning that the suffix adds to the word, for tags. As an example; “DuEKGr2T1”

abbreviation indicates one of the group 2 people suffixes, which shows the first

person singular suffix that can be added only after the suffixes of continuous,

43

present, future and necessity tenses grammatically. The structure of the abbreviation

is given as:
Du - E - K - Gr2 - T1
Dilbilgisi Ulami - Eylem - Kisi - 2.Grup - 1.Tekil
(Gramatical Suffix - Verb — Person - 2. Group - 1l.Singular)

All tags for the suffixes of the 2. Group People are given in Table 4.2.

Table 4.2 Tags for the suffixes of the group 2 people

Suffix Tag Expression

{-(y)Im} DuEKGr2T1 First Person Singular
{-sIn} DuEKGr2T2 Second Person Singular
{-0} DuEKGr2T3 Third Person Singular
{-(p)Iz} DuEKGr2C1 First Person Plural
{-sIn-Iz} DuEKGr2C2 Second Person Plural
{-1Ar} DuEKGr2C3 Third Person Plural

Sample parsed documents are given in Figure 4.1 and Figure 4.2, which are

outputs of Parsing Stems/Roots and Suffixes and POS Tagging steps, and meanings

of used tags are given in Table 4.3.

- <File OriginalName="test.txt">
B - <P I="0">
- <S8 Index="0">
Gizel koyun otlamaya g¢ikti
- <Word Index="0" Value="Glzel">
- <R I="0" V="Gluz" T="isim">
<Suffixes>
- <Sx I="0">
<TBAE-1>el</TBAE-1>
</Sx>
- <8x I="1">
<TBEA-1>el</TBEA-1>
</Sx>
- <Sx I="2">
<TBAA-1>el</TBAA-1>

</Sx>
</Suffixes>
</R>
+ <R I="1" V="Gluzel" T="isim">
+ <R I="1" V="Glizel" T="sifat">
+ <R I="1" V="Guzel" T="zarf">
</Word>

- <Word Index="1" Value="koyun">
<R I="0" v="koy" T="isim">
<R I="0" V="koy" T="fiil">
<R I="1" V="koyu" T="sifat">
+ <R I="2" v="koyun" T="isim">
</Word>
- <Word Index="2" Value="otlamaya">
<R I="0" V="ot" T="isim">
<R I="0" V="ot" T="sifat">
<R I="1" V="otla" T="fiil">
+ <R I="2" v="otlama" T="isim">
</Word>
- <Word Index="3" Value="cikti">
+ <R I="0" V="cik" T="fiil">
+ <R I="1" V="cikti" T="isim">
</Word>
<Word Index="1" Value=".">

+1+ 1+ 1+

+1+ 1+ 1+

|+

</S>
</P>
</File>

Figure 4.1 Sample parsed document of Parsing Stems/Roots and Suffixes step

including only one sentence

44

- <File OriginalName="test.txt">
T - <P I="0">
- <S8 Index="0">
- <Word Index="0" Value="Giizel">
<T Name="zarf" />
+ <R I="3" V="Glizel"> </R>
</Word>
- <Word Index="1" Value="koyun">
<T Name="isim" />
i <R I="O" V="koy">
+ <R I="3" v="koyun">
</Word>
- <Word Index="2" Value="otlamaya">
<T Name="isim" />
i <R I="O" v="ot">
+ <R I="3" v="otlama">
</Word>
- <Word Index="3" Value="cikti">
<T Name="fiil" />
i <R I="O" V="glk">

</Word>
<Word Index="1" Value="." />
</S>
</P>
</File>

Figure 4.2 Sample parsed document of POS Tagging step including only one sentence

Table 4.3 Meanings of tags in XML file

Tag Item (XML Value) Meaning
File File Section

OriginalName File name
P Paragraph Section

1 Index (Paragraph Number)
S Sentence Section

Index Index (Sentence Number)
Word Word Section

Index Index (Word Number)

Value Word Value

T Name Root Type

T Stem/Root Type

R Stem/Root

1 Index (Root Number)

\% Stem/Root Value
Suffixes Suffixes Section

Sx Suffix Value

1 Index (Suffix Number)

46

4.3 Rule Lists

In this study, the rules were collected by the linguists and stored in XML
(Extensible Markup Language) formatted lists, which are used in sentence boundary

detection, morphological analysis and POS tagging processes.

25 rules for Sentence Boundary Detection process were generated by the linguists
to be used in this process. Full list of the rules, which are used in Sentence Boundary
Detection step, are given in Appendix Bland some samples are also given in Figure

4.3.

<rules>
<rule EOS="False">L.L</rule>
<rule EOS="True">L.U</rule>
<rule EOS="True">L.#</rule>

<rule EOS="False">#.-</rule>

<rule EOS="False">#.#</rule>

<rule EOS="False">#.U</rule>
</rules>

Figure 4.3 Sample rules in rule list for Sentence Boundary
Detection process

In this rule file, XML format is created in triple group (e.g. “L.L”). The meanings

of characters used in this process are given in Chapter 4.

For concordance of suffixes, 16 rules were generated by the linguists and stored in
a text file to be used in Morphological Analysis process to determine the stem / root
and suffixes. The tags of suffixes are used to indicate successive rules. Full list of the
rules, which are used in Morphological Analysis step, are given in Appendix B2 and

some samples are also given in Figure 4.4.

TB,E,A,S
E,DuEC,DuEKipYet,DuEOIz,YS,DuEZ\DuEG\DuEKip\,YS,K,DuEK,
E,DuEC,DuEKipYet,DuEOIlz,YS,Ytu,YS,K,DuEK,
A,YS,DuASay,YS,DuAUy,YS,DuADur,
E,DuEC,DuEOIz,Ytu,YS,DuASay,YS,DuAUy,YS,DuADur,

Figure 4.4 Sample rules in rule list for Parsing Stems/Roots and Suffixes process

47

As an example; the rule “E,DuEC,DuEKipYet,DuEOIz YS,Ytu,YS,K,DuEK,”
indicates that; a verb can get a suffix from DuEC (Eylem Cati1 Ekleri (Voice
Morphemes)) group, and after that it can get suffixes from DuEKipYet (Yeterlilik
Eki (abilitative suffix)), DuEOlz (Eylem Olumsuzluk Eki (Negation Suffix)), YS
(Yardimc1 Ses (Buffer Sound)), K (Kosa¢ — Ek fiil (Verb Compunds)), DuEK-
(Eylem Kisi Cekim Ekleri (Personal Suffixes)) suffix groups respectively. The

meanings of tags used in this process are given in Chapter 4.

For Rule-Based POS Tagging process, 85 rules are generated to determine
concordance of suffixes by the linguists and stored in an XML file. Full list of the
rules, which are used in Rule-Based POS Tagging step, are given in Appendix B3

and some samples are also given in Figure 4.5.

<?xml version="1.0" encoding="utf-8"?>
<Document>
<Rule RuleId="8" RuleType="so0zdizim" RuleState="true">
<Item ItemType="sifat" />
<Item ItemType="sifat" />
<Item ItemType="isim" />
</Rule>
<Rule RuleId="9" RuleType="so0zdizim" RuleState="true">
<Item ItemType="sifat" />
<Item ItemType="isim" />
</Rule>
<Rule RuleId="10" RuleType="sbzdizim" RuleState="false">
<Item ItemType="sifat" />
<Item ItemType="v" />
<Item ItemType="isim" />
</Rule>

</Document>

Figure 4.5 Sample rules in rule list for POS Tagging process

A rule in the rule list is basically an element with three attributes and undefined
number of item elements within. The Ruleld attribute of a rule is a unique rule
number, used to determine a rule in the file. RuleType is a string attribute which
defines the type of the rule. Basic rule type for POS Tagging Module is word order

rules, which is called as “s6zdizim” in Turkish. The third attribute, RuleState, defines

48

whether syntax of word types’ sequences that the rule contains is applicable or not.
When value of the RuleState attribute is “false” in a rule, then there is no possibility
for words of a sentence to be ordered as in given sequence, in Turkish. Each rule
element has sub-elements (items), which correspond to words or punctuation items in
sentences. [ltem element has only one attribute called /temType, which defines the
word type of an item. If the item is a punctuation mark, the /temType attribute
includes its type as punctuation given in Table 4.5, which shows the types used in
POS Tagging Module, including the punctuation marks that can take place in

sentences.

Table 4.5 The word types used in the POS Tagging System and corresponding descriptions in English

Parts of Speech Description
sifat adjective
isim noun
zamir pronoun
fiil verb
zarf adverb
edat preposition
say1 number
nokta dot
virgiil comma
ikinokta colon
noktalivirgiil semicolon
4.4 Database Model

In order to find stem/root possibilities, a wordform is analyzed by starting with
first character from left and comparing with the words taken from TDK and stored in
the database. Also the suffixes with used tags were stored in database. The lexicon

and suffixes were stored in 7 different tables:

e Kokler
e KoklerSanal
e (GoOvde

e Kelimeler
e Grup

e Ek

e Ekler

Database diagram of the project is given in Figure 4.6.

Ekler

Grup

| GrupID
Grupéd
GrupTag
Ozelizirn
E iSirn
— Fiil
:I SIFAT
_I Zarnir
Unlem
Edar
Zarf

:I Baglac

| Ekku
_| EKICLink

EkKul
4

7| exo

GrupIDLink
Genel

Tag

Ad

Kaynasma

_I Genel¥edek

49

Kelimeler

Koklersanal

_?I San_Id

_I KayKelime_ID
_| Hedkelime_ID
_| Ek_ID

_I Turetrne

Govde

9] sev 1D

Gong
Czelisim
iSim

Fiil
SIFAT

Zamir

Unlern
Edat
Zaf
Baglac
YFiil
Birlesil

Crrjinal
Link:

e [

Kokler

_ql Kok _ID

p— % _I Kok
g _I Teimn

J Fiil
_I Menze
_| Otjinal

P Kelime_IT
Kelirne
Ozelisim
iSim

Fiil

| SIFAT
] Zamir
:I Unlam
_I Edat
Zarf
Baglac
YFiil
Birlasik
Orrjinal
Link
Isimn_Kak
Fiil_Kaok
Gow_Id
Kaok_Id

Menze
_I Turetrne

Figure 4.6 Database diagram of the Automatic Corpus Generation project

4.4.1 The Table “Kokler”

The lexicon of Turkish, which was obtained from TDK, was stored in this table.

Some of the roots in this table are given in Table 4.6 and in Appendix C.2.1.

Table 4.6 Sample rootsin the table “Kokler”

Kok _ID Kok Isim Fiil Mense Orjinal
16869 ab True False Far. True
16870 aba True False Ar. True
16871 abadi True False Far. True
16872 abajur True False Fr. True
16873 abakiis True False Fr. True
16874 aban False True True
16875 abandone True False Fr. True
16876 abani True False Far. True
16877 abanoz True False Far. True
33457 abi True False Ar. False

50

In this table, there are 6 fields:

e Kok ID: Unique index number of root.

e Kok: The root value.

e Isim: A Boolean data, which indicates whether the root is a Noun or not.

e Fiil: Boolean data, which indicates whether the root is a Verb or not.

e Mense: Data, which indicates the origin of root.

e Orjinal: Boolean data, which indicates whether the root is original or not,

which means whether the root is changed according to the vowel changing

rules or not.

4.4.2 The Table “KoklerSanal”

The derived roots in the lexicon by using vowel changing rules were stored in this

table. Some of the roots are given Table 4.7.

Table 4.7 Sample data in the “Kokler” table

San_Id | KayKelime ID | HedKelime ID | Turetme

157 16870 33457 aba->ab1 Darlama Onceki Diiz

158 16875 33458 abandone->abandonii Darlama_Onceki Yuvarlak
159 16878 33459 abart->abard Yumusama

160 16880 33460 abat->abad Yumusama

161 16888 33461 abide->abidi Darlama Onceki Diiz

162 16890 33462 abiye->abiyi Darlama Onceki Diiz

163 16891 33463 abla->abli Darlama Onceki Diiz

164 16892 33464 ablak->ablag Yumusama

165 16894 33465 ablatya->ablaty1 Darlama Onceki Diiz

166 16896 33466 abluka->abluku Darlama Onceki Yuvarlak
167 16897 33467 abone->abonii Darlama Onceki Yuvarlak
168 16899 33468 aborda->abordu Darlama_Onceki_Yuvarlak

In this table, there are 4 fields:

San_ID: Unique index number of root.

51

KayKelime ID: Index of root, from which the new root is derived. It is used

as foreign key of the field “Kok ID” in “Kokler” table.

HedKelime ID: Index of new root, which is derived. It is used as foreign key

of the field “Kok ID” in “Kokler” table.

Turetme: The data about which kind of derivation rule is applied to this root.

If a root is derived, the data in “Original” field of “Kokler” table is recorded

as “false”. The original value of any root can be found by controlling the unique

index number, “Kok ID”, in “HedKelime ID” field of the “KoklerSanal”

table. For example, the root ab:, which has unique index as 33457 in table

“Kokler” (Table 6), is derived from the root aba, which has unique index as 16870,

by using vowel changing rule “aba->abi Darlama Onceki Diiz” and stored in the

table “KoklerSanal” with unique index 157.

4.4.3 The Table “Govde”

The stems in the lexicon in Turkish were stored in this table. Some of the stems

are given in Table 4.8 and in Appendix C.2.2.

Table 4.8 Sample data from the “Govde” table in the database

luk

Gov_ | Gov Ozel | isim | Fiil | Sifat | Zamir | Unlem | Edat | Zarf | Baglac | YFiil | Birl | Orji
ID isim esik | nal

1 a False False | False | False False True False False | False False False | False
2 ab False True False | False False False False False | False False False | False
3 aba True True False | True False False False False | False False False | False
4 aba False True False | False False False False False | False False True False

giiresi

5 abac False True False | False False False False False | False False False | False
6 abacilik False True False | False False False False False | False False False | False
7 abadi False True False | False False False False False | False False False | False
8 abajur False True False | False False False False False | False False False | False
9 abajurcu False True False | False False False False False | False False False | False
10 abajurcu False True False | False False False False False | False False False | False

52

In this table, there are 14 fields:

e Gov_ID: Unique index of stem.

e Gov: The value of stems.

e Ozelisim: Boolean data, which indicates whether the stem is a special name
or not.

e Isim: Boolean data, which indicates whether the stem is a name or not.

e Fiil: Boolean data, which indicates whether the stem is a verb or not.

e Sifat: Boolean data, which indicates whether the stem is an adjective or not.

e Zamir: Boolean data, which indicates whether the stem is a pronoun or not.

e Unlem: Boolean data, which indicates whether the stem is an exclamation or
not.

e Edat: Boolean data, which indicates whether the stem is a preposition or not.

e Zarf: Boolean data, which indicates whether the stem is an adverb or not.

e Baglac: Boolean data, which indicates whether the stem is a conjunction or
not.

e YFiil: Boolean data, which indicates whether the stem is an auxiliary verb or
not.

e Birlesik: Boolean data, which indicates whether the stem is a compound
name or not.

e Orjinal: Boolean data, which indicates whether the root is original or not that

means whether the root is changed according to the vowel changing rules.

4.4.4 The Table “Kelimeler”

All words in the lexicon, stems and roots, in Turkish were stored in this table.

Some of the words are given in Table 4.9.

Table 4.9 Sample data from the table “Kelimeler”

53

ID | Kelime Ozel | Isim | Fiil Sifat | Zamir | Unlem | Edat | Zarf | Baglac
1 a False | False | False | False | False True False | False | False
2 |ab False | True | False | False | False False False | False | False
3 | aba True | True | False | True | False False False | False | False
4 | aba giiresi False | True | False | False | False False False | False | False
5 | abaci False | True | False | False | False False False | False | False
6 | abacilik False | True | False | False | False False False | False | False
7 | abadi False | True | False | False | False False False | False | False
8 | abajur False | True | False | False | False False False | False | False
9 | abajurcu False | True | False | False | False False False | False | False
10 | abajurculuk | False | True | False | False | False False False | False | False
11 | abajurlu False | False | False | True | False False False | False | False
12 | abajursuz False | False | False | True | False False False | False | False
13 | abakiis False | True | False | False | False False False | False | False
14 | abal False | False | False | True | False False False | False | False
15 | aban False | False | True | False | False False False | False | False

There are 21 fields in this table, first 14 of which are same as in the table

“Govde”. The different fields from “Govde” table are:

Link: Boolean data, which indicates whether the word is derived from
another word by using vowel changing rules or not.

Isim_Kok: Boolean data that indicates whether the type of the root, from
which this stem is derived, is a name or not.

Fiil Kok: Boolean data that indicates whether the type of the root, from
which this stem is derived, is a verb or not.

Gov_Id: The unique index number that indicates the index of the stem,
from which this word is derived.

Kok Id: Unique index number that indicates the index of the root, from
which this stem is derived.

Mense: Data, which indicates the origin of the word.

Turetme: Data, which shows the vowel changing rule such as fokurdama-

> fokurdami Darlasma_Onceki Diiz, forvet->forved Yumusama etc.

54

4.4.5 The Table “Grup”

The meanings of tags, which are used to define the rules in the process of parsing
stem/root, are stored in this table. This table has 12 fields, which are named as the
“word types” in a language, are used to indicate the word type that the suffix group

can be added to.

The group names in table “Grup” are given in Table 4.10.

Table 4.10 Sample Data from table “Grup”

IGl‘;up GrupAd GrupTag Ozellsim | Isim Fiil Sifat Zamir Unlem Edat Zarf Baglac

1 Say1 DuASay FALSE TRUE FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE

2 Uyum DuAUy FALSE TRUE FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE

3 Durum DuADur FALSE TRUE FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE

4 Cinsiyet DuACins FALSE TRUE FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE

5 Zaman DuEZ FALSE FALSE | TRUE FALSE | FALSE | FALSE | FALSE | FALSE | FALSE

6 Goriiniis DuEG FALSE FALSE | TRUE FALSE | FALSE | FALSE | FALSE | FALSE | FALSE

7 Kiplik DuEKip FALSE FALSE | TRUE FALSE | FALSE | FALSE | FALSE | FALSE | FALSE

8 Cat1 DuEC FALSE FALSE | TRUE FALSE | FALSE | FALSE | FALSE | FALSE | FALSE

9 Olumsuzlu DuEOIz FALSE FALSE | TRUE FALSE | FALSE | FALSE | FALSE | FALSE | FALSE
k

10 Kisi 1. | DuEKGrl | FALSE FALSE | TRUE FALSE | FALSE | FALSE | FALSE | FALSE | FALSE
Grup

11 Kisi 2. | DuEKGr2 | FALSE FALSE | TRUE FALSE | FALSE | FALSE | FALSE | FALSE | FALSE
Grup

12 Kisi 3. | DuEKGr3 | FALSE FALSE | TRUE FALSE | FALSE | FALSE | FALSE | FALSE | FALSE
Grup

13 Kisi 4. | DuEKGr4 | FALSE FALSE | TRUE FALSE | FALSE | FALSE | FALSE | FALSE | FALSE
Grup

14 Kosag K FALSE FALSE | TRUE FALSE | FALSE | FALSE | FALSE | FALSE | FALSE

15 Adlastirma YtuAdl FALSE FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE
Yantiimcesi

4.4.6 The Table “Ek”

The tags that are used in the process of parsing stem/root are stored in a table
called “Ek”. The groups and general notations of the suffixes are stored in this table,

some of which are given in Table 4.11.

Table 4.11 Sample data from the table “Ek”

Ek | GrupID | Genel Tag Ad Kaynasm | GenelYedek

ID | Link a

60 | 14 {-DI} KDi Gegmis Zaman | y {-(y)DI}
Kosaci

61 | 14 {-ml} KMis Tantsallik Kosaci y {-(y)ml}

62 | 14 {-sA} KSa Kosul Kosaci y {-(y)sA

63 | 15 {-DIk} YtuAdIDik | Adlastirma NULL {-DIk}
Belirticisi

64 | 15 {-AcAk} | YtuAdlAca | Adlastirma y {-(y)AcAk}

k Belirticisi

65 | 15 {-mA} YtuAdIMa | Adlastirma NULL {-mA}
Belirticisi

66 | 15 {-mAk} YtuAdIMak | Adlastirma NULL {-mAk}
Belirticisi

67 | 16 {-DIk} YtuOrDik Sifat Yantiimcesi | NULL {-DIk}
Belirticisi (Ortag)

68 | 16 {-An} YtuOrAn Sifat Yantiimcesi | y {-(y)An}
Belirticisi (Ortag)

69 | 16 {-AcAk} | YtuOrAcak | Sifat Yantiimcesi |y {-(y)AcAk}
Belirticisi (Ortag)

70 | 16 {-1} YtuOrls Sifat Yantiimcesi | y {-WI}

Belirticisi (Ortag)

There are 7 fields in this table:

Ek ID: Unique index of suffix.

55

GrupIDLink: The unique index number that indicates the index of the group,

to which this suffix belongs.

Genel: The general notation of the suffix.

Tag: The tag for suffix that is used in the XML output of Stem/Root Parsing

process.

Ad: Expression of tag.

Kaynasma: The buffer letter if it is needed while the tag is added to any word.

GenelYedek: The general notation for suffix with possible buffer letter that is

used in the XML output of Stem/Root Parsing process.

56

4.4.7 The Table “Ekler”

All suffixes, with their modified versions according to morphophonemic
processes vowel and consonant harmonies, are stored this table. Some of the suffixes

are given in Table 4.12.

Table 4.12 Sample data from the table “Ekler”

EKKullD EKIDLink EkKul
816 177 it
817 177 d
818 177 id
819 177 ud
820 177 id
821 177 t
822 177 d
823 178 tay
824 178 tey
825 179 tay
826 179 tey
827 180 t
828 180 ti
829 180 tu
830 180 tii
831 181 av
832 181 ev
833 181 v

There are 3 fields in this table:

e EkKulID: Unique index of suffix.
e EkIDLink: The index number that indicates the index of the suffix in “Ek”
table, from which this suffix derived by using vowel changing rules.

e EkKul: The suffix as it can be used in the language.

CHAPTER FIVE
ALGORITHMS AND SOFTWARE STRUCTURE OF RB-CorGen

Turkish is an ‘agglutinative language’ like Finnish, Hungarian, Quechua and
Swabhili, where it is classified where new words are formed by adding suffixes to the
end of roots (Appendix A). In Turkish, there are grammatical rules for suffixes that
which of them may follow which other and in what order they will be. By this
concatenation the meaning of words are changed or extended. This suffix
concatenation can result in relatively long words, which are frequently equivalent to
a whole sentence in English (e.g. Osmanlilastiramadiklarimizdansiniz (eng: You
were of those whom we might consider not converting into an Ottoman.)). Besides
the rules for suffixes, Turkish has many grammatical rules, such as word types
ordering, structure of compounds, etc. The corpus development processes are defined

as follows:

1. Getting and Storing Data

2. Sentence Boundary Detection

3. Morphological Analysis
a. Finding stem and inflectional suffixes
b. Finding root and derivational suffixes

4. Part-of-Speech Tagging

The main block diagram of corpus generation processes is given in Figure 5.1.

57

Document

Find all sentences

A 4

Get a sentence

A 4

Split sentence into words

A 4

Examine Type of Word (POS Tagging)

A

A 4

Split word into stem & inflextional suffixes

Get other word

A 4

Split stem into root & derivational suffixes

A 4

Write in corpus

|

End of
Sentence

Figure 5.1 Block diagram of processes in generating corpus

58

59

5.1 Getting and Storing Data

At first, the electronic data should be taken from web or any scanned documents
and stored in a database to be able to use efficiently in the project as data set. For this
purpose, the project “Doékiiman Indirici (en: Document Downloader)” that was

developed by Kizilay (2009) is used.

In this project, the electronic data is taken from web by URL links of the
newspapers and stored in database to be able to use efficiently in the project. For
classifying texts of corpus, a database model, which supports 6 different document
types such as newspaper, report, magazine, book, parliamentary report and official
gazette, was designed. Metadata of documents such as URL of document, header of
document, size of document etc is stored in this database model. For collecting
electronic data, a module that downloads articles from 5 different newspapers
“Milliyet”, “Hirriyet”, “Radikal”, “Vatan”, “Aksam” was implemented.
Downloaded articles are stored in a storage media and also metadata of these

documents are stored in database.

Besides, some different reports about the downloaded data can be generated by

using this application.

The main interface of the Document Downloader application is given in Figure

5.2.

60

pikiiman indirici

Dosya t,{ Ayatlar . Raporlar eYardlm

'u'ni_l,letl Watan I Ak;a’ml Hadikall

/ = -
') M I I I Ivet B adlantilan Bul |
T pasiNGa GOVEN

M akaleleri indir |

Figure 5.2 Main interface of the Document Downloader application

5.2 Rule-Based Sentence Boundary Detection

(132N 1Y 2 ‘6',’

Turkish sentences generally end with known punctuations such as “.”, “...”, “1”,
“?”. A punctuation mark which is commonly used as an end of sentence
determination symbol may also be used in an abbreviation, as a decimal point in a
number, in an e-mail addresses etc. This situation is called “ambiguity”. The
sentence boundary determination process becomes harder with the increasing amount

of ambiguities.

In Turkish there are some ambiguities in finding sentence boundaries like in any

other languages. For example;

e Uluslar, bu ekonomik buhran sonucunda 2. Diinya Savasi’ni yasamistir.
Nations lived the 2. World War as a reason of this economic crisis.

e Bu sezon kaybedilen mag¢ sayist 2. Diinya Kupasi’na katilma sansi
azaliyor.
The lost game number in this season is 2. The World Cup attendance

chance decreases.

61

(Y324

In the first sentence, the “.” character is used for enumerate, but in the second
sentence it indicates end of sentence. And after “.”, both of them have the same word
that begins with uppercase. So, this causes an ambiguity for the process of finding
end of sentence. In this study, in order to solve such kinds of ambiguities, different

solutions were developed.

In order to find end of sentences, a rule list is created and stored in XML
(Extensible Markup Language) format (Ray, 2003). Full list of the rules are given in

Appendix Bl and some samples are given in Figure 5.3.

<rules>
<rule EOS="False">L.L</rule>
<rule EOS="True">L.U</rule>
<rule EOS="True">L.#</rule>

<rule EOS="False">#.-</rule>

<rule EOS="False">#.#</rule>

<rule EOS="False">#.U</rule>
</rules>

Figure 5.3 Sample rules in rule list for sentence boundary
detection

XML format is created in triple group (e.g. “L.L”). The first character indicates
the first character of the word before punctuation mark, second character is the
punctuation mark itself, and the third character indicates the first character of the

word after punctuation mark (Figure 5.4).

4 N

.............. bugin|geldi arin da.....

v . Firstcharactar ofths word
Fu’_;t character ofthe word after punctustionmark
bafors punctustion mark

.

Figure 5.4 The characters used in the rules

J

The meanings of characters, which are used in sentence boundary rules, are given

in Table 5.1.

62

Table 5.1 Meanings of the characters in the sentence boundary rule list

Character Meaning Character | Meaning
. EOS punctuations (. ... ! ?) ((
L Lowercase))
U Uppercase / /
Number ¢ ¢
? Any character « «

First process to find sentences is paragraph determination. If a text stream has
“enter (“\n”)” character, this character is assumed as the end of paragraph and all text
from the beginning to this character are taken as a “paragraph”. After a paragraph is
determined, characters are taken one by one and checked if it is one of the
punctuation marks used for sentence boundary rule list (*.”, “...”, “!”, “?”). In an
ordinary situation, only the end of sentence punctuation marks might be good enough
to determine the sentence boundaries. However, besides the complicated structure of
the Turkish, there may be many ambiguities caused by the punctuation marks such as

using them for abbreviations, e-mail and web addresses, etc.

In order to solve ambiguities caused from abbreviations, an additional rule list, in
which abbreviations are given, is used. The abbreviation list was taken from Turkish
Linguistic Association (TDK) and accepted as is. The list was also defined in XML
format. Full list of the abbreviations are given in Appendix C1 and some samples are

given in Figure 5.5.

<abbrevations>

<abbr> A </abbr>
<abbr> AA </abbr>
<abbr> AAFSE </abbr>
<abbr> AAM </abbr>
<abbr> AB </abbr>
<abbr> ABD </abbr>
<abbr> ABS </abbr>
<abbr> ADSL </abbr>
<abbr> AET </abbr>
<abbr> L. </abbr>
<abbr> HAVAS </abbr>
<abbr> HDD </abbr>
<abbr> hek </abbr>
<abbr> L. </abbr>
<abbr> zf </abbr>
<abbr> zZm </abbr>
<abbr> ZMO </abbr>
<abbr> zool </abbr>
<abbr> L. </abbr>
</abbrevations>

Figure 5.5 Sample abbrevations in the abbreviation list

63

Also, the roman numbers were added into the abbreviation list (Figure 5.6).

<abbrevations>

<abbr> L. </abbr>
<abbr> I </abbr>
<abbr> v </abbr>
<abbr> IX </abbr>
<abbr> X </abbr>
<abbr> XV </abbr>
<abbr> L. </abbr>
<abbr> XXX </abbr>
<abbr> L. </abbr>
</abbrevations>

Figure 5.6 Sample roman numbers in the abbrevation list

Abbreviations and rule lists were written in two files by using XML standard and
separated from the program source codes to allow users making changes in these
files easily and independently from the program source. Therefore, the adaptation of
any Turkish dialects will be easy.

The “” (space) character is searched after the “.” (dot) character in order to define
e-mail and web addresses, such as www.deu.edu.tr. If the character after “.” (dot)

(Y32

character is not a (space) character and in lowercase, it is assumed as e-mail or

web address.

(Y34

In conversation texts, conversations are indicated by special character,

€6,

(hypen), after the character (colon), which is also used for bulleting. These
characters cause ambiguity, because of being used for bulleting. The sentences come
after the “:” character assumed as if it belongs to one sentence; all lines were read
and combined together as one sentence. The flow diagram of the algorithm is given

in Figure 5.7.

64

Sentence < Sentence End with : Mark

y
BulletMark ¢« First Character of the
Next Sentence
(Bulleting Mark: “r, “.777“’777“.777“077)

4

— NSentence & Get Sentence

4

FirstChar €« First Character of the
Next Sentence

FirstChar = BulletMark False—p Sentencelist & Sentence

True

\ 4

P Sentence & Sentence + NSentence

Figure 5.7 Flow diagram of the Bulleting Algorithm

Since these blocks of sentences cause ambiguity, and they cannot be separated
from conversation texts, they were asked to the user to determine the type of them in
the program. Then, the user defines the type of the sentence block as “conversation
sentences”, tagged as DLG (Dialog), or “bulleting text”, tagged as BL (Bulleted

List). This made the program more reliable.

The main flow diagram of the sentence boundary detection algorithm is given in

Figure 5.8.

Get Abbreviation and
Rule Lists Files' Name

v

< Nodes in file

v

Parse Rules

I

Get File Name to
Investigate

v

Open File

!

Read one paragraph <

Abbreviations

65

Paragraph = NULL
(End of File)

False

v

Sentence = NULL

Word = NULL

Char = NULL

WordList = NULL

SentencelList = NULL
QuotationMark = false
SentenceDoubleQuota = NULL

l

Char € Read one character from | _
paragraph h

Char = NULL

Tru

False

Char = a letter or number

Word < Word +
A Char

True

SentenceDoubleQuota <
SentenceDoubleQuota + Char

Figure 5.8 Flow diagram of sentence boundary detection algorithm

har = QuotationMark

Word = Abbreviation

False

har = End of Sentence
Character

True

QuotationMark = true

Word < <UF> + SentenceDoubleQuota + </UF>

False

Openning Quotation
Mark

True

‘ QuotationMark = true

WordList < Word

L

Sentencelist < Sentence

66

5.3 Morphological Analysis

A Turkish word is analyzed according to its root and the suffixes, which are added
after the root. For word analysis, at first the sentences and then words should be
determined. The output of the Rule-Based Sentence Boundary Detection (RB-SBD)
module 1s used as input in the Rule-Based Morphological Analysis (RB-MA) (or
Word Detector (RB-WD)) Algorithm. The main steps of the algorithm are as follows:

1. Take words from the text that will be analyzed.

2. Find all meaningful stem possibilities by using “Enhanced
Search Method - From Left to Right (ESM)” (Cebi wvd. 2006),
define Stem Possibilities Space.

3. Find the inflectional suffix possibilities according to each
root possibility, define Inflectional Suffix Possibilities
Space.

4. Find all meaningful root possibilities of all stems by using
ESM, define Root Possibilities Space.

5. Find the derivational suffix possibilities according to each
root possibility of a stem, define Derivational Suffix
Possibilities Space.

6. Eliminate wrong combinations in Stem / Root and Suffix
Possibilities Spaces.

7. Save all the combinations in a text file to make analyzing a
word easier in the future.

8. If the words, which will be analyzed, are finished go to step
9, else go to step 1.

9. Save all the combinations and present the result to the user

in an XML file.

The root and stem lists are taken from Turkish Linguistic Association (Tiirk Dil
Kurumu, TDK). These lists are stored in database with their modified versions
according to the morphophonemic processes that cause root deformations, which
rules are given in Appendix A.4. Sample modified roots and stems are given in

Appendix C.2.3.

Flow diagram of Stem / Root Parsing Algorithm is given in Figure 5.9.

Get this Fila's Nama o Process
/ {Sentence Boundary Output File) /

| Open File |
!
44 Parse One Line to Get a Word |=

m-@

Modify "‘Word” Tag
Creale new tag for words
Add new properties for suffixes
Temp_root = NULL

.

Temp_root € Read one letter from the word (from left to right)

Wite: All_Combinations._List
in Output File (XML File)

_.Tm_mﬂx(-ﬂndalamﬁommamst
of the word (from left to right)

Fal
Faolse T

emp_suffix ks in
e S sl

Teua

Falsa Y

Possible Suffixes’ List € temp_suffix
Temp_suffix = NULL

End of Word

Hu_m«mm_uu 4 root + suffixes’ combination

Figure 5.9 Flow diagram of Rule-Based Morphological Analysis
Algorithm

68

In this algorithm, two steps, Parsing Stems and Inflectional Suffixes and Parsing
Roots and Derivational Suffixes, are applied consecutively. In the first step, the
examined wordform is searched in the stems lexicon iteratively by pruning a letter
from left to right at each step. If splited character array matches with any of the stems
in the lexicon, the rest of the wordform is also checked by pruning a letter from left
to right iteratively if it is a suffix or not in inflectional suffixes list, which is collected
by linguists in Dokuz Eylul University, College of Social Science and Literature
Linguistic Department. If both the stem and suffixes parts of the wordform are found
in the lists, they are tagged and stored as possible stem and suffixes of the examined
wordform. The search process is repeated until a single letter is left from the

wordform.

For example, three different stems and suffix combination possibilities were

found in finding stem process of the wordform “koyun” (Table 5.2).

Table 5.2 Example application of Enhanced Search Method- From Left to Right

lg::rs;ble iiizil;le Buffer Possible Suffixes Result
Step 1 K O y u n False
K 0 y u n False
Step 2 Ko y u n False
Ko y u n False
Step 3 Koy u n True
Koy u n False
Step 4 Koyu n True
Koyu n False
Step 5 \ Koyun \ True

In the first step, k is taken as stem, o is taken as possible buffer letter, yun and
oyun 1s searched as character by character in the suffixes list. Since there are no
accepted rules for these combinations, they are eliminated and search process

continues with next step. This process continues until there is no character assumed

69

as suffix, as seen in StepS. Then, the solution space for the wordform is created. For
example, possible stems of wordforms in the sentence “Giizel koyun otlamaya ¢ikt1.”
are given in Figure 5.10, and some possible suffixes of the wordform “koyun” are

given in Figure 5.11.

- <S Index="1">
Giizel koyun otlamaya ¢ikt1 .
- <Word Index="0" Value="Glizel">
+ <R [="0" V="Glizel" T="isim">
+ <R [="0" V="Glizel" T="sifat">
+ <R [="0" V="Glizel" T="zarf">
</Word>
- <Word Index="1" Value="koyun">
+<R I="0" V="koy" T="isim">
+<R I="0" V="koy" T="fiil">
+ <R I="1" V="koyu" T="sifat">
+ <R [="2" V="koyun" T="isim">
</Word>
- <Word Index="2" Value="otlamaya">
+ <R I[="0" V="otla" T="fiil">
+ <R I="1" V="otlama" T="isim">
</Word>
- <Word Index="3" Value="¢1kt1">
+ <R I="0" V="gIk" T="fiil">
+ <R I[="1" V="¢ikt1" T="isim">
</Word>
+ <Word Index="2" Value=".">
</S>

Figure 5.10 Possible stems of wordforms in the sentence “Giizel koyun

otlamaya ¢ikt1.”

- <Word Index="1" Value="koyun">
- <R I="0" V="koy" T="isim">
- <Suffixes>
- <Sx [="0"> <DuAUyKT2>un</DuAUyKT2> </Sx>
-<Sx I="1"> <DuADurTam>un</DuADurTam> </Sx>

</Suffixes>
</R>
- <R [="0" V="koy" T="fiil">
- <Suffixes>
-<Sx I="0"> <DuECEdil>un</DuECEdil> </Sx>

-<Sx I="1"> <DuECDonus>un</DuECDonus> </Sx>
-<Sx [="2"> <DuEKGr4C2>un</DuEKGr4C2> </Sx>
</Suffixes>
</R>
- <R I="1" V="koyu" T="sifat"> ... </R>
- <R I="2" V="koyun" T="isim"> ... </R>
</Word>

Figure 5.11 Some possible suffixes of the wordform “koyun”

70

In the Parsing Roots and Derivational Suffixes step, the possible stems are parsed
by using same algorithm as parsing stems and possible combinations of derivational
suffixes are found. Finally, all possible roots/stems and suffixes are stored in an
XML structured file. For example, possible roots of the stem “giizel” are found as
“g1iz” and “giizel”; possible roots of the stem “koyun’ are found as “koy”, “koyu” and
“koyun’; possible roots of the stem “otlamaya” are found as “of”, “otla” and
“otlama”; possible roots of the stem “¢ik#1” are found as “¢ik” and “ciktr” as in

different types (Figure 5.12).

- <S Index="1">
Giizel koyun otlamaya ¢ikt1 .
- <Word Index="0" Value="Glizel">
+ <R I[="0" V="Giz" T="isim">
+ <R I="1" V="Giizel" T="isim">
+ <R [="1" V="Giizel" T="sifat">
+ <R I="1" V="Giizel" T="zarf">
</Word>
- <Word Index="1" Value="koyun">
+ <R I="0" V="koy" T="isim">
+ <R I="0" V="koy" T="fiil">
+ <R I="1" V="koyu" T="stfat">
+ <R [="2" V="koyun" T="isim">
</Word>
- <Word Index="2" Value="otlamaya">
+ <R I[="0" V="ot" T="isim">
+ <R [="0" V="ot" T="sifat">
+ <R I[="1" V="otla" T="fiil">
+ <R [="2" V="otlama" T="isim">
</Word>
- <Word Index="3" Value="¢1kt1">
+ <R I="0" V="g1k" T="fiil">
+ <R I[="1" V="¢ikt1" T="isim">
</Word>
+ <Word Index="2" Value=".">
</S>

Figure 5.12 Sample results of Parsing Roots and Derivational Suffixes step

Detailed information about tags and usage of the rule list are given in Chapter 4.

5.4 Rule-Based Part of Speech (POS) Tagging

In this study, the Rule-Based POS Tagging (RB-POST) Method is used to tag the
word classes in Turkish texts, which is improved version of TurPOS that was

developed as unsupervised method by Hallag in 2007. The Rule-Based POS Tagging

71

Method tries to solve the ambiguities caused in word type determination and also

stem/root finding processes.

Developing a rule-based tagger for a natural language mainly requires three
inputs:
e A complete lexicon which includes the list of whole words of the
language,
e A list of grammatical rules for that language,

e Text to be tagged.

In this project, a complete lexicon was taken from TDK to be used in this project,
a list of grammatical rules was collected by linguists in Dokuz Eylul University,
College of Social Science and Literature Linguistic Department and input document
was taken as output of the morphological analysis process. The output file of
morphological analysis process includes the words of the document that will be
tagged, with its possible stems, suffixes and word types. All input and output file
formats in POS tagging are based on XML structure.

Rule-Based POS Tagging method consists of three modules: Main Tagger Module
and two auxiliary modules called as Rule Parser and Stem Reader. Basic flow

diagram of Rule-Based POS Tagging is given in Figure 5.13.

Rules
Tagged
Document
(in memory)
4
Stems
Morphologically
Analyzed
Document

Figure 5.13 General Flow Diagram of Rule-Based POS Tagging
Algorithm.

72

5.4.1 Rule Parser Module

Rule Parser Module works only once at program start up and reads the list of
rules into the system. In order to analyze and tag the text, most of the POS taggers
use some basic rules, which are defined to describe the absolute and relative
positions of word types in sentences in a natural language. These predefined rules are

called “grammatical” or “syntactical” rules, or sometimes “context frame” rules.

The rule file used in Rule-Based POS Tagging Module includes individual rules
defining the order of word types that are eligible or not eligible to be used in a
sentence. It also includes rules which show the positions of punctuation marks as to
word types in a sentence. XML structure is used to store the rules, samples of which

are given in Table 5.3.

Table 5.3 Sample rules and corresponding rule descriptions from the rule file

RULE SAMPLE RULE DESCRIPTION
<Rule Ruleld="2" RuleType="“s6zdizim” RuleState="true’>

An adjective group must be
<Item ItemType="sifat” /> o
followed by a noun which is
<Item ItemType="sifat” />))
o described or determined by these
<Item ItemType="isim” /> o
adjectives.
</Rule>

<Rule Ruleld="3" RuleType="“s6zdizim” RuleState="false’>
There cannot be a comma
<Item ItemType="sifat” /> o
] between an adjective and a noun
<Item ItemType="“virgil” />) .))
o which is determined by this
<Item ItemType="isim” /> o
adjective.
</Rule>

The currently used rules for POS Tagging Module are given in the Appendix B3.

The Rule Parser Module works in the following way: The whole rule file is read
once on startup of the system. Then, the parser parses rules individually and loads
them into the memory for use at the rest of the program runtime. Since the rule list is
not considered to be changed during tagging, the rule file processing is done once at

startup to decrease system overhead.

73

5.4.2 Stem Reader Module

Stem Reader Module loads the morphologically analyzed documents into the
system. The mput file of this module is the output file of morphological analysis
module, which includes possible stems with type of them and possible combinations
of suffixes. Then, it stores parsed data into its entities to use in the POS tagging

process.

Unlike most POS taggers, Rule-Based POS Tagger doesn’t include a built-in
lexicon. Instead, the types of words in a document are read from the text, which
contains the morphologically analyzed document, and stored into the memory.
Parsing the possible types of words from the document itself has an advantage
against a built-in lexicon structure. This eliminates the extra overhead for searching

the lexicon for each word and parsing word classes of found words.

Similar to the Rule Parser, Stem Reader Module also parses the output file of
morphological analysis module once and stores into the memory, just before starting

the tagging process to be used in the Tagger Module.

5.4.3 Tagger Module

The main part of the POS Tagging is the Tagger Module, which processes rule list
on morphologically analyzed XML document and produces the output. The tagged

text output is also designed in XML format.

The Tagger Module decides the word type of a word using an accumulator model.
The basic logic behind this model is to accumulate the value of a possible word class
for a word for each use. The final decision is given according to the word type with

the highest accumulator value.

The tagger processes each rule in the rule list on each sentence in the document,

whether the word types are sequenced true or not. For each matched type in a rule, an

74

accumulator is incremented by one for the word class defined in this rule. The

accumulation process is explained step by step by giving an example sentence:

Bos teneke c¢ok ses ¢ikartir. (en: Empty tin noises the most.)

Assume that there is a rule such as “adjective + noun”. The tagger processes
the sentence in groups of two words because the rule contains 2 items. The word

groups and the order of control processing are:

. bos teneke
. teneke c¢ok
. cok ses

ses cikartair

Lo w N

cikartair.

Then, the tagger investigates the possible word types of words for each of the
word groups. In step 1, the types of words in the word group “bos teneke” matches
with the grammatical sequence “adjective + noun”. So the adjective word type

b

accumulator value for “bos” and the noun word type accumulator value for
“teneke” are incremented by one. The other word groups are also processed with

this rule. Steps of processing word groups are given in Table 5.4.

75

Table 5.4 Control processes of word groups in sample sentence for first rule

Controlled Rule: Adjective + Noun -> True

Step# | Word Group Word Types Accumulators

1 bos teneke bos: Adjective Acc_Adjective bos +=1
teneke: Noun Acc Noun_ teneke +=1

2 | teneke ¢ok teneke: Noun Acc_Adjective teneke
cok: Adjective and | Acc_Noun cok
Adverb

3 cok ses cok: Adjective and | Acc_Adjective cok+=1
Adverb
ses: Noun Acc Noun ses +=1

4 |ses ¢ikartar ses: Noun Acc_Adjective_ ses
¢gikartir: Verb Acc Noun c¢ikar

5 | cikartir cikartir: Verb Acc_Adjective cikar

This operation continues to process all rules on all sentences of the text corpora.
After the process is finished, then the word types with the highest accumulator values
are picked as the result tags for each word. In this example, the values of all

b

accumulators for all words are compared, then the types of “bos” and “cok™ are
accepted as “adjective”, the types of “teneke” and “ses” are accepted as “noun”,
the type of “cikar” 1is accepted as ‘“verb” since Acc Adjective bos,

Acc_Adjective c¢ok, Acc Noun teneke, Acc_Noun_ ses and Acc_Verb cikar

have the highest values among the accumulators of these words.

The flow diagram of this algorithm is given in Figure 5.14.

Main Tagger

Parse Document into word
groups of same number of
words within the rule

v

Read A Rule

v

Read A Word Group

. word type

1. word type
in rule

Yes

v

Acc_Type1_Word+=1

. word type

n. word type
in rule

Yes

v

Acc_Type,_Word,+=1

End of Word

A

Groups List

Yes

nd of Rule

List

Yes

v

Compare all accumulators for
all words, choose the type that
has highest value

Figure 5.14 Flow diagram of Main Tagger in Rule Based POS Tagging Algorithm

76

77

5.5 Software Structure

The main structure of the Rule-Based Corpus Generation (RBCorGen) consists of

four modules (Figure 5.15);

e CorpusGeneration as Main Module,

e SentenceBoundary Library for Sentence Boundary Detection,
e WordDetector Library for Root/Suffix Separation,

e POSTagging Library for Word Class Definition.

CorpusGeneration

SentenceBoundaryDetection

A

WordDetector

A

POSTagging

Figure 5.15 Developed modules in the software

The class diagram of RB-CorGen, was implemented in C# programming

language, is given in Figure 5.16.

78

SentenceBoundaryDetectionLibrary

A
|

N <
A f
AskUser | >
y
- >
A A L
WriteToFile

Bl

Ruleltem \\

Figure 5.16 The main classes and modules of RBCorGen

CorpusGenerationWinApp is the main module of the RBCorGen, in which main

form is generated (Figure 5.17).

79

tomatik Kural-Tabanh Derlem Dlusturma

Cumle Derlemi Dlugturma |JUEE RIS Kural Listel

Etiketlenris {xmi)

Etiketienmemis ()

Kedimedar ¢ xmfl

Figure 5.17 Main form of RB-CorGen

CorpusGeneration WinApp module includes 5 submodules;
e SentenceBoundaryLibrary
e SSentenceBoundaryLibrary
e STSentenceBoundaryLibrary
e POSTaggingLibrary
e WordDetectorLibrary

Rule-Based Sentence Boundary Detection for Turkish (RB-SBD) was
implemented in SentenceBoundaryLibrary module to generate sentence corpus and
parse the sentences into wordforms to be used in Rule-Based Morphological
Analysis for Turkish (RB-MA) module as input. This module has 7 classes, in which
12 methods were implemented (Figure 5.18).

80

o

Rule

%)

[AbbrevationList I3
Class Class
\ -) - |
[= Properties
" XMLFile — 5 Definition
Class e 5 Result
L3 [= Methods
W IsMatched
i —= % Fule
Asklser (¥
Class
S Form RulesManager (B
= Class
= - |
[= Properties
S Current
'_“@ Rules
[= Methods
t IsEndCfSentence

& SentenceParser &

FileParser
Class Class
- .)
[=l Fields =l Fields
@ _ htMarkeriZache W _ htletterCache
;_-\) asklilserFarm W _ htMarkerCache
W sentenceMarkers W __htsmallLetterC ...
o smallletters o allowedLetters
o sMarkerMames W sentenceMarkers
= Properties W smallletters
f? FileMarme =l Properties
o MarkerCache # Current
i*” SParser # LetterCache
f ®Doc 5 MarkerCache
[= Methods = Methods
¢ Dispose i SplitSentences
& FileParser
W Parse
& \WrikesML

Figure 5.18 Methods in SentenceBoundaryLibrary

Explanations of classes and main methods in SentenceBoundaryLibrary module

are given in Table 5.5.

Table 5.5 Explanation of Methods in SentenceBoundaryLibrary

Class Name Explanation Method Name Explanation

AbbreviationList AbbreviationList | Parses and loads the
abbreviation list by using
XMLFile.

XMLFile XMLFile Parses and loads an XML

file using DOM.

Rule Represents a rule that is | Rule Stores a rule
already defined in an | IsMatched Controls the Rule if it is
XML file, and managed matched with the sent data.
by a RulesManager.

RulesManager Applies predefined rules | IsEndOfSentence | Controls all rules in XML
in XML File. If any rule file and defines whether the
could be applied returns data end of sentence or not.
rule result otherwise
return true to indicate
End Of Sentence.

FileParser Loads the input text | FileParser Create the member variables
document and parses it and defines the hashed
by using letters.

SentenceParser. Parse Loads the input text
document, reads lines one
by one and controls whether
they are sentences or not.

WriteXML Writes the results in XML
format.

Table 5.5 Explanation of Methods in SentenceBoundaryLibrary (Cont’d)

81

SentenceParser Splits a candidate line, | SplitSentences Splits the sent text into
which has been splited sentences by using
with linebreak and sent RulesManager and returns
by FileParser. list of sentences containing

a list of words in order.

AskUser Used for ambiguities in | AskUser Generates a form to ask the
the decisions of the text user whether the text is
whether it is bulleted list bulleted list or conversation
or conversation. text.

Rule-Based Morphological Analysis for Turkish (RB-MA) was implemented in

WordDetectorLibrary module to parse wordforms into stems, roots and suffixes.

This module takes the output of RBSBDT as input and has 7 classes, in which 25

methods were implemented (Figure 5.19).

)

Class
|

L

(wordDetector

= Fields

_ htLetterCache
__ htMarkerCache
__htMumberCache

)

DBConnect
Sealed Class

-

i AskWordType
iZlazs

®

®
| —

—+ Farm
-

Murmbers
semtenceMarkers
W sMarkerMames
=l Properties
ﬁ" LetterCache
5 MarkerCache
o MumberCache
= Methods
4 Dispose
getFoundwords
Observet'ord
OneRoat
StartToDetect
WordDetector

w
.’
W capsletters
]
]

LR A O

Figure 5.19 Methods in WordDetectorLibrary

Explanations of classes and main methods in WordDetectorLibrary module are

given in Table 5.6.

Table 5.6 Explanation of Methods in WordDetectorLibrary

82

Class Name

Explanation

Method Name

Explanation

DBConnect

DBConnect

Used to make connection to
database

DBProcesses

Used for all process
those use the
database.

RootController

Checks the root database
whether it includes the
searched root or not.

SuffixSeperator

If the searched characters
are found in root database,
the rest of the wordform is
checked whether it is
generated by suffixes or not.

CheckSuffix

Checks the suffixes
database whether it includes
the searched suffix part or
not.

CheckWordTypes

Returns all possible types of
the searched word.

suffixTypeControl

Checks whether the suffixes
are suitable to the word type
or not.

suffixWithoutTags

Returns all possible suffixes
combinations without tags.

Ekler

getEkXMLtag

Returns tags of the searched
suffix.

EkKontrol

controlEkDizisi

Controls the order of the
suffixes whether true or not.

WordDetector

StartToDetect

Used to read the words from
the input file and make root-
suffix separation.

ObserveWord

Makes root-suffix
separation, called by
StartToDetect method.

getFoundWords

Reads the file
“foundBefore.txt” and
returns the read data.

WriteToFile

WriteToFile

Writes the results in XML
format.

AskWordType

Used for
ambiguities in the
decisions of the
word type whether
it is special name or
not.

AskWordType

Generates a form to ask the
user whether the word type
whether it is special name or
not.

Rule-Based Part of Speech Tagging for Turkish (RBPOST) was implemented in

POSTagging module. This module has 15 classes, in which 35 methods were

implemented (Figure 5.20).

-

-

P

Class

Class
=+ CollectionBaze

Document ¥ | Global ¥ MainTagger (3 | MorphItem (3
Class ‘ Class Class ‘ lass

=+ CollectionBase \ \

PartOfSpeech ¥ | Rule ¥ | Ruleltem | Rules 2 |

Class

Class
=+ CollectionBasze

| RuleXmlParser
Class

ra
Word
Class
= CallectionBase

| Sentence
Class
=+ CollectionBaze

2

| StemXmlReader
Class

POS

Enurm

£«

RuleType
Enurm

44

(TurPOSException (% A
lass

=+ Exception

Figure 5.20 Methods in POSTaggingLibrary

83

Explanations of classes and main methods in POSTagging module are given in

Table 5.7.

Table 5.7 Explanation of Methods in POSTaggingLibrary

Class Name Explanation Method Name Explanation
PartOfSpeech Includes POS item and | PartOfSpeech
stores unique values of
POS items.
Rule Add Adds a new Ruleltem into the
Rule.
Remove Removes a Ruleltem from the
Rule.
ToXMLString Creates an xml string from
the current Rule entity.
Ruleltem Gets the word type from the
rule.
Rules Collection class for
Rules, the parsed rule
list including unique
rules.
RuleType Stores the type of rules, | RuleType
such as word order
(s0zdizim).
RuleXmlParser | Reads the rules file | ParseRules
node by node, parses
the rules and stores
into a Rules object.

Table 5.7 Explanation of Methods in TurPOSLibrary (Cont’d)

MainTagger Determines word types | Tag Accumulates possible types
in sentences of for each word of document.
documents. Analyze Analyzes the document,

defines types of each word
and writes the output into an
XML file.

Accumulate Increases accumulator if rule
state is true, and decreases it
if rule state is false.

Document Stores the data that will | Sentence Returns the Sentence at the
be analyzed. given location.

Add Adds a Sentence into the
document.

Remove Removes the Sentence at the
given location.

StemXmlReader | Reads the stems file | ReadDocument | Reads document and returns
and stores its contents document instance that
into a Document contains the stems file.
object.

Sentence Add Adds a Word into the

Sentence.

Remove Removes the Word at the
given location.

Word AnalyzeAccumu | Analyzes the accumulator and

lator returns name of the probable
word type.

IncrementAccu Increments accumulator for

mulator the WordType.

AddWordType Adds a new word type into

possible word types of the
searched Word.

84

CHAPTER SIX
CASE STUDY

In order to test the Rule-Based Corpus Generation (RBCorGen), four main

modules were carried out:

1. Dataset Generation,

Rule-Based Sentence Boundary Detection (RB-SBD),
Rule-Based Morphological Analyser (RB-MA),
Rule-Based Part-of-Speech Tagging (RB-ROST).

Sl

6.1 Dataset Generation

In order to generate dataset used in this case study, an application was developed
for collecting documents such as newspaper, report, magazine, book, parliamentary
report and official gazette from electronic environment. By using this module,
articles from 5 different Turkish newspapers “Milliyet”, “Hiirriyet”, “Radikal”,
“Vatan”, ”Aksam” were downloaded and stored on disk, also metadata of these
documents, such as URL of document, header of document, size of document, etc.,
were stored in a database (Appedix D). A total of 195.256 articles which contain
93.228.892 words were downloaded and generated collection size was 1.05 GB. The
list of the documents downloaded for the dataset is given in Table 6.1 and details of

the documents are given in Table 6.2.

Table 6.1 Documents in Dataset according to the newspaper names

Newspaper Name Number of Articles Number of Words
Milliyet 43.465 19.536.744
Hiirriyet 65.599 31.585.895
Radikal 35.159 17.605.413

Vatan 41.250 18.505.364

Aksam 9.783 5.995.476
TOTAL 195.256 93.228.892

85

Table 6.2 Details of documents in Dataset

86

Year Newspaper Name | Number of Articles | Article Size Number of Words
(bytes)
2009 Milliyet 7.987 28.042.637 3.692.542
2009 Aksam 3.129 13.412.243 1.872.178
2009 Hiirriyet 5.709 19.572.040 2.604.667
2009 Radikal 4.354 18.318.948 2.382.129
2009 Vatan 3.752 13.036.081 1.735.620
2008 Hiirriyet 9.556 35.162.196 4.699.045
2008 Radikal 5.305 21.780.759 2.806.544
2008 Vatan 6.718 23.018.968 3.090.063
2008 Aksam 2.421 10.743.743 1.512.270
2008 Milliyet 8.714 31.141.424 4.082.979
2007 Milliyet 4.685 16.630.367 2.089.244
2007 Aksam 2.075 9.279.697 1.304.930
2007 Hiirriyet 9.043 33.933.670 4.513.839
2007 Radikal 4.401 17.406.528 2.228.127
2007 Vatan 6.639 22.820.262 3.055.629
2006 Aksam 1.621 7.033.136 995.826
2006 Radikal 4.255 16.613.193 2.124.421
2006 Vatan 6.026 20.416.090 2.705.875
2006 Hiirriyet 7.682 30.025.234 3.994.601
2006 Milliyet 4.977 17.334.200 2.174.640
2005 Milliyet 4.486 16.077.155 2.018.390
2005 Radikal 3.925 15.032.947 1.925.788
2005 Aksam 534 2.184.361 308.496
2005 Hiirriyet 6.652 24.352.596 3.240.341
2005 Vatan 5.677 19.762.531 2.611.727
2004 Milliyet 4.556 15.780.034 2.006.730
2004 Radikal 3.742 14.206.582 1.818.379
2004 Hiirriyet 5.901 21.680.718 2.882.916
2004 Vatan 6.029 19.823.904 2.626.374
2003 Hiirriyet 4.973 17.719.157 2.347.657
2003 Milliyet 3.471 11.788.371 1.498.700
2003 Radikal 3.655 13.629.813 1.733.173
2003 Vatan 5.801 18.141.953 2.418.832
2002 Hiirriyet 3.926 13.952.947 1.847.157
2002 Vatan 608 1.960.937 261.244
2002 Milliyet 3.851 13.191.525 1.691.409
2002 Radikal 3.407 12.747.119 1.617.097
2001 Hiirriyet 2.739 9.742.045 1.317.156
2001 Milliyet 1.456 4.768.595 611.997
2001 Radikal 2.115 7.703.079 969.755
2000 Hiirriyet 2.707 9.889.002 1.329.063
1999 Hiirriyet 3.025 9.804.854 1.304.374
1998 Hiirriyet 2.618 7.879.868 1.043.888
1997 Hiirriyet 1.068 3.571.005 461.191
TOTAL 195.256 711.112.514 93.557.003

87

6.2 Rule-Based Sentence Boundary Detection (RB-SBD)

By applying RB-SBD method onto the sample data, the results may be written

mto two different formats as;

1- Parsed sentences are written into a text (.txt) file,

2- Parsed and tagged sentences are written into an XML file,

Besides, after sentence determination process, all wprdforms are also tagged and

written into an XML file.

A part of the sample document to be parsed is given in the following figure, and

full document is given in Appendix C.4.1.1.

Hayat Dbazen festival gibi... Etrafa bir bakiyorsunuz ki...
Oooo! Tam bir festival havasi. Her kafadan bir ses g¢ikiyor.
Dinyanin bir ucunda da ayni, burnunuzun dibinde de... Festival
denince akliniza karnaval havasi, havai fisekler, glnlerce
siren sarkilar, tiurkiler, tiyatrolar geliyor dedil mi? Hayat da
boyle iste. Tek fark, katilmak istesek de istemesek de festival
alayinin ig¢indeyiz biz de! Tarihte de festivaller iste bodyle
hayat baglantisiyla dodgmus zaten. Dodgumu, yeniden canlanmayil
simgeleyen bahar aylarinda ve O6lumi simgeleyen kis aylarinda
baslarmis Eski Yunan'da... Ondan Oonce ise 1ilk insan doéneminde
av doniisi yapilan rititeller de tiyatronun dodusuyla birlikte
ilk go6rildigli dénemler. Zamanla dedise dedise glUnumiize kadar
yol almis bu festivaller. Rio Karnavali'ndan sarimsak, karpuz,
kavun festivaline kadar da sekil deJistirerek, farklilaik

gbstererek hem de... Tarihin ve mitolojinin bize soylediklerine
doénecek olursak... Eski Yunan'da &limsiiz tanrilarin pek faydalzi
yaratiklar olduguna inanilmazdi. Zeus; korkuncg simsedini

disiincesizce kullanan, gen¢ kizlarin pesine diisen bir tanriydi.
Ares; savastan, kan dokilmesinden hoslanirdi. Hera; kiskancg
olmaya gOrsiin, adalet diye bir sey tanimazdi. Athena da
carpismalari severdi; Aphrodite tuzak kurmakta, adini atmakta
pek ustaydi dodrusu. Bu ag¢idan ele alininca &tekilerden ayrilan
iki tanri wvardi; insanodlunun en 1iyi arkadasiydi onlar:
Kronos'la Rhea'nin kizlari, Bereket, Basak Tanricasi Demeter'le
Sarap Tanrisi Dionysos.

Figure 6.1 Sample parsed document

Parsed sentences of document part in Figure 6.1 are given as text form in Figure

6.2, and full sentence list is given in Appendix C.4.1.2.

88

1 Hayat bazen festival gibi....

2 Etrafa bir bakiyorsunuz ki....

3 Oooo!

4 Tam bir festival havaszi.

5 Her kafadan bir ses ¢ikiyor.

o Dinyanin bir ucunda da ayni, burnunuzun dibinde de....
7 Festival denince akliniza karnaval havasi, havai
fisekler, gunlerce suren sarkilar, turkiler, tiyatrolar
geliyor dedil miv?

8 Hayat da boyle iste.

9 Tek fark, katilmak istesek de istemesek de festival
alayinin ic¢indeyiz biz de!

10 Tarihte de festivaller iste bdyle hayat badlantisiyla
dogmus =zaten.

11 Dogumu, yeniden canlanmayil simgeleyen bahar aylarinda
ve 0lUmi simgeleyen kis aylarinda baslarmis Eski Yunan'da....
12 Ondan Once ise ilk insan doneminde av donist yapilan

ritieller de tiyatronun dodusuyla Dbirlikte 1ilk goridldugi
donemler.

13 Zamanla deJise deJise giunimiize kadar yol almis bu
festivaller.
14 Rio Karnavali'ndan sarimsak, karpuz, kavun

festivaline kadar da sekil degistirerek, farklilik gOstererek
hem de....

15 Tarihin ve mitolojinin bize sdylediklerine donecek
olursak. ...

16 Eski Yunan'da 0Olimsiz tanrilarin pek faydalza
yaratiklar olduduna inanilmazdi.

17 Zeus; korkun¢ simsedini disincesizce kullanan, geng
kizlarin pesine disen bir tanriydi.

18 Ares; savastan, kan dokiilmesinden hoslanirdi.

19 Hera; kiskan¢ olmaya gorsin, adalet diye bir sey
tanimazdi.

20 Athena da c¢arpismalari severdi; Aphrodite tuzak

kurmakta, agini atmakta pek ustaydi dodgrusu.

Figure 6.2 Parsed sentences in the file of Figure 6.1

Parsed sentences of document part in Figure 6.1 are given as tagged in XML

format in Figure 6.3, and full sentence list is given in Appendix C.4.1.2.

&9

<F N="MD Banu Sen 2008.08.28 31068.txt">

<p I="0">
<3S I="0">Hayat bazen festival gibi ...</S>
<S8 I="1">Etrafa bir bakiyorsunuz ki ...</S>

<S I="2">0oo00 !</S>

<S I="3">Tam bir festival havasi .</S>

<3S I="4">Her kafadan bir ses c¢ikiyor .</S>

<S I="5">Dlinyanin bir ucunda da ayni , burnunuzun dibinde de

..</5>
<S I="6">Festival denince akliniza karnaval havasi , havai
fisekler , glnlerce sliren sarkilar , tiurkiler , tiyatrolar

geliyor dedil mi ?</S>

<S I="7">Hayat da bdyle iste .</S>

<S 1I="8">Tek fark , katilmak istesek de istemesek de
festival alayinin icindeyiz biz de !</S>

<S I="9">Tarihte de festivaller iste boyle hayat

badlantisiyla dodmus zaten .</S>

<S I="10">Dodumu , vyeniden canlanmayili simgeleyen Dbahar
aylarinda ve 0lUmi simgeleyen kis aylarinda baslarmis Eski
Yunan'da ...</S>

<SS I="11">Ondan Once 1ise 1ilk insan doéneminde av doéniisi
yapilan ritleller de tiyatronun doJusuyla birlikte ilk
gbérildugi doénemler .</S>

<S I="12">Zamanla dedise deJise gluniumiize kadar yol almis bu
festivaller .</S>

<S I="13">Rio Karnavali'ndan sarimsak , karpuz , kavun
festivaline kadar da sekil dedistirerek , farklilik gdstererek
hem de ...</S>

<S I="14">Tarihin ve mitolojinin bize sdylediklerine ddénecek
olursak ...</S>

<S I="15">Eski Yunan'da Oliumsiiz tanrilarin pek faydali
yaratiklar olduduna inanilmazdi .</S>

<S I="1l6">Zeus ; korkun¢c simsedini disiincesizce kullanan ,
genc¢ kizlarin pesine diisen bir tanriydi .</S>

<S I="17">Ares ; savastan , kan dokilmesinden hoslanirdi
</S>

<S I="18">Hera ; kiskan¢ olmaya gorsiin , adalet diye bir sey
tanimazdi .</S>

<S I="19">Athena da carpismalari severdi ; Aphrodite tuzak
kurmakta , adini atmakta pek ustaydi doJrusu .</S>

Figure 6.3 Parsed and tagged sentences in the file of Figure 6.1

The tagged wordforms of the document part given in Figure 6.1 are given in

Figure 6.4, and full sentence list is given in Appendix C.4.1.3.

90

- <P I="0">

- <S8 Index="0">
Hayat bazen festival gibi
<Word Index="0">Hayat</Word>
<Word Index="1">bazen</Word>
<Word Index="2">festival</Word>
<Word Index="3">gibi</Word>
<Word Index="1">...</Word>
<Word Index="5" />
</S>

- <S Index="1">

- Etrafa bir bakiyorsunuz ki
<Word Index="0">Etrafa</Word>
<Word Index="1">bir</Word>
<Word Index="2">bakiyorsunuz</Word>
<Word Index="3">ki</Word>
<Word Index="2">...</Word>
<Word Index="5" />
</S>

- <S8 Index="2">
Oooo !
<Word Index="0">0ooo</Word>
<Word Index="3">!</Word>
</S>

- <S Index="3">

N Tam bir festival havasi
<Word Index="0">Tam</Word>
<Word Index="1">bir</Word>
<Word Index="2">festival</Word>
<Word Index="3">havasi</Word>
<Word Index="4">.</Word>
</S>

Figure 6.4 Parsed sentences with wordforms

6.3 Rule-Based Morphological Analyser (RB-MA)

The Word Detector Module, which is used for stem/root separating, was

implemented in four different procedures to make the application flexible for users:

1- Finding all possible roots/stems and all suffixes of wordforms (The suffixes
are tagged as XML structure) (FAPRS),

2- Finding all possible stems and inflectional suffixes of wordforms (The
suffixes are tagged as XML structure) (FAPSIS),

3- Finding all possible roots/stems and suffixes of wordforms (The suffixes
are not tagged) (FAPRS-not tagged),

4- Eliminating possible roots/stems by using suffixes types (FAPRS -

91

eliminated).

As an example, these modules were carried out for the following sentences;

Dogru sOyleyeni dokuz koyden kovarlar. (1)

(They fire the person, who tells the truth.)

Guzel koyun otlamaya c¢iktai. (2)
(The beautiful sheep has gone for grazing.)

In the word analysis, at first, the input document was parsed into its sentences
with wordforms by using the sentence boundary detection — with wordforms module

(Figure 6.5).

<File OriginalName="test.txt">
<p I="0">
<S Index="0">
Dogru sdyleyeni dokuz kodyden kovarlar
<Word Index="0">Dogru</Word>
<Word Index="1">soyleyeni</Word>
<Word Index="2">dokuz</Word>
<Word Index="3">koyden</Word>
<Word Index="4">kovarlar</Word>
<Word Index="5">.</Word>
</S>
- <S Index="1">
B Giizel koyun otlamaya ¢ikti
<Word Index="0">Gizel</Word>
<Word Index="1">koyun</Word>
<Word Index="2">otlamaya</Word>
<Word Index="3">gikti</Word>
<Word Index="4">.</Word>
</S>
</P>
</File>

Figure 6.5 The wordforms of sample sentences

The parsed document was taken as input of RB-WD. All possible roots, stems,
derivational suffixes and inflectional suffixes of the wordforms were given as an
output of the “Finding all possible roots/stems and all suffixes (FAPRS)” procedure,

and all suffixes are tagged in an XML formatted file with the possible roots/stems.

92

Outputs of the sample sentences (1) and (2) for this procedure is given in Figure 6.6,

and detailed output document was given in Appendix C.4.2.1.

=S Index="1"=
Giizel koyun otlamaya ikt .

- =Word Index="0" Value="Giizel">
+ =R I="0" V="Giiz" T="isim">
+ =R I="1" V="Gizel" T="isim"=

- «File OriginalName="test.bxt">
- <P I="0"=
- <5 Index="0">
Dogru sidyleyeni dokuz kéyden kovarlar .

<Word Index="D0" Value="Dogru">
+ <R I="0" V="Do" T="isim">

+ <R I="1" V="Dog" T="fiil'>

+ <R I="2" V="Dogru" T="sifat">
</Wordz=

<Word Index="1" Value="sdyleyeni" -

+ <R I="0" V="sdyle" T="fiil">
</Wordz=

=Word Index="2" Value="dokuz"=
<R I="0" V="do" T="isim"=

<R I="1" v="dok" T="isim">

<R 1="2" V="doku" T="isim">

<R I="2" V="doku" T="fiil">

<R 1="3" v="dokuz" T="isim">
<R I1="3" Vv="dokuz" T="sifat"=
</Wordz=

<Word Index="3" Value="kiyden":=
+ <R I="0" V="kdy" T="isim">
</Word=

<Word Index="4" Value="kowvarlar"
+ <R I="0" V="kov" T="isim">

+ <R I="0" v="kov" T="fiil"=

+ o+ o+ o+ o+

+ <R I="1" V="Giizel" T="sifat">
+ <R [="1" V="Giizel" T="zarf"=>
</Word>

<Word Index="1" Value="koyun"=>
+ <R I="0" V="koy" T="isim">

+ <R I="D" v="koy" T="fiil"=

+ <R I="1" V="koyu" T="sifat">

+ <R I="2" V="koyun" T="isim"=>
</Word>

<Word Index="2" Value="otlamaya">

+ <R I="0" v="o" T="sifat">

+ <R I="0" v="o" T="zamir">

+ <R I="0" V="o" T="linlem"=>

+ <R I="1" V="ot" T="isim">

+ <R I="1" V="ot" T="sifat"=>

+ <R 1="2" v="otla" T="fiil"=

+ <R I="3" V="otlama" T="isim"=>
</Word>

<Word Index="3" Value="cikt1" >
+ <R I="0" v="cik" T="fiil"=

+ <R I="1" V="aiktar" T="isim"=>
</Word>

+ =R I="1" V="kowva" T="isim"= - <Word Index="2" Value="."=

</Word= <Root Index="2" Value="." Type="n" /=
+ =Word Index="1" Value="."= =/Word=
<5 <S>

Figure 6.6 Output file of ‘Finding all possible roots/stems and all suffixes (FAPRS)” procedure

The number of wordforms (NOW) in sentence 1 and sentence 2 were 5 and 4,
total number of possible roots and stems (NOR) were 14 and 17, and number of
suffixes (NOS) were 57 and 75 respectively. Detailed analysis of each wordform is

given in Table 6.3.

In the “Finding all possible stems and inflectional suffixes (FAPSIS)” procedure,
all possible stems and inflectional suffixes of the wordforms were given as an output,
and all results are tagged in an XML formatted file. Outputs of sample sentences (1)
and (2) for this choice is given in Figure 6.7, and detailed result document for

sentence 2 was given in Appendix C.4.2.2.

93

- =5 Index="1">
- <P I="0"> Giizel koyun otlamaya cikti .
- <5 Index="0"= - =Word Index="0" Value="Giizel">
Dogru sdyleyeni dokuz kéyden kovarlar . + <R [="0" V="Giizel" T="isim"=
- =Word Index="0" Value="Dogru"=> + <R I="0" v="Giizel" T="sifat">
+ <R I="0" v="Dog" T="fiil"> + <R I="0" v="Giizel" T="zarf"=
+ <R I="1" V="Dogru" T="sifat"= </Word=
=/Word=> - <Word Index="1" Value="koyun">
<Word Index="1" Value="sdyleyeni" /> + =R I="0" V="koy" T="isim">
- =<Word Index="2" Value="dokuz"> + =R I="0" V="koy" T="fiil"=
+ <R I="0" V="dok" T="isim"> + <R I="1" V="koyu" T="sifat">
+ <R I="1" V="dokuz" T="isim"> + =R 1="2" Vv="koyun" T="isim"=
+ <R I="1" V="dokuz" T="sifat"> </Wordz=
</Word=> - «Word Index="2" Value="otlamaya">
- <Word Index="3" Value="kdyden"= + <R I="0" V="otla" T="fiil"~
+ <R I="0" V="kdy" T="isim"= + =R I="1" v="otlama" T="isim"=>
</Word> </Word=
- <Word Index="4" Value="kovarlar"> - <Word Index="3" Value="gikti">
+ <R I="0" V="kow" T="isim"=> + <R I="0" V="cik" T="fiil">
+ <R I="0" V="kov" T="fiil"> + <R I="1" v="gikti" T="isim">
+ <R I="1" V="kowva" T="isim"> </Word=>
</Word> + <word Index="2" Value=".">
+ <Word Index="1" Value="."> </S»
={S= =P

Figure 6.7 Output file of “Finding all possible stems and inflectional suffixes (FAPSIS)”

procedure

As given in Table 6.3, total number of possible roots and stems (NOR) value was
decreased to 9 and 11, number of suffixes (NOS) value was decreased to 20 in

Sentence 2 by using the FAPSIS module.

“Finding all possible roots/stems and suffixes of wordforms (The suffixes are not
tagged) (FAPRS-not tagged)” procedure works like FAPRS, and all possible roots,
stems and suffixes of the wordforms were given as an output in an XML formatted
file. The possible combinations of suffixes were not tagged separately, but given in a
combined form. Sample part of outputs for the wordforms “dogru, séyleyeni,
otlamaya” in the sentences (1) and (2) are given in Figure 6.8, and detailed output of

this procedure is given in Appendix C.4.2.3.

94

- <Word Index="0" Value="Dogru"=
- <R I="2" V="Dogru" T="sifat">
«Suffixes /=
z/R=
</ Word >
- =Word Index="1" Value="sdyleyeni">
- <R I="0" V="sdyle" T="fiil">

- <Word Index="2" Value="otlamava">
- <R [="2" V="otla" T="fiil"=
<Suffixes=m + a + y + a</Suffixes>
<{R=
- =R [="3" V="otlama" T="isim">=
<Suffixes=y + a</Suffixes=

<Suffixes>y + e + n + i</Suffixes> o
</R> =/ Word:>
</Word>

Figure 6.8 Sample output file of “Finding all possible roots/stems and suffixes of wordforms

(The suffixes are not tagged) (FAPRS-not tagged)”

All possible stems, roots and suffixes of the wordforms were found and the
suffixes types, which were not suitable for combining with the stem/root, were
eliminated, and tagged as an output in an XML formatted file by using “Eliminating
possible roots/stems by using suffixes types (FAPRS - eliminated)” procedure for
disambiguation in root/stem possibilities. Sample results of the sentences (1) and (2)
for this choice is given in Figure 6.9, and detailed output of these sentences is given

in Appendix C.4.2.4.

- <File OriginalName="test.bxt"=
- <P I1="0"> - <5 Index="1"=
- <5 Index="0"> Giizel koyun otlamaya cikt .
Doijru séyleyeni dokuz kéyden kovarlar . - <Word Index="0" Value="Giizel":
- =Word Index="0" Value="Dodru"= + <R I="1" Vv="Giizel" T="isim">
- <R I="2" V="Dogru" T="sifat"= + <R I="1" V="Giizel" T="sifat"=
=Suffixes /= + =R I="1" v="Gilzel" T="zarf"=>
“fR= </Word=
</ Word = - <Word Index="1" Value="koyun"=
- <Word Index="1" Value="sdyleyeni"> + <R I="0" V="koy" T="is:im":>
+ <R I="0" v="sdyle" T="fiil"> + <R I="0" V="koy" T="fiil">
=/Word = + <R I="2" V="koyun" T="isim">
- =Word Index="2" Value="dokuz"= <fWordz=
+ <R [="3" V="dokuz" T="isim"> - <Word Index="2" Value="otlamaya"=
+ <R I="3" v="dokuz" T="sifat"> + <R I="2" V="otla" T="fiil">
</Word> + <R I="3" Vv="otlama" T="isim">
- <Word Index="3" Value="kéyden"> </Word>
+ <R I="0" V="kéy" T="isim"> - <Word Index="3" Value="cikt1"=
</Word= + <R I="0" v="ouk" T="fiil">
- <Word Index="4" Value="kovarlar"= + <R I="1" V="aikt" T="isim">
+ <R I="0" V="kov" T="isim"> <fWordz
£ <R I="D" V="kov" T="fiil"- + =Word Index="2" Value=".">
+ <R I="1" Vv="kova" T="isim"= </5>
=/ Word = /P>
+ <Word Index="1" Value="."=
</S=

Figure 6.9 Sample output file of “Eliminating possible roots/stems by using suffixes types

(FAPRS - eliminated)” module

95

As given in Table 6.3, total number of possible roots and stems (NOR) value was
decreased to 8 and 11, number of suffixes (NOS) value was decreased to 7 and 12 in
Sentence 1 and 2 respectively according to the FAPRS module by using the this

module.

6.4 Rule-Based POS Tagging (RB-POST)

RB-POS takes the output of RB-WD as input and eliminates the root/stem
possibilities, which do not match the word ordering rules, and gives an XML file as
output. Sample tagged document of the input file (Figure 6.9), is given in Figure
6.10, and detailed output is given in Appendix C.4.3.

- <File OriginalMame="test.txt">
- <5 Index="D"=
- <Word Index="0" Value="Dogru":=
=T Mame="sifat" /=
+ <R I="D0" V="Dogru"=

- <5 Index="1"=
- <Word Index="0" Value="Gilizel">
=T Mame="isim" /=
</Word> =R I="0" V="Giizel">

- <Word Index="1" Value="sdyleyeni"> </Word=
T Name:"fiil"ﬂ_.-":» - «word Index="1" Value="koyun"=
+ <R I="0" V="sdyle"=> <T Name="isim" /=
=/Word= + <R I="0" V="koy">

- <Word Index="2" Value="dokuz" =
=T Mame="isim" /= Sword =
+ <R [="0" V="dokuz"= - <Word Index="2" Value="otlamaya">
</ Word:= =T Mame="isim" /=
- <Word Index="3" Value="kdyden": + <R [="1" V="otlama"=>
=T Mame="isim" /= SwWord =
+ <R I="D" VV="kiy" > - <Word Index="3" Value="gikt1" =
</ Word:= <T Mame="fiil" /=
- <Waord Index="4" Value="kowvarlar"= <R I="0" v="cik"=

<R I="2" V="koyun":

LA

Mo

=T Mame="fiil" /= </Wordz=
+ <R [="1" V="kov"=> <Word Index="2" Value="." /=
=T Mame="isim" /= /S

+ =R I="D0" V="kov"
+ <R I="2" V="kova":>

</ Word:=
<Word Index="1" Value="." /=
/5>

Figure 6.10 Output file of “POS tagging” module

The total number of possible roots and stems (NOR) was decreased to 7 and 6,
and number of suffixes (NOS) was decreased to 7 and 11 in sentences (1) and (2)
respectively according to the FAPRS - eliminated module by using the POS tagging
module (Table 6.3).

Table 6.3 Number of Possible Stems / Roots (NOR) and Number of Suffixes (NOS) values in the analysis

Number of Suffixes

Wordform Possible Root / Stem Possible Type of Root / Stem FAPRS FAPSIS FAPRS - Eliminated POS Tagging
Dogru Do isim 5 Eliminated Eliminated Eliminated
Dog fiil 10 2 Eliminated Eliminated
dogru sifat 0 0 0 0
sOyleyeni sOyle fiil 10 Eliminated 2 2
dokuz do isim 3 Eliminated Eliminated Eliminated
dok isim 6 5 Eliminated Eliminated
doku isim 1 Eliminated Eliminated Eliminated
doku fiil 1 Eliminated Eliminated Eliminated
dokuz isim 0 0 0 0
dokuz sifat 0 0 0 Eliminated
kdyden koy isim 2 1 2 2
kovarlar kov isim 7 2 1 1
kov fiil 7 2 1 1
kova isim 5 2 1 1
Giizel gliz isim 3 Eliminated 3 3
giizel isim 0 0 0 0
giizel sifat 0 0 0 Eliminated
giizel zarf 0 0 0 Eliminated
koyun koy isim 7 5 2 2
koy fiil 7 5 2 2
koyu sifat 7 5 Eliminated Eliminated
koyun isim 0 0 0 0
otlamaya o sifat 5 Eliminated Eliminated Eliminated
) zamir 5 Eliminated Eliminated Eliminated
) iinlem 5 Eliminated Eliminated Eliminated
ot isim 8 Eliminated Eliminated Eliminated
ot sifat 8 Eliminated Eliminated Eliminated
otla fiil 9 1 1 Eliminated
otlama isim 5 1 1 1
¢ikt1 ¢ik fiil 6 3 3 3
¢ikt1 isim 0 0 0 Eliminated
TOTAL 132 34 19 18

96

97

The total number of possible roots and stems (NOR) in FAPRS module and
number of suffixes (NOS) were 31 and 132 respectively, as given in Table 6.3. After
the parsing processes, NOR and NOS value were decreased to 14 and 18. The results
were quite successive. Some sample sentences analyzed in RB-CorGen is given in

Appendix C.4.4 and C.4.5.

6.5 Performance Overview

The software was tested on a computer, which had an Intel Core 2 6600 2.40 GHz
processor and 4 GB RAM. The software used on this computer was Windows Server

2003 with SP2, NET 2005 and SQL Server 2005.

Data sets or test sets used in the success rate determination of any related methods
carried out by different researchers (Dincer & Karaoglan, 2004; Kiss & Strunk,
2006) could not be obtained to be able to check the success rates of new developed
methods against with related works. Therefore, new data set and test set were
collected by using Document Downloader program to carry out the tests on the new

developed methods, RB-SBD, RB-WD and RB-POST, and determine success rates.

6.5.1. Rule-Based Sentence Boundary Detection (RB-SBD)Module

The algorithm complexity of the Rule-Based Sentence Boundary Detection (RB-
SBD) Module is O(n?) in worst case, because for all characters in a sentence all rules

are compared whether they are compatible or not.

The accuracy of the module was calculated by comparing the number of the
sentences found by RB-SBD module, with the number of sentences in the original
texts, which were counted by linguists. The formulas for error rate and accuracy of

the test are:

F
e—E;A_l_Er (1)

98

where e: error rate, F: Number of sentences predicted False, A: Accuracy,

N: Total Number of Sentences.

A test set was generated from the data set to test RB-SBD Method. There were 10

different columnists and 20 columns of each from the first newspaper (Milliyet) and

10 different columnists and 20 columns of each from the second newspaper (Yeni

Asir) in the Test Set (TS). The texts were used as is, there were not any corrections

on them. The number of columns and sentences in the test sets are given in Table 6.4.

Table 6.4 Numbers of columns and sentences in the test set

Newspaper 1 (Milliyet) Newspaper II (Yeni Asir)
Name of Number of Number of Name of Number of | Number of
Columnist | Columns Sentences Columnist Columns Sentences
Cl 20 798 | Cl1 20 582
C2 20 1.746 | C2 20 1.458
C3 20 406 | C3 20 546
C4 20 834 | C4 20 1.126
C5 20 862 | C5 20 1.316
C6 20 697 | C6 20 797
C7 20 546 | C7 20 972
C8 20 1.252 1 C8 20 795
c9 20 661 | C9 20 634
C10 20 532 | C10 20 852
Total 200 8.334 | Total 200 9.078
Total Number of Sentences = 17.412
The results were given in Table 6.5.
Table 6.5 Accuracy of Sentence Boundary Detection Module
Columns # of Sentences | # of Sentences | # of Sentences | e (%) | AR Accuracy -
Predicted Predicted (%) Except
True False Misspellings (%)
NP1 8.334 8.306 28 0.34 99.66 99.80
NP2 9.078 9.042 36 0.4 99.60 99.76
TOTAL 17.412 17.348 64 0.37 | 99.63 99.78

99

The method was tested on 17.412 sentences (Table 6.5); 17.348 sentences were
resolved correctly, 64 sentences were resolved inaccurately, and the average success
rate was calculated as 99.63 with the original texts, and 99.78 after the misspellings

were ignored.

Also, 10-Fold Cross Validation technique was used for testing this module in
details. At first, the True Positive (TP), False Positive (FP), True Negative (TN) and
False Negative (FN) values were determined and counted by the linguists in each
dataset of 10 datasets including 20.351 sentences totally, which were generated from
randomly chosen texts in DataSet downloaded and generated by the Document
Downloader program, to use in the calculations of SENS (Sensitivity), SPEC
(Specificity), PREC(Precision), ACC (Accuracy), and AUC (Area Under the Curve)
values (Formulas 2, 3, 4,5,6).

SENS (Sensitivity) = TP / (TP + FN) ()

SPEC (Specificity or True Negative Rate) = TN /N = TN/ (FP + TN) = 1 — (FP/ (FP+TN)) (3)

PREC (Precision) = TP / (TP+FP) 4)

ACC (Accuracy) = (TP + TN) / (TP + FP + TN + FN) ®))]
SENS*(smmrs SPEC+(1—(zrptrn))

AUC (Area under the Curve) = w + SPEC * SENS + ;TP D= (6)

Table 6.6 The SENS, SPEC, ACC and AUC values

Dataset TP FP | FN | TN |TOTAL | SENS SPEC | PREC | ACC AUC
1 2.070 | 3 4 1 2.078 | 0,9981 | 0,7500 | 0,9986 | 99,66% | 0,8740
2 2250 | 4 2 1 2.257] 0,9991 | 0,8000 | 0,9982 |99,73% | 0,8996
3 1.973 | 14 0 3 1.990 1 0,8235 | 0,9930 | 99,30% | 0,9118
4 1.989 | 12 0 1 2.002 1 0,9231 | 0,9940 | 99,40% | 0,9615
5 2.001 8 0 2 2.011 1 0,8000 | 0,9960 | 99,60% | 0,9000
6 1.985 | 6 0 1 1.992 1 0,8571 | 0,9970 | 99,70% | 0,9286
7 2014 | 5 0 0 2.019 1 1,0000 | 0,9975 |99,75% | 1,0000
8 1.994 | 5 0 1 2.000 1 0,8333 | 0,9975 |99,75% | 0,9167
9 1.990 | 2 0 0 1.992 1 1,0000 | 0,9990 |99,90% | 1,0000
10 2.007 | 2 1 0 2.010 | 0,9995 | 1,0000 | 0,9990 | 99,85% | 0,9998

Average 2.035,1 | 0,9997 | 0,8787 | 0,997 | 99.66% | 94.84%

100

As given in Table 6.6., the results of the test was encouraging with the average
values of ACC and AUC values, which were determined as 99.66% and 94.84%, and

are the highest values for sentence boundary detection process in Turkish.

Some paragraphs from texts and correctly resolved sentences by the program are

given in Table 6.7.

Table 6.7 Sample paragraphs and correctly resolved sentences

Original Text Parsed Sentences
Biliyor musunuz, gegenlerde 'Ciragan | <P I="0">
- 2 <s I ="0">Bili 1
Palace Hotel Kempinskimin Tugra | <5 Index="0">Biliyor musunuz, gecenlerde
I .. a5y’ Ciragan Palace Hotel Kempinski'nin
Restaurant't 'Diinyanin en iyi 10 mutfag: Tujra Restaurant'i 'Dinyanin en iyi
arasima girdi. 10 mutfadi' arasina girdi.
</S>
Do you know that Cwragan Palace Hotel
Kempinski’s Tugra Restaurant had a
degree in the ‘The Best 10 Kitchens of the
World’ recently.
Diisiiniin 7 milyar insanin yasadigr koca | <P I="2"> o . ‘
diinya, binlerce otel, lokanta ve..ilk on | <5 Index="0">Disinin 7 milyar insanin
L - .. . yasadigi koca dinya, binlerce otel,
arasinda bizim Tugra Restaurant... Ustelik lokanta ve...ilk on arasinda bizim Tudra
diinyanin en saygin uzmanlarindan olusan | Restaurant.... </S>
_]uI‘l tarafindan seg:ildi. <S Index="1">Ustelik diinyanin en saygin
uzmanlarindan olusan juri tarafindan
secildi. </S>
O yemekler, o miizik ve Bogaz... Kendinizi
kesinlikle zaman tiineline sokar, en <P I=rar> .
. <S Index="0">0 yemekler, o mizik wve
azindan 150 yil Oncesine gidersiniz. | gogaz.... </s>
Kendinizi 'sultan' sanabilirsiniz. <S Index="1"> Kendinizi kesinlikle zaman
tineline sokar, en azindan 150 yil
. . . 6ncesine gidersiniz. </S>
Think that a huge world, in which 7 s Ingex:“Z“> Kendinizi 'eultan'
billions people live, thousands of hotels, | sanabilirsiniz. </S>
restaurants, and...our Tugra Restaurant
had a degree in first 10... Besides, it had
been chosen by the jury, which was
comprised from the most respected
specialists.
Bu da, Kont von M...'yi, bahgesini’ en | <Sentence Index="0"> Bu da, Kont von
. ' 1 1 1 1 1
giizel gesitlemeler icinde birbiriyle | M- 'y® bPahcesini, en glhzel cesitlemeler
. . . ig¢inde birbiriyle kesiserek sirin wvadiler
k.es.lserek sirin vadiler olpsturan tepelerden olusturan tepelerden birinde kurmaya
birinde kurmaya yoneltmis. yoneltmis.</Sentence>
This situation directed Kont von M... to set | Normally, “...” punctuation is used at the end of
up his garden on one of the hills that create | sentence, but it was used in the sentence in place
sweet valleys by intersecting each others | of the name of a person in this sentence, this can
with the best variations. generate an ambiguity.

101

Inaccuracies in the results were generally caused by misspellings in the texts
(Table 6.8). But sometimes, they are caused by the rules. For example, in the first
sentence in Table 6.8, the “...” mark is used iaccurately. According to the sentence

boundary rules, a capital letter must be placed after this mark and new sentence must

begin. But in this sentence this character was used to shorten the cited text.

Table 6.8 Sample paragraphs and inaccurately resolved sentences

Original Sentence

Parsed Sentences

Devami sdyle: Milli Egitim Bakani’nin imzasiyla
tiim okullara gonderilen genelgede... deniliyordu.

<Sentence Index="1">Devami soyle:
Milli Eg§itim Bakaninin imzasiyla tim

okullara gbnderilen
genelgede.</Sentence>
It continues such that: It is said ... in the notice | <Sentence Index="2"> deniliyordu.
that was signed by the Head of the Department of | </Sentence>
Education and sent to all schools.
Ama, diiz yolda gitmeyi bilmeden, bir elinizde | <Sentence Index="4">Ama, diz yolda
< . . itmeyi bilmeden bir elinizde
lefon, agzinizda sigara... ir. grtmey !
teleton, ag das gara bub telefon, adzinizda sigara.</Sentence>

They have triggermen, create a state in the state,
work for the government, good friends with
government ... this, that!

<Sentence Index="5"> bu bir.
But, there is a telephone in one of your hands; a | </Sentence>
cigarette in your mouth without knowing to go on
the straight road... this is first.
Telekom Genel Miidiiri Mehmet Ekinalan her | <Sentence Index="0">Telekom Genel
firsatta Telekom'un 'muhtesem!" faaliyetlerini dve | MUdtrt Mehmet Ekinalan her firsatta
. . i Telekom'un 'muhtesem!</Sentence>
ovetnnrennyor. <Sentence Index="1">' faaliyetlerini
6ve 6ve bitiremiyor. </Sentence>
Mehmet Ekinalan, who is the Manager of the
Telecommunication Department, praises the
‘magnificent!’ activities of the department all the
time.
Tetikgileri var, devlet iginde devlet olmugslar, | <Sentence Index="0">Tetikcileri wvar,
devlet adina ¢alistyorlar, devlet adamlariyla ahbap | 9¢viet ieinde devlet olmuglar, devlet
' adina calisiyorlar, devlet
cavuslar.. su, bu! adamlariyla ahbap
cavuslar.</Sentence>
<Sentence Index="1"> su,

bu!</Sentence>

- Bugiin saat kacta gideceksin?
- 2. Sen?
- 5.

- At what time will you go today?
- 2. You?
-5.

<Paragraph Index="0">

<Sentence Index="0"> Bugiin saat kacta
gideceksin? </Sentence> </Paragraph>
<Paragraph Index="1">

<Sentence Index="0">2. Sen?
</Sentence>

</Paragraph>

<Paragraph Index="2">

<Sentence Index="0"> 5. </Sentence>
</Paragraph>

There are two sentences: “2.” and “Sen?
(You?)”, in the second line. The algorithm
assumed the “.” (dot) mark used after the
number ‘“2” as enumeration not for bulleting,
by using the rule defined in the list, and
took all line as one sentence.

102

The total process time of this analysis was 179 milliseconds (0.179 seconds),

details of which are given in Table 6.9.

Table 6.9 Process time of sentence boundary detection module

Newspaper 1 (Milliyet) Newspaper II (Yeni Asir)

Name of Number of Process Time | Name of Number of Process Time

Columnist | Sentences (milliseconds) | Columnist | Sentences (milliseconds)

Cl 798 11] Cl 582 6
C2 1.746 26 | C2 1.458 10
C3 406 0]C3 546 4
C4 834 131 C4 1.126 8
C5 862 14| C5 1.316 9
C6 697 81 Cé6 797 7
C7 546 51¢C7 972 8
C8 1.252 18 | C8 795 7
C9 661 81C9 634 6
C10 532 41C10 852 7
Total 8.334 107 9.078 72

6.5.2. Rule-Based Morphological Analyser (RB-MA)Module

The algorithm complexity of the Rule-Based Morphological Analyser (RB-MA)
Module is O(n!) in worst case. In this module, finding all possible roots, stems and
suffixes process took very long time at the fist stages of this study. In order to
increase overall system performance, some improvements and modifications were

realized.

Because of the difficulty of the manually counting all possible roots, stems and
suffixes’ combinations by linguists, instead of using all test set used in performance

analysis of RB-SBD Method, only small part of it was used in the RB-MA Method.

In this module, while controlling whether the part of wordform is valid
root/stem/suffix or not, algorithm tried to connect database and controlled it in the
related table. Each connection took 18 ms in average. Algorithm connected over

80.000 times to analyze the sentence;

103

Dimenin terbiye edemedidini kayalar terbiye eder. (3)

(The rocks chasten it, which the rudder cannot chasten.)

Therefore, analysis of this sentence takes 1440 seconds, which means 24 minutes.
Considering that a column in a newspaper has approximately 300 sentences, analysis
of each column takes 120 hours, which means 5 days. These values cannot be

acceptable for the usability of the system.

In order to solve this problem, lists of root, stem and suffixes were kept in the
memory when the program started. It connects database only one time at the
beginning and all root, stem and suffix information is saved into three lists. Then,
character combinations are checked by using these lists. The process time decreased
from 24 minutes to 24 seconds for the sample sentence (3) by using this approach,

which causes a system speed increase by 60 times.

Although this new process time was better than the previous one, one column
could be analyzed in 2 hours by using this value of time. This performance was also
not acceptable and made the system unusable. Therefore, new improvement was
done. The suffix combination control process of the algorithm was changed. In order
to control each suffix whether it is suitable for using with previous found suffixes,
control process was done after the determination of each suffix combination, so the
efficiency of the algorithm was increased by 25% and the sentence (3) was analyzed

1 6 seconds.

This value was achieved by using the given rule file, which includes 15 rules. By
increasing number of rules, the suffix possibilities and the time of checking processes

are expected to be decreased.

A refinement was made by saving the found roots, stems and suffixes of the
analyzed word to a file, in order to avoid re-analysis of the same word. This process

was increased the system performance.

104

After the refinements and improvements, a text, which contains 308 sentences and
nearly 3000 words, was analyzed in 3 seconds by RB-WD module.
6.5.3. Rule-Based POS Tagging (RB-POST) Module

The algorithm complexity of the Rule-Based Sentence POS Tagging (RB-POST)

Module is O(n?) in worst case.

Since RB-POST is a once-in-runtime process, the only overhead of this module to

the system would be as much as the measured time.

The Rule Parser tests were established using 3 different rule files including 10,
100 and 200 rules respectively. The average parsing times for those rule files are

displayed in Table 6.10.

Table 6.10 POS Tagging rule parser performance test results

Number of Rules Average Parsing Time (millisec.)
10 0.3271
100 1.1916
200 2.0696

The results show that the time required for loading rules is not directly
proportional to the number of rules, and loading 200 rules takes 2.0696 milliseconds,

which is an acceptable time.

The Stem Reader Module is also a kind of special parser module like the Rule
Parser. Stem Reader parses the complete input documents once before the tagging
process starts. To calculate the overhead of this module to the overall system
performance, tests that are based on measurement of parsing documents with

different sizes were established.

105

According to the limited amount of analyzed text, tests were carried out on 3
different documents with 6, 89, and 226 sentences each. The average parsing time for

a document with 226 sentences was about 18 milliseconds (Table 6.11).

Table 6.11 POS Tagging stem reader performance test results

Total Number of Total Number of Total Number of Average Parsing Time
Sentences Words Morph Items (millisec.)
6 30 51 0,6342
89 418 737 6,7597
226 1072 1888 18,1594

140 Turkish sentences were randomly taken from the data set to calculate the
overall tagging results. Each sentence has at least one word with more than one
possible word classes. The accuracy achieved by using this algorithm on this text

corpus is given in Table 6.12.

Table 6.12 POS tagging results based on total words

Number of Total Number of Correctly Number of Incorrectly Accuracy
Words Tagged Words Tagged Words
780 718 62 92 %

The success rate of RB-POST were determined as 92%. Since this test was
carried out by using a limited rule list, the accuracy of the program can be

incremented using a larger scale rule list, supported by linguists.

CHAPTER SEVEN
USAGE AND USER INTERFACES OF RBCorGen

“Rule-Based Automatic Corpus Generation (RB-CorGen)” application consists of
two big sub-applications:
1. Document Downloader

2. Automatic Rule-Based Corpus Generation

In the “Document Downloader (Dékiiman Indirici)”, the electronic data is taken
from web by URL links of the newspapers and stored in database to be able to use
efficiently in RB-CorGen.

In “Automatic Corpus Generation (Otomatik Derlem Olusturma) (RB-CorGen)”
application, there is a user-friendly interface to generate sentence corpus, make
morphological analysis of the words in the sentences and apply part-of-speech

tagging process on the analysis.

7.1 Document Downloader

User interface of “Document Downloader (Dékiiman Indirici)” project was

implemented in Turkish (Figure 7.1.).

& pikiiman Indirici
Dosya ,{ Avatlar 1w Rapotlar e\"ardlm

M'"L‘r'Etl Hi,ilriyetl Watan I Aksaml F!adikall

‘/_'1' mle!!I ivet Baglantian Bul |

Makaleleri indir |

Figure 7.1 Main screen of the Document Downloader application

106

107

Application has two main parts; user menu that is at the top of the window and tab
blocks of the resources that are on the centre of it. On the menu bar section, user can
change database connection settings, get reports, and open help. For changing
database connection settings, user clicks “Settings (Ayarlar)” menu button (Figure

7.2).

& pokiiman Indirici

Dosya :;(:I_A_yarlar s Rapotlar e\fard\m

MI"I}'EII HLimyel' atan | Aksaml Hadikall

¢ Milliyet

Weritabar Baglant Ayarlan

e Kaynadi

Kullarue: Adi Inlpuser

Sifie

K.atalog

Kapdet ve Kapat

Figure 7.2 Database connection settings window

In this settings window user can change data source, username, password, and
catalog values. On help menu, user can open “How I do (Nasil Yaparim)” user

manual and “About (Hakkinda)” information of the application (Figure 7.3).

@ pikiman Indirici

Dosya - Avarlar w Raporlar @\"ard\m

atI Hum_l,letl T | Akgaml Ra Masil Yapanm
Haklanda

ﬁ M!!I ivet B aglantilan Bul |

b akalelen indi |

Figure 7.3 Help menu of application

108

General usage of the application is quite simple. User selects the tab section which
columns of the newspaper the user wants to download, and then the user clicks on
the “Find Links (Baglantilart Bul)” button and all buttons become disabled until
operation is completed (Figure 7.4). Finding links operation has a long run time, so

user should be patient on this operation.

@ pikiiman Indirici
Dosya ‘A Avarlar . Raporlar 6 ‘fardim

Milyet Hiiriet | Vatan | Aksam | Radical |

Fm Baglantlan Bul |
I

i akealeler Trdin

Hirrivet makale badlantilar araryor, Litfen bekleyiniz, ..

Figure 7.4 Disabled user interface

When the link finding operation ends, the links are listed on a grid table. Also the

article number is given on the status bar of the application (Figure 7.5).

® pskiiman indirici

Dosya ,;Afﬁ_AyarIar i Raparlar ﬁvardlm

Miliyet Hiiivet | atan | Aksam | Radikal |

Fm Baglantlan Bul |
|

I akaleleri indir

Baglant_MNo Baglant_adresi | azar_Adi
197316
197317 hittp: 4 #hurarsiv. huriyet, com, r/gostershaber. aspr?id .. | Oktay EKSI

hittp: 4 2hurarsiv. hurriyet. com. ir/gosterhaber. Oktay EESI

197318 hittp: 4 Ahurarsiv. hurrivet. com, br/gostershaber. aspid... | Oktay EKSI

197319 http: /fhurarsiv. hurrivet. com. r/gostershaber. aspr7id... | Dodan HIZLAN
197320 http: 4 /hurarsiv. hurrivet. com r/goster/haber azpr?id... | Dogan HIZLAW
197321 http: /hurarsiv. hurrivet. com. tr/gostershaber.azpr?id.. | Dodan HIZLAN
197322 hitp: /hurarsiv. hurriyet. com. r/gasterhaber.azpe?id... | Dodan HIZLAN
197323 hitp: /fhurarsiv. hurriyet. com. r/gostershaber. aspr?id... | Dodan HIZLAN
197324 hitp: ##hurarsiv. buriyst. com. r/goster/haber. aspeid... | Yalgn DOGAN
197325 hittp: 4 #hurarsiv. huriyet. com ir/gosterhaber aspe?id . | Yalon DOGAN

350 Hrrivet makale baglantisi bulundu,

Figure 7.5 Result of link finding operations

109

Second step of the download process is downloading articles that the links are
listed. User clicks on the button “Download Articles (Makaleleri Indir)” and the

download operation is started by the user (Figure 7.6).

Dosya - Avatlar « Raporlar ﬁ\"ardlm

Miliyet iyt | vatan | Aksam | Radial|

Im—vr Baglartian Bul |

takaleler irdir |

B aglant_Mo | Baglant_&dresi ‘ Yazar_Adi
1 g

hittp: £/ b It ab

197317 hittp:#hurarsiv. hurriyet. com. tr/gosterhaber azpr?id... | Oktay EKSI

197318 hittp: A Ahwrarsiv. huripet. com. rfgostershaber aspx?id... | Oktay EKSI

197319 http: #hurarsiv_huriyet com ridgostershaber aspe?id . | Dodan HIZLAM
197320 hittp:#fhurarsiv. hurriyet. com. r/gostershaber. azpr?id... | Dodan HIZLAM
197321 hittp:# fhurarsiv. hurriyet. com. r/goster/haber. aspe?id... | Dodan HIZLAM
197322 hittp: 4 hurarsiv. hurriyet. com.rgoster/haber. azpe?id... | Dodan HIZLAN
197323 hittp:#hurarsiv. hurriyet. com. r/goster/haber. asp=?id... | Dodan HIZLAM
197324 hittp: ¢ Ahurarsiv. huriipet. com. br/gosterhaber aspx?id... | alon DOGAN
197325 hittp: # Ahurarsiv. huripet com i/ gosterhaber aspwid... | Yalon DOGAN

Hiirrivet makale baglantilar indirlivar, Litfen bekleyiniz. ..

Figure 7.6 Screen statues while downloading article

At the end of the downloading articles operation the number of articles

downloaded is written on the status bar (Figure 7.7).

Dosya - Avarlar « Raporlar Yardim

Miliyet Hiirvet | Vatan | Aksam | Radikal |

IW‘ B aglantlan Bul |

sk aleleri indi |

Link_Mo Baglant_adresi | azar_ad

http: arriyet carm.br.

197317 http://hurarsiv. hurriyet. com. tr/goster/haber. aspx7id... | Oktay EKSI

197318 http: £ Ahurarsiv. hurriyet corn br/gostershaber aspe?id | Oktay EKSI

197319 hitpe fhurarsiv. huriyet. com. tr/goster/haber. azpx?id... | Dogan HIZLaM
197320 http:#fhurarsiv hurriyet com tr/gosterhaber aspe?id . | Dogan HIZLAM
197321 hitpe fhurarsiv. huriyet. com. tr/goster/haber. azpx?id... | Dogan HIZLaM
197322 hitp:# fhurarsiv. hurriyet. com. tr/goster/haber. aspx?id... | Dogan HIZLAM
197323 hitpe fhurarsiv. huriyet. com. tr/goster/haber. azpx?id... | Dogan HIZLaM
197324 hitp:/ Ahurarsiv. hurrivet. com. br/goster/haber aspe?id... | Yalon DOGAN
197325 btk Ahurarsiv. hurrivet. com br/gostershaber aspe¥id... | Yalpn DOGAN

350 Hirriyet makalesi indirildi.

Figure 7.7 Screen statues when download operation completed

110

Reporting operations of the application is done by clicking on one of the “Reports

(Raporlar)” on the reports menu, sample report is given in Figure 7.8.

B Rapor Giriintilene

® S S T | # -

I Main Repork |

9222009 YAZARLARA GORE SIRALILISTE
YAZAR KAYNAK IMAKALE SAYISI | MAKALE BOYUTU | KELIME SAYISI
YALCIN BAYER Hiirriyet 4727 30,192 055 38910027
DOGAM HIZLAM Hirriyet 4129 12,333,154 14878,510
ERTUGRUL OZKOK Hiirrivet 3584 13,161,111 1,781,081
OKTAY EKSI Hiirriyet 3509 9741 346 1,284 847
BEKIR COSKUN Hiirrivet 3,371 6,144 931 801 544
HADI ULUENGIM Hiirriyet 2585 10,149 268 1,365,122
BULENT DUZGIT Hiirriyet 2575 33077 16,186
ISMET BERKAN Radikal 2528 8,781,049 1,140 986
GUNGOR URAS Milliyet 2445 7 956 313 1,034,052
MURAT YETKIM Radikal 2420 10,345,158 1,295,052
TURKER ALKAN Radikal 2410 7187 892 9192687
GUNGOR MENGI atan 2380 5,480 591 826 359
HAKK] DEVRIM Radikal 23158 11,289,138 1,431,599
OKAY GOMNENSIN atan 2299 6,046 507 789224
SULEYMAN ATES “atan 2,146 5,303 914 706,773
FIKRET BILA, Millivet 2139 7,204,209 897 956
RUHAT MENGI atan 2132 8,929 508 1,167 543
AN GE ARMAN Hirriyet 2,1Mm 13,782 9263 1,941 650
CUNEYT ULSEVER Hiirriyet 2087 5,254 304 849729
TAHA AKYOL Millivet 201 5,271 558 776 486
MELIH ASIK hdillivet 1,990 8,796 117 1,136,110
p | RN N TaTeEra] Hiirrivat 1 QAN = 2A7 935 i) ‘T.-'QI LILI
Current Page No.: 1 |T0ta| Page Mo.: 10 |Zoom Fackor: 100%

Figure 7.8 Sample report

Reports can be exported as several file types: Crystal Reports (rpt), Adobe
Acrobat (pdf), Microsoft Excel (xls), Microsoft Excel Data Only (xls), Microsoft
Word (doc), and Rich Text Format (rtf). Exporting report can be done by clicking on
the button with disk icon. And the save dialog is opened (Figure 7.9).

111

E Rapor Goriintileme M =] B3
o= y T an i
® 5 "’l i Extport Report B
I Main Report
Save in: l@ Desktop j \) ,_?- = v
My Docurnents [
9,22/200! Q My Computer
T 4 My Metwark Places
| =) CorpusDocument Downloader
% =) DokumanEklekasim 3;;,5'
Bt |- Dokumanonetimi IB1 T
IEF {nlp_download IDBW
5 ?;IchocVear I847
E QjchocVearMo E2T]
HE 122
[BL 186 bz
= Ha6
E 52
M} 052
TL 287
E 359
HE : paisis]
o7 File narne: I j Save I g
E Save as type: IErystaI Reports [“.mpt] j Cancel | 773
Fli “rystal Repo t] 2] 956
RUHAT MENGI “ata .ﬁldobe Ancéﬂba‘ [,; : f]] 29 508 1,167 643
= icrosoft Excel [".xls
AYSE ARMAN HI:II’I’\\I' Microsoft Excel Data Only (% ds] 89 963 1,941 B58
CLUNEYT ULSEVER Hilrriy| Microsoft Word [doc) 54 304 049 724
TAHA AKYOL hilliyd Rich Test Parmat [*-Iftf] . 71 558 776 486
MELIH A1 Milliyet | 1,990 | 8,796,117 1,136,110
| EFARER TR Hiirrvat I Toan | [T E o '77Q| _ILI
4 3
Current Page No.: 1 |T0ta| Page MNo.: 10 |Zoom Factor: 100%:

Figure 7.9 Save dialog box

Since the URL links of the articles in the newspapers are different, different
downlading interface was designed for the newspapers Milliyet, Hiirriyet, Vatan,

Aksam and Radikal.

Milliyet newspaper’s downloading tab is given in Figure 7.10.

@ pikiiman Indirici

Dosya ‘,< Ayarlar . Raporlar e\"ardlm

H'L,irriyetl Watat I Ak§a’m| Hadikall

’ - -
(’ M I I I lvet B adlantilan Bul |
T pasiNoa GOVEN

M akaleleri indir |

Figure 7.10 Milliyet newspaper’s downloading tab

Hiirriyet newspaper’s downloading tab is given in Figure 7.11.

& Dikiiman Indirici

Dosya - Ayarlar . Raporlar e\ﬂardlm

Millyet

‘Makaleleri indir |

atan I Ak;a’ml Fladika!l

Figure 7.11 Hiirriyet newspaper’s downloading tab

Vatan newspaper’s downloading tab is given in Figure 7.12.

) Dikiiman Indirici

Dosys - Ayarlar s Reporlar @ Yardm

et | Hiiget atan | Aksam | Radikal |

Badglantilan Bul |

Makaleler indir |

Figure 7.12 Vatan newspaper’s downloading tab

Aksam newspaper’s downloading tab is given in Figure 7.13.

112

113

@ pokiiman indirici
Dosya :‘A’% Ayarlar s Rapotlar e ‘fardim

Millet | Hiiriget | Vatan Aksam IHadika!l

I

Makaleleri indir

Figure 7.13 Aksam newspaper’s downloading tab

Radikal newspaper’s downloading tab is given in Figure 7.14.

@ pokiiman indirici
Dosya - dvarlar . Raporlar @ Yardm

Mill\yetl H'L,iniyetl Watan I Akgam Radikal |

£
S = =
o5 Ra I B aglantilan Bul
ki

Makaleleri indi |

Figure 7.14 Radikal newspaper’s downloading tab

7.2 Automatic Corpus Generation

User interface of “Rule-Based Automatic Corpus Generation (Otomatik Kural-
Tabanli Derlem Olusturma) (RBCorGen)” application is implemented in Turkish
(Figure 7.15).

114

tomatik Kural-Tabanh Derlen Dlusturma

Ciimle Derlemi Olugturma (=0 Dluslurmal Kural Listelemel Diger |_

Etiketienmmernis (bd)

Katimealar L xmi

—
| Kapat_|

Figure 7.15 Initial Screen of RBCorGen

This interface has a main menu on the top, file loading and screening part and four

tabs, which contains all processes in RBCorGen.

Firstly, a document, which will be analyzed, is loaded into the application by

using load button.

115

........

' -———lLoad Button

Figure 7.16 Loading a document into RBCorGen

Then, any process is chosen by using the main menu or tabs.
7.2.1 Generating Sentence Corpus

“Ciimle Derlemi Olusturma” tab in the main screen is used for generating
sentence corpus in three ways as tagged in XML format, not tagged and stored in text

file or tagged in XML format with splitted wordforms.

For example, the text, which was written by Abbas Giligli named as
“abbasguclu.txt”, from the newspaper “Milliyet” (Figure 7.17), is loaded into the

application.

If the “Etiketlenmis (.xml)” is chosen, the text is splitted into

B test.tut - Notepad =] E3

File Edit Format Yiew Help
Universite sinavl kalkiyor mu? =]

S1nav maratonunun baglamasi ile birlikte...
sinava iligkin sdylemler de artmaga bagladi... her kafadan bir ses
¢ikiyor. &grencilerin de, anne babalarin da kafalari karmakarisik.

Evet, konugan ok ama icraat yok. Kisa bir sdre dgerisinde olacada da
henzemiyor.

Bu w11 i¢in zaten bir dec:;"la"lkﬁk s8z konusu dedil. En erken 2004 &35
igin olabilir ki; o da gimdilik zor gdzlklyor. Mevcut w0k wve GSvM
kadrolari hepten dedismeden kék10 bir dedisim stz konusu bile olamaz.
cunkt izin| vermezler...

Figure 7.17 Text will be analyzed

XML formatted file and shown in the application (Figure 7.18).

ik Kural-Tabanh Derlem Dlusturma

Dosya Islemler Yardim

Dospap Seginiz IE “Documents and Settingstozlem'D esktophS ample

~Dospanin |geigi

Universite sinawi kalkipor mu?

Sihav maratanunun baglamas ile birlikte...
Sinava iliskin scylemler de atmapa baslad... her kafadan bir ses ckwar. Ogrencilerin de, anne babalann da kafalan kamakangik.

E-vet. konugan cok ama icraat yok. Kisa bir siire igerisinde olacada da benzemiyor.

TGN Derem Olusturma | Kural Listeleme | Diger |

«<7aml version="1.0" encoding="UTF-8" standalone="yas" 7=
- <F N="test.txt">

. . - <P 1="0">
Sl 64 <5 I="0">Universite sinawvi kalkiyor mu ?</Sx

/P>
- <P I="1">
Kedeer L) «S [="0">8Iinav maratonunun baglamasi ile birlikte ...</S>
/P>
- <P I="2">

=5 [="0"=8inava iliskin soylemler de artmaya basladi ...
her kafadan bir ses cikiyor .</S>

<5 I="1"=0frencilerin de , anne babalarin da kafalar
karmakarisik .</5>

/P
- <P 1="3">
=5 [="D">Evet , konusan cok ama icraat yok .</S>

«5 [="1">Kisa bir siire igerisinde olacaga da
benzemiyor .</S>

</P=
iglem Tamamlanmighir. .. Kapat

Figure 7.18 XML tagged output of text in Figure 7.17

116

sentences, stored in

The output file is named as “S_AnalyzedFileName.xml” (Figure 7.19).

@ G\Bilgisayarim\Data_D\PROJELER\PhDthesis\TezDokuman\Te\CorpusProject Test_ 20091227\, test.txt - Windows Internet . | 1 [

le o -

. ’a -
() [GaBilgisayarim!\Data_D\PROJELER\PhDthesis\ TezDokuman '|"}‘ % | |28 Goog

File Edit View Favorites Tools Help

Sy Favorites | @& G\Bilgisayarim\Data_D\PROJELER\PhDthesis\Tez...

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
- <F N="test.txt">

">{iniversite sinavi kalkryor mu ?</S>
">Sinav maratonunun baglamasi ile birlikte ...</S>

">Sinava iliskin séylemler de artmaya baglad ... her kafadan bir ses cikiyor .</S>
">Ogrencilerin de , anne babalarin da kafalan karmakansik .</S>

"sEwvet , konusan cok ama icraat yok .</S>
">Kisa bir siire icerisinde olacaga da benzemiyor .</S>

">Bu yil icin zaten bir degisiklik s6z konusu degil .</S>
">En erken 2004 0SS igin olabilir ki ; o da simdilik zor géziikiiyor .</S>
">Mewvcut YOK ve OSYM kadrolan hepten degismeden koklii bir degisim s6z konusu
bile olamaz .«/S>
<5 I1="3">Ciinkii izin vermezler ...</S>
/P>
</F>

Done B8 Computer | Protected Mode: OfFf v H100% <

Figure 7.19 XML tagged output of text in Figure 7.17, named as

“S_abbasguclu.xml”

117

If the “Etiketlenmemis (.txt)” is chosen, the text is splitted into sentences and

written in a text file (Figure 7.20).

tomatik Kural-Tabanh Derlem Olusturma [_ 1]

Dosya islemler Yardim

Dosyaw Seginiz: IE WDocuments and 5 ettingshozlem'DesktophSample

- Dosyanin igernigi

Universite sinaw kalkipor mu?

Sinay maratonunun baglamas ile birlkte.
Sinava liskin stylemler de antmaya baglad... her katadan bir ses gkyor. Ogrencilenin de, anne babalann da kafalan kamakangik.

Evet, konugan cok ama icraat yok. Kiza bir siire igensinde olacada da benzemipor.

Ciimle Derlemi Dlugturma [EL AR 070 5 KulalLisleIamaI Diﬁall

Ftlketiontnlg (xmi] | Universite sinavl kalkiyor mu

Sinav maratonunun baglamasi ile birlikte...

Sinava iligkin sovlemler de artwaya bagladi...

her kafadan bir ses gikiyor

Ofrencilerin de, anne babalarin da kafalari karmakarigik
Evet, konugan gok ama icraat yok.

Kiza bir sure igerisinde olacada da benzemiyor

Bu ¥il igin zaten bir defigiklik sdz konusu dedil.

En erken 2004 S5 igin olsbilir ki; o da gimdilik zor gbzi
Meveut YOK ve OSTM kadrolari hepten defiigmeden kikli bir
Cinkil izin vermezler...

m‘m‘q‘m‘mr‘u‘m‘w

=
H‘D

Kaydet I 'l LIJ
Kapat

islem Tamamlanmigt

Figure 7.20 Not tagged output of text in Figure 7.17

118

If the “Kelimeler (.xml)” is chosen, the text is splitted into sentences, sentences

splitted into wordforms and stored in XML formatted file (Figure 7.21).

tomatik Kural-Tabanh Derlem Olusturma

Dosya Islemler Yardim

Crosyay S eginiz: IC:\DO:uments and Settings\ozlemtD esktoph S ample |

~Dosyanin igengi

Uriversite simaw kalkyor mu?

Sinav maratonunun baglamas ile birlikte. ..
Simava ligkin soylemlzr de artmaya baglad... her kafadan bir ses pkyor. OFrencilerin de, anne babalann da kafalan kamakangk.

Ewet, konugan cok ama icraat vok. Kisa bir siire igerizinde olacada da benzemivor.

Ciimle Deremi Dlugturma (RX3ET Dlu;lulmal KulalLi:teIeme' Diger |

| -
Ettketienmis {xml) =tuml version="1.0" encoding="UTF-8" standalone="yes" 7> :'

- =File OriginalMame="test.txt"=

- <P [="0">
Etiketenmemis (i) _ 25 Index="0">

Universite sinawi kalkiyor mu 7
<word Index="0"=lniversite</Word>
<Wword Index="1"=sinavi</\Words
"z kalkiyor</\Words=
" mu /A ords
<Word Index="1"=?</\Word>
/5>
/P>
- <P [="1">
- <5 Index="0">
Sinav maratonunun baslamasi ile birlikte ...
=Word Index="0">Sinav=</word>
=Word Index="1">maratonunun="ord>
<Word Index="2">baslamas1</Word=>

Kaydet | <Word Index="3">ile</\Waord= =
islem Tamamlanmighr Kapat |

Figure 7.21 XML tagged output of text with wordforms in Figure
7.17

The words, which start with capital letters, are firstly asked to the user if they are

proper noun or not (Figure 7.22).

e i Beleme Kelime Tiirii Belirleme
in tiirii bedir igtir. Litfen Seginz. f IEIIERPERC e T
[Kelime: [~ Kelime:
| Turye &S
[Turinii Seginiz: [Tuiriini Seginiz:
ozel isim - dzelisim -
isim isim
il il
sifat sifat
zamir zamir
unlem ;I inlem LI

Figure 7.22 Screenshot of the module asking to user the type of the word

119

Since bulleted sentences cause ambiguity, and they can not be separated from

conversation texts since conversations are indicated by special character, “-” (hypen),

€6,

after the character “:”, which is also used for bulleting. The sentences come after the

“” character assumed as belong to one sentence; all lines are read and combined
together as one sentence, and asked to the user to determine the type of them (Figure

7.23).

Paragraf Tiiriinii Belirleyiniz Paragraf Tiiriinii Belitleyiniz

i paragraf cii ine ayr e Asagidaki paragraf ci ine ayr

Liitfen paragraftiiriinii belirleyiniz. Liitfen paragraftiiriinii belirleyiniz.

Voluna cikip soruvariar- Ne ige varar dagd gibi ates kargisinda bir damiacik sur-
Ofsun, divar givercin, dostivgemaz belli olsun.

‘Sums.v sdyie siralanabifir- Okul.- Ofrenci. |

Tiirii S egini;
{~ KonugmaMetni[DLG - Dialog]
" SuralListe [BL - Bulleted List)

Figure 7.23 Sample of undetermined blocks asked to the user

User defines the type of the sentence block as “conversation sentences”, tagged as

DLG (Dialog), or “bulleting text”, tagged as BL (Bulleted List).

7.2.2 Corpus Generation

“Derlem Olusturma” tab in the main screen is used for finding stem / root and

suffixes of the wordforms (Figure 7.24).

There are two main parts: “Kok ve Ekler (Roots and Suffixes)” and “Govde ve
Cekim Ekleri (Stems and Inflexional Suffixes)”. The roots / stems and suffixes are

found in four ways according to the needs;

o FEkler Etiketlenmis: All possible of the roots / stems and suffixes, which
are tagged and stored in XML formatted file, named as
“AnalyzedFileName MA ST.xml”, i which MA ST stands for
Morphological Analysis Suffixes are Tagged.

120

Ekler Etiketlenmemis: All possible of the roots / stems and suffixes,
suffixes are not tagged in details, and results are stored in XML formatted
file, named as “AnalyzedFileName MA SNT.xml” , in which MA SNT
stands for Morphological Analysis_Suffixes are not Tagged.

Ek Tiirlerine Gore Olasiliklart Azaltilmis: All possible of the roots / stems
and suffixes, possible suffixes combinations are eliminated according to
the type of them, are are stored in XML formatted file, named as
“AnalyzedFileName MA SE.xml”, in which MA SE stands for
Morphological Analysis_Suffixes are Eliminated.

Kelime Tiirlerine Gore Olasiliklart Azaltilmis: All possible of the roots /
stems and suffixes are stored in XML formatted file. Possible roots /
suffixes are eliminated according to the word order rules by using the
Rule-Based POS tagging module, named as
“AnalyzedFileName POS.xml”, in which POS stands for POS Tagging.

tomatik Kural-Tabanh Derlem Olusturma

C:\Diocuments and SettingshozlemtDesktophS ample

Uriversite sinawi kalkipor mu?

Sinav maratonunun baglamas ile birikte,
Sinava ligkin soylemler de artmapa baglad . her kafadan bir ses glapor, O frencilerin de, anne babalann da kafalan kamakangik

Evet, kanusan gok ama icraat pok. Kiza bir siire igerisinde alacada da benzemiyor.

Cumle Derllem Olugturma D a KuralLisleIemel Diger I

Ekiter Etthetienmls Ekter Etiketienniy

Ekler Etihetienmemis Ekler Etiketienmernis

Ek Tiirerine Glire Qlastiian Azaftims £k Tiltaain Gave (lssibkan A raltimg
Kelime Tielerine Gove Olgsdikian Azaibims Kelmea Tirfamme Gore OasikianA zaiimg

Figure 7.24 “Derlem Olusturma” tab in the application

121

7.2.3 Rule Lists

“Kural Listeleme” tab in the main screen is used for listing the rules, used in the

application, edit and change them (Figure 7.25).

Otomatik Kural-Tabanh Derlem Olusturma

Dosya Islemler Y¥ardim

DiospapiSeginiz |0 ocuments and S ettingshozlemtD eskiophS ample |

-Dosyanin icengi

Universite sinaw kalkiyor mu?

Sihav maratonunun baglamas ile birlikte...
Sinava iligkin soylemler de atmaya baglad.... her kafadan bir ses gkivor, Ofrencilerin de. anne babalann da kafalan kamakangik.

Evet, konugan gok ama icraat yok. Kisa bir siire igenisinde olacada da benzemivor.

Ciimle Derlemi Dlugturma | Derlem Dlusturma OTEREE R 1 Diﬁel'

Ciimle Sonu Beﬁn’emeé

<7aml version="1.0" encoding="utf-8" >
- zrules=
st ||| e EOETEA oLl
<rule EOS="False"=L.L</rulex
| <rule EOS="False"=L. L</rules
el TR B <rule EQS="True"=L.U</rules
<rule EOS="True"sL. U/rules
<rule EQOS="True"=L.# </rule>
zrule EQOS="True"=7."'</rule>
zrule EQOS="False">?."</rule>
=rule EOS="True"=?.{</rule>
=rule EOS="True">7.)</rule> -
<rule EQOS="True">?.-</rule>
zrule EQS="True"=7./</rule>
<rule EOS="False">?.,</rulex=

Detisti <rule EQOS="False">#.L</rule>
edighin | " "
<rule EOS="False">#. L</rule>
Kaydet | <rule EOS="False"=#.'</rulex ﬂ
Listeleme iglemi tamamlanmagtir. Kapat |

Figure 7.25 “Kural Listeleme” tab in the application

“Ciimle Sonu Belirleme” button is used to show the rules in the “Rules.xml” file,
which is used for the sentence boundary detection process, whereas the
“Bi¢imbilimsel Analiz” button is used to show the rules used in morphological
analysis and the “Kelime Tiirii Belirleme” button is used to show the rules in POS

Tagging processes. All rules can be edited by using the “Degistir” button.

7.2.4 Other Operations

“Diger” tab in the main screen is used for running some applications that are used
to help the main application, such as getting and storing data (“Dékiiman Indirici”

button), entering words in lexicon (“Kelime Girigi” button) or changing the character

122

of the words in lexicon according to vowel changing rule in Turkish (“Ses Degisimi”

button) (Figure 7.26).

Otomatik Kural-Tabanh Derlem Dlusturma

C\Documents and Settingshozlem’DesktopiS ample m

Universite sinavi kalkiwor mu?

Sinay maratonunun baglamasi le birlikte
Sinava iligkin stvlemler de atmaya baglad... her katadan bir ses ckyor. Orencilerin de, anne babalann da katalan karmakangik.

Ewet, konugan ok ama icraat pok. Kisa bir stire igerisinde olacaia da benzemipar.

Ciimle Derlemi O I Derlem O I Kural Li:

Ses Dedigimi
Kelime Girgi

Figure 7.26 “Diger” tab in the application.

“Dokiiman Indirici (Document Downloader)” is used to run the Document

Downloader application, which details are told before.

CHAPTER EIGHT
CONCLUSION

8.1 Conclusion

In order to make analysis on a spoken language, a large scale corpus that includes
varied sample of text documents is needed. Effective corpora have been generated
and used for NLP applications on many languages, such as English, German, Czech,
etc, but any large scale Turkish corpora that involve all properties of the language

cannot be generated until now.

The main goal of this study is to develop an infrastructure with rule-based
approach to generate large scale Turkish corpus, and to develop appropriate methods
that find the sentences, root and suffixes of the Turkish words in an efficient way,
while generating large scale corpus. Because of grammatical rule-based structure of

Turkish, rule-based method was chosen to develop the infrastructure.

To generate a large scale corpus, at first documents must be collected. Variation
of authors and types of documents; such as newspaper, book, magazine; increase the
studies on it. Text documents which plays a critical role to generate corpus, must be
collocated in a systematic way. Therefore, an application called Document
Downloader, which was generated for collecting electronic data to develop large
scale corpus, was used to generate a dataset. 195.256 articles, which include
93.228.892 wordforms, from 5 different Turkish newspapers “Milliyet”, “Hiirriyet”,
“Radikal”, “Vatan”, ”Aksam” were downloaded , stored in a storage media and also
metadata of these documents, such as URL of document, header of document, size of

document, etc., were stored in database.

In order to test the Rule-Based Automatic Corpus Generation (RB-CorGen), at
first, the roots, stems and suffixes were collected. The root and stem lists were
collected by co-operation with Turkish Linguistic Association (Tirk Dil Kurumu,

TDK). These lists were modified according to morphophonemic processes vowel and

123

124

consonant harmonies in Turkish and stored. The suffix list was collected by linguists
in Dokuz Eylul University, College of Social Science and Literature Linguistic
Department. After that, the tags that would be used in the corpus were created by
them. The grammatical rules for sentence boundary detection, suffixes and word
ordering were also collected by linguists. All lists were stored in XML format to

make the system more flexible and scalable.

Although the punctuation marks, such as ., ..., !, and ?, are used to terminate
sentences, they may also be used in anywhere else in a sentence, such as using “.
(dot)” mark for an abbreviation, as a decimal point in a number, in an e-mail
addresses etc, and cause ambiguities, which make harder the process of the
determining sentence boundaries. In Turkish, there are some ambiguities in finding
sentence boundaries like in any other languages. Ambiguities in sentence boundary
detection process, which are caused by abbreviations, enumerations, web and e-mail
addresses, were solved in Rule-Based Sentence Boundary Detection (RB-SBD)

method by using abbreviation and rule lists.

RB-SBD method was tested on two different test sets generated from randomly
selected columns of two Turkish newspapers Milliyet and Yeni Aswr, which included
typing faults and ambiguities, and the results were successive. The success rates were
determined as 99.60% (99.76% without typing faults) and 99.66% (99.80% without
typing faults) in these test sets. The average success rate of the algorithm was
99.78% when typing faults were discarded. Also, 10-fold cross validation check was
applied to this method by choosing test sets 10 times randomly from the collected
data by the Document Downloader program. As a result, average values of ACC and
AUC were calculated as 99.66% and 94.84%, which are the highest values for

sentence boundary detection process in Turkish.

The available roots and stems were used in the morphological analysis part of the
project. In this process, the output of the sentence boundary detection process was
taken as input and all wordforms were analysed. The possible root/stem and suffix

combinations were determined and in an XML formatted file as an output.

125

After finding all possible roots and stems with their word types, the Rule-Based
Part-of-Speech Tagging (RB-POST) method was applied for word-category
disambigution. Instead of a built-in lexicon, the output of the morphological analysis
process and contains possible roots / stems and suffix combinations for each word in
analyzed document is used as an input in RB-POST, so there is not any time
consuming for looking up a word in a lexicon or database. Besides, the method is

disk-imperceptible and also independent from lexicon and database.

This Rule-Based POS tagger was tested on 140 randomly chosen Turkish
sentences which were taken from articles of “Milliyet” newspaper in test set. Each
sentence has at least one word with more than one possible word type. The success

rate was determined as 92%.

The success rates of the new developed methods, RB-SBD, RB-WD and RB-
POST, could not be checked against with any of the works carried out by different
researchers, since data sets or test sets used in the success rate determination of these
works could not be obtained from the developers of the methods. Therefore, the new
developed methods were carried out on the randomly chosen data collected by the

Document Downloader program.

Since the language structure is commonly the same with other agglutinative
languages, such as Turkic languages including Turkmen, Azerbaijani (Azeri),
Kazakh, Kyrgyz and Uzbek, the portable infrastructure, RB-CorGen, may be easily
adapted and used for them to apply the methods and generate a corpus by only giving

the rules, abbreviation lists, root and suffixes lists.

8.2 Future Works

All processes in rule-based corpus generation need well-defined and organized
rules to use and give successive results. It was seen that the accuracy of the RB-

CorGen increased with the increasing number of rules. In the future, new rules may

126

be added ino the system, the number of rules, and also the accuracy of the system

may be increased continuously.

Besides, the process time of the RB-CorGen may be decreased by making

refinements and improvements on the developed methods for corpus generation.

All of the ambiguities in corpus generation processes cannot be solved in RB-
CorGen. New techniques may also be developed in phrase structure grammar and
word sense disambiguation to solve some ambiguities, and integrated into RB-
CorGen easily. Consequently, the number of possible root/stem and suffixes

combinations, and also the size of the output on disk may be decreased.

127

REFERENCES

Aberdeen, J., Burger, J., Day, D., Hirschman, L., Robinson, P. & Vilain M. (1995).
Mitre: Description of the alembic system used for muc-6. Proceedings of the

Sixth Message Under-standing Conference (MUC-6), Columbia, Maryland.

Alkim, E., Aktas, O., & Cebi, Y. (2009). Tiirk Dilleri Arasi Ceviri Altyapisi.
Uluslararas1 Diinya Dili Tiirk¢e Sempozyumu. Lefkosa, K.K.T.C.

Alpkogak, A., Kut, A., & Ozkarahan, E. (1995). Bilgi bulma sistemleri igin
otomatik tiirk¢e dizinleme yontemi. Bilisim Bildirileri, Dokuz Eyliil

University, izmir, Turkey.

Altinyurt, L., Orhan, Z., & Giingoér, T. (2006). A composite approach for part of
speech tagging in Turkish. Proceedings of Third International Bulgarian-

Turkish Conference on Computer Science. 19-24. Istanbul.

Antworth, E. L. (1990). PC-KIMMO: A two-level processor for morphological
analysis. Occasional Publications in Academic Computing, Summer Institute of

Linguistics. 16. Dallas, Texas.

Asliyan, R., Giinel, K., & Yakhno, T. (2007). Detecting misspelled words in
Turkish text using syllable n-gram frequencies. Pattern Recognition and
Machine Intelligence PReMI, A. Ghosh, R.K. De, and S.K. Pal (Ed.), LNCS
4815, 553-559. Springer-Verlag Berlin Heidelberg.

Birant, Cagdas Can (2008). Root-Suffix seperation of Turkish words. Dokuz Eyliil
Universitesi Fen Bilimleri Enstitiisii Bilgisayar Miihendisligi Boliimii, Yiiksek

Lisans Tezi. Izmir, Turkey.

Black, A.W. & Taylor, P. (1994). CHATR: A generic speech synthesis system,
Proceedings of International Conference on Computational Linguistics

(COLING '94), 2, 983-986. Kyoto, Japan.

128

Brill E. (1992). A simple rule-based part of speech tagger. Proceedings of the Third
Conference on Applied Natural Language Processing, 152-155. Trento, Italy.

Brill E. (1994). Some advances in transformation based part of speech tagging.
Proceedings of the Twelfth International Conference on Artificial
Intelligence (AAAI-94). Seattle, WA.

Brill, E. (1995). Transformation-based error-driven learning and natural language
processing: A case study in part-of-speech tagging. Computational Linguistics,

21(4), 543-566. Cambridge, MA, USA: MIT Press.

Brown Corpus, (n.d.). Retrieved March 3, 2010, from
http://www.helsinki.fi/varieng/CoRD/corpora/BROWN/index.html

Burnard, L. (2000). Reference guide for the British National Corpus (World
Edition). Retrieved March 3, 2010, from,
www.natcorp.ox.ac.uk/archive/worldURG/urg.pdf.

Cebiroglu, G., &Adali, E. (2002). Sozliiksiiz koke ulasma yontemi. Proceedings of
19th TBD Bilisim Kurultayi, 155-160, Istanbul.

Charniak, E. (1993). Statistical language learning. Computational Linguistics,
21(1), 103-111. Cambridge, MA, USA: MIT Press.

Church, K. W. (1988). A stochastic parts program and noun phrase parser for
unrestricted text. Proceedings of Second Conference on Applied Natural

Language Processing, 136-143. ACL.

Church, K., & Gale, W. (1991). Probability scoring for spelling correction.
Statistics and Computing, 1 (2), 93-103.

CORD The Brown Corpus. (n.d.) a. Retrieved March 3, 2010, from
http://www.helsinki.fi/varieng/CoRD/corpora/ BROWN/basic.html

CORD The Brown Corpus. (n.d.) b. Retrieved March 3, 2010, from
http://www.helsinki.fi/varieng/CoRD/corpora/BROWN/tags.html.

129

COSMAS, German Corpus. (n.d.). Retrieved March 3, 2010, from
http://www.intute.ac.uk/cgi-bin/fullrecord.pl?handle=humbul3534.

Croatian National Corpus: Home Page. (n.d.). Retrieved March 3, 2010, from
http://www.hnk.ffzg.hr/cnc.htm.

Crystal,D. (1991). A4 dictionary of linguistics and phonetics (3rd Edition). Oxford:
Blackwell Publishing.

Cutting, D. Kupiec, J., Pedersen, J. O., & Sibun, P. (1992). A practical part-of-
speech tagger. Proceedings of Third Conference on Applied. Natural Language
Processing, 133-140. Trento, Italy.

Czech National Corpus, (n.d.). Retrieved March 3, 2010, from
http://ucnk.ff.cuni.cz/english/index.php.

Cebi, Y. & Dalkilig, G. (2004). Turkish word n-gram analyzing algorithms for a
large scale Turkish corpus - TurCo, IEEE International Conference on

Information Technology ITCC 2004, 2, 236-240.

Cebi, Y., Aktas, O. & Birant, C. C. (2006). Tiirkce Derlem Olusturmada
Otomasyon ve Karsilasilan Zorluklar. V1. Tiirk Diinyasi Ekonomi, Dil ve
Bilisim Is Birligi Forumu, TDK-TBD. Biskek, Kirgizistan.

Cigekli, I. & Korkmaz, T. (1998). Generation of Simple Turkish Sentences with
Systemic-Functional Grammar, Proceedings of the 3rd International Conference
on New Methods in Language Processing (NeMLaP-3), Sydney, Australia,
January 1998, 165-174.

Dalkilig, G. (2001). Some statistical properties of contemporary printed Turkish
and a text compression application. MSc Thesis. International Computing

Institute, Ege University. [zmir, Turkey.

130

Dalkili¢, M.E., & Dalkili¢, G. (2001). Some measurable language characteristics of
printed Turkish. Proceedings of the XVI. International Symposium on Computer
and Information Sciences, 217-224. Antalya, Turkey.

Dalkilic, G. & Cebi, Y. (2002). 4 300 MB Turkish corpus and word analysis.
LNCS 2002, 2457/2002, 205-212. Springer Berlin / Heidelberg.

DeRose, S. J. (1988). Grammatical category disambiguation by statistical
optimization. Computational Linguistics, 14 (1), 31-39. Cambridge, MA, USA:
MIT Press.

Dinger, B. T., Karaoglan, B. (2004). Sentence boundary detection in Turkish.
Proceedings of Advances in Information Systems - ADVIS 2004, LNCS 3261,
255-262, Springer-Verlag Berlin Heidelberg.

Diri, B. (2000). A text compression system based on the morphology of Turkish
Language. Proceedings of the XV International Symposium on Computer and

Information Sciences, 12-23. Istanbul, Turkey.

Diri, B., & Amasyali, M. F. (2003). Automatic author detection for Turkish text.
13th International Conference on Artificial Neural Network and 10th

International Conference on Neural Information Processing.

Dunning, T. (1993). Accurate methods for the statistics of surprise and
coincidence. Computational Linguistics, 19 (1): 61-74, Cambridge, MA, USA:
MIT Press.

Encoding the British National Corpus. (n.d.). Retrieved March 3, 2010, from,
http://xml.coverpages.org/bnc-encoding?.html.

Garside R., Leech G. & Sampson G. (Ed.) (1987). The computational analysis of
English: A corpus-based approach. U.S.A.: Longman Group .

131

Garside, R., Leech, G. & McEnery, A. (1997). Corpus annotation: Linguistic
information from computer text corpora. New York: Addison Wesley

Longman Inc.

Greene B. B., & Rubin G. M. (1971). Automatic Grammatical Tagging of English.

Providence, Rhode Island: Brown University Press, Department of Linguistics.

Greenwood, A.R. (1997). Articulatory speech synthesis using diphone units.
Proceedings of IEEE International Conference on Acoustics, Speech and Signal
Processing, 1635-1638. Munich.

Guilder, L. V. (1995). Automated part of speech tagging: A brief overview.
Retrieved January 25, 2010, from
http://ccl.pku.edu.cn/doubtfire/NLP/Lexical Analysis/Word Segmentation_Tag
ging/POS_Tagging Overview/POS Tagging Overview.htm.

Gilindii, H. (2008). Determination of author characteristics. B.Sc. Thesis. Dokuz

Eylul University, Department of Computer Engineering, Izmir, Turkey.

Glingor, T. (1995). Computer processing of Turkish: Morphological and lexical
investigation. PhD Thesis. Computer Engineering Department, Bogazici

University. Istanbul, Turkey.

Glingordii Z. (1993). A lexical-functional grammar for Turkish. MSc Thesis.

Computer Engineering Department, Bilkent University, Ankara, Turkey.

Hakkani-Tir, D.Z., Oflazer, K., & Tir, G. (2002). Statistical morphological
disambiguation for agglutinative languages. Computers and the Humanities, 36,

381—410. Netherlands: SpringerLink.

Hallag, U. (2007). Determination of Turkish word types. M.Sc. Thesis. Dokuz
Eyliil University, Graduate School of Natural and Applied Science, Department

of Computer Engineering. Izmir, Turkey.

132

Hennecke, M., Moore, R. & Swan, H. (1997). Natural language generation.
Retrieved April 4, 2010, from http://www.dfki.de/fluids/

Natural Language Generation.html.

Huang, X., Acero, A. & Hon, H.W. (2001). Spoken language processing. New

Jersey: Prentice Hall.

Ide, N. & Suderman, K. (2003). The American national corpus. Retrieved March 3,
2010, from http://www.cs.vassar.edu/~ide/papers/anc-lrec04.pdf.

Jarvinen, T. (1994). Annotating 200 million words: the Bank of English project.
Proceedings of the 15th conference on Computational linguistics, 1, 565 - 568.
Kyoto, Japan.

Jurafsky, D., & Martin, J. H. (2000). Speech and language processing: An
introduction to natural language processing, speech recognition, and

computational linguistics. New Jersey: Prentice-Hall.

Karlsson, F., Voutilainen, A., Heikkild, J., & Anttila, A. (Ed.). (1995). Constraint
grammar: A language-independent system for parsing unrestricted text. Berlin:

Mouton de Gruyter.

Kiss T., & Strunk, J. (2006). Unsupervised multilingual sentence Boundary
detection. Computational Linguistics, 32 (4), 485-525, Cambridge, MA, USA:
MIT Press.

Kizilay, F. (2009). An Infrastructure model for collecting electronic data to
develop large scale corpus. M.Sc. Thesis. Dokuz Eyliil University, Graduate
School of Natural and Applied Science, Department of Computer Engineering.

Izmir, Turkey.

Koltuksuz, A. H. (1995). Cryptanalitic measures of Turkish for symmetrical
cryptosystems. PhD Thesis, Ege University Department of Computer

Engineering, Izmir, Turkey.

133

Koksal, A. (1975). Automatic morphological analysis of Turkish. Ph.D. Thesis,
Hacettepe University, Ankara, Turkey.

Kucera, K. (2002). Czech National Corpus: Principles, design, and results. Literary
and Linguistic Computing, 17 (2), 245-257. Oxford: Oxford University Press.

Kukich, K. (1992). Technique for automatically correcting words in text. ACM
Computing Surveys (CSUR), 24 (4), 377-439. NY USA: ACM Press.

Leech, G., Garside, R., & Bryant, M. (1994). CLAWS4: The tagging of the British
National Corpus. Proceedings of the 15th International Conference on

Computational Linguistics (COLING 94), 622-628. Kyoto, Japan.

Leech, G., Hundt, M., Mair, C. & Smith, N. (2009). The composition of the Brown
Corpus. In Change in Contemporary English, A Grammatical Study (273-275).
Cambridge: Cambridge University Press.

Lindebjerg, A. (September, 1997). Brown Corpus manual. Retrieved March 3,

2010, from icame.uib.no/brown/bcm.html.

Mani, 1. (2001). Automatic summarization. Amsterdam, The Netherlands: John

Benjamins Publishing Company.

Manning, C. D. & Schutze, H. (1999). Foundations of statistical natural language
processing. Cambridge: MIT Press.

METU Turkish Corpus Project. (n.d.). Retrieved March 3, 2010, from

http://ii.metu.edu.tr/tr/research group/metu-turkish-corpus-project.

Mikheev, A. (2000). Tagging sentence boundaries. Proceedings of the Ist North

American Chapter of the Association for computational linguistics conference,

264 — 271, New Mexico State.

Modern French Corpus. (n.d.). Retrieved March 3, 2010, from
http://catalog.elra.info/product_info.php?products id=634.

134

Nadas, A. (1984). Estimation of probabilities in the language model of the IBM
speech recognition system. Proceedings of IEEE Transactions on Acoustics,

Speech, and Signal Processing, 32 (4), 859-861.

Oflazer, K. & Kuruoz, 1. (1994). Tagging and morphological disambiguation of
Turkish text. Proceedings on Fourth Conference of Applied Natural Language
Processing, 144-149. Stuttgart, Germany.

Oflazer K. (2003). Extended finite state approach. Computational Linguistics, 29
(4), 515-544. Cambridge: MIT Press.

Palmer, D. D., & Hearst, M. A. (1997). Adaptive multilingual sentence boundary
disambiguation. Computational Linguistics, 23 (2), 241-267. Cambridge: MIT

Press.

Parker, R., Graff, D., Kong, J., Chen, K., & Maeda, K. (2009). English Gigaword
fourth edition. Retrieved March 3, 2010, from
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogld=LDC2009T13.

PAROLE CORPUS-Information. (n.d.). Retrieved March 3, 2010, from
http://parole.inl.nl/html-eng/main_info.html.

Porter, M. F. (1980). An algorithm for suffix stripping. Program: electronic library
and information systems, 14 (3), 130—137. Bingley, England: Emerald Group
Pub. Ltd.

Ray, Erik T. (2003). Learning XML (Second Edition). United States of America:
O’Reilly Media, Inc.

Reynar, J. C., & Ratnaparkhi, A. (1997). A maximum entropy approach to
identifying sentence boundaries. Proceedings of the Fifth ACL Conference on
Applied Natural Language Processing (ANLP'97), Washington, D.C.

135

Riley, M.D. (1989). Some applications of tree-based modeling to speech and
language indexing. Proceedings of the DARPA Speech and Natural Language
Workshop, 339-352, Morristown, NJ, USA.

Sagisaka, Y., Iwahashi, N. & Mimura, K. (1992). ATR v-TALK Speech Synthesis
System, Proceedings of the International Conference on Spoken Language

Processing (ICSLP), (1), 483-486. Canada.

Sak, H., Giingér, T. & Satkan, Y. (2006) A corpus-based concatenative speech
synthesis system for Turkish. Turkish Journal of Electrical Engineering and

Computer Sciences, 14 (2), 209-223. TUBITAK, Ankara, Turkey.

Say, B., Ozge, U., & Oflazer, K. (2002). Bilgisayar ortaminda bir derlem
gelistirme ¢alismasi. Akademik Bilisim Konferansi (AB’02). Selcuk

Universitesi, Konya, Turkey.

Say, B., Zeyrek, D., Oflazer, K. & Ozge, U. (2002). Development of a corpus and a
treebank for present-day written Turkish. Proceedings of the FEleventh
International Conference of Turkish Linguistics (ICTL), 183-192. Eastern

MediterraneanUniversity, Northern Cyprus.

Say, C., Demir, S., Cetinoglu, O., & Ogiin, F. (2004). A natural language
processing infrastructure for Turkish. Proceedings of the 20th international

conference on Computational Linguistics, 1385. Retrieved January, 2009, from

ACM Digital Library Database.

Sever, H., & Bitirim, Y. (2003). FindStem: Analysis and evaluation of a Turkish
stemming algorithm. In M. A. Nascimento, E. S. De Moura, A. L. Oliveira
(Ed.). Proceedings of the 10th String Processing and Information Retrieval,
LNCS, 2857, 238-251. Springer-Verlag, Heidelberg.

Shannon, C.E. (1951). Prediction and entropy of printed English. The Bell System
Technical Journal, 30 (1),50-64.

136

Sinclair, J. (1991). Corpus Concordance, Collocation (Describing English
Language). Oxford: Oxford University Press.

Solak, A., & Oflazer, K. (1993). Design and implementation of a spelling checker
for Turkish. Literary and Linguistic Computing, § (3), 113-130. Oxford: Oxford

University Press.

Solak A., & Can, F. (1994). Effects of stemming on Turkish text retrieval.
Technical report BUCEIS-94-20, Bilkent University, Ankara, Turkey.

Sperberg-McQueen, C. M. & Burnard, L. (Ed.). (1994). Guidelines for electronic
Text Encoding and Interchange. (TEI P3), Oxford, Text Encoding Initiative.

Tantug, A. C., Adal,, E., & Oflazer, K. (2006). 4 Prototype machine translation
system between Turkmen and Turkish. Fifteenth Turkish Symposium on

Artificial Intelligence and Neural Networks (TAINN 2006). Mugla, Turkey.

Tantug, A. C., Adaly, E., & Oflazer, K. (2007). Machine translation between Turkic
Languages. Proceedings of the ACL 2007 Association for Computational
Linguistics, 189—192, Prague.

Tapanainen, P. & Voutilainen, A. (1994). Tagging accurately - Don't guess if you
know. Fourth ACL Conference on Applied Natural Language Processing,
Stuttgart, Germany.

Temizsoy, M., & Cicekli, I. (1998). An ontology based approach to parsing Turkish
Sentences. Proceedings of Third Conference of the Association for Machine
Translation in the Americas AMTA’98., LNCS 1529, 124 — 135, Langhorne, PA,
USA: Springer Berlin / Heidelberg.

The Bank of English User Guide. (n.d.). Retrieved March 3, 2010, from

http://www.titania.bham.ac.uk/docs/svenguide.html

137

The British National Corpus: facts and figures. (n.d.). Retrieved March 3, 2010,
from http://www.oup.com/elt/catalogue/teachersites/oald7/more on_dicts/bnc?

cc=global.

Voutilainen, A. (1995a). Morphological disambiguation. In Karlsson, F.,
Voutilainen, A., Heikkild, J., and Anttila, A. (Ed.), Constraint Grammar: A
language-independent system for parsing unrestricted text, 165-284. Berlin:
Mouton de Gruyter.

Voutilainen, A. (1995b). A syntax-based part of speech analyser. Proceedings of
the Seventh Conference of the European Chapter of the Association for
Computational Linguistics. 157-164. Dublin.

Wang, H., & Huang, Y. (2003). Bondec — A Sentence Boundary Detector,
http://nlp.stan-ford.edu/courses/cs224n/2003/fp/huangy/final project.doc.

Weiss, D. (2005). Stempelator: A hybrid stemmer for the Polish Language.
Institute of Computing Science, Poznan University of Technology, Poland,

Research Report RA-002/05.

What is optical character recognition?. (n.d.). Retrieved March 1, 2010, from
http://www.webopedia.com/TERM/O/optical character recognition.html.

Yona, S. (2001). Lingua::EN::Sentence package. http://cpansearch.perl.org/
src/SHLOMOY/Lingua-EN-Sentence-0.25/lib/Lingua/ EN/Sentence.pm.

Zue, V., Cole, R. & Ward W. (1995). Speech recognition. Retrieved March 1,
2010, from http://cslu.cse.ogi.edu/HLTsurvey/chlnode4.html.

138

APPENDICES

APPENDIX A Turkish Grammatical Rules

APPENDIX A.1 Properties of Turkish

Turkish is an agglutinative language like Finnish, Hungarian. It belongs to the
southwestern group of Turkic family. Turkic languages are in the Uralic-Altaic
language family. In agglutinative languages, words formed by combined root words
and morphemes. Word structures can grow by addition of morphemes. Morphemes

added to a stem can convert the word from nominal to a verbal structure or viceversa.

Turkish has a very productive morphology. There is a root and several suffixes are
combined to this root. It is possible to produce a very high number of words from the

same root with suffixes. The lexicon size may grow to unmanageable size.

A popular example of a Turkish word formation is:

OSMANLILASTIRAMAY ABILECEKLERIMiZDENMISSINiZCESINE

This can be broken down into morphemes:
OSMAN+LI+LAS+TIR+A+MA+(Y)ABIL+ECEK+LER+IMIZ+DEN+MIS+SINIZ
+CESINE

In this example, one word in Turkish corresponds to a full sentence in English.
This example can be translated into English as “as if you were of those whom we

might consider not converting into an Ottoman”.

There are 29 letters in Turkish language. The eight of them are vowels and

twenty-one of them are consonants. (See Appendix A.5)

The number of vowels is more than many languages. Vowels of Turkish can be

classified in three groups according to their properties:

139

e Front and back,
e Round and unrounded,

e High or low

The vowels can be partitioned as below in detail:

e Back vowels: {a, 1, 0, u}

e Front vowels: {e, 1, 0, i}

e Front unrounded vowels: {e, i}
e Front rounded vowels: {0, i}

e Back unrounded vowels: {a, 1}
e Back rounded vowels: {o, u}

e High vowels: {1, 1, u, i}

e Low unrounded vowels: {a, e}

Turkish word formation uses a number of phonetic harmony rules. When a suffix

is appended to a stem vowels and consonants change in certain ways.

APPENDIX A.2 Vowel Harmony

Vowel harmony is the best-known morphophonemic process in Turkish. It is most
interesting and distinctive feature. Vowel harmony is a left-to-right process. It
operates sequentially from syllable to syllable. Vowel harmony processes force
certain vowels in suffixes agree with the last vowel in the stems or roots they are
being affixed to. When vowels are affixed to a stem, they change according to the
vowel harmony rules. The first vowel in the suffix changes according to the last
vowel of the stem. Vowel harmony consists of two assimilations: Palatal and Labial

Assimilations.

140

1. Palatal assimilation

This is called “major vowel harmony” . This vowel harmony is common to almost
Turkic languages. This assimilation is about front/back feature of the language. Back

vowels are the set of {a, 1, 0, u} and the front vowels are the set of {e, 1, 0, ii}.

If the vowels of the following morphemes are back then the vowel of the first

morpheme in a word is back, e.g. ask1 + lar

“lar” is a plural suffix. “ler”, other form of plural suffix, is not used, because the

vowels of the stem are back vowels.

If the vowels of the following morphemes are front then the vowel of the first
morpheme in a word is front, e.g. ev + ler
Long vowels are “4, 01, 6”. These vowels are in words of French origin in general.
Examples:
saat+ler (saatler)
gol+ler (goller)

ustl+ler (usuller)

2. Labial assimilation

This is called “minor vowel harmony”. This assimilation 1is about
rounded/unrounded feature of the language. Examples:
¢ol + {in
usul + iin (ustl + iin)
topal + 1n
defter + im

saat + im (saat + im)

141

APPENDIX A.3 Consonant Harmony

Consonant harmony is another basic aspect of Turkish phonology. Consonants of
Turkish phonology can be classified into two main groups. These are voiceless and
voiced. Voiceless consonants are {“¢”, ”f’, ”h”, ’k”, 7’p”, ”’s”, 7’s”, ”t”}. Voiced
consonants are {“b”, ’c¢”, 7d”, ”g”, ’g”, ’j”, ’I”, "m”, "n”, ’r”, *Vv”, ’y”, 7z”}.
Consonant harmony rules doesn’t formulate easily because of irregular character of
borrowed and native words. There are some consonant harmony rules in Turkish:

e Ifthe end of the word is one the voiceless consonants (“p”, ”¢”, ’t”, ”’k”) then
it changes to a corresponding voiced consonants (“b”, c”, 7d”, ’g”).
o “p” changes to “b” (kitab + 1m).
o “d” changes to “t” (ta(d)t + tik), but not every “d” changes, such as
“Onad”, “soyad”, etc.
o “k” changes to “g” (‘aya(k)g + m).

€.\

o ‘“¢” changes to

GC bh ({92

¢” (aga(¢)c + 1), but not every “¢” changes, such as

2 G(99 997

“g6¢”, “ag” i¢”, etc.
e If asuffix starts with “d”, and if the last consonant of the stem is one of {*¢”
”f” ”h” ”k” ,’p,’ 2 ” 2 ” ,,t,,} ‘Gd)’ is replaced With “t” , e.g. yulaf_"_tan
(yulaf + dan)

e [f the last consonant of the stem is one of {“¢”, ’f”, “h”, “k”, “p”, “s”, “s”}

[1P%4)

and if the suffix begins with the “c” then “c” is resolved as a “¢”, e.g. yas+¢a

(yas +ca)

o [f“k” is at the end of the stem and “k” preceded by an “n” then “k” becomes

(1P

g”,e.g. celen(k)g + e

There are some exceptions for this rule, e.g. “bank”.

142

€6 9

e Ifthe final character of the stem is “g” and a vowel is beginning of the suffix
then “g” becomes “g” in foreign origin words, e.g. analo(g)g + a

99 ¢

There are some exceptions for this rule, also, e.g.“lig”, “pedagog”, etc.
If the final character of the stem is “g” and a consonant is beginning of the

suffix then “g” does not become “g” , e.g. bumerang + tan

e [fthe final character of the stem is a vowel, and a vowel is beginning of the

suffix then “y” inserted to stem, e.g. akarsu +y +unuz

e When certain suffixes are affixed last consonant is duplicated in Arabic or

Persian origin words, e.g. zam + m + 1

e If Arabic origin words ending with a vowel then drops in exception to the
general rule, e.g. camii — camisi

bR 1Y

There are many numbers of words that have this property, e.g. “mevki”, “cami”,

199 <6 2 ¢

“terf1”, “zay1”, “ikna”, “merci”, etc.

APPENDIX A.4 Root Deformations

Turkish roots are not flexible in normally. There are some cases about various

deformations. There are some exception cases:

e Root is observed in personal pronouns
Examples: ben — bana

S€n — sana

e Wide vowel at the end of the stem is narrowed when the suffix “yor” comes

after the verbs ending with the “a,e” , e.g. kapiyor (kapa — i — yor)

143

e When a suffix is beginning with a vowel comes after some nouns, which has
a vowel {1, i} in its last syllable, this vowel drops. This occurs generally

designating parts of the human body, e.g. agzimiz (agiz — 1— miz)

e When the possessive suftix “il, il” is affixed to some verbs, and the last vowel

of the verb is vowel “1, 1” then this vowel drops, e.g. ayril (ayir — 1l)

e If a plural suffix is affixed to a compound words then this suffix coming
before the possessive suffix at the end of the stem.

Example: gozyas1 + lar -> gbézyaslar1 (not gdzyasilar)

APPENDIX A.5 Turkish Alphabet

Lowercase Letters

21314516789 [10]11[12]13]14]15|16]|17]18
a|/blcl¢|d|je|f|g|g|h|1]1])J]k|]]l|m|n|o

19120(21(22]23|24|25|26|27|28]|29
O|p|r|s|s|tjuju|v]|y]|z

Consonants:{b,c,¢,d, f, g, & h,j,k, L m,n,p,1,s,5,t, v, y, Z}
Vowels:{a, e, 1,1, 0, 0, u, Ui}

Uppercase Letters

1123 |4]|5

6]7]8 1]2]13]14]15]16]17]18
A|/B|C|C|D|E

9
G|G|H|IT|I1I|J|K|L|M|N|O

o]

1920212223 |24|25|26|27|28]|29
O|P|R|S|S|T|U|U|V|Y]|Z

Consonants:{B, C, C,D,F, G, G, H,J,K,L,M,N,P,R,S,S, T, V, Y, Z}

Vowels:{A, E, 1, 1,0, O, U, U}

APPENDIX B Rules

APPENDIX B.1 Sentence Boundary Detection Rules

<rules>
<rule
<rule
<rule
<rule
<rule
<rule
<rule
<rule
<rule
<rule
<rule
<rule
<rule
<rule
<rule
<rule
<rule
<rule
<rule
<rule
<rule
<rule
<rule
<rule
<rule
</rules>

<?xml version="1.0" encoding="utf-8"

EOS="False">U.L</rule>
EOS="False">U. L</rule>
EOS="False">L.L</rule>
EOS="False">L. L</rule>
EOS="True">L.U</rule>
EOS="True">L. U</rule>
EOS="True">L.#</rule>
EOS="True">?.'</rule>
EOS="False">?."</rule>
EOS="True">?. (</rule>
EOS="True">7?.)</rule>
EOS="True">?.-</rule>
EOS="True">?./</rule>
EOS="False">?.,</rule>
EOS="False">#.L</rule>
EOS="False">#. L</rule>
EOS="False">#.'</rule>
EOS="False">#."</rule>
EOS="False">#. (</rule>
EOS="False">#.)</rule>
EOS="False">#.-</rule>
EOS="False">#.,</rule>
EOS="False">#.#</rule>
EOS="False">#.U</rule>
EOS="False">#. U</rule>

?>

144

145

APPENDIX B.2 Stem / Root Parsing Rules

TBAE,TBEE\,DuEC,DuEKip,DuEOIz,DuEZ\DuEG\DuEKip\,K,DuEK,
TBSE, TBEE\,DuEC,DuEKip,DuEOIlz, DuEZ\DuEG\DuEKip\,K,DuEK,
TBEE\,DuEC,DuEKip,DuEOIlz,DuEZ\DuEG\DuEKip\,K,DuEK,
TBAE,TBEE\,DuEC,DuEKip,DuEOIlz,Ytu,K,DuEK,

TBSE, TBEE\,DuEC,DuEKip,DuEOIlz, Ytu,K,DuEK,
TBEE\,DuEC,DuEKip,DuEOIz,Ytu,K,DuEK,
TBEA,TBAA\,YS,DuASay,YS,DuAUy,YS,DuADur,

TBSA,TBAA\ YS,DuASay,YS,DuAUy,YS,DuADur,
TBAA\,YS,DuASay,YS,DuAUy,YS,DuADur,
TBAE,TBEE\,DuEC,DuEOIz,Ytu,YS,DuASay,YS,DuAUy,YS,DuADur,
TBSE,TBEE\,DuEC,DuEOIz,Ytu,YS,DuASay,YS,DuAUy,YS,DuADur,
TBEE\,DuEC,DuEOQIlz,Ytu,YS,DuASay,YS,DuAUy,YS,DuADur,

TB,E,A,S
E,DuEC,DuEKipYet,DuEOIz,YS,DuEZ\DuEG\DuEKip\,YS,K,DuEK,
E,DuEC,DuEKipYet,DuEOIz,YS,Ytu,YS,K,DuEK,
A,YS,DuASay,YS,DuAUy,YS,DuADur,
E,DuEC,DuEOIz,Ytu,YS,DuASay,YS,DuAUy,YS,DuADur,

APPENDIX B.3 POS Tagging Rules

<?xml version="1.0" encoding="utf-8"7?>
<Document>

<Rule RuleId="1" RuleType="sozdizim"
<Item ItemType="sifat" />

</Rule>

<Rule RuleId="2" RuleType="sozdizim"
<Item ItemType="isim" />

</Rule>

<Rule RuleId="3" RuleType="sozdizim"
<Item ItemType="zarf" />

</Rule>

<Rule RuleId="4" RuleType="sozdizim"
<Item ItemType="fiil" />

</Rule>

<Rule RuleId="5" RuleType="s6zdizim"
<Item ItemType="v" />

</Rule>

<Rule RuleId="6" RuleType="s6zdizim"
<Item ItemType="n" />

</Rule>

<Rule RuleId="7" RuleType="sbzdizim"
<Item ItemType="zamir" />

</Rule>

<Rule RuleId="8" RuleType="sozdizim"
<Item ItemType="sifat" />
<Item ItemType="sifat" />
<Item ItemType="isim" />

</Rule>

<Rule RuleId="9" RuleType="sozdizim"
<Item ItemType="sifat" />
<Item ItemType="isim" />

</Rule>

<Rule RuleId="10" RuleType="sOzdizim"
<Item ItemType="sifat" />
<Item ItemType="v" />
<Item ItemType="isim" />

</Rule>

<Rule RuleId="11" RuleType="sOzdizim"
<Item ItemType="fiil" />
<Item ItemType="n" />

</Rule>

<Rule RuleId="12" RuleType="sOzdizim"
<Item ItemType="isim" />
<Item ItemType="isim" />
<Item ItemType="fiil" />

</Rule>

<Rule RuleId="13" RuleType="sOzdizim"
<Item ItemType="sifat" />
<Item ItemType="isim" />
<Item ItemType="fiil" />

</Rule>

<Rule RuleId="14" RuleType="sOzdizim"
<Item ItemType="isim" />
<Item ItemType="fiil" />

</Rule>

<Rule RuleId="15" RuleType="sOzdizim"
<Item ItemType="isim" />
<Item ItemType="isim" />

</Rule>

RuleState="true">

RuleState="true">

RuleState="true">

RuleState="true">

RuleState="true">

RuleState="true">

RuleState="true">

RuleState="true">

RuleState="true">

RuleState="false">

RuleState="true">

RuleState="true">

RuleState="true">

RuleState="true">

RuleState="true">

146

147

APPENDIX B.3 (Cont’d.)

<Rule RuleId="16" RuleType="sO6zdizim" RuleState="false">
<Item ItemType="isim" />
<Item ItemType="isim" />
<Item ItemType="isim" />

</Rule>

<Rule RuleId="17" RuleType="s0zdizim" RuleState="true">
<Item ItemType="isim" />
<Item ItemType="edat" />

</Rule>

<Rule RuleId="18" RuleType="s0zdizim" RuleState="true">
<Item ItemType="isim" />
<Item ItemType="isim" />
<Item ItemType="fiil" />

</Rule>

<Rule RuleId="19" RuleType="s0zdizim" RuleState="true">
<Item ItemType="isim" />
<Item ItemType="edat" />
<Item ItemType="fiil" />

</Rule>

<Rule RuleId="20" RuleType="sOzdizim" RuleState="true">
<Item ItemType="isim" />
<Item ItemType="zarf" />
<Item ItemType="fiil" />

</Rule>

<Rule RuleId="21" RuleType="s0zdizim" RuleState="true">
<Item ItemType="zarf" />
<Item ItemType="isim" />
<Item ItemType="isim" />
<Item ItemType="fiil" />

</Rule>

<Rule RuleId="22" RuleType="s0zdizim" RuleState="true">
<Item ItemType="zarf" />
<Item ItemType="isim" />
<Item ItemType="fiil" />

</Rule>

<Rule RuleId="23" RuleType="sOzdizim" RuleState="true">
<Item ItemType="zamir" />
<Item ItemType="zarf" />
<Item ItemType="fiil" />

</Rule>

<Rule RuleId="24" RuleType="s0zdizim" RuleState="true">
<Item ItemType="zamir" />
<Item ItemType="fiil" />

</Rule>

<Rule RuleId="25" RuleType="s0zdizim" RuleState="true">
<Item ItemType="zarf" />
<Item ItemType="sifat" />
<Item ItemType="isim" />

</Rule>

<Rule RuleId="26" RuleType="sOzdizim" RuleState="true">
<Item ItemType="zarf" />
<Item ItemType="sifat" />

</Rule>

<Rule RuleId="27" RuleType="s0zdizim" RuleState="true">
<Item ItemType="zarf" />
<Item ItemType="zarf" />

</Rule>

APPENDIX B.3 (Cont’d.)

<Rule RuleId="28" RuleType="sOzdizim"
<Item ItemType="zarf" />
<Item ItemType="zarf" />
<Item ItemType="fiil" />
</Rule>
<Rule RuleId="29" RuleType="sd6zdizim"
<Item ItemType="sifat" />
<Item ItemType="v" />
<Item ItemType="sifat" />
</Rule>
<Rule RuleId="30" RuleType="sOzdizim"
<Item ItemType="zarf" />
<Item ItemType="sifat" />
<Item ItemType="isim" />
</Rule>
<Rule RuleId="31" RuleType="sOzdizim"
<Item ItemType="isim" />
<Item ItemType="fiil" />
<Item ItemType="n" />
</Rule>
<Rule RuleId="32" RuleType="sOzdizim"
<Item ItemType="sifat" />
<Item ItemType="isim" />
<Item ItemType="fiil" />
<Item ItemType="n" />
</Rule>
<Rule RuleId="33" RuleType="sOzdizim"
<Item ItemType="sifat" />
<Item ItemType="n2" />
<Item ItemType="isim" />
</Rule>
<Rule RuleId="34" RuleType="sOzdizim"
<Item ItemType="sifat" />
<Item ItemType="nv" />
<Item ItemType="isim" />
</Rule>
<Rule RuleId="35" RuleType="sOzdizim"
<Item ItemType="sifat" />
<Item ItemType="fiil" />
</Rule>
<Rule RuleId="36" RuleType="sdOzdizim"
<Item ItemType="fiil" />
<Item ItemType="isim" />
<Item ItemType="sifat" />
<Item ItemType="isim" />
<Item ItemType="n" />
</Rule>
<Rule RuleId="37" RuleType="sOzdizim"
<Item ItemType="isim" />
<Item ItemType="isim" />
<Item ItemType="fiil" />
<Item ItemType="n" />
</Rule>
<Rule RuleId="38" RuleType="sOzdizim"
<Item ItemType="isim" />
<Item ItemType="zarf" />
<Item ItemType="isim" />
<Item ItemType="fiil" />
</Rule>

RuleState="true">

RuleState="false">

RuleState="true">

RuleState="true">

RuleState="true">

RuleState="false">

RuleState="false">

RuleState="false">

RuleState="true">

RuleState="true">

RuleState="true">

148

APPENDIX B.3 (Cont’d.)

<Rule RuleId="39" RuleType="sOzdizim"
<Item ItemType="isim" />
<Item ItemType="zarf" />
<Item ItemType="isim" />
<Item ItemType="fiil" />
<Item ItemType="n" />
</Rule>
<Rule RuleId="40" RuleType="sOzdizim"
<Item ItemType="edat" />
</Rule>
<Rule RuleId="41" RuleType="sOzdizim"
<Item ItemType="isim" />
<Item ItemType="isim" />
<Item ItemType="edat" />
<Item ItemType="fiil" />
</Rule>
<Rule RuleId="42" RuleType="sOzdizim"
<Item ItemType="sifat" />
<Item ItemType="isim" />
<Item ItemType="isim" />
<Item ItemType="edat" />
<Item ItemType="fiil" />
</Rule>
<Rule RuleId="43" RuleType="sOzdizim"
<Item ItemType="isim" />
<Item ItemType="isim" />
<Item ItemType="isim" />
<Item ItemType="zarf" />
<Item ItemType="fiil" />
</Rule>
<Rule RuleId="44" RuleType="sOzdizim"
<Item ItemType="isim" />
<Item ItemType="isim" />
<Item ItemType="zarf" />
<Item ItemType="fiil" />
</Rule>
<Rule RuleId="45" RuleType="sOzdizim"
<Item ItemType="zarf" />
<Item ItemType="v" />
<Item ItemType="fiil" />
</Rule>
<Rule RuleId="46" RuleType="sOzdizim"
<Item ItemType="edat" />
<Item ItemType="v" />
<Item ItemType="fiil" />
</Rule>
<Rule RuleId="47" RuleType="sdzdizim"
<Item ItemType="isim" />
<Item ItemType="isim" />
<Item ItemType="zarf" />
<Item ItemType="fiil" />
<Item ItemType="n" />
</Rule>
<Rule RuleId="48" RuleType="sOzdizim"
<Item ItemType="isim" />
<Item ItemType="isim" />
<Item ItemType="zarf" />
<Item ItemType="fiil" />
<Item ItemType="n" />
</Rule>

RuleState="true">

RuleState="true">

RuleState="true">

RuleState="true">

RuleState="true">

RuleState="true">

RuleState="false">

RuleState="false">

RuleState="true">

RuleState="true">

149

APPENDIX B.3 (Cont’d.)

<Rule RuleId="49" RuleType="sdzdizim"

<Item ItemType="isim" />

<Item ItemType="isim" />

<Item ItemType="isim" />

<Item ItemType="zarf" />

<Item ItemType="fiil" />

<Item ItemType="n" />
</Rule>

<Rule RuleId="50" RuleType="sOzdizim"

<Item ItemType="sifat" />

<Item ItemType="isim" />

<Item ItemType="isim" />

<Item ItemType="edat" />

<Item ItemType="fiil" />

<Item ItemType="n" />
</Rule>

<Rule RuleId="51" RuleType="sOzdizim"

<Item ItemType="isim" />

<Item ItemType="isim" />

<Item ItemType="edat" />

<Item ItemType="fiil" />

<Item ItemType="n" />
</Rule>

<Rule RuleId="52" RuleType="sOzdizim"

<Item ItemType="isim" />

<Item ItemType="zarf" />

<Item ItemType="isim" />

<Item ItemType="fiil" />

<Item ItemType="n" />
</Rule>

<Rule RuleId="53" RuleType="sd6zdizim"

<Item ItemType="zamir" />

<Item ItemType="v" />

<Item ItemType="zarf" />

<Item ItemType="fiil" />
</Rule>

<Rule RuleId="54" RuleType="sOzdizim"

<Item ItemType="zamir" />

<Item ItemType="v" />

<Item ItemType="zarf" />

<Item ItemType="fiil" />

<Item ItemType="n" />
</Rule>

<Rule RuleId="55" RuleType="sd6zdizim"

<Item ItemType="fiil" />
<Item ItemType="fiil" />
</Rule>

RuleState="true">

RuleState="true">

RuleState="true">

RuleState="true">

RuleState="true">

RuleState="true">

RuleState="true">

150

151

APPENDIX C Lists

APPENDIX C.1 Abbreviation List

<abbr>A</abbr>
<abbr>AA</abbr>
<abbr>AAFSE</abbr>
<abbr>AAM</abbr>
<abbr>AB</abbr>
<abbr>ABD</abbr>
<abbr>ABS</abbr>
<abbr>ADSL</abbr>
<abbr>AET</abbr>
<abbr>AFP</abbr>
<abbr>AGIK</abbr>
<abbr>AGIT</abbr>
<abbr>AI</abbr>
<abbr>AID</abbr>
<abbr>AIDS</abbr>
<abbr>AIHM</abbr>
<abbr>AIHS</abbr>
<abbr>AK</abbr>
<abbr>AKDTYK</abbr>
<abbr>AKM</abbr>
<abbr>AKPM</abbr>
<abbr>Alb</abbr>
<abbr>Alm</abbr>
<abbr>A0</abbr>
<abbr>A0C</abbr>
<abbr>A0F</abbr>
<abbr>AP</abbr>
<abbr>APS</abbr>
<abbr>Apt</abbr>
<abbr>ARGE</abbr>
<abbr>Ars</abbr>
<abbr>Ars.Gor</abbr>
<abbr>Ars. Gor</abbr>
<abbr>As</abbr>
<abbr>ASELSAN</abbr>
<abbr>As.Iz</abbr>
<abbr>As. Iz</abbr>
<abbr>ASKI</abbr>
<abbr>AS0O</abbr>
<abbr>AS</abbr>
<abbr>A.S</abbr>
<abbr>ATM</abbr>

APPENDIX C.2 Root and Stem Lists

APPENDIX C.2.1 Sample Roots

ID Root Name Verb
1| ab TRUE FALSE
2 | aba TRUE FALSE
3 | abadi TRUE FALSE
4 | abajur TRUE FALSE
5 | abakus TRUE FALSE
6 | abandone TRUE FALSE
7 | abani TRUE FALSE
8 | abanoz TRUE FALSE
9 | abaso TRUE FALSE

10 | abat TRUE FALSE
11 | Abaza TRUE FALSE
12 | abazan TRUE FALSE
13 | Abbasi TRUE FALSE
14 | abd TRUE FALSE
15 | abdal TRUE FALSE
16 | aberasyon TRUE FALSE
17 | abes TRUE FALSE
18 | abide TRUE FALSE
19 | abis TRUE FALSE
20 | abiye TRUE FALSE
21 | abla TRUE FALSE
22 | ablak TRUE FALSE
23 | ablatif TRUE FALSE
24 | ablatya TRUE FALSE
25 | abli TRUE FALSE
26 | abluka TRUE FALSE
27 | abone TRUE FALSE
28 | abonman TRUE FALSE
29 | aborda TRUE FALSE
30 | abra TRUE TRUE
31 | abras TRUE FALSE
32 | abril TRUE FALSE
33 | abstraksiyonizm TRUE FALSE
34 | abstre TRUE FALSE
35 | absiirt TRUE FALSE
36 | abu TRUE FALSE
37 | abuli TRUE FALSE
38 | abullabut TRUE FALSE
39 | abus TRUE FALSE

152

APPENDIX C.2.2 Sample Stems
ID | Gov Ozelisim | isim Fiil Sifat | Zamir | Unlem Edat Zarf Baglac | YFiil Birlesik | Orjinal
1]|a FALSE FALSE FALSE FALSE | FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
2 | ab FALSE TRUE FALSE FALSE | FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
3 | aba TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
4 | aba gliresi FALSE TRUE FALSE FALSE | FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
5 | abaca FALSE TRUE FALSE FALSE | FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
6 | abacilik FALSE TRUE FALSE FALSE | FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
7 | abadi FALSE TRUE FALSE FALSE | FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
8 | abajur FALSE TRUE FALSE FALSE | FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
9 | abajurcu FALSE TRUE FALSE FALSE | FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
10 | abajurculuk FALSE TRUE FALSE FALSE | FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
11 | abajurlu FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
12 | abajursuz FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
13 | abakts FALSE TRUE FALSE FALSE | FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
14 | abal1 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
15 | aban FALSE FALSE TRUE FALSE | FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
16 | abandir FALSE FALSE TRUE FALSE | FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
17 | abandirma FALSE TRUE FALSE FALSE | FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
18 | abandone FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
19 | abani FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
20 | abanma FALSE TRUE FALSE FALSE | FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
21 | abanoz FALSE TRUE FALSE FALSE | FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
22 | abanozgiller FALSE TRUE FALSE FALSE | FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
23 | abanozlas FALSE FALSE TRUE FALSE | FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
24 | abanozlasma FALSE TRUE FALSE FALSE | FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
25 | abart FALSE FALSE TRUE FALSE | FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

€Sl

APPENDIX C.2.2 (Cont’d.,)

ID | Gov Ozelisim | isim Fiil Sifat | Zamir | Unlem Edat Zarf Baglac | YFiil Birlesik | Orjinal
26 | abarty FALSE TRUE FALSE FALSE | FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
27 | abartici FALSE TRUE FALSE FALSE | FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
28 | abarticailak FALSE TRUE FALSE FALSE | FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
29 | abartil FALSE FALSE TRUE FALSE | FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
30 | abartaila FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
31 | abartilma FALSE TRUE FALSE FALSE | FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
32 | abartisaiz FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
33 | abartisizlik FALSE TRUE FALSE FALSE | FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
34 | abartas FALSE TRUE FALSE FALSE | FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
35 | abartma FALSE TRUE FALSE FALSE | FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
36 | abartmaca FALSE TRUE FALSE FALSE | FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
37 | abartmacilik FALSE TRUE FALSE FALSE | FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
38 | abartmala FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
39 | abartmasiz FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
40 | abasiz FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

123!

APPENDIX C.2.3 Sample Modified Roots / Stems According to Morphophonemic Processes

Kelime Ozelisim | isim Fiil Sifat Zamir Unlem | Edat Zarf Baglac | YFiil Birlesik | Orjinal | Link isim_kok | Fiil_kok | Turetme
aci\ kuvved FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE kuvvet-> kuvved
agacag FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE acacak->acacag
actk\ hesab FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE hesap-> hesab
acik\ kard FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE kart-> kard
acik\ sened FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE senet->\ sened
adag FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE adak->adag
adab FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE adap->adab
adaved FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE adavet->adaved
aded FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE adet->aded
afad FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE afat->afad
afed FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE afet->afed
afiyed FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE afiyet->afiyed
ag\ yatag FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE yatak-> yatag
agac FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE agag->agac
agbeneg FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE agbenek->agbeneg
agih\ boceg FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE bocek->boceg
agir\ aksag FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE aksak->aksag
agir\ arac FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE arag->arac
agirayag FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE agirayak->agirayag
ahbab FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE ahbap->ahbab
aheng FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE ahenk->aheng
aheng FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE ahenk->aheng
ahfad FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE ahfat->ahfad
ak\ beneg FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE ak benek->ak\
beneg
akagac FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE akagac¢->akagac

¢Sl

156

APPENDIX C.3 Tags
Suffix Tag Expression
Ad A Noun
Ozel ad AOz Proper Noun
Genel ad AG Common Noun
Ad Obegi AO Noun Phrase
Eylem E Verb
Gegissiz Eylem EGs Intransitive Verb
Gegisli Eylem EGI Transitive Verb
Eylem Obegi EO Verb Phrase
Sifat S Adjective
Sifat Obegi SO Adjective Phrase
Niteleme sifat SNit Qualifying Adjective
Belirtme Sifati SBel Descriptive Adjectives
- Gosterme SBelGos - Demonstrative
- Say1 SBelSay - Numerical
- Belgisiz SBelBlg - Indefinite
- Soru SBelSor - Interrogative
Unvan sifati SUnv Honorific Adjective
Pekistirme sifati SPek Intensifier Adjective
Kiigiiltme SKuc Dimunitive Adjective
Belirtec B Adverb
Zaman Belirteci BZam Adverb of Time
Yer Belirteci BYer Adverb of Place
Durum Belirteci BDur Adverb of Manner
Nicelik Belirteci BNic Adverb of Quantity
Soru Belirteci BSor Interrogative Adverb
Belirteg Obegi BO Adverb Phrase
Baglac Bag Conjunction
Ekleme BagEk Addition
Genisletme BagGen Expansion
Segenek BagSec Option
Karsithik BagKar Contrast
Neden Sonug BagNs Cause and Effect
ilgec I Postposition
Ilgeg Obegi 10 Postposition Phrase
Adil Adil Pronoun
Kisi AdilK Personal
Gosterme AdilGos Demonstrative
Belgisiz AdilBlg Indefinite
Soru AdilSor Interrogative
Ilgi Adilllgi Relative
Iyelik Adillye Possesive

APPENDIX C.3 (Cont’d.)

Ad Cekim Bi¢cimbirimleri (Ad Ulamlarr)
(Nominal Inflection Morphemes (Noun Grammatical Categories))

Suffix Tag Expression

Say1 DuASay

{-1Ar} DuASayC Adlara eklenen ¢ogul eki (Plural Suffix)
{-0} DuASay® Tekil adlar (Singular Suffix)

Uyum DuAUy Possesive Suffixes

{-(Dm} DuAUyKTI1 1. Tekil kisi iyelik eki (I* person singular)
{-(ODn} / {-(Dnlz} DuAUyKT?2 2. Tekil kisi iyelik eki (2" person singular)
{-(s)I(n)} DuAUyKT3 3. Tekil kisi iyelik eki (3" person singular)
{-(Dmlz} DuAUyKC1 1. Cogul kisi iyelik eki (I* person plural)
{-(Dnlz} DuAUyKC2 2. Cogul kisi iyelik eki (2" person plural)
{-1ArI(n)} DuAUyKC3 3. Cogul kisi iyelik eki (3 person plural)
Durum DuADur Case

{-0} DuADurYal Yali Durum (Nominative Case)

{-(PI} DuADurBel Belirtme durumu (Accusative Case)
{-(y)A} DuADurYon Yonelme durumu (Dative Case)

{-DA} DuADurBul Bulunma durumu (Locative Case)

{-Dan} DuADurCik Cikma durumu (4blative Case)
{-(m)In/-Im} DuADurTam Tamlayan durumu (Genitive Case)

Eylem Cekim Bi¢cimbirimleri — (EYLEM ULAMLARI)

(Verbal Inflection Morphemes— (Verb Categories))
Zaman DuEZ
{-DI} DuEZGD Di’li Gegmis Zaman (Past Tense with DI)
{-mls} DuEZGM Mis’li Gegmis Zaman (Past Tense with MIS)
{-(A, Dr)} DuEZGen Genis Zaman (Aorist)
{-(i)yor} DuEZSim Simdiki Zaman (Present Tense)
{-EcEK} DuEZGel Gelecek Zaman (Future Tense)
Goriiniis DuEG
{-DI} DuEGBItD Bitmiglik Goriiniisii Di’li (Perfect aspect - DI)
{-mls} DuEGBitM Bitmislik Goriiniisii Mis’li (Perfect aspect - MIS)
{-(A, Dr)} DuEGBtmsR Bitmemislik Goriiniisii (Non-perfect)
{-(i)yor} DuEGSur Siirerlik Goriiniisii (Progressive)
{-EcEK} DuEGBtmsE Bitmemislik Goriiniisii (Non-perfect)
Kiplik DuEKip
{-sA} DuEKipSa Dilek kipi (Subjunctive)
{-A} DuEKipA Istek Kipi (Optative)
{-mAll} DuEKipMali Gereklilik Kipi (Necessitative)
{-0} DuEKipEmir Emir Kipi (Imperative)
Cati DuEC Voice
(4] DuECEt Etken (Active)
{-11}, {-(Dn} DuECEdil Edilgen (Passive)
{-(Dn}, {-11} DuECDonus Doniislii (Reflexive)
{-(Ds} DuECIstes Istes (Reciprocal)
{(A, 1) -t/-t/-rt}, {-DIr} | DuECEttir Ettirgen (Causative)

APPENDIX C.3 (Cont’d.)

158

Eylem Cekim Bi¢cimbirimleri — (EYLEM ULAMLARI) (Cont’d.)

(Verbal Inflection Morphemes— (Verb Categories))

Suffix Tag Expression
Olumsuzluk DuEOIlz Negation
{-mA/-m} DuEOlz
Kisi 1. Grup (Person DuEKGr1 DuEZGD ve DuEKipSa’dan sonra
Group 1) (After DuEZGD and DuEKipSa)
{-m} DuEKGr1Tl1 1. Tekil kisi (I* person singular)
{-n} DuEKGr1T2 2. Tekil kisi (2" person singular)
{-0} DuEKGr1T3 3. Tekil kisi (3" person singular)
{-k} DuEKGr1Cl 1. Cogul kisi (I* person plural)
{-n-1z} DuEKGr1C2 2. Cogul kisi (2" person plural)
{-1Ar} DuEKGr1C3 3. Cogul kisi (37 person plural)
Kisi 2. Grup (Person DuEKGr2 DuEZGen / DUEZSim / DuEZGel /
Group 2) DuEKipMali’dan sonra (After DuEZGen /
DuEZSim / DuEZGel / DuEKipMali)
{-(y)Im} DuEKGr2T1 1. Tekil kisi (I* person singular)
{-sIn} DuEKGr2T2 2. Tekil kisi (2" person singular)
{-0} DuEKGr2T3 3. Tekil kisi (3" person singular)
{-(9)Iz} DuEKGr2Cl1 1. Cogul kisi (I* person plural)
{-sIn-1z} DuEKGr2C2 2. Cogul kisi (2" person plural)
{-1Ar} DuEKGr2C3 3. Cogul kisi (37 person plural)
Kisi 3. Grup DuEKGr3 DuEKipA’dan sonra
{-(y)Im} DuEKGr3T1 1. Tekil kisi (I* person singular)
{-sIn} DuEKGr3T2 2. Tekil kisi (2" person singular)
{-0} DuEKGr3T3 3. Tekil kisi (3" person singular)
{-IIm} DuEKGr3Cl1 1. Cogul kisi (I* person plural)
{-sIn-1z} DuEKGr3C2 2. Cogul kisi (2" person plural)
{-1Ar} DuEKGr3C3 3. Cogul kisi (37 person plural)
Kisi 4. Grup DuEKGr4 DuEKipEmir’den sonra
— DuEKGr3T1 1. Tekil kisi (I* person singular)
{-0} DuEKGr3T2 2. Tekil kisi (2" person singular)
{-sIn} DuEKGr3T3 3. Tekil kisi (3" person singular)
— DuEKGr3C1 1. Cogul kisi (I* person plural)
{-In}, {-In-1z} DuEKGr3C2 2. Cogul kisi (2" person plural)
{-sIn-1Ar} DuEKGr3C3 3. Cogul kisi (37 person plural)
{-EcEK} DuEKGr3T1 Gelecek Zaman 1. Tekil kisi (I* person

singular in Future Tense)

APPENDIX C.3 (Cont’d.)

159

Tiiretim Bicimbirimleri (Yapim Ekleri)
(Derivational Morphemes (Derivation Suffixes))

Suffix Tag Expression

-leyin TBAB:leyin | Addan Belirteg¢ (Noun to Adverb) (sabah - sabahleyin)
-A/E TBAE:a Addan Eylem (Noun to Verb) (bos —> bosa-)

-A/E TBEA:a Eylemden Ad (Verb to Noun) (yar- -> yara)

-AcAk TBEA:acak | Eylemden Ad (Verb to Noun) (i¢- = igecek)

-AcAn TBAS:acan | Addan Sifat (Noun to Adjective) (baba >babacan)
-AcAn TBES:acan Eylem Sifat (Verb to Adjective) (sev- >sevecen)
-AgAn TBES:agan | Eylemden Sifat (Verb to Adjective) (dur- > duragan)
-AlA TBEE:ala Eylemden Eylem (Verb to Verb) (serp- > serpele-)
-AlgA TBEA:alga | Eylemden Ad (Verb to Noun) (giz- = ¢izelge)
-AmAk TBEA:amak | Eylemden Ad (Verb to Noun) (bas-—> basamak)

-An TBEA:an Eylemden Ad (Verb to Noun) (garp- = ¢arpan)
-AnAk TBEA:anak | Eylemden Ad (Verb to Noun) (yet- = yetenek)

-CA TBAA:ca Addan Ad (Noun to Noun) (¢cekme > ¢ekmece)
-CA TBEA:ca Eylemden Ad (Verb to Noun) (diisiin- - diisiince)
-CA TBSS:ca Sifattan Sifat (Adjective to Adjective) (yavas > yavasca)
-CAk TBAA:cak Addan Ad (Noun to Noun) (yavru ->yavrucak)

-CI TBAA:ci Addan Ad (Noun to Noun) (emek ->emekgei)

-CIk TBAA:cik Addan Ad (Noun to Noun) (ada > adacik)

-ClIl TBAA:cil Addan Ad (Noun to Noun) (balik >balik¢1l)

-(A)C TBAA:ac Addan Ad (Noun to Noun) (ana > anag)

-(A)C TBEA:ac Eylemden Ad (Verb to Noun) (bagla >baglag)

-DA TBBE:da Yansima (Onomatopoeic) (sapir - sapirda)

-DA TBAA:da Addan Ad (Noun to Noun) (g6z > gbzde)

-DAm TBAA:dam | Addan Ad (Noun to Noun) (yon > ydntem)

-Dan TBAS:dan Addan Sifat (Noun to Adjective) (i¢ igten)

-DAs TBAA:das Addan Sifat (Noun to Adjective) (¢ag —>¢agdas)

-DI TBEA:di Eylemden Ad (Verb to Noun) (uy- 2uydu)

-DIk TBEA:dik Eylemden Ad (Verb to Noun) (tan1- > tamdik)

-GA TBEA:ga Eylemden Ad (Verb to Noun) (diz- >dizge)

-GAg¢ TBEA:gac Eylemden Ad (Verb to Noun) (siiz- > slizgeg)

-GAg¢ TBES:gac Eylemden Sifat (Verb to Adjective) (utan- utangag)
-GAn TBES:gan Eylemden Sifat (Verb to Adjective) (atil- atilgan)
-GI TBEA:gi Eylemden Ad (Verb to Noun) (sil- >silgi)

-Glg TBEA:gic Eylemden Ad (Verb to Noun) (dal- dalgi¢)

-Glg TBES:gic Eylemden Sifat (Verb to Adjective) (bil- >bilgig)
-GIn TBES:gin Eylemden Sifat (Verb to Adjective) (sar- >sargin)

-1 TBEA:i Eylemden Ad (Verb to Noun) (yap- > yap1)

-1 TBEE:i Eylemden Eylem (kaz- 2>kaz-1-)

-ICI TBEA:ici Eylemden Ad (Verb to Noun) (kos- >kosucu)

-ICI TBES:ici Eylemden Sifat (Verb to Adjective) (liz- > iziicii)
-1 TBES:ili Eylemden Sifat (Verb to Adjective) (as- > asil1)
-(yls TBEA:is Eylemden Ad (Verb to Noun) (yag- ->yagis)

-1z TBAA:iz Addan Ad (Noun to Noun) (yavrucak —>yavrucagiz)
-(DK TBAE:k Addan Eylem (gb6z - goziik-)

-(A)K TBAA:k Addan Ad (Noun to Noun) (sol >solak)

-(A)K TBEA:k Eylemden Ad (Verb to Noun) (otla- > otlak)

-Kir TBAA :kir Yansima Addan Ad (Noun to Noun) (fis > figkir-)
-(A)l TBAE:] Addan Eylem (Noun to Verb) (koca >kocal-)

-(A)l TBEA:I Eylemden Ad (Verb to Noun) (oku- ->okul)

APPENDIX C.3 (Cont’d.)

160

Tiiretim Bicimbirimleri (Yapim Ekleri)

Suffix Tag Expression

-(A)l TBAA:I Addan Ad (Noun to Noun) (kum >kumul)

-1A TBAE:la Addan Eylem (Noun to Verb) (ak > akla-)

-LI TBAS:li Addan Sifat (Noun to Adjective) (in = 1inlii)

-slz TBAS:siz Addan Sifat (Noun to Adjective) (in > 1insiiz)

-1IK TBAA:lik Addan Ad (Noun to Noun) (tas >taslik)

-(A/DM TBEA:am Eylemden Ad (Verb to Noun) (diizle- > diizlem)
-mA TBEA:ma Eylemden Ad (Verb to Noun) (yaz- ->yazma)
-mACcA TBEA:maca Eylemden Ad (Verb to Noun) (diiz- = diizmece)
-mAg TBEA:mac Eylemden Ad (Verb to Noun) (de- > demeg)

-mAk TBEA:ma Eylemden Ad (Verb to Noun) (ye- = yemek)

-mAn TBEA:man Eylemden Ad (Verb to Noun) (az- >azman)

-mAn TBAS:man Addan Ad (Noun to Noun) (uz >uzman)

-mAz TBEA:maz Eylemden Ad (Verb to Noun) (ag- >agmaz)

-mlk TBEA:mik Eylemden Ad (Verb to Noun) (kiy- 2 kiymik)

-mls TBEA:mis Eylemden Ad (Verb to Noun) (er- >ermis)

-msA TBAE:msa Addan Eylem (Noun to Verb) (ben ->benimse)
-msA TBSE:msa Sifattan Eylem (Adjective to Verb) (az > azimsa)
-msA TBEE:msa Eylemden Eylem (Verb to Verb) (giil- - giilimse-)
-ms] TBSS:msi Sifattan Sifat (Adjective to Adjective) (sar1 > sarimsi)
-ms] TBAS:msi Addan Sifat (Noun to Adjective) (hamur ->hamurumsu)
-mtrak TBSS:mtrak Sifattan Sifat (Adjective to Adjective) (ac1 >acimtrak)
-(A/Dn TBEA:in Eylemden Ad (Verb to Noun) (tiit tiitiin)

-(A/Dn TBAA:in Addan Ad (Noun to Noun) (kok >koken)

-(Dncl TBAS:inci Addan Sifat (Noun to Adjective) (bir >birinci)
-(Dng¢ TBEA:nc Eylemden Ad (Verb to Noun) (bas-basing)

-(Dntl TBEA:nti Eylemden Ad (Verb to Noun) (yay- = yaymti)
-(A/Dr TBAE:r Addan Eylem (Noun to Verb) (deli > delir-)

-(A/Dr TBEA:r Eylemden Ad (Verb to Noun) (dén- ->doner)

-rA TBAB:ra Addan belirteg (Noun to Adverb) (son > sonra)
-TAk TBAS:rak Addan Sifat (Noun to Adjective) (kiigiik >kiigtirek)
-sA TBAE:sa Addan Eylem (Noun to Verb) (su ->susa)

-sAk TBEA:sak Eylemden Ad (Verb to Noun) (tut- >tutsak)

-sAk TBAS:sak Addan Sifat (Noun to Adjective) (irak 2> 1raksak)
-sAl TBEA:sal Eylemden Ad (Verb to Noun) (uy- >uysal)

-sAl TBAS:sal Addan Sifat (Noun to Adjective) (bolge >bolgesel)
-sl TBEA:si Eylemden Ad (Verb to Noun) (tlit- >itsii)

-sl TBAS:si Addan Sifat (Noun to Adjective) (diken > dikensi)
-sl TBEE:si Eylemden Eylem (Verb to Verb) (yan- ->yansi-)
-(A/Dt TBEA:t Eylemden Ad (Verb to Noun) (um- >umut)

-(A/Dt TBAS:t Addan Sifat (Noun to Adjective) (yas > yasit)

-tAy TBEA:tay Eylemden Ad (Verb to Noun) (danig- >danistay)
-tAy TBAA:tay Addan Ad (Noun to Noun) (kurul kurultay)

-tl TBEA:ti Eylemden Ad (Verb to Noun) (dogrul- = dogrultu)
-(A)v TBEA:av Eylemden Ad (Verb to Noun) (isle- 2islev)

-(A)y TBEA:ay Eylemden Ad (Verb to Noun) (dene- = deney)
-(A)y TBAA:ay Addan Ad (Noun to Noun) (yiiz > ylizey)

-(Dz TBAA:z Addan Ad (Noun to Noun) (iki 2ikiz)

APPENDIX C.4 Sample Outputs
APPENDIX C.4.1 Sentence Boundary Detection

APPENDIX C.4.1.1 Sample Document

Hayat bazen festival gibi... Etrafa bir bakiyorsunuz ki...
Oooo! Tam bir festival havasi. Her kafadan bir ses ¢ikiyor.
Dinyanin bir ucunda da ayni, burnunuzun dibinde de... Festival

denince akliniza karnaval havasi, havai fisekler, glnlerce
siren sarkilar, tirkiiller, tiyatrolar geliyor dedil mi? Hayat
da boyle iste. Tek fark, katilmak istesek de istemesek de
festival alayinin ic¢cindeyiz biz de! Tarihte de festivaller
iste boyle hayat baglantisiyla dodmus zaten. Dodumu, yeniden
canlanmayl simgeleyen bahar aylarinda ve &limli simgeleyen kis
aylarinda baslarmis Eski Yunan'da... Ondan Oonce ise ilk insan
déneminde av doniisii yapilan ritiieller de tiyatronun dogusuyla
birlikte ilk gdérildigt donemler. Zamanla dedise degdise
ginimiize kadar yol almis bu festivaller. Rio Karnavali'ndan

sarimsak, karpuz, kavun festivaline kadar da sekil
degistirerek, farklilik gOstererek hem de... Tarihin ve
mitolojinin bize sbylediklerine donecek olursak... Eski

Yunan'da Olimsiiz tanrilarin pek faydali vyaratiklar olduduna
inanilmazdi. Zeus; korkung simsedini dislncesizce kullanan,
gen¢ kizlarin pesine disen bir tanriydi. Ares; savastan, kan
dokilmesinden hoslanirdi. Hera; kiskan¢ olmaya gbrsin, adalet
diye bir sey tanimazdi. Athena da carpismalari severdi;
Aphrodite tuzak kurmakta, agini atmakta pek ustaydi dogdrusu.
Bu acidan ele alininca Otekilerden ayrilan iki tanri wvardi;

insanodlunun en iyi arkadasiydi onlar: Kronos'la Rhea'nin
kizlari, Bereket, Basak Tanricasi Demeter'le $Sarap Tanrisi
Dionysos. Demeter, Dionysos'tan daha vyasliydi. Bugdaylar,

altin Uzumler toplandiktan sonra ne olur? Gorunurde basaklar,
asmalar kalmayinca ne olur? Tarlalarin yesilliginin yerini
kara kiragi alinca ne olur? Insanlar, kendi kendilerine bu
sorulari sorarlardi iste. Glnler, geceler, mevsimler gecer,
yildizlar doner, bu olay hep tekrarlanirdi.Demeter'le Dionysos
hasat glnlerinin mutlu tanrilariydilar, ama vya kisin ne
yaparlardi? Kisin aci c¢ekerdi onlar, toprak da dzlintilere
gomiliirdi. Bunun neden boyle olduunu arastiranlar, kaynagi
bazi oOykilerde bulmuslar. Sonu¢ta tanrinin acilarini ve
sevinglerini canlandiran dinsel bayramlar ortaya
cikmis.Dionysos torenleri, insanlara yalniz mutluluk ic¢inde
yasamayl degil, iyi bir umutla Olmeyi de OJretirmis. Higbir
bayram ve todrenle karsilastirilmayacak olan bu sdlenler
asmalar yesermeye yiz tutunca Dbaslar ve bes gln sirermis.
Baris ve kardeslik havasi eser, tutsaklar saliverilirmis. Halk
agcik havada, bir tiyatroda toplanir, oynanan oyunlari
izlermis. Burasi Ege... Mitoloji kahramanlari buradan da
gec¢mis. Tipki Dionysos gibi. Kaynaklar, Lade Deniz Savasi'ni
yoneten komutan Dionysos'un Phokaiali vyani Focali oldudunu
soyliyor. Bu komutanin da ismini mitolojinin en biyik
kahramanlarindan “Sarap Tanrisi” Dionysos'tan aldigini...

161

APPENDIX C.4.1.1 (Contd.)

Dolayisiyla Dionysos'un Focalzi oldugunu, festival
alaylarinin ilk buralardan da gectigini tahmin edebiliriz
biz de! So6zi artik Foga Festivali'ne baglayabilirim... Bugilin

baslayacak AJustos'ta sona erecek. Resim sergisinden san
dinletisine, sOylesiden Foca kazilari gezisine, folklor
gosterilerinden panele, siir dinletisine, spor
karsilasmalarina ve Funda Arar, Ferhat Gocer, Edip Akbayram
konserine kadar onlarca etkinlik var. Bir baska festival ise

Ayvalik'ta... 22-30 AJustos arasindaki ktultir sanat
glinlerinde her tuUrli sanatsal Dbegeniye uygun etkinlik
programda diistiniilmiis. Ayse Kulin'le ve Inci Aral'la
séylesiden Idil Biret konserine kadar... Serqgi, siir

dinletisi hatta Yol Arkadasim dizisi oyunculariyla sohbet
imkani bile. Emre Kinay Tiyatrosu'nun “Ask Her Yerde”si,
BKM'nin “Cok Glizel Hareketler Bunlar”i, Sunay Akin'in tek
kisilik gdsterisi ve Kedi Tiyatrosu'nun “Kibarlik Budalasi”
da festivalde. Hatta Sezen Aksu, Bengll ve Onur Akin konseri
de... Etrafta festival havasi var dememis miydim!

162

APPENDIX C.4.1.2 Text Output

1 Hayat bazen festival gibi....

2 Etrafa bir bakiyorsunuz ki....

3 Oooo!

4 Tam bir festival havaszi.

5 Her kafadan bir ses ¢ikiyor.

o Dinyanin bir ucunda da ayni, burnunuzun dibinde de....
7 Festival denince akliniza karnaval havasai, havai
fisekler, gunlerce suren sarkilar, tirkiler, tiyatrolar
geliyor dedil miv?

8 Hayat da boyle iste.

9 Tek fark, katilmak istesek de istemesek de festival
alayinin ic¢indeyiz biz de!

10 Tarihte de festivaller iste boyle hayat badlantisiyla
dogmus =zaten.

11 Dogumu, yeniden canlanmayl simgeleyen bahar aylarinda
ve 0lUimi simgeleyen kis aylarinda baslarmis Eski Yunan'da....
12 Ondan Once ise ilk insan doneminde av doénlsi yapilan

ritieller de tiyatronun dodusuyla birlikte ilk goridldugi
donemler.

13 Zamanla deJise dedise glinimize kadar yol almis bu
festivaller.

14 Rio Karnavali'ndan sarimsak, karpuz, kavun festivaline
kadar da sekil degistirerek, farklilik gbstererek hem de....
15 Tarihin wve mitolojinin bize sOylediklerine ddénecek
olursak. ...

16 Eski Yunan'da S6lumsiz tanrailarin pek faydala
yaratiklar olduduna inanilmazdi.

17 Zeus; korkung¢ simsedini dislincesizce kullanan, geng
kizlarin pesine diisen bir tanraiydi.

18 Ares; savastan, kan dokiilmesinden hoslanirdi.

19 Hera; kiskan¢ olmaya gOrsin, adalet diye bir sey
tanimazdi.

20 Athena da c¢arpismalari severdi; Aphrodite tuzak
kurmakta, agini atmakta pek ustaydi dodgrusu.

21 Bu acgidan ele alininca Otekilerden ayrilan iki tanri
vardi; insanoglunun en 1iyi arkadasiydi onlar: Kronos'la

Rhea'nin kizlari, Bereket, Basak Tanricasi Demeter'le Sarap
Tanrisi Dionysos.

22 Demeter, Dionysos'tan daha yasliydi.

23 Bugdaylar, altin izimler toplandiktan sonra ne olur?
24 Gorunurde basaklar, asmalar kalmayinca ne olur?

25 Tarlalarin yesilliginin yerini kara kiradi alinca ne
olur?

26 Iinsanlar, kendi kendilerine bu sorulari sorarlardi
iste.

27 Ginler, geceler, mevsimler gecer, yildizlar doner, bu
olay hep tekrarlanirdi.

28 Demeter'le Dionysos hasat ginlerinin mutlu
tanrilaraydilar, ama ya kisin ne yaparlardi?

29 Kisin aci c¢ekerdi onlar, toprak da Uzuntilere
gomulurdu.

30 Bunun neden bdyle oldudunu arastiranlar, kaynadi bazi

oykiulerde bulmuslar.

163

164

APPENDIX C.4.1.2 (Contd.)

31 Sonucta tanrinin acilarini ve sevinglerini
canlandiran dinsel bayramlar ortaya ¢ikmis.

32 Dionysos térenleri, insanlara yalniz mutluluk ig¢inde
yasamayl dedil, iyi bir umutla &6lmeyi de OJretirmis.

33 Hicbir bayram ve todrenle karsilastirilmayacak olan bu
sOlenler asmalar yesermeye yuz tutunca baslar ve bes gin
slirermis.

34 Baris ve kardeslik havasi eser, tutsaklar
saliverilirmis.

35 Halk ag¢ik havada, bir tiyatroda toplanir, oynanan
oyunlari izlermis.

36 Burasi Ege....

37 Mitoloji kahramanlari buradan da gecmis.

38 Tipki Dionysos gibi.

39 Kaynaklar, Lade Deniz Savasi'ni yoéneten komutan
Dionysos'un Phokaiali yani Focali oldudunu sdéyliyor.

40 Bu komutanin da ismini mitolojinin en buyuk
kahramanlarindan “Sarap Tanrisi” Dionysos'tan aldigini....

41 Dolayisiyla Dionysos'un Fogalili oldudunu, festival

alaylarinin ilk buralardan da gec¢tigini tahmin edebiliriz biz
de!

42 S6zU artik Foca Festivali'ne baglayabilirim....

43 Bugln baslayacak AJustos'ta sona erecek.

44 Resim sergisinden san dinletisine, soOylesiden Foca
kazilarzi gezisine, folklor gbsterilerinden panele, siir

dinletisine, spor karsilasmalarina ve Funda Arar, Ferhat
Goger, Edip Akbayram konserine kadar onlarca etkinlik var.

45 Bir baska festival ise Ayvalik'ta....

46 22-30 Agustos arasindaki kiiltlir sanat gilinlerinde her
tirll sanatsal bedeniye uygun etkinlik programda distnilmis.
47 Ayse Kulin'le ve Inci Aral'la soylesiden Idil Biret
konserine kadar....

48 Sergi, siir dinletisi hatta Yol Arkadasim dizisi
oyunculariyla sohbet imkani bile.

49 Emre Kinay Tiyatrosu'nun “Ask Her Yerde”si, BKM'nin
“Cok Glizel Hareketler Bunlar”i, Sunay Akin'in tek kisilik
gosterisi ve Kedi Tiyatrosu'nun “Kibarlik Budalasi” da
festivalde.

50 Hatta Sezen Aksu, Bengl ve Onur Akin konseri de....

51 Etrafta festival havasi var dememis miydim!

APPENDIX C.4.1.3 XML Output

<F N="MD Banu Sen 2008.08.28 31068.txt">

<p I="0">
<3S I="0">Hayat bazen festival gibi ...</S>
<S8 I="1">Etrafa bir bakiyorsunuz ki ...</S>

<S I="2">0oo00 !</S>
<S I="3">Tam bir festival havasi .</S>
<3S I="4">Her kafadan bir ses c¢ikiyor .</S>

<S I="5">Dinyanin bir ucunda da ayni , burnunuzun dibinde de
..</S>

<S I="6">Festival denince akliniza karnaval havasi , havai

fisekler , glinlerce sltren sarkilar , tirkltler , tiyatrolar

geliyor dedil mi ?</S>

<S I="7">Hayat da bdyle iste .</S>

<S I="8">Tek fark , katilmak istesek de istemesek de
festival alayinin icindeyiz biz de !</S>

<S I="9">Tarihte de festivaller iste boyle hayat

badlantisiyla dodmus zaten .</S>

<S I="10">Dodumu , yeniden canlanmayi simgeleyen Dbahar
aylarinda ve O&luUmid simgeleyen kis aylarinda baslarmis Eski
Yunan'da ...</S>

<SS I="11">Ondan once 1ise 1ilk insan doneminde av doéniisi
yapilan ritideller de tiyatronun dodusuyla birlikte ilk
gbérildigi dénemler .</S>

<S I="12">Zamanla degise deJise glinumlze kadar yol almis bu
festivaller .</S>

<S I="13">Rio Karnavali'ndan sarimsak , karpuz , kavun
festivaline kadar da sekil degistirerek , farklilik gOstererek
hem de ...</S>

<S I="14">Tarihin ve mitolojinin bize sdylediklerine ddénecek
olursak ...</S>

<S I="15">Eski Yunan'da ©limsiiz tanrilarin pek faydali
yaratiklar olduduna inanilmazdi .</S>

<S I="16">Zeus ; korkun¢ simsedini distncesizce kullanan ,
genc¢ kizlarin pesine diisen bir tanriydi .</S>

<S I="17">Ares ; savastan , kan dokilmesinden hoslanirdi
</S>

<S I="18">Hera ; kiskan¢ olmaya goOrsiin , adalet diye bir sey
tanimazdi .</S>

<S I="19">Athena da carpismalari severdi ; Aphrodite tuzak
kurmakta , adini atmakta pek ustaydi doJrusu .</S>

<S I="20">Bu ac¢idan ele alininca Otekilerden ayrilan iki
tanri vardi ; insanoglunun en iyi arkadasiydi onlar: Kronos'la
Rhea'nin kizlari , Bereket , Basak Tanricasi Demeter'le Sarap
Tanrisi Dionysos .</S>

<S I="21">Demeter , Dionysos'tan daha yasliydi .</S>

<S I="22">Bugdaylar , altin uzimler toplandiktan sonra ne
olur ?</S>

<S I="23">Gorlinlrde basaklar , asmalar kalmayinca ne olur
?</S>

<S I="24">Tarlalarin yesilliginin yerini kara kiradi alinca
ne olur ?</S>

<S I="25">Insanlar , kendi kendilerine bu sorulari

sorarlardi iste .</S>

165

166

APPENDIX C.4.1.3 (Cont'd.)

<S I="26">GlUnler , geceler , mevsimler gecer , yildizlar
déner , bu olay hep tekrarlanirdi .</S>

<S I="27">Demeter'le Dionysos hasat gilinlerinin mutlu
tanrilariydilar , ama ya kisin ne yaparlardi ?</S>

<S I="28">Kisin aci c¢ekerdi onlar , toprak da Uziuntlilere
gémulirdia .</S>
<S I="29">Bunun neden bdyle oldujunu arastiranlar , kaynagi

bazi oykilerde bulmuslar .</S>
<S I="30">Sonucta tanrinin acilarini ve sevinglerini
canlandiran dinsel bayramlar ortaya c¢cikmis .</S>

<S 1I="31">Dionysos tdrenleri , insanlara vyalniz mutluluk
i¢inde yasamayi dedgil , iyi bir umutla O&lmeyi de O&Jretirmis
.</S>

<S I="32">Hic¢cbir bayram ve tdrenle karsilastirilmayacak olan
bu sdlenler asmalar yesermeye yuz tutunca baslar ve bes gin
slirermis .</S>

<SS I="33">Baris ve kardeslik havasi eser , tutsaklar
saliverilirmis .</S>

<S I="34">Halk ac¢ik havada , bir tiyatroda toplanir ,
oynanan oyunlari izlermis .</S>

<S I="35">Burasi Ege ...</S>

<S I="36">Mitoloji kahramanlari buradan da gecmis .</S>

<3S I="37">Tipki Dionysos gibi .</S>

<S I="38">Kaynaklar , Lade Deniz Savasi'ni ydneten komutan
Dionysos'un Phokaiali yani Focali oldudunu soyliiyor .</S>

<S I="39">Bu komutanin da ismini mitolojinin en Dbiyik
kahramanlarindan Sarap Tanrisi Dionysos'tan aldidini ...</S>

<S I="40">Dolayisiyla Dionysos'un Focali oldugunu , festival
alaylarinin ilk buralardan da ge¢tigini tahmin edebiliriz biz
de !</S>

<S I="41">S6zU artik Foca Festivali'ne baglayabilirim
</S>

<S I="42">Buglin baslayacak AJustos'ta sona erecek .</S>

<S I="43">Resim sergisinden san dinletisine , sdylesiden
Foca kazilari gezisine , folklor godsterilerinden panele , siir
dinletisine , spor karsilasmalarina ve Funda Arar , Ferhat
Gogcer , Edip Akbayram konserine kadar onlarca etkinlik wvar
</S>

<S I="44">Bir baska festival ise Ayvalik'ta ... </S>

<S I="45">22 30 AJustos arasindaki kiultir sanat ginlerinde
her tirll sanatsal bedeniye uygun etkinlik programda
distintlmis . </S>

<S 1I="46">Ayse Kulin'le ve 1Inci Aral'la soylesiden 1Idil
Biret konserine kadar ... </S>

<S I="47">Sergi , siir dinletisi hatta Yol Arkadasim dizisi
oyunculariyla sohbet imkani bile .</S>

<S I="48">Emre Kinay Tiyatrosu'nun Ask Her Yerde si ,
BKM'nin Cok Glizel Hareketler Bunlar 1 , Sunay Akin'ain tek
kisilik gb&sterisi ve Kedi Tiyatrosu'nun Kibarlik Budalasi da
festivalde .</S>

<S I="49">Hatta Sezen Aksu , Bengl ve Onur Akin konseri
de... </S>

<S I="50">Etrafta festival havasi var dememis miydim !</S>

</P>

</EF>

APPENDIX C.4.1.4 Parsed with Wordforms

<File OriginalName="MD Banu Sen 2008.08
<p I="0">
<S5 Index="0">
Hayat bazen festival gibi
<Word Index="0">Hayat</Word>
<Word Index="1">bazen</Word>
<Word Index="2">festival</Word>
<Word Index="3">gibi</Word>
<Word Index="1">...</Word>
<Word Index="5" />
</S>
- <S8 Index="1">
Etrafa bir bakiyorsunuz ki
<Word Index="0">Etrafa</Word>
<Word Index="1">bir</Word>
<Word Index="2">bakiyorsunuz</Word>
<Word Index="3">ki</Word>
<Word Index="2">...</Word>
<Word Index="5" />
</S>
- <S8 Index="2">
Oooo !
<Word Index="0">0ooo</Word>
<Word Index="3">!</Word>
</S>
- <S8 Index="3">
Tam bir festival havasi
<Word Index="0">Tam</Word>
<Word Index="1">bir</Word>
<Word Index="2">festival</Word>
<Word Index="3">havasi</Word>
<Word Index="4">.</Word>
</S>
- <S Index="4">
Her kafadan bir ses c¢ikiyor
<Word Index="0">Her</Word>
<Word Index="1">kafadan</Word>
<Word Index="2">bir</Word>
<Word Index="3">ses</Word>
<Word Index="4">cikiyor</Word>
<Word Index="5">.</Word>
</S>
- <S Index="5">

.28 _31068.txt">

Dinyanin bir ucunda da ayni , burnunuzun dibinde de

<Word Index="0">Dinyanin</Word>
<Word Index="1">bir</Word>
<Word Index="2">ucunda</Word>
<Word Index="3">da</Word>
<Word Index="4">ayni</Word>
<Word Index="6">,</Word>
<Word Index="6">burnunuzun</Word>
<Word Index="7">dibinde</Word>
<Word Index="8">de</Word>
<Word Index="6">...</Word>
<Word Index="10" />

</S>

167

APPENDIX C.4.1.4 (Cont'd.)

- <S Index="6">

fisekler , ginlerce siiren sarkilar , turkiler

tiyatrolar geliyor degil mi ?
<Word Index="0">Festival</Word>
<Word Index="1">denince</Word>
<Word Index="2">akliniza</Word>
<Word Index="3">karnaval</Word>
<Word Index="4">havasi</Word>
<Word Index="7">,</Word>
<Word Index="6">havai</Word>
<Word Index="7">figekler</Word>
<Word Index="7">,</Word>
<Word Index="9">ginlerce</Word>
<Word Index="10">sltiren</Word>
<Word Index="11l">sarkilar</Word>
<Word Index="7">,</Word>
<Word Index="13">tlUrkUler</Word>
<Word Index="7">,</Word>
<Word Index="15">tiyatrolar</Word>
<Word Index="16">geliyor</Word>
<Word Index="17">dedil</Word>
<Word Index="18">mi</Word>
<Word Index="7">7?</Word>

</S>

- <S Index="7">

Hayat da bdyle iste
<Word Index="0">Hayat</Word>
<Word Index="1">da</Word>
<Word Index="2">boyle</Word>
<Word Index="3">iste</Word>
<Word Index="8">.</Word>

</S>

- <S Index="8">

Tek fark , katilmak istesek de istemesek

alayinin ig¢indeyiz biz de !
<Word Index="0">Tek</Word>
<Word Index="1">fark</Word>
<Word Index="9">,</Word>
<Word Index="3">katilmak</Word>
<Word Index="4">istesek</Word>
<Word Index="5">de</Word>
<Word Index="6">istemesek</Word>
<Word Index="7">de</Word>
<Word Index="8">festival</Word>
<Word Index="9">alayinin</Word>
<Word Index="10">icindeyiz</Word>
<Word Index="11">biz</Word>
<Word Index="12">de</Word>
<Word Index="9">!</Word>

</S>

Festival denince akliniza karnaval havasi , havai

4

de

festival

168

169

APPENDIX C.4.1.4 (Cont'd.)

- <S8 Index="9">
Tarihte de festivaller iste boOyle hayat baglantisiyla
dogmus zaten
<Word Index="0">Tarihte</Word>
<Word Index="1">de</Word>
<Word Index="2">festivaller</Word>
<Word Index="3">iste</Word>
<Word Index="4">boyle</Word>
<Word Index="5">hayat</Word>
<Word Index="6">badlantisiyla</Word>
<Word Index="7">dodmus</Word>
<Word Index="8">zaten</Word>
<Word Index="10">.</Word>
</S>
- <S Index="10">
Dogumu , yeniden canlanmayil simgeleyen bahar aylarinda
ve olumi simgeleyen kis aylarinda baslarmis Eski
Yunan'da
<Word Index="0">DoJumu</Word>
<Word Index="11">,</Word>
<Word Index="2">yeniden</Word>
<Word Index="3">canlanmayi</Word>
<Word Index="4">simgeleyen</Word>
<Word Index="5">bahar</Word>
<Word Index="6">aylarinda</Word>
<Word Index="7">ve</Word>
<Word Index="8">dlumi</Word>
<Word Index="9">simgeleyen</Word>
<Word Index="10">kis</Word>
<Word Index="11">aylarinda</Word>
<Word Index="12">baslarmis</Word>
<Word Index="13">Eski</Word>
<Word Index="14">Yunan'da</Word>
<Word Index="11">...</Word>
<Word Index="16" />
</S>

APPENDIX C.4.2 Word Detection

APPENDIX C.4.2.1 Tagged Output (Sentence 1)

<File OriginalName="test.txt">
<p I="0">
<S Index="0">
Dogru soOyleyeni dokuz koyden kovarlar
<Word Index="0" Value="Dogru">
<R I="0" V="Do" T="isim">
<Suffixes>
<Sx I="0">
<TBEA-k>3</TBEA-k>
<TBEA-r>r</TBEA-r>
<TBEA-i>u</TBEA-1i>
</Sx>
- <8Sx I="1">
<TBAE-k>3</TBAE-k>
<YtuUR1>r</YtuUR1>
<DUAUyYKT3>u</DuAUyKT3>
</Sx>
- <8Sx I="2">
<TBAE-k>3</TBAE-k>
<DuECEttir>r</DuECEttir>
<DUAUyYKT3>u</DuAUyKT3>
</Sx>
- <8Sx I="3">
<TBAE-k>3</TBAE-k>
<YtuUR1>r</YtuUR1>
<DuADurBel>u</DuADurBel>
</Sx>
- <Sx I="4">
<TBAE-k>3</TBAE-k>
<DuECEttir>r</DuECEttir>
<DuADurBel>u</DuADurBel>

</Sx>

</Suffixes>

</R>
<R I="1" V="Dog" T="fiil">
<Suffixes>

<Sx I="0">

<TBEA-r>r</TBEA-r>

<TBEA-i>u</TBEA-1>
</Sx>

<Sx I="1">

<TBAE-r>r</TBAE-r>

<TBEE-i>u</TBEE-1>
</Sx>

- <8Sx I="2">

<YtuUR1>r</YtuUR1>

<DUAUyYKT3>u</DuAUyKT3>
</Sx>

170

APPENDIX C.4.2.1 (Cont’d.)

<Sx I="3">
<DuECEttir>r</DuECEttir>
<DUAUyYKT3>u</DuAUyKT3>
</Sx>
<Sx I="4">
<TBAE-r>r</TBAE-r>
<DUAUyYKT3>u</DuAUyKT3>
</Sx>
<Sx I="5">
<TBEA-r>r</TBEA-r>
<DUAUyYKT3>u</DuAUyKT3>
</Sx>
<Sx I="o6">
<YtuUR1>r</YtuUR1>
<DuADurBel>u</DuADurBel>
</Sx>
<Sx I="7">
<DuECEttir>r</DuECEttir>
<DuADurBel>u</DuADurBel>
</Sx>
<Sx I="8">
<TBAE-r>r</TBAE-r>
<DuADurBel>u</DuADurBel>
</Sx>
<Sx I="9">
<TBEA-r>r</TBEA-r>
<DuADurBel>u</DuADurBel>
</Sx>
</Suffixes>
</R>
<R I="2" V="Dogru" T="sifat">
<Suffixes />
</R>
</Word>
<Word Index="1" Value="sdyleyeni">
<R I="0" V="soyle" T="fiil">
<Suffixes>
<Sx I="0">
<TBEA-ay>y</TBEA-ay>
<TBEA-a>e</TBEA-a>
<TBEA-in>n</TBEA-in>
<TBEA-i>i</TBEA-1>
</Sx>
<Sx I="1">
<YS>y</YS>
<TBEA-a>e</TBEA-a>
<TBEA-in>n</TBEA-in>
<TBEA-i>i</TBEA-1>
</Sx>
<Sx I="2">
<TBEA-ay>y</TBEA-ay>
<TBEA-an>en</TBEA-an>
<TBEA-i>i</TBEA-1>
</Sx>

171

APPENDIX C.4.2.1 (Cont’d.)

- <8Sx I="3">
<YS>y</YS>
<TBEA-an>en</TBEA-an>
<TBEA-i>i</TBEA-1>
</Sx>
- <Sx I="4">
<TBEA-ay>y</TBEA-ay>
<TBEA-in>en</TBEA-in>
<TBEA-i>i</TBEA-1>
</Sx>
- <Sx I="5">
<YS>y</YS>
<TBEA-in>en</TBEA-in>
<TBEA-i>i</TBEA-1>
</Sx>
- <8Sx I="o6">
<TBEA-ay>y</TBEA-ay>
<TBAA-in>en</TBAA-in>
<DuAUyKT3>i</DuAUyKT3>
</Sx>
- <Sx I="7">
<TBAA-ay>y</TBAA-ay>
<TBAA-in>en</TBAA-in>
<DuAUyKT3>i</DuAUyKT3>
</Sx>
- <Sx I="8">
<TBEA-ay>y</TBEA-ay>
<TBAA-in>en</TBAA-in>
<DuADurBel>i</DuADurBel>
</Sx>
- <S8Sx I="9">
<TBAA-ay>y</TBAA-ay>
<TBAA-in>en</TBAA-in>
<DuADurBel>i</DuADurBel>
</Sx>
</Suffixes>
</R>
</Word>

<R I="0" V="do" T="isim">

<Suffixes>

<Sx I="0">

<TBEA-k>k</TBEA-k>

<TBEA-i>u</TBEA-1i>

<TBAA-z>z</TBAA-z>
</Sx>

- <Sx I="1">
<TBAA-k>k</TBAA-k>
<TBAA-iz>uz</TBAA-iz>

</Sx>

- <Sx I="2">

<TBEA-k>k</TBEA-k>

<TBAA-iz>uz</TBAA-iz>
</Sx>

<Word Index="2" Value="dokuz">

172

APPENDIX C.4.2.1 (Cont’d.)

</Suffixes>

</R>
<R I="1" v="dok" T="isim">
<Suffixes>

<Sx I="0">

<TBAA-iz>uz</TBAA-iz>
</Sx>

<Sx I="1">

<DuEKGrl1C2>uz</DuEKGrlC2>
</Sx>

<Sx I="2">

<DUuEKGr2Cl>uz</DuEKGr2C1l>
</Sx>

<Sx I="3">

<DUEKGr2C2>uz</DuEKGr2C2>
</Sx>

<Sx I="4">

<DuUEKGr3C2>uz</DuEKGr3C2>
</Sx>

<Sx I="5">

<DuEKGr4C2>uz</DuEKGr4cCc2>
</Sx>

</Suffixes>

</R>
<R I="2" V="doku" T="isim">
<Suffixes>

<Sx I="0">
<TBAA-z>z</TBAA-z>

</Sx>

</Suffixes>

</R>
<R I="2" V="doku" T="fiil">
<Suffixes>

<Sx I="0">
<TBAA-z>z</TBAA-z>

</Sx>

</Suffixes>

</R>
<R I="3" V="dokuz" T="isim">
<Suffixes />

</R>
<R I="3" V="dokuz" T="sifat">
<Suffixes />

</R>

</Word>
<Word Index="3" Value="kdyden">
<R I="0" v="koy" T="isim">
<Suffixes>
<Sx I="0">
<TBAS-dan>den</TBAS-dan>

</Sx>

173

APPENDIX C.4.2.1 (Cont’d.)

<Sx I="1">
<DuADurCik>den</DuADurCik>
</Sx>
</Suffixes>
</R>
</Word>
<Word Index="4" Value="kovarlar">
<R I="0" V="kov" T="isim">
<Suffixes>
<Sx I="0">
<TBAE-a>a</TBAE-a>
<YtuUR1>r</YtuUR1>
<DuASayC>lar</DuASayC>
</Sx>
<Sx I="1">
<TBAE-a>a</TBAE-a>
<DuECEttir>r</DuECEttir>
<DuASayC>lar</DuASayC>
</Sx>
<Sx I="2">
<YtuURl>ar</YtuUR1>
<DuASayC>lar</DuASayC>
</Sx>
<Sx I="3">
<DuECEttir>ar</DuECEttir>
<DuASayC>lar</DuASayC>
</Sx>
<Sx I="4">
<TBAE-r>ar</TBAE-r>
<DuASayC>lar</DuASayC>
</Sx>
<Sx I="5">
<TBEA-r>ar</TBEA-r>
<DuASayC>lar</DuASayC>
</Sx>
<Sx I="o6">
<DuEZGen>ar</DuEZGen>
<DuEKGr2C3>lar</DuEKGr2C3>

</Sx>

</Suffixes>

</R>
<R I="0" v="kov" T="fiil">
<Suffixes>

<Sx I="0">
<TBAE-a>a</TBAE-a>
<YtuUR1>r</YtuUR1>
<DuASayC>lar</DuASayC>
</Sx>
<Sx I="1">
<TBAE-a>a</TBAE-a>
<DuECEttir>r</DuECEttir>
<DuASayC>lar</DuASayC>
</Sx>

174

APPENDIX C.4.2.1 (Cont’d.)

<Sx I="2">

<YtuURl>ar</YtuUR1>

<DuASayC>lar</DuASayC>
</Sx>

<Sx I="3">

<DuECEttir>ar</DuECEttir>

<DuASayC>lar</DuASayC>
</Sx>

<Sx I="4">

<TBAE-r>ar</TBAE-r>

<DuASayC>lar</DuASayC>
</Sx>

<Sx I="5">

<TBEA-r>ar</TBEA-r>

<DuASayC>lar</DuASayC>
</Sx>

<Sx I="o6">

<DuEZGen>ar</DuEZGen>

<DuEKGr2C3>lar</DuEKGr2C3>

</Sx>

</Suffixes>

</R>
<R I="1" V="kova" T="isim">
<Suffixes>
<Sx I="0">
<YtuUR1>r</YtuUR1>
<DuASayC>lar</DuASayC>

</Sx>

<Sx I="1">
<DuECEttir>r</DuECEttir>
<DuASayC>lar</DuASayC>
</Sx>
<Sx I="2">
<TBAE-r>r</TBAE-r>
<DuASayC>lar</DuASayC>
</Sx>
<Sx I="3">
<TBEA-r>r</TBEA-r>
<DuASayC>lar</DuASayC>
</Sx>
<Sx I="4">
<DuEZGen>r</DuEZGen>
<DuEKGr2C3>lar</DuEKGr2C3>
</Sx>
</Suffixes>
</R>
</Word>
<Word Index="1" Value=".">
<Root Index="1" Value="." Type="n"
</Word>
</S>

/>

175

APPENDIX C.4.2.2 Tagged Output (Sentence 2)

<S5 Index="1">
Guzel koyun otlamaya c¢ikti
<Word Index="0" Value="Glzel">
<R I="0" v="Guz" T="isim">
<Suffixes>
<Sx I="0">
<TBAE-1>el</TBAE-1>
</Sx>
<Sx I="1">
<TBEA-1>el</TBEA-1>
</Sx>
<Sx I="2">
<TBAA-1>el</TBAA-1>
</Sx>
</Suffixes>
</R>
<R I="1" V="Gluzel" T="isim">
<Suffixes />
</R>
<R I="1" V="Gluzel" T="sifat">
<Suffixes />
</R>
<R I="1" V="Gluzel" T="zarf">
<Suffixes />
</R>
</Word>
<Word Index="1" Value="koyun">
<R I="0" V="koy" T="isim">
<Suffixes>
<Sx I="0">
<DuAUyKT2>un</DuAUyKT2>
</Sx>
<Sx I="1">
<DuADurTam>un</DuADurTam>
</Sx>
<Sx I="2">
<DuECEdil>un</DuECEdil>
</Sx>
<Sx I="3">
<DuECDonus>un</DuECDonus>
</Sx>
<Sx I="4">
<DuEKGr4C2>un</DuEKGr4cCc2>
</Sx>
<Sx I="5">
<TBEA-in>un</TBEA-in>
</Sx>
<Sx I="o6">
<TBAA-in>un</TBAA-in>
</Sx>
</Suffixes>
</R>

176

APPENDIX C.4.2.2 (Cont’d.)

<R I="Q" V="koy" T="fiil">
<Suffixes>
<Sx I="0">
<DuAUyKT2>un</DuAUyKT2>
</Sx>
<Sx I="1">
<DuADurTam>un</DuADurTam>
</Sx>
<Sx I="2">
<DuECEdil>un</DuECEdil>
</Sx>
<Sx I="3">
<DuECDonus>un</DuECDonus>
</Sx>
<Sx I="4">
<DuEKGr4C2>un</DuEKGr4cCc2>
</Sx>
<Sx I="5">
<TBEA-in>un</TBEA-in>
</Sx>
<Sx I="o6">
<TBAA-in>un</TBAA-in>
</Sx>
</Suffixes>
</R>
<R I="1" v="koyu" T="sifat">
<Suffixes>
<Sx I="0">
<DUAUYKT2>n</DuAUyKT2>
</Sx>
<Sx I="1">
<DuECEdil>n</DuECEdil>
</Sx>
<Sx I="2">
<DuECDonus>n</DuECDonus>
</Sx>
<Sx I="3">
<DUEKGrl1lT2>n</DuEKGrl1T2>
</Sx>
<Sx I="4">
<TBEA-in>n</TBEA-in>
</Sx>
<Sx I="5">
<TBAA-in>n</TBAA-in>
</Sx>
<Sx I="o6">
<YsS>n</YS>
</Sx>
</Suffixes>
</R>

177

APPENDIX C.4.2.2 (Cont’d.)

<R I="2" V="koyun" T="isim">
<Suffixes />
</R>
</Word>
<Sx I="2">
<DuECEdil>un</DuECEdil>
</Sx>
<Sx I="3">
<DuECDonus>un</DuECDonus>
</Sx>
<Sx I="4">
<DuEKGr4C2>un</DuEKGr4cCc2>
</Sx>
<Sx I="5">
<TBEA-in>un</TBEA-in>
</Sx>
<Sx I="o6">
<TBAA-in>un</TBAA-in>
</Sx>
</Suffixes>
</R>
<R I="0" V="koy" T="fiil">
<Suffixes>
<Sx I="0">
<DuAUyKT2>un</DuAUyKT2>
</Sx>
<Sx I="1">
<DuADurTam>un</DuADurTam>
</Sx>
<Sx I="2">
<DuECEdil>un</DuECEdil>
</Sx>
<Sx I="3">
<DuECDonus>un</DuECDonus>
</Sx>
<Sx I="4">
<DuEKGr4C2>un</DuEKGr4cCc2>
</Sx>
<Sx I="5">
<TBEA-in>un</TBEA-in>
</Sx>
<Word Index="2" Value="otlamaya">
<R I="0" vV="o" T="sifat">
<Suffixes>
<Sx I="0">
<TBEA-t>t</TBEA-t>
<TBEA-1>1</TBEA-1>
<TBEA-a>a</TBEA-a>
<TBEA-am>m</TBEA-am>
<TBEA-a>a</TBEA-a>
<TBEA-ay>y</TBEA-ay>
<TBEA-a>a</TBEA-a>
</Sx>

178

APPENDIX C.4.2.2 (Cont’d.)

- <Sx I="1">
<TBEA-t>t</TBEA-t>
<TBEA-1>1</TBEA-1>
<TBEA-a>a</TBEA-a>
<TBEA-am>m</TBEA-am>
<TBEA-ay>ay</TBEA-ay>
<TBEA-a>a</TBEA-a>

</Sx>

- <Sx I="2">
<TBEA-t>t</TBEA-t>
<TBEA-1>1</TBEA-1>
<TBEA-a>a</TBEA-a>
<TBEA-ma>ma</TBEA-ma>
<TBEA-ay>y</TBEA-ay>
<TBEA-a>a</TBEA-a>

</Sx>

- <Sx I="3">
<TBEA-t>t</TBEA-t>
<TBEA-1>1</TBEA-1>
<TBEA-am>am</TBEA-am>
<TBEA-a>a</TBEA-a>
<TBEA-ay>y</TBEA-ay>
<TBEA-a>a</TBEA-a>

</Sx>

- <Sx I="4">
<TBEA-t>t</TBEA-t>
<TBEA-1>1</TBEA-1>
<TBEA-am>am</TBEA-am>
<TBEA-ay>ay</TBEA-ay>
<TBEA-a>a</TBEA-a>

</Sx>

</Suffixes>

</R>
<R I="0" v="o" T="zamir">
<Suffixes>

<Sx I="0">
<TBEA-t>t</TBEA-t>
<TBEA-1>1</TBEA-1>
<TBEA-a>a</TBEA-a>
<TBEA-am>m</TBEA-am>
<TBEA-a>a</TBEA-a>
<TBEA-ay>y</TBEA-ay>
<TBEA-a>a</TBEA-a>
</Sx>
- <8Sx I="1">
<TBEA-t>t</TBEA-t>
<TBEA-1>1</TBEA-1>
<TBEA-a>a</TBEA-a>
<TBEA-am>m</TBEA-am>
<TBEA-ay>ay</TBEA-ay>
<TBEA-a>a</TBEA-a>
</Sx>

179

APPENDIX C.4.2.2 (Cont’d.)

- <8Sx I="2">
<TBEA-t>t</TBEA-t>
<TBEA-1>1</TBEA-1>
<TBEA-a>a</TBEA-a>
<TBEA-ma>ma</TBEA-ma>
<TBEA-ay>y</TBEA-ay>
<TBEA-a>a</TBEA-a>

</Sx>

- <8Sx I="3">
<TBEA-t>t</TBEA-t>
<TBEA-1>1</TBEA-1>
<TBEA-am>am</TBEA-am>
<TBEA-a>a</TBEA-a>
<TBEA-ay>y</TBEA-ay>
<TBEA-a>a</TBEA-a>

</Sx>

- <Sx I="4">
<TBEA-t>t</TBEA-t>
<TBEA-1>1</TBEA-1>
<TBEA-am>am</TBEA-am>
<TBEA-ay>ay</TBEA-ay>
<TBEA-a>a</TBEA-a>

</Sx>
</Suffixes>
</R>

<Suffixes>
<Sx I="0">
<TBEA-t>t</TBEA-t>
<TBEA-1>1</TBEA-1>
<TBEA-a>a</TBEA-a>
<TBEA-am>m</TBEA-am>
<TBEA-a>a</TBEA-a>
<TBEA-ay>y</TBEA-ay>
<TBEA-a>a</TBEA-a>
</Sx>
- <8Sx I="1">
<TBEA-t>t</TBEA-t>
<TBEA-1>1</TBEA-1>
<TBEA-a>a</TBEA-a>
<TBEA-am>m</TBEA-am>
<TBEA-ay>ay</TBEA-ay>
<TBEA-a>a</TBEA-a>
</Sx>
- <8Sx I="2">
<TBEA-t>t</TBEA-t>
<TBEA-1>1</TBEA-1>
<TBEA-a>a</TBEA-a>
<TBEA-ma>ma</TBEA-ma>
<TBEA-ay>y</TBEA-ay>
<TBEA-a>a</TBEA-a>
</Sx>

<R I="0" V="o" T="iinlem">

180

APPENDIX C.4.2.2 (Cont’d.)

- <Sx I="3">
<TBEA-t>t</TBEA-t>
<TBEA-1>1</TBEA-1>
<TBEA-am>am</TBEA-am>
<TBEA-a>a</TBEA-a>
<TBEA-ay>y</TBEA-ay>
<TBEA-a>a</TBEA-a>

</Sx>

- <Sx I="4">
<TBEA-t>t</TBEA-t>
<TBEA-1>1</TBEA-1>
<TBEA-am>am</TBEA-am>
<TBEA-ay>ay</TBEA-ay>
<TBEA-a>a</TBEA-a>

</Sx>

</Suffixes>

</R>
<R I="1" v="ot" T="isim">
<Suffixes>

<Sx I="0">
<TBEA-1>1</TBREA-1>
<TBEA-a>a</TBEA-a>
<TBEA-am>m</TBEA-am>
<TBEA-a>a</TBEA-a>
<TBEA-ay>y</TBEA-ay>
<TBEA-a>a</TBEA-a>
</Sx>
- <S8Sx I="1">
<TBEA-1>1</TBREA-1>
<TBEA-a>a</TBEA-a>
<TBEA-am>m</TBEA-am>
<TBEA-ay>ay</TBEA-ay>
<TBEA-a>a</TBEA-a>
</Sx>
- <8Sx I="2">
<TBEA-1>1</TBEA-1>
<TBEA-a>a</TBEA-a>
<TBEA-ma>ma</TBEA-ma>
<TBEA-ay>y</TBEA-ay>
<TBEA-a>a</TBEA-a>
</Sx>
- <8Sx I="3">
<TBEA-1>1</TBEA-1>
<TBEA-am>am</TBEA-am>
<TBEA-a>a</TBEA-a>
<TBEA-ay>y</TBEA-ay>
<TBEA-a>a</TBEA-a>
</Sx>
- <Sx I="4">
<TBEA-1>1</TBEA-1>
<TBEA-am>am</TBEA-am>
<TBEA-ay>ay</TBEA-ay>
<TBEA-a>a</TBEA-a>
</Sx>

181

APPENDIX C.4.2.2 (Cont’d.)

<Sx I="5">
<TBAE-la>la</TBAE-la>
<YtuAdlMa>ma</YtuAdlMa>
<YS>y</YS>
<DuADurYon>a</DuADurYon>
</Sx>
<Sx I="o6">
<TBAE-la>la</TBAE-la>
<YtuUMa>ma</YtuUMa>
<YS>y</YS>
<DuADurYon>a</DuADurYon>
</Sx>
<Sx I="7">
<TBAE-la>la</TBAE-la>
<DuEOlz>ma</DuEOlz>
<YS>y</YS>
<DuADurYon>a</DuADurYon>
</Sx>
</Suffixes>
</R>

<R I="1" V="ot" T="sifat">

<Suffixes>
<Sx I="0">
<TBEA-1>1</TBEA-1>
<TBEA-a>a</TBEA-a>
<TBEA-am>m</TBEA-am>
<TBEA-a>a</TBEA-a>
<TBEA-ay>y</TBEA-ay>
<TBEA-a>a</TBEA-a>
</Sx>
<Sx I="1">
<TBEA-1>1</TBEA-1>
<TBEA-a>a</TBEA-a>
<TBEA-am>m</TBEA-am>
<TBEA-ay>ay</TBEA-ay>
<TBEA-a>a</TBEA-a>
</Sx>
<Sx I="2">
<TBEA-1>1</TBEA-1>
<TBEA-a>a</TBEA-a>
<TBEA-ma>ma</TBEA-ma>
<TBEA-ay>y</TBEA-ay>
<TBEA-a>a</TBEA-a>
</Sx>
<Sx I="3">
<TBEA-1>1</TBEA-1>
<TBEA-am>am</TBEA-am>
<TBEA-a>a</TBEA-a>
<TBEA-ay>y</TBEA-ay>
<TBEA-a>a</TBEA-a>
</Sx>

182

APPENDIX C.4.2.2 (Cont’d.)

<Sx I="4">
<TBEA-1>1</TBEA-1>
<TBEA-am>am</TBEA-am>
<TBEA-ay>ay</TBEA-ay>
<TBEA-a>a</TBEA-a>
</Sx>
<Sx I="5">
<TBAE-la>la</TBAE-la>
<YtuAdlMa>ma</YtuAdlMa>
<YS>y</YS>
<DuADurYon>a</DuADurYon>
</Sx>
<Sx I="o6">
<TBAE-la>la</TBAE-la>
<YtuUMa>ma</YtuUMa>
<YS>y</YS>
<DuADurYon>a</DuADurYon>
</Sx>
<Sx I="7">
<TBAE-la>la</TBAE-la>

<DuEOlz>ma</DuEOlz>
<YS>y</YS>
<DuADurYon>a</DuADurYon>
</Sx>
</Suffixes>
</R>
<R I="2" V="otla" T="fiil">
<Suffixes>

<Sx I="0">
<TBEA-am>m</TBEA-am>
<TBEA-a>a</TBEA-a>
<TBEA-ay>y</TBEA-ay>
<TBEA-a>a</TBEA-a>
</Sx>
<Sx I="1">
<TBEA-am>m</TBEA-am>
<TBEA-ay>ay</TBEA-ay>
<TBEA-a>a</TBEA-a>
</Sx>
<Sx I="2">
<TBEA-am>m</TBEA-am>
<TBAA-ay>ay</TBAA-ay>
<DuADurYon>a</DuADurYon>
</Sx>
<Sx I="3">
<TBEA-ma>ma</TBEA-ma>
<TBEA-ay>y</TBEA-ay>
<TBEA-a>a</TBEA-a>
</Sx>
<Sx I="4">
<TBEA-ma>ma</TBEA-ma>
<TBAA-ay>y</TBAA-ay>
<DuADurYon>a</DuADurYon>
</Sx>

183

APPENDIX C.4.2.2 (Cont’d.)

- <Sx I="5">
<YtuAdlMa>ma</YtuAdlMa>
<YS>y</YS>
<DuADurYon>a</DuADurYon>

</Sx>

- <8Sx I="o6">
<YtuUMa>ma</YtuUMa>
<YS>y</YS>
<DuADurYon>a</DuADurYon>

</Sx>

- <Sx I="7">
<TBEA-ma>ma</TBEA-ma>

<YS>y</YS>
<DuADurYon>a</DuADurYon>
</Sx>
- <Sx I="8">
<DuEOlz>ma</DuEOlz>
<YS>y</YS>
<DuADurYon>a</DuADurYon>
</Sx>
</Suffixes>
</R>
<R I="3" V="otlama" T="isim">
<Suffixes>

<Sx I="0">
<TBEA-ay>y</TBEA-ay>
<TBEA-a>a</TBEA-a>
</Sx>
<Sx I="1">
<YS>y</YS>
<TBEA-a>a</TBEA-a>
</Sx>
- <8Sx I="2">
<TBEA-ay>y</TBEA-ay>
<DuADurYon>a</DuADurYon>
</Sx>
- <8Sx I="3">
<TBAA-ay>y</TBAA-ay>
<DuADurYon>a</DuADurYon>
</Sx>
- <Sx I="4">
<YS>y</YS>
<DuADurYon>a</DuADurYon>
</Sx>
</Suffixes>
</R>
</Word>
<Word Index="3" Value="cikti">
<R I="Q" V="cik" T="fiil">
<Suffixes>
<Sx I="0">
<KDi>ti1</KDi>
</Sx>

184

185

APPENDIX C.4.2.2 (Cont’d.)

- <8Sx I="1">
<YtuUDI1>ti1</YtuUDI1>
</Sx>
- <8Sx I="2">
<TBEA-di>ti1</TBEA-di>
</Sx>
- <S8Sx I="3">
<DuEZGD>t1</DuEZGD>
</Sx>
- <Sx I="4">
<DuEGBRitD>t1</DuEGBitD>
</Sx>
- <Sx I="5">
<TBEA-ti>ti1</TBEA-ti>
</Sx>
</Suffixes>
</R>
- <R I="1" v="cikt1i" T="isim">
<Suffixes />
</R>
</Word>
- <Word Index="2" Value=".">
<Root Index="2" Value="." Type="n" />
</Word>
</S>
</P>
</File>

APPENDIX C.4.2.3 Eliminated Output (Sentence 2)

<S5 Index="1">
Guzel koyun otlamaya c¢ikta
<Word Index="0" Value="Glzel">
<R I="0" V="Gluzel" T="isim">
<Suffixes />
</R>
<R I="0" V="Gluzel" T="sifat">
<Suffixes />
</R>
- <R I="0" V="Glizel" T="zarf">
<Suffixes />
</R>
</Word>
<Word Index="1" Value="koyun">
<R I="0" V="koy" T="isim">
<Suffixes>
<Sx I="0">
<DuAUyKT2>un</DuAUyKT2>
</Sx>
<Sx I="1">
<DuADurTam>un</DuADurTam>
</Sx>
- <8Sx I="2">
<DuECEdil>un</DuECEdil>
</Sx>
- <S8Sx I="3">
<DuECDonus>un</DuECDonus>
</Sx>
- <Sx I="4">
<DuEKGr4C2>un</DuEKGr4cCc2>

</Sx>

</Suffixes>

</R>
<R I="1" v="koyu" T="sifat">
<Suffixes>

<Sx I="0">
<DUAUYKT2>n</DuAUyKT2>
</Sx>
<Sx I="1">
<DuECEdil>n</DuECEdil>
</Sx>
- <8Sx I="2">
<DuECDonus>n</DuECDonus>
</Sx>
- <S8Sx I="3">
<DUEKGrl1lT2>n</DuEKGrl1T2>
</Sx>
- <Sx I="4">
<YsS>n</YS>
</Sx>
</Suffixes>
</R>

186

APPENDIX C.4.2.3 (Cont'd.)

<R I="2" V="koyun" T="isim">
<Suffixes />
</R>
</Word>
<Word Index="2" Value="otlamaya">
<R I="0" v="otla" T="fiil">
<Suffixes>
<Sx I="0">
<DuEOlz>ma</DuEOlz>
<YS>y</YS>
<DuADurYon>a</DuADurYon>
</Sx>
</Suffixes>
</R>
<R I="1" V="otlama" T="isim">
<Suffixes>
<Sx I="0">
<YS>y</YS>
<DuADurYon>a</DuADurYon>
</Sx>
</Suffixes>
</R>
</Word>
<Word Index="3" Value="cikti">
<R I="0" V="cik" T="fiil">
<Suffixes>
<Sx I="0">
<KDi>ti</KDi>
</Sx>
<Sx I="1">
<DuEZGD>t1</DuEZGD>
</Sx>
<Sx I="2">
<DuEGBRitD>t1</DuEGBRitD>
</Sx>
</Suffixes>
</R>
<R I="1" V="c¢ikt1" T="isim">
<Suffixes />
</R>
</Word>
<Word Index="2" Value=".">
<Root Index="2" Value="." Type="n"
</Word>
</S>
</P>

/>

187

APPENDIX C.4.2.4 Suffixes Not Tagged

<File OriginalName="test.txt">
<p I="0">
<S Index="0">

Dogru sOyleyeni dokuz koyden kovarlar

<Word Index="0" Value="Dogru">
<R I="0" V="Do" T="isim">
<Suffixes>§ + r + u</Suffixes>
</R>
<R I="1" Vv="Dog" T="fiil">
<Suffixes>r + u</Suffixes>
</R>
<R I="2" V="DoJru" T="sifat">
<Suffixes />
</R>
</Word>
<Word Index="1" Value="sdyleyeni">
<R I="0" Vv="soyle" T="fiil">
<Suffixes>y + e + n + i</Suffixes>
</R>
</Word>
<Word Index="2" Value="dokuz">
<R I="0" v="do" T="isim">
<Suffixes>k + u + z</Suffixes>
</R>
<R I="1" vV="dok" T="isim">
<Suffixes>uz</Suffixes>
</R>
<R I="2" v="doku" T="isim">
<Suffixes>z</Suffixes>
</R>
<R I="2" V="doku" T="fiil">
<Suffixes>z</Suffixes>
</R>
<R I="3" V="dokuz" T="isim">
<Suffixes />
</R>
<R I="3" V="dokuz" T="sifat">
<Suffixes />
</R>
</Word>
<Word Index="3" Value="kdyden">
<R I="0" v="koy" T="isim">
<Suffixes>den</Suffixes>
</R>
</Word>
<Word Index="4" Value="kovarlar">
<R I="0" V="kov" T="isim">
<Suffixes>a + r + lar</Suffixes>
</R>
<R I="0" v="kov" T="fiil">
<Suffixes>a + r + lar</Suffixes>
</R>

188

APPENDIX C.4.2.4 (Cont'd.)

<R I="1" V="kova" T="isim">
<Suffixes>r + lar</Suffixes>
</R>
</Word>
<Word Index="1" Value=".">
<Root Index="1" Value="." Type="n" />
</Word>
</S>
<S5 Index="1">
Guzel koyun otlamaya c¢ikta
<Word Index="0" Value="Glzel">
<R I="0" Vv="Guz" T="isim">
<Suffixes>el</Suffixes>
</R>
<R I="1" V="Gluzel" T="isim">
<Suffixes />
</R>
<R I="1" V="Gluzel" T="sifat">
<Suffixes />
</R>
<R I="1" vV="Gluzel" T="zarf">
<Suffixes />
</R>
</Word>
<Word Index="1" Value="koyun">
<R I="0" V="koy" T="isim">
<Suffixes>un</Suffixes>
</R>
<R I="0" V="koy" T="fiil">
<Suffixes>un</Suffixes>
</R>
<R I="1" v="koyu" T="sifat">
<Suffixes>n</Suffixes>
</R>
<R I="2" V="koyun" T="isim">
<Suffixes />
</R>
</Word>
<Word Index="2" Value="otlamaya">
<R I="0" Vv="o" T="sifat">
<Suffixes>t + 1 + a + m + a + y + a</Suffixes>
</R>
<R I="0" v="o" T="zamir">
<Suffixes>t + 1 + a + m + a + y + a</Suffixes>
</R>
<R I="0" Vv="o" T="inlem">
<Suffixes>t + 1 + a + m + a + y + a</Suffixes>
</R>
<R I="1" Vv="ot" T="isim">
<Suffixes>l + a + m + a + y + a</Suffixes>
</R>

189

APPENDIX C.4.2.4 (Cont'd.)

<R I="1" V="ot" T="sifat">
<Suffixes>l + a + m + a + y + a</Suffixes>
</R>
<R I="2" V="otla" T="fiil">
<Suffixes>m + a + y + a</Suffixes>
</R>
<R I="3" V="otlama" T="isim">
<Suffixes>y + a</Suffixes>
</R>
</Word>
<Word Index="3" Value="cikti">
<R I="0" V="cik" T="fiil">
<Suffixes>ti</Suffixes>
</R>
<R I="1" V="cikti" T="isim">
<Suffixes />
</R>
</Word>
<Word Index="2" Value=".">
<Root Index="2" Value="." Type="n" />
</Word>
</S>
</P>
</File>

190

APPENDIX C.4.3 POS Tagging Module

<File OriginalName="test.txt">
<S Index="0">
<Word Index="0" Value="Dogru">
<T Name="sifat" />
<R I="0" V="Dogru">
<Suffixes />

</R>

</Word>

<Word Index="1" Value="sdoyleyeni">

<T Name="fiil" />
<R I="Q0" V="soyle">
<Suffixes>
<Sx I="0">
<TBEA-ay />
<TBAA-in />
<DuAUYKT3 />
</Sx>
- <8Sx I="1">
<TBEA-ay />
<TBAA-in />
<DuADurBel />
</Sx>
</Suffixes>
</R>
</Word>
- <Word Index="2" Value="dokuz">
<T Name="isim" />
- <R I="0" Vv="dokuz">
<Suffixes />
</R>
</Word>

<Word Index="3" Value="kdoyden">

<T Name="isim" />
<R I="0" V="kOy">
<Suffixes>
<Sx I="0">
<TBAS-dan />
</Sx>
<Sx I="1">
<DuADurCik />
</Sx>
</Suffixes>
</R>
</Word>

<Word Index="4" Value="kovarlar">

<T Name="fiil" />

<R I="1" v="kov">

<Suffixes>

<Sx I="0">

<DuEZGen />

<DuEKGr2C3 />
</Sx>
</Suffixes>
</R>

191

APPENDIX C.4.3 (Cont’d.)

<T Name="isim" />
<R I="0" V="kov">
<Suffixes>
<Sx I="0">
<TBAE-r />
<DuASayC />

</Sx>
</Suffixes>
</R>
<R I="2" V="kova">
<Suffixes>

<Sx I="0">
<TBAE-r />
<DuASayC />
</Sx>
</Suffixes>
</R>
</Word>
<Word Index="1" Value="." />
</S>
<S5 Index="1">
<Word Index="0" Value="Glzel">
<T Name="isim" />
<R I="0" V="Gluzel">
<Suffixes />
</R>
</Word>
<Word Index="1" Value="koyun">
<T Name="isim" />
<R I="0" V="koy">
<Suffixes>
<Sx I="0">
<DUAUYKT2 />
</Sx>
<Sx I="1">
<DuADurTam />
</Sx>
</Suffixes>
</R>
<R I="2" V="koyun">
<Suffixes />
</R>
</Word>
<Word Index="2" Value="otlamaya">
<T Name="isim" />
<R I="1" V="otlama">
<Suffixes>
<Sx I="0">
<TBAA-ay />
<DuADurYon />
</Sx>
<Sx I="1">
<YS />
<DuADurYon />
</Sx>

192

APPENDIX C.4.3 (Cont’d.)

</R>
</Word>
<Word Index="3" Value="cikti">
<T Name="fiil" />
<R I="0" V="cik">
<Suffixes>
<Sx I="0">
<KDi />
</Sx>
<Sx I="1">
<DuEZGD />
</Sx>
<Sx I="2">
<DuEGBitD />
</Sx>
</Suffixes>
</R>
</Word>
<Word Index="2" Value="." />
</S>
</File>

193

194

APPENDIX C.4.4 Sample Output 2

Text File:

Gelecek yi1lin miifredat1 hazirlandi.

Output of “Sentence Boundary Detection” Module:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
- <F N="sample2.txt">
- <P I="0">
<S I="0">Gelecek yihn mifredat! hazirlandi .</S>
</P>
</F>

Output of “Sentence Boundary Detection — with words” Module (Input of the
“Finding Stem/Root” Module):

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
- <File OriginalName="sample2.txt">
- <PI="0">
- <S Index="0">
Gelecek yilin mifredati hazirlandi .
<Word Index="0">Gelecek</Word>
<Word Index="1">yilin</Word>
<Word Index="2">miufredati</Word>
<Word Index="3">hazirlandi</Word>
<Word Index="1">.</Word>
</S>
</P>
</File>

APPENDIX C.4.4 (Cont’d.)
Output of “Finding Roots” Module:

- =File Originallame="8amplel.txt":
- <P I="0">
- <5 Index="0"=

Gelecek yilin miifredati hazirlandi .

- <Waord Index="0" Yalue="Gelecek"=
+ =R 1="0" v="Gel" T="fiil"=
+ <R I="1" ¥="Gele" T="isim"=
+ <R 1="2" v="Gelecek" T="isim">
+ <R 1="2" v="Gelecek" T="sifat":
< \Word=

- <Waord Index="1" ¥alue="yilin"=
+ <R I="0" v="yil" T="isim"=
+ =R I="0" v="wil" T="fiil"=
<M ordzs

- <Word Index="2" Yalue="miifredat"=
+ =R I="0" V="miifred" T="isim">
+ =R I="1" V="miifredat" T="isim">
<M ords

- «<\Word Index="3" Yalue="haziland">
+ <R 1="0" ¥="hazi+" T="sifat"=
+ <R I="D" V="hazir" T="zarf">
+ =R I="1" V="hazirla" T="fiil"=
+ =R [="2" V="hazirlan" T="fiil"=
<M ords

+ <Word Index="1" ¥alue="">

<5

</P=
=/Filex

Output of “Finding Stems” Module:

— =File OriginalMame="8amplel.txt"=
- =P I="0"=
- <5 Index="0">

Gelecek yilin miifredat: hazirlandr .

- <word Index="0" “alue="Gelecek"=
+ <R I="0" v="Gel" T="fiil">
+ <R [="1" ¥="Gelecek" T="isim">
+ <R I="1" ¥="Gelecek" T="sifat">
< Wordzs

- =wWaord Index="1" “alue="y1lin"=
+ <R I="0" ¥W="yil" T="isim">
+ <R I="0" w="yil" T="fiil"=
= Wwordz=

- <wWord Index="2" Yalue="mifredat!">
+ <R [="0" v="mifred" T="isim"=
+ <R [="1" ¥="miifredat" T="isim">
< W ords

- <wWord Indexz="3" “alue="hazirlandi"=
+ <R I="0" Y="hazirla" T="fiil"=
+ =R I="1" “="hazirlan" T="fiil"=
< W ords=

+ =Wword Index="1" Yalug="."=

</S>

</ P>
</ Filex

195

APPENDIX C.4.4 (Cont’d.)

196

Output of “Eliminating Root/Stem and Suffixes according to the Type of Suffixes”

Module:

- <File OriginalMame="Samplel.txt"=
- =P I="0"=
- <5 Index="0">

Gelecek yilin miifredati hazirland .

- <Word Ihdex="0" Yalue="Gelecek"=
+ <R I1="0" ¥="Gel" T="fiil"=
+ <R I="1" ¥="Gele" T="isim"=
+ =R I="2" v="Gelecek" T="isim"=
+ =R I="2" V="Gelecek" T="sifat">
< wordzs

- <Wword Index="1" Yalue="yilin">
+ <R I="0" v="yil" T="isim">
+ <R I="0" v="wil" T="fiil">
</ Words

- <Word Index="2" Yalue="miifredat!">
+ =R I="0" ¥="miifred" T="isim"=
+ <R I="1" ¥="miifredat" T="isim">
< ord=

- <\Word Index="3" Yalue="hazirlandi"=
+ =R I="1" ¥="hazirla" T="fiil">
+ =R I="2" ¥="hazirlan" T="fiil">
< /Wordz=

+ <Word Index="1" Yalug="."=

/5>

/P
«/File=

Output of “POS Tagging” Module:

- <File OriginalName="Samplel.txt"=
- <5 Index="0"=
- <Word Index="0" “alue="Gelecek"=
=T Mame="isim" /=
+ <R [="1" ¥="Gele">
+ <R [="2" ¥="Gelecek">
< Mwordz
- <Word Index="1" Y“alue="yilin"=
T Mame="isim" /=
+ <R I="0" ¥="wyil"=>
< Mwords
- <Word Index="2" ¥alue="miifredat1"=
=T Mame="isim" /=
+ <R [="0" ¥="miifred"=
+ <R [="1" ¥="miifredat">
</ wWords
- <\Word Index="3" %alue="hazirland1"=
=T Mame="fiil" /=
+ <R [="2" ¥="hazirla">
+ =R [="3" ¥="hazirlan"=
< Mwords
<Wwaord Index="1" “alue="." /=
/5=
</File=

APPENDIX C.4.5 Sample Output 3

Text File:

Konuklar bu aksam yemede gelecek.

Output of “Finding All Roots, Stems and Suffixes” Module:

<File OriginalName="test.txt" >
- <PI="0">
- <S5 Index="0">
Konuklar bu aksam yemede gelecek .
- <Word Index="0" Value="Konuklar" =
<R I="0" V="Kon" T="fill" >
<R I="1" ¥="Konu" T="isim" >
<R I="2" V="Konuk" T="6zel isim" >
<R I="2" V="Konuk" T="isim" =
+ <R I="3" V="Konukla" T="fiil" >
</Word:>
<Word Index="1" Value="bu">
+ <RI="0"V="bu" T="sifat">
+ <RI="0"V="bu" T="zamir" >
</Wordz
<Word Index="2" Value="aksam" >
+ <RI="0"V="3a" T="Unlem">
<RI="1"Vv="ak" T="isim">
<RI="1"v="ak" T="fiill">

+ 04+ 1+ 1+ 1+

I+ 1+ |+

<RI="1"v="ak" T="sifat" >
+ <RI="2" V="aksam" T="isim" >
</Word>

<Word Index="3" Value="yemede" >
+ <R I="0" v="ye" T="fiil" >
<RI="1"V="yem" T="isim">
<R I="2" V="yeme" T="isim" =
+ <RI="3" V="yemegd" T="isim">
</Word>»
<Word Index="4" Value="gelecek" =
+ <RI="0" V="gel" T="fill">
<R I="1" V="gele" T="isim" >
<R I="2" V="gelecek” T="isim" >
<R I="2" V="gelecek” T="sIfat" >
</Word:>
- <«Word Index="1" Value=".">
<Root Index="1" Value="." Type="n" /=
</Word:>
<fS>
< /P>
</File>

14 1+

197

198

APPENDIX C.4.5 (Cont’d.)

Output of “Finding Stems and Suffixes” Module:

- <File OriginalName="test.txt" >
- <PI="0">
- <5 Index="0">
Konuklar bu aksam yemede gelecek .
- <Word Index="0" Value="Konuklar" >
+ <R I="0" V="Konuk” T="isim"»
+ <R I="1" V="Konukla" T="fiil">
</Word:
<Word Index="1" Value="bu"=
<R I1="0" V="bu" T="sifat" >
+ <R1="0" v="bu" T="zamir">
</Word:=>
<Word Index="2" Value="aksam" >
+ <RI1="0" v="aksam" T="isim" >
</Word:>
<Word Index="3" Value="yemedge" >
+ <R1="0" V="yemeg" T="isim">
</Word:>
- <Word Index="4" Value="gelecek” >
+ <R1="0" v="gel" T="fill" >
<R 1="1"Vv="gelecek” T="isim" =
+ <R 1="1"v="gelecek” T="sifat" >
</Word>
+ <Word Index="1" value=".">
</Word>
</S>
<[P
</Filex>

[I
+ |+

+

Output of “Eliminating Roots and Suffixes according to the Type of Suffixes”
Module:

<File OriginalName="test.txt" >
<PI="0">
- <5 Index="0":>
Konuklar bu aksam yemege gelecek .
- <Word Index="0" Value="Konuklar” >
+ <RI="2" v="Konuk" T="isim">
+ <R I="3" v="Konukla" T="fiil" >
</Word:»
- «Word Index="1" vValue="bu" >
+ <RI="0" ¥="bu" T="sifat" >
+ <RI="0"Vv="bu" T="zamir >
</Word:>
- <Word Index="2" Value="aksam" >
+ <RI="2" v="aksam" T="isim" >
</Word=
- <Word Index="2" Value="yemege" >
+ <RI="3" V="yemegd" T="isim">
</word:=
- «Word Index="4" value="gelecek" =
<RI="0"V="gel" T="fil">
<RI="2"v="gelecek” T="isim">
<R I="2" v="gelecek" T="sifat" >
</Word:>
+ <Word Index="1" Value=""=
</S5>
<[P>
<fFile>

»

B EE:

APPENDIX C.4.5 (Cont’d.)

Output of “POS Tagging” Module (input all roots, stems and suffixes):

</File=

- =File OriginalName ="test.txt"=
= <5 Index="0">
= <Ward Index="0" Value="Konuklar"=

<T Name="fill" /=
+ <R I="0" ¥="Kon"=
4 =R I="4" V="Konukla"=
</Word>

- <Waord Index="1" Valug="bu"=>

<T Name="sifat" />
+ <R I1="0"V="bu">
</Word=

zWord Index="2" Value="aksam"=>

<T Name="isim" />
<R I="1"V="ak">

<R I="4" vV="aksam"=
</Word=

| I+

<Word Index="3" Value="yemeje">

«T Name="iIsm" />
<R I="1" V="yem">
<R I="2" V="yeme">
<R 1="3" V="yeme&">
</Word=>

EENE!

zWord Index="4" Value="gelecek">

<T Name="fiil" /=
+ <R [="0" V="gel">
</Word=

9

«Word Index="1" Value="." />
</S>

Output of “POS Tagging” Module (input all stems and suffixes):

</File>

= <File OriginalName="test.txt">
= =5 Index="0">
- <Word Index="0" Value="Konuklar"=

<T Name="fill" /=

+ =R I="2" v="Konukla"=
<T Name="isim" />

+ <R I="1" V="Konuk">

</Word> _
<Word Index="1" Value="bu">

=T Name="sifat" />
+ <R 1="0"V="bu">

</Word>
<Word Index="2" Value="aksam">

«T Name="isim" />
+ <R I="0" V="aksam">

</Word>
<Word Index="3" Value="yemege" >

=T Name="isim" /=
+ <R I="0" V="yeme{">

=/ Word=
<Word Index="4" Value="gelecek"=

=T Name="fill" />
+ =R I="0"v="gel"=

</Word>
<Word Index="1" Value="." />

</S>

199

200

APPENDIX C.4.5 (Cont’d.)

Output of “POS Tagging” Module (input all roots, stems and suffixes- eliminated
suffixes types):

- <File OriginalName="test.txt">
= <5 Index="0">
- <Word Index="0" Value="Konuklar">
<T Name="fill" />
<R I="1" V="Konukla" >
<T Name="isim" />
+ <RI="0" V="Konuk">
</Word>
<Word Index="1" Value="bu">
<T Name="sIfat" />
+ <RI="0" V="bu">
</Word>
<Word Index="2" Value="aksam" >
<T Name="isim" />
+ <RI="0" V="aksam">
</Word>
= <Word Index="3" Value="yemege" >
<T Name="isim" />
+ <RI="0" V="yemegd" >
</Word>
<Word Index="4" Value="gelecek" >
<T Name="fill" />
+ <RI="0" v="gel">
</Word>
<Word Index="1" Value="." />
<fS>
</File>

14

APPENDIX D Metadata of Documents

Metadata

Expression

Document Type

Variety of the stored

Document Variety document:
e Ekonomi
e Siyaset

Header The header of the document
Publication Date The date that the document is I};I(e)zvlfpaper

published Report
Writing Date The date that the document is M .

. agazine

written Parliamentary
Publisher Name Report
Resource The URL address of the Official Gazette

document
Size Size of the document in bytes
Number of Pages
File Address Document address on disk
Number of Wordforms

Newspaper
Publication Frequency Report
Magazine

Authors The name of authors Book
ISBN ISBN number of the book
Publishing Number
Session The session number of report
Time The time of session Parliamentary
Period The time period of report Report
Report Year The year of report

Meeting

The number of meeting

201

