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NEURAL NETWORKS APPLICATIONS IN PARAMETER SETTING OF 
TUBE HYDROFORMING AND METAL CUTTING PROCESSES 

 

ABSTRACT 

 

The objective of this research is to test and conclude about the efficiency of ANNs 

for optimization of manufacturing processes. For this purpose, ANN based methods 

are proposed to deal with two different manufacturing processes. The first problem is 

the tube hydroforming process with two conflicting objectives. A two-stage neural 

network approach and a hybridization of ANNs with genetic algorithm are proposed 

for the solution of the problem. Simulation outcomes of the proposed approaches are 

compared with Taguchi approach. The results show that ANNs need to be integrated 

by other solution techniques since combining neural networks with genetic algorithm 

provide the best process performance for tube hydroforming process under 

consideration. The second problem is the process parameters optimization of a metal 

cutting process with unit cost minimization. The original integer programming model 

of the problem given in the literature is used to construct the energy function by 

using penalty approach. For this problem, a maximum and continuous neural 

network interacting with each other are proposed. The results are compared with 

optimum results of dynamic programming, integer programming and non-linear 

programming. The results show that neural networks are an effective alternative to 

operation research techniques and combining Hopfield-type networks with penalty 

approach gives the advantage of obtaining optimal solution in an extremely large 

solution space within a reasonable computation time. 

 

The contribution of this thesis is two fold. One is to the manufacturing process 

literature as this study is the first attempt to solve the parameter optimization 

problems of the manufacturing processes under consideration. This thesis also makes 

contribution to ANN literature as combining ANNS with different techniques for 

optimization of manufacturing processes.  

 

Keywords: Neural networks, Manufacturing process, Parameter optimization 
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TÜP ŞEKĐLLENDĐRME VE METAL ĐŞLEME PROSESLERĐNDE 
PARAMETRE BELĐRLEME ĐÇĐN SĐNĐR AĞI UYGULAMALARI 

 

ÖZ 

 

Bu çalışmanın amacı yapay sinir ağlarının üretim proseslerinin optimizasyonu için 

kullanılabilirliğini test etmektir. Bu amaç için iki üretim prosesine sinir ağı tabanlı 

çözüm yöntemleri önerilmiştir. Dikkate alınan ilk problem çelişen iki amaca sahip 

tüp şekillendirme prosesidir. Problemin çözümü için iki aşamalı yapay sinir ağı ve 

melez bir yapay sinir ağı-genetik algoritma yaklaşımı önerilmiştir. Önerilen yaklaşım 

kullanılarak elde edilen sonuçlar, Taguchi yaklaşımı ile karşılaştırılmıştır. Elde 

edilen sonuçlara göre yapay sinir ağlarının diğer çözüm yöntemleri ile birlikte 

kullanılması tüp şekillendirme prosesinin performansında daha iyi gelişmeler 

sağlamaktadır. Đkinci problem, amacı birim maliyeti minimize etmek olan bir metal 

işleme prosesinin optimizasyonudur. Enerji fonksiyonunu oluşturmak için penaltı 

yaklaşımı kullanılmış ve problemin çözümü için literatürde önerilmiş tamsayı 

formülasyonu kullanılmıştır. Bu problem için, birbirini etkileyen bir maksimum ve 

bir sürekli sinir ağı modeli önerilmiştir. Önerilen yaklaşım bir üretim prosesinin 

optimizasyonu probleminde test edilmiş ve sonuçlar dinamik programlama, tamsayı 

programlama ve doğrusal olmayan programlama ile kıyaslanmıştır. Elde edilen 

sonuçlara göre yapay sinir ağları metal işleme prosesleri için yöneylem tekniklerine 

karşı etkin bir alternatif oluşturmaktadır ve Hopfield türevi ağların penaltı yaklaşımı 

ile birlikte kullanılması sonucu çok geniş çözüm uzayı içerisinde son derece kısa 

sürelerde istenilen sonuçlara ulaşma avantajı sağlamaktadır. 

 

Bu çalışmanın sağladığı katkılar iki yönlüdür. Bunlardan biri, dikkate alınan 

prosesler için ilk yapay sinir ağları uygulaması olması sebebi ile üretim prosesleri 

literatüre sağlanan katkıdır. Bu çalışma ile sağlanan bir diğer katkı ise, yapay sinir 

ağlarının üretim proseslerinde kullanımı için başka çözüm yöntem yöntemleri ile 

birlikte kullanılması ile yapay sinir ağları literatürüne sağlanmıştır. 

 

Anahtar sözcükler: Sinir ağları, Üretim prosesi, Parametre optimizasyonu 
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CHAPTER ONE 

INTRODUCTION 

 

In this chapter, the background, motivation and objectives of this work are stated, 

and the organization of this dissertation is outlined. 

 

1.1 Background and Motivation 

 

Quality and productivity are essential factors for achieving success. A properly 

designed manufacturing process can significantly affect overall production costs and 

quality levels. Thus, process planning is very important to ensure the quality of 

machining products, and to reduce the process costs and increase the process 

effectiveness. Process planning involves determination of appropriate machines, 

tools and process parameters under certain conditions for each operation. The 

success of a manufacturing process will depend on the selection of process 

parameters. The effective optimization of these parameters dramatically minimize 

the cost of the manufacturing process as well as the increase the quality of the final 

product (Cus & Balic, 2003; Baskar, Asokan, Saravanan & Prabhaharan, 2006).  

 

In industry, optimal parameter design problem frequently occurs in product 

development, process design and operational condition setting stages. The problem 

consists of finding the optimum process parameter settings which provide the best 

process performance. In other words, a parameter design is desired to obtain a set of 

operating conditions (process parameters) in such a manner that the process 

performance is kept in a desired range. Since a manufacturing process requires 

optimizing more than one objective, usually many conflicting responses must be 

optimized simultaneously with process parameters. In the lack of systematic 

approaches, the optimization of multiple responses was done by "trial-and-error" or 

by changing one control variable at a time while holding the rest constant. In the last 

decades, different solution methods such as operational research techniques, design 

of experiments, simulation and artificial intelligence have been proposed for 

modeling and solution of process optimization problems. Due to the enormous 
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complexity of many processes and the high number of influencing parameters, 

conventional approaches to the optimization of manufacturing processes are no 

longer sufficient. Since such methods are not efficient in finding the true optimum, 

many researchers try to find more efficient methods for optimization of multiple 

responses. After the success of Hopfield & Tank (1985), despite a vast amount of 

work existing in the literature, to find an efficient method for obtaining optimal 

solutions in polynomial time motivated the researchers to apply neural networks to 

optimization problems and to compare their performance with other techniques’. The 

motivation behind the Hopfield & Tank neural network model was to take advantage 

of the great speed associated with the massively parallel computing capabilities of 

neural networks for fast solution of combinatorial optimization problems. 

 

Neural-network models are powerful tools when modeling data sets that are non-

linear and highly correlated. A neural network model is developed to predict the 

value of critical parameters in a complex manufacturing process, on the basis of 

process operating parameters or conditions. This gives manufacturer valuable 

information about the process parameter values that are required under various 

operating conditions and at various stages of the process in order to reach desired 

response values. Here, the motivation behind this research is to test the success of 

neural networks in solving optimization problems for tube hydroforming and metal 

cutting processes and to conclude about their performance.  

 

1.2 Research Objective 

 

In this thesis, we deal with optimization of two manufacturing processes. The first 

one is the tube hydroforming process with optimization of two conflicting objectives: 

minimization of thinning ratio and maximization of bulge ratio. For the solution of 

this problem, we proposed a two-stage artificial neural network (ANN) approach in 

which a back propagation network is employed in each stage.  The network in the 

first stage is built for parameter searching while the network in the second stage is 

used for response estimating.  To compare performance of the proposed network, a 

two stage genetic algorithm (GA) approach is also proposed for optimization of the 
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tube hydroforming process. In the first stage a metamodel is built to model the 

relationship between forming parameters and process responses. ANNs and response 

surface analysis are employed to build the metamodel.  

 

The second problem solved in this thesis is process parameters optimization of a 

metal cutting process with unit cost minimization. For the solution of this problem, 

we proposed a dynamical gradient network. The original integer programming model 

given by Gupta, Batra & Lal (1995) is used to construct the energy function. The 

appropriate energy function is constructed by using a penalty function approach. Due 

to the tradeoff problem among the penalty terms, it becomes very difficult to find the 

values of the penalty parameters that result in feasible and good solutions. Some of 

the penalty terms are tried to be eliminated by the proposed network.  Therefore, log-

sigmoid and maximum networks are used to drop some of the penalty terms from the 

energy function. By this way, it is aimed to reduce the network complexity and to 

obtain a simplified energy function. Some of the binary constraints are satisfied using 

hard limit transfer functions, some binary constraints are satisfied using maximum 

networks.  

 

The objectives of this thesis are listed below: 

 

• To present a detailed evolutionary path of ANNs in manufacturing process 

optimization, review the current research literature, classify the approaches 

according to their architectures and to discuss several future research 

directions. 

 

• To present a literature review on manufacturing processes optimization 

 

• To propose and evaluate artificial neural network models for solving two 

manufacturing process optimization problems; the tube hydroforming process 

with thinning ratio minimization and bulge ratio maximization, and metal 

cutting process with unit cost minimization. 
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• To illustrate the use of genetic algorithms and response surface analysis in 

conjunction with the proposed approaches.  

 

• To compare the results of the proposed approaches with other solution 

methods commonly used in the literature  

 

• To discuss the use of ANNs for solving problem of optimization of 

manufacturing processes. 

 

1.3 Contribution of the Thesis 

 

The contribution of this thesis to the literature is two fold. The first one is to 

introduce an artificial neural network approach to solve the problems described 

above. Although there are different techniques already used for solving these 

problems, to the best of our knowledge, this thesis will be the first attempt to use 

neural networks for solving optimization problem of selected manufacturing 

processes. Therefore, this thesis will make a contribution to the relevant literature in 

terms of solution approaches. 

 

On the other hand, the proposed approaches are combined with other solution 

techniques such as genetic algorithm and penalty approach. In the literature, stand 

alone neural networks have been commonly used for solving parameter optimization 

problem of manufacturing processes. Therefore, the second contribution of this thesis 

is to the artificial neural network literature in terms of their applicability to 

manufacturing optimization problems when they combined with other techniques. 

   

1.4 Organization of the Thesis 

 

The organization of this dissertation is as follows. 

 

Chapter 2 is an introduction to manufacturing processes. Types of manufacturing 

processes are provided along with an overview of solution approaches used for 

solving optimization of manufacturing processes. 
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Chapter 3 presents a comprehensive review on neural networks and its 

implementations in industry. The basic concepts of neural networks and their 

attractions for solving process optimization problems are given. Different types of 

ANNs, backpropagation networks and Hopfield networks, are described in detail. 

The advantages, disadvantages and suitability of approaches in each category for 

solving process optimization problems are discussed and possible future research 

directions are given. 

 

In Chapter 4, it is aimed to describe how GAs work. Basic concepts of GAs are 

given and a simple GA algorithm is described. Advantages of GA over other 

methods are presented and applications of GA in manufacturing processes are 

illustrated.  

 

In Chapter 5, the problem of parameters optimization in tube hydroforming 

process is introduced and the relevant literature review is given. The proposed 

artificial intelligence approaches are explained and the performances of proposed 

approaches are compared with other existing solution methods for the optimization 

of tube hydroforming process. 

 

In Chapter 6, the problem of process parameters optimization in metal cutting is 

studied and the relevant studies in the literature are reviewed. The objective in this 

problem is minimization of unit production cost subject to several constraints. The 

proposed interconnected network is presented and the convergence of the network is 

presented. The proposed approach is illustrated by an example and simulation results 

are compared with existing solution methods used to solve optimization of metal 

cutting processes.  

 

Chapter 7 contains the concluding remarks of this research and identifies future 

research directions. 
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CHAPTER TWO 

OPTIMIZATION OF MANUFACTURING PROCESSES 

 

In this chapter, we present an overview of optimization techniques used in solving 

optimization of parameters  for tube hydroforming and metal cutting processes.  

 

2.1 Manufacturing Processes 

 

A manufacturing process or system is defined as the use of one or more physical 

mechanisms to transform the shape of a material's shape and/or form and/or 

properties. Designing manufacturing process is a difficult task because: 

 

1. Manufacturing processes are large and have many interacting components. 

 

2. Manufacturing processes are dynamic. 

 

3. The relationships between performance measures and decision variables 

cannot usually be expressed analytically.  

 

4. Data may be difficult to measure in a harsh processing environment. 

 

5. There are usually multiple performance requirements for a manufacturing 

process and these may conflict. 

 

In general, a manufacturing system design can be conceptualized as the mapping 

from the performance requirements of a manufacturing system, as expressed by 

values of certain performance measures, onto suitable values of process parameters, 

which describe the physical design or the manner of operation of the manufacturing 

system A performance measure is a variable whose value quantifies an aspect of the 

performance of a manufacturing system. Performance measures are either benefit 

measures or cost measures. They can be divided into four categories: time, quality, 

cost, and flexibility. In general, a number of performance measures will be relevant 
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for a given manufacturing system. However, they will differ from one manufacturing 

system to another (Chryssolouris, 2006). 

 

A significant improvement in process performance may be obtained by 

optimization in process planning. Tool selection, machine selection, process 

selection and tool path selection, process parameter selection are the most important 

areas for optimization in manufacturing process planning.  The fundamental activity 

in the planning of a manufacturing process is deciding the values of the process 

parameters that identify and determine the regions of critical decision variables 

leading to desired responses with acceptable variations.   

 

The optimization of manufacturing process parameters takes into account a 

number of factors such as the shape and size of the workpiece, the required 

tolerances, surface quality, the material the workpiece is made of, and the quantity to 

be made. Then, the factors affecting the performance of a manufacturing process can 

be categorized into three groups: 

 

• Operating constraints such as manufacturing practice, the manufacturing 

process, machine tool characteristics and capability and available processing 

time as specified by production planning. 

 

• Operating requirements such as the workpiece material and geometry, the 

operation being performed and the tooling data. 

 

• Tool performance factors such as the tool material and geometry and the use 

of cutting fluids (Scallan, 2003).  

 

2.2 Classification of Manufacturing Processes 

 

Manufacturing processes can be classified into four main categories: 
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2.2.1 Forming 

 

Forming processes cause a material to take the shape of a die using an external 

force. Forming processes change the size and shape but not the volume of the 

material by forcing the material over, between, into a forming device. Forming 

processes use a forming force and a forming device. The force may be generated by a 

hammer, press, or rolling machine. The forming device may be a die with a shaved 

cavity, a mold with an external shape, or a set of smooth or shaped rolls. Forming 

may be done either hot or cold. Types of forming processes are: 

 

• Compressive forming 

• Tensile forming 

• Bending 

• Forming by shearing 

 

Forming processes generally have high tooling costs due to the complicated die 

geometries required. Because the cost of tooling is high, forming processes are 

usually applied to lot sizes large enough to economically justify the high cost of tools 

and machinery required. Finally, highly-skilled workers are usually not needed to 

operate deforming processes, so labor costs are also relatively low, compared with 

other manufacturing processes. In terms of part quality, the deformation process 

produces work hardening, which increases the mechanical strength of the part. 

However, excessive material deformation may lead to crack and overlap formation in 

the workpiece. Forming processes have a relatively low degree of flexibility 

compared with other manufacturing processes, since the kinematics of forming 

machines are constrained by motion, force or energy. The geometry of the part is 

governed solely by the tool geometry. However, since forming dies must move 

relatively to the workpiece, the geometric features that are producible, are limited 

(Patton, 1970; Ulrich and Eppinger, 2003). 
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2.2.2 Casting & Molding 

 

Casting and molding cause molten or liquid materials to enter a mold where it 

solidifies before being extracted. Casting and molding produce parts that have a 

desired size and shape by introducing a material into an existing mold cavity. The 

material may be a liquid or may be made molten by heating it. The material is then 

introduced into the mold by gravity (pouring) or with force (injecting). Once in the 

mold, the material is solidified by cooling, drying, or chemical action. The casting is 

then extracted by opening or destroying the mold. The selection of an appropriate 

casting process will depend on a number of factors which include the material, size, 

weight and complexity of the geometry, labor, equipment and tooling costs, 

tolerances and surface finish required, strength and quantity and production rate 

required and the overall quality requirements. Type of casting and molding processes 

are: 

 

• Sand casting 

• Die casting 

• Investment casting 

• Injection molding 

 

Casting processes are limited in terms of surface quality, porosity, and, 

consequently, the strength of the parts produced is also limited. Generally, casting 

processes are used in production with relatively large lot sizes so that the high capital 

cost can be justified. The part quality can be influenced by process parameters such 

as die temperature, cooling time and cooling rate, as well as the design of die or mold 

features. The flexibility of casting and molding processes is limited. Only one part 

geometry can be produced for a die geometry and the part geometry cannot be 

changed through workpiece-tool motions. However, these processes have the 

potential to produce parts with very intricate geometric features, especially internal 

features, and workpiece thicknesses (Patton, 1970). 
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2.2.3 Machining 

 

Machining gives a material size and shape by removing excess material. This 

process uses a cutting element (tool, burning gases, electric spark, etc.). They include 

mechanisms to develop cutting motion (causing a cut to form) and feed motion 

(bringing new material into the cut).  Machining processes involve the removal of 

material from the workpiece and there is a variety of processes that fall into this 

category. Main machining processes are: 

 

• Milling 

• Turning 

• Drilling 

• Grinding 

 

Machining processes are, by far, the most commonly used of manufacturing 

processes. This is due to the diversity of shapes and degree of accuracy that can be 

obtained with many machining processes compared to other manufacturing 

processes. Specific reasons for the use of machining processes are: 

 

• The need for closer dimensional accuracy than is achievable from casting or 

forming processes alone; 

 

• The need for improved surface finish than is achievable from casting or 

forming processes alone; 

 

• The need for part finishing due to heat treatment; 

 

• In the manufacture of small lots, machining may be the most economical 

method of production. 

 

There are, however, a number of distinct disadvantages of using machining 

processes: 
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• By their very nature there is waste material; 

 

• They require more capital, energy and labor than casting and forming 

processes per volume of production; 

 

• Removing material generally takes longer than casting and forming processes 

per volume of production. 

 

Regardless of these disadvantages, machining processes are widely used and play 

an indispensable role in manufacturing. 

 

The machine and tooling costs, associated with mechanical material removal 

processes, are low compared with other manufacturing processes. However, the skill 

level involved for programming or manually setting the tool and the workpiece 

kinematics is relatively high, thus, labor costs for operating material removal 

processes are also correspondingly high. Machining processes are therefore, better 

suited for low to medium volume production. The production rates for machined 

parts are much lower than those for casting or forming processes, since it is the tool 

that is required to make multiple passes over the workpiece surface in order to 

produce the final shape. The material removal rate is dependent on the surface 

quality desired, the workpiece material, the cutting tool material and the cutting fluid 

used. Surface quality and surface technology are clearly very important aspects of 

material removal processes. Surface effects are caused both by the process itself and 

the workpiece material properties. These effects have a direct influence on the 

mechanical characteristics of the workpiece and eventually on the reliability of the 

component. Material removal processes are among the most flexible of the 

manufacturing processes. Since the geometry of the finished part is defined by the 

geometry and the kinematics of the tool and workpiece, material removal processes 

can produce parts with a wide range of sizes, shapes and surface quality (Patton, 

1970; Ulrich and Eppinger, 2003). 
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2.2.4 Joining 

 

Joining or assembly process is used to temporarily or permanently fasten pieces 

together. It is focused on the formation of specific geometries. Joining processes 

enable the manufacturing of a product in individual components and then combine 

them into a single product, which may be easier and less expensive to manufacture 

than the whole product at once. Joining processes also allow the inclusion of features 

and properties in a particular product, which may differ from the majority of the 

components used in the product. Type of casting and molding processes are: 

 

• Welding 

• Brazing 

• Soldering 

• Adhesive Bonding 

• Mechanical joining 

 

The capital and tooling costs, associated with most joining operations are 

relatively low compared with those of other processes, since most joining equipment 

is inexpensive. Joining processes are very labor-intensive, especially in case of 

adhesive bonding or joining parts with complex geometries. Most joining processes 

require pre-processing of the joining surfaces in order to minimize surface roughness 

and a period of time after joining, for curing the bond or cooling the weld. These 

factors result in low production rates for joining processes compared with those for 

forming, casting, molding or removing processes. Some types of defects such as 

porosity, entrapment of contaminants in the joint, incomplete fusion or penetration, 

crack formation, surface damage and residual stresses may occur during joining 

processes. However, effective use of joining techniques can produce joints with 

mechanical strength exceeding that of its joining members. Joining processes also 

have a high degree of flexibility in part geometry and lot size (Patton, 1970; Ulrich 

and Eppinger, 2003). 

 

The main characteristics of manufacturing processes are summarized in Table 2.1.  
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Table 2.1 Main characteristics of manufacturing processes 

Process Cost Production Rate Quality Flexibility 

Forming High High Low-Medium Low 

Casting/Molding High High Low-Medium Low 

Machining High Medium-High High High 

Joining Low Low-Medium Low-Medium High 

 

2.3 Optimization and Manufacturing Processes 

 

Optimization of manufacturing processes can increase the quality and quantity of 

products and decrease production cost simultaneously. Optimization methods can 

find the compromised solutions for the conflicting objectives of different design 

features or aspects to reach the maximum capability of a manufacturing system.  

 

Optimization problems in manufacturing process planning are determining the 

optimal configuration of process factors to increase the process performance in terms 

of performance measures.  The ranges of process factors restrict the possible 

alternatives that are considered to be feasible. In most of the manufacturing 

processes, more than one response has to be considered for optimization of process 

parameters making it necessary to tackle these problems in such a way that several 

approaches can be simultaneously optimized. Thus, problem of parameter 

optimization can be concluded as a multiple response optimization problem.  

 

Multi-objective optimization is the process of maximizing or minimizing more 

than one objective function while satisfying the prevailing constraints or bounds. 

 

[ ]

nkxxx

pjXg

qiXh

tosubject

XfXfXfXF

k

uk

l

k

j

i

mi

,...,1

,...,10)(

,...,10)(

:

)(),...(),...,()(min 1

=≤≤

=≤

==

=

 



14 

 

 

 

where the components of the objective function vector, F(X), are in conflict with one 

another. Since the components of objective function vector are competing in general, 

there is no unique solution to this problem. The purpose of this problem is to search 

for a best compromise solution to ensure objectives are close to their corresponding 

preference points as much as possible.  

   

2.4 Solution Approaches 

 

The methods and tools for the optimization of manufacturing processes fall into 

four broad categories: operations research, design of experiment, artificial 

intelligence, and simulation. The divisions among these categories are fuzzy. 

 

2.4.1 Operations Research 

 

Operations research methods use an appropriate mathematical description of the 

problem. They do not try to investigate all of the possible feasible solutions, which 

would be practically impossible, and they reduce the search space and CPU time 

required to obtain a solution while satisfying the constraints. 

 

2.4.1.1 Mathematical Programming 

 

In mathematical programming parameter decisions are modeled using integer or 

continuous variables and the process planning problem is represented as an 

optimization problem in which a mathematical function has to be minimized or 

maximized subject to some linear and non-linear algebraic constraints. If the 

objective function is linear and the constraints are a combination of linear equalities 

or inequalities, the problem is called a linear programming problem. In a linear 

programming problem, the decision variables involved in the problem are also 

nonnegative. The most widely applied method for the solution of linear programming 

problems is the simplex method developed by George Dantzig in 1947. It is an 

iterative procedure for generating and examining different extreme points of a linear 

program, each one improving the current value of the objective function until an 
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optimum is found. If some of the variables in a linear programming model are 

required to have integer values, this model is referred to as mixed integer 

programming (MIP) and if all the variables are integers, it is called a pure integer 

programming problem (Akyol, 2006). 

 

Mathematical programming is commonly applied for machining operations.  

Kusiak (1985), Tan & Creese (1995) and Gupta, Batra & Lal (1995) used linear 

programming approach for multi-pass turning operations. Some studies combine 

several mathematical programming approaches such as linear programming, 

geometric programming and dynamic programming (Prasad, Rao & Rao, 1997; 

Chen, Lee & Fang, 1998; Liang, Mgwatu & Zuo, 2001). Many other iterative 

mathematical search algorithms with their applications are reported in the literature, 

such as geometric programming approach (GopalaKrisnan & Al-Khayyal, 1991; 

Sönmez, Baykaşoğlu, Dereli & Filiz, 1999) and Nelson-Mead simplex search 

approach (Agapious, 1992 a,b & c). Sönmez, Baykaşoğlu, Dereli & Filiz (1999) and 

Mukherjee & Ray (2006) provide a good survey on applications of mathematical 

programming models in machining operations.  

 

For other processes such as casting and forming, applications of mathematical 

programming can be found in Miettinen, Makela & Mannikkö (1998) and Naceur, 

Guo, Batoz & Lenoir (2001). The detailed survey of use of quadratic programming 

for metal forming processes has been presented by Zhang, Xu, Di & Thomson 

(2002). 

 

2.4.1.2 Dynamic  Programming 

 

Dynamic programming is a method based on Bellman’s principle of optimality for 

solving problems that can be viewed as multistage decision processes. A multistage 

decision problem is a problem that can be separated into a number of subproblems 

referred as sequential steps, or stages, which may be completed in one or more ways. 

It is an enumeration method that uses a “divide and conquer” approach, and finds 

optimal solutions to subproblems. Then, according to the principle of optimality, it 
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solves the problem recursively. Since it performs an intelligent enumeration of all 

feasible points, it resembles the branch-and bound method (Akyol, 2006). 

 

As the first attempt, Iwata, Muratsu, Iwatsubo & Fujii (1972) presented a dynamic 

programming approach for machining operations. The further applications of 

dynamic programming to solve optimization problem of manufacturing processes are 

Hayers & Davis (1979), Sekhon (1982), Yehuda, Feldman, Pinter & Wimer (1989), 

Daskin, Jones & Lowe (1990), Shin & Joo (1992) and Agapious (1992 a,b &c) 

(Mukherjee & Ray, 2006). 

 

2.4.2 Simulation 

 

2.4.2.1 Finite element method (FEM) 

 

Finite element method (FEM) is a numerical method for solving a differential or 

integral equation. The method essentially consists of assuming the piecewise 

continuous function for the solution and obtaining the parameters of the functions in 

a manner that reduces the error in the solution. In finite element analysis, the domain 

of a problem is broken into many smaller zones called elements. At this point, finite 

element analysis can be used to calculate an approximate solution—element by 

element—to this problem. Visualization software can then be used to put this 

collection of information into an intuitive and coherent picture. 

 

There are generally two types of FEM that are used in industry: 2-D modeling, 

and 3-D modeling. While 2-D modeling conserves simplicity and allows the analysis 

to be run on a relatively normal computer, it tends to yield less accurate results. 3-D 

modeling, however, produces more accurate results while sacrificing the ability to 

run on all but the fastest computers effectively. Within each of these modeling 

schemes, the programmer can insert numerous algorithms (functions) which may 

make the system behave linearly or non-linearly (Tekkaya, 2000). 
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The key idea is to simulate the performed experiment, trying to adapt material 

parameters in order to compute with FEM the same results as the experimental 

results. This problem is mathematically called an inverse problem and can be seen as 

an optimization problem where the objective function is to minimize the gap between 

experimental and FEM results. The optimization variables are the material 

parameters that appear in the proposed model. 

 

Finite element analysis relies on breaking a complicated problem into a large 

number of less complex problems. When the solution to a problem exhibits very 

complicated behavior, it is sometimes acceptable to apply simplifications. Often 

times, though, a broad simplification introduces too much error to be useful. This is 

when breaking up the problem into many separate problems can help. Simplified 

solutions to each element of a problem can be integrated together to give a highly 

accurate general solution. 

 

In the literature, FEM is commonly used for simulation of metal forming. 

Pioneering studies of FEM to process optimization are made to sheet metal processes 

by Wifi (1976), Gotoh & Ishise (1978) and Wang & Budiansky (1978). The first 3D 

applications are known by Tang, Chu & Samanta (1982) and Toh & Kobayashi 

(1983).  

 

Further studies on metal forming include Tekkaya (2000), Huh & Kim (2001), 

Ghouati & Gelin (1999), Santos, Duarte, Reis, Rocha, Neto & Paiva (2001) and 

Fourment & Chenot (1996). One can refer to Ponthot & Kleinermann (2006) for a 

detailed review of FEM applications to forming processes. 

 

2.4.3 Design of Experiments (DoE) 

 

These strategies were originally developed for the model fitting of physical 

experiments, but can also be applied to numerical experiments. The objective of DoE 

is the selection of the points where the response should be evaluated. 
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2.4.3.1 Taguchi method 

 

Taguchi method, employing design of experiments, is one of the most important 

statistical tools of total quality management for designing high quality systems at 

reduced cost. Taguchi method is an efficient problem solving tool, which achieves 

continuous quality improvement of the performance of the product, process, design 

and system by minimizing the variation in product and process performance. The 

objective is to determine the optimal combination of process parameters so that the 

product or process is most robust with respect to noise factors. 

 

G. Taguchi is the developer of the Taguchi method and he proposed that the 

engineering optimization of a process or product should be carried out in a three-step 

approach (Tarng & Yang, 1998):  

 

1. System design: System design involves the development of a system to 

function under an initial set of nominal conditions. System design requires 

technical knowledge from science and engineering. Since the system design 

is an initial functional design, it may be less than optimum in terms of quality 

and cost. 

 

2. Parameter design: After the system architecture has been chosen, the next 

step is parameter design. The objective of the parameter design is to optimize 

the settings of the process parameter values for improving quality 

characteristics and to identify the product parameter values under the optimal 

process parameter values. 

 

3. Tolerance design: When parameter design is not sufficient for reducing the 

output variation, the last phase is tolerance design. It involves tightening 

tolerances on the product parameters or process parameters whose variations 

result in a large negative influence on the required product performance. 
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The Taguchi method is based on statistical design of experiments and the number 

of experiments increases with the increase of process parameters. To solve this 

complexity, the Taguchi method uses a special design of orthogonal array to study 

the entire process parameter space with a small number of experiments only. The 

experimental results are then transformed into a signal-to-noise (S/N) ratio. The 

signal-to-noise ratio can be used to measure the quality characteristics deviating from 

the desired values. Depending on the particular type of characteristics involved, 

different S/N ratios may be applicable, including “lower is better” (LB), “nominal is 

best” (NB), and “higher is better” (HB). 

 

To summarize, the parameter design of the Taguchi method includes the 

following steps (Tarng & Yang, 1998): 

 

1. Identify the quality characteristics and process parameters to be evaluated. 

 

2. Determine the number of levels for the process parameters and possible 

interactions between the process parameters. 

 

3. Select the appropriate orthogonal array and assign the process parameters to 

the orthogonal array. 

 

4. Conduct the experiments based on the arrangement of the orthogonal array. 

 

5. Analyze the experimental results using the signal-to-noise ratio and statistical 

analysis of variance. 

 

6. Select the optimal levels of process parameters. 

 

7. Verify the optimal process parameters through a confirmation experiment. 

 

Taguchi’s technique of parameter design has been successfully applied in a 

number of machining problems by researchers (Youssef, Beauchamp & Thomas, 
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1994; Lin, 2002; Singh, Shan & Pradeep, 2002). Research works applying Taguchi 

on joining processes can be found in Tarng & Yang (1998), Tarng, Yang & Juang 

(2000) and Lakshminarayanan & Balasubramanian (2008). Other typical applications 

of Taguchi method include the optimization of molding processes (Fox & Lee, 1990; 

Chen, Lee & Yu, 1998; Reddy, Nishina & Babu, 1998; Rowlands, Antony & 

Knowles, 2000), casting processes (Syrcos, 2003; Wu & Chang, 2004) and forming 

processes (Tsui, 1999; Li, Nye & Metzger, 2006).  

 

More detailed review of Taguchi method for optimization of manufacturing 

processes has been presented in Sukthomya & Tannock (2004).  

 

2.4.3.2 Response Surface Methodology (RSM) 

 

As an important subject in the statistical design of experiments, the Response 

Surface Methodology is a collection of mathematical and statistical techniques useful 

for the empirical modeling and analysis of problems in which the objective is to 

optimize a response (output variable) which is influenced by several independent 

variables (input variables).  

 

The method was introduced by Box and Wilson in 1951 to model experimental 

responses and then it is migrated into the modeling of numerical experiments. The 

main idea of RSM is to use a sequence of designed experiments to obtain an optimal 

response. 

 

RSM explores the relationship between variables and responses. Generally, the 

structure of the relationship between the response and the independent variables is 

unknown. The response surface designs are types of designs for fitting response 

surface and the first step in RSM is to find a suitable approximation to the true 

relationship. The most common forms are low-order polynomials (first or second-

order).  
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The construction of response surface models is an iterative process. Once an 

approximate model is obtained, the goodness-of-fit determines if the solution is 

satisfactory. If this is not the case, the approximation process is restarted and further 

experiments are made. R2 is a statistic that will give some information about the 

goodness of fit of a response surface model. The R2 coefficient of determination is a 

statistical measure of how well the model approximates the real data points. An R2 of 

1.0 indicates that the model perfectly fits the data. Adjusted R2 is a modification of 

R
2 that adjusts for the number of explanatory terms in a model. Unlike R

2, the 

adjusted R2 increases only if the new term improves the model more than would be 

expected by chance. The adjusted R2 can be negative, and will always be less than or 

equal to R2. 

 

Many researchers and practitioners use RSM in metal cutting process parameter 

optimization problems. The first attempt of optimization of cutting parameters by 

RSM has been presented by Taramen (1974).  

 

The further studies on determining optimal parameters of metal cutting processes 

by RSM can be found in El Baradie (1993), Lee, Shin & Yang (1996), Fuh & Chang 

(1997) and El-Axir (2002). An application of RSM to wire electrical discharge 

machining has been shown in Hewidy, El-Taweel & El-Safty (2005). Jeang, Li & 

Wang (2010) used RSM combining with a mathematical programming model to 

optimize process parameters in cutting operations. An example of application of 

RSM on forming processes has been presented by Jansson, Andersson & Nilsson 

(2005).  

 

In this thesis, response surface analysis is used to map the relationship between 

process parameters and responses for solving the parameter optimization problem of 

manufacturing process under consideration.  
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2.4.4 Artificial Intelligence (AI) 

 

The field of artificial intelligence may be defined as the study of ideas that enable 

computers to be intelligent. Its main goals are to make computers more useful, and to 

understand the principles that make intelligence possible. AI can be seen as an 

attempt to model aspects of human thought on computers. It is also sometimes 

defined as trying to solve by computer any problem that a human can solve faster. 

 

2.4.4.1 Artificial Neural Network (ANN) 

 

ANNs were originally designed for simulating the brain behavior. They have 

emerged as efficient approaches in a variety of engineering applications where 

problems are difficult to formulate or hardly defined. They are computational 

structures that implement simplified models of biological processes, and are 

preferred for their robustness, massive parallelism and ability to learn. In 

metaheuristics literature, neural networks are put into local-search based 

metaheuristics category. The reason is their iterative master process characteristic, 

that is, they guide and modify the operations of subordinate heuristics to efficiently 

produce high quality solutions, and provide decision makers with fast and robust 

tools for obtaining high quality solutions in reasonable computation times to many 

real life problems. 

 

From a modeling viewpoint, they are mathematical representations of biological 

nervous systems that can carry out complex cognitive and computational tasks. They 

are composed of many nonlinear interconnected processing elements that are 

analogous to neurons, and connected via weights that are analogous to synapses. The 

modern age of neurocomputing started with the work of McCulloch & Pitts (1943) in 

which the first mathematical model of a single biological neuron was presented.  

Although McCulloch and Pitts’ study showed that simple type of neural Networks 

were able to learn arithmetic or logical functions, ANN algorithms have been 

successful enough for many applications in the mid 1980s (Potvin & Smith, 2003). 
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ANNs has received considerable attention in the last years and has been applied to 

optimization of manufacturing (Hsieh, 2006; Su & Hsieh, 1998; Tong & Hsieh, 

2001; Cook, Ragsdale & Major, 2000; Zuperl & Cus, 2003; Ko, Kim, Kim & Choi, 

1998).  

 

Recent comprehensive review of ANN applications in manufacturing, Zhang & 

Huang (1995) and Sukthomya & Tannock (2005) cited such diverse venues as 

machining, cutting, molding, welding etc.  

 

2.4.4.2 Genetic Algorithm (GA) 

 

Genetic algorithm, being one of the most popular combinatorial algorithms and AI 

techniques, is a search technique for solving optimization problems based on the 

mechanics of the survival of the fittest. 

 

GA starts with the creation of an initial population of possible solutions to the 

problem called individuals or chromosomes, and the genes within the chromosomes 

determine the individual features of the child. Each chromosome is associated with a 

fitness value, which represents the probability of a chromosome being selected to be 

a parent. From the individual population, a new population is generated using one of 

the specific operators such as reproduction, crossover or mutation. By the 

reproduction operator, the solutions in the old population are copied to the next 

population with a probability depending on the fitness of the solution which 

corresponds to the value of the objective function for that solution. Using the 

crossover operator, new solutions are generated from pairs of individuals, and by 

mutation one or more of the genes in a chromosome are altered in a random way 

which helps the GA to explore a new, perhaps a better feasible region than the 

previously considered. The process is repeated until some stopping rule is satisfied 

and the individual with the most favorable fitness is the solution to the problem. 

 

Several applications of GA in machining processes have been reported in the 

literature as Suresh, Rao & Deshmukh (2002), Amiolemhen & Ibhadode (2004), Liu 
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& Wang (1999), Onwubolu & Kumalo (2001), Chen & Tsai (1996), Cus & Balic 

(2003), Solimanpur & Ranjdoostfard (2008), Sardinas, Santana & Brindis (2006), 

and Sreeram, Kumar, Rahman & Zaman (2006). Previous works dealt with the 

optimization of casting processes are Vijian & Arunachalam (2007) and Filipic & 

Laitinen (2005).  

 

To enhance the performance of GA, there has been an explosive growth in the 

successful use of hybrid GAs in process optimization (Su & Chiang, 2003; Shen, 

Wang & Li, 2007; Ozcelik & Erzurumlu, 2006; Li, Su & Chiang, 2003; Yang, Lin & 

Chen, 2006) 

 

In the literature, although a large number of approaches such as mathematical 

programming, design of experiments and FEM to solve the manufacturing process 

optimization problems, recently there has been an explosion of interest in using 

artificial intelligence. In this thesis, GA and ANN are used to solve the problems 

under consideration.  Details and a comprehensive review of these solution methods 

will be given in the following chapters.  
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CHAPTER THREE 

GENETIC ALGORITHMS 

 

The earliest instances of what might today be called as genetic algorithms (GAs) 

appeared in the late 1950s and early 1960s. As early as 1962, John Holland's work on 

adaptive systems laid the foundation for later developments. This foundational work 

established more widespread interest in evolutionary computation. By the early to 

mid-1980s, genetic algorithms were being applied to a broad range of subjects, from 

abstract mathematical problems like bin-packing and graph coloring to tangible 

engineering issues such as pipeline flow control, pattern recognition and 

classification, and structural optimization (Akyol, 2006). 

 

The purpose in this chapter is to give a survey of recent research where GAs were 

used for optimization of tube hydroforming and metal cutting processes. 

 

3.1 Genetic Algorithms 

 

The GA originally developed by Holland in the 1970s is a stochastic search 

method based on evolution and genetics and exploits the concept of survival of the 

fittest. They represent an intelligent exploitation of a random search used to solve 

optimization problems. Although randomised, GAs are by no means random, instead 

they exploit historical information to direct the search into the region of better 

performance within the search space. The basic techniques of the GAs are designed 

to simulate processes in natural systems necessary for evolution, based on the 

Darwinian principle of “survival of fittest”.  As in nature, competition among 

individuals for scanty resources results in the fittest individuals dominating over the 

weaker ones. GAs simulate the survival of the fittest among individuals after a series 

of iterative computations for solving a problem (Akyol, 2006).  

 

GAs differ from conventional search techniques that conduct a point-to-point 

search in the solution space. Each generation consists of a population of character 

strings that are analogous to the chromosome that we see in our DNA. Each 
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individual represents a point in a search space and a possible solution. The 

individuals in the population are then made to go through a process of evolution. 

 

GAs are based on an analogy with the genetic structure and behavior of 

chromosomes within a population of individuals using the following foundations 

(Goldberg, 1989): 

 

• Individuals in a population compete for resources and mates.  

 

• Those individuals most successful in each 'competition' will produce more 

offspring than those individuals that perform poorly.  

 

• Genes from `good' individuals propagate throughout the population so that 

two good parents will sometimes produce offspring that are better than either 

parent.  

 

• Thus each successive generation will become more suited to their 

environment.  

 

The GA approach represents a powerful, general-purpose optimization paradigm 

in which the computational process mimics the theory of biological evolution. The 

power of these algorithms is derived from a very simple heuristic assumption that the 

best solution will be found in the regions of solution space containing high 

proposition of good solution, and that these regions can be identified by judicious 

and robust sampling of the solution space. As a local search technique, GA can find 

solutions for a wide range of application. It has been successfully used in job-shop 

scheduling, production planning, line balancing, lumber cutting optimization, and 

process optimization (Cook, 2000). The basic concepts of GAs and a simple GA 

algorithm are described in the next section. 
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3.1.1 Basic Concepts 

 

The solution of an optimization problem with GA begins with a set of candidate 

solutions called population. To achieve the desired response, GAs generate a 

successive population of alternate solutions in which a candidate solution is 

represented by a sequence of numbers known as chromosome or string. A 

chromosome’s potential as a solution is determined by its fitness function, which 

evaluates a chromosome with respect to the objective function of the optimization 

problem under consideration.  The GA then iteratively creates new populations from 

the old by ranking the strings and uses the fittest to create new strings which are 

closer to the optimum solution to the problem at hand. GAs consist of thee main 

operations that randomly impact the fitness value: reproduction (selection), crossover 

and mutation. The reproduction-evaluation cycle used by GA is referred as a 

generation. 

 

There are basically six steps to be taken in a genetic algorithm optimization 

(Correia, Gonçalvez, Cunha & Ferraresi, 2005): 

 

(1) GA Parameters: The main parameters of GA are population size, crossover 

probability, mutation probability and generation number.  

 

• Population size: Indicates how many chromosomes exist in the 

population. If there are too few chromosomes, GA have a few 

possibilities to perform crossover and only a small part of search 

space is explored. On the other hand, if there are too many 

chromosomes, GA slows down. Research shows that after some 

limit (which depends mainly on encoding and the problem) it is not 

useful to increase population size, because it does not make solving 

the problem faster. 

 

• Crossover probability: Indicates how often the crossover will be 

performed. If there is no crossover, offspring is exact copy of 
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parents. If there is a crossover, offspring is made from parts of 

parents' chromosome. 

 

• Mutation probability: Indicates how often the parts of the 

chromosome will be mutated. If there is no mutation, offspring is 

taken after crossover (or copy) without any change. If mutation is 

performed, part of chromosome is changed. 

 

• Maximum number of generations: Indicated the termination criteria 

of the algorithm.  

 

(2) Creation of initial population:  An initial set of individuals is created by a 

random generator. Each individual in the population needs to be described 

in a chromosome representation that plays a vital role in the development of 

a GA. A problem can be solved once it can be represented in the form of a 

solution string (chromosome). The genes in the chromosome can be binary 

or real integer number. The chromosome length is the vector length of the 

solution to the problem. In real coded GAs, each gene represents a variable 

of the problem. Once, the initial population is created, the next step is to 

select the strings to generate new population. 

 

(3) Fitness evaluation: A fitness function that describes the relationship 

between inputs and outputs is a particular type of objective function that 

prescribes the optimality of a solution in a genetic algorithm so that the 

particular chromosome may be ranked against all the other chromosomes.  

 

(4) Selection: After formation of chromosomes, the individuals should be 

selected for creation of the new generation. The selection operator allows 

individual strings to be copied for possible inclusion in the next generation. 

Selection is based on the fitness value of each member of a generation. 

According to Darwin's evolution theory the best ones should survive and 
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create new offspring. There are several methods of selection such as roulette 

wheel selection, rank based selection, tournament selection etc. 

 

• Roulette Wheel Selection: This is a way of choosing members from the 

population of chromosomes in a way that is proportional to their fitness. 

It does not guarantee that the fittest member goes through to the next 

generation; however it has a very good chance of doing so. This could 

be imagined similar to a Roulette wheel in a casino. Usually a 

proportion of the wheel is assigned to each of the possible selection 

based on their fitness value. This could be achieved by dividing the 

fitness of a selection by the total fitness of all the selections, thereby 

normalizing them to 1. Then a random selection is made similar to how 

the roulette wheel is rotated as in Figure 3.1. 

 

 

Figure 3.1 Roulette wheel selection: based on fitness  

(from Engineering Design Centre) 

 

• Tournament Selection: Tournament selection involves running several 

"tournaments" among a few individuals chosen at random from the 
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population. The winner of each tournament (the one with the best 

fitness) is selected for crossover. Selection pressure is easily adjusted by 

changing the tournament size. If the tournament size is larger, weak 

individuals have a smaller chance to be selected. 

 

• Rank Selection: Rank selection first ranks the population and then 

every chromosome receives fitness from this ranking. The worst will 

have fitness 1, second worst 2 etc. and the best will have fitness N 

where N is the number of chromosomes in population. 

 

• Truncation Selection: With truncation selection that has a threshold of 

T between 0 and 1, only the fraction T best strings can be selected. 

They all have the same selection probability.  

 

(5) Crossover: After creating the mating pool, the population is enriched with 

good strings from the previous generation but does not have any new string. 

A crossover operator is applied to the population to create better strings. All 

individuals in the mating pool are randomly selected for crossover to 

generate the offspring. The total number of participative strings in crossover 

and whether crossover should take place are controlled by crossover 

probability. If GA decides not to perform crossover, the selected strings are 

simply copied to the new population. If crossover does take place, then a 

random splicing point is chosen in a string, the two strings are spliced and 

the spliced regions are mixed to create two new strings. These child strings 

are then placed in the new population. The main types of crossover 

operation are (Knight, D. from www.ivoryresearch.com). 

 

• Single point crossover: One crossover point is selected.  
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• Two point crossover: Two points are selected. 

 

 

• Cut and splice: Results in a change in length of the children strings.  

 

 

(6) Mutation: Selection and crossover alone can obviously generate a 

staggering amount of differing strings. However, depending on the initial 

population chosen, there may not be enough variety of strings to ensure the 

GA sees the entire problem space. Or the GA may find itself converging on 

strings that are not quite close to the optimum it seeks, due to a bad initial 

population. The need for mutation is to improve the local research ability 

and keep diversity in the population. Mutation operator creates an offspring 

by applying a random change to a single individual in the current 

generation. The GA has a mutation probability which dictates the frequency 

at which mutation occurs. Mutation can be performed either during 

selection or crossover. The mutation operator includes, uniform mutation, 

non-uniform mutation.  

 

After applying the GA operators, a new set of population is created. Then, if 

necessary, they are decoded and fitness values are calculated. This completes one 

generation of GA. Such iterations are continued till the termination criterion is 

achieved.  

 

Then the basic genetic algorithm can be outlined as follows: 
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1. Set GA parameters (population size, maximum number of generation, 

parameter number, crossover rate, mutation rate etc.) 

2. Create initial population  

a. Chromosome representation 

3. Evaluate fitness of each chromosome  

4. Create a new population:  

a. Selection 

b. Crossover 

c. Mutation 

5. Use new population for further run 

6. Return to Step 3 until termination criteria is met. 

 

3.2 Genetic Algorithms in Manufacturing Process Optimization 

 

Genetic algorithms are an important problem solving technique. The algorithm 

uses a strategy of a directed search through a problem state space from a variety of 

points in that space. For this reason, three main advantages of the genetic algorithm 

in optimization are identified as (Akyol, 2006):  

 

• They generally find nearly global optima in complex spaces. This is 

important because the search spaces for our problems are highly multimodal 

and GA has the ability to solve convex, and multi-modal function, multiple 

objectives and non-linear response function problems, and it may be applied 

to both discrete and continuous objective functions. 

 

• Considering their ability to find global optima, genetic algorithms are fast, 

especially when tuned to the domain on which they are operating. It can 

explore large search space and its search direction or transition rule is 

probabilistic, not deterministic, in nature, and hence, the chance of avoiding 

local optimality is more,  
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• It works with a population of   solution points rather than a single solution 

point as in conventional techniques, and provides multiple near-optimal 

solutions. This contributes much to the robustness of genetic algorithms. It 

improves the chance of reaching the global optimum and, vice versa, reduces 

the risk of becoming trapped in a local stationary point. 

 

• GAs do not require any form of smoothness. As it is not based on gradient-

based information, it does not require the continuity or convexity of the 

design space. 

 

• According to Goldberg, the simulated evolution of a solution through genetic 

algorithms is more efficient and robust than the random search, enumerative 

or calculus based techniques. The main reasons given by Goldberg are the 

probability of a multi-modal problem state space in non-linear problems, and 

that random or enumerative searches are exhaustive if the dimensions of the 

state space are too great. 

 

• The problem solving strategy involves using “the strings’ fitness to direct the 

search; therefore they do not require any problem-specific knowledge of the 

search space, and they can operate well on search spaces that have gaps, 

jumps, or noise. 

 

• Another advantage of genetic algorithms is their inherently parallel nature, 

i.e., the evaluation of individuals within a population can be conducted 

simultaneously, as in nature.  

 

As early as 1962, John Holland's work on adaptive systems laid the foundation for 

later developments; most notably, Holland was also the first to explicitly propose 

crossover and other recombination operators.  

 

The foundational works established more widespread interest in evolutionary 

computation. By the early to mid-1980s, genetic algorithms were being applied to a 
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broad range of subjects, from abstract mathematical problems like bin-packing and 

graph coloring to tangible engineering issues such as pipeline flow control, pattern 

recognition and classification, and structural optimization. Today, evolutionary 

computation is a thriving field, and genetic algorithms are solving problems of 

everyday interest in areas of study as diverse as stock market prediction and portfolio 

planning, aerospace engineering, microchip design, biochemistry and molecular 

biology, and scheduling at airports and assembly lines.  

 

Several applications of GA-based technique in process parameter optimization 

problems have been reported in the literature. Liu & Wang (1999) claim that by 

reducing the operating domain of GA, by changing the operating range of decision 

variables, convergence speed of GA increases along with significant increase in 

milling process efficiency. Shunmugam, Bhaskara & Narendran (2000) optimized 

the machining parameters such as number of passes, depth of cut in each pass, and 

speed and feed obtained using a GA, to yield minimum total production cost while 

considering technological constraints such as allowable speed and feed, dimensional 

accuracy, surface finish, tool wear and machine tool capabilities in face-milling 

operations. Dereli, Filiz & Baykasoglu (2001) optimized cutting parameters for 

milling operations taking unit cost as an objective function by using genetic 

algorithm. 

 

Onwubolu & Kumalo (2002) propose a local search GA-based technique in multi-

pass turning operation with mathematical formulation in line with work by Chen & 

Tsai (1996) with simulated annealing-based technique. Krimpenis & Vosniakos 

(2002) use a GA-based optimization tool for sculptured surface CNC milling 

operation to achieve optimal machining time and maximum material removal. 

Chowdhury, Pratihar & Pal (2002) apply a GA-based optimization technique for near 

optimal cutting conditions selection in a single-pass turning operation, and claim that 

GA outperform goal programming technique in terms of unit production time at all 

the solution points. Wang, Da, Balaji & Jawahir (2002) apply GA-based technique 

for near-optimal cutting conditions for a two-and three-pass turning operation having 
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multiple objectives. Schrader (2003) illustrates the usability of GA based technique 

for simultaneous process parameter optimization in multi-pass turning operations.  

 

Cus & Balic (2003) use GA-based technique to determine the optimal cutting 

conditions in NC-lathe turning operation on steel blanks that minimize the unit 

production cost without violating any imposed cutting constraints. The results 

obtained are compared with those taken from recent literature and the comparisons 

proved the effectiveness of the proposed approach. Amiolemhen & Ibhadode (2004) 

proposed a GA approach similar to Onwubolu & Kumalo (2002). They developed a 

user friendly computer package based on GA approach for determining the optimal 

machining parameters for multi pass machining operation. 

 

To illustrate the efficiency of non-conventional manufacturing processes, Baskar, 

Asokan, Saravanan & Prabhaharan (2005) proposed optimization procedures based 

on genetic algorithm, ant colony algorithm, tabu search and particle swarm 

optimization for the optimization of machining parameters for milling operations. 

The objective of the problem was to maximize profit for the inputs as cutter 

diameter, cutting length of workpiece, number of machining operation and number of 

cutting teeth of the tool. They concluded that particle swarm optimization always 

yielded better results. In their latter research, Baskar, Asokan, Saravanan & 

Prabhaharan (2006) developed a strategy based on the same objective constraints to 

determine the optimum cutting parameters of milling operations. They proposed 

three optimization procedures based on genetic algorithm, hill climbing algorithm 

and memetic algorithm. To compare these optimization procedures, they presented 

an example problem. They concluded that all procedures provided significant 

improvement but they suggested using memetic algorithm for solving the 

optimization problem of the milling operations.  

 

Al-Aomar & Al-Okaily (2006) utilized a simple genetic algorithm based search as 

an alternative to Taguchi’s experimental design for the solution of parameter design 

problem of turning process. They applied the proposed approach to a CNC lathe 

machine and the results indicated that simple GA provided lower cost than design of 
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experiment approach. However, overhead costs did not taken into consideration by 

the researchers. Sardinas, Santana, & Brindis (2006) presented a multi-objective 

optimization technique based on GAs to optimize cutting parameters, cutting speed, 

feed and speed, in turning processes. They tried to optimize two conflicting 

objectives, tool life and operation time, simultaneously. The researchers concluded 

that the proposed approach offered greatest amount of information in order to make a 

decision on selecting cutting parameters of turning.  

 

Palanisamy, Rajendran & Shanmugasundaram (2007) used GA to minimize 

machining time where constraints of the process are assumed as feed rate, depth of 

cut, cutting speed, surface roughness and cutting force with a constant material 

removal rate. They concluded that GAs are efficient solution methods for complex 

optimization problems since they converge very quickly. Solimanpur & 

Ranjdoostfard (2008) presented a new optimization technique based on genetic 

algorithms for determination of cutting parameters in machining operations. The 

proposed approach had multiple fitness functions and the algorithm found multiple 

solutions. The results are compared with another GA approach and an ANN 

approach. These comparisons indicated that the proposed approach is both effective 

and efficient.  

 

In the literature reviewed, it is observed that optimization ability of GAs is 

strengthened when combined with other techniques. Most commonly, hybrid 

approaches combining GAs with ANN, Taguchi and RSM are presented for solving 

manufacturing process optimization problems.  

 

Ozcelik & Erzurumlu (2005) achieved the minimization of the objective function 

for an injection molding process by employing a hybrid approach involving finite 

element analysis, statistical design of experiment, response surface methodology and 

genetic algorithms. Finite element analyses are conducted for combination of process 

parameters organized using statistical three-level full factorial experimental design. 

By using the results of finite element analysis, they created a predictive model by 
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response surface methodology. By interfacing this response surface model with 

genetic algorithm, they obtained the optimum process parameter values.   

 

The parameter design of the Taguchi method, RSM and GA are integrated by 

Hou, Su & Liu (2007) to set the optimal parameters of a milling process. The 

orthogonal array experiment is conducted to obtain the response measurements and 

ANOVA is used to determine the significant parameters. The RSM is then used to 

build the relationship between the input parameters and output responses and used as 

the fitness function of the GA approach. The process has two response and these 

responses are converted into a single fitness function. Finally, GA is applied to find 

the optimal parameters for the milling process. The results of the experiments 

indicated that there was a conflict between these responses the proposed method was 

insufficient to deal with this conflict.  

  

The combination of GA with ANN is commonly used for optimization problems 

and the use of this hybrid approach in manufacturing process optimization is 

reviewed in the next section. The more detailed review of GA applications in tube 

hydroforming process and metal cutting process is given in chapter five and chapter 

six, respectively.  
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CHAPTER FOUR 

ARTIFICIAL NEURAL NETWORKS 

 

Since the introduction of the first formalized model of a neuron in 1943 by 

McCulloch and Pitts, there has been a great progress of neurobiology (McCulloch & 

Pitts, 1943). This progress allowed researchers to build mathematical models of 

neurons to simulate neural behavior. ANNs can be defined as networks of elementary 

nodes called artificial neurons or processing elements that are interconnected by 

direct links called connections and the neurons cooperate to perform parallel 

distributed processing to solve a desired computational task. 

 

The purpose of this chapter is to give details of ANNs and a survey of recent 

research on ANN applications in tube hydroforming and metal cutting processes. 

 

4.1 Artificial Neural Networks (ANNs) 

 

Artificial Neural Networks can be put into local search based metaheuristics 

category which includes simulated annealing, noisy methods, guided local search 

methods, iterated local search, tabu search, threshold accepting, and variable 

neighborhood search (Osman, 2002). From a modeling viewpoint, they are 

mathematical representations of biological nervous systems that can carry out 

complex cognitive and computational tasks. They are composed of many nonlinear 

interconnected simple processing elements that are analogous to neurons, and 

connected via weights that are analogous to synapses. The concepts of distributed, 

adaptive and nonlinear computing are the core of neural computation. Distributed 

computation strengths the reliability of the neural network and it enables fault 

tolerance and high throughput by taking the advantage of co-operative computing. 

Adaptive computing is the ability to change a system’s parameters according to some 

rule. Since it is an efficient way to search for optimal performance, the network can 

respond in a repetitive manner to absolute quantities.  
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The modern age of neurocomputing started with the work of McCulloch & Pitts 

(1943) in which the first mathematical model of a single biological neuron was 

presented. Although McCulloch and Pitts’ study showed that simple type of neural 

networks were able to learn arithmetic or logical functions, ANN algorithms have 

been successful enough for many applications in the mid 1980s (Potvin & Smith, 

2003). The field attracted the attention of many researchers from different disciplines 

such as engineering, physics, mathematics, computer science and medicine. In recent 

years, ANNs have become popular in various real world applications including 

prediction and forecasting, function approximation, clustering, speech recognition 

and synthesis, pattern recognition and classification, and many others. 

 

4.1.1 Basic Concepts 

 

A neural net consists of a large number of simple processing elements called 

neurons. Each neuron is connected to other neurons by means of directed 

communication links, each with an associated weight. The weight represents 

information being used by the net to solve a problem.  

 

Each neuron has an internal state, called its activation or activity level, which is a 

function of the inputs it has received. Typically, a neuron sends its activation as a 

signal to several other neurons.  

 

Often, it is convenient to visualize neurons as arranged in layers. Typically, 

neurons in the same layer behave in the same manner. Key factors in determining the 

behavior of a neuron are its activation function and the pattern of weighted 

connections over which it sends and receives signals. The arrangement of neurons 

into layers and the connection patterns within and between layers is called the 

network architecture. Many neural nets have an input layer in which the activation of 

each unit is equal to an external input signal (Akyol,2006).  

 

Neural nets are often classified as single layer, multi layer or competitive 

networks. Figure 4.1 are examples of these networks.  



40 

 

 

• Single-layer networks: A single-layer network has one layer of connection 

weights. Often, the units can be distinguished as input units, which receive 

signals from the outside, and output units, from which the response of the 

network can be read.  

 

• Multi-layer networks: A multi-layer network is a network with one or more 

layers between the input layer and the output layer. Multi-layer networks can 

solve more complicated problems than can single-layer networks, but training 

may be more difficult. 

 

• Competitive layer networks: A competitive layer forms a part of a large 

number of neural networks. Typically, the interconnections between neurons 

in the competitive layer are not shown in the architecture diagrams.  

 

 

 

 

 

                                            

                               (a) Single layer                               (b) Multi layer 

 

 

 

 

 

 

 

 

     (c) Competitive 

Figure 4.1 Examples of ANNs (from Fausett, 1994) 
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In addition to the architecture, the method of setting the values of the weights 

(training) is an important characteristic of neural networks. There are two types of 

training: 

 

• Supervised training: Training is accomplished by presenting a sequence of 

training data set. The weights are then adjusted according to a learning 

algorithm. 

 

• Unsupervised training: Self-organizing neural networks group similar inputs 

together without the use of training data. A sequence of inputs is provided but 

no targets are specified. The network modifies the weights so that the most 

similar inputs are assigned to the same output.  

 

The basic operation of a neuron involves summing its weighted input signal and 

applying an activation/transfer function. Typically, the same activation function is 

used for all neurons in any particular layer of a neural network, although this is not 

required. Activation functions commonly used are: 

 

• Logarithmic-sigmoid transfer function: This function generates outputs 

between 0 and 1 as the neuron’s net input goes from negative to positive 

infinity. 

 

 

• Tangent-sigmoid transfer function: This function generates outputs between -

1 and 1 as the neuron’s input goes from negative to positive infinity. 
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• Linear transfer function: The outputs of this function ranges between positive 

and negative infinity. 

 

 

• Hard-limit transfer function: this function limits the output of the neuron to 

either 0, if the net input argument n is less than 0; or 1, if n is greater than or 

equal to 0.  

 

 

In the literature of optimization of manufacturing process parameters, ANNs have 

attracted much attention because of their characteristics listed below. 

 

• ANNs capture the complex relationship between the input and output 

variables that are difficult or impossible to analytically relate after they are 

exposed to examples of the relationship, that is, after they learned. After they 

learned the unknown correlation between the input and output data, they can 

generalize to predict or classify for cases they were not exposed to. 
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• In some cases of designing manufacturing systems, ANNs are preferred to 

time consuming simulation approaches. 

 

• Backpropagation Networks (BPNs) are used to select a manufacturing 

strategy to achieve accurate estimations of parameters such as values of 

machining parameters. They are used to estimate the system performance 

measures such as production cost, production rate etc. 

 

• In static environments, it is possible to obtain the optimal or near optimal 

parameter settings by mathematical modeling, dynamic programming or other 

advanced methods. But, since real manufacturing environments are dynamic, 

flexible methods are needed to react any change in the system that varies with 

time. So, in dynamic manufacturing environments, ANNs are employed to 

reduce the need for re-optimizing parameters. 

 

• While optimizing networks such as Hopfield network and its extensions are 

involved directly in the optimization by mapping the objective functions of 

manufacturing processes to be optimized and constraints of the problems on 

to these networks, competitive networks can detect regularities and 

correlations in input vectors and adapt future responses accordingly (Min, 

Yih, & Kim, 1998). 

 

Problem of manufacturing process parameters is a non-linear optimization 

problem with constraints, so it is difficult for the conventional optimization 

algorithms to solve such problems because of problems of convergence speed or 

accuracy. Several applications of ANN-based solution approaches for solving 

manufacturing process optimization problems are reported in the literature.  

 

 

 

 

 



44 

 

 

4.2 Types of Artificial Neural Networks 

 

4.2.1 Backpropagation Neural Networks 

  

One of the important types of networks used in manufacturing applications is 

backpropagation neural network which is a multi-layer, feed forward network trained 

by backpropagation. It consists of an input layer, one or more hidden layers and an 

output layer. Data enters at the inputs and passes through the network, layer by layer, 

until it arrives at the outputs. This is why they are called feedforward neural 

networks.   

 

A backpropagation feedforward neural network, as given in Figure 4.2, has the 

following characteristics: 

 

 

 

 

 

 

 

 

 

Figure 4.2 A feedforward backpropagation network  

(from Su & Wu, 2001) 

 

• Neurons are arranged in layers, with the first layer taking in inputs and the 

last layer producing outputs. The middle (hidden) layers have no connection 

with the external world, and hence are called hidden layers. While the number 

of neurons in input and output layers can be determined exactly according to 

the dimensions of input and output data set, the number of neurons in hidden 

layer is selected by trial-and-error. 
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• Each neuron in one layer is connected to every neuron on the next layer. 

These connections are not all equal; each connection may have a different 

strength or weight. Hence information is constantly "fed forward" from one 

layer to the next and this explains why these networks are called feed-forward 

networks. 

 

• There is no connection among neurons in the same layer. 

 

Training in feedforward networks is supervised learning, in which pairs of input 

and output values are fed into the network for many cycles, so that the network 

'learns' the relationship between the input and output. In supervised learning the most 

popular learning law is backpropagation. Backpropagation, which was first 

introduced by Werbos (1974) and was later rediscovered independently by Parker 

(1985) and Rumelhart, Hinton, & Williams (1986), and then modified in various 

manners by numerous researchers in order to overcome its deficiencies, is one of the 

most popular algorithms for training multilayer perceptrons.  This learning rule is a 

kind of gradient descent technique with backward error propagation, used to adjust 

the neural weights of a multilayer perceptron. Multilayered perceptrons trained with 

backpropagation learning algorithm are generally referred to as backpropagation 

networks. In backpropagation training, the weights of the network are randomly 

initialized before training starts. Every time an input of a training sample is 

presented, by propagating through the network layer by layer, a set of outputs is 

produced as the actual outputs of the network. At the output layer, the actual outputs 

are compared to the desired outputs, and an error signal is computed by getting the 

difference between the actual value and the desired value. This error signal is 

propagated backward through the network and the weight values are then adjusted by 

a magnitude proportional to the negative gradient of the error function, which is 

generally equal to the sum of squared errors. By this way, the difference (mean 

square error) between the actual and the desired outputs is minimized. 

 

A successful simulation of the backpropagation networks requires the 

determination of some parameters: 
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• Size of data Set: The available data set is generally separated into three 

subsets; called training set, testing set and cross validation set. The first 

subset is the training set, which is used for computing the gradient and 

updating the network weights and biases. The second subset is the validation 

set. The validation error will normally decrease during the initial phase of 

training, as does the training set error. However, when the network begins to 

overfit the data, the error on the validation set will typically begin to rise and 

training terminates. The last subset, testing set is used to test the network’s 

performance.  

 

• Layer Configuration: It is necessary to define layers and neurons in each 

layer. The number of neurons in the input (output) layer will be equal to the 

number of inputs (outputs). Since, the number of hidden layers will be 

determined by trial-and-error, it is highly recommended to start with single 

hidden layer. 

 

• Transfer Function: Transfer function describes the way in which information, 

or data, flows through the network. Each neuron receives weighted input 

from every other neuron in the network, applies a non-linear threshold and 

presents its output for the others to input.  

 

• Learning rule: Learning rule means the correction term by which the weights 

are changed based on their previous value.  

 

o Step size: Most gradient search procedures require the selection of a 

step size. The idea is that the larger the step size the faster the 

minimum will be reached. However, if the step size is too large, then 

the algorithm will diverge and the error will increase instead of 

decrease. If the step size is too small then it will take too long to reach 

the minimum, which also increases the probability of getting caught in 

local minima. 
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o Learning rate:  It is a changeable value used by several learning 

algorithms, which effects the changing of weight values. The greater 

the learning rate, the more the weight values are changed. Is usually 

decreased during the learning process. 

 

• Stopping Criteria: 

 

o Epoch: Epoch is a term that is often used in the context of machine 

learning. An epoch is one complete presentation of the data set to be 

learned to a network. Learning machines like feedforward neural nets 

that use iterative algorithms often need many epochs during their 

learning phase.  

 

o Termination: The stop criterion for supervised training is usually 

based on the mean squared error (MSE). Most often the training is set 

to terminate when the MSE drops to some threshold. Even though the 

MSE of the training set will keep decreasing throughout the 

simulation, at some point the MSE of the test set will begin to rise. 

This is an indication that the network has begun to overtrain or 

"memorize" the training patterns. Thus, cross validation is a highly 

recommended criterion for stopping the training of a network.  

 

• Performance Functions: This parameter is used to evaluate the performance 

of the network. Most commonly used and default performance function is 

MSE that is the average squared error between the network outputs and the 

target outputs. 

 

o Mean Square Error: The mean squared error is simply two times the 

average cost. The formula for the mean squared error is: 
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where P is the number of output processing elements, N is the number 

of exemplars in the data set, yij is the network output for exemplar i at 

neuron j and dij is the desired output for exemplar i at neuron j. 

 

o Normalized Mean Square Error: The normalized mean squared 

error is defined by the following formula: 
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where P is the number of output processing elements, N is the number 

of exemplars in the data set, MSE is the mean squared error and dij is 

the desired output for exemplar i at neuron j. 

 

o Correlation Coefficient: The size of the mean square error (MSE) 

can be used to determine how well the network output fits the 

desired output, but it doesn't necessarily reflect whether the two 

sets of data move in the same direction. The correlation coefficient 

(r) solves this problem. By definition, the correlation coefficient 

between a network output x and a desired output d is: 
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The basic algorithm of backpropagation training is as follows (Fausett, 1994): 

 

Step 0. Initialize weights (Set to small random numbers) 

 

Step 1. While stopping condition is false, do Steps 2-9. 

 

 Step 2. For each training data, do Steps 3-8. 

 

  Feedforward: 

Step 3. Each input unit (Xi, I=1,2,…,n) receives input signal xi 

and broadcast this signal to all units in the layer above 

(the hidden neurons). 

 

Step 4. Each hidden unit (Zj, j=1,2,…,p) sums its weighted 

input signals, 

∑
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              (4.4) 

applies its activation function to compute its output 

signal. 

)_( jj inzfz =                          (4.5) 

and sends this signal to all units in the layer above (the 

output neurons) 

Step 5. Each output unit (Yk, k=1,2,…,m) sums its weighted 

input signals, 

∑
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and applies its activation function to compute its output 

signal, 
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Backpropagation of error: 

Step 6. Each output unit (Yk, k=1,2,…,m) receives a target 

(desired) pattern corresponding to the input training 

pattern, computes its error information term (error 

signal), 

)_(')( kkkk inyfyt −=δ
                

(4.8) 

calculates its weight correction term (used to update wjk 

later), 

jkjk zw αδ=∆
                 

(4.9) 

calculates its bias correction term (used to update w0k 

later), 

kkw αδ=∆ 0                 
(4.10) 

 

    and sends δk to units in the layer below.  

 

Step 7. Each hidden unit (Zj, j=1,2,…,p) sums its delta inputs 

(from neurons in the layer above) 
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multiplies by the derivative of its activation function to 

calculate its error information term, 

)_('_ jjj inzfinδδ =
              

(4.12) 

calculates its weight correction term (used to update vij 

later), 

ijij xv αδ=∆
               

(4.13) 

and calculates its bias correction term (used to update 

v0j later), 

jjv αδ=∆ 0                
(4.14) 
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Update weights and biases: 

Step 8. Each output unit (Yk, k=1,2,…,m) updates its bias and 

weights (j=0,1,…,p): 

 

kjjkjk woldwneww ∆+= )()(
             

(4.15) 

 

Each hidden unit (Zj, j=1,2,…,p) updates its bias and 

weights (i=0,1,…,n): 
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(4.16) 

 

Step 9. Test stopping condition (Fausett, 1994). 

 

Backpropagation networks have been successfully used in modeling, 

classification, forecasting, design, control, and pattern recognition. Their improved 

generalization capabilities over competing machine learning tools and their easy 

mechanism made them attractive to be utilized in optimization of manufacturing 

processes. 

 

In 1986, the modern era of neural networks was ushered in by the derivation of 

back propagation by Rumelhart, Hilton & Williams (1986). Then, Rangwala & 

Dornfeld (1989) applied backpropagation network to predict optimal conditions 

(cutting parameters such as cutting speed, feed rate and depth of cut) in turning 

operations by minimizing a performance index.  

 

The first application of neural networks in monitoring reported in the literature 

could be that of Gövekar, Grabec & Peklenik (1989). The authors applied a back-

propagation network for the monitoring of a drilling process. Their results show that 

the recognition ability was influenced not only by the neural network but also by the 

properties of the detected system. Later applications (Monostori & Nacsa, 1990; 

Nacsa & Monostori, 1990) show that neural networks can advantageously be used in 

real-time monitoring of manufacturing processes and other technical processes. 
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Anderson, Cook & et al. (1990, 1991) applied the neural network approach in arc 

welding that can generally be viewed as a multiple-input/multiple-output system. The 

back-propagation networks were used for the modeling and control of the process. 

Various configurations, in terms of the number of layers and the number of network 

nodes, were tested. For the application presented, two-layer (not counting the input 

layer) networks consisting of a single hidden layer and an output layer have been 

proved to be adequate. Smartt, Johnson, Einerson & Cordes (1991) also applied the 

neural network approach in arc welding. Instead of using neural network to model 

the arc welding processes, they developed a new approach to quantify conditional 

logic rules and represent them in a neural network. 

 

Smith (1991) reported the use of back-propagation neural networks in quality 

control in an injection molding corporation. They proposed that since neural 

networks are especially applicable when the data considered do not follow a known 

distribution or pattern, they are well suited for the quality control of injection 

molding. The results show that the neural network approach is comparable to other 

quality control methods, including control charts and statistical techniques, in 

goodness of output for quality control. They concluded that an advantage of the 

proposed neural network approach is the convenience of learning to establish the 

relationships directly, rather than through analysis and assumptions. Using a single 

network to monitor multiple products and/or quality parameters is an additional 

advantage. 

 

As further study, Guillot & El Ouafi (1991) applied a three-layer feedforward 

neural network in the identification of tool breakage in metal cutting processes. Wu, 

Liou & Pi (1991) presented a neural network approach to diagnose processing 

damages in injection molding. Sathyanarayanan, Lin & Chen (1992) employed 

artificial neural networks with backpropagation for modeling a typical creep feed 

super alloy-grinding.  

 

Cook & Shannon (1992) presented a methodology to predict the occurrence of 

out-of-control process conditions in a composite board manufacturing facility. This 
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method was developed using neural network theory and the neural network, using 

back-propagation method, was successfully trained to represent the process 

parameters. The trained neural network was able to successfully predict the state of 

control of the specific manufacturing process parameters with 70% accuracy. The 

learning rule used in this research was the generalized delta rule which is an error-

correcting rule that has been used in various applications including converting 

printed text to speech, controlling robot arms, and selecting good loan applications. 

Hou & Lin (1993) designed a monitoring system for identifying process signals 

using neural networks. Two examples were presented to demonstrate the feasibility 

of the monitoring system and its recognition ability. The results are quite promising 

and show that the neural network based system seems to have a good potential in 

monitoring automatic manufacturing processes. Hyun & Cho (1994) predicted the 

forming pressure for hydroforming process using artificial neural network. In the 

article, a back-propagation network was implemented to learn the mapping 

characteristics and then estimated the forming pressure in the chamber from the 

geometric variables of the punch. Anjum, Tasadduq & Khaled (1997) proposed two-

stage procedure for obtaining the best parameter design based on implementing 

response surface methodology via neural network. Applying the method, the neural 

network was trained by the results of a fractional factorial design, and was then used 

to estimate the response values for the full factorial design. 

 

Coit, Jackson & Smith (1998) aimed at the technology transfer aspects of neural 

networks to manufacturing process modeling and optimization by focusing on two 

highly non-linear processes where there are many variables which affect the ultimate 

outcome. These are wave soldering of printed circuit boards and slip casting of large 

ceramic products. After careful validation of the prediction accuracy over the entire 

range of anticipated operating conditions, the final neural network models have been 

implemented at the manufacturing plants. To map the relationship between die 

casting process parameters and the injection time, Yarlagadda & Chiang (1999) have 

developed a multi-layer feed-forward network using three different algorithms, 

namely the error back-propagation algorithm, the momentum and adaptive learning 
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algorithm, and Levenberg–Marquardt approximation algorithm. The characteristics 

of the three algorithms were analyzed. 

 

Smith (2000) offered neural networks for the solution powder metallurgy 

problems that are too complex for standard statistical methods because of the 

numerous variables involved and the non-linearity of the relationships. In a further 

study, Yarlagadda (2001) analyzed the effect of process parameters on injection 

molding process based on governing equations of the mold filling process by using 

neural networks. Ohdar & Pasha (2003) employed a three layer neural network with 

backpropagation algorithm for controlling the properties, particularly the density, of 

metal powder perform. Once they predicted the density for various combinations of 

input variables such as compacting pressure, sintering temperature and percent 

reduction, they selected the appropriate combination of input variables corresponding 

to the desired density.  

Risbood, Dixit & Sahasrabudhe (2003) and Grzesik & Brol (2003) examined the 

use of artificial neural networks to estimate and control the surface roughness during 

machining processes where Bisht, Gupta, Pal & Chakraborty (2005) proposed a 

multi-layer feedforward neural network model employing backpropagation for the 

prediction of flank wear in turning operations by inputting cutting force ratio, feed 

rate and cutting speed.   

Cus, Zuperl & Milfelner (2006) used supervised networks to successfully estimate 

the cutting forces developed during the milling process. The predictive capability of 

using analytical and neural network approaches is compared. They built a multi-layer 

feedforward network with backpropagation training method. They made an extensive 

number of tests on the milling machine to confirm the neural model with different 

cutting parameters and concluded that the proposed model can be used for simulation 

purposes and for monitoring and optimization of the cutting parameters in machining 

process.  

 

Karunakar & Datta (2007) developed a neural network to simulate the relationship 

between sand casting parameters like green compression strength, permeability, 
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moisture percent, composition of the charge, and melting conditions as inputs and the 

presence/absence of defects as outputs. The set of inputs of the casting that is going 

to be made was fed to the network, and the network could predict whether the casting 

would be sound or defective. The causes for the defects were investigated, and the 

defects were prevented by altering the molding parameters. Belhadj, Abbassi, Mistou 

& Zghal (2010) proposed a multi-layered feed forward employing backpropagation 

to predict the thickness and the forming pressure tube hydroforming process. They 

concluded that the variation thickness is very sensitive to the variation of the input 

parameters and they proposed to improve training algorithms or to make training 

especially in the desired zone based on a numerical experimental design.  

 

When the articles reviewed above are considered, the success of most of the 

studies are the result of the good generalization capabilities of backpropagation 

networks which are used to capture the complex relationship between the input and 

output variables of the considered manufacturing process. Thus, it can be said that 

backpropagation networks are not directly involved in the optimization problem. 

That is, actual optimization of manufacturing processes is not performed. However, 

there are few studies aimed to optimize manufacturing processes by using artificial 

neural networks.  

 

Su & Hsieh (1998) proposed an approach based on neural networks to solve the 

quality optimization problem in Taguchi’s dynamic experiment. However, only a 

single response is addressed and the effects of the control factors on response are not 

presented. As a further study, Tong & Hsieh (2001) proposed a novel means of 

applying artificial neural networks to solve the multi-response optimization problem 

by combining the quantitative and qualitative response. Although parameter 

optimization can be obtained, they were not able to achieve to analyze the effect of 

control factors on multiple responses. In lieu of the above methods, Hsieh (2006) 

proposed a complete procedure based on an artificial neural network to perform 

optimization of the multi-response problem in arbitrary experimental design. They 

studies two cases: one for level combination of control factors, the other for both 

mixed and level settings of control factors. They concluded that no matter whether 
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the control factors are due to the level form or the real value, the proposed procedure 

can be utilized. At the same time, the effect of the control factors on responses is also 

obtained by the proposed approach. However, their study is focused on only the 

quantitative responses and is not applicable for qualitative responses.  

 

Zuperl & Cus (2003) and Zuperl & Cus (2006) developed a neural optimization 

algorithm to reach higher precision of predicted results and efficient optimization of 

turning parameters. For assessing the multi-attribute value function, they built a 

feedforward neural network and compared the performance of this network with 

radial basis networks. They employed adaptive learning algorithm and for the 

optimization phase, they defined the area, in which extreme of the function is 

reached, by using limitation equations. According to the experiments done, they 

concluded that feedforward neural networks provide more accurate results but they 

require more time for training and testing.  

 

Although the popularity of backpropagation networks has grown significantly in 

the past few years, some problems still exist with the application of the 

backpropagation networks. That is, these networks are trained by a gradient based 

search technique which has the risk of getting stuck in local optimum and the starting 

point of the connection weights becomes an important issue to reduce the possibility 

of being trapped in local optimum. Another difficulty with the construction of these 

types of networks is the necessity of generating a training set which is time 

consuming. Therefore, in recent years, the performance of these networks is tried to 

be enhanced by combining them with different heuristics or meta-heuristics as 

described in Section 4.3. 

 

4.2.2 Hopfield Networks 

 

Hopfield networks are one of the well-known dynamic systems used for 

optimization problems. The original Hopfield NNs, which consist of a fully 

connected network of neurons capable of performing computational tasks, were 

introduced by Hopfield (1982). Using binary state neurons and a stochastic algorithm 
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to update the neurons, this network served as a content addressable memory that 

allows for the recall of data based on the degree of similarity between the input 

pattern and the patterns stored in the memory. This model is known as the discrete 

and stochastic Hopfield model. An example of Hopfield network is given in Figure 

4.3. 

 

 

 

 

 

 

 

 

 

Figure 4.3 An example of Hopfield network  

(from www.learnartificialneuralnetworks.com) 

 

In this non-layered recurrent network, the connection weights are assumed to be 

symmetric (wij=wji) and they store information about the states of the network. The 

Hopfield network employs Hebbian learning where weight between two neurons is 

strengthened/weakened in case an excitatory/inhibitory connection exists. Thus, the 

weight will be zero in case of no interaction. . In the case of an excitatory connection, 

the weights will take positive values; they will be negative in the case of an 

inhibitory connection or they will be zero in the case of no interaction (Akyol, 2006). 

 

Each neuron (i) is described by an internal and an external state. The internal state 

(net input value) of each neuron is represented by ui, while the external state (output 

value) by vi. In this model, the internal states are continuous and the external states 

are binary. The input of each neuron comes from two sources, external inputs Ii and 

inputs from other connected neurons. The relationship between the internal and 

external states of the neurons is represented by the following McCulloch and Pitts 

dynamics rule (Akyol, 2006). 

 



58 

 

 

 

                
(4.16) 

 





≤

>
==+

00

01
)()1(

i

i

ii
uif

uif
uftv               (4.17) 

The internal state of a neuron is found by taking the weighted sum of the external 

states of all connecting neurons with a constant external input to that neuron. In Eq. 

(4.16), t is a discrete time; wij is the synaptic interconnection strength from neuron j 

to i, f is the activation function between ui and vi and can take several forms. It can be 

the unit step function as defined by the Eq. (4.17). 

 

In a Hopfield model, the states of the neurons are updated in a random manner. 

The objective function and the problem constraints are mapped onto a quadratic 

function that represents the energy of system of neurons.  
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The aim is to obtain a configuration minimizing the energy function. Hopfield has 

proved that with symmetrical weight matrix and non-negative elements on the 

diagonal of the weight matrix, the energy function, by performing gradient descent, 

minimizes until convergence to stable states which represent the local minimum 

values of the energy function.  

 

After the original discrete stochastic model based on McCulloch-Pitts neurons 

was introduced, in a later work, Hopfield (1984) proposed a deterministic model 

based on continuous neurons. The idea was inspired by the fact that the neurons of 

the original model were different than the real biological neurons and from the 

realistic functioning of electronic circuits. So by maintaining the important properties 

such as content- addressable memory of the original model, a new model is 

constructed. The continuous Hopfield model given in Hopfield (1984) is represented 

by the following resistance-capacitance differential equation to model the 
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capacitance and resistance of a real neuron’s cell membrane. In this model, the 

dynamics of each neuron i may be defined as below. 
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where t is a continuous time, f is a continuous sigmoidal transfer function that 

determines the relationship between the internal state of a neuron and its output level, 

R is the trans-membrane resistance, C is the input capacitance, T is a parameter to 

control the slope of the transfer function and τ is the value of time constant of the 

amplifiers. In this model, the external states are ranged between 0 and 1, and are 

continuous. 

 

The idea of using ANNs to provide solutions to NP-hard optimization problems 

was pioneered by Hopfield & Tank (1985) with the use of their network for solving 

the Traveling Salesman Problem (TSP). In their paper, Hopfield & Tank showed that 

if an optimization problem can be represented by an energy function, then a Hopfield 

network that corresponds to this energy function can be used to minimize this 

function and thus provides an optimal or near-optimal solution. Since then, because 

of the advantages of using Hopfield networks, extensive research has been carried 

out on the application of the Hopfield networks for solving different optimization 

problems. Massive parallelism and convenient hardware implementation of the 

network architecture are among the most important advantages of Hopfield networks. 

 

In this network, objective function and the problem constraints are encoded in 

terms of an appropriate energy function. The aim is to obtain a configuration 

minimizing the energy function. Translation of the optimization problem into an 

appropriate energy function is in general, a difficult task. It must be in a quadratic 

form to meet the form of the energy function of the Hopfield network. Applying the 

most common method, penalty function approach, the energy function of the network 
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is set equivalent to the objective function of the problem, and the problem is reduced 

to an unconstrained form by including the constraints of the problem in the energy 

function as penalty terms. By this way, the constraint violations are penalized.  

 

Since there is a risk that backpropagation networks get stuck in local optimum and 

the success of Hopfield &Tank in solving a Traveling Salesman Problem encouraged 

many optimization researchers to employ Hopfield networks in optimization. Any 

optimization problem that can be defined by a quadratic form can be tackled with 

Hopfield networks. However, Hopfield NNs have some shortcomings:  

 

• They do not guarantee the feasibility. A Hopfield network whose energy 

function reaches its minima at the same points with the cost function that 

describes the optimization problem must be designed. By performing gradient 

descent on the energy function, the Hopfield model gets easily trapped in 

local minimum states, and this causes decreasing efficiency especially in 

large sized problems. 

 

• The performance of Hopfield network is very sensitive to the initial 

configuration of the network. Determining the penalty coefficients requires a 

tedious trial and error process. It requires a large number of iterations to 

converge to a solution. 

 

As the earliest study, Hopfield (1982) used binary state neurons and a stochastic 

algorithm to update the neurons and the proposed network served as a content 

addressable memory that allows for the recall of data based on the degree of 

similarity between the input pattern and the patterns stored in the memory. This 

model is known as the discrete and stochastic Hopfield model. In a later work, 

Hopfield (1984) proposed a deterministic model based on continuous neurons. The 

idea was inspired by the fact that the neurons of the original model were different 

than the real biological neurons and from the realistic functioning of electronic 

circuits. So by maintaining the important properties such as content-addressable 

memory of the original model, a new model is constructed. In order to get better 
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results and to reduce the number of neurons required to solve the same problem, Foo 

& Takefuji (1988c) introduced integer linear programming networks as extensions of 

the original Hopfield network, and achieved better solutions.  

 

In the relevant literature, it is seen that Hopfield networks are commonly 

employed for scheduling problems. To the best of our knowledge, there is no 

established research based on Hopfield networks for the optimization of 

manufacturing process parameters.  

 

4.2.3 Competitive Networks 

 

The works by Grossberg (1972), von der Malsburg (1973), Fukushima (1975), 

Willshaw & von der Malsburg (1976), and Grossberg (1976 a, b) are the first in the 

area of competitive learning. Unlike Hopfield networks, the winner take all strategy 

forms the base of the competitive networks. Winner-take-all is a computational 

principle applied in computational models of neural networks by which neurons in 

the output layer compete with each others to be activated  with the result that only 

one output neuron, is on at any time. 

 

In this unsupervised network, as in Figure 4.4, there is a single layer of output 

neurons fully connected to the input neurons of the network. In this output layer 

known as the competitive layer, lateral inhibition occurs among the neurons and 

output nodes in the network mutually inhibit each other, while simultaneously 

activating themselves through reflexive connections. After some time, only one node 

in the output layer will be active, namely the one corresponding to the strongest 

input. For an input pattern presented to the network, the neuron with the weight 

vector at the least distance from the input vector is called the strongest or winner and 

its output is set to one.  

 

In the literature reviewed, it is seen that most applications of competitive 

networks in manufacturing focus on grouping technology for manufacturing cell 

problems. The application of maximum network is studied by Knapp & Wang (1992)  
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Figure 4.4 an example of competitive network 

(from rslab.movsom.com) 

 

to automate the process selection and task sequencing in machining processes. In 

their approach, two cooperating neural networks are utilized. The primary network is 

a three-layer backpropagation network. The second fixed-weight network utilizes the 

MAXNET architecture. The primary network is a three-layer backpropagation 

network built for generation of the operation alternatives. The second fixed-weight 

network utilizes the MAXNET architecture that was used to make a decision among 

competing operation alternatives. In the last stage, the output of the MAXNET was 

fed back to the input layer of the primary network to provide a basis for deciding the 

next operation in the machining sequence.  

 

4.3 Hybrid Approaches 

 

In recent years, besides their advantages of parallelism, learning, generalization 

capability, nonlinearity, and robustness, several limitations of ANNs such as 

settlement into local minima, trial and error parameter determination process, long 

learning time are perceived. To compensate their disadvantages, hybrid systems in 

which ANNs are combined with different computing techniques have been proposed 

in the literature. As a result, to enhance the performance of the neural networks, there 

has been an explosive growth in the successful use of hybrid neural networks in 
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optimization. In this section, we review the hybrid studies in manufacturing 

exploiting the combinations of neural networks with different approaches. 

 

One of the most common hybrid approaches involves artificial neural networks 

and Taguchi method. Taguchi approaches are used to provide input data to the neural 

network models. Rowlands, Packianather & Oztemel (1996) presented an integrated 

method to illustrate how optimum parameter design can be achieved by using design 

of experiments in conjunction with neural networks. They used NN to provide data 

for a full-factorial experiment, using the results of a fractional factorial designed 

experiment for training. As a similar study, Chiu, Su, Yang, Huang, Chen & Cheng 

(1997) used the neural network model and the Taguchi method to determine the 

optimum parameter setting in an injection molding process. The results showed that 

the integrated method is capable of treating continuous parameter values. The ANN 

and the Taguchi method have also been implemented for minimizing an objective 

function relevant to the forming process by Ko, Kim, Kim & Choi (1998). The 

combinations of process parameters are selected by orthogonal array. The results of 

simulation corresponding to orthogonal array are used as training data for the ANN 

to obtain optimal conditions. Their study concluded that the proposed method gave 

more systematical and economically feasible strategies to design metal forming 

processes. 

 

Sukthomya & Tannock (2005) utilized historical process data, to train a NN to 

model the actual production process. The NN is trained to learn the relationship 

between process parameters and process response, using process parameters as 

training input, and process response as training output. After suitable training, the 

NN is used to provide a reasonable approximation of output for previously unseen 

process input. They concluded that the proposed NN-Taguchi approach could be 

used to estimate the results of Taguchi experiment settings, without conducting any 

actual experimentation and could be used in integration with optimization techniques 

to find the optimum process parameter settings. To optimize multiple responses 

simultaneously, an N-D method by using artificial neural network and data 

envelopment analysis is presented by Liao (2005). In the first phase, ANNs are 
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primarily used to predict the multi-response values of all factors/levels combinations 

and in the second phase, data envelopment analysis is primarily used to multi-choose 

the optimal factors/levels combination. They resolved two case studies available in 

the literature, and results obtained indicated that the proposed approach provided an 

efficient and feasible solution to the multiple-response problem considered. For 

solving multiple response problems in parameter design problems, Antony, Anand, 

Kumar & Tiwari (2006) proposed a four-step procedure. They optimized three 

responses for an electronic assembly operation. Multiple S/N ratios are mapped into 

a neuro-fuzzy model to identify the optimal level settings for each parameter. 

Finally, they employed ANOVA analysis to identify parameters significant to the 

process.  

 

In order to handle one of the most important shortcomings of ANN, trapping in 

local minima, ANNs are commonly combined with GAs. As one of the major 

studies, Cook, Ragsdale & Major (2000) showed the use of an integrated NN-GA 

approach to determine the optimal process parameter values needed under different 

conditions and at various stages of the process. A neural-network model was 

developed to predict the value of critical strength parameters in a particle- board 

manufacturing process, on the basis of process operating parameters and conditions. 

A genetic algorithm then used the trained neural-network prediction model to 

determine the process parameter values that would result in the nearest to optimal 

value of the strength parameters that could be obtained under various operating 

conditions.  

 

Another illustration of ANN and GA hybrid methods is presented by Su & Chiang 

(2003) on wire bonding process. The backpropagation neural network is used to 

provide the non-linear relationship between factors and the response based on the 

experimental data. Then, they applied GA to obtain the optimal factor settings of the 

process. The comparison between the proposed approach and the Taguchi method 

demonstrated the superiority of the proposed approach in terms of process capability. 

Following this work, Li, Su & Chiang (2003) integrated desirability functions into 

the proposed network since most of manufactured products have more than one 
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quality characteristics and the quality characteristics are generally correlated with 

each other. By an illustrative example on silicon manufacturing process, it is 

concluded that the proposed approaches provided a compromise and composite 

solution.  

 

To decrease the number of experiments Huang & Tang (2006) developed a 

decision making system combining ANN, GA and Taguchi method. They proposed a 

systematic approach for parameter values in melt spinning to arrive at the optimal 

product quality. The experimental layout in the Taguchi method provided training 

samples of neural network and optimal parameter conditions are decided by genetic 

algorithm. Yang, Lin & Chen (2006) presented a new method to search the optimal 

loading paths of forming process using ANN and GA. In the study, ANN was used to 

map the relationship between the design variables and thickness variation. Then GA 

was applied to search the optimal internal pressure and axial displacement by using 

ANN as a solver of the proposed objective function. However, the final part should 

be formed completely and without any failures at the final step, thus the constraint 

functions in this case needed to be applied to control the final part dimensional 

accuracy and failures. To deal with this problem, Yong, Chan, Chunguang & Pei 

(2009) proposed a hybrid method to optimize loading path of forming process. They 

proposed two constraint functions: One is for checking wrinkling and the final part 

dimensional accuracy, and another is for controlling the fracture and excessive 

thinning. On the basis of the given parameter spaces, they used GA to search the 

global optimum of loading paths in combination with the trained ANN. 

 

In their study, Sen & Shan (2006) proposed a hybrid approach for optimal 

selection of machining conditions in drilling process. The proposed approach first 

used a backpropagation neural network to formulate a fitness function for predicting 

the response parameter of the process. From the network output, the desirability 

method obtained a composite fitness function for further use in the genetic algorithm. 

Then, the genetic algorithm predicted the optimal input combinations and 

simultaneously optimizes the multi-response characteristics of the process. However, 

the simulation results indicated that the proposed approach is largely sensitive to the 
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relative preference of weighting factor used in forming the composite function and 

the optimal solution obtained by this approach is quite subjective.  

 

As an example of combination of ANNs with desirability functions, Hsu, Su & 

Liao (2004) presented an integrated procedure using neural networks and exponential 

desirability functions to solve a multi-response parameter design problem. They used 

a backpropagation neural network to build response model of the dynamic multi 

response experimental data.  As an extension of their study, Hsu (2004) presented a 

hybrid approach involving Tabu search to optimize the manufacturing process. The 

confirmation results demonstrated the practicability and effectiveness of the 

proposed approach. The approach proposed by Chang (2006) employed a 

backpropagation network to construct the response model of the dynamic multi-

response system by training the experimental data. The response model is then used 

to predict all possible responses of the system by presenting full parameter 

combinations. Finally, the best parameter setting is obtained by maximizing the 

objective value and by an illustrative example they demonstrated the effectiveness of 

the proposed approach. 

 
For metal forming processes, ANNs are combined with a most commonly used 

method, Finite element method to analyze the forming process. Raj, Sharma, 

Strivastava & Patvardhan (2000) investigated the applicability and relative 

effectiveness of ANN based models for rapid estimation. The results obtained are 

found to correlate well with the finite element simulation data in cases of metal 

forming, and experimental data in cases of metal cutting. They concluded that their 

study had considerable implications in selection of the tools and on-line monitoring 

of tool wear and thus prevent damage to the tool and work piece during the course of 

manufacturing. 

 

Besides backpropagation neural networks, Hopfield networks also combined with 

different approaches to overcome its shortcomings. From optimization viewpoint, the 

Hopfield neural network and its extensions belong to the penalty method for solving 

the constrained real optimization into which a combinatorial optimization is 

converted. The penalty function requires the weighting factors for the penalty terms 
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to be sufficiently large in order to converge to a feasible solution. But as the penalty 

terms become stronger, the original objective function becomes weaker, and as they 

become larger and larger, the problem becomes ill conditioned. To deal with this 

problem, Li (1996) combined the augmented Lagrange multiplier method and the 

penalty methods of the Hopfield networks to obtain the augmented Lagrange 

Hopfield network. By this way, both the solution quality and the convergence 

properties of the Hopfield network are improved. Thus, the proposed approach helps 

to overcome the problems associated with the penalty method or the Lagrange 

multiplier method when used alone (Li, 1996). Following this work, Luh, Zhao, & 

Wang (2000) proved the convergence of Lagrangian Relaxation Neural Networks 

(LRNN) for separable convex problems, and constructed LRNN for separable integer 

programming problems.  

 

4.4 Summary and Future Research 

 

Over the last decade, ANNs have been applied to an increasing number of real-

world problems of considerable complexity and to the theoretical test problems. In 

this chapter, we tried to provide an extensive literature review on the applications of 

ANNs in manufacturing process optimization. In order to see the gradual 

development in these works, the recent research studies are summarized in a 

chronological order. Our survey is limited with the publications appearing in refereed 

journals and conference proceedings till 2010. Table 4.1 summarizes the 

manufacturing process applications considered in this research. The conclusions 

drawn from this detailed review are summarized below: 

 

• Most of the approaches proposed in the reviewed articles are based on 

artificial neural networks and genetic algorithms and a great emphasis has 

been given on the optimization or planning of manufacturing processes. The 

literature presents many variants of traditional ANN approaches and their 

combinations with different techniques to improve their performance by 

trying to escape from the local minima, by reducing the computational effort 
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required, by speeding convergence and by decreasing the number of neurons 

and interconnections. 

 

• Although widely preferred in the literature because of their highly parallel 

computational capabilities, one of the major problems in the application of 

artificial neural networks is determining the parameters of network 

architecture which is commonly achieved by trial and error. Thus, we believe 

that an important direction of future research is to search for the methods to 

overcome this trial and error experiments.  

 

• In the last years, ANNs have either been combined with artificial intelligence 

techniques such as expert systems, with metaheuristics such as GAs, tabu 

search, simulated annealing or with some heuristic procedures to form hybrid 

approaches providing superior solutions. As a global search technique, the 

combination of GAs with ANNs is widely used in obtaining optimal 

solutions, and considerable success is achieved by overcoming the slow 

convergence property of GAs and the local minima problem of ANNs. In this 

thesis, we also used a hybrid optimization approach involving ANN and GA.  

 

• In the neural network design, setting of the parameters, initialization of the 

weights, configuration of the network are often problem specific and the 

correct value of these parameters however is not known a priori. Therefore, 

for any given problem, a wide variety of parameters must be tried to generate 

confidence that a best solution has been found. Sensitivity of the ANNs to 

their initial configuration and inability of the gradient based search 

techniques to find global solutions motivated the researchers to employ EAs 

together with ANNs for the automatic adjustment of the parameters and the 

topology of the ANNs. 

 

We believe that in the near future the researchers will benefit from the use of the 

recent advances in ANNs, metaheuristics, and their combinations. It can be 
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concluded that, the future of ANNs not only lies in their explicit use but also lies in 

its conjunction with other advanced technologies. 

 

Table 4.1 Evolution of ANNs for optimization of manufacturing processes 

Year Author(s) Approach Application area 

1986 
Rumelhart, Hilton & 

Williams 

Backpropagation   

network 
General application 

1989 Rangwala & Dornfeld 
Backpropagation   

network 
Turning operation 

1989 Govekar et al. 
Backpropagation   

network 
Drilling operation 

1990 Monostori & Nacsa Artificial neural networks Drilling process 

1990 Nacsa & Monostori Artificial neural networks Drilling process 

1990 Anderson et al. 
Backpropagation   

network 
Arc welding 

1991 Anderson et al. 
Backpropagation   

network 
Arc welding 

1991 Smartt et al. Artificial neural networks Arc welding 

1991 Smith 
Backpropagation   

network 
Injection molding 

1991 Guillot & El Quafi 
Multi-layer  

feedforward network 
Metal cutting process 

1991 Wu et al. Artificial neural networks Injection molding 

1992 

(a,b) 
Knapp & Wang 

Multi-layer  

backpropagation network  

&  

Maximum network  

(MAXNET) 

Machining process 

1992 
Sathyanarayanan, Lin 

& Chen 

Backpropagation   

network 

Alloy-grinding  

operation 

1992 Cook & Shannon 
Backpropagation   

network 

Composite board 

manufacturing 
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1993 Wang et al. Artificial neural networks Wire bonding process 

1993 Hou & Lin Artificial neural networks 

Automatic 

manufacturing 

processes 

1994 Hyun et al. 
Backpropagation   

network 

Tube hydroforming 

process 

1996 Rowlands et al. 

( A Hybrid approach) 

Artificial neural network  

combined with  

Taguchi approach 

Manufacturing 

processes with 

multiple responses 

1997 Anjum et al. 
Two stage artificial neural 

network 

Manufacturing 

processes with 

multiple responses 

1997 Chiu et al. 

(A Hybrid approach) 

Artificial neural network  

model and Taguchi method 

Injection molding 

1998 Coit, Jackson & Smith Artificial neural networks 

Non-linear processes 

(Wave soldering & 

Casting) 

1998 Su & Hsieh Two stage feedforward network 

Semiconductor 

manufacturing with 

one response 

1998 Ko, Kim, Kim & Choi 

(A Hybrid approach) 

Artificial neural network  

combined with  

Taguchi approach 

Forming process 

1999 Ko, Kim & Kim 

(A Hybrid approach) 

Artificial neural network  

combined with  

Taguchi approach 

Forming process 
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1999 Yarlagadda & Chiang 

Multi-layer feedforward  

using three different algorithms  

(Backpropagation, Momentum & 

Adaptive learning, Levenberg-

Marquardt approximation) 

Die casting 

1999 Jain, Jain & Kalra Artificial neural networks Machining process 

2000 Smith Artificial neural networks Powder metallurgy 

2000 
Cook, Ragsdale & 

Major 

(a Hybrid approach)  

Combination of neural networks  

with GAs 

Particle board 

manufacturing 

2000 Raj et al. 

( a Hybrid approach)  

Multi-layer network with  

Levenberg-Marquardt algorithm  

and Finite element simulation 

Metal forming & 

Machining 

2000 Sadeghi 
Backpropagation   

network 
Injection molding 

2001 Yarlagadda Artificial neural networks Injection molding 

2001 Hsieh & Tang 
Two stage feedforward network  

with backpropagation 
IC manufacturing 

2002 
Heider, Piovoso & 

Gillespie 

Multi-layer feedforward network 

with backpropagation 

Thermoplastic tow-

placement process 

2002 Benardos & Vosniakos 

(A hybrid approach) 

Artificial neural networks 

combined with Taguchi method 

Milling process 

2002 Feng, Wang & Yu Artificial neural networks Honing process 

2003 Ohdar & Pasha 
Multi-layer feedforward network  

with backpropagation 
forging process 

2003 Risbood et al. Artificial neural networks Machining process 

2003 Grzesik & Brol Artificial neural networks Machining process 

2003 Zuperl & Cus 
Feedforward network & Radial 

basis network 
Turning operation 
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2003 Su & Chiang 

(a Hybrid approach)  

Backpropagation network  

combined with GA 

Wire bonding process 

2003 Li, Su & Chiang 

(a Hybrid approach)  

Hybrid ANN-GA approach  

integrated with  

desirability functions 

Silicon manufacturing 

process 

2004 Hsu et al. 

( a Hybrid approach)  

Combination of backpropagation 

network with exponential  

desirability functions 

Manufacturing 

processes with 

multiple responses 

2004 Hsu  

( a Hybrid approach)  

Combination of backpropagation 

network  

with exponential desirability 

functions and Tabu search 

Optical coupler 

manufacturing process 

2005 Bisht et al. Multi-layer feedforward network Turning operation 

2005 Sukthomya & Tannock 

(A Hybrid approach) 

Artificial neural network  

combined with Taguchi approach 

Super-plastic forming 

process 

2005 Liao  

(A Hybrid approach) 

Combination of backpropagation 

networks with data envelopment 

analysis 

Manufacturing 

processes with 

multiple responses 

2005 
Kurtaran, Ozcelik & 

Erzurumlu 

(A hybrid approach)   

Integrated FEM, Design of 

experiment, ANN and GA 

Injection molding  

2006 
Cus, Zuperl & 

Milfelner 

Multi-layer feedforward network 

with backpropagation 
Milling process 

2006 Hsieh Two stage feedforward network 
Lead frame 

manufacturing 
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2006 Cus& Zuperl 
Feedforward network & Radial 

basis network 
Turning operation 

2006 Antony et al. 

(A hybrid approach) 

Neuro-fuzzy model based on S/N 

ratios 

electronic assembly 

operation with three 

responses 

2006 Huang & Tang 

(a Hybrid approach)  

Decision making system 

combining  

ANN, GA and Taguchi method 

Melt spinning 

2006 Yang, Lin & Chen 

(a Hybrid approach)  

Artificial neural networks  

combined with Genetic 

algorithms 

Forming process 

2006 Sen & Shan 

( a Hybrid approach)  

Backpropagation network  

combined with GA and 

desirability functions 

Drilling process 

2006 Chang 

(a Hybrid approach)  

Artificial neural networks  

combined with the structure of the 

optimization problem 

Manufacturing 

processes with 

multiple responses 

2006 Karkoub Random neural network Tube Hydroforming 

2007 Changyu, Lixia & Qian 

(A Hybrid approach) 

Combination of artificial neural 

networks with genetic algorithms 

Injection molding 

2009 Yong et al. 

(a Hybrid approach)  

Artificial neural networks  

combined with Genetic 

algorithms 

Forming process with 

two constraints 

2010 Belhadj et al. 
Multi-layer feedforward network 

with backpropagation 

Tube hydroforming 

process 
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CHAPTER FIVE 

OPTIMIZATION OF FORMING PARAMETERS FOR TUBE 

HYDROFORMING PROCESS (THP) USING ARTIFICIAL NEURAL 

NETWORKS 

 

5.1 Introduction 

 

Hydroforming basically is a technique that uses a fluid either to form or aid in 

forming a part from ductile metal. The most common type of hydroforming used, 

tube hydroforming, changes the cross-sectional shape of a tube from the normal 

round to other shapes that change along the part's length.  

 

Tube hydroforming offers several advantages as compared to conventional 

manufacturing via stamping and welding. These advantages include:  

 

(a) Part consolidation (stamped and resistance welded two or more pieces of a 

box section can be manufactured in one operation from a hollow component),  

 

(b) Weight reduction through more efficient section design and tailoring of the 

wall thickness,  

 

(c)  Improved structural strength and stiffness,  

 

(d) Lower tooling cost due to fewer parts,  

 

(e) Fewer secondary operations (no welding of sections required and holes may 

be punched during hydroforming),  

 

(f) Reduced dimensional variations, and  

 

(g) Reduced scrap. 
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In recent years, because of these enormous advantages over conventional 

processes, tube hydroforming has become a popular method in making tubular parts 

of different configurations used in automotive industry (Aue-U-Lan, Vree, 

Brekelmans, Geers, Sillekens & Werkhoven, 2005).  

 

A classical example of tube hydroforming process is shown in Figure 5.1. The 

process is controlled by two types of loads, internal pressure (P) and axial force (F). 

After hydroforming process the initial length of tube (Li) turns to Lf. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Tube hydroforming process (from Shengdun, 2007) 

 

The aim of the process is to obtain high forming performance without any failure 

happening such as bursting, buckling and wrinkling. For example, bursting takes 

place when pressure is applied too rapidly without enough material feeding, while too 

much feeding of material tends to cause buckling. Eventually, these failures cause 

fracture and there is no clearly preferred approach to predict fracture in THP. Then, 

the quality of the hydroformed material can be measured by some characteristics such 

as thinning ratio and bulge ratio as commonly used in the literature. The performance 

of the process can be maximized by minimizing thinning ratio and maximizing bulge 

ratio simultaneously. These characteristics are highly dependent on by a number of 

forming parameters such as geometry dimensions, mechanical properties of the 
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material and process parameters (Yong, Chan, Chunguang & Pei, 2009). Therefore, it 

is important to set up the forming parameters in such a way that the quality variations 

of the products and process are minimized without any failure happening.  

 

The experimental optimization of any THP is often a very costly and time 

consuming task due to many kinds of non-linear events involved. In the relevant 

literature, optimization of forming parameters has often been considered as a multi 

response optimization problem, since there exist more than one responses should be 

optimized simultaneously. Various optimization approaches are employed for multi-

response optimization of THP. Li, Nye & Metzger (2006) studied the effects of 

forming parameters on THP by using Taguchi and finite element method (FEM) in 

order to determine the optimal combination of forming parameters for the process. 

Yang, Zhang & Li (2006) and Fann & Hsiao (2003) used a gradient-based 

optimization method with FEM to check the hydroformed tube quality about its 

thickness uniformity and to minimize the thickness variation in tube hydroforming. 

Aue-U-Lan, Ngaile & Altan (2004) evaluated different optimization approaches and 

conducted FE simulations and experiments of a closed-die tube hydroforming. 

Imaninejad, Subhash & Loukus (2005) employed finite element simulation and 

response surface method to determine the loading paths. They employed the 

optimization software LS-OPT to optimize the internal pressure and axial feed in 

which minimum thickness variation was chosen as a design objective and maintaining 

the effective stress below the ultimate stress. Manabe & Amino (2002) investigated 

the parameters influencing THP by means of FEM simulations and experimental 

work. Koç & Altan (2002) investigated the effects of the geometry parameters in THP 

by a series of 2D FEM simulations. Abedrabbo, Worswick, Mayer & Riemsdijk 

(2008) proposed an optimization method linked with the finite element analysis which 

employed forming limit diagrams as a failure prediction tool. They employed the 

optimization software HEEDS which uses genetic algorithm search methods. 

Johnson, Nguyen, Davies, Grant & Khaleel (2004) proposed a numerical control 

based on incremental method for process parameters in order to obtain stable 

deformation and maximum formability during tube hydroforming. Jannson, Nilsson & 

Simonsson (2007) presented suggestions on how to perform parameter optimization 
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in tube hydroforming process, and proposed an adaptive optimization method based 

on response surface methodology. 

 

Instead of using mathematical models for optimization, some authors have 

proposed fuzzy logical approaches. Aydemir, Vree, Brekelmans, Geers, Sillekens & 

Werkhoven (2005) proposed an adaptive simulation approach to obtain an effective 

process control for tube hydroforming. They focused on optimization of process 

parameters to prevent wrinkles and bursting. The parameters are adjusted during 

simulation via a fuzzy knowledge based controller. Manabe, Suetake, Koyama & 

Yang (2006) proposed a database assisted fuzzy process control algorithm to 

determine optimal process parameters. For the virtual control system, an explicit 

dynamic finite element code was used in simulation. 

 

New optimization techniques to reduce time consumptions and to determine the 

optimal forming parameters have been also used. Among these techniques artificial 

intelligence are highly demanded to model and optimize the THP with the purpose of 

manufacturing high quality parts. Artificial neural networks and genetic algorithm 

are two of the most promising artificial intelligence techniques for optimization and 

both of these two techniques are considered to be appropriate in the optimization of 

manufacturing processes. In recent years, ANN has become a very powerful and 

practical method to model very complex non-linear systems. It is used as a prediction 

model rather than an optimization tool for tube hydroforming problem. Hyun & Cho 

(2004) predicted the forming pressure for THP using ANN approach. Karkoub 

(2006) developed a model to predict the amount of deformation caused by 

hydroforming using random neural networks. Belhadj , Abbassi, Mistou & Zghal 

(2010) proposed an ANN approach to predict the thickness in the tube T-shape 

finished parts and to optimize the final part geometry. 

 

The GA is a global optimization algorithm and the objective function does not 

need to be differentiable. This allows the algorithm to be used in solving difficult 

problems, such as multi-model, discontinuous or noisy systems. Mahanty, Agrawal, 

Shrin & Chakravarty (2007) presented two approaches by combining two-
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dimensional irregular-shaped polygonal elements with a real-encoded genetic 

algorithm and a hybrid algorithm using a real-coded genetic algorithm with a local 

optimization algorithm. Zafar (2002) used GA in combination with Finite Element 

packages to optimize the internal pressure and feed rate. Yong et al. (2009) proposed 

a hybrid method consisting of ANN, FEM and GA for optimizing the loading paths of 

THP. Shengdun, Yong, Zhiyuan & Chengwei (2007) applied genetic algorithm in 

combination with FE codes to search the optimal process parameters.  

 

In this chapter, the objective is to apply ANNs to the optimization of forming 

parameters for THP and to compare its performance with GA. Since the relationship 

between process responses and process parameters is unknown, we used 

metamodeling approach to build the fitness function of proposed GA. Response 

surface analysis and artificial neural networks are used for metamodeling and their 

performances are compared. Although a comprehensive review for a better 

understanding of the ways of optimizing forming parameters of tube hydroforming 

process has been made, there appears to be no earlier study on the topic using ANNs 

as an optimization tool. This observation has been the motivation for the present 

work on parameter optimization problem of a THP.  

 

A general outline of this chapter is as follows. A brief explanation of the process 

and optimization problem is given in subsection 5.2. Following the proposed method 

presented in subsection 5.3, a case study is performed in 5.4 Conclusions are pointed 

out in subsection 5.6. 

 

5.2 Problem Statement 

 

The purpose of the parameter selection problem in tube hydroforming is to find 

optimal parameter design in order to obtain high forming performance and to analyze 

the effects of parameters on the performance of the tube hydroforming process.  

 

The principal factors, which influence the part quality, are the loading path of 

internal pressure and feeding during expansion and the size of start tube. A suitable 
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combination of these factors is important to avoid part failure. Common failure 

modes that limit the tube hydroforming process are wrinkling, buckling and bursting 

as shown in Figure 5.2. If the axial force is very high while the internal pressure is 

too low, buckling and wrinkling may occur. If the axial force is too low and the 

internal pressure is very high, the tube may burst. Thus, successful tube 

hydroforming without instabilities highly depends on the combination of the internal 

pressure and axial feeding at the tube ends.  

 

 

 

 

 

 

 

 

 

Figure 5.2 Failure modes a) Wrinkling; b) Buckling;  

c) Bursting (Koç and Altan, 2002) 

 

5.2.1 Objectives 

 

The tube hydroforming process possesses multiple responses and performance 

characteristics. However, the main objective of the process is to obtain high 

performance without any failure happening such as bursting, buckling and wrinkling. 

Among the three main failure modes involved in THP, bursting failure, as a 

consequence of necking, is irrevocable while other failure modes like buckling and 

wrinkling are recoverable. Eventually, these failures cause fracture and there is no 

clearly preferred approach to predict fracture in tube hydroforming process. 

Therefore, thinning ratio and bulge ratio are commonly used in the literature as a 

measure of forming quality. The objectives of the described process are: maximizing 

bulge ratio and minimizing thinning ratio (Li, Nye and Metzger, 2006). 
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where r1 and  r0 represent maximum radius of the hydroformed tube and original 

radius of the tube before hydroforming, respectively. 
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where t0 and t1 denote original thickness of the tube before hydroforming and critical 

thickness of the hydroformed tube, respectively. 

 

5.2.2 Limitations 

 

The conventional way of designing a THP starts with the definition of the basic 

parameters such as the die and tube geometries and the selection of the material. 

Then, a loading path is estimated to test the feasibility of the planned forming 

process.  

 

The parameters influencing part quality in tube hydroforming process can be 

grouped into three categories: geometry parameters, material parameters and process 

parameters. There are several factors limiting the forming parameters. These factors 

originate usually from material properties and process specifications.  

 

Table 5.1 illustrates the significant parameters of the process and each parameter 

has three levels. Thus, these parameters are limited with the bottom and top 

permissible limits. 

 

The problem of optimizing forming parameters in THP requires developing a 

model capable of accurately describing the input-output behavior and capturing the 

range of these input-output parameters. Therefore, two artificial intelligence 

techniques are employed to optimize THP: ANN and GA. 
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5.3 Solution Methodology 

 

In this section, we describe how artificial intelligence techniques can be used to 

solve the considered problem. Two artificial intelligence techniques are employed to 

optimize THP: ANN and GA. Firstly, a two-stage ANN is proposed to optimize the 

THP described in the previous section. Then, we employed a GA approach to 

optimize the same process. Finally, the comparison of these two artificial intelligence 

techniques is given by an illustrative example. 

 

Table 5.1 Process parameters of tube hydroforming 

Material 

Parameters 

Density ρ 

Young's modulus E 

Hardening coefficient K 

Hardening exponent n 

Poisson's ratio ν 

Yield strength σy 

Ultimate tensile strength σu 

Geometry 

Parameters 

Length of tube L0 

Outer radius of tube r0 

Thickness of tube t0 

Die entry radius re 

Bulge width W 

Process Parameters 

Internal pressure Pf 

Nominal stress ratio M 

Friction coefficient µ 

 

5.3.1 Design of the Proposed ANN  

 

Proposed ANN approach involves two stages both employing a back propagation 

NN for parameter searching and response estimating. The reverse direction concept of 

Hsieh & Tong (2001) is explored to hold communication between these networks.  

The two–stage approach is displayed in Figure 5.2. As can be seen, the first back 
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propagation network determines the optimal forming parameter combination. Hence, 

the first network can be interpreted as a procedure of parameter searching. Then, to 

obtain the estimates of the process responses, the second network is constructed by 

assigning the parameter combination and responses. Inputting the ideal parameter 

combination, the estimated results of responses can be obtained. Therefore, the second 

network can be interpreted as a procedure of response estimating.  

 

 

 

 

 

Figure 5.2 Topology of the proposed neural network approach 

 

In the design of a neural network following steps are considered: 

 

1. Data Acquisition 

2. Determine Network architecture 

3. Training and testing 

4. Simulation 

 

5.3.1.1 Data Acquisition 

 

The following input data must be entered into the model: 

 

Ideal Parameter 

Combination (pideal) 

Target Response 

Values (h) 

Ideal Parameter 

Combination (pideal) 

Estimated Response 

Values (hopt) 
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• Forming parameters: Forming parameters may be fed into the model in two 

ways. The original values of the parameters or, if available, the level settings 

of the forming parameters may be used.  

 

• Process responses: Since the objective of the process is getting a deformed 

tube with higher bulged height and less wall thickness reduction, the response 

of the process, y, may be expressed in different ways: 

ratioeburatiothinningy lg−=                                                                        (5.3) 

ratioebu

ratiothinning
y

lg
=                                                                                              (5.4) 

ratioebu
ratiothinningy

lg

1
+=                                                                       (5.5) 

 

For all the expressions given above, minimum process response may be obtained 

by minimizing thinning ratio and maximizing the bulge ratio. While thinning ratio 

takes values between 0 and 1, bulge ratio can take values in any range, commonly 

greater than 1. Since it is necessary to input target value of process response to the 

first network and the objective is to minimize the process response, the target of 

process response can be set as zero.  

 

The data set used to train the proposed networks has to include forming parameter 

values and corresponding process response values. To improve generalization, the 

available data is divided into three subsets. The first subset is employed to train the 

network, that is, for computing the gradient and determining the optimum network 

weights and biases. The second subset is used for validation. The error on the 

validation set is monitored during the training process. When the validation error 

increases for a specified number of iterations, the training is stopped. The weights 

and biases corresponding to minimum validation and training errors are considered 

as the optimum values of weights and biases. The last subset is dedicated for testing, 

that is, for obtaining the overall accuracy of the network and for comparing the 

performance of different network structures. The percentage of cross validation data 

and testing data is set as 5% of the whole data, respectively. 
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5.3.1.2 Proposed Network Architecture 

 

As mentioned previously, since the backpropagation network has the ability to 

map the complex relationship between input data and corresponding outputs, we 

adopted a feedforward BPN for optimization of tube hydroforming process.  

 

Since the first network was built for parameter searching, process responses are 

treated as inputs of this network. Thus, the number of neurons in the input layer is 

determined by the number of process responses of the problem considered. If the 

values of these responses are not in the same scale, all data must be normalized. The 

outputs of this network are the forming parameters, thus the output layer has one 

neuron for each forming parameter under study. The second network is used for 

response estimating and the outputs of the first network are used as the inputs of this 

network. Then, this network has one neuron for each parameter under study in the 

input layer and the number of output neurons is determined by the number of process 

responses of the problem considered. A network with one hidden layer is selected as 

the starting network structure. In order to find the number of neurons in the hidden 

layer trial-and-error approach is used.  

 
5.3.1.3 Network Training  

 

In this phase, the network is trained with the training data set described above and 

the performance checked with the test set. First, network parameters affecting the 

training need to be determined. Parameters of the proposed networks to be 

determined are: 

 

• The number of hidden layers and number of neurons in the hidden layer(s): 

As mentioned before, one hidden layer is selected as the starting network 

structure. In order to find the number of neurons in the hidden layer trial-and-

error approach is used. Based on this approach, a random, small number of 

neurons are used in the hidden layer and if the error of the trained network 

does not meet the desired tolerance, the number of neurons in the hidden 
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layer is increased and training cycle and performance evaluation is repeated. 

This procedure is continued until the trained network performs satisfactorily.  

 

• Transfer functions of neurons: The transfer functions can be any 

differentiable transfer function such as tan-sigmoid transfer function (tansig), 

log-sigmoid transfer function (logsig) and linear transfer function (purelin).  

Since the outputs of both two networks to be created ranges between [-∞,+∞], 

“purelin” transfer function is used for output layer. However, there is not any 

restriction for the output of hidden layers. Therefore, both “tansig” and 

“logsig” functions are used for hidden layers for different trials.  

 

• Learning algorithm, learning rate and step size: The most common algorithms 

used for backpropagation training are “Batch Gradient Descent with 

Momentum and Variable Learning Rate algorithms. These algorithms are 

very sensitive to the proper setting of step size and learning rate and the initial 

values of these parameters are set as the default values of the software used: 

0.7 and 0.1, respectively. If the error of the trained network does not satisfy 

the given tolerance, different values are used to decrease the network error.  

 

• Stopping criteria: The termination criteria to finish training may be one of the 

following: 

� As the network begin to overfit the data, the error on 

validation set also begins to rise.  If the validation error is 

increases for a specified number of iterations, the training 

terminates.   

� If the performance function of the network training drops to 

some threshold defined, the training terminates. For the 

proposed networks, default performance function, mean 

square error, is used.  

� When maximum number of epochs is reached, the training 

terminates.  
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Once the parameters are set, the proposed networks are trained by the selected 

learning rate algorithm for the pre-determined number of epochs until the given 

termination criteria is met. Since there is no established method to determine the 

optimal parameters of network architecture, we performed trial-and-error 

experiments with different network parameters to select the optimal network 

configuration.  

 

Selection of optimal network configuration takes place on the basis of trial-and-

error because there are no general rules for the selection process. After the two 

networks in the proposed approach are trained, network performance indicators are 

calculated. Mean square error (MSE) and correlation coefficient (r) are used to 

evaluate the network configurations. These configurations differ from each other in 

terms of network parameters defined above. The network configuration with 

minimum MSE and appropriate R value is selected as the best network architecture. 

 

5.3.1.4 Simulation   

 

In this step, the selected network configuration is simulated. The target value of 

the process response is inputted to the first network to obtain the optimal parameter 

design. The optimal values of forming parameters obtained by the first network are 

now inputted to the second network and optimal response of THP is found.  

 

5.3.2 Design of the Proposed GA 

 

Since the relationship between process responses, thinning ratio and bulge ratio, 

and forming parameters cannot be represented analytically, the proposed GA 

approach consists of two stages. In the first stage, a metamodel is built to map the 

relationship between forming parameters and process responses. In the second stage, 

GA is employed to obtain the optimal forming parameters of THP. 

 

Briefly, the neural network maps the input-output observed data and defines the 

fitness function of the parameter selection by function approximation. Consequently, 
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the genetic algorithm utilizes the fitness function to identify the optimal solution of 

the optimization problem of tube hydroforming process.  

 

The proposed GA algorithm can be defined as follows: 

 

Step 1. Set GA Parameters 

 

There is no established method to find the optimal parameters of the GA. Then, 

we conducted trial-and-error experiments to determine the parameters of proposed 

GA approach. Parameters of the proposed GA to be determined are: 

 

• Population size 

• Crossover probability 

• Mutation probability 

• Generation number 

 

Step 2. Representation of solution 

 

Herein, the chromosome structure is used to represent the possible solution. The 

length of the chromosome is determined by the number of forming parameters under 

study. The genes in the chromosome can be binary or real integer number and can be 

represented either by the level of a forming parameter or by the real value of the 

parameter.  

 

Step 3. Fitness Function 

 

The fitted metamodels in input-output mapping are used as fitness functions of the 

proposed GA. To build the metamodel representing the relationship between forming 

parameters and process responses, we used two approaches: Response surface 

analysis and ANNs.  
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Since the objective of the process is getting a deformed tube with higher bulged 

height and less wall thickness reduction, the response of the process, y, may be 

expressed in three different ways as described in the previous section.  

 

Step 4. Create New Population 

 

To create the new population, genetic operators are employed. 

 

Step 4.1. Selection: In the proposed algorithm, roulette wheel selection is used. This 

is a way of choosing members from the population of chromosomes in a way that is 

proportional to their fitness. It does not guarantee that the fittest member goes 

through to the next generation; however it has a very good chance of doing so. The 

algorithm of roulette-wheel selection is: 

 

i) With respect to fitness functions, calculate the associated probability 

of selecting each chromosome. 

ii)  Compute cumulative distribution of the probabilities obtained in (i).  

iii) Generate a random number from a uniform continuous distribution 

in [0 1]. Select the chromosome that the random number is less than 

associated cumulative probability.  

 

Step 4.2. Crossover: The proposed genetic algorithm uses a simple crossover 

operator in which a random crossover point is determined and the second parts of the 

chromosomes are exchanged. The probability of selecting a chromosome for 

crossover is calculated by crossover probability and it is determined by trial and error 

in the range of 0.5 and 0.9. The algorithm of crossover operator is as follows: 

 

i) Select two random chromosomes as described in Step 4.1.  

ii) Generate a random number from uniform continuous distribution 

in [0 1]. If this random number is less than crossover probability, 

go to (iii). Otherwise, select two new chromosomes. 
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iii)  Generate a random number from 1 to the length of the 

chromosome as the crossover point. Perform crossover.  

iv) Do this until the number of created children is equal to initial 

population. 

 

Step 4.3. Mutation: The probability of selecting a chromosome for mutation is 

calculated by mutation probability and it is determined by trial and error in the range 

of 0.001 and 0.05. The mutation operator is performed by the following algorithm: 

 

i) Generate a random number from uniform continuous distribution 

in [0 1]. If this random number is less than mutation probability, 

go to (ii). Otherwise, select the next chromosome. 

ii) Generate a random number from 1 to the length of the 

chromosome as the mutation point. Perform mutation and change 

the value of the gene within the bounds of the selected forming 

parameter.  

 

Step 4. Reproduction  

 

In order to select the chromosomes for the next generation, all the newly created 

chromosomes are to be evaluated. Selection of the chromosomes for the next 

generation is done by roulette-wheel selection as described above.  

Now, the new population is obtained and the algorithm again starts with the 

“Selection” step. The algorithm is performed until the termination criteria; maximum 

number of generations is met.  

 

5.4 Simulation Example 

 

To illustrate the performance of proposed algorithm for tube hydroforming 

process, an illustrative example based on the experimental data from Li, Nye & 

Metzger (2006) in which Taguchi approach is used to find preferable forming 
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parameters of THP. They applied Taguchi method to design an orthogonal array and 

the virtual experiments were analyzed by the use of FEM.  

 

The process has eight forming parameters each with three levels as in Table 5.2 

and two responses: bulge ratio and thinning ratio.  

 

The Taguchi L-18 experimental design of these eight forming parameters and two 

responses is shown in Table 5.3. The aim of our study is to determine levels of these 

eight forming parameters in order to minimize thinning ratio while maximizing bulge 

ratio. Thus, the response of THP to be optimized can be expressed by (5.4) 

 

Table 5.2 Level of forming parameters (from Li, Nye & Metzger, 2006) 

Symbol Forming Parameter 
Level 

1 

Level 

2 

Level 

3 

A Length of the tube 180 200 220 

B Thickness of the tube 1,35 1,5 1,65 

C Die entry radius 8 10 12 

D Bulge width 90 100 110 

E Hardening exponent 0,207 0,227 0,247 

F Internal pressure 36 40 44 

G Nominal stress ratio 0,2 0,4 0,6 

H Friction coefficient 0,02 0,06 0,1 

 

5.4.1 ANN Optimization 

 

In the following paragraph, we solve the problem considered applying the steps of 

the proposed ANN approach as described in Section 5.3.1.  
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Table 5.3 Experimental design (from Li, Nye & Metzger, 2006) 

Run 

No 

Forming Parameters Response 

A B C D E F G H 
Bulge 

Ratio 

Thinning 

Ratio 

1 1 1 1 1 1 1 1 1 1.448 0.284 

2 1 1 2 2 2 2 2 2 1.982 0.497 

3 1 1 3 3 3 3 3 3 1.923 0.477 

4 1 2 1 1 2 2 3 3 1.596 0.407 

5 1 2 2 2 3 3 1 1 2.029 0.559 

6 1 2 3 3 1 1 2 2 1.449 0.304 

7 1 3 1 2 1 3 2 3 1.691 0.483 

8 1 3 2 3 2 1 3 1 1.439 0.315 

9 1 3 3 1 3 2 1 2 1.59 0.429 

10 2 1 1 3 3 2 2 1 1.678 0.386 

11 2 1 2 1 1 3 3 2 1.719 0.423 

12 2 1 3 2 2 1 1 3 1.64 0.385 

13 2 2 1 2 3 1 3 2 1.498 0.345 

14 2 2 2 3 1 2 1 3 1.639 0.417 

15 2 2 3 1 2 3 1 3 1.853 0.53 

16 2 3 1 3 2 3 2 1 1.744 0.493 

17 2 3 2 1 3 1 2 3 1.492 0.384 

18 2 3 3 2 1 2 3 1 1.597 0.416 

 

5.4.1.1 Data Acquisition 

 

The forming parameters given in Table 5.2 and experimental data given in 

Table5.3 are used as data set to train the network. The forming parameters are used 

in two different ways, with their original values and with their levels. This is 

considered as a parameter to be determined and by employing trial and error 

experiments, optimal representation of forming parameters is determined. 
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The percentage of cross validation data and testing data is set as 10% of the whole 

data, respectively. The rest, 80% of the data set is used for training. The target of the 

process response is set as zero and fed into the first network as the input.  

 

5.4.1.2 Proposed Network Architecture 

 

The first neural network is required as a procedure of parameter searching. For 

this network; the number of neurons in the input layer will be two, one for thinning 

ratio and one for bulge ratio. This network will have eight neurons in the output layer 

each for the forming parameters in Table 5.2. In order to find the number of hidden 

layers and the number of neurons in the hidden layer(s), trial-and-error experiments 

are performed.  

 

The second neural network is used as a procedure of response estimating. Since 

the outputs of the first network are inputs of this network, this network will have 

eight neurons in the input layer. The outputs of this network are the process 

responses. Then the output layer has two neurons for process responses. In order to 

find the number of neurons in the hidden layer trial-and-error approach is used. 

Again, hidden layers are determined by performing trial and error experiments. 

 
5.4.1.3 Network Training  

 
A network with one hidden layer is selected as the starting network structure for 

both proposed networks.  The initial values of ANN model parameters, learning rate 

and step size are set as the default values of the software used: 0.7 and 0.1, 

respectively. If the error of the trained network does not satisfy the given tolerance, 

values of these parameters are changed to decrease the network error.  

 

4 networks are constructed with different parameters for the first network. The 

network configurations can be seen in Table 5.4. 
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Table 5.4 Neural network achitectures built for proposed model-1 

Trial 

Hidden Layers Transfer 

Function 

of Output 

Layer 

Training 

Function 
Epoch 

Learning 

Rate 
Momentum # of 

Layers 

# of 

Neurons 

Transfer 

Function 

1 1 50 Sigmoid Linear Momentum 2000 Default Default 

2 2 50 Sigmoid Linear Momentum 2000 Default Default 

3 2 50 Sigmoid Linear Momentum 2000 Default Default 

4 1 50 Sigmoid Linear 
Variable 

learning rate 
2000 Default - 

 
All networks are trained by the data set given in Table 5.3. The mean square error 

and correlation coefficient values for each network are as follows: 

 

Table 5.5 Peformance comparison of neural network architectures-1 

Trial MSE_Testing MSE_Validation MSE_Training r 

1 0.6265 0.622 0.6223 0.3491 

2 0.5672 0.5641 0.5623 0.4017 

3 0.5659 0.5624 0.5613 0.4115 

4* 0.5322 0.5311 0.5298 0.4551 

 

Trial with an asterisk is the optimal network architecture since it has the minimum 

MSE and maximum r values than the others. According to the performance indicators, 

the optimal configuration of the first network is determined as “2-50-8” with one 

hidden layer employing logarithmic sigmoid transfer function. The best network 

performance is obtained when we applied the learning function, adaptive learning rate 

with the default value of learning rate as 0.7. Figure 5.3 displays the variation of the 

mean square error for the best configuration of the first network during training. 

Referring to this figure, it is observed that the trained network model is validated for 

its predictive capability based on its acceptable MSE. 
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Figure 5.3 Variation of MSE for the first  

network configuration 

 
Since the outputs of the first network will be the inputs of the second network, 

only one network is configured for the second network. The parameters of this 

network and network performance are given in Table 5.6 and Table 5.7, respectively. 

Since the MSE and r value of this network is acceptable for evaluation, this network 

is used to generate the outputs for the parameter values calculated by the first 

network. Then, the optimal network configuration is determined as “8-50-2” with 

one hidden layer employing logarithmic sigmoid transfer function. As in the first 

network, this network also applies adaptive learning rate with the default value of 

learning rate as 0.7. 

 

Table 5.6 Neural network architectures built for proposed model-II 

Network 

Hidden Layers 
Transfer 

Function of 

Output Layer 

Training 

Function 
Epoch 

Learning 

Rate 
# of 

Layers 

# of 

Processing 

Elements 

Transfer 

Function 

1 1 50 Sigmoid Linear 
Variable 

learning rate 
2000 default 

 
Table 5.7 Performance measures of neural network architectures: 

Trial MSE_Testing MSE_Validation MSE_Training r 

1* 0.018 0.017 0.017 0.913 
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5.4.1.4 Simulation   

 

In this step, the selected network configurations are simulated. The target value of 

the process response is inputted to the first network as zero to obtain the optimal 

parameter design. The optimal values of forming parameters obtained by the first 

network are given in columns 1-8 of Table 5.8 and these parameter values are now 

inputted to the second network to find the optimal response of tube hydroforming 

process considered.  

 

Table 5.8 Results obtained by the proposed ANN model: 

Forming Parameters Responses 

A  

(1) 

B 

(2) 

C 

(3) 

D 

(4) 

E 

(5) 

F 

(6) 

G 

(7) 

H 

(8) 

Bulge 

Ratio 

Thinning 

Ratio 

0.4399 6.1468 3.7379 0.2312 0.1433 1.2340 1.2087 3.2309 0.7908 0.3783 

 

5.4.2  Optimization Using the Proposed GA 

 

As mentioned in the previous section, the proposed GA approach consists of two 

stages. In the first stage, a metamodel is built to map the relationship between forming 

parameters and process responses. 

 

5.4.2.1 Input-Output Mapping 

 

We used response surface analysis and artificial neural network methods for 

input-output mapping.  

 

5.4.2.1.1. Response Surface Analysis: Using the 18 responses from Table 

3, the adequate fit as the metamodel is obtained by using 

Minitab 15 Statistical Software®. The statistical analysis of 

model fit is given in Table 5.9. It can be concluded that the 

fitted model can explain approximately 100% of the variation 

in the response by the variable. 
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Table 5.9 Statistical Analysis of Model Fit 

Response 
R-

square 

R-square 

(adj.) 

Bulge Ratio 99.90% 98.60% 

Thinning Ratio 100.00% 99.90% 

 

Then, the fitted regression model takes the form of: 

 

Bulge Ratio=  1.8852-0.0171A-

0.0771B+0.0461C+0.0015D+0.0556E+0.1644F-0.0172G-

0.0123H-0.0341B2-0.0761C2-0.1104D2-0.0595E2-0.0216F2-

0.0602G2+0.033H2 

 

Thinning Ratio= 0.505098+0.000498789A+0.00424522B+0.0135077C-

0.00700773D+0.0210833E+0.0777482F-

0.0128971G+0.00401957H-0.0144274B2-0.0221685C2-

0.0446685D2-0.0264130E2-0.0114185F2-

0.0229718G2+0.0110022H2 

 

5.4.2.1.2. Artificial Neural Networks: A BPN is trained to derive the 

relationship between input parameters and output responses. A 

three-layer backpropagation network is proposed for mapping 

the relationship between parameters and responses as in Figure 

5.4. There are eight neurons in the input layer each 

corresponding to a forming parameter. There are two neurons 

in the output layer each corresponding to a response. The 

number of hidden layers can be determined by trial-and-error. 

The trained network is evaluated by mean square error and the 

network configuration with minimum network error is selected 

as the best. 
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Figure 5.4 Architecture of proposed BPN 

 

The parameters and performance of the selected network topology is as follows: 

 

Table 5.10 Parameters of proposed BPN 

Parameters 

# Hidden neurons 10 

Transfer func of hidden neurons Logarithmic Sigmoid 

Transfer func of output neurons Linear 

Training function Levenberg-Marquardt backpropagation 

# Epochs 1.000 

Performance 

MSE 0 

Correlation Coefficient 0.97 

 

The optimal neural network configuration has 10 hidden neurons which have 

logarithmic sigmoid transfer function. The output layer of the network has linear 

transfer function. The change of mean square error is shown in Figure 5.5.  

 

Forming Parameters 

Quality Responses 

Input Layer: 8 Neurons 

Hidden Layer: # of Neurons by trial and error 

Output Layer: 2 Neurons 
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Figure 5.5 MSE of trained neural network 

 

5.4.2.2 Optimization by Proposed GA approach 

 

The application of the proposed GA optimization algorithm is described in the 

following paragraph: 

 

Step 1. Set GA Parameters 

 

The initial values of GA parameters are set as 20, 0.7, 0.05 and 100 for population 

size, crossover probability, mutation probability and generation number, 

respectively. During trial and error experiments different values for these parameters 

are examined. 
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Step 2. Representation of solution 

 

The chromosome structure is used to represent the possible solution. The length of 

the chromosome is 8 in which each gene in the chromosome represents the level of a 

forming parameter in Table 5.2. The genes in the chromosome are represented by 

real-coded integer numbers by using the levels of the parameters that ranges between 

1 and 3.  

 

Step 3. Fitness Function 

 

The fitted models by input-output mapping in the previous section are used as 

fitness functions separately. The process responses are calculated by either using the 

metamodel obtained by response surface analysis or inputting the parameters to the 

trained ANN.  

 

Step 4. Create New Population 

 

To create the new population, genetic operators are employed. In the proposed 

algorithm, roulette wheel selection is used. A simple crossover operator which means 

that one splicing point is selected to create new individuals is employed by an initial 

crossover probability of 0.7. Finally, by applying the mutation operator and 

determining the chromosomes surviving for the new population, a generation is 

completed. The algorithm is performed until the termination criteria; maximum 

number of generations is met.  

 

Table 5.11 Parameters of proposed GA 

Parameters of GA 

Parameter RSM NN 

Population size 35 35 

Crossover rate 0.7 0.6 

Mutation rate 0.05 0.05 

Iteration number 1.000 1000 
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The parameters of the proposed GA-RSM and GA-NN integrations are shown in 

Table 5.11. These parameter values are based on our computational experiences and it 

is to be noted that the same parameter values are tried to be found for both 

metamodels during simulations.  The evolutions of the fitness function with these 

parameters are shown in Figure 5.6 and Figure 5.7. 

 

 

 

 

 

 

 

Figure 5.6 History of proposed GA approach using ANN-Metamodel 

 

 

 

 

 

 

 

 

Figure 5.7 History of proposed GA approach using RSM-Metamodel 

 

The optimal forming parameters and process response values of genetic 

algorithms for both fitness functions are as in Table 5.12. 

 

5.4.3 Simulation Results 

 

The forming parameters in THP were optimized using our proposed ANN and GA 

approaches. The proposed approaches are implemented by using MATLAB 5.0 

computing environment. Table 5.13 shows the final process responses obtained by Li 

Li, Nye & Metzger (2006) using the Taguchi’s method, and by our proposed two-

stage ANN and GA approaches, respectively.  
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Table 5.12 Results of the proposed GA 

Parameter  GA-RSM GA-NN 

A 1.4055 1.61 

B 1.0230 2.586 

C 1.0409 2.013 

D 1.0178 2.7806 

E 1.1152 2.9766 

F 2.9697 2.5528 

G 2.9602 1.4536 

H 1.0354 1.2852 

Thinning Ratio  0.4095 0.0013 

Bulge Ratio 1.8301 2.0479 

 

Table 5.13 Comparison of results 

Approach 

Thinning 

Ratio 

(1) 

Bulge 

Ratio 

(2) 

Process 

Response 

(3) 

Improvement  of 

Proposed Approaches 

(4) 

GA-RSM  0.4095 1.8301 -1.421 18% 

GA-NN  0.0013 2.0479 -2.047 70% 

Two stage NN  0.3783 1.7908 -1.413 17% 

Taguchi Approach   0.3910 1.5960 -1.205 - 

 

In this table, the first and second columns show the thinning ratio and bulge ratio 

values, respectively, obtained by the solution approaches. Since the process response 

is expressed as in 5.4, the third column displays the process response that is optimized 

through our study. The fourth column indicates the % improvement and is calculated 

by: 
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In terms of solution quality, both of the proposed approaches yielded better results 

compared to Taguchi method.  The proposed two-stage ANN approach provided 17%, 

the proposed integrated GA-RSM approach provided 18% and the proposed 

integrated GA-NN approach provided 70% improvement in the THP under 

consideration. Consequently, both the bulge ratio and thinning ratio were improved by 

using the proposed approaches. Thus, it can be concluded that the hybridization of 

ANNs with GA are very promising in optimization of THP.  

 

The main advantages of the proposed approaches are as follows: 

 

• They can optimize the multiple process responses for a given THP 

simultaneously. 

 

• They are simple to complement and adopt without modifying the existing 

model structure even if new forming parameters or new process performances 

are considered. 

 

• The proposed approaches can be integrated with an intelligent manufacturing 

system for automated process planning. This will lead to reduction in 

production cost and production time, flexibility in selection of forming 

parameters and improvement of quality of the hydroformed part. 

 

• They provide optimal results within a reasonable time span. By using the 

proposed approaches, forming parameters can be determined before starting 

the tube hydroforming processing.  
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• Failure happening can be avoided during hydroforming process by selecting 

the optimum parameters before starting hydroforming.   

 

• The forming limit of the hydroformed metal increases as thinning ratio 

decreases. Thus, the reliability of THP increases and it results in higher 

forming quality.  

 

• The higher bulge ratio indicates that the part is hydroformed with a maximum 

of material in the die cavity and necking is delayed as much as possible. 

 

On the other hand the main strength of the proposed ANN model we observed 

during the current study is that the developed NN model provided strong mapping 

ability and high precision for THP and it has the result that was intended in replacing 

the time-consuming FEM simulations for mapping forming parameters-process 

responses (thinning ratio and bulge ratio) relationship in THP. The advantages of the 

proposed GA over the ANN model can be listed as below. 

 

• It was easier to keep the optimum point within the experimental region defined 

by the search ranges of forming parameters as given in Table 5.2.  

 

• It provided faster optimization of forming parameters that is a key problem in 

THP. 

 

5.5 Conclusion  

 

In this chapter the use of artificial neural networks for solving the process 

optimization problem for tube hydroforming processes with two process responses, 

thinning ratio and bulge ratio is studied. Focus of this study has been on 

demonstrating the optimization capabilities of the proposed ANN approaches by 

solving an example problem available in the literature, considered by Li, Nye & 

Metzger (2006). To analyze the performance of the proposed approaches, results are 

compared with the Taguchi solution method commonly used to solve the problem 
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under study and also used by Li, Nye & Metzger (2006). The results demonstrated 

that the proposed approaches improved thinning ratio and bulge ratio of the THP 

under consideration. However, hybridization of ANN with GA provided better 

results. Thus, it can be concluded that the artificial neural networks are effective 

alternatives to Taguchi and other commonly used solution methods for THP such as 

FEM simulations. But they may need to be integrated by other solution methods to 

achieve more optimal results.   

 

From the improvement of proposed approaches to tube hydroforming process, it 

can be concluded that besides the convergence to feasible and valid solutions, 

convergence of the proposed approaches to good quality solutions indicates their 

general applicability in also other metal forming optimization problems. 

 

Future research should consider selecting the parameters of both ANN and GA 

automatically rather than choosing by trial and error, which may be a time-

consuming task. Second, extension of the results to large size problems with different 

forming parameters and performance responses will be worthwhile.  
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CHAPTER SIX 

OPTIMIZATION OF MACHINING PARAMETERS FOR METAL CUTTING 

PROCESS USING ARTIFICIAL NEURAL NETWORKS 

 

6.1 Introduction 

 

Cutting is a collection of material-working processes wherein material is brought 

to a specified desired geometry by removing excess material using various kinds of 

power-driven machine tools such as saws, lathes, milling machines and drill presses. 

The most common type of cutting used, machining, is a part of the manufacture of 

almost all metal products, and it is common for other materials, such as wood and 

plastic, to be machined. A classical example of machining process is shown in Figure 

6.1. 

 

The three principal machining processes are classified as turning, drilling and 

milling. Other operations falling into miscellaneous categories include shaping, 

planing, boring, broaching and sawing. 

 

• Turning operations are operations that rotate the workpiece as the primary 

method of moving metal against the cutting tool. Lathes are the principal 

machine tool used in turning. 

 

• Milling operations are operations in which the cutting tool rotates to bring 

cutting edges to bear against the workpiece. Milling machines are the 

principal machine tool used in milling. 

 

• Drilling operations are operations in which round holes are created or refined 

by bringing a rotating cutter with cutting edges at the lower extremity into 

contact with the workpiece. Drilling operations are done primarily in drill 

presses but sometimes on lathes or mills. 
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Machining operations usually divide into two categories, distinguished by purpose 

and cutting conditions: 

 

• Roughing cuts, and 

• Finishing cuts 

 

Roughing cuts are used to remove large amount of material from the starting work 

part as rapidly as possible, in order to produce a shape close to the desired form, but 

leaving some material on the piece for a subsequent finishing operation. Finishing 

cuts are used to complete the part and achieve the final dimension, tolerances, and 

surface finish. In production machining jobs, one or more roughing cuts are usually 

performed on the work, followed by one or two finishing cuts, referred as multi pass 

machining operations.  

 

 

 

 

 

 

 

 

Figure 6.1 Metal cutting process (from Design for Manufacturability Handbook) 

 

The machining task is basically a process plan that involves determination of 

appropriate machines, selection of tools and tool trajectory plan based on the 

required surface tolerance. Process planning is very important to ensure the quality of 

machining products, reduce the machining costs, and increase the machining 

effectiveness.  

 

The study of metal cutting focuses, among others, on the features of tools, input 

work materials, and machine parameter settings influencing process efficiency and 

part quality characteristics (or responses). A significant improvement in process 
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efficiency may be obtained by process parameter optimization that identifies and 

determines the regions of critical process control factors leading to desired outputs or 

responses with acceptable variations ensuring a lower cost of manufacturing 

(Sonmez, Baykasoglu, Dereli & Filiz, 1999): 

 

• Due to the complex nature of the process, optimization of machining 

parameters is doubtlessly very difficult, since the following aspects are 

required;  

 

• Knowledge of machining (i.e., turning or milling); 

 

• Empirical equations relating the tool life, forces, power, surface finish etc., to 

develop realistic constraints; 

 

• Specification of machine tool capabilities, (i.e., maximum power or maximum 

feed available from a machine tool); 

 

• Development of an effective optimization criterion, (e.g., maximum production 

rate, minimum production cost, maximum profit or a combination of these); 

 

• Knowledge of mathematical and numerical optimization techniques. 

  

However, machining is a preferred manufacturing process to produce products 

with low cost and high quality. Hence machining economics is a very important 

consideration to achieve such an objective.  

 

Economics of machining processes has been a trend of interest for many 

researchers. Earlier studies in the field of machining parameter optimization are 

limited to single-pass operations where total desired depth of cut is removed in just 

one pass. Ermer (1971) analyzed single and multi-pass machining operations by 

geometric programming. However one pass is rarely preferred in practice and multi-

pass operations where the amount of stock to be removed during machining exceeds 
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the maximum allowable depth of cut are used. The number of passes and subdivision 

of depth of cut are important parameters in multi-pass machining operations. 

 

Various traditional optimization methods for determining and modeling of these 

parameters have been used in the literature. Iwata, Muratsu, Iwatsubo & Fujii (1972); 

Agapious (1992a,b & c); Shin & Joo (1992) used dynamic programming model to 

determine optimum number of passes and optimum cutting conditions. Sonmez, 

Baykasoglu, Dereli & Filiz (1999) used dynamic programming to obtain the 

optimum number of passes and geometric programming for obtaining the optimum 

cutting conditions. Gupta, Batra & Lal (1995) propose a methodology for selection 

of depth of cut for rough and finished passes in multi-pass turning operation to 

minimize total manufacturing cost by integer linear programming (ILP). Prasad, Rao 

& Rao (1997) combine LP and geometric programming to optimize the values of 

process parameters for a multipass turning operation. Al-Ahmari (2001) presented a 

non-linear mathematical model to solve the problem. Lee, Shin & Yang (1996) 

provide an interactive algorithm using both RSM and mathematical modelling to 

solve a parameter optimization problem in turning operation. Jeang, Li & Wang 

(2010) employed response surface methodology to predict cutting time and tool life.  

 

However, the machining optimization problem becomes more complicated when a 

large number of constraints are included. The additional variables due to number of 

passes make the solution procedure more complicated (Wu, 2008). Considering the 

drawbacks of traditional optimization techniques, non-traditional optimization 

techniques have been commonly used to optimize the machining problem. 

Satishkumar, Asokan, & Kumanan (2006) investigated the use of different non-

traditional optimization techniques like genetic algorithms, simulated annealing and 

ant colony optimization to solve the problem. Bhaskara, Shunmugam & Narendran 

(1998) and Shunmugan, Bhaskara & Narendran (2000) used genetic algorithm 

approach to optimize the subdivision of depth of cut and number of passes. 

Onwubolu & Kumalo (2001) propose a local search GA-based technique in multi-

pass turning operation with mathematical formulation in line with work by Chen & 

Tsai (1996) with simulated annealing-based technique. Wang, Da, Balaji & Jawahir 
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(2002) apply GA-based technique for near-optimal cutting conditions for a two-and 

three-pass turning operation having multiple objectives. Cus & Balic (2003) use GA-

based technique to determine the optimal cutting conditions in NC-lathe turning 

operation on steel blanks that minimize the unit production cost without violating 

any imposed cutting constraints. Savas & Ozay (2008) determined the minimum 

surface roughness at the process of tangential turn-milling by using genetic 

algorithms. Sankar, Asokan, Saravanan, Kumanan & Prabhaharan (2007) has 

proposed a modified genetic algorithm to solve the optimization problem of cutting 

parameters for constrained machining operations.  

 

Chen & Tsai (1996) combine SA and Hooks-Jeeves pattern search technique for 

optimizing cutting conditions in complex machining (multi-pass turning operation) to 

minimize unit operation cost. For optimization of CNC turning process, Juan, Yu & 

Lee (2003) apply SA-based technique to attain optimal cutting conditions of high 

sped milling operation. Zain, Haron & Sharif (2010) showed the application of 

simulated annealing to estimate the optimal effect of the radial rake angle of the tool, 

combined with cutting speed and feed influencing the surface roughness result.  

 

Vijayakumar, Prabhaharan, Asokan & Saravanan (2003); Baskar, Asokan, 

Saravanan & Prabhaharan (2005); Wang (2007) and Wu & Yao (2008) proposed an 

ant colony optimization procedure for determining the machining parameters of 

multi-pass operations. Saravanan, Asokan & Vijayakumar (2003), Karpat & Ozel 

(2006), Onwubolu (2006) and Srinivas, Giri &Yang (2009) implemented particle 

swarm optimization for finding optimum machining parameters.   

 

The problem of optimization of machining parameters is a non-linear optimization 

problem with constraints, and it is difficult for the conventional optimization 

algorithms to solve this problem because of problems of convergence speed or 

accuracy (Cus & Zuperl, 2006). The success of Hopfield and Tank in finding an 

efficient method for obtaining optimal solutions motivated the researchers to apply 

neural networks to optimization problems. The motivation behind the Hopfield and 

Tank neural network model was to take the advantage of the great speed associated 
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with the massively parallel computing capabilities of neural networks for fast 

solution of optimization problems.  

 

In the last literature, several applications of ANN-based input-output relationship 

modeling of metal cutting processes are reported. Back propagation neural network, 

proposed by Rumelhart, Hinton & Williams (1986), have been successfully applied 

by Sathyanarayanan, Lin & Chen (1992); Jain, Jain & Kalra (1999) and Feng, Wang, 

& Yu (2002) for modeling a typical creep feed super alloy-grinding, prediction of 

material removal rate and surface finish parameter of a typical abrasive flow 

machining, and a honing operation of engine cylinder liners, respectively. Grzesik & 

Brol (2003) show the usefulness of ANN modeling for controlling surface finish 

characteristics in multistage machining processes. From the literature reviewed, it is 

seen that neural networks has been employed for modeling the relationship between 

machining parameters and process responses. To the best of our knowledge, there is 

no attempt to obtain optimal or near-optimal machining parameters by using ANNs 

as the optimization tool.  

 

The purpose of this study is to exhibit the performance of neural networks for 

metal cutting process optimization. For this purpose, we employ a Hopfield-type 

dynamical network approach. After the appropriate energy function is constructed by 

using a penalty function approach, the dynamics are defined by steepest gradient 

descent on the energy function. The objective of the proposed approach is to 

minimize total production cost and surface roughness without violating cutting 

constraints. The machining parameters affecting the objective are assumed to be 

cutting speed, feed rate and depth of cut. The production model of Shin & Joo (1992) 

is adopted to illustrate the proposed model and to simplify the comparisons between 

different optimization methods using illustrative examples.  

 

A general outline of this chapter is as follows. The list of notations and acronyms 

used in this section is given in 6.2.  We give a brief explanation of the process and 

mathematical formulation of the optimization problem in 6.3. The proposed network 
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is described in subsection 6.4. Subsection 6.5 provides the computational results, and 

the conclusions with future research directions are given in 6.6. 

 

6.2 Notations and Acronyms 

 

A5  Cost of tool preparation 
Cij  Minimum cost corresponding to dij depth of cut, $/piece 
C0  Taylor’s tool life constant 
dij  jth element of depth of cut series for ith pass, mm 
di,min Minimum allowable depth of cut for ith pass, mm 
di,max Maximum allowable depth of cut for ith pass, mm 
dr  Depth of cut for rough pass, mm 
ds  Depth of cut for finish pass, mm 
dt  Total depth of cut, mm 
fr  Feed for rough pass, mm/rev 
fs  Feed for finish pass, mm/rev 
fmin  Minimum allowable feed, mm/rev 
fmax Maximum allowable feed, mm/rev 
Fmax Maximum cutting force, kgf 
h1,h2 Constants pertaining to tool travel and approach/depart time 
k0  Overhead cost, $/min 
k1  Constant in cutting force equation 
kt  Cost of a cutting edge, $/cutting edge 
L  Work piece length 
n  Assumed maximum number of rough passes 
p,q,r Exponents of speed, feed rate and depth of cut range in the ith pass 
Pmax maximum available cutting power, hp 
R  Nose radius of cutting tool, mm 
Rr  Peak to valley height for surface roughness for rough passes 
Rmax Peak to valley height for surface roughness for finish pass 
te  Time required to exchange a tool, min/cutting edge 
tp  Preparation time, min/piece 
Tmin Minimum tool life, min 
Tmax Maximum tool life, min 
Tp  Fixed interval of time after which tool bit is changed, min 
Ts  Tool life in finish pass, min 
U  Total production cost per unit, $/piece 
Ucr  Total cost for a rough pass, $/piece 
Ucs  Total cost for finish pass, $/piece 
vmin Minimum cutting speed, m/min 
vmax Maximum cutting speed, m/min 
vr  Cutting speed for rough pass, m/min 
vs  Cutting speed for finish pass, m/min 
µ,υ  Exponents of feed rate and depth of cut in cutting power equation 
η  Cutting power efficiency of machine tool 
ξ  Constant  
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6.3 Problem Statement 

 

The factors influencing the machining operation are the type of machining 

(turning milling etc.), machine tool parameters, cutting conditions, work piece 

characteristics and type of cutting tool. Undoubtedly, the cutting conditions are the 

most important factor. Basically, the optimization of machining conditions requires 

determining the economic process parameters according to a variety of economic 

criteria (objective function) without violating any imposed cutting conditions. These 

machining parameters must be selected in such a way that the machine is utilized to 

the maximum extent and the tool life as long as possible. These are two conflicting 

objectives and the purpose of optimization is to determine such a set of the cutting 

conditions that satisfies the limitation equations and balances the conflicting 

objectives.  

 

6.3.1 Objective Equations 

 

The entire development of planning of the machining processes is based on the 

optimization of the economic criteria by taking the technical and organizational 

limitations into account. In the machining operations, mostly used economic criteria 

are the costs and manufacturing time such as maximum production rate (minimum 

production time), minimum unit production cost or maximum profit rate. The first 

two approaches have received much more attention since the mid-1960s. The third 

approach is not commonly used due to lack of information and uncertainty during 

manufacturing. The formulation of the problem using minimum production cost or 

minimum production time as the objective function is quite different, but the basic 

concepts are identical (Al-Ahmari, 2001).  

   

Shin & Joo (1992) proposed a model to minimize total production cost. The 

model takes the use of Taylor’s tool life equation and is represented by the sum of 

cost for finish pass, and rough passes.  

 

                                                                       (6.1)       
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where  A5 is the cost of tool preparation and A5=k0tp.   

 

• The production cost of a finish pass is the sum of machining cost, machine 

idle cost, tool replacement cost and tool cost: 
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and the relationship between Tp and Ts is defined as Tp=Ts/ξ 

 

• The production cost of a rough pass is similar to the cost for finish pass and is 

given by: 
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6.3.2 Limitations 

 

The parameters of the machining economics problem are, usually the cutting 

speed, feed rate, and the depth of cut since they have the greatest effect on the 

success of machining operation. Moreover, in determining these parameters, special 

attention is usually given to the restrictions or constraints imposed on the particular 

operation(s) by the machine tool, the cutting tool and the work-piece (Amiolemhen 

& Ibhadode, 2004). There are several factors limiting the process parameters. Those 

factors usually originate from technical specifications and organizational 

considerations. Generally, the following limitations are taken into account (Cus & 

Balic, 2003):  

 

1) Permissible range of cutting conditions: Due to the limitations on the machine 

and cutting tool, and due to the safety of machining, the cutting parameters 

are limited with the bottom and top permissible limits. Limitations originated 

from permissible range of cutting conditions are: 
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o Cutting speed: 
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o Feed rate: 

maxmin fff ≤≤                                        (6.7) 

o Depth of cut: 

maxmin ddd ≤≤                                                  (6.8) 

 

2) Implied limitations issuing from the tool characteristics and the machine 

capacity: For the selected tool, the tool maker specifies the limitations of the 

cutting conditions. Tool characteristics and machine capacity limit the 

process by following parameters: 

 

o Cutting force 

                                     (6.9) 

o Cutting power: 

p

p

pp

r

p

q

ck

PT
df

/1
01

max
/16120ηνµ

≤








−








−

                      (6.10) 

Surface roughness is mainly a result of process parameters such as tool geometry 

and cutting conditions: 

 

[ ] 2/1
max8rRf s ≤                                                (6.11) 

 

By using (6.7) and (6.11): 

 

( )maxmaxmin 8,min RRfff ≤≤                                    (6.12) 

 

It has been observed that decreasing feed rate helps obtain a good surface finish 

but increases cost due to machining time. High cutting speeds may help to reduce the 

surface roughness. But since tool life at high cutting speeds is just a few couple 

minutes, this solution may not be applicable.  

max1 FdfkF ≤= νµ
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Cutting constraints for both rough pass and finish pass are similar. The cost 

function of finish pass given by (6.2) can be optimized taking into account the 

constraints above. For rough passes, same constraints are used for optimization; 

however, Rr is used instead of Rmax in (6.12). 

 

In addition to the above constraints, the total stock to be removed is determined as 

follows (Al-Ahmari, 2001): 

∑
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                                     (6.13)     

 

The cutting parameters can be chosen to be different in each of the individual 

passes. However for simplification, all rough passes have been considered to be 

identical. Thus, there are two sets of cutting parameters, one for all rough passes and 

one for the finish pass.  

 

6.3.3 Mathematical Model of the Problem 

 

In this study, the mathematical model proposed by Shin & Joo (1992) is adopted. 

Objective function is the minimum unit production cost required to machine a unit 

piece (Shin & Joo, 1992; Al-Ahmari, 2001).  

5
1
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where A5=k0tp. 

 

The objective function is subject to: 

max,min, sss vvv ≤≤

                           

(6.15) 

max,min, iii rrr vvv ≤≤

                   

(6.16) 

( )maxmax,min, 8,min RRfff sss ≤≤
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( )rrrr RRfff
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8,min max,min, ≤≤

                 

(6.18) 

max1 Fdfk ss ≤νµ

                   

(6.19) 
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6.3.4 Solution Methodology 

 

Yellowley & Gunn (1989) proposed a two-stage optimization algorithm, called 

optimal subdivision of depth of cut, to solve the multi-pass machining problem 

described above. The authors divided the total production cost minimization problem 

into two sub-problems as mentioned below:  

 

6.3.4.1 Stage-1 

 

This phase consist of determining costs for individual finish or rough pass 

considering various fixed values of depth of cut. A series of depth of cut is defined 

between minimum and maximum allowable depth of cuts. Minimization of cost for 

the finish pass can be achieved by using the maximum permissible value of feed 

under the constraints. The following steps are used to find the minimum cost for a 

finish pass. 

 

Step 1: The maximum feed values (f) satisfying Equations (6.6), (6.10), (6.11) and 

(6.12) are determined for a given depth of cut. The minimum feed rate satisfying 

these constraints is selected as the optimum value of feed, fs*. If selected feed rate is 

smaller than minimum allowable feed rate, then minimum allowable feed rate is 

assigned as fs*.  
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Step2: For the selected fs* and given Tp, ds, the optimal speed, vs*, is calculated from 

tool life equation: 
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Using optimal speed, vs*, optimal feed rate, fs*, and ds, power is calculated. If 

calculated power exceeds the maximum power available at the spindle, optimal 

speed is calculated by using Equation (6.12).  

 

Step3: Next, the minimum cost for the finish pass is obtained using the values vs*, 

fs* for a given depth of cut, ds.  

 

A similar procedure is adopted for finding minimum cost for a rough pass 

(Yellowley & Gunn, 1989; Gupta, Batra & Lal, 1995). 

 

6.3.4.2 Stage-2 

 

In stage 2, number of rough passes (ni), optimal combinations of depths of cut ds
* 

and dri
*
 for (ni+1) (i.e. one finish pass plus ni rough passes) and minimum total 

production cost are determined. The optimization of this sub-problem is achieved 

subject to the following constraints: 

 

1. There should be n rough passes and one final finish pass. 

2. The individual depths of cut for n rough passes and one finish pass should be 

in the range of allowable depth of cut for roughing and finishing operations. 

3. The sum of individual depth of cuts for n+1 passes should be equal to the 

total stock to be removed (Gupta, Batra & Lal, 1995). 

 

As mentioned in the previous section, in the literature, different solution 

approaches have been proposed for the solution of the problem. Gupta, Batra & Lal 

(1995) proposed a mixed integer linear programming approach for minimization of 

total production cost.  By this approach, optimal subdivisions of depth of cut for 
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rough passes and finish pass, optimal number of passes and minimum total 

production cost are determined. The results of the proposed model and the method of 

Shin & Joo (1992) are compared. For all the depths of cut the proposed model results 

in reduced production cost and the optimal number of passes in the proposed model 

are also either lower or equal to the ones found by Shin & Joo (1992). The proposed 

model of Gupta, Batra & Lal (1995) is also used as a reference for the proposed 

neural network approach in the study. Satishkumar, Asokan & Kumanan (2006) 

proposed different nontraditional optimization techniques- genetic algorithm, 

simulated annealing and ant colony optimization - for optimizing the depth of cut in 

multi pass machining problem given by Shin & Joo (1992), and  compared the results 

with those obtained by Gupta, Batra & Lal (1995) and Shin & Joo (1992). Based on 

these comparisons they concluded that, the proposed nontraditional techniques give 

better results. Al-Ahmari (2001) proposed a direct non-linear mathematical model to 

solve the second stage for both finishing and rough cutting in a single run. They 

compared the proposed model to the model of Gupta, Batra & Lal (1995), and 

concluded that there is no significant difference between the results of two 

approaches in terms of optimum number of passes and cost.    

 

6.4 Design of the Proposed Hopfield-Type Network 

 

In this section, we describe how dynamical gradient networks can be used to solve 

the considered problem presented in the previous section. The proposed approach is 

an extension of the original formulation given in Hopfield (1985). The proposed 

network is based on the mixed integer linear programming model of Gupta, Batra & 

Lal (1995) and by this approach it is possible to solve the optimization problems 

which can be transformed into a linear programming model.  

 

Gupta, Batra & Lal (1995) formulated the machining parameter optimization 

problem as a mixed integer linear programming model as follows: 

i =0 implies finish pass 

i =1,2,…,n implies ith rough pass 

j =1,2,…,mi implies correspondence to jth depth of cut  
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n = The maximum number of rough passes required 

 

Then, the integer programming representation of the problem is as follows 

(Gupta, Batra & Lal, 1995): 
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{ }1,00 ∈jX                                                  (6.31) 

{ } niforX ij ,...,2,11,0 =∈                       (6.32) 

niforXX ijj ,...,2,10,0 =≥                       (6.33) 

 

The first constraint (6.28) implies that there is only one depth of cut selection for 

the finish pass and the finish pass must always be selected. The second constraint 

(6.29) means that there is only one depth of cut selection in case a rough pass is 

selected. The last constraint (6.30) indicates that the sum of individual depths of cut 

is equal to the total depth of stock removal (Gupta, Batra and Lal, 1995).  

 

To construct a dynamical gradient based network representation of the model 

above, firstly the network architecture is explained, and then derivation of the energy 

function representing the proposed network, and dynamics and proof of the 

convergence of the proposed network are given. Finally, the proposed approach is 

illustrated with an example. 
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6.4.1 The Network Architecture 

 

The proposed gradient network has two interconnected networks, a maximum 

network and a continuous network. The maximum network (X0j network) is used to 

assign a depth of cut for the finish pass (X0j) and the continuous network (Xij 

network, i>0) is used to determine optimal number of rough passes and to assign 

depth of cut(s) for rough pass(es).  

 

The input-output scheme for each of the neural networks is shown in Figure 6.1. 

UXij symbolizes the input to the neuron for ith rough pass and jth depth of cut. UX0j 

denotes the input to the neuron for depth of cut of finish pass. The dynamics of the 

proposed network will be defined in terms of input variables. VXij demonstrates the 

output of neuron for ith rough pass and jth depth of cut. This neuron will be activated 

if dj value of depth of cut is selected in the ith pass. Otherwise, the state of the neuron 

will be set as zero to indicate that the neuron is not activated. VX0j depicts the depth 

of cut for finish pass. Similarly, this neuron will be activated if dj value of depth of 

cut is selected in the finish pass. Neurons with sigmoidal nonlinearity are used to 

represent discrete variables, Xij, so the activation function for discrete neurons can 

take any sigmoidal form with slopes λ.  

 

Since all variables of the second network are binary-values, the outputs of the 

neurons are converged to discrete values by using hard limit transfer function.  

 

 

 

 

 

 

 

 

Figure 6.1 The input-output scheme for  

the neurons representing each unit 

 

 

 UX0 UXij 

VX0 VXij 
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6.4.2 The Energy Function 

 

Instead of using linear programming or the k-out-of-N rules to develop the energy 

function, we directly formulate the cost function according to the constraints term by 

term. The energy function for this network is constructed using a penalty function 

approach. That is, the energy function E consists of the objective function plus a 

penalty function to enforce the constraints. The penalty function involves the sum of 

the penalty terms each of which corresponds to each constraint of the problem. For 

the problem considered, the penalty function will include three penalty terms: P1, P2 

and P3 corresponding to each constraint.  

 

To prevent the selection of more than one depth of cut for the finish pass, the first 

penalty term,
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jXP , which will add a positive penalty if the solution 

does not satisfy the equality constraint given in (6.16), is included in the energy 

function. This penalty term will yield zero when these equality constraint is satisfied. 

 

The second penalty term, P2, will add a positive penalty if the solution does not 

satisfy the inequality constraint given in (17). In accordance with this constraint, P2 

will take the following form,

 
∑ ∑

= =










−=

n

i

m

j

ij

i

XP
1 0

12 ν , where υ represents the penalty 

function. υ (ε)= ε2 for all ε>0 and υ (ε)= ε for all ε<=0. And the functional form of 

this function is shown in Figure 6.2. 

 

 

 

 

 

 

 

 

Figure 6.2 Penalty function for enforcing inequality constraints 
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The third term P3 will add a positive penalty if the equality constraint given in 

(6.18) is violated. Therefore, P3 should be defined by 
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We require that X0j and Xij є{0,1}. These constraints will be captured by the fourth 

and the fifth terms, P4 and P5, which will add a positive penalty if the binary 

constraints given in (6.19) and (6.20) are violated. Hence, 
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In Figure 6.3 the functional form of this penalty term is shown.  

 

 

 

 

 

 

 

 

 

Figure 6.3. Penalty function for enforcing the 0,1 constraints 

 

The non-negativity constraints given in (6.21) are not added to the energy 

function as penalty terms since these constraints will be captured by using an input-

output function, g, where g(ε)= ε for all ε>0 and g (ε)= 0 for all ε<=0. Its functional 

form is given in Figure 6.4. In other words, for zero and positive input values, the 

activation function will be linear, and so the outputs will be equal to the inputs of the 

neurons, and for the negative values the output values will be zero. 
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Figure 6.4 Activation function for continuous neurons of E, T and X Networks 

Therefore, the penalty function for the coupled gradient network can be written as 

follows: 
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If we sum the objective function given in (6.27) and the penalty function, we will 

have the following energy function to be minimized: 
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where A,B,C,D,E and F are positive penalty coefficients. 

 

If we rewrite the energy function in terms of the output variables, we may obtain: 
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Applying a winner take all (WTA) mechanism to the X0j network, the energy 

terms for the first constraint (with weighting factor B) can be omitted from the 

energy function. The WTA learning rule guarantees the satisfaction of (6.28), that is 

only one depth of cut is assigned for the finish pass. In addition, it ensures the binary 

constraint. The energy term for this constraint (with weighting factor F) is also 

dropped from the energy function.  By this way, these energy terms will be handled 

explicitly. Therefore, the energy function takes the following form: 
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The penalty term, ∑∑
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)1(  can also be eliminated from the energy 

function because by applying hard limit transfer function for continuous neurons, the 

outputs may take values of either 0 or 1. Thus, the binary constraint Xij є {0,1} is 

satisfied for all variables and the energy term for this constraint can be dropped from 

the energy function. Final form of the energy function can be written as follows. 
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Although the original energy function given in Eq 6.39 includes many penalty 

terms to be minimized using a difficult trial-and error procedure, by imposing a 

competitive WTA rule for the updating of the neurons, we get rid of the trouble of 

determining the proper values for some of the weighting factors. We can see from the 

above equation that except the weighting factor of the original objective function, the 

resulting energy function includes only 2 penalty parameters to be determined. 

 

6.4.3 The Dynamics 

 

Once the energy function is determined, it is necessary to consider the equation of 

motion of the neuron input. The dynamics of the proposed network are obtained by 

gradient descent on energy function. The equations of motion are obtained as 

follows: 
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For the X0j network: 
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For the Xij network: 
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where v’ is the derivative of the penalty function v and  v’(ε)=2 ε for all ε>0 and 

v’(ε)=0 for all ε≤0. 

 

The states of neurons at iteration k are updated at iteration k by using the first-

order Euler method as follows: 
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where 
ijXη and 

ijXη are positive coefficients which will be used to scale the dynamics 

of the two networks. 

 

Since the computation is performed in all neurons at the same time, the network 

operates in a fully parallel mode. Neuron outputs are calculated by V=g (U), where g 

(.) is the activation function, U is the input and V is the output of a neuron. As 

mentioned before, the activation function, g, for the continuous neurons Xij will take 



126 

 

 

the usual sigmoidal form as displayed in Figure 6.5. Thus, the outputs of the neuron 

will take values between 0 and 1. However, the variables are binary that a hard limit 

transfer function is applied to convert continuous neurons to discrete neurons as in 

Fig 6.6.  

 

( )( )ijij UXghardVX *lim λ=                 (6.45) 

 

where λ is the slope of the activation function. 

 

 

 

 

 

 

 

Figure 6.5 Activation function for neurons of X0j network. 

 

 

 

 

 

 

 

 

Figure 6.6 Hard limit transfer function  

 

The neuron outputs of the WTA network are updated by the maximum neuron 

model of Takefuji, Lee, & Aiso (1992) as below and its functional form is given in 

Figure 6.7.  
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Figure 6.7 Activation function for neurons of the max network when there are two inputs 

 

6.4.4 Convergence 

 

In order to use the proposed Hopfield-like network for solution of the problem, 

the convergence of the network must be proved. This can be done by showing: 

 

a. Energy does not increase along the trajectories 

b. Energy is bounded below 

c. Solutions are bounded below 

d. Time derivative of the energy is equal to zero only at equilibria. 

 

If we want to consider the derivative of a function at an endpoint of the interval 

over which it is defined, we need to use a one-sided derivative because the function 

is not defined beyond the endpoint. Thus, in the proposed network VX0j’s are not 

differentiable functions of time t and they have right-hand derivatives.  
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To prove the convergence of the proposed network, an extension of the La Salle’s 

invariance principle can be used (Sengor, Cakir, Guzelis, Pekergin, & Morgul, 1999). 

The Lemma below, which is needed for taking the time derivative of the energy, 

states that the chain rule is valid also for the right derivative. 

 

Definition: The right derivative of a function nRRx →:(.) is defined as 

∆

−∆+
= →∆+

)()(
lim

)(
0

txtx

dt

tdx
 where +→∆ 0  means that  approaches zero 

throughout positive values only (Sengor, Cakir, Guzelis, Pekergin, & Morgul, 1999). 

 

Lemma: Consider the functions )[ n

g
RDD ⊂→∞⊂ ,0:(.) ψψ

 
and 

RDg
g

→:(.) . Let )( ψDIntt ∈  with �
� stands for the set of interior points. Assume 

that g(.) is continuously differentiable at "���, and "�. � is right differentiable at t. 

Then, g ο ψ is right differentiable at t and [ ]
++

∇=
dt

td
g

dt

tgod )(
)(

)((( ψ

ψ ψ
ψ

 (Sengor et 

al., 1999).   

 

Using the Lemma given above, the time derivative of the energy function E can 

be found as follows: 
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where 
V

E

∂

∂
 is replaced by 

dt

dU
− .  
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Since the tangent sigmoid function is strictly increasing, 0)]'([ 1 ≥= −
ij

ij

ij
VXg

dVX

dUX
 

for this function. Thus the first term of (6.47) will be obviously negative.  

 

Although the output of X0j network is not differentiable function of time, it has 

right-derivative and for the neurons of the maximum neural network X0j, the right-

derivative of the energy function with respect to time can be written as: 
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Since VX0j’s are piecewise constant functions of UX0j’s, 0
0

0
=

∂

∂
+

j

j

UX

VX
. Therefore, 

the second term in (6.47) will be zero.  

 

Because the energy E is bounded (since the cost is always greater than zero), we 

conclude that the energy does not increase along trajectories, so we can write 

0≤
dt

dE
.  

 

0=
dt

dE
 implies that jiallfor

dt

dVX ij
,0=  and 0=

dt

dVX oj
. In other words, if the 

points are equilibrium points then it can be seen that 0=
dt

dE
. All trajectories go to 

the points where 0=
dt

dE
and energy eventually becomes constant thus any trajectory 

reaches an equilibrium point.  

 

Because VX0js and VXij are binary, they will be bounded. Combining this fact with 

the fact that the cost is always greater than zero, implying the energy E is bounded 
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below; we can conclude that the time evolution of the network is a motion in space 

tends to that minimum point as t goes to infinity.  

 

6.4.5 Selection of Parameters 

 

In order to simulate the proposed network, values for the following parameters 

must be chosen: 

 

i. The penalty coefficients: A,C and D. 

ii. The scaling factor, ηx and activation slope, λ. 

iii. Initial conditions (States of neurons, UXij). 

 

Because there is no theoretically established method for choosing the values of the 

penalty coefficients for an arbitrary optimization problem, the appropriate values for 

these coefficients can be determined empirically. That is simulation runs are 

conducted, and optimality and/or feasibility of the resulting equilibrium points of the 

system are observed. The network can be initialized to small random values, and then 

synchronous or asynchronous updating of the network will allow a minimum energy 

state to be attained. In order to ensure smooth convergence, step size must be 

selected carefully (Watta & Hassoun, 1996). 

 

The dynamics of the proposed Hopfield-like gradient network will converge to 

local minima of the energy function E. Since the energy function includes three 

terms, competing to be minimized, there may be local minima and a tradeoff among 

the terms. An infeasible solution may be obtained when at least one of the constraint 

penalty terms is non-zero. In this case, the objective function term will generally be 

quite small but the solution will not be feasible. Alternatively, a local minimum, 

which causes a feasible but not a good solution, may be encountered even if all the 

constraints are satisfied. In order to satisfy the each penalty term, its associated 

penalty parameter can be increased but this results an increase in other penalty terms 

and a tradeoff occurs. The penalty parameters that result feasible and good solutions, 

which minimize the objective function, should be found. 
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Determining the appropriate values of the penalty parameters, network parameters 

and initial states are so critical issues associated with gradient type networks that by 

adjusting the parameters, the convergence performance to valid solutions can be 

improved. It is clear that solving process planning problems represented by many 

constraints will cause a tradeoff among the penalty terms to be minimized. 

 

Due to the problems of Hopfield like NNs in solving optimization problems, 

various modifications are proposed to improve the convergence of the Hopfield 

network. Here, we propose to use time varying penalty parameters, proposed by 

Dogan & Guzelis (2006), that take zero values as a starting value and then are 

increased in a linear fashion in a stepwise manner to reduce the feasible region and 

also by updating all the neurons synchronously, better simulation results are 

obtained. 

 

The proposed gradient network algorithm can be summarized by the following 

pseudo-code. 

 

Step 1. Construct an energy function for the considered problem using a penalty 

function approach. 

 

Step 2. Initialize all neuron states to random values. 

 

Step 3. Select the slope of the activation function (λ) and step sizes (η) and 

determine the penalty parameters evolving with time. 

 

Step 4. Compute the motion equations by (6.42) and (6.43). Update neuron 

inputs, U by the first-order Euler method which is explained through (6.44) and then 

update the neuron output V using equations (6.45) and (6.46). 

 

Step 5. Repeat the iterations n times and check the cost terms of the energy 

function penalized. If the required criterion is met proceed to Step 6, otherwise go 
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back to Step 3 to pass to other phase of the simulation. If the work is in the part of 

the simulation where all the constraints are taken into consideration, check whether 

the energy has converged to a local minimum. If yes, proceed to step 6 otherwise go 

back to Step 5. 

 

Step 6. If the energy has converged to local minimum, examine the final solution 

to determine feasibility and optimality. 

 

Step 7. Adjust parameters A, C, D if necessary to obtain a satisfactory solution, 

reinitialize neuron states and repeat from step 5. 

 

6.4.6 Simulation Results 

 

In this section, a simulation experiment was conducted In order to evaluate the 

performance of the proposed gradient network in terms of solution quality. The 

example given by Shin & Joo (1992) and considered by Gupta, Batra & Lal (1995) is 

used to validate the performance of the proposed approach.  The following data are 

used for the example problem: 

 

 

For the above data, A1, A2 and A5 are calculated as: 
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A1=0.249; assuming Tp=25 min 

A2= 0.255 

A3= 0.375 

 

The trial number of rough passes (ni) are calculated based on the maximum depth 

of cut allowed in the roughing operation and the depth of cut for a finish pass within 

its range. Thus, the trial number of rough passes is assumed to be 3 up to 10 mm. 

Thus i=0,1,2 and 3 where i=0 implies the finish pass. 

 

The value of mi for i=0,1,2,3 is taken as 20 for generation of depth of cut series: 

j=1,2,…,20. Therefore, di0= 1.0 mm, di1= 1.1 mm and so on up to di20=3.0 mm.  

 

The proposed algorithm is applied for different stocks to be removed range 

between 6 mm and 10 mm. Table 6.1 shows the machining cost of a single pass 

corresponding to each depth of cut obtained by Gupta, Batra & Lal (1995).  

 

The proposed procedure was implemented in Matlab language (Version 6.5) and 

the initial conditions of the network were chosen randomly from uniform distribution 

on the interval [0,1]. A penalty parameter method is proposed to be used during 

simulation experiments. 

 

6.4.6.1 Example-1 

 

In the first example, for both rough pass and finish pass, allowable depth of cut is 

assumed to be equal and ranges between 1 mm and 3 mm with a step size of 0.1.  

 

In the following paragraph, we solve the problem applying the steps of the 

proposed approach given in the previous section. The problem is solved for total 

stock to be removed is 6.0 mm. 
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Table 6.1 Cost of a single and rough pass for different values of depth of cut 

Depth of 

cut (dij) 

Cost of single 

rough pass (cij) 

Cost of single 

finish pass (c0j) 

1.00 0.522 0.788 

1.10 0.525 0.796 

1.20 0.529 0.803 

1.30 0.532 0.809 

1.40 0.535 0.816 

1.50 0.538 0.822 

1.60 0.541 0.827 

1.70 0.544 0.832 

1.80 0.546 0.837 

1.90 0.549 0.842 

2.00 0.551 0.847 

2.10 0.555 0.855 

2.20 0.569 0.855 

2.30 0.583 0.859 

2.40 0.597 0.863 

2.50 0.611 0.867 

2.60 0.625 0.870 

2.70 0.639 0.874 

2.80 0.653 0.877 

2.90 0.667 0.880 

3.00 0.681 0.884 

 

 

Step 1. For the problem considered, the following energy function is obtained by 

using a penalty approach. 
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Step 2. All the neuron inputs are randomly chosen from uniform distribution on 

the interval [0,1] and the initial values of the neuron outputs are fixed by activation 

functions. 

 

Step 3. For the first phase of the simulation, Activation slope for continuous 

neurons is set as λ=100 and step sizes of both networks are selected as η=0,0005. 

 

There are three penalty parameters in the energy function. But, since the penalty 

parameter A belongs to the original objective function, here, we will only deal with 

the satisfaction of the constraints and try to determine the values of the penalty 

parameters enforcing the constraints which will guarantee a feasible solution.  

 

It is decided to penalize the equality and inequality constraints by using its 

associated parameter C and D. Thus, the initial values for penalty parameters C and 

D are set to deterministic values as 0 and 100, respectively.  

 

Step 4. Start iteration 

 

Step 4.1. The equations of motion are calculated by using equations (6.27) and 

(6.28). 

Step 4.2. Neuron inputs are updated by Euler approximation by using (6.29). 

 

Step 4.3. Then neuron outputs are updated using activation functions defined 

in (6.30) and (6.31). 

 

Step 5. After performing trial-and-error experiments, it is seen that the best value 

of C and D is found as 120 and 20, respectively. In the second stage of the simulation 

experiment, it is decided to see the impact of the predetermined values of C and D on 

the results. Smaller step sizes are used for updating the neurons of the maximum 

network and a larger step size value is used for updating the continuous network, 

which are determined empirically. In this part of the simulation experiment, the 

activation slope and the step sizes are chosen as λ=100, 
jX 0

η = 0.0001, 
ijXη  = 0.0005.  
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Step 6. We examine the final solution to determine the feasibility and optimality. 

Since all the constraints are satisfied, this can be interpreted as the optimum solution 

and the value of the energy function referred as the value of the objective function of 

the problem.   

 

This algorithm is repeated for 2000 iterations and the evolution of the objective 

function during the simulation is given in Figure 6.8. 

 

 

Figure 6.8 Energy evolution of network during simulation 

 

The problem is solved for total stock to be removed from 6.0 mm to 10. mm. The 

optimal set of parameters found for the proposed networks are given in Table 6.2. 
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Table 6.2 Parameters used in the simulation 

Stock To 

be Removed 

                                 

Parameters 

6.0 mm 8.0 mm 8.5 mm 9.0 mm 9.5 mm 10.0 mm 

A 1 1 1 1 1 1 

C 120 550 550 550 680 550 

D 20 40 50 40 58 55 

λ 100 100 100 100 100 100 

$%&'  0.0001 0.0005 0.0001 0.0001 0.0001 0.0001 

$%(' 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 

 

In Tables 6.3-6.8, the solutions obtained by the gradient network using the 

determined parameters are compared with other solutions in the literature. 

 

6.4.6.2 Example-2 

 

In the above example, the depth of cuts for both finish and rough passes were 

taken to be in the range of 1.0 mm to 3.0 mm. However, from a practical point of 

view this depth of cut range for the finish pass seems to be on the higher side and the 

range is taken as 0.4 mm to 1.2 mm (Gupta, Batra & Lal, 1995). The depth of cut 

range for rough passes and all other data are the same as in Example-1. 
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Table 6.3 Results for example-1 (Stock to be removed=6.0 mm) 

Stock to be 

removed=6.0 mm 

Proposed Model 
Shin and 

Joo (1992) 

Gupta et 

al. (1995) 

Al-Ahmari 

(2001) 

Artificial Neural 

Networks 

Dynamic 

Prog. 

Integer 

Prog. 

Non-Linear 

Prog. 

# of passes 1 2 1 1 

Finish pass (mm) 3.0 1.0 3.0 3.0 

Rough pass_1 3.0 2.5 3.0 3.0 

Rough pass_2 - 2.5 - - 

Rough pass_3 - - - - 

Unit Cost 1.94 2.39 1.94 1.94 

 

Table 6.4 Results for example-1 (Stock to be removed=8.0 mm) 

Stock to be 

removed=8.0 mm 

Proposed Model 
Shin and 

Joo (1992) 

Gupta et 

al. (1995) 

Al-Ahmari 

(2001) 

Artificial Neural 

Networks 

Dynamic 

Prog. 

Integer 

Prog. 

Non-Linear 

Prog. 

# of passes 2 3 2 2 

Finish pass (mm) 3.0 1.0 3.0 3.0 

Rough pass_1 2.5 2.33 2.1 2.079 

Rough pass_2 2.5 2.33 2.9 2.921 

Rough pass_3 - 2.33 - - 

Unit Cost 2.48 2.93 2.48 2.48 

 

Table 6.5 Results for example-1 (Stock to be removed=8.5 mm) 

Stock to be 

removed=8.5 mm 

Proposed Model 
Shin and 

Joo (1992) 

Gupta et 

al. (1995) 

Al-Ahmari 

(2001) 

Artificial Neural 

Networks 

Dynamic 

Prog. 

Integer 

Prog. 

Non-Linear 

Prog. 

# of passes 2 3 2 2 

Finish pass (mm) 3.0 1.0 3.0 3.0 

Rough pass_1 2.5 2.5 2.5 2.5 

Rough pass_2 3.0 2.5 3.0 3.0 

Rough pass_3 - 2.5 - - 

Unit Cost 2.55 3.00 2.55 2.55 
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Table 6.6 Results for example-1 (Stock to be removed=9.0 mm) 

Stock to be 

removed=9.0 mm 

Proposed Model 
Shin and 

Joo (1992) 

Gupta et 

al. (1995) 

Al-Ahmari 

(2001) 

Artificial Neural 

Networks 

Dynamic 

Prog. 

Integer 

Prog. 

Non-Linear 

Prog. 

# of passes 2 3 2 2 

Finish pass (mm) 3.0 1.0 3.0 3.0 

Rough pass_1 3.0 2.67 3.0 3.0 

Rough pass_2 3.0 2.67 3.0 3.0 

Rough pass_3 - 2.67 - - 

Unit Cost 2.61 3.07 2.62 2.62 

 

Table 6.7 Results for example-1 (Stock to be removed=9.5 mm) 

Stock to be 

removed=9.5 mm 

Proposed Model 
Shin and 

Joo (1992) 

Gupta et 

al. (1995) 

Al-Ahmari 

(2001) 

Artificial Neural 

Networks 

Dynamic 

Prog. 

Integer 

Prog. 

Non-Linear 

Prog. 

# of passes 3 3 3 3 

Finish pass (mm) 3.0 1.0 2.9 3.0 

Rough pass_1 2.2 2.83 1.9 2.342 

Rough pass_2 1.9 2.83 2.8 2.079 

Rough pass_3 2.4 2.83 1.9 2.079 

Unit Cost 2.97 3.13 3.01 2.95 

 

Table 6.8 Results for example-1 (Stock to be removed=10.0 mm) 

Stock to be 

removed=10.0 mm 

Proposed Model 
Shin and 

Joo (1992) 

Gupta et 

al. (1995) 

Al-Ahmari 

(2001) 

Artificial Neural 

Networks 

Dynamic 

Prog. 

Integer 

Prog. 

Non-Linear 

Prog. 

# of passes 3 3 3 3 

Finish pass (mm) 3.0 1.0 3.0 3.0 

Rough pass_1 2.2 3.0 2.1 2.842 

Rough pass_2 2.5 3.0 2.8 2.079 

Rough pass_3 2.3 3.0 2.1 2.079 

Unit Cost 3.02 3.21 3.02 3.02 
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The machining cost of a single finish pass corresponding to each depth of cut for 

Example-2 is obtained by following the steps in Section 6.2.4.1, as in Table 6.9.  

 

Table 6.9 Cost of a single finish pass for different values of depth of cut (Example-2) 

Depth of cut (dij) Cost of single finish pass (c0j) 

0.4 0.720 

0.5 0.735 

0.6 0.749 

0.7 0.760 

0.8 0.771 

0.9 0.780 

1.0 0.788 

1.1 0.796 

1.2 0.803 

 

Again, the proposed algorithm is applied for different stocks to be removed range 

between 6 mm and 10 mm. The optimal set of parameters found for the proposed 

networks are given in Table 6.10.  

 

Table 6.10 Parameters used in the simulation 

Stock To 

be Removed 

 

       Parameters 

6.0 mm 8.0 mm 8.5 mm 9.0 mm 9.5 mm 10.0 mm 

A 1 1 1 1 1 1 

C 120 550 550 550 680 550 

D 20 40 50 40 58 55 

λ 100 100 100 100 100 100 

$%&'  0.0001 0.0005 0.0001 0.0001 0.0001 0.0001 

$%(' 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 

 

In Tables 6.11-6.16, the solutions obtained by the gradient network using the 

determined parameters are compared with other solutions in the literature. 
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Table 6.11 Results for example-2 (Stock to be removed=6.0 mm) 

Stock to be 

removed=6.0 mm 

Proposed Model 
Shin and 

Joo (1992) 

Gupta et 

al. (1995) 

Al-Ahmari 

(2001) 

Artificial Neural 

Networks 

Dynamic 

Prog. 

Integer 

Prog. 

Non-Linear 

Prog. 

# of passes 2 2 2 2 

Finish pass (mm) 1.2 0.4 1.2 1.2 

Rough pass_1 2.5 2.8 2.7 2.72 

Rough pass_2 2.3 2.8 2.1 2.08 

Rough pass_3 - - - - 

Unit Cost 2.37 2.40 2.37 2.37 

 

Table 6.12 Results for example-2 (Stock to be removed=8.0 mm) 

Stock to be 

removed=8.0 mm 

Proposed Model 
Shin and 

Joo (1992) 

Gupta et 

al. (1995) 

Al-Ahmari 

(2001) 

Artificial Neural 

Networks 

Dynamic 

Prog. 

Integer 

Prog. 

Non-Linear 

Prog. 

# of passes 3 3 3 3 

Finish pass (mm) 1.2 0.4 1.0 0.4 

Rough pass_1 2.8 2.53 2.0 2.52 

Rough pass_2 2.2 2.53 3.0 2.08 

Rough pass_3 2.0 2.53 2.0 3.00 

Unit Cost 2.92 2.94 2.95 2.94 

 

Table 6.13 Results for example-2 (Stock to be removed=8.5 mm) 

Stock to be 

removed=8.5 mm 

Proposed Model 
Shin and 

Joo (1992) 

Gupta et 

al. (1995) 

Al-Ahmari 

(2001) 

Artificial Neural 

Networks 

Dynamic 

Prog. 

Integer 

Prog. 

Non-Linear 

Prog. 

# of passes 3 3 3 3 

Finish pass (mm) 1.2 0.4 1.0 1.2 

Rough pass_1 2.8 2.7 3.0 2.22 

Rough pass_2 2.2 2.7 2.0 2.08 

Rough pass_3 2.3 2.7 2.5 3.0 

Unit Cost 2.98 3.01 3.01 2.98 
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Table 6.14 Results for example-2 (Stock to be removed=9.0 mm) 

Stock to be 

removed=9.0 mm 

Proposed Model 
Shin and 

Joo (1992) 

Gupta et 

al. (1995) 

Al-Ahmari 

(2001) 

Artificial Neural 

Networks 

Dynamic 

Prog. 

Integer 

Prog. 

Non-Linear 

Prog. 

# of passes 3 3 3 3 

Finish pass (mm) 1.2 0.4 1.0 1.2 

Rough pass_1 2.6 2.87 3.0 2.72 

Rough pass_2 2.9 2.87 3.0 2.08 

Rough pass_3 2.3 2.87 2.0 3.0 

Unit Cost 3.05 3.08 3.08 3.05 

 

Table 6.15 Results for example-2 (Stock to be removed=9.5 mm) 

Stock to be 

removed=9.5 mm 

Proposed Model 
Shin and 

Joo (1992) 

Gupta et 

al. (1995) 

Al-Ahmari 

(2001) 

Artificial Neural 

Networks 

Dynamic 

Prog. 

Integer 

Prog. 

Non-Linear 

Prog. 

# of passes 3 4 3 3 

Finish pass (mm) 1.2 0.4 1.2 1.2 

Rough pass_1 2.9 2.275 3.0 3.0 

Rough pass_2 2.5 2.275 3.0 2.3 

Rough pass_3 2.9 2.275 2.3 3.0 

Rough pass_4 - 2.275 - - 

Unit Cost 3.12 3.42 3.12 3.12 

 

Table 6.16 Results for example-2 (Stock to be removed=10.0 mm) 

Stock to be 

removed=10.0 mm 

Proposed Model 
Shin and 

Joo (1992) 

Gupta et 

al. (1995) 

Al-Ahmari 

(2001) 

Artificial Neural 

Networks 

Dynamic 

Prog. 

Integer 

Prog. 

Non-Linear 

Prog. 

# of passes 3 4 3 3 

Finish pass (mm) 1.2 0.4 1.2 1.2 

Rough pass_1 2.8 2.4 3.0 2.8 

Rough pass_2 3.0 2.4 3.0 3.0 

Rough pass_3 3.0 2.4 2.8 3.0 

Rough pass_4 - 2.4 - - 

Unit Cost 3.19 3.48 3.19 3.19 
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The solution quality of the proposed approaches in terms of % deviations is given 

in Table 6.17 and Table 6.18. In these tables the columns (6), (7) and (8) represent 

the % deviation of the proposed gradient network solution from dynamic 

programming, integer programming and non-linear programming solutions, 

respectively. The % deviations are given by: 
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The last column of the table displays the percentage of simulation runs that 

resulted in a feasible solution.   

 

Table 6.17 Comparison of results for Example-1 

Total 

Stock To 

Be 

Removed 

Proposed 

Model 

Shin and 

Joo 

(1992) 

Gupta 

et al. 

(1995) 

Al-

Ahmari 

(2001) 

Percent 

Deviation 

from 

Dynamic 

Prog. 

(6) 

Percent 

Deviation 

from 

Integer 

Prog. 

(7) 

Percent 

Deviation 

from Non-

Linear 

Prog. 

(8) 

Percent 

Feasibility 

of 

Computed 

Solution 

(9) 

Artificial 

Neural 

Networks 

Dynamic 

Prog. 

Integer 

Prog. 

Non-

Linear 

Prog. 

6 1.94 2.39 1.94 1.94 -18.83% 0.00% 0.00% 100.00% 

8 2.48 2.93 2.48 2.48 -15.36% 0.00% 0.00% 100.00% 

8,5 2.55 3.00 2.55 2.55 -15.00% 0.00% 0.00% 100.00% 

9 2.62 3.07 2.62 2.62 -14.66% 0.00% 0.00% 100.00% 

9,5 2.97 3.13 3.01 2.95 -5.11% -1.33% 0.68% 100.00% 

10 3.02 3.21 3.02 3.02 -5.92% 0.00% 0.00% 100.00% 
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Table 6.18 Comparison of results for Example-2 

Total 

Stock To 

Be 

Removed 

Proposed 

Model 

Shin and 

Joo 

(1992) 

Gupta 

et al. 

(1995) 

Al-

Ahmari 

(2001) 

Percent 

Deviation 

from 

Dynamic 

Prog. 

(6) 

Percent 

Deviation 

from 

Integer 

Prog. 

(7) 

Percent 

Deviation 

from Non-

Linear 

Prog. 

(8) 

Percent 

Feasibility 

of 

Computed 

Solution 

(9) 

Artificial 

Neural 

Networks 

Dynamic 

Prog. 

Integer 

Prog. 

Non-

Linear 

Prog. 

6 2.37 2.40 2.37 2.37 -1.25% 0.00% 0.00% 100.00% 

8 2.92 2.94 2.95 2.94 -0.68% -1.02% -0.68% 100.00% 

8,5 2.98 3.01 3.01 2.98 -1.00% -1.00% 0.00% 100.00% 

9 3.05 3.08 3.08 3.05 -0.97% -0.97% 0.00% 100.00% 

9,5 3.12 3.42 3.12 3.12 -8.77% 0.00% 0.00% 100.00% 

10 3.19 3.48 3.19 3.19 -8.33% 0.00% 0.00% 100.00% 

 

As our primary goal was to compare the proposed network solution with other 

solution methods in terms of solution quality, the CPU times required for solving 

each data set are not given. But from the simulation experiments, it is seen that, the 

proposed network could converge to valid solutions in reasonable times in 

approximately 30 seconds. Obviously, by utilizing the parallel computing, significant 

reduction can be obtained in computational time required to obtain optimal results. 

 

To interpret the findings in Table 6.17 and Table 6.18, total stock to be removed is 

considered as 6.0 mm in Table 6.17. For all the simulation runs the proposed network 

resulted in a feasible solution, hence percent feasibility is 100%. The result of 

dynamic programming, 2.39 is 18.83% more costly than the result of the proposed 

approach, 1.94. The unit cost provided by the proposed approach is equal to the costs 

obtained by integer programming and non-linear programming. Thus, percent 

deviation from integer programming and non-linear programming is 0%.  

 

In all the simulations carried out to show the performance of the network, 

convergence to valid schedules is achieved and better or at least the same results are 

obtained for all stock sizes to be removed. If all the test cases are considered, the 

proposed network is, on average, able to produce a solution with a unit cost, which is 

8 % less than the dynamic programming results. Compared to integer programming, 
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the proposed approach provides 1% lower cost. The results indicate that 

approximately equal optimal results are obtained by using ANN approach and non-

linear programming. By tuning the penalty coefficients for each problem, it is 

possible to improve the convergence and the optimality of the solutions. On the other 

hand, besides its convergence to valid schedules, convergence to good quality 

solutions of the proposed network points out its general applicability in other 

manufacturing processes.  

 

The main advantages of the proposed NN model over dynamic, integer and non-

linear programming are listed below. 

 

• It is not restricted with assumptions such as independency. 

 

• It provides optimal results within a reasonable time span. By using the 

proposed approach, cutting conditions can be determined before starting the 

machining process. 

 

• It reduces the time span for process development before machining and 

reducing the time span, gives the opportunity to increase efficiency. 

 

• The proposed algorithm can also be extended for the first stage of the 

problem. 

 

• It can be used even if the relationship between machining parameters and 

machining cost cannot be represented analytically. 

 

• It can be used for all machining operations such as turning, milling, drilling 

etc. 

 

• It can be adopted easily for other objective functions such as maximum 

production rate and for different total depth of cut values without any 

modification. 
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Besides the advantages above, the proposed algorithm utilizes the advantage of 

neural networks such as:  

 

• The proposed network has the parallel implementation property and can 

obtain solutions extremely fast by a dedicated hardware. 

 

• It is possible and simple to implement the existing algorithm and structure 

without any modification even if new inputs parameters are added.  

 

• It is not problem specific; it can be employed with different objective 

functions and constraints and can be extended for other machining parameter 

optimization problems.  

 

• It provides a good representation of non-linear relationship between inputs 

and outputs. 

• It does not employ statistics to find analytical relationships between 

machining parameters and does not require statistical background. 

 

6.5 Conclusion 

 

In this chapter, a dynamical gradient network was presented for solving the 

process planning optimization problem for metal cutting operations with the unit cost 

criterion. Focus of this chapter has been on demonstrating the optimization 

capabilities of the proposed network by solving an example problem available in the 

literature, considered by Shin & Joo (1992) and Gupta, Batra & Lal (1995). To 

analyze the performance of the network, it is compared with the solution methods 

commonly used to solve the problem under study in terms of the solution quality. 

The simulation experiments demonstrated that the proposed network generated 

feasible solutions in all the cases, and in some of the cases it found smaller unit cost 

compared to dynamic programming and integer programming. In general, for all the 

instances, the average deviation percentage of the proposed network is 8% and 1% 

above the dynamic programming and integer programming, respectively. Thus, it can 
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be concluded that the proposed approach provided an analytical alternative to integer 

programming and dynamic programming which are often limited by strict 

assumptions of linearity, variable independence etc. By conducting several 

simulation experiments, the influence of different initializations schemes was 

investigated on the solutions of the problem considered. The analysis results showed 

that the percent error of the network is very sensitive to the selection of the starting 

points and the choice of the parameters used in simulation. 

 

The proposed approach can give the optimal solution in an extremely large 

solution space within a reasonable computation time.  It is completely generalized 

and problem independent so that it can be easily modified to optimize machining 

economics problem under various economic criteria and practical constraints. From 

the results obtained, it is seen that besides the convergence to feasible and valid 

solutions, convergence of the proposed network to good quality solutions indicates 

its general applicability in also other machining parameter optimization problems 

such as milling and drilling operations.  

 

The contribution of this study is twofold. We propose to use a novel penalty 

method that guarantees feasible and near optimal solutions for solving the Process 

planning optimization problem with the unit cost criterion. Although a large body of 

literature exists for solving these problems with the unit cost minimization criterion, 

to the best of our knowledge, there is no previously published article that tried to 

optimize metal cutting process by using neural networks. Therefore, this study will 

also make a contribution to the process optimization literature. 

 

Several issues are worthy of future investigations. First, further studies will be 

focused on selecting the parameters of the network automatically rather than 

choosing by trial and error, which is one of the drawbacks of neural networks. 

Second, extension of the results to large size problems will be worthwhile. Finally, 

extension of the results to different manufacturing processes is important for 

industrial applications, and implementation of the network in hardware can make 

progress in computational efficiency. 
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CHAPTER SEVEN 

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

 

In this concluding chapter, we summarize what has been accomplished in this 

thesis, and describe some potential future work to extend the present results for the 

discussed problems. 

 

7.1 Conclusions 

 

The fundamental activity in the optimization of a manufacturing process is 

deciding the values of the process parameters. Selection of the optimal process 

parameters leads to improvement in the process and part quality. In the last decades, 

different solution methods such as operational research, design of experiments, 

simulation and artificial intelligence have been proposed for modeling and solution 

of process optimization problems. Due to the enormous complexity of many 

processes and the high number of influencing parameters, artificial neural networks 

are efficient techniques to solve manufacturing process optimization problems.  

 

In the thesis, first, an overview of manufacturing processes together with the 

methods used in planning of manufacturing processes was given. A review of 

artificial neural network and genetic algorithm applications in optimization of 

manufacturing processes was provided in the following chapters. Then, we   

developed neural networks to deal with two problems of optimization of 

manufacturing processes. Our objective was two fold; to test the performance of 

ANNs by solving these problems and to compare performance of ANNs with that of 

other techniques’. Although neural network approach has been admitted as a 

promising alternative to solving a variety of combinatorial optimization problems, 

few works relate neural network to applications of optimization in manufacturing 

processes. To illustrate the use of artificial neural networks for optimization of 

manufacturing processes, two processes are selected: Tube hydroforming process 

and metal cutting process. From the literature reviewed, we can conclude that 

artificial neural networks are commonly used for capturing the complex relationship 
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between the input and output variables of the considered manufacturing process. To 

the best of our knowledge, this study will be the first attempt to solve the considered 

industrial optimization problems using neural networks. 

 

For the solution of the first problem, a tube hydroforming problem with 

optimization of two conflicting objectives: minimization of thinning ratio and 

maximization of bulge ratio, we employed a two-stage backpropagation network. The 

reverse direction concept of Hsieh & Tong (2001) is explored to hold communication 

between these networks.  The first network is built for parameter searching while the 

second network is used for response estimating. Since the application of 

backpropagation networks in the literature indicates that they may be insufficient to 

obtain optimal results, a hybrid approach combining ANN with GA is proposed. For 

the considered problem, the relationship between forming parameters and process 

responses is unknown. Then, the proposed approach is divided into two stages. In the 

first stage a metamodel is built to capture the relationship between parameters and 

responses. We employed artificial neural networks and response surface analysis to 

build the metamodel. Then, by using the proposed GA procedure and applying 

genetic operators optimal forming parameters are obtained. The results of the 

simulation experiments indicated that applying the proposed methods generated good 

results comparable with that of Taguchi approach, commonly used for optimization of 

tube hydroforming process. The proposed two-stage ANN approach provided 17%, 

and the proposed integrated GA-NN approach provided 70% improvement in the 

manufacturing process under consideration. Then, it can be concluded that, 

hybridization of ANNs with GA improves the efficiency of artificial neural networks 

in solving manufacturing process optimization problems. 

 

The second problem was the optimization of process parameters of a metal cutting 

process with unit cost minimization. Earlier studies on metal cutting were limited to 

single-pass operations. However, one pass is rarely preferred in practice and multi-

pass operations are used. In the relevant literature some of the researches assumed 

that each pass has equal depth of cut that is not a practical way to apply during 

machining operations. The motivation behind this study was to find optimal 
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subdivision of depth of cut for each pass in order to minimize unit cost of the process 

that includes machine idle cost, tool replacement cost and tool cost in addition to 

actual machining cost. For the solution of this problem, we proposed a Hopfield-type 

dynamical gradient network. The mixed integer formulation of the problem proposed 

by Gupta, Batra & Lal (1995) was used for constructing the energy function. Then, 

an interconnected neural network was developed to solve the problem. The proposed 

network is composed of one maximum network and one log-sigmoid network 

interacting with each other. 

 

The motivation for using maximum networks was to reduce the network 

complexity by incorporating competitive mechanism into the network and to obtain a 

simplified energy function. Additionally, applying a hard-limit transfer function to 

the outputs of the log-sigmoid network helped us to get rid of some of the binary 

constraints. After the appropriate energy function was constructed by using a penalty 

function approach, convergence of the proposed network was analyzed and the 

dynamics were defined by steepest gradient descent on the energy function. The 

proposed approach was tested on a metal cutting optimization problem. An optimal 

solution which may be promising for the applications of large size problems was 

obtained. 

 

In general, we can say that the results obtained using the proposed neural network 

models were acceptable in terms of solution quality. However, with the 

implementation of parallel processing, full benefits of the neural network approach 

can be explored and assessed. The main benefit one can expect from using the neural 

networks in performing task optimization is the additional efficiency gained from 

implementation of parallel neural processing. Parallel processing and parallel 

computation has been well accepted as a legitimate and effective way for speed 

improvement in solving many combinatorial optimization problems. However, a 

challenge with the parallel approaches is that many tasks cannot be easily or possibly 

broken down into a parallel structure so that the parallel processing can be 

performed. Because of the neural network’s inherent parallel nature of processing 

units and network structure, once a problem is formulated into a neural network 
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model, it will be in a ready mode to realize parallel processing. In other words, the 

neural network can be viewed as a natural vehicle to convert a problem into a parallel 

format. For full exploration of the neural network’s potential in optimization, we 

need to firstly formulate a problem into a neural network model and then implement 

the neural network algorithms on a multiple processor machine or on a parallel- 

computing platform. Since the neural network computation in our experiments works 

also in serial mode, the experimental results reported do not reflect the potential of 

the true benefit of the neural network approach. With fast advance of high 

technology, parallel processing facilities will become inevitably more popular and 

easy to access. To this extent, we can expect a great improvement in computation 

time using the neural network approach. 

 

7.2 Future Research 

 

The followings which are possible extensions of this study are suggested for 

future research. 

 

• One of the major shortcomings of the proposed artificial neural network 

approaches is the determination of the parameters required for the simulation 

of the proposed approaches by trial and error, such as the penalty parameters, 

the slope of the activation functions, the number of iterations and the step 

sizes of neural networks. This is a tedious process, and the parameter values 

obtained might not be the optimal values for this study. The methodology for 

obtaining appropriate parameters for the development of proposed NN 

models that will yield more precise results should be considered in a future 

study. 

 

• One of the other issues for future research may be to introduce evolution to 

adjust the topology and the parameters of ANNs automatically or to search 

for the ways of developing automatic parameter controlling methods to 

overcome the need of tuning the parameters by a trial and error. 
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• As one of the drawbacks of backpropagation neural networks, they are not 

able to be involved directly in an optimization problem. Then, this type of 

stand-alone artificial neural networks cannot be remarked as an optimization 

tool. To overcome this drawback, many researchers have already applied 

backpropagation networks in conjunction with other optimization techniques 

to solve the optimization of manufacturing processes. It is also required to 

combine ANNs with other optimization techniques for the optimization of 

process parameters and in this thesis, we combined ANNs with GA for the 

optimization of tube hydroforming process. For a future research, a number 

of different techniques and metaheuristics rather than genetic algorithms can 

be combined with neural networks to tackle the problem considered. 

 

• The performances of the proposed neural network models depend on the 

choice of the initial states. Another area on which future research has to focus 

may be to propose new models that are less sensitive to the initial states. 

 

• Other objectives for manufacturing processes, especially for the second 

application, production rate or profit maximization or idle time minimization 

can be studied.  

 

• For the proposed Hopfield- type dynamical network, dynamical gradient 

networks suffer from serious problems of getting stuck at local minima, 

having high sensitivity to parametric changes and tradeoff problem among 

these parameters. To overcome the local minima, stochastic methods such as 

simulated annealing can be integrated with this network. By introducing a 

probability for the acceptance of a new state, the network occasionally 

accepts transitions to states with higher energy and thus can escape from local 

minima. Replacing sigmoidal activation function with a stochastic decision 

type activation function, adding noise to the weights of the network or to the 

biases of the network are some of the main methods used to embed 

stochasticity into the Hopfield network (Smith, 1999). 

 



153 

 

 

 

REFERENCES 

 

Adebrabbo, N., Worswick, M., Mayer, R. & Riemsdijk, I.V. (2008). Optimization 

methods for the tube hydroforming process applied to advanced high-strength 

steels with experimental verification. Journal of Materials Processing 

Technology, 209 (1), 110-123. 

 

Agapious, J.S. (1992a). An optimization of multi-stage machining system, part I: 

Mathematical solution part II: The algorithm and application. Transaction ASME, 

Journal of Engineering for Industry, 114, 524-538. 

 

Agapious, J.S. (1992b). The optimization of machining operations based on a 

combined criterion, Part-I: The use of combined objectives in single-pass 

operations. Transactions of ASME, Journal of Engineering for Industry, 114, 500-

507. 

 

Agapious, J.S. (1992c). The optimization of machining operations based on a 

combined criterion, Part-II: Multi-pass operations. Transactions ASME, Journal 

of Engineering for Industry, 114, 508-513. 

 

Aiyer, S.V.B., Niranjan, M. & Fallside, F. (1990). A theoretical investigation into the 

performance of the Hopfield model. IEEE Transactions on Neural Networks, 1, 

204–215. 

 

Akyol, D.E. (2006). Neural networks based optimization in production scheduling. 

PhD Thesis, Izmir: Dokuz Eylül University. 

 

Al-Ahmari, A.M.A. (2001). Mathematical model for determining machining 

parameters in multipass turning operations with constraints. International Journal 

of Production Research, 39 (15), 3367-3376. 

 



154 

 

 

 

Al-Aomar, R. & Al-Okaily, A. (2006). A GA-based parameter design for single 

machine turning process with high-volume production. Computers & Industrial 

Engineering, 50, 317-337. 

 

Amiolemhen, P.E. & Ibhadode, A.O.A. (2004). Application of genetic algorithms-

determination of the optimal machining parameters in the conversion of a 

cylindrical bar stock into a continuous finished profile. International Journal of 

Machine Tools & Manufacture, 44, 1403-1412. 

 

An, L. & Chen, M. (2003). On optimization of machining parameters. 4th 

International Conference on Control and Automation. 

 

Anderson, K., Cook, G.E., Karsai, G. & Ramaswamy, K. (1990). Artificial neural 

Networks applied to arc welding process modeling and control. IEEE 

Transactions on Industry Applications, 26, 824-830. 

 

Anderson, K., Cook, G.E., Springfield, J.F. & Barnett, R.J. (1991). Applications of 

artificial neural networks for arc welding. In Intelligent Engineering Systems 

Through Artificial Neural Networks (717-728). New York: ASME Press. 

 

Anjum, M.F., Tasadduq, I. & Khaled, A.S. (1997). Response surface methodology: 

A neural network approach. European Journal of Operational Research, 101, 65-

73. 

 

Antony, J. (2001). Simultaneous optimisation of multiple quality characteristics in 

manufacturing processes using Taguchi’s quality loss function. International 

Journal of Advanced Manufacturing Technology, 17, 134-138. 

 

Antony, J., Anand, R.B., Kumar, M & Tiwari, M.K. (2006). Multiple response 

optimization using Taguchi methodology and neuro-fuzzy based model. Journal 

of Manufacturing Technology Management, 17 (7), 908-925. 

 



155 

 

 

 

Antony, J., Knowles, G. & Taner, T. (2001). 10 Steps to optimal production. Quality, 

45-49. 

 

Aue-U-Lan, Y., Ngaile, G. & Altan, T. (2004). Optimizing tube hydroforming using 

process simulation and experimental verification. Journal of Materials Processing 

Technology, 146, 137-143. 

 

Aydemir, A., Vree, J.H.P. de, Brekelmans, W.A.M., Geers, M.G.D., Sillekens, W.H. 

& Werkhoven, R.J. (2005). An adaptive simulation approach designed for tube 

hydroforming process. Journal of Materials Processing Technology, 159, 303-

310. 

 

Baskar, N., Asokan, P., Saravanan, R. & Prabhaharan, G. (2005). Optimization of 

machining parameters for milling operations using non-conventional methods. 

International Journal of Advanced Manufacturing Technology, 25, 1078-1088. 

 

Baskar, N., Asokan, P., Saravanan, R. & Prabhaharan, G. (2006). Selection of 

optimal machining parameters for multi-tool milling operations using a memetic 

algorithm. Journal of Materials Processing Technology, 174, 239-249.  

 

Baykasoglu, A. & Dereli, T. (2002). Novel algorithmic approach to generate the 

“number of passes” and “depth of cuts” for the optimization routines of multipass 

machining. International Journal of Production Research, 40 (7), 1549-1565. 

 

Belhadj, T., Abbassi, F., Mistou, S. & Zghal, A. (2010). Numerical analyses of tube 

hydroforming problem using artificial neural networks. International Journal of 

Material Forming, 3 (1), 295-298. 

 

Bernardos, P.G. & Vosniakos, G.C. (2002). Prediction of surface roughness in CNC 

face milling using neural networks and Taguchi’s design of experiments. Robotics 

and Computer Integrated Manufacturing, 18, 343-354. 

 



156 

 

 

 

Bhaskara, R.S.V., Shunmugam, M.S. & Narendran, T.T. (1998). Optimal sub-

division of the depth of cut to achieve minimum production cost in multi pass 

turning using a genetic algorithm. Journal of Materials Processing Technology, 

79,  101-108. 

 

Bisht, H., Gupta, J., Pal, S.K. & Chakraborty, D. (2005). Artificial neural network 

based prediction of flank wear in turning. International Journal of Materials and 

Product Technology, 22 (4), 328-338. 

 

Bralla, J. (1998). Design for Manufacturability Handbook (2nd ed.). NY: McGraw 

Hill. 

 

Brandt, R.D., Wang, Y., Laub, A.J., & Mitra, S.K. (1988). Alternative Networks for 

Solving the Travelling Salesman Problem and the List-Matching Problem. 

Proceedings of the International Conference on Neural Networks, 2, 333-340. 

 

Castillo, E. D. (2007). Process optimization: A statistical approach. New York: 

Springer. 

 

Chang, H.-H. (2006). Dynamic multi-response experiments by backpropagation 

networks and desirability functions. Journal of the Chinese Institute of Industrial 

Engineers,23 (4), 280-288.  

 

Chang, C.A. & Su, C.T. (1995). A comparison of statistical regression and neural-

network methods in modeling measurement errors for computer vision inspection 

systems. Computers and Industrial Engineering, 28 (3), 593-603. 

 

Chen, J.H., Lee, Y.S. & Fang, S.C. (1998). Optimal cutter selection and machining 

plane determination for process planning and NC machining of complex surface. 

Journal of Manufacturing Systems, 17 (5), 371-388. 

 



157 

 

 

 

Chen, M.C. & Chen, K.Y. (2003). Optimization of multipass turning operations with 

genetic algorithms: a note. International Journal of Production Research, 41 (4), 

3385-3388. 

 

Chen, M.C. & Tsai, D.M. (1996). A simulated annealing approach for optimization 

of multi-pass turning operations. International Journal of Production Research, 

34, 2803-2825. 

 

Chen, R.S., Lee, H.H. & Yu, C.Y. (1998). Application of Taguchi’s method on the 

optimal process design of an injection molded PC/PBT automobile bumper. 

Composite Structure, 39, 209-214. 

 

Chiu, C.C., Su, C.T., Yang, G.H., Huang, J.S., Chen, S.C. & Cheng, N.T. (1997). 

Selection of optimal parameters in gas-assisted injection moulding using a neural 

network model and the Taguchi method. International Journal of Quality Science, 

2, 106-120. 

 

Chryssolouris, G. (2006). Manufacturing systems: Theory and practice (2nd ed.). 

USA:Springer.  

 

Chowdhury, K., Pratihar, D.K. & Pal, D.K. (2002). Multi-objective optimization in 

turning-using GA algorithm. Journal of the Institute of Engineers (India), 82, 37-

44. 

 

Coit, D.W., Jackson, B.T. & Smith, A.E. (1998). Static neural network process 

models: considerations and case studies. International Journal of Production 

Research, 36 (11), 2953-2967. 

 

Cook, D.F., Ragsdale, C.T. & Major, R.L. (2000). Combining a neural network with 

a genetic algorithm for process parameter optimization. Engineering Applications 

of Artificial Intelligence, 13, 391-396. 

 



158 

 

 

 

Correia, D.S., Gonçalves, C.V., Cunha, S.S. & Ferraresi, V.A. (2005). Comparison 

between genetic algorithms and response surface methodology in GMAW 

welding optimization. Journal of Materials Processing Technology, 160, 70-76. 

 

Cus, F. & Balic, J. (2000). Selection of cutting conditions and tool flow in flexible 

manufacturing system. International Journal of Manufacturing Science and 

Technology, 2, 101-106. 

 

Cus, F. & Balic, J. (2003). Optimization of cutting process by GA approach. 

Robotics and Computer Integrated manufacturing, 19, 113-121.  

 

Cus, F. & Zuperl, U. (2006). Approach to optimization of cutting conditions by using 

artificial neural networks. Journal of Materials Processing Technology, 173, 281-

290. 

 

Cus, F., Zuperl, U. & Milfelner, M. (2006). Dynamic neural network approach for 

tool cutting force modeling of end milling operations. International Journal of 

General Systems, 35 (5), 603-618.  

 

Daskin, M., Jones, P.C. & Lowe, T.J. (1990). Rationalizing tool selection in a 

flexible manufacturing system for sheet-metal products. Operations Research, 38 

(6), 1104-1115. 

 

Dereli, T., Filiz, I.H. & Baykasoglu, A. (2001). Optimizing cutting parameters in 

process planning of prismatic parts by using genetic algorithms. International 

Journal of Production Research, 9, 3303-3328. 

 

Dogan, H. & Guzelis, C. (2006). Robust and fuzzy spherical clustering by a penalty 

parameter approach. IEEE Transactions on Circuit and Systems-II, 53 (8), 637-

641. 

 



159 

 

 

 

El Baradie, M.A. (1993). Surface roughness model for turning grey cast iron 

(154BHN). Proceeding of Institution of Mechanical Engineering Part B, Journal 

of Engineering Manufacture, 207, 43-54. 

 

El-Axir, M.H. (2002). A method of modeling residual stress distribution in turning 

for different materials. International Journal of Machine Tools & Manufacture, 

42, 1055-1063. 

 

Ermer, D.S. (1971). Optimisation of the constrained machining economics problem 

by geometric programming. Transactions of ASME, Journal of Engineering for 

Industry, 93, 1067-1072. 

 

Fann, K.-J. & Hsiao, P.-Y. (2003). Optimization of loading conditions for tube 

hydroforming. Journal of Materials Processing Technology, 140, 520-524. 

 

Fausett, L. (1994). Fundamentals of neural networks: An architectures, algorithms 

and applications. Prentice Hall. 

 

Feng, C., Wang, X. & Yu, Z. (2002). Neural networks modeling of honing surface 

roughness parameter defined by ISO 13565. SIAM Journal of Manufacturing 

Systems, 21 (8), 1-35. 

 

Filipic, B. & Laitinen, E. (2005). Model-based tuning of process parameters for 

steady-state steel casting. Informatica, 29, 491-496.  

 

Fox, R.T. & Lee, D. (1990). Optimization of metal injection moulding: Experimental 

design. The International Journal of Powder Metallurgy, 26 (3), 233-243. 

 

Foo, Y.P.S., & Takefuji, Y. (1988a). Stochastic neural networks for solving job-shop 

scheduling: Part 1, problem presentation. Proceedings of Joint International 

Conference on Neural Networks, 2, 275-282. 

 



160 

 

 

 

Foo, Y.P.S., & Takefuji, Y. (1988b). Stochastic neural networks for solving job-shop 

scheduling: Part 2, architecture and simulations. Proceedings of Joint 

International Conference on Neural Networks, 2, 283–290. 

 

Foo, Y.P.S., & Takefuji,Y. (1988c). Integer linear programming neural networks for 

job-shop scheduling. Proceedings of Joint International Conference on Neural 

Networks, 2, 341–348. 

 

Fourment, L. & Chenot, J.L. (1996). Optimal design for non-steady state metal 

forming processes-I. Shape optimization method. International Journal for 

Numerical Methods in Engineering, 39, 33-50. 

 

Fuh, K. & Chang, H. (1997). An accuracy model for the peripheral milling of 

aluminium alloys using response surface design. Journal of Materials Processing 

Technology, 72, 42-47. 

 

Fukushima, K. (1975). Cognitrion: A self-organizing multilayered neural network. 

Biological Cybernetics, 20, 121-136. 

 

Ghouati, O. & Gelin, J.C. (1999). Sensitivity analysis in forming processes. 

International Journal of Forming Processes, 1, 297-322. 

 

Goldberg, D.E. (1989). Genetic algorithms in search, optimization and machine 

learning. MA: Addision-Wesley. 

 

GopalaKrisnan, B. & Al-Khayyal, F. (1991). “Machine parameter selection for 

turning with constraints”, An analytical approach based on geometric 

programming, International Journal of Production Research, 1897-1908. 

 

Gotoh, M. & Ishise, F. (1978). A finite element analysis of rigid-plastic deformation 

of the flange in a deep-drawing process based on a fourth-degree yield function. 

International Journal of Mechanical Science, 20, 423-435. 



161 

 

 

 

 

Gövekar, E., Grabec, I. & Peklenik, J. (1989). Monitoring of a drilling process by a  

neural network. The 21
st
 CIRP International Seminar on Manufacturing Systems, 

Stockholm, Sweden, June 5-6. 

 

Grossberg, S. (1972). Neural expectation: Cerebellar and retinal analogs of cells fired 

by learnable or unlearned pattern classes. Kybernetik, 10, 49-57. 

 

Grossberg, S. (1976a). Adaptive pattern classification and universal recording: I. 

Parallel development and coding of neural detectors. Biological Cybernetics, 23, 

121-134. 

 

Grossberg, S. (1976b). Adaptive pattern classification and universal recording: II. 

Feedback, expectation, olfaction, illusions. Biological Cybernetics, 23, 187-202. 

 

Grzesik, W. & Brol, S. (2003). Hybrid approach to surface roughness evaluation in 

multistage machining processes. Journal of Materials Processing Technology, 

134, 265-272. 

 

Guillot, M. & El Quafi, A. (1991). On-line identification of tool breakage in metal 

cutting processes by use of neural networks. In Dagli, C.H., Kumara, S.R.T., Shin, 

Y.C. (Eds.). Intelligent Engineering Systems Through Artificial Neural Networks 

(701-710). New York: ASME Press.  

 

Gupta, R., Batra, J.L. & Lal, G.K. (1995). Determination of optimal subdivision of 

depth of cut in multi-pass turning with constraints. International Journal of 

Production Research, 33, 2555-2565. 

 

Hayers, G.M. & Davis, R.P. (1979). A discrete variable approach to machine 

parameter optimization. AIIE Transactions, 11 (2), 155-159. 

 



162 

 

 

 

Hedge, S., Sweet, J., & Levy, W. (1988). Determination of parameters in a 

Hopfield/Tank computational network. Proceedings of the IEEE International 

Conference on Neural Networks, 2, 291-298. 

 

Heider, D., Piovoso, M.J. & Gillespie, J.W.Jr (2002). Application of a neural 

network to improve an automated thermoplastic tow-placement process. Journal 

of Process Control, 12, 101-111. 

 

Hewidy, M.S., El-Taweel, T.A. & El-Safty, M.F. (2005). Modeling the machining 

parameters of wire electrical discharge machining of Inconel 601 using RSM. 

Journal of Materials Processing Technology, 169, 328-336. 

 

Hewidy, M.S. & Fattouh, M. (1989). Electrochemical cutting using tubular cathodes: 

response surface approach. International Journal of Production Research, 27, 

953-963. 

 

Holland, J.H. (1992). Adaptation in natural and artificial systems: An introductory 

analysis with applications to biology, control and artificial intelligence. MA: MIT 

Press.  

 

Holland, J.H. (1992). Genetic algorithms. Scientific American, 267 (1), 66-72. 

 

Hopfield, J.J. (1982). Neural networks and physical systems with emergent collective 

computational abilities. National Academy of Science, 79, 2554-2558. 

 

Hopfield, J. (1984). Neurons with graded response have collective computational 

properties like of two-state neurons. Proceedings of the National Academy of 

Sciences of the USA, 81, 3088-3092. 

 

Hopfield, J.J. & Tank, D.W. (1985). Neural computation of decisions in optimization 

problems. Biological Cybernetics, 52, 141-152. 

 



163 

 

 

 

Hou, T.-H. & Lin, L. (1993). Manufacturing process monitoring using neural 

networks. Computers and Electrical Engineering, 19, 129-141. 

 

Hou, T.-H., Su, C.-H. & Liu, W.-L. (2007). Parameters optimization of a nano-

particle wet milling process using the Taguchi method, response surface method 

and genetic algorithm. Powder Technology, 173, 153-162.  

 

Hsieh, K.-L. (2006). Parameter optimization of a multi-response process for lead 

frame manufacturing by employing artificial neural networks. International 

Journal of Advanced Manufacturing Technology, 28, 584-591. 

 

Hsieh, K.-L. & Tong, L.-I. (2001). Optimization of multiple quality responses 

involving qualitative and quantitative characteristics in IC manufacturing using 

neural networks. Computers in Industry, 46, 1-12. 

 

Hsu, C.M. (2004). An integrated approach to enhance the optical performance of 

couplers based on neural networks, desirability functions and tabu search. 

International Journal of Production Economics, 92, 241-254. 

 

Hsu, C.M., Su, C.T. & Liao, D. (2004). Simultaneous of the broadband tap coupler 

optical performance based on neural works and exponential desirability functions. 

International Journal of Advanced Manufacturing Technology, 23, 896-902. 

 

Hsu, H.M., Tsai, S.P., Wu, M.C. & Tzuang, C.K. (1999). A genetic algorithm for the 

optimal design of microwave filters. International Journal of Industrial 

Engineering, 6 (4), 282-288. 

 

Huang, C.-C. & Tang, T.-T. (2006). Parameter optimization in melt spinning by 

neural networks and generic algorithms. International Journal of Advanced 

Manufacturing Technology, 27, 1113-1118. 

 



164 

 

 

 

Huang, S.H. & Zhang, H.-C. (1994). Artificial neural networks in manufacturing: 

Concepts, applications and perspectives. IEEE Transactions on Components, 

Packaging and Manufacturing Technology-Part A, 17 (2), 212-228. 

 

Huh, H. & Kim, S.-H. (2001). Optimum process design in sheet-metal forminh with 

finite element analysis. Transactions of the ASME, 123, 476-481. 

 

Hyun, B.S. & Cho H.S. (1994). Prediction of forming pressure curve for 

hydroforming process using artificial neural network. Proceedings of the 

Institution of Mechanical Engineers Part I, Journal of Systems and Control 

Engineering, 208, 109-121. 

 

Imaninejad, M., Subhash, G. & Loukus, A. (2005). Loading path optimization of 

tube hydroforming process. International Journal of Machine Tools & 

Manufacture, 45, 1504, 1514. 

 

Iwata, K., Muratsu, Y., Iwatsubo, T. & Fujii, S. (1972). A probabilistic approach to 

the determination of the optimum cutting conditions. Journal of Engineering for 

Industry, 94, 1099-1107.  

 

Iwata, K., Muratsu, Y. & Oba, F. (1977). Optimisation of cutting conditions for 

multipass operations considering probabilistic nature in machining processes. 

Journal of Engineering for Industry, Transactions of the ASME, February, 210-

217. 

 

Jain, R.K., Jain, V.K. & Kalra, P.K. (1999). Modelling of abrasive flow machining 

process: A neural network approach. Wear, 231, 242-248. 

 

Jansson, M., Andersson, A. & Nilsson, L. (2005). Optimization of draw-in for an 

automotive sheet metal part: an evaluation using surrogate models and response 

surfaces. Journal of Materials Processing Technology, 159, 426-434.  

 



165 

 

 

 

Jansson, M., Nilsson, L. & Simonsson, K. (2007). On process parameter estimation 

for the tube hydroforming process. Journal of Materials Processing Technology, 

190, 1-11.  

 

Jawahir, I.S. & Wang, X. (2007). Development of hybrid predictive models and 

optimization techniques for machining operations. Journal of Materials 

Processing Technology, 185, 46-59. 

 

Jeang, A., Li, H.-C. & Wang, Y.-C. (2010). A computational simulation approach for 

optimizing process parameters in cutting operations. International Journal of 

Computer Integrated Manufacturing, 23 (4), 325-340.  

 

Jeyapaul, R., Shahabudeen, P. & Krishnaiah, K. (2006). Simultaneous optimization 

of multi-response problems in the Taguchi method using genetic algorithm. 

International Journal of Advanced Manufacturing Technology, 30 (9), 870-878. 

 

Jimenez-Marquez, S.A., Lacroix, C. & Thibault, J. (2003). Impact of modelling 

parameters on the prediction of cheese moisture using neural networks. 

Computers and Chemical Engineering, 27, 631-646. 

 

Johnson, K., Nguyen, B., Davies, R., Grant, G. & Khaleel, M. (2004). A numerical 

process control method for circular tube hydroforming prediction. International 

Journal of Plasticity, 20, 1111-1137. 

 

Juan, H., Yu, S.F. & Lee, B.Y. (2003). The optimal cutting parameter selection of 

production cost in HSM for SKD61 tool steels. International Journal of Machine 

Tools & Manufacture, 43, 679-686. 

 

Kamgar-Parsi, B., & Kamgar-Parsi, B. (1992). Dynamical Stability and Parameter 

Selection in Neural Optimization. Proceedings of International Joint Conference 

on Neural Networks, 4, 566-571. 

 



166 

 

 

 

Kang, S.-J., Kim, H.-K. & Kang, B.-S. (2005). Tube size effect on hydroforming 

formability. Journal of Materials Processing Technology, 160, 24-33. 

 

Karkoub, M.A. (2006). Prediction of hydroforming characteristics using random 

neural network neuronale. Journal of Intelligent Manufacturing, 17, 321-330. 

 

Karpat, Y. & Ozel, T. (2006). Swarm-intelligent neural network system (SINNS) 

based multi-objective optimization of hard-turning. Transactions of NAMRI/SME, 

34, 1-8. 

 

Karunakar, D.B. & Datta, G.L. (2007). Controlling green sand mould properties 

using artificial neural networks and genetic algorithms – A comparison. Applied 

Clay Science, 37, 58-66. 

 

Knapp, G.M. & Wang, H.-P. (1992). Neural networks in acquisition of 

manufacturing knowledge. In Intelligent Design and Manufacturing (723-744). 

New York: John Wiley & Sons. 

 

Knapp, G.M. & Wang, H.-P. (1992). Acquiring, storing and utilizing process 

planning knowledge using neural networks. Journal of Intelligent Manufacturing, 

3 (5), 333-344.  

 

Knight, D. The operation and applications of genetic algorithms, from 

www.ivoryresearch.com. 

 

Ko, D.C., Kim, D.H. & Kim, B.M. (1999). Application of artificial neural network 

and Taguchi method to preform design in metal forming considering workability. 

International Journal of Machine Tools & Manufacture, 39, 771-785. 

 

Ko, D.C., Kim, D.H., Kim, B.M. & Choi, J.C. (1998). Methodology of perform 

design considering workability in metal forming by the artificial neural network 



167 

 

 

 

and Taguchi method. Journal of Materials Processing Technology, 80-81, 487-

492. 

 

Koc, M. & Altan, T. (2002). Prediction of forming limits and parameters in the tube 

hydroforming process. International Journal of Machine Tools & Manufacture, 

42, 123-138. 

 

Kovavic, M., Uratnik, P., Brezocnik, M. & Turk, R. (2007). Prediction of the 

bending capability of rolled metal sheet by genetic programming. Materials and 

Manufacturing Processes, 22 (6), 634-640. 

 

Krimpenis, A. & Vosniakos, G.C. (2002). Optimization of multiple tool NC rough 

machining of a hemisphere as a genetic algorithm paradigm application. 

International Journal of Advanced Manufacturing Technology, 20, 727-734. 

 

Kurtaran, H. & Erzurumlu, T. (2006). Efficient warpage optimization of thin shell 

plastic using response surface methodology and genetic algorithm. International 

Journal of Advanced Manufacturing Technology, 27, 468-472. 

 

Kusiak, A. (1985). Integer programming approach to process planning. International 

Journal of Advanced Manufacturing Technology, 73-83. 

 

Lakshminarayanan, A.K. & Balasubramanian, V. (2008). Process parameters 

optimization for friction stir welding of RDE-40 aluminium alloy using Taguchi 

technique. Transaction of Nonferrous Metal Society of China, 18, 548-554. 

 

Lee, T.S. & Lin, Y.J. (2000). A 3D predictive cutting-force model for end milling of 

parts having sculptured surfaces. International Journal of Advanced 

Manufacturing Technology, 16, 773-783. 

 



168 

 

 

 

Lee, Y.H., Shin, H.M. & Yang, B.H. (1996). An approach for multi-criteria 

simulation optimization with application to turning operation. Computers and 

Industrial Engineering, 30 (3),  375-386. 

 

Li, H.-X. & Da, X.L. (2000). A neural network representation of linear 

programming. European Journal of Operational Research, 124, 224-234.  

 

Li, B., Nye, T.J. & Metzger, D.R. (2006). Multi-objective optimization of forming 

parameters for tube hydroforming process based on the Taguchi method. 

International Journal of Advanced Manufacturing Technology, 28, 23-30. 

 

Li, T.S., Su, C.T. & Chiang, T.L. (2003). Applying robust multi-response quality 

engineering for parameter selection using a novel neural-genetic algorithm, 

Computers in Industry, 50, 113-122. 

 

Liang, M., Mgwatu, M. & Zuo, M. (2001). Integration of cutting parameter selection 

and tool adjustment decision for multi-pass turning. International Journal of 

Advanced Manufacturing Technology, 17, 861-869. 

 

Liao, H.-C. (2005). Using N-D method to solve multi-response problem in Taguchi. 

Journal of Intelligent Manufacturing, 16, 331-347. 

 

Lippmann, R.P. (1987). An introduction to computing with neural nets. IEEE ASSP 

Magazine, 4-22. 

 

Lin, T.R. (2002). Optimization techniques for face milling stainless steel with 

multiple performance characteristics. International Journal of Advanced 

Manufacturing Technology, 19, 330-335. 

 

Liu, Q. & Altintas, Y. (1999). On-line monitoring of flank wear in turning with 

multi-layered feed-forward neural network. International Journal of Machine 

Tools & Manufacture, 39, 1945-1959. 



169 

 

 

 

 

Liu, Y. & Wang, C. (1999). Neural network based adaptive control and optimization 

in the milling process. International Journal of Advanced Manufacturing 

Technology, 15, 791-795. 

 

Lu, H.-S., Chen, J.-Y. & Chung, Ch.-T. (2008). Theoptimal cutting parameter design 

of rough cutting process in side milling. Journal of Achievements in Materials and 

Manufacturing Engineering, 29 (2), 183-186. 

 

Mahanty, B., Agrawal, R.K., Shrin,S. & Chakravarty, S. (2007). Hybrid approach to 

optimal packing using genetic algorithm and coulomb potential algorithm. 

Materials and Manufacturing Processes, 22 (6), 668-677. 

 

Manabe, K.-I. & Amino, M. (2002). Effects of process parameters and material 

properties on deformation process in tube hydroforming. Journal of Materials 

Processing Technology, 123, 285-291. 

 

Manabe, K.-I., Suetake, M., Koyama, H. & Yang, M. (2006). Hydroforming process 

optimization of aluminum alloy tube using intelligent control technique. 

International Journal of Machine Tools & Manufacture, 46, 1207-1211. 

 

McCulloch, W.S., & Pitts, W. (1943). A logical calculus of the ideas immanent in 

nervous activity. Bulletin of Mathematical Biophysics, 5, 115-133. 

 

Miettinen, K., Makela, M.M. & Mannikko, T. (1998). Optimal control of continuous 

casting by nondifferentiable multiobjective optimization. Computational 

Optimization and Applications, 11,  177-194. 

 

Min, H.S., Yih, Y., & Kim, C.O. (1998). A competitive neural network approach to 

multi-objective FMS scheduling. International Journal of Production Research, 

36 (7), 1749-1765. 

 



170 

 

 

 

Monostori, L. & Nacsa, J. (1990). On the application of neural nets in real time 

monitoring of machining processes. The 22
nd

 CIRP International Seminar on 

Manufacturing Systems, Enschede, Netherlands, June 11-12. 

 

Montgomery, D.C. (2005). Design and analysis of experiments (6th ed.). New York: 

John Wiley. 

 

Mukherjee, I. & Ray, P.K. (2006). A review of optimization techniques in metal 

cutting processes. Computers & Industrial Engineering, 50, 15-34. 

 

Naceur, H., Guo, Y.Q., Batoz, J.L. & Knopf-Lenoir, C. (2001). Optimization of draw 

bead restraining forces and drawbead design in sheet metal forming process, 

International Journal of Mechanical Sciences, 43, 2407-2434. 

 

Nacsa, J. & Monostori, L. (1990). Real-time monitoring of machining processes. 

Proceedings of International Conference on automatic Supervision, Monitoring 

and Adaptive Control in Manufacturing, 197-233. 

 

Nakhjavani, O.B. & Ghoreishi, M. (2006). Multi criteria optimization of laser 

percussion drilling process using artificial neural network model combined with 

genetic algorithm. Materials and Manufacturing Processes, 21, 11-18. 

 

Ohdar, R.K. & Pasha, S. (2003). Prediction of the process parameters of metal 

powder preform forging using artificial neural network (ANN). Journal of 

Materials Processing Technology, 132, 227-234. 

 

Oktem, H., Erzurumlu, T. & Col, M. (2006). A study of the Taguchi optimization 

method for surface roughness in finish milling of mold surfaces. International 

Journal of Advanced Manufacturing Technology, 28, 694-700. 

 



171 

 

 

 

Onwubolu, G.C. (2006). Performance-based optimization of multi-pass face milling 

operations using tribes. International Journal of Machine Tools & Manufacture, 

46, 717-727. 

 

Onwubolu, G.C. & Kumalo, T. (2002). Multi-pass turning optimisation based on 

genetic algorithms. International Journal of Production Research, 39 (16), 3727-

3745. 

 

Osman, I.H. (2002). Preface, Focused issue on applied meta-heuristics. Computers 

and Industrial Engineering, 205-207. 

 

Ozcelik, B. & Erzurumlu, T. (2005). Determination of effecting dimensional 

parameters on warpage of thin shell plastic parts using integrated response surface 

method and genetic algorithm. International Communications in Heat and Mass 

Transfer, 32, 1085-1094. 

 

Ozcelik, B. & Erzurumlu, T. (2006). Comparison of the warpage optimization in the 

plastic injection molding, using ANOVA, neural network model and genetic 

algorithm.  Journal of Materials Processing Technology, 171, 437-445 

 

Ozel, T. & Karpat, Y. (2007). Identification of constitutive material model 

parameters for high-strain rate metal cutting conditions using evolutionary 

computational algorithms. Materials and Manufacturing Processes, 22 (6), 659-

667. 

 

Palanisamy, P., Rajendran, I. & Shanmugasundaram, S. (2007). Optimization of 

machining parameters using genetic algorithm and experimental validation for 

end-milling operations. International Journal of Advanced Manufacturing 

Technology, 32, 644-655. 

 



172 

 

 

 

Parker, D.B. (1985). Learning logic: Casting the cortex of the human brain in 

silicon. Technical Report, TR-47. Center for Computational Research in 

Economics and Management Science, Cambridge, MA: MIT Press. 

 

Patton, W.J. (1970). Modern manufacturing: Processes and engineering. New 

Jersey: Prentice-Hall. 

 

Pignatiello, J.J. Jr (1998). An overview of the strategy and tactics of Taguchi. IEEE 

Transactions, 20 (3), 247-254. 

 

Ponthot, J.-P. & Kleinermann, J.-P. (2006). A cascade optimization methodology for 

automatic parameter identification and shape/process optimization in metal 

forming simulation. Computer Methods in applied Mechanics and Engineering, 

195, 5472-5508.  

 

Potvin, J.Y., & Smith, K.A. (2003). Artificial Neural Networks for Combinatorial 

Optimization. In: F. Glover, & G. Kochenberger, Handbook of Metaheuristics 

(429-455). Boston: Kluwer Academic Publishers. 

 

Prasad, A.V.S, Rao, R.K. & Rao, V.K.S. (1997). Optimal selection of process 

parameters for turning operations in a CAPP system. International Journal of 

Production Research, 35 (6), 1495-1522. 

 

Raj. K.H., Sharma, R.S., Strivastava, S. & Patvardhan, C. (2000). Modeling of 

manufacturing processes with ANNs for intelligent manufacturing. International 

Journal of Machine Tools & Manufacture, 40, 851-868. 

 

Rangwala, S.S. & Dornfeld, D.A. (1989). Learning and optimization of machining 

operations using computing abilities of neural networks. IEEE Transactions on 

Systems, Man and Cybernetics, 19 (2), 299-314. 

 



173 

 

 

 

Rao, R.V. (2011). Advanced modeling and optimization of manufacturing processes. 

London: Springer-Verlag. 

 

Reddy, P.B.S., Nishina, K. & Babu, S.A. (1998). Taguchi’s methodology for multi-

response optimization: A case study in the Indian plastics industry. International 

Journal of Quality & Reliability Management, 15 (6), 646-668. 

 

Risbood, K.A., Dixit, U.S. & Sahasrabudhe, A.D. (2003). Prediction of surface 

roughness and dimensional deviation by measuring cutting forces and vibrations 

in turning process. Journal of Materials Processing Technology, 132, 203-214. 

 

Rowlands, H., Antony, J. & Knowles, G. (2000). An application of experimental 

design for process optimization. The TQM Magazine, 12 (2), 646-668. 

 

Rowlands, H., Packianather, M.S. & Oztemel, E. (1996). Using artificial neural 

networks for experimental design in off-line quality control. Journal of Systems 

Engineering, 6, 46-59. 

 

Rumelhart, D.E., Hinton, G.E. & Williams, R.J. (1986). Learning internal 

representations by error propagation. Cambridge, MA: MIT Press. 

 

Sadeghi, B.H.M. (2000). A BP-neural network predictor model for plastic injection 

molding process. Journal of Materials Processing Technology, 103 (3), 411-416. 

 

Sankar, R.S., Asokan, P., Saravanan, R., Kumanan, S. & Prabhaharan, G. (2007). 

Selection of machining parameters for constrained machining problem using 

evolutionary computation. International Journal of Advanced Manufacturing 

Technology, 32, 892-901. 

 

Santos, A.D., Duarte, J.F., Reis, A., Rocha, B., Neto, R. & Paiva, R. (2001). The use 

of finite element simulation for optimization of metal forming and tool design. 

Journal of Materials Processing Technology, 119, 152-157. 



174 

 

 

 

 

Saravanan, R., Asokan, P. & Vijayakumar, K. (2003). Machining parameters 

optimization for turning cylindrical stock into a continuous finished profile using 

genetic algorithm and simulated annealing. International Journal of Advanced 

Manufacturing Technology, 40, 1-9. 

 

Sardinas, R.Q., Santana, M.R. & Brindis, E.A. (2006). Genetic algorithm-based 

multi-objective optimization of cutting parameters in turning processes. 

Engineering Applications of Artificial Intelligence, 19, 127-133. 

 

Sathyanarayanan, G., Lin, I.J. & Chen, M.-K. (1992). Neural network modelling and 

multiobjective optimization of creep feeding grinding of superalloys. 

International Journal of Production Research, 30, 2421-2438.  

 

Satishkumar, S., Asokan, P. & Kumanan, S. (2006). Optimization of depth of cut in 

multi-pass turning using nontraditional optimization techniques. International 

Journal of Advanced Manufacturing Technology, 29,  230-238. 

 

Savas, V. & Ozay, C. (2008). The optimization of the surface roughness in the 

process of tangential turn-milling using genetic algorithm. International Journal 

of Advanced Manufacturing Technology, 37, 335-340. 

 

Scallan, P. (2003). Process Planning: The design/manufacture interface. 

Butterworth-Heinemann. 

 

Schrader, R.S. (2003). Optimization of cost and cycle time for multi-pass turning 

operation using GA. Genetic algorithm at the University of Illinois Fall 2002. 

Report No: 2003010. 

 

Sekhon, G.S. (1982). Application of dynamic programming to multi-stage batch 

machining. Computer-Aided Design, 14 (3), 157-159. 

 



175 

 

 

 

Sen, M., & Shan, H.S. (2006). Optimal selection of machining conditions in the 

electrojet drilling process using hybrid NN-DF-GA approach. Materials and 

Manufacturing Processes, 21, 349-356. 

 

Sengor, N.S., Cakir, Y., Guzelis, C., Pekergin, F., & Morgul, O. (1999). An analysis 

of maximum clique formulations and saturated linear dynamical network. ARI, 51, 

268-276. 

 

Shen, C., Wang, L. & Li, Q. (2007). Optimization of injection molding process 

parameters using combination of artificial neural network and genetic algorithm 

method. Journal of Materials Processing Technology, 183, 412-418. 

 

Shengdun, Z., Yong, Z., Zhiyuan, Z. & Chengwei, Z. (2007). Optimization for the 

process parameters of hydroforming using genetic algorithm in combination with 

FE codes. IEEE 3
rd

 International Conference on Natural Computation. 

 

Shin, Y.C. & Joo, Y.S. (1992). Optimisation of machining conditions with practical 

constraints. International Journal of Production Research, 30 (12), 2907-2919. 

 

Shunmugam, M.S., Bhaskara Redd, S.V. & Narendran, T.T. (2000). Selection of 

optimal conditions in multi-pass face-milling using a genetic algorithm. 

International Journal of Machine Tools & Manufacture, 40, 401-414. 

 

Sick, B. (2002). On-Line and indirect tool wear monitoring in turning with artificial 

neural networks: A review of more than a decade of research. Mechanical Systems 

and Signal Processing, 16, 487-546. 

 

Singh, S., Shan, H.S. & Praddep, K. (2002). Parametric optimization of magnetic 

field assisted abrasive flow machining by the Taguchi method. Quality and 

Reliability Engineering International, 18, 273-283. 

 



176 

 

 

 

Smartt, H.B., Johnson, J.A., Einerson, C.J. & Cordes, G.A. (1991). Develeopment of 

a connectionist fuzzy logic system for control of gas metal arc welding. In Dagli, 

C.H., Kumara, S.R.T., Shin, Y.C. (Eds.). Intelligent Engineering Systems Through 

Artificial Neural Networks (711-716). New York: ASME Press.  

 

Smith, A.E. (1993). Predicting product quality with backpropagation: A 

thermoplastic injection moulding case study. International Journal of Advanced 

Manufacturing Technology, 8, 252-257. 

 

Smith, K.A. (1998). Neural techniques for combinatorial optimization with 

applications. IEEE Transactions on Neural Networks, 9 (6), 1301-1317. 

 

Smith, K.A. (1999). Neural networks for combinatorial optimization: A review of 

more than a decade of research. INFOMS Journal on Computing, 11 (1), 15-34. 

 

Smith, K.A. & Gupta, J.N.D. (2000). Neural networks in business: Techniques and 

applications for the operations researcher. Computers & operations Research, 27,  

1023-1044. 

 

Solimanpur, M. & Ranjdoostfard, F. (2008). Optimisation of cutting parameters 

using a multi-objective genetic algorithm. International Journal of Production 

Research,1-18. 

 

Solimanpur, M., Vrat, P. & Shankar, R. (2004). A multi-objective genetic algorithm 

approach to the design of cellular manufacturing systems. International Journal of 

Production Research, 42 (7), 1419-1441. 

 

Sonmez, A.I., Baykasoglu, A., Dereli, T. & Filiz, I.H. (1999). Dynamic optimization 

of multipass milling operations via geometric programming. International Journal 

of Machine Tools & Manufacture, 39 (2), 297-320. 

 



177 

 

 

 

Sreeram, S., Kumar, A.S., Rahman, M. & Zaman, M.T. (2006). Optimization of 

cutting parameters in micro end milling operations under dry cutting conditions 

using genetic algorithms. International Journal of Advanced Manufacturing 

Technology, 30,  1030-1039. 

 

Srinivas, J., Giri, R. &Yang, S.H. (2009).Optimization of multi-pass turning using 

particle swarm intelligence. International Journal of Advanced Manufacturing 

Technology, 40, 56-66. 

 

Strano, M., Jirathearanat, S., Shr, S.-G. & Altan, T. (2004). Virtual process 

development in tube hydroforming. Journal of Materials Processing Technology, 

146, 130-136. 

 

Su, C.-T., & Chen, M.-C. (1999). Computer aided optimisation of multi-pass turning 

operations for continuous forms on CNC lathes. IEEE Transactions, 31, 583-596. 

 

Su, C.-T. & Chang, H.-H. (2000). Optimization of parameter design: an intelligent 

approach using neural network and simulated annealing. International Journal of 

Systems Science, 31 (12), 1543-1549. 

 

Su, C.-T. & Chiang, T.-L. (2003). Optimizing the IC wire bonding process using a 

neural networks/genetic algorithms approach. Journal of Intelligent 

Manufacturing, 14, 229-238. 

 

Su, C.-T. & Hsieh, K.-L. (1998). Applying neural network approach to achieve 

robust design for dynamic quality characteristics. International Journal of Quality 

& Reliability Management, 15 (5), 509-519. 

 

Su, C.-T., Shiu, C.C. & Chamg, H.H. (2000). Parameter design optimization via 

neural network and genetic algorithm. Journal of Materials Processing 

Technology, 7 (3), 224-231. 

 



178 

 

 

 

Su, C.-T & Wu, C.-L. (2001). Intelligent approach to determining burn-in time and 

cost for electronic products. International Journal of Quality & Reliability 

Management, 18 (5), 549-559. 

 

Sukthomya, W. & Tannock, J.D.T. (2005). Taguchi experimental design for 

manufacturing process optimisation using historical data and a neural network 

process model. International Journal of Quality & Reliability Management, 22 

(5), 485-502. 

 

Suresh, P.V., Venkateswara Rao, P. & Deshmukh, S.G. (2002). A genetic 

algorithmic approach for optimization of surface prediction model. International 

Journal of Machine Tools & Manufacture, 42, 675-680. 

 

Syrcos, G.P. (2003). Die casting process optimization using Taguchi methods. 

Journal of Materials Processing Technology, 135, 68-74. 

 

Taguchi, G. (1986). Introduction to quality engineering: Designing quality into 

products and processes. Asian Productivity Organization, Japan. 

 

Takefuji, Y., Lee, K-C., & Aiso, H. (1992). An artificial maximum neural network: a 

winner-take-all neuron model forcing the state of the system in a solution domain. 

Biological Cybernetics, 67 (3), 243-251. 

 

Tan, F.P. & Creese, R.C. (1995). A generalised multi-pass machining model for 

machining parameter selection in turning. International Journal of Production 

Research, 33, 1467-1487. 

 

Tang, S.C., Chu, E. & Samantha, S.K. (1982). Finite element prediction of the 

deformed shape of an automotive body panel during preformed stage. In 

NUMIFORM’82 /629-640). Pineridge Press,  

 



179 

 

 

 

Taramen, K. (1974). Multi-machining output –multi independent variable turning 

research by response surface methodology. International Journal of Production 

Research, 12 (2), 233-245. 

 

Tarng, Y.S., Yang, W.H. & Juang, S.C. (1998). Application of the Taguchi method 

to the optimization of the submerged arc welding process. Materials and 

Manufacturing Processes, 13 (3), 455-467. 

 

Tarng, Y.S., Yang, W.H. & Juang, S.C. (2000). The use of fuzzy logic in the Taguchi 

method for the optimisation of the submerged arc welding process. International 

Journal of Advanced Manufacturing Technology, 16, 688-694. 

 

Tekkaya, A.E. (2000). State-of-the-art of simulation of sheet metal forming. Journal 

of Materials Processing Technology, 103, 14-22. 

 

Toh, C.H. & Kobayashi, S. (1983). Finite element process modelling of sheet metal 

forming of general shapes. In Grundlagen der Umformtechnik  I (39-56),  Berlin. 

 

Tsui, K.-L. (1999). Robust design optimization for multiple characteristics problems. 

International Journal of Production Research, 37 (2), 433-445. 

 

Udo, G.J. (1992). Neural networks applications in manufacturing processes. 

Computers and Industrial Engineering, 23, 97-100.  

 

Ulrich, K.T. & Eppinger, S.D. (2003). Product design and development (3rd ed.). 

McGraw Hill.  

 

Van Den Bout, D.E., & Miller, T.K. (1988). A Traveling Salesman Objective 

Function that Works. Proceedings of IEEE International Conference on Neural 

Networks, 2, 299-303. 

 



180 

 

 

 

Van Hulle, M.M. (1991). A goal programming network for mixed integer linear 

programming: A case study for the job shop scheduling problem. International 

Journal of Neural Systems, 2 (3), 201-209. 

 

Vijayakumar, K., Prabhaharan, G., Asokan, P. & Saravanan, R. (2003). Optimization 

of multi-pass turning operations using ant colony system. International Journal of 

Machine Tools & Manufacture, 43, 1633-1639. 

 

Vijian P. & Arunachalam, V.P. (2007). Modelling and multi objective optimization 

of LM24 aluminium alloy squeeze cast process parameters using genetic 

algorithm. Journal of Materials Processing Technology, 186, 82-86. 

 

Von der Malsburg, C. (1973). Self-organization of orientation sensitive cells in the 

striate cortex. Kybernetik, 15, 85-100. 

 

Walsh, M.P., Flynn, M.E. & O’Malley, M.J. (1999). Augmented Hopfield network 

for mixed-integer programming. IEEE Transactions on Neural Networks, 10 (2), 

456-458. 

 

Wang, Y.C. (2007). A note on “Optimization of multi-pass turning operations using 

ant colony system”. International Journal of Machine Tools & Manufacture, 47, 

2057-2059. 

 

Wang, N.-M. & Budiansky, B. (1978). Analysis of sheet metal stamping by a finite-

element method. Transactions of ASME, Journal of applied Mechanics, 45, 73-82.  

 

Wang, X., Da, Z.J., Balaji, A.K. & Jawahir, I.S. (2002). Performance-based optimal 

selection of cutting conditions and cutting tools in multipass turning operations 

using genetic algorithms. International Journal of Production Research, 40 (9), 

2053-2065. 

 



181 

 

 

 

Wang, J., Kuriyagawa, T., Wei, X.P. & Guo, D.M. (2002). Optimization of cutting 

conditions for single pass turning operations using a deterministic approach. 

International Journal of Machine Tools & Manufacture, 42, 1023-1033. 

 

Wang, Q., Sun, X., Golden, B.L., DeSilets, L., Wasil, E.A., Luco, S. & Peck, A. 

(1993). A neural network model for the wire bonding process. Computers and 

Operations Research, 20, 879-888. 

 

Wang, Z.G., Wong, Y.S. & Rahman, M. (2004). Optimization of multi-pass milling 

using genetic algorithm and genetic simulated annealing. International Journal of 

Advanced Manufacturing Technology, 24 (9-10), 727-732. 

 

Watta, P.B. (1996). A coupled gradient network approach for static and temporal 

mixed-integer optimization. IEEE Transactions on Neural Networks, 7 (3),  578-

593. 

 

Watta, P.B. & Hassoun, M. (1996). A coupled gradient network approach for static 

and temporal mixed-integer optimization. IEEE Transactions on Neural 

Networks, 7 (3), 578-593. 

 

Wei, L. & Yuying, Y. (2008). Multi-objective optimization of sheet metal forming 

process using Pareto-based genetic algorithm. Journal of Materials Processing 

Technology, 208, 499-506. 

 

Werbos, P.J. (1974). Beyond regression: New tools for prediction and analysis in the 

behavioral sciences. Ph.D. thesis, Cambridge, MA: Harvard University. 

 

Wifi, A.S. (1976). An incremental complete solution to the stretch-forming and deep-

drawing of a circular blank using a hemispherical punch. International Journal of 

Mechanical Science, 18, 23-31.  

 



182 

 

 

 

Willshaw, D.J., & von der Malsburg, C. (1976). How patterned neural connections 

can be set up by self-organization. Proceedings of the Royal Society of London, 

B194, 431-445. 

 

Wong, B.K., Lai, V.S. & Lam, J. (2000). A bibliography of neural network business 

applications research: 1994-1998. Computers & Operations Research, 27, 1045-

1076. 

 

Wu, D.H. & Chang, M.S. (2004). Use of Taguchi method to develop a robust design 

for the magnesium alloy die casting process. Materials Science and Engineering, 

379, 366-371. 

 

Wu, J. & yao, Y. (2008). A modified ant colony system for the selection of 

machining parameters. 2008 7th International Conference on Grid and Cooperative 

Computing, 24-26 October, China, 89-93. 

 

Wu, H.-J., Liou, C.-S. & Pi, H.-H. (1991). Fault diagnosis of processing damage in 

injection molding via neural network approach. In Dagli, C.H., Kumara, S.R.T., 

Shin, Y.C. (Eds.). Intelligent Engineering Systems Through Artificial Neural 

Networks (645-650). New York: ASME Press.  

 

Yang, Y., Cheng, Y., Zhao, R. & Govind, R. (1994). Process optimization using 

neural networks. IEEE Conference on Neural Networks, 4635-4639. 

 

Yang, J.-B., Jeon, B.-H. & Oh, S.-I. (2001). Design sensitivity analysis and 

optimization of the hydroforming process. Journal of Materials Processing 

Technology, 113, 666-672. 

 

Yang, Y., Lin, H.-C. & Chen, M.-L. (2006) Metamodeling approach in solving the 

machine parameters optimization problem using neural network and genetic 

algorithms: A case study. Robotics and Computer-Integrated Manufacturing, 22,  

322-331. 



183 

 

 

 

 

Yang, B., Zhang, W.G. & Li, S.H. (2006). Analysis and finite element simulation of 

the tube hydroforming process. International Journal of Advanced Manufacturing 

Technology, 29, 453-458. 

 

Yarlagadda, P.K.D.V. & Chiang, E.C.W. (1999). A neural network system for the 

prediction of process parameters in pressure die casting. Journal of Materials 

Processing Technology, 89-90, 583-590. 

 

Yehuda, R.B., Feldman, J.A., Pinter, R.Y. & Wimer, S. (1989). Depth-first-search 

and dynamic programming algorithms for efficient CMOS cell generation. IEEE 

Transactions on Computer-Aided Design, 8 (7), 737-743. 

 

Yellowley, I. & Gunn, E.A. (1999). The optimal subdivision of cut in multi-pass 

machining operations. International Journal of Production Research, 27 (9),  

1573-1588.  

 

Yong, Z., Chan, L.C., Chunguang, W. & Pei, W. (2009). Optimization for loading 

paths of tube hydroforming using a hybrid method. Materials and Manufacturing 

Processes, 24, 700-708. 

 

Youssef, A.Y., Beauchamp, Y. & Thomas, M. (1994). Comparison of a full factorial 

experimemt to fractional and Taguchi designs in a lathe dry turning operation. 

Computer and Industrial Engineering, 27 (1), 59-62. 

 

Zafar, N. (2002). Optimization of tube hydroforming process. Thesis, East Lansing: 

Michigan State University. 

 

Zain, A.M., Haron, H. & Sharif, S. (2010). Simulated annealing to estimate the 

optimal cutting conditions for minimizing surface roughness in end milling Ti-

6AI-4V. Machine Science and Technology, 14, 43-62. 

 



184 

 

 

 

Zhang, H.-C. & Huang, S.H. (1995). Applications of neural networks in 

manufacturing: A state-of-the art survey. International Journal of Production 

Research, 33, 705-728. 

 

Zhang, H.W., Xu, W.L., Di, S.L. & Thomson, P.F. (2002). Quadratic programming 

method in numerical simulation of metal forming process. Computer Methods in 

Applied Mechanics and Engineering, 191, 5555-5578. 

 

Zhou, D.N., Cherkassy, V., Baldwin, T.R., & Olson, D.E. (1991). A Neural Network 

Approach to Job-Shop Scheduling. IEEE Transactions on Neural Networks, 2, 

175-179. 

 

Zuperl, U. & Cus, F. (2003). Optimization of cutting conditions during cutting by 

using neural networks. Robotics and Computer Integrated Manufacturing, 19, 

189-199. 

 


