
DOKUZ EYLÜL UNIVERSITY 

GRADUATE SCHOOL OF NATURAL AND APPLIED 

SCIENCES 

 

RESOURCE CONSTRAINED PARALLEL 

MACHINE SCHEDULING PROBLEMS WITH 

MACHINE ELIGIBILITY RESTRICTIONS: 

MATHEMATICAL AND CONSTRAINT 

PROGRAMMING BASED APPROACHES 

 

by 

Emrah B. EDİS

December, 2009 

İZMİR



ii

RESOURCE CONSTRAINED PARALLEL 

MACHINE SCHEDULING PROBLEMS WITH 

MACHINE ELIGIBILITY RESTRICTIONS: 

MATHEMATICAL AND CONSTRAINT 

PROGRAMMING BASED APPROACHES 

 

A Thesis Submitted to the 

Graduate School of Natural and Applied Sciences of Dokuz Eylül University 

In Partial Fulfillment of the Requirements for the Degree of Doctor of 

Philosophy in Industrial Engineering, Industrial Engineering Program 

by 

Emrah B. EDİS

December, 2009 

İZMİR



iii

Ph.D. THESIS EXAMINATION RESULT FORM 
 

We have read the thesis entitled “RESOURCE CONSTRAINED PARALLEL 

MACHINE SCHEDULING PROBLEMS WITH MACHINE ELIGIBILITY 

RESTRICTIONS:MATHEMATICAL AND CONSTRAINT PROGRAMMING 

BASED APPROACHES” completed by EMRAH B. EDİS under supervision of 

PROF. DR. HASAN ESKİ and we certify that in our opinion it is fully adequate, in 

scope and in quality, as a thesis for the degree of Doctor of Philosophy. 

Prof. Dr. Hasan ESKİ

Supervisor 

 

Prof. Dr. Tatyana YAKHNO               Asst. Prof. Dr. Şeyda  A. TOPALOĞLU 

Thesis Committee Member          Thesis Committee Member 

 

Prof. Dr. A. İrem ÖZKARAHAN   Assoc. Prof. Dr. Ceyda OĞUZ 

Second Supervisor               Examining Committee Member           

 

Prof. Dr. Urfat NURİYEV    Asst. Prof. Dr. Bilge BİLGEN 

Examining Committee Member             Examining Committee Member            

 

Prof. Dr. Cahit HELVACI 
Director 

Graduate School of Natural and Applied Sciences 



iv

ACKNOWLEDGMENTS 

 

First and foremost, I would like to express my deepest appreciation to my advisor, 

Prof. Dr. İrem ÖZKARAHAN for her continuous support, guidance and confidence 

in me throughout my PhD studies. Without her motivation, sincere support, valuable 

insights and advices, this dissertation could not have been completed. Also, I would 

like to thank to my other advisor, Prof. Dr. Hasan ESKİ who provided a continuous 

support, motivation and sincere interest throughout the progress of this dissertation.  

 

I would like to acknowledge my PhD committee members, Asst. Prof. Dr. Şeyda 

TOPALOĞLU and Prof. Dr. Tatyana YAKHNO, for their constructive criticism and 

valuable comments during the progress of this dissertation. I would also like to 

extend my gratitude to Assoc. Prof. Dr. Ceyda OĞUZ for the short time she took to 

review my dissertation and provide valuable comments and suggestions that 

improved the quality and presentation of this dissertation.   

 

I take this opportunity to thank all the professors and colleagues in the 

Department of Industrial Engineering at Dokuz Eylul University for their 

encouragement and friendship. Special thanks go to Pınar MIZRAK ÖZFIRAT, 

Ceyhun ARAZ, Kemal ÖZFIRAT, Özlem UZUN ARAZ and Gökalp YILDIZ for 

their help, endless support and encouragement.  

 

I would also like to thank to Scientific and Technological Research Council of 

Turkey (TÜBİTAK) for providing me scholarship during this study.  

 

Last but not the least; I am deeply thankful to my family. Their sincere support 

and prayers were always with me. Finally, words are insufficient to express my 

deepest gratitude to my wife Rahime. Without her love, endless encouragement, 

understanding and assistance, this dissertation would not have been completed.  

 

Emrah B. EDİS



v

RESOURCE CONSTRAINED PARALLEL MACHINE SCHEDULING 

PROBLEMS WITH MACHINE ELIGIBILITY RESTRICTIONS: 

MATHEMATICAL AND CONSTRAINT PROGRAMMING BASED 

APPROACHES 

 

ABSTRACT 

 

The research in this dissertation is motivated by a real-world scheduling problem 

in the injection molding department of an electrical appliance company and 

investigates three resource-constrained parallel machine scheduling problems with 

machine eligibility restrictions. All the problems consider one additional resource 

type (i.e., operator) with arbitrary resource size and up to two units of resource 

requirements.  

 

The first problem assumes that processing times of all jobs are equal and aims to 

minimize total flow time. For this problem, two heuristic algorithms are proposed. 

The first one is a Lagrangian-based solution approach embedded into a subgradient 

optimization procedure to obtain tight lower bounds and near-optimal solutions. The 

second one is a problem specific heuristic. The performances of the proposed 

algorithms are evaluated by means of randomly generated test instances with 

different problem parameters.  

 

The second problem allows arbitrary processing times and aims to minimize 

makespan. For this problem, three optimization models, namely, integer 

programming (IP), constraint programming (CP), and combined IP/CP models, are 

developed. Four different CP search algorithms have been evaluated and the best one 

is embedded into the CP and IP/CP combined models. The proposed models are then 

tested through medium size test problems and the efficiency of the proposed IP/CP 

combined model is demonstrated.  

 

The last problem considers the real case with 36 machines and real die-machine 

compatibility data. For this problem, IP/IP and IP/CP iterative approaches which 



vi

partition the entire problem into loading and scheduling phases are proposed. Both 

approaches have a common loading phase where an IP model assigns the jobs to the 

machines. Subsequently, in the scheduling phase, two alternative models, namely, IP 

and CP are developed to construct the final schedule. The proposed approaches are 

evaluated by the test problems generated on real data, and the efficiency of IP/CP 

iterative approach is established.  

 

Keywords: parallel machine scheduling, additional resources, machine eligibility 

restrictions, Lagrangian relaxation, integer programming, constraint programming.  

 



vii

MAKİNE ELVERİŞLİLİĞİ SINIRLAMALARI ALTINDAKİ KAYNAK 

KISITLI PARALEL MAKİNE ÇİZELGELEME PROBLEMLERİ:

MATEMATİKSEL VE KISIT PROGRAMLAMA TABANLI 

YAKLAŞIMLAR 

ÖZ 

 

Bu tezdeki araştırmada, elektrik malzemeleri üreten bir firmanın plastik-

enjeksiyon bölümündeki gerçek çizelgeleme probleminden motive olunmuş ve iş-

makine elverişliliği altındaki ek kaynak kısıtlı üç adet paralel makine çizelgeleme 

problemi analiz edilmiştir. İncelenen tüm problemler, mevcut sayısı rastgele 

alınabilecek ancak gereksinimi en fazla iki adet olabilecek tek tip bir ek kaynağı 

(örn. operatör) dikkate almaktadır.  

 

Ele alınan ilk problem tüm işlerin işlem sürelerini eşit kabul etmekte ve toplam 

akış zamanını en küçüklemeyi amaçlamaktadır. Bu problem için iki sezgisel 

yaklaşım önerilmiştir. İlk yöntem, sıkı alt sınır değerleri ve en iyi sonuca yakın üst 

sınır değerleri elde etmek üzere alt-gradyan eniyileme prosedürüne iliştirilmiş

Lagrange-tabanlı bir çözüm yaklaşımıdır. İkinci yöntem ise probleme özgü sezgisel 

bir yaklaşımdır. Farklı problem parametreleri dikkate alınarak türetilen test 

problemleri üzerinde modellerin performansları değerlendirilmiştir.  

 

Ele alınan ikinci problem, işlem sürelerinin keyfi olarak seçilebilmesine izin 

vermekte ve işlerin en son bitiş süresini (makespan) en küçüklemeyi amaçlamaktadır. 

Bu problem için, tamsayılı programlama (TP), kısıt programlama (KP) ve bütünleşik 

TP/KP olmak üzere üç farklı eniyileme modeli geliştirilmiştir. Dört farklı KP arama 

algoritması test edilmiş ve içlerinden en iyisi KP ve TP/KP bütünleşik modeline 

eklenmiştir. Önerilen modeller orta büyüklükteki test problemlerine uygulanmış ve 

TP/KP bütünleşik modelinin etkinliği gösterilmiştir.  

 
Ele alınan son problem 36 makineden oluşan ve gerçek kalıp-makine elverişlilik 

verisini içeren çizelgeleme problemini ele almaktadır. Bu problem için, problemi 

yükleme ve çizelgeleme alt problemlerine ayıran TP/TP ve TP/KP ardışıksal 



viii

yaklaşımları önerilmiştir. Her iki yaklaşım, bir TP modelinin işleri makinelere 

atadığı ortak bir yükleme aşamasına sahiptir. Çizelgeleme aşamasında ise son 

çizelgeyi oluşturmak üzere TP ve KP olarak iki farklı model önerilmiştir. Gerçek 

verilere dayalı olarak türetilen test problemleri üzerindeki değerlendirmeler,  TP/KP 

ardışıksal yaklaşımının etkinliğini ortaya koymuştur.  

 

Anahtar Sözcükler: paralel makine çizelgelemesi, ek kaynaklar, makine elverişliliği

sınırlamaları, Lagrange gevşetmesi, tamsayılı programlama, kısıt programlama. 



ix

CONTENTS 

 

Page 

Ph.D. THESIS EXAMINATION RESULT FORM ...................................................iii 

ACKNOWLEDGMENTS .......................................................................................... iv 

ABSTRACT................................................................................................................. v 

ÖZ… ..........................................................................................................................vii 

 

CHAPTER ONE - INTRODUCTION ..................................................................... 1 

 
1.1 Motivation of the Research .............................................................................. 1 

1.2 Research Objectives and Methodology............................................................ 3 

1.3 Contributions.................................................................................................... 5 

1.4 Organization of the Dissertation ...................................................................... 8 

 

CHAPTER TWO - BACKGROUND..................................................................... 11 

 
2.1 Introduction .................................................................................................... 11 

2.2 Notation.......................................................................................................... 13 

2.3 Classification of Scheduling Problems .......................................................... 14 

2.3.1 Machine Environment............................................................................. 14 

2.3.2 Processing Characteristics and Constraints............................................. 16 

2.3.3 Objective Function .................................................................................. 17 

2.3.4 Complexity Hierarchy............................................................................. 18 

2.4 Parallel Machine Scheduling with Machine Eligibility Restrictions ............. 20 

2.5 Parallel Machine Scheduling with Additional Resources.............................. 26 

2.6 Chapter Summary........................................................................................... 29 

 
CHAPTER THREE - PARALLEL MACHINE SCHEDULING WITH 

ADDITIONAL RESOURCES: LITERATURE REVIEW AND DISCUSSION

.................................................................................................................................... 31 

 
3.1 Introduction .................................................................................................... 31 

3.2 Machine Environment Characteristics ........................................................... 33 



x

3.3 Additional Resource Characteristics .............................................................. 34 

3.4 Objective Function(s)..................................................................................... 45 

3.5 Solution Methods ........................................................................................... 46 

3.5.1 Polynomially Solvable Problems ............................................................ 47 

3.5.2 NP-hard Problems Proved in the Literature ............................................ 50 

3.5.3 Exact Methods......................................................................................... 52 

3.5.4 Approximation Algorithms ..................................................................... 54 

3.5.4.1 Problem-based Heuristic Algorithms............................................... 55 

3.5.4.2 Approximation Algorithms with Worst-Case Bounds..................... 57 

3.5.4.3 Metaheuristics .................................................................................. 60 

3.6 Other Important Issues ................................................................................... 62 

3.7 Limitations of the Existing Literature and Distinguishing Properties of the 

Proposed Research ......................................................................................... 64 

3.8 Chapter Summary........................................................................................... 67 

 
CHAPTER FOUR - PROBLEM STATEMENT .................................................. 69 

 
4.1 Problem Definition......................................................................................... 69 

4.2 Assumptions................................................................................................... 70 

4.3 Research Problems......................................................................................... 72 

4.3.1 Problem Case I: P| 21⋅res , Mi, pi=1|∑i iC ............................................ 72 

4.3.2 Problem Case II: P | 21⋅res , Mi, pi| Cmax................................................. 73 

4.3.3 Problem Case III (Real Case Study): P36 | 21⋅res , Mi, pi| Cmax ............. 73 

4.4 An Illustrative Example ................................................................................. 74 

4.5 Related Research in the Injection Molding Plants ......................................... 77 

4.6 Chapter Summary........................................................................................... 77 

 
CHAPTER FIVE - OVERVIEW OF THE SOLUTION TOOLS EMPLOYED 

IN THE PROPOSED RESEARCH........................................................................ 78 

 
5.1 Integer Programming ..................................................................................... 78 

5.2 Lagrangian Relaxation and Lagrangian Based Solution Approaches for 

Integer Programming ..................................................................................... 81 



xi

5.2.1 Lagrangian Relaxation ............................................................................ 84 

5.2.2 Determination of Lagrange Multipliers .................................................. 85 

5.2.3 Lagrangian Heuristics ............................................................................. 87 

5.3 Constraint Programming and its Comparison/Integration with Integer 

Programming for Scheduling Problems......................................................... 89 

5.3.1 Constraint Satisfaction Problem.............................................................. 89 

5.3.2 How to Solve a CSP? .............................................................................. 90 

5.3.2.1 Domain Reduction and Constraint Propagation............................... 91 

5.3.2.2 Branching ......................................................................................... 92 

5.3.3 Constraint Optimization Problem ........................................................... 93 

5.3.4 The Richness of CP for Modeling and Solving Scheduling Problems ... 93 

5.3.4.1 Variable Indexing............................................................................. 93 

5.3.4.2 The Strengths of Constraint Framework .......................................... 94 

5.3.4.3 Search............................................................................................... 95 

5.3.5 Comparison of IP and CP Methods for Scheduling Applications .......... 96 

5.3.6 IP/CP Integration Schemes ..................................................................... 98 

5.4 Chapter Summary......................................................................................... 100 

 
CHAPTER SIX - LAGRANGIAN-BASED AND PROBLEM-BASED 

HEURISTIC APPROACHES FOR PROBLEM CASE I.................................. 101 

 
6.1 Introduction .................................................................................................. 101 

6.2 Problem Formulation ................................................................................... 102 

6.3 Lagrangian-based Solution Approach (LSA)............................................... 104 

6.3.1 Lagrangian Relaxation of the Problem................................................ 105 

6.3.2 Initial Heuristic (IH)............................................................................ 108 

6.3.3 Lagrangian Heuristic (LH) .................................................................. 109 

6.3.4 Subgradient Optimization Procedure .................................................. 111 

6.4 Problem Specific Heuristic (PSH) ............................................................... 113 

6.5 Computational Results ................................................................................. 114 

6.6 Chapter Summary......................................................................................... 119 



xii

CHAPTER SEVEN - INTEGER PROGRAMMING (IP), CONSTRAINT 

PROGRAMMING (CP) AND IP-CP COMBINED APPROACHES FOR 

PROBLEM CASE II.............................................................................................. 120 

 
7.1 Introduction .................................................................................................. 120 

7.2 Proposed Models.......................................................................................... 122 

7.2.1 Integer Programming (IP) Model ........................................................ 122 

7.2.2 CP Model............................................................................................. 126 

7.2.3 Combined IP/CP OPL Model.............................................................. 129 

7.3 CP-based Search Procedures........................................................................ 132 

7.4 Computational Results ................................................................................. 135 

7.4.1 Implementation Issues......................................................................... 135 

7.4.2 The Performance Evaluation of CP-based Search Procedures............ 138 

7.4.3 Numerical Results ............................................................................... 142 

7.5 Chapter Summary......................................................................................... 147 

 
CHAPTER EIGHT -  ITERATIVE SOLUTION APPROACHES FOR THE 

REAL CASE STUDY ........................................................................................... 148 

 
8.1 Introduction .................................................................................................. 148 

8.2. Problem Statement ...................................................................................... 149 

8.3 Proposed Solution Approaches .................................................................... 150 

8.3.1 Loading Job Strings to Machines ........................................................ 151 

8.3.2 Schedule the Job Strings ..................................................................... 153 

8.4 Computational Results ................................................................................. 156 

8.5 Chapter Summary......................................................................................... 164 

 
CHAPTER NINE - CONCLUSIONS AND FUTURE RESEARCH ................ 165 

 
9.1 Summary ...................................................................................................... 165 

9.2 Contributions................................................................................................ 167 

9.3 Future Directions.......................................................................................... 169 

 
REFERENCES................................................................................................. 172 



xiii

APPENDIX A ................................................................................................... 191 

APPENDIX B ................................................................................................... 195 

APPENDIX C ................................................................................................... 199 

APPENDIX D ................................................................................................... 202



1

CHAPTER ONE 

INTRODUCTION 

 

1.1 Motivation of the Research 

 

Scheduling is one of the decision-making processes used in manufacturing and 

service industries. It deals with the allocation of resources to tasks (or jobs) over a 

given scheduling horizon with the aim of optimizing one or more objectives (Pinedo, 

2008, p.1). Scheduling models and algorithms are widely used in manufacturing 

applications to perform production operations in an efficient way.  

 

A typical scheduling problem in manufacturing systems is defined under three 

properties: machine configuration, processing characteristics and constraints, and 

objective function(s). 

 

In terms of machine configurations, four main scheduling environments may be 

defined: single machine, parallel machines, flow shop, and job shop.  Parallel 

machine scheduling (PMS) is one of the most studied areas in the scheduling 

literature. It is important from two points of view. From a theoretical point of view, it 

is a generalization of the single machine, and a special case of the flexible flow shop. 

From a practical point of view, the occurrence of machines in parallel is common in 

the real world. Also, PMS techniques are often used in decomposition procedures for 

multi-stage systems (Pinedo, 2008, p.111). A PMS problem, more formally, can be 

defined as a system with m machines in parallel and n jobs where each job requires a 

single operation to be processed on one of the m machines. 

 

PMS problems can further be classified in terms of processing characteristics and 

constraints. The presence of different processing characteristics and constraints 

results in different problem classes. In PMS problems, jobs may often not be 

processed on any of the available machines but rather must be processed on a 

machine belonging to a specific subset of machines. This situation, called machine 

eligibility restrictions, is widely encountered in real PMS environments.



2

Furthermore, in most of PMS studies, the only considered resources are machines 

(Pinedo, 1995; Ventura & Kim, 2003). However, in most real-life manufacturing 

systems, jobs may also require certain additional resources, such as automated 

guided vehicles, machine operators, dies, tools, pallets, industrial robots etc (Ventura 

& Kim, 2003). A common example of additional resources is cross-training workers 

that perform different tasks associated with different machines (Daniels, Hua & 

Webster, 1999). Thus, the study of PMS with additional resource constraints is also a 

significant area of research.  

 

In terms of the objective function, there exist several performance criteria such as 

mean flow time, completion time of all jobs (i.e., makespan), number of tardy jobs 

etc. 

 

The research in this dissertation is motivated by a real-world scheduling problem 

in an injection molding department of an electrical appliance company and deals 

with a series of resource-constrained parallel machine scheduling problems 

(RCPMSPs) including machine eligibility restrictions.  

 

Figure 1.1 Characteristics of the research problems 

 



3

Figure 1.1 illustrates the characteristics of research problems investigated in this 

dissertation. The first problem case assumes that processing times of all jobs are 

equal, while the second and third problem cases allow arbitrary processing times. 

Different from second problem, the third problem includes the real data with respect 

to machine eligibility restrictions, number of jobs to be processed, and number of 

additional resource (i.e., operators) taken from an injection molding department with 

36 machines. Details of these research problems will be given in Chapter 4. 

 

1.2 Research Objectives and Methodology 

 

Most of the RCPMSPs are in class of NP-hard problems (see Blazewicz, Lenstra, 

& Rinnooy Kan, 1983). For most real-world applications, the problem size does not 

allow to run exact algorithms within a reasonable time limit. Since manufacturers 

look for rapid, feasible, and easily applicable solutions, this dissertation aims to 

propose efficient solution algorithms to a series of RCPMSPs with machine 

eligibility restrictions. Figure 1.2 illustrates the proposed solution approaches with 

respect to each research problem. 

 

Figure 1.2 Proposed solution approaches for the research problems 



4

For the first problem case, i.e., a RCPMSP with machine eligibility restrictions 

and unit (equal) processing times with the aim of minimizing total flow time, two 

solution approaches are proposed. The first one is a Lagrangian-based algorithm 

which adjusts the infeasible solutions of Lagrangian Relaxation Problem (LRP) to 

obtain feasible schedules, while the second one is a problem based heuristic. 

Lagrangian relaxation is also used to obtain tight lower bounds.  

 

For the second problem case, i.e., a RCPMSP with machine eligibility restrictions 

and arbitrary processing times with the aim of minimizing makespan, three 

optimization models; an integer programming (IP) model, a constraint-programming 

(CP) model and a combined IP/CP model are developed. A problem-based search 

procedure to be used in CP and IP/CP combined models is also proposed to get quick 

and efficient results.  

 

Finally, for real case problem with its own characteristics and problem size, two 

solution approaches are proposed. Both approaches are iterative solution methods 

which partition the problem into loading and scheduling sub-models. In loading 

phase, an IP model assigns the jobs to machines with the aim of minimizing 

maximum load on machines. Consequently, scheduling phase uses two alternative 

models, namely IP and CP, to obtain the final schedule of the jobs subject to 

additional resource constraints.  

 

The common steps of research methodology followed while dealing with each 

problem case are given below:  

- Characterize the problem structures and investigate efficient model          

formulations. 

- Explore possible solution approaches and generate efficient solution methods for 

each class of investigated research problems. 

- Evaluate the performance of the proposed solution approaches through medium 

and industrial sized problems with various combinations of problem parameters. 

- Compare the results of the proposed solution approaches with existing methods.   

 



5

1.3 Contributions 

 

In the literature related to RCPMSPs, although a number of studies handle 

common shared resources, most of them deal with dedicated (i.e., the set of jobs to 

be processed on each machine is priori known) or identical machines. To the best of 

our knowledge, no study in this field has considered machine eligibility restrictions.  

 

All the research problems in this dissertation, differently from previous studies, 

consider machine eligibility restrictions and common shared resource (i.e., machine 

operators shared by all machines) cases together. This is one of the main 

contributions of this dissertation.  

 

The other contributions of the dissertation are summarized as follows: 

 

• The studies related to RCPMSPs mainly focus on small sized problems with 

hypothetical data. Large sized problems, especially the cases encountered in real-

life environments, do not receive much attention due to their complex structures.  

 

o All research problems in this dissertation are motivated by a real RCPMSP 

with machine eligibility restrictions encountered in an injection molding 

department of an electrical appliance company. Moreover, the third problem 

case also considers real case study with its own large sized real data (i.e., 36 

machines, up to 120 jobs and 12 units of additional resource).     

 

• In the case that a job can only be processed on one of the eligible machines, 

different flexibility measures of machines become additional parameters of the 

PMS problem on hand. This situation requires further analysis on different levels 

of these flexibility measures. So far, the effect of these flexibility measures has 

only been discussed within classical PMS systems.  

 

o This dissertation analyzes the effect of machine eligibility restrictions for the 

investigated RCPMSPs in terms of two important flexibility measures 



6

encountered in the PMS literature (Vairaktarakis & Cai, 2003): process 

flexibility and balance flexibility.  

 

• Since most of RCPMSPs are NP-hard (Blazewicz, Lenstra & Rinnooy Kan, 

1983), relaxed formulations of the problems are usually utilized in the literature. 

This relaxation is generally performed in two ways.  

 

The first way is to relax some set of constraints in the original formulation. In 

most mathematical formulations of RCPMSPs, the constraints related to 

additional resources complicate the problem. By relaxing this set of constraints, 

the remaining problem probably becomes easy to solve. The common way to 

utilize such an advantage of relaxation is applying Lagrangian relaxation 

technique. Although many researchers have studied the use of Lagrangian 

relaxation algorithms for PMS problems with the aims of both obtaining good 

lower bounds and producing efficient heuristics based on Lagrangian problem, to 

the best of our knowledge, only Ventura & Kim (2003) utilizes this technique for 

a RCPMSP with identical machines and unit processing times.  However, they do 

not consider machine eligibility restrictions. 

 

o In this dissertation, a Lagrangian-based solution approach with an efficient 

heuristic algorithm is proposed for the first problem case. The proposed 

solution approach not only provides tight lower bounds but also produces 

efficient results with small optimality gaps.  

 

A number of studies (e.g., Grigoriev, Sviredenko & Uetz, 2005, 2006, 2007; 

Kellerer, 2008) utilize the relaxed (probably solvable) mathematical formulations 

of the original problem. These relaxed formulations may usually provide 

individual solutions for a set of sub-problems of the original problem (e.g., 

resource allocation, job-machine assignment). Then, these individual solutions 

are adapted to the original problem by applying some greedy heuristic 

algorithms.  

 



7

o For the third problem case, a relaxed (and easily solvable) formulation of 

the entire problem, i.e., a PMS formulation with machine eligibility 

restrictions (but without additional resource constraints), is handled to 

obtain job-machine assignments. Then, with these fixed job-machine 

assignments, a final schedule with an efficient makespan value may be 

obtained in a more straightforward way.  

 

• A common way to present a machine scheduling problem is IP. However, 

machine scheduling problems are inherently difficult to solve via classical (IP) 

methods because of their combinatorial nature. When the additional resource 

constraints are the case, scheduling problems become more complex. For the 

recent years, constraint programming (CP) has been used as an alternative 

solution method for solving the combinatorial optimization problems. The studies 

related to scheduling problems (Darbi-Dowman, Little, Mitra & Zaffalon, 1997; 

Darbi-Dowman & Little, 1998; Lustig & Puget, 2001; Smith, Brailsford, 

Hubbard & Williams, 1997) infer that IP seems to be better for problems in 

which linear programming (LP) relaxations provide strong lower bounds, while 

CP is better than IP in sequencing, scheduling applications and strict feasibility 

problems. Since RCPMSPs are natural candidates for strict feasibility problems, 

CP technique may be utilized individually or as a part of the solution approach 

for this class of problems. To the best of our knowledge, no study so far utilizes 

CP technique for solving RCPMSPs.  

 

o CP has an advantage in finding quick and efficient results in scheduling 

problems with resource constraints, especially when these constraints are 

tight. Therefore, CP technique is utilized in both the second and the third 

research problems. 

 

o Although CP has an advantage of finding quick and feasible results, it 

usually lacks proving the optimality when it is used alone. Therefore, for the 

second problem case, a combined IP/CP model is developed to utilize the 

complementary strengths of IP and CP techniques. As far as we know, it is 



8

the first study that uses IP/CP combined model for RCPMSPs.  In a related 

field of PMS with resource constraints, Hooker (2005, 2006) and Chu & Xia 

(2005) utilize IP and CP models in a decomposition manner and obtain 

efficient results. However, absence of additional resource(s) other than the 

main resource (machine) takes us away from classifying these problems into 

RCPMSPs. 

 

o For the third problem case, we propose an iterative solution method which 

partitions the entire problem to loading and scheduling sub-problems to 

obtain more efficient results. The scheduling sub-problem is solved by IP 

and also alternatively by CP.  

o One of the advantages of CP is its ability to use search procedures. By using 

an efficient search procedure in CP, the search tree can be pruned in the 

earlier stages, and feasible solutions can be reached in advance. No study so 

far utilizes problem specific CP-based search algorithms in this class of 

problems. For the second problem case, two problem specific CP-based 

search procedures have been proposed to be used in both CP and combined 

IP/CP models. The efficiency of the proposed search procedures is also 

confirmed by comparing them with built-in search procedures of OPL 

(ILOG, 2003) optimization software.  

 

1.4 Organization of the Dissertation 

 

The rest of this dissertation is organized as follows: 

 

Chapter 2 introduces background issues, notation, and classification of scheduling 

problems to clarify the scope of our research problems. This chapter also gives a 

brief review of PMS studies with machine eligibility restrictions and main concepts 

of resource constrained scheduling related to PMS problems.  

 



9

Chapter 3 presents a review and discussion of studies related to RCPMSPs by 

investigating their main characteristics. This chapter also represents the limitations of 

the existing literature and distinguishing characteristics of the proposed research in 

this dissertation in terms of both investigated research problems and proposed 

solution approaches.  

 

Chapter 4 describes the framework of the investigated RCPMSPs, gives main 

assumptions and defines three problem cases addressed in this dissertation with 

respect to notation and classification schemes given in Chapter 2. A discussion on 

the complexity of research problems is provided. This chapter also presents an 

illustrative example which clarifies the effect of main characteristics, i.e., additional 

resources and machine eligibility restrictions, of investigated research problems. 

Finally, a short review of scheduling efforts in the injection molding plants is 

presented.  

 

Chapter 5 presents an overview of tools employed in the dissertation within two 

sub-sections. In the first sub-section, Lagrangian relaxation and Lagrangian-based 

solution approaches are briefly explained. In the second sub-section, IP, CP and     

IP-CP integration/decomposition schemes are briefly introduced.  

 

The three investigated research problems are studied in detail in Chapter 6, 

Chapter 7 and Chapter 8, respectively.  

 

Chapter 6 firstly presents an IP model with the objective of minimizing total flow 

time for the first problem case. Based on this model, a Lagrangian based solution 

approach with a subgradient optimization procedure has been proposed. Lagrangian 

relaxation is also used to obtain tight lower bounds. Additionally, a problem specific 

solution approach is developed to obtain near optimal solutions. Effectiveness of the 

proposed solution approaches is tested through several test problems with different 

characteristics.  

 



10

Chapter 7 deals with the second investigated problem case. Three optimization 

models; an IP model, a CP model and a combined IP/CP model are developed. 

Problem-based search procedures to be used in CP and IP/CP combined models are 

also proposed to get quick and efficient results. The performances of the proposed 

models are evaluated through randomly generated eight sub-groups of test problems 

varying in terms of several problem parameters. The efficiency of IP/CP combined 

model is presented in almost all sub-groups of test problems. 

 

Our third problem case, i.e., real case problem with its own characteristics and 

problem size, is studied in Chapter 8. In order to obtain efficient results, an iterative 

solution method which partitions the problem into loading and scheduling sub-

models is proposed. In loading phase, an IP model is used to assign the jobs to 

machines. In scheduling phase, two alternative models, namely IP and CP, are used 

to obtain the final schedule of the jobs. Consequently, the proposed solution 

approaches are applied to a set of problems with real data and their performances are 

evaluated.  

 

Finally, Chapter 9 gives the concluding remarks, represents the contributions and 

identifies future directions of the proposed research. 



11

CHAPTER TWO 

BACKGROUND 

 

2.1 Introduction  

 

The scheduling function in a production system interacts with many other 

functions. The diagram in Figure 2.1 depicts the information flow in a manufacturing 

system. Notice that capacity status and scheduling constraints are determined by the 

decisions made at the top of the hierarchy. Thus, scheduling performance is directly 

restricted by these decisions.  

 

Figure 2.1 Information flow diagram in a manufacturing system (Pinedo, 1995, p.4)

Schedule 
Performance 

Production Planning, 
Master scheduling 

Dispatching 

Shop floor 

Shop-Floor 
Management 

Capacity  
Status 

Orders, 
Demand forecasts

Quantities, 
Due dates

Material requirements, 
planning,  

Capacity planning 
Material 
Requirements 

Scheduling 
Constraints 

Shop orders, 
release dates  

Scheduling and 
rescheduling 

Shop Status 

Data Collection Job loading 

Detailed 
Scheduling 

Scheduling 



12

As seen from Figure 2.1, the decisions that are made in the production planning 

process and shop floor control may have an impact on scheduling. At the 

production planning process, the inventory levels, forecasts, due dates, capacity 

constraints and resource requirements have to be considered. On the other hand, 

some unexpected events on the shop floor such as machine breakdowns or 

processing times that are longer than anticipated have to be also taken into account 

while building schedules. Therefore, the schedule is built based on all these 

restrictions.  

 

Scheduling involves allocation of machinery and other resources (e.g., labor, 

tooling) to different orders, each of which is referred to as a job. A proper 

allocation of resources enables the company to optimize its objectives and achieve 

its goals. The objectives may take many forms, such as minimizing the time to 

complete all tasks or minimizing the number of tasks completed after their due 

dates (Pinedo & Chao, 1999, p.2).  

 

Defining a machine scheduling problem in words is often easy: A system with 

n jobs that will be processed on one, or a subset or all of m machines probably 

further requiring additional resources (e.g., machine operators, tools, pallets) and 

should be completed subject to other system constraints to meet some objectives.  

 

Unfortunately, scheduling efforts are often difficult to perform and implement. 

Since the time function goes into the scheme, solution branches grow up to a huge 

amount, at once. Then, implementation difficulties arise related to the modelling 

of the real-world scheduling problems whereas technical difficulties come across 

the solution methodology and procedures. Resolving these difficulties takes skill 

and experience but is often financially and operationally well worth the effort 

(Pinedo & Chao, 1999, p.5). 

 

This dissertation deals with a series of PMS problems subject to additional 

resource constraints and machine eligibility restrictions. This chapter, therefore, 

gives background information related to the research problems in this dissertation. 



13

The subsequent sections of this chapter are organized as follows. Section 2.2 gives 

the notation to be used throughout the dissertation. Section 2.3 presents the 

classification of scheduling problems giving further attention to the issues related 

to our research problems. Section 2.4 clarifies the concept of machine eligibility 

restrictions and reviews the related studies within the framework of PMS. A brief 

introduction to additional resources is presented in Section 2.5. Finally, Section 

2.6 summarizes this chapter presenting its relation to the subsequent chapters of 

the dissertation.  

 

2.2 Notation  

 

The following notation will be used throughout the dissertation. Additional 

notation will be defined when required: 

 

n number of jobs  

N set of jobs 

m number of machines  

M set of machines 

i index of jobs, i = 1, …, n

j index of machines,  j = 1, …, m

T number of time periods in the scheduling horizon  

t index of time periods, t = 1, …, T

pij processing time of job i on machine j. 

pi processing time of job i (independent of machine j)

ri the earliest time at which job i can start its processing, also known as 
ready (release) time.  

di due date of job i

wi weight of job i, denoting the importance of job i relative to other jobs. 

Ci completion time of job i

Cmax maximum completion time of all jobs in the system, i.e., makespan. 



14

vj speed of machine j (defined for uniform machines) 

v least common  multiple of  v1, v2, …, vm

vmax max{ v1, v2, …, vm }

vij speed of job i on machine j (defined for unrelated machines) 

 

2.3 Classification of Scheduling Problems 

 

We will use a classification scheme introduced by Graham, Lawler, Lenstra & 

Rinnooy Kan (1979) and Blazewicz, Lenstra & Rinnooy Kan (1983). The scheme 

employs a three-field classification α|β|γ where  

- the first field α specifies the machine environment 

- the second field β represent job characteristics, and 

- the third field γ denotes the objective function.  

 

The following subsections present information on the components of this 

classification scheme. Note that, the list of related components is not 

comprehensive, but mainly includes the ones related to the investigated research 

problems. For a comprehensive list see Graham et al. (1979) and Blazewicz, 

Lenstra & Rinnooy Kan (1983). 

 

2.3.1 Machine Environment  

 

The first field  21ααα = specifies the machine environment. 

 

{ }PDRQP ,,,,1 ∅∈α illustrates the type of machine arrangement: 

 ∅=1α : single machine, 

 P=1α : identical parallel machines, 

 PD=1α : parallel dedicated machines, 

 Q=1α : uniform parallel machines, 

 R=1α : unrelated parallel machines. 



15

{ }k,2 ∅∈α denotes the number of machines in the problem: 

 ∅=2α : the number of machines assumed to be variable (i.e., a part of 

input) 

 k=2α : the number of machines is equal to k.

In terms of 1α field, four parallel machine sub-cases are distinguished: 

 

Identical parallel machines (P). Job i requires a single operation and may be 

processed on any one of the m machines with the same processing time pi.

Uniform parallel machines (Q). Machines have different speeds; the speed of 

machine j is denoted by vj and determined as proportional (relative) to speeds of 

other machines. The processing time for a job assigned to a machine, is equal to 

the job processing time divided by machine speed, pij = pi / vj. If all machines have 

the same speed, then the environment is reduced to identical parallel machines.  

 

Unrelated machines (R). There are m different machines in parallel, and there is 

no particular relationship among processing times for each job. Machine j can 

process job i at speed vij. The time pij is equal to pi / vij.

Parallel dedicated machines (PD). The set of jobs that will be processed on 

each machine is pre-determined. More formally, Nj represents the set of jobs that 

must be processed on machine j. Note that, the jobs are partitioned into m disjoint 

subsets; i.e.,  Nj ∩ Nj’ = ∅ , for all  j ≠ j’ and Mj∈∪ Nj = N. This situation 

eliminates the job-machine assignment sub-problem. 

 

On the other hand, if job i is not allowed to be processed on just any machine, 

but is allowed to be processed on a given subset of machines, say subset Mi, then 

the entry Mi appears in the β field. This Mi entry defines machine eligibility 

restrictions. 

 



16

2.3.2 Processing Characteristics and Constraints 

 

The field { }71,..., βββ ⊂ specifies characteristics of the jobs or of the 

resources.  

 

{ }pmtn,1 ∅∈β indicates whether there exists the possibility of preemption. 

 ∅=1β : no preemption is allowed. 

 pmtn=1β : preemption is allowed. 

 

{ }λσδβ res ,2 ∅∈ characterizes additional resources (Blazewicz, Lenstra & 

Rinnooy Kan, 1983): 

 ∅=2β : no additional resource constraints 

λσδβ res=2 : there are specified resource constraints, where λ , σ and 

δ are characterized as follows: 

- If λ is a positive integer, then the number of 

resource types is constant and equal to λ ; if =λ •, 

then it is part of the input and arbitrary. 

- If σ is a positive integer, then all resource sizes are 

constant and equal to σ ; if =σ •, then all resource 

sizes are arbitrary. 

- If δ is a positive integer, then all resource 

requirements have a constant upper bound equal to 

δ ; if =δ •, then no such bounds are specified. 

 

{ },,3 chaintreeprec,∅∈β reflects the precedence constraints:  

∅=3β : independent jobs, 

prec 3 =β : general precedence constraints,  

tree=3β : precedence constraints forming a tree  

chain=3β : precedence constraints forming a chain.  

 



17

{ }4 ir,∅∈β describes ready times: 

 ∅=4β : all ready times are equal to zero, 

 ir=4β : ready times differ per job i.

{ }ii p,pp5 =∈β describes job processing times: 

 )(5 ppi ==β : all jobs have processing times equal to p units.  

 ip=5β : jobs have arbitrary processing times. ( ip is not necessarily  

 used in the representation)  

 

{ }ii ddd ,,6 =∅∈β describes job due dates: 

 ∅=6β : jobs have no due dates. 

 )(6 ddi ==β : all jobs have a common due date d.

id=6β : jobs have distinct due dates.  

 

{ }iM,7 ∅∈β refers to machine eligibility restrictions: 

 ∅=7β : all machines are eligible for all jobs. 

 iM=7β : job i can only be processed on a specific machine subset, Mi.

Note that the symbol ‘∅ ’ is not necessarily used in the representation of 

corresponding β fields.    

 

2.3.3 Objective Function 

 

The third field γ refers to objective function. The optimality criteria are built by 

considering the following elementary functions: 

flow time: iii rCF −= ;

lateness: iii dCL −= ;

tardiness: { }0,max iii dCT −= ;



18

earliness: { }0,-max iii CdE = ;

unit penalty: 


 >

=
otherwise. 0
if 1 ii

i

dC
U

The most significant minsum objective functions are: 

∑
=

n

i
iC

1

: total completion time;  :
1

∑
=

n

i
iiCw total weighted completion time; 

∑
=

n

i
iF

1

: total flow time;   :
1

∑
=

n

i
ii Fw total weighted flow time; 

:
1

∑
=

n

i
iT total tardiness;   :

1
∑

=

n

i
iiTw total weighted tardiness; 

:
1

∑
=

n

i
iU number of tardy jobs;  :

1
∑

=

n

i
iiUw weighted number of tardy jobs. 

 

The most significant minmax objective functions are: 

:maxmax ii
LL = maximum lateness;  

:maxmax ii
TT = maximum tardiness; 

:maxmax ii
CC = makespan. 

 

2.3.4 Complexity Hierarchy 

 

A solution algorithm for a scheduling problem can be often applied to another 

scheduling problem as well. For instance, 1 || ∑Ci is a special case of 1 || ∑wi Ci

and an algorithm for 1 || ∑wi Ci, can also be used for 1 || ∑Ci. In complexity 

terminology it is then said that 1 || ∑Ci reduces to 1 || ∑wi Ci and this is denoted 

as (Pinedo, 2008, p.26):  

 

1 || ∑Ci ∝ 1 || ∑wi Ci

Pinedo (2008) presents the complexity hierarchy of deterministic scheduling 

problems in three field classification scheme. Figure 2.2 illustrates an adapted 



19

form of these complexity hierarchy relations given by Pinedo (2008, p.26). Note 

that, we have placed m parallel dedicated machines, i.e., “PDm”, between single 

machine, “1”, and m parallel identical machines, “Pm”. 

 

Figure 2.2 Complexity hierarchies of deterministic scheduling problems: (a) Machine 
environments (b) Processing restrictions and constraints (c) Objective functions (Adapted 
from Pinedo, 2008, p.26) 

 

Based on the complexity hierarchy, a chain of reductions can be given as 

follows: 

1 || ∑Ci ∝ Pm || ∑Ci ∝ Pm | Mi | ∑Ci

Once the notation and background issues have been given, the following two 

sections introduce the concepts of machine eligibility restrictions and additional 

resources within the PMS framework.   

r i

0

prmp 

0

prec 

0

M i

0

(b) 

ΣwiTi

ΣTi

Lmax 

ΣwiUi

ΣUi

Cmax 

ΣwiCi

ΣCi

(c) 

Rm 

Qm 

Pm 

1

PDm 

(a) 



20

2.4 Parallel Machine Scheduling with Machine Eligibility Restrictions 

 

Identical PMS is a system of m parallel identical machines each of which is 

capable of executing any job. However, in a parallel machine environment, job i

may not be processed on just any one of m machines in parallel, but rather has to 

be processed on a machine that belongs to a specific subset Mi of the machines 

(Pinedo & Chao, 1999, p.19). This may occur, as described earlier, when the 

machines in parallel are not exactly identical. This situation, named “machine 

eligibility restrictions” is widely encountered in real scheduling environments.  

 

More formally, we are given a set of n jobs and a set of m parallel machines, 

each job i has a processing time pi and a specific subset of machines, Mi, to which 

it can be assigned to optimize some objective function (say Cmax). In terms of the 

three-field notation of Graham et al. (1979), this problem is denoted as P |Mi | Cmax 

if the machines are identical, Q |Mi | Cmax if the machines are uniform, and            

R |Mi | Cmax if the machines are unrelated. R| Mi | Cmax can be viewed as a special 

case of R || Cmax since we can set processing time of job i on machine j to infinity 

if iMj ∉ . Therefore, R | Mi | Cmax is equivalent to R | | Cmax (Leung & Li, 2008).  

 

Scheduling with machine eligibility restrictions have extensively studied under 

different names (Leung & Li, 2008). These are “multi-purpose machine 

scheduling” (e.g., Brucker, 2004; Vairaktarakis & Cai, 2003), “scheduling with 

processing set restrictions” (e.g., Leung & Li, 2008; Glass & Kellerer, 2007) and 

“scheduling with machine eligibility restrictions” (e.g., Centeno & Armacost, 

1997; Centeno & Armacost, 2004; Edis, Araz & Ozkarahan, 2008). The term of 

“machine eligibility restrictions” is going to be used throughout the dissertation.  

An extensive survey on PMS problems with machine eligibility restrictions can be 

found in Leung & Li (2008). On the other hand, machine eligibility restrictions are 

also encountered in multiprocessor task scheduling problems (i.e., P| setj |Cmax)

where a task requires more than one processor at a time. The entry “setj” states 

that each task can be processed on exactly one subgraph of the multiprocessor 

system (see Blazewicz, Ecker, Pesch, Schmidt & Weglarz, 2007a).  



21

In terms of machine eligibility restrictions, there are two important special 

cases that have considerable attention in the literature:  nested and inclusive sets.  

 

The Mi sets are nested when one and only one of the following four conditions 

holds for each pair of jobs i, k (Pinedo, 1995, p.70): 

1. Mi is equal to Mk (Mi = Mk)

2. Mi is a subset of Mk )( ki MM ⊂

3. Mk is a subset of Mi )( ik MM ⊂

4. Mi and Mk do not overlap )( ∅=∩ ki MM

Inclusive set, on the other hand, is a special case of nested set in that only first 

three conditions above are in order for each pair of jobs i, k. Leung & Li (2008) 

illustrate these two special cases (in case of identical machines) as 

P|Mi(nested)|Cmax and P|Mi(inclusive)|Cmax in the three-field notation.  

 

Pinedo (1995, p.71) proved that the least flexible job first (LFJ) rule is optimal 

for Pm | pi =1, Mi(nested)| Cmax. Every time a machine is idle, LFJ rule chooses the 

job that can be processed on the smallest number of machines. Since Mi sets have 

to be nested for two-machine problem with unit processing times, i.e., P2 | pi =1, 

Mi | Cmax, LFJ rule always gives the optimal solution (Pinedo, 1995, p.71). Pinedo 

(1995, p.81) proved that LFJ rule is also optimal for Pm | pi=1, Mi(nested) |∑ iC .

On the other hand, LFJ rule does not specify which machine should be 

considered first when a number of machines are free simultaneously. For such 

cases, Pinedo (1995, p.71) states that “It is advantageous to consider first the least 

flexible machine. The flexibility of a machine could be defined as the number of 

remaining jobs that can be processed (or the total amount of processing that can be 

done) on the machine.” The least flexible machine (LFM) rule can be used to 

select the machine that can process the smallest number of jobs and assign that 

machine to the least flexible job that can be processed on it. Any ties can be 

broken arbitrarily. Pinedo (1995) referred to this heuristic as LFM-LFJ.  



22

For more general cases with unit processing times where Mi sets are neither 

inclusive nor nested, a number of researchers have developed polynomial time 

exact algorithms. Table 2.1 presents these problems and complexity of the 

proposed solution algorithms. Lin & Li (2004) and Harvey, Ladner, Lovasz & 

Tamir (2006) study the problem    P | pi =1, Mi | Cmax and independently develop 

polynomial time algorithms. Lin & Li (2004)’s algorithm can also be applicable to 

Q | pi =1, Mi | Cmax. Li (2006) study the variants of this problem with various 

objective functions and uniform machines.  

 
Table 2.1 Problems solvable in polynomial time 

Problem Algorithm Complexity Reference 
P | pi =1, Mi | Cmax O(n3log n) Lin & Li (2004) 

Q | pi =1, Mi | Cmax O(n3log nv) Lin & Li (2004) 

P | pi =1, Mi | Cmax O(n2m) Harvey et al. (2006) 

Pm | pi=1, Mi | Cmax O(n2 (m+ log n)log n) Li (2006) 

Pm| pi=1, Mi | ∑Ci O(n2.5mlog n) Li (2006) 

Qm | pi=1, Mi | Cmax O(n2 (m+ log nvmax)log n) Li (2006) 

Qm| pi=1, di, Mi | ∑Ui O(n2.5mlog n) Li (2006) 

Qm| pi=1, di, Mi | ∑fi(Ti) O(n3m) Li (2006) 

Qm| pi=1, di, Mi |max{fi(Ti)} O(n2.5mlog n) Li (2006) 

In real cases, however, the processing times are often arbitrary. Since P || Cmax 

is NP-hard (Garey & Johnson, 1979), P|Mi(inclusive)|Cmax, P|Mi(nested)|Cmax, and 

P|Mi|Cmax are NP-hard as well Leung & Li (2008). Because of the NP-hardness of 

the problem, the studies in the literature focus on approximation algorithms. To 

evaluate the performance of various approximation algorithms, worst case ratio is 

used as a common criterion. An algorithm with a worst case performance ratio of 

ρ is described as ionapproximat−ρ algorithm. For instance, if an algorithm has a 

worst case performance ratio of two, it is named as ionapproximat−2 algorithm, 

and a solution value is guaranteed to be no more than twice the optimum, 

regardless to the input data. Table 2.2 summarizes the solution approaches related 

to this class of problems. Glass & Kellerer (2007) propose polynomial time 

approximation algorithms for both nested and inclusive sets. For inclusive sets, 

Ou, Leung & Li (2008) propose a better polynomial time algorithm which 



23

improves the worst case ratio presented by Glass & Kellerer (2007). Moreover, 

Ou, Leung & Li (2008) develop a polynomial time approximation scheme (PTAS) 

for the same problem. Note that, PTAS is a family of algorithms that has 

polynomial time running in the length of the problem input and delivers a worst-

case ratio bound of 1+ε, where ε >0 and can be set arbitrarily close to zero. Later, 

Li & Wang (2009) deal with an extended version of this problem incorporating 

release times, i.e., P|Mi(inclusive), ri| Cmax, and develop a PTAS for it. Ji & Cheng 

(2008) also present a fully polynomial-time approximation scheme (FPTAS) for 

the special case Pm|Mi(inclusive)|Cmax. Note that a PTAS is called FPTAS, if the 

running time is polynomial in also 1/ε.

Table 2.2 Polynomial Time Approximation Algorithms  

Problem Solution Algorithm  Worst Case 
Ratio Reference 

P|Mi(nested)| Cmax Strongly Polynomial Time 2-1/m Glass & Kellerer (2007) 

P|Mi(inclusive)| Cmax Polynomial Time 3/2 Glass & Kellerer (2007) 

P|Mi(inclusive)| Cmax Polynomial Time 4/3 Ou, Leung & Li (2008) 

P|Mi(inclusive)| Cmax PTAS - Ou, Leung & Li (2008) 

P|Mi(inclusive), ri| Cmax PTAS - Li & Wang (2009) 

Pm|Mi(inclusive)| Cmax FPTAS - Ji & Cheng (2008) 

R | | Cmax (≈P|Mi| Cmax) Polynomial Time 2 Lenstra, Shmoys & Tardos 
(1990) 

R | | Cmax (≈P|Mi| Cmax) Polynomial Time  2-1/m Shchepin and Vakhania (2005) 

Recall that, in practical cases, the processing times are often arbitrary, and Mi

sets are not nested. Lenstra, Shmoys & Tardos (1990) and Shchepin & Vakhania 

(2005) proposed polynomial time approximation algorithms for R || Cmax which is 

also equivalent to   P| Mi | Cmax. Other than these studies, Vairaktarakis & Cai 

(2003) propose a branch-and-bound (B&B) algorithm to solve P|Mi| Cmax problem 

optimally. They stated that B&B algorithm is able to solve problem instances for 

up to 50 jobs. The authors also developed a number of heuristic algorithms as well 

as lower bounds and compared the performances of heuristics empirically. They 

also assess the value of flexibility as compared with fully flexible parallel 

machines and found that very small amounts of flexibility appropriately 



24

distributed across machines provide nearly the same makespan performance as 

system of fully flexible parallel machines. 

 

Centeno & Armacost (1997) developed a heuristic algorithm based on Pinedo’s 

LFJ-LFM rule for the problem Pm|Mi, ri| Lmax for the special case where due dates 

are equal to release dates plus a constant, making the Lmax equivalent to Cmax. In 

another study, Centeno & Armacost (2004) show that longest processing time first 

(LPT) rule performs better than LFJ or LFM-LFJ rule when Mi sets are not nested 

and arbitrary processing times are considered. 

 

Another significant point that requires further attention is the flexibility 

measures of machines. Surely, the presence of machine eligibility restrictions 

makes the production environment less flexible in comparison to identical PMS 

environment where all machines are capable of processing every job. In case of 

machine eligibility restrictions, machines have a level of flexibility determined by 

number and distribution of ones in the availability matrix A where Aij is equal to 

one if machine j is eligible to process job i, (i.e., j∈Mi); and zero otherwise. 

Vairaktarakis & Cai (2003) define process flexibility index by capturing the 

number of ones in A:

)1(
,

P −

−
=
∑

mn

nA
F ji ij

 

Note that, each job should be able to be processed on at least one machine to 

guarantee feasible schedules. Vairaktarakis & Cai (2003) also state that there are 

many different configurations of matrix A, for a given value of FP, depending on 

the distribution of flexible characteristics onto the machines. In order to capture 

these configurations, they introduce a measure of flexibility balance, FB:

∑∑
= =

−=
m

j

n

i
ij BA

m
F

1 1
B

1

where 
m

A
B ji ij∑

= , is the average number of jobs per machine. Since different 



25

jobs require distinct machine flexibilities, B also reflects the level of flexibility of 

an average machine.  

 

Let us clarify these two measures by representing an example given in 

Vairaktarakis & Cai (2003). Suppose that a PMS problem with n = 8 jobs, m = 4

machines and the following two different availability matrices is given: 

 



























=

1100
1100
1100
1100
1100
1100
1010
0101

1A ;



























=

1001
1100
0110
0011
1001
1100
0110
0011

2A

Then, for A1: )14(8
816

P −
−=F = 0.33; 4=B ; |)3||3||3||3(|

4
1

B ++−+−=F =3. 

 

For A2: )14(8
816

P −
−=F = 0.33; 4=B ; and )0000(

4
1

B +++=F =0. 

 

Note that, A1 corresponds to a system where processing flexibility is 

concentrated on only third and fourth machines; while the first and second 

machines can process only one job. On the other hand, FB value associated with 

A2 reflects the most balanced distribution of flexibility among all configurations 

with same FP. Surely, there are still several other configurations with the same FP

and FB values.  

 
Consequently, the pair (FP, FB) describes flexibility in PMS problems with 

machine eligibility restrictions in significant detail (Vairaktarakis & Cai, 2003). 

 
While generating the test instances related to our research problems, these 

flexibility measures are going to be used in order to incorporate and analyze the 

effect of machine eligibility restrictions.  

 



26

The next section briefly identifies resource constraints in the scheduling 

problems, which exploits the key characteristic of our research problems.  

 

2.5 Parallel Machine Scheduling with Additional Resources 

 

This section introduces the main characteristics of resource constrained 

machine scheduling problem. A detailed literature review on the studies related to 

the RCPMSPs is presented in Chapter 3.  

 

The idea of RCPMSPs goes back to early 1970s. It has been studied in case of 

scheduling the tasks on parallel processors on a time-sharing computer system 

where mass storage, primary memory and data channels can be treated as 

additional resources (Gonzalez, 1977; Krause, Shen & Schwetman, 1975). To 

specialize the issue for PMS problems, consider that, a set of n jobs, a set of m

identical parallel machines, and a set of resource types R={ }uR,R,R ,... 21 , which 

are available in the amounts of b1, b2,…, bu units, respectively, are given. The 

string R(i) represents the amount of additional resources required by job i, and can 

be expressed as follows:  

R(i)= [ ])(,...)()( 21 iR,iR,iR u where kk biR ≤)( , u...,,k 1= denotes the number 

of units of resource Rk required by job i.

The general resource-constrained scheduling problem involves scheduling a set 

of jobs over a discrete time horizon, where each job requires some constant 

amount of a limited resource over its processing time. Resource-constrained 

scheduling problems are difficult, due to the fact that besides the efficient 

allocation of jobs, it is also necessary to consider feasible grouping of 

simultaneously processed tasks that will use resources within their availability 

limits at each point in time. Figure 2.2 illustrates the effect of resource constraints 

in a simple scheduling problem with  n = 2 jobs, m = 2 machines (i.e., M1 and 

M2) and one additional resource type R={ }1R with unit size (b1 = 1) and one 

resource requirement for each job, i.e., 1)1(1 =R , 1)2(1 =R . Figure 2.2 (a) 



27

demonstrates an infeasible schedule where the constraint on the available number 

of resources is violated for some interval of time periods due to the overlapping of 

two jobs. If beginning time of job on M2 is delayed to the completion time of job 

on M1, a feasible schedule is obtained (see Figure 2.2(b)). 

 

Blazewicz, Brauner & Finke (2004) state that if the resources are needed 

together with a processor (machine) during the processing of a given task set, then 

the resources is called processing resources. Otherwise, i.e., if the resource is 

needed either before the processing of a task or after it, then the resources is called 

input-output resources.

Figure 2.2 Effect of additional resource constraints on scheduling 

 

The additional resources are also classified in two points of view: resource 

constraints and resource divisibility (Blazewicz et al., 2007b; Slowinski, 1980). 

 

From the viewpoint of resource constraints:  

- a resource is renewable, if only its total usage at every moment is 

constrained. In other words, once it is used for a task, it may be used again 

for another task after being released from this task.  

- a resource is nonrenewable, if its total consumption is constrained. In other 

words, once it is used by some task, it cannot be assigned to any other task.  

M1

ResourceResource

(a) VIOLATED (b) FEASIBLE

M2

M1

M2



28

- a resource is doubly constrained, if it is both renewable and non-renewable. 

In other words, both total usage and total consumption are constrained. 

 

Figure 2.3 illustrates the changes in the level of renewable and non-renewable 

resources through the time horizon, respectively.  

 

Figure 2.3 Renewable vs. Non-Renewable resources 

 

In scheduling problems, the additional resources are usually renewable (e.g., 

machines, tools, pallets, and operators); while non-renewable resources such as 

budget, raw materials, energy, frequently occur in planning problems.  

 

From the viewpoint of resource divisibility: 

- Discrete resources can be allocated to tasks in discrete amounts from a 

given finite set of possible allocations. 

- Continuous resources can be allocated to tasks in arbitrary amounts 

from a given interval. 

 

Blazewicz, Lenstra & Rinnooy Kan (1983) and Blazewicz et al.(2007b) 

outlined a range of initial results on the complexity of resource constrained 

scheduling problems and classified the resource constraints in six different types, 

some of which are obvious generalization of others. Figure 2.4 illustrates these six 

types and simple transformations between them in terms of λσδres  classification 

given in Section 2.3.2. An arc from type (a) to type (b) indicates that (a) is a 

time 

free 
capacity

free 
capacity

time
(a) renewable resource (b) non-renewable resource



29

special case of (b). Obviously, the most general version of resource constraints is 

“ ⋅⋅⋅res ”.  

 

All but one of these transformations are quite obvious (Blazewicz et al., 

2007b). The transformation ( ⋅⋅1res )→ ( 11⋅res ) has been proved in Blazewicz, 

Cellary, Slowinski, & Weglarz (1986).  

 

Figure 2.4 Reductions between types of resource constraints (Blazewicz et al., 2007b) 

 

2.6 Chapter Summary 

 

This chapter summarized background information on the research problems 

studied in this dissertation. Firstly, the role of scheduling in a general 

manufacturing system has been introduced. Then the notation used throughout this 

chapter has been presented. The common classification scheme α|β|γ has also 

been represented with the extensions of properties related to our research 

problems. Finally, two main characteristics of our research problems, i.e., machine 

eligibility restrictions and additional resource constraints, have been explained 

briefly. 

 

res 1·1

res 111 

res ·11 

res ··1 

res ··· 

res 1·· 



30

Once the background information regarding the research problems has been 

provided by this chapter, Chapter 3 presents a comprehensive review of PMS 

problems with additional renewable resources and Chapter 4 introduces three 

investigated research problems with their own characteristics.  



31

CHAPTER THREE 

PARALLEL MACHINE SCHEDULING WITH ADDITIONAL RESOURCES: 

LITERATURE REVIEW AND DISCUSSION 

 

3.1 Introduction 

 

Scheduling models and algorithms are most widely used in manufacturing 

applications to perform production in an efficient way. PMS problems are one of the 

most studied areas in the scheduling literature. Cheng & Sin (1990) give a 

comprehensive review on PMS research. Mokotoff (2001) presents an overview of 

the research on the case of optimal makespan on identical parallel machines. In a 

more recent paper, Pfund, Fowler & Gupta (2004) survey the literature related to 

traditional unrelated parallel machine deterministic scheduling problems.  

 

In most of PMS studies, the only considered resource is the machine. However, in 

most real-life manufacturing environments, jobs may also require, besides machines, 

certain additional resources, such as automated guided vehicles, machine operators, 

tools, pallets, dies, industrial robots etc., for their handling and processing. 

(Blazewicz, Lenstra & Rinooy Kan, 1983; Slowinski, 1980; Ventura & Kim, 2000). 

Thus, the study of PMS with additional resource constraints is a significant area of 

research. This chapter gives a review and discussion of studies related with 

RCPMSPs by investigating their main characteristics. The strengths and weaknesses 

of the literature, open areas and future needs of the related studies are also given. An 

earlier version of this chapter can be found in Edis & Ozkarahan (2007).  

 

Figure 3.1 illustrates the classification of additional resources as detailed in 

Section 2.5. In this chapter, we only deal with processing resources that are discrete 

and renewable. For the studies relating input/output resources, interested readers are 

directed to Blazewicz, Brauner & Finke (2004), Hall, Potts & Sriskandarajah (2000) 

and Glass, Shafransky & Strusevich (2000). Comprehensive studies on continuous 

resources can be found in Jozefowska & Weglarz (2004) and Blazewicz et al. 

(2007b). A study related to non-renewable resources is given by Shabtay & Kaspi



32

(2006). Finally, Ozdamar & Ulusoy (1994) deal with a doubly constrained project 

scheduling problem. 

 

Figure 3.1 Classification of additional resources (Blazewicz, Brauner & Finke, 2004; Blazewicz et 

al. 2007b; Slowinski, 1980) 

 

Since the proposed research in this dissertation addresses non-preemptive jobs 

without precedence constraints, the studies including precedence constraints and 

preemptive tasks are also not reviewed here. Interested readers on these fields are 

referred to Blazewicz, Cellary, Slowinski, & Weglarz (1986) and Blazewicz et al. 

(2007b).  

 

Unless explicitly indicated, throughout this chapter, we assume that: 

i. A job cannot be processed on more than one machine simultaneously. 

ii. A machine cannot process more than one job at a time. 

iii. No precedence constraints are allowed. 

iv. Preemption is not allowed. 

v. Job cancellation is not allowed. 

vi. Processing times are independent of the schedule. 

vii. Machines are always available. 

viii. Jobs are all known in advance. 

ix. The problem is purely deterministic. 

 

Throughout this chapter, the classification scheme presented in Chapter 2 is used. 

The studies related to RCPMSPs in the literature are summarized in Appendix A.  

Additional Resources

Classes Categories 

Resource 
Characteristics 

Resource 
Divisibility 

input/output 
resources 

renewable nonrenewable doubly 
constrained

discrete continuous 

processing 
resources 



33

In this review chapter, the studies are evaluated in five main topics: 

 

a. Machine Environment Characteristics 

b. Additional Resource Characteristics 

c. Objective Functions 

d. Solution Methods 

e. Other Important Issues 

 

The following sub-sections analyze the related studies by focusing their strengths 

as well as weaknesses on these five main topics, consecutively.  

 

3.2 Machine Environment Characteristics 

 

The analysis of surveyed papers in this sub-section is done in two aspects.  

- the number of machines considered, and  

- the characteristics of the machine environment 

 

In terms of the number of machines, most of the studies except a few deal with 

more than three machines. As expected; almost all papers concerning two or three 

machines either prove NP-hardness of the investigated problems or propose exact 

algorithms to reach optimal solutions (e.g., Blazewicz, Lenstra & Rinnooy Kan, 

1983; Blazewicz, Barcelo, Kubiak, & Rock, 1986; Blazewicz, Kubiak, Röck, & 

Szwarcfiter, 1987; Garey & Johnson, 1975; Kellerer & Strusevisch, 2003; Kellerer & 

Strusevisch, 2004).  

 

Recall that classical PMS theory classifies the machine environment into three 

main classes: identical, uniform and unrelated parallel machines. However, literature 

related to RCPMSPs investigates a new category, parallel dedicated machines. In 

this new category, the set of jobs that will be processed on each machine is pre-

determined. Surely, this assumption simplifies the entire RCPMSP by eliminating 

job-machine assignment sub-problem. Almost half of the studies surveyed in this 

chapter assume that machines are dedicated.  



34

Another widely studied machine environment is the case of identical parallel 

machines which eases the design and implementation of exact and/or approximation 

algorithms.  For instance, Blazewicz, Lenstra & Rinnooy Kan (1983) and Ventura & 

Kim (2000) propose polynomial time exact algorithms for RCPMSPs with identical 

machines. Uniform (Kovalyov & Shafransky, 1998; Ruiz-Torres, Lopez & Ho, 2007) 

and unrelated machines (Grigoriev, Sviredenko & Uetz, 2005, 2006, 2007) are rarely 

studied.  

 

On the other hand, as already stated in Chapter 2, machine eligibility restrictions 

may be viewed as a special case of unrelated parallel machine environment. In case 

of machine eligibility restrictions, job i is only allowed to be processed on a subset 

Mi of the m machines in parallel. To the best of our knowledge, no study, so far, 

takes machine eligibility restrictions into account for RCPMSPs. In another related 

field, PMS with auxiliary equipment of constraints, few of the studies (Chen, 2005; 

Chen & Wu, 2006; Tamaki, Hasegawa, Kozasa & Araki, 1993) consider machine 

eligibility restrictions. However, these studies consider only the dies as additional 

resources which may not be treated as a common shared resource (e.g., machine 

operators).  

 

Relaxing the first assumption given in Section 3.1, we may allow one machine 

may process more than one job at a time, In this class of scheduling problems, a 

facility (or machine) has a fixed capacity and each job requires a specified amount of 

this capacity. Some of the studies (Chu & Xia, 2005; Hooker, 2005, 2006) assume 

that facilities (or machines) may process more than one job at a time. Nevertheless, 

absence of additional resource(s) other than the main resource (machine) takes us 

away from classifying these problems into RCPMSPs. 

 

3.3 Additional Resource Characteristics 

 

In a significant number of studies surveyed, job processing times are not-fixed but 

based on the amount of additional resource allocated to it. Daniels, Hoopes & 

Mazzola (1996) name this problem as parallel machine flexible resource scheduling 



35

(PMFRS) problem. A common characteristic in this field is that all the studies deal 

with a single additional resource in limited supply. This type of problems should 

solve an additional resource allocation problem since the amount of additional 

resource allocated to a job determines its processing time. Kellerer & Strusevisch 

(2008) also name the additional resource in PMFRS problems as “renewable 

speeding-up resource” since if job i is not given the resource, its processing time 

remains equal to pi; otherwise the additional resource will speed up the processing in 

proportional to the allocated amount of additional resource. 

 

In PMFRS problems, resource allocation problem itself adds a significant 

complexity to the entire problem. Therefore, most of the studies in this field relax 

other characteristics of the problem.  

 

An instance of these simplifications occurs in the assignment of jobs to 

manufacturing cells (or machines). PMFRS problems in its original form assume that 

assignment of jobs to machines is pre-specified (see Daniels, Hoopes & Mazzola, 

1996, 1997; Grigoriev & Uetz, 2006, 2009; Grigoriev, Sviridenko & Uetz, 2005; 

Kellerer & Strusevisch, 2008; Olafsson & Shi, 2000; Ruiz-Torres, Lopez & Ho, 

2007). This assumption eliminates the job-machine assignment sub-problem from the 

entire problem further simplifying the problem at hand. This situation matches the 

term of parallel dedicated machines which has been introduced in Chapter 2.  

 

Another simplifying assumption in PMFRS problems arises with the restricted use 

of additional resources through the machines. A number of studies (Daniels, Hua & 

Webster, 1999; Ruiz-Torres & Centeno, 2007; Ruiz-Torres, Lopez & Ho, 2007; Sue 

& Lien, 2009) assume that the flexible resource may be allocated freely among the 

machines, but the resulting resource assignment must remain fixed for the whole 

scheduling horizon. Daniels, Hoopes & Mazzola (1996) named this problem as static 

PMFRS. As stated by Olafsson & Shi (2000), in this case, the resources are 

inevitably non-renewable and there is no competition for additional resource across 

the machines. In the static case with the makespan objective, there is no need to 



36

sequence the jobs subject to resource constraints, and the problem reduces to a 

simple resource allocation problem (Olafsson & Shi, 2000). 

 

Let R denote total amount of additional resource in the system at any point in 

time. Each job i can then be processed with a specified amount of additional resource 

available. Let irp̂ denotes the processing time of job i when r ≤ b units of resources 

are allocated. Assume that rj denotes the amount of resource assigned to each 

machine j. Daniels, Hoopes & Mazzola (1996) give the mathematical formulation of 

the static PMFRS problem (with the makespan objective) as follows: 

 

maxmin   C

subject to:   

max
0

ˆ Cxp
jNi

ir

R

r
ir ≤∑∑

∈ =
j = 1, …, m (3.1)

j

R

r
ir rxr ≤×∑

=0

j = 1, …, m, jNi ∈ (3.2)

∑
=

=
R

r
irx

0
1 i = 1, …, n (3.3)

∑
=

≤
m

j
j Rr

1
(3.4)

rj ≥ 0 j = 1, …, m (3.5)

{ }1,0∈irx ; i = 1, …, n ; r = 0, …, R (3.6)

 

where decision variable 1=irx if job i is processed with r units of additional 

resource, and 0=irx otherwise. 

 

Constraints (3.1) define the makespan. Constraints (3.2) ensure that the amount of 

resource assigned to each job should not exceed the amount of additional resource 

allocated to corresponding machine. Constraints (3.3) ensure that a fixed amount of 

additional resource is assigned to each job. Constraint (3.4) limits total amount of 



37

resource allocated among machines. Finally, Constraints (3.5) and Constraint (3.6) 

define the domain of decision variables. 

 

Daniels, Hoopes & Mazzola (1996) propose an algorithm which gives optimal 

solution to this static PMFRS problem. First, the minimum amount of resource is 

assigned to each machine so that each job can be processed with their slowest 

processing times. Next, the machine whose total processing load determines the 

current makespan is identified, say machine j. Then, if sufficient size of additional 

resource remains, the amount of resource assigned to machine j (rj) is increased by 

one unit, and the amount of remaining resource is decreased accordingly. This 

process is repeated, until no amount of additional resource remains.  

 

Daniels, Hua & Webster (1999) extend the below formulation for the case where 

job assignment to machines is unspecified. In other words, the assumption that 

“machines are dedicated” is relaxed. They name this problem as static unspecified 

PMFRS (UPMFRS) and state that UPMFRS problem is NP-hard. They analyzed the 

joint contribution of job assignment and resource flexibility issues. It should be noted 

that resource allocation still remains its static case (i.e., static UPMFRS) which 

means that the resulting resource assignment of machines remains fixed for the 

whole scheduling horizon and the set of jobs assigned to each machine can be 

processed in any sequence without affecting the system makespan. The static version 

of UPMFRS problem with identical machines can be formulated as follows (Daniels, 

Hua & Webster, 1999): 

 

maxmin   C

subject to:   

max
1 0

ˆ Cyxp ij

n

i
ir

R

r
ir ≤∑∑

= =

 j = 1, …, m (3.7)

∑
=

=
m

j
ijy

1

1 i = 1, …, n (3.8)

j

R

r
ir rxr ≤×∑

=0
j = 1, …, m, i = 1, …, n (3.9)



38

∑
=

=
R

r
irx

0
1 i = 1, …, n (3.10)

∑
=

≤
m

j
j Rr

1
(3.11)

{ }1,0∈irx i = 1, …, n ; r = 0, …, R (3.12)

{ }1,0∈ijy i = 1, …, n; j = 1, …, m (3.13)

rj ≥ 0 j = 1, …, m (3.14)

 

where decision variable 1=ijy if job i is assigned to machine j, and 0=ijy

otherwise.  

 

Notice that this formulation is nonlinear due to the presence of Constraints (3.7) 

which determine the makespan. Constraints (3.8) specify that each job is assigned to 

one and only one machine. The remaining constraints are similar to the ones of static 

PMFRS formulation given before. Note that (3.12) through (3.14) define the domains 

of the decision variables. Ruiz- Torres & Centeno (2007), Ruiz-Torres, Lopez & Ho 

(2007) and Sue & Lien (2009) also deal with static version of UPMFRS problem.  

 

The study of dynamic case, where the flexible resource can switch between 

machines during the schedule is more realistic. The dynamic PMFRS problem 

includes three sub-problems. First, a dynamic resource allocation must be 

determined. Second, a sequence in which jobs should be processed within each 

machine must be determined, and a starting time for each job has to be found 

(Olafsson & Shi, 2000). Daniels, Hoopes & Mazzola (1996) also formulated the 

dynamic version of the PMFRS problem. The decision variables are defined as:  

 



 ∈=

otherwise. ,0
.,where,job precedes job if,1 j

ih
Nhihiy



= otherwise. ,0

.at time resource ofunits with processing its completes job if,1 trixirt  



39

Let pi denote the actual processing time of job i and T be an upper bound on the 

makespan. For example, ∑∈∈=
jNi iMj pT 0ˆmax . The formulation is as follows 

(Daniels, Hoopes & Mazzola, 1996; Olafsson & Shi, 2000): 

 

maxmin   C

subject to:   

i

R

r

T

t
irtir pxp =∑ ∑

= =0 1

ˆ i = 1, …, n (3.15)

i

T

t

R

r
irt Cxt =







∑ ∑
= =1 0

 i = 1, …, n (3.16)

1
0 1

=∑∑
= =

R

r

T

t
irtx i = 1, …, n (3.17)

maxCCi ≤ i = 1, …, n (3.18)

hihih pyTCC ≥−+− )1( jNi ∈ , }{\ iNh j∈ , j = 1, …, m (3.19)

1=+ hiih yy jNi ∈ , }..., {1,2,\ iNh j∈ , Mj ∈ (3.20)

Rxr
n

i

R

r

pt

tl
irl

ir

≤×∑∑ ∑
= =

−+

=1 0

1ˆ

t = 1, …, T (3.21)

{ }1,0∈irtx i = 1,…,n ; r = 0,…,R, t = 1, …, T (3.22)

{ }1,0∈ihy jNi ∈ , }{\ iNh j∈ , Mj ∈ (3.23)

Ci ≥ 0 i = 1, …, n (3.24)

 

Constraints (3.15) and (3.16) determine the actual processing time and completion 

time of each job, respectively. Constraints (3.17) ensure that each job is assigned to 

fixed number of additional resource and accordingly completed on a unique time. 

Constraints (3.18) determine the makespan. Constraints (3.19) and (3.20) ensure that, 

within each machine j, either job jNi ∈ precedes job jNh ∈ , or job h precedes job i.

Constraints (3.21) state that total amount of additional resource consumed at each 

time should not exceed the total amount available. Finally, (3.22) through (3.24) 

define the domain of the decision variables. 

 



40

Daniels, Hoopes & Mazzola (1996, 1997) compare the optimal solutions for the 

static and dynamic versions of the PMFRS problems with respect to makespan 

objective. They report significant improvements in the makespan performance in 

case a flexible resource is dynamically allocated across the machines. They also state 

that potential improvement on the makespan increases as the number of machines 

(m) and the sensitivity of job processing times to the allocation of additional resource 

(α) increase, and as the total amount of available resource (R) decreases. This 

observation suggests that resource flexibility is most beneficial in larger problems 

with relatively scarce resources, and when job processing times vary inversely with 

the amount of allocated resource.  

 

Several studies (Grigoriev, Sviridenko & Uetz, 2005; Grigoriev & Uetz, 2009; 

Kellerer & Strusevisch, 2008; Olafsson & Shi, 2000) deal with dynamic cases of 

PMFRS problem.  

 

To define the dynamic PMFRS problem in α|β|γ classification scheme, Kellerer 

& Strusevisch (2008) described new symbols, i.e., Bi, Int, Lin, to be used in the β

field all of which refers that the processing times are resource-dependent (i.e., the 

problem is a PMFRS). More specifically (Kellerer & Strusevisch, 2008): 

 

- “Bi” refers binary scenario of resource allocation, i.e., if job i is not given the 

resource, its processing time remains equal to pi, otherwise; if job i is given the 

resource, its processing time becomes pi - πi. Exactly one unit of the resource 

required at any time of this processing.  

 

- “Int” stands for integer scenario of resource allocation, i.e., if job Ni ∈ is given 

τ units of the resource, then its actual processing time is equal to a given τip . Exactly 

τ units of the resource required at any time of this processing.  

 

- “Lin” stresses that the actual processing times depend linearly on the number of 

units of speeding-up resource allocated to the job; if job i is given τ units of the 

resource, then its actual processing time is equal to iii pp πττ ×−= .



41

In terms of classification defined above, Kellerer & Strusevisch (2008) define the 

dynamic PMFRS problem with binary resource allocation (i.e., 0/1 resource 

requirements) as PDm| 111res , Bi|Cmax. In this representation, PDm refers to the case 

of m parallel dedicated machines which is a common characteristic of the PMFRS 

problem, whereas “ 111res ” denotes that there is one additional resource type with 

one unit available and each job is allocated no more than one unit of additional 

resource. Finally, “Bi” in the middle field stresses that the resource is speeding-up 

and binary scenario of its consumption is applied.   

 

Recall that, dynamic PMFRS still assumes the set of jobs to be processed on each 

machine is pre-specified. More general version of this problem is a UPMFRS 

problem with dynamic case which also includes job-machine assignment sub-

problem. A number of studies (Grigoriev, Sviridenko & Uetz, 2005, 2006, 2007; 

Kellerer, 2008; Kellerer & Strusevisch, 2008) deal with dynamic version of 

UPMFRS problem and propose approximation algorithms.  

 

It should be remembered that all of the studies related to PMFRS problems 

assume that there is only one additional resource type in the system.  

 

Daniels, Hoopes & Mazzola (1996) first use the term of RCPMSP and classified it 

as a special case of the dynamic PMFRS problem in which actual processing times pi

and resource requirements ri are given for each job i. However, remember that 

PMFRS problem in its original form, assumes that machines are dedicated and there 

is only one additional resource in limited supply. Therefore, RCPMSP, in our 

opinion, may cover a more general field since it may also consider job-machine 

assignment sub-problem and may allow the presence of more than one additional 

resource type. It only excludes resource allocation problem, and accordingly resource 

dependent processing times. In the light of this discussion, RCPMSP seems to be 

closer to dynamic UPMFRS problem which incorporates also job-machine 

assignment sub-problem.  

 



42

Kellerer & Strusevisch (2008) also discuss the relations between RCPMSPs and 

PMFRS problems. They refer to resource type(s) in RCPMSPs as the “renewable 

static resource”, since resource allocations are known in advance and accordingly 

processing times are also known in a priori. 

 

A general RCPMSP with identical machines and k number of additional resource 

types can then be formulated as follows:  

 

resi,k the amount of additional resource k required by job i.

bk available amount of additional resource k.

u number of additional resource types 



= otherwise. ,0

.at time processing its begins job if,1 tixit  

maxmin   C

subject to:   

max

1

0
)( Cptx

i

i

Mj
i

pT

t
it ≤+∑ ∑

∈

+−

=
i = 1, …, n (3.25)

mx
n

i

t

pts
is

i

≤∑ ∑
=

−

−=1

1

},0max{
 t = 0, …, T (3.26)

∑
−

=

=
1

0
1

T

t
itx i = 1, …, n (3.27)

∑ ∑
=

−

−=

≤
n

i

t

pts
kiski

i

bxr
1

1

},0max{
,es k = 1, …, u; t = 1, …, T (3.28)

{ }1,0∈itx i = 1, …, n ; t = 0, …, T-1 (3.29)

 

This IP model aims to minimize makespan working with Constraints (3.25). 

Constraints (3.26) make sure that no more than one job can be assigned to any 

machine at any time period. Constraints (3.27) ensure that each job should certainly 

be processed. Constraints (3.28) state that, for each additional resource type, total 

amount assigned to jobs at any time period is less than or equal to the available 

amount of each resource type, bk. Finally, (3.29) ensures that all itx are 0-1 variables. 



43

Surely, the complexity of RCPMSPs grows with the number of additional 

resource types. Therefore, most of the studies relevant to RCPMSPs consider a single 

additional resource type. Moreover, the studies that deal with more than one 

additional resource type consider  

- unit (equal) processing times (Blazewicz, Lenstra & Rinnooy Kan, 1983; 

Blazewicz, Barcelo, Kubiak, & Rock, 1986; Blazewicz, Kubiak & Martello, 

1993; Garey & Johnson, 1975; Srivastav & Stangier, 1997; Ventura & Kim, 

2003) and/or  

- two or three machines (Garey & Johnson, 1975; Blazewicz, Kubiak & 

Martello, 1993), or 

- unit size of additional resources and only 0/1 resource requirements (Kellerer 

& Strusevisch, 2004). 

 

Thus, other versions of RCPMSPs with more than one additional resource type 

still remain a potential research area.  

 

To clarify the problem types studied in the surveyed papers, let us represent the 

problem characteristics that determine the type of the problems. Four main 

characteristics each of which has two sub-levels, indeed, determine the type of the 

problem: 

 

- Number of additional resource types 

o One additional resource type (one)

o One or more additional resource type(s) (one/multi)

- Effect of the additional resources on the processing types 

o Processing time reduces with the increasing amount of additional 

resources (speeding-up resources)

o Resource requirements of jobs are fixed and known priori (fix)

- Allocation of resources 

o Each machine can only use a fixed amount of static additional resource 

i.e., the additional resource cannot switch across other machines during 

the schedule (static)



44

o The additional (flexible) resource(s) can switch between machines 

during the schedule (dynamic)

- Job-machine assignment  

o Assignment of jobs to machines is pre-specified (specified-dedicated)

o Assignment of jobs to machines is unspecified (unspecified)

Figure 3.2 illustrates the six main problem types with respect to these four 

problem characteristics defined above. Note that, for illustration purposes, the 

phrases written in parentheses above are used in Figure 3.2.  

 

Figure 3.2 Characteristics of the problem types 



45

Each problem type is defined by the characteristics on its own way in the tree. For 

instance, a static UPMFRS problem has one additional speeding-up resource type 

with static resource allocation and unspecified job-machine assignment.    

 

Finally, in all problem types discussed above, it is assumed that additional 

resource(s) are allowed to be commonly used by all jobs. Rather than common 

shared case, different use of additional resources may occur in the manufacturing 

environments. For instance, Tamaki et al. (1993), Chen (2005) and Chen & Wu 

(2006) handle an unrelated parallel machine problem with a secondary resource 

constraint, e.g., dies. These papers assume that only the number of auxiliary 

equipment (e.g., dies) is limited, instead of considering a common shared resource 

(e.g., machine operators). 

 

3.4 Objective Function(s) 

 

Excluding a few papers, all the studies surveyed in this chapter aim to minimize 

makespan. It may be due to a number of reasons: 

 

- The makespan objective is widely used in PMS studies; since it balances the 

load between machines and accordingly provides a high utilization of the 

machines (Pinedo, 1995).  

 

- It is easier to handle the makespan objective when compared to other criteria, 

such as due date based objectives.  

 

- Surely, classical PMS problems are relaxed versions of the ones with 

additional resource constraints. There exist a number of efficient solution 

algorithms to minimize makespan in classical PMS literature. Therefore, these 

solution algorithms are utilized in designing approximation approaches for 

RCPMSPs. 

 



46

- Developing lower bounds for the makespan objective is rather straightforward 

in comparison to other performance criteria. 

 

All but one of the studies related to PMFRS or UPMFRS problems deal with 

makespan performance criterion. Only Ruiz-Torres, Lopez & Ho (2007) aim to 

minimize the number of tardy jobs for the static UPMFRS problem with uniform 

machines.  

 

The other objective functions considered in the related literature are minimizing 

lateness (Blazewicz, Barcelo, Kubiak & Röck 1986; Blazewicz, Kubiak & Martello, 

1993); minimizing total absolute deviation either from common due dates, i.e., TAD 

(Ventura & Kim, 2000) or from arbitrary due dates i.e., TADD, (Ventura & Kim, 

2003) and minimizing total flow time (Blazewicz et al., 1987).  

 

An interesting point is that all papers deal with a single objective function. The 

complex nature of this class of problems has prevented development of models with 

multiple criteria. The problems with multiple criteria may be handled by applying 

either sequential optimization procedures or simultaneous optimization approaches 

with appropriate weights. 

 

3.5 Solution Methods 

 

Solution approaches related to RCPMSPs spread out over a wide area from 

polynomial time exact approaches to meta-heuristics. Figure 3.3 illustrates the 

solution approaches applied in the surveyed papers.  

 

A number of studies give polynomial-time algorithms for some special cases of 

the problems. However, these studies handle simple cases with two or three 

machines, 0/1 resource requirements, or dedicated machine environments. Several 

studies, on the other hand, propose problem-based heuristics, approximation 

algorithms and meta-heuristic approaches. Throughout this section, the details of 

these solution approaches will be given.   



47

Figure 3.3 Classification of solution approaches 

 

3.5.1 Polynomially Solvable Problems 

 

Recall that almost all PMS problems with additional resources are NP-hard 

(Blazewicz, Lenstra & Rinnooy Kan, 1983). However, for a number of specialized 

cases, researchers have developed polynomial time exact algorithms. Table 3.1 lists 

these problems in the chronological order with complexity functions of proposed 

algorithms.  

 

For the problem of P2| ⋅⋅⋅res , pi=1|Cmax, Garey & Johnson (1975) propose a 

polynomial-time algorithm with an idea of establishing the correspondence between 

maximum matching in a graph displaying resource constraints and the minimum 

length schedule. Blazewicz (1979) developed a polynomial time solution procedure 

for P| 11⋅res , ri, di|∅ problem where release times and deadlines of all jobs should 

be met. The proposed procedure first determines the modified deadlines, *
id by 

considering deadlines and release times of all jobs and then, by a constructive 

algorithm, schedules the jobs so that each job meets its modified deadline. 
 

PPrroobblleemm CCoommpplleexxiittyy

NP-hard Problems 

Exact  
Approaches 

Approximation 
Approaches 

Polynomially Solvable 
Problems 

Polynomial Time 
Algorithms 

Mathematical 
Programming 

Dynamic 
Programming 

Problem-based 
Heuristics 

ρ-approximation 
Algorithms 

Branch and Bound 
(B&B) Methods 

Meta-
heuristics 



48

Table 3.1 Polynomially solvable RCPMSPs 

Reference Year Problem Classification Algorithm 
Complexity 

Garey & Johnson 1975 P2| ⋅⋅⋅res , pi=1|Cmax O(n3)

Blazewicz 1979 P| 11⋅res , ri, di|∅ O(n2)

Blazewicz, Lenstra & Rinnooy 
Kan 1983 Q2| ⋅⋅1res , pi=1|Cmax O(nlogn)

Blazewicz  & Ecker  1983 P| λσδres , pi=1| Cmax O(logn)

Blazewicz et al. 1987 P| 11⋅res | ∑i iC O(n3)

Daniels, Hoopes & Mazzola 1996 Static PMFRS  O(nR (n+m))  

Kovalyov & Shafransky 1998 P| 11⋅res , pi=1|Cmax O(1) 

Kovalyov & Shafransky 1998 Q| 11⋅res , pi=1, nmit|Cmax O(mlogm)

Ventura & Kim 2000 P| 11⋅res , pi, di=d| TAD Polynomial-time  

Ventura & Kim 2003 P| 11⋅res , ri, pi = 1, di| TADD Polynomial-time  

Kellerer & Strusevisch 2003 PD2| 111res |Cmax O(n)

Kellerer & Strusevisch 2004 PD2| ⋅⋅1res |Cmax O(nlogn) + O(n)

Kellerer & Strusevisch 2004 PD2| 211res |Cmax O(n)

Blazewicz, Lenstra & Rinnooy Kan (1983) also give a polynomial time algorithm 

for solving Q2| ⋅⋅1res , pi=1|Cmax problem optimally. Suppose that speed of the first 

machine is greater than or equal to the speed of the second one (v1 ≥ v2). The 

algorithm, at first, schedules all jobs on the first machine in non-increasing order of 

resource requirement. Next, it consecutively removes the last job from the first 

machine and schedules it as early as possible on the second machine, as long as the 

value of Cmax is reduced. Blazewicz & Ecker (1983) state that a generalized version 

of this problem, i.e., P| λσδres , pi=1| Cmax, may be identified as determining a 

partition of job set M into concurrently executable subsets where the number of 

subsets is to be minimized. Therefore, they state that this problem is equivalent toλ -

dimensional, σ -restricted bin packing problem which can be solved in O (log n)

time. Kovalyov & Shafransky (1998) present an O(mlogm) algorithm for the 

Q| 11⋅res , pi=1, nmit|Cmax problem where the case of no machine idle times (nmit)

ensures that no machine may stand idle, unless all jobs allocated to this machine have 

completed their processing. The idea behind the algorithm is that all resource jobs 

(i.e., jobs requiring additional resource) are assigned to first fastest σ machines 



49

while the remaining non-resource jobs are allocated to (m -σ ) slow machines. Recall 

that σ is part of the input and denotes the size of the additional resource.  If the 

resulting makespan of the schedule on the fast machines is greater than or equal to 

the resulting makespan of the schedule on slow machines, combination of these two 

schedules gives the optimal schedule; otherwise, a different algorithm that considers 

all jobs together is applied to obtain the optimal schedule. Kovalyov & Shafransky 

(1998) also state that the given algorithm can be extended to other objective 

functions of the same problem. Finally, they state that, for the identical machine case, 

a modification of the proposed algorithm gives optimal solution in O(1) time 

complexity.  

 

For the problems with identical machines, one additional resource type and 0/1 

resource requirements, an optimal schedule exists in case that all jobs requiring one 

unit of additional resource are assigned to the first b (where b ≤ m) machines, where 

the additional resource is available in b units (see Blazewicz et al., 1987; Ventura & 

Kim, 2000, 2003).  

 

As already given in Section 3.3, Daniels, Hoopes & Mazzola (1996) propose a 

polynomial time algorithm to static PMFRS problem.  

 

Kellerer & Strusevisch (2003, 2004) develop polynomial time algorithms for 

various versions of problems with two parallel dedicated machines. For 

PD2| 111res |Cmax, Kellerer & Strusevisch (2003) develop a group technology-based 

polynomial algorithm where each subset of jobs assigned to each machine j (i.e., Nj)

is split into further two subsets: the subset of non-resource jobs Qj, and the subset of 

resource jobs Rj. All jobs of these subsets are considered as a single batch. Notice 

that, the batches composed of non-resource jobs may overlap with any other batch; 

while the batches composed of resource jobs cannot be processed simultaneously 

within each other. The algorithm assigns the batch composed of R1 and then the one 

of Q1 to the first machine consecutively without intermediate idle time. Then, it starts 

batch of Q2 on the second machine at time zero, and finally it starts batch of R2 on 

the second machine as early as possible. The resulting makespan is optimal. Kellerer 



50

& Strusevisch (2004) also develop polynomial time algorithms for two extensions of 

this problem. First, for the problem where the resource size and requirements are 

arbitrary, i.e., PD2| ⋅⋅1res |Cmax, they develop a polynomial-time algorithm by using 

machine and resource based lower bounds. They first partition the subset of jobs for 

each machine Nj into further (σ+1) subsets where each subset contains all jobs with 

the same resource requirements (r = 0, 1, …, σ). Then, subsets of the first machine, 

beginning from the ones with no-resource requirements (r = 0) and ending with the 

ones with σ resource requirements are allocated, successively. Accordingly, subsets 

of the second machine are assigned in the reverse order. Finally, utilizing the derived 

lower bounds, start times of the subsets are modified to eliminate the overlaps. In the 

same paper, they extend the PD2| 111res |Cmax problem discussed in Kellerer & 

Strusevisch (2003) to include two additional resource types. Resource-based lower 

bounds in this case are calculated based on subsets of resource and non-resource jobs 

with respect to both two additional resource types. Then the subsets are ordered in a 

way that will give the optimal schedule.  

 

Consequently, a considerable amount of research related to RCPMSPs has been 

devoted to finding efficient polynomial time algorithms. However, many problems, 

yet, do not have a polynomial time algorithm; these problems are the so-called NP-

hard problems. The following section presents and discusses the related NP-hard 

problems.   

 

3.5.2 NP-hard Problems Proved in the Literature 

 

Other than the problems listed in Table 3.1, almost all cases related to RCPMSPs 

are NP-hard (Blazewicz, Lenstra & Rinnooy Kan, 1983). Table 3.2 gives the NP-

hard problems proved in the literature. Surely, according to complexity hierarchy 

given in Section 2.3.4 and reductions between types of resource constraints given in 

Section 2.5, other more complex versions of RCPMSPs are also NP-hard. For 

instance, since Q2| ⋅⋅1res , pi=1|Cmax problem is NP-hard, Q2| 11⋅res , pi=1|Cmax and 

Q2| ⋅⋅1res , pi=1 |Lmax are also NP-hard.  

 



51

Let us discuss the parameters that have an influence on the hardness of the 

problem. First, different ready times cause strong NP-hardness of the problem. 

Although P2| ⋅⋅⋅res , pi=1|Cmax can be solved in polynomial time (see Table 3.1), 

P2| ⋅⋅1res , ri, pi=1| Cmax (even with the presence of one additional resource type) is 

strongly NP-hard. Second, an increase of the number of machines from two to three 

causes a strong NP-hardness of the problem. For instance, while the problem of 

P2| ⋅⋅1res , pi=1|Cmax can be solved in polynomial time, P3| ⋅⋅1res , pi=1|Cmax 

problem is NP-hard.  

 
Table 3.2 NP-hard problems proved in the literature 

Reference Year Problem Classification 

Garey & Johnson 1975 P3| ⋅⋅1res , ri, pi=1|Cmax 

Blazewicz, Lenstra & Rinnooy Kan 1983 P3| 11⋅res , pi=1|Cmax 

Blazewicz, Lenstra & Rinnooy Kan 1983 Q2| 11⋅res , pi=1|Cmax 

Blazewicz , Barcelo, Kubiak, & Rock  1986 P2| ⋅⋅1res , pi=1|Lmax 

Blazewicz , Barcelo, Kubiak, & Rock 1986 P2| 11⋅res , pi=1 | Lmax 

Blazewicz, Cellary, Slowinski, & Weglarz 1986 P2| ⋅⋅1res , ri, pi=1| Cmax 

Blazewicz et al. 1987 P2| ⋅⋅1res | ∑i iC

Blazewicz et al. 1987 P2| 1⋅⋅res | ∑i iC

Kellerer & Strusevisch 2003 PD3| 111res |Cmax 

Kellerer &Strusevisch 2003 PDm| 111res |Cmax 

Kellerer &Strusevisch 2004 PD2| 222res |Cmax 

Kellerer &Strusevisch 2004 PD2| 311res |Cmax 

Kellerer &Strusevisch 2008 PD2| 111res , Bi|Cmax (PMFRS) 

In the view of solution methods for solving NP-hard RCPMSPs, the investigation 

focuses on two aspects:  

- Optimally solving special, more tractable cases with exact methods (e.g., 

B&B methods, dynamic programming) 

- Developing approximation algorithms (e.g., heuristics and metaheuristics) 

 



52

Table 3.3 presents taxonomy of the exact and approximation solution procedures 

with respect to each study. The following two sub-sections, on the other hand, review 

these studies based on specific solution methods by focusing on above two aspects. 

 

3.5.3 Exact Methods   

 

Exact algorithms in the literature are relatively few. Blazewicz, Kubiak & 

Martello (1993) implement a depth first B&B algorithm for the P2| ⋅⋅⋅res , pi=1| Lmax 

problem. Jobs are ordered according to the earliest due date (EDD) rule and decision 

nodes are generated by assigning a job to one of the two machines step by step. A 

significant number of decision node explorations are eliminated by embedding the 

investigated lower bounds and dominance relations into each node. This B&B 

algorithm was able to produce optimal results up to 1000 jobs for one additional 

resource type, and up to 100 jobs for more than one additional resource type.  

 

Daniels, Hoopes & Mazzola (1996) develop a B&B algorithm for the dynamic 

PMFRS problem. Since the amount of the additional resource allocated to a job 

determines its processing time in PMFRS problems, they created a sub-problem 

series of RCPMSPs, in which, processing time pi and resource requirements ri are 

specified. For each sub-problem, lower bounds on makespan are calculated and 

resource-allocation policies that cannot give better solutions are fathomed. For each 

candidate resource-allocation policy, the algorithm proceeds a lower level search 

where job sequencing and start time decisions of jobs are considered simultaneously. 

This B&B algorithm is able to solve the problems with up to 15 jobs and four 

machines. Ruiz-Torres, Lopez & Ho (2007) present a simple IP formulation to be 

used in solving static PMFRS problem with the objective of minimizing number of 

tardy jobs when the problem is small. In a recent study, Kellerer & Strusevisch 

(2008) propose a dynamic programming algorithm for PD2| ⋅⋅1res , Bi|Cmax problem 

(i.e., a dynamic PMFRS problem with binary resource allocation). The dynamic 

programming algorithm solves two knapsack sub-problems formulated for each 

machine. 



53

Table 3.3 A taxonomy of problems based on exact and approximation solution procedures 

Reference Year Problem Classification Solution Method 
P2| ⋅⋅⋅res , pi=1| Lmax Problem-based heuristic algorithms Blazewicz, 

Kubiak& Martello 1993
P2| ⋅⋅⋅res , pi=1| Lmax A B&B algorithm 

A B&B algorithm Daniels, Hoopes 
& Mazzola 1996 Dynamic PMFRS  

A static-based heuristic (SBH) 
A tabu search heuristic Daniels, Hoopes 

& Mazzola 1997 Dynamic PMFRS  
A static-based tabu search heuristic 
A decomposition heuristic (using SBH) Daniels, Hua & 

Webster 1999 Static UPMFRS 
(identical machines) A TS heuristic based on static-based heuristic 

Grigoriev & Uetz 2009 Dynamic PMFRS A (nonlinear) integer mathematical program-
based (3+ε)-approximation algorithm  

Dynamic UPMFRS 
(unrelated machines) 

Based on a rounding algorithm for the relaxed 
formulation, a (4+2√2)-approximation algorithm Grigoriev, 

Sviridenko & 
Uetz 

2005
Dynamic PMFRS Based on a rounding algorithm for the relaxed 

formulation, a (3+2√2)-approximation algorithm 
Grigoriev, 
Sviridenko &Uetz 2006 Dynamic UPMFRS 

(unrelated machines) 
Based on a LP rounding algorithm for the relaxed 
formulation, a 3.75-approximation algorithm 

Grigoriev, 
Sviridenko &Uetz 2007 Dynamic UPMFRS  

(unrelated machines) 
Based on a LP rounding algorithm for the relaxed 
model, a 4-approximation LP-Greedy algorithm 

Kellerer 2008 Dynamic UPMFRS  
(unrelated machines) (3.5+ε) approximation algorithm 

PDm| 111res |Cmax O(mn) Group Technology approximation alg. 
PD3| 111res |Cmax O(n) heuristic approximation algorithm  
PD4| 111res |Cmax O(n) heuristic approximation algorithm  

Kellerer & 
Strusevisch 2003

PDm| 111res |Cmax PTAS 
PD| 11λres |Cmax An O(nm min {n,m}) greedy approximation alg. Kellerer & 

Strusevisch 2004
PDm| 11λres |Cmax PTAS 
PD2| 111res , Bi|Cmax A pseudo-polynomial time dynamic prog. alg. 
PD2| 111res , Bi|Cmax FPTAS 
PD| 111res , Bi|Cmax Polynomial time (3/2)-approximation algorithm 

PD| σσ1res ,Int|Cmax Polynomial time  (3+ε)-approximation algorithm 

Kellerer & 
Strusevisch 2008

PDm| 111res , Bi|Cmax PTAS 
Krause, Shen & 
Schwetman  1973 P| ⋅⋅1res , pi=1|Cmax Polynomial-time (4/3)-approximation algorithm 

Li, Wang & Lim 2003 PD| ⋅⋅1res |Cmax A genetic algorithm (GA)  
Olafsson & Shi 2000 Dynamic PMFRS  A heuristic, named Nested Partitions (NP)  
Ruiz Torres & 
Centeno 2007 Static UPMFRS  

(identical machines) Problem-based heuristic algorithms 

Static PMFRS An mathematical programming formulation Ruiz-Torres, 
Lopez & Ho 2007 Static UPMFRS  

(uniform machines) Five different problem-based heuristic algorithms

Srivastav & 
Stangier 1997 P| 1⋅⋅res , ri, pi=1 | Cmax A polynomial time approximation algorithm                           

Sue & Lien 2009 Static UPMFRS  
(identical machines) Problem-based heuristic algorithms 

Ventura & Kim 2003 P| ⋅⋅⋅res ,ri, pi=1, di|TADD Lagrangian-based heuristic algorithm 



54

3.5.4 Approximation Algorithms 

 

Given that many of RCPMSPs are NP-hard, it becomes necessary to work out 

approximation algorithms. In the scheduling literature, evaluation of approximation 

approaches is generally done by two ways. The first way is to evaluate their 

performance by calculating the worst-case bounds of the algorithms in a theoretical 

manner. The second way is to make experimental studies of proposed algorithms 

through a series of test problems and find the mean performances with respect to 

each other, or the lower bounds developed or optimal solutions (if any).   

 

In the literature, there exist three well-defined simple heuristic rules: (see 

Blazewicz, Brauner & Finke, 2004; Blazewicz et al., 2007b, Eiselt & Sandblom, 

2004): 

 

First fit (FF). Each task is assigned to the earliest time slot in such a way that no 

resource or machine limits are violated.  

 

First fit decreasing (FFD). A variant of the first algorithm applied to a list ordered in 

non-increasing order of maximal relative resource requirement Rmax(i), where  

Rmax(i) = max { Rk (i) / bk: 1 ≤ k ≤ u }.

Iterated lowest fit decreasing (ILFD: for only u = 1, and pi = 1). Order the tasks as in 

the FFD algorithm. Put C as a lower bound on *
maxC . Place job i in the first time slot 

and proceed  the other tasks through the list by placing each job in a time slot for 

which total resource requirement of tasks already assigned is minimum. In case that 

job i cannot be assigned to any of the C slots, halt the iteration, increase C by 1, and 

start over. 

 

Garey & Graham (1975) have shown that the performance bound of FF heuristic 

for the problem P| ⋅⋅⋅res | Cmax is: 







 +

−++=∞

m
uumRFF

122,
2

1min  



55

Krause, Shen & Schwetman (1975) established performance ratios of above three 

heuristic methods, based on the problem, P| ⋅⋅1res , pi=1| Cmax:

m
R

m FF 10
24

10
27

10
37

10
27

−<<



− ∞ ,

m
RFFD

22 −=∞ , and 2≤ILFDR

Notice that, implementing FFD and ILFD algorithms which use ordered lists 

improves the performance by about 30%.  

 

The following sub-sections give details of other solution approaches used in the 

related studies. 

 

3.5.4.1 Problem-based Heuristic Algorithms 

 

A number of papers in the literature develop problem-based heuristic algorithms. 

Blazewicz, Kubiak & Martello (1993) propose a basic greedy approach for the 

P2| ⋅⋅⋅res , pi=1| Lmax problem by specifying all job pairs that can be processed 

simultaneously subject to resource constraints. Ordering the jobs by EDD rule and 

breaking the ties by { }kkuk biR /)(max1 ≤≤ , they try to assign each job in the pairs to 

two machines consecutively. They also develop two improving heuristic algorithms 

to the greedy approach by introducing online and offline interchanges between jobs. 

We have already known from Table 3.1, Daniels, Hoopes & Mazzola (1996) 

developed a polynomial time exact algorithm for the static PMFRS problem. They 

also develop a heuristic algorithm, named static-based heuristic (SBH), for the 

dynamic PMFRS problem that repeatedly solves a series of static PMFRS sub-

problems. Each sub-problem is solved to determine an optimal allocation of 

resources to machines by using the polynomial time algorithm of static PMFRS. The 

results show that the “static-based heuristic” works efficiently for the dynamic 

PMFRS problem with modest computational effort.  

 

Daniels, Hua & Webster (1999) propose a decomposition heuristic for a static 

version of identical machine UPMFRS problem in which the assumption of 

predetermined job assignments is relaxed. In the decomposition algorithm, first, an 



56

LPT rule is used to assign n jobs to m machines; and given this initial assignment, the 

polynomial-time static PMFRS algorithm of Daniels, Hoopes & Mazzola (1996) is 

applied to allocate the available resources to machines. The new processing time of 

jobs are calculated with respect to current resource allocation and again LPT rule is 

applied to find new job-machine assignments. This procedure goes on until a job-to-

machine assignment encountered has been previously evaluated. The decomposition 

heuristic generates efficient results with modest computational effort. For the same 

static UPMFRS problem, Ruiz-Torres & Centeno (2007) develop a lower bound by 

full enumeration of resource assignment alternatives and propose new heuristic 

algorithms that combine list scheduling and bin packing approaches with rules to 

iteratively modify the flexible resource allocation.  They demonstrate that their 

heuristic outperforms those in Daniels, Hua & Webster (1999) under most 

experimental combinations, and provides results that are close to the lower bounds. 

Ruiz-Torres, Lopez & Ho (2007) also propose five heuristic algorithms for static 

UPMFRS problem with the objective of minimizing number of tardy jobs. They 

developed “component heuristics” to make the job-machine assignments which is a 

part of “complete heuristics” that include also assignment of flexible resources to 

machines. They state that loading one machine at a time outperforms the approach of 

simultaneously loading all machines. They also analyzed the performance of the 

heuristics through different combination of problem parameters. Finally, in a recent 

study, Sue & Lien (2009) develop two heuristic algorithms for the same static 

UPMFRS problem. The former assigns jobs to machine first and then deploy the 

resources to jobs while the latter proceeds in the reverse manner. Computational 

results show that the latter heuristic dominates the former one.  

 

Finally, it should also be noted that Lagrangian relaxation may also be a suitable 

technique for PMS problems with additional resources. By relaxing the resource 

constraints to the objective function with corresponding penalty costs, the remaining 

problem becomes probably easy to solve. Surely, in such a scheme, a problem-based 

heuristic is usually applied to convert the infeasible schedules of Lagrangian 

relaxation problem to the feasible ones. Ventura & Kim (2003) propose a 

Lagrangian-based heuristic algorithm for the P| ⋅⋅⋅res , ri, pi=1, di| TADD problem by 



57

relaxing the resource constraints and obtain efficient results for the test problems 

with up to 300 jobs, five machines and three additional resource types.  

 

3.5.4.2 Approximation Algorithms with Worst-Case Bounds 

 

As already stated, in the scheduling literature, evaluation of approximation 

approaches may also be done by calculating the worst-case bounds of the algorithms 

in a theoretical manner. Because of the strong-NP-hardness of the RCPMSPs, most 

researchers have designed approximation algorithms with increasingly better worst 

case ratios. A polynomial-time algorithm that creates a schedule with the objective 

function value that is at most 1≥ρ times the optimal value is called a 

ionapproximat−ρ algorithm; the value of ρ is called a worst case ratio bound. 

 

In an earlier study, Krause, Shen & Schwetman (1973) proposed a 4/3-

approximation algorithm for a multi-programmed computer system with identical 

task processors and restricted amount of memory which can be denoted as P| ⋅⋅1res ,

pi=1|Cmax. Srivastav & Stangier (1997) deal with a more general problem which is 

denoted as P| 1⋅⋅res , ri, pi=1|Cmax, and give polynomial time approximation 

algorithm with a worst case bound analysis in various cases. Kellerer & Strusevisch 

(2003) develop a polynomial time so-called “group technology approximation 

algorithm” for PDm| 111res |Cmax problem with a worst case bound of 3/2 for larger 

values of m. Moreover, for m=3 and m=4; i.e., PD3| 111res |Cmax, and 

PD4| 111res |Cmax, they propose polynomial time heuristic algorithms both of which 

have worst case bounds of 5/4. Kellerer & Strusevisch (2004) also develop a 

polynomial time greedy approximation algorithm for a problem with more than one 

additional resource type and arbitrary number of machines, i.e.; PD| 11λres |Cmax.

The worst case performance ratio of this algorithm is 2.   

 

Recall that, a family of algorithms is called a polynomial-time approximation 

scheme (PTAS) if for a given ε >0 it contains an algorithm that has polynomial time 

running in the length of the program input and delivers a worst-case ratio bound of 

1+ε. Kellerer & Strusevisch (2003) propose a PTAS for the problem 



58

PDm| 111res |Cmax. For fixed m and ε < 1, the running time of the PTAS is 

polynomial in the size of the problem input but not in m and 1/ε. Kellerer & 

Strusevisch (2004) extend their previous study by presenting a PTAS for 

PDm| 11λres |Cmax problem in which number of resources λ is also part of the input. 

Finally, in a recent paper, Kellerer & Strusevisch (2008) develop a PTAS for a simple 

dynamic PMFRS problem with binary resource allocation; i.e., PDm| 111res ,

Bi|Cmax. They first try to “guess” a resource allocation that is very close to that in an 

optimal schedule, and then follow the lines of the PTAS obtained for the static 

problem given in Kellerer & Strusevisch (2003). Notice that, while the family of 

algorithms in a PTAS has a desirable effect that it can approximate arbitrarily closely 

to the optimal solution, it has an undesirable effect that its running time is not 

polynomial in 1/ε. If additionally, the running time is polynomial in 1/ε, a PTAS is 

called a fully polynomial-time approximation scheme (FPTAS). Kellerer & 

Strusevisch (2008) develop a FPTAS for a two-machine dynamic PMFRS problem 

with binary resource allocation, i.e., PD2| 111res , Bi|Cmax. They formulated 

knapsack sub-problems for each of two machines, and used a rounding technique to 

solve these problems in polynomial time.  

 

The recent studies in the literature show that a relaxed mathematical formulation 

of the original problem may be helpful in designing approximation algorithms.  

Grigoriev, Sviridenko & Uetz (2005) propose an approximation algorithm that gives 

(4+ 22 ) worst case bound for the dynamic UPMFRS problem with unrelated 

machines, i.e., the case that processing times are also machine dependent. The 

approximation method is based on an IP model that defines a relaxation of the 

original problem. The main idea is the utilization of an aggregate version of the 

resource constraints, yielding a formulation that does not require time-indexed 

variables. They then consider the LP relaxation of this relaxed formulation and apply 

a two-phase rounding procedure to assign resources to jobs, and jobs to machines. 

They finally apply a greedy list scheduling algorithm to generate a feasible schedule. 

They also adapted this method to the dynamic PMFRS problem and obtain a 

(3+ 22 )-approximation. They also show that LP-based analysis cannot yield 

anything better than a 2-approximation. Grigoriev, Sviridenko & Uetz (2006) 



59

develop a better approximation algorithm for the same dynamic UPMFRS problem 

with unrelated machines. They apply a different and more efficient rounding 

algorithm to obtain resource allocations and job-machine assignments, and also a 

new scheduling algorithm inspired by the harmonic algorithm for bin packing to 

generate the final schedule. This new algorithm provides a 3.75-approximation for 

the problem at hand. Grigoriev, Sviridenko & Uetz (2007) review the proposed 

solution approaches given in their previous two studies described above and also 

show how to derive a 4-approximation algorithm using the relaxed formulation of the 

original problem and a simple list scheduling algorithm. They also show that the 

problem cannot be approximated within a factor smaller than 3/2.  

 

Kellerer (2008) develops a (3.5+ε)-approximation algorithm for a more restricted 

UPMFRS problem with identical parallel machines. The solution procedure follows 

partially the approach of Grigoriev, Sviridenko & Uetz (2005) by transforming their 

IP formulation to a multiple choice knapsack problem. The resource allocation is 

done by solving this problem via a FPTAS. The jobs are then allocated to the 

machines using a variation of greedy list scheduling algorithm. The list scheduling 

algorithm works as follows: Among all non-assigned jobs assign the job with earliest 

possible starting time to the corresponding machine. If there is more than one job 

with earliest possible starting time, always choose the longest job among these jobs.  

 

In a recent study, Grigoriev & Uetz (2009) propose a nonlinear-programming 

based (3+ε)-approximation algorithm for the dynamic PMFRS problem where the 

dependence of processing times on the amount of resources is linear for any job. The 

relaxed nonlinear programming formulation is solved approximately by a FPTAS 

and it gives the amount of resources allocated to every job. Then the jobs are 

scheduled according to an adaptation of the greedy list scheduling algorithm. The 

algorithm improves upon the 3.75-approximation from the Grigoriev, Sviridenko & 

Uetz (2007) and (3.5+ε)-approximation of Kellerer (2008) for the case of PMFRS 

problem. Moreover, the computation time of the new algorithm is polynomial in the 

input size and the precision 1/ε.



60

Kellerer & Strusevisch (2008) develop a polynomial time 3/2-approximation 

algorithm for a PMFRS problem with a unit-size additional resource, binary resource 

requirements, and arbitrary number of machines, i.e., PD| 111res , Bi|Cmax. They first 

apply a relaxed IP formulation by a FPTAS, which solves the resource allocation 

sub-problem and generates an instance of PD| 111res |Cmax problem. With solving 

this sub-problem they also found a lower bound on the makespan for the original 

problem. In the second phase, they applied a 3/2-approximation algorithm given in 

Kellerer & Strusevisch (2003). In a similar manner, Kellerer & Strusevisch (2008) 

also develop a polynomial time (3+ε)-approximation algorithm for more general 

version of PMFRS problem, which they denote as PD| σσ1res , Int|Cmax. The 

algorithm proposed for this problem is also a two-phase procedure. In the first phase, 

the resource allocations are found by solving a relaxed quadratic IP problem by a 

FPTAS. And accordingly, in the second phase, the jobs are allocated to the machines 

using a simple greedy algorithm.  

 

3.5.4.3 Metaheuristics 

 

In the literature, metaheuristics (e.g., tabu search, simulated annealing, genetic 

algorithms) are widely applied to NP-hard scheduling problems. However, for the 

PMS problems with additional resources, the studies applying metaheuristics are 

rather a few. For the dynamic PMFRS problem, Daniels, Hoopes & Mazzola (1997) 

propose two tabu search heuristics, i.e., TSH, and TSH-SBH. Both heuristics employ 

a hierarchical search strategy based on the decomposition of three sub-problems of 

dynamic PMFRS problem; resource allocation, job sequence on each machine and 

job start times. Within this hierarchy, tabu search is applied to evaluate alternative 

resource allocation policies and job sequences. The first heuristic, named TSH, is 

applied on three initial solutions: each job is assigned the least possible amount of 

the resource, each job is assigned the maximum possible amount of the resource, and 

finally each machine is allocated an amount of the resource determined by static 

PMFRS algorithm of Daniels, Hoopes & Mazzola (1996). On the other hand, the 

second heuristic, named TSH-SBH, utilizes the final solution from the static-based 

heuristic as its only initial solution. Computational experiments state that TSH-SBH 



61

produces more efficient solutions than individual TSH and SBH procedures. Daniels, 

Hua & Webster (1999) also propose a tabu search procedure for the static UPMFRS 

problem with identical machines. The procedure first determines the initial 

assignment of jobs by using LPT rule and applies the static PMFRS algorithm of 

Daniels, Hoopes & Mazzola (1996) to determine the allocation of resource to 

machines that minimizes makespan with the given job assignment. Alternative 

assignments are then generated by considering all pairwise exchange of jobs on 

different machines and evaluated by static PMFRS algorithm. If an improvement in 

makespan is observed, then the heuristic solution is updated and associated pairwise 

exchange is defined as a tabu move. The computational results show that tabu search 

procedure outperforms the decomposition heuristic developed by the same authors.  

 

Olafsson & Shi (2000) propose a solution methodology, named Nested Partitions, 

which combines global sampling of the feasible region and local search heuristics. 

They first give an alternative formulation of dynamic PMFRS problem with the 

property of active schedules and prove that the optimal solution to the dynamic 

PMFRS problem is an active schedule. This property reduces the feasible region. 

Then, they apply the Nested Partitions method to the reformulated PMFRS problem. 

The method partitions the feasible region in a similar way as the branch-and-bound 

method; however, it only needs to keep a limited number of branches in each 

iteration. The method is also capable of incorporating efficient heuristics to converge 

faster and to rapidly reach efficient solutions. They compare the results of their 

method with the ones of static PMFRS algorithm and state that considerable 

performance benefits may be obtained by the use of flexible resources. They also 

report that the improvement increases with the number of machines.  

 

Finally, Li, Wang & Lim (2003) propose a genetic algorithm-based approach for 

the PD| ⋅⋅1res |Cmax problem. The proposed approach incorporates encoding scheme 

which gives priorities to jobs and two decoding schemes. The first decoding scheme 

provides a general performance with lower complexity while the second one 

provides better performance with higher complexity. They use the first decoding 

scheme on all chromosomes but use the second scheme on those chromosomes with 



62

better fitness values to improve their quality further. They also propose three kinds of 

lower bounds to evaluate the proposed genetic algorithm approach. Their 

computational results show that the average percent gap of the proposed algorithm is 

generally within 5%.  

 

As already declared, CP, from the field of artificial intelligence, is an alternative 

solution technique to classical IP methods particularly in scheduling, sequencing and 

strict feasibility problems. For a related problem to RCPMSPs (see Hooker, 2005, 

2006; Chu & Xia, 2005), CP has been utilized as a part of the solution procedure. 

Since the amount of resources for each facility is predetermined, these problems may 

be decomposed into a series of single-facility sub-problems by a master assignment 

model. The master assignment problem may be solved by an IP model, and smaller-

size scheduling sub-problems may easily be solved by suitable CP models. In case of 

infeasibility of CP scheduling sub-problems, a valid cut (no-good cuts or cuts based 

on dual information of the sub-problems) may be generated and added to the master 

problem. The procedure goes on until all sub-problems become feasible. Hooker 

(2005, 2006) and Chu & Xia (2005) utilize such a technique for small and medium 

size scheduling problems. These papers show that the proposed decomposition 

algorithms reduce the solving time in comparison to the IP model. However, as 

already stated, the absence of additional resource(s) other than the main resource 

(machine) takes us away from classifying these problems into RCPMSPs. 

 

3.6 Other Important Issues 

 

Other than the significant characteristics of the surveyed papers discussed above, 

one important point is that, almost none of the studies in the literature deals with real 

life problems, although most of the related problems are encountered in real life 

environments with their own characteristics and necessitate industrial-size data to be 

solved. Moreover, among the studies with computational experiments, the majority 

of papers excluding a few ones (Blazewicz, Kubiak & Martello, 1993; Li, Wang & 

Lim, 2003; Ventura & Kim, 2003) deal with small or medium size problems. 

Blazewicz, Kubiak & Martello (1993) consider problems up to 1000 jobs and up to 



63

10 additional resource types, with arbitrary resource sizes and resource requirements 

but with only two parallel machines. Ventura & Kim (2003) deal with up to 300 jobs, 

three additional resource types and five machines, however assumes that all the 

processing times are equal. Li, Wang & Lim (2003) consider problems up to 400 

jobs and 40 machines on a dedicated machine environment.  

 

Since most of the RCPMSPs studied are NP-hard (Blazewicz, Lenstra & Rinnooy 

Kan, 1983), it is unlikely to evaluate the results of proposed algorithms with optimal 

ones. Therefore, a number of studies (Edis, Araz & Ozkarahan, 2008; Li, Wang & 

Lim, 2003; Ruiz-Torres & Centeno, 2007; Ventura & Kim, 2003;) provide methods 

to obtain lower bounds. Lagrangian relaxation with a subgradient optimization 

procedure is an efficient technique to get tight lower bounds (Edis, Araz & 

Ozkarahan, 2008; Ventura & Kim, 2003).    

 

Another significant point is whether to choose continuous time or discrete time IP 

formulations of the corresponding RCPMSP. In fact, both modeling approaches have 

their own strengths. Almost all continuous time formulations require the using of 

big-M constraints which results in weak LP-relaxation gap (see e.g., Pinto & 

Grossmann, 1997). On the other hand, discrete time formulations contain enormous 

number of variables (and also constraints) since the time indices should go into the 

scheme as an index of decision variables. However, discrete time formulations have 

two main advantages. Firstly, this type of formulations is easy to form in comparison 

to continuous time ones. Secondly, discrete time formulations generally perform 

better than continuous ones due to its efficient LP relaxation (Van den Akker, 

Hurkens & Savelsbergh, 2000). All the mathematical programming models given for 

the problems related to RCPMSPs in the literature are based on discrete-time 

formulations (see Daniels, Hoopes & Mazzola, 1996; Olafsson & Shi, 2000; Ventura 

& Kim, 2003) 

 

There exist some other problem classes related to RCPMSPs in the literature. As 

Blazewicz, Lenstra & Rinnooy Kan (1983) state, the resource constrained scheduling 

with unit processing times is equivalent to a variant of the bin packing problem in 



64

which number of items to be packed for each bin is restricted to m (number of 

machines). Therefore, the solution approaches for bin packing problems can be 

applied to this class of RCPMSPs. More information on the relationship between bin 

packing and resource constrained problems can be found in Garey, Graham & 

Johnson (1976) and Blazewicz & Ecker (1983).  

 

In addition, one may wonder if there is a relation between RCPMSPs and resource 

constrained project scheduling problem (RCPSP). In both problems, schedules are 

constructed subject to resource constraints. However, RCPMSP differs from RCPSP 

in several aspects. RCPMSP requires an additional job-machine assignment sub-

problem whereas the RCPSP does not incorporate machines. Furthermore, RCPSPs 

include precedence constraints in nature, while most of RCPMSPs do not contain 

precedence relations.   

 

Scheduling issues occurring in batch chemical plants is also a related research 

field although the related studies of RCPMSPs do not cite any of the papers in this 

field. Indeed, scheduling of batch chemical plants are evaluated within their own 

isolated research field. Resource constraints including renewable resources also 

appear in the investigated problems of batch chemical plants (e.g., Lim & Karimi, 

2003; Mendez & Cerda, 2004; Pinto & Grossmann, 1997). Readers are referred to 

Mendez, Cerda, Grossmann, Harjunkoski, & Fahl (2006) for a comprehensive review 

of this field. 

 

3.7 Limitations of the Existing Literature and Distinguishing Properties of the 

Proposed Research 

 

In this chapter overview of the studies related to RCPMSPs has been given. After 

reviewing the related literature, findings can be summarized as follows:  

 

- In terms of machine environments, most studies deal with dedicated or identical 

machines. Uniform and unrelated machine environment are rarely studied. 

Moreover, to the best of our knowledge, no study so far considers the case of 



65

machine eligibility restrictions and accordingly its effect on the schedule and 

performance criteria. 

 

- A significant number of papers incorporate the case of resource-dependent 

processing times which additionally appends a resource allocation sub-problem 

into the scheme. The studies in this area, however, introduce some simplifying 

assumptions (e.g., machines are dedicated, allocation of resources to machines are 

static) to ease the problem at hand. More practical cases, the study of dynamic 

case, where the flexible resource can switch between machines during the 

schedule as well as the problems with unspecified job-machine assignment (i.e., 

the machines are not dedicated) are rarely studied.  

 

- Most of the studies consider a single additional resource type. Moreover, the 

studies that handle more than one additional resource type consider unit (equal) 

processing times and/or two-three machines and/or unit size of additional 

resources with only 0/1 resource requirements. Thus, other versions with more 

than one additional resource type still remain a potential research area.  

 

- Excluding a few papers, all the studies aim to minimize makespan. Other 

performance criteria may also be taken into consideration in the future studies. 

Moreover, all the studies deal with a single objective function due to the complex 

nature of this class of problems. The problems incorporating more than one 

criterion may further be considered in this research area.  

 

- In terms of solution approaches, a number of studies give polynomial-time 

algorithms for some special cases of the problems. These papers generally handle 

simple cases with two or three machines, 0/1 resource requirements, or dedicated 

machine environments. However, many problems, yet, do not have a polynomial 

time algorithm. A significant number of studies are devoted to prove the NP-

hardness of the related problems. 

 



66

- Realizing that many practical problems are NP-hard, researchers focus on exact 

and approximation algorithms to solve the problems. Exact algorithms (e.g., B&B 

approaches, dynamic programming) are relatively few due to the combinatorial 

nature of the problem. Approximation algorithms, on the other hand, can be 

classified in three sub-groups: problem-based heuristic algorithms, ρ -

approximation algorithms, and meta-heuristics. A significant number of studies 

focus on ρ -approximation algorithms with increasingly better worst case ratios, 

while problem-based heuristics and meta-heuristic approaches are relatively few. 

Furthermore, a significant number of studies relevant to ρ -approximation 

algorithms utilize relaxed mathematical formulations to solve the sub-problems of 

the entire problem at hand. 

 

- Most of PMS problems with additional resource are encountered in real life 

environments with their own characteristics and necessitate industrial-size data to 

be solved. However, almost none of the papers surveyed deal with real life 

problems. Moreover, among the studies with computational experiments, the 

majority of papers deal with small or medium size problems.      

 

In the light of the discussion above, distinguishing characteristics of the proposed 

research can be listed as follows: 

 

� All research problems in this dissertation incorporate the case of machine 

eligibility restrictions and its effect in terms of flexibility measures on the 

schedules. 

 

� Since each job can be processed on one of the machines from its eligible 

machine set, a more realistic case, i.e., the unspecified job-machine 

assignment, is taken into consideration in research problems.  

 

� A more practical case, i.e., dynamic case where the flexible resource can 

switch between machines, is studied in all research problems. 

 



67

� As the performance criteria, total flow time as well as makespan is considered 

in the proposed research. 

 

� Lagrangian Relaxation is an efficient technique used in constrained 

optimization problems for obtaining tight lower bounds as well as generating 

efficient heuristic algorithms based on infeasible solutions of Lagrangian 

relaxation problem. As far as we know, only Ventura & Kim (2003) applied a 

Lagrangian-based solution procedure to a RCPMSP with identical machines. 

For the first problem case in this dissertation, a Lagrangian-based solution 

procedure is developed to obtain efficient results.   

 

� It has already been stated that meta-heuristic approaches are rarely used in 

solving the investigated class of problems. Moreover, no studies so far, utilize 

CP in the solution procedures. In this dissertation, the solution procedures 

proposed for second and third problems utilize the strengths of CP in finding 

quick and efficient solutions for especially scheduling/sequencing part of the 

investigated research problems. 

 

� Finally, the research problems in this dissertation are motivated by a real-world 

scheduling problem encountered in the injection molding department of an 

electrical appliance company. Moreover, the third problem case, i.e., real case 

study, is established on a series of problems with real data taken from the real 

environment.      

 

3.8 Chapter Summary 
 

This chapter gives a review and discussion of studies related to RCPMSPs in five 

topics. First, the papers have been discussed in terms of machine environment 

characteristics. Second, additional resource characteristics of the problems studied in 

the literature have been investigated and according to these characteristics, six main 

problem types have been identified. The related problem formulations have also been 

presented. Third, surveyed papers have been evaluated in terms of performance 

criteria. Fourth, a comprehensive review on the solution procedures has been 



68

presented with their main characteristics. Fifth, other important properties of 

surveyed papers have been summarized. In the final section of this chapter, strengths 

and weaknesses of the related literature have been represented and distinguishing 

characteristics of investigated research problems and solution procedures have been 

listed.  

 

The following chapter describes the three problem cases investigated in this 

dissertation in detail. 

 



69 
 

CHAPTER FOUR 

PROBLEM STATEMENT 

 

This chapter describes the research problems investigated in this dissertation. As 

already stated, there are three research problems all of which consider PMS problems 

with additional resources and machine eligibility restrictions. Since the research 

problems are motivated by a real world scheduling problem encountered in the 

injection molding department of an electrical appliance company, Section 4.1 gives 

the details of this manufacturing environment. Section 4.2 presents the common 

assumptions of the research problems. Then, in Section 4.3, the three research 

problems are described within the classification scheme defined before by giving 

their different properties. The complexity of research problems are also discussed 

within this section. Section 4.4 presents an illustrative example to clarify the 

investigated problems further. Finally, the related studies in the injection molding 

plants are briefly reviewed in Section 4.5.     

 

4.1 Problem Definition 

 

Due to the development of material technology, various plastic parts are widely 

used in electrical appliances. A plastic part is generally manufactured by an injection 

molding machine where a die must be setup on that machine. In large electrical 

appliance companies, product variety and make-to-order production cause hundreds 

of part-die tasks. These tasks are processed on many injection-molding machines 

with different dies to supply the assembling shop. 

 

The injection-molding department, whose problem motivates this research, is one 

of the three departments in a supplier plant of an electrical appliance company. It 

produces several plastic parts for shipment to final assembly plants. 

 

In the plant, each part has a die associated with it and its manufacture is 

completed at a single machine. The same die may be used to fabricate different parts 

by introducing material composition changes. Since the dies are so expensive, only



70

one unit is available from each type of die in the plant. Therefore, no parts that share 

the same die can be processed at the same time. Injection molding machines also 

differ in characteristics, and only a specific set of machines can be compatible with 

each die. The compatibility factors are technical factors like weight, pressure, quality 

requirements, etc. The case that each die may not be compatible with each machine 

type constitutes machine eligibility restrictions. 

 

In addition, manufacturing process may require operators in accordance with the 

die type. A fixed number of machine operators are available in the plant for 

monitoring the machines, unloading and inspecting the plastic parts and trimming 

extra material. These tasks may not require an operator’s full attention at one 

machine as discussed earlier by Bourland & Carl (1994). Based on data collected on 

the plant, there are three types of processes: 

 
[1] Manually operated processes – requires exactly one operator along the 

processing. 

[2] Semi-automated processes – One operator can deal with two machines 

simultaneously.  

[3] Fully-automated processes – No operator is required during the processing.  

 

The sum of operator requirement of parts being produced at any time period 

cannot exceed the available number of operators. The molding plant’s objective is 

then to generate the schedule subject to constraints on capacity, machine eligibility 

and operator availability. 

 

The problem described above is considered as a RCPMSP with machine 

eligibility restrictions and two types of additional resources (i.e., dies and machine 

operators).  

 

4.2 Assumptions 

 

A simplifying assumption may be considered on the use of dies. Recall that, in the 

plant, there is only one die from each die type, and a die may be used to fabricate 



71

different parts. The parts that share the same die are assumed to constitute a job 

string. This basic simplifying assumption reduces the number of additional resources 

as well as problem size. Henceforth, dies are no longer restricted resources and 

considered as the job strings (or jobs) that will be assigned to machines along the 

scheduling horizon. Figure 4.1 illustrates the construction of the job strings. Suppose 

that we are given five parts associated with two dies. Part 1 and Part 4 that share Die 

1 constitute job (string) 1; whereas Part 2, 3 and 5 that requires Die 2 constitute job 

(string) 2.  

 

Figure 4.1 Construction of job strings 

 
This research is also based on the following assumptions: 

 
(1) All parts are available for processing at time zero. 

(2) A machine can process at most one job string (or die) at a time.  

(3) Machines and a fixed number of operator(s) are continuously available for the 

specified scheduling horizon. 

(4) Preemption of job strings is not allowed, i.e., once they are started, they 

should be processed until completion.  

(5) All processing times of job strings are deterministic. 

(6) Setup time of dies is assumed to be one hour and incorporated in the 

processing time of job strings. 

(7) Operator requirements of job strings are assumed to be fixed values, i.e. no 

operator, one-half of an operator, and one operator.  

Die 1 

Die 2 

Part 1 

Part 2 

Part 3 

Part 5 

Part 4 

JOB (STRING) 1 

JOB (STRING) 2 



72

(8) All operators are fully cross-trained workers and operator transfer times 

between machines –in relation to job processing times- are negligible. 

(9) Time window for scheduling of parts are fixed to the unit periods, i.e., one-

hour length periods. 

 

4.3 Research Problems 

 

Motivating from the scheduling problem described above, we investigate three 

research problems in this dissertation. The first two problems are hypothetical, while 

the last one uses data from a real-life scheduling problem. All the research problems 

are classified in the field of RCPMSPs with machine eligibility restrictions. The aim 

is to develop exact and/or approximation algorithms to these problem cases each of 

which are NP-hard. 

 

4.3.1 Problem Case I: P| 21⋅res , Mi, pi=1|∑i iC

A RCPMSP with one additional resource type with arbitrary size and up to two 

units of requirements with machine eligibility restrictions is considered as the first 

problem case. The number of jobs, number of machines and the size of additional 

resource are part of input. This version of RCPMSP is rather simpler than the other 

two problems since all job processing times are assumed to be the same. The 

objective is to minimize sum of completion times, i.e., ∑i iC .

For PMS problems with unit processing times, complexity of problems in terms of 

machine eligibility restrictions and additional resource constraints have already been 

discussed in Chapter 2 and Chapter 3, respectively. Since the presence of machine 

eligibility restrictions makes the problem a special case of unrelated machines, this 

problem with arbitrary number of machines and two units of the additional resource 

is most probably NP-hard.  

 



73

4.3.2 Problem Case II: P | 21⋅res , Mi, pi| Cmax 

 

The number of jobs, number of machines and the size of additional resource are 

also part of input in this problem case. Different from the first problem case, this 

version allows arbitrary processing times. Furthermore, the objective is to minimize 

makespan, Cmax.

It is well-known that ordinary PMS problem with m identical machines and 

makespan objective is NP-hard (Garey & Johnson, 1979).  Moreover, Daniels, Hua 

& Webster (1999) state that a RCPMSP with three machines and one additional 

resource type with two available units (b = 2) and R1(i) ∈ {1, 2} is NP-hard. They 

also state that the RCPMSP is NP-hard, even if there is only one job per machine. 

Therefore, our investigated RCPMSP with arbitrary number of machines, one 

additional resource type with arbitrary size and R1(i) ∈ {0, 1, 2} including machine 

eligibility restrictions is also NP-hard.  

 

4.3.3 Problem Case III (Real Case Study): P36 | 21⋅res , Mi, pi| Cmax 

This problem case considers the actual problem of injection molding department 

with real data. In the injection molding plant, there are exactly 374 dies used in 

manufacturing of more than 1000 plastic parts on 36 injection-molding machines. 

The plant operates 12 hr per shift, two shifts a day, and five days a week. An MRP 

system explodes the dependent demand to generate weekly production orders for all 

parts. The managers of the plant aim to finish the manufacture of the current order 

quantities as soon as possible in order to leave an amount of time and resource (i.e., 

machine and operator) capacity to the newly incoming orders that may occur along 

the current week. Henceforth, the objective function is chosen as the minimization of 

makespan, i.e., time required to complete all parts. 

 

Consequently, the aim is to develop a scheduling system that will receive MRP 

orders at the start of each week with the aim of minimizing makespan. 

 



74

Note that, this problem case is also NP-hard, since it is a version of the second 

problem case with real data.   

 

4.4 An Illustrative Example  

 

Let us try to clarify the investigated RCPMSPs with arbitrary processing times by 

a small example. Assume that, a problem with 10 jobs, three machines and two units 

of a single additional resource (b = 2) is given. The processing times and resource 

requirements of jobs are as follows:  

 

pi = [8, 5, 4, 3, 2, 6, 1, 4, 7, 3], and  

R1(i) = [0, 1, 2, 2, 0, 1, 0, 1, 1, 1], where i = 1,..,10.  

 

Finally, Mi denotes the eligible machine set of job i and is given as follows.  

 

{ } { } { } { } { } { } { } { } { } { }[ ]3,2,1,3,2,2,3,2,3,2,1,2,1,3,3,2,1,3,2,1=iM

That is the first job can be processed on machine 1, 2, or 3; second job can be 

processed on only machine 1 and so on.  

 

The objective is to minimize schedule makespan. Figure 4.2 through Figure 4.5 

illustrate four different schedules. In all figures, each job is illustrated with its index 

and resource requirement in parentheses. For instance, 5(0) indicates the fifth job 

with no resource requirement. Similarly, 3(2) defines third job requiring two units of 

additional resource.  

 

Figure 4.2 and Figure 4.3 illustrate infeasible schedules due to violating resource 

constraints and machine eligibility restrictions, respectively. Notice that, in Figure 

4.2, the total resource requirement of jobs in time interval [2, 5] exceeds the available 

two units of the additional resource. In Figure 4.3, on the other hand, the third job is 

assigned to M1 which is not an element of its eligible machine set. 



75

Figure 4.2 An infeasible schedule (violating resource constraints) 
 

Figure 4.3 An infeasible schedule (violating machine eligibility constraints) 
 

Figure 4.4 presents a feasible schedule which satisfies both the additional resource 

constraints and machine eligibility restrictions. Finally, an optimal schedule is 

illustrated in Figure 4.5 with a resulting makespan value of 20 time units. Notice that, 

in the optimal schedule, some time intervals remain idle for all three machines. It 

5(0) 

2

2(1) 

7(0)

1

4(2) 

30

3(2) 

3

7

7

8(1) 

11 

9(1) 

19 

12 

6(1) 

14 

10(1) 

20 

1(0) 

11 

M1

M2

M3

19 0

1

2
Resource Usage 

20 

14 

12 

5(0) 

2

2(1) 

7(0)

1

4(2) 

30

3(2) 

3 7

7

8(1) 

11 

9(1) 

18 

12 

6(1) 

18 

10(1) 

1(0) 

11 

M1

M2

M3

18 0

1

2

Resource Usage 

5

3



76

may be thought that makespan could be reduced by moving some other jobs to these 

inserted idle times. However, this may violate the resource constraints and/or the 

machine eligibility restrictions by causing the current schedule become infeasible.  

 

Figure 4.4 A feasible schedule 

 

Figure 4.5 Optimal schedule 
 

5(0) 

2

2(1) 

7(0)

1

4(2) 

30

3(2) 

3 7

7

8(1) 

11 

9(1) 

18 

12 

6(1) 

18 

10(1) 

1(0) 

11 

M1

M2

M3

18 0

1

2
Resource Usage 

21 

21 

5(0) 

2

2(1) 

7(0)

1

4(2) 

30

3(2) 

3 7

7

8(1) 

11 

9(1) 

19 

12 

6(1) 

14 

10(1) 

20 

1(0) 

11 

M1

M2

M3

19 0

1

2
Resource Usage 

20 

14 

12 



77

4.5 Related Research in the Injection Molding Plants 

 

Since, in the injection molding plants, jobs may also require, besides machines, 

additional resources, (e.g., dies and machine operators) for their processing; the 

scheduling problem in these plants may fall into a special case of RCPMSPs with 

additional problem-based characteristics. There are a number of studies (e.g., 

Bourland & Carl, 1994; Chen, 2005; Chen & Wu, 2006; Gao et al., 1998; Lin, Wong 

& Yeung, 2002; Nagarur, Vrat & Duongsuwan, 1997; Nagendra, Das & Nathan, 

2000; Tamaki et al., 1993) related to scheduling of injection molding machines in the 

literature. Since the problem is large-scale and difficult to solve optimally, solution 

approaches primarily focus on sequential based heuristics. All papers, except 

Bourland & Carl (1994), do not consider the limited operator availability. Bourland 

& Carl (1994) discussed a PMS problem with fractional operator requirements in a 

molding department of an automotive company. They modeled the problem 

hierarchically with a medium term production plan and a short-term schedule. They 

considered minimizing the setup and holding costs subject to limited number of 

operators. However, their problem does not include machine eligibility restrictions.  

 

Different from these studies, all research problems investigated in this dissertation 

consider machine eligibility restrictions and common shared resources together.  

4.6 Chapter Summary 

 

This chapter has introduced the real scheduling environment which motivates the 

investigation of all three research problems. By giving the common assumptions to 

be considered, all three research problems have been explained with their distinct 

properties and complexity discussions. An illustrative example has also been 

presented to clarify the research problems in the mind of readers. Finally, a short 

review of studies related to scheduling efforts in injection molding plants has been 

given. The following chapter presents an overview of tools employed in solving the 

research problems.  



78 
 

CHAPTER FIVE 

OVERVIEW OF THE SOLUTION TOOLS EMPLOYED IN THE 

PROPOSED RESEARCH 

 

This chapter briefly explains the solution tools employed in the dissertation. 

Section 5.1 gives an overview of the well-known modeling technique Integer 

Programming (IP) with its main properties. Section 5.2 introduces Lagrangian 

Relaxation, Lagrangian heuristics and their applications in solving IP problems. 

Section 5.3 introduces Constraint Programming (CP) which is an alternative 

modeling technique for combinatorial optimization problems. This section gives 

main properties of CP and its applications in especially scheduling problems. A 

comparison between IP and CP techniques with their own strengths and weaknesses, 

as well as IP/CP integration schemes are also presented and discussed in this section.  

 

5.1 Integer Programming 

 

The roots of integer programming (IP) depend on linear programming (LP). LP is 

a subset of mathematical programming from the field of operations research (OR). 

OR is a discipline that deals with the optimization and control of systems. The term 

“programming” is used here as a synonym for optimization. (Eiselt & Sandblom, 

2007, p.45) 

 

Mathematical programming problems are mathematical models that attempt to 

model a real-life situation by using decision variables and parameters. Parameters are 

inputs given to the model whose values are known in a priori, while decision 

variables are numbers that will be determined in the solving process of the 

mathematical model.  

 

All mathematical programming problems consist of two components; constraints 

and objectives. Constraints are established based on the restrictions on the problem 

definition. Typical examples are capacity constraints that limit resources (e.g., 

budget constraints, physical and/or chemical limits), and assignment constraints that



79

should be satisfied. It should be noted that constraints cannot be violated. On the 

other hand, objective(s) express the wishes of the decision maker. Most optimization 

models employ a single objective function.  

 
In the light of above definitions, an LP model can be formulated in matrix 

notation as follows: 

 

0

subject to
 minimize

≥
≤
≥

x
dBx
bAx

cx

 

In this example, the first row represents the objective function which is to be 

minimized, the following two rows present the constraints and the last row give the 

domain of decision variables, { }nxxxx ,...,, 21= . Notice that, in the above 

representation, the set of decision variables (x) is able to take all non-negative real 

values.  

 

In the above formulation, if the set of x is restricted to take only discrete values 

i.e., +Ζ∈x the model is named as integer programming (IP).  Moreover, if the set of 

x is restricted to take only binary values i.e., { }1,0∈x the program is referred to as   

0-1 IP. Finally, if some elements of x are allowed to take continuous values while the 

other ones are again restricted to take discrete values, the program is denoted as 

mixed IP (MIP). 

 

It should be noted that, the constraints and objective function in IP must be linear.  

The strengths of IP/MIP include (Milano & Trick, 2004, p.15): 

 

- Constraints are handled simultaneously through the linear relaxation, 

allowing arbitrary sets of linear constraints to be treated as a global 

constraint. 

- Continuous variables can be handled naturally and efficiently along with the 

discrete variables.  



80

- Bounds are generated to give deviation from optimality even when optimal 

solutions are not proven.  

 

Mathematically, IP models require much more time to solve optimally in 

comparison to similar sized LP models. To solve LP models optimally, Dantzig 

(1963) developed a computationally efficient algorithm, named “simplex method”. 

On the other hand, although there are a wide variety of methods for solving IP, 

unlike LP with the simplex algorithm, there exists no universal algorithm with an 

efficient performance guarantee for solving IP models. The most successful 

algorithm so far found to solve IP problems is the branch and bound (B&B), which is 

heavily based on relaxations, i.e., easier sub-problems are obtained by removing or 

relaxing some constraints. Relaxations provide bounds on the objective function in 

order to prune suboptimal parts of the search tree. Another important aspect in 

solving IP problems is the use of cutting planes, i.e., linear inequalities which can be 

added to the relaxation to better approximate the geometrical structure of the original 

problem. Almost all commercial optimization packages offering IP/MIP solvers 

mainly use B&B algorithms enriched by some cutting plane methods. These two 

methods are briefly explained below:  

 

Branch & Bound Methods. IP problem is first solved as an LP by relaxing the 

integrality constraints. If the resulting LP solution is integer, the problem is solved; 

otherwise a tree search is performed. Let us suppose that x is an integer variable 

whose optimum value x* is fractional after solving the problem as an LP. Then, there 

are two alternatives to explore: x ≤ x* or x ≥ x*. For each alternative, a copy of the 

problem is created, and one of the two constraints is added to it. This way of creating 

two sub-problems is called branching. Now, each sub-problem may be solved as an 

LP again. If the optimum solution of LP is feasible for the IP, this solution is 

recorded as the best one so far available. Otherwise, the sub-problem must further be 

partitioned into two sub-problems by again imposing the integer conditions on one of 

its integer variables that currently has a fractional optimal value. This process is 

repeated until a feasible solution is found or infeasibility is detected. Naturally, when 

a better integer solution is found for any sub-problem, it should replace the one at 



81

hand. During the process, in any node, if the optimal solution of a relaxed sub-

problem yields a worse objective value than the best available, there is no need to 

continue the search from that node of the tree since it cannot lead to a better solution. 

This process, named bounding, increases the efficiency of computations.  

 

Cutting Planes Methods. This method is pioneered by Gomory (1963). As with B&B 

methods, first IP problem is solved as an LP by relaxing the integrality constraints. If 

the resulting LP solution is integer, this solution will also be the integer optimum. 

Otherwise, extra constraints (cutting planes) are systematically added to the problem, 

further constraining it. This process repeats until an integer solution is found or the 

problem is shown to be infeasible. (Williams, 1999, p.151-153) 

 

Consequently, IP/MIP has the following characteristics (Milano & Trick, 2004; 

Thorsteinsson, 2001b): 

• A complete approach. 

• Optimization is done using objective function as a guide. 

• Efficient for many classes of problems. 

• Inflexible, e.g., restricted to linear constraints and 0-1 variables. 

• All constraints are evaluated simultaneously.  

• Little influence on search. 

 

As discussed above, IP utilizes relaxation methods on the objective function. 

Beside the LP relaxation, an alternative way, Lagrangian relaxation, is also widely 

used to obtain tight lower bounds on the objective function and to generate near 

optimal solutions. The following section explains Lagrangian relaxation and its use 

for solving IP problems.   

 

5.2 Lagrangian Relaxation and Lagrangian Based Solution Approaches for 

Integer Programming 

 

Finding good solutions to combinatorial optimization problems requires the 

consideration of two issues (Beasley, 1995): 



82

- calculation of a lower bound  that is as close as possible to the optimum 

value. 

- calculation of an upper bound that is as close as possible to the optimum 

value. 

 

Figure 5.1 illustrates these two issues for a minimization problem. General 

techniques for deriving efficient upper bounds are essentially heuristic methods. 

These heuristics may be problem-specific or search-oriented algorithms. On the other 

hand, a common way to obtain the lower bound is relaxing the entire problem. 

Relaxation of an entire problem enlarges the set of feasible solutions. Assuming 

minimization, since there are more solutions to the relaxation than the original 

problem, the relaxation provides a lower bound on the optimal value.  

 

Optimal solution

Upper Bounds (UB)

Value

Lower Bounds (LB)
Relaxations
Linear Programming
Lagrangian

Heuristics
Problem-based
Search-based

 
Figure 5.1 Upper and lower bounds in a minimization 

problem (Adapted from Reeves (1995, p.16)) 

 

One well-known relaxation technique is Linear Programming (LP) relaxation. In 

LP relaxation, an IP or Mixed IP (MIP) formulation of the problem is handled and 

the integrality requirements on the decision variables are relaxed. This results in an 

LP which is probably easily solved. The solution value obtained for this LP gives a 

lower bound on the optimal solution to the original problem (Beasley, 1995). 



83

Another well-known (and widely used) technique which is available to find lower 

bounds is Lagrangian relaxation. Lagrangian method was developed by Held & 

Karp (1970, 1971) on the traveling salesman problem. Motivated by these studies, 

Fisher (1973) applied Lagrangian methods to scheduling problems. Geoffrion (1974) 

named this approach as “Lagrangian Relaxation”. This technique mainly involves 

(Beasley, 1995): 

 

1. taking an IP/MIP formulation of the problem. 

2. attaching Lagrange multipliers to some of (complicating) constraints in this 

formulation  and relaxing these constraints into the objective function.  

3. solving (exactly) the resulting IP/MIP. 

 

The solution value obtained from relaxed problem gives a lower bound on the 

optimal solution to the original problem. There are two basic reasons why this 

approach is well-known and widely used (Fisher, 1981; Beasley, 1995): 

 

• Many combinatorial optimization problems consist of an easy problem (i.e., 

solvable by a polynomial algorithm) complicated by a relatively small set of 

side constraints. By transferring these side constraints into the objective 

function (step 2 above) we are left with an easy problem to solve and attention 

can be turned to choosing appropriate values for the Lagrange multipliers.  

 

• Practical experience with Lagrangian relaxation has indicated that it gives 

very good lower bounds at reasonable computational cost.  

 

Lagrangian Relaxation technique has been used with remarkable success in 

numerous applications to derive tight lower bounds and/or to construct good feasible 

solutions for difficult optimization problems (Frangioni, 2005). There exists a large 

body of literature on Lagrangian Relaxation, its extensions and applications for IP 

problems. A number of researchers (e.g., Beasley, 1995; Frangioni, 2005; Fisher, 

1981; Geoffrion, 1974; Guignard, 2003; Lemarechal, 2001) also give comprehensive 



84

reviews on Lagrangian relaxation methods for solving combinatorial optimization 

problems. 

 

5.2.1 Lagrangian Relaxation  

 

To clarify Lagrangian relaxation, let us consider the following general 0-1 IP 

problem (written in matrix notation) which is referred to as problem (P): 

 

1} {0, 

subject to
 minimize

∈
≥
≥

x
dBx
bAx

cx

 (5.1) 

 

Assume that, the constraints bAx ≥ are complicating that the problem without 

these constraints would be much simpler to solve, whereas the constraints Bx d≥ are 

relatively easy to handle. We define the Lagrangian relaxation problem (LRP) of (P) 

with respect to constraint set bAx ≥ by introducing a Lagrange multiplier vector  

0≥λ which is attached to this constraint set and brought into the objective function: 

 

1} {0, 
subject to

)(minimize

∈
≥

−+

x
dBx

Axbcx λ
(5.2) 

 

In other words, the constraints bAx ≥ have been dualized. Surely, the feasible 

solution set of LRP contains all feasible points of original problem P. The key point 

is that, for any 0≥λ , the problem of LRP gives a lower bound on the optimal 

solution to the original problem (P).  

 

The Lagrange multipliers (λ ) in the above formulation determine the tightness of 

the lower bound. Therefore, it is desired to find λ values that give lower bound as 

close as possible to the optimal objective value (i.e., λ values that maximize the 

lower bound). This problem is denoted as Lagrangian dual problem (LDP): 

 



85

















∈
≥

−+

≥

1} {0, 
subject to

)(minimize
max

0
x

dBx
Axbcx λ

λ
(5.3) 

 

Ideally, the optimal value of LDP is equal to the optimal value of original 

problem. However, even with the best possible choice of the Lagrangian multipliers 

(λ ), there is no guarantee that the penalty term in the objective function, i.e., 

)( Axb −λ will lead to a feasible solution. In fact, this is most often not the case: 

whenever this happens, the optimal solution of LDP is also optimal for (P)

(Frangioni, 2005). If LDP and original problem (P) do not have equal optimal values, 

a “duality gap” (i.e., relative difference between two optimal values) arises.  

5.2.2 Determination of Lagrange Multipliers 

 

As discussed above, a significant point is to calculate the optimal values of 

Lagrange multipliers in order to maximize the lower bound. Two general techniques 

are available to optimize the λ values: subgradient optimization and multiplier 

adjustment.

Subgradient optimization method was proposed by Held & Karp (1971) and 

validated in Held, Wolfe & Crowder (1974). It is an iterative procedure which starts 

with an initial set of Lagrange multipliers and generates further multipliers in a 

systematic structure. Subgradient optimization is used to maximize the lower bound 

obtained from LRP. The matrix notation of relaxed constraints given in (5.1) can be 

written in the summation form as follows:  

 

i

n

j
jij bxa ≥∑

=1

, i = 1,  …, m (5.4) 

 

The basic steps of a general subgradient optimization procedure are presented 

below (Beasley, 1995):  

 



86

1. Initialize the user-defined parameter π (0 ≤ π ≤ 2), initialize the upper bound 

( UBz ) by some heuristic. Set initial values for multipliers λi.

2. Solve the LRP with current set of λi to get a solution set xj and the 

corresponding objective value, i.e., LBz (lower bound). 

3. Define subgradients Gi for the set of relaxed constraints evaluated at the 

current solution: 

;
1

∑
=

−=
n

j
jijii xabG i = 1, …, m (5.5) 

4. Define the step size T by: 

∑ =
−= m

i iLBUB GzzT
1

2)/(π (5.6) 

(Notice that, in this step, if LBUB zz ≅ the subgradient procedure is 

terminated.) 

5. Update λi by 

{ };,0max iii GT ×+= λλ i = 1, …, m (5.7) 

and then go to Step 2 to resolve LRP with the new set of λi.

The subgradient optimization procedure in its above form would never terminate 

unless LBUB zz ≅ . A usual way to terminate the procedure is as follows. First, an 

initial value is set to the user-defined parameter π. Through the subgradient 

iterations, the value of π is reduced subject to some rule. If π gets smaller than a pre-

determined small value, then the subgradient procedure is terminated. A classical 

implementation is as follows (Beasley, 1995): If LBz does not improve during (say) g

consecutive subgradient iterations, the value of π is divided by two. Unless 

terminated in Step 4, the procedure is terminated if π gets a very small value (e.g., 

π ≤ 0.005). 

 

A significant point in the subgradient optimization procedure is that, in the 

problem formulation, all constraints which are to be relaxed have to be scaled since a 

large right hand side may dominate the step size expression for T (Beasley, 1995). 

 



87

Practical convergence of subgradient procedure is unpredictable. In “good” cases, 

a saw-tooth pattern is usually observed in the earlier iterations, and consecutively, in 

the later iterations, a roughly monotonic improvement and asymptotic convergence 

to an optimal Lagrangian bound (i.e., the optimal objective value of LDP) is 

followed. In “bad” cases, on the other hand, the saw-tooth pattern always continues, 

or the Lagrangian bound even deteriorates (Guignard, 2003). Several studies (e.g., 

Fumero, 2001; Goffin, 1977; Lorena & Senne, 1999; Wang, 2003) focus on 

improvements of convergence rates of subgradient methods.   

 

Beasley (1995) states that subgradient optimization has widely been used in the 

literature in conjunction with Lagrangian relaxation due to two main reasons: 

- It provides good quality lower bounds for a wide variety of combinatorial 

optimization problems 

- It can directly be applied to the relaxed constraints in many different problems. 

 

Another procedure to determine the values of Lagrange multipliers is multiplier 

adjustment. This heuristic (Beasley, 1995): 

- generates a starting set of Lagrange multipliers 

- tries to improve them in some systematic way so as to generate an improved 

lower bound 

- repeats the procedure if an improvement is made.  

 

The multiplier adjustment procedure is easily applicable and usually produces an 

increase at each iteration; however, the final lower bound can be poor. Moreover, it 

requires special arrangements for different problems (Beasley, 1995). Therefore, it 

has received quite less attention in the literature in comparison to subgradient 

optimization procedure. 

 

5.2.3 Lagrangian Heuristics 

 

Since Lagrangian relaxation algorithms offer a lower bound (in minimization) to 

the original problem, it is often used as a measure of efficiency of the solution 



88

obtained by a proposed heuristic. On the other hand, many researchers take the 

infeasible solution of LRP and try to convert it into a feasible solution for the original 

problem by suitable adjustments, i.e., by modifying the solution to correct its 

infeasibilities while keeping the deterioration of objective function small (Guignard, 

2002). Such a solution procedure is named “Lagrangian heuristic” (LH), since it 

begins with the solution of LRP (Luh & Hoitomt, 1993).  

 

Lagrangian heuristics are essentially problem dependent. Notice that, a LH should 

also satisfy constraints relaxed in LRP. The efficiency of the obtained schedule 

depends on the efficiency of the LH proposed. The resulting feasible solution 

constitutes an upper bound on the optimal solution. Obviously, a LH may not give an 

optimal solution in one trial. However, at each time of solving LRP through 

numerous subgradient iterations, LH takes an opportunity to transform the (possible) 

infeasible solution of various LRPs (with different infeasible solutions) to a feasible 

one for the original problem. Among the objective values corresponding to these 

feasible solutions, the best one is chosen. Therefore, it is common in practice to 

apply LH to the infeasible solutions of LRPs in each subgradient optimization 

procedure. This iterative process used to solve LRP, therefore, acts as a multi-start to 

classical heuristics (Frangioni, 2005). Surely, in such a structure, LH should give 

efficient solutions in a reasonable computation time.  

 

The success of Lagrangian relaxation comes from clever implementations of 

methods for solving LDP, with powerful LHs applied at every subgradient iteration 

(Guignard, 2003).  

Lagrangian relaxation procedure has, consequently, numerous advantages on 

solving combinatorial optimization problems:   

- It provides so tight lower bounds that one may evaluate the performance of any 

heuristic according to this lower bound.  

- It is not necessary to have special structures embedded in a problem in order to 

use Lagrangian schemes (Guignard, 2002). 



89

- It provides good starting points for heuristic algorithms. Any feasible solution 

can be derived from the solution of LRP by a Lagrangian heuristic. 

- Lagrangian bounds coupled with Lagrangian heuristics may help to prove the 

optimality if lower bound is (approximately) equal to the upper bound. 

So far, the use of IP-based solution approaches for solving combinatorial 

optimization problems has been presented and discussed. The following section 

introduces CP which is an alternative technique of modeling and solving 

combinatorial optimization problems. 

5.3 Constraint Programming and its Comparison/Integration with Integer 

Programming for Scheduling Problems 

 

For a long time, IP has been the only technique for solving combinatorial 

optimization problems. Since the end of eighties, a different and declarative 

framework, named CP, from the fields of Artificial Intelligence and logics, has been 

developed (Milano & Trick, 2004). Since then, CP has been used as an alternative 

solution method to IP for solving combinatorial optimization problems. An overview 

of CP with its main techniques can be found in Smith (1995) and Brailsford, Potts & 

Smith (1999). 

 

This section gives an overview of CP methods and its applications in 

combinatorial optimization problems giving further attention to scheduling problems. 

This section also presents a discussion on the comparison of IP and CP techniques as 

well as their simultaneous use particularly in scheduling problems. A part of this 

section can be found in Edis & Ozkarahan (2006).  

 

5.3.1 Constraint Satisfaction Problem 

 

CP is originally used to solve constraint satisfaction problems (CSPs). A CSP is 

defined by (Lustig & Puget, 2001): 

- a set of variables,  



90

- a corresponding set of domains that states the allowable values for each variable, 

- a set of constraints over the variables which restrict the allowable combinations of 

variable values.  

 

A solution to a CSP is an assignment of domain values to the variables that 

satisfies all constraints. 

 

In CSPs, variables can assume different types including: Boolean (0 or 1), integer, 

symbolic, set elements and subsets of sets. Similarly, a variety of different constraint 

types are possible (Kanet, Ahire & Gorman, 2004):  

- mathematical: completion time = start time + processing time 

- disjunctive: job i and job k must be processed at different times 

- relational: at most five jobs can be allocated at a machine 

- explicit: only jobs i, k, and v can be processed on a machine. 

 

In order to establish above constraint types, a CSP involves a wide variety of 

constraint operators such as: =, <, ≤, >, ≥, ≠, union, member, ∧ (Boolean AND), 

∨ (Boolean OR), ⇒ (implies), ⇔ (if and only if) (Kanet, Ahire & Gorman, 2004).  

 

5.3.2 How to Solve a CSP? 

 

Figure 5.2 presents a general algorithm for solving a CSP. It starts with defining 

variables and initializing their domains, and constraints to be stored in a constraint 

store. In block 2 of Figure 5.2, the domains of variables are reduced via constraint 

propagation and domain reduction algorithms (see Section 5.3.2.1). After this step, if 

a feasible solution is found, the algorithm ends (End1); otherwise, problem 

inconsistency is examined (block 4). If an inconsistency is not proven, then a search 

is performed using a search strategy for branching (block 4). Branching divides the 

main problem into a set of sub-problems by temporarily adding a constraint. 

Branching selects one of the branches and propagates all constraints again (block 2). 

If inconsistency is proven in block 4, which is referred to as a failure, the search tree 

is examined whether all sub-problems have been explored (block 5). If all branches 



91

have been fathomed, the problem inconsistency is proved; otherwise the algorithm 

backtracks (block 7) and branches to a different sub-problem (block 6).  

 

5.3.2.1 Domain Reduction and Constraint Propagation  

 

Domain reduction is the direct application of a unary constraint c(x) to the 

variable x. For instance, if x is an integer variable with domain {0,1,…,10} and c(x)

is x>6, then the domain of x becomes {7,8,9,10}. Constraint propagation is the 

propagation of changes in one variable’s domain to the domains of other ones 

connected by constraints (Lustig & Puget, 2001). Constraint propagation uses 

constraints to make arc consistency checking between domains of the variables. 

Figure 5.2 A general algorithm for solving CSPs (Kanet, Ahire & Gorman, 2004) 



92

Figure 5.3 illustrates the concept of arc consistency with two variables, i.e., 

completion time of job 1, C1, and start time of job 1, s1. Assuming that processing 

time of job 1 is equal to 3, the constraint C1 = s1 + 3 should be satisfied. The domains 

of both variables are initially given as [0,1,2,3,4,5,6]. In part (b), the constraint         

C1 = s1 + 3 reduces the domain of C1 using the domain values of s1, making arc        

C1 ← s1 consistent. In part (c), the constraint now reduces the domain of s1 using the 

updated domain values of C1, making arc C1 → s1 consistent (Kanet, Ahire & 

Gorman, 2004).            

 

Figure 5.3 Arc consistency checking and domain reduction (Kanet, 

Ahire & Gorman, 2004) 

5.3.2.2 Branching  

 

The way of branching is also important in CP search tree. A significant feature of 

CP is its ability to define problem specific search procedures. By using an efficient 

search procedure, the search tree can be pruned in the former stages providing 

magnificent speedups in computation times (Smith, 1995). One often branches by 

first selecting a variable whose domain is not yet bound (reduced to a single value). 

Selection of the variable is often based on a first-fail principle heuristic such as 

“smallest current domain first”. The selection process of variables is named “variable 

ordering”. Once a variable is selected, then one chooses which value to assign the 

selected variable from its current domain. Again this choice can be made according 



93

to a heuristic like “smallest value in the current domain first”. The process of 

selecting values is called “value ordering”.  

 

More information on search procedures can be found in Van Hentenryck, Perron 

& Puget (2000).    

 

5.3.3 Constraint Optimization Problem  

 

A constraint optimization problem (COP) is defined as a CSP with an additional 

objective function. In COPs, as soon as a feasible solution is found, a new constraint 

is added into the constraint store, requiring further solutions to have a better value. 

Thus, CP solves a series of feasibility problems constrained to improve the value of 

objective function (Focacci, Lodi & Milano, 2002). This iterative process is repeated 

until inconsistency is found and all branches are fathomed. The last solution found is 

optimum.  

 

It should be stated that pure solution algorithms designed for a COP do not utilize 

the strengths of linear relaxations and accordingly do not take the objective function 

as a guide.      

 

5.3.4 The Richness of CP for Modeling and Solving Scheduling Problems 

 

This sub-section gives the properties of CP that provides advantages on modeling 

and solving scheduling problems in comparison to IP methods. The attention is 

collected in three categories: variable indexing, the strengths of constraint 

framework, and search algorithms (Kanet, Ahire & Gorman, 2004).           

 

5.3.4.1 Variable Indexing 

 

Due to its roots on computer programming, CP has the ability of “variable 

indexing”, which allows one variable to be used as an index of other variable. This 



94

capability provides a significant reduction in the number of decision variables 

required in the formulation.  

 

For instance, assume a generalized job-machine assignment problem with n×m

0-1 decision variables, i.e., xij (i = 1, …, n, j=1, …,, m) where xij equals to one if job 

i is assigned to machine j, and zero otherwise. Although IP strictly requires such a 

variable definition, CP is able to handle this variable definition with only n decision 

variables (say machinei) which take on the index of the machine to which a job is 

assigned. The equivalence relation between IP and CP decision variables can be 

given as follows:  

xij = 1 ⇔ machinei = j

5.3.4.2 The Strengths of Constraint Framework 

 

As stated earlier, in contrast to IP, CP is not restricted to only linear constraints. 

CP allows using other types of constraints which are expressed below (Kanet, Ahir & 

Gorman, 2004): 

 

Inequalities with Boolean Variables - Let us say a scheduling application 

incorporates two decision variables for two machines, x1 and x2 which take the value 

of 1 if a job is assigned and the value of zero otherwise. Further, it is desirable to 

assign a job to either one of two machines, not both. This situation is directly 

expressed in CP by the inequality 21 xx ≠ . In IP, on the other hand, the same 

constraint can be specified as the equality 121 =+ xx in an indirect way.  

Logical Constraints - In many scheduling applications, overlapping of jobs are 

forbidden. Assume that in a two-job single machine scheduling problem, completion 

of job a must precede the start of job b, or, inversely, completion of job b must 

precede the start of job a, but not both. This situation is directly expressed in CP in 

the following form: 

(a.start ≥ b.end) ∨ (b.start ≥ a.end) 



95

On the other hand, in IP, this situation requires the use of Big-M constraints with 

an indicator variable: 

 

Sa - Cb + δ BigM  ≥ 0

Sb - Ca + (1- δ) BigM ≥ 0

where Sa and Sb denote the starting time of jobs, Ca and Cb present the completion 

times. The indicator variable δ = 1 states that job a precedes job b and δ = 0 implies 

job b precedes job a.

Global Constraints - These constraints apply across all or large subset of variables. 

For instance, in a job-machine assignment problem, it is desired to assign different 

jobs to each machine in an efficient way instead of using ≠ for all pairs of machines. 

The alldifferent( ) global constraint satisfies this situation in CP: alldifferent 

(machine). This constraint ensures that no two machines are assigned to the same 

job. It should be noted that such a global constraint has stronger propagation 

properties than a set of n inequality constraints (see Hooker, 2002). In IP, on the 

other hand, the alldifferent( ) concept can be implemented with a huge set of big-M 

constraints for every machine pair.    

Notice that, the definitions of constraints in CP are compact and more declarative 

in representing real world situations. Moreover, IP may require much more 

constraints due to the requirements of using Big-M structures and indicator variables 

especially in formulating disjunctive constraints. On the contrary, CP may handle 

such structures by using logical expressions as well as special purpose global 

constraints.   

 

5.3.4.3 Search  

 

Since CP may be seen as an incomplete solution method, introducing an efficient 

search procedure is essential to obtain quick and efficient results. CP search methods 

rely less on particular mathematical structure of the objective function and 

constraints, but more on the domain knowledge of specific aspects of the problem.  



96

Therefore, in contrast to IP, CP has the ability to define a search procedure 

concerning the variables of the program, to prune the branching tree in the earlier 

stages by giving priority to some variables.  

 

Especially for scheduling problems, one may easily embed the scheduling 

knowledge into the design of the search procedure. In the scheduling literature, there 

has been a great knowledge of theorems and algorithms for specific scheduling 

problems. Similarly, there is a wealth of knowledge in scheduling about heuristic 

rules (e.g., LPT rule for minimizing makespan for PMS problems, LFJ rule for PMS 

problems with machine eligibility restrictions etc.) with empirical evidence or 

theoretical worst case bound analyses to show they provide good results. Such 

scheduling-specific domain knowledge is relatively easy to apply within the CP 

framework. Therefore, CP may be treated as a tool that complements scheduling 

algorithmic knowledge within a search procedure. (Kanet, Ahire & Gorman, 2004) 

 

5.3.5 Comparison of IP and CP Methods for Scheduling Applications 

 

So far, IP and CP have been explained with their main characteristics. The distinct 

characteristics of two methods are summarized in Table 5.1. 

 
Table 5.1 Integer programming vs. Constraint programming  (Thorsteinsson, 2001b, Focacci, Lodi & 

Milano, 2002; Milano & Trick, 2004) 

Integer Programming (IP) Constraint Programming (CP) 

Optimization is done using objective 
function as a guide. 

No relaxations; optimization is done 
without using objective function.  

Inflexible, e.g., restricted to linear 
constraints and 0-1 variables. 

Flexible, any mix of constraints (not only 
linear inequalities as in MIP).  

All constraints are evaluated 
simultaneously.  

Evaluates the effects of constraints 
sequentially.     

Little influence on search. Problem-specific search. 



97

A number of researchers (e.g., Baptiste, Le Pape & Nuijten, 2001; Kanet, Ahire & 

Gorman, 2004; Baptiste, Laborie, Le Pape & Nuijten 2006) give comprehensive 

studies and/or reviews on the use of CP for solving scheduling problems.  

 

Kanet, Ahire & Gorman (2004) state that one must consider the below issues 

while considering whether CP is an appropriate technique for solving the scheduling 

problem at hand:   

- Since CP is more successful in reducing the domains of the variables which 

have finite domains, it is more appropriate for problems with integer (especially 

0-1) decision variables  

- CP is well suited for problems that tend to have a large number of logical, 

global and disjunctive constraints. 

- CP operates well when there are a large number of interrelated constraints each 

of which includes only a few variables. Such a constraint framework provides 

better constraint propagation and domain reduction. 

 

On the other hand, as compared to IP, the main weakness of CP when applied to a 

problem with an objective function (i.e., a COP) is that a lower bound may not exist 

(Lustig & Puget, 2001). Therefore, CP may often fail to prove optimality of the 

solutions due to absence of a lower bound.  

 

So far, a number of papers (e.g., Heipcke, 1999) have dealt with a general 

comparison of IP and CP methods. More specifically, in the field of scheduling, a 

number of researchers use CP and compare it by IP in a wide range of scheduling 

problems. Smith et al. (1997) study the progressive party problem and state that only 

CP could give results with some modifications. Darbi-Dowman et al. (1997) consider 

a set of assignment problems and find that CP performs better. Darbi-Dowman & 

Little (1998) deal with four different combinatorial problems. Their results show that 

IP is efficient for problems with good relaxations while CP behaves well for highly- 

constrained problems but lacks a global perspective (i.e., the strengths of relaxations 

in IP). Mizrak Ozfirat, Edis & Ozkarahan (2006) compare IP and CP approaches for 

a course scheduling problem and find out that CP requires not only much less 



98

number of variables in its compact formulation but also less computational time as 

compared to IP approach. Edis, Mizrak Ozfirat & Ozkarahan (2008) present a CP 

approach for a conference scheduling problem and obtain quick and efficient results. 

Ozkarahan, Edis & Mizrak Ozfirat (2009) compare IP and CP approaches for an 

operating room scheduling problem with sequence dependent preparation times 

between operations. Computational results show that IP provides relatively better 

performance, while CP gives very quick and practical solutions. Finally, in a recent 

paper, Kelbel and Hanzalek (in press) apply CP and MIP to scheduling problems 

with earliness-tardiness penalties. Numerical results show that CP performs better in 

all groups of test instances but fails to prove optimality in the given run time limit. 

 

Consequently, above works infer that IP seems to be better for problems in which 

LP relaxations provide strong bounds for the objective function, while CP is better in 

sequencing, scheduling applications and strict feasibility problems. CP is also able to 

give quick and efficient results due to its compact and declarative framework, but 

lacks the global perspective and fails to prove optimality in many cases.   

 

5.3.6 IP/CP Integration Schemes  

 

Since IP and CP have their own strengths on solving complex combinatorial 

optimization problems as discussed above, combining these two methods has been an 

important research topic during the last years in various scheduling problems. A 

number of researchers (Focacci, Lodi, & Milano, 2002; Hooker, 2000; Milano, 

Ottosson, Refalo & Thornsteinsson, 2002; Milano, 2004; Milano & Wallace, 2006; 

Wallace, 2007; Hooker, 2007) present overview of integration schemes between IP 

and CP.  

 

The most straightforward methods in integration schemes utilize the relaxation 

strength of IP methods in CP solvers. The strength of linear relaxation is related to its 

“global” view which is often omitted by CP. By combining all of the constraints of 

IP into a single linear program and inputting it to CP solvers as a global constraint 

(see Bosch & Trick, 2004); the linear relaxation is able to identify infeasibilities that 



99

are not generated by any single constraint. This makes the linear relaxation a 

powerful tool for combining IP and CP. (Milano & Trick, 2004) 

 

Such a straightforward combination of IP and CP is succeeded by a so-called 

“double modeling” as defined by Hooker (2000, 2002). This type of modeling 

requires a part of CP model constraints and a part of IP model constraints, or the 

constraints of both models as in many cases. These two distinct constraint sets are 

linked to pass domain reduction and feasibility/infeasibility information to each 

other. Such a double modeling approach provides utilizing linear relaxation of IP 

constraints to bound the possible values of uninstantiated variables. In doing so, the 

“global constraint” of the linear inequalities work together with logical constraints of 

CP to significantly improve the search. When keeping linear constraints as global 

constraints, it is important to keep only necessary ones that provide good bounds   

(Bosch & Trick, 2004). A number of optimization tools, e.g., Optimization 

Programming Language (OPL) Studio (ILOG, 2003), ECLIPSe (Wallace, Novello & 

Schimpf, 1997), provide frameworks for building combined IP/CP models by 

embedding the strengths of relaxations of IP to CP solvers. In literature, a number of 

researchers utilize double modeling in solving combinatorial problems. Rodosek, 

Wallace & Hajian (1999) combines MIP and CP, through CP Solver ECLIPSe and 

MIP Solver CPLEX, in which constraints can be handled by either one or both 

components. Jain & Grossmann (2001) present a combined IP/CP OPL model for an 

unrelated PMS problem and obtain more efficient results in comparison to IP and CP 

approaches alone. Topaloglu & Ozkarahan (2004) developed an IP/CP OPL model 

for single machine scheduling problem with sequence-dependent setups. Bosch & 

Trick (2004) apply a combined IP/CP OPL model to life design problems. Finally, 

Magatao (2005) developed a combined MIP/CP OPL model for scheduling 

operational activities in a multi-product pipeline and obtained efficient results.  

On the other hand, a number of papers (e.g., Chu and Xia, 2005; Hooker, 2005, 

2006; Jain & Grossmann, 2001; Thorsteinsson, 2001a) present integration schemes 

based on an IP/CP decomposition manner. This decomposition is performed with 

partitioning the original scheduling problem into a relaxed IP/MIP master problem 

and a series of CP scheduling sub-problems. The IP master problem includes the set 



100

of constraints with good relaxations on the objective function, while the CP sub-

problems cover the scheduling and sequencing constraints. As stated earlier, Hooker 

(2005, 2006) and Chu & Xia (2005) utilize CP technique based on an IP/CP 

decomposition manner for another class of PMS problems with resource constraints. 

Since these studies assume that additional resource constraints are related to parallel 

jobs in individual facilities (machines) rather than across all machines, it becomes 

straightforward to decompose the problem into independent single-machine sub-

problems each of which can be handled individually by a CP model. These papers 

show that the proposed decomposition algorithms reduce the solving time compared 

with directly solving by MIP. 

 

Consequently, IP and CP are two complementary approaches for solving complex 

combinatorial optimization problems. Combining these two methods has been an 

important research topic during the last years. So far, researchers have presented the 

individual strengths of IP and CP, and also have shown that the integration of both 

techniques may give better results than using two techniques separately. It has also 

been important for solving a number of real-world applications. 

 

5.4 Chapter Summary 

 

This chapter has presented the main properties of solution tools employed in the 

dissertation. First, an overview of IP technique has been given. Then, Lagrangian 

relaxation, Lagrangian heuristics and subgradient optimization procedures have been 

presented and discussed. Finally, overview of CP technique and its applications 

especially in scheduling problems have been given. Also a comparison and 

discussion of IP and CP techniques as well as their jointly use particularly in 

scheduling problems have been provided. 

 

Once a background on the solution tools employed in the dissertation has been 

given, the following three sections present the proposed solution approaches for three 

investigated problem cases and accordingly discuss computational results.  



101 
 

CHAPTER SIX 

LAGRANGIAN-BASED AND PROBLEM-BASED HEURISTIC 

APPROACHES FOR PROBLEM CASE I 

 

6.1 Introduction 

 

Machine scheduling problems are inherently difficult to solve via classical IP 

methods because of their combinatorial nature. When the additional resource 

constraints are included, scheduling problems become more complex. Since the use 

of exact methods is impractical for most real-world applications, it may be preferable 

to obtain rapid, easily applicable and near-optimal solutions. Hence, it is important to 

develop efficient heuristics for these problems. 

 

This chapter deals with the first problem case i.e., P | 21⋅res , Mi, pi=1|∑i iC .

Recall that, it is a PMS problem with one additional resource type, arbitrary resource 

size and up to two units of resource requirements. It also includes machine eligibility 

restrictions and assumes that all processing times are equal. The objective is to 

minimize total flow time. Differently from previous studies in the literature, the 

proposed research in this chapter considers machine eligibility restrictions and 

common shared resource cases together. 

 

In this chapter, two heuristics are proposed for this problem case. The first one is 

a Lagrangian-based algorithm embedded into a subgradient optimization procedure, 

which solves a series of LRPs to maximize the lower bound and accordingly adjusts 

infeasible solutions of LRPs to obtain feasible schedules in order to minimize upper 

bound. The second one, on the other hand, is an independent problem-specific 

heuristic. The research in this chapter is based on Edis, Araz & Ozkarahan (2008). 

 

The rest of this chapter is organized as follows. In Section 6.2, a 0-1 IP model for 

the considered problem is presented. Section 6.3 and Section 6.4 are devoted to 

explain proposed algorithms, i.e., a Lagrangian-based solution approach (LSA) with 

the subgradient optimization procedure and a problem-specific heuristic (PSH).



102

Computational results are given and discussed in Section 6.5. Finally, Section 6.6 

summarizes the chapter and outlines the directions for the future research. 

 

6.2 Problem Formulation 

 

This section presents an IP model for the first investigated problem case i.e.,        

P | 21⋅res , Mi, pi=1|∑i iC . Recall that, in addition to the assumptions presented in 

Section 4.2, all processing times of jobs are assumed to be equal in this problem 

case.  

 

The following notation is used within the formulation of IP model. 

 

Indices and Parameters

i: index of job strings (or dies) to be scheduled. i = 1, …, n

j: index of parallel machines. j = 1, …, m

t: index of time periods in the scheduling horizon. t= 1, …, T

resi: the amount  of operator required by job i.

b: available number of operators for the scheduling horizon. 



= otherwise. ,0

job with compatible ismachine if,1 ijAij  

Decision Variables



 −= otherwise. ,0

),1[interval at time machineonprocessed isjob if,1 ttjixijt  

Using this notation, the following IP model is developed: 

 

minimize
1

∑
=

n

i
iC

subject to: 

 
1 1

i

m

j

T

t
ijt Cxt =∑∑

= =

 i = 1, …, n (6.1)



103

∑
=

≤
n

i
ijtx

1
1 j = 1, …, m ; t = 1, …, T (6.2)

∑
=

≤
m

j
ijtx

1

1 i = 1, …, n ; t= 1, …, T (6.3)

∑∑
= =

≤
n

i
ijt

m

j
i bxres

1 1

 t= 1, …, T (6.4)

∑∑
= =

=
m

j

T

t
ijtx

1 1

1 i = 1, …, n (6.5)

∑
=

≤
T

t
ijijt Ax

1
i = 1, …, n ; j = 1, …, m (6.6)

{ }1,0∈ijtx i = 1, …, n ; j = 1, …, m ; t= 1, …, T (6.7)

The objective function minimizes total flow time working with Equations (6.1). 

Constraints (6.2) ensure that no more than one job can be assigned to any machine at 

any time interval. Constraints (6.3) guarantee that each job can be processed on only 

one machine at any time interval. Constraints (6.4) ensure that total number of 

operators assigned to jobs at any time interval is less than or equal to the available 

number of operators, b. Constraints (6.5) state that each job must be processed. 

Constraints (6.6) ensure that a job cannot be assigned to an incompatible machine. 

Finally (6.7) states that all xijt  are 0-1 variables. 

 

Clearly, this entire problem can also be tried to be solved by using some 

optimization software. However one can easily observe that such tools may not 

handle large problem sizes (e.g., 100 or more jobs) and may fail to find a solution 

(even feasible) in a reasonable time due to the complexity of the problem. This is one 

of the reasons why heuristic algorithms are developed for this problem.  

 

The proposed solution procedures, i.e., LSA and PSH, are presented in the 

following sections. 

 



104

6.3 Lagrangian-based Solution Approach (LSA) 

 

Lagrangian relaxation is a mathematical programming technique used in 

constrained optimization. Since Lagrangian relaxation algorithms offer a lower 

bound (in minimization) to the original problem, it is often used as a measure of 

efficiency of the schedule obtained by a proposed heuristic. On the other hand, as 

stated earlier, Lagrangian relaxation often generates infeasible solutions. However, 

one can easily adjust these infeasible solutions to obtain feasible ones by using a 

Lagrangian heuristic (Luh & Hoitomt, 1993).  

 

There exists a large body of literature applying Lagrangian relaxation procedures 

to different machine scheduling problems. A number of researchers have also tried to 

solve PMS problems by using Lagrangian relaxation algorithms. Luh, Hoitomt, Max, 

& Pattipati (1990) proposed a two-step optimization methodology for scheduling 

independent jobs with due dates on identical parallel machines. A Lagrangian 

relaxation technique is applied to mathematical formulation of the problem. They 

also applied a subgradient method to solve the dual problem. To obtain a feasible 

schedule, they used the resulting dual solution to form an ordered listing of jobs and 

then applied a greedy Lagrangian heuristic to assign jobs to the machines.  Luh & 

Hoitomt (1993) formulated identical parallel machine problems and solved them 

based on Lagrangian relaxation techniques. They reported that Lagrangian relaxation 

based methods obtain near-optimal solutions in reasonable computation times. 

Martello, Soumis, & Toth (1997) proposed lower bounds based on Lagrangian 

relaxation for makespan minimization on unrelated parallel machines. Yu, Shih, 

Pfund, Carlyle, & Fowler (2002) studied the unrelated parallel machines with several 

performance measures such as makespan, mean flow time, utilization etc. They 

proposed Lagrangian heuristics to obtain feasible schedules. Kedad-Sidhoum, Solis, 

& Sourd (2008) used Lagrangian relaxation to obtain tight lower bounds for the 

earliness tardiness scheduling problem on parallel machines. 

 

Although many researchers have studied the use of Lagrangian relaxation 

algorithms for PMS problems with the aims of both obtaining good lower bounds 



105

and producing efficient heuristics based on Lagrangian solution, to the best of our 

knowledge, only one study (Ventura & Kim, 2003) utilizes this technique for a 

RCPMSP. Ventura & Kim (2003) studied an earliness-tardiness PMS problem with 

additional resource constraints and unit processing times. They formulated a 0-1 IP 

model and used Lagrangian relaxation approach to obtain tight lower bounds. They 

also proposed a Lagrangian heuristic to find near-optimal solutions. The study of 

Ventura & Kim (2003), which also motivates the research in this chapter, has 

reported the efficiency of Lagrangian relaxation algorithms. However, they deal with 

identical parallel machines.  The proposed research in this sub-section, on the other 

hand, takes machine eligibility restrictions into consideration. 

 

The following sub-sections give the details of the proposed LSA.  

 

6.3.1 Lagrangian Relaxation of the Problem 

 

Lagrangian relaxation is an approach to handle computationally hard IP problems. 

Specifically, some sets of difficult constraints are dualized to create a LRP which is 

easier to solve (Ventura & Kim, 2003). In our problem formulation, constraint set 

(6.4) ensures that, at each time period, cumulative usage of additional resource is 

within the available number of units, b. This constraint set, indeed, complicates the 

entire problem and removing it converts the problem to an ordinary assignment-type 

problem. Therefore, constraint set (6.4) is dualized so that the associated LRP has a 

straightforward structure and can easily be solved. By relaxing constraint set (6.4), 

the following LRP is obtained: 

 

(LRP) ZD( λ ) = minimize [ ]∑ ∑∑∑ = =
=

=
−+ n

i ijt
m

j i

T

t
t

n

i i bxresC
1 1

1
1

λ

subject to (6.1), (6.2), (6.3), (6.5), (6.6), and (6.7). 

(6.8)

where ][ tλλ = is the set of nonnegative Lagrangian multipliers for constraint set 

(6.4).  

 



106

Lagrangian multipliers ( ][ tλλ = ) in the above formulation determine the 

tightness of the lower bound. Therefore, it is desired to find λ values that give lower 

bound as close as possible to the optimal objective value. The objective of the 

Lagrangian dual program (LDP) is then to find ][ tλλ = that makes the lower bound 

as large as possible, i.e., 

 

(LDP)      maximize      ZD(λ )

subject to   0≥λ
(6.9)

As stated in Section 5.2, to determine the optimal values of ][ tλλ = , there are two 

alternative methods: subgradient optimization procedure and multiplier adjustments. 

In the proposed solution approach, a subgradient optimization procedure is applied to 

maximize the lower bound. 

 

The subgradient optimization procedure, in general, requires an initial feasible 

solution. Therefore, first, an initial heuristic (IH) which constructs an initial feasible 

schedule is proposed. This IH provides an initial upper bound for the subgradient 

optimization procedure. Remember that, the objective of LDP is to findλ values that 

make the lower bound as large as possible. The standard subgradient optimization 

procedure aims to solve a series of LRPs, by updating λ values. On the other hand, 

LRP often generates infeasible schedules. To convert these infeasible schedules to 

feasible ones, a problem-based Lagrangian Heuristic (LH) is also developed. The 

resulting objective value of LH provides an upper bound for the original problem and 

is accordingly used to update the current upper bound. Subgradient optimization 

procedure, consequently, aims to match these lower and upper bounds updated 

through the consecutive iterations. Figure 6.1 illustrates the improvement of upper 

and lower bounds through the iterations of the subgradient optimization procedure of 

LSA. 

 



107

Optimal 
solution

Upper Bounds
(UB)

Updated through 
subgradient steps by 

using LH

Lower Bounds
(LB)

gap between 
UB and LB

Updated through 
subgradient steps by 

using LRP

Value

 
Figure 6.1 Improvements of upper and lower bounds through the iterations of the 

subgradient optimization procedure of LSA 

 

The following sub-sections give the details of IH, LH and present the general 

structure of proposed LSA embedded into subgradient optimization procedure. 

Throughout these sub-sections, the following additional notation is used: 

 

J set of jobs 

NRJ set of non-resource jobs (i.e., the jobs that require no operator during its 

process) 

n(NRJ) the number of elements in set NRJ 

NRSJt set of non-resource jobs processed at time t

RJ set of resource-jobs (i.e., the jobs that require a pre-determined amount of 

operator during its operation) 

RSJt set of resource jobs processed at time t

n(RSJt) the number of elements in set RSJt

M set of machines 

Mi eligible machine set of job i

Rt the current usage of operators at time t

NMi the total number of eligible machines that job i can be processed on 

LFJ least flexible job first 

MFJ most flexible job first 



108

UBr updated upper bound at iteration r of subgradient optimization procedure 

LBr updated lower bound at iteration r of subgradient optimization procedure 

 

6.3.2 Initial Heuristic (IH) 

 

The aim of IH is to provide an initial upper bound (i.e., UB0) for the subgradient 

optimization procedure. The basic idea of proposed IH is as follows. First, the jobs 

are arranged in decreasing order of their resource requirements and in case of ties, 

they are re-arranged by applying LFJ rule. Remember that, LFJ is a well-known 

dispatching rule for PMS problems with machine eligibility restrictions as discussed 

in Section 2.4. Then, beginning from the first time period, jobs in the arranged list 

are consecutively allocated to machines as early as possible subject to limitation on 

total number of available operators and machine eligibility restrictions. The details of 

IH algorithm are given below: 
 
Step 1. Arrange the jobs in set J in decreasing order of resi. If there are more than one 

job with same resi, arrange them in non-decreasing order of NMi, i.e., apply 

LFJ rule. It is assumed that, the jobs are indexed by their rank in the arranged 

list. Note that [i] denotes the job with index i in the arranged list. 

Step 2. Set 0=tR , for all t; 0=ijtx , for all i, j, t; set i=1, j=1, t=1.

Step 3. Assign job [i] to machine j at time t if the following conditions are satisfied: 

(i) bresR it ≤+ ][ (ii) j∈M[i] (iii)∑ =
=n

l ljtx
1

0 . Update 1][ =jtix ,

+= tt RR res[i], i=i+1 and go to Step 5. Otherwise, go to next step. 

Step 4. If j ≥ m, set t= t+1, j=1; otherwise, j=j+1. Go to Step 3. 

Step 5. If i>n, set T = max {t | 1=ijtx , i∈J, j∈Mi }, ∑ ∑ ∑= = =
= n

i

m

j

T

t ijttxz
1 1 1

0 ,STOP. 

Otherwise, set j=1, t=1, go to Step 3. 

 

Note that, feasible period length obtained by the solution of IH is also employed 

to determine length of scheduling horizon, T, to be used in LRP and PSH. 

 



109

6.3.3 Lagrangian Heuristic (LH)  

 

Since the constraint set (6.4) given in Section 6.2 is relaxed, at some time 

intervals, the cumulative usage of additional resource may exceed the available units 

of additional resource, b. In case of such a situation, the resulting schedule would be 

infeasible for the original problem. By a problem-based Lagrangian heuristic, we can 

detect infeasibilities and attempt to convert the schedule to a feasible one by suitable 

adjustments. The feasible solution obtained by such a heuristic constitutes an upper 

bound on the optimal solution. This upper bound is used to update UBr through the 

iterations of subgradient procedure.  

The proposed LH works in the following manner: At first, the current usage of 

operators at each time period, Rt and the resulting values of decision variables, ijtx ,

are taken from current LRP. If the resulting schedule of LRP is infeasible, period t

with the maximum Rt is picked. The set of resource jobs in period t, i.e., RSJt is then 

arranged by MFJ rule. Beginning from the first job in the arranged list, a suitable job 

is tried to be moved to an idle position before t subject to additional resource 

constraints and machine eligibility restrictions. If there is no feasible position for all 

jobs in the arranged list, among already assigned non–resource jobs within the 

current feasible period, a suitable job is searched to interchange with the first 

resource job in the arranged list. If again there is no suitable job that satisfies 

interchange conditions for any job in the arranged list, the first resource job is moved 

to the earliest feasible position after period t. In case of any job move or interchange 

of jobs, the corresponding Rt values are updated. Then, a new period with maximum 

current Rt value is picked and the same procedure is repeated until a feasible 

schedule is obtained. As a final step, in order to improve the objective function value 

further, non-resource jobs are tried to be moved into the earlier idle periods with 

respect to machine eligibility restrictions.  

The detailed steps of the proposed LH are given below: 



110

Step 0.  Initialization. Take the resulting usage of additional resource at each time t

(i.e., Rt) and ijtx values from current LRP.  

Step 1. If bRt ≤ for all t, go to Step 14. Otherwise, pick the period t with 

maximum Rt. If a tie occurs, pick the latest period among the alternatives as 

t.

Step 2. Arrange the jobs in set RSJt in decreasing order of NMi. (i.e., apply the MFJ 

rule. It chooses the job that can be processed on the largest number of 

machines.) Break ties arbitrarily. It is assumed that, jobs are indexed by 

their rank in the arranged list of RSJt (Note that [i] denotes the job with 

index i in the arranged list). Set i=1. 

Step 3. If i ≤ n(RSJt), set t*=1, j=1; go to next step. Otherwise, determine the 

current feasible period length, say tc, and pick current machine of job [i], 

say v∈M. Set i=1, go to Step 7. 

Step 4. If t*< t, go to next step. Otherwise, i=i+1, go to Step 3. 

Step 5. Assign job [i] to machine j at time t* if following conditions are satisfied: 

(i) bresR it ≤+ ][* (ii) j∈M[i] (iii)∑ =
=n

l ljtx
1

0* . Update 0][ =jtix , 1*][
=

jti
x ,

][itt resRR −= , ][** itt resRR += , and go to Step 1. Otherwise, go to next 

step. 

Step 6. If j ≥ m, set j=1, t*=t*+1, go to Step 4. Otherwise, j= j+1. Go to Step 5. 

Step 7. If i ≤ n(RSJt), set t**=1, go to next step. Otherwise, set i=1, j=1, t***= t+1, 

go to Step 12. 

Step 8. Arrange the jobs in **tNRSJ  by applying MFJ rule. Break ties arbitrarily. 

Again, assume that the jobs are indexed by their rank in the arranged list. 

Set k = 1.

Step 9. If t**≤ tc, go to next step. Otherwise, i = i + 1, go to Step 7. 

Step 10. If k≤ )( **tNRSJn , go to next step. Otherwise, t**=t**+1, go to Step 8. 

Step 11. Interchange job [i] on machine v at time t with job [k] on machine j at 

time t** if following conditions are satisfied: (i) j∈M[i], v∈M[k]

(ii) bresR it ≤+ ][** . Update 0][ =vtix , 1**][
=

jti
x , 0**][

=
jtk

x , 1][ =vtkx ,



111

][itt resRR −= , ][**** itt resRR += go to Step 1. Otherwise, k = k+1, go to 

Step 10. 

Step 12. If j > m, set j=1, t***= t***+1; go to next step. Otherwise, go to next step. 

Step 13. Assign job [i] to machine j at time t*** if following conditions are 

satisfied: (i) bresR it ≤+ ][*** (ii) j∈M[i] (iii)∑ =
=n

l ljtx
1

0*** . Update 0][ =jtix ,

1***][
=

jti
x , ][itt resRR −= , ][****** itt resRR += , go to Step 1. Otherwise, 

j=j+1, go to Step 12. 

Step 14. Arrange the jobs in NRJ by increasing order of their job number. It is 

again assumed that, the jobs are indexed by their rank in the arranged list. 

Set g=1.

Step 15. If g ≤ n(NRJ), say the current period of job [g] is t′ and set t′′=1, go to next 

step. Otherwise, ∑ ∑ ∑= = =
= n

i

m

j

t

t ijt
c xtz

1 1 1
 , STOP. 

Step 16. If t′′< t′, set j=1, go to next step. Otherwise, g = g+1, go to Step 15. 

Step 17. If j > m, set t′′= t′′ + 1, go to Step 16. Otherwise, go to next step. 

Step 18. Assign job [g] to machine j at time t′′ if following conditions are satisfied: 

(i) j∈M[g] (ii)∑ = ′′ =n

l tljx
1

0 . Update 1][ =′′tjgx , 0][ =′tjgx ; g=g+1, go to Step 

14. Otherwise, j = j+ 1, go to Step 17. 

 

6.3.4 Subgradient Optimization Procedure  

 

Subgradient optimization is used to both maximize the lower bound obtained from 

LRP and update the upper bound by applying LH. The flowchart of the subgradient 

optimization algorithm is presented in Figure 6.2. A similar notation of Ventura & 

Kim (2003) is used within this procedure. 

 

Beginning with the initial upper bound obtained by applying IH algorithm, the 

upper bound is consecutively improved by applying LH algorithm to the (possible) 

infeasible solutions of LRP. 

 



112

Figure 6.2 Subgradient optimization procedure 

TERMINATE 
the procedure  

YES 

YES 

Set initial values for Lagrangian multipliers, iteration counter and bounds: 0=tλ for 

all t, r =1, 00 =LB , 00 zUB = ; where 0z is obtained from IH, repeat = 0, π1 = 2

Solve LRP with the current set of multipliers ( r
tλ ). Let r

ijtx be the solution 

values and ZD( rλ ) the optimal objective function value of LRP.  

Update the lower bound: { })(,max 1 r
D

rr ZLBLB λ−= .

LRP generates a feasible solution 

YES NO 
Generate a feasible solution r

ijtx with 

objective value )( r
ijtxz from LH. 

Set r
ijtx = r

ijtx .

Update the upper bound: { })(,min 1 r
ijt

rr xzUBUB −=

<− )( rr LBUB ε

NO 

Calculate the subgradients at the current solution: 
 ∑ ∑= = −= n

i
r
ijt

m
j i

r
t bxresG 1 1 )( ; t= 1, …, T 

STOP
(Results are optimal) 

Update the tλ using: { }r
t

rr
t

r
t GT+=+ λλ ,0max1 t= 1, …,  T 

Set the iteration number (r = r + 1) 

Determine the step size : 
2

1t)/( ∑ =−= T r
t

rrrr GLBUBT π

)(&)( 11 −− == rrrr LBLBUBUB

repeat = repeat +1 

repeat < 10
NO 

NO 

NO 
πr < 0.0005

repeat = 0   
2/rr ππ =

YES 

YES 



113

As stated earlier, subgradient procedure is terminated when the π parameter 

approaches to a very small value. After a preliminary computational test, it was 

found that the best convergence criterion is to set the initial value of π to 2 (i.e., 

21 =π ). If rLB and rUB  do not improve during 10 subgradient iterations, the value 

of rπ is divided by two. If the gap (i.e., rr LBUB − ) becomes less than pre-defined 

error ε ( ε =1), the subgradient procedure is terminated. Since the value of objective 

function should be integer, 1<− rr LBUB indicates that the proposed LSA 

converges to an optimal solution. If the procedure is not stopped with the error, it is 

terminated when rπ gets smaller than 0.0005. 

 

Reconsider Figure 6.1, which illustrates the improvements of updated lower and 

upper bounds through the iterations of the subgradient optimization procedure. 

Assume that the optimal solution is somewhere on the vertical line. Through the 

subgradient iterations, lower bound is improved by the use of updated Lagrange 

multipliers ( tλ ) within the corresponding LRP. Accordingly, upper bound is 

(possibly) improved by applying LH to the resulting infeasible schedule of distinct 

LRPs in each subgradient optimization procedure. Consequently, a small gap 

between upper and lower bounds is expected. Surely, the resulting upper bound is 

optimal if the absolute gap gets less than ε.

6.4 Problem Specific Heuristic (PSH) 

 

PSH is an alternative solution approach to the considered problem and aims to 

find near-optimal solutions (i.e., upper bound). The basic idea of PSH is as follows. 

The jobs are separated into two sub-sets: set of non-resource jobs (NRJ) and set of 

resource-jobs (RJ). Beginning from the first time period, at first, the resource jobs are 

arranged in non-decreasing order of resource requirements and then allocated to 

machines with respect to limitations of the total number of available operators and 

eligible machine set of each job (Mi). Then, the non-resource jobs are arranged with 

LFJ rule and allocated to machines in a similar manner.  

 

The details of PSH algorithm are provided below. 



114

Step 1. Set 0=ijtx for all i, j, t; 0=tR , for all t. Arrange the jobs in set RJ in non-

decreasing order of resi. If there are more than one job with same resi, arrange 

them with LFJ rule. It is again assumed that, the jobs are indexed by their 

rank in the arranged list. Remember that [i] denotes the job with index i in the 

arranged list. Set i=1, j=1, t=1.

Step 2. Assign job [i] to machine j at time t if the following conditions are satisfied: 

(i) bresR it ≤+ ][ (ii) j∈M[i]. (iii) ∑ =
=n

l ljtx
1

0 . Update 1][ =jtix ,

][itt resRR += , i=i+1 and go to Step 4. Otherwise, go to next step. 

Step 3. If j ≥ m, t = t + 1, j = 1; otherwise, j=j+1. Go to Step 2. 

Step 4. If i > n(RJ), go to next step. Otherwise, j=1, t=1, go to Step 2. 

Step 5. Arrange the jobs in NRJ with LFJ rule. It is again assumed that, the jobs are 

indexed by their rank in the arranged list. Set i=1, j=1, t=1.

Step 6. Assign job [i] to machine j at time t if the following conditions are satisfied: 

(i) j∈M[i] (ii)∑ =
=n

l ljtx
1

0 . Update 1][ =jtix , i=i+1, go to Step 8. Otherwise, go 

to next step. 

Step 7. If j ≥ m, t= t+1, j=1; otherwise, j=j+1. Go to Step 6. 

Step 8. If i > n(NRJ), ∑ ∑ ∑= = =
= n

i

m

j

T

t ijt
PSH xtz

1 1 1
 , STOP.  Otherwise, j=1, t=1, go to 

Step 6. 

 

6.5 Computational Results 

 

The LSA and PSH given in the previous sections are coded in OPLScript (ILOG, 

2003). OPLScript is a script language that composes and controls OPL models. OPL 

Studio 3.7 (ILOG, 2003) is the development environment of OPLScript. All 

generated LRPs are implemented in OPL Studio 3.7 using a Pentium D 3.4 GHz 4 

GB RAM computer. 

 

In experimental studies, two levels of processing flexibility for the machines are 

determined using the process flexibility index (FP) defined by Vairaktarakis & Cai 

(2003) which is discussed in Section 2.4. Remember that FP gives a measure of 



115

flexibility of machines in terms of machine eligibility restrictions. It takes values 

between 0 and 1, where FP = 0 indicates that each job is able to be processed on only 

one machine and FP = 1 describes a fully flexible case that each job is able to be 

processed on all machines. For all test instances, the cases that have FP higher than 

0.65 are defined as high processing flexibility cases, whereas the others that have a 

FP less than 0.35 are considered as low processing flexibility cases.  

 

The number of jobs is taken as 50 and 100. The number of machines is selected as 

three, five and eight with respect to number of jobs. The number of operators 

available is taken as one, two and three with respect to the number of machines. For 

each combination of parameters, 30 test problems were solved.   

 

Remember that, three process types are defined in Chapter 4. Firstly, a job may 

require exactly one operator along its processing (i.e., resource requirement of the 

job is one). Secondly, one operator can deal with two machines simultaneously (i.e., 

resource requirement of the job is one-half). And finally, no operator is required 

during the processing (i.e., resource requirement of the job is zero). Therefore, for all 

test problems, operator requirements of jobs are generated with equal probability for 

the values 0, 0.5 and 1. Note that, for the computational purposes, in solving LRPs, 

operator requirements have been made integer by multiplying them by two. The 

number of operators has also been accordingly increased. 

 

The detailed results of LSA and PSH related to all 240 test problems are given in 

Appendix B. A summary of these results are presented in Table 6.1. To evaluate the 

performance of proposed algorithms, we gathered average number of iterations, CPU 

time, average and maximum gap percent and number of optimal solutions for LSA; 

and average and maximum gap percent values with number of optimal solutions for 

PSH. Note that CPU time of PSH is negligible. 

 

It should also be highlighted in Table 6.1 that the LSA gives solutions within 

reasonable times for all cases.  

 



116

Table 6.1 Computational results 

Lagrangian-based Solution Approach 
(LSA) 

Problem Specific 
Heuristic (PSH) n m

# of
Oper. 

(b)

Proc. 
Flex. 
(FP) Avg. #     

of Iter.
Avg. 

Time(s) 
Max.% 

(UB-LB)/LB
Avg.% 

(UB-LB)/LB
Max.% 

(UB-LB)/LB
Avg.% 

(UB-LB)/LB
Low 148.70 21.86 2.92 0.97 (9) 11.25 2.70 (4) 

3 1
High 167.87 33.77 4.61 1.91 (3) 4.57 1.00 (11) 
Low 88.40 9.33 1.00 0.26 (20) 11.11 2.12 (3) 

50 
5 2

High 120.50 19.06 1.02 0.35 (16) 1.02 0.42 (13) 
Low 167.93 95.97 1.09 0.63 (0) 3.69 1.03 (1) 

5 2
High 162.83 132.33 1.59 1.03 (1) 1.71 0.34 (6) 
Low 150.73 88.40 1.09 0.52 (4) 3.58 0.81 (1) 

100 
8 3

High 144.00 121.68 1.00 0.47 (7) 1.10 0.27 (15) 

In Table 6.1, the numbers in parentheses represent the number of times that the 

algorithms achieved optimal solutions. In fact, LSA is able to prove optimality 

within its subgradient procedure when the difference between updated upper bound 

and updated lower bound becomes less than ε =1. The results of PSH are evaluated 

by using the lower bounds obtained from the subgradient procedure of LSA. Similar 

to LSA, the solution of PSH is proved to be optimal if the gap between its objective 

value and the corresponding lower bound is less than ε =1. 

 

Although the aim of proposed heuristics is to reach near-optimal solutions, LSA 

and PSH attained optimal solutions in 60 and 54 test problems, respectively. When 

both heuristics are considered together, we reached optimal solutions in 85 out of 

240 test problems. 

 

The computational results show that LSA gives good results based on average 

percent deviation which represents the mean gap percent between the lower bound 

and upper bound obtained by subgradient optimization procedure. It should also be 

noted that subgradient optimization procedure produces very tight lower bounds for 

almost all cases. The proposed LSA attained less than 1% deviation from the optimal 

solution in 169 problems out of 240 test problems. The average gap percent of LSA 

for all problems is 0.77. PSH also gives good results. It attained less than 1% 

deviation from the optimal solution in 157 out of 240 test problems. The average 

percent deviation of PSH for all problems is 1.08.  



117

Figure 6.3 compares the LSA and PSH in terms of average gap percent. It shows 

that LSA gives relatively better results in case of low processing flexibility 

environments. It ensures less than %1 deviation in 80.00% of test problems with low 

flexibility, while reaches less than 1% deviation in 60.83% of test problems with 

high flexibility. On the contrary, PSH provides relatively better results in case of 

high processing flexibility. While the number of problems that PSH reached less than 

1% deviation is 60 (50%) among 120 problems with low flexibility, it provides less 

than %1 deviation in 97 (80.33%) out of 120 problems with high process flexibility. 

These results show that LSA provides superior performance than PSH in low 

flexibility cases whereas PSH performs better when the process flexibility is high.  

 

0

0.5

1

1.5

2

2.5

3

50
-3

-1
-L

ow

50
-5

-2
-L

ow

10
0-

5-
2-

Lo
w

10
0-

8-
3-

Lo
w

50
-3

-1
-H

ig
h

50
-5

-2
-H

ig
h

10
0-

5-
2-

H
ig

h

10
0-

8-
3-

H
ig

h

Experimental Points (n - m - b - F P )

A
vg

.G
ap

%

LSA

PSH

Figure 6.3 Comparison of average gap % in experimental points 

 

Figure 6.4 compares the LSA and PSH in terms of maximum gap percent. As can 

be seen, the variance of PSH is very high especially in low processing flexibility 

cases. On the other hand, LSA produces more stable solutions in both low and high 

flexibility cases. The maximum gap percent values of LSA are significantly smaller 

than the ones of PSH in low processing flexibility cases, whereas it cannot be seen 

any remarkable difference in high flexibility cases. 

 



118

0

2

4

6

8

10

12

50
-3

-1
-L

ow

50
-5

-2
-L

ow

10
0-

5-
2-

Lo
w

10
0-

8-
3-

Lo
w

50
-3

-1
-H

ig
h

50
-5

-2
-H

ig
h

10
0-

5-
2-

H
ig

h

10
0-

8-
3-

H
ig

h

Experimental Points (n - m - b - F P )

M
ax

.G
ap

%
LSA

PSH

Figure 6.4 Comparison of max gap % in experimental points 

 

A significant issue in Lagrangian based solution methods is the convergence of 

the upper and lower bounds. Figure 6.5 illustrates a convergence representation of a 

sample instance (i.e., n = 50, m =3, b = 1, FP = Low-Sample No.1, see Appendix B).  

 

375

425

475

525

575

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Subgradient Iterations

O
bj

ec
tiv

e
V

al
ue

value of lower bounds
value of updated upper bounds

Figure 6.5 Convergence representation of a sample instance (50-3-1-Low-Sample 1) 



119

As seen from Figure 6.5, the lower bound converges its approximate best value in 

about 70 iterations; however upper bound is able to converge the optimal solution in 

125th iteration where the optimality of the resulting solution is also proved. Sample 

convergence graphics related to other seven sub-groups of test problems are 

presented in Appendix C. These figures show that the subgradient procedure 

provides tight lower bounds within a reasonable number of iterations and accordingly 

in a reasonable computation time. 

 

6.6 Chapter Summary  

 

This chapter has addressed the first research problem in this dissertation. At first, 

the 0-1 IP model of the problem is constructed. Then a Lagrangian-based solution 

approach (LSA) that involves an IH, a LH and a subgradient optimization procedure 

to obtain tight lower bounds and near optimal solutions is developed. Also, a 

problem specific heuristic (PSH) is independently proposed. By means of randomly 

generated instances of the problem, it is shown that the proposed algorithms produce 

not only very tight lower bounds but also efficient results with a small optimality 

gap. LSA gives superior results in low flexible machine environments, while PSH is 

relatively better in high flexible ones. 



120 
 

CHAPTER SEVEN 

INTEGER PROGRAMMING (IP), CONSTRAINT PROGRAMMING (CP) 

AND IP-CP COMBINED APPROACHES FOR PROBLEM CASE II 

 

7.1 Introduction  

 

This chapter deals with the second problem case i.e., P | 21⋅res , Mi, pi| Cmax.

Recall that it is a PMS problem with one additional resource type, arbitrary resource 

size and up to two units of resource requirements. It also includes machine eligibility 

restrictions and allows arbitrary processing times. The objective is to minimize 

makespan. Different from previous studies in the literature, this problem case 

considers machine eligibility restrictions and common shared resource cases (i.e., 

machine operators shared by all machines) together. 

 

In fact, a common way to represent a machine scheduling problem is to model it 

with IP/MIP. One of the methods to obtain the optimal solution of IP/MIP models is 

branch and bound algorithm (B&B). However, machine scheduling problems are 

inherently difficult to solve via classical B&B methods because of their 

combinatorial nature. Although it is possible to find optimal solutions via IP/MIP 

methods, it may require an enormous amount of computation time with the 

increasing problem size. When the additional resources are included, the problems 

become more difficult to solve via classical IP methods. A number of papers (e.g., 

Daniels, Hoopes & Mazzola, 1996, 1997; Daniels, Hua & Webster, 1999; Edis, Araz 

& Ozkarahan, 2008; Ventura & Kim, 2003) present IP/MIP models of different PMS 

problems with resource constraints. However, most of these papers use heuristic or 

meta-heuristic approaches to solve the problems.  

 

As discussed earlier, in recent years, constraint programming (CP) has been used 

as an alternative solution method to the combinatorial optimization problems. CP is a 

suitable technique for sequencing and scheduling applications, strict feasibility 

problems and highly constrained problems (Darbi-Dowman & Little, 1998; Jain & 

Grossmann, 2001; Lustig & Puget, 2001; Smith et al., 1997). However, CP cannot



121

provide a global view on the problem since it does not utilize the advantage of 

relaxations.  

 

Since IP and CP have their own strengths on solving complex combinatorial 

optimization problems, combining these two methods has been an important research 

topic during the last years for various scheduling problems (e.g., Chu & Xia, 2005; 

Hooker, 2005, 2006; Jain & Grossmann, 2001; Thorsteinsson, 2001a). It has also 

been important for solving a number of real-world applications, which cannot be 

solved by one of the approaches alone (Hooker, 2005). To the best of our knowledge, 

only Hooker (2005, 2006) and Chu & Xia (2005) utilize this technique based on an 

MIP/CP decomposition manner for a different class of scheduling problems with 

resources. These papers show that the proposed decomposition algorithms reduce the 

solving time in comparison to directly solving by MIP. Since these studies assume 

that additional resource constraints are related to parallel jobs in individual facilities 

(machines) rather than across all machines, it becomes straightforward to decompose 

the problem into independent single-machine sub-problems each of which can be 

handled individually by a CP model.  

 

In this chapter, IP, CP and combined IP/CP models are developed for the second 

problem case. Since the resource constraints are across for jobs through all machines, 

our problem should be handled with a global model including all constraints. 

Therefore, rather than a decomposition approach as given by Hooker (2005, 2006) 

and Chu & Xia (2005), we propose a combined IP/CP OPL model by embedding an 

efficient search procedure into it. This IP/CP combined model is an instance of 

“double modelling” approach (Hooker, 2002) that is an exact combination of IP and 

CP models with linking variables and constraints.  To the best of our knowledge, no 

study so far has proposed a combined IP/CP model for RCPMSPs with a common 

additional resource to minimize the makespan objective. Furthermore, the use of 

problem-based search procedures has not been adapted to the applications of CP and 

combined IP/CP approaches in the earlier RCPMSP studies. The proposed research 

presented in this chapter also analyzes the effect of machine eligibility restrictions in 

terms of process and balance flexibility measures for the investigated problem case.   



122

The rest of this chapter is organized as follows. The proposed three models, IP, 

CP and IP/CP combined OPL models are presented in Section 7.2. Section 7.3 gives 

a discussion of CP-based search procedures and proposes two efficient problem-

based search procedures including special characteristics of the investigated problem 

case. Section 7.4 gives implementation issues and computational results. Finally, 

Section 7.5 summarizes the proposed research in this chapter. 

 

7.2 Proposed Models 

 

The following sub-sections propose three optimization models for the considered 

RCPMSP: IP, CP and IP/CP combined OPL model.  

 

7.2.1 Integer Programming (IP) Model  

 

The availability of additional resource turns our attention to the use of time-

indexed formulations. The IP formulation is based on time-discretization where time 

is divided into equal time periods (or time slots), where period t starts at time t and 

ends at time t + 1. Recall that T denotes the scheduling horizon, thus we consider 

time periods 0, 1, 2, …, T-1. At each discrete time slot, the total use of additional 

resource(s) should not exceed the available capacity. Hooker (2005, 2006) has stated 

that discrete time formulations are not only more straightforward but also perform 

more efficient than the continuous time formulations.  

 

The following IP model is developed for the investigated problem case.  

Indices:

i index of jobs (or dies) to be scheduled,  i = 1, …, n

j index of parallel machines,  j = 1, …, m

t index of time periods in the scheduling horizon,  t= 0, 1, …, T-1

Parameters:

resi the amount of operator required by job i.

b available number of operators for the scheduling horizon. 



123

pi processing time of job i.

Mi eligible machine set of job i.

Decision Variables:





=
otherwise. ,0

.at time machineonprocessing its begins jobif,1 tji
xijt  

Cmax     makespan, i.e., the maximum completion time of all jobs. 

maxmin   C

subject to:   

max

1

0
)( Cptx

iMj
i

T

t
ijt ≤+∑ ∑

∈

−

=
i = 1, …, n (7.1)

1
1

1

},0max{
≤∑ ∑

=

−

−=

n

i

t

pts
ijs

i

x j = 1, …, m ; t = 1, …, T (7.2)

∑ ∑
∈

−

=
=

iMj

T

t
ijtx 1

1

0
i = 1, …, n (7.3)

∑ ∑ ∑
= ∈

−

−=
≤

n

i Mj

t

pts
ijsi

i i

bxr
1

1

},0max{
es t = 1, …, T (7.4)

{ }1,0∈ijtx i = 1, …, n ; j∈Mi ; t = 0, …, T-1 (7.5)

The objective function aims to minimize makespan working with Constraints 

(7.1). Constraints (7.2) make sure that no more than one job can be assigned to any 

machine at any time period. Constraints (7.3) ensure that each job should certainly be 

processed on one of its eligible machines. Constraints (7.4) state that total number of 

operators assigned to machines at any time period is less than or equal to the 

available number of operators, b. Finally, all ijtx are 0-1 variables as given in (7.5). 

 

Van den Akker, Hurkens & Savelsbergh (2000) have stated that time-indexed 

formulations provide strong bounds by the use of its linear programming (LP) 

relaxation in comparison to any other alternative MIP formulations. Furthermore, 



124

when side constraints are not tight, (e.g., in case of larger values of b in Constraints 

(7.4)), the problem can be more effectively solved with IP solvers utilizing problem 

dependent relaxations and cutting planes. 

On the other hand, time-indexed formulations have a disadvantage with their size. 

The above formulation includes at most n·m·T decision variables and 2·n + (m+1)·T

constraints. As the problem size gets larger, the solution time and the memory 

requirements will be larger.  

 

A significant issue in solving combinatorial optimization problems is to find out 

tight lower bounds on the objective function. For the considered problem, we may 

use three lower bound schemes:  

- machine load-based static lower bound (LBmach)

- operator load-based static lower bound (LBoper)

- machine load-based dynamic lower bound (LBmach-dynmc)

The definition of first lower bound, LBmach, comes from the classical PMS 

literature. Removing the machine eligibility constraints, (i.e., allowing all machines 

to process all jobs) and allowing the preemption of jobs, the following formulation, 

originally defined by McNaughton (1959), can be used to calculate LBmach:








=
==

∑ }{max,/max
,...11

ini

n

i
imach pmpLB (7.6) 

 The second lower bound, LBoper, is related to the additional resource (i.e., 

operator). The average load per operator cannot exceed the final makespan value. 

Therefore, operator-load based lower bound is calculated as follows: 

bpresLB
n

i
iioper /)(

1
∑

=

= (7.7) 

These two lower bounds are static and independent of IP formulation given above. 

Therefore, maximum of these two lower bounds, denoted as LB1, is considered as a 

lower bound on the makespan:    



125

},max{1 opermach LBLBLB = (7.8) 

Finally, the idea behind the machine load-based dynamic lower bound is as 

follows: The IP formulation given above also aims to determine job-machine 

assignments during its solution process. Therefore, sum of processing times of jobs 

assigned to any machine cannot exceed the final makespan value. The load of each 

machine j is then expressed as follows: 

∑∑
=

−

=

=
n

i
i

T

t
ijtj pxLBM

1

1

0

j = 1, …, m (7.9) 

Accordingly, the maximum load among all machines determines machine-load 

based dynamic lower bound: 

jmjdynmcmach LBMLB
,...2,1

max
=− = (7.10) 

Notice that, LBmach-dynmc contains decision variables xijt whose values are to be 

determined during the solution process of IP formulation. This is why we call it as a 

dynamic lower bound.  

These two lower bound schemes are integrated into the entire IP model with the 

following constraints:  

 

max1 CLB ≤ (7.11)

∑∑
=

−

=
≤

n

i

T

t
iijt Cpx

1
max

1

0
j = 1, …, m (7.12)

 

The computational runs show that adding these two constraints into the entire IP 

model provides very tight lower bounds and reduces the computation time 

significantly. However, the huge number of variables and constraints still may not 

allow us to reach the optimal and/or efficient results in a reasonable time.  

 



126

7.2.2 CP Model 

 

With the introduction of CP, a number of CP languages have been arisen. The 

formulation of CP model, in contrast to IP model, is highly dependent on the CP 

package used to model the problem because of the differences in constructs available 

in various modelling languages (Jain & Grossmann, 2001). In this study, ILOG's 

OPL Studio 3.7 (ILOG, 2003), which is originally developed by Van Hentenryck 

(1999), is used as the modelling language. This language supports the declarative 

representation of optimization problems, and includes the facilities to use both IP and 

CP.  

 

A number of specialized scheduling objects are embedded into the OPL modeling 

language. A specialized solver, i.e., Scheduler 6.0 (ILOG, 2005c) is constructed to 

solve the problems that incorporate special scheduling objects. In this sub-section, 

the structures that have been used to model our investigated problem will be 

described. First, a special object “scheduleHorizon” is used to limit the domain of the 

search space. With this special object, the schedule length, T, is denoted. The basic 

OPL modeling framework involves a set of activities (i.e., jobs) that need to be 

completed using a set of resources (e.g., machines, operators, tools etc.). By default, 

an activity indicates a decision variable with three sub-variables, i.e., its starting 

time, its duration and its ending time, together with the constraints linking them. The 

set of jobs in our RCPMSP corresponds to the set of activities in this framework.  

 

In OPL, a number of different resource types are available to capture the nature of 

the problem. A unary resource is a resource that cannot be shared by two activities at 

any time and a discrete resource is a resource that can be shared by several activities 

(ILOG, 2003). For the investigated problem, parallel machines can be modelled as 

unary resources (i.e., set of unary resources, S); whereas, operators can be treated as 

a discrete resource (defined as OPR with capacity of b) which can be shared by 

several activities. Total number of operators required by jobs at a given time cannot 

exceed the available number of operators, b.



127

The keyword “precedes” matches the ordinary precedence constraints. For 

example, if activity a should come before activity b, then the corresponding 

constraint with this keyword may simply be expressed as “a precedes b” which is 

equivalent to “a.end ≤ b.start”. 

 

Similarly, another specific OPL object “requires” is the assurance of the 

disjunctive constraint that only one activity can be processed on a unary resource. 

Assume that a single machine (i.e., unary resource, Machine) should process n jobs, 

then the expression “i requires Machine, i = 1, 2,…n” simply states that only one 

activity can be processed on unary resource Machine at a given time. Below 

disjunctive constraints are equivalent to this expression: 

(i.start ≥ i'.end) ∨ (i'.start ≥ i.end)     i = 1, 2,…n-1, i' = i+1, i+2,…n.

Some other special objects are also available in OPL. More information is 

provided in Van Hentenryck (1999). OPL’s special scheduling objects may 

contribute to the relatively good performance of CP with the built-in special purpose 

constraint propagation algorithms providing a more efficient domain reduction (see 

Kanet, Ahire & Gorman, 2004).  

 

Using special constructs of OPL, the proposed CP model can be written as 

follows: 

 
Minimize            makespan.end 

subject to:    

i.duration = pi i = 1, …, n (7.13)

i precedes makespan i = 1, …, n (7.14)

i requires S i = 1, …, n (7.15)

i requires (resi) OPR i = 1, …, n (7.16)

activityHasSelectedResource(i, S, sj) ⇔ assigni = j ji,∀ (7.17)



128

assigni ≠ j ji,∀ | iMj ∉ (7.18)

LB1 ≤ makespan.end (7.19)

∑
=

≤=
n

i
ii endmakespanpjassign

1
.)( j = 1, …, m (7.20)

assigni∈S i = 1, …, n (7.21)

 

The objective function is defined as minimizing the completion time of dummy 

activity makespan. The duration of each job is defined with Equations (7.13). 

Constraints (7.14) ensure that completion time of any job should be smaller than the 

starting time of makespan activity. Constraints (7.15) enforce that job i needs a unary 

resource S (i.e., machines). Constraints (7.16) state that job i requires resi units of 

discrete resource, OPR (i.e., operators). As explained earlier, precedes and requires 

are special OPL constructs. Constraints (7.17) use another OPL function 

activityHasSelectedResource( ) that returns a value of true or false. These 

constraints ensure that if job i is processed using the unary resource corresponding to 

machine j (sj∈S), then the subscript variable assigni is equal to j. Note that, assigni is 

a variable subscript and presents the machine selected to process job i. Constraints 

(7.18) state that if machine j is not compatible with job i, (i.e., iMj ∉ ), the subscript 

variable, assigni cannot be equal to j. Constraint (7.19) and Constraints (7.20) 

correspond to lower bound schemes (i.e., LB1, and LBmach-dynmc) given in (7.11) and 

(7.12) respectively. Note that, )( jassigni = in (7.20) is a higher-order constraint 

which is widely utilized in most CP formulations. It returns true (1), when the 

equality is satisfied and returns false (0) otherwise. For each machine, sum of 

processing time of all jobs that satisfies the equality gives the load of that machine 

and accordingly gives a lower bound on the makespan. These two extra constraints 

strengthen the constraint propagation and accelerate the domain reduction process. 

Finally, (7.21) states that assigni takes values from the set of machine indices.          

 

Notice that CP formulation given above, in comparison to IP model, has much 

fewer variables and constraints due to its declarative and compact framework. 



129

As stated earlier, CP has an advantage on highly constrained problems. When 

side constraints complicate a problem (i.e., in case of fewer number of operators, b), 

CP can handle them and actually use them for an efficient constraint propagation and 

domain reduction (see e.g., Smith et al., 1997; Darbi-Dowman & Little, 1998; 

Focacci, Lodi & Milano, 2002; Milano & Trick, 2004). Another significant 

advantage of CP is its ability to define problem-based search procedures. Using an 

efficient search procedure in CP, we can prune the search tree in the earlier stages, 

and reach feasible solutions earlier. CP-based search procedures are discussed in 

Section 7.3. On the contrary, CP does not have a global view on the model and 

cannot utilize the advantage of relaxations. Optimization is tried to be done without 

using the objective function as a guide. 

 

The following section presents a combined IP/CP OPL model (Van Hentenryck, 

1999) that utilizes the complementary strengths of both IP and CP models. 

 

7.2.3 Combined IP/CP OPL Model 

 

Ideally, we would like to combine the strength of IP to handle the optimization 

part of the problem by using LP relaxation and the power of CP to find quick feasible 

solutions by using its better declarative framework (Jain & Grossmann, 2001). In 

such a combined approach, while the CP part of model focus on feasibility and tries 

to give quick feasible schedules, the IP part of the model tries to prove whether these 

feasible schedules are optimal (or not) using linear relaxation to produce lower 

bounds at each node of the search tree (Jain & Grossmann, 2001). 

 

A combined IP/CP OPL model, (i.e., a double modelling framework discussed in 

Section 5.3.6) involves both IP and CP modelling variables and constraints. In 

addition, a number of linking constraints that present equivalence relations between 

the IP and CP variables are established (Van Hentenryck, 1999). Even though the 

size of the combined model is larger, it may still perform better because fewer nodes 

may have to be explored (Jain & Grossmann, 2001). The combined IP/CP model 



130

proposed in this section has been motivated by the work of Jain & Grossmann 

(2001). The combined IP/CP OPL model for our RCPMSP can be written as follows: 

 
maxmin   C with linear relaxation 

subject to:    

max

1

0
)( Cptx

iMj
i

T

t
ijt ≤+∑ ∑

∈

−

=
i = 1, …, n

1
1

1

},0max{
≤∑ ∑

=

−

−=

n

i

t

pts
ijs

i

x j = 1, …, m ; t = 1, …, T

∑ ∑
∈

−

=
=

iMj

T

t
ijtx 1

1

0
i = 1, …, n

∑ ∑ ∑
= ∈

−

−=
≤

n

i Mj

t

pts
ijsi

i i

bxr
1

1

},0max{
es t = 1, …, T

max1 CLB ≤

∑∑
=

−

=

≤
n

i

T

t
iijt Cpx

1
max

1

0
j = 1, …, m

{ }1,0∈ijtx i = 1, …, n ; j∈Mi ; t= 0, …, T-1 

 

(7.22)

 
i.duration = pi i = 1, …, n

i precedes makespan i = 1, …, n

i requires S i = 1, …, n

i requires (resi) OPR i = 1, …, n

activityHasSelectedResource(i, S, sj) ⇔ assigni = j ji,∀

assigni ≠ j ji,∀ | iMj ∉

LB1 ≤ makespan.end 

∑
=

≤=
n

i
ii endmakespanpjassign

1
.)( j = 1, …, m

assigni∈S i = 1, …, n

(7.23)

 
1.,, =startiassigni i

x i = 1, …, n

makespan.end = Cmax 
(7.24)



131

This model is formulated by using the guidelines on basic framework of combined 

model structure in OPL. In this manner, the combined IP/CP model is an exact 

combination of the IP and CP models that were presented in the earlier sections. The 

solution algorithm for a combined IP/CP model primarily uses the CP solver. 

However, at each CP node, an extra LP relaxation, consisting of all the linear 

constraints in the combined model, is solved to obtain bounds for the objective 

function (Van Hentenryck, 1999). The objective function of the problem is the same 

as the one in the IP model. However, note that the objective function uses the 

keyword with linear relaxation. This keyword is necessary, since the model is no 

longer a pure integer program (e.g., it contains CP constraints) (Van Hentenryck, 

1999).  It makes sure that OPL uses the linear relaxation of all linear constraints on 

the objective function to determine a lower bound that can be used to prove 

optimality (ILOG, 2003). Constraint set (7.22) includes all IP constraints. Constraint 

set (7.23) includes all the constraints from the CP model. Finally, constraint set 

(7.24) links the IP and CP variables. The first constraint set in (7.24) links the ijtx

decision variables of IP with the assigni and i.start variables of CP for each job i. The 

second constraint gives the equivalence relations between the IP variable Cmax and 

CP variable makespan.end in order to make the constraint propagation stronger.   

 

In fact, there is no need to use all of the IP constraints in the combined IP/CP 

model. A common way is to keep the constraints which provide strong bounds to the 

objective function. However, our preliminary computational results show that 

keeping all of the IP constraints in the combined model provides best results in terms 

of constraint propagation and domain reduction. Therefore, all IP constraints are kept 

in the above formulation.      

 

CP and IP/CP combined models may obtain more efficient results by introducing 

search procedures into the models. The following section discusses the use and 

necessity of search procedures in CP and proposes problem-based search procedures 

to be used in CP and IP/CP combined models.  

 



132

7.3 CP-based Search Procedures 

 

As stated earlier, by using an efficient search procedure in hard combinatorial 

optimization problems, we can prune the search tree in the earlier stages, and reach 

feasible solutions in advance (ILOG, 2003; Van Hentenryck, Perron & Puget, 2000). 

Henceforth, incorporating special-purpose search algorithms in the model may 

provide significant improvements in performance. OPL Studio 3.7 offers the ability 

to define search procedures in CP and IP/CP combined models.  

 

A search procedure in OPL starts with the keyword search. It often consists of 

assigning values to variables. Such an assignment procedure generally chooses which 

variable to instantiate next (variable ordering) and then chooses which value to 

assign to the selected variable (value ordering). This process is repeated until all 

variables are instantiated. It is often critical to choose carefully which variable to 

instantiate next, since this choice specifies the size and the shape of the search tree 

(ILOG, 2003). Typically, variable and value ordering are implemented in OPL using 

the forall and tryall instructions, respectively (Van Hentenryck, Perron & 

Puget, 2000).  

 

On the other hand, several built-in search procedures are available in OPL. 

Hooker (2005, 2006) states that setTimes (ILOG, 2003) and assignAlternatives 

(ILOG, 2003) search options in OPL specify a branching method that results in 

substantially better performance than the default method in some class of scheduling 

problems. The option setTimes is useful in scheduling problems with discrete 

resources and activities with fixed duration. In setTimes option, at first, OPL assigns 

starting time to all activities, and chooses an activity that can be scheduled at the 

earliest starting time d. It then decides whether to schedule the activity at time d or to 

postpone the activity. The process is then repeated for all activities that are not yet 

scheduled or not postponed. A postponed activity is reconsidered whenever its 

starting date is updated (ILOG, 2003). On the other hand, when alternative resources 

are used in a model, each activity using the alternative resources must be assigned a 



133

resource from its set of unary resources (i.e., machines). OPL supports this by using 

a non-deterministic instruction assignAlternatives (ILOG, 2003).  

 

The proposed CP and combined IP/CP models with these two built-in search 

options are solved in a range of test problems to evaluate their performances. The 

computational results related to these search options are given in Section 7.4.2. Using 

these options, we could not obtain satisfactory results in a large set of test instances.  

Therefore, problem-specific search procedures are proposed in this section. 

 

While considering problem-based search procedures for our RCPMSP, there are 

two issues to focus on. Firstly, in the considered RCPMSP, some jobs have operator 

requirements through their processing time. However, a limited number of operators 

are available along the scheduling horizon to satisfy these resource requirements. 

Hence, once the jobs with non-zero operator requirements are assigned to machines 

and available time periods, it seems easy to allocate the jobs that require no operator 

to the remaining periods. The second significant factor is process flexibility of the 

parallel machines. Remember that, LFJ rule is often used for PMS problems with 

machine eligibility restrictions. The LFJ rule chooses the job that can be processed 

on the smallest number of machines first (Pinedo, 1995, p.71). With LFJ rule, the 

jobs with less machine alternatives are allocated to compatible machines in the 

earlier time periods, and the remaining jobs with more machine alternatives may then 

easily be allocated to one of their compatible machines with a probably small 

deterioration on the makespan value. 

 

Considering above two issues, two problem based search procedures are 

proposed. The first one chooses the first variable (job) with highest amount of 

operator requirement. In case of ties, i.e., more than one job requires the same 

amount of operator(s), it selects the job with minimum number of machines in its 

domain set, i.e., apply LFJ rule. Such an assignment procedure reduces the domain 

size of the other variables through constraint propagation in the earlier stages of the 

search tree. The proposed search procedure is given in Figure 7.1. The function 

dsize(variable) denotes the domain size of the variable written in the parentheses. 



134

search { 
forall(i in Jobs ordered by decreasing <resi,1/dsize(assigni)>) 

{
tryall(j in Machines: j∈Mi)

assigni = j;
tryall(t in 1..T)

i.start = t
onFailure 

i.start ≠ t;
};  

Figure 7.1 Proposed problem-based search procedure  
 

Each iteration of forall instruction chooses another job that meets the 

conditions declared, and the process is iterated until all variables have been 

instantiated (or no solution was found). In case of value ordering, first tryall 
instruction assigns a value to the variable assigni from its eligible machines 

dynamically. The second tryall instruction assigns values to another variable 

i.start from its domain (i.e., range of discrete time periods in the schedule 

horizon, T). If at any point, one of the variables cannot be given a value consistent 

with the constraint store, it goes back to the previous variable and assigns another 

value to it. It should also be noted that, when the assignment i.start = t fails, the 

constraint i.start ≠ t is added to the constraint store before considering any 

alternative choice in the tryall instruction. 

 

On the other hand, an alternative problem based search procedure can be proposed 

by reversing the priority of two issues in variable ordering procedure (see Figure 

7.2). Notice that, in Figure 7.2, only the second line which gives the variable 

ordering procedure is different. The proposed reverse search algorithm first applies 

LFJ rule dynamically, and in case of ties, it chooses the job with higher operator 

requirement.  

 



135

search { 
forall(i in Jobs ordered by decreasing < 1/dsize(assigni),resi >) 

{
tryall(j in Machines: j∈Mi)

assigni = j; 
tryall(t in 1..T)

i.start = t
onFailure 

i.start ≠ t;
};  

Figure 7.2 Proposed reverse search procedure  

 

Note that, all these four search procedures (setTimes, assignAlternatives, 

proposed search procedure, proposed reverse search procedure) are embedded into 

both CP and IP/CP OPL models. The detailed computational results related to these 

search procedures are presented in Section 7.4.2. 

 

The next section presents the implementation issues and computational results for 

proposed optimization models.  

 

7.4 Computational Results 

 

This section firstly presents implementation issues with respect to problem 

parameters. Then, the generated problem instances are used to evaluate the 

performances of the search procedures given in Section 7.3. Finally, the 

computational results of IP, CP, and combined IP/CP models are presented and 

discussed. 

 

7.4.1 Implementation Issues 

 

The size of the optimization models for the investigated RCPMSP depends on the 

number of jobs, number of parallel machines and number of periods.  

 



136

As stated earlier in Section 4.2, operator requirements of job strings are assumed 

to be fixed values, i.e. no operator, one-half, and one. Therefore, for all test 

problems, operator requirements, resi, are generated with equal probability for the 

values 0, 0.5, and 1. Note that, for computational purposes, operator requirements 

have been made integer by multiplying them by two. The number of operators has 

also been accordingly increased. 

 

To evaluate the proposed three optimization models, two main subsets of test 

instances are considered: 30 jobs, four machines, two operators; and 50 jobs, six 

machines, and three operators. The processing time, pi, for each job is drawn from a 

uniform distribution on [4, 12] rounded to the nearest integer. There exist a number 

of reasons to choose these parameter levels for the problem. Firstly, the number of 

jobs and the number of machines are selected in such a way that approximately eight 

jobs are allocated to each machine. Secondly, the number of operators is determined 

with respect to number of jobs and number of machines in order that neither machine 

based static lower bound (LBmach) nor operator-load based static lower bound (LBoper)

strongly dominates each other. In both subsets of test instances, these two lower 

bounds are valued so close to each other that the effect of both machine eligibility 

restrictions and additional resource constraints can be included and analyzed. Finally, 

the levels of all parameters are selected in such a way to generate medium sized test 

instances.  

 

A significant issue for this class of problems is to determine an initial feasible 

period, T. For this purpose, an initial feasible heuristic (IFH) is developed to 

determine an efficient feasible period that may provide a magnificent reduction in the 

problem size.  

In IFH, the following notation is used: 

J set of jobs 

M set of machines 

Rt the current usage of operators at time t

NMi the number of eligible machines that job i can be processed on. 



137

Ci the completion time of job i

The details of IFH are given below. Note that, the computation time of IFH is 

negligible.  

 

Step 1. Arrange the jobs in set J in decreasing order of resi. Re-arrange the jobs 

with the same resi, in decreasing order of pi. In case of ties again, re-arrange the 

jobs in non-decreasing order of NMi, i.e., apply LFJ rule. It is assumed that, the 

jobs are indexed by their rank in the arranged list. Note that [i] denotes the job 

with index i in the arranged list. Set 0=tR , for all t; 0=ijtx , for all i, j, t; set i=1, 

j=1, t=0.

Step 2. Assign job [i] to machine j at time t if the following conditions are 

satisfied: (i) bresR is ≤+ ][ , 1,.., ][ −+= iptts (ii) j∈M[i], (iii)∑ = =n
l ljsx1 0 ,

1,.., ][ −+= iptts . Update 1][ =jtix ; ][iss resRR += , 1,.., ][ −+= iptts ;

1][][ −+= ii ptC , i = i + 1 and go to Step 4; otherwise, go to next step. 

Step 3. If j ≥ m, set t = t+1, j=1, go to next step; otherwise, j=j+1. Go to Step 2. 

Step 4. If i>n, }{max iJi
CT

∈
= , STOP; otherwise, set j=1, t=0.Go to Step 2. 

 

On the other hand, another significant issue is the flexibility measures of machine 

environment. As explained in Section 2.4, Vairaktarakis & Cai (2003) proposed two 

flexibility measures: process flexibility (FP) and balance flexibility (FB). In this 

chapter, we use two levels (i.e., low and high) of FP and FB and evaluate the 

proposed models in a wide range of flexibility of the machines. For all test instances, 

the cases that have FP between the interval [0.2, 0.4] are defined as low processing 

flexibility cases, whereas the others that have a FP in interval [0.6, 0.8] are 

considered as high processing flexibility cases. In terms of balance flexibility 

measure, the low and high levels of FB are not fixed and differ with respect to both 

number of jobs and the level of FP. All parameter levels corresponding to each sub-

group of test problems are presented in Table 7.1.  

 



138

Table 7.1 Sub-groups of test problems with parameter levels 

# of 
Jobs  (n)

#of 
Machines (m)

# of 
Operators (b)

Process 
Flexibility (FP)

Balance 
Flexibility (FB)

Low (0.2 ≤ FP ≤ 0.4) Low (0 ≤ FB ≤ 1) 

Low (0.2 ≤ FP ≤ 0.4) High (3 ≤FB ≤ 4) 

High (0.6 ≤ FP ≤ 0.8) Low (0 ≤ FB ≤ 1) 
30 4 2

High (0.6 ≤ FP ≤ 0.8) High (4 ≤FB ≤ 5) 

Low (0.2 ≤ FP ≤ 0.4) Low (0 ≤ FB ≤ 1) 

Low (0.2 ≤ FP ≤ 0.4) High (4 ≤FB ≤ 5) 

High (0.6 ≤ FP ≤ 0.8) Low (0 ≤ FB ≤ 1) 
50 6 3 

High (0.6 ≤ FP ≤ 0.8) High (5 ≤FB ≤ 6) 

Proposed three models are implemented in ILOG OPL Studio 3.7 (ILOG, 2003) 

that uses CPLEX 9.0 (ILOG, 2005a) to solve an IP, ILOG Solver 6.0 (ILOG, 2005b) 

and ILOG Scheduler 6.0 (ILOG, 2005c) to solve a CP, and all of them to solve a 

combined IP/CP model. Since the several data instances of three models are to be 

solved in computational experiments, for composing and controlling optimization 

models, the script language of OPL, i.e. OPLScript (ILOG, 2003) is utilized. More 

specifically, OPLScript is used to generate and modify data instances, to apply IFH, 

to solve the same problem instance for different optimization models and finally to 

report and format the output data. 

 

All generated problems are implemented in a Core 2 Duo 2.2 GHz, 2 GB RAM 

computer. In order to limit the solving time, a 1000 second run-time limit has been 

set. 

 

The following section evaluates the performance of the CP-based search 

procedures.  

 

7.4.2 The Performance Evaluation of CP-based Search Procedures  

 

In Section 7.3, the CP-based search procedures (i.e., setTimes, assignAlternatives 

proposed search algorithm, and proposed reverse search algorithm) have been 



139

presented and discussed. To evaluate the performance of these algorithms, three test 

problems from each combination of problem parameters given in Table 7.1 are 

solved. The related computational results of CP and IP/CP combined models are 

presented in Table 7.2.   

 

In Table 7.2, the first five columns record the problem parameters. The sixth 

column denotes the sample number. The remaining columns present value of 

objective function, CPU time, and the gap percent of CP and IP/CP combined models 

with corresponding search procedures. The gap percent gives the deviation percent 

between the current objective and the optimal makespan value. The average CPU 

time and gap percent values for 30-job instances, 50-job instances and overall 

instances are also provided. Note that the values with a ‘+’ superscript for the 

average CPU time are computed using only the instances for which the 

corresponding solver does not time out. Similarly, the average gap percent values 

with ‘1’ superscript are computed using only the instances for which the 

corresponding model gives feasible and/or optimal solutions. Finally, at the bottom 

of Table 7.2, the number of feasible and optimal solutions belonging to each search 

procedure is also presented. 

 

The results show that, with setTimes option, CP and IP/CP combined models 

cannot obtain even feasible solutions in 18 and 17 out of 24 test problems, 

respectively. Other built-in option, assignAlternatives, on the other hand, provides 

relatively better performance. With assignAlternatives option, CP and IP/CP 

combined models are able to give feasible results in 22 and 21 test problems, 

respectively. CP and IP/CP combined model with the reverse proposed search 

procedure gives feasible results in 23 and 24 test problems. Finally, the proposed 

search procedure with either CP or IP/CP combined model gives feasible solutions in 

all 24 test problem instances.  



140

Table 7.2. Comparison of CP-based search algorithms
CP IP-CP COMBINED APPROACH

setTimes assignAlternatives Prop. Reverse Alg. Proposed Algorithm setTimes assignAlternatives Prop. Reverse Alg. Proposed Algorithmn m b FP FB
Samp.

No
Obj.

Value
CPU
Time

Gap
%

Obj.
Value

CPU
Time

Gap
%

Obj.
Value

CPU
Time

Gap
%

Obj.
Value

CPU
Time

Gap
%

Obj.
Value

CPU
Time

Gap
%

Obj.
Value

CPU
Time

Gap
%

Obj.
Value

CPU
Time

Gap
%

Obj.
Value

CPU
Time

Gap
%

1 - 1000* - 71 208.89 0.00 74 1000* 4.23 71 83.68 0.00 71 201.71 0.00 72 1000* 1.41 71 34.83 0.00 71 22.28 0.00
2 77 1000* 6.94 - 1000* - 74 1000* 2.78 74 1000* 2.78 77 1000* 6.94 - 1000* - 74 1000* 2.78 72 109.51 0.00Low Low

3 56 1000* 1.82 56 1000* 1.82 60 1000* 9.09 55 100.18 0.00 55 272.64 0.00 57 1000* 3.64 60 1000* 9.09 55 52.87 0.00
1 68 1000* 1.49 67 107.12 0.00 69 1000* 2.99 67 66.35 0.00 68 1000* 1.49 68 1000* 1.49 67 141.52 0.00 67 46.80 0.00
2 61 1000* 1.67 61 1000* 1.67 61 1000* 1.67 61 1000* 1.67 60 38.15 0.00 62 1000* 3.33 60 24.29 0.00 60 19.48 0.00Low High

3 - 1000* - 83 1000* 6.41 80 1000* 2.56 78 148.60 0.00 - 1000* - 83 1000* 6.41 78 542.79 0.00 78 43.24 0.00
1 - 1000* - 63 1000* 1.61 63 1000* 1.61 63 1000* 1.61 - 1000* - 63 1000* 1.61 62 8.31 0.00 62 8.43 0.00
2 - 1000* - 60 0.25 0.00 61 1000* 1.67 60 0.03 0.00 - 1000* - 60 34.59 0.00 60 10.33 0.00 60 9.20 0.00High Low

3 - 1000* - 66 667.88 0.00 - 1000* - 66 2.45 0.00 - 1000* - 67 1000* 1.52 68 1000* 3.03 66 12.77 0.00
1 75 1000* 8.70 69 248.07 0.00 72 1000* 4.35 69 0.88 0.00 75 1000* 8.70 70 1000* 1.45 69 50.45 0.00 69 23.20 0.00
2 - 1000* - 73 1000* 4.29 72 1000* 2.86 70 44.19 0.00 - 1000* - 73 1000* 4.29 70 22.36 0.00 70 18.81 0.00

30 4 2

High High

3 - 1000* - 67 11.62 0.00 69 1000* 2.99 67 201.18 0.00 - 1000* - 68 1000* 1.49 67 56.49 0.00 67 25.31 0.00
Average - 1000* 4.121 - 207.30+ 1.441 - 1000* 3.34 - 71.95 0.50 - 170.83 2.86 - 34.59 2.42 - 99.04 1.24 - 32.66 0.00

1 - 1000* - 74 1000* 2.78 74 1000* 2.78 73 1000* 1.39 - 1000* - 77 1000* 6.94 72 567.42 0.00 72 518.43 0.00
2 - 1000* - - 1000* - 75 9.15 0.00 75 0.10 0.00 - 1000* - - 1000* - 75 345.18 0.00 75 404.75 0.00Low Low

3 - 1000* - 68 1000* 3.03 68 1000* 3.03 67 1000* 1.52 - 1000* - - 1000* - 66 167.61 0.00 66 150.38 0.00
1 73 1000* 5.80 72 1000* 4.35 69 0.12 0.00 69 0.11 0.00 71 1000* 2.90 72 1000* 4.35 69 509.60 0.00 69 519.92 0.00
2 - 1000* - 75 1000* 1.35 76 1000* 2.70 75 1000* 1.35 - 1000* - 76 1000* 2.70 74 259.46 0.00 74 310.02 0.00Low High

3 - 1000* - 75 1000* 1.35 75 1000* 1.35 78 1000* 5.41 - 1000* - 76 1000* 2.70 75 1000* 1.35 74 669.64 0.00
1 - 1000* - 72 152.24 0.00 74 1000* 2.78 74 1000* 2.78 - 1000* - 73 1000* 1.39 72 112.74 0.00 72 112.19 0.00
2 - 1000* - 67 1000* 1.52 67 1000* 1.52 67 1000* 1.52 - 1000* - 68 1000* 3.03 66 88.32 0.00 66 86.24 0.00High Low

3 - 1000* - 71 216.98 0.00 71 0.12 0.00 71 36.11 0.00 - 1000* - 73 1000* 2.82 71 163.59 0.00 71 188.41 0.00
1 - 1000* - 69 1000* 2.99 70 1000* 4.48 69 1000* 2.99 - 1000* - 73 1000* 8.96 67 614.48 0.00 67 298.58 0.00
2 - 1000* - 70 373.15 0.00 70 17.95 0.00 73 1000* 4.29 - 1000* - 73 1000* 4.29 70 132.37 0.00 70 137.61 0.00

50 6 3

High High

3 - 1000* - 81 1000* 1.25 82 1000* 2.50 82 1000* 2.50 - 1000* - 85 1000* 6.25 80 426.90 0.00 80 462.06 0.00
Average - 1000* 5.801 - 247.45+ 1.691 - 6.84+ 1.761 - 12.11+ 1.98 - 1000* 2.901 - 1000* 4.341 - 307.06+ 0.11 - 321.52+ 0.00
Average (Overall) - 1000* 4.401 - 220.69+ 1.561 - 6.84+ 2.521 - 56.99+ 1.24 - 170.83+ 2.861 - 34.59+ 3.341 - 213.45+ 0.68 - 177.09+ 0.00
# of Feasible Solutions (Overall) 6 22 23 24 7 21 24 24
# of Optimal Solutions (Overall) 0 9 4 12 3 1 20 24
* Run is aborted due to time-limit (1000 seconds) .
+ Avg. CPU times are computed using only the instances for which the corresponding solver does not time out.
1 Avg. gap percent is computed using only the instances for which the corresponding model gives feasible and/or optimal solutions.



141

In terms of optimal solutions, setTimes option, again, presents a poor 

performance. It cannot give any optimal solutions with CP model, and only three 

optimal solutions with IP/CP combined model. When the performances of CP and 

IP/CP combined models with assignAlternatives option are compared, CP model, 

surprisingly, performs better than the IP/CP combined model in terms of number of 

optimal solutions and average overall gap. CP gives nine optimal solutions with 

1.56% overall average gap, while IP/CP combined model could obtain only one 

optimal solution with 3.34% overall average gap. IP/CP combined model with the 

proposed search algorithms, on the other hand, gives relatively better results than the 

ones of CP model, as expected. With the proposed reverse algorithm, the CP model 

gives only four optimal solutions with 2.52% average gap, while IP/CP combined 

model gives optimal solutions in 20 test problems and provides 0.68% average gap. 

Similarly, with the proposed search algorithm, CP model gives 12 optimal solutions 

with 1.24% average gap; while IP/CP combined model gives optimal solutions to all 

test problems and accordingly zero average gap. 

 

Consequently, in terms of getting efficient results in general, the proposed search 

algorithms produce much better results than the built-in search options (i.e., setTimes 

and assignAlternatives). Notice that, these built-in search options of OPL present 

general-purpose search algorithms and do not take the specific properties of the 

scheduling problem at hand into account, while the proposed search algorithms do.  

 
Remember that, the proposed search algorithm gives priority to the jobs with 

higher operator requirements, while the proposed reverse algorithm gives priority to 

the least flexible jobs. In the overall performance, for both CP and IP/CP combined 

models, the proposed search algorithm provides relatively better performance than 

the proposed reverse search algorithm in terms of both number of optimal solutions 

and average gap percent. Moreover, in terms of computation times, the proposed 

search algorithm also spends less time for solving the test problems optimally.  

 

Once we have investigated that the proposed search algorithm generally 

dominates the other ones; in the next section, for solving CP and combined IP/CP 



142

models, we use only the proposed search algorithm for the further analyses and 

comparisons.  

 

7.4.3 Numerical Results 

 

To study the behaviour and characteristics of the IP, CP and IP/CP combined 

models, 12 test problems for each combination of problem parameters presented in 

Table 7.1 are randomly generated and solved.  

 
The computational results are given in Appendix D and summarized in Table 7.3. 

The first five columns of Table 7.3. record the problem parameters. Since the IFH 

algorithm may result in different T values for each generated test problem and T is 

one of the parameters that determines the problem size, the average T values of 12 

test problems has also been given in the sixth column. The remaining columns 

present number of cases that the corresponding model reaches optimal results, 

average CPU time (in seconds) and average gap percent. The gap percent gives the 

deviation percent between the current solution and the minimum makespan value of 

all three optimization models. Remember that the average CPU time values with a 

‘+’ superscript are computed using only the instances for which the corresponding 

solver does not time out. All other CPU time values are the average of all 12 test 

problems. Similarly, the average gap percent values with ‘1’ superscript are 

computed using only the instances for which the corresponding model gives feasible 

and/or optimal solutions. To clarify these representations, let us explain the fourth 

row of Table 7.3: 

 

� IP gives optimal results in 9 out of 12 test problems. The statement “127.41+”

declares that the average computational time of these nine test problems is 

127.41 seconds and IP solver times out (i.e., exceeds 1000 second run time 

limit) in the remaining three test problems giving only feasible solutions. The 

average gap value “0.271” states that in at least one test problem, IP solver 

could not obtain even a feasible solution within the time limit (see Appendix 

D1, High-High-Sample 4). The average gap percent value of 0.27 is computed 

using 11 test instances that give feasible solutions. 



143

Table 7.3 Computational results 

IP CP IP/CP COMBINED 

n m b FP FB

Avg. # 
of 

Periods 
(T)

# of 
Opt.

Avg. 
Time 
 (s)

Avg.        
Gap 
 % 

# of 
Opt. 

Avg. 
Time 
 (s)

Avg.        
Gap 
 % 

# of 
Opt. 

Avg. 
Time 
 (s)

Avg.        
Gap  
%

Low Low 74.08 9 239.83+ 0.56 5 37.88+ 1.29 12 52.00 0.00 

Low High 74.58 10 106.35+ 0.24 6 44.22+ 0.98 12 38.46 0.00 

High Low 68.00 10 90.53+ 0.23 7 35.48+ 0.831 12 14.60 0.00 
30 4 2

High High 72.42 9 127.41+ 0.271 10 37.47+ 0.23 12 17.61 0.00 

n =30, m =4, b=2 72.27 38 141.03+ 0.331 28 38.76+ 0.841 48 30.67 0.00 

Low Low 74.75 6 411.08+ 0.69 3 62.53+ 1.13 10 349.32+ 0.12 

Low High 76.82 3 266.67+ 1.061 4 266.02+ 1.32 12 391.54 0.00 

High Low 71.30 3 488.35+ 1.331 4 9.10+ 1.19 12 150.91 0.00 
50 6 3

High High 75.92 8 638.23+ 0.46 5 13.48+ 1.23 12 202.44 0.00 

n =50, m =6, b=3 74.70 20 451.08+ 0.881 16 87.78+ 1.22 46 273.55+ 0.03 

Overall 73.48 58 296.06+ 0.601 44 63.27+ 1.031 94 152.11+ 0.01 

+ Avg. CPU times are computed using only the instances for which the corresponding solver does not time out. 
1 Avg. Gap % is computed using only the instances for which the corresponding model gives feasible (or optimal) solutions. 

� CP gives optimal results in 10 out of 12 test problems. The statement “37.47+”

declares that the average computational time of these 10 test problems is 37.47 

seconds and CP solver times out (i.e., exceeds 1000 second run time limit) in 

the remaining two problems giving only feasible results. The value of “0.23” 

is the average gap value of all 12 test problems.  

� IP/CP combined model gives optimal results in all 12 test problems. The 

average computational time of these test problems is 17.61 seconds. Of 

course, the average gap value is 0.00. 

Using the IP/CP combined model, 94 out of 96 test problems are solved to 

optimality, while IP and CP models give optimal results in only 58 and 44 problem 

instances, respectively. As already stated, IP/CP combined model utilizes the 

complementary strengths of both IP and CP models and gets much better results. 

 



144

CP model gives quick and feasible results in 95 test problems; however it could 

not improve objective value in 51 test problems. In fact, it is an expected result, since 

CP has a great advantage in obtaining quick and feasible results but cannot improve 

them due to the absence of global constraints (such as IP constraints with continuous 

relaxations). 

 

Computational results also indicate that, in 52 out of 96 test problems, the 

combined IP/CP model dominates both other two models in terms of CPU time 

and/or the value of objective function (see grey shaded cells in Appendix D). IP and 

CP models outperform the other two models in 13 and 30 test problems, respectively. 

11 out of 13 test problems that IP model outperforms other two models are the 

members of the sub-groups with low processing flexibility, FP. IP may handle this 

sub-group of problems since each job has fewer machine alternatives to be processed 

on. This situation provides fewer nodes to be explored in B&B tree. More 

specifically, in terms of objective values, IP/CP combined model provides better 

makespan values in 22 test problems (see bold values within grey shaded cells in 

Appendix D), while IP gives better makespan value in only one test instance, and CP 

could not provide better makespan values in any instance. Moreover, 18 out of 22 

test problems that IP/CP combined model provides better makespan values belong to 

50-job test instances.   

 

Computational results also indicate that IP/CP combined model provides 

relatively better performance in high values of FP. It reaches optimal solutions in all 

48 test problems with high level of FP. Moreover, it can achieve up to two or three 

orders of reduction in CPU time in this group of test problems in comparison to cases 

with low level of FP. In higher values of FP, IP model remains with more machine 

alternatives causing much more B&B nodes to be explored. On the other hand, since 

the operators remain as obvious restricted resources in higher values of process 

flexibility (due to more machine alternatives for each job), and the proposed search 

algorithm gives priority to restricted additional resource, IP/CP combined model 

easily handles this range of test problems.  

 



145

A significant point is that, the performances of IP and CP get worse with the 

problem size. While IP provides 38 optimal solutions (and 0.33% gap) in 30-job test 

instances, it could provide optimal results in only 20 test instances (and 0.88% gap) 

of 50-job test problems. Similarly, CP model provides 28 (0.84% gap) and 16 (1.22% 

gap) optimal solutions for 30-job and 50-job test instances, respectively. On the other 

hand, IP/CP combined model presents a more consistent performance by providing 

48 (0% gap) and 46 (0.12% gap) optimal solutions for 30-job and 50-job test 

instances, respectively.   

 

The results also show that computation time of all three models increases as the 

problem scales, reflecting the growing complexity of the problem. In overall, the 

IP/CP combined model spends much less computation time than other two models.  

 

A significant point is that, the flexibility balance index, FB, seems to have no 

meaningful effect on either average gap percent or computation time through the 

sub-groups of test problems. 

 

Consequently, the results generally suggest that the combined IP/CP model with 

the proposed search procedure could be very useful in solving the minimum 

makespan RCPMSPs efficiently for medium sized problems. 

 

Finally, a sample instance (i.e., n = 30 jobs, FP = Low, FB = Low, Sample No: 5, 

see Appendix D1) is chosen to illustrate the resulting schedules of all three proposed 

models. Figure 7.3, Figure 7.4 and Figure 7.5 illustrate the Gantt charts belonging to 

the related results of IP, CP and IP/CP combined models, respectively. In all figures, 

each job is illustrated with its index and resource requirement in parentheses. For 

instance, 18(2) indicates the 18th job with two units of resource requirement. The 

time interval based resource usage profiles are also provided in the figures. Note that, 

in Figure 7.3 and Figure 7.4 additional resource is not fully utilized in some time 

intervals, whereas additional resource is fully utilized in the optimal schedule given 

by IP/CP combined model (see Figure 7.5). Note that, an optimal schedule may not 

fully utilize the additional resource.   



146

M1

M2

M3

M4

0

Resource Usage

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4
2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 3 4 4 4
1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 3 4 4 4

66

Time

21(1) 30(2) 10(2) 6(0)18(2) 28(1) 17(1) 22(0)

61

14(1) 3(1) 5(2) 8(1) 15(0) 16(1)

9(1) 23(0) 2(1) 1(2)

25(1) 11(0) 7(0)24(1) 13(2) 12(2) 26(0)

36 40

9 19 24 28 37 39

20(0)

9 17 24 25

66

44 51 60 65

29(2)

4(2) 27(1) 19(2)

52

36 44

65

11 19 28 39 41 52 62

11 19 25 35 46 58 65 66

Figure 7.3 Resulting schedule of IP model for 30-Low-Low-Sample 5  
 

M1

M2

M3

M4

0

Resource Usage

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 3
2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 3
1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 3 1

66

Time

13(2) 11(0) 15(0) 25(1)

5(2)

21(1) 22(0) 27(1)

23(0) 2(1) 16(1) 3(1)

26(0) 19(2) 1(2) 9(1)

45 52 62

14(1)6(0) 24(1)

17(1)7(0) 18(2) 4(2) 10(2) 12(2) 30(2) 28(1)

65

7 8 17 19 30 39

29(2) 20(0) 8(1)

28

66

11 15 19 28 32 40 49 58

10 11 15 17

8 20 32 40 65 66

39 44 53 63

45 56

Figure 7.4 Resulting schedule of CP model for 30-Low-Low-Sample 5  
 

M1

M2

M3

M4

0

Resource Usage

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Time

64

64

7(0) 18(2) 12(2) 6(0) 22(0) 21(1) 28(1) 3(1) 17(1)

10(2) 9(1) 27(1)

5(2) 29(2) 4(2) 15(0) 8(1) 2(1)

20(0) 19(2) 23(0) 1(2)

25(1) 24(1) 14(1)13(2) 11(0) 26(0) 30(2)

9 11 15 23

17 237 8

64

28 37 42 43 53 60

16(1)

45 56

64

11 15 19 30 42 46 55

8 20 30 37

34 43 54 64

Figure 7.5 Resulting schedule of IP/CP combined model for 30-Low-Low-Sample 5  



147

7.5 Chapter Summary  

 

The proposed research in this chapter has addressed a RCPMSP with machine 

eligibility restrictions and arbitrary processing times. We have constructed three 

optimization models, namely, IP, CP, and combined IP/CP OPL model for this 

problem. Four different search algorithms have been evaluated and the one with the 

best performance, named proposed search algorithm, is embedded into the CP and 

IP/CP combined models. To determine the number of periods, which is a part of 

input for the three optimization models, a heuristic algorithm, named IFH, has also 

been developed. 

 

The three optimization models are tested using 96 test problems which vary in 

number of jobs, number of machines, number of operators, process flexibility index 

(FP), and balance flexibility index(FB). 

 

The computational results show that the IP/CP combined model with the proposed 

search algorithm outperforms the individual IP and CP models with respect to 

makespan values in almost all sub-groups of test instances. IP/CP combined model 

also achieves substantial reduction of computation times. It should also be noted that, 

in the high values of process flexibility (FP), the combined IP/CP model provides a 

relatively better performance. 



148

CHAPTER EIGHT 

ITERATIVE SOLUTION APPROACHES FOR THE REAL CASE STUDY 

 

8.1 Introduction  

 

This chapter deals with the real case study i.e., P36| 21⋅res , Mi, pi| Cmax 

encountered in an injection molding department of an electrical appliance plant. 

Recall that it is a PMS problem with 36 machines, one additional resource type, 

arbitrary resource size and up to two units of resource requirements. It also includes 

machine eligibility restrictions and allows arbitrary processing times. The aim is to 

minimize makespan.  

 

Firstly, the entire IP, entire CP and IP/CP combined models defined in Chapter 7 

have been considered to solve the real case study. However, since the entire IP model 

has a huge number of variables for the real data, it may not handle the problem 

efficiently. On the other hand, although CP model has the ability of obtaining quick 

and feasible solutions, it may give a considerable deviation from the optima for the 

real data. And finally, although IP/CP combined model gives superior performance 

for medium size problems, it generally fails to find feasible and/or optimal solutions 

in large sized problems since its enormous number of IP and CP variables and 

constraints require a huge amount of computer memory.  

 

Due to these restrictions, to obtain fast, efficient and practically applicable 

solutions for the real case problem, an iterative solution method which partitions the 

entire problem into loading and scheduling sub-problems is proposed. In the loading 

phase, an IP model is used to assign the jobs to machines with the aim of minimizing 

maximum load on machines. Subsequently, taking the dedicated jobs on each 

machine, two alternative models, namely, IP and CP have been built to construct the 

final schedule of the jobs with the objective of minimizing makespan subject to 

additional resource (operator) constraints. Indeed, once the job set of each machine is



149

determined by the loading phase, the problem in the scheduling phase is reduced to a 

RCPMSP with dedicated machines, which is discussed in Chapter 2 and 3. 

 

The rest of this chapter is organized as follows. Section 8.2 introduces the 

considered problem. Section 8.3 presents the proposed iterative solution approaches 

i.e., IP/IP and IP/CP. The computational results are given and discussed in Section 

8.4. Finally, Section 8.5 summarizes the chapter. 

 

The following section represents the considered problem in detail. 

 

8.2. Problem Statement  

 

As stated in Chapter 4, the investigated problem is encountered in the injection-

molding plant of an electrical appliance company. This plant produces several plastic 

parts for shipment to final assembly plants. The plant’s objective is to meet weekly 

demand of parts subject to constraints on capacity, machine eligibility and operator 

availability.  

 

The plant operates 12 hr per shift, two shifts a day, and five days a week. An MRP 

system explodes the dependent demand to generate weekly production orders for all 

parts. The managers of the plant aim to finish the manufacture of the current order 

quantities as soon as possible in order to leave some time and resource (machine and 

operator) capacity to the newly incoming orders that may occur along the current 

week. Henceforth, the objective function is chosen as the minimizing the makespan. 

 

In the plant, each part has a die associated with it and its manufacture is 

completed on a single machine. There is only one die from each die type, and a die 

may be used to fabricate different parts. As already stated, the parts that share the 

same die are assumed to constitute a job string.

Consistent with the assumptions given in Section 4.2, the processing time of each 

job string (die) is determined as follows:  



150

(a) Divide the weekly order quantity of each part by its hourly production rate to 

obtain the processing time of each part.  

(b) Sum up the processing times of the parts that constitute a job string.  

(c) Add one-hour setup time to this value.  

(d) Finally, round up this value to the nearest hour. By rounding up to the nearest 

hour, other possible delays are incorporated into the total processing time of job 

strings. 

 

Consequently, the main objective of this chapter is to develop a scheduling system 

that will receive MRP orders at the start of each week, and then generate the load of 

machines and the sequence of jobs with the objective of minimizing makespan. 

 

The following section proposes an iterative solution approach that partitions the 

entire problem into loading and scheduling sub-problems.  

 

8.3 Proposed Solution Approaches 

 

PMS problems generally determine two kinds of decisions: job-machine 

assignment, and sequencing the jobs on the machines. The complexity usually grows 

exponentially with the number of machines (Graham et al., 1979). The presence of 

36 machines in the real case problem adds a considerable complexity to the entire 

problem. Therefore, it may be advantageous to propose an iterative approach that 

partitions the entire problem into job-machine allocation (or loading) and sequencing 

(or scheduling) sub-problems.  

 

Figure 8.1 illustrates the proposed solution approach. In the loading phase, an IP 

model assigns the jobs to the machines with the aim of minimizing maximum load 

on the machines. Subsequently, taking the dedicated jobs on each machine k (i.e., 

kJOBSET ) and maximum load value (i.e., LOADmax) as a lower bound on the 

makespan, two alternative models, namely, IP and CP are developed to construct the 

final schedule of the jobs with the objective of minimizing makespan.  



151

Figure 8.1 The summary of proposed solution methods 

 

The following sub-sections explain the steps of the proposed algorithms in detail. 

 

8.3.1 Loading Job Strings to Machines 

 

The first sub-problem in the proposed solution approach deals with loading of job 

strings to machines using die-machine compatibility information.  

 

In the considered problem, there is certainly some correlation between workload 

of machines and schedule makespan. In the loading phase, the workloads are 

balanced by minimizing the maximum load per machine, which is an obvious lower 

bound on the makespan objective of the scheduling problem. However, by balancing 

the workloads on machines, only a static measure of load balance is considered, 

whereas bottlenecks may appear dynamically in the scheduling phase due to the 

presence of additional resource constraints.  

 

As stated earlier, IP may easily handle the assignment type problems. Therefore, 

in the loading phase a simple IP model is used to assign the jobs to the machines with 

the objective of minimizing maximum load over the machines. A similar IP model 

Load the job strings to 
the machines  

(IP loading model) 

Schedule the job strings 
in each machine subject 
to resource constraints

JOBSETk

IP Scheduling Model CP Scheduling Model 

LOADmax 



152

has already been given by Vairaktarakis & Cai (2003) for PMS problems with 

machine eligibility restrictions. For IP loading model, binary decision variables ika

and maximum load over the machines, LOADmax are introduced: 





=
otherwise. ,0

.machineonloaded isstring jobif,1 ki
aik  

LOADmax the maximum value of machine-based load. 

 

min LOADmax  

subject to:   

∑
∈

=
iMk

ika 1 i = 1, …, n (8.1)

max
1

LOADap
n

i
iki∑

=

≤ k = 1, …, m (8.2)

{ }1,0∈ika i = 1, …, n ; k = 1, …, m (8.3)

Constraints (8.1) ensure that a job string should be assigned to exactly one 

machine from its eligible machine set, Mi. Constraints (8.2) cover a similar idea of 

the machine based lower bound scheme indicated earlier and pick up the maximum 

load, LOADmax, over the machines working with the objective function. Finally, (8.3) 

states that all aik variables are 0 or 1. 

 

In this IP model, some other secondary objective functions (e.g., minimizing total 

cost, ∑ ∑= =

n

i

m

k ikik aCOST
1 1

where COSTik is the cost of assigning job i to machine k)

may also be taken into consideration. In other words, IP model can be solved with 

respect to maximum load and total cost objective functions, hierarchically (see Edis 

& Ozkarahan, 2008). Nevertheless, since our main objective for the entire problem is 

minimizing makespan, we only deal with the objective of minimizing LOADmax in 

the loading phase.  

 



153

8.3.2 Schedule the Job Strings 

 

Since the IP model in the loading phase determines the set of job strings to be 

processed on each machine and finds out a LOADmax value as a lower bound on the 

makespan objective, we define two additional parameters to be used in scheduling 

phase: 

kJOBSET  : set of job strings to be processed on machine k. (k = 1,…,m)

maxLOAD : lower bound on makespan value. 

 

In the scheduling phase, two alternative models, namely, IP and CP are 

constructed with the aim of minimizing makespan. The following sub-sections give 

the details of these two models. 

 

8.3.2.1 IP Scheduling Model 

 

In this section, an IP model with time-indexed variables is introduced for the 

scheduling of job strings to minimize makespan. The decision variables and 

formulation of IP model are given below: 

 

Decision Variables:





=
otherwise. ,0

.at time processing its begins jobif,1 ti
xit  

maxmin   C

subject to:   

max

1

0
)( Cptx i

T

t
it ≤+∑

−

=
i = 1, …, n (8.4)

1
1

},0max{
≤∑ ∑

∈

−

−=k iJOBSETi

t

pts
isx k = 1, …, m ; t= 1, …, T (8.5)

1
1

0
=∑

−

=

T

t
itx i = 1, …, n (8.6)



154

bxres
n

i

t

pts
isi

i

≤∑ ∑
=

−

−=1

1

},0max{
 t=1, …, T-1 (8.7)

bCresp
n

i
ii max

1
≤∑

=
(8.8)

maxmax CLOAD ≤ (8.9)

{ }1,0∈itx i = 1, …, n ; t= 0, …, T-1 (8.10)

Since the job set of each machine, i.e., kJOBSET , is known in advance, there is 

no need to use machine indices. The elimination of machine indices significantly 

reduces the number of variables in comparison to entire IP model. This IP scheduling 

model has Tn ⋅ decision variables. Therefore, the problems with more jobs may 

become solvable. Constraints (8.4) pick up the maximum completion time of job 

strings. Constraints (8.5) ensure that no more than one job can be assigned to any 

machine at any time interval. Constraints (8.6) ensure that each job should certainly 

be processed. Constraints (8.7) guarantee that the number of operators assigned at 

each time unit is within its limit, b. Constraint (8.8) represents operator based lower 

bound scheme discussed in Section 7.2.1 The above formulation also includes a 

lower bound ( i.e., maxLOAD ) on the makespan value, which has been transferred 

from the loading phase. Constraint (8.9) covers this issue. Since these lower bounds 

narrow the solution space, the time to reach the optimal solutions significantly 

decreases. Finally, (8.10) states that all xit are binary.  

 

The iterative solution approach which uses the IP loading model and the proposed 

IP scheduling model is named as IP/IP iterative approach. 

 

The following section presents the CP model to be used alternatively in the 

scheduling phase. The iterative approach which uses the IP loading model and the 

proposed CP scheduling model in the scheduling phase is going to be named as 

IP/CP iterative approach. 

 



155

8.3.2.2 CP Scheduling Model  

 

The same scheduling problem can also be modelled using CP. As in the previous 

chapter, ILOG's OPL Studio 3.7 (ILOG, 2003) is used as the modelling language.  

 

Once the values of binary decision variables ika have been determined in the 

loading phase with IP model, we are able to define the machine index of each job. 

Therefore, a new parameter, machinei for the CP scheduling model is defined as 

follows: 

(aik = 1) ⇒ machinei = k i = 1,…,n; k = 1,…,m. (8.11) 

 

Using the basic framework of OPL, CP scheduling model can be written as 

follows: 

 

Minimize            makespan.end 

subject to:   

i.duration = pi i = 1, …, n (8.12)

i precedes makespan i = 1, …, n (8.13)

i requires machinei i = 1, …, n (8.14)

i requires (resi) OPR i = 1, …, n (8.15)

makespan.end ≥ maxLOAD  (8.16)

≤×∑
=

bresi.duration
n

i
i /)(

1

makespan.end  (8.17)

The objective function aims to minimize the completion time of dummy activity 

makespan. The duration of jobs are defined with Equations (8.12). Constraints (8.13) 

specify that completion time of any job should be less than or equal to the starting 

time of makespan activity. Constraints (8.14) enforce that job i needs the unary 

resource machinei which has already been determined for each job. Constraints 

(8.15) state that job i requires resi units of additional discrete resource, OPR. Finally, 

similar to Constraint (8.9) in IP scheduling model, Constraint (8.16) states that 



156

completion time of makespan activity should be greater than or equal to the machine-

based lower bound, maxLOAD . Finally, (8.17) gives operator based-lower bound. 

These two lower bounds accelerate the constraint propagation and domain reduction 

in CP search tree.  

 

As stated earlier, the setTimes option of OPL is useful in scheduling problems 

with discrete resources and activities with fixed duration. In the proposed iterative 

approach, since the loading phase makes the assignment of jobs to the machines, the 

only remaining issue is the scheduling of jobs subject to the available number of 

operators which can be treated as a discrete resource.  Therefore, in CP scheduling 

model of the IP/CP iterative approach, setTimes search option has been used. The 

preliminary computations also show that it produces satisfactory results.  

 

Recall that, the iterative solution approach which uses IP model in the loading 

phase and CP model in the scheduling phase is named as IP/CP iterative approach. 

 

8.4 Computational Results 

 

Since the entire IP and entire CP models given in Chapter 7 are also applicable to 

the real case problem, the results of these models are also provided in this sub-

section. The analysis in Chapter 7 has shown that assignAlternatives and proposed 

search procedure perform more efficient than the other search procedures for the 

entire CP model. Therefore, entire CP model with these two search alternatives are 

also considered in the current computational studies. Since IP/CP combined model 

has failed to find feasible and/or optimal solutions for the real problem case, it has 

not been considered in computational analysis.     

 

The entire IP model and entire CP model (with two search alternatives) given in 

Section 7.2 as well as proposed iterative solution approaches, i.e., IP/IP and IP/CP 

have been applied to test problems with 80 and 120 job strings (dies) and 36 

machines with respect to real scheduling environment. The job strings to be 

processed are randomly selected from the list of 374 dies.  



157

While generating the set of instances, in terms of machine eligibility restrictions,  

two levels of processing flexibility for the machines are considered with respect to 

process flexibility index (FP) defined by Vairaktarakis & Cai (2003). Analyzing the 

die-machine compatibility information in the plant shows that the value of process 

flexibility (FP) varies between 0.22 and 0.32. Therefore, for all test instances, the 

cases that have FP in interval [0.22, 0.24] are defined as relatively low processing 

flexibility cases, whereas the others that have a FP in interval [0.30, 0.32] are 

considered as relatively high processing flexibility cases.  

 

The processing time, pi, for each job string is drawn from a uniform distribution 

on interval [5, 25] with respect to corresponding interval of real demand values and 

then rounded to the nearest integer. 

 

The number of operators available is taken as 10 and 12 with regard to real 

scheduling environment. The resource requirement of each job, resi, is also taken as 

real data which is valued as 0, 0.5 or 1. For computational purposes, operator 

requirements have been made integer by multiplying them by two. The number of 

operators has also been accordingly increased.  

 

For each combination of parameters, four test problems are solved. IP and CP 

models are implemented in ILOG OPL Studio 3.7 (ILOG, 2003). The proposed i.e., 

IP/IP and IP/CP iterative approaches are coded in OPLScript (ILOG, 2003). 

 

All models are implemented on an Intel Core 2 Duo 2.2 GHz 2 GB RAM 

computer. A 1000-second run time limit is set to all models for each test instance. 

 

The computational results are given in Table 8.1 and Table 8.2 for 80-job and 

120-job test problems, respectively. The first four columns record the problem 

parameters. We also present objective function value, CPU time and gap percent of 

entire IP model and entire CP model with two search procedures. Since the proposed 

iterative approaches may use IP or (alternatively) CP model in the scheduling phase, 

the results of both IP and CP scheduling models are presented in these tables.  



158

Table 8.1 Computational results (80 jobs)

The Proposed Iterative Approaches
Scheduling PhaseEntire IP Model Entire CP Model

(AssignAlternatives)
Entire CP Model

( Proposed Search ) Loading
Phase IP CP

# of
Jobs
(n)

Proc.
Flex.
(Fp)

# of
Oper.

(b)
Fp Test

Prob.

LB Cmax
CPU

Time(s)
Gap

% Cmax
CPU
Best

CPU
Time(s)

Gap
% Cmax

CPU
Best

CPU
Time(s)

Gap
% LOADmax

CPU
Time(s) Cmax

CPU
Time(s)

Gap
% Cmax

CPU
Best

CPU
Time(s)

Gap
%

0.239 1 84 87 1000* 3.57 86 6.41 1000* 2.38 86 10.35 1000* 2.38 50 38.16 85 1000* 1.19 85 5.56 1000* 1.19

0.230 2 84 85 1000* 1.19 85 15.62 1000* 1.19 87 6.95 1000* 3.57 42 14.89 86 1000* 2.38 85 9.15 1000* 1.19

0.229 3 73 76 1000* 4.11 77 6.79 1000* 5.48 77 6.99 1000* 5.48 65 5.72 75 1000* 2.74 74 597.74 1000* 1.37

10

0.235 4 78 79 1000* 1.28 80 6.55 1000* 2.56 82 6.86 1000* 5.13 53 10.96 78 381.08 0.00 78 5.55 5.55 0.00

0.239 1 70 73 1000* 4.29 72 7.75 1000* 2.86 73 7.29 1000* 4.29 50 38.16 72 1000* 2.86 71 6.43 26.22 1.43

0.230 2 70 72 1000* 2.86 73 8.18 1000* 4.29 73 6.99 1000* 4.29 42 14.89 70 335.63 0.00 71 5.96 1000* 1.43

0.229 3 65 65 618.92 0.00 65 7.44 7.44 0.00 66 7.55 1000* 1.54 65 5.72 65 40.94 0.00 65 86.26 86.26 0.00

Low

12

0.235 4 65 67 1000* 3.08 66 9.81 1000* 1.54 68 7.85 1000* 4.62 53 10.96 65 517.63 0.00 65 227.90 227.90 0.00

0.319 5 63 68 1000* 7.94 65 13.23 1000* 3.17 66 8.65 1000* 4.76 48 39.75 64 1000* 1.59 64 26.22 1000* 1.59

0.310 6 76 85 1000* 11.84 77 849.84 1000* 1.32 79 706.17 1000* 3.95 63 65.61 77 1000* 1.32 76 11.74 11.74 0.00

0.302 7 68 68 550.04 0.00 71 7.91 1000* 4.41 71 8.01 1000* 4.41 54 65.85 68 108.81 0.00 69 5.77 1000* 1.47

10

0.309 8 72 74 1000* 2.78 76 378.07 1000* 5.56 75 7.19 1000* 4.17 50 8.94 72 218.32 0.00 73 7.03 1000* 1.39

0.319 5 53 85 1000* 60.38 55 8.53 1000* 3.77 58 8.82 1000* 9.43 48 39.75 54 1000* 1.89 53 28.89 28.89 0.00

0.310 6 63 - 1000* - 64 15.06 1000* 1.59 66 8.54 1000* 4.76 63 65.61 65 1000* 3.17 64 47.80 1000* 1.59

0.302 7 56 - 1000* - 58 9.83 1000* 3.57 64 8.97 1000* 14.29 54 66.14 56 229.51 0.00 57 23.43 1000* 1.79

80

High

12

0.309 8 60 66 1000* 10.00 62 12.02 1000* 3.33 63 8.27 1000* 5.00 50 8.77 60 109.31 0.00 60 11.11 11.11 0.00
1000.00*: Run is interrupted due to 1000-second run-time limit is exceeded.
Gray shaded cells: The corresponding model provides the best makespan value.
Values in Bold: The corresponding model gives the optimal makespan value.



159

Table 8.2. Computational results (120 jobs)

The Proposed Iterative Approaches
Scheduling PhaseEntire IP Model Entire CP Model

(AssignAlternatives)
Entire CP Model

(Proposed Search) Loading
Phase IP CP

# of
Jobs
(n)

Proc.
Flex.
(Fp)

# of
Oper.

(b)
Fp Test

Prob.

LB Cmax
CPU

Time(s)
Gap
% Cmax

CPU
Best

CPU
Time(s)

Gap
% Cmax

CPU
Best

CPU
Time(s)

Gap
% LOADmax

CPU
Time(s) Cmax

CPU
Time(s)

Gap
% Cmax

CPU
Best

CPU
Time(s)

Gap
%

0.239 9 101 - 1000* - 103 9.83 1000* 1.98 103 8.42 1000* 1.98 62 6.79 103 1000* 1.98 102 5.87 1000* 0.99

0.235 10 114 - 1000* - 118 6.32 1000* 3.51 116 6.50 1000* 1.75 68 125.34 - 1000* - 114 8.06 8.06 0.00

0.239 11 115 - 1000* - 119 6.04 1000* 3.48 118 13.98 1000* 2.61 82 5.43 - 1000* - 116 6.51 1000* 0.87

10

0.234 12 113 - 1000* - 117 6.46 1000* 3.54 115 7.69 1000* 1.77 67 81.84 116 1000* 2.65 113 20.80 20.80 0.00

0.239 9 84 - 1000* - 86 9.68 1000* 2.38 87 10.73 1000* 3.57 62 6.79 90 1000* 7.14 85 6.39 1000* 1.19

0.235 10 95 - 1000* - 96 9.22 1000* 1.05 97 9.84 1000* 2.11 68 125.34 98 1000* 3.16 96 5.35 1000* 1.05

0.239 11 96 - 1000* - 101 8.33 1000* 5.21 99 8.91 1000* 3.13 82 5.43 - 1000* - 97 7.41 1000* 1.04

Low

12

0.234 12 94 - 1000* - 97 9.36 1000* 3.19 96 10.33 1000* 2.13 67 81.84 101 1000* 7.45 95 7.62 1000* 1.06

0.301 13 106 - 1000* - 110 7.34 1000* 3.77 108 8.35 1000* 1.89 78 8.73 - 1000* - 108 162.66 1000* 1.89

0.304 14 106 - 1000* - 115 6.60 1000* 8.49 108 8.37 1000* 1.89 84 126.28 - 1000* - 107 7.72 1000* 0.94

0.305 15 94 - 1000* - 98 8.38 1000* 4.26 96 10.45 1000* 2.13 76 17.60 - 1000* - 95 5.57 1000* 1.06

10

0.304 16 100 - 1000* - 102 10.01 1000* 2.00 102 110.31 1000* 2.00 81 7.72 111 1000* 11.00 101 5.36 1000* 1.00

0.301 13 89 - 1000* - 91 9.63 1000* 2.25 99 9.60 1000* 11.24 78 8.73 94 1000* 5.62 89 32.00 32.00 0.00

0.304 14 89 - 1000* - 94 8.84 1000* 5.62 100 9.70 1000* 12.36 84 126.28 - 1000* - 90 5.92 1000* 1.12

0.305 15 78 - 1000* - 86 10.42 1000* 10.26 92 11.46 1000* 17.95 76 17.60 85 1000* 8.97 79 246.64 1000* 1.28

120

High

12

0.304 16 83 - 1000* - 85 835.87 1000* 2.41 88 12.33 1000* 6.02 81 7.72 87 1000* 4.82 85 159.16 1000* 2.41
1000.00*: Run is interrupted due to 1000-second run-time limit is exceeded.
Gray shaded cells: The corresponding model provides the best makespan value.
Values in Bold: The corresponding model gives the optimal makespan value.



160

Note that, the gap percent gives the deviation percent between the current result 

and the lower bound (LB) of the entire IP model. Since CP is able to reach solutions 

quickly, a column that gives CPU time to reach corresponding best solution, i.e., 

“CPU best” is provided for entire CP models with two search procedures and the 

proposed IP/CP iterative approach. 

 

The gray-shaded cells in these tables indicate the best results in terms of 

makespan values. Moreover, the makespan values in bold specify that the results are 

also optimal. As can be seen from these tables, the proposed IP/CP iterative approach 

dominates the entire IP and entire CP models in almost all sub-groups of test 

instances. The performance of IP/CP iterative approach is comparable with IP/IP 

iterative approach in 80 job test instances where IP scheduling model may handle the 

scheduling sub-problem due to presence of relatively less number of variables. On 

the other hand, in 120 job test instances, IP/CP iterative approach dominates the 

IP/IP approach. Therefore, CP scheduling model is relatively better in scheduling 

problems with more number of jobs. Furthermore, except a few test problems, IP/CP 

iterative approach reaches its best solution in less than a couple of minutes. It 

confirms that CP has an advantage to reach efficient results in advance and can be 

used to get quick and practical solutions in this type of problems.  

 

The average gap percent values of each sub-group of eight problems with respect 

to number of jobs and number of operators are presented in Figure 8.2. As expected, 

IP/CP iterative approach gives the smallest average gap percent in all sub-groups of 

test problems. As stated earlier, the performances of IP/IP and IP/CP iterative 

approaches are comparable for 80-job test problems where the overall average gap 

percent values of IP/IP and IP/CP iterative approaches are 1.07 and 0.90, 

respectively. For 120-job test problems, the performance of IP/CP iterative approach 

is much better than IP/IP iterative approach since IP scheduling model could not 

provide efficient results due to increasing problem size.   

 

Since IP is an appropriate technique in solving assignment type problems and CP 

is better in sequencing and scheduling problems, an iterative solution procedure 



161

which uses IP in assigning the jobs to the machines and then uses CP in scheduling 

the jobs on the dedicated machines gives better performance than the other proposed 

solution approaches. 

 

0

1

2

3

4

5

6

7

8

80 (10) 80 (12) 120 (10) 120 (12)

# of jobs (# of operators)

A
ve

ra
ge

G
ap

(%
)

CP-assignAlternatives
CP-Proposed Search
IP/IP Iterative
IP/CP Iterative

Figure 8.2 Comparison of solution approaches in terms of average gap (%) 

 

In terms of CP models, the proposed search algorithm provides relatively better 

performance in the test problems with more jobs and less number of operators. More 

specifically, since the proposed search algorithm gives priority to the jobs with 

higher operator requirements, the best performance of CP model with proposed 

search procedure is encountered in 120 job test problems with 10 operators where the 

additional resource dominates the schedule (see Figure 8.2). On the contrary, 

assignAlternatives search option provides its best performance in 80 job test 

problems with 12 operators where the effect of additional resource constraints in 

constructing the schedule is relatively weak. In such cases, unary resources (i.e., 

machines) play a significant role in constructing the schedule. Therefore, the search 

option assignAlternatives, which deal with unary resources in a more efficient way, 

provides better makespan values.  

 

Since the entire IP model could not give even feasible solutions for 120-job test 

problems within 1000 second run time limit, the analysis focuses on the 

computational results of 80-job test instances.  The computational results related to 



162

80-job test problems indicate that, the entire IP model may handle low processing 

flexibility cases where each job has fewer machine alternatives to be processed on. 

This situation provides fewer nodes to be explored in B&B tree. In fact, it is also the 

case for the entire CP models. The performance of entire CP model with both search 

procedures is relatively better in low processing flexibility cases. On the other hand, 

for the iterative solution methods, since the set of jobs assigned to each machine has 

already been determined in the loading phase, the performances of IP/IP and IP/CP 

scheduling models do not depend on the process flexibility variation of test 

problems. 

 

Consequently, it can be stated that IP/CP iterative approach works efficiently for 

the real case problem in terms of both average gap percent and getting quick and 

efficient results.  

 

Finally, a sample instance (i.e., n = 120, FP = Low, b = 10, Test Prob.10, see 

Table 8.2) is chosen to illustrate the resulting optimal schedule of IP/CP iterative 

approach. The Gantt chart of this sample is presented in Figure 8.3. Similar to earlier 

representations, in Figure 8.3, each job is described with its index and resource 

requirement in parentheses. The time interval based resource usage profile is also 

provided in the figure. Note that, the utilization of operators is at its highest level in 

almost all time intervals, since the additional resource constraints dominate the 

schedule. On the other hand, since the number of operators is relatively small in 

comparison to number of jobs and process flexibility (FP) is low, there exists some 

machine idle times in the schedule.  

 



163

M1
M2
M3
M4
M5
M6
M7
M8
M9
M10
M11
M12
M13
M14
M15
M16
M17
M18
M19
M20
M21
M22
M23
M24
M25
M26
M27
M28
M29
M30
M31
M32
M33
M34
M35
M36

0
Res.Usage

68 (2) 12 (2)115 (2) 90 (1) 79 (2) 72 (2)
91 (1) 76 (2)

120 (0) 117 (0) 29 (0) 19 (0)

49 (0) 33 (0) 27 (0) 66 (2)

17 (2)
113 (0) 53 (0) 70 (1) 28 (1)

36 (0)
30 (0) 10 (0) 54 (1)

42 (0) 41 (0) 40 (0) 37 (0)

55 (1) 57 (2)

51 (2)
102 (0) 101 (2) 95 (2) 87 (2)

60 (2)

116 (2) 112 (2) 39 (0) 7 (0)
23 (2)58 (2)

32 (0) 63 (2) 44 (2) 24 (2)

82 (0) 8 (0) 3 (1)

110 (0) 109 (2) 85 (2)

118 (0) 105 (2) 84 (2) 80 (2)

2 (1)

31 (2)
94 (2) 62 (2) 43 (2) 16 (2)

38 (0) 64 (2) 4 (2) 47 (2)

108 (0) 69 (0) 56 (0) 25 (0)
13 (2)45 (2)81 (2)14 (1)

1 (2)
119(1) 35 (0) 103 (1) 61 (2)

15 (0)

111 (2) 107 (0) 83 (2)

48 (2)
46 (2)98 (2)

26 (2)34 (0)96 (2)104 (2)
106 (0) 50 (0) 18 (0)

99 (2) 97 (2) 65 (2)
71 (2)

100 (2) 88 (2) 20 (0)
93 (2) 89 (1) 75 (0) 11 (0) 78 (2) 67 (1)

73 (2)
74 (2)

52 (2) 9 (2)

5 (2)21 (2)
6 (2)22 (2)

92 (1)
114 (1)

86 (2)
77 (2)

11410 20 30 40 50 60 70 80 90 100 110

59 (2)

Figure 8.3 Resulting schedule of IP/CP iterative approach for n = 120, FP = Low, b = 10, Test Prob.10



164

8.5 Chapter Summary 

 

The problem considered in this chapter is motivated by a real-world RCPMSP 

problem investigated in the injection-molding department of an electrical appliance 

plant. An iterative solution method which partitions the problem into loading and 

scheduling sub-problems is proposed. In the loading phase, an IP model assigns the 

jobs to the machines with the aim of minimizing maximum load on machines. 

Subsequently, taking the dedicated jobs of each machine from the loading phase, two 

alternative scheduling models, namely, IP and CP, construct the final schedule of the 

jobs with makespan objective subject to operator constraints. Computational results 

show that IP/CP iterative method provides better makespan values for almost all test 

problems in comparison to entire IP and entire CP models. The performance of IP/IP 

iterative approach is comparable with IP/CP iterative approach in 80-job test 

instances; whereas, in 120-job test instances, IP/CP iterative approach dominates the 

IP/IP approach. Consequently, although the proposed IP/CP iterative approach may 

not give an optimal solution to the entire problem, it provides efficient results with 

very small optimality gaps in a reasonable amount of time. 



165

CHAPTER NINE 

CONCLUSIONS AND FUTURE RESEARCH 

 

9.1 Summary 

 

Scheduling models and algorithms are widely used in manufacturing applications 

to perform production in an efficient way. PMS is one of the most studied areas in 

the scheduling literature. In most of PMS studies, the only considered resources are 

machines. However, in most real life problems, jobs may also require certain 

additional resources, such as machine operators, tools, dies, pallets etc. for their 

handling and processing. Beside the additional resources, jobs may often not be 

processed on any of the parallel machines but rather must be processed on a machine 

belonging to a specific subset of machines. This situation, named machine eligibility 

restrictions, is also widely encountered in real scheduling environments.  

 

Analyzing the related literature reveals that no study, so far, has considered 

additional resources and machine eligibility restrictions together for the PMS 

problems. The proposed research in this dissertation has been motivated by a real 

world PMS problem where additional resource constraints and machine eligibility 

restrictions should also be taken into consideration.  

 

By the motivation of the real-life problem, three problem cases have been 

investigated in this dissertation. All three problems include machine eligibility 

restrictions (Mi) and one additional resource type with arbitrary resource size and up 

to two units of resource requirements (i.e., 21⋅res ) as the common characteristics. 

The representations of problem cases with their distinct characteristics are as follows: 

 

- Problem Case I: P | 21⋅res , Mi, pi=1|∑i iC . Unit (equal) processing times 

with the aim of minimizing total flow time. 

- Problem Case II: P | 21⋅res , Mi, pi| Cmax. Arbitrary processing times with the 

aim of minimizing makespan. 



166

- Problem Case III: P36 | 21⋅res , Mi, pi| Cmax. The real case study of the 

second problem with 36 machines, and real die-machine compatibility matrix.  

 

For the first problem case, two heuristic algorithms have been proposed. The first 

one is a Lagrangian-based solution approach (LSA) embedded into a subgradient 

optimization procedure to obtain tight lower bounds and near optimal solutions. The 

second one is an independent problem specific heuristic (PSH). By means of 

randomly generated instances of the problem, it has been shown that the proposed 

algorithms provide efficient results with a small optimality gap and LSA derives very 

tight lower bounds. Moreover, LSA gives superior results in low flexible machine 

environments, while PSH is relatively better in high flexible ones. 

 

For the second problem case, three optimization models, namely, IP, CP, and 

combined IP/CP models have been developed. Four different search algorithms have 

been evaluated and the one with the best performance, named proposed search 

algorithm, is embedded into the CP and IP/CP combined models. The three 

optimization models are tested through randomly generated test problems. The IP/CP 

combined model with the proposed search algorithm has outperformed the individual 

IP and CP models with respect to makespan values in almost all sub-groups of test 

instances. IP/CP combined model has also achieved a considerable reduction in 

computation times. In addition, in the high values of process flexibility, the 

combined IP/CP model has provided much better performance. 

 

For the real-life case study, IP/IP and IP/CP iterative approaches have been 

proposed. Iterative solution methods partition the entire problem into loading and 

scheduling phases. In the loading phase, an IP model assigns the jobs to the machines 

with the aim of minimizing maximum load on machines. Subsequently, in the 

scheduling phase, two alternative models, namely, IP and CP construct the final 

schedule of the jobs with makespan objective subject to resource constraints. Entire 

IP and entire CP models have also been applied to the test problems with real data. 

Computational results have shown that, IP/CP iterative approach outperforms the 

other approaches by providing quick and efficient results with small optimality gaps. 



167

Figure 9.1 outlines the research problems with the proposed solution approaches.  

 

Embedded CP-based 
Search Procedures

Research Problems

Lagrangian based 
Solution Approach 

(LSA)

Problem Specific  
Heuristic (PSH)

Integer 
Programming    

(IP) Model

Constraint 
Programming    
(CP) Model

IP/IP Iterative 
Approach

IP/CP Iterative 
Approach

IP/CP Combined 
Model

Problem Case I           
P |res1·2, Mi, pi=1|∑Ci

Problem Case II 
P |res1·2, Mi, pi|Cmax

Problem Case III
P36 |res1·2, Mi, pi|Cmax

 
Figure 9.1 Research problems and proposed solution approaches 

 

9.2 Contributions 

 

In the literature related to RCPMSPs, although a number of studies handle 

common shared resources, most of them deal with dedicated (i.e., the set of jobs to 

be processed on each machine is priori known) or identical machines. As far as we 

know, no study in this field has considered machine eligibility restrictions.  

 

All the research problems in this dissertation, differently from previous studies, 

consider machine eligibility restrictions and common shared resource (i.e., machine 

operators shared by all machines) cases together. This is one of the main 

contributions of this dissertation.  

 



168

In case of machine eligibility restrictions, different flexibility measures of 

machines requires further analysis on their different levels. So far, the effect of these 

flexibility measures has only been discussed within classical PMS systems.  

 

This dissertation analyzes the effect of machine eligibility restrictions for the 

research problems in terms of process flexibility and balance flexibility.  

 

The studies related to RCPMSPs mainly focus on small sized problems with 

hypothetical data. Large sized problems, especially the cases encountered in real-life 

environments, do not receive much attention in the literature.  

 

The research problems in this dissertation are motivated by a real RCPMSP with 

machine eligibility restrictions encountered in an injection molding department of an 

electrical appliance plant. Moreover, the third problem case also considers real case 

study with its own large sized real data (i.e., 36 machines, up to 120 jobs and 12 

units of additional resource).     

 

Although many researchers have studied the use of Lagrangian relaxation 

algorithms for PMS problems, to the best of our knowledge, only Ventura & Kim 

(2003) applied this technique for a RCPMSP with identical machines and unit 

processing times.  However, they do not consider machine eligibility restrictions. 

 

In this dissertation, a Lagrangian-based solution approach is proposed for the 

first problem case. The proposed solution approach not only provides tight lower 

bounds but also produces efficient results with small optimality gaps.  

 

Since RCPMSPs are natural candidates for strict feasibility problems, CP 

technique may be utilized individually or as a part of a solution approach for this 

class of problems. To the best of our knowledge, no study so far utilizes CP 

technique for solving RCPMSPs.  

 



169

CP technique is utilized in both second and third research problems to obtain 

quick and efficient results. 

 

Although CP has an advantage of finding quick and feasible results, it usually 

lacks proving the optimality when it is used alone. Therefore, for the second problem 

case, an IP/CP combined model is developed to utilize the complementary strengths 

of two techniques. As far as we know, it is the first study that proposes an IP/CP 

combined model for RCPMSPs.   

For the third problem case, we propose an iterative solution method which 

partitions the entire problem into loading and scheduling sub-problems to obtain 

more efficient results. The scheduling sub-problem is solved by IP and also 

alternatively by CP. The efficiency of CP is shown in the scheduling phase.  

 

One of the advantages of CP is its ability to use search procedures. By using an 

efficient search procedure in CP, the search tree can be pruned in the earlier stages, 

and feasible solutions can be reached in advance. No study so far utilizes problem 

specific CP-based search algorithms in this class of problems.  

 

For the second problem case, two problem specific CP-based search procedures 

have been proposed to be used in both CP and IP/CP combined OPL models. The 

efficiency of the proposed search procedures is also confirmed by comparing them 

with built-in search procedures of OPL optimization software.  

 

9.3 Future Directions 

 

The following issues remain for future research of RCPMSPs. 

 

The proposed research on the first research problem can be extended to the 

problem cases with different objectives and non-equal processing times. In such 

problem cases, the remaining LRP may not be solved easily with an ordinary use of 



170

Lagrangian relaxation. Therefore, suitable Lagrangian decomposition schemes may 

be developed to obtain more efficient results in such problem cases. 

 

Since the combined IP/CP model developed for the second problem case gives 

optimal results for a wide range of test problems, this model can be suggested to be 

used for evaluating the performance of other solution approaches which will be 

proposed for this class of RCPMSPs.  

 

The search procedures are very important for the CP part of the problem. The 

performance of the proposed search algorithms confirms the efficiency and success 

of problem-based search algorithms in comparison to general-purpose search 

options. Therefore, alternative problem-specific search procedures may reduce the 

computation time of both CP and IP/CP combined model in different types of 

RCPMSPs.  

 

Since IP/CP combined model performs relatively better in the test problems with 

high process flexibility, the combined IP/CP model can successfully be adapted to 

the problems with identical parallel machines where all machines are capable of 

processing all jobs.   

 

Although the proposed research focuses on a specific RCPMSP of a real-world 

scheduling environment, it can easily be extended to more general versions of 

RCPMSPs, e.g. unrelated parallel machines, arbitrary number of additional resources 

etc.  

 

Since the additional resources in the research problems are common rather than 

the ones assigned to parallel jobs of each facility, the considered RCPMSP may not 

be easily decomposed into independent sub-problems. Nevertheless, if IP model is 

constructed in a different manner with different assumptions, such a decomposition 

approach (see e.g., Chu & Xia, 2005; Hooker 2005, 2006) may also be taken into 

consideration.  

 



171

A further study might be consideration of exact scheduling of operators. Once the 

final schedule of jobs is obtained by proposed solution methods, an additional 

operator scheduling model may be constructed. Moreover, an integrated operator and 

machine scheduling framework may also be developed. Similar works in the 

literature are given by Artigues, Gendreau & Rousseau (2007) and Artigues, 

Gendreau, Rousseau & Vergnaud (2009) for a different scheduling environment. 

 

Finally, computational results generally show that CP model may produce very 

quick and efficient results due to the strict feasibility structure of RCPMSPs. On the 

other hand, IP may require rather enormous amount of time to obtain even a feasible 

solution. Therefore, giving the quick solutions of CP to IP solvers as initial solutions 

may produce efficient results in less computation times. 

 



172

REFERENCES 

 

Artigues, C., Gendreau, M., & Rousseau, L-M. (2007). A flexible model and a 

hybrid exact method for integrated employee timetabling and production 

scheduling. In E.K. Burke & H. Rudov´a (Eds.). PATAT 2006, Lecture Notes in 

Computer Science 3867, (67–84). Germany: Springer-Verlag Berlin Heidelberg. 

 

Artigues, C., Gendreau, M., Rousseau, L-M., & Vergnaud, A. (2009). Solving an 

integrated employee timetabling and job-shop scheduling problem via hybrid 

branch-and-bound. Computers & Operations Research, 36, 2330-2340. 

 

Baptiste, P., Le Pape, C., & Nuijten, W. (2001). Constraint-based scheduling: 

Applying constraint programming to scheduling problems. London, Great Britain: 

Kluwer Academic Publishers.   

 

Baptiste, P., Laborie, P., Le Pape, C., & Nuijten,W. (2006). Constraint based 

scheduling and planning. In F. Rossi, P. Van Beek, & T. Walsh (Eds.) Handbook 

of Constraint Programming  (761–799). Amsterdam: Elsevier. 

 

Beasley, J.E. (1995). Lagrangean Relaxation. In C.R. Reeves, (Ed.). Modern 

heuristic techniques for combinatorial problems (243-303). UK: McGraw-Hill. 

 

Blazewicz, J. (1979). Deadline scheduling of tasks with ready times and resource 

constraints. Information Processing Letters, 8(2), 60-63. 

 

Blazewicz, J., Barcelo, J., Kubiak, W., & Röck, H. (1986). Scheduling tasks on two 

processors with deadlines and additional resources. European Journal of 

Operations Research, 26, 364-370. 

 

Blazewicz, J., Brauner, N., & Finke, G. (2004). Scheduling with discrete resource 

constraints. In J. Y-T. Leung, (Ed). Handbook of Scheduling: Algorithms, Models, 

and Performance Analysis. USA: CRC Press. 



173

Blazewicz, J., Cellary, W., Slowinski, R., & Weglarz, J. (1986). Scheduling under 

resource constraints – Deterministic Models. Switzerland: J. C. Baltzer AG, 

Scientific Publishing Company. 

 

Blazewicz, J., & Ecker, K. (1983). A linear time algorithm for restricted bin packing 

and scheduling problems. Operations Research Letters, 2(2), 80-83. 

 

Blazewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., & Weglarz, J. (2007a). 

Communication Delays and Multiprocessor Tasks. In Handbook on scheduling:  

From theory to applications (199-241).  New York: Springer-Verlag  

 

Blazewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., & Weglarz, J. (2007b). 

Scheduling under Resource Constraints. In Handbook on scheduling:  From 

theory to applications (425-475).  New York: Springer-Verlag Berlin Heidelberg.  

 

Blazewicz, J., Kubiak, W., & Martello, S. (1993). Algorithms for minimizing 

maximum lateness with unit length tasks and resource constraints. Discrete 

Applied Mathematics, 42, 123-138. 

 

Blazewicz, J., Kubiak, W., Röck, H., & Szwarcfiter, J. (1987). Minimizing mean 

flow time with parallel processors and resource constraints. Acta Informatica, 24,

513-524. 

 

Blazewicz, J., Lenstra, J.K., & Rinnooy Kan, A.H.G. (1983). Scheduling subject to 

resource constraints: Classification and complexity. Discrete Applied 

Mathematics, 5, 11-24. 

 

Bosch, R., & Trick, M. (2004). Constraint programming and hybrid formulations for 

three life designs. Annals of Operations Research, 130(1-4), 41-56.  

 

Bourland, K.E., & Carl, L.K. (1994). Parallel machine scheduling with fractional 

operator requirements. IIE Transactions, 26(5), 56-65. 



174

Brailsford, S.C., Potts, C.N., & Smith, B.M. (1999). Constraint satisfaction 

problems: Algorithms and applications. European Journal of Operational 

Research, 119, 557-581. 

 

Brucker, P. (2004). Scheduling algorithms (5th ed.). New York: Springer-Verlag 

Berlin Heidelberg.  

 

Centeno, R., & Armacost R.L. (1997). Parallel machine scheduling with release time 

and machine eligibility restrictions. Computers and Industrial Engineering, 33(1-

2), 273-276. 

 

Centeno, R.,& Armacost R.L. (2004). Minimizing makespan on parallel machines 

with release time and machine eligibility restrictions. International Journal of 

Production Research, 42(6), 1243-1256. 

 

Chen, J-F. (2005). Unrelated parallel machine scheduling with secondary resource 

constraints. International Journal of Advanced Manufacturing Technology, 26,

285-292. 

 

Chen, J-F., & Wu, T-H. (2006). Total tardiness minimization on unrelated parallel 

machine scheduling with auxiliary equipment constraints. Omega, 34, 81-89. 

 

Cheng, T.C.E., & Sin, C.C.S. (1990). A state-of-the-art review of parallel-machine 

scheduling research. European Journal of Operational Research, 47, 271-292.  

 

Chu, Y., & Xia, Q. (2005). A hybrid algorithm for a class of resource-constrained 

scheduling problems. In R. Bartak & M. Milano (Eds.). CPAIOR’2005, Lecture 

Notes in Computer Science 3524, (110-124). Germany: Springer-Verlag.  

 

Daniels, R.L., Hoopes, B.J., & Mazzola, J.B. (1996). Scheduling parallel 

manufacturing cells with resource flexibility. Management Science, 42 (9), 1260-

1276. 



175

Daniels, R. L., Hoopes, B. J., & Mazzola, J. B. (1997). An analysis of heuristics for 

the parallel-machine flexible-resource scheduling problem. Annals of Operations 

Research, 70, 439-472. 

 

Daniels, R.L., Hua, S.Y., & Webster, S. (1999). Heuristics for parallel-machine 

flexible-resource scheduling problems with unspecified job assignment. 

Computers & Operations Research, 26, 143-155. 

 

Dantzig, G.B. (1963). Linear programming and extensions, New Jersey, Princeton: 

Princeton University Press. 

 

Darbi-Dowman, K. D., & Little, J. (1998). Properties of some combinatorial 

optimization problems and their effect on the performance of integer 

programming and constraint logic programming. Informs Journal on Computing,

10(3), 276-286.  

 

Darbi-Dowman, K.D., Little, J., Mitra, G., & Zaffalon, M. (1997) Constraint logic 

programming and integer programming approaches and their collaboration in 

solving an assignment scheduling problem. Constraints, 1, 245-264. 

 

Edis, E.B., Araz, C., & Ozkarahan, I. (2008). Lagrangian-based solution approaches 

for a resource-constrained parallel machine scheduling problem with machine 

eligibility restrictions. In N.T. Nguyen et al., (Eds.). IEA/AIE 2008, Lecture Notes 

in Artificial Intelligence 5027 (337–346). Germany: Springer-Verlag  

 

Edis, E.B., Mizrak Ozfirat, P., & Ozkarahan, I. (2008). A constraint programming 

approach for a conference timetabling problem. Proceedings of the 37th Annual 

Meeting of the Western Decision Sciences Institute, 603-605. 

 

Edis, E.B., & Ozkarahan, I. (2006). Comparison of integer programming, constraint 

programming and hybrid approaches for a class of scheduling problems.  



176

Proceedings of the 26th National Conference on Operations Research and 

Industrial Engineering, 281-284.

Edis, E.B., & Ozkarahan, I. (2007). Parallel machine scheduling with additional 

resources: A brief review of the literature. Proceedings of 11th IFAC International 

Symposium CEFIS’2007, 381-386. 

 

Edis, E.B., & Ozkarahan, I. (2008). Parallel machine scheduling problem with 

additional resources and machine eligibility restrictions: An iterative integer 

programming approach. International Journal of Computers, Information 

Technology and Engineering, 2(1), 1-11. 

 

Eiselt, H.A., & Sandblom, C-L. (2004). Decision analysis, location models, and 

scheduling problems. New York: Springer-Verlag Berlin Heidelberg.  

 

Eiselt, H.A., & Sandblom, C-L. (2007). Linear Programming and its Applications.

New York: Springer-Verlag Berlin Heidelberg.  

 

Fisher, M. L. (1973). Optimal solution of scheduling problems using Lagrange 

multipliers: Part I. Operations Research, 21, 1114-1127.  

 

Fisher, M. L. (1981). The Lagrangian relaxation method for solving integer 

programming problems. Management Science, 27(1), 1-18.  

 

Focacci, F., Lodi, A., & Milano, M. (2002). Mathematical programming techniques 

in constraint programming: A short overview. Journal of Heuristics, 8, 7-17. 

 

Frangioni, A. (2005). About Lagrangian methods in integer optimization. Annals of 

Operations Research, 139, 163–193.

Fumero, F. (2001). A modified subgradient algorithm for Lagrangian relaxation. 

Computers and Operations Research 28(1), 33–52. 



177

Gao, L., Wang, C., Wang, D., Yin, Z., & Wang, S. (1998). A production scheduling 

system for parallel machines in an electrical appliance plant. Computers and 

Industrial Engineering, 35(1-2), 105-108. 

 

Garey, M.R., & Graham, R.L. (1975). Bounds for multiprocessor scheduling with 

resource constraints. SIAM Journal on Computing, 4(2), 187-200. 

 

Garey, R. L., Graham, D. S., & Johnson, A. (1976). Resource constrained scheduling 

as generalized bin packing. Journal of Combinatorial Theory, Series A, 21(3), 

257-298. 

 

Garey, M.R., & Johnson, D.S. (1975). Complexity results for multiprocessor 

scheduling under resource constraints. SIAM Journal on Computing, 4(4), 397-

411.  

 

Garey, M.R., & Johnson, D.S. (1979). Computers and intractability: A guide to the 

theory of NP-completeness. San Francisco: W. H. Freeman and Company.  

 

Geoffrion, A.M. (1974). Lagrangian Relaxation for integer programming. 

Mathematical Programming Study, 2, 82-114. 

 

Glass, C.A., & Kellerer, H. (2007). Parallel machine scheduling with job assignment 

restrictions. Naval Research Logistics, 54(3), 250–257. 

 

Glass, C. A., Shafransky,  Y.M., & Strusevich, V.A. (2000). Scheduling for parallel 

dedicated machines with a single server. Naval Research Logistics, 47(4), 304-

328. 

 

Goffin, J.L. (1977). On the convergence rates of subgradient optimization methods. 

Mathematical Programming, 13, 329–347. 

 



178

Gomory, R. (1963). Recent advances in mathematical programming. In R. Graves & 

P. Wolfe (Eds.). An algorithm for integer solutions to linear programs (260-302). 

New York: McGraw-Hill. 

 

Gonzalez, M.C. (1977). Deterministic Processor Scheduling, ACM Survey, 9, 173-

204. 

 

Graham, R.L., Lawler, E.L., Lenstra, J.K., & Rinnooy Kan, A.H.G. (1979). 

Optimization and approximation in deterministic sequencing and scheduling: A 

survey. Annals of Discrete Mathematics, 5, 287-326. 

 

Grigoriev, A., Sviridenko, M., & Uetz, M. (2005). Unrelated parallel machine 

scheduling with resource dependent processing times. Mathematical 

Programming  Series B, 110, 209-228. 

 

Grigoriev, A., Sviridenko, M., & Uetz, M. (2006). LP rounding and an almost 

harmonic algorithm for scheduling with reource dependent processing times. In J. 

Diaz et al. (Eds.). APPROX and RANDOM 2006, Lecture Notes in Computer 

Science 4110 (140-151). Germany: Springer-Verlag Berlin Heidelberg.   

 

Grigoriev, A., Sviridenko, M., & Uetz, M. (2007). Machine scheduling with resource 

dependent processing times. In M. Jünger & V. Kaibel (Eds.). IPCO 2005, 

Lecture Notes in Computer Science 3509 (182-195). Germany: Springer-Verlag. 

 

Grigoriev, A., & Uetz, M. (2006). Scheduling parallel jobs with linear speedup. In T. 

Erlebach & G. Parsiano (Eds.). WAOA 2005, Lecture Notes in Computer Science 

3879 (203-215). Germany: Springer-Verlag Berlin Heidelberg   

 

Grigoriev, A., & Uetz, M. (2009). Scheduling jobs with time-resource trade-off via 

non-linear programming. Discrete Optimization, 6, 414-419. 

 



179

Guignard, M. (2002). Lagrangian relaxation. In P.M. Pardalos & G.C.R. Mauricio 

(Eds.). Handbook of Applied Optimization (465-474). New York: Oxford 

University Press. 

 

Guignard, M. (2003). Lagrangean relaxation. TOP, 11(2), 151–228. 

 

Hall, N.G., Potts, C. N., & Sriskandarajah, C. (2000). Parallel machine scheduling 

with a common server. Discrete Applied Mathematics, 102, 223-243. 

 

Harvey, N.J.A., Ladner, R.E., Lovasz, L., & Tamir, T. (2006). Semi-matchings for 

bipartite graphs and load balancing. Journal of Algorithms, 59(1), 53–78. 

 

Heipcke, S. (1999). Comparing constraint programming and mathematical 

programming approaches to discrete optimisation-the change problem. Annals of 

Operations Research, 50, 581-595. 

 

Held, M., & Karp, R.M. (1970). The traveling salesman problem and minimum 

spanning trees. Operations Research, 18, 1138-1162. 

 

Held, M., & Karp, R.M. (1971). The traveling salesman problem and minimum 

spanning trees: Part II. Mathematical Programming, 1, 6-25. 

 

Held, M., Wolfe P., & Crowder, H. (1974). Validation of subgradient optimization. 

Mathematical Programming, 6, 62-88. 

 

Hooker, J. (2000). Logic-based methods for optimization: combining optimization 

and constraint satisfaction. USA: Wiley-Interscience Series in Discrete 

Mathematics and Optimization, John Wiley & Sons. 

 

Hooker, J.N. (2002). Logic, optimization and constraint programming. INFORMS 

Journal on Computing, 14, 295 - 321.



180

Hooker, J.N. (2005). A hybrid method for planning and scheduling. Constraints, 10,

385-401.  

 

Hooker, J. N. (2006). An integrated method for planning and scheduling to minimize 

tardiness. Constraints, 11, 139-157. 

 

Hooker, J.N. (2007). Integrated Methods for Optimization. USA: Springer 

Science+Business Media.  

 

ILOG, 2003. OPL Studio 3.7 Language manual. France: ILOG S.A.  

 

ILOG, 2005a. CPLEX 9.0 User’s Manual. France: ILOG S.A. 

 

ILOG, 2005b. ILOG Solver 6.0 User’s Manual. France: ILOG S.A. 

 

ILOG, 2005c. ILOG Scheduler 6.0 User’s Manual. France: ILOG S.A.  

 

Jain, V., & Grossmann, I.E. (2001). Algorithms for hybrid MILP/CP models for a 

class of optimization problems. Informs Journal on Computing, 13, 258-276. 

 

Ji, M., & Cheng, T.C.E. (2008). An FPTAS for parallel-machine scheduling under a 

grade of service provision to minimize makespan. Information Processing Letters,

108(4), 171–174. 

 

Jozefowska, J., & Weglarz, J. (2004). Scheduling with resource constraints-

continuous resources. In J.Y-T. Leung (Ed.). Handbook of Scheduling: 

Algorithms, Models, and Performance Analysis (Chapter 24). USA: CRC Press. 

 

Kanet, J. J., Ahire, S. L., & Gorman, M. F. (2004). Constraint programming for 

scheduling. In J.Y-T. Leung (Ed.). Handbook of Scheduling: Algorithms, Models, 

and Performance Analysis (Chapter 47). USA: CRC Press.  

 



181

Kedad-Sidhoum, S., Solis, Y.R., & Sourd, F. (2008). Lower bounds for the earliness-

tardiness scheduling problem on single and parallel machines. European Journal 

of Operations Research, 189, 1305-1316. 

 

Kelbel, P, & Hanzalek, Z. (in press). Solving production scheduling with 

earliness/tardiness penalties by constraint programming. Journal of Intelligent 

Manufacturing. doi: 10.1007/s10845-009-0318-2. 

 

Kellerer, H. (2008). An approximation algorithm for identical parallel machine 

scheduling with resource dependent processing times. Operations Research 

Letters, 36, 157-159. 

Kellerer, H., & Strusevisch, V.A. (2003). Scheduling parallel dedicated machines 

under a single non-shared resource. European Journal of Operational Research,

147, 345-364. 

 

Kellerer, H., & Strusevisch, V.A. (2004). Scheduling problems for parallel dedicated 

machines under multiple resource constraints. Discrete Applied Mathematics, 133,

45-68. 

 

Kellerer, H., & Strusevisch, V.A. (2008). Scheduling parallel dedicated machines 

with the speeding-up resource. Naval Research Logistics, 55(5), 377-389. 

 

Kovalyov, M.Y., & Shafransky, Y. M. (1998). Uniform machine scheduling of unit-

time jobs subject to resource constraints. Discrete Applied Mathematics, 84, 253-

257. 

 

Krause, K.L., Shen, V.Y., & Schwetman, H. D. (1973). A task scheduling algorithm 

for a multiprogramming computer system. ACM SIGOPS Operating Systems, 7

(4), 112-118. 

 



182

Krause, K.L., Shen, V.Y., & Schwetman, H. D. (1975). Analysis of several task-

scheduling algorithms for a model of multiprogramming computer systems. 

Journal of the Association for Computing Machinery, 22(4), 522-550. 

 

Lemarechal, C. (2001). Lagrangian relaxation. In M. Junger & D. Naddef (Eds.). 

Computational Combinatorial Optimization, Lecture Notes in Computer Science 

2241 (115-160). Germany: Springer-Verlag Heidelberg. 

 

Lenstra, J.K., Shmoys, D.B., & Tardos, E. (1990). Approximation algorithms for 

scheduling unrelated parallel machines. Mathematical Programming, 46(1–3), 

259–271. 

 

Leung, J.Y-T, & Li, C-H. (2008). Scheduling with processing set restrictions: A 

survey. International Journal of Production Economics, 116, 251-262.  

 

Li, C.-L. (2006). Scheduling unit-length jobs with machine eligibility restrictions. 

European Journal of Operational Research, 174(2), 1325–1328. 

 

Li, C.-L., & Wang, X. (2009). Scheduling parallel machines with inclusive 

processing set restrictions and job release times. European Journal of Operational 

Research, doi:10.1016/j.ejor.2009.02.011, In Press. 

 

Li, Y., Wang, F., & Lim A. (2003). Resource constraints machine scheduling: A 

genetic algorithm approach, CEC: 2003 Congress on Evolutionary Computation,

1-4, 1080-1085. 

 

Lim M-F., & Karimi I.A. (2003). Resource-constrained scheduling of parallel 

production lines using asynchronous slots. Industrial & Engineering Chemistry 

Research, 42(26), 6832-6842. 

Lin, Y., & Li, W. (2004). Parallel machine scheduling of machine-dependent jobs 

with unit-length. European Journal of Operational Research, 156(1), 261–266. 



183

Lin, C.K.Y., Wong, C.L., & Yeung, Y.C. (2002). Heuristic approaches for a 

scheduling problem in the plastic molding department of an audio company. 

Journal of Heuristics, 8, 515-540. 

 

Lorena, L.A.N., & Senne, E.L.F. (1999).  Improving traditional subgradient scheme 

for Lagrangean relaxation: an application to location problems. International 

Journal of Mathematical Algorithms, 1, 133–151.

Luh, P.B., & Hoitomt, D.J. (1993). Scheduling of manufacturing systems using the 

Lagrangian relaxation technique. IEEE Transactions on Robotics and Automation,

38(7), 1066-1079.  

 

Luh, P.B., Hoitomt, D.J., Max, E., & Pattipati, K.R. (1990). Schedule generation and 

reconfiguration for parallel machines. IEEE Transactions on Robotics and 

Automation, 6(6), 687-696. 

 

Lustig I. J., & Puget J. F. (2001). Program does not equal program: Constraint 

programming and its relationship to mathematical programming. Interfaces,

31(6), 29-53. 

 

Magatao, L. (2005). Mixed integer linear programming and constraint logic 

programming: A unified modeling framework. PhD Thesis, Graduate School in 

Electrical Engineering and Industrial Computer Science, Brasil. 

 

Martello, S., Soumis, F., & Toth, P. (1997). Exact and approximation algorithms for 

makespan minimization on unrelated parallel machines. Discrete Applied 

Mathematics, 75, 169-188. 

 

McNaughton, R. (1959). Scheduling with deadlines and loss functions. Management 

Science, 6(1), 1-12. 

 



184

Mendez, C.A., & Cerda, J. (2004). An MILP framework for batch reactive 

scheduling with limited discrete resources. Computers & Chemical Engineering,

28(6-7), 1059-1068. 

Mendez, C.A., Cerda, J., Grossmann, I.E., Harjunkoski, I., & Fahl, M. (2006). State-

of-the-art review of optimization methods for short-term scheduling of batch 

processes. Computers & Chemical Engineering, 30(6-7), 913-946. 

Milano, M. (Ed). (2004). Constraint and integer programming: Toward a unified 

methodology. USA: Kluwer Academic Publishers. 

 

Milano, M., Ottosson, G., Refalo, P., & Thorsteinsson, E. S. (2002). The role of 

integer programming techniques in constraint programming’s global constraints. 

Informs Journal on Computing, 14(4), 387-402. 

 

Milano, M., & Trick, M. (2004). Constraint and integer programming. In M. Milano 

(Ed). Constraint and integer programming: Toward a unified methodology (1-33). 

USA: Kluwer Academic Publishers. 

 

Milano, M., & Wallace, M. (2006). Integrating operations research in constraint 

programming. 4OR, 4, 175-219. 

 

Mızrak Ozfirat, P., Edis, E.B., & Ozkarahan, I. (2006). Mathematical modeling 

approach for the course timetabling problem of Dokuz Eylul University Industrial 

Engineering Department. Proceedings of the International Conference on 

Modeling and Simulation, 853-857. 

 

Mokotoff, E. (2001). Parallel Machine Scheduling Problems: A Survey. Asia Pacific 

Journal of Operational Research, 18, 193-242.   

 



185

Nagarur, N., Vrat, P., & Duongsuwan, W. (1997). Production planning and 

scheduling for injection molding of pipe fittings. International Journal of 

Production Economics, 53, 157-170. 

 

Nagendra, P., Das, S.K., & Nathan, S. (2000). Deriving the detailed machine 

schedule from a weekly MRP requirement. Production Planning and Control,

11(6), 547-555. 

 

Olafsson, S., & Shi, L. (2000). A method for scheduling in parallel manufacturing 

systems with flexible resources. IIE Transactions, 32, 135-146. 

 

Ou, J., Leung, J.Y-T., & Li, C-L. (2008). Scheduling parallel machines with 

inclusive processing set restrictions. Naval Research Logistics, 55(4), 328–338. 

 

Ozdamar, L., & Ulusoy, G. (1994). A local constraint based analysis approach to 

project scheduling under general resource constraints. European Journal of 

Operational Research, 79, 287-298. 

 

Ozkarahan, I., Edis, E. B., & Mizrak Ozfirat, P. (2009). Scheduling of surgical 

operations to operating rooms by mathematical modeling. Proceedings of 

Decision Sciences Institute,  40th Annual Meeting Conference, 921-926. 

 

Pfund, M., Fowler, J. W., & Gupta, J. N. D. (2004). Multi-objective unrelated 

parallel-machine deterministic scheduling problems. Journal of the Chinese 

Institute of Industrial Engineers, 21(3), 230-241. 

 

Pinedo, M. (1995). Scheduling: Theory, algorithms and systems. Englewood Cliffs, 

New Jersey: Prentice-Hall, Inc. 

 

Pinedo, M. (2008). Scheduling: Theory, algorithms and systems (3rd ed.). USA: 

Springer Science+Business Media. 

 



186

Pinedo, M., & Chao, X. (1999). Operations scheduling with applications in 

manufacturing and services. Singapore: McGraw-Hill.  

 

Pinto, J.M., & Grossman, I.E. (1997). A logic-based approach to scheduling 

problems with resource constraints. Computers and Chemical Engineering, 21(8), 

801-818. 

 

Reeves, C.R. (Ed.). (1995). Modern heuristic techniques for combinatorial problems.

UK: McGraw-Hill. 

 

Rodosek, R.,  Wallace, M.G., & Hajian, M.T. (1999). A new approach to integrating 

mixed integer programming and constraint logic programming. Annals of 

Operations Research, 86, 63-87.  

 

Ruiz-Torres, A.J. & Centeno, G. (2007). Scheduling with flexible resources in 

parallel workcenters to minimize maximum completion time. Computers & 

Operations Research, 34, 48-69. 

 

Ruiz-Torres A.J., Lopez, F.J., & Ho, J.C. (2007). Scheduling uniform parallel 

machines subject to a secondary resource to minimize the number of tardy jobs. 

European Journal of Operational Research, 179(2), 302-315. 

 

Shabtay, D., & Kaspi, M. (2006). Parallel machine scheduling with a convex 

resource consumption function. European Journal of Operational Research, 173,

92-107.  

 

Shchepin, E.V., & Vakhania, N. (2005). An optimal rounding gives a better 

approximation for scheduling unrelated machines. Operations Research Letters,

33(2), 127–133. 

 



187

Slowinski, R. (1980). Two approaches to problems of resource allocation among 

project activities – A comparative study. Journal of the Operational Research 

Society, 31(8), 711-723. 

 

Smith, B. (1995). A tutorial on constraint programming. Research Report 95.14, 

School of Computer Studies, University of Leeds.   

 

Smith, B.M., Brailsford, S.C., Hubbard, P.M., & Williams, H.P. (1997). The 

progressive party problem: integer linear programming and constraint 

programming compared. Constraints, 1, 119-138. 

 

Srivastav, A., & Stangier, P. (1997). Tight approximations for resource constrained 

scheduling and bin packing. Discrete Applied Mathematics, 79, 223-245. 

 

Sue, L-H., & Lien, C-Y. (2009). Scheduling parallel machines with resource-

dependent processing times. International Journal of Production Economics, 117,

256-266. 

 

Tamaki, H., Hasegawa, Y., Kozasa, J., & Araki, M. (1993). Application of search 

methods to scheduling problem in plastics forming plant: a binary representation 

approach. Proceedings of the 32nd IEEE Conference on Decision and Control,

3845-3850. 

 

Thorsteinsson, E.S. (2001a). Branch-and-Check: A hybrid framework integrating 

mixed integer programming and constraint logic programming. In T. Walsh (Ed.). 

Principles and practice of constraint programming, Lecture Notes in Computer 

Science 2239, (16-30), Germany: Springer-Verlag Berlin Heidelberg.  

 

Thorsteinsson, E.S. (2001b). Hybrid approaches to combinatorial optimisation. PhD 

Thesis, Carnegie Mellon University, Graduate School of Industrial 

Administration, USA. 

 



188

Topaloglu, S., & Ozkarahan, I. (2004). Comparison of different variable and value 

order strategies for the optimum solution of a single machine scheduling problem 

with sequence-dependent setups. In C. Aykanat, T. Dayar & I. Körpeoglu (Eds.). 

ISCIS 2004, Lecture Notes in Computer Science, 3280, (996-1005). Germany: 

Springer-Verlag.  

 

Vairaktarakis, G.L., & Cai, X. (2003). The value of processing flexibility in 

multipurpose machines. IIE Transactions, 35, 763-774. 

 

Van den Akker, J. M, Hurkens, C.A.J., & Savelsbergh, M.W.P. (2000). Time-

indexed formulations for machine scheduling problems: Column generation. 

Informs Journal on Computing, 12(2), 111-124. 

 

Van Hentenryck, P. (1999). The OPL™ Optimization Programming Language.

Cambridge MA.:  MIT Press.   

 

Van Hentenryck, P., Perron, L., & Puget J-F. (2000). Search and strategies in OPL. 

ACM Transactions on Computational Logic (TOCL), 1(2), 285-320. 

 

Ventura, J.A., & Kim, D. (2000). Parallel machine scheduling about an unrestricted 

due date and additional resource constraints. IIE Transactions, 32, 147-153. 

 

Ventura, J.A., & Kim, D. (2003). Parallel machine scheduling with earliness-

tardiness penalties and additional resource constraints. Computers and Operations 

Research, 30, 1945-1958. 

 

Wallace, M.G. (2007). Hybrid algorithms in constraint programming. In F. Azevedo 

et al. (Eds.). CSCLP 2006, Lecture Notes in Artificial Intelligence, 4651, 1–32,

Springer-Verlag Berlin Heidelberg.  

 

Wallace, M., Novello, S., & Schimpf, J. (1997). ECLIPSe: A platform for constraint 

logic programming. ICL Systems Journal, 12, 159-200. 



189

Wang, S-H. (2003). An improved stepsize of the subgradient algorithm for solving 

the Lagrangian relaxation problem. Computers and Electrical Engineering, 29,

245-249. 

 

Williams, H. P. (1999). Model building in mathematical programming (4th ed.). 

England: John Wiley & Sons. 

 

Yu, L., Shih, H.M., Pfund, M., Carlyle, W.M., & Fowler, J.W. (2002). Scheduling of 

unrelated parallel machines: An application to PWB manufacturing, IIE 

Transactions, 34, 921-931. 

 



190

APPENDICES 
 



191

APPENDIX A. Summary of surveyed papers

Studies Problem Size in
Computational Exp.

Additional Resource
Characteristics

Machine
Environment Objective Solution Method(s) Other Important Issues

Blazewicz
(1979) -

One additional resource type
with arbitrary size and 0/1
resource requirements

Identical
machines -

A polynomial-time algorithm for
P| 11⋅res , ri, di|∅

-

Blazewicz,
Lenstra &
Rinnooy Kan
et al. (1983)

- Various versions of the
problem

- Identical
machines
- uniform
machines

makespan O(nlogn) algorithm for
Q2| ⋅⋅1res , pi=1|Cmax

They prove that below cases
are NP-hard.
- P3| 11⋅res , pi=1|Cmax

- Q2| 11⋅res , pi=1|Cmax

Blazewicz
and Ecker
(1983)

-

-Fixed number of additional
resource types,
- Fixed resource size
- A fixed upper bound on
resource requirements

Identical
machines makespan

O(logn) algorithm for
P| λσδres , pi=1| Cmax

-

Blazewicz ,
Barcelo,
Kubiak, &
Röck (1986)

-

-One additional resource type
with arbitrary size and arbitrary
resource requirements
-Arbitrary number of additional
resource types with one unit
and 0/1 resource requirements

Identical
parallel two
machines

lateness
Proves that P2| ⋅⋅1res , pi=1|Lmax and
P2| 1⋅⋅res , pi=1 | Lmax problems are NP-hard.

Proves that
P2| ⋅⋅1res , pi=1|Lmax problem
is reducible to
P2| 1⋅⋅res , pi=1 | Lmax

Blazewicz,
Kubiak, Röck
& Szwarcfiter
(1987).

-

-One additional resource type
with arbitrary size and 0/1
resource requirements
-One additional resource type
with arbitrary size and arbitrary
resource requirements
-Arbitrary number of additional
resource types with one unit
and 0/1 resource requirements

Identical
machines flow time

- Proves that P| 11⋅res | ∑i iC can be solved in
O(n3) time

-Proves that P2| ⋅⋅1res | ∑i iC and

P2| 1⋅⋅res | ∑i iC problems are NP-hard.

-

Blazewicz ,
Kubiak &
Martello
(1993)

- 10, 20, 50, 100, 250,
500, 1000 jobs
- Two (fixed) machines
- 1, 2, 5, 10 additional
resource types
- Resource sizes (Rl) in
[1,100]
- Resource req. in [0,Rl]

-Arbitrary number of additional
resource types with arbitrary
size and arbitrary resource
requirements

Identical
machines lateness

- Problem-based heuristic algorithms
- Taking the solution of best heuristic
algorithm as initial feasible upper bound, a
B&B algorithm

- Various lower bounds are
proposed to be used in B&B
algorithm.



192

APPENDIX A. Summary of surveyed papers (Continuing)

Studies Problem Size in
Computational Exp.

Additional Resource
Characteristics

Machine
Environment Objective Solution Method(s) Other Important Issues

Daniels,
Hoopes &
Mazzola
(1996)

- 10, 15 jobs and 2, 3, 4
machines,
- 20, 50, 80 jobs and 2,
3, 4 machines.

- A PMFRS problem; R = m,
m+1, m+2
- Static and dynamic resource
allocations.

Dedicated
manufacturing
cells

makespan

For the static PMFRS problem:
- A polynomial time exact algorithm

For the dynamic PMFRS problem:
- A B&B algorithm
- A static-based heuristic algorithm
- A B&B initialized static-based heuristic.

- First used the term RCPMSP

Daniels,
Hoopes &
Mazzola
(1997)

- 10, 15 jobs and 2, 3, 4
machines,
- 20, 50, 80 jobs and 2,
3, 4 machines.

- A PMFRS problem, R = m,
m+1, m+2
- Static and dynamic resource
allocations.

Dedicated
manufacturing
cells

makespan

For the dynamic PMFRS problem
- A B&B algorithm
- A tabu search heuristic
- A static-based tabu search heuristic

-

Daniels, Hua
and Webster
(1999)

- 10 and 15 jobs and 3,
4 machines
- 20, 30, 50 jobs and 3,
4, 5 machines

- An UPMFRS problem,
R = m, m+1, m+2
- Static resource allocation.

Identical
machines makespan - A decomposition heuristic

- A tabu search heuristic -

Garey and
Johnson
(1975)

-

One and arbitrary number of
additional resource types with
arbitrary size and
requirements

Identical
machines makespan A polynomial-time algorithm for

P2| ⋅⋅⋅res , pi=1|Cmax

Prove that the problem of
P3| ⋅⋅1res , ri, pi=1|Cmax is
NP-hard.

Grigoriev and
Uetz
(2006)

- A PMFRS problem Dedicated
machines makespan

- A relaxed quadratic-programming based
(3+ε)-approximation scheme (greedy
algorithm)

- Relaxed formulation gives a
lower bound and assignment
of resources to jobs.

Grigoriev and
Uetz
(2009)

- A PMFRS problem Dedicated
machines makespan

- Utilizing a (nonlinear) integer program, a
polynomial time (3+ε)-approximation
algorithm.

- The authors derived lower
bounds for the approximation.
- The relaxed nonlinear
program gives assignment of
resources to jobs

Grigoriev,
Sviridenko &
Uetz (2005)

- - A PMFRS problem
- A UPMFRS problem

-Unrelated
machines
-Dedicated
machines

makespan

Based on a rounding algorithm:
- (4+2√2)-approximation (LP-Greedy)
algorithm for unrelated machine case
- (3+2√2)-approximation (LP-Greedy)
algorithm for dedicated machines case

- A two-phase rounding
algorithm for the relaxed
formulation of the problem.

Grigoriev
Sviridenko &
Uetz (2006)

- A PMFRS problem Unrelated
machines makespan Based on a LP-rounding algorithm an 3.75-

approximation algorithm

- The relaxed formulation of
the problem gives assignment
of resources to jobs.



193

APPENDIX A. Summary of surveyed papers (Continuing)

Studies Problem Size in
Computational Exp.

Additional Resource
Characteristics

Machine
Environment Objective Solution Method(s) Other Important Issues

Grigoriev
Sviridenko &
Uetz (2007)

- A PMFRS problem Unrelated
machines makespan

Based on a LP rounding algorithm
- 4-approximation LP-Greedy algorithm
- 3.75-approximation (improved LP-Greedy)
algorithm

- An LP rounding algorithm for
the relaxed formulation gives
assignment of resources to jobs.

Kellerer (2008) - A PMFRS problem Identical
machines makespan (3.5 + ε)- approximation algorithm - Utilize the aggregate version

of resource constraints.

Kellerer and
Strusevisch
(2003)

-

- One additional resource type
- Resource requirements of jobs
are either zero or one.
- Unit Resource size
PDm| 111res |Cmax

Dedicated
machines makespan

-Polynomial time exact algorithm for
PD2| 111res |Cmax
- Polynomial time approx. algorithms for
PD3| 111res |Cmax

PD4| 111res |Cmax

PDm| 111res |Cmax

- Proves that
PD3| 111res |Cmax

PDm| 111res |Cmax
problems are NP-hard.

Kellerer and
Strusevisch
(2004)

- Various versions of the problem Dedicated
machines makespan

- Polynomial time algorithms for
PD2| ⋅⋅1res |Cmax , PD2| 211res |Cmax
-A simple greedy approximation algorithm for
PD| 11λres |Cmax

- A PTAS for PDm| 11λres |Cmax

- Proves that PD2| 222res |Cmax

PD2| 311res |Cmax and
PD3| 211res |Cmax
problems are NP-hard.

Kellerer and
Strusevisch
(2008)

-

- The case of one additional
resource with the unit size and are
0/1 resource requirements.
- The case of one additional
resource with arbitrary size and
arbitrary resource requirements of
jobs

Dedicated
machines makespan

- Polynomial time algorithm for
PD2| 111res , Bi|Cmax

- (3/2)-approximation algorithm for PD| 111res ,
Bi|Cmax
- 3-approximation algorithm for

PD| σσ1res ,Int|Cmax
- A polynomial time approximation algorithm for
PDm| 111res , Bi|Cmax

-All approximation algorithms
are established on knapsack sub-
problems
-Define Bi, Lin, Int for the β
field of α|β|γ scheme

Kovalyov
and
Shafransky
(1998)

-

- One additional resource type.
- Resource sizes are arbitrary.
- Resource requirements are 0/1
Q| 11⋅res , pi=1|Cmax problem

Uniform
parallel
machines

makespan

-A O(m log m) algorithm for
Q| 11⋅res , pi=1, nmit|Cmax

-A linear time algorithm for
P| 11⋅res , pi=1|Cmax

- The no machine idle time
(nmit) case is investigated.
- Unit processing times,
pi = p

Krause,
Shen &
Schwetman
(1975)

-

-One additional resource type
(memory) with arbitrary size
- Arbitrary memory
requirements of jobs

Identical
processors makespan - Heuristic scheduling strategies for unit and

arbitrary processing time cases.

- Worst case bound analyzes
of various algorithms for both
unit and arbitrary processing
time cases.



194

APPENDIX A. Summary of surveyed papers (Continuing)

Studies Problem Size in
Computational Exp.

Additional Resource
Characteristics

Machine
Environment Objective Solution Method(s) Other Important Issues

Li, Wang &
Lim (2003)

- 3 to 40 machines
- 10 jobs per machine

- One additional resource with
arbitrary sizes and requirements

Dedicated
machines makespan Genetic algorithm They propose three kinds of

lower bounds

Olafsson and
Shi (2000)

- 10,15, 20 jobs
- 3, 4, 5 machines

- A PMFRS problem; R = m,
m+1, m+2

Dedicated
manufacturing
cells

makespan
- A heuristic method called Nested Partitions
(NP) (an adaptive sampling method that
combines local and global search)

Dynamic resource allocation is
compared with static one

Ruiz-Torres
and Centeno
(2007)

- Medium size: 20, 30, 50
jobs; 3, 4, 5 machines and
- Large size: 50, 100 jobs;

5, 10 machines

- A PMFRS problem
R = m+1, m+2 for medium size
R = 2m, 3m, 4m for large size
- Static Resource Allocation

Identical
machines makespan

- Problem-based heuristic algorithms and
comparison with the algorithms of Daniels et al.
(1999)

- Provides a method to estimate
the lower bound
- Pooling resources into fewer
work centers improves Cmax

Ruiz-Torres,
Lopes and Ho
(2007)

- Small instances with m
= 2, n/m=5 and 7
- Large instances with m
= 5, 10; n/m=10, 20
- 50 experiments for each
point.

- A PMFRS problem
- For all experiments R/m = 3, 6
- Static Resource Allocation

Uniform
Machines

number of
tardy jobs

- Five different problem-based heuristic
algorithms and a detailed analyze of these
heuristics at all experimental points.

- The heuristics that allocate
jobs to machines one machine at
a time outperform the ones with
simultaneous allocation of
machines.

Srivastav and
Stangier
(1997)

-

- Arbitrary number of additional
resource types with arbitrary sizes
but only 0/1 resource
requirements

Identical
processors makespan - A polynomial time approximation algorithm for

P| 1⋅⋅res , ri, pi=1 | Cmax

- pi=1 (unit time jobs)
- release time of jobs (ri) are
also considered.

Sue and
Lien (2009)

-3,5,8,10 machines
-3m+1, 3m+2, 4m+1,
4m+2, 5m+1, 5m+2 jobs

- A PMFRS problem
R = n, 3n/2, 2n Identical

machines makespan - Various problem based heuristic algorithms

- Deploying resources
optimally in advance and then
assigning the jobs effectively
yields very favorable
schedules.

Ventura and
Kim (2000)

A small example with
five jobs and two
machines

- One additional resource type
- Resource sizes are arbitrary
- Resource requirements are 0/1

Identical
machines TAD

It is proved that
P| 11⋅res , pi, di=d| TADD problem is solved in
polynomial time.

Dominance properties are
given

Ventura and
Kim (2003)

- 100, 200, 300 jobs
- 2, 3, 5 machines

- One, two, three resource types
- (6,10); (9,15); (15,25)
resource sizes for two, three
and five machines respectively
- Resource requirements are
arbitrary within interval (0,5)

Identical
machines TADD - Lagrangian Relaxation-based Lagrangian

Heuristic

- Due dates (20, 30); (30,60);
(30,80)
- Ready times (0,10)
- Unit (same) processing
times of jobs , pi = p



195

APPENDIX B. Computational results (LSA and PSH) 
Lagrangian-based Solution Approach (LSA)

LH 
Problem Specific 
Heuristic (PSH) 

n m b Fp
Sample 

No.
IH 

Lagr. LB LH # of 
Iter.

Time 
(sec.)

%
(UB-LB)/LB

PSH %
(UB-LB)/LB

1 561 481.963 482 125 17.01 0.00% 483 0.21%
2 675 521.765 526 193 28.80 0.77% 522 0.00%
3 688 555.017 556 46 6.53 0.00% 556 0.00%
4 796 617.517 619 202 36.95 0.16% 634 2.59%
5 540 481.984 482 127 15.81 0.00% 482 0.00%
6 583 481.464 482 59 8.47 0.00% 502 4.15%
7 617 537.141 538 57 8.39 0.00% 538 0.00%
8 654 555.03 556 76 10.40 0.00% 576 3.60%
9 523 455.643 456 120 15.32 0.00% 504 10.53%

10 608 500.4 508 160 21.64 1.40% 522 4.19%
11 785 575.751 579 194 28.30 0.52% 595 3.30%
12 706 574.081 575 49 7.12 0.00% 581 1.04%
13 562 476.972 482 163 21.57 1.05% 524 9.85%
14 524 467.121 479 166 20.02 2.35% 472 0.85%
15 663 522.498 527 183 22.88 0.76% 534 2.10%
16 622 514.422 522 180 27.76 1.36% 528 2.52%
17 613 500.348 508 168 25.74 1.40% 507 1.20%
18 618 500.337 507 179 26.55 1.20% 508 1.40%
19 610 493.692 494 75 10.05 0.00% 505 2.23%
20 651 529.67 538 179 27.65 1.51% 538 1.51%
21 614 514.323 522 161 24.39 1.36% 527 2.33%
22 667 546.923 556 162 26.90 1.65% 556 1.65%
23 670 546.855 556 179 29.25 1.65% 564 3.11%
24 638 529.99 538 183 26.97 1.51% 540 1.89%
25 774 629.511 642 174 34.88 1.90% 642 1.90%
26 615 500.497 514 183 25.29 2.59% 523 4.39%
27 685 537.707 544 179 26.41 1.12% 539 0.19%
28 570 487.971 494 182 26.91 1.23% 494 1.23%
29 548 479.434 494 185 23.66 2.92% 534 11.25%

50 3 1 Low 

30 674 557.909 562 172 24.22 0.72% 568 1.79%
Average - - - 148.70 21.86 0.97% - 2.70%

1 561 481.932 486 180 30.38 0.83% 482 0.00%
2 673 555.994 570 174 37.57 2.52% 556 0.00%
3 524 467.142 478 160 26.35 2.14% 472 0.85%
4 594 493.987 494 140 26.67 0.00% 494 0.00%
5 692 585.246 596 180 42.31 1.71% 596 1.71%
6 650 529.823 539 172 37.57 1.70% 538 1.51%
7 711 565.08 591 165 36.12 4.42% 575 1.59%
8 630 521.966 534 179 36.43 2.30% 522 0.00%
9 622 514.259 532 168 33.07 3.30% 522 1.36%

10 571 555.99 570 183 40.06 2.52% 556 0.00%
11 669 546.618 568 183 38.75 3.84% 572 4.57%
12 600 514.471 522 180 34.99 1.36% 522 1.36%
13 552 476.944 482 162 28.13 1.05% 482 1.05%
14 808 653.992 669 182 54.75 2.29% 667 1.99%
15 760 606.491 635 168 43.08 4.61% 618 1.81%
16 613 506.995 520 176 35.17 2.56% 507 0.00%
17 595 500.473 507 177 33.63 1.20% 507 1.20%
18 666 546.913 557 180 39.68 1.83% 556 1.65%
19 695 537.993 552 170 35.35 2.60% 540 0.37%
20 601 488.485 494 189 34.86 1.02% 494 1.02%
21 561 482 490 166 26.53 1.66% 482 0.00%
22 638 529.815 550 168 34.77 3.77% 538 1.51%
23 546 476.569 482 169 30.53 1.05% 482 1.05%
24 618 521.954 522 126 25.47 0.00% 522 0.00%
25 606 521.708 522 84 16.24 0.00% 522 0.00%
26 557 476.907 482 169 29.04 1.05% 482 1.05%
27 532 462.88 468 179 28.31 1.08% 477 3.02%
28 507 462.468 469 166 28.06 1.30% 463 0.00%
29 645 537.999 541 172 38.83 0.56% 538 0.00%

50 3 1 High 

30 622 514.483 531 169 30.34 3.11% 522 1.36%
Average - - - 167.8 33.77 1.91% - 1.00%



196

APPENDIX B. Computational results (LSA and PSH) - Continues  
Lagrangian-based Solution Approach (LSA)

LH 
Problem Specific 
Heuristic (PSH) 

n m b Fp
Sample 

No.
IH 

Lagr. LB LH # of 
Iter.

Time 
(sec.)

%
(UB-LB)/LB

PSH %
(UB-LB)/LB

1 344 301.085 302 31 3.38 0.00% 304 0.66%
2 317 285.533 286 108 10.88 0.00% 288 0.70%
3 361 301.233 302 34 3.57 0.00% 306 1.32%
4 373 308.096 309 46 5.33 0.00% 310 0.32%
5 320 281.088 282 29 2.70 0.00% 304 7.80%
6 355 295.022 296 65 7.30 0.00% 313 5.74%
7 321 285.121 286 51 4.93 0.00% 293 2.45%
8 296 278.079 279 22 2.02 0.00% 282 1.08%
9 355 301.988 302 113 12.16 0.00% 307 1.66%

10 366 301.354 302 35 3.74 0.00% 302 0.00%
11 312 281.01 282 41 3.78 0.00% 286 1.42%
12 358 308.837 309 91 10.39 0.00% 310 0.32%
13 300 278.31 279 84 7.85 0.00% 280 0.36%
14 397 316.126 317 32 3.60 0.00% 320 0.95%
15 359 301.458 302 30 3.24 0.00% 315 4.30%
16 362 301.192 302 36 3.72 0.00% 311 2.98%
17 330 289.151 290 28 2.80 0.00% 290 0.00%
18 350 301.253 302 37 4.04 0.00% 302 0.00%
19 331 289.108 290 26 2.27 0.00% 293 1.03%
20 299 276.385 277 21 1.94 0.00% 284 2.53%
21 290 277.579 279 149 14.05 0.36% 280 0.72%
22 340 299.643 302 191 22.32 0.67% 310 3.33%
23 321 287.659 290 177 18.14 0.69% 292 1.39%
24 320 283.576 286 165 16.03 0.70% 289 1.76%
25 335 283.414 286 170 18.05 0.70% 297 4.58%
26 301 279.9 282 171 15.83 0.71% 282 0.71%
27 349 305.095 309 163 19.04 0.98% 312 1.96%
28 375 305.389 309 163 19.19 0.98% 340 11.11%
29 341 298.997 302 167 17.75 1.00% 302 1.00%

50 5 2 Low 

30 346 298.983 302 176 19.94 1.00% 303 1.34%
Average - - - 88.40 9.33 0.26% - 2.12%

1 295 278.041 279 52 6.68 0.00% 279 0.00%
2 364 308.034 309 63 10.06 0.00% 309 0.00%
3 342 295.862 296 133 19.80 0.00% 296 0.00%
4 413 356.022 357 60 10.97 0.00% 357 0.00%
5 401 334.98 335 113 20.40 0.00% 335 0.00%
6 332 289.78 290 61 8.67 0.00% 290 0.00%
7 322 285.04 286 57 8.33 0.00% 286 0.00%
8 394 325.566 326 68 11.58 0.00% 327 0.31%
9 286 276.767 277 183 22.94 0.00% 279 0.72%

10 275 275 275 1 0.13 0.00% 275 0.00%
11 378 316.323 317 37 6.05 0.00% 317 0.00%
12 350 301.378 302 56 8.41 0.00% 302 0.00%
13 355 301.9 302 79 11.98 0.00% 303 0.33%
14 378 316.849 317 87 14.00 0.00% 317 0.00%
15 385 316.505 317 59 9.46 0.00% 317 0.00%
16 341 298.995 299 159 28.20 0.00% 302 1.00%
17 351 308.281 310 168 28.87 0.32% 309 0.00%
18 328 294.709 296 170 27.45 0.34% 296 0.34%
19 299 280.366 282 172 24.32 0.36% 282 0.36%
20 281 275.83 277 137 16.74 0.36% 277 0.36%
21 327 287.604 290 172 26.43 0.69% 290 0.69%
22 314 287.085 290 180 25.79 0.69% 290 0.69%
23 302 279.873 282 152 24.82 0.71% 282 0.71%
24 360 305.279 309 175 27.98 0.98% 309 0.98%
25 360 305.251 309 171 29.17 0.98% 309 0.98%
26 354 305.142 309 170 32.19 0.98% 309 0.98%
27 360 305.142 309 166 28.49 0.98% 309 0.98%
28 341 298.84 302 172 26.53 1.00% 302 1.00%
29 351 298.998 302 175 29.70 1.00% 302 1.00%

50 5 2 High 

30 329 292.159 296 167 25.67 1.02% 296 1.02%
Average - - - 120.5 19.06 0.35% - 0.42%



197

APPENDIX B. Computational results (LSA and PSH) - Continues 
Lagrangian-based Solution Approach (LSA)

LH 
Problem Specific 
Heuristic (PSH) 

n m b Fp
Sample 

No.
IH 

Lagr. LB LH # of 
Iter.

Time 
(sec.)

%
(UB-LB)/LB

PSH %
(UB-LB)/LB

1 1324 1142.36 1144 177 96.52 0.09% 1155 1.05%
2 1315 1130.24 1132 169 98.91 0.09% 1143 1.06%
3 1343 1141.62 1145 181 103.75 0.26% 1148 0.53%
4 1245 1108.37 1112 183 97.31 0.27% 1127 1.62%
5 1210 1089.83 1093 173 104.98 0.28% 1092 0.18%
6 1195 1080.01 1085 154 91.76 0.37% 1094 1.20%
7 1339 1144 1149 177 86.77 0.44% 1160 1.40%
8 1167 1078.49 1084 165 82.08 0.46% 1089 0.93%
9 1342 1150.3 1157 158 93.25 0.52% 1160 0.78%

10 1290 1114.66 1121 161 82.23 0.54% 1121 0.54%
11 1201 1083.3 1090 149 80.12 0.55% 1085 0.09%
12 1403 1164 1171 183 121.12 0.60% 1207 3.69%
13 1348 1150.45 1158 167 100.31 0.61% 1158 0.61%
14 1352 1150.33 1158 163 98.83 0.61% 1158 0.61%
15 1276 1137.52 1145 158 95.56 0.62% 1151 1.14%
16 1339 1137.96 1145 169 101.63 0.62% 1149 0.97%
17 1300 1125.67 1133 163 88.79 0.62% 1160 3.02%
18 1253 1100.27 1108 158 82.29 0.64% 1102 0.09%
19 1178 1064.56 1072 160 99.46 0.66% 1089 2.25%
20 1220 1102.95 1111 169 95.69 0.73% 1111 0.73%
21 1430 1192.92 1202 167 108.22 0.75% 1208 1.26%
22 1308 1120.46 1130 170 86.83 0.80% 1128 0.62%
23 1206 1089.69 1099 164 74.01 0.83% 1098 0.73%
24 1346 1156.62 1167 182 113.11 0.86% 1188 2.68%
25 1226 1108.74 1119 168 91.64 0.90% 1115 0.54%
26 1408 1177.86 1189 176 109.94 0.93% 1185 0.59%
27 1311 1132 1144 164 97.03 1.06% 1137 0.44%
28 1289 1132 1144 168 98.53 1.06% 1132 0.00%
29 1291 1115.01 1128 166 96.56 1.08% 1128 1.08%

100 5 2 Low 

30 1263 1100.86 1113 176 101.93 1.09% 1105 0.36%
Average - - - 167.93 95.97 0.63% - 1.03%

1 1297 1131.13 1132 65 51.78 0.00% 1132 0.00%
2 1261 1104.77 1110 173 143.82 0.45% 1110 0.45%
3 1310 1150.19 1157 171 158.79 0.52% 1157 0.52%
4 1191 1086.03 1093 175 142.71 0.55% 1092 0.46%
5 1421 1163.99 1171 165 160.29 0.60% 1171 0.60%
6 1306 1132 1139 175 147.94 0.62% 1132 0.00%
7 1106 1057.29 1065 166 125.28 0.66% 1061 0.28%
8 1201 1083.02 1092 155 118.07 0.74% 1084 0.00%
9 1162 1072.2 1081 179 132.27 0.75% 1077 0.37%

10 1370 1157 1166 174 149.68 0.78% 1157 0.00%
11 1173 1074.4 1085 171 120.03 0.93% 1077 0.19%
12 1152 1067.46 1078 159 116.75 0.94% 1071 0.28%
13 1128 1062.72 1074 156 113.14 1.03% 1065 0.19%
14 1373 1192.41 1206 168 169.57 1.09% 1201 0.67%
15 1241 1102.97 1116 162 135.79 1.18% 1110 0.63%
16 1391 1184.99 1199 171 155.92 1.18% 1185 0.00%
17 1211 1086.51 1100 175 133.35 1.20% 1092 0.46%
18 1224 1086.1 1100 164 124.11 1.20% 1092 0.46%
19 1196 1085.63 1099 165 110.19 1.20% 1092 0.55%
20 1293 1156 1170 173 147.94 1.21% 1157 0.09%
21 1146 1067.82 1081 160 120.00 1.22% 1071 0.28%
22 1315 1137.59 1153 161 144.27 1.32% 1144 0.53%
23 1249 1109.28 1125 175 136.18 1.35% 1110 0.00%
24 1227 1103.24 1119 161 134.28 1.36% 1110 0.54%
25 1183 1080.77 1096 151 119.13 1.39% 1084 0.28%
26 1215 1089.84 1106 161 116.84 1.47% 1092 0.18%
27 1204 1089.94 1106 156 119.06 1.47% 1092 0.18%
28 1273 1119.44 1137 157 136.13 1.52% 1121 0.09%
29 1257 1113.49 1131 177 153.06 1.53% 1133 1.71%

100 5 2 High 

30 1132 1130.39 1149 164 133.47 1.59% 1132 0.09%
Average - - - 162.83 132.33 1.03% - 0.34%



198

APPENDIX B. Computational results (LSA and PSH) - Continues 
Lagrangian-based Solution Approach (LSA)

LH 
Problem Specific 
Heuristic (PSH) 

n m b Fp
Sample 

No.
IH 

Lagr. LB LH # of 
Iter.

Time 
(sec.)

%
(UB-LB)/LB

PSH %
(UB-LB)/LB

1 909 747.095 748 29 16.92 0.00% 750 0.27%
2 877 747.037 748 35 21.81 0.00% 753 0.67%
3 850 723.944 724 86 46.38 0.00% 727 0.41%
4 814 723.239 724 82 43.73 0.00% 729 0.69%
5 918 766.791 769 172 101.53 0.26% 767 0.00%
6 834 731.286 734 158 87.65 0.27% 740 1.09%
7 822 720.113 724 153 87.41 0.42% 727 0.83%
8 832 716.963 720 165 86.00 0.42% 720 0.42%
9 813 713.941 717 164 105.23 0.42% 717 0.42%

10 791 707.554 711 163 92.38 0.42% 712 0.56%
11 774 696.538 700 158 83.63 0.43% 704 1.00%
12 882 752.476 757 173 106.69 0.53% 759 0.80%
13 862 743.931 748 169 104.76 0.54% 749 0.67%
14 843 743.201 748 154 104.71 0.54% 749 0.67%
15 862 743.988 748 168 101.82 0.54% 748 0.54%
16 887 743.685 748 159 93.29 0.54% 761 2.28%
17 844 727.597 732 164 96.85 0.55% 732 0.55%
18 833 723.507 728 163 88.33 0.55% 726 0.28%
19 793 715.18 720 162 89.25 0.56% 719 0.42%
20 794 713.451 718 160 87.11 0.56% 719 0.70%
21 942 782.498 788 171 111.40 0.64% 789 0.77%
22 897 771.986 777 174 105.56 0.65% 777 0.65%
23 914 771.836 777 174 108.64 0.65% 779 0.91%
24 834 727.627 733 158 92.67 0.69% 734 0.82%
25 840 727.364 734 166 99.00 0.82% 735 0.96%
26 803 715.707 722 160 87.86 0.84% 717 0.14%
27 780 697.203 704 174 107.34 0.86% 723 3.58%
28 966 776.719 784 169 94.28 0.90% 779 0.26%
29 909 756.997 765 180 107.00 1.06% 770 1.72%

100 8 3 Low 

30 851 731.35 740 159 92.85 1.09% 740 1.09%
Average - - - 150.73 88.40 0.52% - 0.81%

1 858 723.997 724 146 110.01 0.00% 724 0.00%
2 897 747.171 748 45 37.30 0.00% 748 0.00%
3 918 776.214 777 60 55.42 0.00% 777 0.00%
4 934 776.12 777 63 53.76 0.00% 777 0.00%
5 942 776.004 777 61 57.38 0.00% 777 0.00%
6 891 747.099 748 59 44.56 0.00% 748 0.00%
7 878 747.629 748 75 66.53 0.00% 748 0.00%
8 855 739.995 742 175 155.29 0.27% 740 0.00%
9 873 739.476 742 183 145.46 0.27% 740 0.00%

10 965 798.609 802 176 147.17 0.38% 799 0.00%
11 843 720.351 724 159 130.43 0.42% 724 0.42%
12 786 707.515 711 163 115.56 0.42% 711 0.42%
13 772 701.102 705 172 127.92 0.43% 705 0.43%
14 750 691.528 695 151 149.87 0.43% 695 0.43%
15 891 752.211 757 165 144.14 0.53% 757 0.53%
16 923 752.241 757 171 159.35 0.53% 757 0.53%
17 844 735.237 740 162 143.40 0.54% 740 0.54%
18 855 735.999 740 165 145.90 0.54% 740 0.54%
19 855 731.755 736 168 143.60 0.55% 732 0.00%
20 843 723.79 728 166 131.81 0.55% 732 1.10%
21 832 723.358 728 151 125.88 0.55% 724 0.00%
22 944 771.636 777 174 164.49 0.65% 777 0.65%
23 840 743.708 749 167 145.47 0.67% 748 0.54%
24 890 756.998 763 168 154.61 0.79% 757 0.00%
25 833 731.08 738 169 147.53 0.82% 732 0.00%
26 802 712.865 719 162 133.54 0.84% 717 0.56%
27 867 735.819 743 170 150.33 0.95% 740 0.54%
28 965 809.968 818 170 152.90 0.99% 810 0.00%
29 775 700.992 708 155 103.68 1.00% 705 0.57%

100 8 3 High 

30 767 696.752 704 149 107.26 1.00% 700 0.43%
Average - - - 144.00 121.68 0.47% - 0.27%



199

APPENDIX C. Sample convergence graphics related to each sub-group of test problems  
 

375

425

475

525

575

0 20 40 60 80 100 120 140 160 180
Subgradient Iterations

O
bj

ec
tiv

e
V

al
ue

value of lower bounds
value of updated upper bounds

APPENDIX C1. Convergence representation of 50-3-1-High-Sample 1 
 

225

275

325

375

0 10 20 30 40
Subgradient Iterations

O
bj

ec
tiv

e
V

al
ue

value of lower bounds
value of updated upper bounds

APPENDIX C2. Convergence Representation of 50-5-2-Low-Sample 1 
 

270

280

290

0 10 20 30 40 50 60
Subgradient Iterations

O
bj

ec
tiv

e
V

al
ue

value of lower bounds
value of updated upper bounds

APPENDIX C3. Convergence representation of 50-5-2-High-Sample 1 
 



200

925

975

1025

1075

1125

1175

1225

1275

1325

0 20 40 60 80 100 120 140 160 180
Subgradient Iterations

O
bj

ec
tiv

e
V

al
ue

value of lower bounds
value of updated upper bounds

APPENDIX C4. Convergence representation of 100-5-2-Low-Sample 1 
 

950

1000

1050

1100

1150

1200

1250

1300

0 10 20 30 40 50 60 70
Subgradient Iterations

O
bj

ec
tiv

e
V

al
ue

value of lower bounds
value of updated upper bounds

APPENDIX C5. Convergence representation of 100-5-2-High-Sample 1 
 



201

600

650

700

750

800

850

900

0 10 20 30 40
Subgradient Iterations

O
bj

ec
tiv

e
V

al
ue

value of lower bounds
value of updated upper bounds

APPENDIX C6. Convergence representation of 100-8-3-Low-Sample 1 
 

625

675

725

775

825

875

0 20 40 60 80 100 120 140
Subgradient Iterations

O
bj

ec
tiv

e
V

al
ue

value of lower bounds
value of updated upper bounds

APPENDIX C7. Convergence representation of 100-8-3-High-Sample 1 
 



202

APPENDIX D1 Computational results of 30-job test instances 

Obj. 
Value

CPU 
Time (s ) Gap % Obj. 

Value
CPU 

Time (s ) Gap % Obj. 
Value

CPU 
Time (s ) Gap %

1 74 71 349.25 0.00 71 83.68 0.00 71 22.28 0.00
2 81 72 324.22 0.00 74 1000.00* 2.78 72 109.51 0.00
3 64 56 1000.00* 1.82 55 100.18 0.00 55 52.87 0.00
4 60 59 1000.00* 1.72 58 0.09 0.00 58 10.87 0.00
5 72 66 1000.00* 3.13 66 1000.00* 3.13 64 91.16 0.00
6 77 74 75.66 0.00 75 1000.00* 1.35 74 35.21 0.00
7 74 72 905.02 0.00 72 0.07 0.00 72 15.53 0.00
8 78 74 133.27 0.00 75 1000.00* 1.35 74 31.10 0.00
9 66 62 44.66 0.00 64 1000.00* 3.23 62 79.85 0.00

10 73 67 159.01 0.00 67 5.40 0.00 67 31.62 0.00
11 81 74 103.49 0.00 75 1000.00* 1.35 74 39.65 0.00
12 89 85 63.91 0.00 87 1000.00* 2.35 85 104.35 0.00
1 74 67 31.00 0.00 67 66.35 0.00 67 46.80 0.00
2 65 60 137.27 0.00 61 1000.00* 1.67 60 19.48 0.00
3 85 78 38.01 0.00 78 148.60 0.00 78 43.24 0.00
4 67 64 1000.00* 1.59 64 1000.00* 1.59 63 28.79 0.00
5 71 70 6.05 0.00 70 0.03 0.00 70 16.48 0.00
6 83 76 35.14 0.00 77 1000.00* 1.32 76 53.57 0.00
7 79 77 27.69 0.00 77 7.13 0.00 77 18.12 0.00
8 78 75 1000.00* 1.35 74 1.35 0.00 74 38.73 0.00
9 72 64 417.45 0.00 64 41.85 0.00 64 33.17 0.00

10 66 59 108.00 0.00 60 1000.00* 1.69 59 42.53 0.00
11 71 62 124.13 0.00 63 1000.00* 1.61 62 54.84 0.00
12 84 77 138.81 0.00 80 1000.00* 3.90 77 65.76 0.00
1 64 62 7.81 0.00 63 1000.00* 1.61 62 8.43 0.00
2 62 60 12.35 0.00 60 0.03 0.00 60 9.20 0.00
3 69 66 26.04 0.00 66 2.45 0.00 66 12.77 0.00
4 60 58 342.28 0.00 58 0.02 0.00 58 8.79 0.00
5 69 68 11.44 0.00 68 0.29 0.00 68 8.62 0.00
6 79 78 1000.00* 1.30 78 1000.00* 1.30 77 39.22 0.00
7 66 63 26.28 0.00 65 1000.00* 3.17 63 13.40 0.00
8 66 65 113.31 0.00 - 1000.00* - 65 20.11 0.00
9 66 64 127.18 0.00 64 238.85 0.00 64 10.80 0.00

10 69 67 1000.00* 1.52 67 1000.00* 1.52 66 18.41 0.00
11 77 76 170.35 0.00 76 7.00 0.00 76 12.89 0.00
12 69 64 68.27 0.00 65 0.02 1.56 64 12.51 0.00
1 78 70 1000.00* 1.45 69 0.88 0.00 69 23.20 0.00
2 75 70 547.91 0.00 70 44.19 0.00 70 18.81 0.00
3 74 67 91.83 0.00 67 201.18 0.00 67 25.31 0.00
4 68 - 1000.00* - 68 1000.00* 1.49 67 15.35 0.00
5 69 67 1000.00* 1.52 66 21.09 0.00 66 11.50 0.00
6 65 64 304.93 0.00 64 2.27 0.00 64 9.94 0.00
7 60 57 27.60 0.00 57 0.02 0.00 57 8.63 0.00
8 75 74 13.05 0.00 74 1.63 0.00 74 9.79 0.00
9 86 77 39.71 0.00 77 72.08 0.00 77 31.83 0.00

10 67 65 48.80 0.00 65 32.21 0.00 65 11.32 0.00
11 72 64 52.19 0.00 64 0.04 0.00 64 23.72 0.00
12 80 77 20.71 0.00 78 1000.00* 1.30 77 21.97 0.00

Gray shaded cells: The corresponding model dominates other two models in terms of CPU time and/or objective function value.

Values in Bold: The corresponding model provides better makespan values than other two models.

* Run is aborted due to run limit(1000 seconds) 

Low 

Low  

High High 

Low Low 

CP IP/CP COMBINED

High 

High 

IP
F P F B

Samp. 
No

# of 
Periods 

(T )



203

APPENDIX D2 Computational results of 50-job test instances 

Obj. 
Value

CPU 
Time (s ) Gap % Obj. 

Value
CPU 

Time (s ) Gap % Obj. 
Value

CPU 
Time (s ) Gap %

1 81 73 1000.00* 1.39 73 1000.00* 1.39 72 518.43 0.00
2 81 75 834.52 0.00 75 0.10 0.00 75 404.75 0.00
3 68 67 1000.00* 1.52 67 1000.00* 1.52 66 150.38 0.00
4 75 70 1000.00* 0.00 70 1000.00* 0.00 70 1000.00* 0.00
5 77 72 715.95 0.00 75 1000.00* 4.17 73 1000.00* 1.39
6 84 82 105.71 0.00 83 1000.00* 1.22 82 235.08 0.00
7 79 75 287.21 0.00 76 1000.00* 1.33 75 307.60 0.00
8 80 79 247.00 0.00 79 0.42 0.00 79 156.69 0.00
9 81 73 1000.00* 2.82 72 1000.00* 1.41 71 566.16 0.00

10 74 72 276.08 0.00 73 1000.00* 1.39 72 182.60 0.00
11 80 71 1000.00* 1.43 70 187.06 0.00 70 599.40 0.00
12 91 88 1000.00* 1.15 88 1000.00* 1.15 87 372.09 0.00
1 79 70 1000.00* 1.45 69 0.11 0.00 69 519.92 0.00
2 78 74 276.07 0.00 75 1000.00* 1.35 74 310.02 0.00
3 83 74 381.26 0.00 78 1000.00* 5.41 74 669.64 0.00
4 79 76 1000.00* 1.33 75 379.57 0.00 75 357.62 0.00
5 91 88 1000.00* 1.15 87 1.82 0.00 87 362.26 0.00
6 90 84 1000.00* 2.44 84 1000.00* 2.44 82 759.98 0.00
7 77 72 142.70 0.00 73 1000.00* 1.39 72 332.91 0.00
8 79 79 1000.00* 1.28 79 1000.00* 1.28 78 152.30 0.00
9 83 - 1000.00* - 82 1000.00* 1.23 81 203.74 0.00

10 86 83 1000.00* 1.22 82 682.57 0.00 82 372.97 0.00
11 78 73 1000.00* 1.39 73 1000.00* 1.39 72 443.19 0.00
12 75 72 1000.00* 1.41 72 1000.00* 1.41 71 213.94 0.00
1 74 72 222.31 0.00 74 1000.00* 2.78 72 112.19 0.00
2 68 67 1000.00* 1.52 67 1000.00* 1.52 66 86.24 0.00
3 76 72 1000.00* 1.41 71 36.11 0.00 71 188.41 0.00
4 77 76 1000.00* 1.33 76 1000.00* 1.33 75 122.13 0.00
5 74 - 1000.00* - 72 1000.00* 1.41 71 113.94 0.00
6 73 70 1000.00* 1.45 70 1000.00* 1.45 69 154.56 0.00
7 70 - 1000.00* - 69 0.10 0.00 69 84.29 0.00
8 80 72 1000.00* 2.86 72 1000.00* 2.86 70 449.28 0.00
9 68 67 1000.00* 1.52 66 0.13 0.00 66 90.62 0.00

10 71 65 1000.00* 3.17 64 1000.00* 1.59 63 171.61 0.00
11 82 81 556.69 0.00 81 0.08 0.00 81 117.70 0.00
12 73 71 686.05 0.00 72 1000.00* 1.41 71 119.95 0.00
1 77 68 1000.00* 1.49 69 1000.00* 2.99 67 298.58 0.00
2 73 70 844.93 0.00 73 1000.00* 4.29 70 137.61 0.00
3 89 81 1000.00* 1.25 82 1000.00* 2.50 80 462.06 0.00
4 71 69 1000.00* 1.47 68 62.54 0.00 68 109.82 0.00
5 73 71 76.53 0.00 71 3.37 0.00 71 94.44 0.00
6 81 78 992.69 0.00 79 1000.00* 1.28 78 160.35 0.00
7 80 72 171.05 0.00 72 0.13 0.00 72 263.19 0.00
8 82 80 1000.00* 1.27 79 0.07 0.00 79 124.03 0.00
9 80 75 907.06 0.00 76 1000.00* 1.33 75 197.74 0.00

10 84 82 500.13 0.00 83 1000.00* 1.22 82 152.25 0.00
11 82 79 796.90 0.00 79 1.30 0.00 79 149.27 0.00
12 92 86 816.56 0.00 87 1000.00* 1.16 86 279.95 0.00

Gray shaded cells: The corresponding model dominates other two models in terms of CPU time and/or objective function value.

Values in Bold: The corresponding model provides better makespan values than other two models.

* Run is aborted due to run limit(1000 seconds) 

Low 

F P

Low  

IP# of 
Periods 

(T )

Samp. 
No

High High 

Low Low 

CP IP/CP COMBINED

High 

High 

F B


