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COMPARISON OF TRADITIONAL AND EVOLUTIONARY NEURAL 

NETWORKS FOR CLASSIFICATION 

 

ABSTRACT 

 

Classification refers to the assignment of a finite set of alternatives into predefined 

groups. The limitation of the statistical models applied to the classification is that 

they work well only when the underlying assumptions are satisfied. Neural networks 

are universal functional approximators so that they can adjust themselves to the data 

without any explicit specification of functional or distributional form for the 

underlying model. Because of the difficulty of designing the artificial neural 

networks; evolutionary algorithms are embedded into artificial neural networks that 

are robust and  probabilistic search strategies excel in large and  complex problem 

spaces. In this thesis, two datasets are classified using evolutionary neural networks. 

In order to generate an optimal evolutionary neural network of each given dataset,  

the parameters are optimized including; number of neurons in the hidden layer, 

stepsize and momentum which makes the classification with high accuracy.  

Research involving the application of evolutionary algorithms to neural networks for 

benchmarking the classification performance of training and testing of the datasets 

with cross validation has been carried out. Performance is benchmarked by mean 

squared error, normalized mean squared error, mean absolute error, correlation 

coefficient and true classification rate that is referred to each attribute which is 

subject to be classified and evaluated with backpropagation and evolutionary neural  

networks whose parameters are selected using evolutionary algorithms. As argued in 

the literature;  evolutionary neural networks having optimized parameters,  get better 

performance values in classification than the artificial neural networks using the 

backpropagation algorithm with the same architecture. 

       

Keywords : Evolutionary algorithms, artificial neural networks, classification 
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GELENEKSEL VE EVRİMSEL YAPAY SİNİR AĞLARININ 

SINIFLANDIRMA İÇİN KARŞILAŞTIRILMASI 

 

ÖZ 

 

Sınıflandırma, önceden tanımlanmış gruplara, alternatiflerden oluşan sonlu bir 

dizinin ataması olarak adlandırılır. Sınıflandırmaya uygulanan istatistiksel modeller, 

kısıt olarak, söz konusu varsayımların sadece geçerliliğini koruduğu sürece iyi 

şekilde işler. Yapay sinir ağları, evrensel fonksiyon tahminleyiciler olarak, ele alınan 

model için fonksiyonel ya da dağılımsal olarak belirgin nitelikte bir biçim olmaksızın 

veriye kendilerini uyarlayabilir. Yapay sinir ağlarının tasarımındaki güçlük 

nedeniyle, büyük ve karmaşık problem uzaylarında başarı gösteren, sağlam ve 

olasılığa dayalı arama stratejileri olan evrimsel algoritmalar, yapay sinir ağlarının 

içine yerleştirilmiştir. Bu tezde, evrimsel yapay sinir ağlarını kullanarak iki veri seti 

sınıflandırılmıştır. Her veri setinin optimal evrimsel yapay sinir ağını üretmek için, 

yüksek doğrulukta sınıflandırma yapmak amacıyla; gizli katmandaki nöron sayısı, 

adım büyüklüğü ve momentumu içeren parametreler optimize edilmiştir. Çapraz 

doğrulama ile veri kümelerinin öğrenme ve test alt kümelerinin sınıflandırma 

performanslarını kıyaslamak için, evrimsel algoritmaların yapay sinir ağlarına 

uygulanmasını içeren araştırma ortaya konmuştur. Performans, geriyayılım ve 

evrimsel algoritmalar kullanarak seçilen evrimsel yapay sinir ağları ile 

sınıflandırılmaya ve değerlendirilmeye konu olan her niteliğe karşılık gelen ortalama 

hata kare, normalleştirilmiş ortalama hata kare, ortalama mutlak hata, korelasyon 

katsayısı ve doğru sınıflandırma oranı ile kıyaslanmıştır. Literatürde de öne 

sürüldüğü gibi; optimize edilmiş parametrelere sahip evrimsel sinir ağlarının; 

sınıflandırma problemlerinde, geriyayılım algoritmasını kullanan aynı mimariye 

sahip yapay sinir ağlarına kıyasla daha iyi performans değerleri elde etmektedir.  

 

Anahtar sözcükler : Evrimsel algoritmalar, yapay sinir ağları, sınıflandırma 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Classification 

 

Decision making problems, according to their nature, the policy of the decision 

maker, and the overall objective of the decision, may require the choice of an 

alternative solution, the ranking of the alternatives from the best to the worst ones or 

the assignment of the considered alternatives into predefined homogeneous classes. 

This last type of decision problem is referred to as classification. 

 

Classification problems are often encountered in a variety of fields including 

finance, marketing, environmental and energy management, human resources 

management, medicine, etc (Zopounidis & Doumpos, 2002). 

 

The major practical interest of the classification problem has motivated 

researchers in developing an arsenal of methods for studying such problems, in order 

to develop mathematical models achieving the higher possible classification accuracy 

and predicting ability.  

 

Classification refers to the assignment of a finite set of alternatives into 

predefined groups; as a general description. The task of classifying data is to decide 

class membership y  of an unknown data item x  based on a data set 

1 1( , )........( , )n nD x y x y  of data items ix with known class memberships iy . The ix   

are usually m-dimensional vectors, the components of which are called input 

variables (by the machine learning community).    

 

Traditional statistical classification procedures are built on the Bayesian decision 

theory. In these procedures, an underlying probability model must be assumed in 

order to calculate the posterior probability upon which the classification decision is 

made. One major limitation of the statistical models is that they work well only when 

the underlying assumptions are satisfied.  
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The effectiveness of these methods depends to a large extent on the various  

assumptions or conditions under which the models are developed. Users must have a 

good knowledge of both data properties and model capabilities before the models can 

be successfully applied. 

 

In   most   problem   domains,   there   is   no functional relationship ( )y f x  

between y and x. In this case,  the  relationship  between  x  and  y  has  to  be  

described  more  generally  by  a  probability  distribution ( , )P x y ; one then assumes 

that the data set D contains independent samples from P. From statistical decision 

theory,  it is well known that the optimal class  membership  decision  is  to  choose  

the  class  label  y  that maximizes the posterior distribution ( )P y x .  

 

For a general  M-group classification problem in which each object has an 

associated attribute vector  x of  d dimensions.  Let denote the membership variable 

that takes a value of jw  if an object is belong to group j. Define ( )jP w as the prior 

probability of group j  and ( )jf x w  as the probability density function. According to 

the Bayes rule; 

  

( ) ( )
( )

( )
j j

j

f x w P w
P w x

f x
  

   

where ( )jP x w  is  the  posterior  probability  of  group j and ( )f x  is  the  probability  

density  function: 

 

1
( ) ( ) ( )M

j jj
f x f x w P w


  

 

It is supposed that an object with a particular feature vector x is observed and a 

decision is to be made about its group membership. The probability of classification 

error is:  
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( ) ( )i
i j

P Error x P w x


  

1 ( )jP w x    if jw decided. 

 

Hence if the purpose is to minimize the probability of total classification error 

(misclassification rate), the classification rule is:  

 

Decide kw  for x if 
1,2,......,

( ) max ( )k ii M
P w x P w x


  

 

There are two different approaches to data classification: the first considers only a 

binary distinction between the two classes, and assigns class labels 0 or 1 to an 

unknown data item. The second attempts to model ( )P y x ; this yields not only a 

class label for a data item, but also a probability of class membership for multi-class 

problem domains (Dreiseitl & Ohno-Machado, 2002).  

 
Table 1.1 Classification types 

 
Classification Type 

Binary Multi-class 
Support vector 

machines 
Logistic regression 

Decision trees 
 

k-nearest neighbors 

 
 

Artificial neural networks 

 

1.2 Neural Networks 

 

Neural  networks  have  emerged  as  an  important  tool  for classification.  The  

recent  vast  research  activities  in  neural classification  have  established  that 

neural  networks  are  a promising  alternative  to  various  conventional 

classification methods. The advantage of neural networks lies in the following  
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theoretical  aspects.  First,  neural  networks  are  data driven self-adaptive methods 

in that they can adjust themselves to the data without any explicit specification of 

functional or distributional form for the underlying model. Second, they are universal 

functional approximators in that neural networks can approximate any function with 

arbitrary accuracy. 

 

Neural networks are a non-symbolic approach to classification. Based on a loose 

paradigm of neurons in the brain, neural networks are able to pick out pertinent 

patterns in data, often when the data is corrupted, noisy, or uncertain. While their 

training processes can be slow, completed neural networks are generally quite fast in 

application. Their strengths include the ability to generalize large numbers of 

patterns into classes, and to learn from a presentation of example problems and 

solutions. One major obstacle to the design of neural networks is the selection of an 

ideal set of parameters for a particular problem. 

 

Neural networks are hand-crafted by experts with years of experience. Two major 

drawbacks of this approach are a lack of experts, and a lack of a strict design 

methodology. The first problem is enough: there simply are not enough experts to 

attend to all the potential neural network projects the world has to offer. The second 

problem is somewhat more faint and difficult to analyze. No obedient algorithm 

exists to optimally determine the parameters for a particular neural network 

application. The science of designing neural systems at best is inaccurate as the result 

of this complexity. Firstly, the process is intuitionally driven. A system is needed to 

determine neural network designs more efficiently and effectively. 

 

It is impossible to expect that any single neural network will be able to solve any 

problem regardless of complexity. To direct to a specific destination of this problem, 

research is being conducted into much complex systems. In these systems, several 

networks cooperate to solve a problem which would not be solvable by any single 

neural network architecture. While the power and flexibility of the resulting 

configuration has the potential to outperform simple neural networks, the 

combination of multiple networks increases the difficulty of managing the system.  
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Whereas before a designer had to manage only a single network, the problem 

becomes one of designing multiple networks while simultaneously enabling them to 

cooperate on the problem at hand. The work load and computation time rises 

exponentially with the size of the system. 

 

Strictly speaking, a method is needed to free experts from the inaccurate run time 

of manually managed networks. One promising method of solving both problems is 

through the help of the use of evolutionary algorithms (EAs). This thesis presents a 

systematic approach to automating the design of neural networks for classification 

through the use of evolutionary algorithms. 

 

1.3 Evolutionary Algorithms 

 

Genetic algorithms were developed by John Holland at the University of 

Michigan. Holland set out to achieve two goals. First, to "abstract and explain the 

adaptive processes of natural systems", and second, to "design artificial systems 

mathematically that retains the important mechanisms of natural systems" (Goldberg, 

1989). Holland showed how adaptive type of natural and biological systems can be 

applied to artificial systems. 

 

Due to hardness in the process of creating and designing artificial neural 

networks, genetic algorithms have become a a point of concentration of study in the 

field. By the help of the genetic algorithms, it is possible to remove some of the trial 

and error partial design from the designer. On the other hand, the genetic algorithm is 

used to search a solution space for neural network parameters that are so much more 

effective. 

 

Genetic algorithms have been used to select various features of neural networks. 

These include learning parameters, hidden units, topology, connections, and even to 

evolve the synaptic weights themselves achieved by the learning algorithm . 
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1.4 Evolutionary Artifical Neural Networks 

 

Evolutionary artificial neural networks (EANNs) are the combination of artificial 

neural networks and evolutionary algorithms. This merge enabled these two methods 

to complement the disadvantages of the other methods. For example, a contribution 

by artificial neural networks was the flexibility of nonlinear function approximation, 

which cannot be easily implemented with prototype evolutionary algorithm. On the 

other hand, evolutionary algorithm has freed artificial neural networks from simple 

gradient descent approaches of optimization. But as a disadvantage, the inclusion of 

backpropagation training in the EANN have consequences of longer computation 

times, so alternatives to backpropagation should be tested in order to reduce time 

costs. 

 

Indeed, traditional artificial neural networks based on backpropagation algorithms 

have some limitations. At first, the architecture of the artificial neural networks is 

fixed and a designer needs much knowledge to determine it. Also, error function of 

the learning algorithm must have a derivative. 

 

Finally, it frequently gets stuck in local optima because it is based on gradient-

based search without stochastic property. 

 

1.5 Literature review  
 

In this section,  publications and approaches to classification with traditional and 

evolutionary neural networks in the literature are discussed.  

 

1.5.1 Classification with Neural Networks 
 

The theoretical relationship linking estimation of Bayesian posterior probabilities 

to minimizing squared error cost functions has long been known. The mapping 

function :F x y , which minimizes the expected squared error is shown as the 

conditional expectation [ ]E y x  (Papoulis ,1991).  Since in a classification problem 

the output y is a vector of binary values, it can be easily shown that 
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[ ] ( )E y x P W x . Since neural networks can approximate any function F with 

arbitrary accuracy (universal approximators), then neural network outputs are indeed  

good estimators of the posterior probabilities ( )P W x  (Hung, Hu, Patuwo &  

Shanker, 1996). 

 

Bourlard & Wellekens (1989), Richard & Lippmann (1991), Shoemaker (1990), 

Wan (1990) and  White (1989) have provided linkage between neural networks and 

posterior probabilities for squared error functions and for the cross-entropy  error 

function.  

 

Richard & Lippmann (1991), Foody (1995),  Blamire (1996), Pal & Mather 

(2003) showed  that  neural  networks  minimizing squared-error  and  cross-entropy  

cost  functions  are capable of estimating posterior probabilities. The  fact  that  

neural networks  can estimate posterior probabilities makes them powerful 

classification  tools (Berardi et al., 2004).  

 

Duin (1996) and Flexer (1996) compared neural networks and the other classifiers 

in the literature. Addition to comparison, the research topics taken into consideration 

is shown in Table 1.2.  
 

1.5.2 Classification with Evolutionary Neural Networks  

 

The use of EAs to design ANNs that are then trained using some parameter   

learning   algorithm   allows   compact   and   effective structures to be built. 

However, imprecision in the evaluation of the  candidate  solutions  must  be  taken  

into  account  due  to possible sub-optimal convergence of the weight training 

procedure.  Furthermore,  the  training  of  the  ANN  weights  may  be excessively  

slow  for  adequate  exploration  of  the  search  space. 

 

It is preferable to simultaneously optimise both  the  ANN  architecture  and  the  

parameters.  This  can  be done   either   by   alternating   steps   of   evolutionary   
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structure optimisation with steps of standard (backpropagation) training of the 

parameters or by evolving at the same time both the connectivity and the weights. 

 
Table 1.2 Publications related to the research topics of the neural network classification 

Research Topic Author(s) Publication 
Year 

 Barnard  1992 
 Battiti R 1992 

 Hagan  and Henhaj  1994 
 Nedeljkovic  1993 

Network Training 

 Roy, Kim, and Mukhopadhyay,  1993 

 Fujitao 1998 
 Hintz-Madsen, Hansen, Larsen and  

Pedersen  
1998 

 Moody J. and Utans J.  1995 

 Murata N., Yoshizawa S. and Amari 
S. 

1993 

 Murata N., Yoshizawa S., and 
Amari S.,  

1994 

 Wang , Massimo ,Tham,  Morris 1994 

Model design and selection 

 

 Yuan J.-L. and Fine T. L.  1998 

 Fukunaga K. and Hayes R.R., 1989 
 Raudys S.,   1998 Sample size issues 
 Raudys S. J. and Jain A. K., 1991 

 Lewicki M. S. 1994 
 D. C. MacKay  1992 

Bayesian Analysis 

 
 P. Muller and D. R. Insua  1998 

 

Stepniewski & Keane (1996) report applications of evolutionary algorithms to the 

design of ANN architectures coupled to customary weight training algorithms, a 

typical example being the evolution of multilayer perceptron (MLP) topologies with 

backpropagation training of the ANN parameters. Fitness evaluation is generally 

expressed as a multi-optimisation criterion that takes into account different 

requirements such as ANN performance, size and learning speed.  
 

To address the design problem of the artificial neural networks (ANN), a 

population-based evolutionary approach called SEPA is developed (Structure 

Evolution and Parameter Adaptation) which replaces BPs (backpropagation) gradient 

descent heuristic by using a purely stochastic implementation (Palmes & Usui, 

2005). It is carried out through the use of uniform crossover and Gaussian 
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perturbation to effect mutations which are responsible for the changes in weights, 

and addition or deletion of nodes in a three-layered feed-forward ANN. 
 

The simultaneous evolution of network structure, parameters, and weights by 

Gaussian mutation and uniform crossover coupled with rank selection, early 

stopping, elitism, and direct encoding are effective in searching for the appropriate 

network structure and weights with good generalization performance (Palmes & 

Usui, 2005). 

 

Publications related to the evolutionary neural networks are listed in Table 1.3, 

Table 1.4, Table 1.5 and Table 1.6. Evolution is made on training or number of nodes 

in the hidden layer (topology) or both of them.  Crossover and mutation are genetic 

operators that are basically used as the evolutionary algorithm.  

 
Table 1.3 Publications related to the evolutionary neural networks 

Evolution 

Type 

Evolutionary 

Algortihm 

Learning 

Algorithm 
Author(s) 

Encoding 

type 

Publication 

Year 

(Weight) 

Training 

Genetic algorithm 

(crossover and 

mutation) 

Back-

propagation 
Yao  and Liu 

Direct 
 

(binary) 
1997 

Weight and 

topology 

Genetic algorithm 

(crossover and 

mutation) 

Back-

propagation 

Moriarty  and 

Miikkulainen 

Direct 
 

(binary) 
1997 

(Weight) 

Training 

Genetic algorithm 

(crossover and 

mutation) 

Back-

propagation 

Garcia 
Pedrajas, 
Hervas-
Martinez 

andMunoz-
Perez 

Direct 
 

(binary) 
2003 

Weight and 

topology 

Genetic algorithm 

(crossover and 

mutation) 

Back-

propagation 
Smalz and 

Conrad 

Direct 
 

(binary) 
1994 
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Table 1.4 Publications related to the evolutionary neural networks (continued from Table 1.3) 

Evolution 

Type 

Evolutionary 

Algortihm 

Learning 

Algorithm 
Author(s) 

Encoding 

type 

Publicati

on 

Year 

Weight 

(Training) 

Genetic algorithm 

(crossover and 

mutation) 

Back-

propagation 

Montana and 

Davis 

Direct 

(binary) 
1989 

Weight 

(Training) 

Genetic algorithm 

(crossover and 

mutation) 

Back-

propagation 

Whitley and 

Hanson 

 
Direct 

(binary) 
1989 

(Weight) 

Training 

Genetic algorithm 

(crossover and 

mutation) 

Back-

propagation 
Fogel et al. 

Direct 

(binary) 
1990 

(Weight) 

Training 

Genetic algorithm 

(crossover and 

mutation) 

Back-

propagation 

Menczer and  

Parisi 

Direct 
 

(binary) 
1992 

(Weight) 

Training 

Genetic algorithm 

(crossover and 

mutation) 

Back-

propagation 

Srinivas  and  

Patnaik 

Direct 
 

(binary) 
1991 

(Weight) 

Training 

Genetic algorithm 

(crossover and 

mutation) 

Back-

propagation 
Whitehead  and  

Choate 

Direct 
 

(binary) 
1996 

(Weight) 

Training 

Genetic algorithm 

(crossover and 

mutation) 

Back-

propagation 
Haussler  et  al. 

Direct 
 

(binary) 
1995 

(Weight) 

Training 

Genetic algorithm 

(crossover and 

mutation) 

Back-

propagation 
Seiffert 

Direct 
 

(binary) 
2001 

(Weight) 

Training 

Genetic algorithm 

(crossover and 

mutation) 

Back-

propagation 

Skinner and 

Broughton 

Direct 
 

(binary) 
1995 

Weight and 

topology 

Genetic algorithm 

(crossover and 

mutation) 

Back-

propagation 
Angeline et al., 

Direct 
 

(binary) 
1994 

(Weight) 

Training 

Genetic algorithm 

(crossover and 

mutation) 

Back-

propagation 
Harp et al., 1990 Indirect 1990 
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Table 1.5 Publications related to the evolutionary neural networks (continued from Table 1.4) 

Evolution 

Type 

Evolutionary 

Algortihm 

Learning 

Algorithm 
Author(s) 

Encoding 

type 

Publication 

Year 

(Weight) 

Training 

Genetic algorithm 

(crossover and 

mutation) 

Back-

propagation 
Kitano Indirect 1990 

Weight and 

topology 

Genetic algorithm 

(crossover and 

mutation) 

Back-

propagation 
Castillo  et  al Indirect 2000 

(Weight) 

Training 

Genetic algorithm 

(crossover and 

mutation) 

Back-

propagation 

Cangelosi and 

Elman 

Direct 
 

(binary) 
1995 

Weight and 

topology 

Genetic algorithm 

(crossover and 

mutation) 

Back-

propagation 
Yao and Liu 

Direct 
 

(binary) 
1997 b 

Weight and 

topology 

Genetic algorithm 

(crossover and 

mutation) 

Back-

propagation 

Odri, 
Petrovacki, 
and 
Krstonosic 

Direct 
 

(binary) 
1993 

Weight and 

topology 

Genetic algorithm 

(crossover and 

mutation) 

Back-

propagation 

Hüsken and 

Igel 

Direct 
 

(binary) 
2002 

(Weight) 

Training 

Genetic algorithm 

(crossover and 

mutation) 

Back-

propagation 

Caudell and 

Dolan 

Direct 
 

(binary) 
1989 

(Weight) 

Training 

Genetic algorithm 

(crossover and 

mutation) 

Back-

propagation 
Branke   

Direct 
 

(binary) 
1995 

(Weight) 

Training 

Genetic algorithm 

(crossover and 

mutation) 

Back-

propagation 

Cant-Paz and 

Kamath 

Direct 
 

(binary) 
2005 

Weight and 

topology 

Genetic algorithm 

(crossover and 

mutation) 

Back-

propagation 

Miller, Todd 

and Hegde 

Direct 
 

(binary) 
1989 

Weight and 

topology 

Genetic algorithm 

(crossover and 

mutation) 

Back-

propagation 

Seidlecki and 

Skalansky 

Direct 
 

(binary) 
1989 
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Table 1.6 Publications related to the evolutionary neural networks (continued from Table 1.5) 

Evolution 

Type 

Evolutionary 

Algortihm 

Learning 

Algorithm 
Author(s) 

Encoding 

type 

Publicatio

n 

Year 

Weight 

and 

topology 

Genetic algorithm 

(crossover and 

mutation) 

Back-

propagation 

Yang and 

Honavar 

Direct 
 

(binary) 
1998 

Weight 

and 

topology 

Genetic algorithm 

(crossover and 

mutation) 

Back-

propagation 

(no hidden 

layer) 

Pao and 

Philips 

Direct 
 

(binary) 
1995 

Weight 

and 

topology 

Genetic algorithm 

(crossover and 

mutation) 

Back-

propagation 

(no hidden 

layer) 

Pao and 

Takefuji 

Direct 
 

(binary) 
1992 

Weight 

and 

topology 

Genetic algorithm 

(crossover and 

mutation) 

Back-

propagation 
Maniezzo 

Direct 
 

(binary) 
1994 

 

By examining the literature from traditional neural networks to evolutionary 

neural networks, the interaction of classification with artificial neural networks 

started in 1989. In the meantime, within this year, genetic algorithms are embedded 

into artificial neural networks. Up to 1998, main issues of the artificial neural 

networks such as;  training, sample size, design and posterior probabilities discussed 

in order to classify the datasets more accurate. In consequence of inflexibility of 

traditional neural networks to classifications, the researches and publications on this 

topic began to decline. 

 

Genetic algorithms are introduced into artificial neural networks at the beginning 

of 1990s. Crossover and mutation operators are used for evolution. The selection of  

chromosome representation is important for the computation time and effort. Direct 

and indirect encoding used starting from the year 1989. Because the indirect 

encoding requires real representation, it’s not reasonable for large and complex data 

domains. Binary representation is used up to now as  direct encoding that is more 
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feasible for evolution. Both weight and topology evolution have been taken into 

consideration for better performance on true classification rate.  

 

By 2005, alternatives as listed in Table 1.7, are applied to the algorithms. 

Backpropagation is omitted in order to give weight to evolutionary algorithm. 

Evolutionary programming is established and decision rule is embeded into the 

learning algorithm.  

 
Table 1.7 Publications related to the classification with evolutionary neural networks 
Evolution 

Type 

Evolutionary 

Algortihm 

Learning 

Algorithm 
Author(s) 

Encoding 

type 

Publication 

Year 

Weight 

and 

topology 

Genetic algorithm 

(crossover and 

mutation) 

SEPA          

(no back-

propagation) 

Palmes and 
Usui 

Direct 
 

(binary) 
2005 

Weight 

and 

topology 

Genetic algorithm 

(crossover and 

mutation) 

Back-

propagation 

Rocha,Cortez 
and Neves 

 

Direct 
 

(binary) 
2007 

Weight 

and 

topology 

Evolutionary 

Programming (no 

crossover) 

Back-

propagation 

and decision 

rule 

Martinez- 
Estudillo, 
Hervas- 
Martinez, 
Gutierrez and 
Martinez-
Estudillo 
 

Direct 
 

(binary) 
2008 

Weight 

and 

topology 

Genetic algorithm 

(crossover and 

mutation) 

Back-

propagation 
Ang Tan and 
Al-Mamun 

Direct 
 

(binary) 
2008 

Weight 

and 

topology 

Genetic algorithm 

(crossover and 

mutation) 

Back-

propagation 

Castellani 
and  
Rowlands 
 

Direct 
 

(binary) 
2009 

 

1.6 Overview of Thesis 

 

The thesis consists of six parts. As the classification is explained in detail in 

Chapter I with a review, the other main subjects concerning evolutionary algorithms, 

artificial neural networks and linkage between the two subjects expressed briefly. In 

chapter II, the main components of an artificial neural network are introduced. The 
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importance of linear separability and learning algorithms are discussed in a detailed 

manner. Neural network training needs some important arguments such as 

momentum and cross validation to get success. During learning process, there is a 

possibility to tackle up with a local minima. In order to cope with this problem, 

backpropagation algortihm is implemented as a supervised learning to the 

feedforward neural network.   

 

In Chapter III,  an overview of evolutionary algorithms including their paradigms, 

and a discussion of previous applications of evolutionary algorithms to neural 

networks has been presented.. The types of crossover and mutation operators are 

taken into consideration when designing an evolutionary algorithm based artificial 

neural network. Chapter IV defines the process of building an evolutionary artificial 

neural network. The evolution is implemented through different parts of the neural 

network mechanism, so each type of evolving neural networks are examined with a 

related litetature review.  Chapter V presents the structure of the system developed 

for classification via evolutionary neural networks and also the two datasets that are 

structurally opposite due to attribute types performed and results obtained are 

discussed. 

 

Finally, conclusions are drawn in Chapter VI, and directions for future work 

suggested. 
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CHAPTER TWO 

ARTIFICIAL NEURAL NETWORKS 

 

At the core of neural computation, the concepts of distributed, adaptive and 

nonlinear computing exist. Neural networks perform computation in a very different 

way than conventional computers, where a single central processing unit sequentially 

dictates every piece of the action. Neural networks are built from a large number of 

very simple processing elements that individually deal with pieces of a big problem.  

 

2.1 The Neuron 

 

A neuron is a computational unit which takes a vector of input values and 

produces an output value. Inputs can be received from other neurons or directly as 

input. A single output value is generated, which is either sent to each of the neurons 

in the next layer or becomes part of the final output of the network. 

 

 
Figure 2.1 A simple neuron  

 

A processing element (PE) simply multiplies an input by a set of weights, and 

nonlinearly transforms the result into an output value. The principles of computation 

at the PE level are deceptively simple. The power of neural computation comes from 

the massive interconnection among the PEs, which share the load of the overall 

processing task, and from the adaptive nature of the parameters (weights) that 

interconnect the PEs. 

 

2.2 Mechanics 

 

Neural networks are hand-crafted by experts with years of experience. Two major 

drawbacks of this approach are a lack of experts, and a lack of a strict design
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methodology. The first problem is enough: there simply are not enough experts to 

attend to all the potential neural network projects the world has to offer. The second 

problem is somewhat more faint and difficult to analyze. No obedient algorithm 

exists to optimally determine the parameters for a particular neural network 

application. The science of designing neural systems at best is inaccurate as the result 

of this complexity. The process is intuitionally driven. A system is needed to 

determine neural network designs more efficiently and effectively. 

 

It is impossible to expect that any single neural network will be able to solve any 

problem regardless of complexity. To direct to a specific destination of this problem, 

research is being conducted into much complex systems. In these systems, several 

networks cooperate to solve a problem which would not be solvable by any single 

neural network architecture. While the power and flexibility of the resulting 

configuration has the potential to outperform simple neural networks, the 

combination of multiple networks increases the difficulty of managing the system.  

 

Whereas before a designer had to manage only a single network, the problem 

becomes one of designing multiple networks while simultaneously enabling them to 

cooperate on the problem at hand. The work load and computation time rises 

exponentially with the size of the system. 

 

Strictly speaking, a method is needed to free experts from the inaccurate run time 

of manually managed networks. One promising method of solving both problems is 

through the help of the use of evolutionary algorithms (EAs). This thesis presents a 

systematic approach to automating the design of neural networks for classification 

through the use of evolutionary algorithms 

 

2.3 Layer 

 

Normally, a neural network has several layers of PEs. What makes a layer an 

effective computational element is that each neuron has different synaptic weights 

which, when multiplied with the inputs, give each neuron a different value to which 
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it applies its activation function. All the neurons in a layer have the same activation 

function. It is also possible, however, for different neurons in a layer to have         

different activation functions.  

 

 
Figure 2.2 A Layer of Neurons 

 

 

The diagram below illustrates a simple multilayer perceptron. The circles are the PEs 

arranged in layers. The left column is the input layer, the middle column is the 

hidden layer, and the right column is the output layer.  

 

 
Figure 2.3  The simple multilayer perceptron 

 

 

By adapting its weights, the neural network works towards an optimal solution 

based on a measurement of its performance. For supervised learning, the 

performance is explicitly measured column is the output layer. The lines represent 

weighted connections between processing elements in terms of a desired signal and 
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an error criterion. For the unsupervised case, the performance is implicitly measured 

in terms of a learning law and topology constraints. 

 

2.4 Linear Separability 

 

By the comparison of the topology of two-layer and multilayer networks;  two-

layer networks are, with regard to fundamentals although not concerning details, 

have linear entities. By their nature, they can only classify data that is linearly 

separable. 

 

A set of data is considered that is divisible into two classes. The data can be 

graphed in two dimensions and the two classes separated by a straight. For 

multidimensional data of n dimensions, the data will be separable with an n-

dimensional separation. That is, data in three dimensions will be separable with a 

plane, and higher dimensions will be separable with an appropriate hyperplane 

(Wasserman, 1993). 

 

 
Figure 2.4 Separability 

 

Some data, however, are not separable in this manner. The use of additional data 

in this manner is not always feasible, as analysis of the dataset to discover such data 

may be a non-trivial task. 

 

In that case, a simple two-layer network could be used with an extra input factor 

Because of the lack of linear separability, a third dimension is needed that would 
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create separable data can be understood of. A multilayer network can solve this 

problem which will not require the use of additional input factors. 

 

The purpose, therefore, of multilayer networks is to solve problems in which the 

data is not linearly separable. If the data can be made separable by the addition of 

further input factors, this may be desirable as the resulting neural network would be 

simpler. However, as this is not always possible, multilayer networks are required. 

 

Multilayer perceptrons (MLPs) overcome the linearity limitations associated with 

the perceptron. An MLP with one hidden layer is able to create a bump on the 

decision surface in the pattern space, a feature which is impossible with a single layer 

perceptron.  

 

In general, adding enough nodes in hidden layers will allow the network to 

approximate any continuous function, but adding too many nodes increase the 

computational requirements of the network. It can also lead to overfitting to the 

training data, as the redundant hidden nodes tend to cause the network to memorize 

the training dataset rather than to reflect its general feature properties . 

 

2.5 Learning 

 

The network requires input data and a desired response to each input. The more 

data presented to the network, the better its performance will be. Neural networks 

take this input-output data, apply a learning rule and extract information from the 

data. Unlike other technologies that try to model the problem, artificial neural 

networks (ANNs) learn from the input data and the error. The network tries to adjust 

the weights to minimize the error. Therefore, the weights embody all of the 

information extracted during learning. 

 

Essential to this learning process is the repeated presentation of the input-output 

patterns. If the weights change too fast, the conditions previously learned will be 

rapidly forgotten. If the weights change too slowly, it will take a long time to learn 
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complicated input-output relations. The rate of learning is problem dependent and 

must be judiciously chosen. Each PE in the ANN will simply produce a nonlinear 

weighted sum of inputs. A good network output (a response with small error) is the 

right combinations of each individual PE response. Learning seeks to find this 

combination. In so doing, the network is discovering patterns in the input data that 

can solve the problem. 

 

It is interesting that these basic principles are very similar to the ones used by 

biological intelligence. Information is gained and structured from experience, 

without explicit formulation. This is one of the exciting aspects of neural 

computation. These are probably the same principles utilized by evolution to 

construct intelligent beings. Like biological systems, ANNs can solve difficult 

problems that are not mathematically formulated. The systematic application of the 

learning rule guides the system to find the best possible solution. 

 

2.5.1 Network Training 

 

After taking care of the data collection and organization of the training sets, the 

network's topology must be selected. An understanding of the topology as a whole is 

needed before the number of hidden layers and the number of PEs in each layer can 

be estimated. This thesis will focus on multilayer perceptrons (MLPs) because they 

are the most common. 

 

Hornick (1991) proved that a single hidden layer provides the network with the 

capability of approximating any measurable function from one finite dimensional 

space to another to any desired degree of accuracy.  Indeed,  ANNs  having  a  single  

hidden layer have proven to be an important class of network for practical 

applications since they can approximate arbitrarily  well  any  functional  continuous  

mapping from one finite-dimensional space to another, provided the number of 

hidden units is sufficiently large (Bishop, 1995). 

 



 

 

21 

A multilayer perceptron with two hidden layers is a universal mapper (Hassoun  

1995). Sontag (1992)  showed that two hidden layers are  required  for  

approximating  certain  classes  of  discontinuous functions. A universal mapper 

means that if the number of PEs in each layer and the training time is not 

constrained, then it can be proved  that the network has the power of solving any 

problem. This is a very important result but it is only an existence proof, so it does 

not say how such networks can be designed. The problem is to find out what is the 

right combination of PEs and layers to solve the problem with acceptable training 

time and performance. 

 

In fact, unless the data is not linearly separable, it can be started without any 

hidden layers. The reason is that networks train progressively slower when layers are 

added. This error is propagated back through the network to train the weights. It is 

attenuated at each layer due to the nonlinearities.  

 

So if a topology with many layers is chosen, the error to train the first layer's 

weights will be very small. Hence training times can become excruciatingly slow. As 

training times grow exponentially with the number of dimension of the network's 

inputs, all efforts should be made to make training easier. 

 

This point has to be balanced with the processing purpose of the layers. Each 

layer increases the discriminant power of the network. For instance, a network 

without hidden layers is only able to solve classification problems where the classes 

can be separated by hyper-planes.  

 

2.5.2 Momentum 

 

The momentum term puts a weight on how much a synapse's previous weight 

adjustment should effect its current weight adjustment. The momentum term is 

multiplied by the previous result of the learning formula, that is, the previous weight 

adjustment.  
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An ad hoc departure from steepest descent is to add memory to the recursion 

through momentum  term. The  change  in  parameter vector depends  not  only  on  

the current gradient but also on the most recent change in parameter vector: 

 

1 1k k k k k kw w g        for 0k   

 

  is called the momentum constant. Wang & Principe (1999) recommend setting   

to a value between 0.5 and 0.9. Using momentum with backpropagation both speeds 

up and stabilizes a neural network's convergence to a set of weight values. 

Momentum also helps a network to avoid local minima in the error function where 

gradient descent alone may cause the weight to become stuck. Momentum keeps the 

weights changing in the flat areas of the error curve and smooths out the weight's 

changes when the gradient bounces back and forth between the sides of a narrow dip 

in the error function curve. So a high frequency smoothing effect is gained through 

momentum term. The  change  in  parameter  vector  depends  not  only  on  the  

current  gradient 1kg   but also in an exponentially decaying manner (0 1)   on 

all gradients.  

 

The benefit of a momentum term is two-fold, effectively dealing with both the 

major problems discussed above. First, the time it takes the network to train drops. 

This is due to the momentum term influencing the change in synaptic weights. Once 

the network is training in one direction toward the ideal point, the momentum term 

allows it to pick up speed.  

 

Since momentum is applied to each iteration, the effect snowballs. The training 

actually picks up speed, making increasingly larger jumps toward the target value 

until it arrives at or passes over the target value. This leads to the second case, that of 

passing over the target value. 

 

Momentum also solves the thrashing problem. When a network oversteps its 

target value, the next pass may recalculate the same amount of correction as the 

original error or some portion thereof to enable a cycle over several updates. With 
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momentum, the adjustment in the new, opposite direction is added to a percentage of 

the direction in which the network was previously moving. In the case of an 

overstepped target, these two values will have opposite signs. While this may cause 

an overstep in the opposite direction, it must be less than the previous overstep due to 

the momentum term. 

 

This process continues, with each overstep of the target value becoming smaller 

as the momentum term influences the current weight change with the previous one. 

Eventually, the synaptic weights will converge upon the target values. 

 

If the succession of recent gradients has tended to alternate directions, then the 

sum will be relatively small and only small changes will be made in the parameter 

vector. This could occur in the local minimum area, successive changes would just 

serve to bounce back and forth past the minimum. If, however, recent gradients tend 

to align, larger changes needed in the parameter vector and thereby move more 

rapidly across a large region of descent and possibly across over a small region of 

ascent that screened off a deeper local minimum. Of course, if the learning rate  is 

well chosen, then successive gradients will tend to be orthogonal and a weighted sum 

will not cancel itself out. 

 

Thus, momentum allows a network to train faster, both by permitting a higher 

learning rate and snowballing synaptic weight adjustment. When using high learning 

rates, momentum also tempers a backpropagation network's tendency to thrash 

around the target values without ever actually achieving them.  

 

2.5.3 Cross Validation 

 

During training, the input and desired data will be repeatedly presented to the 

network. As the network learns, the error will drop towards zero. Lower error, 

however, does not always mean a better network. It is possible to overtrain a 

network. To avoid overtraining, a validation set should be used. The validation set is 

used as a pseudo-test set and is not used for training but for stopping criteria.   
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Training stops when minimum validation error is reached and the current network 

state is used on the testing set. However, as there are many local optima in the  

validation  set,  there  are  some  issues  when  using  it. During  the  initial  phase  of  

training,  the  error  on validation set will be oscillatory .Also; Finnoff, Hergert & 

Zimmermann (1993), Lang, Waibel & Hinton (1990), Morgan & Bourlard (1990) 

and Prechelt (1994) suggested to proceed the training untill the error increases. 

 

When using cross validation, a decision should be made to decide how to divide 

data into a training set and a validation set, also called the test set. The network is 

trained with the training set, and the performance checked with the test set. The 

neural network will find the input-output map by repeatedly analyzing the training 

set. This is called the network training phase. Most of the neural network design 

effort is spent in the training phase (Ang, Tan & Al-Mamun, 2008). 

 

Training is normally slow because the network's weights are being updated based 

on the error information. At times, training will strain the patience of the designer. 

But a carefully controlled training phase is indispensable for good performance, so 

be patient.  

 

There is a need to monitor how well the network is learning. One of the simplest 

methods is to observe how the cost, which is the square difference between the 

network's output and the desired response, changes over training iterations. This 

graph of the output error versus iteration is called the learning curve. The training 

phase also holds the key to an accurate solution, so the criterion to stop training must 

be very well delineated. The goal of the stop criterion is to maximize the network's 

generalization. 

 

It is relatively easy to adapt the weights in the training phase to provide a good 

solution to the training data. However, the best test for a network's performance is to 

apply data that it has not yet seen.  
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To test the network, the weights must be freezed after the training phase and apply 

data that the network has not seen before. If the training is successful and the 

network's topology is correct, it will apply its past experience to this data and still 

produce a good solution. If this is the case, then the network will be able to 

generalize based on the training set. 

 

A network with enough weights will always learn the training set better as the 

number of iterations is increased. However, this decrease in the training set error is 

not always coupled to better performance in the test set. When the network is trained 

too much, the network memorizes the training patterns and does not generalize well. 

 

A practical way to find a point of better generalization is to set aside a percentage 

of the training set and use it for cross validation. the error in the training set and the 

validation set should be observed. When the error in the validation set increases, the 

training should be stopped because the point of best generalization has been reached. 

Cross validation is a powerful method to stop the training. 

 

2.5.4 Sensitivity Analysis 

 

As training a neural network, the effect that each of the network inputs is having 

on the network output should be observed. This provides feedback as to which input 

channels are the most significant. From there, the input space can be pruned by 

removing the insignificant channels. This will reduce the size of the network, which 

in turn reduces the complexity and the training times. 

 

Sensitivity analysis is a method for extracting the cause and effect relationship 

between the inputs and outputs of the network. The network learning is disabled 

during this operation such that the network weights are not affected. The basic idea is 

that the inputs to the network are shifted slightly and the corresponding change in the 

output is reported either as a percentage or a raw difference. 
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2.6 Artificial Neural Network Learning Algorithms 

 

The  ANN  methodology  enables  us  to  design  useful  nonlinear  systems  

accepting large  numbers  of  inputs,  with  the  design  based  solely  on  instances  

of  input–output relationships. For a training set T consisting of n argument value 

pairs and given a d-dimensional argument x and an associated target value t will be 

approximated by the neural network output. The function approximation could be 

represented as: 

 

 ( , ) : 1:i iT x t i n   
 

In most applications, the training set T is considered to be noisy and the goal is 

not to reproduce it exactly but rather to construct a network function that generalizes 

well to new function values by selecting the weights to  learn  the  training  set is a 

solution to the problem. The  notion  of  closeness  on  the  training  set  T is  

typically formalized through an error function of the form; 

 
2

1

n

T i i
i

y t


 
 

 

where iy  is the network output. The target is to find a neural network   such that the 

output ( , )i iy x w is close to the desired output it  for the input ix  (w = strengths of 

synaptic connections). The error ( )T T w   is a function of w because y   

depends upon the parameters w defining the selected network  .  

 

The objective function ( )T w for a neural network with many parameters defines 

a highly irregular surface with many local minima, large regions of little slope and 

symmetries. The common node functions such as hyperbolic tangent (tanh) are 

differentiable to arbitrary order through the chain rule of differentiation, which 

implies that the error is also differentiable to arbitrary order. For ( )T w a Taylor’s 
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series expansion in w can be made so that a truncation can be met due to a local 

minimum. 

 

The gradient (first partial derivative) vector is represented by 

 

( ) T
T w w

i

g w
w



 

       
 

The gradient vector points in the direction of steepest increase of T  and its negative 

points in the direction of steepest decrease. The second partial derivative also known 

as Hessian matrix is represented by H: 

 
2

2 ( )( ) ( ) ( ) T
ij T

i j

wH w H w w
w w
 

   
   

 

The Taylor’s series for T , assumed twice continuously differentiable about 0w , can 

now be given as 

 

20 0 0 0 0 0 01( ) ( ) ( ) ( ) ( ) ( )( ) ( )
2

T T T
T Tw w g w w w w w H w w w O w w        

 
 

Where ( )O  denotes a term that is of zero-order in small  such that  

 

0
lim( ( ) / ) 0O


 



 

 

2.6.1 Multiple Minima Problem In Neural Networks 

 

A  long  recognized  bane  of  analysis  of  the  error  surface  and  the  

performance  of training  algorithms  is  the  presence  of  multiple  stationary  points,  

including  multiple minima. Analysis of the behavior of training algorithms generally 
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use the Taylor’s series expansions discussed earlier, typically with the expansion 

about a local minimum 0w . 

 

However, the multiplicity of minima confuses the analysis because it can be 

possible  to converge to the same local minimum.  Hence the issue of many minima 

is a real one. According to Auer, Herbster & Warmuth (1996), to prevent this 

situation, differentiable learning algorithms can be used. 

 

Different learning algorithms have their staunch proponents, who can always 

construct instances in which their algorithm perform better than most others. There 

are three types of optimization taken into consideration that are used to minimize the 

error function, ( )T w .  

 

Gradient descent and conjugate gradient are general optimization methods whose 

operation can be understood in the context of minimization of a quadratic error 

function. Although the error surface is not quadratic, for differentiable node 

functions, it can be in the neighborhood of the local mininum, such an analysis 

provides information about the behaviour of the training algorithm over a number of 

iterations up to its goal.  

 

The third method, Levenberg-Marquardt is specifically adapted to minimization 

of an error function that arises from a squared error criterion of the form.   

 

When training a neural network, the output error should be minimized at each 

node. Gradient descent is an iterative optimization process which moves a weight 

towards the minimum of the error function. In essence, the process finds the slope of 

the error curve by taking its derivative; multiplies it by a stepsize factor, the learning 

rate discussed; and subtracts this result from the current weight value. the value is 

subtacted from the weight because the negative of the gradient represents the 

direction of steepest descent down the curve of the error function. As running 

through all the epochs in a training cycle, it will be possible to be closer to the 

minimum error and the weight at each node approaches an ideal value. 
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2.6.2 Backpropagation Algorithm 

 

The problem with the neural network learning models described thus far is that 

they define weight changes for the output layer only; the weight changes are based 

on an error term only available at the output layer. This was the problem that 

Rosenblatt encountered: a lack of a teaching process (error term) for the hidden units. 

To solve linearly inseparable problems, multilayer networks are required. Thus, a 

method of training the hidden layer is called for. 

 

Backpropagation refers to the backwards distribution of error used to train a 

multilayer network. In particular, backpropagation proposes a method of estimating 

the error of a hidden layer in a neural network and so permits the use of the learning 

law for hidden units. This allows for adjustment of the hidden layer's synapses even 

though the desired output of the hidden units is not known. The process could be 

recursively applied for more hidden layers.  

 

Backpropagation is one of the most commonly used supervised training 

algorithms. However, because backpropagation is a supervised learning algorithm, it 

is required that a set of fact data be obtainable which associates input patterns with 

correct outputs. Also, backpropagation has few if any self-organizing aspects and as 

such a very good sense of the problem with regards to network topology (number of 

units per layer) is necessary (Blum, 1992).  

 

Backpropagation provides an effective method for evaluating the gradient vector 

needed to implement the steepest descent, conjugate gradient, and Levenberg- 

Marquardt algorithms. Backpropagation differs from straightforward gradient 

calculations using the chain rule for differentiation in the way it organizes efficiently 

the gradient calculation for networks having more than one hidden layer.                         

 

Backpropagation iteratively selects a sequence of parameter vectors  , 1:kw k T  

for a moderate value of running time T, with the goal of having  ( ) ( )T kw k   
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converge to a small neighbourhood of a good local minimum rather than the usually 

inaccessible global minimum (Fine, 1999). 

 
* min ( )T Tw W

w 



 

 

The simplest steepest descent algorithm uses the following weight update in the 

direction of k kd g   with a learning rate or step size k . 

 

1k k k kw w g    
 

A good choice *
k for the learning rate k for a given choice of descent direction 

kd is the one that minimizes ( 1)k  . 

 

1 arg min ( )k k kw d


    
 

 

To carry out the minimization, 

 

* *

( 1) ( ) 0
k k

k k kw w d
   

  
  

   
 

   
 

To evaluate this equation, it must be noted that 

 

1
( ) Tk k

k k
w d g d 
 

 


  
 

and for optimal learning rate, the orthogonality condition should be satisfied 

 

1 0T
k kg d   
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When the error function is not specified analytically, then its minimization along 

kd can  be  accomplished  through  a  numerical  line  search  for kd or  through  

numerical differentiation. The line search avoids the problem of setting a fixed step  

size.  Analysis  of  such  algorithms  often  examine  their  behavior  when  the  error 

function is truly a quadratic. In  the current notation, 

 

1k k k kg g Hd    
 

Hence the optimality condition derived from the orthogonality condition for the 

learning rate k  becomes  

 

*
T
k k

k T
k k

d g
d Hd





 

 

When search directions are chosen via k k kd M g  , with kM symmetric, then the 

optimal learning rate is 

 

*
T
k k k

k T
k k k k

g M g
g M HM g





 

*
T
k k

k T
k k

g g
g Hg





 

 
*

k  is the reciprocal of an expected value of the eigenvalues  i of the Hessian with 

probabilities determined by the squares of the coefficients of the gradient vector 

kg expanded in terms of the eigenvectors  ie of the Hessian: 

 
2
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That algorithm suffers from greed. The  successive  directions do not generally 

support each other in that after two steps; the gradient is usually no longer orthogonal 

to the direction taken in the first step.  

 

In the quadratic case, there exists a choice of learning rates that will drive the 

error to its absolute minimum in no more than p + 1 steps where p is the number of 

parameters (Fine, 1999). To see this, 

 

* * * * 11 1( ) ( ) ( ) ( ) ( )
2 2

T Tw w w w H w w w g H        
 

 

It is easily verified that if  ( )k kg g w then 

0
1

( )
k

k jg I H g      
 

For k p , it can be achieved that 0kg  by choosing 1,..., px x any permutation of 

11/ ,...,1/ p  , the reciprocals of the eigenvalues of the Hessian H; the resulting 

matrix annihilates each of the p eigenvectors and any other vector can be shown as 

their weighted sum. The step size is held at a constant value k  , 

 

The simplicity of this approach is belived by the need to carefully select the 

learning rate. If the fixed step size is too large, then there may be oscillation or 

divergent behaviour so that monotone reduction of the error function T can be lost. 

A high learning rate may encounter a thrashing problem. Since the learning rate is 

constant, the network will thrash; that is, it will alternate between values on both 

sides of the desired value without ever actually converging to the desired value.  

 

As the network converges upon the ideal value for the data, the high learning rate 

causes it to overshoot that ideal value. Then, on the next training cycle, the network 

will generate a synaptic update in reverse (the error will have the opposite sign) in an 

attempt to remedy the over-learning on the previous pass. If the step size is too small, 

much more iterations will be needed to get better results.  
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It is not practical to determine the optimal setting for the learning rate before 

training, and, in fact, the optimal  learning rate changes during the training process, 

as the algorithm moves  across the performance surface. 

 

An adaptive learning  rate attempts to keep the learning step size as large as 

possible while keeping  learning stable. The learning rate is made responsive to the 

complexity of the local error surface. Basically, the initial network output and error 

are calculated. At each epoch new weights and biases are calculated using the current 

learning  rate. New outputs and errors are then calculated. 

 

Backpropagation changes each weight of the network based on its localized 

portion of the input signal and its localized portion of the error. The change has to be 

proportional (a scaled version) of the product of these two quantities. The 

mathematics may be  complicated, but the idea is very simple. When this algorithm 

is used for weight change, the state of the system is doing gradient descent; moving 

in the direction opposite to the largest local slope on the performance surface. In 

other words, the weights are being updated in the direction of down. 

 

2.6.2.1 Training Problems In Backpropagation 

 

The search for the optimal weight values can get caught in local minima, so that 

the algorithm thinks it has arrived at the best possible set of weights even though 

there are other solutions that are better. Backpropagation is also slow to converge. In 

making the process simple, the search direction is noisy and sometimes the weights 

do not move in the direction of the minimum. Finally, the learning rates must be set 

heuristically. 

 

The problems of backpropagation can be reduced. The slowness of convergence 

can be improved by speeding up the original gradient descent learning. Momentum 

learning is often recommended due to its simplicity and efficiency with respect to the 

standard gradient. 
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2.6.2.1.1 Initial Weights. The most obvious problem encountered in training 

backpropagation networks is that of their initial weights.  

 

Gradient descent refers to the practice of minimizing the error of a function over 

several iterations. In a backpropagation network, a generalized least mean squared 

algorithm is used to modify network weights. The goal is to minimize the mean 

squared error between the desired and actual outputs of the network. The error for a 

pattern p is given by : 

 
2

,( )p p k
k

E l
   

 

with k the node from the output layer and l the squared error between the output and 

desired value, backpropagation must discover a vector that minimizes Ep. Since the 

output of the network is a function of its weights, so must E be a function of the 

network weights (Mehrotra, 1997). 

 

Thus, the starting weights of a neural network affect not only the initial outputs 

but also the error and, thus, the gradient descent. In other words, every set of starting 

weights for a backpropagation network has a different gradient descending to the 

state of minimum error.  

 

The most commonly used method to combat the problem of initial starting 

weights is to run multiple trials of multiple networks. The idea is to eliminate the 

problem by running a particular network architecture with a number of different 

starting weights.  

 

The performance of a particular set of network parameters is determined by 

considering all the sample runs of that network and comparing it to those of networks 

with other parameters. Since there are so many network parameters, such as hidden 

units, layers, activations, and so forth, adding even more trials makes the number of 

potential runs far too large for an exhaustive search. Rather, trials tend to be guided 
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either by previous knowledge about the data, or the intuition of the expert crafting 

the network.  

 

Clearly a system which removes the burden of this trial and error process from the 

neural network professional is desirable. The running time of such a system need not 

be an improvement over the previous method; it is the selection strategy that must 

first be optimized. 

 

2.6.2.1.2 Number of Hidden Units. One of the most difficult choices a neural 

network designer must make in designing a backpropagation network is how many 

hidden units to employ. To begin, a small number of hidden units is usually better at 

generalizing to unseen data. A large number of hidden units tends to be a superior 

memorizer; however, the data to be learned can make a significant difference.  

 

The number of nodes in the hidden layers defines the complexity and the power of 

the neural network model to  describe  underlying  relationships  and  structures  

inherent  in a training data (Kavzoglu & Mather, 2003). 

 

A three-layer network (input, hidden, and output layers) is sufficient to approximate 

continuous functions arbitrarily well over a bounded compact set. Kimes,      

Gastellu-Etchegorry & Este (2002) highlights that a  network  with  one  hidden  

layer  can  form  an  arbitrarily close approximation  to  any continuous  nonlinear  

mapping, assuming only that the transfer function computed by a neuron is 

nonconstant, bounded, continuous and monotone increasing. 

 

Berberoglu, Curran, Lloyd & Atkinson (2007), Aitkenhead & Aalders (2008) and 

Kavzoglu (2009) have reported the advantages of the use of networks two hidden 

layers in classification.  

 

For simple data for which the dimensionality, or number of classes, is known, it is 

often optimal to choose one hidden unit per data class. Unfortunately, data sets from 

the real world are not always well structured. Classes may overlap, be discontiguous, 
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or have other properties which mean that a greater or fewer number of hidden nodes 

may actually be optimal. Combining this with the fact that each network has to be 

run many times with different starting values, and a guaranteed optimal solution 

becomes intractable. 

 

A simple example of an analytic guideline for choosing the number of hidden 

units is the geometric pyramid rule (Koehler,1991). It asserts that the appropriate 

number of neurons follows a pyramid shape, with number decreasing from the input 

toward the output. In particular, the number of neurons assigned to each layer 

follows a geometric progression. Thus, if a three-layer network with n input neurons 

and m output neurons is being designed, the hidden layer would have the square root 

of m*n neurons. A similar rule applies to four-layer networks, as follows: 

 
1 3( / )r n m  

2
1NumberOfHiddenUnits mr  

2NumberOfHiddenUnits mr  

  

 2.6.2.1.3 Length Of Training. Once a few networks are chosen with numbers of 

hidden units that are likely to work well. The designer must decide how long to train 

the network for. If, as is usually the case, the network will have to generalize 

previously unseen data, then training the network for a long period of time may be 

counterproductive; the network will memorize the data rather than extract the 

patterns contained therein. This is less of a problem if one of the networks has an 

appropriate number of hidden nodes to generalize sufficiently.  

 

However, the previous section discussed the problems in determining such a 

number to any degree of certainty. Similarly, training the network for too short a 

time results in a network that performs sub-optimally on the known data. Ideally, if a 

method could be devised for selecting the number of hidden units with near-

optimality, this problem would largely disappear. Alternately, a method of stopping 

training at the optimal point in training would also solve this problem. Again, trial 
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runs of different lengths only compound the number of required trials, as they must 

be combined with the previous problems. 

 

2.6.2.1.4 Evaluation Strategies. The final stumbling point in this maze of pitfalls 

is the evaluation strategy. If data that the network has been trained on is used, this 

biases the networks in favor of memorized patterns. Using test data (data withheld 

during the training phase) to evaluate the network and determine how to use that 

network's parameters in future iterations can be considered to contradict the idea of 

test data.  

 

That is, the held out data is, in fact, influencing the network architecture. In some 

cases, it is therefore deemed necessary to hold out a third set of data as the final test 

set. Thus, in addition to selecting the discussed training parameters of the networks, 

selecting the evaluation strategy is itself no trivial decision. 

 

2.6.2.2 Nonlinear Activation Functions 

 

Backpropagation uses an optimization algorithm called gradient descent to 

determine each node's contribution to the final network output in order to adjust the 

weights when training the network. Gradient descent requires taking the derivative of 

the activation function, but the threshold step function traditionally used in the multi 

perceptron neuron and the perceptron is not differentiable. To solve this problem, a 

differentiable, nonlinear function can be used with a sigmoid shape (an S shape) 

instead of the standard threshold. Two common, nonlinear activation functions used 

in artificial neural networks, the logistic and hyperbolic tangent functions are main 

with the threshold activation function .  

 

The most commonly employed sigmoid function is the logistic function: 

 

1( )
1 xf x

e

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which  is  a  strictly  increasing  function  that  exhibits  smoothness  and  asymptotic 

properties. 

 

The hyperbolic tangent (tanh) function is as: 

 

1( )
1

x

x

ef x
e









 

 

The practical difference between these two sigmoid functions is that the logistic 

function outputs values between (0,1), whereas the hyperbolic tangent outputs from 

(-1,1). Due to its structure, hyperbolic tangent (tanh) function is an ideal activation 

function. Therefore tanh function shall be used for activation function (Kalman & 

Kwasny, 1992). 

 

2.6.3 Conjugate Gradient Algorithm 

 

Conjugate gradient algorithm is a member of a class of learning algorithms called 

second order methods. 

 

Standard gradient descent algorithms (like step and momentum) use only the local 

approximation of the slope of the performance surface (error versus weights) to 

determine the best direction to move the weights in order to lower the error. Second 

order methods use or approximate second derivatives (the curvature instead of just 

the slope) of the performance surface to determine the weight update.  

 

If the performance surface is quadratic (which is only true in general for linear 

systems), then using a second order method can find the exact minimum in one step.  

 

In nonlinear systems like neural networks, multiple steps will be needed. Each 

step, however, will typically lower the error much more than a standard gradient 

descent step. The problem with second order methods is that they require many more 

computations for each weight update. An algorithm that makes many poor decisions 
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may perform better on average than a much slower algorithm that makes very good 

decisions. 

 

2.6.3.1 Weight Update Equations 
 
 

The conjugate gradient method is an excellent tradeoff between speed of 

computation and performance. The conjugate gradient method can move to the 

minimum of a N-dimensional quadratic function in N steps. By always updating the 

weights in a direction that is conjugate to all past movements in the gradient, all of 

the zig-zagging of first order gradient descent methods can be avoided. At each step, 

a new conjugate direction is determined and movement to the minimum error along 

this direction is maintained.  

 

If the performance surface is quadratic, information from the Hessian can 

determine the exact position of the minimum along each direction, but for non-

quadratic surfaces, a line search is typically used. In theory, there are only N 

conjugate directions in a space of N dimensions, so the algorithm is reset each N 

iterations. The advantage of conjugate gradient method is that there is no need to 

store, compute, or invert the Hessian matrix. The equations are: 

 

( ) ( )w n p n   

(0) (0)p g   

( 1) ( 1) ( ) ( )p n g n n p n      

( 1) ( )( )
( ) ( )

T

T
g n g nn

g n g n


  

 

( ) arg min( ( ( ) ( ))n E w n p n    

 
where w are the weights, p is the current direction of weight movement, g is the 

gradient (backprop information), p is a parameter that determines how much of the 

past direction is mixed with the gradient to form the new conjugate direction. The 

equation for a is a line search to find the minimum mean squared error (MSE) along 
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the direction p. The line search in the conjugate gradient method is critical to finding 

the right direction to move next. If the line search is inaccurate, then the algorithm 

may become brittle.  

 

 The Scaled Conjugate Gradient method (SCG) is the method that avoids the line 

search procedure. One key advantage of the SCG algorithm is that it has no real 

parameters. The algorithm is based on computing H*d where d is a vector. The 

Hessian times a vector can be efficiently computed in O(W) operations and contains 

only W elements. To ensure that the Hessian is positive definite, an offset is added to 

the Hessian, H l . The formula for the step size a as in the conjugate gradient is: 

 

2( )

T

T

p g
p H l p p


 

 
 

 

 

where p is the direction vector and g is the gradient vector as in the conjugate 

gradient  method. The parameter   varies from iteration to iteration when   is high, 

the learning rate is small (the Hessian cannot be trusted), and when it is low the 

learning rate is large. 

 

Doing a first order approximation, this approximation can be made: 

 

( ) ( )( ) E w p E ws H l p p 


  
     

 

which means that the Hessian calculations can be replaced with one additional 

evaluation of the gradients (backpropagation pass). The parameter   must be set to 

ensure that the H l  is positive definite so that the denominator will always be 

positive. If the value of the denominator is negative,  is increased by a value   so 

that it will be positive. Additionally,   is adjusted based upon how closely the 

current point in the performance surface approximates a quadratic if the performance 

surface is far from quadratic,  can be increased that would cause resulting in a 
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smaller step size. The value   is used to determine closeness to quadratic and is 

estimated via: 

 

2( ( ) ( )
T

E w E w p
p g



 

   

 

This algorithm requires a number of global scalar computations. All matrix 

calculations can be done locally (parallel). It also requires one backpropagation  pass 

to compute ( )E w p  and one forward pass to compute ( )E w p . Conjugate 

gradient learning requires batch learning in the network. In general, each conjugate 

gradient batch weight update will take twice as long as a standard batch weight 

update using step or momentum gradient search. 

 

2.6.4 Levenberg–Marquardt Algorithm 

 

The Levenberg-Marquardt (LM) algorithm is one of the most appropriate higher-

order adaptive algorithms known for minimizing the mean squared error of a neural 

network. It is a member of a class of learning algorithms called pseudo second order 

methods. Standard gradient descent algorithms use only the local approximation of 

the slope of the performance surface (error versus weights) to determine the best 

direction to move the weights in order to lower the error. Second order methods use 

the Hessian or the matrix of second derivatives (the curvature instead of just the 

slope) of the performance surface to determine the weight update, while pseudo-

second order methods approximate the Hessian.  

 

In particular, the Levenberg-Marquardt utilizes so called Gauss-Newton 

approximation that keeps the Jacobian matrix and discards second order derivatives 

of the error. If the performance surface is quadratic (which is only true in general for 

linear systems) then using a second order method can find the exact minimum in one 

step.  
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In nonlinear systems like neural networks, the big issue is that the performance 

surface may be non convex, and so quadratic approximations may require several 

steps for convergence, or more importantly they may diverge. A key advantage of the 

LM approach is that it defaults to the gradient search when the local curvature of the 

performance surface deviates from a parabola, which may happen often in neural 

computing. 

 

In that learning algorithm, the error function is a sum of squares. Notation to the 

error vector and its Jacobian with respect to the network parameters w: 

 

, 1, , , 1, ,j
ij

i

e
J J i p j n

w

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

 
 

 

The  Jacobian  matrix  is  a  large  p × n matrix,  all  of  whose  elements  are  

calculated directly by backpropagation  technique. The p dimensional gradient g for 

the quadratic error function can be expressed as:  

 

1
( ) ( )

n

i i
i

g w e e w Je

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and the Hessian matrix by, 
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where, 

 

  2
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i ii

D e e


  and the expression yields as: 

 

( ) TH w JJ D   
 

The  key  to  the  LM  algorithm  is  to  approximate  this  expression  for  the  

Hessian  by replacing the matrix D involving second derivatives by the much simpler 
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positively scaled unit matrix I .  The LM is a descent algorithm using this 

approximation in the form, 

 
1[ ]T

kM JJ I     

1 ( )k k k k kw w M g w    
 

Successful use of LM requires approximate line search to determine the rate k . 

The matrix TJJ is automatically symmetric and non-negative definite. The typically 

large size of J may necessitate careful memory management in evaluating the 

product TJJ . Any positive   will ensure that kM is positive definite, as required by 

the descent condition. The performance of the algorithm thus depends on the choice 

of  . 

 

When  the  scalar   is  zero,  this  is  just  Newton’s  method,  using  the  

approximate Hessian  matrix.  When    is  large,  this  becomes  gradient  descent  

with  a  small  step size. As Newton’s method is more accurate,   is decreased after 

each successful step (reduction in performance function) and is increased only when 

a tentative step would increase the performance function. By doing this, the 

performance function will always be reduced at each iteration of the algorithm.  

 

There is only one parameter that can be set the Initial Lambda. The Lambda 

parameter governs the step size, and it is dynamically adjusted based on the direction 

of the error. If the error decreases between weight updates, then the Lambda 

parameter is decreased by a factor of 10. Conversely, if the error increases then 

Lambda is increased by a factor of 10. The Initial Lambda is only specifies the 

Lambda for the first epoch. This normally does not need to be changed from the 

default. 

 

In this thesis, basically, multilayer perceptron  neural  network  with  one  hidden  

layer  and  optimum  number  of hidden layers were varied from 1 to 5 and the speed 

of convergence and generalization error for each of the three learning algorithms was 
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observed. The effect of node activation functions and tanh-sigmoidal activation 

function (TSAF). Computational complexities of the different learning algorithms 

were also noted during each event. The experiments were replicated 5 times each 

with a different starting condition (random weights) and the best (minimum) errors 

were reported. No stopping criterion, and no method of controlling generalization is 

used other than the maximum  number  of  updates  (epochs).  All  networks  were  

trained  for  an  identical number of stochastic updates . 
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CHAPTER THREE 

EVOLUTIONARY ALGORITHMS 

 

Evolutionary algorithms are identified by four main paradigms, which are 

summarized as follows (Freitas, 2000):  

 

 Genetic algorithms 

 Genetic programing 

 Evolutionary strategies 

 Evolutionary programming 

 

3.1 Genetic Algorithms 

 

Genetic algorithms are a randomized search method and just one form of 

evolutionary algorithms. They use randomness combined with laws of probability to 

direct search in a direction where improvement is likely. More correctly, genetic 

algorithms direct a search in many directions that are likely. Goldberg (1989)      

identifies four ways that genetic algorithms differ from the traditional methods 

discussed above: 

 

 Genetic algorithms work with a coding of the parameter set, not with the 

parameters themselves. That is the algorithm which generates many 

possibilities simultaneously and then evaluates them. 

 Genetic algorithms use a population of potential solutions. They are 

inherently parallel, and not restricted to considering a single point at a time as 

other methods are. This also is the reason for their robustness and ability to 

overcome local peaks in a search space. 

 Genetic algorithms use a fitness, or objective function to determine viability 

of potential solutions. They do not use derivatives, or "other auxiliary 

knowledge." Thus they can be tailored to any domain where some judgement 

of the "goodness" of a result can be made, regardless of whether or not the 

domain has a search space that conforms nicely to the laws of calculus. 
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 Genetic algorithms guide the transitions in the search space using 

probabilistic, not deterministic rules. Unlike a hill climbing search, for 

example, which might have a rule to the effect of "if a higher point exists 

adjacent to the current one, choose it", genetic algorithms assign likelihood of 

a good search direction based on the results of the pay off function relative to 

other directions being explored. 

 

Thus, genetic algorithms produce a robust search algorithm which works across a 

wide variety of domains, many of which are not suited to traditional search 

algorithms. Their inherent parallelism allow them to search a space more efficiently 

and quickly than many traditional algorithms. Though they are randomized, they are 

not random techniques; they use randomness as a tool to direct search in promising 

directions. 

 

Genetic algorithms can be useful for finding a good solution to a problem when it 

is not known how to formulate an algorithm to find the ideal solution in a direct, 

step-by-step manner. Starting with a random population of individuals, these 

individuals each have a chromosome composed of genes which encode a solution to 

the problem trying to be solved. For initial population, the gene values are assigned 

to a random value. 

 

Thus, the population of individuals starts off as random solutions to the problem. 

Because they are randomly generated, these solutions tend to be poor ones. Although 

genetic algorithm (GA) does not require us to know how to create a good solution, it 

does require to be able to determine how good a given solution is. This is most often 

an easy task. In classification, benchmark can be made on how well a classifier 

solution performs with a test dataset. GA uses what is called a fitness function to 

determine how good a solution is. This fitness function is used to assign the 

individuals in the population a fitness value. 

 

Genetic algorithms simulate natural evolution, and just like real-world entities. It 

is the fitter individual that tends to survive. The fitter individual has a more likely 
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chance of mating, having offspring, and thereby further spreading its genetic 

properties within the population. These individuals are taken through many 

generations, and although they start out as random and generally poor solutions to 

the problem at hand, the process of artificial evolution hones their chromosomes until  

the fittest individual is picked out of the population and create a very good solution 

from the blueprint encoded in its genes. 

 

The steps for a basic genetic algorithm are as follows : 

 

1. Create an initial population with random gene values. 

2. Apply the fitness function to individuals to determine their fitness. 

3. Loop until a stopping criterion is met. 

4. Select individuals based on fitness. 

5. Create offspring by applying genetic operators to the selected individuals. 

6. Apply the fitness function to the offspring. 

7. Update the current population. 

 

3.2 Evolutionary Strategies 

 

Evolutionary Strategies (ES) uses a real-valued vector to represent an individual. 

The representation often includes parameters to control mutation operations on the 

individual in addition to the values for the variables in the problem being solved. 

Mutation is the primary genetic operator; however, later implementations began to 

use crossover as well.The mutation operator is usually applied according to a normal 

distribution by which small mutations are more probable than large ones. 
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Set generation t = 0. 

Create the initial population, P(t). 

Evaluate the fitness of each individual in P(t). 

While ending condition end(P(t),t) is not satisfied, do 

Calculate P'(t)= recombination(P(t)), and P"(t) = mutation(P'(t)) 

 Evaluate P"(t). 

 Q = set of individuals chosen from the original population, P(t). 

 Reproduce next population, P(t + 1) = selection(P"(t) U Q), 

 Set t = t + 1. 

Figure 3.1 The pseudocode for an evolutionary algorithm 

 

3.3 Genetic Programming 

 

Genetic Programming (GP) is frequently used to evolve programs to perform a 

specific task. The individual is often represented as a binary tree. This representation 

is useful for programming languages such as LISP where the operator or function can 

form the root node of a subtree and the operands form the leaf nodes. 

 

3.4 Evolutionary Programming 

 

Evolutionary Programming (EP) is similar to ES in that it uses a real-valued 

vector to represent an individual. EP systems use a similar, normally distributed, 

mutation operator as their exploratory operator, and they generally do not use 

crossover. EP was originally researched as a technique to evolve finite-state 

machines . 

 

These four paradigms of evolutionary algorithms are similar in many ways. It can 

be difficult to define clear boundaries between the types as they all use a similar 

methodology and, within a given paradigm, many different algorithms are possible.  
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Table 3.1 The differences of evolutionary algorithm paradigms  

 GA GP ES EP 

Chromosome binary string tree-structured 
program 

real vector + 
strategy parameters 

finite state 
machine 

Mutation reverse 1-bit 
replace 
random 
subtree 

perturb strategy param. 
then mutate target vector 

node, link 
operators 

Recombination crossover 
(primary) 

subtree 
crossover 
(primary) 

separate recombination 
on target vector and 

parameters 
not used 

Selection probabilistic varies deterministic deterministic 

 

Evolutionary strategies and evolutionary programming differ from genetic 

algorithms and genetic programming in that they usually apply genetic operators 

before selecting individuals based on their fitness. Genetic algorithms and genetic 

programming generally apply natural selection first and then apply crossover and 

mutation operators. As research continues, however, characteristics of one paradigm 

are adopted by other paradigms, an experiencing an overall unification effect in the 

field of evolutionary algorithms.  

 

3.5 Genetic Operators 

 

For every generation in a genetic algorithm, genetic operators can be applied on 

selected individuals in the population. The two most common genetic operators in 

genetic algorithm are crossover and mutation.  

 

3.5.1 Crossover 

 

The primary genetic operator in GA systems is generally crossover, also called 

recombination. It simulates the process of mating and having offspring in nature. In 

biological sexual reproduction, the offspring receive a part of each of the two parents' 

genetic material. The same is true of crossover in genetic algorithms. Two parent 

individuals are selected from the population to create children, whose genetic 

material is a combination of that of their parents. 
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To create the chromosomes in the children, a randomly determined locus or 

crossover point is set in the parents' chromosomes. Most genetic algorithm 

implementations create two children as the result of crossover. The first child 

receives a copy of the first parent's genes up to the crossover point and the second 

parent's genes after that point. The opposite is true for the second child; it receives 

the second parent's genes to the left of the locus, and the first parent's genes to the 

right.  

 

3.5.1.1 Crossover Types 

 

Crossover types used for application are; one point, two point, arithmetic and 

heuristic crossovers.  

 

3.5.1.1.1 One Point. Randomly selects a crossover point within a chromosome 

then interchanges the two parent chromosomes at this point to produce two new 

offspring. Consider the following two parents that have been selected for crossover. 

The "|" symbol indicates the randomly chosen crossover point. 

 

Parent 1:     11001|010 

 

Parent 2:     00100|111 

 

After interchanging the parent chromosomes at the crossover point, the following 

offspring are produced: 

 

Offspring1: 11001|111 

 

Offspring2:  00100|010 

 
 

3.5.1.1.2 Two Point. Randomly selects two crossover points within a chromosome 

then interchanges the two parent chromosomes between these points to produce two 
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new offspring. Consider the following two parents that have been selected for 

crossover. The "|" symbols indicate the randomly chosen crossover points. 

 

Parent 1:     110|010|10 

 

Parent 2:     001|001|11 

 
 
After interchanging the parent chromosomes at the crossover point, the following 

offspring are produced: 

 
 

Offspring1: 110|001|10 

 

Offspring2: 001|010|11 

 
 

3.5.1.1.3 Arithmetic crossover. Linearly combines two parent chromosome 

vectors to produce two new offspring according to the following equations: 

 
 
 
Offspring1 = a * Parent1 + (1- a) * Parent2 
 

 
 
 
Offspring2 = (1 - a) * Parent1 + a * Parent2 
 

 
 
where a is a random weighting factor (chosen before each crossover operation). If 

the chromosomes contain any integer genes, these genes are rounded after the linear 

combination operation. If the chromosome contains any binary genes, uniform 

crossover is performed on these genes since arithmetic crossover does not apply.  
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3.5.1.1.4 Heuristic crossover. Uses the fitness values of the two parent 

chromosomes to determine the direction of the search. The offspring are created 

according to the following equations: 

 
Offspring1 = BestParent + r * (BestParent - WorstParent) 

 
 
Offspring2 = BestParent 

 
where r is a random number between 0 and 1. It is possible that Offspring1 will not 

be feasible. This can happen if r is chosen such that one or more of its genes fall 

outside of the allowable upper or lower bounds. For this reason, heuristic crossover 

has a parameter (n) for the number of times to try and find an r that results in a 

feasible chromosome. If a feasible chromosome is not produced after n tries, the 

worst parent is returned as Offspring1. If the chromosomes contain any integer 

genes, these genes are rounded after the heuristic crossover operation. If the 

chromosome contains any binary genes, uniform crossover is performed on these 

genes since heuristic crossover does not apply. 

 

Likewise, schema found in individuals with lower fitness values will tend to 

decrease in future generations. 

 

3.5.2 Mutation 

 

Mutation is generally considered to be a secondary genetic operator in genetic 

algorithm systems, after crossover. Mutation, however, can play an important role in 

the exploration of the search space because it actually changes the gene alleles to 

new values rather than simply recombining what already exists in the population. 

Mutation can, therefore, introduce a gene value which does not currently exist in any 

individual in the population. 

 

In its simplest form, when an individual's chromosome consists of a binary string, 

the mutation operator inverts the bit value for a randomly selected gene. (It flips the 

bit from "1" to "0" or from "0" to "1".) A more conservative method is not to 



 

 

53 

automatically invert the bit, but rather to calculate a new bit value (with a 50% 

chance for a "0" or a "1"). The new allele may or may not match the original value. 

 

More complex chromosomes, those which encode integer or real number values, 

can use a mutation operator which adds or subtracts a random amount within 

specified bounds from the gene. This is sometimes called creep mutation. Mutation 

traditionally occurs at the end of a crossover operation. The mutation rate is a GA 

parameter that defines a set chance that a child individual will receive a gene 

mutation when that child is created. This research uses a method which creates 

mutated clones of individuals independently of the crossover genetic operator.  
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CHAPTER FOUR 

EVOLUTIONARY ARTIFICIAL NEURAL NETWORKS 

 

4.1 Neural Networks For Genetic Based Classification 

 

Having discussed the basics of backpropagation networks and genetic algorithms, 

the question of combining the two is raised. While neural networks can be powerful 

tools for pattern recognition, optimization, classification, and mapping problems in 

general, they are by no means easily constructed.  

 

Traditionally, neural networks are designed and implemented by specialists- 

professionals with in-depth knowledge of the strengths and weaknesses of various 

network architectures. While this results in well designed networks, it can also give 

rise to certain problems. While the underlying algorithms may be relatively simple, 

network parameters such as: learning rate, momentum, initial weights, number of 

layers, and number of units per hidden layer play a large part in the ability of a 

particular network to solve a given problem. 

 

Even when selected and implemented by an expert with knowledge both of neural 

networks and the problem domain, the process is often little better than trial and 

error. A better way to determine optimal parameter settings for a neural network is 

required. The goal of applying an evolutionary algorithm is to automate ad hoc 

process of neural network design (Castillo-Valdivieso, Merelo & Prieto, 2002). 

 

The main steps for evolutionary artificial neural network (EANN) based 

classification is as follows: 

 

1.  Generate  the  initial  population  with  multilayer perceptrons with  random  

weight  values  in  a  specified range  and  specified initial number of  hidden  layer  

sizes. 

2.  Repeat  for n generations: 
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(a)  Evaluate  the  new  MLP’s  (individuals): train  them  using  the  training  

set  and  obtain their  fitness  according  to  the  number  of  correct  classifications  

on  the  validation  set and  the  network  size  (number  of  weights). 

(b)  Select  the s best  individuals  in  the  population,  according  to  their  

fitness,  to  mate using  the  genetic  operators  to  obtain  the  new individuals. 

(c)  Replace  the s worst  individuals  in  the population  by  the  new  ones. 

3.  Use  the  best  individual  found  to  obtain  the testing  error  using  the  test  

set. 

 
Figure 4.1. General framework for EANN based classification 

 

4.2 Motivation For Evolutionary Artificial Neural Networks 

 

EAs offer a much more flexible approach. Neural networks are, in essence, a hill 

climbing search. As such, they are subject to the pitfalls of getting stuck on local 

features of the solution space. Neural networks use an error calculation to compute a 

gradient to direct the search; the backpropagation network. These methods require 

smooth, continuous activation functions in order to derive gradient information . 
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In contrast, evolutionary algorithms do not perform direct calculation of gradients. 

Instead, they focus on blanketing the search space with potential solutions. This 

results in a far more global search which is much less likely to succumb to local 

features of the solution space. These advantages give evolutionary algorithms a much 

wider range of options; an evolutionary algorithm might use linear thresholds, 

splines, or product units where traditional neural networks might require a smooth 

sigmoid function. Further, computation of gradients in the more complex neural 

networks, such as recurrent networks, can be quite costly. EAs do not require these 

expensive calculations. 

 

Thus, evolutionary algorithms complement the traditional neural network 

gradient-descent techniques quite well. Their simultaneous global search allows 

large, irregular search spaces to be covered in an automated manner, removing 

human drudgery, and human error, from the equation. 

 

4.3 Types Of Evolutionary Artificial Neural Networks 

 

EANNs differ from standard ANNs in that they have an extra stage of adaptation 

and learning based on an evolutionary or genetic system. There are three types of 

evolutionary algorithm based neural networks (Yao, 1999):  

 

I. weight-evolving   algorithms (WEAs),    

II. topology-evolving algorithms (TEAs), 

III. hybrid evolving algorithms (HEAs).  

 

4.3.1 Weight-Evolving Algorithms (WEAs) 

 

The process of backpropagation can be long and computationally intensive, and in 

some cases it does not result in an effective solution. In such a case a weight-

evolving algorithm (WEA) can be applied, which may speed up the search for a 

solution.. The weights contained in the nodes are in the form of matrices that contain 
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information from prior input data. Through backpropagation, these weights are 

updated and the overall network is trained to recognize certain patterns. 

 

In a WEA system, the set of weights in the network nodes is evolutionarily 

adapted. Standard backpropagation would perform the same feat, but also could 

become trapped in a non-optimal solution. Using a GA, this is less likely to occur. In 

order to use a WEA, first a representation of the data must be chosen. There are two 

popular formats: binary and real number. The second phase of developing the WEA 

involves choosing the operators for mutation and crossover and deciding whether or 

not either or both will be used. 

 

Binary representation is commonly used to represent data in genetic algorithms. It 

makes the operations of mutation and crossover easy to perform but consistency 

checking must be applied so that offspring are functional rather than illegal or 

inoperable. It is simple to use binary representation of the data. First, an algorithm is 

defined to extract the weights from the ANN in a specific order. Then the weights are 

converted into a fixed length binary string. Once the data is converted, the GA is 

performed on the dataset and the information is converted back to its standard form 

with a reversal algorithm. Finally, the information is placed in an offspring for the 

next iteration of the genetic algorithm (Janson & Frenzel, 1993; Tsukimoto & 

Hatano, 2003; Yao, 1999). 

 

Real number representations can also be used to encode the weights of an ANN. 

The same method is used as in binary representation to extract and then re-encode 

information back into the ANN. However in real number representations, instead of 

changing the extracted weights to binary, they are represented by a single real 

number (Alsultanny & Aqel, 2003; Yao, 1999). While this scheme is easy to encode 

and decode, its primary operator is mutation and crossover  is  considerably  harder  

to  implement  here  than  in  a  binary representation. This can hinder the efficiency 

of the algorithm but will not completely halt its progress; it has been shown that GAs 

can operate effectively using only one of their two major operations (Siebel, Krause, 

& Sommer, 2007). 
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4.3.2 Topology Evolving Algorithms (TEAs) 

 

The next type of EANN is the topology evolving algorithms, which evolves ANN 

architectures or topologies. An ANN can be accurately represented by a graph. An 

ANN is a graph-like structure and has an architecture or topology that can be 

modified. Changing an ANN's topology can drastically improve or deteriorate its 

performance. In the past, engineering the topology of an ANN has been a job for a 

human being; this was a trial-and-error procedure. Since there is an infinite set of 

possible network structures available to solve each problem, a human being may not 

be able to find an efficient architecture. However, a TEA can be employed to find an 

efficient ANN topology that solves the problem. 

 

This system can be more complex than the WEA method. This is because the 

entire structure of the network may be changed by the TEA and then must be 

completely retrained. However, it can also be more robust. The changed structures of 

the network may be capable of retaining very different patterns of information. The 

algorithm may find a structure that performs excellently that the human designers 

may never have conceived. 

 

Because of the efficient encoding possibility, TEA is more applicable to WEA. 

(Boozarjomehry & Svrcek, 2001; Castillo, Merelo, Prieto, Rivas, & Romero, 2000; 

Janson & Frenzel, 1993). TEAs have also been modified to perform optimization as 

well as topographical evolution (Sexton, Dorsey & Sikander, 2004). One of the 

problems with TEAs is that the ANNs developed with them can grow to be 

extremely large and convoluted. Fortunately the algorithm can be adapted to perform 

self-pruning as it is evolving more efficient ANNs. Unnecessary weights and hidden 

nodes can thus be identified and removed from the ANN, which keeps the network 

smaller and more efficient (Blanco, Delgado, & Pegalajar, 2000; Castillo et al., 

2000). 

 

 

 



 

 

59 

4.3.3 Hybrid Evolutionary Algorithms (HEAs) 

 

The third type of EANN systems, HEAs, is a unification of the two systems 

described above. These systems adapt both the weight and topology of an ANN. This 

can be a complex process, but it can also be extremely effective. Both the adaptation 

of ANN weights and the adaptation of their topologies are effective means for 

searching a problem space. Combining these two techniques can result in a faster 

method for finding a solution (Stanley, 2004). 

 

4.4 Algortihms For Evolution 

 

The training mechanism is usually an iterative gradient descent algorithm, 

designed to minimize, step by step, the difference between the actual output vector of 

the network and the desired output vector, such as backpropagation in its different 

versions does encounter certain difficulties in practice: 

 

(1)   the convergence tends to be extremely slow; 

(2)   convergence to the global optimum is not guaranteed; 

(3)   learning constants and other parameters must be arrived at heuristically. 

 

Incremental algorithms, are based on adding hidden neurons to a network of 

minimum size until the required precision is reached. These methods start with few 

hidden neurons and increase their number until the error is sufficiently small. One 

problem of these methods is that once the hidden neurons have been added they 

cannot be suppressed to reduce the size (the redundant information stored in the 

weights is never eliminated) and huge ANNs are usually obtained.  

 

Furthermore, since the weights of existing neurons are frozen, the added ones are 

usually inefficient feature detectors, so the algorithm has to add even more units to 

improve the results obtained. In general, adding new units leads to overfitting            

(Castillo et al., 2000). 
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In this thesis, evolutionary algorithms are used to search  for  the  optimal  

learning parameters, including  weights, having pre-established the number of 

neurons and the connectivity between them.  

 

4.5 Performance Measures For EANN Based Classification 

 

4.5.1 Correlation Coefficient 

 

The size of the mean square error (MSE) can be used to determine how well the 

network output fits the desired output, but it doesn't necessarily reflect whether the 

two sets of data move in the same direction. By simply scaling the network output,  

MSE can be changed without changing the directionality of the data. The correlation 

coefficient (r) solves this problem. By definition, the correlation coefficient between 

a network output x and and a desired output d is: 
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The correlation coefficient is confined to the range [ 1,1] . When 1r   there is a 

perfect positive linear correlation between x and d, that is, they covary, which means 

that they vary by the same amount. When 1r   , there is a perfectly linear negative 

correlation between x and d, that is, they vary in opposite ways (when x increases, d 

decreases by the same amount). When 0r  there is no correlation between x and d, 

so that the variables are called uncorrelated.  
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4.5.2 Confusion Matrix 

 

A confusion matrix is a simple methodology for displaying the classification 

results of a network. The confusion matrix is defined by labeling the desired 

classification on the rows and the predicted classifications on the columns. For each 

exemplar, a 1 is added to the cell entry defined by (desired classification, predicted 

classification). Since the aim is matching the predicted classification to be the same 

as the desired classification, the ideal situation is to have all the exemplars end up on 

the diagonal cells of the matrix (the diagonal that connects the upper-left corner to 

the lower right). 

 

There can be four different outcomes with regards to binary classification  

problems when a classifier makes a prediction about the class membership of a 

particular instance. The classifier may predict that an instance belongs to the positive 

class when in fact, it belongs to the positive class or it may predict that an instance 

belongs  to the negative class when it in fact belongs to the negative class. 

 

These two outcomes are called true positive (TP) and true negative (TN) 

respectively and are correct predictions. The other two outcomes are incorrect  

predictions or misclassifications. One type of misclassification is called false positive 

(FP), where a classifier predicts that an instance is a member of the positive class 

when it in fact is a member of the negative class. Respectively, the other type of 

misclassification is called false negative (FN). In this case, the classifier predicts that 

an instance is a member of the negative class when it in fact is a member of the 

positive class. 

 

Table 4.1 depicts the four types of outcomes that can be produced by a binary  

classifier. This kind of tabular depiction of these four outcomes is called a    

confusion matrix or a contingency table. The classifier may use a classification  

strategy where it uses a  parameter, called the decision threshold  t  (0  <  t  <  1),  in  

order  to  decide  the class membership of a given instance. The  default  decision  

threshold  equals 0.5 and specifies that the probability of an instance belonging  to 
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the positive class is equal to the probability of belonging to the negative class. The 

default decision threshold does usually not cause the classifier to perform optimal 

when the given dataset is imbalanced with regards to class distribution or when the  

costs for both types of misclassification are not equal. The decision threshold can be  

changed to account for the imbalance in the dataset and for unequal costs of  

misclassification.  
 

Table 4.1 Confusion matrix 

 Predicted as positive Predicted as negative 

Positive instance True positive (TP) False negative (FN) 

Negative instance False positive (FP) True negative (TN) 

 

The confusion matrix provides the sum for each type of outcome with regards to 

the total number of instances in the underlying dataset. It shows the total number of 

true  positives (#TP), the  total  number  of  true  negatives  (#TN), the  total  number  

of  false positives (#FP) and the total number of false negatives (#FN). These four 

values form the basis for performance metrics of confusion matrix. As the number of 

TP and TN values get higher and oppositely lower values of FP and FN, the better 

the rule will be determined and high accuracy values will be gained (Freitas, 2002).      

 

4.5.3 Mean Square Error (MSE) 
 
 

The formula for the mean squared error is: 
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where: 

P=number of ouput processing elements 

N=numbe rof exemplars in the data set 

ijy =network output for exemplar i at processing elemnt j 
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ijd =desired output for exemplar i at processing element j 

 

4.5.4 Normalized Mean Squared Error (NMSE) 

 

The normalized mean squared error is defined by the following formula: 
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where 

P=number of output processing elements 

N=number of exemplars in the data set 

MSE =mean squared error 

ijd =desired output for exemplar i at processing element j 

 

4.5.5 Relative Percent Difference 

 

The relative percent difference (RPD) is defined by the following formula: 
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where 

P=number of ouput processing elements 

N=number of exemplars in the data set 

ijdy =denormalized network output for exemplar i at processing element j 

ijdd =denormalized desired output for exemplar i at processing element j 
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CHAPTER FIVE 

COMPARISON OF NEURAL NETWORKS WITH EVOLUTIONARY 

ALGORITHMS FOR CLASSIFICATION 

 

5.1 General Information 

 

The aim of this thesis is to tune learning parameters (stepsize and momentum) and 

to set the initial weights and hidden layer size (number of hidden units) of a 

multilayer perceptron, based on an evolutionary algorithm and backpropagation. The 

neural network will produce from each set of inputs to a set of outputs. Given a 

random set of initial weights, the outputs of the network will be very different from 

the desired classifications. As the network is trained, the weights of the system are 

continually adjusted to incrementally reduce the difference between the output of the 

system and the desired response. This difference is referred to as the error and can be 

measured in different ways. The most common measurement is the mean squared 

error (MSE). The MSE is the average of the squares of the difference between each 

output processing element and the desired output. 

 

The capacities of both of the two algorithms are intended to be used: the ability of 

evolutionary algorithm to end a solution close to the global optimum, and the ability 

of the backpropagation to tune a solution and reach the nearest local minimum by 

means of local search from the solution found by the evolutionary algorithm. The 

topology is selected from the incremental algorithm applied to the neural network.  

 

Genetic operators; mutation, one point crossover, two point crossover, arithmetic 

crossover, heuristic crossover, incremental algorithm, the number of hidden units, 

and  backpropagation applied as operator to the individuals of the population, are 

used.  

 

Thus, the evoutionary algorithm searches and optimizes the architecture (number 

of hidden units), the initial weight setting for that architecture and the learning rate  
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and momentum for that neural net. Unlike other approaches the maximum size of the 

hidden layer is not bounded in advance. 

 

The classification accuracy or number of hits is obtained by dividing the number 

of hits among the total number of examples in the testing set according to the training 

and cross validation subsets. 

 

The mutation operator modifies the weights of certain neurons, at random, 

depending on the specified application rate. It is based on the algorithm which 

modifies the weights of the network after each epoch of network training and adding 

and subtracting a small random number that follows uniform distribution with the 

interval [- 0.1; 0.1 ].  

 

The learning rate is modified by the adaptive algorithm in order to avoid the 

negative effects of steps’ handicaps. This operator is used with an application  

probability of 10%, that is 10% of weights are changed, which was found empirically 

to obtain better results than did lower probabilities. The crossover operator carries 

out the one point, two point, artihmetic and heuristic type crossovers.  

 

By incremental algorithm, the difficulty is in guessing the number of the hidden 

layer neurons. By adding hidden neurons, it is not necessary to set the  size  of  the  

EA  search  space.  This  operator  is  intended  to  perform incremental  learning;  it  

starts  with  a  small  structure  and  increments  it,  if neccesary, by adding new 

hidden units (Castillo et al., 2000). 

 

To determine a satisfactory solution that meets the GA stopping criteria, every 5  

generations the neural network is trained on  for 1000 epochs by default. 

 

To avoid overfitting, the usual procedure is followed of splitting the input data 

into training, cross validation and test sets. The training set with 50% of the whole 

exemplars will be used to evaluate the fitness of the individuals.  The cross validation 
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set consists of the 25% of the whole exemplars and will be used to estimate the 

generalization ability of the best result found during each generation. 

 

The  stopping criterion  is  reached  if  one  of  the  following conditions is 

fulfilled: a number of generations are reached or  the  variance  of  the  fitness  of  the  

best  10%  of  the population is less than 410 . 

 

This illustrates the basic ingredients required in neural computation. The network 

requires input data and a desired response to each input. The more data presented to 

the network, the better its performance will be. Neural networks take this input-

output data, apply a learning rule and extract information from the data. The network 

tries to adjust the weights to minimize the error. Therefore, the weights embody all 

of the information extracted during learning.  

 

Two types of dataset is considered for performance evaluation of evolutionary 

neural networks. Each dataset are maintained from UC Irvine Machine Learning 

Repository.  

 

Teaching assistant evaluation (tae) dataset has categorical-driven attribute types 

and on contrary, there is only one numerical attribute. Loh & Shih (1997) first 

reported this dataset. Classification tree is maintained as a search algorithm for this 

dataset to be classified. Because of lack of information on the results, no 

performance value gained to be benchmarked. 

 

Lim, Loh & Shih (1999) used tae dataset for classification by neural networks. 

Learning vector quantiaztion and radial basis functions are types of neural networks 

used for classification performance. Mean error rate is calculated as a performance 

measure. 
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The other dataset is the vehicle silhoutte (veh) dataset that all the attributes are 

numerical. Lim, Loh & Shih (1999) used veh dataset for classification by neural 

networks. Learning vector quantization and radial basis functions are types of neural 

networks used for classification performance. Mean error rate is calculated as a 

performance measure. 

 

Roscher & Föstner (2009) used bounded logistic regression (BLR) and support 

vector machines (SVMs) for classification. Mean error rate is calculated as a 

performance measure. 

 

Because the two datasets have opposite attribute types in common, the effects of 

numerical and categorical attributes can be examined. 

 

5.2 Teaching Assistant Evaluation (tae) Dataset 

 

The data consist of evaluations of teaching performance over three regular 

semesters and two semesters of 151 teaching assistant (TA) assignments at the 

Statistics Department of the University of Wisconsin-Madison. The scores are 

grouped into three roughly equal-sized categories (low, medium and high) to form 

the class attribute. The predictor attributes are: 

 

 ENG : Whether or not the TA is a native English speaker (binary) 

 INST: Course instructor (25 categories)  

 CRS: Course (26 categories) 

 SMSTR: Summer or regular semester (binary) 

 CLSSIZE: Class size (numerical) 

 

Its main characteristic of this dataset is that there are two categorical attributes 

with large numbers of categories such as CRS has 26 categories and INST has 25 

categories. Contrary to these categorical attributes, there is only one numerical 

attribute, CLSSIZE.  
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Table 5.1 Attribute information for tae dataset 

Number of original attributes 

Numerical Categorical 

Total 

 2 25 26 

1 2 1 1 
5 

 
 

As seen from the table, because of the large numbers of categories, large 

additional data is added to the problem identification. To identify the attiribute type 

from the exemplar set, (S) prefix is used as symbolic (categorical) to name the type 

of data. The attribute type that does not have the (S) prefix means that the data is 

numerical and can get different values.  

 

The raw data shown in Appendix 1 is translated due to the categorical attributes. 

All the categorical data types inverted to a column and added to the data matrix. The 

translated data matrix is split into training, cross validation and test subsets. 

 

Population size and number of generations affect processing time because the 

fitness value must be calculated for every chromosome in every generation. In the 

preliminary study; for determining the appropriate population size and generation 

number by trial and error, when the first implementation started with the population 

size of 50 and the generation number of 2500, the best fitness value was improved. 

 

After a large number of generations, very much processing time required that is 

approximately 8.5 hours on average. When the population size was set to 30 and the 

generation number to 1000, the run values were nearly the same. The processing time 

decreased 4.6 hours on average. Therefore, the population size and generation 

number were set to 30 and 1000, respectively. 

 

 

 

 



 

 

69 

5.2.1 The Comparison Of Learning Algorithms Due To ANN Structure For Tae 

Dataset 

 

According to the general classification with artificial neural networks, one hidden 

layered multilayer perceptron is enough. Basically, the selection of the learning 

algorithm is important. Three learning algorithms are taken into consideration: 

 

 Momentum learning 

 Conjugate-gradient 

 Levenberg-Marquardt 

 

One hidden layer is usually enough for training and testing purposes. Also, the 

incremental algorithm is taken into consideration. Starting from the simple neural 

network architecture, the system will be made complex to get more true classified 

results.  

  

5.2.1.1 Momentum Learning 

 

 
Figure 5.1 Average MSE with standard deviation boundaries for 5 runs  

 
 

As seen from the Figure 5.1, average MSE values for training and cross validation 

behave similar. As the training moves on through the 100 epochs, training MSE 

values converge to minima; the cross validation MSE values converge a bit quicker 

due to lack of information.  
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Table 5.2 MSE statistics for training and cross validation subsets. 

All Runs Training 
Minimum 

Training 
Standard 
Deviation 

Cross 
Validation 
Minimum 

Cross 
Validation 
Standard 
Deviation 

Average of 
Minimum MSEs 0.266685786 0.055611345 0.35123632 0.005835692 

Average of 
Final MSEs 0.330142037 0.055171731 0.375022402 0.0442916 

 
 
Table 5.3 Best MSE for subsets 

Best Networks Training Cross Validation 

Run # 1 5 
Epoch # 96 86 

Minimum MSE 0,205366115 0,341732857 
Final MSE 0,231447844 0,355215165 

 
 

Seventy five exemplars are used for training purposes (50% of the total 

exemplars), and also 25% of total exemplars for both cross validation and testing 

purposes. Although most of the research papers suggest to use 75% of total 

exemplars for better training ability for the artificial neural network;  because the 

classification problem is so categorical for tae dataset and there are few examplars 

such as 151 as numbers. This situation forces to choose the high percentage of cross 

validation and testing data. Of the total exemplars, 25% are used for both the cross 

validation and testing as subsets. 

 
Figure 5.2 Training MSE 
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Training for each run shows similar values except run 2. The momentum value is 

0.7 and the learning process is done in 90 epochs.   

 

 
Figure 5.3 Cross validation MSE 

 
 

Cross validation values memorize the values so that MSE values for the weight 

space get bigger. At that point, training stops and artificial neural network stops to 

learn. The training MSE gets stuck on the final MSE value 0.231447844. As seen 

from Figure 5.3, the learning process ends up nearly at epoch number 100 and 

overtraining starts.  

 
Table 5.4 Minimum MSE values for momentum learning method 

Subset Minimum 
for Run #1 

Minimum 
for Run #2 

Minimum 
for Run #3 

Minimum 
for Run #4 

Minimum 
for Run #5 

Training 0.20536612 0.25774687 0.35481534 0.24037249 0.27512811 
Cross validation 0.35752953 0.3513768 0.35365703 0.35188538 0.34173286 

 
 
As stated in the tae dataset information, the class attributes expressed as: 
 
 
Table 5.5 Class attribute expression for tae dataset 

CLSATTR(1) Low 

CLSATTR(2) Medium 
CLSATTR(3) High 
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5.2.1.1.1 Testing Of Training Subset Data For Momentum Learning Method. By 

testing the training subset with momentum learning; “low” and “high” attributes are 

classified with acceptable accuracy.  Also, correlation coefficients of “low” and 

“high” attributes are positive so that they act with MSE in general. On contrary, 

“medium”class attribute has the opposite sign.  
 

Table 5.6 Confusion matrix for training subset data with momentum learning 

Output / Desired CLSATTR(1) CLSATTR(2) CLSATTR(3) 
CLSATTR(1) 12 0 0 
CLSATTR(2) 2 10 8 
CLSATTR(3) 5 18 20 

 
 
Table 5.7 Performance values for testing of training subset data with momentum learning 

Performance CLSATTR(1) CLSATTR(2) CLSATTR(3) 
MSE 0.143512948 0.243078422 0.234345411 

NMSE 0.758703318 1.038994016 1.001666366 
MAE 0.3381967 0.479692429 0.472169182 

Min Abs Error 0.170225037 0.335880312 0.358345517 
Max Abs Error 0.825095007 0.662703527 0.6313603 

r 0.628520881 -0.17457581 0.369111709 
Percent Correct 63.15789474 35.71428571 71.42857143 

 
 

5.2.1.1.2 Testing Of Cross Validation Subset Data For Momentum Learning 

Method. For the cross validation subset, the prediction for classification is not 

sufficient. The class attributes, “low” and “medium” are not classified with high 

accuracy. 

 
Table 5.8 Confusion matrix for cross validation subset data with momentum learning 

Output / Desired CLSATTR(1) CLSATTR(2) CLSATTR(3) 
CLSATTR(1) 3 1 0 
CLSATTR(2) 1 2 3 
CLSATTR(3) 6 9 14 
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Table 5.9 Performance values for testing of cross validation subset data with momentum learning 

Performance CLSATTR(1) CLSATTR(2) CLSATTR(3) 
MSE 0.169440081 0.221146157 0,252267418 

NMSE 0.888684009 1.038158349 1.025932468 
MAE 0.347208433 0.456216919 0.493791711 

Min Abs Error 0.169145245 0.335081526 0.358345517 
Max Abs Error 0.831650983 0.664310315 0.627873589 

r 0.361163896 0.01682359 0.325787126 
Percent Correct 30 16.66666667 82.35294118 

 

5.2.1.2 Conjugate-gradient learning method 

 
Figure 5.4 Average MSE for 5 runs 

 

The average MSE values for the conjugate-gradient learning converge to 

minimum smoothly. As examining the statistical results in Table 5.10, standart 

deviation of the training values is wider than expected. For the sensitivity, the 

expected minimum and maximum average MSE values are twice the average MSE.  

 
Table 5.10 MSE statistics for training and cross validation subsets. 

All Runs Training 
Minimum 

Training 
Standard 
Deviation 

Cross 
Validation 
Minimum 

Cross 
Validation 
Standard 
Deviation 

Average of 
Minimum MSEs 0.177516198 0.173992156 0.39301851 0.062992181 

Average of 
Final MSEs 0.177516198 0.173992156 0.636851602 0.0897314 
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Table 5.11 Best MSE for subsets 

Best Networks Training Cross Validation 

Run # 5 2 
Epoch # 854 150 

Minimum MSE 0.07375151 0.355448257 
Final MSE 0.07375151 0.531735682 

 

 
Figure 5.5 Training MSE 

 

Conjugate-gradient learning algorithm learns faster than momentum but it’s 

possible to be not training and as a result nor to be learning due to its structure. Run 

no 2 and run no 5 are far from minimization of the energy function, so the acuuracy 

of the networks decreases. 

 

 
Figure 5.6 Cross validation MSE 
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Table 5.12 Minimum MSE values for conjugate-gradient learning method 

Subset Minimum 
for Run #1 

Minimum 
for Run #2 

Minimum 
for Run #3 

Minimum 
for Run #4 

Minimum 
for Run #5 

Training 0.08605644 0.09718816 0.48491541 0.14566947 0.07375151
Cross validation 0.38787827 0.35544826 0.5032102 0.36202097 0.35653485

 
 

5.2.1.2.1 Testing Of Training Subset Data For Conjugate-Gradient Learning 

Method. As seen from the Table 5.13, the testing result shows that “medium” and 

“high” class attributes cannot be classified in a true manner. Because there is no data 

gathered for these attributes, r values cannot be seen further on.  

 
Table 5.13 Confusion matrix for conjugate-gradient learning method (training subset) 

Output / Desired CLSATTR(1) CLSATTR(2) CLSATTR(3) 
CLSATTR(1) 19 28 28 
CLSATTR(2) 0 0 0 
CLSATTR(3) 0 0 0 
 
 
Table 5.14 Performance values for conjugate-gradient learning method (training subset) 

Performance CLSATTR(1) CLSATTR(2) CLSATTR(3) 
MSE 0.261068455 0.380833276 0.367656031 
NMSE 1.380178625 1.627801807 1.571478096 
MAE 0.263488871 0.384166837 0.370985391 
Min Abs Error 0 0 0 
Max Abs Error 1 1 1 
r - - - 
Percent Correct 100 0 0 
 
 

5.2.1.2.2 Testing Of Cross Validation Subset Data For Conjugate-Gradient 

Learning Method. As seen in Table 5.13, only the “low” attribute has the true 

information to be classified.  

 
Table 5.15 Confusion matrix for conjugate-gradient learning method (cross validation subset) 

Output / Desired CLSATTR(1) CLSATTR(2) CLSATTR(3) 
CLSATTR(1) 10 12 17 
CLSATTR(2) 0 0 0 
CLSATTR(3) 0 0 0 
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Table 5.16 Performance values for conjugate-gradient learning method (cross validation subset) 

Performance CLSATTR(1) CLSATTR(2) CLSATTR(3) 
MSE 0,232225728 0,321375717 0,452186406 

NMSE 1,217983907 1,508680451 1,838971986 
MAE 0,236880376 0,3278437 0,45866939 

Min Abs Error 0 0 0 
Max Abs Error 1 1 1 

r - - - 
Percent Correct 100 0 0 

 
 

5.2.1.3 Levenberg-Marquardt Algorithm 

 

 
Figure 5.7 Average MSE for 5 runs 

 
 

By using the Hessian matrix, Levenberg-Marquardt algorithm converges to the 

minimum in the first 100 epochs. Although the converging performance is awesome, 

the testing results show that this algortihm is not suitable for learning.  

 
Table 5.17 MSE statistics for training and cross validation subsets. 

All Runs Training 
Minimum 

Training 
Standard 
Deviation 

Cross 
Validation 
Minimum 

Cross 
Validation 
Standard 
Deviation 

Average of 
Minimum 

MSEs 
0.022446472 0.014444599 0.394822974 0.054634375 

Average of 
Final MSEs 0.022446472 0.014444599 0.651251064 0.084005489 
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Levenberg-Marquardt algorithm produces very low values of average of 

minimum MSEs but cross validation subset values are rather high, showing that 

memorizing is a handicap for this algorithm.  

 
Table 5.18 Best MSE for subsets 

Best Networks Training Cross Validation 

Run # 3 2 
Epoch # 1000 5 

Minimum MSE 0.009600004 0.350335159 
Final MSE 0.009600004 0.757165837 

 
 

As MSE values of training subset data converge to zero, MSE values of cross 

validation subset data increase as the epoch number gets bigger.  

 
Figure 5.8 Training MSE for Levenberg-Marquardt algorithm (5 runs) 

 

 
Figure 5.9 Cross validation MSE for Levenberg-Marquardt algorithm (5 runs) 
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Cross validation stops memorizing the predicted values between 150-400 epochs in 

Figure 5.9. 

 
Table 5.19 Minimum MSE values for Levenberg-Marquardt algorithm  

Subset Minimum 
for Run #1 

Minimum 
for Run #2 

Minimum 
for Run #3 

Minimum 
for Run #4 

Minimum 
for Run #5 

Training 0.04322379 0.01001963 0.0096 0.03074938 0.01863956 
Cross validation 0.46639767 0.35033516 0.35944545 0.44110866 0.35682793 

 
 

5.2.1.3.1 Testing The Training Subset Of Levenberg-Marquardt Algorithm  

 
Table 5.20 Confusion matrix for Levenberg-Marquardt learning method 

Output / Desired CLSATTR(1) CLSATTR(2) CLSATTR(3) 
CLSATTR(1) 19 28 27 
CLSATTR(2) 0 0 0 
CLSATTR(3) 0 0 1 
 
 
Table 5.21 Performance values for Levenberg-Marquardt learning method 

Performance CLSATTR(1) CLSATTR(2) CLSATTR(3) 
MSE 0.255209987 0.379171033 0.366399284 
NMSE 1.349206932 1.620696855 1.566106362 
MAE 0.258335537 0.382475643 0.369332358 
Min Abs Error 0 0 0 
Max Abs Error 1 1 1 
r - - - 
Percent Correct 100 0 3.571428571 
 

5.2.1.3.2 Testing Of Cross Validation Subset Data For Levenberg-Marquardt 

Method 

 
Table 5.22 Confusion matrix for conjugate-gradient learning method 

Output / Desired CLSATTR(1) CLSATTR(2) CLSATTR(3) 
CLSATTR(1) 9 12 17 
CLSATTR(2) 0 0 0 
CLSATTR(3) 1 0 0 
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Table 5.23 Performance values of cross validation subset data for levenberg-marquardt learning 

method 

Performance CLSATTR(1) CLSATTR(2) CLSATTR(3) 
MSE 0.240779959 0.318548653 0.456010808 

NMSE 1.262849371 1.495408952 1.854525236 
MAE 0.246790633 0.324977649 0.461731447 

Min Abs Error 0 0 0 
Max Abs Error 1 1 1 

r - - - 
Percent Correct 90 0 0 

 

5.2.1.4 Accuracy Comparison Of Testing The Training And Cross Validation 

Subsets Of Learning Algorithms 

 
Table 5.24 Mean accuracy performance of learning algorithms 

Algorithm/ 

Subset 
Momentum 

Conjugate-

gradient 
LM 

Training 56,77% 33,33% 34,52% 

Cross 

validation 
43.00% 33,33% 30% 

 

As seen from the Table 5.24, the comparison is made on a simple multilayer 

perceptron that is having one hidden layer, an input and output layer. The network 

architecture is 56-4-3, that is the base design for the tae dataset. For the conjugate-

gradient and Levenberg-Marquardt algorithms, there is not much difference between 

each other  on the accuracy performance for the subsets.  

 

Because the weight matrix of the hidden layer, for these two higher order gradient 

techniques, lacks of information, there is no enough prediction to classify the data. 

Backpropagation algorithm with momentum memorizes the values and makes 

updates that are suitable to converge to minimize the error function. As seen from 

Table 5.24, accuracy for both training and cross validation is a bit low.  

 

As expected, the cross validation loses accuracy performance at about 25% 

compared to training. Conjugate-gradient and Levenberg-Marquardt algorithms 
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make true classification approximately of 60% of momentum learning algortihm 

compared as the training subset data and  approximately of 70% compared as the 

cross validation subset data. 

 

5.2.2 The Optimum Momentum Rate For Tae Dataset 

 
Table 5.25 Network parameters 

Dataset used tae 

ANN Architecture 56-4-3 

Number of epochs 500 

Number of runs 5 

Momentum Rate 0.7 
 

 
Figure 5.10 Average MSE 

 

Starting from the first epoch, the learning process is active through the epoch 

number 83, and gets minimum at the value 0.1141442. As the weight matrix changes 

with the new network parameters, the average MSE jumps vertically.   
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Table 5.26 MSE statistics for training and cross validation subsets 

All Runs Training 
Minimum 

Training 
Standard 
Deviation 

Cross 
Validation 
Minimum 

Cross 
Validation 
Standard 
Deviation 

Average of 
Minimum 

MSEs 
0.168046732 0.073360051 0.285392259 0.140346698 

Average of 
Final MSEs 0.283385375 0.065373146 0.355764764 0.176579799 

 
Table 5.27 Best MSE for subsets 

Best Networks Training Cross Validation 

Run # 3 1 
Epoch # 83 13 

Minimum MSE 0.1141442 0.034766387 
Final MSE 0.231664072 0.050184 

 

The optimum momentum rate found is between the possible momentum rates; 0.1, 

0.3, 0.5, 0.7 and 0.9. As seen from Figure 5.11, the neural network makes much 

effort on training. The graph sometimes draws scatters moving down and then 

sudden upward movements shows the new weight introduced to the network. This is 

due to the momentum value. 

 

 
Figure 5.11 Training MSE 

 
 

As seen from Figure 5.12, the training gets the MSE values decreased as the cross 

validation shows increase. The learning process moves around the value 0.25.  
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Figure 5.12 Cross validation MSE 

 
 
Table 5.28 Minimum MSE values of one hidden layer, for momentum rate=0,7 

Subset Minimum 
for Run #1 

Minimum 
for Run #2 

Minimum 
for Run #3 

Minimum 
for Run #4 

Minimum 
for Run #5 

Training 0.25976118 0.23598706 0.1141442 0.1141442 0.11619701 
Cross validation 0.03476639 0.35046852 0.35387934 0.35387934 0.33396772 

 
 

5.2.2.1 Testing Of Training Subset Data For Momentum Learning Method 

 
Table 5.29 Testing the training subset of one hidden layer, momentum rate=0,7 

Output / Desired CLSATTR(1) CLSATTR(2) CLSATTR(3) 
CLSATTR(1) 16 12 10 
CLSATTR(2) 3 16 10 
CLSATTR(3) 0 0 8 

 
 
Table 5.30 Performance values for the training subset of one hidden layer, momentum rate=0,7 

Performance CLSATTR(1) CLSATTR(2) CLSATTR(3) 
MSE 0.157552141 0.235002837 0.234861174 

NMSE 0.83292368 1.004476411 1.003870897 
MAE 0.374051306 0.470804544 0.469789571 

Min Abs Error 0.178215631 0.359607698 0.350010665 
Max Abs Error 0.690756763 0.634292157 0.647414842 

r 0.551614941 0.217434096 0.296913688 
Percent Correct 84.21052632 57.14285714 28.57142857 
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5.2.2.2 Testing Of Cross Validation Subset Data For Momentum Learning 

Method 

 
Table 5.31 Testing the cross validation subset of one hidden layer, momentum rate=0,7 

Output / Desired CLSATTR(1) CLSATTR(2) CLSATTR(3) 
CLSATTR(1) 6 9 9 
CLSATTR(2) 4 0 5 
CLSATTR(3) 0 3 3 

 
 
Table 5.32 Performance values of testing the cross validation subset of one hidden layer, momentum 

rate=0,7 

Performance CLSATTR(1) CLSATTR(2) CLSATTR(3) 
MSE 0.220191967 0.222488954 0.256012147 

NMSE 1.154868902 1.044462033 1.041161698 
MAE 0.441688976 0.460858301 0.493555038 

Min Abs Error 0.178215631 0.360154196 0.352603501 
Max Abs Error 0.783466027 0.638657773 0.649129907 

r 0.050822935 -0.020310868 0.100077017 
Percent Correct 60 0 17.64705882 

 
 
Table 5.33 Accuracy performance of momentum rates 

Momentum 

value/ 

Subset 

 =0.1  =0.3  =0.5  =0.7  =0.9 

Training 58.15% 38.1% 51.63% 62,65% 61.40% 

Cross 

validation 
35.2% 40.2% 39.35% 34.05% 41.1% 

 

According to the Table 5.33, there is no slight difference of accuracy performance 

between the momentum rates. For that reason, the statistical results of average 

minimum MSE values becomes the selective criterion for performance. As the 

minimum MSE statistics and also the highest accuracy for the training subset data, 

are for  =0.7, presented above.  
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5.2.3 The Optimum Hidden Layer Size 
 

In order to construct the ANN needed, the optimum hidden layer size should be 

defined. Starting from the one hidden layer, the hidden layer size is increased up to 

five hiden layers and each hadden layer sizes’ performances are compared. For each 

hidden layer size performance evaluation, 5 runs made and 1000 epochs generated 

per run.The momentum rate is 0.7 as found optimum before. 

 

5.2.3.1 One Hidden Layered ANN 

 
Figure 5.13 Average MSE for one hidden layer (tae) dataset 

 
 

Training values wander around the value, 0.3. Training stops about the 400 

epochs. Because the number of exemplars of tae dataset is not much, the subsets 

including both the training and cross validation do not give enough ability to 

overfitting.  

 
Table 5.34 MSE statistics for training and cross validation subsets of tae dataset (One hidden layer) 

All Runs Training 
Minimum 

Training 
Standard 
Deviation 

Cross 
Validation 
Minimum 

Cross 
Validation 
Standard 
Deviation 

Average of 
Minimum MSEs 0.184258716 0.020733666 0.348079253 0.004354931 

Average of 
Final MSEs 0.305357202 0.067724117 0.39908647 0.060181746 
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Table 5.35 Best MSE for subsets 

Best Networks Training Cross Validation 

Run # 4 4 
Epoch # 117 14 

Minimum MSE 0.170868494 0.340908419 
Final MSE 0.354815721 0.3552145 

 

 
 

Figure 5.14 Training MSE for one hidden layer (tae dataset) 

 

Run number 2 and run number 5 show the same characteristics during the training 

process.  

 

 
Figure 5.15 Cross validation MSE for one hidden layer (tae dataset) 
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Table 5.36 Minimum MSE values of subsets for each run of one hidden layer size ANN topology  

Subset Minimum 
for Run #1 

Minimum 
for Run #2 

Minimum 
for Run #3 

Minimum 
for Run #4 

Minimum 
for Run #5 

Training 0.2230688 0.20598448 0.21977485 0.17086849 0.20159696 
Cross validation 0.35125135 0.34830631 0.34806584 0.34090842 0.35186434 

 

5.2.3.1.1 Testing The Training Subset Of One Hidden Layer For Momentum 

Learning Algorithm 
 
Table 5.37 Confusion matrix for the training subset of one hidden layer, momentum rate=0,7 

Output / Desired CLSATTR(1) CLSATTR(2) CLSATTR(3) 
CLSATTR(1) 14 8 2 
CLSATTR(2) 3 8 2 
CLSATTR(3) 2 12 24 

 
Table 5.38 Performance values for the training subset of one hidden layer, momentum rate=0,7 

Performance CLSATTR(1) CLSATTR(2) CLSATTR(3) 
MSE 0.162748993 0.237032447 0.173933401 

NMSE 0.860397639 1.013151607 0.743446338 
MAE 0.36149553 0.466413639 0.384538476 

Min Abs Error 0.172563086 0.344181761 0.185617497 
Max Abs Error 0.789697678 0.655026087 0.814401274 

r 0.510759319 -0.100723691 0.57358051 
Percent Correct 73.68421053 28.57142857 85.71428571 

 

5.2.3.1.2 Testing The Cross Validation Subset Of One Hidden Layer For 

Momentum Learning Algorithm 

 
Table 5.39 Confusion matrix for testing the cross validation subset of one hidden layer, momentum 

rate=0,7 

Output / Desired CLSATTR(1) CLSATTR(2) CLSATTR(3) 
CLSATTR(1) 7 6 3 
CLSATTR(2) 7 1 0 
CLSATTR(3) 6 3 4 
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Table 5.40 Performance values for the cross validation subset of one hidden layer, momentum 

rate=0,7 

Performance CLSATTR(1) CLSATTR(2) CLSATTR(3) 
MSE 0.300989046 0.211372444 0.170408388 

NMSE 1.21192354 1.071736577 1.110900396 
MAE 0.509767486 0.443608536 0.374476393 

Min Abs Error 0.173550906 0.344966607 0.185995391 
Max Abs Error 0.820143485 0.655463878 0.808294716 

r 0.085404164 -0.061327255 0.223502109 
Percent Correct 35 10 57.14285714 

 
Table 5.41 Mean accuracy performance of hidden layers 

Hidden 

layer size/ 

Subset 

Hidden 

Layer=1 

Hidden 

Layer=2 

Hidden 

Layer=3 

Hidden 

Layer=4 

Hidden  

Layer=5 

Training 62.65% 59.02% 61.90% 59.52% 57.14% 

Cross 

validation 
34.05% 43.33% 34.64% 34.53% 36.59% 

 
 

Mean accuracy values are shown in Table 5.41 which include the performance 

values. The true classified exemplars are gathered on the orthogonal of the confusion 

matrix which are named as the true classification.  

 

 As seen from Table 5.41, the neural network structure with one hidden layer and 

with three hidden layers behave nearly the same. They have similar mean accuracy 

performance values. But due to the calculations needed and the time required, a 

simpler neural network model is preferred here. One hidden layered neural network 

for tae dataset fits the best to classify. 

 

5.2.4 Optimum Number Of Processing Elements Of The Hidden Layer  

 

A network with too few hidden units is often not able to learn well enough, a 

network with too many hidden units is not able to generalise well enough. When 
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teaching a network to classify data, the key is to choose an appropriate number of 

hidden units. Not too many degrees of freedom should be given through the network. 

 

 
Figure 5.16 Average values of minimum MSEs for each scenario of number of units in the hidden 

layer. (tae dataset) 

 

MSE values of cross validation are important for the performance of the network 

training. For tae dataset; because the classification is made between three class 

attributes (low, medium and high), the calculations for the number of hidden units in 

hidden 1 layer started from three to unlimited size. Incremental algorithm is applied 

to the hidden 1 layer. A loop is implemented to the weight matrix in the hidden 1 

layer, so that; when the error in the cross validation minimizes, the minimal point is 

where the number of hidden units in the hidden 1 layer should be chosen.  

 

As seen from Figure 5.16, the average of minimum MSE values for different 

number of hidden units (processing elements) do not change up to the fourteen 

number of hidden units in hidden layer 1. From Figure 5.16, one can argue that the 

minimum average MSE values comes to minimal values through 18 to 20 number of 

hidden units but cross validation values start to increase. For that reason, fourteen 

number of hidden units for hidden 1 layer is chosen for optimal. So, the network 

architecture for the minimum error of average MSE of cross validation is 56-14-3 

architecture.  
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Figure 5.17 Average training MSE values for each processing element scenario 

 
 
 

 
Figure 5.18 Average cross validation MSE values for each processing element scenario 

 

Table 5.42 Minimum MSE values for subsets of 14 hidden processing elements 

Subset Minimum 
for Run #1 

Minimum 
for Run #2 

Minimum 
for Run #3 

Minimum 
for Run #4 

Minimum 
for Run #5 

Training 0.11225502 0.14273578 0.08877673 0.09465382 0.17952491 
Cross validation 0.35260078 0.39015894 0.36047447 0.35982629 0.34476902 
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5.3 Vehicle Silhouette Data Set  

5.3.1 Statlog Vehicle Silhoutte (veh) Database 

The purpose is to classify a given silhouette as one of four types of vehicle, using 

a set of features extracted from the silhouette. The vehicle may be viewed from one 

of many different angles. The representative dataset matrix is shown in Appendix 2.  

5.3.2 Data Set Information 

This data was originally gathered at the TI in 1986-87 by JP Siebert. It was 

partially financed by Barr and Stroud Ltd. The original purpose was to find a method 

of distinguishing 3D objects within a 2D image by application of an ensemble of 

shape feature extractors to the 2D silhouettes of the objects. Measures of shape 

features extracted from example silhouettes of objects to be discriminated were used 

to generate a classification rule tree by means of computer induction. 

This object recognition strategy was successfully used to discriminate between 

silhouettes of model cars, vans and buses viewed from constrained elevation but all 

angles of rotation. 

5.3.3 Dataset Description 

The features were extracted from the silhouettes by the HIPS (Hierarchical Image 

Processing System) extension BINATTS, which extracts a combination of scale 

independent features utilising both classical moment based measures such as scaled 

variance, skewness and kurtosis about the major/minor axes and heuristic measures 

such as hollows, circularity, rectangularity and compactness. 

Four "Corgie" model vehicles were used for the experiment: a double decker bus, 

Cheverolet van, Saab 9000 and an Opel Manta 400. This particular combination of 

vehicles was chosen with the expectation that the bus, van and either one of the cars 

would be readily distinguishable, but it would be more difficult to distinguish 

between the cars. 
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The images were acquired by a camera looking downwards at the model vehicle 

from a fixed angle of elevation (34.2 degrees to the horizontal). The vehicles were 

placed on a diffuse backlit surface (lightbox). The vehicles were painted matte black 

to minimise highlights. The images were captured using a CRS4000 framestore 

connected to a vax 750. All images were captured with a spatial resolution of 

128x128 pixels quantised to 64 greylevels. These images were thresholded to 

produce binary vehicle silhouettes, negated (to comply with the processing 

requirements of BINATTS) and thereafter subjected to shrink-expand-expand-shrink 

HIPS modules to remove "salt and pepper" image noise. 

The vehicles were rotated and their angle of orientation was measured using a 

radial graticule beneath the vehicle. 0 and 180 degrees corresponded to "head on" 

and "rear" views respectively while 90 and 270 corresponded to profiles in opposite 

directions. Two sets of 60 images, each set covering a full 360 degree rotation, were 

captured for each vehicle. The vehicle was rotated by a fixed angle between images. 

These datasets are known as e2 and e3 respectively. 

A further two sets of images, e4 and e5, were captured with the camera at 

elevations of 37.5 degs and 30.8 degs respectively. These sets also contain 60 images 

per vehicle apart from e4.van which contains only 46 owing to the difficulty of 

containing the van in the image at some orientations.  

5.3.4 Attribute Information 

This dataset has eighteen attributes and all these attributes are numerical that are 

opposite to the tae dataset. The atrributes are: 

1-Compactness =(average perim)**2 / area  

2-Cırcularıty =(average radius)**2 / area  

3-Dıstance Cırcularıty = area / (av.distance from border)**2  

4-Radıus Ratıo = (maximum radius-minimum radius) / average radius  

5-Pr.Axıs Aspect Ratıo = (minor axis) /(major axis)  

6-Max.Length Aspect Ratıo = (length perp. max length)/(max length)  

7- Scatter Ratıo = (inertia about minor axis) / (inertia about major axis)  
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8- Elongatedness = area / (shrink width)**2  

9- Pr.Axıs Rectangularıty = area / (pr.axis length*pr.axis width)  

10- Max.Length Rectangularıty = area / (max.length*length perp. to this)  

11- Scaled Varıance Along Major Axıs = (2nd order moment about minor axis) /area 

12- Scaled Varıance Along Mınor Axıs = (2nd order moment about major axis) / area 

13- Scaled Radıus Of Gyration = (mavar+mivar) / area  

14- Skewness About Major Axis = (3rd order moment about major 

axis)/sigma_min**3  

15- Skewness About Mınor Axıs = (3rd order moment about minor axis) / 

sigma_maj**3  

16- Kurtosıs About Mınor Axıs = (4th order moment about major axis) / 

sigma_min**4  

17- Kurtosıs About Major Axıs = (4th order moment about minor axis) / 

sigma_maj**4  

18- Hollows Ratıo = (area of hollows) / (area of bounding polygon)  

 
where sigma_maj**2 is the variance along the major axis and sigma_min**2 is the 

variance along the minor axis, and 

  

area of hollows= area of bounding poly - area of object 

 

The area of the bounding polygon is found as a side result of the computation to find 

the maximum length. Each individual length computation yields a pair of calipers to 

the object orientated at every 5 degrees. The object is propagated into an image 

containing the union of these calipers to obtain an image of the bounding polygon. 

  

In this dataset, a total of 846 exemplars exist. 423 exemplars are obtained  for 

training subset, 212 exemplars for cross validation and 211 exemplars for testing 

subset.  
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5.3.5 The Comparison Of Learning Algorithms Due To ANN Structure 

 

According to the general classification ANN, one hidden layered MLP is enough. 

Primarily, the selection of the learning algorithm is important. Three learning 

algorithms are taken into consideration: 

 

 Momentum learning 

 Conjugate-gradient 

 Levenberg-Marquant 

 

To compare the algorithms, one hidden layered ANN is constructed basically. The 

aim is to search for the answer which algorithm causes the minimum average MSE 

value. 

 

5.3.5.1 Momentum Learning 

 

 
Figure 5.19 Average MSE with Standard Deviation Boundaries for 5 Runs  

 
 

Because of the number of numerical attributes is high such as 18, presented in the 

veh database, the learning process cannot be easily seen. There is a slow convergence 

to minima.  

 



 

 

94 

Examining the figures 5.20 and 5.21, the training and cross validation sets behave 

in the same way. That means, independently, cross validation is trained in a good 

manner. So, high values of mean accuracy is expected for classification.  

 

 
Figure 5.20 Training MSE for momentum learning 

 

 
Figure 5.21 Cross validation MSE for momentum learning 

 
 

Table 5.43 MSE statistics for training and cross validation subsets of veh dataset  (One hidden layer) 

All Runs Training 
Minimum 

Training 
Standard 
Deviation 

Cross 
Validation 
Minimum 

Cross 
Validation 
Standard 
Deviation 

Average of 
Minimum MSEs 0.112427005 0.005874629 0.145232203 0.007579711 

Average of Final 
MSEs 0.112427005 0.005874629 0.145232203 0.007579711 
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Momentum learning produces statistically consistent values such as low level 

standard deviation and mean compared the two other learning algorithms. MSE 

values of both training and cross validation converge to average minimum by means 

of low standard deviation. 

 
Table 5.44 Best MSE values for subsets 

Best Networks Training Cross Validation 

Run # 3 5 
Epoch # 1000 1000 

Minimum MSE 0.10643069 0.136003509 
Final MSE 0.10643069 0.136003509 

 
Table 5.45 Minimum MSE values for momentum learning  

Subset Minimum 
for Run #1 

Minimum 
for Run #2 

Minimum 
for Run #3 

Minimum 
for Run #4 

Minimum 
for Run #5 

Training 0.1166005 0.11236181 0.10643069 0.11980858 0.10693344 
Cross validation 0.14835984 0.14816958 0.13902865 0.15459943 0.13600351 

 

5.3.5.1.1 Testing The Training Subset Of One Hidden Layer For Momentum 

Learning Algorithm. As the number of true classified exemplars increases, r values 

and correct percent values start to increase, as well.   
 
Table 5.46 Confusion matrix for testing of training subset data for momentum learning method 

Output / 
Desired VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van) 

VEHCL(opel) 75 1 32 0 
VEHCL(bus) 2 118 3 1 

VEHCL(saab) 19 1 63 0 
VEHCL(van) 2 1 1 104 

 
Table 5.47 Performance values for testing of training subset data for momentum learning method 

Performance VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van) 
MSE 0.093429388 0.021114498 0.092435561 0.008568728 

NMSE 0.524873691 0.103387775 0.515631701 0.04591776 
MAE 0.202379966 0.073715939 0.198357207 0.057388675 

Min Abs Error 2.2378E-05 9.35122E-05 1.21128E-05 0.000717191 
Max Abs Error 1.007517011 0.962872018 1.041621548 0.780103013 

r 0.697593828 0.94862126 0.697551594 0.980074652 

Percent Correct 76.53061224 97.52066116 63.63636364 99.04761905 
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5.3.5.1.2 Testing The Cross Validation Subset Of One Hidden Layer For 

Momentum Learning Algorithm. VEHCL(opel) and VEHCL(saab) attributes have 

more misclassified exemplars. In that case, the MSE values for these attributes are 

expected to be high, and opposite of that situaiton, the r and percent correct values to 

below.  

 
Table 5.48 Confusion Matrix for testing of cross validation subset data for momentum learning  

Output / 
Desired VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van) 

VEHCL(opel) 41 0 20 1 
VEHCL(bus) 4 42 1 1 
VEHCL(saab) 20 2 33 2 
VEHCL(van) 2 0 2 41 

 
Table 5.49 Performance values  

Performance VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van) 
MSE 0.147398289 0.030277335 0.122852711 0.036700385 

NMSE 0.681901049 0.184088819 0.632038946 0.219489303 
MAE 0.28725699 0.093958983 0.277117391 0.086943913 

Min Abs Error 0.000329809 0.000155947 0.000311987 0.00094469 
Max Abs Error 0.953404705 0.908973466 0.812204558 0.939407299 

r 0.565119798 0.906119231 0.616379211 0.890464251 
Percent Correct 61.19402985 95.45454545 58.92857143 91.11111111 

 

5.3.5.2 Conjugate-Gradient Learning Method 

 

 
Figure 5.22 Average MSE for 5 runs 
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As seen from Figure 5.24, cross validation subset data of run number 2 moves 

vertically and gets higher MSE values and that causes an increment seen in average 

MSEs. 

 
Table 5.50 MSE statistics for training and cross validation subsets for veh dataset 

All Runs Training 
Minimum 

Training 
Standard 
Deviation 

Cross 
Validation 
Minimum 

Cross 
Validation 
Standard 
Deviation 

Average of 
Minimum 

MSEs 
0.242653495 0.103842625 0.267493606 0.096332087 

Average of 
Final MSEs 0.242653495 0.103842625 0.389636393 0.238195555 

 
Table 5.51 Best MSE values 

Best Networks Training Cross Validation 

Run # 5 5 
Epoch # 1000 882 

Minimum MSE 0.097817965 0.139471865 
Final MSE 0.097817965 0.140007674 

 
 

 
Figure 5.23 Training MSE 
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Figure 5.24 Cross validation MSE 

 
Table 5.52 Minimum MSE values for conjugate-gradient learning method 

Subset Minimum 
for Run #1 

Minimum 
for Run #2 

Minimum 
for Run #3 

Minimum 
for Run #4 

Minimum 
for Run #5 

Training 0.31355234 0.17124406 0.34241099 0.28824211 0.09781796 
Cross validation 0.33636168 0.1908967 0.35665164 0.31408615 0.13947187 

 

5.3.5.2.1 Testing Of Training Subset Data For Conjugate-Gradient Learning 

Method 

 
Table 5.53 Confusion Matrix for testing of training subset data for conjugate-gradient learning method 

Output / 
Desired VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van) 

VEHCL(opel) 67 1 27 0 
VEHCL(bus) 2 117 4 0 

VEHCL(saab) 29 0 68 0 
VEHCL(van) 0 3 0 105 

 
Table 5.54 Performance values  

Performance VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van) 
MSE 0.108138256 0.024754818 0.099318379 0.010996027 

NMSE 0.607506121 0.121212708 0.554026009 0.058925073 
MAE 0.223696678 0.082022537 0.208532684 0.054647872 

Min Abs Error 0.000306308 0.000139652 0.000151154 4.35091E-05 
Max Abs Error 0.975661846 1.053480303 1.003342612 1.055555089 

r 0.627401776 0.941033412 0.669451564 0.973740456 
Percent Correct 68.36734694 96.69421488 68.68686869 100 
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5.3.5.2.2 Testing Of Cross Validation Subset Data For Conjugate-Gradient 

Learning Method 

 
Table 5.55 Confusion matrix for testing of cross validation subset data for momentum learning  

Output / 
Desired VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van) 

VEHCL(opel) 41 0 19 1 
VEHCL(bus) 3 44 1 1 
VEHCL(saab) 21 0 36 3 
VEHCL(van) 2 0 0 40 

 
Table 5.56 Performance values  

Performance VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van) 
MSE 0.158041189 0.02302683 0.12416261 0.040584113 

NMSE 0.731137747 0.140005122 0.638777969 0.24271622 
MAE 0.29150031 0.08269755 0.251839916 0.09982497 

Min Abs Error 0.000675544 0.000701821 0.00097184 0.00157529 
Max Abs Error 0.951789706 0.88237859 0.943830165 0.975203154 

r 0.528481975 0.931759244 0.61042324 0.882024132 
Percent Correct 61.19402985 100 64.28571429 88.88888889 

 

5.3.5.3 Levenberg-Marquardt Algorithm 

 
 

Figure 5.25 Average MSE for 5 runs 
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Table 5.57 MSE statistics for training and cross validation subsets for veh dataset 

All Runs Training 
Minimum 

Training 
Standard 
Deviation 

Cross 
Validation 
Minimum 

Cross 
Validation 
Standard 
Deviation 

Average of 
Minimum MSEs 0.1092397 0.108394453 0.153391457 0.047318505 

Average of Final 
MSEs 0.1092397 0.108394453 0.218606887 0.062058229 

 
 

Levenberg-Marquardt algorithm converges so rapidly. In about 40 epochs, the 

average MSE comes to 0.15 value levels. Levenberg-Marquardt algorithm is more 

successful if compared to conjugate-gradient algorithm. The standard deviation and 

the average of minimum MSEs of Levenberg-Marquardt are nearly half the value of 

standard deviation of conjugate-gradient algorithm.  

 
Table 5.58 Best MSE values 

Best Networks Training Cross Validation 

Run # 5 5 
Epoch # 304 14 

Minimum MSE 0.057162131 0.125025029 
Final MSE 0.057162131 0.189835384 

 
 

 
Figure 5.26 Training MSE for Levenberg-Marquardt algorithm (5 runs) 
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Figure 5.27 Cross validation MSE for Levenberg-Marquardt algorithm (5 runs) 

 
 
Table 5.59 Minimum MSE values for Levenberg-Marquardt algorithm  

Subset Minimum 
for Run #1 

Minimum 
for Run #2 

Minimum 
for Run #3 

Minimum 
for Run #4 

Minimum 
for Run #5 

Training 0.30298325 0.06811015 0.06026892 0.05767405 0.05716213
Cross validation 0.23715843 0.14284108 0.12800621 0.13392654 0.12502503

 

5.3.5.3.1 Testing The Training Subset Data Of Levenberg-Marquardt Algorithm 

 
Table 5.60 Confusion matrix for testing of training subset data for Levenberg-Marquardt algorithm  

Output / 
Desired VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van) 

VEHCL(opel) 80 1 45 1 
VEHCL(bus) 1 119 7 0 

VEHCL(saab) 16 0 47 0 
VEHCL(van) 1 1 0 104 

 
 
Table 5.61 Performance values  

Performance VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van) 
MSE 0.096826771 0.02321515 0.101048921 0.006477804 

NMSE 0.543959729 0.113673681 0.563679461 0.034712999 
MAE 0.213487683 0.072859601 0.208991081 0.044667627 

Min Abs Error 0.000282074 4.71014E-05 8.34322E-05 3.69534E-05 
Max Abs Error 0.940714589 0.986980909 1.033269704 0.667709778 

r 0.67896186 0.943890477 0.684888374 0.985941769 
Percent Correct 81.63265306 98.34710744 47.47474747 99.04761905 
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5.3.5.3.2 Testing Of Cross Validation Subset Data For Levenberg-Marquardt 

Learning Method 

 
Table 5.62 MSE statistics for training and cross validation subsets for veh dataset 

Output / 
Desired VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van) 

VEHCL(opel) 52 1 24 2 
VEHCL(bus) 2 43 1 2 

VEHCL(saab) 11 0 31 1 
VEHCL(van) 2 0 0 40 

 
 
Table 5.63 Performance values  

Performance VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van) 
MSE 0.134552119 0.024971264 0.117782757 0.032705684 

NMSE 0.622471479 0.151827446 0.605955613 0.195598705 
MAE 0.275709599 0.07824892 0.246527429 0.076094073 

Min Abs Error 0.000154448 0.000503627 0.001180166 1.63692E-06 
Max Abs Error 0.987732991 0.940266699 0.935175262 1.019431174 

r 0.616837365 0.926676438 0.637887897 0.909338418 
Percent Correct 77.6119403 97.72727273 55.35714286 88.88888889 

 

5.3.5.4 Comparison For Mean Accuracy Testing The Training And Cross 

Validation Subset Data Of Learning Algorithms  

 
Table 5.64  Mean accuracy performance of learning algorithms 

Algorithm/ 
Subset 

Momentum Conjugate-gradient LM 

Training 84.18% 83.44% 81.63% 

Cross 
validation 

76.67% 78.59% 79.9% 

 

“Percent correct” row of each performance value table is handled as: Table 5.47 

for training of momentum algortihm, Table 5.49 for cross validation of momentum 

algorithm, Table 5.54 for training of conjugate-gradient algorithm,  Table 5.56 for 

cross validation of conjugate-gradient algorithm, Table 5.61 for training of 

Levenberg-Marquardt algorithm and  Table 5.63 for cross validation of Levenberg-

Marquardt algorithm. 
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Mean accuracy performance values for the numerical driven attributes are nearly 

the same. But, looking at the MSE statistics of the learning algortihms, the 

momentum learning and Levenberg-Marquardt algorithm have much less minimum 

average MSE values. Contrary to this situation, conjugate-gradient algorithm has 

disadvantages to converge to the average minimum. At Figure 5.24, cross validation 

MSE values started to increase vertically because of the wrong gradient direction.    

 

5.3.6 The Optimum Momentum Rate 

 
Table 5.65 Network parameters for the optimum momentum rate 

Dataset used veh 
ANN Architecture  18-4-4 
Number of epochs 1000 
Number of runs 5 
Momentum Rate 0.9 

 

 
Figure 5.28 Average MSE 

 

The optimum momentum rate found is among the possible momentum rates; 0.1, 

0.3, 0.5, 0.7 and 0.9. Examining the tables mentioned; the minimum of average of 

minimum MSEs is 0.0794 for  =0.9. So,  =0.9 is chosen as the optimum 

momentum rate. 
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Table 5.66 MSE statisitcs for the optimum momentum rate 

All Runs Training 
Minimum 

Training 
Standard 
Deviation 

Cross 
Validation 
Minimum 

Cross 
Validation 
Standard 
Deviation 

Average of 
Minimum 

MSEs 
0.079449192 0.017419894 0.109239352 0.04645294 

Average of 
Final MSEs 0.079903202 0.018010406 0.171239116 0.071065264 

 
Table 5.67 Best MSE values  

Best Networks Training Cross Validation 

Run # 3 1 
Epoch # 1000 3 

Minimum MSE 0.057525099 0.028554256 
Final MSE 0.057525099 0.296527252 

 

 
Figure 5.29 Training MSE 

 

 
Figure 5.30 Cross validation MSE 
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Table 5.68 Minimum MSE values for momentum rate=0,9 

Subset Minimum 
for Run #1 

Minimum 
for Run #2 

Minimum 
for Run #3 

Minimum 
for Run #4 

Minimum 
for Run #5 

Training 0.09526639 0.0998127 0.09977897 0.09652657 0.11622639
Cross validation 0.13188073 0.13811468 0.14802913 0.14721098 0.15441076

 
Table 5.69 Confusion matrix for testing the training subset of one hidden layer, momentum rate=0,9 

Output / 
Desired VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van) 

VEHCL(opel) 69 0 27 0 
VEHCL(bus) 0 119 4 0 
VEHCL(saab) 27 1 67 0 
VEHCL(van) 2 1 1 105 

 
Table 5.70 Performance values (training) 

Performance VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van) 
MSE 0.105641636 0.021068844 0.100429624 0.008599026 

NMSE 0.593480448 0.103164229 0.560224848 0.04608012 
MAE 0.211926839 0.082762048 0.21101388 0.06113804 

Min Abs Error 0.00039978 0.000328017 0.000504421 2.09743E-05 
Max Abs Error 1.013030418 0.778413834 1.020201788 0.76959377 

r 0.638941354 0.947963627 0.663645649 0.979739911 
Percent Correct 70.40816327 98.34710744 67.67676768 100 
 
Table 5.71 Confuison matrix for testing the cross validation subset of one hidden layer, momentum 

rate=0,9 

Output / 
Desired VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van) 
VEHCL(opel) 41 0 21 1 
VEHCL(bus) 3 44 0 2 
VEHCL(saab) 21 0 35 0 
VEHCL(van) 2 0 0 42 
 
Tablo 5.72 Performance values (cross validation) 

Performance VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van) 
MSE 0.161504525 0.024304293 0.112727474 0.028503339 

NMSE 0.747159996 0.147772204 0.579947754 0.170466275 
MAE 0.275615104 0.085690461 0.244870874 0.093145763 

Min Abs Error 3.45259E-05 0.00121531 0.000375239 0.00022727 
Max Abs Error 0.984461199 0.909582052 0.917315016 0.947606892 

r 0.528742463 0.926859502 0.651468553 0.921119997 
Percent Correct 61.19402985 100 62,5 93,33333333 
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Table 5.73 Mean accuracy performance of momentum rates (veh dataset) 

Momentum 

value/ 

Subset 

 =0.1  =0.3  =0.5  =0.7  =0.9 

Training 45.41 % 31.64 % 80.00 % 84.08% 84.11% 

Cross 

validation 
46.54 % 31.8 % 76.67 % 76.67% 79.25% 

 

For  =0.9, the accuracy of both training and cross validation subsets have the 

highest values. So, among the momentum rates given, choosing the momentum rate 

for 0.9 is suitable.  

 

5.3.7 The Optimum Hidden Layer Size 

 

In order to construct the ANN needed, the optimum hidden layer size should be 

defined. Starting from the one hidden layer, the hidden layer size is increased up to 

five hiden layers and each hadden layer sizes’ performances are compared. For each 

hidden layer size performance evaluation, 5 runs made and 1000 epochs generated 

per run.The momentum rate is 0.9 as found optimum before. 

 

5.3.7.1 Two hidden Layered ANN 

 

The optimum hidden layer size is found as two hidden layered ANN.  

 
 

Figure 5.31 Average MSE 
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Table 5.74  MSE statistics 

All Runs Training 
Minimum 

Training 
Standard 
Deviation 

Cross 
Validation 
Minimum 

Cross 
Validation 
Standard 
Deviation 

Average of 
Minimum 

MSEs 
0.076109765 0.019130725 0.131692191 0.006750379 

Average of 
Final MSEs 0.0824498 0.016021286 0.143002858 0.010210213 

 

Table 5.75 Best MSE values 

Best Networks Training Cross Validation 

Run # 3 5 
Epoch # 937 987 

Minimum MSE 0.053807166 0.126436126 
Final MSE 0.069359214 0.134385163 

 

 
Figure 5.32 Training MSE  

 



 

 

108 

 
Figure 5.33 Cross validation MSE 

 
 
Table 5.76  Minimum MSE values for each run of two hidden layer size ANN topology 

Subset Minimum 
for Run #1 

Minimum 
for Run #2 

Minimum 
for Run #3 

Minimum 
for Run #4 

Minimum 
for Run #5 

Training 0.06343473 0.09810928 0.05380717 0.07169742 0.09350024
Cross validation 0.12705209 0.13027827 0.14314187 0.13155261 0.12643613

 
 
Table 5.77 Confusion matrix for testing the training subset of two hidden layers, momentum rate=0,9 

Output / 
Desired VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van) 

VEHCL(opel) 46 0 18 0 
VEHCL(bus) 0 118 1 0 

VEHCL(saab) 51 1 79 0 
VEHCL(van) 1 2 1 105 

 
Table 5.78 Performance values for the training subset data (veh dataset) 

Performance VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van) 
MSE 0.108927159 0.012367696 0.107167001 0.008262857 

NMSE 0.611938071 0.060558796 0.59780784 0.044278668 
MAE 0.232725706 0.038301686 0.227173695 0.047847358 

Min Abs Error 5.43513E-05 2.63465E-05 0.00066498 0.002123372 
Max Abs Error 1.017762345 0.961997335 0.946268247 0.896269902 

r 0.624232906 0.970181406 0.634660012 0.979687715 
Percent Correct 46.93877551 97.52066116 79.7979798 100 
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Table 5.79 Confusion matrix for testing the cross validation subset of two hidden layers, momentum 

rate=0,9 

Output / 
Desired VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van) 

VEHCL(opel) 32 2 9 0 
VEHCL(bus) 3 42 0 2 
VEHCL(saab) 30 0 47 1 
VEHCL(van) 2 0 0 42 

 
Table 5.80 Performance values for the cross validation subset data (veh dataset) 

Performance VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van) 
MSE 0.143302882 0.024724454 0.122465123 0.023065753 

NMSE 0.66295468 0.150326819 0.630044929 0.137946401 
MAE 0.289808693 0.052091883 0.266209465 0.070505278 

Min Abs Error 9.9691E-05 4.87393E-06 0.000790238 0.004297736 
Max Abs Error 0.994809899 0.981629281 0.769235028 1.006620327 

r 0.583613636 0.924460062 0.61229832 0.935782648 
Percent Correct 47.76119403 95.45454545 83.92857143 93.33333333 
 
Table 5.81 Mean accuracy performance of hidden layers 

Hidden 

layer size/ 

Subset 

Hidden 

Layer=1 

Hidden 

Layer=2 

Hidden 

Layer=3 

Hidden 

Layer=4 

Hidden  

Layer=5 

Training 84.1% 81.07% 33.28% 25.00% 25.00% 

Cross 

validation 
79,26% 80.12% 34.37% 25.00% 25.00% 

 

Mean accuracy values are presented seen in Table 5.81 that are including the 

performance values. The true classified exemplars are gathered on the orthogonal of 

the confusion matrix which are named as the true classification.  
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5.3.8 Optimum Number Of Processing Elements Of The Hidden Layers 
 

 
Figure 5.34 Average values of minimum MSEs 

 
Table 5.82 MSE statistics  

All Runs Training 
Minimum 

Training 
Standard 
Deviation 

Cross 
Validation 
Minimum 

Cross 
Validation 
Standard 
Deviation 

Average of 
Minimum 

MSEs 
0.003037419 0.000950724 0.115104295 0.012618901 

Average of 
Final MSEs 0.003037419 0.000950724 0.213971905 0.098673842 

 
Table 5.83 Best MSE values 

Best Networks Training Cross Validation 

Run # 2 1 
Epoch # 1000 15 

Minimum MSE 0.001682337 0.094483546 
Final MSE 0.001682337 0.388886229 
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Figure 5.35 Training MSE 

 

 

 
Figure 5.36 Cross validation MSE 

 

Because there are four different classes, as an output feature, the minimum 

processing element in Hidden1 layer and Hidden2 layer is four. Starting from the 

initial point, in each hidden layer, the number of processing elements (neurons) in the 

hidden layer are increased by incremental algorithm. After running the simulation, 

that is converging to minima, the optimal number of prcessing elements in hidden 

layer 1 is 29. For hidden layer 2, the optimal number of prcessing elements is 10. So, 

the proposed neural network structure is as 18-29-10-4.  
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5.4 Parameter Optimization 

 

The performance of the backpropagation network (BPN) is affected by the 

network architecture and parameter settings. The user must therefore determine the 

required numbers of optimal layers and neurons in the hidden layers (Liu, Liu,Wang 

& Niu, 2004).  

 

However, there has been no clearly defined theory for calculating the ideal 

parameter settings, and even slight parameter changes can cause major variations in 

the behaviour of almost all networks. In neural network models, these factors have 

been determined heuristically and by trial and error, which are both time consuming 

and tedious. By the help of genetic parameters, the evolving mechanism here works 

with not one but multiple populations, all of which evolve separately most of the 

time, except for once every several generations that are applied as a crossover 

operation from different populations. Since sometimes it could happen for a single 

population scheme that though the neural network could theoretically solve a certain 

classification problem, the system may not return a correct solution. This is because 

of the random nature of the algorithm and its reliance on natural selection; mutation 

and crossover. Hancock (1992), discussed the permutation problem. Thus, it could 

happen that a certain flow of events that would lead to a correct solution will not 

occur and thus a solution will not be found. For that reason, genetic parameters that 

are crossover and mutation operator values must be selected carefully. However, by 

using several unrelated populations, the probability has been decreased of this 

occurrence, since if some population has poor individuals the solution could still be 

found at another. 

 

The purpose of this study is to apply genetic algorithms (GAs) to determine the 

number of neurons in the hidden layers, the momentum, and the learning rates for 

minimizing the time and effort required to find the optimal architecture and 

parameters of the backpropagation algorithm. 
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It also focused on improving the accuracy of classification and verifying the 

performance and validitation of optimizing both the neural network size and its 

parameters using GAs. 

 

But as soon as problems to be solved are getting more complex, backpropagation 

more and more fails due to its inherent gradient descent. Backpropagation is needed 

in these cases,  several starts with varying initial weights to meet the desired error or 

is not able to solve the required task at all while genetic algorithms are still 

performing very well.  

 

 
Figure 5.37 Framework for EANN parameter optimization 
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Table 5.84 Optimized parameters of hidden layer 1 for tae dataset (crossover values (0.7-0.9), 

mutation values (0.05, 0.1, 0.3, 0.5)) 

hidden layer 1 Genetic 
Parameters 

Crossover 
Type  optimum PE stepsize momentum 

crossover one point 3 0.73150936 0.240180652 
0.9 two point 3 0.43076188 0.387495726 

mutation arithmetic 13 0.65257714 0.581940507 
0.05 heuristic 3 0.02556954 0.693615146 

crossover one point 6 0.55674446 0.281066738 
0.9 two point 3 0.64099817 0.126715657 

mutation arithmetic 18 0.68266252 0.399812089 
0.1 heuristic 3 0.53945832 0.418522512 

crossover one point 3 0.11468645 0.016847524 
0.9 two point 4 0.60162268 0.474645512 

mutation arithmetic 17 0.92741906 0.614680999 
0.3 heuristic 3 0.87018994 0.002328123 

crossover one point 4 0.88114978 0.234085507 
0.9 two point 3 0.75098245 0.116068873 

mutation arithmetic 12 0.41713642 0.595252206 
0.5 heuristic 3 0.37974655 0.499281889 

crossover one point 4 0.32681967 0.079966614 
0.7 two point 3 0.60043827 0.587494441 

mutation arithmetic 8 0.48178512 0.533627331 
0.05 heuristic 3 0.97777139 0.815553682 

crossover one point 7 0.07847586 0.178002265 
0.7 two point 3 0.29226171 0.597501592 

mutation arithmetic 8 0.00348756 0.350691609 
0.1 heuristic 3 0.7269501 0.187918958 

crossover one point 6 0.88924089 0.240369414 
0.7 two point 4 0.17073162 0.217492215 

mutation arithmetic 7 0.36689023 0.316115925 
0.3 heuristic 3 0.64213635 0.612095758 

crossover one point 5 0.02118434 0.012264858 
0.7 two point 13 0.21862656 0.035031489 

mutation arithmetic 10 0.44708816 0.921060563 
0.5 heuristic 3 0.77685623 0.044067876 

 

 
The longer the chromosomes the more generations are required. In general, 

genetic algorithms are inherently slower than backpropagation. This could be 

expected due to their global search technique compared to the highly directed 

gradient descent learning of backpropagation.  
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 Optimized parameters mentioned in the tables have been maintained by the run of 

evolutionary neural networks stated with the parameters. At the end of each run; 

MSE statistics have been determined, minimum MSE and average MSE values. As 

seen , there is a conjuction with the parameters of the two types of tables; optimized 

parameters and MSE statistics. In every possible genetic parameter selection; all 

these EANN parameters are gathered to analyze.  

 

The evolutionary neural network parameters were 20 generations run, 1000 

epochs per generation, the population size to set 50 (chromosome number). Because 

of the big population size; the time needed for calculation increases so much as 6 to 7 

hours. Table 5.84 and Table 5.85 give the optimized stepsize and momentum values 

and also the number of processing elements in the hidden layer 1. Table 5.84 shows 

that whatever the crossover and the mutation parameter are, the optimum processing 

elements needed in the hidden layer are 2-4 times much more than the other 

crossover types. The optimized parameters are the selected parameters for each run 

of the evolutionary neural network related with the genetic parameters given.  

 

From experiences of the study, mutation values are restricted up to 0.5. If higher 

mutation values are taken into consideration, the mutational search changes to a 

random search which means the possibility to tackle up a local minima is getting 

higher.   

 

In order to evaluate the performance of the EANN, the basic ANN statistics are 

compared with. The relative percent difference (RPD) is calculated as: 

  

min( ) min( )% 100
min( )

EANN ANN

ANN

MSE MSEdifference x
MSE


  
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5.4.1 Parameter Optimization For Teaching Assistant Evaluation (tae) Dataset 
 

The neural network topology for the teaching assistant evaluation dataset is set. 

The optimum number of hidden layers is one and the optiumum number of hidden 

units in the hidden layer is 14. At that point, these values for the parameters are 

found at fixed weight matrix and no genetic operators are implemented to the neural 

network design.  

 

By embedding  the evolutionary algorithm to the network weight space, new 

neural network arhitectures are gained in a population pool. New parameters 

extracted from the genetic operators are put in the proposed neural network and 

statistical performance values (minimum MSE and average MSE) are taken out. For 

each genetical scenario, the statistical results are gathered at a performance table and 

these results are compared with the traditional neural network structure defined 

before.  

 
Table 5.85 Optimized parameters of hidden layer 1  for tae dataset (crossover values (0.1), mutation 

values (0.05, 0.1, 0.3, 0.5)) 

hidden layer 1 Genetic 
Parameters 

Crossover 
Type optimum PE stepsize momentum 

crossover one point 5 0.228667 0.033171 
0.1 two point 3 0.380425 0.317079 

mutation arithmetic 14 0.166905 0.202487 
0.05 heuristic 4 0.788608 0.336321 

crossover one point 5 0.592122 0.191385 
0.1 two point 3 0.567506 0.190046 

mutation arithmetic 12 0.051978 0.464272 
0.1 heuristic 4 0.848474 0.483011 

crossover one point 6 0.768924 0.342008 
0.1 two point 3 0.721577 0.078652 

mutation arithmetic 17 0.376445 0.556608 
0.3 heuristic 4 0.949445 0.833346 

crossover one point 4 0.304445 0.312772 
0.1 two point 4 0.017837 0.17135 

mutation arithmetic 10 0.06739 0.773389 
0.5 heuristic 4 0.864954 0.335542 
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Table 5.86 Optimized parameters of hidden layer 1 for tae dataset (crossover values (0.3-0.5), 

mutation values (0.05, 0.1, 0.3, 0.5)) 

hidden layer 1 Genetic 
Parameters 

Crossover 
Type optimum PE stepsize momentum 

crossover one point 4 0.829473656 0.154846304 
0.5 two point 3 0.237959042 0.087478378 

mutation arithmetic 9 0.860443377 0.408215093 
0.05 heuristic 3 0.704181555 0.075193669 

crossover one point 5 0.587704987 0.213099964 
0.5 two point 3 0.342049777 0.507790161 

mutation arithmetic 7 0.89050051 0.978083575 
0.1 heuristic 3 0.875925333 0.882730772 

crossover one point 6 0.534752125 0.300233845 
0.5 two point 5 0.402786642 0.109532591 

mutation arithmetic 8 0.934373671 0.832060151 
0.3 heuristic 4 0.619565791 0.962117942 

crossover one point 3 0.246249197 0.343565768 
0.5 two point 3 0.526623434 0.080084856 

mutation arithmetic 10 0.65241926 0.993482987 
0.5 heuristic 3 0.941239698 0.06133486 

crossover one point 4 0.886471064 0.207323016 
0.3 two point 3 0.641827019 0.439928246 

mutation arithmetic 15 0.562916541 0.00776508 
0.05 heuristic 3 0.428609898 0.329548231 

crossover one point 4 0.78071679 0.008922956 
0.3 two point 4 0.414314222 0.126228985 

mutation arithmetic 15 0.920649611 0.757566181 
0.1 heuristic 4 0.079784386 0.217889502 

crossover one point 18 0.65412166 0.256123363 
0.3 two point 3 0.731228032 0.349469001 

mutation arithmetic 15 0.581840502 0.763365527 
0.3 heuristic 9 0.797058013 0.159718011 

crossover one point 4 0.956701127 0.008711356 
0.3 two point 3 0.305796922 0.533341844 

mutation arithmetic 13 0.043253544 0.098009882 
0.5 heuristic 3 0.626679383 0.11928196 
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Table 5.87 Minimum and average MSE values for EANN design (tae dataset) 

mutation=0.05 Crossover 
Value 

 Performance 
Type 

 one point two point arithmetic heuristic 

Min MSE 0.184515 0.193226 0.176466 0.179978 
0.9 

Avg MSE 0.300455 0.357999 0.33765 0.304546 

Min MSE 0.181724 0.177355 0.187003 0.184149 
0.7 

Avg MSE 0.334855 0.317202 0.365957 0.309382 

Min MSE 0.185062 0.194295 0.206236 0.167622 
0.5 

Avg MSE 0.32942 0.340194 0.379594 0.317473 

Min MSE 0.179579 0.202073 0.18986 0.180831 
0.3 

Avg MSE 0.344877 0.361766 0.349243 0.33478 

Min MSE 0.177645 0.192304 0.204626 0.186952 
0.1 

Avg MSE 0.359675 0.342767 0.413944 0.339928 

 
Table 5.88 The relative percent difference between ANN  and EANN performance values 

mutation=0.05 Crossover 
Value 

 Performance 
Type 

 one point two point arithmetic heuristic 

Min MSE 0.14% 4.87% -4.23% -2.32% 
0.9 

Avg MSE -1.61% 17.24% 10.58% -0.27% 

Min MSE -1.38% -3.75% 1.49% -0.06% 
0.7 

Avg MSE 9.66% 3.88% 19.85% 1.32% 

Min MSE 0.44% 5.45% 11.93% -9.03% 
0.5 

Avg MSE 7.88% 11.41% 24.31% 3.97% 

Min MSE -2.54% 9.67% 3.04% -1.86% 
0.3 

Avg MSE 12.94% 18.47% 14.37% 9.64% 

Min MSE -3.59% 4.37% 11.05% 1.46% 
0.1 

Avg MSE 17.79% 12.25% 35.56% 11.32% 
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As stated in Table 5.88, as the mutation value as at low levels, the higher 

crossover values help EANN to perform better minimum and average MSE 

solutions. One point crossover has better minimum MSE solutions for highest and 

lowest crossover values. In general, two point crossover does not give much good 

minimum MSE solutions than the generational ANN. Arithmetic crossover is 

opposite to the mutation value. As the mutation rate gets smaller in value, the 

possible good minimum MSE solutions for arithmetic crossover can be seen in Table 

5.88 and Table 5.90, in high crossover values. The opposite situation can be seen in 

Table 5.94. Because the mutation rate is so small, the heuristic crossover operator 

behaves as a random operator. So, almost at all levels of crossover, an improvement 

in the minimum MSE minimization can be seen.  

 
Although one point crossover gives better solution values for minimum MSE, the 

average MSE values can be worse. At Table 5.88, only for crossover rate 0.9, the 

average MSE gave better solution value than the traditional ANN. At other levels, 

the average MSE values for one point crossover 10% worse approximately. 

Arithmetic operators shows the worst performance for the average MSE values. 

 

Increasing the mutation rate from 0.05 to 0.1 does not change the situation 

between the crossover types. At Table 5.90, arithmetic operator produces much 

worse average MSE values. One point crossover does not produce further 

improvement. 

 

From Table 5.92, as the mutation increased to 0.3, which is an important operator 

to generate new individuals, randomness gets higher. Randomness has the same 

effect with the heuristic crossover. 
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Table 5.89 Minimum and average MSE values for EANN design (tae dataset) 

mutation=0.1 Crossover
Value 

Performance
Type one point two point arithmetic heuristic 

Min MSE 0.183849 0.189584 0.184098 0.17782 
0.9 

Avg MSE 0.321902 0.322333 0.35367 0.300545 

Min MSE 0.187784 0.203728 0.201665 0.179272 
0.7 

Avg MSE 0.347136 0.380452 0.401657 0.316814 

Min MSE 0.198693 0.185993 0.186103 0.173962 
0.5 

Avg MSE 0.358461 0.31858 0.343865 0.314338 

Min MSE 0.190051 0.16559 0.201521 0.189786 
0.3 

Avg MSE 0.333013 0.339525 0.401266 0.37751 

Min MSE 0.207438 0.184873 0.192138 0.191442 
0.1 

Avg MSE 0.372974 0.333297 0.364317 0.36352 

 

Table 5.90 The relative percent difference between ANN  and EANN performance values 

mutation=0.1 Crossover 
Value 

Performance 
Type one point two point arithmetic heuristic 

Min MSE -0.22% 2.89% -0.09% -3.49% 
0.9 

Avg MSE 5.42% 5.56% 15.82% -1.58% 

Min MSE 1.91% 10.57% 9.45% -2.71% 
0.7 

Avg MSE 13.68% 24.59% 31.54% 3.75% 

Min MSE 7.83% 0.94% 1.00% -5.59% 
0.5 

Avg MSE 17.39% 4.33% 12.61% 2.94% 

Min MSE 3.14% -10.13% 9.37% 3.00% 
0.3 

Avg MSE 9.06% 11.19% 31.41% 23.63% 

Min MSE 12.58% 0.33% 4.28% 3.90% 
0.1 

Avg MSE 22.14% 9.15% 19.31% 19.05% 
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Table 5.91 Minimum and average MSE values for EANN design (tae dataset) 

mutation=0.3 Crossover
Value 

Performance
Type one point two point arithmetic heuristic 

Min MSE 0.194421 0.197464 0.18491 0.179279 
0.9 

Avg MSE 0.338284 0.367537 0.391568 0.34347 

Min MSE 0.189479 0.186085 0.195875 0.183886 
0.7 

Avg MSE 0.353423 0.33069 0.379913 0.339743 

Min MSE 0.191511 0.193757 0.201105 0.182305 
0.5 

Avg MSE 0.378879 0.363758 0.391021 0.316363 

Min MSE 0.189359 0.192335 0.198526 0.187614 
0.3 

Avg MSE 0.389787 0.341277 0.385752 0.352999 

Min MSE 0.189208 0.182881 0.195454 0.17896 
0.1 

Avg MSE 0.365237 0.323015 0.393626 0.372949 

 
Table 5.92 The relative percent difference between ANN  and EANN performance values 

mutation=0.3 Crossover
Value 

Performance
Type one point two point arithmetic heuristic 

Min MSE 5.52% 7.17% 0.35% -2.70% 
0.9 

Avg MSE 10.78% 20.36% 28.23% 12.48% 

Min MSE 2.83% 0.99% 6.30% -0.20% 
0.7 

Avg MSE 15.74% 8.30% 24.42% 11.26% 

Min MSE 3.94% 5.15% 9.14% -1.06% 
0.5 

Avg MSE 24.08% 19.13% 28.05% 3.60% 

Min MSE 2.77% 4.38% 7.74% 1.82% 
0.3 

Avg MSE 27.65% 11.76% 26.33% 15.60% 

Min MSE 2.69% -0.75% 6.08% -2.88% 
0.1 

Avg MSE 19.61% 5.78% 28.91% 22.14% 
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Table 5.93 Minimum and average MSE values for EANN design (tae dataset) 

mutation=0.5 Crossover 
Value 

Performance 
Type one point two point arithmetic heuristic 

Min MSE 0.191169 0.182371 0.189458 0.17833 
0.9 

Avg MSE 0.373317 0.366227 0.380388 0.3674 

Min MSE 0.204179 0.201667 0.198073 0.181379 
0.7 

Avg MSE 0.382814 0.399454 0.364372 0.343713 

Min MSE 0.194121 0.191101 0.190737 0.178933 
0.5 

Avg MSE 0.351897 0.377449 0.375544 0.335193 

Min MSE 0.18581 0.187488 0.193053 0.172098 
0.3 

Avg MSE 0.333571 0.35295 0.378377 0.35586 

Min MSE 0.196609 0.179915 0.178663 0.174804 
0.1 

Avg MSE 0.389925 0.342659 0.37174 0.354238 
 

Moving the mutation value to 0.5, one point crossover does not improve any 

statistical performance value. Heuristic crossover uses its advantage, high mutation 

rate does not affect its mechanics. At all levels of crossover in Table 5.94,  it has 

better results than the traditional 56-4-3 network.  
 

Table 5.94 The relative percent difference between ANN  and EANN performance values 

mutation=0.5 Crossover 
Value 

Performance
Type one point two point arithmetic heuristic 

Min MSE 3.75% -1.02% 2.82% -3.22% 
0.9 

Avg MSE 22.26% 19.93% 24.57% 20.32% 

Min MSE 10.81% 9.45% 7.50% -1.56% 
0.7 

Avg MSE 25.37% 30.82% 19.33% 12.56% 

Min MSE 5.35% 3.71% 3.52% -2.89% 
0.5 

Avg MSE 15.24% 23.61% 22.99% 9.77% 

Min MSE 0.84% 1.75% 4.77% -6.60% 
0.3 

Avg MSE 9.24% 15.59% 23.91% 16.54% 

Min MSE 6.70% -2.36% -3.04% -5.13% 
0.1 

Avg MSE 27.69% 12.22% 21.74% 16.01% 
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Two point and arithmetic crossover types show better performance than the basic 

ANN for high and low crossover points when the mutation rate is high.  

 

5.4.2 Parameter Optimization For Vehicle Silhoutte (veh) Dataset 
 
 

The neural network topology for the vehicle silhoutte (veh) dataset is set. The 

optimum number of hidden layers is two and the optimum momentum rate is 0.9. As 

there are two hidden layers exist for the topology, the basic ANN topology is 

implemented as 18-4-4-4.  

 
Table 5.95 Optimized parameters of hidden layer 1  for tae dataset (crossover values (0.1), mutation 

values (0.05, 0.1, 0.3, 0.5)) 

Hidden layer 1 Genetic 
Values 

Crossover 
type  opt PE stepsize momentum 

crossover one point 16 0.644326813 0.352986604 
0.1 two point 20 0.060817322 0.231555361 

mutation arithmetic 22 0.7153409 0.096027724 
0.05 heuristic 20 0.080998495 0.356019577 

crossover one point 19 0.754102965 0.113731649 
0.1 two point 30 0.770179519 0.058653143 

mutation arithmetic 11 0.610429353 0.396056352 
0.1 heuristic 11 0.21231876 0.312689071 

crossover one point 9 0.347335331 0.152195178 
0.1 two point 14 0.254836305 0.090009665 

mutation arithmetic 16 0.475974884 0.294499587 
0.3 heuristic 19 0.493676218 0.089035444 

crossover one point 14 0.25827033 0.197631032 
0.1 two point 15 0.179849973 0.234581227 

mutation arithmetic 14 0.160482264 0.167729741 
0.5 heuristic 14 0.045357284 0.489698402 
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Table 5.96 Optimized parameters of hidden layer 1  for veh dataset (crossover values (0.7-0.9), 

mutation values (0.05, 0.1, 0.3, 0.5)) 

Hidden layer 1 Genetic 
Values 

Crossover 
type  opt PE stepsize momentum 

crossover one point 29 0.731131732 0.180706456 
0.9 two point 13 0.598734231 0.135238261 

mutation arithmetic 23 0.383692276 0.746376718 
0.05 heuristic 25 0.061717978 0.742125685 

crossover one point 16 0.13288304 0.790880532 
0.9 two point 15 0.567804211 0.821727453 

mutation arithmetic 9 0.276056446 0.715809371 
0.1 heuristic 6 0.17453568 0.301922153 

crossover one point 11 0.16585049 0.996871098 
0.9 two point 21 0.418494086 0.472754749 

mutation arithmetic 25 0.728537204 0.65661347 
0.3 heuristic 7 0.026606511 0.611669395 

crossover one point 22 0.127194705 0.109461119 
0.9 two point 13 0.220622711 0.434537178 

mutation arithmetic 11 0.104285872 0.939742975 
0.5 heuristic 16 0.617710333 0.760309386 

crossover one point 11 0.236349002 0.259651447 
0.7 two point 29 0.022882492 0.745005318 

mutation arithmetic 22 0.680386298 0.479643406 
0.05 heuristic 5 0.074268236 0.750166307 

crossover one point 28 0.488491655 0.821246086 
0.7 two point 7 0.583741485 0.485529282 

mutation arithmetic 7 0.158327421 0.070181069 
0.1 heuristic 29 0.300531577 0.010028216 

crossover one point 13 0.63513043 0.365626125 
0.7 two point 24 0.032180012 0.083931138 

mutation arithmetic 16 0.426116722 0.236978262 
0.3 heuristic 8 0.359481865 0.265168658 

crossover one point 30 0.240521449 0.36664013 
0.7 two point 14 0.048300096 0.219123706 

mutation arithmetic 15 0.740171187 0.266201726 
0.5 heuristic 21 0.522609395 0.266852163 
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Table 5.97 Optimized parameters of hidden layer 1  for tae dataset (crossover values (0.3, 0.5), 

mutation values (0.05, 0.1, 0.3, 0.5)) 

Hidden layer 1 Genetic 
Values 

Crossover 
type  opt PE stepsize momentum 

crossover one point 24 0.463598757 0.926746939 
0.5 two point 28 0.156988464 0.302167522 

mutation arithmetic 14 0.490223059 0.487381976 
0.05 heuristic 29 0.296740884 0.183369686 

crossover one point 19 0.299920733 0.378182613 
0.5 two point 11 0.603199339 0.226041547 

mutation arithmetic 22 0.605653353 0.355670106 

0.1 heuristic 18 0.425742687 0.170712246 
crossover one point 5 0.184241977 0.083488916 

0.5 two point 7 0.139402898 0.472462966 
mutation arithmetic 7 0.431058627 0.178983243 

0.3 heuristic 13 0.115400651 0.294612211 
crossover one point 18 0.363043718 0.1966738 

0.5 two point 20 0.656682242 0.152477884 
mutation arithmetic 7 0.558312521 0.026228541 

0.5 heuristic 16 0.451297951 0.040072031 
crossover one point 30 0.349966758 0.746379131 

0.3 two point 16 0.069807036 0.493402154 
mutation arithmetic 21 0.109333933 0.224802457 

0.05 heuristic 18 0.233272445 0.465346672 
crossover one point 10 0.607745975 0.249403197 

0.3 two point 7 0.173709094 0.190872284 
mutation arithmetic 10 0.077024596 0.035406426 

0.1 heuristic 14 0.492649302 0.099028802 
crossover one point 8 0.55870235 0.285588293 

0.3 two point 29 0.259491492 0.259397283 
mutation arithmetic 13 0.013004258 0.480006323 

0.3 heuristic 26 0.106394458 0.300096836 
crossover one point 28 0.026080326 0.200235962 

0.3 two point 17 0.468385149 0.366402004 
mutation arithmetic 29 0.033144072 0.248680745 

0.5 heuristic 14 0.587780485 0.286396946 
 
 
 
 
 
 
 
 



 

 

126 

Table 5.98 Optimized parameters of hidden layer 2  for veh dataset (crossover values (0.5, 0.7), 

mutation values (0.05, 0.1, 0.3, 0.5)) 

Hidden layer 2 Genetic 
Values 

Crossover 
type opt PE stepsize momentum 

crossover one point 9 0.274840303 0.700503666 
0.7 two point 11 0.885403682 0.766710157 

mutation arithmetic 14 0.295167251 0.183321405 
0.05 heuristic 4 0.773724967 0.356331823 

crossover one point 4 0.777690122 0.980055104 
0.7 two point 4 0.654506382 0.369583922 

mutation arithmetic 8 0.205629721 0.148070099 
0.1 heuristic 5 0.605126941 0.97650962 

crossover one point 6 0.358363818 0.631788601 
0.7 two point 15 0.680976722 0.49113705 

mutation arithmetic 9 0.899049914 0.793311424 
0.3 heuristic 4 0.982339803 0.148992704 

crossover one point 5 0.531609951 0.709586812 
0.7 two point 4 0.894198142 0.414844732 

mutation arithmetic 5 0.860526522 0.706131514 
0.5 heuristic 16 0.548266189 0.969215099 

crossover one point 9 0.431113302 0.861491783 
0.5 two point 8 0.281698273 0.77473919 

mutation arithmetic 16 0.484641668 0.847296276 
0.05 heuristic 6 0.02463816 0.928584323 

crossover one point 8 0.201159777 0.31775389 
0.5 two point 5 0.746631505 0.050907944 

mutation arithmetic 7 0.778632815 0.625943794 
0.1 heuristic 8 0.093567208 0.445260088 

crossover one point 9 0.063804124 0.867786583 
0.5 two point 10 0.360432331 0.664174738 

mutation arithmetic 10 0.210385414 0.097927674 
0.3 heuristic 9 0.576409262 0.886767806 

crossover one point 11 0.847640025 0.705812743 
0.5 two point 7 0.955516844 0.170821791 

mutation arithmetic 15 0.643077156 0.671235253 
0.5 heuristic 6 0.111990082 0.537553622 
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Table 5.99 Optimized parameters of hidden layer 2  for veh dataset (crossover values (0.1, 0.3), 

mutation values (0.05, 0.1, 0.3, 0.5)) 

Hidden layer 2 Genetic 
Values 

Crossover
type opt PE stepsize momentum 

crossover one point 3 0.912563257 0.436229633 
0.3 two point 7 0.369082959 0.982928089 

mutation arithmetic 7 0.152389558 0.656250436 
0.05 heuristic 14 0.787869701 0.15655433 

crossover one point 5 0.356594261 0.325111764 
0.3 two point 7 0.011539621 0.119508741 

mutation arithmetic 6 0.020010836 0.515361509 
0.1 heuristic 8 0.967749561 0.912200251 

crossover one point 5 0.484849858 0.953358726 
0.3 two point 6 0.133065809 0.170892297 

mutation arithmetic 5 0.288564583 0.620631444 
0.3 heuristic 15 0.05641197 0.442243824 

crossover one point 9 0.310497395 0.556184416 
0.3 two point 7 0.34237292 0.620827775 

mutation arithmetic 13 0.941960781 0.291629874 
0.5 heuristic 7 0.396300889 0.197463045 

crossover one point 5 0.072694801 0.742238893 
0.1 two point 5 0.915352476 0.837752896 

mutation arithmetic 7 0.462651526 0.419824021 
0.05 heuristic 9 0.103972089 0.351954819 

crossover one point 14 0.781850819 0.773386778 
0.1 two point 16 0.342553704 0.631916215 

mutation arithmetic 7 0.917533132 0.70720565 
0.1 heuristic 10 0.637788308 0.172991888 

crossover one point 7 0.05431525 0.15737485 
0.1 two point 6 0.352954438 0.805715483 

mutation arithmetic 4 0.165300028 0.594149941 
0.3 heuristic 4 0.224060597 0.880928094 

crossover one point 14 0.736643082 0.651728804 
0.1 two point 10 0.69950394 0.355593528 

mutation arithmetic 4 0.303498401 0.524408641 
0.5 heuristic 9 0.66898389 0.13252092 
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Table 5.100 Optimized parameters of hidden layer 2  for veh dataset (crossover values (0.9), mutation 

values (0.05, 0.1, 0.3, 0.5)) 

Hidden layer 2 Genetic 
Values 

Crossover 
type opt PE stepsize momentum 

crossover one point 27 0.433650672 0.343120277 
0.9 two point 14 0.832994449 0.816267941 

mutation arithmetic 12 0.456014526 0.982881807 
0.05 heuristic 10 0.394280454 0.950045431 

crossover one point 4 0.310434189 0.930591856 
0.9 two point 8 0.549460847 0.026387242 

mutation arithmetic 14 0.966494451 0.703005274 
0.1 heuristic 11 0.779814259 0.873394518 

crossover one point 14 0.756411434 0.896345201 
0.9 two point 16 0.730573733 0.811199545 

mutation arithmetic 8 0.945908603 0.272854883 
0.3 heuristic 13 0.464050275 0.691238966 

crossover one point 5 0.137676704 0.960989461 
0.9 two point 11 0.113842204 0.684879896 

mutation arithmetic 7 0.768571134 0.240737352 
0.5 heuristic 9 0.383434429 0.385284699 

 
Table 5.101 Minimum and average MSE values for EANN design (veh dataset) 

mutation=0.05 Crossover 
Value 

Performance 
Type one point two point arithmetic heuristic 

Min MSE 0.075718 0.086105 0.076751 0.072204 
0.9 

Avg MSE 0.083667 0.096844 0.082112 0.075364 

Min MSE 0.039974 0.076885 0.075217 0.06996 
0.7 

Avg MSE 0.082463 0.089926 0.084912 0.082143 

Min MSE 0.072453 0.094007 0.086036 0.078561 
0.5 

Avg MSE 0.09386 0.107972 0.088238 0.08126 

Min MSE 0.085513 0.081762 0.093731 0.095225 
0.3 

Avg MSE 0.086938 0.086622 0.103299 0.100153 

Min MSE 0.099972 0.093167 0.09279 0.091526 
0.1 

Avg MSE 0.100512 0.107654 0.104595 0.092351 

 
 
 
 



 

 

129 

Table 5.102 The relative percent difference between ANN  and EANN performance values 

mutation=0.05 Crossover
Value 

Performance
Type one point two point arithmetic heuristic 

Min MSE -0.52% 13.13% 0.84% -5.13% 
0.9 

Avg MSE 1.48% 17.46% -0.41% -8.59% 

Min MSE -47.48% 1.02% -1.17% -8.08% 
0.7 

Avg MSE 0.02% 9.07% 2.99% -0.37% 

Min MSE -4.81% 23.51% 13.04% 3.22% 
0.5 

Avg MSE 13.84% 30.96% 7.02% -1.44% 

Min MSE 12.35% 7.43% 23.15% 25.12% 
0.3 

Avg MSE 5.44% 5.06% 25.29% 21.47% 

Min MSE 31.35% 22.41% 21.92% 20.25% 
0.1 

Avg MSE 21.91% 30.57% 26.86% 12.01% 

 
Table 5.103 Minimum and average MSE values for EANN design (veh dataset) 

mutation=0.1 Crossover 
Value 

Performance 
Type one point two point arithmetic heuristic 

Min MSE 0.080027 0.073198 0.078625 0.072771 
0.9 

Avg MSE 0.096409 0.084352 0.089128 0.094581 

Min MSE 0.075468 0.099111 0.085782 0.088113 
0.7 

Avg MSE 0.082922 0.113006 0.095283 0.096643 

Min MSE 0.084575 0.093523 0.090744 0.081835 
0.5 

Avg MSE 0.089086 0.100173 0.100747 0.090066 

Min MSE 0.085362 0.084353 0.082114 0.081014 
0.3 

Avg MSE 0.09185 0.085183 0.100492 0.119342 

Min MSE 0.098404 0.091791 0.087469 0.093407 
0.1 

Avg MSE 0.124449 0.098183 0.093544 0.125622 
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Table 5.104 The relative percent difference between ANN  and EANN performance values 

mutation=0.1 Crossover
Value 

Performance
Type one point two point arithmetic heuristic 

Min MSE 5.15% -3.83% 3.30% -4.39% 
0.9 

Avg MSE 16.93% 2.31% 8.10% 14.71% 

Min MSE -0.84% 30.22% 12.71% 15.77% 
0.7 

Avg MSE 0.57% 37.06% 15.56% 17.21% 

Min MSE 11.12% 22.88% 19.23% 7.52% 
0.5 

Avg MSE 8.05% 21.50% 22.19% 9.24% 

Min MSE 12.16% 10.83% 7.89% 6.44% 
0.3 

Avg MSE 11.40% 3.32% 21.88% 44.75% 

Min MSE 29.29% 20.60% 14.92% 22.73% 
0.1 

Avg MSE 50.94% 19.08% 13.46% 52.36% 

 
Table 5.105  Minimum and average MSE values for EANN design (veh dataset) 

mutation=0.3 Crossover
Value 

Performance
Type one point two point arithmetic heuristic 

Min MSE 0.077631 0.08759 0.07827 0.077513 
0.9 

Avg MSE 0.093486 0.098436 0.091665 0.103597 

Min MSE 0.086563 0.089774 0.086182 0.095886 
0.7 

Avg MSE 0.115684 0.100704 0.095224 0.107835 

Min MSE 0.080343 0.095503 0.098585 0.090153 
0.5 

Avg MSE 0.088577 0.111584 0.099483 0.123994 

Min MSE 0.084202 0.083201 0.088284 0.0805 
0.3 

Avg MSE 0.096255 0.105228 0.091589 0.103662 

Min MSE 0.080533 0.087841 0.100112 0.089507 
0.1 

Avg MSE 0.084367 0.103941 0.129797 0.101394 
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Table 5.106  The relative percent difference ANN  and EANN performance values 

mutation=0.3 Crossover
Value 

Performance
Type one point two point arithmetic heuristic 

Min MSE 2.00% 15.08% 2.84% 1.84% 
0.9 

Avg MSE 13.39% 19.39% 11.18% 25.65% 

Min MSE 13.73% 17.95% 13.23% 25.98% 
0.7 

Avg MSE 40.31% 22.14% 15.49% 30.79% 

Min MSE 5.56% 25.48% 29.53% 18.45% 
0.5 

Avg MSE 7.43% 35.34% 20.66% 50.39% 

Min MSE 10.63% 9.32% 16.00% 5.77% 
0.3 

Avg MSE 16.74% 27.63% 11.08% 25.73% 

Min MSE 5.81% 15.41% 31.54% 17.60% 
0.1 

Avg MSE 2.33% 26.07% 57.43% 22.98% 

 

At Table 5.102, when the mutation rate is low, usually crossover operators at high 

levels perform better. One point crossover gives better minimum MSE solutions for 

the crossover rates; 0.5, 0.7 and 0.9. Also, arithmetic and heuristic crossover 

operators behave in the same manner. But two point crossover operator has the worst 

values for minimum MSE. At low mutation values, as the crossover rate starts to 

decrease, the average MSE values start to get worse, too. Two point and arithmetic 

operators perform in a bad way for average MSE. 

 

At Table 5.106, as the mutation moves to 0.3, any of the crossover operator makes 

an improvement at any level of crossover. It is not logical to go further at this point, 

but; for the experimentations’ sake, examining the Table 5.108, at all levels of 

crossover, for the mutation rate 0.5 which is very high, all the crossover operators 

produce bad results for both the minimum and average MSE values. Because the 

mutation is very high, improvement is not possible. 
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Table 5.107  Minimum and average MSE values for EANN design (veh dataset) 

mutation=0.5 Crossover
Value 

Performance
Type one point two point arithmetic heuristic 

Min MSE 0.076964 0.084205 0.081483 0.080551 
0.9 

Avg MSE 0.112792 0.10314 0.096668 0.115677 

Min MSE 0.090686 0.105076 0.095825 0.086411 
0.7 

Avg MSE 0.120297 0.138325 0.129223 0.116275 

Min MSE 0.085793 0.092728 0.095327 0.091432 
0.5 

Avg MSE 0.114022 0.09971 0.108583 0.094445 

Min MSE 0.093826 0.098623 0.087461 0.087 
0.3 

Avg MSE 0.1084 0.10392 0.109852 0.10928 

Min MSE 0.086971 0.095297 0.083904 0.096262 
0.1 

Avg MSE 0.089706 0.098037 0.117816 0.106418 

 
Table 5.108 The relative percent difference between ANN  and EANN performance values 

mutation=0.5 Crossover
Value 

Performance
Type One point two point arithmetic heuristic 

Min MSE 1.12% 10.64% 7.06% 5.84% 0.9 
Avg MSE 36.80% 25.09% 17.24% 40.30% 

Min MSE 19.15% 38.06% 25.90% 13.54% 
0.7 

Avg MSE 45.90% 67.77% 56.73% 41.02% 

Min MSE 12.72% 21.84% 25.25% 20.13% 
0.5 

Avg MSE 38.29% 20.93% 31.70% 14.55% 

Min MSE 23.28% 29.58% 14.91% 14.31% 
0.3 

Avg MSE 31.47% 26.04% 33.23% 32.54% 

Min MSE 14.27% 25.21% 10.24% 26.48% 
0.1 

Avg MSE 8.80% 18.91% 42.89% 29.07% 
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5.5 Discussion 

 

Two types of dataset are considered for evaluation of classification performance 

of evolutionary neural networks. Teaching assistant evaluation (tae) dataset has 

categorical-driven attribute types and on contrary, there is only one numerical 

attribute and others have categorical attributes. 

 

The other dataset is the vehicle silhoutte (veh) dataset that all the attributes are 

numerical. Because the two datasets have opposite type of attribtures in common, the 

effects of numerical and categorical attributes can be examined. 

 

The number of chromosomes in the evolutonary algortihm plays an important role 

on processing time. This parameter is chosen by trial and error. The minimum and 

average MSE values give opinion about the parameter performance. The first 

impression selecting the population size depends on the researches made before. 

Most of the publications chose a maximum of value of 50 chromosomes for 

classification. But this much longer chromosome type causes longer processing 

tiimes such as 8.5 hours. So, shorter possible chromosome length should be selected. 

When the population size was set to 30 and the generation number to 1000, the run 

values were nearly the same. The processing time decreased 4.6 hours on average. 

 

The selection of the percentage of the whole raw data to split into training, cross 

validation and test subset is important. For tae dataset, there are just 151 exemplars 

in total. Because of the lack of information, the splitting percentage of cross 

validation and test subset should be higher than the sugested value between 10%-

20%. In this thesis, the splitting percentages are; 50% for training subset, 25% for 

cross validation subset and 25% for testing subset. However, the veh dataset, in the 

opposite of tae dataset, has more information as 846 exemplars. For this dataset, the 

same splitting percentages applied for performance comparison. 

 

Momentum, conjugate-gradient and Levenberg-Marquardt algorithms are 

compared to choose the algorithms that minimize the error performance. Minimum 
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average MSE values for both conjugate-gradient and Levenberg-Marquardt 

algorithms produce better values compared to momentum but with high standard 

deviation , these algorithms do not classify with high true classificiton rate.  

 

As mean accuracy performances of learning algorithms are compared, for the 

basic ANN design for tae dataset is 56-4-3, not much difference seen betweeen each 

other. Conjugate-gradient and Levenberg-Marquardt algorithms make true 

classification approximately of 60% of momentum learning algortihm compared as 

the training subset data and  approximately of 70% compared as the cross validation 

subset data. 

 

For tae dataset, by comparing all the momentum levels examining the training and 

cross validation mean accuracy values, optimum momentum rate is 0.7. As 

comparing the training and cross validation subset’s mean accuracy values,  there 

seems not much difference between the selected performance values. One hidden 

layered ANN and three hidden layered ANN show nearly the same mean accuracy 

values. The aim is to simplify the network, so one hidden layered topology is chosen. 

By implementing the incremental algortihm, for one hidden layered ANN as the 

determined topology, 14 neurons minimize the average values of minimum MSEs for 

tae dataset. 

 

veh dataset has opposing characteristics of attribute information compared to tae 

dataset. There are 18 attributes which are all numerical. All these attributes provide 

information about a vehicle’s feature selection. This dataset has a total of 846 

exemplars exist. 423 exemplars are obtained  for training subset, 212 exemplars for 

cross validation and 211 exemplars for testing subset. Because of having a big 

dataset, it takes time to train the dataset and to converge to a minima.  

 

Comparing the learning algorithms, momentum learning produces statistically 

consistent values such as low level standard deviation and mean compared to 

conjugate-gradient and Levenberg-Marquardt algorithms.  
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As the number of true classified exemplars increases, r values and correct percent 

values start to increase, as well.   

 

For one hidden layered ANN topology for veh dataset, at least two class attributes 

have high misclassification rates. That means the weight matrix of the hidden layer 

does not give enough response for the classification. At that point, the number of 

hidden layers should be argued. As the misclassification occurs for any attribute, the 

MSE values for these attributes are expected to be high, and opposite of that 

situaiton, the r and percent correct values to be low.  

 

Conjugate-gradient algorithm gets higher MSE values and that causes an 

increment seen in average MSEs which is not supposed to be. The standard deviation 

and the average of minimum MSEs of Levenberg-Marquardt are nearly half the 

value of standard deviation of conjugate-gradient algorithm. Examining the MSE 

statistics of momentum learning and Levenberg-Marquardt algorithm learning; the 

standard deviation values of training and cross validation for momentum learning are 

much less. The other reason for selecting the momentum learning is the very fast 

convergence of the Levenberg-Marquardt algorithm. It may be not useful for the 

datasets that have more categorical attributes that may cause overfitting of the data.  

 

Mean accuracy values of learning algorithms show very slight differences 

between each other.  

 

The optimum momentum rate for veh dataset is 0.9 but the mean accuracy values 

for  =0.5 and  =0.7 are very close to each other. Higher momentum rate helps to 

converge to minima in less processing time.  

 

The number of hidden layer size is important up to the required level. As stated 

before that, for veh database, one hidden layered ANN is not suitable for 

classification as at least two attributes have high misclassification. But increasing the 

number of hidden layer causes a big decrease in the training and cross validation 

subsets’ mean accuracy values.  
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Datasets with more numerical attributes have more sense to number of hidden 

layers. 

 

Optimum number of processing elements of the hidden layers is obtained from the 

incremental algorithm. Doing the experimantation, 29 neurons for hidden 1 layer and 

10 neurons for hidden 2 layer is calculated for the minimum average MSE value. In 

this experiment, there is no upper limit for the neurons but the lower limit should be 

equal to at least the number of attributes that are classified. In that situation, the 

network topology  is 18-29-10-4. 

 

During the parameter optimization; to identify the neural network parameters, the 

evolving mechanism is used such as mutation and crossover. Genetic algoritms are 

used to determine the number of neurons in the hidden layers, the momentum, and 

the learning rates for minimizing the time and effort required to find the optimal 

architecture and parameters of the back-propagation algorithm. 

 

Crossover values (0.1, 0.3, 0.5, 0.7, 0.9) and mutation values (0.05, 0.1, 0.3, 0.5) 

are put into the genetic algorithm and for each level, the optimized EANN 

parameters and also the statistical values have been determined. The performance 

values; minimum MSE and average MSE are compared with the basic ANN 

statistical values which has been defined before manually.   

 

For tae dataset, at low mutation levels; for higher crossover values, one point 

crossover, arithmetic and heuristic crossover operators perform better. Especially, 

one point crossover operator shows better minimum MSE at all levels of minimum 

MSE. Two point crossover shows little worse valued increments as the crossover 

value decreases but the worst crossover operator is the arithmetic crossover operator 

that is not suitable for both low levels of crossover and mutation.  
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As the mutation operator value starts to increase, one point operator is not able to 

reach better MSE statistics.As a result, only the heuristic crossover operator, because 

of the ability of randomness, gets better results than the basic ANN topology. 

 

At the mutation rate is 0.5, two point and heuristic crossover operators show 

better results at high and low crossover values. One point crossover has an opposite 

manner to the mutation rate. 

 

For veh database, at low levels of mutation; one point, arithmetic and heuristic 

crossover operators perform well through high crosover values. But decreasing the 

crossover value causes the MSE performance values to get worse immediately. As 

mutation increases, no further improvement on MSE performance values can be seen 

at any crossover operator. As the number of numerical attributes increases, the ability 

to perform better solutions at high mutation rates decreases. 
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CHAPTER SIX 

CONCLUSION AND FUTURE RESEARCH 

 

In this thesis, a systematic approach to automating the design of neural networks 

for classification through the use of evolutionary algorithms is presented. This study 

shows that evolutionary algorithms are used to evolve the optimal number of hidden 

neurons and weights required  by  neural networks  for  good  classification  

accuracy. The selected parameters can be used effectively to classify given dataset 

with optimized parameters of the neural network compared to traditional 

(backpropagation) neural networks.  

 

Training neural networks using genetic algorithm based evolutionary techniques 

has been proposed as a new algorithm to evolve the near optimal number of hidden 

neurons and weights required  by  neural networks  for  good  classification  

accuracy.  In addition,  the  self-evolving  version  of  genetic algorithm based neural 

network is able to automate the process of finding a suitable weight and hidden node 

matrixes through the generations. The performance of the proposed algorithms is 

greatly enhanced by growing the neural networks at different rates based  on  a  

Gaussian  distribution  thus  avoiding  being trapped  in  local  optima.   

 

The proposed algorithms are tested with real-world problems and results from 

experiments show that evolutionary neural networks are able to evolve networks with 

high classification accuracy and low architecture complexity for all problems. The 

performances of  learning algorithms are comparable to each other; however, the 

self-adaptive version has the advantage of not requiring the value of evolution 

parameters to be determined beforehand.  

 

An interesting finding from the experimental results showed that though 

chromosomes  are  grown  at  every  generation,  it is the growth probability rather 

than the generation number that has  a  greater  influence on the mean  number  of  

hidden neurons. This prevents the number of hidden neurons to grow too large when 

a large number of generations are used. 
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6.1 Contributions 

 

 Neural networks are a non-symbolic approach to classification. They have 

the ability to generalize large numbers of exemplars into classes, and to 

learn from a presentation of datasets given.  

 A  multilayer perceptron neural network trained with a genetic  algorithm, 

is suitable for discrimination and modelling of strongly nonlinear 

classification  problems.  

 Evolutionary algorithms  do  not  make  any  hypothesis  either  on  the  

data  (non-parametric method) or on  the  transfer  functions that  can  be 

used   in  the  neurons,  or  on  the  error  function.  

 In relation to a multilayer perceptron neural network trained with back   

propagation,  evolutionary neural network overcomes the problems that 

arise from  the lack of continuity in  the  error  functions for classification  

problems and allows one to consider a priori  probabilities and loss 

functions in the discrimination and / or   modelling problems. A good 

consequence of this is that the user need not define (either directly or 

indirectly) any threshold to construct the decision rule or  the model box. 

Therefore, the method is highly respectful with  the training data and  with 

the information they contain.  

 Evolutionary neural network based  on  genetic algorithm  improves  its  

efficiency  with respect to dimension of the problem. 

 Evolutionary neural network is applied to various well  known  and 

claassical   examples and   also  to  some complex classification  problems.     

The comparison made with the  results obtained  by other  classification      

techniques (parametric or not)  shows similar efficiency in the data  tested.   

The main result is its  ability to  simultaneously optimize sensibility and   

specificity  in  class-modelling  problems,  as can be appreciated  in the 

cases  considered. 

 The result of this study indicates that the EAs to train backpropagation 

neural network yields very high accuracy and much improved execution 

time. The results of this research are expected to be applied to a wide 
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variety of applications to improve the accuracy and execution time of 

classification problems with multidimensional input patterns. 

 The genetic operators; crossover and mutation presented to the neural 

network. By the help of these genetic operators, evolutionary neural 

network is structured. As seen from the results of each crossover and 

mutation rate; crossover rate between 0.7 and 0.9 produce considerably 

good results for EANN classification. On the contrary, low mutation rates 

are much more efficient for classification. 

 The selection of crossover type is important. Two point and artihmetic 

crossover types show much more sense to mutation rate. As the mutation 

rate starts to increase in EANN, the ability to classify the dataset gets 

worse than the backpropagation neural network results.  

 The learning algorithms: momentum, conjugate-gradient and Levenberg-

Marquardt  for the neural network are selected. Momentum and 

Levenberg-Marquardt algorithms helps the neural network learn more 

quick. Minimum and average MSE values show approximately the same 

results. As Levenberg-Marquardt algorithm is a second-order 

approxmiator, it learns 4-5 times faster than the other algorithms. But this 

quickness helps the neural network to overfit the data as well. 

 The number of hidden layers and the number of hidden nodes in a layer 

play an important role in complexification of nonlinear mapping. As the 

neural network complexity grows, the computation time gets much longer, 

but also overfitting occurs occasionally which means that learning stops 

for the evolutionary neural network. 

 The attributes of the dataset are important for classification accuracy. The 

more categorical attribute of a dataset means bigger vector calculations 

needed to classify the dataset. At that point, the true classification rate is 

not expected to be high. On the contrary, the more numerical attribute of a 

data means much more ability and information needed to classify the 

dataset. The true classification rate is expected have a success of getting 

high values. 
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 The design of the neural network is important because the work load and 

computation time rises exponentially with the size of the system.The 

optimum number of hidden layer size is obtained form the MSE statistical 

values and the mean accuracy performance value. For each possible 

matching of these genetic operators, the network parameters related to 

genetic results, the number of processing elements, stepsize and 

momentum rates are optimized. The MSE statistical values are tabled and 

the performance differences are put into percentage to be compared.  

 

6.2 Future Research 

 

Evolutionary algorithms (EAs) help to solve the manual design process problem 

of neural networks causing inaccurate run time. To get rid of this problem; 

HyperNEAT is a good solution which is a neuroevolution method that evolves 

artificial neural networks through an evolutionary algorithm can be used further on 

for designing all the EANN structure.  It is extended from a prior neuroevolution 

algorithm called NeuroEvolution of Augmenting Topologies (NEAT). HyperNEAT 

is based on a theory of representation that hypothesizes that a good representation for 

an artificial neural network should be able to describe its pattern of connectivity 

compactly. This kind of description is called an encoding.  

 

The encoding in HyperNEAT, called compositional pattern producing networks 

(CPPNs), is designed to represent patterns with regularities such as symmetry, 

repetition, and repetition with variation. Thus HyperNEAT is able to evolve neural 

networks with these properties. The main implication of this capability is that 

HyperNEAT can efficiently evolve very large neural networks that look more like 

neural connectivity patterns in the brain (which are repetitious with many 

regularities, in addition to some irregularities) that are generally much larger than 

what prior approaches to neural learning could produce. 

 

It evolves the connectivity pattern for a neural network with a particular substrate 

geometry. It actually sees the geometry of its inputs (and outputs) and can exploit 
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that geometry to significantly enhance learning. To put it more technically, 

HyperNEAT computes the connectivity of its neural networks as a function of their 

geometry. By automating the design process of evolutionary artificial neural 

networks, more accurate true classification rate values can be gained. (Stanley, 2009) 
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APPENDIX 1 
 
Raw Data for tae dataset 
 
(S)ENG (S)INST (S)CRS (S)SMSTR CLSSIZE (S)CLSATTR 

1 23 3 1 19 3 
2 15 3 1 17 3 
1 23 3 2 49 3 
1 5 2 2 33 3 
2 7 11 2 55 3 
2 23 3 1 20 3 
2 9 5 2 19 3 
2 10 3 2 27 3 
1 22 3 1 58 3 
2 15 3 1 20 3 
2 10 22 2 9 3 
2 13 1 2 30 3 
2 18 21 2 29 3 
2 6 17 2 39 3 
2 6 17 2 42 2 
2 6 17 2 43 2 
2 7 11 2 10 2 
2 22 3 2 46 2 
2 13 3 1 10 2 
2 7 25 2 42 2 
2 25 7 2 27 2 
2 25 7 2 23 2 
2 2 9 2 31 2 
2 1 15 1 22 2 
2 15 13 2 37 2 
2 7 11 2 13 2 
2 8 3 2 24 2 
2 14 15 2 38 2 
2 21 2 2 42 1 
2 22 3 2 28 1 
2 11 1 2 51 1 
2 18 5 2 19 1 
2 13 1 2 31 1 
1 13 3 1 13 1 
2 5 2 2 37 1 
2 16 8 2 36 1 
2 4 16 2 21 1 
2 5 2 2 48 1 
2 14 15 2 38 1 
1 23 3 1 19 3 
2 15 3 1 17 3 
1 23 3 2 49 3 
1 5 2 2 33 3 
2 7 11 2 55 3 
2 23 3 1 20 3 
2 9 5 2 19 3 
2 10 3 2 27 3 
1 22 3 2 58 3 
2 15 3 1 20 3 
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(S)ENG (S)INST (S)CRS (S)SMSTR CLSSIZE (S)CLSATTR 

2 10 22 2 9 3 
2 13 1 2 30 3 
2 18 21 2 29 3 
2 6 17 2 39 3 
2 6 17 2 42 2 
2 6 17 2 43 2 
2 7 11 2 10 2 
2 22 3 2 46 2 
2 13 3 1 10 2 
2 7 25 2 42 2 
2 25 7 2 27 2 
2 25 7 2 23 2 
2 2 9 2 31 2 
2 1 15 1 22 2 
2 15 13 2 37 2 
2 7 11 2 13 2 
2 8 3 2 24 2 
2 14 15 2 38 2 
2 21 2 2 42 1 
2 22 3 2 28 1 
2 11 1 2 51 1 
2 18 5 2 19 1 
2 13 1 2 31 1 
1 13 3 1 13 1 
2 5 2 2 37 1 
2 16 8 2 36 1 
2 4 16 2 21 1 
2 5 2 2 48 1 
2 14 15 2 38 1 
1 23 3 1 25 3 
1 13 3 1 17 3 
2 16 19 2 11 3 
2 9 2 2 39 3 
2 13 3 1 11 3 
2 18 21 2 19 3 
1 22 3 2 45 3 
2 7 11 1 20 3 
2 23 3 1 20 3 
1 23 3 1 20 3 
1 23 3 2 38 3 
2 14 22 2 17 3 
1 17 17 2 19 3 
2 9 5 2 24 3 
2 18 25 2 25 3 
1 17 17 2 31 3 
2 1 15 2 31 3 
2 1 8 2 18 2 
1 11 16 2 22 2 
1 22 13 2 27 2 
2 9 2 2 14 2 
2 13 1 2 20 2 
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(S)ENG (S)INST (S)CRS (S)SMSTR CLSSIZE (S)CLSATTR 

1 6 17 2 35 2 
2 23 3 1 20 2 
1 23 3 1 20 2 
2 6 17 2 37 2 
1 22 3 2 15 2 
2 20 2 2 25 2 
2 23 3 2 10 2 
2 20 2 2 14 1 
1 23 3 2 38 1 
2 13 1 2 29 1 
2 10 3 2 19 1 
2 7 11 2 30 1 
1 14 15 2 32 1 
2 8 3 2 27 1 
2 12 7 2 34 1 
2 8 7 2 23 1 
2 15 1 2 66 1 
2 23 3 2 12 1 
2 2 9 2 29 1 
2 15 1 2 19 1 
2 20 2 2 3 1 
2 13 14 2 17 3 
2 9 6 2 7 3 
1 10 3 2 21 3 
2 14 15 2 36 3 
1 13 1 2 54 3 
1 8 3 2 29 3 
2 20 2 2 45 3 
2 22 1 2 11 2 
2 18 12 2 16 2 
2 20 15 2 18 2 
1 17 18 2 44 2 
2 14 23 2 17 2 
2 24 26 2 21 2 
2 9 24 2 20 2 
2 12 8 2 24 2 
2 9 6 2 5 2 
2 22 1 2 42 2 
2 7 11 2 30 1 
2 10 3 2 19 1 
2 23 3 2 11 1 
2 17 18 2 29 1 
2 16 20 2 15 1 
2 3 2 2 37 1 
2 19 4 2 10 1 
2 23 3 2 24 1 
2 3 2 2 26 1 
2 10 3 2 12 1 
1 18 7 2 48 1 
2 22 1 2 51 1 
2 2 10 2 27 1 
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APPENDIX 2 
Representative Data For veh Dataset 
 
 
 
 
Exem
plar 
No 

CMP
CT 

CR
CL
R 

DIST_C
RCLR 

RAD_R
AT 

AX_ASP_R
AT 

MAX_LEN_
ASP_RAT 

SCAT_R
AT ELONAX_RE

CT 
MAX_
LEN_
RECT 

SCA_VA
R 

SCA_VAR
_MIN GYRA SKEW

_MAJ 
SKEW
_MIN 

KURT
_MIN 

KURT
_MAJ HOLLOW (S)VEHCL

1 95 48 83 178 72 10 162 42 20 159 176 379 184 70 6 16 187 197 van 
2 91 41 84 141 57 9 149 45 19 143 170 330 158 72 9 14 189 199 van 
3 104 50 106 209 66 10 207 32 23 158 223 635 220 73 14 9 188 196 saab 
4 93 41 82 159 63 9 144 46 19 143 160 309 127 63 6 10 199 207 van 
5 85 44 70 205 103 52 149 45 19 144 241 325 188 127 9 11 180 183 bus 
6 107 57 106 172 50 6 255 26 28 169 280 957 264 85 5 9 181 183 bus 
 
. 
.                    The dataset matrix is 846x19 
. 
Exem
plar 
No 

CMP
CT 

CR
CL
R 

DIST_
CRCL

R 
RAD_R

AT 
AX_ASP_R

AT 
MAX_LEN_
ASP_RAT 

SCAT_R
AT ELON AX_RE

CT 
MAX_
LEN_
RECT 

SCA_V
AR 

SCA_VA
R_MIN GYRA 

SKE
W_M
AJ 

SKE
W_MI

N 
KURT
_MIN 

KURT
_MAJ HOLLOW (S)VEHCL 

841 93 34 66 140 56 7 130 51 18 120 151 251 114 62 5 29 201 207 opel 
842 93 39 87 183 64 8 169 40 20 134 200 422 149 72 7 25 188 195 saab 
843 89 46 84 163 66 11 159 43 20 159 173 368 176 72 1 20 186 197 van 
844 106 54 101 222 67 12 222 30 25 173 228 721 200 70 3 4 187 201 saab 
845 86 36 78 146 58 7 135 50 18 124 155 270 148 66 0 25 190 195 saab 
846 85 36 66 123 55 5 120 56 17 128 140 212 131 73 1 18 186 190 van 
 

18 Numerical Attributes and 1 categorical attribute: (S)VEHCL 
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