

1

DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

COMPARISON OF TRADITIONAL AND
EVOLUTIONARY NEURAL NETWORKS FOR

CLASSIFICATION

by

Asil ALKAYA

January, 2010

İZMİR

COMPARISON OF TRADITIONAL AND
EVOLUTIONARY NEURAL NETWORKS FOR

CLASSIFICATION

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Doctor of

Philosophy in Industrial Engineering, Industrial Engineering Program

by

Asil ALKAYA

January, 2010

İZMİR

ii

ii

Ph.D. THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “COMPARISON OF TRADITIONAL AND

EVOLUTIONARY NEURAL NETWORKS FOR CLASSIFICATION”

completed by ASİL ALKAYA under supervision of PROF.DR. G. MİRAÇ

BAYHAN and we certify that in our opinion it is fully adequate, in scope and in

quality, as a thesis for the degree of Doctor of Philosophy.

 Prof.Dr. G. Miraç BAYHAN

Supervisor

 Prof. Dr. Nihat BADEM Asst. Prof. Dr. Yavuz ŞENOL

Thesis Committee Member Thesis Committee Member

 Prof.Dr. İ. Kuban ALTINEL Asst. Prof.Dr. Özcan KILINÇCI

Examining Committee Member Examining Committee Member

Prof.Dr. Cahit HELVACI
Director

Graduate School of Natural and Applied Sciences

iii

iii

ACKNOWLEDGMENTS

Many people have contributed to the completion of this dissertation in many

ways: explicitly, unwittingly, and serendipitously. I hope to name them herein.

As my memory is encased in a biological substrate, it is fallible. If your name

does not appear here, forgive me: I am thankful to you as well.

First of all, I would like to thank:

 My advisor, Prof. Dr. G.Miraç BAYHAN, for her endless support and

encouragement.

 My committee members. Prof. Dr. Nihat BADEM, Asst. Prof. Dr. Yavuz

ŞENOL, Asst.Prof.Dr. Özcan KILINÇCI and Prof.Dr. Kuban ALTINEL.

 My parents, Saime and Gülman ALKAYA, for their own unique form of

support, who kept asking, “haven’t you finished yet?”

Tg programmers who have most supported and encouraged me:

 Julien WINTZ is a software engineer working on scientific computing,

parallel computing, and 3D visualization at Institut National De Recherche

En Informatique Et En Automatique.

 Ph.D. Pierre KRAEMER, assistant professor in computer science at

Strasbourg University.

Asil ALKAYA

iv

iv

COMPARISON OF TRADITIONAL AND EVOLUTIONARY NEURAL

NETWORKS FOR CLASSIFICATION

ABSTRACT

Classification refers to the assignment of a finite set of alternatives into predefined

groups. The limitation of the statistical models applied to the classification is that

they work well only when the underlying assumptions are satisfied. Neural networks

are universal functional approximators so that they can adjust themselves to the data

without any explicit specification of functional or distributional form for the

underlying model. Because of the difficulty of designing the artificial neural

networks; evolutionary algorithms are embedded into artificial neural networks that

are robust and probabilistic search strategies excel in large and complex problem

spaces. In this thesis, two datasets are classified using evolutionary neural networks.

In order to generate an optimal evolutionary neural network of each given dataset,

the parameters are optimized including; number of neurons in the hidden layer,

stepsize and momentum which makes the classification with high accuracy.

Research involving the application of evolutionary algorithms to neural networks for

benchmarking the classification performance of training and testing of the datasets

with cross validation has been carried out. Performance is benchmarked by mean

squared error, normalized mean squared error, mean absolute error, correlation

coefficient and true classification rate that is referred to each attribute which is

subject to be classified and evaluated with backpropagation and evolutionary neural

networks whose parameters are selected using evolutionary algorithms. As argued in

the literature; evolutionary neural networks having optimized parameters, get better

performance values in classification than the artificial neural networks using the

backpropagation algorithm with the same architecture.

Keywords : Evolutionary algorithms, artificial neural networks, classification

v

v

GELENEKSEL VE EVRİMSEL YAPAY SİNİR AĞLARININ

SINIFLANDIRMA İÇİN KARŞILAŞTIRILMASI

ÖZ

Sınıflandırma, önceden tanımlanmış gruplara, alternatiflerden oluşan sonlu bir

dizinin ataması olarak adlandırılır. Sınıflandırmaya uygulanan istatistiksel modeller,

kısıt olarak, söz konusu varsayımların sadece geçerliliğini koruduğu sürece iyi

şekilde işler. Yapay sinir ağları, evrensel fonksiyon tahminleyiciler olarak, ele alınan

model için fonksiyonel ya da dağılımsal olarak belirgin nitelikte bir biçim olmaksızın

veriye kendilerini uyarlayabilir. Yapay sinir ağlarının tasarımındaki güçlük

nedeniyle, büyük ve karmaşık problem uzaylarında başarı gösteren, sağlam ve

olasılığa dayalı arama stratejileri olan evrimsel algoritmalar, yapay sinir ağlarının

içine yerleştirilmiştir. Bu tezde, evrimsel yapay sinir ağlarını kullanarak iki veri seti

sınıflandırılmıştır. Her veri setinin optimal evrimsel yapay sinir ağını üretmek için,

yüksek doğrulukta sınıflandırma yapmak amacıyla; gizli katmandaki nöron sayısı,

adım büyüklüğü ve momentumu içeren parametreler optimize edilmiştir. Çapraz

doğrulama ile veri kümelerinin öğrenme ve test alt kümelerinin sınıflandırma

performanslarını kıyaslamak için, evrimsel algoritmaların yapay sinir ağlarına

uygulanmasını içeren araştırma ortaya konmuştur. Performans, geriyayılım ve

evrimsel algoritmalar kullanarak seçilen evrimsel yapay sinir ağları ile

sınıflandırılmaya ve değerlendirilmeye konu olan her niteliğe karşılık gelen ortalama

hata kare, normalleştirilmiş ortalama hata kare, ortalama mutlak hata, korelasyon

katsayısı ve doğru sınıflandırma oranı ile kıyaslanmıştır. Literatürde de öne

sürüldüğü gibi; optimize edilmiş parametrelere sahip evrimsel sinir ağlarının;

sınıflandırma problemlerinde, geriyayılım algoritmasını kullanan aynı mimariye

sahip yapay sinir ağlarına kıyasla daha iyi performans değerleri elde etmektedir.

Anahtar sözcükler : Evrimsel algoritmalar, yapay sinir ağları, sınıflandırma

vi

vi

CONTENTS

Page

PH.D. THESIS EXAMINATION RESULT FORM..ii

ACKNOWLEDGEMENTS .. iii

ABSTRACT ..iv

ÖZ ..v

CHAPTER ONE – INTRODUCTION...1

1.1 Classification..1

 1.2 Neural Networks ..3

 1.3 Evolutionary Algorithms ..5

1.4 Evolutionary Artifical Neural Networks..6

1.5 Literature review for classification..6

1.5.1 Classification With Neural Networks...6

1.5.2 Classification With Evolutionary Neural Networks...................................7

1.6 Overview of Thesis...13

CHAPTER TWO – ARTIFICIAL NEURAL NETWORKS15

2.1 The Neuron ..15

2.2 Mechanics ..15

2.3 Layer ..16

2.4 Linear separability ..18

2.5 Learning ...19

2.5.1 Network Training..20

2.5.2 Momentum..21

2.5.3 Cross validation ..23

2.5.4 Sensitivity Analysis...25

2.6 Artificial Neural Network Learning Algorithms..26

vii

vii

2.6.1 Multiple minima problem in neural networks ..27

2.6.2 Backpropagation algorithm ...29

2.6.2.1 Training Problems In Backpropagation..33

2.6.2.1.1 Initial Weights..34

2.6.2.1.2 Number of Hidden Units ..35

2.6.2.1.3 Length of Training..36

2.6.2.1.4 Evaluation Strategies ..37

2.6.2.2 Nonlinear Activation Functions..37

2.6.3 Conjugate gradient algorithm..38

2.6.3.1 Weight Update Equations...39

2.6.4 Levenberg–Marquardt algorithm ..41

CHAPTER THREE – EVOLUTIONARY ALGORITHMS45

3.1 Genetic Algorithms ..45

3.2 Evolutionary Strategies...47

3.3 Genetic Programming...48

3.4. Evolutionary Programming..48

3.5. Genetic Operators..49

3.5.1 Crossover ..49

3.5.1.1 Crossover Types ..50

3.5.1.1.1 One Point Crossover...50

3.5.1.1.2 Two Point Crossover ..50

3.5.1.1.3 Arithmetic Crossover ...51

3.5.1.1.4 Heuristic Crossover ..52

3.5.2 Mutation ...52

CHAPTER FOUR – EVOLUTIONARY ARTIFICIAL NEURAL

NETWORKS ..54

4.1 Neural Networks For Genetic Based Classification......................................54

4.2 Motivation For Evolutionary Artificial Neural Networks55

viii

viii

4.3. Types Of Evolutionary Artificial Neural Networks56

4.3.1 Weight-Evolving Algorithms (WEAs)...56

4.3.2. Topology Evolving Algorithms (TEAs) ...58

4.3.3. Hybrid Evolutionary Algorithms (HEAs) ..59

4.4 Algortihms For Evolution ...59

4.5 Performance Measures For EANN Based Classification.................................60

4.5.1 Correlation Coefficient..60

4.5.2 Confusion Matrix ..61

4.5.3 Mean Square Error (MSE) ..62

4.5.4 Mean Squared Error (NMSE) ...63

4.5.5 Relative Percent Difference...63

CHAPTER FIVE – COMPARISON OF NEURAL NETWORKS WITH

EVOLUTIONARY ALGORITHMS FOR CLASSIFICATION...................... ...64

5.1 General Information ...64

5.2 Teaching Assistant Evaluation (tae) Dataset67

5.2.1 The Comparison of Learning Algorithms Due To ANN Structure

 For tae Dataset ...69

5.2.1.1 Momentum Learning ...69

5.2.1.1.1 Testing of Training Subset Data For Momentum

 Learning Method ...72

5.2.1.1.2 Testing of Cross Validation Subset Data For

 Momentum Learning Method ..72

5.2.1.2 Conjugate-Gradient Learning Method..73

5.2.1.2.1 Testing Of Training Subset Data For Conjugate-Gradient

 Learning Method ...75

5.2.1.2.2 Testing Of Cross Validation Subset Data For Conjugate-

 Gradient Learning Method ..75

5.2.1.3 Levenberg-Marquardt Algorithm ..76

5.2.1.3.1 Testing The Training Subset of Levenberg-Marquardt

 Algorithm ..78

ix

ix

5.2.1.3.2 Testing of Cross Validation Subset Data For Levenberg-

 Marquardt Method..78

5.2.1.4 Accuracy Comparison of Testing The Training And Cross

 Validation Subsets of Learning Algorithms....................................79

5.2.2 The Optimum Momentum Rate For tae Dataset.....................................80

5.2.2.1 Testing of Training Subset Data For Momentum

 Learning Method ..82

5.2.2.2 Testing of Cross Validation Subset Data For

 Momentum Learning Method ..83

5.2.3 The Optimum Hidden Layer Size ...84

5.2.3.1 One Hidden Layered ANN ..84

5.2.3.1.1 Testing The Training Subset of One Hidden Layer

 For Momentum Learning Algorithm86

5.2.3.1.2 Testing The Cross Validation Subset of One Hidden Layer For

 Momentum Learning Algorithm ..86

5.2.4 Optimum Number of Processing Elements of The Hidden Layer87

5.3 Vehicle Silhouette (veh) Data Set ..90

5.3.1 Statlog Vehicle Silhoutte (Veh) Database ...90

5.3.2 Dataset Information ..90

5.3.3 Dataset Description ..90

5.3.4. Attribute Information ..91

5.3.5 The Comparison of Learning Algorithms Due To ANN Structure93

5.3.5.1 Momentum Learning ..93

5.3.5.1.1 Testing The Training Subset of One Hidden Layer

 For Momentum Learning Algorithm95

5.3.5.1.2 Testing The Cross Validation Subset of One Hidden Layer

 For Momentum Learning Algorithm96

5.3.5.2 Conjugate-Gradient Learning Method ...96

5.3.5.2.1 Testing of Training Subset Data For Conjugate-Gradient

 Learning Method ..98

5.3.5.2.2 Testing of Cross Validation Subset Data

 For Conjugate-Gradient Learning Method99

x

x

5.3.5.3. Levenberg-Marquardt Algorithm ...99

5.3.5.3.1 Testing The Training Subset of

 Levenberg-Marquardt Algorithm ...101

5.3.5.3.2 Testing of Cross Validation Subset Data

 For Levenberg-Marquardt Learning Algorithm102

5.3.5.4 Comparison For Mean Accuracy Testing The Training And Cross

 Validation Subset Data of Learning Algorithms102

5.3.6 The Optimum Momentum Rate ..103

5.3.7 The Optimum Hidden Layer Size ...106

5.3.7.1 Two hidden Layered ANN ..106

5.3.8 Optimum Number of Processing Elements of The Hidden Layers110

5.4 Parameter Optimization ...112

5.4.1 Parameter Optimization For Teaching

 Assistant Evaluation (Tae) Dataset ...116

5.4.2 Parameter Optimization For Vehicle Silhoutte (Veh) Dataset123

5.5 Discussion ...133

CHAPTER SIX – CONCLUSION AND FUTURE RESEARCH.....................138

6.1 Contributions..139

 6.2 Future Research..141

REFERENCES ..143

APPENDIX 1 ..153

APPENDIX 2 ..156

1

1

CHAPTER ONE

INTRODUCTION

1.1 Classification

Decision making problems, according to their nature, the policy of the decision

maker, and the overall objective of the decision, may require the choice of an

alternative solution, the ranking of the alternatives from the best to the worst ones or

the assignment of the considered alternatives into predefined homogeneous classes.

This last type of decision problem is referred to as classification.

Classification problems are often encountered in a variety of fields including

finance, marketing, environmental and energy management, human resources

management, medicine, etc (Zopounidis & Doumpos, 2002).

The major practical interest of the classification problem has motivated

researchers in developing an arsenal of methods for studying such problems, in order

to develop mathematical models achieving the higher possible classification accuracy

and predicting ability.

Classification refers to the assignment of a finite set of alternatives into

predefined groups; as a general description. The task of classifying data is to decide

class membership y of an unknown data item x based on a data set

1 1(,)........(,)n nD x y x y of data items ix with known class memberships iy . The ix

are usually m-dimensional vectors, the components of which are called input

variables (by the machine learning community).

Traditional statistical classification procedures are built on the Bayesian decision

theory. In these procedures, an underlying probability model must be assumed in

order to calculate the posterior probability upon which the classification decision is

made. One major limitation of the statistical models is that they work well only when

the underlying assumptions are satisfied.

2

2

The effectiveness of these methods depends to a large extent on the various

assumptions or conditions under which the models are developed. Users must have a

good knowledge of both data properties and model capabilities before the models can

be successfully applied.

In most problem domains, there is no functional relationship ()y f x

between y and x. In this case, the relationship between x and y has to be

described more generally by a probability distribution (,)P x y ; one then assumes

that the data set D contains independent samples from P. From statistical decision

theory, it is well known that the optimal class membership decision is to choose

the class label y that maximizes the posterior distribution ()P y x .

For a general M-group classification problem in which each object has an

associated attribute vector x of d dimensions. Let denote the membership variable

that takes a value of jw if an object is belong to group j. Define ()jP w as the prior

probability of group j and ()jf x w as the probability density function. According to

the Bayes rule;

() ()
()

()
j j

j

f x w P w
P w x

f x


where ()jP x w is the posterior probability of group j and ()f x is the probability

density function:

1
() () ()M

j jj
f x f x w P w




It is supposed that an object with a particular feature vector x is observed and a

decision is to be made about its group membership. The probability of classification

error is:

3

3

() ()i
i j

P Error x P w x




1 ()jP w x  if jw decided.

Hence if the purpose is to minimize the probability of total classification error

(misclassification rate), the classification rule is:

Decide kw for x if
1,2,......,

() max ()k ii M
P w x P w x




There are two different approaches to data classification: the first considers only a

binary distinction between the two classes, and assigns class labels 0 or 1 to an

unknown data item. The second attempts to model ()P y x ; this yields not only a

class label for a data item, but also a probability of class membership for multi-class

problem domains (Dreiseitl & Ohno-Machado, 2002).

Table 1.1 Classification types

Classification Type

Binary Multi-class
Support vector

machines
Logistic regression

Decision trees

k-nearest neighbors

Artificial neural networks

1.2 Neural Networks

Neural networks have emerged as an important tool for classification. The

recent vast research activities in neural classification have established that

neural networks are a promising alternative to various conventional

classification methods. The advantage of neural networks lies in the following

4

4

theoretical aspects. First, neural networks are data driven self-adaptive methods

in that they can adjust themselves to the data without any explicit specification of

functional or distributional form for the underlying model. Second, they are universal

functional approximators in that neural networks can approximate any function with

arbitrary accuracy.

Neural networks are a non-symbolic approach to classification. Based on a loose

paradigm of neurons in the brain, neural networks are able to pick out pertinent

patterns in data, often when the data is corrupted, noisy, or uncertain. While their

training processes can be slow, completed neural networks are generally quite fast in

application. Their strengths include the ability to generalize large numbers of

patterns into classes, and to learn from a presentation of example problems and

solutions. One major obstacle to the design of neural networks is the selection of an

ideal set of parameters for a particular problem.

Neural networks are hand-crafted by experts with years of experience. Two major

drawbacks of this approach are a lack of experts, and a lack of a strict design

methodology. The first problem is enough: there simply are not enough experts to

attend to all the potential neural network projects the world has to offer. The second

problem is somewhat more faint and difficult to analyze. No obedient algorithm

exists to optimally determine the parameters for a particular neural network

application. The science of designing neural systems at best is inaccurate as the result

of this complexity. Firstly, the process is intuitionally driven. A system is needed to

determine neural network designs more efficiently and effectively.

It is impossible to expect that any single neural network will be able to solve any

problem regardless of complexity. To direct to a specific destination of this problem,

research is being conducted into much complex systems. In these systems, several

networks cooperate to solve a problem which would not be solvable by any single

neural network architecture. While the power and flexibility of the resulting

configuration has the potential to outperform simple neural networks, the

combination of multiple networks increases the difficulty of managing the system.

5

5

Whereas before a designer had to manage only a single network, the problem

becomes one of designing multiple networks while simultaneously enabling them to

cooperate on the problem at hand. The work load and computation time rises

exponentially with the size of the system.

Strictly speaking, a method is needed to free experts from the inaccurate run time

of manually managed networks. One promising method of solving both problems is

through the help of the use of evolutionary algorithms (EAs). This thesis presents a

systematic approach to automating the design of neural networks for classification

through the use of evolutionary algorithms.

1.3 Evolutionary Algorithms

Genetic algorithms were developed by John Holland at the University of

Michigan. Holland set out to achieve two goals. First, to "abstract and explain the

adaptive processes of natural systems", and second, to "design artificial systems

mathematically that retains the important mechanisms of natural systems" (Goldberg,

1989). Holland showed how adaptive type of natural and biological systems can be

applied to artificial systems.

Due to hardness in the process of creating and designing artificial neural

networks, genetic algorithms have become a a point of concentration of study in the

field. By the help of the genetic algorithms, it is possible to remove some of the trial

and error partial design from the designer. On the other hand, the genetic algorithm is

used to search a solution space for neural network parameters that are so much more

effective.

Genetic algorithms have been used to select various features of neural networks.

These include learning parameters, hidden units, topology, connections, and even to

evolve the synaptic weights themselves achieved by the learning algorithm .

6

6

1.4 Evolutionary Artifical Neural Networks

Evolutionary artificial neural networks (EANNs) are the combination of artificial

neural networks and evolutionary algorithms. This merge enabled these two methods

to complement the disadvantages of the other methods. For example, a contribution

by artificial neural networks was the flexibility of nonlinear function approximation,

which cannot be easily implemented with prototype evolutionary algorithm. On the

other hand, evolutionary algorithm has freed artificial neural networks from simple

gradient descent approaches of optimization. But as a disadvantage, the inclusion of

backpropagation training in the EANN have consequences of longer computation

times, so alternatives to backpropagation should be tested in order to reduce time

costs.

Indeed, traditional artificial neural networks based on backpropagation algorithms

have some limitations. At first, the architecture of the artificial neural networks is

fixed and a designer needs much knowledge to determine it. Also, error function of

the learning algorithm must have a derivative.

Finally, it frequently gets stuck in local optima because it is based on gradient-

based search without stochastic property.

1.5 Literature review

In this section, publications and approaches to classification with traditional and

evolutionary neural networks in the literature are discussed.

1.5.1 Classification with Neural Networks

The theoretical relationship linking estimation of Bayesian posterior probabilities

to minimizing squared error cost functions has long been known. The mapping

function :F x y , which minimizes the expected squared error is shown as the

conditional expectation []E y x (Papoulis ,1991). Since in a classification problem

the output y is a vector of binary values, it can be easily shown that

7

7

[] ()E y x P W x . Since neural networks can approximate any function F with

arbitrary accuracy (universal approximators), then neural network outputs are indeed

good estimators of the posterior probabilities ()P W x (Hung, Hu, Patuwo &

Shanker, 1996).

Bourlard & Wellekens (1989), Richard & Lippmann (1991), Shoemaker (1990),

Wan (1990) and White (1989) have provided linkage between neural networks and

posterior probabilities for squared error functions and for the cross-entropy error

function.

Richard & Lippmann (1991), Foody (1995), Blamire (1996), Pal & Mather

(2003) showed that neural networks minimizing squared-error and cross-entropy

cost functions are capable of estimating posterior probabilities. The fact that

neural networks can estimate posterior probabilities makes them powerful

classification tools (Berardi et al., 2004).

Duin (1996) and Flexer (1996) compared neural networks and the other classifiers

in the literature. Addition to comparison, the research topics taken into consideration

is shown in Table 1.2.

1.5.2 Classification with Evolutionary Neural Networks

The use of EAs to design ANNs that are then trained using some parameter

learning algorithm allows compact and effective structures to be built.

However, imprecision in the evaluation of the candidate solutions must be taken

into account due to possible sub-optimal convergence of the weight training

procedure. Furthermore, the training of the ANN weights may be excessively

slow for adequate exploration of the search space.

It is preferable to simultaneously optimise both the ANN architecture and the

parameters. This can be done either by alternating steps of evolutionary

8

8

structure optimisation with steps of standard (backpropagation) training of the

parameters or by evolving at the same time both the connectivity and the weights.

Table 1.2 Publications related to the research topics of the neural network classification

Research Topic Author(s) Publication
Year

 Barnard 1992
 Battiti R 1992

 Hagan and Henhaj 1994
 Nedeljkovic 1993

Network Training

 Roy, Kim, and Mukhopadhyay, 1993

 Fujitao 1998
 Hintz-Madsen, Hansen, Larsen and

Pedersen
1998

 Moody J. and Utans J. 1995

 Murata N., Yoshizawa S. and Amari
S.

1993

 Murata N., Yoshizawa S., and
Amari S.,

1994

 Wang , Massimo ,Tham, Morris 1994

Model design and selection

 Yuan J.-L. and Fine T. L. 1998

 Fukunaga K. and Hayes R.R., 1989
 Raudys S., 1998 Sample size issues
 Raudys S. J. and Jain A. K., 1991

 Lewicki M. S. 1994
 D. C. MacKay 1992

Bayesian Analysis

 P. Muller and D. R. Insua 1998

Stepniewski & Keane (1996) report applications of evolutionary algorithms to the

design of ANN architectures coupled to customary weight training algorithms, a

typical example being the evolution of multilayer perceptron (MLP) topologies with

backpropagation training of the ANN parameters. Fitness evaluation is generally

expressed as a multi-optimisation criterion that takes into account different

requirements such as ANN performance, size and learning speed.

To address the design problem of the artificial neural networks (ANN), a

population-based evolutionary approach called SEPA is developed (Structure

Evolution and Parameter Adaptation) which replaces BPs (backpropagation) gradient

descent heuristic by using a purely stochastic implementation (Palmes & Usui,

2005). It is carried out through the use of uniform crossover and Gaussian

9

9

perturbation to effect mutations which are responsible for the changes in weights,

and addition or deletion of nodes in a three-layered feed-forward ANN.

The simultaneous evolution of network structure, parameters, and weights by

Gaussian mutation and uniform crossover coupled with rank selection, early

stopping, elitism, and direct encoding are effective in searching for the appropriate

network structure and weights with good generalization performance (Palmes &

Usui, 2005).

Publications related to the evolutionary neural networks are listed in Table 1.3,

Table 1.4, Table 1.5 and Table 1.6. Evolution is made on training or number of nodes

in the hidden layer (topology) or both of them. Crossover and mutation are genetic

operators that are basically used as the evolutionary algorithm.

Table 1.3 Publications related to the evolutionary neural networks

Evolution

Type

Evolutionary

Algortihm

Learning

Algorithm
Author(s)

Encoding

type

Publication

Year

(Weight)

Training

Genetic algorithm

(crossover and

mutation)

Back-

propagation
Yao and Liu

Direct

(binary)
1997

Weight and

topology

Genetic algorithm

(crossover and

mutation)

Back-

propagation

Moriarty and

Miikkulainen

Direct

(binary)
1997

(Weight)

Training

Genetic algorithm

(crossover and

mutation)

Back-

propagation

Garcia
Pedrajas,
Hervas-
Martinez

andMunoz-
Perez

Direct

(binary)
2003

Weight and

topology

Genetic algorithm

(crossover and

mutation)

Back-

propagation
Smalz and

Conrad

Direct

(binary)
1994

10

10

Table 1.4 Publications related to the evolutionary neural networks (continued from Table 1.3)

Evolution

Type

Evolutionary

Algortihm

Learning

Algorithm
Author(s)

Encoding

type

Publicati

on

Year

Weight

(Training)

Genetic algorithm

(crossover and

mutation)

Back-

propagation

Montana and

Davis

Direct

(binary)
1989

Weight

(Training)

Genetic algorithm

(crossover and

mutation)

Back-

propagation

Whitley and

Hanson

Direct

(binary)
1989

(Weight)

Training

Genetic algorithm

(crossover and

mutation)

Back-

propagation
Fogel et al.

Direct

(binary)
1990

(Weight)

Training

Genetic algorithm

(crossover and

mutation)

Back-

propagation

Menczer and

Parisi

Direct

(binary)
1992

(Weight)

Training

Genetic algorithm

(crossover and

mutation)

Back-

propagation

Srinivas and

Patnaik

Direct

(binary)
1991

(Weight)

Training

Genetic algorithm

(crossover and

mutation)

Back-

propagation
Whitehead and

Choate

Direct

(binary)
1996

(Weight)

Training

Genetic algorithm

(crossover and

mutation)

Back-

propagation
Haussler et al.

Direct

(binary)
1995

(Weight)

Training

Genetic algorithm

(crossover and

mutation)

Back-

propagation
Seiffert

Direct

(binary)
2001

(Weight)

Training

Genetic algorithm

(crossover and

mutation)

Back-

propagation

Skinner and

Broughton

Direct

(binary)
1995

Weight and

topology

Genetic algorithm

(crossover and

mutation)

Back-

propagation
Angeline et al.,

Direct

(binary)
1994

(Weight)

Training

Genetic algorithm

(crossover and

mutation)

Back-

propagation
Harp et al., 1990 Indirect 1990

11

11

Table 1.5 Publications related to the evolutionary neural networks (continued from Table 1.4)

Evolution

Type

Evolutionary

Algortihm

Learning

Algorithm
Author(s)

Encoding

type

Publication

Year

(Weight)

Training

Genetic algorithm

(crossover and

mutation)

Back-

propagation
Kitano Indirect 1990

Weight and

topology

Genetic algorithm

(crossover and

mutation)

Back-

propagation
Castillo et al Indirect 2000

(Weight)

Training

Genetic algorithm

(crossover and

mutation)

Back-

propagation

Cangelosi and

Elman

Direct

(binary)
1995

Weight and

topology

Genetic algorithm

(crossover and

mutation)

Back-

propagation
Yao and Liu

Direct

(binary)
1997 b

Weight and

topology

Genetic algorithm

(crossover and

mutation)

Back-

propagation

Odri,
Petrovacki,
and
Krstonosic

Direct

(binary)
1993

Weight and

topology

Genetic algorithm

(crossover and

mutation)

Back-

propagation

Hüsken and

Igel

Direct

(binary)
2002

(Weight)

Training

Genetic algorithm

(crossover and

mutation)

Back-

propagation

Caudell and

Dolan

Direct

(binary)
1989

(Weight)

Training

Genetic algorithm

(crossover and

mutation)

Back-

propagation
Branke

Direct

(binary)
1995

(Weight)

Training

Genetic algorithm

(crossover and

mutation)

Back-

propagation

Cant-Paz and

Kamath

Direct

(binary)
2005

Weight and

topology

Genetic algorithm

(crossover and

mutation)

Back-

propagation

Miller, Todd

and Hegde

Direct

(binary)
1989

Weight and

topology

Genetic algorithm

(crossover and

mutation)

Back-

propagation

Seidlecki and

Skalansky

Direct

(binary)
1989

12

12

Table 1.6 Publications related to the evolutionary neural networks (continued from Table 1.5)

Evolution

Type

Evolutionary

Algortihm

Learning

Algorithm
Author(s)

Encoding

type

Publicatio

n

Year

Weight

and

topology

Genetic algorithm

(crossover and

mutation)

Back-

propagation

Yang and

Honavar

Direct

(binary)
1998

Weight

and

topology

Genetic algorithm

(crossover and

mutation)

Back-

propagation

(no hidden

layer)

Pao and

Philips

Direct

(binary)
1995

Weight

and

topology

Genetic algorithm

(crossover and

mutation)

Back-

propagation

(no hidden

layer)

Pao and

Takefuji

Direct

(binary)
1992

Weight

and

topology

Genetic algorithm

(crossover and

mutation)

Back-

propagation
Maniezzo

Direct

(binary)
1994

By examining the literature from traditional neural networks to evolutionary

neural networks, the interaction of classification with artificial neural networks

started in 1989. In the meantime, within this year, genetic algorithms are embedded

into artificial neural networks. Up to 1998, main issues of the artificial neural

networks such as; training, sample size, design and posterior probabilities discussed

in order to classify the datasets more accurate. In consequence of inflexibility of

traditional neural networks to classifications, the researches and publications on this

topic began to decline.

Genetic algorithms are introduced into artificial neural networks at the beginning

of 1990s. Crossover and mutation operators are used for evolution. The selection of

chromosome representation is important for the computation time and effort. Direct

and indirect encoding used starting from the year 1989. Because the indirect

encoding requires real representation, it’s not reasonable for large and complex data

domains. Binary representation is used up to now as direct encoding that is more

13

13

feasible for evolution. Both weight and topology evolution have been taken into

consideration for better performance on true classification rate.

By 2005, alternatives as listed in Table 1.7, are applied to the algorithms.

Backpropagation is omitted in order to give weight to evolutionary algorithm.

Evolutionary programming is established and decision rule is embeded into the

learning algorithm.

Table 1.7 Publications related to the classification with evolutionary neural networks
Evolution

Type

Evolutionary

Algortihm

Learning

Algorithm
Author(s)

Encoding

type

Publication

Year

Weight

and

topology

Genetic algorithm

(crossover and

mutation)

SEPA

(no back-

propagation)

Palmes and
Usui

Direct

(binary)
2005

Weight

and

topology

Genetic algorithm

(crossover and

mutation)

Back-

propagation

Rocha,Cortez
and Neves

Direct

(binary)
2007

Weight

and

topology

Evolutionary

Programming (no

crossover)

Back-

propagation

and decision

rule

Martinez-
Estudillo,
Hervas-
Martinez,
Gutierrez and
Martinez-
Estudillo

Direct

(binary)
2008

Weight

and

topology

Genetic algorithm

(crossover and

mutation)

Back-

propagation
Ang Tan and
Al-Mamun

Direct

(binary)
2008

Weight

and

topology

Genetic algorithm

(crossover and

mutation)

Back-

propagation

Castellani
and
Rowlands

Direct

(binary)
2009

1.6 Overview of Thesis

The thesis consists of six parts. As the classification is explained in detail in

Chapter I with a review, the other main subjects concerning evolutionary algorithms,

artificial neural networks and linkage between the two subjects expressed briefly. In

chapter II, the main components of an artificial neural network are introduced. The

14

14

importance of linear separability and learning algorithms are discussed in a detailed

manner. Neural network training needs some important arguments such as

momentum and cross validation to get success. During learning process, there is a

possibility to tackle up with a local minima. In order to cope with this problem,

backpropagation algortihm is implemented as a supervised learning to the

feedforward neural network.

In Chapter III, an overview of evolutionary algorithms including their paradigms,

and a discussion of previous applications of evolutionary algorithms to neural

networks has been presented.. The types of crossover and mutation operators are

taken into consideration when designing an evolutionary algorithm based artificial

neural network. Chapter IV defines the process of building an evolutionary artificial

neural network. The evolution is implemented through different parts of the neural

network mechanism, so each type of evolving neural networks are examined with a

related litetature review. Chapter V presents the structure of the system developed

for classification via evolutionary neural networks and also the two datasets that are

structurally opposite due to attribute types performed and results obtained are

discussed.

Finally, conclusions are drawn in Chapter VI, and directions for future work

suggested.

 15

CHAPTER TWO

ARTIFICIAL NEURAL NETWORKS

At the core of neural computation, the concepts of distributed, adaptive and

nonlinear computing exist. Neural networks perform computation in a very different

way than conventional computers, where a single central processing unit sequentially

dictates every piece of the action. Neural networks are built from a large number of

very simple processing elements that individually deal with pieces of a big problem.

2.1 The Neuron

A neuron is a computational unit which takes a vector of input values and

produces an output value. Inputs can be received from other neurons or directly as

input. A single output value is generated, which is either sent to each of the neurons

in the next layer or becomes part of the final output of the network.

Figure 2.1 A simple neuron

A processing element (PE) simply multiplies an input by a set of weights, and

nonlinearly transforms the result into an output value. The principles of computation

at the PE level are deceptively simple. The power of neural computation comes from

the massive interconnection among the PEs, which share the load of the overall

processing task, and from the adaptive nature of the parameters (weights) that

interconnect the PEs.

2.2 Mechanics

Neural networks are hand-crafted by experts with years of experience. Two major

drawbacks of this approach are a lack of experts, and a lack of a strict design

16

methodology. The first problem is enough: there simply are not enough experts to

attend to all the potential neural network projects the world has to offer. The second

problem is somewhat more faint and difficult to analyze. No obedient algorithm

exists to optimally determine the parameters for a particular neural network

application. The science of designing neural systems at best is inaccurate as the result

of this complexity. The process is intuitionally driven. A system is needed to

determine neural network designs more efficiently and effectively.

It is impossible to expect that any single neural network will be able to solve any

problem regardless of complexity. To direct to a specific destination of this problem,

research is being conducted into much complex systems. In these systems, several

networks cooperate to solve a problem which would not be solvable by any single

neural network architecture. While the power and flexibility of the resulting

configuration has the potential to outperform simple neural networks, the

combination of multiple networks increases the difficulty of managing the system.

Whereas before a designer had to manage only a single network, the problem

becomes one of designing multiple networks while simultaneously enabling them to

cooperate on the problem at hand. The work load and computation time rises

exponentially with the size of the system.

Strictly speaking, a method is needed to free experts from the inaccurate run time

of manually managed networks. One promising method of solving both problems is

through the help of the use of evolutionary algorithms (EAs). This thesis presents a

systematic approach to automating the design of neural networks for classification

through the use of evolutionary algorithms

2.3 Layer

Normally, a neural network has several layers of PEs. What makes a layer an

effective computational element is that each neuron has different synaptic weights

which, when multiplied with the inputs, give each neuron a different value to which

17

it applies its activation function. All the neurons in a layer have the same activation

function. It is also possible, however, for different neurons in a layer to have

different activation functions.

Figure 2.2 A Layer of Neurons

The diagram below illustrates a simple multilayer perceptron. The circles are the PEs

arranged in layers. The left column is the input layer, the middle column is the

hidden layer, and the right column is the output layer.

Figure 2.3 The simple multilayer perceptron

By adapting its weights, the neural network works towards an optimal solution

based on a measurement of its performance. For supervised learning, the

performance is explicitly measured column is the output layer. The lines represent

weighted connections between processing elements in terms of a desired signal and

18

an error criterion. For the unsupervised case, the performance is implicitly measured

in terms of a learning law and topology constraints.

2.4 Linear Separability

By the comparison of the topology of two-layer and multilayer networks; two-

layer networks are, with regard to fundamentals although not concerning details,

have linear entities. By their nature, they can only classify data that is linearly

separable.

A set of data is considered that is divisible into two classes. The data can be

graphed in two dimensions and the two classes separated by a straight. For

multidimensional data of n dimensions, the data will be separable with an n-

dimensional separation. That is, data in three dimensions will be separable with a

plane, and higher dimensions will be separable with an appropriate hyperplane

(Wasserman, 1993).

Figure 2.4 Separability

Some data, however, are not separable in this manner. The use of additional data

in this manner is not always feasible, as analysis of the dataset to discover such data

may be a non-trivial task.

In that case, a simple two-layer network could be used with an extra input factor

Because of the lack of linear separability, a third dimension is needed that would

19

create separable data can be understood of. A multilayer network can solve this

problem which will not require the use of additional input factors.

The purpose, therefore, of multilayer networks is to solve problems in which the

data is not linearly separable. If the data can be made separable by the addition of

further input factors, this may be desirable as the resulting neural network would be

simpler. However, as this is not always possible, multilayer networks are required.

Multilayer perceptrons (MLPs) overcome the linearity limitations associated with

the perceptron. An MLP with one hidden layer is able to create a bump on the

decision surface in the pattern space, a feature which is impossible with a single layer

perceptron.

In general, adding enough nodes in hidden layers will allow the network to

approximate any continuous function, but adding too many nodes increase the

computational requirements of the network. It can also lead to overfitting to the

training data, as the redundant hidden nodes tend to cause the network to memorize

the training dataset rather than to reflect its general feature properties .

2.5 Learning

The network requires input data and a desired response to each input. The more

data presented to the network, the better its performance will be. Neural networks

take this input-output data, apply a learning rule and extract information from the

data. Unlike other technologies that try to model the problem, artificial neural

networks (ANNs) learn from the input data and the error. The network tries to adjust

the weights to minimize the error. Therefore, the weights embody all of the

information extracted during learning.

Essential to this learning process is the repeated presentation of the input-output

patterns. If the weights change too fast, the conditions previously learned will be

rapidly forgotten. If the weights change too slowly, it will take a long time to learn

20

complicated input-output relations. The rate of learning is problem dependent and

must be judiciously chosen. Each PE in the ANN will simply produce a nonlinear

weighted sum of inputs. A good network output (a response with small error) is the

right combinations of each individual PE response. Learning seeks to find this

combination. In so doing, the network is discovering patterns in the input data that

can solve the problem.

It is interesting that these basic principles are very similar to the ones used by

biological intelligence. Information is gained and structured from experience,

without explicit formulation. This is one of the exciting aspects of neural

computation. These are probably the same principles utilized by evolution to

construct intelligent beings. Like biological systems, ANNs can solve difficult

problems that are not mathematically formulated. The systematic application of the

learning rule guides the system to find the best possible solution.

2.5.1 Network Training

After taking care of the data collection and organization of the training sets, the

network's topology must be selected. An understanding of the topology as a whole is

needed before the number of hidden layers and the number of PEs in each layer can

be estimated. This thesis will focus on multilayer perceptrons (MLPs) because they

are the most common.

Hornick (1991) proved that a single hidden layer provides the network with the

capability of approximating any measurable function from one finite dimensional

space to another to any desired degree of accuracy. Indeed, ANNs having a single

hidden layer have proven to be an important class of network for practical

applications since they can approximate arbitrarily well any functional continuous

mapping from one finite-dimensional space to another, provided the number of

hidden units is sufficiently large (Bishop, 1995).

21

A multilayer perceptron with two hidden layers is a universal mapper (Hassoun

1995). Sontag (1992) showed that two hidden layers are required for

approximating certain classes of discontinuous functions. A universal mapper

means that if the number of PEs in each layer and the training time is not

constrained, then it can be proved that the network has the power of solving any

problem. This is a very important result but it is only an existence proof, so it does

not say how such networks can be designed. The problem is to find out what is the

right combination of PEs and layers to solve the problem with acceptable training

time and performance.

In fact, unless the data is not linearly separable, it can be started without any

hidden layers. The reason is that networks train progressively slower when layers are

added. This error is propagated back through the network to train the weights. It is

attenuated at each layer due to the nonlinearities.

So if a topology with many layers is chosen, the error to train the first layer's

weights will be very small. Hence training times can become excruciatingly slow. As

training times grow exponentially with the number of dimension of the network's

inputs, all efforts should be made to make training easier.

This point has to be balanced with the processing purpose of the layers. Each

layer increases the discriminant power of the network. For instance, a network

without hidden layers is only able to solve classification problems where the classes

can be separated by hyper-planes.

2.5.2 Momentum

The momentum term puts a weight on how much a synapse's previous weight

adjustment should effect its current weight adjustment. The momentum term is

multiplied by the previous result of the learning formula, that is, the previous weight

adjustment.

22

An ad hoc departure from steepest descent is to add memory to the recursion

through momentum term. The change in parameter vector depends not only on

the current gradient but also on the most recent change in parameter vector:

1 1k k k k k kw w g        for 0k 

 is called the momentum constant. Wang & Principe (1999) recommend setting 

to a value between 0.5 and 0.9. Using momentum with backpropagation both speeds

up and stabilizes a neural network's convergence to a set of weight values.

Momentum also helps a network to avoid local minima in the error function where

gradient descent alone may cause the weight to become stuck. Momentum keeps the

weights changing in the flat areas of the error curve and smooths out the weight's

changes when the gradient bounces back and forth between the sides of a narrow dip

in the error function curve. So a high frequency smoothing effect is gained through

momentum term. The change in parameter vector depends not only on the

current gradient 1kg  but also in an exponentially decaying manner (0 1)  on

all gradients.

The benefit of a momentum term is two-fold, effectively dealing with both the

major problems discussed above. First, the time it takes the network to train drops.

This is due to the momentum term influencing the change in synaptic weights. Once

the network is training in one direction toward the ideal point, the momentum term

allows it to pick up speed.

Since momentum is applied to each iteration, the effect snowballs. The training

actually picks up speed, making increasingly larger jumps toward the target value

until it arrives at or passes over the target value. This leads to the second case, that of

passing over the target value.

Momentum also solves the thrashing problem. When a network oversteps its

target value, the next pass may recalculate the same amount of correction as the

original error or some portion thereof to enable a cycle over several updates. With

23

momentum, the adjustment in the new, opposite direction is added to a percentage of

the direction in which the network was previously moving. In the case of an

overstepped target, these two values will have opposite signs. While this may cause

an overstep in the opposite direction, it must be less than the previous overstep due to

the momentum term.

This process continues, with each overstep of the target value becoming smaller

as the momentum term influences the current weight change with the previous one.

Eventually, the synaptic weights will converge upon the target values.

If the succession of recent gradients has tended to alternate directions, then the

sum will be relatively small and only small changes will be made in the parameter

vector. This could occur in the local minimum area, successive changes would just

serve to bounce back and forth past the minimum. If, however, recent gradients tend

to align, larger changes needed in the parameter vector and thereby move more

rapidly across a large region of descent and possibly across over a small region of

ascent that screened off a deeper local minimum. Of course, if the learning rate is

well chosen, then successive gradients will tend to be orthogonal and a weighted sum

will not cancel itself out.

Thus, momentum allows a network to train faster, both by permitting a higher

learning rate and snowballing synaptic weight adjustment. When using high learning

rates, momentum also tempers a backpropagation network's tendency to thrash

around the target values without ever actually achieving them.

2.5.3 Cross Validation

During training, the input and desired data will be repeatedly presented to the

network. As the network learns, the error will drop towards zero. Lower error,

however, does not always mean a better network. It is possible to overtrain a

network. To avoid overtraining, a validation set should be used. The validation set is

used as a pseudo-test set and is not used for training but for stopping criteria.

24

Training stops when minimum validation error is reached and the current network

state is used on the testing set. However, as there are many local optima in the

validation set, there are some issues when using it. During the initial phase of

training, the error on validation set will be oscillatory .Also; Finnoff, Hergert &

Zimmermann (1993), Lang, Waibel & Hinton (1990), Morgan & Bourlard (1990)

and Prechelt (1994) suggested to proceed the training untill the error increases.

When using cross validation, a decision should be made to decide how to divide

data into a training set and a validation set, also called the test set. The network is

trained with the training set, and the performance checked with the test set. The

neural network will find the input-output map by repeatedly analyzing the training

set. This is called the network training phase. Most of the neural network design

effort is spent in the training phase (Ang, Tan & Al-Mamun, 2008).

Training is normally slow because the network's weights are being updated based

on the error information. At times, training will strain the patience of the designer.

But a carefully controlled training phase is indispensable for good performance, so

be patient.

There is a need to monitor how well the network is learning. One of the simplest

methods is to observe how the cost, which is the square difference between the

network's output and the desired response, changes over training iterations. This

graph of the output error versus iteration is called the learning curve. The training

phase also holds the key to an accurate solution, so the criterion to stop training must

be very well delineated. The goal of the stop criterion is to maximize the network's

generalization.

It is relatively easy to adapt the weights in the training phase to provide a good

solution to the training data. However, the best test for a network's performance is to

apply data that it has not yet seen.

25

To test the network, the weights must be freezed after the training phase and apply

data that the network has not seen before. If the training is successful and the

network's topology is correct, it will apply its past experience to this data and still

produce a good solution. If this is the case, then the network will be able to

generalize based on the training set.

A network with enough weights will always learn the training set better as the

number of iterations is increased. However, this decrease in the training set error is

not always coupled to better performance in the test set. When the network is trained

too much, the network memorizes the training patterns and does not generalize well.

A practical way to find a point of better generalization is to set aside a percentage

of the training set and use it for cross validation. the error in the training set and the

validation set should be observed. When the error in the validation set increases, the

training should be stopped because the point of best generalization has been reached.

Cross validation is a powerful method to stop the training.

2.5.4 Sensitivity Analysis

As training a neural network, the effect that each of the network inputs is having

on the network output should be observed. This provides feedback as to which input

channels are the most significant. From there, the input space can be pruned by

removing the insignificant channels. This will reduce the size of the network, which

in turn reduces the complexity and the training times.

Sensitivity analysis is a method for extracting the cause and effect relationship

between the inputs and outputs of the network. The network learning is disabled

during this operation such that the network weights are not affected. The basic idea is

that the inputs to the network are shifted slightly and the corresponding change in the

output is reported either as a percentage or a raw difference.

26

2.6 Artificial Neural Network Learning Algorithms

The ANN methodology enables us to design useful nonlinear systems

accepting large numbers of inputs, with the design based solely on instances

of input–output relationships. For a training set T consisting of n argument value

pairs and given a d-dimensional argument x and an associated target value t will be

approximated by the neural network output. The function approximation could be

represented as:

 (,) : 1:i iT x t i n 

In most applications, the training set T is considered to be noisy and the goal is

not to reproduce it exactly but rather to construct a network function that generalizes

well to new function values by selecting the weights to learn the training set is a

solution to the problem. The notion of closeness on the training set T is

typically formalized through an error function of the form;

2

1

n

T i i
i

y t


 

where iy is the network output. The target is to find a neural network  such that the

output (,)i iy x w is close to the desired output it for the input ix (w = strengths of

synaptic connections). The error ()T T w  is a function of w because y 

depends upon the parameters w defining the selected network  .

The objective function ()T w for a neural network with many parameters defines

a highly irregular surface with many local minima, large regions of little slope and

symmetries. The common node functions such as hyperbolic tangent (tanh) are

differentiable to arbitrary order through the chain rule of differentiation, which

implies that the error is also differentiable to arbitrary order. For ()T w a Taylor’s

27

series expansion in w can be made so that a truncation can be met due to a local

minimum.

The gradient (first partial derivative) vector is represented by

() T
T w w

i

g w
w



 

     

The gradient vector points in the direction of steepest increase of T and its negative

points in the direction of steepest decrease. The second partial derivative also known

as Hessian matrix is represented by H:

2

2 ()() () () T
ij T

i j

wH w H w w
w w
 

   
 

The Taylor’s series for T , assumed twice continuously differentiable about 0w , can

now be given as

20 0 0 0 0 0 01() () () () () ()() ()
2

T T T
T Tw w g w w w w w H w w w O w w        

Where ()O  denotes a term that is of zero-order in small  such that

0
lim(() /) 0O


 




2.6.1 Multiple Minima Problem In Neural Networks

A long recognized bane of analysis of the error surface and the

performance of training algorithms is the presence of multiple stationary points,

including multiple minima. Analysis of the behavior of training algorithms generally

28

use the Taylor’s series expansions discussed earlier, typically with the expansion

about a local minimum 0w .

However, the multiplicity of minima confuses the analysis because it can be

possible to converge to the same local minimum. Hence the issue of many minima

is a real one. According to Auer, Herbster & Warmuth (1996), to prevent this

situation, differentiable learning algorithms can be used.

Different learning algorithms have their staunch proponents, who can always

construct instances in which their algorithm perform better than most others. There

are three types of optimization taken into consideration that are used to minimize the

error function, ()T w .

Gradient descent and conjugate gradient are general optimization methods whose

operation can be understood in the context of minimization of a quadratic error

function. Although the error surface is not quadratic, for differentiable node

functions, it can be in the neighborhood of the local mininum, such an analysis

provides information about the behaviour of the training algorithm over a number of

iterations up to its goal.

The third method, Levenberg-Marquardt is specifically adapted to minimization

of an error function that arises from a squared error criterion of the form.

When training a neural network, the output error should be minimized at each

node. Gradient descent is an iterative optimization process which moves a weight

towards the minimum of the error function. In essence, the process finds the slope of

the error curve by taking its derivative; multiplies it by a stepsize factor, the learning

rate discussed; and subtracts this result from the current weight value. the value is

subtacted from the weight because the negative of the gradient represents the

direction of steepest descent down the curve of the error function. As running

through all the epochs in a training cycle, it will be possible to be closer to the

minimum error and the weight at each node approaches an ideal value.

29

2.6.2 Backpropagation Algorithm

The problem with the neural network learning models described thus far is that

they define weight changes for the output layer only; the weight changes are based

on an error term only available at the output layer. This was the problem that

Rosenblatt encountered: a lack of a teaching process (error term) for the hidden units.

To solve linearly inseparable problems, multilayer networks are required. Thus, a

method of training the hidden layer is called for.

Backpropagation refers to the backwards distribution of error used to train a

multilayer network. In particular, backpropagation proposes a method of estimating

the error of a hidden layer in a neural network and so permits the use of the learning

law for hidden units. This allows for adjustment of the hidden layer's synapses even

though the desired output of the hidden units is not known. The process could be

recursively applied for more hidden layers.

Backpropagation is one of the most commonly used supervised training

algorithms. However, because backpropagation is a supervised learning algorithm, it

is required that a set of fact data be obtainable which associates input patterns with

correct outputs. Also, backpropagation has few if any self-organizing aspects and as

such a very good sense of the problem with regards to network topology (number of

units per layer) is necessary (Blum, 1992).

Backpropagation provides an effective method for evaluating the gradient vector

needed to implement the steepest descent, conjugate gradient, and Levenberg-

Marquardt algorithms. Backpropagation differs from straightforward gradient

calculations using the chain rule for differentiation in the way it organizes efficiently

the gradient calculation for networks having more than one hidden layer.

Backpropagation iteratively selects a sequence of parameter vectors  , 1:kw k T

for a moderate value of running time T, with the goal of having  () ()T kw k 

30

converge to a small neighbourhood of a good local minimum rather than the usually

inaccessible global minimum (Fine, 1999).

* min ()T Tw W

w 




The simplest steepest descent algorithm uses the following weight update in the

direction of k kd g  with a learning rate or step size k .

1k k k kw w g  

A good choice *
k for the learning rate k for a given choice of descent direction

kd is the one that minimizes (1)k  .

1 arg min ()k k kw d


    

To carry out the minimization,

* *

(1) () 0
k k

k k kw w d
   

  
  

   
 

 

To evaluate this equation, it must be noted that

1
() Tk k

k k
w d g d 
 

 




and for optimal learning rate, the orthogonality condition should be satisfied

1 0T
k kg d 

31

When the error function is not specified analytically, then its minimization along

kd can be accomplished through a numerical line search for kd or through

numerical differentiation. The line search avoids the problem of setting a fixed step

size. Analysis of such algorithms often examine their behavior when the error

function is truly a quadratic. In the current notation,

1k k k kg g Hd  

Hence the optimality condition derived from the orthogonality condition for the

learning rate k becomes

*
T
k k

k T
k k

d g
d Hd






When search directions are chosen via k k kd M g  , with kM symmetric, then the

optimal learning rate is

*
T
k k k

k T
k k k k

g M g
g M HM g






*
T
k k

k T
k k

g g
g Hg






*

k is the reciprocal of an expected value of the eigenvalues  i of the Hessian with

probabilities determined by the squares of the coefficients of the gradient vector

kg expanded in terms of the eigenvectors  ie of the Hessian:

2

*
1

()1 TP
k i

i i i T
ik k k

g eq q
g g


 

  

32

That algorithm suffers from greed. The successive directions do not generally

support each other in that after two steps; the gradient is usually no longer orthogonal

to the direction taken in the first step.

In the quadratic case, there exists a choice of learning rates that will drive the

error to its absolute minimum in no more than p + 1 steps where p is the number of

parameters (Fine, 1999). To see this,

* * * * 11 1() () () () ()
2 2

T Tw w w w H w w w g H        

It is easily verified that if ()k kg g w then

0
1

()
k

k jg I H g    

For k p , it can be achieved that 0kg  by choosing 1,..., px x any permutation of

11/ ,...,1/ p  , the reciprocals of the eigenvalues of the Hessian H; the resulting

matrix annihilates each of the p eigenvectors and any other vector can be shown as

their weighted sum. The step size is held at a constant value k  ,

The simplicity of this approach is belived by the need to carefully select the

learning rate. If the fixed step size is too large, then there may be oscillation or

divergent behaviour so that monotone reduction of the error function T can be lost.

A high learning rate may encounter a thrashing problem. Since the learning rate is

constant, the network will thrash; that is, it will alternate between values on both

sides of the desired value without ever actually converging to the desired value.

As the network converges upon the ideal value for the data, the high learning rate

causes it to overshoot that ideal value. Then, on the next training cycle, the network

will generate a synaptic update in reverse (the error will have the opposite sign) in an

attempt to remedy the over-learning on the previous pass. If the step size is too small,

much more iterations will be needed to get better results.

33

It is not practical to determine the optimal setting for the learning rate before

training, and, in fact, the optimal learning rate changes during the training process,

as the algorithm moves across the performance surface.

An adaptive learning rate attempts to keep the learning step size as large as

possible while keeping learning stable. The learning rate is made responsive to the

complexity of the local error surface. Basically, the initial network output and error

are calculated. At each epoch new weights and biases are calculated using the current

learning rate. New outputs and errors are then calculated.

Backpropagation changes each weight of the network based on its localized

portion of the input signal and its localized portion of the error. The change has to be

proportional (a scaled version) of the product of these two quantities. The

mathematics may be complicated, but the idea is very simple. When this algorithm

is used for weight change, the state of the system is doing gradient descent; moving

in the direction opposite to the largest local slope on the performance surface. In

other words, the weights are being updated in the direction of down.

2.6.2.1 Training Problems In Backpropagation

The search for the optimal weight values can get caught in local minima, so that

the algorithm thinks it has arrived at the best possible set of weights even though

there are other solutions that are better. Backpropagation is also slow to converge. In

making the process simple, the search direction is noisy and sometimes the weights

do not move in the direction of the minimum. Finally, the learning rates must be set

heuristically.

The problems of backpropagation can be reduced. The slowness of convergence

can be improved by speeding up the original gradient descent learning. Momentum

learning is often recommended due to its simplicity and efficiency with respect to the

standard gradient.

34

2.6.2.1.1 Initial Weights. The most obvious problem encountered in training

backpropagation networks is that of their initial weights.

Gradient descent refers to the practice of minimizing the error of a function over

several iterations. In a backpropagation network, a generalized least mean squared

algorithm is used to modify network weights. The goal is to minimize the mean

squared error between the desired and actual outputs of the network. The error for a

pattern p is given by :

2

,()p p k
k

E l

with k the node from the output layer and l the squared error between the output and

desired value, backpropagation must discover a vector that minimizes Ep. Since the

output of the network is a function of its weights, so must E be a function of the

network weights (Mehrotra, 1997).

Thus, the starting weights of a neural network affect not only the initial outputs

but also the error and, thus, the gradient descent. In other words, every set of starting

weights for a backpropagation network has a different gradient descending to the

state of minimum error.

The most commonly used method to combat the problem of initial starting

weights is to run multiple trials of multiple networks. The idea is to eliminate the

problem by running a particular network architecture with a number of different

starting weights.

The performance of a particular set of network parameters is determined by

considering all the sample runs of that network and comparing it to those of networks

with other parameters. Since there are so many network parameters, such as hidden

units, layers, activations, and so forth, adding even more trials makes the number of

potential runs far too large for an exhaustive search. Rather, trials tend to be guided

35

either by previous knowledge about the data, or the intuition of the expert crafting

the network.

Clearly a system which removes the burden of this trial and error process from the

neural network professional is desirable. The running time of such a system need not

be an improvement over the previous method; it is the selection strategy that must

first be optimized.

2.6.2.1.2 Number of Hidden Units. One of the most difficult choices a neural

network designer must make in designing a backpropagation network is how many

hidden units to employ. To begin, a small number of hidden units is usually better at

generalizing to unseen data. A large number of hidden units tends to be a superior

memorizer; however, the data to be learned can make a significant difference.

The number of nodes in the hidden layers defines the complexity and the power of

the neural network model to describe underlying relationships and structures

inherent in a training data (Kavzoglu & Mather, 2003).

A three-layer network (input, hidden, and output layers) is sufficient to approximate

continuous functions arbitrarily well over a bounded compact set. Kimes,

Gastellu-Etchegorry & Este (2002) highlights that a network with one hidden

layer can form an arbitrarily close approximation to any continuous nonlinear

mapping, assuming only that the transfer function computed by a neuron is

nonconstant, bounded, continuous and monotone increasing.

Berberoglu, Curran, Lloyd & Atkinson (2007), Aitkenhead & Aalders (2008) and

Kavzoglu (2009) have reported the advantages of the use of networks two hidden

layers in classification.

For simple data for which the dimensionality, or number of classes, is known, it is

often optimal to choose one hidden unit per data class. Unfortunately, data sets from

the real world are not always well structured. Classes may overlap, be discontiguous,

36

or have other properties which mean that a greater or fewer number of hidden nodes

may actually be optimal. Combining this with the fact that each network has to be

run many times with different starting values, and a guaranteed optimal solution

becomes intractable.

A simple example of an analytic guideline for choosing the number of hidden

units is the geometric pyramid rule (Koehler,1991). It asserts that the appropriate

number of neurons follows a pyramid shape, with number decreasing from the input

toward the output. In particular, the number of neurons assigned to each layer

follows a geometric progression. Thus, if a three-layer network with n input neurons

and m output neurons is being designed, the hidden layer would have the square root

of m*n neurons. A similar rule applies to four-layer networks, as follows:

1 3(/)r n m

2
1NumberOfHiddenUnits mr

2NumberOfHiddenUnits mr

 2.6.2.1.3 Length Of Training. Once a few networks are chosen with numbers of

hidden units that are likely to work well. The designer must decide how long to train

the network for. If, as is usually the case, the network will have to generalize

previously unseen data, then training the network for a long period of time may be

counterproductive; the network will memorize the data rather than extract the

patterns contained therein. This is less of a problem if one of the networks has an

appropriate number of hidden nodes to generalize sufficiently.

However, the previous section discussed the problems in determining such a

number to any degree of certainty. Similarly, training the network for too short a

time results in a network that performs sub-optimally on the known data. Ideally, if a

method could be devised for selecting the number of hidden units with near-

optimality, this problem would largely disappear. Alternately, a method of stopping

training at the optimal point in training would also solve this problem. Again, trial

37

runs of different lengths only compound the number of required trials, as they must

be combined with the previous problems.

2.6.2.1.4 Evaluation Strategies. The final stumbling point in this maze of pitfalls

is the evaluation strategy. If data that the network has been trained on is used, this

biases the networks in favor of memorized patterns. Using test data (data withheld

during the training phase) to evaluate the network and determine how to use that

network's parameters in future iterations can be considered to contradict the idea of

test data.

That is, the held out data is, in fact, influencing the network architecture. In some

cases, it is therefore deemed necessary to hold out a third set of data as the final test

set. Thus, in addition to selecting the discussed training parameters of the networks,

selecting the evaluation strategy is itself no trivial decision.

2.6.2.2 Nonlinear Activation Functions

Backpropagation uses an optimization algorithm called gradient descent to

determine each node's contribution to the final network output in order to adjust the

weights when training the network. Gradient descent requires taking the derivative of

the activation function, but the threshold step function traditionally used in the multi

perceptron neuron and the perceptron is not differentiable. To solve this problem, a

differentiable, nonlinear function can be used with a sigmoid shape (an S shape)

instead of the standard threshold. Two common, nonlinear activation functions used

in artificial neural networks, the logistic and hyperbolic tangent functions are main

with the threshold activation function .

The most commonly employed sigmoid function is the logistic function:

1()
1 xf x

e


38

which is a strictly increasing function that exhibits smoothness and asymptotic

properties.

The hyperbolic tangent (tanh) function is as:

1()
1

x

x

ef x
e










The practical difference between these two sigmoid functions is that the logistic

function outputs values between (0,1), whereas the hyperbolic tangent outputs from

(-1,1). Due to its structure, hyperbolic tangent (tanh) function is an ideal activation

function. Therefore tanh function shall be used for activation function (Kalman &

Kwasny, 1992).

2.6.3 Conjugate Gradient Algorithm

Conjugate gradient algorithm is a member of a class of learning algorithms called

second order methods.

Standard gradient descent algorithms (like step and momentum) use only the local

approximation of the slope of the performance surface (error versus weights) to

determine the best direction to move the weights in order to lower the error. Second

order methods use or approximate second derivatives (the curvature instead of just

the slope) of the performance surface to determine the weight update.

If the performance surface is quadratic (which is only true in general for linear

systems), then using a second order method can find the exact minimum in one step.

In nonlinear systems like neural networks, multiple steps will be needed. Each

step, however, will typically lower the error much more than a standard gradient

descent step. The problem with second order methods is that they require many more

computations for each weight update. An algorithm that makes many poor decisions

39

may perform better on average than a much slower algorithm that makes very good

decisions.

2.6.3.1 Weight Update Equations

The conjugate gradient method is an excellent tradeoff between speed of

computation and performance. The conjugate gradient method can move to the

minimum of a N-dimensional quadratic function in N steps. By always updating the

weights in a direction that is conjugate to all past movements in the gradient, all of

the zig-zagging of first order gradient descent methods can be avoided. At each step,

a new conjugate direction is determined and movement to the minimum error along

this direction is maintained.

If the performance surface is quadratic, information from the Hessian can

determine the exact position of the minimum along each direction, but for non-

quadratic surfaces, a line search is typically used. In theory, there are only N

conjugate directions in a space of N dimensions, so the algorithm is reset each N

iterations. The advantage of conjugate gradient method is that there is no need to

store, compute, or invert the Hessian matrix. The equations are:

() ()w n p n 

(0) (0)p g 

(1) (1) () ()p n g n n p n    

(1) ()()
() ()

T

T
g n g nn

g n g n




() arg min((() ())n E w n p n  

where w are the weights, p is the current direction of weight movement, g is the

gradient (backprop information), p is a parameter that determines how much of the

past direction is mixed with the gradient to form the new conjugate direction. The

equation for a is a line search to find the minimum mean squared error (MSE) along

40

the direction p. The line search in the conjugate gradient method is critical to finding

the right direction to move next. If the line search is inaccurate, then the algorithm

may become brittle.

 The Scaled Conjugate Gradient method (SCG) is the method that avoids the line

search procedure. One key advantage of the SCG algorithm is that it has no real

parameters. The algorithm is based on computing H*d where d is a vector. The

Hessian times a vector can be efficiently computed in O(W) operations and contains

only W elements. To ensure that the Hessian is positive definite, an offset is added to

the Hessian, H l . The formula for the step size a as in the conjugate gradient is:

2()

T

T

p g
p H l p p


 

 
 

where p is the direction vector and g is the gradient vector as in the conjugate

gradient method. The parameter  varies from iteration to iteration when  is high,

the learning rate is small (the Hessian cannot be trusted), and when it is low the

learning rate is large.

Doing a first order approximation, this approximation can be made:

() ()() E w p E ws H l p p 


  
   

which means that the Hessian calculations can be replaced with one additional

evaluation of the gradients (backpropagation pass). The parameter  must be set to

ensure that the H l is positive definite so that the denominator will always be

positive. If the value of the denominator is negative,  is increased by a value  so

that it will be positive. Additionally,  is adjusted based upon how closely the

current point in the performance surface approximates a quadratic if the performance

surface is far from quadratic,  can be increased that would cause resulting in a

41

smaller step size. The value  is used to determine closeness to quadratic and is

estimated via:

2(() ()
T

E w E w p
p g



 

 

This algorithm requires a number of global scalar computations. All matrix

calculations can be done locally (parallel). It also requires one backpropagation pass

to compute ()E w p  and one forward pass to compute ()E w p . Conjugate

gradient learning requires batch learning in the network. In general, each conjugate

gradient batch weight update will take twice as long as a standard batch weight

update using step or momentum gradient search.

2.6.4 Levenberg–Marquardt Algorithm

The Levenberg-Marquardt (LM) algorithm is one of the most appropriate higher-

order adaptive algorithms known for minimizing the mean squared error of a neural

network. It is a member of a class of learning algorithms called pseudo second order

methods. Standard gradient descent algorithms use only the local approximation of

the slope of the performance surface (error versus weights) to determine the best

direction to move the weights in order to lower the error. Second order methods use

the Hessian or the matrix of second derivatives (the curvature instead of just the

slope) of the performance surface to determine the weight update, while pseudo-

second order methods approximate the Hessian.

In particular, the Levenberg-Marquardt utilizes so called Gauss-Newton

approximation that keeps the Jacobian matrix and discards second order derivatives

of the error. If the performance surface is quadratic (which is only true in general for

linear systems) then using a second order method can find the exact minimum in one

step.

42

In nonlinear systems like neural networks, the big issue is that the performance

surface may be non convex, and so quadratic approximations may require several

steps for convergence, or more importantly they may diverge. A key advantage of the

LM approach is that it defaults to the gradient search when the local curvature of the

performance surface deviates from a parabola, which may happen often in neural

computing.

In that learning algorithm, the error function is a sum of squares. Notation to the

error vector and its Jacobian with respect to the network parameters w:

, 1, , , 1, ,j
ij

i

e
J J i p j n

w


   


 

The Jacobian matrix is a large p × n matrix, all of whose elements are

calculated directly by backpropagation technique. The p dimensional gradient g for

the quadratic error function can be expressed as:

1
() ()

n

i i
i

g w e e w Je


  

and the Hessian matrix by,

2 2 22

1 1

1
2

n n
k k k kT

ij k
k ki j i j i j i j

e e e eH H e
w w w w w w w w


 

    
                

where,

 2
1

n
i ii

D e e


  and the expression yields as:

() TH w JJ D 

The key to the LM algorithm is to approximate this expression for the

Hessian by replacing the matrix D involving second derivatives by the much simpler

43

positively scaled unit matrix I . The LM is a descent algorithm using this

approximation in the form,

1[]T

kM JJ I  

1 ()k k k k kw w M g w  

Successful use of LM requires approximate line search to determine the rate k .

The matrix TJJ is automatically symmetric and non-negative definite. The typically

large size of J may necessitate careful memory management in evaluating the

product TJJ . Any positive  will ensure that kM is positive definite, as required by

the descent condition. The performance of the algorithm thus depends on the choice

of  .

When the scalar  is zero, this is just Newton’s method, using the

approximate Hessian matrix. When  is large, this becomes gradient descent

with a small step size. As Newton’s method is more accurate,  is decreased after

each successful step (reduction in performance function) and is increased only when

a tentative step would increase the performance function. By doing this, the

performance function will always be reduced at each iteration of the algorithm.

There is only one parameter that can be set the Initial Lambda. The Lambda

parameter governs the step size, and it is dynamically adjusted based on the direction

of the error. If the error decreases between weight updates, then the Lambda

parameter is decreased by a factor of 10. Conversely, if the error increases then

Lambda is increased by a factor of 10. The Initial Lambda is only specifies the

Lambda for the first epoch. This normally does not need to be changed from the

default.

In this thesis, basically, multilayer perceptron neural network with one hidden

layer and optimum number of hidden layers were varied from 1 to 5 and the speed

of convergence and generalization error for each of the three learning algorithms was

44

observed. The effect of node activation functions and tanh-sigmoidal activation

function (TSAF). Computational complexities of the different learning algorithms

were also noted during each event. The experiments were replicated 5 times each

with a different starting condition (random weights) and the best (minimum) errors

were reported. No stopping criterion, and no method of controlling generalization is

used other than the maximum number of updates (epochs). All networks were

trained for an identical number of stochastic updates .

 45

CHAPTER THREE

EVOLUTIONARY ALGORITHMS

Evolutionary algorithms are identified by four main paradigms, which are

summarized as follows (Freitas, 2000):

 Genetic algorithms

 Genetic programing

 Evolutionary strategies

 Evolutionary programming

3.1 Genetic Algorithms

Genetic algorithms are a randomized search method and just one form of

evolutionary algorithms. They use randomness combined with laws of probability to

direct search in a direction where improvement is likely. More correctly, genetic

algorithms direct a search in many directions that are likely. Goldberg (1989)

identifies four ways that genetic algorithms differ from the traditional methods

discussed above:

 Genetic algorithms work with a coding of the parameter set, not with the

parameters themselves. That is the algorithm which generates many

possibilities simultaneously and then evaluates them.

 Genetic algorithms use a population of potential solutions. They are

inherently parallel, and not restricted to considering a single point at a time as

other methods are. This also is the reason for their robustness and ability to

overcome local peaks in a search space.

 Genetic algorithms use a fitness, or objective function to determine viability

of potential solutions. They do not use derivatives, or "other auxiliary

knowledge." Thus they can be tailored to any domain where some judgement

of the "goodness" of a result can be made, regardless of whether or not the

domain has a search space that conforms nicely to the laws of calculus.

46

 Genetic algorithms guide the transitions in the search space using

probabilistic, not deterministic rules. Unlike a hill climbing search, for

example, which might have a rule to the effect of "if a higher point exists

adjacent to the current one, choose it", genetic algorithms assign likelihood of

a good search direction based on the results of the pay off function relative to

other directions being explored.

Thus, genetic algorithms produce a robust search algorithm which works across a

wide variety of domains, many of which are not suited to traditional search

algorithms. Their inherent parallelism allow them to search a space more efficiently

and quickly than many traditional algorithms. Though they are randomized, they are

not random techniques; they use randomness as a tool to direct search in promising

directions.

Genetic algorithms can be useful for finding a good solution to a problem when it

is not known how to formulate an algorithm to find the ideal solution in a direct,

step-by-step manner. Starting with a random population of individuals, these

individuals each have a chromosome composed of genes which encode a solution to

the problem trying to be solved. For initial population, the gene values are assigned

to a random value.

Thus, the population of individuals starts off as random solutions to the problem.

Because they are randomly generated, these solutions tend to be poor ones. Although

genetic algorithm (GA) does not require us to know how to create a good solution, it

does require to be able to determine how good a given solution is. This is most often

an easy task. In classification, benchmark can be made on how well a classifier

solution performs with a test dataset. GA uses what is called a fitness function to

determine how good a solution is. This fitness function is used to assign the

individuals in the population a fitness value.

Genetic algorithms simulate natural evolution, and just like real-world entities. It

is the fitter individual that tends to survive. The fitter individual has a more likely

47

chance of mating, having offspring, and thereby further spreading its genetic

properties within the population. These individuals are taken through many

generations, and although they start out as random and generally poor solutions to

the problem at hand, the process of artificial evolution hones their chromosomes until

the fittest individual is picked out of the population and create a very good solution

from the blueprint encoded in its genes.

The steps for a basic genetic algorithm are as follows :

1. Create an initial population with random gene values.

2. Apply the fitness function to individuals to determine their fitness.

3. Loop until a stopping criterion is met.

4. Select individuals based on fitness.

5. Create offspring by applying genetic operators to the selected individuals.

6. Apply the fitness function to the offspring.

7. Update the current population.

3.2 Evolutionary Strategies

Evolutionary Strategies (ES) uses a real-valued vector to represent an individual.

The representation often includes parameters to control mutation operations on the

individual in addition to the values for the variables in the problem being solved.

Mutation is the primary genetic operator; however, later implementations began to

use crossover as well.The mutation operator is usually applied according to a normal

distribution by which small mutations are more probable than large ones.

48

Set generation t = 0.

Create the initial population, P(t).

Evaluate the fitness of each individual in P(t).

While ending condition end(P(t),t) is not satisfied, do

Calculate P'(t)= recombination(P(t)), and P"(t) = mutation(P'(t))

 Evaluate P"(t).

 Q = set of individuals chosen from the original population, P(t).

 Reproduce next population, P(t + 1) = selection(P"(t) U Q),

 Set t = t + 1.

Figure 3.1 The pseudocode for an evolutionary algorithm

3.3 Genetic Programming

Genetic Programming (GP) is frequently used to evolve programs to perform a

specific task. The individual is often represented as a binary tree. This representation

is useful for programming languages such as LISP where the operator or function can

form the root node of a subtree and the operands form the leaf nodes.

3.4 Evolutionary Programming

Evolutionary Programming (EP) is similar to ES in that it uses a real-valued

vector to represent an individual. EP systems use a similar, normally distributed,

mutation operator as their exploratory operator, and they generally do not use

crossover. EP was originally researched as a technique to evolve finite-state

machines .

These four paradigms of evolutionary algorithms are similar in many ways. It can

be difficult to define clear boundaries between the types as they all use a similar

methodology and, within a given paradigm, many different algorithms are possible.

49

Table 3.1 The differences of evolutionary algorithm paradigms

 GA GP ES EP

Chromosome binary string tree-structured
program

real vector +
strategy parameters

finite state
machine

Mutation reverse 1-bit
replace
random
subtree

perturb strategy param.
then mutate target vector

node, link
operators

Recombination crossover
(primary)

subtree
crossover
(primary)

separate recombination
on target vector and

parameters
not used

Selection probabilistic varies deterministic deterministic

Evolutionary strategies and evolutionary programming differ from genetic

algorithms and genetic programming in that they usually apply genetic operators

before selecting individuals based on their fitness. Genetic algorithms and genetic

programming generally apply natural selection first and then apply crossover and

mutation operators. As research continues, however, characteristics of one paradigm

are adopted by other paradigms, an experiencing an overall unification effect in the

field of evolutionary algorithms.

3.5 Genetic Operators

For every generation in a genetic algorithm, genetic operators can be applied on

selected individuals in the population. The two most common genetic operators in

genetic algorithm are crossover and mutation.

3.5.1 Crossover

The primary genetic operator in GA systems is generally crossover, also called

recombination. It simulates the process of mating and having offspring in nature. In

biological sexual reproduction, the offspring receive a part of each of the two parents'

genetic material. The same is true of crossover in genetic algorithms. Two parent

individuals are selected from the population to create children, whose genetic

material is a combination of that of their parents.

50

To create the chromosomes in the children, a randomly determined locus or

crossover point is set in the parents' chromosomes. Most genetic algorithm

implementations create two children as the result of crossover. The first child

receives a copy of the first parent's genes up to the crossover point and the second

parent's genes after that point. The opposite is true for the second child; it receives

the second parent's genes to the left of the locus, and the first parent's genes to the

right.

3.5.1.1 Crossover Types

Crossover types used for application are; one point, two point, arithmetic and

heuristic crossovers.

3.5.1.1.1 One Point. Randomly selects a crossover point within a chromosome

then interchanges the two parent chromosomes at this point to produce two new

offspring. Consider the following two parents that have been selected for crossover.

The "|" symbol indicates the randomly chosen crossover point.

Parent 1: 11001|010

Parent 2: 00100|111

After interchanging the parent chromosomes at the crossover point, the following

offspring are produced:

Offspring1: 11001|111

Offspring2: 00100|010

3.5.1.1.2 Two Point. Randomly selects two crossover points within a chromosome

then interchanges the two parent chromosomes between these points to produce two

51

new offspring. Consider the following two parents that have been selected for

crossover. The "|" symbols indicate the randomly chosen crossover points.

Parent 1: 110|010|10

Parent 2: 001|001|11

After interchanging the parent chromosomes at the crossover point, the following

offspring are produced:

Offspring1: 110|001|10

Offspring2: 001|010|11

3.5.1.1.3 Arithmetic crossover. Linearly combines two parent chromosome

vectors to produce two new offspring according to the following equations:

Offspring1 = a * Parent1 + (1- a) * Parent2

Offspring2 = (1 - a) * Parent1 + a * Parent2

where a is a random weighting factor (chosen before each crossover operation). If

the chromosomes contain any integer genes, these genes are rounded after the linear

combination operation. If the chromosome contains any binary genes, uniform

crossover is performed on these genes since arithmetic crossover does not apply.

52

3.5.1.1.4 Heuristic crossover. Uses the fitness values of the two parent

chromosomes to determine the direction of the search. The offspring are created

according to the following equations:

Offspring1 = BestParent + r * (BestParent - WorstParent)

Offspring2 = BestParent

where r is a random number between 0 and 1. It is possible that Offspring1 will not

be feasible. This can happen if r is chosen such that one or more of its genes fall

outside of the allowable upper or lower bounds. For this reason, heuristic crossover

has a parameter (n) for the number of times to try and find an r that results in a

feasible chromosome. If a feasible chromosome is not produced after n tries, the

worst parent is returned as Offspring1. If the chromosomes contain any integer

genes, these genes are rounded after the heuristic crossover operation. If the

chromosome contains any binary genes, uniform crossover is performed on these

genes since heuristic crossover does not apply.

Likewise, schema found in individuals with lower fitness values will tend to

decrease in future generations.

3.5.2 Mutation

Mutation is generally considered to be a secondary genetic operator in genetic

algorithm systems, after crossover. Mutation, however, can play an important role in

the exploration of the search space because it actually changes the gene alleles to

new values rather than simply recombining what already exists in the population.

Mutation can, therefore, introduce a gene value which does not currently exist in any

individual in the population.

In its simplest form, when an individual's chromosome consists of a binary string,

the mutation operator inverts the bit value for a randomly selected gene. (It flips the

bit from "1" to "0" or from "0" to "1".) A more conservative method is not to

53

automatically invert the bit, but rather to calculate a new bit value (with a 50%

chance for a "0" or a "1"). The new allele may or may not match the original value.

More complex chromosomes, those which encode integer or real number values,

can use a mutation operator which adds or subtracts a random amount within

specified bounds from the gene. This is sometimes called creep mutation. Mutation

traditionally occurs at the end of a crossover operation. The mutation rate is a GA

parameter that defines a set chance that a child individual will receive a gene

mutation when that child is created. This research uses a method which creates

mutated clones of individuals independently of the crossover genetic operator.

54

CHAPTER FOUR

EVOLUTIONARY ARTIFICIAL NEURAL NETWORKS

4.1 Neural Networks For Genetic Based Classification

Having discussed the basics of backpropagation networks and genetic algorithms,

the question of combining the two is raised. While neural networks can be powerful

tools for pattern recognition, optimization, classification, and mapping problems in

general, they are by no means easily constructed.

Traditionally, neural networks are designed and implemented by specialists-

professionals with in-depth knowledge of the strengths and weaknesses of various

network architectures. While this results in well designed networks, it can also give

rise to certain problems. While the underlying algorithms may be relatively simple,

network parameters such as: learning rate, momentum, initial weights, number of

layers, and number of units per hidden layer play a large part in the ability of a

particular network to solve a given problem.

Even when selected and implemented by an expert with knowledge both of neural

networks and the problem domain, the process is often little better than trial and

error. A better way to determine optimal parameter settings for a neural network is

required. The goal of applying an evolutionary algorithm is to automate ad hoc

process of neural network design (Castillo-Valdivieso, Merelo & Prieto, 2002).

The main steps for evolutionary artificial neural network (EANN) based

classification is as follows:

1. Generate the initial population with multilayer perceptrons with random

weight values in a specified range and specified initial number of hidden layer

sizes.

2. Repeat for n generations:

55

(a) Evaluate the new MLP’s (individuals): train them using the training

set and obtain their fitness according to the number of correct classifications

on the validation set and the network size (number of weights).

(b) Select the s best individuals in the population, according to their

fitness, to mate using the genetic operators to obtain the new individuals.

(c) Replace the s worst individuals in the population by the new ones.

3. Use the best individual found to obtain the testing error using the test

set.

Figure 4.1. General framework for EANN based classification

4.2 Motivation For Evolutionary Artificial Neural Networks

EAs offer a much more flexible approach. Neural networks are, in essence, a hill

climbing search. As such, they are subject to the pitfalls of getting stuck on local

features of the solution space. Neural networks use an error calculation to compute a

gradient to direct the search; the backpropagation network. These methods require

smooth, continuous activation functions in order to derive gradient information .

56

In contrast, evolutionary algorithms do not perform direct calculation of gradients.

Instead, they focus on blanketing the search space with potential solutions. This

results in a far more global search which is much less likely to succumb to local

features of the solution space. These advantages give evolutionary algorithms a much

wider range of options; an evolutionary algorithm might use linear thresholds,

splines, or product units where traditional neural networks might require a smooth

sigmoid function. Further, computation of gradients in the more complex neural

networks, such as recurrent networks, can be quite costly. EAs do not require these

expensive calculations.

Thus, evolutionary algorithms complement the traditional neural network

gradient-descent techniques quite well. Their simultaneous global search allows

large, irregular search spaces to be covered in an automated manner, removing

human drudgery, and human error, from the equation.

4.3 Types Of Evolutionary Artificial Neural Networks

EANNs differ from standard ANNs in that they have an extra stage of adaptation

and learning based on an evolutionary or genetic system. There are three types of

evolutionary algorithm based neural networks (Yao, 1999):

I. weight-evolving algorithms (WEAs),

II. topology-evolving algorithms (TEAs),

III. hybrid evolving algorithms (HEAs).

4.3.1 Weight-Evolving Algorithms (WEAs)

The process of backpropagation can be long and computationally intensive, and in

some cases it does not result in an effective solution. In such a case a weight-

evolving algorithm (WEA) can be applied, which may speed up the search for a

solution.. The weights contained in the nodes are in the form of matrices that contain

57

information from prior input data. Through backpropagation, these weights are

updated and the overall network is trained to recognize certain patterns.

In a WEA system, the set of weights in the network nodes is evolutionarily

adapted. Standard backpropagation would perform the same feat, but also could

become trapped in a non-optimal solution. Using a GA, this is less likely to occur. In

order to use a WEA, first a representation of the data must be chosen. There are two

popular formats: binary and real number. The second phase of developing the WEA

involves choosing the operators for mutation and crossover and deciding whether or

not either or both will be used.

Binary representation is commonly used to represent data in genetic algorithms. It

makes the operations of mutation and crossover easy to perform but consistency

checking must be applied so that offspring are functional rather than illegal or

inoperable. It is simple to use binary representation of the data. First, an algorithm is

defined to extract the weights from the ANN in a specific order. Then the weights are

converted into a fixed length binary string. Once the data is converted, the GA is

performed on the dataset and the information is converted back to its standard form

with a reversal algorithm. Finally, the information is placed in an offspring for the

next iteration of the genetic algorithm (Janson & Frenzel, 1993; Tsukimoto &

Hatano, 2003; Yao, 1999).

Real number representations can also be used to encode the weights of an ANN.

The same method is used as in binary representation to extract and then re-encode

information back into the ANN. However in real number representations, instead of

changing the extracted weights to binary, they are represented by a single real

number (Alsultanny & Aqel, 2003; Yao, 1999). While this scheme is easy to encode

and decode, its primary operator is mutation and crossover is considerably harder

to implement here than in a binary representation. This can hinder the efficiency

of the algorithm but will not completely halt its progress; it has been shown that GAs

can operate effectively using only one of their two major operations (Siebel, Krause,

& Sommer, 2007).

58

4.3.2 Topology Evolving Algorithms (TEAs)

The next type of EANN is the topology evolving algorithms, which evolves ANN

architectures or topologies. An ANN can be accurately represented by a graph. An

ANN is a graph-like structure and has an architecture or topology that can be

modified. Changing an ANN's topology can drastically improve or deteriorate its

performance. In the past, engineering the topology of an ANN has been a job for a

human being; this was a trial-and-error procedure. Since there is an infinite set of

possible network structures available to solve each problem, a human being may not

be able to find an efficient architecture. However, a TEA can be employed to find an

efficient ANN topology that solves the problem.

This system can be more complex than the WEA method. This is because the

entire structure of the network may be changed by the TEA and then must be

completely retrained. However, it can also be more robust. The changed structures of

the network may be capable of retaining very different patterns of information. The

algorithm may find a structure that performs excellently that the human designers

may never have conceived.

Because of the efficient encoding possibility, TEA is more applicable to WEA.

(Boozarjomehry & Svrcek, 2001; Castillo, Merelo, Prieto, Rivas, & Romero, 2000;

Janson & Frenzel, 1993). TEAs have also been modified to perform optimization as

well as topographical evolution (Sexton, Dorsey & Sikander, 2004). One of the

problems with TEAs is that the ANNs developed with them can grow to be

extremely large and convoluted. Fortunately the algorithm can be adapted to perform

self-pruning as it is evolving more efficient ANNs. Unnecessary weights and hidden

nodes can thus be identified and removed from the ANN, which keeps the network

smaller and more efficient (Blanco, Delgado, & Pegalajar, 2000; Castillo et al.,

2000).

59

4.3.3 Hybrid Evolutionary Algorithms (HEAs)

The third type of EANN systems, HEAs, is a unification of the two systems

described above. These systems adapt both the weight and topology of an ANN. This

can be a complex process, but it can also be extremely effective. Both the adaptation

of ANN weights and the adaptation of their topologies are effective means for

searching a problem space. Combining these two techniques can result in a faster

method for finding a solution (Stanley, 2004).

4.4 Algortihms For Evolution

The training mechanism is usually an iterative gradient descent algorithm,

designed to minimize, step by step, the difference between the actual output vector of

the network and the desired output vector, such as backpropagation in its different

versions does encounter certain difficulties in practice:

(1) the convergence tends to be extremely slow;

(2) convergence to the global optimum is not guaranteed;

(3) learning constants and other parameters must be arrived at heuristically.

Incremental algorithms, are based on adding hidden neurons to a network of

minimum size until the required precision is reached. These methods start with few

hidden neurons and increase their number until the error is sufficiently small. One

problem of these methods is that once the hidden neurons have been added they

cannot be suppressed to reduce the size (the redundant information stored in the

weights is never eliminated) and huge ANNs are usually obtained.

Furthermore, since the weights of existing neurons are frozen, the added ones are

usually inefficient feature detectors, so the algorithm has to add even more units to

improve the results obtained. In general, adding new units leads to overfitting

(Castillo et al., 2000).

60

In this thesis, evolutionary algorithms are used to search for the optimal

learning parameters, including weights, having pre-established the number of

neurons and the connectivity between them.

4.5 Performance Measures For EANN Based Classification

4.5.1 Correlation Coefficient

The size of the mean square error (MSE) can be used to determine how well the

network output fits the desired output, but it doesn't necessarily reflect whether the

two sets of data move in the same direction. By simply scaling the network output,

MSE can be changed without changing the directionality of the data. The correlation

coefficient (r) solves this problem. By definition, the correlation coefficient between

a network output x and and a desired output d is:

2 2

()()

() ()

i i
i

i i
i i

x x d d

Nr
d d x x

N N

 


 



 

The correlation coefficient is confined to the range [1,1] . When 1r  there is a

perfect positive linear correlation between x and d, that is, they covary, which means

that they vary by the same amount. When 1r   , there is a perfectly linear negative

correlation between x and d, that is, they vary in opposite ways (when x increases, d

decreases by the same amount). When 0r  there is no correlation between x and d,

so that the variables are called uncorrelated.

61

4.5.2 Confusion Matrix

A confusion matrix is a simple methodology for displaying the classification

results of a network. The confusion matrix is defined by labeling the desired

classification on the rows and the predicted classifications on the columns. For each

exemplar, a 1 is added to the cell entry defined by (desired classification, predicted

classification). Since the aim is matching the predicted classification to be the same

as the desired classification, the ideal situation is to have all the exemplars end up on

the diagonal cells of the matrix (the diagonal that connects the upper-left corner to

the lower right).

There can be four different outcomes with regards to binary classification

problems when a classifier makes a prediction about the class membership of a

particular instance. The classifier may predict that an instance belongs to the positive

class when in fact, it belongs to the positive class or it may predict that an instance

belongs to the negative class when it in fact belongs to the negative class.

These two outcomes are called true positive (TP) and true negative (TN)

respectively and are correct predictions. The other two outcomes are incorrect

predictions or misclassifications. One type of misclassification is called false positive

(FP), where a classifier predicts that an instance is a member of the positive class

when it in fact is a member of the negative class. Respectively, the other type of

misclassification is called false negative (FN). In this case, the classifier predicts that

an instance is a member of the negative class when it in fact is a member of the

positive class.

Table 4.1 depicts the four types of outcomes that can be produced by a binary

classifier. This kind of tabular depiction of these four outcomes is called a

confusion matrix or a contingency table. The classifier may use a classification

strategy where it uses a parameter, called the decision threshold t (0 < t < 1), in

order to decide the class membership of a given instance. The default decision

threshold equals 0.5 and specifies that the probability of an instance belonging to

62

the positive class is equal to the probability of belonging to the negative class. The

default decision threshold does usually not cause the classifier to perform optimal

when the given dataset is imbalanced with regards to class distribution or when the

costs for both types of misclassification are not equal. The decision threshold can be

changed to account for the imbalance in the dataset and for unequal costs of

misclassification.

Table 4.1 Confusion matrix

 Predicted as positive Predicted as negative

Positive instance True positive (TP) False negative (FN)

Negative instance False positive (FP) True negative (TN)

The confusion matrix provides the sum for each type of outcome with regards to

the total number of instances in the underlying dataset. It shows the total number of

true positives (#TP), the total number of true negatives (#TN), the total number

of false positives (#FP) and the total number of false negatives (#FN). These four

values form the basis for performance metrics of confusion matrix. As the number of

TP and TN values get higher and oppositely lower values of FP and FN, the better

the rule will be determined and high accuracy values will be gained (Freitas, 2002).

4.5.3 Mean Square Error (MSE)

The formula for the mean squared error is:

2

0 0
()

P N

ij ij
j i

d y
MSE

NP
 





where:

P=number of ouput processing elements

N=numbe rof exemplars in the data set

ijy =network output for exemplar i at processing elemnt j

63

ijd =desired output for exemplar i at processing element j

4.5.4 Normalized Mean Squared Error (NMSE)

The normalized mean squared error is defined by the following formula:

2 2

0 0

0

()
N N

ij ijP
i i

j

P N MSENMSE
N d d

N
 



 


 


where

P=number of output processing elements

N=number of exemplars in the data set

MSE =mean squared error

ijd =desired output for exemplar i at processing element j

4.5.5 Relative Percent Difference

The relative percent difference (RPD) is defined by the following formula:

0 0

100%
P N

ij ij

j i ij

dy dd
Error

N P dd 




 

where

P=number of ouput processing elements

N=number of exemplars in the data set

ijdy =denormalized network output for exemplar i at processing element j

ijdd =denormalized desired output for exemplar i at processing element j

 64

CHAPTER FIVE

COMPARISON OF NEURAL NETWORKS WITH EVOLUTIONARY

ALGORITHMS FOR CLASSIFICATION

5.1 General Information

The aim of this thesis is to tune learning parameters (stepsize and momentum) and

to set the initial weights and hidden layer size (number of hidden units) of a

multilayer perceptron, based on an evolutionary algorithm and backpropagation. The

neural network will produce from each set of inputs to a set of outputs. Given a

random set of initial weights, the outputs of the network will be very different from

the desired classifications. As the network is trained, the weights of the system are

continually adjusted to incrementally reduce the difference between the output of the

system and the desired response. This difference is referred to as the error and can be

measured in different ways. The most common measurement is the mean squared

error (MSE). The MSE is the average of the squares of the difference between each

output processing element and the desired output.

The capacities of both of the two algorithms are intended to be used: the ability of

evolutionary algorithm to end a solution close to the global optimum, and the ability

of the backpropagation to tune a solution and reach the nearest local minimum by

means of local search from the solution found by the evolutionary algorithm. The

topology is selected from the incremental algorithm applied to the neural network.

Genetic operators; mutation, one point crossover, two point crossover, arithmetic

crossover, heuristic crossover, incremental algorithm, the number of hidden units,

and backpropagation applied as operator to the individuals of the population, are

used.

Thus, the evoutionary algorithm searches and optimizes the architecture (number

of hidden units), the initial weight setting for that architecture and the learning rate

65

and momentum for that neural net. Unlike other approaches the maximum size of the

hidden layer is not bounded in advance.

The classification accuracy or number of hits is obtained by dividing the number

of hits among the total number of examples in the testing set according to the training

and cross validation subsets.

The mutation operator modifies the weights of certain neurons, at random,

depending on the specified application rate. It is based on the algorithm which

modifies the weights of the network after each epoch of network training and adding

and subtracting a small random number that follows uniform distribution with the

interval [- 0.1; 0.1].

The learning rate is modified by the adaptive algorithm in order to avoid the

negative effects of steps’ handicaps. This operator is used with an application

probability of 10%, that is 10% of weights are changed, which was found empirically

to obtain better results than did lower probabilities. The crossover operator carries

out the one point, two point, artihmetic and heuristic type crossovers.

By incremental algorithm, the difficulty is in guessing the number of the hidden

layer neurons. By adding hidden neurons, it is not necessary to set the size of the

EA search space. This operator is intended to perform incremental learning; it

starts with a small structure and increments it, if neccesary, by adding new

hidden units (Castillo et al., 2000).

To determine a satisfactory solution that meets the GA stopping criteria, every 5

generations the neural network is trained on for 1000 epochs by default.

To avoid overfitting, the usual procedure is followed of splitting the input data

into training, cross validation and test sets. The training set with 50% of the whole

exemplars will be used to evaluate the fitness of the individuals. The cross validation

66

set consists of the 25% of the whole exemplars and will be used to estimate the

generalization ability of the best result found during each generation.

The stopping criterion is reached if one of the following conditions is

fulfilled: a number of generations are reached or the variance of the fitness of the

best 10% of the population is less than 410 .

This illustrates the basic ingredients required in neural computation. The network

requires input data and a desired response to each input. The more data presented to

the network, the better its performance will be. Neural networks take this input-

output data, apply a learning rule and extract information from the data. The network

tries to adjust the weights to minimize the error. Therefore, the weights embody all

of the information extracted during learning.

Two types of dataset is considered for performance evaluation of evolutionary

neural networks. Each dataset are maintained from UC Irvine Machine Learning

Repository.

Teaching assistant evaluation (tae) dataset has categorical-driven attribute types

and on contrary, there is only one numerical attribute. Loh & Shih (1997) first

reported this dataset. Classification tree is maintained as a search algorithm for this

dataset to be classified. Because of lack of information on the results, no

performance value gained to be benchmarked.

Lim, Loh & Shih (1999) used tae dataset for classification by neural networks.

Learning vector quantiaztion and radial basis functions are types of neural networks

used for classification performance. Mean error rate is calculated as a performance

measure.

67

The other dataset is the vehicle silhoutte (veh) dataset that all the attributes are

numerical. Lim, Loh & Shih (1999) used veh dataset for classification by neural

networks. Learning vector quantization and radial basis functions are types of neural

networks used for classification performance. Mean error rate is calculated as a

performance measure.

Roscher & Föstner (2009) used bounded logistic regression (BLR) and support

vector machines (SVMs) for classification. Mean error rate is calculated as a

performance measure.

Because the two datasets have opposite attribute types in common, the effects of

numerical and categorical attributes can be examined.

5.2 Teaching Assistant Evaluation (tae) Dataset

The data consist of evaluations of teaching performance over three regular

semesters and two semesters of 151 teaching assistant (TA) assignments at the

Statistics Department of the University of Wisconsin-Madison. The scores are

grouped into three roughly equal-sized categories (low, medium and high) to form

the class attribute. The predictor attributes are:

 ENG : Whether or not the TA is a native English speaker (binary)

 INST: Course instructor (25 categories)

 CRS: Course (26 categories)

 SMSTR: Summer or regular semester (binary)

 CLSSIZE: Class size (numerical)

Its main characteristic of this dataset is that there are two categorical attributes

with large numbers of categories such as CRS has 26 categories and INST has 25

categories. Contrary to these categorical attributes, there is only one numerical

attribute, CLSSIZE.

68

Table 5.1 Attribute information for tae dataset

Number of original attributes

Numerical Categorical

Total

 2 25 26

1 2 1 1
5

As seen from the table, because of the large numbers of categories, large

additional data is added to the problem identification. To identify the attiribute type

from the exemplar set, (S) prefix is used as symbolic (categorical) to name the type

of data. The attribute type that does not have the (S) prefix means that the data is

numerical and can get different values.

The raw data shown in Appendix 1 is translated due to the categorical attributes.

All the categorical data types inverted to a column and added to the data matrix. The

translated data matrix is split into training, cross validation and test subsets.

Population size and number of generations affect processing time because the

fitness value must be calculated for every chromosome in every generation. In the

preliminary study; for determining the appropriate population size and generation

number by trial and error, when the first implementation started with the population

size of 50 and the generation number of 2500, the best fitness value was improved.

After a large number of generations, very much processing time required that is

approximately 8.5 hours on average. When the population size was set to 30 and the

generation number to 1000, the run values were nearly the same. The processing time

decreased 4.6 hours on average. Therefore, the population size and generation

number were set to 30 and 1000, respectively.

69

5.2.1 The Comparison Of Learning Algorithms Due To ANN Structure For Tae

Dataset

According to the general classification with artificial neural networks, one hidden

layered multilayer perceptron is enough. Basically, the selection of the learning

algorithm is important. Three learning algorithms are taken into consideration:

 Momentum learning

 Conjugate-gradient

 Levenberg-Marquardt

One hidden layer is usually enough for training and testing purposes. Also, the

incremental algorithm is taken into consideration. Starting from the simple neural

network architecture, the system will be made complex to get more true classified

results.

5.2.1.1 Momentum Learning

Figure 5.1 Average MSE with standard deviation boundaries for 5 runs

As seen from the Figure 5.1, average MSE values for training and cross validation

behave similar. As the training moves on through the 100 epochs, training MSE

values converge to minima; the cross validation MSE values converge a bit quicker

due to lack of information.

70

Table 5.2 MSE statistics for training and cross validation subsets.

All Runs Training
Minimum

Training
Standard
Deviation

Cross
Validation
Minimum

Cross
Validation
Standard
Deviation

Average of
Minimum MSEs 0.266685786 0.055611345 0.35123632 0.005835692

Average of
Final MSEs 0.330142037 0.055171731 0.375022402 0.0442916

Table 5.3 Best MSE for subsets

Best Networks Training Cross Validation

Run # 1 5
Epoch # 96 86

Minimum MSE 0,205366115 0,341732857
Final MSE 0,231447844 0,355215165

Seventy five exemplars are used for training purposes (50% of the total

exemplars), and also 25% of total exemplars for both cross validation and testing

purposes. Although most of the research papers suggest to use 75% of total

exemplars for better training ability for the artificial neural network; because the

classification problem is so categorical for tae dataset and there are few examplars

such as 151 as numbers. This situation forces to choose the high percentage of cross

validation and testing data. Of the total exemplars, 25% are used for both the cross

validation and testing as subsets.

Figure 5.2 Training MSE

71

Training for each run shows similar values except run 2. The momentum value is

0.7 and the learning process is done in 90 epochs.

Figure 5.3 Cross validation MSE

Cross validation values memorize the values so that MSE values for the weight

space get bigger. At that point, training stops and artificial neural network stops to

learn. The training MSE gets stuck on the final MSE value 0.231447844. As seen

from Figure 5.3, the learning process ends up nearly at epoch number 100 and

overtraining starts.

Table 5.4 Minimum MSE values for momentum learning method

Subset Minimum
for Run #1

Minimum
for Run #2

Minimum
for Run #3

Minimum
for Run #4

Minimum
for Run #5

Training 0.20536612 0.25774687 0.35481534 0.24037249 0.27512811
Cross validation 0.35752953 0.3513768 0.35365703 0.35188538 0.34173286

As stated in the tae dataset information, the class attributes expressed as:

Table 5.5 Class attribute expression for tae dataset

CLSATTR(1) Low

CLSATTR(2) Medium
CLSATTR(3) High

72

5.2.1.1.1 Testing Of Training Subset Data For Momentum Learning Method. By

testing the training subset with momentum learning; “low” and “high” attributes are

classified with acceptable accuracy. Also, correlation coefficients of “low” and

“high” attributes are positive so that they act with MSE in general. On contrary,

“medium”class attribute has the opposite sign.

Table 5.6 Confusion matrix for training subset data with momentum learning

Output / Desired CLSATTR(1) CLSATTR(2) CLSATTR(3)
CLSATTR(1) 12 0 0
CLSATTR(2) 2 10 8
CLSATTR(3) 5 18 20

Table 5.7 Performance values for testing of training subset data with momentum learning

Performance CLSATTR(1) CLSATTR(2) CLSATTR(3)
MSE 0.143512948 0.243078422 0.234345411

NMSE 0.758703318 1.038994016 1.001666366
MAE 0.3381967 0.479692429 0.472169182

Min Abs Error 0.170225037 0.335880312 0.358345517
Max Abs Error 0.825095007 0.662703527 0.6313603

r 0.628520881 -0.17457581 0.369111709
Percent Correct 63.15789474 35.71428571 71.42857143

5.2.1.1.2 Testing Of Cross Validation Subset Data For Momentum Learning

Method. For the cross validation subset, the prediction for classification is not

sufficient. The class attributes, “low” and “medium” are not classified with high

accuracy.

Table 5.8 Confusion matrix for cross validation subset data with momentum learning

Output / Desired CLSATTR(1) CLSATTR(2) CLSATTR(3)
CLSATTR(1) 3 1 0
CLSATTR(2) 1 2 3
CLSATTR(3) 6 9 14

73

Table 5.9 Performance values for testing of cross validation subset data with momentum learning

Performance CLSATTR(1) CLSATTR(2) CLSATTR(3)
MSE 0.169440081 0.221146157 0,252267418

NMSE 0.888684009 1.038158349 1.025932468
MAE 0.347208433 0.456216919 0.493791711

Min Abs Error 0.169145245 0.335081526 0.358345517
Max Abs Error 0.831650983 0.664310315 0.627873589

r 0.361163896 0.01682359 0.325787126
Percent Correct 30 16.66666667 82.35294118

5.2.1.2 Conjugate-gradient learning method

Figure 5.4 Average MSE for 5 runs

The average MSE values for the conjugate-gradient learning converge to

minimum smoothly. As examining the statistical results in Table 5.10, standart

deviation of the training values is wider than expected. For the sensitivity, the

expected minimum and maximum average MSE values are twice the average MSE.

Table 5.10 MSE statistics for training and cross validation subsets.

All Runs Training
Minimum

Training
Standard
Deviation

Cross
Validation
Minimum

Cross
Validation
Standard
Deviation

Average of
Minimum MSEs 0.177516198 0.173992156 0.39301851 0.062992181

Average of
Final MSEs 0.177516198 0.173992156 0.636851602 0.0897314

74

Table 5.11 Best MSE for subsets

Best Networks Training Cross Validation

Run # 5 2
Epoch # 854 150

Minimum MSE 0.07375151 0.355448257
Final MSE 0.07375151 0.531735682

Figure 5.5 Training MSE

Conjugate-gradient learning algorithm learns faster than momentum but it’s

possible to be not training and as a result nor to be learning due to its structure. Run

no 2 and run no 5 are far from minimization of the energy function, so the acuuracy

of the networks decreases.

Figure 5.6 Cross validation MSE

75

Table 5.12 Minimum MSE values for conjugate-gradient learning method

Subset Minimum
for Run #1

Minimum
for Run #2

Minimum
for Run #3

Minimum
for Run #4

Minimum
for Run #5

Training 0.08605644 0.09718816 0.48491541 0.14566947 0.07375151
Cross validation 0.38787827 0.35544826 0.5032102 0.36202097 0.35653485

5.2.1.2.1 Testing Of Training Subset Data For Conjugate-Gradient Learning

Method. As seen from the Table 5.13, the testing result shows that “medium” and

“high” class attributes cannot be classified in a true manner. Because there is no data

gathered for these attributes, r values cannot be seen further on.

Table 5.13 Confusion matrix for conjugate-gradient learning method (training subset)

Output / Desired CLSATTR(1) CLSATTR(2) CLSATTR(3)
CLSATTR(1) 19 28 28
CLSATTR(2) 0 0 0
CLSATTR(3) 0 0 0

Table 5.14 Performance values for conjugate-gradient learning method (training subset)

Performance CLSATTR(1) CLSATTR(2) CLSATTR(3)
MSE 0.261068455 0.380833276 0.367656031
NMSE 1.380178625 1.627801807 1.571478096
MAE 0.263488871 0.384166837 0.370985391
Min Abs Error 0 0 0
Max Abs Error 1 1 1
r - - -
Percent Correct 100 0 0

5.2.1.2.2 Testing Of Cross Validation Subset Data For Conjugate-Gradient

Learning Method. As seen in Table 5.13, only the “low” attribute has the true

information to be classified.

Table 5.15 Confusion matrix for conjugate-gradient learning method (cross validation subset)

Output / Desired CLSATTR(1) CLSATTR(2) CLSATTR(3)
CLSATTR(1) 10 12 17
CLSATTR(2) 0 0 0
CLSATTR(3) 0 0 0

76

Table 5.16 Performance values for conjugate-gradient learning method (cross validation subset)

Performance CLSATTR(1) CLSATTR(2) CLSATTR(3)
MSE 0,232225728 0,321375717 0,452186406

NMSE 1,217983907 1,508680451 1,838971986
MAE 0,236880376 0,3278437 0,45866939

Min Abs Error 0 0 0
Max Abs Error 1 1 1

r - - -
Percent Correct 100 0 0

5.2.1.3 Levenberg-Marquardt Algorithm

Figure 5.7 Average MSE for 5 runs

By using the Hessian matrix, Levenberg-Marquardt algorithm converges to the

minimum in the first 100 epochs. Although the converging performance is awesome,

the testing results show that this algortihm is not suitable for learning.

Table 5.17 MSE statistics for training and cross validation subsets.

All Runs Training
Minimum

Training
Standard
Deviation

Cross
Validation
Minimum

Cross
Validation
Standard
Deviation

Average of
Minimum

MSEs
0.022446472 0.014444599 0.394822974 0.054634375

Average of
Final MSEs 0.022446472 0.014444599 0.651251064 0.084005489

77

Levenberg-Marquardt algorithm produces very low values of average of

minimum MSEs but cross validation subset values are rather high, showing that

memorizing is a handicap for this algorithm.

Table 5.18 Best MSE for subsets

Best Networks Training Cross Validation

Run # 3 2
Epoch # 1000 5

Minimum MSE 0.009600004 0.350335159
Final MSE 0.009600004 0.757165837

As MSE values of training subset data converge to zero, MSE values of cross

validation subset data increase as the epoch number gets bigger.

Figure 5.8 Training MSE for Levenberg-Marquardt algorithm (5 runs)

Figure 5.9 Cross validation MSE for Levenberg-Marquardt algorithm (5 runs)

78

Cross validation stops memorizing the predicted values between 150-400 epochs in

Figure 5.9.

Table 5.19 Minimum MSE values for Levenberg-Marquardt algorithm

Subset Minimum
for Run #1

Minimum
for Run #2

Minimum
for Run #3

Minimum
for Run #4

Minimum
for Run #5

Training 0.04322379 0.01001963 0.0096 0.03074938 0.01863956
Cross validation 0.46639767 0.35033516 0.35944545 0.44110866 0.35682793

5.2.1.3.1 Testing The Training Subset Of Levenberg-Marquardt Algorithm

Table 5.20 Confusion matrix for Levenberg-Marquardt learning method

Output / Desired CLSATTR(1) CLSATTR(2) CLSATTR(3)
CLSATTR(1) 19 28 27
CLSATTR(2) 0 0 0
CLSATTR(3) 0 0 1

Table 5.21 Performance values for Levenberg-Marquardt learning method

Performance CLSATTR(1) CLSATTR(2) CLSATTR(3)
MSE 0.255209987 0.379171033 0.366399284
NMSE 1.349206932 1.620696855 1.566106362
MAE 0.258335537 0.382475643 0.369332358
Min Abs Error 0 0 0
Max Abs Error 1 1 1
r - - -
Percent Correct 100 0 3.571428571

5.2.1.3.2 Testing Of Cross Validation Subset Data For Levenberg-Marquardt

Method

Table 5.22 Confusion matrix for conjugate-gradient learning method

Output / Desired CLSATTR(1) CLSATTR(2) CLSATTR(3)
CLSATTR(1) 9 12 17
CLSATTR(2) 0 0 0
CLSATTR(3) 1 0 0

79

Table 5.23 Performance values of cross validation subset data for levenberg-marquardt learning

method

Performance CLSATTR(1) CLSATTR(2) CLSATTR(3)
MSE 0.240779959 0.318548653 0.456010808

NMSE 1.262849371 1.495408952 1.854525236
MAE 0.246790633 0.324977649 0.461731447

Min Abs Error 0 0 0
Max Abs Error 1 1 1

r - - -
Percent Correct 90 0 0

5.2.1.4 Accuracy Comparison Of Testing The Training And Cross Validation

Subsets Of Learning Algorithms

Table 5.24 Mean accuracy performance of learning algorithms

Algorithm/

Subset
Momentum

Conjugate-

gradient
LM

Training 56,77% 33,33% 34,52%

Cross

validation
43.00% 33,33% 30%

As seen from the Table 5.24, the comparison is made on a simple multilayer

perceptron that is having one hidden layer, an input and output layer. The network

architecture is 56-4-3, that is the base design for the tae dataset. For the conjugate-

gradient and Levenberg-Marquardt algorithms, there is not much difference between

each other on the accuracy performance for the subsets.

Because the weight matrix of the hidden layer, for these two higher order gradient

techniques, lacks of information, there is no enough prediction to classify the data.

Backpropagation algorithm with momentum memorizes the values and makes

updates that are suitable to converge to minimize the error function. As seen from

Table 5.24, accuracy for both training and cross validation is a bit low.

As expected, the cross validation loses accuracy performance at about 25%

compared to training. Conjugate-gradient and Levenberg-Marquardt algorithms

80

make true classification approximately of 60% of momentum learning algortihm

compared as the training subset data and approximately of 70% compared as the

cross validation subset data.

5.2.2 The Optimum Momentum Rate For Tae Dataset

Table 5.25 Network parameters

Dataset used tae

ANN Architecture 56-4-3

Number of epochs 500

Number of runs 5

Momentum Rate 0.7

Figure 5.10 Average MSE

Starting from the first epoch, the learning process is active through the epoch

number 83, and gets minimum at the value 0.1141442. As the weight matrix changes

with the new network parameters, the average MSE jumps vertically.

81

Table 5.26 MSE statistics for training and cross validation subsets

All Runs Training
Minimum

Training
Standard
Deviation

Cross
Validation
Minimum

Cross
Validation
Standard
Deviation

Average of
Minimum

MSEs
0.168046732 0.073360051 0.285392259 0.140346698

Average of
Final MSEs 0.283385375 0.065373146 0.355764764 0.176579799

Table 5.27 Best MSE for subsets

Best Networks Training Cross Validation

Run # 3 1
Epoch # 83 13

Minimum MSE 0.1141442 0.034766387
Final MSE 0.231664072 0.050184

The optimum momentum rate found is between the possible momentum rates; 0.1,

0.3, 0.5, 0.7 and 0.9. As seen from Figure 5.11, the neural network makes much

effort on training. The graph sometimes draws scatters moving down and then

sudden upward movements shows the new weight introduced to the network. This is

due to the momentum value.

Figure 5.11 Training MSE

As seen from Figure 5.12, the training gets the MSE values decreased as the cross

validation shows increase. The learning process moves around the value 0.25.

82

Figure 5.12 Cross validation MSE

Table 5.28 Minimum MSE values of one hidden layer, for momentum rate=0,7

Subset Minimum
for Run #1

Minimum
for Run #2

Minimum
for Run #3

Minimum
for Run #4

Minimum
for Run #5

Training 0.25976118 0.23598706 0.1141442 0.1141442 0.11619701
Cross validation 0.03476639 0.35046852 0.35387934 0.35387934 0.33396772

5.2.2.1 Testing Of Training Subset Data For Momentum Learning Method

Table 5.29 Testing the training subset of one hidden layer, momentum rate=0,7

Output / Desired CLSATTR(1) CLSATTR(2) CLSATTR(3)
CLSATTR(1) 16 12 10
CLSATTR(2) 3 16 10
CLSATTR(3) 0 0 8

Table 5.30 Performance values for the training subset of one hidden layer, momentum rate=0,7

Performance CLSATTR(1) CLSATTR(2) CLSATTR(3)
MSE 0.157552141 0.235002837 0.234861174

NMSE 0.83292368 1.004476411 1.003870897
MAE 0.374051306 0.470804544 0.469789571

Min Abs Error 0.178215631 0.359607698 0.350010665
Max Abs Error 0.690756763 0.634292157 0.647414842

r 0.551614941 0.217434096 0.296913688
Percent Correct 84.21052632 57.14285714 28.57142857

83

5.2.2.2 Testing Of Cross Validation Subset Data For Momentum Learning

Method

Table 5.31 Testing the cross validation subset of one hidden layer, momentum rate=0,7

Output / Desired CLSATTR(1) CLSATTR(2) CLSATTR(3)
CLSATTR(1) 6 9 9
CLSATTR(2) 4 0 5
CLSATTR(3) 0 3 3

Table 5.32 Performance values of testing the cross validation subset of one hidden layer, momentum

rate=0,7

Performance CLSATTR(1) CLSATTR(2) CLSATTR(3)
MSE 0.220191967 0.222488954 0.256012147

NMSE 1.154868902 1.044462033 1.041161698
MAE 0.441688976 0.460858301 0.493555038

Min Abs Error 0.178215631 0.360154196 0.352603501
Max Abs Error 0.783466027 0.638657773 0.649129907

r 0.050822935 -0.020310868 0.100077017
Percent Correct 60 0 17.64705882

Table 5.33 Accuracy performance of momentum rates

Momentum

value/

Subset

 =0.1  =0.3  =0.5  =0.7  =0.9

Training 58.15% 38.1% 51.63% 62,65% 61.40%

Cross

validation
35.2% 40.2% 39.35% 34.05% 41.1%

According to the Table 5.33, there is no slight difference of accuracy performance

between the momentum rates. For that reason, the statistical results of average

minimum MSE values becomes the selective criterion for performance. As the

minimum MSE statistics and also the highest accuracy for the training subset data,

are for  =0.7, presented above.

84

5.2.3 The Optimum Hidden Layer Size

In order to construct the ANN needed, the optimum hidden layer size should be

defined. Starting from the one hidden layer, the hidden layer size is increased up to

five hiden layers and each hadden layer sizes’ performances are compared. For each

hidden layer size performance evaluation, 5 runs made and 1000 epochs generated

per run.The momentum rate is 0.7 as found optimum before.

5.2.3.1 One Hidden Layered ANN

Figure 5.13 Average MSE for one hidden layer (tae) dataset

Training values wander around the value, 0.3. Training stops about the 400

epochs. Because the number of exemplars of tae dataset is not much, the subsets

including both the training and cross validation do not give enough ability to

overfitting.

Table 5.34 MSE statistics for training and cross validation subsets of tae dataset (One hidden layer)

All Runs Training
Minimum

Training
Standard
Deviation

Cross
Validation
Minimum

Cross
Validation
Standard
Deviation

Average of
Minimum MSEs 0.184258716 0.020733666 0.348079253 0.004354931

Average of
Final MSEs 0.305357202 0.067724117 0.39908647 0.060181746

85

Table 5.35 Best MSE for subsets

Best Networks Training Cross Validation

Run # 4 4
Epoch # 117 14

Minimum MSE 0.170868494 0.340908419
Final MSE 0.354815721 0.3552145

Figure 5.14 Training MSE for one hidden layer (tae dataset)

Run number 2 and run number 5 show the same characteristics during the training

process.

Figure 5.15 Cross validation MSE for one hidden layer (tae dataset)

86

Table 5.36 Minimum MSE values of subsets for each run of one hidden layer size ANN topology

Subset Minimum
for Run #1

Minimum
for Run #2

Minimum
for Run #3

Minimum
for Run #4

Minimum
for Run #5

Training 0.2230688 0.20598448 0.21977485 0.17086849 0.20159696
Cross validation 0.35125135 0.34830631 0.34806584 0.34090842 0.35186434

5.2.3.1.1 Testing The Training Subset Of One Hidden Layer For Momentum

Learning Algorithm

Table 5.37 Confusion matrix for the training subset of one hidden layer, momentum rate=0,7

Output / Desired CLSATTR(1) CLSATTR(2) CLSATTR(3)
CLSATTR(1) 14 8 2
CLSATTR(2) 3 8 2
CLSATTR(3) 2 12 24

Table 5.38 Performance values for the training subset of one hidden layer, momentum rate=0,7

Performance CLSATTR(1) CLSATTR(2) CLSATTR(3)
MSE 0.162748993 0.237032447 0.173933401

NMSE 0.860397639 1.013151607 0.743446338
MAE 0.36149553 0.466413639 0.384538476

Min Abs Error 0.172563086 0.344181761 0.185617497
Max Abs Error 0.789697678 0.655026087 0.814401274

r 0.510759319 -0.100723691 0.57358051
Percent Correct 73.68421053 28.57142857 85.71428571

5.2.3.1.2 Testing The Cross Validation Subset Of One Hidden Layer For

Momentum Learning Algorithm

Table 5.39 Confusion matrix for testing the cross validation subset of one hidden layer, momentum

rate=0,7

Output / Desired CLSATTR(1) CLSATTR(2) CLSATTR(3)
CLSATTR(1) 7 6 3
CLSATTR(2) 7 1 0
CLSATTR(3) 6 3 4

87

Table 5.40 Performance values for the cross validation subset of one hidden layer, momentum

rate=0,7

Performance CLSATTR(1) CLSATTR(2) CLSATTR(3)
MSE 0.300989046 0.211372444 0.170408388

NMSE 1.21192354 1.071736577 1.110900396
MAE 0.509767486 0.443608536 0.374476393

Min Abs Error 0.173550906 0.344966607 0.185995391
Max Abs Error 0.820143485 0.655463878 0.808294716

r 0.085404164 -0.061327255 0.223502109
Percent Correct 35 10 57.14285714

Table 5.41 Mean accuracy performance of hidden layers

Hidden

layer size/

Subset

Hidden

Layer=1

Hidden

Layer=2

Hidden

Layer=3

Hidden

Layer=4

Hidden

Layer=5

Training 62.65% 59.02% 61.90% 59.52% 57.14%

Cross

validation
34.05% 43.33% 34.64% 34.53% 36.59%

Mean accuracy values are shown in Table 5.41 which include the performance

values. The true classified exemplars are gathered on the orthogonal of the confusion

matrix which are named as the true classification.

 As seen from Table 5.41, the neural network structure with one hidden layer and

with three hidden layers behave nearly the same. They have similar mean accuracy

performance values. But due to the calculations needed and the time required, a

simpler neural network model is preferred here. One hidden layered neural network

for tae dataset fits the best to classify.

5.2.4 Optimum Number Of Processing Elements Of The Hidden Layer

A network with too few hidden units is often not able to learn well enough, a

network with too many hidden units is not able to generalise well enough. When

88

teaching a network to classify data, the key is to choose an appropriate number of

hidden units. Not too many degrees of freedom should be given through the network.

Figure 5.16 Average values of minimum MSEs for each scenario of number of units in the hidden

layer. (tae dataset)

MSE values of cross validation are important for the performance of the network

training. For tae dataset; because the classification is made between three class

attributes (low, medium and high), the calculations for the number of hidden units in

hidden 1 layer started from three to unlimited size. Incremental algorithm is applied

to the hidden 1 layer. A loop is implemented to the weight matrix in the hidden 1

layer, so that; when the error in the cross validation minimizes, the minimal point is

where the number of hidden units in the hidden 1 layer should be chosen.

As seen from Figure 5.16, the average of minimum MSE values for different

number of hidden units (processing elements) do not change up to the fourteen

number of hidden units in hidden layer 1. From Figure 5.16, one can argue that the

minimum average MSE values comes to minimal values through 18 to 20 number of

hidden units but cross validation values start to increase. For that reason, fourteen

number of hidden units for hidden 1 layer is chosen for optimal. So, the network

architecture for the minimum error of average MSE of cross validation is 56-14-3

architecture.

89

Figure 5.17 Average training MSE values for each processing element scenario

Figure 5.18 Average cross validation MSE values for each processing element scenario

Table 5.42 Minimum MSE values for subsets of 14 hidden processing elements

Subset Minimum
for Run #1

Minimum
for Run #2

Minimum
for Run #3

Minimum
for Run #4

Minimum
for Run #5

Training 0.11225502 0.14273578 0.08877673 0.09465382 0.17952491
Cross validation 0.35260078 0.39015894 0.36047447 0.35982629 0.34476902

90

5.3 Vehicle Silhouette Data Set

5.3.1 Statlog Vehicle Silhoutte (veh) Database

The purpose is to classify a given silhouette as one of four types of vehicle, using

a set of features extracted from the silhouette. The vehicle may be viewed from one

of many different angles. The representative dataset matrix is shown in Appendix 2.

5.3.2 Data Set Information

This data was originally gathered at the TI in 1986-87 by JP Siebert. It was

partially financed by Barr and Stroud Ltd. The original purpose was to find a method

of distinguishing 3D objects within a 2D image by application of an ensemble of

shape feature extractors to the 2D silhouettes of the objects. Measures of shape

features extracted from example silhouettes of objects to be discriminated were used

to generate a classification rule tree by means of computer induction.

This object recognition strategy was successfully used to discriminate between

silhouettes of model cars, vans and buses viewed from constrained elevation but all

angles of rotation.

5.3.3 Dataset Description

The features were extracted from the silhouettes by the HIPS (Hierarchical Image

Processing System) extension BINATTS, which extracts a combination of scale

independent features utilising both classical moment based measures such as scaled

variance, skewness and kurtosis about the major/minor axes and heuristic measures

such as hollows, circularity, rectangularity and compactness.

Four "Corgie" model vehicles were used for the experiment: a double decker bus,

Cheverolet van, Saab 9000 and an Opel Manta 400. This particular combination of

vehicles was chosen with the expectation that the bus, van and either one of the cars

would be readily distinguishable, but it would be more difficult to distinguish

between the cars.

91

The images were acquired by a camera looking downwards at the model vehicle

from a fixed angle of elevation (34.2 degrees to the horizontal). The vehicles were

placed on a diffuse backlit surface (lightbox). The vehicles were painted matte black

to minimise highlights. The images were captured using a CRS4000 framestore

connected to a vax 750. All images were captured with a spatial resolution of

128x128 pixels quantised to 64 greylevels. These images were thresholded to

produce binary vehicle silhouettes, negated (to comply with the processing

requirements of BINATTS) and thereafter subjected to shrink-expand-expand-shrink

HIPS modules to remove "salt and pepper" image noise.

The vehicles were rotated and their angle of orientation was measured using a

radial graticule beneath the vehicle. 0 and 180 degrees corresponded to "head on"

and "rear" views respectively while 90 and 270 corresponded to profiles in opposite

directions. Two sets of 60 images, each set covering a full 360 degree rotation, were

captured for each vehicle. The vehicle was rotated by a fixed angle between images.

These datasets are known as e2 and e3 respectively.

A further two sets of images, e4 and e5, were captured with the camera at

elevations of 37.5 degs and 30.8 degs respectively. These sets also contain 60 images

per vehicle apart from e4.van which contains only 46 owing to the difficulty of

containing the van in the image at some orientations.

5.3.4 Attribute Information

This dataset has eighteen attributes and all these attributes are numerical that are

opposite to the tae dataset. The atrributes are:

1-Compactness =(average perim)**2 / area

2-Cırcularıty =(average radius)**2 / area

3-Dıstance Cırcularıty = area / (av.distance from border)**2

4-Radıus Ratıo = (maximum radius-minimum radius) / average radius

5-Pr.Axıs Aspect Ratıo = (minor axis) /(major axis)

6-Max.Length Aspect Ratıo = (length perp. max length)/(max length)

7- Scatter Ratıo = (inertia about minor axis) / (inertia about major axis)

92

8- Elongatedness = area / (shrink width)**2

9- Pr.Axıs Rectangularıty = area / (pr.axis length*pr.axis width)

10- Max.Length Rectangularıty = area / (max.length*length perp. to this)

11- Scaled Varıance Along Major Axıs = (2nd order moment about minor axis) /area

12- Scaled Varıance Along Mınor Axıs = (2nd order moment about major axis) / area

13- Scaled Radıus Of Gyration = (mavar+mivar) / area

14- Skewness About Major Axis = (3rd order moment about major

axis)/sigma_min**3

15- Skewness About Mınor Axıs = (3rd order moment about minor axis) /

sigma_maj**3

16- Kurtosıs About Mınor Axıs = (4th order moment about major axis) /

sigma_min**4

17- Kurtosıs About Major Axıs = (4th order moment about minor axis) /

sigma_maj**4

18- Hollows Ratıo = (area of hollows) / (area of bounding polygon)

where sigma_maj**2 is the variance along the major axis and sigma_min**2 is the

variance along the minor axis, and

area of hollows= area of bounding poly - area of object

The area of the bounding polygon is found as a side result of the computation to find

the maximum length. Each individual length computation yields a pair of calipers to

the object orientated at every 5 degrees. The object is propagated into an image

containing the union of these calipers to obtain an image of the bounding polygon.

In this dataset, a total of 846 exemplars exist. 423 exemplars are obtained for

training subset, 212 exemplars for cross validation and 211 exemplars for testing

subset.

93

5.3.5 The Comparison Of Learning Algorithms Due To ANN Structure

According to the general classification ANN, one hidden layered MLP is enough.

Primarily, the selection of the learning algorithm is important. Three learning

algorithms are taken into consideration:

 Momentum learning

 Conjugate-gradient

 Levenberg-Marquant

To compare the algorithms, one hidden layered ANN is constructed basically. The

aim is to search for the answer which algorithm causes the minimum average MSE

value.

5.3.5.1 Momentum Learning

Figure 5.19 Average MSE with Standard Deviation Boundaries for 5 Runs

Because of the number of numerical attributes is high such as 18, presented in the

veh database, the learning process cannot be easily seen. There is a slow convergence

to minima.

94

Examining the figures 5.20 and 5.21, the training and cross validation sets behave

in the same way. That means, independently, cross validation is trained in a good

manner. So, high values of mean accuracy is expected for classification.

Figure 5.20 Training MSE for momentum learning

Figure 5.21 Cross validation MSE for momentum learning

Table 5.43 MSE statistics for training and cross validation subsets of veh dataset (One hidden layer)

All Runs Training
Minimum

Training
Standard
Deviation

Cross
Validation
Minimum

Cross
Validation
Standard
Deviation

Average of
Minimum MSEs 0.112427005 0.005874629 0.145232203 0.007579711

Average of Final
MSEs 0.112427005 0.005874629 0.145232203 0.007579711

95

Momentum learning produces statistically consistent values such as low level

standard deviation and mean compared the two other learning algorithms. MSE

values of both training and cross validation converge to average minimum by means

of low standard deviation.

Table 5.44 Best MSE values for subsets

Best Networks Training Cross Validation

Run # 3 5
Epoch # 1000 1000

Minimum MSE 0.10643069 0.136003509
Final MSE 0.10643069 0.136003509

Table 5.45 Minimum MSE values for momentum learning

Subset Minimum
for Run #1

Minimum
for Run #2

Minimum
for Run #3

Minimum
for Run #4

Minimum
for Run #5

Training 0.1166005 0.11236181 0.10643069 0.11980858 0.10693344
Cross validation 0.14835984 0.14816958 0.13902865 0.15459943 0.13600351

5.3.5.1.1 Testing The Training Subset Of One Hidden Layer For Momentum

Learning Algorithm. As the number of true classified exemplars increases, r values

and correct percent values start to increase, as well.

Table 5.46 Confusion matrix for testing of training subset data for momentum learning method

Output /
Desired VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van)

VEHCL(opel) 75 1 32 0
VEHCL(bus) 2 118 3 1

VEHCL(saab) 19 1 63 0
VEHCL(van) 2 1 1 104

Table 5.47 Performance values for testing of training subset data for momentum learning method

Performance VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van)
MSE 0.093429388 0.021114498 0.092435561 0.008568728

NMSE 0.524873691 0.103387775 0.515631701 0.04591776
MAE 0.202379966 0.073715939 0.198357207 0.057388675

Min Abs Error 2.2378E-05 9.35122E-05 1.21128E-05 0.000717191
Max Abs Error 1.007517011 0.962872018 1.041621548 0.780103013

r 0.697593828 0.94862126 0.697551594 0.980074652

Percent Correct 76.53061224 97.52066116 63.63636364 99.04761905

96

5.3.5.1.2 Testing The Cross Validation Subset Of One Hidden Layer For

Momentum Learning Algorithm. VEHCL(opel) and VEHCL(saab) attributes have

more misclassified exemplars. In that case, the MSE values for these attributes are

expected to be high, and opposite of that situaiton, the r and percent correct values to

below.

Table 5.48 Confusion Matrix for testing of cross validation subset data for momentum learning

Output /
Desired VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van)

VEHCL(opel) 41 0 20 1
VEHCL(bus) 4 42 1 1
VEHCL(saab) 20 2 33 2
VEHCL(van) 2 0 2 41

Table 5.49 Performance values

Performance VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van)
MSE 0.147398289 0.030277335 0.122852711 0.036700385

NMSE 0.681901049 0.184088819 0.632038946 0.219489303
MAE 0.28725699 0.093958983 0.277117391 0.086943913

Min Abs Error 0.000329809 0.000155947 0.000311987 0.00094469
Max Abs Error 0.953404705 0.908973466 0.812204558 0.939407299

r 0.565119798 0.906119231 0.616379211 0.890464251
Percent Correct 61.19402985 95.45454545 58.92857143 91.11111111

5.3.5.2 Conjugate-Gradient Learning Method

Figure 5.22 Average MSE for 5 runs

97

As seen from Figure 5.24, cross validation subset data of run number 2 moves

vertically and gets higher MSE values and that causes an increment seen in average

MSEs.

Table 5.50 MSE statistics for training and cross validation subsets for veh dataset

All Runs Training
Minimum

Training
Standard
Deviation

Cross
Validation
Minimum

Cross
Validation
Standard
Deviation

Average of
Minimum

MSEs
0.242653495 0.103842625 0.267493606 0.096332087

Average of
Final MSEs 0.242653495 0.103842625 0.389636393 0.238195555

Table 5.51 Best MSE values

Best Networks Training Cross Validation

Run # 5 5
Epoch # 1000 882

Minimum MSE 0.097817965 0.139471865
Final MSE 0.097817965 0.140007674

Figure 5.23 Training MSE

98

Figure 5.24 Cross validation MSE

Table 5.52 Minimum MSE values for conjugate-gradient learning method

Subset Minimum
for Run #1

Minimum
for Run #2

Minimum
for Run #3

Minimum
for Run #4

Minimum
for Run #5

Training 0.31355234 0.17124406 0.34241099 0.28824211 0.09781796
Cross validation 0.33636168 0.1908967 0.35665164 0.31408615 0.13947187

5.3.5.2.1 Testing Of Training Subset Data For Conjugate-Gradient Learning

Method

Table 5.53 Confusion Matrix for testing of training subset data for conjugate-gradient learning method

Output /
Desired VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van)

VEHCL(opel) 67 1 27 0
VEHCL(bus) 2 117 4 0

VEHCL(saab) 29 0 68 0
VEHCL(van) 0 3 0 105

Table 5.54 Performance values

Performance VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van)
MSE 0.108138256 0.024754818 0.099318379 0.010996027

NMSE 0.607506121 0.121212708 0.554026009 0.058925073
MAE 0.223696678 0.082022537 0.208532684 0.054647872

Min Abs Error 0.000306308 0.000139652 0.000151154 4.35091E-05
Max Abs Error 0.975661846 1.053480303 1.003342612 1.055555089

r 0.627401776 0.941033412 0.669451564 0.973740456
Percent Correct 68.36734694 96.69421488 68.68686869 100

99

5.3.5.2.2 Testing Of Cross Validation Subset Data For Conjugate-Gradient

Learning Method

Table 5.55 Confusion matrix for testing of cross validation subset data for momentum learning

Output /
Desired VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van)

VEHCL(opel) 41 0 19 1
VEHCL(bus) 3 44 1 1
VEHCL(saab) 21 0 36 3
VEHCL(van) 2 0 0 40

Table 5.56 Performance values

Performance VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van)
MSE 0.158041189 0.02302683 0.12416261 0.040584113

NMSE 0.731137747 0.140005122 0.638777969 0.24271622
MAE 0.29150031 0.08269755 0.251839916 0.09982497

Min Abs Error 0.000675544 0.000701821 0.00097184 0.00157529
Max Abs Error 0.951789706 0.88237859 0.943830165 0.975203154

r 0.528481975 0.931759244 0.61042324 0.882024132
Percent Correct 61.19402985 100 64.28571429 88.88888889

5.3.5.3 Levenberg-Marquardt Algorithm

Figure 5.25 Average MSE for 5 runs

100

Table 5.57 MSE statistics for training and cross validation subsets for veh dataset

All Runs Training
Minimum

Training
Standard
Deviation

Cross
Validation
Minimum

Cross
Validation
Standard
Deviation

Average of
Minimum MSEs 0.1092397 0.108394453 0.153391457 0.047318505

Average of Final
MSEs 0.1092397 0.108394453 0.218606887 0.062058229

Levenberg-Marquardt algorithm converges so rapidly. In about 40 epochs, the

average MSE comes to 0.15 value levels. Levenberg-Marquardt algorithm is more

successful if compared to conjugate-gradient algorithm. The standard deviation and

the average of minimum MSEs of Levenberg-Marquardt are nearly half the value of

standard deviation of conjugate-gradient algorithm.

Table 5.58 Best MSE values

Best Networks Training Cross Validation

Run # 5 5
Epoch # 304 14

Minimum MSE 0.057162131 0.125025029
Final MSE 0.057162131 0.189835384

Figure 5.26 Training MSE for Levenberg-Marquardt algorithm (5 runs)

101

Figure 5.27 Cross validation MSE for Levenberg-Marquardt algorithm (5 runs)

Table 5.59 Minimum MSE values for Levenberg-Marquardt algorithm

Subset Minimum
for Run #1

Minimum
for Run #2

Minimum
for Run #3

Minimum
for Run #4

Minimum
for Run #5

Training 0.30298325 0.06811015 0.06026892 0.05767405 0.05716213
Cross validation 0.23715843 0.14284108 0.12800621 0.13392654 0.12502503

5.3.5.3.1 Testing The Training Subset Data Of Levenberg-Marquardt Algorithm

Table 5.60 Confusion matrix for testing of training subset data for Levenberg-Marquardt algorithm

Output /
Desired VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van)

VEHCL(opel) 80 1 45 1
VEHCL(bus) 1 119 7 0

VEHCL(saab) 16 0 47 0
VEHCL(van) 1 1 0 104

Table 5.61 Performance values

Performance VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van)
MSE 0.096826771 0.02321515 0.101048921 0.006477804

NMSE 0.543959729 0.113673681 0.563679461 0.034712999
MAE 0.213487683 0.072859601 0.208991081 0.044667627

Min Abs Error 0.000282074 4.71014E-05 8.34322E-05 3.69534E-05
Max Abs Error 0.940714589 0.986980909 1.033269704 0.667709778

r 0.67896186 0.943890477 0.684888374 0.985941769
Percent Correct 81.63265306 98.34710744 47.47474747 99.04761905

102

5.3.5.3.2 Testing Of Cross Validation Subset Data For Levenberg-Marquardt

Learning Method

Table 5.62 MSE statistics for training and cross validation subsets for veh dataset

Output /
Desired VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van)

VEHCL(opel) 52 1 24 2
VEHCL(bus) 2 43 1 2

VEHCL(saab) 11 0 31 1
VEHCL(van) 2 0 0 40

Table 5.63 Performance values

Performance VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van)
MSE 0.134552119 0.024971264 0.117782757 0.032705684

NMSE 0.622471479 0.151827446 0.605955613 0.195598705
MAE 0.275709599 0.07824892 0.246527429 0.076094073

Min Abs Error 0.000154448 0.000503627 0.001180166 1.63692E-06
Max Abs Error 0.987732991 0.940266699 0.935175262 1.019431174

r 0.616837365 0.926676438 0.637887897 0.909338418
Percent Correct 77.6119403 97.72727273 55.35714286 88.88888889

5.3.5.4 Comparison For Mean Accuracy Testing The Training And Cross

Validation Subset Data Of Learning Algorithms

Table 5.64 Mean accuracy performance of learning algorithms

Algorithm/
Subset

Momentum Conjugate-gradient LM

Training 84.18% 83.44% 81.63%

Cross
validation

76.67% 78.59% 79.9%

“Percent correct” row of each performance value table is handled as: Table 5.47

for training of momentum algortihm, Table 5.49 for cross validation of momentum

algorithm, Table 5.54 for training of conjugate-gradient algorithm, Table 5.56 for

cross validation of conjugate-gradient algorithm, Table 5.61 for training of

Levenberg-Marquardt algorithm and Table 5.63 for cross validation of Levenberg-

Marquardt algorithm.

103

Mean accuracy performance values for the numerical driven attributes are nearly

the same. But, looking at the MSE statistics of the learning algortihms, the

momentum learning and Levenberg-Marquardt algorithm have much less minimum

average MSE values. Contrary to this situation, conjugate-gradient algorithm has

disadvantages to converge to the average minimum. At Figure 5.24, cross validation

MSE values started to increase vertically because of the wrong gradient direction.

5.3.6 The Optimum Momentum Rate

Table 5.65 Network parameters for the optimum momentum rate

Dataset used veh
ANN Architecture 18-4-4
Number of epochs 1000
Number of runs 5
Momentum Rate 0.9

Figure 5.28 Average MSE

The optimum momentum rate found is among the possible momentum rates; 0.1,

0.3, 0.5, 0.7 and 0.9. Examining the tables mentioned; the minimum of average of

minimum MSEs is 0.0794 for  =0.9. So,  =0.9 is chosen as the optimum

momentum rate.

104

Table 5.66 MSE statisitcs for the optimum momentum rate

All Runs Training
Minimum

Training
Standard
Deviation

Cross
Validation
Minimum

Cross
Validation
Standard
Deviation

Average of
Minimum

MSEs
0.079449192 0.017419894 0.109239352 0.04645294

Average of
Final MSEs 0.079903202 0.018010406 0.171239116 0.071065264

Table 5.67 Best MSE values

Best Networks Training Cross Validation

Run # 3 1
Epoch # 1000 3

Minimum MSE 0.057525099 0.028554256
Final MSE 0.057525099 0.296527252

Figure 5.29 Training MSE

Figure 5.30 Cross validation MSE

105

Table 5.68 Minimum MSE values for momentum rate=0,9

Subset Minimum
for Run #1

Minimum
for Run #2

Minimum
for Run #3

Minimum
for Run #4

Minimum
for Run #5

Training 0.09526639 0.0998127 0.09977897 0.09652657 0.11622639
Cross validation 0.13188073 0.13811468 0.14802913 0.14721098 0.15441076

Table 5.69 Confusion matrix for testing the training subset of one hidden layer, momentum rate=0,9

Output /
Desired VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van)

VEHCL(opel) 69 0 27 0
VEHCL(bus) 0 119 4 0
VEHCL(saab) 27 1 67 0
VEHCL(van) 2 1 1 105

Table 5.70 Performance values (training)

Performance VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van)
MSE 0.105641636 0.021068844 0.100429624 0.008599026

NMSE 0.593480448 0.103164229 0.560224848 0.04608012
MAE 0.211926839 0.082762048 0.21101388 0.06113804

Min Abs Error 0.00039978 0.000328017 0.000504421 2.09743E-05
Max Abs Error 1.013030418 0.778413834 1.020201788 0.76959377

r 0.638941354 0.947963627 0.663645649 0.979739911
Percent Correct 70.40816327 98.34710744 67.67676768 100

Table 5.71 Confuison matrix for testing the cross validation subset of one hidden layer, momentum

rate=0,9

Output /
Desired VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van)
VEHCL(opel) 41 0 21 1
VEHCL(bus) 3 44 0 2
VEHCL(saab) 21 0 35 0
VEHCL(van) 2 0 0 42

Tablo 5.72 Performance values (cross validation)

Performance VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van)
MSE 0.161504525 0.024304293 0.112727474 0.028503339

NMSE 0.747159996 0.147772204 0.579947754 0.170466275
MAE 0.275615104 0.085690461 0.244870874 0.093145763

Min Abs Error 3.45259E-05 0.00121531 0.000375239 0.00022727
Max Abs Error 0.984461199 0.909582052 0.917315016 0.947606892

r 0.528742463 0.926859502 0.651468553 0.921119997
Percent Correct 61.19402985 100 62,5 93,33333333

106

Table 5.73 Mean accuracy performance of momentum rates (veh dataset)

Momentum

value/

Subset

 =0.1  =0.3  =0.5  =0.7  =0.9

Training 45.41 % 31.64 % 80.00 % 84.08% 84.11%

Cross

validation
46.54 % 31.8 % 76.67 % 76.67% 79.25%

For  =0.9, the accuracy of both training and cross validation subsets have the

highest values. So, among the momentum rates given, choosing the momentum rate

for 0.9 is suitable.

5.3.7 The Optimum Hidden Layer Size

In order to construct the ANN needed, the optimum hidden layer size should be

defined. Starting from the one hidden layer, the hidden layer size is increased up to

five hiden layers and each hadden layer sizes’ performances are compared. For each

hidden layer size performance evaluation, 5 runs made and 1000 epochs generated

per run.The momentum rate is 0.9 as found optimum before.

5.3.7.1 Two hidden Layered ANN

The optimum hidden layer size is found as two hidden layered ANN.

Figure 5.31 Average MSE

107

Table 5.74 MSE statistics

All Runs Training
Minimum

Training
Standard
Deviation

Cross
Validation
Minimum

Cross
Validation
Standard
Deviation

Average of
Minimum

MSEs
0.076109765 0.019130725 0.131692191 0.006750379

Average of
Final MSEs 0.0824498 0.016021286 0.143002858 0.010210213

Table 5.75 Best MSE values

Best Networks Training Cross Validation

Run # 3 5
Epoch # 937 987

Minimum MSE 0.053807166 0.126436126
Final MSE 0.069359214 0.134385163

Figure 5.32 Training MSE

108

Figure 5.33 Cross validation MSE

Table 5.76 Minimum MSE values for each run of two hidden layer size ANN topology

Subset Minimum
for Run #1

Minimum
for Run #2

Minimum
for Run #3

Minimum
for Run #4

Minimum
for Run #5

Training 0.06343473 0.09810928 0.05380717 0.07169742 0.09350024
Cross validation 0.12705209 0.13027827 0.14314187 0.13155261 0.12643613

Table 5.77 Confusion matrix for testing the training subset of two hidden layers, momentum rate=0,9

Output /
Desired VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van)

VEHCL(opel) 46 0 18 0
VEHCL(bus) 0 118 1 0

VEHCL(saab) 51 1 79 0
VEHCL(van) 1 2 1 105

Table 5.78 Performance values for the training subset data (veh dataset)

Performance VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van)
MSE 0.108927159 0.012367696 0.107167001 0.008262857

NMSE 0.611938071 0.060558796 0.59780784 0.044278668
MAE 0.232725706 0.038301686 0.227173695 0.047847358

Min Abs Error 5.43513E-05 2.63465E-05 0.00066498 0.002123372
Max Abs Error 1.017762345 0.961997335 0.946268247 0.896269902

r 0.624232906 0.970181406 0.634660012 0.979687715
Percent Correct 46.93877551 97.52066116 79.7979798 100

109

Table 5.79 Confusion matrix for testing the cross validation subset of two hidden layers, momentum

rate=0,9

Output /
Desired VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van)

VEHCL(opel) 32 2 9 0
VEHCL(bus) 3 42 0 2
VEHCL(saab) 30 0 47 1
VEHCL(van) 2 0 0 42

Table 5.80 Performance values for the cross validation subset data (veh dataset)

Performance VEHCL(opel) VEHCL(bus) VEHCL(saab) VEHCL(van)
MSE 0.143302882 0.024724454 0.122465123 0.023065753

NMSE 0.66295468 0.150326819 0.630044929 0.137946401
MAE 0.289808693 0.052091883 0.266209465 0.070505278

Min Abs Error 9.9691E-05 4.87393E-06 0.000790238 0.004297736
Max Abs Error 0.994809899 0.981629281 0.769235028 1.006620327

r 0.583613636 0.924460062 0.61229832 0.935782648
Percent Correct 47.76119403 95.45454545 83.92857143 93.33333333

Table 5.81 Mean accuracy performance of hidden layers

Hidden

layer size/

Subset

Hidden

Layer=1

Hidden

Layer=2

Hidden

Layer=3

Hidden

Layer=4

Hidden

Layer=5

Training 84.1% 81.07% 33.28% 25.00% 25.00%

Cross

validation
79,26% 80.12% 34.37% 25.00% 25.00%

Mean accuracy values are presented seen in Table 5.81 that are including the

performance values. The true classified exemplars are gathered on the orthogonal of

the confusion matrix which are named as the true classification.

110

5.3.8 Optimum Number Of Processing Elements Of The Hidden Layers

Figure 5.34 Average values of minimum MSEs

Table 5.82 MSE statistics

All Runs Training
Minimum

Training
Standard
Deviation

Cross
Validation
Minimum

Cross
Validation
Standard
Deviation

Average of
Minimum

MSEs
0.003037419 0.000950724 0.115104295 0.012618901

Average of
Final MSEs 0.003037419 0.000950724 0.213971905 0.098673842

Table 5.83 Best MSE values

Best Networks Training Cross Validation

Run # 2 1
Epoch # 1000 15

Minimum MSE 0.001682337 0.094483546
Final MSE 0.001682337 0.388886229

111

Figure 5.35 Training MSE

Figure 5.36 Cross validation MSE

Because there are four different classes, as an output feature, the minimum

processing element in Hidden1 layer and Hidden2 layer is four. Starting from the

initial point, in each hidden layer, the number of processing elements (neurons) in the

hidden layer are increased by incremental algorithm. After running the simulation,

that is converging to minima, the optimal number of prcessing elements in hidden

layer 1 is 29. For hidden layer 2, the optimal number of prcessing elements is 10. So,

the proposed neural network structure is as 18-29-10-4.

112

5.4 Parameter Optimization

The performance of the backpropagation network (BPN) is affected by the

network architecture and parameter settings. The user must therefore determine the

required numbers of optimal layers and neurons in the hidden layers (Liu, Liu,Wang

& Niu, 2004).

However, there has been no clearly defined theory for calculating the ideal

parameter settings, and even slight parameter changes can cause major variations in

the behaviour of almost all networks. In neural network models, these factors have

been determined heuristically and by trial and error, which are both time consuming

and tedious. By the help of genetic parameters, the evolving mechanism here works

with not one but multiple populations, all of which evolve separately most of the

time, except for once every several generations that are applied as a crossover

operation from different populations. Since sometimes it could happen for a single

population scheme that though the neural network could theoretically solve a certain

classification problem, the system may not return a correct solution. This is because

of the random nature of the algorithm and its reliance on natural selection; mutation

and crossover. Hancock (1992), discussed the permutation problem. Thus, it could

happen that a certain flow of events that would lead to a correct solution will not

occur and thus a solution will not be found. For that reason, genetic parameters that

are crossover and mutation operator values must be selected carefully. However, by

using several unrelated populations, the probability has been decreased of this

occurrence, since if some population has poor individuals the solution could still be

found at another.

The purpose of this study is to apply genetic algorithms (GAs) to determine the

number of neurons in the hidden layers, the momentum, and the learning rates for

minimizing the time and effort required to find the optimal architecture and

parameters of the backpropagation algorithm.

113

It also focused on improving the accuracy of classification and verifying the

performance and validitation of optimizing both the neural network size and its

parameters using GAs.

But as soon as problems to be solved are getting more complex, backpropagation

more and more fails due to its inherent gradient descent. Backpropagation is needed

in these cases, several starts with varying initial weights to meet the desired error or

is not able to solve the required task at all while genetic algorithms are still

performing very well.

Figure 5.37 Framework for EANN parameter optimization

114

Table 5.84 Optimized parameters of hidden layer 1 for tae dataset (crossover values (0.7-0.9),

mutation values (0.05, 0.1, 0.3, 0.5))

hidden layer 1 Genetic
Parameters

Crossover
Type optimum PE stepsize momentum

crossover one point 3 0.73150936 0.240180652
0.9 two point 3 0.43076188 0.387495726

mutation arithmetic 13 0.65257714 0.581940507
0.05 heuristic 3 0.02556954 0.693615146

crossover one point 6 0.55674446 0.281066738
0.9 two point 3 0.64099817 0.126715657

mutation arithmetic 18 0.68266252 0.399812089
0.1 heuristic 3 0.53945832 0.418522512

crossover one point 3 0.11468645 0.016847524
0.9 two point 4 0.60162268 0.474645512

mutation arithmetic 17 0.92741906 0.614680999
0.3 heuristic 3 0.87018994 0.002328123

crossover one point 4 0.88114978 0.234085507
0.9 two point 3 0.75098245 0.116068873

mutation arithmetic 12 0.41713642 0.595252206
0.5 heuristic 3 0.37974655 0.499281889

crossover one point 4 0.32681967 0.079966614
0.7 two point 3 0.60043827 0.587494441

mutation arithmetic 8 0.48178512 0.533627331
0.05 heuristic 3 0.97777139 0.815553682

crossover one point 7 0.07847586 0.178002265
0.7 two point 3 0.29226171 0.597501592

mutation arithmetic 8 0.00348756 0.350691609
0.1 heuristic 3 0.7269501 0.187918958

crossover one point 6 0.88924089 0.240369414
0.7 two point 4 0.17073162 0.217492215

mutation arithmetic 7 0.36689023 0.316115925
0.3 heuristic 3 0.64213635 0.612095758

crossover one point 5 0.02118434 0.012264858
0.7 two point 13 0.21862656 0.035031489

mutation arithmetic 10 0.44708816 0.921060563
0.5 heuristic 3 0.77685623 0.044067876

The longer the chromosomes the more generations are required. In general,

genetic algorithms are inherently slower than backpropagation. This could be

expected due to their global search technique compared to the highly directed

gradient descent learning of backpropagation.

115

 Optimized parameters mentioned in the tables have been maintained by the run of

evolutionary neural networks stated with the parameters. At the end of each run;

MSE statistics have been determined, minimum MSE and average MSE values. As

seen , there is a conjuction with the parameters of the two types of tables; optimized

parameters and MSE statistics. In every possible genetic parameter selection; all

these EANN parameters are gathered to analyze.

The evolutionary neural network parameters were 20 generations run, 1000

epochs per generation, the population size to set 50 (chromosome number). Because

of the big population size; the time needed for calculation increases so much as 6 to 7

hours. Table 5.84 and Table 5.85 give the optimized stepsize and momentum values

and also the number of processing elements in the hidden layer 1. Table 5.84 shows

that whatever the crossover and the mutation parameter are, the optimum processing

elements needed in the hidden layer are 2-4 times much more than the other

crossover types. The optimized parameters are the selected parameters for each run

of the evolutionary neural network related with the genetic parameters given.

From experiences of the study, mutation values are restricted up to 0.5. If higher

mutation values are taken into consideration, the mutational search changes to a

random search which means the possibility to tackle up a local minima is getting

higher.

In order to evaluate the performance of the EANN, the basic ANN statistics are

compared with. The relative percent difference (RPD) is calculated as:

min() min()% 100
min()

EANN ANN

ANN

MSE MSEdifference x
MSE




116

5.4.1 Parameter Optimization For Teaching Assistant Evaluation (tae) Dataset

The neural network topology for the teaching assistant evaluation dataset is set.

The optimum number of hidden layers is one and the optiumum number of hidden

units in the hidden layer is 14. At that point, these values for the parameters are

found at fixed weight matrix and no genetic operators are implemented to the neural

network design.

By embedding the evolutionary algorithm to the network weight space, new

neural network arhitectures are gained in a population pool. New parameters

extracted from the genetic operators are put in the proposed neural network and

statistical performance values (minimum MSE and average MSE) are taken out. For

each genetical scenario, the statistical results are gathered at a performance table and

these results are compared with the traditional neural network structure defined

before.

Table 5.85 Optimized parameters of hidden layer 1 for tae dataset (crossover values (0.1), mutation

values (0.05, 0.1, 0.3, 0.5))

hidden layer 1 Genetic
Parameters

Crossover
Type optimum PE stepsize momentum

crossover one point 5 0.228667 0.033171
0.1 two point 3 0.380425 0.317079

mutation arithmetic 14 0.166905 0.202487
0.05 heuristic 4 0.788608 0.336321

crossover one point 5 0.592122 0.191385
0.1 two point 3 0.567506 0.190046

mutation arithmetic 12 0.051978 0.464272
0.1 heuristic 4 0.848474 0.483011

crossover one point 6 0.768924 0.342008
0.1 two point 3 0.721577 0.078652

mutation arithmetic 17 0.376445 0.556608
0.3 heuristic 4 0.949445 0.833346

crossover one point 4 0.304445 0.312772
0.1 two point 4 0.017837 0.17135

mutation arithmetic 10 0.06739 0.773389
0.5 heuristic 4 0.864954 0.335542

117

Table 5.86 Optimized parameters of hidden layer 1 for tae dataset (crossover values (0.3-0.5),

mutation values (0.05, 0.1, 0.3, 0.5))

hidden layer 1 Genetic
Parameters

Crossover
Type optimum PE stepsize momentum

crossover one point 4 0.829473656 0.154846304
0.5 two point 3 0.237959042 0.087478378

mutation arithmetic 9 0.860443377 0.408215093
0.05 heuristic 3 0.704181555 0.075193669

crossover one point 5 0.587704987 0.213099964
0.5 two point 3 0.342049777 0.507790161

mutation arithmetic 7 0.89050051 0.978083575
0.1 heuristic 3 0.875925333 0.882730772

crossover one point 6 0.534752125 0.300233845
0.5 two point 5 0.402786642 0.109532591

mutation arithmetic 8 0.934373671 0.832060151
0.3 heuristic 4 0.619565791 0.962117942

crossover one point 3 0.246249197 0.343565768
0.5 two point 3 0.526623434 0.080084856

mutation arithmetic 10 0.65241926 0.993482987
0.5 heuristic 3 0.941239698 0.06133486

crossover one point 4 0.886471064 0.207323016
0.3 two point 3 0.641827019 0.439928246

mutation arithmetic 15 0.562916541 0.00776508
0.05 heuristic 3 0.428609898 0.329548231

crossover one point 4 0.78071679 0.008922956
0.3 two point 4 0.414314222 0.126228985

mutation arithmetic 15 0.920649611 0.757566181
0.1 heuristic 4 0.079784386 0.217889502

crossover one point 18 0.65412166 0.256123363
0.3 two point 3 0.731228032 0.349469001

mutation arithmetic 15 0.581840502 0.763365527
0.3 heuristic 9 0.797058013 0.159718011

crossover one point 4 0.956701127 0.008711356
0.3 two point 3 0.305796922 0.533341844

mutation arithmetic 13 0.043253544 0.098009882
0.5 heuristic 3 0.626679383 0.11928196

118

Table 5.87 Minimum and average MSE values for EANN design (tae dataset)

mutation=0.05 Crossover
Value

 Performance
Type

 one point two point arithmetic heuristic

Min MSE 0.184515 0.193226 0.176466 0.179978
0.9

Avg MSE 0.300455 0.357999 0.33765 0.304546

Min MSE 0.181724 0.177355 0.187003 0.184149
0.7

Avg MSE 0.334855 0.317202 0.365957 0.309382

Min MSE 0.185062 0.194295 0.206236 0.167622
0.5

Avg MSE 0.32942 0.340194 0.379594 0.317473

Min MSE 0.179579 0.202073 0.18986 0.180831
0.3

Avg MSE 0.344877 0.361766 0.349243 0.33478

Min MSE 0.177645 0.192304 0.204626 0.186952
0.1

Avg MSE 0.359675 0.342767 0.413944 0.339928

Table 5.88 The relative percent difference between ANN and EANN performance values

mutation=0.05 Crossover
Value

 Performance
Type

 one point two point arithmetic heuristic

Min MSE 0.14% 4.87% -4.23% -2.32%
0.9

Avg MSE -1.61% 17.24% 10.58% -0.27%

Min MSE -1.38% -3.75% 1.49% -0.06%
0.7

Avg MSE 9.66% 3.88% 19.85% 1.32%

Min MSE 0.44% 5.45% 11.93% -9.03%
0.5

Avg MSE 7.88% 11.41% 24.31% 3.97%

Min MSE -2.54% 9.67% 3.04% -1.86%
0.3

Avg MSE 12.94% 18.47% 14.37% 9.64%

Min MSE -3.59% 4.37% 11.05% 1.46%
0.1

Avg MSE 17.79% 12.25% 35.56% 11.32%

119

As stated in Table 5.88, as the mutation value as at low levels, the higher

crossover values help EANN to perform better minimum and average MSE

solutions. One point crossover has better minimum MSE solutions for highest and

lowest crossover values. In general, two point crossover does not give much good

minimum MSE solutions than the generational ANN. Arithmetic crossover is

opposite to the mutation value. As the mutation rate gets smaller in value, the

possible good minimum MSE solutions for arithmetic crossover can be seen in Table

5.88 and Table 5.90, in high crossover values. The opposite situation can be seen in

Table 5.94. Because the mutation rate is so small, the heuristic crossover operator

behaves as a random operator. So, almost at all levels of crossover, an improvement

in the minimum MSE minimization can be seen.

Although one point crossover gives better solution values for minimum MSE, the

average MSE values can be worse. At Table 5.88, only for crossover rate 0.9, the

average MSE gave better solution value than the traditional ANN. At other levels,

the average MSE values for one point crossover 10% worse approximately.

Arithmetic operators shows the worst performance for the average MSE values.

Increasing the mutation rate from 0.05 to 0.1 does not change the situation

between the crossover types. At Table 5.90, arithmetic operator produces much

worse average MSE values. One point crossover does not produce further

improvement.

From Table 5.92, as the mutation increased to 0.3, which is an important operator

to generate new individuals, randomness gets higher. Randomness has the same

effect with the heuristic crossover.

120

Table 5.89 Minimum and average MSE values for EANN design (tae dataset)

mutation=0.1 Crossover
Value

Performance
Type one point two point arithmetic heuristic

Min MSE 0.183849 0.189584 0.184098 0.17782
0.9

Avg MSE 0.321902 0.322333 0.35367 0.300545

Min MSE 0.187784 0.203728 0.201665 0.179272
0.7

Avg MSE 0.347136 0.380452 0.401657 0.316814

Min MSE 0.198693 0.185993 0.186103 0.173962
0.5

Avg MSE 0.358461 0.31858 0.343865 0.314338

Min MSE 0.190051 0.16559 0.201521 0.189786
0.3

Avg MSE 0.333013 0.339525 0.401266 0.37751

Min MSE 0.207438 0.184873 0.192138 0.191442
0.1

Avg MSE 0.372974 0.333297 0.364317 0.36352

Table 5.90 The relative percent difference between ANN and EANN performance values

mutation=0.1 Crossover
Value

Performance
Type one point two point arithmetic heuristic

Min MSE -0.22% 2.89% -0.09% -3.49%
0.9

Avg MSE 5.42% 5.56% 15.82% -1.58%

Min MSE 1.91% 10.57% 9.45% -2.71%
0.7

Avg MSE 13.68% 24.59% 31.54% 3.75%

Min MSE 7.83% 0.94% 1.00% -5.59%
0.5

Avg MSE 17.39% 4.33% 12.61% 2.94%

Min MSE 3.14% -10.13% 9.37% 3.00%
0.3

Avg MSE 9.06% 11.19% 31.41% 23.63%

Min MSE 12.58% 0.33% 4.28% 3.90%
0.1

Avg MSE 22.14% 9.15% 19.31% 19.05%

121

Table 5.91 Minimum and average MSE values for EANN design (tae dataset)

mutation=0.3 Crossover
Value

Performance
Type one point two point arithmetic heuristic

Min MSE 0.194421 0.197464 0.18491 0.179279
0.9

Avg MSE 0.338284 0.367537 0.391568 0.34347

Min MSE 0.189479 0.186085 0.195875 0.183886
0.7

Avg MSE 0.353423 0.33069 0.379913 0.339743

Min MSE 0.191511 0.193757 0.201105 0.182305
0.5

Avg MSE 0.378879 0.363758 0.391021 0.316363

Min MSE 0.189359 0.192335 0.198526 0.187614
0.3

Avg MSE 0.389787 0.341277 0.385752 0.352999

Min MSE 0.189208 0.182881 0.195454 0.17896
0.1

Avg MSE 0.365237 0.323015 0.393626 0.372949

Table 5.92 The relative percent difference between ANN and EANN performance values

mutation=0.3 Crossover
Value

Performance
Type one point two point arithmetic heuristic

Min MSE 5.52% 7.17% 0.35% -2.70%
0.9

Avg MSE 10.78% 20.36% 28.23% 12.48%

Min MSE 2.83% 0.99% 6.30% -0.20%
0.7

Avg MSE 15.74% 8.30% 24.42% 11.26%

Min MSE 3.94% 5.15% 9.14% -1.06%
0.5

Avg MSE 24.08% 19.13% 28.05% 3.60%

Min MSE 2.77% 4.38% 7.74% 1.82%
0.3

Avg MSE 27.65% 11.76% 26.33% 15.60%

Min MSE 2.69% -0.75% 6.08% -2.88%
0.1

Avg MSE 19.61% 5.78% 28.91% 22.14%

122

Table 5.93 Minimum and average MSE values for EANN design (tae dataset)

mutation=0.5 Crossover
Value

Performance
Type one point two point arithmetic heuristic

Min MSE 0.191169 0.182371 0.189458 0.17833
0.9

Avg MSE 0.373317 0.366227 0.380388 0.3674

Min MSE 0.204179 0.201667 0.198073 0.181379
0.7

Avg MSE 0.382814 0.399454 0.364372 0.343713

Min MSE 0.194121 0.191101 0.190737 0.178933
0.5

Avg MSE 0.351897 0.377449 0.375544 0.335193

Min MSE 0.18581 0.187488 0.193053 0.172098
0.3

Avg MSE 0.333571 0.35295 0.378377 0.35586

Min MSE 0.196609 0.179915 0.178663 0.174804
0.1

Avg MSE 0.389925 0.342659 0.37174 0.354238

Moving the mutation value to 0.5, one point crossover does not improve any

statistical performance value. Heuristic crossover uses its advantage, high mutation

rate does not affect its mechanics. At all levels of crossover in Table 5.94, it has

better results than the traditional 56-4-3 network.

Table 5.94 The relative percent difference between ANN and EANN performance values

mutation=0.5 Crossover
Value

Performance
Type one point two point arithmetic heuristic

Min MSE 3.75% -1.02% 2.82% -3.22%
0.9

Avg MSE 22.26% 19.93% 24.57% 20.32%

Min MSE 10.81% 9.45% 7.50% -1.56%
0.7

Avg MSE 25.37% 30.82% 19.33% 12.56%

Min MSE 5.35% 3.71% 3.52% -2.89%
0.5

Avg MSE 15.24% 23.61% 22.99% 9.77%

Min MSE 0.84% 1.75% 4.77% -6.60%
0.3

Avg MSE 9.24% 15.59% 23.91% 16.54%

Min MSE 6.70% -2.36% -3.04% -5.13%
0.1

Avg MSE 27.69% 12.22% 21.74% 16.01%

123

Two point and arithmetic crossover types show better performance than the basic

ANN for high and low crossover points when the mutation rate is high.

5.4.2 Parameter Optimization For Vehicle Silhoutte (veh) Dataset

The neural network topology for the vehicle silhoutte (veh) dataset is set. The

optimum number of hidden layers is two and the optimum momentum rate is 0.9. As

there are two hidden layers exist for the topology, the basic ANN topology is

implemented as 18-4-4-4.

Table 5.95 Optimized parameters of hidden layer 1 for tae dataset (crossover values (0.1), mutation

values (0.05, 0.1, 0.3, 0.5))

Hidden layer 1 Genetic
Values

Crossover
type opt PE stepsize momentum

crossover one point 16 0.644326813 0.352986604
0.1 two point 20 0.060817322 0.231555361

mutation arithmetic 22 0.7153409 0.096027724
0.05 heuristic 20 0.080998495 0.356019577

crossover one point 19 0.754102965 0.113731649
0.1 two point 30 0.770179519 0.058653143

mutation arithmetic 11 0.610429353 0.396056352
0.1 heuristic 11 0.21231876 0.312689071

crossover one point 9 0.347335331 0.152195178
0.1 two point 14 0.254836305 0.090009665

mutation arithmetic 16 0.475974884 0.294499587
0.3 heuristic 19 0.493676218 0.089035444

crossover one point 14 0.25827033 0.197631032
0.1 two point 15 0.179849973 0.234581227

mutation arithmetic 14 0.160482264 0.167729741
0.5 heuristic 14 0.045357284 0.489698402

124

Table 5.96 Optimized parameters of hidden layer 1 for veh dataset (crossover values (0.7-0.9),

mutation values (0.05, 0.1, 0.3, 0.5))

Hidden layer 1 Genetic
Values

Crossover
type opt PE stepsize momentum

crossover one point 29 0.731131732 0.180706456
0.9 two point 13 0.598734231 0.135238261

mutation arithmetic 23 0.383692276 0.746376718
0.05 heuristic 25 0.061717978 0.742125685

crossover one point 16 0.13288304 0.790880532
0.9 two point 15 0.567804211 0.821727453

mutation arithmetic 9 0.276056446 0.715809371
0.1 heuristic 6 0.17453568 0.301922153

crossover one point 11 0.16585049 0.996871098
0.9 two point 21 0.418494086 0.472754749

mutation arithmetic 25 0.728537204 0.65661347
0.3 heuristic 7 0.026606511 0.611669395

crossover one point 22 0.127194705 0.109461119
0.9 two point 13 0.220622711 0.434537178

mutation arithmetic 11 0.104285872 0.939742975
0.5 heuristic 16 0.617710333 0.760309386

crossover one point 11 0.236349002 0.259651447
0.7 two point 29 0.022882492 0.745005318

mutation arithmetic 22 0.680386298 0.479643406
0.05 heuristic 5 0.074268236 0.750166307

crossover one point 28 0.488491655 0.821246086
0.7 two point 7 0.583741485 0.485529282

mutation arithmetic 7 0.158327421 0.070181069
0.1 heuristic 29 0.300531577 0.010028216

crossover one point 13 0.63513043 0.365626125
0.7 two point 24 0.032180012 0.083931138

mutation arithmetic 16 0.426116722 0.236978262
0.3 heuristic 8 0.359481865 0.265168658

crossover one point 30 0.240521449 0.36664013
0.7 two point 14 0.048300096 0.219123706

mutation arithmetic 15 0.740171187 0.266201726
0.5 heuristic 21 0.522609395 0.266852163

125

Table 5.97 Optimized parameters of hidden layer 1 for tae dataset (crossover values (0.3, 0.5),

mutation values (0.05, 0.1, 0.3, 0.5))

Hidden layer 1 Genetic
Values

Crossover
type opt PE stepsize momentum

crossover one point 24 0.463598757 0.926746939
0.5 two point 28 0.156988464 0.302167522

mutation arithmetic 14 0.490223059 0.487381976
0.05 heuristic 29 0.296740884 0.183369686

crossover one point 19 0.299920733 0.378182613
0.5 two point 11 0.603199339 0.226041547

mutation arithmetic 22 0.605653353 0.355670106

0.1 heuristic 18 0.425742687 0.170712246
crossover one point 5 0.184241977 0.083488916

0.5 two point 7 0.139402898 0.472462966
mutation arithmetic 7 0.431058627 0.178983243

0.3 heuristic 13 0.115400651 0.294612211
crossover one point 18 0.363043718 0.1966738

0.5 two point 20 0.656682242 0.152477884
mutation arithmetic 7 0.558312521 0.026228541

0.5 heuristic 16 0.451297951 0.040072031
crossover one point 30 0.349966758 0.746379131

0.3 two point 16 0.069807036 0.493402154
mutation arithmetic 21 0.109333933 0.224802457

0.05 heuristic 18 0.233272445 0.465346672
crossover one point 10 0.607745975 0.249403197

0.3 two point 7 0.173709094 0.190872284
mutation arithmetic 10 0.077024596 0.035406426

0.1 heuristic 14 0.492649302 0.099028802
crossover one point 8 0.55870235 0.285588293

0.3 two point 29 0.259491492 0.259397283
mutation arithmetic 13 0.013004258 0.480006323

0.3 heuristic 26 0.106394458 0.300096836
crossover one point 28 0.026080326 0.200235962

0.3 two point 17 0.468385149 0.366402004
mutation arithmetic 29 0.033144072 0.248680745

0.5 heuristic 14 0.587780485 0.286396946

126

Table 5.98 Optimized parameters of hidden layer 2 for veh dataset (crossover values (0.5, 0.7),

mutation values (0.05, 0.1, 0.3, 0.5))

Hidden layer 2 Genetic
Values

Crossover
type opt PE stepsize momentum

crossover one point 9 0.274840303 0.700503666
0.7 two point 11 0.885403682 0.766710157

mutation arithmetic 14 0.295167251 0.183321405
0.05 heuristic 4 0.773724967 0.356331823

crossover one point 4 0.777690122 0.980055104
0.7 two point 4 0.654506382 0.369583922

mutation arithmetic 8 0.205629721 0.148070099
0.1 heuristic 5 0.605126941 0.97650962

crossover one point 6 0.358363818 0.631788601
0.7 two point 15 0.680976722 0.49113705

mutation arithmetic 9 0.899049914 0.793311424
0.3 heuristic 4 0.982339803 0.148992704

crossover one point 5 0.531609951 0.709586812
0.7 two point 4 0.894198142 0.414844732

mutation arithmetic 5 0.860526522 0.706131514
0.5 heuristic 16 0.548266189 0.969215099

crossover one point 9 0.431113302 0.861491783
0.5 two point 8 0.281698273 0.77473919

mutation arithmetic 16 0.484641668 0.847296276
0.05 heuristic 6 0.02463816 0.928584323

crossover one point 8 0.201159777 0.31775389
0.5 two point 5 0.746631505 0.050907944

mutation arithmetic 7 0.778632815 0.625943794
0.1 heuristic 8 0.093567208 0.445260088

crossover one point 9 0.063804124 0.867786583
0.5 two point 10 0.360432331 0.664174738

mutation arithmetic 10 0.210385414 0.097927674
0.3 heuristic 9 0.576409262 0.886767806

crossover one point 11 0.847640025 0.705812743
0.5 two point 7 0.955516844 0.170821791

mutation arithmetic 15 0.643077156 0.671235253
0.5 heuristic 6 0.111990082 0.537553622

127

Table 5.99 Optimized parameters of hidden layer 2 for veh dataset (crossover values (0.1, 0.3),

mutation values (0.05, 0.1, 0.3, 0.5))

Hidden layer 2 Genetic
Values

Crossover
type opt PE stepsize momentum

crossover one point 3 0.912563257 0.436229633
0.3 two point 7 0.369082959 0.982928089

mutation arithmetic 7 0.152389558 0.656250436
0.05 heuristic 14 0.787869701 0.15655433

crossover one point 5 0.356594261 0.325111764
0.3 two point 7 0.011539621 0.119508741

mutation arithmetic 6 0.020010836 0.515361509
0.1 heuristic 8 0.967749561 0.912200251

crossover one point 5 0.484849858 0.953358726
0.3 two point 6 0.133065809 0.170892297

mutation arithmetic 5 0.288564583 0.620631444
0.3 heuristic 15 0.05641197 0.442243824

crossover one point 9 0.310497395 0.556184416
0.3 two point 7 0.34237292 0.620827775

mutation arithmetic 13 0.941960781 0.291629874
0.5 heuristic 7 0.396300889 0.197463045

crossover one point 5 0.072694801 0.742238893
0.1 two point 5 0.915352476 0.837752896

mutation arithmetic 7 0.462651526 0.419824021
0.05 heuristic 9 0.103972089 0.351954819

crossover one point 14 0.781850819 0.773386778
0.1 two point 16 0.342553704 0.631916215

mutation arithmetic 7 0.917533132 0.70720565
0.1 heuristic 10 0.637788308 0.172991888

crossover one point 7 0.05431525 0.15737485
0.1 two point 6 0.352954438 0.805715483

mutation arithmetic 4 0.165300028 0.594149941
0.3 heuristic 4 0.224060597 0.880928094

crossover one point 14 0.736643082 0.651728804
0.1 two point 10 0.69950394 0.355593528

mutation arithmetic 4 0.303498401 0.524408641
0.5 heuristic 9 0.66898389 0.13252092

128

Table 5.100 Optimized parameters of hidden layer 2 for veh dataset (crossover values (0.9), mutation

values (0.05, 0.1, 0.3, 0.5))

Hidden layer 2 Genetic
Values

Crossover
type opt PE stepsize momentum

crossover one point 27 0.433650672 0.343120277
0.9 two point 14 0.832994449 0.816267941

mutation arithmetic 12 0.456014526 0.982881807
0.05 heuristic 10 0.394280454 0.950045431

crossover one point 4 0.310434189 0.930591856
0.9 two point 8 0.549460847 0.026387242

mutation arithmetic 14 0.966494451 0.703005274
0.1 heuristic 11 0.779814259 0.873394518

crossover one point 14 0.756411434 0.896345201
0.9 two point 16 0.730573733 0.811199545

mutation arithmetic 8 0.945908603 0.272854883
0.3 heuristic 13 0.464050275 0.691238966

crossover one point 5 0.137676704 0.960989461
0.9 two point 11 0.113842204 0.684879896

mutation arithmetic 7 0.768571134 0.240737352
0.5 heuristic 9 0.383434429 0.385284699

Table 5.101 Minimum and average MSE values for EANN design (veh dataset)

mutation=0.05 Crossover
Value

Performance
Type one point two point arithmetic heuristic

Min MSE 0.075718 0.086105 0.076751 0.072204
0.9

Avg MSE 0.083667 0.096844 0.082112 0.075364

Min MSE 0.039974 0.076885 0.075217 0.06996
0.7

Avg MSE 0.082463 0.089926 0.084912 0.082143

Min MSE 0.072453 0.094007 0.086036 0.078561
0.5

Avg MSE 0.09386 0.107972 0.088238 0.08126

Min MSE 0.085513 0.081762 0.093731 0.095225
0.3

Avg MSE 0.086938 0.086622 0.103299 0.100153

Min MSE 0.099972 0.093167 0.09279 0.091526
0.1

Avg MSE 0.100512 0.107654 0.104595 0.092351

129

Table 5.102 The relative percent difference between ANN and EANN performance values

mutation=0.05 Crossover
Value

Performance
Type one point two point arithmetic heuristic

Min MSE -0.52% 13.13% 0.84% -5.13%
0.9

Avg MSE 1.48% 17.46% -0.41% -8.59%

Min MSE -47.48% 1.02% -1.17% -8.08%
0.7

Avg MSE 0.02% 9.07% 2.99% -0.37%

Min MSE -4.81% 23.51% 13.04% 3.22%
0.5

Avg MSE 13.84% 30.96% 7.02% -1.44%

Min MSE 12.35% 7.43% 23.15% 25.12%
0.3

Avg MSE 5.44% 5.06% 25.29% 21.47%

Min MSE 31.35% 22.41% 21.92% 20.25%
0.1

Avg MSE 21.91% 30.57% 26.86% 12.01%

Table 5.103 Minimum and average MSE values for EANN design (veh dataset)

mutation=0.1 Crossover
Value

Performance
Type one point two point arithmetic heuristic

Min MSE 0.080027 0.073198 0.078625 0.072771
0.9

Avg MSE 0.096409 0.084352 0.089128 0.094581

Min MSE 0.075468 0.099111 0.085782 0.088113
0.7

Avg MSE 0.082922 0.113006 0.095283 0.096643

Min MSE 0.084575 0.093523 0.090744 0.081835
0.5

Avg MSE 0.089086 0.100173 0.100747 0.090066

Min MSE 0.085362 0.084353 0.082114 0.081014
0.3

Avg MSE 0.09185 0.085183 0.100492 0.119342

Min MSE 0.098404 0.091791 0.087469 0.093407
0.1

Avg MSE 0.124449 0.098183 0.093544 0.125622

130

Table 5.104 The relative percent difference between ANN and EANN performance values

mutation=0.1 Crossover
Value

Performance
Type one point two point arithmetic heuristic

Min MSE 5.15% -3.83% 3.30% -4.39%
0.9

Avg MSE 16.93% 2.31% 8.10% 14.71%

Min MSE -0.84% 30.22% 12.71% 15.77%
0.7

Avg MSE 0.57% 37.06% 15.56% 17.21%

Min MSE 11.12% 22.88% 19.23% 7.52%
0.5

Avg MSE 8.05% 21.50% 22.19% 9.24%

Min MSE 12.16% 10.83% 7.89% 6.44%
0.3

Avg MSE 11.40% 3.32% 21.88% 44.75%

Min MSE 29.29% 20.60% 14.92% 22.73%
0.1

Avg MSE 50.94% 19.08% 13.46% 52.36%

Table 5.105 Minimum and average MSE values for EANN design (veh dataset)

mutation=0.3 Crossover
Value

Performance
Type one point two point arithmetic heuristic

Min MSE 0.077631 0.08759 0.07827 0.077513
0.9

Avg MSE 0.093486 0.098436 0.091665 0.103597

Min MSE 0.086563 0.089774 0.086182 0.095886
0.7

Avg MSE 0.115684 0.100704 0.095224 0.107835

Min MSE 0.080343 0.095503 0.098585 0.090153
0.5

Avg MSE 0.088577 0.111584 0.099483 0.123994

Min MSE 0.084202 0.083201 0.088284 0.0805
0.3

Avg MSE 0.096255 0.105228 0.091589 0.103662

Min MSE 0.080533 0.087841 0.100112 0.089507
0.1

Avg MSE 0.084367 0.103941 0.129797 0.101394

131

Table 5.106 The relative percent difference ANN and EANN performance values

mutation=0.3 Crossover
Value

Performance
Type one point two point arithmetic heuristic

Min MSE 2.00% 15.08% 2.84% 1.84%
0.9

Avg MSE 13.39% 19.39% 11.18% 25.65%

Min MSE 13.73% 17.95% 13.23% 25.98%
0.7

Avg MSE 40.31% 22.14% 15.49% 30.79%

Min MSE 5.56% 25.48% 29.53% 18.45%
0.5

Avg MSE 7.43% 35.34% 20.66% 50.39%

Min MSE 10.63% 9.32% 16.00% 5.77%
0.3

Avg MSE 16.74% 27.63% 11.08% 25.73%

Min MSE 5.81% 15.41% 31.54% 17.60%
0.1

Avg MSE 2.33% 26.07% 57.43% 22.98%

At Table 5.102, when the mutation rate is low, usually crossover operators at high

levels perform better. One point crossover gives better minimum MSE solutions for

the crossover rates; 0.5, 0.7 and 0.9. Also, arithmetic and heuristic crossover

operators behave in the same manner. But two point crossover operator has the worst

values for minimum MSE. At low mutation values, as the crossover rate starts to

decrease, the average MSE values start to get worse, too. Two point and arithmetic

operators perform in a bad way for average MSE.

At Table 5.106, as the mutation moves to 0.3, any of the crossover operator makes

an improvement at any level of crossover. It is not logical to go further at this point,

but; for the experimentations’ sake, examining the Table 5.108, at all levels of

crossover, for the mutation rate 0.5 which is very high, all the crossover operators

produce bad results for both the minimum and average MSE values. Because the

mutation is very high, improvement is not possible.

132

Table 5.107 Minimum and average MSE values for EANN design (veh dataset)

mutation=0.5 Crossover
Value

Performance
Type one point two point arithmetic heuristic

Min MSE 0.076964 0.084205 0.081483 0.080551
0.9

Avg MSE 0.112792 0.10314 0.096668 0.115677

Min MSE 0.090686 0.105076 0.095825 0.086411
0.7

Avg MSE 0.120297 0.138325 0.129223 0.116275

Min MSE 0.085793 0.092728 0.095327 0.091432
0.5

Avg MSE 0.114022 0.09971 0.108583 0.094445

Min MSE 0.093826 0.098623 0.087461 0.087
0.3

Avg MSE 0.1084 0.10392 0.109852 0.10928

Min MSE 0.086971 0.095297 0.083904 0.096262
0.1

Avg MSE 0.089706 0.098037 0.117816 0.106418

Table 5.108 The relative percent difference between ANN and EANN performance values

mutation=0.5 Crossover
Value

Performance
Type One point two point arithmetic heuristic

Min MSE 1.12% 10.64% 7.06% 5.84% 0.9
Avg MSE 36.80% 25.09% 17.24% 40.30%

Min MSE 19.15% 38.06% 25.90% 13.54%
0.7

Avg MSE 45.90% 67.77% 56.73% 41.02%

Min MSE 12.72% 21.84% 25.25% 20.13%
0.5

Avg MSE 38.29% 20.93% 31.70% 14.55%

Min MSE 23.28% 29.58% 14.91% 14.31%
0.3

Avg MSE 31.47% 26.04% 33.23% 32.54%

Min MSE 14.27% 25.21% 10.24% 26.48%
0.1

Avg MSE 8.80% 18.91% 42.89% 29.07%

133

5.5 Discussion

Two types of dataset are considered for evaluation of classification performance

of evolutionary neural networks. Teaching assistant evaluation (tae) dataset has

categorical-driven attribute types and on contrary, there is only one numerical

attribute and others have categorical attributes.

The other dataset is the vehicle silhoutte (veh) dataset that all the attributes are

numerical. Because the two datasets have opposite type of attribtures in common, the

effects of numerical and categorical attributes can be examined.

The number of chromosomes in the evolutonary algortihm plays an important role

on processing time. This parameter is chosen by trial and error. The minimum and

average MSE values give opinion about the parameter performance. The first

impression selecting the population size depends on the researches made before.

Most of the publications chose a maximum of value of 50 chromosomes for

classification. But this much longer chromosome type causes longer processing

tiimes such as 8.5 hours. So, shorter possible chromosome length should be selected.

When the population size was set to 30 and the generation number to 1000, the run

values were nearly the same. The processing time decreased 4.6 hours on average.

The selection of the percentage of the whole raw data to split into training, cross

validation and test subset is important. For tae dataset, there are just 151 exemplars

in total. Because of the lack of information, the splitting percentage of cross

validation and test subset should be higher than the sugested value between 10%-

20%. In this thesis, the splitting percentages are; 50% for training subset, 25% for

cross validation subset and 25% for testing subset. However, the veh dataset, in the

opposite of tae dataset, has more information as 846 exemplars. For this dataset, the

same splitting percentages applied for performance comparison.

Momentum, conjugate-gradient and Levenberg-Marquardt algorithms are

compared to choose the algorithms that minimize the error performance. Minimum

134

average MSE values for both conjugate-gradient and Levenberg-Marquardt

algorithms produce better values compared to momentum but with high standard

deviation , these algorithms do not classify with high true classificiton rate.

As mean accuracy performances of learning algorithms are compared, for the

basic ANN design for tae dataset is 56-4-3, not much difference seen betweeen each

other. Conjugate-gradient and Levenberg-Marquardt algorithms make true

classification approximately of 60% of momentum learning algortihm compared as

the training subset data and approximately of 70% compared as the cross validation

subset data.

For tae dataset, by comparing all the momentum levels examining the training and

cross validation mean accuracy values, optimum momentum rate is 0.7. As

comparing the training and cross validation subset’s mean accuracy values, there

seems not much difference between the selected performance values. One hidden

layered ANN and three hidden layered ANN show nearly the same mean accuracy

values. The aim is to simplify the network, so one hidden layered topology is chosen.

By implementing the incremental algortihm, for one hidden layered ANN as the

determined topology, 14 neurons minimize the average values of minimum MSEs for

tae dataset.

veh dataset has opposing characteristics of attribute information compared to tae

dataset. There are 18 attributes which are all numerical. All these attributes provide

information about a vehicle’s feature selection. This dataset has a total of 846

exemplars exist. 423 exemplars are obtained for training subset, 212 exemplars for

cross validation and 211 exemplars for testing subset. Because of having a big

dataset, it takes time to train the dataset and to converge to a minima.

Comparing the learning algorithms, momentum learning produces statistically

consistent values such as low level standard deviation and mean compared to

conjugate-gradient and Levenberg-Marquardt algorithms.

135

As the number of true classified exemplars increases, r values and correct percent

values start to increase, as well.

For one hidden layered ANN topology for veh dataset, at least two class attributes

have high misclassification rates. That means the weight matrix of the hidden layer

does not give enough response for the classification. At that point, the number of

hidden layers should be argued. As the misclassification occurs for any attribute, the

MSE values for these attributes are expected to be high, and opposite of that

situaiton, the r and percent correct values to be low.

Conjugate-gradient algorithm gets higher MSE values and that causes an

increment seen in average MSEs which is not supposed to be. The standard deviation

and the average of minimum MSEs of Levenberg-Marquardt are nearly half the

value of standard deviation of conjugate-gradient algorithm. Examining the MSE

statistics of momentum learning and Levenberg-Marquardt algorithm learning; the

standard deviation values of training and cross validation for momentum learning are

much less. The other reason for selecting the momentum learning is the very fast

convergence of the Levenberg-Marquardt algorithm. It may be not useful for the

datasets that have more categorical attributes that may cause overfitting of the data.

Mean accuracy values of learning algorithms show very slight differences

between each other.

The optimum momentum rate for veh dataset is 0.9 but the mean accuracy values

for  =0.5 and  =0.7 are very close to each other. Higher momentum rate helps to

converge to minima in less processing time.

The number of hidden layer size is important up to the required level. As stated

before that, for veh database, one hidden layered ANN is not suitable for

classification as at least two attributes have high misclassification. But increasing the

number of hidden layer causes a big decrease in the training and cross validation

subsets’ mean accuracy values.

136

Datasets with more numerical attributes have more sense to number of hidden

layers.

Optimum number of processing elements of the hidden layers is obtained from the

incremental algorithm. Doing the experimantation, 29 neurons for hidden 1 layer and

10 neurons for hidden 2 layer is calculated for the minimum average MSE value. In

this experiment, there is no upper limit for the neurons but the lower limit should be

equal to at least the number of attributes that are classified. In that situation, the

network topology is 18-29-10-4.

During the parameter optimization; to identify the neural network parameters, the

evolving mechanism is used such as mutation and crossover. Genetic algoritms are

used to determine the number of neurons in the hidden layers, the momentum, and

the learning rates for minimizing the time and effort required to find the optimal

architecture and parameters of the back-propagation algorithm.

Crossover values (0.1, 0.3, 0.5, 0.7, 0.9) and mutation values (0.05, 0.1, 0.3, 0.5)

are put into the genetic algorithm and for each level, the optimized EANN

parameters and also the statistical values have been determined. The performance

values; minimum MSE and average MSE are compared with the basic ANN

statistical values which has been defined before manually.

For tae dataset, at low mutation levels; for higher crossover values, one point

crossover, arithmetic and heuristic crossover operators perform better. Especially,

one point crossover operator shows better minimum MSE at all levels of minimum

MSE. Two point crossover shows little worse valued increments as the crossover

value decreases but the worst crossover operator is the arithmetic crossover operator

that is not suitable for both low levels of crossover and mutation.

137

As the mutation operator value starts to increase, one point operator is not able to

reach better MSE statistics.As a result, only the heuristic crossover operator, because

of the ability of randomness, gets better results than the basic ANN topology.

At the mutation rate is 0.5, two point and heuristic crossover operators show

better results at high and low crossover values. One point crossover has an opposite

manner to the mutation rate.

For veh database, at low levels of mutation; one point, arithmetic and heuristic

crossover operators perform well through high crosover values. But decreasing the

crossover value causes the MSE performance values to get worse immediately. As

mutation increases, no further improvement on MSE performance values can be seen

at any crossover operator. As the number of numerical attributes increases, the ability

to perform better solutions at high mutation rates decreases.

 138

CHAPTER SIX

CONCLUSION AND FUTURE RESEARCH

In this thesis, a systematic approach to automating the design of neural networks

for classification through the use of evolutionary algorithms is presented. This study

shows that evolutionary algorithms are used to evolve the optimal number of hidden

neurons and weights required by neural networks for good classification

accuracy. The selected parameters can be used effectively to classify given dataset

with optimized parameters of the neural network compared to traditional

(backpropagation) neural networks.

Training neural networks using genetic algorithm based evolutionary techniques

has been proposed as a new algorithm to evolve the near optimal number of hidden

neurons and weights required by neural networks for good classification

accuracy. In addition, the self-evolving version of genetic algorithm based neural

network is able to automate the process of finding a suitable weight and hidden node

matrixes through the generations. The performance of the proposed algorithms is

greatly enhanced by growing the neural networks at different rates based on a

Gaussian distribution thus avoiding being trapped in local optima.

The proposed algorithms are tested with real-world problems and results from

experiments show that evolutionary neural networks are able to evolve networks with

high classification accuracy and low architecture complexity for all problems. The

performances of learning algorithms are comparable to each other; however, the

self-adaptive version has the advantage of not requiring the value of evolution

parameters to be determined beforehand.

An interesting finding from the experimental results showed that though

chromosomes are grown at every generation, it is the growth probability rather

than the generation number that has a greater influence on the mean number of

hidden neurons. This prevents the number of hidden neurons to grow too large when

a large number of generations are used.

139

6.1 Contributions

 Neural networks are a non-symbolic approach to classification. They have

the ability to generalize large numbers of exemplars into classes, and to

learn from a presentation of datasets given.

 A multilayer perceptron neural network trained with a genetic algorithm,

is suitable for discrimination and modelling of strongly nonlinear

classification problems.

 Evolutionary algorithms do not make any hypothesis either on the

data (non-parametric method) or on the transfer functions that can be

used in the neurons, or on the error function.

 In relation to a multilayer perceptron neural network trained with back

propagation, evolutionary neural network overcomes the problems that

arise from the lack of continuity in the error functions for classification

problems and allows one to consider a priori probabilities and loss

functions in the discrimination and / or modelling problems. A good

consequence of this is that the user need not define (either directly or

indirectly) any threshold to construct the decision rule or the model box.

Therefore, the method is highly respectful with the training data and with

the information they contain.

 Evolutionary neural network based on genetic algorithm improves its

efficiency with respect to dimension of the problem.

 Evolutionary neural network is applied to various well known and

claassical examples and also to some complex classification problems.

The comparison made with the results obtained by other classification

techniques (parametric or not) shows similar efficiency in the data tested.

The main result is its ability to simultaneously optimize sensibility and

specificity in class-modelling problems, as can be appreciated in the

cases considered.

 The result of this study indicates that the EAs to train backpropagation

neural network yields very high accuracy and much improved execution

time. The results of this research are expected to be applied to a wide

140

variety of applications to improve the accuracy and execution time of

classification problems with multidimensional input patterns.

 The genetic operators; crossover and mutation presented to the neural

network. By the help of these genetic operators, evolutionary neural

network is structured. As seen from the results of each crossover and

mutation rate; crossover rate between 0.7 and 0.9 produce considerably

good results for EANN classification. On the contrary, low mutation rates

are much more efficient for classification.

 The selection of crossover type is important. Two point and artihmetic

crossover types show much more sense to mutation rate. As the mutation

rate starts to increase in EANN, the ability to classify the dataset gets

worse than the backpropagation neural network results.

 The learning algorithms: momentum, conjugate-gradient and Levenberg-

Marquardt for the neural network are selected. Momentum and

Levenberg-Marquardt algorithms helps the neural network learn more

quick. Minimum and average MSE values show approximately the same

results. As Levenberg-Marquardt algorithm is a second-order

approxmiator, it learns 4-5 times faster than the other algorithms. But this

quickness helps the neural network to overfit the data as well.

 The number of hidden layers and the number of hidden nodes in a layer

play an important role in complexification of nonlinear mapping. As the

neural network complexity grows, the computation time gets much longer,

but also overfitting occurs occasionally which means that learning stops

for the evolutionary neural network.

 The attributes of the dataset are important for classification accuracy. The

more categorical attribute of a dataset means bigger vector calculations

needed to classify the dataset. At that point, the true classification rate is

not expected to be high. On the contrary, the more numerical attribute of a

data means much more ability and information needed to classify the

dataset. The true classification rate is expected have a success of getting

high values.

141

 The design of the neural network is important because the work load and

computation time rises exponentially with the size of the system.The

optimum number of hidden layer size is obtained form the MSE statistical

values and the mean accuracy performance value. For each possible

matching of these genetic operators, the network parameters related to

genetic results, the number of processing elements, stepsize and

momentum rates are optimized. The MSE statistical values are tabled and

the performance differences are put into percentage to be compared.

6.2 Future Research

Evolutionary algorithms (EAs) help to solve the manual design process problem

of neural networks causing inaccurate run time. To get rid of this problem;

HyperNEAT is a good solution which is a neuroevolution method that evolves

artificial neural networks through an evolutionary algorithm can be used further on

for designing all the EANN structure. It is extended from a prior neuroevolution

algorithm called NeuroEvolution of Augmenting Topologies (NEAT). HyperNEAT

is based on a theory of representation that hypothesizes that a good representation for

an artificial neural network should be able to describe its pattern of connectivity

compactly. This kind of description is called an encoding.

The encoding in HyperNEAT, called compositional pattern producing networks

(CPPNs), is designed to represent patterns with regularities such as symmetry,

repetition, and repetition with variation. Thus HyperNEAT is able to evolve neural

networks with these properties. The main implication of this capability is that

HyperNEAT can efficiently evolve very large neural networks that look more like

neural connectivity patterns in the brain (which are repetitious with many

regularities, in addition to some irregularities) that are generally much larger than

what prior approaches to neural learning could produce.

It evolves the connectivity pattern for a neural network with a particular substrate

geometry. It actually sees the geometry of its inputs (and outputs) and can exploit

142

that geometry to significantly enhance learning. To put it more technically,

HyperNEAT computes the connectivity of its neural networks as a function of their

geometry. By automating the design process of evolutionary artificial neural

networks, more accurate true classification rate values can be gained. (Stanley, 2009)

143

REFERENCES

Aitkenhead, M.J., & Aalders, I.H. (2008). Classification of Landsat Thematic

Mapper imagery for land cover using neural networks. International Journal of

Remote Sensing, 29 (7), 2075-2084.

Alsultanny, Y.A., & Aqel, M.M. (2003). Pattern recognition using multilayer neural-

genetic algorithm. Neurocomputing, 51, 237–247.

Alkaya, A., & Bayhan, G.M. (2009). The Classification of a Simulation Data of a

Servo System via Evolutionary Artificial Neural Networks. International

Conference on Intelligent Computing Proceedings, 48-54.

Ang, J.H., Tan, K.C., & Al-Mamun, A. (2008). Training neural networks for

classification using growth probability-based evolution. Neurocomputing, 71,

3493–3508.

Auer, P., Herbster, M., & Warmuth, M. (1996). Exponentially many local minima

for single neurons. Advances in Neural Information Processing Systems, 8,

MIT Press, Cambridge, MA, 316–322.

Barnard, E. (1992). Optimization for training neural nets. IEEE Transactions on

Neural Networks, 3, 232–240.

Battiti, R. (1992). First and second-order methods for learning; between steepest

descent and Newton’s method. Neural Computation., 4, 141–166.

Berardi, V.L., Patuwo, B.E., & Hu, M.Y. (2004). A principled approach for building

and evaluating neural network classification models. Decision Support Systems,

38, 233– 246.

144

Berberoglu, S., Curran, P.J., Lloyd, C.D., & Atkinson, P.M. (2007). Texture

classification of Mediterranean land cover. International Journal of Applied Earth

Observation and Geoinformation, 9 (3), 322-334.

Blamire, P.A. (1996). The influence of relative sample size in training artificial

neural networks. International Journal of Remote Sensing, 17 (1), 223–230.

Blanco, A., Delgado, M., & Pegalajar, M.C. (2001). A real-coded genetic algorithm

for training recurrent neural networks. Neural Networks, 14 (1), 93-105.

Blum, A., (1992). Neural networks in C++: an object-oriented framework for

building connectionist systems. John Wiley & Sons, Inc., 86-103.

Bourlard, H., & Wellekens, C.J. (1989). Links between markov models and

multilayer perceptrons. Advances in Neural Information Processing Systems,

Morgan Kaufmann, San Mateo, CA, 502–510.

Castillo, P. A., Carpio, J., Merelo, J.J., Prieto, A., Rivas, V., & Romero, G. (2000).

Evolving multilayer perceptrons. Neural Processing Letters, 12, 115-127.

Castillo-Valdivieso, P.A., Merelo, J.J., & Prieto, A. (2002). Statistical analysis of the

parameters of a neuro-genetic algorithm. IEEE Transactıons On Neural Networks,

13 (6), 1374-1394.

Dreiseitl, S., & Ohno-Machado, L. (2002). Logistic regression and artificial neural

network classification models: a methodology review. Journal of Biomedical

Informatics, 35 (5-6), 352-359.

Duin, R.P.W. (1996). A note on comparing classifiers. Pattern Recognition. Letters,

17, 529–536.

145

Fine, T.L. (1999). Feedforward Neural Network Methodology, Springer, New York,

129-194.

Finnoff, W., Hergert, F., & Zimmermann, H.G. (1993). Improving model selection

by non-convergent methods, Neural Networks ,6, 771–783.

Flexer, A. (1996). Statistical evaluation of neural network experiments: Minimum

requirements and current practice. Proc. 13th Eur. Meeting Cybernetics Systems

Research, R. Trappl, Ed., 1005–1008.

Foody, G.M. (1995). Using prior knowledge in artificial neural network classification

with a minimal training set. International Journal of Remote Sensing, 16 (2),

301–312.

Freitas, A. (2002). A survey of evolutionary algorithms for data mining and

knowledge, NY :Springer Verlag.

Fujita, O. (1998). Statistical estimation of the number of hidden units for

feedforward neural networks. Neural Networks, 11, 851–859.

Fukunaga, K., & Hayes, R.R. (1989). Effects of sample size in classifier design.

IEEE Trans. Pattern Anal. Machine Intell., 11, 873–885.

Giles, C.L., Miller, C.B., Chen, D., Chen, H.H., Sun, G.Z., & Lee, Y.C. (1992).

Learning and extracting finite State automata with second-order recurrent neural

networks. Neural Computation, 4 (3), 393-405.

Goldberg, D.E. (1989). Genetic algorithms in search, optimization and machine

learning. Boston :Addison-Wesley Longman Publishing.

Hagan, M.T., & Henhaj, M. (1994). Training feedforward networks with the

Marquardt algorithm. IEEE Transactions on Neural Networks, 5, 989–993.

146

Hancock, P.J.B. (1992). Genetic algorithms and permutation problems: A

comparison of recombination operators for neural net structure specication.

International Workshop On Combinations of Genetic Algorithms and Neural

Networks, COGANN-92, 108-122.

Haykin, S. (1999). Neural Networks: A comprehensive foundation (2nd ed.). NJ:

Prentice-Hall, Englewood Cliffs.

Hintz-Madsen, M., Hansen L.K., Larsen J., Pedersen, M.W., & Larsen, M. (1998).

Neural classifier construction using regularization, pruning and test error

estimation. Neural Networks, 11, 1659–1670.

Hung, M.S., Hu, M.Y., Patuwo, B.E., & Shanker, M. (1996). Estimating posterior

probabilities in classification problems with neural networks. International

Journal of Computational Intelligence and Organizations ,1 , 49– 60.

Jenkins, W.M. (2006). Neural network weight training by mutation. Computers and

Structures, 84, 2107–2112.

Kalman, B.L., & Kwasny, S.C. (1992). Why tanh: choosing a sigmoidal function.

Neural Networks, International Joint Conference, 4, 578-581.

Kavzoglu, T., & Mather, P.M. (2003). The use of backpropagating artificial neural

networks in land cover classification. International Journal of Remote Sensing, 24

(23), 4907-4938.

Kimes, D., Gastellu-Etchegorry, J., & Esteve, P. (2002). Recovery of forest canopy

characteristics through inversion of a complex 3D model. Remote Sensing of

Environment ,79, 320– 328.

147

Lang, K.J., Waibel, A.H., & Hinton, G.E. (1990). A time-delay neural network

architecture for isolated word recognition. Neural Networks, 3 (1), 33–43.

Lewicki, M.S. (1994). Bayesian modeling and classification of neural signals, Neural

Comput., 6, 1005–1030.

Liu, Z., Liu, A., Wang, C., & Niu, Z. (2004). Evolving neural network using real

coded genetic algorithm (GA) for multispectral image classification. Future

Generation Computer Systems, 20 (7), 1119-1129.

MacKay, D.C. (1992). Bayesian interpolation, Neural Comput., 4, 415–447.

MacKay, D.C. (1992). A practical Bayesian framework for backpropagation

networks. Neural Comput., 448–472.

Mangal, M., & Singh, M.P. (2007). Analysis of pattern classification for the

multidimensional parity-bit-checking problem with hybrid evolutionary feed-

forward neural network. Neurocomputing, 70, 1511-1524.

Mehrotra, K., Mohan, C.K., & Ranka, S. (1997). Elements of Artificial Neural

Networks, MIT Press, Cambridge, MA.

Moody, J. & Utans, J. (1995). Architecture selection strategies for neural networks:

Application to corporate bond rating prediction. Neural Networks in the Capital

Markets, 277–300.

Morgan, N., & Bourlard, H. (1990). Generalization and parameter estimation in

feedforward nets: some experiments. Advances In Neural Information

Processing Systems, 2, 630–637.

Muller, P., & Insua, D.R. (1998). Issues in Bayesian analysis of neural network

models. Neural Computing, 10, 749–770.

148

Murata, N., Yoshizawa, S., & Amari, S. (1992). Learning curves, model selection

and complexity of neural networks. Advances in Neural Information

Processing Systems, 5, 607-614.

Murata, N., Yoshizawa, S., & Amari, S. (1994). Network information criterion

determining the number of hidden units for artificial neural network models. IEEE

Transactions on Neural Networks, 5, 865–872.

Nedeljkovic, V. (1993). A novel multilayer neural networks training algorithm that

minimizes the probability of classification error. IEEE Transactions on Neural

Networks, 4, 650–659.

Pal, M., & Mather, P.M. (2003). An assessment of effectiveness of decision tree

methods for land cover classification. Remote Sensing of Environment, 86 (4),

554–565.

Palmes, P.P., & Usui, S. (2005). Robustness, evolvability, and optimality of

evolutionary neural networks. BioSystems, 82, 168–188.

Papoulis, A. (1991). Probability, random variables, and stochastic processes,. (3rd

ed). New York: McGraw-Hill.

Pendharkar, P.C. (2001). An empirical study of design and testing of hybrid

evolutionary–neural approach for classification. Omega, 29, 361-374.

Prechelt, L. (1996). A quantitative study of experimental evaluation of neural

network algorithms: Current research practice, Neural Networks, 9 (3), 457–462.

Prechelt, L. (1994). PROBEN1: a set of neural network benchmark problems and

benchmarking rules. Technical Report, 21/94, Department of Informatics,

University of Karlsruhe, Germany.

149

Raudys, S. (1998). Evolution and generalization of a single neurone: Complexity of

statistical classifiers and sample size considerations. Neural Networks, 11, 297–

313.

Raudys, S.J., & Jain, A.K. (1991). Small sample size effects in statistical pattern

recognition: Recommendations for practitioners. IEEE Trans. Pattern Anal.

Machine Intell., 13, 252–264.

Richard, M.D., & Lippmann, R.P. (1991). Neural network classifiers estimate

Bayesian a-posteriori probabilities. Neural Computation , 3 (4), 461–483.

Rocha M., Cortez P., & Neves, J. (2007). Evolution of neural networks for

classification and regression. Neurocomputing, 70, 2809-2816.

Roy, A., Kim, S., & Mukhopadhyay, S. (1993). A polynomial time algorithm for the

construction and training of a class of multilayer perceptrons. Neural Networks, 6,

535–545.

Ruck, D.W., Rogers, S.K., Kabisky, M., Oxley, M.E., & Suter, B.W. (1990). The

multilayer perceptron as an approximation to a Bayes optimal discriminant

function. IEEE Transactions on Neural Networks, 2 (1), 296–298.

Salzberg, S.L. (1997). On comparing classifiers: Pitfalls to avoid and a recommended

approach. Data Mining Knowl. Disc., 1, 317–328.

Schissmann, W., Joost, M., & Werner, R. (1993). Comparison of optimized

backpropagation algorithms. Proceedings of the European Symposium on

Artificial Neural Networks, Brussels, Belgium, 97–104.

Schmittlein, D.C., Kim, J., & Morrison, D.G. (1990). Combining forecasts:

Operational adjustments to theoretically optimal rules. Management Science, 36

(9), 1044-1056.

150

Shoemaker, P.A. (1990). A note on least-squares learning procedures and

classification by neural networks. IEEE Transactions on Neural Networks, 2 (1),

158–160.

Siebel, N.T., Krause, J., & Sommer, G. (2007). Efficient learning of neural

networks with evolutionary algorithms. Lecture Notes in Computer Science,

4713/2007, 466-475.

Stanley, K. (2009). The Hybercube-based NeuroEvolution of Augmenting

Topologies (HyperNEAT) Users Page, retrieved September 12, 2009 from

http://eplex.cs.ucf.edu/hyperNEATpage/HyperNEAT.html

Stepniewski, S.W., & Keane, A.J. (2006). Topology design of feedforward neural

networks by genetic algorithms. Lecture Notes in Computer Science, 1141/1996,

771-780.

Teaching Assistant Evaluation Dataset. (1997). Retrieved August 6, 2009, from

http://archive.ics.uci.edu/ml/machine-learning-databases/tae/

Vehicle Silhouettes (Statlog) Dataset. (1987). Retrieved August 24, 2009, from

http://archive.ics.uci.edu/ml/machine-learning-databases/statlog/vehicle/

Wan, E.A. (1990). Neural network classification: a Bayesian interpretation. IEEE

Transactions on Neural Networks, 1 (4), 303–375.

Wang, Z., Massimo, C.D., Tham, M.T., & Morris, A.J. (1994). A procedure for

determining the topology of multilayer feedforward neural networks. Neural

Networks, 7, 291–300.

Wang, C., & Principe, J.C. (1999). Training neural networks with additive noise in

the desired signal. IEEE Transactions on Neural Networks, 10 (6), 1511-1517.

151

White, H. (1989). Learning in artificial neural networks: A statistical perspective.

Neural Computation, 1 , 425–464.

Yao, X. (1999). Evolving artificial neural networks. Proceedings of IEEE

International Conference on Evolutionary Computation, 87 (9), 670-675.

Yuan, J.L., & Fine, T.L. (1998). Neural-network design for small training sets of

high dimension. IEEE Transactions on Neural Networks, 9, 266–280.

Zhang, G.P. (2000). Neural networks for classification: A survey. IEEE Transactions

on Systems, Man and Cybernetics, Part C: Applications and reviews, 30 (4), 451-

462.

Zopounidis, C., & Doumpos, M. (2002). Multicriteria classification and sorting

methods: A literature review. European Journal of Operational Research, 138

(2), 229-246.

152

APPENDICES

153

APPENDIX 1

Raw Data for tae dataset

(S)ENG (S)INST (S)CRS (S)SMSTR CLSSIZE (S)CLSATTR

1 23 3 1 19 3
2 15 3 1 17 3
1 23 3 2 49 3
1 5 2 2 33 3
2 7 11 2 55 3
2 23 3 1 20 3
2 9 5 2 19 3
2 10 3 2 27 3
1 22 3 1 58 3
2 15 3 1 20 3
2 10 22 2 9 3
2 13 1 2 30 3
2 18 21 2 29 3
2 6 17 2 39 3
2 6 17 2 42 2
2 6 17 2 43 2
2 7 11 2 10 2
2 22 3 2 46 2
2 13 3 1 10 2
2 7 25 2 42 2
2 25 7 2 27 2
2 25 7 2 23 2
2 2 9 2 31 2
2 1 15 1 22 2
2 15 13 2 37 2
2 7 11 2 13 2
2 8 3 2 24 2
2 14 15 2 38 2
2 21 2 2 42 1
2 22 3 2 28 1
2 11 1 2 51 1
2 18 5 2 19 1
2 13 1 2 31 1
1 13 3 1 13 1
2 5 2 2 37 1
2 16 8 2 36 1
2 4 16 2 21 1
2 5 2 2 48 1
2 14 15 2 38 1
1 23 3 1 19 3
2 15 3 1 17 3
1 23 3 2 49 3
1 5 2 2 33 3
2 7 11 2 55 3
2 23 3 1 20 3
2 9 5 2 19 3
2 10 3 2 27 3
1 22 3 2 58 3
2 15 3 1 20 3

154

(S)ENG (S)INST (S)CRS (S)SMSTR CLSSIZE (S)CLSATTR

2 10 22 2 9 3
2 13 1 2 30 3
2 18 21 2 29 3
2 6 17 2 39 3
2 6 17 2 42 2
2 6 17 2 43 2
2 7 11 2 10 2
2 22 3 2 46 2
2 13 3 1 10 2
2 7 25 2 42 2
2 25 7 2 27 2
2 25 7 2 23 2
2 2 9 2 31 2
2 1 15 1 22 2
2 15 13 2 37 2
2 7 11 2 13 2
2 8 3 2 24 2
2 14 15 2 38 2
2 21 2 2 42 1
2 22 3 2 28 1
2 11 1 2 51 1
2 18 5 2 19 1
2 13 1 2 31 1
1 13 3 1 13 1
2 5 2 2 37 1
2 16 8 2 36 1
2 4 16 2 21 1
2 5 2 2 48 1
2 14 15 2 38 1
1 23 3 1 25 3
1 13 3 1 17 3
2 16 19 2 11 3
2 9 2 2 39 3
2 13 3 1 11 3
2 18 21 2 19 3
1 22 3 2 45 3
2 7 11 1 20 3
2 23 3 1 20 3
1 23 3 1 20 3
1 23 3 2 38 3
2 14 22 2 17 3
1 17 17 2 19 3
2 9 5 2 24 3
2 18 25 2 25 3
1 17 17 2 31 3
2 1 15 2 31 3
2 1 8 2 18 2
1 11 16 2 22 2
1 22 13 2 27 2
2 9 2 2 14 2
2 13 1 2 20 2

155

(S)ENG (S)INST (S)CRS (S)SMSTR CLSSIZE (S)CLSATTR

1 6 17 2 35 2
2 23 3 1 20 2
1 23 3 1 20 2
2 6 17 2 37 2
1 22 3 2 15 2
2 20 2 2 25 2
2 23 3 2 10 2
2 20 2 2 14 1
1 23 3 2 38 1
2 13 1 2 29 1
2 10 3 2 19 1
2 7 11 2 30 1
1 14 15 2 32 1
2 8 3 2 27 1
2 12 7 2 34 1
2 8 7 2 23 1
2 15 1 2 66 1
2 23 3 2 12 1
2 2 9 2 29 1
2 15 1 2 19 1
2 20 2 2 3 1
2 13 14 2 17 3
2 9 6 2 7 3
1 10 3 2 21 3
2 14 15 2 36 3
1 13 1 2 54 3
1 8 3 2 29 3
2 20 2 2 45 3
2 22 1 2 11 2
2 18 12 2 16 2
2 20 15 2 18 2
1 17 18 2 44 2
2 14 23 2 17 2
2 24 26 2 21 2
2 9 24 2 20 2
2 12 8 2 24 2
2 9 6 2 5 2
2 22 1 2 42 2
2 7 11 2 30 1
2 10 3 2 19 1
2 23 3 2 11 1
2 17 18 2 29 1
2 16 20 2 15 1
2 3 2 2 37 1
2 19 4 2 10 1
2 23 3 2 24 1
2 3 2 2 26 1
2 10 3 2 12 1
1 18 7 2 48 1
2 22 1 2 51 1
2 2 10 2 27 1

156

APPENDIX 2
Representative Data For veh Dataset

Exem
plar
No

CMP
CT

CR
CL
R

DIST_C
RCLR

RAD_R
AT

AX_ASP_R
AT

MAX_LEN_
ASP_RAT

SCAT_R
AT ELONAX_RE

CT
MAX_
LEN_
RECT

SCA_VA
R

SCA_VAR
_MIN GYRA SKEW

_MAJ
SKEW
_MIN

KURT
_MIN

KURT
_MAJ HOLLOW (S)VEHCL

1 95 48 83 178 72 10 162 42 20 159 176 379 184 70 6 16 187 197 van
2 91 41 84 141 57 9 149 45 19 143 170 330 158 72 9 14 189 199 van
3 104 50 106 209 66 10 207 32 23 158 223 635 220 73 14 9 188 196 saab
4 93 41 82 159 63 9 144 46 19 143 160 309 127 63 6 10 199 207 van
5 85 44 70 205 103 52 149 45 19 144 241 325 188 127 9 11 180 183 bus
6 107 57 106 172 50 6 255 26 28 169 280 957 264 85 5 9 181 183 bus

.
. The dataset matrix is 846x19
.
Exem
plar
No

CMP
CT

CR
CL
R

DIST_
CRCL

R
RAD_R

AT
AX_ASP_R

AT
MAX_LEN_
ASP_RAT

SCAT_R
AT ELON AX_RE

CT
MAX_
LEN_
RECT

SCA_V
AR

SCA_VA
R_MIN GYRA

SKE
W_M
AJ

SKE
W_MI

N
KURT
_MIN

KURT
_MAJ HOLLOW (S)VEHCL

841 93 34 66 140 56 7 130 51 18 120 151 251 114 62 5 29 201 207 opel
842 93 39 87 183 64 8 169 40 20 134 200 422 149 72 7 25 188 195 saab
843 89 46 84 163 66 11 159 43 20 159 173 368 176 72 1 20 186 197 van
844 106 54 101 222 67 12 222 30 25 173 228 721 200 70 3 4 187 201 saab
845 86 36 78 146 58 7 135 50 18 124 155 270 148 66 0 25 190 195 saab
846 85 36 66 123 55 5 120 56 17 128 140 212 131 73 1 18 186 190 van

18 Numerical Attributes and 1 categorical attribute: (S)VEHCL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

