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MODEL SELECTION METHODS FOR MULTIVARIATE
LINEAR PARTIAL LEAST SQUARES REGRESSION

ABSTRACT

Having large numbers of predictor variables or having more predictor variables
than the number of observations is a serious problem in regression analysis. When a
data set contains many predictor variables, multicollinearity can become an issue.
Multicollinearity arises when predictor variables measure the same concept or when
there is a linear relationship among them. These problems can cause high degrees of
correlation and violate the assumption of Ordinary Least Square Analysis. As a
result, it causes poor estimates of parameter estimation in regression analysis. A
possible solution to this problem is a statistical method called ‘Partial Least Squares
Regression’. PLSR allows for the study of regression in many situations that

Multiple Linear Regression does not.

In this thesis, PLSR has been studied in the analysis of obtaining the number of
new predictor variables called ‘latent variables’. After obtaining the latent variables,
this thesis is concerned with analyzing how many of these latent variables are the
most relevant for describing the variability of predictor and response variables. Some
model selection methods, such as two of the Multivariate Akaike Information
Criterion which are studied by Bozdogan and Bedrick respectively, use PRESS
values obtained from k-fold cross validation and Wold’s R criterion to obtain the
optimum number of latent variables. The simulation study presented in this thesis has
been performed to compare the performance of these criteria. The simulation results
of MAIC, PRESS and Wold’s R were obtained from different number of
observations and different numbers of predictor variables. These results show that for
small-sized design matrices, all criteria achieved the true number of latent variables.
However, the results for the other-sized design matrices varied greatly and they
consistently showed different numbers of latent variables. The whole analysis,
including all simulations and calculations, were done using MATLAB statistical

program.
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Keywords: Partial Least Squares, Partial Least Squares Regression (PLSR), Model
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COK DEGISKENLI DOGRUSAL KISMi EN KUCUK KARELER
REGRESYONU iCiN MODEL SECME YONTEMLERI

0z

Cok sayida agiklayici degiskene veya gozlem sayisindan daha fazla sayida
aciklayici degiskene sahip olmak regresyon analizinde ciddi bir problemdir. Veri seti
bir¢cok agiklayic1 degisken icerdiginde coklu dogrusal baglantidan séz edilebilir.
Coklu dogrusal baglant1 aciklayici degiskenlerin aym kavrami Ol¢melerinde veya
aciklayici degiskenler arasinda dogrusal bir bagmti olmasi durumunda ortaya
cikmaktadir. Her iki durum da Swadan En Kiiciik Kareler analizinin
varsayimlarindan sapmaya neden olmakta ve regresyon analizinde zayif parametre
tahminlerine yol agcmaktadir. Istatistiksel bir yontem olan Kismi En Kiigiik Kareler
Regresyonu, coklu dogrusal baglanti probleminin ¢6ziim yollarmdan birisi olup,
Coklu Dogrusal Regresyon analizinin ¢caligmadigi bir ¢ok durumda ¢alisma imkani

saglamaktadir.

Bu tezde, gizli degisken denilen yeni aciklayici degiskenlerin sayismin
saptanmasinda Kismi En Kiicilk Kareler Regresyon analizi ¢alisilmistir. Gizli
degiskenlerin saptanmasindan sonra, bu degiskenlerden kac tanesinin hem agiklayici
hem de bagimh degiskendeki degisimi aciklamada en ilgili oldugunun saptanmasi ise
bu tezin amacii olusturmaktadir. Gizli degiskenlerin optimum sayisinin
saptanmasinda model se¢cme yontemlerinden olan Bozdogan ve Bedrick tarafindan
calisilan iki ¢coklu Akaike Bilgi Kriteri, k blok capraz gecerlilik ve PRESS degerleri
ve Wold’s R kriteri kullanilmistir. Bu kriterlerin performansinin karsilastirilmasinda
bir simulasyon caligmasi yapilmistir. Simiilasyon sonuclart her bir kriter i¢in farkl
sayida gozlem genisligi ve farkli sayida agiklayici degisken icin verilmistir.
Sonuglar, dizayn matrislerinden en kiiciigli i¢in kriterlerin gizli degisken sayis1 i¢cin
dogru sayiy1 buldugunu fakat diger dizayn matrisleri i¢cin farkli sonuclar verdigini

gostermektedir.

Simulasyon ve analizler MATLAB istatistik paket programinda yapilmaigtir.
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Anahtar Sozciikler: Kismi En Kiiciik Kareler, Kismi En Kiigiik Kareler
Regresyonu, Model Secme Yontemleri, Cok Degiskenli Akaike Bilgi Kriteri,
Capraz-Gecgerlilik.
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CHAPTER ONE
INTRODUCTION

Regression analysis is commonly used as a statistical tool for analyzing the
relationship among variables. Such analyses are used widely in social, behavioral and
physical sciences. In statistics, regression analysis includes any techniques
employed for modeling and analyzing several variables. Regression analysis is
concerned with the study of the dependent variable and one or more predictor
variables to construct a model that represents the relationship between these
variables, the statistical analysis can be used for prediction, hypothesis testing and
modeling of causal relationships. These uses of analysis depend intensively on some
assumptions that must be satisfied. A failure to provide any one of these
assumptions can cause a misuse of regression. This can result in a fit model that

becomes a critique model.

An assumption which is the subject of this thesis and is generally considered to be
a problem in regression analyses, is the dependence of the predictor variables which
have linear relationship with each other. This is called multicollinearity.
Multicollinearity can have severe effects on the estimation of parameters and

variables selection techniques.

Various methods exist to detect multicollinearity. The most commonly used ones
are Ridge Regression (RR), Principal Component Regression (PCR) and Partial
Least Squares Regression (PLSR). These methods are powerful multivariate
statistical tools that are widely used in quantitative analysis to overcome problems of
collinearity and interactions. PLSR is a multivariate data analysis method which
works with several response variables and several predictor variables. It was first
studied by Herman Wold at the beginning of the 1970’s in Econometrics. Soon after
his son Svante Wold extended this method to Chemometrics. It intends to find the
latent variables, which are the linear combinations of predictor variables, have no

linear relationships among them, and model the response variables best. PLSR can be



used with many data sets that have multicollinearity and many predictor variables
which are more than the number of observations. It makes a dimensional reduction
by using singular value decomposition or eigenvalue decomposition. Following the
dimensional reduction some methods are used to obtain the latent variables which are
the most relevant variables describing the response variables. These methods are
called model selection criteria. Few of these criteria are Predicted Residual Sum of

Squares (PRESS), NORMPRESS, Wold’s R and Akaike Information Criterion.

The purpose of this thesis is to examine PLSR and find the latent variables by

using model selection criteria and to support this study with a simulation application.

The simulation study was formed in the following steps. First, data were
generated according to PLS assumptions. Then MATLAB code for k fold cross-
validation was written and PRESS values were obtained. Afterwards, Wold’s R
criterion was calculated in terms of PRESS. Additionally two different forms of
Multivariate Akaike Criteria from Bedrick and Bozdogan were also calculated.
Finally comparison of these model selection criteria were made according to their

performance in order to obtain the optimum number of latent variables.

This thesis contains six chapters. In Chapter One, a short description of the study
is given. Chapter Two introduces multiple regression analysis, multicollinearity
problem, Principal Component Analysis, Principal Component Regression and
Partial Least Squares Regression. In Chapter Three, PLSR is explained in detail.
Chapter Four provides data splitting and model selection criteria as well as a
comparison of these methods that is supported by a simulation study. Chapter Five
includes the results of this simulation study. In Chapter Six, the conclusions are

presented.



CHAPTER TWO
REGRESSION METHODS

2.1 Multiple Linear Regression

A regression model can serve several purposes. In process analysis and chemical
engineering applications, the purpose is almost exclusively prediction. In other
applications, the focus is on understanding the relationship between the predictors
and response variable. Hence, many problems in applied sciences can be cast in the

framework of a regression problem (Henk, et al, 2007).

Multiple Linear Regression (MLR) analysis is one of the most widely used of all
statistical methods. It represents the relationship between a response variable and a
set of predictor variables. The regression model for N observations and M predictor

variables can be described as follows:

Multiple Linear Regression model equation is as follows:

y, =B, +B,x, +B,x, +...+B,x,, +¢,, i=L...,N (2.1)

X . :value of the m" predictor variable for the i" observation
B, : regression constant

B, : coefficient of the m" parameter

M : total number of predictor variables

y, : response in the i" observation

g, . error terms

The MLR model in terms of the observations can be written as matrices notation

by: y=Xp+¢.



Yy, Lx, X, 0 Xy

Y2 1 x, X, - X, (M-1)
y=" | X=[. . :

bAY L Xy Xno o Xy |

where y is an Nx1 vector of observed response values, X is the Nx M matrix of the

predictor variables, B is the M x1, and € is the NX1 vector of random error terms.

The aim of regression analysis is to find the estimates of unknown parameters.
The regression equation is used to predict Y from predictors. The method of
Ordinary Least Squares (OLS) is used to find the best line that, on average, is the
closest to all of the points. OLS finds the best estimate of B ’s with the least squares
criterion which minimizes the sum of squared distances of all of the points from the

actual observation to the regression surface.

In the linear regression model §7:X|A3, y is the vector of predicted response

variable, e is the vector of residuals, and ﬁ is the estimate of the regression

A

coefficient. To compute P, the sum of the squared residuals are minimized with

ordinary least squares, as shown in the following equation where e, =y, —xB,

i=1,...,N.

N

min Del (2.2)
i=l

The OLS estimator ﬁ is an unbiased estimator, which is E(ﬁ):B and has

minimum variance, which is Cov(ﬁ)z (Aiz(X'X)_1 .

The MLR 1is based on some assumptions. These are: no linear relationship exists

among predictor variables; error terms are distributed as normal distribution with



mean zero and constant variance &; ~N(O, 62), and error terms are independent of

each of the predictor variables and each other.

MLR works ideally when the predictor variables are few in number and when
they are not collinear. However, omitting one of the assumptions of MLR can
damage an analysis and render its estimations insignificant. As with other
assumptions, avoding multicollinearity is important, because the least squares
estimators are very poor in the analysis in the presence of multicollinearity. The next

subsection is concerned with multicollinearity and solving this problem.

2.1.1 Multicollinearity

Bowerman and O’Connell (1990) describe multicollinearity as a problem in
regression analysis when the predictor variables in a regression model are
intercorrelated on each other. The problem that multicollinearity poses is that it
makes it difficult to separate the effects of two variables on an outcome variable. If
two variables are significantly related to each other, it becomes impossible to

determine which of the variables accounts for variance in the response variable.

For example, it 1is assumed that the MLR model 1is given as

y, =B, +B,x,; +B,X, +¢€ and X, =3X, so, the correlation between two predictor

variables is 1 and the MLR model is written as below:

Yi =Bo +Bxy; +B,x, +€
=B, + (B, +3B,)x, +¢€; .

From the regression model, thus, only B, + 3, can be estimated. It is not possible to
get separate estimates of B, and B,. From this example, some results can be

obtained. These are: when one or more predictor variables are present, a possible

problem may occur; two or more variables can explain the dependent variable well,



but they may be closely correlated. Therefore, the results suggest that it is difficult to

distinguish the individual effects of both variables.

The sources of multicollinearity can be explained in many ways.

Firstly, a variable that is computed from other variables in the equation can be
included. For example, a regression model of a family’s income which is formed by
both the husband’s income and the wife’s income, includes all the three measures.
Also including the same or almost the same variable twice can cause
multicollinearity, for example height in feet and height in inches. Constraints on the
population being sampled can also cause multicollinearity; for example people with
higher incomes will have more wealth and more predictor variables than the number

of observations.

Multicollinearity can be a big problem when the aim is to try to understand how

the variation of the predictor variable affects response variable.

Multicollinearity can be explained as the following aspect of regression model:
the greater the multicollinearity, the greater the standard errors: When there is high
multicollinearity, confidence intervals for coefficients tend to be very wide. The
confidence intervals may even include zero, which means you cannot be confident
whether an increase in the predictor variables value is associated with an increase or
a decrease in the response variable. t statistics tend to be very small, therefore the
estimation of regression coefficients in these cases is statistically insignificant. Even
extreme multicollinearity does not violate any of the assumptions of OLS regression,
OLS estimates are still unbiased and OLS estimators are the best linear unbiased
estimators. Although the t-ratio of one or more coefficients is statistically
insignificant, R* the overall measure of goodness of fit can be very high. The OLS
estimators can be sensitive to small changes in the data. Collinear variables
contribute redundant information and can cause other variables to appear to be less

important than they are. Overestimating the effect of one parameter will tend to



underestimate the effect of the other. Hence coefficient estimates tend to be very

weak from one sample to the other.

Some classical signs of multicollinearity are;

* having a significant F, but no significant t-ratios and highR*.

¢ widely changing coefficients when an additional variable is included.

¢ high pairwise correlations among predictors.

¢ the tolerances or Variance Inflation Factor is probably superior for examining

the bivariate correlations.

Sometimes eigenvalues, condition index and then condition number will be referred

to when examining multicollinearity.

2.1.2 Detecting Methods for Multicollinearity

Multicollinearity on a data set can be determined with some methods. The most

commonly used methods are given below.

2.1.2.1 Condition Index

The condition number (CN) is the condition index (CI) with the largest eigenvalue

and it equals the square root of the largest eigenvalue (A . ) divided by the smallest

eigenvalue (A, ).

A
CN=—" 2.3
. (2.3)

min

and the CI is defined as:



Cl= /—imﬂ =JCN .

When there is no collinearity the eigenvalues, condition index, the condition
number will all be equal to one. An informal rule of thumb is that if the condition
number is 15, multicollinearity is a concern. If it is greater than 30, multicollinearity

is a very serious concern.

2.1.2.2  Variance Inflation Factor and Tolerance

VIF and tolerance are the classical tests for diagnosing collinearity problems.
They can be explained by the help of variance of the sampling distribution for OLS
coefficients. The variance of the sampling distribution for OLS coefficients can be

expressed as:

= 1i=12,...,N (2.4)

R’ is the explained variance that is obtained when regressing X, on the other X
variables in the model; S? is the variance of X, ; > = MSE of the model. Var (B,) is

increased if o7 is large, S7 is small or R} is large.

The first term of the expression above is called the Variance Inflation Factor (VIF).

If X, is highly correlated with the other X variables, then Rf will be large,

making the denominator of the VIF small and hence the VIF becomes very large.

This inflates the variance of ; and makes it difficult to obtain a significant t-ratio.



The value 10 is used as a threshold which considers multicollinearity to be a

problem.

Another measure to detect multicollinearity is tolerance. Tolerance which is

defined as:

VIE

1

TOL, :(1—R§):(Lj

TOL, =1 if X, is not correlated with other predictors, whereas TOL, =0 if it is

perfectly related to the predictors.

2.1.3 Solutions to Remove Multicollinearity

Several techniques have been proposed to deal with the problem of
multicollinearity. The following methods have been suggested as possible solutions

to the multicollinearity problem.

= Get more data: Increase the observation number by adding observations (new
individuals) and extending the time period of observation. This will usually
decrease standard errors.

= Drop variables: If two variables are highly correlated, leave one of them.

= Rethink of the model.

= Combine variables; for example if education and income are highly collinear,
you can combine them as a “socioeconomic status”.

= Use Principal Components Regression, Ridge Regression, Partial Least

Squares Regression or other methods.
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2.2 Principal Component Analysis

Principal Component Analysis (PCA) is the first step of the Principal Component
Regression. The general objectives of Principal Component Regression are data
reduction and interpretation. It is concerned with explaining the variance-covariance

structure of a set of variables through a few linear combinations of these variables.

The goal of PCA is to create a new set of variables called principal components or

principal variates. The principal components are linear combinations of the variables

of the vector Y* that are uncorrelated and the variance of the j™ component is

maximum. Y,

Ixm

=[Y,,Y,,...,Y,] is an observation vector with mean p and

covariance matrix X of full rank m.

In this analysis, m predictor variables, which are mutually collinear and have N
observation, are transformed to q (q < m) new variables called principal component

which are linear, orthogonal, and mutually independent.

The total variation is described by all of the m variables when m property is
measured for N observation. However, the major part of the total variability can be
explained by q component. Then q new component can present m variable. Thus m
variables with N measure number will be reduced to q new variables without losing

any information.

PCA can be defined as follows:

The first principal component (Y1*) is determined as a linear combination of
X,,X,,...,X,,. The first component is the component which has the maximum
addition to the total variability:

’

Y, =a, X=a,X,+a,X,+...+a, X_ (2.5)
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The second principal component describes the remaining maximum variation after

the first principal component. These components are uncorrelated.

’

Y, =a, X=a,X, +a,X, +...+a, X
w ’
Y =a X=a_ X +a,,X,+...+a_ X

/7 /7

Var(Y, )=a, Za,, i=12,..,m; Cov(Y],Y,)=a, Za, (2.6)

/7

The first principal component variable provides the conditions which are a, a, =1

and max Var [e_ll X) The second principal component provides the conditions that
a, a, =1 and max Var [5_12 Xj after the first principal component:

Cov[gl X,a, Xj =Cov(Y/,Y;)=0

’

The i" PC satisfies max Var [&_li Xj ,a; a,=1, and for q <1, Cov(Yi*,Y: ) =0.

Thus A, =Xk, >2...2A_ denote the ordered eigenvalues of ¥ and a,a,,...,a

m

denote corresponding normalized eigenvectors of X .

The variance of the j* component Yj* is A;.

tr(Z) =67 +0% +... 462 =A, +A, +...+ A 2.7)

The total variation accounted for by all of the principal component variables is

equal to the amount of variation measured by the original variables. Therefore to

A
measure the importance of the j" principal component, the ratio of —-~ should be

tr(Z)

referred to. To achieve eigenvalues:

[Z-M|=0 (2.8)
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X : symmetric, nonnegative, diagonal matrix.

m eigenvectors can be achieved from this relation by using m eigenvalues. a, is the
first eigenvector of (X — kll)e_ll =0.
If Yi=a, X, Y.=a,X are the principal components obtained from the

covariance matrix X then for k<m,

o Cov(Y,,X,)  _ nay  _ah, 29
Y =a, X=a,X, +..+a,X, i=12,...,m
Var(Y')=a, a, =2, i=12....m
Cov(Y/,X,)=a,Za, =0 i#q.

Principal components can also be obtained from standardized variables.
Standardized variables, which are given below, are used when the variances are
drastically different from each other or the measurement scale of the variables is

different.

Zl — (Xl _Ml)
Gll
22 — (Xz _uz)
022
- (X, -u,)
GPP
Z:[V%j_l(X—u) (2.10)

Cov(Z)z(V%j_IE(V%j_l =R.
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Here V is the matrix of the set of all eigenvalue of covariance matrix. R is the

correlation matrix.

The principal components of Z may be obtained from the eigenvectors of the

correlation matrix R of X. All the other results apply to the R.

Y =a 7= gi,(V%J_l (X—p) @.11)

i=1

> VarlY)= ) var(z,)=p

Elements with an eigenvector are comparable to one another but elements in
different eigenvectors are not comparable. To make comparisons between
eigenvectors some researchers scale the eigenvectors by multiplying the elements in

each vector by the square root of its corresponding eigenvalue. That is

¢ :\/Tjﬁj

The new vectors are called component loadings vector. The i" element in ¢ jgives

the covariance between the i™ original variable and the i principal component. For
g I'Pp p p

more details about PCA, see Johnson, 1998.

2.2.1 Determining the Number of Principal Components

There is always the question of how many components to retain. Some methods

exist for determining an appropriate number of components. These are:
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Method 1

The simplest way is to look at the number of eigenvalues bigger than 1 (for

a A
standardized data), or the small value of q that provides the condition Z

>
=1 m

(SSH )

Method 2

Scree plot of the eigenvalues. To plot (1, 711 l (2, 712 l e (m, im )

>

30 7T

20 T

1.0 T

| | | | | >
| | | | | vom

1 2 3 4 5

Figure 2.1. A scree plot

An elbow occurs in the plot. That is, the eigenvalues after 713 are relatively small

and nearly at the same size with the following eigenvalues. In this case it appears that

two (or three) sample principal components effectively summarize the total variation.

2.2.2 Cautions about PCA

e If the original variables are nearly uncorrelated, nothing can be gained by
carrying out a PCA. In this case, the actual dimensionality of the data is equal to
the number of response variables measured.

¢ Any change in the measurement scale reflects the principal components.
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e PCA cannot generally be used to eliminate variables, because all of the original
variables are needed to score or evaluate the principal component variables for

each of the individuals in a data set.

Summary of steps in PCA:

1. The data matrix which has p variable on n measurement is standardized.

2. The correlation matrix of standardized data matrix is found.

3. The eigenvalues and eigenvectors of correlation matrix is calculated.

4. The account ratio of total variation of principal component is found by the help

of eigenvalues.
5. Principal component value is found by multiplying the transpose of each

eigenvectors with the transpose of standardized data matrix.

2.3  Principal Component Regression

PCA selects a new set of predictor variables which are called components. These
components are selected with the decreasing of variance within the predictor
variables. These components are perpendicular to each other, which mean that there
1s no multicollinearity among them. Principal Component Regression (PCR) is used

after PCA by applying MLR to the components.

PCR only deals with the variance-covariance matrix of predictor variables (X' X)

It doesn’t concern the relationship among the response variables. It defines all the

latent variables using all of the original predictors.

2.4  Partial Least Squares Regression

There is another method, which can be used in detecting multicollinearity and
which is the subject of this thesis, called Partial Least Squares Regression (PLSR). It

also deals with the variation of the response variables. PLSR analysis is based on the
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variance-covariance matrix of the all variables, that is (X'Y). In particular, the
method of Partial Least Squares Regression balances the two objectives, seeking
latent variables that explain both response and predictor variables. The following

chapter gives a brief summary about PLSR.



CHAPTER THREE
PARTIAL LEAST SQUARES REGRESSION

3.1 Literature Review of Partial Least Squares Regression

The pioneering work of PLS was done by Herman Wold at the beginning of the
1970’s. After his Ph.D. on the subject of time series, he went on studying regression
in econometric models. This led him to the fixed-point method. It is a method of
designing path models with directly observed variables and has an algorithm which
is iterative. This experience on iterative models has played an important role on later

developments.

Around 1964 Herman Wold invented the NIPALS. The NIPALS method contains
a number of properties that eased the path to useful PLS modelling. The NIPALS
method is used to compute principal components by an iterative sequence of simple
ordinary least squares regressions. Together, the combination of econometric

modelling and NIPALS created the first form of PLS in the early 1970s.

PLS found its way into Chemistry in the late 1970’s. Svante Wold, son of Herman
Wold, had helped his father in the previous work on the NIPALS algorithm and used
it on his own work. The first chemical paper to make reference to PLS was by
Gerlach, Kowalski and H. Wold in 1979. Since then a growing number of chemists
have used PLS to build calibration methods that seem to have superior prediction to

other methods.

Many articles have been written concerning the developments of PLS. The book
by Naes and Martens used statistical concepts that began to provide a theoretical
basis for PLS (1989). Paul Geladi offered a review of historical development of PLS
(1988). PLS regression was studied and developed from the point of view of
statisticians by Agnar Hoskuldsson (1988). The mathematical foundations of PLS
have been discussed by Lorber, Wangen and Kowalski (1987). A tutorial for PLS

17
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was provided by Geladi and Kowalski (1986). The most recent research was done by

Inge Helland (1990), Paul Garthwaite (1994) and Svante Wold (2001).

PLS is comprised of some algorithms. These are; NIPALS algorithm, UNIPALS
algorithm, KERNEL algorithm, SAMPLS algorithm and SIMPLS algorithm. Most
commonly used algorithms are NIPALS, SIMPLS and KERNEL algorithms.
NIPALS was the first algorithm to be studied. Then, the other algorithms were
investigated based on NIPALS algorithm. SIMPLS algorithm was studied by Sijmen
de Jong (1993). KERNEL algorithm was studied by Fredrik Lindgren, Paul Geladi
and Svante Wold (1993). Also Cajo Ter Braak (1994) and Stefan Rinnar (1994) have
studies about KERNEL algorithm.

After PLS analysis, in regression part, some model selection criteria played an
important role to select the best model. Baibing Li, Julian Morris and Elaine B.

Martin (2002) are the major names about this subject.

3.2 Partial Least Squares Regression

PLSR is a multivariate statistical technique that allows a relationship among
multiple response variables and multiple predictor variables. It is a wide class of
methods which consists of regression (MLR), dimension reduction techniques (PLS),

and modelling tools.

Dimension reduction is made in the PLS partition. PLS was designed to deal with
multiple regression when data have missing values and multicollinearity. It is a very
popular method when there is a big problem with a high number of correlated

variables and a limited number of observations.

The goal of PLS is to predict Y from X while describing the common structure
between the two variables. That is, PLS will give the minimum number of variables
required to maximize the covariance between the predictor and predicted variables

(Hoskuldsson, 1988).
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There are two types of PLS. PLS1 is when there is univariate response variable,
PLS2 is when there are at least two response variables. PLS can be interpreted as an
extension of regression problems. The predictor and response variables are each
considered as a block of variables. Then PLS extracts the score vectors (latent vector
or components) which serve as a new predictor representation and regresses the
response variables on these new predictors. Components which are linear

combinations of original predictors are mutually independent (orthogonal).

As an extension of the MLR model, PLSR shares the assumptions of Multiple
regression. However, unlike MLR, it can analyze data with strongly collinear,

numerous predictor variables, as well as the model several response variables.

PLSR is a latent variable based method for the linear modeling of the relationship

between a set of response variables Y (NxK) and a set of predictor variables X

(NxM) (Lindgren, F., et al., 1993).

Certain mathematical treatments and the working with large data sets have created
some problems. Modelling large data sets limits the size of the computer memory.
With the development of computer technology, this problem is constantly
decreasing. Algorithms and programs have been optimized to meet the demands of

today (Lindgren and Rannar, 1998).

An algorithm is a well defined procedure to solve a problem. An algorithm
generally takes some input, carries out a number of effective steps in a finite amount

of time, and produces some output (Algorithm, n.d.).

The choice of algorithm depends strongly on the shape of data matrices to be
studied. In some studies, the number of observations is much larger than the number
of variables. This leads to algorithm to work with variance-covariance, since number
of variables are independent of the number of observations. For an opposite situation

where the number of variables exceed the number of observations, choosing an
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algorithm that works with a matrix that is independent of the number of variables

will be the best choice (Lindgren and Rannar, 1998).

In multivariate studies there are three types of large data matrices:

- matrices with many observations and few variables; N large, K and M small,
- matrices with many variables and few observations; N small, K and/or M large,

- matrices with many variables and many observations; N, K and/or M large.

Several algorithms can be used in PLS regression. These algorithms use the
situations that are given above. Most commonly used are NIPALS, SIMPLS, PLS-

Kernel and Kernel algorithms. These are explained in next subsections.

3.2.1 NIPALS Algorithm

The NIPALS algorithm, also known as the classical algorithm, was developed by
H. Wold by 1960’s. It was first used for PCA and later for PLS. It is the most
commonly used method for calculating the principal components of a data set. It
gives more numerically accurate results when compared with Singular Value
Decomposition (SVD) of the covariance matrix, but is slower to calculate. In
following sections NIPALS algortihm for PCA and NIPALS algorithm for PLS will

be explained, respectively.

3.2.1.1 NIPALS Algorithm for PCA

Consider the NIPALS for finding the principal components of X'X. The aim is to
find the first q principal component of X'X starting with the largest eigenvalue A,

and down. q must be less than or equal to m.

The algorithm starts with j=1 and X; =X and carries on with the following

iterative steps.
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1. Choose t; as any column of X;.

't
2. Let pj=H zth
3. Let t;=X;p;.

4. If t; equals to the one used in step 2 then continue, otherwise return step 2.
5. Letresiduals X, =X, —t,p}.
6. Let j=j+1 and repeat steps 1 to 6 by using residuals X;,, instead of X,

until j=m.

Matrices T and P with columns t; and p; now satisfy X = TP'.

Properties of algorithm are:

STEP 2:

Let ) =‘ X't ‘ Then step 2 is written as X't; = L p;

STEP 3:
t, =X,p; then X’Xp, =A,p; (Eigen decomposition of X'X). Using the equation

in Step 3;

t't, =(Xp,) (Xp,)
=Pp;XXp,
=hPip;
=1,

STEP 5:

j=1 gives, X, =X-t,p; => X=X, +t,p;

Then X can be written as a linear combination;
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X:tlpjjrtzp’z+...+tpp; +Xp+l. G
=T, P, +X,,

T, and P, contain the first pcolumns of T and P. The aim is to choose q to

make X, is small. The relative size of the eigenvalues is expressed as a percentage

of the sum of all eigenvalues. So, the percentage of variation explained by the first j

component is

A+
S S

%100

3.2.1.2  NIPALS Algorithm for PLS

The basic algorithm for PLS regression was developed by Wold in 1960’s. The
starting point of the algorithm is two data matrices X and Y. X is NxM, Y is
Nx K where N also represents the number of rows, M also represents the number of
columns, and K is the number of response variables. Before the algorithm starts, the

data matrices must be mean centered or scaled. The algorithm is as follows:
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1. Start: Set wy,,) to the first column of Y.

2w _ XEMXN)“(NXI)
. (Mx1) — ,
) (“(mv) U (ny) )
3. Scale w,,, to be of length one.

4. tna) = X)) W (vix1)

Y(,KXN) t(le)

5.¢ =
(Kx1)
t(1><N) t(N><1)

6. Scale c to be of length one.

Y C
(NxK) ~(Kx1)
7. Uy =

’

C(xk) € (kx1)
8. If t in step 4 convergences to the one in the preceding iteration then go to

step 9 else go to step 2.

X vpen) b
9. X-loadings: P (o) = EM N) “(Nx1)
t(lxN) t(le)
Y. «u
i (KxN) Y (Nx1)
10. Y-loadings: Qoa) = 7
U (1) W (nt)
uzlxN) t(N><1)

11. Regression (u upon t): b(m) =

’

t(1><N) t(le)
12. Residual matrices: X — X —tp” and Y — Y —btc’.

Properties of algorithm are:

STEP 2:

In PLS, the direction in the space of X which yields the biggest covariance
between X and Y is being searched. This direction is given by a unit vector w
(weight vector). This weight vector formed by standardizing the covariance matrix

for X and Y. Weights are based on the covariance between X; and u;.
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STEP 3:

1 (“(mv) “(le))

such that,

w is scaled; that is

w
Nw'w

(XEMXN)u(le))/ (uEIXN)u(le)) — nor mw:” : XEMxN)“/(le) ”:1
g o)

1><N)X (NxM)X (MxN)® (Nx1

’

1
’ ’ E
X)) | X)W va)
“/(MN)“(le) uElxN)u(le)

STEP 4:

The Nx1 latent vector t; is formed as a linear combination of the columns of X
with weights vector w,. The latent vectors t; are also called scores, similar to the

terminology for PCA.

STEP 5:

C (k1) are the weights of Y.

STEP 8:

old tnew

Convergence is tested on the change in t. <g,e=10"°,107".

new
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STEP 9:

The vector py, 18 the vector of regression coefficients obtained from multiple
linear regression of X; on t;. This vector is called loadings.

Model is, X =tp’.

STEP 10:
This step is to find the loadings for Y .

STEP 11:

b is a scaling factor.

STEP 12:
X - X-tp

l X (estimated from the algorithm)
Beginning matrix (at the beginning of the algorithm)

New matrix (Residual)

This equation can be similarly written for Y .

NIPALS algorithm is based on the classical algorithm which was developed by
Wold in 1960’s. The use of NIPALS in large data structures, causes some technical
problems. The calculation of score and loading vectors can be time-consuming and
requires big memory. In the case of large matrices fast and powerful software is

needed.
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3.2.2 SIMPLS Algorithm

This algorithm was developed by Sijmen de Jong in 1993. This name was given
since it’s being a straightforward implementation of a statistically inspired
modification of the PLS method (De Jong, 1993). It is much faster than the NIPALS
algorithm, especially when the number of predictor variables increases, but gives
slightly different results in the case of multivariate response variables. For univariate

response variable, SIMPLS is equivalent to PLSI.

In both algorithms, the predictor and response variables are first mean centered. In
the first stage of PLS2 the data matrix X 1is deflated in each step and the latent
vectors t are the linear combinations of the deflated matrix not the original matrix.
For that reason the interpretation of the score matrix T is not straightforward.
SIMPLS calculates the PLS latent variables directly as linear combinations of the

original variables because of deflating the covariance matrix S=X'Y .

3.2.3 Kernel Algorithm

The first kernel algorithm was developed by Lindgren in 1993. It was an
alternative to the classical algorithm for handling datasets where N>>M. This
algorithm uses X'YY’X (MxM) matrix since it is independent of the number of
observations. This property provides working with small matrix. This algorithm
innovates to update XY variance-covariance matrix by multiplication of an
updating matrix (I - wp') of size (M xM) without interfering to the original X and

Y matrices.

The second kernel algorithm was presented by Rénnar et al in (1994). It is similar
to the first kernel algorithm but is suitable for datasets that is M>>N (many variables

and fewer observations). This algorithm depends on XX'YY’ kernel matrix.

The kernel algorithms were recently modified by De Jong (1993), resulting in

faster and simplified kernel algorithms. Further modifications were proposed by
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Dayal et al. (1997). They utilize the fact that only one of the matrices X or Y needs
to be deflated. Since the response variables are often few, deflating Y instead of X

saves time.

3.2.3.1 PLS-Kernel with Many Variables and Few Objects

This is a fast PLS regression algorithm dealing with large data matrices with
many variables and fewer observations. It is based on XX'YY’ kernel matrix which
is a square, non-symmetric matrix of size (NxN). This matrix is dependent on the
number of observations. When the data matrices X, Y are large, working with these
data matrices algorithm needs lots of calculation (Rénnar, S., et al 1994). That is to
say, the algorithm requires a multitude of multiplications of large vectors by large
matrices. This requires large storage areas in computer memory. Lindgren (1995)
shows that for special cases there are alternative algorithms based on small kernel
matrices. These small kernel matrices requires less space than the original data, and

calculations are faster than the original data matrices.

In this algorithm, it is possible to calculate:
* All score vectors

* All loading vectors

+ And hence, conduct a complete PLS regression including such as R*>.

All of the vectors can be calculated by the eigen decomposition of corresponding

matrices as given by Hoskuldsson (1988);

wa, = (X'YY'X)w
co, = (Y'XX'Y)c

33
to, = (XX'YY')t (33)
uo, = (YY'XX )u
where (ocl,...,oc 4) are the eigenvalues and w, ¢, t and u are the corresponding

eigenvectors with unit length.
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Steps of the algorithm are as follows:

Before the algorithm starts, data matrices are scaled and mean centered.

STEP 1:
Algorithm starts with creating XX" and YY’ association matrices and then by

the multiplication of these association matrices XX'YY” kernel matrix is obtained.

STEP 2:

The eigenvector of the kernel matrix is calculated. This is the first X latent vector

t,. Then this latent vector is used for calculating u,. Then these score vectors are

scaled as follows;
t,. =t, /norm(t, )
e e

But to get similar vectors as in tle classical"algorithm, these score vectors are

rescaled as follows:

u

aTa-1"a-1%a
ww = u:empEa—lE;—lutemp (3.4)
toeaea = La m
Wocated = Wiemp (W/W)
Here, u,,,, is a temporary vector. a=1,2,...,A number of components.
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STEP 3:
This step is about updating the association matrices. In kernel algorithm, XX’
and YY  association matrices are reduced. E is the residual matrix and at the

beginning of the algorithm it is equal to original X data matrix i.e. E, = X. For the

first component, E, residual matrix will be defined on E,.

Ea = Ea—l tap;
(0, =t.E,,)—>p] =t[E,=t/X
Ea = Ea—l tat;Ea—l
, (3.5)
Ea = (I - tata )Ea—l = GaEa—l
E, =E, G,
G, =G,
Here G, =1-t,t/
In this case, E,E; =G, XX'G,
And for the component a residual is equal to; EE. =G, E_ E. G, .
The same calculations can be made for Y. In this case, E,E; =G, XX'G,
And for the component a residual is equal to; EE. =G, E_ E. G, .
The same calculations can be made for Y.
F,=Y
F,=F,, —t,c
c,=tF, )oc =tY
( a a—l) 1 1 (3,6)
Fa = GaFa—l
F; = Fa,—lGa

And for the component a residual is equal to; F,F, =G, F, ,F._ G,.

Thus the association matrices are updated by left and right multiplication by the

updating matrix G, .
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STEP 4:

In this step, weight W and loading matrices P, C are calculated.

= (T’X)(T'T)" (3.7)

All the columns in W are normalized to have length 1.

’ ’
w, =w,E, w, =u X

VTR W —w o)X

=u,IX-ujt, t;X

a ~ “a—a-1 :u;X

Here, E, =G, X=(I-t,t;)X and ujt, =0.

Finally the PLS regression coefficients B, ¢ are obtained.

B, =W(EPW)C

e Some properties of vectors

> tu; =0 for j>i

u, =Fc,

u, =Fc,

Fa = (I - t;ta )(I - t;—lta—l )(I - t;—Zta—Z ) . (I - t;tl )FO




The orthogonality property for t, and u, becomes;

tu, =t Fc,
=t (I —tt; )Fo ¢,

= (t I -ttt )F, c,

0
Since tit, =1

= (t/1I _t1)F0 C,
=0

This makes T'U a lower triangular.

> tit,; =0 for j>i

Then for i=1, j=2

t/11:2 = t/1 (I _tlt/l )Eo W,
= (t/ll_t/ltlt/l)Eowz
tit, =1 then;
= (t/l _t;)Eo W,
=0

> t;t, =1 because t vectors are scaled.
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3.2.3.2  PLS-Kernel with Many Observations and Few Variables

This algorithm was developed by Lindgren et al. (1995) to handle datasets where
N>>M. The novelty of this algorithm that it updates the variance/covariance matrices
directly without interfering with the original X and Y matrices. By multiplication of

an updating matrix (I —wp’) of size (MxM), explained variance is removed from

the variance/covariance matrices: (I-wp’) X'YY'X(I-wp’) (Lindgren et al, 1998).

3.2.4 SAMPLS Algorithm

SAMPLS (SAMple-distance Partial Least Squares) was presented by Bush et al.
in 1993, and has been focused on the special case of many predictor variables and
few observations M>>N. However, the algorithm handles only one y response
variable, which is a limiting factor compared to other algorithms (Lindgren et al,
1998). It works with the association matrix XX” and the response vector y in order

to calculate the latent vector without iteration.

3.2.5 UNIPALS Algorithm

UNIPALS (UNIversal Partial Least Squares) was presented by Glen in 1989. It is
based on the matrix Y'XX'Y with size (KxK). The largest eigenvector of this

matrix corresponds to the first weight vector for the Y block and by the help of this

vector all other PLS vectors can be calculated without iteration.



CHAPTER FOUR
MODEL SELECTION METHODS

Model selection and validation are critical subjects in predicting the performance
of the regression models. In model selection, a statistical model is chosen from a set
of potential models. Selecting the best model depends on the correct selection of
variables, so the model prediction error is minimized and the model is prevented
from redundant variables. There are several variable selection techniques. Some of

them are explained in the next subsections.

Suppose that there is a data set with N observations and M predictor variables
such as X and a response variable y. The problem of variable selection arises when
one wants to model the relationship between y and a subset of predictor variables,
but there is uncertainty about which subset to use (Baumann, 2003). The variable
selection problem is often defined as selecting K<M variables that allow the

construction of the best predictor.

There can be many reasons for selecting only a subset of the variables. It is
cheaper to measure less variables and knowing which components are relevant can
give insight into the nature of the prediction problem. So, the predictor to be built is
usually simpler and potentially faster when less components are used, Also,

prediction accuracy is improved through exclusion of irrelevant components.

This situation is difficult when N is small and M is big and the predictor variables
are thought to contain many redundant or irrelevant variables. For M potential
predictor variables, there are 2™ —1 possible regression equations. For large M, it is
not practical to consider all possible subsets. Therefore, a search algorithm that

evaluates only a small portion of all possible subsets is needed.

Variable selection algorithms need two theme: a mathematical modelling
procedure and an objective function guiding for the search. Some of the

mathematical modelling techniques combined with variable selection are MLR, PCR,

33
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PLSR and neural networks. In PCR and PLSR, predictor variables are reduced to
fewer latent variables by the help of algorithms. But determining the correct number

of latent variables is still one of the most difficult part.

The objective function is used for assessing the temporarily selected variable
subsets during the search for the best model. The objective function should provide

an estimate of the prediction error.

As more and more latent variables are calculated, they are ordered by the degree
of importance for the model. The previous latent variables in the model are the most
possible ones related to both variables. Latent variables that come later generally
have less information that is useful for predicting response variable. If the model
contains these latent variables, the predictions can be worse than if they were omitted

together.

Various methods for choosing significant latent variables are used in the literature.
Some of them are from simple to complex, scree plot and likelihood ratio tests. In
this paper cross-validation which is a practical approach to guide the search or the

selection process will be given.

In component selection, the aim is usually to find a small subset of the latent
variables that enables the construction of accurate predictors. Consequently, the
accuracies of the predictor to be built need to be estimated in order to know whether

a good subset has been found.

4.1 Cross-Validation

One of the most important issues in any regression modelling is a concept of its
predictive ability (prediction) power. This concept is essential as one needs to
estimate the optimal number of latent variables in order to avoid the risk of obtaining

models with over-fitting or under-fitting. This risk is reduced by using validation
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procedures to determine the number of Latent variables that minimizes the prediction
error. One of this validation procedures is known as cross-validation (CV) (Barros

and Rutledge, 2004).

The glossary meaning of CV is “the division of data into two approximately equal
sized subsets, one of which is used to estimate the parameters in some model of
interest, and the other is used to assess whether the model with these parameter

values fits adequately.”

CV is a very popular technique for model selection and model validation. It is
used for investigating the predictive validity of a linear regression equation. It is
conceptually very simple to understand, but the most calculationally intensive
method of optimizing a model. Besides, it is the most common approach to
estimating the true accuracy of a given model and it is based on splitting the

available sample between a training set and a validation set (Last, 2006).

As mentioned above, there are two sets of CV. Training set is a portion of a data
set to fit (train) a model for prediction or classification of values but unknown in
other (future) data. The training set is used in conjunction with validation and/or test
sets that are used to evaluate different models. Second is the validation set. It is a
portion of a data set used in data mining to assess the performance of prediction or
classification models that are fit on a separate portion of the same data set (training
set). Typically both the training and validation sets are randomly selected, and the
validation set is used as a more objective measure of the performance of various
models that are fit to the training data (and whose performance with the training set
is therefore not likely to be a good guide to their performance with data that they

were not fit to).

There are some types of cross validation. These are;

Holdout validation: Observations are chosen randomly from the initial sample to

form the validation data, and the remaining observations are retained as the training
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data. Normally, less than a third of the initial sample is used for validation data

(wikipedia.org).

K-fold cross-validation: In k fold cross-validation, the original sample is
partitioned into k subsamples that are approximately in the same size. From these k
subsamples, a single subsample is retained as the validation data for testing the
model, and the remaining k—1 samples are used as training data. The cross-validation
process is then repeated k times, with each of the k subsamples being used exactly
once as the validation data. The k results from the folds can then be averaged to

produce a single estimation (wikipedia.org).

Leave-one-out cross-validation: This involves using a single observation from the
original sample as the validation data and the remaining observations as the training
data. This is repeated such that each observation in the sample is used once as at the
validation data. This is the same as k-fold cross-validation where k is equal to the
number of observations in the original sample. This method can be time-consuming
for large data sets because it recalculates the models as many times as there are

observations (wikipedia.org).

For all types of cross validation, PRESS is being calculated. It is calculated by
building a model with a number of factors, then predicting training data set with this
model. The sum of the squared difference between the predicted and observed values
gives the PRESS value for that model. PRESS criterion is a measure of how well the
use of the fitted values for a subset model can predict the observed responses of a

dependent variable.

The PRESS value for the i observation is as follows:

PRESS = i (Yi ~ Y )2 4.1
il
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where the notation §,;, is used for the fitted value. By the first subscript i, it is

shown that it is a predicted value for the i case and by the second subscript (i), it is
shown that i" case is omitted when the regression function was fitted. The smaller
PRESS value shows that it is the best model to predict. In some situations PRESS

should reach a minimum and start to rise again.

The advantageous feature of cross-validation is its ability to estimate the
performance of the model. Since the predicted samples are not the same as the
samples used to build the model, the calculated PRESS value is a very good
indication of the error in the accuracy of the model when used to predict unknown

samples in the future.

The disadvantage of cross-validation is that it is time consuming. It requires the

recalculating of the models for every sample left out and this takes time.

Selecting the components based on PRESS:

To avoid building a model that is either overfit or underfit, the number of
components where the PRESS value reaches a minimum would be the obvious
choice for the best model. While the minimum of the PRESS may be the best choice
for predicting the particular set of samples, most likely it is not the optimum choice
for predicting all unknown samples in the future. That is, the optimum number of
factors was determined rather than the selection of the model, which yields a
minimum in PRESS; the model selected is the one with the fewest number of factors
such that PRESS for that model is not significantly greater than the minimum PRESS
(Niazi and Azizi, 2008). A solution to this problem has been suggested in which the
PRESS values for all previous factors are compared to the PRESS value at the

minimum.

The ratio between these values known as the F-ratio can be calculated and

assigned a statistical significance based on the number of observations;
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PRE
ratio, i (42)
*  PRESS, ..
Hypothesis for this test statistic can be given as follows:
H, : PRESS, = PRESS
(4.3)

H, : PRESS, > PRESS, .

This F ratio is an indicator of the relative significance of each model with the
number of components at the minimum of the PRESS. An F test can be used to
determine the significance of PRESS values greater than the minimum (Niazi, Azizi,
2008). The number of components where the F ratio falls below a predefined
significance level determines the optimum number of factors for a model used for
predicting unknowns. In some references the probability of that level falling at or
below 0.75 is suggested as determining the point at which adding a new component

to the model.

In addition to the statistic above, Osten (1988) proposed an F test based criterion,

where the F value is given by:

F

_ PRESS(a)—PRESS(a +1) / PRESS(a+1) 4d)

K NK - (a + 1)K

This criterion is compared with an F value, F x n.1)x.00s (L1, Morris and Martin,

2002). Also a model selection criterion called Wold’s R can be calculated from the

PRESS values. It can be explained as follows:

R = PRESS(a +1)

PRESS(a) (43)



39

where PRESS(m) denotes the PRESS after including the first a latent variables.
Wold’s R criterion terminates when R is greater than unity or a given threshold and

hence A=a (Li et al, 2002).

PRESS is also used to calculate goodness of prediction value called Q*. This

statistic is based on the proportional error reduction of the PRESS of squares

residuals. It can be written as:

o —{Z bo-50) /305, )z} (4.6)

i=1

N
In this formula Z(yi —Ya )2 is the sum of squares difference between observed

i=1

and y; and the mean Yy ;) when the i"™ observation is omitted (Quan, 1988).

Briefly, Q? is (1.0-PRESS/SS) where SS is the residual sum of squares of the

previous dimension (Wold et al., 1993). This means that Q> renders a measure of the

final’s model predictive capability. It answers the question of how good predictions

on the basis of known X data can be (M. Henningsson et al, 2001).

In the presence of outliers the Q? statistic can be negative, because it is sensitive

to the choice of regressors and the inclusion of influential observations (Quan, 1988).

4.2 Akaike Information Criterion

This was developed by Hirotsugu Akaike under the name of “an information
criterion (AIC)” in 1971 and was proposed in Akaike (1974). It is a measure of the
goodness of fit of an estimated statistical model. It is a way of selecting a model from
a set of models. Given a data set, several competing models may be ranked according

to their AIC, with the one having the lowest AIC being the best.
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For problems associated with a single variable and more than one response
variables, there are two types of information criterion. With a single response

variable (K=1) criterion is:
AIC(a) = Nlog(6? )+ 2a 4.7)

where a is the number of model parameters, N is the number of observations, and o

is the maximum likelihood estimate of the variance of the response variable.
Nlog(éz) represents model accuracy, 2a relates to model parsimony.

6% = R?SS . RSS is the residual sum of squares.

AIC(a) = Nlog(RSS)+2a (4.8)

For more than one response variable (K>1), multivariate version of AIC was

given by Bedrick and Tsai (1994),

MAIC(a) = Nllog[$] + K )+ 2d[Ka + K (K +1)/2] (4.9)

where d =N/ [N—(a+K+1)] and ¥ is the maximum likelihood estimate of

X (variance-covariance matrix of the response variable).

The multivariate version of AIC was given by Bozdogan (2000) under the
multivariate normal assumption for the multivariate regression model which are

given as follows,

(4.10)

MAIC = NMlog(27) + Nlog‘f‘,‘ +NM + Z[aK + a(a; D}.



CHAPTER FIVE
DESIGN OF SIMULATION STUDY AND RESULTS

Partial Least Squares Regression Analysis is partitioned into PLS and MLR. In
PLS partition, dimension reduction is being done. After this reduction, latent
variables, which are the new predictor variables, are used in regression partition.
These latent variables are fewer than predictor variables. But, as all the latent
variables can be used in regression, also fewer of them can be more sufficient in
regression analysis. This sufficiency is achieved by describing the variance with both

predictor variables and response variables.

To obtain the most relevant or sufficient latent variables, some model selection
criteria were developed. Some of these criteria depend on describing the percentage
of the variance or minimum error. In model selection criteria, k fold cross validation
is used, followed by two different multivariate Akaike Information Criterion from
Bozdogan, Bedrick and Wold’s R criteria. The optimum latent variable number

which is obtained from PRESS criterion was used.

In this thesis the model selection criteria was used for PLS model selection and
their performances were evaluated by a Monte Carlo simulation study. The analysis
including all simulations and calculations and all the data sets were generated

randomly on MATLAB environment.

5.1 Design of Simulation Study

The framework for the simulation model was based on Li and Morris (2002) for
the problem of multiple response variables. In this study the true number of latent

variables is shown with A",

The dimensions of predictor variables is extended as Nx6, Nx8, Nx10 and

N x12 . The dimension of response variables matrix, Y, is chosen as N x 4.
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Explanatory data matrix, X, was generated from equation (5.1):
K
X=>r& +E (5.1)
i=1

The components of X matrix are given in Table 5.1 and Table 5.2.

Table 5.1 The R and E matrices for X matrix.

Dimension of R E
data matrix
R=[ry, r3, r3, 4], 1=1,2,3,4 E=[ey, e, €3, €4, €5, €¢] , j=1,...,6
were generated as; were generated as;

mutually independent normal|mutually independent random

Eig variables with mean zero and | variables with mean zero and
Nx10 var(ry)=10 var(e;j)=0.01.
Nx12 var(rz)=>5

var(rs)=2

var(rg)=0.5
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Table 5.2 The generated orthogonal vectors for g: .

NXx6 N x8

i _ | [0.1612 03030  0.4082  0.4642 |
0408207071 0.4082 0.2887 | | 103030 0.4642 0.4082 0.1612
0.4082 -0.7071 04082 0.2887 04080 0.4082 0 0.4082
0.4082 0 -0.8165  0.2887 0.4642 0.1612 -0.4082 -0.3030
0.4082 0 0 -0.8660 0.4642 -0.1612 -0.4082 0.3030
0.4082 0 0 0 0.4082 -0.4082 0 0.4082
| 0.4082 0 0 0 ] 1103030 -0.4642 04082 -0.1612

101612 -0.3030 0.4082 -0.4642 |

Nx10 Nx12

[0.1201 02305 03223 038797 | [0.0939 0.1823  0.2601  0.3228 |

02305 0.3879 04221 0.3223 0.1823 0.3228 0.3894  0.3667
0.3223 0.4221 02305 -0.1201] ||0-2601 0.3894 ~ 0.3228  0.0939

0.3879 0.3223 -0.1201 -0.4221]| ||0:3228 0.3667  0.0939 -0.2601
04221 0.1201 -0.3879 -0.2305| | |0-3667 0.2601 -0.1823 -0.3894
0.4221 -0.1201 -0.3879 0.2305 0.3894  0.0939  -0.3667 -0.1823
0.3879 -0.3223 -0.1201 0.4221 0.3894 -0.0939 -0.3667  0.1823
0.3223 -0.4221 0.2305  0.1201 0.3667 -0.2601 -0.1823  0.3894
0.2305 -0.3879 0.4221 -0.3223| ||0-3228 -0.3667 0.0939  0.2601

0.1201 -0.2305 0.3223 -0.3879| | |0.2601 -0.3894 0.3228 -0.0939
] ©1]0.1823 -0.3228 0.3894 -0.3667
10.0939 -0.1823  0.2601 -0.3228

g are orthogonal and unit vectors. Response variables matrix is generated from

equation (5.2).

K K
Y:sz:q +(p:Zri1]:q +F,. (5.2)
i=1 i=1

F=)fn+o¢ (5.3)
i=1



Table 5.3 The generated values for ¢

Dimension of
data matrix

¢

Nx6
Nx8
Nx10
Nx12

(P:[(pl’ D5 93, (|)4] was generated
multivariate normal distribution with
mean zero and following variance-
covariance matrix;

0.00010 0.00006 0.00006 0.00006
0.00006 0.00010 0.00006 0.00006
0.00006 0.00006 0.00010 0.00006
0.00006 0.00006 0.00006 0.00010

Table 5.4 The generated orthogonal vectors for 1; .
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Nx6 Nx8
0.2887 0.500 0.5774 0.500
0.500 0.500 0.500 0.500 0500 0500 O  -0.500
0.7071-0.7071 0 0 0.5774 0 -0.5774 0
0.4082 0.4082 -0.8165 0 0.500 -0.500 0  0.500
0.2887 0.2887 0.2887 -0.8660
Nx10 Nx12
03717 0.6015 0.6015 0.3717 ] | [ 0.6935 05879 0.3928 0.1379
0.6015 03717 -0.3717 -0.6015| | | 0.5879 -0.1379 -0.6935 -0.3928
0.6015 -0.3717 -0.3717 0.6015 | | | 0.3928 -0.6935 0.1379 0.5879
0.3717 -0.6015 0.6015 -0.3717] | [ 0.1379 -0.3928 0.5879 -0.6935




Table 5.5 The generated data for Y.

Dimension of
data matrix

F

Nx6
Nx8
Nx10
Nx12

F=[f,, >, f5, f4], i=1,2,3,4

were generated as;

mutually  independent  normal

variables with mean zero and
var(f;)=0.25
var(f,)=0.125
var(f3)=0.05
var(fs)=0.0125
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Table 5.1-Table 5.5 show how data matrices are generated. After generating of all

data sets, the Variance Inflation Factor is calculated for Nx6 design matrix in

Minitab to see there is multicollinearity or not. The VIF values are shown in Table

5.6.

Table 5.6 VIF values for Nx6.

Predictors VIF
X 635,6
X 439,9
X3 990,8
X4 765,8
Xs 626,9
X6 839,0

Then the frequencies of the selected number of latent variables are calculated.
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Table 5.7 Relative cumulative variances of X and Y for Nx6.

True Blocks Number of Latent Variables
Model

1 2 3 4 5 6

X-block 0,54196  0,88199 0,95207 099984 1,00000 1,00000
A%*=4

Y-block 0,93226  0,96577 097492 097530 0,97530 0,97519

As seen from Table 5.7 the true number of latent variables is 4.
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5.2 Results of Simulation Study

MATLAB code is written for k-fold cross validation in Modified Kernel
Algorithm. k=5 is chosen and the simulation is repeated 10000 times for all design
matrix. N is chosen as 100, 250 and 500. The comparison of results are shown in

Figure 5.1-Figure5.6.

(NOTE: in this study 6%*4 is a design matrix represents N X6 and means that the
number of predictor variables is 6 and these variables are reduced to number 4 for

the number of latent variables. This is the same for 8*%4, 10*4 and 12%4).

MAIC(BOZDOGAN) MAIC(BEDRICK)

10000 7 10000 7 5
8
8000 1 8000 - 10

6000 1 6000 1 8
4000 4 4000 4
2000 A 2000 A

0 ; ; ; 0 .

64 84 104 12°4 64 84 104 12'4
N=100 N=100
WOLD'S R MA_OPT(PRESS)
10000 7 10000
6
8000 8000
7
6000 | 4 1 4 6000 |
4000 4000 5
4 6
4 4 6
2000 2000
.;D ‘ EE | mm
0 " " " 0
64 84 10%4 12°4 64 84 104 12'4
N=100 N=100

Figure 5.1 All model selection criteria for N=100.

These figures show the maximum iteration number for each design for N=100. As
is shown, each criteria finds the true number of latent variables in 10000 iteration for
Nx6. But for other-sized design matrices, they find the number of latent variables

with a higher number, and they cannot find the true number of latent variables.
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6*4 8*4

10000
8000
6000
4000
2000

o

MAC(BOZDOGAN) ~MA_OPT(PRESS)  MAIC(BEDRICK) WOLDS R MAIG(BOZDOGAN) MA_OPT(PRESS)  MAIG(BEDRICK) WOLDS R
N=100 N=100
104 12*4

10000
8000
6000
4000
2000

o

MAIC(BOZDOGAN)  MA_OPT(PRESS) MAIC(BEDRICK) WOLDS R MAIC(BOZDOGAN)  MA_OPT(PRESS) MAIC(BEDRICK) WOLDS R
N=100

N=100

Figure 5.2 Model selection criterias for each design matrix for N=100.

These figures display the number of latent variable for each model selection
criterion in each design matrix for N=100. All model selection criteria find the true
number of latent variables in N x 6 design matrix. But when the number of predictor

variables increases, they find the number of latent variable close to the number of

predictor variables.

MAIC(BOZDOGAN) MAIC(BOZDOGAN)

10000
8000
6000
4000
2000

o

N=100 N=250 N=500 N=100 N=250 N=500
64 84
MAIC(BOZDOGAN) MAIC(BOZDOGAN)

10000
8000
6000
4000
2000

o

N=100 N=250 N=500 N=100 N=250 N=500
10*4 124

Figure 5.3 MAIC(BOZDOGAN) criterion for each design matrix for each N.
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In these figures MAIC(BOZDOGAN) criterion is displayed for each design

matrix for each N. In Nx 6 design matrix, it finds the true number of latent variables

but for other design matrix, it finds the number of latent variables close to the

number of predictor variables.

10000

MA_OPT(PRESS)

8000 4
6000
4000 q
2000 4

N=500

MA_OPT(PRESS)

10000
8000 4
6000 4
4000 4
2000 4

6

N=100

N=250
84

N=500

10000

MA_OPT(PRESS)

8000
6000
4000
2000

£

Bk

N=100

N=250
10*4

N=500

10000

MA_OPT(PRESS)

8000
6000
4000
2000

s

N=100

N=250
12*4

N=500

Figure 5.4 MA_OPT(PRESS) criterion for each design matrix for each N.

In these figures MA_OPT(PRESS) criterion is displayed for each design matrix

for each N. As is shown, it cannot find the true number of latent variables but it finds

the number of latent variables close to the true number of predictor variables.
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MAIC(BEDRICK) MAIC(BEDRICK)

N=100 N=250 N=500 N=100 N=250 N=500
64 84
MAIC(BEDRICK) MAIC(BEDRICK)

N=100 N=250 N=500 N=100 N=250 N=500
10*4 12*4

Figure 5.5 MAIC (BEDRICK) criterion for each design matrix for each N.

MAIC(BEDRICK) criterion is displayed for each of the design matrices and for
each the number of observations. As is shown, it finds the true latent variable number
in N x 6 design matrix. When the design matrix and the number of observations get

larger, it finds the number of latent variables close to number of predictor variables.

WOLD'S R WOLD'S R

N=100 N=250 N=500
N=100 N=250 N=500 84
64 @ true latent variable number @ maximum iteration number for latent variable number
WOLD'S R WOLD'S R

N=100 N=250 N=500 N=100 N=250 N=500
10*4 124

‘l true latent variable number @ maximum iteration number for latent variable nurrber ‘ ‘I true latent variable number @ maximum iteration number for latent variable nurber

Figure 5.6 WOLD’S R criterion for each design matrix for each N.
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WOLD’S R criterion is displayed for each of the design matrices and for each
object number. As is shown, these figures are given with a true number of latent

variables and the number of latent variable which is the most iterated.



CHAPTER SIX
CONCLUSION

In this thesis a Monte Carlo simulation study was done based on the paper of Li
and Morris (2002). The paper’s simulation study was extended for high dimensional

data. For more information, see Li and Morris (2002).

The data was generated in MATLAB statistical program with the number 6, 8,10
and 12 predictor variables. The number of response variable was taken as 4. The
observation numbers were taken as 100, 250 and 500, respectively. These data
matrices were generated in terms of PLSR assumptions and according to true number
of latent variables which is equal to 4. The code for k-fold cross-validation was
written and put into Modified Kernel algorithm. k was taken as 5. Model selection
criteria were applied to data to compare the performance of criteria in order to find

the true number of latent variables. The details were given in Chapter 5.

Main contribution of this thesis is comparing the performance of criteria in order
to find the true number of latent variables for high dimensional data which resembles
the study of Li and Morris. Li and Morris indicated that all criteria are effective for
the small-sized design matrices. Especially WOLD’S R criterion gave the best results
in finding the true latent variable number. Working with high dimensional data
matrices, the reaction of these criteria, especially the reaction of Wold’s R was
wondered by the researcher. Then the simulation study was done according to the

interest of criteria’s performance, especially WOLD’S R.

In the simulation study, firstly, the same results were obtained for the same sized
data matrices of Li and Morris. Afterwards, data matrices were extended for larger
number of predictor variables and observations. 10000 iterations were done for each

design matrices. The results were given in Chapter 5 and Appendix 4.

The simulation results show that all criteria achieved the true number of latent

variables for small-sized design matrices. However, the results for the other-sized
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design matrices varied greatly and they consistently showed different numbers of
latent variables. Generally it can be said that, when N increases, PLS creates a model
with a high number of latent variables, which is statistically significant. The
simulation studies also show that WOLD’S R criterion is effective for a 6*4 design
matrix. That is, WOLD’S R gave the same result as in Li and Morris when the data
was generated according to their paper. Also, when the data was generated with
nonorthogonal vectors, 8*4, 10*4 and 12*4, as the same as Li and Morris, WOLD’S
R gave the best results. Nevertheless, when the data was generated according to the
assumptions of PLSR, it seems that WOLD’S R criterion did not give desirable
results in high dimensional data. MAIC(BOZDOGAN) and MAIC(BEDRICK)
found almost the same results as the number of latent variables but for high
dimensional data they could not find the true number of latent variables.
MA_OPT(PRESS) gave the same or nearly the same results with WOLD’S R

criterion.

In the simulation study, it is shown that, for high dimensional data matrices,
although all design matrices were generated as 4 was the true number of latent
variables, all of the model selection criteria found the number of latent variables

close to the number of predictor variable.
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APPENDICES

Appendix 1. Notations

Matrices are denoted with bold upper letters, vectors are denoted with bold lower

letters.
a —
A —
i —
N —
M —
K —
X —
Y —
b, —
B —
Ca —
H
H
. —
F —
Pa —
P —
t. —
T —
Wa —
W -

index of components (a=1,2,...,A)

number of components in PLS model

index of observations (i=1,2,...,N)

number of observations

number of predictor variables (m=1,2,...,M)
number of response variables (k=1,2,...,K)

matrix of predictor variables with dimension (N x M)
matrix of response variables with dimension (NxK)

regression coefficient for the mth predictor variable.

matrix of regression coefficients of all Y’s (MxK)
PLSR Y weights of component a (K x1)

Y weight matrix (KxA)

matrix of X residuals (NxM)

residuals of a th component on y variable (N x1)
matrix of Y residuals (NxK)

X loading vector of component a (M x1)
Loading matrix (M xA)

X scores of component a (N x1)

latent variable (score) matrix (NxA)

X weight of component a (M x1)

X weight matrix (MxA)



Appendix 2. Abbreviations

Cv
EVD
OLS
MLR
MSE
NIPALS
PCA
PCR
PLS
PLSR
PRESS
SIMPLS
SVD
VIF

L T A e S A A

Cross-validation

Eigenvalue Decomposition

Ordinary Least Squares

Multiple Linear Regression

Mean Square Error

Non-Linear Iterative Partial Least Squares
Principal Component Analysis
Principal Component Regression
Partial Least squares

Partial Least Squares Regression
Predicted Residual Sum of Squares
Straightforward Partial Least Squares
Singular Value Decomposition

Variance Inflation Factor
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Appendix 3. MATLAB Code for Nx6

cle;

clear;

maic=[];
maicl=[];
maic2=[];
MAKAIKE=[];
MBEDRICK=[];
MNEW=[];
PRESS=[];
NORMPRESS2=[];
saydir=zeros(6,1);
N=100;

Woldlar=zeros(counter,5);

for counter=1:10000

X=[1;
Y=[];

E=mvnrnd([0 0000 0],/0.0100000;00.010000;000.01000;0000.010

0;00000.010;000000.01,N);

R=mvnrnd([0 0 0 0],[10000;0 50050 02 0;0 0 0 0.5],N);

zeta=[ 0.4082 0.4082 0.4082 0.4082 0.4082 0.4082;

0.7071 -0.7071 0 0

0.4082 0.4082 -0.8165 0
0.2887 0.2887 0.2887 -0.8660

X=(R*zeta)+E;

0 0;
0 0;
0 0l
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fi=mvnrnd([0 0 0 0],[0.25 0 0 0;0 0.125 0 0;0 0 0.05 0;0 0 0 0.0125],N);

eta=[ 0.5000 0.5000 0.5000 0.500;
0.7071 -0.7071 0 0;
0.4082 0.4082 -0.8165 0;
0.2887 0.2887 0.2887 -0.8660];

pisi=mvnrnd([0 0 0 0],{0.00010 0.00006 0.00006 0.00006;
0.00006 0.00010 0.00006 0.00006;
0.00006 0.00006 0.00010 0.00006;
0.00006 0.00006 0.00006 0.00010],N);

F=(fi*eta)+pisi;
Y=(R*eta)+F;
SYY=Y'*Y;
SXX=X"*X;

%k-FOLD CROSS-VALIDATION PROCEDURE k=5

cr=5;
PRESS=[];
latent=4;

for cr=1:5

if cr=1

Xd = X(bol+1:N,:);
Yd = Y(bol+1:N,:);

Y _cr=Yd;

X_cr=Xd;
SXX_cr=X_cr'*X_cr;



SXY_cr=X_cr'*Y_cr;

for a=1:latent;
P_cr=[];
R_cr=[];
BETA_cr=[];
C_cr=[];

for i=1:a,

[c_crs_cr w_cr]=svds(SXY_cr'*SXX_cr,1);
I_Cr=w_Cr;

tt_cr=r_cr'*SXX_cr*r_cr;
p_cr=(r_cr'*SXX_cr)'/tt_cr;
c_cr=(r_cr'*SXY_cr)'/tt_cr;
SXY_cr=SXY_cr-p_cr¥*c_cr*tt_cr;
C_cr=[C_cr c_cr];

R_cr=[R_crr_cr];
P_cr=[P_cr p_cr];

end

BETA_cr=R_cr*C_cr";

end

for i=1:size(X,2)
XXa(1:bol,i)=X(1:bol,i);
Yacap(1:bol,i)=XXa(1:bol,i))*BETA_cr(i,m);
Hata(1:bol,1)=Y(1:bol,m)-Yacap(1:bol,i);

end

HHata(1:bol,:,m)=Hata(1:bol,:);
end

elseif cr>1 & & cr<S
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Xd = [X(1:((cr-1)*bol),:) ; X((cr*bol)+1:n,:)];
Yd =[Y(1:((cr-1)*bol),:) ; Y((cr*bol)+1:n,:)];
SXX_cr=X_cr'*X_cr;
SXY_cr=X_cr'*Y_cr;

for a=1:latent;

P_cr=[];
R_cr=[];
BETA_cr=[];
C_cr=[];

for i=1:a,

[c_crs_cr w_cr]=svds(SXY_cr'*SXX_cr,1);

I_Cr=w_cr;

if i>1,
for j=1:(i-1),
r_cr=r_cr-(P_cr(:,j)"*w_cr)*R_cr(:,j);
end

end

tt_cr=r_cr'*SXX_cr*r_cr;
p_cr=(r_cr*SXX_cr)'/tt_cr;
c_cr=(r_cr'*SXY_cr)'/tt_cr;
SXY_cr=SXY_cr-p_cr¥*c_cr'*tt_cr;
C_cr=[C_crc_cr];
R_cr=[R_crr_cr];

P_cr=[P_cr p_cr];

end
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BETA_cr=R_cr*C_cr";

end
for m=1:size(Y,2)

HHata((cr-1)*bol+1:cr*bol,:,m)=Hata((cr-1)*bol+1:cr*bol,:);

end

elseif cr=5

Xd = X(1:(cr-1)*bol,:);

Yd =Y(1:(cr-1)*bol,:);
SXX_cr=X_cr'*X_cr;

SXY_cr=X_cr'*Y_cr;

for a=1:latent;
P_cr=[];
R_cr=[];
BETA_cr=[];
C_cr=[];

for i=1:a,

[c_crs_cr w_cr]=svds(SXY_cr'*SXX_cr,1);

I_Cr=w_cr;

if i>1,
for j=1:(i-1),
r_cr=r_cr-(P_cr(:,j)"*w_cr)*R_cr(:,j);
end
end

tt_cr=r_cr'*SXX_ cr*r_cr;
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p_cr=(r_cr*SXX_cr)'/tt_cr;
c_cr=(r_cr'*SXY_cr)'/tt_cr;
SXY_cr=SXY_cr-p_cr¥*c_cr'*tt_cr;
C_cr=[C_crc_cr];
R_cr=[R_crr_cr];

P_cr=[P_cr p_cr];

end

BETA_cr=R_cr*C_cr’;

end
for m=1:size(Y,2)
HHata((cr-1)*bol+1:n,:,m)=Hata((cr-1)*bol+1:n,:);
end

end

end

% COMPARISON FOR VARIABLE SELECTION METHODS

9% 1- NORMPRESS
for p=1:size(Y,2)

PRESS=[PRESS real(diag((HHata(:,:,p))"*(HHata(:,:,p))))];

end

NORMPRESS=[];

for p=1:size(PRESS, 1),

NORMPRESS=[NORMPRESS norm(PRESS(p,:))];
NORMPRESS1=NORMPRESS";
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end

minp=find(NORMPRESS 1==min(NORMPRESS1(;,1)));

NORMPRESS2(sayac,1) =minp;

% 2- WOLD'S R

ree=1;

oran=0;

for b=1:(size(NORMPRESS1,1)-1);
oran=NORMPRESS1(b+1)/NORMPRESS1(b);
Wold(sayac,b)=oran;

if (oran>=1)

Woldlar(counter,b)=Woldlar(counter,b);
end
b=b+1;

end

SumWold=sum(Woldlar(:,:));
A_opt=find(NORMPRESS 1==min(NORMPRESS1));
MA_opt(sayac,1) =A_opt;
MA_opt(sayac,1)=MA_opt(sayac,1);
saydir(A_opt)=saydir(A_opt)+1;
SayNormpress2=find(4==NORMPRESS2(:,:));

% 3- MAIC

XX=[1;
for i=1:size(X,2);
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XX (:,1)=X(:,1);

g=size(XX,2);

p=size(Y,2);

d=n/(n-(q+p+1));

I=eye(n);
sigma=Y"*(I-(XX*inv(XX"*XX)*XX"))*Y*(1/n);

makaike(counter,i)=n*p*log10(2*pi)+n*logl0(det(sigma))+n*p+2*(p*q+0.5*p*(p+
1)); % Akaike from Bozdogan

mbedrick(counter,i)=n*log10(det(sigma+p))+2*d*(p*q+0.5*p*(p+1)); %Bedrick
criterion

end

mini=find(makaike==min(makaike(sayac,:)));
MAKAIKE(sayac,1) =mini;
MAKAIKE(sayac,1)=MAKAIKE(sayac,1)*1/sayac;

minil=find(mbedrick==min(mbedrick(sayac,:)));
MBEDRICK(sayac,1) =minil;

MBEDRICK(sayac,1)=MBEDRICK(sayac,1)*1/sayac;

end
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Appendix 4. Results of Simulation Study

The figures following Chapter 5 are as follows.

MAIC(BOZDOGAN) MAIC(BEDRICK)
10000 = 10000
4 8 10 4 8 1
8000 " 8000 10
6000 6000
4000 4000
2000 2000
0 0
64 84 104 12°4 64 84 10%4 12°4
N=250 N=250
WOLD'S R MA_OPT(PRESS)
10000 o 10000 B
8000 8000
1
sooo{ 4 42 4 6000
4000 4000{ 6
45 4 6
] - > .il B |
0 0
64 84 10%4 12°4 64 84 10%4 12°4
N=250 N=250

Figure A4.1 All model selection criteria for N=250.

These figures show the maximum iteration number for each design for N=250. All
criteria find 4 as the true number of latent variables in 10000 iteration in N X6
except MA_OPT(PRESS). But when the predictor variable number increases, they
find latent variable with a higher number and they cannot find the true number of

latent variables.
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MAIC(BOZDOGAN) MAIC(BEDRICK)
10000 10000
4 8 10 12 4 8 10
8000 8000
6000 6000
12
4000 4000
2000 2000
0 ' : 0
64 84 10 124 64 84 10 124
N=500 N=500
MA_OPT(PRESS) WOLD'S R
10000 10000
6 6
8000 8000
7
6000 1 soo0{ * & 41
4000 ® 4000 H I I
45 46
2000 J:l 2000
4 6 4
0 | o e 0 | | |
64 84 10 124 64 84 10 124
N=500 N=500

Figure A4.2 All model selection criteria for N=500.

These figures show the maximum iteration number for each design for N=500. All
criteria find 4 as the true number of latent variables in 10000 iteration in N X6
except MA_OPT(PRESS). But when the predictor variable number increases, they
find latent variable with a higher number and they cannot find the true number of

latent variables.

6*4 6*4
10000 = 10000
4 4 A 4
8000 8000
4 4

6000 6000

4000 1 ° 4000 6

2000 |_| 2000 |_|

0 0
MAC(BOZDOGAN) MA_OPT(PRESS)  MAIC(BEDRICK) WOLD'S R MAG(BOZDOGAN) MA_OPT(PRESS)  MAIG(BEDRICK) WOLD'S R
N=250 N=500

Figure A4.3 All model selection criteria for 6%4.

In these figures each model selection criterion is displayed for each object number
for Nx6. As it can be seen, each criterion find true number of latent variables for
each number of observation. Only MA_OPT(PRESS) gives a different result for

number of latent variables.
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6000 1
4000 q
2000 4
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10000

8000
6000 -
4000 -

2000 A

8*4

MAIC(BOZDOGAN)

MA_OPT(PRESS) ~ MAIG(BEDRICK)
N=500

WOLD'S R

Figure A4.4 All model selection criteria for 8%4
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In these figures each model selection criterion is displayed for each object number

for N x8. Each criterion finds true number of latent variables close to the number

predictor variables.

10*4

10000

8000 10 10
6000
4000 2
2000
: RE

MAIC(BOZDOGAN) MA_OPT(PRESS)  MAIG(BEDRICK) WOLDS R

N=250

10000
8000
6000
4000

2000

10*4

NE

II7

MAIC(BOZDOGAN)

MA_OPT(PRESS)

MAIC(BEDRICK)

N=500

WOLD'S R

Figure A4.5 All model selection criteria for 10%4

In these figures each model selection criterion is displayed for each object number
for Nx10. MAIC(BOZDOGAN) and MAIC(BEDRICK) criteria find number of
latent variables close to the number of predictor variables, MA_OPT(PRESS) and

WOLD’S R criteria find number of latent variables in a small number.

12*4

10000

8000 11
6000 1 ;
4000
2000
e
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8000
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4000

2000
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IIS

||| |

MAIC(BOZDOGAN)

MA_OPT(PRESS) ~ MAIG(BEDRICK)
N=500

WOLD'S R

Figure A4.6 All model selection criteria for 12%4
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In these figures each model selection criterion is displayed for each object number
for Nx10. MAIC(BOZDOGAN) and MAIC(BEDRICK) criteria find number of
latent variables close to the number of predictor variables, MA_OPT(PRESS) and

WOLD’S R criteria find the number of latent variables in a small number.
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Figure A4.7 Trends for each criterion.

These figures illustrates the trends with the latent variable number for all criteria.
These trends are shown for each design matrices and for each number of
observations with iteration number. In the first figure for Nx 6, true number of
latent variables is found in each number of observation with all criteria. In the other-

sized design matrices, the transition for nearly most iterated number of latent
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variables is given and shown in different colors according to the model selection

criteria.
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Figure A4.8 Trends for each design matrix.

In these figures the transition for the most iterated number of latent variables is

shown for each design matrices according to the number of observations,
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respectively for all criteria. Numbers of latent variables are given in different colors

according to the design matrices.



Appendix 5. Results of Simulation Study

Table A5.1 Simulation results for N=100.

MAIC(BOZDOGAN):MBoz
MAIC(BEDRICK):MB m=6 m=8 m=10 m=12
MA_OPT(PRESS)
WOLD’S R
MA-opt Wold’s MA-opt Wold’s MA-opt Wold’s MA-opt Wold’s
MBoz MB MBoz MB MBoz MB MBoz MB

PRESS R PRESS R PRESS R PRESS R
a=4 | 9915 333 9997 | 5025(1) 0 282 0 597(1) 0 1407 0 S167(1) 0 1387 0 5026(1)
a=5 85 2949 3 4810(2) 0 16 0 6866(2) 0 1762 0 5000(2) 0 1426 0 5040(2)
a=6 0 2908 0 5119(3) 0 9346 0 4366(3) 0 1807 0 4967(3) 0 1565 0 5061(3)
a=7 5158(4) | 2024 0 4712 | 18994 0 1407 0 5000(4) 0 1444 0 4990(4)
a=8 S0460) | 7976 0 5088 | 230 7 1146 0 | 50004) 0 1003 0 4931(5)
a=9 9896(6) | 6401 484 313 | 5015(5) 0 846 1308 | 4988(6)
a=10 9967(7) | 3592 208 8767 | 50366) | 1002 447 | 7383 | 507007)
a=11 4895(8) | 7540 139 1304 | 5016(8)

47929

a=12 O 1 4ss 42 5 5059(9)
5042(10)
4808(11)

oL



Table A5.2 Simulation results for N=250.

MAIC(BOZDOGAN):MBoz

MAIC(BEDRICK):MB m=6 m=8 m=10 m=12
MA_OPT(PRESS)
WOLD’S R
MA-opt Wold’s MA-opt Wold’s MA-opt Wold’s MA-opt Wold’s
MBoz MB MBoz MB MBoz MB MBoz MB
PRESS R PRESS R PRESS R PRESS R
a=4 9788 297 9998 50261) 0 32 0 29(1) 0 1483 0 4986(1) 0 1440 0 5110(1)
a=5 199 2976 2 4813(2) 0 0 0 7861(2) 0 1796 0 5079(2) 0 1516 0 4985(2)
a=6 13 3105 0 4806(3) 0 9918 0 3972(3) 0 1710 0 4967(3) 0 1578 0 4966(3)
a=7 5312(4) 0 0 9 840(4) 0 1401 0 4920(4) 0 1361 0 4989(4)
4938(5)

a=8 10000 0 9991 05) 0 1144 0 5064(5) 0 1017 0 5002(5)
a=9 9998(6) 669 454 1614 4958(6) 0 787 0 4972(6)

= 10000(7
a=10 ) 9331 139 8386 5057(7) 3721 469 754 5037(7)
a=ll 4986(8) 6279 119 8211 5039(8)

491209)

a=12 5004(9)
0 20 1035 5000(10)
4840(11)

LL



Table A5.3 Simulation results for N=500.

MAIC(BOZDOGAN):MBoz
MAIC(BEDRICK):MB

m=6 m=38 m=10 m=12
MA_OPT(PRESS)
WOLD’S R
MA-opt Wold’s MA-opt Wold’s MA-opt Wold’s MA-opt Wold’s
MBoz MB MBoz MB MBoz MB MBoz MB
PRESS R PRESS R PRESS R PRESS R
a=4 9218 198 9998 4915(1) 0 0 0 2(1) 0 1410 0 5021(1) 0 1447 0 5082(1)
a=5 715 3060 2 4964(2) 0 0 0 8707(2) 0 1781 0 4988(2) 0 1440 0 4994(2)
a=6 67 3107 0 4935(3) 0 10000 0 3436(3) 0 1764 0 5026(3) 0 1532 0 4995(3)
a=7 5250(4) 0 0 0 255(4) 0 1461 0 49944) 0 1430 0 5011(4)
5022(5)
a=8 10000 0 10000 0(5) 0 1140 0 4962(5) 0 1064 0 5041(5)
a=9 10000(6) 9 494 9 4983(6) 0 851 0 4990(6)
10000(7
a=10 ™ 9991 121 9991 5044(7) 0 460 0 5034(7)
a=11 5001(8) 231 120 4440 4935(8)
4992
a=12 99209 501409)
9769 27 5560 4948(10)
4883(11)
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