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REPRESENTATIONS OF MUSICAL INSTRUMENT SOUNDS FOR

CLASSIFICATION AND SEPARATION

ABSTRACT

In this thesis the representations for classification and separation of musical instruments

are presented. The aim is to extract characteristic information from sounds of musical

instruments or their mixtures, in order to identify, discriminate, and label for transcription

of music. For this purpose, time-frequency representations are of interest which capture

the discriminative properties of the musical signals changing both in time and frequency.

Considering the auditory scene composed of the sounds generated from musical instruments

as a special case of cocktail party problem, a solution for single channel blind source

separation problem using independent component analysis is presented. As with wavelet

ridges, the main contribution includes new features for musical instrument classification, and

evaluations of the features using multi-class classifications performed with support vector

machines. The distribution model parameters obtained from directly time samples and time-

frequency representation coefficients are shown to contain an abstract information leading to

classification of instruments. Finally, with the use of a kernel-based autocorrelation function

named as correntropy, a basic characteristic information namely the fundamental frequency

of musical instrument signals is extracted.

Keywords: Musical instrument classification, likelihood-frequency-time analysis, gen-

eralized Gaussian density modeling, alpha-stable distribution modeling, wavelet ridges,

correntropy, support vector machines, independent component analysis.
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SINIFLANDIRMA VE AYRIŞTIRMA İÇİN MÜZİK ENSTRUMAN

SESLERİ GÖSTERİMLERİ

ÖZ

Bu tezde müzik enstrumanları sınıflandırılması için öznitelikler sunulmaktadır. Notaya

dökme işlemi için müzik enstrumanlarının belirlenmesi, ayrıştırılması ve etiketlenmesi

için müzik enstruman seslerinden ya da karışımlarından karakteristik bilginin ortaya

çıkarılması hedeftir. Bu amaçla, hem zamanda hem de frekansta değişen müzik işaretlerinin

ayrıştırıcı özelliklerini yakalayan zaman-frekans gösterimleriyle ilgilenilmiştir. Müzik

enstruman seslerinden oluşan işitsel sahne özel bir kokteyl parti problemi olarak kabul

edilerek, bağımsız bileşen analizi kullanarak tek kanallı gözü kapalı ayrıştırma problemi

için bir çözüm sunulmuştur. Dalgacık tepeleri ile olduğu gibi, ana katkı müzik enstruman

sınıflandırılması için yeni öznitelikler ve bu özniteliklerin destek vektör makineleri ile

gerçekleştirilen çoklu-sınıf sınıflandırmalarla değerlendirilmesini içermektedir. Doğrudan

zaman örneklerinden ve zaman-frekans gösterimi katsayılarından elde edilen dağılım

model parametrelerinin entrumanların sınıflandırılmasına götüren bir öz bilgi içerdiği

gösterilmiştir. Son olarak, ilintropi adı verilen çekirdek-tabanlı özilinti işlevi kullanılarak,

müzik enstruman işaretlerinden temel karakteristik bilgi olarak temel titreşim frekansı

ortaya çıkarılmıştır.

Anahtar Sözcükler: Müzik enstrumanı sınıflandırma, olabilirlik-frekans-zaman analizi,

genelleştirilmiş Gauss yoğunluk modellemesi, alfa-kararlı dağılım modellemesi, dalgacık

tepeleri, ilintropi, destek vektör makineleri, bağımsız bileşen analizi.
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CHAPTER ONE

INTRODUCTION

If I were not a physicist, I would probably be a musician.

I often think in music. I live my daydreams in music.

I see my life in terms of music.

Albert Einstein

As a human being, we are capable of collecting, separating, and interpreting sounds

emitted from various sources surrounding us. From a natural listening environment, we

collect the mixed acoustic energy produced by each sound producer, we analyze the content

of sounds, and then build separate perceptual descriptions in order to have an idea what is

going on around. The sounds of this collection constitutes the so-called auditory scene. Our

perceptual mechanisms are effective in identifying different sound sources building up the

auditory scene, based on the discriminant properties of the frequency components of sounds

varying over time.

Although it is inherent, easy, and automatic for us to exhibit these properties, it is not

straightforward for a machine even incorporating neural networks and fuzzy logic techniques

of artificial intelligence (AI). The machines or specifically computers have fast computation

ability to extract the discriminative properties of sources collected using sensors, but lack of

intelligence combining the sensory inputs to conclude with a meaningful result. Although

there are achievements in AI systems, the result is yet far from human’s capacity.

It is natural that any machine is constructed by imitating human’s abilities. One of the

most important mental ability is learning. It is the way of acquiring knowledge obtained

by perceived information. This knowledge is used to draw a general conclusion known

as generalization and build experience to improve future performance of new learning

1
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processes. The attempt of mimicking human ability is known as machine learning. It

is a subfield of AI that is devoted to design and develop algorithms for the solution of a

learning problem. The problem can be cast in many ways but a natural solution is to learn

the knowledge acquired from experimental or empirical data. The knowledge hidden in data

can be any relations, regularities or structure named as pattern. Pattern analysis techniques

deals with the detection of patterns reside in data while statistical learning theory addresses

the issues of controlling the generalization ability of machine learning algorithms.

The representation of the capability of human’s identification of each sound from the

mixture of sounds collected from the environment has been named as the cocktail party

problem by Colin Cherry in 1953 at the Massachusetts Institute of Technology (Bregman,

1990; Brown & Cooke, 1994; Haykin & Chen, 2005). The cocktail party problem establishes

a special case of blind source separation (BSS) problem, where BSS is the technique of

recovering unobserved signals or sources from mixtures of those (Haykin, 1999; Hyvärinen,

Karhunen, & Oja, 2001; Cichocki & Amari, 2002). The observations are collected from a

set of sensors, where each of them receives a different combination of the source signals.

The lack of information about the sources and the combinations (or mixtures) is generally

compensated by the assumption of statistically independence between the source signals.

Independent component analysis (ICA) is involved here as a main tool for finding the

unknown sources as independent signals. However, the problem still has some ambiguities

and the proposed solutions depend on crucial assumptions for the number of sources, the

number of observations, the mixing conditions, and the noise.

A special case of cocktail party problem is when the auditory scene is composed of the

sounds generated from musical instruments. A typical situation can be stated as a concert

performance of an orchestra in a music hall. The audience receive the combination of

musical instrument sounds and perceptually analyze the constituting musical scene. The

recognition of musical sounds is a sub-domain of auditory scene analysis (ASA) (Bregman,

1990), where computational auditory scene analysis (CASA) (Brown & Cooke, 1994) is
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formed following the assistance of computers in calculating features representing sound

sources. The organization of auditory inputs from distinct sound events into streams has

been exposed as a solution of the separation problem, but there are still many problems from

an engineering point of view (Kashino, 2006).

Today, music information retrieval (MIR) community deal with the problems of music

not only for separation of sound sources but also for extracting all the information from

a multimedia content running especially over Internet. This information might be simply

some label identifying musical content like the name of the song, composer or singer;

musical knowledge such as melody, chords, rhythm, tempo, or genre; auditory clues

including musical instrument digital interface (MIDI) format, scores (notes) or the name

of the instruments required for transcription. Issues including but not limited to database

systems, libraries, indexing in those collections, necessary standards and user interfaces are

all explored in MIR systems.

One particular problem of MIR systems is the transcription of music. It is defined as

the process of analyzing a musical signal from the performance of played instruments to

find when and how long each instrument play in order to transcribe or write down the

note symbols of each instrument (Klapuri, 2004b; Klapuri & Davy, 2006). Because of the

possible number of instruments and notes, the problem is complicated and has not achieved

a thorough solution yet.

1.1 Motivation and Approach

The motivation of this thesis comes from the ability of human in analyzing the music

performance of an orchestra and recognizing the sounds of instruments. Each musical

instrument has a unique representation that we can identify and label, simply by learning.

When the problem is presented as a machine learning problem of music transcription,
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descriptors or features are necessary to represent the information of the musical instrument

sounds.

There have been many attempts to solve the transcription problem with different number

of techniques. Because of the high complexity, it has been decomposed into smaller

problems and solutions have been offered only for that specific part of the problem. Using

a wide range of techniques varying from speech processing research to more general signal

processing techniques we now have a wide set of features. They can be classified according

to how they are computed. The temporal descriptors may be calculated directly from the

signal, while for spectral features a transformation based on Fourier, wavelet or any other

transformation is necessary. They are usually computed for short time segments using a

windowing function to track changes in very short times (a few milliseconds). Longer

segments may also be used to represent the whole signal, or an averaging of the values

in short segments could be performed.

For automatic classification of musical instrument sounds, two different but complemen-

tary approaches, namely perceptual and taxonomic approach have been considered (Herrera-

Boyer, Peeters, & Dubnov, 2003). The perceptual approach interests in finding features that

explain human perception of sounds while taxonomic approach generates a tree of categories

by grouping similarities and differences among instruments. A common taxonomy considers

instruments according to how their sound is produced (Martin, 1999). With the use of a sound

sample collection which generally consist of isolated note samples of different instruments,

the general classification problem is basically composed of calculating the features from the

samples and classifying them with a learning algorithm (Herrera-Boyer et al., 2003).

The feature extraction is followed by various classification algorithms including k-nearest

neighbors (k-NN), discriminant analysis, hidden Markov models (HMM), Gaussian mixture

models (GMM), artificial neural networks (ANN), support vector machines (SVM) as well

as kernel-based algorithms (Klapuri & Davy, 2006; Herrera-Boyer et al., 2003; Jain, Duin, &



5

Mao, 2000; Duda, Hart, & Stork, 2001; Haykin, 1999; Shawe-Taylor & Cristianini, 2004).

The performance of these techniques varies based on the presented classification problem

such as, some kind of information available about the data distribution, the number of data

used in training and test phases, number of classes, etc. Thus, it is difficult and simply not

fair to select and specify a best one.

Despite the various attempts, the representations of musical instruments has not yet

brought a complete solution to the problem of separation and classification. New approaches

and features are necessary in order to accomplish the categorizing of instruments according

to some grouping. Besides, there exist techniques proposed for problems that have not

been applied to musical instrument classification, whereas some techniques which have been

proposed have not been evaluated.

In this thesis, we aim to separate musical instruments from mixtures and classify musical

instruments and notes using their representations calculated as features. By considering

the problem as a separation of musical instruments from the mixtures we applied ICA

tools for our representations. On the other hand, by following the general classification

model, we extracted features and evaluated their performance using SVM classifiers. Some

of the features and techniques are firstly used for musical signals and musical instrument

classification, while some of the techniques are firstly evaluated. Correntropy is one of those,

which is a recent kernel-based autocorrelation function. Therefore, our intention is to offer

new directions for musical instrument classification while evaluating them together with

some of the already existed approaches. We also consider note classification, identification,

and tracking through performing these techniques and evaluations.

The work presented here is mainly based on the recordings of isolated musical instrument

sound samples from the University of Iowa Electronic Music Studios (Fritts, 1997). They are

non-percussive orchestral instrument sounds which were recorded in an anechoic chamber,

have 16 bit resolution and 44100 Hz sampling frequency. The groups of notes presented as
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“aiff” formatted files in these database have been separated into individual note samples and

converted to “wav” format making a database with a total of nearly 5000 samples (Özbek,

Delpha, & Duhamel, 2007). The database includes Piano as recorded in stereo channel and

19 mono channel recorded instruments: Flute, Alto Flute, Bass Flute, Oboe, E[ Clarinet, B[

Clarinet, Bass Clarinet, Bassoon, Soprano Saxophone, Alto Saxophone, French Horn, B[

Trumpet, Tenor Trombone, Bass Trombone, Tuba, Violin, Viola, Cello, Double Bass. Some

instruments were recorded with and without vibrato. String instrument recordings include

the playing techniques of both bowed (arco) and plucked (pizzicato). Each of the samples is

in one of the three dynamic ranges: fortissimo (ff), mezzo forte (mf), and pianissimo (pp).

The frequency of the note samples are in the range of Piano keyboard. Eventually each

instrument has its own note coverage resulting different number of note samples for each

instrument.

In the section devoted to Turkish musical instruments, we used recordings of seven

instruments: Kanun, Violin, Kemençe, Clarinet, Ney, Tambur, and Ud. They are all extracted

from solo instrument performances called as Taksim with various melody types named as

Makam.

1.2 Outline of the Thesis and Contributions

The outline of the thesis is as follows.

Chapter 2 provides the terminology, a review of literature in musical instrument

classification, and a brief theoretical background information on SVM which is selected

as the main method in this thesis for performing classifications.

Chapter 3 presents the works on classification of musical instrument note samples using

features. First work uses a likelihood-frequency-time information where classifications
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of instruments and notes are performed with SVM classifiers. Second work extracts the

distribution parameters of wavelet coefficients modeled by a generalized Gaussian density

and performs the classification based on the divergence of distributions. Afterwards, alpha-

stable distribution parameters were estimated and the classification of instruments using

SVM is presented. In the following work, the use of wavelet ridge as a feature for musical

instruments is proposed where the classification performance is evaluated using SVM. Last

work in this chapter explorers the use of MFCC features for Turkish musical instrument

classification performed with SVM.

Chapter 4 demonstrates the works related to another issue in transcription problem.

Although the classification of notes were considered in Chapter 3, in this chapter the aim

is to determine the notes. An initial step in identification of notes is the determination

of fundamental frequency of the signal. Therefore, we propose the usage of correntropy

function similar to autocorrelation function in fundamental frequency determination of

musical instrument signals. After a brief introduction of correntropy function, the superiority

of correntropy to autocorrelation function is demonstrated.

Chapter 5 presents the separation of instruments considered as a BSS problem. Following

a brief introduction of BSS and linear ICA problem, the FastICA algorithm solution is

summarized. Then, the efficiency of wavelet ridges used in an ICA problem based on its

sparse representation than wavelet coefficients is shown. Last work considers the separation

of instruments with a distance measure based on correntropy function.

Conclusion section will conclude the thesis work with a summary and point out some

future directions of further research.



CHAPTER TWO

THE CLASSIFICATION OF MUSICAL INSTRUMENTS

Music is certainly not less clear than the defining word;

music often speaks more subtly about states of mind than would be possible with words.

There are shades that cannot be described by any single adjective.

Felix-Bartholdy Mendelssohn

This chapter provides a review of literature on musical instrument classification beginning

with a terminology of music, and a brief summary on the support vector machines used as a

main classification algorithm throughout the thesis.

2.1 Review of Literature

2.1.1 Terminology

Historically, Pythagoras discovered that vibrating strings with lengths the ratios of small

whole numbers of each other produced a pleasing sound called as harmony. Later, Marin

Mercenne proved that the frequency of a stiff oscillating string is inversely proportional to

its length (f ∝ 1/l) and to the square root of its linear mass density (mass per unit of length)

(f ∝ 1/
√

ρ), and it is directly proportional to the square root of its tension (f ∝ √
T ). The

studies of Galileo Galilei on the pendulum’s oscillations were of fundamental importance for

the development of musical science. An important milestone is Joseph Fourier who showed

that any periodic wave can be represented as a sum of sinusoids. Besides for harmonic

spectra, the frequencies of component waves are integer multiples of single frequency.

Following Fourier, Georg Ohm observed that the human ear analyzes sounds in terms of

sinusoids. The perception of sounds has been studied systematically since Hermann von

8
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Helmholtz who described the sensation of sounds and recognized that the quality or character

of a sound depends on its spectrum (Martin, 1999; Bilotta, Gervasi, & Pantano, 2005;

de Cheveigné, 2005).

The fundamental frequency (F0) of a sound is defined as the inverse of the period of

the sound signal, assuming the sound is periodic or nearly periodic. The vibrations of

higher frequencies are known either partials or overtones. If the frequencies of overtones

are all integer multiples of F0, the overtones are called as harmonics. The sensation or the

perceptual correspondence of any frequency in this range is named as pitch while it refers to

the frequency of a sine wave that is matched to the target sound by human. Although all the

pitches with the same F0 are not equivalent, pitch is used as the perceptual correspondent

of F0. Besides, it is possible to hear a pitch of F0 although it does not exist in the

spectrum (known as missing fundamental) and a pitch can be derived for a spectrum whose

components are not exactly harmonically related (Klapuri & Davy, 2006; Bregman, 1990;

de Cheveigné, 2005; Deller, Proakis, & Hansen, 1987; Klapuri, 2004a; Martin, 1999).

The acoustic intensity denotes the physical energy of the sound where loudness is the

perceptual experience correlated with intensity. The human auditory system is capable of

hearing the frequencies ranging between 20 Hz to 20 kHz with 120 dB intensity difference

between the loudest and faintest sound, although the sensitivity drops substantially for

frequencies below about 100 Hz or above 10 kHz. It may differ according to the person

and age where the threshold of hearing rises at higher frequencies for elder people. The

normal intensity range for music listening is about 40 to 100 dB where the frequencies are

in the range of 100 Hz to 3 kHz (Fletcher & Rossing, 1998). The dynamic ranges based

on the intensity are named accordingly to the pressure amplitude where the highest is forte

fortissimo, the middle is mezzo fortissimo, and the lowest is piano pianissimo.

An important perceptual dimension is timbre which is defined according to a listeners’

judge that the dissimilarity of two sounds similarly presented having the same loudness and
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pitch. It refers to the spectral characteristics of sound and helps to distinguish the musical

instrument. However, Bregman defines timbre as an ill-defined wastebasket category and

declares that: “We do not know timbre, but it is not loudness and it is not pitch” (Bregman,

1990). However, timbre helps to distinguish the sounds of various instruments based on the

number, type, and intensity of the harmonics. Instruments having few harmonics sounds soft

while those with a lot of harmonics have a bright and sometimes even sharp sound (Kostek,

2005). With the duration of the sound which is subjective, the four sound attributes namely

pitch, loudness, duration, and timbre are considered as the perceptual aspects of the sound.

Interval is defined as the space or the distance between two pitches. Intervals may

occur either vertical (or harmonic) if the two notes sound simultaneously, and horizontal

(or melodic), if the notes sound successively. Musical notation describes the pitch (how

high or low), temporal position (when to start) and duration (how long) of sounds. They are

written in stave where the horizontal axis is time and the vertical axis is used for representing

scores or notes denoting pitches. An example of musical notation is given in Figure 2.1

showing different musical instruments partitions (Mutopia, 2009). When several notes are

played simultaneously, the music signal is referred to polyphonic while one note is played

at one time the signal is monophonic. The set of notes brought together in an ascending or

descending order is called scale. Different cultures have built their music on their scales.

Western music use diatonic scale with an equal temperament scheme based on the most

common interval, octave, where the frequency ratio is two. Each octave is divided into 12

equal steps or frequency ratios which are called as semitones. The cent is also used as a

measure with 1200 cents equal to one octave. In each octave the scale is composed of twelve

semitones which are the first seven letters of the Latin alphabet: A, B, C, D, E, F , and G

(in order of rising pitch) correspond to the white keys on the piano and their modified forms

using sharp (]) or flat ([) showing intermediate notes correspond to the black keys on the

piano. Octaves are counted using the numbers with the letters from C to B.
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String Quartet KV. 387 (nr. 14)
for 2 violins, viola and cello

W. A. Mozart (1756-1791)
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Figure 2.1 An example of musical notation.

A form of standard pitch is required in order to play two instruments together. After many

pitch standards used in history, the frequency of A4 is selected as 440 Hz which is known

also as concert pitch. According to this standard, one can calculate the frequency values for

the notes as given for the 88 keys of the piano range in Table 2.1.

Other aspects related to the combination of notes building melody and motives; chords;

temporal succession named as meter with elements tempo, beat, and rhythm; genre; style;

performance and similar issues are all investigated under MIR research mainly directed by

The International Society for Music Information Retrieval (ISMIR) (ISMIR, 2009).

The musical instruments can be divided into many groups based on pre-defined categories.

The taxonomy in (Martin, 1999) were assembled the instruments into family groups based on

their common excitation and resonance structures. A classification based on vibrations and

acoustical sound radiation due to the physical properties and materials of musical instruments

can be found on (Fletcher & Rossing, 1998). The sound producing mechanisms of each of

the instruments and instrument families were excellently investigated. The playing styles

with bowing (arco) and plucking (pizzicato), lip valves, mouthpieces, mutes, and the effect
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Table 2.1 The frequency and period values of the note samples over the range of piano keyboard.
Note label Frequency (Hz) Period (ms) Note label Frequency (Hz) Period (ms)

A0 27.50 36.36 A1 55.00 18.18

Bb0 29.14 34.32 Bb1 58.27 17.16

B0 30.87 32.39 B1 61.73 16.20

C1 32.70 30.58 C2 65.41 15.29

Db1 34.65 28.86 Db2 69.30 14.43

D1 36.71 27.24 D2 73.42 13.62

Eb1 38.89 25.71 Eb2 77.78 12.86

E1 41.20 24.27 E2 82.41 12.13

F1 43.65 22.91 F2 87.31 11.45

Gb1 46.25 21.62 Gb2 92.50 10.81

G1 49.00 20.41 G2 98.00 10.20

Ab1 51.91 19.26 Ab2 103.83 9.63

A2 110.00 9.09 A3 220.00 4.54

Bb2 116.54 8.58 Bb3 233.08 4.29

B2 123.47 8.10 B3 246.94 4.05

C3 130.81 7.64 C4 261.63 3.82

Db3 138.59 7.22 Db4 277.18 3.61

D3 146.83 6.81 D4 293.66 3.41

Eb3 155.56 6.43 Eb4 311.13 3.21

E3 164.81 6.07 E4 329.63 3.03

F3 174.61 5.73 F4 349.23 2.86

Gb3 185.00 5.41 Gb4 369.99 2.70

G3 196.00 5.10 G4 392.00 2.55

Ab3 207.65 4.82 Ab4 415.30 2.41

A4 440.00 2.27 A5 880.00 1.14

Bb4 466.16 2.15 Bb5 932.33 1.07

B4 493.88 2.02 B5 987.77 1.01

C5 523.25 1.91 C6 1046.50 0.96

Db5 554.37 1.80 Db6 1108.73 0.90

D5 587.33 1.70 D6 1174.66 0.85

Eb5 622.25 1.61 Eb6 1244.51 0.80

E5 659.26 1.52 E6 1318.51 0.76

F5 698.46 1.43 F6 1396.91 0.72

Gb5 739.99 1.35 Gb6 1479.98 0.68

G5 783.99 1.28 G6 1567.98 0.64

Ab5 830.61 1.20 Ab6 1661.22 0.60

A6 1760.00 0.57 A7 3520.00 0.28

Bb6 1864.66 0.54 Bb7 3729.31 0.27

B6 1975.53 0.51 B7 3951.07 0.25

C7 2093.00 0.48 C8 4186.01 0.24

Db7 2217.46 0.45

D7 2349.32 0.43

Eb7 2489.02 0.40

E7 2637.02 0.38

F7 2793.83 0.36

Gb7 2959.96 0.34

G7 3135.96 0.32

Ab7 3322.44 0.30

of frequency modulation called vibrato were also analyzed. Another division of musical

instruments into categories were given in (Kostek, 2005) as presented in Table 2.2, showing

an example for the instruments of symphony orchestras.
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Table 2.2 An example for classification of instruments in symphony orchestras.

Category Sub-category Musical instruments

Bow-string Violin, Viola, Cello, Contrabass

String Plucked Harp, Guitar, Mandolin

Keyboard Piano, Clavecin, Clavichord

Woodwind Flute, Piccolo, Oboe, English Horn, Clarinet, Bassoon, Contra Bassoon

Wind Brass Trumpet, French Horn, Trombone, Tuba

Keyboard Pipe Organ, Accordion

Percussion Determined sound pitch Timpani, Celesta, Bells, Tubular Bells, Vibraphone, Xylophone, Marimba

Undetermined sound pitch Drum Set, Cymbals, Triangle, Gong, Castanets

2.1.2 Musical Signal Representations

As the musical notation describes sounds using stave in time and frequency axis, only

time or frequency is not enough to represent music. Thus, the understanding of the musical

signal requires time-frequency representations where a review has been given in (Pielemeier,

Wakefield, & Simoni, 1996). In order to summarize the basics, we begin with the frequency

representation of signal x(t) given by the Fourier transform

X(f) =

∫ ∞

−∞
x(t)e−j2πftdt . (2.1)

For a signal having pure tone frequency, Fourier transform precisely identify the

corresponding frequency. For a signal having N discrete samples, this frequency can be

computed using discrete Fourier transform (DFT)

X(k) =
N∑

n=1

x(n)e−j2πfn , (2.2)

or efficiently with fast Fourier transform (FFT). The upper plots of Figure 2.2 shows an

example of a pure tone and its Fourier spectrum computed using FFT. As the musical

instrument sounds are time-evolving superpositions of several pure tones, FFT shows each
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of the component as for the Oboe note sample shown in the middle part of Figure 2.2. Note

that, the energy is concentrated around the fundamental frequency F0 and its harmonics of

Oboe A4 note sample which is 440 Hz. Therefore, Fourier transform excellently identifies

the frequency content of individual notes. However, when there are several notes as in a

musical record as presented in bottom of Figure 2.2, it is difficult to determine F0 values

from the mixture of overtones. Thus, the Fourier spectrum does not adequately represent

musical signals.
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Figure 2.2 FFT analysis of a pure tone (top), Oboe A4 note sample (middle),

and several Oboe note samples (bottom).

The insufficiency of using only frequency content of the signal is compensated by

exploring time-frequency representations. There are many methods of representing time-

frequency content of the signal. The short time Fourier transform (STFT) is one of the most
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popular representation obtained with Fourier transform in successive signal frames using

window functions w as

STFT (t, f) =

∫ ∞

−∞
x(τ)w(t− τ)e−j2πfτdτ . (2.3)

Frames are the portions of the signal with typical durations of 20-100 ms obtained using

window functions of Gaussian, Hamming, Hanning or any other type. The squared modulus

of the STFT

S(t, f) = |STFT (t, f)|2 , (2.4)

is defined as spectrogram and represents energy localizations related to frequency and time.

Changing the duration and type of window function defines a different STFT and thus a

different spectrogram. An example for such situation is given in Figure 2.3 for Oboe note

sample.

Spectrogram is effective and simple, therefore it is widely used in musical signal analysis.

The MIDI files have been often used with spectrogram representation before the real sound

samples, because of the easy understanding of their discrete representation (MIDI notes).

The windowing is actually a filtering operation which is performed via convolution in

time domain and a product operation in frequency domain. In another representation called

cepstral, the aim is to convert multiplication operation into addition using logarithm. Thus,
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Figure 2.3 Spectrograms of two different window functions with different

durations of Oboe note sample.

the cepstrum is obtained by the Fourier transform of the logarithm of the magnitude spectrum

as

C(τ) =

∫ ∞

−∞
log (|X(f)|) ej2πfτdf . (2.5)

When dealing with discrete time signals, the cepstrum is represented with the cepstral

coefficients similar to DFT. These coefficients are also found to be helpful to represent

musical signals. However, it is known that DFT or FFT uses linear frequency resolution

where frequency components are separated by a constant frequency difference. Besides,

in Western music, the frequencies are logarithmically spaced as explained in the previous

section. Moreover, human auditory system does not perceive linearly with respect to the

frequency. The experiments for understanding perception have been resulted with the mel

scale which has been used in speech recognition. A mel is a unit of measure of perceived
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pitch or frequency of a tone. The mapping between the frequency scale to the perceived

frequency scale (mel scale) is defined by (Klapuri & Davy, 2006)

mel(f) = 2595 log(1 +
f

700
) , (2.6)

where 1000 mel is equal to 1000 Hz (Deller et al., 1987). The mapping is approximately

linear below 1 kHz and logarithmic above. The calculation of cepstral coefficients can be

performed using mel scale and STFT, where the magnitude spectrum is filtered through a

bank of mel frequency filters which have a triangular shape in the frequency domain. The

central frequencies of the filters are equally spaced in terms of mel frequencies, therefore

logarithmically spaced in frequencies. Then using discrete cosine transform (DCT) of the

signal in ith filter x(n) with length N defined as

DCT (i) =
N∑

n=1

x(n) cos

[
π

N
i

(
n− 1

2

)]
, (2.7)

the spectrum at each filter-bank channel is compacted into a few cepstral coefficients which

are given the name mel frequency cepstral coefficients (MFCC). They describe the rough

shape of the signal spectrum with even a small dimensionality generally reduced to 13

lowest-order DCT coefficients.

An important drawback of the STFT is that the frequency components are separated by a

constant frequency difference and therefore resolution. For musical signals, long windows

are required to follow the slowly-varying frequencies while short windows are necessary to

capture fast-varying time domain information. The solution resides in constant-Q transform

where the frequencies are separated related to the frequency with a constant ratio of center

frequency to resolution bandwidth, Q = f/∆f . Specifying a Q value allows better time

resolution at higher frequencies while the frequency resolution becomes good at lower
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frequencies. This is well suited for the musical signals where the frequency of the notes

are spread in a logarithmic scale. Remember that an octave is composed of 12 semitones or

24 quarter-tones. Therefore, the frequency resolution for separating a single note frequency

can be given by

∆fj = fj+1 − fj = 21/24fj − fj = (21/24 − 1)fj , (2.8)

resulting Q = fj/∆fj ≈ 34. Then a filter-bank can be used to implement constant-

Q transform which reveals the non-uniform spacings of harmonic frequency components

(Brown, 1991, 2007). This logarithmic frequency spacings form an invariant pattern in the

log-frequency domain which helps recognizing the pitch or fundamental frequency of the

signal.

Following the same idea of the constant-Q transform, the wavelet transform overcomes

the problems related to frequency and time resolutions of STFT with different basis functions

than sinusoids called wavelets. A wavelet ψ is a zero mean function (Mallat, 1999)

∫ ∞

−∞
ψ(t)dt = 0 , (2.9)

where the family of these functions with translations and scaling of a so-called mother

wavelet function is given by

ψa,b(t) =
1√
a
ψ

(
t− b

a

)
. (2.10)
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Here a and b are respectively the scaling and translation coefficients. The constant 1/
√

a is

used for energy normalization. Thus, the continuous wavelet transform of a signal x(t) is

defined by

Wx(a, b; ψ) =

∫ ∞

−∞
x(t)ψ∗a,b(t)dt , (2.11)

where ∗ denotes the complex conjugate. Like STFT, Wx is a similarity function of the signal

and the basis function. Similar to spectrogram, the squared modulus of the local time-scale

energy distribution named as scalogram can be given as

Px(a, b; ψ) , |Wx(a, b; ψ)|2 . (2.12)

Figure 2.4 shows an example of the scalogram for Oboe A4 note sample calculated in discrete

samples of the continuous wavelet transform.

The discrete wavelet transform and wavelet packets have been also used in representing

signals depending on the multi-resolution property of wavelets. They are obtained by

regularly sampling continuous wavelet transform at discrete time and scales as

ψj,k(t) =
1√
aj

0

ψ

(
t− kτ0a

j
0

aj
0

)
, (2.13)

where a0 > 1 is the fixed dilation and τ0a
j
0 is the time step. The common approach uses

the dyadic scheme where a0 = 2. Then, with very efficient and low complexity filter-bank

structures, signal can be decomposed into two resolutions, one for denoting approximations

obtained using low pass filtering and one for the representing details obtained with a high
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Figure 2.4 Scalogram of Oboe A4 note sample.

pass filtering. By iterating this process on either or both of the resolutions, finer frequency

resolutions at lower frequencies and finer time resolutions at higher frequencies can be

achieved. Therefore, the selection of the filter and mother wavelet function yields various

representations. Obviously, the wavelet transform performed in octave bands is effective due

to the frequency doubling convention of musical interval.

Based on these representations of Fourier, constant-Q, and wavelet transforms, there have

been many features extracted from musical signals. Most of the features are calculated based

on STFT in short, partially overlapping frames. That is why sometimes they are called as

frame-by-frame based features or their analysis is referred to be dependent on the so-called

bag-of-frames. Generally, the mean values, standard deviations, variances, first and second-

order derivatives of some the features were also used instead of direct use of features. In

order to give an idea about the variety of the features, Table 2.3 displays some of the features

commonly used in the literature.
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Table 2.3 A list of commonly used features in the literature.

Feature Explanation and detail

AC The coefficients of autocorrelation function of the signal. They represent the overall trend

of the spectrum.

ZCR Zero crossing rate. The number of the changes of the signal sign per unit time. It is an

indicator of noisiness of the signal.

RMS Root mean square energy value of the signal, summarizes the energy distribution. It is

often used to represent the perceptual concept of loudness.

Crest factor The ratio of the maximum value to RMS value of a waveform or the ratio of maximum

value to the mean of the amplitude spectrum.

Log attack time The logarithm of the duration between onset and the time when it reaches its maximum

value.

Temporal centroid The center of mass of the signal.

AM features The strength and frequency of the change in amplitude. 4-8 Hz to measure tremolo and

10-40 Hz for vibrato.

MFCC Mel frequency cepstral coefficients. The coefficients were obtained using the log

magnitude of the spectrum, filtered through the mel filter-bank, and mapped back to the

time domain using DCT. First derivatives (delta-MFCCs) and second derivatives (delta-

delta-MFCCs) were also used.

F0 Fundamental frequency. The mean and the standard deviation of F0 were used as a

measure for vibrato.

Spectral centroid The center of mass of the spectrum. Perceptually, it has connected with the impression

of brightness of a sound. The mean, maximum, and standard deviation values of centroid

were used as features.

Spectral spread or bandwidth The spread of the spectrum around the spectral centroid.

Spectral flatness The indication of how flat the spectrum of a sound. The ratio of the geometric mean to

the arithmetic mean of the spectrum. It can also be measured within a specified sub-band,

rather than across the whole band.

Spectral kurtosis The fourth order central moment of the spectrum. It describes the peakedness of the

frequency distribution.

Spectral skewness The third order central moment of the spectrum. It describes the asymmetry of the

frequency distribution around the spectral centroid.

Spectral roll-off The frequency index where below some percentage (usually at 85% or 95%) of the signal

energy (power spectrum) is contained.

Spectral flux The measure of local spectral change between consecutive frames. The squared difference

between the normalized magnitudes of successive spectral distribution.

Irregularity The measure of the jaggedness of the waveform (temporal irregularity) or spectrum

(spectral irregularity).

Inharmonicity The average deviation of spectral components from perfectly harmonic frequency

positions.

Tristimulus The measure of energy ratio among the harmonics of the spectrum.
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Moreover, some of the representations have been standardized in the MPEG-7 standard

(MPEG-7, 2004) describing multimedia content which combines some of these features

under pre-defined descriptions. Table 2.4 presents the descriptors within the audio

framework of MPEG-7 standard.

Table 2.4 MPEG-7 audio framework and descriptors.

Group Descriptors

Silence

Basic AudioWaveform, AudioPower

Signal Parameters AudioHarmonicity, AudioFundamentalFrequency

Basic Spectral AudioSpectrumEnvelope, AudioSpectrumCentroid, AudioSpectrumSpread, AudioSpectrumFlatness

Spectral Basis AudioSpectrumBasis, AudioSpectrumProjection

Timbral Temporal LogAttackTime, TemporalCentroid

Timbral Spectral SpectralCentroid, HarmonicSpectralCentroid, HarmonicSpectralDeviation, HarmonicSpectralSpread,

HarmonicSpectralVariation

2.1.3 Musical Instrument Classification

One of the first works on MIR is the Ph.D. thesis of Moorer (Moorer, 1975) while

the Ph.D. thesis of Schloss (Schloss, 1985) is specifically on automatic transcription of

percussive music. A review of earlier research including these is given in (Mellinger,

1991) while an updated list of thesis can be found at (Pampalk, 2009). Beginning with

the use of computers, the research on music is equipped with computers where these initial

researches have been conducted in Stanford University’s Center for Computer Research in

Music and Acoustics (CCRMA). Another important research center, Institut de Recherche

et Coordination Acoustique/Musique (IRCAM), is founded in 1969 and now leading to

many research on musical signals. The history of computer music including synthesis

(Roads, 1996) and the list of institutions can be found at The International Computer Music

Association (ICMA) (ICMA, 2009).

Following the prior works including (Chafe & Jaffe, 1986), which has investigated

periodicity estimation, source verification, and source coherence for transcription of

polyphonic music, one of the earliest work concerning the classification of instruments was
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given in (Kaminskyj & Materka, 1995). The short-term root-mean-square (RMS) energy

values were used for classifying four different types of instruments: guitar, piano, marimba,

and accordion, each representing one of the instrument family in one octave range (C4-

C5). Fisher multiple discriminant analysis and k-NN classifiers were applied to classify 14

orchestral instruments (Violin, Viola, Cello, Bass, Flute, Piccolo, Clarinet, Oboe, English

horn, Bassoon, Trumpet, Trombone, French horn, and Tuba) using 31 features in (Martin &

Kim, 1998). Many of the features like pitch frequency, spectral centroid, vibrato, and their

average and variance values were captured through the log-lag correlogram representation

(Martin, 1998, 1999). The log-lag correlogram is a logarithmically spaced lag-time-

frequency volume, where the signal has been passed through filter-banks that models the

cochlea in ears as in CASA (Meddis & Hewitt, 1991). A success rate of approximately 90%

for identifying instrument family and a success rate of approximately 70% for identifying

individual instruments were achieved with a taxonomic hierarchy.

As explained in the previous section, the information in constant-Q transform has been

found to be more efficient than FFT for musical signals (Brown, 1991, 2007). Moreover,

the cepstral coefficients obtained from constant-Q transform gave successful results in

identification of musical instruments (Brown, 1999). The feature dependence of cepstral

coefficients obtained from constant-Q transform was further investigated where the success

of cepstral coefficients were found 77% in (Brown, Houix, & McAdams, 2001).

A realtime recognition of orchestral instrument recognition system was developed in

(Fujinaga & MacMillan, 2000). They used additional spectral information such as centroid,

skewness, and spectral irregularity for 68% recognition rate with an efficient k-NN classifier

using genetic algorithm optimizer. The classification of musical instruments using a small

set of features selected from a broad range of extracted ones by sequential forward feature

selection method was proposed (Liu & Wan, 2001). In this method, the best feature is

selected based on classification accuracy it can provide. Then, a new feature is added to

minimize the classification error rate. This process proceeds until all the features are selected.
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Using this method, 19 features were selected among 58 features to achieve an accuracy rate

of up to 93%.

One of the earliest work using SVMs was (Marques & Moreno, 1999). Best results were

achieved with a 30% error rate using MFCCs for the classification of 8 instrument samples

with SVM compared to GMM. The cepstral coefficients were used with temporal features in

(Eronen & Klapuri, 2000), where a total of 23 features were extracted for classification of 30

instruments (Eronen & Klapuri, 2000; Eronen, 2001b, 2001a). The use of combining both

temporal and spectral features succeeded in capturing extra knowledge about the instrument

properties with classification ratios of 93% for identifying instrument family and 75% for

individual instruments, announcing MFCCs as a useful descriptor in instrument recognition.

The classification based on timbre was considered in (Agostini, Longari, & Pollastri,

2001, 2003) where they used 18 features for three different number of instrument groups.

They have listed the most discriminating features according to a score as inharmonicity

mean, centroid mean, centroid standard deviation, harmonic energy percentage mean, zero-

crossing mean, bandwidth standard deviation, bandwidth mean, harmonic energy skewness

standard deviation, harmonic energy percentage standard deviation, respectively. They have

reached over 96% rate for instrument family classification using SVMs, showing the power

of SVM in the timbre classification task. They have noted that the choice of features is more

critical than the choice of a classification method due to the closeness of performances with

others.

Following Schloss’ thesis (Schloss, 1985), the classification of drum sounds using zero

crossing rate (ZCR) feature was investigated (Gouyon, Pachet, & Delerue, 2000). Later, an

automatic classification of drum sounds was considered in (Herrera, Yeterian, & Gouyon,

2002). A comparison of feature selection methods and classification techniques for drum

transcription was considered with three levels of classification. After their performance

measures having not dramatic differences between classification techniques, they have also
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stated that selecting one or another is clearly an application-dependent issue. Another drum

transcription from song excerpts was investigated as a BSS problem in (FitzGerald, 2004).

The use of ICA was also considered in (Mitianoudis, 2004) where they explored the problem

combining developments in the area of instrument recognition and source separation. An

adaptation of independent subspace analysis has been shown for instrument identification

in musical recordings (Vincent & Rodet, 2004). The spectral shape characteristics of the

instruments were captured and an average instrument recognition rate of 85% achieved even

in noisy conditions.

The separation of drums from pitched musical instruments were considered in (Helén &

Virtanen, 2005; Moreau & Flexer, 2007) using non-negative matrix factorization (NMF).

The method was based on factorization of the non-negative data matrix V to two non-

negative matrices W and H, giving an approximate matrix V ≈ WH. The original

matrix was selected as the spectrogram of the input signal and the classification of the

separated components using a SVM concluded with correct classifications up to 93%.

The NMF method was also used to classify instruments to 6 instrument classes with non-

negative 9 features including mean and variance of the spectral descriptors defined by the

MPEG-7 as shown in Table 2.3 (Benetos, Kotti, & Kotropoulos, 2006). The results have

indicated a correct classification rate of 99% using the subset comprising of 6 best features

as the mean and variances of the 1st MFCC, AudioSpectrumFlatness, and mean of the

AudioSpectrumEnvelope and AudioSpectrumSpread. A more recent work was described

a complete drum transcription system which combines information from the original music

signal and a drum track enhanced version obtained by source separation (Gillet & Richard,

2008). By integrating a large set of features which were optimally selected by a feature

selection algorithm, a transcription accuracy between 64.5% and 80.3% was obtained.
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Signal model based solutions also exist especially for synthesis of musical sounds as

given in (Serra, 1997; Beauchamp, 2007). The sound signal s(t) is modeled by time varying

amplitudes and phases with

s(t) =
R∑

r=1

Ar(t) cos[θr(t)] + e(t) , (2.14)

where Ar(t) and θr(t) are the instantaneous amplitude and phase of the rth sinusoid,

respectively, and e(t) is the noise component at time t. The estimation of parameters in

the sinusoidal model in order to detect partials and separation of instruments using BSS

techniques was given in (Viste & Evangelista, 2003). By spectral filtering of harmonics,

where filters are designed for mixtures of two to seven notes from a mono track, the

separation of partials was proposed (Every & Szymanski, 2006). The signal-to-residual ratio

is used to quantify the measure of separability. Briefly, the instrument classification has been

seen as a result of note grouping and categorization effort (Every, 2006). Another sinusoidal

modeling was used to separate a single channel mixture of sources based on time-frequency

timbre model (Burred & Sikora, 2007). The identification of instruments by detecting the

edges of sinusoidal signals by means of the Hough transformation which was originally

developed to detect straight lines in digital images was performed in (Röver, Klefenz, &

Weihs, 2004). Among various methods, regularized discriminant analysis performed the

classification of 25 instruments with an best error rate of 26% using 11 features.

A classification process which produces high classification success percentages over 95%

was described for musical instruments in (Livshin, Peeters, & Rodet, 2003). A total of 162

sound descriptors were calculated for each sample of 18 instruments. Results showed the

need of a large database of sounds in order to reflect the classifiers’ generalization ability.

An instrument recognition process in solo performances of a set of instruments from real

recordings was introduced using 62 features (Livshin & Rodet, 2004). Furthermore, the

importance of the non-harmonic residual for automatic musical instrument recognition of
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pitched instruments was shown for original and resynthesized samples (Livshin & Rodet,

2006).

A missing feature approach using GMMs was proposed for instrument identification

based on F0 analysis to classify five instruments (Flute, Clarinet, Oboe, Violin, Cello)

from two instrument families (Eggink & Brown, 2003). Using masks based on F0, they

have identified 49% of instruments and 72% of instrument families correctly. They have

demonstrated that the overtones are unlikely to be exactly harmonic for real instruments.

They have extended the system to overcome the problem of octave confusion and identify

the solo instrument in accompanied sonata and concertos (Eggink & Brown, 2004). They

have reached over 75% success for identification among 5 instruments.

The time descriptors and their change in time were suggested and analyzed using MPEG-

7 descriptors for musical instrument sound recognition in (Wieczorkowska, Wróblewski, &

Synak, 2003). One of the first reviews on the sound description of instruments in the context

of MPEG-7 was given in (Peeters, McAdams, & Herrera, 2000). The classification of large

musical instrument databases was investigated in (Peeters, McAdams, & Herrera, 2003),

where a new feature selection algorithm based on inertia ratio maximization (IRM) was

proposed with hierarchical classifiers. In IRM, features are selected based on the Fisher

discriminant of the between-class inertia to the average radius of the scatter of all classes.

The recognition rate obtained with their system was 64% for 23 instruments and 85% for

instrument families.

The use of wavelet transform was considered in (Olmo, Dovis, Benotto, Calosso, &

Passaro, 2000) where the estimation of F0 and main harmonics were investigated using

continuous wavelet transform. Later, the spectrum was divided into octave bands and

the energy of each sub-band was parameterized (Wieczorkowska, 2001). The 62 different

features were grouped in temporal, energy, spectral, harmonic, and perceptual and further

used for duet classification of 7 instruments. Again for duet separation and instrument
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classification, the classification process was shown as a three-layer process consisting of

pitch extraction, parametrization, and pattern recognition (Kostek, 2004). The average

magnitude difference function (AMDF) (Ross, Shaffer, Cohen, Freudberg, & Manley, 1974)

for detecting F0 and energy distribution patterns within the wavelet spectrum sub-bands

were used with an ANN algorithm. Using the frequency envelope distribution algorithm and

an ANN, separation of duets based on the feature vectors containing respectively MPEG-

7-based, wavelet-based, and the combined MPEG-7 and wavelet-based descriptors were

accomplished.

One of the first works using ANN was (Cemgil & Gürgen, 1997) where the recognition

results obtained from three different architecture were presented and compared. The

classification experiments of musical instrument sounds were performed with neural

networks allowing a discussion of the feature extraction process efficiency and of its

limitations (Kostek & Czyzewski, 2001). The investigation of finding significant musical

instrument sound features and removing redundancy from the musical signal on the direction

of the MPEG-7 standardization process was the concern. Another ANN algorithm was

a recurrent neural network algorithm called democratic liquid state machines (DLSM),

where the capacity of forward processing neural networks to work with high dimensional

vectors, and the property of recurrent neural networks of retaining information were

utilized (de Gruijl & Wiering, 2006). In DLSM, multiple liquid state machines were

independently trained and used together with majority voting to produce the final result.

The performance on all samples of the DLSMs is 99% where only bass guitar and flute

samples were identified by a frequency analysis based on FFT. Further studies include the

classification of instruments to five instrument families with an ANN (Ding, 2007). They

have demonstrated that increasing the number of features and adding MFCC feature resulted

with higher accuracy ratios. In a different work, four different algorithms were tested using

MPEG-7 descriptors and ANN to estimate the effectiveness of the classification of sounds

(Dziubinski & Kostek, 2005). Their experiments showed that MPEG-7 descriptors are not

adequate for classification of sounds and a set of descriptors need to be designated for

musical instrument sounds.
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The development of a system for automatic music transcription able to cope with different

music instruments was considered in (Bruno & Nesi, 2005). Three musical instruments were

used for testing the monophonic transcription model based on the percentage of recognized

notes using an auditory model and ANNs. Another method using ANNs was given in

(Mazarakis, Tzevelekos, & Kouroupetroglou, 2006), where a time encoded signal processing

method to produce simple matrices from complex sound waveforms was used for instrument

note encoding and recognition. The method was tested with real and synthesized sounds

providing high recognition rates.

A k-NN algorithm was used with single stage, hybrid, and hierarchical classifiers

(Kaminskyj & Czaszejko, 2005). The correct identification ratios over 89% of instruments

and 95% of instrument families were obtained. In (Pruysers, Schnapp, & Kaminskyj, 2005),

the wavelet features were added to the existing musical instrument sound classifier developed

in (Kaminskyj & Czaszejko, 2005). They have suggested that wavelets are important features

that aid in the discrimination of the quasi-periodic waveforms of musical instruments by

providing a good indication of how the spectral characteristics of any signal varies with time.

The addition of wavelet-based features resulted with a classification accuracy of 87.6% was

achieved when classifying of recordings from the 19 instruments.

The F0 (or pitch) dependency of musical instruments was investigated in (Kitahara,

Goto, & Okuno, 2005). In order to solve the overlapping of sounds in instrument

identification in polyphonic music, feature weighting was proposed (Kitahara, Goto,

Komatani, Ogata, & Okuno, 2007). The spectral, temporal, and modulation features of

43 features were selected and based on the calculated probability densities identification of

instruments were performed for duo, trio, and quartet, having recognition rates 84%, 77%,

and 72%, respectively. On the other hand, an instrument model polyphonic pitch estimation

was proposed in (Yin, Sim, Wang, & Shenoy, 2005) where they improved the accuracy of

transcription structure with the prior knowledge obtained from their model based on the band

energy spectrum.
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A hierarchical architecture for instrument classification was proposed in (Fanelli,

Caponetti, Castellano, & Buscicchio, 2005) to group different classification techniques in

a taxonomic organization where each individual classifier focus on the patterns that mostly

interested in. A hierarchical taxonomy was considered (Essid, Richard, & David, 2005,

2006a, 2006b) based on using wide range of features more than 540. Their initial work on

musical instrument recognition using MFCCs was (Essid, Richard, & David, 2004b), where

they have used Gaussian mixture models (GMM) and SVMs for classification. The feature

selection algorithm based on pairs of classes were proposed in (Essid, Richard, & David,

2004a, 2006c).

Investigation of the performance of different features and finding a compact but effective

feature set was studied in (Deng, Simmermacher, & Cranefield, 2006, 2008). The MFCC

features were found giving the best classification performance while some of the MPEG-

7 descriptors were found not reliable to give good results. In another study, 19 features

selected from the MFCC and the MPEG-7 audio descriptors achieved a recognition rate

of around 94% by the best classifier for 4 instrument classification (Simmermacher,

Deng, & Cranefield, 2006). The MFCC feature representation was found better than

harmonic representations both for musical instrument modeling and for automatic instrument

classification (Nielsen, Sigurdsson, Hansen, & Arenas-Garcı́a, 2007). They have performed

multi-class classifications with a multi-layer perceptron and a kernel-based method based on

orthonormalized partial least squares algorithm.

A hidden Markov model (HMM) based recognizer were proposed for musical instrument

classification (Eichner, Wolff, & Hoffmann, 2006). From a database that comprises four

instrument types, their system was able to correctly identify all instruments from the

recordings of a single musician with a sufficient number of Gaussian mixtures. However,

if recordings of another musician were added to the training set the performance decreased.

A technique which uses a HMM model to calculate the temporal trajectory of instrument

existence probabilities and displays it with a spectrogram-like graphical representation called
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instogram was proposed in (Kitahara, Goto, Komatani, Ogata, & Okuno, 2006). Thus, each

image of the instrogram is a plane with horizontal and vertical axes representing time and

frequency. The intensity of the color of each point in the image represents the probability

that a sound of the target instrument exists at time specific time and frequency. Using

28 features including spectral centroid and amplitude and frequency of AM and FM, over

73% correct classification rates were achieved. The use of alignment kernels which have

the advantage of handling sequential data, without assuming a model for the probability

density of the features as in the case of GMM-based HMMs were studied in another work

for a musical instrument recognition task (Joder, Essid, & Richard, 2008). The alignment

kernels with SVM classifiers were compared with classifiers based on GMM, HMM, and

SVM with Gaussian kernel. Alignment kernels allow for the comparison of trajectories

of feature vectors, instead of operating on single observations. They have argued that, a

comparison with sequences of vectors may be more meaningful depending on the temporal

structure of music is important. Although the recognition rates were between 70.5% and

77.8%, the classifiers using the alignment kernel were achieved better performances than the

other classifiers for 3-frame and 5-frame sub-segments.

Sparse representations were used for polyphonic mixtures in (Leveau, Sodoyer, & Daudet,

2007). Their algorithm was based on the decomposition of the music signal with instrument

specific harmonic atoms where the signal is decomposed as a linear combination of short

pieces of it. The identification of the number of instrument reaches 73% while a fully

blind problem of identification of the ensemble label without prior knowledge on the

number of instruments was 17%. In (Leveau, Vincent, Richard, & Daudet, 2008), using

5 instruments (Oboe, Clarinet, Cello, Violin, and Flute) and four instrument pairs for

polyphonic instrument recognition resulted similar scores for both atomic and molecular

decomposition.

The robustness of 15 MPEG-7 and 13 further spectral, temporal, and perceptual features

were studied for musical instrument classification (Wegener, Haller, Burred, Sikora, Essid, &
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Richard, 2008). The evaluation was performed using three different methods including

GMMs with approximately 6000 isolated notes from 14 instruments. Their proposed robust

feature selection method was mostly useful when the feature dimensionality was very

limited. For example, using only a fixed set of features such as the first 13 MFCCs instead

of using any feature selection technique was found to lead to a robust classification system.

The timbre-based information was used for the classification of musical instrument

(Somerville & Uitdenbogerd, 2008). Using a k-NN classifier and MFCCs, an accuracy of

80% was obtained. Their observations have concluded that building a hierarchical classifier

using a combination of classifiers might be useful.

Before concluding the review of the literature on musical instruments, a brief reference

list is on the investigation of the artistic forms of music where the literature has been formed

separately. The audio power and frequency fluctuations of music have been found to have

spectral densities varying with the inverse of the frequency in (Voss & Clarke, 1978; Voss,

1979). This inverse relation was realized to be related with self-similar or fractal structure

explained by Mandelbrot which could be a tool to understand the harmony of nature (Hsü &

Hsü, 1990, 1991). The investigation of some of the problems were discussed (Nettheim,

1992), and the concepts of dynamical system theory were applied to the analysis of temporal

dynamics in music (Boon & Decroly, 1995). The fractal dimension of music has been further

investigated (Bigerelle & Iost, 2000; Gündüz & Gündüz, 2005; Su & Wu, 2006), including

chaos (Bilotta et al., 2005), music classification (Manaris, Romero, Machado, Krehbiel,

Hirzel, Pharr, & Davis, 2005), and for the classification of Eastern and Western musical

instruments (Das & Das, 2006).

2.2 Support Vector Machines

In this section, we give a brief summary on the support vector machine classifier which is

used as a main classification algorithm throughout the thesis.
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The foundations of support vector machines (SVMs) have been developed based on

statistical learning theory (Vapnik, 1995). The theory behind the initial development of

SVM says that for a given learning task, with a given finite amount of training data,

best generalization performance will be achieved when the capacity of the classification

function is matched to the size of the training set (Burges, 1998). The first application is

introduced as a maximal margin classifier (Boser, Guyon, & Vapnik, 1992) with the training

algorithm that automatically tunes the capacity of the classification function by maximizing

the margin which is defined as the distance between the training patterns and the class

decision boundary. When the ith training sample xi of dimension n with the assigned labels

yi showing either of the two classes (i.e., yi ∈ {−1, 1}) are given, then the algorithm searches

for the optimal separating hyperplane w · x + b = 0, where (·) denotes the dot product, so

that

yi (w · xi + b)− 1 ≥ 0 for ∀i, (2.15)

under the constraint that the total margin, given by 2/||w||, is maximal. The training

examples which are closest to the decision boundary and usually a small subset of the training

data form the resulting classification function, and named as support vectors (Vapnik, 1995;

Cortes & Vapnik, 1995; Vapnik, 1998; Cristianini & Shawe-Taylor, 2000; Schölkopf &

Smola, 2002).

Figure 2.5 shows a geometric interpretation of the algorithm with the squares denoting the

class labeled as yi = −1 and the triangles denoting the class labeled as yi = 1. The thicker

line in the middle is the optimal separating hyperplane and the circled data are the support

vectors which are lying on the margin.
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Figure 2.5 Optimal separating hyperplane, margin, and the support vectors.

The norm ||w|| which maximizes the margin can be found by solving an optimization

problem with a functional

Φ(w) =
1

2
||w||2 , (2.16)

and the final decision function can be written as

f(x) = sgn

(
n∑

i=1

αiyixi · x + b

)
, (2.17)

where data is classified as one of the classes using the signum function. Note that the solution

contains the data, written in a dot product form.

The maximum margin classifier is simple and proposed for problems which the patterns

are linearly separable. However, when the data is not linearly separable or when the classes
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overlap because of noise, then an additional cost function associated with misclassification

is used (Cortes & Vapnik, 1995):

yi (w · xi + b) ≥ 1− ξi for ∀i, (2.18)

where ξi ≥ 0 are the slack variables introduced to relax the constraints for tolerating

misclassifications. Thus, a soft margin classifier is obtained. The norm ||w|| is found

similarly by solving the optimization problem with the functional

Φ (w, ξ) =
1

2
||w||2 + C

n∑
i=1

ξi , (2.19)

including the constant C > 0, known as the regularization parameter which determines the

trade-off between margin maximization and training error minimization. Nevertheless, when

the patterns are not linearly separable one can still use the simple SVM or the soft margin

classifier with a kernel function κ, such that for all patterns in the input feature space X , (i.e.,

x, z ∈ X )

κ(x, z) = 〈φ(x) · φ(z)〉 , (2.20)

where φ is a mapping from X to some higher (possibly infinite) dimensional Hilbert feature

space H where the patterns become linearly separable. The underlying mechanism can

be given by Cover’s theorem (Cover, 1965) which states that a complex nonlinear pattern

classification problem presented in a high dimensional space is more likely to be linearly

separable than in a low dimensional space (Haykin, 1999). The kernels have been known

for a long time after the discovery of Mercer in the theory of integral equations following

Hilbert, stating that they are functions of positive type (Mercer, 1909).
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Suppose κ(x, z) is a continuous symmetric function of the variables x and z which is

defined in closed intervals a ≤ x ≤ b and a ≤ z ≤ b; and let θ be the class of all functions

which are continuous in the closed interval [a, b]. Then κ(x, z) is a positive definite kernel if

and only if

∫ b

a

∫ b

a

κ(x, z)θ(x)θ(z)dxdz > 0 . (2.21)

On the other hand, Moore considered kernels characterized by Equation (2.21) in a

general analysis under the name of positive Hermitian matrices. He discovered that to each

positive Hermitian matrix, there corresponds a class of functions. Later Aronszajn showed

that kernels have reproducing property and the Hilbert space consisting of functions on a

class is called reproducing kernel Hilbert space (RKHS) (Aronszajn, 1950). The Moore-

Aronszajn theorem can be stated as:

Given any positive definite kernel κ(x, z), there exists a uniquely determined Hilbert

space H consisting of functions on a class θ such that

1. κ(x, ·) ∈ H, for ∀x ∈ θ (2.22)

2. θ(x) = 〈θ, κ(x, ·)〉H, for ∀x ∈ θ, for ∀θ ∈ H (2.23)

Then Hκ is said to be a RKHS where Equation (2.23) is the reproducing property.

The use of RKHS in SVM depends on computing the dot product defined inH and shown

by Equation (2.20) without knowing the explicit form of φ using a substitution known as

kernel trick. Then, any function can be used to construct an optimal separating hyperplane
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in some feature space provided that Mercer’s condition holds. The most common functions

for kernels are the linear kernel

κ (x, z) = (x · z) , (2.24)

the polynomial kernel

κ (x, z) = (x · z + 1)d , (2.25)

and the radial basis function (RBF) kernel

κ (x, z) = exp

(
−‖x− z‖2

2σ2

)
. (2.26)

There are also many kernels constructed for specific purposes and particular applications

(Shawe-Taylor & Cristianini, 2004).

The SVM method is originally designed for solving two-class classification problems.

When there are more number of classes to be classified such as k (i.e., yi ∈ {1, 2, . . . , k}),

there exist two approaches which extend the SVMs to handle multi-class classification

problems: In the first approach, the SVM objective function defined in Equation (2.16)

or Equation (2.19) is modified in such a way that all the classes are considered

simultaneously, hence the optimization problem for multi-class classification is solved

directly. This approach offers the solution using a single SVM formulation but generally

it is computationally expensive since it has to deal with all support vectors at the same

time. The second approach considers the multi-class problem as a collection of two-class

classification problems. The two common methods using this approach are known as “one-
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vs-one” and “one-vs-all” (or one-vs-rest) (Weston & Watkins, 1998). In one-vs-all method, k

classifiers are constructed between one class and the rest k−1 number of classes for a k-class

classification problem. The decision is taken over all possible pairs using a majority vote or

some other measure. For the one-vs-one method, k(k − 1)/2 classifications are constructed

between each possible class pairs and similarly some voting scheme is applied for decision.

Although the choice of the approach or method depends on the problem, one-vs-all method

often produces acceptable results (Schölkopf & Smola, 2002).



CHAPTER THREE

REPRESENTATIONS OF MUSICAL INSTRUMENTS AND
CLASSIFICATION PERFORMANCES

The pleasure we obtain from music comes from counting,

but counting unconsciously. Music is nothing but unconscious arithmetic.

Gottfried Wilhelm Leibniz

In this chapter, we present the representations of musical instruments and their

classification performances. In the first section we begin with likelihood-frequency-time

(LiFT) analysis, designed for partial tracking and automatic transcription of music. The

classification performance of LiFT is evaluated using SVMs for various instrument and

note samples. Then in Section 3.2, we modeled the pdf of the wavelet sub-bands with a

generalized Gaussian density based on the effectiveness of wavelet features for representing

musical instruments. Using the parameters of the model, we performed classification of

instruments. Afterwards, we classified instruments using SVM with the feature vectors

being the estimated alpha-stable distribution parameters. In Section 3.3, we showed the

effectiveness of wavelet features for different musical instruments by the use of ridges. We

extracted features from ridges and performed the classification of musical instruments with

SVM classifiers. In the last section, we demonstrated the effectiveness of MFCC features for

Turkish musical instrument classification.

3.1 Likelihood-Frequency-Time Method

The LiFT method (Verfaille, 2000; Verfaille, Duhamel, & Charbit, 2001) is based on the

constant-Q transform (Brown, 1991). It analyzes the output signal y(n), considering the

39
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input signal as the sum of cosines

x0(n) =
∑

j

a0 cos(2πf0,j n + φ)

=
∑

j

c0,j cos(2πf0,j n) + s0,j sin(2πf0,j n), (3.1)

and a white noise b(n) where

y(n) = x0(n) + b(n), (3.2)

with a Q-constant filter-bank composed of 24 filters whose center frequencies are set to

quarter-tones. The main idea is to keep the same analysis structure of a signal for every

octave while avoiding aliasing. Filters are designed as described in (Brown, 1991) with a

quality factor Q ≈ 34, which is highly selective.

Then, the time-frequency domain obtained from the filter-bank is analyzed statistically

using a sliding window and a generalized likelihood approach is evaluated for each window

by testing the two hypotheses whether there exist only noise in the output of the filter (H0) or

there exist both input signal and noise (H1). Under each of both hypotheses, the maximum

pdf for the values of cosine amplitude vector θ = (c0 s0)
T is calculated and the generalized

likelihood ratio is evaluated as

Γ =
maxθ∈H1PH1

maxθ∈H1PH0

. (3.3)

Since Γ varies exponentially, the log-likelihood values are found using γ = log Γ.



41

Although the LiFT analysis has been designed both for time-domain where the samples

of input signal are directly used and for frequency domain where the Fourier transform of

the input signal is taken, in this study time-domain likelihood analysis is performed. A more

detailed information is given in Appendix. Figure 3.1 shows an example of the likelihood-

frequency-time plot of an input signal using the calculated log-likelihood values (γ) obtained

for Alto Flute A3 note sample analyzed for 7 octaves. The likelihood values are normalized

where the highest likelihood ratio value is shown as the darkest.
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Figure 3.1 Likelihood-time-frequency plot of Alto Flute A3 note sample.

Although in this work we only demonstrate results using monophonic samples, this

approach is useful for polyphonic applications because of its ability to show multi-partials

at the same time instants which may be extracted from the polyphonic instruments or any

group of instruments playing simultaneously.

For this study, we use the University of Iowa Electronic Music Studios samples (Fritts,

1997) of 19 mono recorded instruments. The dynamic ranges ff, mf, and pp are all included
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with or without vibrato depending on the instrument and for string instruments played

with bowing (arco) and plucking (pizzicato), making a database with a total of nearly

5000 samples. Then the LiFT analysis is performed for 7 octaves for each of these note

samples. Likelihood values of 7 × 24 = 168 quarter-tone frequencies are calculated.

The feature vectors are extracted from these likelihood values and used for instrument

and note classification. Various normalization schemes were tested and their effect on the

classification performance was investigated. For example the features are standardized to

have zero mean and unit variance with x̂ = (x− µx)/σx where µx and σx are the mean and

the standard deviation of each feature x. However, the normalization of feature vectors to be

in [0, 1] is found to give the best performance, therefore all feature vectors are normalized

accordingly for the results presented here.

Support vector machines with linear, polynomial, and RBF kernels are used. Parameters

of polynomial kernel and RBF kernel are also varied. One-vs-all approach is chosen for

multi-class classification. The half of the features for each class are used for training and

remaining half is left for testing. Correct classification ratios are obtained as the percentage

of correctly classified class to the number of class samples. Results are the mean values of

10 different realizations.

3.1.1 Instrument Classification

For instrument classification of 19 instruments a feature vector is selected in two steps. In

the first step, the maximum value of likelihood for each note sample is selected as a feature

vector. This is a very simple vector and does not include and express the time information

of the samples because it only takes information along the quarter-tone frequency number.

Then as a second step, time information is included by selecting 10 time instants equally

taken according to the length of the note sample and calculating the maximum value of

likelihood for each time instant. Thus the feature vector for step 2 is not a vector composed
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of only showing likelihood values for all the duration of note sample (168× 1) but a vector

showing the likelihood values for 10 time instants (1680× 1).

Figure 3.2 shows the best performance results for polynomial kernel obtained with d = 2,

where the second step increases the performance slightly. This is also valid for the RBF

kernel as given in Figure 3.3. Therefore throughout the section, results obtained with second

step are used.

Figure 3.2 Classification of 19 instruments with polynomial kernel.

Figure 3.3 Classification of 19 instruments with RBF kernel.

As it is seen from the results that Bass has the highest correct classification results due to

its frequency range. However the selection of different kernels or parameters does not have

a major effect on classification. Also notice that this is a multi-class classification performed

with 19 instruments. Any subclassification or grouping will possibly increase the correct

classification rates.
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For example in (Agostini, Longari, & Pollastri, 2003), spectral features composed of 18

descriptors are extracted and the recognition of individual instruments having 17, 20, and 27

instrument samples are done with different classification techniques including SVM. RBF

kernel is found to give the best results. Although the family of saxophones are combined

in a single instrument class, an error rate of 19.8% in the classification of 17 instruments is

achieved. Table 3.1 shows the classification performance with SVM given in (Agostini et al.,

2003). It is obvious that increasing the number of instruments decrease the success rates.

Nevertheless, a subclassification based on instrument family or pizzicati/sustained grouping

increase the correct classification rates.

Table 3.1 Success rates for different number of instruments in (Agostini et al., 2003).

Number of instruments Success rate (%)

17 instruments 80.2

20 instruments 78.5

27 instruments 69.7

27 instr. family discrimination 77.6

27 instr. pizz./sust. discrimination 88.7

Therefore a small subset of the instruments is selected as the 5 woodwind instruments

(Alto Saxophone, Bassoon, B[ Clarinet, Flute, Oboe). The correct classification results given

with bold font on Table 3.2 demonstrate the performance using linear, polynomial, and RBF

kernels. Best result of RBF kernel is obtained when σ = 1. The results of the work in (Essid

et al., 2004b) are given for comparison. Better performance for B[ Clarinet is achieved. Note

that in (Essid et al., 2004b) polynomial kernel with d = 5 and RBF kernel results were not

available.

The performance results of 19 instrument classification are compared with 5 instrument

classification in Table 3.3. The ratios of only 5 instruments are shown with bold font.

Obviously, for every kernel and its parameter the ratios of 5 instrument case are higher

than the 19 instrument case. While the best average results for 19 instruments without

normalization is 46.6% with RBF kernel σ = 1, the best average of these specific 5

instruments among 19 is 34.7%. However, the mean value obtained for only 5 instrument
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Table 3.2 Classification of 5 woodwind instruments and comparison with the work in (Essid et al.,

2004b)
% correct Alto Sax Bassoon B[ Clarinet Flute Oboe

Linear 66.6 82.4 45.9 69.2 70.2

73.4 88.0 31.2 82.8 66.9

Polynomial (d = 2) 72.1 75.1 40.6 72.9 68.7

69.2 88.0 33.0 76.3 66.4

Polynomial (d = 3) 68.8 73.6 36.4 76.9 63.5

69.9 87.2 27.0 86.8 74.8

Polynomial (d = 4) 64.2 71.2 35.2 80.1 59.4

69.0 87.6 28.5 86.4 75.9

Polynomial (d = 5) 59.8 67.1 32.3 81.2 55.8

- - - - -

RBF (σ=1) 77.2 76.4 41.2 72.4 73.3

- - - - -

case is 68.1%. Selecting a small subset corresponds to an almost double increase in the

correct classification ratio.

Table 3.3 Comparison of the classifications using 19 and 5 instruments.

% correct Alto Sax Bassoon B[ Clarinet Flute Oboe

Linear 31.3 26.9 19.7 41.5 34.5

66.6 82.4 45.9 69.2 70.2

Polynomial (d = 2) 45.6 29.6 24.5 44.4 37.4

72.1 75.1 40.6 72.9 68.7

Polynomial (d = 3) 43.8 25.2 23.2 39.4 34.7

68.8 73.6 36.4 76.9 63.5

Polynomial (d = 4) 41.0 17.5 23.0 35.0 33.7

64.2 71.2 35.2 80.1 59.4

Polynomial (d = 5) 38.4 14.0 21.5 29.8 28.4

59.8 67.1 32.3 81.2 55.8

RBF (σ=1) 53.8 27.4 26.1 36.3 30.0

77.2 76.4 41.2 72.4 73.3

3.1.2 Note Classification

Remember that the LiFT analysis has been mainly designed for partial tracking, it is more

likely that correct classification performance will increase in the classification of notes. As
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in instrument classification when the number of classes is high, it is difficult to obtain a

high correct classification ratio. Nevertheless, the classification of a single note among all

possible notes is important hence all database (except piano) note samples need to be used.

However, because of the lack of samples available for each note, three octave range from C3

to C6 is selected where these 36 notes are in the common range for most of the instruments.

As the number of note samples per instrument is not the same, the number of training and

test samples vary. However, for each class at least 50 samples are taken for the accuracy of

the classification results with a total of nearly 3000 samples. To our knowledge this is the

first trial of a note classification using such number of notes.

Figure 3.4 shows the performance results for both steps. Results with polynomial kernel

with parameters greater than (d = 2) are not shown for the clarity of figures and because

their performance are not better with respect to their nonlinearity expected to discriminate

better. Both figures demonstrate that correct classification ratios over 40% and even 50%

(for step 1 except linear kernel, which is lower because of the simple feature and kernel

function) are achieved. As the number of available notes between C3 and C4 is more than

the interval C4-C5 or interval C5-C6, the average correct classification ratio for that octave

is higher. With a large sample database it is expected to have higher ratios. Also, even

the ratios do not exceed 80% it is very likely that using a subclassification will increase the

correct classification ratios. For example, the notes of string instruments played by plucking

are removed from the note database and classifications are performed. Results obtained by

using step 2 are given in Figure 3.5.

The best average results for 36 notes without normalization is found as 62.6% in step 1

and 60.8% in step 2 with RBF kernel σ = 1. With the removal of the notes played by

plucking, the best average results of these notes is calculated as 68.9% for step 2. Therefore

even with less samples, selecting a better subset corresponds to a 8% increase in the correct

classification ratio.
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Figure 3.4 Classification of notes from C3 to C6 with both feature sets.

Moreover, with a pre-classifier which aims to find the octave number, the number of

classes will be limited to 12 and better classification could be achieved. Notice that the time

information which is included with the second step is not effective in note classification due
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Figure 3.5 Classification of notes from C3 to C6 without plucked string samples.

to the discriminative power of frequency patterns over the notes extracted by the quarter-tone

filtering of LiFT analysis.

The LiFT analysis is found to be more adequate for note classification than instrument

classification because of the quarter-tone filtering extracting the partials. Besides, the time

information of samples is not fully represented in the feature vectors. The proper selection

of the discriminating features from LiFT will definitely help to achieve better classification

performance.

3.2 Generalized Gaussian Density and Alpha-Stable Distribution Modeling

3.2.1 Parameter Estimation of Generalized Gaussian Density

Wavelets are known to be effective for decomposing the signals into sub-bands. As

the energy distribution in frequency domain identifies the signal, traditional approaches
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computed energies of wavelet sub-band as features. Experiments show that a good pdf

approximation for the marginal density of wavelet coefficients at a particular sub-band

may be achieved. For approximating the pdf of wavelet coefficients obtained from one

dimensional wavelet decomposition, generalized Gaussian density (GGD) modeling has

been proposed (Do & Vetterli, 2002). Figure 3.6 shows the distribution of the wavelet

coefficients of Oboe A4 note sample for a single sub-band. The GGD modeling of the

sub-band wavelet coefficients has been applied for image texture retrieval (Tzagkarakis &

Tsakalides, 2004) and further for musical genre classification (Tzagkarakis, Mouchtaris, &

Tsakalides, 2006).
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Figure 3.6 The distribution of wavelet sub-band coefficients of Oboe A4 note

sample.

The marginal density of wavelet coefficients can be obtained by adaptively varying the

two parameters of the GGD which is defined as

p(x; α, β) =
β

2αΓ(1/β)
e−(|x|/α)β

(3.4)
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where Γ(·) is the Gamma function with z > 0

Γ(z) =

∫ ∞

0

e−ttz−1dt. (3.5)

Given the GGD model, the pdf of wavelet coefficients in each sub-band can be completely

defined via two parameters α and β. The α is referred as the scale parameter and denotes the

width of the pdf, while β is the shape parameter and inversely proportional to the decreasing

rate of the peak. The two special cases for GGD model are when the pdf’s are Gauss (β = 2)

and Laplace (β = 1) distributed.

For a given β value, α value is found using the ML estimator method (Do & Vetterli, 2002)

by defining the likelihood function of the sample x = (x1, x2, . . . , xL) having independent

components as

L(x; α, β) = log
L∏

i=1

p(xi; α, β) . (3.6)

The derivatives with respect to the parameters gives the ML estimator

L(x; α, β)

∂α
= −L

α
+

L∑
i=1

β|xi|βα−β

α
= 0 (3.7)

L(x; α, β)

∂β
=

L

β
+

LΨ(1/β)

β2
−

L∑
i=1

( |xi|
α

)β

log

( |xi|
α

)
= 0 (3.8)

where Ψ(·) is the digamma function with Ψ(z) = Γ′(z)/Γ(z).
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If we fix β > 0, then Equation (3.7) has a unique, real, and positive solution as

α̂ =

(
β

L

L∑
i=1

|xi|β
)1/β

. (3.9)

Substituting this into Equation (3.8), the shape parameter β is the solution of the following

transcendental equation

1 +
Ψ(1/β̂)

β̂
−

L∑
i=1

|xi|β̂ log |xi|
L∑

i=1

|xi|β̂
+

log

(
β̂
L

L∑
i=1

|xi|β̂
)

β̂
= 0 (3.10)

which can be solved numerically. Here Ψ(·) is the digamma function given as

Ψ(z) = Γ′(z)/Γ(z).

The numerical solution depends on the Newton-Raphson iterative procedure with the

initial guess from the moment method. By defining the left hand side of Equation (3.10)

as a function of β̂ as g(β̂), the Newton-Raphson iteration finds the new guess for the root of

g(β̂), βk+1 based on the previous one βk using

βk+1 = βk − g(βk)

g′(βk)
(3.11)

with

g′(β) = − Ψ(1/β)

β2
− Ψ′(1/β)

β3
+

1

β2
−

L∑
i=1

|xi|β(log |xi|)2

L∑
i=1

|xi|β
(3.12)
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+

(
L∑

i=1

|xi|β log |xi|
)2

(
L∑

i=1

|xi|β
)2 +

L∑
i=1

|xi|β log |xi|

β
L∑

i=1

|xi|β
−

log

(
β
L

L∑
i=1

|xi|β
)

β2

where Ψ′(z) is known as the first polygamma or trigamma function.

A good initial guess for the root of g(β) can be found based on the matching moments of

the data set with those of assumed distribution. For a GGD, it is shown that the ratio of mean

absolute value to standard deviation is a steadily increasing function of β, as illustrated in

Figure 3.7.

FM(β) =
Γ(2/β)√

Γ(1/β)Γ(3/β)
(3.13)
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Figure 3.7 The ratio of mean absolute value to standard deviation.
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Hence, if m1 = 1
L

L∑
i=1

|xi| and m2 = 1
L

L∑
i=1

x2
i be the estimate of mean absolute value and

the estimate of variance of the sample data set, respectively, then β is estimated by solving

β = F−1
M

(
m1√
m2

)
. (3.14)

For N -level one dimensional wavelet decomposition, there are N+1 sub-band coefficients

(D1, D2, D3, . . . , DN , AN). Here, Di and Ai show ith level detail and approximation

coefficients, respectively. The distribution of detail and approximation coefficients for each

sub-band can be defined with the two parameters (α, β) in GGD model (Do & Vetterli, 2002).

The similarity measurement between the distributions of two wavelet sub-bands is

calculated with Kullback-Leibler (KL) divergence which is defined between two pdf’s p1(x)

and p2(x) as (Kullback & Leibler, 1951)

Dp1‖p2 =

∫
p1(x) log

(
p1(x)

p2(x)

)
dx. (3.15)

Then by using only the model parameters α and β

D(p(·; α1, β1)‖p(·; α2, β2)) = log

(
β1α2Γ(1/β2)

β2α1Γ(1/β1)

)
+

(
α1

α2

)β2 Γ((β2 + 1)/β1)

Γ(1/β1)
− 1

β1

.(3.16)

Furthermore, with the reasonable assumption that wavelet coefficients in different sub-bands

are independent, the overall similarity distance between two sets is precisely the sum of KL

divergences given in Equation (3.16) between corresponding pairs of sub-bands. That is,

if we denote α
(j)
i and β

(j)
i as the extracted features from the wavelet sub-band of the data
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then the overall distance between two data I1 and I2 is the sum of all the distances across all

wavelet sub-bands

D(I1, I2) =
B∑

j=1

D(p(·; α(j)
1 , β

(j)
1 )‖p(·; α(j)

2 , β
(j)
2 )) (3.17)

where B is the number of analyzed sub-bands. Thus the KL divergence theory provides us

with a justified way of combining distances into an overall similarity measurement, and no

normalization on the extracted features is needed (Do & Vetterli, 2002).

3.2.1.1 Musical Instrument Classification Using GGD Modeling

In (Özbek & Savacı, 2007), we modeled the sub-band coefficients with GGD of isolated

note samples of different instruments obtained from one dimensional wavelet decomposition.

For this study, we use the University of Iowa Electronic Music Studios samples (Fritts, 1997).

We selected the samples recorded as ff (which are louder) and for the string instruments we

only used samples played with bowing.

To define the beginning and ending of the isolated note samples we used average energy

as a simple function. For a note x of length L, the average energy is given by

Eavg =
1

L

L∑
i=1

xi
2 (3.18)

We extracted the silent parts of the note sample according to the beginning and end points

found using a threshold defined as the %10 of the average energy.



55

Then for each music instrument, we concatenated all notes of that instrument to obtain

a music instrument sample. We applied three level one dimensional wavelet decomposition

having four sub-bands which three of them represent detail and one represent approximation

coefficients to find the wavelet coefficients of notes and instrument samples as shown in

Figure 3.8. For each sub-band we extracted the model parameters α and β. We generated a

feature vector of 8 × 1 for four sub-bands as {(α1, β1), (α2, β2), (α3, β3), (α4, β4)}. Then

using these parameters the classification of music instruments has been performed by

calculating the KL divergence between two different densities, one corresponding to the

note the other corresponding to the instrument sample. Using Equation (3.17), the similarity

between the note and the instrument is found and the note sample is classified according to

the minimum distance value.

Figure 3.8 Three-level wavelet decomposition.

Firstly, the classification of eight wind instruments is performed and the results are given

in Table 3.4. For each line, the dark fonts shows the best classification percentages. Results

show that only E[ Clarinet, Bass Flute, and Soprano Saxophone are classified correctly.

When the instrument names are grouped by removing their different frequency range

labels, we obtain the results given in Table 3.5.
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Table 3.4 Classification performance of eight wind instruments.

Correct (%) BC B[C E[C AF BF F AS SS

Bass Clarinet (BC) 6.5 4.3 8.7 8.7 13.1 13.1 21.7 23.9

B[ Clarinet (B[C) 0 17.4 28.3 19.6 2.1 2.1 10.9 19.6

E[ Clarinet (E[C) 2.6 17.9 28.2 20.5 0 2.6 2.6 25.6

Alto Flute (AF) 0 0 5.4 29.7 40.6 8.1 2.7 13.5

Bass Flute (BF) 0 0 5.3 18.4 65.8 0 0 10.5

Flute (F) 0 7.8 29.9 23.4 15.6 9.0 1.3 13.0

Alto Saxophone (AS) 3.1 0 1.6 10.9 48.4 10.9 9.4 15.7

Soprano Saxophone (SS) 0 4.7 12.5 29.7 3.1 17.2 3.1 29.7

Table 3.5 Classification performance of Clarinet, Flute, and Saxophone.

Correct (%) Clarinet Flute Saxophone

Clarinet 50.8 11.7 37.5

Flute 28.4 37.9 33.7

Saxophone 29.7 26.6 43.7

The divergence between the instruments are now more clear even the misclassification

rates are higher. Note that the higher classification ratios are obtained in correct classification

situations.

When we use string instruments and wind instruments together, we achieve better

classification ratios as given in Table 3.6. This is mainly because of the difference of the

instrument families.

Table 3.6 Classification performance of string and wind instruments (db1).

Correct (%) Bass Bassoon Cello Oboe Tuba

Bass 80.6 11.2 5.1 2.1 1.0

Bassoon 12.5 77.5 2.5 2.5 5.0

Cello 5.3 13.3 63.7 14.2 3.5

Oboe 0 0 8.6 91.4 0

Tuba 5.4 0 13.5 0 81.1

Up to this result we selected the mother wavelet function used in wavelet decomposition

as Daubechies ’db1’. To investigate the effect of different mother wavelet functions used

in wavelet decomposition we repeated the last experiment for different mother wavelet
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functions. Table 3.7 shows the classification performance using ’db2’ mother wavelet

function.

Table 3.7 Classification performance of string and wind instruments (db2).

Correct (%) Bass Bassoon Cello Oboe Tuba

Bass 48.0 34.7 8.2 7.1 2.0

Bassoon 7.5 80.0 0 2.5 10.0

Cello 1.8 13.3 61.9 22.1 0.9

Oboe 0 0 5.7 94.3 0

Tuba 2.7 5.4 0 0 91.9

If a biorthogonal wavelet function ’bior4.4’ as used in (Tzagkarakis et al., 2006) is

selected, the classification results are obtained as given in Table 3.8.

Table 3.8 Classification performance of string and wind instruments (bior4.4).

Correct (%) Bass Bassoon Cello Oboe Tuba

Bass 30.6 49.0 6.1 13.3 1.0

Bassoon 7.5 80.0 2.5 2.5 7.5

Cello 0 3.6 74.3 21.2 0.9

Oboe 0 0 20 80.0 0

Tuba 0 0 0 0 100

Similarly symlet ’sym2’ and coiflet ’coif2’ mother wavelet functions are used and the

classification results for all performed mother wavelet functions are given in the Figure 3.9

for comparison.

As it is observed from the results that, different mother wavelet functions do not

have an important effect on the classification performance. The correct recognition of a

musical instrument depends mainly on the musical instrument and then on the other music

instruments in the classification group. The classification results also depend on the available

samples of the instruments which are bounded by the capability of the instrument playing in

a defined frequency range.
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Figure 3.9 Classification performance for different mother wavelet functions.

3.2.2 Parameter Estimation of Alpha-Stable Distribution

The natural signals are known to have skewed distributions rather than symmetric

distributions (Kuruoğlu, 2001). Therefore, the musical instrument signals can be also

modeled with alpha-stable distribution. The features representing information associated

with different musical instruments can be obtained by determining the parameters of the

alpha-stable distribution of the musical instrument note samples (Çek, Özbek, & Savacı,

2009). In the sequel, we introduce the method given in (Kuruoğlu, 2001) for the estimation

of alpha-stable distribution parameters.

One dimensional alpha-stable distribution is expressed by characteristic function given in

(Samorodnitsky & Taqqu, 2000) as

φ(t) =





exp
{
jµt− γ|t|α (

1 + jβsign(t) tan(απ
2

)
)}

, if α 6= 1

exp
{
jµt− γ|t|α (

1 + jβsign(t) 2
π

log |t|)} , if α = 1

(3.19)



59

where α ∈ (0, 2], β ∈ [−1, 1], γ > 0, and µ ∈ (−∞,∞). The corresponding pdf for the

given characteristic function is formulated as

f(x) =
1

2π

∫ +∞

−∞
φ(t)e−jtxdt . (3.20)

The parameters given in Equation (3.19) characterize the pdf where the characteristic

exponent α determines the impulsiveness, the skewness parameter β represents the

symmetry, the scale parameter γ corresponds to the variance, and the mean of the density is

represented by the parameter µ. The parameters of the alpha-stable distribution for a given

musical instrument note sample sequence Xk are obtained by computing approximate values

of α, β, and γ parameters based on the method in (Kuruoğlu, 2001) by first evaluating the

pth order fractional moments Ap and Sp as

Ap =
1

K

K∑

k=1

|Xk|p, Sp =
1

K

K∑

k=1

sign(Xk)|Xk|p, (3.21)

where the detailed selection criteria for appropriate p value is given in (Kuruoğlu, 2001).

The estimated alpha parameter α̂, can then be obtained from the measurements of

sequence Xk by solving

sinc(
pπ

α̂
) =

[
q

(
ApA−p

tan(q)
+ SpS−p tan(q)

)]−1

, (3.22)

where q = (pπ)/2. The ratio estimator for β can be determined as

β̂ =
tan

(
α̂
p

arctan
[

Sp

Ap
tan

(
pπ
2

)])

tan
(

α̂π
2

) , (3.23)



60

and the scale parameter of alpha-stable distribution can be estimated as

γ̂ = |cos (θ)|
(

Γ(1− p)

Γ
(
1− p

α̂

) cos
(

pπ
2

)

cos
(

pθ
α̂

)Ap

)α̂/p

, (3.24)

where θ = arctan
(
β̂ tan

(
α̂π
2

))
and Γ(·) is the Gamma function with z > 0

Γ(z) =

∫ ∞

0

e−ttz−1dt . (3.25)

Once the parameter of the alpha-stable distribution have been found by the formulas above,

the note samples of the instruments can be classified using these distribution parameters as

the features.

3.2.2.1 Classification Using Support Vector Machines

In this section, we give simulation results using the instrument samples of University

of Iowa Electronic Music Studios (Fritts, 1997). We selected Viola and Violin samples

played with bowing for representing string instruments, Soprano Saxophone and Trumpet

for representing wind instrument families, with the number of samples 271, 283, 192, and

212, respectively. We constructed the feature matrix AN×4 for each instrument whose

rows represent note samples with N samples, whereas columns represent parameters of the

corresponding alpha-stable distribution, i.e., α, β, γ, and µ.

In most practical implementations, the satisfactory results may not be achieved without

performing a pre-processing step. The singular value decomposition (SVD) has been

presented to improve classification performance (Bishop, 1995; Haykin, 1999). The feature



61

vector obtained by the alpha-stable distribution parameters are assumed to have outliers and

therefore a filtering process using SVD has been applied before performing the classification.

We implemented SVM classifiers using one-vs-all method. Each classifier is built as a

hard margin classifier and the simulations were performed using RBF kernel. The kernel

parameter σ is varied from 0.1 up to 1 with steps 0.1. The half of the data set for each

instrument was used in training and the rest of the data was used for testing. The presented

results are the average values obtained after a 10-fold stratified cross-validation scheme.

Figure 3.10 presents average performance, sensitivity, and specificity values in percentage

for different parameters of RBF kernel while Table 3.9 presents average confusion matrix

computed using RBF kernel with σ = 1. Both demonstrate the efficiency of the method

resulted with over 90% in average classification achieved for all instruments.
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Figure 3.10 Performance, sensitivity, and specificity values in percentages.
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Table 3.9 Confusion matrix in percentages using RBF kernel with σ = 1.

Instrument Classified As

Viola Violin Saxophone Trumpet

Viola 97.6 0.0 0.0 2.4

Violin 0.2 93.0 0.0 6.8

Saxophone 0.2 0.0 99.4 0.4

Trumpet 2.3 2.5 3.0 92.2

3.3 Musical Instrument Classification Using Wavelet Ridges

The set of attributes which are independent of signal length, location, and magnitude;

robust and reliable; discriminating; having a few parameters; and applicable for fast

classification routines have been called as signatures (Venkatachalam & Aravena, 1999).

Afterwards, a methodology for signal classification has been introduced based on

instantaneous energy distribution which called as pseudo power signature. The approach

depends on the scalogram representation which has been offered to be used as a power

signature to characterize the signal.

A similar way of characterizing the signal using the time-frequency information is to

define the ridges of the signal. There are several ridge detection methods including stationary

phase method which calculates the ridges using stationary point theorem (Delprat, Escudié,

Guillemain, Kronland-Martinet, Tchamitchian, & Torrésani, 1992; Todorovska, 2001), and

the simple method which directly finds the local maxima of the scalogram (Özkurt, 2004;

Özkurt & Savacı, 2005; Todorovska, 2001).

Before introducing the wavelet ridges, some necessary concepts will be briefly presented.

The instantaneous frequency of a signal is defined as the derivative of the phase of the signal.

Then, the signals can be modeled using a frequency-modulated signal fitted to the change of
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the main frequency. For a multi-component signal s(t) with L components, the instantaneous

amplitudes Al(t) and the instantaneous phases φl(t) can be described by

s(t) =
L∑

l=1

Al(t)e
jφl(t) , (3.26)

then the wavelet transform can be written (Delprat et al., 1992; Todorovska, 2001; Carmona,

Hwang, & Torrésani, 1997) as

Ws(a, b; Ψ) =
1

2

L∑

l=1

Al(b)e
jφl(b)Ψ̂∗(aφ′l(b)) + r(a, b) , (3.27)

with r(a, b) ∼ O(|A′
l|, |φ′′l |) where the primes denote the derivatives. Therefore, if the

Fourier transform of the mother wavelet function Ψ̂(ω) is localized near a certain frequency

ω = ω0, the scalogram is localized around L curves

al = al(b) =
ω0

φ′l(b)
, l = 1, . . . , L (3.28)

which are named as the ridges of the wavelet transform or simply wavelet ridges (Delprat

et al., 1992; Todorovska, 2001).

A ridge determination technique based on SVD was proposed in (Özkurt, 2004; Özkurt &

Savacı, 2005), where the scalogram matrix given in Equation (2.12) is factorized by SVD.

By selecting only the dominant components associated with the signal, an approximated

scalogram matrix can be obtained. Figure 3.11 shows an example of a multi-component

signal, its scalogram calculated using continuous wavelet transform, and the corresponding

wavelet ridges marked by employing the SVD-based ridge determination procedure.
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Figure 3.11 A multi-component signal, its scalogram, and the corresponding

wavelet ridges.

As shown in Figure 3.11, the wavelet ridges identify the wavelet coefficients of a multi-

component signal possessing higher energy concentration. Since the musical instruments

also have multi-component nature, the ridges indicate discriminative properties of each

instrument sample to be used for classification.

For this study, we used the University of Iowa Electronic Music Studios (Fritts, 1997)

musical instrument note samples. For the experiments, we choose Alto Saxophone (192),

Bassoon (122), B[ Clarinet (139), Flute (227), and Oboe (104) as woodwind instruments,

Violin (100) and Cello (113) as string instruments, with the number of samples given in

parentheses.
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3.3.1 Feature vector construction

In the first stage, all of the note sample signals are downsampled by four in order to

decrease the computation time. The sound database consists of notes which of each is

approximately two seconds long and is immediately preceded and followed by ambient

silence. In order to discard the silence, we used a threshold of energy to determine the

onset and offset of the note samples. The threshold value is selected as the 1% of the average

energy given by Equation (3.18).

The complex Morlet wavelet

ψ(t) =
1√
2π

ejω0te−t2/2 , (3.29)

is selected as the mother wavelet where the magnitude and phase of the wavelet coefficients

can be easily separated. Also, the Gaussian shape of this mother wavelet function provides

a smooth energy distribution, thus the resulting wavelet ridges effectively display this

distribution over the time-frequency plane (Mallat, 1999). However, since the complex

Morlet wavelet function is not orthogonal such as Daubechies wavelet function, the fast

algorithms for this wavelet function do not exist. Moreover, although the overall computation

time directly depends on the length of the signal, for a given signal length or a frame, the

size of the scalogram matrix computed in all frequency ranges becomes extensively large

which consumes huge memory. Therefore, we propose a predetermination of frequency

range of the signals by FFT. The frequency range of the note samples is found using FFT

with a Hanning window, where the scalogram is then calculated only around the minimum-

maximum frequency range. Time frames of approximately 186 ms length are used by

25% overlapping and the scalogram of each note sample is calculated using the SVD-

based wavelet ridge determination method. From this scalogram, we labeled the wavelet
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ridges. Figure 3.12 shows an example of Oboe A4 note (440 Hz), the scalogram, and the

corresponding wavelet ridges.

Figure 3.12 Oboe note example, its scalogram, and the corresponding wavelet

ridges.

As each instrument sample has a different energy distribution over the time-frequency

plane due to its harmonic nature and performance type, we novelly attempt to use the

wavelet ridges by marking the energy localizations to recognize the instrument. Therefore,

for extracting the time and frequency information from the wavelet ridges, a feature vector

of length 21 for each note sample is built as: For the first 10 element of this vector, the

frequency values of the ridges are sorted according to the number of their occurrence and

the foremost 10 frequency values are stored. For the next 10 element of the feature vector,

the time instants of the ridges are sorted according to the number of times they occur and

the foremost 10 time instants are stored. For each frame, the number of ridges are summed

and the average number of ridges over the frames for each note sample is included as the last

element of the feature vector. Thus the harmonic structure of the signal which varies with

time is aimed to be captured.
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3.3.2 SVM Classification

After the construction of feature vectors from the wavelet ridges as described in the

previous section, we evaluate and confirm the usefulness of the feature vectors using SVM

classifiers. For this purpose, we perform multi-class classifications of musical instruments

using the Libsvm optimizer of the Spider software (Spider, 2009). The Spider is an

object oriented machine learning library where the algorithms can be plugged together and

compared with each other. One of the algorithms integrated in Spider is the LIBSVM

(Chang & Lin, 2001). Although the LIBSVM is an individual software for SVMs supporting

multi-class classifications, it also provides a simple interface facilitating its usage within

Spider.

The feature vectors are normalized before introducing to the SVM classifiers. We

implement the SVMs as hard margin classifiers where the regularization parameter C is

taken as infinity. The one-vs-rest method is considered for multi-class classification approach

with linear, polynomial, and RBF kernels. We perform simulations with varying kernel

parameters such as: d varying from 1 to 5 for polynomial kernel and σ varying from 0.1

up to 2 with steps 0.1 for RBF kernel. All of the presented results are the average values

obtained after a 10-fold stratified cross-validation scheme, shown to be the best method for

model selection (Kohavi, 1995).

The initial results were based on all possible two-class classifications for only five

woodwind instruments (Özbek, Özkurt, & Savacı, 2006). Later we organized the

experimental study in two groups (Özbek, Özkurt, & Savacı, 2009): In one group, five

woodwind instruments are selected as in the work of (Essid et al., 2004b). For the other

group, three woodwind-two string instruments are used as in (Eggink & Brown, 2004). The

correct classification results are given as confusion matrices presented in tables. The bold

fonts indicate the highest values for each instrument. For the five woodwind instruments

case, the results achieved with the linear kernel are given in Table 3.10.
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Table 3.10 Confusion matrix for recognition of five woodwind instruments with the linear kernel.

Stimulus\Response Alto Sax. Bassoon B[ Clarinet Flute Oboe

Alto Saxophone 0.32 0.23 0.02 0.32 0.11

Bassoon 0.06 0.70 0.06 0.15 0.03

B[ Clarinet 0.21 0.12 0.04 0.55 0.08

Flute 0.08 0.03 0.04 0.78 0.07

Oboe 0.13 0.27 0.04 0.32 0.24

We agree with (Essid et al., 2004b) that using the linear kernel is advantageous since

it is inexpensive in computation. However according to our results, all misclassifications to

Flute except Bassoon seems unavoidable. The higher number of Flute samples than the other

instruments could be an explanation of this tendency. Though it seems more relevant with

the type of kernel, that is, a simple kernel such as the linear kernel may not be sufficient to

discriminate instruments.

For polynomial kernel, with an increase in the parameter value the recognition rates for

instruments are decreased. However, the highest results for each instrument are achieved

with correct identification of instruments. Table 3.11 shows the confusion matrix for

polynomial kernel with d = 5.

Table 3.11 Confusion matrix for recognition of five woodwind instruments with polynomial kernel

d = 5.
Stimulus\Response Alto Sax. Bassoon B[ Clarinet Flute Oboe

Alto Saxophone 0.38 0.10 0.21 0.19 0.12

Bassoon 0.12 0.63 0.09 0.08 0.08

B[ Clarinet 0.18 0.09 0.34 0.26 0.13

Flute 0.17 0.08 0.16 0.47 0.12

Oboe 0.16 0.13 0.21 0.17 0.33

For RBF kernel, comparably better results are observed except for B[ Clarinet and

Oboe. Again, the highest results for each instrument are obtained with correct identification.

Table 3.12 displays the confusion matrix for RBF kernel with a typical value σ = 1.
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Table 3.12 Confusion matrix for recognition of five woodwind instruments with RBF kernel σ = 1.

Stimulus\Response Alto Sax. Bassoon B[ Clarinet Flute Oboe

Alto Saxophone 0.43 0.11 0.18 0.16 0.12

Bassoon 0.05 0.75 0.08 0.08 0.04

B[ Clarinet 0.22 0.10 0.30 0.26 0.12

Flute 0.18 0.08 0.13 0.55 0.06

Oboe 0.20 0.14 0.19 0.16 0.31

Both Table 3.11 and Table 3.12 demonstrate the effect of increasing complexity of the

kernel function to the classification performance for only one parameter value. Figure 3.13

shows the classification performance for varying parameters of the polynomial and RBF

kernels.

This performance can also be seen from the number of instruments that are correctly

identified with respect to the kernel parameters, as presented in Figure 3.14 for each

instrument. The parameter labels L, p, and r denote respectively the linear, polynomial,

and RBF kernels combined with the parameter values for that kernel. Bassoon and Flute

have higher identification performance as shown both in Figure 3.13 and Figure 3.14.

A statistical analysis is also performed using balanced accuracy (BACC) scores to

evaluate the performance. Balanced accuracy is defined as the average value of sensitivity

and specificity. The mean and standard deviation of the BACC scores in percentage are given

in Table 3.13.

For the second experimental group consists of three woodwind-two string instruments,

the results achieved with linear kernel are given in Table 3.14. Note that a tendency to the

Flute is limited only with B[ Clarinet. Moreover, Oboe is misclassified mainly with Flute

and Cello.
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Figure 3.13 Classification performance of five woodwind

instruments for polynomial and RBF kernels with varying

parameters.

Similar to the five woodwind classification case, the highest results for each instrument

are obtained with correct identification of instruments. Table 3.15 displays the confusion

matrix for polynomial kernel with d = 3.

Slightly better results are observed with RBF kernel than polynomial kernel. For

comparison, the confusion matrix for RBF kernel with σ = 1 is given in Table 3.16.
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Figure 3.14 The number of correctly identified instruments for five woodwind instruments

classification.

Table 3.13 Balanced accuracy scores for five woodwind instruments.

BACC (%) Linear Polynomial (d)

1 2 3 4 5

Mean 67.93 67.74 70.42 66.33 65.80 64.80

Std. deviation 4.15 4.93 6.78 4.43 3.66 3.56

RBF (σ)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Mean 63.75 62.87 64.38 64.23 65.09 66.08 66.13 67.30 68.44 67.91

Std. deviation 3.34 2.65 2.98 1.48 2.49 4.14 3.09 2.72 3.63 4.00

RBF (σ)

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Mean 69.69 70.24 70.30 69.78 69.60 70.52 69.69 69.92 71.39 71.46

Std. deviation 3.87 4.97 4.79 4.50 3.95 4.22 5.46 4.87 5.38 5.90

Table 3.14 Confusion matrix for recognition of three woodwind and two string instruments with linear

kernel.
Stimulus\Response Flute B[ Clarinet Oboe Violin Cello

Flute 0.85 0.01 0.05 0.01 0.08

B[ Clarinet 0.68 0.12 0.10 0.05 0.05

Oboe 0.32 0.03 0.18 0.14 0.33

Violin 0.04 0.01 0.10 0.84 0.01

Cello 0.20 0.04 0.02 0.03 0.71
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Table 3.15 Confusion matrix for recognition of three woodwind and two string instruments with

polynomial kernel d = 3.
Stimulus\Response Flute B[ Clarinet Oboe Violin Cello

Flute 0.57 0.19 0.11 0.04 0.09

B[ Clarinet 0.29 0.40 0.13 0.07 0.11

Oboe 0.18 0.22 0.35 0.12 0.13

Violin 0.07 0.18 0.12 0.61 0.02

Cello 0.12 0.17 0.12 0.04 0.55

Table 3.16 Confusion matrix for recognition of three woodwind and two string instruments with RBF

kernel σ = 1.
Stimulus\Response Flute B[ Clarinet Oboe Violin Cello

Flute 0.62 0.18 0.10 0.02 0.08

B[ Clarinet 0.30 0.38 0.12 0.10 0.10

Oboe 0.20 0.14 0.39 0.12 0.15

Violin 0.04 0.17 0.15 0.62 0.02

Cello 0.13 0.13 0.13 0.02 0.59

The effect of kernel function to the classification performance can be tracked from both

Table 3.15 and Table 3.16 for a single parameter value. Figure 3.15 shows the classification

performance for varying parameters of the polynomial and RBF kernels. Note that for

polynomial kernel, increasing the parameter (or the complexity) does not help to achieve

better classification ratios. However, the achievement in classification ratios for Flute, Violin,

and Cello by increasing the RBF kernel parameter is obvious.

The same conclusion can be made using the number of instruments that are correctly

identified as shown in Figure 3.16.

Similarly, the mean and the standard deviation of the BACC scores in percentage for the

second group of instruments are given in Table 3.17. A small amount of increase in the

accuracies compared to the five woodwind classification case is achieved.



73

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d

C
la

ss
ifi

ca
tio

n 
pe

rf
or

m
an

ce

Classification performance for polynomial kernel

 

 

Flute
Bb Clarinet
Oboe
Violin
Cello

0.10.20.30.40.50.60.70.80.9 1 1.11.21.31.41.51.61.71.81.9 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

C
la

ss
ifi

ca
tio

n 
pe

rf
or

m
an

ce

Classification performance for RBF kernel

 

 

Flute
Bb Clarinet
Oboe
Violin
Cello

Figure 3.15 Classification performance of three woodwind and

two string instruments for polynomial and RBF kernels with

varying parameters.

Results for both five woodwind instrument case and three woodwind-two string

instrument case present similar results for varying kernels and parameters. The classification

performance of our method is satisfactory when compared to the classification performance

of the methods using acoustic features and MFCCs in (Eggink & Brown, 2004; Essid

et al., 2004b). The differences are the consequences of the different combination of the
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Figure 3.16 The number of correctly identified instruments for three woodwind and two string

instruments classification.

Table 3.17 Balanced accuracy scores for three woodwind and two string instruments.

BACC (%) Linear Polynomial (d)

1 2 3 4 5

Mean 75.81 74.54 72.82 69.55 69.49 68.21

Std. deviation 6.20 6.37 3.37 3.53 4.06 3.26

RBF (σ)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Mean 63.26 65.17 65.71 66.35 68.25 68.56 69.44 70.73 70.63 71.16

Std. deviation 2.73 4.07 3.60 3.54 3.47 3.25 3.98 3.99 3.37 3.33

RBF (σ)

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Mean 71.34 71.73 72.24 73.08 73.10 72.98 72.52 73.16 74.01 74.38

Std. deviation 3.83 3.83 4.51 3.98 4.45 4.05 4.24 3.72 4.41 4.04

instruments, where each instrument is classified according to its multi-class grouping, as

well as the limited discriminative capability of the linear and polynomial kernel functions.

3.4 Classification of Turkish Musical Instruments

The effectiveness of MFCC used for recognition of Western musical instruments has

been shown in various studies as given in Section 2.1.3. However, the identification and
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classification of musical instruments consider mostly Western music. There have been very

few number of studies investigating Turkish music in international publications. Besides,

they mainly dealt with makam, scale, interval, fundamental frequency or pitch, but they did

not consider the classification of musical instruments (Akkoç, 2002; Yarman, 2007; Bozkurt,

2008).

In this work (Özbek & Savacı, 2009c), we performed classification of Turkish musical

instruments using MFCC features and SVM. We used seven Turkish musical instruments:

Kanun, Violin, Kemençe, Clarinet, Ney, Tambur, and Ud. The samples were extracted from

solo instrument performances called as Taksim with various melody types named as Makam.

From a total of 293 recordings, 5-second long excerpts were extracted and for each excerpt a

MFCC vector with dimension 13 were computed. The number of recordings and the samples

extracted for each of the instrument were given in Table 3.18.

Table 3.18 The number of recordings and samples used in classification.

Name Number of recordings Number of samples

Kanun 21 503

Violin 32 1190

Kemençe 24 514

Clarinet 30 1412

Ney 44 971

Tambur 92 5958

Ud 50 1996

Total 293 12544

The feature vectors are normalized for classification performed with Spider toolbox

(Spider, 2009). Based on the previous study (Özbek et al., 2009) explained in Section 3.3,

we selected one-vs-rest method for multi-class classification. Approximately half of the

data is used for training and the rest for testing. The training and test samples were

chosen from different recordings. For the kernel parameter, we selected Gaussian kernel

and the parameter σ was varied from 0.1 with 0.1 steps to 1. Results were obtained using

confusion matrices after a 10-fold stratified cross-validation scheme (Kohavi, 1995). In order

to evaluate the results statistically, sensitivity and specificity values were also calculated.
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Among the confusion matrices calculated for every parameter value, the confusion

matrices for σ = 1 including the ratio were given in Table 3.19 and Table 3.20, for training

and testing samples, respectively.

Table 3.19 Confusion matrix for training samples (σ = 1).

Sayı (Oran) Kanun Violin Kemençe Clarinet Ney Tambur Ud

Kanun 192 (%82) 0 0 41 0 0 1

Violin 1 529 (%91) 0 26 18 6 1

Kemençe 0 0 238 (%99) 0 0 2 0

Clarinet 0 2 0 692 (%99) 2 0 0

Ney 4 9 7 19 406 (%86) 26 0

Tambur 1 19 2 7 58 2875 (%97) 0

Ud 0 0 1 0 0 1 982 (%100)

Table 3.20 Confusion matrix for test samples (σ = 1).

Sayı (Oran) Kanun Keman Kemençe Clarinet Ney Tambur Ud

Kanun 100 (%37) 9 6 75 4 71 4

Violin 1 464 (%76) 0 27 56 47 14

Kemençe 0 1 257 (%94) 1 5 9 1

Clarinet 7 5 1 622 (%87) 29 18 34

Ney 6 15 16 44 342 (%68) 71 6

Tambur 25 71 39 25 159 2563 (%86) 114

Ud 0 19 1 3 0 5 984 (%97)

As can be seen from both of the tables, the performance of Kanun is lower than the

remaining instruments and it is mostly confused with Clarinet and Tambur. The reason can

be shown as the polyphonic properties of Kanun, which is also referred as the piano of

Turkish musical instruments. Besides, Tambur is confused mostly with Ney, while Ney is

confused with the rest of instruments.

The average classification performance, sensitivity, and specificity rates obtained for

every test samples were given in Figure 3.17.

As it is seen, in the worst case, an average performance around 75% was obtained, while

for most σ values, reaching up to 90%. The higher rates of sensitivity and selectivity
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Figure 3.17 Average classification performance, sensitivity, and selectivity for

varying kernel parameter.

over 90% statistically verifies the results. Thus, although it has been known that MFCCs

are effective in representing Western musical instruments, we demonstrated that they are

effective in Turkish musical instruments while the weakness of MFCC for polyphonic

instruments remains.



CHAPTER FOUR

DETERMINATION OF FUNDAMENTAL FREQUENCY
USING CORRENTROPY FUNCTION

Music expresses that which cannot be said and on which it is impossible to be silent.

Victor Hugo

In this chapter, we present the studies using correntropy function for fundamental

frequency determination of musical instruments. In the first section, we begin with a

brief information on correntropy function. Afterwards, we determined the fundamental

frequency of musical instrument signals using correntropy and demonstrated the advantage

of correntropy function compared to the autocorrelation function (ACF) based on the peak

width. We further tracked the fundamental frequencies and performed a comparison of the

performance with respect to an autocorrelation-based algorithm.

4.1 Correntropy

RKHS theory has been evolved in two areas: statistical signal processing and statistical

learning theory (Xu, 2007). In the statistical learning as in SVMs, RKHS was used as a

high dimensional feature space where the inner product is efficiently computed via kernel

trick. Many kernel based algorithms have been proposed afterwards such as kernel PCA

(Schölkopf, Smola, & Müller, 1998) and kernel ICA (Bach & Jordan, 2002). On the other

hand in statistical signal processing, RKHS was introduced by Parzen concerning second

order processes on time series (Parzen, 1970). The relation between the non-negative definite

covariance function and RKHS was outlined, presenting the unifying role of RKHS.

78
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The information-theoretic learning (ITL) (Erdoğmuş & Principe, 2006) has been offered

combining adaptive filtering and information theories. It is a framework to nonparametrically

adapt systems based on entropy and divergence (Liu, Pokharel, & Principe, 2007). The cost

functions were considered in terms of Rényi’s entropy

Hα(x) =
1

1− α
log

∫
pα(x)dx, α > 0 (4.1)

of a random variable x with pdf p(x), where selecting α = 2 gives quadratic Rényi’s entropy.

One of the alternative distance measures was based on the Csiszar divergence

Dp1‖p2 =

∫
p1(x)h

(
p1(x)

p2(x)

)
dx , (4.2)

defined for an arbitrary convex function h(·) which the specific choice of h(·) = −log(·)
gives the KL divergence as in Equation (3.15). Both in this measure and in other measures

such as Euclidean divergence

Dp1‖p2 =

∫
(p1(x)− p2(x))2 dx =

∫
p2

1(x)dx− 2

∫
p1(x)p2(x)dx +

∫
p2

2(x)dx, (4.3)

the moments of the pdf’s has been of interest with the interpretation

∫
pα(x)dx = E

[
pα−1(x)

]
. (4.4)
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The first moments of the pdf (
∫

p2(x)dx) has been named as information potential while

the cross term between two pdf’s (
∫

p1(x)p2(x)dx) has been referred to cross information

potential. Using these quantities and entropy estimation based on Parzen windowing

p̂(x) =
1

N

N∑
i=1

κ(x, xi) , (4.5)

for a given pdf and N samples, a close relationship between ITL and kernel methods has

been suggested. Then, by defining a generalized correlation function (GCF) in terms of inner

products of vectors in a kernel feature space, combination of two RKHS kernel approaches

in a single function has been established.

The generalized correlation or correntropy function is defined like autocorrelation

Rx = E[x(t1)x(t2)], as a function from T × T into R+ using a kernel function κ as

(Santamarı́a, Pokharel, & Principe, 2006):

V (t1, t2) = E[κ(x(t1), x(t2))] , (4.6)

where x(t) ∈ Rd, t ∈ T is a stochastic process with an index set T , and E denotes the

expectation operator. Correntropy uses the symmetric Gaussian kernel function given by

κ(xi, xj) =
1√
2πσ

exp

{
−(xi − xj)

2

2σ2

}
, (4.7)

where σ is referred as the kernel size and controls the spread of data in the feature space.



81

For the discrete samples of a signal x(n) with N samples, the autocorrelation function

can be written as

R(τ) =
1

N

N−1∑
n=0

x(n)x(n + τ) . (4.8)

Similarly, the correntropy function can be written (Santamarı́a et al., 2006) as in the form of

Equation (4.8)

V (τ) =
1

N

N−1∑
n=0

κ(x(n), x(n + τ)) , (4.9)

denoting that the correntropy function can be viewed as a standard correlation function for

the feature space calculated via kernel function. As it is known, the conventional correlation

function only captures the second order statistics of the data. However, when the Gaussian

kernel given in Equation (4.7) was used inside the Equation (4.6) and then applying Taylor

series expansion

V (t1, t2) =
1√
2πσ

∞∑

k=0

(−1)k

(2σ2)kk!
E[(x(t1)− x(t2))

2k], (4.10)

second order moments of (x(t1) − x(t2)) are obtained. Obviously, correntropy function

characterizes some of the higher order statistics of the data which represents its superiority

to the standard correlation function. Moreover, it is shown (Santamarı́a et al., 2006; Liu

et al., 2007) that the correntropy function has various properties which led its application

for many signal processing and machine learning problems (Li, Liu, & Principe, 2007;

Xu, 2007; Xu, Bakardjian, Cichocki, & Principe, 2008a; Xu & Principe, 2008; Xu, Paiva,

(Memming), & Principe, 2008b; Liu, Pokharel, & Principe, 2008; Park & Principe, 2008;

Gündüz & Principe, 2009).
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4.2 Determination of Fundamental Frequency

It is mentioned in previous section that the correntropy function characterizes some of

the higher order statistics of the data. Its superiority to the autocorrelation function which

represents only second order statistics has been shown in pitch determination of speech

signals (Xu & Principe, 2007, 2008). In this work (Özbek & Savacı, 2009a), we determined

the F0 of musical instrument signals using correntropy function. However, our intention is

to focus on finding the F0 of the musical instrument signals but not the pitch. Thus, we

offer to use only time representation for F0 determination based on correntropy function.

Therefore, we do not to decompose the signal using filter banks and further calculate F0

in a summary correntropy function as in (Xu & Principe, 2007, 2008). Instead, the novelty

of the study is to simply and directly calculate the correntropy function and determine the

fundamental frequencies of the isolated musical instrument note samples and their synthetic

mixtures.

We novelly gave simulation results for autocorrelation and correntropy functions using

the instrument samples of University of Iowa Electronic Music Studios (Fritts, 1997). The

frequency values and fundamental periods of the note samples can be found in Table 2.1.

We presented the results in four cases: single note sample, mixed note sample, single note

sample played with/without vibrato, and single note sample played with bowing/plucking.

4.2.1 Single note sample

In the first example, the autocorrelation and correntropy functions of Oboe A4 note

sample are calculated. Figure 4.1 shows the normalized autocorrelation and correntropy

functions with kernel size selected as σ = 0.01. The lag time where the highest peak exists

shows us the F0 supposed to be at A4 which is 440 Hz according to the international concert

pitch tuning.
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Figure 4.1 Autocorrelation (top) and correntropy (bottom) functions of Oboe

A4 note sample.

Obviously, the peak obtained with correntropy function has narrower width than the ACF.

Note that the other two comparably smaller peaks are suppressed. Figure 4.2 shows another

example of the autocorrelation and correntropy functions using Violin D5 note sample. The

kernel size is again σ = 0.01 and the peak is now at approximately 1.70 ms in accordance

with the frequency of note D5.

The importance of the kernel size is well-known for kernel methods as kernel function

spreads the data accordingly. As correntropy is based upon the kernel framework and

specifically on Gaussian kernel function, different kernel sizes results with different

correntropy functions. If the kernel size is set too large the correntropy function approaches

to the correlation function. Therefore, as given in (Xu & Principe, 2007), Silverman’s rule of
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Figure 4.2 Autocorrelation (top) and correntropy (bottom) functions of Violin

D5 note sample.

thumb (Silverman, 1986) can be used to calculate an optimal kernel size of a N -length data

given by

σ = 0.9AN−1/5, (4.11)

where A is the smaller value between the standard deviation of data samples and data

interquartile range scaled by 1.34. Figure 4.3 shows the correntropy functions of Oboe A4

note sample with different kernel sizes.

The correntropy function marked with S in Figure 4.3 is computed with the kernel size

calculated using Silverman’s rule given in Equation (4.11). As it is seen from the Figure 4.3,

changing the kernel size effects the width of the peak in the correntropy function. With the

largest kernel size, the correntropy function resembles ACF. Although the fluctuations of the



85

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (ms)

N
or

m
al

iz
ed

 a
m

pl
itu

de

Correntropy functions with different kernel sizes

 

 

σ = 0.001

σ = 0.01

σ = 0.1

σ = 1

σ = S

Figure 4.3 Correntropy functions of Oboe A4 note sample with different kernel

sizes.

wave do not seem to affect the F0 determination for this example, wider widths may occur as

in the case of Alto Saxophone F4 note sample given in Figure 4.4 which may be a problem

for multiple frequency determination.

4.2.2 Mixed note sample

When we mix two note samples, the problem of wide width is of importance. Obviously,

this is not the case for a sample composed of two notes with the same F0. A synthetically,

equally weighted mixture of Oboe and Alto Flute A4 note samples with different kernel sizes

are given in Figure 4.5.

When the mixture is composed of the signals playing the same notes, the signal preserves

its quasi-periodicity and correntropy is able to find the F0. If the fundamental frequencies
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Figure 4.4 Correntropy functions of Alto Saxophone F4 note sample with

different kernel sizes.
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Figure 4.5 Correntropy functions of equally weighted mixture of Oboe and

Alto Flute A4 note samples with different kernel sizes.
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are different as for Oboe A4 and Alto Flute F4 note samples shown in Figure 4.6, then

the mixture is no more quasi-periodic. Although autocorrelation does not find the correct

frequencies of the components, correntropy determines the two individual fundamental

frequencies. However, the selection of the kernel size seems very crucial when there are

many fundamental frequencies to be determined. With a kernel size (σ = 0.1) as in

Figure 4.6, it may be difficult to find the true fundamental frequencies among the various

peaks.
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Figure 4.6 Correntropy functions of equally weighted mixture of Oboe A4 and

Alto Flute F4 note samples with different kernel sizes.

In real situations the overlapping of the notes are not necessarily equally weighted. Some

note may be played louder while the other does not, even if we assume that they are played

synchronously. In order to demonstrate the different mixing conditions, we calculated the

correntropy function for 100 different mixing condition of the same two note samples Oboe

A4 and Alto Flute F4. Figure 4.7 shows the average values of correntropy functions.
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Figure 4.7 Average values of correntropy functions of randomly weighted

mixture of Oboe A4 and Alto Flute F4 note samples with different kernel

sizes.

The closeness of Figure 4.7 to Figure 4.6 displays that the correntropy function is robust

to different mixing conditions and can be efficiently used in realistic scenarios.

Although correntropy function has narrower peak width than ACF, when the mixture is

composed of neighborhood notes, that is, when the frequencies are close, it may be difficult

to detect each frequency. Figure 4.8 shows an example of a mixture sample composed of

Oboe A4 and Alto Flute Ab4 note samples.

Figure 4.9 shows another example of a mixture sample composed of Horn Db2 and

Bassoon D2 note samples. Although the frequencies are much more closer than the previous

example, correntropy function can determine the frequencies of the individual note samples.

An important result obtained by these experiments is that, by using some tracking algorithm
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Figure 4.8 Correntropy functions of equally weighted mixture of Oboe A4 and

Alto Flute Ab4 note samples with different kernel sizes.

similar to the pitch tracking algorithms, it seems possible that correntropy can be used for

finding multi-frequencies.

The presented examples denote the superiority of correntropy function to ACF. In order

to evaluate the correntropy function for all of the instrument samples we calculate the width

of the peaks with an algorithm based on FWHM. The algorithm first finds the peak of

the function and the two valleys in both directions around the peak. Then based on the

average distance between the valleys, it calculates the width at half of the height of the

peak value. Table 4.1 shows the average width values of the peaks of instrument samples

for autocorrelation and correntropy functions obtained with the parameter value calculated

using Silverman rule.
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Figure 4.9 Correntropy functions of equally weighted mixture of Horn Db2

and Bassoon D2 note samples with different kernel sizes.

Obviously, correntropy function has narrower peak widths than ACF. The smallest width

obtained for Oboe corresponds to the most stable pitch and confirms the use of Oboe as a

tuning standard by orchestras.

4.2.3 Note sample played with/without vibrato

We analyzed the two note samples played with and without vibrato. Figure 4.10 shows

Soprano Saxophone G4 note sample without (top) and with vibrato (bottom).

Results show no major difference therefore the correntropy function is found to be not

efficient for finding the vibrato. This is also confirmed with the average width values of the

peaks of wind instrument samples played with and without vibrato as given in Table 4.2.
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Table 4.1 Average width values of the peaks of musical instrument samples.

Instrument Name Average width (ms)

Autocorrelation Correntropy

Alto Flute 0.74 0.07

Alto Saxophone 0.90 0.05

Bass Clarinet 1.06 0.05

Bass Flute 1.22 0.09

Bassoon 0.89 0.07

Bass Trombone 0.63 0.17

B[ Clarinet 0.78 0.04

Cello 1.08 0.26

Double Bass 3.52 0.36

E[ Clarinet 0.73 0.03

Flute 0.55 0.04

Horn 0.85 0.13

Oboe 0.34 0.01

Soprano Saxophone 0.58 0.02

Tenor Trombone 0.53 0.09

Trumpet 0.30 0.02

Tuba 1.09 0.20

Viola 0.65 0.20

Violin 0.51 0.10

Table 4.2 Average width values of the peaks of wind instrument samples played with and without

vibrato.
Average width (ms)

Instrument Name Autocorrelation Correntropy

Vibrato Non-vibrato Vibrato Non-vibrato

Alto Saxophone 0.92 0.88 0.04 0.06

Flute 0.54 0.57 0.03 0.04

Soprano Saxophone 0.58 0.58 0.02 0.02

Trumpet 0.30 0.30 0.02 0.03

4.2.4 Note sample played with bowing/plucking

We further analyzed two samples of Violin played with bowing (arco) and plucking

(pizzicato). Figure 4.11 shows the correntropy functions with different kernel sizes of Violin

C5 note sample played with bowing (top) and the correntropy functions of the same note

played with plucking (bottom).
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Figure 4.10 Correntropy functions of Soprano Saxophone G4 note sample

played without vibrato (top)/with vibrato (bottom) with different kernel sizes.

The difference of the two samples seems on the fluctuations of the correntropy function

where the correntropy function of the sample played with plucking has less waves and is

more flat, and the width of the peak is not so small. Although from Figure 4.11 it seems that
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Figure 4.11 Correntropy functions of Violin C5 note sample played with

bowing (top)/plucking (bottom) with different kernel sizes.

correntropy function can be used to discriminate for bowing/plucking based on the shape

of the peaks, the width values do not give extra information than the ACF, verified with the

average width values of the peaks of the samples given in Table 4.3.
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Table 4.3 Average width values of the peaks of string instrument samples played with bowing (arco)

and plucking (pizzicato).
Average width (ms)

Instrument Name Autocorrelation Correntropy

Arco Pizzicato Arco Pizzicato

Double Bass 3.22 3.83 0.26 0.46

Cello 0.63 1.53 0.27 0.25

Viola 0.36 0.95 0.08 0.32

Violin 0.36 0.66 0.03 0.16

4.3 Fundamental Frequency Tracking with Correntropy

After the determination of the fundamental frequencies of the musical instrument signals

in the previous section, in this work we determined the frequencies successively or in

other words tracked the fundamental frequencies. We evaluated our method by comparing

with the YIN algorithm (de Cheveigné & Kawahara, 2002) for different note and melody

samples (Özbek & Savacı, 2009b). The note samples were from the University of Iowa

Electronic Music Studios (Fritts, 1997) while melody samples were extracted from personal

CD collection.

We compared the F0 values of samples computed in every 0.1 second length windows.

For each window, the F0 values computed both with correntropy and YIN algorithm are

shown in Figure 4.12 for the A3 note sample of Alto Flute.

Although there are mismatches before and after the isolated note samples, we found same

note frequencies around 220 Hz corresponding to A3 note where the signal is stable. In order

to visualize the small frequency differences, we presented a zoomed version of Figure 4.12

in Figure 4.13. The order of the difference is less than a few Hz denotes the successful

performance of the correntropy function.
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Figure 4.12 Comparison of correntropy and YIN algorithms for Alto Flute A3

note sample.
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Figure 4.13 Zoomed version of Figure 4.12.
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For an example of real music signals, we extracted a short excerpt of Violin’s from Le

Quattro Stagioni (The Four Seasons) of Vivaldi. The comparison is given in Figure 4.14.

As it is seen, correntropy is able to find close frequencies as YIN algorithm and can track

the varying frequency. Another example is a Guitar excerpt from Concierto de Aranjuez

(Aranjuez Concert) by Rodrigo as shown in Figure 4.15.
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Figure 4.14 Comparison of correntropy and YIN algorithms for Violin sample.

Similarly, in this example correntropy function finds F0 values as YIN algorithm.

However, for samples having fast varying F0, the selection of window size is of crucial

importance. The differences in mismatches are mostly in whole ratios, which can be

identified as octave errors. Besides, as we investigated only one F0 in one window, the

different F0 values can also be explained based on the polyphonic property of the guitar.
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Figure 4.15 Comparison of correntropy and YIN algorithms for Guitar sample.



CHAPTER FIVE

SEPARATION OF MUSICAL INSTRUMENTS FROM THE
MIXTURES

There’s music in the sighing of a reed;

There’s music in the gushing of a rill;

There’s music in all things, if men had ears:

Their earth is but an echo of the spheres.

Lord Byron

In this chapter, we present the separation of musical instruments from the BSS

perspective. Following a brief introduction of BSS and especially linear ICA solution,

we investigate the wavelet ridge-based representation in an ICA problem of separating

notes from their synthetic mixtures in Section 5.2. Last work considers the separation of

instruments with a distance measure based on correntropy function.

5.1 Blind Source Separation with Independent Component Analysis

The separation of sounds emitted from several sources were investigated under the

cocktail party problem (Haykin & Chen, 2005) which is a special case of BSS problem

(Haykin, 1999; Hyvärinen et al., 2001; Cichocki & Amari, 2002; Choi, Cichocki, Park, &

Lee, 2005). In the simplest form of BSS as shown in Figure 5.1, the aim is to recover

n original independent sources from m observations, containing different linear and

instantaneous mixtures of sources where the data can be denoted by the random variables

with t denoting the time or sample index (Cardoso, 1998; Hyvärinen et al., 2001). The

mixing equation can be written as x(t) = As(t) + n(t), where n is an additive noise

and generally ignored for simplification. The simple solution without the noise term

98
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can be formulated as the computation of a separating matrix W = A−1, whose output

y(t) = Wx(t) is an estimate of the vector of the source signals.
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Figure 5.1 Blind source separation model.

In order to find the mixing matrix, generally, the number of observed mixtures is assumed

to be equal to the number of independent sources m = n. For m > n, it is possible

to eliminate some redundancy to obtain a square mixing matrix. However, for m < n,

the mixing matrix is not invertible and the simplest method is to use the Moore-Penrose

pseudoinverse of the mixing matrix to get an estimate of the sources as: ŝ = AT (AAT )−1x.

Recovering the sources using only the observed data is referred as blind, based on the

insufficient or limited a priori information about the mixing process or the sources. In order

to solve BSS problems, assumptions are required while the techniques differ according to the

assumptions made on the distributions of the sources. One of the common and statistically

strong assumption is the mutual independence (MI) between the source signals leading to

ICA (Comon, 1994). The statistically independence concept can be defined based on the
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joint probability density function (pdf) (or similarly cumulative distribution function (cdf))

of the source components si considered as random variables. The random variables denoting

the source components are mutually independent if and only if the joint pdf (or cdf) can be

factorized to marginal densities (p(si)) of each component as (Papoulis, 1991; Hyvärinen

et al., 2001):

p(s1, s2, ..., sn) =
n∏
i

p(si) . (5.1)

Following the simple ICA model, the estimate y is a copy of s, being scaled and permuted.

The scaling ambiguity comes from the indetermination of the energies of the independent

components. As we have both s and A as unknowns, any scalar multiplier in one of the

sources si could always be canceled by the same scalar of the corresponding column ai

of A. The permutation ambiguity depends on the undetermined order of the independent

components. A permutation matrix P and its inverse can be included in the model to give

x = AP−1Ps where AP−1 is the new unknown mixing matrix and Ps is the different

ordered sources. The conditions ensuring that the mixing system of linear ICA model may

be identified and the sources separated were addressed in (Eriksson & Koivunen, 2004;

Eriksson, 2004) under identifiability, separability, and uniqueness.

In order to find the separate sources based on this independence criterion, a natural starting

point is uncorrelatedness. Two random variables are called uncorrelated if their covariance

is zero (Papoulis, 1991; Hyvärinen et al., 2001)

cov(yi, yj) = E{yiyj} − E{yi}E{yj} = 0 . (5.2)
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Although the observations are not necessarily zero-mean random vectors, they can be

easily obtained by subtracting their sample mean before ICA. Then, covariance equals to

correlation and uncorrelatedness refers to zero correlation.

Uncorrelatedness is a necessary condition for independence and it implies independence

for jointly Gaussian random variables, although in general random variables can be

uncorrelated but have dependent marginal densities (Eriksson, 2004). Any random variable

can be linearly transformed such that the resulting random variable has uncorrelated

components with equal (unit) variance with a whitening procedure. A zero-mean

vector x is called as white, when its covariance matrix equals the identity matrix, i.e.

Rx = E{xxT} = I. Then by linearly transforming x with a matrix V, it is always

possible to obtain a new vector z = Vx that is white. One popular method for whitening is

to use eigenvalue decomposition

E{xxT} = UxΛxUx
T (5.3)

where Ux is an orthogonal matrix and Λx = diag{λ1, λ2, . . . , λn} is a diagonal matrix with

positive eigenvalues. The whitening matrix is therefore given by

V = Λx
−1/2Ux

T (5.4)

where the transformed vector becomes

z = Vx = VAs . (5.5)
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A stronger condition of uncorrelatedness is used for finding a representation of

uncorrelated yi such that; if the yi are independent, then any nonlinear transformations g

and h are uncorrelated (Papoulis, 1991; Hyvärinen et al., 2001).

E{g(yi)h(yj)} − E{g(yi)}E{h(yj)} = 0 . (5.6)

However, there is a limitation of ICA that it cannot separate the sources with more

than one having Gaussian distribution. They will be uncorrelated but the original source

directions will remain unknown. ICA uses this limitation to estimate the sources by finding

the maximum non-Gaussian components based on the central limit theorem. The theorem

states that the distribution of a sum of independent random variables tends toward a Gaussian

distribution, under certain conditions. Therefore, a sum of two independent random variables

has a Gaussian distribution closer than any of the two. Using this principle, the independent

components can be obtained as the maximally non-Gaussian components. In practical,

it may not possible to find the components which are really independent, but at least

the estimated components can be as independent as possible based on some higher-order

statistical measures.

If the independent signals are zero-mean, then the generalized covariance matrix of g(yi)

and h(yj) is a non-singular diagonal matrix:

Rgh = E{g(y)hT (y)} =




E{g(y1)}E{h(y1)} 0
. . .

0 E{g(yn)}E{h(yn)}


 (5.7)

where g(y) and h(y) are different, odd nonlinear activation functions such as

g(y) = tanh(y), h(y) = y, and the covariances E{g(yi)}E{h(yj)} are all zero (Choi
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et al., 2005). The selection of these nonlinearities leading to evaluation of independence has

been the subject of many research.

Early research efforts in ICA was based on this nonlinear decorrelation technique known

as the Hérault-Jutten algorithm where they proposed to use the odd functions g(y) = y3,

h(y) = arctan(y) in a simple neural network (Hyvärinen et al., 2001). Extensions using

information-theoretic cost functions were followed such as the Bell-Sejnowski algorithm

(Bell & Sejnowski, 1995). It is based on estimating the separating matrix W by maximizing

the likelihood function with a stochastic gradient ascent rule. The likelihood contrast is

the measure of mismatch between output distribution and a model source distribution.

Therefore, maximum likelihood (ML) principle is used to find the mixing matrix A such

that the distribution of A−1x is as close as possible to the hypothesized distribution of the

sources (Cardoso, 1998). The closeness of two distributions (e.g., p1(x) and p2(x)) can be

measured using the KL divergence as given in Equation (3.15) (Hyvärinen et al., 2001). Note

that D ≥ 0 and equality holds if and only if p1(x) and p2(x) are the same distributions. Thus,

KL divergence is not a proper distance measure since it is not symmetric, but it is a statistical

way of quantifying the closeness of two distributions.

As the MI between two random variables X and Y can be written as

I(X,Y ) =

∫ ∫
pX,Y (x, y) log

(
pX(x | y)

pX(x)

)
dxdy , (5.8)

where

pX,Y (x, y) = pY (y | x)pX(x) . (5.9)
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Then, it is possible to write

I(X,Y ) = DpX,Y ‖pXpY
(5.10)

which means that the MI between X and Y is equal to the KL divergence between the joint

pdf pX,Y (x, y) and the product of marginal pdf’s. MI is also always nonnegative, and zero

if and only if the variables are independent. Besides, the minimization of MI is equivalent

to maximizing the sum of non-Gaussianity measures of the estimates of the independent

components when the estimates are constrained to be uncorrelated (Hyvärinen et al., 2001).

Negentropy can be used as a measure which is a normalized version of entropy. It is based

on the fundamental concept of information theory stating that a Gaussian variable has the

largest entropy among all random variables of unit variance. It is defined as

J(y) = H(yGauss)−H(y) (5.11)

where yGauss is a Gaussian variable of the same correlation matrix as y. It is a non-negative

measure that is zero for Gaussian distributed variables, however it is computationally difficult

to calculate. Therefore, in practice approximations based on higher-order statistics is used

such as

J(y) ≈ 1

12
E{y3}2 +

1

48
kurt(y)2 (5.12)

where y is assumed to be zero mean and unit variance.

In order to perform ICA, computation of higher-order statistics is required either directly

or indirectly via nonlinearities. The cumulants are the derivative of the logarithm of the
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characteristic function of a random variable. Usually, the fourth-order cross-cumulants are

considered which the fourth cumulant is recognized to be kurtosis

kurt(y) = E
{
y4

}− 3
(
E

{
y2

})2 (5.13)

as denoted by kurt(y) in the approximation of negentropy. The normalized kurtosis value is

used

kurt(y) =
E {y4}

(E {y2})2 − 3 , (5.14)

due to its simplicity as a statistical quantity for indicating the pdf of a random variable. For

Gaussian distributed random variables kurtosis is zero, while negative kurtosis denotes sub-

Gaussian and positive kurtosis denotes super-Gaussian distributions. However, kurtosis is

not a robust measure of non-Gaussianity because of its sensitivity to outliers. Generally,

negentropy and its approximations are used. Nevertheless, similar to kurtosis, the higher-

order cumulants measure the non-Gaussianity which will be zero when the distributions are

Gaussian in order to estimate the independent components as the maximally non-Gaussian

components.

The approaches and techniques are not limited to these and similar methods for BSS and

ICA have been developed from a number of different view points. Beginning with nonlinear

decorrelation, minimization of KL or MI based on ML estimation, finding maximally

non-Gaussian distributed components using negentropy or kurtosis as measures are the

fundamental techniques behind BSS and ICA. Separation with a class of nonlinear ICA

models have been given in (Eriksson & Koivunen, 2005). The other approaches can be found

in (Hyvärinen et al., 2001; Cichocki & Amari, 2002; Choi et al., 2005). The realization

of these techniques in practice resulted with many computer algorithms. The simplest
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algorithms are obtained by gradient methods which minimization consists in moving by a

small step in the opposite direction of the gradient of the objective function. The relative and

natural gradient methods simplify and fasten the maximization of likelihood by eliminating

the inversion needed in the regular gradient algorithm. More sophisticated techniques using

second derivatives in addition to the gradient, can often significantly speed up convergence.

A list of algorithms can be found in (Cardoso, 1999). One of the popular algorithm for

especially linear ICA model is FastICA (Hyvärinen et al., 2001) while the other is ICALAB

(Cichocki & Amari, 2002). The main algorithm of FastICA is acknowledged in the following

section.

5.1.1 FastICA algorithm

To obtain the maximally non-Gaussian components of a whitened data z, we seek for a

linear combination wTz that maximizes non-Gaussianity. A quantitative measure of a zero

mean and unit variance variable y is the negentropy approximation,

J(y) ≈ [E{G(y)} − E{G(ν)}]2 , (5.15)

where G is any non-quadratic function, and ν is a Gaussian variable of zero mean and unit

variance. In order to maximize negentropy, one can take the derivative with respect to w

where by whitening (wTz)(zTw) = ||w||2, we have a constraint such that ||w|| = 1.

By choosing a function g which is the derivative of G, we obtain the following algorithm

∆w ≈ γE{zg(wTz)} , (5.16)
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where γ = E{G(wTz)} − E{G(ν)}. This follows a fixed point iteration

w ← E{zg(wTz)} , (5.17)

followed with a normalization of w.

A fast algorithm can be obtained by using Lagrangian

F = E{zg(wTz)}+ βw = 0 , (5.18)

where the derivative of Lagrangian is

∂F

∂w
= E{zzT g′(wTz)}+ βI . (5.19)

A simplification is possible using the whitened data as

E{zzT g′(wTz)} ≈ E{g′(wTz}I (5.20)

where with further simplifications

w ← E{zg(wTz)− E{g′(wTz)}w} (5.21)

gives the basic fixed-point iteration procedure in FastICA. A summary of the algorithm can

be given as
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1. Center and whiten the data,

2. Choose an initial (e.g., random) vector w of unit norm,

3. Update using w ← E{zg(wTz)− E{g′(wTz)}w},

4. Normalize w,

5. Continue with step 3 till convergence based on a specified degree of error.

5.2 ICA with Wavelet Coefficients

In previous section, the separation of sources was investigated using time samples or

indices with equal number of sources and sensors (m = n). Figure 5.2 presents an example

of such a situation where the number of sources and the linearly mixtures is equal to 2. As it

is seen, FastICA algorithm is very efficient in finding independent components from linearly

mixed sources.

However, if there are more sources than sensors the mixing matrix is not invertible. An

example for such situation is a single channel musical recording with many instruments. The

separation of each musical instrument sound from a single observation constitutes a difficult

problem. Nevertheless, if the mixture is first transformed to an appropriate representation

domain, then the transformed sources can be estimated using ICA resulting the recovery

of time waveforms. This is based on the sparsity property where in sparse representation

most of the coefficients for a given signal are close to zero, while only a small number

of coefficients are significantly differ from zero (Zibulevski, Pearlmutter, Bofill, & Kisilev,

2001). In a sparse representation of sources, the coefficients representing the sources can

be thought as been drawn from an heavy tailed distribution which are far from Gaussian

(Addison & Roberts, 2006). Then using such a distribution, it becomes easier to separate

with ICA as the principle of non-Gaussian is independent (Hyvärinen et al., 2001).
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Figure 5.2 Two sources, two mixtures, and corresponding estimated

independent components.

It is known that wavelets provide sparse representations (Mallat, 1999; Addison &

Roberts, 2006). Therefore, there have been many methods based on the sparsity assumption

of the sources in the time-frequency domain representations (Belouchrani & Amin, 1998;

Bofill & Zibulevski, 2001; Aı̈ssa-El-Bey, Abed-Meraim, & Grenier, 2007). A simple

algorithm has been proposed in (Addison & Roberts, 2006) where the ICA algorithm

determines the unmixing matrix after a discrete wavelet transform. Following the idea of

this algorithm, and based on the sparsity of the wavelet ridges obtained from scalogram as

found in the previous section, we investigated musical instrument classification.

We synthetically, linearly, and equally mixed two note samples and computed the

continuous wavelet transform coefficients of the mixture. Then we extracted the wavelet

ridges as explained in Section 3.3. By using these wavelet representations, we performed

ICA with FastICA toolbox (Hyvärinen et al., 2001). In order to compare the recovered
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independent components (IC) with original sources, we calculated the mean square error

(MSE) for the N -length signal defined by

MSE =
1

N

N∑
i=1

(s(i)− IC(i))2 (5.22)

where s(i) and IC(i) are the discrete samples of original sources and independent

components, respectively.

For the mixture of Flute A4 and Violin A4 note samples, the wavelet ridges obtained

from the scalogram are shown in Figure 5.3. Notice that the energy is concentrated on the

fundamental and harmonic frequencies.
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Figure 5.3 Wavelet ridges for the mixture of Flute A4 and Violin A4 note

samples.
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By forcing ICA algorithm to give two ICs, we calculated the MSE values between two

original sources and two ICs for different musical instrument and note mixtures as presented

in Table 5.1.

Table 5.1 The mean square error for mixed note samples.

Mixture Instrument Scalogram Wavelet ridge

IC 1 IC 2 IC 1 IC 2

Flute A4 - Oboe A4 Flute 1.2872 1.1728 1.1068 1.1122

Oboe 1.2608 1.1684 1.1308 1.1287

Flute A4 - Violin A4 Flute 1.2201 1.3027 1.1284 1.1439

Violin 1.1418 1.2575 1.0785 1.0756

Viola C5 - Violin C5 Viola 1.6341 1.0698 1.0764 1.1082

Violin 1.6298 1.0527 1.0503 1.0881

Viola A4 - Violin C5 Viola 8.5189 2.5403 1.1554 1.9937

Violin 8.5164 2.4897 1.1351 1.9604

Alto Flute B3 - Flute F5 Alto Flute 3.2484 1.1860 1.1540 2.0089

Flute 3.3304 1.2708 1.2348 2.0797

Alto Flute B3 - Alto Flute F5 Alto Flute B3 1.0548 2.3050 1.0506 1.0666

Alto Flute F5 1.0784 2.3516 1.0856 1.1088

As it is seen from the Table 5.1, representation with wavelet ridges has lower MSE

values compared to the scalogram. Thus, by using a sparse representation better results

are achieved. We further evaluated this outcome for different mixing conditions which is

more realistic where musical instrument notes are mixed with a randomly generated mixing

matrix. Table 5.2 shows the average MSE values obtained for 100 different realizations of

Flute A4 - Oboe A4 mixture.

Table 5.2 The average mean square error for Flute A4 - Oboe A4 mixtures.

Mixture Instrument Scalogram Wavelet ridge

IC 1 IC 2 IC 1 IC 2

Flute A4 - Oboe A4 Flute 2.2558 1.6772 1.2447 1.2422

Oboe 2.2677 1.6887 1.2564 1.2539

Results confirm that wavelet ridge representation is more effective than scalogram

representation in separation of mixtures based on the sparsity assumption of the sources

in the time-frequency domain.
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5.3 Separation of Musical Instruments Using Correntropy

In order to separate musical instrument signals in a blind manner as explained in

Section 5.1, an objective function has to be selected. Based on the properties of correntropy

representing higher order statistics, an independence criterion to be used as an objective for

BSS has been proposed in (Li et al., 2007) based on the cross-correntropy function.

The cross-correntropy function is a general form of correntropy which can be defined like

Equation (4.6) for two stochastic processes X and Y as (Santamarı́a et al., 2006)

V (X,Y ) = E[κ(X,Y )] . (5.23)

For discrete-time stochastic processes it can be estimated by writing similarly to Equation 4.9

as

V̂ [τ ] =
1

N − τ + 1

N∑
i=τ

κ(xi − yi−τ ). (5.24)

In (Li et al., 2007), the independence condition for X and Y has been given as

V [τ ] = V [0] ∀ τ (5.25)

where the Euclidean distance measure

J =
L∑

τ=1

(V [τ ]− V [0])2 (5.26)
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is used as a criterion for blind separation. Here L denotes the largest lag value specified by

the user.

In this work (Özbek & Savacı, 2008), using the Euclidean distance criterion given in

Equation (5.26), we investigated the separation of musical instrument samples from their

mixtures. We selected five instrument samples playing the same note (A4, 440 Hz) from the

University of Iowa Electronic Music Studios (Fritts, 1997). The data length N is selected as

the length of the shortest note sample. We prepared equally weighted mixtures of two note

samples for all possible combinations. For each mixture and musical instrument sample, we

computed the cross-correntropy function using the Equation (5.24). We selected the time

lag value as the whole duration of the signals (L = N ). Then using the distance values

computed with Equation (5.26), we evaluated the independence of the musical instruments

with linear, polynomial, and Gaussian kernel functions.

In Table 5.3, the distance values for linear kernel function are given. They refer to the

results obtained with a cross-correlation function. The first column composed of initial

character of the instruments denote the corresponding mixtures.

Table 5.3 The distance values for linear kernel function.

Cello Saxophone Violin Flute Oboe

C-S 18.04 44.77 0.60 0.12 0.88

C-V 17.99 0.54 24.31 0.08 0.28

C-F 17.80 0.03 0.02 77.39 0.05

C-O 18.04 0.42 0.08 0.06 237.45

S-V < 0.01 54.57 32.09 0.24 1.14

S-F < 0.01 44.20 0.70 77.31 1.00

S-O < 0.01 37.37 0.98 0.16 220.80

V-F < 0.01 0.51 24.83 78.64 0.33

V-O < 0.01 0.20 26.49 0.15 243.45

F-O < 0.01 0.51 0.13 77.97 237.51

As it is seen from the Table 5.3, the values for the instruments composing the mixture

are higher than the other instruments. Naturally, this demonstrates that the mixture is more
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dependent to its elements. We observed similar results for polynomial kernel function as

shown in Table 5.4.

Table 5.4 The distance values for polynomial kernel function with d = 2.

Cello Saxophone Violin Flute Oboe

C-S 79.9 199.8 2.8 0.6 4.5

C-V 78.8 2.9 104.9 0.4 1.1

C-F 79.5 0.2 0.1 339.9 0.4

C-O 81.3 1.1 0.5 0.5 1035.8

S-V 0.1 246.3 142.0 1.2 5.2

S-F 0.1 202.1 3.5 342.6 5.6

S-O 0.1 169.4 4.9 0.9 948.1

V-F 0.1 3.2 108.5 346.0 1.3

V-O 0.1 1.1 116.8 1.0 1071.0

F-O 0.1 1.1 0.9 349.8 1028.9

We repeated the procedure for Gaussian kernel with varying kernel parameters

(σ = 0.001, σ = 0.01, σ = 0.1, and σ = 1) where only the distance values for σ = 1

are shown in Table 5.5.

Table 5.5 The distance values for Gaussian kernel function with σ = 1.

Cello Saxophone Violin Flute Oboe

C-S 1.37 2.52 0.18 2.83 2.52

C-V 1.12 1.12 2.10 3.31 2.29

C-F 1.60 0.93 0.16 4.06 2.19

C-O 1.10 4.77 1.80 6.50 26.51

S-V 0.10 4.09 4.20 1.79 1.28

S-F 0.10 3.42 0.19 4.75 1.27

S-O 1.34 1.60 0.87 5.39 24.68

V-F 0.10 0.44 3.10 4.39 1.26

V-O 1.57 3.41 1.58 5.82 26.49

F-O 0.98 3.06 0.84 3.37 27.45

Some of the results for Gaussian kernel demonstrated low performance. Therefore for

visualizing the effect of different kernel functions and parameters, the normalized values for

each kernel function are shown for the Cello-Saxophone mixture in Figure 5.4.
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Figure 5.4 The effect of kernel functions for Cello-Saxophone mixture.

The best results are obtained using the Gaussian kernel function with Cello and

Saxophone. Linear and polynomial kernels are found to be not capable for this kind

of separation. However, the high values for Flute demonstrated the dependence to these

instruments. Figure 5.5 shows the effect of kernel parameters for separation of Flute.

The correct identification of Flute can be observed especially for Gaussian kernel function

which confirms its commonly use and especially within the correntropy function.
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CHAPTER SIX

CONCLUSIONS

Ars longa, vita brevis.

Hippocrates

Art is long, life short; judgment difficult, opportunity transient.

Johann Wolfgang von Goethe

In this chapter, we review a summary of thesis work, discuss on the results, and speculate

on possible further research directions.

6.1 Summary

The motivation of this thesis has been initiated from the ability of human in analyzing

the music performance of an orchestra and recognizing the sounds of instruments. By

understanding and mimicking our perception of auditory scene, the problem of identification

and classification of instrument is based on features which are suitably chosen for specific

clustering purposes. Since there have been no ideal feature defined to perfectly identify or

classify the sources of musical instruments, the investigation of better features still is an open

issue. As a result of this observation, in this thesis, we offered new representations to be used

in musical instrument classification problem.

In Chapter 2, we have presented an overview of the current state-of-the-art in musical

instrument classification. It has been shown that the representations of the musical

instruments have been assigned with many features, followed by various classification

algorithms. The methodology was composed of extracting features from the collection of

data, separating them in training and test sets, and performing comparisons for different

117
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approaches. We have generally followed this approach in the thesis through presentation of

the features for musical instrument classification in Chapter 3. We have chosen to use SVM

classifiers because of their ability in generalization, already shown in various studies.

As the properties of the musical signals could be captured best by time-frequency

representations, firstly in Chapter 3, we demonstrated the use of time-frequency plane with

a likelihood computation based on constant-Q filter-bank. We both performed classification

of musical instruments and notes using SVM classifiers, with a database of isolated note

samples prepared from Iowa musical instrument sound database. High performance ratios

have been achieved in a multi-class classification setting. However, we need to put a remark

for the necessity of a bigger reference data collection which contain enough variability in

musical instrument samples in order to make fair comparisons.

Another time-frequency representation was based on the wavelet coefficients. We have

modeled the distribution parameters of one dimensional wavelet coefficients of musical

instrument sound samples with a generalized Gaussian density. By using the model

parameters extracted from the data and KL divergence between the distributions of models,

we have classified musical instruments. We pointed out that the correct recognition of a

musical instrument depends both itself and the group in which it is classified as well as the

available samples bounded by the instrument’s frequency range. We have further found

that the effect of different mother wavelet functions have not effected the classification

performance significantly.

Similar to the generalized Gaussian density modeling, we estimated the alpha-stable

distribution parameters from the note samples. Then by using SVM classifiers, a high

classification ratio over 90% has been obtained with an abstract feature vector composed

of four parameters.
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Following the representation of wavelet coefficients with a distribution model, we offered

to use wavelet coefficients directly by building features for musical instrument classification

and demonstrated their performance. We built a discriminative feature with wavelet ridges

by identifying the wavelet coefficients of musical instrument sound signals carrying higher

energy. We have demonstrated the performance of the representation with a multi-class

classification using SVMs. Although, the required computation power for computing

wavelet transform and wavelet ridges for analyzing the whole signal frequencies is rather

high, we offered a small shortcut by performing a predetermination of frequency range of

the signals with FFT before the wavelet transform.

Although, throughout the thesis we generally dealt with Western music, a section has been

devoted to Turkish music where we presented the classification of Turkish music instruments

using MFCC features. The success of MFCC feature in classification of musical instruments

has been known for Western music. However, we performed the classification, first time with

a big database of Turkish musical instruments. We demonstrated the polyphonic nature of

the Kanun among others while we achieved high correct classification rates up to 97% for

Ud.

In Chapter 4, we have applied correntropy function to musical instrument classification

and note identification. As this function is rather new, we have first translated the term

correntropy as ilintropi to Turkish. We gave experimental studies denoting the superiority

of correntropy function to the standard autocorrelation function performed on musical

instrument samples. We analyzed the width of the peaks of both functions and we confirmed

the thinner width of correntropy peaks with a measure depending on FWHM. Moreover, we

tracked the fundamental frequencies of musical performance and compared with the popular

YIN algorithm.

The classification of instruments can be presented as a BSS problem in ASA, where the

musical scene is composed of instruments. In Chapter 5, we investigated the classification
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or identification of each instrument from a mixture of instrument sounds with ICA using

wavelet coefficients as features. A sparser representation with wavelet ridges than wavelet

coefficients in an ICA solution has resulted with smaller MSE values. We also considered

the separation of musical instruments from their mixtures according to a distance based on

correntropy.

6.2 Future Works

The research on music has progressed fast especially in the last two decades. Today,

the music analysis tools are becoming commercial products executable in every computer.

However, with the high number of users and ever-growing applications of Internet, MIR

community deal with finding solutions of new problems. Identification of musical genre is

one of the most popular research area where the application is straightforward. With a mobile

phone, notebook, or a music player device, one can download and play music simply by the

use of servers classifying and indexing songs according to the listener’s choice. It seems

possible to extend this service to composers, singers, and even musical instruments. On the

other hand, transcription of musical sounds necessitate the classification and separation of

instruments, in order to extract individual partitions. The solutions presented in this thesis

can be used in both directions.

Albeit all efforts of finding features which represent musical signals and especially

musical instruments, the performance of the systems presented mostly, give ratios over

70%. It is obvious that the performances are also dependent on the selection of features

and the classification algorithms selected for classification purposes. Some of the features

like MFCCs have proved their success in many of the classification problems. The SVMs

have become one of the mostly used classification algorithms based on their generalization

and kernel-based computation abilities. Unfortunately, both are not enough to solve all the

musical instrument classification problems.
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It is clear that more research is needed to develop better features and especially to make

strong connections with the time-frequency nature of musical signals. The computation

burden of time-frequency representations seems to be the major barrier in front of practical

algorithms for musical instrument classification or generally musical transcription. For real-

time applications as desired in Internet, it is necessary to find features which are both efficient

and fast-computed. On the other hand, new kernel-based approaches like correntropy can

deal with high dimensions of data however their applicability to musical signals is premature

and requires new investigations.

Although, most of the works have been based on isolated note samples of instruments,

new databases of real music samples are necessary and hopefully will be served for common

evaluation and comparison. This will lead to new evaluations of the existed features in a

more accurate way and will bring new challenges for the next years.
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de Cheveigné, A. (2005). Pitch perception models. In Pitch - Neural coding and perception,

169–233. New York: Springer-Verlag.
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Erdoğmuş, D., & Principe, J. C. (2006). From linear adaptive filtering to nonlinear

information processing. IEEE Signal Processing Magazine, 23 (6), 14–33.

Eriksson, J. (2004). Contributions to theory and algorithms of independent component

analysis and signal separation. PhD thesis, Helsinki University of Technology.

Eriksson, J., & Koivunen, V. (2004). Identifiability, separability, and uniqueness of linear

ica models. IEEE Signal Processing Letters, 11 (7), 601–604.

Eriksson, J., & Koivunen, V. (2005). Blind separation of a class of nonlinear ICA models.

Proc. of IEEE International Symposium on Circuits and Systems (ISCAS), Vol. 6

(5890–5893). Kobe, Japan.

Eronen, A. (2001a). Automatic musical instrument recognition. Master’s thesis, Tampere

University of Technology.

Eronen, A. (2001b). Comparison of features for musical instrument recognition. IEEE

Workshop on Applications of Signal Processing to Audio and Acoustics (19–22). New

York, USA.

Eronen, A., & Klapuri, A. (2000). Musical instrument recognition using cepstral coefficients

and temporal features. Proc. of the IEEE International Conference on Acoustics, Speech,

and Signal Processing (ICASSP) (753–756). Istanbul, Turkey.

Essid, S., Richard, G., & David, B. (2004a). Musical instrument recognition based on class

pairwise feature selection. 5th International Conference on Music Information Retrieval

(ISMIR). Barcelona, Spain.



130

Essid, S., Richard, G., & David, B. (2004b). Musical instrument recognition on solo

performances. 12th European Signal Processing Conference (EUSIPCO) (1289–1292).

Vienna, Austria.

Essid, S., Richard, G., & David, B. (2005). Instrument recognition in polyphonic music.

Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), Vol. 3 (245–248). Philadelphia, USA.

Essid, S., Richard, G., & David, B. (2006a). Hierarchical classification of musical

instruments on solo recordings. IEEE International Conference on Acoustics, Speech,

and Signal Processing (ICASSP), Vol. 5 (817–820). Toulouse, France.

Essid, S., Richard, G., & David, B. (2006b). Instrument recognition in polyphonic

music based on automatic taxonomies. IEEE Trans. on Audio, Speech, and Language

Processing, 14 (1), 68–80.

Essid, S., Richard, G., & David, B. (2006c). Musical instrument recognition by pairwise

classification strategies. IEEE Trans. on Audio, Speech and Language Processing, 14 (4),

1401–1412.

Every, M. R. (2006). Separation of musical sources and structure from single-channel

polyphonic recordings. PhD thesis, University of York.

Every, M. R., & Szymanski, J. E. (2006). Separation of synchronous pitched notes by

special filtering of harmonics. IEEE Trans. on Audio, Speech and Language Processing,

14 (5), 1845–1856.



131

Fanelli, A. M., Caponetti, L., Castellano, G., & Buscicchio, C. A. (2005). A hierarchical

modular architecture for musical instrument classification. International Journal of

Knowledge-based and Intelligent Engineering Systems, 9, 173–182.

FitzGerald, D. (2004). Automatic drum transcription and source separation. PhD thesis,

Dublin Institute of Technology.

Fletcher, N. H., & Rossing, T. D. (1998). The physics of musical instruments. Springer.

Fritts, L. (1997). The University of Iowa Electronic Music Studios.

http://theremin.music.uiowa.edu, last accessed on February 2009.

Fujinaga, I., & MacMillan, K. (2000). Realtime recognition of orchestral instruments.

International Computer Music Conference (141–143).

Gillet, O., & Richard, G. (2008). Transcription and separation of drum signals from

polyphonic music. IEEE Trans. on Audio, Speech and Language Processing, 16 (3),

529–540.

Gouyon, F., Pachet, F., & Delerue, O. (2000). On the use of zero-crossing rate for an

application of classification of percussive sounds. Proc. of the COST G-6 Conference on

Digital Audio Effects (DAFX). Verona, Italy.
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Sempozyumu (ELECO), Vol. 2 (236–240). Bursa, Turkey.
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APPENDIX

Likelihood-Frequency-Time Analysis

The Likelihood-Frequency-Time (LiFT) method assumes that the output of the filter bank

follows a sinusoid and a white Gaussian noise as

y(n) = x0(n) + b(n) (A-1)

where x0(n) is the sinusoidal component at a specified frequency f0

x0(n) = a0 cos(2πf0n + φ)

= a0 cos(2πf0n) cos(φ)− a0 sin(2πf0n) sin(φ)

= c0 cos(2πf0n) + s0 sin(2πf0n) (A-2)

and b(n) is the filtered broad-band noise from a single filter of the constant-Q filter bank

assumed to be white and Gaussian with zero mean and unit variance, i.e., N (0, σ).

For a N -sample frame, a vector notation can be defined as

x0 =




x0(0)
...

x0(N − 1)




N×1

y =




y(0)
...

y(N − 1)




N×1

(A-3)
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b =




b(0)
...

b(N − 1)




N×1

θ =


 c0

s0




2×1

(A-4)

D(f0) =




1 0

cos(2πf0) sin(2πf0)

cos(4πf0) sin(4πf0)
...

...

cos (2π (N − 1) f0) sin (2π (N − 1) f0)




N×2

(A-5)

which results with

x0 = D(f0) θ (A-6)

The probability distribution of a N-point noise vector b can be given as

pB(b) =

(
1√

2πσ2

)N

exp

(
−bTb

2σ2

)
(A-7)

Hypothesis H0: There exist only noise in the output of the filter bank y = b. Therefore

θ = (0, 0)T and the probability of obtaining the output vector y is simply

p0 = pY/H0(y) = pB(y) =

(
1√

2πσ2

)N

exp

(
− Ey

2σ2

)
(A-8)

where Ey = yTy is the energy of the output signal y.
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Hypothesis H1: There exist both input signal and noise in the output of the filter bank.

Therefore θ 6= (0, 0)T and the probability of y now depends on θ and f0

p1 = pY/H1(y, θ, f0) = pB(y − x0) =

(
1√

2πσ2

)N

exp

(
−(y − x0)

T (y − x0)

2σ2

)
(A-9)

The optimum value of θ can be found by maximizing p1 or minimizing

J(y, θ, f0) = (y − x0)
T (y − x0).

J(y, θ, f0) =
N−1∑
n=0

[y(n)− c0 cos(2πf0n)− s0 sin(2πf0n)]2

= Ey + c2
0

N−1∑
n=0

cos2(2πf0n) + s2
0

N−1∑
n=0

sin2(2πf0n)

−2c0

N−1∑
n=0

y(n) cos(2πf0n)− 2s0

N−1∑
n=0

y(n) sin(2πf0n)

+2c0s0

N−1∑
n=0

cos(2πf0n) sin(2πf0n) (A-10)

An approximation can be used for N →∞

N−1∑
n=0

cos2(2πf0n) ∼ N

2
,

N−1∑
n=0

cos(2πf0n) sin(2πf0n) → 0 (A-11)

leading to

J(y, θ, f0) ≈ Ey +
N

2
c2
0 +

N

2
s2
0

−2c0

N−1∑
n=0

y(n) cos(2πf0n)− 2s0

N−1∑
n=0

y(n) sin(2πf0n). (A-12)
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Using the derivatives

∂J

∂c0

= Nc0 − 2
N−1∑
n=0

y(n) cos(2πf0n)

∂J

∂s0

= Ns0 − 2
N−1∑
n=0

y(n) sin(2πf0n) , (A-13)

for a given output signal y and a given frequency f0, the optimum value of θ becomes

c̄0 =
2

N

N−1∑
n=0

y(n) cos(2πf0n) , s̄0 =
2

N

N−1∑
n=0

y(n) sin(2πf0n) (A-14)

or equivalently

θ̄ =
2

N
DT (f0)y. (A-15)

Then, the optimum value of J is

J̄(y, f0) = Ey − 2

N

[
N−1∑
n=0

y(n) cos(2πf0n)

]2

− 2

N

[
N−1∑
n=0

y(n) sin(2πf0n)

]2

(A-16)

which is equivalent to

J̄(y, f0) = Ey − 2

N
yTD(f0)D

T (f0)y. (A-17)
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Therefore, optimum value of p1 can be given by

p̄1 = pY/H1(y, θ̄, f0) =

(
1√

2πσ2

)N

exp

(
− Ey

2σ2

)
exp

(
yTD(f0)D

T (f0)y

Nσ2

)
. (A-18)

The generalized likelihood ratio is defined as

Γ(y, f0) =
p̄1

p0

= exp

(
yTD(f0)D

T (f0)y

Nσ2

)
, (A-19)

where the log-likelihood ratio becomes

log(Γ(y, f0)) =
1

Nσ2
yTD(f0)D

T (f0)y. (A-20)




