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INVESTIGATING THE EFFECT OF MISALIGNMENT ON  ROTOR-
BEARING SYSTEMS CONNECTED WITH HELICAL COUPLING 

 

ABSTRACT 

 

In this thesis, helical coupling is modeled with the gemetrically exact beam theory 

in order to investigate the effect of misalignment on rotor-bearing systems. A new 

approach based on using constitutive equations as constraint was developed. 

Comparison with previous results showed that proposed approach was able to predict 

the frequency components associated with misalignment. Results indicated that 

misalignment causes driven shaft velocity to fluctuate around that of driving shaft for 

any misalignment type. However variations observed in velocity are not constant for 

given misalignment value but dependent on inertia and coupling geometry. Large 

inertia causes rotor velocity to converge to that motor. Results showed that reaction 

loads are also dependent on inertia and coupling geometry. 

 

Keywords:   Misalignment, helical coupling, geometrically exact beam theory. 
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EKSEN KAÇIKLIĞIN HELİSEL KAPLİNLE BAĞLI ROTOR- YATAK 
SİSTEMİNE ETKİSİNİN İNCELENMESİ 

 

ÖZ 

 

Bu tez çalışmasında, eksenel kaçıklığın bir rotor-yatak sistemine etkisini 

incelemek için helisel kaplin, geometrik tam kiriş teorisi ile modellenmiştir. Bünye 

denklemlerini kısıtlama olarak kullanan yeni bir yaklaşım geliştirilmiştir. 

Literatürdeki çalışmalarla yapılan karşılaştırmalar, önerilen yaklaşımın eksenel 

kaçıklığa bağlı frekans bileşenlerini tahmin edebildiğini göstermiştir. Sonuçlar, 

eksenel kaçıklığın her tipi için, tahrik edilen şaftın hızının tahrik şaftının hızı 

etrafında salınım yaptığını göstermiştir. Hızda gözlenen salınımların belirli bir 

eksenel kaçıklık değeri için sabit olmayıp, atalet ve kaplin geometrisine de bağlı 

olduğu gözlemlenmiştir. Atalet arttıkça rotor hızının motor hızına yaklaştığı 

gözlemlenmiştir. Sonuçlar, reaksiyon kuvvetlerinin de atalet ve kaplin geometrisine 

bağlı olduğunu göstermiştir. 

 

Anahtar Kelimeler: Eksenel kaçıklık, helisel kaplin, geometrik tam kiriş teorisi. 

 v



 vi

CONTENTS 

 

Page 

 

THESIS EXAMINATION RESULT FORM .............................................................. ii 

ACKNOWLEDGEMENTS ........................................................................................iii 

ABSTRACT ................................................................................................................ iv 

ÖZ ................................................................................................................................ v 

 

CHAPTER ONE -MISALIGNMENT ..................................................................... 1 

 

CHAPTER TWO - MISALIGNMENT ................................................................... 6 

 

2.1 Definition of Shaft Misalignment ...................................................................... 6 

2.2 Importance of Shaft Misalignment..................................................................... 8 

2.3 Symptoms of Shaft Misalignment...................................................................... 8 

 

CHAPTER THREE - GEOMETRICALLY EXACT BEAM THEORY ............. 9 

 

3.1 Introduction ........................................................................................................ 9 

3.2 Kinematics of 3D Beam..................................................................................... 9 

3.3 Derivatives of the Moving Frame .................................................................... 12 

3.4 The Linear and Angular Momentum................................................................ 14 

3.5 Equation of Motion .......................................................................................... 17 

3.6 Internal Power and Strain Measures ................................................................ 20 

3.7 Parametization of Finite Rotation .................................................................... 23 

3.7.1 Total Rotation Vector................................................................................ 23 

3.7.2 Incremental Rotation Vector ..................................................................... 27 

3.8 Weak Form of Balance Equation ..................................................................... 32 

 

CHAPTER FOUR - SYSTEM EQUATION OF MOTION................................. 37 

 



 vii

4.1 Mechanical Model of the System..................................................................... 37 

4.2 Kinetic and Potential Energy Expressions ....................................................... 40 

4.3 Boundary Conditions and Constraint ............................................................... 41 

4.4 Weak Form of Equation of Motion.................................................................. 43 

4.5 Remarks on the Numerical Implementation .................................................... 45 

 

CHAPTER FIVE – RESULTS ............................................................................... 47 

 

5.1 Introduction ...................................................................................................... 47 

5.2 Aligned System ................................................................................................ 47 

5.3 Angular Misalignment ..................................................................................... 47 

5.4 Parallel Misalignment ...................................................................................... 65 

 

CHAPTER SIX - CONCLUSION .......................................................................... 84 

 

REFERENCES......................................................................................................... 86 

 

APPENDICES .......................................................................................................... 88 

 

Appendix 1 - Linearized Virtual Work Equation................................................... 88 

Appendix 2 - Explicit Form of Constraint Equation.............................................. 90 

Appendix 3 – Implementation of Proposed Scheme.............................................. 92 

Appendix 4 – Geometric and Material Properties of Helical Coupling................. 98 

Appendix 5 – ANSYS Simulations........................................................................ 99 

Appendix 6 – MATLAB Code............................................................................. 104 

 
 

 

 

 

 

 

 



CHAPTER ONE 

INTRODUCTION 

 
Misalignment is one of the most common causes of vibration in rotating 

machinery. Shaft misalignment causes additional loads on structure and, in return, 

decreases operating lives of parts (Piotrowski, 1995). A poorly aligned machine can 

cost a factory 20% to 30% in machine down time, replacement parts, inventory, and 

energy consumption (Ganeriwala, Patel & Hartung, 1999). Misalignment is the 

condition in which driving and driven shafts connected by coupling are not collinear 

at the point of power transition (Piotrowski, 1995). There are basically two types of 

misalignment: angular and parallel. A combination of angular and parallel 

misalignment in the vertical and horizontal directions is observed in applications. 

Despite the best efforts, it is almost impossible to achieve perfect alignment between 

driving and driven shafts. Even if perfect alignment was obtained initially, it could 

not be maintained over extended period of time due to various effects, such as heat 

generated in casings, from bearings, lubrication systems, compression of gases and 

foundation movements (Xu & Marangoni, 1994a). For this reason, flexible couplings 

are used in industry to accommodate unavoidable misalignment. Although flexible 

coupling help power train to tolerate misalignment, they do not completely eliminate 

detrimental effects of misalignment on system. Thus detection of misalignment is 

crucial to guarantee continuous operation.  

 

In spite of the importance of misalignment, few researchers from academic world 

have paid attention to this phenomenon due to complexity in modeling.    

 

Dewel & Mitchell (1984) predicted that bending moment produced by angularly 

misaligned four bolt metallic disc coupling has frequency components which are the 

multiples of four times the driving shaft’s rotation frequency (called 4X component),  

due to variation in coupling stiffness and changing bolt positions for every quarter 

turn of driving shaft. Moreover they assumed that coupling in case of angular 

misalignment behaves exactly as universal joint. Thus they concluded that bending 

moment has additional frequency components which are the multiples of twice the 
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driving shaft’s speed (called 2X component). Their experiments showed that 2X and 

4X components produced the largest changes in frequency spectrum. 

 

Xu & Marangoni (1994a, 1994b) investigated the effect of angular misalignment 

on rotor-flexible coupling- rotor system. They assumed that flexible coupling in case 

of angular misalignment behaves exactly as universal joint (i.e. Cadan joint). Thus 

they estimated that bending moment caused by misaligned coupling has frequency of 

twice the motor speed (2X component). They concluded that although 2X component 

can be used as the indication of angular misalignment, it may not always show up in 

vibration spectrum if it is not close enough to one of the system natural frequencies.  

 

Sekhar & Parbhu (1995) studied the misalignment effects on rotor- bearing 

system by developing a theoretical model using higher order finite elements. They 

assumed that misaligned coupling behaves as linear spring element, of which 

stiffness coefficients vary with frequency of twice the motor speed. They also 

assumed that unbalance force has 1X and 2X components. They observed that while 

system response in 2X component was increased with increasing misalignment, 

response in 1X component was altered significantly.  

 

Lee & Lee (1999) investigated the effects of misalignment on the natural 

frequency of misaligned rotor system by deriving a dynamic model for misaligned 

rotor-ball bearing system driven through flexible coupling. They treated the reaction 

loads and deformations at bearing and coupling elements as the misalignment effect. 

Forces and moments due to deformation of coupling element are described by 

modeling the coupling as beam element with the effective flexural and axial rigidity. 

Both experimental and simulation results agree that, as angular misalignments 

increases, natural frequency associate with the misalignment direction increases 

largely. On the other hand natural frequencies are not changed for parallel 

misalignment. 

 

Saavendra and Ramirez (2004a, 2004b) developed a theoretical model of rotor 

bearing system with a flexible coupling to investigate the shaft misalignment. They 
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considered the coupling as couple of rigid blocks connected with ideal spring 

elements. They presented an experimental method to construct the coupling stiffness 

matrix. They showed that frequencies generated by shaft misalignment are directly 

dependent on the frequencies of the variation in coupling stiffness.   

 

Misalignment results in reaction loads on system due to relative deformation 

between coupling faces. Since most of the couplings are not uniform but rather has 

certain geometric symmetry around their rotation axes, magnitude of reaction loads 

at given instant of time depend on the angular position of driving shaft. As driving 

shaft rotates with constant speed, deformed coupling repeats its configuration. Thus 

reaction loads change periodically. If misaligned coupling causes driving and driven 

shaft speeds to differ as universal joint does in case of angular misalignment, relative 

deformation between coupling faces would be different as compared to the case 

when driving and driven shafts have same speeds. Since reaction loads depend on the 

relative position between couplings faces, periods as well as the magnitude of 

reaction loads would also be different. Moreover motor produces additional torque in 

order to compensate inertial effect resulted from driven shaft’s rotary inertia and 

acceleration. In return this torque, depending on the deformed coupling 

configuration, may result in additional reaction loads on driven shaft. Thus behavior 

of the rotating coupling should be identified in order to understand effect of the 

misalignment on system. 

 

In previous studies mentioned above, rotating coupling behavior is always 

assumed to be known a priori, and reaction loads generated by misaligned coupling 

on system are estimated accordingly. Behaviors which are assumed to be exhibited 

by deformed coupling are a) universal joint (Dewel & Mitchell, 1984, Xu & 

Marangoni, 1994a 1994b) b) ideal spring elements with periodic stiffness which has 

frequencies of integer multiply of motor speed (Sekhar & Prabu, 1995). Although 

vibration spectrum of misaligned system given in literature and/or obtained by above 

mentioned researchers justifies these assumptions, there are some points to be 

considered:  
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a) Universal joint effect is borrowed from rigid body dynamics. It states that two 

rigid shafts connected by rigid coupling (Cardan joint) should have same 

rotation angle for one full rotation (i.e. 2Π). If angular misalignment is 

present, full circle in the plane perpendicular to driving shaft axis is 

manifested as ellipse in the plane perpendicular to driven shaft axis. 

Therefore driven shaft speed fluctuates around that of driving shaft. However 

couplings (considered in above studies) are flexible elements and they do not 

necessarily behave as rigid ones.  Also (if applicable) universal joint effect 

considers only pure angular misalignment. Moreover, if angularly misaligned 

coupling behaves exactly as universal joint same vibration pattern should be 

observed for all angularly misaligned systems. However, systems connected 

with different coupling type exhibit different vibration spectrum in case of 

angular misalignment. 

b) Modeling flexible coupling as ideal spring element requires determination of 

stiffness coefficients for different rotation angles. Even if this can be 

accomplished, measuring stiffness for different misalignment conditions 

would be difficult. In addition to that, methods employed for that purpose 

should also consider certain dynamical effects (i.e. variation of driven shaft 

speed, friction and loads resulted from operation) since they may change the 

relative deformation between coupling faces, thereby altering the reaction 

loads. 

 

As mentioned above developing models for misaligned systems is difficult due to 

complexity of the phenomena. Thus a priori assumptions for misaligned coupling 

behavior in rotating system are required. However, as explained in previous 

paragraph, validity of previously employed assumptions is in question. For this 

reason new method which can calculate the deformed coupling behavior without any 

a priori assumptions is necessary to identify characteristics of misalignment. Driven 

shaft moves due to loads which are transferred through coupling. Since coupling is a 

flexible element, transferred loads could be calculated by employing constitutive 

equations. If one uses constitutive equation with proper assumptions as constraints, 
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deformed coupling behavior can be computed directly. This is the main theme of this 

study and details are presented in subsequent chapters. 

 

Rotating coupling exhibits the motion known as three dimensional finite rotations. 

Displacements and rotations experienced by structure undergoing finite rotation are 

not only deformations but include rigid body motion as well. Thus deformations 

should be extracted from displacements to determine the structures behavior 

correctly. Classical example of finite rotation is a swinging beam. Some methods 

pertaining to finite rotation can be found in the literature. In this study helical 

coupling is used. Since helical coupling is nothing more than helical beam, 

computationally simple method known as geometrically exact beam theory is used to 

model its behavior. Details of geometrically exact beam theory are presented in 

subsequent chapter.  



CHAPTER TWO 

MISALIGNMENT 

 
2.1 Definition of Shaft Misalignment 

 
Shaft misalignment is defined as “the deviation of relative shaft position from a 

collinear axis of rotation measured at the points of power transmission when 

equipment is running at normal operating conditions” (Piotrowski, 1995). If driving 

and driven shafts are collinear, then they are said to be aligned. If misalignment is 

present, centerline of one shaft deviates with respect to the centerline of the other 

shaft. Figure 2.1 depicts the typical misalignment condition. Since misalignment 

occurs in 3D space, misalignment between two shafts is determined by projecting 

drive train to the two different planes which are perpendicular (Figure 2.2).  

 
There are basically two types of shaft misalignment: Angular and parallel. If axes 

of rotation of two shafts intersect with one another at an angle, misalignment is 

termed angular misalignment (Figure 2.3a). If centerlines of two shafts are parallel 

but do not intersect, misalignment is called parallel misalignment (Figure 2.3b). In 

practice combination of both angular and parallel misalignment is encountered in 

machine assemblies.  

 

 

 

 

 

 

 

 

 

 

 
Figure 2.1 Typical misalignment conditions. Adapted from 

Piotrowski, (1995), page 143. 
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Figure 2.2 Determination of misalignment. Adapted from Piotrowski (195) page

144.  

 

 
Figure 2.3 Misalignment types: (a) Angular misalignment. α is the misalignment 

angle. (b) Parallel misalignment. δ is the misalignment offset. 

 

 



 8

2.2 Importance of Shaft Misalignment 

 
When shafts are misaligned, the reaction loads are generated in system. These 

loads produce stresses as well as the vibration on the rotating and stationary 

components and cause some parts to fail. To emphasize the detrimental effects of 

misalignment on field applications, two examples will be discussed. First, an 

ammonia plant in USA was shut down for an extended period when a compressor 

shaft failed catastrophically due to excessive coupling misalignment. This failure 

resulted in the process upset and substantial economic losses for that company 

(Dewel & Mitchel, 1984).  The second example concerns a steel company. 

According to predictive maintenance department of that company, misalignment 

made up of 23% of vibration related faults in production lines.  

 
Despite the best efforts, perfect alignment of rotating machinery shafts cannot be 

achieved in practical application. Even if perfect alignment was achieved initially, it 

could not be maintained over an extended period of time because of the dynamic 

movements caused by the thermal growth of machinery casing (Piotrowski, 1995). 

Thus flexible couplings are used in industry to accommodate unavoidable 

misalignment. Although flexible couplings help the power-train to tolerate 

misalignment, they do not completely eliminate the negative effects of misalignment.  

 
2.3  Symptoms of Shaft Misalignment 

 
Reaction loads generated by misalignment are typically static and difficult to 

measure. Therefore what really seen in practical applications are the secondary 

effects of these loads which exhibit many of the following symptoms (Piotrowski, 

1995): 

- Excessive radial and axial vibration 

- Premature bearing, seal, shaft, or coupling failure 

- Excessive amount of oil leakage at the bearing seals 

- Loose foundation bolts 

- Loose or broken coupling bolts. 

- High casing temperature. 



CHAPTER THREE 

GEOMETRICALLY EXACT BEAM THEORY 

 
3.1 Introduction 

 
Geometrically exact beam theory states that configurations of the beam are 

completely defined by specifying evolution of an orthogonal transformation and 

position vector of the line of centroit of the beam cross sections. Orthogonal 

transformation takes the 3D orthogonal moving frame defined on the current 

configuration and places it on the next configuration. Moving frame is defined so 

that one of its vectors remains normal to the cross section in any configuration.  Thus 

orthogonal transformation gives the rotation of a cross section. Orthogonal 

transformation of this kind is referred as SO(3) which stands for the Special 

Orthogonal (Lie) group. Matrix components of orthogonal transformation are called 

rotation matrix. 

 

Representing beam configuration with rotation matrix is attractive from the 

computational standpoint because it allows complete freedom on choosing the 

parametization schemes. Euler angles and use of queternions are two of the 

possibilities. In this study computationally much simpler approach is used: 

Incremental rotation vector. 

 

3.2 Kinematics of 3D Beam 

 

For a given parameter S∈[0,L]⊂R, L∈R, reference (initial or undeformed) 

configuration of the beam is described by defining a family of cross-sections the 

centroids of which are connected by a space curve S → ϕ0(S)∈R3 in a three 

dimensional ambient space R3 with a right-handed inertial Cartesian (material) 

frame, Ei i=1,2,3. The parameter S represents the arc-length of the line of centroids 

in the reference (unstressed) configuration. The parameter L is referred to as the 

initial length of the beam (Figure 3.1). Cross sections of the beam in reference 

configuration is defined by the unit vectors S→ ti,0(S)∈R3 i=1,2,3 with unit vector 

t1,0(S)  being tangent to the line of centroids and normal to the cross section such that 

9 
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Figure 3.1 Initial and deformed configuration of three-dimensional beam. 
In figure, material (E1E2E3) and spatial (e1e2e3) frames are chosen to 
coincide. 

 

t1,0(S)= ϕ0′(S) (3.1)

 
and with unit vectors t2,0 and t3,0 being directed along the principle axis of inertia of 

the cross-section at S. In Equation 3.1 and in the foregoing prime (′) denotes the 

derivative with respect to the undeformed arc-length parameter S. Thus unit vectors 

ti,0(S) i=1,2,3 form the right-handed orthonormal triad such that  

 
ti,0(S) ·tj,0(S)=δi,j     i,j=1,2,3 (3.2a)

⏐⏐ti,0(S)⏐⏐=1  i=1,2,3 (3.2b)

t1,0(S)= t3,0(S)X t2,0(S)       (3.2c)

where δi,j is the Knocker delta, i.e. δi,j=1 i=j and δi,j=0 i≠j. Body attached frame 

ti,0(S), i=1,2,3 and material inertial frame Ei, i=1,2,3 are related through a linear 

transformation S→Λ0(S)∈SO(3)  

ti,0(S) =Λ0(S)·Ei    i=1,2,3 (3.3)

where SO(3) is the Special Orthogonal (Lie) group of the proper orthogonal 

transformation and Λ0(S) is the orthogonal tensor defined as 

Λ0(S)= Λ0;j,iEj⊗Ei       i,j=1,2,3 (3.4)
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In Equation 3.4 and in the foregoing symbol (⊗) denotes the tensor products of 

vectors. Matrix representation of Λ0(S) satisfies det(Λ0(S))=1 and I 

with I being the 3x3 identity matrix. The matrix representation of tensor Λ0(S) is 

referred to as the initial rotation matrix. The initial position vector of an arbitrary 

point on cross-section at S, r0(S) may be defined as 

)()Λ(Λ T
00 SS =

[ ] R,ξξRL0SSξSS 32

3

2i
i32 ∈⊂∈+ϕ=ξξ ∑

=

)(,,),(t)(),,(r i,000  (3.5a)

or with substituting Equation 3.3 into Equation 3.5a 

)(E)(Λ)(),,(r i000 SSξSS
3

2i
i32 ∑

=

+ϕ=ξξ  (3.5b)

where ξ2 and ξ3 are the co-ordinates of the arbitrary point within a cross-section at S 

with respect to the its centroid (Figure 3.1). It should be emphasized that cross-

section are assumed arbitrary and constant along the line of centroids. Thus initial 

position vector of centroids ϕ0(S) and the orthogonal transformation Λ0(S) at 

S∈[0,L] completely define the initial configuration of the beam S→C0=(ϕ0, 

Λ0)∈R3xSO(3). 

 

Similarly, deformed (current) configuration of the beam is defined by family of 

cross-sections connected through deformed beam centroid axis given by a space 

curve S→ ϕ(S)∈R3 in three dimensional space R3 with inertial Cartesian (spatial) 

frame, ei  i=1,2,3 (Figure 3.1). Cross-sections in current configuration is described 

by orthonormal traid of unit vectors ti(S) i=1,2,3 satisfying   

ti(S) ·tj(S)=δi,j     i,j=1,2,3 (3.6a)

⏐⏐ti(S)⏐⏐=1  i=1,2,3 (3.6b)

t1(S)= t3(S)X t2(S) (3.6c)

 

Unit vector t1(S) is normal to the cross-section but not tangent to the line of 

centroids due to shear deformation. Unit vectors t2(S) and t3(S) are still directed 

along the principle axes of inertia of the cross-section at S. Although material inertial 

frame Ei  i=1,2,3 is chosen to coincide with spatial inertial frame ei  i=1,2,3 in Figure 

3.1 for clarity they do not necessarily coincide. Since unit vectors ti,0  i=1,2,3 and tj  
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j=1,2,3 form  orthonormal frames they could be related with an orthogonal 

transformation  Λ(S)∈SO(3) such that  

ti(S) =Λ(S)· ti,0(S)    i=1,2,3 (3.7)

where Λ(S) is the two-point orthogonal tensor defined as 

Λ(S)= ti(S)⊗ ti,0(S)= Λj,iej⊗Ei       i,j=1,2,3 (3.8)

with Λj,i being the co-ordinate representation in the inertial frames of the reference 

and current configurations. As mentioned above, matrix representation of Λ(S) 

satisfies det(Λ(S))=1 and =I with I being the 3x3 identity matrix. )()ΛΛ( T SS

  

If Bernoulli hypothesis of plane cross sections remaining planar after deformation 

and retaining their shapes is assumed to hold the position vector of an arbitrary point 

on cross-section at S, r(S) may be given as 

[ ] R,ξξRL0SSξSS 32

3

2i
i32 ∈⊂∈+ϕ=ξξ ∑

=

)(,,),(t)(),,(r i  (3.9a)

where ϕ(S) is position vectors of centroids and ti  i=1,2,3 are the unit vectors of body 

attached frame in current configuration (Figure 3.1). Substituting Equation 3.7 into 

Equation 3.9a yields 

∑
=

+ϕ=ξξ
3

2i
i32 S(s)ξSS )(tΛ)(),,(r i,0  (3.9b)

 

Thus current configuration of the beam at S∈[0,L] is fully described by position 

vector of centroids ϕ(S) and orthogonal transformation Λ(S): S→C=(ϕ, 

Λ)∈R3xSO(3). 

 

3.3 Derivatives of the Moving Frame 

 
Since body attached frame ti(S)  i=1,2,3 changes its orientation with deformation 

of the beam it is also referred to as moving frame or moving basis. In order to derive 

the stress-strain relation one needs to calculate the derivatives of the moving basis 

(Equation 3.7) with respect to the (undeformed) arc-length parameter S; i.e.  

dS
Sd

SS
dS

Sd
dS

Sd )(t
)(Λ)(t)(Λ)(t i,0

i,0
i ⋅+⋅=     i=1,2,3 (3.10)
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Taking the derivative of Equation 3.3 and substituting into Equation 3.10 together 

with Equation 3.3 and Equation 3.7 (by employing the property of ) 

one obtains  

)(Λ)(Λ T-1 SS =

( ) )(t)(Ω)(t)(Λ)(Ω)(Λ)(Ω
)(t

ii
T

o
i SSSSSSS
dS

Sd
⋅=⋅⋅⋅+=      i=1,2,3 (3.11)

where 

)(Λ)(Λ)(Ω T S
dS

SdS ⋅=  (3.12a)

and 

)(Λ
)(Λ

)(Ω T
0

0
0 S

dS
Sd

S ⋅=  (3.12b)

are the skew-symmetric tensors; i.e.   

Substituting Equation 3.8 and its derivative relative to arc-length parameter S∈R into 

Equation 3.12a yields 

 0)(Ω)(Ω T =+ SS ,  0)(Ω)(Ω T
00 =+ SS .

( ) lj
,

lkij
, eeeEEe)(Ω ⊗⋅=⊗⋅⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⊗⋅= k,l

ij
k,l

ij Λ
dS

dΛ
Λ

dS
dΛ

S  i,j,k,l=1,2,3 (3.13)

Similarly, substituting Equation 3.4 and its derivative into Equation 3.12b with 

Equation 3.8, one finds 

( ) ( ) ( ) ( )

3,2,1,,,,,,,

)(Ω

qj,,
,

,

qp,nk,;0
,;0

ij,

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⊗⋅=

⊗⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⊗⋅⊗⋅=Λ⋅⋅Λ

qpnmlkjiΛΛ
dS

dΛ
Λ

ΛΛ
dS

dΛ
ΛSSS

qpnm
lk

ij

qpnm
lk

ij
T

ee

eEEEEe
 (3.14)

Thus )(Ω S  is spatial tensor for each S∈R and its components may be given 

relative to the moving frame ti(S)  i=1,2,3 as  

)(t)(t)(Ω ji, SsS ji ⊗= Ω           i,j=1,2,3  (3.15)

with  

jiandji0 ijjiji ≠−=== ,,, ΩΩΩ  

Matrix representation of Equation 3.15 is more convenient and given as 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=

0ωω
ω0ω
ωω0

S

12

13

23

)(Ω  (3.16)
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If one introduces the vector 321iSSωSS i ,,)(t)()( i ==ω→ , vector  and 

skew-symmetric tensor 

)(Sω

)(Ω S  satisfy 

0)()(Ω =ω⋅ SS  (3.17)

Vector  is called the axial vector of the skew-symmetric tensor)(Sω )(Ω S . The 

derivatives of moving frame (Equation 3.11) may be recast into another expression 

with axial vector given in Equation 3.17 as 

)(t)(
)(t

i
i SS
dS

Sd
×ω=  i=1,2,3 (3.18)

It should be noted that although axial vector )(Sω  is parametized by reference 

arc-length S it is a spatial vector (Equation 3.17 and Equation 3.18). Alternatively 

axial vector )(Sω  may be expressed relative to ti,0  i=1,2,3 or Ej  j=1,2,3 by 

employing Equation 3.10; i.e. material form of axial vector such that  

)()(Λ)(K T SSS ω⋅=  (3.19)

The axial vector K(S) appears in the material form of internal power expression 

and its derivation presented in derived in section 3.4. 

Note: Property of  

( ) ( ) 321jijiij
1 ,,,eEEeΛΛ ji,

T
ij,

T =⊗=⊗==− ΛΛ  (3.20)

is used in above equations. 

 

3.4 The Linear and Angular Momentum 

 
In case of motion, configuration of the beam is not only parametized by reference 

arc-length S∈[0,L] also with time t∈R+; that is 

∑
=

+ϕ=ξξ→
3

2i
i32 tSξtStSt ),(t),();,,(r it  (3.21a)

or with Equation 3.9b 

∑
=

⋅+ϕ=ξξ→
3

2i
i32 SS,tξtStSt )(t)Λ(),();,,(r i,0t  (3.21b)
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Before introducing the linear and angular momentum vectors associated with the 

motion (Equation 3.21) material time derivative of the moving frame ti(S,t)  i=1,2,3 

needs to be calculated; that is 

( ) 321itStStStStStS ,,),(t),(W),(t),(Λ),(Λ),(t ii
T

i =⋅=⋅⋅= &&  (3.22)

where  is the spin of the moving frame and it is a spatial skew symmetric 

tensor; ı.e. . The associated axial vector  is the vorticity 

of the moving frame ti(S,t)  i=1,2,3 and satisfies the relation . In 

Equation 3.22 and in the foregoing superposed dot ( ) denotes the material time 

derivative.  

),(W tS

(W ), tS = ),(W- T tS ),( tSw

),( ⋅tSW 0),( =tSw
•

In terms of vorticity vector Equation 3.22 may be written as 

3,2,1),(),(),( ii =×= itStStS twt&  (3.23)

Taking the material time derivative of Equation 3.21a yields 

∑
=

+ϕ=
3

2
i32t ),(),();,,(

i
i tSξtStS tr &&& ξξ  (3.24a)

Substituting Equation 3.23 into Equation 3.24a one obtains 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×+ϕ= ∑

=

3

2
i32t ),(),(),();,,(

i
i tSξtstStS twr && ξξ  (3.24b)

If kinematic assumption given in Equation 3.21a is used in Equation 3.24b one 

has 

( )),(),(),(),();( tt tStStstSt ϕ−×+ϕ= rwr && 32 ξ,ξS,  (3.24c)

Linear momentum per unit of reference arc-length S∈[0,L] of an arbitrary cross-

section At∈R2 in current configuration is defined as 

323232 dξξξ,ξξξρ dSS
A

),(r),,(L tt &∫=  (3.25a)

where is the density in reference configuration. Substituting Equation 

3.24c into Equation 3.25a it is obtained 

),( 32ξξρ S

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
ϕ−×+ϕ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∫∫

AA

dtStStstSdS 323232 dξξdξξξξρ ),(),(),(),(),,( tt rwL &  (3.25b)
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Since  defines the centroid of the cross section second term in Equation 

3.25b equals to zero. Then Linear momentum per unit of reference arc-length 

S∈[0,L] is given as 

),( tSϕ

),(),(),,(Lt tSAtSdS
A

ϕ=ϕ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ρ∫ &&3232 dξξξξρ  (3.26)

Similarly, Linear momentum per unit of reference arc-length S∈[0,L] with respect 

to the centroid of cross-section At∈R2 in current configuration is defined as 

( ) 323232 dξξξ,ξξξρ dStStSS
A

),(r),(),(r),,(H ttt &×ϕ−= ∫  (3.27a)

Substituting Equation 3.24c into Equation 3.27a yields 

( )

( ) ( )[ ] 3232
A

3232

dξξξξρ

dξξξξρ

dtStStstStSS

tSdtStSS
A

),(),(),(),(),(),,(

),(),(),(),,(

tt

tt

ϕ−××ϕ−

+ϕ×⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
ϕ−=

∫

∫

rwr

rH &

 (3.27b)

Since  defines the centroid of cross-section Equation 3.27b may be written 

as 

),( tSϕ

( ) ( )[ ]∫ ϕ−××ϕ−=
A

3232 dξξξξρ dtStStstStSS ),(),(),(),(),(),,( ttt rwrH  (3.27c)

By employing the relation from tensor calculus  

( ) baaÎa)ab(a ⋅⊗−=×× 2  

where is the identity dyadic matrix representation of which is a 3x3 identity matrix, 

angular momentum per unit of reference arc-length S is found as 

Î

( ) ),(),()()(-ˆ
P

2
t tstsρ

A
wIwrrIrH ttt ⋅=⋅⎥⎦

⎤
⎢⎣
⎡ ϕ−⊗ϕ−⋅ϕ−= ∫  (3.28)

where IP is the inertia tensor with respect to the moving frame ti(S,t)  i=1,2,3 and has 

the explicit form of 

( )jiP tt-ÎI ⊗⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑∑∫

= =
ji,

3

1i

3

1j A
ji δdAξξρ  (3.29)

It is clear from Equation 3.29 that components of inertia tensor Ip relative to the 

moving frame do not depend on time. 
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Since unit vectors t2 and t3 of moving frame are directed along the principle axes 

of inertia of the cross-section IP takes the familiar form of 

33322211 ttttttI ⊗⋅+⊗⋅+⊗⋅= IIJp  (3.30)

where 

J=I2+I3 

32
A

32
2
22 ξdξdξξSξI ⋅⋅ρ= ∫ ),,(  

32
A

32
2
33 ξdξdξξSξI ⋅⋅ρ= ∫ ),,(  

J=I2+I3 denotes the polar moment of inertia of the cross-section.  

Taking the material time derivative of Equation 3.28, noting that and 

using the Equation 3.23 one obtains 

itw),( itS && =w

tPt HwwIH ×+⋅= &&  (3.31)

Equation 3.31 is the identical expression found in rigid body mechanics. 

 

3.5 Equation of Motion 

 
In this section equation of motion for the nonlinear beam model is derived from 

the material form of linear and angular momentum principles of the 3 dimensional 

theory, which may be expressed as 

),(rBP tSDIV &&ρρ =+  (3.32a)

and 
TT FPPF ⋅=⋅  (3.32b)

where P is the first Piola-Kirchoff stress tensor, B is the body force vector, and F is 

the deformation gradient. Explicit form of the first Piola-Kirchoff stress tensor P and 

deformation gradient F are given as, respectively 

332211 E),(TE),(TE),(T ⊗+⊗+⊗= 323232 ξ,ξSξ,ξSξ,ξSP  (3.33)

and 

33221t EtEtE)r(F ⊗+⊗+⊗⎟
⎠
⎞

⎜
⎝
⎛ ϕ−×ω+
∂
ϕ∂

=
S

 (3.34)
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where 321iξ,ξSξ,ξS 3232 ,,E),(P),(T ii =⋅=  are the stress vectors, ω is the 

curvature of the beam given in Equation 3.17. 

If divergence of first Piola-Kirchoff stress tensor P is calculated as  

SSSSSS
DIV

∂
∂

+
∂
∂

+
∂
∂

=⋅⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

+
∂
∂

= 321
321 PP

TTT
EEE  (3.35)

,and substituted into linear momentum equation (Equation 3.32a), and resultant 

equation is integrated over cross-section one obtains 

323232 ξξρξξρξξ ddtSdd
SS

dd
S AAA

∫∫∫ +⎟
⎠
⎞

⎜
⎝
⎛ +

∂
∂

+
∂
∂

−=
∂
∂

),(211 rB
TTT

&&  (3.36)

Applying the divergence theorem to the second integral in Equation 3.36 yields 

( ) 32323232 ξξρξξρννξξ ddtSddddd
S AAA

∫∫∫∫ +++=
∂
∂

∂

),(rBTT
T

32
1 &&

Γ

Γ  (3.37)

where  is the vector filed normal to the lateral contour δΓ of the 

beam. 

32 EE 32 νν +=ν

Defining the resultant contact force per unit of the reference arc-length as 

3232 ξξξξ dd
S

ddξ,ξStS
AA

32 ∫∫ ∂
∂

=⋅= 1
1

T
E),(P),(f  (3.38)

and applied load as 

( ) 3232 ξξρνν dddtS
A
∫∫

∂

++= BTT),(q 32
Γ

Γ  (3.39)

linear momentum balance equation is found as, with Equation 3.26 

),(L),(q),( tSAtS
S

tS
t ϕ==+

∂
∂

&&&
ρ

f  (3.40)

The resultant torque per unit of reference arc-length over the cross-section is 

defined as 

3232 ξξξ,ξ ddStS
A
∫ ×ϕ−= ),(T)r(),(m 3t  (3.41)

Taking derivative of Equation 3.41 relative to reference arc-length S yields 

323232 ξξξdξξdξ dd
S

d
S

d
SS AAA

∫∫∫ ∂
∂

×ϕ−+⎟
⎠
⎞

⎜
⎝
⎛ ×
∂
ϕ∂

−⎟
⎠

⎞
⎜
⎝

⎛
×

∂
∂

=
∂
∂ 1

t11
t T

)r(TT
rm  (3.42)

Substituting Equation 3.36 into Equation 3.42 and making the use of the definition 

of resultant force, one finds 
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( ) 3232

3232

ξξρξξρ

ξξξdξ

ddtSdd

dd
SSS

d
SS

AA

AA

∫∫

∫∫
×ϕ−+×ϕ−

+⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

+
∂
∂

×ϕ−−×
∂
ϕ∂

−⎟
⎠

⎞
⎜
⎝

⎛
×

∂
∂

=
∂
∂

),(r)r()B()r(

TT
)r(T

rm

tt

32
t1

t

&&

f
 (3.43)

If Equation 3.31 is used in Equation 3.43 and divergence theorem is applied to the 

second integral, one obtains 

),(

)( 3
t

2
t

1tt

tS
S

d
SS A

m

T
r

T
r

TrωHm

−×
∂
ϕ∂

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

∂
∂

+×
∂
∂

+×
⎭
⎬
⎫

⎩
⎨
⎧ ϕ−×+
∂
ϕ∂

+=
∂
∂

∫

f

32
32

ξdξ
ξξ

&

 (3.44)

where ),(m tS  is the applied moment and given as 

( ) ( ) ( ) ( ) 3232 ξξρνν dddtS
A
∫∫ ×ϕ−++×ϕ−=

∂

BrTTr),(m t32t
Γ

Γ  (3.45)

From Equation 3.9a unit vectors t2 and t3 can be expressed as 

3,2k =
∂
∂

=
kξ
ϕ

kt  (3.46)

Then deformation gradient F can be recast into alternative expression with 

Equation 3.46 

321t EEErF ⊗
∂
∂

+⊗
∂
∂

+⊗⎟
⎠
⎞

⎜
⎝
⎛ −×+
∂
∂

=
32 ξξ
ϕϕ

ϕω
ϕ )(
S

 (3.47)

Substituting Equation 3.47 and Equation 3.33 into angular momentum balance 

equation (Equation 3.32b) it is obtained 

0)(

)(

t1

1t

3

2

t
jj

t

=⎟
⎠
⎞

⎜
⎝
⎛ ϕ−×ω+
∂
ϕ∂

⊗−

⊗⎟
⎠
⎞

⎜
⎝
⎛ ϕ−×ω+
∂
ϕ∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

⊗−⊗
∂
∂∑

=

rT

Tr
r

TT
r

S

Sj jj ξξ
 (3.48)

By scalar-multiplying of Equation 3.48 with any nonzero vector e≠0, one has 

( ) ( )

0)(

)(

t1

1t

3

2

t
jj

t

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟

⎠
⎞

⎜
⎝
⎛ ϕ−×ω+
∂
ϕ∂

−

⋅⎟
⎠
⎞

⎜
⎝
⎛ ϕ−×ω+
∂
ϕ∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅

∂
∂

−⋅
∂
∂∑

=

erT

eTre
r

TeT
r

S

Sj jj ξξ  (3.49)

Taking the note of vector identity  

( ) ( )BACCABC)(BA ⋅−⋅=××  (3.50)
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one obtains 

0TreT
r

e 1tj
t =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×⎟
⎠
⎞

⎜
⎝
⎛ −×+
∂
∂

×+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
×

∂
∂

×∑
=

)(
S

3

2j
ϕω

ϕ

jξ
 (3.51)

Equation 3.51 holds for any nonzero vector e≠0 thus 

0TrT
r

1tj
t =×⎟

⎠
⎞

⎜
⎝
⎛ −×+
∂
∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
×

∂
∂∑

=

)(
S

3

2j

ϕω
ϕ

jξ
 (3.52)

By substituting Equation 3.52 into Equation 3.44 angular momentum balance 

equation is obtained as 

tPt),( HwwIHmm
×+⋅==+×

∂
∂

+
∂
∂

&&tS
SS

fϕ  (3.53)

Linear and angular momentum balance equations (Equation 3.40 and Equation 

3.53, respectively), although parameterized by the reference arc-length, take values 

on the current configuration; i.e. their components are expressed in the spatial basis, 

either ei or ti i=1,2,3. Alternatively their material forms may be found by defining the 

material vectors 

     i=1,2,3 i,0ii tttfN i
T

ii
TT f)(f)f( =⋅=⋅=⋅= ΛΛΛ (3.54a)

 i,0ii tttmM i
T

ii
TT m)(m)m( =⋅=⋅=⋅= ΛΛΛ   i=1,2,3 (3.54b)

From Equation 3.54a and 3.54b it is clear that “components of the force and 

moment vectors f and m relative to the moving frame ti i=1,2,3 equal those of N and 

M relative to the reference frame ti i=1,2,3” (Simo, 1985). 

  

Material forms of the linear and angular momentum balance equations are 

obtained by substituting Equation 3.54a into Equation 3.40 and Equation 3.54b into 

Equation 3.53. 

 

3.6 Internal Power and Strain Measures 

 
 In this section, strain measures are obtained from the internal power expression of 

the 3-dimensional theory, which is given as 

( )∫=
AxS

ddSd 32 ξξF:P¶ &  (3.55)
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where P is the first Piola-Kirchoff stress tensor (Equation 3.33) and is the material 

time derivative of the deformation gradient (Equation 3.34). In Equation 3.55 

column (:) denotes the double contraction of the tensors defined as 

F&

( ) ( ) d)bcadc:ba ⋅⋅=⊗⊗ )((  (3.56)

Taking the material time derivative of deformation gradient and making the use of 

Equation 3.23 one finds 

( ) ( )∑
=

⊗×+⊗⎟
⎠
⎞

⎜
⎝
⎛ ϕ−××ω+ϕ−×ω+
∂
ϕ∂

=
3

2i
ii1tt )()( EtwErwrF &&

&&
S

 (3.57)

From Equation 3.33 and Equation 3.57, noting Equation 3.56,  is obtained as F:P &

{ }[ ] [ ] ( ii3tt11 TtTrrTTF:P ×⋅+⋅×−+−××⋅+
∂
∂
⋅= ∑

=

3

2i
)((

S
ww ωϕϕω

ϕ
&& )  (3.58)

where the following vector manipulation is used 

ba)(ca)c(bb)c(ac)(ba ⋅×=⋅=⋅=×⋅  (3.59)

The last term in Equation 3.58 can be written in alternative form by using 

Equation 3.46 as 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

∂
∂

⋅=×⋅ ∑∑
==

3

2i

3

2i
iii TTt

iξ
ϕww  (3.60)

By using angular momentum balance condition (Equation 3.52) and vector 

manipulation given in Equation 3.59, one finds 

( ) { }⎟
⎠
⎞

⎜
⎝
⎛ −××+

∂
∂

×⋅−=×⋅∑
=

)(
S

3

2i
ϕω

ϕ
t1ii rTTt www  (3.61)

Another form of Equation 3.60 may be obtained by making the use of the identity, 

noting the Equation 3.50 

{ } { }
[ ] [ ] )r()r(

)r()r(

tt

tt

ϕωϕωω
ϕωϕω

−××=−⋅⊗⊗
=−××−××

ww-w
w-w

 (3.62)

as 

( ) { } [ ] ⎟
⎠
⎞

⎜
⎝
⎛ −××−−××+

∂
∂

×⋅−=×⋅∑
=

)()(
S

3

2i

ϕωϕω
ϕ

tt1ii rrTTt wwww  (3.63)

Substituting Equation 3.63 into Equation 3.58 and integrating yields 
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( )

[ ]∫ ∫

∫ ∫ ∫

×−⎥
⎦

⎤
⎢
⎣

⎡
⋅+

⎥⎦
⎤

⎢⎣
⎡

∂
∂

×−
∂
∂

⋅⎥
⎦

⎤
⎢
⎣

⎡
==

S A

AxS S A

dSdd

dS
SS

ddddSd

ωωϕ

ϕϕ

w

w

&

&&

32

3232

ξξ

ξξξξ

1t

1

T)-(r

TF:P¶

 (3.64)

Using the definitions for resultant force and moment, reduced internal power is 

obtained as 

( )∫ ∫ ⎟
⎠
⎞

⎜
⎝
⎛ ⋅+⋅==

∇∇

AxS S

dSddSd ωmfF:P¶ γ32 ξξ&  (3.65)

where 

SSt ∂
∂

×−⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

=
∇ ϕϕ
γ w  (3.66a)

is the time rate of change of the spatial strain measure corresponding to the resultant 

force f(S,t), and 

( ) ωωω && ×−
∂
∂

=
∇

w
t

 (3.66b)

is the time rate of change of the spatial strain measure corresponding to the resultant 

moment m(S,t).  

Material time derivative of any moving generic vector V(t) is given by 

3R
tDt

D
∈×+

∂
∂

= VVVV w  (3.67)

where 
t∂

∂V  is the rate due to change in vector length and V×w  is the rate due to 

change in vector direction imposed by the spin of the moving frame. Thus while 

calculating the time rate of strain measures, effect of the spin of the moving frame ti 

i=1,2,3 should be subtracted from the material time derivatives. This explains the 

using of symbol (∇) instead of superposed dot (.) which stands for the material time 

derivative. 

  

Spatial strain measure, γ accounts for axial and shear deformation of the beam as 

can be seen from its explicit form: 

)(St
S 1−
∂
ϕ∂

=γ  (3.68)

and ω is the bending strain. 
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Material form of the reduced internal power equation my be obtained by 

introducing the following vectors, noting the Equation 3.7 

1,0
T

1
TTT tΛtΛΛΛ),( +

∂
ϕ∂

⋅=⋅+
∂
ϕ∂

⋅=γ⋅=
SS

tSΓ  (3.69a)

and 

ω⋅= TΛ),(K tS  (3.69b)

From Equation 3.66a and Equation 3.69a, by making the use of Equation 3.22 and 

axial vector definition of spin tensor: 
∇∇

γ⋅=⇒
∂
∂
⋅=

∂
γ⋅∂

⋅=γ⋅−
∂
γ∂

=γ×−
∂
γ∂

=γ ΛΓΓ)(Λ)Λ(ΛWw
T

&
SSSS

 (3.70a)

and similarly from Equation 3.66b and Equation 69b, by noting 0),(w),(W =⋅ stst  

∇∇

ω⋅=⇒
∂
∂
⋅=

∂
ω⋅∂

⋅=ω⋅−
∂
ω∂

=ω×−
∂
ω∂

=ω ΛKK)(Λ)Λ(ΛWw
T

&
SSSS

 (3.70b)

Substituting Equations 3.70a and 3.70b into Equation 3.65 and noting Equation 

3.54 and the orthogonally of Λ(t,s), one finds the material form of the reduced 

internal power as: 

( ) ( )∫ ∫ ⋅+⋅==
AxS S

dSddSd KMΓNF:P¶ &&&
32 ξξ  (3.71)

In finite element implementation internal energy (virtual work) is preferred over 

internal power expression and it may be given as, for material description 

( )dS
S
∫ ⋅+⋅= KMΓNΠ  (3.72a)

and for spatial description 

dS
S
∫ ⎟

⎠
⎞

⎜
⎝
⎛ ⋅+γ⋅= ωmfΠ  (3.72b)

 

3.7 Parametization of Finite Rotation 

 
3.7.1 Total Rotation Vector 

 

Consider 3-D beam in Figure 3.1 undergoing large displacements and finite 3-D 

rotations. ti,0 i=1,2,3 is the local Cartesian frame located at the centroid of the cross-

section of the beam in the reference configuration. Similarly ti i=1,2,3 is the local 
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Cartesian frame positioned at the centroid of the beam on the current configuration, 

ϕ(S). Relation between ti,0 i=1,2,3 and ti i=1,2,3 can be represented by an orthogonal 

tensor Λ∈SO(3) as 

i,0i tΛt ⋅=  (3.73)

As mentioned above SO(3) stands for the Special Orthogonal (Lie) group. Thus Λ is 

a two-point tensor and can be defined as 

ijj,0i EettΛ ⊗=⊗= jiΛ  (3.74)

where Λji is the coordinate representation in the inertial frames of the reference and 

current configurations with Ei and ej being the corresponding unit vectors. Tensor Λ 

rotates the unit vector ti,0 in the reference configuration to the unit vector ti in current 

configuration. 

  

The unit vectors of inertial frames of reference and current configurations are 

chosen to coincide (Figure 3.1) but different symbols are used for clarity. Thus one 

has 

iiii EeÎEÎe ⊗=⇒⋅=  (3.75)

where  is the identity dyadic matrix representation of which is 3x3 identity matrix. Î

Euler’s Theorem for the finite rotation of rigid body states that there is vector θ 

which is not affected by the rotation such that 

ϑ⋅=ϑ⋅Λ=θ Î  (3.76)

where  is the spatial vector field corresponding to the material vector field . θ ϑ θ  is 

called total rotation vector. Hence inertial frames of reference and current 

configurations are chosen to coincide, the components of θ  and  are equal; i.e. ϑ

iθ=⋅ϑ=⋅θ ii Ee  (3.77)

where dot (⋅) denotes the scalar vector product. Therefore,  and ϑ  are used 

interchangeable whenever there is not danger of confusion.  

θ

  

Two-point tensor Λcan also be represented with Rodrigues formula (Goldstein, 

1980) such that 
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[ ] [ ] [ ]

θ⊗θ⋅
θ

θ−
+Θ⋅

θ
θ

+⋅θ=Λ

⊗+×⋅θ+⊗⋅θ)=Λ

2

))()(

)(
sin(1sinˆcos

ˆsin-ˆcos(

I

nnInnnI
 (3.78)

where 2
2

2
2

2
1 θθθθθ ++=⋅=θ is the magnitude of the rotation vector, θ

θ=n  is 

a unit vector along the rotation axis and Θ is the skew-symmetric tensor 

corresponding to the axial vector θ defined as  Θ⋅θ=0. 

Using vector identity  

( ) [ ] 32 Rθ ∈⋅−θ⊗θ=⋅⋅ bbÎbΘΘ  (3.79)

leads to the closed form of the Rodrigues formula given by exponential mapping 

θ⊗θ⋅
−

+Θ⋅+⋅=Θ=Λ 2

)))
θ

θ
θ
(θ

θ
cos(1sinˆcos()exp( I  (3.80)

where ∑
∞

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ θ
=

1n

n

n!
)exp(Θ . 

If is the superposed infitesimal rotation onto the moving frame defined by 

Λ(S), then admissible variation δΛ of orthogonal tensor Λ, for ∈>0, may be 

calculated by using exponential mapping as: 

(S)Wδ

( ) ΛWΛ)Wexp(Λ ⋅=⋅∈
∈

= δδ
d
dδ  (3.81)

Differentiating orthogonality condition of  Λ; i.e. ΛT⋅Λ=Λ⋅ΛT=I,  one finds that 

0ΛΛΛΛΛΛΛΛ TTTT =⋅+⋅=⋅+⋅ δδδδ  (3.82a)

0ΨΨWW TT =+=+ δδδδ  (3.82b)

Hence is a skew-symmetric tensor and spatial object components of which are 

given in spatial inertial frame as 

Wδ

( ) ( ) 321lkjiδWδδ ilklij ,,,,,eeeEEeW lilkji =⊗=⊗⋅⊗= ΛΛ  (3.83)

It should be pointed out that infitesimal rotations are skew-symmetric 

transformation (see Goldstein, 1980). One recovers the orthogonal transformation by 

exponenting of skew-symmetric matrix (infititesimal rotation). 

NOTE: Since numerical implementation of finite element formulation is considered 

in this study, “matrix” and “tensor” are used interchangeable whenever there is no 

danger of confusion.  
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Alternatively, admissible variation δΛ can be constructed by translating δW into 

material inertial frame such as 

ΛWΛΨ T ⋅⋅= δδ  (3.84)

Substituting Equation 3.84 into Equation 3.81 yields 

( )[ ] ΨΛΛΛΨΛexpΛ T δδ
S

δ
0

⋅=⋅⋅∈⋅
∂
∂

=
=ε

 (3.85)

where property of the exponential mapping  

( ) ( ) TT ΛΨexpΛΛΨΛexp ⋅∈⋅=⋅∈⋅ δδ  (3.86)

is employed. 

 

From Equation 3.82b it is can be seen that  is also skew-symmetric tensor and 

material object; i.e. 

Ψδ

( ) ( ) 321lkjiδδδ ilklij ,,,,,EEEeeEΨ lilkji =⊗=⊗⋅⊗= ΨΛΛ  (3.87)

From Equation 3.83 it is clear that δW is an element of tangent space of SO(3) at 

point Λ ( , and similarly, from Equation 3.87,  is an element of tangent 

space of SO(3) at the identity ( . Geometric interpretation of and δW is 

shown in Figure 3.3. 

))((Λ 3SOT Ψδ

))((I 3SOT Ψδ

 

Since  and δW are skew-symmetric tensors they can be represented by axial 

vectors defined by 

Ψδ

0Ψ =ψ⋅ δδ  and 0wW =⋅ δδ , respectively. The relation of two 

axial vectors follows from the Equation 3.84 as 

wΛΛwΛWΛΨ TT δδδδδδ ⋅=ψ⇒ψ⋅=⇒⋅⋅=  (3.88)

Admissible variation δΛ of Λcan also be constructed by means of material rotation 

vector  and its variation ϑ ϑδ  such that 

( ) ( ) ( )ΨexpΦexpΦΦexp δδ ∈⋅=∈+  (3.89)

where  is the skew-symmetric tensor defined by relation . Geometric interpretation 

of Equation 3.89 is given in Figure 3.4. By using the observation given in Goldstein, 

(1980); i.e. 

Φ

( )[ ] ( )Φ-expΦexp =−1 , Equation 3.89 may be written as 

( ) ( ) ( )ΦΦexpΦ-expΨexp δδ ∈+⋅=∈  (3.90)

Taking the derivative with respect to ∈ and setting ∈=0; i.e. 
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( )( ) ( ) ( )( )
00

δδ
∈=∈=

∈+⋅
∈∂
∂

=∈
∈∂
∂ ΦΦexpΦ-expΨexp  (3.91)

one finds  

ϑ⋅ϑ=ψ δδ )(TT  (3.92)

where skew-symmetric tensor TT is given in explicit form as 

ϑ⊗ϑ
ϑ

ϑϑ
+

ϑ
ϑ−

−
ϑ
ϑ

=ϑ 32

sin-cos1sin)( ΦITT  (3.93)

By using the same procedure; i.e.  

( ) ( ) ( ) 0expδexpδexp =θ⋅⋅∈+=∈ ΘΘ-ΘΘW  (3.94a)

( )( ) ( ) ( )( )
00 expδexpδexp

∈=∈=
∈+

∈∂
∂

=∈
∈∂
∂ Θ-ΘΘW  (3.94b)

one finds the relation between spatial rotation vector (θ) variation δθ and superposed 

rotation δW as 

θ⋅θ= δδ )T(w  (3.95)

where T(θ) is the skew-symmetric tensor given explicitly in Equation 3.93. 

Properties of T(θ) can be found in Ibrahimbegovic, (1995) . 

 

If Equation 3.92 and 3.95 are substituted into Equation 3.88, one gets 

ϑ⋅=ϑ⋅⋅⋅⋅=θ − δδδ ITTΛT T1-1  (3.96)

where relations -1-1 TΛΛT ⋅=⋅  and T-1-T ΛTT =⋅ are used (Ibrahimbegovic, 1995). 

Equation 3.96 confirms the relation given in Equation 3.76 

  

By employing the similar calculation procedure given above, the following results 

are also obtained: 

ϑ′⋅θ= )(TΤκ  (3.97a)

θ′⋅θ=ω )(Τ  (3.97b)

where κ and ω are the material and spatial bending measures (see Equations 3.72a 

and 3.72b.  

 

 The parameterization of finite rotation given above can handle the any 3-D 

rotation as long as magnitude of rotation is smaller that 2Π. In case where rotation is 
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greater than 2Π, parameterization will be ill defined; i.e. non-unique. This deficiency 

can be overcome by restricting the size of rotation being smaller that 2Π and using 

the incremental rotation vector for constructing admissible variation δΛ. This is 

considered in the next section. 

 

3.7.2 Incremental Rotation Vector 

  

As mentioned in previous section total rotation vector parameterization of finite 

rotation cannot handle large rotations; i.e. cases encountered in dynamic problems. If 

one partitions the configuration space into a number of time steps: 0<t1<t2< 

…<tn….<T and uses the incremental procedure, the deficiency can be overcome. If 

the value of rotation at a typical time tn is denoted as  

Λn=Λ(tn) (3.98)

 

 
Figure 3.2 Finite rotation decomposition: Infitesimal rotation 
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the rotation update at time tn+1 can be carried out as 

)(~)~
1n1n +++ ϑ⋅=⋅θ= ΛΛΛ(ΛΛ nn1n  (3.99)

where θn+1 is the spatial incremental rotation vector and 1n+ϑ  is the its material 

counterpart. )exp()~
1n1n ++ θ=θ(Λ  is the exponential mapping given by Equation 3.80. 

Since Λn is an orthogonal tensor; i.e. , one obtains the relations -1
n

T
n ΛΛ =

T
nn ΛΛΛ(Λ ⋅ϑ⋅=θ ++ )(~)~

1n1n  (3.100a)

n
T ΛΛΛ(Λ ⋅θ⋅=ϑ ++ )(~)~

1nn1n  (3.100b)

By taking into that skew-symmetric tensor shares the same eigenvectors with 

orthogonal tensor obtained by exponentiating it, one finds from Equations 3.100a and 

3.100b 
T
nn ΛΦΛΘ ⋅⋅= ++ 1n1n  (3.101a)

 

 
F

 

igure 3.3 Finite rotation decomposition: Rotation vector variation 
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n
T ΛΘΛΦ ⋅⋅= ++ 1nn1n  (3.101b)

    

where . Equations 3.101a 

and 3.101b lead to the relation between spatial and material incremental rotation 

vectors such that 

3RbbbΦ bbΘ ∈∀×ϑ=⋅×θ=⋅ ++++ 1n1n1n1n and

1n1n ++ ϑ⋅=θ nΛ  (3.102a)

1n1n +++ θ⋅=ϑ T
1nΛ  (3.102b)

The graphical representation of the relation between 1n+ϑ  and θn+1 is given in 

Figure 3.3. It should be noted that θn+1 belongs to the tangent space of SO(3) at point 

Λn  and  belongs to the tangent space of SO(3) at identity 

. In sharp contrast with total rotation vector given in Equation 3.76, the 

spatial and material representation of the incremental rotation vector is not identical.  

[ ])3(SO(TΛ

[ ])3(SO(

1n+ϑ

TI

  

When incremental rotation vector is used for parameterization of finite rotation, 

final values of the state variables are calculated by an iterative procedure carried over 

each increment. 

  

The iterative update of finite rotation is more involved than total rotation vector 

procedure because one not only chooses between spatial and material representation 

but also between different iterative rotation parameters. Let superscript (i) denote the 

iteration counter. Consider the rotation update: 
ii )δ~

1n1n1n
1i
1n Λw(ΛΛ +++

+
+ ⋅∈=  (3.103)

where  is the infitesimal rotation superposed on existing rotation  (Figure 

3.4). The same value of total rotation  can be obtained by making use of spatial 

incremental rotation vector and its variation  as 

iδ 1nw +
i

1nΛ +

1i+
+1nΛ

i
1n+θ i

1nδ +θ
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Figure 3.4 Incremental rotation vector in spatial and material representation 

 

 
Figure 3.5 Iterative updates of the rotation 
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n1n1n
1i
1n Λ(ΛΛ ⋅θ∈+θ= ++

+
+ )δ~ ii  (3.104)

From Equations 3.103, 3.104 and spatial incremental rotation vector definition in 

3.100b one obtains 

)(~)δ~)δ~ i
1n

iii
++++ θ⋅θ∈+θ=∈ T

1n1n1n Λ(Λw(Λ  (3.105)

which by following the same procedure given in previous section; i.e. 

( ) ( )
0

i
1n

ii

0

i )(~)δ~
d
d)δ~

d
d

∈=
+++

∈=
+ θ⋅θ∈+θ

∈
=∈

∈
T

1n1n1n Λ(Λw(Λ  (3.106)

leads to the admissible variation in terms of spatial incremental rotation vector: 
i

1n
i

1n
i δ)(~δ +++ θ⋅θ= Tw 1n  (3.107)

Similarly, the rotation update can be carried out with material rotation parameters as 

)δ~)(~)δ~ iii
1n

i
1n1n

T
1n (ΛΛ(Λ ++++ ϑ∈+ϑ⋅ϑ=ψ∈  (3.108)

from where one obtains the relation 
i

1n
i

1n
i δ)(~δ +++ ϑ⋅ϑ=ψ T

1n T  (3.109)

In Equation 3.109,  is the material form of the infitesimal rotation . The 

graphic illustration of iterative update procedure is presented in Figure 3.3. 

iδ 1n+ψ iδ 1nw +

 

3.8 Weak Form of Balance Equation 

 

The potential energy of the beam is found in section 3.6 as 

( )dS
S
∫ ⋅+⋅= KMΓNΠ  (3.110)

where N and M are energy conjugate stress resultants with corresponding strain 

measures Γ and K, respectively. If the simplest constitutive equations are chosen, 

one may obtain the stress resultants as 

N=Cn⋅Γ (3.111a)

M=Cm⋅K (3.111b)

where Cn and Cm are the constitutive matrices with constant diagonal entries for 

linear elastic beam given as 

Cn=diag([EA,GA2,GA3]) (3.112a)

Cm=diag([GJ,EI2,EI3]) (3.112b)
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Here, EA is the axial stiffness, GA2 and GA3 denote shear stiffness, GJ is the 

torsional stiffness, and EI2 and EI3 are principle bending stiffness relative to t2,0 and 

t3,0 of the beam cross-section.  

 

Explicit form of the strain measures are given in section 3.6 as 

1,0
T

1 tΛΓ +
∂
ϕ∂

⋅θ=
S

)()t,S(  (3.113a)

)S()()t,S( 0
T Ω)(ΛΛK +θ′⋅θ=  (3.113b)

where prime (‘) denotes the derivative with respect to the arc-length parameter S. 

 

From Equation (3..112) and Equation (3.113), it is clear that potential energy is 

the functional of dependent variables ϕ and θ. Hence the virtual work equations can 

be obtained by the directional derivative of the potential energy in the direction of 

virtual displacement δϕ and rotation vectors δθ such that 

( ) ( ) ( )[ ] ( )∫ ⋅+⋅=θ+θϕ+ϕ
∈

=θϕ⋅θϕ
∈= S0

δδδ,δ
d
dδ,δ,δ MkNΓΠΠ  (3.114)

In Equation (3.114) δΓ corresponding to the axial and shear strains is computed as 

( ) ( )[ ] ϕ⋅+ϕ′⋅=−ϕ∈+ϕ⋅∈+
∈

=
∈=

TTTT ΛΛtΛΛΓ δδδδ
d
dδ

0
0,1  (3.115)

By making use the results given in section 3.7; i.e. and TTT ΛΨΛ ⋅= δδ 0Ψ =ψ⋅ δδ  

one obtains 

ψ×ϕ′⋅+ϕ′⋅= δδδ TT ΛΛΓ  (3.116)

Similarly, virtual bending strain δK is calculated as 

( ) ( )[ ] ΛΛΛΛΩΛΛΛΛK TTTT ′⋅+′⋅=−′∈+′⋅∈+
∈

=
∈=

δδδδ
d
dδ

0
0  (3.117)

From Equation (3.117) one finds 

KΨΨKΨK ⋅−⋅+′= δδδδ  (3.118)

Since δK is a skew-symmetric tensor, Equation (3.118) can be written in terms of 

axial vector δK⋅δk=0 and 0Ψ =ψ⋅ δδ  as 

ψ⋅+ψ′= δδδ kk  (3.119)
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 By making use of the Equation (3.68) spatial form of virtual strains can be obtained 

as 

w(γδ δδ) ×ϕ′+ϕ′=L  (3.120)

And 

w(δ δδ) ×ω+ω=ωL  (3.121)

Alternative form of the spatial bending strain measure can be recovered by making 

use of Equation (3.9) as 

w(δ ′=ω δ)L  (3.122)

Symbol  stands for the Lie derivative and is explained later. δL

 

Finally by using Equation (3.114) through Equation (3.122) virtual work 

equations in terms of spatial objects can be expressed as 

( ) ( ) ( ) ( )( ) 0dsδ,δ,δ
S

=⋅ω+⋅γ==θϕ⋅θϕ ∫ δδ mLnLΠ  (3.123)

Virtual work equation given in Equation (3.123) is highly nonlinear and one needs 

iterative procedure to obtain its solution. If Newton procedure is employed for that 

purpose one needs consistent linearization to ensure objectivity and to guarantee 

quadratic convergence rate. This is automatically enforced with Lie derivative 

formularization where the spatial objects are first pulled-back to the reference 

configuration, and the derivative is then pushed-forward to the current 

configuration; i.e.  

( ) ( )[ ]
∈∈+++ •⋅

∈
⋅= T(i),

1,n
i

1nΔ ΛΛ
d
dδΠ i

1nL  (3.124)

Then consistent linerization formulation for Virtual work can be obtained as 

( ) ( )i
1n

i
1n δΠδΠδΠL +++ += Δ

i
1n L  (3.125)

where subscript (n+1) is used to point out that proposed formulation is employed 

only spatial incremental rotation vector parameterization scheme, and L(•) denotes 

the linear part of the functional. 

 

By introducing the spatial incremental rotation vector given in Equation (3.26a), 

the last term in Equation (3.125) can be simplified to obtain 
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( ) ( ) ( )[ ]
∈+∈+∈++++ •⋅θ⋅

∈
⋅⋅θ= ,1n,1n1n

i
1n )~

d
d)~δΠ (ΛΛΛ(Λ T

1,n
T
nn1nΔL  (3.126)

and using the orthogonality condition  IΛΛ T
nn =⋅

( ) ( ) ( )[ ]
∈+∈+∈++++ •⋅θ

∈
⋅θ= ,1n,1n1n

i
1n )~

d
d)~δΠ (Λ(Λ T

1,n1nΔL  (3.127)

The linearized form of the virtual work equations can be written as 

( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( )( ) ( )( )( )ds

ds

dsδ,δ,δL

S

i
1n

i
1n

i
1n

i
1n

S

i
1n

i
1n

i
1n

i
1n

S

i
1n

i
1n

i
1n

i
1n

i
1n

i
1n

i
1n

i
1n

∫

∫

∫

++++

++δ++

++++++++

⋅ω+⋅γ

+⋅ω+⋅γ

+⋅ω+⋅γ=θϕ⋅θϕ

mn

mLn

mn

δδ

δ

δδ

LLLL

LLL

LL

ΔΔ

ΔΔ

Π

 (3.128)

In Equation (3.128) above,  and  are spatial representation of material 

stress resultants N and M, respectively and given as 

i
1n+n i

1n+m

( ) i
1n

i)ii
1n ++++ γ⋅⋅⋅= T,(

1nn1n ΛCΛn  (3.129)

( ) i
1n

iii
1n ++++ ω⋅⋅⋅= T),(

1nm1n ΛCΛm  (3.130)

By applying the Lie derivative formulation given in Equation (3.124) to Equations 

(3.129) and (3.130), one obtains 

( ) ( ) ( )i
1n

i)ii
1n ++++ γ⋅⋅⋅= ΔΔ LL T,(

1nn1n ΛCΛn  (3.131)

( ) ( ) ( )i
1n

iii
1n ++++ ω⋅⋅⋅= ΔΔ LL T),(

1nm1n ΛCΛm  (3.132)

where the following should be noted 

( ) ( ) 0T,(
1n

(
1,n

T,(
1,nn1,n

T
1,n1n

T,(
1nn1n ΛΛΛCΛΛΛΛCΛ =+∈+∈+∈+∈++++ ⋅⋅⋅

∈
=⋅⋅ i)i)i)i(i)ii)i

d
d

ΔL  (3.133)

When additive update procedure is used, one may write 
i

1n
i

1nn
i

,1n ++∈+ ϕ∈+ϕ+ϕ=ϕ Δ  (3.134a)

i
n

i
n

i
n 11,1 ++∈+ Δ∈+= θθθ  (3.134b)

where rotation parameters belong to the tangent space [ ])3(SO(T
nΛ  (Figure 5.7). By 

making use the Lie derivative formulation given in Equation (3.123), virtual (spatial) 

strain measures and their linearized forms are found as:  

( ) ( ) ii
n

i
n

i
1nw ++++ ×ϕ′+ϕ′=γ δδ)( 111nδL  (3.135)

ii
n

i
n

i
n 1n111δ δδ)( ++++ ×ω+ω=ω wL  (3.136)
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( ) ( ) ii
n

i
n

i
1nw ++++Δ Δ×ϕ′+ϕ′Δ=γ 111n )(L  (3.137)

ii
n

i
n

i
n 1n111 )( ++++Δ Δ×ω+ωΔ=ω wL  (3.138)

( ) ( ) ( )( )
( ) ( ) ii

n
ii

n

ii
n

i
n

ii

1n1n

1n1n

ww

ww

++++

+++++Δ

Δ×′+δ×′Δ+

×′+′×Δ−=

δ

δδ)(

11

111nδ

ϕϕ

ϕϕγLL
 (3.139)

( ) [ ]
ii

n
ii

n
i
n

ii
n

i
n

ii
n

1n11n11

1n111δ

δδδ

δδ)(

+++++

+++++Δ

Δ×+×Δ+Δ+

×+×Δ−=

ww

ww 1n

ωωω

ωωωLL
 (3.140)

It should be noted that all the rotation parameters in Equations 3.135 to 3.140 is 

expressed in terms of incremental rotation vector , its variations  and its 

incremental values , i.e. 

i
n 1+θ i

n 1+δθ

i
n 1+Δθ

i
1n

i
1n

i δ)(~δ +++ θ⋅θ= Tw 1n  (3.107)

i
n

i
n

i
111n )(~
+++ Δ⋅=Δ θθTw  (3.141)

( ) ( )
[ ] i

n
i
n

i
n

i
n

i
n

i
n

i

11
0

11111n

δ)(~
d
d

δ)(~δ)(~δ

++
=

+++++

⋅+

⋅×⋅=Δ

θθ

θθθθ

T

TTw
T

εε

 (3.142)

and 

[ ] i
n

i
n 11

0

)()(~
d
d

++
=

Δ⋅=⋅ θΣθ aaT
εε

 (3.143)

where  

( ) ( )[ ] [ ]
( ) ( )[ ]aIa

aaa-aa

⊗+×+

×+⊗⋅+×=

++

++++

i
n

i
n

i
n

i
n

i
n

i
n

115

41113121

c

cccc)(

θθ

θθθθΣ
 (3.144)

325

43

θ
θθ

=
θ

θ−1
=

θ
θθ2θ−θ3

=

θ
θ2+θθ

=
θ

θθθ
=

sin-ccosccos-sinc

2-cossincsin-cosc

543

21

 (3.145)

The explicit form of linearized virtual work equation presented in Appendix 1.  



CHAPTER FOUR 

SYSTEM EQUATION OF MOTION 
 

4.1 Mechanical Model of the System 
 

System considered in this study is illustrared in Figure 4.1. It consists of a motor, 

a helical coupling and a Jeffcott rotor. System is supported with idendical self 

aligning ball bearings. In order to callculate the system response in case of 

misalignment its mechanical model is developed with the following assumptions: 

 

a) Helical coupling is made up of rigid and flexible components. Rigid 

components are the coupling ends where other machine parts such as rotor 

and motor are attached to. Flexible component is helical part of the coupling 

where streching and contraction take place. It is also assumed that helical part 

is welded to the rigid ones, so that its ends follow the motion of rigid parts 

(see Figure 4.2). 

b) Stiffness of shafts connected to coupling and of bearings are much 

greater than helical part, in foregoing called helical beam or simply beam, 

then axes of motor and rotor may be assumed to be fixed in space. In other 

words coupling rotates around the space fixed axes. For this reason motor and 

rotor contribute to the mechanical model only with rotory inertias around 

their axes. 

c) Misalignment values and their directions are supposed to be known. 

Thus locations and directions of rotational axes of coupling are defined (see 

below). 

d) Misalignment values are measured at the point where coupling and 

rotor are connected (see Figure 4.3). 

e) Friction is ignored. However frictional forces and moments could be 

easily integrated to the proposed scheme details of which are presented 

subsequent sections. 

f) Angular speed of motor is presumed to be known explicitly. Thus 

motor rotation angle and its angular acceleration are also known. 
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Figure 4.1 Misaligned motor-helical coupling-rotor system. 

 
Figure 4.2 Model of the helical coupling. 

 

Mechanical model proposed with above assumptions is shown in Figure 4.3, 

details of which are given as follows: 

 

a) Om and Or are points where motor and rotor, respectively, are attached 

to the coupling. 

b) α  is the angular misalignment value which is measured between 

aligned and misaligned coupling axes (i.e. 0r ,n and rn  respectively). Thus unit 

vector of rotor axis in misaligned configuration ( rn ) is related to the aligned 

one ( 0,rn ) as:  
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0,rr n)(n ⋅= αΛ  (4.1)

 
where ( )•Λ  is the rotation tensor (see Equation (8)). 

c) mn is the unit vector along the motor axis. 

d) δ  is the parallel misalignment which is defined as the vector from 

0,rO  to rO , i.e. r0,r OO= . δ

e) mI and rI are the rotary inertias of motor and rotor, respectively, 

around their axes. 

f) 0r  and Lr  are the location vectors of centroid of boundary cross-

sections of beam in aligned configuration with respect to points mO  and 

0,rO , respectively. 

g) If we assume that misaligned configuration in Figure 4.3 represents 

the initial configuration of the system (i.e. t=0), initial values of location 

vectors with respect to the coordinate system, origin of which is placed to the 

point mO are given as  

00 r)0( =ϕ  (4.2)

)0(rL)0( ll +δ+=ϕ  (4.3)

where is the location vector of the beam cross-section at arc-length s   

and time t. L is the coupling length in aligned configuration which is given as 

)t(sϕ

0,rmOOL = . is the centroid of cross-section at initial configuration 

with respect to point  and it is related to  as 

)0(rl

rO Lr

( ) Lr)0(r ⋅α= Λl  (4.4)

l  is the coupling length and subscript is used to refer to end of the beam or 

boundary of the beam at rotor side. 

l

 

 

 

 

 



 40

 
Figure 4.3 Computational model of  motor-helical coupling-rotor  system. See text for details. 

 

4.2 Kinetic and Potential Energy Expressions 
 

Total kinetic energy of sytem in Figure 4.1 consists of kinetic energies of motor, 

coupling and rotor. If one takes into account that kinetic energy of coupling is much 

smaller than that of motor and rotor it can be ignored. Then total kinetic energy, by 

noting the assumptions, can be written as 

ch 

smaller than that of motor and rotor it can be ignored. Then total kinetic energy, by 

noting the assumptions, can be written as 

2
rr

2
mm I

2
1I

2
1T θθ && +=  (4.5)

 
where Im and Ir are the rotary inertias of motor and rotor, respectivelly.  and  

are the corresponding angular speeds. Since motor and rotor shafts are assumed to be 

rigid, only helical beam contributes to the system potential energy, i.e. 

mθ& rθ&

( )dsmn
2
1 L

0
∫ ⋅ω+⋅γ=∏  (4.6)

 
From Equation 4.5 and 4.6 Lagrangian of the system is obtained as: 

 

( )dsmkn
2
1I

2
1I

2
1TL

L

0

2
rr

2
mm ∫ ⋅+⋅−+=∏−= εθθ &&  (4.7)
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Since motor angular speed is stated explicitly, motor kinetic energy does not 

contribute to the virtual work equation (i.e. 0m =δθ ). Then Lagrangian may be 

written as: 

( )dsmkn
2
1I

2
1L

L

0

2
rr ∫ ⋅+⋅ε−θ= &  (4.8)

 

4.3 Boundary Conditions and Constraint 
 

Since helical beam (or flexible part of coupling) follows the motion of rigid parts 

(as stated by assumptions) rotation vectors corresponding to boundary cross-sections 

of helical beam may be written as (Figure 4.3) 

mm0 n)t()t( ⋅= θθ  (4.9)

rr n)t()t( ⋅= θθl  (4.10)

 
where  and are the rotation vectors of boundary cross-sections.  and 

 are the rotation angles of motor and rotor, respectively.  and  are unit 

vectors along the motor and rotor axes, respectively.  Since  and  are assumed 

to fixed in space, unit normal vectors of boundary cross-sections stay in the planes 

perpendicular to  and . 

)t(0θ )t(lθ

mn

)t(mθ

rn)t(rθ mn

mn rn

rn

 

Moreover misalignment values are assumed to be known then the location vectors 

of boundary cross-sections are related to the corresponding rotation vectors as 

(Figure 4.3) 

)t())t(()t( 000 ϕθΛϕ ⋅=  (4.11)

)t(rL)t( ll ++= δϕ  (4.12)

 
where  is given as )t(rl

)0(r))t(()t(r lll ⋅θ= Λ  (4.13)

 
Since motor speed  is specified (as stated with assumption (f) in section 

(3)), boundary conditions corresponding to s=0 (i.e. 

)t(mθ&

)t(0θ  and ) are also )t(0ϕ
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specified by Equations 4.9 and 4.11. Rotor speed is not known a priori. Thus 

boundary conditions at s= l , (i.e. )t(lθ and )t(lϕ ) can not be calculated from 

Equation 4.10 and 4.12. However one can use the reaction forces and moments 

together with constitutive equation in order to find another relation between )t(lθ  

and  as follows: )t(lϕ

 

Motion of Jefcott rotor is imposed by the reaction forces and moments formed at 

the end of the beam (see Figure 4.4), i.e.  

( ) ( ))t(M l

(( lθΛ tT

t((T
lθ

[ ] )t()F)t(r r⋅−+−× &
l In rr θ= &

)t

(( lθγ⋅ t

t(( lθω

t(l

(t

))t(

 (4.14)

 
where  and are the reaction forces and moments, respectively, at s= . 

 is the angular acceleration of rotor.  and are related to  and 

 through constitutive equations as 

)t(Ml)t(Fl

)t

)t

)(•γ

l

)t

)(

(rθ&&

(lϕ

(Fl )t(Ml (lθ

)),))))()( lll ϕ′⋅⋅θΛ= CtF  (4.15)

))t(),))D()t(M lll θΛθΛ ′⋅⋅⋅=  (4.16)

 
•ωwhere is  axial and shear strain measures energy conjugate to , and )t(Fl  is 

the bending strain measures energy conjugate to . C and D are the 

corresponding constitutive matrices. Explicit form of

)t(Ml

)(•γ , )•(ω , C and D are 

presented in Section 2. As stated above, prime denotes the derivative with respect to 

arc-length s.  

 

If one uses the Equations 4.14 to 4.16 to obtain relation between  and )t(lθ )t(lϕ , 

it finds highly nonlinear equation in the form  

( ))t(),ϕ′l 0t(),),t( =+ϕθ′θℑ lll )t(I rrθ&&t(

)

 (4.17)

 
where explicit form of  is given in Appendix I. Equation 4.10 and 4.12 can be 

substituted into Equation 4.17 to find a boundary condition which depends on single 

variable. However obtained boundary condition will be difficult to handle. If we note 

that any boundary condition may also be treated as constraint, difficulty can be 

(•ℑ
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overcome by employing Lagrange multiplier method. In other words Equation 4.17 

is substituted into Equation 4.8 to form augmented Lagrangian (Bathe, 1996, page 

270) as 

( ) )()( ttdsmkn
2
1nI

2
1L

L

0
r

2
rraug h& ⋅λ+⋅+⋅ε−θ= ∫  (4.18)

 
where is the scalar Lagrangian multiplier and is the constraint equation 

given as 

)t(λ )t(h

( ) )t(I)t(),t(),t(),t()t( rrθ+ϕ′ϕθ′θℑ= &&h llll  (4.19)

    

 

 
Figure 4.4 Rotor motion is caused by the torque which  

 

4.4 Weak Form of Equation of Motion 
 

The weak form of the equation of motion, by ignoring the friction and other non-

conservative forces and moments, is 

( ) 0
2

2

2

2

=⋅λ−Π−δ=δ ∫∫
t

t

t

t
augm dt)t()t(TdtL h  (4.20)
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If one makes use of the partial differentiation explicit form of weak form is found 

as 

0ttttItIL rrrrraug =•ℑδλ+δλ+δθλ+δθθ+Πδ=δ )()()()()()( h&&&&  (4.21)

 

where  is the virtual work of the beam and it is given in Equation (6). Πδ )(•ℑ  is 

defined in previous section and its explicit form and variation ( )  is presented 

in Appendix 2. Overdot denotes derivative with respect to time. 

)(•ℑδ

 

Because Equation 4.21 is highly nonlinear; one needs to employ an iterative 

procedure to obtain its solution. If Newton method is made use of for that purpose 

consistent linearization should be performed to obtain exact tangent operator and to 

ensure the quadratic convergence rate of the iterative procedure (Ibrahimbegovic & 

Mikad, 1998). Consistent linear approximation of Equation 4.21 may be obtained as:  

[ ] [ ])i(
,n,aug

)i(
n,aug

)i(
n,aug L

d
dLLL ε+

=ε
++ δ

ε
+δ=δ 1

0
11  (4.22)

where (i) is the iteration counter, n+1 is the dicritized time step number. Since we 

employed spatial incremental rotation vector update procedure [21] linearization of a 

spatial tensor field is carried out with Lie derivative formulization given in Equation 

(17). 

 

Consistent linearization of virtual work of beam (i.e. [ ]δΠL ) is summarized in 

Section 2 and details of its linearization procedure can be found in Ibrahimbegovic & 

Mikad (1998). Since  depends on )(•ℑδ )t(θ  and )t(ϕ , same procedure is used for its 

linearization. Explicit form of [ ])(•ℑΔ δL  are presented in Appendix 2. 

 

In order to linearize the angular acceleration ( [ ]θ&&L ) and second derivative of 

Lagrange multiplier ( [ ]λ&&L ), one first needs to obtain their values at the chosen 

instants of time interval of interest (Ibrahimbegovic & Mikad, 1998). If we take 

advantage of scalar nature of )t(θ  and )t(λ , their time derivative may simply be 

approximated as: 
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where is a typical time step. If values of n1n ttΔt −= + )(t nθ  and  as well as 

 and  are assumed to be known then linearized forms of  and  

may be found as 

)(t nθ&

(t)θ&&)(t nλ )(t nλ& (t)λ&&

[ ] 2

(i)
1r,n(i)

1,εr,n
0ε t)(

Δθ
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d

Δ
+

+
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=&&  (4.25)

[ ] 2

(i)
1n(i)

1,εn
0ε t)(

Δλλ
dε
d

Δ
+

+
=

=&&  (4.26)

Explicit form of   and augLδ [ ]augLL δ  are presented in Appendix 2. Technical 

computing program MATLAB is used for computer implementation of proposed 

scheme and its details are presented in Appendix 6. 

4.5 Remarks on the Numerical Implementation 
 

The finite element method is implemented to solve the linearized virtual work 

equation given in Equation 4.21. The element configuration is approximated with an 

assembly of 4 node elements with 

 

∑
=

⋅=
4

1I
IL

)ζ(Ne I
h xx  

 

(4.27)

( )( )( )ζζζ-1N 3
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16
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( )( )( )ζζζ1 3
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16
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( )( )( )ζ1ζζN 3

1
3
1

16
9

4 +−+−=  
 

where  are the standard linear shape functions, and  are nodal coordinates. )ζ(NI Ix

The dependent variables ϕ and θ, and their variations are interpolated in 

isoparametric manner (Ibrahimbegovic & Mikad, 1998); i.e. 

∑
=

⋅=
4

1I
IL

)ζ(Ne I
h θθ            ∑

=

⋅=
4

1I
IL

)ζ(Ne I
h ϕϕ  (4.28)
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∑
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IL

Δ)ζ(NΔ e I
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The 3-point Gauss integration scheme is used to integrate resultant equations. This 

method produces the element stiffness matrix of the correct rank and at the same 

time alleviates the locking phenomena (Bathe, 1996). 

 

As mentioned above, rotor is constrained to move only around its axis. Thus, if 

one discretizes the helical beam starting from motor end through rotor end with nelm 

number of finite elements, the interpolations of the last element reduces to, noting 

Equations 4.14 and 4.15 

( )Lr⋅⋅++⋅+⋅= ∑
=

)()()ζ(Nδ)ζ(N elm

elm

n
44I

3

1I
In αΛθΛδϕϕ l  (4.29a)

RLI
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nrΞ)( ⋅⋅⋅⋅+⋅= ∑
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elmn
44IL δθ))((ζNδζ)(Nδ αΛϕϕ  (4.29b)
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=

elm
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n
44In Δθ))((ζNΔζ)(NΔ αΛϕϕ  (4.29c)

where   is the angular position of the rotor corresponding to 4th node of the last 

element with variations  and . 

elmn
4θ

elmn
4δθ elmn

4Δθ



CHAPTER FIVE 

RESULTS 
 

5.1 Introduction 
  

Helical coupling used in simulations is a (right helix) commercial flexible 

coupling made up of 7075-T6 Aluminum alloy. Geometric and material properties of 

helical coupling are presented in Appendix 4. Simulations are performed for pure 

angular and parallel misalignment cases. Angular misalignment is introduced around 

positive X-axis. Parallel misalignment is induced along positive Z-axis (see Figure 

4.4). In previous studies effect of rotary inertia on rotor speed and reaction loads are 

not taken into account. In order to study inertia effect, rotor-disk system having Ir= 

6.53x10-4 Kg-m2 mass moment of inertia around its rotational axis is chosen as 

reference and simulations are performed for values of 0.1Ir, Ir and 10Ir.  Hypothetical 

rotor-disk system and its parameter values are presented in Appendix 5. Motor speed 

is assumed to be constant and set to 5000 RPM (83.33 Hz) during simulations.  

 

5.2 Aligned System 
 

Figure 5.1 shows the calculated angular velocity variation of rotor (ωR) for 

aligned system (δ=0.0 mm α=0o). As can be seen from Figure 5.1 proposed scheme 

is capable of predicting the constant angular velocity of rotor for aligned system. 

 

5.3 Angular Misalignment 
 

First set of simulations is performed for pure angular misalignment (i.e. α=1o, 

δ=0.0 mm). Figure 5.2a and Figure 5.3a show the angular velocity and acceleration 

variations, respectively, of driven shaft for inertia values of 0.1Ir, Ir and 10Ir (see 

above). Frequency spectrums are presented in Figure 5.2b and Figure 5.3b. In 

previous studies it is assumed that angularly misaligned coupling behaves exactly as 

universal joint. Thus universal joint velocity and acceleration variations are also 

added to figures for comparison. It is clear from figures that variations are dependent 

not only misalignment but also inertia value. Since larger inertia results in driven 
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shaft speed to converge to that of driven shaft, effect of angular misalignment on 

driven shaft’s speed diminishes with increasing inertia. Frequency spectrums indicate 

that angular velocity and acceleration have three frequency components, two of 

which are common to all inertia values (i.e. 1X and 2X of motor speed). This 

suggests that these frequencies are related to coupling geometry. Third frequency 

component is not constant and changes with changing inertia. It has the value of 

5.21, 10.42 and 36.46 HZ for inertia values of 0.1Ir, Ir and 10Ir, respectively. For all 

cases 1X motor speed is dominant frequency. Comparison of universal joint velocity 

and acceleration with present study validates our criticism of associating misaligned 

behavior with universal joint (i.e. Cardan joint).  

 

Calculated reaction loads generated by angularly misaligned coupling on driven 

shaft are presented in Figure 5.4a through Figure 5.8a. Frequency spectrums are 

shown in Figure 5.4b through Figure 5.8b. Reaction loads vary around constant 

values which are corresponding to initial deformation of coupling. In previous 

studies, reaction loads are calculated a priori by associating coupling behavior with 

ideal spring element and/or universal joint. Thus inertia effect was not taken into 

account. However, as can be observed from figures, reaction loads are not only 

dependent on misalignment value but also inertia of rotor. As the case for angular 

velocity and acceleration, reaction loads have common frequency components for all 

inertia values, which can be associated with geometry of coupling. Reaction loads 

which act along the transverse direction have common frequency components of 1X, 

2X and 3X of motor speed (i.e. 83.33 HZ) for all inertia values and reaction force Fy 

acting along the axial direction has common frequency components of 1X and 2X of 

motor speed. Reaction load variations in common frequencies do not change with 

changing inertia, i.e. independent of inertia. Effect of inertia on reaction loads are 

observable for lighter cases since additional frequency components are appeared for 

small inertia values. Effect of inertia becomes negligible for large values and 

coupling geometry dominates the system response. 

 

In literature, 1X vibration component along axial direction is given as the 

characteristic of angular misalignment. It can be seen from Figure 5.5b that axial 
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load Fy has the dominant frequency component of 1X. Moreover, 2X component 

along transverse direction are associated with misalignment. Figure 5.4b and Figure 

5.6b to 5.8b show that this is the dominant frequency of reaction loads which causes 

the vibration along transverse direction (i.e. Fx-Mz and Fz-Mx). Thus it can be 

concluded that proposed scheme are able to predict the associated frequency 

components of angular misalignment. 

 

In order to demonstrate validity of conclusion given above, response of the 

hypothetical rotor-bearing system is obtained with commercial FEM program 

ANSYS.  Hypothetical system parameters and its ANSYS model together with 

computer code are presented in Appendix 5. Xu & Marangoni (1994a, 1994b) 

concluded that misalignment could be hidden if 2X of motor speed is not close 

enough to one of the system natural frequencies. Thus parameters of hypothetical 

system are chosen such that one of the system natural frequencies is close to 2X of 

motor speed. It should be pointed out that reaction loads are calculated for three 

different inertia values. For this reason, simulations are performed for three different 

systems, of which rotary inertias are equal to the mentioned inertia values. 

Parameters of hypothetical systems are presented in Appendix.  

 

Systems having inertia values of 0.1Ir and Ir have 2X of motor speed (i.e. 166.667 

Hz) as their first natural frequency. Displacements and frequency spectrums obtained 

with ANSYS along the transverse directions (i.e. along X and Z axes) are presented 

in Figure 5.9 and 5.10 for system with 0.1Ir inertia, and in Figure 5.11 and 5.12 for 

system with Ir inertia. As expected, 2X component is the dominant frequency of 

vibration response. It can be seen from frequency spectrums that common frequency 

components of 1X and 3X of motor speed are also present. As mentioned above, 

lighter inertia results in additional frequency components in reaction loads. These 

frequencies are also observed in vibration spectrums. Since 2X of motor speed is 

close (not equal) to one of the system natural frequencies, vibration responses exhibit 

the characteristic of beating phenomena. This behavior is also observed by Xu & 

Marangoni, (1994b). Hypothetical system with largest inertia (10Ir) has the 2X of 

motor speed as second natural frequency. The first one is 29.96 HZ. Displacement 
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and frequency spectrums presented in Figure 5.13 and 5.14 show that system first 

natural frequency dominates the system response. This result was not expected. It is 

also interesting that misalignment excited higher natural frequencies of the system. 

This behavior is not observed for other inertia values.  

 

Xu & Marangoni, (1994b) measured the system response connected with helical 

coupling in case of angular misalignment. Their results obtained for aligned system 

show that system has initial fault which is manifested in frequency spectrum with 

1X, 2X and 3X of motor speed. Their results for aligned system are reproduced in 

Figure 5.14a. As can be seen from Figure 5.14a, 2X of motor speed shows the largest 

change and 3X response is larger than the 1X response. Figure 5.14b shows the 

response of angularly misaligned system of Xu & Marangoni, (1994b). Since system 

response increase in all frequencies which are observed in aligned system, it can be 

concluded that reaction loads generated by misaligned coupling should have 

frequency components of 1X, 2X and 3X of motor speed. In misaligned system, 2X 

component shows the largest change and dominates the response. Thus reaction 

loads should have the dominant frequency of 2X of motor speed. Order of response 

in 1X and 3X components for misaligned system is reversed, i.e. 1X response is 

higher that 3X response for misaligned system. It can be seen from Figure 5.4 and 

Figures 5.6 to 5.8, frequency components of predicted reaction loads show the trend 

mentioned above. Thus it is concluded that results of Xu & Marangoni, (1994b) 

presented in Figure 5.15 indicates the validity of proposed scheme. 

  
             
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1 Angular velocity (ωR) variation of  rotor for aligned case (δ=0.0 mm α=0o). 
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Figure 5.2 (a) Angular velocity variations of rotor and (b) its power spectrum for
pure angular misalignment (δ=0.0 mm, α=1o). (  0.1IR,  IR, 

 10IR,  Universal Joint Velocity). Simulations are performed 
with Technical computing program MATLAB® and results are plotted with drawing 
and data analysis software SigmaPlot®. 
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Figure 5.3 (a) Angular acceleration variations of rotor and (b) its power spectrum for
pure angular misalignment (δ=0.0 mm, α=1o). (  0.1IR,  IR, 

10IR,  Universal Joint Acceleration).Simulations are 
performed with Technical computing program MATLAB® and results are plotted
with drawing and data analysis software SigmaPlot®. 
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Figure 5.4 (a) Reaction force variation along X-axis (Fx) and (b) its power spectrum 
for pure angular misalignment (δ=0.0 mm, α=1o). (  0.1IR,  IR, 

10IR). Simulations are performed with Technical computing program 
MATLAB® and results are plotted with drawing and data analysis software
SigmaPlot®. 
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Figure 5.5 (a) Reaction force variation along Y-axis (Fy) and (b) its power spectrum 
for pure angular misalignment (δ=0.0 mm, α=1o). (  0.1IR,  IR, 

10IR). Simulations are performed with Technical computing program
MATLAB® and results are plotted with drawing and data analysis software
SigmaPlot®. 
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Figure 5.6 (a) Reaction force variation along Z-axis (Fz) and (b) its power spectrum 
for pure angular misalignment (δ=0.0 mm, α=1o). (  0.1IR,  IR, 

10IR). Simulations are performed with Technical computing program
MATLAB® and results are plotted with drawing and data analysis software
SigmaPlot®. 
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Figure 5.7 (a) Reaction moment variation around X-axis (Mx) and (b) its power 
spectrum for pure angular misalignment (δ=0.0 mm, α=1o). (  0.1IR, 

 IR, 10IR). Simulations are performed with Technical 
computing program MATLAB® and results are plotted with drawing and data 
analysis software SigmaPlot®. 
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Figure 5.8 (a) Reaction moment variation around Z-axis (Mz) and (b) its power 
spectrum for pure angular misalignment (δ=0.0 mm, α=1o). (  0.1IR, 

 IR, 10IR). Simulations are performed with Technical computing 
program MATLAB® and results are plotted with drawing and data analysis software 
SigmaPlot®. 
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Figure 5.9 Hypothetical system response  along X axis for pure angular misalignment 
(δ=0.0 mm, α=1o).. Inertia is 0.1Ir. See Appendix 5 for system parameters. a) 
Displacement  b) Frequency spectrum. Simulations are performed with commercial 
FEM program ANSYS® transient dynamic module and results are plotted with drawing
and data analysis software SigmaPlot®. 
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Figure 5.10 Hypothetical system response  along Z axis for pure angular misalignment 
(δ=0.0 mm, α=1o). Inertia is 0.1Ir. See Appendix 5 for system parameters. a) 
Displacement  b) Frequency spectrum. Simulations are performed with commercial 
FEM program ANSYS® transient dynamic module and results are plotted with drawing
and data analysis software SigmaPlot®. 
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Figure 5.11 Hypothetical system response  along X axis for pure angular misalignment 
(δ=0.0 mm, α=1o). Inertia is Ir. See Appendix 5 for system parameters. a) 
Displacement  b) Frequency spectrum. Simulations are performed with commercial 
FEM program ANSYS® transient dynamic module and results are plotted with drawing 
and data analysis software SigmaPlot®. 
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Figure 5.12 Hypothetical system response  along Z axis for pure angular misalignment 
(δ=0.0 mm, α=1o). Inertia is Ir. See Appendix 5 for system parameters. a) 
Displacement  b) Frequency spectrum. Simulations are performed with commercial 
FEM program ANSYS® transient dynamic module and results are plotted with drawing 
and data analysis software SigmaPlot®. 
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Figure 5.13 Hypothetical system response  along X axis for pure angular 
misalignment (δ=0.0 mm, α=1o). Inertia is 10Ir. See Appendix 5 for system 
parameters. a) Displacement  b) Frequency spectrum. Simulations are performed with 
commercial FEM program ANSYS® transient dynamic module and results are plotted 
with drawing and data analysis software SigmaPlot®. 
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Figure 5.14 Hypothetical system response  along Z axis for pure angular 
misalignment (δ=0.0 mm, α=1o). Inertia is 10Ir. See Appendix 5 for system 
parameters. a) Displacement  b) Frequency spectrum. Simulations are performed 
with commercial FEM program ANSYS® transient dynamic module and results are 
plotted with drawing and data analysis software SigmaPlot®. 
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Figure 5.15 Frequency spectrum of (a) aligned (b) misaligned system.
Reproduced from Xu and Marangoni, (1994b). Motor rotation speeds are 
30.36 Hz and 30.33 Hz, respectively. Misalignment angle is α=0.25o. One of 
the system natural frequencies is 30 Hz. Relative frequency content is
defined as the FFT coefficient divided by the maximum FFT coefficient. 
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5.4 Parallel Misalignment 

 
Calculations for parallel misalignment is performed for misalignment value of 

δ=0.25 mm and α=0o. Figure 5.16a and Figure 5.17a show the angular velocity and 

acceleration variations, respectively, of driven shaft for inertia values of 0.1Ir, Ir and 

10Ir. Figure 5.16b and Figure 5.17b present the frequency spectrums of velocity and 

acceleration, respectively. As oppose to the angular misalignment, current authors 

did not come across any information for velocity and acceleration variations in case 

of parallel misalignment. It can be seen from Figures 5.16 and Figure 5.17 that 

driven shaft rotation speed thus acceleration also varies for parallel misalignment. It 

is interesting that angular velocity and acceleration variations exhibit the same 

pattern as the case for angular misalignment, i.e. large inertia values cause velocity 

variation diminish and converge to the motor speed. Effect of coupling geometry can 

be observed with appearance of 1X and 2X components in frequency spectrums for 

all inertia values. It is also clear from frequency spectrums that third frequency 

which has the values of 5.21, 10.42 and 36.46 Hz for inertia values of 0.1Ir, Ir and 

10Ir, respectively is directly dependent on inertia since not only its value but also its 

power in frequency spectrum decreases with increasing inertia. 

 

Calculated reaction loads generated by deformed coupling in case of parallel 

misalignment are presented in Figure 5.18a through Figure 5.22a. Frequency 

spectrums are shown in Figure 5.18b through Figure 5.22b. Initial deformation 

causes reaction loads to vary around non-zero mean values. Since parallel 

misalignment is induced along Z-axis mean value of Fz is much higher than that of Fx 

and Fy. As the case form angular misalignment, reaction loads are dependent on 

coupling geometry and inertia. Effect of coupling geometry can be observed in 

power spectrums with appearance of frequency components which are common to all 

inertia values. Since powers of common frequency components do not change with 

changing inertia, it can be concluded that variations in these frequencies are solely 

result of the coupling geometry. Effect of inertia can be observed in frequency 

spectrums with the appearance of additional frequency components, of which values 

change with respect to inertia. Since variations of reaction loads in frequencies 
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resulted from inertial effect diminish with increasing inertia, it can be said that 

geometry of coupling dominates the system response for large inertia values. Similar 

to angular misalignment, reaction loads which act along transverse direction (i.e. Fy, 

Mx and Mz) have common frequency components of 1X, 2X and 3X of motor speed. 

Reaction load Fx has the common frequency components of 1X and 2X of motor 

speed. Fx recovers the 1X component for large inertia values. Axial force (Fy) has the 

common frequency components of 1X and 2X of motor speed. 

 

As mentioned above, 2X component observed along transverse direction is given 

as the indication of misalignment. It can be seen from Figure 5.18 and Figures 5.20 

to 5.22 that twice the motor speed (i.e. 2X component) is the dominant frequency of 

reaction loads which act along transverse direction. Thus proposed scheme was able 

to predict frequency component which is associated with parallel misalignment. As 

the case for angular misalignment, reaction loads are introduced to the above 

mentioned hypothetical systems and their response in case of parallel misalignment 

are calculated with commercial finite element program ANSYS. As can be seen from 

Figure 5.23 through 5.26, 2X component in vibration spectrums obtained for the 

systems having inertia values of 0.1Ir and Ir dominates the system responses. This 

result is expected since first natural frequency of system is close to twice the motor 

speed (i.e. 166.67 Hz). As oppose to the case for angular misalignment, 1X and 3X 

components are not present in frequency spectrums. However frequency components 

resulted from smallest inertia value (i.e. 0.1Ir) can be seen in Figures 5.23 and 5.24. 

System having inertia value of 10Ir has first natural frequency of 29.71Hz. Even if 

reaction loads for this system have dominant frequency of twice the motor speed, 

first natural frequency dominates the vibration spectrum obtained along Z-axis 

(Figure 5.28b). Although dominant frequency for vibration response along X-axis 

(Figure 5.27b) is, as expected, twice the motor speed first natural frequency can also 

be seen clearly. 

 

Ganeriwala, Patel & Hartung studied misalignment effect for different coupling 

types, one of which is helical coupling. They measured vibration data along axial and 

transverse directions from the sensors which are placed on motor and bearing 
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housing. Their results obtained for helical coupling in case of parallel misalignment 

are reproduced in Figure 5.29 for qualitative comparison with present study. Since 

measurements are taken from bearing housing, reaction forces formed due to parallel 

misalignment on the point where hypothetical system supposedly have bearing is 

calculated and qualitative comparison  is made based on these forces. Figures 5.30a 

and 5.31a show the calculated reaction forces which act along the transverse 

direction. Frequency spectrums are presented in Figures 5.30b and 5.31b. As can be 

seen form Figures 5.29, 5.30b and 5.31b present study was able to predict the 

measured frequency components (i.e. 1X and 2X of motor speed) and their orders in 

magnitude (i.e. power of 2X component is larger than that of 1X component). 
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Figure 5.16 (a) Angular velocity variations of rotor and (b) its power spectrum for 
pure paralel misalignment (δ=0.25 mm, α=0o). (  0.1IR,  IR, 

 10IR). Simulations are performed with Technical computing program
MATLAB® and results are plotted with drawing and data analysis software
SigmaPlot®. 
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Figure 5.17 (a) Angular acceleration variations of rotor and (b) its power spectrum
for pure parallel misalignment (δ=0.25 mm, α=0o). (  0.1IR, 
IR, 10IR,). Simulations are performed with Technical computing program
MATLAB® and results are plotted with drawing and data analysis software 
SigmaPlot®. 
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Figure 5.18 (a) Reaction force variation along X-axis (Fx) and (b) its power spectrum 
for pure parallel misalignment (δ=0.25 mm, α=0o). (  0.1Ir,  Ir, 

10Ir). Simulations are performed with Technical computing program 
MATLAB® and results are plotted with drawing and data analysis software
SigmaPlot®. 
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Figure 5.19 (a) Reaction force variation along Y-axis (Fy) and (b) its power spectrum 
for pure parallel misalignment (δ=0.25 mm, α=0o). (  0.1Ir,  Ir, 

10Ir). Simulations are performed with Technical computing program
MATLAB® and results are plotted with drawing and data analysis software
SigmaPlot®. 
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Figure 5.20 (a) Reaction force variation along Z-axis (Fz) and (b) its power spectrum 
for pure parallel misalignment (δ=0.25 mm, α=0o). (  0.1IR, 
IR, 10IR). Simulations are performed with Technical computing program
MATLAB® and results are plotted with drawing and data analysis software
SigmaPlot®. 
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Figure 5.21 (a) Reaction moment variation around X-axis (Mx) and (b) its power 
spectrum for pure parallel misalignment (δ=0.25 mm, α=0o). (  0.1Ir, 

 Ir, 10Ir). Simulations are performed with Technical 
computing program MATLAB® and results are plotted with drawing and data 
analysis software SigmaPlot®. 
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Figure 5.22 (a) Reaction moment variation around Z-axis (Mz) and (b) its power 
spectrum for pure parallel misalignment (δ=0.25 mm, α=0o). (  0.1Ir, 

 Ir, 10Ir). Simulations are performed with Technical 
computing program MATLAB® and results are plotted with drawing and data 
analysis software SigmaPlot®. 
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Figure 5.23 Hypothetical system response  along X axis for pure parallel misalignment 
(δ=0.25 mm, α=0o).. Inertia is 0.1Ir. See Appendix 5 for system parameters. a) 
Displacement  b) Frequency spectrum. Simulations are performed with commercial 
FEM program ANSYS® transient dynamic module and results are plotted with drawing 
and data analysis software SigmaPlot®. 
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Figure 5.24 Hypothetical system response  along Z axis for pure parallel misalignment 
(δ=0.25 mm, α=0o). Inertia is 0.1Ir. See Appendix 5 for system parameters. a) 
Displacement  b) Frequency spectrum. Simulations are performed with commercial 
FEM program ANSYS® transient dynamic module and results are plotted with drawing 
and data analysis software SigmaPlot®. 
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Figure 5.25 Hypothetical system response  along X axis for pure parallel misalignment 
(δ=0.25 mm, α=0o). Inertia is Ir. See Appendix for system parameters. a) Displacement 
b) Frequency spectrum. Simulations are performed with commercial FEM program
ANSYS® transient dynamic module and results are plotted with drawing and data
analysis software SigmaPlot®. 
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Figure 5.26 Hypothetical system response  along Z axis for pure parallel misalignment 
(δ=0.25 mm, α=0o). Inertia is Ir. See Appendix 5 for system parameters. a) 
Displacement  b) Frequency spectrum. Simulations are performed with commercial 
FEM program ANSYS® transient dynamic module and results are plotted with drawing
and data analysis software SigmaPlot®. 
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Figure 5.27 Hypothetical system response  along X axis for pure parallel misalignment 
(δ=0.25 mm, α=0o). Inertia is 10Ir. See Appendix 5 for system parameters. a) 
Displacement  b) Frequency spectrum. Simulations are performed with commercial 
FEM program ANSYS® transient dynamic module and results are plotted with drawing
and data analysis software SigmaPlot®. 
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Figure 5.28 Hypothetical system response  along Z axis for pure parallel misalignment 
(δ=0.25 mm, α=0o). Inertia is 10Ir. See Appendix 5 for system parameters. a) 
Displacement  b) Frequency spectrum. Simulations are performed with commercial 
FEM program ANSYS® transient dynamic module and results are plotted with drawing
and data analysis software SigmaPlot®. 
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Figure 5.29  Frequency spectrum of Ganeriwala, Patel & Hartung 
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Figure 5.30 (a) Bearing reaction force along Z-axis for hypothetical system having 
inertia values of 10Ir  (b) its power spectrum. Simulations are performed with 
commercial FEM program ANSYS® transient dynamic module and results are 
plotted with drawing and data analysis software SigmaPlot®. 
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Figure 5.31 (a) Bearing reaction force along Z-axis for hypothetical system having 
inertia values of 10Ir (b) its power spectrum. Simulations are performed with 
commercial FEM program ANSYS® transient dynamic module and results are 
plotted with drawing and data analysis software SigmaPlot®. 

 
 
 



CHAPTER SIX 

CONCLUSION 

 

Helical coupling is modeled with geometrically exact beam theory in order to 

investigate its behavior in case of misalignment. New scheme based on using 

constitutive equations as constraint was developed. Since geometrically exact beam 

theory is capable of modeling finite rotations and finite strains, proposed scheme was 

able to calculate the misaligned coupling behavior without any a priori assumptions. 

Comparison with previous results showed that proposed scheme was able to predict 

the frequency components associated with misalignment. Moreover calculated 

reaction loads’ frequency components matched frequency components of vibration 

spectrums obtained experimentally from motor-helical coupling-rotor systems. Thus 

it is concluded that proposed scheme could model the rotating coupling accurately. 

  

In previous studies, it was assumed that angularly misaligned coupling behaves 

exactly as universal joint. Thus driven shaft speed varies with frequency of twice the 

motor speed. Our results showed that driven shaft speed varies not only for the case 

of angular misalignment but also for the case of misalignment. Results indicated that 

driven shaft velocity was dependent of inertia value and geometry of coupling. 

Velocity variation diminished with increasing inertia and converged to driving shaft 

speed.  Lighter inertia caused rotor speed to vary largely and resulted in observable 

frequency component in speed variation. Results obtained for angularly misaligned 

coupling contradicted universal joint assumption. 

 

As the case for velocity variation, results showed that reaction loads generated by 

misaligned coupling on system depended on inertia value and coupling geometry. 

Calculation indicated that reaction load components resulted from coupling geometry 

do not change for changing inertia. However reaction load components due to inertia 

effect decrease with increasing inertia.  

 

As mentioned above complexity of modeling misaligned system is the main 

obstacle to draw the necessary academic attentions. However proposed method could 

84 
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give new perspective to the researchers who study this phenomenon. Since proposed 

method does not require any a priori assumptions for the rotating coupling behavior, 

response of the misaligned system could be calculated more accurately. 
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APPENDICES 

APPENDIX 1 

LINEARIZED VIRTUAL WORK EQUATION 

 

In order to alleviate notation, the subscript ‘n+1’ (denoting that the variable is 

evaluated at time tn+1) and superscript ‘i’ (denoting the iteration counter) are 

dropped. 

The first term on the right side in Equation (3.128) give rise residual: 
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APPENDIX 2 

EXPLICIT FORM OF CONSTRAINT EQUATION 
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APPENDIX 3 

IMPLEMENTATION OF PROPOSED SCHEME 

 
Assign Initial Values 

Geometric Properties of Coupling Element 

Dcp= 50 mm (Bore Diameter) 

dr=  19 mm (Rotor Diamater) 

2
dD

b rcp −=  

4
dD

r rcp
cp

+
=   

P= 3.18 mm (Pitch) 

t= 2.4 mm (Coil Thickness) 

Lcp=54 mm (Coupling Length) 

Nc= 3.5 (Number of Coils) 

tbA xx ⋅=  (Area of the Helical Beam) 

xxyx A6
5A =  (Effective Shear Area) 

xxzx A6
5A =  (Effective Shear Area) 

12
tbI

3

y
⋅

=   

12
tbI

3

z
⋅

=  

zyx IIJ +=  

Material Properties of Couplinh Element (Al 7075-T6) 

2100cp =ρ kg/m3 (Density) 

Ecp= 72x109 Pa (Young Modulus) 

ν= 0.33  (Poision Ratio) 

ν)(12
E

G cp
cp +⋅
=  (Shear Modulus) 

Constitutive Matrices of Helical Beam 

Cn=diag[EcpAxx, GcpAyx, GcpAzx] 

Cm=diag[GcpJx, EcpIy, EcpIz]  

Assign Misalignment Values (see Figure 6) 

[ T00 δ=δ ]

]

  (Parallel Misalignment) 

[ T0 0α=α (Angular Misalignment) 
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Radius Vectors (Undeformed Configurations) (see Figure 6) 

[ ]Tcpr00=mr  

[ ]Tcpr-00=Lr  

Radius Vector (Initial Configurations) (see Figure 6) 

( ) Lr⋅αΛ=lr  

Unit Vectors (See Figure 6) 

[ ]T010=mn  

[ ]T010=r,0n  

( ) r,0r nn ⋅αΛ=  

Calculate position vectors of undeformed configuration ( 0ϕ ) 

( )1nn
2N

lelm

c

−
=Δ

π
β  

where 

nelm – number of finite element 

nl –total local node (nl=4) 
T

cpcpm cosr
2

)(mPsinr ⎥⎦
⎤
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⎡ Δ

Δ⋅
Δ=ϕ β

β
β

π0,  m=1,2,3 …. nt 

where 
nt= (nelm-1)(nl-1)+nl  (total global node) 
 

Length Vector  (see Figure 6) 
T

t 0
2
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⎡ Δ⋅
=

π
β

L  

 

Calculate Deformed Configuration 

Step 1: Assign specified values to total displacement and incremental rotation vectors at first global   

node: 

mm1n1 nΔθ=θ +,  

( ) ( ) 1,0mn11n11 ϕ−⋅θΛ⋅θΛ= ,+, ru  

where is user specified motor rotation angle from time step n to time step n+1. mΔθ

If displacements and rotations are calculated for new time step (n+1) 

Assign predicted values to total displacement and incremental rotation vectors for global    

nodes 2 to (nt-1): 

au  and  where a=2,3, .. (nt-1) aθ
Calculate nodal position vectors: 

a,0aa ϕ+=ϕ u  where a=2,3, .. (nt-1) 

Assign predicted value to rotor rotation angle from time step n to time step n+1:  1nr, +θ
Calculate position and incremental rotation vectors for last node 
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rr1n nθ=θ +,l  

( ) 0,n,1n,exp llll rL ⋅Λ⋅θ+δ+=ϕ +  

Calculate Angular velocity and acceleration of rotor 

t
1nr,

1nr, Δ

θ
θ +

+ =&  
t

nr,1nr,
r Δ

θθ
θ

&&
&& −
= +  

Assign predicted value to Lagrange multiplier: λ 

Calculate first and second derivative of Lagrange multiplier 

tn Δ
λ

λ 1 =+
&     

t
n1n

1n Δ
λλ

λ
&&

&& −
= +

+  

If displacements and rotations are computed (iterated) for time step n+1 

Retrieve computed iterative values of incremental displacement and rotation vectors for 

global nodes of 2 to (nt-1):   where a=2,3, .. (nt-1) aa , θΔΔu

Update total displacement and incremental rotation vectors for global nodes of 2 to (nt-1): 

aaa uuu Δ+←  
aaa θ+θ←θ Δ  

Update position vectors (except first and last node) 
a,0a ϕ+=ϕ ua  

Retrive computed iterative value of incremental rotor angle: rΔθ  

Update incremental rotor angle: rrr Δθθθ +←  

Calculate iterative value of incremental rotation vector for last node : 

 rrnΔθ=Δθ l  

Update incremental rotation and position vector for last node:  

lll Δθ+θ←θ  
( ) 0,n,exp llll rL ⋅Λ⋅θ+δ+=ϕ  

Update Angular velocity and acceleration of rotor 

t
1nr,

1nr, Δ

θ
θ +

+ =&  
t

nr,1nr,
r Δ

θθ
θ

&&
&& −
= +  

Retrieve computed iterative value of Lagrange multiplier: Δλ  

Update incremental Lagrange multiplier: Δλλλ +←  

Update first and second derivative of Lagrange multiplier 

tn Δ
λ

λ 1 =+
&     

t
n1n

1n Δ
λλ

λ
&&

&& −
= +

+  

Step 2: Compute total strains and stress resultants for elements (at each Gauss  points) 
 Compute position and incremental rotation vectors:  

∑
=

ϕ=ϕ
4

1b

el
bIbel )(ξN  
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∑
=

θ=θ
4

1b

el
bIbel )(ξN  

Compute position and incremental rotation vector derivatives: 

∑
=

ϕ′=ϕ′
4

1b

el
bIbel )(ξN  

∑
=

θ′=θ′
4

1b

el
bIbel )(ξN  

Compute (total) rotation tensors: 
( ) nelexp Λ⋅θ=Λ  

Compute section unit normals: 
gΛa ⋅=       0ϕ′=g

Compute axial, shear and bending strains: 
a−ϕ′=γ  

( ) nelelel )exp(T ω⋅θ+θ′⋅θ=ω  
Compute stress resultants: 

γ⋅Λ⋅⋅Λ= T
nCn  

ω⋅Λ⋅⋅Λ= T
mCm  

Step 3: Compute residual and tangent stiffness matrix of beam without imposing any  
boundary condition:  
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where jW(i) are the Gauss weights. 

 Compute Global residual and tangent stiffness matrices: 

∑ ∑
= =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

eln

1el

4

1b

el
b

r
b

r
el rIIr  

( ) r
el

n

1el

n

1el

4

1b

4
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r
c

G
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M
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r
b

r
el j
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j

i
IIKKIIK ∑∑ ∑∑

= = = =
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⎠

⎞
⎜⎜
⎝

⎛
+=  

where 
∗
•I : Coefficient matrix with elements 0 and 1. 

Step 4: Compute forces and moments at the end of the beam (last element): 

 Compute position and incremental rotation vectors:  
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∑
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ϕ=ϕ
4

1b
bb )1(Nl   ∑
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θ=θ
4
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bb )1(Nl

Compute position and incremental rotation vector derivatives: 

∑
=

ϕ′=ϕ′
4

1b
bb )1(Nl   ∑

=

θ′=θ′
4

1b
bb )1(Nl

Compute (total) rotation tensors: 

( ) n,exp lll Λ⋅θ=Λ  

Compute section unit normals: 

lll ga ⋅Λ=  ll 0,ϕ′=g  

Compute axial, shear and bending strains: 

lll a−ϕ′=γ  

( ) ( ) n,exp lllll ωθ ⋅θ+θ′⋅=ω T  

Compute stress resultants: 

llll γ⋅⋅⋅= TΛCΛF   llll ω⋅⋅⋅= TΛDΛM

Compute constraint 

( ) rnMFr ⋅+×= lllh  

Step 5: Compute residual and tangent part of constraint equation: 
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T

T
T

2

T

00

0I0

0I0

00I

00

0I0

0I0

00I

3X3

3X3

3X3

3X3

3X3

3X3

0R
R0

K  

Step 6: Rearrange residual and tangent (stiffness) matrices according to  

boundary conditions: 

Delete rows and colums corresponding to first node (since 1θ and 1ϕ are specified):  

0δ 0 →θ ,    0δ →ϕ 0
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00 →θΔ ,  0→ϕ 0Δ

 Express variations on last node in terms of rθ  and  (see Equations (-) and (-)):  rn

rrδθδ n=θl ,  rrΔθn=θΔ l  

( ) rr,0n,Ξ δθδ nr ⋅⋅Λ=ϕ lll ,  ( ) rr,0n,Ξ ΔθΔ nr ⋅⋅Λ=ϕ lll  

Modify residual and tangent (stiffness) matrices: 

rr ←New ,  KK ←New

2New2,
ℑℑ rr ← ,  2New2,

ℑℑ KK ←

       

Step 7: Compute total residual and tangent (stiffness) matrices: 

  
New2,211New

Total ℑℑℑℑ
rIrIrr ++=  ,  ∇

ℑℑ
Δ
ℑ

η
ℑℑ

σ
ℑ

IKIIKIKK New,21New
total ++=

 
∗
•I : Coefficient matrix with elements 0 and 1. 

Step 8: Solve for incremental displacements and rotations: 

 

TotalTotal r

u

K a

a

−=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
θ

⋅

Δλ
Δθ
Δ
Δ

l

 

 

 

 

 

 

 

 



 98

APPENDIX 4 

GEOMETRIC AND MATERIAL PROPERTIES OF HELICAL COUPLING 

 
 
 

 

 

 

 

 

 

 

 

Geometric Properties of coupling: 

D= 50 mm (Outside diameter)  

d=   19 mm (Inside diameter) 

Pitch= 3.18 mm 

t= 2.4 mm (Thickness of coil) 

b= 34.5 mm 

Nc=3.5 (Number of coil) 

Material Properties of coupling: 

Material: 7074-T6 Aluminum 

E=72x109 N/m2  (Young Modulus) 

Nu=0.33 (Possion Ratio) 

G=E/(2+2*Nu) (Shear Modulus) 
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APPENDIX 5 
 

ANSYS SIMULATIONS 
 
Hypothecial System  

 
 
 
 
 
 
 
 
 

 
ANSYS Model 
 

 
 
 
Hypothecial System Parameters: 
 
Common Parameters: 
 
Lm= 300 mm (motor length) 
L3= 15 mm   
L4= 170 mm 
L5= 15 mm 
Lcp= 54 mm 
 
Paramaters for Inertia Value of 0.1Ir 
 
tdsk= - (no disk)   0.1Ir= 6.53x10-5 kg-m2 
Ddsk= - (no disk)   Natural Frequencies=166.47, 535.41, 990.89, 1051.4 Hz 
drtr= 19 mm (rotor diameter) 
Lrtr= 693 mm (rotor length) 
L1= 277.2 mm 
L2= 277.2 mm 
S1= 69.3 mm  
S2=69.3 mm 
 



 100

Paramaters for Inertia Value of Ir 
 
tdsk= 25 mm (disk thickness) Ir= 6.53x10-4 kg-m2 
Ddsk= 75 mm (disk diameter) Natural Frequencies=166.29, 812.22, 1056.9, 1159.1 Hz 
drtr= 19 mm (rotor diameter) 
Lrtr= 535 mm (rotor length) 
L1= 214 mm 
L2= 214 mm 
S1= 53.5 mm  
S2=53.5 mm 
 
Paramaters for Inertia Value of 10Ir 
 
tdsk= 25 mm (disk thickness) 10Ir=  6.53x10-3  kg-m2 
Ddsk= 133.33 mm (disk diameter) Natural Frequencies= 29.71, 166.31, 290.01, 467.25, 620.65 Hz 
drtr= 19 mm (rotor diameter) 
Lrtr= 1203 mm (rotor length) 
L1= 481.2 mm 
L2= 481.2 mm 
S1= 120.3 mm  
S2= 120.3 mm 
 
 
ANSYS Simulation Files: 
 
Beam Model (for inertia value of 0.1Ir) 
 
/com, Beam3 element 
pi=3.14159 !value of pi 
C*** Constant Parameters 
C*********************************** 
Lr=535e-3  !m Rotor Length 
Lbs=490e-3  !m Bearing Span 
Lcp=54e-3        !m Length of Coupling 
Lbm2=200e-3      !m Length of 2nd Beam 
Lmtr=300e-3      !Length of motor beam 
 
dr=19e-3   !m rotor diameter 
dd=75e-3   !m disk diameter 
dt=25e-3   !m disk thickness 
dCpBg=50e-3   !m Coupling Outside diamater 
dCpSml=19e-3  !m Coupling Inside Diameter 
dCp=dCpBg-dCpSml  !Thickness of Coupling 
 
Ar=pi*dr*dr/4 !m2 Rotor Area 
Ad=pi*dd*dd/4 !m2 Disk Area 
ACp=pi*(dCpBg*dCpBg-dCpSml*dCpSml)/4 !m2 Coupling Area 
 
Vr=Ar*Lr  !m3 Rotor volume 
Vd=Ad*dt-Ar*dt !m3 Disk Volume 
 
ro=7800   !kg/m3 Density of rotor material 
md=ro*Vd  !kg Disk Weigth 
mr=ro*Vr  !kg rotor weigth 
roCp=2810     !Kg/m3 Density of Coupling Material 
 
Id=pi*dr*dr*dr*dr/64   !m4 Area moment of inertia of rotor 
Jd=pi*dr*dr*dr*dr/32   !m4 Polar moment of inertia of rotor 
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Ipr=ro*pi*Lr*dr*dr*dr*dr/32   !kg-m2 Mass moment of inertia of rotor 
Ipd=ro*pi*dt*(dd*dd*dd*dd-dt*dt*dt*dt)/32  !kg-m2 Mass moment of inertia of disk 
 
ICpBg=pi*dCpBg*dCpBg*dCpBg*dCpBg/64  
ICpSml=pi*dCpSml*dCpSml*dCpSml*dCpSml/64  
ICp=ICpBg-ICpSml  !m4 Coupling Area Moment of Inertia 
JCp=2*ICp         !Polar Moment of Inertia of Coupling 
 
C*********************************** 
/config,nres,10000 
/prep7 
/COM Beam Element Generation 
 
ET,1,beam3 
ET,2,mass21,,,3 
R,1,Ar,Id,dr !Rotor %2D 
R,2,md,Ipd/2 !Disk 
R,3,Acp,ICp,dCpBg !Coupling 2D 
 
Mp,EX,1,2e11 
Mp,DENS,1,ro 
Mp,PRXY,1,0.33 
 
!Coupling Material 
Mp,EX,2,72e9 
Mp,DENS,2,roCp 
Mp,PRXY,2,0.33 
 
!Beam Nodes 
N,1,0,0 
N,11,Lr,0 
FILL 
!Coupling Node 
N,12,-Lcp,0 
!2nd Beam 
N,18,(-Lcp-Lbm2),0 
FILL 
N,24,(-Lcp-Lbm2-Lmtr),0 
FILL 
 
Type,1 
Real,1 
Mat,1 
E,1,2 
EGEN,10,1,1 
 
!Add disk mass and inertia 
 
Type,2 
REAL,2 
E,6 
 
Type,1 
Real,3 
Mat,2 
E,1,12 
 
Type,1 
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Real,1 
Mat,1 
E,12,13 
E,13,14 
E,14,15 
E,15,16 
E,16,17 
E,17,18 
E,18,19 
E,19,20 
E,20,21 
E,21,22 
E,22,23 
E,23,24 
 
C*** Constraints  
C*********************************** 
D,2,UY,0.0 
!D,2,UZ,0.0 
D,10,UX,0.0 
D,10,UY,0.0 
!D,10,UZ,0.0 
D,15,UY,0.0 
!D,15,UZ,0.0 
D,19,UY,0.0 
!D,19,UZ,0.0 
D,23,UY,0.0 
!D,23,UZ,0.0 
Finish 
 
Loading  File  
 
deltim, 3.333333e-005 
Time, 3.333333e-005 
F,1,FY, 0.000000e+000 
F,1,MZ, 0.000000e+000 
SOLVE 
Time, 6.666667e-005 
F,1,FY, 2.972797e-003 
F,1,MZ, -3.071657e-002 
SOLVE 
Time, 1.000000e-004 
F,1,FY, 4.664149e-003 
F,1,MZ, -3.070769e-002 
SOLVE 
Time, 1.333333e-004 
F,1,FY, 6.328986e-003 
F,1,MZ, -3.069938e-002 
SOLVE 
. 
. 
. 
. 
Time, 2.590000e-001 
F,1,FY, 3.594390e-002 
F,1,MZ, -3.068341e-002 
SOLVE 
Time, 2.590333e-001 
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F,1,FY, 3.623576e-002 
F,1,MZ, -3.069182e-002 
SOLVE 
FINISH 
 
Solution  
/input, Beam Model 
 
C*********************************** 
C***Solution 
 
C*********************************** 
/SOLU  
ANTYPE,trans           ! Transient ANALYSIS 
 
 
OUTPR,NSOL,1 
OUTRES,NSOL,1  
 
/input, Loading  File 
/post26 
NSOL,2,6,u,x,DX6 
NSOL,3,6,u,y,DY6 
NSOL,5,4,u,x,DX4 
NSOL,6,4,u,y,DY4 
Finish 
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APPENDIX 6 

MATLAB CODE 
%Assign initial Values 
 
clear all 
% Calculate Initial Geometric Data of Coupling Element 
 
Smld=19e-3; % m Coupling smal Diamater 
BigD=50e-3; % m Couplşng big Diamater 
Pitch=3.18e-3; %m 
Nc=7; %  2*Number of coil 
N_angle=5;%degree rotation angle of constant speed shaft 
k=1/16; 
b=(BigD-Smld)/2; 
t=2.4e-3; %m coil thickness 
r=(Smld+BigD)/4; 
 
% Geometric and Material Properties of Couping Element 
 
roSt=7800;% Kg/m3 Density of  Steel (for Rotor - Dsik) 
E=72e9;% Pa Young Modulus of Al 7075-T6 
Nu=0.33;% Possion Ratio 
G=E/(2+2*Nu); % Pa  Shear Modulus 
Ax=b*t; % m2 Area 
A2x=5/6*Ax; % m2 Efective Shear Area 
A3x=5/6*Ax;% m2 Effective Area 
Iy=b*b*b*t/12; 
Iz=t*t*t*b/12; 
Jx=Iy+Iz; 
 
 % Input Inertia 
 
input(‘Specify inertia values:’, Inertia) 
 
% Constitutive Matrices:Cn Cm 
 
Cn=diag([E*Ax,G*A2x,G*A3x]); 
Cm=diag([G*Jx,E*Iy,E*Iz]); 
 
% Specify Angular Velocity  
 
VelRPM=5000; % RPM 
 
%  Specify Number of Elements, Number of Local  Nodes and Number of Gauss Points 
 
n_Gauss=3; 
n_elm=2*Nc/k; %Number of Element 
totallocalnode=4; 
totalglobalnode=(n_elm-1)*(totallocalnode-1)+totallocalnode; 
 
% Initialize Total Rotation and Displacement Cell arrays 
 
PrevROTMTRX=cell(n_elm,n_Gauss); 
InlRTMTRX=cell(n_elm,n_Gauss); 
Omega_alfa=cell(n_elm,n_step,n_Gauss); 
for i_elm=1:n_elm 
    for i_Gauss=1:n_Gauss 
        PrevROTMTRX{i_elm,i_Gauss}=eye(3); 
    end 
end 
 
% Initialize Rotation matrices 
 
firstROTMTRX=eye(3); 
EndROTMTRX=eye(3); 
for i_elm=1:n_elm 
    for i_Gauss=1:n_Gauss 
        Omega_alfa{i_elm,1,i_Gauss}=[0;0;0]; 
    end 
end 
Omega_alfaEND=zeros(3,x_step); 
 
% Calculate Position Vectors for Undeformed Configuration 
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teta=0; 
dteta=k*pi/2/(totallocalnode-1); 
for i_globalnode=1:totalglobalnode 
        InitialPhiVls(1:3,i_globalnode)=[r*sin(teta);Pitch*teta/2/pi;r*cos(teta)]; 
        teta=teta+dteta;     
end 
 
%************************************************************************** 
% Assign BC Values to the arrays 
%sSpecify  global nodes, elements and  local nodes 
 
BCNode1=[1,totalglobalnode];%Global Nodes 
BCElm1=[1;n_elm]; 
BClocal1=[1,4]; 
BCNode2=[1];%Global Nodes 
BCElm2=[1]; 
BClocaL2=[1]; 
%************************************************************************** 
%Initial Load Steps 
 
%Apply Angular Misalignment 
x_stepAng=0; 
%Apply Parallel Misalignment 
x_stepPrl=1; 
%Total Initial load steps 
x_step=x_stepAng+x_stepPrl; %First Load Step 
%Specify ANGULAR misalignmentangle 
MisalignmentAngle=0*pi/180;%rad 
%Specify PARALLEL misalignment value 
PrlMis=0.25e-3;%m 
%************************************************************************** 
%Incremental values for End of coupling 
%Angular Misalignment 
 
if x_stepAng~=0 
DROT1=MisalignmentAngle/x_stepAng;%radian, 1 degree increment 
elseif x_stepAng==0 
DROT1=0; 
End 
 
%Parralel Misalignment 
 
if x_stepPrl~=0 
DPMis=PrlMis/x_stepPrl;%radian, 1 degree increment 
elseif x_stepPrl==0 
DPMis=0; 
end 
%************************************************************************** 
%Inctemental Values for Rotation 
 
DROT2=1*pi/180; 
 
%Specify (rotation) Unit  Vectors 
 
n_rot1=[1;0;0]; %First step rotation vector 
n_rot2=[[0;1;0],[0;cos(MisalignmentAngle);sin(MisalignmentAngle)]];%Second step rotation vectors 
%Specify velocity acceleration 
DTime=DROT2/(VelRPM/60*2*pi); 
for i_acc=1 
angVel(i_acc)=0 
angAcc(i_acc)=0; 
end 
angVel(x_step)=DROT2/DTime;%rad/sec 
angAcc(x_step)=0; 
%************************************************************************** 
% Radius Vectors (Undeformed Configuration) 
 
r1zero=[0;0;InitialPhiVls(3,totalglobalnode)]; 
r2zero=[0;0;InitialPhiVls(3,1)]; 
lzero=[0;InitialPhiVls(2,totalglobalnode);0]; 
 
% BC values 
 
r1=r1zero; %radius at the END of coupling 
r2=r2zero;%radius at the tip of coupling 
%************************************************************************** 
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%Initial Values 
 
TotalDisp=zeros(3,totalglobalnode); 
IncRot=zeros(3,totalglobalnode); 
%Angular misalignment not zero 
if DROT1~=0 
    IncRot(1:3,totalglobalnode)=DROT1*n_rot1; 
    [antROT,dummyROT]=rotation(IncRot(1:3,totalglobalnode)); 
    TotalDisp(1:3,totalglobalnode)=lzero+antROT*EndROTMTRX*r1zero ... 
                             -InitialPhiVls(1:3,totalglobalnode); 
%Angular misalignment is zero and parallel misalignmentis not zero                        
elseif ((DROT1==0)&(DPMis~=0)) 
    IncRot(1:3,totalglobalnode)=[0;0;0]; 
    TotalDisp(1:3,totalglobalnode)=[0;0;DPMis]; 
end 
%************************************************************************** 
% Shape Function Values at given GAUSS Point 
 
GaussPnts=[0.774596669241483; ... 
           0.0; ... 
           -0.774596669241483]; 
GaussWgths=[0.555555555555556; ... 
            0.888888888888889; ... 
            0.555555555555556]; 
W=GaussWgths; 
for i_Gauss=1:3 
    t=GaussPnts(i_Gauss); 
    N(i_Gauss,1)=0.5*(1-t)-0.5*(1-t*t)+(-9*t*t*t+t*t+9*t-1)/16; 
    N_prime(i_Gauss,1)=-0.5+t+(-27*t*t+2*t+9)/16; 
    N_scnd(i_Gauss,1)=1+(-2*27*t+2)/16; 
    N(i_Gauss,2)=(1-t*t)+(27*t*t*t+7*t*t-27*t-7)/16; 
    N_prime(i_Gauss,2)=-2*t+(3*27*t*t+14*t-27)/16; 
    N_scnd(i_Gauss,2)=-2+(6*27*t+14)/16; 
    N(i_Gauss,3)=(-27*t*t*t-9*t*t+27*t+9)/16; 
    N_prime(i_Gauss,3)=(-3*27*t*t-18*t+27)/16; 
    N_scnd(i_Gauss,3)=(-6*27*t-18)/16; 
    N(i_Gauss,4)=0.5*(1+t)-0.5*(1-t*t)+(9*t*t*t+t*t-9*t-1)/16; 
    N_prime(i_Gauss,4)=0.5+t+(27*t*t+2*t-9)/16; 
    N_scnd(i_Gauss,4)=1+(2*27*t+2)/16; 
end 
%**************************************************************** 
% Shape Function Values at Fourth Point 
 
    tEND=1; 
    N_END(1)=0.5*(1-tEND)-0.5*(1-tEND*tEND)+(-9*tEND*tEND*tEND+tEND*tEND+9*tEND-1)/16; 
    N_primeEND(1)=-0.5+tEND+(-27*tEND*tEND+2*tEND+9)/16; 
    N_scndEND(1)=1+(-2*27*tEND+2)/16; 
    N_END(2)=(1-tEND*tEND)+(27*tEND*tEND*tEND+7*tEND*tEND-27*tEND-7)/16; 
    N_primeEND(2)=-2*tEND+(3*27*tEND*tEND+14*tEND-27)/16; 
    N_scndEND(2)=-2+(6*27*tEND+14)/16; 
    N_END(3)=(-27*tEND*tEND*tEND-9*tEND*tEND+27*tEND+9)/16; 
    N_primeEND(3)=(-3*27*tEND*tEND-18*tEND+27)/16; 
    N_scndEND(3)=(-6*27*tEND-18)/16; 
    N_END(4)=0.5*(1+tEND)-0.5*(1-tEND*tEND)+(9*tEND*tEND*tEND+tEND*tEND-9*tEND-1)/16; 
    N_primeEND(4)=0.5+tEND+(27*tEND*tEND+2*tEND-9)/16; 
    N_scndEND(4)=1+(2*27*tEND+2)/16; 
%********************************************************************* 
% Calculate Initial Rotation Matrix and Determinant of det(dPhi/ds) 
 
for i_elm=1:n_elm 
    for i_Gauss=1:3 
        i_g1=(i_elm-1)*(totallocalnode-1)+1; 
        i_g2=(i_elm-1)*(totallocalnode-1)+totallocalnode; 
        [InlRTMTRX{i_elm,i_Gauss},detPhi(i_elm,i_Gauss)]=Rot_Ini(InitialPhiVls(1:3,i_g1:i_g2),N,N_prime,N_scnd,i_Gauss); 
    end 
end 
%************************************************************************** 
 
% Calculate Initial Rotation Matrix Forth Fourth node of last element 
ENDi_g1=(n_elm-1)*(totallocalnode-1)+1; 
ENDi_g2=(n_elm-1)*(totallocalnode-1)+totallocalnode; 
[InlRTMTRXEND,detPhiEND]=Rot_IniEND(InitialPhiVls(1:3,ENDi_g1:ENDi_g2),N_END,N_primeEND,N_scndEND); 
%************************************************************************** 
%Write Initial Phi Values to the file 
 
     %Displacenent Data 
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    fidDisp=fopen('TDFrMm5000Al19_I1_01XExp_0025Inc1deg.txt','w'); 
    fprintf(fidDisp,'%4d\n',0); 
    for i_glbnode=1:totalglobalnode 
        fprintf(fidDisp,'%4d %+5.25e %+5.25e %+5.25e\n', ... 
                [i_glbnode InitialPhiVls(1,i_glbnode) InitialPhiVls(2,i_glbnode) InitialPhiVls(3,i_glbnode)]); 
    end 
    fprintf(fidDisp,'%4d %+5.25e %+5.25e\n',[0 angVel(1) angAcc(1)]); 
    fclose(fidDisp); 
     
    %Create Rotation file 
    
    fidROT=fopen('IRFrMm5000Al19_I1_01XExp_0025Inc1deg.txt','w'); 
    fprintf(fidROT,'%4d\n',0); 
    fclose(fidROT); 
%************************************************************************** 
 
MalngNr(1:x_step)=zeros(1,x_step); 
for i_step=1:n_step %1i_step 
   DTheta=0; 
   DeltaTheta=0; 
   Lambda=0; 
   if i_step<=x_step 
            BCNodes=BCNode1; 
   elseif i_step>x_step 
            BCNodes=BCNode2; 
            angVel(i_step)=angVel(i_step-1); 
            angAcc(i_step)=0; 
    end 
    
    
    cnvrg=[1]; 
    i_Itr=1; 
    n_step=8000; %Total Load Step 
%************************************************************************** 
 
% Calculate Deformed Configuration 
    
while cnvrg(length(cnvrg))>1e-14 %cnvrg 
        %Initialize Global Stiffness and Residual Matrices 
        GlobalRsdlMtrx=sparse(6*(n_elm-1)*(totallocalnode-1)+6*totallocalnode,1); 
        GlobalStiffMAT=sparse(6*(n_elm-1)*(totallocalnode-1)+6*totallocalnode, ... 
                           6*(n_elm-1)*(totallocalnode-1)+6*totallocalnode); 
        GlobalStiffGEO=sparse(6*(n_elm-1)*(totallocalnode-1)+6*totallocalnode, ... 
                           6*(n_elm-1)*(totallocalnode-1)+6*totallocalnode);  
        GlobalForce=sparse(6*(n_elm-1)*(totallocalnode-1)+6*totallocalnode,1); 
        %************************************************************************** 
        for i_elm=1:n_elm% 1i_elm 
            i_g1=(i_elm-1)*(totallocalnode-1)+1; 
            i_g2=(i_elm-1)*(totallocalnode-1)+totallocalnode; 
            PhiIntmdt=InitialPhiVls(1:3,i_g1:i_g2)+ ... 
                      TotalDisp(1:3,i_g1:i_g2); 
            ThetaIntmdt=IncRot(1:3,i_g1:i_g2);       
             
            %Initialize Element Stiffness and Residual Matrices 
            RsdlMtrx=sparse(totallocalnode*6,1); 
            stiffMAT=sparse(totallocalnode*6,totallocalnode*6); 
            stiffGEO=sparse(totallocalnode*6,totallocalnode*6); 
         %************************************************************************** 
            for i_Gauss=1:3 %FOR 1i_Gauss 
                [Phi,PhiS,Theta,ThetaS]=ShpFnc(PhiIntmdt,ThetaIntmdt,N,N_prime,detPhi(i_elm,i_Gauss),i_Gauss); 
                R=R_Mtrx(Theta,ThetaS); 
                [ROT{i_elm,i_Gauss},T_ROT]=rotation(Theta); 
                         
                ROTMTRX=ROT{i_elm,i_Gauss}*PrevROTMTRX{i_elm,i_Gauss}; 
                epsilon_alfa=PhiS-ROTMTRX*InlRTMTRX{i_elm,i_Gauss}(:,1); 
                Omega_alfa{i_elm,i_step+1,i_Gauss}=T_ROT*ThetaS+ROT{i_elm,i_Gauss}*Omega_alfa{i_elm,i_step,i_Gauss}; 
                k_alfa=Omega_alfa{i_elm,i_step+1,i_Gauss}; 
                n_alfa=ROTMTRX*InlRTMTRX{i_elm,i_Gauss}*Cn ... 
                       *transpose(ROTMTRX*InlRTMTRX{i_elm,i_Gauss})*epsilon_alfa; 
                m_alfa=ROTMTRX*InlRTMTRX{i_elm,i_Gauss}*Cm ... 
                       *transpose(ROTMTRX*InlRTMTRX{i_elm,i_Gauss})*k_alfa; 
                  %************************************************************************** 
                    %Record Forces and Moments 
                   FORCE(i_elm,i_step,i_Gauss,1)=n_alfa(1); 
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                   FORCE(i_elm,i_step,i_Gauss,2)=n_alfa(2); 
                   FORCE(i_elm,i_step,i_Gauss,3)=n_alfa(3); 
                   MOMENT(i_elm,i_step,i_Gauss,1)=m_alfa(1); 
                   MOMENT(i_elm,i_step,i_Gauss,2)=m_alfa(2); 
                   MOMENT(i_elm,i_step,i_Gauss,3)=m_alfa(3); 
                   %************************************************************************** 
                 
                   H=H_MTRX(m_alfa,Theta,ThetaS); 
                 
                %ELement Residual Vector 
 
                A1=n_alfa; 
                A2=transpose(SKEW(PhiS)*T_ROT)*n_alfa+ ... 
                           (transpose(R+SKEW(k_alfa)*T_ROT))*m_alfa; 
                A3=transpose(T_ROT)*m_alfa; 
                for ii=1:totallocalnode %FOR 1_ii 
                    for i=1:3 %x y z %for 1xyz_i 
                        RsdlMtrx(6*(ii-1)+i)=RsdlMtrx(6*(ii-1)+i)+ ... 
                                             W(i_Gauss)*N_prime(i_Gauss,ii)*A1(i); 
                        RsdlMtrx(6*(ii-1)+3+i)=RsdlMtrx(6*(ii-1)+3+i)+ ... 
                                               W(i_Gauss)*A2(i)*N(i_Gauss,ii)*detPhi(i_elm,i_Gauss)+ ... 
                                               W(i_Gauss)*A3(i)*N_prime(i_Gauss,ii); 
                    end %END 1xyz_i 
                end %END 1_ii 
 
                %Element Tangent Material Matrix 
 
                 B1=ROTMTRX*InlRTMTRX{i_elm,i_Gauss}*Cn*transpose(ROTMTRX*InlRTMTRX{i_elm,i_Gauss}); 
                 B11=ROTMTRX*InlRTMTRX{i_elm,i_Gauss}*Cm*transpose(ROTMTRX*InlRTMTRX{i_elm,i_Gauss}); 
                 B2=B1*SKEW(PhiS)*T_ROT; 
                 A1=transpose(SKEW(PhiS)*T_ROT)*B1; 
                 B3=transpose(SKEW(PhiS)*T_ROT)*B1*(SKEW(PhiS)*T_ROT)+ ... 
                    transpose(R+SKEW(k_alfa)*T_ROT)*B11*(R+SKEW(k_alfa)*T_ROT); 
                 B4=transpose(R+SKEW(k_alfa)*T_ROT)*B11*T_ROT; 
                 B5=transpose(T_ROT)*B11*(R+SKEW(k_alfa)*T_ROT); 
                 B6=transpose(T_ROT)*B11*T_ROT; 
                                 
                for ii=1:totallocalnode %2_ii 
                    for jj=1:totallocalnode %1_jj 
                        for i=1:3 %2xyz_i 
                            for j=1:3 %1xyz_j 
                               stiffMAT(6*(ii-1)+i,6*(jj-1)+j)=stiffMAT(6*(ii-1)+i,6*(jj-1)+j)+ ... 
                                                                W(i_Gauss)*B1(i,j)*N_prime(i_Gauss,ii)*N_prime(i_Gauss,jj)/ ... 
                                                                detPhi(i_elm,i_Gauss); 
                               stiffMAT(6*(ii-1)+3+i,6*(jj-1)+j)=stiffMAT(6*(ii-1)+3+i,6*(jj-1)+j)+ ... 
                                                                 W(i_Gauss)*A1(i,j)*N(i_Gauss,ii)*N_prime(i_Gauss,jj); 
                               stiffMAT(6*(ii-1)+i,6*(jj-1)+3+j)=stiffMAT(6*(ii-1)+i,6*(jj-1)+3+j)+ ... 
                                                                 W(i_Gauss)*B2(i,j)*N_prime(i_Gauss,ii)*N(i_Gauss,jj); 
                               stiffMAT(6*(ii-1)+3+i,6*(jj-1)+3+j)=stiffMAT(6*(ii-1)+3+i,6*(jj-1)+3+j)+ ... 
                                                                 W(i_Gauss)*B3(i,j)*N(i_Gauss,ii)*N(i_Gauss,jj)*detPhi(i_elm,i_Gauss)+ ... 
                                                                 W(i_Gauss)*B5(i,j)*N_prime(i_Gauss,ii)*N(i_Gauss,jj)+ ... 
                                                                 W(i_Gauss)*B4(i,j)*N(i_Gauss,ii)*N_prime(i_Gauss,jj)+ ... 
                                                                 W(i_Gauss)*B6(i,j)*N_prime(i_Gauss,ii)*N_prime(i_Gauss,jj)/ ... 
                                                                  detPhi(i_elm,i_Gauss); 
                            end %1xyz_j 
                        end %2xyz_i 
                    end %1_jj 
                end %2_ii 
                 
                % Element Tangent Geometric Matrix 
                 
                 B2=-SKEW(n_alfa)*T_ROT; 
                 A1=transpose(T_ROT)*SKEW(n_alfa); 
                 B3=transpose(T_ROT)*SKEW(k_alfa)*skew(m_alfa)*T_ROT+ ... 
                    Sum_Mtrx(Theta,SKEW(m_alfa)*k_alfa)+ ... 
                    transpose(T_ROT)*SKEW(m_alfa)*R-transpose(R)*SKEW(m_alfa)*T_ROT+ ... 
                    H+ ... 
                    transpose(T_ROT)*SKEW(PhiS)*SKEW(n_alfa)*T_ROT+ ... 
                    Sum_Mtrx(Theta,SKEW(n_alfa)*PhiS); 
                 B4=transpose(T_ROT)*SKEW(m_alfa)*T_ROT+transpose(Sum_Mtrx(Theta,m_alfa)); 
                 B5=-transpose(T_ROT)*SKEW(m_alfa)*T_ROT+Sum_Mtrx(Theta,m_alfa); 
                                                  
                for ii=1:totallocalnode %3_ii 
                    for jj=1:totallocalnode %2_jj 
                        for i=1:3 %3xyz_i 
                            for j=1:3 %2xyz_j 
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                              stiffGEO(6*(ii-1)+i,6*(jj-1)+j)=stiffGEO(6*(ii-1)+i,6*(jj-1)+j)+0;                                   
                              stiffGEO(6*(ii-1)+3+i,6*(jj-1)+j)=stiffGEO(6*(ii-1)+3+i,6*(jj-1)+j)+ ... 
                                                                 W(i_Gauss)*A1(i,j)*N(i_Gauss,ii)*N_prime(i_Gauss,jj); 
                              stiffGEO(6*(ii-1)+i,6*(jj-1)+3+j)=stiffGEO(6*(ii-1)+i,6*(jj-1)+3+j)+ ... 
                                                                 W(i_Gauss)*B2(i,j)*N_prime(i_Gauss,ii)*N(i_Gauss,jj); 
                              stiffGEO(6*(ii-1)+3+i,6*(jj-1)+3+j)=stiffGEO(6*(ii-1)+3+i,6*(jj-1)+3+j)+ ... 
                                                                 W(i_Gauss)*B3(i,j)*N(i_Gauss,ii)*N(i_Gauss,jj)*detPhi(i_elm,i_Gauss)+ ... 
                                                                 W(i_Gauss)*B5(i,j)*N_prime(i_Gauss,ii)*N(i_Gauss,jj)+ ... 
                                                                 W(i_Gauss)*B4(i,j)*N(i_Gauss,ii)*N_prime(i_Gauss,jj); 
                                                                  
                            end %2xyz_j 
                        end %3xyz_i 
                    end %2_jj 
                end %3_ii 
                           
                                 
            end %1_i_Gauss 
            %Update Global Stiffness Matrix 
            GlobalNode1=6*(i_elm-1)*(totallocalnode-1)+1; 
            GlobalNode2=6*(i_elm-1)*(totallocalnode-1)+6*totallocalnode; 
            GlobalRsdlMtrx(GlobalNode1:GlobalNode2)=GlobalRsdlMtrx(GlobalNode1:GlobalNode2)+ ... 
                                                    RsdlMtrx; 
            GlobalStiffMAT(GlobalNode1:GlobalNode2,GlobalNode1:GlobalNode2)= ... 
                     GlobalStiffMAT(GlobalNode1:GlobalNode2,GlobalNode1:GlobalNode2)+ ... 
                     stiffMAT;   
            GlobalStiffGEO(GlobalNode1:GlobalNode2,GlobalNode1:GlobalNode2)= ... 
                     GlobalStiffGEO(GlobalNode1:GlobalNode2,GlobalNode1:GlobalNode2)+ ... 
                     stiffGEO;  
        end %1i_elm 
 
        %Assemble Global Stfiness 
 
        GlobalStiff=GlobalStiffMAT+GlobalStiffGEO; 
        [glbSN,glbSM]=size(GlobalStiff); 
 
        %Calculate total Force Vector 
 
        TotalForceVec=-GlobalRsdlMtrx; 
        [glbFN,glbFM]=size(TotalForceVec); 
        if i_step<=x_step %IFxxx 
            GlobalStiff=GlobalStiff(7:(glbSN-6),7:(glbSM-6)); 
            TotalForceVec=TotalForceVec(7:(glbFN-6),1); 
        elseif i_step>x_step 
 
         %Update according to constraints 
 
            r1vec=EndROTMTRX*r1zero; 
            DRrot=[DeltaR(ThetaIntmdt(:,4),r1vec)*n_rot2(:,2);n_rot2(:,2)]; 
            S1=GlobalStiff(1:(6*totalglobalnode-6),1:(6*totalglobalnode-6)); 
            S2=GlobalStiff(1:(6*totalglobalnode-6),(6*totalglobalnode-6+1):6*totalglobalnode); 
            S3=GlobalStiff((6*totalglobalnode-6+1):6*totalglobalnode,1:(6*totalglobalnode-6)); 
            S4=GlobalStiff((6*totalglobalnode-6+1):6*totalglobalnode,(6*totalglobalnode-6+1):6*totalglobalnode); 
            GlobalStiff=[S1,S2*DRrot;transpose(DRrot)*S3,transpose(DRrot)*S4*DRrot]; 
             
            %Update according to constraints 
 
            F1=TotalForceVec(1:(6*totalglobalnode-6),1); 
            F2=TotalForceVec((6*totalglobalnode-6+1):6*totalglobalnode,1); 
            TotalForceVec=[F1;transpose(DRrot)*F2]; 
 
            %Apply BCs 
 
            BCNodes1=6*(n_elm-1)*(totallocalnode-1)+6*totallocalnode; 
            TotalForceVec=TotalForceVec(7:(BCNodes1-6+1),1); 
            GlobalStiff=GlobalStiff(7:(BCNodes1-6+1),7:(BCNodes1-6+1)); 
%************************************************************* 
%Calculate Forces and Moments at the end of beam 
 
ENDi_g1=(n_elm-1)*(totallocalnode-1)+1; 
ENDi_g2=(n_elm-1)*(totallocalnode-1)+totallocalnode; 
PhiIntmdtEND=InitialPhiVls(1:3,ENDi_g1:ENDi_g2)+ ... 
                      TotalDisp(1:3,ENDi_g1:ENDi_g2); 
ThetaIntmdtEND=IncRot(1:3,ENDi_g1:ENDi_g2);  
[PhiEND,PhiSEND,ThetaEND,ThetaSEND]=ShpFncEND(PhiIntmdtEND,ThetaIntmdtEND,N_END,N_primeEND,detPhiEND); 
[ROTEND,T_ROTEND]=rotation(ThetaEND);                         
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%Strains at the end of coupling 
 
epsilon_alfaEND=PhiSEND-ROTEND*EndROTMTRX*InlRTMTRXEND(:,1); 
Omega_alfaEND(:,i_step+1)=T_ROTEND*ThetaSEND+ROTEND*Omega_alfaEND(:,i_step); 
k_alfaEND=Omega_alfaEND(:,i_step+1); 
%Forces and Moment at the end of coupling 
 
n_alfaEND=ROTEND*EndROTMTRX*InlRTMTRXEND*Cn ... 
                       *transpose(ROTEND*EndROTMTRX*InlRTMTRXEND)*epsilon_alfaEND; 
m_alfaEND=ROTEND*EndROTMTRX*InlRTMTRXEND*Cm ... 
                       *transpose(ROTEND*EndROTMTRX*InlRTMTRXEND)*k_alfaEND; 
 
%New location of END Radius Vector 
 
RdsEND=ROTEND*EndROTMTRX*r1zero; 
%Save Force- Moment- r 
 
MomentEND(:,i_step)=m_alfaEND; 
ForceEND(:,i_step)=n_alfaEND; 
RValuesEND(:,i_step)=RdsEND; 
%Moment along rotation axis=Inertia*(Theta'')  
 
MalngNr(i_step)=transpose(n_rot2(:,2))*(SKEW(RdsEND)*(n_alfaEND)+m_alfaEND)+Inertia*angAcc(i_step); 
 
%***************************************************************** 
b1=(ROTEND*EndROTMTRX*InlRTMTRXEND*transpose(Cn)*transpose(ROTEND*EndROTMTRX*InlRTMTRXEND)) ... 
   *SKEW(n_rot2(:,2))*RdsEND; 
b2=(ROTEND*EndROTMTRX*InlRTMTRXEND*transpose(Cm)*transpose(ROTEND*EndROTMTRX*InlRTMTRXEND))*n_rot2(:,2); 
X=SKEW(RdsEND); 
F1=b1; 
F2=transpose(SKEW(PhiSEND)*T_ROTEND)*b1; 
OmTH=SKEW(T_ROTEND*ThetaSEND); 
REnd=R_Mtrx(ThetaEND,ThetaSEND); 
F3=transpose(OmTH*T_ROTEND)*b2+transpose(REnd)*b2; 
F4=transpose(T_ROTEND)*b2; 
G1=transpose(SKEW(b1))*T_ROTEND; 
G2=transpose(G1); 
G3=transpose(T_ROTEND)*SKEW(PhiSEND)*SKEW(b1)*T_ROTEND+Sum_Mtrx(ThetaEND,SKEW(b1)*PhiSEND); 
G4=transpose(T_ROTEND)*OmTH*SKEW(b2)*T_ROTEND+Sum_Mtrx(ThetaEND,SKEW(b2)*PhiSEND)+ ... 
   transpose(T_ROTEND)*SKEW(b2)*REnd-transpose(REnd)*SKEW(b2)*T_ROTEND+ ... 
   H_MTRX(b2,ThetaEND,ThetaSEND); 
G5=transpose(T_ROTEND)*SKEW(b2)*T_ROTEND+transpose(Sum_Mtrx(ThetaEND,b2)); 
G6=-transpose(T_ROTEND)*SKEW(b2)*T_ROTEND+Sum_Mtrx(ThetaEND,b2); 
%ADD Variations 
%TotalForce Vector 
[ROW,CLM]=size(GlobalStiff); 
%Add Lamda Part 
TotalForceVec=[TotalForceVec;0]; 
GlobalStiff=[[GlobalStiff;zeros(1,CLM)],zeros(ROW+1,1)]; 
%Update Total Force Vector 
%DPhi1-DTheta1 
iCk1Phi=6*(n_elm-1)*(totallocalnode-1)+1-6;%First Node Deleted 
iCk1ndPhi=iCk1Phi+2; 
iCk1RT=6*(n_elm-1)*(totallocalnode-1)+3+1-6;%First Node Deleted 
iCk1ndRT=iCk1RT+2; 
TotalForceVec(iCk1Phi:iCk1ndPhi,1)=TotalForceVec(iCk1Phi:iCk1ndPhi,1)- ... 
                             Lambda*N_primeEND(1)/detPhiEND*F1; 
TotalForceVec(iCk1RT:iCk1ndRT,1)=TotalForceVec(iCk1RT:iCk1ndRT,1)- ... 
                             Lambda*N_primeEND(1)/detPhiEND*F4; 
%DPhi2-DTheta2 
iCk2Phi=iCk1Phi+6; 
iCk2ndPhi=iCk2Phi+2; 
iCk2RT=iCk1RT+6; 
iCk2ndRT=iCk2RT+2; 
TotalForceVec(iCk2Phi:iCk2ndPhi,1)=TotalForceVec(iCk2Phi:iCk2ndPhi,1)- ... 
                             Lambda*N_primeEND(2)/detPhiEND*F1; 
TotalForceVec(iCk2RT:iCk2ndRT,1)=TotalForceVec(iCk2RT:iCk2ndRT,1)- ... 
                             Lambda*N_primeEND(2)/detPhiEND*F4; 
%DPhi3-DTheta3 
iCk3Phi=iCk2Phi+6; 
iCk3ndPhi=iCk3Phi+2; 
iCk3RT=iCk2RT+6; 
iCk3ndRT=iCk3RT+2; 
TotalForceVec(iCk3Phi:iCk3ndPhi,1)=TotalForceVec(iCk3Phi:iCk3ndPhi,1)- ... 
                             Lambda*N_primeEND(3)/detPhiEND*F1; 
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TotalForceVec(iCk3RT:iCk3ndRT,1)=TotalForceVec(iCk3RT:iCk3ndRT,1)- ... 
                             Lambda*N_primeEND(3)/detPhiEND*F4;  
%DThetaR                         
TotalForceVec(ROW,1)=TotalForceVec(ROW,1)-Lambda*Inertia/DTime/DTime- ... 
    Lambda*(N_primeEND(4)/detPhiEND*transpose(n_rot2(:,2))*(-transpose(X*T_ROTEND)*F1+F4)- ... 
            transpose(n_rot2(:,2))*(F2+F3))- ... 
            Inertia*angAcc(i_step); 
%DLamda 
TotalForceVec(ROW+1,1)=TotalForceVec(ROW+1,1)-MalngNr(i_step);    
% 
%GlobalStiffness Matrix 
% 
%DLamda*[XX]*DeltaPhi1 
GlobalStiff(ROW+1,iCk1Phi:iCk1ndPhi)=GlobalStiff(ROW+1,iCk1Phi:iCk1ndPhi)+ ... 
                               N_primeEND(1)/detPhiEND*transpose(F1); 
%DPhi1*[XX]*DeltaLambda 
GlobalStiff(iCk1Phi:iCk1ndPhi,CLM+1)=GlobalStiff(iCk1Phi:iCk1ndPhi,CLM+1)+ ... 
                               N_primeEND(1)/detPhiEND*(F1); 
                            
%DLamda*[XX]*DeltaTheta1 
GlobalStiff(ROW+1,iCk1RT:iCk1ndRT)=GlobalStiff(ROW+1,iCk1RT:iCk1ndRT)+ ... 
                               N_primeEND(1)/detPhiEND*transpose(F4);                               
%DTheta1*[XX]*DeltaLambda 
GlobalStiff(iCk1RT:iCk1ndRT,CLM+1)=GlobalStiff(iCk1RT:iCk1ndRT,CLM+1)+ ... 
                               N_primeEND(1)/detPhiEND*(F4);   
%DLamda*[XX]*DeltaPhi2 
GlobalStiff(ROW+1,iCk2Phi:iCk2ndPhi)=GlobalStiff(ROW+1,iCk2Phi:iCk2ndPhi)+ ... 
                               N_primeEND(2)/detPhiEND*transpose(F1); 
                            
%DPhi2*[XX]*DeltaLambda 
GlobalStiff(iCk2Phi:iCk2ndPhi,CLM+1)=GlobalStiff(iCk2Phi:iCk2ndPhi,CLM+1)+ ... 
                               N_primeEND(2)/detPhiEND*(F1);                                
%DLamda*[XX]*DeltaTheta2 
GlobalStiff(ROW+1,iCk2RT:iCk2ndRT)=GlobalStiff(ROW+1,iCk2RT:iCk2ndRT)+ ... 
                               N_primeEND(2)/detPhiEND*transpose(F4);    
%DTheta2*[XX]*DeltaLambda 
GlobalStiff(iCk2RT:iCk2ndRT,CLM+1)=GlobalStiff(iCk2RT:iCk2ndRT,CLM+1)+ ... 
                               N_primeEND(2)/detPhiEND*(F4);    
%DLamda*[XX]*DeltaPhi3 
GlobalStiff(ROW+1,iCk3Phi:iCk3ndPhi)=GlobalStiff(ROW+1,iCk3Phi:iCk3ndPhi)+ ... 
                               N_primeEND(3)/detPhiEND*transpose(F1); 
%DPhi3*[XX]*DeltaLambda 
GlobalStiff(iCk3Phi:iCk3ndPhi,CLM+1)=GlobalStiff(iCk3Phi:iCk3ndPhi,CLM+1)+ ... 
                               N_primeEND(3)/detPhiEND*(F1);       
 
%DLamda*[XX]*DeltaTheta3 
GlobalStiff(ROW+1,iCk3RT:iCk3ndRT)=GlobalStiff(ROW+1,iCk3RT:iCk3ndRT)+ ... 
                               N_primeEND(3)/detPhiEND*transpose(F4);    
%DTheta3*[XX]*DeltaLambda 
GlobalStiff(iCk3RT:iCk3ndRT,CLM+1)=GlobalStiff(iCk3RT:iCk3ndRT,CLM+1)+ ... 
                               N_primeEND(3)/detPhiEND*(F4);  
%DLambda[XX]DeltaThetaR 
GlobalStiff(ROW+1,CLM)=GlobalStiff(ROW+1,CLM)+Inertia/DTime/DTime+ ... 
    transpose(F2+F3)*n_rot2(:,2)+ ... 
    N_primeEND(4)/detPhiEND*(-transpose(F1)*X*T_ROTEND+transpose(F4))*n_rot2(:,2); 
%DThetaR*[XX]*DeltaLamda 
GlobalStiff(ROW,CLM+1)=GlobalStiff(ROW,CLM+1)+Inertia/DTime/DTime+  ... 
   transpose(n_rot2(:,2))*(F2+F3)+ ... 
   N_primeEND(4)/detPhiEND*transpose(n_rot2(:,2))*(-transpose(X*T_ROTEND)*F1+F4); 
%DPhi1*[XX]*DeltaThetaR 
GlobalStiff(iCk1Phi:iCk1ndPhi,CLM)=GlobalStiff(iCk1Phi:iCk1ndPhi,CLM)+ ... 
    Lambda*N_primeEND(1)/detPhiEND*G1*n_rot2(:,2); 
%DPhi2*[XX]*DeltaThetaR 
GlobalStiff(iCk2Phi:iCk2ndPhi,CLM)=GlobalStiff(iCk2Phi:iCk2ndPhi,CLM)+ ... 
    Lambda*N_primeEND(2)/detPhiEND*G1*n_rot2(:,2); 
%DPhi3*[XX]*DeltaThetaR 
GlobalStiff(iCk3Phi:iCk3ndPhi,CLM)=GlobalStiff(iCk3Phi:iCk3ndPhi,CLM)+ ... 
    Lambda*N_primeEND(2)/detPhiEND*G1*n_rot2(:,2); 
%DThetaR*[XX]*DeltaPhi1 
GlobalStiff(ROW,iCk1Phi:iCk1ndPhi)=GlobalStiff(ROW,iCk1Phi:iCk1ndPhi)+... 
    Lambda*N_primeEND(1)/detPhiEND*transpose(n_rot2(:,2))*G2; 
%DThetaR*[XX]*DeltaPhi2 
GlobalStiff(ROW,iCk2Phi:iCk2ndPhi)=GlobalStiff(ROW,iCk2Phi:iCk2ndPhi)+... 
    Lambda*N_primeEND(2)/detPhiEND*transpose(n_rot2(:,2))*G2;     
%DThetaR*[XX]*DeltaPhi3 
GlobalStiff(ROW,iCk3Phi:iCk3ndPhi)=GlobalStiff(ROW,iCk3Phi:iCk3ndPhi)+... 
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    Lambda*N_primeEND(3)/detPhiEND*transpose(n_rot2(:,2))*G2;     
%DTheta1*[XX]*DeltaThetaR 
GlobalStiff(iCk1RT:iCk1ndRT,CLM)=GlobalStiff(iCk1RT:iCk1ndRT,CLM)+ ... 
    Lambda*N_primeEND(1)/detPhiEND*G6*n_rot2(:,2); 
%DTheta2*[XX]*DeltaThetaR 
GlobalStiff(iCk2RT:iCk2ndRT,CLM)=GlobalStiff(iCk2RT:iCk2ndRT,CLM)+ ... 
    Lambda*N_primeEND(2)/detPhiEND*G6*n_rot2(:,2); 
%DTheta3*[XX]*DeltaThetaR 
GlobalStiff(iCk3RT:iCk3ndRT,CLM)=GlobalStiff(iCk3RT:iCk3ndRT,CLM)+ ... 
    Lambda*N_primeEND(3)/detPhiEND*G6*n_rot2(:,2); 
%DThetaR*[XX]*DeltaTheta1 
GlobalStiff(ROW,iCk1RT:iCk1ndRT)=GlobalStiff(ROW,iCk1RT:iCk1ndRT)+... 
    Lambda*N_primeEND(1)/detPhiEND*transpose(n_rot2(:,2))*G5; 
%DThetaR*[XX]*DeltaTheta2 
GlobalStiff(ROW,iCk2RT:iCk2ndRT)=GlobalStiff(ROW,iCk2RT:iCk2ndRT)+... 
    Lambda*N_primeEND(2)/detPhiEND*transpose(n_rot2(:,2))*G5; 
%DThetaR*[XX]*DeltaTheta3 
GlobalStiff(ROW,iCk3RT:iCk3ndRT)=GlobalStiff(ROW,iCk3RT:iCk3ndRT)+... 
    Lambda*N_primeEND(1)/detPhiEND*transpose(n_rot2(:,2))*G5; 
%DthetaR*[XX]*DeltaThetaR 
GlobalStiff(ROW,CLM)=GlobalStiff(ROW,CLM)+ ... 
    Lambda*N_primeEND(4)/detPhiEND*transpose(n_rot2(:,2))* ... 
          (-transpose(X*T_ROTEND)*G1-G2*X*T_ROTEND+G5+G6)*n_rot2(:,2)+ ... 
    Lambda*transpose(n_rot2(:,2))*(G3+G4)*n_rot2(:,2)+ ... 
    Inertia/DTime/DTime; 
 
%************************************************************************** 
        end% END of Ifxxx 
 
        %Solve for Increments 
        DeltaInc=GlobalStiff\TotalForceVec; 
        %Update 
        BCnumber=0; 
        i_BC=0; 
        BCcntr=1; 
          if i_step>x_step 
          Lambda=Lambda+DeltaInc(ROW+1); 
          DeltaInc=DeltaInc(1:ROW); 
          end 
        for i_globalnode=1:totalglobalnode 
            if any(i_globalnode==(BCNodes)) 
                DeltaDisp((3*(i_globalnode-1)+1):3*i_globalnode,1)=[0;0;0]; 
                DeltaRot((3*(i_globalnode-1)+1):3*i_globalnode,1)=[0;0;0]; 
                BCnumber=BCnumber+1; 
                i_BC=i_BC+1; 
                BCcntr=BCcntr+1; 
            elseif all(i_globalnode~=BCNodes)&(i_globalnode~=totalglobalnode) 
                Check1=(i_globalnode>=BCNodes(i_BC)); 
                iChecknode1=6*(i_globalnode-1)+1-6*BCnumber*Check1; 
                iChecknode2=6*i_globalnode-3-6*BCnumber*Check1; 
                iChecknode3=6*(i_globalnode-1)+4-6*BCnumber*Check1; 
                iChecknode4=6*i_globalnode-6*BCnumber*Check1; 
                DeltaDisp((3*(i_globalnode-1)+1):3*i_globalnode,1)= ... 
                    DeltaInc(iChecknode1:iChecknode2); 
                TotalDisp(1:3,i_globalnode)=TotalDisp(1:3,i_globalnode)+ ... 
                    DeltaInc(iChecknode1:iChecknode2); 
                DeltaRot((3*(i_globalnode-1)+1):3*i_globalnode,1)= ... 
                    DeltaInc(iChecknode3:iChecknode4); 
                IncRot(1:3,i_globalnode)=IncRot(1:3,i_globalnode)+ ... 
                    DeltaInc(iChecknode3:iChecknode4); 
                
            elseif (i_globalnode==totalglobalnode)&(i_step>x_step) 
                %Update last node 
                IncRot(1:3,totalglobalnode)=IncRot(1:3,totalglobalnode)+ ... 
                    DeltaInc(length(DeltaInc))*n_rot2(:,2); 
                                     
                [updROT,dummyT]=rotation(IncRot(1:3,totalglobalnode)); 
                TotalDisp(1:3,totalglobalnode)=lzero+updROT*EndROTMTRX*r1zero ... 
                            +[0;0;PrlMis]-InitialPhiVls(1:3,totalglobalnode); 
                DeltaTheta=DeltaInc(length(DeltaInc)); 
                DTheta=DTheta+DeltaTheta; 
                angVel(i_step)=DTheta/DTime; 
                angAcc(i_step)=(angVel(i_step)-angVel(i_step-1))/DTime; 
            end %END of if       
        end %end of for 
        %Update Lambda 
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       cnvrg=[cnvrg;sqrt(transpose(DeltaDisp)*DeltaDisp)+ ... 
              sqrt(transpose(DeltaRot)*DeltaRot)]; 
       disp([' i_step=',num2str(i_step,'%d')]); 
       disp(['cnvrg=',num2str(cnvrg(length(cnvrg)),'%0.10e')])  
       disp(['DTheta=',num2str(DTheta,'%0.15e')]) 
       disp([' DROT2=',num2str(DROT2,'%0.15e')]) 
       disp(['DTheta-DROT2=',num2str((DTheta-DROT2),'%0.15e')]) 
       disp(['Inital  Velocity=',num2str(angVel(x_step),'%0.15e')]) 
       disp(['Angular Velocity=',num2str(angVel(i_step),'%0.15e')]) 
       disp(['Angular Acceleration=',num2str(angAcc(i_step),'%0.15e')]) 
       disp(['MomentAlong_Nr=',num2str(MalngNr(i_step),'%0.15e')]) 
       disp(['Lambda=',num2str(Lambda,'%0.15e')]); 
       i_Itr=i_Itr+1; 
        
    end %End of While 
    %Write to file 
     %Displacenent Data 
    fidDisp=fopen('TDFrMm5000Al19_I1_01XExp_0025Inc1deg.txt','a'); 
    fprintf(fidDisp,'%4d\n',i_step); 
    for i_glbnode=1:totalglobalnode 
        fprintf(fidDisp,'%4d %+5.25e %+5.25e %+5.25e\n', ... 
                [i_glbnode TotalDisp(1,i_glbnode) TotalDisp(2,i_glbnode) TotalDisp(3,i_glbnode)]); 
    end 
    fprintf(fidDisp,'%4d %+5.25e %+5.25e\n',[i_step angVel(i_step) angAcc(i_step)]); 
    fclose(fidDisp); 
     %Rotation Data 
    fidROT=fopen('IRFrMm5000Al19_I1_01XExp_0025Inc1deg.txt','a'); 
    fprintf(fidROT,'%4d\n',i_step); 
    for i_glbnode=1:totalglobalnode 
        fprintf(fidROT,'%4d %+5.25e %+5.25e %+5.25e\n', ... 
                [i_glbnode IncRot(1,i_glbnode) IncRot(2,i_glbnode) IncRot(3,i_glbnode)]); 
    end  
    fclose(fidROT); 
  %Update for next iteration 
    %Update EndROTMTRX 
          [EndROT,dummT]=rotation(IncRot(1:3,totalglobalnode)); 
          EndROTMTRX=EndROT*EndROTMTRX; 
          %update Omega_alfaEND 
          if i_step<=x_step 
            ENDi_g1=(n_elm-1)*(totallocalnode-1)+1; 
            ENDi_g2=(n_elm-1)*(totallocalnode-1)+totallocalnode; 
            PhiIntmdtEND=InitialPhiVls(1:3,ENDi_g1:ENDi_g2)+ ... 
                      TotalDisp(1:3,ENDi_g1:ENDi_g2); 
            ThetaIntmdtEND=IncRot(1:3,ENDi_g1:ENDi_g2);  
            [PhiEND,PhiSEND,ThetaEND,ThetaSEND]=ShpFncEND(PhiIntmdtEND,ThetaIntmdtEND,N_END,N_primeEND,detPhiEND); 
            [ROTEND,T_ROTEND]=rotation(ThetaEND); 
            Omega_alfaEND(:,i_step+1)=T_ROTEND*ThetaSEND+ROTEND*Omega_alfaEND(:,i_step); 
          end 
          %************************ 
          IncRot=zeros(3,totalglobalnode); 
          for i_elm=1:n_elm 
            for i_Gauss=1:n_Gauss 
              PrevROTMTRX{i_elm,i_Gauss}=ROT{i_elm,i_Gauss}*PrevROTMTRX{i_elm,i_Gauss}; 
            end 
          end 
          if i_step<x_step 
              if (i_step<x_stepAng) 
                IncRot(1:3,totalglobalnode)=DROT1*n_rot1; 
                [antROT,dummyROT]=rotation(IncRot(1:3,totalglobalnode)); 
                TotalDisp(1:3,totalglobalnode)=lzero+antROT*EndROTMTRX*r1zero ... 
                                                 -InitialPhiVls(1:3,totalglobalnode); 
              elseif (i_step>=x_stepAng) 
                    IncRot(1:3,totalglobalnode)=[0;0;0]; 
                    TotalDisp(1:3,totalglobalnode)=TotalDisp(1:3,totalglobalnode)+[0;0;DPMis]; 
              end 
          elseif i_step>=x_step 
              IncRot(1:3,1)=DROT2*n_rot2(:,1); 
              [firstROT,dummyT]=rotation(IncRot(1:3,1)); 
              firstROTMTRX=firstROT*firstROTMTRX; 
              TotalDisp(1:3,1)=firstROTMTRX*r2zero-InitialPhiVls(1:3,1); 
          end 
               
  if any(i_step==[1:35:n_step]) 
  save TFrcMmt5000Al19_I1_01XExp_0025Inc1deg.mat 
  end 
  end %1i_step              
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