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INVESTIGATING THE EFFECT OF MISALIGNMENT ON ROTOR-
BEARING SYSTEMS CONNECTED WITH HELICAL COUPLING

ABSTRACT

In this thesis, helical coupling is modeled with the gemetrically exact beam theory
in order to investigate the effect of misalignment on rotor-bearing systems. A new
approach based on using constitutive equations as constraint was developed.
Comparison with previous results showed that proposed approach was able to predict
the frequency components associated with misalignment. Results indicated that
misalignment causes driven shaft velocity to fluctuate around that of driving shaft for
any misalignment type. However variations observed in velocity are not constant for
given misalignment value but dependent on inertia and coupling geometry. Large
inertia causes rotor velocity to converge to that motor. Results showed that reaction
loads are also dependent on inertia and coupling geometry.

Keywords: Misalignment, helical coupling, geometrically exact beam theory.



EKSEN KACIKLIGIN HELiSEL KAPLINLE BAGLI ROTOR- YATAK
SISTEMINE ETKIiSININ INCELENMESI

0z

Bu tez calismasinda, eksenel kagikligin bir rotor-yatak sistemine etkisini
incelemek i¢in helisel kaplin, geometrik tam kiris teorisi ile modellenmistir. Biinye
denklemlerini kisitlama olarak kullanan yeni bir yaklasim gelistirilmistir.
Literatiirdeki c¢alismalarla yapilan karsilastirmalar, Onerilen yaklagimin eksenel
kagikliga bagl frekans bilesenlerini tahmin edebildigini gdstermistir. Sonugclar,
eksenel kagikligin her tipi i¢in, tahrik edilen saftin hizinin tahrik saftinin hizi
etrafinda salmim yaptigimi gostermistir. Hizda goézlenen salimimlarin belirli bir
eksenel kaciklik degeri icin sabit olmayip, atalet ve kaplin geometrisine de bagh
oldugu gozlemlenmistir. Atalet arttikga rotor hizinin motor hizina yaklastig
gozlemlenmistir. Sonuclar, reaksiyon kuvvetlerinin de atalet ve kaplin geometrisine

bagli oldugunu gostermistir.

Anahtar Kelimeler: Eksenel kaciklik, helisel kaplin, geometrik tam kiris teorisi.
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CHAPTER ONE
INTRODUCTION

Misalignment is one of the most common causes of vibration in rotating
machinery. Shaft misalignment causes additional loads on structure and, in return,
decreases operating lives of parts (Piotrowski, 1995). A poorly aligned machine can
cost a factory 20% to 30% in machine down time, replacement parts, inventory, and
energy consumption (Ganeriwala, Patel & Hartung, 1999). Misalignment is the
condition in which driving and driven shafts connected by coupling are not collinear
at the point of power transition (Piotrowski, 1995). There are basically two types of
misalignment: angular and parallel. A combination of angular and parallel
misalignment in the vertical and horizontal directions is observed in applications.
Despite the best efforts, it is almost impossible to achieve perfect alignment between
driving and driven shafts. Even if perfect alignment was obtained initially, it could
not be maintained over extended period of time due to various effects, such as heat
generated in casings, from bearings, lubrication systems, compression of gases and
foundation movements (Xu & Marangoni, 1994a). For this reason, flexible couplings
are used in industry to accommodate unavoidable misalignment. Although flexible
coupling help power train to tolerate misalignment, they do not completely eliminate
detrimental effects of misalignment on system. Thus detection of misalignment is

crucial to guarantee continuous operation.

In spite of the importance of misalignment, few researchers from academic world

have paid attention to this phenomenon due to complexity in modeling.

Dewel & Mitchell (1984) predicted that bending moment produced by angularly
misaligned four bolt metallic disc coupling has frequency components which are the
multiples of four times the driving shaft’s rotation frequency (called 4X component),
due to variation in coupling stiffness and changing bolt positions for every quarter
turn of driving shaft. Moreover they assumed that coupling in case of angular
misalignment behaves exactly as universal joint. Thus they concluded that bending
moment has additional frequency components which are the multiples of twice the



driving shaft’s speed (called 2X component). Their experiments showed that 2X and

4X components produced the largest changes in frequency spectrum.

Xu & Marangoni (1994a, 1994b) investigated the effect of angular misalignment
on rotor-flexible coupling- rotor system. They assumed that flexible coupling in case
of angular misalignment behaves exactly as universal joint (i.e. Cadan joint). Thus
they estimated that bending moment caused by misaligned coupling has frequency of
twice the motor speed (2X component). They concluded that although 2X component
can be used as the indication of angular misalignment, it may not always show up in

vibration spectrum if it is not close enough to one of the system natural frequencies.

Sekhar & Parbhu (1995) studied the misalignment effects on rotor- bearing
system by developing a theoretical model using higher order finite elements. They
assumed that misaligned coupling behaves as linear spring element, of which
stiffness coefficients vary with frequency of twice the motor speed. They also
assumed that unbalance force has 1X and 2X components. They observed that while
system response in 2X component was increased with increasing misalignment,

response in 1X component was altered significantly.

Lee & Lee (1999) investigated the effects of misalignment on the natural
frequency of misaligned rotor system by deriving a dynamic model for misaligned
rotor-ball bearing system driven through flexible coupling. They treated the reaction
loads and deformations at bearing and coupling elements as the misalignment effect.
Forces and moments due to deformation of coupling element are described by
modeling the coupling as beam element with the effective flexural and axial rigidity.
Both experimental and simulation results agree that, as angular misalignments
increases, natural frequency associate with the misalignment direction increases
largely. On the other hand natural frequencies are not changed for parallel

misalignment.

Saavendra and Ramirez (2004a, 2004b) developed a theoretical model of rotor

bearing system with a flexible coupling to investigate the shaft misalignment. They



considered the coupling as couple of rigid blocks connected with ideal spring
elements. They presented an experimental method to construct the coupling stiffness
matrix. They showed that frequencies generated by shaft misalignment are directly

dependent on the frequencies of the variation in coupling stiffness.

Misalignment results in reaction loads on system due to relative deformation
between coupling faces. Since most of the couplings are not uniform but rather has
certain geometric symmetry around their rotation axes, magnitude of reaction loads
at given instant of time depend on the angular position of driving shaft. As driving
shaft rotates with constant speed, deformed coupling repeats its configuration. Thus
reaction loads change periodically. If misaligned coupling causes driving and driven
shaft speeds to differ as universal joint does in case of angular misalignment, relative
deformation between coupling faces would be different as compared to the case
when driving and driven shafts have same speeds. Since reaction loads depend on the
relative position between couplings faces, periods as well as the magnitude of
reaction loads would also be different. Moreover motor produces additional torque in
order to compensate inertial effect resulted from driven shaft’s rotary inertia and
acceleration. In return this torque, depending on the deformed coupling
configuration, may result in additional reaction loads on driven shaft. Thus behavior
of the rotating coupling should be identified in order to understand effect of the

misalignment on system.

In previous studies mentioned above, rotating coupling behavior is always
assumed to be known a priori, and reaction loads generated by misaligned coupling
on system are estimated accordingly. Behaviors which are assumed to be exhibited
by deformed coupling are a) universal joint (Dewel & Mitchell, 1984, Xu &
Marangoni, 1994a 1994b) b) ideal spring elements with periodic stiffness which has
frequencies of integer multiply of motor speed (Sekhar & Prabu, 1995). Although
vibration spectrum of misaligned system given in literature and/or obtained by above
mentioned researchers justifies these assumptions, there are some points to be

considered:



a) Universal joint effect is borrowed from rigid body dynamics. It states that two
rigid shafts connected by rigid coupling (Cardan joint) should have same
rotation angle for one full rotation (i.e. 2r1). If angular misalignment is
present, full circle in the plane perpendicular to driving shaft axis is
manifested as ellipse in the plane perpendicular to driven shaft axis.
Therefore driven shaft speed fluctuates around that of driving shaft. However
couplings (considered in above studies) are flexible elements and they do not
necessarily behave as rigid ones. Also (if applicable) universal joint effect
considers only pure angular misalignment. Moreover, if angularly misaligned
coupling behaves exactly as universal joint same vibration pattern should be
observed for all angularly misaligned systems. However, systems connected
with different coupling type exhibit different vibration spectrum in case of
angular misalignment.

b) Modeling flexible coupling as ideal spring element requires determination of
stiffness coefficients for different rotation angles. Even if this can be
accomplished, measuring stiffness for different misalignment conditions
would be difficult. In addition to that, methods employed for that purpose
should also consider certain dynamical effects (i.e. variation of driven shaft
speed, friction and loads resulted from operation) since they may change the
relative deformation between coupling faces, thereby altering the reaction
loads.

As mentioned above developing models for misaligned systems is difficult due to
complexity of the phenomena. Thus a priori assumptions for misaligned coupling
behavior in rotating system are required. However, as explained in previous
paragraph, validity of previously employed assumptions is in question. For this
reason new method which can calculate the deformed coupling behavior without any
a priori assumptions is necessary to identify characteristics of misalignment. Driven
shaft moves due to loads which are transferred through coupling. Since coupling is a
flexible element, transferred loads could be calculated by employing constitutive

equations. If one uses constitutive equation with proper assumptions as constraints,



deformed coupling behavior can be computed directly. This is the main theme of this

study and details are presented in subsequent chapters.

Rotating coupling exhibits the motion known as three dimensional finite rotations.
Displacements and rotations experienced by structure undergoing finite rotation are
not only deformations but include rigid body motion as well. Thus deformations
should be extracted from displacements to determine the structures behavior
correctly. Classical example of finite rotation is a swinging beam. Some methods
pertaining to finite rotation can be found in the literature. In this study helical
coupling is used. Since helical coupling is nothing more than helical beam,
computationally simple method known as geometrically exact beam theory is used to
model its behavior. Details of geometrically exact beam theory are presented in
subsequent chapter.



CHAPTER TWO
MISALIGNMENT

2.1 Definition of Shaft Misalignment

Shaft misalignment is defined as “the deviation of relative shaft position from a
collinear axis of rotation measured at the points of power transmission when
equipment is running at normal operating conditions” (Piotrowski, 1995). If driving
and driven shafts are collinear, then they are said to be aligned. If misalignment is
present, centerline of one shaft deviates with respect to the centerline of the other
shaft. Figure 2.1 depicts the typical misalignment condition. Since misalignment
occurs in 3D space, misalignment between two shafts is determined by projecting

drive train to the two different planes which are perpendicular (Figure 2.2).

There are basically two types of shaft misalignment: Angular and parallel. If axes
of rotation of two shafts intersect with one another at an angle, misalignment is
termed angular misalignment (Figure 2.3a). If centerlines of two shafts are parallel
but do not intersect, misalignment is called parallel misalignment (Figure 2.3b). In
practice combination of both angular and parallel misalignment is encountered in

machine assemblies.

Driver shaft Driven shaft

maximum alignment
deviation occurs here

..

driven offset
(in mils)

driver offset
(in mils)

Figure 2.1 Typical misalignment conditions. Adapted from
Piotrowski, (1995), page 143.



TOP VIEW
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Points of Power Trangmission

SIDE VIEW

Figure 2.2 Determination of misalignment. Adapted from Piotrowski (195) page
144,

Figure 2.3 Misalignment types: (a) Angular misalignment. o is the misalignment

angle. (b) Parallel misalignment. & is the misalignment offset.



2.2 Importance of Shaft Misalignment

When shafts are misaligned, the reaction loads are generated in system. These
loads produce stresses as well as the vibration on the rotating and stationary
components and cause some parts to fail. To emphasize the detrimental effects of
misalignment on field applications, two examples will be discussed. First, an
ammonia plant in USA was shut down for an extended period when a compressor
shaft failed catastrophically due to excessive coupling misalignment. This failure
resulted in the process upset and substantial economic losses for that company
(Dewel & Mitchel, 1984). The second example concerns a steel company.
According to predictive maintenance department of that company, misalignment
made up of 23% of vibration related faults in production lines.

Despite the best efforts, perfect alignment of rotating machinery shafts cannot be
achieved in practical application. Even if perfect alignment was achieved initially, it
could not be maintained over an extended period of time because of the dynamic
movements caused by the thermal growth of machinery casing (Piotrowski, 1995).
Thus flexible couplings are used in industry to accommodate unavoidable
misalignment. Although flexible couplings help the power-train to tolerate

misalignment, they do not completely eliminate the negative effects of misalignment.

2.3 Symptoms of Shaft Misalignment

Reaction loads generated by misalignment are typically static and difficult to
measure. Therefore what really seen in practical applications are the secondary
effects of these loads which exhibit many of the following symptoms (Piotrowski,
1995):

- Excessive radial and axial vibration

- Premature bearing, seal, shaft, or coupling failure

- Excessive amount of oil leakage at the bearing seals
- Loose foundation bolts

- Loose or broken coupling bolts.

- High casing temperature.



CHAPTER THREE
GEOMETRICALLY EXACT BEAM THEORY

3.1 Introduction

Geometrically exact beam theory states that configurations of the beam are
completely defined by specifying evolution of an orthogonal transformation and
position vector of the line of centroit of the beam cross sections. Orthogonal
transformation takes the 3D orthogonal moving frame defined on the current
configuration and places it on the next configuration. Moving frame is defined so
that one of its vectors remains normal to the cross section in any configuration. Thus
orthogonal transformation gives the rotation of a cross section. Orthogonal
transformation of this kind is referred as SO(3) which stands for the Special
Orthogonal (Lie) group. Matrix components of orthogonal transformation are called

rotation matrix.

Representing beam configuration with rotation matrix is attractive from the
computational standpoint because it allows complete freedom on choosing the
parametization schemes. Euler angles and use of queternions are two of the
possibilities. In this study computationally much simpler approach is used:

Incremental rotation vector.

3.2 Kinematics of 3D Beam

For a given parameter S€[0,L]cR, LeR, reference (initial or undeformed)
configuration of the beam is described by defining a family of cross-sections the
centroids of which are connected by a space curve S — (po(S)eR3 in a three
dimensional ambient space R’ with a right-handed inertial Cartesian (material)
frame, E; i=1,2,3. The parameter S represents the arc-length of the line of centroids
in the reference (unstressed) configuration. The parameter L is referred to as the
initial length of the beam (Figure 3.1). Cross sections of the beam in reference
configuration is defined by the unit vectors S— ti,o(S)eR3 1=1,2,3 with unit vector

t1,0(S) being tangent to the line of centroids and normal to the cross section such that
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Figure 3.1 Initial and deformed configuration of three-dimensional beam.
In figure, material (E,E,E3;) and spatial (eje;e;) frames are chosen to
coincide.

t1,0(S)= @0’ (S) (3.1)

and with unit vectors t;9 and t3 9 being directed along the principle axis of inertia of
the cross-section at S. In Equation 3.1 and in the foregoing prime (') denotes the
derivative with respect to the undeformed arc-length parameter S. Thus unit vectors

tio(S) i=1,2,3 form the right-handed orthonormal triad such that

ti0(S) tio(S)=di; 1,j=1,2,3 (3.2a)
[ to®) | =1 =123 (3.2b)
t1,0(S)= t3,0(S)X t2,0(S) (3.2¢)

where 0;; is the Knocker delta, i.e. §=1 i=j and §;;=0 i#j. Body attached frame
ti0o(S), 1=1,2,3 and material inertial frame E;, i=1,2,3 are related through a linear
transformation S—>Ay(S)eSO(3)

tio(S) =Au(S)E; i=1,2,3 (3.3)
where SO(3) is the Special Orthogonal (Lie) group of the proper orthogonal
transformation and Ay(S) is the orthogonal tensor defined as

A()(S): A();ijj@Ei i,j:1 ,2,3 (34)
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In Equation 3.4 and in the foregoing symbol (®) denotes the tensor products of
vectors. Matrix representation of Ao(S) satisfies det(Ao(S))=1 and A,(S)A(S)=I

with I being the 3x3 identity matrix. The matrix representation of tensor Ay(S) is
referred to as the initial rotation matrix. The initial position vector of an arbitrary

point on cross-section at S, ry(S) may be defined as
r,(5,8,,8;) = ¢O(S)+géiti,o(5), Selo,L]cR,  (&.&)eR (3.52)

or with substituting Equation 3.3 into Equation 3.5a
ro(3,§2,§3)=<P0(S)+g§iAo(S)Ei(S) (3.5b)

where &, and &; are the co-ordinates of the arbitrary point within a cross-section at S
with respect to the its centroid (Figure 3.1). It should be emphasized that cross-
section are assumed arbitrary and constant along the line of centroids. Thus initial
position vector of centroids @y(S) and the orthogonal transformation Ae(S) at
Se[0,L] completely define the initial configuration of the beam S—Cy=(qo,
Ag)eR’xSO(3).

Similarly, deformed (current) configuration of the beam is defined by family of
cross-sections connected through deformed beam centroid axis given by a space
curve S— @(S)eR’ in three dimensional space R’ with inertial Cartesian (spatial)
frame, ¢; 1=1,2,3 (Figure 3.1). Cross-sections in current configuration is described

by orthonormal traid of unit vectors t;(S) i=1,2,3 satisfying

t(S) 4(S)=8;;  1j=1,2,3 (3.6a)
| t(S)] |=1 i=1,2,3 (3.6b)
t1(S)= t3(S)X t2(S) (3.6¢)

Unit vector t;(S) is normal to the cross-section but not tangent to the line of
centroids due to shear deformation. Unit vectors t,(S) and t3(S) are still directed
along the principle axes of inertia of the cross-section at S. Although material inertial
frame E; 1=1,2,3 is chosen to coincide with spatial inertial frame e; i=1,2,3 in Figure

3.1 for clarity they do not necessarily coincide. Since unit vectors tip 1=1,2,3 and t;
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j=1,2,3 form orthonormal frames they could be related with an orthogonal
transformation A(S)eSO(3) such that
ti(S) =A(S)- tio(S) 1=1,2,3 (3.7)
where A(S) is the two-point orthogonal tensor defined as
AS)=ti(S)® tio(S)= Ajie;®E;  1,)=1,2,3 (3.8)
with A;j; being the co-ordinate representation in the inertial frames of the reference
and current configurations. As mentioned above, matrix representation of A(S)

satisfies det(A(S))=1 and A(S)A" (S)=I with I being the 3x3 identity matrix.

If Bernoulli hypothesis of plane cross sections remaining planar after deformation
and retaining their shapes is assumed to hold the position vector of an arbitrary point

on cross-section at S, r(S) may be given as
3
r(S,8,,8;) = Q(S)+Zéiti(s)9 SG[OsL]C R, (€,.8;)eR (3.9a)
i=2

where @(S) is position vectors of centroids and t; i=1,2,3 are the unit vectors of body
attached frame in current configuration (Figure 3.1). Substituting Equation 3.7 into

Equation 3.9a yields

r(S,&,,8;5) =0(S)+ z 2;iA(S)ti,o o) (3.9b)

Thus current configuration of the beam at Se[0,L] is fully described by position
vector of centroids @(S) and orthogonal transformation A(S): S—>C=(o,
A)eR*xSO(3).

3.3 Derivatives of the Moving Frame

Since body attached frame t(S) i=1,2,3 changes its orientation with deformation
of the beam it is also referred to as moving frame or moving basis. In order to derive
the stress-strain relation one needs to calculate the derivatives of the moving basis
(Equation 3.7) with respect to the (undeformed) arc-length parameter S; i.e.

dt;(S) _ dA(S) dt;, (S)
ds ~ ds

t,,(S)+ A(S)- 1=1,2,3 (3.10)
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Taking the derivative of Equation 3.3 and substituting into Equation 3.10 together
with Equation 3.3 and Equation 3.7 (by employing the property of A™(S)=A"(S))

one obtains

dt:l;S) - (2)+AG) 2,(5)-AT(O) 4,9 = TOS)-,(5) 123 (.11
where
_dA®) v
QE) == A©) (3.12a)
and
dA,(S)

Q,(S)= ‘A, (S) (3.12b)

are the skew-symmetric tensors; ie. QS)+Q"'(S)=0, Q,(S)+2,(S)=0.

Substituting Equation 3.8 and its derivative relative to arc-length parameter SeR into

Equation 3.12a yields
dAji dAji ..
QS)=| ¢, ®F, -(Ak,l-Ek®el)=d—S’Ak’1-ej®el ijkl=123  (3.13)

Similarly, substituting Equation 3.4 and its derivative into Equation 3.12b with

Equation 3.8, one finds

da,.
A(S)-Q(S).AT(S)= (Aj’i ‘e ®Ei)-[%Ao;m,’1Ek ®En].( »E, ®eq)
dA (3.14)
) [A”i o5 Anidng €, ® qu i, jo koL, p.g =1,2.3

Thus Q(S) is spatial tensor for each SeR and its components may be given
relative to the moving frame t;(S) i=1,2,3 as
Q(S) = Q, t,(s)®t,(S) ij=1,2,3 (3.15)
with
Q.=0 i=j ad Q6 =-Q, @ i#]
Matrix representation of Equation 3.15 is more convenient and given as

0 -0, o,
Q) =| o, 0 -0 (3.16)
-0, O 0
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If one introduces the vectorS - o(S) = o, (S)t,(S) 1=12,3, vector &(S) and
skew-symmetric tensor Q(S) satisfy
Q(S)-&(S)=0 (3.17)
Vector @(S) is called the axial vector of the skew-symmetric tensor (S). The

derivatives of moving frame (Equation 3.11) may be recast into another expression
with axial vector given in Equation 3.17 as

% = a(S)x t,(S) i=1,2,3 (3.18)

It should be noted that although axial vector ®(S) is parametized by reference
arc-length S it is a spatial vector (Equation 3.17 and Equation 3.18). Alternatively
axial vector ®(S) may be expressed relative to tip 1=1,2,3 or E; j=1,2,3 by
employing Equation 3.10; i.e. material form of axial vector such that

K(©S)=A"(S)- o(S) (3.19)

The axial vector K(S) appears in the material form of internal power expression

and its derivation presented in derived in section 3.4.

Note: Property of
(AY'=A"=(A, e, ®E,) =A_E, ®e, i,j=123 (3.20)

.]91 J

is used in above equations.

3.4 The Linear and Angular Momentum

In case of motion, configuration of the beam is not only parametized by reference

arc-length Se[0,L] also with time teR"; that is
3
t_)rt(s’gza&m;t):(P(Sat)"'zgiti(sat) (3.21a)
i=2
or with Equation 3.9b

t=>1(5,8,,8:3) =S, 1) + ZiiA(S,t) £, (S) (3.21b)
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Before introducing the linear and angular momentum vectors associated with the
motion (Equation 3.21) material time derivative of the moving frame t;(S,t) 1=1,2,3

needs to be calculated; that is

£,(S,0 = (AGS,1)-AT(S, 1) ,(S,0) = W(S,0)-t,(S,1)  i=12,3 (3.22)
where W(S,t) is the spin of the moving frame and it is a spatial skew symmetric
tensor; 1.e. W(S,t)=- W' (S,t). The associated axial vector w(S,¢) is the vorticity

of the moving frame t;(S,t) i=1,2,3 and satisfies the relation W(S,¢)-w(S,#)=0. In

Equation 3.22 and in the foregoing superposed dot ( ) denotes the material time

derivative.

In terms of vorticity vector Equation 3.22 may be written as
t.(S,0)=w(S,)xt (S,5) i=123 (3.23)

Taking the material time derivative of Equation 3.21a yields
(5,200 800) = G(S.0) + Zét (8.0) (3.240)
Substituting Equation 3.23 into Equation 3.24a one obtains
(5,800 £00) = O(S.0) 4 W(s, )% (2 it (S,t)j (3.240)
i=2

If kinematic assumption given in Equation 3.21a is used in Equation 3.24b one

has
F(S,8,5,85:0) = O(S,0) + W(s,0) x (1, (S,2) — 9(S, 1)) (3.24¢)

Linear momentum per unit of reference arc-length Se[0,L] of an arbitrary cross-

section A.eR? in current configuration is defined as

L, = [ 05,6558 )k (S,€2,85)dE,dE, (3.25)

A

where p(S,§,8,)is the density in reference configuration. Substituting Equation

3.24c into Equation 3.25a it is obtained

L = [Ip(S,ﬁz,a)d&zdés}'p(S,r)+w(s,r)x( | (n(S,t)—cp(S,z))dazd&s] (3.25b)
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Since @(S,t) defines the centroid of the cross section second term in Equation

3.25b equals to zero. Then Linear momentum per unit of reference arc-length

Se[0,L] is given as
L= U P(S582585 )dﬁzdﬁg}b(S,t) = A, ¢(5,1) (3.26)

Similarly, Linear momentum per unit of reference arc-length Se[0,L] with respect
to the centroid of cross-section A.eR” in current configuration is defined as

H, =_'- p(S,§2,§3)(rt(S,t)—(p(S,t))xi‘t(S,§2,§3)d§2d§3 (3.27a)

A

Substituting Equation 3.24¢ into Equation 3.27a yields

H, = Up(S,ﬁz,&s)(rt(S,t)—w(s,r))dézdﬁ3]x¢<s,r>+
! (3.27b)

[ 005,82,83)(r(8.0) = 0(S,0))x [W(s,0) x (k. (5.1) - 95, 1)) 8 .04

A

Since @(S,t) defines the centroid of cross-section Equation 3.27b may be written

as
H, = [p(S,85,8)(r, (5,0 = 0(S,0)x [W(s, ) x (r,(5,0) — 0(S,1))lE 08, (3.27¢)
A
By employing the relation from tensor calculus
ax(bxa)= (ﬂa”ﬁ—a@a)-b

where 1 is the identity dyadic matrix representation of which is a 3x3 identity matrix,

angular momentum per unit of reference arc-length S is found as
2 A
H, = [ ) e —of i-0 -0 @ r, - cp))] W(s,0) =1, - W(s,1) (3.28)

where Ip is the inertia tensor with respect to the moving frame t;(S,t) i=1,2,3 and has

the explicit form of

1,,=[ » Ipéf;iéjdA]-(Siﬂji-ti®tj) (3.29)
i=l j=1 A

It is clear from Equation 3.29 that components of inertia tensor I, relative to the

moving frame do not depend on time.
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Since unit vectors t; and t3 of moving frame are directed along the principle axes

of inertia of the cross-section Ip takes the familiar form of

I,=J-¢,®t, +1,-t,8t,+7,-t, ¢, (3.30)
where
J=1L+]1;5
I, = Ié;p(saézsé)'d‘%z -d&,
A

I = [£1p(S,E,,8,)- d&, - dé,

J=I,+1; denotes the polar moment of inertia of the cross-section.

Taking the material time derivative of Equation 3.28, noting that w(S,7) = w,t,and

using the Equation 3.23 one obtains

H =1, w+wxH, (3.31)

Equation 3.31 is the identical expression found in rigid body mechanics.

3.5 Equation of Motion

In this section equation of motion for the nonlinear beam model is derived from
the material form of linear and angular momentum principles of the 3 dimensional
theory, which may be expressed as

DIVP + pB = pi(S,t) (3.32a)
and
F-P"=P-F' (3.32b)
where P is the first Piola-Kirchoff stress tensor, B is the body force vector, and F is
the deformation gradient. Explicit form of the first Piola-Kirchoff stress tensor P and

deformation gradient F are given as, respectively
P=T,(5,¢,,8)QE, +T,(5,5,,8,) QE, + T;(5,8,,8,) O E, (3.33)

and

F:(Z—(g+(,ox(rt—(p)j®E1+t2®E2+t3®E3 (3.34)
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where T, (S,&,,5,) = P(S,8,,8;)-E; 1=1,2,3 are the stress vectors, ® is the

curvature of the beam given in Equation 3.17.
If divergence of first Piola-Kirchoff stress tensor P is calculated as

0 0 aE)_P:<9T1+aT2 oT,

DIVP =| —E,+—E, + —E, +
oS oS oS oS oS oS

(3.35)

,and substituted into linear momentum equation (Equation 3.32a), and resultant

equation is integrated over cross-section one obtains

oT, oT, 6T
{gd‘izdgs = __[( as pB)d§2d§3 +Ipr(S 1)d ,dS , (3.36)

Applying the divergence theorem to the second integral in Equation 3.36 yields
J‘_d‘i dg, = I(Tzvz +T3v3)d1“ +Ide§2d‘i3 +J.pi:(sat)d§2d§3 (3.37)
A A

where v=V,E, +V,E, is the vector filed normal to the lateral contour d8I" of the

beam.

Defining the resultant contact force per unit of the reference arc-length as

EE j P(S,E,,E,)- E,dE,d8, = j —dzzdés (3.38)
and applied load as
qS,t) = ;(Tzvz + Ty, Jdr +f PBdE ,dg (3.39)
r A
linear momentum balance equation is found as, with Equation 3.26
% +q(S,t)=L, = A_§(S,1) (3.40)

The resultant torque per unit of reference arc-length over the cross-section is

defined as

m(S,0) = [ (r, — @) x T5(8,§5,,)dE, 8, (3.41)

Taking derivative of Equation 3.41 relative to reference arc-length S yields

om_ [ o
ERRAES

Substituting Equation 3.36 into Equation 3.42 and making the use of the definition

ledgzdgs _I(Z_(gxnjdgzdgs +J.(rt _(P)x%dgzdgs (3.42)

of resultant force, one finds
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om al‘ a(P T2 6T
_=£(£xTJd§2d§3 %@, s j(r—cp)x( et ]dﬁzdég

(3.43)
[ (r = 9)x (PB)E 8 + [ (r, — 0)x (pF(S, )G €,

If Equation 3.31 is used in Equation 3.43 and divergence theorem is applied to the

second integral, one obtains

6—m=Ht+I({Z—(§+mx(r —(p)}xT +6_ T, + xTJdé d¢ ,

oS L 0%, (3.44)
- a—g x f—m(S,1)
where m(S,t) is the applied moment and given as
(s, t) = jr —¢)x(T,v, + T,v )dr+j r, - @)x (PB)E,dE, (3.45)
From Equation 3.9a unit vectors t, and t3 can be expressed as
t, _%e k=23 (3.46)

23

Then deformation gradient F can be recast into alternative expression with

Equation 3.46

op op 8(p
F=|—+ — QE, +—®E, QE,
(as o ‘”j e, U, (347)

Substituting Equation 3.47 and Equation 3.33 into angular momentum balance

equation (Equation 3.32b) it is obtained

2, [ Or, or 150) _
;[ag ®T, - T®6€J (6S+cox(rt (p)j@T

0
-T Q<)(6—fsl3+o)x(rt —(p))=

(3.48)

By scalar-multiplying of Equation 3.48 with any nonzero vector e#0, one has
or, or o0p
T -e)-T,| —-e||l+| +aox(r —-¢) [T - e

_r (%@ _o)|-e|=
TIL(aS+co><(rt (p)) ej 0

Taking the note of vector identity
Ax(BxC)=B(A-C)-C(A-B) (3.50)

(3.49)
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one obtains

3 X %X X 8_([) X — X =
jzz(e (8?,]- Tj]]+e ((GS-‘_Q (r, (p)) le 0 (3.51)

Equation 3.51 holds for any nonzero vector e#0 thus
3. ( or, oQ j
—xT, |+| —=+ox(,—-¢) |[xT, =0 3.52
By substituting Equation 3.52 into Equation 3.44 angular momentum balance

equation is obtained as

g_?+g_§xf+ﬁ(s,t)=ﬁt=IP-v'v+wat (3.53)

Linear and angular momentum balance equations (Equation 3.40 and Equation
3.53, respectively), although parameterized by the reference arc-length, take values
on the current configuration; i.e. their components are expressed in the spatial basis,
either e; or t; i=1,2,3. Alternatively their material forms may be found by defining the

material vectors
N=A"-f=A"-(ft,)=f,(A"-t)=ft, =123 (3.54a)
M=A""m=A"-(mt,)=m, (A" -t;,) =m;t,, =123 (3.54b)
From Equation 3.54a and 3.54b it is clear that “components of the force and

moment vectors f and m relative to the moving frame t; i=1,2,3 equal those of N and

M relative to the reference frame t; i=1,2,3” (Simo, 1985).

Material forms of the linear and angular momentum balance equations are
obtained by substituting Equation 3.54a into Equation 3.40 and Equation 3.54b into
Equation 3.53.

3.6 Internal Power and Strain Measures

In this section, strain measures are obtained from the internal power expression of

the 3-dimensional theory, which is given as

q= [(P:F)sde,de, (3.55)

AxS
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where P is the first Piola-Kirchoff stress tensor (Equation 3.33) and Fis the material
time derivative of the deformation gradient (Equation 3.34). In Equation 3.55
column (:) denotes the double contraction of the tensors defined as
(a®b):(c®d)=(a-c)(b-d) (3.56)
Taking the material time derivative of deformation gradient and making the use of

Equation 3.23 one finds

F=(Z—§+obx(rt — @)+ ax(wx(r, —(P)))®E1 +Z3:(WXti)®Ei (3.57)

i=2

From Equation 3.33 and Equation 3.57, noting Equation 3.56, P: F is obtained as

P:F:T] .Z_(g_}_T] .[o)x{wx(rt —(I)}:|—|—|:(]’t —(p)XT3]-(b+iw-(ti XTi) (358)

i=2
where the following vector manipulation is used
a-(bxe)=(a-b)c=c(b-a)=(cxa)-b (3.59)
The last term in Equation 3.58 can be written in alternative form by using

Equation 3.46 as

iw.(tixTi):w.[ig_ngi] (3.60)

By using angular momentum balance condition (Equation 3.52) and vector

manipulation given in Equation 3.59, one finds
3 aq)
D ow-(t;xT,)=-T, - w><£+w><{w><(rt—q>)} (3.61)
i=2

Another form of Equation 3.60 may be obtained by making the use of the identity,
noting the Equation 3.50

ox{wx(r,~p)}-wx{wx(r, - 9)} =

WwWRw-0®w] (1, — ) =[oxw]x(, —p) (3.62)

as
iw.(ti XTi)=_T1 .(wxg—(nga)x{wx(rt —(p)}—[o)xw]x(rt —(p)j (3.63)

Substituting Equation 3.63 into Equation 3.58 and integrating yields
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1= [ (P:Fsag,de, :J{J.Tldézd%]{%—wxg—?}om
AxS sL4 (3.64)

+J.“(rt -(/))-T1d§2d§3}[a')—wxa)]ds

Using the definitions for resultant force and moment, reduced internal power is

obtained as

. v v
= '[ (P:F)de§2d§3 :J.(f‘y+m~mjds (3.65)
AxS N
where
V. 00 op
=— — |- X —
Y at(asj NPT (3.662)

is the time rate of change of the spatial strain measure corresponding to the resultant

force f(S,t), and

m:a(c'o)—wxo') (3.66b)

is the time rate of change of the spatial strain measure corresponding to the resultant
moment m(S,t).
Material time derivative of any moving generic vector V(t) is given by
DV _ oV

o —E+wa VeR’ (3.67)

ov . : .
where r is the rate due to change in vector length and wxV is the rate due to

change in vector direction imposed by the spin of the moving frame. Thus while
calculating the time rate of strain measures, effect of the spin of the moving frame t;
1=1,2,3 should be subtracted from the material time derivatives. This explains the
using of symbol (V) instead of superposed dot (") which stands for the material time

derivative.

Spatial strain measure, y accounts for axial and shear deformation of the beam as

can be seen from its explicit form:

_% _
Y=738 t,(S) (3.68)

and o is the bending strain.
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Material form of the reduced internal power equation my be obtained by

introducing the following vectors, noting the Equation 3.7
o o9

FS,t)=A" - y=A"-—+ AT t, =A"T - —+t 3.69a

S, 1) Y 23 1 as W ( )

and
KGS,t)=A"-® (3.69b)
From Equation 3.66a and Equation 3.69a, by making the use of Equation 3.22 and

axial vector definition of spin tensor:

v T,
oS oS oS oS

and similarly from Equation 3.66b and Equation 69b, by noting W(t,s) w(t,s) =0

. \Y
=>I=A-y (3.70a)

v T,
0= 0= W.o=A 2N @) O(K)
oS oS oS oS

Substituting Equations 3.70a and 3.70b into Equation 3.65 and noting Equation

. v
>K=A-® (3.70b)

3.54 and the orthogonally of A(t,s), one finds the material form of the reduced

internal power as:

q= [ (P:F)sdg,dg, = [(N-F+M-K}s 3.71)

AxS S
In finite element implementation internal energy (virtual work) is preferred over

internal power expression and it may be given as, for material description
m=[(N-T+M-KX}S (3.722)
N

and for spatial description

H=J.(f-y+m-(o)ds (3.72b)

3.7 Parametization of Finite Rotation

3.7.1 Total Rotation Vector

Consider 3-D beam in Figure 3.1 undergoing large displacements and finite 3-D
rotations. tig i=123 is the local Cartesian frame located at the centroid of the cross-

section of the beam in the reference configuration. Similarly t; =123 is the local
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Cartesian frame positioned at the centroid of the beam on the current configuration,
©(S). Relation between tig i-123 and t; =123 can be represented by an orthogonal
tensor AeSO(3) as
t,=A-t, (3.73)
As mentioned above SO(3) stands for the Special Orthogonal (Lie) group. Thus A is
a two-point tensor and can be defined as
A=t ®t,,=A e, QF, (3.74)
where Aj; is the coordinate representation in the inertial frames of the reference and
current configurations with E; and e; being the corresponding unit vectors. Tensor A

rotates the unit vector t;y in the reference configuration to the unit vector t; in current

configuration.

The unit vectors of inertial frames of reference and current configurations are
chosen to coincide (Figure 3.1) but different symbols are used for clarity. Thus one
has

e,=1'E, =l=¢ ®EF, (3.75)

where 1 is the identity dyadic matrix representation of which is 3x3 identity matrix.
Euler’s Theorem for the finite rotation of rigid body states that there is vector 0
which is not affected by the rotation such that

0=A-9=1-9 (3.76)
where 0 is the spatial vector field corresponding to the material vector field 9. 0 is
called fotal rotation vector. Hence inertial frames of reference and current
configurations are chosen to coincide, the components of 8 and 9 are equal; i.e.

0-e,=9-E, =60, (3.77)
where dot (-) denotes the scalar vector product. Therefore, 6 and 8§ are used

interchangeable whenever there is not danger of confusion.

Two-point tensor Acan also be represented with Rodrigues formula (Goldstein,

1980) such that
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A =cos(0)- [i -n® n]+ sin(e)- [n X i]+ [n ® n]

sin(0) sm(G) (3.78)

A =cos(0)-T+—— ®+ -0®6

where 8 =+/0-0 =,/07 + 05 + 03 is the magnitude of the rotation vector, n = % is

a unit vector along the rotation axis and ® 1is the skew-symmetric tensor
corresponding to the axial vector 0 defined as ®-6=0.
Using vector identity
©-(@-b)=lo®0-0’i[b ber’ (3.79)
leads to the closed form of the Rodrigues formula given by exponential mapping

sin(e) . 1 cos(0)
0 0?

A = exp(®) = cos()- I + 00 (3.80)

where exp(@) = Z(e ' ] .
n=] n.

If SW(S) is the superposed infitesimal rotation onto the moving frame defined by

A(S), then admissible variation 0A of orthogonal tensor A, for €>0, may be

calculated by using exponential mapping as:
5A=di(exp(e SW)-A)=W- A (3.81)
€

Differentiating orthogonality condition of A;i.e. AT-A=A-A"=I, one finds that
SA-AT+A-SAT = AT -SA+AT-A=0 (3.82a)
SW+SW' =3P +3¥" =0 (3.82b)
Hence dW is a skew-symmetric tensor and spatial object components of which are
given in spatial inertial frame as
SW =(5A,e, ®E,)- (A E, ®e)=3W,e, ®e¢, ijkl1=123 (3.83)

It should be pointed out that infitesimal rotations are skew-symmetric
transformation (see Goldstein, 1980). One recovers the orthogonal transformation by
exponenting of skew-symmetric matrix (infititesimal rotation).
NOTE: Since numerical implementation of finite element formulation is considered

in this study, “matrix” and “tensor” are used interchangeable whenever there is no

danger of confusion.
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Alternatively, admissible variation dA can be constructed by translating W into

material inertial frame such as
S¥=A"-0W-A (3.84)
Substituting Equation 3.84 into Equation 3.81 yields

SA = % exp(A-c 5% AT)-A] = A-5w (3.85)

where property of the exponential mapping
exp(A- e d¥Y- AT)= A- exp(e 8‘1’)- A" (3.86)

is employed.

From Equation 3.82b it is can be seen that 0¥ is also skew-symmetric tensor and
material object; i.e.
3 =(A,E; ®e¢,)-(5A, e, ®F,)=3¥,E, ®F, i,j,k,1=1,2,3 (3.87)
From Equation 3.83 it is clear that W is an element of tangent space of SO(3) at
point A (T, (SO(3)), and similarly, from Equation 3.87, 0¥ is an element of tangent
space of SO(3) at the identity (T, (SO(3)) . Geometric interpretation of 0¥ and dW is

shown in Figure 3.3.

Since 0¥ and OW are skew-symmetric tensors they can be represented by axial
vectors defined by d¥-oy =0 and oW -ow = 0, respectively. The relation of two
axial vectors follows from the Equation 3.84 as

W=AT-W-A = dSw=A"8y = JSy=A-dw (3.88)
Admissible variation A of Acan also be constructed by means of material rotation
vector 9 and its variation 69 such that

exp(®@+ € 5®) = exp(®)- exp(e 5¥) (3.89)
where @ is the skew-symmetric tensor defined by relation . Geometric interpretation
of Equation 3.89 is given in Figure 3.4. By using the observation given in Goldstein,
(1980); i.c. [exp(®)]" = exp(- ®), Equation 3.89 may be written as

exp(e %) = exp(- ®)- exp(®+ € 5D) (3.90)

Taking the derivative with respect to € and setting €=0; i.e.
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O (exple W) _, = é\i(exp(. ®)- exp(@+ € 50)) (3.91)

de e
one finds
Sy =T"(9)-59 (3.92)
where skew-symmetric tensor T" is given in explicit form as

sind | 1—cos9 9 -sind

T'(9) = By D+ 3 I®39 (3.93)
By using the same procedure; i.e.
exp(e 6W) = exp(©+ € 50)- exp(- ©) 0-0=0 (3.94a)

O (exple sW))_, = -2 (exp(©+ € 50)exp(- ©)) (3.94b)
0e € 0e

e=0

one finds the relation between spatial rotation vector (0) variation 60 and superposed
rotation OW as

ow =T(0)- 50 (3.95)
where T(0) is the skew-symmetric tensor given explicitly in Equation 3.93.

Properties of T(0) can be found in Ibrahimbegovic, (1995) .

If Equation 3.92 and 3.95 are substituted into Equation 3.88, one gets
O=T" A-T"'-T".69=1-69 (3.96)
where relations T'-A=A-T" and T" - T" = A" are used (Ibrahimbegovic, 1995).

Equation 3.96 confirms the relation given in Equation 3.76

By employing the similar calculation procedure given above, the following results

are also obtained:
k=T"(0) 9 (3.97a)
®=T(0)-0 (3.97b)
where k and ® are the material and spatial bending measures (see Equations 3.72a

and 3.72b.

The parameterization of finite rotation given above can handle the any 3-D

rotation as long as magnitude of rotation is smaller that 2I1. In case where rotation is
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greater than 2I1, parameterization will be ill defined; i.e. non-unique. This deficiency
can be overcome by restricting the size of rotation being smaller that 2IT and using

the incremental rotation vector for constructing admissible variation dA. This is

considered in the next section.

3.7.2 Incremental Rotation Vector

As mentioned in previous section total rotation vector parameterization of finite
rotation cannot handle large rotations; i.e. cases encountered in dynamic problems. If
one partitions the configuration space into a number of time steps: 0<t;<t;<

..<tp....<T and uses the incremental procedure, the deficiency can be overcome. If

the value of rotation at a typical time t, is denoted as

Aa=A(t) (3.98)

TE0(3)

S003)

Figure 3.2 Finite rotation decomposition: Infitesimal rotation
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the rotation update at time t,; can be carried out as
Ay =AO)-A =A-AG,,) (3.99)
where Opn+1 is the spatial incremental rotation vector and 9, is the its material

counterpart. K(OHH) =exp(0,,,) is the exponential mapping given by Equation 3.80.

n+l

Since Ay is an orthogonal tensor; i.e. Al = A, one obtains the relations
A®,.)=A,-AS,,)-A, (3.100a)
AB,.)=A-A®,,)-A, (3.100b)

By taking into that skew-symmetric tensor shares the same eigenvectors with

orthogonal tensor obtained by exponentiating it, one finds from Equations 3.100a and
3.100b

0,,=A,-@

AT (3.101a)

Figure 3.3 Finite rotation decomposition: Rotation vector variation
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@, =A"-0_ A (3.101b)

n

-b=0__,, xb and (1))

where @, . -b=9,, xb VbeR’.Equations 3.101a

n+l n+l

and 3.101b lead to the relation between spatial and material incremental rotation

vectors such that
0., =A, 9., (3.102a)
9n+1 = AT e

n+l

(3.102b)

n+l

The graphical representation of the relation between 8 ,, and 0,41 is given in

Figure 3.3. It should be noted that 0,+1 belongs to the tangent space of SO(3) at point
Ay [TA (SO(3)] and 9 ,, belongs to the tangent space of SO(3) at identity

[TI (SO(3)]. In sharp contrast with fotal rotation vector given in Equation 3.76, the

spatial and material representation of the incremental rotation vector is not identical.

When incremental rotation vector is used for parameterization of finite rotation,
final values of the state variables are calculated by an iterative procedure carried over

each increment.

The iterative update of finite rotation is more involved than total rotation vector
procedure because one not only chooses between spatial and material representation
but also between different iterative rotation parameters. Let superscript (i) denote the

iteration counter. Consider the rotation update:

A=A (€dwi,) Al (3.103)

n+1 n+1

i
n+1

where dw' , is the infitesimal rotation superposed on existing rotation A! , (Figure
3.4). The same value of total rotation A*', can be obtained by making use of spatial

incremental rotation vector 0’ ,, and its variation 60, ,, as
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Figure 3.4 Incremental rotation vector in spatial and material representation

Figure 3.5 Iterative updates of the rotation

31
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Ai+1

n+l

=A@, +€30' )-A, (3.104)

From Equations 3.103, 3.104 and spatial incremental rotation vector definition in

3.100b one obtains

A€ dw' ) =A@, + e 50

n+1 n+1 n+1

) AT (0 (3.105)
which by following the same procedure given in previous section; i.e.
d (~ i d (~ i i N i

(A(G 8W n+1 )1 = d (A(en+1 +€ 80n+1 ) : AT (en+l )1 (3 106)

de o €

e=0
leads to the admissible variation in terms of spatial incremental rotation vector:

Sw'

n+1

=T(0',)- 56 (3.107)

n+l n+l

Similarly, the rotation update can be carried out with material rotation parameters as

A(e dy,,) = AT(9),)- A, +€39,,) (3.108)

n+1

from where one obtains the relation
Sy, =T (9,,) 89! (3.109)

n+l

In Equation 3.109, Sy! , is the material form of the infitesimal rotation w'_,. The

n+l °

graphic illustration of iterative update procedure is presented in Figure 3.3.
3.8 Weak Form of Balance Equation

The potential energy of the beam is found in section 3.6 as
H=J'(N-F+M-K)dS (3110)
S

where N and M are energy conjugate stress resultants with corresponding strain
measures I and K, respectively. If the simplest constitutive equations are chosen,
one may obtain the stress resultants as
N=C, T (3.111a)
M=C,, K (3.111b)
where C, and C,, are the constitutive matrices with constant diagonal entries for
linear elastic beam given as
C,=diag([EA,GA,,GA3]) (3.112a)
Cm=diag([GJ,EI,,EI3]) (3.112b)
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Here, EA is the axial stiffness, GA, and GAj; denote shear stiffness, GJ is the
torsional stiffness, and EI, and EI;3 are principle bending stiffness relative to t; 9 and

t3 0 of the beam cross-section.

Explicit form of the strain measures are given in section 3.6 as
0
(S, 1), =AT(9)-6—‘§+ t,, (3.113a)

K(S,t)= AT(0)- A'(0) + Q,(S) (3.113b)

where prime (‘) denotes the derivative with respect to the arc-length parameter S.

From Equation (3..112) and Equation (3.113), it is clear that potential energy is
the functional of dependent variables @ and 0. Hence the virtual work equations can
be obtained by the directional derivative of the potential energy in the direction of

virtual displacement 8¢ and rotation vectors 60 such that

51(p,6)- (5¢,50) = é[ﬂ((p +3,0+30)]

=[(r-N+sk-M)  (3.114)

e=0

In Equation (3.114) dI'" corresponding to the axial and shear strains is computed as

or =——[(AT+e5A")-(p+ e 5<P)—t1,01 = A" -3¢ +3A" @ (3.115)

a4
de =0
By making use the results given in section 3.7; i.e. SAT =3%" - A" and ¥ -5y =0
one obtains

ST = AT 50"+ AT - ¢’ xSy (3.116)

Similarly, virtual bending strain K is calculated as

3K = di[(AT+ edA")-(A'+edA)-Q,] =ATAT+SAT-AT (3.117)
(S e=0
From Equation (3.117) one finds
SK=38"'+K -3¥-38¥-K (3.118)

Since 0K is a skew-symmetric tensor, Equation (3.118) can be written in terms of

axial vector dK-0k=0 and 0¥ -dy =0 as
Ok =dy' + k- dy (3.119)
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By making use of the Equation (3.68) spatial form of virtual strains can be obtained
as
L,(y)=030"+ @' xdw (3.120)
And
L;(®) =00+ ®x ow (3.121)

Alternative form of the spatial bending strain measure can be recovered by making

use of Equation (3.9) as
L; () =ow’ (3.122)

Symbol L, stands for the Lie derivative and is explained later.

Finally by using Equation (3.114) through Equation (3.122) virtual work

equations in terms of spatial objects can be expressed as

511(¢.0)- (59.50) == [ (L;(y)- n + Ls(0)-mls =0 (3.123)

S
Virtual work equation given in Equation (3.123) is highly nonlinear and one needs
iterative procedure to obtain its solution. If Newton procedure is employed for that
purpose one needs consistent linearization to ensure objectivity and to guarantee
quadratic convergence rate. This is automatically enforced with Lie derivative
formularization where the spatial objects are first pulled-back to the reference
configuration, and the derivative is then pushed-forward to the current
configuration; 1.e.
Lo )= AL A0 ()] G124
Then consistent linerization formulation for Virtual work can be obtained as
Lo, )=ort,, + L, (51 ,,) (3.125)
where subscript (n+1) is used to point out that proposed formulation is employed
only spatial incremental rotation vector parameterization scheme, and L(e) denotes

the linear part of the functional.

By introducing the spatial incremental rotation vector given in Equation (3.26a),

the last term in Equation (3.125) can be simplified to obtain
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nel.e )] (3.126)

Lbm,)=(x,.,0..)-A,) d [AT Rle©,0-(0

and using the orthogonality condition A, - A} =1

L,(m,, )= ( n+1(9n+1) d [A,,He nﬂ,e)-(-nﬂ,e)] (3.127)

The linearized form of the virtual work equations can be written as

L(SH((p‘nH s e‘n+l ) (S(P:Hl 769;+1 )) '[ (LJ (Yin+1 ) n+1 + L ( n+1 ) mn+1 S+

S

J'(LJ(YLH)'LA( n+l)+L ( n+1) A(miwl) s+ (3.128)

S

Je b)) mi + L, (L o)) mi, s

S
In Equation (3.128) above, n',, and m', are spatial representation of material
stress resultants N and M, respectively and given as

n+l - (A1n+1 C A(])T) Yin+l (3129)

n+l1

m', =(Al,,-C,-AY) o (3.130)

n+1 n+1
By applying the Lie derivative formulation given in Equation (3.124) to Equations
(3.129) and (3.130), one obtains

LA( n+1) ( :1+1 C AS}AT)'LA('YLH) (3-131)
Ly(m)= (A0 - € ALY)- L, (0.) (3.132)

where the following should be noted
Ly (Nt €0 AT )= A LA A o ADTAD, ) AT =0 (3133

When additive update procedure is used, one may write
Prire =@, + 0,0+ €AQ,, (3.134a)
Ol

n+l,e

=0/ +eA0 (3.134b)
where rotation parameters belong to the tangent space lT A, (SO(3)] (Figure 5.7). By

making use the Lie derivative formulation given in Equation (3.123), virtual (spatial)

strain measures and their linearized forms are found as:
Ly(v5) = (00"),., + (@), x 3w, (3.135)

) (0‘)/1+1) 660/1+1 + 0‘)n+1 X 8vvn+1 (3136)
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Ly(v5) = (A¢"),,, +(9),.. x Aw,, (3.137)

A(O‘)n+1) Ao, +0‘)n+leWn+1 (3.138)

n+l

LA (L8 (Yiw—l )) = _Awiﬁ-l x ((6(p’)i1+1 + ((P,)i'l-H X 6an+1 ) (3 139)
+ (A(P')iu—l = Swinl + ((P )n+l X Aéwnﬂ .

LA (L.S (mil+l )) AW n+1 X lSO‘)nH + (Dn+1 x SW
+Ado,

n+l

(3.140)
+A®, xdW!  + o xASW! |

n+l

It should be noted that all the rotation parameters in Equations 3.135 to 3.140 is

expressed in terms of incremental rotation vector®’  , its variations 80’ ,, and its
incremental values AQ’ _, i.e.
5Wn+l = T(O ) 80n+1 (3.107)
Awr1+l = T(6’+1) Aen+1 (3.141)
ASW, —(T(e:l) 5., ) x(T(®’,)-30,,)
(3.142)
+— [T(e +1)] 8en+1
d om0
and
[T(e D] a=2@)-a0, (3.143)
where
z(a): [Cla_cz(e xa)+c ( n+l abn+l]®eln+l aX] (3 144)
+C5 [(eiﬁl Xa)l+( n+1 ®a)] .
Ocos0 - sind OsinO + 2cos0 - 2
) ) (3.145)
3sinO — 20 - OcosO 1—cosO 0 -sind
C3 = 65 C4 = 92 CS = 93

The explicit form of linearized virtual work equation presented in Appendix 1.



CHAPTER FOUR
SYSTEM EQUATION OF MOTION

4.1 Mechanical Model of the System

System considered in this study is illustrared in Figure 4.1. It consists of a motor,
a helical coupling and a Jeffcott rotor. System is supported with idendical self
aligning ball bearings. In order to callculate the system response in case of

misalignment its mechanical model is developed with the following assumptions:

a) Helical coupling is made up of rigid and flexible components. Rigid
components are the coupling ends where other machine parts such as rotor
and motor are attached to. Flexible component is helical part of the coupling
where streching and contraction take place. It is also assumed that helical part
is welded to the rigid ones, so that its ends follow the motion of rigid parts
(see Figure 4.2).

b) Stiffness of shafts connected to coupling and of bearings are much
greater than helical part, in foregoing called helical beam or simply beam,
then axes of motor and rotor may be assumed to be fixed in space. In other
words coupling rotates around the space fixed axes. For this reason motor and
rotor contribute to the mechanical model only with rotory inertias around
their axes.

¢) Misalignment values and their directions are supposed to be known.
Thus locations and directions of rotational axes of coupling are defined (see
below).

d) Misalignment values are measured at the point where coupling and
rotor are connected (see Figure 4.3).

e) Friction is ignored. However frictional forces and moments could be
easily integrated to the proposed scheme details of which are presented
subsequent sections.

f) Angular speed of motor is presumed to be known explicitly. Thus

motor rotation angle and its angular acceleration are also known.
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Motor

Figure 4.1 Misaligned motor-helical coupling-rotor system.
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Figure 4.2 Model of the helical coupling.

Mechanical model proposed with above assumptions is shown in Figure 4.3,

details of which are given as follows:

a) Opand O are points where motor and rotor, respectively, are attached
to the coupling.
b) o is the angular misalignment value which is measured between

aligned and misaligned coupling axes (i.e.n_,and n, respectively). Thus unit

vector of rotor axis in misaligned configuration (n, ) is related to the aligned

one (n ) as:
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n, =A(a)n,, (4.1)

where A(O) is the rotation tensor (see Equation (8)).
¢) n, is the unit vector along the motor axis.
d) & is the parallel misalignment which is defined as the vector from
0,,t00,,ie. 8=0,,0,.
e) I_and I are the rotary inertias of motor and rotor, respectively,

around their axes.

f) r, and r;, are the location vectors of centroid of boundary cross-
sections of beam in aligned configuration with respect to points O and
0, ,, respectively.

g) If we assume that misaligned configuration in Figure 4.3 represents
the initial configuration of the system (i.e. t=0), initial values of location

vectors with respect to the coordinate system, origin of which is placed to the

point O are given as
9,(0) =1, (4.2)
¢,(0)=L+06+r1,(0) (4.3)
where @_(t)1s the location vector of the beam cross-section at arc-length s
and time t. L is the coupling length in aligned configuration which is given as

L=[0,0,,|.

r,(0)1is the centroid of cross-section at initial configuration
with respect to point O, and it is related to r; as
r,(0)=Ala) 1, (4.4)
¢ is the coupling length and subscript /is used to refer to end of the beam or

boundary of the beam at rotor side.
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Initial Configuration

n;,

Undeformed Configuration «<--

Figure 4.3 Computational model of motor-helical coupling-rotor system. See text for details.

4.2 Kinetic and Potential Energy Expressions

Total kinetic energy of sytem in Figure 4.1 consists of kinetic energies of motor,
coupling and rotor. If one takes into account that kinetic energy of coupling is much
smaller than that of motor and rotor it can be ignored. Then total kinetic energy, by
noting the assumptions, can be written as

T= %Iméi +%1réf (4.5)

where I, and I; are the rotary inertias of motor and rotor, respectivelly. 6_ and Or

m

are the corresponding angular speeds. Since motor and rotor shafts are assumed to be

rigid, only helical beam contributes to the system potential energy, i.e.

H=%.([(y-n+co-m)ds (4.6)

From Equation 4.5 and 4.6 Lagrangian of the system is obtained as:

1. ., 1., 1%
L=T-]][=—-106>+-10>-—|(s-n+k-mMds 4.7
2 1n0 45107 =2 [ X (“.7)
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Since motor angular speed is stated explicitly, motor kinetic energy does not

contribute to the virtual work equation (i.e. 80  =0). Then Lagrangian may be

written as:

1., 1g
L=EIrGf—§j(a-n+k-m)ds (4.8)

4.3 Boundary Conditions and Constraint

Since helical beam (or flexible part of coupling) follows the motion of rigid parts
(as stated by assumptions) rotation vectors corresponding to boundary cross-sections

of helical beam may be written as (Figure 4.3)
eO(t) :em(t)nm (49)
0,(t)=0,(t)-n, (4.10)

where0,(t) and 0,(t) are the rotation vectors of boundary cross-sections. 0 _(t) and
0.(t) are the rotation angles of motor and rotor, respectively. n and n, are unit
vectors along the motor and rotor axes, respectively. Since n_ and n_ are assumed

to fixed in space, unit normal vectors of boundary cross-sections stay in the planes

perpendicularto n_ and n,.

Moreover misalignment values are assumed to be known then the location vectors
of boundary cross-sections are related to the corresponding rotation vectors as

(Figure 4.3)

P, () = A0, (1) - @, (1) (4.11)
¢, ()=L+8+r,(t) (4.12)

where r,(t) is given as
r,(t) = A(0,(1)-1,(0) (4.13)

Since motor speed Gm(t) is specified (as stated with assumption (f) in section

(3)), boundary conditions corresponding to s=0 (i.e. 0,(t) and ¢@,(t)) are also
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specified by Equations 4.9 and 4.11. Rotor speed is not known a priori. Thus

boundary conditions at s=/, (i.e. 0,(t)andg,(t)) can not be calculated from

Equation 4.10 and 4.12. However one can use the reaction forces and moments

together with constitutive equation in order to find another relation between 0, (t)

and ¢, (t) as follows:

Motion of Jefcott rotor is imposed by the reaction forces and moments formed at

the end of the beam (see Figure 4.4), i.e.
[r, () x (= F,(0)+ (=M, (t))]-n, = 1,8, (t) (4.14)

whereF, (t) and M, (t)are the reaction forces and moments, respectively, at s=/.
ér(t) is the angular acceleration of rotor. F,(t) and M,(t)are related to 0,(t) and
¢, (t) through constitutive equations as
F,(t) = A8, (1)-C-A(8,(1)-7(8,(1),9)) (4.15)
M, (t) = A0, (1))-D-A"(8, (1) (6, (1),0)(t)) (4.16)

where y(e)is axial and shear strain measures energy conjugate to F,(t), and o(e) is
the bending strain measures energy conjugate to M,(t). C and D are the

corresponding constitutive matrices. Explicit form ofy(e),mw(e), C and D are

presented in Section 2. As stated above, prime denotes the derivative with respect to

arc-length s.

If one uses the Equations 4.14 to 4.16 to obtain relation between 0,(t) and ¢,(t),

it finds highly nonlinear equation in the form

3(6, (1),0/,(t), 0, (1),9, (1) + 1,6, ()= 0 (4.17)

where explicit form of S(O) is given in Appendix I. Equation 4.10 and 4.12 can be
substituted into Equation 4.17 to find a boundary condition which depends on single
variable. However obtained boundary condition will be difficult to handle. If we note

that any boundary condition may also be treated as constraint, difficulty can be
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overcome by employing Lagrange multiplier method. In other words Equation 4.17
is substituted into Equation 4.8 to form augmented Lagrangian (Bathe, 1996, page
270) as

L
Lo =%Iréfnr —%I(s-n+k-m}ls+7&(t)-h(t) (4.18)
0

where A(t)is the scalar Lagrangian multiplier and 7#(t)is the constraint equation

given as

n(t) = 3(8, (1),6(£),0, (1),0] () +1,8,(t) (4.19)

Figure 4.4 Rotor motion is caused by the torque which

4.4 Weak Form of Equation of Motion

The weak form of the equation of motion, by ignoring the friction and other non-

conservative forces and moments, is

) j L, mdt=3 j (T-TI-A(t)- A(t))dt =0 (4.20)
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If one makes use of the partial differentiation explicit form of weak form is found

as

SL,,, =8IT+1.0,(1)30, + 1, A(1)30, + A(t)SA(t) + A(1)83(e) = 0 4.21)

where 8I1 is the virtual work of the beam and it is given in Equation (6). J(e) is
defined in previous section and its explicit form and variation (83(e)) is presented

in Appendix 2. Overdot denotes derivative with respect to time.

Because Equation 4.21 is highly nonlinear; one needs to employ an iterative
procedure to obtain its solution. If Newton method is made use of for that purpose
consistent linearization should be performed to obtain exact tangent operator and to
ensure the quadratic convergence rate of the iterative procedure (Ibrahimbegovic &
Mikad, 1998). Consistent linear approximation of Equation 4.21 may be obtained as:

Lo, ... (4.22)

=0

Lo ]-sro  + 4
de

aug,n+l aug,n+l1

where (i) is the iteration counter, n+1 is the dicritized time step number. Since we
employed spatial incremental rotation vector update procedure [21] linearization of a

spatial tensor field is carried out with Lie derivative formulization given in Equation

(17).

Consistent linearization of virtual work of beam (i.e. L[8I1]) is summarized in

Section 2 and details of its linearization procedure can be found in Ibrahimbegovic &

Mikad (1998). Since 33(e) depends on O(t) and @(t), same procedure is used for its

linearization. Explicit form of L [85(0)] are presented in Appendix 2.

In order to linearize the angular acceleration (L[é]) and second derivative of

Lagrange multiplier (L[X]), one first needs to obtain their values at the chosen

instants of time interval of interest (Ibrahimbegovic & Mikad, 1998). If we take

advantage of scalar nature of O(t) andA(t), their time derivative may simply be

approximated as:



45

}L _}\‘n+l_)\’n )“ _}“’n+1_)’\’n _}"n+l_}\‘n _}‘\’n (423 b)
m At m At (A2 At oo
A ern+1 _ern n Orn+1 _Orn 6rn+1 _Grn érn
ern+1 = ; ; 9rn+1 = : — = - 2 — — - (424a,b)
’ At ’ At (At) At

where At=1t_, —t_1isa typical time step. If values of O(t,) and G(tn) as well as

A(t,) and X(tn) are assumed to be known then linearized forms of 6(t) and A(t)

may be found as

d N (i Aeglzw
< pe,]= ! (4.25)
de| ., (At)*
d o ALY
= [, ==t (4.26)
de| _, ’ (At)®

Explicit form of &L, and L|_8L J are presented in Appendix 2. Technical

aug
computing program MATLAB is used for computer implementation of proposed

scheme and its details are presented in Appendix 6.

4.5 Remarks on the Numerical Implementation

The finite element method is implemented to solve the linearized virtual work
equation given in Equation 4.21. The element configuration is approximated with an

assembly of 4 node elements with

s N, =%, (1-5)E+¢)3-¢)

X =YN© % N, =21+ -0)E-¢) 4.27)
=2 (1+)1-5)% +¢)
N4 =% (L +E)-c)1+0)

where N, ({) are the standard linear shape functions, and x, are nodal coordinates.

The dependent variables ¢ and 6, and their variations are interpolated in

1soparametric manner (Ibrahimbegovic & Mikad, 1998); i.e.

0"\Lc =Y N, (-0, @“\Lc =Y Ni(O)-o, (4.28)
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4 4
80" =2 N(§)-30,  3¢"| =D N,(©)-dp,
I=1 I=1

4 4
AB"| = N(©)-A0,  AQ" =D N()-Ag,
I=1 I=1

The 3-point Gauss integration scheme is used to integrate resultant equations. This
method produces the element stiffness matrix of the correct rank and at the same

time alleviates the locking phenomena (Bathe, 1996).

As mentioned above, rotor is constrained to move only around its axis. Thus, if
one discretizes the helical beam starting from motor end through rotor end with nem,
number of finite elements, the interpolations of the last element reduces to, noting

Equations 4.14 and 4.15

0 = SN Q)-50, + N, (©- 048+ A©)-A(o) 1, ) (4.2%)
50, = iNI(C) 3¢, + N, (0)-E(A(e) 1, )- 50" -n, (4.29b)
Ap, = 23: N;©-A@; + N,(O) - E(A(a) -1y ) - AB™ -ny (4.29¢)

I1=1
where 0} is the angular position of the rotor corresponding to 4™ node of the last

element with variations 80" and A0 .



CHAPTER FIVE
RESULTS

5.1 Introduction

Helical coupling used in simulations is a (right helix) commercial flexible
coupling made up of 7075-T6 Aluminum alloy. Geometric and material properties of
helical coupling are presented in Appendix 4. Simulations are performed for pure
angular and parallel misalignment cases. Angular misalignment is introduced around
positive X-axis. Parallel misalignment is induced along positive Z-axis (see Figure
4.4). In previous studies effect of rotary inertia on rotor speed and reaction loads are
not taken into account. In order to study inertia effect, rotor-disk system having I,=
6.53x10™ Kg-m? mass moment of inertia around its rotational axis is chosen as
reference and simulations are performed for values of 0.1l,, I, and 10l,. Hypothetical
rotor-disk system and its parameter values are presented in Appendix 5. Motor speed

is assumed to be constant and set to 5000 RPM (83.33 Hz) during simulations.

5.2 Aligned System

Figure 5.1 shows the calculated angular velocity variation of rotor (wg) for
aligned system (6=0.0 mm «=0°). As can be seen from Figure 5.1 proposed scheme

is capable of predicting the constant angular velocity of rotor for aligned system.

5.3 Angular Misalignment

First set of simulations is performed for pure angular misalignment (i.e. a=1°
6=0.0 mm). Figure 5.2a and Figure 5.3a show the angular velocity and acceleration
variations, respectively, of driven shaft for inertia values of 0.1l,, I, and 10I, (see
above). Frequency spectrums are presented in Figure 5.2b and Figure 5.3b. In
previous studies it is assumed that angularly misaligned coupling behaves exactly as
universal joint. Thus universal joint velocity and acceleration variations are also
added to figures for comparison. It is clear from figures that variations are dependent

not only misalignment but also inertia value. Since larger inertia results in driven
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shaft speed to converge to that of driven shaft, effect of angular misalignment on
driven shaft’s speed diminishes with increasing inertia. Frequency spectrums indicate
that angular velocity and acceleration have three frequency components, two of
which are common to all inertia values (i.e. 1X and 2X of motor speed). This
suggests that these frequencies are related to coupling geometry. Third frequency
component is not constant and changes with changing inertia. It has the value of
5.21, 10.42 and 36.46 HZ for inertia values of 0.1l;, I; and 10I,, respectively. For all
cases 1X motor speed is dominant frequency. Comparison of universal joint velocity
and acceleration with present study validates our criticism of associating misaligned

behavior with universal joint (i.e. Cardan joint).

Calculated reaction loads generated by angularly misaligned coupling on driven
shaft are presented in Figure 5.4a through Figure 5.8a. Frequency spectrums are
shown in Figure 5.4b through Figure 5.8b. Reaction loads vary around constant
values which are corresponding to initial deformation of coupling. In previous
studies, reaction loads are calculated a priori by associating coupling behavior with
ideal spring element and/or universal joint. Thus inertia effect was not taken into
account. However, as can be observed from figures, reaction loads are not only
dependent on misalignment value but also inertia of rotor. As the case for angular
velocity and acceleration, reaction loads have common frequency components for all
inertia values, which can be associated with geometry of coupling. Reaction loads
which act along the transverse direction have common frequency components of 1X,
2X and 3X of motor speed (i.e. 83.33 HZ) for all inertia values and reaction force Fy
acting along the axial direction has common frequency components of 1X and 2X of
motor speed. Reaction load variations in common frequencies do not change with
changing inertia, i.e. independent of inertia. Effect of inertia on reaction loads are
observable for lighter cases since additional frequency components are appeared for
small inertia values. Effect of inertia becomes negligible for large values and
coupling geometry dominates the system response.

In literature, 1X vibration component along axial direction is given as the

characteristic of angular misalignment. It can be seen from Figure 5.5b that axial
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load Fy has the dominant frequency component of 1X. Moreover, 2X component
along transverse direction are associated with misalignment. Figure 5.4b and Figure
5.6b to 5.8b show that this is the dominant frequency of reaction loads which causes
the vibration along transverse direction (i.e. Fx-M; and F,-My). Thus it can be
concluded that proposed scheme are able to predict the associated frequency

components of angular misalignment.

In order to demonstrate validity of conclusion given above, response of the
hypothetical rotor-bearing system is obtained with commercial FEM program
ANSYS. Hypothetical system parameters and its ANSYS model together with
computer code are presented in Appendix 5. Xu & Marangoni (1994a, 1994b)
concluded that misalignment could be hidden if 2X of motor speed is not close
enough to one of the system natural frequencies. Thus parameters of hypothetical
system are chosen such that one of the system natural frequencies is close to 2X of
motor speed. It should be pointed out that reaction loads are calculated for three
different inertia values. For this reason, simulations are performed for three different
systems, of which rotary inertias are equal to the mentioned inertia values.

Parameters of hypothetical systems are presented in Appendix.

Systems having inertia values of 0.11, and I, have 2X of motor speed (i.e. 166.667
Hz) as their first natural frequency. Displacements and frequency spectrums obtained
with ANSYS along the transverse directions (i.e. along X and Z axes) are presented
in Figure 5.9 and 5.10 for system with 0.1Ir inertia, and in Figure 5.11 and 5.12 for
system with Ir inertia. As expected, 2X component is the dominant frequency of
vibration response. It can be seen from frequency spectrums that common frequency
components of 1X and 3X of motor speed are also present. As mentioned above,
lighter inertia results in additional frequency components in reaction loads. These
frequencies are also observed in vibration spectrums. Since 2X of motor speed is
close (not equal) to one of the system natural frequencies, vibration responses exhibit
the characteristic of beating phenomena. This behavior is also observed by Xu &
Marangoni, (1994b). Hypothetical system with largest inertia (101;) has the 2X of

motor speed as second natural frequency. The first one is 29.96 HZ. Displacement
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and frequency spectrums presented in Figure 5.13 and 5.14 show that system first
natural frequency dominates the system response. This result was not expected. It is
also interesting that misalignment excited higher natural frequencies of the system.

This behavior is not observed for other inertia values.

Xu & Marangoni, (1994b) measured the system response connected with helical
coupling in case of angular misalignment. Their results obtained for aligned system
show that system has initial fault which is manifested in frequency spectrum with
1X, 2X and 3X of motor speed. Their results for aligned system are reproduced in
Figure 5.14a. As can be seen from Figure 5.14a, 2X of motor speed shows the largest
change and 3X response is larger than the 1X response. Figure 5.14b shows the
response of angularly misaligned system of Xu & Marangoni, (1994b). Since system
response increase in all frequencies which are observed in aligned system, it can be
concluded that reaction loads generated by misaligned coupling should have
frequency components of 1X, 2X and 3X of motor speed. In misaligned system, 2X
component shows the largest change and dominates the response. Thus reaction
loads should have the dominant frequency of 2X of motor speed. Order of response
in 1X and 3X components for misaligned system is reversed, i.e. 1X response is
higher that 3X response for misaligned system. It can be seen from Figure 5.4 and
Figures 5.6 to 5.8, frequency components of predicted reaction loads show the trend
mentioned above. Thus it is concluded that results of Xu & Marangoni, (1994b)

presented in Figure 5.15 indicates the validity of proposed scheme.
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Figure 5.1 Angular velocity (wg) variation of rotor for aligned case (6=0.0 mm a=0°).
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Figure 5.2 (a) Angular velocity variations of rotor and (b) its power spectrum for
pure angular misalignment (6=0.0 mm, a=1°). (—— 0.1llg, ——— — I,
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commercial FEM program ANSYS® transient dynamic module and results are plotted
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parameters. a) Displacement b) Frequency spectrum. Simulations are performed
with commercial FEM program ANSYS® transient dynamic module and results are
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Figure 5.15 Frequency spectrum of (a) aligned (b) misaligned system.
Reproduced from Xu and Marangoni, (1994b). Motor rotation speeds are
30.36 Hz and 30.33 Hz, respectively. Misalignment angle is a.=0.25°. One of
the system natural frequencies is 30 Hz. Relative frequency content is

defined as the FFT coefficient divided by the maximum FFT coefficient.
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5.4 Parallel Misalignment

Calculations for parallel misalignment is performed for misalignment value of
$=0.25 mm and a=0°. Figure 5.16a and Figure 5.17a show the angular velocity and
acceleration variations, respectively, of driven shaft for inertia values of 0.11,, I, and
101,. Figure 5.16b and Figure 5.17b present the frequency spectrums of velocity and
acceleration, respectively. As oppose to the angular misalignment, current authors
did not come across any information for velocity and acceleration variations in case
of parallel misalignment. It can be seen from Figures 5.16 and Figure 5.17 that
driven shaft rotation speed thus acceleration also varies for parallel misalignment. It
Is interesting that angular velocity and acceleration variations exhibit the same
pattern as the case for angular misalignment, i.e. large inertia values cause velocity
variation diminish and converge to the motor speed. Effect of coupling geometry can
be observed with appearance of 1X and 2X components in frequency spectrums for
all inertia values. It is also clear from frequency spectrums that third frequency
which has the values of 5.21, 10.42 and 36.46 Hz for inertia values of 0.1l,, I; and
101,, respectively is directly dependent on inertia since not only its value but also its

power in frequency spectrum decreases with increasing inertia.

Calculated reaction loads generated by deformed coupling in case of parallel
misalignment are presented in Figure 5.18a through Figure 5.22a. Frequency
spectrums are shown in Figure 5.18b through Figure 5.22b. Initial deformation
causes reaction loads to vary around non-zero mean values. Since parallel
misalignment is induced along Z-axis mean value of F, is much higher than that of F
and Fy. As the case form angular misalignment, reaction loads are dependent on
coupling geometry and inertia. Effect of coupling geometry can be observed in
power spectrums with appearance of frequency components which are common to all
inertia values. Since powers of common frequency components do not change with
changing inertia, it can be concluded that variations in these frequencies are solely
result of the coupling geometry. Effect of inertia can be observed in frequency
spectrums with the appearance of additional frequency components, of which values

change with respect to inertia. Since variations of reaction loads in frequencies
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resulted from inertial effect diminish with increasing inertia, it can be said that
geometry of coupling dominates the system response for large inertia values. Similar
to angular misalignment, reaction loads which act along transverse direction (i.e. Fy,
My and M,) have common frequency components of 1X, 2X and 3X of motor speed.
Reaction load Fx has the common frequency components of 1X and 2X of motor
speed. Fy recovers the 1X component for large inertia values. Axial force (Fy) has the

common frequency components of 1X and 2X of motor speed.

As mentioned above, 2X component observed along transverse direction is given
as the indication of misalignment. It can be seen from Figure 5.18 and Figures 5.20
to 5.22 that twice the motor speed (i.e. 2X component) is the dominant frequency of
reaction loads which act along transverse direction. Thus proposed scheme was able
to predict frequency component which is associated with parallel misalignment. As
the case for angular misalignment, reaction loads are introduced to the above
mentioned hypothetical systems and their response in case of parallel misalignment
are calculated with commercial finite element program ANSY'S. As can be seen from
Figure 5.23 through 5.26, 2X component in vibration spectrums obtained for the
systems having inertia values of 0.1lr and Ir dominates the system responses. This
result is expected since first natural frequency of system is close to twice the motor
speed (i.e. 166.67 Hz). As oppose to the case for angular misalignment, 1X and 3X
components are not present in frequency spectrums. However frequency components
resulted from smallest inertia value (i.e. 0.1Ir) can be seen in Figures 5.23 and 5.24.
System having inertia value of 10Ir has first natural frequency of 29.71Hz. Even if
reaction loads for this system have dominant frequency of twice the motor speed,
first natural frequency dominates the vibration spectrum obtained along Z-axis
(Figure 5.28b). Although dominant frequency for vibration response along X-axis
(Figure 5.27b) is, as expected, twice the motor speed first natural frequency can also

be seen clearly.

Ganeriwala, Patel & Hartung studied misalignment effect for different coupling
types, one of which is helical coupling. They measured vibration data along axial and

transverse directions from the sensors which are placed on motor and bearing
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housing. Their results obtained for helical coupling in case of parallel misalignment
are reproduced in Figure 5.29 for qualitative comparison with present study. Since
measurements are taken from bearing housing, reaction forces formed due to parallel
misalignment on the point where hypothetical system supposedly have bearing is
calculated and qualitative comparison is made based on these forces. Figures 5.30a
and 5.31a show the calculated reaction forces which act along the transverse
direction. Frequency spectrums are presented in Figures 5.30b and 5.31b. As can be
seen form Figures 5.29, 5.30b and 5.31b present study was able to predict the
measured frequency components (i.e. 1X and 2X of motor speed) and their orders in

magnitude (i.e. power of 2X component is larger than that of 1X component).
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Figure 5.16 (a) Angular velocity variations of rotor and (b) its power spectrum for
pure paralel misalignment (6=0.25 mm, o=0°). (—— 0.1llg, ——— — I,
—————— 101g). Simulations are performed with Technical computing program
MATLAB® and results are plotted with drawing and data analysis software
SigmaPlot®.

68



&g (rad/s)
o

120 4

-160 -

-200 4

-240 P e 5 B
0,00 0,02 0,04 0,06 0,08 0,10

10
105 4
104 4
10° 4
102 4
10t 4
100 4
1014
1024
10° 4
1044
1054
1064
1074
10-8:\\\\I\\\\Iwwwwlwwwwlwwwwlwwwwlwwwwlwwwwlwwww

Power

Frequency (Hz)
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Figure 5.21 (a) Reaction moment variation around X-axis (M,) and (b) its power
spectrum for pure parallel misalignment (6=0.25 mm, a=0°. (—— 0.1l,,
= [, ———__ 101,). Simulations are performed with Technical
computing program MATLAB® and results are plotted with drawing and data
analysis software SigmaPlot®.
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Figure 5.23 Hypothetical system response along X axis for pure parallel misalignment
(6=0.25 mm, o=0°.. Inertia is 0.1l See Appendix 5 for system parameters. a)
Displacement b) Frequency spectrum. Simulations are performed with commercial
FEM program ANSYS® transient dynamic module and results are plotted with drawing
and data analysis software SigmaPlot®.
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Figure 5.24 Hypothetical system response along Z axis for pure parallel misalignment
(6=0.25 mm, «a=0°. Inertia is 0.1l See Appendix 5 for system parameters. a)
Displacement b) Frequency spectrum. Simulations are performed with commercial
FEM program ANSYS® transient dynamic module and results are plotted with drawing
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Figure 5.25 Hypothetical system response along X axis for pure parallel misalignment
(6=0.25 mm, a=0°). Inertia is I,. See Appendix for system parameters. a) Displacement
b) Frequency spectrum. Simulations are performed with commercial FEM program
ANSYS® transient dynamic module and results are plotted with drawing and data
analysis software SigmaPlot®.
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Figure 5.26 Hypothetical system response along Z axis for pure parallel misalignment
(6=0.25 mm, «a=0°. Inertia is I. See Appendix 5 for system parameters. a)
Displacement b) Frequency spectrum. Simulations are performed with commercial
FEM program ANSYS® transient dynamic module and results are plotted with drawing
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Figure 5.27 Hypothetical system response along X axis for pure parallel misalignment
(6=0.25 mm, a=0°. Inertia is 10l,. See Appendix 5 for system parameters. a)
Displacement b) Frequency spectrum. Simulations are performed with commercial
FEM program ANSYS® transient dynamic module and results are plotted with drawing
and data analysis software SigmaPlot®.
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Figure 5.28 Hypothetical system response along Z axis for pure parallel misalignment
(6=0.25 mm, a=0°. Inertia is 10l,. See Appendix 5 for system parameters. a)
Displacement b) Frequency spectrum. Simulations are performed with commercial
FEM program ANSYS® transient dynamic module and results are plotted with drawing
and data analysis software SigmaPlot®.
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Figure 5.30 (a) Bearing reaction force along Z-axis for hypothetical system having
inertia values of 10I, (b) its power spectrum. Simulations are performed with
commercial FEM program ANSYS® transient dynamic module and results are
plotted with drawing and data analysis software SigmaPlot®.
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Figure 5.31 (a) Bearing reaction force along Z-axis for hypothetical system having
inertia values of 10I, (b) its power spectrum. Simulations are performed with
commercial FEM program ANSYS® transient dynamic module and results are
plotted with drawing and data analysis software SigmaPlot®.
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CHAPTER SIX
CONCLUSION

Helical coupling is modeled with geometrically exact beam theory in order to
investigate its behavior in case of misalignment. New scheme based on using
constitutive equations as constraint was developed. Since geometrically exact beam
theory is capable of modeling finite rotations and finite strains, proposed scheme was
able to calculate the misaligned coupling behavior without any a priori assumptions.
Comparison with previous results showed that proposed scheme was able to predict
the frequency components associated with misalignment. Moreover calculated
reaction loads’ frequency components matched frequency components of vibration
spectrums obtained experimentally from motor-helical coupling-rotor systems. Thus
it is concluded that proposed scheme could model the rotating coupling accurately.

In previous studies, it was assumed that angularly misaligned coupling behaves
exactly as universal joint. Thus driven shaft speed varies with frequency of twice the
motor speed. Our results showed that driven shaft speed varies not only for the case
of angular misalignment but also for the case of misalignment. Results indicated that
driven shaft velocity was dependent of inertia value and geometry of coupling.
Velocity variation diminished with increasing inertia and converged to driving shaft
speed. Lighter inertia caused rotor speed to vary largely and resulted in observable
frequency component in speed variation. Results obtained for angularly misaligned

coupling contradicted universal joint assumption.

As the case for velocity variation, results showed that reaction loads generated by
misaligned coupling on system depended on inertia value and coupling geometry.
Calculation indicated that reaction load components resulted from coupling geometry
do not change for changing inertia. However reaction load components due to inertia
effect decrease with increasing inertia.

As mentioned above complexity of modeling misaligned system is the main

obstacle to draw the necessary academic attentions. However proposed method could
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give new perspective to the researchers who study this phenomenon. Since proposed
method does not require any a priori assumptions for the rotating coupling behavior,

response of the misaligned system could be calculated more accurately.
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APPENDICES
APPENDIX 1
LINEARIZED VIRTUAL WORK EQUATION

In order to alleviate notation, the subscript ‘n+1’ (denoting that the variable is
evaluated at time t,.1) and superscript ‘i’ (denoting the iteration counter) are
dropped.

The first term on the right side in Equation (3.128) give rise residual:

T

0
J.(L(;(y)-n+L5(oa)-m)js=j 80 | [R] ds
5 5| 50"

where
Rl[le @0 T© 0 TTn’
0 R+(0'x)-T(®O) T(®)]| |mMm*
The second and third terms on the right side in Equation (3.128) lead to material

and geometric parts of the stiffness matrix, respectively:

T

% Ag’
I(Lé(y)-LA(n"))+L(;(m)-LA(m“’))ds=J. ] [K’V'] A® | ds
S S| o' A0’

where

[Km]=[13x3 (@X-T© 0 HATan 0 HI ©%)-T@® 0

0 R+(@'x)-T(®) T(O) 0 A'C,A|| 0 R+(ox)-T(®O) T(6)
and
&P’ T A(PI
[ (@,0)n+ L, (£,(@)-m) ds=| & | [S+KS]| a0 | s
s s| o' AO'
where
0 ~ (n°%)-T(9) 0]

[e]=| 7@ ("0 TT@)0™)"x)T®) +E(n?x¢) 0
0 0 0



o 0
[KS]: 0 T—T(e)(mx)(mwx):ﬁ(e)+5(m@Xm)

TT(O)(Mx)R-R" (M?x)T(0) + H

0
TT(O)(M*x)T(0) +E"(Mm?)

0 -TT(0)(M®x)T(8) + E(M?) 0
with
f(9)=5'gel+1_9C2056®+6’;;”99®9 in (8-6=0)

R=c,[0'®86]+c,[(0x0")®06]+c,(0-0)[6®6]-c,[0@]+c,(0-06)[1]+c[6® 6]
E(@a)=[c,a-c,(0xa)+c,(0-a)p]®0+c,[ax]+c [(6xa)l +(0®a)]

H=(c,(m®-0")+c,m® - (0x08)+cy(m? - 6)0-0))1]
+ (al(m‘” -e')+ a,m’-(0x0')+ a3(m‘p -OXG-G’))@@ 0]
+05[6’®m“’ +m? ®9']+ c3(m‘p -619’®6+9®9']
+c,(0-0Ne@m® +m® @6+ c [0’ xm?) @0+ 0@ (@' xm")]
and

0cos0 - sind 0sind + 2cos0 - 2
€= 3 C2= 4
0 0
_3sin® — 20 - Bcos _ 1—cosb _ 0-sind
Cy= 0’ Cy= 02 Cs = 0°

a4, =C3—C, a, =(c, - 4c,)/6’ a; =(c, -5c3)/0°
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APPENDIX 2
EXPLICIT FORM OF CONSTRAINT EQUATION

L
Lun = 51000, = [(en ke mis + A7t
0

where

h(t) = 3(0, (1),67(1). 9, (1), ¢ (1) +1,6, (1)

and

S(e)=lr, x(a0,)-C, - AT(®,) - 7(0,.0)))+
(A@®,)-C,,-AT(®,)-©6,,0)))]-n, +1,6,

Variation of constraint equation is given as:

8Ly, = SIT+1,0,(1)30, + 1, K(1)80, + A()SA(L) + A(1)53(e) =0

and

Linearized form Constraint Equation is obtained as:

I I, 1,
L,JsL.., |=L,[om]+ ser[mz }AG, + ser[mz }M + M{MZ }Ae,

+84-L,[3(e)]+ A() - L, [63(e)]+ S(e)A2

where

explicit form of SIT and L, [5TT] are given in Appendix 1.

T

oy Ao,
83(') =180, | ‘Ry L, [S(')] = Rgﬁ ‘| AB
80, AG;T

sl [ el o] b1 0]
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_ b
R, =|T/® b, +T'Q’b, +R"b,
B T/sz
TS — [ 0 BlT’f(T
' T,B, T, (¢, B, T, + Z(bl x @)
s _| T (@,0B,T, +5(b, x0,)+ T,B,R, ~R[B,T, +H) /B, T, +(b,)"
| ~T'B,T, + 0
with
b, = A/,CTAf '(“/, x r/,)
b,=A,D"Aln,
Q-0=0, B,-b,=0, B,-b,=0

A,=A@®,), T,=T®,), R, =R(@®,.0))



APPENDIX 3
IMPLEMENTATION OF PROPOSED SCHEME

Assign Initial Values

Geometric Properties of Coupling Element
D,= 50 mm (Bore Diameter)
d= 19 mm (Rotor Diamater)
D, - d,
2
_ D, +d,

Iy, 2
P=3.18 mm (Pitch)

t= 2.4 mm (Coil Thickness)

L¢,=54 mm (Coupling Length)

Ne= 3.5 (Number of Coils)

A, =b-t (Area of the Helical Beam)
Ay, = % A, (Effective Shear Area)

A, = % A, (Effective Shear Area)

bt

V)

3

IZ=b t

12
To=1,+1,

Material Properties of Couplinh Element (Al 7075-T6)
P =2100 kg/m® (Density)

Ec,= 72x10° Pa (Young Modulus)
v=0.33 (Poision Ratio)

E
G, == (Shear Modulus)
2:-(1+v)

Constitutive Matrices of Helical Beam
Cn:diag[ECprxs chAyx; chAzx]
Cn=diag[Gcplx, Ecply, Ecpl,]

Assign Misalignment Values (see Figure 6)

8=[0 0 S]T (Parallel Misalignment)

a= [(x 0 O]T (Angular Misalignment)
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Radius Vectors (Undeformed Configurations) (see Figure 6)
r, = [0 0 r, ]T

re=lo o -r,J

Radius Vector (Initial Configurations) (see Figure 6)

r, = A(a)- ry

Unit Vectors (See Figure 6)

n,=[0 1 0]

n,=[0 1 0]

n, = A((x)- n.,

Calculate position vectors of undeformed configuration (@)

2N 7
AB=—"7c"
n elm (nl - 1)
where

Ny — Number of finite element

n; —total local node (n=4)

P-(mAp)
21

T
Pom = |:rcp sinAf I, COS Aﬂ} m=1,23 ....n

where
n= (Nem-1)(n-1)+n; (total global node)

Length Vector (see Figure 6)

L= |:0 P- (ntA:B) O:|

21

Calculate Deformed Configuration
Step 1: Assign specified values to total displacement and incremental rotation vectors at first global

node:

0,,.,=4A0,n_

I,n+1
u, = A(el,n+1 ) A(el,n ) Iy =@

where A0, is user specified motor rotation angle from time step n to time step n+1.

If displacements and rotations are calculated for new time step (n+1)
Assign predicted values to total displacement and incremental rotation vectors for global
nodes 2 to (ni-1):
u, and 0, where a=2,3, .. (n-1)

Calculate nodal position vectors:

¢, =u, +¢,, wherea=23, .. (n-1)
Assign predicted value to rotor rotation angle from time step n to time step n+1: Gr’n +

Calculate position and incremental rotation vectors for last node



ef,n+1 = 9rnr
¢, =L+d+ eXP(ez,nH ) VI )

Calculate Angular velocity and acceleration of rotor

5 0 Orne1 =0
rn+l At r At

r,n+l r,n+l

Assign predicted value to Lagrange multiplier: A
Calculate first and second derivative of Lagrange multiplier
A A }\‘ n+l — 7\’ n

= — ;\‘ =
n+l At n+l At

A
If displacements and rotations are computed (iterated) for time step n+1

Retrieve computed iterative values of incremental displacement and rotation vectors for
global nodes of 2 to (n-1): Au,,A0, where a=2.3, .. (n~-1)

Update total displacement and incremental rotation vectors for global nodes of 2 to (ni-1):
u, <u, +Au,

0, <06, +A0,

Update position vectors (except first and last node)

(Pa =u a + (pa,O

Retrive computed iterative value of incremental rotor angle: AO,

Update incremental rotor angle: 0, <— 0, + A0,

Calculate iterative value of incremental rotation vector for last node :

AB, =AOn,

Update incremental rotation and position vector for last node:
0,<0,+A0,
¢,=L+06+ exp(Oé)-A(,n Ty

Update Angular velocity and acceleration of rotor

5 0 0pne1 =0,
r,n+l At r At

r,n+l r,n+l

Retrieve computed iterative value of Lagrange multiplier: AA
Update incremental Lagrange multiplier: A <— A + AA

Update first and second derivative of Lagrange multiplier

- L 7\’ — 7.\’n+1 - j\’n
n+l At n+l At
Step 2: Compute total strains and stress resultants for elements (at each Gauss points)

Compute position and incremental rotation vectors:

4
Pu =D Ny ()0}
b=1

A
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4
el
0, = Z N, (£1)0y
b=1
Compute position and incremental rotation vector derivatives:

4
HED I (T
b=1

4
b= Ny &8y

Compllite1 (total) rotation tensors:

A= exp(eel)- A

Compute section unit normals:

a=A-g  g=¢

Compute axial, shear and bending strains:

Y=¢'-a

0= T(eel)' atexp(0y) o,

Compute stress resultants:

n=A-C,-A"-y

m=A-C,-A"-®

Step 3: Compute residual and tangent stiffness matrix of beam without imposing any
boundary condition:

n

3 NiIx o 7
ry =zjw @ 0 Nplaxs [R] N
! 0 NiIsxs
3 NiIsx o 1 Nilsxs 0
K =ij @ o Nylaxs [KM]81 0 N I3y
- 0 NiTsxs 0 NiIsx
;[N 0 T Ny, 0
K :ZJW(i) 0 NIz [K]G +KS]51 0 N I3k
- 0 N{Iyx 0 Nilsxs

where jy(i) are the Gauss weights.

Compute Global residual and tangent stiffness matrices:

L) 4
r=2121(b2=;1{)r§1]

el=1

O D 4 4
N
eli=lelj=1 b=l c=1
where

I : Coefficient matrix with elements 0 and 1.

Step 4: Compute forces and moments at the end of the beam (last element):

Compute position and incremental rotation vectors:
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4 4
¢, = ZNb Doy, 0, = sz 18,
b=l b=

Compute position and incremental rotation vector derivatives:

4 4
¢, =2 N, (Do, 0, =Y N, (1,
b=1 b=1

Compute (total) rotation tensors:
A, = exp(G,,)-AV,rl
Compute section unit normals:

a,=A,-g, g =0

Compute axial, shear and bending strains:

Y, =9, —a,

®, =T(6,)-0, +exp(6,)- G

Compute stress resultants:

F,=A,-C-A] -y, M,=A,-D-A] -0,
Compute constraint

h=(r{, xF, +M4)-nr

Step 5: Compute residual and tangent part of constraint equation:
T aTr . .
00, oo 50, I,(6, +2)
9 I RN h(t)
T

- | 0
501" 50, 17| |13
|: (Pé:| rtzs :|: P 0 Ly | MOR4

50, 50
k - 0 I
T T I_f I_f
36, KL 0,7 _[80. 7| a2 ac? | [0
sn] o clan|Tlsn] | L, | Lan
At?
T
T | I 0 0 1 0 0
8(P ¢ A(P / 8([) / 3(;(3 . 0 0 R 3{;(3 I . A(P )
30, K% AO, |=] 86, . lsxs X [RT (;3*;:| . sts X A0,
A Al S\ 3X3 83 3X3 AL
o 0 1 0o 0 1

Step 6: Rearrange residual and tangent (stiffness) matrices according to

boundary conditions:
Delete rows and colums corresponding to first node (since 0, and @, are specified):

00, -0, é¢p, >0



AB, >0, Ap, >0

Express variations on last node in terms of 0, and n, (see Equations (-) and (-)):
80, =n,30,, AB, =n A0,

d¢, = E(A(,n -ré/’o)-anE)r, Ag, = E(Aé’n -rw)- n A0,

Modify residual and tangent (stiffness) matrices:

N e r, KN «K

PN 2 KIS K2
Step 7: Compute total residual and tangent (stiffness) matrices:

_ .New 1 1 2 _.2,New _ New c 1 yn A 2,NewyV
From =T +IS r3+I3 | , Kt =K +I§ Kj 13+Ij K35

I : Coefficient matrix with elements 0 and 1.

Step 8: Solve for incremental displacements and rotations:

Au
A9,

. = —T.
Total Total
A0,

a

K

Al

97



98

APPENDIX 4
GEOMETRIC AND MATERIAL PROPERTIES OF HELICAL COUPLING

m il
v R
d
H@tiie
e il

Geometric Properties of coupling:

D= 50 mm (Outside diameter)
d= 19 mm (Inside diameter)

Pitch=3.18 mm

t= 2.4 mm (Thickness of coil)
b=34.5mm

N¢=3.5 (Number of coil)

Material Properties of coupling:

Beam Cross Section

Material: 7074-T6 Aluminum

E=72x10° N/m? (Young Modulus)
Nu=0.33 (Possion Ratio)
G=E/(2+2*Nu) (Shear Modulus)
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APPENDIX 5

ANSYS SIMULATIONS

Hypothecial System

sk

% X X Cu X
L Lg L, L3 Ly | % L Ly Sp
Lrgr
ANSYS Model

1
NODES

Hypothecial System Parameters:
Common Parameters:

L= 300 mm (motor length)
Ls=15mm

L,= 170 mm

Ls= 15 mm

L= 54 mm

Paramaters for Inertia Value of 0.11r

tgsk= - (no disk) 0.11r= 6.53x107° kg-m?

Dgsk= - (no disk) Natural Frequencies=166.47, 535.41, 990.89, 1051.4 Hz
drv= 19 mm (rotor diameter)

L= 693 mm (rotor length)

L= 277.2 mm

L,=277.2 mm

S$:=69.3 mm

S$,=69.3 mm



100

Paramaters for Inertia Value of Ir

tase= 25 mm (disk thickness) Ir= 6.53x10* kg-m?

Dgsk= 75 mm (disk diameter) Natural Frequencies=166.29, 812.22, 1056.9, 1159.1 Hz
dry=19 mm (rotor diameter)

L= 535 mm (rotor length)

L= 214 mm

L,=214 mm

S$:=53.5mm

S$,=53.5 mm

Paramaters for Inertia VValue of 10Ir

tgs= 25 mm (disk thickness) 10Ir= 6.53x10°% kg-m?

Dgs= 133.33 mm (disk diameter) Natural Frequencies=29.71, 166.31, 290.01, 467.25, 620.65 Hz
dy= 19 mm (rotor diameter)

L= 1203 mm (rotor length)

L;=481.2 mm

L,=481.2 mm

S$:=120.3 mm

S,=120.3 mm

ANSYS Simulation Files:
Beam Model (for inertia value of 0.11,)

/com, Beam3 element

pi=3.14159 lvalue of pi

C*** Constant Parameters

C *k*k *k*k *k*k *k*k *k*k **
Lr=535e-3 Im Rotor Length
Lbs=490e-3 Im Bearing Span
Lcp=54e-3 Im Length of Coupling

Lbm2=200e-3 Im Length of 2nd Beam
Lmtr=300e-3  !Length of motor beam

dr=19e-3 Im rotor diameter
dd=75e-3 Im disk diameter
dt=25e-3 Im disk thickness

dCpBg=50e-3  !m Coupling Outside diamater
dCpSmI=19e-3 !m Coupling Inside Diameter
dCp=dCpBg-dCpSmi IThickness of Coupling

Ar=pi*dr*dr/4 !'m2 Rotor Area
Ad=pi*dd*dd/4 'm2 Disk Area
ACp=pi*(dCpBg*dCpBg-dCpSmI*dCpSml)/4 'm2 Coupling Area

Vr=Ar*Lr Im3 Rotor volume
Vd=Ad*dt-Ar*dt!m3 Disk Volume

ro=7800 1kg/m3 Density of rotor material

md=ro*Vd Ikg Disk Weigth

mr=ro*Vr Ikg rotor weigth

roCp=2810 1Kg/m3 Density of Coupling Material
Id=pi*dr*dr*dr*dr/64 Im4 Area moment of inertia of rotor

Jd=pi*dr*dr*dr*dr/32 Im4 Polar moment of inertia of rotor



Ipr=ro*pi*Lr*dr*dr*dr*dr/32 1kg-m2 Mass moment of inertia of rotor
Ipd=ro*pi*dt*(dd*dd*dd*dd-dt*dt*dt*dt)/32 'kg-m2 Mass moment of inertia of disk

ICpBg=pi*dCpBg*dCpBg*dCpBg*dCpBg/64
ICpSmI=pi*dCpSmI*dCpSmI*dCpSml*dCpSml/64
ICp=ICpBg-ICpSml Im4 Coupling Area Moment of Inertia
JCp=2*ICp IPolar Moment of Inertia of Coupling

C***********************************

/config,nres,10000
Iprep?
/COM Beam Element Generation

ET,1,beam3

ET,2,mass21,,,3

R,1,Ar,ld,dr 'Rotor %2D
R,2,md,Ipd/2 'Disk
R,3,Acp,ICp,dCpBg !Coupling 2D

Mp,EX,1,2e11
Mp,DENS, 1,10
Mp,PRXY,1,0.33

ICoupling Material
Mp,EX,2,72e9
Mp,DENS,2,roCp
Mp,PRXY,2,0.33

1Beam Nodes
N,1,0,0

N,11,Lr,0

FILL

ICoupling Node
N,12,-Lcp,0

12nd Beam
N,18,(-Lcp-Lbm2),0
FILL
N,24,(-Lcp-Lbm2-Lmtr),0
FILL

Type,1
Real,1

Mat,1

E1,2
EGEN,10,1,1

IAdd disk mass and inertia

Type,2
REAL,2
E,6

Type,1
Real,3
Mat,2

E,1,12

Type,1
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Real,1

Mat,1

E, 12,13
E, 13,14
E,14,15
E,15,16
E,16,17
E,17,18
E,18,19
E,19,20
E,20,21
E,21,22
E.22,23
E.23,24

C*** Constraints

C***********************************

D,2,UY,0.0
1D,2,UZ,0.0
D,10,UX,0.0
D,10,UY,0.0
1D,10,UZ,0.0
D,15,UY,0.0
1D,15,UZ,0.0
D,19,UY,0.0
1D,19,UZ,0.0
D,23,UY,0.0
1D,23,UZ,0.0
Finish

Loading File

deltim, 3.333333e-005
Time, 3.333333e-005
F,1,FY, 0.000000e+000
F,1,MZ, 0.000000e+000
SOLVE

Time, 6.666667e-005
F.1,FY, 2.972797e-003
F,1,MZ, -3.071657e-002
SOLVE

Time, 1.000000e-004
F.1,FY, 4.664149¢e-003
F,1,MZ, -3.070769e-002
SOLVE

Time, 1.333333e-004
F.1,FY, 6.328986e-003
F,1,MZ, -3.069938e-002
SOLVE

Time, 2.590000e-001
F,1,FY, 3.594390e-002
F,1,MZ, -3.068341e-002
SOLVE

Time, 2.590333e-001
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F,1,FY, 3.623576e-002
F,1,MZ, -3.069182e-002
SOLVE

FINISH

Solution
/input, Beam Model

C***********************************

C***Splution

(’ *k*% **k* **k* **k* **k* **

/SOLU
ANTYPE,trans ! Transient ANALYSIS

OUTPR,NSOL,1
OUTRES,NSOL,1

/input, Loading File
/post26
NSOL,2,6,u,x,DX6
NSOL,3,6,u,y,DY6
NSOL,5,4,u,x,DX4
NSOL,6,4,u,y,DY4
Finish
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APPENDIX 6
MATLAB CODE

%Assign initial Values

clear all
% Calculate Initial Geometric Data of Coupling Element

Smld=19¢-3; % m Coupling smal Diamater

BigD=50e-3; % m Couplsng big Diamater

Pitch=3.18e-3; %m

Nc=7; % 2*Number of coil

N_angle=5;%degree rotation angle of constant speed shaft
k=1/16;

b=(BigD-Smld)/2;

t=2.4e-3; %m coil thickness

r=(Smld+BigD)/4;

% Geometric and Material Properties of Couping Element

roSt=7800;% Kg/m3 Density of Steel (for Rotor - Dsik)
E=72¢9;% Pa Young Modulus of Al 7075-T6
Nu=0.33;% Possion Ratio

G=E/(2+2*Nu); % Pa Shear Modulus

Ax=b*t; % m2 Area

A2x=5/6*%Ax; % m2 Efective Shear Area
A3x=5/6*%Ax;% m2 Effective Area

Iy=b*b*b*t/12;

Iz=t*t*t*b/12;

Ix=ly+lz;

% Input Inertia
input(‘Specify inertia values:’, Inertia)
% Constitutive Matrices:Cn Cm

Cn=diag([E*Ax,G*A2x,G*A3x]);
Cm=diag([G*Jx,E*Iy,E*Iz]);

% Specify Angular Velocity

VelRPM=5000; % RPM

% Specify Number of Elements, Number of Local Nodes and Number of Gauss Points

n_Gauss=3;

n_elm=2*Nc/k; %Number of Element

totallocalnode=4;
totalglobalnode=(n_elm-1)*(totallocalnode-1)+totallocalnode;

% Initialize Total Rotation and Displacement Cell arrays

PrevROTMTRX=cell(n_elm,n_Gauss);
InIRTMTRX=cell(n_elm,n_Gauss);
Omega_alfa=cell(n_elm,n_step,n_Gauss);
fori elm=I1:n_elm
fori_Gauss=1:n_Gauss
PrevROTMTRX{i_elm,i_Gauss}=eye(3);
end
end

% Initialize Rotation matrices

firstROTMTRX=eye(3);
EndROTMTRX=eye(3);
fori elm=1:n_elm
fori_Gauss=1:n_Gauss
Omega alfa{i_elm,1,i_Gauss}=[0;0;0];
end
end
Omega_alfaEND=zeros(3,x_step);

% Calculate Position Vectors for Undeformed Configuration
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teta=0;

dteta=k*pi/2/(totallocalnode-1);

fori_globalnode=I:totalglobalnode
InitialPhiVls(1:3,i_globalnode)=[r*sin(teta);Pitch*teta/2/pi;r*cos(teta)];
teta=teta+dteta;

end

96**************************************************************************

% Assign BC Values to the arrays
%sSpecify global nodes, elements and local nodes

BCNodel=[1,totalglobalnode];%Global Nodes
BCEIm1=[1;n_elm];

BClocall=[1,4];

BCNode2=[1];%Global Nodes

BCEIm2=[1];

BClocal.2=[1];

96**************************************************************************

%lnitial Load Steps

%Apply Angular Misalignment
x_stepAng=0;

%Apply Parallel Misalignment

x_stepPrl=1;

%Total Initial load steps
x_step=x_stepAng+x_stepPrl; %First Load Step
%Specify ANGULAR misalignmentangle
MisalignmentAngle=0*pi/180;%rad

%Specify PARALLEL misalignment value
PriMis=0.25¢-3;%m
96**************************************************************************
%lncremental values for End of coupling
%Angular Misalignment

if x_stepAng~=0

DROT1=MisalignmentAngle/x_stepAng;%radian, 1 degree increment
elseif x_stepAng==0

DROT1=0;

End

%Parralel Misalignment

if x_stepPrl~=0

DPMis=PrIMis/x_stepPrl;%radian, 1 degree increment

elseif x_stepPrl==0

DPMis=0;

end

Otk R R R R R R R R R R R R

% Inctemental Values for Rotation
DROT2=1*pi/180;,
%Specify (rotation) Unit Vectors

n_rotl=[1;0;0]; %First step rotation vector
n_rot2=[[0;1;0],[0;cos(MisalignmentAngle);sin(MisalignmentAngle)]];%Second step rotation vectors
%Specity velocity acceleration

DTime=DROT2/(VelRPM/60*2*pi);

fori_acc=1

angVel(i_acc)=0

angAcc(i_acc)=0;

end

angVel(x_step)=DROT2/DTime;%rad/sec

angAcc(x_step)=0;
96**************************************************************************
% Radius Vectors (Undeformed Configuration)

rlzero=[0;0;InitialPhiVIs(3,totalglobalnode)];
12zero=[0;0;InitialPhiV1s(3,1)];
1zero=[0;InitialPhiVl1s(2,totalglobalnode);0];

% BC values

rl=rlzero; %radius at the END of coupling

r2=r2zero;%radius at the tip of coupling
96**************************************************************************



%lnitial Values

TotalDisp=zeros(3,totalglobalnode);
IncRot=zeros(3,totalglobalnode);
%Angular misalignment not zero
if DROT1~=0
IncRot(1:3,totalglobalnode)=DROT1*n_rotl;
[antROT,dummyROT ]=rotation(IncRot(1:3,totalglobalnode));
TotalDisp(1:3,totalglobalnode)=lzero+antROT*EndROTMTRX*r1zero ...
-InitialPhiVls(1:3,totalglobalnode);
%Angular misalignment is zero and parallel misalignmentis not zero
elseif (DROT1==0)&(DPMis~=0))
IncRot(1:3,totalglobalnode)=[0;0;0];
TotalDisp(1:3,totalglobalnode)=[0;0;DPMis];
523*************************************************************************

% Shape Function Values at given GAUSS Point

GaussPnts=[0.774596669241483; ...
0.0; ...
-0.774596669241483];
GaussWgths=[0.555555555555556; ...
0.888888888888889; ...
0.555555555555556];
W=GaussWgths;
fori_Gauss=1:3
t=GaussPnts(i_Gauss);
N(@_Gauss,1)=0.5*(1-t)-0.5*(1-t*t)+(-9*t*t*t-+t*t+9*t-1)/16;
N_prime(i_Gauss,1)=-0.5+t+(-27*t*t+2*t+9)/16;
N_scnd(i_Gauss, 1)=1+(-2*27*t+2)/16;
N(i_Gauss,2)=(1-t*t)+27*t*t*t+7*t*t-27*t-7)/16;
N_prime(i_Gauss,2)=-2%t+(3*27*t*t+14*t-27)/16;
N_scnd(i_Gauss,2)=-2+(6*27*t+14)/16;
N(@_Gauss,3)=(-27*t*t*t-9*t*t+27*t+9)/16;
N_prime(i_Gauss,3)=(-3*27*t*t-18*t+27)/16;
N_scnd(i_Gauss,3)=(-6%27*t-18)/16;
N(@_Gauss,4)=0.5*(1+t)-0.5*(1-t*t)+H(O*t*t*t-+t*t-9*t-1)/16;
N_prime(i_Gauss,4)=0.5+t+(27*t*t+2*t-9)/16;
N_scnd(i_Gauss,4)=1+(2*27*t+2)/16;
end
96****************************************************************

% Shape Function Values at Fourth Point

tEND=1;

N_END(1)=0.5%*(1-tEND)-0.5%(1-tEND*tEND)+(-9*tEND*{END*{END+END*tEND-+9*tEND-1)/16;

N_primeEND(1)=-0.5+END+(-27*END*{END+2*END+9)/16;
N_sendEND(1)=1+(-2#27+END+2)/16;
N_END(2)=(1-tEND*tEND)+(27*END*{END*tEND+7*tEND*(END-27*tEND-7)/16;
N_primeEND(2)=-2*tEND+(3*27*END*END+14*END-27)/16;
N_scndEND(2)=-2+(6*27*END+14)/16;
N_END(3)=(-27*{END*tEND*END-9*{END*tEND+27*tEND+9)/16;
N_primeEND(3)=(-3*27*tEND*tEND-18*tEND+27)/16;
N_scndEND(3)=(-6*27*tEND-18)/16;
N_END(4)=0.5*(1-++END)-0.5%(1-tEND*tEND)+(9*tEND*{END*END+END*{END-9*tEND-1)/16;
N_primeEND(4)=0.5+tEND+(27*END*tEND+2*tEND-9)/16;
N_scndEND(4)=1+(2*27*(END+2)/16;

96*********************************************************************

% Calculate Initial Rotation Matrix and Determinant of det(dPhi/ds)

fori_elm=I1:n_elm
fori Gauss=1:3
i_gl=(i_elm-1)*(totallocalnode-1)+1;
i_g2=(i_elm-1)*(totallocalnode-1)+totallocalnode;

[InNIRTMTRX{i_elm,i_Gauss},detPhi(i_elm,i Gauss)]=Rot _Ini(InitialPhiV1s(1:3,i_gl:i g2),N,N prime,N scnd,i Gauss);

end

end
96**************************************************************************

% Calculate Initial Rotation Matrix Forth Fourth node of last element
ENDi_gl=(n_elm-1)*(totallocalnode-1)+1;
ENDi_g2=(n_elm-1)*(totallocalnode-1)+totallocalnode;

[InNIRTMTRXEND,detPhiEND]=Rot_IniEND(InitialPhiVIs(1:3,ENDi_g1:ENDi_g2),N END,N primeEND,N_scndEND);

O kst sk b o ook ok R ks R R sk R sk R sk kR sk R R sk kK ok

%Write Initial Phi Values to the file

%Displacenent Data
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fidDisp=fopen('TDFrMmS5000A119_11_01XExp 0025Incldeg.txt','w");
fprintf(fidDisp,'%4d\n',0);
for i_glbnode=1:totalglobalnode

fprintf(fidDisp,'%4d %+5.25¢ %+5.25¢ %+5.25¢\n’, ...

[i_glbnode InitialPhiVIs(1,i_glbnode) InitialPhiVIs(2,i_glbnode) InitialPhiVIs(3,i_glbnode)]);

end
fprintf(fidDisp,'%4d %+5.25¢ %+5.25¢\n',[0 angVel(1) angAcc(1)]);
fclose(fidDisp);

%Create Rotation file

fidROT=fopen('IRFrMm5000A119_I1_01XExp_0025Incldeg.txt','w");
fprintf(fidROT,'%4d\n',0);
fclose(fidROT);

O % 3%k sk ke s s ke o s o s s ook stk sk stk ke s o sk sk skokeok otk stk sk s sk sk sk kol ok stk stk kool sk sk skl skskskokokok kol ok

MalngNr(1:x_step)=zeros(1,x_step);
fori_step=1:n_step %1i_step
DTheta=0;
DeltaTheta=0;
Lambda=0;
if i_step<=x_step
BCNodes=BCNodel;
elseif i_step>x_step
BCNodes=BCNode2;
angVel(i_step)=angVel(i_step-1);
angAcc(i_step)=0;
end

cnvrg=[1];
i Itr=1;
n_step=8000; %Total Load Step

O %3k kb s sk ok sk ok sk sk seokeokeoksfofof sk s ok sk sk skokokofokskokok sokskoskokskskoskskok ok okokokokokokolkokokskskskskokokokokokokokokokok

% Calculate Deformed Configuration

while cnvrg(length(cnvrg))>1e-14 %cnvrg
%Initialize Global Stiffness and Residual Matrices
GlobalRsdIMtrx=sparse(6*(n_elm-1)*(totallocalnode-1)+6*totallocalnode, 1);
GlobalStiffMAT=sparse(6*(n_elm-1)*(totallocalnode-1)+6*totallocalnode, ...
6*(n_elm-1)*(totallocalnode-1)+6*totallocalnode);
GlobalStiffGEO=sparse(6*(n_elm-1)*(totallocalnode-1)+6*totallocalnode, ...
6*(n_elm-1)*(totallocalnode-1)+6*totallocalnode);
GlobalForce=sparse(6*(n_elm-1)*(totallocalnode-1)+6*totallocalnode, 1);
96**************************************************************************
fori_elm=1:n_elm% li_elm
i_gl=(i_elm-1)*(totallocalnode-1)+1;
i_g2=(i_elm-1)*(totallocalnode-1)+totallocalnode;
Philntmdt=InitialPhiV1s(1:3,i_gl:i_g2)+ ...
TotalDisp(1:3,i_gl:i g2);
Thetalntmdt=IncRot(1:3,i_gl:i g2);

%Initialize Element Stiffness and Residual Matrices
RsdIMtrx=sparse(totallocalnode*6,1);
stiff MA T=sparse(totallocalnode*6,totallocalnode*6);
stiff GEO=sparse(totallocalnode*6,totallocalnode*6);
96**************************************************************************
fori_Gauss=1:3 %FOR 1i_Gauss
[Phi,PhiS, Theta, ThetaS]=ShpFnc(Philntmdt, Thetalntmdt,N,N_prime,detPhi(i_elm,i_Gauss),i_Gauss);
R=R_Mtrx(Theta, ThetaS);
[ROT{i_elm,i_Gauss},T ROT]=rotation(Theta);

ROTMTRX=ROT({i_elm,i_Gauss}*PrevROTMTRX{i_elm,i_Gauss};
epsilon_alfa=PhiS-ROTMTRX*InIRTMTRX{i_elm,i_Gauss}(:,1);
Omega_alfa{i_elm,i_stept1,i_ Gauss}=T ROT*ThetaS+ROT{i_elm,i_Gauss}*Omega alfa{i_elm,i_step,i Gauss};
k alfa=Omega alfa{i elm,i step+1,i Gauss};
n_alfa=ROTMTRX*InIRTMTRX{i_elm,i_Gauss}*Cn ...
*transpose(ROTMTRX*InIRTMTRX {i_elm,i_Gauss})*epsilon_alfa;
m_alfa=ROTMTRX*InIRTMTRX{i_elm,i Gauss}*Cm ...
*transpose(ROTMTRX*InIRTMTRX {i_elm,i_Gauss})*k_alfa;
96**************************************************************************
%Record Forces and Moments
FORCE(i_elm,i_step,i_Gauss,1)=n_alfa(1);



FORCE(i_elm,i_step,i_Gauss,2)=n_alfa(2);
FORCE(i_elm,i_step,i_Gauss,3)=n_alfa(3);
MOMENT(i_elm,i_step,i_Gauss,l)=m_alfa(1);
MOMENT(_elm,i_step,i_Gauss,2)=m_alfa(2);
MOMENT(i_elm,i_step,i_Gauss,3)=m_alfa(3);

%**************************************************************************
H=H_MTRX(m_alfa,Theta, ThetaS);
%ELement Residual Vector

Al=n_alfa;
A2=transpose(SKEW(PhiS)*T_ROT)*n_alfa+ ...
(transpose(R+SKEW(k_alfa)*T_ROT))*m_alfa;
A3=transpose(T_ROT)*m_alfa;
for ii=1:totallocalnode %FOR 1_ii
for i=1:3 %x y z %for 1xyz i
RsdIMtrx(6*(ii-1)+i)=RsdIMtrx (6 *(ii-1)+i)+ ...
W(i_Gauss)*N_prime(i_Gauss,ii)*A1(i);
RsdIMtrx(6*(ii-1)+3+i)=RsdIMtrx(6*(ii-1)+3+i)+ ...
W(i_Gauss)*A2(1)*N(i_Gauss,ii)*detPhi(i_elm,i Gauss)+ ...
W(i_Gauss)*A3(i)*N_prime(i_Gauss,ii);
end %END Ixyz i
end %END 1_ii

%Element Tangent Material Matrix

BI=ROTMTRX*InIRTMTRX{i_elm,i_Gauss}*Cn*transpose(ROTMTRX*InIRTMTRX{i_elm,i Gauss});
BI11=ROTMTRX*InIRTMTRX{i_elm,i_Gauss}*Cm*transpose(ROTMTRX*InIRTMTRX{i_elm,i_Gauss});

B2=B1*SKEW(PhiS)*T_ROT;

Al=transpose(SKEW(PhiS)*T_ROT)*B1;

B3=transpose(SKEW(PhiS)*T_ROT)*B1*(SKEW(PhiS)*T_ROT)+ ...
transpose(R+SKEW(k_alfa)*T ROT)*B11*(R+SKEW(k_alfa)*T ROT);

B4=transpose(R+SKEW(k_alfa)*T ROT)*B11*T_ROT;

BS5=transpose(T_ROT)*B11*(R+SKEW(k_alfa)*T ROT);

Bo6=transpose(T_ROT)*B11*T_ROT;

for ii=1:totallocalnode %2 _ii
for jj=I:totallocalnode %1_jj
for i=1:3 %2xyz i
for j=1:3 %lxyz j

stifft MAT(6*(ii-1)+1,6*(jj-1)+))=stift MAT(6*(ii- 1)+1,6 *(jj- 1) +Hj)+ ...
W(i_Gauss)*B1(i,j)*N_prime(i_Gauss,ii)*N_prime(i_Gauss,jj)/ ...
detPhi(i_elm,i_Gauss);

stifft MAT(6*(ii-1)+3+1,6 *(jj-1)+j)=stif MAT(6*(ii- 1 +3+1,6 *(jj- 1)+ + ...
W(i_Gauss)*A1(1,j)*N(i_Gauss,ii)*N_prime(i_Gauss.jj);

stifft MAT(6*(ii-1)+1,6*(jj-1)+3+j)=stif MAT(6*(ii- 1 )+1,6 *(jj-1)+3+))+ ...
W(i_Gauss)*B2(i,j)*N_prime(i_Gauss,ii)*N(i_Gauss,jj);

stifft MAT(6*(ii-1)+3+1,6 *(jj-1)+3+))=stifft MAT(6*(ii- 1 ) +3+1,6 *(jj-1)+3+j)+ ...

W(i_Gauss)*B3(i,j)*N(i_Gauss,ii)*N(i_Gauss,jj)*detPhi(i_elm,i_Gauss)+ ...

W(i_Gauss)*B5(i,j)*N_prime(i_Gauss,ii)*N(i_Gauss,jj)+ ...
W(i_Gauss)*B4(i,j)*N(i_Gauss,ii)*N_prime(i_Gauss,jj)+ ...
W(i_Gauss)*B6(i,j)*N_prime(i_Gauss,ii)*N_prime(i_Gauss,jj)/ ...
detPhi(i_elm,i_Gauss);
end %lxyz j
end %2xyz i
end %1_jj
end %2 _ii

% Element Tangent Geometric Matrix

B2=-SKEW(n_alfa)*T_ROT;
Al=transpose(T_ROT)*SKEW(n_alfa);
B3=transpose(T_ROT)*SKEW(k alfa)*skew(m_alfa)*T ROT+ ...
Sum_Mtrx(Theta, SKEW(m_alfa)*k_alfa)+ ...
transpose(T_ROT)*SKEW(m_alfa)*R-transpose(R)*SKEW(m_alfa)*T_ROT+ ...
H+ ...
transpose(T_ROT)*SKEW(PhiS)*SKEW(n_alfa)*T_ROT+ ...
Sum_Mtrx(Theta, SKEW(n_alfa)*PhiS);
B4=transpose(T_ROT)*SKEW(m_alfa)*T_ROT+transpose(Sum_Mtrx(Theta,m_alfa));
B5=-transpose(T_ROT)*SKEW(m_alfa)*T ROT-+Sum_Mtrx(Theta,m_alfa);

for ii=1:totallocalnode %3_ii
for jj=1:totallocalnode %2 _jj
for i=1:3 %3xyz_i
for j=1:3 %2xyz_j
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stiff GEO(6*(ii-1)+1,6*(jj-1)+j)=stiffGEO(6*(ii- 1)+1,6 *(jj-1)+j)+0;

stiff GEO(6*(1i-1)+3+1,6*(jj-1)+))=stift GEO(6* (ii- 1 )+3+1,6*(jj- 1 )+j)+ ...
W(i_Gauss)*A1(1,j)*N(i_Gauss,ii)*N_prime(i_Gauss.jj);

stiff GEO(6*(ii-1)+1,6*(jj-1)+3+))=stiff GEO(6* (ii- 1 )+i,6 *(jj-1)+3+j)+ ...
W(i_Gauss)*B2(i,j)*N_prime(i_Gauss,ii)*N(i_Gauss,jj);

stiffGEO(6*(ii-1)+3+1,6 *(jj-1)+3+))=stift GEO(6*(1i-1)+3+1,6*(jj-1)+3+j)+ ...

W(i_Gauss)*B3(i,j)*N(i_Gauss,ii)*N(i_Gauss,jj)*detPhi(i_elm,i_Gauss)+ ...

W(i_Gauss)*B5(i,j)*N_prime(i_Gauss,ii)*N(i_Gauss,jj)+ ...
W(i_Gauss)*B4(i,j)*N(i_Gauss,ii)*N_prime(i_Gauss,jj);

end %2xyz_j
end %3xyz i
end %2 _jj
end %3 _ii

end %1_i_Gauss

%Update Global Stiffness Matrix

GlobalNodel1=6*(i_elm-1)*(totallocalnode-1)-+1;

GlobalNode2=6*(i_elm-1)*(totallocalnode-1)+6*totallocalnode;

GlobalRsdIMtrx(GlobalNodel:GlobalNode2)=GlobalRsdIMtrx(GlobalNode1:GlobalNode2)+ ...

RsdIMtrx;

GlobalStiffMAT(GlobalNodel:GlobalNode2,GlobalNodel:GlobalNode2)= ...
GlobalStiffMAT(GlobalNodel:GlobalNode2,GlobalNodel:GlobalNode2)+ ...
stifft MAT;

GlobalStiffGEO(GlobalNode1:GlobalNode2,GlobalNodel:GlobalNode2)= ...
GlobalStiffGEO(GlobalNodel:GlobalNode2,GlobalNodel:GlobalNode2)+ ...
stiff GEO;

end %li_elm

%Assemble Global Stfiness

GlobalStiff=GlobalStiffMAT+GlobalStiffGEO;
[glbSN, glbSM]=size(GlobalStiff);

%Calculate total Force Vector

TotalForceVec=-GlobalRsdIMtrx;
[glbFN,glbFM]=size(TotalForceVec);
ifi_step<=x_step %IFxxx
GlobalStiff=GlobalStiff(7:(glbSN-6),7:(glbSM-6));
TotalForceVec=TotalForceVec(7:(glbFN-6),1);
elseif i_step>x_step

%Update according to constraints

rlvec=EndROTMTRX*rl1zero;
DRrot=[DeltaR(Thetalntmdt(:,4),r1vec)*n_rot2(:,2);n_rot2(:,2)];
S1=GlobalStiff(1:(6*totalglobalnode-6),1:(6*totalglobalnode-6));
S2=GlobalStiff(1:(6*totalglobalnode-6),(6*totalglobalnode-6+1):6*totalglobalnode);
S3=GlobalStiff((6*totalglobalnode-6+1):6*totalglobalnode, 1:(6*totalglobalnode-6));

S4=GlobalStiff((6*totalglobalnode-6+1):6*totalglobalnode,(6*totalglobalnode-6+1):6*totalglobalnode);

GlobalStiff=[S1,S2*DRrot;transpose(DRrot)*S3,transpose(DRrot)*S4*DRrot];
%~Update according to constraints
F1=TotalForceVec(1:(6*totalglobalnode-6),1);
F2=TotalForceVec((6*totalglobalnode-6+1):6*totalglobalnode, 1);
TotalForceVec=[F1;transpose(DRrot)*F2];

%Apply BCs

BCNodes1=6%(n_elm-1)*(totallocalnode-1)+6*totallocalnode;

TotalForceVec=TotalForceVec(7:(BCNodes1-6+1),1);
GlobalStiff=GlobalStiff(7:(BCNodes1-6+1),7:(BCNodes1-6+1));

Ok kst s R KK SR K SRR K SRR KK SRR K ok

%cCalculate Forces and Moments at the end of beam

ENDi_gl=(n_elm-1)*(totallocalnode-1)+1;
ENDi_g2=(n_elm-1)*(totallocalnode-1)+totallocalnode;
PhilntmdtEND=InitialPhiV1s(1:3,ENDi_gl:ENDi g2)+ ...

TotalDisp(1:3,ENDi_gl:ENDi_g2);

ThetalntmdtEND=IncRot(1:3,ENDi_gl:ENDi_g2);
[PhiEND,PhiSEND, ThetaEND, ThetaSEND]=ShpFncEND(PhilntmdtEND, ThetaIntmdtEND,N_END,N_primeEND,detPhiEND);
[ROTEND,T _ROTEND]=rotation(ThetaEND);
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%Strains at the end of coupling

epsilon_alfaEND=PhiSEND-ROTEND*EndROTMTRX*InIRTMTRXEND(:,1);
Omega_alfaENDC(:,i_step+1)=T ROTEND*ThetaSEND+ROTEND*Omega_alfaEND(:,i_step);
k_alfaEND=Omega_alfaENDC(:,i_step+1);

%Forces and Moment at the end of coupling

n_alfaEND=ROTEND*EndROTMTRX*InIRTMTRXEND*Cn ...
*transpose(ROTEND*EndROTMTRX*InIRTMTRXEND)*epsilon_alfaEND;

m_alfaEND=ROTEND*EndROTMTRX*InNIRTMTRXEND*Cm ...
*transpose(ROTEND*EndROTMTRX*InIRTMTRXEND)*k alfaEND;

%New location of END Radius Vector

RASEND=ROTEND*EndROTMTRX*rlzero;
%Save Force- Moment- r

MomentEND(:,i_step)=m_alfaEND;
ForceEND(:,i_step)=n_alfaEND;
RValuesENDC(:,i_step)=RdsEND;

%Moment along rotation axis=Inertia*(Theta"")

MalngNr(i_step)=transpose(n_rot2(:,2))*(SKEW(RdsEND)*(n_alfaEND)+m_alfaEND)+Inertia*angAcc(i_step);

%*****************************************************************

bl=(ROTEND*EndROTMTRX*InIRTMTRXEND*transpose(Cn)*transpose(ROTEND*EndROTMTRX*InIRTMTRXEND)) ...
*SKEW(n_rot2(:,2))*RdsEND;
b2=(ROTEND*EndROTMTRX*InIRTMTRXEND*transpose(Cm)*transpose(ROTEND*EndROTMTRX*InIRTMTRXEND))*n_rot2(:,2);
X=SKEW(RASEND);
Fl1=bl;
F2=transpose(SKEW(PhiSEND)*T_ROTEND)*bl;
OmTH=SKEW(T_ROTEND*ThetaSEND);
REnd=R_Mtrx(ThetaEND,ThetaSEND);
F3=transpose(OmTH*T_ROTEND)*b2+transpose(REnd)*b2;
F4=transpose(T_ROTEND)*b2;
Gl=transpose(SKEW(b1))*T_ROTEND;
G2=transpose(G1);
G3=transpose(T_ROTEND)*SKEW(PhiSEND)*SKEW(b1)*T ROTEND+Sum_Mitrx(ThetaEND,SKEW(b1)*PhiSEND);
G4=transpose(T_ROTEND)*OmTH*SKEW(b2)*T_ROTEND+Sum_Mtrx(ThetaEND,SKEW(b2)*PhiSEND)+ ...
transpose(T_ROTEND)*SKEW (b2)*REnd-transpose(REnd)*SKEW(b2)*T_ROTEND+ ...
H MTRX(b2,ThetaEND,ThetaSEND);
G5=transpose(T_ROTEND)*SKEW(b2)*T_ROTEND-+transpose(Sum_Mtrx(ThetaEND,b2));
Go6=-transpose(T_ROTEND)*SKEW(b2)*T ROTEND+Sum_Mtrx(ThetaEND,b2);
%ADD Variations
%TotalForce Vector
[ROW,CLM]=size(GlobalStiff);
%Add Lamda Part
TotalForceVec=[TotalForceVec;0];
GlobalStiff=[[GlobalStiff;zeros(1,CLM)],zeros(ROW+1,1)];
%Update Total Force Vector
%DPhil-DThetal
iCk1Phi=6*(n_elm-1)*(totallocalnode-1)+1-6;%First Node Deleted
iCk1ndPhi=iCk1Phi+2;
iCk1RT=6*(n_elm-1)*(totallocalnode-1)+3+1-6;%First Node Deleted
iCkIndRT=iCk1RT+2;
TotalForceVec(iCk1Phi:iCk 1ndPhi,1)=TotalForceVec(iCk1Phi:iCk1ndPhi,1)- ...
Lambda*N_primeEND(1)/detPhiEND*F1;
TotalForceVec(iCk1RT:iCkIndRT,1)=TotalForceVec(iCk1RT:iCkIndRT,1)- ...
Lambda*N_primeEND(1)/detPhiEND*F4;
%DPhi2-DTheta2
iCk2Phi=iCk1Phi+6;
iCk2ndPhi=iCk2Phi+2;
iCk2RT=iCk1RT+6;
iCk2ndRT=iCk2RT+2;
TotalForceVec(iCk2Phi:iCk2ndPhi, 1 )=TotalForceVec(iCk2Phi:iCk2ndPhi,1)- ...
Lambda*N_primeEND(2)/detPhiEND*F1;
TotalForceVec(iCk2RT:iCk2ndRT,1)=TotalForceVec(iCk2RT:iCk2ndRT,1)- ...
Lambda*N_primeEND(2)/detPhiEND*F4;
%DPhi3-DTheta3
iCk3Phi=iCk2Phi+6;
iCk3ndPhi=iCk3Phi+2;
iCk3RT=iCk2RT+6;
iCk3ndRT=iCk3RT+2;
TotalForceVec(iCk3Phi:iCk3ndPhi, 1)=TotalForceVec(iCk3Phi:iCk3ndPhi,1)- ...
Lambda*N_primeEND(3)/detPhiEND*F1;



TotalForceVec(iCk3RT:iCk3ndRT,1)=TotalForceVec(iCk3RT:iCk3ndRT,1)- ...
Lambda*N_primeEND(3)/detPhiEND*F4;
%DThetaR
TotalForceVec(ROW,1)=TotalForceVec(ROW,1)-Lambda*Inertia/DTime/DTime- ...
Lambda*(N_primeEND(4)/detPhiEND*transpose(n_rot2(:,2))*(-transpose(X*T_ROTEND)*F1+F4)- ...
transpose(n_rot2(:,2))*(F2+F3))- ...
Inertia*angAcc(i_step);
%DLamda
TotalForceVec(ROW+1,1)=TotalForceVec(ROW+1,1)-MalngNr(i_step);
%
%GlobalStiffness Matrix
%
%DLamda*[XX]*DeltaPhil
GlobalStiffROW+1,iCk1Phi:iCk 1ndPhi)=GlobalStif (ROW+1,iCk1Phi:iCk IndPhi)+ ...
N_primeEND(1)/detPhiEND*transpose(F1);
%DPhi1*[XX]*DeltaLambda
GlobalStiff(iCk1Phi:iCk1ndPhi,CLM+1)=GlobalStiff(iCk1Phi:iCk IndPhi, CLM+1)+ ...
N_primeEND(1)/detPhiEND*(F1);

%DLamda*[XX]*DeltaThetal

GlobalStiff ROW+1,iCk1RT:iCk 1ndRT)=GlobalStif (ROW+1,iCkIRT:iCk IndRT)+ ...
N_primeEND(1)/detPhiEND*transpose(F4);

%DThetal*[XX]*DeltaLambda

GlobalStiff(iCkIRT:iCk IndRT,CLM+1)=GlobalStiff(iCk IRT:iCk IndRT,CLM+1)+ ...
N_primeEND(1)/detPhiEND*(F4);

%DLamda*[XX]*DeltaPhi2

GlobalStiff(ROW+1,iCk2Phi:iCk2ndPhi)=GlobalStif(ROW+1,iCk2Phi:iCk2ndPhi)+ ...
N_primeEND(2)/detPhiEND*transpose(F1);

%DPhi2*[XX]*DeltaLambda
GlobalStiff(iCk2Phi:iCk2ndPhi,CLM+1)=GlobalStiff(iCk2Phi:iCk2ndPhi, CLM+1)+ ...
N_primeEND(2)/detPhiEND*(F1);
%DLamda*[XX]*DeltaTheta2
GlobalStiff(ROW+1,iCk2RT:iCk2ndRT)=GlobalStif( ROW+1,iCk2RT:iCk2ndRT)+ ...
N_primeEND(2)/detPhiEND*transpose(F4);
%DTheta2*[XX]*DeltaLambda
GlobalStiff(iCk2RT:iCk2ndRT,CLM+1)=GlobalStiffiCk2RT:iCk2ndRT,CLM+1 )+ ...
N_primeEND(2)/detPhiEND*(F4);
%DLamda*[XX]*DeltaPhi3
GlobalStiff(ROW+1,iCk3Phi:iCk3ndPhi)=GlobalStiff(ROW+1,iCk3Phi:iCk3ndPhi)+ ...
N_primeEND(3)/detPhiEND*transpose(F1);
%DPhi3*[XX]*DeltaLambda
GlobalStiff(iCk3Phi:iCk3ndPhi,CLM+1)=GlobalStiff(iCk3Phi:iCk3ndPhi, CLM+1)+ ...
N_primeEND(3)/detPhiEND*(F1);

%DLamda*[XX]*DeltaTheta3
GlobalStiff ROW+1,iCk3RT:iCk3ndRT)=GlobalStif (ROW+1,iCk3RT:iCk3ndRT)+ ...
N_primeEND(3)/detPhiEND*transpose(F4);
%DTheta3*[XX]*DeltaLambda
GlobalStiff(iCk3RT:iCk3ndRT,CLM+1)=GlobalStiffiCk3RT:iCk3ndRT,CLM+1)+ ...
N_primeEND(3)/detPhiEND*(F4);

%DLambda[XX]DeltaThetaR

GlobalStiff(ROW+1,CLM)=GlobalStiff(ROW+1,CLM)+Inertia/DTime/DTime+ ...
transpose(F2+F3)*n_rot2(:,2)+ ...
N_primeEND(4)/detPhiEND*(-transpose(F1)*X*T_ROTEND-+transpose(F4))*n_rot2(:,2);

%DThetaR*[XX]*DeltaLamda

GlobalStiff(ROW,CLM+1)=GlobalStif ROW,CLM+1)+Inertia/DTime/DTime+ ...
transpose(n_rot2(:,2))*(F2+F3)+ ...
N_primeEND(4)/detPhiEND*transpose(n_rot2(:,2))*(-transpose(X*T_ROTEND)*F1+F4);

%DPhi1*[XX]*DeltaThetaR

GlobalStiff(iCk 1 Phi:iCk 1ndPhi,CLM)=GlobalStiff(iCk 1 Phi:iCk 1ndPhi,CLM)+ ...
Lambda*N_primeEND(1)/detPhiEND*G1*n_rot2(:,2);

%DPhi2*[XX]*DeltaThetaR

GlobalStiff(iCk2Phi:iCk2ndPhi,CLM)=GlobalStiff(iCk2Phi:iCk2ndPhi,CLM)+ ...
Lambda*N_primeEND(2)/detPhiEND*G1*n_rot2(:,2);

%DPhi3*[XX]*DeltaThetaR

GlobalStiff(iCk3Phi:iCk3ndPhi,CLM)=GlobalStiff(iCk3Phi:iCk3ndPhi,CLM)+ ...
Lambda*N_primeEND(2)/detPhiEND*G1*n_rot2(:,2);

%DThetaR*[XX]*DeltaPhil

GlobalStiff(ROW,iCk1Phi:iCk 1ndPhi)=GlobalStiff ROW,iCk 1 Phi:iCk 1ndPhi)+...
Lambda*N_primeEND(1)/detPhiEND*transpose(n_rot2(:,2))*G2;

%DThetaR*[XX]*DeltaPhi2

GlobalStiff(ROW,iCk2Phi:iCk2ndPhi)=GlobalStiff ROW,iCk2Phi:iCk2ndPhi)+...
Lambda*N_primeEND(2)/detPhiEND*transpose(n_rot2(:,2))*G2;

%DThetaR*[XX]*DeltaPhi3

GlobalStiff(ROW,iCk3Phi:iCk3ndPhi)=GlobalStiff ROW,iCk3Phi:iCk3ndPhi)+...



Lambda*N_primeEND(3)/detPhiEND*transpose(n_rot2(:,2))*G2;
%DThetal*[XX]*DeltaThetaR

GlobalStiff(iCk 1RT:iCk 1ndRT,CLM)=GlobalStiff(iCk 1RT:iCk IndRT,CLM)+ ...
Lambda*N_primeEND(1)/detPhiEND*G6*n_rot2(:,2);
%DTheta2*[XX]*DeltaThetaR
GlobalStiff(iCk2RT:iCk2ndRT,CLM)=GlobalStiff(iCk2RT:iCk2ndRT,CLM)+ ...
Lambda*N_primeEND(2)/detPhiEND*G6*n_rot2(:,2);
%DTheta3*[XX]*DeltaThetaR
GlobalStiff(iCk3RT:iCk3ndRT,CLM)=GlobalStiff(iCk3RT:iCk3ndRT,CLM)+ ...
Lambda*N_primeEND(3)/detPhiEND*G6*n_rot2(:,2);
%DThetaR*[XX]*DeltaThetal
GlobalStiff(ROW,iCk1RT:iCk1ndRT)=GlobalStiff(ROW,iCk1RT:iCk1ndRT)+...
Lambda*N_primeEND(1)/detPhiEND*transpose(n_rot2(:,2))*G5;
%DThetaR*[XX]*DeltaTheta2
GlobalStiff(ROW,iCk2RT:iCk2ndRT)=GlobalStiff(ROW,iCk2RT:iCk2ndRT)+...
Lambda*N_primeEND(2)/detPhiEND*transpose(n_rot2(:,2))*G5;
%DThetaR*[XX]*DeltaTheta3
GlobalStiff(ROW,iCk3RT:iCk3ndRT)=GlobalStiff(ROW,iCk3RT:iCk3ndRT)+...
Lambda*N_primeEND(1)/detPhiEND*transpose(n_rot2(:,2))*G5;
%DthetaR*[XX]*DeltaThetaR
GlobalStiffROW,CLM)=GlobalStif ROW,CLM)+ ...
Lambda*N_primeEND(4)/detPhiEND*transpose(n_rot2(:,2))* ...

(-transpose(X*T_ROTEND)*G1-G2*X*T ROTEND+G5+G6)*n_rot2(:,2)+ ...

Lambda*transpose(nirotZ(:,2))*(G3+G4)*n7r8t2(:,2)+
Inertia/DTime/DTime;

%**************************************************************************

end% END of Ifxxx

%Solve for Increments
DeltaInc=GlobalStiff\TotalForceVec;
%Update
BCnumber=0;
i BC=0;
BCentr=1;
if i_step>x_step
Lambda=Lambda+Deltalnc(ROW+1);
Deltalnc=Deltalnc(1:ROW);
end
for i_globalnode=1:totalglobalnode
if any(i_globalnode==(BCNodes))
DeltaDisp((3*(i_globalnode-1)+1):3*i_globalnode,1)=[0;0;0];
DeltaRot((3*(i_globalnode-1)+1):3*i_globalnode,1)=[0;0;0];
BCnumber=BCnumber+1;
i BC=i_BC+1;
BCcentr=BCcntr+1;
elseif all(i_globalnode~=BCNodes)&(i_globalnode~=totalglobalnode)
Check1=(i_globalnode>=BCNodes(i_BC));
iChecknode1=6*(i_globalnode-1)+1-6*BCnumber*Checkl;
iChecknode2=6*i_globalnode-3-6*BCnumber*Check]1;
iChecknode3=6*(i_globalnode-1)+4-6*BCnumber*Checkl;
iChecknode4=6*i_globalnode-6*BCnumber*Checkl;
DeltaDisp((3*(i_globalnode-1)+1):3*i_globalnode,1)= ...
Deltalnc(iChecknodel:iChecknode?2);
TotalDisp(1:3,i_globalnode)=TotalDisp(1:3,i_globalnode)+ ...
Deltalnc(iChecknodel:iChecknode2);
DeltaRot((3*(i_globalnode-1)+1):3*i_globalnode,1)= ...
Deltalnc(iChecknode3:iChecknode4);
IncRot(1:3,i_globalnode)=IncRot(1:3,i_globalnode)+ ...
Deltalnc(iChecknode3:iChecknode4);

elseif (i_globalnode==totalglobalnode)&(i_step>x_step)
%Update last node
IncRot(1:3,totalglobalnode)=IncRot(1:3,totalglobalnode)+ ...
Deltalnc(length(Deltalnc))*n_rot2(:,2);

[updROT,dummyT]=rotation(IncRot(1:3,totalglobalnode));

TotalDisp(1:3,totalglobalnode)=lzero+updROT*EndROTMTRX*r1zero ...

+[0;0;PrIMis]-InitialPhiV1s(1:3,totalglobalnode);
DeltaTheta=Deltalnc(length(Deltalnc));
DTheta=DTheta+DeltaTheta;
angVel(i_step)=DTheta/DTime;
angAcc(i_step)=(angVel(i_step)-angVel(i_step-1))/DTime;
end %END of if
end %end of for
%Update Lambda
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cnvrg=[cnvrg;sqrt(transpose(DeltaDisp)*DeltaDisp)+ ...

sqrt(transpose(DeltaRot)*DeltaRot)];

disp([' i_step=",num2str(i_step,'%d")]);
disp(['cnvrg=",num2str(cnvrg(length(cnvrg)),'%0.10e")])
disp(['DTheta=",num2str(DTheta,'%0.15¢")])

disp([' DROT2=",num2str(DROT2,'%0.15¢")])
disp(['DTheta-DROT2=",num2str((DTheta-DROT2),'%0.15¢")])
disp(['Inital Velocity=",num2str(angVel(x_step),'%0.15¢")])
disp(['Angular Velocity=",num2str(angVel(i_step),'%0.15¢")])
disp(['Angular Acceleration=",num2str(angAcc(i_step),'%0.15¢")])
disp(['MomentAlong_Nr=',num2str(MalngNr(i_step),'%0.15¢")])
disp(['Lambda=",num2str(Lambda,'%0.15¢")]);

i

Itr=i_Itr+1;

end %End of While

%

Write to file

%Displacenent Data

fidDisp=fopen('TDFrMm5000A119 11 01XExp 0025Incldeg.txt')'a");
fprintf(fidDisp,'%4d\n',i_step);

for i_glbnode=1:totalglobalnode

fprintf(fidDisp,'%4d %+5.25¢ %+5.25¢ %+5.25¢e\n), ...
[i_glbnode TotalDisp(1,i_glbnode) TotalDisp(2,i_glbnode) TotalDisp(3,i_glbnode)]);

end
fprintf(fidDisp,'%4d %+5.25¢ %+5.25¢e\n',[i_step angVel(i_step) angAcc(i_step)]);

fcl

ose(fidDisp);

%Rotation Data
fidROT=fopen('IRFrMmS5000A119 11 _01XExp 0025Incldeg.txt','a");
fprintf(fidROT,'%4d\n',i_step);
for i_glbnode=1:totalglobalnode

fprintf(fidROT,'%4d %+5.25¢ %+5.25¢ %+5.25€e\n', ...
[i_glbnode IncRot(1,i_glbnode) IncRot(2,i glbnode) IncRot(3,i_glbnode)]);

end
fclose(fidROT);
%Update for next iteration

%

Update EndROTMTRX
[EndROT,dummT]=rotation(IncRot(1:3,totalglobalnode));
EndROTMTRX=EndROT*EndROTMTRX;
%update Omega_alfaEND
if i_step<=x_step
ENDi_gl=(n_elm-1)*(totallocalnode-1)+1;
ENDi_g2=(n_elm-1)*(totallocalnode-1)+totallocalnode;
PhilntmdtEND=InitialPhiV1s(1:3,ENDi_g1:ENDi_g2)+ ...
TotalDisp(1:3,ENDi_gl:ENDi_g2);
ThetalntmdtEND=IncRot(1:3,ENDi_gl:ENDi_g2);
[PhiEND,PhiSEND, ThetaEND, ThetaSEND]=ShpFncEND(PhilntmdtEND, ThetaIntmdtEND,N_END,N _primeEND,detPhiEND);
[ROTEND,T _ROTEND]=rotation(ThetaEND);
Omega_alfaEND(:,i_stept+1)=T ROTEND*ThetaSEND+ROTEND*Omega_alfaEND(:,i_step);
IncRot=zeros(3,totalglobalnode);
fori elm=I1:n_elm
fori Gauss=1:n_Gauss
PrevROTMTRX{i_elm,i Gauss}=ROT({i_elm,i_Gauss}*PrevROTMTRX{i_elm,i Gauss};
end
end
if i_step<x_step
if (i_step<x_stepAng)
IncRot(1:3,totalglobalnode)=DROT1*n_rotl;
[antROT,dummyROT ]=rotation(IncRot(1:3,totalglobalnode));
TotalDisp(1:3,totalglobalnode)=lzero+antROT*EndROTMTRX*r1zero ...
-InitialPhiVls(1:3,totalglobalnode);
elseif (i_step>=x_stepAng)
IncRot(1:3,totalglobalnode)=[0;0;07;
TotalDisp(1:3,totalglobalnode)=TotalDisp(1:3,totalglobalnode)+[0;0;DPMis];
end
elseif'i_step>=x_step
IncRot(1:3,1)=DROT2*n_rot2(:,1);
[firstROT,dummyT]=rotation(IncRot(1:3,1));
firstROTMTRX=firstROT*firstROTMTRX;
TotalDisp(1:3,1)=firstROTMTRX*r2zero-InitialPhiV1s(1:3,1);
end

if any(i_step==[1:35:n_step])
save TFreMmt5000A119 11 01XExp 0025Incldeg.mat

end
end

%]1i_step
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