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CHAOTIC MODULATION AND ALPHA-STABLE NOISE PARAMETER 

MODULATION METHODS IN SPREAD SPECTRUM COMMUNICATION 

 

ABSTRACT 

 

With the inspiration from the chaotic communication systems, in which noise like 

signals, chaotic signals, have been used as carrier signals due to their broad-band 

frequency spectrum, which have been widely studied in the last twenty years as an 

alternative to the conventional spread spectrum techniques by the discovery of the 

synchronization of chaotic dynamical systems. In this thesis, new random 

communication systems in which noise itself is used as a random carrier instead of 

using chaotic carrier have been introduced.  

 

Motivation at the beginning stage of this thesis was to develop more secure 

chaotic communication systems since the security in the existing chaotic 

communication systems could have been easily broken. With this motivation, at the 

second chapter of the thesis, after introducing the main ideas of the existing chaotic 

communication systems, new  secure chaotic communication system operating at 

high frequencies  for wireless communication have been introduced. 

 

At the third chapter of the thesis, after introducing the particle filters which was 

developed to estimate the states of the nonlinear dynamical systems in non-Gaussian 

environments, by the newly proposed communication schemes, secure recovering of 

the message signal has been aimed by masking the message carrying chaotic signal 

with impulsive noise and transmitting it through the Gaussian noise channel and 

estimating the chaotic signal by using particle filter while achieving synchronization 

of the receiver with the transmitter. 

 

At the fourth chapter, in the newly proposed random communication schemes, 

random signals with alpha stable distributions produced in the transmitter part are 

sent to the receiver through the Gaussian noise channel as random carriers of binary 

coded message signal. At the receiver part, random carriers mixed with the Gaussian 
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noise are estimated by least squares, correntropy and fractional order moments 

methods and hence the binary message signal may be recovered. With these newly 

proposed unique secure random communication schemes of which satisfactory bit 

error performances have been obtained, triggering of further studies in random 

communication field is expected. 

 

Keywords: Random Communication, Random Carrier, Alpha Stable Distributions, 

Detection of Alpha Stable Distributed Signals, Chaotic Communication, Chaotic 

Carrier, Chaotic Synchronization, Spread-Spectrum Communication, Particle Filters. 
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GENİŞ BANDLI HABERLEŞMEDE KAOTİK MODÜLASYON VE ALFA-

KARARLI GÜRÜLTÜ PARAMERE MODÜLASYONU YÖNTEMLERİ 

 

ÖZ 

 

Bu tezde, geleneksel geniş bandlı haberleşme tekniklerine alternatif olarak, son 

yirmi yılda kaotik dinamik sistemlerin senkronize edilebilmesiyle birlikte geliştirilen 

ve gürültü benzeri geniş spektruma sahip kaotik işaretleri taşıyıcı işaret olarak 

kullanan kaotik haberleşme sistemlerinden esinlenerek, gürültü benzeri kaotik 

taşıyıcı işaret kullanmak yerine, gürültünün kendisini taşıyıcı işaret olarak kullanan 

rassal haberleşme sistemleri sunulmuştur. 

 

Bu tezin başlangıç aşamasındaki itilgücü, literatürde var olan kaotik haberleşme 

sistemlerindeki gizliliğin kırılabilir olmasından dolayı, yüksek frekanslarda 

çalışabilecek daha güvenli yeni kaotik haberleşme sistemlerini geliştirmek olmuştur. 

Bu itilgüç ile tezin ikinci bölümünde, literatürdeki kaotik haberleşme sistemleri ana 

hatları ile sunulduktan sonra, kablosuz haberleşme sistemlerinde kullanılabilecek, 

kaotik taşıyıcı işareti istenen yüksek frekanslara taşıyan, yeni bir kaotik haberleşme 

sistemi sunulmuştur. 

 

Üçüncü bölümde ise Gauss olmayan dağılımlara sahip gürültülü ortamlarda 

doğrusal olmayan dinamik sistemlerin durumlarının kestirilmesi için geliştirilmiş 

olan parçacık süzgeçleri sunulduktan sonra, yeni önerilen kaotik haberleşme sistemi 

ile dürtüsel dağılımla maskelenmiş kaotik işaretin Gauss gürültülü kanal boyunca 

iletildikten sonra alıcı tarafında parçacık süzgeci ile kestirilip alıcı tarafındaki kaotik 

dinamik sistemin verici tarafındaki kaotik dinamik sistemle senkronize edilmesiyle, 

ileti işaretinin güvenli bir şekilde tekrardan oluşturulması amaçlanmıştır. 

 

Tezin dördüncü bölümünde literatüre yeni olarak önerilen rassal haberleşme 

sistemlerinde, iletici kısmında üretilen alfa kararlı dağılıma sahip rassal işaretler, 

taşıyıcı işaret olarak, ikili kodlanmış ileti işaretini Gauss gürültüsüne sahip kanal 

boyunca alıcıya iletmektedirler. Alıcı kısmına Gauss gürültüsüyle karışmış olarak 
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ulaşan rassal işaretler, alıcı kısmında önerilen en küçük kareler, özilinti, kesirli düşük 

mertebeden moment yöntemlerine dayanarak kestirildikten sonra ikili kodlanmış ileti 

alıcıda tekrardan oluşturulabilmiştir. Tatmin edici bit hata başarımları hesaplanan, bu 

önerilen ilk rassal haberleşme sistemleri ile, güvenli haberleşme açısından literatürde 

var olan yöntemler üzerinde güvenilirlik açısından üstünlük sağlanmakta olup, rassal 

haberleşme alanında daha ileri çalışmaların tetiklenmesi beklenmektedir. 

 

Anahtar Sözcükler: Rassal Haberleşme, Rassal Taşıyıcı, Alfa Kararlı Dağılımlar, 

Alfa Kararlı İşaretlerin Kestirimi, Kaotik Haberleşme,  Kaotik Taşıyıcı, Kaotik 

Senkronizasyon, Geniş Bandlı Haberleşme, Parçacık Süzgeçleri 
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CHAPTER ONE 

INTRODUCTION 
 

Developing spectrum spreading techniques have growing interest in signal 

processing for secure communication. Necessity of spreading the spectrum arose 

from other reasons such as antijamming and antiinterference, reducing the 

probability of intercept, performing multiple user access, high resolution ranging and 

accurate universal timing (Haykin, 1994).  

 

Due to the security requirement in cable or wireless communication, it has been 

essential to develop several signal processing techniques in last decades. The main 

purpose is to convert the narrow-band information carrying signal into wide-band 

through the frequency spectrum. In other words, the communication systems based 

on frequency spreading has been called as spread-spectrum communication in 

(Haykin, 1994). 

 

A communication system can be considered as spread-spectrum system if the 

following conditions are satisfied (Pickholtz et. al.,1982).  

 

• The bandwidth of the transmitted signal must be much greater than the 

bandwidth of the message signal.  

• Second, the transmitted message bandwidth must be achieved by a 

function which is known by the receiver and it is independent from the 

message signal.  

 

This function composed by a specified code which converts the narrow-band signal 

into a wide-band signal is called spreading code. Hence, the conventional 

modulation techniques such as FM and PCM can not be addressed as spread-

spectrum although these techniques also spread the spectrum of the information 

signal, since the second requirement is not satisfied.  
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1.1 Conventional Spread-Spectrum Techniques 
 

The spread-spectrum systems can be classified in accordance to the modulation 

types which are direct sequence (Pickholtz et. al.,1982), frequency hopping (Haykin, 

1994), time hopping (Win & Scholtz, 2000), chirp (Kowatsch & Lafferl, 1983), and 

hybrid modulation (Geranoitis, 1985,1986). Among these modulation methods, most 

frequently used ones are the direct sequence and frequency hopped spread spectrum 

systems which are explained in the following sections.  

1.1.1 Direct-Sequence Spread-Spectrum 
 

In this spread spectrum technique, binary data sequence is modulated by a wide-

band code which is called as pseudo-noise (PN) sequence. Figure 1.1 illustrates the 

block diagram for the direct sequence spread-spectrum binary phase shift keying 

(BPSK) system. Since the binary message is encoded by generated noise-like 

sequence directly, the method is called as direct sequence spread-spectrum (DSSS) 

technique which spreads the frequency content of the message signal.  

 
Figure 1.1 Block diagram of the direct sequence spread-binary PSK system. 

 

The resulting wide-band code is modulated by phase shift keying (PSK) as the 

second stage. The length of the code is determined by the number of feedback shift 

registers used to generate the PN sequence. When the used memory units increases, 
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then the period of the generated code is also increased. The modulated data with 

increased period exhibits a noise-like behaviour.  

1.1.2 Frequency Hopped Spread Spectrum 
 

The type of spread spectrum in which the carrier hops randomly from one 

frequency to another is called frequency-hop spread spectrum, (Haykin, 1994). M-

ary frequency shift keying (MFSK) is the common modulation format for frequency 

hop systems. The combination of these two techniques is called as FH/MFSK. The 

block diagram of communication scheme is shown in Figure 1.2. The frequency 

hopping can be characterized by two sub-classes depending on the rate at which the 

hops occur. The first one is called as slow-frequency hopping in which the symbol 

rate MFSK signal is an integer multiple of the hop rate.  The second method is called 

as fast-frequency hopping in which the hop rate is an integer multiple of the MFSK 

symbol rate. While several symbols are transmitted on each frequency loop in slow-

frequency hopping, the carrier frequency hops several times during the transmission 

of one symbol. 

 
Figure 1.2 Block diagram of the frequency hop M-ary frequency-shift keying. 

 

As described above, the direct-sequence spread spectrum and frequency hopped 

spread spectrum techniques are both rely on noise-like spreading code called as 
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pseudo-noise (PN) sequence. Although the spread-spectrum systems provide certain 

advantages such as difficulty of detection, noise performance, short acquisition time 

and discrimination performance against multipath fading, there are some 

disadvantages with bandwidth efficiency, sensitivity to the phase distortions, fast 

code generator and error correction requirements which caused to search alternative 

methods. Signals exhibiting noise-like behaviour have been considered as possible 

candidates for spread-spectrum communication.  The following subsection involves 

studies in the literature for chaotic communication as an alternative to the 

conventional spread-spectrum communication systems. 

 

1.2 Survey on Chaotic Communication Techniques 
 

The chaotic signals have been considered as a candidate tool for the first time for 

generating noise-like signal in spread-spectrum communication in the middle of 80s 

(Dmitriev & Kislov, 1985). But it could be possible to use chaotic signals in secure 

communication after the chaotic synchronization was realized by (Pecora & Caroll, 

1990, 1991). The baseband chaotic communication schemes were performed 

depending on masking or modulating the parameter of the chaotic system (Chua et. 

al., 1992), (Cuomo & Oppenheim, 1993), (Kolumban et. al., 1998), (Morgül, 2000). 

A study on the design of non-coherent receiver for chaotic masking scheme was 

described by (Murali et. al., 2003). The chaotic masking has also been subject of the 

chaotic communication including observer based synchronization given by (Morgül 

et. al, 2003), (Li Demin et. al., 2007), (Chen & Min, 2008).  Differing from chaotic 

masking, in another study given by (Savacı et. al., 2003), the periodic message signal 

has been applied as an input to chaotic dynamical system and the message signal was 

recovered at the receiver using synchronization. The constraints associated with this 

method was noted as the frequency of the message signal should not be so close to 

the fundamental frequency of the chaotic signal and the magnitude of the input signal 

should be bounded in order  to maintain the chaos. In a recent study, the cascaded 

chaotic systems have been used involving cascaded synchronization (Li C. & Yan, 

2006). 
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In addition to the chaotic masking, different chaotic modulation schemes which 

are called as chaos-shift keying (CSK) and differential chaos-shift keying (DCSK) 

was described in (Kolumban et. al., 1998). The types of chaos shift keying can be 

found in (Lau & Tse, 2003). The chaotic synchronization between linearly coupled 

systems was involved in (Lü et. al., 2002), (Li Damei, 2005). An application of 

secure communication scheme which uses generalized synchronization was studied 

in (Min & Zhang, 2005). In (Li Guo-Hui, 2005), the parameters of the chaotic system 

were also chosen from another chaotic system and more complex drive-response 

structure was obtained to improve the security. The improvement of the security has 

been performed in another study by (Alvarez et. al., 2005a) using a chaotic 

encryption including ciphertext absolute value.  Chaotic secure communication 

scheme based on impulsive synchronization and impulsive control have been 

described in (Yang & Chua, 1997), (Xie et. al., 2000), (Yang, 2001), (Yang, 2004) 

which defines the required conditions for stability of impulsively controlled chaotic 

systems. 

 

Due to the channel characteristics, the performance is limited of the CSK and 

DCSK communication systems which have been pointed out by (Kolumban et. al., 

2002). Instead of transmitting chaotic signals directly, it is desirable to use constant-

envelope signals exhibiting chaotic behavior. One of these methods known as 

frequency modulated-differential chaos shift keying (FM-DCSK) can be found in 

(Kennedy et. al., 2000, ch 6). The theory and simulations associated with chaos 

based FM signals is given by (Callegari et. al., 2003a) and hardware implementation 

is included in (Callegari et. al., 2003b). The types of other chaotic signal generation 

and transceiver design techniques have been explained in (Stavroulakis, 2006), 

comprehensively. As another hardware implementation, architecture of a chaotic PN 

sequence generator was proposed by (Leon et. al., 2004).  

 

The fundamentals of studying chaos with probability densities were given in 

(Kennedy et. al., 2000). The statistical approach to the discrete-time nonlinear 

dynamical systems has been used to characterize the chaotic sources by Perron-

Frobenius Operator (PFO) which gives the temporal evolution of the probability 
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densities, used to increase the channel capacity in chaos based DS-CDMA systems 

(Setti et. al., 2002).  The PFO operator in chaotic communication is also applied to 

increase the security (Abel & Schwarz, 2002). 

 

In addition to the methods given above, spreading the message spectrum was 

performed by chaotic frequency modulation in some studies (Larger et. al., 2001), 

(Volkovskii et. al.,1999, 2005) and chaotic pulse-position modulation (Sushchik, et. 

al., 2000), (Rulkov et. al., 2001) (Fortuna et. al., 2003) which is noted to provide 

better noise robustness. In (Okamoto & Iwanami, 2006), trellis coded chaotic 

modulation has been proposed as a secure digital communication scheme which is 

noted as offering a limited bit error rate performance. The method of multiplying 

directly the message and the chaotic signal in time domain applied in (Dmitriev et. 

al., 2004) was called as amplitude modulation of the chaotic carriers where it is 

assumed that there is no overlap between the frequencies of the message signal and 

the chaotic carrier. Recently, in a similar study, the message signal is multiplied by 

the chaotic carrier where the extended Kalman filter (EKF) is designed for 

synchronization at the receiver part (Fallahi & Leung, 2010).  

 

Differing from the given method in (Dmitriev et. al., 2004), the main contribution 

of the proposed study is to successfully recover the message signal by properly 

tuning the frequency of the message signal combining the amplitude modulation 

using a sinusoidal carrier and the method given in (Savacı et. al., 2003). The aim of 

the proposed method is to model a chaotic communication scheme which carries the 

baseband chaotic signal through the high frequencies around the sinusoidal carrier. 

 

More generally, the types of carrier signals are classified as constant, chaotic and 

random in spread-spectrum communication methods (Kolumban et. al., 2005). In an 

earlier study (Minai & Pandian, 1998), combining noise and chaotic signal is 

considered where the noise has been applied as an input to the chaotic system to 

generate an encryption model. As a transition from chaotic carrier to random carrier, 

the alternative methods for generating random numbers from specified explicit 

functions (Gonzales et. al., 2002) and  from standard chaotic maps (Patidar & Sud, 
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2009) can be used as candidate random carriers. In (Yalçın M. E., 2007) the entropy 

of the generated random numbers has been increased using n-scroll chaotic attractors 

to obtain random sequence from deterministic system which can be a proper 

selection for random secure communication. Instead of modeling random systems 

using deterministic structures a random signal having α-stable distribution has been 

considered as a random carrier and used in secure communication (Cek & Savacı, 

2009). 

 

On the other hand, there are several studies which breaks the chaotic masking and 

chaos shift keying using spectrogram (Yang et. al., 1998), generalized 

synchronization (Tao & Du, 2003) and (Alvarez G. et.al., 2004, 2005b),  multiscale 

wavelets (Fernandez et. al., 2003). Another practical method known as empirical 

mode decomposition has been the subject of the studies given in (Huang et. al.,1998), 

(Peng et. al., 2005) that uses mean of the envelopes of the observed signal to 

decompose into components. Separation of chaotic signals from harmonic signals 

using empirical mode decomposition has been applied in (Li Guo-Hui, 2006) which 

is a proper example for chaotic masking. It was shown that the additive periodic 

signals can be easily distinguished from the chaotic signal. The security of the 

chaotic masking systems for high dimensional chaotic systems has been discussed in 

(Alvarez G. et. al., 2005c). To improve the security performance of the chaotic 

communication the following studies have been proposed.  

 

In (Bu & Wang, 2004), a modulating technique was explained to avoid the attack 

using phase space reconstruction. In (Li Shujun et. al., 2001), the chaotic encryption 

method in (Alvarez E. et. al., 1999) is improved with adding an additional encryption 

block. Since the one dimensional chaotic maps are weak for security, the 

combination of one dimensional chaotic map has been used to increase the security 

in (Pareek et. al., 2005). 

 

Although the chaotic signals are said to have broad-band spectrum, it is noted that 

the power is concentrated mostly on low frequencies (Rasband, 1990) that restricts 

the security performance of the chaotic communication systems. Even though there 
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was an interest for chaotic communication without synchronization (Kis et. al., 

1998), the synchronization of chaotic systems still plays a key role. In such a 

communication channel including also interference and fading, the maintaining 

synchronization becomes hard therefore low bit error rate performance is obtained. 

The findings associated with performance of the chaotic systems in digital 

communication have been proposed by (Xia et. al., 2004), (Luca et. al., 2005), 

(Sanhu & Berber, 2005).  Ultra-wide-band (UWB) communication scheme using 

microwave chaotic oscillator has been developed by (Dmitriev, 2006). 

 

1.3 Particle Filtering of The Chaotic Signals in Alpha-Stable Noise 

Environment 

 
The observed time series from the given states of a dynamical system include 

noisy measurements in many signal processing applications. The filtering techniques 

for tracking the states can be classified as optimal filters such as linear Kalman filter 

and grid-based filters and suboptimal filters including extended Kalman Filter, 

approximate grid-based filters and particle filters (Arulampalam  et. al., 2002). 

In chaotic communication, state estimation by using extended Kalman filter has been 

given in the studies in (Cuomo et. al., 1993), (Sobiski & Thorp, 1998), (Ruan et. al., 

2003). The extended Kalman filter has been recently applied by (Hugues & Salas, 

2010) to nonlinear time delay systems in observer based chaotic communication 

system. Nevertheless, extended Kalman filter is not a valid method for the tracking 

problem in non-Gaussian environments. Therefore, a relatively new tool called 

particle filters have become significant for estimation problems having especially 

non-linear system model and non-Gaussian interference. 

 

Particle filters have been used in tracking and navigation problems (Gustafsson et. 

al., 2002). Particle filters in communication have been applied in (Punskaya et. al., 

2001) as demodulator for fading channels where the noise model is assumed as 

Gaussian mixture which is non-Gaussian. In another study by (Bertozzi et. al., 2004), 

the particle filter provides tracking of delay time for each path in the frequency 

selective channels and the bit error rate performance of the spread-spectrum 
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communication system has been improved. The idea of using particle filters for 

chaotic secure communication has been given in (Zhang et. al., 2006) although they 

use Gaussian noise as jammer and there is no proposed channel model. The 

estimation of chaotic states using particle filters without a communication purpose 

has also been studied in a different study (Zhang et. al., 2007). In (Liu B. et. al., 

2008), both the particle filter and Kalman filter have been used to construct a 

mechanism for filtering the noisy measurements.  

 

Since α-stable distributed noise is a proper member of non-Gaussian noise family, 

studying particle filters in α-stable noise environment has become a challenging area 

in signal processing. Tracking the measurements of the autoregressive processes in 

symmetric α-stable (SαS) noise has been studied in (Gençağa et. al., 2008). 

Although particle filtering consists of update and prediction stages, in (Mihaylova et. 

al., 2005), particle filtering with α-stable distributions have been applied using only 

likelihood function without an update equation by proper selection of the initial 

densities.  

 

It is noted that the power spectrum of the chaotic signals are concentrated at low 

frequencies although these signals have a broad-band nature in general (Rasband, 

1990). Since the purpose of the spread-spectrum communication systems is to 

convert the narrow-band message signal into a wideband signal, the whole spectrum 

has been considered to cover by the transmitted signal by adding α-stable noise 

signal whose characteristics are known only by the receiver.  

 

In the proposed communication scheme in this thesis, an α-stable distributed 

noise has been considered as a jammer to improve the security of the system. Then 

the problem can be defined as filtering and tracking the chaotic states in the non-

Gaussian noise environment at the receiver part. Except the channel noise which is 

assumed to be Gaussian, the received signal also contains non-Gaussian noise having 

α-stable distribution. Any Kalman filtering method is not valid due to the non-

Gaussian noise used for security. The application includes tracking of the chaotic 

states in impulsive noise environment.   
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1.4 Digital Communication Systems Using Random Signals with Alpha Stable 

Distributions 

 
In recent years, the stable distributions have attracted a growing interest. The time 

series with impulsive character are proper candidates for non-Gaussian stable 

modelling with a wide variety of areas such as economics, hydrology, physics and 

telecommunication. Previously, the Gaussian distributions have been mostly 

preferred method to model the time series but it has been inadequate for the data with 

large fluctuations. In last decades, the stable distributions defined by a more flexible 

mathematical formulation have become a proper candidate to describe the random 

processes with impulsive dynamics.  

 

Extracting information contained in deterministic signals which are contaminated 

with noise has been widely studied in various signal processing applications. The 

methods for detecting deterministic signals in Gaussian and Non-Gaussian noise 

environment can be easily found in the literature such as in (Kay, 1993b) while the 

detection methods in α-stable (αS) noise environment appear in (Kassam, 1988), 

(Nikias & Shao, 1995). Optimum receiver has been designed for detection of 

deterministic signals embedded in impulsive noise (Tsihrintzis & Nikias, 1995). The 

frequency estimation of the sinusoidal signals in α-stable noise environment has 

been analyzed in (Altınkaya et. al., 2002). Time-delay estimation of the deterministic 

signals under both Gaussian and α-stable distributed noise has been explained by 

(Zhang J, et. al., 2007). In a recent study (Wang et. al., 2008), the binary 

deterministic signal has been detected using Neyman-Pearson method in both 

Gaussian and α-stable interference. In signal detection problems the characterization 

of both impulsive and Gaussian interference can be numerically modeled. As an 

example in (Li Xutao et. al., 2008), non-Gaussian mixture model including Cauchy 

and Gaussian distributions has been discussed. Alternative detector models have 

been introduced in (Kuruoglu et. al., 1998), (Swami & Sadler, 2002) for signal 

detection problem in Symmetric α-Stable (SαS) distributions. The mutual 

information and the Correntropy Matched Filter (CMF) have been used to detect the 
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deterministic signals in Gaussian mixture and α-stable noise environment in 

(Erdogmus et. al., 2005) and in (Pokharel et. al., 2009), respectively.   

 

In Chapter 4, a new random communication system has been proposed in which 

α-stable random signal whose parameters carry the binary information have been 

generated by the transmitter and thus the carrier is called as random carrier. In the 

proposed random communication system (Cek & Savacı, 2009) a random carrier is 

sent through the AWGN channel, and the parameters of the received signal are 

estimated by the fractional lower order moment (FLOM) method given in (Kuruoglu, 

2001). Alternatively to the FLOM method, the parameters of the received signal for 

symmetric α-stable random carrier are estimated by least-squares method (Brchich & 

Zoubir, 1999) in Section 4.2.1 and correntropy based methods (Santamaria et. al., 

2006) in Section 4.2.3. Fractional lower order moment method given by (Kuruoglu, 

2001) for both symmetric and skewed α-stable carrier signals have been applied for 

parameter estimation in receiver part in Section 4.2.4. 

. 

 Alternative methods to the conventional digital communication techniques called 

“Stable Non-Gaussian Noise Parameter Modulation” techniques for encoding the 

deterministic message in the transmitter part by random signals with SαS 

distributions have been introduced in Chapter 4. In Section 4.3.1, α-stable random 

signal has encoded only one bit then it has been called as α-stable ON-OFF keying; 

in Section 4.3.2, unipodal α-shift keying has been introduced by which the binary 

message signals “1” and “0” are encoded by the random signals with two different 

characteristic exponents, if the binary message has been encoded by the skewness 

parameter then the method has been called antipodal α-shift keying in Section 4.3.3; 

if α (CE) and β (skewness) parameters have been both used to encode the binary 

message pair then this method has been called as quadrature α-shift keying in 

Section 4.3.4. The bit error rate performances of each keying techniques have been 

also evaluated in corresponding sections of this chapter.  

 

In Section 4.4, the receiver detection performances of the proposed 

communication schemes have been obtained by applying Neyman-Pearson test 
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through the receiver operating characteristics (ROCs) (i.e., the probability of 

detection, PD versus the probability of false alarm, PFA). The main contribution of 

this section is to find the detection probabilities of both symmetric and skewed 

distributions at the receiver part in the Gaussian noise environment.  
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CHAPTER TWO 

SURVEY ON CHAOTIC COMMUNICATION TECHNIQUES 

 
In recent years, there has been significant growth in personal communications 

where the aim is to satisfy the huge demand of users. Among the various 

communication techniques, chaotic communication which is also the major subject 

of this chapter is an important field in the secure communication field. In this 

chapter, potential of chaos based communication and fundamentals of chaotic 

synchronization which constitutes the vital part of the chaotic communication have 

been explained. In the sequel, conventional chaotic communication schemes and 

chaotic modulation techniques have been given first and the proposed method based 

on the chaotic amplitude modulation has been explained in the last section.  

 

2.1 Potential of Chaos in Communications 
 

Since chaotic dynamics have been deeply understood in the last 30 years 

(Rasband, 1990), (Chua, 1994), (Strogatz, 2001) the idea to exploit chaos in 

communication applications has appeared due to features of chaotic signals 

satisfying the requirements of basic communication systems (Lau & Tse, 2003). The 

basic aspects are briefly given in the following sections. 

 

2.1.1 Broad-Band Aspect 

 
Chaotic signals are aperiodic and posses a continuous wideband frequency 

spectrum. In Figure 2.1, the frequency spectrum of Lorenz system is shown which is 

described by the ordinary differential equation given in Eq. 2.1 

 
bzxyz

xzyrxy
)xy(x

−=
−−=

−=

&

&

& σ
 (2.1) 
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Figure 2.1 Frequency spectrum of Lorenz signal x(t) sampled at 1KHz. 

 

In communications, broad-band signals are used to overcome some problems 

such as frequency selective fading which occurs when the bandwidth of the channel 

is narrower than the bandwidth of the transmitted signal. This broad-band property 

provides the chaotic signals to be candidates for spread-spectrum communications 

(Abel & Schwarz, 2002). 

 

2.1.2 Sensitivity on Initial Conditions 

 
One of the basic properties of chaotic systems is sensitive dependence on their 

initial conditions. In Figure 2.2, the Lorenz system is shown with different initial 

conditions. When the initial conditions are slightly disturbed, totally different 

trajectories are obtained. This makes it difficult to guess the structure of the 

dynamical system and to predict the signals over long time intervals. These kinds of 

complex and unpredictable signals are used in cryptographic applications, which 
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open another application field of chaos (Abel & Schwarz, 2002). Due to this 

sensitivity, the auto-correlation of chaotic signals rapidly approaches to zero. 

 
Figure 2.2 Two Lorenz signals x(t) where the initial conditions are perturbed by 0.1. 

 

2.1.3 Orthogonality Aspect  

 

Since a physical channel has a limited capacity to transmit messages, an essential 

part of the communication system design is the sharing of limited resources. The 

sharing is achieved by using orthogonal signals for each user. The separability of the 

signals belonging to different users is ensured by the orthogonality which is given in 

Eq. 2.2 as 

 0dt)t(x)t(x *
21 =∫

∞

∞−
            (2.2) 

where * denotes complex conjugate. Eq. 2.2 implies a vanishing cross-correlation of 

x1 and x2. Due to Parselval’s Theorem we have 

 ∫∫
∞

∞−

∞

∞−
= ω)ω()ω(

2
1)()( *

21
*
21 dXXdttxtx

π
                     (2.3) 
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where X1(ω) and X2(ω) are Fourier transforms of ( )tx1 and ( )tx2 , respectively. 

According to the relation given in Eq. 2.3, orthogonality in the time domain implies 

orthogonality in frequency domain and can be achieved in different ways in a 

multiuser environment. 

 

I. Signals Disjoint in Time 

If at any time either x1(t) or x2(t) becomes zero, Eq. 2.2 holds trivially. This 

method is termed as time division multiple access (TDM). 

 

II. Signals Disjoint in Frequency 

If at any frequency either X1(ω) or X2(ω) vanishes, the frequency integral in Eq. 

2.3 becomes zero. This method is termed frequency division multiple access (FDM). 

 

III. Uncorrelated 

Signals generated from different chaotic dynamical systems or same dynamical 

system with different initial conditions exhibit a vanishing cross-correlation or auto-

correlation function which is given in Eq. 2.4 

 [ ] [ ]( ) [ ]( )∑ −+−=
n

knxnxkC μμ  (2.4) 

where k is the time lag and μ is the sample mean. The auto-correlation function 

related with Lorenz system is shown in Figure 2.3. One can derive that samples of 

chaotic sequences are uncorrelated since the auto-correlation function rapidly 

vanishes and oscillates near to zero. This property provides the chaotic signals 

available for multiuser applications in communications (Abel & Schwarz, 2002). Eq. 

2.2 can hold even if the signals are neither disjoint in time nor in frequency. This can 

be exploited in code division multiple access (CDMA) techniques. 
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Figure 2.3 Autocorrelation function of Lorenz system with respect to time lag k. 

2.2 Chaotic Synchronization 

 

In chaotic communication, the class of chaotic systems which possess a self-

synchronizing property is used at the transmitter part and the receiver part which is 

robust to perturbations in most practical applications. A chaotic system is self-

synchronizing if it can be decomposed into at least two subsystems which are called 

as drive system and response subsystem corresponding to a transmitter and receiver 

in communication scheme respectively (Pecora & Caroll, 1991). The drive and 

response systems are coupled systems where the behavior of the response is 

dependent on the behavior of the drive but the drive system is not influenced by the 

response system and they combine as a compound dynamical system. The 

mathematical model related with the synchronized systems is given as; 
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In (Pecora & Caroll, 1990), it was proven that the subsystems u and u’ would be 

synchronized if the sub-Lyapunov exponents of the g-subsystem are all negative. For 

Lorenz system, Eq. 2.1 can be considered as the drive system, since its dynamics are 

independent response system and Eq. 2.6 below represents dynamical response 

system driven by the state x(t) of Lorenz system. The eigenvalues of the Jacobian 

matrix are both negative, thus, yy −2  and 02 →− zz  as ∞→t . Therefore it can 

be said that the subsystems are asymptotically stable (Cuomo et. al., 1993). 

 
222

222

bzxyz
xzyrxy
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−−=

&

&
                                                       (2.6) 

 
Figure 2.4 Illustration of synchronization for the Lorenz signal y(t); drive-response 

system (upper), synchronization error (lower). 
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In Figure 2.4, convergence of the response y2(t) to the drive y(t) is illustrated for x 

driven (y,z) Lorenz subsystem. In Figure 2.4, it is also clearly seen that 

synchronization error decays to zero in a short time interval. Discovery of chaotic 

synchronization by (Pecora & Caroll, 1990) triggered to build a chaotic secure 

communication scheme. In fact, it is the evolution of chaotic synchronization 

technology to trigger the chaotic secure communication systems.  

 

2.3 Analogue Chaotic Communication Methods 

 

In this section, chaos-based communication systems existing in the literature have 

been introduced. These techniques involve analogue or digital chaotic modulations 

which are given in the sequel. 

2.3.1 Chaotic Masking 

 

Chaotic masking is obtained by adding the information signal to the noise-like 

chaotic signal (Cuomo et. al., 1993). The detection is accomplished by regenerating 

and subtracting the chaotic signal from the received signal. This method is simple to 

be implemented, but a robust synchronization circuit is required to reproduce the 

chaotic signal at the receiver. The additive chaos masking scheme shown in Figure 

2.5 consists of two identical chaotic systems in both the transmitter and the receiver. 

The chaotic masking signal ( )tc  is added into the message signal ( )tm  and the 

transmitted signal ( )ts is produced. Since the chaotic signal ( )tc is very complex one 

may expect that the message signal ( )tm can not be separated from ( )ts  without 

knowing the exact ( )tc  and in order to recover the message signal, chaotic 

synchronization block is needed in the receiver. It is observed at the receiver side that 

after a transient time interval where the synchronization error vanishes, 

synchronization is achieved and a hidden message signal is obtained.  
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  Figure 2.5 Block diagram of basic chaotic masking scheme. 

 

Nevertheless, this scheme can not be used under practical conditions. Because the 

masking method is very sensitive to channel noise and parameter mismatch between 

chaotic systems in the transmitter and the receiver which may cause 

unsynchronization. Furthermore, this scheme has very low degree of security since 

the message can be obtained by breaking methods described in Section 2.6. 

 

2.3.2 Chaotic Communication Using External Input 

 

Steady-state analysis and implementation associated with synchronization of 

coupled chaotic systems driven by a sinusoidal input has been explained for Chua’s 

circuit (Chua, 1994), (Savacı et. al., 2003). In chaotic communication, this external 

input can be considered as the information carrying signal. Therefore this master-

slave system is one of the chaotic communication schemes.  

 

In this section, sample communication scheme using this method has been 

generated for the Lorenz system where the dynamics of the transmitter are given as  
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The parameters are taken as 16=σ , 6.45=r , 4=b  and ( )tm  represents the 

message signal. The transmitter signal and its frequency spectrum are shown in 

Figure 2.6. The receiver dynamics are  

 
( )

RRTR
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RRR

bzyxz
zxyrxy

xyx

−=
−−=

−=

&

&

& σ
 (2.8) 

 

There are some constraints restricting the performance of the proposed 

communication scheme which are, first, magnitude of the message signal should be 

small compared to the chaotic signal and second, frequency of the message signal 

should be high compared to the fundamental frequency of the chaotic signal. 
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Figure 2.6 a) The chaotic signal carrying message b) Its frequency spectrum. 
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2.4 Chaotic Digital Modulations 

 

Chaotic digital modulation can be described as mapping of the chaotic signals into 

binary sequences. There are several techniques for this purpose which are chaos shift 

keying (CSK) and differential chaos shift keying (DCSK), frequency-modulation 

DCSK and chaotic phase shift keying. In the sequel these techniques are explained 

briefly. 

 

2.4.1 Chaos Shift Keying (CSK) 

 

Chaos shift keying is a digital modulation scheme where chaotic signals obtained 

from different attractors or chaotic signals generated from the same dynamical 

system with different initial conditions are the basis functions (Kennedy et. al., 

2000). 

Let sm(t), m=1,2,…,M denote the elements of the signal set defined by  Eq. 2.9 

 ∑
=

==
N

1j
1,2,...,   ),()( Njtgsts jmjm  (2.9) 

where the basis functions gj(t) are chaotic waveforms. The composition of CSK 

signal is illustrated in Figure 2.7-a and the reconstruction of the information signal is 

seen in Figure 2.7-b. 

 
Figure 2.7 a) Generation of the elements of the signal set, b) Determination of 

the observation signals 

 

Chaotic basis functions are orthonormal in the mean i.e., 
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where E[⋅] denotes the expectation operator and T is the bit duration. The element zmi 

of the observation vector at the output of the ith correlator, when signal sm(t) is 

transmitted, is given as 

 ∫∫ ∑∫ ==
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
==

=

T

miiimi

T

i

N

j
jmj

T

immi sdttgtgsdttgtgsdttgtsz
00 10

)()()()()()(     

          (2.11) 

The simplest case of chaos shift keying is realized by a single chaotic basis function 

( )tg1  (i.e., 1=N ), There are three main types of CSK based on a single basis 

function. 

2.4.1.1 Chaotic On-Off Keying (COOK) 

In COOK symbol 1 is represented by )(2)( 11 tgEts b=  and symbol “0” is given by 

s2(t) = 0. Equivalently, bEs 211 = , s21 = 0 where Eb denotes the average energy per 

bit. 

2.4.1.2 Unipodal CSK 

In unipodal CSK, symbol “1” and “0” are distinguished by transmitting bit 

energies Eb1 and Eb2 = kEb1, respectively where 0 < k < 1. Symbol 1 is represented by 

)()( 1111 tgsts =  and symbol “0” is given by )()( 1211 tgsts = , where 
k

E
s b

+
=

1
2

11  and 

k
kE

s b

+
=

1
2

21 . 

2.4.1.3 Antipodal CSK 

In antipodal CSK, symbol “1” is represented by s1(t) = s11g1(t) and symbol “0” is 

given by s2(t) = s21g1(t), where bEs =11  and .21 bEs −=   

In addition to coherent matched filters, demodulation can be also performed by 

using coherent correlation receivers and noncoherent receivers as shown in Figure 

2.8, 
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Figure 2.8 a) Coherent Receiver for CSK signal with single basis function b) Noncherent Receiver for 

CSK signal with single basis function. 

 

where the mathematical expression related with the coherent receiver is given in as 

 ∫∫ ===
T

0
1

2
11

0
11 )()()( mm

T

mm sdttgsdttgtsz  (2.12) 

with mb̂  as the estimated value of the mth binary message bit. The noncoherent 

demodulator shown schematically in Figure 2.8-b determines the bit energy of the 

received signal and differs from the previous method such that the received signal is 

correlated with itself and not with the recovered basis function g1(t). The 

demodulator output is given in by 
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0

2
1 )()( mm

T

mm sdttgsdttsz === ∫∫  (2.13) 

This receiver structure can be used to demodulate both COOK and Unipodal CSK 

but because of the | ⋅ | function, it can not be used to recover sm1’s of opposite sign 

and therefore unsuitable for demodulating CSK whereas the coherent correlation 

receiver can be used for all of these methods. 

 

2.4.2 Differential Chaos Shift Keying (DCSK) 

 

In binary DCSK, two elements of the signal set are given by 

 ( ) ( ) ( )tgstgsts mmm 2211 +=                                                 (2.14) 

where  ( ) ( )0      1211 bEss =  and ( ) ( )bEss   0   2221 = . In the case of DCSK, the basis 

functions have the special form  
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where c(t) is a chaotic waveform and Eb is the energy of each bit. The first half of the 

basis function is called the reference chip, while the second half is the information-

bearing chip. In binary DCSK, bit “1” is sent by transmitting )()( 11 tgEts b= , while 

for bit “0” , )()( 22 tgEts b= . Figure 2.9 shows a block diagram of a DCSK 

modulator. The modulation driver, delay circuit and switch are used to generate the 

appropriate basis functions according to the modulation input bm. 

 
Figure 2.9 Block diagram of DCSK modulator. 

 

 Since the DCSK modulation scheme is a variant of CSK with two basis functions, 

it can be demodulated by a coherent receiver where the signal space diagram for 

CSK is also valid for DCSK which is the same as in conventional coherent FSK. As 

another demodulation method, differentially coherent DCSK receiver can be used 

with the block diagram shown in Figure 2.10. In this technique, the output of the 

demodulator is found as 

 ∫ ∫ −=−=
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and by using the formula 2/1)(E
2/

2 =⎥
⎦

⎤
⎢
⎣

⎡
∫
T

T
m dttg , one has     2/1 bEz +≈ and 

  2/ 2 bEz −≈ . The decision mb̂  as to which symbol was transmitted can be made by 

a simple level comparator with its threshold set to zero.  

 
Figure 2.10 Block diagram of differentially coherent DCSK receiver. 

 

2.4.3 Chaotic Phase Shift Keying (CPSK) 

 

Due to their wideband nature, chaotic signals are more resistant to multipath 

propagation compared with sinusoidal functions.  Additionally, an advantage of 

Chaotic Phase Shift Keying (CPSK) is that one chaotic generator can be sufficient 

for the CPSK scheme whereas, the classical CSK scheme requires two chaotic 

generators for each of the transmitter and receiver (Sandhu & Berber, 2005). The 

basic scheme of CPSK system is illustrated in Figure 2.11  

 
Figure 2.11 A Multiuser CPSK communication system. 

 

Transmitter structure of the CPSK system can be mathematically formulated as 

follows: Consider a communication system where the zero-mean chaotic sequence 

generated by the chaos generator is denoted by xt, mi is the the ith bit sequence with 

{ }1,1−∈im  and 2β  is the number of chaotic samples in each transmitted bit. During 
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the ith bit duration, (i.e., for time t = 2β(i − 1)+ 1, 2β(i − 1)+ 2 ......, 2βi), the 

transmitter’s output of the nth user is 
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This scheme is called chaotic phase shift keying because only one generator is 

needed at the transmitter side, and an 180o phase difference occurs if the transmitted 

bit is –1 (i.e., multiply by –1) (Sandhu & Berber, 2005). The noisy channel distorts 

the transmitted signal, and the input of the receiver n at time t is given as 

   ∑
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N

n
t

n
tt nsr

1
                    (2.18) 

where the first term is the output of the N transmitters at time t, and the second term,  

nt is the zero mean AWGN. By assuming that exact synchronized samples are 

available at the receiver, the output of the correlator of the nth user at the end of the ith 

bit duration is obtained as  
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The demodulating process is then completed by comparing n
iz to the threshold value 

of zero. 

 

2.5 Types of Chaotic Analogue Modulations 

 

Baseband chaotic communication systems have been introduced in the previous 

sections. Although one of the basic features of the chaotic signals is to have broad-

band spectrum, it has been noted that the power is concentrated at low frequencies 

for most of the chaotic systems (Rasband, 1990). Therefore, the noise robustness 

performance of the baseband chaotic communication schemes becomes poor against 

realistic channels containing distortions, channel noise and interference. This 

drawback has been considered to overcome by using modulation techniques 

including chaotic pulse position modulation (CPPM), chaotic frequency modulation 

(CFM). In section 2.5.2, chaotic amplitude modulation (CAM) scheme has been 

newly proposed. In the following, the basic structure of the chaotic frequency 
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modulation from the literature are given briefly. The proposed chaotic amplitude 

modulation scheme is given in detail as the contribution of the thesis.  

 

2.5.1 Chaotic Frequency Modulation 

 

The CFM is a chaotic communication system which is used for spreading the 

spectrum. The block diagram of the chaotic frequency modulation is shown in Figure 

2.12 below. The voltage controlled oscillator (VCO) generates CFM signal together 

with chaotic harmonic oscialltor (CHO) where the frequency of VCO is modulated 

by the message.  

 
Figure 2.12 Block diagram of the CFM communication Scheme (Volkovskii et al., 2005). 

 

In the receiver part, phase discriminator (PD) generates a signal which is the phase 

difference between received signal and the local VCO. The synchronization between 

VCOs at the transmitter and receiver is performed by the Phase Locked Loop (PLL) 

which is composed by local VCO, PD and the low-pass filter (LPF). 

 

2.5.2 New Chaotic Amplitude Modulation and Demodulation Scheme 

 

In the following, modulation and demodulation schemes of the proposed chaotic 

amplitude modulation system are explained. 
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2.5.2.1 Modulation Part 
The first stage of the proposed communication scheme consists of chaotic 

communication based on drive-response system given in (Cuomo & Oppenheim, 

1993) where the input signal is embedded into the dynamics of the chaotic system. In 

this study, Rössler chaotic system is used to hide the narrow-band message 

signal ( )tm . The drive system is given as 
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where the constants are 2.021 == aa  and 7.43 =a . Due to their broad-band nature, 

chaotic signals have frequency components on entire spectrum. In order to avoid the 

frequency overlapping and to achieve maximum bandwidth efficiency, the chaotic 

signal ( )tyd  is filtered to have frequency spectrum in [ ]2,0 cf  by using a 

Butterworth low-pass filter ( )th  with order of 10 and cut-off frequency of 2cf  

where cf  is the carrier frequency. In the following, double sideband-suppressed 

carrier signal ( ) ( )ttr cωcos=  is multiplied with the filtered chaotic signal ( )ty h
d  as 

 ( ) ( ) ( )ttytc c
h
d ωcos=   (2.21) 

where cω  is the carrier frequency and ( )ty h
d  is the low-pass filtered signal. The 

block diagram of the transmitter associated with the proposed communication 

scheme is shown in Figure 2.13.  

 

 

 

 
 

 

Figure 2.13 Chaotic amplitude modulation transmitter structure. 

 

As a numerical example, the transmitted signal is shown in Figure 2.14, where 

( ) ( )fttm π2cos=  with 500 =f Hz, the carrier frequency 200=cf Hz and the 

sampling frequency is 2=sf kHz. The signal ( )tyh
d  and the modulated signal ( )tc  

 
( ) ( ) ( )ttytc c

h
d ωcos=  ( )tyh

d  
m(t) 

yd(t) 
xd 

yd 

zd 

h(t)

( )tcωcosLow Pass Filter Chaotic Signal 
Generator 
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with corresponding frequency spectrums are shown in Figure 2.15a and 2.15b, 

respectively.  
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Figure 2.14 a) Low-Pass filtered Chaotic Signal ( )ty h
d associated with Rössler system with a cut-

off frequency 2/cf , b) Amplitude Modulated signal at the transmitter output. 
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Figure 2.15 Frequency spectrum of a) Low pass filtered signal ( )ty h
d  in the transmitter and 

b) The modulated signal ( )tc . 

 

In the sequel, the demodulation and an appropriate filtering procedure is explained to 

estimate the message signal. 

2.5.2.2 Demodulation Part 
The receiver part shown in Figure 2.16 includes demodulation and low-pass 

filtering to obtain the estimate of the message signal. The demodulation is expressed 

as 

 ( ) ( ) ( )ttctr cωcos=  (2.22) 

Since the frequency components of the demodulated signal corresponding to cf2  is 

filtered by ( )th , an estimate of the drive signal can be obtained as 

 ( ) ( ) ( )( )thtyKty h
d

hh
d *ˆˆ ⋅=    (2.23) 

where the term * denotes the convolution and K is the empirically determined scale 

factor.  
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Figure 2.16 The receiver structure of the chaotic amplitude modulation. 

 

The response of system given in Eq. (2.24) can be composed once the approximate 

of the drive signal ( )ty hh
dˆ  is found 

 
( )

( )32

1

ˆ

axzaz
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rrr
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−+=
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&

&

&

 (2.24) 

The response signal ( )tyr  is filtered to obtain ( ) ( ) ( )thtyty r
h
r *ˆ =  which has 

frequency content in [ ]2,0 cf . The error between the filtered drive and response 

signals could be obtained by    

( ) ( ) ( )tytyte h
r

hh
d −= ˆˆ  (2.25) 

The error term involves the synchronization error, noise and the message. Although 

the complete synchronization can not be achieved, the message signal could be 

recovered by applying a high-pass filter with 20 Hz cut-off frequency to eliminate 

the components due to the synchronization error. 
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Figure 2.17 a) The error signal given in Eq. 2.25, b) The frequency spectrum of the error 

signal which includes message.   

 

The error term after high-pass filtering in time domain and its frequency spectrum is 

illustrated in Figure 2.17. Subsequently, Figure 2.18 illustrates the estimated signal in 

time domain and its frequency spectrum when a signal to noise ratio of 10 dB is 

applied.  
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Figure 2.18 a) The error signal given in Eq. 2.25 b) The frequency spectrum obtained by 

Eq. 2.25 by a high pass filter.   

 

The new chaotic communication method using double sideband-suppressed carrier 

modulation has been proposed in this section. It has been shown that the message 

signal can be successfully recovered without any significant distortion or loss. One 

can conclude that the message signal can be recovered if the frequency spectrum of 

the synchronization error signal and message signal is separable. Therefore, the 

frequency of the message signal should be chosen sufficiently high to avoid an 

interference in the error term. Another critical point is that the scale factor K should 

be well determined to minimize the synchronization error.  

 

The contribution of the proposed CAM system is to give an alternative 

modulation method in addition to the existing methods to carry the spectrum of 

chaotic signals to high frequency bands. Hence, this method can lead to alternative 

practical implementations for secure communication. The performance of the 

proposed method has been investigated for noiseless case and under additive white 
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Gaussian noise (AWGN) channel. It is observed that the frequency of the sinusoidal 

message signal can be recognizable under channel noise. Further study is needed on 

analyzing the performance of the proposed method for different channel models. 

 

2.6 Chaotic Breaking Methods 

 
In the following, some of the chaotic breaking methods are described. Using these 

methods it is shown that chaotic modulation systems including the masking can be 

broken.  

2.6.1 Breaking Chaotic Communication Using Empirical Mode Decomposition 

(EMD) 

 
This practical method decomposes any observed multi-component signal defined 

by superposition of the mono-component signals which are called as intrinsic mode 

functions (IMF). This decomposition method is called as the empirical mode 

decomposition (EMD) (Huang et. al., 1998). Using this method the study on 

extracting harmonic signal from chaotic interference has been given in (Li Guo-Hui, 

2006) by the intrinsic mode functions which satisfy the following two conditions 

(Huang N. E., 1998): 

i. In the whole set, number of extrema and the number of zero crossings must 

either equal or differ at most by one,  

ii. the mean of the local maxima and the local minima is zero in every point of 

the data. 

The empirical mode decomposition procedure can be summarized as follows; the 

upper and lower envelope signals ( )txup  and ( )txlow  are obtained from the 

observation signal ( )tx  using cubic interpolation and the mean is evaluated as 

 ( ) ( ) ( )
21

txtx
tm lowup +
=  (2.26) 

Then the first component ( )th1 is computed as 

 ( ) ( ) ( )tmtxth 11 −=  (2.27) 
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If ( )th1  is an IMF, then it is the first component of ( )tx . If ( )th1  is not an IMF then 

the steps in Eq. 2.26 and Eq. 2.27 are repeated and ( )th11  is obtained as 

( ) ( ) ( )tmthth 11111 −=  until ( )th k1  is an IMF. Then the rest of the signal 

( ) ( ) ( )thtxtr k11 −=  is obtained and the same procedure is repeated iteratively until the 

residual signal ( )tr  is mono-component signal from which IMF can not be extracted. 

 

This breaking system has been applied for the chaotic communication scheme 

given in Section 2.3.2. Figure 2.19 illustrates the chaotic signal carrying a sinusoid as 

the message with a frequency of 50 Hz. The upper and lower envelopes of the 

transmitted signal have been found and used to extract the intrinsic mode functions. 
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Figure 2.19 Chaotic signal masking a sinusoidal message signal with 50 Hz and its upper 

and lower envelopes obtained by cubic interpolation. 

 

The decomposition of the transmitter signal with their frequency spectrum are 

shown in Figure 2.20. The first component directly gives the message signal whose 

frequency can be easily extracted. 
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Figure 2.20 The first three intrinsic mode functions and their corresponding 

frequency spectrums of the of the chaotic transmitter signal shown in Figure 2.19.  

 

This method can break the chaotic communication schemes where the message is 

directly added or it has been applied as an external input to the dynamics of the 

system.  

 

2.6.2 Breaking Chaotic Communication Using Spectrogram  

 

The spectrogram has been considered to reveal the time evolution of spectral 

density of the transmitted signal in order to break the chaotic communication. In 

chaotic masking schemes, using short time Fourier transforms the message signals 

can be detected in the broad frequency spectrum of the chaotic signal by evaluating 

the frequency content of the masked signal in short time intervals. The average 

power density in equally divided frequency ranges is evaluated and the components 

in which the power is concentrated are thresholded. Thus, the frequency intervals 

including the frequency of the message signal is determined by using band-pass 

filters.  
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Figure 2.21 The spectrogram of the transmitted Lorenz signal including an analog 

sinusoidal message signal with a frequency of 50 Hz. 

 

In Figure 2.21 the time-frequency distribution of the chaotic signal with message 

is shown. As clearly be seen, the message signal can be easily detected using 

morphological filters described in (Yang et. al., 1998). 
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CHAPTER THREE 

PARTICLE FILTERING OF THE CHAOTIC SIGNALS IN NON-

GAUSSIAN ENVIRONMENTS 
 

 In recent years, tracking the states of the nonlinear dynamical systems from the 

noisy measurements has been analyzed in non-Gaussian environments. Many 

applications require proper filtering techniques to uncover the underlying dynamics 

of a physical system. This problem can be solved by using optimal and suboptimal 

Bayesian algorithms. In addition to the optimal methods such as Kalman filtering and 

Grid-Based filtering, suboptimal methods such as extended Kalman filtering (EKF) 

and Particle Filtering (PF) have been given in (Arulampalam et. al., 2002). The basic 

assumptions of the optimal algorithms are that the dynamic systems are linear and 

both measurement and process noise models are considered as Gaussian. Since the 

linearity assumptions do not hold in practise the extended Kalman filtering is 

proposed for estimation of the states of the dynamical system in the Gaussian noise 

environment. Particle filters are given as a proper filtering method for the nonlinear 

dynamics in non-Gaussian noise environments. In Section 3.1, the mathematical 

background related with these filtering methods has been briefly given, including 

extended Kalman filter in Section 3.1.1, and particle filtering in Section 3.1.2. An 

application for estimating the nonlinear states and chaotic signal obtained from the 

Henon map in Cauchy distributed noise environment has been proposed in Section 

3.2 and in Section 3.3, respectively. In the following, the nonlinear tracking problem 

and its Bayesian solution are given briefly. The non-Gaussian noise can be used as 

jammer in order to improve the security of the chaotic communication schemes 

explained in Chapter 2. 

 

3.1. Suboptimal Bayesian Filtering Methods 

 

 Evolution of the state sequence can be represented by the state vector Nkk ∈,x ,  

 ( )11, −−= kkkk vxfx  (3.1) 
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where xk ∈ℜnx, vk ∈ℜnv, is an independently identically distributed (i.i.d) noise 

sequence, fk:ℜnx × ℜnv  → ℜnx  is a function of state vector xk-1 and a process noise 

vector vk-1, nx and nv are the dimensions of the state and process noise vectors, 

respectively. The aim is to estimate the state vector xk from the measurements 

  ( )kkkk wxhy ,=  (3.2) 

where hk:ℜnx × ℜnw  → ℜnx is a function of measurement of state xk, measurement 

noise wk, nx and nw are the dimensions of the state and measurement noise vectors, 

respectively.  

 

Bayesian estimation is based on constructing the conditional posterior pdf 

( )kk yxp :1|  recursively from the previous observations by assuming the prior or 

initial pdf ( )00 | yxp  is known. The prediction of the posterior pdf at time k can be 

obtained by Chapman-Kolgomorov equation as given below 

 ( ) ( ) ( ) 11:1111:1 ||| −−−−− ∫= kkkkkkk dxyxpxxpyxp  (3.3) 

The Bayesian solution can be obtained by the prediction step given in Eq. 3.3 and the 

update step which is obtained via Bayes’ rule 

 ( ) ( ) ( )
( )1:1

1:1
:1 |

|||
−

−=
kk

kkkk
kk yyp

yxpxypyxp  (3.4) 

where the normalizing constant term ( )1:1| −kk yyp  is obtained as 

 ( ) ( ) ( )∫ −− = kkkkkkk dxyxpxypyyp 1:11:1 |||  (3.5) 

In general, the recursive solution of the posterior pdf given in Eq. 3.4 can not be 

obtained analytically. Therefore, optimal algorithm which is Kalman filter or 

suboptimal algorithms such as Extended Kalman Filter (EKF) and Particle Filters 

(PF) can be applied to approximate the optimal Bayesian solution. Since the state 

evolution function given in Eq. 3.1 is non-linear in chaotic systems, the nonlinear 

Bayesian filters EKF and PF will be described in Section 3.1.1 and 3.1.2, 

respectively. 
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3.1.1. Extended Kalman Filter 

 

 Linear Kalman filter and extended Kalman filter assume that the process noise 

and the measurement noise is Gaussian distributed. If the state and measurement 

equations given in Eq. 3.1 or Eq. 3.2 are nonlinear, then local linearizations can be 

used to model the nonlinearity. The required posterior density ( )kk yxp :1|  is 

approximated by EKF using Gaussian densities given in the following equations 

(Arulampalam et. al., 2002), 

 ( ) ( )1|11|111:11 ,;| −−−−−−− Ν≈ kkkkkkk Pmxyxp  (3.6) 

 ( ) ( )1|1|1:1 ,;| −−− Ν≈ kkkkkkk Pmxyxp   (3.7) 

 ( ) ( )kkkkkkk Pmxyxp ||:1 ,;| Ν≈   (3.8) 

where N denotes the Gaussian distribution. The update equations associated with 

mean 1−km  and covariance 1−kP are given as 

 ( )1|11| −−− = kkkkk mm f  (3.9) 

 T
kkkkkkk FPFQP ˆˆ

1|111| −−−− +=  (3.10) 

 ( )( )1|1|| −− −+= kkkkkkkkk myKmm h  (3.11) 

 1|1||
ˆ

−− −= kkkkkkkk PHKPP  (3.12) 

The functions fk(⋅) and hk(⋅) are nonlinear and their local linearizations kF̂ and kĤ are 

given as 

 ( )
1|1

ˆ
−−=

=
kkmx

k
k dx

xdF f  (3.13) 

 ( )
1|

ˆ
−=

=
kkmx

k
k dx

xdH h  (3.14) 

 k
T
kkkkk RHPHS += −

ˆˆ
1|  (3.15) 

 1
1|

ˆ −
−= k

T
kkkk SHPK  (3.16) 

Above equations are obtained from Taylor series expansion of the nonlinear 

functions. In the next Section particle filtering method is explained which can be 

used for estimating the nonlinear states in non-Gaussian noise environment. 
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3.1.2. Particle Filtering 

 

 Particle filtering is a sequential Monte Carlo (MC) method which represents 

posterior density using a set of random samples which are also called as particles and 

the corresponding normalized weights. There are several particle filtering methods 

explained in (Arulamplam et. al., 2002). In the sequel, sampling importance 

sampling (SIS) particle filter is defined briefly. The estimated value from the noisy 

measurement yk at time instant k can be found by the particles 

s
i

k Nix ,,1,:0 L= where Ns is the selected number of the particles and the normalized 

weights i
kw . Then the posterior probability associated with the states kx :0 up to time 

k can be found as 

 ( ) ( )∑
=

−≈
sN

i

i
kk

i
kkk xxwyxp

1
:0:0:1:0 | δ  (3.17) 

According to the SIS algorithm, the weights are determined by using the importance 

density abbreviated as q  and shown below 

 ( )
( )i

i
i

xq
xw π

∝  (3.18) 

where the density ( )xπ  is proportional density to the density ( )xp  and ( )xπ  can be 

evaluated. 

 ( )
( )k

i
k

k
i

ki
k yxq

yxpw
:1:0

:1:0

|
|

∝  (3.19) 

 ( ) ( ) ( )1:11:01:0:1:0 ||| −−−= kkkkkk zxqxxqyxq  (3.20) 

 ( ) ( ) ( )
( ) ( )1:11:0

1:1

1
:1:0 |

|
||| −−

−

−= kk
kk

kkkk
kk yxp

yyp
xxpxypyxp  (3.21) 

 ( ) ( ) ( )1:11:01 ||| −−−∝ kkkkkk yxpxxpxzp  (3.22) 

Using the equations (3.20) and (3.22), the weights are expressed as 

 
( ) ( ) ( )
( ) ( )1:11:0:11:0

1:11:01

|,|
|||

−−−

−−−∝
k

i
kk

i
k

i
k

k
i

k
i
k

i
k

i
kki

k yxqyxxq
yxpxxpxyp

w  (3.23) 
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If the importance function is taken as ( ) ( )kkkk
i

kk yxxqyxxq ,|,| 1:11:0 −− = , then the 

importance density is dependent on only 1−kx and ky . In that case the weights are 

expressed as in Eq. (3.24) 

 
( ) ( )
( )k

i
k

i
k

i
k

i
k

i
kki

k
i
k yxxq

xxpxyp
ww

:11:0

1
1 ,|

||

−

−
−=  (3.24) 

when the importance function is chosen as ( ) ( )i
k

i
kk

i
k

i
k xxpyxxq 1:11:0 |,| −− =  then the 

weights for each particle becomes 

 ( )i
kk

i
k

i
k xypww |1−=  (3.25) 

After the values of the weights have been determined, the estimated value of the state 

can be found as 

 ∑=
i

i
k

i
kk wxx̂  (3.26) 

In the next Section, the particle filtering has been applied to the nonlinear dynamical 

system in Cauchy distributed noise environment as the impulsive noise in the 

measurements. 

 

3.2. Particle Filtering Application for Tracking under Impulsive Noise 

 

 In this Section, an application on the analysis of tracking the nonlinear states 

under impulsive noise has been performed. Consider the nonlinear discrete time 

dynamical system given as 

 ( ) ( )kvk
x

xxx
k

k
kk ++

+
+=+ 2.1cos8

1
25

2
1

21  (3.27) 

 111 +++ += kkk wxy  (3.28) 

where the process noise kv is a Gaussian and the measurement noise kw is a Cauchy 

noise whose density ( )wf is given as 

 ( )
( )( )22 4

2
σμπ

σ
+−

=
w

wf   (3.29) 
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with scale parameter σ and the shift μ . In the application, the Cauchy noise has the 

pdf with 1=σ and 0=μ .  The process noise has a density ( )5.0,0N  and the initial 

density of particles has been chosen as ( ) ( )5.0,85.0,8
32
1,0 −++⎟
⎠
⎞

⎜
⎝
⎛ NNN .  

 

Initial density for the generated particles is heuristically chosen based on the 

estimated pdf (histogram) of the observed states. 
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Figure 3.1 Time evolution of particles under the mapping given in Eq. 3.27. 

 

Figure 3.1 indicates the time evolution of the generated particles which depends on 

the state dynamics. The filtered signal is shown in Figure 3.2 together with noisy and 

actual measurements. It can be clearly seen that reasonable filtering performance has 

been achieved. 
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Figure 3.2 Noisy, clean and filtered signal sequences. 

 

3.3. Particle Filtering The Chaotic Signals Under Impulsive Noise 

 

 In this Section the tracking problem of the chaotic trajectory in impulsive noise 

contamination has been analyzed. Differing from the signal processing application 

given in the previous Section, the process noise is not added since the dynamics of 

the system is assumed exactly known. The Henon map expressed in one dimensional 

space has been used as state model given in (3.30) 

 1
2

1 1 −+ +−= kkk bxaxx  (3.30) 

 111 +++ += kkk wxy  (3.31) 

The measurement noise w  has the scale parameter 1=σ  and the shift 

parameter 0=μ . In Figure 3.3 the filtered signal versus noisy and clean signal is 

illustrated. As clearly be seen, the particle filter can estimate the actual signal with a 

small error. The performance of the filter has also been indicated by the phase space 

reconstruction shown in Figure 3.4  
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Figure 3.3 Noisy, clean and filtered signal sequences for the chaotic system given in 

Eq. 3.30. 
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Figure 3.4 Phase space of the noisy, clean and filtered signal sequences for the chaotic 

system given in Eq. 3.30. 
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 According to the obtained results, it can be said that particle filtering has a certain 

filtering effect but can not provide a satisfactory estimating performance in the 

chaotic dynamics. This is due to proper selection of the prior densities in the chaotic 

dynamics associated with the weights and the generated particles and there is not 

such a rule for determining the initial density in the particle filtering method.  

 

3.4.  Particle Filters in Chaotic Communication System 

 

 In this Section, the new chaotic secure communication system has been described. 

The block diagram of this communication system is shown in Figure 3.5 and it can 

be described as  

i. the message signal ( )tm  drives the chaotic signal generator (chaotic dynamical 

system), 

ii. impulsive noise ( )tr  is used for masking the output of the chaotic dynamical 

system ( )tc , 

iii. the masked signal ( ) ( ) ( )trtctcm +=  is sent through the AWGN channel, 

iv. particle filtering is used to filter the masking signal ( )tr  to obtain estimated 

output signal ( )tĉ . At this stage, since the initial density of the particles is 

estimated by the histogram of the dynamical system in the transmitter it can be  

used as a key in the receiver part to filter the masking signal. The receiver 

chooses particles from the initial density of the dynamical system in the 

transmitter accordingly and then evaluates the likelihood ( )i
k

r
k xcp |  where r

kc is 

the incoming signal to the receiver. Since the density of the impulsive noise 

( )tr  is only known by the transmitter and the receiver, therefore an intruder can 

not filter the masking signal ( )tr . Thus, secure chaotic communication system 

can be achieved. 

v. The filtered signal ( )tĉ  is applied to the identical chaotic dynamical system  in 

the receiver to synchronize the receiver with the transmitter to estimate the 

message signal. 
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Figure 3.5 The block diagram of the chaotic secure communication system. 
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CHAPTER FOUR 

DIGITAL COMMUNICATION SYSTEM USING RANDOM SIGNALS WITH 

ALPHA STABLE DISTRIBUTIONS 

 

In this chapter, the new random secure communication scheme is introduced in 

which a message signal is hidden in the parameters of random carriers which have α-

stable distributions. After the definitions and the basic properties of the stable 

distributions are given in Section 4.1, the proposed digital communication system is 

described and its performance in AWGN channel is studied. In Section 4.2, three 

receiver models based on the least-squares estimation method, the moment type 

method, the fractional lower order moment method (FLOM) are given.  

 

In Subsection 4.3.1, the bit error rate performance of the communication system 

which is composed of the proposed α-stable ON-OFF keying transmitter and the 

FLOM based receiver model in the AWGN channel have been analyzed. In 

Subsection 4.3.2, the proposed transmitter model “unipodal α-stable keying” is given 

and the bit error rate performances have been analyzed for each three receiver 

models which are based on the least-squares method, the correntropy method and the 

FLOM based method, respectively. In Subsection 4.3.3, the transmitter model 

“antipodal α-stable keying” is proposed and its bit error rate performance is given by 

FLOM based receiver model; In Subsection 4.3.4, the transmitter model “quadrature 

α-stable keying” is described and the bit error rate performance for FLOM based 

receiver model is evaluated. In Subsection 4.3.5, the transmitter model “antipodal α-

stable keying with random parameters” is proposed and then bit error rate 

performance for the FLOM based receiver model is given.  

 

4.1 Alpha-Stable Distributions (αS) 

 

Most of the physical and financial data have an impulsive nature which can be 

described by α-stable distributions. Stable distributions construct a family of  
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distributions with the property of skewness and heavy tailness. αS distributions 

include well known distributions as Gaussian, Cauchy and Lévy distributions. 

Definition 4.1.1 (Samorodnitsky, 1994): 

A random variable X is said to have a stable distribution if for any positive real 

numbers A  and B , there are positive real numbers C  and D  such that 

 DCXBXAX
d

+=+ 21  (4.1) 

where 1X  and 2X  are independent realizations of X and the term “
d
= ” denotes 

equality in distribution.  

 

The following definition states that stable distributions can be found as limits of 

normalized sums of independently identically distributed (i.i.d.) random variables. 

Definition 4.1.2 (Samorodnitsky, 1994): A random variable X is said to have a 

stable distribution if it has a domain of attraction, i.e., if there is sequence of i.i.d. 

random variables L,, 21 YY  and sequences of positive numbers { }nd  and real numbers 

{ }na , such that 

 Xa
d

YYY d

n
n

n ⇒+
+++ L21  (4.2) 

where the notation “
d
⇒ ” denotes convergence in distribution.  

 

The characteristic function of a stable random variable is defined as: 

 

Definition 4.1.3 (Samorodnitsky, 1994): A random variable X is said to have stable 

distribution if there are parameters 20 ≤< α , 0≥σ , 11 ≤≤− β  and 

∞<<∞− μ such that its characteristic function can be expressed as below: 

 ( )
( )

( )
⎪
⎪
⎩

⎪⎪
⎨

⎧

=
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ +−

≠
⎭
⎬
⎫

⎩
⎨
⎧

+⎟
⎠
⎞

⎜
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where the function ω sign  is defined as 
⎪
⎩

⎪
⎨

⎧

<−
=
>

=
01
00
01

 
ω
ω
ω

ω
if
if
if

sign  

Univariate stable distributions are characterized with their four parameters. The 

stability index which is a measure of impulsiveness in the random sequence is called 

as characteristic exponent and denoted by α . Impulsiveness of the random data 

causes heavy tails in its distribution. The skewness parameter β  indicates the 

symmetry, the scale σ  or the dispersion parameter ασγ =  is analogous to the 

variance of the distribution and the parameter μ  denotes the amount of the shift.  

 

The stable random variable X can be simply denoted as ( )μβσα ,,~ SX  and 

symmetric α-stable distribution is also denoted as SSα  when 0== μβ . The 

probability density function (pdf) of X can be found by evaluating the Fourier 

transform of the characteristic function (Janicki & Veron,1994) 

 ( ) ( )∫
∞

∞−

−= ωωϕ
π

ω dexf xi

2
1  (4.4) 

The main problem with the stable distributions is that except for few values of 

four parameters describing their characteristic functions, their probability density 

functions can not be expressed analytically. These exceptions are the following 

distributions: 

I. Gaussian distribution (α=2), ( )μσ ,0,2S , 

 ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ −
−= 2

2

4
exp

2
1

σ
μ

πσ
xxf  (4.6) 

II. Cauchy distribution, (α=1), ( )μσ ,0,1S ,  

 ( )
( )( )22 4

2
σμπ

σ
+−

=
x

xf  (4.7) 

III. Lévy distribution, (α=1/2), ( )μσ ,1,2/1S , 

 ( ) ( ) ( )⎟⎟⎠
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2
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23
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 (4.8) 
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Using the numerical approximations of the formula in Eq. 4.4, one is able to 

construct α-stable density and cumulative distribution function (cdf) for various 

values of βα ,  and σ  which are illustrated in Figures 4.1-4.6. The shift parameter μ 

is taken as 0=μ  for all cases. 
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Figure 4.1 Pdf illustrated as ( )xf  and ( )xcdf   are shown for 0=β , 1=σ .  

 

From Figure 4.1, while increasing the impulsiveness of the data, and hence the 

probability density distribution (i.e., by decreasing α), the tails of the 

distribution becomes heavier. For the same characteristic exponent as increasing 

the scale parameter σ the distribution becomes more flat which is shown in 

Figure 4.2. The effect of the characteristic exponent for the skewed distributions 

is shown in Figure 4.3 and Figure 4.4. It can be said that for lower characteristic 

exponent the distribution is sharper and has a non-symmetric structure. The 

effect of skewness parameter β for different values of characteristic exponent 

parameter is illustrated in Figure 4.5 and Figure 4.6. One can observe that the 

non-symmetric behavior increases when α decreases and β gets near to ±1. 
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Figure 4.2 Pdf illustrated as ( )xf  and ( )xcdf   are shown for 2.1=α , 0=β . 
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Figure 4.3 Pdf illustrated as ( )xf  and ( )xcdf   are shown for 8.0=β , 1=σ . 
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Figure 4.4 Pdf illustrated as ( )xf  and ( )xcdf   are shown for 8.0−=β , 1=σ . 
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Figure 4.5 Pdf illustrated as ( )xf  and ( )xcdf   are shown for 8.0=α , 1=σ . 
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Figure 4.6 Pdf illustrated as ( )xf  and ( )xcdf   are shown for 5.0=α , 1=σ . 

4.1.1 Properties of α-Stable Distributions 

 

Among all of the properties given by (Samorodnitsky, 1994), some of the most 

important ones are described in the following sequel: 

 

Property 4.1.1.1 (Addition) Let ( )1111 ,,~ μβσαSX and ( )2222 ,,~ μβσαSX  to be 

independent random variables. Then ( )μβσα ,,~21 SXX +  

( )ααα σσσ 21 += , α

αα

σ
σβσββ 2211 +

= , 21 μμμ += . 

Property 4.1.1.2 (Shifting) If ( )μβσα ,,~ SX  and c is a non-zero real constant, the 

density function of the random variable cX + is ( )cScX ++ μβσα ,,~ . 

Property 4.1.1.3 (Scaling) If ( )μβσα ,,~ SX  and c is a non-zero real constant, the 

density function of the random variable cX is expressed as 
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( )( )
( ) ( ) 1 ifln2,sgn,~
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≠
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π

μβσ

αμβσ

α

α

cccccScX

cccScX
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Property 4.1.1.4 (Mirror) For any 20 << α  

( ) ( )0,,~0,,~ βσβσ αα −−⇔ SXSX . 

Property 4.1.1.5 (Symmetry) ( )μβσα ,,~ SX  is symmetric if and only if 0=β  

and 0=μ . The distribution is called as symmetric about μ if and only if 0=β . 

Property 4.1.1.6 (Finiteness of the moments) Let ( )μβσα ,,~ SX  with 20 << α . 

Then 

∞<pXE  for any α<< p0 , 

∞=pXE  for any α≥p . 

Note that α-stable random variables with α<2 have an infinite second and higher 

order moments and also when 1≤α , ∞=XE . 

 

4.1.2 Generation of α-Stable Random Variables 

 

Any symmetric α-stable random variable ( )0,0,1~ αSX  with ( ]2,0∈α  can be 

obtained by the following transformation (Janicki, Veron 1994) 

 ( )
( ){ }

( ) ( ) αα

α
αα /1

/1
cos

cos
sin −

⎭
⎬
⎫

⎩
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⎧ −
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VV

V
VX  (4.9) 

where ( )2/,2/~ ππ−UV  and W has an exponential distribution with mean 1.  The 

skewed stable random variable ( )0,,1~ βSY  with ( ) ( ]2,11,0 ∪∈α  and [ ]1,1−∈β  

can be generated using the random variables V and W and by applying the following 

transformation 
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,
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where the constants βα ,C  and βα ,D  are given as 

 ( )( )
α
παβ

βα −−
=

11
2tanarctan

,C  (4.11) 
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 ( )( )( ){ } α
βα παβ 1

, 2tanarctancos −=D  (4.12) 

After giving the fundamentals of α-stable distributions, another important topic 

named as covariation (corresponds to the covariance for the Gaussian distributions) 

describing the correlation between the samples of the stable random process is 

explained in the following Section. 

 

4.1.3 Covariation 

 

The covariance function defines how much two random variables are correlated 

with each other (i.e., how similar they are). Since the covariance is used in the 

analysis of Gaussian random variables (i.e., α=2), the interaction between random 

variables with 21 <<α  is expressed by the analogous term covariation. More 

conveniently, the covariation could be obtained by set of observations using 

fractional lower order statistics (FLOS) and rewritten as (Miller, 1978), 

 [ ] [ ]
[ ] Yp

p

YE
XYEYX γα

>−<

=
1

,  (4.13) 

where α<≤ p1  and >⋅<  denotes signed power ( )xxx pp sgn=>< . Yγ  is the 

dispersion parameter of Y. The expectations including the fractional lower order 

moments (FLOM) from a set of observations Xn and Yn, Nn L,1=  can expressed as 

 [ ] ∑
=

=
N

n

p
n

p X
N

XE
1

1  (4.14) 

and 

 [ ] ( )∑
=

>< ⋅=
N

n
n

p
n

p XX
N

XE
1

sgn1  (4.15) 

 

Some properties related with covariation are given by (Nikias & Shao, 1995) as 

below: 

Property  4.1.3.1 (Independence) If X and Y are independent and jointly SαS then 

 [ ] 0, =αYX . (4.16) 

Property 4.1.3.2 (Symmetry) If X and Y are jointly Gaussian (i.e., α=2) random  
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variables with zero mean, the covariation of X with Y is expressed as the covariance 

between X and Y which is symmetric.  

 [ ] [ ] [ ]XYEXYYX == 22 ,,  (4.17) 

Property 4.1.3.3 (Linearity) If X1, X2 and Y are jointly SαS and a and b real 

constants then the covariation [ ]αYX , is said to be linear in X as given below 

 [ ] [ ] [ ]ααα YXbYXaYbXaX ,,, 2121 +=+  (4.18) 

Property 4.1.3.4 The Cauchy-Schwarz inequality given below holds by any jointly 

SαS random variables X and Y.  

 [ ] >−<≤ 1, α
ααα YXYX  (4.19) 

where [ ]( ) XXXX γα
αα == /1,  and Xγ  is the dispersion parameter of X. The 

asymmetric definition associated with the covariation coefficient of X with Y is 

expressed by (Nikias & Shao, 1995)  

 
[ ]
[ ]α

αλ
YY
YX

YX ,
,

, =  (4.20) 

In general it is difficult to obtain analytic expression associated with covariation 

between stable random variables. Using Eq. 4.13, the expression associated with 

asymmetric, unbounded covariation coefficient becomes 

 
[ ]
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[ ]
[ ]p

p
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YE

XYE
YY
YX >−<

==
1

, ,
,

α

αλ  (4.21) 

Unlike the correlation coefficient obtained from the covariance, asymmetric and 

unbounded structure of the covariation coefficient makes it useless for a proper tool 

in most practical applications. In recent studies, the symmetric and bounded 

covariation coefficient has been given by (Garel et. al., 2004) and (Garel & Kodia, 

2009)  

 ( ) [ ]
[ ]

[ ]
[ ]α

α

α

αλλρ
XX
XY

YY
YX

YX XYYX ,
,

,
,

, ,, ⋅=⋅= . (4.22) 

Using (4.22) the covariation coefficient can be used as a measure of interactions 

between the random processes having stable distributions. In digital communication 

the covariation is considered to be essential tool for the design of receivers under 

different channel models involving different fading channel types.  
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4.2 Proposed Receiver Models for Random Communication Systems 

 

In this thesis, covariation has been considered as a tool for a receiver design in 

white Gaussian noise environment. When the received signal is defined as  

 NXY +=  (4.23) 

where the transmitted signal ( )0,0,~ γαSX  carries the information in the Gaussian 

channel where ( )0,0,~ 2 GSN γ  and Gγ  denotes channel noise variance. The 

covariation ρ between the estimated signal X̂  and the received signal Y  can be used 

to estimate the characteristic exponent of the information carrying signal X (i.e., 

random carrier).  

 

Since in the proposed communication system an information carrying signal is a 

random signal, the ratio of the energies of the stable and the Gaussian distributed 

random signals (DR) can be defined as  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

G
DR

γ
γlog10  (4.24) 

In Figure 4.7, the mean value of the Monte Carlo simulation of 100 realizations 

associated with the covariation for the model defined in Eq. 4.23 is illustrated with 

respect to the characteristic exponent α and the dispersion ratio (DR) which is used 

as analogous to the signal to noise ratio (SNR).   
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Figure 4.7 Covariation ρ of the stable distribution given in Eq. 4.23 with respect to α 

and dispertion ratio (DR) in dB. 

 

As seen from Figure 4.7, one can conclude that the covariation increases when the 

dispersion ratio is increased. This is because, the energy of the noise in the channel 

comparatively becomes low. Another critical point is that when α gets closer to two, 

i.e., Gaussian, then the covariation decreases for the same dispersion ratio. It can be 

concluded that by choosing smaller α (i.e., by choosing more impulsive carrier 

signal), better covariation between the random carrier and received signal can be 

obtained.  

 

On the other hand, the standard deviation of the Monte Carlo simulation with 

respect to the characteristic exponent α and the dispersion ratio (DR) illustrated in 

Figure 4.8 indicates that the probability of error in estimating the covariation 

increases when α gets closer to two, especially for low dispersion ratios. These 

findings can be a guide to design a receiver using covariation. 
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Figure 4.8 Covariation ρ of the stable distribution given in the model 4.23 with respect 

to α and dispertion ratio (DR) in dB. 

 

In the following Sections, the proposed receiver models for the α-stable density 

parameter modulated communication system are proposed based on estimating the 

parameters using the least-squares, the moments and the correntropy methods.  

 

4.2.1 Receiver Model Using Least-Squares Estimation Method 

 

The received signal at time instant t ∈ R through the AWGN channel is  

 ( ) ( ) ( )tXtXtX GSS += α  (4.25)  

where ( )tX SSα  is the random carrier, and ( )tX G  is the Gaussian noise in the channel.  

Although the pdf of the received signal does not exist in analytical form, the 

characteristic function of the received signal can be analytically written as  

 ( ) ( )2exp ωγωγωϕ α
α GSS −−=  (4.26) 
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where 0>SSαγ  and 0>Gγ  are the dispersions of the SαS and Gaussian signals, 

respectively. This fact can be easily seen from the characteristic function of the 

received signal in equation (SαS + SG) which is equal to the multiplication of the 

characteristic functions of the SαS signal and the channel noise since the density of 

the received signal is obtained by convolving the density of SαS signal and the 

density of channel noise:  

 ( ) ( ) ( )xfxfxf GS *α=  (4.27) 

 ( ) ( ) ( )ωϕωϕωϕ α GS ⋅=  (4.28) 

where ( )xf Sα , ( )xfG  represent the pdf of αS and Gaussian distributions, 

respectively. The estimate of the characteristic function could be obtained by 

empirical characteristic function as given by (Ilow & Hatzinakos, 1998) in Eq. (4.29) 

 ( ) ( )( )∑
=

−=
N

k
kjX

N 0
exp1 ωωϕ  (4.29) 

Using the closed form expression of the characteristic function given in Eq. (4.26) 

one can obtain the following relation 

 ( ) 22 22log ωγωγωϕ α
α GSSy +=−=

Δ
 (4.30) 

The relation given above is nonlinear in α and linear in dispersions. The regression 

model becomes as  
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 (4.31) 

where ( )ωε  is called as residual sum of squares (RSS), (Brcich & Zoubir, 1999) 

corresponding to the error term. For fixed α, the parameter vector including 

dispersions [ ]TGSS γγ α=θ may be estimated using linear least squares (Kay, 

1993a) as follows 

 ( ) yωωωθ TT 1ˆ −
=  (4.32) 

where ω is the coefficient matrix in Eq. 4.31.  
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The characteristic exponent which minimizes the estimation error θθ −ˆ  or the 

norm of the RSS vector ( )ωε can be chosen as the estimated characteristic exponent 

of the stable distribution. Figure 4.9 illustrates the variation of the estimation error 

and RSS norm with respect to α while the actual characteristic exponent is α=1. The 

magnitude of the RSS has a better performance where 97.0ˆ =α  for 5.0=Gγ and 

14.1ˆ =α for 1=Gγ .   

 

Since the channel noise variance is assumed to be unknown, exact values 

associated with the parameter vector θ is not known. Therefore, the estimated α 

which minimizes the RSS norm has been used for parameter estimation.  

 

The bit error rate performance of the proposed receiver model has been evaluated 

for the unipodal α-shift keying transmitter given in Section 4.3.2. 
 

 

 

Fig 4.9 The error ββ −ˆ with respect to the characteristic exponent α; a) 1=γ , 5.0=Gγ b) 

1=γ , 1=Gγ ; the norm of RSS ( )ωε  with respect to the characteristic exponent α; c) 1=γ , 

5.0=Gγ d) 1=γ , 1=Gγ . 
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4.2.2 Receiver Design Using Moment Type Method 

 

Another empirical characteristic function (ECF) based density parameter 

estimation method is called as “moment type method”. Referring to Eq. 4.26, the 

estimate of the empirical characteristic function of the received signal is given by 

(Ilow & Hatzinakos,1998) as below 

 21
12111log αα ωγωγω −−=  (4.33) 

and 

 
21

1
2

1
1

1

111log
αα

ω
γ

ω
γ

ω
−−=  (4.34) 

where 1α  is the characteristic exponent of the transmitted signal (random carrier 

signal) 2α  is the characteristic exponent of the channel noise.  Using the estimates of 

the ECF, the difference of the characteristic exponents 12 ααα −=Δ   can be found 

by solving the following nonlinear equation 

( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )4433

2211

4343
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ωϕωϕωϕωϕ

ωωωω
ωωωω

αααα

αααα

−
−

=
−+−
−+−

Δ−Δ−ΔΔ

Δ−Δ−ΔΔ

  

  (4.35) 

Since we have considered the channel noise with Gaussian distribution, then the 

characteristic exponent of the transmitted signal can be found as αα Δ−= 21 .   

 

Note that the rate of convergence depends on the number of data points N and on 

the values of 4321 ,,, ωωωω . Since the points iω and iω1 are both used to estimate 

the density parameter αΔ  and therefore the values 41 ,, ωω L should be chosen close 

to 1. Since the standard deviation in the estimation of characteristic exponent αΔ  is 

large (Ilow & Hatzinakos, 1998) then we have not preferred this type of estimation 

otherwise satisfactory bit error rate performance would not be achieved. 
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4.2.3 Correntropy Based Receiver Design 

 

Correntropy is a similarity measure between two random variables X and Y 

incorporating second and higher order moments of the random variable YX −  (Liu 

et. al., 2007), (Jeong et.al., 2009). This similarity measure gives the correlation 

between these variables therefore it is also called as Generalized Correlation 

Function (Santamaria et. al., 2006). The correntropy function is defined as below 

 ( ) ( )[ ]YXEYXV −= σκ,  (4.36) 

where E is the mathematical expectation and  σκ is the Gaussian kernel given by 
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σσπ
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In practice, the correntropy is computed from the finite observations with the length 

N=5000, therefore the sample estimator of correntropy can be expressed as (Liu et. 

al., 2007) 

 ( ) ( )∑
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n
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1
,

1,ˆ
σσ κ  (4.38) 

Considering a discrete-time strictly stationary stochastic process, the auto-

correntropy function (Santamaria et. al., 2006) can be found as 

 [ ] ( )∑
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mN
mV κ

1
1ˆ  (4.39)  

Using Taylor series expansion for the Gaussian Kernel, it can be defined as a type 

of metric expressed by a kernel function (Santamaria et. al., 2006)  

 ( ) ( ) [ ]
n

n
ttnn

n

xxE
n

ttV
2

0
221 21!2

1
2
1, ∑

∞

=

−
−

=
σσπ

. (4.40) 

Since the stable distributions have infinite higher order moment greater than α, 

Gaussian kernel may not be a proper candidate to measure the auto-correntropy. The 

function including fractional lower order moments has been used for the estimation 

of the auto-correntropy of nx given by 

 [ ] ∑
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−−
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=
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mn

p
mnn xx

mN
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1
1ˆ  (4.41) 
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where ( )0,0,~ γαSxn  and α<p .  

 

The simulations given in Figure 4.10 and 4.11 have been performed by 50 

realization of stable distributions with the length of 5000=N  points. It can be seen 

in Figure 4.10 that while α decreases (i.e., impulsiveness increases), the deviation 

associated with the median of the auto-correntropy also decreases and there is not 

any significant overlap between the median auto-correntropy values for different 

characteristic exponents. Thus, one can specify a threshold for the auto-correntropy 

of the received signal for deciding the characteristic exponent of the transmitted 

signal. In order to specify this threshold, the maximum and minimum values of the 

auto-correntropy over the realizations are illustrated in Figure 4.11. Choosing closer 

α values to encode the binary information in the transmitted signal may cause poor 

BER performance because Gaussian channel noise will increase the auto-correntropy 

values and the deviation of the median of the auto-correntropy of the received signal 

over a certain number of realizations will also increase when α of the random carrier 

is increased. Therefore in order to obtain a satisfactory BER performance in the 

receiver low α values for the transmitted noise signal should be chosen. However, if 

the security in communication is desired, higher α values for the carrier signals 

should be chosen for trading-off satisfactory BER performance. 
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Fig 4.10 The median of auto-correntropy function expressed in Eq. 4.41. 
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Fig 4.11 The average, maximum and minimum values associated with the median of 

the auto-correntropy  function  for 100 realizations. 
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4.2.4 Receiver Design Using Fractional Lower Order Moment Method 

 

In this Section, the receiver model based on estimating the parameters of the 

characteristic function of the stable distribution function which uses the fractional 

lower order moment (FLOM) described in (Kuruoglu, 2001) has been proposed. 

Using the set of observations ( ) bTk  kx ,...,2,1, = , where the length of the data is 

denoted as Tb, the estimate of the characteristic exponent has been evaluated by the 

sinc estimator (Kuruoglu, 2001) as formulated below  
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where p is the fractional moment order α<< p0 , Tb is the number of samples for 

each message bit and the absolute fractional moments Ap and signed fractional 

moment Sp are given by Eq. (4.43) and (4.44), respectively. 
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Once the estimate of the characteristic exponent α̂  has been computed above, the 

estimate of the skewness parameter β can be obtained by solving ϕ from the ratio 

estimator (Kuruoglu, 2001) as  

 ⎟
⎠
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tan

ˆ
tan π
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After computing the estimate of ϕ, the skewness parameter β can be obtained as 

below 

 ( )

⎟
⎠
⎞

⎜
⎝
⎛

=

2
tan

tanˆ
απ
ϕβ  (4.46) 

A detailed analysis of the alternative methods for computing β is explained in 

(Kuruoglu, 2001). The consistency of the method has been compared by extreme 

value method (EVM) given in (Tsihrintzis & Nikias, 1996). This method divides the 
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observed SαS distributed random signal with the length N into L non-overlapping 

segments as [ ] [ ]LNxxx XXXX LL 2121 ==   and then estimates the 

characteristic exponent α as given below  

 ⎟⎟
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⎞
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⎛
+=

ss
11

62
ˆ πα  (4.47) 

where the terms s and s are  
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and ( )( )llx Xmaxlog= , ( )( )llx X−−= minlog . 
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Figure 4.12 Comparison of Extreme Value Method (EVM) and FLOM Method for SαS 

random variables a) Mean value of the estimated α b) The standard deviation of estimation 

error with respect to α. 
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Figure 4.12 illustrates the estimation accuracy of the extreme value method 

(EVM) and fractional lower order moment method (FLOM). Note that while α is 

increasing, the standard deviation between the estimated value and the actual value 

of the characteristic exponent increases. One can conclude that selection of higher α 

values for parameter modulation may cause increased estimation error. Therefore 

small α values should be chosen and more distant α values provide appropriate 

threshold.  

 

Since the binary message can be coded not only by the characteristic exponent but 

also using the skewness parameter, the density parameter estimation method by 

FLOM have been used for a receiver design in the proposed communication schemes 

explained in the following Section.   

 

4.3 Transmitter Model Using α-Stable Distributed Noise Parameter 

Modulation In Digital Communication 

 

In this Section, differing from the conventional spread-spectrum systems which 

use deterministic signals as a carrier signal, instead, α-stable distributions are used as 

a random carrier in the newly proposed random communication system: a random 

signal with α-stable distribution which carries the digital information is sent through 

the additive white Gaussian noise (AWGN) channel. Since the parameters of α-

stable distributions are used to code the digital information then the random signal 

acts as carrier and therefore a random signal is called as a random carrier.  

 

In the following Sections, the bit error rate performance analysis of each receiver 

models in AWGN channel will be given for each proposed transmitter model.  
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4.3.1 α-Stable ON-OFF Keying 

 

The first approach on the random digital communication using SαS distributions 

is based on the α-Stable ON-OFF keying. In this communication scheme, the 

message bit is encoded by the characteristic exponent α where the stable noise 

samples xk bTk ,,1L= are drawn from the distribution ( )0,0,1αS  during the bit length 

Tb if the nth message bit to be sent is “0” and any random signal is not sent if the nth 

message bit of the binary message sequence m is equal to “1”.  

 

The modulation rule can be expressed as below 

 
( )

( ) ( )⎩
⎨
⎧

=
=

0 if   0,0,1
1 if               0

~
b

b
k nTmS

nTm
x

α
 (4.50) 

where, bbb TnTnTk ++= ,,1L  and n=0,1,…. 

The critical point is to determine the proper threshold at the receiver. There is not 

any analytical approach for the selection of threshold. According to the modulation 

rule defined in Eq. 4.50, the receiver observes only Gaussian noise signal existing in 

the channel if the message bit to be sent is “1”. Since the estimation error of 

characteristic exponent increases when  α increases, then the threshold should be 

chosen distant from the characteristic exponent of Gaussian noise in the channel i.e., 

2. When the channel noise variance increases, then the characteristic exponent of the 

received signal also increases. The characteristic exponent associated with the sum of 

stable random variable with a Gaussian random variable gets near to 2. Therefore the 

threshold should be chosen as relatively near but bigger then the characteristic 

exponent of the SαS distribution.  

 

The bit Error Rate (BER) performance given in Figure 4.13 has been realized over 

10000 bits with a length Tb=10000 point which is sufficient to recover the 

characteristic exponent parameter from the observation.  
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Figure 4.13 Bit error rate performance of the α-stable ON-OFF keying communication 

scheme with respect to the different characteristic exponents. The threshold has been 

chosen as 1.7. 
 

The BER results show that when more impulsive random signal is chosen to 

modulate the binary information, then BER performance is improved. The advantage 

of this method is that the less energy is consumed since the random signal is sent 

from the transmitter only for the binary message “0”. 

 

4.3.2 Unipodal α-Stable Keying 

 

The second proposed communication scheme is called as unipodal α-stable 

keying whose block diagram is shown in Figure 4.14. Similarly, this communication 

scheme also uses SαS random signals at the transmitter. Differing from the previous 

method both of the binary message bits are modulated with the random signals which 

have different characteristic exponents 21,αα <2. 
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Figure 4.14 Block diagram of the proposed unipodal α-

stable keying communication scheme 

 

During the bit length Tb the samples xk, bTk L,1= are drawn from a probability 

density “ ( )0,0,1
i

Sα ” i=1, (respectively i=2) if ( ) 1=bnTm  (respectively ( ) 0=bnTm ) 

i.e., 
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nTm if   S
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where bbb TnTnTk ++= ,,1L  and n=0,1,…. 

As an illustrative example, the message sequence and the corresponding stable 

distributed signal are shown in Figure 4.15a and Figure 4.15b, respectively. The bit 

duration is Tb=104 and the characteristic exponents have been chosen as α1=1, 

α2=0.5. Due to the high impulsive behavior of the signal with α2=0.5, the signal 

having characteristic exponent α1=1 can not be observed clearly. This indicates that 

the characteristic exponents should be chosen near to each other to provide security. 

 

The BER performances of unipodal α-shift keying have been performed by 

density parameter estimation method described by (Kuruoglu, 2001) given in Section 

4.2.4 and the least squares estimation method described by (Brcich & Zoubir, 1999) 

given in Section 4.2.1.  

Estimated 
Binary Message 

Bit “0” 
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Sent 

SαS Noise 
Generator (α =α1) 

AWGN 
Channel 

SαS Noise 
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Figure 4.15 a) The message bit stream. b)Transmitted noise sequence. 
 

Figure 4.16 gives the BER performance of the unipodal α-shift keying using the 

method given by (Kuruoglu, 2001). The simulation has been performed through 

10000 bit where each bit has length 10000 points. It is shown that when the 

characteristic exponents of the random carriers α1 and α2 are chosen far from each 

other then the error probability decreases, as expected.  

 

In order to maintain the security without reducing the BER performance, one 

should choose both α1, α2 near to each other but far from the characteristic exponent 

of the Gaussian, i.e., 2. 
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Figure 4.16 BER performance for unipodal α-stable shift keying, α1=1.85. with the 

threshold = 1.65  
 

The second method representing BER performance using the parameter 

estimation described in Section 4.2.1 is shown in Figure 4.17. Due to computational 

complexities and consuming very long simulation time, the random signal length 

could be chosen maximum Tb=5000 points and the BER simulation could be 

performed by 1000 bits. Compared to the density parameter estimation method, the 

reduced data length causes the estimation accuracy to become poorer even when the 

dispertion ratio is relatively high. It is observed that this method gives an 

unsatisfactory BER performance. However, the BER performance of the method is 

satisfactory for low values of α, while sacrificing for security. 
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Figure 4.17 BER performance of the least-square based parameter estimation based 

receiver. α1=1.6 and the threshold has been taken as 1.45.  
 

The BER performance of the unipodal α-shift keying with correntropy-based 

receiver is given in Figure. 4.18. It can be seen that the performance of the 

correntropy based receiver becomes saturated near 5 dB and gives a restricted error 

performance. The signal length could be chosen as maximum 5000 points due to the 

computational restrictions. This caused to observe more deviative results. Therefore, 

one can say that correntropy based receiver needs to be improved about threshold 

selections about the correntropy values and binary clustering. 
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Figure 4.18 BER performance of the correntropy based parameter estimation based 

receiver. α1=1.8 and the threshold has been taken as 1.65.  

4.3.3 Antipodal α-Stable Keying 

 

In this proposed communication scheme, while the characteristic exponent α is 

kept constant the skewness parameter β is used to modulate the binary information. 

The block diagram of the proposed communication scheme is given in Figure 4.19. 

 

During the bit length Tb the samples xk produced by the transmitter, bTk L,1= are 

expressed as 

 
( ) ( )
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=−
=
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b
k nTm if   S

nTm if   S
x

β
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α

α  (4.52)  

where bbb TnTnTk ++= ,,1L  and n=0,1,…. 

 



 78

 

β -Parameter 
Estimator

Bit “0”
Sent 

Bit “1”
Sent 

αS Noise Generator

( )0,,βσαS   

AWGN
Channel  

α-Parameter 
Estimator 

αS Noise Generator 

( )0,, βσα −S   

( )βsgnˆ =m  

 
Figure 4.19 Block diagram of digital communication 

scheme based on skewed α-stable distributions.  

 

The Gaussian noise in the channel will cause the deviation in the true value of the 

characteristic exponent and since the skewness parameter will also be estimated by 

using  the estimated characteristic exponent by the method given in (Kuruoglu, 2001) 

then the deviation in the true value of the skewness parameter will also occur. But, 

since in the receiver, the message bit is estimated according to the sign of the 

estimated skewness parameter therefore by proper thresholding, a satisfactory BER 

performance is obtained and this proposed scheme is more robust to the errors in the 

estimations. In Figure 4.20, the BER performance is shown with respect to the 

different characteristic exponent values. It can be clearly seen that the BER 

performance increases by decreasing the characteristic exponent of the random 

carrier while keeping the skewness parameter constant.  

 

The Figure 4.21 illustrates that the selection of more skewed distribution will 

improve the BER performance while the characteristic exponents are kept constant. 

This is because the convolution of the transmitted random signal with the skewed 

stable distribution and the Gaussian noise in the channel results in the more 

symmetrized and the less skewed distribution at the receiver. 
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      Figure 4.20 BER performance for Antipodal α-stable shift keying, β=0.7.  
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       Figure 4.21 BER performance for Antipodal α-stable shift keying, α=1.6.  

4.3.4 Quadrature α-Stable Keying 

 

In Sections 4.3.1 - 4.3.3 either the characteristic exponents or the skewness 

parameter have been used for the coding in the proposed random communication 

systems. In this Section, both the characteristic exponent and the skewness parameter 

have been used to modulate the binary information. By the two parameters of a stable 

random carrier, two message bits are encoded, thus, the twice data transmission rate 

is obtained. In the receiver, the density parameter estimation method given by 

(Kuruoglu, 2001) has been applied since β parameter is estimated by using the 

estimated α parameter therefore the two stage estimation procedure is applied for 

each bit pair. The block diagram of the proposed communication scheme is shown in 

Figure 4.22.   
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         Figure 4.22 The block diagram of the quadrature α-stable keying communication scheme. 
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Figure 4.23 A realization of random signal for each message bit pair. 
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Figure 4.24 The BER performance of the quadrature α-stable keying communication 

scheme with α1=1.7, β=0.9 and the threshold 1.65. 
 

As an illustration, a realization of the time domain signal for each bit pair is 

represented in Figure 4.23. The BER performance of the communication scheme is 

shown in terms of the variations of 0α  , 1α and β parameters of the random carriers in 

Figure 4.24 and Figure 4.25, respectively.  
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Figure 4.25 The block diagram of the quadrature α-stable keying communication scheme 

α1=1.7, α0=1.5 and threshold = 1.65. 
 

When compared with the BER performances of the communication schemes 

proposed in the previous Sections, it can be seen that in order to obtain the same 

BER performance, modulation with low characteristic exponent values (i.e., more 

impulsive random carrier) is done at the expense of more energy consumption in the 

transmitter and losing security. Since for the skewed distributions, the estimate of the 

characteristic exponent is more erroneous in limited number of samples. Therefore in 

order to estimate the first message bit depending on the characteristic exponent 

correctly the number of samples should be increased.  

 

BER performance is more sensitive to the threshold values of the characteristic 

exponent compared to threshold values of the skewness parameter of the random 

carrier since the sign of the skewness parameter decides the true message bit, not the 

true value of the skewness parameter.  
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In spite of its poor performance by the quadrature α-stable keying twice the data 

transmission rate is achieved.  

 

4.3.5 Antipodal α-Stable Keying With Random Parameter 

 

In the previous Sections, different types of α-stable noise parameter modulation 

based digital communication schemes have been given. In this Section, in the 

transmitter side, instead of choosing the parameter of the α-stable distribution 

deterministically, the noise parameters have been chosen from uniform distribution 

to encode the binary information. The application of random parameter modulation 

has been applied for antipodal α-stable shift keying transmitter type. 

 

 
Figure 4.26 The distribution of the skewness parameter β for different dispersion ratios 

(α=1.1). 
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In order to illustrate experimentally, 100 realizations of skewed α-stable noise signal 

having α=1.1, [ ]5.01.0U∈β  and [ ]5.01.0 −−∈Uβ  has been transmitted 

through the channel with no-noise case and with dispersion ratios 0.1 and 1, 

respectively. The distributions corresponding to actual and estimated values of β are 

shown Figure 4.26. The same experiment has been repeated with α=1.5 and the 

results are given in Figure 4.27.  

 

 
Figure 4.27 The distribution of the skewness parameter β for different dispersion ratios 

(α=1.5). 

 

One can conclude that even though the estimation of β becomes erroneous under 

Gaussian noise contamination and while α increases, the estimated β does not 

change its sign so that receiver can estimate the message bit without an error. Hence, 

antipodal α-shift keying communication scheme can also be proposed by selection of 

β  from a specified distribution. 

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0

0.5

A
ct

ua
l β

Probability Distribution of β Parameters (α=1.5)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0

0.5

E
st

im
at

ed
 β

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0

0.5

γ/
γ G

au
ss

=0
.1

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0

0.5

β

γ/
γ G

au
ss

=1



 86

During the bit length Tb the samples xk produced by the transmitter, bTk L,1= are 

expressed as 

 
( ) ( )
( ) ( )⎩

⎨
⎧

=−
=

0 if   0,,1
1 if   0,,1

~
b

b
k nTmS

nTmS
x

β
β

α

α  (4.53)  

where bbb TnTnTk ++= ,,1L , [ ]9.05.0U∈β  , [ ]9.05.0 −−∈− Uβ , U denotes 

the uniform distribution and n=0,1,…. 

 

The BER performance of this communication scheme is given in Figure 4.28 and 

Figure 4.29.  

 
Figure 4.28 The BER performance for antipodal α-keying with random parameters 

[ ]9.05.0U∈β . 

It can be observed that almost the same estimation performance compared with the 

antipodal α-shift keying with constant parameter modulation could be achieved by 

this proposed communication scheme.  
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Figure 4.29 The BER performance for antipodal α-keying with random parameters (α=1.6). 

 

4.4 Detection of α-Stable Distributed Signals in White Gaussian Noise 

 

In this Section, the detection probabilities of symmetric α-Stable (SαS) and 

skewed α-stable distributions in additive white Gaussian noise (AWGN) 

environment have been derived. It has been observed that satisfactory BER 

performance is obtained when the detection probability becomes higher, as expected.  

 

4.4.1 Detection Of Symmetric α-Stable Distributed Signals In White Gaussian 

Noise 

 

In this Subsection, the detection performances of the communication scheme 

which use unipodal (Cek & Savacı, 2009) α-shift keying in its transmitter part and 
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Characteristics (ROCs) (i.e., the probability of detection DP  versus the probability of 

false alarm FAP ) have been evaluated by applying Neyman-Pearson test to obtain 

detection performance. The main contribution of this Section is to find the detection 

probabilities of SαS distributions embedded in Gaussian noise environment.    

 

Binary Hypothesis Testing (BHT) for detecting SαS distribution in Gaussian 

noise environment: 

The detector structure is designed under the hypotheses formulated below 

H1: nxy += 1 ,         ( )0,0,~
11 σαSx                                                                 (4.54.a)  

H0: nxy += 0 ,        ( )0,0,~
00 σαSx  (4.54.b) 

where the Gaussian white noise model is also a member of SαS distribution with 

α=2 and represented as ( )0,0,~ 2 GSn σ .  

 

For each hypothesis, the probability density function (pdf)  ( )kHyf ;  of a single 

observation y  shown in Figure 4.30 has been obtained by convolving pdfs of the 

SαS and the Gaussian distributions as in Eq. 4.54a and Eq. 4.54b.  



 89

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

y

f(y
;H

k)

Figure 4.30 Resultant normalized pdfs ( )kHyf ;  for the hypothesis H1 5.01 =α  

(Solid), the hypothesis H0 5.10 =α (Dotted), 1=σ  for both hypotheses 

and 1.0=Gσ . 

 

Neyman Pearson Detector for SαS Distribution Embedded in Gaussian Noise: The 

decision statistics are obtained by applying the Neyman-Pearson test (Kay, 1993b): 

 ( ) ( )
( ) γ>=

Δ

0

1

;
;
Hyf
HyfyL  (4.55) 

where γ  is the threshold.  

 

Since there does not exist an analytical expression for the probability density (pdf) 

of the αS random variable, then the pdf of sum of SαS distribution with Gaussian 

distribution has been numerically determined by using the characteristic functions of 

the resultant densities in each hypothesis as  

 ( ) ( )∫
∞

∞−

−−−= θθσθσθ
π

αα dyiHyf Gk
kk 22exp

2
1; , .1,0=k  (4.56) 
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Note that only asymptotic expansions for the pdf of SαS and for the pdf of the sum 

of SαS random variables are available in (Tsihrintiz & Nikias, 1993), (Tsihrintiz & 

Nikias, 1995). The probability of detection DP  and the probability of false alarm FAP  

are defined as: 

 ( )
( )
∫ ∫

>

∞

∞−

−−−=
γ

αα θθσθσθ
πyLy

GD dydyiP
:

2211exp
2
1  (4.57) 

 ( )
( )

dydyiP
yLy

GFA ∫ ∫
>

∞

∞−

−−−=
γ

αα θθσθσθ
π:

2200exp
2
1  (4.58) 

where the characteristic exponents α1, α0  and the scale parameters σ, σG are 

assumed to be known because they are used for encoding the message signal in the 

transmitter part of the random communication system proposed in (Cek & Savacı, 

2009). The performance of the receiver has been analyzed obtaining ROCs (i.e., PD 

versus PFA) shown in Figure 4.31 for the different choices of characteristic 

exponents.  
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Figure 4.31 The variation of the ROCs with respect to the different characteristic 

exponents where the fixed 5.01 =α  and 5.10 =α (Solid), 0.10 =α (Dashed-Dotted), 

75.00 =α (Dotted). The scale parameters have been chosen as 1.0=Gσ , .1=σ  



 91

Figure 4.32 illustrates the effect of the Gaussian noise in the channel to the receiver 

performance. It can be seen that when the Guassian interference increases then the 

detection probability decreases. 
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Figure 4.32 The variation of the receiver operating characteristics with respect to the 

different scale parameters of Gaussian noise where 5.01 =α , 5.10 =α , 1=σ  and 

001.0=Gσ  (Solid), 1.0=Gσ  (Dashed-Dotted) and  10=Gσ (Dotted). 

 

In fact, the distance between the densities can be a clue about the detection 

performance of the detector. Therefore, under the binary hypothesis defined in 

(4.54.a) and (4.54.b), we have computed the Hellinger distance (Scott, 1992) 

between the pdfs as 

 ( ) ( )( ) ( ) ( )( )
21

2

0101 ;; ;,; ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∫

∞

∞−

Δ

dyHyfHyfHyfHyfd . (4.59) 

It can easily be seen in Figure 4.33 that the probability of detection increases if the 

impulsiveness of the distribution “ 0α ” is increased in the Gaussian environment. 
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Figure 4.33 For fixed 1α  ( 2.01 =α ), the Hellinger distance with respect to 0α  for various 

Gaussian scale parameters Gσ .  

 

As conclusion, this Section addresses the problem of detection of the symmetric α-

stable distributed random signals which are mixed with white Gaussian noise by 

observing single sample as:  

i. The ROCs indicate that the detectability of the single observation decreases when 

the variance of the Gaussian noise increases. Because, if the variance of the 

Gaussian density in the channel increases, then Hellinger distance between the 

resulting densities ( )⋅yf  in each hypothesis decreases and hence due to the similar 

yf s in each hypothesis the detection performance of the detector reduces,  

ii. If we do not choose the characteristic exponents (CE) of the SαS distributions in 

each hypothesis close to each other, then the Hellinger distance between the 

densities is increased and the detection probabilities can thus be increased. The 

above discussions imply that the security can be increased if the closely chosen 
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characteristic exponents of SαS distributions approach to the characteristic 

exponent of the Gaussian noise in the channel. 

 

4.4.2 Detection of Skewed α-Stable Distributed Signals in White Gaussian 

Noise 

 

In this subSection, the detection performances of the communication scheme which 

use antipodal α-shift keying in its transmitter part and the FLOM method in its 

receiver part has been given. Receiver Operating Characteristics (ROCs) (i.e., the 

probability of detection DP  versus the probability of false alarm FAP ) have been 

evaluated by applying the Neyman-Pearson test to obtain detection performance as 

given in the previous Subsection. The contribution of this subSection is to find the 

detection probabilities of skewed α-stable distributions embedded in Gaussian noise 

environment.   

 

Binary Hypothesis Testing (BHT) for detecting skewed αS distribution in 

Gaussian noise environment: 

The detector structure is designed under the hypotheses formulated below 

H1: nxy += 1 , ( )0,,~
11 βσαSx                                                                (4.60.a)  

H0: nxy += 0 ,          ( )0,,~
00 βσα −Sx  (4.60.b) 

where the Gaussian white noise model is also a member of SαS distribution with 

α=2 and represented as ( )0,0,~ 2 GSn σ .  

The probability of detection DP  and the probability of false alarm FAP  associated 

with the skewed case are defined as: 
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where  
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Figure 4.34  Probability density function of summation of skewed α-stable and Gaussian 

random variables is illustrated under various Gaussian noise variances and opposite 

skewness  (α=0.5). 
 

It can be seen in Figure 4.34 that the Gaussian interference decreases the skewness of 

the α-stable distribution and results in wider pdf. Therefore, more skewed 

distribution will provide an increase in the detection probability. The detection 

probabilities of the skewed α-stable distributed signals are shown in Figure 4.35.  
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Figure 4.35 Illustration of probability of detection PD versus probability of false alarm, 

PFA (α=0.6, σ=0.5, σG=1). 
 

The problem of detection of the skewed α-stable distributed random signals which 

are mixed with white Gaussian noise by observing single sample has been addressed 

in this subSection and the ROCs indicate that delectability of the single observation 

decreases when the variance of the Gaussian noise increases. The above discussions 

imply that the selection of more skewed stable signal will result increased detection 

probability.  
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CHAPTER FIVE 

CONCLUSIONS 

 

In this thesis, novel signal processing techniques for designing secure 

communication systems have been introduced. Instead of using any deterministic 

signal as in the conventional spread spectrum techniques the newly introduced secure 

digital communication scheme uses random signals which have α-stable distributions 

as a random carrier. 

 

Before discussing the proposed random communication schemes, fundamentals of 

the chaotic communication schemes have been explained in the beginning of the 

thesis since historically chaotic signals due to their noise-like spectrum have been 

first studied extensively in the past twenty five years as an alternative spread 

spectrum communication technique. 

 

 Besides the existing chaotic modulation techniques such as chaotic frequency and 

pulse position modulation in the literature the new chaotic communication scheme 

involving double sideband amplitude modulation has also been introduced as a novel 

contribution. Since the modulation techniques using chaotic signals to spread the 

spectrum can not be used in the high frequency range, the proposed study aims to 

shift the frequency content of the message signal which is masked by the chaotic 

signal by the carrier frequency in order to provide the chaotic communication for 

possible wireless applications at high frequencies. The drawback of the proposed 

method is weak robustness of the receiver when the signal to noise ratio decreases. 

Therefore improvement in the performance of the receiver is needed as further work. 

 

Although chaotic signals have been accepted as proper candidates because of their 

broad-band nature, like noise signals but since the chaotic signals have low 

fundamental frequencies and their power is concentrated at low frequencies, the 

chaotic communication especially based on the masking techniques can be easily 

broken by the methods explained in Chapter 2.  
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In Chapter 3, as a contribution to the chaotic communication systems the security 

performance have been  improved by masking the chaotic signal with  an impulsive 

noise having alpha-stable distribution with specified distribution parameters before 

transmitting the signal through the Gaussian noise channel. Since the noise model is 

non-Gaussian, the tracking problem of the chaotic trajectory could not be solved by 

suboptimal filters such as extended Kalman filtering. Therefore, the particle filtering 

techniques which are based on Bayesian estimation have been considered for 

filtering the noisy observations of the receiver. The proposed methods use SαS 

random signal as a jammer through the channel and a broad-band signal can thus be 

obtained. Since the characteristic exponent of the impulsive noise is assumed to be 

known by the receiver, the noisy observation can be filtered by using particle 

filtering techniques. It has been shown that SαS noise is a candidate tool for 

increasing the security but the receiver performance for tracking the chaotic 

trajectory may be poor. The disadvantage of the particle filtering based receiver is to 

determine the prior density for the initiation of the filtering algorithm. To overcome 

this problem initial densities have been estimated by observing the histogram of the 

noise-free chaotic trajectory. The chaotic dynamics of Henon map has been 

estimated in the non-Gaussian environment by using the particle filtering method. It 

has been shown that the proposed method has a certain spectrum-spreading effect but 

it can offer limited filtering performance if the distribution of the particles and prior 

densities can not be chosen properly which is already an open problem. 

 

In Chapter 4, novel random communication systems have been introduced based 

on α-stable distributions. The binary message has been modulated by α-stable 

distributed signals with specified parameters such as characteristic exponent α and 

skewness parameterβ. These parameters have been used to encode the binary 

message signal. It was shown that the impulsiveness parameter “alpha” can be 

properly estimated at the receiver if the length of the generated noise sequence is 

properly chosen and from these estimated alpha values the binary message can be 

decoded. Although, the effect of additive white Gaussian noise (AWGN) channel has 

been observed as small deviations in the actual alpha values, by properly choosing 

threshold in the detector the same amount of deviations occur in the alpha values and 
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hence the actual message bits can be estimated. The receiver derives discriminating 

information associated with the observed random signal which carries the binary 

message.  

 

Several methods have been given to design the receiver for estimating SαS 

distributed random carrier signals in Section 4.2. The first method given in Section 

4.2.1 is based on the least-square estimation and uses empirical characteristic 

function. Although the stable distributions can not be formulated analytically, the 

characteristic function of the stable distributions can be expressed analytically. The 

estimate of the empirical characteristic function (ECF) can be directly obtained from 

the observations. Using regression analysis, parameter estimation of the stable 

distribution has been tried to be obtained by the least squares estimation. The bit 

error rate (BER) performances have been realized for the least-squares estimation 

method and it has been observed that the error probability in detection saturates even 

though the energy of the random carrier comparatively higher with respect to the 

Gaussian noise in the channel (i.e. dispersion ratio increases). This is because the 

standard deviation of the parameter estimation is dramatically high so that erroneous 

estimation has been obtained even while there is a weak interfering Gaussian noise in 

the channel. On the other hand, since the method is computationally expensive, the 

length of the SαS random signal is insufficient to perform a proper estimate. In 

Section 4.2.2 by investigating the  moment type estimator which is also based on the 

use of ECF it has been concluded that the empirical characteristic function based 

parameter estimation methods are not preferable for random communication systems. 

 

In Section 4.2.3, the correntropy based receiver has been considered as an 

alternative receiver model. Varying impulsiveness of the stable random signals by 

changing the characteristic exponent has been modeled by using similarity measure 

(auto-correntropy) between the samples of the observed signal in the receiver and the 

random carriers. Since the Gaussian kernel can not successfully discriminate the 

stable random signals with different characteristic exponents which represents the 

binary codes of the message signal, fractional lower order moment has been 

considered for defining the similarity. Due to computational complexity, the signal 
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length for one bit duration has to be decreased compared to the other receiver 

methods defined above that caused poorer bit error rate performance. Moreover, it 

was observed that the standard deviation of the estimated auto-correntropy value for 

the specified characteristic exponent increased while the characteristic exponent is 

decreased. Therefore it is critical that the proper selection of relatively low 

characteristic exponents near to each other to reduce the error performance of the 

correntropy method.  

 

The last receiver model given in Section 4.2.4 is based on density parameter 

estimation method which uses the fractional lower order moments (FLOM) to detect 

the distribution parameters of the observed random signal. More generally, since the 

moments greater then the characteristic exponent of the stable distribution is infinite, 

fractional lower order statistics is significant to extract the discriminative information 

from the observations at the receiver. The performance of communication scheme 

associated with density parameter estimation has been analyzed by computing bit 

error rate (BER) performances. It is observed that, there are some critical points in 

deciding the BER performance. First, when the alpha values of distributions are 

decreased then the impulsiveness of the noise increases which causes poor bit error 

rate performances. Second, when the characteristic exponents of the stable noise 

signals are selected far from each other, the bit error rate increases. In order to reduce 

the estimation error, the length of the noise sequence should be chosen sufficiently 

large.  

 

In Section 4.3.3, the skewness parameter β of the alpha-stable distribution has 

been used to modulate the binary message while the characteristic exponents of the 

random carriers are chosen equal to each other. The BER results illustrate that when 

the value of skewness parameter is increased, the positive-skewed and negative-

skewed distributions can be more easily estimated. This causes decrease in the BER 

performance of the system.  

 

In Section 4.3.4, both characteristic exponents and skewness parameters of the 

random carrier have been used for random communication in order to double the 
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transmission speed. It has been observed that while the transmission speed is 

increased, the BER performance becomes poorer since the estimation of the 

skewness parameter depends on the estimated characteristic exponent. A possible 

deviation on estimating the characteristic exponents brings a misleading estimation 

on skewness parameter. 

 

In Section 4.3.5, as another random communication scheme, instead of coding the 

binary message bit with constant noise parameters, it has been considered to use 

skewed α-stable distributed noise signal where the parameters of the parameters of 

the noise is also taken from a known distribution. Since the stable noise parameters 

are also changed for each message bit the possibility of the determining the 

parameters  by an intruder is also avoided and a higher security can thus be achieved. 

The BER performance of the method can be increased by appropriate selection of the 

threshold. 

 

Since the purpose of using random signals for communication is to provide 

security, in Section 4.4, the receiver operating characteristics (ROC) which identify 

the detectability of the random signals under Gaussian contamination having 

different stable distribution have been evaluated. 

 

In Section 4.4.1, the problem of detection of the symmetric α-stable distributed 

random signals which are mixed with white Gaussian noise by observing single 

sample has been analyzed.The ROCs indicate that the detectability of the single 

observation decreases when the variance of the Gaussian noise increases. Because, if 

the variance of the Gaussian density in the channel increases, then the Hellinger 

distance between the densities associated with each hypothesis decreases and hence 

due to the smaller distance between the densities, the detection performance of the 

detector reduces. If we do not choose the characteristic exponents of the SαS 

distributions in each hypothesis close to each other, then the Hellinger distance 

between the densities is increased and the detection probabilities can thus be 

increased. 
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The above discussions imply that the security can be increased if the closely 

chosen characteristic exponents of SαS distributions approach to the characteristic 

exponent of the Gaussian noise in the channel. In Section 4.4.2, the construction and 

performance of a skewed α-stable noise detector has been presented. As it is 

expected, when the impulsiveness of the stable noise is increased, i.e. α parameter is 

decreased, detection performance increases. The detectability of the proposed system 

increases when the stable distribution is more skewed.  

 

After the analysis given in Chapter 4, one can conclude that the random signals 

with α-stable distributions can be proper carriers for secure random communication. 

Bit error rate performance can be improved by choosing the more impulsive and/or 

more skewed stable distributions. Since the detectability increases while the 

impulsiveness and/or skewness are being increased, there is an inverse relation with 

security and error performance. This trade-off should be taken into account before 

designing the proposed random communication systems.  

 

The proposed random communication schemes have been analyzed in memoryless 

channels. In order to interpret the applicability of the method in wireless 

communication systems, it is essential to analyze the proposed method under 

interference of both random and deterministic signals, in different fading channels 

such as Rayleigh and Rician fading which have memory. Analyzing the proposed 

random communication scheme in such channel models will be the further 

projections by deriving analytical or approximate models using covariation of the 

stable distributions with time-delay models and source separation techniques like 

independent component analysis (ICA). Although the proposed methods in the thesis 

introduce several communications models for only single user, adaptation of time-

division multiple accesses (TDMA) for stable distributions and the analysis of the 

multivariate stable-distributions will provide to develop multi-user secure-

communication systems as a further work. 
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