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COMBINATORICS AND TOPOLOGY OF CONIC-LINE
ARRANGEMENTS

ABSTRACT

In this thesis, we have concentrated on quadric-line arrangements. First we are
interested with the combinatorics of line arrangements and also quadric arrangements.
Next, we have studied the branched coverings of complex projective plane and two
dimensional orbifolds. In addition to this, we have explicitly exhibited the covering
relations among orbifold germs, observed by Yoshida. Finally, by using orbifold
Chern numbers we have discovered new orbifolds uniformized by two dimensional

complex ball and studied the covering relations among them.

Keywords : quadric-line arrangements, orbifold.



KONIK-DOGRU DUZENLEMELERININ TOPOLOJISi VE KATISIMI

0z

Bu tezde kuadrik-dogru diizenlemeleri iizerine yogunlastik. Ilk olarak dogru
diizenlemelerinin ve konik diizenlemelerinin katistmini inceledik. Daha sonra
karmagik projektif diizlemin dallanmus ortiilerini ve iki boyutlu orbifoldlar: calistik.
Bunun yani sira, Yoshida’nin elde ettigi orbifold tohumlar1 arasindaki ortii iliskilerini
acikca sergiledik. Son olarak, orbifold Chern sayilarim kullanarak iki boyutlu
karmasgik top tarafindan uniform edilen yeni orbifoldlar kesfettik ve bunlar arasindaki

ortii iligkilerini inceledik.

Anahtar Sozciikler : kuadrik-dogru diizenlemeleri, orbifold.
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CHAPTER ONE
INTRODUCTION

The study of arrangements was begun by Swiss mathematician Jakob Steiner,
who proved the first bounds on the maximum number of features of different types
that an arrangement in Euclidean plane might have. An arrangement with n lines has
at most "("T_l) vertices, one per pair of crossing lines. This maximum is achieved
for simple arrangements, those in which each two lines have a distinct pair of
crossing points. In any arrangement there will be n infinite-downward rays, one
per line; these rays separate n+ 1 cells of the arrangement that are unbounded in
the downward direction. The remaining cells all have a unique bottommost vertex
(choose the bottommost vertex to be the right endpoint of the horizontal bottom
edge), and each vertex is bottommost for a unique cell, so the number of cells in
an arrangement is the number of vertices plus 1+ n, or at most 1 +n + (g) This
was generalized by Schlifli (1901) as ““ n cuts can divide an m-dimensional cheese
into as many as )’ (Z)”. However the bounds are known for the cheese cutting
problem, there is no general answer. Since Steiner’s works, it has become a popular
object not only in combinatorics but also in geometry and topology, and have been

studied by thousands of researchers.

Projective plane is a compactification of Euclidean plane by the simple expedient
of adjoining the “line at infinity”. So, we shall concentrate our attention on arrange-
ments in the projective plane. We collect some basic but important facts of projective

geometry in chapter 2.

In chapter 3, we will study the line arrangements combinatorially. First of all,
we will interest in simplicial line arrangements. The simplicial arrangements not
only often provide optimal solutions for various problems related with polytopes,
graphs, and complexes, but also important objects of Geometry and Topology for
the point of algebraic surfaces. It is known that, if an algebraic surface associated

to arrangement has B, as universal cover, then underlying arrangement have to be
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rigid. Furthermore, the simplicial line arrangements are the candidates for being
rigid. For this reason, in the the light of the facts in (Griinbaum, 1967, 1971, 1972,
2009), we will first deal with the isomorphism types of line arrangements. Secondly,
we will introduce the Fiiredi & Palasti (1984)’s method to construct an arrangement
of lines with maximum number of triangles; and solution of orchard problem due
to Burr et al. (1974). Then by using the torsion subgroup of an Elliptic curve, we
give the complete solution of orchard problem and also for the maximum number

of triple points in an arrangements of n-lines in CPP2.

Compared the case of lines, very little is known about the question: "What kind
of configurations of quadrics are possible in the complex projective plane?". This
problem was originally motivated by the problem of finding interesting abelian
covers of CP? branched over several quadrics. Naruki (1983) obtained some results
for this problem by excluding any kind of triple intersection points and contacts
of order higher then 2. He described the parameter space (the moduli) for some

elementary configurations.

Suppose, configuration of n quadrics has only nodes and tacnodes (A; and A3
type singularities.), but no other types of singularities. Let 7(n) be the maximal
number of tacnodes for given n. Obviously #(n) < n(n — 1). (Hirzebruch, 1986,
Sec. 9) mentions the problem whether limsup,,_., ti—'ﬁ) is positive. By considering

the double cover of CIP? branched along the union of quadrics, and applying the

Miyoka-Yau inequality to the double cover, he gave the inequality

4

t(n) < 9" —|—§n (1.0.1)
If equality held, the double cover X of CP? branched along the union of quadrics
would be a surface for which Miyaoka-Yau equality holds for singular surfaces, and
if Y were smooth surface with covering ¥ — X étale outside the singularities of X,
then we would have ¢3(Y) = 3c2(Y) (Megyesi, 1999). That is why this problem is

interesting in algebraic geometry.
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Smooth quadrics in CPP? are parametrized by an open subset of ((CIP’S )*, each
tacnode imposes one condition and dim Aut(CP?) = 8, so by a naive dimension
count, one would expect Sn —t — 8 dimensional family of configurations modulo
projective equivalence for n quadrics with ¢ tacnodes. But, examples in (Hirzebruch,
1986) show that there exist configurations with negative expected dimension. By
applying the results in Megyesi (1993) Megyesi & Szab6 (1996) proved that the
inequality (1.0.1) is not sharp, 7(n) < Lgn(n+3)j in forn=28,9,12 and for n > 15,
and in fact ¢(n) < cnz_ﬁ for a suitable constant c. So, in (Megyesi, 2000) he
studied on possible and impossible configurations of conics with many tacnodes
and derive equations for them. In chapter 4, we also studied the same problem and
obtain some partial results for possible or impossible configuration of quadrics, and

derive the equations for these possible arrangements.

Zariski van-Kampen theorem is a tool for computing fundamental groups of
complements to curves (germs of curve singularities, affine or projective plane
curves). It gives us the fundamental groups in terms of generators and relations.
Roughly speaking, the generators can be taken in a generic line and the relations
consist of identifying these generators with their images by some monodromies. In
the chapter 6, we will investigate the braid monodromy and give the statement of
the Zariski van-Kampent theorem based on the lecture notes of Shimada (2007).
In addition, we will also compute the local fundamental groups of the germs in
Figure 6.1, and fundamental groups of some quadric arrangements related to line

arrangements.

An orbifold is a space locally modeled on a smooth manifold modulo a finite
group action, which is said to be uniformizable if it is a global quotient. They
were first studied in the 50’s by Satake under the name V-manifold and renamed
by Thurston in 70’s. Orbifolds appear naturally in various fields of mathematics and
physics and they are studied from several points of view. In chapter 5, we focus
on the uniformization problem and consider orbifolds with a complex projective

space as base space. From this perspective, orbifolds can be viewed as a refinement
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of double covering construction of special algebraic varieties. The first steps in
this refinement were taken by Hirzebruch (1983) culminating in the monograph
Barthel et al. (1987) devoted to Kummer coverings of CP? branched along line
arrangements. Kobayashi (1990) studied more general coverings with non-linear

branch loci with non-nodal singularities.

Chern classes are characteristic classes. They are topological invariants associated
to vector bundles on a smooth manifold. If you describe the same vector bundle on
a manifold in two different ways, the Chern classes will be the same. Then, the
Chern classes provide a simple test: if the Chern classes of a pair of vector bundles
do not agree, then the vector bundles are different. Depending on the partition of
n such that Y, ia; = n, there are Chern forms ¢;[V] := ¢{'[V]c?[V]--- ¢ [V] in
terms of wedge product of Chern classes, where I := (aj,az,---ay). The integral
of these Chern forms on manifold M takes values in Z and they are called Chern
numbers of V, and denoted by ¢; := ¢{'¢5? -+ ¢%. In case of n = 1, there is only one
2

Chern number, cy, that is the Euler number e. If n = 2, the Chern numbers are cj

and ¢, = e. Chern numbers are numerical invariants of manifolds.

Many basic topological invariants such as the fundamental group and Chern
numbers has an orbifold version, and the usual notion of Galois covering is extended
to orbifolds. It was observed by Yoshida (1987) that orbifold germs are related
via covering maps, In the Section 6.2.3, we have explicitly exhibited the covering
relations among orbifold germs, observed by Yoshida. Uludag (2003, 2005, 2004,
2007) exploit these coverings to find infinitely many interesting orbifolds uniformized
by the complex 2-ball B,, and products of Poincaré discs B x By. By using orbifold
Chern numbers we have discovered new orbifolds and studied their covering relations
together with known orbifolds uniformized by B, which is the main part of this

thesis.



CHAPTER TWO
PRELIMINARIES

In this chapter we will investigate well known but required facts of complex
projective geometry, such as complex projective line, complex projective plane,
complex projective transformations, cross ratio, projective conics, duality, intersec-
tion and parametrization of conics, cubic curves and the parametrization of elliptic

curves via Weierstral3 g function.

2.1 Complex Projective Space

An n dimensional complex projective space is defined by
CP" = (C"*'\{0})/ ~ (2.1.1)

with the equivalence relation (zg,z1,--*,2,) ~ (Azo,Az1,-**,Az,), where A is an
arbitrary non-zero complex number. The equivalence classes are denoted by [zo :
71 ¢ -+ & zy| and known as homogeneous coordinates. Equivalently, CP" is the set
of all complex lines in C"*! passing through the origin 0 := (0,---,0). Since A €
C* = C\ {0}, one may also regard CPP" as a quotient of C"*1\ {0} = §2"+! under
the action of C*:

CP" = (C"1\ {0}) /C*. (2.1.2)

EIR

Notice that any point [zo : z : -+ : z,] with z, # 0 is equivalent to [2 : 2L :

in—1

= 1]. So there are two open disjoint subsets of the projective space: first one

A . ol

consists of the points [22 : 2L ... 2
n n n

: 1] for z,, # 0 and the second one consists

of the remaining points [z9 : 21 : -+~ : z,—1 : 0]. The open set consisting of the points

2021t -+ 1 2p—1: 0] can be divided into two disjoint subsets with points [ : =
n— n—

el i"—j :1:0] forz,—1 #0and [z0:z1 -+ : zy—2 : 0:0]. In a similar way, if one
continues to subdivision then reaches to open sets containing the points [?—‘1’ :1:0:

«+-:0]forz; #0and [z0:0:---:0]=[1:0:---:0], respectively. Note that these last

5
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two open sets are complex line, the first is called line at infinity, and second is the
point at infinity. Geometrically, the open subsets of CPP” obtained by subdivision are
isomorphic (not only as a set, but also as a manifold) to C”, where p =0,1,--- ,n.

We thus have a cell decomposition
CP"=C"UC"™ 'U---UCL {eo} (2.1.3)

and it can be used to calculate some topological invariants such as the singular
cohomology or the Euler characteristic of a complex projective space. As it is seen
from this decomposition that a complex projective space is a compact topological

space.

The above definition of complex projective space gives a set. For purposes of
differential geometry, which deals with manifolds, it is useful to endow this set with

a complex manifold structure. Namely consider the following subsets:
U={lz0:21: 21| 2 #0}, i=0,1,2,---.n.

By the definition of complex projective space, their union is the whole complex

projective space. Further, U; is in bijection to C" via

[zo:z1: - izn) — (2.1.4)

Here, the hat means that the i-th entry is missing. It is clear that CP" is a complex

manifold of complex dimension n, so it has real dimension 2n.

In general context, CP! is called as the complex projective line, which is also

known as the Riemann sphere, and CP? is called as the complex projective plane.

For the simplicity, from now on unless otherwise indicated we will use the term

“projective” instead of “‘complex projective”.



2.2 Complex Projective Transformations

Let V and V' be two complex vector spaces, p: V' \ {0} — Py and p": V/\ {0} —
Py two projections. A projective transformation g : Py — Py is a mapping such that
there exists a linear isomorphism f : V — V’/ with p’ o f = go p, in other words such

that the following diagram

v\ {0} —L- v\ {0} . 2.2.1)
IP’lV 8 ]P’Ji,/

commutes.

Since f is a linear isomorphism, it maps the set of lines passing through the
origin to itself. Therefore, the image under g of a point L of Py (line of V through
the origin) is the point L' = f(L) of Py:.

If V=V’ = C? then the automorphisms of C? are just the 2 x 2 invertible
matrices with complex entries and these automorphisms forms a group under ordinary
matrix multiplication. The automorphism group of C? is usually denoted by GL(2,0C)
and called general linear group of degree 2. Since p : C*\ {0} — PL = CP'is a
projection, an invertible 2 x 2 matrix A with complex entries acts on the projective
line CP' via f ([z0 : 21]) = [z} : Z}], where

/
Z 20 a b 20
ol =m- - :

Z) 21 c d 21
This is well defined, since f ([Azo : Az1]) = [Azy : AZ)] = [z(: 2)] forA e C*.

There are, however, the matrices in GL(2,C) that have no effect on points in the
projective line: the diagonal matrix M = alpx, with o € C* fixes every [z0: z1] €

CP!. Also, the matrices M € GL(2,C) and oM have the same effects on CP! (in



fact, oM = ol - M).

The group of diagonal matrices with entry o € C* is isomorphic to C*, and we
can make the projective general linear group of order 2, PGL(2,C) = GL(2,C)/C*,
act on the projective line. Its elements are 2 x 2 complex matrices with nonzero
determinant and two such matrices are considered to be equal if they differ by a

nonzero factor o € C*. In addition, dimPGL(2,C) = 3.

Let us identify the point [z : 1] with z, choose the frame 0, 1 and oo := [1 : 0]. Set
oo /co =1, k/0 = oo for k # 0, and so on, for convenience, and remember the fact
CP! = CU{eo}. PGL(2,C) = Aut(CP') can also be considered as the group of all

biholomorphic linear fractional transformations, namely Mobius transformations,

az+b

f:ze(CIP’l—>CZ+dE(CIP’1, ad —be #0. (2.2.2)

Note that, in the case of ad — bc = 0, the rational function f takes constant value.

Proposition 2.2.1. Let z1, zo and z3 be three points on the Riemann sphere CP'.

Then there is a unique Mobius transformation such that f(z;) = oo, f(z2) = 0 and

f(z3) =1

Proof. The equations f(z1) = oo, f(z2) =0and f(z3) = 1 implies ¢z +d =0, az +
b =0 and az3z + b = cz3 + d, respectively. Then ¢ # 0, otherwise all of a, b, ¢ and d

will be zero. Since the Mobius transformation is a rational linear transformation, we

can choose ¢ = 1. Therefore, we have d = —z1, a = 2%2 and b = —ZQ%. Hence,

the required Mo6bius transformation is

(z3—z1)(z—22)

. 223
(z3—22)(z—21) ( )

f(z)=

]

Corollary 2.2.2. A three-point set in CP' is projectively rigid, i.e., given any pair
of distinct three points {z1,22,23 } and {z}, 75,25 } on the Riemann sphere CP', there

is a unique Mobius transformation f such that f(z;) = f(2}), i = 1,2,3.
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Proof. Let g and h be the Mobius transformations sending the frames {z1,22,z3}
and {z},75,2;} to the standard frame {c0,0, 1}, respectively. Then f = h~!og s the

required transformation. ]

Definition 2.2.3 (Cross-ratio). The cross-ratio of a quadruple of distinct points on

the projective line with coordinates [a; : B;], i = 1,2, 3,4, is the point of CP! defined

by

o o o o

det : 3 det S
Bi B3 B Bs

: 2.2.4)

o o o O

det ! + det 2

i Br P4 B2 PB4/

If B; # 0 for all i = 1,2,3,4, then we can identify each point [o; : B;] = [% : 1] with
non-zero complex number %, for simplicity say z;, then the cross ratio of 71, 22,23, 24

is a non-zero number given by the formula

21— 22 (z1 —23) (20 — 24)

: (2.2.5)
-3 22— (2—23)(z1—u)

(21,225 23,24) =

If one of B; =0, say B; = 0, then z; = o0 and (0,22 73,24) = Z%Z‘.
Note that the cross ratio (z1,z2; 23,z4) of distinct four points z;,z,23,z4 on the
projective line is the image of z4 under the Mobius transformation sending the points

71,22,23 to the points oo, 0, 1 respectively (See equation (2.2.3)).

There are different definitions of the cross-ratio used in the literature. However,
they all differ from each other by some possible permutation of the coordinates. In
general, there are six possible different values the cross-ratio can take depending on
the order in which the points z; are given. Since there are 24 possible permutations
of the four coordinates, some permutations must leave the cross-ratio unaltered. In

fact, exchanging any two pairs of coordinates preserves the cross-ratio:

(21,225 23,24) = (22,215 4, 23) = (23,245 21,22) = (24,235 22,21) (2.2.6)
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Using these symmetries, there can then be 6 possible values of the cross-ratio,

depending on the order in which the points are given. These are:

(z1.22:23,24) =N, (z1,23322,24) = 1= A, (21,245 22,23) = 23

A

. . 2.2.7)
(z1,22524,23) = 3, (2,335 2022) = 73, (21,245 23,22) = 155

Proposition 2.2.4. Cross-ratios are invariant under Mobius transformations.

Proof. Let z1, 22, 73 and z4 be four distinct points on CP! and g the Mobius transfor-
mation sending z;,22,z3 to 0,0, 1, respectively, so that (21,22 z3,24) = g(z4). Then
for any Mobius transformation f, go f~! is the Mdbius transformation sending

f(z1), f(z2), f(23), f(z24) 10 00,0,1,8(z4), i.e., (f(z1), f(z2)5 f(23), f(z4)) = g(z4).
0

Now, let us go one step further and choose V =V’ = C? in the diagram (2.2.1),
then the automorphisms of C? are just the 3 x 3 invertible matrices with complex
entries, and these automorphisms forms a group under ordinary matrix multiplication.
The automorphism group of C? is usually denoted by GL(3,C) and called General
Linear group of order 3. Since p : C3\ {0} — P% = CP? is a projection, then an
invertible 3 x 3 matrix A with complex entries acts on the projective plane CP? via

Sf(x:y:g]) =y 7], where

X X ail] daip d4ais X
1 — _

Y| =M-|y| = a1 axn ax|-|y
Z, Z az|y dzp dasjs Z

This is well defined, since f ([Ax: Ay : Az]) = [AX Ay A =[x 1y : 7] for A e C*.

There are, however, the matrices in GL(3,C) have no effect on points in the
projective plane: the diagonal matrix M = alz.3 with oo € C* fixes every [x : y:
z] € CP?. Also, the matrices M € GL(3,C) and aM have the same effects on CP?
(in fact, oM = ol - M). The group of diagonal matrices with entries o0 € C* is

isomorphic to C*, and we can make the projective general linear group of order
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three, PGL(3,C) = GL(3,C)/C*, act on the projective plane. Its elements are 3 x 3
complex matrices with nonzero determinant, and two such matrices are considered

to be equal if they differ by a nonzero factor o € C*. In addition, dimPGL(3,C) =S8.

Proposition 2.2.5. Let P, = [x; : vi : 7], i = 1,2,3,4 be four points in CP?, no three
of which are collinear. Then there is a unique projective transformation sending the
standard frame, namely [1:0:0],[0:1:0], [0:0: 1] and [1: 1: 1], to the points P,

P>, P3 and Py, respectively.

Proof. The transformation defined by A € PGL(3,C) will map [1:0: 0] to Py, if

and only if there is o,y € C* with

X1 1 ar
21 0 a

Similarly the second and the third rows are determined up to nonzero factors

oy, 03 € C*. Thus,
orxp O1yr 121

M= {opx; Oy, 02z

O3x3 0O3y3 0323

Now, P4 will be the image of [1 : 1: 1] if and only if

X4 1 X1 X2 X3
04 |y =M-|1| =0 yi| T2 [y2| +03 |y3

24 1 71 22 23

Rescaling allows us to assume 04 = 1. Thus, the vector (x4,y4,24) is a linear
combi- nation of (x;,y;,z;), = 1,2,3. Since the vectors (x;,y;,z;) are linearly
independent, there is a unique solution (01,0, a3 ), and since no three of the points

P; are collinear then a; # 0. This implies that M is an invertible matrix and defines
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Figure 2.1 Complete quadrilateral.

a unique projective transformation f given by a matrix M € PGL(3,C). U

Corollary 2.2.6. Let {P;} and {Q;} denote the sets of four points in the projective
plane such that no three of P; and no three of Q; are collinear. Then there is a unique

projective transformation sending P; to Q; fori=1,2,3,4.

Proof. Let f denote the projective transformation given by a matrix M that sends
the standard frame to the P;’s; let g denote the projective transformation given by a
matrix N that does the same with Q;’s. Then the transformation go f~! defined by

the matrix N - M~ is the projective transformation we are looking for. ]

Corollary 2.2.7. Complete quadrilateral, configuration of six lines with four simple

triple points and three nodes, is projectively rigid.

Proof. Asitis seen from the Figure 2.1 that the complete quadrilateral is completely
determined by four triple points. Then by Corollary 2.2.6, one can transform this
four points to any four points for which none of three is collinear. Hence, the

complete quadrilateral is projectively unique. ]

An ordered quadruple of distinct points z1, z2, 23, 24 of CP! is called a harmonic
quadruple if (z1,22;23,24) = —1. Let us assume that these four points lie on a
complex line L in CP?. By choosing a frame on L, one can identify L with CP!

and extend this definition for arbitrary complex line in CIP2.

Proposition 2.2.8. The quadruple of distinct points p1, p», p3, ps of L C CP? is

harmonic if and only if there are points a,b,c,d € CP? \ L such that the intersection
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C

P1 P3 P2 P4

Figure 2.2 Harmonic configuration.

points of the complete quadrilateral, having the points a,b,c,d as triple points, with
{ are the points p1, pa, p3, pa. Such configuration is known as harmonic configura-

tion (See Figure 2.2).

Proof. First, let us show the necessary part. Corollaries 2.2.2 and 2.2.6 impliy that
one may choose a homogeneous coordinate system on CP? such that a = 0:0:1],
p1=1[1:0:0],pp=[1:1:0],p4=1[0:1:0landd=1[1:1:1]. Thenb=[1:0:1],

c=1[2:1:1], p3=1[2:1:0] and ¢ is the line Z = 0. Hence by omitting the third

=2 = 1.

coordinates one can identify L with CP! and obtains (p1, p2; p3, ps) = 1=

Conversely, we can draw a configuration from the points pi, p> and p4 as in

Figure 2.2. Put p} = LNac. Here ac denotes the line through a and c. Then by
Proposition 2.2.4, (p1,p2; p3,p4) = —1 = (p1,p2; ph, pa) implies p3 = ph. O

A Projective transformation f given by a matrix A act on the projective plane
and therefore on a plane algebraic curve Cr : F(X,Y,Z) = 0; the image of Cr under
f is some curve (g : G(U,V,W) = 0. How can be computed G from F? Let us
first look at simple example. Take F(X,Y,Z) = X? — YZ and the transformation
U:V:W]=f(X:Y:Z])=[X:Y+Z:Y —Z]. For getting G, we solve X, Y, Z
and then plug the result (X,Y,Z) = (U,*F%,Y5W) into F, hence G(U,V,W) =
F(U, %7 %) =U? -~ VTZ + WTZ. It has been seen from this example that we get
G by evaluating F at f~1([X : Y : Z]), that is, G = F o f~!. This ensures that a point
[X :Y : Z] on Cr will get mapped by f to a point [U : V : W] on (.

Proposition 2.2.9. Projective transformations preserve the degree of curves.
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Proof. Projective transformations map a monomial X'Y/Z* of degree m =i+ j+
k either to O or to another homogeneous polynomial of degree m. If F(X,Y,Z)
is transformed by some transformations f into the zero polynomial, then inverse

transformation maps the zero polynomial into F', which is nonsense. L

Definition 2.2.10. A point [Xp : Yy : Zy] € CP? is called the singular point of the
curve Cr: F(X,Y,Z) =0if

oF oF JoF
ﬁ(X&YOaZO) = W(XOaYOaZO) = ﬁ(x()vYOaZO) =0. (2.2.8)

Proposition 2.2.11. Projective transformations preserve singularities.

Proof. Suppose a projective curve Cr : F(X,Y,Z) = 0 is mapped to a projective
curve (g : G(U,V,W) = 0 via a projective transformation f given by a matrix M.
Then, wehave F=Gofand [U V W|' =[X Y Z]"-M".Hence the chain

rule implies

oF 9G
X U
OF | — M. | 9G
Fl=M |9 (2.2.9)
oF 9G
Z aw

Therefore a point Py = [Xo : Yy : Zp] on Cr is singular if and only if all three
derivatives of F vanish at Py. Since M € PGL(3,C) then it is nonsingular and the
equation (2.2.9) implies that the point [Up : Vg : Wo| = f([Xo : Yo : Zo]) is a singular

point of the curve (. L

Similarly, after some calculations one can also show that projective transforma-

tions preserve the multiplicities, tangents, flexes ,etc.
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2.3 Projective Conics

A conic in the complex plane is given by a quadric equation a x> 4+ axxy + azy? +
asx+ asy+ag = 0, where at least one of the complex coefficients g; is non zero. By
using homogeneous coordinates and reindexing the coefficients, a conic in CP? is

given by homogenous ternary quadric equation
aiX>+aY? +a3Z? + asXY +asYZ+agZX = 0, (2.3.1)

where at least one of the complex coefficients a; is non zero. In matrix notation, the

equation (2.3.1) can be written as

X a % % X
X vz My =|x vz |% @ %|-|r|=0 @32
V4 > 5 as zZ

If detM = 0O, then the conic is said to be reducible (or degenerate), this means
that the conic is either a double line or a union of two lines, otherwise it is called

irreducible (or non degenerate).

Note that, at least one of the coefficients of a conic in CP? is non zero. This
means that it is enough to know five points which conic passes or five independent
info about conic, to determine a conic in CIP?. On the other hand, there is a bijection
between the conics in CP? and the points [a; :ay : a3 :as:as: ag| of CP. Then
one may prefer to analyse configuration of points in CP°, instead of configuration

of conics in CP2.

Projective transformations preserve the degree of curves, thus they map lines into
lines and conics into conics. Affine transformations preserve the line at infinity;
hence can not a (real) circle (no point at infinity) into a hyperbola (two points at
infinity). Projective transformations can do this: the projective circle has equation

X24+Y2-272=0, the projective transformation U = Z, V = X, W =Y transform
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this equation into V2 — U? +W? = 0, which after dehomogenizing with respect to
W, is just the hyperbola u”> — v> = 1. What happened here is that ¥ = W has moved

to the two points with Y = 0 to infinity.

Similarly, the hyperbola XY — Z> = 0 can be transformed into a parabola via
U=2Z,V=X,W=Y: after dchomogenizing we get v = u>. The hyperbola had
two points [1:0:0] and [0: 1 : 0] at infinity; the first one was moved to the point
[0:1:0] at infinity, the second one to [0 : O : 1] which is the origin in the affine
plane. As a matter of fact it can be proved that, over the complex numbers, there
is only one class of non degenerate conics up to projective transformations (See

Proposition 2.3.2).

Anymore, since a conic in CP? is given by a homogeneous ternary quadric

equation in three variables, the term quadric will be used instead of the term conic.

Definition 2.3.1. Two quadrics are called projectively equivalent if there is a projec-

tive transformation, mapping one to the other.

Proposition 2.3.2. Any non degenerate projective quadric defined over C is projec-
tively equivalent to the quadric XY +YZ +ZX = 0. More exactly, given a non
degenerate quadric Q and three points on Q, there is a unique projective transforma-
tion which maps Q to a quadric and three pointsto [1:0:0], [0:1:0]and [0:0: 1],

respectively.

Proof. Take any three points on a quadric. Then by corollary 2.2.6, there is a projec-
tive transformation, mapping theminto [1:0:0],[0: 1:0] and [0: 0: 1], respectively
(note that the three points on a quadric are not collinear since the quadric is non

degenerate). If the transformed quadric has the equation
aiU* +aV? +asW? +asUV +asVW +agWU =0 (2.3.3)

then we immediately see that a; = a, = a3 = 0. Moreover, asasag # 0 since other-

wise the quadric is degenerate. Using the transformation U = asX,V =aet, W =



17

asZ, this becomes XY +YZ +ZX = 0. If there are two such maps f and g, then
go f~! maps the standard quadric onto itself and preserves the three points of the

standard frame. It is then easily seen that the corresponding matrix to go £~ must

be the identity map in PGL(3,C). O

2.4 Duality

Given any vector space V over a field k, the dual space V* is defined to be the
set of all linear functionals on V, i.e., scalar valued linear transformations on V (in
this context, a "scalar" is a member of the base field k). V* itself becomes a vector

space over k under the following definition of addition and scalar multiplication:

@O+W)(x) =0(x)+w(x) and  (A0)(x) =A0(x)

for all ¢ and ¥ in V*, A in k and x in V. If the dimension of V is finite, then V* has
the same dimension as V; if {ej, -+ ,e,} is a basis for V, then the associated dual

basis {e!,---,e"} of V* is given by

1, ifi#]

0, ifi=j.

e(ej) =8 =

Concretely, if we interpret C? as the space of columns of three complex numbers,
then its dual space is typically written as the space of rows of there complex numbers.
Such a row acts on C? as a linear functional by ordinary matrix multiplication.
In addition, the elements of (C)* can be intuitively represented as collections of

parallel planes.

If [x:y: z] € CP? then (x,y,z) ~ (Ax,Ay,Az) for any nonzero complex number A.
Let us consider the set of functionals ¢ € (C3)* so that 0(x,y,z) = 0(Ax,Ay,Az) =

Ad(x,y,z) for any A in C*. It is clear that, these functionals vanish on C3 and ¢([x :



18

y:z]) =0 for any [x:y: z] € CP% Thus, dual of the projective plane contains the
linear functionals vanishing on CP2. Also, one can view such kind of functionals as

lines in CP2.

[A:B:C]eCP* = L:AX+BY+CZ=0cC CP? (2.4.1)

Duality for the projective plane CP? concerns the interchangeability between
points and lines which preserves incidence properties (More generally, duality for
CP" interchanges dimension+1 to codimension). We now extend this property for

projective, algebraic curves. For any projective curve C C CP?, consider the subset
C* = {L* | Lisaline of tangency to C} (2.4.2)

and refer to it as the dual curve of C. Indeed, it turns out that this subset of CP? is
actually a projective curve, in CP?, except for the case when (C is a projective line,

in which case C* consists of just one point.

Proposition 2.4.1. The dual curve of a non degenerate quadric in CP? is again a

quadric in CP?.

Proof. In Proposition 2.3.2, it is shown that all non degenerate quadrics are projec-
tively equivalent. It is enough to prove that, dual curve of the quadric Q given by

the equation F(X,Y,Z) = X?> —YZ = 0 is again a non degenerate quadric. We have

oF oF oF
— =2X 7, — =
0Z

ox "oy Y

then by eliminating X, Y and Z between the equations
2X=U, -Z=V, —-Y=W and X’-YZ=0

we obtain the equation of the dual curve C* as U? —4VW = 0 which defines a non

degenerate quadric in CP?. [
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Corollary 2.4.2. (Q*)* = Q.

2.5 Intersection Behaviour of Quadrics

Definition 2.5.1. Let (f,0) and (g,0) be two smooth germs of algebraic curves in
C? and let @ : A, — C? be the parametrization of (f,0). The vanishing degree of
g o @ at the origin is called the intersection number or intersection multiplicity of

the algebraic curves at the origin.

Example 2.5.2. The non degenerate quadrics Q1 : X>—YZ=0and Q> : X>+XY —
YZ = 0 intersect each other at the points [0:0: 1] and [0: 1: 0]. Let us find their
intersection multiplicities. For the point [0 : 0 : 1], dehomogenizing the equations
of quadrics we get f: x> —y=0and g: x> +xy—y = 0. The germ (f,0) can be
parameterized as @ : A, — C2, @(t) = (¢,1?), then (go@)(¢) = > and its vanishing
degree at the origin is 3 ,i.e. the intersection multiplicity of the quadrics Q1 and Q;
at the point [0 : 0 : 1] is 3. In addition, after some calculations it can be easily seen
that the intersection multiplicity of the quadrics Q1 and Q5 at the point [0: 1: 0] is
1.

The well known Bézout’s theorem was originally stated by French mathematician
Etienne Bézout in 1779 as "The degree of the final equation resulting from any
number of complete equations in the same number of unknowns, and of any degrees,
is equal to the product of the degrees of the equations" to solve the system of

equations.

Theorem 2.5.3 (Weak Bézout’s Theorem). If two curves of degree m and n have

more then mn distinct points in common then they have a common component.

Even for the weak form of Bézout’s theorem, it has many important consequences:

Theorem 2.5.4. If two curves of order n intersect at n> distinct points, and if mn
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A’ C’

B/

Figure 2.3 Pascal’s theorem.

of this points lie on an irreducible curve of degree m, then the remaining n*> — mn

points lie on a curve of degree n — m.

Theorem 2.5.5 (Pascal’s Theorem). If one is given six points on a non degenerate
quadric and makes a hexagon out of them in an arbitrary order, then the points of

intersection of opposite sides of this hexagon will all lie on a single line.

Proof. Let ABCA’B'C’ be a hexagon on an irreducible quadric. Let AB’ and A’B,
AC" and A'C, BC' and B'C be the opposite sides of the hexagon. The triples of lines
AC', BA', CB' and AB',BC’, CA’ define two cubics. They intersect at 9 points, and
six of them lie on an irreducible quadric. Thus the remaining three lie on a curve of

degree 3 —2 =1, i.e, the remaining 3 points are collinear. ]

The Pascal’s Theorem was discovered by Blaise Pascal when he was only 16
years old. It is the generalization of the "Pappus’s hexagon theorem". The original
proof of Pascal’s theorem has been lost and it is supposed to be he proved his
theorem via Menelaus’ theorem. We used the consequence of Bézout’s Theorem

to prove it.

The Pascal’s theorem was generalized by Mobius in 1847 as follows: suppose
a polygon with 4n + 2 sides is inscribed in a quadric, and opposite pairs of sides
are extended until they meet in 2n + 1 points. Then if 2n of those points lie on a

common line, the last point will be on that line, too.
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B C

Figure 2.4 Brianchon’s theorem.

Theorem 2.5.6 (Brianchon’s Theorem). Let ABCDEF be a hexagon formed by six
tangent lines of a non degenerate quadric. Then the lines AD, BE, CF intersect at

a single point.

Proof. Since, duality for CP? interchanges the roles of points and lines and preserves
the incidence relations meanwhile the dual of a quadric is again a quadric in CP?,

then the dual of the Brianchon’s Theorem is just the Pascal’s Theorem. O]

Theorem 2.5.7 (Strong Bézout’s Theorem). Let C; and C, be plane projective
algebraic curves of degree m and n without common component over an algebraic-

ally closed field k. Then they intersect in exactly mn points counting multiplicities.

As a result of Theorem 2.5.7 over the algebraically closed field C, two quadric
have only four intersection points counting multiplicities. Thus, there are five (=the
number of positive integer partitions of 4) situations for the intersection behavior
of two non degenerate quadrics. To describe these non degenerate cases, we will
investigate a graph whose vertices denotes the quadrics and edges denote the inter-
section behavior of non degenerate quadrics (See Table 2.1). In addition, we will

describe the degenerate cases in the Table 2.2.
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Table 2.1 Intersection behavior of two non degenerate quadrics.

Graph Configuration

Meaning

O LN 0]

Two quadrics Q; and Q intersect each other
at four distinct points, i.e, they are in general
position.

OQre——9o O

Two quadrics Q; and Q; intersect each other at
three distinct points with multiplicities 2, 1 and
1, i.e, they have a tacnode.

Q) &=———=0 ()

Two quadrics Q) and Q; intersect each other at
two distinct points with multiplicities 2 and 2,
i.e., they tangent to each other at two distinct
points or they have two tacnodes.

Q1 0 ()

SEc) e e

Two quadrics Q) and Q; intersect each other at
two distinct points with multiplicities 3 and 1.

Q) e— (O

Two quadrics Q; and Q; tangent each other at a
point with multiplicity 4.

2.6 Parametrization of Quadrics

Let Q be a quadric given by the equation,

a1 X>+aY? +a3Z? + asXY +asYZ+agZX =0, (2.6.1)

in CP? and [Xo : Yo : Zp| a point on it. The equation of the lines through this point

are in the form

S(YZ() — Y()Z) = t(Z()X —X()Z). (2.6.2)

According to Bézout’s Theorem there are two intersection points of this line and

the quadric Q. These intersection points can be found by substituting the equation

(2.6.2) into the equation (2.6.1) and solving it. After some calculations one can get

these solutions as [Xo : Yo : Zo| and [p1(s,1) : p2(s,t) : p3(s,t)], where p;(s,t) € Cl[s,1]

are homogeneous of degree 2. Therefore a quadric can be parametrized by as:

X =pi(s,t), Y=past), Z=p3(s,t). (2.6.3)
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Table 2.2 Intersection behavior of two quadrics in degenerate cases.

Configuration Configuration

L
L O1=0,=L-L @ O,=L-L
01

=L-L1,00=1Ly-L @ =L-L
+ 01 1-L1,00=1o- 1 . b O

Ly

L Ly
Ll% Or=Li-L1,0=L-L3 Q=L L,
0 L
L
: Or=L1-L,0r=L3-Ly CD Q=L L,
01 7

L
L

L
L,
2 L3
Ly /L3 L,
/\ \ OQr=L-L,0=1L1y-L3 Or=L L
L ()
L
L3
Ly
1

Ly L3 Ly
Or=L1-L,0r=L3-Ly L@; Q=L L,

L L, I
L 1
’ Q1=Li-Ly,0r=1L3L4 L@ O =L-Lp

2.7 Cubic Curves

A cubic curve in the projective plane is given by a third degree homogeneous

equation
C: F(X,Y,Z) = aiX?+aX?Y +a3XYV?>+ a4V +asX*Z+acXYZ +a7Y*Z

+asXZ: +agYZ2 +a10Z° =0 (2.7.1)

Note that the equation (2.7.1) has 10 coefficients, since at least one of these

coefficients is non-zero, it is enough to know 9 info about cubic to determine it
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explicitly. Unfortunately, projective transformations may not determine cubics uniquely

as in the case quadrics, since dimPGL(3,C) = 8.

In case of the quadrics the words “singular quadric” and “reducible quadric” are
the same. But this is not true in general for cubics. A cubic is called an irreducible
(resp. reducible) if F(X,Y,Z) is an irreducible (resp. reducible) polynomial. In
reducible case, it consists of either three lines (lines may not need to be distinct)
or a quadric and a line. Since we are in projective space, every curve must meet at
some points. So, as we have defined in Definition 2.2.10, these intersection points
are the singular points of reducible cubic. Therefore one may consider that every
reducible cubic is singular. But the converse is not true, e.g. the curve X3 —Y2Z =0

is irreducible but have a singularity at [0: 0 : 1].

A flex of a curve C is a point p of C such that C is non singular at this point
and tangent of C at p intersects with the curve at least 3 times. Flex points are the

intersection points of C with its Hessian curve

Fxx Fxy Fxz

Fzx Fzy Fzz

Since the projective transformations preserves tangents and intersection multipli-

cities, then clearly preserves flexes.

Proposition 2.7.1. Every irreducible cubic curve can be represented in Weierstraf;
form

Y2Z = 4X3 —aX7? - bZ3. (2.7.3)

Proof. Assume we have an irreducible cubic. Then it has a flex point and flex
tangent. Let us consider a projective transformation moving this flex point to [0 :
0 : 1] and tangent to the line ¥ = 0. Also, assume that the new equation of cubic

is in the form (2.7.1). Clearly, ag = ajo = 0 and a9 # 0. Since we assume cubic
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is irreducible then a; and a5 are not both zero. In addition, since ¥ = 0 is the flex
tangent with intersection multiplicity 3, then so a; # 0, as = 0. Since at least one
of the coefficients is non zero and we have already know ¢ #, by rescaling the
equation we can also assume a9 = 1. If we apply the projective transformation
[X :Y :Z] — [X : Z:Y], then cubic curve will reduce to the cubic curve a;X> +
W X?Z +a3XZ? + ayZ’ + agXYZ + a7Y Z> + Y>Z = 0 with flex point [0 : 1 : 0] and
flex tangent Z = 0. By completing the square some terms, this equation can be
written as (Y + %X + 9Z)°Z + a;X> + (ap — ?)XZZ + (a3 — )X Z% + (as —

2
%7)23 = 0. Then by using the transformation

1
ai\ 3 de ay
X:Y:Z (——) X:Y+—X+—-272:Z
: ]H[ 4 27T

and renaming the coefficients we obtain Y2Z —4X> + g, X?Z + g1 X 7> + goZ> = 0. If
one use the transformation [X : Y : Z] — [X + % : ¥ : Z] and rename the coefficients

once again, then reaches the desired equation. L

Corollary 2.7.2. The cubic curve Y*Z = 4X3 —aXZ7? — bZ3 is non-singular if and
only if A :=a® —27b> #+ 0.

Proof. LetF :=Y?Z —4X> 4 aXZ*+bZ>. Then the partial derivatives Fy = —12X?
+aZ? Fy =2YZ and F; = Y?+2aXZ+3bZ? all vanishes if and only if a® — 27b* =
0. O

If a and b are both zero, the singular cubic is called cuspidal cubic. If A =0 but

not both of a, b is zero then singular cubic is called nodal cubic.

Remark 2.77.3. Every nonsingular cubic curve in projective plane is also projectively
equivalent to a nonsingular cubic defined by the X> + Y3+ Z3 —3aXYZ =, where
a® # 1 and a # oo.

In the literature, nonsingular irreducible cubic curves are also known as elliptic

curves. The name “elliptic” comes from the Weierstra3elliptic g function. Because,
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the real curve

V=4 —ax—b, A=da>—27p*+0, (2.7.4)

may be parametrized by x = @(u), y = ‘%)(u), where (u) is the WeierstraBelliptic

function defined by
dx

u= | -
Pu) (43 —ax—Db)2

The Weierstraf3elliptic function (u) is not only defined on the real plane, it can
also be defined over the complex plane C. Let A be a lattice generated by 1 and
a point T of the upper half plane. Meromorphic functions on 7' = C/A correspond
precisely to doubly periodic meromorphic functions on C with periods 1 and t. The

Weierstrass g-function on 7" explicitly defined as

1 1 1
(u) = 2 Z (m — ;) . (2.7.5)

weA\{0}
This series converges uniformly on compact subsets of 7. The derivative

, 2
@(”):—Zm

WEA

of g(u) is also meromorphic function on 7', and satisfies the equation
@ (u)? =4pu)® —ap(u) —b (2.7.6)
with a = 60 . yen\ (0} o~ % and b = 140 YoeA\{0} ®~°. So, the map

u—[@u): @ W) :1] (2.7.7)

is an embedding of the torus T = C/A into CP?. In homogeneous coordinates, the
image is clearly the elliptic curve Y?Z — 4X3 +aXZ? + bZ> = 0. Because of this
reason, topologically an elliptic curve is a torus, so their genus is g = 1, and Euler

characteristic is e = 0.
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Elliptic curves are not only geometric or topological objects, but also arithmetical
objects. Choosing a fixed point O on an elliptic curve C € CP?, one can make
the following construction: for any points A,B € C, let A x B be the third point of
intersection of C with the line AB, then define an operation “+” over C so that
A+ B := Ox*(AxB). Then, the he set of all points of C forms a group under the
operation “+” with identity O, and inverse —A = (O * O) %A for any given point A
(Silverman & Tate, 1992, p. 18-22).



CHAPTER THREE
CONFIGURATION OF LINES

In this chapter, we will study the line arrangements, mainly the combinatorics
of simplicial line arrangements. Simplicial arrangements are not only related with
incidence problems, polytopes, graphs, and complexes but also important objects
of Geometry and Topology. Since all faces are triangular, every member of the
arrangement meets with other lines in a special position, possibly the configuration
will be rigid. Rigid arrangements plays an important role for the algebraic surface
geography. It is known that, if an algebraic surface associated to arrangement has
B, as universal cover, then underlying arrangement have to be rigid, i.e only the
rigid arrangements may be uniformized by a complex ball. For this reason, in the
light of the facts in (Griinbaum, 1967, 1971, 1972, 2009), we will first deal with the

isomorphism types of line arrangements.

Secondly, we will introduce the Fiiredi & Palasti (1984)’s method to construct an
arrangement of lines with maximum number of triangles. Then by using the group

law of Elliptic curves we generalize their result and discuss the Orchard problem.

3.1 Isomorphism Type of Simplicial Line Arrangements

An arrangement of lines 4 is a finite collection of n = n(A4) lines Ly, Ly, , L.
If there exists a point common to all lines L;, then A is called trivial. Unless the
opposite is explicitly stated we shall in the sequel assume that all arrangements
we are dealing with are non-trivial, therefore also n > 3. An arrangement is called
simple if no point belongs to more than two of the lines L;, i.e., L;’s are in general

position.

With a real arrangement A4 there is an associated 2-dimensional cell complex
into which the lines of 4 decompose RP?. The vertices are the intersection points

of two or more lines, the edges are the segments into which the lines are partitioned
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by the vertices and the faces are the connected components of the complement of
the set of lines generating the arrangement. The number of vertices, edges and faces
are denoted by fo = fo(A4), f1 = f1(A) and f> = f>(A4), respectively. It is clear that
n< fo < (g) , with equality on the left only if n — 1 of the lines all pass through one

point, and on the right only if the arrangement is simple.

If all faces are triangles, arrangement is called simplicial, and simplicial arrange-
ments first introduced by Melchior (1942) and extensively appeared in (Griinbaum,
1971, 1972). 1t is not hard to see that simplicial arrangements satisfy the equality
2f1 = 3f> (Use the equalities (3.1.1), (3.1.2) and (3.1.3)).

Two arrangements are said to be isomorphic provided that the associated cell
complexes are isomorphic; that is, if and only if there exist an incidence preserving
one to one correspondence between the vertices, edges and faces of one arrangement
and those of the other. The totality of all mutually isomorphic arrangements forms

an isomorphism type of arrangements.

For limited number of lines, one can easily determine the isomorphism types
of arrangements by drawing figures (see Figure 3.1). But, if the number of lines
increases then the number of isomorphism types of an arrangement of n lines, which
is bounded by 247 for a positive constant a (Edelsbrunner, 1987, Theorem 1.4),
groves rapidly. So, we will only deal with the special case, simplicial arrangements.
To determine two arrangements are whether isomorphic, one may need to know

some extra information about the number of lines, vertices, edges, faces, etc.

One of the simplest and best known such results is the Euler’s relation; though
it holds more generally for arbitrary cell decomposition of the projective plane, in
the case of arrangements it becomes particularly elementary. As is established by
induction, the numbers f; (i = 0, 1,2) of vertices, edges, and faces of each arrange-

ment A4 satisfy Euler’s relation:

fo—fi+fr=eRP?) =1. (3.1.1)
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Figure 3.1 The different isomorphism types of non-trivial arrangements of 3, 4, 5 and
6 lines (Figure 2.1 Griinbaum, 1972, p. 5).
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Let us denote the number of s-fold points of 4 by 7, (s > 2), the number of lines
each of which is incident with precisely j > 2 of the vertices of 4 by r; and the
number of k-gons among the cells of 4 by pi. Then, one can easily discover the

following equalities:

fo = Y, (3.1.2)
§>2
1
o= Yosts=Y jri=5 Y kpe (3.1.3)
§>2 j>2 k>3
fr = 1=fo+fi=1+Y (s—1), (3.1.4)
§s>2
(Z) - Z(;)ts, (3.1.5)
§s>2
no= Y, (3.1.6)
2

Melchior (1942) has showed that if arrangement 4 has at least three non collinear
points, then

th >34+t +2t5+3t6+ - - (3.1.7)

This inequality shows that 2 f; — 3 f, > 0. Then by using Euler’s relation (3.1.1), one

can easily obtain the linear inequality
1+ fo < fa<2fo—2. (3.1.8)

Indeed, the inequalities (3.1.8) determine the convex hull of the set of pairs ( fo, f2)
for all arrangements 4. The equality on the left holds in (3.1.8) if and only if 4
is a simple arrangement, while equality on the right is characteristic for simplicial
arrangements (Griinbaum, 1967, pp.401-402). In addition, one gets the following
inequality:

2n—2§f2§1—|—<g) (3.1.9)

Indeed, the upper bound follows from the observation that the number of faces

does not decrease if the lines of an arrangement are subjected to sufficiently small
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perturbations which change the given arrangement into a simple one. For simple
arrangements (and only for such arrangements) f> = 1+ (g) The lower bound f5 >
2n —2 is also established using induction on n. The equality at right holds in (3.1.9)
if only if 4 is a simple arrangement; and equality on the left holds if and only if
A is near pencil. Unfortunately, there is no hope of completely characterizing the
sets of pairs (fo, f2) and (n, f2). However, Griinbaum (1971, 1972) has some partial
results. For example, f> > 3n— 6 if 4 is not a near pencil and n > 6. It is also known

that tp(n) > %n and 13(n) > % for all n.

Three infinite families & (0), K (1) and R (2) of isomorphism classes of are

known.

Family R (0) consists of all near pencils. A near pencil denoted by 4 (n,0),n > 3,
consists of n — 1 lines that have a point in common, the last line does not belong to
a pencil. The isomorphism invariants of this family is (fy, f1, f2) = (n,3n—3,2n —
2), (2,13, ,ty_1) = (n—1,0""* 1) and (r2,73, -+ ,rp_1) = (n—1,0""4,1), where
0" *:=0,---,0.

——
n—4 times
Family & (1) consists of simplicial arrangements A4(2n, 1), which consists of the

sides of regular convex n-gon, n > 3, and its n symmetry axes.

Family R (2) consists of simplicial arrangements 4 (4n+ 1, 1), which is obtained

from A4 (4n, 1) in the family R (1) by adjoining the line at infinity.

Beside this three infinite families of simplicial arrangements only 91 other types
were known (Griinbaum, 1971). But, as it is reported in (Hirzebruch, 1983) and
(Barthel et al., 1987, p. 64), the arrangements 4, (17) and A4;(17) are isomorphic.
In addition, the arrangement 4(16,7) discovered later by (Griinbaum, 1972, p. 7).
Recently, Griinbaum (2009) have been updated his catalogue. By cheating from
Griinbaum’s recent paper, we will give this catalogue in Table 3.1, and illustrate

some figures.
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b times

In this table, we denote the sequence m by a”, the non maximal sporadic
simplicial arrangements by M and the pseudo-minimal sporadic simplicial arrange-
ments by m, that is, arrangements that do not contain as sub-arrangement any spo-
radic arrangements. This table contains simplicial arrangements up to 37 lines,

because of the following conjecture:

Conjecture 3.1.1. (Griinbaum, 1972, Conjecture 2.1) For n > 38, the number of

isomorphism types of simplicial arrangement of n lines is

2 ifn=0,1,2 d 4
> (n) = I (mod 4) (3.1.10)

1 ifn=3 (mod 4).

This conjecture is still open. If one proves it, then he will prove the conjecture
that the Table 3.1 in page33 is the complete enumeration of isomorphism classes of

sporadic arrangements with n < 37; and for n > 38 they are either & (0), or R (1),
or R(2).

In addition, the Figure 3.2 in page 63 is the Hasse diagram of the simplicial
arrangements in Table 3.1. In the diagram, the maximal arrangements are indicated
by bold framed numerals. The numerals with shaded backgrounds indicate pseudo
minimal sporadic simplicial arrangements. Note that, non of the arrangements in
the families & (0), R (1) and R (2) is maximal, while the diagram shows there are

only ten sporadic ones.

Table 3.1 Isomorphism types of simplicial arrangements in RIP?,

~

=

® | f ot r Figures Notes
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— @'\ —

o o e )

o T

Continued on next page
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Table 3.1 Isomorphism types of simplicial arrangements in RP2.  — continued from previous page
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Table 3.1 Isomorphism types of simplicial arrangements in RP2.  — continued from previous page
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Table 3.1 Isomorphism types of simplicial arrangements in RP2.  — continued from previous page
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Table 3.1 Isomorphism types of simplicial arrangements in RP2.  — continued from previous page
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Table 3.1 Isomorphism types of simplicial arrangements in RP2.  — continued from previous page
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Table 3.1 Isomorphism types of simplicial arrangements in RP2.  — continued from previous page
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Table 3.1 Isomorphism types of simplicial arrangements in RP2.  — continued from previous page
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Table 3.1 Isomorphism types of simplicial arrangements in RP2.  — continued from previous page
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Table 3.1 Isomorphism types of simplicial arrangements in RP2.  — continued from previous page
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Table 3.1 Isomorphism types of simplicial arrangements in RP2.  — continued from previous page
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Table 3.1 Isomorphism types of simplicial arrangements in RP2.  — continued from previous page
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Table 3.1 Isomorphism types of simplicial arrangements in RP2.  — continued from previous page

—~

)
N
N
= f t r Figures Notes
—
(]
AN
—~ [\'\
- =)
=) "~
— mr N’\
O -~ <
2 < F
- ")
~ ) -~
< -
o al <.
TS e =
o) ) <
5|2 2 2
S I
= | Il
Gﬁ e ~— St
& %
s - = 7>
= — <t
S S e
-~ 2 <
8 SERE=]
o —
~—~ \o'\ 0.\ [\.\
—
- 12 T 0%
0 ~— ~— ~—
N
= I Il Il
—~
o 2
- v —~~ 7
[q\l — on
R
- s 9
~—~ \O'\ ﬂ,\ \Dr
[q\l =) v )
- — <t =}
0 ~— ~— N~—
N
= | Il Il
Gq L ~— S

Continued on next page



55

Table 3.1 Isomorphism types of simplicial arrangements in RP2.  — continued from previous page
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Table 3.1 Isomorphism types of simplicial arrangements in RP2.  — continued from previous page
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Table 3.1 Isomorphism types of simplicial arrangements in RP2.  — continued from previous page
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Table 3.1 Isomorphism types of simplicial arrangements in RP2.  — continued from previous page
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Figure 3.2 A Hasse diagram of sporadic simplicial arrangements. The arrangement
A(n,k) is the indicated by the entry k in row n (Griinbaum, 2009, p. 5).

37



64

3.2 Fiiredi and Palasti’s Method, and Triangles in Arrangements of Lines

Griinbaum (1972) pointed out that the maximal number of triangles in a simple

@ for even n, and p§(n) < "("T_z)

arrangement p3 can be estimated by p§(n) <
if n is odd. Moreover, he conjectured that this latter inequality holds for all n, n # 4
(mod 6). The exact value of pj(n) is known only for some small values of n (e.g.,
(Simmons, 1972) for the case n = 15, (Griinbaum, 1972) for n = 20). To find best
lower bounds for p5(n), Fiiredi & Paldsti (1984) construct two arrangements by

using the facts of Euclidean geometry in an intelligent way. First, let us explain

their method.

Consider a circle C of radius 1 with center O, and chose a fixed point P(0) on it.
For any real a, let P(o) be the point obtained by rotating P(0) around O, with angle
o.. Further denote by L(a) the straight line through the points P(o) and P(nt —2a.).

In case o = — 20 (mod 2m), L() is the line tangent to C at P(ct).

Figure 3.3 Concurrent lines L(ct), L(B) and L(7).

Lemma 3.2.1 (Fiiredi & Palasti (1984)). The lines L(a), L(P) and L(7) are concur-
rent if and only if a4+ B+7=0 (mod 2m).

Proof. If a4+ PB+7y=0 (mod 2m), then sum of the lengths of directed arcs (P(),
P(y)) and (P(B),P(m—2Y)) is equal to m. This implies that L() is perpendicular to

the line P(ot)P(B). In a similar way, one can easily see that the lines L(a), L(B) and
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L(y) are altitudes of the triangle P(o)P(B)P(Y) (see Figure3.3), consequently they

meet at one point.

Conversely, assume the lines L(a), L(f) and L(y) are concurrent. Then the sum
of the lengths of directed arcs (P(a), P(t—2Y)) and (P(B), P(y)) is equal to T, since
the sum of length of the remaining directed arcs is 7. This implies that a+B+y=0
(mod 2m). O

Remark 3.2.2. The set of lines {L(a) | 0 < o < 21} may be regarded as a set of
tangents to the arcs of a hypocycloid of third order (which is also known as three

cuspidal quartic curve), drawn in a circle of center O and radius 3.

Remark 3.2.3. In the case of o+ B+ 7y =0 (mod 2m), if one takes dual of the
concurrent lines L(a), L(B) and L(Y), the corresponding dual points L*(c), L*(B)
and L*(7y) lie on a line, dual to the meeting point L(a) N L(B) N L(Y). So, Lemma

3.2.1 plays an important role for the solution of Orchard problem.

Figure 3.4 The line L(a) as a tangent to hypocycloid.
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Fiiredi & Palasti (1984) considered the following arrangements of lines for n > 3:

2, = {Li:L<@)|i:o,1,---,n—1}, (3.2.1)

.
B, — {Li:L<ﬂ)|i:0,l,---,n—l}. 3.2.2)

n

See Figures 3.5 and 3.6.

The arrangement 4, is arrangement of n diagonals of a regular 2n-gon. Lemma
3.2.1 implies that the line L (W) ¢ A, is concurrent to L; and L j of 4.
Therefore, the lines L;,L;,L, ; j—1 and L;,L;, L, ; j > of A, respectively form
triangular cells, which tells us that 4, is a simple arrangement. As it is seen from
the Figure 3.5 that its cells are k-gons, 3 < k < 6. By considering the values of

n relative to (mod 6), they obtained the results in Table 3.2 for pi(4,). These

results tell us that p3(4,) > ”(”3_ 3) | hence pi(n) = ’3—2 + O(n). On the other hand,
the arrangement 4, is an example of two coloring arrangements. They calculated
the number of black regions as b(4,) = @ and the number of white regions as
w(4,) = m’#, where € = 0,2,2 if n =0,1,2 (mod 3), respectively. Hence,

b(A,) = 2w(A) — (n+2—¢).

Table 3.2 The number of k-gons of the arrangement 4,,.

n>5 p;(/’zln) pa(An) p5(An) pza(ﬂn)
n=0 (mod 6) "5—3” 546 n—=6 n—gn+6
n=7Fl (mod 6) ”2*3++5 5 m—9 n2796n+20
n=7F2 (mod 6) | =38 2 n—2 w=bn+2
n=3 (mod 6) "2_2—“9 3 2 —9 n2—96n+24

The arrangement B, also consists of n diagonals of a regular 2n-gon. Lemma
3.2.1 implies that the line L, ; <M> € ‘B, is concurrent to the lines L; and
L; of B,. Therefore, all cells in B, either is a triangle or rectangle (See Figure
3.5). By considering the values of n relative to (mod 6), they obtained the results
p3(B,) > w +6 and p4(B,) = n—6+¢, where € = 0,2,2 according to

whether n=0,1,2 (mod 3). Then it is clear that p3(B,) > "("3_3) +4.
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Figure 3.5 The arrangement 4, (Fiiredi & Palasti,
1984, Figure 2).

Figure 3.6 The arrangement B, (Fiiredi & Palésti,
1984, Figure 3).

In fact, first important results for Griilnbaum’s conjecture p3(n) < @ were

obtained by Purdy (1979, 1980), who in 1979 proved p3(n) < &n(n—1) and in

1980 he improved this to p3(n) < llgn(n -1+ % for n > 6. Further, Gu (1999)

extended Purdy’s result and proved that p3(n) < @ if 3 = 0, which was a

generalization of the known result: p3(n) < @ fort;, =0, s > 3. Also, he proved

that p3(n) < Zn(n—1)+2ifn>7.
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3.3 Orchard Problem

The orchard problem is a tree planting problem asks that n trees be planted so
that there will be 6(n,k) straight rows with k trees in each row. The problem is to
find an arrangement with the greatest 6(n,k) for each given value of n. This very
old problem is formulated by Sylvester (1867) as asking how to plant n trees in an
orchard so as to maximize the number of rows, 6(n), containing exactly 3 trees (i.e.,
6(n) := o(n,3)). Figure 3.7 shows examples of optimal arrangements with n < 10
points. Sylvester (1867) construct some arrangements and first showed that 6(n) >

L(nfl)z )(H)J_

¢ |, and several year later he found a better lower bound: 6(n) > L("AT

This was known as the best lower bound till 1974. Burr et al. (1974) considered
a real cubic real cubic curve C: y*> = 4x®> — 1 with one flex point at infinity. By
using the parametrization P(u) = ($(u),$/(u)) of elliptic curves by Weierstrass
g function, they applied the group law of elliptic curves to orchard problem. The
collinearity condition is as follows: three points P(u; ), P(u2) and P(u3) are collinear
if and only if

up+u+u3 =0 (mod 2m), (3.3.1)

where o is the period of ¢ (u).

Then, they considered the n real points P(u;) of C, where u; = %(D, s € Zy. So

the collinearity condition (3.3.1) reduces to
si+s2+53=0 (mod n). (3.3.2)

By solving this equation in Z,, they found a lower bound

n(n—3)
6

o(n)>1+ n>3. (3.3.3)

Indeed, if we denote the unordered triples (s1,s2,s3) satisfying the equation (3.3.2)

by o, then G is one-sixth of the number of ordered triples (sy,s2,s3) of Z,. This
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(a)o(3 (b) o(4 (©)o(5
(d)o(6 (e)o(7 ) o(8
(0(9)=10

Figure 3.7 Orchards for ¢ < 10.

number is equal to the number 63 of all solutions of (3.3.2) decreased by 3 times the
number 6, of all solutions of (3.3.2) in the case of two of s; coincides, and increased
by twice the number 6 of all solutions of (3.3.2) for the case s; = 5o = 53. Clearly,
63 =n%, 6, =n and 6] = 3 or 1 depending on whether 3 | n. Combining these
results, one obtains

n(n—3)‘
6

6(n)=03—30,+26; =1+

The lower bound (3.3.3) can also be obtained by using the Fiiredi & Palésti’s arrange-
ments B, in the page 66. This arrangement contains n diagonals of regular 2n-gon.
Three lines L;,L;,L; of B, meets at a point if and only if i+ j+k =0 (mod n).
We have already found the number of solutions of this equation. So, configuration

n(n—3)
6

consists of 1+ triple points. If we take the duals of those points and lines,

n(n—3)
6

then we obtain exactly the n points and 1+ lines, each of which consists of 3
points. As it can be easily seen that, in the real case these two methods are dual. If
one consider the complex line arrangements, the lower bound (3.3.3) is not so good.

For example 6(9) = 12. This can be complex realizable by Hessian arrangement.
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Hessian arrangement consists of 12 lines passing through the 9 flex points of Fermat
cubic X3 +Y3 + 273 = 0. To find a best lower bound for 6(n) one can use the group

law of (complex) elliptic curves.

Let E, denotes the n-torsion points of an irreducible elliptic curve C : Y?Z =
4X3 —aXZ? — bZ? with A = a® — 27b* # 0. This elliptic curve consists of nine flex
points, and only one of them, [0 : 1 : 0], is at infinity. By fixing this point as zero,
define the group law. Then set of n-torsion points E,(C) := {P € C: nP =0} is

clearly a subgroup of C, and E3(C) consists of only nine flex points.

Elliptic curves can be parametrized by using the Weierstrall g function. The
collinearity condition P(u; )+ P(u2) 4+ P(u3) = O is equivalent to the condition u; +
uy +uz = 0 for u; € A, where A is the underlying lattice of the cubic curve C. If A is
generated by @1, ,, then for given positive integer n, the points u = (A;®; + A ;)
for 0 > A1,A2 >n—1allhave nu =0 mod A, and these are the n? points with order
dividing n in the group C/A. The images of these points corresponds to n-torsion
points of elliptic curve, and E,(C) = Z, ® Z,,. Thus, subgroups of E, (C) consisting
of the collinear points solves the orchard problem, and best upper bounds can be
obtained in this way. If one takes the dual of points in these subgroup and lines so
that collinear points lie on it, then he get an arrangement of lines having only triple
points. This kind of arrangements are important for the uniformization problem (See

Theorem 6.1.4).



CHAPTER FOUR
CONFIGURATION OF QUADRICS

In this chapter, we will be interested in combinatorics of quadric arrangements,
and so investigate the some possible configurations of non-degenerate quadrics with
contact order > 2 and derive their equations. We will also mention some impossible
graphs. To describe the intersection behavior of non-degenerate quadrics for such
configurations, we will use the dual graphs explained in the section 2.5 (See Table
2.1 on page 22), and unless otherwise indicated we assume that all quadrics are

distinct and non-degenerate, and any three of them have no common point.

To derive equations for quadrics, we will need the parametrization of the quadrics
as explained in Section 2.6. If one parametrizes one of the quadrics and substitute
them into the equation of the second quadric, then he gets a polynomial equation
q(t) = 0 of degree at most 4. The number of roots and the vanishing orders of the
roots determines the number of intersection points, and contact order of them at
these points, respectively. Note that, if the degree of ¢(z) less than four, then it has

aroot at oo,

4.1 Configuration of Quadrics with Contact Order Four

Proposition 4.1.1. Any configuration of two quadrics with graph e—e is projec-
tively equivalent to the quadrics
01: X>-YZ=0

4.1.1)
Or: X?>+aZ?>—-YZ=0, acC"

Proof. The fact of dimPGL(3,C) = 8 allows us to fix one of the quadrics and their
contact point. So, assume that Q1 is the quadric given by equation X?> —YZ = 0, and
it has contact with Q5 of order 4 at the point [0 : 1 : 0]. Also, assume that the equation

of the second quadric Q> is of the form a1 X2+ arY? + azZ? + asXY + asYZ +

71
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agZX = 0. Since [0: 1: 0] € O, then one knows that a; = 0. By dehomogenizing
their equations with respect to the variable ¥, we get Q1 : x> —z=0and Q> : ajx*>+
a37% 4 asx + asz + agxz = 0. If we substitute the parametrization (x,z) = (z,¢%) of
the affine part of Q1 into the equation of the affine part of O, we get the polynomial
f(t) = ast* + agt® + (a1 + as)t*> + ast. This polynomial has 4-fold root at t = 0 if
and only if a4y = ag = a; + as = 0 and a3 # 0. Then, the equation of O, must be of
the form a; X2 +a3Z2 —a1YZ =0. Since Q5 is non-degenerate, then a; # 0. So, by
dividing both sides by a;, and renaming the nonzero coefficient Z—? as a we obtain

that the quadric Q, : X2+ aZ>—YZ =0, where a € C*. O

One can easily discover that the quadrics O and Q> have the following paramet-

rizations:

Q1 = {w:v*:d?]| [u:v] €CP'}, (4.1.2)
O = {[st:as2+t2:s2]| [s:t]E(CIP’]}. (4.1.3)

and their common tangent line is the line Z = 0.

A

can not be (complex) realized, i.e., there are no three distinct quadrics, pairwise

Proposition 4.1.2. The graph

tangent to each other of order 4 at distinct points.

Proof. Let Q1 and Q; be the quadrics in Proposition 4.1.1, and suppose that there
exist a quadric Q3 such that Q1 and Q3 has a contact of order 4. Also, assume Q3 :
a1X?> +arY? + 37 + a4 XY +asYZ + agXZ = 0. By substituting parametrization
(4.1.2) of Q; into the equation of Q3 one gets fi3(u,v) = azu* + agu’v + (a; +
a5)u2v2 + aquv® + ayv* = 0. On the other hand, the contact point of Q1 and Q3 must
be in the form of [t : & : 1], where oo = £ € C, since the point [0 : 1 : 0] does not

lie on Q3. Therefore f3(u,v) = A(ow —v)* for some A € C*. Hence, by comparing
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the coefficients of these two equations for fi3(u,v), one gets the equation of Q3 in

the form of
BX2 4+ Y2+ o*Z? —4aXY + (60> —P)YZ —40’XZ =0 (4.1.4)

for some o, € C. Let us substitute the parametrization (4.1.3) of Q into the

equation (4.1.4) of Q3. Then, we have

fr3(s,1) = (@® 4 ot + 6a0® — aP)s* — (4ac+ 4035’ + (2a+ 602)s1* — dost> + 1+
= (as—1)* +as[(a+ 60> — B)s® — 4os’r + 2s17].
(4.1.5)

Since the point [0 : 1 : 0] does not lie on O3, the contact points of O, and Q3 must be
in the form of [y: a+7*: 1], where y= L e C. Therefore, f>3(s,t) contains the factor
(ys — )™, where my is the contact order of Q, and Q3 at the point [y: a -+ : 1].
Clearly f>3(s,t) = (ys —t)* if and only if @ = 0 and Y = o. This is not the case
since the quadrics Q1 and O, are distinct. Hence, the configuration of three distinct

quadrics having contact orders 4 at distinct points is not possible. O]

4.2 Configuration of Quadrics with Contact Order Three

Proposition 4.2.1. Any configuration of two quadrics with graph @<~~~ is
projectively equivalent to the configuration of the quadrics
01: X>-YZ=0

(4.2.1)
0r: X2+ bY?+cXY—-YZ=0, b,ceC,c#0.

Proof. Projective transformations allows us to choose the quadric Q; : X>—YZ =
0 and the contact point [0 : 0 : 1] of order three. Now assume that Q5 : a;X? +
aY? +a3Z% + asXY +asYZ +agZX = 0. Since [0: 0 : 1] € Qy, then one knows

that az = 0. By dehomogenizing their equations with respect to the variable Z, we
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get O : x? —y=0and Q> : ax® —I—aQy2 ~+ agxy + asy + agx = 0. If we substitute
the parametrization (x,y) = (¢,¢%) of the affine part of Q; into the equation of the
affine part of 0>, we get the polynomial ¢(t) = axt* +ast® + (a; +as)t> + agt. This
polynomial has 3-fold root at O if and only if ag = 0, as = —a; and a4 # 0. In
addition, a; # 0, because if it were then Q> would be degenerate. Then Q5 has the
equation a1 X 24 Y2+ asXY —a1YZ=0. Dividing each side of this equation by
ai, and setting Z—f = b and Z—‘l‘ = ¢ we obtain the required equation for ;. Note that

for each b € C and ¢ € C*, Q> is non-degenerate. O

Proposition 4.2.2. Three quadrics in the graph

VAN

are projectively equivalent to the quadrics

01 : —(1+as+aie)X* + a1y XY +YZ +aj6ZX =0,
0> —(1 +a24+025)Y2+a24XY+a25YZ+ZX =0,

03 :anZ?+ XY +a3sYZ + a3eZX =0,

where either ajg = ars = 1, a14 = apxqa = O, az5 = azg = é, azy = —aa—?, aeC\
{0,F1,-2}; or
_ B _(B-1*B+1) _(B-1’B+1) 1
aie = P, au= B2 ;A= B2 ;a5 = B
BB+ DR -2B+1) _ B
@ = B-DFB+: T BB
ae = & B*—2p°+2B°—B+1=0.

B-1)3B+1)’

Proof. Let Q; : anX?*+ apY? + anZ? + auXY + aisYZ + aigZX = 0,i = 1,2,3.
Projective transformations allow us to choose four points. Let Q; and Q, have
contact of order 3 at [0: 0 : 1] and transverse at [1 : 1: 1]. Assume [0: 1 : 0] and

[1:0:0] are the third order contact points of Q3 with Q; and Q», respectively. Then
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ajpp=aj3=daz| =ax3 =a3z| =azx =daj +aist+astaie=axp+au+as+ay=
0. In addition, the coefficients ais,az6,a34 are non zero, otherwise quadrics will
be degenerate. Rescaling the equations of quadrics, we can assume that a;5 =
aze = az4 = 1. Since each quadric is non-degenerate, then the determinants of
corresponding symmetric matrices must be nonzero. This condition gives

a4, e, az4,ars 7= —1 and asz # assase. Then equations of quadrics Q; will be

Op: —(1+a14+a16)X2+a14XY—|—YZ+aIGZX =0,
O —(1 +024+025)Y2+a24XY+a25YZ+ZX =0,

03 : a3322 + XY 4 a3sYZ+a36ZX =0,

with conditions aj4,a16,a24,a25 # —1 and aszz # assazs. On the other hand, the

quadrics Q1 and Q> can be parametrized as

01 = {[st +aies® : 1> +arest : (1+ais+aig)s® —aust] | [t:s] € CP'},

0> = {[V* +azsuv : uv+axsu® : (14 @z +ass)u* — agauv] | [u:v] € CP'}.

By substituting the parametrization of Q1 into the equations of Q> and Q3, and the

parametrization of Q5 into the equation of Qs, respectively we obtain

S12(s,8) =(s—1t)(a1es +1)[(1 +aa +a16)s2
+ (14 a2a +azs)aie + arsazs +azs + 1)st

+(14apm +a25)t2] =0,

f13(s,1) =(1+a1a+aie) (1 + a14 + arg)azs + ajease)s*
—[2a14a33(1 +aia +aie) + (1 +ai4)aze
— (1+ass)(aieaze + ai) — araaieass)s’t
+[(1+ai4+aie)azs +aryas3 — a1aai6ass — a14a3s + 2a16)st>

+ (1 —a14a35)st3 =0,
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and

f23(u,v) :(1 +ans + azs)((l + a4 —l—a25)a33 + a25a35)u4
— [(2az4a33 — apsaze — azs) (1 + aza + azs) — @35 + araarsass|u’y
+ [(1+ a4 + azs)azs + a34azs — azaazsaze — azaazs + 2azs|u*v?

+ (1 - a24a36)uv3 =0.

Q1 has a third order contact with Q5 at [0: 0 : 1] if and only if
fia(s,t) =A(s—1)(ares +1)°
for a non-zero constant A. This is possible only when

ate(1+au+axs)=1+auu+as and as(l+axu+axs) =1 +axs +ajaars,
4.2.2)
or equivalently

1+apu

1
ars = — and axq = 5 — 1, (a]6 # O) (423)
aie 16

Second, Q; has a third order contact with Q3 at [0 : 1 : 0] if and only if the
coefficients of the terms s°¢> and st3 in f13(s,) are zero while the coefficients of s*
and s3t are non-zero. Then we have

(14+a14)(1+as)

1
azs = —, and azg = 5 + a4a33, (6114 §£ O) (424)
ais aiy

Last, Q5 has a third order contact with Q3 at [0 : 1 : 0] if and only if the coefficients

2

of the terms u?v? and uv? in fa3(u,v) are zero while the coefficients of u* and u’v

are non-zero. Then we have

1 14+a 14+a
aze = —, and azs= ( 24)2( 25) +anaz, (axu#0). (425)
424 a4
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From the equations (4.2.3), we have (1 +a14)(1+aie) = a3¢(1 +az)(1 +azs). On
the other hand, the equations (4.2.4) and (4.2.5) implies that ag4( I+ap)(l+a) =
a3, (1+ax)(1+aps). Then we get ajgas, = aj,. If  is a third root of unity, then

clearly aj4 = ajgaz4®. Substituting it into the equation (4.2.3) we get
arear4(aig— o) = 1 —aiy, (4.2.6)

which implies that ® = 1 if aj¢ = ®, since ajg,a24 # 0.

Now suppose, ajg = ® = 1, then the equations (4.2.3), (4.2.4) and (4.2.5) tell us

that
1 24 a4
aje=axs =1, au=au, as=ax=-— and ap=——73— (“2.7)
aia aiy
2 _
Note that 1 4+ az3 +azs +aze = (am_‘—za)% =0ifand only if a4 = Fl oraj4 =
14

—2. In addition, quadrics are degenerate if ajg = —1; Q1 = 0 = Q3 if ajg = —2;

and quadrics are non-degenerate but meet at [1: 1: 1] if aj4 = 1. So, these are not

cases.

Smilarly, if ajg # ®, then a5 # F1 by the equation (4.2.6), and therefore

s — 1 —ajg  a— (1 —0%6)(’), s = L7 s = ais(aie — )
aie(ais — 0) aig — O aie 1—a3

ays = aie— @ :a16(a16—c0)(1—m)(l—a16—a160))
(1-ajg)o’ o(1 —aie)* (1 +aie)? ’

a160(ae — ®)(1+ o) +ae(1 — a2 »?)
(1 —a16)2(1 —|—a16)

asze =

(4.2.8)

by the equations (4.2.3), (4.2.4) and (4.2.5). In addition, two equalities for azg in
(4.2.8) imply that (1 — ®)[a16(1 —aje)(1 +®) —®] =0, so either ® =1 or ® =

2
aje—die
1—a16+a%6'

If ® =1, then a4 = ajeaz4, and therefore by the equation (4.2.6) one has either
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ajg =1 or 14+ajs+ajs =0. We have already studied the case ajg = 1. If 1 +ay4 +
a6 = 0 then the coefficient of s* in f13(s,t) will be zero, so this is not the case.
— 2 . / .
If o= % =1, then 2a%6 —2a16+1 =0, 1.e., ajg = % By using the
equations (4.2.8), one can easily calculate that 1 + a4+ a6 = 0. This is also not the
case.

2
aie—die
l—a](ﬁ-a%

Now, suppose ® = # 1. Then o satisfy the equation ®* +w®+ 1 = 0.

So, one gets a‘l‘6 — 2a?6 + 2a%6 —ajg+1=0,1ie.,

1 V2V13-2 V2V/13+2.
a16:§:F 4 + 4 L

Then, the equations in (4.2.8) reduces to

~ (a16—1)*(a16+1) ~(a16—1)*(a16+1) 1
aj4 = a2 , a4 = a2 , a5 = a7
16 16
a3s — are(ajs —aje+1)(2a3s —2ai6+1)
(a16—1)%(a16+ 1) ’
2 2
a a
ass = 0 ase = 0

(a16—1)*(a16+1)’ (a16—1)*(a16+1)

For such coefficients, quadrics neither degenerate nor meet at a point.
[

Remark 4.2.3. If one allows that quadrics in Proposition 4.2.2 has one simple triple

point, then their equations are projectively equivalent to

01:-3X>+XY+YZ+ZX =0,
Qr: -3V 4+ XY +YZ+ZX =0, (4.2.9)

Q3: 32>+ XY +YZ+ZX =0.
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Proposition 4.2.4. The graph

03

Q1AQ2

can not be (complex) realized.

Proof. By the Proposition 4.2.1, we may assume that Q1 : X> —YZ =0 and Q; :
X%+ bY? 4+ XY —YZ =0, where b,c € C and ¢ # 0. The quadrics Q; and Q>
meet at [0: 0 : 1] and [—bc : ¢? : b?] with multiplicities 3 and 1, respectively. In
addition, these two quadrics have parametrizations Q1 = {[uv: v? 1 u?] | [u:v] €
CP'} and Qp = {[st : 5% : 1>+ bs> +cst] | [s: 1] € CP'}. Assume that there exists
a quadric Q3 : a1 X%+ arY? + azZ* + asXY + asYZ + agXZ = 0 which meet with
Qi at[p:1:p? and Q; at [g: 1: ¢q*>+ cq+ b] with multiplicities 4. Then, both
f13(p) = a3p* +aet® + (a1 +as)i* + agt +ay and f23(q) = asq’ + (2caz +as)q” +
(a1 + c*az +2baz +as + cag)g* + (2bcaz + ag + cas + bag)q + (az +b?a3 + bas) are
fourth power of linear polynomials. Suppose fi3(p) = (yp +8)* = 0, then clearly
a3 =Y #0, a6 =48, a5 = —a1 +6y?8?, ay = 4v8°,ar =8*and p = —%. Moreover,

F3(q) =Y'q* + 27 (cy+28)g” + V(¢ +2b)Y* + 68% + 4cyd)q”
+ (2bcy* +4bY’ 8+ 6?8 4+ 4v8° — ajc)g+ (—arb+ b*y* + 6b &% + &%)

=(yg+m)* =0

if and only if & = 4b4_CC2 Y. M= CYJEZS = 41’2;62 Y, a) = 4%y = (4}’4;2)2% and ¢ =

. Hence the equation of the quadric Q3 must be in the form of

_4bt?
4c
48P X2+ 32 Y 22+ Ay XY 427V Z+- 478X Z = (28yX +8%Y +7°Z)* = 0.

This means, such a quadric Q3 must be degenerate. [
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Proposition 4.2.5. Three quadrics in the graph

03

Q1AQ2

are projectively equivalent to the quadrics

0,:X>-YZ=0,

0> :X*>+aZ?>-YZ =0,

Q3:— (g(m2—8mP+P2)+ 2(m—p)3(m+p))X2_Y2

3 a
2ap’ 3 ) ) ( 2a )
4 pm—p) | P+ —o——+ (m+p) | XY
(3(m—p) ( ) 3(m—p) mtp)
2ap 2ap?
+ | s——=+2mp | YZ+ | — +3m—p | XZ=0,
3(m—p) m—p

where m,p € C, m # p and a*> = —3(m — p)*.

Proof. By the Proposition 4.2.1, we may assume that Q; : X> —YZ =0 and Q; :
X% +aZ> —YZ =0, where a € C*. These two quadrics meet at the point [0 : 1 : 0]
with multiplicity 4 and they have parametrizations Q1 = {{uv : v? : u?] | [u:v] €
CP'} and Qp = {[st : t? +as® : s?] | [s:t] € CP'}. Suppose, such a quadric Q3
exist. Since [0:1:0] ¢ Q1N Q3 and [0: 1 :0] ¢ Q2 N Q3, then Q3 will meet with
Q; at the points [p: p?: 1] and [g : ¢* : 1] with multiplicities 3 and 1, respectively,
where p # g. Similarly, Q3 will meet with Q5 at the points [m : m* +a : 1] and
[n: n* +a : 1] with multiplicities 3 and 1, respectively, where m # n. In addition,
the line ¢1 : 2pX —Y — p?Z = 0 is tangent to Q1 at [p : p? : 1] and the line ¢, :
(p+q)X —Y — pqZ = 0 pass through the intersection points [p: p>: 1] and [g: ¢* : 1]

of Q1 and Q3. Therefore, the equation of Q3 must be in the form of

AMOI+ 010 (M2p(p+q) X2 +Y2+pPqZ* — Bp+q)XY +p(p+4q)YZ

—p?(p+39)XZ=0 (4.2.10)
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for some A € C*. Substituting the affine parametrization x =, y =1>+a, z= 1 of

(- into the equation (4.2.10), we obtain

f3(t) = t*—=Bp+q)®+(Bp(p+q)+2a) — (p*(p+3q) +a(3p+q))t

+(p*q+a*+ap(p+q) —ak) =0.

On the other hand, by the intersection behavior of O, and Q3, f>3(¢) must be in the

form of
f3(t) = (t—m)3(t —n) =t* = Bm+n)> +3m(m~+n)t> —m*(m+n)t + m’n = 0.

Comparing these two equations for f>3(¢) term by term we will get the following

equations:

3m+n = 3p-+q (4.2.11)
3m(m+n) = 3p(p+q)+2a (4.2.12)
m*(m+3n) = p*(p+3q9)+a(3p+q) (4.2.13)
m’n = plq+d®+ap(p+q)—ak (4.2.14)

Note that m # p and consequently n # ¢ , otherwise @ would be zero but this is

not the case. From the equations (4.2.11), (4.2.12) and (4.2.14) one obtains n =

2 ) — )3 _ )4
—m+2p+%,q:2m—p+—3(£fp),7»:“ (3m—p) 2"(’;;(:;)7;)3("’ I (mtp) and

substituting them into the equation (4.2.13) one gets a> = —3(m— p)4. Therefore,

the equation (4.2.10) reduces to

N (%( 2—8mp+p2)+z(m_p)s(m+p)>X2—Y2

a
2ap’ 3 ) 2 ( 2a )
+|l=—0———+p'Cm—p)|Z°+| ———+(m+p) | XY
(s +rom=) m—p) T ")

2ap 2ap?
+=——+2mp |YZ+ | — +3m—p | XZ=0.
3(m—p) m—
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4.3 Configuration of Quadrics with Many Tacnodes

The problem Naruki interested in determines when two quadrics are tangent to
each other at one point or two points. For this aim he used the singular members of

pencil introduced some invariants. First let us explain these invariants.

Let Q) and Q5 be two quadrics given by the ternary quadric equations F; (X,Y,Z)
=0and F>(X,Y,Z) =0, corresponding to 3 X 3 symmetric matrices are M| and M>,
respectively. Assume that they are in general position. Then there are four distinct
intersection points. Denote further the intersection points by po, p1, p2, p3; and the
(2,2)—partitions {po, p1; p2, p3}, {Po. P2: P1,p3}. {Po. p3;P1,p2} by 1, I, I3. The
partitions are called the references of the pair {Q1,02}. They are in a one to one
correspondence with the singular members of the pencil Q = {Q(¢)} generated by
Q1 and Q7 (See Figure4.1). Indeed, the equations for members of family Q is of the
form:

Q(t): tF+F =0 4.3.1)

Note that Q(ec) = Q; and Q(0) = Q5.

Figure 4.1 Singular members of the
family of two quadrics in general
position.
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The symmetric matrix corresponding to the quadric Q(z) is tA| + Aj, and the

singular members of the family Q corresponds to roots #1,»,#3 of the cubic equation

det(tM; +M;) = 0. (4.3.2)

By changing the indices in a suitable way, it can be assumed that

O(t1) =popiUp2p3, Q) =pop2Upips and Q(13) = pop3 UPpipa2,

where p;p; denotes the line passing through the points p; and p; for each (i, j).

Thus, the references [y, [, I3 correspond to Q(t1), O(12), O(t3).

The first invariant is defined by Naruki (1983) for ordered pairs of two quadrics

and their references by setting

12 12 12
(02/Q1s h] = = [02/Qu; ] = 2, [02/Qu; ly] = - (4.3.3)
213 N1 He;
which give some obvious properties:
[02/01; Ih]-[Q2/01; b]-[Q2/01; 3] =1, (4.3.4)
and
[02/01: L] -[Q1/02: i) =1, i=1,2,3. (4.3.5)

Projective invariance of these quantities follows from the fact of the change of
the coordinate ¢ of the family Q. Indeed, one can choose the coordinate T of Q such
that T = 0,0, 1 correspond to singular members Q(t1), Q(r2) and Q(#3), and T = o,

(1 —13)(2—1)

correspond to the quadrics Q1, Q»; explicitly T= CEDICEIL which is the cross ratio

(t1,t2;13,1). Then,

Hh—13
l‘1—l‘27

tz(l‘l —l‘3) o N o—1 h
e t17t2;t370 =, -=—, - -
B ( ) l‘3(l‘1 —tz) B 1) B—l 13

o= (t1,h;13,00) =
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/N

Figure 4.2 Singular members of the family of tangent quadrics.

and therefore

20y e
Pla—1) (02/01; ] = %-

o*(B—1)"

R

_ o(a—1)

m , 102/015 b] =

[02/01; 1]

Since both a and [ are cross ratios, then by Proposition 2.2.4, these quantities

remain invariant under coordinate changes.

Now consider the case that the quadrics are in a special position, i.e., they are
tangent to each other at least at one point (contact of order 3 and 4 are excluded).
Then the equation (4.3.2) has one simple root ¢’ and one double root ¢”’. The singular
member Q(¢') contains common tangent (or tangents) while Q(¢”) contains the
contact point (or points) in its singular locus (See Figure 4.2). In addition, there

are only two references I, I of the pair {Q;, 0>} corresponding to ¢’ and ¢”.

Second invariant for quadrics in a special position is also defined by Naruki

(1983) by setting
t/

[02/01] ik (4.3.6)

Thus, it gives some obvious properties

(02/01; '] = [02/01)? (4.3.7)

and

(02/01; ") = [02/01] ' = [01/0a). (4.3.8)
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The invariant [Q,/Q] can also be defined without the use of coordinates. The
(possibly singular) quadrics passing through given points and having given tangent
lines at those points form a pencil, so they correspond to points on the projective
line. Let Qp and Q.. be the union of two tangent lines, and twice the line connecting
the two given points, respectively; and Q1, 0>, Qp, O- are the corresponding points

of these quadrics on the projective line, then [Q;/Q>] is nothing but short of the
cross ratio (Qo, Ow; 01,02).

Finding the roots of the equation (4.3.2), gives some clues about the intersection
of quadrics as follows: if there are three simple roots then quadrics are in general
position; if there are one simple and one double root then quadrics are tangent at
least at one point; and if there is 3-fold root then quadrics have contact of order > 3.
But less suitable for when two quadrics are tangent to each other at a point or at
two distinct points. Similarly it also does not distinguish the contact orders 3 and 4.
Distinguish these cases, we need parametrization of quadrics. First, we parameterize
one of the quadrics as explained in Section 2.6, and then substitute them into the
equation of the second quadric. This will give us a polynomial equation g(r) =0
of degree at most 4. The number of roots and the vanishing orders of the roots
determines the number of intersection points, and contact order of them at these
points, respectively. Note that, if the degree of ¢(¢) less than four, then it has a root

at oo,

4.3.1 Two Quadrics with Two Tacnodes

Proposition 4.3.1. Any configuration of two quadrics with graph e&e———e, i.e,

quadrics have two tacnodes, is projectively equivalent to the quadrics

01:X>+Y2—Z2+2pXY =0,

1 (4.3.9)
Qr: —X*+Y*—Z*+2pXY =0,

q
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where p,q € C, g #0, p,q # %1, and p>q> # 1. In addition, [Q1/Q2) = qf)g];j) is

the Naruki invariant.

Proof. Since dimAut(CP?) = dimPGL(3,C) = 8, we can choose homogeneous
coordinates on CP? such that the points [0:F1:1],[F1:0:1]lieon Qy,and [0: F1:
1] are the tangency points of O, with Q;. The conditions [0: F1: 1],[F1:0:1] € Oy
implies that Q1 : X2 +Y? — Z? +2pXY = 0. For non-degeneracy, one should add the
condition p # F1. Then, the lines Ly : pX +Y FZ = 0 are the tangents of Q; at the
points [0 : +1 : 1], respectively.

Let O : alX*+arY? + agZ2 4+ a4 XY 4+ asYZ + agZX = 0. Then the conditions
[0:F1:1] € Q, implies a3 = —ap and as = 0. Since the lines Ly : pX+Y FZ=0
are tangent to Q; at the points [0 : £1 : 1], respectively, then one has the conditions
ag = 0 and a4 = 2pa,. Therefore, the equation of O, reduces to a1 X? +aY? —
arZ? + 2pax XY = 0. Note that a; must be non zero, otherwise O, will be a double
line. By dividing each side of the equation of Q> by a, and setting % = qlz we obtain

the required equation. Non-degeneracy condition of Q5 is p>¢*> # 1. In addition,

q # F1 since the quadrics are distinct.

Last, the cubic equation (4.3.2) for these quadrics Q1 and Q> has simple root

20,2
/' = —% and double root /" = —1. Hence the Naruki invariant is [Q;/Q5] =

20,2
g (p~—1)
p2q2_1 . D

Remark 4.3.2. Megyesi (2000) proved this proposition for the case p = 0. Indeed,
he said that any smooth quadric with two tacnodes was projectively equivalent to
the pair defined by the equations X? + Y2 —Z> = 0 and #X 24y? -7 =0 with

conditions ¢ € C\ {0,F1}. But this is just a special case.

The quadrics in (4.3.9) have parametrizations

Q1= {[2st+2ps*:1* —s* 112 + s>+ 2pst] | [s:1] € CP'},
(4.3.10)
0= {[245f+zpf]282 12— s st 2pgst] | [sit] € C]P’l}.
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and we shall use without writing them later again explicitly.

Proposition 4.3.3. The graph

03

QléQz

can not be (complex) realized.

Proof. Suppose that such configuration of non-degenerate quadrics exist. By the
Proposition 4.3.1, we may assume that Q1 : X> +Y? —Z?>+2pXY =0 and Q> :
q—lzXz—i—Y2 — 72 42pXY =0, where p,q € C, ¢ #0, p,q # *1, and p>q*> # 1. Let us
assume that Q3 : a1 X2 +ax Y%+ a3Z% + asXY +asYZ+acXZ = 0. Since Q1 N Qs =
{[0:=1: 1]}, then by the parametrizations (4.3.10) of Q1 and O, the contact points
of Q3 with Q1 and Q> must be in the form of [2(u+ p) : u?> — 1 : u> +2pu+1] and
[2g(v+ pq) : v* — 1 : v? +2pqv + 1], respectively. By substituting these points into

the equation of Q3 we will obtain the following equations:

f13(u) =(az + a3 + as)u* + (4a3p + 2a4 + 2asp + 2a¢)u’
+ (4ay —2ap + a3 (4p2 +2)+ 2a4p—|—6a6p)u2
+ (8a1p+4azp —2a4 — 2a5p + 2a6(2p* + 1))u

+4alp2—|—a2-|—a3—2a4p—a5 +2a¢p =0

and

fr3(v) =(a2 + a3 +as)v* + (4as pg + 2a4q + 2aspq + 2agq)v°
+ (4a1q* — 2az + a3 (4p*q* +2) + 2aspq* + 6agpg* )v*
+ (8a1pq® +4azpq — 2asq — 2a5pq + 2aq(2p*q” + 1))y

+4a1 p*q* + ar + a3 — 2aspq” — as + 2agpg® =0

By the intersection behavior of Q3 with Q1 and Qy, both fi3(«) and f3(v) must be

fourth power of some linear polynomials. Assume fi3(u) = A(u—A)* and f3(v) =
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B(v — u)* for some non-zero constants A and B. Comparing the coefficients of two

polynomials for f13(u) and also for f>3(v) term by term we get

and

A
—4AN
6AMN?
—4AN3

AN

ay+asz+as (4.3.11)
4azp +2as+2asp +2ag 4.3.12)
4a1q* —2ay +a3(4p*q* +2) + 2aspq® + 6aspg®  (4.3.13)

8a1pq3 +4a3pg —2asq —2a5pq + 2a6q(2p2q2 +1) (4.3.14)

4a1p2q4+az+a3 —2a4pq2—a5 +2a6pq2 (4.3.15)
a +az+as (4.3.16)
dazpq+2asq+2aspq +2asq (4.3.17)

4a1q* —2ay + a3(4p>q* +2) + 2aspq® + 6aspg®  (4.3.18)
8a1pq3 +4a3pg — 2a4q —2a5pq + 2a6q(2p2q2 +1) (4.3.19)

4a1p2q4 +ax+az — 2614pq2 —as+ 2a6pq2 (4.3.20)

It is clear from the equations (4.3.11) and (4.3.16) that A = B, and from the

equations (4.3.12) and (4.3.17) that u = Ag. Similary we obtain a, = a3 by comparing

the equations (4.3.13) and (4.3.18), (2az — as)p + (ag — as) = 0 by comparing the

equations (4.3.14) and (4.3.19), (a2 +az —as)(¢> + 1) +2pq*(ag — as) = 0 by

comparing the equations (4.3.15) and (4.3.20). If 14 ¢ # 2p*q?, then as = 2a,

and ag = a4. Hence we get a, = az = % and as =4 by (4.3.11), 2a4 = —A(p+2A)
by (4.3.12), (4a; + 8asp) = A(6A? — p?) by (4.3.13), 8aip + 4asp* = —4AN> by
(4.3.14) and 4p’a; = AA* by (4.3.15). Then, either p = A =a; = a4 = ag = 0,

2
4a2:4a3:2a5:A0rk:—p7£0,a1:A%,az:@:%,a;;:as:—% and

as = ‘%. The last solution is also true when 1+ ¢ = 2p*4>. In all cases, the quadric

Q3 will be degenerate. So, such configuration of three on degenerate quadrics can

not be realized.

]
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4.3.2 Two Quadrics with a Tacnode

Proposition 4.3.4. Any configuration of two quadrics with a tacnode, i.e with graph
e——e, are projectively equivalent to the quadrics
0,:Y*+7>-2XY =0,

(4.3.21)
0, :aY?+BZ>+2XY =0,

where a.,p € C\ {—1}, B # 0. In addition, [Q1/Q>] = —% is the Naruki invariant.

Proof. Projective transformations allows us to choose the coordinates such that O :
Y2 +7%2 —2XY =0, Q, is tangent to Q; at [1: 0 : 0] and also one of the coefficient
of the equation for O is fixed, for simplicity choose the coefficient of YZ as zero.
Say Qs : a1X? +axY? +a3Z? + a4 XY +asXZ = 0. The condition [1 : 0: 0] € Q>
implies @} = 0. In addition, the tangency condition at [1 : 0 : 0] implies a4 # 0, and

as = 0. Then Q5 : arY? + azZ? + asXY = 0. Note that (0, is non-degenerate iff and

2(12
ag

only if a3 # 0. Dividing by %t each side of the equation of Q5 and setting o, :=
and B := % we obtain Q0 : Y2+ BZ? +2XY =0, where o, € C, B # 0.

On the other hand, {[s?> 47> : 2st : 25?] | [s,1] € CP'} is a parametrization of Q.
By substituting this parametrization into the equation of O, we get the homogeneous
equation

40%((14-B)s® + (1 + a)r?) = 0.

So, the configuration of the quadrics Q1 and Q> given by the equations above has
only one tacnode if and only if B # —1 and o # —1. Otherwise, either quadrics have
two tacnode when oo = —1 and 3 # —1, or a fourth order contact at [1 : 0 : 0] when
B=—1and o # —1, or they will coincide when oo = 3 = —1. In addition, Q; is

non-degenerate if B # 0.

Last, the cubic equation (4.3.2) for these quadrics Q; and Q» have simple root

t' = —;1— and double root " = 1. Hence the Naruki invariant is [Q1/Q>] = —%. O
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Remark 4.3.5. The quadrics given by the equations in (4.3.21) has the following

parametrizations:
01 = {[s®+1%:2st:25%|[s:1] e CP"} (4.3.22)
0 = {[o® +PBs?: —20%: —2st] | [s:1] € CP'}. (4.3.23)

Proposition 4.3.6. Any three quadrics with graph

03

Q1AQ2

are projectively equivalent to the quadrics

0,:Y>+7>—-2XY =0,
0y : Y2+ 724+ 2XY =0, (4.3.24)

03:4X>—Y?-272=0.

Proof. Let Q1 and Q3 be as in Proposition 4.3.4, and Q3 : aX?*+aYr+azZ? +
asXY +asYZ + asXZ = 0. Then by the parametrizations of Q; and Q;, we know
that the contact points of Q3 with Q1 and O, must be in the form of [u2 +1:2:2u
and [0+ Bv? : —2: —2v], respectively. By substituting these points into the equation

of O3 we obtain

f13(u) =au* + 2agu” + 2(ay +2a3+ a4)u2 +2(2as+ag)u+ (a) +4a, +2a4) =0
Sf23(v) :a1B2v4 —2as Bv3 +2(ajaf 4 2a3z — asf3)

+2(2as5 — agt)v + (a10> 4 4ar — 2a40) = 0

Notice that Q3 has a contact of order 4 with Q; and Q5 if fi3(u) = a;(u+ ;—6161)4,
fo(v)=a1B*(v— 22—?5)4' Note that a; must be non-zero. By rescalling the equations

of quadrics we may assume a; = 1. Comparing the coefficients of two equations for
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f13(u) and fr3(v), we get the following equations:

444(2a34a4) —3a; = O,
4(2as+ag) — ag = 0,
16+32(2ay +a4) —ag = O,
40B +4(2a3 — asP) —3a: = 0,
4B(2as —agor) +ag = 0,
1602B% + 3243 (2ar — as0) —ag = 0.
4 2
The first four of them give a; = g—j — %, aj = % — %, as4 = Ogl_ll, as =
2_
M. Substituting these solutions into the last two equations we get

as(@2(B+1)—4p(a+1)) =0 and (B—1)(a(B+1)>—16p*(a+1)2) =0.

These equations are valid if either ag =0 and B = 1, or ag — B [(5031)

4%:?;1) , the quadric Q3 will be degenerate, so we have only the case ag =0 and f =
1 for whichap = —%, a3 = —“TH, as = “T_l and as = 0. Hence Q3 : 4X? —aY? —

(a+1)Z% +2(0.— 1)XY = 0 and it is non-degenerate if « € C\ {—1,3 F2v/2}.

. In case a% =

Notice that, such quadrics are projectively equivalent to Q; : Y2+ Z? —2XY =0,
Qr:Y2+Z2+2XY =0and Q3 : 4X2 — Y2 -2Z2 =0via [X : Y : Z] > [X + %1V :

o+ly . o+1
TY . TZ]. D

4.3.3 Three Quadrics with Six Tacnode

First, let us introduce the following lemma, which is useful to determine when
two quadrics are tangent to each other at one or two points, or to construct quadrics

tangent to given ones.
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Lemma 4.3.7 (Megyesi (2000), Lemma 2). Let Q;, i = 1,2, be two quadrics given
by the homogeneous ternary quadratic equations F; := F;(X,Y,Z) =0, i = 1,2. If
Q is a quadric which is tangent to both Q1 and Q, at two points, then its equation

can be written in the form
F(X,Y,Z)=F +L} =\ + 13, (4.3.25)

where A € C, and L; := L;(X,Y,Z) = 0 define the line connecting the two points
where Q is tangent to Q;, i = 1,2. Furthermore, F| — A, = L% —L% = 0 defines a
degenerate quadric, and Ly and L, are linear combinations of the defining equations
of the components of this quadric (if it is a double line, L1 = 0 and L, = 0 define
this line with the reduced structure). A is uniquely determined by Q, while L) and

Ly determined up to sign.

Proof. Let L; = 0 be the equations of the lines connecting the two points where
the quadric Q is tangent to Q;, i = 1,2. Then the quadric Q belongs to the families
P, : MF+L} =0, i=1,2. Therefore, for suitable A;’s we have F = A F| + 13 =
A F>+ L3 = 0. Multiply F, L; and L, by suitable scalars so that the equation (4.3.25)
holds. Then the quadric F] — AF, = L% — L% = 0 belongs to one of the references of
the pair {Q1,Q>}. Writing (L, — L1)(Ly + L1) = 0 makes it obvious that L; and
L, are linear combinations of the equations of the components of this degenerate

quadric.

L and L, are determined by Q up to multiplication by scalars. If they define the
same line then F; —AF; is a multiple of L? and A is obviously unique. If they define
different lines, let p be the point of intersection of these lines, then the degenerate
quadric F; — AF, = 0 is the union of two lines meeting at p. These lines must either
pass through two points of intersection of Q1 and Q, or be tangent to Q; and Q5 ata
point where the quadrics are tangent to each other, given p, this determines the two
lines, hence A uniquely. The uniqueness of A implies that L; and L, are determined

up to sign by Q. ]
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By the above lemma, a quadric Q determines a singular member in the pencil
spanned by Q1 and Q», then there exist a corresponding partition of intersection
points of Q1 and Q5 into two pairs. If the two points in a pair coincide then we take
the line to be the common tangent line to QO and Q> at that point. Following Naruki,

this partition is called reference and said that Q belongs to a given reference.

Proposition 4.3.8 (Naruki (1983), Proposition 5.2). Suppose that Q, Q1 and Q; are
three quadrics such that Q is tangent to Q1 and Q, at two points and that [ is the
reference of {Q1, Q2} to which Q belongs. Then

[02/015 1] = [01/0] - [Q/ Q1] (4.3.26)

In particular if Q1 and Q> are in a special position, then

[02/011% = [01/0] - [0/ Q). (4.3.27)

Now we apply Proposition 4.3.8 to the problem of obtaining necessary conditions

for three or four quadrics to form some interesting configurations.

Proposition 4.3.9 (Naruki (1983), Proposition 6.1). If the quadrics Q1, Q2, Q3 are

pairwise tangent to each other at two distinct points, then

(03/02] = [02/01] = [Q1/ Q3] (4.3.28)

Proof. Suppose that the quadrics Q1, Q», Q3 are pairwise tangent to each other
at two distinct points. Then, by Proposition 4.3.8, we have [Q;/0:]* = [Qi/Qx] -
[Qk/ Q] for any permutation (i, j, k) of (1,2,3). It follows that,

[0;/0: =10/ [0i/ O] - [0k/ Q)] = [0/ Q)] = [Qi/ Q- (4.3.29)

Let ® be a third root of unity. Then by the equations (4.3.27) and (4.3.29), we have

(03/02] = ©[01/03] = ©*[02/01].
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Therefore, ® = [Q>/01][Q3/Q1] and ®* = [Q3/Q>][Q1/Q>]. On the other hand,

o’ = [03/02][01/0]
= [03/0:][01/03][03/01][Q1/ Q2]
= [02/011[03/01][Q1/ Q2]
= [02/01][03/01] =
ie,®=1.Thus [Q3/0:] = [01/03] = [Q2/01]. n

Proposition 4.3.10 (Megyesi (2000), Proposition 4.). Any configuration of three

VAN

are projectively equivalent to the quadrics

quadrics with graph

01:X>+Y>2-22>=0
1

0r: 5X*+Y*—-Z"=0 (4.3.30)
q

03:X>+Y>— 4?72 =0,
where g € C\ {0,F1}. In addition [Q1/0Q2] = [02/03] = [03/01] =

Proof. By the section 4.3.1, it may be assumed that two of the quadrics Q; and
(O, are given by the equations (4.3.9). Let L and L, be as in Lemma 4.3.7. Since
singular members of family generated by Q; and Q, are (1 — —)X 2=0and (pX +
Y —Z)(pX +Y +Z) =0, then for suitable choice of the constant & we may assume
that L, : a(pX +Y) =0, then L; : FaZ = 0. Then by Lemma 4.3.7, o> = 1 — —2,
the equation of the quadric Q3 is X2 +Y? — ¢?Z> +2pXY = 0, and the quadric
Qs tangents to quadrics Q; and @, at the intersection points L1 N Q) = {[p F
VpE—1:1:0] } and L,NQr ={[l:—p:F \/—]} respectively. The conditions
[pFVp*—1:1:0,[1:—p: ﬂFm]

Proposition 4.3.1 imply that p must be zero. In addition, the Propositions 4.3.1

€ Q3 together with the conditions of
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and 4.3.9 imply that [Q;/Q>] = [0>/03] = [03/01] = ¢~ O

The quadrics in (4.3.30) have parametrizations:

0= {[2stit2—szzt2+sz] | [s:t] € CP'},
0y = {[2gst : 1> —5* .2 +5°] | [s:1] € CP'}, 4.331)

03 = {[2gst : g —qs* . +57] | [s:1] € CP'}.
4.3.4 Three Quadrics with Five Tacnodes

Proposition 4.3.11 (Megyesi (2000), Proposition 5). Any configuration of three

quadrics with graph
01

0> A&

are projectively equivalent to the three quadrics

Q1:X*+12-72=0,
0> : pPX2+ (PP +1)Y2—2pYZ =0, (4.3.32)

Q3: "X+ (q° +1)Y* —2qYZ =0,

where p,q € C\{0,F1}, p # q and pq # 1; and [Q3/Q2] = %, [01/Q2] = p?,

[01/03] = ¢* are the Naruki invariants.
Proof. Let us assume that the quadrics O, and Q3 are tangent to Q1 at two points,
and to each other at one point. Projective transformations allow us to choose the

homogeneous coordinates so that Q; : X?>+Y? —Z? =0 and that [0: 0 : 1] is the

tangent point of > and Q3 and their common tangent line is the line Y = 0.

Let the equation of O, be a1 X?+arY? +a3Z> + auXY +asYZ +agZX = 0. The

conditions that [0: 0 : 1] € Q5 and the tangent line to O at [0:0: 1] is the lineY =0
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imply that a3 = ag = 0 and as # 0. By substituting the standard parametrization

(4.3.31) of Q; into the equation of Q,, we obtain the quartic equation
f(t,s) = (ar— a5)t4 —Dayst® + (4a; — 2a2)s2t2 +2a483t + (ar+ as)s4 =0.

Q; is tangent to Q; at two point if and only if f(¢,s) is a square of a quadric

polynomial. Assume f(t,5) = Y'{_, fis’t*~* is a square, then
faft = fofi = 4a3(ay — as) +4a3(ar +as) = —8ajas =0,

which gives either ags = 0 or as = 0. But, Q> is degenerate if as = 0, and also we
know from tangency condition that a5 # 0. Hence a4 = 0. Therefore if Q, tangent
to Q) at two points, these must be in the form of [F1/1— p?: p : 1]. Because, if
[Fi: 1 : 0] were tangency points, then by comparing tangent lines at these points
we would get as = 0 and the quadric Q> would be degenerate. So, assume Q> is
tangent to O at two points [:F\/l——p2 : p: 1], where p # 0, F1. Because, the points
[F1:0: 1] would be the tangency points of Q1 and O, if p=0,and [F1:0: 1] € O,
would imply that a; = 0 which means Q; is degenerate. In addition, [0 : F1 : 1]
would be the tangency points of Q; and @, if p=F1,and [0: F1: 1] € O, would
imply that a» 4+ as = 0. Moreover, by comparing the tangent lines of Q1 and Q» at
these points, we would get a, = as =0, i.e., O, is degenerate. So these are not the

cases.

In addition to the condition [F \/1——p2 : p: 1] € Oz, by comparing the equations
of tangent lines to Q1 and Q> at these points, we obtain a; = p?, a» = p>+ 1 and
as = —2p. So, the equation of @, must be in the form of p?X? + (p> +1)¥? —
2pYZ =0, where p € C\ {0,F1}. Similarly, the quadric Q3 is given by the equation
¢*X% 4 (¢*> +1)Y? —2q¥YZ = 0 for some g € C\ {0,F1}. We have the conditions
p # q since the quadrics are distinct, and pg # 1 since the quadrics Q, and Q3 have

only one tacnode, whichisat [0:0: 1].
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Let M; be the symmetric matrix corresponding to Q;, i = 1,2,3. Then the cubic

equations AMy + Mz = 0, uM; + M, = 0 and nM3 + M| = 0 have simple roots
2

A= —;’7, ¢ = —1,m = —1 and double roots " = —%, y=—-p> = —q—lz.

So, [03/02] = %, [02/01] = #, [01/Q3] = ¢* and Proposition 4.3.9 is verified.

Last, pg # 1. If pg was equal to 1, then the singular member p?>X2+ (pg—1)Y? =
0 of the family AQ; + Q3 corresponding to double root A/ = —% would be double
line and so the quadrics Q> and Q3 would be tangent at two points, but this is not

the case. OJ

4.3.5 Four Quadrics with Twelve or Eleven Tacnodes

As a corollary of the Proposition 4.3.9 we have the following:

Proposition 4.3.12 (Naruki (1983), Proposition 6.1). Suppose that four quadrics

01, O, Q3 and Q4 are pairwise tangent to each other at two distinct points. Then,
[0i/Q)j] =1 for1<i#j<4. (4.3.33)

Proof. By Proposition 4.3.9 we know that for any permutation (i, j, k), we have
[0/ Q)] =1Q;/Qi] = [Qi/ Qk]. Therefore, we get [Q;/Q;] =[Q;/Qi] for 1 <i# j <
4. Moreover, the property (4.3.8) implies that [Q;/Q;] is either 1 or —1. If it was 1
then the double and single roots of the equation (4.3.2) would coincide, and contact
order at tangency point would be at least 3. But this contradicts the fact that quadrics

are tangent to each other at two distinct points. ]

Without giving a proof, Naruki (1983) pointed out that such four quadrics are

given by the four choices of the signs in

FX*FY?FZ2=0 (4.3.34)
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and they are projectively unique. Before proving this fact, let us remember the

following fact of projective transformations acting on quadrics:
Consider the subgroup

1 0 0
G=M(@,0)=1{0 ¢ 6] detM(9,0)=¢*—6>=1,=C" (4335)
0 6 o

of PGL(3,C). Any element M(,8) of G fixes the quadric Q; : X>+Y?>—-272=0
and the points [0 : 1 : 1]. Note that the quadrics in (4.3.30) are invariant under
the action [X : Y : Z] — [X : =Y : —Z], in other words M(—1,0) € G act trivially
on them. Let H be the quotient of G by the two element subgroup generated by
M(—1,0). Then H act on quadrics that are tangent to both Q; and Q; at two points.
Moreover, any two quadrics both tangent to Q; and Q» are images of each other

under the action of H.

Proposition 4.3.13. The graph

can not be realized but it is complex realizable and projectively unique equations

for these quadrics are FX2FY2iFZi=0.

Proof. By the Proposition 4.3.10 we may first assume that three quadrics are in the
form Q; : X24+Y2—-7%2=0,0,: qizxzﬂﬂ—z2 =0and Q3: X2+Y2—¢?22=0
for some g € C\ {0,F1}. Q4 must be the image of Q3 under the action of some

M(9,0) € H, so its equation is
X2 4 (¢Y —0Z)2 — g*(—8Y +¢Z)> =0 (4.3.36)

. On the other hand, Lemma 4.3.7 implies that the singular members of the family

generated by O, and Q3 are (1 — q%)Y =0 and (éX —Z)(%IX +Z) = 0. Assume
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L,:X =0,and L : Z=0. Then Q4 must be tangent to Q, at Q> NL; = {[Fig:1:0]}
and to Q3 at 03N Ly = {[0: F¢: 1]}. These conditions together with the condition
¢> — 6% = 1 implies that (¢,0) = (0,Fi) and ¢* = 1. Since ¢ # F1, then ¢> = —1.

This also verifies the necessary condition [Q;/Q;] = —1 in Proposition 4.3.12.

Note that this configuration is projectively rigid since it does not depend on
the choice of signs for 6. In addition, this configuration contains six imaginary
intersection points and the imaginary smooth quadric X + Y2 +Z% = 0, so it can

not be realized in RP?. O]
Proposition 4.3.14. Any configuration of four quadrics with graph

O Oy

01 03

is projectively equivalent to the quadrics

Q1:X*+Y*-2Z*=0,

1
0y —X*+Y*—7 =0,

q (4.3.37)
03:X>+Y>—g*Z> =0,

Os: 1=P)X>+BF+ 1)Y= (P +3)22 —4q(4* +1)YZ =0.

for some q € C\ {0,F1,Fi}. Alternatively, one can take last two quadrics as X* +
(¢*+1)Y2F2qYZ =0.

Proof. Assume that the quadrics Q1, Q2,03 are given as in Proposition 4.3.10, and
we use the idea of the proof of Proposition 4.3.13 and assume that the quadrics Q3
and Q4 have only one tacnode. Then Q4 must be the image of O3, given in (4.3.36),
under the action of some M (¢,0) € H with the additional condition ¢ # —1. Then

one can get Q4 is tangent to Q3 if and only if M(,0) = M(Zzﬂ,:F 7). If we

2q
f12_
choose the sign “+”, the contact point will be [0 : F¢ : 1]. In addition, if the element
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1 __ g s —1(4*+1
M(\/quz, \/1,qz)’WhICh is a square root of M (q2—1’
it transform the quadrics Q3 and Q4 to X2 + (¢ + 1)y> F2¢qYZ = 0 while fixing Q;

and 0. O

T q2q ), acts on CP? then

27

4.3.6 Four Quadrics with Ten Tacnodes

There are three possible graphs for the configuration of four quadrics with ten

tacnodes, and these are the graphs in Figure 4.3.

() (b) (©)

Figure 4.3 Three graphs on 4 vertices and 10
edges.

Proposition 4.3.15 (Megyesi (2000), Proposition 9). Any configuration of four

quadrics with graph
Qi 0>

03 Q4
is projectively equivalent to the quadrics

Q1:X*+Y?*-Z*=0,

1
0> : ?Xz +Y2-Z72=0, (4.3.38)

03,04 : X2+ (9% — ?0°)Y? + (6> — ¢?0*) Z> T 200(4*> — 1)YZ = 0.
for some g € C\ {0,F1}, 9,6 € C, 9> — 0> = 1.

Proof. Assume that the quadrics are labeled as in the graph, and Q;, Q> are the
quadrics in Proposition 4.3.1. As in the proof of Propositions 4.3.13 and 4.3.14, O3

and Q, are images of X2 4 Y2 — ¢>Z? = 0 under suitable elements M(¢;,0;) and



101
M(@2,0,) of H. Acting on them by a square root of M(@;,01)-M~1(9,,0;), we can
transport them into such a position that they are the images of X> +Y? —r2Z> =0

under M(¢,0) and M~'(¢,0) and then their equations will be as stated. O

Proposition 4.3.16 (Megyesi (2000), Proposition 12). Any configuration of four

quadrics with graph
01 Q4

o) 03
is projectively equivalent to the quadrics

Q1:X*+Y*—27* =0,

Or: pP*X2+(p*+1)Y?—2pYZ,

03 : ¢ X*+ (#+1)Y*—2q77Z, (4.3.39)
Qu: (2pq—p—q)’X> +[(p+4q)(4pg—3p —3q+4) —4pq)Y*

~(p=a?Z° = 4(p-1)g-D)(p+q)YZ=0.
for some p,q € C\{0,F1}, p#Fq pqg# 1, p+q#2 p+q#2pq.

Proof. Assume that the quadrics are labeled as in the graph, and Q1, Q> and Q3 are
the quadrics in Proposition 4.3.11. Since Q4 is tangent to O, and Q3 at two points,
then its equation never contains the terms XY and XZ. Indeed, by Proposition 4.3.11
we know that for any quadric Q4 which is tangent to both > and Q3 at two points,
the triple (Q4,0>,0Q3) is projectively equivalent to the triple (Q1,Q>,03). Since,
the quadrics Q1, 0>, 03 remain fixed under the involution [X : Y : Z] — [-X : Y : Z],
then Q4 must be fixed under this involution. Q4 must be tangent to Q; at one of the
points [0 : 1 : 1], by changing the sign of ¥ (and of p, ¢) we may assume that it is
[0:1:1]. So the equation of Q4 must be of the form X2 +a¥? +bZ? — (a+b)YZ = 0.

By substituting a parametrization [2pst : 2pt? : p>s*> 4 (1 4 p*)t?] of Q, into the
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equation of Q4 we get

f(t,s) = fat* + fos* + fos*
= [4ap®> +b(1+ p*)* —2(a+Db)p(1 + p*)|r*

+[4p” +2bp*(1+ p*) —2(a+b)p’|s’* + bp's*.

Since the polynomial f(¢,s) is the square of a reducible polynomial, then f22 —
4 fofs = 0. Therefore we have the condition 4p*[((a — b)? + 4b)p* —4(a+b)p +
4(b+1)] = 0. By the same argument with Q3 instead of O, we obtain the same

equation with ¢ instead of p. The equation
[(a—b)?+4blu* —4(a+bJu+4(b+1)=0

has two distinct non zero roots u = p and u = ¢q, if b # —1, (a —b) # 2 and (a —
b)? 4 4b # 0. By taking suitable linear combinations of the relations between the

roots and coefficients of the quadric equation, we obtain

2pg—p—q)*b+(p—q)*=0 and (pg—p—q)b+pga—p—q=0.

Hence, we have the solutions

2
— 4pg—3p—3qg+4)—4
(r—q) and = PHOEPg=3p—3q+4)~4pq

p=—— "D
(2pg—p—q)? (2pg—p—q)?

if p+q # 2pq.

In addition to conditions on p,q imposed in Proposition 4.3.11, we must also
require that p 4+ g # 2pq to avoid division by zero, p+ g # 2 and p # Fq to ensure

that Q4 is not singular and Q1 # Q4. Hence the equation of Q4 is found as stated. [
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Proposition 4.3.17 (Megyesi (2000), Proposition 9). Any configuration of four

quadrics with graph
0 03

10)) O4
is projectively equivalent to quadrics given by the equations

01:X>+Y>-7*>=0,

1
QZ:FX2+Y2—ZZ=O,

s (4.3.40)
Q3: X" +Y"—p"Z~ =0,

—02n2 2 2\ 712
0.: X2 y?_ 72y (L=pTo)X+2po¥ + (p7+07)2) _
c*(1-p%)

for some p,c € C\ {0,F1,Fi}, p* # 6% and p*c* # 1.

Proof. Assume that the quadrics Q1, Q> and Q3 are given as in Proposition 4.3.10,
and Q4 as in graph. Let [Q;/Q4] = 2, then by Lemma 4.3.7 the equation of Q4 can

be written as

1 —12

X24+v2 4722+ (

aX 4 BY +vZ)* =0,

where oX + BY +YZ = 0 is the equation of the line L4, which is the line connecting
two tangency points of QO and Q4. 0, B and 7y are only determined up to scalars.
From the condition that Q4 is tangent to Q, and Q3, we get two equations for a, 3
and 7. After discarding the solutions corresponding to the cases when Q4 is tangent
to O, and Q3 at two points or when it passes through the contact points of some of
the other quadrics, the only solutions are [o.: B:y] = [(1 —¢T) : 72,/qT: F(¢+7)]
and [o0: B:y] = [(1+¢r7) : F2i\/qT : F(g — 7)]. These can all be obtained from
one another by changing the sign of r, s or one of the coordinates. They can all be

written in the form

[o: By =[1—p*c?: F2p5: F(p* +62)],
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where p and  are suitable fourth roots of ¢ and 12, respectively. The pairs (p, o)
and (—p,—o) determines the same quadrics. The contact point of Q, and Qg is
[p?(p?c? — 1) : —2p3c : p?6% +1]. If ¢ = F1 or g1 = F1 then one of these contact
point is the contact point of Q1 with Q> or O3, which we have to exclude. Thus the

equations of four quadrics are obtained as stated. [

4.3.7 Five Quadrics with Seventeen Tacnodes

Proposition 4.3.13 implies that the complete graph K4 with double edges can
be complex realized and this configuration is unique up to projective equivalence,
and these quadrics are given by the equations in (4.3.34). Concordantly, one can
wonder that whether the complete graph K5 with double edges can be (complex)
realized or not. The answer is “No”. Because, if there was such a quadric Q, then the
configurations of quadrics Q1,02,03,04 and Q1, 02, 03,0 would be projectively
equivalent, which implies Q4 = Q. Next question is “What is the maximum number
of tacnodes 7(5) for configuration of five quadrics?”. Normally, one can expect
t(5) =5-4 =20. But this is false, since the complete graph Ks with double edges

can not be (complex) realized.

By considering the double cover of CPP? branched along the union of quadrics,
and applying the Miyoka-Yau inequality to the double cover, Hirzebruch (1986)
gave the inequality #(n) < gn(n + 3) for the number of tacnodes in configuration
of n-quadrics. This inequality implies the Miyaoka-Yau bound for #(5) is 17. Due
to their combinatorics, the candidates for the configuration of five quadrics with

t(5) = 17 are given by the graphs in Figure 4.4.

First, let us consider the graph in Figure 4.4a. Then we may assume that the
quadrics Q1, 02,03, Q4 are as in Proposition 4.3.13. Since these quadrics are projec-
tively unique, the only quadric which is tangent to Q and Q, at two points and also

must be tangent to O3, Q4. So, this graph is impossible.
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Figure 4.4 The six graph on 5 vertices and 17 edges.

Second, consider the graph in Figure 4.4b. Then by Proposition 4.3.14 we may
assume that Q1 : X?2+Y2—-272=0,0>: C1—12X2+Y2—Z2 =0,03: X2+ (> + 1Y%+
2gYZ =0 and Q4 : X?>+ (¢*> 4+ 1)Y? —2gYZ = 0 for some g € C\ {0,F1,Fi}.
Suppose that there is a quadric Qs, which is in general position with Q,, such that
quadrics Q1,Q3,04,0s form a configuration of 11 tacnodes. The involutions [X :
Y:Z| - [X:-Y:Zland [X :Y : Z] — [X : Y : —Z], exchanges Q3 and Q4, Qs and
Q4 while fixing Q1 and Q3. Then Q5 = Q3, and hence, this graph is impossible. For

the same reason, the graph in Figure 4.4c is also impossible.

Next, consider the graph in Figure 4.4d. By Proposition 4.3.10, we may assume
that Q) : X2+Y2—-22=0, 0> : q—IZXZ—YerZZ =0,03: X2+Y2— 27 =

0 for some r € C\ {0,F1}. Then Q4 = M(Q3) and Q4 = M~'(Q3), where M =

(q2+1 2¢q
qul ) qul

) € H. In general, two quadrics which are both tangent to Q; and Q,
are tangent to each other if and only if one of them is the image of the other under
M, so Q4 and Qs are tangent to each other if and only if M> = 1, which happens
if and only if g> = —1/3 or ¢> = —3. These are reciprocals of each other and give
projectively equivalent configurations. If we take ¢g> = —1/3, we obtain the quadrics

X24+v2-72=0, -3X24+Y2-72=0,3X2+3Y2+72=0and 3X%2-272F
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iv/3YZ = 0. Note that this configuration is unique up to projective equivalence.

Fourth, consider the graph in Figure 4.4e. By Proposition 4.3.14 we may assume
that Oy : X2+Y2—-72=0,0,: q—12X2+Y2—Zz =0,03: X2+ (P +1)Y>+2qYZ =
0and Q4 : X%+ (¢*>+1)Y? —2¢YZ = 0 for some g € C\ {0, F1,Fi}. By applying
the argument of the proof of Proposition 4.3.14 with the roles of Q1 and Q3 reversed,
Qs must be the image of Q; under the action of an element of the subgroup G’ of

PGL(3,C), fixing Q>, Q3 and the points [F¢ : 0 : 1]. The subgroup G’ is the group

¢ 0 ¢°6
G={N(©,8)=10 1 0 |]|detN(p,0)=¢"—¢°6°=1,=C"
0 0 o

Q1 and Qs must be tangent to each other at one of the points [F1:0: 1], we may
assume it is [1: 0: 1], then Qs is the image of Q; under a group element which maps
[~1:0:1]to[1:0: 1], whichis N(0, —1). Hence the equation of Qs is (¢*+3)X? +
(¢*> —1)Y? 4 (3¢ +1)Z*> —4(g* +1)XZ = 0. The discriminant expressing condition
that Q4 and Qs are tangent to each other, is 2'8(¢ +1)%(¢> — 1)'9%? (¢* — 64> +1)2.
The only feasible solutions are the roots of g* —6¢>+1 =0, ¢ = F1 /2, but then
0>, Q4 and Q5 are tangent to each other at the same point, for example if g = \/§ -1,
then this is the common point is [v/2 — 1 : 11/2]. Thus, this graph is also impossible.

Finally, let us consider the graph in Figure 4.4f. By Proposition 4.3.13 we may
assume that Q1 : X2+Y%2+22=0,0,: X?+Y2—-72=0,03: X*>—-Y?+27>=
0and Qs : —X?>+Y?+27%=0. Let oX + BY +7Z = 0 be the equation of the
line connecting the tangency points of Q7 and and Q5. Then by Lemma 4.3.7, the
equation of Qs is A(X2 +Y? +Z?) + (aX 4 BY +7Z)? = 0 for some suitable A € C.

By substituting parametrization [52 — 1225t 2+ tz] into the equation of Qs, we
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obtain the equation

fls,t) = (A4 (y— o))t +4B(y— o)st® + (4h — 202 + 4% + 27 )s*t?

+4B(Y+ a)s’t 4+ A+ (Y+ o)?)s* = 0.

Q) and Qs are tangent to each other at two points if and only if f(s,#) is a square
of reducible polynomial. So, either & + % =0 or A = —w Fyvol+ B2
But, if o + [32 = 0, then Q5 passes through one of the contact points of QO and Q5,

[1:7i: 0], so we must have the second possibility.

By doing the same calculations with Q3 and Q4, and comparing the expressions
for A, one can obtain o?(B? 4 %) = B?(a® + %) = ¥* (o> + B?). So, o, B,y can only
differ from each other by a sign. By changing the sign of some of the coordinates in
a suitable way, we may assume that @ =3 =y = 1. Then, A = —% + /2, and the

equations for Qs are

(F2V2 - 1) (X2 + Y2+ Z2) +4(XY +YZ+ZX) = 0. (4.3.41)

Let Q;r and Q5 be the quadrics obtained by choosing “+” and “—” sign in
(4.3.41), respectively. Two configurations of quadrics QI,QZ,Qg,Q4,Q5¥ are not
projectively equivalent. Indeed, if there were such a projective transformation 0,
then Q1 would remain invariant, O3, 04, Q5 might be permuted among each other
and Q;r must be mapped to Qs . But, such a map ¢ only permutes X,Y,Z and leaves

Q5+ , Qs invariant.

Theorem 4.3.18. There exist exactly three configuration of conics of five quadrics

with seventeen tacnodes up to projective equivalence. First configuration corre-
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sponds to graph in Figure 4.4d, and equations of quadrics are

01:X>+Y*-7>=0,

0y:—3X>+Y>-7%=0,

03 :3X% 4372 —-7% =0, (4.3.42)
Q4:3X% 27> —iV/3YZ =0,

Os:3X>—22>+iV/3YZ=0.

Last two configurations corresponds to graph in Figure 4.4d, and equations of

quadrics are

01
O
03

Q4 :

05

X2 4+Y2+27 =0,

X2 4+Y? -7 =0,

X2 -y?47%=0, (4.3.43)
—X24+Y24+ 72 =0,

S(F2V2 - D) (X2 Y2+ Z2) +4(XY +YZ 4 ZX) = 0.

Question 4.3.19. Are the qUintuplets (Ql ,02,03,04, Q5_> and (Ql ,02,03,04, Q;)

Zariski pairs?

4.3.8 Six Quadrics with Twenty Four Tacnodes

The inequality 7(n) < gn(n +3) implies that the maximum number of tacnodes

for six quadrics may be 24. Suppose such configuration exist. Then, each vertices

of possible graphs must have degree eight (Megyesi & Szabd, 1996, Theorem 6).

Therefore, the possible graphs for such configurations are as in Figure 4.5.

Theorem 4.3.20. There is no six nondegenerate quadrics with twenty four tacnodes,

i.e., non of the graphs in Figure 4.5 is (complex) realizable.

Proof. First, let us consider the graph in Figure 4.5a. We may assume that the
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(d)
Figure 4.5 The four graph on 6 vertices and 24 edges.

quadrics Q1, Q2, Q4 and Qs are as in Proposition 4.3.15. Since the configurations of
quadruples (Q1,02,04,05) and (Q3,02,06,0s) are projectively equivalent, then
Q3 and Q¢ must be respectively the images of Q1 and Q4 under a projective transfor-
mation fixing O, Qs and their intersection points. This implies that Q5 must be
tangent to Qg at two distinct points. But this contradicts the fact that the quadrics

Qs and Qg are in general position. So this graph can not be realized.

Second, consider the graph in Figure 4.5b. We may assume that the quadrics
01, 02, O3 and Q4 are as in Proposition 4.3.15, then Q1, Q> and Q5 must have
the same reference with respect to the quadrics Q3 and Q4. This tell us that either
Qs = Q1 or Qs = Q. Then, such configuration of the quadrics Q1, Q2, O3, Q4 and
Qs is impossible. Therefore, Figure 4.5b consist of an impossible configuration as

a subgraph, then it is also impossible.

Next, consider the graph in the Figure 4.5c. By the Proposition 4.3.16, we may
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assume that

Q1 : X*+Y?*-72=0,

Q= pPX (PP 1Y —2pYZ =0,

Qs : X+ (P+1)Y?—2qYZ =0,

Qs : (2pg—p—q)’X*+[(p+4q)(4pq—3p—3q+4) —4pq]Y?

—(p—q)*Z* —4(p—1)(q—1)(p+4q)YZ =0,

where p,q € C\{0,F1}, p # Fq, p+q # 2 and p+ g # 2pq. The degenerate

quadric

~(1= X+ (pY — 2 = (V1= X+ p¥ = 2) (/1= X+ p¥ = 2) =0

consists of the common tangent lines of the quadrics Q1 and Q,. Then by Lemma
4.3.7, the equation of the line connecting the tangency points of O and Q3 is
$lo(v/1—p2X +pY —Z)+ 2 (—+/1 — p2X + pY — Z)] = 0, and therefore the equa-

tion of Q3 is

1 1 1
X242 =72+ 2 [(0= )V = pX + (ot ) (pY = Z)]* =0,
where o € C\ {0, F1}.

Let us substitute the parametrization {[2pst : 2ps® : (p>+1)s>+1%] | [s : 1] € CP'}

of O» into the equation of Q3. Then we have obtained

4
f3(s,t) = Z a;s't"!
i=0

_p-et)?y p-al)(i-of)
402 o °
PPt 607+ 1) — (30c4+20c2+3))szt2
202
p(1-p)(1—0a?)(1+0?) 5 (1-p*)*(1—0?)
st + =
o2 402

+
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If f(s,?) is a square of a reducible polynomial then

4p" (14 02)(1-0?)’
ol

BA8ffE—Affsfa= —0.

This is possible only when a? = —1. But, f>3(s,1) = —p*t* —2p*(1 + p?)s*t> —
(1— p?)%s* will never be a square for o> = —1, i.e O, and Q3 are in general position
which contradicts to fact that the quadrics Q> and Q3 have two tacnodes. Thus, this

graph can not be realized.

Last, consider the graph in Figure 4.5d. By the Proposition 4.3.16, we may
assume that Q1 : X2+ Y2 - 272 =0, Qy : p’X> 4+ (p> + 1)Y?> —2pYZ = 0, Q4 :
*X*+(*+1)Y*—2qYZ=0and Q3 : (2pqg—p—q)*X*+[(p+q)(4pg—3p—3q+
4)—4pqlY* —(p—q)°Z* —4(p—1)(q—1)(p+q)YZ =0, where p,qg € C\ {0,F1},
P#Fq p+q#2, p+q+#2pqg. By taking [0: —1 : 1] instead of [0:1: 1] as
tangency points of Q1 and Q4 in the proof of the Proposition 4.3.16, we will get the
equation (2pg+p+q)*X*+[(p+q)(4pq+3p+3q+4) —4pq)Y* — (p— q)*Z* —
4(p+1)(g+1)(p+q)YZ =0 for Os, where p,q € C\{0,F1}, p # Fq, pg # 1,
p+qF# F2, p+q # F2pg. Now assume that such quadric Q¢ exist. Then the
configuration of quadrics O3, Q5 and Qg has five tacnodes and they are projectively
equivalent to quadrics in (4.3.32). Note that the quadrics in (4.3.32) are invariant
under the involution [X : Y : Z] — [-X : Y : Z], therefore the quadric Qs must be
invariant under this involution since both Q3 and Qs are invariant. Hence, Qg is
tangentto O, at [0: 2p: p> + 1], and to Q4 at [0: 2¢ : ¢* + 1], so its equation must be
in the form aX? + ((p> + 1)Y —2pZ)((¢* + 1)Y —2¢gZ) = 0 for some a € C*. Then
by substituting the parametrization {[2st : s> —t2 : s> +12] | [s : ] € CP'} of Q) into

the equation of Qg, we will get

fis(s,t) = (p+1)2(q+ 1)’ + (4a+8pg—2(1+p*)(1+4¢%))s°t

+(p—1)*(g—1)%" =0,

which is a square of a reducible polynomial if a = (p —q)? ora = (pqg — 1)>.
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On the other hand since the point [0 : 1 : 1] lies on Q3, we can parametrize it by

using the line —sX +¢(Y —Z) = 0, and its parametrization is

{2(p+q—2pq)2—p—q)st: —(p—q)°s*+ (2pqg—p—q)°1* :

(4pg(p+g—1)—(p+q)(3p+39—4))s*+ (2pg—p—q)*t*] | [s: 1] € CP'}.

By substituting the parametrization of Q3 into the equation of Qg we will get

fi(s,t) =(p—1)*(q—1)*(2pg — p— q)**
+2(2pg—p—q)*[(p+q—2)>— p*(54° —4q+1)
—2p°(3¢° — 14¢* + 99 —2) — p*(5¢* — 284> +584* — 284 +5)
+2pq(2q° —9¢” + 149 —3) — ¢*(¢" —4q +5)]s*1

+(p*+3pg—3p—q)*(¢° +3pg—p—3q)s* = 0.

f3.6(s,1) is a square of a reducible polynomial if and only if either a = (2pg— p — q)*

(P—9)*(pg—1)*

ora=
(p+9—2)?

Similarly, by parametrizing the quadric Q5 and substituting into the equation of

Qge, and taking into account the tangency conditions we will see that either a =

(P—a)*(pg—1)*

(2pq+p+q)* ora= "L LoR

Hence a = (p—q)* if pgF (p+q) =3, 0ra= (pqg—1)*if 3pgF (p+q) = 1.
In both cases p+ g = 0 and we have already excluded this case. So, the graph in

Figure 4.5d can not be realized.



CHAPTER FIVE
ZARISKI VAN-KAMPEN THEOREM: AN OVERVIEW

Zariski van-Kampen theorem is a tool for computing fundamental groups of
complements to curves (germs of curve singularities, affine or projective plane
curves). It gives us the fundamental groups in terms of generators and relations.
Roughly speaking, the generators can be taken in a generic line and the relations
consist of identifying these generators with their images by some monodromies.
Before introducing this theorem we will overview definitions of homotopy between
continuous map, fundamental group, and give the statement of the classical van-
Kampen theorem. Then we will investigate the braid monodromy and give the
statement of the Zariski van-Kampent heorem based on the lecture notes of Shimada
(2007). In addition, we will also compute the local fundamental groups of the germs
in Figure 6.1, and fundamental groups of some quadric arrangements related to line

arrangements.

5.1 Homotopy Between Continuous Maps

Let us denote by I the closed interval [0, 1] of R. Let X and Y be two topological
spaces, and let f; : X — Y, i = 1,2, be two continuous maps. A continuous map
F :X xI —Y is called a homotopy from fy to fi if it satisfies F(x,0) = fo(x),
F(x,1) = fi(x) for all x € X. We say that f, and f are homotopic and write fy ~ fj
if there exists a homotopy from fj to fi. The relation ~ is an equivalence relation,

and the equivalence class under the relation ~ is called the homotopy class.

If there are continuous maps f : X — Y and g : Y — X such that go f is homotopic
to the identity of X, and f o g is homotopic to the identity of ¥ , then X and Y are

said to be homotopically equivalent.

Let A be a subspace of X. A homotopy F : X X I — Y from fj to fi is said to be

stationary on A if F(a,s) = fo(a) for all (a,s) € A x I. If there exists a homotopy

113
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stationary on A from fj to f1, the maps fo and f; are called homotopic relative to A

and it is written as fy ~4 fi. It is clear that ~4 is an equivalence relation.

5.2 Definition of the Fundamental Group

Let xo and x; be points of a topological space X. A continuous map o : 1/ — X
satisfying ot(0) = xp and o(1) = x is called a path from xj to x;. Denote by [a]
the homotopy class relative to dI = {0, 1} containing o.. We define a path @ : I — X
from x; to xo by @(z) := (1 —¢t) and call & the inverse path of o.. A constant map
to the point xq is a path with both of the initial point and the terminal point being

xo. This path is denoted by ey,.

Given two paths o, 3 : I — X such that a(1) = B(0), there is a composition or

product path o.- B that traverses first o and then B, defined by the formula

o(2t), 0<r<1/2
o B(r) =
B(2t—1), 1/2<t<1.

This product operation respects homotopy classes since if ag ~ o and B ~ B via
homotopies F(s,t) and G(s,t), respectively, and if 0p(1) = B1(0) so that ay - Po is

defined, then the continuous map

F(s,2t), 0<r<1/2
Hist) — (s,21) /

G(s,2t—1), 1/2<r<1.
provides a homotopy 0 - Bo =~ a1 - By.

In particular, suppose we restrict attention to paths o : I — X with the same
starting and ending point o(0) = a(1) = xo € X. Such paths are called loops, and
the common starting and ending point x is referred as the basepoint. The set of all

homotopy classes [a] of loops o : I — X at the base point x is denoted by 7; (X, xp).
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Proposition 5.2.1. 7, (X,xo) is a group with respect to the product [0[B] = [t B].

This group is called the fundamental group of X at the base point xg. If X is
path connected, then for any two base points xo and x; the fundamental groups
71 (X,x0) and 7y (X,x;) are isomorphic. Indeed, if J is a path from xg to x;, then
the isomorphism ®; : 7y (X,x1) — 71(X,x0) is given by ®s([a]) = [5- - §]. The
inverse is given by ®5. Thus if X is path connected, the group 7;(X,xp) is, up to
isomorphism, independent of the choice of base point x¢. In this case the notation

71 (X, xp) is often abbreviated to 7 (X).

In general, a space X is called simply connected if it is path connected and has
trivial fundamental group. For example, if n > 2, then S” is simply connected; the

circle S' is path connected, but 7ty (S') ~ Z.

Theorem 5.2.2. If X is path connected, then the abelianization T, /[T, 7] of T| :=

71 (X) is isomorphic to H\ (X, Z).

5.3 Van Kampen Theorem

The van Kampen theorem gives a method for computing the fundamental groups
of spaces that can be decomposed into simpler spaces whose fundamental groups
are already known. By systematic use of the van Kampen theorem one can compute

the fundamental groups of a very large number of spaces.

Theorem 5.3.1 (van Kampen). If X is a union of path connected open sets U; each
containing the base point xo € X and if each intersection U;N\U; is path connected,
then the homomorphism ¥ : ;1w (U;) — 71 (X) is surjective. If in addition each
intersection U; N U; N Uy is path connected, then the kernel of  is the normal
subgroup N generated by all elements of the form v;; (1)1 ji(u)~!, where i : Tt (U; N
U;) — 11 (U;) is the homomorphism induced by the inclusion U;NU;j — U, and so

y induces an isomorphism w; (X ) ~ *; 71 (U;) /N.
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Example 5.3.2. Let X,, be the bouquet of n circles: X,, = S Pvstv...v S Then
71(X,) is isomorphic to the free group F, of n letters. Let A be the set of distinct
n points on the complex plane C. Then C\ A has homotopy type X,,, and therefore

n1(C\ A) is also isomorphic to the free group F,.

Example 5.3.3. Let A be the set of distinct n points on the complex projective line

CP'. Then t; (CP' \ A) is isomorphic to the free group F,_1.

5.4 Braid Group

Let R := {R)})ea be a subset of F, := (aj,az, - ,a,), and let N(R ) be the
smallest normal subgroup of F, containing X . The group generated by a;,as,--- ,a,

with defining relations Ry (A € A) is denoted by
F,/N(R) = (a1,a2, - ,a, | Ry, =e, AEA)

Example 5.4.1. The group (a | a" = e) is isomorphic to Z,, and the group (a,b |

aba~'b~! = ¢) is isomorphic to Z x Z.

Example 5.4.2. Let n be an integer > 2. Then the group generated by ay,as, -+ ,a,—1

with defining relations

2
a;

=e fori=1,2,---,n—1,
aaj = a;a; if‘i—j‘ > 1,

ajaj1a; = ajra;a;ip fori=1,2,--- ,n—1,

is isomorphic to the full symmetric group &, via a; — (i,i+1).

Put M), := C"\ {the big diagonal} = {(z1,22,---,z,) € C" | z; #z;if i # j}.
The symmetric group G,, acts on M,, by interchanging the coordinates. We then put
M, := M, /S,. This space M,, is the space parametrizing non-ordered sets of distinct

n points on the complex plane C (sometimes it is called the configuration space of
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N/ [ ]
NS
C/’ time
T~
A

Figure 5.1 A braid.

non-ordered sets of distinct n points on the complex plane C). By associating to a
non-ordered set of distinct n points {0, 0, -+, 0} the coefficients Aj, Ay, - -+, A,
of 74+ M2 T+ M 24 Nzt A = (z—oy)(z—0) -+ (z—0y,), we obtain
an isomorphism from M, to the complement to the discriminant hypersurface of
monic polynomials of degree n in C". We put P, := 71 (M,,) and B,, := 1 (M,,). The
group P, is called the pure braid group on n strings, and the group B,, is called the

braid group on n strings. By definition, we have a short exact sequence
1—-P,—B,—6G,—1 (5.4.1)

corresponding to the Galois covering M,, — M,, with Galois group &,,. The point
of the configuration space M, is a set of distinct n points on the complex plane
C. Hence a loop in M,, is a movement of these distinct points on C, which can be

express by a braid as in Figure 5.1, whence the name the braid group.

The product in By, is defined by the conjunction of of the braids. In particular, the
inverse is represented by the braid upside-down. Fori =1,2,--- ;n—1, let 5; be the

element of B, represented by the braid given in Figure 5.2

Theorem 5.4.3 (Artin). The braid group B,, is generated by 61,62, ,0,—1, and
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Figure 5.2 The element G;.
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/ homotopic /

"/ AN\
Figure 5.3 The relation 6;6;16; = G;+10iCj1.
defined by the following relations:
G;0j = 0;0; lf’l—]| > 1,
(5.4.2)
0;0;+10; = 0;+10;0i+1 fori=1,2,--- ,n—1.
The fact that B, is generated by 61,02,---,0,_1 1s easy to see. The relations

actually hold can be checked easily by drawing braids. See Figure 5.3. The difficult
part is that any other relations among the generators can be derived from these

relations. See Birman (1974) for the proof.

We can define an action from right of the braid group B, on the free group F, by

the following

aj, ]#lal+17

i .__ _ .

a;' =9 aaina;t,  j=i, (5.4.3)
ai,j=1i+1.

This definition is compatible with the defining relation of the braid group.
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5.5 Monodromy on Fundamental Groups

Let p: X — X be a locally trivial fiber space. Suppose that p : X — X has a
section s : X — X, that is, s is a continuous map satisfying p o s = idy. We chose
a base point %) of X and xo of X in such a way that % = s(xo) holds. We then put
Fy, := p~'(x0). We can regard % as a base point of the fiber Fy,. Then 71 (X,xo)
acts on 0 (Fy,,Xo) from right. This action is called the monodromy action on the

fundamental group of the fiber.

Indeed, suppose that we are given a loop y: I — X with the base point xg, and a
loop u: I — Fy, with the base point £y = s(y(0)). The the fibers (p~! (Y(t)),s(Y(t))).
t € I form a trivial fiber space over /. We can deform the loop u into a loop iy : I —
p~1(y(t)) with the base point s(y(¢)) continuously. The loop 1 : I — p~!(y(1)) with
the base point s(y(1)) = %o represents [u]¥ € 7t;(Fy,,%0). Serre’s lifting property of
locally trivial fiber space implies that [u][¥) = [u] is independent of the choice of the

representing loops Y: I — X and u : I — Fy,.

Suppose we have a trivial fibration p : X — X, where X = X x F. For a point
yo € F, the map x — (x,yo) defines a section of p : X — X. In this case 7 (X,xo)
acts on 7 (F,yp) trivially. On the other hand, for any continuous map 1 : X — F,
the map x — (x,m(x)) defines a section of p : X — X. In this case the pointed fibers
are (F,m(y(z))). Letm, : [0,¢] — F be the path defined on F from mn(xp) to n(y(¢))
by Ms :=N(Y(s)). Then g, :=n, 'zm; is a deformation of u. Hence 7 (X, xg) acts on

1 (F(x0)) by [u]® = (m[y]) ! [u) (- [1))-

Definition 5.5.1. A good set of loops g, u1,---ug based at z € C\ {zo,z1, -+ ,z4}
is constructed in the following manner. Let A; be closed discs around z; mutually
disjoint and not containing z. For each i € {0,1,--- ,d}, let ®; be a path connecting
z to a point of the boundary of dA; of A;, and dA; runs once in counter clockwise
direction. The paths ®; are required not to meet together except at their origin. For

0 <i < d, take the loops y; = miaAi(Dfl. Such kind of good loops u; are called
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meridians of z; in C\ {zo, - -+ ,z4}. Note that any two meridians of z; are conjugate
in t; (C\ {zo,- - ,z4}). From now on, for the sake of simplicity we will denote by

u; the homotopy class [u;].

5.6 Monodromy around a Curve Singularity

Let A, denote the open disc {z € C| |z| < p}. Consider the curve C on Age X Az
defined by x™ —yd = 0, where m,d € Z>;. Let p : Age X Agp — Age be the first

projection (x,y) — x. We assume p is large enough compared with €. We put
Ase =M\ {0} and 9 :=p '(A%) N ((Age X Agp) \ C).

Then the restriction p : 9" — A3, of p is locally trivial. The fiber over x € A3, is
Azp minus the d-th roots of x™. Choose the base point of A5, at xo := €. Let ¢ be a

|m/d

positive real number such that |2¢ < ¢ < p. Then the map x — (x,c) gives us a

section of p : 9 — A, Put Fy, := p~!(x0), and X := s(x0) = (g,¢).

The group 71 (A3, xo) is an infinite cyclic group generated by the homotopy class
v = [g] of the loop g(¢) = eexp(2mir). On the other hand, the fiber Fy, is homotopic to
the bouquet of d circles, and hence its fundamental group 7 (Fy,, %) is a free group
generated by d elements ug,uq,--- ,uqg—1 which are represented by the meridians

given in Figure 5.5 (It is drawn for the case (m,d) = (2,3)).

Main idea of the Braid monodromy technique is analyse the deformation of the
fiber p~!(g(t)) while ¢ goes from 0 to 1 with the base point s(g(¢)). The base point
is constant at c¢. The deleted points moves around the origin with angular speed
21m/d, since g(t)¢ moves around the origin with angular speed 27tm. Therefore, the
meridians around the deleted points are dragged around the origin, and when g(7)
comes back to the starting point , the meridian y; is deformed into the meridian ;.

Therefore the monodromy action of 71 (A%, xo) = () on the free group mt; (Fy,,%o) =



121

H1

v
He ‘ Ho ¢

(a) b)

Figure 5.4 The monodromy action on 7y (Fy,,%) when C : x> —y® = 0.

(uo, 11, - ,11g—1) is given by u! = fi;. Note that, the big loop around the origin is
represented by the homotopy class & := uy—1pg—2 - - uipo. Let j € Z>p, and r is the
remainder of j divided by d. Set u; = pgq4, 1= 8u,6~¢, then we have fi; = ti .
Hence the monodromy action of 71 (A3, x0) on Ty (F,, %) is given by ,u}( = Uj1tm.

We will discuss local fundamental group of curve singularities in the Section 5.10.

5.7 The Fundamental Group of the Total Space

Suppose that a group H acts on a group N from right, i.e., n+— n" (n € N, h € H).

—1
Define a product on the set N x H by (n1h;)(nahy) = (nan‘ ,hihy). Under this
product, N x H becomes a group, which is called the Semi-direct product of N and

H, and denoted by N x H.

The map n +— (n,ej) defines an injective homomorphism 1 : N — N x H, whose
image is a normal subgroup of N x H, so one can regard N as a normal subgroup of
N x H. On the other hand, the map (n,h) — h defines a surjective homomorphism
¥ : N x H — H whose kernel is N. Hence H can be identified with (N x H)/N. In
addition, the map h — (ey,h) defines an injective homomorphism 6 : H — N x H

such that % o6 = idy, and one can regard H as a subgroup of N x H. Thus we have
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a splitting short exact sequence

0
1—=N—>NxH___H—=1. (5.7.1)

(&)
Proposition 5.7.1. Let p : X — X be a locally trivial fiber space with a section
s : X — X. Suppose X is path connected. Let xo be a base point of X, and put
%o := s(x0), Fy, := p~'(x0). Then the fundamental group 7, (X,%) of total space
X is isomorphic to the semi-direct product Ty (Fy,,%0) X 701 (X, x0) constructed from

the monodromy action of ®;(X,xq) on the free group w1 (Fy,,%o).

Proof. Since X is path connected, than both of the fiber Fy, and the base space X are
path connected, and there is a section s : X — X. Leti: Fyy — X be the inclusion.
Then we have the homotopy exact sequence

*I; 71?2()2,)?0) L TCz(X,xO) —> T (FXO,)?()) $- Ii%t (X,)Eo) $ 9] (X,X()) — 1.
Moreover, the section s induces a homomorphism s, : (X, x9) — 72(X, %)) such
that the composition (X, xp) e, (X,%0) Sy N (X,x0) is the identity. There-
fore, p. : mo(X,% — Ta(X,x0) is surjective and hence we obtain a short exact

sequence

| — 70 (Fy, %0) —— 11 (X, %) —== 1 (X, x0) — 1. (5.7.2)

There is a section s, : 71 (X, x0) — 71 (X, %) of ps : 71 (X, %) — 71 (X,x0), and one
can regard T (Fy,,%)) as a normal subgroup of 7;(X,%y) by i.. Define an action
of 1 (X,x0) on Ty (Fyy,%0) by u— s.(y) " us.(y), where y € 7ty (Fyy, %) and p €
71 (X, xp0). This group theoretic action coincides with the monodromy action u — uY
of 1 (X,x0) on 7y (Fy,, X0 ). The short exact sequence (5.7.2) implies that 7t (X, %) is
isomorphic to the semi direct product 7 (Fy,,X0) % 71 (X, x0), and the isomorphism

nl(Fani()) X T (X,X()) — T (Xa-f()) is given by (:ua Y) = Iy (IU)S*(Y) L
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5.8 Fundamental Groups of Complemets to Subvarieties

Let M be a connected complex manifold, and V a proper closed analytic subspace
of M. Let1: M\ V — M be the inclusion. Chosen a base point xo € M \ V, we have
an epimorphism 1, : (M \ V,xp) — 7 (M,xp). If the codimension of V in M is at
least 2, then 1, is an isomorphism. Indeed, if V is of codimension > 2, than M\ V is

simply connected and the group H; (M \ V) is trivial.

The following well known theorem is the most famous result considering only

the case n = 2.

Theorem 5.8.1 (Zariski-Lefschetz hyperplane section theorem (Zariski, 1937)). Let
V be a hypersurface in CP". Then the inclusion homomorphism 7t (H \V) —
71 (CP"\ V) is an isomorphism for a generic plane H = CP? in CP".

Abelianizing the above isomorphism, we get H; (CP?\ C) = H;(CP"\ V'), where
C:=HNV =CP>NV.Now, if C is reduced plane algebraic curve with the irreducible
components C; of d; for 1 < i < k, then the homology groups of CP? \ C are quite
simple and do not give to much information. By the Lefschetz duality and by the

exact sequence of the pair (CIP?,C), one has
H\(CP*\C,Z) ~Z* ' &7y, d:=ged(dy,do,--- ,dy) (5.8.1)
whereas the fundamental group 7t; (CP?\ C) is much more informative. In particular

if C is irreducible (k = 1), we have H; (CP*\ C,Z) ~ Z, .

5.9 Zariski Van-Kampen Theorem

Let p: M — C be a surjective homomorphic map from a connected complex
manifold M to a 1-dimensional complex manifold C. Suppose that the following

conditions are satisfied.
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(a) The curve C is simply connected.
(b) There exists a holomorphic map s : C — M such that pos = idc.

(¢) There exists a set B, of m points of C such that the restriction pg : My — C\ By,

of p to My := p~!(C\ B,) is a locally trivial fiber space.

Let z9 and Zy := s(zo) be base points of C\ B, and M), respectively. Denote
F, := p~!(z0) the fiber over zo and by i : F;; — M the inclusion map. As it is
explained in the Section 5.5, the fundamental group m;(C \ P,,) acts on 7 (F,,Zp)
from the right via u— uY, where u € 7y (F,Zp) and y € 71 (C\ By, z0). The following

the theorem of Zarsiki van-Kampen in this general setting.

Theorem 5.9.1 (Zarsiki van-Kampen theorem). Suppose that the conditions (a),
(b) and (c) are satisfied. Then i, : T1(Fyy,20) — ®1(M,Zo) is surjective. Suppose

moreover that the following condition is satisfied:
(d) For each point z; € By, the fiber p~'(z;) is irreducible.

Then the kernel of i, is the smallest subgroup of T (Fy,,Z0) containing the subset
{u W |uem (Fy,%0), YE T (C\ Pu,z0) }. In addition, 7y (My, %) is isomorphic to
the semi-direct product 11 (Fy,,Z0) X 1 (C\ Bu,z0) constructed from the monodronty

action of T (C \ P, z0) on T (Fyy, 20).

As a consequence of the Theorem 5.9.1 we have the following corollary.

Corollary 5.9.2. Suppose that p : M — C satisfies the conditions (a), (b), (c), (d)
and 711 (Fy,,Zo) is a free group generated by po, 1, - -+ ,4a—1. Suppose that the group
71 (C\ Pu,20) is generated by Y1,Y2, -+ ,Ym- Then n1(M,Zo) is isomorphic to the

group defined by the presentation

<‘u()a‘ula"'nud—1|:u}i:;ujv i:1727"'7ma ]:07177d_1>
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5.10 Local Fundamental Group of Curve Singularities

In the Section 5.6, we have discussed the monodromy action around the curve
singularity for the affine curve C : x™ —y? = 0, where m,d € Z>,. Assume that
71 (Fy,Z0) is a free group generated by uo,u1, - -+ ,ug—1. The monodromy relation
was tj1m = uj. Then by Corollary 5.9.2, the fundamental group 7 (Aze X Agp \ C)

is isomorphic to G, 4 defined by the presentation below:

G = (8,14 | 8= ptg—_1pta—2Ho, tjra = ;8" pj=pjm, jEZ) (5.10.1)

Theorem 5.10.1. Assume that C is a curve given by the equation x" —y™ = (),
which is a pencil of m lines. Then the local fundamental group of its complement is

isomorphic to the group
Gm,m = <8>,u] | 5 = Hm—1Um—2 " - HO, [Snuj] =1,j=01,---,m— 1) (5.10.2)

Proof. Setd =m in (5.10.1), then the relations pt; = g1+, and w1, = 8u;8~ ! imply
that ;8 = duj, ie, Q,uj]=1,j=0,1,,--- ,m—1. O]

If m = 2, then & = uyuo. The relations [3,u;] = 1 reduces to [ug,u1] = 1. Hence,
G2 = (uo, 1 | Mopn = p1uo) is isomorphic to the abelian group Z x Z.

Theorem 5.10.2. Suppose C is an affine curve given by the equation x> — y** = 0.

Then the local fundamental group of its complement is isomorphic to the group

G2 on defined by the presentation (uo, 1 | (tour)" = (u1p0)").

Proof. Set m =2 and d = 2n in (5.10.1), then the relation u; = u;;, imply that
Uji2n = pj forany j € Z, and 1 = u1, pox = o for any k € Z. Then we have § =
Mon—1ton—2 -+ to = (u1to)" and [8,u;] = 1 by the relation 2, = u; = 8u;8~ 1. Note
that, uod = (uou1)"uo and duy = wy (uopr)". Therefore we have (uiuo)" = (Hop1)"
from the relations ou; = u;9, j = 1,2. O
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Theorem 5.10.3 (Oka, 1975). Suppose C is the affine curve given by the equation
x" —y? =0, where m and d are co-prime integers. Then the local fundamental group

Gm.a of its complement is isomorphic to the group G' defined by the presentation

(o, B | o = B7).

Proof. For any j € Z, let (aj,b;) be a pair of integers satisfying a;d 4+ bjm = j.

From the relations u;, 4 = du ;871 and pj = pjim, we have
Hjt+k = Majd+bjm+k = Ha;d+k = O &~

for all k € Z. Therefore ujyq—14j1a—2 - pj = 8% (Ug—1tq—2 - - o)~ % = 3. Define

an element T € G, 4 by T= ty,— 112 - - - tto. Then we have

" = Umda—1Mma—2 - Ho = @,

In addition, since 841 thkmgb1—kd — §a1tb1 for any integer k, we can assume by > 0
and a; < 0. Then we have
b -1
3T = (May|aMiay|d—1" " M1) " (Ubym—1Mpym—2 -+~ Ho)

1 1
= (/Jl t "u|al‘d_l/vl|a1‘d>(:ub1m—l.ub1m—2 e "UO)

= Mo,

because bym — 1 = |a;|d. This means, every element of G4 can be written in terms
of & and t, Explicitly y; = 8%upd % = 8% (8%1121)3~%. Hence we can define a
surjective homomorphism @ : G' — G, 4 by a.— §, B — 7. It’s inverse homomorphism
o !: Gpag— G isd— o, yj— aa-i(ocalﬁbl)oc_“f. Note that, from o = B¢, the
right hand side does not depend on the choice of the pair (a;,b;). Thus ¢ is an

isomorphism. O

Under the notations in Section 5.6 let us now consider the curve C on Age X Az

defined by y(x™ —y¢) = 0. The fiber over x € A%, is Ay, minus 0 and the d-th roots
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(a) (b)
Figure 5.5 The monodromy action on 7t (Fy,, %) when C : y(x*> — y*) = 0.

of x. Choose the base point of A, at xo := €. The group 7| (A}, xo) is an infinite

cyclic group generated by the homotopy class y = [g] of the loop g(¢) = eexp(2mir).

On the other hand, denote by 6, the meridian around O in Fy, , and by u; the
meridians around d-th roots of X in Fy,. The fiber Fy, is homotopic to the bouquet of
d + 1 circles, and hence its fundamental group m; (Fy,,Xo) is a free group generated
by d 4 1 elements 0, uo, 1, - ,uqs—1 which are represented by the meridians given

in Figure 5.5a (It is drawn for the case (m,d) = (2,3)).

The monodromy action 71 (A3, x0) on T (Fy,,%o) rotates the d-th roots of x™
around the origin with angular speed 27tm /d while fixing the point 0. Therefore the
meridians 0p and y; are deformed to the meridians o and [, respectively (See
Figure 5.5b). Therefore the monodromy action of 7;(A5.,x0) = (y) on the free
group T (Fy,,%o) = (60,0, 1, -+ ,a—1) is given by 92; =0 and ,u? = ;. Set & :=
Ud—1Mq—2 -+ Mo and &g = 86p. The homotopy class &y is represented by the big
loop around all deleted points. Letj € Z>o, j = ad +r and r is the remainder of
j divided by d. Set u; := 8§u,8,“, then we have the relation fi; = ;. In addition,
set 0, = 8]690861‘ and T := y_1m—> - - - Uo, then we have 8; = 10,7~ '. Hence the
monodromy action of 11 (A}, xo) on Tt (Fy,,Xo) is given by the relations 0 =10;1!

and ,u}( = pi+m- Then by Corollary 5.9.2, the fundamental group 71 (Aze X Agp \ C) is
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isomorphic to G, 4,0 defined by the presentation below:

. 80 = Ma—1Ha—2 - 1080, T = tn—1tm—2 - Mo, TOk = BT,
Gm,d70 = ek5607rvl'lj

0r = 86008, %, tja = S8y !, i = tjsm, jkEZ
(5.10.3)

First of all, let us discuss the basic cases y(x —y") =0 and y(x" —y) = 0.

e If (m,d) = (1,n), then by the notations of (5.10.3), the monodromy relations
for u;’s are pj = ujy1. Therefore 8y = u;0o, and the relation y; = ujy, =
Sou jﬁa ! implies up0op = Ooup which is the monodromy relation for 6. Since
Mj = po, 8o = O and 6 = 6’5909_k, then every element of Gy, can be
written in terms of po and 6y. Therefore, the group Gy ,0 has presentation
(10,00 | oBo = Oouo) ~ Z x Z. Note that this is isomorphic to the group G» »
in (5.10.2). Because, the line y = 0 and the curve x — y" = 0 meet transversally

at the origin.

o If (m,d) = (n,1), the fiber over x € A3, is Ayp minus 0 and the point x”, denote
the loops around them by 6y and ug, respectively. The loop dy := uo8p is
the big loop surrounding these two deleted points. The monodromy action
71 (A5, X0) on Ty (Fy,, %) rotates n times the the point x around the origin
while fixing the point 0. Thus the monodromy relations are o = &fjuod," and
80 = 8809, ". Taking into account the relation 89 = 169, one can easily show
that these two relations are equivalent to the relation (16¢)" = (Bouo)”. Thus,
Gn,1,0 = (80,10 | (1060)" = (Bouo)") which is isomorphic to the group G2 2,
in Theorem 5.10.2.

Now, we will study the cases, (m,d) € {(m,m),(2,2n),(2n,2)} and the case m

and d are co-prime. These cases are stated explicitly in the following theorems.

Theorem 5.10.4. Assume that C is a curve given by the equation y(x™ —y™) =0,
which is a pencil of m+1 lines. Then the local fundamental group of its complement

is isomorphic to the group Gy 41 m+1 in (5.10.1).
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Proof. Set d = m in (5.10.3), then the relations u; = uji, and gy, = 80,uj861

imply that u;8y = dou;, i.e, [8o,u;] =1, j=0,1,,--- ,m— 1. In addition,
6; = 86008, * = (100)"00(100) ™ = (807)*80(t80) * = 80(100)*(t80) ¥ = 8o

for all k € Z, and the relation 8y = t0) = 09T is equivalent to dy0y = 0yTOy = 6.

Then, it is clear that G, ,,, 0 is isomorphic to group

(80,00,1; | 80 = pm—1Mm—2 - 1000, [80,u;] = [80,00] =1, j=0,1,--- ,m—1).

This group is also isomorphic to the group Gy,41,m+1 via 8p — uo, 8o — 8, u; —

,Llj+1,j:O,1,"',m—1. O
Theorem 5.10.5. Suppose C is an affine curve given by the equation y(x* —y*") = 0.

Then the local fundamental group of its complement is isomorphic to the group

G2,on,0 defined by the presentation

(80,10, 111 | m1080 = Ooptitto,  (u1t0)" 80 = poBour (moptr)" ") (5.10.4)

Proof. Set m =2 and d = 2n in (5.10.3), then the relation u; = u;;, imply that
Mji2n = pj for any j € Z, and ppr_1 = uy, uxx = uo for any k € Z. Then we have

T = U1, 80 = Mon—1M2n—2 - - - 0O0 = (1140)" 00, [t11110,080) = 1; and [dp,u;] = 1. Note
that,

1080 = po(111110)"80 = 1080 (p1110)" = toBour (opr )"~ o,
oo = (1110)" Bopo,
180 = 1 (1110)" B0,

Sour = (u10) " Oop1 = a1 (wour )™ poBous

Therefore the relations [8g,u;] = 1 imply that (ujuo)"00 = uoBoui (uou)"~ 1. To

complete proof it is enough to show that 8; = 0 for all k € Z. This comes from the
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relations 10, = 0,7 and 6; = 8’56086 k k € 7. Indeed,
0 = (1"00)"00(1"8p) * = 105000, “1 ™" =8y forall k € Z.

Thus, the group G2 2,0 has presentation (5.10.5). U

Theorem 5.10.6. Suppose C is an affine curve given by the equation y(x*" —y*) = 0.
Then the local fundamental group of its complement is isomorphic to the group

Gon 0 defined by the presentation

(80, 110,11 | (u11080)" = (10Bou1)" = (Bou10)") (5.10.5)

Proof. Set m =2n and d = 2 in (5.10.3), then clearly 8y = u;p09, and the relation

M2 = Oou ;O Uimply that

SKudy % j=2k+1
= (5.10.6)
Skuod,*  j =2k

Therefore, we have 8} = 16f;. Indeed,

T = MWp—1M2p—2 " UIHO
= (& 8y (B oSy ) - (Bown 87 (Bopod i po
= 88 )"

= 806,"
Then by using the relation T8y = 69T, we get 6{;09 = 600(; which implies

(t11080)" = (Bou10)". (5.10.7)

On the other hand the relations w2, = u; and ;2 = dou;0, implies

pj=0ou;8,", e, (uu080)"uj = pj(uio8o)", j=1,2. (5.10.8)
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These two relations (5.10.7) and (5.10.8) equivalent to the relation

(k141080)" = (10Bop1)" = (Bor10)". (5.10.9)

Finally, since the equality (5.10.6) is valid together with the equalities 0; =
5’56055", 8o = m1u0Bo and T = &j6," for all j,k € Z, then any element of G2,20
can be written as a word of the letters g, 1,00 and their inverses. Thus, G2,2 0 is

the group generated by o, 1,00 with relations (5.10.9). [l

Theorem 5.10.7. Suppose C is the affine curve given by the equation y(x™ —y%) =0,
where m and d are co-prime integers. Then the local fundamental group G,, 40 of

its complement is isomorphic to the group G, defined by the presentation
(0, B,0 | ™0™ =B, PO = OP). (5.10.10)

Proof. Proof is similar to the proof of Theorem 5.10.3. For any j € Z, let (a;,b;)
be a pair of integers satisfying a;d +b;m = j. In particular, since (m,d) = 1 then
arq = k, by = k while ay,, = byq = 0. From the relations ;4 = 8ou 0, Vand u ;=
Hj+m, WE get

= — ok = 85
Hjt+k —,Uajd+bjm+k _luajd-i-k = Oy HkOg

for all £k € Z. Then we have

a; —a; ai —a;
Mjtd—1Mj+d—2 " MjOa; = Oy’ (Ua—10a—2 - 11000)d, ’ = 6)’80d, ’ = 0o,

which implies uj g 1tjyq—2--pj = 809;1,1. Therefore we have the relation

T = Umd—1Mmd—2 " HO
= 809;11_18()9;11_2 e 809?180961
= 803505185 " )80(35" 05 18y ")+ B0 (808 13 )38, !

= &0,"
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Since (800~ 1)@ +hmgbi=kd — (§,8~1)417P1 for any integer k, we can assume by > 0

and a; < 0. Then we have

—1yay b _

(5090 yaght = (lula1|d/“‘\a1\d—l ) l(ﬂb1m—1ﬂb1m—2"'uo)
—1 —1 ~1

= (- '“\al|d—1ﬂ\a1|d)(l1b1m—1ub1m—2 S+ o)

= Mo,

because bym — 1 = |a;|d. Therefore u; = &y 108, “/ = 8, (808, )41 t*18,“/. We also
know that 6, = 8’59085 k. Hence, every element of G, 4o can be written in terms of

5(), 90 and T.

Thus, we can define a surjective homomorphism @ : G6 — G40 by 0i— 09, B—
7 and O — 0. It’s inverse homomorphism ¢! : Gmao — G is given by &) — «,
pj— 0% (a®~1)4 B2 o4 and 6 — 6. Note that, from o8~ = B¢, the right hand
side does not depend on the choice of the pair (a;,b;). Thus ¢ is an isomorphism.

[]

5.11 Zariski Van-Kampen Theorem for Projective Plane Curves

Let C C CP? be a complex projective plane curve defined by a homogeneous
equation ®(X,Y,Z) = 0 of degree d. Suppose that C is reduced, that is ® does not
have any multiple factor. The complement CPP? \ C is path-connected. We consider
the fundamental group 7 (CP?\ C). Choose a base point a € CP?\ C. By a linear
coordinate transformations, we can assume that a := [0 : 1 : 0]. Since a ¢ C, the
coefficient of ¥ in ® is not zero. Let L C CP? be the line defined by the equation

Y = 0. For a point P € L, let pa C CP? be the line connecting p and a. Put

X :={(p,q) e LxCP*|Qepa}, (5.11.1)
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and let f : X — L and p: X — CP? be the projections onto each factors. If g # a,
then f~!(g) consists of a single point, while E := p~!(a) is isomorphic to L by f.
The morphism p : X — CP? is called the blowing up of CP? at a, and E is called

the exceptional divisor (See Figure 5.6).

Put X := X\ p~!(C), and let f : X — L be the restriction of f. Since the lifting
p~1(C) and the exceptional divisor E has no common point , then p induces an

isomorphism from X \ E to CP?\ (CU {a}), and we the following commutative

diagram:
T (X \E) —=1;(CP?\ (CU{a})) (5.11.2)
(X —om 1 (CP*\C),

where the vertical arrows are induced from inclusions. The left vertical arrow is
surjective because E is a proper subvariety of X, and the right vertical arrow is an
isomorphism because {a} is a proper subvariety of CP? \ C with codimension 2.

Hence p | x induces an isomorphism. Therefore, we will calculate 7w; (X).

E (1,/
T
\ _
oz I~ /)71 (C) P \ c
\

—

A Y :
Figure 5.6 Blowing up at a.

For any point p € L, the blow-up map p maps the intersection points of f~1(p)
and p~!(C) to the intersection points of pa and C bijectively. Suppose that p is the
point [ : 0 : m], then pa is the line {[§:7:m] | £ € CU {0} }, which correspond
to a if t = oo. Hence the intersection points of pa and C correspond to the roots of
®(E&,1,m) = 0 bijectively. Let Dg(E,m) be the discriminant of ®(&,7,1) regarded

as a polynomial of z. Since we assumed @ has no multiple factors, Dg(&,1) is not
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zero. It is a homogeneous polynomial of degree d(d — 1) in & and 1. Put

P:={[5:0:m] | Da(§,m) =0}

If p € L\ P, then f~!(p) is the line pa minus d distinct points. Hence the restriction
of fto f~1(L\ P) is a locally trivial fiber space over L\ P.

Choose a base point of X at Zy € E\ (EN f~'(P)), and let z0 := f(Z) be the
base point of L and F,, := f~!(z9) be the fiber of f at zo. The map p — (p,a) is the
holomorphic section s : L — X of f: X — L that passes through Z,. The image of
s id E. Hence m; (L \ P) acts on m; (F;,) from right. The projective line L is simply
connected, and every fiber of f is irreducible since it is a projective line minus
some points. Moreover, T (F,) is the free group generated by homotopy classes
U112, > tg—1 of d — 1 meridians around d — 1 points of F,, Np~!(C). Remember
if one choose one of the points as the point at infinity, then a complex projective
line minus d points is homotopic to complex plane C minus d — 1 points, which has
homotopy type of bouquet of d — 1 circles. So, 7 (F;,,Zp) is a free group of d — 1
generators. But one may add u; as a generator with the relation ugug_1---u = 1.
Now we can apply the Corollary 5.9.2. Suppose that P := P, = {z1,22, - ,Zm} C L.
Then 1) (L \ Py, 20) is the free group generated by homotopy classes 1,72, - Ym—1
of m — 1 meridians around m — 1 points of &,,. One may add 7,, to 7| (L \ Py, 20) as

generator with the relation v, Y,,—1---Y1 = 1 (See Figure 5.7).

Theorem 5.11.1 (Zariski (1929), van Kampen (1933)). Under the notations above,

the fundamental group T ((CIP’2 \ C) is isomorphic to the group

<H17”27"'7;ud—1 ‘;uji:‘uiv i:1727"'7m_17 ]21,2,,d—1>

Before considering the fundamental groups of complement of quadric line arrange-
ment, a first insight on the fundamental groups of complements of some simple line

arrangements.
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an Lm—l e L2 Ll LO
E %
25}
/
~ ~ /
Oz —c z iz ¢
d
\\\ —1
F.,
. )//
Zm  Am—1 ooo 22 z1 20 L (Wn(/( TYm—1 e ()/’Yé’_(_ B 20 I
(a) Projection. (b) Merideans in L and F.

Figure 5.7 The generators of 7ty (L \ Py, z0) and 71 (F,,Z0).

1. If C = L, a single line, then CP? \ C = C? which is simply connected and

therefore the fundamental group 7t (CPP?\ C) is trivial.

2. If C = L UL, consists of two lines, then considering one of the lines to be
the line at infinity, say L), one obtains CP? \C = C2 \L; = C x C*, so that
T (CPZ \C) ="Z.

3. f C=LpULyU---Ly, 1s a pencil of m+ 1 lines, considering L,, to be the
line at infinity one obtains m parallel lines in C2, and the complement can be
identified with C\ {m points} x C. Hence, in this case one has 1 (CP?\ C) =

F,,, the free group of rank n.

4. f C=LyUL;U---L, is a near-pencil, i.e, the lines Lo,L;,---,L,—1 meet
at a single point while L,, transverse to them, considering L,, to be the line at
infinity one obtains a pencil of m lines in C2. By using local braid monodromy,
we computed its fundamental group in Theorem 5.10.1. Hence, in this case one
has 71 (CP?\ C) = (8,14 | 8 = tm—1ptm—2- -0, [S,j] =1,0< j<m—1).1In
particular, if m = 2 then 7t (CP?\ C) is isomorphic to Z x Z.

5. f C=LyUL1U---L,, is a generic line arrangement, considering L,, to be
the line at infinity one obtains m lines in general position in C> which has

m(m — 1)/2 nodes. Let y; be a meridian around the line L;. At each nodal
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point L; N L;, take a projection C? — C. The local braid monodromy gives

only the condition w;u; = u;u;, does not effect the other meridians. Therefore,

71 (CP*\ C) is the abelian group (uiluittj = ujtti, thmtm—1 -+ 1o = 1).

6. Now suppose p and ¢ be two points in CP? and N be the line through p and
q. Assume the pencils through p and g has m+ 1 and n+ 1 lines, respectively.
Denote by C the union of this m+n+1 lines. Then @ is obtained from CIP?
by blowing up the points p and g. As is well known, if one blows down the
proper transform of the line N then obtains CP' x CP! (See Figure 5.8). Then
we have a birational morphisms CP? «— 61[;2 — CP! x CP'. The primage €
of Cin (EIPTz equals the union of the proper transform of the lines in C and two
exceptional divisors E), and E,;. The image of Cin CP! x CP' equals m+1 in

one ruling and n+1 lines in the other ruling. This birational morphism induces

an isomorphism of complements. Therefore,

1 (CP?\ C) ~ 1t (CP' — {n+ 1points}) x 7| (CP' — {m+ 1points}) ~ Z" x Z".

CP? CP? CP! x CP'
L— Ly
Lo / Lo
L3 / L3
N P 1 — / —
L Lim
N
E) e Eqy
L1 Ly Ly Lm M pp,0p,00 Be ™ M, oo My Mo M E, M, - My M> M

Figure 5.8 Birational morphism.

7. Oka & Sakamato (1978)’s theorem: Let Cy and C, be two plane curves in C? of
degrees d; and d3, respectively. If C; and C, meets at d;d; distinct points, then
T (C?\ (C1UG)) ~ 1 (C?\ C1) x 71 (C?\ C2).If these curves are projective
algebraic curves in CP?, assuming L., is a line at infinity in general position

to Cy and C,, then 7 (CP?\ (C; U(y)) is decided by the following central
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extension:

1—>Z—>TC1((C2\(C1 UuGy)) HE](CPZ\(CH UuG)) — 1.

Some quadric arrangements can be obtained from line arrangements by using
birational morphisms. Assume that 4 is a line arrangement, and ¢ be the involution
@ : CP? — CP? defined by [X : Y : Z] — [YZ : XZ : XY). Suppose that the lines Hj,
H, and Hj are respectively given by the equations X =0,Y =0and Z=0. If 4
is in general position with respect to H; U Hy U H3, then @(4) is an arrangement of
smooth quadrics. In addition to those of 4, this arrangement has three more singular
points where all irreducible components of @(4) meet transversally. In this case the
group 711 (CPP?\ @(4)) can easily be found in terms of 7t; (CP?\ 4) as follows: Let
AU L;, and y; be a meridian of L; in CP? \ 4. Let

T (CPP\ A) ~ (u1, - g Wi =wo = =Wy =ty = 1) (5.11.3)

be a presentation obtained by Zarsiki-van Kampen theorem. Set 4’ := 4 U H; U
H> U H3 and assume ©; is a meridian around H;. Since A4 is in general position to

H, UH, U H3, then one has

TCl(CPZ\ﬂ/):< U1y sty [,Ui,cj]:[ﬁj,ﬁk]ZI >

G1,02,03 | Wl =+ =W, = U+ 11010203 = 1
(5.11.4)

Notice that 6 o is a meridian of 4’ at H; N Hy. Hence the group T; (CP?\ @(4)) can
be obtained by setting 616, = 6163 = 6,63 = 1 in the presentation of 7t (CP?\ 4').
But these relations imply 6 := 61 = 62 = 63 and o2 = 1. In addition, the relations

lui,0;] = 1and y, - -- 11616203 = 1 implies (up---u1)? = 1. Hence

[Wisn - 1] =1

> (5.11.5)
wi = =wy=(y---u)* =1

1 (CP?\ 9(4)) = <u1,--- Hp
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Since © is a central element of this group,
1 — Zy — 7 (CP?\ @(4)) — 7 (CP?\ 4) — 1

1s an exact sequence.

For example, let 4 be the pencil of n lines L, : mX+Y —-Z=0,m=1,--- ,n.
Then @(A4) is a pencil of n smooth quadrics mYZ + XZ — XY = 0 which are tangent
to each other at [1: 0: 0] and transverse at [0: 1: 0] and [0 : 0 : 1] (This intersection
behavior of quadrics are independent of the choice of singular point of the pencil of
lines whenever A4 is in general position with respect to H; U H, U H3). Either using
Zariski van Kampen theorem or assuming one of the lines L,, as a line at infinity one
will see that the fundamental group 7; (CPP?\ 4) is a free group F,_; of rank n— 1,
which has a presentation (uj, o, -+ , 4y | 4y -+ -1 = 1). Then by equation (5.11.5),
1 (CP?\ ¢(A4)) has a presentation

Quty ot it ] = (1) = 1),

Next suppose, A4 has n lines in general position such that AU Hy UHy U H3 is
an arrangement of n + 3 lines in general position. Then @(A4) consists of n smooth
conics in general position. Since 7t; (CP?\ 4) < F,, is abelian, then 7t; (CP?\ ¢(4))

is an abelian group having a presentation

Qut, o ] (a1 = [ptptn o) = (e pa1)® = 1)

Another method to get quadric arrangements are branched coverings. Assume
A=UL,L and ¢ : CP? — CP? be the branched covering defined by [X : Y :
Z] — [X?:Y?: Z?]. Suppose the lines H, H> and Hj are respectively given by the
equations X =0,Y =0and Z =0, and set 4’ := AUH; UH, UH3. If 4 is in general

position to H; U H, U Hj, then ¢~ (4) is an arrangement of smooth quadrics. Any
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singular point of A4 lie four singular points of ¢~!(4) of the same type. In this case
the group 7 (CP?\ ¢~'(4)) can easily be found in terms of 7 (CP?\ 4). Assume
T ((CIE”2 \ 4) has a presentation (5.11.3), then the presentation (5.11.5) is valid and

there is an exact sequence
1 - @ (CP*\ o~ 1)) = n(CP*\ ') - Zy x Zy — 1.

The group 71 (CP?\ ¢—'(4)) is the quotient 7t; (CP?\ 6~'(4')) by the sub-group
generated by the meridians of ¢! (H), ¢~ (H,) and ¢~ (H3).

Suppose that 4 is a pencil of n lines L; : mX —Y + (b—mja)Z=0,i=1,---n.
The singular point of 4 is [a: b : 1]. Assume b # m;a and m; # 0 for each i, otherwise
4 will not be in general position with respect to H; UH, UHj. Then ¢~ (4) is an
arrangement of n smooth quadrics Q; := @~ !(L;) : mX? —Y? + (b — m;a)Z* = 0.
These n quadrics form a pencil through [Fv/a : Fb : 1]. If ab # 0 there are four
singular point but if one of a,b is zero while other is not, there are two singular
points and the quadrics Q; tangent to each other at these points. Before computing
m (CP?\ ¢! 4), first notice that w1y (CP?\ 4) = {uy, 2, | tinptn—1-- -1y = 1}

is a free group of rank n — 1.

First assume ab # 0 and take a projection onto a suitable line. Here the suitable
means that the singular fibers does not contain no more than one multiple points.
Therefore singular fibers either tangent to quadrics, or goes through singular points
of $~1(4). Each smooth fiber F meets with each quadric Q; at two points. In
these smooth fibers, denote by u;; and y;; the meridians around F N Q;. Around
the tangency point of F with Q;, braid monodromy gives the relations (u;ju;)> =
(uppi1)?. Around the singular points of ¢~!(4), braid monodromies gives relations
[t1isM1n - H11] = (Wi tion - - - 21] = 1. Since any two meridians of Q; are homotopic,

then 0" () has a presentation (u1, 2, -+, fha] tnbtn—1- -1 = 1).
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Incase ab = 0 (assume a = 0, b # 0), quadrics are tangent each other at two
points. Around the tangency point of F with Q;, braid monodromy gives the relations
(uipi2)? = (uiu;)*. Around the tangency points of ¢~ (4), braid monodromies
gives relations [u;1, (1 -+ - u11)?] = [ui2, (tn2 - - - 1112)?] = 1. Since any two meridians

of Q; are homotopic, then ¢! (4) has a presentation

<,Lll,‘le,-~~ uun| (,un/-ln—l"',ul)2 = 1>

Next consider the arrangement A4 of lines X FY FZ = 0 in general position.
These lines together with the coordinate lines X =0, Y =0 and Z = 0, form an
arrangement in Figure 6.17 and branched cover of this arrangement is the Naruki
arrangement Q; : X FY? 7 Z? = 0 which has twelve tacnodes as singularities. Take
a projection onto a suitable line. Around the tangency point of the fiber F' with Q;,
braid monodromy gives the relations (u;jup)? = (upu;1)?. Around the tangency
points of ¢~!(), braid monodromies gives relations (ujipj1)*> = (uj11)* and
(uintj2)? = (ujopin)?. Since any two meridians of Q; are homotopic, then ¢~!(2)

has a presentation (uy, i, u3, 4| (piptj)? = (ujmi)?, 1 <,i < j<4).



CHAPTER SIX
BRANCHED COVERINGS AND ORBIFOLDS

In the Section 6.1, first we give some facts of branched covering due to references
(Uludag, 2007) and (Namba, 1987) and study the branched Galois coverings of
complex manifolds, in particular the branched coverings of CP' as motivation,
and introduce some partial results by several authors to Fenchel’s problem. We
will introduce the notions of orbifold and sub-orbifold in the Section 6.2, by using
the reference (Uludag, 2007) and (Namba, 1987). Due to Yoshida (1987), orbifold
germs are related via covering maps. We will discuss in details of such covering
relations of orbifold germs and exhibit them by drawing pictures in the Section
6.2.3. Section 6.3 is a survey on Chern classes and Chern numbers. Orbifold version
of Chern numbers will be introduced in the Section 6.4. Kobayashi et al. (1989)’s
Theorem 6.4.2 plays an important role to determine the uniformization of orbifolds.
In the Sections 6.5 and 6.6, by applying this theorem to quadric-line arrangements
we have obtained some new ball-quotient orbifolds. As in the covering relation
among orbifold germs, these ball-quotient orbifolds are also related each other via

covering maps. We have exhibited such covering relations in the Section 6.7.

6.1 Branched Coverings

Let X be an n-dimensional (connected) complex manifold. A surjective finite
(proper) holomorphic mapping ¢ : M — X, where M is an irreducible normal complex
space, is called a branched covering of X. A topological finite covering map is a
very special kind of branched covering. Any non-constant map between compact

Riemann surfaces and the covering map
O (Z]7Z27 T 7Zi’l> € (Cn - (Zrln7zg17 e 7Z21) € (C’l (611)

are the most well known examples of branched coverings.

141
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A morphism between branched coverings @ : M — X and y: M — X is a surjective
holomorphic map ¥ : M — N such that ¢(p) = y(O(p)) for all p e M. If ¥ is a
biholomorphism then it is an isomorphism. The group G of all automorphisms of
¢ is finite and acts on every fiber of @. If G4 acts transitively on every fiber of o,
then the covering map ¢ : M — X is called branched Galois covering. In this case,
the orbit space M /G is biholomorphic to X. The covering map ¢ : M — X is called

an abelian (resp. cyclic) if @ is a Galois covering and G is an abelian (resp. cyclic)

group.

The ramification locus Ry of a finite branched covering @ : M — X is the set of
points p of M such that @ is not biholomorphic around p. The image By := @(Ro)
is called the branch locus of @ and the map @ is said to be branched along By. Both
of the ramification locus and the branch locus are hypersurfaces (i.e. codimension
1 at every point) of M and X, respectively. In case ¢ is a topological covering then
both Ry and B, are empty, such @ is said to be unbranched. For a given branched
covering map ¢ : M — X, the restriction ¢’ : M\ Ry — X \ By is an unbranched
covering. By a property of normal complex spaces we have the following properties

(Namba, 1987):
I. Go= Gq,/ naturally,
2. @ is a Galois covering if and only if ¢’ is a Galois covering,

3. |G| < deg@, where |G| is the order of the group G, and deg @ is the mapping
degree of @. The equality holds if and only if @ is a Galois covering.

Conversely, the Grauert & Remmert (1958) theorem says that “Given a topologi-
cal unbranched finite covering ¢' : M' — X \ B with M’ being connected, where
X is a normal variety and B is a finite union of proper subvarieties of codimension
1; there exist an irreducible normal variety M with a finite branched covering @ :
M — X and a homeomorphism s : M' — @' (X \ B) such that ¢(x) = ¢'(s(x))

for all x € M'” (Serre, 1960). So, there is a correspondence between subgroups of
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71 (X \ B) of finite index and finite coverings of X branched along B. If ¢’ is Galois,
then so is @ and therefore the covering ¢ is Galois if and only if the corresponding

subgroup is normal (Namba, 1987, Theorem 1.1.17).

The ramification divisor of a finite branched covering ¢ : M — X of smooth
spaces is the divisor of its jacobian; for singular spaces it can be defined for the
restriction of @ to smooth parts of M and X (If ¢ is ramified only along a singular
part then the ramification divisor is empty). If @ : M — X is Galois, it is possible
to define the branch divisor on X as follows: Let H,H>,--- H; be the irreducible
components of the branch locus By. Let p € H; be a smooth point of By, U be a
small neighborhood of p and V be a connected component of ¢! (U). The degree
m; of @ |y does not depend on p and is called the branching index of ¢ along H;.

Then the branch divisor is defined as D¢ := Y& miH;.

Definition 6.1.1. Let X be a complex manifold and D = Zé{:l m;H; be a divisor with
coefficients in m; € Z~¢. A Galois covering @ : M — X is said to be branched at D

Let X be a normal variety and B = UleHi be a hypersurface with irreducible
components H; and D = ZlemiH,- be a divisor. Then the orbifold fundamental

group of the pair (X, D) is defined as
(X, D) = m (X \ Bx) /(" 1)) (6.1.2)

where x € X \ B is a base point, y; is a meridian of H; in X \ B, and (()) denotes the
normal closure. Let N be a normal subgroup of finite index in 7t; (X \ B). The Galois
covering corresponding to N is branched at D if and only if ;" € N and u™ ¢ N for

m<m; and i = 1,2,---,k (this condition is known as branching condition in the
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sequel). The condition 4" € N amounts the existence of the factorization

(X \ B) m(X\B)/N =G

N

n{"” (X, D)

whereas the branching condition " ¢ N for m < m; means that @(u;) € G is strictly

of order m;. Thus, the coverings of X branched along D are really controlled by the

orb

group t{"”(X, D), and there is a Galois correspondence between the Galois covering

of X branched along D and normal subgroups of n?’b (X, D) satisfying the branching
condition. In particular, a covering of X branched at D is simply connected if and

only if it is universal,i.e, the Galois group is the full group 7t{" b(x,D).

Lemma 6.1.2 (Fox, 1957, §7). Let M — X be a Galois covering branched at D and

with Galois group G. We have the exact sequence

0— (M) —ng""(X,D) — G — 0.

6.1.1 Branched Coverings of CP!

Let X = CP!, take distinct points po, p1,--- , px € CP' and let mg,my,--- ,my €

Z~1.Put, D := Zle m;p;. Then, one has presentation

TCI(C]PI\{pO?pla'“ 7pk}) = <‘U(),‘Ul,"' y Mk "U()‘Ul oMk = 1>

which is a free group of rank k. Then

n?rb(CPI,D) :<IUOHUI7"‘ s Uk “1810 :‘u’inl — ... :‘u;;nk = UoM1 "Mk = 1 >
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Let M — CP! be a covering branched at D with Galois group G. By the Riemann-

Hurwitz formula, the Euler number e(M) of M equals

k

e(M) = |G| |e(CP'\ {po, p1,---,pi}) + ) mi
i=0""

=G|

£l
1—k+) —| (6.1.3)
i=0 M

On the other hand, by the Koebe-Poincaré theorem, up to biholomorphism there
are only three simply connected Riemann surfaces: the Riemann sphere CP! =
C U {oo}, the affine plane C, and the Poincaré disc B = {z € C| |z] < 1}.If M isa
compact Riemann surface, either e(M) > 0 and M ~ CP' (and therefore e(M) = 2),
or ¢(M) = 0 and the universal cover of M is C, or ¢(M) < 0 and the universal
cover of M is Bj. Note that the signature of ¢(M) is completely determined by the
data (CP', D) and no information on G is needed. Accordingly, the orbifold Euler
number of (CP', D) is defined as

k
1
e’(CP',D):=1-k+Y — = e(M)=|G|e""(CP'",D). (6.1.4)
i=0 M

Then, if M — CP! is a covering branched at D with G as Galois group, then

e(M)

Gl=—-—""7"F—.
Gl e (CP!, D)

(6.1.5)

For k = 0, one has ¢”?(CP',D) = 1+ 1/mg > 0. Hence, if M — CP! is a
covering branched at D, then e(M) > 0, which implies M ~ CP!, and by the equation
(6.1.5) one has |G| =2/(1+ 1/myp), which is not positive integer unless my = 1.
Hence for k = 0 there are no coverings branched at D unless my = 1. This also can

be seen from the fact the group nt¢"?(CP!, D) is trivial for k = 0.

For k = 1, one has ¢ (CP', D) = 1/mg+ 1/m > 0. Hence, if a covering M —
CP' branched at D exists, then M ~ CP!, and by the equation (6.1.5) one has |G| =
2momy /(mo + my), which is a positive integer if and only if my = m; = m. In this

case such covering is the power map [X : Y] € CP! — [X™: Y™], and n"*(CP', D) =
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(o, | py = Wt = oy = 1) ~ Zy,.

Now, let us consider the case k = 2. Observe that the set B = {po, p1,p2} is
projectively rigid (See Corollary 2.2.2). Assume mo < m; < mp and put p :=1/mo+
1/my 4 1/my — 1. Then, ¢”’?(CP!, D) = p. If p > 0 then the covering must be CPP!
and |G| = 2p~!. In this case (mg,m;,my) is one of the following: (2,2,m), (2,3,3),
(2,3,4) or (2,3,5); the corresponding Galois groups must be of orders 2m, 12, 24
and 60, respectively. Then the group

7" (CPY, D) ~ (uo, 1,112 | 1) = W} = 13> = popnipn = 1) (6.1.6)

is called a triangle group, and it is finite of order 2p~! if p > 0 and the branching
condition is satisfied. Hence there exist a Galois coverings CP! — CP! branched
at D. Historically this follows from Klein’s classification of finite subgroups of
PGL(2;C) ~ Aut(CP'). Each group is the symmetry group of one of the platonic

solids inscribed in a sphere and they correspond to symmetry groups.

If p = 0, then e®"?(CP', D) vanishes and (mg,m;,m5) is one of (2,3,6), (2,4,4),
(3,3,3) and (2,2,0). In these cases the abelianizations of orbifold fundamental
group are finite and satisfy the branching condition. Hence they are covered by a
Riemann surfaces of genus 1 (an elliptic curve), and their universal covering is C.
The groups nf’b(C]P)' ,D) are infinite solvable. Similarly, Galois coverings of CP!
branched at four points with branching indices 2 are also elliptic curves. Each one

of these coverings corresponds to a regular tessellation of the plane.

Any pair ((CIP’1 , D) not considered above has negative orbifold Euler characteristic.
The question of existence of finite coverings branched at D is known as Fenchel’s
problem. Fenchel’s problem has been solved by Bundgaard & Nielsen (1951) and

was generalized by Fox (1952) to branched coverings of Riemann surfaces.

Theorem 6.1.3. Letk>2and D := Zf-‘:() m;p; be a divisor on CP'. Then there exists
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a finite Galois covering M — CP! branched at D; and M is
i. (elliptic case) CP' ifk =1 and mo=my or k=2 and -+ ;- + 7= > 1,

ii. (parabolic case) a Riemann surface of genus 1 if k =2 and mio + m% + m% =1,

ork=3and my=m; =my =m3 =2,

iii. (hyperbolic case) a Riemann surface of genus > 1, otherwise.

6.1.2 Fenchel’s Problem

A natural generalization of Fenchel’s problem to higher dimensions is: given a
complex manifold X and a divisor with coefficients in Z~ on X, decide whether
there exists a Galois covering M — X branched at D, regardless of the question of
desingularization. There is no hope for a complete solution of generalized Fenchel’s
problem as in Theorem 6.1.3, since the group m;(X \ supp(D)) does not admit
a simple presentation, and it can be trivial, abelian, finite non-abelian or infinite.
However, there are some partial results obtained by several authors. But the most

important one related with line arrangements was proved by Kato (1987).

For a divisor D = Y ; m;C; on CP?, let us define the group of the divisor D as
Gra(D) =11 (CP?\ B) /(" , 152, -+ ,uli)), where B = U C; is the support of
D and y; is a meridian of C; in CP? \ B and each of C; is of degree d;. First consider
the basic case: n = 1 and Cy is smooth. Then it is clear that ; (CP?\ Cy) = Zg4, and
Gri(D) = Zy,, where k; := gcd(m,d;). Thus, Fenchel’s problem for D = m;C has
a positive solution if and only if m | d;, and the solution is given by an abelian
covering. Obviously this still gives a solution if 7t; (CIP? \ Cy) is non-abelian, since
the abelianization of 7t; (CP?\ Cy) is Z,, . Similarly, if n > 1, then the abelianization

H,(CP?\ C,Z) of n; (CP?\ B) is the abelian group

dy d.
HI(CPZ\B7Z) g <‘IJ1"L12’--. 7‘Lln |u11u22...ugn — 1 >
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Hence, the abelianization of Gr,(D) has the presentation

dy, d
(i, | gl = = == =1).
Put x; := m;/ gcd(m;, d;), and let p; be the smallest common multiple of {x; | i # j}.
Then an abelian covering solves the Fenchel’s problem provided that k; divides p;

forl1 <i<n.

However, abelian coverings give a solution to Fenchel’s problem only for very
restricted cases. If one assume the divisor D = Y1 ; m;L;, whose support B is a
line arrangement, the coefficients m; being prime. Then the condition ¥; | p; is
never satisfied. But, t; (CPP? \ B) is big if it is not abelian. Hence, some non-abelian
covers must give a solution to Fenchel’s problem. Indeed, Kato proved the following

theorem:

Theorem 6.1.4 (Kato, 1987). Let A ={H;: i =0,1,--- ,k} be an arrangement
of lines in CP? such that any line contains a point of multiplicity at least 3. Let
m; € Z~1 and put D := Zfzo m;H;. Then there exists a finite Galois covering of CP?
branched D.

Kato also describes the resolution of singularities of the covering surfaces, and
this resolution is compatible with the blowing-up of points of multiplicity > 2
of the branch locus. There is a generalization of the Kato’s theorem to quadric

arrangements given by Namba (1987).

Theorem 6.1.5 (Theorem 1.5.8, Namba (1987)). Let k > 2 and Q1,Q», - Qk be
irreducible quadrics in CP?. Assume that, for every Q; there is another Q j such that
they have two tacnodes. Then for any positive integers my,my,--- ,my greater than

1, there is a finite Galois covering ¢ : M — CP? which branches at D = Zi-;l m;Q;.

Another extreme example is the Oka curve. For co-prime integers p and g, Oka
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(1975) constructed the following irreducible curves

C;q:x”—yq:O c C?

(6.1.7)
Cog: (XP Y91+ (Y1479 =0 CCP?
and observed that
i (C*\Cy,) = (a,b]| a’ =b7) (6.1.8)
and
0 (CP2\ G ) = (a,b| a’ =b! = 1)~ 7,7, (6.1.9)

with free commutator subgroup F(,_1),—1) of rank (p —1)(g —1). In his Ph.D.

q—1
thesis, Uludag (2000) proved the following theorem.
Theorem 6.1.6 (Corollary 6.1.1, Uludag (2000)). If C, 4 is an Oka curve, then for

any m > 1, there exist a finite Galois covering of CP? branched at mCp.g.

Given a projective manifold X, which groups can appear as the Galois group of

a branched covering of X ? This question has the following solution.

Theorem 6.1.7 (Namba (1991)). (i)For any projective manifold X and any finite
group G, there is a finite branched Galois covering M — X with G as the Galois
group. (ii) For n > 2 there exists a covering of the germ (C",0) with a given finite

Galois group.

6.2 Orbifolds

6.2.1 Transformation Groups

An action of a topological group G on a space M is a (continuous) map G X M —
M, denoted by (g,z) — gz, so that g(hz) = (gh)z and 1z = z for all g,h € G and
z € M. In the sequel, it is written G ~ M to mean that G acts on M. Given z € M,

G,:={g € G| gz =z} is the isotropy subgroup (or stabilizer subgroup) of G and
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G(z) :={gz€ M| g € G} is the orbit of z. The action is free if G, = {1}, for all
z € M, and it is transitive if there is only one orbit. Given z € M, the natural map
G/G, — G(z) defined by gG, — gz is a continuous bijection. The orbit space M/
G is the set of orbits in M endowed with the quotient topology. A slice at a point
Z € M is a G -stable subset U, so that the map G xXg, U, — M is an equivariant

homeomorphism onto a neighborhood of G(z).

Suppose, G is a discrete group, M a Hausdorff space and G ~ M. The G-action
is proper if given any two points z1,z2 € M, there are open neighborhoods U of z;

and V of z5 so that gU NV # 0 for only finitely many g.

Lemma 6.2.1. A G-action on M is proper if and only if M /G is Hausdorff, each
isotropy subgroup is finite, and each point z € M has a slice, i.e., there is a G,-

stable open neighborhood U, so that gU,NU, =0 for all g € G\ G..

If G is a discrete group acting on a topological space M, the action is properly
discontinuous if for any point z € M, there is an open neighborhood U of z in M,

such that the set of all g € G for which gU NU # 0 consists of the identity only.

Let M be a connected complex manifold. By a transformation group, we shall
mean a pair (G,M), where and G is a group of holomorphic automorphisms of M
acting properly discontinuously, in particular for any z € M the isotropy group G, is
finite. The most important example of a transformation group is (G,M) , where M is
a symmetric space such as the n-ball B,. Let (G,M) be a transformation group and
X its orbit space with the projection ¢ : M — X. The orbit space X is an irreducible

normal analytic space endowed with a B-map defined as

B@XGX—>|G2| €Z>O,

where z € @~ !(x). In dimension 1, the orbit space is always smooth. In higher

dimensions, X may have singularities of quotient type.
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Let (G,M) be transformation group with the orbit space X and orbit map @ :
M — X, and put

Ro:={zeM| |G| >1} and By:={xecX| Bo(x)>1}.

Let X := X \ Sing(X) be the smooth part of X, x € X and z € ¢! (x). Let M, be the
germ of M at z and X, the germ of X at x. Then G, acts on M;, and the orbit space
X,. Since |G,| is finite and X, is smooth, then the orbit map of germs @, : M, — X,
is a finite Galois covering branched along By . Therefore, one can define the local
branch divisor Dy .. The local branch divisors patch yield a global branch divisor

Dy := ) ;m;H; supported by By, where H; are the irreducible components of By.

On the other hand, since M; is a smooth germ, it is simply connected. Hence @,
must be the universal covering branched at Dy . in other words the Galois group of

@, is G, ~ ¢"’(X, Dy),. In particular one has

B(x) = |G| = |1 (X,Dg)x| (6.2.1)

What is said above is in fact true for a singular point x € X. For simplicity, assume
that x ¢ By. Since M is a smooth germ it is simply connected and thus @, must be

universal.

6.2.2 PB-Spaces and Orbifolds

Recall that a transformation group (G, M) induces a B-map on its orbit space X.
Conversely, let X be a normal complex space and 3 a map X — Z~. The pair (X, )
is called a B-space. The basic question related to a B-space is the uniformization
problem: Under what conditions on a B-space (X,[), does there exist a (finite)
transformation group (G,M) equipped with the orbit space X and the orbit map

¢ : M — X such that 3 = B,? In case such a transformation group (G, M) exist, it is
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called a uniformization of (X,p) and (X, ) is said to be uniformizable. Moreover,
if G is abelian then (G, M) is called an abelian uniformization. Observe that these

definitions can be localizable.

Definition 6.2.2. A locally finite uniformizable -space (X, B) is called an orbifold.
The space X is said to be the base space of (X, ), and (X, ) is said to be an orbifold
over X. The set, {x € X | B(x) > 1} is called the locus of the orbifold.

Orbifolds (X,B) and (X', ') are said to be equivalent if there is a biholomorphism

€ : X — X' such that the following diagram commutes.

X £ X'
N
Zi~0

The product of B-spaces (X1,B1) and (X2, B2) is the B-space (X; x Xz,B), where
B(x,y) := B1(x)Ba(y). If (X;,B;) is uniformized by (G;,M;) for i = 1,2, then the
product orbifold is uniformized by (G, M) x (G2, M3).

Let (X,B) be an orbifold. Then by locally finite uniformizability, its locus Bg =
{x € X | B(x) > 1} is a locally finite union of hypersurfaces H;,Ha,---, and 3 must
be constant along H; \ (Sing(B) U Sing(X)). Let m; be this number and put Dg :=
Y.im;H;. The orbifold fundamental group of (X, 3) is defined that of the pair (X, Dg),

that is the group
Tc(l)rb(Xa B) = J.l:l(X \BB)/ < lullnl 7:“3127 Tt uukmk >, (622)

where y; is a meridian of H; and “<>>” denotes the normal closure.
Lemma 6.2.3 (Uludag, 2007). If (X, B) is an orbifold, then B(x) = |Jt(1”b (X, B)x| for
any x € X.

Proof. Let x € X. Since (X,PB) is an orbifold, the germ (X,f), admits a finite

uniformization. Hence there is a unique transformation group (G, M_) with (X, ).
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as the orbit space such that By_ = by, where ¢, : M; — (X,P), is the quotient map

and @, ! (x) = {z}. By Lemma 6.1.2, one has the exact sequence
0 — w1 (M) — 1™ (X,B)x — G — 0

Since M. is smooth, it is simply connected, so that G, ~ 7{"”(X, ). Hence B(x) =

|G,| = n™ (X, B)x| for any x € X. O

Let (X, ) is an orbifold and Dg = YX_, m;H; be the associated divisor. By Lemma
6.2.3, B function is completely determined by Dg. In other words, the pair (X ,DB)
determines the pair (X, ). On the other hand in dim> 2 most pairs (X,D) do not
come from an orbifold. The local uniformizability condition puts an important
restriction on the possible pairs (X,D), in particular local orbifold fundamental
group of (X,D) must be finite. In dimension 2, this later condition is sufficient for
local uniformizability, since by a theorem of Mumford (1961), a simply connected
germ is smooth in dimension 2. This is no longer true in dimension > 3 (see

Brieskorn (1966) for counter examples).

Theorem 6.2.4 (Uludag, 2007). In dimension 2, (X,B)y is an orbifold germ if and
only if 1y (X, B)y is finite.

Proof. (X,B)x is an orbifold germ then by the definition of orbifold germ, clearly
9" (X, B), is finite. Conversely, if ©{"”(X, ), is finite then its universal covering is
a finite covering by a simply connected germ. In dimension two, a simply connected

germ is smooth by Mumford (1961)’s theorem. U

To understand uniformization problem, let us consider the following examples:

Example 6.2.5. Let pg, p1,-- -, px be k+ 1 distinct points in CP! and let mg,my,-- -,
my be positive integers. Let B : CP! — Z- be the function with B(p;) = m; for
i=0,1,---,k and B(p) = 1 otherwise. Around the point p;, the B-space (CP!,B)
is uniformized by the transformation group (Z,,,, C). Hence, (CP!, B) is an orbifold.

Theorem 6.1.3, completely answers the question of uniformizability of these orbifolds.
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Example 6.2.6. Let p,q be two positive integers and consider the germ (C2,B)o,

where
( p

pg (x,y)=(0,0) ‘ q
Bx,y)=<{p x=0,y#0

q x#0,y=0
\

Put H; = {x = 0} and H, = {y = 0}. The group mt;(C?\ (H; UH,))y is the free
abelian group generated by the meridians of H; and H; so that ©"”(C?,B)o ~ Z, ®
Z, is finite. This is indeed an orbifold germ, the map (C? — C?) defined by (x,y) —

(xP,y7) is its uniformization.

Example 6.2.7. Let p,q,r be three positive integers and consider the germ of the
pair (C2,D)o, where D = pHy +qHy +rH;, Hy = {x =0}, H = {y =0} and H3 =

{x—y=0}.
p

q
A~
One has 7ty (C?\ (HYUHy UH3)) ~ (up, o, 13 | [ui, uipouz] = 1, i =1,2,3), where g

is a meridian of H; fori =1,2,3 (See Theorem 5.10.1). Therefore, the local orbifold

fundamental group admits the presentation

7" (C?,D) =~ (uy, o, 103 | (i tinpons) = 1 = =1 = 1, i =1,2,3).

This group is a central extension of the triangle group and is finite of order 4p~—2
ifp:=1/p+1/q+1/r—1 >0, infinite solvable when p = 0 and “big” otherwise.
Hence (C?,D)o do not come from an orbifold germ if p < 0. For p > 0 it comes
from an orbifold germ and it is uniformizable. In this case the triple (p,q,r) is
one of (1,m,m), (2,2,m), (2,3,3), (2,3,4), (2,3,5) and the order of corresponding

orbifold fundamental groups are m?, m?, 144, 576, 3600, respectively.

Let (X,B) be an orbifold and let Dg be the associated divisor. Recall that the
group 19" (X, B) is the group n§"* (X, Dg). If & : 1y"?(X,B) — G is a surjection onto
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a finite group G with Ker(@) satisfying the branching condition, then there exist a
Galois covering ¢ : M — X branched at Dg, where M is a possibly singular normal

space.

Lemma 6.2.8 (Uludag, 2007, Lemma 2.3). Let (X, B) be an orbifold, and ¢ : M — X
a Galois covering branched at Dg. Then M is smooth if and only if By = B.

Proof. For any x € X there is the induced branched covering of germs @, : M; — X,,
where z € ¢! (x). The germ M, is smooth if and only if @, is the uniformization map
of the germ (X, )y, which is the universal branched covering and has 79" (X, B)
as its Galois group. In other words, M, is smooth if and only if G, ~ n?’b (X,B)x if

and only if By(x) = |G| = [n{" (X, B)x| = B(x). H

For a point x € X, there is a natural map 1, : 7¢"’(X,B), — 7"”(X,B) induced
by the inclusion T"?(X ,Dg)x — (X ,Dg). The group G is the image of the
composition map

got: 1y (X,B)x — (X, B) — G.

Theorem 6.2.9 (Uludag, 2007, Theorem 2.4). Let &: 19" (X,B) — G be a surjection
and let @ : M — X be the corresponding Galois covering of X branched along Dyg.
The pair (G,M) is a uniformization of the orbifold (X, B) if and only if for any x € X,

the map Eot, : 18" (X ,B)x — G is an injection

Proof. One has By = B if and only if for any x € X and z € ¢! (x) the image G, of
€ o1, is the full group " (X, B),. The result follows from Lemma 6.2.3. O

The Theorem 6.2.9 may fail in higher dimensions (see Brieskorn (1966) for

counter examples). So, we will mostly consider orbifolds in dimension 2.

Recall that an orbifold germ (X, ), is a germ that admits a finite uniformization
by a transformation group (G,,M;), where M, is a smooth germ and G, is finite
group acting on M, and fixes z. According to a classical result of ?, any orbifold

germ (X,P), is equivalent to the quotient of the germ Cfj by finite subgroup of
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GL(n,C). In other words, any orbifold germ (X, ),. In dimension 2, Yoshida (1987)
observed the following fact: If H C GL(2,C) is a reflection group with a non-
abelian PG, then among the reflection groups with the same projectivization there is
a maximal one G containing H. Every reflection group K with PK = PG is a normal
subgroup of this maximal reflection group. This means, the germ C? /K is a Galois
covering of C?/G. If G is maximal reflection group, then the quotient C?/G is the
orbifold (C?, pX +qY +rZ) for some (p,q,r) with % + 611 + % —1>0,where X,Y,Z
are the lines meeting at the origin. Hence, any orbifold germ with a smooth base is
a covering of the germ (C2, pX + qY + rZ). The following result characterizes the

germs with a smooth base.

Theorem 6.2.10 (Kato, 1987). In dimension 2, all orbifold germs with a smooth
base are given in the in the Figure 6.1 and Table 6.1.

+ % >6 x M %

Flgure 6.1 Orblfold germs.

Table 6.1 Orbifold germs and corresponding branching conditions and the order of
corresponding orbifold fundamental groups.

Equation Condition Order

Figure 6.1a Xy — pPq
Figure 6.1b | xy(x+y) 0<p ::[l)—l—é—l—%—l 4p~2
Figure 6.1c | x"—y" | gcd(n,m) =1, O<p::%+}l—l—%—l 45,;2

: 2o 1, 1,1 4~
Figure 6.1d | x“—y O<p.—p+q+n 1 -
Figure 6.1e | y(x*> —y*") 0<p;:%+611+%_1 $
Figure 6.1f | y(x* —y") nis odd 2nq®
Figure 6.1g | x(x* —y?) — 96

Solutions to Conditions in Table 6.1 (including the equality) are as in Table 6.2.
In case of p = 0, we will obtain the orbifold germs with cusp points and the orbit

space M /G admits a compactification by considering pairs (X, ) with extended P



Table 6.2 Solutions to the conditions in Table 6.1 together with the case equality.
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’ Condition \ Solution \ Condition \ Solution
(p,q,r) Order (p,q,r) Order
(2,2,n),n € Z~ | 4n* (2,3,6) oo
1,11
p=l4l4l 150 [(233) 144 | p=0 2,4.4) |
(2,3,4) 576 (3,3,3) oo
(2,3,5) 3600
(p,n,m) Order (p,n,m) | Order
(2,2,a), ac -
7, is odd 2a (6,2,3)
pr=t4i+r—1>0 (2,3,4) 48 p=0
gcd(n,m) =1 (2,3,5) 240 ged(n,m) =1
(3,2,3) 24
(3,2,5) 360
(4,2,3) 96
(5,2,3) 600
(p,q,n) Order (p,q,n) Order
(2.2.a),a€Z-1 | 4a (2,3,6) | =
(2,a,2),a € Z~ | 2a* (2,4,4) oo
2,3,3) 48 (2,6,3) | =
L (2,3,4) 144 (3,3,3) oo
p5:;+5+5*1>0 (2,3,5) 720 p=0 (3,6,2) ©o
(2,4,3) 192 (4,4,2) o
(2,5,3) 1200
(3,3,2) 72
(3,4,2) 288
(3,5,2) 1800
(p,q,n,r) Order (p,q,n,r) | Order
p::l_|_l_|_L_1>() (2,3,2,2) 288 p:0 (2,3,2,3) o
p T g nr (2,2,a,b), dab? (2,3,3,2) | oo
a,b el e
(2,4,2,2) | oo

functions with values in NU {e}. In case M = B, and G is a finite volume discrete

subgroup of Aut(B,), for smooth X, a classification of ball cusp points was given

in (Yoshida, 1987). Any such germ is a covering of one of the germs (C2, pX +

qY +rZ)o with p = 0 and (C?,2H; + 2H> + 2H; + 2Hy)o, where H;’s are smooth

branches meting transversally at the origin. We will study the covering relations

among orbifold germs in Section 6.2.3.
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6.2.3 Sub-orbifolds and Orbifold Coverings

Let (X,B) be an orbifold. An orbifold (X,[’) is said to be suborbifold of (X, )
if B/(x) divides B(x) for any x € X.

Let ¢ : Y — X be a uniformization of (X, ). Define the function o : ¥ — N by

“O) = o0

Then ¢: (Y,a) — (X,P) is called an orbifold covering, and (Y, ) is called the lifting
of (X,P) to the uniformization of (X,p’). The exact sequence of Lemma 6.1.2 can

be generalized to the following commutative diagram:

Remark 6.2.11. The branching conditions in Table 6.1 of orbifold germs are related
with covering relations among orbifold germs. For example, suppose we have the
germ A := (C?,B)o associated with the divisor D = pH) + gH, + nHz, where Hy =
x+y=0,H,=x—y=0and H3 = y=0. M := (C2,p")o = (C?,nH3)o is a sub-
orbifold of A and its uniformizer is @1, : (x,y) — (x,)"). Denote by Hj the lifting
@ p(H) = {x+y" = 0} and by H} the lifting ¢, (H2) = {x —y" = 0}. If one
denotes B := (C2,at)o = (C2, pH| + qH})o, which is the germ in Figure 6.1d, then

he has a covering @ , : B — A and the exact sequence
1 -y (B) - 1y (A) — Z, — 1.

Therefore [ (B)| = Ln™(A)| = %(% + é +1—1)72 and the uniformizability
condition of Bis p := 1; + 5 + % —1>0(and p > 1 for singular base ).
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6.2.4 Covering Relations among Orbifold Germs
6.2.4.1 Coverings of the Abelian Germs

The local orbifold fundamental group of the germs (C2, pX +¢Y ) is isomorphic
to the the abelian group Z, ® Z,, where X = {x =0} and Y = {y = 0}. Any smooth
sub-orbifold of this orbifold is of the form (C2,rX + sY)o, where r|p, s|q and r,s €
Z>1. This latter orbifold germ is uniformized by C via the map @, : (x,y) € C? —
(x",y*) € C? with Z, @ Zj as its Galois group. The lifting of (C2, pX + q¥ )y to this

uniformization is the orbifold (C?, £X + 1Y ),.

6.2.4.2 Coverings of the Dihedral Germs

Consider the dihedral germ (C?,2X +2Y +mZ) in Figure 6.1b, where X = {x =
0}, Y ={y=0} and Z = {x —y = 0}. In the Theorem 5.10.1 we have computed
the local fundamental group of complement to pencil of m-lines in C2. By using the

presentation of G3 3 we get the triangle group

(i, po,3 | (i papopn ) = =15 =1t =1, i=1,2,3)

of order 4m? as the orbifold fundamental group of the germ (C?,2X + 2Y + mZ)y.
This group acts on C? and the branch divisor is the dihedral germ. Now we will
discus the coverings of the dihedral germ. Due to oddness or evenness of m we have

two cases:

1. If m is an odd number, then (C2,2X)g, (C2,2Y)o, (C2,mZ)o, (C?,2X +2Y)o,
(C?,2X +mZ)y and (C?,2Y +mZ), are its sub-orbifolds. Each one of these
sub-orbifolds is uniformized by Cg via a cyclic map @, 4 : (x,y) — (x?,y7) and

note that Q5,0 @, 4 = Qrp.sq-

a. Consider the sub-orbifold (C?,2X ) whose uniformizer is the map Q1. If
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we denote the branch @, 1(Y) = {y = 0} by ¥ and the branch ¢, | (Z) =
{x? —y=0} by W, then

021 : (C2,2Y +mW)o — (C2,2X +2Y +mZ),

is an orbifold covering. Note that, @ > is a covering map of (C2,2Y +mW)o
and one has Z' := ¢, (W) = {x* —y? = 0}. By setting Z| = {x+y = 0}

and Z, = {x —y = 0} one gets the covering
P22=0210012: (Cz,mzl)o = ((Cz,mZi —|—mZ§)0 — (C2,2X—|—2Y—|—mZ)(),

which is related to covering of the dihedral germ by the uniformizer of its
sub-orbifold (C?,2X +2Y)o.

On the other hand, if one would have changed the coordinates by the map
c: (x,2) = (x,x—y), then ™!
orbifold (C?,2X)o. In this case, denote by Z the branch 9, 1(2)={z=0}

and by V the branch @, | (¥) = {x> —z=0}. Then

o @,,1 would be the uniformizer of the sub-

o oy (C%2V 422Z)¢ — (C%,2X 4-2Y +mZ)g

is an orbifold covering. Note that, @ ;, is a covering map of ((CZ, 2V +mZ)o
via its sub orbifold (C?,mZ)o. Denote by Y’ the lifting (p]_}n(V) = {x* -

7" =0} of V. Then one has the covering,
6o =1"0021001,: (C*2Y") — (C*,2X +2Y +mZ)o,

which is related to covering of the dihedral germ by the uniformizer of its

sub-orbifold (C?,2X +mZ).

. Coverings of the dihedral germ (C?,2X + 2Y +mZ) via its sub-orbifold
(C?,2Y)g is similar to the case 1.a. It is enough to interchange the roles of

X and Y to see such coverings.
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c. Consider the sub-orbifold (C?,mZ)q and change coordinates by the map

6: (x,z7) = (x,x —y). Then it is clear that the sub-orbifold (C?,mZ)y is

uniformized by 6! 0 @y ,,,. Denote the branch (pfil (X)={x=0} by X and
the branch (plfli(Y) ={x—7" =0} by V. Then

6 o, (C*2X +2V) — (C2X +2Y +mZ),

is an orbifold covering. Note that, @, 1 is a covering map of (C2,2X +mV)g
via its sub orbifold (C2,2X)o. Denote by ¥" the lifting @5 | (V) = {x> — " =

0} of V. Then one has the covering,
o lo@m=06"lo@ o0 (C%2Y" )y — (C%,2X +2Y +mZ)o,

which is related to covering of the dihedral germ by the uniformizer of its
sub-orbifold (C?,2X +mZ)y. On the other hand, if one would have changed

1

the coordinates by the map T: (z,y) = (x —y,y), then 7' 0 ¢,,; would

be the uniformizer of the sub-orbifold (C2,mZ)o. In this case, denote the
branch @ ! (Y) = {y =0} by ¥ and the branch ¢ (X) = {y+7" = 0} by
U. Then

T o@u1: (C32U +2Y)o — (C%,2X +-2Y +mZ)o

is an orbifold covering. Note that, @; 5 is a covering map of (C2,2U +2Y)o
via its sub orbifold (C?,2Y ). Denote by X’ the lifting (pl_é(U )={x*—7"=

0} of V. Then one has the covering,
T o@ua=1"'o@u10012: (C%2X") — (C,2X +2Y +mZ)o,

which is related to covering of the dihedral germ by the uniformizer of its

sub-orbifold (C?,2Y + mZ)y.

d. The uniformizer of the sub-orbifold (C2,2X +2Y ) is the map (@22 and one



162

has the covering
@22 (C1Z') — (C?,2X +2Y 4+ mZ)o,

where the branch Z' = ¢, 1(Z) = {x> —y* = 0} is the lifting of the divisor
Z by ¢2.

e. Consider the sub-orbifold (C2?,2X +mZ)y and change the coordinates by
the map 6: (x,z) = (x,x—y). Then X ={x =0}, Y ={x—2z=0}, Z=
{z=0}, and the map @, : (x,z) — (x?,2"™) is the uniformizer of (C?,2X +

mZ)o. Then one has the covering
6 oy (C2Y)g — (C2,2X +2Y +mZ)o,

f. Covering of the dihedral germ (C2,2X 4 2Y + mZ) via its sub-orbifold
(C?,2Y +mZ)g is similar to the case 1.e. It is enough to interchange the

roles of X and Y to see this covering.

In case of m is an odd prime, to see all of covering relations above see Figure
6.2. If m is odd but not prime, then it has prime factorization which induces
factorization of covering relations of dihedral germ. We have omitted to explain
such factorizations but exhibited in Figure 6.3. In both cases we have omitted

the change of coordinate maps in these figures.
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Figure 6.2 Coverings of the dihedral germ (C?,2X +2Y +mZ)o, where m is an odd
prime.

(a)

Figure 6.3 Coverings of the dihedral germ (C?,2X 4 2Y +mZ),, where m = ab
and a,b are odd primes.

2. If mis even, say m = 2¥n, where n is odd. Then |1 (C?,D)o| = 2%*2n? and
the sub-orbifolds are (C2,2X)g, (C2,2Y)o, (C2,2X +2Y)o, (C?,2X + nZ)o,
(C2,2Y +nZ)o, (C%,2X +25Z)0, (C?,2Y +25Z), (C%,2X +2nZ)y, (C?,2Y +
2nZ)o, where s=1,--- k.
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a. For the sub-orbifolds (C2,2X)g, (C?,2Y)g, (C?,mZ)g and (C2,2X +2Y)o,

the lifting and uniformization of the dihedral germ are the same as in cases
l.a., 1.b., 1.c. and 1.d., respectively.

b. Consider the sub-orbifold (C?,2X +nZ)o. For simplicity, let us first change
the coordinates by 6 : (x,z) = (x,x—y). Then X = {x=0},Y = {x—z=0}
and Z = {z = 0}, and the map @2, : (x,z) — (x*,2") is the uniformizer of
(C?,2X 4 nZ)o. Denote the branch (pz_rll(Y) ={x*~7"=0} by V, and the
branch (p;rll(Z) = {z=0} by Z. Then,

o logy,: (C32y +252)y — (C%2X 4-2Y +mZ)o

is an orbifold covering. Note that the branch Y’ is smooth for n = 1, and it is
a cusp of (2,n)-type for other odd n’s. Denote by Y’ the lifting (pl_ék(V) =
{x* — 7" =0, m = 2%n} of V via the uniformizer of (C?,2€Z)o. Then one

has a covering
o ! OPy ;= o lo 2,100 5k : (C2,2Y")g — (C?,2X +2Y +mZ)o.

c. Coverings of the dihedral germ (C2,2X +2Y +mZ) via the uniformizer of
its the sub-orbifold (C2,2Y 4 nZ)y is similar to the case 2.b. It is enough to
change the roles of X and Y to see such coverings explicitly.

d. Consider the sub-orbifold (C?,2X 4 2°Z)¢, s = 1,2,...,k. For simplicity,
let us first change the coordinates by the map 6 : (x,z) = (x,x —y). Then
X={x=0},Y ={x—z=0}and Z = {z=0} and the map @2 »s : (x,2) —

(x2,7%') is the uniformizer of (C?,2X +2°Z)o. Therefore one has the covering
6 Loy : (C*2V 4+255nZ) — (C2,2X +2Y +mZ),,

where V is the lifting @, ,,(Y) = {x> —z% =0} of ¥ by @2 . Since the
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uniformizer of (C2,2¢~5nZ) is @, k-5, then one has the covering
6 oQum=0"" 002200 gy, : (C?,2Y")g — (C*,2X +2Y +mZ),

where Y’ := @) o, (V) = { 2 7" =0, m = 2n} is the lifting of V by
®1 2k=sp-

. Coverings of (C2,2X +2Y +mZ)o by the uniformizer @, of the sub-
orbifold (C?,2Y +25Z) is similar to the case 2.d.

. Consider the sub-orbifold (C?,2X +2°nZ)o and change the coordinates by
6:(xz)=(x—y),then X ={x=0},Z={z=0},Y ={x—z=0}
and the map @, 2s,, is the uniformizer of (C?,2X +2°nZ). Denote by Z the
lifting @5 5,,(Z) and by V the lifting @; 5., (Y) = {x* —z>" = 0}. Then we

have the covering
6 o@yas, i (C2,2V +25752)g — (C2,2X +2Y +mZ),.
Since the uniformizer of (C2,2¥752) is @ o then one has the covering
6 o@am =000, 0@ yis: (C?,2Y")g — (C*,2X +2Y + mZ)o,

where ¥ 1= @ y—(V) = {x? — 7" =0, m = 2*n} is the lifting of V by
@1 2k—sp-
. Coverings of the germ (C?,2X + 2Y +mZ) by the uniformizer of the sub-

orbifold (C?,2Y +2°nZ)o is similar to the case 2.f.

. Note that, Y’ has two components and they are normal crossing two lines if

k =n = 1. Otherwise, set V&l = {x+z2k71" =0}, V&z — {x_zzk”n =0},

k-1,
and change the coordinates by o] : (x1,z) = (”Zz2 ,2), then V(??1 ={x1 =
0} and V), = {x1 — 22 " = 0}. Denote by V;' by the lifting 5 | (Vy),) =
2k=

1 .
{x} =z " =0}, then we have a covering

(04] O(pz’l : ((C72V21)0 — (C,ZY’)().
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If k=1 and n # 1, then clearly V21 is a cusp of (2,n)-type. Now suppose

k> 1and set V1171 = {Xl +Z2k72n = 0}, VII,Z = {xl —szizn = O}’ and Change

K2,

the coordinates by oy : (x2,z) = (xlﬂz2 ,2), then V|| = {x; = 0} and
V1172 = {x1 — 27 = 0}. Denote by V7 by the lifting ¢, %(Vll’z) = {x —
2k—2

" =0}, then we have a covering 0z 0 @21 : (C,2V3)o — (C,2V,)o.
If k=2 and n # 1, then clearly V5 is a cusp of (2,n)-type. Apply this
procedure k — 1 times. If n = 1 then Vzkf1 consists of normal crossing lines.
Otherwise applying the procedure above once again we obtain V2k as cusp

of (2,n) type. Thus we have a covering
010@;10G20¢110~-Oak0@11Z“lZV%b—%((LzYSQ

A similar covering relation is also valid for the orbifold (C,2X"),.

To see coverings of the dihedral germ (C2,2X +2Y +mZ),, where m is even,

see Figures 6.4, 6.5 and 6.6. We have omitted the change of coordinate maps.
Remark 6.2.12. The black dot on top of the Figures 6.2, 6.3, 6.4, 6.5, 6.6 represents
the isolated surface (Du Val) singularity of type A,,—1, given by the equation

Sni=1{(,02) €C? | —x*+y*+7" =0}, m>2.

It is clear that the projection (x,y,z) — (x,y) defines a Z,, orbifold covering by
this singularity of the orbifold (C?,mZ')o. Other coordinate projections define Z,

coverings by the same singularity of the orbifolds (C?,2X") and (C2,2Y")o.
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N/, : .

(2) ®2,1 ¥1,2

(2)

Figure 6.5 Coverings of the dihedral germ (C?,2X +2Y +4Z),.

6.2.4.3 Coverings of the Tetrahedral Germ

Consider the tetrahedral germ (C?,2X + 3Y + 3Z), in Figure 6.1b, where X =
{x=0},Y ={y=0} and Z= {x—y=0}. In the Theorem 5.10.1 we have computed
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(3)

Figure 6.6 Coverings of the dihedral germ (C?,2X +2Y +6Z).

the local fundamental group of complement to pencil of m-lines in C2. By using the

presentation of G3 3, we get the triangle group

(g, s | (i pspom] =i = =, =1, i=1,2,3)

of order 144 as the orbifold fundamental group of the germ (C?,2X + 3Y +3Z)y.
This group acts on C? and the branch divisor of this action is the tetrahedral germ.
The sub-orbifolds of (C2,2X +3Y +3Z)g are (C?,2X )0, (C2,3Y )0, (C2,3Z)o, (C?,2X +
3Y)o, (C?,2X +3Z)o and (C2,2Y + 3Z)o. Now we will discus the coverings of the

tetrahedral germ via uniformizers of its sub orbifolds.

a. The uniformizer of (C2,2X)o is the map @21 : (x,y) — (x?,y). If we denote
the branch (pz_% (Y) = {y =0} by Y and the branch (pz_i (Z) ={x>*—y=0}by
W, then @21 : (C2,3Y +3W)o — (C2,2X +3Y +3Z)y is an orbifold covering.
Now, @ 3 is a covering of (C2,3Y +3W ), and one has Z' = (p]_% (W) = {x* -
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y? = 0}. Then we have the covering
©3=0210013: (C?,37")g — (C?,2X 43Y +3Z),

which is related to covering of the tetrahedral germ by the uniformizer of its
sub-orbifold (C2,2X 4 3Y)o. On the other hand, if one would have changed

the coordinates by the map ¢ : (x,z) = (x,x — ), then ¢!

° 2,1 would be
the uniformizer of the sub-orbifold (C?,2X)o. In this case, denote the branch

(pz_}(Z) = {z=0} by Z and the branch (pz_i (Y) = {x*> —z=0} by V. Then
6l o@y 1 (C?,3V +3Z) — (C?,2X +3Y +32),

is an orbifold covering. Note that, @; 3 is a covering map of (C2,3V +3Z), via
its sub orbifold (C?,3Z),. Denote by Y the lifting @, 1(V) = {x* —z> = 0} of

V. Then one has another covering,
G_l °Pr3 = G_l °P210013: (C2,3Y/)() - (62,2X+3Y—|—3Z)(),

which is related to covering of the tetrahedral germ by the uniformizer of its

sub-orbifold (C?,2X +3Z)o.

. The uniformizer of (C2,3Y)y is the map @; 3 : (x,y) — (x,y?). If we denote by
X the branch (pl_é(X) = {x =0} and by W the branch (pl_é(Z) ={x—y =0},
then (C2,2X +3W)j is a lifting of (C2,2X 4 3Y +3Z)o via @1 3. Now, @21 is
a covering map of (C2,2X +3W ) and one has Z' = (pgi (W) = {x*—y> =0}.

Then we have the covering
023 = Q130021 : (C?2X +3W)g — (C?,2X +3Y 4 32)o,

which is related to covering of the tetrahedral germ by the uniformizer of its

sub-orbifold (C2,2X 4 3Y)o. On the other hand, if one would have changed

1

the coordinates by the map T: (z,y) = (x—y,y), then T~" 0 @; 3 would be the
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uniformizer of the sub-orbifold (C?,3Y ). In this case, denote by Z the branch
(Pl_é(Z) = {z =0} and by U the branch (pl_é(X) = {z+y>=0}. Then

v o3 (C%3U +32) — (C?,2X +3Y +3Z)o

is an orbifold covering. Note that, (C?,3Z)o is uniformized by C3 via @3 ;.
Denote by X’ the lifting @5 ; (U) = {z* +y> = 0} of U. Then one has another

covering,
‘I:_l 033 = ‘I:_l °P130@37: (C2,2X/)() — (CZ,ZX+3Y+3Z)()7

which is related to covering of the tetrahedral germ by the uniformizer of its

sub-orbifold (C?,3Y +3Z)o.

. Coverings of the germ (C2,2X + 3Y +3Z)( by the uniformizer of the sub-
orbifold (C?,3Z)y is similar to the case b. It is enough to change the roles of

Y and Z to see such coverings.

. We know that the abelian germ (C?,2X + 3Y)j is uniformized by C3 via the
map @23 : (x,y) — (x%,5). If we denote by Z’ the branch @, 3(Z) = {x* —y* =

0}, then we have the covering

023 : (C%,37")g — (C?,2X +3Y +32)o.

. After change of coordinates in a suitable way, one can easily see that the
uniformization of the tetrahedral germ due to its sub-orbifold (C?,2X +3Z),

is similar to the case d.

. First let us change the coordinates by a map ©: (z,y) = (x—y,y), then X =
{z+y=0},Y ={y=0} and Z = {z = 0}. We know that the sub-orbifold
(C%,3Y +32Z) is uniformized by C3 via the map @33 : (z,y) — (>,y°). If
we denote by X' the branch @3 1(X) = {23 +y* =0} by X’ then we have the
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3)

Figure 6.7 Coverings of the tetrahedral germ(C?,2X +3Y +3Z),

covering

®33: (CZ,2X/)() — ((CZ,ZX +3Y + 3Z)().

Note that X’ consists of three lines. Set X; = {z+y =0}, Xo = {z+ ©y = 0}
and X3 = {z+ ®”y = 0}, where @ is a third root of unity, then X’ = X; UX> UX;
and (C2,2X’) is the dihedral germ (C?,2X; +2X; + 2X3)o. This tell us that,
dihedral germ appears as a covering of the tetrahedral germ. The coverings of

the dihedral germ has already been explained in Section 6.2.4.2.
Remark 6.2.13. The black dot on top of Figure 6.7 represents the surface
S={(x,y,2) €C}| —¥*+y*+° =0}.

It is clear that the projection (x,y,z) — (y,z) defines a Z, orbifold covering of
the orbifold (C?,2X’)o. Similarly, the coordinate projections (x,y,z) — (x,z) and
(x,y,z) — (x,y) define Z3 coverings of the orbifolds (C?,3Y’)y and (C2,3Z")o,
respectively. The surface § has a D4 singularity at the origin. Indeed, the blow-
up S’ — S is covered by 3 affine pieces, of which I only write down one: consider
C? with coordinates x1,y1,z, and the morphism y : C? — C? defined by x = xz,
y = yi1z and z = z. The inverse image of .§ under y is defined by fi(x1z,x22,2) =

_X%Zz +)’%Z3 +2z+3 = 22f1, where fi(x1,y1,2) = —x% + (y? + 1)z. Here the factor
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7> vanishes on the exceptional (x1,y1)-plane C*> = y~'0: (z = 0) C C, and the

residual component S : (f|(x1,y1,z) = 0) C C? is the birational transform of .S.
Now clearly the inverse image of O = (0,0,0) under  is the y;-axis, and § :
—x? + (y3 4+ 1)z = 0 has ordinary double points at the 3 points where x; =z =0
and y% + 1 = 0. One can check that the other affine pieces of the blowup have no
further singular points. The resolution § — §’ — § is obtained on blowing up these
three points, and the corresponding Dynkin diagram is D4. Because of that § is the

isolated surface (Du Val) singularity of type Dg.

6.2.4.4 Coverings of the Octahedral Germ

Consider the octahedral germ (C2,2X + 3Y +4Z)), where X = {x =0}, ¥ =
{y =0} and Z = {x — y = 0}. Its orbifold fundamental group is the triangle group

(i, | i ppops]) = =w =3 =1,i=1,2,3)

of order 596. This group acts on C? and the corresponding branch divisor is the
octahedral germ. The orbifolds (C?,2X ), (C?,3Y ), (C?,2Z), (C?,4Z)o, (C?,2X +
3Y)o, (C2,2X +22)0, (C%,2X +4Z)0, (C%,3Y +2Z)o and (C?,3Y +4Z)g are its
sub-orbifolds. Let us study the liftings of (C2,2X + 3Y +4Z), due to uniformizers

of its sub-orbifolds.

a. The uniformizer of (C?,2X ) is the map @21 : (x,y) — (x2,). If we denote by
Y the lifting ¢ {(¥) = {y = 0} and by W the lifting ¢; | (Z) = {x* —y =0},
then

02,1 (C%,3Y +4W)o — (C%2X +3Y +4Z)

is an orbifold covering. Now, @ 3 is a covering of (C?,3Y +4W)g and one has

VAES (pf%(W) = {x?> —y? = 0}. Therefore we have the covering

023 (C2,4Z/)0 — (CZ,ZX+3Y+4Z)0,
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which is related to covering of octahedral germ by the uniformizer of its sub

orbifold (C?,2X 4 3Y)o.

On the other hand, if one would have changed the coordinates by the map
6: (x,2) = (x,x—Y), then 6! 0@y | would be the uniformizer of the sub-
orbifold (C2,2X ). In this case, denote by Z the branch 0, 1(Z)={z=0} and
by V the branch (pz_i (Y) = {x* —z=0}. Then

o logy: (C%3V +4Z)y — (C%2X 437 +32),

is an orbifold covering. The sub-orbifold (C2,4Z)y is uniformized by Cj via
@1 4. Denote by Y’ the lifting (p[i(V) = {x* —z* = 0} of V. Then one has

another covering,
G_l 0Pr4 = G_l 0P210Q14: (C2,3Y/)() — (Cz,2X+3Y+4Z)(),

which is related to covering of the octahedral germ by the uniformizer of its

sub-orbifold (C2,2X +4Z)o. Note that (C?,2Z)y is a sub orbifold of (C2,4Z),
and @ 4 = @1 20@1 2. By using this fact one may obtain the factorization o lo
(02,1 0Q12 0@ 2 of the covering o lo 02,1 0 Q1 4. We will omit to explain this

factorization but exhibit in the Figure 6.8.

. The uniformizer of (C2,3Y)y is the map @; 3 : (x,y) — (x,y?). If we denote by
X the lifting @; 3(X) = {x = 0} and by W the lifting ¢, 3(2) = {x —y> =0},

then one has the covering
013 : (C?,2X +4W)o — (C?,2X +3Y 4 42),.

Now, @21 is a covering of (C2,2X +4W ), and one has Z' = (pz_} (W) = {x*—

y? = 0}. Therefore, we have the covering

023 (C2,4Z/)0 — (CZ,2X—|—3Y—|—4Z)0,
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which is related to covering of octahedral germ by the uniformizer of the sub-

orbifold (C?,2X 4 3Y)o.

On the other hand, if one would have changed the coordinates by the map
T: (z,9) = (x—,y), then "' 0 @13 would be the uniformizer of the sub-
orbifold (C?,3Y)o. In this case, denote by Z the branch (pl_é (Z)={z=0} and
by U the branch (pl_é(X) = {z+y* =0}. Then

T o3 (C%2U +4Z)y — (C?,2X +3Y +3Z)o

is an orbifold covering. In addition, the sub-orbifold (C?,4Z) is uniformized
by C3 via @4 1. Denote by X’ the lifting (pZ}(U) = {z*+y*> =0} of V. Then

one has another covering,
! 043 = ! 0P130Q4 7 : (Cz,ZX/)() — (C2,2X+3Y+ZZ)(),

which is related to covering of the octahedral germ via its sub-orbifold (C?,3Y +
4Z). Note that (C2,2Z) is a sub orbifold of (C2,4Z)y and @41 = @210 @2,1.

1

By using this fact one may obtain the factorization T~ 0@ 30@2 1 0@y 1 of the

1

covering T~ 0@y 30 @4 1. We will omit to explain this factorization but exhibit

in the Figure 6.8.

. Now consider the sub-orbifold ((CZ, 27)0, and change the coordinates by a map
6:(x,z)=(xx—y),thenX ={x=0},Y ={x—z=0} and Z= {z=0}. The
orbifold (C?,2Z)j is uniformized by C3 via @ 2 : (x,z) — (x,z%). If we denote
by X, V/ and Z the branches (pf%(X) = {x =0}, (pfé(Y) ={x—7z>=0} and

(pl_é(Z) = {z =0}, respectively, then we have the covering
o o (C%2X +3V/ +2Z)¢ — (C%,2X +3Y +4Z)0.

Taking the lifting of (C2,2X +3V’+2Z)( by @1 2, and setting X := (pl_é(X) =
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{x=0}and V := (p]_é(V/) = {x—z*} we will obtain the covering
6 logia=0"lo@a0012=(C?2X+3V)y— (C?,2X 4 3Y +4Z)o

which is related to covering of the octahedral germ by uniformizer of its sub-
orbifold (C?,2X 4 3Y +4Z)o. So, we will explain further coverings of the
orbifold (C?,2X + 3V in the case d.

Beside this, one may consider the orbifold (C2,2X + 3V’ 4+ 2Z)y which
appeared as a cover of octahedral germ, above. Its sub-orbifold (C2,2X) is
uniformized by C3 via @21 : (x,2) — (x%,2). Setting V" := @, 1(V') = {x* —

2 =0} and Z := ¢, | (Z) = {z = 0}, we have an orbifold covering
o logr=0"lo@ia0021:(C?3V"+22)y — (C*2X +3Y +4Z),,

which is related to covering of the octahedral germ by the uniformizer of its
sub-orbifold (C2?,2X + 2Z)o. Note that (C2,3V" +2Z)y is a tetrahedral germ
and it appeared as covering of the octahedral germ. We will explain further

coverings of (C2,3V" 4 2Z), in the case f.

On the other hand, if one would have changed the coordinates by the map
T: (z,9) = (x—,y), then T~! 0 @21 would be the uniformizer of the sub-
orbifold (C?,2Z)y. In this case, denote by U’, Y and Z the branches 0. (X)) =
{2 +y=0}, (pz_} (Y)={y=0} and (pz_} (Z) = {z = 0}, respectively. Then

T o@y 1 (C22U" +3Y +2Z) — (C2,2X +3Y +3Z)0
is an orbifold covering. Taking the lifting of (C2,2U’ + 3Y +2Z)y by 2.1,
and setting U := 9, 1(U") = {z+y* =0} and Y := ¢, {(Y) = {y = 0} we will

obtain the covering

‘C_l 041 = ‘C_l 0P 10021 = (62,2U+3Y)() — (C2,2X—|—3Y —|—4Z)(),
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which is related to covering of the octahedral germ by uniformizer of its sub-
orbifold (C?,2X 4 3Y +4Z),. So, we will explain further coverings of the
orbifold (C?,2U +3Y)j in the case d.

Beside this, one may consider the orbifold (C2,2U' + 3Y + 2Z)o which
appeared as a cover of octahedral germ, above. Its sub-orbifold (C2,3Y),
is uniformized by C3 via @13 : (z,y) — (z,5°). Setting U" := ¢, '(U’) =
{Z?+y*=0}and Z := (pl_é(Z) = {z =0}, we have an orbifold covering

T lo@s=1"og00153: (C32U" +2Z)g — (C%,2X +3Y +4Z)o,

which is related to covering of the octahedral germ by the uniformizer of its
sub-orbifold (C2,3Y + 2Z)o. We will explain further coverings of (C?,2U" +
27) in the case h.

. Consider the sub-orbifold (C?,4Z)q and change the coordinates by a map G :
(x,2) = (x,x—y),then X ={x=0},Y = {x—z=0} and Z = {z = 0}. Then
it is uniformized by C3 via ¢; 4. Denote by X the lifting (pl_"l1 (X)={x=0}of
X and by V the lifting (pljéll (Y) = {x—z* =0} of Y. Then one has the covering

6 o4 (C%2X +3V)o — (C%,2X +3Y +4Z)0.

Since the uniformizer of (C2,2X)g is @21 : (x,z) — (x?,z), then by setting

Y':= @51 (V) = {x> — z* = 0} we obtain the covering
(5—1 O(p274 = G_l O(P1,4O(Pz,1 . (Cz,3Y/)() — (C2,2X+3Y +4Z)(),

which is related to covering of the octahedral germ by the uniformizer of its

sub-orbifold (C2,2X +4Z).

On the other hand, if one would have changed the coordinates by the map T :
(z,y) = (x—yy), then X = {z+y=0},¥ =y=0,Z={z=0} and t~" oy

would be the uniformizer of the sub-orbifold (C?,4Z)o. In this case, denote by
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U, Y the branches @, | (X) = {z*+y =0} and ¢, 1 (Y) = {y = 0}, respectively.

Then one has the covering
T_l(P471 : (C2,2U—|—3Y)0 — (C2,2X+3Y—{—4Z)0.

The orbifold (C?,3Y)y is uniformized by C3 via @13 : (z,y) — (z,5*). Then

we have the covering
’C*l(p473 = T71¢471 oQ13: (Cz,ZX/)() — (CZ,ZX +3Y +42)o,

which is related to covering of the octahedral germ by the uniformizer of its

sub-orbifold (C?,3Y 4 4Z2).

. The uniformizer of (C2,2X + 3Y)o is the map @23 : (x,y) — (x%,y°). If we
denote by Z' the branch @5 3(2) = {x?> —y3 = 0}, then (C?,4Z') is a lifting of
(C2,2X +3Y +4Z), via ¢2,3 and we have the covering

023 : (C?,47)9 — (C*,2X +3Y +42),.

. Consider the sub orbifold (C?,2X +2Z) and change the coordinates by a map
o:(x,z) =(x,x—y). Then X ={x=0},Y ={x—z=0} and Z = {z =0},
and the uniformizer of (C2,2X +2Z)o is the map @25 : (x,z) — (x?,2%). If we
denote V" the branch (pz_;(Y) = {x* — 7> =0} and Z the branch (pz_; (Z)={z=

0}, then one has the covering
o lo@an: (C?3V"4+27)y — (C?2X 4 3Y 4 42),.

Note that V" consists of two lines through the origin and the germ (C2,3V" +
27) is tetrahedral. We have already study the coverings of tetrahedral germ in

the Section 6.2.4.3. On the other hand, the sub-orbifold (C2,2Z), of (C2,3V" +
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2Z)o is uniformized by C3 via @1 5 : (x,z) > (x,z%). Then we have the covering
@12 (C,3Y")g — (C*,3V" +2Z),,
which naturally induces the covering
o logua=0"lo@uoqa: (C?3Y ) — (C?2X +3Y +42)o,

where Y/ = (pl__é(V”) ={¥*-*=0}.

. Consider the sub orbifold (C?,2X + 4Z), change the coordinates by a map
0:(x,2)=(x,x—y). Then X ={x=0},Y ={x—z=0} and Z = { =0},
and the uniformizer of (C2,2X +4Z) is the map @24 : (x,z) — (x?,2%). If we

denote by Y’ the branch @, ;(Y) = {x?> — z* = 0} then one has the covering

o ! °0P24: (C2,3Y/)0 — (62,2X+3Y—|—4Z)0.

. Consider the sub orbifold (C?,3Y +2Z), and change the coordinates by a map
t:(z,y) = (x—y,y). ThenX ={z+y=0},Y ={y=0} and Z = {z = 0},
and the uniformizer of (C2,3Y + 2Z)o is the map @23 : (z,¥) — (z2,y%). If
we denote by U” the branch ¢, }(X) = {2 +y* = 0} and by Z the branch

©53(Z) = {z = 0}, then one has the covering
T o3 (C?2U" +2Z)0 — (C2,2X +3Y +4Z)o.

The sub-orbifold (C2,2Z) of (C2,2U" +2Z)y is uniformized by C3 via @2 :

(z,) — (z%,¥). Then we have the covering

®2.1: (CZ,ZXI)() — (CZ,ZU”—}-ZZ)(),
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which naturally induces the covering
! 043 = ! o@r30@2 ] : (C2,2X/)o — (C2,2X+3Y—|—4Z)o,

where X' = (pz_j(U”) ={z*+y*=0}.

i. Consider the sub orbifold (C?,3Y +4Z), change the coordinates by a map
T:(z,y) =(x—=yy). Then X = {z+y=0},Y ={y=0} and Z = {z =0},
and the uniformizer of (C2,3Y +4Z), is the map @43 : (x,z) — (z*,3%). If we

denote X’ the branch @, 3(X) = {z* +y3 = 0} then one has the covering

7! 043 (CZ,ZX/)() — (CZ,ZX +3Y +42)o.

Figure 6.8 Coverings of the octahedral germ(C?,2X + 3Y +42),.
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Remark 6.2.14. The black dot on top of Figure 6.8 represents the isolated surface

(Du Val) singularity of type Eg, given by the equation
Fo = {(x,9,2) € C* | —=x* +y> +7* = 0}.

It is clear that the projection (x,y,z) — (x,y) defines a Z4 orbifold covering by this
singularity of the orbifold (C?,4Z')o. Other coordinate projections (x,y,z) — (y,2)
and (x,y,z) — (x,z) define respectively Z; and Z3 coverings by the same singularity

of the orbifolds (C?,2X")q and (C?,3Y")o.

6.2.4.5 Coverings of the Icosahedral Germ

Consider the icosahedral germ (C?,2X + 3Y +5Z)o, where X = {x =0}, ¥ =

{y =0} and Z = {x — y = 0}. Its orbifold fundamental group is the triangle group

(uy, po,u3 | g, i pou3] = u

of order 3600. So, (C?,2X)o, (C?,3Y)o, (C%,5Z)o, (C?,2X +3Y)q, (C%,2X +5Z)0
and (C?,3Y +5Z) are its sub-orbifolds. Let us study the liftings of (C?,2X +3Y +
5Z)¢ due to uniformizer of its sub-orbifolds. Figure 6.9 exhibits all coverings of the

icosahedral germ.

a. The uniformizer of (C2,2X)g is the map @2 1 : (x,y) — (x%,). If we denote by
Y the branch (pz_{ (Y) = {y =0} and by W the branch (pz_% (Z) = {x* —y=0},
then

02,1 : (C%,3Y +5W)g — (C%,2X +3Y +57)

18 an orbifold covering. Now, @1 3 is a covering of (C?,3Y +5W)o and one has

VAR (Pl_é (W) = {x2 —y* = 0}. Then we get the covering

@23 =21 0913 (C*,5Z)g — (C*,2X +3Y +52)o,
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which is related to covering of the icosahedral germ by the uniformizer of its
sub-orbifold (C?,2X +3Y)j.

On the other hand, if one would have changed the coordinates by the map
6: (x,2)=(x,x—y), then X ={x=0},Y ={x—z=0},Z={z=0} and
o lo (2,1 would be the uniformizer of the sub-orbifold ((CZ, 2X)o. In this case,
denote by Z the branch ¢, }(Z) = {z =0} and by V the branch ¢, }(Y ) =
{x* —z=0}. Then

o ! 0@y : (Cz,3V—|—SZ)0 — (C2,2X+3Y—|—52)0

is an orbifold covering. The sub-orbifold (C2,5Z)y is uniformized by C3 via
@15. Denote by Y’ the lifting ¢, 3(V) = {x> — 2> = 0} of V. Then one has

another covering,

6 logrs=0""ogy10015: (C*3Y)g — (C*,2X +3Y +5Z),
which is related to covering of the icosahedral germ by the uniformizer of its
sub-orbifold (C?,2X 4 5Z)o.

. The uniformizer of (C2,3Y)q is the map @; 3 : (x,y) — (x,y?). If we denote by
X the branch (pl_é(X) = {x=0} and by W’ the branch (pl_é(Z) = {x—y’=0},
then then

013 (C%,2X +5W")9 — (C%,2X 4-3Y +5Z)0

is an orbifold covering. Now, @5 1 is a covering of (C?,2X +5W’) and one

has Z' = @, 1 (W') = {x?> — y> = 0}. Then we get the covering
023 = Q130021 : (C*,5Z')9 — (C*,2X +3Y +5Z)o,

which is related to covering of the icosahedral germ by the uniformizer of its

sub-orbifold (C?,2X +3Y)j.

On the other hand, if one would have changed the coordinates by the map
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T: (z,y) = (x—y,y),then X ={z+y=0}, Y ={y=0},Z={z=0} and
1o @13 would be the uniformizer of the sub-orbifold (C2,3Y)o. In this case,
denote by Z the branch (pf%(Z) = {z =0} and by U the branch (pfé(X )=
{z+y*>=0}. Then

v o@3: (C?2U +5Z)9 — (C*,2X +3Y +52)

is an orbifold covering. The sub-orbifold (C2,5Z)y is uniformized by C% via
@s,1. Denote by X' the lifting (ps_i(U) = {z>+y> = 0} of V. Then one has

another covering,

T o@ss =10 3005 : (C*2X )y — (C?,2X +3Y +52Z)o,
which is related to covering of the icosahedral germ by uniformizer of its sub-
orbifold (C2,3Y +52)o.

. Consider the sub-orbifold (C2,5Z), and change the coordinates by a map o :
(x,z) = (x,x—y). Then X = {x =0}, Y ={x—z=0} and Z = {z = 0}. The
uniformizer of (C?,5Z)o is the map @y 5 : (x,z) — (x,z°). If we denote by X
the branch (pl_é(X) = {x =0} and by V the branch (pl_é(Y) ={x—2 =0},

then we have an orbifold covering
o lo@s:(C?2X +3V)g — (C?2X +3Y 4 52)o.

Now, ¢,,1 is a covering of (C2,2X +3V), and one has Y’ = (pE}(V) = {x* —

2> = 0}. Hence we have the covering
6 ogrs =060 5002 : (C*3Y")g— (C*2X +3Y +52)o,

which is related to covering of the icosahedral by the uniformizer of its sub-

orbifold (C?,2X + 5Z)y.

On the other hand, if one would have changed the coordinates by the map
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T: (z,y) = (x—y,y),then X ={z+y=0}, Y ={y=0},Z={z=0} and
11 o @s,; would be the uniformizer of the sub-orbifold (C2,5Z)o. In this case,
denote by U’ the branch ¢ | (X) = {z3+y =0} and by Y the branch g5 | (V) =
{y =0}. Then

v o@s: (C%,2U0" +3Y) — (C%,2X +3Y +5Z)0

is an orbifold covering. The sub-orbifold (C2,3Y)y is uniformized by C(Z) via
@1 3. Denote by X' the lifting ¢, 3(U’) = {z° +y> = 0} of U’. Then one has

another covering
T o@ss =105 00151 (C*2X )y — (C?,2X +3Y +52Z)o,

which is related to covering of the icosahedral germ by the uniformizer of its

sub-orbifold (C?,3Y 4 52).

. The uniformizer of (C2,2X + 3Y)o is the map @23 : (x,y) — (x%,y°). If we

denote by Z' the branch @5 3(Z) = {x?> — y* = 0}, then one has the covering

P23 (Cz,SZ’)O — (C2,2X+3Y—|—SZ)().

. Consider the sub orbifold (C?,2X + 5Z)¢ and change the coordinates by a
map 6 : (x,z) = (x,x —y). Then the uniformizer of (C2,2X +5Z)o is the map
@25 : (x,2) — (x2,2°). If we denote by Y’ the branch (pz_;(Y) ={x* -7 =0},

then one has the covering

o ! °0Qys: (C2,3Y/)0 — ((C2,2X+3Y+SZ)0.

. Consider the sub orbifold (C?,3Y + 5Z)( and change the coordinates by a
map 1T : (z,y) = (x —,y). Then the uniformizer of (C2,3Y +5Z) is the map
©s53: (z,y) — (2°,)%). If we denote by X' the branch @5 3(Y) = {z° +x° =0},
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then one has the covering

7! 0Qs53: ((CZ,ZX/)() — (Cz,2X—|—3Y—|—SZ)().

(5)

Figure 6.9 Coverings of the icosahedral germ(C?,2X +3Y + 5Z),.

Remark 6.2.15. The black dot on top of Figures 6.9 represents the isolated surface

(Du Val) singularity of type Eg, given by the equation
Ey = {(x,9,2) € C*| —=x* +y’ +2° = 0}.

It is clear that the projection (x,y,z) — (x,y) defines a Zs orbifold covering by this
singularity of the orbifold (C2,5Z')o. Other coordinate projections (x,y,z) — (,2)
and (x,y,z) — (x,y) define Z, and Zj3 coverings by the same singularity of the

orbifolds (C?,2X")g and (C2,3Y"), respectively.

6.2.4.6  Coverings of the Other Orbifold Germs with Smooth Base

In this section we will interested in coverings of the orbifold germs with smooth
base and nonlinear branch loci in the Table 6.1. We omit drawing Figures since
they appears as covers of orbifolds with linear branch loci. To see these coverings

explicitly, see Figures 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8 and 6.9.
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First consider the orbifold (C?, pX)o, where X = {x" —y" =0} and p := % +
,ll + % — 1> 0 and ged(n,m) = 1. The possible triples (p,n,m) are listed in

the Table 6.2. As we discussed in Remarks 6.2.12, 6.2.13, 6.2.14, 6.2.15, the

uniformization of the orbifold (C?, pX )y is the surface
S={(x,32) €C}| —x"+y"+/ =0}

and the uniformizer is the Z, covering corresponding to the projection (x,y,z) —
(x,y). Depending on the possible triples (p,n,m) listed in the Table 6.2, § is

an isolated surface (Du Val) singularities of one of the types A, 1, D4, E¢, Eg.

Second, consider the orbifold (C?, pX + gY )¢, where X = {x+y"=0}L Y=
{x—=y"=0}andp:= % + cl, + % — 1> 0. The possible triples (p, g,n) are listed
in the Table 6.2. Notice that (C2, pX + qY)o is a lifting of the orbifold germ
(C?, pH\ + qH, + nH3)o via Q1 : (x,y) — (x,y"), where H; = {x+y = 0},
H, = {x—y =0} and H3 = {y = 0}. Fist of all let us change the coordinates
by amap &: (u,y) = (x+y,y), then we have H; = {u =0}, Ho = {u—2y =0}
and H3 = {y = 0}. From the Sections 6.2.4.2, 6.2.4.3, 6.2.4.4 and 6.2.4.5, we
know all coverings of (C2, pH; +gH, +nHj3)o and so all coverings of the germ
(C?, pX +qY )o. Since the uniformization of the germ (C?, pHy +gH +nH3)o
is the surface § given by the equation —u” + 2y" 4z = 0, returning back to

original coordinates we get
S={(x,3,2) €C}| —(x—y)P +y"+z7=0}

as a universal cover of (C2, pX + gY)o. Depending on the choice of possible

triples (p,q,n), S is an isolated surface (Du Val) singularities of types A, D, E.

Third, consider the orbifold (C?, pX + qY + rZ)o, where X = {x —y" = 0},
_ _ _fy— 11,1 -
Y={x+y"=0}, Z={y=0}and p:= 5+ + ;- — 1 > 0. The possible
quadruples (p,q,r,n) are listed in the Table 6.2. Note that the lifting of this

orbifold via the uniformizer @; ; of its sub-orbifold ((Cz, rZ)o is the orbifold
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(C?, pX' +qY¥")o with X’ = {x —y"} and Y’ = {x+y""}. This is the orbifold
in case (2) for which n is replaced by nr. Therefore, from the case (2) know its

all coverings. Hence its uniformization is the surface
S = {(x7yaz) € (C3 ‘ _(x_y)P ‘H’nr-i—Zq - O}

Depending on the choice of possible quadruples (p,q,r,n), S is an isolated

surface (Du Val) singularities of types A, D, E.

Next, consider the orbifold (C?,2X + g¥)o, where X = {x* —y" =0}, ¥ =
{y =0} and n > 1 is odd. The lifting of (C2,2X + gY¥)o by the uniformizer
@14 of (C?,qY)o is (C?,2X")g, where X’ = {x*> —y"}. Note that X’ is a cusp
(2,nq)-type if g is odd for which it corresponds to case (1), and reducible
if g i1s even for which it corresponds to case (2). Therefore, from the cases
(1) and (2), we know its all coverings. On the other hand, (C2,2X 4+ ¢Y¥)o
covers the orbifold (C2,2H; +ngH, +2H3)o via @2, : (x,y) — (x?,"), where
H, ={x=0}, H, ={y =0} and H3 = {x—y = 0}. Since the uniformizations
of (C?,2H, +ngH, 4 2H3)o and (C?,2X +qY )¢ are same, then the surface

= (29 €| P4y 42=0)

whose isolated surface singularity type is A, D, E, appears as the uniformization

of (C2,2X +q¥)o.

Finally, consider the orbifold (C2,2X +2Y)g, where X = {x =0}, Y = {x* —
y? = 0}. Since its orbifold fundamental group is of order 96, then (C2,2X)j is
its sub-orbifold and @ ; is a uniformizer of (C2,2X),. Denote by Y’ the lifting

@, 1(Y) = {x* —y* = 0}. Then we have an orbifold covering
P21 (Cz,ZY/)o — ((CZ,2X—|—2Y)().

Note that the orbifold (C?,2Y’) is uniformized by a surface of isolated surface
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(Du Val) singularity of type Ejg.

6.2.4.7 Coverings of the Other Orbifold Germs with Singular Base

In this section we will deal with only the covering relations between parabolic
orbifolds with linear branch loci, but illustrate all covering relations containing
parabolic orbifolds with non-linear branch loci in Figures 6.10, 6.10, 6.12 and 6.13.
Note that the orbifold germs in this figures are consistent with the germs in Figure

6.1b, 6.1c, 6.1d and 6.1e. The solutions to condition p = 0 are given in the table 6.2.

1. First consider the orbifold (C2,2X +2Y +2Z+2W ), where the lines X, Y, Z,W
form a pencil at the origin. By the Theorem 5.10.1 and the equation (6.1.2),

the orbifold fundamental group of this germ has the presentation

(a1, o, 3,08 | Japapopn, ) = @t =1, i=1,2,3,4).

This group is infinite but solvable and isomorphic to a discrete subgroup I'
of Aut(C?) (Yoshida, 1987). This germ is uniformized by the transformation
group (I',C?). Since T is infinite but solvable, then many cusp points will

appear in covers of (C?,2X 4 2Y +2Z +2W)j.

Let us study the coverings of this orbifold. For the sake of simplicity we may
choose the coordinates so that X = {x=0},Y ={y=0},Z={x—y=0} and
W = {x+y = 0}. The uniformizer the sub-orbifold (C?,2X)g is ¢2,1. Denote
by ¥ the lifting @} (Y) = {y =0}, by Z' the lifting ¢, | (Z) = {x* —y =0}, and
by W' the lifting ¢, 1(W) = {x* +y=0}. Then we have an orbifold covering

©2.1: (C2,2Y +27' +2W')g — (C?,2X +2Y +2Z +2W)o.

Consider the map @2 and denote by Z” the lifting ¢, 5(Z') and by W” the
lifting @, 3(W') and set Z = {x+y =0}, 2 = {x—y =0}, W}' = {x+iy =0}
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and W)’ = {x —iy =0}. Then Z" = Z{/ UZ), W' = W' UW,’ and we have the

covering
©220=0210012" ((CZ, 271 + 275 + 2w + 2wy )0 — (C2,2X +2Y +2Z42W)o,

which is related to cover of (C2,2X +2Y +2Z +2W) by the uniformizer ¢, >
of (C?,2X +2Y)o. Let us now change the coordinates by & : (u,v) = (x +
y,x—Y), then by rescaling the equations we have Z} = {u =0}, Z}) = {v =0},
W/ = {u+iv=0} and Wy = {u—iv = 0}. Now, @2 : (u,v) — (u*,»?) is
a uniformizer of (C2,2W/’ + 2W,')o. Denote by W,” and W," the branches
(pgé(Wl”) = {u” +iv> =0} and (Pié(Wzﬂ) = {u? — iv* = 0}, respectively. Set
Wi i={u+oiv=0} Wir:={u—oiv=0} Wo :={u+owv =0} Wary:=
{u—ow =0} and W := Wy ; UW; , UW> | UWs, where a? = i. Then W =

{u* +v* =0} and we have the coverings

022 (C22W)y = (C%, Wy g +2Wip+2Wa 1 +2Wa3)o —

(C2,271 + 27 + 2w +2W3)o.

and

022 087! 0P ((CZ,ZW)O — (62,2X+2Y—|—ZZ+2W)0.

Since the uniformization of (C%,2W)g is the surface S = {(u,v,z) € C? |
ut v =272 = 0}, returning back to original coordinates we obtained the

uniformization of the initial orbifold (C?,2X +2Y +2Z +2W)j as
S={(x,5,2) € C* | x* +y* + 6%y — 22 = 0}.

S is the surface of isolated surface singularity type Xo.

On the other hand, notice that the orbifolds (C2,2Zi' +2Z) + 2w/ +2W))o
and (CZ,WM +2W 2 +2W5 1 +2W5 2)p are similar to initial one (See Figure

6.10). By using this fact, one can construct an infinite tower of coverings, i.e,
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many ball-cusp points appears in covers. This is consistent with the solvability

of its orbifold fundamental group.

2 2 2 2 2 2
9 ©2.2 | 9
$1,2 $2,2 $2,1
2 2 1 2 2 2
\(2)/ g — 72 2 oL @)
2

Figure 6.10 Coverings of the germ (C2,2X +2Y +2Z +2W)o.

2. Second, consider the orbifold (C2,3X + 3Y + 3Z)o, where the lines X,Y,Z
form a pencil at the origin. The orbifold fundamental group of this germ is the

triangle group

(Ui, 3 | [spop ) = =1, i =1,2,3).

This group is infinite but solvable and it is isomorphic to a discrete subgroup
I" of Aut(C?), and the transformation group (I",C?) uniformizes this germ.
Since I is infinite but solvable, then many cusp points will appear in covers of
(C2,3X +3Y +32).

Now, let us study the covers of (C2,3X +3Y +3Z)o. For the sake of simplicity
we may choose the coordinates sothat X = {x=0},Y ={y=0},Z={x—y=
0}. The uniformizer the sub-orbifold (C2,3X)o is @3 1. Denote by Y the lifting
(pS_% (Y) ={y =0} and by Z' the lifting (p3_} (Z) = {x* —y = 0}. Then we have

an orbifold covering

@31 : (C2,3Y +37Z')g — (C?,3X 4 3Y 4 32),.
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Taking the lifting of (C2,3Y +3Z')p by @13, one can obtain the orbifold

covering
033 =013003,1 : (C*,3Z] +3Z +375)o — (C?,3X +3Y +3Z),,

where Z!’ are linear components of (pl_é (Z') = {x* —y> =0} (See Figure 6.11).
Hence the uniformization of (C?,3X + 3Y +3Z)y is the surface of isolated
singularity of the type Ps and it is given by the equation 7333 := {(x,y,2) €
C? | x* +y* 4 z° = 0}. This singularity type is also known as elliptic. Because,
the germ at the origin of the isolated surface singularity z3 = xy(x —y) is a
triple covering of the germ ((Cz, 3X +3Y +3Z)o, it is resolved by a blow up

which replace the origin by an elliptic curve.

Furthermore, note that the latest orbifold (C?,3Z} 4 3Z% +3Z7%)o is similar
to (C2,3X + 3Y +3Z)o. This means that there is an infinite tower of coverings

and many ball-cusp points appears in covers.

3

-
-

3 3 303

\/ 3 ©3,1 3 ¥1,3 3)

(3)

Figure 6.11 Coverings of the germ (C?,3X + 3Y +3Z),.

3. Next, consider the orbifold (C?,2X +4Y 4 4Z), where the lines X, Y, Z form

a pencil at the origin. Its orbifold fundamental group has the presentation

(o3 | [uspopn ) =ui =3 =3 =1, i =1,2,3).

This group is infinite but solvable and it is isomorphic to a discrete subgroup I'
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of Aut(C?), and the transformation group (I, C?) uniformizes this germ. Since
I is infinite solvable, then many ball-cusp points appears in the covers of the
germ (C2,2X +4Y +4Z)o. Let us now study its coverings. For the sake of
simplicity we may choose the coordinates so that X = {x =0}, Y = {y =0},
Z = {x —y = 0}. The uniformizer the sub-orbifold (CZ?,2X + 2Y)y is 02,2.
Denote by Y the lifting @, 3(Y) = {y =0} and by W the lifting 9. W2) =
{x? —y> =0}, and set W; = {x —y =0} and W, = {x+y = 0}. Then we have

an orbifold covering
@221 (C2,2Y +4W; +4Ws)g — (C*,2X +4Y +4Z),.

Note that the orbifold (C2,2Y + 4W; + 4W5), is same as the initial orbifold.
(See Figure 6.12). This means that there is an infinite tower of coverings and

many ball-cusp points appears in its covers.

Now, consider the sub orbifold (C?,2X +4Y ) whose uniformizer is ¢ 4.

Denote by Z' the branch @, }(Z) = {x* — y* = 0}, then we have a covering

P24 (62,42/)() — ((C272X+4Y—|—4Z)().

On the other hand, consider the sub orbifold (C2,2Y +2Z), and change the
coordinates by amap t: (z,y) = (x—y,y), then X = {z+y=0},Y = {y =0}
and Z = {z = 0}. Clearly ¢, is the uniformizer of (C2,2Y +2Z)o. Denote
by Y the lifting (pQé(Y) = {y = 0}, by Z the lifting (pEé(Z) = {z=0} and by
U the lifting (pEé(X) = {2 +)y?> =0}, and set X| = {z+iy =0} and X} =

{z—1iy = 0}. Then we have an orbifold covering
—1 . 2 / / 2
T 0@ (C=,2X] +2X, +2Y +2Z)g — (C*,2X +4Y +4Z)y.

Note that (C?,2X] + 2X} + 2Y +2Z)o is the orbifold in the case 1. Take its
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lifting by @22 and set X' = @5 3 (X] UX}) = {z* +y* = 0}. Then one has
1_1([)474 =11 022007 : (Cz,2X,)0 — (C2,2X+4Y+4Z)0,

which is related the cover of ((C2,2X +4Y +4Z), by the uniformizer @44
of the orbifold (C?,4Y +4Z)o. Note that X’ has four linear components and
(C?,2X")g is also the orbifold in the case 1.

As in these examples, there are many other coverings of the orbifold (C?,2X +
4Y +4Z)p, which is is related with other orbifold germs with singular base
via a power map @, : (x,y) — (x",y*). We will omit to derive these covering
relations but exhibit in the Figure 6.12. As it is seen from the coverings above,

the uniformization of the germ (C?,2X +4Y +4Z), is the surface
Toag:={(xy2) €C| —x*+y*+* =0}.

of isolated singularity of the type Xo.

. Finally, consider the orbifold (C2,2X + 6Y + 3Z),, where the lines X,Y,Z

forms a pencil at the origin. Its orbifold fundamental group has the presentation

(o3 | [uspopn, ) = ui =3 = 1§ =1, i=1,2,3).

This group is infinite but solvable and it is isomorphic to a discrete subgroup I"
of Aut(C?), and the transformation group (I", C?) uniformizes this germ. Since
I is infinite solvable, then many cusp points appears in the covers. Let us study
the coverings of (C?,2X 4 3Y 4 6Z),. For the sake of simplicity, choose the
coordinates so that X = {x=0},Y ={y=0},Z={x—y=0}.

The uniformizer the sub-orbifold (CZ,ZX +2Y)g is @22. Denote by Y the
lifting (pz_é(Y) = {y =0} and by W the lifting ¢, ,(Z) = {x> —y> = 0}, and set
Wi ={x+y =0} and Wo = {x—y = 0}. Then we have an orbifold covering

022 (C%,3Y +3W; +WZ,)o — (C%2X +3Y +6Z)0.
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Figure 6.12 Coverings of the germ (C?,2X +4Y +4Z),.
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We know from the case the orbifold (C2,3Y + 3W; +3W,)o has an infinite

tower of coverings and many ball-cusp points appears in the covers. Take the
lifting of ((Cz, 3Y +3W; + WZZ)O by D13 and set Z' := (pf% (W1 U Wz) = {x2 -

y% = 0}. Then, one has the covering

026 = 022001 3: (C?32Z")9 — (C?2X +3Y +62)y.

On the other hand, if one changes the coordinates by 6 : (x,z) = (x,x —y),
then @23 : (x,z) = (x*,z%) is the uniformizer of the sub orbifold (C?,2X +

3Z)o. Then we have the covering
6 'gy3: (C2,6Y")g — (C2,2X +3Y +62),,

where Y/ = @, 3(Y) = {x* - 2> = 0}.

If one would have changed the coordinates by T : (z,y) = (x —y,y), then
9353 : (z,y) — (2},y*) would be the uniformizer of the sub-orbifold (C2,3Y +
3Z)o. Denote by Y the branch ¢_; (Y) = {y =0} and by U the branch ¢5 3(X) =
{2 +y3 =0}. Set U; := {z+ @'y = 0}, where ®* = 1 and i = 0, 1,2. Then one

has the covering
T o@ys: (C?,2U 42Y ) = (C?,2Uy+2U; +2Uy +2Y )g — (C?,2X +3Y +62).

Notice that (C?,2Uy 42U} 42U, 4-2Y ) is the orbifold in the case 1 and it has
an infinite tower of coverings. Now take the lifting of (C2,2U +2Y)o by 01,2,
and set X := @, 3(U) = {z> +° = 0}. Then we have the covering

T o =1" 03300121 (C*2X")g — (C*,2X +3Y +6Z)o.

As in these examples, there are many other coverings of the orbifold (Cz, 2X +
6Y + 3Z)p, which is is related with other orbifold germs with singular base

via a power map @ : (x,y) — (x",y*). We will omit to derive these covering
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relations but exhibit in the Figure 6.13.

As it is seen from the coverings above, the uniformization of the germ
(C2,2X +6Y +3Z)y is the surface Tr 63 := {(x,,2) € C* | —x? +y° +2° =0}

of isolated singularity of the type Jio.

Figure 6.13 Coverings of the germ (C2,2X +3Z +6Y ).
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6.3 Chern Classes and Chern Numbers

Chern classes are characteristic classes. They are topological invariants associated
to vector bundles on a smooth manifold. If you describe the same vector bundle on a
manifold in two different ways, the Chern classes will be the same. Then, the Chern
classes provide a simple test: if the Chern classes of a pair of vector bundles do not

agree, then the vector bundles are different. (The converse is not true, though.)

Given a complex hermitian vector bundle V of complex rank n over a smooth
manifold M, a representative of each Chern class ci[V] of V are given as the coefficients

of the characteristic polynomial of the curvature form ® of V
c(t)[V] := det —m+I ch (6.3.1)

Here the determinant is over the ring of n X n matrices whose entries are polyno-
mials in ¢ with coefficients in the commutative algebra of even complex differential

forms on M. The curvature form ® of V is defined as
1
w:dV—i—E[V,V] (6.3.2)

with V the hermitian connection form (with respect to a hermitian metric #) and
d the exterior derivative. The scalar ¢ is used here only as an indeterminate to
generate the sum from the determinant, and I, denotes the n X n identity matrix.

More explicitly, the k-th Chern class of V is given by
Vv Ak Lo 6.3.3
V] =Tr (A 5-0) (633)
In addition, the fotal Chern class is defined as

clVl=co[V]+ci[V]+c2[V]+---. (6.3.4)



197

To say that the expression (6.3.3) is a representative of the Chern class indicates
that “class” here means up to addition of an exact differential form. That is, Chern
classes are cohomology classes in the sense of de Rham cohomology, i.e., ¢x[V] €
H?*(M, 7). The cohomology class of the Chern forms do not depend on the choice
of connection in V (Kobayashi, 1983).

The Chern classes c[V] satisfy the following properties (Hatcher, 2009):

(1) co[V]=1and ¢|[V] = Tr(5-) forall V,
(2) cx[V] =0for all V, if k > n. Thus the total Chern class terminates,

(3) Functoriality: If f: N — M is continuous and f*V is the vector bundle pullback
of V, then ¢ [f*V] = f*ck[V],

(4) Whitney sum formula: If one has complex vector bundles p; : V; = M, i=1,2,
then the total Chern class and the Chern classes of the direct sum V; ©&V, =

{(v1,02) € Vi x V5 | p1(v1) = pa(02)} are respectively given by

cVieVal =cVi]wcVa] and [VieVal= Y Vi) v cj[Val,
i+j=k

(5) The top Chern class of V is always equal to the Euler class of the underlying

real vector bundle, that is ¢,[V] = e[V].

(6) Additivity: If 0 - V| — V — V, — 0 is an exact sequence of complex vector

bundles, then V is isomorphic to Vi & V3, and therefore c[V] = c[V1] < c[Va].

Depending on the partition of n such that }'!' | ia; = n, there are Chern forms

cr[V] = c{' V]2 [V] -+ - ¢ [V] in terms of wedge product of Chern classes, where

[ :=(ay,az,---ay,). The integral of these Chern forms on manifold M takes values

ap az

in Z and they are called Chern numbers of V, and denoted by ¢; := ¢;'c, An

.. cn .
In case of n = 1, there is only one Chern number, c1, that is the Euler number e. If

n = 2, the Chern numbers are c% and c;.



198

An important special case occurs when V is a line bundle L. Then the only
nontrivial Chern class is the first Chern class, which is an element of the second
cohomology group of M. As it is the top Chern class, it equals the Euler class of
the bundle. If the vector bundle V is a direct sum of line bundles, i.e V = L; ®
Ly®--- @ Ly, then c(t)[V] =TT ; (1 +c1[Li]t). This means that the first Chern class
completely classify complex line bundles. That is, there is a bijection between the
isomorphism classes of line bundles over M and the elements of H>(M,Z), which
associates to a line bundle its first Chern class. Addition in the second dimensional
cohomology group coincides with tensor product of complex line bundles. This
classification of (isomorphism classes of) complex line bundles by the first Chern
class is a crude approximation to the classification of (isomorphism classes of)

holomorphic line bundles by linear equivalence classes of divisors.

Now, suppose V is the (holomorphic) tangent bundle TM of an n-dimensional

complex manifold M. Assume, the coordinate patches {(Uq,Zq) }aer covers M and

Zo = (Z1a, 220, "+, Zno) be the local affine coordinates on Uy. Then, the coordinate
derivatives define a frame {i, i, s i} of TM. The complex structure of M
aZloc aZZ(x aZn(x

d

0z o

: d \_ : d d \ _ _
defines an endomorphism J of TM such that J (m) =iy and J (m) = —i
on Uy for j =1,2,--- ,n. Then clearly J? = —id. Beside this,

d 9

n -
h= Y hijdiadZa, where hyji=h(z—. 5

i,j=1

) (6.3.5)

is a hermitian metric on Uy. Let {pqy }acr be the partition of unity subordinating to

the cover {(Uq,Zo,) }aer- Then,

n
h= Z Z Pah;dzioadZjo (6.3.6)

acli,j=1

is a Hermitian metric on M. Moreover, associated curvature form ® is given by

O= Z Z Pohtiidzia N dZjo.- (6.3.7)

aeli,j=1
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Denote by H the determinant of (/;7)nx, and set R;;:= —ddlogH = —ﬁ logH.
i00Z jo
Then, the Ricci form is given by

i

©=

n

acli,j=1

On the other hand, the local functions Hy, = (det(h;;)) ' = H™ ! provide a natural
Hermitian metric of the canonical bundle Kj;. The canonical bundle Ky is the
holomorphic 1-vector bundle A"T*M, where T*M is cotangent bundle to 7M. The
cohomology class

—éaglogHa = %aélogH
is the first Chern class of the line bundle. Then we have the the following theorem.

Proposition 6.3.1 ((Yau, 1977), (Hwang, 1997)). The Ricci form is closed, and
represents c1(M). If the Ricci curvature R is viewed as a symmetric endomorphism
of /\1’l TM, then ® = ﬁR(O)). The Ricci form is the curvature of the canonical

bundle Ky of M.

For a complete, simply-connected Kéhler manifold (M,J, k) of dimension n with
complex structure J. The sectional curvature of a real two-plane P C T;M is the
value R(ej,e;,e;,ey) of the curvature tensor on an orthonormal basis {e;,e;} of P.
Geometrically, the sectional curvature is the Gaussian curvature at z of the surface
in M obtained by exponentiating P. The sectional curvature function K is defined on
the Grassmannian bundle of real two-planes in 7M. If P is a complex line, then the
sectional curvature is equal to R(e, e, e, e). The restriction of the sectional curvature
function to the bundle of complex lines is called the holomorphic sectional curvature

and denoted by Kp,.

If the sectional curvature function K is constant, then the curvature tensor has an
explicit algebraic expression in terms of the metric 4, in particular, for each ¢ € R,

there is a local model space with constant sectional curvature c¢. A similar fact is
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true when £ is a Kihler metric with constant holomorphic sectional curvature. If
h is (geodesically) complete, then simply connected spaces of constant curvature
are classified. The following theorem locally classifies the metrics on a complex

manifold M.

Theorem 6.3.2 ((Yau, 1977), (Hwang, 1997)). Let (M,J,h) be a complete, simply-
connected Kdhler manifold of dimension n and constant holomorphic sectional
curvature c. Then followings are true.

o [f ¢ <O, then h is isometric to a multiple of the Bergman metric and the

canonical bundle Ky is ample.

o [fc =0, then h is isometric to the flat metric on C" and the canonical bundle

Ky is trivial.

e If ¢ >0, then h is isometric to a multiple of the Fubini-Study metric on CP"

and the anti-canonical bundle is ample.

o [f W is the curvature form (for Fubini-Study metric or flat metric or Bergman

metric), then the Ricci form is ©® = ﬁc(ﬂ-

Example 6.3.3. Consider the complex space C" and its tangent bundle TC" as
the vector bundle V. The standard hermitian metric (flat metric) on C" is h =
Y! odzidz;. Consequently, the curvature form is ® = Y7 ,dz; A dZ;, which is an
exact form. Therefore, the Ricci form O is trivial. Hence by the Proposition 6.3.1
first Chern class ¢{[TC"] vanishes, so the first Chern number ¢}(C") is zero . In
addition, the top Chern class ¢,[TC"] is the Euler class ¢[TC"], and the Euler

number of C" is ¢, (C") = ¢(C") = 1 since C" is contractible.

Definition 6.3.4 (Line bundles &'(k) over CP"). Let W be a complex vector space
of dimension n+ 1, n > 1 and PW be the its projectivization, that is the quotient
topological space PW = (W \ {0})/C*. Itis clear that PW = CP" if W = C"*!. The
trivial bundle is PW x W. Denote by &(—1) C PW x W the tautological line sub-
bundle. Then the restriction &(—1) [y, of &(—1) to the local chart U; = {[z]| z; # 0}

admits a non-vanishing local section [z] — €;([z]) = (20, ,2j—1,1,2j41, " ,Zn)-
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In particular &'(—1) is a holomorphic line bundle. For every k € Z, the line bundle
O (k) is defined by

0(1)=0(-1)", 0(0)=PW xC,
ok)y=0*=0(1)e0(1)®---@0(1), fork>1, (6.3.9)
O(-k)=0(-1)*=0(-)eoo(-1)®---®0(-1), fork>1.

Therefore, we have canonical exact sequences of vector bundles over PW:

0—-0(—1) =PWxW—-PWxW/0(-1)— 0,
(6.3.10)
0— (PWxW/O(-1))"— (PW xW)*— 0(1) — 0.
The holomorphic map u: &(—1) — W defined by p: O(—1) — PW x W — W send
the zero section PW x {0} of &'(—1) to the point {0} and induces a biholomorphism
of 0(—1)\ (PW x {0}) onto W\ {0}. Moreover there is a canonical isomorphism

(PW xW)/0(—1) ~TPW ® O(—1), ie., (BPW xW)/0(-1)) ® O(1) =~ TPW.

Example 6.3.5 (Barthel et al., 1987). Consider the complex projective space CP",
which is a quotient of = C"*! by C*. One may also think this quotient as CP" =
§2n+1 /8! The standard hermitian metric on C*™! is ds* = dZ-dZ = Y dZ:dZ;.
It is invariant under the diagonal actions of S! (group of rotations), while it is not
invariant under the diagonal action of C*. So, a hermitian metric on CP" is the
standard metric on §"*! restricted to C"*!. This metric is known as the Fubini-

Study metric and it is a Kdhler metric. Let us write this metric explicitly.

The coordinate patches U; = {[Zy : Zy : -+ : Z,] | Z; # 0} covers CP”" and it is
possible to define the Fubini-Study metric on each local charts. Letz = (z1,z2,- -+ ,z)
be the local affine coordinates of [Zy: Z; : --- : Z,] in the coordinate patch Uy
provided z; := Z;/Zy. Then the coordinate derivatives define a frame {a%, %, e %

of the holomorphic tangent bundle TCP" of CP", in terms of which the Fubini-
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Study metric has hermitian components

9 9, &
dz;' 0Z; _aZiaZj

(14 ]Z[Z)Sij —Zizj

e

hi7:=h log(1+|z|2) =

where |z|?> = |z1|? +|z2|? + -+ + |z4|* and §;; is the Kronecker delta. Thus, we get

the hermitian metric 4 and the corresponding curvature form ® as
h=Y hjdzdz; and © =Y hj;dziNdz;. (6.3.12)

In additon, H = det(h;;) = (1 + |z|2)_("+1) and

2 2
R-=— logH =(n+1
g ( )aziaZj

2\ _ -
i; 5297, log(1+4z|°) = (n+ 1)h;5.

ij

Thus, the Ricci form, the curvature of the canonical bundle, is

i

I _
0= ﬁZRijdzi/\de =5

(n+1)o, (6.3.13)

For the sake of simplicity, denote by @ the form ﬁm. Then we have ¢ [TCP"] =
® = (n+ 1)®. Note that ® € H>(CP",Z) is a positive generator and ®" is a volume

form, i.e., fCPn ®" = 1. There is an exact sequence of vector bundles
0—C— Ocpr(1)@C"™! - TCP" — 0 (6.3.14)
over CP". From the Splitting principle and the Whitney sum formula we have
c(1)[TCP"] = c(1)[Ocpr (1) @C"] = (1 +®)" ™ € H*(CP",Z)  (6.3.15)

If n =1, then ¢(1)[TCP!] = (1 +®)? = 1 42w, i.e, c;[TCP!] = 2®. Therefore,
cl((C]P’l) = Jcp1 20 = 2, which is the Euler number of CP'. In case n = 2, by the
formula (6.3.15), we have ¢(1)[TCP?] = (1+®)3 = 1 +3® +3®7, i.e, ¢; [TCP?] =
30 and c[TCP?| = 3®° . Therefore, ¢3(CP?) = [ 902 = 9 and ¢»(CP?) =
Jcop2 3057 = 3. Finally, notice that, TCP” is the line bundle &'(n+ 1).
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Example 6.3.6 (Barthel et al., 1987). Consider the n-ball

B, ={z€C" | |01 +|aal*+---+ |zal* < 1}.
It is homeomorphic to the embedded ball
B,(Uo)={[1:21: " 2 12 o2 12 n
WUo)={[1:z1::z) |1 —|2|" =1—|z01]" = |z2|"— -+ — |zu|” > 0} C CP".

By considering the indefinite Hermitian form F(z,w) = —zowo + Y./ ; ziw; of crtl

Bergman defined a metric and the corresponding curvature form on B,, ~ B, (Up) as

h=Y hjdzdz; and =Y hjdzAdZj, (6.3.16)
where
- > N&;j +Ziz; i
h;;= —ddlogN = — logN=—"_""/ and N:=1—-|z>=1-Y |z~
= ~3logN =~ log 5 an 2 =1- Y i
(6.3.17)

In additon, H = det(h;;) = N —(n+1) and

2 2

Y 0z;0Z; o8 (n+ )aziaZj

logN = —(n+1)h;.
Therefore, the Ricci form, the curvature of the canonical bundle, is
[ _ [
0= ﬁZRijdzi/\dzj:—ﬁ(n—H)w, (6.3.18)

For the sake of simplicity, denote by @ the form ﬁw. Then we have ¢;[TB,| =
©® = —(n+1)®. Note that ® € H*(B,,,Z) is a positive generator and Jg, ) @ =1.

There is an exact sequence of vector bundles
0—-C— 0, (-1)oC™™! - TB, -0 (6.3.19)

over B, ~ B, (Up). From the Splitting principle and the Whitney sum formula we
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have
c(1)[TB,] = c(1)[0p,(—1)@C" ] = (1 —®)""! € H*(B,,,Z) (6.3.20)

If n =1, then ¢(1)[TBy] = (1 —®)> = 1 —2®, i.e, ¢|[TB;] = —2®. Therefore,
c1(By) = fBl(Uo) —2® = —2, which is the Euler number of B;. In case n = 2, by
the formula (6.3.20), we have ¢(1)[TB,] = (1 -®)3 = 1 — 30+ 3®°, i.e, ¢ [TB2] =
—3® and c;[TB;] = 3®2. Therefore, first and second Chern numbers of B, are
c}(By) = e, w0) 9®° =9 and c3(B;) = o, w0) 3m? = 3, respectively. Finally, notice
that, TB,, is the line bundle &'(—(n+1)).

6.3.1 Divisors and Line Bundles

A divisor D :=Y m;H; on a complex manifold M is a locally finite sum of closed,
reduced, irreducible analytic hypersurfaces H; (the components of D) with non-zero
integer coefficients m;. “Closed” means closed as subsets in the complex topology,
“sum with integer coefficients” should be taken in the spirit of free Abelian groups,
with the distinction that the sum here may be infinite, and “locally finite” means that
every z € M has a neighborhood U which intersects only finitely many components.
A divisor is effective or positive (notation: D > 0) if every component has positive
coefficient. An effective divisor is locally cut out by a holomorphic function ®, the
function & vanishes along a union of irreducible analytic hypersurfaces, and the

integer attached is the order of vanishing.

If M itself is compact, then a divisor is exactly an element of the free Abelian
group on the set of closed, irreducible analytic hypersurfaces. The group of divisors
is denoted by Div(M). The support of a divisor D is the union of the components of

D. The degree of D is defined to be degD =) m;.

Let U = {Uq} be a locally finite open cover. A meromorphic section of a line

bundle is defined to be a collection of local meromorphic functions { fy,} satisfying
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the compatibility condition fo = WYepf on U N Ug. If L is a line bundle on M, then
every meromorphic section s, different from the zero section, determines a divisor
(s) on M, namely its zero divisor minus its polar divisor, that is (s5) = (5)p — (§)ce-
In this case, ¢ [L] is Poincaré dual of (s) = (s)o — (s)e. Conversely, if any divisor
D is given, then there is (up to isomorphism) exactly one line bundle Lp with a
meromorphic section s, such that (s) = D (Barth et al., 2004). In this case, Oy (D) is
used the denote the sheaf of germs of sections of Lp. In addition, if M is a Riemann

surface, then deg D = deg(s) = [}, ¢1[Om(D)] (Demailly, 2009).

Let D be a divisor on a compact complex manifold M, the cohomology class
c1[D] := c1[Om(D)] € H*(M,Z) depends only on the class of D up to linear equiva-
lence (D ~ D' if D— D' = (f) for a meromorphic function f). If C C M is a smooth
irreducible curve, then the fundamental class [C] € H*"~2(M,Z) due to Poincaré
duality. Hence the intersection number (c;[D],[C]) is well defined and depends
only on the class of D up to linear equivalence. If D is an irreducible divisor, the
number (c1[D],[C]) coincides with the topological intersection number D -C. If C
intersects D transversally in at least one point, then this number is strictly positive.

In particular, if D; and D, are two divisors on an algebraic surface M, then
Di-Ds = /MCI[DI] < elDal. 6.321)

In addition, assume both N and M are algebraic surfaces and ¢ : N — M is surjective
holomorphic map. The canonical divisor Ky of N is related with the canonical
divisor Ky of M via Ky = ¢*Ky +Jy, where J, denotes the Jacobi divisor of @.
It is clear from the functoriality property of Chern classes, ¢1[@*D] = ¢*c;[D] for a

divisor D on M. If D; and D, are two divisors on M, then
©*D1 - ¢*Dy = (grad) - (D1 - D2). (6.3.22)

The final is the relation between canonical class an the first Chern class. The Cohomology

class corresponding to cananical bundle K}y is called the canonical class and often
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denoted also by K. It is the negative of the first Chern class ¢ [M] = c1[K;,'], where

K]fd1 is the anti-canonical bundle of Kj,.

6.3.2 Algebraic Surfaces of General Type and Some Known Results

An algebraic surface is an algebraic variety of dimension two. In the case of
geometry over the field of complex numbers, an algebraic surface is therefore of
complex dimension two (as a complex manifold, when it is non-singular) and so of
dimension four as a smooth manifold. Assume, M is an algebraic surface, and Kj; be
the canonical line bundle on M (i.e, the holomorphic 1-vector bundle A2TM*, where
TM* is cotangent bundle to the holomorphic tangent bundle 7M). The canonical
class is the divisor class of a Cartier divisor K on M giving rise to the canonical
bundle Ky = Oy (K). It is an equivalence class for linear equivalence on M, and

any divisor in it may be called a canonical divisor.

The Kodaira dimension x(M) of an algebraic surface M measures the size of
the canonical model of M Indeed, it is a birational invariant of M and measures
the dimensions of the spaces of global sections of Kf}}r . As r — oo, these numbers
either behave asymptotically like C 7* for a unique integer k or are eventually zero.
The Kodaira dimension K to be this integer in the first case and —oo in the second
case. Note that, since the complex dimension of M is 2, then KS’ is trivial when
r > 2. Therefore, the Kodaira dimension k(M) takes values in {—e0,0,1,2} for an

algebraic surface M.

Due to Kodaira dimension, examples for the (coarse) classification of algebraic

surfaces are as follows:

e K = —oo: The projective plane, quadrics in CP3, cubic surfaces, Veronese

surface, del Pezzo surfaces, ruled surfaces,

e Kk = 0: K3 surfaces, abelian surfaces, Enriques surfaces, hyperelliptic surfaces,
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e k = 1: Elliptic surfaces,

e Kk = 2: Surfaces of general types.

The algebraic dimension of an algebraic surface M is the transcendental degree
of C(M) over C, and denoted by a(M) := trancC(M). Here, C(M) denotes the
field of rational (meromorphic) functions on M. Its clear from the definitions of The

Kodaira dimension k(M) and the algebraic dimension a(M) that

K(M) <a(M) <2 =dimcM.

If k(M) =2, then M is said to be of general type. If a(M) =2, M is called
Moishezon. By the inequality above, any algebraic surface M of general type is
Moishezon. Due to Kodaira and Chow’s theorem, If M is compact, complex analytic
surface with a(M) = 2, then M is projective algebraic. Therefore, if M is of general
type, then it is automatically projective algebraic. Since we are interested with

surfaces of general type, from now on we will assume M is projective algebraic.

There are lots of invariants of algebraic surfaces: Hodge and Betti numbers,
71 (M), signature, etc. The basic topological invariants for surfaces of general type
however are just the Chern numbers c% and c;. Recall that, the first Chern number c%
of M is the self intersection number of the canonical class K, that is c% (M) =K -K,
and the second Chern number c; of M is the Euler number of M, that is c2(M) =
e(M). Due to Zariski, Every algebraic surface with k¥ > 0 has a unique minimal
model (minimal model is a smooth surface is called minimal if there are no (—1)

curves lying on it), i.e its canonical bundle is nef. Then one has a well defined map

{Minimal surfaces of general type} — Z @ Z
(6.3.23)

M (ci (M), c2(M))

Due to a theorem of Gieseker for Global moduli of surfaces of general types, for

given c% and ¢, there are only finitely many diffeomorphism types of minimal
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Figure 6.14 Surfaces of general type.

surfaces of general type. In addition, for a minimal surface of general types, the
Chern numbers c% and c; are positive (See (Miyaoka, 1977) and (Yau, 1977)) and

satisfy the following properties:

cl+c=0 (mod 12), (6.3.24)

SC% —c3+36>12g >0, (Noether inequality) (6.3.25)

where ¢ is the irregularity of a surface M.

In 1956, Hirzebruch proved the following proportionality theorems:
Theorem 6.3.7 (Hirzebruch, 1956).

(1) If M is a quotient of two ball By, then one has the proportionality C%(M) =

3e(M).

(2) If M is a quotient of bidisc By x By, then the proportionality ¢1(M) = 2¢(M)
holds.

In 1977, Miyaoka and Yau proved the inequality

(M) < 3e(M) (6.3.26)
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for an arbitrary algebraic surface and the following converse to Hirzebruch’s propor-

tionality theorem:

Theorem 6.3.8 (Miyaoka & Yau, 1977). If M satisfies the equality ¢} (M) = 3e(M) >

0 then either M is CP? or its universal covering is Bo.

The analogue of this result for surfaces with c% (M) =2e(M) > 0 is not correct!
Kobayashi (1990) gave an example by using arrangement of five quadrics with 16
tacnodes such and 17 tacnodes. Assuming 4; as degeneration of these arrangement
and M, is a double plane branching over 4,1 obtained c% —2cy = % for singular
members while generic double planes fulfill the proprotionality c% =2c>. Hence, he
obtained that any general member close to a singular member is not uniformized by

BIXBl.

6.4 Orbifold Chern Numbers

In the Section 6.3, we have introduced the Chern classes and Chern numbers of
a complex manifolds M. As in fundamental group, the Chern numbers have also
orbifold versions. Below we introduce the Chern numbers for orbifolds over the
base CP' and CPP?, respectively. Let us first consider the base space CP' and the

divisor D = Z;‘:O m;pj.

Theorem 6.4.1 (Nevanlinna, 1970). Every entire function f : C — CP'! which is

ramified over D is constant if ¥5_o(1— L) > 2.

This degeneracy property corresponds to bigness of the canonical divisor

k

1

Kep+ ) (1—=)pi (6.4.1)
i=0

m;

of the pair (CP!, D). Note that, this canonical divisor is an ample Q-divisor on

CP!. Assume we have an orbifold metric on (CP!, D). Therefore, integrating the
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canonical class of (6.4.1), we can define the Euler number of (CP', D) as
L 1 Lol
¢”?(CP',D):=¢(CP)-Y (1-—)=1-k+) —. (6.4.2)
i=0 M i=0 "M

This is exactly the formula (6.1.4) on the page 145, and the Theorem 6.1.3 completely
classifies the uniformization of the orbifold (CP!, D) due to the sign of ¢ (CP!, D).
Now let us introduce this orbifold metric. First assume, ¢®”(CP!, D) < 0, then
by the Theorem 6.1.3, uniformization of the orbifold (CP!, D) is B; and we have
introduced the Bergman metric on B; in the Example 6.3.6. Since the divisor (6.4.1)
is ample, there exists a volume form ®, a Hermitian metric || - || for Op1 (X5 pi),
holomorphic sections s; for &p1 (p;) with zeros at p;, such that |[s;[| < 1, and the

minus of the Ricci-form of the singular volume form

(O]

2(1-L 2
H?zomisziH ( m")(l — || s]| )2

0=

defines a complete orbifold Kihler form o = ddlog® on the orbifold (CP!, D). In
2
case m; = oo, m;(1 — [|s;|| ") = log W This metric looks like an orbifold metric
} | 2
% around a point with m; = n, and like a Poincaré metric % of the
(1=lz[n)? l2|*(log -7
punctured disk around a point of m; = o (Kobayashi, 1990). In a similar way, one

can define orbifold metric for (CP!, D) in cases of ¢°"” = 0, or e*”” > 0.

Note that, to compute the orbifold Euler number ¢°’?, it is enough to know the
existence of orbifold metric. So the formula (6.4.2), which is also a consequence of
Riemann-Hurwitz formula (See the Section 6.1.1), can be directly used to compute

the orbifold Euler number ¢°'?.

Now, let us assume that the base space is C]Pz, D = Zile m;H; is a divisor on
C]P’z, the curves H; being irreducible of degree d; for 1 <i < k. Denote by ((CIP’Z, B)

the orbifold associated with the divisor D. The canonical divisor

k
K" :=Kep+ Y (1- %)H,- (6.4.3)
i=1 !
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of (CP?,B) is big if

k

Y (1-—)>3 (6.4.4)

Note that, this canonical divisor (6.4.3) together with the condition(6.4.4) is an
ample Q-divisor on CIP?. Kobayashi (1990, Section 3, Theorem 1) proved that, there
exists a canonical orbifold Kéhler metric 4 and orbifold Kéhler form ® obtained
from the holomorphic sections s; of the divisor D. Then we can integrate the Chern

forms. By the definition of first Chern number,

Gerp) = [alk™] ek

— Korb . Korb
1 1

_ (chz+i(l——)H> (KCP2+Z (1-—)H,)

ny i=1 m;
1
= Kep- KP2+2Z 1—E)K p2 - Hi
k 1 k

+<Z<1__H,> (- mm)

i=1 =

= (=32+42(— ijl——d+<21—— )2

Hence, the first orbifold Chern number of (CP?,B) is defined as

2
c3(CP?,B) := ( 3+Zd 1—i)> : (6.4.5)

i=1 mi

Second Chern class of (CP?,B) is the Euler class of (CP?,B) and Kobayashi
(1990, Section 3.2.3) obtained this class after resolving log-canonical singularities
and compute the second Chern number of (CIP’Z, B) by integrating the Euler class
and computing correction terms coming from singularities. Hence, the second orbifold
Chern number or orbifold Euler number of (CP?,B) is defined as

5 k 1 _ 1
e(CP* B):=3— Z (1 - %> e(H;\SingB) — ) (1 - @> ,  (6.4.6)

! peSing(B)
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where B(p) denotes the order of the local orbifold fundamental group. If (CPP?, B)

is an orbifold with cusp points, set ﬁ = 0 whenever B(p) = co.

The orbifold Chern numbers have the following property: if M — (X,f) is a

finite uniformization with G as its Galois group, then

e(M)=|Gle(X,B) and c}(M)=|G|c](X,p). (6.4.7)

The following orbifold analogue of the Miyaoka-Yau Theorem 6.3.8 was proved
by Kobayashi & Nakamura & Sakai 1989 by constructing a metric on orbifolds.

Theorem 6.4.2 (Kobayashi-Nakamura-Sakai,1989). Let (CP?,B) be an orbifold of
general type, possibly with ball-cusp points. Then c%((C]P’Z, B) < 3e(CP?,B). The
equality holds if and only if (CP?,B) is uniformized by B,.

The following theorem determines whether the orbifold (CP?,B) is of general

type or not? Also, remember the ampleness condition (6.4.4).

Theorem 6.4.3 (Sakai, 1984). For a normal surface pair (CP?,B) with at worst

log-canonical singularities, the following conditions are equivalent
(1) x(CP*,B) =2,
(2) K is numerically very ample,

(3) K° is ample.
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6.5 Orbifolds Supported by Line Arrangements

In Section 6.2.4, we have studied the covering relations among orbifold germs
and we know that finiteness or infinite solvability of the local orbifold fundamental
group is necessary for local uniformization. In addition, by Kato’s Theorem 6.1.4
we know that the orbifolds, which is supported by an arrangement so that any
line contains a point of multiplicity at least 3, are uniformizable. In addition, rigid
arrangements are candidates observing a ball-quotient orbifold branched along them.

So, we will mostly deal with rigid line arrangements.

mo

3
Figure 6.15 The orbifold (CP?, )" m;H;).
i=0

First, consider the orbifold (CP?,Y3_,m;H;) in Figure 6.15, where Hy = {Z =
0}, HH ={X =0}, H, ={Y =0} and H3 = {X — Y = 0}. The arrangement 4 =
{Ho,H,,H>,Hs} is projectively rigid. Because one can maps [0: 0 : 1] to any point
p and the line Hy to any line which does not contain the point p, and projective
transformations allow us to fix three points on the projective line. For simplicity,
let us set k; = 1/m;, i = 0,1,2,3. The condition K| + k2 + k3 > 1 is necessary for
local uniformizability. Take a base point + € CP? \ U?:()Hi, and assume y; be the
meridians around H; and u,, is meridian around p. Then u,uq is contractible in (CIP’z\
U?:OHi, and hence u, =y, !, Therefore order mq of ug in i b ((C]P>2 ,D) must equal
the order of y, in ©"(CP?,D),, .i.e, my = 2(¥;_, =~ — 1). Hence the quadruple

m;

(mg;my,my,m3) must be one of (2r;2,2,r), (12;3,3,2), (24;2,4,3) or (60;2,3,5).



214

The orbifold Chern numbers are

3
C%(CPZ, ZmiH,') = (K0+K1 + Ky +K3 — 1)2
i=0

and

3
1
e(CP%,Y. miH;) = ko(k1 + 2+ k3 — 1) + Z(K] +10+Kk3—1)2
i=0

Note that, they are not orbifolds of general type, since the condition (6.4.4) fails for
all possible quadruples (mg;my,my,ms3). Although, (¢ —3e)(CP?, Y3 miH;) =0
for such quadruples (mg;my,my,m3), their uniformization is not B,. First three of

them are uniformized by CP? (Uludag, 2007). Indeed,

e Case (2r;2,2,r): (CP?,2Hy + 2H; + 2H;) is a sub-orbifold of (CP?,2rH, +
2H| + 2H, + rH3), and it is uniformized by CP? via the bicyclic covering
@2 [X Y :Z] — [X?:Y?: Z?. The lifting @, '(H3) consists of two lines
given by the equation X? — Y2 = 0, which we denote by H31 and H32. Denote
¢~ !(Hp) by Hy again. Hence @3 : (CP?,rHy + rHj + rH?) — (CP?,2rHy +
2H) + 2H; + rH3). Obviously, the covering orbifold is uniformized by CP?

via Q.

e Case (24;2,4,3): (CP?,2Hy+ 2H, + 2H,) is a sub-orbifold of (CPP?,24H, +
2H| +4H, + 3H3), and it is uniformized by CP? via the bicyclic covering
©:[X:Y:Z] — [X?:Y?:Z%. Denote @, ' (H,) by Hp and ¢, ' (Hp) by Ho
again. The lifting @, ! (H3) consists of two lines given by the equation X2 —
Y2 =0, which we denote by H3 and HZ. Hence ¢, : (CP?, 12Hy +3H) +3H? +
2H,) — (CP?,24Hy+2H, +4H, +3H3). The covering orbifold is related with
the Case (12;3,3,2).

e Case (12;3,3,2): (CP?,3Hy + 3H; +3H,) is a sub-orbifold of (CP?, 12H, +
3H, + 3H, + 2H3), and it is uniformized by CP? via the bicyclic covering
©3:[X:Y:Z] — [X?:Y?:Z?. Denote (pz_l(Ho) by Hp again. The lifting

05 Y(H,) consists of three lines given by the equation X> — ¥ = 0, which
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we denote by H), H? and H3. Hence @3 : (CP?,4Hy + 3H) +3H? + 3H3) —
(CP?,12Hy + 3H) + 3H, + 2H3). The covering orbifold appeared in the first

case with 7 = 2 and is uniformized by CP?.

me

ny nis

m

Figure 6.16 Complete quadrilateral.

Second, consider the orbifold ((CIP’Z, Z?: 1 m;H;) in the Figure 6.16, where H; =
{X=0L,H,={Y=0},H3={Z=0},H1={X-Y =0},Hs ={Y —Z =0} and
He = {Z— X = 0}. The arrangement 4 = {H; | i = 1,--- ,6} is projectively rigid.
For simplicity, let us denote by D the divisor Z?:l m;H;, by K; the number ml, and
by p; j« the number K; + K + Kk — 1. The local uniformizability conditions of the
orbifold (CP?, D) are pj24 >0, p136 > 0, 235 >0, psse > 0 and the orbifold
Chern numbers are

0 1

e(CP?,D) = 2— Z Ki + K1 K5 + Ko Ke + K3K4 + Z(Pim + P%,3,6 + 95,3,5 + 9421,5,6)
i=1

=)

dPrp) = 3-Y x) (6.5.1)
Proposition 6.5.1. Consider the orbifold (CPZ, D) supported by complete quadrila-
teral. Then

i. 2(CP?,D) = ¢(CP?,D) =0 ifand only ifm; =2 foralli=1,--- 6.

ii. (2e —c%)(C]P’Z,D) =0 if and only if (my,mp,m3,ma,ms,me) = (m,2,2,2,n,2),

where m,n € 7"
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iii. (3€—C%>(CP2,D) = 0ifand only if (my,my,m3,ms,ms,mg) = (m,m,m,n,n,n)

where m,n € 7.

Proof. 1t is clear that c%((CIP’z,D) =0 if and only if m; =2 forall i =1,---,6.

Moreover, Euler orbifold number vanishes for such m; = 2.
If one use the equalities
P7 jx = (KiF K+ K — 1)? =1 416 +1¢ + 2 (ki + KK + KK — 2(Ki+ K+ Ke) + 1,

then orbifold Chern numbers (6.5.1) reduce to

6 6
H(CP2,D)=9-6Y i+ () x)?
i=1

and
6 1 6 1 6
e(CP*.D) =3-2) i+ Y o7 + 4 ( Z K1K5+K2K6+K3K4)
i=1 i=1 i=1
Therefore,
6 1 ¢ 1
2e—ci=—3+2) ki+ 52192 5 Z 2 4 K1Ks 4 KaKe + K3Ks

i=1

6
=—3+2Y ki— ) KiKj+KiKs+KoKs+ K3Ky
i=1 1<i<j<6

=—3+2[(k1 +s5) + (k2 +K6) + (k3 + K4)] — (K1 + K5) (K2 + K6)
— (K1 +%5) (K3 +K4) — (12 + K6 ) (K3 + K4)

=—342(a+b+c)—(ab+ac+bc),

where a = (K] +Ks), b = (k2 + Kg), ¢ = (k3 + K4). The equation
2(a+b+c) =3+ (ab+ac+bc)

has solutions in the interval [0, 1] if and only if two of a, b and c is 1 and the other

one is free. Hence, any two of the tuples (my,ms), (mp,me) and (m3,my) is (2,2)
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and the third one is free, say (m,n). Since, complete quadrilateral is projectively

rigid, and using the symmetries we may assume that (mj,mp,m3,ma,ms,me) =

(m,2,2,2,n,2), where m,n € Z. For these weights, (2¢ — c%)((CIP’Z,D) vanishes.

Finally,
3 2 3i1<2 l(iK)2+3(KK + K2 Kg + K3K4)
e—c]=- —— ; —
]41':1[4:':11 215 2K6 3K4
B
_EZKI 3 Z K,K]+ (K1Ks + K2Kg + K3Ky)
i=1 1<i<j<6
6
— ZK, —5 Z K,KJ—I— (K1Ks + K2Kg + K3Kyg)
i=1 1<i<j<6

l\)l»—‘ l\JI>—‘

Km+&%ﬂm+%ﬂ%m+mﬁ—;m+&Xm+%)

— 2 R ) (6 +8) = 5 (2 ) (k3 )

1 3
zi(a+b+c)2 - E(alﬂ—ac—l—bc)

1
:§[<a2 +b>+¢?) — (ab+ac + bc)]

The equation (a® + b* +¢?) — (ab +ac + bc) = 0 has solutions in the interval [0,1]
if and only if a = b = ¢, which implies (m,my,m3,mq,ms,mg) = (m,m,m,n,n,n),
where m,n € Z*. (m,n,n,m,n,m) is another solution but it is equivalent to previous
one up to projective transformations. Hence (3e — cl)(CIP’2 D) vanishes if and only

if (my,my,m3,mq,ms,mg) = (m,m,m,n,n,n), where m,n € Z-. O]

Theorem 6.5.2. The orbifold ((CIP’Z,D) branched along a complete quadrilateral is
uniformized by complex 2-ball By if (m1,my,m3,ma,ms, me) is one of (2,2,2,3,3,3),
(3,3,3,2,2,2), (3,3,3,3,3,3) and (4,4,4,2,2,2) (Last two orbifolds consists of
ball-cusp points).

Proof. By the Proposition 6.5.1 we know all possibilities satisfying the orbifold
version of Miyaoka-Yau equality. The ampleness condition (6.4.4) implies that % +
% < 1. Now, it is enough to check local uniformizability conditions. The inequalities
%—{—% > 1 and %—l—% > 1 are valid if and only if (m,n) is either (2,3) or (3,2) or
(3,3) or (4,2). Hence, the Theorem 6.4.2 completes the proof. O
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me

my

ma

Figure 6.17 The orbifold (CP?, Y7_, m;H;).

Third, consider the orbifold ((CIP’Z,ZLl m;H;) in the Figure 6.17, where H| =
{X=0}, H,b={Y =0}, H3={Z=0}, Hy={X—-Y =0}, Hs = {Y — Z = 0},
He ={Z—X =0} and H; = {X —Y +Z = 0}. The arrangement 4 = {H, | i =
1,---,7} is projectively rigid. For simplicity, let us set D := ):Zzl miH;, K 1= ml,
and p; jx 1= mil + mi] + mlk — 1. The local uniformizability conditions of the orbifold
(CP%,D) are p124 >0, p136>0,p157>0,p235>0,p347>0and pgse > 0.

In addition, the orbifold Chern numbers are

e(C]P’Z,D) =4 — (K1 + 2K + X3 + K4 + K5 + 2K + 2K7) + (K2 Ke + K2 K7 + KeK7)
[ 2 2 2 2 2
+ I (P24t P36+ PI57TP235TP347P1s6)

1 / 1 1
== 14 2(=5+ Y %)+ S (T + 1G5 + K5 +15) + 7 (ka +Ke + k7 — 1)
i=1

and
7
A(CP2.D) = (4- ¥ xi)?.
i=1

In addition, the bigness condition (6.4.4) is satisfied for any branching indices m;

since Y7, ; < 4.

Proposition 6.5.3. Consider the orbifold (CP?, D), where D = 217:1 m;H; is divisor

supported by the line arrangement in Figure 6.17. Then

i. (2¢—c2)(CP?,D) =0 if and only if m; = m3 = my = ms = 2.
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ii. 3¢ —c3)(CP*D) =0 if m =m3 =my =ms =2k and (mp,mg,m7) is a

permutation of (2,2,k) for a positive integer k.

Proof. For simplicity, set a := K] +K3+ K4+ K5, b :=K2+Kg+ k7 — 1 and ¢ :=
T3+ k3 +x3+x2). Note that 0 < a <2, —1 <b < 1 and 0 < ¢ < 1. Then, orbifold

Chern numbers reduces to the forms
1 1
¢(CP?,D) = —1+ J4—a- b)? +c+ sz and ¢}(CP%,D)= (3—a—b)>

Therefore,

1 b?
(2¢ — c3)(CP?,D) = — E(a+b)2+2(a+b) +2c+- =3
2

1 b
:—§(a+b—2)2+2c—|—?—l =0
Consider the function f(x,y,z) = —%(x+y—2)>+2z+ 3y* — | in the domain

B={(xy2) eR}0<x<2, -1<y<-,0<z<

.

| =
| =

Since gradf = (—x—y+2,—x+2,2) # (0,0,0) for all (x,y,z) € B, it takes its
extremum values in the boundary 0B of B. Except the boundary of B for which x =2,
the function f takes negative values at dB. In case x = 2, f(2,y,z) =2z—1 < 0 if
< % and it vanishes for z = % Thus f takes its maximum value, which is 0, on the
edge of 9B for which x =0 and z = 1. Thus (2¢ — ¢})(CP?, D) vanishes if and only
ifa=2and c—= %, i.e., m; = m3 = myqy = ms = 2. Note that the integers my,mg,m;

are free.

On the other hand (3¢ — ¢2)(CP?,D) = —1((a+b)? — 3b?) +3c = 0 if and only

if ¢ = (P (o py - EVIEE) ) oo that

a® —8c =(K1 + K3+ K4 +K5)* — (K] + K5 + K5 +K3)

2 2

=— (11 — k3)% — (k1 — K4)* — (K1 — K5)* — (3 — K4)* — (i3 — Ks)

— (k4 —Ks5)* <0
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Thus, (3e —c%) =(0ifand only if K] = K3 = K4 = K5. Now suppose m| =m3 = my =
ms = m, then a = % and ¢ = % Thus (3¢ — ¢2)(CP?,D) =0 if b = n%, but mlz +
mié + m% = 1+ 2 has solutions only when m is even. Say m = 2k, then (mz,mg,m7)

is a permutation of (2,2, k). O

Proposition 6.5.4. The orbifold (CP?,D), where D = 4H\ + 2H, + 4H3 + 4Hy +
4Hs + 2Hg + 2H7 is a divisor on CPP? supported by the line arrangement in Figure
6.17, is uniformized by B,.

Proof. By the Proposition 6.5.3, we know that the Miyaoka-Yau equality satisfied
for the orbifold ((CIP’Z,D), where D = Zzzlm,Hi, my; = m3 = mg = ms = 2k and
(mo,mg,m7) is a permutation of (2,2, k) for a positive integer k. The local uniformi-
zability conditions pj24 > 0,p136>0,p157 >0,p235>0,p347>0,psa56 >0,
which are equivalent to one of the conditions %{ + ﬁ + % —1>0or ﬁ + ﬁ + % —1>

0, implies k = 2. Thus, the Theorem 6.3.8 completes the proof. ]

m1m3

niy nms

ma

Figure 6.18 The orbifold ((CIP’Z,Z?: \miH;).

Fourth, consider the orbifold (C]P’Z,Z?:l m;H;) in the Figure 6.18, where H| =
(X=0,Ho={Y =0}, H3={Z=0}, Hy={X Y =0}, Hs = {Y —Z =0},
Ho={Z—-X=0\ H ={X-Y+Z=0}, Hy={-X+Y+Z=0} and Hy =
{X+Y —Z = 0}. The arrangement 4 = {H; | i = 1,---,9} is projectively rigid.
For simplicity, let us denote set D := Z?:lm,-Hi, K= mil and p; jx = mL, + ij +

mLk — 1. The local uniformizability conditions of the orbifold (CIPZ,D) are P24 >
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0, p136 >0, p235 >0, psase > 0. In addition, the bigness condition (6.4.4) is
satisfied for any branching indices m;. This means, this orbifold is of general type.

The orbifold Chern numbers are

¢(CP?,D) =8 — ZZK, (11 + Ks ) kg + (K3 + Kq ) K9 + (K2 + K¢ ) K7
2
—(P1z4+9136+9235+9456)
9 6 1
=9 — 321<,—221<,+ ZK+ Z —§(K1K5+K2K6+K3K4>
i=1 i=7 t—l i=1

+ (kg +K5)Kg + (k3 +1<4)1<9 + (K2 + Ke ) K7.

1 1 6 9
:9—321(,'—221(,'4—1(2](1' EZ Z
i=1 i=7 i=1 i=7

1
- Z[(Kl + 165 — 2Kg ) + (162 4 K6 — 2K7)% + (K3 + K4 — 2K9)°?]

6

Therefore,

6 6 9
Z 3;1( + ZiKi)(;Ki)

i=1 i=7 i=1

gl
7
|
]
z
l\.)lb)

1

(¢ —3e)(CP*,D) =(3 — 3
3

+Z[(K1—|—K5—2Kg) + (k2 + %6 — 217)* + (163 4 K4 — 219)?].

Up to projective equivalencies of the Figure 6.18, Maple gives solutions of ordered
m;’s as (n,n,n,2,2,2,2,2 2y or (2,2,2,n,n,n,2,2,2), n € Zz, for (¢ —3e) = 0. In
these cases, the Chern numbers are ¢7 = (3 —2)% and e = £(3 — 3)2. Since there
are three fourfold point of the arrangement in Figure 6.18, at these points the 3
map takes infinite values. The local orbifold fundamental group at these points are

infinite solvable if all the branching indices are 2, i.e n = 2. Then we have the

following theorem:



222
Theorem 6.5.5. The orbifold (CP?, D), where D = 21'9:1 2H; is the divisor supported

by the line arrangement in Figure 6.18 is uniformized by B,.

Another arrangement of nine line is the harmonic arrangement 4 = {H; | i =

1,---,9} in Figure 6.19 defined by the equation
XYZX Y)Y -Z2)(Z—X)(X =Y +Z)(Y —2Z)(2X —Y) = 0.

Harmonic arrangement is projectively rigid. Indeed, cross ratio of the singular points
on Hg and Hy is —1. Note that, Harmonic arrangement is projectively equivalent to
the arrangement in Figure 6.18 via [X : Y : Z] — [X : X —Y +Z : Z]. Thus, if we
choose all branching indices are 2, then we get a ball quotient orbifold, but it is

same as the previous one.

me

mg mg

ms niy

m;

Figure 6.19 Harmonic arrangement.

Finally, consider the Ceva(n) arrangement, which is an arrangement A4 of 3n lines
given by the equation (X" —Y")(Y" —Z")(Z" —X") = 0. Let us divide it into three
parts: 4 = {Hy; |H1;: X —0Y =0,i=0,--n—1}, ={Hy; | Hy;: Y —0'Z =
0,i=0,---n—1}and &3 ={Hs; |H3;: Z—®X =0,i=0,---n— 1}, where ®
denotes the n-th root of unity. Each line has a point of order n, n triple points and no
r-fold points if r # 3,n. Therefore, the arrangement 4 = 4; U 4, U 43 has 3 point
of order n, n® triple points and no r-fold points if  # 3,n. Note that, triple points

lies on the lines Hy ;, H> j and H3 i, where i+ j =k (mod n). Let us denote by I the
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set {(i,j,k) | i+ j =k (mod n)}. Clearly, || = n?. In addition, denote by m;; the
weights of Hy ;, set K;; := m%, and D, := 3:1 Z?:_Ol my ;Hy ;. The bigness condition
(6.4.4) is satisfied for all mS, € Z>3, so the orbifold ((CIP’Z,DH) is of general type.

Beside this, its orbifold Chern numbers are
1(CP*,Dy) = (3n—3-Y x,)* (6.5.2)
s,0
and

1
e(CP?,D,) =2 —3n+(1—n) ¥ x5 + Z;(Kl,i +Kj+ K3 — 1)*+P(n),

s,0

(6.5.3)
where
0 n>4orn=1,
P(n) = Y3, % 0% n=2, (6.5.4)
1y3 _1\2 _
425:](KS,0+KS,1 +Ks,2 1) n=3.
Then,
(cf —3e)(CP,D,) =(3n* —9n+9) —3(n—1) Y ki + (Y K5,)°
o o (6.5.5)

3
— ZZ<K1J+K2J+K3J<_ 1)2—3P(n).
r

In case n = 2, the Ceva(2) arrangement is just the complete quadrilateral and we

have already studied its uniformization (See Theorem 6.5.2).

If n = 3, the equation (6.5.5) reduces to

B~ w

3 3
cf—3e=(3-Y ) — ZZ(K1J-+K27J- +i;— 12 =2 Y (Kot K1 K52 — 1)°
S T s=1

9
=— 2(21(57,')2 + 5 Z Z Ks,iKr, j
S0

1<s<r<3 0<i<j<2
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Therefore, c% — 3e vanishes if and only if K, ; = %, i.e. mg; = m for all s,i. Local
uniformizability condition at triple points is % — 1 < 0 which implies m is either 2

or 3, respectively the orbifold Chern numbers are c% = ?T’ e= % or c% =9 e=3.

Now assume n = 4. The Ceva(4) arrangement A has three fourfold points and
sixteen triple points, and each line has a fourfold point. The uniformizability condition
at fourfold points implies m; ; = 2. Indeed, if one assume K, ; = k for all s, i, then by
(6.5.5) he get ¢ —3e = 9(2k — 1)? = 0 while k = 3. In fact, in general ¢ —3e =0
has many solutions m; ;, but the uniformizability condition is satisfied only when

my; = 2 for all s, 1.

Thus, by the Theorem 6.4.2 we have the following theorem:

Theorem 6.5.6. The orbifold (CPZ,Dn), where Dy, = Y., ;mg;Hg; is a divisor on

CP? supported by the Ceva(n) arrangement, is uniformized by B if
i. n=2and (mso,mys) is either (2,3) or (2,4) or (3,3) forall s =1,2,3.
ii. n=3and my; is either 2 or 3 for all s,i.
iii. n=4andmg; =72 foralls,i.

Remark 6.5.77. Note that, Ceva(n) arrangement is the degree n branch cover of
the complete quadrilateral via @, : [X : Y : Z] — [X" : Y" : Z"]. In the Proposition
6.5.1, we have showed that the Miyaoka-Yau equality c% = 3¢, is satisfied for an
orbifold associated with the divisor based on complete quadrilateral with weights
(n,n,n,m,m,m). Thus, the branching indices of the orbifold branched along the

Ceva(n) arrangement will be m.
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6.6 Orbifolds Supported by Quadric-Line Arrangements

Let A, := QUU., T; be an arrangement of a smooth conic with n-distinct tangent
lines of Q, which is known as Apollonius configuration. Since the tangent lines are
in general position, the configuration space A, can be identified with the configuration

space M, of n-distinct points in CP!, via the contact points of 7; with Q ~ CP!.

Let (CP?,B) be an orbifold associated with the divisor D = aQ + YroomiT;

supported by the Apollonius configuration. The orbifold Chern numbers are

2
t(CP?p) = (—1+n—%—21.) , @6

and

n—1)(n-2) 2-n “2—n 1 141 1 1
e(C]P’z,B):( I >+ +Z + +—Z(—+_—_)2
2 a 8 omi i, im 245a m 2
(6.6.2)
In addition, local uniformizability conditions are % + mil > % foralli=1,2,--- ,n.

Proposition 6.6.1 (Uludag, 2004). Let (CPP?,B) be an orbifold associated with the
divisor D 1= aQ + Y.\, m;T; supported by the Apollonius configuration. Then

i. 3¢(CP?,B) = c}(CP?,B) > 0 if and only if n = 3 and (a;my,my,m3) is one of
(4:4,4,4), (3:3,4,4), (3:6,6,2) or (3:6,3,3),

ii. 2¢(CP? B)=c3(CP?,B) > 0ifand only if either a=2 and p #n—2 orn="2
and mll—i-mlz—l—é = % orn=73and (a;my,my,m3) = (3;2,3,4), orn=4 and

(asmy,my,m3,ma) = (a;2,2,2,2).

iii. ¢(CP?,B) = c}(CP?,B) =0 ifand only if either n =2, (a;my,my) = (2;00,00),
or n =3 and (a;my,my,m3) is one of (2;2,2,00), (2;3,3,3), (2;2,4,4) or
(2;2,3,6); orn =4 and (a;my,my,mz,my) = (2;2,2,2,2),

iv. ¢(CP?,B) > 0 and c2(CP*,B) = 0 if and only if either n = 2, (a;my,my) is
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one of (4;4,4), (3;6,6), (6;3,3) orn=3 and m; = my =, or n =3 and
(a;my,my,m3) is one of (4;2,2,2) or (3;3,2,2).

Proof. For simplicity, let us set p := Y ; nl1, and K = é Then the equations (6.6.1)
and (6.6.2) reduces to

A CP2B) = (—p—2k—1+4n)? = (n—1)>=2(n—1)(p +2K) + p> + 4kp + 4

and

-1 -2 2 2 2 A
e(CPZ,B)z(n )2(n ) P~ +nK-+2pK—p m<+n

2 8

—(n—2)(k+p)+

Therefore c%((CIP’Z, B) =0if and only if p+2k = n — 1. Note that the equality p +
2k =n—1is valid if n < 4, since m;,a > 2. If n = 2, then the solution (a;m;,m;) to
the equation 2 + m% + m% = lisoneof (e=;2,2), (12;2,3), (8;2,4), (6;3,3), (4;4,4),
(4:3,6), (4;2,09), (3;3,3), (3;6,6) or (2;00,00). Incase n =3, 2+ ¥, ;- =2 and
(a;my,my,m3) is one of (4;2,2,2), (3;2,2,3) or (2;my,mp,m3) satisfying p = 1. If
n = 4, then %4—2?:1 mi, = 3 and therefore (a;m,mp,m3,mq) = (2;2,2,2,2). It can
be easily showed that only the possibilities stated in the case iii., both of the orbifold

Chern numbers vanish. For the possibilities stated in the case iv., first Chern number

vanishes while Euler number is always positive.
Furthermore,

(2¢ — c?)(CP%,B) =1 — %n +p+nx+ (n—4)x* —2pk

=(k— %)((n—4)1<—|—# —2p)
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and
2 (2 n*  17n P’ 5p 2
(3e — c7)(CP~,B) :?—?+2+2K+?—np+7—7—p1<—41<
:%(n2+p2+nK—K2—2pK—np)+§(p—1<—n)—|—%

3
+ g(4m<2 — 12k* —4nk+ 12k +n—3)

(p—K—n+—)2+§(n—3)(2K— 1)2.

Thus, (2¢ — ¢2)(CP%,B) = 0 if and only if k = 4 or (n—4)k+ 2% —2p = 0.
If a = 2, then clearly ¢3(CP?,B) = 2¢(CP?,B) = (p +2 —n)? and it vanishes for
p = n— 2. The condition (n—4)x+ # —2p =01s valid only for 2 <n < 4,
since a,m; € Z>p. If n =2, then x+p = % which has infinitely many solutions,
and c% = 2e = p2. If n = 3, then we have the equation K +2p = % whose solution
is (a;mi,ma,m3) = (3;2,3,4) and orbifold Chern numbers are ¢} = 2e = . In
addition, if n = 4 then the condition (n —4)x+ % —2p = 0 reduces to p =2
which implies m; = my = m3 = m4 = 2 and the orbifold Chern numbers are c% =

2e = (1—2)%

On the other hand, (3¢ — ¢?)(CP?,B) = 0 if and only if p —k —n+ 3 = 0 while
either n = 3 or a = 2. Note that, if a = 2 then the condition p — K —n +% =0
reduces to p = n — 2 which implies 2 < n < 4. But, the orbifold Chern numbers
c% and e vanish. Now suppose n = 3, then the condition p — K —n+ % = 0 reduces
top = K-i—% for which a solution (a;mj,my,m3) is one of (4;4,4,4), (3;3,4,4),
(3;6,6,2) or (3;6,3,3). Il

Lemma 6.6.2 (Holzapfel & Vladov, 2001). There is an orbifold covering ((CIP’l X
CP', aQ + Y5, mi(T) + T/’)) — ((CIP’Z, 2aQ+Yk miT;)), where T = {p;} x O,
T = Q x {p:} and the covering map is ([p:ql,lr:s]) — [ps+qr:qs: pr] (See
Figure 6.20).

Proof. Consider the Z-action defined by (x,y) € CP! — (y,x) € CP!. The diagonal
Q = {(x,x) : x € CP'} is fixed under this action. Let x = [p : g],y = [r : s], then the
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Figure 6.20 A covering of Apollonius configuration.

symmetric polynomials &;(x,y) := ps+ gr, 61(x,y) := gs and G1(x,y) := pr are

also invariant under this Z,-action. Consider the Viéte map
v:([p:ql,[r:s]) € CP' x CP! — [ps+qr:gs: pr] € CP2. (6.6.3)

It is a branched covering of degree 2. The branching locus can be found as the image
of the diagonal Q. Since | is one-to-one, so we will denote y(Q) by Q again. One
has w(Q) = {[2pq: 4> : p*] | [p: q] € CP'}, so that Q can be given by the equation
X2 —4YZ = 0. One can identify Q x Q with CP! x CP! via projections of diagonal.
Let P Q,and put T} := O x {P} and T} = {P} x Q. Then Tp := y(T}) = y(T))) =
{[rg+sp:sq:rp]|[r:s] € CP'} C CP? is the line ¢°Z + p?Y — pgX = 0 tangent
to Q at the point [2pq : ¢* : p?]. O

Remark 6.6.3. Consider the divisor D = 2aQ + Zle m;T;. Since, distinct tangent
lines of a quadric meet transversally, then at these singular points local orbifold
fundamental group is abelian and local uniformization always exist. In addition, at
tangency points, orbifold germs have uniformization if and only if é + mi, > % for
eachi=1,2,--- k. Therefore (CP?,D) is an orbifold provided é + mL, > % for each
i=1,2,-- k.

Theorem 6.6.4. The orbifolds in Figure 6.21 are uniformized by CP' x CP'.

Proof. Consider the particular case of Lemma 6.6.2. If a = 1, then there is an

orbifold covering

k k k
(CPY, Y. mipi) x (CP', Y. mip;) — (CP2,20+ Y miT;). (6.6.4)
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So, by Theorem 6.1.3 the covering orbifold is uniformized by CP! x CP! if k = 1
and my =my,ork=2and 1 /my+1/my+1/m3 > 1. Hence the orbifolds in Figure
6.21 are uniformized by CP' x CP'. It is also clear from the Proposition 6.6.1 that,

these orbifolds satisfy the Hirzebruch’s second proportionality theorem, i.e, c% =

2e. O
m
@ 2 2 2 3 2 3 2 3
m m 3 4 5
Figure 6.21 Orbifolds uniformized by CP! x CP!

05050505080

2

Figure 6.22 Orbifolds uniformized by C x C.

Theorem 6.6.5. The orbifolds in Figure 6.22 are uniformized by C x C.

Proof. Consider the covering given by (6.6.4). Then by the Theorem 6.1.3, the
orbifold (CP?, D) branched along Apollonious configuration is uniformized by C x
Cifn=2andm; =m) =occ,orn=3and 1/m+1/my+1/m3 =1, 0rn =4 and
m; = my = m3 = my = 2. Note that by the Proposition 6.6.1, both of the orbifold

Chern numbers vanish. OJ

Theorem 6.6.6. The orbifolds in Figure 6.23 are uniformized by B,.

Proof. Proof follows from the Theorem 6.4.2 and Proposition 6.6.1.1. L

4 3 2 3

Figure 6.23 Orbifolds uniformized by B,
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Lemma 6.6.7. Let Q be a quadric in CP?> and Ty, T» and T are its distinct tangent
lines. Then the Apollonious configuration Az = QU Ty UT, UT; is given by the
equation

XYZ[(X+Y —Z)>—4XY] =0 (6.6.5)
up to projective transformations.

Proof. Since dimPGL(3,C) = 8, we can choose homogeneous coordinates such
that 71 = {X =0}, T» = {Y =0}, T3 = {Z = 0} Suppose the quadric Q is given by
the equation F := aX? + bY? 4 Cz> +2dXY +2eYZ +2fZX = 0. For a given sub-
group X3 < PGL(3,C), isomorphic to the symmetric group S3, the action of X3 just
permutes the coordinates. Thus, the X3-invariant quadrics must satisfy simultaneously

three equations

a¥? + bX? +cZ> +2dXY +2eYZ+2fZX = 0
aZ> +bY? +cX>+2dYZ +2eXZ+2fXY = 0

aX? 4+ bZ> 4+ cY? +2dXZ+2eXY +2fYZ = O,

which have to be the same up to a factor. It follows that, a = b = ¢ = 1 (without
loss of generality) and d = e = f = A € C*. Therefore, X3-invariant quadrics form a
1-parameter family X2 +Y? + Z% 4+ 2AXY + 2AYZ +2AZX = 0. On the other hand,
Q has contact of order 2 with 7} = {X = 0} at a point [0 : 1 : ¢]. Substituting the
coordinates of this point in the quadric equation, we must have a unique solution
for ¢ of the equation 1?2 +2M + 1 = 0. Therefore, either A =1 or A = —1, but Q is
degenerate for A = 1. Hence one gets a symmetric equation for the non-degenerate

quadric Q as X2+ Y2+ 272 —2XY —2YZ 27X = (X +Y —~Z)> —4XY =0. [

Now, let us add new lines to Apollonius configuration to discover new orbifolds
uniformized by complex 2-ball B,. Consider the orbifold (CPP?,B) associated with
the divisor D = aQ + 2?21 m;T; + myqH,4 supported by the arrangement in Figure
6.24 given by the homogeneous equation XYZ(X — Z)[(X +Y — Z)?> —4XY] = 0.
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nmj ms3
my
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my
Figure 6.24

The orbifold Chern numbers are
4
ci(CP?,B) = (3—) ki —20)* = (3—p—206)* = 9—6(p+20) + (p+20)’
i=1

and

4

1
e(CP?,B) =2— Y ki — 20+ 0ky + (K1 + K3)K2 + Z(K] +13+Kk4—1)2
i=1

1 1, 1 1, 1 K4 o
- P — )24+ =1
+2(K1+6 2) +2(K3+6 2) +2(K2+G+ > )

1 1 1
=3-2(p+20) + (P +20)* + £ (26 +K4)” + £ (21 +k2)?

(K2 + 21(3)2

0| =

_|_
where K; = mi p= Z?:o K;and 6 = % Therefore,
1

(3e— c%)((CIPZ, B)=—-(p +26)2 + %(26—1— K4)2 + %(21{1 —|—1<2)2

(Kz + 2](3)2

0| WK =

_|_

To find a solution to 3e — ¢ =0, seta := 3 (2K +K2), b:= 3 (2K3+K2), ¢ := 3 (20 +

K4), then clearly a+b+c=p+2cand f(a,b,c) :=3e—c} = —g(a+b+c)+3a*+

(
+%b2 + %cz > 0. The function f(a,b,c) takes its minimum value, 0, on the line
¢ = 4a = 4b. The equation a = b clearly implies k; = k3. In addition, the equation
¢ = 4a implies (a;my,mp,m3,my) is either (p;4q, p,4q,q) or (p,2p,2q,2p,q) for

some p,q € Z>3.

At nodal points, the local orbifold fundamental group is abelian and it always
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admits a local uniformization at these points. At triple points and tangency points,
there are local uniformizations if the local orbifold fundamental groups at these
points are either finite or infinite solvable. The local uniformizability condition at
these points are k| +k3 +ks > 1, k1 +6 > 1, k3+06 > 5 and kp + 6+ & > 1.
Checking these conditions for the quintuplets (p;4q, p,4q,q) or (p,2p,2q,2p,q)
and taking into account the fact p,q € Z>,, we obtained the branching indices

(a;my,my,m3,my) as (2;4,4,4,2). Moreover, the first and second Chern numbers

3

9
are ¢ and 6

respectively. Notice that, K] +K3+K4 =1 and K, + 6+ % = 1. These
means, there are ball-cusp points at 71 N 73 N Hy and Q NT> N Hy. As a result, we

can state the following theorem:

Theorem 6.6.8. Let (CP?,B) be an orbifold associated with the divisor D = 2Q +
Z?:l 4T;+2Hy supported by the arrangement in Figure 6.24. Then, it is uniformized
by B,.

Third, let us add another tangent line to the quadric-line configuration whose
uniformizability discussed above. Consider the orbifold (CP?,p) associated with
the divisor D =aQ + Zle m;T; +msHs supported by the arrangement in Figure6.25
given by the equation XYZ(X —Z)(2X —Y +2Z)[(X +Y — Z)? —4XY] = 0. Its

orbifold Chern numbers are
2 2 2 2
A(CP?,B) = (4— Y ki~ 20)
i=1

and

e(CP?,B) =2 — (11 + K34 %5) — 2(K2 + K4 +6) + (k1 +K3) (12 + K4) + Koy

1 1 1 1 1

1 12 4s RV Y
+4(K1+K3+K5 ) +2(6+K1 2) +2(G+K3 2) +

— ——1 — ——1
+2w+m+2 )+2w+m+2 ),

where K; = mi, and ¢ = é Local orbifold fundamental groups at nodal points are
abelian and admits local uniformization. Local uniformizability condition at triple

and tangency points is related with the order of local orbifold fundamental group
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Jt‘l”b , and n‘l”b must be finite or at most infinite solvable. These correspond to the
inequalities K] + K3+ kK5 > 1, K, + G > % and K; + 0+ % > 1, where i = 1,3 and
J = 2,4. Equalities are valid if the orbifold has cusp points. The conditions k; + G+

3 >1, j=2,4tell us that a is either 2, 3 or 4.

First suppose a = 4, then ¢ = % and the inequality x; +0 + % > 1 reduces to
Kj+ % > 43'1’ Jj = 2,4, which imply my = mq = ms = 2. In addition, the inequality
Ki+06> %, i = 1,3 implies that m,m3 < 4. Under these conditions, the inequality

K1 + K3+ K5 > 1 is automatically satisfied.

Next, assume that a = 3, then 6 = % and the inequality X; +0 + % > 1 reduces to
K+ % > %, Jj =2,4, which implies m, = m4 = 2 and mjs is either 2 or 3. In addition,
the conditions k;+ 0 > 1, i = 1,3 gives my,m3 < 6. Under these conditions and
depending on the choices of ms, the inequality x; + k3 + K5 > 1 has finite number

of solutions.

Now suppose a = 2, then k; + 5 > %, J = 2,4 and therefore (my,m4,ms) is one
of (2,2,k), (2,3,2), (2,3,3), (2,4,2), (3,2,2), (3,3,2), (3,4,2), (3,2,3), (3,3,3),
(4,2,2), (4,3,2) and (4,4,2). Beside these, the inequalities ; +6 > 3, i = 1,3 is
always true. Depending on choice of (my,m4,ms) the inequality k; + K3 + ks > 1

has finite number of solutions.

By taking into account these restrictions on branching indices and using Maple

we have obtained that (3e — c%) vanishes if (a;m,ma,m3,mq;ms) is (4;4,2,4,2;2)

and first and second orbifold Chern numbers are % and 3, respectively. Note that,
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for sucha and m;’s, K] + K3+ K5 =1, K, + 0 = % and Kj—f—G—I—% =1, where i =
1,3 and j = 2,4. This means, at all multiple points except the nodal ones local
orbifold fundamental groups are infinite solvable and these points are cusp points.
In addition, this orbifold is an orbifold of general type. Then by Theorem 6.4.2, we

can state the following theorem:

Theorem 6.6.9. The orbifold (CP?,B) associated with the divisor D = 4Q + 4T, +
2T, +4T;5 + 2Ty + 2H;5 supported by the arrangement in Figure 6.25 is uniformized
by Bz.

Fourth, consider the orbifold (CP? B) associated with the divisor D = aQ +
Zle m;T; + Z?:s m;H; supported by the rigid arrangement in Figure 6.26 defined by
the equation XY (X —Y)(X +Y)(Y —2)(Y + Z)(Z - X)(Z+X)(X*>+Y? - Z?) = 0.
Its orbifold Chern numbers are

8
ct(CP?,B) = (7— ) ki —20)*
i=1
and
0 1
e(CP?,B) =12-2Y 1, — 66+ (26 — 3) (k7 + Kg) + 5(8%76 +856+855+8]5)
i=1

) 2 2 2 2 2
+ Z(P1,2,5 +PT38tPIa7tP237 P48 P3a6);

where Ki:ml,-’(’:é’ pi’jyk:Ki—l—Kj—l—Kk—landSnS:G—f—Kr"‘%—l.
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Since 7 — Z?: 1 Ki —20 > 0 for any m;,a € Z>), this orbifold is of general type.
Note that, there is a fourfold point lies on the lines Hs, Hg, H; and Hg. The local
orbifold fundamental group is infinite solvable if ms = mg = m7 = mg = 2 and
big otherwise. Therefore, the weights ms = mg = m7 = mg = 2 admits the local
uniformization at Hs N He M H7 N Hg. The other local uniformizability conditions are
pijkx > 0andd,; >0, where (i, j,k) € {(1,2,5),(1,3,8),(1,4,7),(2,3,7),(2,4,8) }
and (r,5) € {(1,6),(2,6),(3,5),(4,5)}. Forany rin {1,2,3,4}, the conditions 8,5 >
1 and 5,,6 implies the inequality é + m% > §, which is valid if either a = 4 and m, = 2,
or a=3and m, =2, or a =2 and m, < 4. Notice that, in all cases the inequality
Pijk= m% + mi] —|—% > 1is satisfied, where i, j € {1,2,3,4} and i # j. Thus, we have
candidates in the form of (a;my,my,m3,ma;2,2,2,2), where either a = 4 and m, =
2,ora=3and m, =2, or a =2 and m, < 4. By taking into account these restrictions
on branching indices and using Maple, we have obtained that the Miyaoka-Yau
equality (c% —3e)(CP?,B) = 0 is satisfied if (a;my,ma, m3,my;ms,mg,m7,mg) is
(2;4,4,4,4,2,2,2,2), and its first and second orbifold Chern numbers are 9 and 3,
respectively. Notice that, all multiple points except the nodal ones are cusp points.
Since this orbifold is of general type, then by Theorem 6.4.2, we can state the

following theorem:

Theorem 6.6.10. An orbifold (CP?,B) associated with the divisor D =2Q+ Y+ | 4T; +
Z?:s 2H; supported by the arrangement in Figure 6.26 is uniformized by B;.

Fifth, consider the arrangement of a quadric Q and its four tangents 7;, i =
1,2,3,4. Let Hs be the line through 71 N 1>, T3 N Ty, and Hg be the line through
QNT3, QNTy. The line Hs meets Q transversally. Arrangement of such quadric and
lines are projectively rigid, and equations are Q := {X?> —Y2 —-Z?> =0}, T} = {X +
Z=0},h={X-Z=0},T3={X+Y=0},T4s={X—-Y =0}, Hs ={X =0} and
Hg = {Y = 0} (See Figure Figure 6.27). Consider the orbifold (CP?, B) associated
with the divisor D = aQ + 21-6:1 m;H; supported by this arrangement. Its orbifold
Chern numbers are

c}(CP?,B)=(5—-26— 26: Ki)?
i=1
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and

6
e(CP%,B) =6—6—2Y ki — 6+ 20%s + (k1 +%2) (k3 + %4)

i=1

1 1 1
+Z(K1 + %+ K5 — 1)24—5((54—1(1 —|—§1<6— 1)

1 1 1 1 1 1
L T — 12 = i ! _ 1y
+2(G+K2+2K6 ) +2(G+K3 2) +2(G+K4 2) ,

where ¢ = é and x; — mi, Notice that, there is a fourfold point. The local orbifold
fundamental group at this point is infinite solvable if m3 = myq = m5 = mg = 2,
otherwise it is big. Such choice guarantees the local uniformization at tangency
points 73 N Q and Ty N Q. At nodal points, local orbifold fundamental group is
abelian and local uniformization always exist at these points. For triple points,
the local uniformizability conditions are K; + Ky > %, Ki+02> % and K) + G > 43'1'
Therefore, this orbifold is locally uniformizable if (a,m;,my) is one of the triples
(2,2,2), (2,2,3), (2,2,4), (2,3,2), (2,3,3), (2,3,4), (2,4,2), (2,4,3), (2,4,4),
(3,2,2) and (4,2,2), while m3 = mqy = ms = mg = 2. Taking into account this
restrictions on branching indices and using Maple, we have obtained the Miyaoka-
Yau equality ¢ (CP?,B) = 3e(CP?,B) = 9/4. Since this orbifold is of general type,

then by Theorem 6.4.2, we can state the following theorem.

Theorem 6.6.11. Let (CIP?,B) be an orbifold associated with the divisor D =2Q +
?:1 2T+ 2325 2H; supported by the arrangement in Figure 6.27 is uniformized by
B,.



237

me

my

mio

mo

m3

mymz mgmy Mms

Figure 6.28

Sixth, consider the orbifold (CPP?, B) associated with divisor D = aQ + Y%, m;T; +
2}25 m;H; supported by the arrangement in Figure 6.28. Its orbifold Chern numbers

are

A(CFB) = (9- ¥ K~ 207
i=1

and

10
e(CIPZ,B) =20—-4 Ki+(K5+K6) —6G+(K1 —|—K2)(K9+K10)
i=1

1

+ (k3 + %) (K7 +Ks) + 5 (T +13 +13 +13)
1

+ Z(p%.ﬁ.ﬁ + P%,4,5 + P%,3,5 + P%,4,6)»

where K; = mii, c= é, Pijk=Ki+Xj+K,—1andm, =0+K — % Notice that,

there are four four-fold points and B map takes infinite values at these points. This
means, the local orbifold fundamental groups at these points are infinite. Therefore,
the local uniformizability at these points corresponds to solvability of local orbifold
fundamental groups, which is possible if branching indices are 2, otherwise it will
be too big. Then we may assume a = ms = mg = my = mg = mg = myo = 2. In this
case, note that n, > 0 for any r € {1,2,3,4} and therefore orbifold germs through
tangency points are always locally uniformizable. In addition, the uniformizability
conditions at triple points are p136 > 0, p145 >0, p235 > 0 and p246 > 0 and
they give us the relation mL, +-L > %, where (i, ) € {(1,3),(1,4),(2,3),(2,4)}.

This is possible if for such (i, j), (m;,m;}) is one of (2,k), (3,3), (3,4), (3,5), (3,6),
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(4,3), (4,4), (5,3), (6,3) and (k,2), where k € Z>,. By taking into account these
restrictions on branching indices and using Maple, we have obtained the Miyaoka-
Yau equality (3¢ —c?)(CP?,B) = 0 if all weights are 2. In this case, the first and
second orbifold Chern numbers are 9 and 3, respectively. Since this orbifold is of

general type, then by Theorem 6.4.2, we can state the following theorem:

Theorem 6.6.12. Let (CP?,B) be an orbifold associated with the divisor D =2Q +
Zle 2T + 21125 2H; supported by the arrangement in Figure 6.28 is uniformized by
B,.

n3

mi m2

Figure 6.29

Seventh, consider the orbifold (CP?, B) associated with the divisor D = )j:l n;Q;+
21'6:1 m;H; supported by the arrangement of three quadrics with six tacnodes and
their pairwise six common tangents (See Figure 6.29). We know from the equation
(4.3.30) that equations of three quadrics with six tacnodes is projectively equivalent
to (X2+Y2-27?%) (qlzx2 +Y?—Z%) (X2 +Y? —¢*Z?) = 0 and their pairwise common
tangents are given by (X —i¥ ) (X +iY)(Y —2)(Y +Z)(X +iqZ)(X —igZ) = 0. These
six lines forms a complete quadrilateral if and only if ¢g> = —1. Thus, considering
fact g> = —1 and using the projective transformation [X : ¥ : Z] — [iX : ¥ : Z] one

obtains the equation
(X2 —YH(Y?-Z2)(Z> - X>)(X>+Y? - Z2)(X> - Y? + Z22)(—X*+Y*+7Z%) =0

for the arrangement in Figure 6.29. In the Section 6.2.3 we have discussed the
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covering relations among orbifold germs and their uniformizations. A uniformizable
germ consisting of two conics having a contact of order 2 and their common tangent
line appeared as cover of four lines with branching indices 2 via @1 or @1 (See
Figures 6.10 and 6.12). Therefore, such germs are uniformizable if the branching
indices are 2. In this case, the B map takes infinite values and cusp points appears
in covers of these points. Moreover, such choice of branching indices guarantees
the local uniformization at triple points and nodal points. Omitting this fact, let us
first compute its orbifold Chern numbers in terms of branching indices m; and n;.

Orbifold Chern numbers of (CP?,B) are

C%(CPZ,B> = (9— il{i -2 i Gj)2
Jj=1

i=1

and

3
Ki—6 Z G+ K1 K2 + K3K4 + K5K6 +2(x; +K2)02
i=1 =1

6
e(CP?,B) =20 — 4

1
+2(%3 + K4)03 +2(%5 + %6 )01 + Z(P%g,s +PTa6tPr36+Pr4s);

where x; = mli, Cj = nl_,» Pijx = Ki+Kj+ K — 1. Incase m; = n; = 2 for all i, j,
then first and second orbifold Chern numbers are c% =9 and e = 3, respectively.
In addition, this orbifold is of general type. Therefore, as a consequence of the

Theorem 6.4.2, we can state the following theorem:

Theorem 6.6.13. The orbifold (CP?,B) associated with the divisor D =Y3_, 20+
Z?:l 2H; supported by the arrangement in Figure 6.29 is uniformized by B,.

Eighth, consider an arrangement of three quadrics Q;, such that the quadric Q3
has a contact of order four with Q; and Q, while Q; and Q; has a tacnode. From

the Proposition 4.3.6, we know that such quadrics are

01:Y>+Z2-2XY =0, Q,:Y?>+Z>+4+2XY =0, Q3:4X*>-Y>-272=0.
(6.6.6)
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Let H; be the the line through the nodal intersection points of Q1 and O, that is
Hy:X=0.LetHy:X+Z=0and H3 : X —Z = 0. They are common tangent lines
of Oy and Q; at the points [1 : 1 : 1] and [—1: 1 : 1], respectively. Also, the point
HyNH; = {[15%:1:0]} lies on Hj. In addition, the line Hy : Y = 0 is tangent to both
of O and Q; at [1: 0: 0]. Configuration of these quadrics and lines are projectively

rigid.

Consider the orbifold (CP?,B) associated with the divisor D = Z§:1 n;Q;+
Z?:l m;H; supported by the arrangement in Figure 6.30, where equations of quadrics

Q; and lines H; are stated above. Its orbifold Chern numbers are

3 3
H(CP2B)=(6-Y xi—2Y o)
i=1 j=1

3 3 13
e(CP?.B) =10—3Y «; —4(6| +62) — 603 + 20 K+ — K —1)?
( B) l:Z:l i ( 1 2) 3 3; i 4(; i )

+§(61+62+K1_1)2+(61+G3_Z)2+(62+63_Z)2

+2(61+02 2) +2(G1+K2 2) +2(61+K3 2)
1 1, 1 1,

(et =) + (o 15— 5)7,
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where 6; = ni and x; = ml Local orbifold fundamental group at nodal points
J 1
are abelian and always admit local uniformization. In addition, uniformizability

conditions at triple and tangency points are

3
Yx>1 oi+0+Kx>1, o©1+03>
i=1

1 1 1
61+K22§, G1+K32§, 02+K22§, 02 +K3 > —.

Notice that, in Figure 6.30 the line H; is a reflection of H3 and they have the
same combinatorics. Similarly the quadric Qg is a reflection of O, and they have
same combinatorics. In addition, both orbifold Chern numbers and uniformizability
conditions are symmetric w.r.t 61 and 6>, and K, and k3. Then, we can deduce 6| =
6, and x, = k3. Therefore (mj,my,m3,ny,ny,n3) is in the form of (p,q,q,r,r,s),

where (p,q,r,s) satisfy the inequalities

r<4

Y]

_|_

Y

1
,

N | -

+l>3
s — 47

< |-
SN S)
v
\:—ﬁ
I
+
Q|-

which has solutions:

qll2,3,4/2,3| 2 3 3 4

sl 2 | 2 123,4(2,3,4]23,4/|23,4

where k € Z>,. By using Maple, and taking into account the candidates above, we
have obtained that (3¢ — c¢3)(CP?,B) = 0if (my,mp,m3,n1,n2,n3) is (2,4,4,4,4,2).
In this case, notice that all multiple points admits cusp-points. Since it is an orbifold

of general type, then by Theorem 6.4.2, we can state the following theorem:

Theorem 6.6.14. The orbifold (CP?,B) associated with the divisor D = 4Q; +
407 4+ 203 + 2H| + 4H, + 4H3 supported by the arrangement in Figure 6.30 is
uniformized by B,.
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Figure 6.31

Ninth, consider the orbifold (CP?,B) associated with the divisor D = n;Q; +
no Qs + Zle m;H; supported by the arrangement in Figure 6.31. Here, Q; : Y2 +
72 -2XY =0,0,:Y>+Z7>42XY =0,H,: X =0,H,:X—-Z=0,H3;: X+Z =0,
Hy : Y = 0. We have discussed the intersection behavior of this arrangement on page

239. Its orbifold Chern numbers are

4
c1(CP%,B) = (5—201 —202— }_ ;)%
i=1

1

and

4
e(CP?,B) =6 —3(01+02) —2 Y 1+ K4 (K1 + K2 +K3)
i=1

1 2 1 1
+Z<K1+K2+K3_1)2+Z(01+62+K1_1)2+§(01+K2_§)2
+2(61+K3 2) +2(62+K2 2) +2(62—|—K3 2) ,

where K; = mL, and 6; = "L; Notice that, this orbifold is of general type. Local
orbifold fundamental group at nodal points are abelian and it always admits local
uniformization at nodal points. In addition, this orbifold is locally uniformizable at
HyNQ1NQy if nyp = ny = my =2, which automatically verifies the local uniformiz-
ability conditions at each singular points on quadrics Q;. Finally, there is a local
uniformization at [0 : 1 : 0] if k] + &, + K3 > 1, i.e, (m),my,m3) is a permutation of

(2,2,k),(2,3,3),(2,3,4), (2,3,5), (2,3,6), (2,4,4) and (3,3,3), where k € Z>,. By

using maple, and considering the candidates above we have obtained the Miyaoka-
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Yau equality (c% —3¢)(CP?,B) =0 for (ny,np;my,ma,m3,my) = (2,2;2,4,4,2). In
this case orbifold Chern numbers are c% =3e= %. Then by the Theorem 6.4.2, we

can state the following theorem:

Theorem 6.6.15. The orbifold (CP?,B) associated with the divisor D = 2Q; +
20, + 2H | + 4H) + 4H3 + 2H,4 supported by the arrangement in Figure 6.31 is
uniformized by B;.

2)

ni UP)

my ms ma

Figure 6.32

Tenth, consider the orbifold (CP?,B) associated with the divisor D = n;Q; +
no Q)+ Z§:1 m;H;, supported by the arrangement of quadrics Q; : X2 +Y? —Z? =0,
0>:X>+Y?>—27>=0and thelinesH; : X —Y =0,H,: X+Y =0,H;: X —Z =0,
Hy . X+7Z=0,H5:Y—-Z7Z=0,Hs:Y+Z=0,H;: X—iY=0and Hg: X +iY =0.
Since this configuration can not be realized, we will draw an imaginary picture. An
intersection behavior of the lines H;, i = 1,--- ,6 and the quadrics Q1 and Q; are as
in Figure 6.32. The quadrics Q; and Q; has two tacnodes at [+ : 1 : 0] (this points
are labeled by red and blue colors on each quadric and to denote the intersection
behavior at these points the intersection numbers are illustrated inside parenthesis).
Common tangent lines of Q; and Q, at these points are the lines H; and Hg. In
addition the lines H7 and Hg form a pencil together with H; and H, while they are

transverse to other lines. In general settings of branching indices, one can compute
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its orbifold Chern numbers as
8
c1(CP%,B) = (9201 —20,— ¥ ;)
and

8
e(CP?,B) =19 — 601 — 40, + (201 — 3) (k1 +K2) —4 Y Ki + K3K4 + KsKe
i=3

Ll 0 1

5 Z o1 +K— =

Notice that, there are four-fold points. At these points, the 3 map takes infinite

values, i.e local orbifold fundamental group is infinite. Then solvability of local
" b admits local uniformization at these points. Therefore, branching indices of

curves through these points must be 2. Notice that, each line and quadric has at

least one four-fold point. Thus, we can assume n; = m; = 2 for all i, j. In this case

orbifold Chern numbers are c1 9 and e = 3. Since this orbifold is of general type,

then by Theorem 6.4.2 we have the following theorem:

Theorem 6.6.16. The orbifold (CP?,B) associated with the divisor D = 201 +
20, + Z?: 1| 2H; supported by the arrangement in Figure 6.32 is uniformized by the
complex 2-ball B.

m3
/\\ )
AN
m mp ms
Figure 6.33

Eleventh, consider the arrangement of two quadrics Q1, Q> and five lines H; such
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that the quadrics Q1 and Q> has two tacnodes and the line Hs goes through these
points. In addition, the lines Hy, H>, H3 and H, are distinct four tangent lines of
Q1 such that they pairwise meets on Q>. Such configuration is projectively rigid
and the equations of these quadrics and lines are Q; : 2X> +2Y?> - 272 =0, Q> :
X24+Y2-Z2=0,H:V2X+Z=0,H,: V2X ~Z=0,H3 : V2Y +Z =0, Hy :
V2Y —Z =0 and Hs : Z = 0. Since this configuration can not be realized, we will
draw a picture consisting its real part. The same colored points denote a tacnode of
quadrics. The arc on the picture denotes the line Hs = {Z = 0}, the line at infinity
(See Figure 6.33). Now consider the orbifold (CPP?,p) associated with the divisor
D=n1Q1+n0r+ Z?Zl m;H;. Its orbifold Chern numbers are

5
C%((CIP’Z,B) = (6—2(51 — 207 — ZK,’)Z
i=1

and
1
e(CIP’z,B) =9—4(c,+02) ZZK, 4K1+K2+K5—1)
1 7 1 1
+ (ka5 = 1)+ 2 ) (01 + K- 5)°
i=1
+122:Z4:c+1<—|—1< 1)2+(6+6+1K 1)?,
4121]:3 2+ Ki+Kj 102+ 5Ks
where K; = and 6, = --. Note that that both of the orbifold Chern numbers are

symmetric in Varlables (Kl,Kz) and (K3,K4), i.e, m; = my = m3 = mqy = m. Set
K := -.. The local uniformizability conditions at triple points and tangency points
are

1
2k+Ks>1, o1+K , Oy+2k>1, (51+(52+§K521.

NI*—‘

These conditions has solutions (m,ms,ny,ny) for m,ny,ny < 4. Taking in to account
these restriction on branching indices and using Maple we obtained the Miyaoka-
Yau equality ¢3(CP?,B) — 3e(CP?,B) = if n; = m = 4 and np = ms = 2. In this case,
the orbifold Chern numbers are c% =3¢ =9, and the B map vanishes at tangency

points and triple points, i.e, local orbifold fundamental groups at these points are
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infinite and cusp points appears as cover of these points. Since this orbifold is of

general type , then by Theorem 6.4.2, we can state the following theorem:

Theorem 6.6.17. The orbifold (CP?,B) associated with the divisor D = 4Q; +
207+ Z?:l 4H; + 2Hs supported by the arrangement in Figure 6.33 is uniformized
by the complex 2-ball B,.
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Figure 6.34

Twelfth, consider an arrangement of a quadrics Q, and nine lines H; such that
the lines H|, Hy, H3, Hy, Hs and Hg are distinct six tangents of Q. The line H;
pass through the H3 N Q, H1 N Q, Hi N H, N Hy and Hs N Hg N Hg. The line Hg pass
through the Hy N Q, H, N Q, H3 N H4 M Hg and Hs N Hg M H7. In addition, the line Hy
pass through the Hs N Q, He N Q, H3 N H4 N Hg and H N Hy N H7. This configuration
is projectively rigid and complex realizable. The equations for these quadric and
lines are Q : X>+Y?>—Z2>=0,H: Z+X=0,H,:Z—-X=0,H:Y+Z=0,
Hy:Y—-Z=0,Hs :X+iY =0}, Hs: X—iY =0,H;: X =0, Hg : Y =0 and
, Hy : Z = 0. Since this configuration can not be realized, we will draw a picture
consisting its real part, Hg as the line at infinity. Wee will also draw imaginary lines
Hs and Hg symbolically so that the colored points denote the tangency points of
these lines to Q (See Figure 6.34). Consider the orbifold (CP?,p) associated with

the divisor D = nQ + 21'9:1 m;H;. Its orbifold Chern numbers are

c}(CP?,B) = (8—26— 29: Ki)?
i=1
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and

Mp

¢(CP?,B) =16 — 46 — 421([ ZZK, (1 +12) (165 + %) + (s + Ke)

Il
_

+ 5(11178 +le,8 Jr113,7 JF114,7 +T15,9 +n6,9)

where ¢ = %, K = nll, and n;; =o0+%;+ %Kj — 1. Notice that each line in Figure
6.34 has a fourfold points. Local orbifold fundamental groups at these points are
infinite solvable if m; = 2, otherwise they are big. Now assume m; = 2. Local
orbifold fundamental group at nodal points are abelian and always admit local
uniformization. To have local uniformization at tangency points on quadric Q, we
must have n;; = 6 — l >0, i.e, 2 < n < 4. The orbifold Chern numbers reduces to
¢ =(J—20)*and e =4 — 46 +3(c — 1)2. Therefore, 3¢ —cf = 5(c — })> =0 if
and only if n = 4 which verifies uniformizability condition at singular points on Q.
Notice that all multiple points except nodal ones, appears as cusp in covers. Since
this orbifold is of general type, then by Theorem 6.4.2 we can state the following

theorem:

Theorem 6.6.18. The orbifold (CP?, B) associated with the divisor D =4Q + Z?:l 2H,
supported by the arrangement in Figure 6.34 is uniformized by the complex 2-ball
B.

Next, consider the configuration of n-quadrics, each has k tacnodes and do not
allow the meetings of three or more quadrics at a point. Since the maximum number
of tacnodes can not achieve the bound gn(n + 3) (Hirzebruch, 1986), then we have
k< g(n +3). Consider the orbifold (CPP?, B) associated with the divisor D =Y, mQ;

supported by this configuration. Its orbifold Chern numbers are

2(CP2,B) = (—3+2n— z—n’z)



248

and
) nk n
e(CP~,B) :3—n(6+k—4n)—?—n(2n—2—k)—|—(6—|—k—4n)a
nk2 1
2n—2—k p——
Fn-2-k) T+ (=)
Therefore

32n(m*n+m(3 —2n) +n—3) — 3kmn(7Tm — 8)

3e —c3(CP?,B) = o2

In addition, the uniformizability condition % > % implies that m < 4. Incase m = 2,

n(8n+24 — 9k)

3¢ —c3(CP?,B) = T

8(n+3)
-9

and it vanishes if k = . But, the Theorem 4.3.20 tells us that there is no six non-

degenerate quadrics with twenty four tacnodes. Thus, the claim 3e — ¢3(CP?,B) =

"(8#264_%) = 0 fails for n = 6 and k = 8 since such configuration does not exist.

If m = 3, then

64n(2n+3) — 117nk
3e —c}(CP?,B) = n(2n+3) !

144
and it vanishes when k = w but this contradicts the fact k < ("+3) while
n>2.
Now suppose m = 4. Then
2 9 3n
3e —c7(CP~,B) = 16(6( n+1)—5k)
and it vanishes if n = 5A — 1 and k = 6A. The number k achieves the bound ("+3)

for A > 2. So, one gets A = 1 which implies n = 4 and k = 6. This means, the
arrangement supporting the divisor D is the Naruki arrangement given by equations
X?FY?F 7% =0. Because of this reason, let us call this orbifold as Naruki orbifold.

Noruki orbifold is an orbifold of general type and by the Theorem 6.4.2, we can state
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the following theorem:

Theorem 6.6.19. The Naruki orbifold ((C]P’z, Z?:l 4Q;) is uniformized by By.

Finally, consider the orbifold (CP?, B) = (CP?, Y%, n;0; +Zj:1 mH ;) supported
by the arrangement containing Naruki arrangement Q; : X> Y2 Z? = 0 and four
lines H; : X4 —Y*=0. Note that the lines H; : X —Y =0and H, : X +Y = 0 are
common tangent lines of the quadrics Q; : —X?>+Y?+Z?=0and 0, : X>— Y2+
72 = 0; and the lines H;: X —iY =0 and Hs : X +iY = 0 are common tangent
lines of the quadrics Q3 : X2+4+Y2—-72=0and Q4 : X2+Y%+2Z?%=0. These four
common tangent lines meet at a single point. By local uniformizability condition at
this point, weights m; of the tangent lines H; must be 2. In addition, at the contact
of order 2 points of quadrics with these lines, orbifold germs are uniformizable if
the weights of the quadrics are also 2, otherwise, local orbifold fundamental group

will be big. Omitting fact the weights are all 2, first give formulas for its orbifold

Chern number and then check for the weights 2. The orbifold Chern numbers are
2 (2 . . 2
G(CP°B)=09-)Y x—-2) o))
i=1 j=1

and

3 4
e(@Pz, B)=22-4 Z Ki—8 Z o +2(x; +K2)(034+04) +2(K3 + K4 ) (G +G2)
i=1 =

1
2+(62+G4— —)2,

1 1 1
+(61+G3——)2+(61+G4——)2+(02+(53—§) 5

2 2

where K; = mi, and 0; = ni] In case m; = nj = 2, the orbifold Chern numbers are
c% =9 and e = 3 and they satisfy the Miyaoka-Yau equality. Since this orbifold is
of general type, as a consequence of the Theorem 6.4.2, we can state the following

theorem:

Theorem 6.6.20. An orbifold (CP?,B) associated with the divisor D =Y} 20; +
Z‘}ZI 2H; is uniformized by the complex 2-ball By. Here the quadrics Q; form a
Naruki arrangement and the four lines H; are common tangent lines of some of

these quadrics so that the line H; forms a pencil.
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As a result of previous section, first we give a list of ball-quotient quadric-line

arrangements in Table 6.3, and then study the covering relations among them.

Table 6.3 Ball-quotient quadric-line arrangements

T
=t
[0}
[
=
(¢}

Equations of quadrics and lines, c% and e

A

FL
(>

Ay :=(CP2,Dy), Di:=4Q+A4T) +4T,+47T,
Q:(X4+Y—-2)2—4XY =0,T;:X=0,T5:Y=0,T3:Z=0

A (a)=9/16, e(4)=3/16

A

2y := (CP%,D;), Dy :=3Q+4T 43T +4T;,
Q:(X+Y—-2)?-4XY =0,T1:X=0,T2:Y=0,T3:Z=0

A(A)=1/4, e(B)=1/12

A3

A3 := (CP?,D3), Ds3:=30+06T +2T + 673,
Q:(X+Y—-2Z)P2—4XY=0,T1:X=0,1:Y=0,T3:Z=0

A ) =1/4, e(A)=1/12

4, := (CP?,Dy), D4:=30+6T +3T+3T3,
Q:(X+Y—-2)P2—4XY=0,T1:X=0,1:Y=0,T3:Z=0

HA)=1/4, e(A)=1/12

As

,'215 = ((C]PZ,D5), D5 = Z?:l 3H,',

H :X=0,H,:Y=0,H3:Z=0,Hy:X—-Y=0,Hs:Y—-Z=0,Hs: Z—X =0

ci(As) =1, e(q5)=1/3

) %) N ®) N
w ) w EN
o (O8]
w @)} N
[\ (O8]

A = (CP?,Dg), Dg:=Y; 2H;+Y> ,3H;,

H] :X:O,Hz:Y:O,H3:Z:O,H4:X7Y:O,H5:Yfz:O,H6:27X:O

() =1/4, e(Fs)=1/12

Continued on next page
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(continued from previous page)

Figure

Equations of quadrics and lines, ¢7 and e

47 := (CP%,D7), D7:=Y3  3H;+Y5 ,2H;,

2
3 3 H :X=0,H,:Y=0,Hy:Z=0,Hy:X—Y=0,Hs:Y—-Z=0,Hs: Z—X =0
Ay
A A)=1/4, e(A)=1/12
3
g := (CP%,Dg), Dg:=Y3 4H;+YS ,2H,,
2
% 4 4 H :X=0,Hy:Y=0,H3:Z=0,Hy:X—Y=0,Hs:Y—-Z=0,Hg: Z—X =0
c}(Ag) =9/16, e(A5)=3/16
4
A9 := (CP?,Dg), Do:=Y3 | 2H;+Y]_,4H,,
2
2 4 2 4 H :X=0Hy:Y=0,Hs:Z—=0,Hy:X —Y+Z—0,
{i Q§ Hs:—X+Y+Z=0,Hg:X+Y+Z=0,H7:X+Y—-Z=0,
2
() =9/4, e(A9)=3/4
419 := (CP?,Dyp), Dig =Y, 2H;,
2
) 2 H :X=0,H:Y=0,H3:Z=0,Hy:X-Y=0,Hs:Y—-Z=0,
Aj0
He:Z—X=0,H;:X—-Y+Z=0,Hy:X+Y—Z=0,Hy: —-X+Y+Z=0,
2
A (A10) =9/4, (A1) =3/4
A = (CP?,Dyy), Dy :=20+Y3 4T +2H,,
4 4 Ti:X=0T:Y=0T3:Z=0,Hy:Z-X=0,0: (X+Y —2Z)2—4XY =0,
A 2l 5
A A1) =9/16, e(A)=3/16
Ap := (CP?,Dyy), Diy:=4Q+4T, + 2T +4T; + 2T, + 2Hs
Q:(X+Y—-2)?-4XY =0,T1 :X=0,T,:Y=0,T3: Z=0,
Ao Ty:2X—Y+2Z=0,Hs:Z—X =0

l \] J
[\
&
~
[\ )

A1) =9/4, e(An)=3/4

Continued on next page
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(continued from previous page)

Figure

Equations of quadrics and lines, ¢7 and e

A3

NG )

A3 = (CP?,Dy3), Di3:=20+Y} 4T+ Y8 s2H;
Q0:X>4+Y>-72=0,T1:X+Z=0,»:X-Z=0,T3:Y+Z=0,
T,:Y—-Z=0,Hs:X=0,Hs:Y=0,H;: X+Y=0,Hg: X—-Y =0

C%(le13) =9, e(ﬂu) =3

Ay4

Ay = (CP?,D1a), Dig:=2Q+4H, +4H, + Y0 3 2H;
0:X2-Y?2-72=0,H:X+Z=0,H:X—Z=0,H;:X+Y =0,
H4ZX7Y:0,H5 ZX:(),HGZY:()

cH (A1) =9/4, e(Aun)=3/4

A5

[\OR S

Ays:=(CP2,Dys5), Dis:=20+Y}l 4T +Y5 (2H;
0:X?>4+Y2-72=0,T1:X+Z=0,1:X-Z=0,T3:Y+Z=0,T4:Y —-Z=0,
Hs:X+Y=0Hs:X-Y=0,H;:V2X+Z=0,Hg : V2X -Z =0
Ho:\2Y+Z=0,Hjo:V2Y —-Z=0

A Ai5) =9, e(As)=3

A6

Q16 := (CP?,Dig), Dig:= Y, 20i+ Y74 2T;
01:X24Y2-72=0,0,:X2-Y?4+272=0,03 : —X*+Y24+ 22 =0,
Ty X+Z=0,T5:X-Z=0,Ts:Y+Z=0,T7:Y —Z=0,
T:X+Y=0,T:X—-Y=0,

(M) =9, e(Aig) =3

A7

A7 :=(CP?,Dy17), Di7:=40Q1 +402+203 +2H, +4H, +4H3
01:Y2+27Z2-2XY =0,0:: Y2+ 72 +2XY =0, Q3 : 4X> — Y2 - 27> =0,
H :X=0,H:X—-Z=0,H; :X+Z=0

A7) =9, e(A7)=3

A3

Aig = ((C[F’Z,Dn), Dig :=201+20>+2H| +4H +4H3 +2Hy
Q1: Y2472 -2XY =0,0,:Y>+ 7% +2XY =0,
H :X=0H:X—Z=0,H;:X+Z=0,H;:Y =0

(A1) =9/4, e(Ai5) =3/4

Continued on next page
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(continued from previous page)

Figure Equations of quadrics and lines, c% and e
) Ayg := (CP2,Dyg), Dig:=20Q1 +20,+2Y% | 2H;
2
52 | QUXPHYP-Z2=0,02: X2 +Y? 277 =0,
2| |2
A H :X—-Y=0H:X+Y=0H;:X—Z=0,Hy:X+Z=0
9 2
2
2 Hs:Y—Z=0Hg:Y+Z=0H;:X—i¥ =0,Hg: X +i¥ =0
2 2
A1) =9, e(A19) =3
The Naruki orbifold: Ao := (CP?,Dy), Dag := Y} 40
4 4
01:X24Y2-72=0,0,: X2 -Y> 427> =0,
Ao
4 4 03:—X24+Y?>+7%2=0,04:X>4+Y?+72 =0,
(o) =9, e(Ao)=3
Naruki arrangement plus Aoy = ((CstDZl)s Dy = ):?:1 2Qi+24}:1 2H;
four common tangents o X2y 0.0 Xy i — 0.05: XAV — 0.
Ay | forming a  pencil.
Branching indices are all | Q4 :X?+Y*+Z2 =0, H; : X -Y =0,Hy: X +Y =0, H3 : X —i¥ =0,
2.
Hy:X+i¥Y =0, ¢}(A1)=9, e(A1)=3
Ay := (CP?, D), Dy:=Y> Y2 2H,;
Ceva(3)  arrangement. 22 = ( 2) 2= Yot Lino 2Hsi
Apy | Branchingindicesareall | H);: X — @Y =0,Hy;: ¥ —0'Z=0,H3;: Z— X =0,i=0,1,2, 03 = 1
2.
A (An)=9/4, e(An)=3/4
A3 = (CP?,Dp3), Dy3:=Y> Y72 3H,;
Ceva(3)  arrangement. 3 1= ( %) 23 = Yoot Lo 3.
Ap3 | Branchingindicesareall | gy, :X — @'Y =0,Hy;: Y —wZ=0,H3;: Z—'X =0,i=0,1,2, 0’ = 1
3.
c%(JZLB) =9, e(A3)=3
Ay = (CP?,Doy), Dpg:=Y> Y3 3Hy;
Ceva(4)  arrangement. e = ( 24) 24 7= Yot Livo 3Hsi
Apy | Branchingindicesareall | ), : X — @Y =0, Hy;: ¥ —Z=0,H3;: Z— X =0,i=0,1,2,3, 0* = 1
2.
H(A4a) =9, e(Au)=3
s == (CP?,Dy5), Das =40, +20, + X1 | 4H; +2Hs
4 N 01:2X2+2¥2 -7 =0,0,: X*+Y* -7 =0,H, : V2X+Z =0,
s W)

Hy:V2X—Z=0,H3:V2Y—-Z=0,H;:V2Y+Z=0,Hs : Z=0

HAs) =9, e(Fs)=3

Continued on next page
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Table 6.3 Ball-quotient quadric-line arrangements. (continued from previous page)

Figure Equations of quadrics and lines, c% and e

7] e = (CP2,Dyg), Dag:=40Q+Y] | 2H;, Q:X>+Y>-27>=0,
2
,
2 H :Z+X=0,H,:Z—-X=0,H3:Z+Y=0,Hy: Z—Y =0,
A |2 ,
2 % H5ZX+iY:0,H6IX*l‘Y:O,H7IXIO,HgiY:O,HQZZIO
2

IR
c}(A6) =9, e(A) =3

The orbifolds listed in the Table 6.3 are related with eachother via covering maps.
Under suitable choice of coordinates, the covering maps are the bicyclic maps @, :
CP?> — CP? given by [X : ¥ : Z] — [X" : Y" : Z"]. Let us exhibit these covering
relations among the orbifolds 4; in the Table 6.3. The diagram on page 265 in

Figure 6.35 exhibits all covering relations among these orbifolds discussed below.
Coverings of A;:

Consider the orbifold 4; = (CP?,4Q + Z?Zl 4T;) in Table 6.3. Suppose without
loss of generality that the lines 71, 7; and 73 are defined by the equations X = 0,
Y =0 and Z = 0, respectively. By the Lemma 6.6.7, a symmetric equation of Q is
(X+Y— Z)2 —4XY = 0 which is tangent to the lines 77, T> and T3. If we consider the
lifting of A4; due to the uniformization @, of the sub-orbifold ((CIP’z, 211 42T, +2T3),
and denote by H; the lifting @, ' (7;) and by Q' the lifting @, ' (Q) = {(X?>+ V2 -
72)? —4X?Y? = 0}, then @ : (CP?,4Q’ + 2T + 2T5 + 2T3) — 4 is an orbifold
covering. Note that Q' consists of the lines X FY F Z = 0. If one denotes them by
Hy, Hs, Hg and H7, then this covering orbifold will be the orbifold Ag in the Table
6.3. Hence one has @, : 49 — 4

If one takes @4 instead of @;, then he gets the covering orbifold (CP2,4Q’/ )s
where Q" consists of four quadrics projectively equivalent to Naruki arrangement,
and so the covering orbifold is the Naruki orbifold “A;o. Notice that this covering

04 : Ao — A is related with the orbifold covering ©; : A9 — Ay.
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Covering of Az:

Consider the orbifold 23 = ((C]P’z, 30 + 6T + 2T, + 673) in the Table 6.3. Also
assume that the equations of quadrics and lines are as stated in Table 6.3. If one
consider the lifting of A4; due to the uniformization ¢, of the sub-orbifold (CIP2, 2T+
2T> + 2T3), and denote by H; the lifting @, NT;), i = 1,3 and by Q' the lifting
¢, '(Q), then he will get the orbifold covering @, : (CP?,3Q’ + 3T} +3T3) — 4.
Notice that Q' consists of the lines X FY FZ = 0, denote them by H;, H,, H3 and Hj.
The equation XZ(X+Y —Z)(X —Y+Z)(—X+Y +Z)(X +Y +Z) = 0is an equation
of complete quadrilateral. Therefore ((C]P’z, 3H| +3H,+3H3+3Hs+ 3T, +3T3) is
the orbifold A5 in the Table 6.3. Hence one has the covering ¢, : 45 — A3

Covering of Ay:

Consider the orbifold 44 = (CP?,3Q 4 6T} + 37> + 37T3) in the Table 6.3 and
assume that the equations of quadrics and lines are as stated in Table 6.3. If we
consider the lifting of A4 due to the uniformizer @3 of the sub-orbifold ((CIPZ, 371 +
3T» 4 373), and denote by 7} and Q the liftings @3 Y, 0N (), respectively, then
@3 : (CIP?,3Q 4 2T;) — A4 is an orbifold covering. Note that O : X0 4 Y® + 76 —
2X2y? —2Y?7? —2X?7? = 0 is an irreducible sextic.

Covering of As:

Consider the orbifold 45 = (CP?, 2?21 3Hj) in the Table 6.3 and assume that the
equations of quadrics and lines are as stated in Table 6.3. Denote by H. the lifting
05 ! (Hy), s =4,5,6, of the lines Hy, Hs and Hg due to the uniformizer @3 of the sub-
orbifold (CP?,Y°>_, 3Hy). Then one has the covering @3 : (CP?, Y%, 3H!) — 4.
Notice that each H; consists of there lines H;, i=0,1,2. Here Hy; = {X — oY =
0}, Hs;={Y —'Z =0} and Hg; = {Z— &'X = 0},i=0,1,2, ®* = 1. These lines
form a Ceva(3) arrangement, and (CIP’Z,Z?:4 3H)) = ((C]P’z,):?:4 Ziz:o 3H;,;) is the

orbifold 4,3. Thus we have the covering @3 : 43 — As.
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Covering of Ag:

Consider the orbifold 4 = ((CIP’Z, 23:] 2H; + Z?:4 3Hj) in the Table 6.3 and also
and assume that the equations of quadrics and lines are as stated in Table 6.3. Denote
by H, the liftings of the lines Hy, s = 4,5,6 due to the uniformizer @, of the sub-
orbifold (CIP’Z,ZEZI 2Hy). Each H; consists of two lines Hy;, i = 0,1, s = 4,5,6.
Set Hyp:={X—-Y =0}, Hy1 :={X+Y=0},Hs0:={Y—Z=0}, Hs; :={V +
Z =0}, Hep :={Z—X =0} and He := {Z+ X = 0}. Then H; = H;o UH, 1,
s =4,5,6, and they form a complete quadrilateral. In addition, ((C]P’z, 2?24 3H)) =
((C]P’z, 2?14 ):}:0 3H;;) is the orbifold 45 and one has the covering @, : A5 — Hs.

Covering of A;:

Consider the orbifold 47 = (CP?,Y.3_, 3H, + Y.5_,2H;) in the Table 6.3 and
assume that the equations of quadrics and lines are as stated in Table 6.3. As in
covering of s, liftings H, of the lines Hy, s = 4,5,6, due to the uniformizer @3
of the sub-orbifold (CP?, Zg’: | 3Hj), consists of three lines Hy ;, i =0, 1,2 and they
form a Ceva(3) arrangement. Then (CP?,Y'%_, 2H') = (CP?, Y8 , Y2 2H, ) is the

orbifold 45, and one has the covering @3 : 4y, — A47.
Coverings of As:

Consider the orbifold 43 = (CP?, Y3 4H; + Y ,2H;) in the Table 6.3 and
assume that the equations of quadrics and lines are as stated in Table 6.3. First
consider the sub-orbifold ((CIP’Z, Z?zl 2H;) and its uniformizer @,. Denote by H; the
liftings @5 ' (H;), i = 1,2,3 and by H! the liftings @, ' (H;), i = 4,5,6. Then we have
the covering @, : (CP?, Y3 2H;+ Y% ,2H!) — 4s. Notice that each H! consists of
two lines H;p and H; 1. Set Hy o :={X —Y =0}, Hs 1 :={X+Y =0}, Hs o :={Y —
Z=0},Hs 1 :={Y+Z=0},Hs0:={Z—X =0} and He ; := {Z+X = 0}. Then,
together with the lines Hy, H, and H3, they form an arrangement of 9 lines as in
Figure 6.18. This means, up to projective equivalence, (CIP’Z,):?: 1 2H; + 2?24 2H])
is the orbifold A4 in the Table 6.3. Thus, we have the covering ¢, : 4190 — As.
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If one would consider the sub-orbifold (CPZ,Z?:I 4H;) and its uniformizer @4,
then he would get the covering @4 : 44 — Ag. Indeed, we have the covering @ :
(CP%, Y5 ,2H!) — As, where H! denotes the liftings ¢, ' (H;), i = 4,5,6. Then .
Notice that each H; consists of four lines H;j,j=0,1,2,3.Set Hy j :=={X — oY =
0}, Hs ;j:={Y —@/Z=0}and H ; := {Z— /X =0}, where j=0,1,2,3 and o* =
1. These twelve lines form a Ceva(4) arrangement. Therefore, (CP?, Y5, 2H!) =
(CP2 %8, Z?:o 2H; ;) is the orbifold A»4 in the Table 6.3 and the covering is @4 :
Ay — Ag.

Now, let us consider the sub-orbifold (CIP?, 2H; +2H, +2H) and its uniformizer
¢2. By using projective transformations change the coordinates so that H; = {X =
0}, b ={X-Y=0},H3={X—-Z=0},Hy={Y =0}, Hs={Z—Y =0} and
Hg = {Z = 0}. Denote by H), H}, H} and H, the liftings ¢, ' (H;) = {X = 0},
0y (H) ={Y* —Z* =0}, ¢, (H3) = {X* ~Z* =0} and ¢, ' (H5) = {2 —¥* =
0}, respectively. Then we have a covering ¢, : (CP?, 2H, +4H}, +4H} +2HY) — As.
Notice that each of Hj, Hj}, H{ consists of two lines and they form a complete
quadrilateral. If we add the line H; to this complete quadrilateral, we will get an
arrangement of seven lines projectively equivalent to the arrangement in Figure
6.17. Thus, (CP?,2H; + 4H}, + 4H} + 2HL.) is the orbifold 4y in the Table 6.3 and

we have the covering @, : 49 — Ag.

Next consider another sub-orbifold (C]P’z, 2H| +2H4 + 2Hs) and its uniformizer
@>. Projective transformations allow us to change coordinates, and we may chose
them such that H) = {X =0}, H, ={X-Z =0}, 3 ={X+Y —-Z =0}, Hy =
{Z =0}, Hs = {Y =0} and Hs = {Y —Z = 0}. Denote by H;, H,, Hy and H the
liftings @, ' (H) = {X = 0}, ¢, ' (H) = {X* = 2> = 0}, ¢, ' (H3) = {X* +Y* -
7> =0} and @, ' (Hg) = {Y? — Z? = 0}, respectively. Then we have a covering
@2 : (CP?,2H, +4H) + 4H}, + 2H!) — 4. Notice that each of Hj and Hj, consists
of two lines tangent to Hj, and H, pass through the tangency points of H; N H{ and
singular point of H3. Then Hy, H; Hj and H{ forms a rigid arrangement projectively

equivalent to the Figure 6.24. Thus, (CP? 2H; + 4H}, + 4H} + 2H}) is the orbifold
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A1, in the Table 6.3, and we have the covering @ : 47 — Ag.

Finally consider the sub-orbifold (CIP’z, 2H| +2H3+2H,) and its uniformizer @;.
Change the coordinates so that H; = {X =0}, H, = {X —Z =0}, H; = {Y =0},
Hy={Z=0},Hs ={X—-Y —-Z=0} and Hs = {X — Y = 0}. Denote, by H,, H3,
Hj, H} and H, the liftings @, ' (Hy) = {X =0}, ¢, '(H3) = {Y =0}, ¢, ' (Ha) =
(X2 -72=0}, ¢, ' (Hs) = {X*> —Y>— 7> =0} and ¢, ' (He) = {X*> - Y2 = 0},
respectively. Then we have a covering ¢, : (CP?,2H; +4H), +2H; +2HL +2H!) —
Ag3. Notice that each of H, and H consists of two lines, tangent to HZ; and H3
pass through the tangency points H; N H), and singular point of H¢. In addition,
H passes through the singular points of H} and H},. Therefore, (CP?,2H; + 4H} +
2H3 + 2H{ + 2HY) is the orbifold A4 in the Table 6.3, and we have the covering

02 Ag — Ag.
Coverings of Ag:

Consider the orbifold 4y = (CP?, Y3 2H; + Y] ,4H;) in the Table 6.3 and
choose coordinates such that the equations of lines are as stated in the Table 6.3.
First consider the sub-orbifold (CIP’Z,Zf:l 2H;) and its uniformizer ¢,. Denote by
H/ the liftings @, '(H;), i = 4,5,6,7. H are smooth quadrics and form a Naruki
arrangement. Then, (CP?, Y./, 4H!) is the Naruki orbifold 4y in the Table 6.3 and

we have the covering ©; : A9 — Ay.

Second consider the sub-orbifold ((CIP’2,2H3 +2H4 + 2H7) and its uniformizer
@2. Projective transformations allow us choose the coordinates such that H; = {Y —
X=0}H,={X+Y—-Z=0},H3{Z=0},Hy={X =0}, Hs={X—-Z=0},Hs =
{Z—-Y =0} and H; = {Y = 0}. Denote, by Hj, H}, Hs, H., H, and Hy the liftings
@3 (H) = (Y2~ X2 = 0}, ¢y (Ho) = {X2+ Y2~ 72 = 0}, ¢, (Ha) = {X =0},
93 (Hs) = {X* =22 = 0}, 07" (Hs) = {22 — ¥? = 0} and ¢, (Hy) = {¥ = 0},
respectively. Notice that, H, and H, each consist of two lines tangent to the quadric

H),. Also, Hj consists of two lines and these lines together with H, and H form a
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complete quadrilateral. In addition, the line Hy pass through the singular point of H
and the points H¢ N H;,. Similarly, the line H; pass through the singular point of Hj,
and the points H: N H}. This is exactly the arrangement in Figure 6.26. Therefore,
(CP?,2H] +2H} + 2Hy +4H. +4H} +2H7) is the orbifold 43 in the Table 6.3 and

we have the covering ©; : 43 — Ay.

Next, consider the sub-orbifold (CIP’Z, 2H| +2H3 +2H4) and its uniformizer ¢;.
Change the coordinates such that H; = {X =0}, H, = {X+Y —Z =0}, H3{Y =0},
Hy={Z=0},Hs={2Y —Z =0}, Ho={2X +2Y —Z =0} and Hy = {2X — Z =
0}. Denote, by Hj, Hy, H}, Hj, and H the liftings ¢, ' (Hy) = {X?>+ Y2~ 27> =
0}, 03 (Ha) = {Z = O}, @5 (Hs) = {2/> — 2 = 0}, 07 (Hy) — {2X* +2¥* -
7% =0}, and @, ' (H7) = {2X? — Z* = 0}, respectively. Then we have the covering
(CP?,2H) + 2Hy + 4H. + 4H}, + 4H}) — Ag. Notice that, H. and H} each consist
of two lines tangent to the quadric H¢. The quadric H} passes through the singular
points of H{ and Hj, and tangent to H¢ at two points on the line Hy. In addition,
the singular points of HZ and H} lies on the line Hy. Therefore, (CP?,2H) + 2Hy +
4H:+4H{ +4H,) is the orbifold 45 in the Table 6.3 and the covering is @, : Aps —

Ay.

Fourth, consider the sub-orbifold ((C]P’2 ,2H4+2Hs+2Hg) and its uniformizer @;.
Change the coordinates such that Hy = {Z—X =0}, H, ={Z—-Y =0}, H3{X +Y =
0},Hy={X=0},Hs={Y =0}, He ={Z=0} and H; = {X +Y —Z =0}. Denote,
by H|, H}, Hj, Hy, Hs, He and H) the liftings @, ' (H;) = {Z?> —X?> =0}, 0, ' (Hy) =
[Z2 Y2 =0}, 03 (H3) = (X2 +Y> = 0}, ;' (Hy) = {X =0}, 05 (Hs) = {¥ =
0}, , @5 ' (Hs) = {Z =0}, and @, ' (H7) = {X?>+ Y2 —Z% = 0}, respectively. Then
we have the covering (CP?, 2H| +2H), +2H} + 2H4 + 2Hs + 2He + 4H))) — Ao.
Notice that, H{, H} and H} each consist of distinct two lines tangent to the quadric
H’,. The line Hy pass through the tangency points H(7)’ N Hj and the point H{ N Hg.
The line Hs pass through the tangency points H(7)" N Hj and the point H} N He.
In addition the line Hg goes through the tangency points H(7) N Hj. Therefore,
(CP?,2H] + 2H} + 2H}, + 2Hy + 2Hs + 2Hg -+ 4H) is the orbifold Ay in the Table
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6.3 and the covering is Q> : Ars — Ao.

If one had considered the sub-orbifold ((C]P’z, 4H,+4Hs+4Hg) and its uniformizer
@4, the liftings would be H := ¢, '(H)) = {Z* —X* =0}, H} := ¢, ' (H,) =
(74 —v* =0}, HY == ¢;'(H3) = {X* +Y* =0} and H := ¢, ' (H7) = {X* +
Y*—Z* = 0}. Notice that HY is the Fermat quartic and each of H{, Hy and HY
four lines which are flex tangents of H7. Then we have the orbifold covering @y :

(CP?,2H{ +2Hj +2H} + 4HY) — Ay .
Coverings of Ajo:

Consider the orbifold A4;y = (CIP’ZAQ —i—):?zl 2H;) in the Table 6.3 and choose
coordinates such that the equations of lines are as stated in the Table 6.3. The
uniformizer of the sub-orbifold (CP?, Y3 | 2H;) is ¢,. Denote by H!, the liftings
¢, '(H;), i = 4,---,9. The liftings are H; = {X> —Y? =0}, H, = {Y?> - Z*> = 0},
H,={Z-X*=0}, H, = {X>*-Y>+Z?> =0}, H, = {X*+Y*-Z> =0} and
H} = {—X?+Y?+Z? =0}. Notice that the quadrics H}, H} and H}, has six tacnodes
and Hj, H, H{ consists of pairwise common tangents of these quadrics. Therefore
they form the arrangement in Figure 6.29 and the orbifold (CP?,Y.)_, 2H!) is the
orbifold A4 in the Table 6.3. Then e have the covering @, : 416 — Ajp.

Second, consider the sub-orbifold ((CIP’Z,Z?:6 2H;), whose uniformizer is @.
Projective transformations allow us to change coordinates so that H; : X +Z =0,
Hy:X+Y=0,H:Y+Z=0,H4:Y—-Z=0,Hs:Z—X=0,Hs: X—-Y =0,
H;:7Z=0,Hs:X =0 and Hg : Y = 0. The liftings Hl-’ of these lines, except the
branch locus of @2, are H| : X*>+Z> =0, Hy : X*>+Y>=0, H; : Y>+ 27> =0,
Hy:Y?>-Z7>=0,H.:7Z>-X?>=0, H, : X>—Y? =0 and they form a Ceva(4)
arrangement. Therefore the orbifold (CP?, Z?:l 2H)) is the orbifold A4 in the Table

6.3. Then we have the covering @2 : A4 — Ajo.

Third consider the sub-orbifold (C}P’Z, 2H, + 2Hs + 2Hy), whose uniformizer is

2. Projective transformations allow us to change coordinates so that H; : X =0,
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H: X+Y+Z=0,H3;: X+Y—-Z=0,Hy: —X+Y+7Z=0,H5:7Z=0, Hg :
X—-Y+Z=0,H;:Z—-X=0,Hg:Z+X =0and Hy : Y =0. The liftings H! of these
lines, except the branch locus of @,, are Hé X24v2472=0, Hé X24Y2-72=0,
Hy:—X*+Y>+Z?=0,H}: X*—Y?>+Z>=0,H}:Z* - X*=0,H,: Z>+X*=0
. Notice that the quadrics Hj}, H;, H; and H] form a Naruki arrangement, and H7,
Hj consists of four of the pairwise common tangents of these quadrics. In addition,
H;, H) form a pencil. Therefore the orbifold ((CIP’2, 2H, +2H;+2H, +2H{ +2H; +
2H§) is the orbifold A4,; in the Table 6.3. Then we have the covering @; : 41 — Ajy.

Next, consider the sub-orbifold (CIP?,2H; 4 2Hx + 2H7), whose uniformizer is
@>. Projective transformations allow us to change coordinates so that H; : X = 0,
Hy:X—Y+Z7Z=0,H3:Z=0,Hy:Y—-72Z=0,Hs:X—-Y=0,Hg: Z—X =0,
H;:Y =0,Hg:2X —Y =0and Hg : 2Z—Y = 0. The liftings Hl’ of these lines, except
the branch locus of ¢y, are Hy : X2 —Y?>+Z>=0,H,:Y*—Z>=0,H,: X*~Y?> =0,
H,:Z?—X?=0,H}:2X>—Y?=0, H,:2Z? —Y?> =0 and they form an arrangement
as in Figure 6.28. Therefore the orbifold (CP?,2H} + 2H, + 2H. + 2H), + 2H} +
2Hé) is the orbifold 4,5 in the Table 6.3. Then e have the covering @, : 415 — Ajo.

Last, consider the sub-orbifold ((CIP’272H2 + 2H3 + 2Hg), whose uniformizer is
@>. Projective transformations allow us to change coordinates so that H; : Z—X =0,
Hy:Y=0,H3:Z=0,H4: X+Y—-7Z=0,H;:Y—Z7Z=0,Hs:X=0,H7 : X+Y —
2Z=0,Hg:X—Y =0and Hy : X +Y = 0. The liftings H! of these lines, except the
branch locus of ¢y, are Hj : 72 _X%2=0, Hj: X24+v2-72=0, H{: Y2—-72=0,
Hy:X>+Y?-27°=0,H}: X>—Y?>=0and H; : X>+Y? = 0. The quadrics H,
and H7 has two tacnodes and their common tangent lines are Hg. Notice that Hj,
H{ and Hg meets on H; while H| and Hj are tangent to Hj. In addition, Hg and H,
meets at a single point. Therefore, this is exactly the arrangement in the Figure 6.32
and the orbifold (CP?, 2H{ +2H) +2H, +2H} + 2Hg + 2H}) is the orbifold 49 in
the Table 6.3. Then e have the covering @, : Aj9 — Ajp.
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Coverings of Ap1:

Consider the orbifold 4;; = (CIP’Z,ZQ + 21-3:1 AT; + 2Hy) in the Table 6.3 and
choose coordinates such that the equations of lines and quadric are as stated in the
Table 6.3. The uniformizer of the sub-orbifold ((CIPZ, Z?: 1 2T;) is @y. Denote by T1,
T, T5, Q' and Hj, the liftings ¢, ' (T1) = {X =0}, ¢; () = {Y =0}, ¢, ' (T3) =
{Z=0},0,'(Q) ={(X*+Y?—2%)>—4X?Y* =0} and ¢, ' (Ha) = {Z* = X* =0},
respectively. Notice that Q' consists of four lines X FY FZ = 0 and Hf; consists
of two lines ZF X = 0. The configuration of these six lines forms a complete
quadrilateral. If one add the lines 77, 7> and 73 to complete quadrilateral, then he
will get an arrangement of nine lines projectively equivalent to the arrangement in
Figure 6.18. Therefore, (CP?,2Q’ + Y3, 2T; + 2H,) is the orbifold Ay in the Table

6.3 and we have an orbifold covering ©; : 4;9 — Aj.

If one considers the sub-orbifold (C]P’Z,Z?:lﬂ}) whose uniformizer is @4, the
liftings Q" and HJ will consist of four quadrics X> FY?F Z? = 0 and four lines
Z* — X* = 0. Notice that Q" is the Naruki arrangement and H consists of four
pairwise common tangents of the quadrics in Q. Thus, (CP?,2Q" +2H}) is the the

orbifold 41 in the Table 6.3 and we have an orbifold covering @4 : A1 — Ap;.

Next, consider the sub-orbifold (CPZ, 2T + 2T, + 2Hy) whose uniformizer is @;.
Choose coordinates sothat 71 : X =0, T : Y =0,T3: Z—X =0, Hys : Z=0 and
Q:(Y+Z)?—4XY =0andsetT; :=, ' (T}) = {X =0}, Th:= ¢, ' () = {Y =0},
T} =0, (T3) = {Z?> —X?> =0} and Q' = ¢; ' (Q) = {(Y?> +Z%)> — 4X?¥? = 0}.
Notice that Q' consists of two quadrics Y2+ Z? F2XY = 0 with a tacnode, and T§
consists of common tangent lines of these quadrics, while 75 is a common tangent
at tacnode. In addition, 77 passes through the nodal intersection points of these
quadrics and the singular point of 7;. Then an arrangement of 73, 75, T§ and Q' is
exactly the arrangement in Figure 6.31. Therefore, (CP?, Q' + 2T; 4 2T; +2H]}) is
the the orbifold A3 in the Table 6.3 and we have an orbifold covering @, : 4;3 —
Ap1.
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Coverings of Ay»:

Consider the orbifold Ajp = (CP?,4Q + 4T + 2T + 4T3 + 2Ty + 2Hs) in the
Table 6.3 and choose coordinates such that the equations of lines and quadric are as
stated in the Table 6.3. The uniformizer of the sub-orbifold (CP? Y3 | 2T;) is @s.
Denote by Ty, T3, T}, Q' and H, the liftings ¢, ' (T1) = {X =0}, ¢, ' (T3) = {Z=0},
0, (Ty) = {2X> — Y2+ 22 =0}, 9,1 (Q) = {(X®> + Y2~ 7%)? —4X?Y? = 0} and
¢, | (Hs) = {Z> — X? = 0}, respectively. Notice that 0’ consists of four lines X FY F
Z =0 tangent to the quadric 7}, and Hz consists of two lines Z F X = 0 through the
tangency points Q' N7} In addition, the lines 7j, 7> and H goes through the singular
points of Q'. Configuration of such quadric and lines are projectively equivalent to
the arrangement in Figure 6.26. Therefore, (CP?,4Q’ + 2T + 2T5 + 2T, + 2H.) is

the orbifold A4;3 in the Table 6.3 and we have an orbifold covering @5 : 413 — Aj,.

Next, consider the sub-orbifold (CIP?,27T; + 2T + 2Hs) whose uniformizer is
@2. Choose coordinates sothat 71 : X =0,7,: Y =0, 13 : X —Z=0,T3 : 4X - Y —
2Z2=0,Hs:Z=0and Q: (Y +Z)>—4XY =0, and set T} := ¢, ' (T}) = {X =
0}, T := @5 ' (13) = {X*> —Z> = 0}, T} := ¢, ' (Ty) = {4X? —¥? —27% = 0} and
0 =@, '(0) = {(¥?>+2%)? —4X?y? = 0}. Notice that Q' consists of two quadrics
Y? 4+ Z?F2XY = 0 with a tacnode, and T consists of common tangent lines of these
quadrics, while 77 passes through the nodal intersection points of these quadrics and
the singular point of ;. The quadric 7, has contacts of order four with the quadrics
Y%+ Z? F2XY = 0. Then an arrangement of these quadrics and lines is exactly the
arrangement in Figure 6.30. Therefore, (CP?,4Q’ + 2T} + 4T} + 2T} + 2H.) is the

the orbifold A4;7 in the Table 6.3 and we have an orbifold covering ©; : 417 — Aj,.

Third, consider the sub-orbifold (CIP’Z, 2T, 42Ty +2Hs) whose uniformizer is @.
Choose coordinates sothat 77 : 2X+Y+Z=0,1,:Y =0,T3: —2X+Y+Z=0,14:
Z=0,Hs:X=0and Q:X>~YZ=0,andset T} := ¢, ' (T) = {2X> + Y2+ 7% =
0}, 7§ := ¢, (T3) = {-2X?>+ V% + 7> =0} and Q' = 9, ' (Q) = {X* ~ Y2722 = 0}.

Notice that Q' consists of two quadrics X> FYZ = 0 with tacnode. If one check
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the intersections points of these quadrics, he will release that these four quadrics
X2FYZ=0and 72X%+Y?+ Z? = 0 has twelve tacnodes and it is projectively
equivalent to the Naruki arrangement. Therefore, (CP?,4Q’ +4T] +4Ty) is the the

orbifold A in the Table 6.3 and we have an orbifold covering @7 : Ao — Aj>.
Coverings of A4:

Consider the orbifold Aj4 = (CP?,2Q +4H; +4H, + Y% ;2H;) in the Table 6.3.
The uniformizer of the sub-orbifold (C]Pz, 2H, + 2H; + 2Hg) is @,. For simplicity,
let us choose homogeneous coordinates such that H; : X =0, H, : Z =0, H3 : X +
2Y+Z=0,Hy:X—-2Y+Z=0,Hs:X+Z=0,Hs:Y=0and Q:Y>—XZ =
0.Let H : X =0,Hy: Z=0, H} : X?>+2Y>+ 272 =0, Hy : X*> -2Y*+ 7> =0,
H.:X?+Z?=0and Q' : Y*—X%Z%? = 0 be the liftings of the lines H; and the
quadric Q, respectively. Notice that Q' has two quadrics Y> FXZ = 0, and they
form a Naruki arrangement together with the quadrics H} and H}. Also, the pencil
XZ(X? 4 Z%) = 0 consists of four pairwise common tangents of these quadrics.
Hence (CP?,2H; +2H, +2H; + 2H), + 2H! +2() is the orbifold 4 in the Table

6.3 and e have the covering @ : 4| — Aj4.

Next consider the sub-orbifold ((CIP’Z,ZHz + 2H3 + 2H4) whose uniformizer is
@>. Projective transformations allow us to change coordinates such that Hy : X +
Y-Z7Z=0,H:Z=0,H;:Y=0,H: X=0,Hs:X+Y=0,Hs: X-Y =0
and Q: (X +Y —2Z)2—4XY =0. Let H] : X>+Y>-Z7>=0,H,: Z=0, H, :
X2+Y?=0,H,:X>~Y?>=0and Q' : (X>+Y?—-27%)> —4X?Y? = 0 be the liftings
of the lines Hy, H,, Hs, Hg and the quadric Q by @», respectively. Notice that Q'
consists of four lines X TY T v/2Z = 0 which are tangent to the quadric H [, and
components of H{ goes through this tangency points Q' N Hj. In addition HY consists
of two imaginary lines tangent to O and the line H, at infinity pass through these
tangency points. If one a picture of the arrangement of these lines and quadric,
he will release that it is projectively equivalent to the arrangement in Figure 6.34.

Hence, (CP?,2Q' +4H | +2H>+2H, +2H, +2H() is the orbifold A6 in the Table
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6.3 and we have the covering @ : Ay — Aj4.

The following diagram in Figure 6.35 exhibits all covering relations among ball-

quotient orbifolds discussed above.

As
T‘Pz
Ay S A A3 # As ® A3 A3
o ® q> A
2 2 4
As A Ala A A Ajg
NN %
¢2 (02} * (02}
a4, <2 2 I Ao ~2— Ay

AP I N

A0 — Az —= A <5~ Ay Aoa Ais
¢2

Figure 6.35 Covering relations among ball-quotient orbifolds
in Table 6.3.
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