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I had no TÜBİTAK support, and so I also used this support to cover my travels
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COMBINATORICS AND TOPOLOGY OF CONIC-LINE

ARRANGEMENTS

ABSTRACT

In this thesis, we have concentrated on quadric-line arrangements. First we are

interested with the combinatorics of line arrangements and also quadric arrangements.

Next, we have studied the branched coverings of complex projective plane and two

dimensional orbifolds. In addition to this, we have explicitly exhibited the covering

relations among orbifold germs, observed by Yoshida. Finally, by using orbifold

Chern numbers we have discovered new orbifolds uniformized by two dimensional

complex ball and studied the covering relations among them.

Keywords : quadric-line arrangements, orbifold.
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KONİK-DOĞRU DÜZENLEMELERİNİN TOPOLOJİSİ VE KATIŞIMI

ÖZ

Bu tezde kuadrik-doğru düzenlemeleri üzerine yoğunlaştık. İlk olarak doğru

düzenlemelerinin ve konik düzenlemelerinin katışımını inceledik. Daha sonra

karmaşık projektif düzlemin dallanmış örtülerini ve iki boyutlu orbifoldları çalıştık.

Bunun yanı sıra, Yoshida’nın elde ettiği orbifold tohumları arasındaki örtü ilişkilerini

açıkça sergiledik. Son olarak, orbifold Chern sayılarını kullanarak iki boyutlu

karmaşık top tarafından uniform edilen yeni orbifoldlar keşfettik ve bunlar arasındaki

örtü ilişkilerini inceledik.

Anahtar Sözcükler : kuadrik-doğru düzenlemeleri, orbifold.
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CHAPTER ONE

INTRODUCTION

The study of arrangements was begun by Swiss mathematician Jakob Steiner,

who proved the first bounds on the maximum number of features of different types

that an arrangement in Euclidean plane might have. An arrangement with n lines has

at most n(n−1)
2 vertices, one per pair of crossing lines. This maximum is achieved

for simple arrangements, those in which each two lines have a distinct pair of

crossing points. In any arrangement there will be n infinite-downward rays, one

per line; these rays separate n + 1 cells of the arrangement that are unbounded in

the downward direction. The remaining cells all have a unique bottommost vertex

(choose the bottommost vertex to be the right endpoint of the horizontal bottom

edge), and each vertex is bottommost for a unique cell, so the number of cells in

an arrangement is the number of vertices plus 1 + n, or at most 1 + n +
(n

2

)
. This

was generalized by Schläfli (1901) as “ n cuts can divide an m-dimensional cheese

into as many as ∑
m
k=0
(n

k

)
”. However the bounds are known for the cheese cutting

problem, there is no general answer. Since Steiner’s works, it has become a popular

object not only in combinatorics but also in geometry and topology, and have been

studied by thousands of researchers.

Projective plane is a compactification of Euclidean plane by the simple expedient

of adjoining the “line at infinity”. So, we shall concentrate our attention on arrange-

ments in the projective plane. We collect some basic but important facts of projective

geometry in chapter 2.

In chapter 3, we will study the line arrangements combinatorially. First of all,

we will interest in simplicial line arrangements. The simplicial arrangements not

only often provide optimal solutions for various problems related with polytopes,

graphs, and complexes, but also important objects of Geometry and Topology for

the point of algebraic surfaces. It is known that, if an algebraic surface associated

to arrangement has B2 as universal cover, then underlying arrangement have to be

1
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rigid. Furthermore, the simplicial line arrangements are the candidates for being

rigid. For this reason, in the the light of the facts in (Grünbaum, 1967, 1971, 1972,

2009), we will first deal with the isomorphism types of line arrangements. Secondly,

we will introduce the Füredi & Palásti (1984)’s method to construct an arrangement

of lines with maximum number of triangles; and solution of orchard problem due

to Burr et al. (1974). Then by using the torsion subgroup of an Elliptic curve, we

give the complete solution of orchard problem and also for the maximum number

of triple points in an arrangements of n-lines in CP2.

Compared the case of lines, very little is known about the question: "What kind

of configurations of quadrics are possible in the complex projective plane?". This

problem was originally motivated by the problem of finding interesting abelian

covers of CP2 branched over several quadrics. Naruki (1983) obtained some results

for this problem by excluding any kind of triple intersection points and contacts

of order higher then 2. He described the parameter space (the moduli) for some

elementary configurations.

Suppose, configuration of n quadrics has only nodes and tacnodes (A1 and A3

type singularities.), but no other types of singularities. Let t(n) be the maximal

number of tacnodes for given n. Obviously t(n) ≤ n(n− 1). (Hirzebruch, 1986,

Sec. 9) mentions the problem whether limsupn→∞

t(n)
n2 is positive. By considering

the double cover of CP2 branched along the union of quadrics, and applying the

Miyoka-Yau inequality to the double cover, he gave the inequality

t(n)≤ 4
9

n2 +
4
3

n (1.0.1)

If equality held, the double cover X of CP2 branched along the union of quadrics

would be a surface for which Miyaoka-Yau equality holds for singular surfaces, and

if Y were smooth surface with covering Y → X étale outside the singularities of X ,

then we would have c2
1(Y ) = 3c2(Y ) (Megyesi, 1999). That is why this problem is

interesting in algebraic geometry.
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Smooth quadrics in CP2 are parametrized by an open subset of (CP5)?, each

tacnode imposes one condition and dimAut(CP2) = 8, so by a naive dimension

count, one would expect 5n− t − 8 dimensional family of configurations modulo

projective equivalence for n quadrics with t tacnodes. But, examples in (Hirzebruch,

1986) show that there exist configurations with negative expected dimension. By

applying the results in Megyesi (1993) Megyesi & Szabó (1996) proved that the

inequality (1.0.1) is not sharp, t(n) < b4
9n(n+3)c in for n = 8,9,12 and for n≥ 15,

and in fact t(n) ≤ cn2− 1
7633 for a suitable constant c. So, in (Megyesi, 2000) he

studied on possible and impossible configurations of conics with many tacnodes

and derive equations for them. In chapter 4, we also studied the same problem and

obtain some partial results for possible or impossible configuration of quadrics, and

derive the equations for these possible arrangements.

Zariski van-Kampen theorem is a tool for computing fundamental groups of

complements to curves (germs of curve singularities, affine or projective plane

curves). It gives us the fundamental groups in terms of generators and relations.

Roughly speaking, the generators can be taken in a generic line and the relations

consist of identifying these generators with their images by some monodromies. In

the chapter 6, we will investigate the braid monodromy and give the statement of

the Zariski van-Kampent theorem based on the lecture notes of Shimada (2007).

In addition, we will also compute the local fundamental groups of the germs in

Figure 6.1, and fundamental groups of some quadric arrangements related to line

arrangements.

An orbifold is a space locally modeled on a smooth manifold modulo a finite

group action, which is said to be uniformizable if it is a global quotient. They

were first studied in the 50’s by Satake under the name V-manifold and renamed

by Thurston in 70’s. Orbifolds appear naturally in various fields of mathematics and

physics and they are studied from several points of view. In chapter 5, we focus

on the uniformization problem and consider orbifolds with a complex projective

space as base space. From this perspective, orbifolds can be viewed as a refinement
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of double covering construction of special algebraic varieties. The first steps in

this refinement were taken by Hirzebruch (1983) culminating in the monograph

Barthel et al. (1987) devoted to Kummer coverings of CP2 branched along line

arrangements. Kobayashi (1990) studied more general coverings with non-linear

branch loci with non-nodal singularities.

Chern classes are characteristic classes. They are topological invariants associated

to vector bundles on a smooth manifold. If you describe the same vector bundle on

a manifold in two different ways, the Chern classes will be the same. Then, the

Chern classes provide a simple test: if the Chern classes of a pair of vector bundles

do not agree, then the vector bundles are different. Depending on the partition of

n such that ∑
n
i=1 iai = n, there are Chern forms cI[V ] := ca1

1 [V ]ca2
2 [V ] · · ·can

n [V ] in

terms of wedge product of Chern classes, where I := (a1,a2, · · ·an). The integral

of these Chern forms on manifold M takes values in Z and they are called Chern

numbers of V , and denoted by cI := ca1
1 ca2

2 · · ·can
n . In case of n = 1, there is only one

Chern number, c1, that is the Euler number e. If n = 2, the Chern numbers are c2
1

and c2 = e. Chern numbers are numerical invariants of manifolds.

Many basic topological invariants such as the fundamental group and Chern

numbers has an orbifold version, and the usual notion of Galois covering is extended

to orbifolds. It was observed by Yoshida (1987) that orbifold germs are related

via covering maps, In the Section 6.2.3, we have explicitly exhibited the covering

relations among orbifold germs, observed by Yoshida. Uludağ (2003, 2005, 2004,

2007) exploit these coverings to find infinitely many interesting orbifolds uniformized

by the complex 2-ball B2, and products of Poincaré discs B1×B1. By using orbifold

Chern numbers we have discovered new orbifolds and studied their covering relations

together with known orbifolds uniformized by B2, which is the main part of this

thesis.



CHAPTER TWO

PRELIMINARIES

In this chapter we will investigate well known but required facts of complex

projective geometry, such as complex projective line, complex projective plane,

complex projective transformations, cross ratio, projective conics, duality, intersec-

tion and parametrization of conics, cubic curves and the parametrization of elliptic

curves via Weierstraß℘ function.

2.1 Complex Projective Space

An n dimensional complex projective space is defined by

CPn =
(
Cn+1 \{0}

)/
∼ (2.1.1)

with the equivalence relation (z0,z1, · · · ,zn) ∼ (λz0,λz1, · · · ,λzn), where λ is an

arbitrary non-zero complex number. The equivalence classes are denoted by [z0 :

z1 : · · · : zn] and known as homogeneous coordinates. Equivalently, CPn is the set

of all complex lines in Cn+1 passing through the origin 0 := (0, · · · ,0). Since λ ∈
C∗ = C\{0}, one may also regard CPn as a quotient of Cn+1 \{0} '̇ S2n+1 under

the action of C∗:

CPn =
(
Cn+1 \{0}

)/
C∗. (2.1.2)

Notice that any point [z0 : z1 : · · · : zn] with zn 6= 0 is equivalent to [ z0
zn

: z1
zn

: · · · :
zn−1
zn

: 1]. So there are two open disjoint subsets of the projective space: first one

consists of the points [ z0
zn

: z1
zn

: · · · : zn−1
zn

: 1] for zn 6= 0 and the second one consists

of the remaining points [z0 : z1 : · · · : zn−1 : 0]. The open set consisting of the points

[z0 : z1 : · · · : zn−1 : 0] can be divided into two disjoint subsets with points [ z0
zn−1

: z1
zn−1

:

· · · : zn−2
zn−1

: 1 : 0] for zn−1 6= 0 and [z0 : z1 : · · · : zn−2 : 0 : 0]. In a similar way, if one

continues to subdivision then reaches to open sets containing the points [ z0
z1

: 1 : 0 :

· · · : 0] for z1 6= 0 and [z0 : 0 : · · · : 0] = [1 : 0 : · · · : 0], respectively. Note that these last

5
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two open sets are complex line, the first is called line at infinity, and second is the

point at infinity. Geometrically, the open subsets of CPn obtained by subdivision are

isomorphic (not only as a set, but also as a manifold) to Cp, where p = 0,1, · · · ,n.

We thus have a cell decomposition

CPn = CntCn−1t·· ·tCt{∞} (2.1.3)

and it can be used to calculate some topological invariants such as the singular

cohomology or the Euler characteristic of a complex projective space. As it is seen

from this decomposition that a complex projective space is a compact topological

space.

The above definition of complex projective space gives a set. For purposes of

differential geometry, which deals with manifolds, it is useful to endow this set with

a complex manifold structure. Namely consider the following subsets:

Ui = {[z0 : z1 : · · · : zn] | zi 6= 0}, i = 0,1,2, · · · ,n.

By the definition of complex projective space, their union is the whole complex

projective space. Further, Ui is in bijection to Cn via

[z0 : z1 : · · · : zn] 7→
(z0

zi
,
z1

zi
, · · · , ẑi

zi
, · · · , zn

zi

)
. (2.1.4)

Here, the hat means that the i-th entry is missing. It is clear that CPn is a complex

manifold of complex dimension n, so it has real dimension 2n.

In general context, CP1 is called as the complex projective line, which is also

known as the Riemann sphere, and CP2 is called as the complex projective plane.

For the simplicity, from now on unless otherwise indicated we will use the term

“projective” instead of “complex projective”.
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2.2 Complex Projective Transformations

Let V and V ′ be two complex vector spaces, p : V \{0}→ PV and p′ : V ′ \{0}→
PV ′ two projections. A projective transformation g : PV →PV ′ is a mapping such that

there exists a linear isomorphism f : V →V ′ with p′ ◦ f = g◦ p, in other words such

that the following diagram

V \{0} f //

p
��

V ′ \{0}
p′

��
PV

g // PV ′

. (2.2.1)

commutes.

Since f is a linear isomorphism, it maps the set of lines passing through the

origin to itself. Therefore, the image under g of a point L of PV (line of V through

the origin) is the point L′ = f (L) of PV ′ .

If V = V ′ = C2 then the automorphisms of C2 are just the 2× 2 invertible

matrices with complex entries and these automorphisms forms a group under ordinary

matrix multiplication. The automorphism group of C2 is usually denoted by GL(2,C)

and called general linear group of degree 2. Since p : C2 \ {0} → P1
C = CP1 is a

projection, an invertible 2×2 matrix A with complex entries acts on the projective

line CP1 via f ([z0 : z1]) = [z′0 : z′1], where


z′0

z′1


= M ·


z0

z1


=


a b

c d


 ·


z0

z1


 .

This is well defined, since f ([λz0 : λz1]) = [λz′0 : λz′1] = [z′0 : z′1] for λ ∈ C∗.

There are, however, the matrices in GL(2,C) that have no effect on points in the

projective line: the diagonal matrix M = αI2×2 with α ∈ C∗ fixes every [z0 : z1] ∈
CP1. Also, the matrices M ∈ GL(2,C) and αM have the same effects on CP1 (in
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fact, αM = αI ·M).

The group of diagonal matrices with entry α ∈ C∗ is isomorphic to C∗, and we

can make the projective general linear group of order 2, PGL(2,C) = GL(2,C)/C∗,

act on the projective line. Its elements are 2× 2 complex matrices with nonzero

determinant and two such matrices are considered to be equal if they differ by a

nonzero factor α ∈ C∗. In addition, dimPGL(2,C) = 3.

Let us identify the point [z : 1] with z, choose the frame 0, 1 and ∞ := [1 : 0]. Set

∞/∞ = 1, k/0 = ∞ for k 6= 0, and so on, for convenience, and remember the fact

CP1 = C∪{∞}. PGL(2,C) = Aut(CP1) can also be considered as the group of all

biholomorphic linear fractional transformations, namely Möbius transformations,

f : z ∈ CP1→ az+b
cz+d

∈ CP1, ad−bc 6= 0. (2.2.2)

Note that, in the case of ad−bc = 0, the rational function f takes constant value.

Proposition 2.2.1. Let z1, z2 and z3 be three points on the Riemann sphere CP1.

Then there is a unique Möbius transformation such that f (z1) = ∞, f (z2) = 0 and

f (z3) = 1.

Proof. The equations f (z1) = ∞, f (z2) = 0 and f (z3) = 1 implies cz1 +d = 0, az2 +

b = 0 and az3 +b = cz3 +d, respectively. Then c 6= 0, otherwise all of a, b, c and d

will be zero. Since the Möbius transformation is a rational linear transformation, we

can choose c = 1. Therefore, we have d =−z1, a = z3−z1
z3−z2

and b =−z2
z3−z1
z3−z2

. Hence,

the required Möbius transformation is

f (z) =
(z3− z1)(z− z2)
(z3− z2)(z− z1)

. (2.2.3)

Corollary 2.2.2. A three-point set in CP1 is projectively rigid, i.e., given any pair

of distinct three points {z1,z2,z3} and {z′1,z′2,z′3} on the Riemann sphere CP1, there

is a unique Möbius transformation f such that f (zi) = f (z′i), i = 1,2,3.
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Proof. Let g and h be the Möbius transformations sending the frames {z1,z2,z3}
and {z′1,z′2,z′3} to the standard frame {∞,0,1}, respectively. Then f = h−1 ◦g is the

required transformation.

Definition 2.2.3 (Cross-ratio). The cross-ratio of a quadruple of distinct points on

the projective line with coordinates [αi : βi], i = 1,2,3,4, is the point of CP1 defined

by 


det


α1 α3

β1 β3




det


α1 α4

β1 β4




:

det


α2 α3

β2 β3




det


α2 α4

β2 β4







(2.2.4)

If βi 6= 0 for all i = 1,2,3,4, then we can identify each point [αi : βi] = [αi
βi

: 1] with

non-zero complex number αi
βi

, for simplicity say zi, then the cross ratio of z1,z2,z3,z4

is a non-zero number given by the formula

(z1,z2 ; z3,z4) =
z1− z3

z2− z3
:

z1− z4

z2− z4
=

(z1− z3)(z2− z4)
(z2− z3)(z1− z4)

(2.2.5)

If one of βi = 0, say β1 = 0, then z1 = ∞ and (∞,z2 ; z3,z4) = z2−z4
z2−z3

.

Note that the cross ratio (z1,z2 ; z3,z4) of distinct four points z1,z2,z3,z4 on the

projective line is the image of z4 under the Möbius transformation sending the points

z1,z2,z3 to the points ∞,0,1 respectively (See equation (2.2.3)).

There are different definitions of the cross-ratio used in the literature. However,

they all differ from each other by some possible permutation of the coordinates. In

general, there are six possible different values the cross-ratio can take depending on

the order in which the points zi are given. Since there are 24 possible permutations

of the four coordinates, some permutations must leave the cross-ratio unaltered. In

fact, exchanging any two pairs of coordinates preserves the cross-ratio:

(z1,z2 ; z3,z4) = (z2,z1 ; z4,z3) = (z3,z4 ; z1,z2) = (z4,z3 ; z2,z1) (2.2.6)
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Using these symmetries, there can then be 6 possible values of the cross-ratio,

depending on the order in which the points are given. These are:

(z1,z2 ; z3,z4) = λ, (z1,z3 ; z2,z4) = 1−λ, (z1,z4 ; z2,z3) = λ−1
λ

(z1,z2 ; z4,z3) = 1
λ
, (z1,z3 ; z4,z2) = 1

1−λ
, (z1,z4 ; z3,z2) = λ

λ−1 .
(2.2.7)

Proposition 2.2.4. Cross-ratios are invariant under Möbius transformations.

Proof. Let z1, z2, z3 and z4 be four distinct points on CP1 and g the Möbius transfor-

mation sending z1,z2,z3 to ∞,0,1, respectively, so that (z1,z2 ; z3,z4) = g(z4). Then

for any Möbius transformation f , g ◦ f−1 is the Möbius transformation sending

f (z1), f (z2), f (z3), f (z4) to ∞,0,1,g(z4), i.e.,
(

f (z1), f (z2) ; f (z3), f (z4)
)

= g(z4).

Now, let us go one step further and choose V = V ′ = C3 in the diagram (2.2.1),

then the automorphisms of C3 are just the 3× 3 invertible matrices with complex

entries, and these automorphisms forms a group under ordinary matrix multiplication.

The automorphism group of C3 is usually denoted by GL(3,C) and called General

Linear group of order 3. Since p : C3 \ {0} → P2
C = CP2 is a projection, then an

invertible 3×3 matrix A with complex entries acts on the projective plane CP2 via

f ([x : y : z]) = [x′ : y′ : z′], where




x′

y′

z′


= M ·




x

y

z


=




a11 a12 a13

a21 a22 a23

a31 a32 a33


 ·




x

y

z


 .

This is well defined, since f ([λx : λy : λz]) = [λx′ : λy′ : λz′] = [x′ : y′ : z′] for λ∈C∗.

There are, however, the matrices in GL(3,C) have no effect on points in the

projective plane: the diagonal matrix M = αI3×3 with α ∈ C∗ fixes every [x : y :

z] ∈ CP2. Also, the matrices M ∈ GL(3,C) and αM have the same effects on CP2

(in fact, αM = αI ·M). The group of diagonal matrices with entries α ∈ C∗ is

isomorphic to C∗, and we can make the projective general linear group of order
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three, PGL(3,C) = GL(3,C)/C∗, act on the projective plane. Its elements are 3×3

complex matrices with nonzero determinant, and two such matrices are considered

to be equal if they differ by a nonzero factor α∈C∗. In addition, dimPGL(3,C) = 8.

Proposition 2.2.5. Let Pi = [xi : yi : zi], i = 1,2,3,4 be four points in CP2, no three

of which are collinear. Then there is a unique projective transformation sending the

standard frame, namely [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1] and [1 : 1 : 1], to the points P1,

P2, P3 and P4, respectively.

Proof. The transformation defined by A ∈ PGL(3,C) will map [1 : 0 : 0] to P1, if

and only if there is α1 ∈ C∗ with

α1




x1

y1

z1


= M ·




1

0

0


=




a11

a12

a13


 .

Similarly the second and the third rows are determined up to nonzero factors

α2,α3 ∈ C∗. Thus,

M =




α1x1 α1y1 α1z1

α2x2 α2y2 α2z2

α3x3 α3y3 α3z3


 .

Now, P4 will be the image of [1 : 1 : 1] if and only if

α4




x4

y4

z4


= M ·




1

1

1


= α1




x1

y1

z1


+α2




x2

y2

z2


+α3




x3

y3

z3




Rescaling allows us to assume α4 = 1. Thus, the vector (x4,y4,z4) is a linear

combi- nation of (xi,yi,zi), i = 1,2,3. Since the vectors (xi,yi,zi) are linearly

independent, there is a unique solution (α1,α2,α3), and since no three of the points

Pi are collinear then αi 6= 0. This implies that M is an invertible matrix and defines
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Figure 2.1 Complete quadrilateral.

a unique projective transformation f given by a matrix M ∈ PGL(3,C).

Corollary 2.2.6. Let {Pi} and {Qi} denote the sets of four points in the projective

plane such that no three of Pi and no three of Qi are collinear. Then there is a unique

projective transformation sending Pi to Qi for i = 1,2,3,4.

Proof. Let f denote the projective transformation given by a matrix M that sends

the standard frame to the Pi’s; let g denote the projective transformation given by a

matrix N that does the same with Qi’s. Then the transformation g◦ f−1 defined by

the matrix N ·M−1 is the projective transformation we are looking for.

Corollary 2.2.7. Complete quadrilateral, configuration of six lines with four simple

triple points and three nodes, is projectively rigid.

Proof. As it is seen from the Figure 2.1 that the complete quadrilateral is completely

determined by four triple points. Then by Corollary 2.2.6, one can transform this

four points to any four points for which none of three is collinear. Hence, the

complete quadrilateral is projectively unique.

An ordered quadruple of distinct points z1, z2, z3, z4 of CP1 is called a harmonic

quadruple if (z1,z2 ; z3,z4) = −1. Let us assume that these four points lie on a

complex line L in CP2. By choosing a frame on L, one can identify L with CP1

and extend this definition for arbitrary complex line in CP2.

Proposition 2.2.8. The quadruple of distinct points p1, p2, p3, p4 of L ⊂ CP2 is

harmonic if and only if there are points a,b,c,d ∈CP2 \L such that the intersection
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p1 p3 p2 p4

a

b

c
d

Figure 2.2 Harmonic configuration.

points of the complete quadrilateral, having the points a,b,c,d as triple points, with

` are the points p1, p2, p3, p4. Such configuration is known as harmonic configura-

tion (See Figure 2.2).

Proof. First, let us show the necessary part. Corollaries 2.2.2 and 2.2.6 impliy that

one may choose a homogeneous coordinate system on CP2 such that a = [0 : 0 : 1],

p1 = [1 : 0 : 0], p2 = [1 : 1 : 0], p4 = [0 : 1 : 0] and d = [1 : 1 : 1]. Then b = [1 : 0 : 1],

c = [2 : 1 : 1], p3 = [2 : 1 : 0] and ` is the line Z = 0. Hence by omitting the third

coordinates one can identify L with CP1 and obtains (p1, p2 ; p3, p4) = 1−2
1−0 =−1.

Conversely, we can draw a configuration from the points p1, p2 and p4 as in

Figure 2.2. Put p′3 = L∩ ac. Here ac denotes the line through a and c. Then by

Proposition 2.2.4, (p1, p2 ; p3, p4) =−1 = (p1, p2 ; p′3, p4) implies p3 = p′3.

A Projective transformation f given by a matrix A act on the projective plane

and therefore on a plane algebraic curve CF : F(X ,Y,Z) = 0; the image of CF under

f is some curve CG : G(U,V,W ) = 0. How can be computed G from F? Let us

first look at simple example. Take F(X ,Y,Z) = X2−Y Z and the transformation

[U : V : W ] = f ([X : Y : Z]) = [X : Y + Z : Y −Z]. For getting G, we solve X , Y, Z

and then plug the result (X ,Y,Z) = (U, V+W
2 , V−W

2 ) into F , hence G(U,V,W ) =

F(U, V+W
2 , V−W

2 ) = U2− V 2

4 + W 2

4 . It has been seen from this example that we get

G by evaluating F at f−1([X : Y : Z]), that is, G = F ◦ f−1. This ensures that a point

[X : Y : Z] on CF will get mapped by f to a point [U : V : W ] on CG.

Proposition 2.2.9. Projective transformations preserve the degree of curves.
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Proof. Projective transformations map a monomial X iY jZk of degree m = i + j +

k either to 0 or to another homogeneous polynomial of degree m. If F(X ,Y,Z)

is transformed by some transformations f into the zero polynomial, then inverse

transformation maps the zero polynomial into F , which is nonsense.

Definition 2.2.10. A point [X0 : Y0 : Z0] ∈ CP2 is called the singular point of the

curve CF : F(X ,Y,Z) = 0 if

∂F
∂X

(X0,Y0,Z0) =
∂F
∂Y

(X0,Y0,Z0) =
∂F
∂Z

(X0,Y0,Z0) = 0. (2.2.8)

Proposition 2.2.11. Projective transformations preserve singularities.

Proof. Suppose a projective curve CF : F(X ,Y,Z) = 0 is mapped to a projective

curve CG : G(U,V,W ) = 0 via a projective transformation f given by a matrix M.

Then, we have F = G ◦ f and [U V W ]T = [X Y Z]T ·MT . Hence the chain

rule implies 


∂F
∂X
∂F
∂Y
∂F
∂Z


= M ·




∂G
∂U
∂G
∂V
∂G
∂W


 (2.2.9)

Therefore a point P0 = [X0 : Y0 : Z0] on CF is singular if and only if all three

derivatives of F vanish at P0. Since M ∈ PGL(3,C) then it is nonsingular and the

equation (2.2.9) implies that the point [U0 : V0 : W0] = f ([X0 : Y0 : Z0]) is a singular

point of the curve CG.

Similarly, after some calculations one can also show that projective transforma-

tions preserve the multiplicities, tangents, flexes ,etc.
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2.3 Projective Conics

A conic in the complex plane is given by a quadric equation a1x2 +a2xy+a3y2 +

a4x+a5y+a6 = 0, where at least one of the complex coefficients ai is non zero. By

using homogeneous coordinates and reindexing the coefficients, a conic in CP2 is

given by homogenous ternary quadric equation

a1X2 +a2Y 2 +a3Z2 +a4XY +a5Y Z +a6ZX = 0, (2.3.1)

where at least one of the complex coefficients ai is non zero. In matrix notation, the

equation (2.3.1) can be written as

[
X Y Z

]
·M ·




X

Y

Z


=

[
X Y Z

]
·




a1
a4
2

a6
2

a4
2 a2

a5
2

a6
2

a5
2 a3


 ·




X

Y

Z


= 0. (2.3.2)

If detM = 0, then the conic is said to be reducible (or degenerate), this means

that the conic is either a double line or a union of two lines, otherwise it is called

irreducible (or non degenerate).

Note that, at least one of the coefficients of a conic in CP2 is non zero. This

means that it is enough to know five points which conic passes or five independent

info about conic, to determine a conic in CP2. On the other hand, there is a bijection

between the conics in CP2 and the points [a1 : a2 : a3 : a4 : a5 : a6] of CP5. Then

one may prefer to analyse configuration of points in CP5, instead of configuration

of conics in CP2.

Projective transformations preserve the degree of curves, thus they map lines into

lines and conics into conics. Affine transformations preserve the line at infinity;

hence can not a (real) circle (no point at infinity) into a hyperbola (two points at

infinity). Projective transformations can do this: the projective circle has equation

X2 +Y 2−Z2 = 0, the projective transformation U = Z, V = X , W = Y transform
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this equation into V 2−U2 +W 2 = 0, which after dehomogenizing with respect to

W , is just the hyperbola u2− v2 = 1. What happened here is that Y = W has moved

to the two points with Y = 0 to infinity.

Similarly, the hyperbola XY − Z2 = 0 can be transformed into a parabola via

U = Z, V = X , W = Y : after dehomogenizing we get v = u2. The hyperbola had

two points [1 : 0 : 0] and [0 : 1 : 0] at infinity; the first one was moved to the point

[0 : 1 : 0] at infinity, the second one to [0 : 0 : 1] which is the origin in the affine

plane. As a matter of fact it can be proved that, over the complex numbers, there

is only one class of non degenerate conics up to projective transformations (See

Proposition 2.3.2).

Anymore, since a conic in CP2 is given by a homogeneous ternary quadric

equation in three variables, the term quadric will be used instead of the term conic.

Definition 2.3.1. Two quadrics are called projectively equivalent if there is a projec-

tive transformation, mapping one to the other.

Proposition 2.3.2. Any non degenerate projective quadric defined over C is projec-

tively equivalent to the quadric XY + Y Z + ZX = 0. More exactly, given a non

degenerate quadric Q and three points on Q, there is a unique projective transforma-

tion which maps Q to a quadric and three points to [1 : 0 : 0], [0 : 1 : 0] and [0 : 0 : 1],

respectively.

Proof. Take any three points on a quadric. Then by corollary 2.2.6, there is a projec-

tive transformation, mapping them into [1 : 0 : 0], [0 : 1 : 0] and [0 : 0 : 1], respectively

(note that the three points on a quadric are not collinear since the quadric is non

degenerate). If the transformed quadric has the equation

a1U2 +a2V 2 +a3W 2 +a4UV +a5VW +a6WU = 0 (2.3.3)

then we immediately see that a1 = a2 = a3 = 0. Moreover, a4a5a6 6= 0 since other-

wise the quadric is degenerate. Using the transformation U = a5X , V = a6Y , W =
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a4Z, this becomes XY +Y Z + ZX = 0. If there are two such maps f and g, then

g ◦ f−1 maps the standard quadric onto itself and preserves the three points of the

standard frame. It is then easily seen that the corresponding matrix to g◦ f−1 must

be the identity map in PGL(3,C).

2.4 Duality

Given any vector space V over a field k, the dual space V ? is defined to be the

set of all linear functionals on V , i.e., scalar valued linear transformations on V (in

this context, a "scalar" is a member of the base field k). V ? itself becomes a vector

space over k under the following definition of addition and scalar multiplication:

(φ+ψ)(x) = φ(x)+ψ(x) and (λφ)(x) = λφ(x)

for all φ and ψ in V ?, λ in k and x in V . If the dimension of V is finite, then V ? has

the same dimension as V ; if {e1, · · · ,en} is a basis for V , then the associated dual

basis {e1, · · · ,en} of V ? is given by

ei(e j) = δi j =





1, if i 6= j

0, if i = j.

Concretely, if we interpret C3 as the space of columns of three complex numbers,

then its dual space is typically written as the space of rows of there complex numbers.

Such a row acts on C3 as a linear functional by ordinary matrix multiplication.

In addition, the elements of (C3)? can be intuitively represented as collections of

parallel planes.

If [x : y : z] ∈CP2 then (x,y,z)∼ (λx,λy,λz) for any nonzero complex number λ.

Let us consider the set of functionals φ ∈ (C3)? so that φ(x,y,z) = φ(λx,λy,λz) =

λφ(x,y,z) for any λ in C∗. It is clear that, these functionals vanish on C3 and φ([x :
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y : z]) = 0 for any [x : y : z] ∈ CP2. Thus, dual of the projective plane contains the

linear functionals vanishing on CP2. Also, one can view such kind of functionals as

lines in CP2.

[A : B : C] ∈ CP2 � L : AX +BY +CZ = 0⊂ CP2 (2.4.1)

Duality for the projective plane CP2 concerns the interchangeability between

points and lines which preserves incidence properties (More generally, duality for

CPn interchanges dimension+1 to codimension). We now extend this property for

projective, algebraic curves. For any projective curve C ⊂ CP2, consider the subset

C ? = {L? | L is a line of tangency to C} (2.4.2)

and refer to it as the dual curve of C . Indeed, it turns out that this subset of CP2 is

actually a projective curve, in CP2, except for the case when C is a projective line,

in which case C ? consists of just one point.

Proposition 2.4.1. The dual curve of a non degenerate quadric in CP2 is again a

quadric in CP2.

Proof. In Proposition 2.3.2, it is shown that all non degenerate quadrics are projec-

tively equivalent. It is enough to prove that, dual curve of the quadric Q given by

the equation F(X ,Y,Z) = X2−Y Z = 0 is again a non degenerate quadric. We have

∂F
∂X

= 2X ,
∂F
∂Y

=−Z,
∂F
∂Z

=−Y,

then by eliminating X , Y and Z between the equations

2X = U, −Z = V, −Y = W and X2−Y Z = 0

we obtain the equation of the dual curve C ? as U2−4VW = 0 which defines a non

degenerate quadric in CP2.
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Corollary 2.4.2. (Q?)? = Q.

2.5 Intersection Behaviour of Quadrics

Definition 2.5.1. Let ( f ,0) and (g,0) be two smooth germs of algebraic curves in

C2 and let ϕ : ∆t → C2 be the parametrization of ( f ,0). The vanishing degree of

g ◦ϕ at the origin is called the intersection number or intersection multiplicity of

the algebraic curves at the origin.

Example 2.5.2. The non degenerate quadrics Q1 : X2−Y Z = 0 and Q2 : X2 +XY−
Y Z = 0 intersect each other at the points [0 : 0 : 1] and [0 : 1 : 0]. Let us find their

intersection multiplicities. For the point [0 : 0 : 1], dehomogenizing the equations

of quadrics we get f : x2− y = 0 and g : x2 + xy− y = 0. The germ ( f ,0) can be

parameterized as ϕ : ∆t → C2, ϕ(t) = (t, t2), then (g ◦ϕ)(t) = t3 and its vanishing

degree at the origin is 3 ,i.e. the intersection multiplicity of the quadrics Q1 and Q2

at the point [0 : 0 : 1] is 3. In addition, after some calculations it can be easily seen

that the intersection multiplicity of the quadrics Q1 and Q2 at the point [0 : 1 : 0] is

1.

The well known Bézout’s theorem was originally stated by French mathematician

Etienne Bézout in 1779 as "The degree of the final equation resulting from any

number of complete equations in the same number of unknowns, and of any degrees,

is equal to the product of the degrees of the equations" to solve the system of

equations.

Theorem 2.5.3 (Weak Bézout’s Theorem). If two curves of degree m and n have

more then mn distinct points in common then they have a common component.

Even for the weak form of Bézout’s theorem, it has many important consequences:

Theorem 2.5.4. If two curves of order n intersect at n2 distinct points, and if mn
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B

C′

Figure 2.3 Pascal’s theorem.

of this points lie on an irreducible curve of degree m, then the remaining n2−mn

points lie on a curve of degree n−m.

Theorem 2.5.5 (Pascal’s Theorem). If one is given six points on a non degenerate

quadric and makes a hexagon out of them in an arbitrary order, then the points of

intersection of opposite sides of this hexagon will all lie on a single line.

Proof. Let ABCA′B′C′ be a hexagon on an irreducible quadric. Let AB′ and A′B,

AC′ and A′C, BC′ and B′C be the opposite sides of the hexagon. The triples of lines

AC′, BA′, CB′ and AB′,BC′, CA′ define two cubics. They intersect at 9 points, and

six of them lie on an irreducible quadric. Thus the remaining three lie on a curve of

degree 3−2 = 1, i.e, the remaining 3 points are collinear.

The Pascal’s Theorem was discovered by Blaise Pascal when he was only 16

years old. It is the generalization of the "Pappus’s hexagon theorem". The original

proof of Pascal’s theorem has been lost and it is supposed to be he proved his

theorem via Menelaus’ theorem. We used the consequence of Bézout’s Theorem

to prove it.

The Pascal’s theorem was generalized by Möbius in 1847 as follows: suppose

a polygon with 4n + 2 sides is inscribed in a quadric, and opposite pairs of sides

are extended until they meet in 2n + 1 points. Then if 2n of those points lie on a

common line, the last point will be on that line, too.
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Figure 2.4 Brianchon’s theorem.

Theorem 2.5.6 (Brianchon’s Theorem). Let ABCDEF be a hexagon formed by six

tangent lines of a non degenerate quadric. Then the lines AD, BE, CF intersect at

a single point.

Proof. Since, duality for CP2 interchanges the roles of points and lines and preserves

the incidence relations meanwhile the dual of a quadric is again a quadric in CP2,

then the dual of the Brianchon’s Theorem is just the Pascal’s Theorem.

Theorem 2.5.7 (Strong Bézout’s Theorem). Let C1 and C2 be plane projective

algebraic curves of degree m and n without common component over an algebraic-

ally closed field k. Then they intersect in exactly mn points counting multiplicities.

As a result of Theorem 2.5.7 over the algebraically closed field C, two quadric

have only four intersection points counting multiplicities. Thus, there are five (=the

number of positive integer partitions of 4) situations for the intersection behavior

of two non degenerate quadrics. To describe these non degenerate cases, we will

investigate a graph whose vertices denotes the quadrics and edges denote the inter-

section behavior of non degenerate quadrics (See Table 2.1). In addition, we will

describe the degenerate cases in the Table 2.2.
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Table 2.1 Intersection behavior of two non degenerate quadrics.

Graph Configuration Meaning

Q1 Q2

Two quadrics Q1 and Q2 intersect each other
at four distinct points, i.e, they are in general
position.

Q1 Q2

Two quadrics Q1 and Q2 intersect each other at
three distinct points with multiplicities 2, 1 and
1, i.e, they have a tacnode.

Q1 Q2

Two quadrics Q1 and Q2 intersect each other at
two distinct points with multiplicities 2 and 2,
i.e., they tangent to each other at two distinct
points or they have two tacnodes.

Q1 Q2
Two quadrics Q1 and Q2 intersect each other at
two distinct points with multiplicities 3 and 1.

Q1 Q2
Two quadrics Q1 and Q2 tangent each other at a
point with multiplicity 4.

2.6 Parametrization of Quadrics

Let Q be a quadric given by the equation,

a1X2 +a2Y 2 +a3Z2 +a4XY +a5Y Z +a6ZX = 0, (2.6.1)

in CP2 and [X0 : Y0 : Z0] a point on it. The equation of the lines through this point

are in the form

s(Y Z0−Y0Z) = t(Z0X−X0Z). (2.6.2)

According to Bézout’s Theorem there are two intersection points of this line and

the quadric Q. These intersection points can be found by substituting the equation

(2.6.2) into the equation (2.6.1) and solving it. After some calculations one can get

these solutions as [X0 : Y0 : Z0] and [p1(s, t) : p2(s, t) : p3(s, t)], where pi(s, t)∈C[s, t]

are homogeneous of degree 2. Therefore a quadric can be parametrized by as:

X = p1(s, t), Y = p2(s, t), Z = p3(s, t). (2.6.3)
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Table 2.2 Intersection behavior of two quadrics in degenerate cases.

Configuration Configuration

L Q1 = Q2 = L ·L
L

Q1

Q2 = L ·L

L1

L2
Q1 = L1 ·L1, Q2 = L2 ·L2

L Q1
Q2 = L ·L

L1

L2 L3

Q1 = L1 ·L1, Q2 = L2 ·L3

L1

L2Q1

Q2 = L1 ·L2

L1

L2 L3

Q1 = L1 ·L1, Q2 = L2 ·L3

L1

L2 Q1

Q2 = L1 ·L2

L1

L2
L3

L4
Q1 = L1 ·L2, Q2 = L3 ·L4

L1

L2
Q1

Q2 = L1 ·L2

L1 L2 L3

L4

Q1 = L1 ·L2, Q2 = L3 ·L4

L1

L2 Q1
Q2 = L1 ·L2

L1 L2
L3

L4

Q1 = L1 ·L2, Q2 = L3 ·L4

L1

L2 Q1
Q2 = L1 ·L2

2.7 Cubic Curves

A cubic curve in the projective plane is given by a third degree homogeneous

equation

C : F(X ,Y,Z) = a1X3 +a2X2Y +a3XY 2 +a4Y 3 +a5X2Z +a6XY Z +a7Y 2Z

+a8XZ2 +a9Y Z2 +a10Z3 = 0 (2.7.1)

Note that the equation (2.7.1) has 10 coefficients, since at least one of these

coefficients is non-zero, it is enough to know 9 info about cubic to determine it
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explicitly. Unfortunately, projective transformations may not determine cubics uniquely

as in the case quadrics, since dimPGL(3,C) = 8.

In case of the quadrics the words “singular quadric” and “reducible quadric” are

the same. But this is not true in general for cubics. A cubic is called an irreducible

(resp. reducible) if F(X ,Y,Z) is an irreducible (resp. reducible) polynomial. In

reducible case, it consists of either three lines (lines may not need to be distinct)

or a quadric and a line. Since we are in projective space, every curve must meet at

some points. So, as we have defined in Definition 2.2.10, these intersection points

are the singular points of reducible cubic. Therefore one may consider that every

reducible cubic is singular. But the converse is not true, e.g. the curve X3−Y 2Z = 0

is irreducible but have a singularity at [0 : 0 : 1].

A flex of a curve C is a point p of C such that C is non singular at this point

and tangent of C at p intersects with the curve at least 3 times. Flex points are the

intersection points of C with its Hessian curve

det




FXX FXY FXZ

FY X FYY FY Z

FZX FZY FZZ


= 0. (2.7.2)

Since the projective transformations preserves tangents and intersection multipli-

cities, then clearly preserves flexes.

Proposition 2.7.1. Every irreducible cubic curve can be represented in Weierstraß

form

Y 2Z = 4X3−aXZ2−bZ3. (2.7.3)

Proof. Assume we have an irreducible cubic. Then it has a flex point and flex

tangent. Let us consider a projective transformation moving this flex point to [0 :

0 : 1] and tangent to the line Y = 0. Also, assume that the new equation of cubic

is in the form (2.7.1). Clearly, a8 = a10 = 0 and a9 6= 0. Since we assume cubic
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is irreducible then a1 and a5 are not both zero. In addition, since Y = 0 is the flex

tangent with intersection multiplicity 3, then so a1 6= 0, a5 = 0. Since at least one

of the coefficients is non zero and we have already know 9 6=, by rescaling the

equation we can also assume a9 = 1. If we apply the projective transformation

[X : Y : Z]→ [X : Z : Y ], then cubic curve will reduce to the cubic curve a1X3 +

a2X2Z + a3XZ2 + a4Z3 + a6XY Z + a7Y Z2 +Y 2Z = 0 with flex point [0 : 1 : 0] and

flex tangent Z = 0. By completing the square some terms, this equation can be

written as (Y + a6
2 X + a7

2 Z)2Z + a1X3 + (a2 − a2
6

4 )X2Z + (a3 − a6a7
2 )XZ2 + (a4 −

a2
7

4 )Z3 = 0. Then by using the transformation

[X : Y : Z]→
[(
−a1

4

) 1
3

X : Y +
a6

2
X +

a7

2
Z : Z

]

and renaming the coefficients we obtain Y 2Z−4X3 +g2X2Z +g1XZ2 +g0Z3 = 0. If

one use the transformation [X : Y : Z]→ [X + g2
2 : Y : Z] and rename the coefficients

once again, then reaches the desired equation.

Corollary 2.7.2. The cubic curve Y 2Z = 4X3−aXZ2−bZ3 is non-singular if and

only if ∆ := a3−27b2 6= 0.

Proof. Let F :=Y 2Z−4X3 +aXZ2 +bZ3. Then the partial derivatives FX =−12X2

+aZ2, FY = 2Y Z and FZ =Y 2 +2aXZ +3bZ2 all vanishes if and only if a3−27b2 =

0.

If a and b are both zero, the singular cubic is called cuspidal cubic. If ∆ = 0 but

not both of a, b is zero then singular cubic is called nodal cubic.

Remark 2.7.3. Every nonsingular cubic curve in projective plane is also projectively

equivalent to a nonsingular cubic defined by the X3 +Y 3 + Z3− 3αXY Z =, where

a3 6= 1 and a 6= ∞.

In the literature, nonsingular irreducible cubic curves are also known as elliptic

curves. The name “elliptic” comes from the Weierstraßelliptic℘function. Because,
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the real curve

y2 = 4x3−ax−b , ∆ = a3−27b2 6= 0, (2.7.4)

may be parametrized by x =℘(u), y = d℘

du (u), where ℘(u) is the Weierstraßelliptic

function defined by

u =
∫

∞

℘(u)

dx

(4x3−ax−b)
1
2
.

The Weierstraßelliptic function ℘(u) is not only defined on the real plane, it can

also be defined over the complex plane C. Let Λ be a lattice generated by 1 and

a point τ of the upper half plane. Meromorphic functions on T = C/Λ correspond

precisely to doubly periodic meromorphic functions on C with periods 1 and τ. The

Weierstrass ℘-function on T explicitly defined as

℘(u) :=
1
u2 + ∑

ω∈Λ\{0}

(
1

(u−ω)2 −
1
u2

)
. (2.7.5)

This series converges uniformly on compact subsets of T . The derivative

℘
′(u) =− ∑

ω∈Λ

2
(u−w)3

of ℘(u) is also meromorphic function on T , and satisfies the equation

℘
′(u)2 = 4℘(u)3−a℘(u)−b (2.7.6)

with a = 60∑ω∈Λ\{0}ω−4 and b = 140∑ω∈Λ\{0}ω−6. So, the map

u→ [℘(u) :℘
′(u) : 1] (2.7.7)

is an embedding of the torus T = C/Λ into CP2. In homogeneous coordinates, the

image is clearly the elliptic curve Y 2Z− 4X3 + aXZ2 + bZ3 = 0. Because of this

reason, topologically an elliptic curve is a torus, so their genus is g = 1, and Euler

characteristic is e = 0.
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Elliptic curves are not only geometric or topological objects, but also arithmetical

objects. Choosing a fixed point O on an elliptic curve C ∈ CP2, one can make

the following construction: for any points A,B ∈ C , let A ∗B be the third point of

intersection of C with the line AB, then define an operation “+” over C so that

A + B := O ∗ (A ∗B). Then, the he set of all points of C forms a group under the

operation “+” with identity O, and inverse −A = (O∗O)∗A for any given point A

(Silverman & Tate, 1992, p. 18-22).



CHAPTER THREE

CONFIGURATION OF LINES

In this chapter, we will study the line arrangements, mainly the combinatorics

of simplicial line arrangements. Simplicial arrangements are not only related with

incidence problems, polytopes, graphs, and complexes but also important objects

of Geometry and Topology. Since all faces are triangular, every member of the

arrangement meets with other lines in a special position, possibly the configuration

will be rigid. Rigid arrangements plays an important role for the algebraic surface

geography. It is known that, if an algebraic surface associated to arrangement has

B2 as universal cover, then underlying arrangement have to be rigid, i.e only the

rigid arrangements may be uniformized by a complex ball. For this reason, in the

light of the facts in (Grünbaum, 1967, 1971, 1972, 2009), we will first deal with the

isomorphism types of line arrangements.

Secondly, we will introduce the Füredi & Palásti (1984)’s method to construct an

arrangement of lines with maximum number of triangles. Then by using the group

law of Elliptic curves we generalize their result and discuss the Orchard problem.

3.1 Isomorphism Type of Simplicial Line Arrangements

An arrangement of lines A is a finite collection of n = n(A) lines L1,L2, · · · ,Ln.

If there exists a point common to all lines Li, then A is called trivial. Unless the

opposite is explicitly stated we shall in the sequel assume that all arrangements

we are dealing with are non-trivial, therefore also n ≥ 3. An arrangement is called

simple if no point belongs to more than two of the lines Li, i.e., Li’s are in general

position.

With a real arrangement A there is an associated 2-dimensional cell complex

into which the lines of A decompose RP2. The vertices are the intersection points

of two or more lines, the edges are the segments into which the lines are partitioned

28
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by the vertices and the faces are the connected components of the complement of

the set of lines generating the arrangement. The number of vertices, edges and faces

are denoted by f0 = f0(A), f1 = f1(A) and f2 = f2(A), respectively. It is clear that

n≤ f0 ≤
(n

2

)
, with equality on the left only if n−1 of the lines all pass through one

point, and on the right only if the arrangement is simple.

If all faces are triangles, arrangement is called simplicial, and simplicial arrange-

ments first introduced by Melchior (1942) and extensively appeared in (Grünbaum,

1971, 1972). It is not hard to see that simplicial arrangements satisfy the equality

2 f1 = 3 f2 (Use the equalities (3.1.1), (3.1.2) and (3.1.3)).

Two arrangements are said to be isomorphic provided that the associated cell

complexes are isomorphic; that is, if and only if there exist an incidence preserving

one to one correspondence between the vertices, edges and faces of one arrangement

and those of the other. The totality of all mutually isomorphic arrangements forms

an isomorphism type of arrangements.

For limited number of lines, one can easily determine the isomorphism types

of arrangements by drawing figures (see Figure 3.1). But, if the number of lines

increases then the number of isomorphism types of an arrangement of n lines, which

is bounded by 2an2
for a positive constant a (Edelsbrunner, 1987, Theorem 1.4),

groves rapidly. So, we will only deal with the special case, simplicial arrangements.

To determine two arrangements are whether isomorphic, one may need to know

some extra information about the number of lines, vertices, edges, faces, etc.

One of the simplest and best known such results is the Euler’s relation; though

it holds more generally for arbitrary cell decomposition of the projective plane, in

the case of arrangements it becomes particularly elementary. As is established by

induction, the numbers fi (i = 0,1,2) of vertices, edges, and faces of each arrange-

ment A satisfy Euler’s relation:

f0− f1 + f2 = e(RP2) = 1. (3.1.1)
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Figure 3.1 The different isomorphism types of non-trivial arrangements of 3, 4, 5 and
6 lines (Figure 2.1 Grünbaum, 1972, p. 5).
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Let us denote the number of s-fold points of A by ts (s≥ 2), the number of lines

each of which is incident with precisely j ≥ 2 of the vertices of A by r j and the

number of k-gons among the cells of A by pk. Then, one can easily discover the

following equalities:

f0 = ∑
s≥2

ts, (3.1.2)

f1 = ∑
s≥2

sts = ∑
j≥2

jr j =
1
2 ∑

k≥3
kpk, (3.1.3)

f2 = 1− f0 + f1 = 1+ ∑
s≥2

(s−1)ts, (3.1.4)

(
n
2

)
= ∑

s≥2

(
s
2

)
ts, (3.1.5)

n = ∑
j≥2

r j, (3.1.6)

Melchior (1942) has showed that if arrangement A has at least three non collinear

points, then

t2 ≥ 3+ t4 +2t5 +3t6 + · · · (3.1.7)

This inequality shows that 2 f1−3 f2≥ 0. Then by using Euler’s relation (3.1.1), one

can easily obtain the linear inequality

1+ f0 ≤ f2 ≤ 2 f0−2. (3.1.8)

Indeed, the inequalities (3.1.8) determine the convex hull of the set of pairs ( f0, f2)

for all arrangements A . The equality on the left holds in (3.1.8) if and only if A

is a simple arrangement, while equality on the right is characteristic for simplicial

arrangements (Grünbaum, 1967, pp.401–402). In addition, one gets the following

inequality:

2n−2≤ f2 ≤ 1+
(

n
2

)
(3.1.9)

Indeed, the upper bound follows from the observation that the number of faces

does not decrease if the lines of an arrangement are subjected to sufficiently small
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perturbations which change the given arrangement into a simple one. For simple

arrangements (and only for such arrangements) f2 = 1+
(n

2

)
. The lower bound f2 ≥

2n−2 is also established using induction on n. The equality at right holds in (3.1.9)

if only if A is a simple arrangement; and equality on the left holds if and only if

A is near pencil. Unfortunately, there is no hope of completely characterizing the

sets of pairs ( f0, f2) and (n, f2). However, Grünbaum (1971, 1972) has some partial

results. For example, f2≥ 3n−6 if A is not a near pencil and n≥ 6. It is also known

that t2(n)≥ 3
7n and t3(n)≥ (n−1)2+4

8 for all n.

Three infinite families R (0), R (1) and R (2) of isomorphism classes of are

known.

Family R (0) consists of all near pencils. A near pencil denoted by A(n,0), n≥ 3,

consists of n−1 lines that have a point in common, the last line does not belong to

a pencil. The isomorphism invariants of this family is ( f0, f1, f2) = (n,3n−3,2n−
2), (t2, t3, · · · , tn−1) = (n−1,0n−4,1) and (r2,r3, · · · ,rn−1) = (n−1,0n−4,1), where

0n−4 := 0, · · · ,0︸ ︷︷ ︸
n−4 times

.

Family R (1) consists of simplicial arrangements A(2n,1), which consists of the

sides of regular convex n-gon, n≥ 3, and its n symmetry axes.

Family R (2) consists of simplicial arrangements A(4n+1,1), which is obtained

from A(4n,1) in the family R (1) by adjoining the line at infinity.

Beside this three infinite families of simplicial arrangements only 91 other types

were known (Grünbaum, 1971). But, as it is reported in (Hirzebruch, 1983) and

(Barthel et al., 1987, p. 64), the arrangements A2(17) and A7(17) are isomorphic.

In addition, the arrangement A(16,7) discovered later by (Grünbaum, 1972, p. 7).

Recently, Grünbaum (2009) have been updated his catalogue. By cheating from

Grünbaum’s recent paper, we will give this catalogue in Table 3.1, and illustrate

some figures.
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In this table, we denote the sequence
b times︷ ︸︸ ︷

a,a, · · · ,a by ab, the non maximal sporadic

simplicial arrangements by M and the pseudo-minimal sporadic simplicial arrange-

ments by m, that is, arrangements that do not contain as sub-arrangement any spo-

radic arrangements. This table contains simplicial arrangements up to 37 lines,

because of the following conjecture:

Conjecture 3.1.1. (Grünbaum, 1972, Conjecture 2.1) For n ≥ 38, the number of

isomorphism types of simplicial arrangement of n lines is

c4(n) =





2 if n≡ 0,1,2 (mod 4)

1 if n≡ 3 (mod 4).
(3.1.10)

This conjecture is still open. If one proves it, then he will prove the conjecture

that the Table 3.1 in page33 is the complete enumeration of isomorphism classes of

sporadic arrangements with n ≤ 37; and for n ≥ 38 they are either R (0), or R (1),

or R (2).

In addition, the Figure 3.2 in page 63 is the Hasse diagram of the simplicial

arrangements in Table 3.1. In the diagram, the maximal arrangements are indicated

by bold framed numerals. The numerals with shaded backgrounds indicate pseudo

minimal sporadic simplicial arrangements. Note that, non of the arrangements in

the families R (0), R (1) and R (2) is maximal, while the diagram shows there are

only ten sporadic ones.

Table 3.1 Isomorphism types of simplicial arrangements in RP2.

A
(n

,k
)

f t r Figures Notes

A
(3

,0
)

f=
(3

,6
,4

)

t=
(3

)

r
=

(3
)

R (0)

Continued on next page
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Table 3.1 Isomorphism types of simplicial arrangements in RP2. – continued from previous page

A
(n

,k
)

f t r Figures Notes
A

(4
,0

)

f=
(4

,9
,6

)

t=
(3

,1
)

r
=

(3
,1

)
R (0)

A
(n

,0
),

n
>

4

f=
(n

,3
n
−

3,
2n
−

2)

t=
(n
−

1,
04 n
−

4,
1)

r
=

(n
−

1,
0n−

4 ,
1)

· · · R (0)

A
(6

,1
)

f=
(7

,1
8,

12
)

t=
(3

,4
)

r
=

(0
,6

)

R (1)

A
(7

,1
)

f=
(9

,2
4,

16
)

t=
(3

,6
)

r
=

(0
,4

,3
)

m

A
(8

,1
)

f=
(1

1,
30

,2
0)

t=
(4

,6
,1

)

r
=

(0
,2

,6
)

R (1)

A
(9

,1
)

f=
(1

3,
36

,2
4)

t=
(6

,4
,3

)

r
=

(0
2 ,

9)

R (2)

A
(1

0,
1)

f=
(1

6,
45

,3
0)

t=
(5

,1
0,

0,
1)

r
=

(0
2 ,

52 )

R (1)

A
(1

0,
2)

f=
(1

6,
45

,3
0)

t=
(6

,7
,3

)

r
=

(0
2 ,

6,
3,

1)

Continued on next page



35

Table 3.1 Isomorphism types of simplicial arrangements in RP2. – continued from previous page

A
(n

,k
)

f t r Figures Notes
A

(1
0,

3)

f=
(1

6,
35

,3
0)

t=
(6

,7
,3

)

r
=

(0
,1

,3
,6

)

A
(1

1,
1)

f=
(1

9,
54

,3
6)

t=
(7

,8
,4

)

r
=

(0
2 ,

42 ,
3)

A
(1

2,
1)

f=
(2

2,
63

,4
2)

t=
(6

,1
5,

02 ,
1)

r
=

(0
2 ,

32 ,
6)

R (1)

A
(1

2,
2)

f=
(2

2,
63

,4
2)

t=
(8

,1
0,

3,
1)

r
=

(0
2 ,

32 ,
6)

A
(1

2,
3)

f=
(2

2,
63

,4
2)

t=
(9

,7
,6

)

r
=

(0
2 ,

32 ,
6)

R (1)

A
(1

3,
1)

f=
(2

5,
72

,4
8)

t=
(9

,1
2,

3,
0,

1)

r
=

(0
2 ,

3,
0,

10
)

R (2)

A
(1

3,
2)

f=
(2

5,
72

,4
8)

t=
(1

2,
4,

9)

r
=

(0
2 ,

3,
0,

10
)

A
(1

3,
3)

f=
(2

5,
72

,4
8)

t=
(1

02 ,
3,

2)

r
=

(0
2 ,

1,
4,

8)

Continued on next page
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Table 3.1 Isomorphism types of simplicial arrangements in RP2. – continued from previous page

A
(n

,k
)

f t r Figures Notes
A

(1
3,

4)

f=
(2

7,
78

,5
2)

t=
(6

,1
8,

3)

r
=

(0
4 ,

13
)

m

A
(1

4,
1)

f=
(2

9,
84

,5
6)

t=
(7

,2
1,

03 ,
1)

r
=

(0
3 ,

7,
0,

7)

R (1)

A
(1

4,
2)

f=
(2

9,
84

,5
6)

t=
(1

1,
12

,4
,2

)

r
=

(0
2 ,

1,
43 ,

1)

A
(1

4,
3)

f=
(3

0,
87

,5
8)

t=
(9

,1
6,

4,
1)

r
=

(0
4 ,

11
,3

)

A
(1

4,
4)

f=
(2

9,
84

,5
6)

t=
(1

0,
14

,4
,0

,1
)

r
=

(0
3 ,

4,
6,

4)

m

A
(1

5,
1)

f=
(3

1,
90

,6
0)

t=
(1

5,
10

,0
,6

)

r
=

(0
4 ,

15
)

m

Continued on next page
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Table 3.1 Isomorphism types of simplicial arrangements in RP2. – continued from previous page

A
(n

,k
)

f t r Figures Notes
A

(1
5,

2)

f=
(3

3,
96

,6
4)

t=
(1

3,
12

,6
,2

)

r
=

(0
2 ,

1,
4,

2,
42 )

A
(1

5,
3)

f=
(3

4,
99

,6
6)

t=
(1

2,
13

,9
)

r
=

(0
4 ,

9,
32 )

A
(1

5,
4)

f=
(3

3,
96

,6
4)

t=
(1

2,
14

,6
,0

,1
)

r
=

(0
4 ,

10
,4

,1
)

A
(1

5,
5)

f=
(3

4,
99

,6
6)

t=
(9

,2
2,

0,
3)

r
=

(0
4 ,

9,
32 )

m

A
(1

6,
1)

f=
(3

7,
10

8,
72

)

t=
(8

,2
8,

04 ,
1)

r
=

(0
3 ,

42 ,
0,

8)

R (1)

A
(1

6,
2)

f=
(3

7,
10

8,
72

)

t=
(1

4,
15

,6
,1

2 )

r
=

(0
2 ,

1,
2,

4,
2,

7)

Continued on next page
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Table 3.1 Isomorphism types of simplicial arrangements in RP2. – continued from previous page

A
(n

,k
)

f t r Figures Notes
A

(1
6,

3)

f=
(3

7,
10

8,
72

)

t=
(1

5,
13

,6
,3

)

r
=

(0
4 ,

10
,0

,6
)

A
(1

6,
4)

f=
(3

6,
10

5,
70

)

t=
(1

52 ,
0,

6)

r
=

(0
4 ,

10
,5

,0
2 ,

1)

A
(1

6,
5)

f=
(3

7,
10

8,
72

)

t=
(1

4,
16

,3
,4

)

r
=

(0
3 ,

2,
4,

8,
0,

2)

m

A
(1

6,
6)

f=
(3

7,
10

8,
72

)

t=
(1

5,
12

,9
,0

,1
)

r
=

(0
4 ,

7,
6,

3)

A
(1

6,
7)

f=
(3

8,
11

1,
74

)

t=
(1

2,
19

,6
,0

,1
)

r
=

(0
3 ,

32 ,
2,

8)

m

A
(1

7,
1)

f=
(4

1,
12

0,
80

)

t=
(1

2,
24

,4
,0

3 ,
1)

r
=

(0
4 ,

8,
0,

9)

R (2)

Continued on next page
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Table 3.1 Isomorphism types of simplicial arrangements in RP2. – continued from previous page

A
(n

,k
)

f t r Figures Notes
A

(1
7,

2)

f=
(4

1,
12

0,
80

)

t=
(1

6,
16

,7
,0

,2
)

r
=

(0
2 ,

1,
0,

6,
0,

10
)

A
(1

7,
3)

f=
(4

1,
12

0,
80

)

t=
(1

8,
12

,7
,4

)

r
=

(0
4 ,

8,
0,

9)

A
(1

7,
4)

f=
(4

1,
12

0,
80

)

t=
(1

62 ,
7,

0,
2)

r
=

(1
62 ,

7,
0,

2)

A
(1

7,
4)
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s
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o
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fo
ur
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ad
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pl

e
po
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A
(1
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2)
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s
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A
(1

7,
5)

f=
(4

1,
12

0,
80

)
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(1

6,
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,1
,6

)

r
=

(0
4 ,

6,
8,

1,
0,

2)

A
(1

7,
6)

f=
(4

2,
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3,
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)
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6,
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6,
3,
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A
(n

,k
)

f t r Figures Notes
A

(1
7,

7)

f=
(4

3,
12

6,
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)

t=
(1

3,
22

,7
,0

,1
)

r
=

(0
4 ,

6,
0,
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,1
)

A
(1

7,
8)

f=
(4

3,
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)

t=
(1

4,
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)
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=
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4 ,
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82 )
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,6
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6,
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A
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)
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A
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f=
(4
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5,
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)
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8,
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,6

)
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3)

A
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8,
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(4

6,
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)

t=
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)
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=
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e
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A
(1

8,
5)

.

A
(1

8,
6)

f=
(4

7,
13

8,
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)

t=
(1

8,
16

,1
2,

0,
1)

r
=

(0
4 ,

5,
2,

7,
22 )

A
(1

8,
7)

f=
(4

6,
13

5,
90

)

t=
(1

82 ,
6,

3,
1)

r
=

(0
4 ,

3,
3,

0,
62 )
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A
(n

,k
)

f t r Figures Notes
A

(1
8,

8)

f=
(4

7,
13

8,
92

)

t=
(1

6,
22

,6
,2

,1
)

r
=

(0
4 ,

6,
0,

7,
4,

1)

A
(1

9,
1)

f=
(4

9,
14

4,
96

)

t=
(2

1,
18

,6
,0

,4
)

r
=

(0
4 ,

4,
0,

15
)

A
(1

9,
2)

f=
(5

1,
15

0,
10

0)

t=
(2

1,
18

,6
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r
=

(0
4 ,

1,
8,

6,
0,

4)

A
(1

9,
3)

f=
(4

9,
14

4,
96

)

t=
(2

4,
12

,6
2 ,

1)

r
=

(0
4 ,

4,
0,
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)
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A
(n

,k
)

f t r Figures Notes
A

(1
9,

4)

f=
(5

1,
15

0,
10

0)

t=
(2

02 ,
6,

4,
1)

r
=

(0
4 ,

44 ,
3)

A
(1

9,
5)

f=
(5

1,
15

0,
10
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t=
(2

02 ,
6,

4,
1)
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=
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A
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5)
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9,
6)

f=
(5

1,
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t=
(2

02 ,
6,

4,
1)

r
=
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4 ,

6,
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6,
4,

3)

A
(1

9,
7)

f=
(5

2,
15

3,
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2)

t=
(2

1,
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2 ,
0,

1)

r
=
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4 ,

4,
32 ,

6,
3)
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A
(n

,k
)

f t r Figures Notes
A

(2
0,

1)

f=
(5

6,
16

5,
11
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t=
(1

0,
45
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6 ,

1)

r
=

(0
4 ,

52 ,
02 ,
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)

R (1)

A
(2

0,
2)

f=
(5

6,
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5,
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t=
(2

5,
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,1
0,
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r
=

(0
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5,
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)

A
(2

0,
3)

f=
(5

6,
16

5,
11
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t=
(2

1,
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,6
,4
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,1

)

r
=
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4 ,

4,
2,

4,
6,

3,
1)

A
(2

0,
4)

f=
(5

6,
16

5,
11

0)

t=
(2

3,
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,7
,5

,1
)

r
=
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4 ,

5,
1,
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A
(n

,k
)

f t r Figures Notes
A

(2
0,

5)

f=
(5

5,
16

2,
10

8)

t=
(2

0,
26

,4
2 ,

02 ,
1)

r
=

(0
3 ,

22 ,
0,

4,
12

)

A
(2

1,
1)

f=
(6

1,
18

0,
12

0)

t=
(1

5,
40

,5
,0

5 ,
1)

r
=

(0
3 ,

5,
0,

5,
0,

11
)

R (2)

A
(2

1,
2)

f=
(6

1,
18

0,
12

0)

t=
(3

0,
10

,1
5,

6)

r
=

(0
6 ,

15
,0

,6
)

A
(2

1,
3)

f=
(6

1,
18

0,
12

0)

t=
(2

42 ,
9,

0,
4)

r
=

(0
4 ,

6,
0,

3,
0,

12
)
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A
(n

,k
)

f t r Figures Notes
A

(2
1,

4)

f=
(6

1,
18

0,
12

0)

t=
(2

2,
28

,6
,4

,0
2 ,

1)

r
=

(0
4 ,

4,
0,

4,
8,

4,
0,

1)

M

A
(2

1,
5)

f=
(6

1,
18

0,
12

0)

t=
(2

6,
20

,9
,4

,2
)

r
=

(0
4 ,

5,
0,

3,
4,

9)

A
(2

1,
6)

f=
(6

3,
18

6,
12

4)

t=
(2

5,
20

,1
5,

2,
1)

r
=

(0
4 ,

1,
0,

11
,0

,8
,0

,1
)

M

A
(2

1,
7)

f=
(6

4,
18

9,
12

6)

t=
(2

4,
22

,1
5,

3)

r
=

(0
6 ,
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,0

,6
,3

)

M
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A
(n

,k
)

f t r Figures Notes
A

(2
2,

1)

f=
(6

7,
19

8,
13

2)

t=
(1

1,
55

,0
7 ,

1)

r
=

(0
5 ,

11
,0

3 ,
11

)

R (1)

A
(2

2,
2)

f=
(7

0,
20

7,
13

8)

t=
(2

4,
30

,1
2,

3,
1)

r
=

(0
4 ,

1,
0,

6,
3,

9,
0,

3)

A
(2

2,
3)

f=
(6

7,
19

8,
13

2)

t=
(2

7,
28

,0
,1

2)

r
=

(0
6 ,

12
,0

,9
,0

,1
)

A
(2

2,
4)

f=
(6

7,
19

8,
13

2)

t=
(2

7,
25

,9
,3

2 )

r
=

(0
4 ,

4,
0,

6,
0,

62 )
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A
(n

,k
)

f t r Figures Notes
A

(2
3,

1)

f=
(7

5,
22

2,
14

8)

t=
(2

7,
32

,1
0,

4,
2)

r
=

(0
4 ,

1,
0,

6,
2,

7,
4,

3)

A
(2

4,
1)

f=
(7

9,
23

4,
15

6)

t=
(1

2,
66

,0
8 ,

1)

r
=

(0
5 ,

62 ,
03 ,

12
)

R (1)

A
(2

4,
2)

f=
(7

7,
22

8,
15

2)

t=
(3

22 ,
0,

12
,0

2 ,
1)

r
=

(0
5 ,

4,
02 ,

20
)

m

A
(2

4,
3)

f=
(8

0,
23

7,
15

8)

t=
(3

1,
32

,9
,5

,3
)

r
=

(0
4 ,

1,
0,

6,
1,

62 ,
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A
(n

,k
)

f t r Figures Notes
A

(2
5,

1)

f=
(8

5,
25

2,
16

8)

t=
(1

8,
60

,6
,0

7 ,
1)

r
=

(0
6 ,

12
,0

3 ,
13

)

R (2)

A
(2

5,
2)

f=
(8

5,
25

2,
16

8)

t=
(3

6,
28

,1
5,

0,
6)

r
=

(0
4 ,

4,
0,

3,
0,

6,
0,

12
)

M

A
(2

5,
3)

f=
(9

1,
27

0,
18

0)

t=
(3

0,
40

,1
5,

6)

r
=

(0
8 ,

15
,0

,1
0)
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A
(n

,k
)

f t r Figures Notes
A

(2
5,

4)

f=
(8

5,
25

2,
16

8)

t=
(3

6,
30

,9
,6

,4
)

r
=

(0
4 ,

1,
0,

9,
0,

3,
0,

12
)

A
(2

5,
5)

f=
(8

1,
24

0,
16

0)

t=
(3

6,
32

,0
,8

,4
,0

,1
)

r
=

(0
6 ,

5,
0,

20
)

M

A
(2

5,
6)

f=
(8

5,
25

2,
16

8)

t=
(3

6,
30

,9
,6

,4
)

r
=

(0
4 ,

1,
0,

6,
0,
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A
(n

,k
)

f t r Figures Notes
A

(2
5,

7)

f=
(8

5,
25

2,
16

8)

t=
(3

3,
34

,1
2,

2,
3,

0,
1)

r
=

(0
4 ,

2,
0,

43 ,
0,

1)

A
(2

6,
1)

f=
(9

2,
27

3,
18

2)

t=
(1

3,
78

,0
9 ,

1)

r
=

(0
6 ,

13
,0

4 ,
13

)

R (1)

A
(2

6,
2)

f=
(9

6,
28

5,
19
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t=
(3

5,
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,1
0,
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)

r
=

(0
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Continued on next page



52

Table 3.1 Isomorphism types of simplicial arrangements in RP2. – continued from previous page

A
(n

,k
)

f t r Figures Notes
A

(2
6,

3)

f=
(9

2,
27

3,
18

2)

t=
(3

7,
36

,9
,6

,3
,1

)

r
=

(0
4 ,

1,
0,

7,
22 ,

1,
8,

4,
1)

A
(2

6,
4)

f=
(9

2,
27

3,
18

2)

t=
(3

5,
39

,1
0,

4,
3,

0,
1)

r
=

(0
4 ,

12 ,
42 ,

22 ,
7,

4,
1)

A
(2

7,
1)

f=
(1
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,3
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,2
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)

t=
(4

02 ,
6,

14
,1

)

r
=

(0
8 ,

82 ,
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)
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A
(n

,k
)

f t r Figures Notes
A

(2
7,

2)

f=
(9

9,
29

4,
19

6)

t=
(3

9,
40

,1
0,

6,
22 )

r
=

(0
4 ,

1,
0,

5,
4,

1,
2,

4,
8,

2)

A
(2

7,
3)

f=
(9

9,
29

4,
19

6)

t=
(3

9,
40

,1
0,

6,
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r
=
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1,
0,

6,
23 ,

5,
6,
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A
(n

,k
)

f t r Figures Notes
A

(2
7,

4)

f=
(9

9,
29

4,
19

6)

t=
(3

8,
42

,9
,6

,3
,0

,1
)

r
=

(0
4 ,

1,
0,

5,
4,
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0,
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A
(2

8,
1)

f=
(1
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,2
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)
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)

r
=
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72 ,
04 ,
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)
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A
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f=
(1
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)

t=
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3)

r
=
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9,
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)
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A
(n

,k
)

f t r Figures Notes
A
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8,
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f=
(1
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,3

15
,2

10
)
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(4

5,
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,3
,1

5,
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=
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8 ,
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9,
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)
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A
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e
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th
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e
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A
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f=
(1
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15
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)

t=
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1,
6,

2,
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r
=
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4 ,
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0,

42 ,
2,

1,
4,
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A
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8,
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f=
(1
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)

t=
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)

r
=
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1,
0,

42 ,
1,

3,
1,
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)
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A
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)

f t r Figures Notes
A
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6)

f=
(1
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,3

15
,2
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)

t=
(4

22 ,
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,6
,1
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)
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=
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A
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,2
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)
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)
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A
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)

f t r Figures Notes
A
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f=
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24
)
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(4

4,
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3,

6,
2,
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r
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0,

3,
4,

3,
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42 ,
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)

A
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9,
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f=
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24
)

t=
(4
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6,
1,
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r
=
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1,
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,2
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)
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(4
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6,
1,

2,
1)
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2,
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22 ,
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A
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)
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A
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f=
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)
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5,
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5,
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)
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=
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5 ,
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)

R (1)

A
(3

0,
2)

f=
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)

t=
(5
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1,
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)

r
=

(0
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)

A
(3

0,
3)

f=
(1

20
,3

57
,2

38
)

t=
(4

9,
44

,1
7,

6,
12 ,

2)

r
=

(0
4 ,

1,
0,

3,
2,

4,
1,

2,
4,

13
)

Continued on next page
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Table 3.1 Isomorphism types of simplicial arrangements in RP2. – continued from previous page

A
(n

,k
)

f t r Figures Notes
A

(3
1,

1)

f=
(1

21
,3

60
,2

40
)

t=
(6

0,
40

,0
,6

,1
5)

r
=

(0
8 ,

6,
0,

25
)

M

A
(3

1,
2)

f=
(1

27
,3

78
,2

52
)

t=
(5

4,
42

,2
1,

6,
1,

0,
3)

r
=

(0
4 ,

1,
03 ,

9,
0,

6,
0,

15
)

M

A
(3

1,
3)

f=
(1

27
,3

78
,2

52
)

t=
(5

4,
42

,2
1,

6,
1,

0,
3)

r
=

(0
4 ,

1,
0,

3,
0,

6,
0,

3,
0,

18
)

M

Continued on next page
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Table 3.1 Isomorphism types of simplicial arrangements in RP2. – continued from previous page

A
(n

,k
)

f t r Figures Notes
A

(3
2,

1)

f=
(1

37
,4

08
,2

72
)

t=
(1

6,
12

0,
012

,1
)

r
=

(0
7 ,

82 ,
05 ,

16
)

R (1)

A
(3

3,
1)

f=
(1

45
,4

32
,2

88
)

t=
(2

4,
11

2,
8,

011
,1

)

r
=

(0
8 ,

16
,0

5 ,
17

)

R (2)

A
(3

4,
1)

f=
(1

54
,4

59
,3

06
)

t=
(1

7,
13

6,
013

,1
)

r
=

(0
8 ,

17
,0

6 ,
17

)

R (1)

Continued on next page
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Table 3.1 Isomorphism types of simplicial arrangements in RP2. – continued from previous page

A
(n

,k
)

f t r Figures Notes
A

(3
4,

2)

f=
(1

54
,4

59
,3

06
)

t=
(6

0,
63

,1
8,

6,
4,

0,
3)

r
=

(0
6 ,

33 ,
0,

4,
0,

6,
0,

9,
6)

R (1)

A
(3

6,
1)

f=
(1

72
,5

13
,3

42
)

t=
(1

8,
15

3,
014

,1
)

r
=

(0
8 ,

92 ,
06 ,

18
)

R (1)

A
(3

7,
1)

f=
(1

81
,5

40
,3

60
)

t=
(0

8 ,
9,

0,
9,

05 ,
19

)

r
=

(2
7,

14
4,

9,
013

,1
)

R (2)

Continued on next page
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Table 3.1 Isomorphism types of simplicial arrangements in RP2. – continued from previous page

A
(n

,k
)

f t r Figures Notes
A

(3
7,

2)

f=
(1

81
,5

40
,3

60
)

t=
(7

22 ,
12

,2
4,

06 ,
1)

r
=

(0
10

,1
3,

03 ,
24

)

m, M

A
(3

7,
3)

f=
(1

81
,5

40
,3

60
)

t=
(7

22 ,
24

,0
,1

0,
0,

3)

r
=

(0
6 ,

3,
0,

6,
0,

4,
03 ,

12
,0

,1
2)

M
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Figure 3.2 A Hasse diagram of sporadic simplicial arrangements. The arrangement
A(n,k) is the indicated by the entry k in row n (Grünbaum, 2009, p. 5).
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3.2 Füredi and Palasti’s Method, and Triangles in Arrangements of Lines

Grünbaum (1972) pointed out that the maximal number of triangles in a simple

arrangement ps
3 can be estimated by ps

3(n)≤ n(n−1)
3 for even n, and ps

3(n)≤ n(n−2)
3

if n is odd. Moreover, he conjectured that this latter inequality holds for all n, n 6≡ 4

(mod 6). The exact value of ps
3(n) is known only for some small values of n (e.g.,

(Simmons, 1972) for the case n = 15, (Grünbaum, 1972) for n = 20). To find best

lower bounds for ps
3(n), Füredi & Palásti (1984) construct two arrangements by

using the facts of Euclidean geometry in an intelligent way. First, let us explain

their method.

Consider a circle C of radius 1 with center O, and chose a fixed point P(0) on it.

For any real α, let P(α) be the point obtained by rotating P(0) around O, with angle

α. Further denote by L(α) the straight line through the points P(α) and P(π−2α).

In case α≡ π−2α (mod 2π), L(α) is the line tangent to C at P(α).

O P(0)

P(α)P(π−2α)

P(γ)

P(π−2β)

P(β)

P(π−2γ)

L(γ)

L(α)

L(β)

Figure 3.3 Concurrent lines L(α), L(β) and L(γ).

Lemma 3.2.1 (Füredi & Palásti (1984)). The lines L(α), L(β) and L(γ) are concur-

rent if and only if α+β+ γ≡ 0 (mod 2π).

Proof. If α+β+ γ≡ 0 (mod 2π), then sum of the lengths of directed arcs (P(α),

P(γ)) and (P(β),P(π−2γ)) is equal to π. This implies that L(γ) is perpendicular to

the line P(α)P(β). In a similar way, one can easily see that the lines L(α), L(β) and
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L(γ) are altitudes of the triangle P(α)P(β)P(γ) (see Figure3.3), consequently they

meet at one point.

Conversely, assume the lines L(α), L(β) and L(γ) are concurrent. Then the sum

of the lengths of directed arcs (P(α),P(π−2γ)) and (P(β),P(γ)) is equal to π, since

the sum of length of the remaining directed arcs is π. This implies that α+β+γ≡ 0

(mod 2π).

Remark 3.2.2. The set of lines {L(α) | 0 ≤ α < 2π} may be regarded as a set of

tangents to the arcs of a hypocycloid of third order (which is also known as three

cuspidal quartic curve), drawn in a circle of center O and radius 3.

Remark 3.2.3. In the case of α + β + γ ≡ 0 (mod 2π), if one takes dual of the

concurrent lines L(α), L(β) and L(γ), the corresponding dual points L?(α), L?(β)

and L?(γ) lie on a line, dual to the meeting point L(α)∩L(β)∩L(γ). So, Lemma

3.2.1 plays an important role for the solution of Orchard problem.

O

α
P (0)

P (α)

P (π − 2α)

L(α)

Figure 3.4 The line L(α) as a tangent to hypocycloid.
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Füredi & Palásti (1984) considered the following arrangements of lines for n≥ 3:

An =
{

Li = L
(

(2i+1)π
n

)
| i = 0,1, · · · ,n−1

}
, (3.2.1)

Bn =
{

Li = L
(

2iπ
n

)
| i = 0,1, · · · ,n−1

}
. (3.2.2)

See Figures 3.5 and 3.6.

The arrangement An is arrangement of n diagonals of a regular 2n-gon. Lemma

3.2.1 implies that the line L
(

(2n−2i−2 j−2)π
n

)
/∈ An is concurrent to Li and L j of An.

Therefore, the lines Li,L j,Ln−i− j−1 and Li,L j,Ln−i− j−2 of An respectively form

triangular cells, which tells us that An is a simple arrangement. As it is seen from

the Figure 3.5 that its cells are k-gons, 3 ≤ k ≤ 6. By considering the values of

n relative to (mod 6), they obtained the results in Table 3.2 for pk(An). These

results tell us that p3(An) ≥ n(n−3)
3 , hence ps

3(n) = n2

3 + O(n). On the other hand,

the arrangement An is an example of two coloring arrangements. They calculated

the number of black regions as b(An) = n2+ε

3 and the number of white regions as

w(An) = n2+3n−2ε+6
6 , where ε = 0,2,2 if n ≡ 0,1,2 (mod 3), respectively. Hence,

b(An) = 2w(An)− (n+2− ε).

Table 3.2 The number of k-gons of the arrangement An.

n≥ 5 p3(An) p4(An) p5(An) p6(An)
n≡ 0 (mod 6) n2−3n

3
n
2 +6 n−6 n2−6n+6

6
n≡∓1 (mod 6) n2−3n+5

3 5 2n−9 n2−9n+20
6

n≡∓2 (mod 6) n2−3n+8
3

n
2 n−2 n2−6n+2

6
n≡ 3 (mod 6) n2−3n+9

3 3 2n−9 n2−9n+24
6

The arrangement Bn also consists of n diagonals of a regular 2n-gon. Lemma

3.2.1 implies that the line Ln−i− j

(
2(n−i− j)π

n

)
∈ Bn is concurrent to the lines Li and

L j of Bn. Therefore, all cells in Bn either is a triangle or rectangle (See Figure

3.5). By considering the values of n relative to (mod 6), they obtained the results

p3(Bn) ≥ n(n−3)−2ε

3 + 6 and p4(Bn) = n− 6 + ε, where ε = 0,2,2 according to

whether n≡ 0,1,2 (mod 3). Then it is clear that p3(Bn)≥ n(n−3)
3 +4.
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Figure 3.5 The arrangement An (Füredi & Palásti,
1984, Figure 2).

Figure 3.6 The arrangement Bn (Füredi & Palásti,
1984, Figure 3).

In fact, first important results for Grünbaum’s conjecture p3(n) ≤ n(n−1)
3 were

obtained by Purdy (1979, 1980), who in 1979 proved p3(n) ≤ 5
12n(n− 1) and in

1980 he improved this to p3(n) ≤ 7
18n(n− 1) + 1

3 for n > 6. Further, Gu (1999)

extended Purdy’s result and proved that p3(n) ≤ n(n−1)
3 if t3 = 0, which was a

generalization of the known result: p3(n)≤ n(n−1)
3 for ts = 0, s≥ 3. Also, he proved

that p3(n)≤ 8
21n(n−1)+ 2

7 if n≥ 7.
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3.3 Orchard Problem

The orchard problem is a tree planting problem asks that n trees be planted so

that there will be σ(n,k) straight rows with k trees in each row. The problem is to

find an arrangement with the greatest σ(n,k) for each given value of n. This very

old problem is formulated by Sylvester (1867) as asking how to plant n trees in an

orchard so as to maximize the number of rows, σ(n), containing exactly 3 trees (i.e.,

σ(n) := σ(n,3)). Figure 3.7 shows examples of optimal arrangements with n ≤ 10

points. Sylvester (1867) construct some arrangements and first showed that σ(n)≥
b (n−1)2

8 c, and several year later he found a better lower bound: σ(n)≥ b (n−1)(n−2)
6 c.

This was known as the best lower bound till 1974. Burr et al. (1974) considered

a real cubic real cubic curve C : y2 = 4x3− 1 with one flex point at infinity. By

using the parametrization P(u) = (℘(u),℘′(u)) of elliptic curves by Weierstrass

℘ function, they applied the group law of elliptic curves to orchard problem. The

collinearity condition is as follows: three points P(u1), P(u2) and P(u3) are collinear

if and only if

u1 +u2 +u3 ≡ 0 (mod 2ω), (3.3.1)

where ω is the period of ℘(u).

Then, they considered the n real points P(us) of C , where us = 2s
n ω, s ∈ Zn. So

the collinearity condition (3.3.1) reduces to

s1 + s2 + s3 ≡ 0 (mod n). (3.3.2)

By solving this equation in Zn, they found a lower bound

σ(n)≥ 1+
n(n−3)

6
, n≥ 3. (3.3.3)

Indeed, if we denote the unordered triples (s1,s2,s3) satisfying the equation (3.3.2)

by σ, then σ is one-sixth of the number of ordered triples (s1,s2,s3) of Zn. This
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(a) σ(3) = 1 (b) σ(4) = 1 (c) σ(5) = 2

(d) σ(6) = 4 (e) σ(7) = 6 (f) σ(8) = 7

(g) σ(9) = 10

Figure 3.7 Orchards for σ≤ 10.

number is equal to the number σ3 of all solutions of (3.3.2) decreased by 3 times the

number σ2 of all solutions of (3.3.2) in the case of two of si coincides, and increased

by twice the number σ1 of all solutions of (3.3.2) for the case s1 = s2 = s3. Clearly,

σ3 = n2, σ2 = n and σ1 = 3 or 1 depending on whether 3 | n. Combining these

results, one obtains

σ(n) = σ3−3σ2 +2σ1 = 1+
n(n−3)

6
.

The lower bound (3.3.3) can also be obtained by using the Füredi & Palásti’s arrange-

ments Bn in the page 66. This arrangement contains n diagonals of regular 2n-gon.

Three lines Li,L j,Lk of Bn meets at a point if and only if i + j + k ≡ 0 (mod n).

We have already found the number of solutions of this equation. So, configuration

consists of 1 + n(n−3)
6 triple points. If we take the duals of those points and lines,

then we obtain exactly the n points and 1+ n(n−3)
6 lines, each of which consists of 3

points. As it can be easily seen that, in the real case these two methods are dual. If

one consider the complex line arrangements, the lower bound (3.3.3) is not so good.

For example σ(9) = 12. This can be complex realizable by Hessian arrangement.
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Hessian arrangement consists of 12 lines passing through the 9 flex points of Fermat

cubic X3 +Y 3 +Z3 = 0. To find a best lower bound for σ(n) one can use the group

law of (complex) elliptic curves.

Let En denotes the n-torsion points of an irreducible elliptic curve C : Y 2Z =

4X3−aXZ2−bZ3 with ∆ = a3−27b2 6= 0. This elliptic curve consists of nine flex

points, and only one of them, [0 : 1 : 0], is at infinity. By fixing this point as zero,

define the group law. Then set of n-torsion points En(C) := {P ∈ C : nP = 0} is

clearly a subgroup of C , and E3(C) consists of only nine flex points.

Elliptic curves can be parametrized by using the Weierstraß ℘ function. The

collinearity condition P(u1)+P(u2)+P(u3) = O is equivalent to the condition u1 +

u2 +u3 = 0 for ui ∈Λ, where Λ is the underlying lattice of the cubic curve C . If λ is

generated by ω1,ω2, then for given positive integer n, the points u = (λ1ω1 +λ2ω2)

for 0≥ λ1,λ2≥ n−1 all have nu≡ 0 mod Λ, and these are the n2 points with order

dividing n in the group C/Λ. The images of these points corresponds to n-torsion

points of elliptic curve, and En(C)∼= Zn⊕Zn. Thus, subgroups of En(C) consisting

of the collinear points solves the orchard problem, and best upper bounds can be

obtained in this way. If one takes the dual of points in these subgroup and lines so

that collinear points lie on it, then he get an arrangement of lines having only triple

points. This kind of arrangements are important for the uniformization problem (See

Theorem 6.1.4).



CHAPTER FOUR

CONFIGURATION OF QUADRICS

In this chapter, we will be interested in combinatorics of quadric arrangements,

and so investigate the some possible configurations of non-degenerate quadrics with

contact order≥ 2 and derive their equations. We will also mention some impossible

graphs. To describe the intersection behavior of non-degenerate quadrics for such

configurations, we will use the dual graphs explained in the section 2.5 (See Table

2.1 on page 22), and unless otherwise indicated we assume that all quadrics are

distinct and non-degenerate, and any three of them have no common point.

To derive equations for quadrics, we will need the parametrization of the quadrics

as explained in Section 2.6. If one parametrizes one of the quadrics and substitute

them into the equation of the second quadric, then he gets a polynomial equation

q(t) = 0 of degree at most 4. The number of roots and the vanishing orders of the

roots determines the number of intersection points, and contact order of them at

these points, respectively. Note that, if the degree of q(t) less than four, then it has

a root at ∞.

4.1 Configuration of Quadrics with Contact Order Four

Proposition 4.1.1. Any configuration of two quadrics with graph is projec-

tively equivalent to the quadrics

Q1 : X2−Y Z = 0

Q2 : X2 +aZ2−Y Z = 0, a ∈ C∗.
(4.1.1)

Proof. The fact of dimPGL(3,C) = 8 allows us to fix one of the quadrics and their

contact point. So, assume that Q1 is the quadric given by equation X2−Y Z = 0, and

it has contact with Q2 of order 4 at the point [0 : 1 : 0]. Also, assume that the equation

of the second quadric Q2 is of the form a1X2 + a2Y 2 + a3Z2 + a4XY + a5Y Z +

71
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a6ZX = 0. Since [0 : 1 : 0] ∈ Q2, then one knows that a2 = 0. By dehomogenizing

their equations with respect to the variable Y , we get Q1 : x2−z = 0 and Q2 : a1x2 +

a3z2 + a4x + a5z + a6xz = 0. If we substitute the parametrization (x,z) = (t, t2) of

the affine part of Q1 into the equation of the affine part of Q2, we get the polynomial

f (t) = a3t4 + a6t3 +(a1 + a5)t2 + a4t. This polynomial has 4-fold root at t = 0 if

and only if a4 = a6 = a1 +a5 = 0 and a3 6= 0. Then, the equation of Q2 must be of

the form a1X2 +a3Z2−a1Y Z = 0. Since Q2 is non-degenerate, then a1 6= 0. So, by

dividing both sides by a1, and renaming the nonzero coefficient a3
a1

as a we obtain

that the quadric Q2 : X2 +aZ2−Y Z = 0, where a ∈ C∗.

One can easily discover that the quadrics Q1 and Q2 have the following paramet-

rizations:

Q1 =
{
[uv : v2 : u2] | [u : v] ∈ CP1} , (4.1.2)

Q2 =
{
[st : as2 + t2 : s2] | [s : t] ∈ CP1} . (4.1.3)

and their common tangent line is the line Z = 0.

Proposition 4.1.2. The graph

can not be (complex) realized, i.e., there are no three distinct quadrics, pairwise

tangent to each other of order 4 at distinct points.

Proof. Let Q1 and Q2 be the quadrics in Proposition 4.1.1, and suppose that there

exist a quadric Q3 such that Q1 and Q3 has a contact of order 4. Also, assume Q3 :

a1X2 + a2Y 2 + a3Z2 + a4XY + a5Y Z + a6XZ = 0. By substituting parametrization

(4.1.2) of Q1 into the equation of Q3 one gets f13(u,v) = a3u4 + a6u3v + (a1 +

a5)u2v2 +a4uv3 +a2v4 = 0. On the other hand, the contact point of Q1 and Q3 must

be in the form of [α : α2 : 1], where α = v
u ∈ C, since the point [0 : 1 : 0] does not

lie on Q3. Therefore f13(u,v) = A(αu−v)4 for some A ∈C∗. Hence, by comparing



73

the coefficients of these two equations for f13(u,v), one gets the equation of Q3 in

the form of

βX2 +Y 2 +α
4Z2−4αXY +(6α

2−β)Y Z−4α
3XZ = 0 (4.1.4)

for some α,β ∈ C. Let us substitute the parametrization (4.1.3) of Q2 into the

equation (4.1.4) of Q3. Then, we have

f23(s, t) = (a2 +α
4 +6aα

2−aβ)s4− (4aα+4α
3)s3t +(2a+6α

2)s2t2−4αst3 + t4

= (αs− t)4 +as[(a+6α
2−β)s3−4αs2t +2st2].

(4.1.5)

Since the point [0 : 1 : 0] does not lie on Q3, the contact points of Q2 and Q3 must be

in the form of [γ : a+γ2 : 1], where γ = t
s ∈C. Therefore, f23(s, t) contains the factor

(γs− t)mγ , where mγ is the contact order of Q2 and Q3 at the point [γ : a + γ2 : 1].

Clearly f23(s, t) = (γs− t)4 if and only if a = 0 and γ = α. This is not the case

since the quadrics Q1 and Q2 are distinct. Hence, the configuration of three distinct

quadrics having contact orders 4 at distinct points is not possible.

4.2 Configuration of Quadrics with Contact Order Three

Proposition 4.2.1. Any configuration of two quadrics with graph is

projectively equivalent to the configuration of the quadrics

Q1 : X2−Y Z = 0

Q2 : X2 +bY 2 + cXY −Y Z = 0 , b,c ∈ C, c 6= 0.
(4.2.1)

Proof. Projective transformations allows us to choose the quadric Q1 : X2−Y Z =

0 and the contact point [0 : 0 : 1] of order three. Now assume that Q2 : a1X2 +

a2Y 2 + a3Z2 + a4XY + a5Y Z + a6ZX = 0. Since [0 : 0 : 1] ∈ Q2, then one knows

that a3 = 0. By dehomogenizing their equations with respect to the variable Z, we
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get Q1 : x2− y = 0 and Q2 : a1x2 + a2y2 + a4xy + a5y + a6x = 0. If we substitute

the parametrization (x,y) = (t, t2) of the affine part of Q1 into the equation of the

affine part of Q2, we get the polynomial q(t) = a2t4 +a4t3 +(a1 +a5)t2 +a6t. This

polynomial has 3-fold root at 0 if and only if a6 = 0, a5 = −a1 and a4 6= 0. In

addition, a1 6= 0, because if it were then Q2 would be degenerate. Then Q2 has the

equation a1X2 + a2Y 2 + a4XY − a1Y Z = 0. Dividing each side of this equation by

a1, and setting a2
a1

= b and a4
a1

= c we obtain the required equation for Q2. Note that

for each b ∈ C and c ∈ C∗, Q2 is non-degenerate.

Proposition 4.2.2. Three quadrics in the graph

are projectively equivalent to the quadrics

Q1 :−(1+a14 +a16)X2 +a14XY +Y Z +a16ZX = 0,

Q2 :−(1+a24 +a25)Y 2 +a24XY +a25Y Z +ZX = 0,

Q3 : a33Z2 +XY +a35Y Z +a36ZX = 0,

where either a16 = a25 = 1, a14 = a24 = α, a35 = a36 = 1
α

, a33 = −α+2
α3 , α ∈ C \

{0,∓1,−2}; or

a16 = β, a14 =
(β−1)2(β+1)

β2 , a24 =
(β−1)3(β+1)

β2 , a25 =
1
β
,

a33 =
β(β3−β2 +1)(2β2−2β+1)

(β−1)8(β+1)2 , a35 =
β2

(β−1)2(β+1)
,

a36 =
β2

(β−1)3(β+1)
, β

4−2β
3 +2β

2−β+1 = 0.

Proof. Let Qi : ai1X2 + ai2Y 2 + ai3Z2 + ai4XY + ai5Y Z + ai6ZX = 0, i = 1,2,3.

Projective transformations allow us to choose four points. Let Q1 and Q2 have

contact of order 3 at [0 : 0 : 1] and transverse at [1 : 1 : 1]. Assume [0 : 1 : 0] and

[1 : 0 : 0] are the third order contact points of Q3 with Q1 and Q2, respectively. Then
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a12 = a13 = a21 = a23 = a31 = a32 = a11 +a14 +a15 +a16 = a22 +a24 +a25 +a26 =

0. In addition, the coefficients a15,a26,a34 are non zero, otherwise quadrics will

be degenerate. Rescaling the equations of quadrics, we can assume that a15 =

a26 = a34 = 1. Since each quadric is non-degenerate, then the determinants of

corresponding symmetric matrices must be nonzero. This condition gives

a14,a16,a24,a25 6=−1 and a33 6= a35a36. Then equations of quadrics Qi will be

Q1 :−(1+a14 +a16)X2 +a14XY +Y Z +a16ZX = 0,

Q2 :−(1+a24 +a25)Y 2 +a24XY +a25Y Z +ZX = 0,

Q3 : a33Z2 +XY +a35Y Z +a36ZX = 0,

with conditions a14,a16,a24,a25 6= −1 and a33 6= a35a36. On the other hand, the

quadrics Q1 and Q2 can be parametrized as

Q1 =
{
[st +a16s2 : t2 +a16st : (1+a14 +a16)s2−a14st] | [t : s] ∈ CP1} ,

Q2 =
{
[v2 +a25uv : uv+a25u2 : (1+a24 +a25)u2−a24uv] | [u : v] ∈ CP1} .

By substituting the parametrization of Q1 into the equations of Q2 and Q3, and the

parametrization of Q2 into the equation of Q3, respectively we obtain

f12(s, t) =(s− t)(a16s+ t)[(1+a14 +a16)s2

+((1+a24 +a25)a16 +a14a25 +a25 +1)st

+(1+a24 +a25)t2] = 0,

f13(s, t) =(1+a14 +a16)((1+a14 +a16)a33 +a16a36)s4

− [2a14a33(1+a14 +a16)+(1+a14)a36

− (1+a35)(a16a36 +a2
16)−a14a16a35]s3t

+[(1+a14 +a16)a35 +a2
14a33−a14a16a35−a14a36 +2a16]s2t2

+(1−a14a35)st3 = 0,
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and

f23(u,v) =(1+a24 +a25)((1+a24 +a25)a33 +a25a35)u4

− [(2a24a33−a25a36−a35)(1+a24 +a25)−a2
25 +a24a25a35]u3v

+[(1+a24 +a25)a36 +a2
24a33−a24a25a36−a24a35 +2a25]u2v2

+(1−a24a36)uv3 = 0.

Q1 has a third order contact with Q2 at [0 : 0 : 1] if and only if

f12(s, t) = A(s− t)(a16s+ t)3

for a non-zero constant A. This is possible only when

a2
16(1+a24 +a25) = 1+a14 +a16 and a16(1+a24 +a25) = 1+a25 +a14a25,

(4.2.2)

or equivalently

a25 =
1

a16
and a24 =

1+a14

a2
16
−1, (a16 6= 0). (4.2.3)

Second, Q1 has a third order contact with Q3 at [0 : 1 : 0] if and only if the

coefficients of the terms s2t2 and st3 in f13(s, t) are zero while the coefficients of s4

and s3t are non-zero. Then we have

a35 =
1

a14
, and a36 =

(1+a14)(1+a16)
a2

14
+a14a33, (a14 6= 0). (4.2.4)

Last, Q2 has a third order contact with Q3 at [0 : 1 : 0] if and only if the coefficients

of the terms u2v2 and uv3 in f23(u,v) are zero while the coefficients of u4 and u3v

are non-zero. Then we have

a36 =
1

a24
, and a35 =

(1+a24)(1+a25)
a2

24
+a24a33, (a24 6= 0). (4.2.5)
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From the equations (4.2.3), we have (1+a14)(1+a16) = a3
16(1+a24)(1+a25). On

the other hand, the equations (4.2.4) and (4.2.5) implies that a3
24(1+a14)(1+a16) =

a3
14(1 + a24)(1 + a25). Then we get a3

16a3
24 = a3

14. If ω is a third root of unity, then

clearly a14 = a16a24ω. Substituting it into the equation (4.2.3) we get

a16a24(a16−ω) = 1−a2
16, (4.2.6)

which implies that ω = 1 if a16 = ω, since a16,a24 6= 0.

Now suppose, a16 = ω = 1, then the equations (4.2.3), (4.2.4) and (4.2.5) tell us

that

a16 = a25 = 1, a24 = a14, a35 = a36 =
1

a14
and a33 =−2+a14

a3
14

. (4.2.7)

Note that 1 + a33 + a35 + a36 = (a14+2)(a2
14−1)

a3
14

= 0 if and only if a14 = ∓1 or a14 =

−2. In addition, quadrics are degenerate if a14 = −1; Q1 = Q2 = Q3 if a14 = −2;

and quadrics are non-degenerate but meet at [1 : 1 : 1] if a14 = 1. So, these are not

cases.

Smilarly, if a16 6= ω, then a16 6=∓1 by the equation (4.2.6), and therefore

a24 =
1−a2

16
a16(a16−ω)

, a14 =
(1−a2

16)ω
a16−ω

, a25 =
1

a16
, a36 =

a16(a16−ω)
1−a2

16

a35 =
a16−ω

(1−a2
16)ω

, a33 =
a16(a16−ω)(1−ω)(1−a16−a16ω)

ω(1−a16)3(1+a16)2 ,

a36 =
a16ω(a16−ω)(1+ω)+a16(1−a2

16ω2)
(1−a16)2(1+a16)

(4.2.8)

by the equations (4.2.3), (4.2.4) and (4.2.5). In addition, two equalities for a36 in

(4.2.8) imply that (1−ω)[a16(1− a16)(1 + ω)−ω] = 0, so either ω = 1 or ω =
a16−a2

16
1−a16+a2

16
.

If ω = 1, then a14 = a16a24, and therefore by the equation (4.2.6) one has either
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a16 = 1 or 1+a14 +a16 = 0. We have already studied the case a16 = 1. If 1+a14 +

a16 = 0 then the coefficient of s4 in f13(s, t) will be zero, so this is not the case.

If ω = a16−a2
16

1−a16+a2
16

= 1, then 2a2
16− 2a16 + 1 = 0, i.e., a16 = 1∓i

2 . By using the

equations (4.2.8), one can easily calculate that 1+a14 +a16 = 0. This is also not the

case.

Now, suppose ω = a16−a2
16

1−a16+a2
16
6= 1. Then ω satisfy the equation ω2 + ω + 1 = 0.

So, one gets a4
16−2a3

16 +2a2
16−a16 +1 = 0, i.e.,

a16 =
1
2
∓
√

2
√

13−2
4

∓
√

2
√

13+2
4

i.

Then, the equations in (4.2.8) reduces to

a14 =
(a16−1)2(a16 +1)

a2
16

, a24 =
(a16−1)3(a16 +1)

a2
16

, a25 =
1

a16
,

a33 =
a16(a3

16−a2
16 +1)(2a2

16−2a16 +1)
(a16−1)8(a16 +1)2 ,

a35 =
a2

16
(a16−1)2(a16 +1)

, a36 =
a2

16
(a16−1)3(a16 +1)

.

For such coefficients, quadrics neither degenerate nor meet at a point.

Remark 4.2.3. If one allows that quadrics in Proposition 4.2.2 has one simple triple

point, then their equations are projectively equivalent to

Q1 :−3X2 +XY +Y Z +ZX = 0,

Q2 :−3Y 2 +XY +Y Z +ZX = 0,

Q3 :−3Z2 +XY +Y Z +ZX = 0.

(4.2.9)
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Proposition 4.2.4. The graph

Q1 Q2

Q3

can not be (complex) realized.

Proof. By the Proposition 4.2.1, we may assume that Q1 : X2−Y Z = 0 and Q2 :

X2 + bY 2 + cXY −Y Z = 0, where b,c ∈ C and c 6= 0. The quadrics Q1 and Q2

meet at [0 : 0 : 1] and [−bc : c2 : b2] with multiplicities 3 and 1, respectively. In

addition, these two quadrics have parametrizations Q1 = {[uv : v2 : u2] | [u : v] ∈
CP1} and Q2 = {[st : s2 : t2 + bs2 + cst] | [s : t] ∈ CP1}. Assume that there exists

a quadric Q3 : a1X2 + a2Y 2 + a3Z2 + a4XY + a5Y Z + a6XZ = 0 which meet with

Q1 at [p : 1 : p2] and Q2 at [q : 1 : q2 + cq + b] with multiplicities 4. Then, both

f13(p) = a3 p4 +a6t3 +(a1 +a5)t2 +a4t +a2 and f23(q) = a3q4 +(2ca3 +a6)q3 +

(a1 +c2a3 +2ba3 +a5 +ca6)q2 +(2bca3 +a4 +ca5 +ba6)q+(a2 +b2a3 +ba5) are

fourth power of linear polynomials. Suppose f13(p) = (γp + δ)4 = 0, then clearly

a3 = γ4 6= 0, a6 = 4γ3δ, a5 =−a1+6γ2δ2, a4 = 4γδ3, a2 = δ4 and p =−δ

γ
. Moreover,

f23(q) =γ
4q4 +2γ

3(cγ+2δ)q3 + γ
2((c2 +2b)γ2 +6δ

2 +4cγδ)q2

+(2bcγ
4 +4bγ

3
δ+6cγ

2
δ

2 +4γδ
3−a1c)q+(−a1b+b2

γ
4 +6bγ

2
δ

2 +δ
4)

=(γq+η)4 = 0

if and only if δ = 4b−c2

4c γ, η = cγ+2δ

2 = 4b+c2

4c γ, a1 = 4δ2γ2 = (4b−c2)2

4c2 γ4 and q =

−4b+c2

4c . Hence the equation of the quadric Q3 must be in the form of

4δ
2
γ

2X2 +δ
4Y 2 +γ

4Z2 +4γδ
3XY +2γ

2
δ

2Y Z +4γ
3
δXZ = (2δγX +δ

2Y +γ
2Z)2 = 0.

This means, such a quadric Q3 must be degenerate.
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Proposition 4.2.5. Three quadrics in the graph

Q1 Q2

Q3

are projectively equivalent to the quadrics

Q1 :X2−Y Z = 0,

Q2 :X2 +aZ2−Y Z = 0,

Q3 :−
(

2
3
(m2−8mp+ p2)+

2(m− p)3(m+ p)
a

)
X2−Y 2

+
(

2ap3

3(m− p)
+ p3(2m− p)

)
Z2 +

(
− 2a

3(m− p)
+(m+ p)

)
XY

+
(

2ap
3(m− p)

+2mp
)

Y Z +
(
− 2ap2

m− p
+3m− p

)
XZ = 0,

where m, p ∈ C, m 6= p and a2 =−3(m− p)4.

Proof. By the Proposition 4.2.1, we may assume that Q1 : X2−Y Z = 0 and Q2 :

X2 + aZ2−Y Z = 0, where a ∈ C∗. These two quadrics meet at the point [0 : 1 : 0]

with multiplicity 4 and they have parametrizations Q1 = {[uv : v2 : u2] | [u : v] ∈
CP1} and Q2 = {[st : t2 + as2 : s2] | [s : t] ∈ CP1}. Suppose, such a quadric Q3

exist. Since [0 : 1 : 0] /∈ Q1 ∩Q3 and [0 : 1 : 0] /∈ Q2 ∩Q3, then Q3 will meet with

Q1 at the points [p : p2 : 1] and [q : q2 : 1] with multiplicities 3 and 1, respectively,

where p 6= q. Similarly, Q3 will meet with Q2 at the points [m : m2 + a : 1] and

[n : n2 + a : 1] with multiplicities 3 and 1, respectively, where m 6= n. In addition,

the line `1 : 2pX −Y − p2Z = 0 is tangent to Q1 at [p : p2 : 1] and the line `2 :

(p+q)X−Y− pqZ = 0 pass through the intersection points [p : p2 : 1] and [q : q2 : 1]

of Q1 and Q3. Therefore, the equation of Q3 must be in the form of

λQ1 + `1`2 : (λ+2p(p+q))X2 +Y 2 + p3qZ2− (3p+q)XY + p(p+q)Y Z

−p2(p+3q)XZ = 0 (4.2.10)
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for some λ ∈ C∗. Substituting the affine parametrization x = t, y = t2 + a, z = 1 of

Q2 into the equation (4.2.10), we obtain

f23(t) = t4− (3p+q)t3 +(3p(p+q)+2a)t2− (p2(p+3q)+a(3p+q))t

+(p3q+a2 +ap(p+q)−aλ) = 0.

On the other hand, by the intersection behavior of Q2 and Q3, f23(t) must be in the

form of

f23(t) = (t−m)3(t−n) = t4− (3m+n)t3 +3m(m+n)t2−m2(m+n)t +m3n = 0.

Comparing these two equations for f23(t) term by term we will get the following

equations:

3m+n = 3p+q (4.2.11)

3m(m+n) = 3p(p+q)+2a (4.2.12)

m2(m+3n) = p2(p+3q)+a(3p+q) (4.2.13)

m3n = p3q+a2 +ap(p+q)−aλ (4.2.14)

Note that m 6= p and consequently n 6= q , otherwise a would be zero but this is

not the case. From the equations (4.2.11), (4.2.12) and (4.2.14) one obtains n =

−m+2p+ 2a
3(m−p) , q = 2m− p+ 2a

3(m−p) , λ = a2(3m−p)−2a(m−p)3+3(m−p)4(m+p)
3a(m−p) , and

substituting them into the equation (4.2.13) one gets a2 = −3(m− p)4. Therefore,

the equation (4.2.10) reduces to

−
(

2
3
(m2−8mp+ p2)+

2(m− p)3(m+ p)
a

)
X2−Y 2

+
(

2ap3

3(m− p)
+ p3(2m− p)

)
Z2 +

(
− 2a

3(m− p)
+(m+ p)

)
XY

+
(

2ap
3(m− p)

+2mp
)

Y Z +
(
− 2ap2

m− p
+3m− p

)
XZ = 0.
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4.3 Configuration of Quadrics with Many Tacnodes

The problem Naruki interested in determines when two quadrics are tangent to

each other at one point or two points. For this aim he used the singular members of

pencil introduced some invariants. First let us explain these invariants.

Let Q1 and Q2 be two quadrics given by the ternary quadric equations F1(X ,Y,Z)

= 0 and F2(X ,Y,Z) = 0, corresponding to 3×3 symmetric matrices are M1 and M2,

respectively. Assume that they are in general position. Then there are four distinct

intersection points. Denote further the intersection points by p0, p1, p2, p3; and the

(2,2)−partitions {p0, p1; p2, p3}, {p0, p2; p1, p3}, {p0, p3; p1, p2} by l1, l2, l3. The

partitions are called the references of the pair {Q1,Q2}. They are in a one to one

correspondence with the singular members of the pencil Q = {Q(t)} generated by

Q1 and Q2 (See Figure4.1). Indeed, the equations for members of family Q is of the

form:

Q(t) : tF1 +F2 = 0 (4.3.1)

Note that Q(∞) = Q1 and Q(0) = Q2.

Figure 4.1 Singular members of the
family of two quadrics in general
position.
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The symmetric matrix corresponding to the quadric Q(t) is tA1 + A2, and the

singular members of the family Q corresponds to roots t1, t2, t3 of the cubic equation

det(tM1 +M2) = 0. (4.3.2)

By changing the indices in a suitable way, it can be assumed that

Q(t1) = p0 p1∪ p2 p3 , Q(t2) = p0 p2∪ p1 p3 and Q(t3) = p0 p3∪ p1 p2,

where pi p j denotes the line passing through the points pi and p j for each (i, j).

Thus, the references l1, l2, l3 correspond to Q(t1), Q(t2), Q(t3).

The first invariant is defined by Naruki (1983) for ordered pairs of two quadrics

and their references by setting

[Q2/Q1; l1] =
t2
1

t2t3
, [Q2/Q1; l2] =

t2
2

t1t3
, [Q2/Q1; l3] =

t2
3

t1t3
(4.3.3)

which give some obvious properties:

[Q2/Q1; l1] · [Q2/Q1; l2] · [Q2/Q1; l3] = 1, (4.3.4)

and

[Q2/Q1; li] · [Q1/Q2; li] = 1, i = 1,2,3. (4.3.5)

Projective invariance of these quantities follows from the fact of the change of

the coordinate t of the family Q . Indeed, one can choose the coordinate τ of Q such

that τ = ∞,0,1 correspond to singular members Q(t1), Q(t2) and Q(t3), and τ = α,β

correspond to the quadrics Q1,Q2; explicitly τ = (t1−t3)(t2−t)
(t2−t3)(t1−t) , which is the cross ratio

(t1, t2; t3, t). Then,

α =(t1, t2; t3,∞)=
t1− t3
t1− t2

, β =(t1, t2; t3,0)=
t2(t1− t3)
t3(t1− t2)

,
α

β
=

t1
t2

,
α−1
β−1

=
t1
t3

,
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Figure 4.2 Singular members of the family of tangent quadrics.

and therefore

[Q2/Q1; l1] =
α(α−1)
β(β−1)

, [Q2/Q1; l2] =
β2(α−1)
α2(β−1)

, [Q2/Q1; l3] =
α(β−1)2

β(α−1)2 .

Since both α and β are cross ratios, then by Proposition 2.2.4, these quantities

remain invariant under coordinate changes.

Now consider the case that the quadrics are in a special position, i.e., they are

tangent to each other at least at one point (contact of order 3 and 4 are excluded).

Then the equation (4.3.2) has one simple root t ′ and one double root t ′′. The singular

member Q(t ′) contains common tangent (or tangents) while Q(t ′′) contains the

contact point (or points) in its singular locus (See Figure 4.2). In addition, there

are only two references l′, l′′ of the pair {Q1,Q2} corresponding to t ′ and t ′′.

Second invariant for quadrics in a special position is also defined by Naruki

(1983) by setting

[Q2/Q1] =
t ′

t ′′
. (4.3.6)

Thus, it gives some obvious properties

[Q2/Q1; l′] = [Q2/Q1]2 (4.3.7)

and

[Q2/Q1; l′′] = [Q2/Q1]−1 = [Q1/Q2]. (4.3.8)
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The invariant [Q2/Q1] can also be defined without the use of coordinates. The

(possibly singular) quadrics passing through given points and having given tangent

lines at those points form a pencil, so they correspond to points on the projective

line. Let Q0 and Q∞ be the union of two tangent lines, and twice the line connecting

the two given points, respectively; and Q̄1, Q̄2, Q̄0, Q̄∞ are the corresponding points

of these quadrics on the projective line, then [Q1/Q2] is nothing but short of the

cross ratio (Q̄0, Q̄∞; Q̄1, Q̄2).

Finding the roots of the equation (4.3.2), gives some clues about the intersection

of quadrics as follows: if there are three simple roots then quadrics are in general

position; if there are one simple and one double root then quadrics are tangent at

least at one point; and if there is 3-fold root then quadrics have contact of order≥ 3.

But less suitable for when two quadrics are tangent to each other at a point or at

two distinct points. Similarly it also does not distinguish the contact orders 3 and 4.

Distinguish these cases, we need parametrization of quadrics. First, we parameterize

one of the quadrics as explained in Section 2.6, and then substitute them into the

equation of the second quadric. This will give us a polynomial equation q(t) = 0

of degree at most 4. The number of roots and the vanishing orders of the roots

determines the number of intersection points, and contact order of them at these

points, respectively. Note that, if the degree of q(t) less than four, then it has a root

at ∞.

4.3.1 Two Quadrics with Two Tacnodes

Proposition 4.3.1. Any configuration of two quadrics with graph , i.e,

quadrics have two tacnodes, is projectively equivalent to the quadrics

Q1 : X2 +Y 2−Z2 +2pXY = 0,

Q2 :
1
q2 X2 +Y 2−Z2 +2pXY = 0,

(4.3.9)
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where p,q ∈ C, q 6= 0, p,q 6=±1, and p2q2 6= 1. In addition, [Q1/Q2] = q2(p2−1)
p2q2−1 is

the Naruki invariant.

Proof. Since dimAut(CP2) = dimPGL(3,C) = 8, we can choose homogeneous

coordinates on CP2 such that the points [0 :∓1 : 1], [∓1 : 0 : 1] lie on Q1,and [0 :∓1 :

1] are the tangency points of Q2 with Q1. The conditions [0 :∓1 : 1], [∓1 : 0 : 1]∈Q1

implies that Q1 : X2 +Y 2−Z2 +2pXY = 0. For non-degeneracy, one should add the

condition p 6=∓1. Then, the lines L± : pX +Y ∓Z = 0 are the tangents of Q1 at the

points [0 :±1 : 1], respectively.

Let Q2 : a1X2 + a2Y 2 + a3Z2 + a4XY + a5Y Z + a6ZX = 0. Then the conditions

[0 :∓1 : 1] ∈Q2 implies a3 =−a2 and a5 = 0. Since the lines L± : pX +Y ∓Z = 0

are tangent to Q2 at the points [0 :±1 : 1], respectively, then one has the conditions

a6 = 0 and a4 = 2pa2. Therefore, the equation of Q2 reduces to a1X2 + a2Y 2−
a2Z2 +2pa2XY = 0. Note that a2 must be non zero, otherwise Q2 will be a double

line. By dividing each side of the equation of Q2 by a2 and setting a1
a2

= 1
q2 we obtain

the required equation. Non-degeneracy condition of Q2 is p2q2 6= 1. In addition,

q 6=∓1 since the quadrics are distinct.

Last, the cubic equation (4.3.2) for these quadrics Q1 and Q2 has simple root

t ′ = −q2(p2−1)
p2q2−1 and double root t ′′ = −1. Hence the Naruki invariant is [Q1/Q2] =

q2(p2−1)
p2q2−1 .

Remark 4.3.2. Megyesi (2000) proved this proposition for the case p = 0. Indeed,

he said that any smooth quadric with two tacnodes was projectively equivalent to

the pair defined by the equations X2 +Y 2−Z2 = 0 and 1
q2 X2 +Y 2−Z2 = 0 with

conditions q ∈ C\{0,∓1}. But this is just a special case.

The quadrics in (4.3.9) have parametrizations

Q1 =
{
[2st +2ps2 : t2− s2 : t2 + s2 +2pst] | [s : t] ∈ CP1} ,

Q2 =
{
[2qst +2pq2s2 : t2− s2 : t2 + s2 +2pqst] | [s : t] ∈ CP1} .

(4.3.10)
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and we shall use without writing them later again explicitly.

Proposition 4.3.3. The graph

Q1 Q2

Q3

can not be (complex) realized.

Proof. Suppose that such configuration of non-degenerate quadrics exist. By the

Proposition 4.3.1, we may assume that Q1 : X2 +Y 2− Z2 + 2pXY = 0 and Q2 :
1
q2 X2 +Y 2−Z2 +2pXY = 0, where p,q∈C, q 6= 0, p,q 6=±1, and p2q2 6= 1. Let us

assume that Q3 : a1X2 +a2Y 2 +a3Z2 +a4XY +a5Y Z +a6XZ = 0. Since Q1∩Q2 =

{[0 :∓1 : 1]}, then by the parametrizations (4.3.10) of Q1 and Q2, the contact points

of Q3 with Q1 and Q2 must be in the form of [2(u + p) : u2−1 : u2 + 2pu + 1] and

[2q(v + pq) : v2−1 : v2 + 2pqv + 1], respectively. By substituting these points into

the equation of Q3 we will obtain the following equations:

f13(u) =(a2 +a3 +a5)u4 +(4a3 p+2a4 +2a5 p+2a6)u3

+(4a1−2a2 +a3(4p2 +2)+2a4 p+6a6 p)u2

+(8a1 p+4a3 p−2a4−2a5p+2a6(2p2 +1))u

+4a1 p2 +a2 +a3−2a4 p−a5 +2a6 p = 0

and

f23(v) =(a2 +a3 +a5)v4 +(4a3 pq+2a4q+2a5 pq+2a6q)v3

+(4a1q2−2a2 +a3(4p2q2 +2)+2a4 pq2 +6a6 pq2)v2

+(8a1 pq3 +4a3 pq−2a4q−2a5pq+2a6q(2p2q2 +1))v

+4a1 p2q4 +a2 +a3−2a4 pq2−a5 +2a6 pq2 = 0

By the intersection behavior of Q3 with Q1 and Q2, both f13(u) and f23(v) must be

fourth power of some linear polynomials. Assume f13(u) = A(u−λ)4 and f23(v) =
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B(v−µ)4 for some non-zero constants A and B. Comparing the coefficients of two

polynomials for f13(u) and also for f23(v) term by term we get

A = a2 +a3 +a5 (4.3.11)

−4Aλ = 4a3 p+2a4 +2a5 p+2a6 (4.3.12)

6Aλ
2 = 4a1q2−2a2 +a3(4p2q2 +2)+2a4 pq2 +6a6 pq2 (4.3.13)

−4Aλ
3 = 8a1 pq3 +4a3 pq−2a4q−2a5pq+2a6q(2p2q2 +1) (4.3.14)

Aλ
4 = 4a1 p2q4 +a2 +a3−2a4 pq2−a5 +2a6 pq2 (4.3.15)

and

B = a2 +a3 +a5 (4.3.16)

−4Bµ = 4a3 pq+2a4q+2a5 pq+2a6q (4.3.17)

6Bµ2 = 4a1q2−2a2 +a3(4p2q2 +2)+2a4 pq2 +6a6 pq2 (4.3.18)

−4Bµ3 = 8a1 pq3 +4a3 pq−2a4q−2a5pq+2a6q(2p2q2 +1) (4.3.19)

Bµ4 = 4a1 p2q4 +a2 +a3−2a4 pq2−a5 +2a6 pq2 (4.3.20)

It is clear from the equations (4.3.11) and (4.3.16) that A = B, and from the

equations (4.3.12) and (4.3.17) that µ = λq. Similary we obtain a2 = a3 by comparing

the equations (4.3.13) and (4.3.18), (2a3− a5)p +(a6− a4) = 0 by comparing the

equations (4.3.14) and (4.3.19), (a2 + a3 − a5)(q2 + 1) + 2pq2(a6 − a4) = 0 by

comparing the equations (4.3.15) and (4.3.20). If 1 + q2 6= 2p2q2, then a5 = 2a2

and a6 = a4. Hence we get a2 = a3 = A
4 and a5 = A

2 by (4.3.11), 2a4 =−A(p+2λ)

by (4.3.12), (4a1 + 8a4 p) = A(6λ2− p2) by (4.3.13), 8a1 p + 4a4 p2 = −4Aλ3 by

(4.3.14) and 4p2a1 = Aλ4 by (4.3.15). Then, either p = λ = a1 = a4 = a6 = 0,

4a2 = 4a3 = 2a5 = A or λ = −p 6= 0, a1 = Ap2

4 , a2 = a3 = A
4 , a4 = a6 = −Ap

2 and

a5 = A
2 . The last solution is also true when 1+q2 = 2p2q2. In all cases, the quadric

Q3 will be degenerate. So, such configuration of three on degenerate quadrics can

not be realized.
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4.3.2 Two Quadrics with a Tacnode

Proposition 4.3.4. Any configuration of two quadrics with a tacnode, i.e with graph

, are projectively equivalent to the quadrics

Q1 : Y 2 +Z2−2XY = 0,

Q2 : αY 2 +βZ2 +2XY = 0,
(4.3.21)

where α,β ∈ C\{−1}, β 6= 0. In addition, [Q1/Q2] =− 1
β

is the Naruki invariant.

Proof. Projective transformations allows us to choose the coordinates such that Q1 :

Y 2 +Z2−2XY = 0, Q2 is tangent to Q1 at [1 : 0 : 0] and also one of the coefficient

of the equation for Q2 is fixed, for simplicity choose the coefficient of Y Z as zero.

Say Q2 : a1X2 + a2Y 2 + a3Z2 + a4XY + a5XZ = 0. The condition [1 : 0 : 0] ∈ Q2

implies a1 = 0. In addition, the tangency condition at [1 : 0 : 0] implies a4 6= 0, and

a5 = 0. Then Q2 : a2Y 2 +a3Z2 +a4XY = 0. Note that Q2 is non-degenerate iff and

only if a3 6= 0. Dividing by a4
2 each side of the equation of Q2 and setting α := 2a2

a4

and β := 2a3
a4

we obtain Q2 : αY 2 +βZ2 +2XY = 0, where α,β ∈ C, β 6= 0.

On the other hand, {[s2 + t2 : 2st : 2s2] | [s, t] ∈CP1} is a parametrization of Q1.

By substituting this parametrization into the equation of Q2, we get the homogeneous

equation

4t2((1+β)s2 +(1+α)t2) = 0.

So, the configuration of the quadrics Q1 and Q2 given by the equations above has

only one tacnode if and only if β 6=−1 and α 6=−1. Otherwise, either quadrics have

two tacnode when α =−1 and β 6=−1 , or a fourth order contact at [1 : 0 : 0] when

β = −1 and α 6= −1, or they will coincide when α = β = −1. In addition, Q2 is

non-degenerate if β 6= 0.

Last, the cubic equation (4.3.2) for these quadrics Q1 and Q2 have simple root

t ′=− 1
beta and double root t ′′= 1. Hence the Naruki invariant is [Q1/Q2] =− 1

β
.
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Remark 4.3.5. The quadrics given by the equations in (4.3.21) has the following

parametrizations:

Q1 = {[s2 + t2 : 2st : 2s2] | [s : t] ∈ CP1} (4.3.22)

Q2 = {[αt2 +βs2 :−2t2 :−2st] | [s : t] ∈ CP1}. (4.3.23)

Proposition 4.3.6. Any three quadrics with graph

Q1 Q2

Q3

are projectively equivalent to the quadrics

Q1 : Y 2 +Z2−2XY = 0,

Q2 : Y 2 +Z2 +2XY = 0,

Q3 : 4X2−Y 2−2Z2 = 0.

(4.3.24)

Proof. Let Q1 and Q2 be as in Proposition 4.3.4, and Q3 : a1X2 + a2Y 2 + a3Z2 +

a4XY + a5Y Z + a6XZ = 0. Then by the parametrizations of Q1 and Q2, we know

that the contact points of Q3 with Q1 and Q2 must be in the form of [u2 +1 : 2 : 2u]

and [α+βv2 :−2 :−2v], respectively. By substituting these points into the equation

of Q3 we obtain

f13(u) =a1u4 +2a6u3 +2(a1 +2a3 +a4)u2 +2(2a5 +a6)u+(a1 +4a2 +2a4) = 0

f23(v) =a1β
2v4−2a5βv3 +2(a1αβ+2a3−a4β)

+2(2a5−a6α)v+(a1α
2 +4a2−2a4α) = 0

Notice that Q3 has a contact of order 4 with Q1 and Q2 if f13(u) = a1(u + a6
2a1

)4,

f22(v) = a1β2(v− a5
2a1β

)4. Note that a1 must be non-zero. By rescalling the equations

of quadrics we may assume a1 = 1. Comparing the coefficients of two equations for
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f13(u) and f23(v), we get the following equations:

4+4(2a3 +a4)−3a2
6 = 0,

4(2a5 +a6)−a3
6 = 0,

16+32(2a2 +a4)−a4
6 = 0,

4αβ+4(2a3−a4β)−3a2
6 = 0,

4β(2a5−a6α)+a3
6 = 0,

16α
2
β

2 +32a3
1(2a2−a4α)−a4

6 = 0.

The first four of them give a2 = a4
6

64 −
2αβ+β−1

4(β+1) , a3 = 3a2
6

8 −
β(α+1)
2(β+1) , a4 = αβ−1

β+1 , a5 =
a6(a2

6−4)
8 . Substituting these solutions into the last two equations we get

a6(a2
6(β+1)−4β(α+1)) = 0 and (β−1)(a4

6(β+1)2−16β
2(α+1)2) = 0.

These equations are valid if either a6 = 0 and β = 1, or a2
6 = 4β(α+1)

β+1 . In case a2
6 =

4β(α+1)
β+1 , the quadric Q3 will be degenerate, so we have only the case a6 = 0 and β =

1 for which a2 =−α

4 , a3 =−α+1
4 , a4 = α−1

2 and a5 = 0. Hence Q3 : 4X2−αY 2−
(α + 1)Z2 + 2(α− 1)XY = 0 and it is non-degenerate if α ∈ C \ {−1,3∓ 2

√
2}.

Notice that, such quadrics are projectively equivalent to Q1 : Y 2 + Z2− 2XY = 0,

Q2 : Y 2 +Z2 +2XY = 0 and Q3 : 4X2−Y 2−2Z2 = 0 via [X : Y : Z] 7→ [X + α−1
4 Y :

α+1
2 Y :

√
α+1

2 Z].

4.3.3 Three Quadrics with Six Tacnode

First, let us introduce the following lemma, which is useful to determine when

two quadrics are tangent to each other at one or two points, or to construct quadrics

tangent to given ones.
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Lemma 4.3.7 (Megyesi (2000), Lemma 2). Let Qi, i = 1,2, be two quadrics given

by the homogeneous ternary quadratic equations Fi := Fi(X ,Y,Z) = 0, i = 1,2. If

Q is a quadric which is tangent to both Q1 and Q2 at two points, then its equation

can be written in the form

F(X ,Y,Z) = F1 +L2
1 = λF2 +L2

2, (4.3.25)

where λ ∈ C, and Li := Li(X ,Y,Z) = 0 define the line connecting the two points

where Q is tangent to Qi, i = 1,2. Furthermore, F1−λF2 = L2
2−L2

1 = 0 defines a

degenerate quadric, and L1 and L2 are linear combinations of the defining equations

of the components of this quadric (if it is a double line, L1 = 0 and L2 = 0 define

this line with the reduced structure). λ is uniquely determined by Q, while L1 and

L2 determined up to sign.

Proof. Let Li = 0 be the equations of the lines connecting the two points where

the quadric Q is tangent to Qi, i = 1,2. Then the quadric Q belongs to the families

Pi : λiFi + L2
i = 0, i = 1,2. Therefore, for suitable λi’s we have F = λ1F1 + L2

1 =

λ2F2 +L2
2 = 0. Multiply F , L1 and L2 by suitable scalars so that the equation (4.3.25)

holds. Then the quadric F1−λF2 = L2
2−L2

1 = 0 belongs to one of the references of

the pair {Q1,Q2}. Writing (L2− L1)(L2 + L1) = 0 makes it obvious that L1 and

L2 are linear combinations of the equations of the components of this degenerate

quadric.

L1 and L2 are determined by Q up to multiplication by scalars. If they define the

same line then F1−λF2 is a multiple of L2
1 and λ is obviously unique. If they define

different lines, let p be the point of intersection of these lines, then the degenerate

quadric F1−λF2 = 0 is the union of two lines meeting at p. These lines must either

pass through two points of intersection of Q1 and Q2, or be tangent to Q1 and Q2 at a

point where the quadrics are tangent to each other, given p, this determines the two

lines, hence λ uniquely. The uniqueness of λ implies that L1 and L2 are determined

up to sign by Q.
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By the above lemma, a quadric Q determines a singular member in the pencil

spanned by Q1 and Q2, then there exist a corresponding partition of intersection

points of Q1 and Q2 into two pairs. If the two points in a pair coincide then we take

the line to be the common tangent line to Q1 and Q2 at that point. Following Naruki,

this partition is called reference and said that Q belongs to a given reference.

Proposition 4.3.8 (Naruki (1983), Proposition 5.2). Suppose that Q, Q1 and Q2 are

three quadrics such that Q is tangent to Q1 and Q2 at two points and that l is the

reference of {Q1, Q2} to which Q belongs. Then

[Q2/Q1; l] = [Q1/Q] · [Q/Q2]. (4.3.26)

In particular if Q1 and Q2 are in a special position, then

[Q2/Q1]2 = [Q1/Q] · [Q/Q2]. (4.3.27)

Now we apply Proposition 4.3.8 to the problem of obtaining necessary conditions

for three or four quadrics to form some interesting configurations.

Proposition 4.3.9 (Naruki (1983), Proposition 6.1). If the quadrics Q1, Q2, Q3 are

pairwise tangent to each other at two distinct points, then

[Q3/Q2] = [Q2/Q1] = [Q1/Q3] (4.3.28)

Proof. Suppose that the quadrics Q1, Q2, Q3 are pairwise tangent to each other

at two distinct points. Then, by Proposition 4.3.8, we have [Q j/Qi]2 = [Qi/Qk] ·
[Qk/Q j] for any permutation (i, j,k) of (1,2,3). It follows that,

[Q j/Qi]3 = [Q j/Qi] · [Qi/Qk] · [Qk/Q j] = [Qk/Q j]3 = [Qi/Qk]3. (4.3.29)

Let ω be a third root of unity. Then by the equations (4.3.27) and (4.3.29), we have

[Q3/Q2] = ω[Q1/Q3] = ω
2[Q2/Q1].
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Therefore, ω = [Q2/Q1][Q3/Q1] and ω2 = [Q3/Q2][Q1/Q2]. On the other hand,

ω
2 = [Q3/Q2][Q1/Q2]

= [Q3/Q2][Q1/Q3][Q3/Q1][Q1/Q2]

= [Q2/Q1]2[Q3/Q1][Q1/Q2]

= [Q2/Q1][Q3/Q1] = ω,

i.e., ω = 1. Thus [Q3/Q2] = [Q1/Q3] = [Q2/Q1].

Proposition 4.3.10 (Megyesi (2000), Proposition 4.). Any configuration of three

quadrics with graph

are projectively equivalent to the quadrics

Q1 : X2 +Y 2−Z2 = 0

Q2 :
1
q2 X2 +Y 2−Z2 = 0

Q3 : X2 +Y 2−q2Z2 = 0,

(4.3.30)

where q ∈ C\{0,∓1}. In addition [Q1/Q2] = [Q2/Q3] = [Q3/Q1] = q2.

Proof. By the section 4.3.1, it may be assumed that two of the quadrics Q1 and

Q2 are given by the equations (4.3.9). Let L1 and L2 be as in Lemma 4.3.7. Since

singular members of family generated by Q1 and Q2 are (1− 1
q2 )X2 = 0 and (pX +

Y −Z)(pX +Y +Z) = 0, then for suitable choice of the constant α we may assume

that L2 : α(pX +Y ) = 0, then L1 : ∓αZ = 0. Then by Lemma 4.3.7, α2 = 1− 1
q2 ,

the equation of the quadric Q3 is X2 +Y 2− q2Z2 + 2pXY = 0, and the quadric

Q3 tangents to quadrics Q1 and Q2 at the intersection points L1 ∩Q1 = {[p∓
√

p2−1 : 1 : 0]} and L2∩Q2 = {[1 :−p :∓
√

1−p2q2

q ]},respectively. The conditions

[p∓
√

p2−1 : 1 : 0], [1 : −p : ∓
√

1−p2q2

q ] ∈ Q3 together with the conditions of

Proposition 4.3.1 imply that p must be zero. In addition, the Propositions 4.3.1
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and 4.3.9 imply that [Q1/Q2] = [Q2/Q3] = [Q3/Q1] = q2.

The quadrics in (4.3.30) have parametrizations:

Q1 =
{
[2st : t2− s2 : t2 + s2] | [s : t] ∈ CP1} ,

Q2 =
{
[2qst : t2− s2 : t2 + s2] | [s : t] ∈ CP1} ,

Q3 =
{
[2qst : qt2−qs2 : t2 + s2] | [s : t] ∈ CP1} .

(4.3.31)

4.3.4 Three Quadrics with Five Tacnodes

Proposition 4.3.11 (Megyesi (2000), Proposition 5). Any configuration of three

quadrics with graph

Q2 Q3

Q1

are projectively equivalent to the three quadrics

Q1 : X2 +Y 2−Z2 = 0,

Q2 : p2X2 +(p2 +1)Y 2−2pY Z = 0,

Q3 : q2X2 +(q2 +1)Y 2−2qY Z = 0,

(4.3.32)

where p,q ∈ C \ {0,∓1}, p 6= q and pq 6= 1; and [Q3/Q2] = q
p , [Q1/Q2] = p2,

[Q1/Q3] = q2 are the Naruki invariants.

Proof. Let us assume that the quadrics Q2 and Q3 are tangent to Q1 at two points,

and to each other at one point. Projective transformations allow us to choose the

homogeneous coordinates so that Q1 : X2 +Y 2−Z2 = 0 and that [0 : 0 : 1] is the

tangent point of Q2 and Q3 and their common tangent line is the line Y = 0.

Let the equation of Q2 be a1X2 +a2Y 2 +a3Z2 +a4XY +a5Y Z +a6ZX = 0. The

conditions that [0 : 0 : 1]∈Q2 and the tangent line to Q2 at [0 : 0 : 1] is the line Y = 0
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imply that a3 = a6 = 0 and a5 6= 0. By substituting the standard parametrization

(4.3.31) of Q1 into the equation of Q2, we obtain the quartic equation

f (t,s) = (a2−a5)t4−2a4st3 +(4a1−2a2)s2t2 +2a4s3t +(a2 +a5)s4 = 0.

Q2 is tangent to Q1 at two point if and only if f (t,s) is a square of a quadric

polynomial. Assume f (t,s) = ∑
4
k=0 fkskt4−k is a square, then

f4 f 2
1 − f0 f 2

3 = 4a2
4(a2−a5)+4a2

4(a2 +a5) =−8a2
4a5 = 0,

which gives either a4 = 0 or a5 = 0. But, Q2 is degenerate if a5 = 0, and also we

know from tangency condition that a5 6= 0. Hence a4 = 0. Therefore if Q2 tangent

to Q1 at two points, these must be in the form of [∓
√

1− p2 : p : 1]. Because, if

[∓i : 1 : 0] were tangency points, then by comparing tangent lines at these points

we would get a5 = 0 and the quadric Q2 would be degenerate. So, assume Q2 is

tangent to Q1 at two points [∓
√

1− p2 : p : 1], where p 6= 0,∓1. Because, the points

[∓1 : 0 : 1] would be the tangency points of Q1 and Q2 if p = 0, and [∓1 : 0 : 1]∈Q2

would imply that a1 = 0 which means Q2 is degenerate. In addition, [0 : ∓1 : 1]

would be the tangency points of Q1 and Q2 if p =∓1, and [0 :∓1 : 1] ∈ Q2 would

imply that a2 + a5 = 0. Moreover, by comparing the tangent lines of Q1 and Q2 at

these points, we would get a2 = a5 = 0, i.e., Q2 is degenerate. So these are not the

cases.

In addition to the condition [∓
√

1− p2 : p : 1]∈Q2, by comparing the equations

of tangent lines to Q1 and Q2 at these points, we obtain a1 = p2, a2 = p2 + 1 and

a5 = −2p. So, the equation of Q2 must be in the form of p2X2 + (p2 + 1)Y 2−
2pY Z = 0, where p∈C\{0,∓1}. Similarly, the quadric Q3 is given by the equation

q2X2 +(q2 + 1)Y 2− 2qY Z = 0 for some q ∈ C \ {0,∓1}. We have the conditions

p 6= q since the quadrics are distinct, and pq 6= 1 since the quadrics Q2 and Q3 have

only one tacnode, which is at [0 : 0 : 1].
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Let Mi be the symmetric matrix corresponding to Qi, i = 1,2,3. Then the cubic

equations λM2 + M3 = 0, µM1 + M2 = 0 and ηM3 + M1 = 0 have simple roots

λ′ = − q2

p2 , µ′ = −1, η′ = −1 and double roots λ′′ = − q
p , µ′′ = −p2, η′′ = − 1

q2 .

So, [Q3/Q2] =
q
p , [Q2/Q1] = 1

p2 , [Q1/Q3] = q2 and Proposition 4.3.9 is verified.

Last, pq 6= 1. If pq was equal to 1, then the singular member p2X2+(pq−1)Y 2 =

0 of the family λQ2 + Q3 corresponding to double root λ′′ = − q
p would be double

line and so the quadrics Q2 and Q3 would be tangent at two points, but this is not

the case.

4.3.5 Four Quadrics with Twelve or Eleven Tacnodes

As a corollary of the Proposition 4.3.9 we have the following:

Proposition 4.3.12 (Naruki (1983), Proposition 6.1’). Suppose that four quadrics

Q1, Q2, Q3 and Q4 are pairwise tangent to each other at two distinct points. Then,

[Qi/Q j] =−1 for 1≤ i 6= j ≤ 4. (4.3.33)

Proof. By Proposition 4.3.9 we know that for any permutation (i, j,k), we have

[Qk/Q j] = [Q j/Qi] = [Qi/Qk]. Therefore, we get [Qi/Q j] = [Q j/Qi] for 1≤ i 6= j≤
4. Moreover, the property (4.3.8) implies that [Qi/Q j] is either 1 or −1. If it was 1

then the double and single roots of the equation (4.3.2) would coincide, and contact

order at tangency point would be at least 3. But this contradicts the fact that quadrics

are tangent to each other at two distinct points.

Without giving a proof, Naruki (1983) pointed out that such four quadrics are

given by the four choices of the signs in

∓X2∓Y 2∓Z2 = 0 (4.3.34)
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and they are projectively unique. Before proving this fact, let us remember the

following fact of projective transformations acting on quadrics:

Consider the subgroup

G =





M(ϕ,θ) =




1 0 0

0 ϕ θ

0 θ ϕ


 | detM(ϕ,θ) = ϕ

2−θ
2 = 1




∼= C∗ (4.3.35)

of PGL(3,C). Any element M(ϕ,θ) of G fixes the quadric Q1 : X2 +Y 2−Z2 = 0

and the points [0 : ∓1 : 1]. Note that the quadrics in (4.3.30) are invariant under

the action [X : Y : Z]→ [X : −Y : −Z], in other words M(−1,0) ∈ G act trivially

on them. Let H be the quotient of G by the two element subgroup generated by

M(−1,0). Then H act on quadrics that are tangent to both Q1 and Q2 at two points.

Moreover, any two quadrics both tangent to Q1 and Q2 are images of each other

under the action of H.

Proposition 4.3.13. The graph

can not be realized but it is complex realizable and projectively unique equations

for these quadrics are ∓X2∓Y 2∓Z2 = 0.

Proof. By the Proposition 4.3.10 we may first assume that three quadrics are in the

form Q1 : X2 +Y 2−Z2 = 0, Q2 : 1
q2 X2 +Y 2−Z2 = 0 and Q3 : X2 +Y 2−q2Z2 = 0

for some q ∈ C \ {0,∓1}. Q4 must be the image of Q3 under the action of some

M(ϕ,θ) ∈ H, so its equation is

X2 +(ϕY −θZ)2−q2(−θY +ϕZ)2 = 0 (4.3.36)

. On the other hand, Lemma 4.3.7 implies that the singular members of the family

generated by Q2 and Q3 are (1− 1
q2 )Y = 0 and (1

qX − Z)(1
qX + Z) = 0. Assume
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L2 : X = 0, and L1 : Z = 0. Then Q4 must be tangent to Q2 at Q2∩L1 = {[∓iq : 1 : 0]}
and to Q3 at Q3∩L2 = {[0 :∓q : 1]}. These conditions together with the condition

ϕ2−θ2 = 1 implies that (ϕ,θ) = (0,∓i) and q4 = 1. Since q 6= ∓1, then q2 = −1.

This also verifies the necessary condition [Qi/Q j] =−1 in Proposition 4.3.12.

Note that this configuration is projectively rigid since it does not depend on

the choice of signs for θ. In addition, this configuration contains six imaginary

intersection points and the imaginary smooth quadric X2 +Y 2 + Z2 = 0, so it can

not be realized in RP2.

Proposition 4.3.14. Any configuration of four quadrics with graph

Q1

Q2 Q4

Q3

is projectively equivalent to the quadrics

Q1 : X2 +Y 2−Z2 = 0,

Q2 :
1
q2 X2 +Y 2−Z2 = 0,

Q3 : X2 +Y 2−q2Z2 = 0,

Q4 : (1−q2)X2 +(3q2 +1)Y 2−q2(q2 +3)Z2−4q(q2 +1)Y Z = 0.

(4.3.37)

for some q ∈ C\{0,∓1,∓i}. Alternatively, one can take last two quadrics as X2 +

(q2 +1)Y 2∓2qY Z = 0.

Proof. Assume that the quadrics Q1,Q2,Q3 are given as in Proposition 4.3.10, and

we use the idea of the proof of Proposition 4.3.13 and assume that the quadrics Q3

and Q4 have only one tacnode. Then Q4 must be the image of Q3, given in (4.3.36),

under the action of some M(ϕ,θ) ∈ H with the additional condition q2 6=−1. Then

one can get Q4 is tangent to Q3 if and only if M(ϕ,θ) = M(q2+1
q2−1 ,∓ 2q

q2−1). If we

choose the sign “+”, the contact point will be [0 :∓q : 1]. In addition, if the element
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M( 1√
1−q2

,− q√
1−q2

), which is a square root of M−1(q2+1
q2−1 ,∓ 2q

q2−1), acts on CP2 then

it transform the quadrics Q3 and Q4 to X2 +(q2 +1)y2∓2qY Z = 0 while fixing Q1

and Q2.

4.3.6 Four Quadrics with Ten Tacnodes

There are three possible graphs for the configuration of four quadrics with ten

tacnodes, and these are the graphs in Figure 4.3.

(a) (b) (c)

Figure 4.3 Three graphs on 4 vertices and 10
edges.

Proposition 4.3.15 (Megyesi (2000), Proposition 9). Any configuration of four

quadrics with graph

Q3 Q4

Q2Q1

is projectively equivalent to the quadrics

Q1 : X2 +Y 2−Z2 = 0,

Q2 :
1
q2 X2 +Y 2−Z2 = 0,

Q3,Q4 : X2 +(ϕ2−q2
θ

2)Y 2 +(θ2−q2
ϕ

2)Z2∓2ϕθ(q2−1)Y Z = 0.

(4.3.38)

for some q ∈ C\{0,∓1}, ϕ,θ ∈ C, ϕ2−θ2 = 1.

Proof. Assume that the quadrics are labeled as in the graph, and Q1, Q2 are the

quadrics in Proposition 4.3.1. As in the proof of Propositions 4.3.13 and 4.3.14, Q3

and Q4 are images of X2 +Y 2− q2Z2 = 0 under suitable elements M(ϕ1,θ1) and
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M(ϕ2,θ2) of H. Acting on them by a square root of M(ϕ1,θ1) ·M−1(ϕ2,θ2), we can

transport them into such a position that they are the images of X2 +Y 2− r2Z2 = 0

under M(ϕ,θ) and M−1(ϕ,θ) and then their equations will be as stated.

Proposition 4.3.16 (Megyesi (2000), Proposition 12). Any configuration of four

quadrics with graph

Q2 Q3

Q4Q1

is projectively equivalent to the quadrics

Q1 : X2 +Y 2−Z2 = 0,

Q2 : p2X2 +(p2 +1)Y 2−2pY Z,

Q3 : q2X2 +(q2 +1)Y 2−2qY Z,

Q4 : (2pq− p−q)2X2 +[(p+q)(4pq−3p−3q+4)−4pq]Y 2

− (p−q)2Z2−4(p−1)(q−1)(p+q)Y Z = 0.

(4.3.39)

for some p,q ∈ C\{0,∓1}, p 6=∓q, pq 6= 1, p+q 6= 2, p+q 6= 2pq.

Proof. Assume that the quadrics are labeled as in the graph, and Q1, Q2 and Q3 are

the quadrics in Proposition 4.3.11. Since Q4 is tangent to Q2 and Q3 at two points,

then its equation never contains the terms XY and XZ. Indeed, by Proposition 4.3.11

we know that for any quadric Q4 which is tangent to both Q2 and Q3 at two points,

the triple (Q4,Q2,Q3) is projectively equivalent to the triple (Q1,Q2,Q3). Since,

the quadrics Q1,Q2,Q3 remain fixed under the involution [X : Y : Z]→ [−X : Y : Z],

then Q4 must be fixed under this involution. Q4 must be tangent to Q1 at one of the

points [0 :∓1 : 1], by changing the sign of Y (and of p, q) we may assume that it is

[0 : 1 : 1]. So the equation of Q4 must be of the form X2 +aY 2 +bZ2−(a+b)Y Z = 0.

By substituting a parametrization [2pst : 2pt2 : p2s2 + (1 + p2)t2] of Q2 into the
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equation of Q4 we get

f (t,s) = f4t4 + f2s2t2 + f0s4

= [4ap2 +b(1+ p2)2−2(a+b)p(1+ p2)]t4

+[4p2 +2bp2(1+ p2)−2(a+b)p3]s2t2 +bp4s4.

Since the polynomial f (t,s) is the square of a reducible polynomial, then f 2
2 −

4 f0 f4 = 0. Therefore we have the condition 4p4[((a− b)2 + 4b)p2− 4(a + b)p +

4(b + 1)] = 0. By the same argument with Q3 instead of Q2, we obtain the same

equation with q instead of p. The equation

[
(a−b)2 +4b

]
u2−4(a+b)u+4(b+1) = 0

has two distinct non zero roots u = p and u = q, if b 6= −1, (a− b) 6= 2 and (a−
b)2 + 4b 6= 0. By taking suitable linear combinations of the relations between the

roots and coefficients of the quadric equation, we obtain

(2pq− p−q)2b+(p−q)2 = 0 and (pq− p−q)b+ pqa− p−q = 0.

Hence, we have the solutions

b =− (p−q)2

(2pq− p−q)2 and a =
(p+q)(4pq−3p−3q+4)−4pq

(2pq− p−q)2 ,

if p+q 6= 2pq.

In addition to conditions on p,q imposed in Proposition 4.3.11, we must also

require that p+q 6= 2pq to avoid division by zero, p+q 6= 2 and p 6=∓q to ensure

that Q4 is not singular and Q1 6= Q4. Hence the equation of Q4 is found as stated.
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Proposition 4.3.17 (Megyesi (2000), Proposition 9). Any configuration of four

quadrics with graph

Q2 Q4

Q3Q1

is projectively equivalent to quadrics given by the equations

Q1 : X2 +Y 2−Z2 = 0,

Q2 :
1
ρ4 X2 +Y 2−Z2 = 0,

Q3 : X2 +Y 2−ρ
4Z2 = 0,

Q4 : X2 +Y 2−Z2 +
[(1−ρ2σ2)X +2ρσY +(ρ2 +σ2)Z]2

σ4(1−ρ4)
= 0,

(4.3.40)

for some ρ,σ ∈ C\{0,∓1,∓i}, ρ4 6= σ4, and ρ4σ4 6= 1.

Proof. Assume that the quadrics Q1, Q2 and Q3 are given as in Proposition 4.3.10,

and Q4 as in graph. Let [Q1/Q4] = τ2, then by Lemma 4.3.7 the equation of Q4 can

be written as

X2 +Y 2 +Z2 +
1− τ2

τ2(α2 +β2− γ2)
(αX +βY + γZ)2 = 0,

where αX +βY + γZ = 0 is the equation of the line L4, which is the line connecting

two tangency points of Q1 and Q4. α, β and γ are only determined up to scalars.

From the condition that Q4 is tangent to Q2 and Q3, we get two equations for α, β

and γ. After discarding the solutions corresponding to the cases when Q4 is tangent

to Q2 and Q3 at two points or when it passes through the contact points of some of

the other quadrics, the only solutions are [α : β : γ] = [(1−qτ) :∓2
√

qτ :∓(q+ τ)]

and [α : β : γ] = [(1 + qτ) : ∓2i
√

qτ : ∓(q− τ)]. These can all be obtained from

one another by changing the sign of r, s or one of the coordinates. They can all be

written in the form

[α : β : γ] = [1−ρ
2
σ

2 :∓2ρσ :∓(ρ2 +σ
2)],
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where ρ and σ are suitable fourth roots of q2 and τ2, respectively. The pairs (ρ,σ)

and (−ρ,−σ) determines the same quadrics. The contact point of Q2 and Q4 is

[ρ2(ρ2σ2−1) :−2ρ3σ : ρ2σ2 +1]. If q =∓τ or qτ =∓1 then one of these contact

point is the contact point of Q1 with Q2 or Q3, which we have to exclude. Thus the

equations of four quadrics are obtained as stated.

4.3.7 Five Quadrics with Seventeen Tacnodes

Proposition 4.3.13 implies that the complete graph K4 with double edges can

be complex realized and this configuration is unique up to projective equivalence,

and these quadrics are given by the equations in (4.3.34). Concordantly, one can

wonder that whether the complete graph K5 with double edges can be (complex)

realized or not. The answer is “No”. Because, if there was such a quadric Q, then the

configurations of quadrics Q1,Q2,Q3,Q4 and Q1,Q2,Q3,Q would be projectively

equivalent, which implies Q4 = Q. Next question is “What is the maximum number

of tacnodes t(5) for configuration of five quadrics?”. Normally, one can expect

t(5) = 5 · 4 = 20. But this is false, since the complete graph K5 with double edges

can not be (complex) realized.

By considering the double cover of CP2 branched along the union of quadrics,

and applying the Miyoka-Yau inequality to the double cover, Hirzebruch (1986)

gave the inequality t(n) ≤ 4
9n(n + 3) for the number of tacnodes in configuration

of n-quadrics. This inequality implies the Miyaoka-Yau bound for t(5) is 17. Due

to their combinatorics, the candidates for the configuration of five quadrics with

t(5) = 17 are given by the graphs in Figure 4.4.

First, let us consider the graph in Figure 4.4a. Then we may assume that the

quadrics Q1,Q2,Q3,Q4 are as in Proposition 4.3.13. Since these quadrics are projec-

tively unique, the only quadric which is tangent to Q1 and Q2 at two points and also

must be tangent to Q3, Q4. So, this graph is impossible.
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Q3

Q4

Q5

Q1 Q2

(a)

Q3

Q4

Q5

Q1 Q2

(b)

Q3

Q4

Q5

Q1 Q2

(c)

Q3

Q4

Q5

Q1 Q2

(d)

Q3

Q4

Q5

Q1 Q2

(e)

Q3

Q4

Q5

Q1 Q2

(f)

Figure 4.4 The six graph on 5 vertices and 17 edges.

Second, consider the graph in Figure 4.4b. Then by Proposition 4.3.14 we may

assume that Q1 : X2 +Y 2−Z2 = 0, Q2 : 1
q2 X2 +Y 2−Z2 = 0, Q3 : X2 +(q2 +1)Y 2 +

2qY Z = 0 and Q4 : X2 + (q2 + 1)Y 2− 2qY Z = 0 for some q ∈ C \ {0,∓1,∓i}.
Suppose that there is a quadric Q5, which is in general position with Q2, such that

quadrics Q1,Q3,Q4,Q5 form a configuration of 11 tacnodes. The involutions [X :

Y : Z]→ [X :−Y : Z] and [X : Y : Z]→ [X : Y :−Z], exchanges Q3 and Q4, Q5 and

Q4 while fixing Q1 and Q3. Then Q5 = Q3, and hence, this graph is impossible. For

the same reason, the graph in Figure 4.4c is also impossible.

Next, consider the graph in Figure 4.4d. By Proposition 4.3.10, we may assume

that Q1 : X2 +Y 2− Z2 = 0, Q2 : 1
q2 X2−Y 2 + Z2 = 0, Q3 : X2 +Y 2− q2Z2 =

0 for some r ∈ C \ {0,∓1}. Then Q4 = M(Q3) and Q4 = M−1(Q3), where M =

M(q2+1
q2−1 , 2q

q2−1) ∈ H. In general, two quadrics which are both tangent to Q1 and Q2

are tangent to each other if and only if one of them is the image of the other under

M, so Q4 and Q5 are tangent to each other if and only if M3 = 1, which happens

if and only if q2 = −1/3 or q2 = −3. These are reciprocals of each other and give

projectively equivalent configurations. If we take q2 =−1/3, we obtain the quadrics

X2 +Y 2− Z2 = 0, −3X2 +Y 2− Z2 = 0, 3X2 + 3Y 2 + Z2 = 0 and 3X2− 2Z2∓
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i
√

3Y Z = 0. Note that this configuration is unique up to projective equivalence.

Fourth, consider the graph in Figure 4.4e. By Proposition 4.3.14 we may assume

that Q1 : X2 +Y 2−Z2 = 0, Q2 : 1
q2 X2 +Y 2−Z2 = 0, Q3 : X2 +(q2 +1)Y 2 +2qY Z =

0 and Q4 : X2 +(q2 +1)Y 2−2qY Z = 0 for some q ∈ C\{0,∓1,∓i}. By applying

the argument of the proof of Proposition 4.3.14 with the roles of Q1 and Q3 reversed,

Q5 must be the image of Q1 under the action of an element of the subgroup G′ of

PGL(3,C), fixing Q2, Q3 and the points [∓q : 0 : 1]. The subgroup G′ is the group

G =





N(ϕ,θ) =




ϕ 0 q2θ

0 1 0

θ 0 ϕ


 | detN(ϕ,θ) = ϕ

2−q2
θ

2 = 1




∼= C∗

Q1 and Q5 must be tangent to each other at one of the points [∓1 : 0 : 1], we may

assume it is [1 : 0 : 1], then Q5 is the image of Q1 under a group element which maps

[−1 : 0 : 1] to [1 : 0 : 1], which is N(0,−1). Hence the equation of Q5 is (q2 +3)X2 +

(q2−1)Y 2 +(3q2 +1)Z2−4(q2 +1)XZ = 0. The discriminant expressing condition

that Q4 and Q5 are tangent to each other, is 218(q2 +1)6(q2−1)10q2(q4−6q2 +1)2.

The only feasible solutions are the roots of q4−6q2 +1 = 0, q =∓1∓
√

2, but then

Q2, Q4 and Q5 are tangent to each other at the same point, for example if q =
√

2−1,

then this is the common point is [
√

2−1 : 1
√

2]. Thus, this graph is also impossible.

Finally, let us consider the graph in Figure 4.4f. By Proposition 4.3.13 we may

assume that Q1 : X2 +Y 2 + Z2 = 0, Q2 : X2 +Y 2−Z2 = 0, Q3 : X2−Y 2 + Z2 =

0 and Q4 : −X2 + Y 2 + Z2 = 0. Let αX + βY + γZ = 0 be the equation of the

line connecting the tangency points of Q1 and and Q5. Then by Lemma 4.3.7, the

equation of Q5 is λ(X2 +Y 2 +Z2)+(αX +βY + γZ)2 = 0 for some suitable λ ∈C.

By substituting parametrization [s2− t2 : 2st : s2 + t2] into the equation of Q5, we
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obtain the equation

f (s, t) = (2λ+(γ−α)2)t4 +4β(γ−α)st3 +(4λ−2α
2 +4β

2 +2γ
2)s2t2

+4β(γ+α)s3t +(2λ+(γ+α)2)s4 = 0.

Q1 and Q5 are tangent to each other at two points if and only if f (s, t) is a square

of reducible polynomial. So, either α2 + β2 = 0 or λ = − (α2+β2+γ2)
2 ∓ γ

√
α2 +β2.

But, if α2 +β2 = 0, then Q5 passes through one of the contact points of Q1 and Q2,

[1 :∓i : 0], so we must have the second possibility.

By doing the same calculations with Q3 and Q4, and comparing the expressions

for λ, one can obtain α2(β2 + γ2) = β2(α2 + γ2) = γ2(α2 +β2). So, α,β,γ can only

differ from each other by a sign. By changing the sign of some of the coordinates in

a suitable way, we may assume that α = β = γ = 1. Then, λ =−3
2 +∓

√
2, and the

equations for Q5 are

(∓2
√

2−1)(X2 +Y 2 +Z2)+4(XY +Y Z +ZX) = 0. (4.3.41)

Let Q+
5 and Q−5 be the quadrics obtained by choosing “+” and “−” sign in

(4.3.41), respectively. Two configurations of quadrics Q1,Q2,Q3,Q4,Q∓5 are not

projectively equivalent. Indeed, if there were such a projective transformation φ,

then Q1 would remain invariant, Q3,Q4,Q5 might be permuted among each other

and Q+
5 must be mapped to Q−5 . But, such a map φ only permutes X ,Y,Z and leaves

Q+
5 , Q−5 invariant.

Theorem 4.3.18. There exist exactly three configuration of conics of five quadrics

with seventeen tacnodes up to projective equivalence. First configuration corre-



108

sponds to graph in Figure 4.4d, and equations of quadrics are

Q1 : X2 +Y 2−Z2 = 0,

Q2 :−3X2 +Y 2−Z2 = 0,

Q3 : 3X2 +3Y 2−Z2 = 0,

Q4 : 3X2−2Z2− i
√

3Y Z = 0,

Q5 : 3X2−2Z2 + i
√

3Y Z = 0.

(4.3.42)

Last two configurations corresponds to graph in Figure 4.4d, and equations of

quadrics are

Q1 : X2 +Y 2 +Z2 = 0,

Q2 : X2 +Y 2−Z2 = 0,

Q3 : X2−Y 2 +Z2 = 0,

Q4 :−X2 +Y 2 +Z2 = 0,

Q∓5 : (∓2
√

2−1)(X2 +Y 2 +Z2)+4(XY +Y Z +ZX) = 0.

(4.3.43)

Question 4.3.19. Are the quintuplets (Q1,Q2,Q3,Q4,Q−5 ) and (Q1,Q2,Q3,Q4,Q+
5 )

Zariski pairs?

4.3.8 Six Quadrics with Twenty Four Tacnodes

The inequality t(n) ≤ 4
9n(n + 3) implies that the maximum number of tacnodes

for six quadrics may be 24. Suppose such configuration exist. Then, each vertices

of possible graphs must have degree eight (Megyesi & Szabó, 1996, Theorem 6).

Therefore, the possible graphs for such configurations are as in Figure 4.5.

Theorem 4.3.20. There is no six nondegenerate quadrics with twenty four tacnodes,

i.e., non of the graphs in Figure 4.5 is (complex) realizable.

Proof. First, let us consider the graph in Figure 4.5a. We may assume that the
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Q4

Q5

Q6

Q1

Q2

Q3

(a)

Q4

Q5

Q6

Q1

Q2

Q3

(b)

Q4

Q5

Q6

Q1

Q2

Q3

(c)

Q4

Q5

Q6

Q1

Q2

Q3

(d)

Figure 4.5 The four graph on 6 vertices and 24 edges.

quadrics Q1, Q2, Q4 and Q5 are as in Proposition 4.3.15. Since the configurations of

quadruples (Q1,Q2,Q4,Q5) and (Q3,Q2,Q6,Q5) are projectively equivalent, then

Q3 and Q6 must be respectively the images of Q1 and Q4 under a projective transfor-

mation fixing Q2, Q5 and their intersection points. This implies that Q5 must be

tangent to Q6 at two distinct points. But this contradicts the fact that the quadrics

Q5 and Q6 are in general position. So this graph can not be realized.

Second, consider the graph in Figure 4.5b. We may assume that the quadrics

Q1, Q2, Q3 and Q4 are as in Proposition 4.3.15, then Q1, Q2 and Q5 must have

the same reference with respect to the quadrics Q3 and Q4. This tell us that either

Q5 = Q1 or Q5 = Q2. Then, such configuration of the quadrics Q1, Q2, Q3, Q4 and

Q5 is impossible. Therefore, Figure 4.5b consist of an impossible configuration as

a subgraph, then it is also impossible.

Next, consider the graph in the Figure 4.5c. By the Proposition 4.3.16, we may
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assume that

Q1 : X2 +Y 2−Z2 = 0,

Q2 : p2X2 +(p2 +1)Y 2−2pY Z = 0,

Q4 : q2X2 +(q2 +1)Y 2−2qY Z = 0,

Q5 : (2pq− p−q)2X2 +[(p+q)(4pq−3p−3q+4)−4pq]Y 2

−(p−q)2Z2−4(p−1)(q−1)(p+q)Y Z = 0,

where p,q ∈ C \ {0,∓1}, p 6= ∓q, p + q 6= 2 and p + q 6= 2pq. The degenerate

quadric

−(1− p2)X2 +(pY −Z)2 = (
√

1− p2X + pY −Z)(−
√

1− p2X + pY −Z) = 0

consists of the common tangent lines of the quadrics Q1 and Q2. Then by Lemma

4.3.7, the equation of the line connecting the tangency points of Q1 and Q3 is
1
2 [α(

√
1− p2X + pY −Z)+ 1

α
(−
√

1− p2X + pY −Z)] = 0, and therefore the equa-

tion of Q3 is

X2 +Y 2−Z2 +
1
4
[(α− 1

α
)
√

1− p2X +(α+
1
α

)(pY −Z)]2 = 0,

where α ∈ C\{0,∓1}.

Let us substitute the parametrization {[2pst : 2ps2 : (p2 +1)s2 +t2] | [s : t]∈CP1}
of Q2 into the equation of Q3. Then we have obtained

f23(s, t) =
4

∑
i=0

aisitn−i

=
p4(1−α2)2

4α2 t4 +
p3(1−α2)(1−α2)

α2 st3

− p2(p2(α4 +6α2 +1)− (3α4 +2α2 +3))
2α2 s2t2

+
p(1− p2)(1−α2)(1+α2)

α2 s3t +
(1− p2)2(1−α2)2

4α2 = 0.
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If f (s, t) is a square of a reducible polynomial then

f 3
3 +8 f1 f 2

4 −4 f2 f3 f4 =
4p11(1+α2)(1−α2)3

α4 = 0.

This is possible only when α2 = −1. But, f23(s, t) = −p4t4− 2p2(1 + p2)s2t2−
(1− p2)2s4 will never be a square for α2 =−1, i.e Q2 and Q3 are in general position

which contradicts to fact that the quadrics Q2 and Q3 have two tacnodes. Thus, this

graph can not be realized.

Last, consider the graph in Figure 4.5d. By the Proposition 4.3.16, we may

assume that Q1 : X2 + Y 2 − Z2 = 0, Q2 : p2X2 + (p2 + 1)Y 2 − 2pY Z = 0, Q4 :

q2X2+(q2+1)Y 2−2qY Z = 0 and Q3 : (2pq− p−q)2X2+[(p+q)(4pq−3p−3q+

4)−4pq]Y 2−(p−q)2Z2−4(p−1)(q−1)(p+q)Y Z = 0, where p,q∈C\{0,∓1},
p 6= ∓q, p + q 6= 2, p + q 6= 2pq. By taking [0 : −1 : 1] instead of [0 : 1 : 1] as

tangency points of Q1 and Q4 in the proof of the Proposition 4.3.16, we will get the

equation (2pq+ p+q)2X2 +[(p+q)(4pq+3p+3q+4)−4pq]Y 2− (p−q)2Z2−
4(p + 1)(q + 1)(p + q)Y Z = 0 for Q5, where p,q ∈ C \ {0,∓1}, p 6= ∓q, pq 6= 1,

p + q 6= ∓2, p + q 6= ∓2pq. Now assume that such quadric Q6 exist. Then the

configuration of quadrics Q3, Q5 and Q6 has five tacnodes and they are projectively

equivalent to quadrics in (4.3.32). Note that the quadrics in (4.3.32) are invariant

under the involution [X : Y : Z]→ [−X : Y : Z], therefore the quadric Q6 must be

invariant under this involution since both Q3 and Q5 are invariant. Hence, Q6 is

tangent to Q2 at [0 : 2p : p2 +1], and to Q4 at [0 : 2q : q2 +1], so its equation must be

in the form aX2 +((p2 +1)Y −2pZ)((q2 +1)Y −2qZ) = 0 for some a ∈ C∗. Then

by substituting the parametrization {[2st : s2− t2 : s2 + t2] | [s : t] ∈CP1} of Q1 into

the equation of Q6, we will get

f16(s, t) = (p+1)2(q+1)2t2 +(4a+8pq−2(1+ p2)(1+q2))s2t2

+(p−1)2(q−1)2s4 = 0,

which is a square of a reducible polynomial if a = (p−q)2 or a = (pq−1)2.
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On the other hand since the point [0 : 1 : 1] lies on Q3, we can parametrize it by

using the line −sX + t(Y −Z) = 0, and its parametrization is

{[2(p+q−2pq)(2− p−q)st :−(p−q)2s2 +(2pq− p−q)2t2 :

(4pq(p+q−1)− (p+q)(3p+3q−4))s2 +(2pq− p−q)2t2] | [s : t] ∈ CP1}.

By substituting the parametrization of Q3 into the equation of Q6 we will get

f36(s, t) =(p−1)2(q−1)2(2pq− p−q)4t4

+2(2pq− p−q)2[(p+q−2)2− p4(5q2−4q+1)

−2p3(3q3−14q2 +9q−2)− p2(5q4−28q3 +58q2−28q+5)

+2pq(2q3−9q2 +14q−3)−q2(q2−4q+5)]s2t2

+(p2 +3pq−3p−q)2(q2 +3pq− p−3q)s4 = 0.

f3,6(s, t) is a square of a reducible polynomial if and only if either a = (2pq− p−q)2

or a = (p−q)2(pq−1)2

(p+q−2)2 .

Similarly, by parametrizing the quadric Q5 and substituting into the equation of

Q6, and taking into account the tangency conditions we will see that either a =

(2pq+ p+q)2 or a = (p−q)2(pq−1)2

(p+q+2)2 .

Hence a = (p− q)2 if pq∓ (p + q) = 3, or a = (pq− 1)2 if 3pq∓ (p + q) = 1.

In both cases p + q = 0 and we have already excluded this case. So, the graph in

Figure 4.5d can not be realized.



CHAPTER FIVE

ZARISKI VAN-KAMPEN THEOREM: AN OVERVIEW

Zariski van-Kampen theorem is a tool for computing fundamental groups of

complements to curves (germs of curve singularities, affine or projective plane

curves). It gives us the fundamental groups in terms of generators and relations.

Roughly speaking, the generators can be taken in a generic line and the relations

consist of identifying these generators with their images by some monodromies.

Before introducing this theorem we will overview definitions of homotopy between

continuous map, fundamental group, and give the statement of the classical van-

Kampen theorem. Then we will investigate the braid monodromy and give the

statement of the Zariski van-Kampent heorem based on the lecture notes of Shimada

(2007). In addition, we will also compute the local fundamental groups of the germs

in Figure 6.1, and fundamental groups of some quadric arrangements related to line

arrangements.

5.1 Homotopy Between Continuous Maps

Let us denote by I the closed interval [0,1] of R. Let X and Y be two topological

spaces, and let fi : X → Y , i = 1,2, be two continuous maps. A continuous map

F : X × I → Y is called a homotopy from f0 to f1 if it satisfies F(x,0) = f0(x),

F(x,1) = f1(x) for all x ∈ X . We say that f0 and f1 are homotopic and write f0 ' f1

if there exists a homotopy from f0 to f1. The relation ' is an equivalence relation,

and the equivalence class under the relation ' is called the homotopy class.

If there are continuous maps f : X→Y and g : Y →X such that g◦ f is homotopic

to the identity of X , and f ◦ g is homotopic to the identity of Y , then X and Y are

said to be homotopically equivalent.

Let A be a subspace of X . A homotopy F : X × I→ Y from f0 to f1 is said to be

stationary on A if F(a,s) = f0(a) for all (a,s) ∈ A× I. If there exists a homotopy

113
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stationary on A from f0 to f1, the maps f0 and f1 are called homotopic relative to A

and it is written as f0 'A f1. It is clear that 'A is an equivalence relation.

5.2 Definition of the Fundamental Group

Let x0 and x1 be points of a topological space X . A continuous map α : I → X

satisfying α(0) = x0 and α(1) = x1 is called a path from x0 to x1. Denote by [α]

the homotopy class relative to ∂I = {0,1} containing α. We define a path ᾱ : I→ X

from x1 to x0 by ᾱ(t) := α(1− t) and call ᾱ the inverse path of α. A constant map

to the point x0 is a path with both of the initial point and the terminal point being

x0. This path is denoted by ex0 .

Given two paths α,β : I → X such that α(1) = β(0), there is a composition or

product path α ·β that traverses first α and then β, defined by the formula

α ·β(t) =





α(2t), 0≤ t ≤ 1/2

β(2t−1), 1/2≤ t ≤ 1.

This product operation respects homotopy classes since if α0 ' α1 and β0 ' β1 via

homotopies F(s, t) and G(s, t), respectively, and if α0(1) = β1(0) so that α0 ·β0 is

defined, then the continuous map

H(s, t) =





F(s,2t), 0≤ t ≤ 1/2

G(s,2t−1), 1/2≤ t ≤ 1.

provides a homotopy α0 ·β0 ' α1 ·β1.

In particular, suppose we restrict attention to paths α : I → X with the same

starting and ending point α(0) = α(1) = x0 ∈ X . Such paths are called loops, and

the common starting and ending point x0 is referred as the basepoint. The set of all

homotopy classes [α] of loops α : I→ X at the base point x0 is denoted by π1(X ,x0).
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Proposition 5.2.1. π1(X ,x0) is a group with respect to the product [α][β] = [α ·β].

This group is called the fundamental group of X at the base point x0. If X is

path connected, then for any two base points x0 and x1 the fundamental groups

π1(X ,x0) and π1(X ,x1) are isomorphic. Indeed, if δ is a path from x0 to x1, then

the isomorphism Φδ : π1(X ,x1)→ π1(X ,x0) is given by Φδ([α]) = [δ ·α · δ̄]. The

inverse is given by Φ
δ̄
. Thus if X is path connected, the group π1(X ,x0) is, up to

isomorphism, independent of the choice of base point x0. In this case the notation

π1(X ,x0) is often abbreviated to π1(X).

In general, a space X is called simply connected if it is path connected and has

trivial fundamental group. For example, if n ≥ 2, then Sn is simply connected; the

circle S1 is path connected, but π1(S1)' Z.

Theorem 5.2.2. If X is path connected, then the abelianization π1/[π1,π1] of π1 :=

π1(X) is isomorphic to H1(X ,Z).

5.3 Van Kampen Theorem

The van Kampen theorem gives a method for computing the fundamental groups

of spaces that can be decomposed into simpler spaces whose fundamental groups

are already known. By systematic use of the van Kampen theorem one can compute

the fundamental groups of a very large number of spaces.

Theorem 5.3.1 (van Kampen). If X is a union of path connected open sets Ui each

containing the base point x0 ∈ X and if each intersection Ui∩U j is path connected,

then the homomorphism Ψ : ∗i π1(Ui)→ π1(X) is surjective. If in addition each

intersection Ui ∩U j ∩Uk is path connected, then the kernel of ψ is the normal

subgroup N generated by all elements of the form ιi j(µ)ι ji(µ)−1, where ιi j : π1(Ui∩
U j)→ π1(Ui) is the homomorphism induced by the inclusion Ui∩U j ↪→Ui, and so

ψ induces an isomorphism π1(X)' ∗i π1(Ui)/N.
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Example 5.3.2. Let Xn be the bouquet of n circles: Xn = S1 ∨ S1 ∨ ·· · ∨ S1. Then

π1(Xn) is isomorphic to the free group Fn of n letters. Let A be the set of distinct

n points on the complex plane C. Then C\A has homotopy type Xn, and therefore

π1(C\A) is also isomorphic to the free group Fn.

Example 5.3.3. Let A be the set of distinct n points on the complex projective line

CP1. Then π1(CP1 \A) is isomorphic to the free group Fn−1.

5.4 Braid Group

Let R := {Rλ}λ∈Λ be a subset of Fn := 〈a1,a2, · · · ,an〉, and let N(R ) be the

smallest normal subgroup of Fn containing R . The group generated by a1,a2, · · · ,an

with defining relations Rλ (λ ∈ Λ) is denoted by

Fn/N(R ) = 〈a1,a2, · · · ,an | Rλ = e, λ ∈ Λ〉

Example 5.4.1. The group 〈a | an = e〉 is isomorphic to Zn, and the group 〈a,b |
aba−1b−1 = e〉 is isomorphic to Z×Z.

Example 5.4.2. Let n be an integer≥ 2. Then the group generated by a1,a2, · · · ,an−1

with defining relations

a2
i = e for i = 1,2, · · · ,n−1,

aia j = a jai if |i− j|> 1,

aiai+1ai = ai+1aiai+1 for i = 1,2, · · · ,n−1,

is isomorphic to the full symmetric group Sn via ai 7→ (i, i+1).

Put Mn := Cn \ {the big diagonal} = {(z1,z2, · · · ,zn) ∈ Cn | zi 6= z j if i 6= j}.
The symmetric group Sn acts on Mn by interchanging the coordinates. We then put

Mn := Mn/Sn. This space Mn is the space parametrizing non-ordered sets of distinct

n points on the complex plane C (sometimes it is called the configuration space of
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C

time

C

Figure 5.1 A braid.

non-ordered sets of distinct n points on the complex plane C). By associating to a

non-ordered set of distinct n points {α1,α2, · · · ,αn} the coefficients λ1,λ2, · · · ,λn

of zn +λ1zn−1 +λ2zn−2 + · · ·+λn−1z+λn = (z−α1)(z−α2) · · ·(z−αn), we obtain

an isomorphism from Mn to the complement to the discriminant hypersurface of

monic polynomials of degree n in Cn. We put Pn := π1(Mn) and Bn := π1(Mn). The

group Pn is called the pure braid group on n strings, and the group Bn is called the

braid group on n strings. By definition, we have a short exact sequence

1→ Pn→ Bn→Sn→ 1 (5.4.1)

corresponding to the Galois covering Mn → Mn with Galois group Sn. The point

of the configuration space Mn is a set of distinct n points on the complex plane

C. Hence a loop in Mn is a movement of these distinct points on C, which can be

express by a braid as in Figure 5.1, whence the name the braid group.

The product in Bn is defined by the conjunction of of the braids. In particular, the

inverse is represented by the braid upside-down. For i = 1,2, · · · ,n−1, let σi be the

element of Bn represented by the braid given in Figure 5.2

Theorem 5.4.3 (Artin). The braid group Bn is generated by σ1,σ2, · · · ,σn−1, and
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1 i− 1 i i + 1 i + 2

i− 1 i i + 1 i + 2

n

· · · · · ·

Figure 5.2 The element σi.

σi

σi+1

σi

σi+1

σi

σi+1

'
homotopic

Figure 5.3 The relation σiσi+1σi = σi+1σiσi+1.

defined by the following relations:

σiσ j = σ jσi if |i− j|> 1,

σiσi+1σi = σi+1σiσi+1 for i = 1,2, · · · ,n−1.
(5.4.2)

The fact that Bn is generated by σ1,σ2, · · · ,σn−1 is easy to see. The relations

actually hold can be checked easily by drawing braids. See Figure 5.3. The difficult

part is that any other relations among the generators can be derived from these

relations. See Birman (1974) for the proof.

We can define an action from right of the braid group Bn on the free group Fn by

the following

aσi
j :=





a j, j 6= i, i+1,

aiai+1a−1
i , j = i,

ai, j = i+1.

(5.4.3)

This definition is compatible with the defining relation of the braid group.
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5.5 Monodromy on Fundamental Groups

Let p : X̃ → X be a locally trivial fiber space. Suppose that p : X̃ → X has a

section s : X → X̃ , that is, s is a continuous map satisfying p ◦ s = idX . We chose

a base point x̃0 of X̃ and x0 of X in such a way that x̃0 = s(x0) holds. We then put

Fx0 := p−1(x0). We can regard x̃0 as a base point of the fiber Fx0 . Then π1(X ,x0)

acts on π1(Fx0, x̃0) from right. This action is called the monodromy action on the

fundamental group of the fiber.

Indeed, suppose that we are given a loop γ : I→ X with the base point x0, and a

loop µ : I→ Fx0 with the base point x̃0 = s(γ(0)). The the fibers
(

p−1(γ(t)),s(γ(t))
)
,

t ∈ I form a trivial fiber space over I. We can deform the loop µ into a loop µt : I→
p−1(γ(t)) with the base point s(γ(t)) continuously. The loop µ1 : I→ p−1(γ(1)) with

the base point s(γ(1)) = x̃0 represents [µ][γ] ∈ π1(Fx0, x̃0). Serre’s lifting property of

locally trivial fiber space implies that [µ][γ] = [µ1] is independent of the choice of the

representing loops γ : I→ X and µ : I→ Fx0 .

Suppose we have a trivial fibration p : X̃ → X , where X̃ = X ×F . For a point

y0 ∈ F , the map x 7→ (x,y0) defines a section of p : X̃ → X . In this case π1(X ,x0)

acts on π1(F,y0) trivially. On the other hand, for any continuous map η : X → F ,

the map x 7→ (x,η(x)) defines a section of p : X̃ → X . In this case the pointed fibers

are (F,η(γ(t))). Let ηt : [0, t]→ F be the path defined on F from η(x0) to η(γ(t))

by ηt := η(γ(s)). Then µt := η
−1
t µηt is a deformation of µ. Hence π1(X ,x0) acts on

π1(F,η(x0)) by [µ][γ] = (η∗[γ])−1[µ](η∗[γ]).

Definition 5.5.1. A good set of loops µ0,µ1, · · ·µd based at z ∈ C \ {z0,z1, · · · ,zd}
is constructed in the following manner. Let ∆i be closed discs around zi mutually

disjoint and not containing z. For each i ∈ {0,1, · · · ,d}, let ωi be a path connecting

z to a point of the boundary of ∂∆i of ∆i, and ∂∆i runs once in counter clockwise

direction. The paths ωi are required not to meet together except at their origin. For

0 ≤ i ≤ d, take the loops µi = ωi∂∆iω
−1
i . Such kind of good loops µi are called
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meridians of zi in C\{z0, · · · ,zd}. Note that any two meridians of zi are conjugate

in π1(C \ {z0, · · · ,zd}). From now on, for the sake of simplicity we will denote by

µi the homotopy class [µi].

5.6 Monodromy around a Curve Singularity

Let ∆ρ denote the open disc {z∈C | |z|< ρ}. Consider the curve C on ∆2ε×∆2ρ

defined by xm− yd = 0, where m,d ∈ Z≥2. Let p̄ : ∆2ε× ∆2ρ → ∆2ε be the first

projection (x,y) 7→ x. We assume ρ is large enough compared with ε. We put

∆
∗
2ε := ∆2ε \{0} and Y := p̄−1(∆∗2ε)∩ ((∆2ε×∆2ρ)\C).

Then the restriction p : Y → ∆∗2ε
of p̄ is locally trivial. The fiber over x ∈ ∆∗2ε

is

∆2ρ minus the d-th roots of xm. Choose the base point of ∆∗2ε
at x0 := ε. Let c be a

positive real number such that |2ε|m/d < c < ρ. Then the map x 7→ (x,c) gives us a

section of p : Y → ∆∗2ε
. Put Fx0 := p−1(x0), and x̃0 := s(x0) = (ε,c).

The group π1(∆∗2ε
,x0) is an infinite cyclic group generated by the homotopy class

γ = [g] of the loop g(t) = εexp(2πit). On the other hand, the fiber Fx0 is homotopic to

the bouquet of d circles, and hence its fundamental group π1(Fx0, x̃0) is a free group

generated by d elements µ0,µ1, · · · ,µd−1 which are represented by the meridians

given in Figure 5.5 (It is drawn for the case (m,d) = (2,3)).

Main idea of the Braid monodromy technique is analyse the deformation of the

fiber p−1(g(t)) while t goes from 0 to 1 with the base point s(g(t)). The base point

is constant at c. The deleted points moves around the origin with angular speed

2πm/d, since g(t)d moves around the origin with angular speed 2πm. Therefore, the

meridians around the deleted points are dragged around the origin, and when g(t)

comes back to the starting point , the meridian µi is deformed into the meridian µ̃i.

Therefore the monodromy action of π1(∆∗2ε
,x0) = 〈γ〉 on the free group π1(Fx0, x̃0) =
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Figure 5.4 The monodromy action on π1(Fx0 , x̃0) when C : x2− y3 = 0.

〈µ0,µ1, · · · ,µd−1〉 is given by µγ

i = µ̃i. Note that, the big loop around the origin is

represented by the homotopy class δ := µd−1µd−2 · · ·µ1µ0. Let j ∈ Z≥0, and r is the

remainder of j divided by d. Set µ j = µad+r := δaµrδ
−a, then we have µ̃i = µi+m.

Hence the monodromy action of π1(∆∗2ε
,x0) on π1(Fx0, x̃0) is given by µγ

i = µi+m.

We will discuss local fundamental group of curve singularities in the Section 5.10.

5.7 The Fundamental Group of the Total Space

Suppose that a group H acts on a group N from right, i.e., n 7→ nh (n∈N, h∈H).

Define a product on the set N ×H by (n1h1)(n2h2) = (n1n
h−1

1
2 ,h1h2). Under this

product, N×H becomes a group, which is called the Semi-direct product of N and

H, and denoted by N o H.

The map n 7→ (n,eh) defines an injective homomorphism ι : N→ N o H, whose

image is a normal subgroup of N oH, so one can regard N as a normal subgroup of

N o H. On the other hand, the map (n,h) 7→ h defines a surjective homomorphism

ϑ : N o H → H whose kernel is N. Hence H can be identified with (N o H)/N. In

addition, the map h 7→ (eN ,h) defines an injective homomorphism σ : H → N o H

such that ϑ◦σ = idH , and one can regard H as a subgroup of N oH. Thus we have
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a splitting short exact sequence

1 // N ι // N o H
ϑ //

H
σ

oo // 1. (5.7.1)

Proposition 5.7.1. Let p : X̃ → X be a locally trivial fiber space with a section

s : X → X̃ . Suppose X̃ is path connected. Let x0 be a base point of X, and put

x̃0 := s(x0), Fx0 := p−1(x0). Then the fundamental group π1(X̃ , x̃0) of total space

X̃ is isomorphic to the semi-direct product π1(Fx0, x̃0)o π1(X ,x0) constructed from

the monodromy action of π1(X ,x0) on the free group π1(Fx0, x̃0).

Proof. Since X̃ is path connected, than both of the fiber Fx0 and the base space X are

path connected, and there is a section s : X → X̃ . Let i : Fx0 ↪→ X̃ be the inclusion.

Then we have the homotopy exact sequence

i∗// π2(X̃ , x̃0)
p∗ // π2(X ,x0) // π1(Fx0 , x̃0)

i∗ // π1(X̃ , x̃0)
p∗ // π1(X ,x0)→ 1.

Moreover, the section s induces a homomorphism s∗ : π2(X ,x0)→ π2(X̃ , x̃0) such

that the composition π2(X ,x0)
s∗ // π2(X̃ , x̃0)

p∗ // π2(X ,x0) is the identity. There-

fore, p∗ : π2(X̃ , x̃0 → π2(X ,x0) is surjective and hence we obtain a short exact

sequence

1 // π1(Fx0, x̃0)
i∗ // π1(X̃ , x̃0)

p∗ // π1(X ,x0) // 1. (5.7.2)

There is a section s∗ : π1(X ,x0)→ π1(X̃ , x̃0) of p∗ : π1(X̃ , x̃0)→ π1(X ,x0), and one

can regard π1(Fx0, x̃0) as a normal subgroup of π1(X̃ , x̃0) by i∗. Define an action

of π1(X ,x0) on π1(Fx0, x̃0) by µ 7→ s∗(γ)−1µs∗(γ), where γ ∈ π1(Fx0 , x̃0) and µ ∈
π1(X ,x0). This group theoretic action coincides with the monodromy action µ 7→ µγ

of π1(X ,x0) on π1(Fx0, x̃0). The short exact sequence (5.7.2) implies that π1(X̃ , x̃0) is

isomorphic to the semi direct product π1(Fx0 , x̃0)o π1(X ,x0), and the isomorphism

π1(Fx0, x̃0)o π1(X ,x0)→ π1(X̃ , x̃0) is given by (µ,γ) 7→ i∗(µ)s∗(γ).
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5.8 Fundamental Groups of Complemets to Subvarieties

Let M be a connected complex manifold, and V a proper closed analytic subspace

of M. Let ι : M \V ↪→M be the inclusion. Chosen a base point x0 ∈M \V , we have

an epimorphism ι∗ : π1(M \V,x0)→ π1(M,x0). If the codimension of V in M is at

least 2, then ι∗ is an isomorphism. Indeed, if V is of codimension ≥ 2, than M \V is

simply connected and the group H1(M \V ) is trivial.

The following well known theorem is the most famous result considering only

the case n = 2.

Theorem 5.8.1 (Zariski-Lefschetz hyperplane section theorem (Zariski, 1937)). Let

V be a hypersurface in CPn. Then the inclusion homomorphism π1(H \V ) →
π1(CPn \V ) is an isomorphism for a generic plane H = CP2 in CPn.

Abelianizing the above isomorphism, we get H1(CP2\C) = H1(CPn\V ), where

C := H ∩V = CP2∩V . Now, if C is reduced plane algebraic curve with the irreducible

components Ci of di for 1 ≤ i ≤ k, then the homology groups of CP2 \C are quite

simple and do not give to much information. By the Lefschetz duality and by the

exact sequence of the pair (CP2,C), one has

H1(CP2 \C,Z)' Zk−1⊕Zd, d := gcd(d1,d2, · · · ,dk) (5.8.1)

whereas the fundamental group π1(CP2\C) is much more informative. In particular

if C is irreducible (k = 1), we have H1(CP2 \C,Z)' Zd1 .

5.9 Zariski Van-Kampen Theorem

Let p : M → C be a surjective homomorphic map from a connected complex

manifold M to a 1-dimensional complex manifold C. Suppose that the following

conditions are satisfied.
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(a) The curve C is simply connected.

(b) There exists a holomorphic map s : C→M such that p◦ s = idC.

(c) There exists a set Pm of m points of C such that the restriction p0 : M0→C\Pm

of p to M0 := p−1(C \Pm) is a locally trivial fiber space.

Let z0 and z̃0 := s(z0) be base points of C \ Pm and M0, respectively. Denote

Fz0 := p−1(z0) the fiber over z0 and by i : Fz0 ↪→ M the inclusion map. As it is

explained in the Section 5.5, the fundamental group π1(C \Pm) acts on π1(Fz0 , z̃0)

from the right via µ 7→ µγ, where µ∈ π1(Fz0 , z̃0) and γ∈ π1(C\Pm,z0). The following

the theorem of Zarsiki van-Kampen in this general setting.

Theorem 5.9.1 (Zarsiki van-Kampen theorem). Suppose that the conditions (a),

(b) and (c) are satisfied. Then i∗ : π1(Fz0, z̃0)→ π1(M, z̃0) is surjective. Suppose

moreover that the following condition is satisfied:

(d) For each point zi ∈ Pm, the fiber p−1(zi) is irreducible.

Then the kernel of i∗ is the smallest subgroup of π1(Fz0, z̃0) containing the subset

{µ−1µγ | µ∈ π1(Fz0 , z̃0), γ∈ π1(C\Pm,z0)}. In addition, π1(M0, z̃0) is isomorphic to

the semi-direct product π1(Fz0, z̃0)oπ1(C\Pm,z0) constructed from the monodromy

action of π1(C \Pm,z0) on π1(Fz0, z̃0).

As a consequence of the Theorem 5.9.1 we have the following corollary.

Corollary 5.9.2. Suppose that p : M→ C satisfies the conditions (a), (b), (c), (d)

and π1(Fz0 , z̃0) is a free group generated by µ0,µ1, · · · ,µd−1. Suppose that the group

π1(C \ Pm,z0) is generated by γ1,γ2, · · · ,γm. Then π1(M, z̃0) is isomorphic to the

group defined by the presentation

〈µ0,µ1, · · · ,µd−1 | µγi
j = µ j, i = 1,2, · · · ,m, j = 0,1, · · · ,d−1〉.
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5.10 Local Fundamental Group of Curve Singularities

In the Section 5.6, we have discussed the monodromy action around the curve

singularity for the affine curve C : xm− yd = 0, where m,d ∈ Z≥2. Assume that

π1(Fz0 , z̃0) is a free group generated by µ0,µ1, · · · ,µd−1. The monodromy relation

was µ j+m = µ j. Then by Corollary 5.9.2, the fundamental group π1(∆2ε×∆2ρ \C)

is isomorphic to Gm,d defined by the presentation below:

Gm,d :=
〈
δ,µ j | δ = µd−1µd−2 · · ·µ0, µ j+d = δµ jδ

−1, µ j = µ j+m, j ∈ Z
〉

(5.10.1)

Theorem 5.10.1. Assume that C is a curve given by the equation xm− ym = 0,

which is a pencil of m lines. Then the local fundamental group of its complement is

isomorphic to the group

Gm,m = 〈δ,µ j | δ = µm−1µm−2 · · ·µ0, [δ,µ j] = 1, j = 0,1, · · · ,m−1〉. (5.10.2)

Proof. Set d = m in (5.10.1), then the relations µ j = µ j+m and µ j+m = δµ jδ
−1 imply

that µ jδ = δµ j, i.e, [δ,µ j] = 1, j = 0,1, , · · · ,m−1.

If m = 2, then δ = µ1µ0. The relations [δ,µ j] = 1 reduces to [µ0,µ1] = 1. Hence,

G2,2 = 〈µ0,µ1 | µ0µ1 = µ1µ0〉 is isomorphic to the abelian group Z×Z.

Theorem 5.10.2. Suppose C is an affine curve given by the equation x2− y2n = 0.

Then the local fundamental group of its complement is isomorphic to the group

G2,2n defined by the presentation 〈µ0,µ1 | (µ0µ1)n = (µ1µ0)n〉.

Proof. Set m = 2 and d = 2n in (5.10.1), then the relation µ j = µ j+2 imply that

µ j+2n = µ j for any j ∈Z, and µ2k−1 = µ1, µ2k = µ0 for any k ∈Z. Then we have δ =

µ2n−1µ2n−2 · · ·µ0 =(µ1µ0)n and [δ,µ j] = 1 by the relation µ j+2n = µ j = δµ jδ
−1. Note

that, µ0δ = (µ0µ1)nµ0 and δµ1 = µ1(µ0µ1)n. Therefore we have (µ1µ0)n = (µ0µ1)n

from the relations δµ j = µ jδ, j = 1,2.
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Theorem 5.10.3 (Oka, 1975). Suppose C is the affine curve given by the equation

xm−yd = 0, where m and d are co-prime integers. Then the local fundamental group

Gm,d of its complement is isomorphic to the group G′ defined by the presentation

〈α,β | αm = βd〉.

Proof. For any j ∈ Z, let (a j,b j) be a pair of integers satisfying a jd + b jm = j.

From the relations µ j+d = δµ jδ
−1 and µ j = µ j+m, we have

µ j+k = µa jd+b jm+k = µa jd+k = δ
a jµkδ

−a j

for all k ∈ Z. Therefore µ j+d−1µ j+d−2 · · ·µ j = δa j(µd−1µd−2 · · ·µ0)δ−a j = δ. Define

an element τ ∈ Gm,d by τ = µm−1µm−2 · · ·µ0. Then we have

δ
m = µmd−1µmd−2 · · ·µ0 = τ

d.

In addition, since δa1+kmτb1−kd = δa1τb1 for any integer k, we can assume b1 > 0

and a1 < 0. Then we have

δ
a1τ

b1 = (µ|a1|dµ|a1|d−1 · · ·µ1)−1(µb1m−1µb1m−2 · · ·µ0)

= (µ−1
1 · · ·µ−1

|a1|d−1µ−1
|a1|d)(µb1m−1µb1m−2 · · ·µ0)

= µ0,

because b1m−1 = |a1|d. This means, every element of Gm,d can be written in terms

of δ and τ, Explicitly µ j = δa jµ0δ−a j = δa j(δa1τb1)δ−a j . Hence we can define a

surjective homomorphism ϕ : G′→Gm,d by α 7→ δ, β 7→ τ. It’s inverse homomorphism

ϕ−1 : Gm,d → G′ is δ 7→ α, µ j 7→ αa j(αa1βb1)α−a j . Note that, from αm = βd , the

right hand side does not depend on the choice of the pair (a j,b j). Thus ϕ is an

isomorphism.

Under the notations in Section 5.6 let us now consider the curve C on ∆2ε×∆2ρ

defined by y(xm− yd) = 0. The fiber over x ∈ ∆∗2ε
is ∆2ρ minus 0 and the d-th roots
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c

θ0

µ0

µ1

µ2
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µ0

µ1
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(b)

Figure 5.5 The monodromy action on π1(Fx0 , x̃0) when C : y(x2− y3) = 0.

of xm. Choose the base point of ∆∗2ε
at x0 := ε. The group π1(∆∗2ε

,x0) is an infinite

cyclic group generated by the homotopy class γ = [g] of the loop g(t) = εexp(2πit).

On the other hand, denote by θ0 the meridian around 0 in Fx0 , and by µ j the

meridians around d-th roots of xm in Fx0 . The fiber Fx0 is homotopic to the bouquet of

d +1 circles, and hence its fundamental group π1(Fx0 , x̃0) is a free group generated

by d +1 elements θ0,µ0,µ1, · · · ,µd−1 which are represented by the meridians given

in Figure 5.5a (It is drawn for the case (m,d) = (2,3)).

The monodromy action π1(∆∗2ε
,x0) on π1(Fx0 , x̃0) rotates the d-th roots of xm

around the origin with angular speed 2πm/d while fixing the point 0. Therefore the

meridians θ0 and µi are deformed to the meridians θ̃0 and µ̃i, respectively (See

Figure 5.5b). Therefore the monodromy action of π1(∆∗2ε
,x0) = 〈γ〉 on the free

group π1(Fx0, x̃0) = 〈θ0,µ0,µ1, · · · ,µd−1〉 is given by θ
γ

0 = θ̃0 and µγ

i = µ̃i. Set δ :=

µd−1µd−2 · · ·µ0 and δ0 = δθ0. The homotopy class δ0 is represented by the big

loop around all deleted points. Let j ∈ Z≥0, j = ad + r and r is the remainder of

j divided by d. Set µ j := δa
0µrδ

−a
0 , then we have the relation µ̃i = µi+m. In addition,

set θk = δk
0θ0δ

−k
0 and τ := µm−1µm−2 · · ·µ0, then we have θ̃k = τθkτ−1. Hence the

monodromy action of π1(∆∗2ε
,x0) on π1(Fx0, x̃0) is given by the relations θ

γ

k = τθkτ−1

and µγ

i = µi+m. Then by Corollary 5.9.2, the fundamental group π1(∆2ε×∆2ρ \C) is
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isomorphic to Gm,d,0 defined by the presentation below:

Gm,d,0 :=

〈
θk,δ0,τ,µ j

∣∣∣∣∣∣
δ0 = µd−1µd−2 · · ·µ0θ0, τ = µm−1µm−2 · · ·µ0, τθk = θkτ,

θk = δk
0θ0δ

−k
0 , µ j+d = δ0µ jδ

−1
0 , µ j = µ j+m, j,k ∈ Z

〉

(5.10.3)

First of all, let us discuss the basic cases y(x− yn) = 0 and y(xn− y) = 0.

• If (m,d) = (1,n), then by the notations of (5.10.3), the monodromy relations

for µ j’s are µ j = µ j+1. Therefore δ0 = µn
0θ0, and the relation µ j = µ j+n =

δ0µ jδ
−1
0 implies µ0θ0 = θ0µ0 which is the monodromy relation for θ0. Since

µ j = µ0, δ0 = µn
0θ0 and θk = δk

0θ0θ−k, then every element of G1,n,0 can be

written in terms of µ0 and θ0. Therefore, the group G1,n,0 has presentation

〈µ0,θ0 | µ0θ0 = θ0µ0〉 ' Z×Z. Note that this is isomorphic to the group G2,2

in (5.10.2). Because, the line y = 0 and the curve x−yn = 0 meet transversally

at the origin.

• If (m,d) = (n,1), the fiber over x ∈ ∆∗2ε
is ∆2ρ minus 0 and the point xn, denote

the loops around them by θ0 and µ0, respectively. The loop δ0 := µ0θ0 is

the big loop surrounding these two deleted points. The monodromy action

π1(∆∗2ε
,x0) on π1(Fx0, x̃0) rotates n times the the point xn around the origin

while fixing the point 0. Thus the monodromy relations are µ0 = δn
0µ0δ

−n
0 and

θ0 = δn
0θ0δ

−n
0 . Taking into account the relation δ0 = µ0θ0, one can easily show

that these two relations are equivalent to the relation (µ0θ0)n = (θ0µ0)n. Thus,

Gn,1,0 = 〈θ0,µ0 | (µ0θ0)n = (θ0µ0)n〉 which is isomorphic to the group G2,2n

in Theorem 5.10.2.

Now, we will study the cases, (m,d) ∈ {(m,m),(2,2n),(2n,2)} and the case m

and d are co-prime. These cases are stated explicitly in the following theorems.

Theorem 5.10.4. Assume that C is a curve given by the equation y(xm− ym) = 0,

which is a pencil of m+1 lines. Then the local fundamental group of its complement

is isomorphic to the group Gm+1,m+1 in (5.10.1).
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Proof. Set d = m in (5.10.3), then the relations µ j = µ j+m and µ j+m = δ0µ jδ
−1
0

imply that µ jδ0 = δ0µ j, i.e, [δ0,µ j] = 1, j = 0,1, , · · · ,m−1. In addition,

θk = δ
k
0θ0δ

−k
0 = (τθ0)k

θ0(τθ0)−k = (θ0τ)k
θ0(τθ0)−k = θ0(τθ0)k(τθ0)−k = θ0

for all k ∈ Z, and the relation δ0 = τθ0 = θ0τ is equivalent to δ0θ0 = θ0τθ0 = θ0δ0.

Then, it is clear that Gm,m,0 is isomorphic to group

〈θ0,δ0,µ j | δ0 = µm−1µm−2 · · ·µ0θ0, [δ0,µ j] = [δ0,θ0] = 1, j = 0,1, · · · ,m−1〉.

This group is also isomorphic to the group Gm+1,m+1 via θ0 7→ µ0, δ0 7→ δ, µ j 7→
µ j+1, j = 0,1, · · · ,m−1.

Theorem 5.10.5. Suppose C is an affine curve given by the equation y(x2−y2n) = 0.

Then the local fundamental group of its complement is isomorphic to the group

G2,2n,0 defined by the presentation

〈
θ0,µ0,µ1 | µ1µ0θ0 = θ0µ1µ0, (µ1µ0)n

θ0 = µ0θ0µ1(µ0µ1)n−1〉 (5.10.4)

Proof. Set m = 2 and d = 2n in (5.10.3), then the relation µ j = µ j+2 imply that

µ j+2n = µ j for any j ∈ Z, and µ2k−1 = µ1, µ2k = µ0 for any k ∈ Z. Then we have

τ = µ1µ0, δ0 = µ2n−1µ2n−2 · · ·µ0θ0 = (µ1µ0)nθ0, [µ1µ0,θ0] = 1; and [δ0,µ j] = 1. Note

that,

µ0δ0 = µ0(µ1µ0)n
θ0 = µ0θ0(µ1µ0)n = µ0θ0µ1(µ0µ1)n−1µ0,

δ0µ0 = (µ1µ0)n
θ0µ0,

µ1δ0 = µ1(µ1µ0)n
θ0,

δ0µ1 = (µ1µ0)n
θ0µ1 = µ1(µ0µ1)n−1µ0θ0µ1.

Therefore the relations [δ0,µ j] = 1 imply that (µ1µ0)nθ0 = µ0θ0µ1(µ0µ1)n−1. To

complete proof it is enough to show that θk = θ0 for all k ∈ Z. This comes from the
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relations τθk = θkτ and θk = δk
0θ0δ

−k
0 , k ∈ Z. Indeed,

θk = (τn
θ0)k

θ0(τn
θ0)−k = τ

nk
θ

k
0θ0θ

−k
0 τ
−nk = θ0 for all k ∈ Z.

Thus, the group G2,2n,0 has presentation (5.10.5).

Theorem 5.10.6. Suppose C is an affine curve given by the equation y(x2n−y2) = 0.

Then the local fundamental group of its complement is isomorphic to the group

G2n,2,0 defined by the presentation

〈θ0,µ0,µ1 | (µ1µ0θ0)n = (µ0θ0µ1)n = (θ0µ1µ0)n〉 (5.10.5)

Proof. Set m = 2n and d = 2 in (5.10.3), then clearly δ0 = µ1µ0θ0, and the relation

µ j+2 = δ0µ jδ
−1
0 imply that

µ j =





δk
0µ1δ

−k
0 j = 2k +1

δk
0µ0δ

−k
0 j = 2k.

(5.10.6)

Therefore, we have δn
0 = τθn

0. Indeed,

τ = µ2n−1µ2n−2 · · ·µ1µ0

= (δn−1
0 µ1δ

−n+1
0 )(δn−1

0 µ0δ
−n+1
0 ) · · ·(δ0µ1δ

−1)(δ0µ0δ
−1)µ1µ0

= δ
n
0(δ
−1
0 µ1µ0)n

= δ
n
0θ
−n
0

Then by using the relation τθ0 = θ0τ, we get δn
0θ0 = θ0δn

0 which implies

(µ1µ0θ0)n = (θ0µ1µ0)n. (5.10.7)

On the other hand the relations µ j+2n = µ j and µ j+2 = δ0µ jδ
−1
0 implies

µ j = δ
n
0µ jδ

−n
0 , i.e., (µ1µ0θ0)nµ j = µ j(µ1µ0θ0)n, j = 1,2. (5.10.8)



131

These two relations (5.10.7) and (5.10.8) equivalent to the relation

(µ1µ0θ0)n = (µ0θ0µ1)n = (θ0µ1µ0)n. (5.10.9)

Finally, since the equality (5.10.6) is valid together with the equalities θk =

δk
0θ0δ

−k
0 , δ0 = µ1µ0θ0 and τ = δn

0θ
−n
0 for all j,k ∈ Z, then any element of G2n,2,0

can be written as a word of the letters µ0,µ1,θ0 and their inverses. Thus, G2n,2,0 is

the group generated by µ0,µ1,θ0 with relations (5.10.9).

Theorem 5.10.7. Suppose C is the affine curve given by the equation y(xm−yd) = 0,

where m and d are co-prime integers. Then the local fundamental group Gm,d,0 of

its complement is isomorphic to the group G′0 defined by the presentation

〈α,β,θ | αm
θ
−m = β

d, βθ = θβ〉. (5.10.10)

Proof. Proof is similar to the proof of Theorem 5.10.3. For any j ∈ Z, let (a j,b j)

be a pair of integers satisfying a jd + b jm = j. In particular, since (m,d) = 1 then

akd = k, bkm = k while akm = bkd = 0. From the relations µ j+d = δ0µ jδ
−1
0 and µ j =

µ j+m, we get

µ j+k = µa jd+b jm+k = µa jd+k = δ
a j
0 µkδ

−a j
0

for all k ∈ Z. Then we have

µ j+d−1µ j+d−2 · · ·µ jθa j = δ
a j
0 (µd−1µd−2 · · ·µ0θ0)δ

−a j
0 = δ

a j
0 δ0δ

−a j
0 = δ0,

which implies µ j+d−1µ j+d−2 · · ·µ j = δ0θ−1
a j

. Therefore we have the relation

τ
d = µmd−1µmd−2 · · ·µ0

= δ0θ
−1
m−1δ0θ

−1
m−2 · · ·δ0θ

−1
1 δ0θ

−1
0

= δ0(δ
(m−1)
0 θ

−1
0 δ
−(m−1)
0 )δ0(δ

(m−2)
0 θ

−1
0 δ
−(m−2)
0 ) · · ·δ0(δ0θ

−1
0 δ
−1
0 )δ0θ

−1
0

= δ
m
0 θ
−m
0
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Since (δ0θ−1)a1+kmτb1−kd = (δ0θ−1)a1τb1 for any integer k, we can assume b1 > 0

and a1 < 0. Then we have

(δ0θ
−1
0 )a1τ

b1 = (µ|a1|dµ|a1|d−1 · · ·µ1)−1(µb1m−1µb1m−2 · · ·µ0)

= (µ−1
1 · · ·µ−1

|a1|d−1µ−1
|a1|d)(µb1m−1µb1m−2 · · ·µ0)

= µ0,

because b1m−1 = |a1|d. Therefore µ j = δ
a j
0 µ0δ

−a j
0 = δ

a j
0 (δ0θ

−1
0 )a1τb1δ

−a j
0 . We also

know that θk = δk
0θ0δ

−k
0 . Hence, every element of Gm,d,0 can be written in terms of

δ0, θ0 and τ.

Thus, we can define a surjective homomorphism ϕ : G′0→Gm,d,0 by α 7→ δ0, β 7→
τ and θ 7→ θ0. It’s inverse homomorphism ϕ−1 : Gm,d,0→ G′0 is given by δ0 7→ α,

µ j 7→ αa j(αθ−1)a1βb1α−a j and θ0 7→ θ. Note that, from αmθ−m = βd , the right hand

side does not depend on the choice of the pair (a j,b j). Thus ϕ is an isomorphism.

5.11 Zariski Van-Kampen Theorem for Projective Plane Curves

Let C ⊂ CP2 be a complex projective plane curve defined by a homogeneous

equation Φ(X ,Y,Z) = 0 of degree d. Suppose that C is reduced, that is Φ does not

have any multiple factor. The complement CP2 \C is path-connected. We consider

the fundamental group π1(CP2 \C). Choose a base point a ∈ CP2 \C. By a linear

coordinate transformations, we can assume that a := [0 : 1 : 0]. Since a /∈ C, the

coefficient of Y d in Φ is not zero. Let L ⊂ CP2 be the line defined by the equation

Y = 0. For a point P ∈ L, let pa⊂ CP2 be the line connecting p and a. Put

X̃ := {(p,q) ∈ L×CP2 | Q ∈ pa }, (5.11.1)
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and let f̃ : X̃ → L and ρ : X̃ → CP2 be the projections onto each factors. If q 6= a,

then f̃−1(q) consists of a single point, while E := ρ−1(a) is isomorphic to L by f̃ .

The morphism ρ : X̃ → CP2 is called the blowing up of CP2 at a, and E is called

the exceptional divisor (See Figure 5.6).

Put X := X̃ \ρ−1(C), and let f : X → L be the restriction of f̃ . Since the lifting

ρ−1(C) and the exceptional divisor E has no common point , then ρ induces an

isomorphism from X \E to CP2 \ (C ∪ {a}), and we the following commutative

diagram:

π1(X \E) ∼//

����

π1(CP2 \ (C∪{a}))
∼

��
π1(X )

(ρ|X )∗
// π1(CP2 \C),

(5.11.2)

where the vertical arrows are induced from inclusions. The left vertical arrow is

surjective because E is a proper subvariety of X , and the right vertical arrow is an

isomorphism because {a} is a proper subvariety of CP2 \C with codimension 2.

Hence ρ |X induces an isomorphism. Therefore, we will calculate π1(X ).

E

ρ−1(L)

ρ−1(C)
ρ

a

L

C

Figure 5.6 Blowing up at a.

For any point p ∈ L, the blow-up map ρ maps the intersection points of f̃−1(p)

and ρ−1(C) to the intersection points of pa and C bijectively. Suppose that p is the

point [ξ : 0 : η], then pa is the line {[ξ : t : η] | t ∈ C∪{∞}}, which correspond

to a if t = ∞. Hence the intersection points of pa and C correspond to the roots of

Φ(ξ, t,η) = 0 bijectively. Let DΦ(ξ,η) be the discriminant of Φ(ξ, t,η) regarded

as a polynomial of t. Since we assumed Φ has no multiple factors, DΦ(ξ,η) is not
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zero. It is a homogeneous polynomial of degree d(d−1) in ξ and η. Put

P := {[ξ : 0 : η] | DΦ(ξ,η) = 0}.

If p∈ L\P , then f−1(p) is the line pa minus d distinct points. Hence the restriction

of f to f−1(L\P ) is a locally trivial fiber space over L\P .

Choose a base point of X at z̃0 ∈ E \ (E ∩ f−1(P )), and let z0 := f (z̃0) be the

base point of L and Fz0 := f−1(z0) be the fiber of f at z0. The map p 7→ (p,a) is the

holomorphic section s : L→ X of f : X → L that passes through z̃0. The image of

s id E. Hence π1(L \P ) acts on π1(Fz0) from right. The projective line L is simply

connected, and every fiber of f is irreducible since it is a projective line minus

some points. Moreover, π1(Fz0) is the free group generated by homotopy classes

µ1,µ2, · · · ,µd−1 of d−1 meridians around d−1 points of Fz0 ∩ρ−1(C). Remember

if one choose one of the points as the point at infinity, then a complex projective

line minus d points is homotopic to complex plane C minus d−1 points, which has

homotopy type of bouquet of d− 1 circles. So, π1(Fz0, z̃0) is a free group of d− 1

generators. But one may add µd as a generator with the relation µdµd−1 · · ·µ1 = 1.

Now we can apply the Corollary 5.9.2. Suppose that P := Pm = {z1,z2, · · · ,zm}⊂ L.

Then π1(L \Pm,z0) is the free group generated by homotopy classes γ1,γ2, · · ·γm−1

of m−1 meridians around m−1 points of Pm. One may add γm to π1(L\Pm,z0) as

generator with the relation γmγm−1 · · ·γ1 = 1 (See Figure 5.7).

Theorem 5.11.1 (Zariski (1929), van Kampen (1933)). Under the notations above,

the fundamental group π1(CP2 \C) is isomorphic to the group

〈µ1,µ2, · · · ,µd−1 | µγi
j = µi, i = 1,2, · · · ,m−1, j = 1,2, · · · ,d−1〉.

Before considering the fundamental groups of complement of quadric line arrange-

ment, a first insight on the fundamental groups of complements of some simple line

arrangements.
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zm zm−1 · · · z2 z1 z0

Lm Lm−1 · · · L2 L1 L0

E

C

L

(a) Projection.

γ1
γ2· · ·γm−1γm

z0

µ1

µ2

...

µd

z̃0

C

L

Fz0

(b) Merideans in L and Fz0 .

Figure 5.7 The generators of π1(L\Pm,z0) and π1(Fz0 , z̃0).

1. If C = L, a single line, then CP2 \C = C2 which is simply connected and

therefore the fundamental group π1(CP2 \C) is trivial.

2. If C = L1 ∪ L2 consists of two lines, then considering one of the lines to be

the line at infinity, say L2, one obtains CP2 \C = C2 \L1 = C×C∗, so that

π1(CP2 \C) = Z.

3. If C = L0 ∪ L1 ∪ ·· ·Lm is a pencil of m + 1 lines, considering Lm to be the

line at infinity one obtains m parallel lines in C2, and the complement can be

identified with C\{m points}×C. Hence, in this case one has π1(CP2 \C) =

Fm, the free group of rank n.

4. If C = L0 ∪ L1 ∪ ·· ·Lm is a near-pencil, i.e, the lines L0,L1, · · · ,Lm−1 meet

at a single point while Lm transverse to them, considering Lm to be the line at

infinity one obtains a pencil of m lines in C2. By using local braid monodromy,

we computed its fundamental group in Theorem 5.10.1. Hence, in this case one

has π1(CP2 \C) = 〈δ,µ j | δ = µm−1µm−2 · · ·µ0, [δ,µ j] = 1, 0≤ j ≤m−1〉. In

particular, if m = 2 then π1(CP2 \C) is isomorphic to Z×Z.

5. If C = L0 ∪ L1 ∪ ·· ·Lm is a generic line arrangement, considering Lm to be

the line at infinity one obtains m lines in general position in C2 which has

m(m− 1)/2 nodes. Let µi be a meridian around the line Li. At each nodal
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point Li ∩ L j, take a projection C2 → C. The local braid monodromy gives

only the condition µiµ j = µ jµi, does not effect the other meridians. Therefore,

π1(CP2 \C) is the abelian group 〈µi|µiµ j = µ jµi, µmµm−1 · · ·µ0 = 1〉.

6. Now suppose p and q be two points in CP2 and N be the line through p and

q. Assume the pencils through p and q has m+1 and n+1 lines, respectively.

Denote by C the union of this m+n+1 lines. Then ĈP2 is obtained from CP2

by blowing up the points p and q. As is well known, if one blows down the

proper transform of the line N then obtains CP1×CP1 (See Figure 5.8). Then

we have a birational morphisms CP2← ĈP2→ CP1×CP1. The primage Ĉ

of C in ĈP2 equals the union of the proper transform of the lines in C and two

exceptional divisors Ep and Eq. The image of Ĉ in CP1×CP1 equals m+1 in

one ruling and n+1 lines in the other ruling. This birational morphism induces

an isomorphism of complements. Therefore,

π1(CP2\C)' π1(CP1−{n+1points})×π1(CP1−{m+1points})'Zn×Zm.

CP2 ĈP2 CP1 × CP1

p q

· · · · · ·

L1 L2 L3
Lm M1M2M3

Mn

N

L1

L2

L3

...

Lm

Eq M1M2M3· · ·Mn

Ep

N

L1

L2

L3

...

Lm

Eq

M1M2M3· · ·MnEp

Figure 5.8 Birational morphism.

7. Oka & Sakamato (1978)’s theorem: Let C1 and C2 be two plane curves in C2 of

degrees d1 and d2, respectively. If C1 and C2 meets at d1d2 distinct points, then

π1(C2 \ (C1∪C2)) ' π1(C2 \C1)×π1(C2 \C2).If these curves are projective

algebraic curves in CP2, assuming L∞ is a line at infinity in general position

to C1 and C2, then π1(CP2 \ (C1 ∪C2)) is decided by the following central
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extension:

1→ Z→ π1(C2 \ (C1∪C2))→ π1(CP2 \ (C1∪C2))→ 1.

Some quadric arrangements can be obtained from line arrangements by using

birational morphisms. Assume that A is a line arrangement, and ϕ be the involution

ϕ : CP2→ CP2 defined by [X : Y : Z]→ [Y Z : XZ : XY ]. Suppose that the lines H1,

H2 and H3 are respectively given by the equations X = 0, Y = 0 and Z = 0. If A

is in general position with respect to H1∪H2∪H3, then ϕ(A) is an arrangement of

smooth quadrics. In addition to those of A , this arrangement has three more singular

points where all irreducible components of ϕ(A) meet transversally. In this case the

group π1(CP2 \ϕ(A)) can easily be found in terms of π1(CP2 \A) as follows: Let

A ∪n
i=1 Li, and µi be a meridian of Li in CP2 \A . Let

π1(CP2 \A)' 〈µ1, · · · ,µn|w1 = w2 = · · ·= wm = µn · · ·µ1 = 1〉 (5.11.3)

be a presentation obtained by Zarsiki-van Kampen theorem. Set A ′ := A ∪H1 ∪
H2 ∪H3 and assume σi is a meridian around Hi. Since A is in general position to

H1∪H2∪H3, then one has

π1(CP2 \A ′) =

〈
µ1, · · · ,µn

σ1,σ2,σ3

∣∣∣∣∣∣
[µi,σ j] = [σ j,σk] = 1

w1 = · · ·= wn = µn · · ·µ1σ1σ2σ3 = 1

〉
.

(5.11.4)

Notice that σ jσk is a meridian of A ′ at H j∩Hk. Hence the group π1(CP2\ϕ(A)) can

be obtained by setting σ1σ2 = σ1σ3 = σ2σ3 = 1 in the presentation of π1(CP2\A ′).

But these relations imply σ := σ1 = σ2 = σ3 and σ2 = 1. In addition, the relations

[µi,σ j] = 1 and µn · · ·µ1σ1σ2σ3 = 1 implies (µn · · ·µ1)2 = 1. Hence

π1(CP2 \ϕ(A)) =

〈
µ1, · · · ,µn

∣∣∣∣∣∣
[µi,µn · · ·µ1] = 1

w1 = · · ·= wn = (µn · · ·µ1)2 = 1

〉
. (5.11.5)
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Since σ is a central element of this group,

1→ Z2→ π1(CP2 \ϕ(A))→ π1(CP2 \A)→ 1

is an exact sequence.

For example, let A be the pencil of n lines Lm : mX +Y −Z = 0, m = 1, · · · ,n.

Then ϕ(A) is a pencil of n smooth quadrics mY Z +XZ−XY = 0 which are tangent

to each other at [1 : 0 : 0] and transverse at [0 : 1 : 0] and [0 : 0 : 1] (This intersection

behavior of quadrics are independent of the choice of singular point of the pencil of

lines whenever A is in general position with respect to H1∪H2∪H3). Either using

Zariski van Kampen theorem or assuming one of the lines Lm as a line at infinity one

will see that the fundamental group π1(CP2 \A) is a free group Fn−1 of rank n−1,

which has a presentation 〈µ1,µ2, · · · ,µn | µn · · ·µ1 = 1〉. Then by equation (5.11.5),

π1(CP2 \ϕ(A)) has a presentation

〈
µ1, · · · ,µn| [µi,µn · · ·µ1] = (µn · · ·µ1)2 = 1

〉
.

Next suppose, A has n lines in general position such that A ∪H1 ∪H2 ∪H3 is

an arrangement of n + 3 lines in general position. Then ϕ(A) consists of n smooth

conics in general position. Since π1(CP2 \A) < Fn is abelian, then π1(CP2 \ϕ(A))

is an abelian group having a presentation

〈
µ1, · · · ,µn| [µi,µ j] = [µi,µn · · ·µ1] = (µn · · ·µ1)2 = 1

〉
.

Another method to get quadric arrangements are branched coverings. Assume

A = ∪n
i=1Li and φ : CP2 → CP2 be the branched covering defined by [X : Y :

Z] 7→ [X2 : Y 2 : Z2]. Suppose the lines H1, H2 and H3 are respectively given by the

equations X = 0, Y = 0 and Z = 0, and set A ′ := A∪H1∪H2∪H3. If A is in general

position to H1∪H2∪H3, then φ−1(A) is an arrangement of smooth quadrics. Any
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singular point of A lie four singular points of φ−1(A) of the same type. In this case

the group π1(CP2 \φ−1(A)) can easily be found in terms of π1(CP2 \A). Assume

π1(CP2 \A) has a presentation (5.11.3), then the presentation (5.11.5) is valid and

there is an exact sequence

1→ π1(CP2 \φ
−1(A ′))→ π1(CP2 \A ′)→ Z2×Z2→ 1.

The group π1(CP2 \ φ−1(A)) is the quotient π1(CP2 \ φ−1(A ′)) by the sub-group

generated by the meridians of φ−1(H1), φ−1(H2) and φ−1(H3).

Suppose that A is a pencil of n lines Li : miX −Y +(b−mia)Z = 0, i = 1, · · ·n.

The singular point of A is [a : b : 1]. Assume b 6= mia and mi 6= 0 for each i, otherwise

A will not be in general position with respect to H1∪H2∪H3. Then ϕ−1(A) is an

arrangement of n smooth quadrics Qi := ϕ−1(Li) : miX2−Y 2 + (b−mia)Z2 = 0.

These n quadrics form a pencil through [∓√a : ∓b : 1]. If ab 6= 0 there are four

singular point but if one of a,b is zero while other is not, there are two singular

points and the quadrics Qi tangent to each other at these points. Before computing

π1(CP2 \φ−1A), first notice that π1(CP2 \A) = {µ1,µ2, · · · ,µn| µnµn−1 · · ·µ1 = 1}
is a free group of rank n−1.

First assume ab 6= 0 and take a projection onto a suitable line. Here the suitable

means that the singular fibers does not contain no more than one multiple points.

Therefore singular fibers either tangent to quadrics, or goes through singular points

of φ−1(A). Each smooth fiber F meets with each quadric Qi at two points. In

these smooth fibers, denote by µi1 and µi2 the meridians around F ∩Qi. Around

the tangency point of F with Qi, braid monodromy gives the relations (µi1µi2)2 =

(µi2µi1)2. Around the singular points of φ−1(A), braid monodromies gives relations

[µ1i,µ1n · · ·µ11] = [µ2i,µ2n · · ·µ21] = 1. Since any two meridians of Qi are homotopic,

then φ−1(A) has a presentation 〈µ1,µ2, · · · ,µn| µnµn−1 · · ·µ1 = 1〉.
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Incase ab = 0 (assume a = 0, b 6= 0), quadrics are tangent each other at two

points. Around the tangency point of F with Qi, braid monodromy gives the relations

(µi1µi2)2 = (µi2µi1)2. Around the tangency points of φ−1(A), braid monodromies

gives relations [µi1,(µn1 · · ·µ11)2] = [µi2,(µn2 · · ·µ12)2] = 1. Since any two meridians

of Qi are homotopic, then φ−1(A) has a presentation

〈µ1,µ2, · · · ,µn| (µnµn−1 · · ·µ1)2 = 1〉.

Next consider the arrangement A of lines X ∓Y ∓ Z = 0 in general position.

These lines together with the coordinate lines X = 0, Y = 0 and Z = 0, form an

arrangement in Figure 6.17 and branched cover of this arrangement is the Naruki

arrangement Qi : X2∓Y 2∓Z2 = 0 which has twelve tacnodes as singularities. Take

a projection onto a suitable line. Around the tangency point of the fiber F with Qi,

braid monodromy gives the relations (µi1µi2)2 = (µi2µi1)2. Around the tangency

points of φ−1(A), braid monodromies gives relations (µi1µ j1)2 = (µ j1µi1)2 and

(µi2µ j2)2 = (µ j2µi2)2. Since any two meridians of Qi are homotopic, then φ−1(A)

has a presentation 〈µ1,µ2,µ3,µ4| (µiµ j)2 = (µ jµi)2, 1≤, i < j ≤ 4〉.



CHAPTER SIX

BRANCHED COVERINGS AND ORBIFOLDS

In the Section 6.1, first we give some facts of branched covering due to references

(Uludağ, 2007) and (Namba, 1987) and study the branched Galois coverings of

complex manifolds, in particular the branched coverings of CP1 as motivation,

and introduce some partial results by several authors to Fenchel’s problem. We

will introduce the notions of orbifold and sub-orbifold in the Section 6.2, by using

the reference (Uludağ, 2007) and (Namba, 1987). Due to Yoshida (1987), orbifold

germs are related via covering maps. We will discuss in details of such covering

relations of orbifold germs and exhibit them by drawing pictures in the Section

6.2.3. Section 6.3 is a survey on Chern classes and Chern numbers. Orbifold version

of Chern numbers will be introduced in the Section 6.4. Kobayashi et al. (1989)’s

Theorem 6.4.2 plays an important role to determine the uniformization of orbifolds.

In the Sections 6.5 and 6.6, by applying this theorem to quadric-line arrangements

we have obtained some new ball-quotient orbifolds. As in the covering relation

among orbifold germs, these ball-quotient orbifolds are also related each other via

covering maps. We have exhibited such covering relations in the Section 6.7.

6.1 Branched Coverings

Let X be an n-dimensional (connected) complex manifold. A surjective finite

(proper) holomorphic mapping ϕ : M→X , where M is an irreducible normal complex

space, is called a branched covering of X . A topological finite covering map is a

very special kind of branched covering. Any non-constant map between compact

Riemann surfaces and the covering map

ϕm : (z1,z2, · · · ,zn) ∈ Cn→ (zm
1 ,zm

2 , · · · ,zm
n ) ∈ Cn (6.1.1)

are the most well known examples of branched coverings.

141
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A morphism between branched coverings ϕ : M→X and ψ : M→X is a surjective

holomorphic map ϑ : M → N such that ϕ(p) = ψ(ϑ(p)) for all p ∈ M. If ϑ is a

biholomorphism then it is an isomorphism. The group Gϕ of all automorphisms of

ϕ is finite and acts on every fiber of ϕ. If Gϕ acts transitively on every fiber of ϕ,

then the covering map ϕ : M→ X is called branched Galois covering. In this case,

the orbit space M/Gϕ is biholomorphic to X . The covering map ϕ : M→ X is called

an abelian (resp. cyclic) if ϕ is a Galois covering and Gϕ is an abelian (resp. cyclic)

group.

The ramification locus Rϕ of a finite branched covering ϕ : M→ X is the set of

points p of M such that ϕ is not biholomorphic around p. The image Bϕ := ϕ(Rϕ)

is called the branch locus of ϕ and the map ϕ is said to be branched along Bϕ. Both

of the ramification locus and the branch locus are hypersurfaces (i.e. codimension

1 at every point) of M and X , respectively. In case ϕ is a topological covering then

both Rϕ and Bϕ are empty, such ϕ is said to be unbranched. For a given branched

covering map ϕ : M −→ X , the restriction ϕ′ : M \Rϕ −→ X \Bϕ is an unbranched

covering. By a property of normal complex spaces we have the following properties

(Namba, 1987):

1. Gϕ = Gϕ′ naturally,

2. ϕ is a Galois covering if and only if ϕ′ is a Galois covering,

3. |Gϕ| ≤ degϕ, where |Gϕ| is the order of the group Gϕ, and degϕ is the mapping

degree of ϕ. The equality holds if and only if ϕ is a Galois covering.

Conversely, the Grauert & Remmert (1958) theorem says that “Given a topologi-

cal unbranched finite covering ϕ′ : M′ −→ X \B with M′ being connected, where

X is a normal variety and B is a finite union of proper subvarieties of codimension

1; there exist an irreducible normal variety M with a finite branched covering ϕ :

M −→ X and a homeomorphism s : M′ −→ ϕ−1(X \B) such that ϕ(x) = ϕ′
(
s(x)

)

for all x ∈M′” (Serre, 1960). So, there is a correspondence between subgroups of
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π1(X \B) of finite index and finite coverings of X branched along B. If ϕ′ is Galois,

then so is ϕ and therefore the covering ϕ is Galois if and only if the corresponding

subgroup is normal (Namba, 1987, Theorem 1.1.17).

The ramification divisor of a finite branched covering ϕ : M → X of smooth

spaces is the divisor of its jacobian; for singular spaces it can be defined for the

restriction of ϕ to smooth parts of M and X (If ϕ is ramified only along a singular

part then the ramification divisor is empty). If ϕ : M → X is Galois, it is possible

to define the branch divisor on X as follows: Let H1,H2, · · ·Hk be the irreducible

components of the branch locus Bϕ. Let p ∈ Hi be a smooth point of Bϕ, U be a

small neighborhood of p and V be a connected component of ϕ−1(U). The degree

mi of ϕ |V does not depend on p and is called the branching index of ϕ along Hi.

Then the branch divisor is defined as Dϕ := ∑
k
i=1 miHi.

Definition 6.1.1. Let X be a complex manifold and D = ∑
k
i=1 miHi be a divisor with

coefficients in mi ∈ Z>0. A Galois covering ϕ : M→ X is said to be branched at D

if Dϕ = D.

Let X be a normal variety and B = ∪k
i=1Hi be a hypersurface with irreducible

components Hi and D = ∑
k
i=1 miHi be a divisor. Then the orbifold fundamental

group of the pair (X ,D) is defined as

π
orb
1 (X ,D) := π1(X \B,?)/〈〈µm1

1 , · · · ,µmk
k 〉〉 , (6.1.2)

where ? ∈ X \B is a base point, µi is a meridian of Hi in X \B, and 〈〈〉〉 denotes the

normal closure. Let N be a normal subgroup of finite index in π1(X \B). The Galois

covering corresponding to N is branched at D if and only if µmi
i ∈ N and µm /∈ N for

m < mi and i = 1,2, · · · ,k (this condition is known as branching condition in the
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sequel). The condition µmi
i ∈ N amounts the existence of the factorization

π1(X \B)
ϕ // //

&& &&MMMMMMMMMMM
π1(X \B)/N =: G

πorb
1 (X ,D)

ψ

66 66mmmmmmmmmmmmm

whereas the branching condition µm
i /∈ N for m < mi means that ϕ(µi) ∈G is strictly

of order mi. Thus, the coverings of X branched along D are really controlled by the

group πorb
1 (X ,D), and there is a Galois correspondence between the Galois covering

of X branched along D and normal subgroups of πorb
1 (X ,D) satisfying the branching

condition. In particular, a covering of X branched at D is simply connected if and

only if it is universal,i.e, the Galois group is the full group πorb
1 (X ,D).

Lemma 6.1.2 (Fox, 1957, §7). Let M→ X be a Galois covering branched at D and

with Galois group G. We have the exact sequence

0→ π1(M)→ π
orb
1 (X ,D)→ G→ 0.

6.1.1 Branched Coverings of CP1

Let X = CP1, take distinct points p0, p1, · · · , pk ∈ CP1 and let m0,m1, · · · ,mk ∈
Z>1. Put, D := ∑

k
i=1 mi pi. Then, one has presentation

π1(CP1 \{p0, p1, · · · , pk})' 〈µ0,µ1, · · · ,µk | µ0µ1 · · ·µk = 1〉

which is a free group of rank k. Then

π
orb
1 (CP1,D) =< µ0,µ1, · · · ,µk | µm0

0 = µm1
1 = · · ·= µmk

k = µ0µ1 · · ·µk = 1 >
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Let M→ CP1 be a covering branched at D with Galois group G. By the Riemann-

Hurwitz formula, the Euler number e(M) of M equals

e(M) = |G|
[

e(CP1 \{p0, p1, · · · , pk})+
k

∑
i=0

1
mi

]
= |G|

[
1− k +

k

∑
i=0

1
mi

]
(6.1.3)

On the other hand, by the Koebe-Poincaré theorem, up to biholomorphism there

are only three simply connected Riemann surfaces: the Riemann sphere CP1 =

C∪{∞}, the affine plane C, and the Poincaré disc B1 = {z ∈ C | |z|< 1}. If M is a

compact Riemann surface, either e(M) > 0 and M 'CP1 (and therefore e(M) = 2),

or e(M) = 0 and the universal cover of M is C, or e(M) < 0 and the universal

cover of M is B1. Note that the signature of e(M) is completely determined by the

data (CP1,D) and no information on G is needed. Accordingly, the orbifold Euler

number of (CP1,D) is defined as

eorb(CP1,D) := 1− k +
k

∑
i=0

1
mi

⇒ e(M) = |G|eorb(CP1,D). (6.1.4)

Then, if M→ CP1 is a covering branched at D with G as Galois group, then

|G|= e(M)
eorb(CP1,D)

. (6.1.5)

For k = 0, one has eorb(CP1,D) = 1 + 1/m0 > 0. Hence, if M → CP1 is a

covering branched at D, then e(M)> 0, which implies M'CP1, and by the equation

(6.1.5) one has |G| = 2/(1 + 1/m0), which is not positive integer unless m0 = 1.

Hence for k = 0 there are no coverings branched at D unless m0 = 1. This also can

be seen from the fact the group πorb
1 (CP1,D) is trivial for k = 0.

For k = 1, one has eorb(CP1,D) = 1/m0 +1/m1 > 0. Hence, if a covering M→
CP1 branched at D exists, then M 'CP1, and by the equation (6.1.5) one has |G|=
2m0m1/(m0 + m1), which is a positive integer if and only if m0 = m1 = m. In this

case such covering is the power map [X : Y ]∈CP1→ [Xm : Y m], and πorb
1 (CP1,D) =
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〈µ0,µ1 | µm
0 = µm

1 = µ0µ1 = 1〉 ' Zm.

Now, let us consider the case k = 2. Observe that the set B = {p0, p1, p2} is

projectively rigid (See Corollary 2.2.2). Assume m0≤m1≤m2 and put ρ := 1/m0 +

1/m1 +1/m2−1. Then, eorb(CP1,D) = ρ. If ρ > 0 then the covering must be CP1

and |G|= 2ρ−1. In this case (m0,m1,m2) is one of the following: (2,2,m), (2,3,3),

(2,3,4) or (2,3,5); the corresponding Galois groups must be of orders 2m, 12, 24

and 60, respectively. Then the group

π
orb
1 (CP1,D)' 〈µ0,µ1,µ2 | µm0

0 = µm1
1 = µm2

2 = µ0µ1µ2 = 1〉 (6.1.6)

is called a triangle group, and it is finite of order 2ρ−1 if ρ > 0 and the branching

condition is satisfied. Hence there exist a Galois coverings CP1 → CP1 branched

at D. Historically this follows from Klein’s classification of finite subgroups of

PGL(2;C) ' Aut(CP1). Each group is the symmetry group of one of the platonic

solids inscribed in a sphere and they correspond to symmetry groups.

If ρ = 0, then eorb(CP1,D) vanishes and (m0,m1,m2) is one of (2,3,6), (2,4,4),

(3,3,3) and (2,2,∞). In these cases the abelianizations of orbifold fundamental

group are finite and satisfy the branching condition. Hence they are covered by a

Riemann surfaces of genus 1 (an elliptic curve), and their universal covering is C.

The groups πorb
1 (CP1,D) are infinite solvable. Similarly, Galois coverings of CP1

branched at four points with branching indices 2 are also elliptic curves. Each one

of these coverings corresponds to a regular tessellation of the plane.

Any pair (CP1,D) not considered above has negative orbifold Euler characteristic.

The question of existence of finite coverings branched at D is known as Fenchel’s

problem. Fenchel’s problem has been solved by Bundgaard & Nielsen (1951) and

was generalized by Fox (1952) to branched coverings of Riemann surfaces.

Theorem 6.1.3. Let k≥ 2 and D := ∑
k
i=0 mi pi be a divisor on CP1. Then there exists
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a finite Galois covering M→ CP1 branched at D; and M is

i. (elliptic case) CP1 if k = 1 and m0 = m1 or k = 2 and 1
m0

+ 1
m1

+ 1
m2

> 1,

ii. (parabolic case) a Riemann surface of genus 1 if k = 2 and 1
m0

+ 1
m1

+ 1
m2

= 1,

or k = 3 and m0 = m1 = m2 = m3 = 2,

iii. (hyperbolic case) a Riemann surface of genus > 1, otherwise.

6.1.2 Fenchel’s Problem

A natural generalization of Fenchel’s problem to higher dimensions is: given a

complex manifold X and a divisor with coefficients in Z>1 on X , decide whether

there exists a Galois covering M→ X branched at D, regardless of the question of

desingularization. There is no hope for a complete solution of generalized Fenchel’s

problem as in Theorem 6.1.3, since the group π1(X \ supp(D)) does not admit

a simple presentation, and it can be trivial, abelian, finite non-abelian or infinite.

However, there are some partial results obtained by several authors. But the most

important one related with line arrangements was proved by Kato (1987).

For a divisor D = ∑
n
i=1 miCi on CP2, let us define the group of the divisor D as

Grn(D) := π1(CP2 \B)/〈〈µm1
1 ,µm2

2 , · · · ,µmn
n 〉〉, where B = ∪n

i=1Ci is the support of

D and µi is a meridian of Ci in CP2 \B and each of Ci is of degree di. First consider

the basic case: n = 1 and C1 is smooth. Then it is clear that π1(CP2 \C1) = Zd1 and

Gr1(D) = Zk1 , where k1 := gcd(m1,d1). Thus, Fenchel’s problem for D = m1C1 has

a positive solution if and only if m1 | d1, and the solution is given by an abelian

covering. Obviously this still gives a solution if π1(CP2 \C1) is non-abelian, since

the abelianization of π1(CP2 \C1) is Zd1 . Similarly, if n > 1, then the abelianization

H1(CP2 \C,Z) of π1(CP2 \B) is the abelian group

H1(CP2 \B,Z) = 〈µ1,µ2, · · · ,µn | µd1
1 µd2

2 · · ·µdn
n = 1 〉.
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Hence, the abelianization of Grn(D) has the presentation

〈µ1,µ2, · · · ,µn | µd1
1 µd2

2 · · ·µdn
n = µm1

1 = µm2
2 = · · ·= µmn

n = 1 〉.

Put κi := mi/gcd(mi,di), and let ρi be the smallest common multiple of {κ j | i 6= j}.
Then an abelian covering solves the Fenchel’s problem provided that κi divides ρi

for 1≤ i≤ n.

However, abelian coverings give a solution to Fenchel’s problem only for very

restricted cases. If one assume the divisor D = ∑
n
i=1 miLi, whose support B is a

line arrangement, the coefficients mi being prime. Then the condition κi | ρi is

never satisfied. But, π1(CP2 \B) is big if it is not abelian. Hence, some non-abelian

covers must give a solution to Fenchel’s problem. Indeed, Kato proved the following

theorem:

Theorem 6.1.4 (Kato, 1987). Let A = {Hi : i = 0,1, · · · ,k} be an arrangement

of lines in CP2 such that any line contains a point of multiplicity at least 3. Let

mi ∈ Z>1 and put D := ∑
k
i=0 miHi. Then there exists a finite Galois covering of CP2

branched D.

Kato also describes the resolution of singularities of the covering surfaces, and

this resolution is compatible with the blowing-up of points of multiplicity > 2

of the branch locus. There is a generalization of the Kato’s theorem to quadric

arrangements given by Namba (1987).

Theorem 6.1.5 (Theorem 1.5.8, Namba (1987)). Let k ≥ 2 and Q1,Q2, · · ·Qk be

irreducible quadrics in CP2. Assume that, for every Qi there is another Q j such that

they have two tacnodes. Then for any positive integers m1,m2, · · · ,mk greater than

1, there is a finite Galois covering ϕ : M→ CP2 which branches at D = ∑
k
i=1 miQi.

Another extreme example is the Oka curve. For co-prime integers p and q, Oka
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(1975) constructed the following irreducible curves

C 1
p,q : xp− yq = 0 ⊂ C2

C 2
p,q : (X p +Y q)q +(Y q +Zq)p = 0 ⊂ CP2

(6.1.7)

and observed that

π1(C2 \C 1
p,q) = 〈a,b | ap = bq〉 (6.1.8)

and

π1(CP2 \C 2
p,q) = 〈a,b | ap = bq = 1〉 ' Zp ∗Zq (6.1.9)

with free commutator subgroup F(p−1)(q−1) of rank (p− 1)(q− 1). In his Ph.D.

thesis, Uludağ (2000) proved the following theorem.

Theorem 6.1.6 (Corollary 6.1.1, Uludağ (2000)). If Cp,q is an Oka curve, then for

any m≥ 1, there exist a finite Galois covering of CP2 branched at mCp,q.

Given a projective manifold X , which groups can appear as the Galois group of

a branched covering of X? This question has the following solution.

Theorem 6.1.7 (Namba (1991)). (i)For any projective manifold X and any finite

group G, there is a finite branched Galois covering M → X with G as the Galois

group. (ii) For n ≥ 2 there exists a covering of the germ (Cn,0) with a given finite

Galois group.

6.2 Orbifolds

6.2.1 Transformation Groups

An action of a topological group G on a space M is a (continuous) map G×M→
M, denoted by (g,z) 7→ gz, so that g(hz) = (gh)z and 1z = z for all g,h ∈ G and

z ∈M. In the sequel, it is written G y M to mean that G acts on M. Given z ∈M,

Gz := {g ∈ G | gz = z} is the isotropy subgroup (or stabilizer subgroup) of G and
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G(z) := {gz ∈ M | g ∈ G} is the orbit of z. The action is free if Gz = {1}, for all

z ∈ M, and it is transitive if there is only one orbit. Given z ∈ M, the natural map

G/Gz→ G(z) defined by gGz→ gz is a continuous bijection. The orbit space M/

G is the set of orbits in M endowed with the quotient topology. A slice at a point

z ∈ M is a Gz-stable subset Uz so that the map G×Gz Uz → M is an equivariant

homeomorphism onto a neighborhood of G(z).

Suppose, G is a discrete group, M a Hausdorff space and G y M. The G-action

is proper if given any two points z1,z2 ∈M, there are open neighborhoods U of z1

and V of z2 so that gU ∩V 6= /0 for only finitely many g.

Lemma 6.2.1. A G-action on M is proper if and only if M/G is Hausdorff, each

isotropy subgroup is finite, and each point z ∈ M has a slice, i.e., there is a Gz-

stable open neighborhood Uz so that gUz∩Uz = /0 for all g ∈ G\Gz.

If G is a discrete group acting on a topological space M, the action is properly

discontinuous if for any point z ∈ M, there is an open neighborhood U of z in M,

such that the set of all g ∈ G for which gU ∩U 6= /0 consists of the identity only.

Let M be a connected complex manifold. By a transformation group, we shall

mean a pair (G,M), where and G is a group of holomorphic automorphisms of M

acting properly discontinuously, in particular for any z ∈M the isotropy group Gz is

finite. The most important example of a transformation group is (G,M) , where M is

a symmetric space such as the n-ball Bn. Let (G,M) be a transformation group and

X its orbit space with the projection ϕ : M→ X . The orbit space X is an irreducible

normal analytic space endowed with a β-map defined as

βϕ : x ∈ X → |Gz| ∈ Z>0,

where z ∈ ϕ−1(x). In dimension 1, the orbit space is always smooth. In higher

dimensions, X may have singularities of quotient type.
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Let (G,M) be transformation group with the orbit space X and orbit map ϕ :

M→ X , and put

Rϕ := {z ∈M | |Gz|> 1} and Bϕ := {x ∈ X | βϕ(x) > 1}.

Let X := X \Sing(X) be the smooth part of X , x ∈ X and z ∈ ϕ−1(x). Let Mz be the

germ of M at z and Xx the germ of X at x. Then Gz acts on Mz, and the orbit space

Xx. Since |Gz| is finite and Xx is smooth, then the orbit map of germs ϕz : Mz→ Xx

is a finite Galois covering branched along Bϕ,x. Therefore, one can define the local

branch divisor Dϕ,x. The local branch divisors patch yield a global branch divisor

Dϕ := ∑i miHi supported by Bϕ, where Hi are the irreducible components of Bϕ.

On the other hand, since Mz is a smooth germ, it is simply connected. Hence ϕz

must be the universal covering branched at Dϕ,x in other words the Galois group of

ϕz is Gz ' πorb
1 (X ,Dϕ)x. In particular one has

β(x) = |Gz|= |πorb
1 (X ,Dϕ)x| (6.2.1)

What is said above is in fact true for a singular point x∈X . For simplicity, assume

that x /∈ Bϕ. Since Mz is a smooth germ it is simply connected and thus ϕz must be

universal.

6.2.2 β-Spaces and Orbifolds

Recall that a transformation group (G,M) induces a β-map on its orbit space X .

Conversely, let X be a normal complex space and β a map X→Z>0. The pair (X ,β)

is called a β-space. The basic question related to a β-space is the uniformization

problem: Under what conditions on a β-space (X ,β), does there exist a (finite)

transformation group (G,M) equipped with the orbit space X and the orbit map

ϕ : M→ X such that β = βϕ? In case such a transformation group (G,M) exist, it is
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called a uniformization of (X ,β) and (X ,β) is said to be uniformizable. Moreover,

if G is abelian then (G,M) is called an abelian uniformization. Observe that these

definitions can be localizable.

Definition 6.2.2. A locally finite uniformizable β-space (X ,β) is called an orbifold.

The space X is said to be the base space of (X ,β), and (X ,β) is said to be an orbifold

over X . The set, {x ∈ X | β(x) > 1} is called the locus of the orbifold.

Orbifolds (X ,β) and (X ′,β′) are said to be equivalent if there is a biholomorphism

ε : X → X ′ such that the following diagram commutes.

X ε //

β !!B
BB

BB
BB

B X ′

β′}}{{
{{

{{
{{

Z>0

The product of β-spaces (X1,β1) and (X2,β2) is the β-space (X1×X2,β), where

β(x,y) := β1(x)β2(y). If (Xi,βi) is uniformized by (Gi,Mi) for i = 1,2, then the

product orbifold is uniformized by (G1,M1)× (G2,M2).

Let (X ,β) be an orbifold. Then by locally finite uniformizability, its locus Bβ =

{x ∈ X | β(x) > 1} is a locally finite union of hypersurfaces H1,H2, · · · , and β must

be constant along Hi \
(
Sing(B)∪ Sing(X)

)
. Let mi be this number and put Dβ :=

∑i miHi. The orbifold fundamental group of (X ,β) is defined that of the pair (X ,Dβ),

that is the group

π
orb
1 (X ,β) := π1(X \Bβ)

/
� µm1

1 ,µm2
2 , · · · ,µmk

k �, (6.2.2)

where µi is a meridian of Hi and “��” denotes the normal closure.

Lemma 6.2.3 (Uludağ, 2007). If (X ,β) is an orbifold, then β(x) =
∣∣πorb

1 (X ,β)x
∣∣ for

any x ∈ X.

Proof. Let x ∈ X . Since (X ,β) is an orbifold, the germ (X ,β)x admits a finite

uniformization. Hence there is a unique transformation group (Gz,Mz) with (X ,β)x
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as the orbit space such that βϕz = bx, where ϕz : Mz→ (X ,β)x is the quotient map

and ϕ−1
z (x) = {z}. By Lemma 6.1.2, one has the exact sequence

0→ π1(Mz)→ π
orb
1 (X ,β)x→ Gz→ 0

Since Mz is smooth, it is simply connected, so that Gz ' πorb
1 (X ,β)x. Hence β(x) =

|Gz|= |πorb
1 (X ,β)x| for any x ∈ X .

Let (X ,β) is an orbifold and Dβ = ∑
k
i=1 miHi be the associated divisor. By Lemma

6.2.3, β function is completely determined by Dβ. In other words, the pair (X ,Dβ)

determines the pair (X ,β). On the other hand in dim≥ 2 most pairs (X ,D) do not

come from an orbifold. The local uniformizability condition puts an important

restriction on the possible pairs (X ,D), in particular local orbifold fundamental

group of (X ,D) must be finite. In dimension 2, this later condition is sufficient for

local uniformizability, since by a theorem of Mumford (1961), a simply connected

germ is smooth in dimension 2. This is no longer true in dimension ≥ 3 (see

Brieskorn (1966) for counter examples).

Theorem 6.2.4 (Uludağ, 2007). In dimension 2, (X ,β)x is an orbifold germ if and

only if πorb
1 (X ,β)x is finite.

Proof. (X ,β)x is an orbifold germ then by the definition of orbifold germ, clearly

πorb
1 (X ,β)x is finite. Conversely, if πorb

1 (X ,β)x is finite then its universal covering is

a finite covering by a simply connected germ. In dimension two, a simply connected

germ is smooth by Mumford (1961)’s theorem.

To understand uniformization problem, let us consider the following examples:

Example 6.2.5. Let p0, p1, · · · , pk be k+1 distinct points in CP1 and let m0,m1,· · · ,
mk be positive integers. Let β : CP1 → Z>0 be the function with β(pi) = mi for

i = 0,1, · · · ,k and β(p) = 1 otherwise. Around the point pi, the β-space (CP1,β)

is uniformized by the transformation group (Zmi,C). Hence, (CP1,β) is an orbifold.

Theorem 6.1.3, completely answers the question of uniformizability of these orbifolds.
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Example 6.2.6. Let p,q be two positive integers and consider the germ (C2,β)0,

where

β(x,y) =





pq (x,y) = (0,0)

p x = 0,y 6= 0

q x 6= 0,y = 0

p

q

Put H1 = {x = 0} and H2 = {y = 0}. The group π1(C2 \ (H1 ∪H2))0 is the free

abelian group generated by the meridians of H1 and H2 so that πorb
1 (C2,β)0 ' Zp⊕

Zq is finite. This is indeed an orbifold germ, the map (C2→C2) defined by (x,y) 7→
(xp,yq) is its uniformization.

Example 6.2.7. Let p,q,r be three positive integers and consider the germ of the

pair (C2,D)0, where D = pH1 +qH2 + rH3, H1 = {x = 0}, H2 = {y = 0} and H3 =

{x− y = 0}.
p q

r

One has π1(C2\(H1∪H2∪H3))' 〈µ1,µ2,µ3 | [µi,µ1µ2µ3] = 1, i = 1,2,3〉, where µi

is a meridian of Hi for i = 1,2,3 (See Theorem 5.10.1). Therefore, the local orbifold

fundamental group admits the presentation

π
orb
1 (C2,D)' 〈µ1,µ2,µ3 | [µi,µ1µ2µ3] = µp

1 = µq
2 = µr

3 = 1, i = 1,2,3〉.

This group is a central extension of the triangle group and is finite of order 4ρ−2

if ρ := 1/p+1/q+1/r−1 > 0, infinite solvable when ρ = 0 and “big” otherwise.

Hence (C2,D)0 do not come from an orbifold germ if ρ < 0. For ρ > 0 it comes

from an orbifold germ and it is uniformizable. In this case the triple (p,q,r) is

one of (1,m,m), (2,2,m), (2,3,3), (2,3,4), (2,3,5) and the order of corresponding

orbifold fundamental groups are m2, m2, 144, 576, 3600, respectively.

Let (X ,β) be an orbifold and let Dβ be the associated divisor. Recall that the

group πorb
1 (X ,β) is the group πorb

1 (X ,Dβ). If ξ : πorb
1 (X ,β)� G is a surjection onto
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a finite group G with Ker(ϕ) satisfying the branching condition, then there exist a

Galois covering ϕ : M→ X branched at Dβ, where M is a possibly singular normal

space.

Lemma 6.2.8 (Uludağ, 2007, Lemma 2.3). Let (X ,β) be an orbifold, and ϕ : M→X

a Galois covering branched at Dβ. Then M is smooth if and only if βϕ ≡ β.

Proof. For any x∈ X there is the induced branched covering of germs ϕx : Mz→ Xx,

where z∈ϕ−1(x). The germ Mz is smooth if and only if ϕx is the uniformization map

of the germ (X ,β)x, which is the universal branched covering and has πorb
1 (X ,β)x

as its Galois group. In other words, Mz is smooth if and only if Gz ' πorb
1 (X ,β)x, if

and only if βϕ(x) = |Gz|= |πorb
1 (X ,β)x|= β(x).

For a point x ∈ X , there is a natural map ιx : πorb
1 (X ,β)x → πorb

1 (X ,β) induced

by the inclusion πorb
1 (X ,Dβ)x ↪→ πorb

1 (X ,Dβ). The group Gz is the image of the

composition map

ξ◦ ι : π
orb
1 (X ,β)x→ π

orb
1 (X ,β)→ G.

Theorem 6.2.9 (Uludağ, 2007, Theorem 2.4). Let ξ : πorb
1 (X ,β)�G be a surjection

and let ϕ : M→ X be the corresponding Galois covering of X branched along Dβ.

The pair (G,M) is a uniformization of the orbifold (X ,β) if and only if for any x∈X,

the map ξ◦ ιx : πorb
1 (X ,β)x→ G is an injection

Proof. One has βϕ ≡ β if and only if for any x ∈ X and z ∈ ϕ−1(x) the image Gz of

ξ◦ ιx is the full group πorb
1 (X ,β)x. The result follows from Lemma 6.2.3.

The Theorem 6.2.9 may fail in higher dimensions (see Brieskorn (1966) for

counter examples). So, we will mostly consider orbifolds in dimension 2.

Recall that an orbifold germ (X ,β)x is a germ that admits a finite uniformization

by a transformation group (Gz,Mz), where Mz is a smooth germ and Gz is finite

group acting on Mz and fixes z. According to a classical result of ?, any orbifold

germ (X ,β)x is equivalent to the quotient of the germ Cn
0 by finite subgroup of
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GL(n,C). In other words, any orbifold germ (X ,β)x. In dimension 2, Yoshida (1987)

observed the following fact: If H ⊂ GL(2,C) is a reflection group with a non-

abelian PG, then among the reflection groups with the same projectivization there is

a maximal one G containing H. Every reflection group K with PK = PG is a normal

subgroup of this maximal reflection group. This means, the germ C2/K is a Galois

covering of C2/G. If G is maximal reflection group, then the quotient C2/G is the

orbifold (C2, pX +qY +rZ) for some (p,q,r) with 1
p + 1

q + 1
r −1 > 0, where X ,Y,Z

are the lines meeting at the origin. Hence, any orbifold germ with a smooth base is

a covering of the germ (C2, pX + qY + rZ). The following result characterizes the

germs with a smooth base.

Theorem 6.2.10 (Kato, 1987). In dimension 2, all orbifold germs with a smooth

base are given in the in the Figure 6.1 and Table 6.1.

p

q

(a)

p
q

r

(b)

(n, m)

p

(c)

(n)

p q

(d)

(n)

p q

r

(e)

(2, n)

2

q

(f)

(2, 3)

2 2

(g)

Figure 6.1 Orbifold germs.

Table 6.1 Orbifold germs and corresponding branching conditions and the order of
corresponding orbifold fundamental groups.

Equation Condition Order
Figure 6.1a xy —- pq
Figure 6.1b xy(x+ y) 0 < ρ := 1

p + 1
q + 1

r −1 4ρ−2

Figure 6.1c xn− ym gcd(n,m) = 1, 0 < ρ := 1
p + 1

n + 1
m −1 4ρ−2

nm

Figure 6.1d x2− y2n 0 < ρ := 1
p + 1

q + 1
n −1 4ρ−2

n

Figure 6.1e y(x2− y2n) 0 < ρ := 1
p + 1

q + 1
nr −1 4ρ−2

n
Figure 6.1f y(x2− yn) n is odd 2nq2

Figure 6.1g x(x2− y3) —- 96

Solutions to Conditions in Table 6.1 (including the equality) are as in Table 6.2.

In case of ρ = 0, we will obtain the orbifold germs with cusp points and the orbit

space M/G admits a compactification by considering pairs (X ,β) with extended β
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Table 6.2 Solutions to the conditions in Table 6.1 together with the case equality.
Condition Solution Condition Solution

ρ := 1
p + 1

q + 1
r −1 > 0

(p,q,r) Order

ρ = 0

(p,q,r) Order
(2,2,n), n ∈ Z>1 4n2 (2,3,6) ∞

(2,3,3) 144 (2,4,4) ∞

(2,3,4) 576 (3,3,3) ∞

(2,3,5) 3600

ρ := 1
p + 1

n + 1
m −1 > 0

gcd(n,m) = 1

(p,n,m) Order

ρ = 0
gcd(n,m) = 1

(p,n,m) Order
(2,2,a), a ∈
Z>1 is odd 2a (6,2,3) ∞

(2,3,4) 48
(2,3,5) 240
(3,2,3) 24
(3,2,5) 360
(4,2,3) 96
(5,2,3) 600

ρ := 1
p + 1

q + 1
n −1 > 0

(p,q,n) Order

ρ = 0

(p,q,n) Order
(2,2,a), a ∈ Z>1 4a (2,3,6) ∞

(2,a,2), a ∈ Z>1 2a2 (2,4,4) ∞

(2,3,3) 48 (2,6,3) ∞

(2,3,4) 144 (3,3,3) ∞

(2,3,5) 720 (3,6,2) ∞

(2,4,3) 192 (4,4,2) ∞

(2,5,3) 1200
(3,3,2) 72
(3,4,2) 288
(3,5,2) 1800

ρ := 1
p + 1

q + 1
nr −1 > 0

(p,q,n,r) Order

ρ = 0

(p,q,n,r) Order
(2,3,2,2) 288 (2,3,2,3) ∞

(2,2,a,b),
a,b ∈ Z>1

4ab2 (2,3,3,2) ∞

(2,4,2,2) ∞

functions with values in N∪{∞}. In case M = B2, and G is a finite volume discrete

subgroup of Aut(B2), for smooth X , a classification of ball cusp points was given

in (Yoshida, 1987). Any such germ is a covering of one of the germs (C2, pX +

qY + rZ)0 with ρ = 0 and (C2,2H1 + 2H2 + 2H3 + 2H4)0, where Hi’s are smooth

branches meting transversally at the origin. We will study the covering relations

among orbifold germs in Section 6.2.3.
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6.2.3 Sub-orbifolds and Orbifold Coverings

Let (X ,β) be an orbifold. An orbifold (X ,β′) is said to be suborbifold of (X ,β)

if β′(x) divides β(x) for any x ∈ X .

Let ϕ : Y → X be a uniformization of (X ,β). Define the function α : Y → N by

α(y) :=
β(ϕ(y))
β′(ϕ(y))

.

Then ϕ : (Y,α)→ (X ,β) is called an orbifold covering, and (Y,α) is called the lifting

of (X ,β) to the uniformization of (X ,β′). The exact sequence of Lemma 6.1.2 can

be generalized to the following commutative diagram:

0 0

0 // π1(Y ) //

OO

πorb
1 (X ,β′) //

OO

G // 0

0 // πorb
1 (Y,α) //

OO

πorb
1 (X ,β) //

OO

G //

'
OO

0

Remark 6.2.11. The branching conditions in Table 6.1 of orbifold germs are related

with covering relations among orbifold germs. For example, suppose we have the

germ A := (C2,β)0 associated with the divisor D = pH1 +qH2 +nH3, where H1 =

x+ y = 0, H2 = x− y = 0 and H3 = y = 0. M := (C2,β′)0 = (C2,nH3)0 is a sub-

orbifold of A and its uniformizer is ϕ1,n : (x,y) 7→ (x,yn). Denote by H ′1 the lifting

ϕ
−1
1,n(H1) = {x + yn = 0} and by H ′2 the lifting ϕ

−1
1,n(H2) = {x− yn = 0}. If one

denotes B := (C2,α)0 = (C2, pH ′1 + qH ′2)0, which is the germ in Figure 6.1d, then

he has a covering ϕ1,n : B→ A and the exact sequence

1→ π
orb
1 (B)→ π

orb
1 (A)→ Zn→ 1.

Therefore |πorb
1 (B)| = 1

n |πorb
1 (A)| = 4

n( 1
p + 1

q + 1
n − 1)−2 and the uniformizability

condition of B is ρ := 1
p + 1

q + 1
n −1 > 0 ( and ρ≥ 1 for singular base ).
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6.2.4 Covering Relations among Orbifold Germs

6.2.4.1 Coverings of the Abelian Germs

The local orbifold fundamental group of the germs (C2, pX +qY )0 is isomorphic

to the the abelian group Zp⊕Zq, where X = {x = 0} and Y = {y = 0}. Any smooth

sub-orbifold of this orbifold is of the form (C2,rX + sY )0, where r|p, s|q and r,s ∈
Z≥1. This latter orbifold germ is uniformized by C0 via the map ϕr,s : (x,y) ∈C2→
(xr,ys) ∈ C2 with Zr⊕Zs as its Galois group. The lifting of (C2, pX +qY )0 to this

uniformization is the orbifold (C2, p
r X + q

sY )0.

6.2.4.2 Coverings of the Dihedral Germs

Consider the dihedral germ (C2,2X +2Y +mZ)0 in Figure 6.1b, where X = {x =

0}, Y = {y = 0} and Z = {x− y = 0}. In the Theorem 5.10.1 we have computed

the local fundamental group of complement to pencil of m-lines in C2. By using the

presentation of G3,3 we get the triangle group

〈µ1,µ2,µ3 | [µi,µ3µ2µ1] = µ2
1 = µ2

2 = µm
3 = 1, i = 1,2,3〉

of order 4m2 as the orbifold fundamental group of the germ (C2,2X + 2Y + mZ)0.

This group acts on C2 and the branch divisor is the dihedral germ. Now we will

discus the coverings of the dihedral germ. Due to oddness or evenness of m we have

two cases:

1. If m is an odd number, then (C2,2X)0, (C2,2Y )0, (C2,mZ)0, (C2,2X +2Y )0,

(C2,2X + mZ)0 and (C2,2Y + mZ)0 are its sub-orbifolds. Each one of these

sub-orbifolds is uniformized by C2
0 via a cyclic map ϕp,q : (x,y)→ (xp,yq) and

note that ϕr,s ◦ϕp,q = ϕrp,sq.

a. Consider the sub-orbifold (C2,2X)0 whose uniformizer is the map ϕ2,1. If
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we denote the branch ϕ
−1
2,1(Y ) = {y = 0} by Y and the branch ϕ

−1
2,1(Z) =

{x2− y = 0} by W , then

ϕ2,1 : (C2,2Y +mW )0→ (C2,2X +2Y +mZ)0

is an orbifold covering. Note that, ϕ1,2 is a covering map of (C2,2Y +mW )0

and one has Z′ := ϕ
−1
1,2(W ) = {x2− y2 = 0}. By setting Z′1 = {x + y = 0}

and Z′2 = {x− y = 0} one gets the covering

ϕ2,2 = ϕ2,1◦ϕ1,2 : (C2,mZ′)0 = (C2,mZ′1 +mZ′2)0→ (C2,2X +2Y +mZ)0,

which is related to covering of the dihedral germ by the uniformizer of its

sub-orbifold (C2,2X +2Y )0.

On the other hand, if one would have changed the coordinates by the map

σ : (x,z) = (x,x− y), then σ−1 ◦ϕ2,1 would be the uniformizer of the sub-

orbifold (C2,2X)0. In this case, denote by Z the branch ϕ
−1
2,1(Z) = {z = 0}

and by V the branch ϕ
−1
2,1(Y ) = {x2− z = 0}. Then

σ
−1 ◦ϕ2,1 : (C2,2V +2Z)0→ (C2,2X +2Y +mZ)0

is an orbifold covering. Note that, ϕ1,m is a covering map of (C2,2V +mZ)0

via its sub orbifold (C2,mZ)0. Denote by Y ′ the lifting ϕ
−1
1,m(V ) = {x2−

zm = 0} of V . Then one has the covering,

σ
−1 ◦ϕ2,m = τ

−1 ◦ϕ2,1 ◦ϕ1,m : (C2,2Y ′)0→ (C2,2X +2Y +mZ)0,

which is related to covering of the dihedral germ by the uniformizer of its

sub-orbifold (C2,2X +mZ)0.

b. Coverings of the dihedral germ (C2,2X + 2Y + mZ)0 via its sub-orbifold

(C2,2Y )0 is similar to the case 1.a. It is enough to interchange the roles of

X and Y to see such coverings.
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c. Consider the sub-orbifold (C2,mZ)0 and change coordinates by the map

σ : (x,z) = (x,x− y). Then it is clear that the sub-orbifold (C2,mZ)0 is

uniformized by σ−1 ◦ϕ1,m. Denote the branch ϕ
−1
1,m(X) = {x = 0} by X and

the branch ϕ
−1
1,m(Y ) = {x− zm = 0} by V . Then

σ
−1 ◦ϕ1,m : (C2,2X +2V )0→ (C2,2X +2Y +mZ)0

is an orbifold covering. Note that, ϕ2,1 is a covering map of (C2,2X +mV )0

via its sub orbifold (C2,2X)0. Denote by Y ′ the lifting ϕ
−1
2,1(V ) = {x2−zm =

0} of V . Then one has the covering,

σ
−1 ◦ϕ2,m = σ

−1 ◦ϕ1,m ◦ϕ2,1 : (C2,2Y ′)0→ (C2,2X +2Y +mZ)0,

which is related to covering of the dihedral germ by the uniformizer of its

sub-orbifold (C2,2X +mZ)0. On the other hand, if one would have changed

the coordinates by the map τ : (z,y) = (x− y,y), then τ−1 ◦ ϕm,1 would

be the uniformizer of the sub-orbifold (C2,mZ)0. In this case, denote the

branch ϕ
−1
m,1(Y ) = {y = 0} by Y and the branch ϕ

−1
m,1(X) = {y+ zm = 0} by

U . Then

τ
−1 ◦ϕm,1 : (C2,2U +2Y )0→ (C2,2X +2Y +mZ)0

is an orbifold covering. Note that, ϕ1,2 is a covering map of (C2,2U +2Y )0

via its sub orbifold (C2,2Y )0. Denote by X ′ the lifting ϕ
−1
1,2(U) = {x2−zm =

0} of V . Then one has the covering,

τ
−1 ◦ϕm,2 = τ

−1 ◦ϕm,1 ◦ϕ1,2 : (C2,2X ′)0→ (C2,2X +2Y +mZ)0,

which is related to covering of the dihedral germ by the uniformizer of its

sub-orbifold (C2,2Y +mZ)0.

d. The uniformizer of the sub-orbifold (C2,2X +2Y )0 is the map ϕ2,2 and one
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has the covering

ϕ2,2 : (C2,Z′)→ (C2,2X +2Y +mZ)0,

where the branch Z′ = ϕ
−1
2,2(Z) = {x2− y2 = 0} is the lifting of the divisor

Z by ϕ2,2.

e. Consider the sub-orbifold (C2,2X + mZ)0 and change the coordinates by

the map σ : (x,z) = (x,x− y). Then X = {x = 0}, Y = {x− z = 0}, Z =

{z = 0}, and the map ϕ2,m : (x,z) 7→ (x2,zm) is the uniformizer of (C2,2X +

mZ)0. Then one has the covering

σ
−1 ◦ϕ2,m : (C2,2Y ′)0→ (C2,2X +2Y +mZ)0,

where Y ′ = ϕ
−1
2,m(Y ) = {x2− zm = 0} is a lifting of Y by ϕ2,m.

f. Covering of the dihedral germ (C2,2X + 2Y + mZ)0 via its sub-orbifold

(C2,2Y + mZ)0 is similar to the case 1.e. It is enough to interchange the

roles of X and Y to see this covering.

In case of m is an odd prime, to see all of covering relations above see Figure

6.2. If m is odd but not prime, then it has prime factorization which induces

factorization of covering relations of dihedral germ. We have omitted to explain

such factorizations but exhibited in Figure 6.3. In both cases we have omitted

the change of coordinate maps in these figures.
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Figure 6.2 Coverings of the dihedral germ (C2,2X +2Y +mZ)0, where m is an odd
prime.
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Figure 6.3 Coverings of the dihedral germ (C2,2X +2Y +mZ)0, where m = ab
and a,b are odd primes.

2. If m is even, say m = 2kn, where n is odd. Then |πorb
1 (C2,D)0|= 22k+2n2 and

the sub-orbifolds are (C2,2X)0, (C2,2Y )0, (C2,2X + 2Y )0, (C2,2X + nZ)0,

(C2,2Y +nZ)0, (C2,2X +2sZ)0, (C2,2Y +2sZ)0, (C2,2X +2snZ)0, (C2,2Y +

2snZ)0, where s = 1, · · · ,k.
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a. For the sub-orbifolds (C2,2X)0, (C2,2Y )0, (C2,mZ)0 and (C2,2X +2Y )0,

the lifting and uniformization of the dihedral germ are the same as in cases

1.a., 1.b., 1.c. and 1.d., respectively.

b. Consider the sub-orbifold (C2,2X +nZ)0. For simplicity, let us first change

the coordinates by σ : (x,z) = (x,x−y). Then X = {x = 0}, Y = {x−z = 0}
and Z = {z = 0}, and the map ϕ2,n : (x,z) 7→ (x2,zn) is the uniformizer of

(C2,2X +nZ)0. Denote the branch ϕ
−1
2,n(Y ) = {x2− zn = 0} by V , and the

branch ϕ
−1
2,n(Z) = {z = 0} by Z. Then,

σ
−1 ◦ϕ2,n : (C2,2Y ′+2kZ)0→ (C2,2X +2Y +mZ)0

is an orbifold covering. Note that the branch Y ′ is smooth for n = 1, and it is

a cusp of (2,n)-type for other odd n’s. Denote by Y ′ the lifting ϕ
−1
1,2k(V ) =

{x2− zm = 0, m = 2kn} of V via the uniformizer of (C2,2kZ)0. Then one

has a covering

σ
−1 ◦ϕ2,m = σ

−1 ◦ϕ2,n ◦ϕ1,2k : (C2,2Y ′)0→ (C2,2X +2Y +mZ)0.

c. Coverings of the dihedral germ (C2,2X +2Y +mZ)0 via the uniformizer of

its the sub-orbifold (C2,2Y +nZ)0 is similar to the case 2.b. It is enough to

change the roles of X and Y to see such coverings explicitly.

d. Consider the sub-orbifold (C2,2X + 2sZ)0, s = 1,2, ...,k. For simplicity,

let us first change the coordinates by the map σ : (x,z) = (x,x− y). Then

X = {x = 0}, Y = {x− z = 0} and Z = {z = 0} and the map ϕ2,2s : (x,z) 7→
(x2,z2s

) is the uniformizer of (C2,2X +2sZ)0. Therefore one has the covering

σ
−1 ◦ϕ2,2s : (C2,2V +2k−snZ)0→ (C2,2X +2Y +mZ)0,

where V is the lifting ϕ
−1
2,2s(Y ) = {x2− z2s

= 0} of Y by ϕ2,2s . Since the
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uniformizer of (C2,2k−snZ)0 is ϕ1,2k−sn then one has the covering

σ
−1 ◦ϕ2,m = σ

−1 ◦ϕ2,2s ◦ϕ1,2k−sn : (C2,2Y ′)0→ (C2,2X +2Y +mZ)0,

where Y ′ := ϕ1,2k−sn(V ) = {x2− zm = 0, m = 2kn} is the lifting of V by

ϕ1,2k−sn.

e. Coverings of (C2,2X + 2Y + mZ)0 by the uniformizer ϕ2,2s of the sub-

orbifold (C2,2Y +2sZ)0 is similar to the case 2.d.

f. Consider the sub-orbifold (C2,2X +2snZ)0 and change the coordinates by

σ : (x,z) = (x,x− y), then X = {x = 0}, Z = {z = 0}, Y = {x− z = 0}
and the map ϕ2,2sn is the uniformizer of (C2,2X +2snZ)0. Denote by Z the

lifting ϕ
−1
2,2sn(Z) and by V the lifting ϕ

−1
2,2sn(Y ) = {x2− z2sn = 0}. Then we

have the covering

σ
−1 ◦ϕ2,2sn : (C2,2V +2k−sZ)0→ (C2,2X +2Y +mZ)0.

Since the uniformizer of (C2,2k−sZ)0 is ϕ1,2k−s then one has the covering

σ
−1 ◦ϕ2,m = σ

−1 ◦ϕ2,2sn ◦ϕ1,2k−s : (C2,2Y ′)0→ (C2,2X +2Y +mZ)0,

where Y ′ := ϕ1,2k−s(V ) = {x2− zm = 0, m = 2kn} is the lifting of V by

ϕ1,2k−sn.

g. Coverings of the germ (C2,2X +2Y +mZ)0 by the uniformizer of the sub-

orbifold (C2,2Y +2snZ)0 is similar to the case 2.f.

h. Note that, Y ′ has two components and they are normal crossing two lines if

k = n = 1. Otherwise, set V 0
0,1 := {x+ z2k−1n = 0}, V 0

0,2 := {x− z2k−1n = 0},
and change the coordinates by α1 : (x1,z) = (x+z2k−1n

2 ,z), then V 0
0,1 = {x1 =

0} and V 0
0,2 = {x1− z2k−1n = 0}. Denote by V 1

2 by the lifting ϕ
−1
2,1(V

0
0,2) =

{x2
1− z2k−1n = 0}, then we have a covering

α1 ◦ϕ2,1 : (C,2V 1
2 )0→ (C,2Y ′)0.
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If k = 1 and n 6= 1, then clearly V 1
2 is a cusp of (2,n)-type. Now suppose

k > 1 and set V 1
1,1 := {x1 +z2k−2n = 0}, V 1

1,2 := {x1−z2k−2n = 0}, and change

the coordinates by α2 : (x2,z) = (x1+z2k−2n

2 ,z), then V 1
1,1 = {x2 = 0} and

V 1
1,2 = {x1− z2k−2n = 0}. Denote by V 2

2 by the lifting ϕ
−1
2,1(V

1
1,2) = {x2

2−
z2k−2n = 0}, then we have a covering α2 ◦ ϕ2,1 : (C,2V 2

2 )0 → (C,2V 1
2 )0.

If k = 2 and n 6= 1, then clearly V 2
2 is a cusp of (2,n)-type. Apply this

procedure k−1 times. If n = 1 then V k−1
2 consists of normal crossing lines.

Otherwise applying the procedure above once again we obtain V k
2 as cusp

of (2,n) type. Thus we have a covering

α1 ◦ϕ2,1 ◦α2 ◦ϕ2,1 ◦ · · · ◦αk ◦ϕ2,1 : (C,2V k
2 )0→ (C,2Y ′)0.

A similar covering relation is also valid for the orbifold (C,2X ′)0.

To see coverings of the dihedral germ (C2,2X +2Y +mZ)0, where m is even,

see Figures 6.4, 6.5 and 6.6. We have omitted the change of coordinate maps.

Remark 6.2.12. The black dot on top of the Figures 6.2, 6.3, 6.4, 6.5, 6.6 represents

the isolated surface (Du Val) singularity of type Am−1, given by the equation

Sm := {(x,y,z) ∈ C3 | −x2 + y2 + zm = 0}, m≥ 2.

It is clear that the projection (x,y,z)→ (x,y) defines a Zm orbifold covering by

this singularity of the orbifold (C2,mZ′)0. Other coordinate projections define Z2

coverings by the same singularity of the orbifolds (C2,2X ′)0 and (C2,2Y ′)0.
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6.2.4.3 Coverings of the Tetrahedral Germ

Consider the tetrahedral germ (C2,2X + 3Y + 3Z)0 in Figure 6.1b, where X =

{x = 0}, Y = {y = 0} and Z = {x−y = 0}. In the Theorem 5.10.1 we have computed
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Figure 6.6 Coverings of the dihedral germ (C2,2X +2Y +6Z)0.

the local fundamental group of complement to pencil of m-lines in C2. By using the

presentation of G3,3, we get the triangle group

〈µ1,µ2,µ3 | [µi,µ3µ2µ1] = µ2
1 = µ3

2 = µ3
3 = 1, i = 1,2,3〉

of order 144 as the orbifold fundamental group of the germ (C2,2X + 3Y + 3Z)0.

This group acts on C2 and the branch divisor of this action is the tetrahedral germ.

The sub-orbifolds of (C2,2X +3Y +3Z)0 are (C2,2X)0, (C2,3Y )0, (C2,3Z)0, (C2,2X +

3Y )0, (C2,2X +3Z)0 and (C2,2Y +3Z)0. Now we will discus the coverings of the

tetrahedral germ via uniformizers of its sub orbifolds.

a. The uniformizer of (C2,2X)0 is the map ϕ2,1 : (x,y)→ (x2,y). If we denote

the branch ϕ
−1
2,1(Y ) = {y = 0} by Y and the branch ϕ

−1
2,1(Z) = {x2− y = 0} by

W , then ϕ2,1 : (C2,3Y +3W )0→ (C2,2X +3Y +3Z)0 is an orbifold covering.

Now, ϕ1,3 is a covering of (C2,3Y +3W )0 and one has Z′ = ϕ
−1
1,3(W ) = {x2−
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y3 = 0}. Then we have the covering

ϕ2,3 = ϕ2,1 ◦ϕ1,3 : (C2,3Z′)0→ (C2,2X +3Y +3Z)0,

which is related to covering of the tetrahedral germ by the uniformizer of its

sub-orbifold (C2,2X + 3Y )0. On the other hand, if one would have changed

the coordinates by the map σ : (x,z) = (x,x− y), then σ−1 ◦ϕ2,1 would be

the uniformizer of the sub-orbifold (C2,2X)0. In this case, denote the branch

ϕ
−1
2,1(Z) = {z = 0} by Z and the branch ϕ

−1
2,1(Y ) = {x2− z = 0} by V . Then

σ
−1 ◦ϕ2,1 : (C2,3V +3Z)0→ (C2,2X +3Y +3Z)0

is an orbifold covering. Note that, ϕ1,3 is a covering map of (C2,3V +3Z)0 via

its sub orbifold (C2,3Z)0. Denote by Y ′ the lifting ϕ
−1
1,3(V ) = {x2− z3 = 0} of

V . Then one has another covering,

σ
−1 ◦ϕ2,3 = σ

−1 ◦ϕ2,1 ◦ϕ1,3 : (C2,3Y ′)0→ (C2,2X +3Y +3Z)0,

which is related to covering of the tetrahedral germ by the uniformizer of its

sub-orbifold (C2,2X +3Z)0.

b. The uniformizer of (C2,3Y )0 is the map ϕ1,3 : (x,y)→ (x,y3). If we denote by

X the branch ϕ
−1
1,3(X) = {x = 0} and by W the branch ϕ

−1
1,3(Z) = {x−y3 = 0},

then (C2,2X +3W )0 is a lifting of (C2,2X +3Y +3Z)0 via ϕ1,3. Now, ϕ2,1 is

a covering map of (C2,2X +3W )0 and one has Z′ = ϕ
−1
2,1(W ) = {x2−y3 = 0}.

Then we have the covering

ϕ2,3 = ϕ1,3 ◦ϕ2,1 : (C2,2X +3W )0→ (C2,2X +3Y +3Z)0,

which is related to covering of the tetrahedral germ by the uniformizer of its

sub-orbifold (C2,2X + 3Y )0. On the other hand, if one would have changed

the coordinates by the map τ : (z,y) = (x− y,y), then τ−1 ◦ϕ1,3 would be the



170

uniformizer of the sub-orbifold (C2,3Y )0. In this case, denote by Z the branch

ϕ
−1
1,3(Z) = {z = 0} and by U the branch ϕ

−1
1,3(X) = {z+ y3 = 0}. Then

τ
−1 ◦ϕ1,3 : (C2,3U +3Z)0→ (C2,2X +3Y +3Z)0

is an orbifold covering. Note that, (C2,3Z)0 is uniformized by C2
0 via ϕ3,1.

Denote by X ′ the lifting ϕ
−1
3,1(U) = {z3 + y3 = 0} of U . Then one has another

covering,

τ
−1 ◦ϕ3,3 = τ

−1 ◦ϕ1,3 ◦ϕ3,1 : (C2,2X ′)0→ (C2,2X +3Y +3Z)0,

which is related to covering of the tetrahedral germ by the uniformizer of its

sub-orbifold (C2,3Y +3Z)0.

c. Coverings of the germ (C2,2X + 3Y + 3Z)0 by the uniformizer of the sub-

orbifold (C2,3Z)0 is similar to the case b. It is enough to change the roles of

Y and Z to see such coverings.

d. We know that the abelian germ (C2,2X + 3Y )0 is uniformized by C2
0 via the

map ϕ2,3 : (x,y)→ (x2,y3). If we denote by Z′ the branch ϕ
−1
2,3(Z) = {x2−y3 =

0}, then we have the covering

ϕ2,3 : (C2,3Z′)0→ (C2,2X +3Y +3Z)0.

e. After change of coordinates in a suitable way, one can easily see that the

uniformization of the tetrahedral germ due to its sub-orbifold (C2,2X + 3Z)0

is similar to the case d.

f. First let us change the coordinates by a map τ : (z,y) = (x− y,y), then X =

{z + y = 0}, Y = {y = 0} and Z = {z = 0}. We know that the sub-orbifold

(C2,3Y + 3Z)0 is uniformized by C2
0 via the map ϕ3,3 : (z,y)→ (z3,y3). If

we denote by X ′ the branch ϕ
−1
3,3(X) = {z3 + y3 = 0} by X ′ then we have the
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Figure 6.7 Coverings of the tetrahedral germ(C2,2X +3Y +3Z)0.

covering

ϕ3,3 : (C2,2X ′)0→ (C2,2X +3Y +3Z)0.

Note that X ′ consists of three lines. Set X1 = {z + y = 0}, X2 = {z + ωy = 0}
and X3 = {z+ω2y = 0}, where ω is a third root of unity, then X ′= X1∪X2∪X3

and (C2,2X ′)0 is the dihedral germ (C2,2X1 + 2X2 + 2X3)0. This tell us that,

dihedral germ appears as a covering of the tetrahedral germ. The coverings of

the dihedral germ has already been explained in Section 6.2.4.2.

Remark 6.2.13. The black dot on top of Figure 6.7 represents the surface

S = {(x,y,z) ∈ C3 | −x2 + y3 + z3 = 0}.

It is clear that the projection (x,y,z) → (y,z) defines a Z2 orbifold covering of

the orbifold (C2,2X ′)0. Similarly, the coordinate projections (x,y,z)→ (x,z) and

(x,y,z) → (x,y) define Z3 coverings of the orbifolds (C2,3Y ′)0 and (C2,3Z′)0,

respectively. The surface S has a D4 singularity at the origin. Indeed, the blow-

up S ′→ S is covered by 3 affine pieces, of which I only write down one: consider

C3 with coordinates x1,y1,z, and the morphism ψ : C3 → C3 defined by x = x1z,

y = y1z and z = z. The inverse image of S under ψ is defined by f1(x1z,x2z,z) =

−x2
1z2 + y3

1z3 + z + 3 = z2 f1, where f1(x1,y1,z) = −x2
1 +(y3

1 + 1)z. Here the factor
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z2 vanishes on the exceptional (x1,y1)-plane C2 = ψ−1O : (z = 0) ⊂ C3, and the

residual component S ′ : ( f1(x1,y1,z) = 0) ⊂ C3 is the birational transform of S .

Now clearly the inverse image of O = (0,0,0) under ψ is the y1-axis, and Ŝ :

−x2
1 + (y3

1 + 1)z = 0 has ordinary double points at the 3 points where x1 = z = 0

and y3
1 + 1 = 0. One can check that the other affine pieces of the blowup have no

further singular points. The resolution Ŝ → S ′→ S is obtained on blowing up these

three points, and the corresponding Dynkin diagram is D4. Because of that S is the

isolated surface (Du Val) singularity of type D4.

6.2.4.4 Coverings of the Octahedral Germ

Consider the octahedral germ (C2,2X + 3Y + 4Z)0, where X = {x = 0}, Y =

{y = 0} and Z = {x− y = 0}. Its orbifold fundamental group is the triangle group

〈µ1,µ2,µ3 | [µi,µ1µ2µ3] = µ2
1 = µ3

2 = µ4
3 = 1, i = 1,2,3〉

of order 596. This group acts on C2 and the corresponding branch divisor is the

octahedral germ. The orbifolds (C2,2X)0, (C2,3Y )0, (C2,2Z)0, (C2,4Z)0, (C2,2X +

3Y )0, (C2,2X + 2Z)0, (C2,2X + 4Z)0, (C2,3Y + 2Z)0 and (C2,3Y + 4Z)0 are its

sub-orbifolds. Let us study the liftings of (C2,2X +3Y +4Z)0 due to uniformizers

of its sub-orbifolds.

a. The uniformizer of (C2,2X)0 is the map ϕ2,1 : (x,y)→ (x2,y). If we denote by

Y the lifting ϕ
−1
2,1(Y ) = {y = 0} and by W the lifting ϕ

−1
2,1(Z) = {x2− y = 0},

then

ϕ2,1 : (C2,3Y +4W )0→ (C2,2X +3Y +4Z)0

is an orbifold covering. Now, ϕ1,3 is a covering of (C2,3Y +4W )0 and one has

Z′ = ϕ
−1
1,3(W ) = {x2− y3 = 0}. Therefore we have the covering

ϕ2,3 : (C2,4Z′)0→ (C2,2X +3Y +4Z)0,
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which is related to covering of octahedral germ by the uniformizer of its sub

orbifold (C2,2X +3Y )0.

On the other hand, if one would have changed the coordinates by the map

σ : (x,z) = (x,x− y), then σ−1 ◦ϕ2,1 would be the uniformizer of the sub-

orbifold (C2,2X)0. In this case, denote by Z the branch ϕ
−1
2,1(Z) = {z = 0} and

by V the branch ϕ
−1
2,1(Y ) = {x2− z = 0}. Then

σ
−1 ◦ϕ2,1 : (C2,3V +4Z)0→ (C2,2X +3Y +3Z)0

is an orbifold covering. The sub-orbifold (C2,4Z)0 is uniformized by C2
0 via

ϕ1,4. Denote by Y ′ the lifting ϕ
−1
1,4(V ) = {x2− z4 = 0} of V . Then one has

another covering,

σ
−1 ◦ϕ2,4 = σ

−1 ◦ϕ2,1 ◦ϕ1,4 : (C2,3Y ′)0→ (C2,2X +3Y +4Z)0,

which is related to covering of the octahedral germ by the uniformizer of its

sub-orbifold (C2,2X +4Z)0. Note that (C2,2Z)0 is a sub orbifold of (C2,4Z)0

and ϕ1,4 = ϕ1,2◦ϕ1,2. By using this fact one may obtain the factorization σ−1◦
ϕ2,1 ◦ϕ1,2 ◦ϕ1,2 of the covering σ−1 ◦ϕ2,1 ◦ϕ1,4. We will omit to explain this

factorization but exhibit in the Figure 6.8.

b. The uniformizer of (C2,3Y )0 is the map ϕ1,3 : (x,y)→ (x,y3). If we denote by

X the lifting ϕ
−1
1,3(X) = {x = 0} and by W the lifting ϕ

−1
1,3(Z) = {x− y3 = 0},

then one has the covering

ϕ1,3 : (C2,2X +4W )0→ (C2,2X +3Y +4Z)0.

Now, ϕ2,1 is a covering of (C2,2X +4W )0 and one has Z′ = ϕ
−1
2,1(W ) = {x2−

y3 = 0}. Therefore, we have the covering

ϕ2,3 : (C2,4Z′)0→ (C2,2X +3Y +4Z)0,
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which is related to covering of octahedral germ by the uniformizer of the sub-

orbifold (C2,2X +3Y )0.

On the other hand, if one would have changed the coordinates by the map

τ : (z,y) = (x− y,y), then τ−1 ◦ ϕ1,3 would be the uniformizer of the sub-

orbifold (C2,3Y )0. In this case, denote by Z the branch ϕ
−1
1,3(Z) = {z = 0} and

by U the branch ϕ
−1
1,3(X) = {z+ y3 = 0}. Then

τ
−1 ◦ϕ1,3 : (C2,2U +4Z)0→ (C2,2X +3Y +3Z)0

is an orbifold covering. In addition, the sub-orbifold (C2,4Z)0 is uniformized

by C2
0 via ϕ4,1. Denote by X ′ the lifting ϕ

−1
4,1(U) = {z4 + y3 = 0} of V . Then

one has another covering,

τ
−1 ◦ϕ4,3 = τ

−1 ◦ϕ1,3 ◦ϕ4,1 : (C2,2X ′)0→ (C2,2X +3Y + tZ)0,

which is related to covering of the octahedral germ via its sub-orbifold (C2,3Y +

4Z)0. Note that (C2,2Z)0 is a sub orbifold of (C2,4Z)0 and ϕ4,1 = ϕ2,1 ◦ϕ2,1.

By using this fact one may obtain the factorization τ−1 ◦ϕ1,3 ◦ϕ2,1 ◦ϕ2,1 of the

covering τ−1 ◦ϕ1,3 ◦ϕ4,1. We will omit to explain this factorization but exhibit

in the Figure 6.8.

c. Now consider the sub-orbifold (C2,2Z)0, and change the coordinates by a map

σ : (x,z) = (x,x−y), then X = {x = 0}, Y = {x− z = 0} and Z = {z = 0}. The

orbifold (C2,2Z)0 is uniformized by C2
0 via ϕ1,2 : (x,z)→ (x,z2). If we denote

by X , V ′ and Z the branches ϕ
−1
1,2(X) = {x = 0}, ϕ

−1
1,2(Y ) = {x− z2 = 0} and

ϕ
−1
1,2(Z) = {z = 0}, respectively, then we have the covering

σ
−1 ◦ϕ1,2 : (C2,2X +3V ′+2Z)0→ (C2,2X +3Y +4Z)0.

Taking the lifting of (C2,2X +3V ′+2Z)0 by ϕ1,2, and setting X := ϕ
−1
1,2(X) =
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{x = 0} and V := ϕ
−1
1,2(V

′) = {x− z4} we will obtain the covering

σ
−1 ◦ϕ1,4 = σ

−1 ◦ϕ1,2 ◦ϕ1,2 = (C2,2X +3V )0→ (C2,2X +3Y +4Z)0

which is related to covering of the octahedral germ by uniformizer of its sub-

orbifold (C2,2X + 3Y + 4Z)0. So, we will explain further coverings of the

orbifold (C2,2X +3V )0 in the case d.

Beside this, one may consider the orbifold (C2,2X + 3V ′ + 2Z)0 which

appeared as a cover of octahedral germ, above. Its sub-orbifold (C2,2X)0 is

uniformized by C2
0 via ϕ2,1 : (x,z) 7→ (x2,z). Setting V ′′ := ϕ

−1
2,1(V

′) = {x2−
z2 = 0} and Z := ϕ

−1
2,1(Z) = {z = 0}, we have an orbifold covering

σ
−1 ◦ϕ2,2 = σ

−1 ◦ϕ1,2 ◦ϕ2,1 : (C2,3V ′′+2Z)0→ (C2,2X +3Y +4Z)0,

which is related to covering of the octahedral germ by the uniformizer of its

sub-orbifold (C2,2X + 2Z)0. Note that (C2,3V ′′+ 2Z)0 is a tetrahedral germ

and it appeared as covering of the octahedral germ. We will explain further

coverings of (C2,3V ′′+2Z)0 in the case f.

On the other hand, if one would have changed the coordinates by the map

τ : (z,y) = (x− y,y), then τ−1 ◦ ϕ2,1 would be the uniformizer of the sub-

orbifold (C2,2Z)0. In this case, denote by U ′, Y and Z the branches ϕ
−1
2,1(X) =

{z2 + y = 0}, ϕ
−1
2,1(Y ) = {y = 0} and ϕ

−1
2,1(Z) = {z = 0}, respectively. Then

τ
−1 ◦ϕ2,1 : (C2,2U ′+3Y +2Z)0→ (C2,2X +3Y +3Z)0

is an orbifold covering. Taking the lifting of (C2,2U ′+ 3Y + 2Z)0 by ϕ2,1,

and setting U := ϕ
−1
2,1(U

′) = {z+y4 = 0} and Y := ϕ
−1
2,1(Y ) = {y = 0} we will

obtain the covering

τ
−1 ◦ϕ4,1 = τ

−1 ◦ϕ2,1 ◦ϕ2,1 = (C2,2U +3Y )0→ (C2,2X +3Y +4Z)0,
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which is related to covering of the octahedral germ by uniformizer of its sub-

orbifold (C2,2X + 3Y + 4Z)0. So, we will explain further coverings of the

orbifold (C2,2U +3Y )0 in the case d.

Beside this, one may consider the orbifold (C2,2U ′ + 3Y + 2Z)0 which

appeared as a cover of octahedral germ, above. Its sub-orbifold (C2,3Y )0

is uniformized by C2
0 via ϕ1,3 : (z,y) 7→ (z,y3). Setting U ′′ := ϕ

−1
1 (U ′) =

{z2 + y3 = 0} and Z := ϕ
−1
1,3(Z) = {z = 0}, we have an orbifold covering

τ
−1 ◦ϕ2,3 = τ

−1 ◦ϕ2,1 ◦ϕ1,3 : (C2,2U ′′+2Z)0→ (C2,2X +3Y +4Z)0,

which is related to covering of the octahedral germ by the uniformizer of its

sub-orbifold (C2,3Y +2Z)0. We will explain further coverings of (C2,2U ′′+

2Z)0 in the case h.

d. Consider the sub-orbifold (C2,4Z)0 and change the coordinates by a map σ :

(x,z) = (x,x− y), then X = {x = 0}, Y = {x− z = 0} and Z = {z = 0}. Then

it is uniformized by C2
0 via ϕ1,4. Denote by X the lifting ϕ

−1
1,4(X) = {x = 0} of

X and by V the lifting ϕ
−1
1,4(Y ) = {x− z4 = 0} of Y . Then one has the covering

σ
−1 ◦ϕ1,4 : (C2,2X +3V )0→ (C2,2X +3Y +4Z)0.

Since the uniformizer of (C2,2X)0 is ϕ2,1 : (x,z) 7→ (x2,z), then by setting

Y ′ := ϕ
−1
2,1(V ) = {x2− z4 = 0} we obtain the covering

σ
−1 ◦ϕ2,4 = σ

−1 ◦ϕ1,4 ◦ϕ2,1 : (C2,3Y ′)0→ (C2,2X +3Y +4Z)0,

which is related to covering of the octahedral germ by the uniformizer of its

sub-orbifold (C2,2X +4Z)0.

On the other hand, if one would have changed the coordinates by the map τ :

(z,y) = (x−y,y), then X = {z+y = 0}, Y = y = 0, Z = {z = 0} and τ−1 ◦ϕ4,1

would be the uniformizer of the sub-orbifold (C2,4Z)0. In this case, denote by
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U , Y the branches ϕ
−1
4,1(X) = {z4 +y = 0} and ϕ

−1
4,1(Y ) = {y = 0}, respectively.

Then one has the covering

τ
−1

ϕ4,1 : (C2,2U +3Y )0→ (C2,2X +3Y +4Z)0.

The orbifold (C2,3Y )0 is uniformized by C2
0 via ϕ1,3 : (z,y) 7→ (z,y3). Then

we have the covering

τ
−1

ϕ4,3 = τ
−1

ϕ4,1 ◦ϕ1,3 : (C2,2X ′)0→ (C2,2X +3Y +4Z)0,

which is related to covering of the octahedral germ by the uniformizer of its

sub-orbifold (C2,3Y +4Z)0.

e. The uniformizer of (C2,2X + 3Y )0 is the map ϕ2,3 : (x,y)→ (x2,y3). If we

denote by Z′ the branch ϕ
−1
2,3(Z) = {x2−y3 = 0}, then (C2,4Z′)0 is a lifting of

(C2,2X +3Y +4Z)0 via ϕ2,3 and we have the covering

ϕ2,3 : (C2,4Z′)0→ (C2,2X +3Y +4Z)0.

f. Consider the sub orbifold (C2,2X +2Z)0 and change the coordinates by a map

σ : (x,z) = (x,x− y). Then X = {x = 0}, Y = {x− z = 0} and Z = {z = 0},
and the uniformizer of (C2,2X +2Z)0 is the map ϕ2,2 : (x,z)→ (x2,z2). If we

denote V ′′ the branch ϕ
−1
2,2(Y ) = {x2−z2 = 0} and Z the branch ϕ

−1
2,2(Z) = {z =

0}, then one has the covering

σ
−1 ◦ϕ2,2 : (C2,3V ′′+2Z)0→ (C2,2X +3Y +4Z)0.

Note that V ′′ consists of two lines through the origin and the germ (C2,3V ′′+

2Z) is tetrahedral. We have already study the coverings of tetrahedral germ in

the Section 6.2.4.3. On the other hand, the sub-orbifold (C2,2Z)0 of (C2,3V ′′+
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2Z)0 is uniformized by C2
0 via ϕ1,2 : (x,z) 7→ (x,z2). Then we have the covering

ϕ1,2 : (C2,3Y ′)0→ (C2,3V ′′+2Z)0,

which naturally induces the covering

σ
−1 ◦ϕ2,4 = σ

−1 ◦ϕ2,2 ◦ϕ1,2 : (C2,3Y ′)0→ (C2,2X +3Y +4Z)0,

where Y ′ = ϕ
−1
1,2(V

′′) = {x2− z4 = 0}.

g. Consider the sub orbifold (C2,2X + 4Z)0 change the coordinates by a map

σ : (x,z) = (x,x− y). Then X = {x = 0}, Y = {x− z = 0} and Z = {z = 0},
and the uniformizer of (C2,2X +4Z)0 is the map ϕ2,4 : (x,z)→ (x2,z4). If we

denote by Y ′ the branch ϕ
−1
2,4(Y ) = {x2− z4 = 0} then one has the covering

σ
−1 ◦ϕ2,4 : (C2,3Y ′)0→ (C2,2X +3Y +4Z)0.

h. Consider the sub orbifold (C2,3Y +2Z)0 and change the coordinates by a map

τ : (z,y) = (x− y,y). Then X = {z + y = 0}, Y = {y = 0} and Z = {z = 0},
and the uniformizer of (C2,3Y + 2Z)0 is the map ϕ2,3 : (z,y)→ (z2,y3). If

we denote by U ′′ the branch ϕ
−1
2,3(X) = {z2 + y3 = 0} and by Z the branch

ϕ
−1
2,3(Z) = {z = 0}, then one has the covering

τ
−1 ◦ϕ2,3 : (C2,2U ′′+2Z)0→ (C2,2X +3Y +4Z)0.

The sub-orbifold (C2,2Z)0 of (C2,2U ′′+2Z)0 is uniformized by C2
0 via ϕ2,1 :

(z,y) 7→ (z2,y). Then we have the covering

ϕ2,1 : (C2,2X ′)0→ (C2,2U ′′+2Z)0,
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which naturally induces the covering

τ
−1 ◦ϕ4,3 = τ

−1 ◦ϕ2,3 ◦ϕ2,1 : (C2,2X ′)0→ (C2,2X +3Y +4Z)0,

where X ′ = ϕ
−1
2,1(U

′′) = {z4 + y3 = 0}.

i. Consider the sub orbifold (C2,3Y + 4Z)0 change the coordinates by a map

τ : (z,y) = (x− y,y). Then X = {z + y = 0}, Y = {y = 0} and Z = {z = 0},
and the uniformizer of (C2,3Y +4Z)0 is the map ϕ4,3 : (x,z)→ (z4,y3). If we

denote X ′ the branch ϕ
−1
4,3(X) = {z4 + y3 = 0} then one has the covering

τ
−1 ◦ϕ4,3 : (C2,2X ′)0→ (C2,2X +3Y +4Z)0.
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Figure 6.8 Coverings of the octahedral germ(C2,2X +3Y +4Z)0.
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Remark 6.2.14. The black dot on top of Figure 6.8 represents the isolated surface

(Du Val) singularity of type E6, given by the equation

E6 := {(x,y,z) ∈ C3 | −x2 + y3 + z4 = 0}.

It is clear that the projection (x,y,z)→ (x,y) defines a Z4 orbifold covering by this

singularity of the orbifold (C2,4Z′)0. Other coordinate projections (x,y,z)→ (y,z)

and (x,y,z)→ (x,z) define respectively Z2 and Z3 coverings by the same singularity

of the orbifolds (C2,2X ′)0 and (C2,3Y ′)0.

6.2.4.5 Coverings of the Icosahedral Germ

Consider the icosahedral germ (C2,2X + 3Y + 5Z)0, where X = {x = 0}, Y =

{y = 0} and Z = {x− y = 0}. Its orbifold fundamental group is the triangle group

〈µ1,µ2,µ3 | [µi,µ1µ2µ3] = µ2
1 = µ3

2 = µ5
3 = 1, i = 1,2,3〉

of order 3600. So, (C2,2X)0, (C2,3Y )0, (C2,5Z)0, (C2,2X +3Y )0, (C2,2X +5Z)0

and (C2,3Y +5Z)0 are its sub-orbifolds. Let us study the liftings of (C2,2X +3Y +

5Z)0 due to uniformizer of its sub-orbifolds. Figure 6.9 exhibits all coverings of the

icosahedral germ.

a. The uniformizer of (C2,2X)0 is the map ϕ2,1 : (x,y)→ (x2,y). If we denote by

Y the branch ϕ
−1
2,1(Y ) = {y = 0} and by W the branch ϕ

−1
2,1(Z) = {x2− y = 0},

then

ϕ2,1 : (C2,3Y +5W )0→ (C2,2X +3Y +5Z)0

is an orbifold covering. Now, ϕ1,3 is a covering of (C2,3Y +5W )0 and one has

Z′ = ϕ
−1
1,3(W ) = {x2− y3 = 0}. Then we get the covering

ϕ2,3 = ϕ2,1 ◦ϕ1,3 : (C2,5Z′)0→ (C2,2X +3Y +5Z)0,



181

which is related to covering of the icosahedral germ by the uniformizer of its

sub-orbifold (C2,2X +3Y )0.

On the other hand, if one would have changed the coordinates by the map

σ : (x,z) = (x,x− y), then X = {x = 0}, Y = {x− z = 0}, Z = {z = 0} and

σ−1◦ϕ2,1 would be the uniformizer of the sub-orbifold (C2,2X)0. In this case,

denote by Z the branch ϕ
−1
2,1(Z) = {z = 0} and by V the branch ϕ

−1
2,1(Y ) =

{x2− z = 0}. Then

σ
−1 ◦ϕ2,1 : (C2,3V +5Z)0→ (C2,2X +3Y +5Z)0

is an orbifold covering. The sub-orbifold (C2,5Z)0 is uniformized by C2
0 via

ϕ1,5. Denote by Y ′ the lifting ϕ
−1
1,5(V ) = {x2− z5 = 0} of V . Then one has

another covering,

σ
−1 ◦ϕ2,5 = σ

−1 ◦ϕ2,1 ◦ϕ1,5 : (C2,3Y ′)0→ (C2,2X +3Y +5Z)0,

which is related to covering of the icosahedral germ by the uniformizer of its

sub-orbifold (C2,2X +5Z)0.

b. The uniformizer of (C2,3Y )0 is the map ϕ1,3 : (x,y)→ (x,y3). If we denote by

X the branch ϕ
−1
1,3(X) = {x = 0} and by W ′ the branch ϕ

−1
1,3(Z) = {x−y3 = 0},

then then

ϕ1,3 : (C2,2X +5W ′)0→ (C2,2X +3Y +5Z)0

is an orbifold covering. Now, ϕ2,1 is a covering of (C2,2X + 5W ′)0 and one

has Z′ = ϕ
−1
2,1(W

′) = {x2− y3 = 0}. Then we get the covering

ϕ2,3 = ϕ1,3 ◦ϕ2,1 : (C2,5Z′)0→ (C2,2X +3Y +5Z)0,

which is related to covering of the icosahedral germ by the uniformizer of its

sub-orbifold (C2,2X +3Y )0.

On the other hand, if one would have changed the coordinates by the map
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τ : (z,y) = (x− y,y), then X = {z + y = 0}, Y = {y = 0}, Z = {z = 0} and

τ−1 ◦ϕ1,3 would be the uniformizer of the sub-orbifold (C2,3Y )0. In this case,

denote by Z the branch ϕ
−1
1,3(Z) = {z = 0} and by U the branch ϕ

−1
1,3(X) =

{z+ y3 = 0}. Then

τ
−1 ◦ϕ1,3 : (C2,2U +5Z)0→ (C2,2X +3Y +5Z)0

is an orbifold covering. The sub-orbifold (C2,5Z)0 is uniformized by C2
0 via

ϕ5,1. Denote by X ′ the lifting ϕ
−1
5,1(U) = {z5 + y3 = 0} of V . Then one has

another covering,

τ
−1 ◦ϕ5,3 = τ

−1 ◦ϕ1,3 ◦ϕ5,1 : (C2,2X ′)0→ (C2,2X +3Y +5Z)0,

which is related to covering of the icosahedral germ by uniformizer of its sub-

orbifold (C2,3Y +5Z)0.

c. Consider the sub-orbifold (C2,5Z)0 and change the coordinates by a map σ :

(x,z) = (x,x− y). Then X = {x = 0}, Y = {x− z = 0} and Z = {z = 0}. The

uniformizer of (C2,5Z)0 is the map ϕ1,5 : (x,z)→ (x,z5). If we denote by X

the branch ϕ
−1
1,5(X) = {x = 0} and by V the branch ϕ

−1
1,5(Y ) = {x− z5 = 0},

then we have an orbifold covering

σ
−1 ◦ϕ1,5 : (C2,2X +3V )0→ (C2,2X +3Y +5Z)0.

Now, ϕ2,1 is a covering of (C2,2X + 3V )0 and one has Y ′ = ϕ
−1
2,1(V ) = {x2−

z5 = 0}. Hence we have the covering

σ
−1 ◦ϕ2,5 = σ

−1 ◦ϕ1,5 ◦ϕ2,1 : (C2,3Y ′)0→ (C2,2X +3Y +5Z)0,

which is related to covering of the icosahedral by the uniformizer of its sub-

orbifold (C2,2X +5Z)0.

On the other hand, if one would have changed the coordinates by the map
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τ : (z,y) = (x− y,y), then X = {z + y = 0}, Y = {y = 0}, Z = {z = 0} and

τ−1 ◦ϕ5,1 would be the uniformizer of the sub-orbifold (C2,5Z)0. In this case,

denote by U ′ the branch ϕ
−1
5,1(X) = {z5 +y = 0} and by Y the branch ϕ

−1
5,1(Y ) =

{y = 0}. Then

τ
−1 ◦ϕ5,1 : (C2,2U ′+3Y )0→ (C2,2X +3Y +5Z)0

is an orbifold covering. The sub-orbifold (C2,3Y )0 is uniformized by C2
0 via

ϕ1,3. Denote by X ′ the lifting ϕ
−1
1,3(U

′) = {z5 + y3 = 0} of U ′. Then one has

another covering

τ
−1 ◦ϕ5,3 = τ

−1 ◦ϕ5,1 ◦ϕ1,3 : (C2,2X ′)0→ (C2,2X +3Y +5Z)0,

which is related to covering of the icosahedral germ by the uniformizer of its

sub-orbifold (C2,3Y +5Z)0.

d. The uniformizer of (C2,2X + 3Y )0 is the map ϕ2,3 : (x,y)→ (x2,y3). If we

denote by Z′ the branch ϕ
−1
2,3(Z) = {x2− y3 = 0}, then one has the covering

ϕ2,3 : (C2,5Z′)0→ (C2,2X +3Y +5Z)0.

e. Consider the sub orbifold (C2,2X + 5Z)0 and change the coordinates by a

map σ : (x,z) = (x,x− y). Then the uniformizer of (C2,2X +5Z)0 is the map

ϕ2,5 : (x,z)→ (x2,z5). If we denote by Y ′ the branch ϕ
−1
2,5(Y ) = {x2− z5 = 0},

then one has the covering

σ
−1 ◦ϕ2,5 : (C2,3Y ′)0→ (C2,2X +3Y +5Z)0.

f. Consider the sub orbifold (C2,3Y + 5Z)0 and change the coordinates by a

map τ : (z,y) = (x− y,y). Then the uniformizer of (C2,3Y + 5Z)0 is the map

ϕ5,3 : (z,y)→ (z5,y3). If we denote by X ′ the branch ϕ
−1
5,3(Y ) = {z5 +x3 = 0},
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then one has the covering

τ
−1 ◦ϕ5,3 : (C2,2X ′)0→ (C2,2X +3Y +5Z)0.
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Figure 6.9 Coverings of the icosahedral germ(C2,2X +3Y +5Z)0.

Remark 6.2.15. The black dot on top of Figures 6.9 represents the isolated surface

(Du Val) singularity of type E8, given by the equation

E8 := {(x,y,z) ∈ C3 | −x2 + y3 + z5 = 0}.

It is clear that the projection (x,y,z)→ (x,y) defines a Z5 orbifold covering by this

singularity of the orbifold (C2,5Z′)0. Other coordinate projections (x,y,z)→ (y,z)

and (x,y,z) → (x,y) define Z2 and Z3 coverings by the same singularity of the

orbifolds (C2,2X ′)0 and (C2,3Y ′)0, respectively.

6.2.4.6 Coverings of the Other Orbifold Germs with Smooth Base

In this section we will interested in coverings of the orbifold germs with smooth

base and nonlinear branch loci in the Table 6.1. We omit drawing Figures since

they appears as covers of orbifolds with linear branch loci. To see these coverings

explicitly, see Figures 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8 and 6.9.
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(1) First consider the orbifold (C2, pX)0, where X = {xn− ym = 0} and ρ := 1
p +

1
n + 1

m − 1 > 0 and gcd(n,m) = 1. The possible triples (p,n,m) are listed in

the Table 6.2. As we discussed in Remarks 6.2.12, 6.2.13, 6.2.14, 6.2.15, the

uniformization of the orbifold (C2, pX)0 is the surface

S = {(x,y,z) ∈ C3 | −xn + ym + zp = 0}

and the uniformizer is the Zp covering corresponding to the projection (x,y,z) 7→
(x,y). Depending on the possible triples (p,n,m) listed in the Table 6.2, S is

an isolated surface (Du Val) singularities of one of the types Ap−1, D4, E6, E8.

(2) Second, consider the orbifold (C2, pX + qY )0, where X = {x + yn = 0}, Y =

{x−yn = 0} and ρ := 1
p + 1

q + 1
n−1 > 0. The possible triples (p,q,n) are listed

in the Table 6.2. Notice that (C2, pX + qY )0 is a lifting of the orbifold germ

(C2, pH1 + qH2 + nH3)0 via ϕ1,n : (x,y)→ (x,yn), where H1 = {x + y = 0},
H2 = {x− y = 0} and H3 = {y = 0}. Fist of all let us change the coordinates

by a map δ : (u,y) = (x+y,y), then we have H1 = {u = 0}, H2 = {u−2y = 0}
and H3 = {y = 0}. From the Sections 6.2.4.2, 6.2.4.3, 6.2.4.4 and 6.2.4.5, we

know all coverings of (C2, pH1 +qH2 +nH3)0 and so all coverings of the germ

(C2, pX +qY )0. Since the uniformization of the germ (C2, pH1 +qH2 +nH3)0

is the surface S given by the equation −up + 2yn + zq = 0, returning back to

original coordinates we get

S = {(x,y,z) ∈ C3 | −(x− y)p + yn + zq = 0}

as a universal cover of (C2, pX + qY )0. Depending on the choice of possible

triples (p,q,n), S is an isolated surface (Du Val) singularities of types A,D,E.

(3) Third, consider the orbifold (C2, pX + qY + rZ)0, where X = {x− yn = 0},
Y = {x + yn = 0}, Z = {y = 0} and ρ := 1

p + 1
q + 1

nr − 1 > 0. The possible

quadruples (p,q,r,n) are listed in the Table 6.2. Note that the lifting of this

orbifold via the uniformizer ϕ1,2 of its sub-orbifold (C2,rZ)0 is the orbifold
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(C2, pX ′+ qY ′)0 with X ′ = {x− ynr} and Y ′ = {x + ynr}. This is the orbifold

in case (2) for which n is replaced by nr. Therefore, from the case (2) know its

all coverings. Hence its uniformization is the surface

S = {(x,y,z) ∈ C3 | −(x− y)p + ynr + zq = 0}.

Depending on the choice of possible quadruples (p,q,r,n), S is an isolated

surface (Du Val) singularities of types A,D,E.

(4) Next, consider the orbifold (C2,2X + qY )0, where X = {x2− yn = 0}, Y =

{y = 0} and n > 1 is odd. The lifting of (C2,2X + qY )0 by the uniformizer

ϕ1,q of (C2,qY )0 is (C2,2X ′)0, where X ′ = {x2− ynq}. Note that X ′ is a cusp

(2,nq)-type if q is odd for which it corresponds to case (1), and reducible

if q is even for which it corresponds to case (2). Therefore, from the cases

(1) and (2), we know its all coverings. On the other hand, (C2,2X + qY )0

covers the orbifold (C2,2H1 +nqH2 +2H3)0 via ϕ2,n : (x,y) 7→ (x2,yn), where

H1 = {x = 0}, H2 = {y = 0} and H3 = {x−y = 0}. Since the uniformizations

of (C2,2H1 +nqH2 +2H3)0 and (C2,2X +qY )0 are same, then the surface

S = {(x,y,z) ∈ C3 | −x2 + ynq + z2 = 0}

whose isolated surface singularity type is A,D,E, appears as the uniformization

of (C2,2X +qY )0.

(5) Finally, consider the orbifold (C2,2X +2Y )0, where X = {x = 0}, Y = {x2−
y3 = 0}. Since its orbifold fundamental group is of order 96, then (C2,2X)0 is

its sub-orbifold and ϕ2,1 is a uniformizer of (C2,2X)0. Denote by Y ′ the lifting

ϕ
−1
2,1(Y ) = {x4− y3 = 0}. Then we have an orbifold covering

ϕ2,1 : (C2,2Y ′)0→ (C2,2X +2Y )0.

Note that the orbifold (C2,2Y ′)0 is uniformized by a surface of isolated surface
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(Du Val) singularity of type E6.

6.2.4.7 Coverings of the Other Orbifold Germs with Singular Base

In this section we will deal with only the covering relations between parabolic

orbifolds with linear branch loci, but illustrate all covering relations containing

parabolic orbifolds with non-linear branch loci in Figures 6.10, 6.10, 6.12 and 6.13.

Note that the orbifold germs in this figures are consistent with the germs in Figure

6.1b, 6.1c, 6.1d and 6.1e. The solutions to condition ρ = 0 are given in the table 6.2.

1. First consider the orbifold (C2,2X +2Y +2Z+2W )0, where the lines X ,Y,Z,W

form a pencil at the origin. By the Theorem 5.10.1 and the equation (6.1.2),

the orbifold fundamental group of this germ has the presentation

〈µ1,µ2,µ3,µ4 | [µ4µ3µ2µ1,µi] = µ2
i = 1, i = 1,2,3,4〉.

This group is infinite but solvable and isomorphic to a discrete subgroup Γ

of Aut(C2) (Yoshida, 1987). This germ is uniformized by the transformation

group (Γ,C2). Since Γ is infinite but solvable, then many cusp points will

appear in covers of (C2,2X +2Y +2Z +2W )0.

Let us study the coverings of this orbifold. For the sake of simplicity we may

choose the coordinates so that X = {x = 0}, Y = {y = 0}, Z = {x−y = 0} and

W = {x + y = 0}. The uniformizer the sub-orbifold (C2,2X)0 is ϕ2,1. Denote

by Y the lifting ϕ
−1
2,1(Y ) = {y = 0}, by Z′ the lifting ϕ

−1
2,1(Z) = {x2−y = 0}, and

by W ′ the lifting ϕ
−1
2,1(W ) = {x2 + y = 0}. Then we have an orbifold covering

ϕ2,1 : (C2,2Y +2Z′+2W ′)0→ (C2,2X +2Y +2Z +2W )0.

Consider the map ϕ2,1 and denote by Z′′ the lifting ϕ
−1
1,2(Z

′) and by W ′′ the

lifting ϕ
−1
1,2(W

′) and set Z′′1 = {x+y = 0}, Z′′2 = {x−y = 0}, W ′′1 = {x+ iy = 0}
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and W ′′2 = {x− iy = 0}. Then Z′′ = Z′′1 ∪Z′′2 , W ′′ = W ′′1 ∪W ′′2 and we have the

covering

ϕ2,2 = ϕ2,1◦ϕ1,2 : (C2,2Z′′1 +2Z′′2 +2W ′′1 +2W ′′2 )0→ (C2,2X +2Y +2Z+2W )0,

which is related to cover of (C2,2X +2Y +2Z +2W ) by the uniformizer ϕ2,2

of (C2,2X + 2Y )0. Let us now change the coordinates by δ : (u,v) = (x +

y,x−y), then by rescaling the equations we have Z′′1 = {u = 0}, Z′′2 = {v = 0},
W ′′1 = {u + iv = 0} and W ′′2 = {u− iv = 0}. Now, ϕ2,2 : (u,v) 7→ (u2,v2) is

a uniformizer of (C2,2W ′′1 + 2W ′′2 )0. Denote by W ′′′1 and W ′′′2 the branches

ϕ
−1
2,2(W

′′
1 ) = {u2 + iv2 = 0} and ϕ

−1
2,2(W

′′
2 ) = {u2− iv2 = 0}, respectively. Set

W1,1 := {u+αiv = 0}, W1,2 := {u−αiv = 0}, W2,1 := {u+αv = 0}, W2,2 :=

{u−αv = 0} and W := W1,1 ∪W1,2 ∪W2,1 ∪W2,2, where α2 = i. Then W =

{u4 + v4 = 0} and we have the coverings

ϕ2,2 : (C2,2W )0 = (C2,W1,1 +2W1,2 +2W2,1 +2W2,2)0→

(C2,2Z′′1 +2Z′′2 +2W ′′1 +2W ′′2 )0.

and

ϕ2,2 ◦δ
−1 ◦ϕ2,2 : (C2,2W )0→ (C2,2X +2Y +2Z +2W )0.

Since the uniformization of (C2,2W )0 is the surface S = {(u,v,z) ∈ C3 |
u4 + v4− 2z2 = 0}, returning back to original coordinates we obtained the

uniformization of the initial orbifold (C2,2X +2Y +2Z +2W )0 as

S = {(x,y,z) ∈ C3 | x4 + y4 +6x2y2− z2 = 0}.

S is the surface of isolated surface singularity type X9.

On the other hand, notice that the orbifolds (C2,2Z′′1 + 2Z′′2 + 2W ′′1 + 2W ′′2 )0

and (C2,W1,1 + 2W1,2 + 2W2,1 + 2W2,2)0 are similar to initial one (See Figure

6.10). By using this fact, one can construct an infinite tower of coverings, i.e,
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many ball-cusp points appears in covers. This is consistent with the solvability

of its orbifold fundamental group.

2

2

2 2

ϕ1,2 ϕ2,2 ϕ2,1

2

2

2 2

ϕ2,2

2

2

2

(2)

ϕ2,1

2

2

22 2 22

(2)
ϕ1,2

Figure 6.10 Coverings of the germ (C2,2X +2Y +2Z +2W )0.

2. Second, consider the orbifold (C2,3X + 3Y + 3Z)0, where the lines X ,Y,Z

form a pencil at the origin. The orbifold fundamental group of this germ is the

triangle group

〈µ1,µ2,µ3 | [µ3µ2µ1,µi] = µ3
i = 1, i = 1,2,3〉.

This group is infinite but solvable and it is isomorphic to a discrete subgroup

Γ of Aut(C2), and the transformation group (Γ,C2) uniformizes this germ.

Since Γ is infinite but solvable, then many cusp points will appear in covers of

(C2,3X +3Y +3Z)0.

Now, let us study the covers of (C2,3X +3Y +3Z)0. For the sake of simplicity

we may choose the coordinates so that X = {x = 0}, Y = {y = 0}, Z = {x−y =

0}. The uniformizer the sub-orbifold (C2,3X)0 is ϕ3,1. Denote by Y the lifting

ϕ
−1
3,1(Y ) = {y = 0} and by Z′ the lifting ϕ

−1
3,1(Z) = {x3−y = 0}. Then we have

an orbifold covering

ϕ3,1 : (C2,3Y +3Z′)0→ (C2,3X +3Y +3Z)0.
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Taking the lifting of (C2,3Y + 3Z′)0 by ϕ1,3, one can obtain the orbifold

covering

ϕ3,3 = ϕ1,3 ◦ϕ3,1 : (C2,3Z′′1 +3Z′′2 +3Z′′3 )0→ (C2,3X +3Y +3Z)0,

where Z′′i are linear components of ϕ
−1
1,3(Z

′) = {x3−y3 = 0} (See Figure 6.11).

Hence the uniformization of (C2,3X + 3Y + 3Z)0 is the surface of isolated

singularity of the type P8 and it is given by the equation T3,3,3 := {(x,y,z) ∈
C3 | x3 +y3 + z3 = 0}. This singularity type is also known as elliptic. Because,

the germ at the origin of the isolated surface singularity z3 = xy(x− y) is a

triple covering of the germ (C2,3X + 3Y + 3Z)0, it is resolved by a blow up

which replace the origin by an elliptic curve.

Furthermore, note that the latest orbifold (C2,3Z′′1 +3Z′′2 +3Z′′3 )0 is similar

to (C2,3X +3Y +3Z)0. This means that there is an infinite tower of coverings

and many ball-cusp points appears in covers.
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3
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3
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Figure 6.11 Coverings of the germ (C2,3X +3Y +3Z)0.

3. Next, consider the orbifold (C2,2X +4Y +4Z)0, where the lines X ,Y,Z form

a pencil at the origin. Its orbifold fundamental group has the presentation

〈µ1,µ2,µ3 | [µ3µ2µ1,µi] = µ2
1 = µ4

2 = µ4
3 = 1, i = 1,2,3〉.

This group is infinite but solvable and it is isomorphic to a discrete subgroup Γ
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of Aut(C2), and the transformation group (Γ,C2) uniformizes this germ. Since

Γ is infinite solvable, then many ball-cusp points appears in the covers of the

germ (C2,2X + 4Y + 4Z)0. Let us now study its coverings. For the sake of

simplicity we may choose the coordinates so that X = {x = 0}, Y = {y = 0},
Z = {x− y = 0}. The uniformizer the sub-orbifold (C2,2X + 2Y )0 is ϕ2,2.

Denote by Y the lifting ϕ
−1
2,2(Y ) = {y = 0} and by W the lifting ϕ

−1
2,2(Z) =

{x2− y2 = 0}, and set W1 = {x− y = 0} and W2 = {x+ y = 0}. Then we have

an orbifold covering

ϕ2,2 : (C2,2Y +4W1 +4W2)0→ (C2,2X +4Y +4Z)0.

Note that the orbifold (C2,2Y + 4W1 + 4W2)0 is same as the initial orbifold.

(See Figure 6.12). This means that there is an infinite tower of coverings and

many ball-cusp points appears in its covers.

Now, consider the sub orbifold (C2,2X + 4Y )0 whose uniformizer is ϕ2,4.

Denote by Z′ the branch ϕ
−1
2,4(Z) = {x2− y4 = 0}, then we have a covering

ϕ2,4 : (C2,4Z′)0→ (C2,2X +4Y +4Z)0.

On the other hand, consider the sub orbifold (C2,2Y +2Z)0 and change the

coordinates by a map τ : (z,y) = (x−y,y), then X = {z+y = 0}, Y = {y = 0}
and Z = {z = 0}. Clearly ϕ2,2 is the uniformizer of (C2,2Y + 2Z)0. Denote

by Y the lifting ϕ
−1
2,2(Y ) = {y = 0}, by Z the lifting ϕ

−1
2,2(Z) = {z = 0} and by

U the lifting ϕ
−1
2,2(X) = {z2 + y2 = 0}, and set X ′1 = {z + iy = 0} and X ′2 =

{z− iy = 0}. Then we have an orbifold covering

τ
−1 ◦ϕ2,2 : (C2,2X ′1 +2X ′2 +2Y +2Z)0→ (C2,2X +4Y +4Z)0.

Note that (C2,2X ′1 + 2X ′2 + 2Y + 2Z)0 is the orbifold in the case 1. Take its
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lifting by ϕ2,2 and set X ′ = ϕ
−1
2,2(X

′
1∪X ′2) = {z4 + y4 = 0}. Then one has

τ
−1

ϕ4,4 = τ
−1 ◦ϕ2,2 ◦ϕ2,2 : (C2,2X ′)0→ (C2,2X +4Y +4Z)0,

which is related the cover of (C2,2X + 4Y + 4Z)0 by the uniformizer ϕ4,4

of the orbifold (C2,4Y + 4Z)0. Note that X ′ has four linear components and

(C2,2X ′)0 is also the orbifold in the case 1.

As in these examples, there are many other coverings of the orbifold (C2,2X +

4Y + 4Z)0, which is is related with other orbifold germs with singular base

via a power map ϕr,s : (x,y)→ (xr,ys). We will omit to derive these covering

relations but exhibit in the Figure 6.12. As it is seen from the coverings above,

the uniformization of the germ (C2,2X +4Y +4Z)0 is the surface

T2,4,4 := {(x,y,z) ∈ C3 | −x2 + y4 + z4 = 0}.

of isolated singularity of the type X9.

4. Finally, consider the orbifold (C2,2X + 6Y + 3Z)0, where the lines X ,Y,Z

forms a pencil at the origin. Its orbifold fundamental group has the presentation

〈µ1,µ2,µ3 | [µ3µ2µ1,µi] = µ2
1 = µ3

2 = µ6
3 = 1, i = 1,2,3〉.

This group is infinite but solvable and it is isomorphic to a discrete subgroup Γ

of Aut(C2), and the transformation group (Γ,C2) uniformizes this germ. Since

Γ is infinite solvable, then many cusp points appears in the covers. Let us study

the coverings of (C2,2X + 3Y + 6Z)0. For the sake of simplicity, choose the

coordinates so that X = {x = 0}, Y = {y = 0}, Z = {x− y = 0}.

The uniformizer the sub-orbifold (C2,2X + 2Y )0 is ϕ2,2. Denote by Y the

lifting ϕ
−1
2,2(Y ) = {y = 0} and by W the lifting ϕ

−1
2,2(Z) = {x2−y2 = 0}, and set

W1 = {x+ y = 0} and W2 = {x− y = 0}. Then we have an orbifold covering

ϕ2,2 : (C2,3Y +3W1 +WZ2)0→ (C2,2X +3Y +6Z)0.
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Figure 6.12 Coverings of the germ (C2,2X +4Y +4Z)0.
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We know from the case the orbifold (C2,3Y + 3W1 + 3W2)0 has an infinite

tower of coverings and many ball-cusp points appears in the covers. Take the

lifting of (C2,3Y +3W1 +WZ2)0 by ϕ1,3 and set Z′ := ϕ
−1
1,3(W1∪W2) = {x2−

y6 = 0}. Then, one has the covering

ϕ2,6 = ϕ2,2 ◦ϕ1,3 : (C2,3Z′)0→ (C2,2X +3Y +6Z)0.

On the other hand, if one changes the coordinates by σ : (x,z) = (x,x− y),

then ϕ2,3 : (x,z) 7→ (x2,z3) is the uniformizer of the sub orbifold (C2,2X +

3Z)0. Then we have the covering

σ
−1

ϕ2,3 : (C2,6Y ′)0→ (C2,2X +3Y +6Z)0,

where Y ′ = ϕ
−1
2,3(Y ) = {x2− z3 = 0}.

If one would have changed the coordinates by τ : (z,y) = (x− y,y), then

ϕ3,3 : (z,y) 7→ (z3,y3) would be the uniformizer of the sub-orbifold (C2,3Y +

3Z)0. Denote by Y the branch ϕ−1(Y )= {y = 0} and by U the branch ϕ
−1
3,3(X)=

{z3 +y3 = 0}. Set Ui := {z+ωiy = 0}, where ω3 = 1 and i = 0,1,2. Then one

has the covering

τ
−1◦ϕ2,3 : (C2,2U +2Y )0 =(C2,2U0+2U1+2U2+2Y )0→ (C2,2X +3Y +6Z)0.

Notice that (C2,2U0 +2U1 +2U2 +2Y )0 is the orbifold in the case 1 and it has

an infinite tower of coverings. Now take the lifting of (C2,2U +2Y )0 by ϕ1,2,

and set X ′ := ϕ
−1
1,2(U) = {z3 + y6 = 0}. Then we have the covering

τ
−1 ◦ϕ3,6 = τ

−1 ◦ϕ3,3 ◦ϕ1,2 : (C2,2X ′)0→ (C2,2X +3Y +6Z)0.

As in these examples, there are many other coverings of the orbifold (C2,2X +

6Y + 3Z)0, which is is related with other orbifold germs with singular base

via a power map ϕr,s : (x,y)→ (xr,ys). We will omit to derive these covering
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relations but exhibit in the Figure 6.13.

As it is seen from the coverings above, the uniformization of the germ

(C2,2X +6Y +3Z)0 is the surface T2,6,3 := {(x,y,z)∈C3 | −x2 +y6 +z3 = 0}
of isolated singularity of the type J10.
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Figure 6.13 Coverings of the germ (C2,2X +3Z +6Y )0.
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6.3 Chern Classes and Chern Numbers

Chern classes are characteristic classes. They are topological invariants associated

to vector bundles on a smooth manifold. If you describe the same vector bundle on a

manifold in two different ways, the Chern classes will be the same. Then, the Chern

classes provide a simple test: if the Chern classes of a pair of vector bundles do not

agree, then the vector bundles are different. (The converse is not true, though.)

Given a complex hermitian vector bundle V of complex rank n over a smooth

manifold M, a representative of each Chern class ck[V ] of V are given as the coefficients

of the characteristic polynomial of the curvature form ω of V

c(t)[V ] := det
( it

2π
ω+ In

)
= ∑

k
ck[V ]tk. (6.3.1)

Here the determinant is over the ring of n× n matrices whose entries are polyno-

mials in t with coefficients in the commutative algebra of even complex differential

forms on M. The curvature form ω of V is defined as

ω = d∇+
1
2
[∇,∇] (6.3.2)

with ∇ the hermitian connection form (with respect to a hermitian metric h) and

d the exterior derivative. The scalar t is used here only as an indeterminate to

generate the sum from the determinant, and In denotes the n× n identity matrix.

More explicitly, the k-th Chern class of V is given by

ck[V ] = Tr
(
∧k i

2π
ω
)

(6.3.3)

In addition, the total Chern class is defined as

c[V ] = c0[V ]+ c1[V ]+ c2[V ]+ · · · . (6.3.4)
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To say that the expression (6.3.3) is a representative of the Chern class indicates

that “class” here means up to addition of an exact differential form. That is, Chern

classes are cohomology classes in the sense of de Rham cohomology, i.e., ck[V ] ∈
H2k(M,Z). The cohomology class of the Chern forms do not depend on the choice

of connection in V (Kobayashi, 1983).

The Chern classes ck[V ] satisfy the following properties (Hatcher, 2009):

(1) c0[V ] = 1 and c1[V ] = Tr( i
2π

ω) for all V ,

(2) ck[V ] = 0 for all V , if k > n. Thus the total Chern class terminates,

(3) Functoriality: If f : N→M is continuous and f ∗V is the vector bundle pullback

of V , then ck[ f ∗V ] = f ∗ck[V ],

(4) Whitney sum formula: If one has complex vector bundles pi : Vi→M, i = 1,2,

then the total Chern class and the Chern classes of the direct sum V1⊕V2 =

{(υ1,υ2) ∈V1×V2 | p1(υ1) = p2(υ2)} are respectively given by

c[V1⊕V2] = c[V1]` c[V2] and ck[V1⊕V2] = ∑
i+ j=k

ci[V1]` c j[V2],

(5) The top Chern class of V is always equal to the Euler class of the underlying

real vector bundle, that is cn[V ] = e[V ].

(6) Additivity: If 0→ V1→ V → V2→ 0 is an exact sequence of complex vector

bundles, then V is isomorphic to V1⊕V2, and therefore c[V ] = c[V1]` c[V2].

Depending on the partition of n such that ∑
n
i=1 iai = n, there are Chern forms

cI[V ] := ca1
1 [V ]ca2

2 [V ] · · ·can
n [V ] in terms of wedge product of Chern classes, where

I := (a1,a2, · · ·an). The integral of these Chern forms on manifold M takes values

in Z and they are called Chern numbers of V , and denoted by cI := ca1
1 ca2

2 · · ·can
n .

In case of n = 1, there is only one Chern number, c1, that is the Euler number e. If

n = 2, the Chern numbers are c2
1 and c2.
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An important special case occurs when V is a line bundle L. Then the only

nontrivial Chern class is the first Chern class, which is an element of the second

cohomology group of M. As it is the top Chern class, it equals the Euler class of

the bundle. If the vector bundle V is a direct sum of line bundles, i.e V = L1⊕
L2⊕·· ·⊕Ln, then c(t)[V ] = ∏

n
i=1(1+c1[Li]t). This means that the first Chern class

completely classify complex line bundles. That is, there is a bijection between the

isomorphism classes of line bundles over M and the elements of H2(M,Z), which

associates to a line bundle its first Chern class. Addition in the second dimensional

cohomology group coincides with tensor product of complex line bundles. This

classification of (isomorphism classes of) complex line bundles by the first Chern

class is a crude approximation to the classification of (isomorphism classes of)

holomorphic line bundles by linear equivalence classes of divisors.

Now, suppose V is the (holomorphic) tangent bundle T M of an n-dimensional

complex manifold M. Assume, the coordinate patches {(Uα,zα)}α∈I covers M and

zα = (z1α,z2α, · · · ,znα) be the local affine coordinates on Uα. Then, the coordinate

derivatives define a frame { ∂

∂z1α
, ∂

∂z2α
, · · · , ∂

∂znα
} of T M. The complex structure of M

defines an endomorphism J of T M such that J( ∂

∂z jα
) = i ∂

∂z jα
and J( ∂

∂z̄ jα
) = −i ∂

∂z̄ jα

on Uα for j = 1,2, · · · ,n. Then clearly J2 =−id. Beside this,

h =
n

∑
i, j=1

hi j̄dziαdz̄ jα, where hi j̄ := h(
∂

∂ziα
,

∂

∂z̄ jα
) (6.3.5)

is a hermitian metric on Uα. Let {ρα}α∈I be the partition of unity subordinating to

the cover {(Uα,zα)}α∈I . Then,

h = ∑
α∈I

n

∑
i, j=1

ραhi j̄dziαdz̄ jα (6.3.6)

is a Hermitian metric on M. Moreover, associated curvature form ω is given by

ω = ∑
α∈I

n

∑
i, j=1

ραhi j̄dziα∧dz̄ jα. (6.3.7)
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Denote by H the determinant of (hi j̄)n×n and set Ri j̄ :=−∂∂ logH =− ∂2

∂ziα∂z̄ jα
logH.

Then, the Ricci form is given by

Θ =
i

2π
∑
α∈I

n

∑
i, j=1

ραRi j̄dziα∧dz̄ jα. (6.3.8)

On the other hand, the local functions Hα = (det(hi j̄))
−1 = H−1 provide a natural

Hermitian metric of the canonical bundle KM. The canonical bundle KM is the

holomorphic 1-vector bundle ∧nT ∗M, where T ∗M is cotangent bundle to T M. The

cohomology class

− i
2π

∂∂ logHα =
i

2π
∂∂ logH

is the first Chern class of the line bundle. Then we have the the following theorem.

Proposition 6.3.1 ((Yau, 1977), (Hwang, 1997)). The Ricci form is closed, and

represents c1(M). If the Ricci curvature R is viewed as a symmetric endomorphism

of
∧1,1 T M, then Θ = i

2π
R(ω). The Ricci form is the curvature of the canonical

bundle KM of M.

For a complete, simply-connected Kähler manifold (M,J,h) of dimension n with

complex structure J. The sectional curvature of a real two-plane P ⊂ TzM is the

value R(e1,e2,e1,e2) of the curvature tensor on an orthonormal basis {e1,e2} of P.

Geometrically, the sectional curvature is the Gaussian curvature at z of the surface

in M obtained by exponentiating P. The sectional curvature function K is defined on

the Grassmannian bundle of real two-planes in T M. If P is a complex line, then the

sectional curvature is equal to R(e,e,e,e). The restriction of the sectional curvature

function to the bundle of complex lines is called the holomorphic sectional curvature

and denoted by Khol.

If the sectional curvature function K is constant, then the curvature tensor has an

explicit algebraic expression in terms of the metric h, in particular, for each c ∈ R,

there is a local model space with constant sectional curvature c. A similar fact is
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true when h is a Kähler metric with constant holomorphic sectional curvature. If

h is (geodesically) complete, then simply connected spaces of constant curvature

are classified. The following theorem locally classifies the metrics on a complex

manifold M.

Theorem 6.3.2 ((Yau, 1977), (Hwang, 1997)). Let (M,J,h) be a complete, simply-

connected Kähler manifold of dimension n and constant holomorphic sectional

curvature c. Then followings are true.

• If c < 0, then h is isometric to a multiple of the Bergman metric and the

canonical bundle KM is ample.

• If c = 0, then h is isometric to the flat metric on Cn and the canonical bundle

KM is trivial.

• If c > 0, then h is isometric to a multiple of the Fubini-Study metric on CPn

and the anti-canonical bundle is ample.

• If ω is the curvature form (for Fubini-Study metric or flat metric or Bergman

metric), then the Ricci form is Θ = i
2π

cω.

Example 6.3.3. Consider the complex space Cn and its tangent bundle TCn as

the vector bundle V . The standard hermitian metric (flat metric) on Cn is h =

∑
n
i=0 dzidz̄i. Consequently, the curvature form is ω = ∑

n
i=0 dzi ∧ dz̄i, which is an

exact form. Therefore, the Ricci form Θ is trivial. Hence by the Proposition 6.3.1

first Chern class c1[TCn] vanishes, so the first Chern number cn
1(Cn) is zero . In

addition, the top Chern class cn[TCn] is the Euler class e[TCn], and the Euler

number of Cn is cn(Cn) = e(Cn) = 1 since Cn is contractible.

Definition 6.3.4 (Line bundles O(k) over CPn). Let W be a complex vector space

of dimension n + 1, n > 1 and PW be the its projectivization, that is the quotient

topological space PW = (W \{0})/C∗. It is clear that PW = CPn if W = Cn+1. The

trivial bundle is PW ×W . Denote by O(−1) ⊂ PW ×W the tautological line sub-

bundle. Then the restriction O(−1) |U j of O(−1) to the local chart U j = {[z]|z j 6= 0}
admits a non-vanishing local section [z]→ ε j([z]) = (z0, · · · ,z j−1,1,z j+1, · · · ,zn).
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In particular O(−1) is a holomorphic line bundle. For every k ∈ Z, the line bundle

O(k) is defined by

O(1) = O(−1)?, O(0) = PW ×C,

O(k) = O(1)⊗k = O(1)⊗O(1)⊗·· ·⊗O(1), for k ≥ 1,

O(−k) = O(−1)⊗k = O(−1)⊗O(−1)⊗·· ·⊗O(−1), for k ≥ 1.

(6.3.9)

Therefore, we have canonical exact sequences of vector bundles over PW :

0→ O(−1)→ PW ×W → PW ×W/O(−1)→ 0,

0→ (PW ×W/O(−1))?→ (PW ×W )?→ O(1)→ 0.
(6.3.10)

The holomorphic map µ : O(−1)→W defined by µ : O(−1) ↪→ PW×W →W send

the zero section PW×{0} of O(−1) to the point {0} and induces a biholomorphism

of O(−1)\ (PW ×{0}) onto W \{0}. Moreover there is a canonical isomorphism

(PW ×W )/O(−1)' TPW ⊗O(−1), i.e.,
(
(PW ×W )/O(−1)

)
⊗O(1)' TPW .

Example 6.3.5 (Barthel et al., 1987). Consider the complex projective space CPn,

which is a quotient of = Cn+1 by C∗. One may also think this quotient as CPn =

S2n+1/S1. The standard hermitian metric on Cn+1 is ds2 = dZ ·dZ = ∑
n
i=0 dZidZi.

It is invariant under the diagonal actions of S1 (group of rotations), while it is not

invariant under the diagonal action of C∗. So, a hermitian metric on CPn is the

standard metric on Sn+1 restricted to Cn+1. This metric is known as the Fubini-

Study metric and it is a Kähler metric. Let us write this metric explicitly.

The coordinate patches Ui = {[Z0 : Z1 : · · · : Zn] | Zi 6= 0} covers CPn and it is

possible to define the Fubini-Study metric on each local charts. Let z =(z1,z2, · · · ,zn)

be the local affine coordinates of [Z0 : Z1 : · · · : Zn] in the coordinate patch U0

provided zi := Zi/Z0. Then the coordinate derivatives define a frame { ∂

∂z1
, ∂

∂z2
, · · · , ∂

∂zn
}

of the holomorphic tangent bundle TCPn of CPn, in terms of which the Fubini-
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Study metric has hermitian components

hi, j̄ := h
( ∂

∂zi
,

∂

∂z̄ j

)
=

∂2

∂zi∂z̄ j
log(1+ |z|2) =

(1+ |z|2)δi j− z̄iz j

(1+ |z|2)2 , (6.3.11)

where |z|2 = |z1|2 + |z2|2 + · · ·+ |zn|2 and δi j is the Kronecker delta. Thus, we get

the hermitian metric h and the corresponding curvature form ω as

h = ∑hi j̄ dzidz̄ j and ω = ∑hi j̄ dzi∧dz̄ j. (6.3.12)

In additon, H = det(hi j̄) = (1+ |z|2)−(n+1) and

Ri j̄ =− ∂2

∂zi∂z̄ j
logH = (n+1)

∂2

∂zi∂z̄ j
log(1+ |z|2) = (n+1)hi j̄.

Thus, the Ricci form, the curvature of the canonical bundle, is

Θ =
i

2π
∑Ri, j̄ dzi∧dz̄ j =

i
2π

(n+1)ω, (6.3.13)

For the sake of simplicity, denote by ϖ the form i
2π

ω. Then we have c1[TCPn] =

Θ = (n+1)ϖ. Note that ϖ ∈H2(CPn,Z) is a positive generator and ϖn is a volume

form, i.e.,
∫
CPn ϖn = 1. There is an exact sequence of vector bundles

0→ C→ OCPn(1)⊗Cn+1→ TCPn→ 0 (6.3.14)

over CPn. From the Splitting principle and the Whitney sum formula we have

c(1)[TCPn] = c(1)[OCPn(1)⊗Cn+1] = (1+ϖ)n+1 ∈ H∗(CPn,Z) (6.3.15)

If n = 1, then c(1)[TCP1] = (1 + ϖ)2 = 1 + 2ϖ, i.e, c1[TCP1] = 2ϖ. Therefore,

c1(CP1) =
∫

CP1 2ϖ = 2, which is the Euler number of CP1. In case n = 2, by the

formula (6.3.15), we have c(1)[TCP2] = (1+ϖ)3 = 1+3ϖ+3ϖ2, i.e, c1[TCP2] =

3ϖ and c2[TCP2] = 3ϖ2 . Therefore, c2
1(CP2) =

∫
CP2 9ϖ2 = 9 and c2(CP2) =

∫
CP2 3ϖ2 = 3. Finally, notice that, TCPn is the line bundle O(n+1).
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Example 6.3.6 (Barthel et al., 1987). Consider the n-ball

Bn = {z ∈ Cn | |z1|2 + |z2|2 + · · ·+ |zn|2 < 1}.

It is homeomorphic to the embedded ball

Bn(U0) = {[1 : z1 : · · · : zn] | 1−|z|2 = 1−|z1|2−|z2|2−·· ·− |zn|2 > 0} ⊂ CPn.

By considering the indefinite Hermitian form F(z,w) =−z0w̄0 +∑
n
i=1 ziw̄i of Cn+1,

Bergman defined a metric and the corresponding curvature form on Bn ' Bn(U0) as

h = ∑hi j̄dzidz̄ j and ω = ∑hi j̄dzi∧dz̄ j, (6.3.16)

where

hi j̄ =−∂∂ logN =− ∂2

∂zi∂z̄ j
logN =

Nδi j + z̄iz j

N2 and N := 1−|z|2 = 1−
n

∑
i=1
|zi|2.

(6.3.17)

In additon, H = det(hi j̄) = N−(n+1) and

Ri j̄ =− ∂2

∂zi∂z̄ j
logH = (n+1)

∂2

∂zi∂z̄ j
logN =−(n+1)hi j̄.

Therefore, the Ricci form, the curvature of the canonical bundle, is

Θ =
i

2π
∑Ri, j̄ dzi∧dz̄ j =− i

2π
(n+1)ω, (6.3.18)

For the sake of simplicity, denote by ϖ the form i
2π

ω. Then we have c1[T Bn] =

Θ =−(n+1)ϖ. Note that ϖ ∈H2(Bn,Z) is a positive generator and
∫

Bn(U0) ϖn = 1.

There is an exact sequence of vector bundles

0→ C→ OBn(−1)⊗Cn+1→ T Bn→ 0 (6.3.19)

over Bn ' Bn(U0). From the Splitting principle and the Whitney sum formula we
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have

c(1)[T Bn] = c(1)[OBn(−1)⊗Cn+1] = (1−ϖ)n+1 ∈ H∗(Bn,Z) (6.3.20)

If n = 1, then c(1)[T B1] = (1−ϖ)2 = 1− 2ϖ, i.e, c1[T B1] = −2ϖ. Therefore,

c1(B1) =
∫

B1(U0)−2ϖ = −2, which is the Euler number of B1. In case n = 2, by

the formula (6.3.20), we have c(1)[T B2] = (1−ϖ)3 = 1−3ϖ+3ϖ2, i.e, c1[T B2] =

−3ϖ and c2[T B2] = 3ϖ2. Therefore, first and second Chern numbers of B2 are

c2
1(B2) =

∫
B2(U0) 9ϖ2 = 9 and c2(B2) =

∫
B2(U0) 3ϖ2 = 3, respectively. Finally, notice

that, T Bn is the line bundle O(−(n+1)).

6.3.1 Divisors and Line Bundles

A divisor D := ∑miHi on a complex manifold M is a locally finite sum of closed,

reduced, irreducible analytic hypersurfaces Hi (the components of D) with non-zero

integer coefficients mi. “Closed” means closed as subsets in the complex topology,

“sum with integer coefficients” should be taken in the spirit of free Abelian groups,

with the distinction that the sum here may be infinite, and “locally finite” means that

every z∈M has a neighborhood U which intersects only finitely many components.

A divisor is effective or positive (notation: D > 0) if every component has positive

coefficient. An effective divisor is locally cut out by a holomorphic function Φ, the

function Φ vanishes along a union of irreducible analytic hypersurfaces, and the

integer attached is the order of vanishing.

If M itself is compact, then a divisor is exactly an element of the free Abelian

group on the set of closed, irreducible analytic hypersurfaces. The group of divisors

is denoted by Div(M). The support of a divisor D is the union of the components of

D. The degree of D is defined to be degD = ∑mi.

Let U = {Uα} be a locally finite open cover. A meromorphic section of a line

bundle is defined to be a collection of local meromorphic functions { fα} satisfying
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the compatibility condition fα = ψαβ fβ on Uα∩Uβ. If L is a line bundle on M, then

every meromorphic section s, different from the zero section, determines a divisor

(s) on M, namely its zero divisor minus its polar divisor, that is (s) = (s)0− (s)∞.

In this case, c1[L] is Poincaré dual of (s) = (s)0− (s)∞. Conversely, if any divisor

D is given, then there is (up to isomorphism) exactly one line bundle LD with a

meromorphic section s, such that (s) = D (Barth et al., 2004). In this case, OM(D) is

used the denote the sheaf of germs of sections of LD. In addition, if M is a Riemann

surface, then degD = deg(s) =
∫

M c1[OM(D)] (Demailly, 2009).

Let D be a divisor on a compact complex manifold M, the cohomology class

c1[D] := c1[OM(D)] ∈H2(M,Z) depends only on the class of D up to linear equiva-

lence (D∼D′ if D−D′ = ( f ) for a meromorphic function f ). If C⊂M is a smooth

irreducible curve, then the fundamental class [C] ∈ H2n−2(M,Z) due to Poincaré

duality. Hence the intersection number 〈c1[D], [C]〉 is well defined and depends

only on the class of D up to linear equivalence. If D is an irreducible divisor, the

number 〈c1[D], [C]〉 coincides with the topological intersection number D ·C. If C

intersects D transversally in at least one point, then this number is strictly positive.

In particular, if D1 and D2 are two divisors on an algebraic surface M, then

D1 ·D2 =
∫

M
c1[D1]` c1[D2]. (6.3.21)

In addition, assume both N and M are algebraic surfaces and ϕ : N→M is surjective

holomorphic map. The canonical divisor KN of N is related with the canonical

divisor KM of M via KN = ϕ∗KM + Jϕ, where Jϕ denotes the Jacobi divisor of ϕ.

It is clear from the functoriality property of Chern classes, c1[ϕ∗D] = ϕ∗c1[D] for a

divisor D on M. If D1 and D2 are two divisors on M, then

ϕ
∗D1 ·ϕ∗D2 = (gradϕ) · (D1 ·D2). (6.3.22)

The final is the relation between canonical class an the first Chern class. The Cohomology

class corresponding to cananical bundle KM is called the canonical class and often
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denoted also by KM. It is the negative of the first Chern class c1[M] = c1[K−1
M ], where

K−1
M is the anti-canonical bundle of KM.

6.3.2 Algebraic Surfaces of General Type and Some Known Results

An algebraic surface is an algebraic variety of dimension two. In the case of

geometry over the field of complex numbers, an algebraic surface is therefore of

complex dimension two (as a complex manifold, when it is non-singular) and so of

dimension four as a smooth manifold. Assume, M is an algebraic surface, and KM be

the canonical line bundle on M (i.e, the holomorphic 1-vector bundle ∧2T M∗, where

T M∗ is cotangent bundle to the holomorphic tangent bundle T M). The canonical

class is the divisor class of a Cartier divisor K on M giving rise to the canonical

bundle KM = OM(K). It is an equivalence class for linear equivalence on M, and

any divisor in it may be called a canonical divisor.

The Kodaira dimension κ(M) of an algebraic surface M measures the size of

the canonical model of M Indeed, it is a birational invariant of M and measures

the dimensions of the spaces of global sections of K⊗r
M . As r→ ∞, these numbers

either behave asymptotically like C rk for a unique integer k or are eventually zero.

The Kodaira dimension κ to be this integer in the first case and −∞ in the second

case. Note that, since the complex dimension of M is 2, then K⊗r
M is trivial when

r > 2. Therefore, the Kodaira dimension κ(M) takes values in {−∞,0,1,2} for an

algebraic surface M.

Due to Kodaira dimension, examples for the (coarse) classification of algebraic

surfaces are as follows:

• κ = −∞: The projective plane, quadrics in CP3, cubic surfaces, Veronese

surface, del Pezzo surfaces, ruled surfaces,

• κ = 0: K3 surfaces, abelian surfaces, Enriques surfaces, hyperelliptic surfaces,
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• κ = 1: Elliptic surfaces,

• κ = 2: Surfaces of general types.

The algebraic dimension of an algebraic surface M is the transcendental degree

of C(M) over C, and denoted by a(M) := tranCC(M). Here, C(M) denotes the

field of rational (meromorphic) functions on M. Its clear from the definitions of The

Kodaira dimension κ(M) and the algebraic dimension a(M) that

κ(M)≤ a(M)≤ 2 = dimC M.

If κ(M) = 2, then M is said to be of general type. If a(M) = 2, M is called

Moišhezon. By the inequality above, any algebraic surface M of general type is

Moišhezon. Due to Kodaira and Chow’s theorem, If M is compact, complex analytic

surface with a(M) = 2, then M is projective algebraic. Therefore, if M is of general

type, then it is automatically projective algebraic. Since we are interested with

surfaces of general type, from now on we will assume M is projective algebraic.

There are lots of invariants of algebraic surfaces: Hodge and Betti numbers,

π1(M), signature, etc. The basic topological invariants for surfaces of general type

however are just the Chern numbers c2
1 and c2. Recall that, the first Chern number c2

1

of M is the self intersection number of the canonical class K, that is c2
1(M) = K ·K,

and the second Chern number c2 of M is the Euler number of M, that is c2(M) =

e(M). Due to Zariski, Every algebraic surface with κ ≥ 0 has a unique minimal

model (minimal model is a smooth surface is called minimal if there are no (−1)

curves lying on it), i.e its canonical bundle is nef. Then one has a well defined map

{Minimal surfaces of general type}→ Z⊕Z

M 7→ (c2
1(M),c2(M))

(6.3.23)

Due to a theorem of Gieseker for Global moduli of surfaces of general types, for

given c2
1 and c2 there are only finitely many diffeomorphism types of minimal
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c2

c2
1 c2

1 = 3c2
c2
1 = 2c2

5c2
1 − c2 + 36 = 0

0 36

Surfaces of general type

Figure 6.14 Surfaces of general type.

surfaces of general type. In addition, for a minimal surface of general types, the

Chern numbers c2
1 and c2 are positive (See (Miyaoka, 1977) and (Yau, 1977)) and

satisfy the following properties:

c2
1 + c2 ≡ 0 (mod 12), (6.3.24)

5c2
1− c2 +36≥ 12q≥ 0, (Noether inequality) (6.3.25)

where q is the irregularity of a surface M.

In 1956, Hirzebruch proved the following proportionality theorems:

Theorem 6.3.7 (Hirzebruch, 1956).

(1) If M is a quotient of two ball B2, then one has the proportionality c2
1(M) =

3e(M).

(2) If M is a quotient of bidisc B1×B1, then the proportionality c2
1(M) = 2e(M)

holds.

In 1977, Miyaoka and Yau proved the inequality

c2
1(M)≤ 3e(M) (6.3.26)



209

for an arbitrary algebraic surface and the following converse to Hirzebruch’s propor-

tionality theorem:

Theorem 6.3.8 (Miyaoka & Yau, 1977). If M satisfies the equality c2
1(M)= 3e(M)≥

0 then either M is CP2 or its universal covering is B2.

The analogue of this result for surfaces with c2
1(M) = 2e(M) > 0 is not correct!

Kobayashi (1990) gave an example by using arrangement of five quadrics with 16

tacnodes such and 17 tacnodes. Assuming At as degeneration of these arrangement

and Mt is a double plane branching over At i obtained c2
1− 2c2 = 3

2 for singular

members while generic double planes fulfill the proprotionality c2
1 = 2c2. Hence, he

obtained that any general member close to a singular member is not uniformized by

B1×B1.

6.4 Orbifold Chern Numbers

In the Section 6.3, we have introduced the Chern classes and Chern numbers of

a complex manifolds M. As in fundamental group, the Chern numbers have also

orbifold versions. Below we introduce the Chern numbers for orbifolds over the

base CP1 and CP2, respectively. Let us first consider the base space CP1 and the

divisor D = ∑
k
i=0 mi pi.

Theorem 6.4.1 (Nevanlinna, 1970). Every entire function f : C→ CP1 which is

ramified over D is constant if ∑
k
i=0(1− 1

mi
) > 2.

This degeneracy property corresponds to bigness of the canonical divisor

KCP1 +
k

∑
i=0

(
1− 1

mi

)
pi (6.4.1)

of the pair (CP1,D). Note that, this canonical divisor is an ample Q-divisor on

CP1. Assume we have an orbifold metric on (CP1,D). Therefore, integrating the
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canonical class of (6.4.1), we can define the Euler number of (CP1,D) as

eorb(CP1,D) := e(CP1)−
k

∑
i=0

(1− 1
mi

) = 1− k +
k

∑
i=0

1
mi

. (6.4.2)

This is exactly the formula (6.1.4) on the page 145, and the Theorem 6.1.3 completely

classifies the uniformization of the orbifold (CP1,D) due to the sign of eorb(CP1,D).

Now let us introduce this orbifold metric. First assume, eorb(CP1,D) < 0, then

by the Theorem 6.1.3, uniformization of the orbifold (CP1,D) is B1 and we have

introduced the Bergman metric on B1 in the Example 6.3.6. Since the divisor (6.4.1)

is ample, there exists a volume form ϖ, a Hermitian metric ‖ · ‖ for OCP1(∑k
i=0 pi),

holomorphic sections si for OCP1(pi) with zeros at pi, such that ‖si‖ < 1, and the

minus of the Ricci-form of the singular volume form

Θ =
ϖ

∏
k
i=0 m2

i ‖si‖2(1− 1
mi

)(1−‖si‖
2

mi )2

defines a complete orbifold Kähler form ω = ∂∂ logΘ on the orbifold (CP1,D). In

case mi = ∞, mi(1−‖si‖
2

mi ) = log 1
‖si‖2 . This metric looks like an orbifold metric

|dz
1
n |

(1−|z| 2n )2
around a point with mi = n, and like a Poincaré metric |dz|2

|z|2(log 1
|z|2 )2 of the

punctured disk around a point of mi = ∞ (Kobayashi, 1990). In a similar way, one

can define orbifold metric for (CP1,D) in cases of eorb = 0, or eorb > 0.

Note that, to compute the orbifold Euler number eorb, it is enough to know the

existence of orbifold metric. So the formula (6.4.2), which is also a consequence of

Riemann-Hurwitz formula (See the Section 6.1.1), can be directly used to compute

the orbifold Euler number eorb.

Now, let us assume that the base space is CP2, D = ∑
k
i=1 miHi is a divisor on

CP2, the curves Hi being irreducible of degree di for 1≤ i≤ k. Denote by (CP2,β)

the orbifold associated with the divisor D. The canonical divisor

Korb := KCP2 +
k

∑
i=1

(
1− 1

mi

)
Hi (6.4.3)
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of (CP2,β) is big if
k

∑
i=1

(
1− 1

mi

)
> 3 (6.4.4)

Note that, this canonical divisor (6.4.3) together with the condition(6.4.4) is an

ample Q-divisor on CP2. Kobayashi (1990, Section 3, Theorem 1) proved that, there

exists a canonical orbifold Kähler metric h and orbifold Kähler form ω obtained

from the holomorphic sections si of the divisor D. Then we can integrate the Chern

forms. By the definition of first Chern number,

c2
1(CP2,β) =

∫
c1[Korb]` c1[Korb]

= Korb ·Korb

=
(

KCP2 +
k

∑
i=1

(
1− 1

mi

)
Hi

)
·
(

KCP2 +
k

∑
i=1

(
1− 1

mi

)
Hi

)

= KCP2 ·KCP2 +2
k

∑
i=1

(
1− 1

mi

)
KCP2 ·Hi

+
( k

∑
i=1

(
1− 1

mi

)
Hi

)
·
( k

∑
i=1

(
1− 1

mi

)
Hi

)

= (−3)2 +2(−3)
k

∑
i=1

(
1− 1

mi
)di +

( k

∑
i=1

(
1− 1

mi
)di

)2
.

Hence, the first orbifold Chern number of (CP2,β) is defined as

c2
1(CP2,β) :=

(
−3+

k

∑
i=1

di(1−
1
mi

)

)2

. (6.4.5)

Second Chern class of (CP2,β) is the Euler class of (CP2,β) and Kobayashi

(1990, Section 3.2.3) obtained this class after resolving log-canonical singularities

and compute the second Chern number of (CP2,β) by integrating the Euler class

and computing correction terms coming from singularities. Hence, the second orbifold

Chern number or orbifold Euler number of (CP2,β) is defined as

e(CP2,β) := 3−
k

∑
i=1

(
1− 1

mi

)
e(Hi \SingB)− ∑

p∈Sing(B)

(
1− 1

β(p)

)
, (6.4.6)
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where β(p) denotes the order of the local orbifold fundamental group. If (CP2,β)

is an orbifold with cusp points, set 1
β(p) = 0 whenever β(p) = ∞.

The orbifold Chern numbers have the following property: if M → (X ,β) is a

finite uniformization with G as its Galois group, then

e(M) = |G|e(X ,β) and c2
1(M) = |G|c2

1(X ,β). (6.4.7)

The following orbifold analogue of the Miyaoka-Yau Theorem 6.3.8 was proved

by Kobayashi & Nakamura & Sakai 1989 by constructing a metric on orbifolds.

Theorem 6.4.2 (Kobayashi-Nakamura-Sakai,1989). Let (CP2,β) be an orbifold of

general type, possibly with ball-cusp points. Then c2
1(CP2,β) ≤ 3e(CP2,β). The

equality holds if and only if (CP2,β) is uniformized by B2.

The following theorem determines whether the orbifold (CP2,β) is of general

type or not? Also, remember the ampleness condition (6.4.4).

Theorem 6.4.3 (Sakai, 1984). For a normal surface pair (CP2,β) with at worst

log-canonical singularities, the following conditions are equivalent

(1) κ(CP2,β) = 2,

(2) Korb is numerically very ample,

(3) Korb is ample.
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6.5 Orbifolds Supported by Line Arrangements

In Section 6.2.4, we have studied the covering relations among orbifold germs

and we know that finiteness or infinite solvability of the local orbifold fundamental

group is necessary for local uniformization. In addition, by Kato’s Theorem 6.1.4

we know that the orbifolds, which is supported by an arrangement so that any

line contains a point of multiplicity at least 3, are uniformizable. In addition, rigid

arrangements are candidates observing a ball-quotient orbifold branched along them.

So, we will mostly deal with rigid line arrangements.

m0

m1 m2 m3

p

Figure 6.15 The orbifold (CP2,
3

∑
i=0

miHi).

First, consider the orbifold (CP2,∑3
i=0 miHi) in Figure 6.15, where H0 = {Z =

0}, H1 = {X = 0}, H2 = {Y = 0} and H3 = {X −Y = 0}. The arrangement A =

{H0,H1,H2,H3} is projectively rigid. Because one can maps [0 : 0 : 1] to any point

p and the line H0 to any line which does not contain the point p, and projective

transformations allow us to fix three points on the projective line. For simplicity,

let us set κi = 1/mi, i = 0,1,2,3. The condition κ1 + κ2 + κ3 > 1 is necessary for

local uniformizability. Take a base point ? ∈ CP2 \∪3
i=0Hi, and assume µi be the

meridians around Hi and µp is meridian around p. Then µpµ0 is contractible in CP2\
∪3

i=0Hi, and hence µp = µ−1
0 . Therefore order m0 of µ0 in πorb

1 (CP2,D) must equal

the order of µp in πorb
1 (CP2,D)p, .i.e, m0 = 2(∑3

i=1
1
mi
− 1). Hence the quadruple

(m0;m1,m2,m3) must be one of (2r;2,2,r), (12;3,3,2), (24;2,4,3) or (60;2,3,5).
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The orbifold Chern numbers are

c2
1(CP2,

3

∑
i=0

miHi) = (κ0 +κ1 +κ2 +κ3−1)2

and

e(CP2,
3

∑
i=0

miHi) = κ0(κ1 +κ2 +κ3−1)+
1
4
(κ1 +κ2 +κ3−1)2.

Note that, they are not orbifolds of general type, since the condition (6.4.4) fails for

all possible quadruples (m0;m1,m2,m3). Although, (c2
1− 3e)(CP2,∑3

i=0 miHi) = 0

for such quadruples (m0;m1,m2,m3), their uniformization is not B2. First three of

them are uniformized by CP2 (Uludağ, 2007). Indeed,

• Case (2r;2,2,r): (CP2,2H0 + 2H1 + 2H3) is a sub-orbifold of (CP2,2rH0 +

2H1 + 2H2 + rH3), and it is uniformized by CP2 via the bicyclic covering

ϕ2 : [X : Y : Z]→ [X2 : Y 2 : Z2]. The lifting ϕ
−1
2 (H3) consists of two lines

given by the equation X2−Y 2 = 0, which we denote by H1
3 and H2

3 . Denote

ϕ−1(H0) by H0 again. Hence ϕ2 : (CP2,rH0 + rH1
3 + rH2

3 )→ (CP2,2rH0 +

2H1 + 2H2 + rH3). Obviously, the covering orbifold is uniformized by CP2

via ϕr.

• Case (24;2,4,3): (CP2,2H0 +2H1 +2H2) is a sub-orbifold of (CP2,24H0 +

2H1 + 4H2 + 3H3), and it is uniformized by CP2 via the bicyclic covering

ϕ2 : [X : Y : Z]→ [X2 : Y 2 : Z2]. Denote ϕ
−1
2 (H2) by H2 and ϕ

−1
2 (H0) by H0

again. The lifting ϕ
−1
2 (H3) consists of two lines given by the equation X2−

Y 2 = 0, which we denote by H1
3 and H2

3 . Hence ϕ2 : (CP2,12H0+3H1
3 +3H2

3 +

2H2)→ (CP2,24H0 +2H1 +4H2 +3H3). The covering orbifold is related with

the Case (12;3,3,2).

• Case (12;3,3,2): (CP2,3H0 +3H1 +3H2) is a sub-orbifold of (CP2,12H0 +

3H1 + 3H2 + 2H3), and it is uniformized by CP2 via the bicyclic covering

ϕ3 : [X : Y : Z]→ [X2 : Y 2 : Z2]. Denote ϕ
−1
2 (H0) by H0 again. The lifting

ϕ
−1
3 (H2) consists of three lines given by the equation X3−Y 3 = 0, which
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we denote by H1
3 , H2

3 and H3
3 . Hence ϕ3 : (CP2,4H0 + 3H1

3 + 3H2
3 + 3H3

3 )→
(CP2,12H0 + 3H1 + 3H2 + 2H3). The covering orbifold appeared in the first

case with r = 2 and is uniformized by CP2.

m2

m1 m3

m4 m5

m6

Figure 6.16 Complete quadrilateral.

Second, consider the orbifold (CP2,∑6
i=1 miHi) in the Figure 6.16, where H1 =

{X = 0}, H2 = {Y = 0}, H3 = {Z = 0}, H4 = {X−Y = 0}, H5 = {Y −Z = 0} and

H6 = {Z−X = 0}. The arrangement A = {Hi | i = 1, · · · ,6} is projectively rigid.

For simplicity, let us denote by D the divisor ∑
6
i=1 miHi, by κi the number 1

mi
and

by ρi, j,k the number κi + κ j + κk− 1. The local uniformizability conditions of the

orbifold (CP2,D) are ρ1,2,4 ≥ 0, ρ1,3,6 ≥ 0, ρ2,3,5 ≥ 0, ρ4,5,6 ≥ 0 and the orbifold

Chern numbers are

e(CP2,D) = 2−
6

∑
i=1

κi +κ1κ5 +κ2κ6 +κ3κ4 +
1
4
(ρ2

1,2,4 +ρ
2
1,3,6 +ρ

2
2,3,5 +ρ

2
4,5,6)

c2
1(CP2,D) = (3−

6

∑
i=1

κi)2. (6.5.1)

Proposition 6.5.1. Consider the orbifold (CP2,D) supported by complete quadrila-

teral. Then

i. c2
1(CP2,D) = e(CP2,D) = 0 if and only if mi = 2 for all i = 1, · · · ,6.

ii. (2e−c2
1)(CP2,D) = 0 if and only if (m1,m2,m3,m4,m5,m6) = (m,2,2,2,n,2),

where m,n ∈ Z+.
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iii. (3e−c2
1)(CP2,D)= 0 if and only if (m1,m2,m3,m4,m5,m6)= (m,m,m,n,n,n)

where m,n ∈ Z+.

Proof. It is clear that c2
1(CP2,D) = 0 if and only if mi = 2 for all i = 1, · · · ,6.

Moreover, Euler orbifold number vanishes for such mi = 2.

If one use the equalities

ρ
2
i, j,k =(κi+κ j +κk−1)2 = κ

2
i +κ

2
j +κ

2
k +2(κiκ j +κ jκk +κiκk)−2(κi+κ j +κk)+1,

then orbifold Chern numbers (6.5.1) reduce to

c2
1(CP2,D) = 9−6

6

∑
i=1

κi +(
6

∑
i=1

κi)2

and

e(CP2,D) = 3−2
6

∑
i=1

κi +
1
4

6

∑
i=1

κ
2
i +

1
4
(

6

∑
i=1

κi)2 +
1
2
(κ1κ5 +κ2κ6 +κ3κ4).

Therefore,

2e− c2
1 =−3+2

6

∑
i=1

κi +
1
2

6

∑
i=1

κ
2
i −

1
2
(

6

∑
i=1

κi)2 +κ1κ5 +κ2κ6 +κ3κ4

=−3+2
6

∑
i=1

κi− ∑
1≤i< j≤6

κiκ j +κ1κ5 +κ2κ6 +κ3κ4

=−3+2[(κ1 +κ5)+(κ2 +κ6)+(κ3 +κ4)]− (κ1 +κ5)(κ2 +κ6)

− (κ1 +κ5)(κ3 +κ4)− (κ2 +κ6)(κ3 +κ4)

=−3+2(a+b+ c)− (ab+ac+bc),

where a = (κ1 +κ5), b = (κ2 +κ6), c = (κ3 +κ4). The equation

2(a+b+ c) = 3+(ab+ac+bc)

has solutions in the interval [0,1] if and only if two of a, b and c is 1 and the other

one is free. Hence, any two of the tuples (m1,m5), (m2,m6) and (m3,m4) is (2,2)
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and the third one is free, say (m,n). Since, complete quadrilateral is projectively

rigid, and using the symmetries we may assume that (m1,m2,m3,m4,m5,m6) =

(m,2,2,2,n,2), where m,n ∈ Z+. For these weights, (2e− c2
1)(CP2,D) vanishes.

Finally,

3e− c2
1 =

3
4

6

∑
i=1

κ
2
i −

1
4
(

6

∑
i=1

κi)2 +
3
2
(κ1κ5 +κ2κ6 +κ3κ4)

=
1
2

6

∑
i=1

κ
2
i −

1
2 ∑

1≤i< j≤6
κiκ j +

3
2
(κ1κ5 +κ2κ6 +κ3κ4)

=
1
2
(

6

∑
i=1

κi)2− 3
2 ∑

1≤i< j≤6
κiκ j +

3
2
(κ1κ5 +κ2κ6 +κ3κ4)

=
1
2
[(κ1 +κ5)+(κ2 +κ6)+(κ3 +κ4)]2−

3
2
(κ1 +κ5)(κ2 +κ6)

− 3
2
(κ1 +κ5)(κ3 +κ4)−

3
2
(κ2 +κ6)(κ3 +κ4)

=
1
2
(a+b+ c)2− 3

2
(ab+ac+bc)

=
1
2
[(a2 +b2 + c2)− (ab+ac+bc)]

The equation (a2 +b2 + c2)− (ab+ac+bc) = 0 has solutions in the interval [0,1]

if and only if a = b = c, which implies (m1,m2,m3,m4,m5,m6) = (m,m,m,n,n,n),

where m,n∈Z+. (m,n,n,m,n,m) is another solution but it is equivalent to previous

one up to projective transformations. Hence (3e−c2
1)(CP2,D) vanishes if and only

if (m1,m2,m3,m4,m5,m6) = (m,m,m,n,n,n), where m,n ∈ Z>0.

Theorem 6.5.2. The orbifold (CP2,D) branched along a complete quadrilateral is

uniformized by complex 2-ball B2 if (m1,m2,m3,m4,m5,m6) is one of (2,2,2,3,3,3),

(3,3,3,2,2,2), (3,3,3,3,3,3) and (4,4,4,2,2,2) (Last two orbifolds consists of

ball-cusp points).

Proof. By the Proposition 6.5.1 we know all possibilities satisfying the orbifold

version of Miyaoka-Yau equality. The ampleness condition (6.4.4) implies that 1
m +

1
n < 1. Now, it is enough to check local uniformizability conditions. The inequalities
2
m + 1

n ≥ 1 and 2
n + 1

m ≥ 1 are valid if and only if (m,n) is either (2,3) or (3,2) or

(3,3) or (4,2). Hence, the Theorem 6.4.2 completes the proof.
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m2

m1 m3

m4 m5

m6

m7

Figure 6.17 The orbifold (CP2,∑7
i=1 miHi).

Third, consider the orbifold (CP2,∑7
i=1 miHi) in the Figure 6.17, where H1 =

{X = 0}, H2 = {Y = 0}, H3 = {Z = 0}, H4 = {X −Y = 0}, H5 = {Y − Z = 0},
H6 = {Z−X = 0} and H7 = {X −Y + Z = 0}. The arrangement A = {Hi | i =

1, · · · ,7} is projectively rigid. For simplicity, let us set D := ∑
7
i=1 miHi, κi := 1

mi

and ρi, j,k := 1
mi

+ 1
m j

+ 1
mk
−1. The local uniformizability conditions of the orbifold

(CP2,D) are ρ1,2,4 ≥ 0, ρ1,3,6 ≥ 0, ρ1,5,7 ≥ 0, ρ2,3,5 ≥ 0, ρ3,4,7 ≥ 0 and ρ4,5,6 ≥ 0.

In addition, the orbifold Chern numbers are

e(CP2,D) =4− (κ1 +2κ2 +κ3 +κ4 +κ5 +2κ6 +2κ7)+(κ2κ6 +κ2κ7 +κ6κ7)

+
1
4
(ρ2

1,2,4 +ρ
2
1,3,6 +ρ

2
1,5,7 +ρ

2
2,3,5 +ρ

2
3,4,7 +ρ

2
4,5,6)

=−1+
1
4
(−5+

7

∑
i=1

κi)2 +
1
2
(κ2

1 +κ
2
3 +κ

2
4 +κ

2
5)+

1
4
(κ2 +κ6 +κ7−1)2

and

c2
1(CP2,D) = (4−

7

∑
i=1

κi)2.

In addition, the bigness condition (6.4.4) is satisfied for any branching indices mi

since ∑
7
i=1 κi < 4.

Proposition 6.5.3. Consider the orbifold (CP2,D), where D = ∑
7
i=1 miHi is divisor

supported by the line arrangement in Figure 6.17. Then

i. (2e− c2
1)(CP2,D) = 0 if and only if m1 = m3 = m4 = m5 = 2.
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ii. (3e− c2
1)(CP2,D) = 0 if m1 = m3 = m4 = m5 = 2k and (m2,m6,m7) is a

permutation of (2,2,k) for a positive integer k.

Proof. For simplicity, set a := κ1 + κ3 + κ4 + κ5, b := κ2 + κ6 + κ7− 1 and c :=
1
2(κ2

1 +κ2
3 +κ2

4 +κ2
5). Note that 0 < a≤ 2,−1 < b≤ 1

2 and 0 < c≤ 1
2 . Then, orbifold

Chern numbers reduces to the forms

e(CP2,D) =−1+
1
4
(4−a−b)2 + c+

1
4

b2 and c2
1(CP2,D) = (3−a−b)2.

Therefore,

(2e− c2
1)(CP2,D) =− 1

2
(a+b)2 +2(a+b)+2c+

b2

2
−3

=− 1
2
(a+b−2)2 +2c+

b2

2
−1 = 0

Consider the function f (x,y,z) =−1
2(x+ y−2)2 +2z+ 1

2y2−1 in the domain

B = {(x,y,z) ∈ R3 | 0≤ x≤ 2, −1≤ y≤ 1
2
, 0≤ z≤ 1

2
}.

Since grad f = (−x− y + 2,−x + 2,2) 6= (0,0,0) for all (x,y,z) ∈ B, it takes its

extremum values in the boundary ∂B of B. Except the boundary of B for which x = 2,

the function f takes negative values at ∂B. In case x = 2, f (2,y,z) = 2z− 1 < 0 if

z < 1
2 and it vanishes for z = 1

2 . Thus f takes its maximum value, which is 0, on the

edge of ∂B for which x = 0 and z = 1
2 . Thus (2e− c2

1)(CP2,D) vanishes if and only

if a = 2 and c = 1
2 , i.e., m1 = m3 = m4 = m5 = 2. Note that the integers m2,m6,m7

are free.

On the other hand (3e− c2
1)(CP2,D) =−1

4((a+b)2−3b2)+3c = 0 if and only

if c = (a+b)2−3b2

12 (i.e b = a±
√

3(a2−8c)
2 ). Note that

a2−8c =(κ1 +κ3 +κ4 +κ5)2−4(κ2
1 +κ

2
3 +κ

2
4 +κ

2
5)

=− (κ1−κ3)2− (κ1−κ4)2− (κ1−κ5)2− (κ3−κ4)2− (κ3−κ5)2

− (κ4−κ5)2 ≤ 0
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Thus, (3e−c2
1) = 0 if and only if κ1 = κ3 = κ4 = κ5. Now suppose m1 = m3 = m4 =

m5 = m, then a = 4
m and c = 2

m2 . Thus (3e− c2
1)(CP2,D) = 0 if b = 2

m , but 1
m2

+
1

m6
+ 1

m7
= 1+ 2

m has solutions only when m is even. Say m = 2k, then (m2,m6,m7)

is a permutation of (2,2,k).

Proposition 6.5.4. The orbifold (CP2,D), where D = 4H1 + 2H2 + 4H3 + 4H4 +

4H5 + 2H6 + 2H7 is a divisor on CP2 supported by the line arrangement in Figure

6.17, is uniformized by B2.

Proof. By the Proposition 6.5.3, we know that the Miyaoka-Yau equality satisfied

for the orbifold (CP2,D), where D = ∑
7
i=1 miHi, m1 = m3 = m4 = m5 = 2k and

(m2,m6,m7) is a permutation of (2,2,k) for a positive integer k. The local uniformi-

zability conditions ρ1,2,4 ≥ 0, ρ1,3,6 ≥ 0, ρ1,5,7 ≥ 0, ρ2,3,5 ≥ 0, ρ3,4,7 ≥ 0, ρ4,5,6 ≥ 0,

which are equivalent to one of the conditions 1
2k + 1

2k + 1
2−1≥ 0 or 1

2k + 1
2k + 1

k−1≥
0, implies k = 2. Thus, the Theorem 6.3.8 completes the proof.

m2

m1 m3

m4 m5

m6

m7

m8m9

Figure 6.18 The orbifold (CP2,∑9
i=1 miHi).

Fourth, consider the orbifold (CP2,∑9
i=1 miHi) in the Figure 6.18, where H1 =

{X = 0}, H2 = {Y = 0}, H3 = {Z = 0}, H4 = {X −Y = 0}, H5 = {Y − Z = 0},
H6 = {Z−X = 0}, H7 = {X −Y + Z = 0}, H8 = {−X +Y + Z = 0} and H9 =

{X +Y − Z = 0}. The arrangement A = {Hi | i = 1, · · · ,9} is projectively rigid.

For simplicity, let us denote set D := ∑
9
i=1 miHi, κi := 1

mi
and ρi, j,k := 1

mi
+ 1

m j
+

1
mk
− 1. The local uniformizability conditions of the orbifold (CP2,D) are ρ1,2,4 ≥
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0, ρ1,3,6 ≥ 0, ρ2,3,5 ≥ 0, ρ4,5,6 ≥ 0. In addition, the bigness condition (6.4.4) is

satisfied for any branching indices mi. This means, this orbifold is of general type.

The orbifold Chern numbers are

e(CP2,D) =8−2
9

∑
i=1

κi +(κ1 +κ5)κ8 +(κ3 +κ4)κ9 +(κ2 +κ6)κ7

+
1
4
(ρ2

1,2,4 +ρ
2
1,3,6 +ρ

2
2,3,5 +ρ

2
4,5,6)

=9−3
6

∑
i=1

κi−2
9

∑
i=7

κi +
1
4

6

∑
i=1

κ
2
i +

1
4
(

6

∑
i=1

κi)2− 1
2
(κ1κ5 +κ2κ6 +κ3κ4)

+(κ1 +κ5)κ8 +(κ3 +κ4)κ9 +(κ2 +κ6)κ7.

=9−3
6

∑
i=1

κi−2
9

∑
i=7

κi +
1
4
(

6

∑
i=1

κi)2 +
1
2

6

∑
i=1

κ
2
i +

9

∑
i=7

κ
2
i

− 1
4
[(κ1 +κ5−2κ8)2 +(κ2 +κ6−2κ7)2 +(κ3 +κ4−2κ9)2]

and

c2
1(CP2,D) =(6−

9

∑
i=1

κi)2

=36−12
6

∑
i=1

κi−12
9

∑
i=7

κi +(
6

∑
i=1

κi)2 +(
9

∑
i=7

κi)2 +(
6

∑
i=1

κi)(
9

∑
i=7

κi).

Therefore,

(c2
1−3e)(CP2,D) =(3− 1

2

6

∑
i=1

κi−
9

∑
i=7

κi)2− 3
2

6

∑
i=1

κ
2
i −3

9

∑
i=7

κ
2
i +(

6

∑
i=1

κi)(
9

∑
i=7

κi)

+
3
4
[(κ1 +κ5−2κ8)2 +(κ2 +κ6−2κ7)2 +(κ3 +κ4−2κ9)2].

Up to projective equivalencies of the Figure 6.18, Maple gives solutions of ordered

mi’s as (n,n,n,2,2,2,2,2,2) or (2,2,2,n,n,n,2,2,2), n ∈ Z≥2, for (c2
1−3e) = 0. In

these cases, the Chern numbers are c2
1 = (3− 3

n)2 and e = 1
3(3− 3

n)2. Since there

are three fourfold point of the arrangement in Figure 6.18, at these points the β

map takes infinite values. The local orbifold fundamental group at these points are

infinite solvable if all the branching indices are 2, i.e n = 2. Then we have the

following theorem:
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Theorem 6.5.5. The orbifold (CP2,D), where D = ∑
9
i=1 2Hi is the divisor supported

by the line arrangement in Figure 6.18 is uniformized by B2.

Another arrangement of nine line is the harmonic arrangement A = {Hi | i =

1, · · · ,9} in Figure 6.19 defined by the equation

XY Z(X−Y )(Y −Z)(Z−X)(X−Y +Z)(Y −2Z)(2X−Y ) = 0.

Harmonic arrangement is projectively rigid. Indeed, cross ratio of the singular points

on H8 and H9 is −1. Note that, Harmonic arrangement is projectively equivalent to

the arrangement in Figure 6.18 via [X : Y : Z] 7→ [X : X −Y + Z : Z]. Thus, if we

choose all branching indices are 2, then we get a ball quotient orbifold, but it is

same as the previous one.

m7

m1 m3

m5 m4

m6

m2

m8m9

Figure 6.19 Harmonic arrangement.

Finally, consider the Ceva(n) arrangement, which is an arrangement A of 3n lines

given by the equation (Xn−Y n)(Y n−Zn)(Zn−Xn) = 0. Let us divide it into three

parts: A1 = {H1,i |H1,i : X−ωiY = 0, i = 0, · · ·n−1}, A2 = {H2,i |H2,i : Y −ωiZ =

0, i = 0, · · ·n− 1} and A3 = {H3,i | H3,i : Z−ωiX = 0, i = 0, · · ·n− 1}, where ω

denotes the n-th root of unity. Each line has a point of order n, n triple points and no

r-fold points if r 6= 3,n. Therefore, the arrangement A = A1∪A2∪A3 has 3 point

of order n, n2 triple points and no r-fold points if r 6= 3,n. Note that, triple points

lies on the lines H1,i, H2, j and H3,k, where i+ j≡ k (mod n). Let us denote by Γ the
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set {(i, j,k) | i + j ≡ k (mod n)}. Clearly, |Γ| = n2. In addition, denote by ms,i the

weights of Hs,i, set κs,i := 1
ms,i

and Dn := ∑
3
s=1 ∑

n−1
i=0 ms,iHs,i. The bigness condition

(6.4.4) is satisfied for all ms,i ∈ Z≥2, so the orbifold (CP2,Dn) is of general type.

Beside this, its orbifold Chern numbers are

c2
1(CP2,Dn) = (3n−3−∑

s,i
κs,i)2 (6.5.2)

and

e(CP2,Dn) = 2n2−3n+(1−n)∑
s,i

κs,i +
1
4 ∑

Γ

(κ1,i +κ2, j +κ3,k−1)2 +P(n),

(6.5.3)

where

P(n) =





0 n≥ 4 or n = 1,

∑
3
s=1 κs,0κs,1 n = 2,

1
4 ∑

3
s=1(κs,0 +κs,1 +κs,2−1)2 n = 3.

(6.5.4)

Then,

(c2
1−3e)(CP2,Dn) =(3n2−9n+9)−3(n−1)∑

s,i
κs,i +(∑

s,i
κs,i)2

− 3
4 ∑

Γ

(κ1,i +κ2, j +κ3,k−1)2−3P(n).
(6.5.5)

In case n = 2, the Ceva(2) arrangement is just the complete quadrilateral and we

have already studied its uniformization (See Theorem 6.5.2).

If n = 3, the equation (6.5.5) reduces to

c2
1−3e =(3−∑

s,i
κs,i)2− 3

4 ∑
Γ

(κ1,i +κ2, j +κ3, j−1)2− 3
4

3

∑
s=1

(κs,0 +κs,1 +κs,2−1)2

=−2(∑
s,i

κs,i)2 +
9
2 ∑

1≤s<r≤3
∑

0≤i< j≤2
κs,iκr, j
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Therefore, c2
1− 3e vanishes if and only if κs,i = 1

m , i.e. ms,i = m for all s, i. Local

uniformizability condition at triple points is 3
m −1 ≤ 0 which implies m is either 2

or 3, respectively the orbifold Chern numbers are c2
1 = 9

4 , e = 3
4 or c2

1 = 9, e = 3.

Now assume n = 4. The Ceva(4) arrangement A has three fourfold points and

sixteen triple points, and each line has a fourfold point. The uniformizability condition

at fourfold points implies ms,i = 2. Indeed, if one assume κs,i = κ for all s, i, then by

(6.5.5) he get c2
1−3e = 9(2κ−1)2 = 0 while κ = 1

2 . In fact, in general c2
1−3e = 0

has many solutions ms,i, but the uniformizability condition is satisfied only when

ms,i = 2 for all s, i.

Thus, by the Theorem 6.4.2 we have the following theorem:

Theorem 6.5.6. The orbifold (CP2,Dn), where Dn = ∑s,i ms,iHs,i is a divisor on

CP2 supported by the Ceva(n) arrangement, is uniformized by B2 if

i. n = 2 and (ms,0,ms,1) is either (2,3) or (2,4) or (3,3) for all s = 1,2,3.

ii. n = 3 and ms,i is either 2 or 3 for all s, i.

iii. n = 4 and ms,i = 2 for all s, i.

Remark 6.5.7. Note that, Ceva(n) arrangement is the degree n branch cover of

the complete quadrilateral via ϕn : [X : Y : Z] 7→ [Xn : Y n : Zn]. In the Proposition

6.5.1, we have showed that the Miyaoka-Yau equality c2
1 = 3c2 is satisfied for an

orbifold associated with the divisor based on complete quadrilateral with weights

(n,n,n,m,m,m). Thus, the branching indices of the orbifold branched along the

Ceva(n) arrangement will be m.
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6.6 Orbifolds Supported by Quadric-Line Arrangements

Let An := Q∪⋃n
i=1 Ti be an arrangement of a smooth conic with n-distinct tangent

lines of Q, which is known as Apollonius configuration. Since the tangent lines are

in general position, the configuration space An can be identified with the configuration

space Mn of n-distinct points in CP1, via the contact points of Ti with Q' CP1.

Let (CP2,β) be an orbifold associated with the divisor D = aQ + ∑
n
i=1 miTi

supported by the Apollonius configuration. The orbifold Chern numbers are

c2
1(CP2,β) =

(
−1+n− 2

a
−

n

∑
i=1

1
mi

)2

, (6.6.1)

and

e(CP2,β)=
(n−1)(n−2)

2
+

2−n
a

+
n

∑
i=1

2−n
mi

+ ∑
1≤i< j≤n

1
mim j

+
1
2

n

∑
i=1

(
1
a

+
1
mi
− 1

2
)2.

(6.6.2)

In addition, local uniformizability conditions are 1
a + 1

mi
≥ 1

2 for all i = 1,2, · · · ,n.

Proposition 6.6.1 (Uludağ, 2004). Let (CP2,β) be an orbifold associated with the

divisor D := aQ+∑
n
i=1 miTi supported by the Apollonius configuration. Then

i. 3e(CP2,β) = c2
1(CP2,β) > 0 if and only if n = 3 and (a;m1,m2,m3) is one of

(4;4,4,4), (3;3,4,4), (3;6,6,2) or (3;6,3,3),

ii. 2e(CP2,β) = c2
1(CP2,β) > 0 if and only if either a = 2 and ρ 6= n−2 or n = 2

and 1
m1

+ 1
m2

+ 1
a = 1

2 , or n = 3 and (a;m1,m2,m3) = (3;2,3,4) , or n = 4 and

(a;m1,m2,m3,m4) = (a;2,2,2,2).

iii. e(CP2,β) = c2
1(CP2,β) = 0 if and only if either n = 2, (a;m1,m2) = (2;∞,∞),

or n = 3 and (a;m1,m2,m3) is one of (2;2,2,∞), (2;3,3,3), (2;2,4,4) or

(2;2,3,6); or n = 4 and (a;m1,m2,m3,m4) = (2;2,2,2,2),

iv. e(CP2,β) > 0 and c2
1(CP2,β) = 0 if and only if either n = 2, (a;m1,m2) is
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one of (4;4,4), (3;6,6), (6;3,3) or n = 3 and m1 = m2 = ∞, or n = 3 and

(a;m1,m2,m3) is one of (4;2,2,2) or (3;3,2,2).

Proof. For simplicity, let us set ρ := ∑
n
i=1

1
mi

and κ = 1
a . Then the equations (6.6.1)

and (6.6.2) reduces to

c2
1(CP2,β) = (−ρ−2κ−1+n)2 = (n−1)2−2(n−1)(ρ+2κ)+ρ

2 +4κρ+4κ
2

and

e(CP2,β) =
(n−1)(n−2)

2
− (n−2)(κ+ρ)+

ρ2 +nκ2 +2ρκ−ρ−nκ

2
+

n
8
.

Therefore c2
1(CP2,β) = 0 if and only if ρ+2κ = n−1. Note that the equality ρ+

2κ = n−1 is valid if n≤ 4, since mi,a≥ 2. If n = 2, then the solution (a;m1,m2) to

the equation 2
a + 1

m1
+ 1

m2
= 1 is one of (∞;2,2), (12;2,3), (8;2,4), (6;3,3), (4;4,4),

(4;3,6), (4;2,∞), (3;3,3), (3;6,6) or (2;∞,∞). In case n = 3, 2
a +∑

3
i=1

1
mi

= 2 and

(a;m1,m2,m3) is one of (4;2,2,2), (3;2,2,3) or (2;m1,m2,m3) satisfying ρ = 1. If

n = 4, then 2
a +∑

4
i=1

1
mi

= 3 and therefore (a;m1,m2,m3,m4) = (2;2,2,2,2). It can

be easily showed that only the possibilities stated in the case iii., both of the orbifold

Chern numbers vanish. For the possibilities stated in the case iv., first Chern number

vanishes while Euler number is always positive.

Furthermore,

(2e− c2
1)(CP2,β) =1− 3n

4
+ρ+nκ+(n−4)κ2−2ρκ

=(κ− 1
2
)
(
(n−4)κ+

3n−4
2
−2ρ

)
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and

(3e− c2
1)(CP2,β) =

n2

2
− 17n

8
+2+2κ+

ρ2

2
−nρ+

5ρ

2
− nκ

2
−ρκ−4κ

2

=
1
2
(n2 +ρ

2 +nκ−κ
2−2ρκ−nρ)+

5
2
(ρ−κ−n)+

25
8

+
3
8
(4nκ

2−12κ
2−4nκ+12κ+n−3)

=
1
2
(ρ−κ−n+

5
2
)2 +

3
8
(n−3)(2κ−1)2.

Thus, (2e− c2
1)(CP2,β) = 0 if and only if κ = 1

2 or (n− 4)κ + 3n−4
2 − 2ρ = 0.

If a = 2, then clearly c2
1(CP2,β) = 2e(CP2,β) = (ρ + 2− n)2 and it vanishes for

ρ = n− 2. The condition (n− 4)κ + 3n−4
2 − 2ρ = 0 is valid only for 2 ≤ n ≤ 4,

since a,mi ∈ Z≥2. If n = 2, then κ + ρ = 1
2 which has infinitely many solutions,

and c2
1 = 2e = ρ2. If n = 3, then we have the equation κ + 2ρ = 5

2 whose solution

is (a;m1,m2,m3) = (3;2,3,4) and orbifold Chern numbers are c2
1 = 2e = 1

16 . In

addition, if n = 4 then the condition (n− 4)κ + 3n−4
2 − 2ρ = 0 reduces to ρ = 2

which implies m1 = m2 = m3 = m4 = 2 and the orbifold Chern numbers are c2
1 =

2e = (1− 2
a)2.

On the other hand, (3e− c2
1)(CP2,β) = 0 if and only if ρ−κ−n+ 5

2 = 0 while

either n = 3 or a = 2. Note that, if a = 2 then the condition ρ− κ− n + 5
2 = 0

reduces to ρ = n− 2 which implies 2 ≤ n ≤ 4. But, the orbifold Chern numbers

c2
1 and e vanish. Now suppose n = 3, then the condition ρ−κ−n + 5

2 = 0 reduces

to ρ = κ + 1
2 for which a solution (a;m1,m2,m3) is one of (4;4,4,4), (3;3,4,4),

(3;6,6,2) or (3;6,3,3).

Lemma 6.6.2 (Holzapfel & Vladov, 2001). There is an orbifold covering
(
CP1×

CP1, aQ +∑
k
i=1 mi(T v

i + T h
i )
)
→
(
CP2, 2aQ +∑

k
i=1 miTi)

)
, where T v

i = {pi}×Q,

T h
i = Q×{pi} and the covering map is

(
[p : q], [r : s]

)
→ [ps + qr : qs : pr] (See

Figure 6.20).

Proof. Consider the Z2-action defined by (x,y)∈CP1→ (y,x)∈CP1. The diagonal

Q = {(x,x) : x ∈ CP1} is fixed under this action. Let x = [p : q],y = [r : s], then the
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2a

m1

m2

m3 1 : 2
ψ

m3

m2

m1

m1 m2 m3 a

Figure 6.20 A covering of Apollonius configuration.

symmetric polynomials σ1(x,y) := ps + qr, σ1(x,y) := qs and σ1(x,y) := pr are

also invariant under this Z2-action. Consider the Viéte map

ψ : ([p : q], [r : s]) ∈ CP1×CP1→ [ps+qr : qs : pr] ∈ CP2. (6.6.3)

It is a branched covering of degree 2. The branching locus can be found as the image

of the diagonal Q. Since ψ|Q is one-to-one, so we will denote ψ(Q) by Q again. One

has ψ(Q) = {[2pq : q2 : p2] | [p : q] ∈ CP1}, so that Q can be given by the equation

X2−4Y Z = 0. One can identify Q×Q with CP1×CP1 via projections of diagonal.

Let P∈Q, and put T h
P := Q×{P} and T v

P = {P}×Q. Then TP := ψ(T h
P ) = ψ(T v

p ) =

{[rq + sp : sq : rp] | [r : s] ∈ CP1} ⊂ CP2 is the line q2Z + p2Y − pqX = 0 tangent

to Q at the point [2pq : q2 : p2].

Remark 6.6.3. Consider the divisor D = 2aQ + ∑
k
i=1 miTi. Since, distinct tangent

lines of a quadric meet transversally, then at these singular points local orbifold

fundamental group is abelian and local uniformization always exist. In addition, at

tangency points, orbifold germs have uniformization if and only if 1
a + 1

mi
≥ 1

2 for

each i = 1,2, · · · ,k. Therefore (CP2,D) is an orbifold provided 1
a + 1

mi
≥ 1

2 for each

i = 1,2, · · · ,k.

Theorem 6.6.4. The orbifolds in Figure 6.21 are uniformized by CP1×CP1.

Proof. Consider the particular case of Lemma 6.6.2. If a = 1, then there is an

orbifold covering

(CP1,
k

∑
i=0

mi pi)× (CP1,
k

∑
i=0

mi pi)→ (CP2,2Q+
k

∑
i=0

miTi). (6.6.4)
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So, by Theorem 6.1.3 the covering orbifold is uniformized by CP1×CP1 if k = 1

and m0 = m1, or k = 2 and 1/m0 +1/m2 +1/m3 > 1. Hence the orbifolds in Figure

6.21 are uniformized by CP1×CP1. It is also clear from the Proposition 6.6.1 that,

these orbifolds satisfy the Hirzebruch’s second proportionality theorem, i.e, c2
1 =

2e.

2

m

m

2

m

2 2
2

3

2 3
2

4

2 3
2

5

2 3

Figure 6.21 Orbifolds uniformized by CP1×CP1
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∞
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∞
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2
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2

4

2 4
2

6

2 3
2

2

2

2 2

Figure 6.22 Orbifolds uniformized by C×C.

Theorem 6.6.5. The orbifolds in Figure 6.22 are uniformized by C×C.

Proof. Consider the covering given by (6.6.4). Then by the Theorem 6.1.3, the

orbifold (CP2,D) branched along Apollonious configuration is uniformized by C×
C if n = 2 and m1 = m1 = ∞, or n = 3 and 1/m1 +1/m2 +1/m3 = 1, or n = 4 and

m1 = m2 = m3 = m4 = 2. Note that by the Proposition 6.6.1, both of the orbifold

Chern numbers vanish.

Theorem 6.6.6. The orbifolds in Figure 6.23 are uniformized by B2.

Proof. Proof follows from the Theorem 6.4.2 and Proposition 6.6.1.i.

4

4

4 4
3

3

4 4
3

2

6 6
3

3

3 6

Figure 6.23 Orbifolds uniformized by B2
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Lemma 6.6.7. Let Q be a quadric in CP2 and T1, T2 and T3 are its distinct tangent

lines. Then the Apollonious configuration A3 = Q∪ T1 ∪ T2 ∪ T3 is given by the

equation

XY Z[(X +Y −Z)2−4XY ] = 0 (6.6.5)

up to projective transformations.

Proof. Since dimPGL(3,C) = 8, we can choose homogeneous coordinates such

that T1 = {X = 0}, T2 = {Y = 0}, T3 = {Z = 0} Suppose the quadric Q is given by

the equation F := aX2 + bY 2 +Cz2 + 2dXY + 2eY Z + 2 f ZX = 0. For a given sub-

group Σ3 < PGL(3,C), isomorphic to the symmetric group S3, the action of Σ3 just

permutes the coordinates. Thus, the Σ3-invariant quadrics must satisfy simultaneously

three equations

aY 2 +bX2 + cZ2 +2dXY +2eY Z +2 f ZX = 0

aZ2 +bY 2 + cX2 +2dY Z +2eXZ +2 f XY = 0

aX2 +bZ2 + cY 2 +2dXZ +2eXY +2 fY Z = 0,

which have to be the same up to a factor. It follows that, a = b = c = 1 (without

loss of generality) and d = e = f = λ ∈C∗. Therefore, Σ3-invariant quadrics form a

1-parameter family X2 +Y 2 +Z2 +2λXY +2λY Z +2λZX = 0. On the other hand,

Q has contact of order 2 with T1 = {X = 0} at a point [0 : 1 : t]. Substituting the

coordinates of this point in the quadric equation, we must have a unique solution

for t of the equation t2 + 2λt + 1 = 0. Therefore, either λ = 1 or λ = −1, but Q is

degenerate for λ = 1. Hence one gets a symmetric equation for the non-degenerate

quadric Q as X2 +Y 2 +Z2−2XY −2Y Z−2ZX = (X +Y −Z)2−4XY = 0.

Now, let us add new lines to Apollonius configuration to discover new orbifolds

uniformized by complex 2-ball B2. Consider the orbifold (CP2,β) associated with

the divisor D = aQ + ∑
3
i=1 miTi + m4H4 supported by the arrangement in Figure

6.24 given by the homogeneous equation XY Z(X − Z)[(X +Y − Z)2− 4XY ] = 0.
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Figure 6.24

The orbifold Chern numbers are

c2
1(CP2,β) = (3−

4

∑
i=1

κi−2σ)2 = (3−ρ−2σ)2 = 9−6(ρ+2σ)+(ρ+2σ)2

and

e(CP2,β) =2−
4

∑
i=1

κi−2σ+σκ4 +(κ1 +κ3)κ2 +
1
4
(κ1 +κ3 +κ4−1)2

+
1
2
(κ1 +σ− 1

2
)2 +

1
2
(κ3 +σ− 1

2
)2 +

1
2
(κ2 +σ+

κ4

2
−1)2

=3−2(ρ+2σ)+
1
4
(ρ+2σ)2 +

1
8
(2σ+κ4)2 +

1
8
(2κ1 +κ2)2

+
1
8
(κ2 +2κ3)2

where κi = 1
mi

, ρ = ∑
3
i=0 κi and σ = 1

a . Therefore,

(3e− c2
1)(CP2,β) =− 1

4
(ρ+2σ)2 +

3
8
(2σ+κ4)2 +

3
8
(2κ1 +κ2)2

+
3
8
(κ2 +2κ3)2

To find a solution to 3e−c2
1 = 0, set a := 1

2(2κ1 +κ2), b := 1
2(2κ3 +κ2), c := 1

2(2σ+

κ4), then clearly a+b+c = ρ+2σ and f (a,b,c) := 3e−c2
1 =−1

4(a+b+c)+ 3
2a2 +

+3
2b2 + 3

8c2 ≥ 0. The function f (a,b,c) takes its minimum value, 0, on the line

c = 4a = 4b. The equation a = b clearly implies κ1 = κ3. In addition, the equation

c = 4a implies (a;m1,m2,m3,m4) is either (p;4q, p,4q,q) or (p,2p,2q,2p,q) for

some p,q ∈ Z≥2.

At nodal points, the local orbifold fundamental group is abelian and it always
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admits a local uniformization at these points. At triple points and tangency points,

there are local uniformizations if the local orbifold fundamental groups at these

points are either finite or infinite solvable. The local uniformizability condition at

these points are κ1 + κ3 + κ4 ≥ 1, κ1 + σ ≥ 1
2 , κ3 + σ ≥ 1

2 and κ2 + σ + κ4
2 ≥ 1.

Checking these conditions for the quintuplets (p;4q, p,4q,q) or (p,2p,2q,2p,q)

and taking into account the fact p,q ∈ Z≥2, we obtained the branching indices

(a;m1,m2,m3,m4) as (2;4,4,4,2). Moreover, the first and second Chern numbers

are 9
16 and 3

16 , respectively. Notice that, κ1 +κ3 +κ4 = 1 and κ2 +σ+ κ4
2 = 1. These

means, there are ball-cusp points at T1 ∩T3 ∩H4 and Q∩T2 ∩H4. As a result, we

can state the following theorem:

Theorem 6.6.8. Let (CP2,β) be an orbifold associated with the divisor D = 2Q +

∑
3
i=1 4Ti +2H4 supported by the arrangement in Figure 6.24. Then, it is uniformized

by B2.

Third, let us add another tangent line to the quadric-line configuration whose

uniformizability discussed above. Consider the orbifold (CP2,β) associated with

the divisor D = aQ+∑
4
i=1 miTi +m5H5 supported by the arrangement in Figure6.25

given by the equation XY Z(X − Z)(2X −Y + 2Z)[(X +Y − Z)2 − 4XY ] = 0. Its

orbifold Chern numbers are

c2
1(CP2,β) = (4−

5

∑
i=1

κi−2σ)2

and

e(CP2,β) =2− (κ1 +κ3 +κ5)−2(κ2 +κ4 +σ)+(κ1 +κ3)(κ2 +κ4)+κ2κ4

+
1
4
(κ1 +κ3 +κ5−1)2 +

1
2
(σ+κ1−

1
2
)2 +

1
2
(σ+κ3−

1
2
)2+

+
1
2
(σ+κ2 +

κ5

2
−1)2 +

1
2
(σ+κ4 +

κ5

2
−1)2,

where κi = 1
mi

and σ = 1
a . Local orbifold fundamental groups at nodal points are

abelian and admits local uniformization. Local uniformizability condition at triple

and tangency points is related with the order of local orbifold fundamental group
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Figure 6.25

πorb
1 , and πorb

1 must be finite or at most infinite solvable. These correspond to the

inequalities κ1 + κ3 + κ5 ≥ 1, κi + σ ≥ 1
2 and κ j + σ + κ5

2 ≥ 1, where i = 1,3 and

j = 2,4. Equalities are valid if the orbifold has cusp points. The conditions κ j +σ+
κ5
2 ≥ 1, j = 2,4 tell us that a is either 2, 3 or 4.

First suppose a = 4, then σ = 1
4 and the inequality κ j + σ + κ5

2 ≥ 1 reduces to

κ j + κ5
2 ≥ 3

4 , j = 2,4, which imply m2 = m4 = m5 = 2. In addition, the inequality

κi + σ ≥ 1
2 , i = 1,3 implies that m1,m3 ≤ 4. Under these conditions, the inequality

κ1 +κ3 +κ5 ≥ 1 is automatically satisfied.

Next, assume that a = 3, then σ = 1
3 and the inequality κ j +σ+ κ5

2 ≥ 1 reduces to

κ j + κ5
2 ≥ 2

3 , j = 2,4, which implies m2 = m4 = 2 and m5 is either 2 or 3. In addition,

the conditions κi + σ ≥ 1
2 , i = 1,3 gives m1,m3 ≤ 6. Under these conditions and

depending on the choices of m5, the inequality κ1 + κ3 + κ5 ≥ 1 has finite number

of solutions.

Now suppose a = 2, then κ j + κ5
2 ≥ 1

2 , j = 2,4 and therefore (m2,m4,m5) is one

of (2,2,k), (2,3,2), (2,3,3), (2,4,2), (3,2,2), (3,3,2), (3,4,2), (3,2,3), (3,3,3),

(4,2,2), (4,3,2) and (4,4,2). Beside these, the inequalities κi + σ ≥ 1
2 , i = 1,3 is

always true. Depending on choice of (m2,m4,m5) the inequality κ1 + κ3 + κ5 ≥ 1

has finite number of solutions.

By taking into account these restrictions on branching indices and using Maple

we have obtained that (3e− c2
1) vanishes if (a;m1,m2,m3,m4;m5) is (4;4,2,4,2;2)

and first and second orbifold Chern numbers are 9
4 and 3

4 , respectively. Note that,
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Figure 6.26

for such a and mi’s, κ1 + κ3 + κ5 = 1, κi + σ = 1
2 and κ j + σ + κ5

2 = 1, where i =

1,3 and j = 2,4. This means, at all multiple points except the nodal ones local

orbifold fundamental groups are infinite solvable and these points are cusp points.

In addition, this orbifold is an orbifold of general type. Then by Theorem 6.4.2, we

can state the following theorem:

Theorem 6.6.9. The orbifold (CP2,β) associated with the divisor D = 4Q+4T1 +

2T2 +4T3 +2T4 +2H5 supported by the arrangement in Figure 6.25 is uniformized

by B2.

Fourth, consider the orbifold (CP2,β) associated with the divisor D = aQ +

∑
4
i=1 miTi +∑

8
i=5 miHi supported by the rigid arrangement in Figure 6.26 defined by

the equation XY (X−Y )(X +Y )(Y −Z)(Y +Z)(Z−X)(Z +X)(X2 +Y 2−Z2) = 0.

Its orbifold Chern numbers are

c2
1(CP2,β) = (7−

8

∑
i=1

κi−2σ)2

and

e(CP2,β) =12−2
6

∑
i=1

κi−6σ+(2σ−3)(κ7 +κ8)+
1
2
(δ2

1,6 +δ
2
2,6 +δ

2
3,5 +δ

2
4,5)

+
1
4
(ρ2

1,2,5 +ρ
2
1,3,8 +ρ

2
1,4,7 +ρ

2
2,3,7 +ρ

2
2,4,8 +ρ

2
3,4,6),

where κi = 1
mi

, σ = 1
a , ρi, j,k = κi +κ j +κk−1 and δr,s = σ+κr + κs

2 −1.
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Since 7−∑
8
i=1 κi− 2σ > 0 for any mi,a ∈ Z≥2, this orbifold is of general type.

Note that, there is a fourfold point lies on the lines H5, H6, H7 and H8. The local

orbifold fundamental group is infinite solvable if m5 = m6 = m7 = m8 = 2 and

big otherwise. Therefore, the weights m5 = m6 = m7 = m8 = 2 admits the local

uniformization at H5∩H6∩H7∩H8. The other local uniformizability conditions are

ρi, j,k ≥ 0 and δr,s ≥ 0, where (i, j,k) ∈ {(1,2,5),(1,3,8),(1,4,7),(2,3,7),(2,4,8)}
and (r,s)∈{(1,6),(2,6),(3,5),(4,5)}. For any r in {1,2,3,4}, the conditions δr,5≥
1 and δr,6 implies the inequality 1

a + 1
mr
≥ 3

4 , which is valid if either a = 4 and mr = 2,

or a = 3 and mr = 2, or a = 2 and mr ≤ 4. Notice that, in all cases the inequality

ρi, j,k = 1
mi

+ 1
m j

+ 1
2 ≥ 1 is satisfied, where i, j ∈ {1,2,3,4} and i 6= j. Thus, we have

candidates in the form of (a;m1,m2,m3,m4;2,2,2,2), where either a = 4 and mr =

2, or a = 3 and mr = 2, or a = 2 and mr ≤ 4. By taking into account these restrictions

on branching indices and using Maple, we have obtained that the Miyaoka-Yau

equality (c2
1− 3e)(CP2,β) = 0 is satisfied if (a;m1,m2,m3,m4;m5,m6,m7,m8) is

(2;4,4,4,4;2,2,2,2), and its first and second orbifold Chern numbers are 9 and 3,

respectively. Notice that, all multiple points except the nodal ones are cusp points.

Since this orbifold is of general type, then by Theorem 6.4.2, we can state the

following theorem:

Theorem 6.6.10. An orbifold (CP2,β) associated with the divisor D = 2Q+∑
4
i=1 4Ti +

∑
8
i=5 2Hi supported by the arrangement in Figure 6.26 is uniformized by B2.

Fifth, consider the arrangement of a quadric Q and its four tangents Ti, i =

1,2,3,4. Let H5 be the line through T1 ∩ T2, T3 ∩ T4, and H6 be the line through

Q∩T3, Q∩T4. The line H5 meets Q transversally. Arrangement of such quadric and

lines are projectively rigid, and equations are Q := {X2−Y 2−Z2 = 0}, T1 = {X +

Z = 0}, T2 = {X−Z = 0}, T3 = {X +Y = 0}, T4 = {X−Y = 0}, H5 = {X = 0} and

H6 = {Y = 0} (See Figure Figure 6.27). Consider the orbifold (CP2,β) associated

with the divisor D = aQ + ∑
6
i=1 miHi supported by this arrangement. Its orbifold

Chern numbers are

c2
1(CP2,β) = (5−2σ−

6

∑
i=1

κi)2
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Figure 6.27

and

e(CP2,β) =6−σ−2
6

∑
i=1

κi−κ6 +2σκ5 +(κ1 +κ2)(κ3 +κ4)

+
1
4
(κ1 +κ2 +κ5−1)2 +

1
2
(σ+κ1 +

1
2

κ6−1)2

+
1
2
(σ+κ2 +

1
2

κ6−1)2 +
1
2
(σ+κ3−

1
2
)2 +

1
2
(σ+κ4−

1
2
)2,

where σ = 1
a and κi = 1

mi
. Notice that, there is a fourfold point. The local orbifold

fundamental group at this point is infinite solvable if m3 = m4 = m5 = m6 = 2,

otherwise it is big. Such choice guarantees the local uniformization at tangency

points T3 ∩Q and T4 ∩Q. At nodal points, local orbifold fundamental group is

abelian and local uniformization always exist at these points. For triple points,

the local uniformizability conditions are κ1 + κ2 ≥ 1
2 , κ1 + σ ≥ 3

4 and κ2 + σ ≥ 3
4 .

Therefore, this orbifold is locally uniformizable if (a,m1,m2) is one of the triples

(2,2,2), (2,2,3), (2,2,4), (2,3,2), (2,3,3), (2,3,4), (2,4,2), (2,4,3), (2,4,4),

(3,2,2) and (4,2,2), while m3 = m4 = m5 = m6 = 2. Taking into account this

restrictions on branching indices and using Maple, we have obtained the Miyaoka-

Yau equality c2
1(CP2,β) = 3e(CP2,β) = 9/4. Since this orbifold is of general type,

then by Theorem 6.4.2, we can state the following theorem.

Theorem 6.6.11. Let (CP2,β) be an orbifold associated with the divisor D = 2Q+

∑
4
i=1 2Ti +∑

10
i=5 2Hi supported by the arrangement in Figure 6.27 is uniformized by

B2.
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Figure 6.28

Sixth, consider the orbifold (CP2,β) associated with divisor D = aQ+∑
4
i=1 miTi+

∑
10
i=5 miHi supported by the arrangement in Figure 6.28. Its orbifold Chern numbers

are

c2
1(CP2,β) = (9−

10

∑
i=1

κi−2σ)2

and

e(CP2,β) =20−4
10

∑
i=1

κi +(κ5 +κ6)−6σ+(κ1 +κ2)(κ9 +κ10)

+(κ3 +κ4)(κ7 +κ8)+
1
2
(η2

1 +η
2
2 +η

2
3 +η

2
4)

+
1
4
(ρ2

1,3,6 +ρ
2
1,4,5 +ρ

2
2,3,5 +ρ

2
2,4,6),

where κi = 1
mi

, σ = 1
a , ρi, j,k = κi + κ j + κk− 1 and ηr = σ + κr− 1

2 . Notice that,

there are four four-fold points and β map takes infinite values at these points. This

means, the local orbifold fundamental groups at these points are infinite. Therefore,

the local uniformizability at these points corresponds to solvability of local orbifold

fundamental groups, which is possible if branching indices are 2, otherwise it will

be too big. Then we may assume a = m5 = m6 = m7 = m8 = m9 = m10 = 2. In this

case, note that ηr ≥ 0 for any r ∈ {1,2,3,4} and therefore orbifold germs through

tangency points are always locally uniformizable. In addition, the uniformizability

conditions at triple points are ρ1,3,6 ≥ 0, ρ1,4,5 ≥ 0, ρ2,3,5 ≥ 0 and ρ2,4,6 ≥ 0 and

they give us the relation 1
mi

+ 1
m j
≥ 1

2 , where (i, j) ∈ {(1,3),(1,4),(2,3),(2,4)}.
This is possible if for such (i, j), (mi,m j) is one of (2,k), (3,3), (3,4), (3,5), (3,6),
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(4,3), (4,4), (5,3), (6,3) and (k,2), where k ∈ Z≥2. By taking into account these

restrictions on branching indices and using Maple, we have obtained the Miyaoka-

Yau equality (3e− c2
1)(CP2,β) = 0 if all weights are 2. In this case, the first and

second orbifold Chern numbers are 9 and 3, respectively. Since this orbifold is of

general type, then by Theorem 6.4.2, we can state the following theorem:

Theorem 6.6.12. Let (CP2,β) be an orbifold associated with the divisor D = 2Q+

∑
4
i=1 2Ti +∑

10
i=5 2Hi supported by the arrangement in Figure 6.28 is uniformized by

B2.

m1 m2

m3

m4

m5m6

n1

n2

n3

Figure 6.29

Seventh, consider the orbifold (CP2,β) associated with the divisor D = ∑
3
j=1 n jQ j +

∑
6
i=1 miHi supported by the arrangement of three quadrics with six tacnodes and

their pairwise six common tangents (See Figure 6.29). We know from the equation

(4.3.30) that equations of three quadrics with six tacnodes is projectively equivalent

to (X2 +Y 2−Z2)( 1
q2 X2 +Y 2−Z2)(X2 +Y 2−q2Z2) = 0 and their pairwise common

tangents are given by (X− iY )(X + iY )(Y−Z)(Y +Z)(X + iqZ)(X− iqZ) = 0. These

six lines forms a complete quadrilateral if and only if q2 = −1. Thus, considering

fact q2 = −1 and using the projective transformation [X : Y : Z]→ [iX : Y : Z] one

obtains the equation

(X2−Y 2)(Y 2−Z2)(Z2−X2)(X2 +Y 2−Z2)(X2−Y 2 +Z2)(−X2 +Y 2 +Z2) = 0

for the arrangement in Figure 6.29. In the Section 6.2.3 we have discussed the
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covering relations among orbifold germs and their uniformizations. A uniformizable

germ consisting of two conics having a contact of order 2 and their common tangent

line appeared as cover of four lines with branching indices 2 via ϕ1,2 or ϕ2,1 (See

Figures 6.10 and 6.12). Therefore, such germs are uniformizable if the branching

indices are 2. In this case, the β map takes infinite values and cusp points appears

in covers of these points. Moreover, such choice of branching indices guarantees

the local uniformization at triple points and nodal points. Omitting this fact, let us

first compute its orbifold Chern numbers in terms of branching indices mi and n j.

Orbifold Chern numbers of (CP2,β) are

c2
1(CP2,β) = (9−

6

∑
i=1

κi−2
3

∑
j=1

σ j)2

and

e(CP2,β) =20−4
6

∑
i=1

κi−6
3

∑
j=1

σ j +κ1κ2 +κ3κ4 +κ5κ6 +2(κ1 +κ2)σ2

+2(κ3 +κ4)σ3 +2(κ5 +κ6)σ1 +
1
4
(ρ2

1,3,5 +ρ
2
1,4,6 +ρ

2
2,3,6 +ρ

2
2,4,5),

where κi = 1
mi

, σ j = 1
n j

, ρi, j,k = κi + κ j + κk− 1. Incase mi = n j = 2 for all i, j,

then first and second orbifold Chern numbers are c2
1 = 9 and e = 3, respectively.

In addition, this orbifold is of general type. Therefore, as a consequence of the

Theorem 6.4.2, we can state the following theorem:

Theorem 6.6.13. The orbifold (CP2,β) associated with the divisor D = ∑
3
j=1 2Q j +

∑
6
i=1 2Hi supported by the arrangement in Figure 6.29 is uniformized by B2.

Eighth, consider an arrangement of three quadrics Q j, such that the quadric Q3

has a contact of order four with Q1 and Q2 while Q1 and Q2 has a tacnode. From

the Proposition 4.3.6, we know that such quadrics are

Q1 : Y 2 +Z2−2XY = 0, Q2 : Y 2 +Z2 +2XY = 0, Q3 : 4X2−Y 2−2Z2 = 0.

(6.6.6)
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Figure 6.30 An orbifold (CP2,∑3
j=1 n jQ j +∑

3
i=1 miHi).

Let H1 be the the line through the nodal intersection points of Q1 and Q2, that is

H1 : X = 0. Let H2 : X +Z = 0 and H3 : X−Z = 0. They are common tangent lines

of Q1 and Q2 at the points [1 : 1 : 1] and [−1 : 1 : 1], respectively. Also, the point

H2∩H3 = {[1−α

4 : 1 : 0]} lies on H1. In addition, the line H4 : Y = 0 is tangent to both

of Q1 and Q2 at [1 : 0 : 0]. Configuration of these quadrics and lines are projectively

rigid.

Consider the orbifold (CP2,β) associated with the divisor D = ∑
3
j=1 n jQ j +

∑
3
i=1 miHi supported by the arrangement in Figure 6.30, where equations of quadrics

Q j and lines Hi are stated above. Its orbifold Chern numbers are

c2
1(CP2,β) = (6−

3

∑
i=1

κi−2
3

∑
j=1

σ j)2,

e(CP2,β) =10−3
3

∑
i=1

κi−4(σ1 +σ2)−6σ3 +2σ3

3

∑
i=1

κi +
1
4
(

3

∑
i=1

κi−1)2

+
1
2
(σ1 +σ2 +κ1−1)2 +(σ1 +σ3−

3
4
)2 +(σ2 +σ3−

3
4
)2

+
1
2
(σ1 +σ2−

1
2
)2 +

1
2
(σ1 +κ2−

1
2
)2 +

1
2
(σ1 +κ3−

1
2
)2

+
1
2
(σ2 +κ2−

1
2
)2 +

1
2
(σ2 +κ3−

1
2
)2,
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where σ j = 1
n j

and κi = 1
mi

. Local orbifold fundamental group at nodal points

are abelian and always admit local uniformization. In addition, uniformizability

conditions at triple and tangency points are

3

∑
i=1

κi ≥ 1, σ1 +σ2 +κ1 ≥ 1, σ1 +σ3 ≥
3
4
, σ2 +σ3 ≥

3
4
, σ1 +σ2 ≥

1
2

σ1 +κ2 ≥
1
2
, σ1 +κ3 ≥

1
2
, σ2 +κ2 ≥

1
2
, σ2 +κ3 ≥

1
2
.

Notice that, in Figure 6.30 the line H2 is a reflection of H3 and they have the

same combinatorics. Similarly the quadric Q1 is a reflection of Q2 and they have

same combinatorics. In addition, both orbifold Chern numbers and uniformizability

conditions are symmetric w.r.t σ1 and σ2, and κ2 and κ3. Then, we can deduce σ1 =

σ2 and κ2 = κ3. Therefore (m1,m2,m3,n1,n2,n3) is in the form of (p,q,q,r,r,s),

where (p,q,r,s) satisfy the inequalities

r ≤ 4,
1
r

+
1
s
≥ 3

4
,

1
p

+
2
q
≥ 1,

2
r

+
1
p
≥ 1

1
r

+
1
q
≥ 1

2
,

which has solutions:

p 2 3 k 2 3 2

q 2,3,4 2,3 2 3 3 4

r 3,4 3 2 2 2 2

s 2 2 2,3,4 2,3,4 2,3,4 2,3,4

where k ∈ Z≥2. By using Maple, and taking into account the candidates above, we

have obtained that (3e−c2
1)(CP2,β) = 0 if (m1,m2,m3,n1,n2,n3) is (2,4,4,4,4,2).

In this case, notice that all multiple points admits cusp-points. Since it is an orbifold

of general type, then by Theorem 6.4.2, we can state the following theorem:

Theorem 6.6.14. The orbifold (CP2,β) associated with the divisor D = 4Q1 +

4Q2 + 2Q3 + 2H1 + 4H2 + 4H3 supported by the arrangement in Figure 6.30 is

uniformized by B2.
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Ninth, consider the orbifold (CP2,β) associated with the divisor D = n1Q1 +

n2Q2 + ∑
4
i=1 miHi supported by the arrangement in Figure 6.31. Here, Q1 : Y 2 +

Z2−2XY = 0, Q2 : Y 2 +Z2 +2XY = 0, H1 : X = 0, H2 : X−Z = 0, H3 : X +Z = 0,

H4 : Y = 0. We have discussed the intersection behavior of this arrangement on page

239. Its orbifold Chern numbers are

c2
1(CP2,β) = (5−2σ1−2σ2−

4

∑
i=1

κi)2.

and

e(CP2,β) =6−3(σ1 +σ2)−2
4

∑
i=1

κi +κ4(κ1 +κ2 +κ3)

+
1
4
(κ1 +κ2 +κ3−1)2 +

2
4
(σ1 +σ2 +κ1−1)2 +

1
2
(σ1 +κ2−

1
2
)2

+
1
2
(σ1 +κ3−

1
2
)2 +

1
2
(σ2 +κ2−

1
2
)2 +

1
2
(σ2 +κ3−

1
2
)2,

where κi = 1
mi

and σ j = 1
n j

. Notice that, this orbifold is of general type. Local

orbifold fundamental group at nodal points are abelian and it always admits local

uniformization at nodal points. In addition, this orbifold is locally uniformizable at

H4∩Q1∩Q2 if n1 = n2 = m4 = 2, which automatically verifies the local uniformiz-

ability conditions at each singular points on quadrics Q j. Finally, there is a local

uniformization at [0 : 1 : 0] if κ1 +κ2 +κ3 ≥ 1, i.e, (m1,m2,m3) is a permutation of

(2,2,k), (2,3,3), (2,3,4), (2,3,5), (2,3,6), (2,4,4) and (3,3,3), where k∈Z≥2. By

using maple, and considering the candidates above we have obtained the Miyaoka-
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Yau equality (c2
1−3e)(CP2,β) = 0 for (n1,n2;m1,m2,m3,m4) = (2,2;2,4,4,2). In

this case orbifold Chern numbers are c2
1 = 3e = 9

4 . Then by the Theorem 6.4.2, we

can state the following theorem:

Theorem 6.6.15. The orbifold (CP2,β) associated with the divisor D = 2Q1 +

2Q2 + 2H1 + 4H2 + 4H3 + 2H4 supported by the arrangement in Figure 6.31 is

uniformized by B2.

n1 n2

m1

m2m3m4

m5

m6

m7

m8

(2)

(2)

Figure 6.32

Tenth, consider the orbifold (CP2,β) associated with the divisor D = n1Q1 +

n2Q2 +∑
8
i=1 miHi, supported by the arrangement of quadrics Q1 : X2 +Y 2−Z2 = 0,

Q2 : X2 +Y 2−2Z2 = 0 and the lines H1 : X−Y = 0, H2 : X +Y = 0, H3 : X−Z = 0,

H4 : X +Z = 0, H5 : Y −Z = 0, H6 : Y +Z = 0, H7 : X− iY = 0 and H8 : X + iY = 0.

Since this configuration can not be realized, we will draw an imaginary picture. An

intersection behavior of the lines Hi, i = 1, · · · ,6 and the quadrics Q1 and Q2 are as

in Figure 6.32. The quadrics Q1 and Q2 has two tacnodes at [±i : 1 : 0] (this points

are labeled by red and blue colors on each quadric and to denote the intersection

behavior at these points the intersection numbers are illustrated inside parenthesis).

Common tangent lines of Q1 and Q2 at these points are the lines H7 and H8. In

addition the lines H7 and H8 form a pencil together with H1 and H2 while they are

transverse to other lines. In general settings of branching indices, one can compute
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its orbifold Chern numbers as

c2
1(CP2,β) = (9−2σ1−2σ2−

8

∑
i=1

κi)2

and

e(CP2,β) =19−6σ1−4σ2 +(2σ1−3)(κ1 +κ2)−4
8

∑
i=3

κi +κ3κ4 +κ5κ6

+
1
2

6

∑
i=3

(σ1 +κi−
1
2
)2

Notice that, there are four-fold points. At these points, the β map takes infinite

values, i.e local orbifold fundamental group is infinite. Then solvability of local

πorb
1 admits local uniformization at these points. Therefore, branching indices of

curves through these points must be 2. Notice that, each line and quadric has at

least one four-fold point. Thus, we can assume n j = mi = 2 for all i, j. In this case

orbifold Chern numbers are c2
1 = 9 and e = 3. Since this orbifold is of general type,

then by Theorem 6.4.2 we have the following theorem:

Theorem 6.6.16. The orbifold (CP2,β) associated with the divisor D = 2Q1 +

2Q2 +∑
8
i=1 2Hi supported by the arrangement in Figure 6.32 is uniformized by the

complex 2-ball B2.

n1 n2

m1 m2

m3

m4

m5

Figure 6.33

Eleventh, consider the arrangement of two quadrics Q1, Q2 and five lines Hi such
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that the quadrics Q1 and Q2 has two tacnodes and the line H5 goes through these

points. In addition, the lines H1, H2, H3 and H4 are distinct four tangent lines of

Q1 such that they pairwise meets on Q2. Such configuration is projectively rigid

and the equations of these quadrics and lines are Q1 : 2X2 + 2Y 2− Z2 = 0, Q2 :

X2 +Y 2−Z2 = 0, H1 :
√

2X + Z = 0, H2 :
√

2X −Z = 0, H3 :
√

2Y + Z = 0, H4 :
√

2Y −Z = 0 and H5 : Z = 0. Since this configuration can not be realized, we will

draw a picture consisting its real part. The same colored points denote a tacnode of

quadrics. The arc on the picture denotes the line H5 = {Z = 0}, the line at infinity

(See Figure 6.33). Now consider the orbifold (CP2,β) associated with the divisor

D = n1Q1 +n2Q2 +∑
5
i=1 miHi. Its orbifold Chern numbers are

c2
1(CP2,β) = (6−2σ1−2σ2−

5

∑
i=1

κi)2

and

e(CP2,β) =9−4(σ1 +σ2)−2
5

∑
i=1

κi +
1
4
(κ1 +κ2 +κ5−1)2

+
1
4
(κ3 +κ4 +κ5−1)2 +

1
2

4

∑
i=1

(σ1 +κi−
1
2
)2

+
1
4

2

∑
i=1

4

∑
j=3

(σ2 +κi +κ j−1)2 +(σ1 +σ2 +
1
2

κ5−1)2,

where κi = 1
mi

and σ j = 1
n j

. Note that that both of the orbifold Chern numbers are

symmetric in variables (κ1,κ2) and (κ3,κ4), i.e, m1 = m2 = m3 = m4 = m. Set

κ := 1
m . The local uniformizability conditions at triple points and tangency points

are

2κ+κ5 ≥ 1, σ1 +κ≥ 1
2
, σ2 +2κ≥ 1, σ1 +σ2 +

1
2

κ5 ≥ 1.

These conditions has solutions (m,m5,n1,n2) for m,n1,n2 ≤ 4. Taking in to account

these restriction on branching indices and using Maple we obtained the Miyaoka-

Yau equality c2
1(CP2,β)−3e(CP2,β) = if n1 = m = 4 and n2 = m5 = 2. In this case,

the orbifold Chern numbers are c2
1 = 3e = 9, and the β map vanishes at tangency

points and triple points, i.e, local orbifold fundamental groups at these points are
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infinite and cusp points appears as cover of these points. Since this orbifold is of

general type , then by Theorem 6.4.2, we can state the following theorem:

Theorem 6.6.17. The orbifold (CP2,β) associated with the divisor D = 4Q1 +

2Q2 +∑
4
i=1 4Hi +2H5 supported by the arrangement in Figure 6.33 is uniformized

by the complex 2-ball B2.

n

m1 m2

m4

m3

m8

m7 m9

m5

m6

Figure 6.34

Twelfth, consider an arrangement of a quadrics Q, and nine lines Hi such that

the lines H1, H2, H3, H4, H5 and H6 are distinct six tangents of Q. The line H7

pass through the H3∩Q, H4∩Q, H1∩H2∩H9 and H5∩H6∩H8. The line H8 pass

through the H1∩Q, H2∩Q, H3∩H4∩H9 and H5∩H6∩H7. In addition, the line H9

pass through the H5∩Q, H6∩Q, H3∩H4∩H8 and H1∩H2∩H7. This configuration

is projectively rigid and complex realizable. The equations for these quadric and

lines are Q : X2 +Y 2− Z2 = 0, H1 : Z + X = 0, H2 : Z−X = 0, H3 : Y + Z = 0,

H4 : Y − Z = 0, H5 : X + iY = 0}, H6 : X − iY = 0, H7 : X = 0, H8 : Y = 0 and

, H9 : Z = 0. Since this configuration can not be realized, we will draw a picture

consisting its real part, H9 as the line at infinity. Wee will also draw imaginary lines

H5 and H6 symbolically so that the colored points denote the tangency points of

these lines to Q (See Figure 6.34). Consider the orbifold (CP2,β) associated with

the divisor D = nQ+∑
9
i=1 miHi. Its orbifold Chern numbers are

c2
1(CP2,β) = (8−2σ−

9

∑
i=1

κi)2
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and

e(CP2,β) =16−4σ−4
6

∑
i=1

κi−2
9

∑
i=7

κi +(κ1 +κ2)(κ3 +κ4)+(κ5 +κ6)
4

∑
i=1

κi

+
1
2
(η2

1,8 +η
2
2,8 +η

2
3,7 +η

2
4,7 +η

2
5,9 +η

2
6,9)

where σ = 1
n , κi = 1

mi
and ηi j = σ + κi + 1

2κ j− 1. Notice that each line in Figure

6.34 has a fourfold points. Local orbifold fundamental groups at these points are

infinite solvable if mi = 2, otherwise they are big. Now assume mi = 2. Local

orbifold fundamental group at nodal points are abelian and always admit local

uniformization. To have local uniformization at tangency points on quadric Q, we

must have ηi j = σ− 1
4 ≥ 0, i.e, 2 ≤ n ≤ 4. The orbifold Chern numbers reduces to

c2
1 = (7

2 −2σ)2 and e = 4−4σ + 3(σ− 1
4)2. Therefore, 3e− c2

1 = 5(σ− 1
4)2 = 0 if

and only if n = 4 which verifies uniformizability condition at singular points on Q.

Notice that all multiple points except nodal ones, appears as cusp in covers. Since

this orbifold is of general type, then by Theorem 6.4.2 we can state the following

theorem:

Theorem 6.6.18. The orbifold (CP2,β) associated with the divisor D = 4Q+∑
9
i=1 2Hi

supported by the arrangement in Figure 6.34 is uniformized by the complex 2-ball

B2.

Next, consider the configuration of n-quadrics, each has k tacnodes and do not

allow the meetings of three or more quadrics at a point. Since the maximum number

of tacnodes can not achieve the bound 4
9n(n+3) (Hirzebruch, 1986), then we have

k≤ 8
9(n+3). Consider the orbifold (CP2,β) associated with the divisor D = ∑

n
i=1 mQi

supported by this configuration. Its orbifold Chern numbers are

c2
1(CP2,β) = (−3+2n− 2n

m
)2.
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and

e(CP2,β) =3−n(6+ k−4n)− nk
2
−n(2n−2− k)+(6+ k−4n)

n
m

+(2n−2− k)
n

m2 +
nk
4

(
2
m
− 1

2
)2

Therefore

3e− c2
1(CP2,β) =

32n(m2n+m(3−2n)+n−3)−3kmn(7m−8)
16m2 .

In addition, the uniformizability condition 2
m ≥ 1

2 implies that m≤ 4. Incase m = 2,

3e− c2
1(CP2,β) =

n(8n+24−9k)
16

and it vanishes if k = 8(n+3)
9 . But, the Theorem 4.3.20 tells us that there is no six non-

degenerate quadrics with twenty four tacnodes. Thus, the claim 3e− c2
1(CP2,β) =

n(8n+24−9k)
16 = 0 fails for n = 6 and k = 8 since such configuration does not exist.

If m = 3, then

3e− c2
1(CP2,β) =

64n(2n+3)−117nk
144

and it vanishes when k = 64(2n+3)
117 , but this contradicts the fact k ≤ 8(n+3)

9 while

n > 2.

Now suppose m = 4. Then

3e− c2
1(CP2,β) =

3n
16

(6(n+1)−5k)

and it vanishes if n = 5λ−1 and k = 6λ. The number k achieves the bound 8(n+3)
9

for λ ≥ 2. So, one gets λ = 1 which implies n = 4 and k = 6. This means, the

arrangement supporting the divisor D is the Naruki arrangement given by equations

X2∓Y 2∓Z2 = 0. Because of this reason, let us call this orbifold as Naruki orbifold.

Noruki orbifold is an orbifold of general type and by the Theorem 6.4.2, we can state
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the following theorem:

Theorem 6.6.19. The Naruki orbifold (CP2,∑4
i=1 4Qi) is uniformized by B2.

Finally, consider the orbifold (CP2,β)= (CP2,∑4
i=1 niQi+∑

4
j=1 m jH j) supported

by the arrangement containing Naruki arrangement Qi : X2∓Y 2∓Z2 = 0 and four

lines H j : X4−Y 4 = 0. Note that the lines H1 : X −Y = 0 and H2 : X +Y = 0 are

common tangent lines of the quadrics Q1 : −X2 +Y 2 +Z2 = 0 and Q2 : X2−Y 2 +

Z2 = 0; and the lines H3 : X − iY = 0 and H4 : X + iY = 0 are common tangent

lines of the quadrics Q3 : X2 +Y 2−Z2 = 0 and Q4 : X2 +Y 2 +Z2 = 0. These four

common tangent lines meet at a single point. By local uniformizability condition at

this point, weights m j of the tangent lines H j must be 2. In addition, at the contact

of order 2 points of quadrics with these lines, orbifold germs are uniformizable if

the weights of the quadrics are also 2, otherwise, local orbifold fundamental group

will be big. Omitting fact the weights are all 2, first give formulas for its orbifold

Chern number and then check for the weights 2. The orbifold Chern numbers are

c2
1(CP2,β) = (9−

4

∑
i=1

κi−2
4

∑
j=1

σ j)2.

and

e(CP2,β) =22−4
3

∑
i=1

κi−8
4

∑
j=1

σ j +2(κ1 +κ2)(σ3 +σ4)+2(κ3 +κ4)(σ1 +σ2)

+(σ1 +σ3−
1
2
)2 +(σ1 +σ4−

1
2
)2 +(σ2 +σ3−

1
2
)2 +(σ2 +σ4−

1
2
)2,

where κi = 1
mi

and σ j = 1
n j

. In case mi = n j = 2, the orbifold Chern numbers are

c2
1 = 9 and e = 3 and they satisfy the Miyaoka-Yau equality. Since this orbifold is

of general type, as a consequence of the Theorem 6.4.2, we can state the following

theorem:

Theorem 6.6.20. An orbifold (CP2,β) associated with the divisor D = ∑
4
i=1 2Qi +

∑
4
j=1 2H j is uniformized by the complex 2-ball B2. Here the quadrics Qi form a

Naruki arrangement and the four lines H j are common tangent lines of some of

these quadrics so that the line H j forms a pencil.
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6.7 Covering Relations among Ball-Quotient Arrangements

As a result of previous section, first we give a list of ball-quotient quadric-line

arrangements in Table 6.3, and then study the covering relations among them.

Table 6.3 Ball-quotient quadric-line arrangements

Figure Equations of quadrics and lines, c2
1 and e

A1 4

4

4 4
A1 := (CP2,D1), D1 := 4Q+4T1 +4T2 +4T3,

Q : (X +Y −Z)2−4XY = 0, T1 : X = 0, T2 : Y = 0, T3 : Z = 0

c2
1(A1) = 9/16, e(A1) = 3/16

A2 3

3

4 4
A2 := (CP2,D2), D2 := 3Q+4T1 +3T2 +4T3,

Q : (X +Y −Z)2−4XY = 0, T1 : X = 0, T2 : Y = 0, T3 : Z = 0

c2
1(A2) = 1/4, e(A2) = 1/12

A3 3

2

6 6

A3 := (CP2,D3), D3 := 3Q+6T1 +2T2 +6T3,

Q : (X +Y −Z)2−4XY = 0, T1 : X = 0, T2 : Y = 0, T3 : Z = 0

c2
1(A3) = 1/4, e(A3) = 1/12

A4 3

3

6 3

A4 := (CP2,D4), D4 := 3Q+6T1 +3T2 +3T3,

Q : (X +Y −Z)2−4XY = 0, T1 : X = 0, T2 : Y = 0, T3 : Z = 0

c2
1(A4) = 1/4, e(A4) = 1/12

A5

3

3 3
3 3

3
A5 := (CP2,D5), D5 := ∑

6
i=1 3Hi,

H1 : X = 0, H2 : Y = 0, H3 : Z = 0, H4 : X−Y = 0, H5 : Y −Z = 0, H6 : Z−X = 0

c2
1(A5) = 1, e(A5) = 1/3

A6

2

2 2
3 3

3
A6 := (CP2,D6), D6 := ∑

3
i=1 2Hi +∑

6
i=4 3Hi,

H1 : X = 0, H2 : Y = 0, H3 : Z = 0, H4 : X−Y = 0, H5 : Y −Z = 0, H6 : Z−X = 0

c2
1(A6) = 1/4, e(A6) = 1/12

Continued on next page
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Table 6.3 Ball-quotient quadric-line arrangements. (continued from previous page)

Figure Equations of quadrics and lines, c2
1 and e

A7

3

3 3
2 2

2
A7 := (CP2,D7), D7 := ∑

3
i=1 3Hi +∑

6
i=4 2Hi,

H1 : X = 0, H2 : Y = 0, H3 : Z = 0, H4 : X−Y = 0, H5 : Y −Z = 0, H6 : Z−X = 0

c2
1(A7) = 1/4, e(A7) = 1/12

A8

4

4 4
2 2

2
A8 := (CP2,D8), D8 := ∑

3
i=1 4Hi +∑

6
i=4 2Hi,

H1 : X = 0, H2 : Y = 0, H3 : Z = 0, H4 : X−Y = 0, H5 : Y −Z = 0, H6 : Z−X = 0

c2
1(A8) = 9/16, e(A8) = 3/16

A9

2

4 4
4 4

2
2

A9 := (CP2,D9), D9 := ∑
3
i=1 2Hi +∑

7
i=4 4Hi,

H1 : X = 0, H2 : Y = 0, H3 : Z = 0, H4 : X−Y +Z = 0,

H5 :−X +Y +Z = 0, H6 : X +Y +Z = 0, H7 : X +Y −Z = 0,

c2
1(A9) = 9/4, e(A9) = 3/4

A10

2

2 2

2 2

2
2

22

A10 := (CP2,D10), D10 := ∑
9
i=1 2Hi,

H1 : X = 0, H2 : Y = 0, H3 : Z = 0, H4 : X−Y = 0, H5 : Y −Z = 0,

H6 : Z−X = 0, H7 : X−Y +Z = 0, H8 : X +Y −Z = 0, H9 :−X +Y +Z = 0,

c2
1(A10) = 9/4, e(A10) = 3/4

A11 2

4

44
2

A11 := (CP2,D11), D11 := 2Q+∑
3
i=1 4Ti +2H4,

T1 : X = 0, T2 : Y = 0, T3 : Z = 0, H4 : Z−X = 0, Q : (X +Y −Z)2−4XY = 0,

c2
1(A11) = 9/16, e(A11) = 3/16

A12 4

2

44
2

2

A12 := (CP2,D12), D12 := 4Q+4T1 +2T2 +4T3 +2T4 +2H5

Q : (X +Y −Z)2−4XY = 0, T1 : X = 0, T2 : Y = 0, T3 : Z = 0,

T4 : 2X−Y +2Z = 0, H5 : Z−X = 0

c2
1(A11) = 9/4, e(A11) = 3/4

Continued on next page



252

Table 6.3 Ball-quotient quadric-line arrangements. (continued from previous page)

Figure Equations of quadrics and lines, c2
1 and e

A13 2

4 42
4

4

2

2

2 A13 := (CP2,D13), D13 := 2Q+∑
4
i=1 4Ti +∑

8
i=5 2Hi

Q : X2 +Y 2−Z2 = 0, T1 : X +Z = 0, T2 : X−Z = 0, T3 : Y +Z = 0,

T4 : Y −Z = 0, H5 : X = 0, H6 : Y = 0, H7 : X +Y = 0, H8 : X−Y = 0

c2
1(A13) = 9, e(A13) = 3

A14

2

4 4 22 2

2

A14 := (CP2,D14), D14 := 2Q+4H1 +4H2 +∑
6
i=3 2Hi

Q : X2−Y 2−Z2 = 0, H1 : X +Z = 0, H2 : X−Z = 0, H3 : X +Y = 0,

H4 : X−Y = 0, H5 : X = 0, H6 : Y = 0

c2
1(A14) = 9/4, e(A14) = 3/4

A15
2

2 2
2

2

2

22 2

2

2

A15 := (CP2,D15), D15 := 2Q+∑
4
i=1 4Ti +∑

8
i=5 2Hi

Q : X2 +Y 2−Z2 = 0, T1 : X +Z = 0, T2 : X−Z = 0, T3 : Y +Z = 0, T4 : Y−Z = 0,

H5 : X +Y = 0, H6 : X−Y = 0, H7 :
√

2X +Z = 0, H8 :
√

2X−Z = 0

H9 :
√

2Y +Z = 0, H10 :
√

2Y −Z = 0

c2
1(A15) = 9, e(A15) = 3

A16

2 2

2

2

22
2

2
2

A16 := (CP2,D16), D16 := ∑
3
i=1 2Qi +∑

9
i=4 2Ti

Q1 : X2 +Y 2−Z2 = 0, Q2 : X2−Y 2 +Z2 = 0, Q3 :−X2 +Y 2 +Z2 = 0,

T4 : X +Z = 0, T5 : X−Z = 0, T6 : Y +Z = 0, T7 : Y −Z = 0,

T8 : X +Y = 0, T9 : X−Y = 0,

c2
1(A16) = 9, e(A16) = 3

A17

4 2 4

2
4

4

A17 := (CP2,D17), D17 := 4Q1 +4Q2 +2Q3 +2H1 +4H2 +4H3

Q1 : Y 2 +Z2−2XY = 0, Q2 : Y 2 +Z2 +2XY = 0, Q3 : 4X2−Y 2−2Z2 = 0,

H1 : X = 0, H2 : X−Z = 0, H3 : X +Z = 0

c2
1(A17) = 9, e(A17) = 3

A18
2

4 2 4

2

2

A18 := (CP2,D17), D18 := 2Q1 +2Q2 +2H1 +4H2 +4H3 +2H4

Q1 : Y 2 +Z2−2XY = 0, Q2 : Y 2 +Z2 +2XY = 0,

H1 : X = 0, H2 : X−Z = 0, H3 : X +Z = 0, H4 : Y = 0

c2
1(A18) = 9/4, e(A18) = 3/4

Continued on next page
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Table 6.3 Ball-quotient quadric-line arrangements. (continued from previous page)

Figure Equations of quadrics and lines, c2
1 and e

A19
2 2

2

222

2

2

2

2

(2)

(2)

A19 := (CP2,D18), D19 := 2Q1 +2Q2 +2∑
8
i=1 2Hi

Q1 : X2 +Y 2−Z2 = 0, Q2 : X2 +Y 2−2Z2 = 0,

H1 : X−Y = 0, H2 : X +Y = 0, H3 : X−Z = 0, H4 : X +Z = 0

H5 : Y −Z = 0, H6 : Y +Z = 0, H7 : X− iY = 0, H8 : X + iY = 0

c2
1(A19) = 9, e(A19) = 3

A20
4

4 4

4

The Naruki orbifold: A20 := (CP2,D20), D20 := ∑
4
i=1 4Qi

Q1 : X2 +Y 2−Z2 = 0, Q2 : X2−Y 2 +Z2 = 0,

Q3 :−X2 +Y 2 +Z2 = 0, Q4 : X2 +Y 2 +Z2 = 0,

c2
1(A20) = 9, e(A20) = 3

A21

Naruki arrangement plus

four common tangents

forming a pencil.

Branching indices are all

2.

A21 := (CP2,D21), D21 := ∑
4
i=1 2Qi +∑

4
j=1 2H j

Q1 : X2 +Y 2−Z2 = 0, Q2 : X2−Y 2 +Z2 = 0, Q3 :−X2 +Y 2 +Z2 = 0,

Q4 : X2 +Y 2 +Z2 = 0, H1 : X−Y = 0, H2 : X +Y = 0, H3 : X− iY = 0,

H4 : X + iY = 0, c2
1(A21) = 9, e(A21) = 3

A22

Ceva(3) arrangement.

Branching indices are all

2.

A22 := (CP2,D22), D22 := ∑
3
s=1 ∑

2
i=0 2Hs,i

H1,i : X−ωiY = 0, H2,i : Y −ωiZ = 0, H3,i : Z−ωiX = 0, i = 0,1,2, ω3 = 1

c2
1(A22) = 9/4, e(A22) = 3/4

A23

Ceva(3) arrangement.

Branching indices are all

3.

A23 := (CP2,D23), D23 := ∑
3
s=1 ∑

2
i=0 3Hs,i

H1,i : X−ωiY = 0, H2,i : Y −ωiZ = 0, H3,i : Z−ωiX = 0, i = 0,1,2, ω3 = 1

c2
1(A23) = 9, e(A23) = 3

A24

Ceva(4) arrangement.

Branching indices are all

2.

A24 := (CP2,D24), D24 := ∑
3
s=1 ∑

3
i=0 3Hs,i

H1,i : X−ωiY = 0, H2,i : Y −ωiZ = 0, H3,i : Z−ωiX = 0, i = 0,1,2,3, ω4 = 1

c2
1(A24) = 9, e(A24) = 3

A25 4 2

4 4

4

4

2

A25 := (CP2,D25), D25 := 4Q1 +2Q2 +∑
4
i=1 4Hi +2H5

Q1 : 2X2 +2Y 2−Z2 = 0, Q2 : X2 +Y 2−Z2 = 0, H1 :
√

2X +Z = 0,

H2 :
√

2X−Z = 0, H3 :
√

2Y −Z = 0, H4 :
√

2Y +Z = 0, H5 : Z = 0

c2
1(A25) = 9, e(A25) = 3

Continued on next page
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Table 6.3 Ball-quotient quadric-line arrangements. (continued from previous page)

Figure Equations of quadrics and lines, c2
1 and e

A26 4

2 2

2

2

2

2 2

2
2

A26 := (CP2,D26), D26 := 4Q+∑
9
i=1 2Hi, Q : X2 +Y 2−Z2 = 0,

H1 : Z +X = 0, H2 : Z−X = 0, H3 : Z +Y = 0, H4 : Z−Y = 0,

H5 : X + iY = 0, H6 : X− iY = 0, H7 : X = 0, H8 : Y = 0, H9 : Z = 0

c2
1(A26) = 9, e(A26) = 3

The orbifolds listed in the Table 6.3 are related with eachother via covering maps.

Under suitable choice of coordinates, the covering maps are the bicyclic maps ϕn :

CP2 → CP2 given by [X : Y : Z]→ [Xn : Y n : Zn]. Let us exhibit these covering

relations among the orbifolds Ai in the Table 6.3. The diagram on page 265 in

Figure 6.35 exhibits all covering relations among these orbifolds discussed below.

Coverings of A1:

Consider the orbifold A1 = (CP2,4Q + ∑
3
i=1 4Ti) in Table 6.3. Suppose without

loss of generality that the lines T1, T2 and T3 are defined by the equations X = 0,

Y = 0 and Z = 0, respectively. By the Lemma 6.6.7, a symmetric equation of Q is

(X +Y−Z)2−4XY = 0 which is tangent to the lines T1, T2 and T3. If we consider the

lifting of A1 due to the uniformization ϕ2 of the sub-orbifold (CP2,2T1+2T2+2T3),

and denote by Hi the lifting ϕ
−1
2 (Ti) and by Q′ the lifting ϕ

−1
2 (Q) = {(X2 +Y 2−

Z2)2− 4X2Y 2 = 0}, then ϕ2 : (CP2,4Q′+ 2T1 + 2T2 + 2T3)→ A1 is an orbifold

covering. Note that Q′ consists of the lines X ∓Y ∓Z = 0. If one denotes them by

H4, H5, H6 and H7, then this covering orbifold will be the orbifold A9 in the Table

6.3. Hence one has ϕ2 : A9→ A1

If one takes ϕ4 instead of ϕ2, then he gets the covering orbifold (CP2,4Q′′),

where Q′′ consists of four quadrics projectively equivalent to Naruki arrangement,

and so the covering orbifold is the Naruki orbifold A20. Notice that this covering

ϕ4 : A20→ A1 is related with the orbifold covering ϕ2 : A20→ A9.
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Covering of A3:

Consider the orbifold A3 = (CP2,3Q + 6T1 + 2T2 + 6T3) in the Table 6.3. Also

assume that the equations of quadrics and lines are as stated in Table 6.3. If one

consider the lifting of A1 due to the uniformization ϕ2 of the sub-orbifold (CP2,2T1+

2T2 + 2T3), and denote by Hi the lifting ϕ
−1
2 (Ti), i = 1,3 and by Q′ the lifting

ϕ
−1
2 (Q), then he will get the orbifold covering ϕ2 : (CP2,3Q′+ 3T1 + 3T3)→ A3.

Notice that Q′ consists of the lines X∓Y∓Z = 0, denote them by H1, H2, H3 and H4.

The equation XZ(X +Y−Z)(X−Y +Z)(−X +Y +Z)(X +Y +Z) = 0 is an equation

of complete quadrilateral. Therefore (CP2,3H1 +3H2 +3H3 +3H4 +3T1 +3T3) is

the orbifold A5 in the Table 6.3. Hence one has the covering ϕ2 : A5→ A3

Covering of A4:

Consider the orbifold A4 = (CP2,3Q + 6T1 + 3T2 + 3T3) in the Table 6.3 and

assume that the equations of quadrics and lines are as stated in Table 6.3. If we

consider the lifting of A4 due to the uniformizer ϕ3 of the sub-orbifold (CP2,3T1 +

3T2 +3T3), and denote by T1 and Q the liftings ϕ
−1
3 (T1), ϕ

−1
3 (Q), respectively, then

ϕ3 : (CP2,3Q + 2T1)→ A4 is an orbifold covering. Note that Q : X6 +Y 6 + Z6−
2X2Y 2−2Y 2Z2−2X2Z2 = 0 is an irreducible sextic.

Covering of A5:

Consider the orbifold A5 = (CP2,∑6
s=1 3Hs) in the Table 6.3 and assume that the

equations of quadrics and lines are as stated in Table 6.3. Denote by H ′s the lifting

ϕ
−1
3 (Hs), s = 4,5,6, of the lines H4, H5 and H6 due to the uniformizer ϕ3 of the sub-

orbifold (CP2,∑3
s=1 3Hs). Then one has the covering ϕ3 : (CP2,∑6

s=4 3H ′s)→ A5.

Notice that each H ′s consists of there lines Hs,i, i = 0,1,2. Here H4,i = {X −ωiY =

0}, H5,i = {Y −ωiZ = 0} and H6,i = {Z−ωiX = 0}, i = 0,1,2, ω4 = 1. These lines

form a Ceva(3) arrangement, and (CP2,∑6
s=4 3H ′s) = (CP2,∑6

s=4 ∑
2
i=0 3Hs,i) is the

orbifold A23. Thus we have the covering ϕ3 : A23→ A5.
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Covering of A6:

Consider the orbifold A6 = (CP2,∑3
s=1 2Hs +∑

6
s=4 3Hs) in the Table 6.3 and also

and assume that the equations of quadrics and lines are as stated in Table 6.3. Denote

by H ′s the liftings of the lines Hs, s = 4,5,6 due to the uniformizer ϕ2 of the sub-

orbifold (CP2,∑3
s=1 2Hs). Each H ′s consists of two lines Hs,i, i = 0,1, s = 4,5,6.

Set H4,0 := {X −Y = 0}, H4,1 := {X +Y = 0}, H5,0 := {Y −Z = 0}, H5,1 := {Y +

Z = 0}, H6,0 := {Z − X = 0} and H6,1 := {Z + X = 0}. Then H ′s = Hs,0 ∪Hs,1,

s = 4,5,6, and they form a complete quadrilateral. In addition, (CP2,∑6
s=4 3H ′s) =

(CP2,∑6
s=4 ∑

1
i=0 3Hs,i) is the orbifold A5 and one has the covering ϕ2 : A5→ A6.

Covering of A7:

Consider the orbifold A7 = (CP2,∑3
s=1 3Hs + ∑

6
s=4 2Hs) in the Table 6.3 and

assume that the equations of quadrics and lines are as stated in Table 6.3. As in

covering of A5, liftings H ′s of the lines Hs, s = 4,5,6, due to the uniformizer ϕ3

of the sub-orbifold (CP2,∑3
s=1 3Hs), consists of three lines Hs,i, i = 0,1,2 and they

form a Ceva(3) arrangement. Then (CP2,∑6
s=4 2H ′s) = (CP2,∑6

s=4 ∑
2
i=0 2Hs,i) is the

orbifold A22 and one has the covering ϕ3 : A22→ A7.

Coverings of A8:

Consider the orbifold A8 = (CP2,∑3
i=1 4Hi + ∑

6
i=4 2Hi) in the Table 6.3 and

assume that the equations of quadrics and lines are as stated in Table 6.3. First

consider the sub-orbifold (CP2,∑3
i=1 2Hi) and its uniformizer ϕ2. Denote by Hi the

liftings ϕ
−1
2 (Hi), i = 1,2,3 and by H ′i the liftings ϕ

−1
2 (Hi), i = 4,5,6. Then we have

the covering ϕ2 : (CP2,∑3
i=1 2Hi +∑

6
i=4 2H ′i )→ A8. Notice that each H ′i consists of

two lines Hi,0 and Hi,1. Set H4,0 := {X−Y = 0}, H4,1 := {X +Y = 0}, H5,0 := {Y −
Z = 0}, H5,1 := {Y +Z = 0}, H6,0 := {Z−X = 0} and H6,1 := {Z +X = 0}. Then,

together with the lines H1, H2 and H3, they form an arrangement of 9 lines as in

Figure 6.18. This means, up to projective equivalence, (CP2,∑3
i=1 2Hi + ∑

6
i=4 2H ′i )

is the orbifold A10 in the Table 6.3. Thus, we have the covering ϕ2 : A10→ A8.
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If one would consider the sub-orbifold (CP2,∑3
i=1 4Hi) and its uniformizer ϕ4,

then he would get the covering ϕ4 : A24 → A8. Indeed, we have the covering ϕ2 :

(CP2,∑6
i=4 2H ′i )→ A8, where H ′i denotes the liftings ϕ

−1
2 (Hi), i = 4,5,6. Then .

Notice that each H ′i consists of four lines Hi, j, j = 0,1,2,3. Set H4, j := {X−ω jY =

0}, H5, j := {Y−ω jZ = 0} and H6, j := {Z−ω jX = 0}, where j = 0,1,2,3 and ω4 =

1. These twelve lines form a Ceva(4) arrangement. Therefore, (CP2,∑6
i=4 2H ′i ) =

(CP2,∑6
i=4 ∑

3
j=0 2Hi, j) is the orbifold A24 in the Table 6.3 and the covering is ϕ4 :

A24→ A8.

Now, let us consider the sub-orbifold (CP2,2H1+2H4+2H6) and its uniformizer

ϕ2. By using projective transformations change the coordinates so that H1 = {X =

0}, H2 = {X −Y = 0}, H3 = {X −Z = 0}, H4 = {Y = 0}, H5 = {Z−Y = 0} and

H6 = {Z = 0}. Denote by H1, H ′2, H ′3 and H ′5 the liftings ϕ
−1
2 (H1) = {X = 0},

ϕ
−1
2 (H2) = {Y 2−Z2 = 0}, ϕ

−1
2 (H3) = {X2−Z2 = 0} and ϕ

−1
2 (H5) = {Z2−Y 2 =

0}, respectively. Then we have a covering ϕ2 : (CP2,2H1 +4H ′2 +4H ′3 +2H ′5)→A8.

Notice that each of H ′2, H ′3, H ′5 consists of two lines and they form a complete

quadrilateral. If we add the line H1 to this complete quadrilateral, we will get an

arrangement of seven lines projectively equivalent to the arrangement in Figure

6.17. Thus, (CP2,2H1 + 4H ′2 + 4H ′3 + 2H ′5) is the orbifold A9 in the Table 6.3 and

we have the covering ϕ2 : A9→ A8.

Next consider another sub-orbifold (CP2,2H1 +2H4 +2H5) and its uniformizer

ϕ2. Projective transformations allow us to change coordinates, and we may chose

them such that H1 = {X = 0}, H2 = {X − Z = 0}, H3 = {X +Y − Z = 0}, H4 =

{Z = 0}, H5 = {Y = 0} and H6 = {Y −Z = 0}. Denote by H1, H ′2, H ′3 and H ′6 the

liftings ϕ
−1
2 (H1) = {X = 0}, ϕ

−1
2 (H2) = {X2− Z2 = 0}, ϕ

−1
2 (H3) = {X2 +Y 2−

Z2 = 0} and ϕ
−1
2 (H6) = {Y 2 − Z2 = 0}, respectively. Then we have a covering

ϕ2 : (CP2,2H1 + 4H ′2 + 4H ′3 + 2H ′6)→ A8. Notice that each of H ′2 and H ′6 consists

of two lines tangent to H ′3, and H1 pass through the tangency points of H ′3∩H ′6 and

singular point of H ′2. Then H1, H ′2 H ′3 and H ′6 forms a rigid arrangement projectively

equivalent to the Figure 6.24. Thus, (CP2,2H1 + 4H ′2 + 4H ′3 + 2H ′6) is the orbifold
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A12 in the Table 6.3, and we have the covering ϕ2 : A12→ A8.

Finally consider the sub-orbifold (CP2,2H1 +2H3 +2H4) and its uniformizer ϕ2.

Change the coordinates so that H1 = {X = 0}, H2 = {X −Z = 0}, H3 = {Y = 0},
H4 = {Z = 0}, H5 = {X −Y −Z = 0} and H6 = {X −Y = 0}. Denote, by H1, H3,

H ′2, H ′5 and H ′6 the liftings ϕ
−1
2 (H1) = {X = 0}, ϕ

−1
2 (H3) = {Y = 0}, ϕ

−1
2 (H2) =

{X2− Z2 = 0}, ϕ
−1
2 (H5) = {X2−Y 2− Z2 = 0} and ϕ

−1
2 (H6) = {X2−Y 2 = 0},

respectively. Then we have a covering ϕ2 : (CP2,2H1 +4H ′2 +2H3 +2H ′5 +2H ′6)→
A8. Notice that each of H ′2 and H ′6 consists of two lines, tangent to H ′5; and H3

pass through the tangency points H ′5 ∩H ′2 and singular point of H ′6. In addition,

H1 passes through the singular points of H ′2 and H ′6. Therefore, (CP2,2H1 +4H ′2 +

2H3 + 2H ′5 + 2H ′6) is the orbifold A14 in the Table 6.3, and we have the covering

ϕ2 : A14→ A8.

Coverings of A9:

Consider the orbifold A9 = (CP2,∑3
i=1 2Hi + ∑

7
i=4 4Hi) in the Table 6.3 and

choose coordinates such that the equations of lines are as stated in the Table 6.3.

First consider the sub-orbifold (CP2,∑3
i=1 2Hi) and its uniformizer ϕ2. Denote by

H ′i the liftings ϕ
−1
2 (Hi), i = 4,5,6,7. H ′i are smooth quadrics and form a Naruki

arrangement. Then, (CP2,∑7
i=4 4H ′i ) is the Naruki orbifold A20 in the Table 6.3 and

we have the covering ϕ2 : A20→ A9.

Second consider the sub-orbifold (CP2,2H3 + 2H4 + 2H7) and its uniformizer

ϕ2. Projective transformations allow us choose the coordinates such that H1 = {Y −
X = 0}, H2 = {X +Y−Z = 0}, H3{Z = 0}, H4 = {X = 0}, H5 = {X−Z = 0}, H6 =

{Z−Y = 0} and H7 = {Y = 0}. Denote, by H ′1, H ′2, H4, H ′5, H ′6 and H7 the liftings

ϕ
−1
2 (H1) = {Y 2−X2 = 0}, ϕ

−1
2 (H2) = {X2 +Y 2−Z2 = 0}, ϕ

−1
2 (H4) = {X = 0},

ϕ
−1
2 (H5) = {X2− Z2 = 0}, ϕ

−1
2 (H6) = {Z2−Y 2 = 0} and ϕ

−1
2 (H7) = {Y = 0},

respectively. Notice that, H ′5 and H ′6 each consist of two lines tangent to the quadric

H ′2. Also, H ′1 consists of two lines and these lines together with H ′5 and H ′6 form a
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complete quadrilateral. In addition, the line H4 pass through the singular point of H ′5

and the points H ′6∩H ′2. Similarly, the line H7 pass through the singular point of H ′6

and the points H ′5∩H ′2. This is exactly the arrangement in Figure 6.26. Therefore,

(CP2,2H ′1 +2H ′2 +2H4 +4H ′5 +4H ′6 +2H7) is the orbifold A13 in the Table 6.3 and

we have the covering ϕ2 : A13→ A9.

Next, consider the sub-orbifold (CP2,2H1 +2H3 +2H4) and its uniformizer ϕ2.

Change the coordinates such that H1 = {X = 0}, H2 = {X +Y−Z = 0}, H3{Y = 0},
H4 = {Z = 0}, H5 = {2Y −Z = 0}, H6 = {2X +2Y −Z = 0} and H7 = {2X−Z =

0}. Denote, by H ′2, H4, H ′5, H ′6, and H ′7 the liftings ϕ
−1
2 (H2) = {X2 +Y 2− Z2 =

0}, ϕ
−1
2 (H4) = {Z = 0}, ϕ

−1
2 (H5) = {2Y 2− Z2 = 0}, ϕ

−1
2 (H6) = {2X2 + 2Y 2−

Z2 = 0}, and ϕ
−1
2 (H7) = {2X2−Z2 = 0}, respectively. Then we have the covering

(CP2,2H ′2 + 2H4 + 4H ′5 + 4H ′6 + 4H ′7)→ A9. Notice that, H ′5 and H ′7 each consist

of two lines tangent to the quadric H ′6. The quadric H ′2 passes through the singular

points of H ′5 and H ′7, and tangent to H ′6 at two points on the line H4. In addition,

the singular points of H ′5 and H ′7 lies on the line H4. Therefore, (CP2,2H ′2 +2H4 +

4H ′5 +4H ′6 +4H ′7) is the orbifold A25 in the Table 6.3 and the covering is ϕ2 : A25→
A9.

Fourth, consider the sub-orbifold (CP2,2H4+2H5+2H6) and its uniformizer ϕ2.

Change the coordinates such that H1 = {Z−X = 0}, H2 = {Z−Y = 0}, H3{X +Y =

0}, H4 = {X = 0}, H5 = {Y = 0}, H6 = {Z = 0} and H7 = {X +Y−Z = 0}. Denote,

by H ′1, H ′2, H ′3, H4, H5, H6 and H ′7 the liftings ϕ
−1
2 (H1) = {Z2−X2 = 0}, ϕ

−1
2 (H2) =

{Z2−Y 2 = 0}, ϕ
−1
2 (H3) = {X2 +Y 2 = 0}, ϕ

−1
2 (H4) = {X = 0}, , ϕ

−1
2 (H5) = {Y =

0}, , ϕ
−1
2 (H6) = {Z = 0}, and ϕ

−1
2 (H7) = {X2 +Y 2−Z2 = 0}, respectively. Then

we have the covering (CP2,2H ′1 + 2H ′2 + 2H ′3 + 2H4 + 2H5 + 2H6 + 4H ′7)→ A9.

Notice that, H ′1, H ′2 and H ′3 each consist of distinct two lines tangent to the quadric

H ′7. The line H4 pass through the tangency points H(7)′∩H ′2 and the point H ′1∩H6.

The line H5 pass through the tangency points H(7)′ ∩H ′1 and the point H ′2 ∩H6.

In addition the line H6 goes through the tangency points H(7)′ ∩H ′3. Therefore,

(CP2,2H ′1 +2H ′2 +2H ′3 +2H4 +2H5 +2H6 +4H ′7) is the orbifold A26 in the Table
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6.3 and the covering is ϕ2 : A26→ A9.

If one had considered the sub-orbifold (CP2,4H4+4H5+4H6) and its uniformizer

ϕ4, the liftings would be H ′′1 := ϕ
−1
4 (H1) = {Z4 − X4 = 0}, H ′′2 := ϕ

−1
4 (H2) =

{Z4−Y 4 = 0}, H ′′3 := ϕ
−1
4 (H3) = {X4 +Y 4 = 0} and H ′′7 := ϕ

−1
4 (H7) = {X4 +

Y 4− Z4 = 0}. Notice that H ′′7 is the Fermat quartic and each of H ′′1 , H ′′2 and H ′′3

four lines which are flex tangents of H ′′7 . Then we have the orbifold covering ϕ4 :

(CP2,2H ′′1 +2H ′′2 +2H ′′3 +4H ′′7 )→ A9 .

Coverings of A10:

Consider the orbifold A10 = (CP2,4Q + ∑
9
i=1 2Hi) in the Table 6.3 and choose

coordinates such that the equations of lines are as stated in the Table 6.3. The

uniformizer of the sub-orbifold (CP2,∑3
i=1 2Hi) is ϕ2. Denote by H ′i , the liftings

ϕ
−1
2 (Hi), i = 4, · · · ,9. The liftings are H ′4 = {X2−Y 2 = 0}, H ′5 = {Y 2−Z2 = 0},

H ′6 = {Z2−X2 = 0}, H ′7 = {X2−Y 2 + Z2 = 0}, H ′8 = {X2 +Y 2− Z2 = 0} and

H ′9 = {−X2 +Y 2 +Z2 = 0}. Notice that the quadrics H ′7, H ′8 and H ′9 has six tacnodes

and H ′4, H ′5, H ′6 consists of pairwise common tangents of these quadrics. Therefore

they form the arrangement in Figure 6.29 and the orbifold (CP2,∑9
i=4 2H ′i ) is the

orbifold A16 in the Table 6.3. Then e have the covering ϕ2 : A16→ A10.

Second, consider the sub-orbifold (CP2,∑9
i=6 2Hi), whose uniformizer is ϕ2.

Projective transformations allow us to change coordinates so that H1 : X + Z = 0,

H2 : X +Y = 0, H3 : Y + Z = 0, H4 : Y −Z = 0, H5 : Z−X = 0, H6 : X −Y = 0,

H7 : Z = 0, H8 : X = 0 and H9 : Y = 0. The liftings H ′i of these lines, except the

branch locus of ϕ2, are H ′1 : X2 + Z2 = 0, H ′2 : X2 +Y 2 = 0, H ′3 : Y 2 + Z2 = 0,

H ′4 : Y 2− Z2 = 0, H ′5 : Z2− X2 = 0, H ′6 : X2−Y 2 = 0 and they form a Ceva(4)

arrangement. Therefore the orbifold (CP2,∑6
i=1 2H ′i ) is the orbifold A24 in the Table

6.3. Then we have the covering ϕ2 : A24→ A10.

Third consider the sub-orbifold (CP2,2H1 + 2H5 + 2H9), whose uniformizer is

ϕ2. Projective transformations allow us to change coordinates so that H1 : X = 0,
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H2 : X +Y + Z = 0, H3 : X +Y − Z = 0, H4 : −X +Y + Z = 0, H5 : Z = 0, H6 :

X−Y +Z = 0, H7 : Z−X = 0, H8 : Z+X = 0 and H9 : Y = 0. The liftings H ′i of these

lines, except the branch locus of ϕ2, are H ′2 : X2+Y 2+Z2 = 0, H ′3 : X2+Y 2−Z2 = 0,

H ′4 :−X2 +Y 2 +Z2 = 0, H ′6 : X2−Y 2 +Z2 = 0, H ′7 : Z2−X2 = 0, H ′9 : Z2 +X2 = 0

. Notice that the quadrics H ′2, H ′3, H ′4 and H ′6 form a Naruki arrangement, and H ′7,

H ′9 consists of four of the pairwise common tangents of these quadrics. In addition,

H ′7, H ′9 form a pencil. Therefore the orbifold (CP2,2H ′2 +2H ′3 +2H ′4 +2H ′6 +2H ′7 +

2H ′8) is the orbifold A21 in the Table 6.3. Then we have the covering ϕ2 : A21→A10.

Next, consider the sub-orbifold (CP2,2H1 + 2H3 + 2H7), whose uniformizer is

ϕ2. Projective transformations allow us to change coordinates so that H1 : X = 0,

H2 : X −Y + Z = 0, H3 : Z = 0, H4 : Y −Z = 0, H5 : X −Y = 0, H6 : Z−X = 0,

H7 :Y = 0, H8 : 2X−Y = 0 and H9 : 2Z−Y = 0. The liftings H ′i of these lines, except

the branch locus of ϕ2, are H ′2 : X2−Y 2 +Z2 = 0, H ′4 : Y 2−Z2 = 0, H ′5 : X2−Y 2 = 0,

H ′6 : Z2−X2 = 0, H ′8 : 2X2−Y 2 = 0, H ′9 : 2Z2−Y 2 = 0 and they form an arrangement

as in Figure 6.28. Therefore the orbifold (CP2,2H ′2 + 2H ′4 + 2H ′5 + 2H ′6 + 2H ′8 +

2H ′9) is the orbifold A15 in the Table 6.3. Then e have the covering ϕ2 : A15→ A10.

Last, consider the sub-orbifold (CP2,2H2 + 2H3 + 2H6), whose uniformizer is

ϕ2. Projective transformations allow us to change coordinates so that H1 : Z−X = 0,

H2 : Y = 0, H3 : Z = 0, H4 : X +Y −Z = 0, H5 : Y −Z = 0, H6 : X = 0, H7 : X +Y −
2Z = 0, H8 : X−Y = 0 and H9 : X +Y = 0. The liftings H ′i of these lines, except the

branch locus of ϕ2, are H ′1 : Z2−X2 = 0, H ′4 : X2 +Y 2−Z2 = 0, H ′5 : Y 2−Z2 = 0,

H ′7 : X2 +Y 2− 2Z2 = 0, H ′8 : X2−Y 2 = 0 and H ′9 : X2 +Y 2 = 0. The quadrics H ′4

and H ′7 has two tacnodes and their common tangent lines are H ′9. Notice that H ′1,

H ′5 and H ′8 meets on H ′7 while H ′1 and H ′5 are tangent to H ′4. In addition, H ′8 and H ′9

meets at a single point. Therefore, this is exactly the arrangement in the Figure 6.32

and the orbifold (CP2,2H ′1 +2H ′4 +2H ′5 +2H ′7 +2H ′8 +2H ′9) is the orbifold A19 in

the Table 6.3. Then e have the covering ϕ2 : A19→ A10.
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Coverings of A11:

Consider the orbifold A11 = (CP2,2Q + ∑
3
i=1 4Ti + 2H4) in the Table 6.3 and

choose coordinates such that the equations of lines and quadric are as stated in the

Table 6.3. The uniformizer of the sub-orbifold (CP2,∑3
i=1 2Ti) is ϕ2. Denote by T1,

T2, T3, Q′ and H ′4, the liftings ϕ
−1
2 (T1) = {X = 0}, ϕ

−1
2 (T2) = {Y = 0}, ϕ

−1
2 (T3) =

{Z = 0}, ϕ
−1
2 (Q) = {(X2 +Y 2−Z2)2−4X2Y 2 = 0} and ϕ

−1
2 (H4) = {Z2−X2 = 0},

respectively. Notice that Q′ consists of four lines X ∓Y ∓ Z = 0 and H ′4 consists

of two lines Z ∓ X = 0. The configuration of these six lines forms a complete

quadrilateral. If one add the lines T1, T2 and T3 to complete quadrilateral, then he

will get an arrangement of nine lines projectively equivalent to the arrangement in

Figure 6.18. Therefore, (CP2,2Q′+∑
3
i=1 2Ti +2H ′4) is the orbifold A10 in the Table

6.3 and we have an orbifold covering ϕ2 : A10→ A11.

If one considers the sub-orbifold (CP2,∑3
i=1 4Ti) whose uniformizer is ϕ4, the

liftings Q′′ and H ′′4 will consist of four quadrics X2∓Y 2∓ Z2 = 0 and four lines

Z4−X4 = 0. Notice that Q′′ is the Naruki arrangement and H ′′4 consists of four

pairwise common tangents of the quadrics in Q′′. Thus, (CP2,2Q′′+2H ′4) is the the

orbifold A21 in the Table 6.3 and we have an orbifold covering ϕ4 : A21→ A11.

Next, consider the sub-orbifold (CP2,2T1 +2T2 +2H4) whose uniformizer is ϕ2.

Choose coordinates so that T1 : X = 0, T2 : Y = 0, T3 : Z−X = 0, H4 : Z = 0 and

Q : (Y +Z)2−4XY = 0 and set T1 := ϕ
−1
2 (T1) = {X = 0}, T2 := ϕ

−1
2 (T2) = {Y = 0},

T ′3 := ϕ
−1
2 (T3) = {Z2−X2 = 0} and Q′ = ϕ

−1
2 (Q) = {(Y 2 + Z2)2− 4X2Y 2 = 0}.

Notice that Q′ consists of two quadrics Y 2 + Z2∓ 2XY = 0 with a tacnode, and T ′3

consists of common tangent lines of these quadrics, while T2 is a common tangent

at tacnode. In addition, T1 passes through the nodal intersection points of these

quadrics and the singular point of T ′3. Then an arrangement of T1, T2, T ′3 and Q′ is

exactly the arrangement in Figure 6.31. Therefore, (CP2,Q′+ 2T1 + 2T2 + 2H ′4) is

the the orbifold A18 in the Table 6.3 and we have an orbifold covering ϕ2 : A18→
A11.
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Coverings of A12:

Consider the orbifold A12 = (CP2,4Q + 4T1 + 2T2 + 4T3 + 2T4 + 2H5) in the

Table 6.3 and choose coordinates such that the equations of lines and quadric are as

stated in the Table 6.3. The uniformizer of the sub-orbifold (CP2,∑3
i=1 2Ti) is ϕ2.

Denote by T1, T3, T ′4, Q′ and H ′5, the liftings ϕ
−1
2 (T1) = {X = 0}, ϕ

−1
2 (T3) = {Z = 0},

ϕ
−1
2 (T4) = {2X2−Y 2 + Z2 = 0}, ϕ

−1
2 (Q) = {(X2 +Y 2−Z2)2− 4X2Y 2 = 0} and

ϕ
−1
2 (H5) = {Z2−X2 = 0}, respectively. Notice that Q′ consists of four lines X∓Y∓

Z = 0 tangent to the quadric T ′4, and H ′5 consists of two lines Z∓X = 0 through the

tangency points Q′∩T ′4. In addition, the lines T1, T2 and H ′5 goes through the singular

points of Q′. Configuration of such quadric and lines are projectively equivalent to

the arrangement in Figure 6.26. Therefore, (CP2,4Q′+ 2T1 + 2T3 + 2T ′4 + 2H ′5) is

the orbifold A13 in the Table 6.3 and we have an orbifold covering ϕ2 : A13→ A12.

Next, consider the sub-orbifold (CP2,2T1 + 2T2 + 2H5) whose uniformizer is

ϕ2. Choose coordinates so that T1 : X = 0, T2 : Y = 0, T3 : X−Z = 0, T4 : 4X−Y −
2Z = 0, H5 : Z = 0 and Q : (Y + Z)2− 4XY = 0, and set T1 := ϕ

−1
2 (T1) = {X =

0}, T ′3 := ϕ
−1
2 (T3) = {X2−Z2 = 0}, T ′4 := ϕ

−1
2 (T4) = {4X2−Y 2− 2Z2 = 0} and

Q′ = ϕ
−1
2 (Q) = {(Y 2 +Z2)2−4X2Y 2 = 0}. Notice that Q′ consists of two quadrics

Y 2 +Z2∓2XY = 0 with a tacnode, and T ′3 consists of common tangent lines of these

quadrics, while T1 passes through the nodal intersection points of these quadrics and

the singular point of T ′3. The quadric T ′4 has contacts of order four with the quadrics

Y 2 +Z2∓2XY = 0. Then an arrangement of these quadrics and lines is exactly the

arrangement in Figure 6.30. Therefore, (CP2,4Q′+ 2T1 + 4T ′3 + 2T ′4 + 2H ′5) is the

the orbifold A17 in the Table 6.3 and we have an orbifold covering ϕ2 : A17→ A12.

Third, consider the sub-orbifold (CP2,2T2+2T4+2H5) whose uniformizer is ϕ2.

Choose coordinates so that T1 : 2X +Y +Z = 0, T2 : Y = 0, T3 :−2X +Y +Z = 0, T4 :

Z = 0, H5 : X = 0 and Q : X2−Y Z = 0, and set T ′1 := ϕ
−1
2 (T1) = {2X2 +Y 2 +Z2 =

0}, T ′3 := ϕ
−1
2 (T3) = {−2X2 +Y 2 +Z2 = 0} and Q′ = ϕ

−1
2 (Q) = {X4−Y 2Z2 = 0}.

Notice that Q′ consists of two quadrics X2∓Y Z = 0 with tacnode. If one check
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the intersections points of these quadrics, he will release that these four quadrics

X2∓Y Z = 0 and ∓2X2 +Y 2 + Z2 = 0 has twelve tacnodes and it is projectively

equivalent to the Naruki arrangement. Therefore, (CP2,4Q′+4T ′1 +4T ′3) is the the

orbifold A20 in the Table 6.3 and we have an orbifold covering ϕ2 : A20→ A12.

Coverings of A14:

Consider the orbifold A14 = (CP2,2Q+4H1 +4H2 +∑
6
i=3 2Hi) in the Table 6.3.

The uniformizer of the sub-orbifold (CP2,2H1 + 2H2 + 2H6) is ϕ2. For simplicity,

let us choose homogeneous coordinates such that H1 : X = 0, H2 : Z = 0, H3 : X +

2Y + Z = 0, H4 : X − 2Y + Z = 0, H5 : X + Z = 0, H6 : Y = 0 and Q : Y 2−XZ =

0. Let H1 : X = 0, H2 : Z = 0, H ′3 : X2 + 2Y 2 + Z2 = 0, H ′4 : X2− 2Y 2 + Z2 = 0,

H ′5 : X2 + Z2 = 0 and Q′ : Y 4−X2Z2 = 0 be the liftings of the lines Hi and the

quadric Q, respectively. Notice that Q′ has two quadrics Y 2∓ XZ = 0, and they

form a Naruki arrangement together with the quadrics H ′3 and H ′4. Also, the pencil

XZ(X2 + Z2) = 0 consists of four pairwise common tangents of these quadrics.

Hence (CP2,2H1 +2H2 +2H3 +2H ′4 +2H ′5 +2Q′) is the orbifold A21 in the Table

6.3 and e have the covering ϕ2 : A21→ A14.

Next consider the sub-orbifold (CP2,2H2 + 2H3 + 2H4) whose uniformizer is

ϕ2. Projective transformations allow us to change coordinates such that H1 : X +

Y − Z = 0, H2 : Z = 0, H3 : Y = 0, H4 : X = 0, H5 : X +Y = 0, H6 : X −Y = 0

and Q : (X +Y − 2Z)2− 4XY = 0. Let H ′1 : X2 +Y 2− Z2 = 0, H2 : Z = 0, H ′5 :

X2 +Y 2 = 0, H ′6 : X2−Y 2 = 0 and Q′ : (X2 +Y 2−2Z2)2−4X2Y 2 = 0 be the liftings

of the lines H1, H2, H5, H6 and the quadric Q by ϕ2, respectively. Notice that Q′

consists of four lines X ∓Y ∓
√

2Z = 0 which are tangent to the quadric H ′1, and

components of H ′6 goes through this tangency points Q′∩H ′1. In addition H ′5 consists

of two imaginary lines tangent to Q1 and the line H2 at infinity pass through these

tangency points. If one a picture of the arrangement of these lines and quadric,

he will release that it is projectively equivalent to the arrangement in Figure 6.34.

Hence, (CP2,2Q′+4H ′1 +2H2 +2H4 +2H ′5 +2H ′6) is the orbifold A26 in the Table
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6.3 and we have the covering ϕ2 : A26→ A14.

The following diagram in Figure 6.35 exhibits all covering relations among ball-

quotient orbifolds discussed above.

A6

A7 A22
ϕ3oo A3 A5

ϕ2oo

ϕ2

OO

A23
ϕ3oo A18

ϕ2}}zz
zz

zz
zz

A25
ϕ2

!!DD
DD

DD
DD

A26

ϕ2
��

ϕ2 // A14

ϕ2
��

A21
ϕ2oo

ϕ2 !!DD
DD

DD
DD

ϕ4 // A11 A19
ϕ2

}}zz
zz

zz
zz

A1 A9
ϕ2oo ϕ2 // A8 A10

ϕ2oo

ϕ2

OO

A16
ϕ2oo

A20

ϕ4

OO

ϕ2

==zzzzzzzz

ϕ2

22A13

ϕ2

OO

ϕ2 // A12

ϕ2

OO

A17ϕ2
oo A24

ϕ4

hhQQQQQQQQQQQQQQQQQ
ϕ2

OO

A15

ϕ2
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Figure 6.35 Covering relations among ball-quotient orbifolds
in Table 6.3.
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