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MATHEMATICAL MODELS AND METHODS OF WAVE THEORY

ABSTRACT

In this thesis, initial value problems for the electromagnetic system and system of
elasticity are studied. Properties of solutions for considered initial value problems are
proved. Using these properties analytic methods are suggested for problems solving.
These methods are based on symbolic transformations. As applications of these
methods we construct the fundamental solutions for equations of anisotropic elasticity
and derive electric fields, when the current density is presented in the polynomial form.
Robustness of the methods are confirmed by computational examples. Simulations of

elastic and electric fields are obtained in different anisotropic materials.

Keywords: Analytical Method, System of Crystal Optics, Elastic System, Initial Value

Problem, Symbolic Computations, Fundamental Solutions
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DALGA TEORISININ MATEMATIKSEL METODLARI VE MODELLEMESI

(0Y/

Bu tezde, electromanyetik ve elastik sistemler i¢in baglangic deger problemleri
calisiimistir. Bu sistemlerin baslangi¢ deger problemlerinin ¢oziimlerinin 6zellikleri
ispatlanmistir. Bu 6zellikler kullanilarak problemlerin ¢oziimii i¢in analitik metodlar
Onerilmistir. Bu metodlar sembolik doniisiimlere dayanmaktadir. Bu metodlarin
uygulamasi olarak izotropik olmayan elastik sistemlerin temel ¢oziimleri bulunmus
ve akim yogunlugu polinom formunda olan sistemler i¢in elektrik alan bulunmustur.
Metodlarin giivenilirligi orneklerle dogrulanmistir.  Elastik ve elektrik alanlarin

izotropik olmayan farkli materyallerde simulasyonu yapilmaistir.

Anahtar sozciikler: Analitik Metod, Kristal Optik Sistemleri, Elastik Sistem,

Baglangi¢ Deger Problemleri, Sembolik Hesaplamalar, Temel Coziimler
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CHAPTER ONE
INTRODUCTION

Search and development of new materials with specific properties are needed for
different industries such as chemistry, microelectronics, etc. When new materials are
created we must be able to have the possibility to model and study their properties.
Mathematical models of physical processes can provide cutaway views that let you see
aspects of something that would be invisible in the real artifact but computer models

can also provide visualization tools.

The physical properties of a homogeneous isotropic medium do not depend on
the direction and the position inside the medium. Physical properties of anisotropic
media essentially depend on orientation and position. An anisotropic medium is
called homogeneous when its physical properties depend on orientation and do
not depend on position. The medium can be isotropic relative to some physical
properties and anisotropic with respect to others. For example, anisotropic crystals and
dielectrics are magnetically isotropic but electrically anisotropic. Some of materials are
magnetically anisotropic but electrically isotropic and some of materials are electrically
and magnetically anisotropic. Anisotropy of materials is related to their atomic
lattice. A smallest block (three-dimensional array of atoms) of anisotropic materials
is determined by repeated replication in three dimensions. Its symmetry tells how the
constituent atoms are arranged in a regular repeating configuration. The structure of
these three-dimensional unit cell of atoms in anisotropic materials may have one of
seven basic shapes: cubic, hexagonal, tetragonal, trigonal, orthorhombic, monoclinic
and triclinic (see, for example (Nye, 1967)). We need to note that anisotropy can be
in the response to external fields (electric, magnetic, elastic fields, etc.) (Ramo &

Whinnery & Duzer, 1994).

Thesis includes mathematical modeling and simulating the wave propagation in

anisotropic solids and crystals.

Electromagnetic waves phenomenon is very well studied for different isotropic

materials (Kong, 1986, Ramo & Whinnery & Duzer, 1994, Monk, 2003, Eom, 2004).



At the recent time the use and development of new anisotropic materials stimulates
the growing interest for modelling electric and magnetic wave propagations inside
these materials. This topic is an important interdisciplinary area of research with many

cutting-edge scientific and technological applications.

Electric wave propagations in electrically and magnetically anisotropic materials is
one of the objects of the thesis. Electric fields inside these materials are described by
the time-dependent system (Cohen & Heikkola & Joly, 2003)

O°E

1 .
EW + curly,(M curl,E) = —

9j

o (1.0.1)

where x = (x1, 9, x3) is a space variable from R3, t is a time variable from R, E =
(E1, Esy, Es) is the electric field, £, = FEi(z,t), k = 1,2,3; j = (j1,J2,73) 18
the density of the electric current, j, = ji(z,t), k = 1,2,3; & = (e;j)3x3 is the
permittivity matrix, M is the permeability matrix, M~ = (1;;)3x3 is the matrix which

is inverse to M.

For a particular case, when & = diag(e11,€11,€33), €55 > 0,7 = 1,2,3; and
M = diag(p, pu, i), g > 0, the system (1.0.1) describes electric waves inside many
crystals and is called the time-dependent system of crystal optics (Courant & Hilbert,
1979), pages 603-612). The Cauchy problem for this system with smooth data and
the procedure of constructing an exact solution of this problem has been described by
Courant and Hilbert in (Courant & Hilbert, 1979). Modelling and simulating electric
waves in crystals by different procedures and explicit formulae for solutions of the
initial value problems for the system of crystal optics are important issue of the modern
research of material structures. Burridge and Qian in (Burridge, 2006) have used a
plane wave approach to obtain an explicit formula for a fundamental solution of the
same system of crystal optics. This formula has been used for modelling and simulating

electric waves in anisotropic crystals with biaxial structures of anisotropy.

Different methods have been used to study problems for the system (1.0.1) in some
particular cases. For example, decomposition method for the case of isotropic materials

(€ is a diagonal matrix of the form & = diag(e11,€11,€11)) has been suggested



in (Linden, 1990). Analytic methods of Green’s functions constructions have been
studied for the case of isotropic materials in (Haba, 2004, Wijnands, 1997); for uniaxial
anisotropic media (£ = diag(e11,€11,€33)) in (Li, 2001, Gottis & Kondylis, 1995);
for biaxial anisotropic crystals (£ = diag(e11, €22, €33)) in (Ortner & Wagner, 2004);
for arbitrary non-dispersive homogeneous anisotropic dielectrics (£ = (g;;)3x3 is a
symmetric positive definite matrix) in (Ortner & Wagner, 2004, Yakhno, 2005, Yakhno
& Kasap, 2006). Modelling lossy anisotropic dielectric waveguides with the method
of lines has been made for inhomogeneous biaxial anisotropic media in (Berini & Wu,

1996).

Most of the studies and modelling electromagnetic waves had been made by
numerical methods, in particular finite element method (Monk, 2003, Zienkiewicz,

2000, Cohen & Heikkola & Joly, 2003, Werner & Cary, 2007).

The propagation of elastic waves in a homogeneous solid is governed by a
hyperbolic system of three linear second-order partial differential equations with
constant coefficients. When the solid is also isotropic, the form of these equations is
well known and provides the foundation of the conventional theory of elasticity (Love,
1944). The explicit solution of the initial value, or Cauchy, problem for the isotropic

case was found by Poisson, and in a different way by (Stokes, 1883).

A mathematical model of wave propagations in anisotropic elastic materials is
described by the dynamic system of anisotropic elasticity which usually has been

studied by the plane wave approach (Fedorov, 1963) and (Ting, 1996).

The mathematical model of elastic wave propagation in a homogeneous, anisotropic
medium is described by
9 3
0 U do jk

= o7 =1,2,3 1.0.2
patQ ot axk +f]7 j Pt A ( )

where © = (z1,22,23) € R*, ¢ > 0, u;(z,t) are the components of the unknown

displacement vector. The constant p > 0 is the density of the medium. Stress tensor



oji are defined as
3

Ojk = Cikimeim: (1.0.3)
I,;m=1
where
Cjm = (g;jm’“)%o, (1.0.4)
and
€t = %(gw—“; %“—33’7). (1.0.5)

{Cjklm}?,k,l,mzl are elastic moduli which is a forth-order positive definite constant
tensor that satisfy the symmetry conditions cjum = Crjim = Cjkmi- Due to the
symmetry properties, it is convenient to represent the fourth-order tensor of elastic
moduli in terms of a 6 x 6 matrix, which we denote by C. This representation is realized
by replacing the pairs (j, k) of indices j, k = 1,2, 3 with a single index « = 1,...,6

according to the following rules:

(1,1) «— 1, (2,2) «— 2, (3,3) «— 3,
(2,3),(3,2) — 4,  (1,3),(3,1) — 5,  (1,2),(2,1) — 6.

(1.0.6)

Similarly, replacing the pairs (I, m) of indices [, = 1,2,3 withindex § = 1,...,6

in accordance with in accordance with (1.0.6) gives

Cap = Cjkim,

where c,3 are components of the matrix C. From the property ¢, = Cim;jk, We have
the symmetry condition c,g = g4, Which implies that C is a symmetric matrix. The
matrix C is positive-definite. As a result, the tensor of elastic moduli can be written as

a 6 x 6 symmetric, positive- definite matrix

€11 C2 €13 Ci4 Ci15 Cis
Cl2 Ca2 C23 Coq4 C25 Co26
C13 C23 C33 C34 C35 C36
C= : (1.0.7)

Cla Co4 C34 Cqqa C45 C46

Ci5 Ca5 C35 C45 C55 Cs6

Ci6 C26 C36 Ca6 Cs56 Co6



with 21 independent components in general.

(Carcione & Kosloff & Kosloff, 1988) presented theoretical study for
wave-propagation simulation in a transversely isotropic material. A pseudospectral
time-integration technique to solve the equation of motion is used, where the
propagation is done by a direct expansion of the evolution operator by a Chebycheff

polynomial series.

However, nowadays there is a great interest to develop new methods for solving
initial value problems (IVPs) and initial boundary value problems (IBVPs) for the
dynamic system of anisotropic elasticity and simulate invisible elastic waves (Cohen,
2002), (Cohen & Heikkola & Joly, 2003) and (Yakhno & Akmaz, 2005). Most of
the time the numerical methods, in particular the finite element method, are used for
solving this kind of problems. Advantages and disadvantages of these methods are
well known (Cohen & Heikkola & Joly, 2003) and (Zienkiewicz, 2000). Generally
speaking, they are of a general purpose, rather labor-consuming, find approximate
solutions, but do not always satisfy scientists and engineers at the needed scale and
accuracy (Pavlovic, 2003). At the same time, analytic methods can provide the exact
solution of the equations and also offer a fundamental understanding of the relevant
physical phenomena. Unfortunately, the exact solutions cannot be found for all
complex equations and systems. But when the exact solutions can be found it leads
to a significant simplification of modeling and simulation. The modern methods of
symbolic computations allow us to automate mathematical transformations on a very
high level of complexity thanks to the truly remarkable achievements in computing

power over the last decade (Pavlovic, 2003).

On the other hand nowadays computers can perform very complicated symbolic
computations (in addition to numerical calculations) and this opens up new possibilities
in modelling and simulation of wave propagation phenomena. Symbolic computations
can be considered as a useful tool for analytical methods which can provide exact
solutions of problems (Yakhno, 2005, Pavlovic, 2003, Pavlovic & Sapountzakis,
1986). Unfortunately the exact solutions can not be found for all complex equations

and systems. But when the exact solution can be found it leads to the significant



simplification of modelling and simulation. As it is mentioned in (Beltzer, 1990), ’the
easiness with which these symbolic codes provide analytical results allows engineer to
focus on the ideas rather than on overcoming calculational difficulties’. A successful
application of an analytical approach based on symbolic computations of the initial
value problem for the system (1.0.1) in the case when (£ = (&;;)3x3 is a symmetric
positive definite matrix) and (M = diag(u, p, it), 10 > 0 have been applied in (Yakhno
& Kasap, 2006), (YakhnoV & YakhnoT, 2007).

The theory of generalized functions has exerted a strong influence on the
development of the theory of linear differential equations. It is only in the setting
of Laurent Schwartz’ theory of distributions that fundamental solutions can be defined
in general and can be applied -via the convolution of distributions- to the solution
of linear partial differential equations with constant coefficients. In part, the relevant
concepts were worked out by John Horvth, (Horvéith, 1966)-(Horvéth, 1977). The
first use of a non-trivial fundamental solution can probably be ascribed to Jean
dAlembert. In 1747, he considered the deflection u of a vibrating string. In 1789,
Pierre Simon de Laplace used the fundamental solution ¢ of the elliptic operator A,
which bears his name, and thereby established the connexion of the Laplace operator
with the Newtonian gravitational potential (Laplace, 1787). Laplace just recognized
that A(e x f) = 0 outside the support of f , and it was Simon Denis Poisson, who
obtained the equation A(e x f) = f in 1813 (Poisson, 1813). In 1809, Laplace
considered the first parabolic operator, namely the heat operator, and calculated its
fundamental solution in the case n = 1, (Laplace, 1813). The generalization to higher
n, in particular to n = 2, was found by Poisson in 1818 (Poisson, 1818). In 1818,
Joseph Fourier was able to calculate the fundamental solution ¢ of the operator of
the dynamic deflections of beams, an operator of fourth order (Fourier, 1818). As
well in 1818, Poisson generalized d’ Alembert’s formula to three space dimensions by
representing the solutions of the wave operator as convolution with the fundamental
solution (Poisson, 1818). This notation, viz. the first use of Dirac’s delta function,
goes back to Gustav Kirchhof’s paper of 1882 (Liitzen, 1982). In 1849, George Stokes
obtained -as the kernel of an integral representation- the fundamental matrix E of
the system of partial differential operators which describes elastic waves in isotropic

media (Stokes, 1883). This system can be found already in a memoir of 1829 by



Poisson (Poisson, 1829). The fundamental solution € of the wave operator in two space
dimensions was found as late as 1894 by Vito Volterra, (Volterra, 1894). Investigating
the equations of static anisotropic elasticity, Ivar Fredholm found in 1900 (Fredholm,
1908) the fundamental matrix E of the elliptic 3 by 3 system of linear partial differential
operators in three variables with constant coefficients and homogeneous of second
order. In 1908, Fredholm succeeded in representing the fundamental solutions of
elliptic homogeneous operators in 3 variables by Abelian integrals (Fredholm, 1908).
In 1911, Nils Zeilon gave the first definition of a fundamental solution in case it is
a locally integrable function (Zeilon, 1911). In 1913, Zeilon transferred Fredholm’
fundamental solution results to non-elliptic operators (Zeilon, 1913). However, explicit
formulae were found recently, (Wagner, 1999)-(Wagner, 2001). In three famous papers
from 1926 to 1928 (Herglotz, 1926), Gustav Herglotz overcame the restriction to 2
or 3 independent variables and represented the fundamental solutions of elliptic and
of strictly hyperbolic homogeneous operators of the degree m in n variables (with
n < m) by (n — 1)- fold and by (n — 2)-fold integrals, respectively. Later, these
formulae came to be known as the HerglotziiPetrovsky formulae. In 1945, Ivan
Petrovsky represented -in the hyperbolic case- the fundamental solution ¢ by integrals
over cycles in complex projective space and investigated the lacunas of € by means of
algebraic topology (Petrowsky, 1945). In 1950/51, Laurent Schwartz first published
his Thorie des Distributions (Schwartz, 1966), in which framework he also gave the
general definition of fundamental solutions. In 1952, Jean Leray stated a distributional
version of the Herglotz-Petrovsky formulae for homogeneous hyperbolic operators,
thereby also treating the case m < n (Leray, 1953). The same goal was reached in
1959 by Vladimir A. Borovikov for operators of principal type (Borovikov, 1959)
and presented in the textbook “Generalized Functions” by Israel M. Gel’fand and
Georgi E. Shilov (Gel’fand, 1964). The first existence proofs for fundamental solutions
e(z) in D'os any linear differential operator P(D) # 0 with constant coefficients
were given in 1953/54 by Bernard Malgrange and Leon Ehrenpreis (Ehrenpreis,
1960), (Malgrange, 1955). These proofs for fundamental solution were based on
the Hahn-Banach theorem. In 1957, Lars Hormander showed that there always exist
“regular” fundamental solutions (at that time called “’proper” fundamental solutions)
having “best” regularity properties (Hormander, 1957). The existence of fundamental

solutions depending C* or even holomorphic (in case of “constant strength”) on the



coefficients of P(0) was proved by Francois Treves, (Tréves, 1962)-(Tréves, 1966); see
also the survey paper (Ortner, 1997). A convenient tool to find a fundamental solution
with the required properties of growth, of support, of smoothness, is the Fourier
transform. The problem of seeking a fundamental solution of slow growth turns out to
be a special case of the more general problem of “dividing” a generalized function of
slow growth by a polynomial. In 1957/58, Lars Hormander and Stanislaw Lojasiewicz
independently solved the “division problem” and thereby proved the existence of
temperate fundamental solutions (Hormander, 1955), (Lojasiewicz, 1959). Different
proofs for fundamental solution thereof were found later by Michael F. Atiyah (Atiyah,
1970) and Joseph N. Bernstein (Bernstein, 1971). In 1970/73, Michael Atiyah, Raoul
Bott, and Lars Garding extended and generalized Petrovsky’s work, thereby developing
a general theory of fundamental solutions of hyperbolic operators, (At'ya & Bott,
1984)). For general operators, this was established in the fundamental work of Lars
Hormander, (Hormander, 1958), (Hormander, 1963), (Hormander, 1983). We also
mention the first major table of fundamental solutions by Norbert Ortner in 1980
(Ortner, 1980) and the discovery of the connexion of lacunas of fundamental solutions
with the existence of right inverses by Reinhold Meise, B. Alan Taylor, and Dietmar

Vogt in 1990 (Meise, 1990).

In the middle of the nineteenth century, Lord Kelvin became the first to obtain the
fundamental solutions or Greens function for 3D deformations of an infinite isotropic
elastic solid subject to a point force. For materials that exhibit isotropic behaviour,
expressions for the Greens function have been well established (see, e.g. (Mindlin,
1936); (Mindlin & Cheng, 1950); (Phan-Thien, 1983); (Huang & Wang, 1991)).
Recently, (Ma & Lin, 2001) re-examined the Greens function for 2D plane stress and
plane strain problems in an elastic half space with a free or rigidly fixed surface subject
to line forces and line dislocations. For materials possessing anisotropic elasticity, the
3D Greens function for an infinite space has been investigated by (Fredholm, 1908),
(Synge, 1957), (Barnett, 1972) and (Mura, 1987). Recently, (Ting & Lee, 1997)
obtained the 3D elastostatic Greens function for a general anisotropic linear elastic
solid. The novel feature of this work is that the Greens function is given explicitly
in terms of the Stroh eigenvalues. In the case of an anisotropic half space, (Willis,

1966) obtained the Fourier integral representation of the surface Greens function due



to the application of a point force on the surface. (Barnett & Lothe, 1975) obtained
a line integral expression of the surface Greens function due to a point force applied
on the free surface of an anisotropic half space based on Stroh formalism. (Walker,
1993) discusses the development of a Fourier integral representation of the Greens
function for an anisotropic elastic half space. (Wu, 1998) employs the Stroh formalism
in the Radon-transformed domain to derive the 3D Greens displacement function in an
anisotropic half space due to a point force. (Suo, 1990) and (Qu & Li, 1991) obtained
the Greens functions for an anisotropic bimaterial subjected to a line force and a line
dislocation. (Pan & Yuan, 2000) studied the 3D Greens function for an anisotropic

bimaterial using Stroh formalism and 2D Fourier transforms.

The plan of the thesis is as follows. In Chapter 1, we review the time dependent
system of electric field, and linear system of elasticity. A brief historical background
about development of these systems and the theory of generalized functions that has

influence on the development of the theory of linear differential equations is given.

In Chapter 2, a new analytical method for computing a polynomial solution of the
Cauchy problem for the system (1.0.1) is suggested. We suppose that initial data and
inhomogeneous term have a polynomial presentation with respect to space variables
and a solution of the initial value problem is found in the polynomial form with
undetermined coefficients depending on the time variable. For these undetermined
coefficients we find the recurrence relations and using these relations we obtain a
procedure to recover the coefficients. The suggested method is based on this procedure
and essentially uses symbolic computations. The implementation of our method is
given in Maple 10. Stability estimates (energy inequalities) for solutions of (1.0.1)
in a finite domain of the dependence (a finite domain containing characteristic cones)
is described; using these stability estimates we show that polynomial solutions are
approximate solutions of the initial value problems with non-polynomial smooth data.
This theoretical result is confirmed by computational examples which compare an
exact solution of the initial value problem corresponding to the given non-polynomial
data and polynomial solutions which are found by polynomial approximations of given
data and our method. The application of our method for computing electric fields

and simulating their images in different anisotropic media (in particular, the sapphire)
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when initial data are polynomial approximations of Shannon’s kernels is described.
The Shennon kernels are not polynomials and they are widely used for modelling
different processes and phenomena (Bonciu & Leger & Thiel, 1998), (Wei, 2001).
This method gives an exact solution of IVP for any type of anisotropy and enables to

create simulations of elastic waves.

In Chapter 3, generalized Cauchy problem for elastic system is considered. A
new method is explained to find fundamental solution. This method is based on
properties: fundamental solutions of the considered system have finite supports with
respect to space variables for any fixed time variable; the Fourier images of solution
components are analytic functions with respect to parameters of the Fourier transform
and these Fourier images can be expanded in power series. The method consists of
following. The system of equations of anisotropic elasticity is written for each cases.
These equalities are written in the form of the Fourier images. Using power series
presentations with unknown coefficients depending on t we construct the recurrence
relations. These unknown coefficients are obtained using a procedure. Using these
coefficients Fourier images of solution components can be obtained. Applying inverse
Fourier transform to these images, fundamental solutions of the system of anisotropic
elasticity can be constructed. Using mathematical tools (Maple 10) simulation of
fundamental solutions in different anisotropic materials are presented. Computation
examples confirm the robustness of our approach. In the chapter, applications of the
fundamental solutions for solving the Initial Value Problems (IVP) for the system of

anisotropic elasticity is described.



CHAPTER TWO
POLYNOMIAL SOLUTION METHOD
SOLVING CAUCHY PROBLEM

2.1 System of Electromagnetism

In this chapter, the time-dependent system of partial differential equations of the
second order describing the electric wave propagation in electrically and magnetically
anisotropic media is considered. A new analytical method for computing polynomial
solutions of the initial value problem for the considered system is suggested. This
method essentially uses symbolic computations and is implemented in Maple 10.
The theoretical study and computational analysis of polynomial solutions and their

comparison with non polynomial solutions corresponding to smooth data are given.

Let us consider the system describing electromagnetic wave propagation. The
propagation of electromagnetic waves is described by the time-dependent Maxwell’s
system with a matrix of dielectric permittivity. Let = = (x1,9,23) be a space
variable from R® and t be a time variable from R then Maxwell’s system is given by

the following relations (see, Cohen & Heikkola & Joly, 2003):

OE
LH=¢e—+], 2.1.1
cur € a1 +) ( )
H
curl,E = —,uaa—t, (2.1.2)
div, (pH) = 0, (2.1.3)
div,(¢E) = p, (2.1.4)

where E = (FEy, Es, F3),H = (Hy, Hy, H;) are electric and magnetic fields,
Ey = Ey(x,t), Hy, = Hy(z,t), k = 1,2,3; j = (j1,J2,J3) is the density of the

electric current, j, = ji(x,t),k = 1,2,3; €, u are symmetric, positive-definite,

11
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dielectric permittivity and magnetic permeability matrices depending on space, p is
the density of electric charges. The conservation law of charges is given by

dp

5, +diva =0. (2.1.5)

Differentiating (2.1.1) with respect to ¢ and using (2.1.2) we obtain following equation
(Cohen & Heikkola & Joly, 2003)
O°E

g(x)W + curl, (,u’lcurle> =f, (2.1.6)

and differentiating (2.1.2) with respect to ¢ and using (2.1.1) we obtain

0*H .
u(x)ﬁ + curly, (z—: curle> =1, (2.1.7)

5
where f; = —a—‘l. and f, = curl(e™'j)

The system defining electromagnetic wave propagation is given by equations

(2.1.1)-(2.1.4) is rewritten by the equations (2.1.6), (2.1.7).

2.2 A New Method for Computing a Solution of the Cauchy Problem with
Polynomial Data for the System of Crystal Optics

In this Section, initial value problem (IVP) for the system of crystal optics with
polynomial data and a polynomial inhomogeneous term is solved using a new
analytical method. The found solution of IVP is a polynomial. Computational
analysis of polynomial solutions and their comparison with non polynomial solutions
corresponding to smooth data are given. Implementation of this method has been made

by symbolic computations in Maple 10.
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2.2.1 Problem Set-up

Letz € Rt > 0,e = (e1,ez,e3), 8 = (91,92, 93) be vector functions with
components depending on x; f = (f1, f2, f3), E = (FE1, E3, E3) be vector functions
with components depending on = and ¢. Let £ = diag(e11, €22, €33) be a given matrix

with positive elements. Let us consider the Initial Value Problem (IVP) of finding E

satisfying
O’E ;
5@ + curly(curl,E) = f(z,t), z € R*, t >0, (2.2.1)
E(x,t
E(z,0) = e(z), % = g(x), =€ R, (2.2.2)
=0

where e(x),g(x) are given vector functions for x € R3, f(x,t) is a given vector

function for z € R3,t > 0.

This problem is the main object of our study. In this section we assume that
components of initial data e(z),g(z) and the inhomogeneous term f(x,t) have the

following polynomial form

P PP
ej(z) = ZZZefmnxlfo”xg, (2.2.3)

k=0 m=0 n=0

gilw) = D D> gimratayay, (2.2.4)
by
filzt) = > >

o) akaral, (2.2.5)

k k : k
;" g™ are given real numbers; f;7""(t)

where p is a given nonnegative integer; e ;

are given continuously differentiable functions of t; j = 1,2, 3.

The main goal of the study is to derive components of a solution E of IVP (2.2.1),

(2.2.2) in the form

p p p
Ej(a1,00,25,8) = » Y Y EF™(t)akalay. (2.2.6)

k=0 m=0 n=0
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2.2.2 Method of Computing a Polynomial Solution of IVP for Crystal Optics

The method consists in two steps. On the first step some recurrence relations are
obtained and on the second one these relations are used for finding successively all

polynomial coefficients E]km”(t) Let us consider these steps in details.

Recurrence Relations for £

Substituting (2.2.3)-(2.2.6) into (2.2.1), (2.2.2) we obtain

p p p agEk,m,n . . )
>N 5“8—;&2 + (k+1)(m+ )BT (4 2)(m 4 1) EpmT2n
k=0 m=0 n=0

—(n+2)(n+ D) EP™ P 4 (k+ 1) (n+ 1) By T - f’m’"> ahalal =0, (2.2.7)

p p p agEk,m,n N . . N )
YN 8228—12 + (m+1)(n+ D) EF™H _ (4 2)(n + 1) ES™F

—(k+2)(k+1)EyP>™" 4 (k+1)(m+1)Efthmate _ 5”””) ahalal =0, (2.2.8)

p
k=0 m=0n

- - 82E§7m7n k+1,m,n+1 k+2,m,n
22D (e + (i D+ DB — (k +2)(k + 1) E}
=0 n=0

—(mA-2)(m+1) Ey™ 2" 4 (mA1) (n+1) By g”""> Rl =0, (2.2.9)

p
DD (E0) — e )atagay =0 (2.2.10)
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p P p k,m,n
MHAC
ot
where j = 1,2,3 and components of EPt2mn ERprt2n Ekmpt2 Fptlmn gkptln

Efmptl Eptlpetln geptletl Eptlmptl  are equal to  zero  for  all

_g?mm>x%£ﬁ€::07j:]113. (2.2.11)
t=0

k,m,n=0,1,2,...,p.
Equations (2.2.7)-(2.2.11) are equivalent to relations

82E’If“7m7n
J k,m,
i gm = /i ()

k
+Dj ,m,n [Ek+2’m’n, ]__—‘).14:,771—&—2,717 ]__-Glc,’rn,n—i-Q7 Ek—i—l,m,n-{—l? Ek+1,m+1,n7 Ek,m—l—l,n-{—l]’

(2.2.12)
t>0, =123
OE™"™(t)
k,m,n kmmn kmn -
By (0) = e el =i j =123, (2.2.13)
t=0

where

k
Dl,m,n [Ek+2,m,n, Ek,m+2,n7 Ek,m,n—i—Q’ ]Ek’—i-l,m,n—&—l7 Ek—&-l,m—&-lm) Ek,m—i—l,n—i—l] (t)

= —(k+1)(n+ D)EST™™ 1 — (k 4+ 1) (m + 1) By Fhm e
+(m + 2)(m + 1) EF™2" 4 (n 4 2)(n 4+ 1) EP™ 2, (2.2.14)
Dl2€,m,n [Ek+2,m,n Ek,m+2,n Ek,m,n—i—? Ek+1,m,n+1 Ek+1,m+1,n Ek’m+l’n+1] (t)
= —(m+D(n+ DEF™ " 4 (k4 2)(k + 1) Ey 2"
—(k 4+ 1) (m + D) EFT™ Y 4 (04 2) (n + 1) ES™ 2 (2.2.15)
D?l;c,m,n [Ek+2,m,n Ek,m+2,n Ek,m,nJrQ Ek+1,m,n+1 Ek+1,m+l,n Ek’m+l’n+1] (t)
= —(k+1)(n+ 1)EFmmH (k4 2)(k + 1) EST2mn
+(m + 2)(m + 1) ES™ ™ — (m 4 1) (n + 1) By (2.2.16)
k,m,n=0,1,...,p.

Equalities (2.2.12), (2.2.13) can be written equivalently as the following recurrence
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relations:

Ep+2,m,n — 0’ Ek,p+2,n — O, Ek’,m,p—i—2 — 0’ Ep+1,m,n — O7 Ek:,p—i—l,n — 0’

EFmPth = o, EPLmTL = o ERPELPEL = o EPTIPTLE = 0, (2.2.17)

EFmn(f) = B (1) + /0 (=)

€4i
x DEmn[Eh2mn ghmtzn ghmnt2 ghtlmotl phtlmtln ghmsletl) o) g
(2.2.18)
where the components of the vector operator D#mn = (DFmn pkmn plmny g
defined by (2.2.14)-(2.2.16) and the components of the vector functions ka”(t) are
defined by the following relations

J J J

1 t
Fk:,m,n(t) _ g;:,m,nt + el?,m,n + 8_/ (t _ 7—)(][‘(C’m’n(7‘)d7‘7 (2219)
Jj Jo

17=12,3 k=p,p—1,...,0;, m=p,p—1,...,0;, n=p,p—1,...,0.

Procedure of finding £F™"

We start this procedure with finding EPPP. Substituting £ = p, m = p, n = p into
(2.2.18) and using (2.2.17), (2.2.14)-(2.2.16) we find

1 t
P,p,P 1Y D,p,p p,p,p y
EVPP(t) = _€jj /0 (t = 1) f7PP(r)dr + giPPt + e8P, §=1,2,3.

The main part of the procedure consists in the following. Let k,m,n
be numbers from the set 0,1,2,..p such that all components of E*+2mn(t),
ERm2n(4), ERmat2(p) ERLmatl(g) ERLmLa() ) ERmHLAL(1) have been
given or constructed by previous steps. Using (2.2.14)-(2.2.18) we find EF™"(t)
successively forall k =p,p—1,...,0; m=p,p—1,...,0; n=p,p—1,...,0.
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2.2.3 Implementation of the Method

For solving IVP (2.2.1), (2.2.2) with polynomial data and a polynomial inhomogeneous
term we implement the procedure of section 2.2 by symbolic computations in Maple
10. For this, the explicit formulae for polynomial components of a vector function
E = (E,, Es, Es3) are found by symbolic computations. By means of direct substitution
of these components E;(z,t), j = 1,2, 3 into (2.2.1), (2.2.2) we can always check that
E(z,t) is an exact solution. We note that when a degree of polynomials is greater than
10 the formulae for components of E are cumbersome and take several printed pages.

The robustness of the method can be illustrated by the following example.

Example: Let c11,c99,33 be symbols describing the diagonal matrix £ =
diag(e11,€99,€33); £ = 0; e = 0; the components of g = (g1, g2, g3) be defined
by

91(x) = (w1 + 222 + 333)° + (21 + 22 + x3) + 14,

g2(z) =0, g3(x) =0.

Applying our method we compute a vector function E = (F4, Ey, E3) where Ey =

E3:07

t6 t6 t6 5 8
E,=1(12 + 507 — + 27 13+ - ——F55
! ( €112€922 €11’ 8112533) b 7 5112552

t6 t6 t6 t4 4 t2
+<24 —— +1014 — + 54 — >x2x3+260—$§+1/2i
€117°€22 €11 €117°€33 €11 €11

45 8 12250 2 tPrlr s 117 8
e S, Rl SRS > R BN 1001 et R |
56 51125332 €11 €11

€11 28 e113e33

22,6 16 16 16 5265 txk
+1/2 -2 +<8 4338 + 18 — >$1x2—|———xg’
€11 €117€22 €11 €117€33 4 en
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t6 169 6 t6 729 t2235 65ttt
+ (2 + = —+9/2 x4+ — + —
( €112€92 2 e / 5112833) ! 2 en 4 12

12 2043 16 1521 8 81 9
13240 22 L (g + ;2
€11 6112822 2

11’ 2 enr’es3

t2x3r.%x 16 16 16 2197 8
+360$+(8 — +338 — + 18 )x22 —
€11 €117€22 €11 €11€33 26 e11

7 2 9 18
€11 7 €11%€99 £33

tir 3z t?x°x e 2rs?
+130 —— 2 46— + 390 ———"
€11 €11

2
€11

t2$14$22 t4371 3323 t2$13.§lf2
+30 ——2 4520 —— 2 + 80

t2$12$24
€11 €11

3 t2
4120 496 T2
€11 €11

5

€11

trry3x
2 4288
€11 €11

11560 t21’25$3 t4l‘131‘3 1'221'34

t2
+ 195 -— +2430

€11 €11

1215 t2$12$34

5
—— + 729
5 +

2z 23 2o 3 tray g3

+ 1458

+ 1755 3
€11 €11

3 2,.3,.3
x t“x°x

Mtk BN L it St

€11

135 t2x14x32

€11 2 €11

2.5 2
t°“r1°T3

t4 2 t2 4,. 2 1755 t4 2. 2
+3510 205 41080 2 s
€11 €1

€11 2 €112

+9

4,. 2
t$1 To X3

t2ritrs x
3 —1—90—1 273

t4 2 t2 2 3
11170 42340 L2 T8 L o DL T2 8

€11

€11 €11

€11
+720 t2£L'1 1’24[[3 13510 t4$1 i) 1‘32 t21‘13l'2 1'32

- T2 + 540 ——— 4+ 1620
11

t2$12$22$32
11 €11

€11
12160 t2111 LE23.§L’32 12430 t2$1 ) LE34 4 13 t8 1 t2$2

€11 €11 7 1€ 2 en

Substituting found explicit formulae for E;(z,t), j = 1,2, 3, into (2.2.1), (2.2.2),

we check that the vector function E(x, t) is an exact solution of (2.2.1), (2.2.2).
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2.2.4 Computational Analysis of Polynomial Solutions of IVP for Crystal Optics

Several cases of initial data for the Cauchy problem (2.2.1), (2.2.2) with zero
inhomogeneous term are considered in this section. For these data the exact solutions
of (2.2.1), (2.2.2) are given by explicit formulae. These data and solutions are
differentiable but not polynomial. For each of considered cases we approximate initial
data by polynomials and then, using the method, we compute a polynomial solution.
The comparison of values of polynomial and original exact solutions is presented by

tables.

Also, Shannon’s kernels of the form

sin aurs sin Bz

and

I3 )

appear in initial data. Here «,( are given numbers. Shannon’s kernels are not
polynomial and they are widely used for modeling different processes and phenomena.
Initial data with Shannon’s kernel are approximated by polynomial and then method
we explained is applied to compute a polynomial solution of (2.2.1), (2.2.2). Graphs

of the first component of the polynomial solution are presented on the figures.

Examples of exact solutions

Lete =0, f = 0and £ = diag(1,4,9). The following three cases will be considered

for components of g = (g1, g2, g3)
Case 1:

g =sinxz, [ =1,2,3; (2.2.20)
Case 2:

g1 = Sin(%) sin(%),gg = cos(%) sin(%), g3 = sin(%) cos(%); (2.2.21)
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Case 3:

g1 = cos Ty sin(%) sin(f—;), g2 = g3 =0. (2.2.22)

The exact solution E = (F4, Es, E3) of (2.2.1), (2.2.2) is given for each case by

formulae:

Case 1:

1 1 1 1
Ei, =sinxssint, Fy, = 3 sin x5 sin(it), Es = 3 sin x3 sin(gt),

Case 2:
1 1 1 1 1 1
E, = SiIl(g.TQ) sin(gxg) sint, Fy= 5 COS(g.ﬁUg) Sil’l(gl‘g) sin(ét),
1 1 1 1
Es = 3 Sin(g,fg) COS(gl’g) sin(gt);
Case 3:
1
E, = cos 1y Sin(gl'g) SiH(ELU?,) sint, Fy =0, F3=0;

Polynomial Solutions

Lete = 0, f = 0 and g = g" where components of gV = (¢, ¥, gI') be obtained
from formulae (2.2.20), (2.2.21), (2.2.22) by finite Taylor series expansions of given

functions g , i.e.

Case 1:
N
g => gy, (2.2.23)
n=0
Case 2:
N N
g = Z Zg?’m“a:glxg, (2.2.24)
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Case 3:

N N
g =)D gprratayal, (2.2.25)

N
k=0 m=0 n=0
where g;""" are coefficients of Taylor series expansion of g;(z1, z2,x3) at the point

ZE1:$2:$3:0.

Using the method we explained for approximated data (2.2.23)-(2.2.25) we compute
polynomial solutions EV = (EY¥, EY EY) for each case. The comparison of values
of polynomial solutions EV and original exact solutions £ at some fixed points is listed

in Table 2.1- Table 2.5.

Table 2.1 Values of F; and E{V for Case 1, N = 40.

t x T9 T3 E, EY |Ey — BV

2 3 3 2 0.82682 0.82682 6.825 x 10727
2 4 4 3 0.12832 0.12832 7.985 x 1072
2 5 5 1.6 0.90890 0.90890 8.185 x 1029

Table 2.2 Values of Ey and ES for Case 1, N = 40.

T3 E2 Eév |E2 _ Eév|

2 0.38257 0.38257 1.937 x 10732
0.05937 0.05937 3.412 x 10727

1.6 0.42055 0.42055 4.759 x 1073°

NS NS O]
Nk~ WS
a
Nk~ WS
)

Table 2.3 Values of E5 and ES for Case 1, N = 40.

t T ) T3 E3 Eév ‘Eg - EéV’

2 3 3 2 0.20206 0.20206 1.45756 x 1073
2 4 4 0.03136 0.03136 2.41084 x 10731
2 5 5 1.6 0.22212 0.22212 1.5511 x 10712




Table 2.4 Values of Ey and EYY for Case 2, N = 50.

t I T T3 E1 E{V |E1 — E{V|
1 3 2 2 0.23478 0.23478 0.3-107
14/10 4 2 1 0.16362 0.16362 0.1-107°
2 5 3/2 3/2 0.25566 0.25566 0.1-107°
Table 2.5 Values of Ey and EY¥ for Case 3, N = 30.
¢ Tz xz By By |Ey — BV
1 1 1 1 0.00473 0.00459 0.000145240705
1 2 2 2 -0.01445 -0.01401 0.00044336802
1.4 1 2 1 0.01353 0.01273 0.00079727107

22
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Polynomial solutions for data with approximated Shannon’s kernels

Let e = 0, f = 0 and for components of g = (g1, g2, g3) the following two cases be

taken
Case 4:
1 )
g1(xs) = (ﬂ) sin(4z3), ga(xs) = g3(w3) =0, (2.2.26)
3
Case 5:

1 1
g1(xe, x3) = (1‘2_7'(') sin(4x2)(x3—7r) sin(4xs), ga(xe,x3) = g3(x2, x3) = 0. (2.2.27)

The components of the vector function g% = (g{, g5, g3') are found from formulae

(2.2.26), (2.2.27) by finite Taylor series expansions of given function ¢, 1.e.

Case 4: N
g => gy, (2.2.28)
n=0
Case 5:
N N
g = Z Zglo’m’”x;”xg, (2.2.29)
m=0 n=0

here g;""" are coefficients of Taylor series expansion of g1 (1, x2, 23) atxy = 0, 29 =
1 ) y 43 )

0, w3 = 0. Using the method of the Section 2 for g% given by (2.2.28)-(2.2.29) and
e = 0, f = 0 we compute a polynomial solution EY = (EYY, EN EY) of (2.2.1),

(2.2.2) for each case. The graphs of EY for cases 4 and 5 are presented below.

0.6

-

1 08 06 04 —02 O] o2 04 06 g8 1
08706 -04 02 9] 02 04 0608 1

x3




-1 -08 -06 -04 -02 0 02 04 06 08 1-1 -08 -06 -04 -02 0 02 04 06 08 1

x3 x3

Figure 2.1 The first component of EV for case 4 at #1 = 4,20 = 4,t =
0.2;0.4;0.8; 1, N = 40.

2

B A

Figure 2.2 The first component of EV for case 5 at z; = 4,¢t = 0.2;0.4;0.8; 1, N =
50.

24
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2.3 Computing Polynomial Solutions of Electric Field Equations for Modelling

Waves in Anisotropic Media

In this Section, the IVP describing the electric wave propagation in electrically
and magnetically anisotropic media is considered. A new analytical method for
computing polynomial solutions of the IVP for the considered system is suggested.
Computational examples about a comparison of solutions of initial value problems
corresponding to non-polynomial data and polynomial solutions which are found by
polynomial approximations of given data and suggested method are described. The
results of computations and simulations of electric fields in different electrically and

magnetically anisotropic media (in particular, the sapphire) are presented by images.

2.3.1 Problem Set-up

Let us consider the initial value problem of finding a vector function E(z,t) =

(Eyi(x,t), Ey(z,t), Es(x,t)) that satisfies

2
5%—;} + curly (M tcurl,E) = f(x,t), v € R* t>0, 23.1)
E(z,0) = e(x), _aEgg, Dl g(z), v€ R, (2.3.2)
t=0

where e = (e1,e2,€3), 8 = (g1, 92, 93) are given vector functions with components
depending on x; f = (f1, fo, f3) is a given vector function with components depending
on z and t. Let & = (g)3x3 and M~ = (u;;)3x3 be symmetric, positive definite

matrices with constant elements.

We supposed that the components of vector functions e(x), g(z), f(z, ) are given



26

in the following polynomial form

p p p
e(z) = Z Z Z ey ghypman (2.3.3)

k=0 m=0 n=0
p p p
k7 ) k
alr) = Z Z Z g """ e ey (2.3.4)
k=0 m=0 n=0
p p p
k7 b k
filz,t) = Z Z Zfl (e (2.3.5)
k=0 m=0 n=0
where p is a given nonnegative integer; ;™" g/"" are given real numbers; f,""™"(t)

are given continuous functions of t; | = 1,2, 3; k, m, n are running 0, 1,2, ..., p.

We find a solution E(x, t) of (2.3.1), (2.3.2) in the following polynomial form with

undetermined coefficients depending on ¢:

p PP
Ey(x1, 19, x3,t) = Z Z Z Ef™M ) ak e, (2.3.6)

2.3.2 Method of Computing a Polynomial Solution

In this Section we obtain the recurrence relations for undetermined coefficients

E;""™"(t) and then, we describe a procedure of their successive recovery.

Recurrence Relations for EF™"

We note that for the symmetric, positive definite matrix £ there exists an orthogonal
matrix S = (S;;)3x3 such that STES = D, where D is a diagonal matrix with

nonnegative diagonal entries that are eigenvalues of £; ST is transpose to S.

Letting E = SE and substituting this into (2.3.1), (2.3.2) and multiplying with ST
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from left hand side we obtain

O?E

Dﬁ + STeurly,( M~ teurl,(SE)) = STf(x,t), =€ R® t>0, (2.3.7)
- E
E(z,0) = STe(x), 0 ((;Lf’t) = STg(x), r € R (2.3.8)

t=0

Using E=S"E equation (2.3.6) may be written as follows

p p p
E(ry, 22, 5,t) = » > Y EF(t)afal'al, (2.3.9)

k=0 m=0 n=0

where EF7 (1) = STEF™"(t), B (£) = (EP™"(t), Ey™"(t), ES™"™(1)).

Substituting (2.3.3), (2.3.4), (2.3.5) and (2.3.9) into (2.3.7), (2.3.8) we obtain

82Ek,m,n T ok k ~ o
. ,m,n . m,n +2,m,n
D = STE () — Y e,
Frmizn fhmnt2 fhtlmiln fElmatl Ek,m+1,n+1i| (1), (2.3.10)
Ek,m,n(o) _ STek»m»n’ (2.3.11)
aEk,m,n
— STghmn 2.3.12
ot li=0 & ( :
Hete 7 — (e, ehme, i), g _ (ghma, gfmn,
fk,mm(t) = ( f’m’”(t), f’m’”(t), :fm”(t)) are known vector functions; the vector

operators Y*™" are defined by the following formulae

kmn | Bk+2,mn Bkm+2,n Tkmn+2
Y [E £ £ ,

Ek+1,m+1,n’ ]@k+1,m,n+17 Ek,m+1,n+1 (t) — STBk’m’n(t),

here the components of the vector functions B¥™"(¢) are defined by

kmmn k,m,n k,m,n k,m,n
By = s Ty + psp T A+ pissT

k.m.n k,m,n k.m.n
—pan Ly - M22T5 - ,U23T6 )
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kmmn k.m.n k.mn k,m,n
B, = puly + 275 + pasTy

k,m,n k,m,n k,m,n
—puz1 1y — 32Ty — 33Ty,

kmmn k,m,n k,m,n k,m,n
By = puor I + ooy + pasTy

k,m,n k,m,n k,m,n
— 111y — 1215 — 3Ty,

where
le,m,n = (m + 2)(m + 1)(331E’“f,m+2,n + 532E~1§:,m+2,n + SggEg’m+2’n)

—(m+1)(n+ 1)(Sp EY™ M 4 S BRI 4 Gps L),
Ty = (m 1)(n 4+ D (SuBy™ T 4 S By ™ 4 S Byt
—(k + 1)(m + 1)(Sy By M 4 Sy ERFLmEL G Ry,
Ty = (k+ 1)(m + 1)(Sn By T 4 Spp B TR 4 S By TR
—(m +2)(m + 1)(Su EY™5" + S By 4 S EYTA;
Tf’m’n = (m+1)(n+ 1)(531Ef,m+1,n+1 I SSZEg,mH,nH 4 Sgg@éc,erl,nH)
—(n 4 2)(n+ 1) (Sy EP™ 2 4 Sy By ™ 4 Sog )

T3 = (n+2)(n+ 1)(Su by ™" 4 SpEy™ ™ + S By
—(k+ 1)(n + 1)(Ss By 1™ 4 Sy Byttt 4 gyttt
Tg™" = (k+ 1)(n+ 1) (Sq By 7" 4 Spp By 4 S By

—(m+1)(n+ 1)(Sy BP" M 4 S BRI 4 g EY L),
T = (k4 1)(m + 1)(Ss Ey T 4 Sgp By THm L G LML)
—(k 4+ 1)(n + 1) (S By 4 Sy By THL 4 Sy g T,
Tg™" = (k+ 1)(n+ 1S By 4 S By 4 5 By
—(k+2)(k + 1)(S1 EY ™" 4 S By P2 4 Sgg YT,

Ty™" = (k+2)(k + 1)(Sa By ™" 4 Sy By 2™ 4 Syg By )

—(k + 1)(m + 1)(Sy EFbmein 4 g phttmln | g phtlmtiny
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In these expressions we assume that the components of the vector functions

ppt2mn  fkpt2n gpkmp+2  pptlptln petlmptl fk,p+1,p+1
E , E , E , E , E , E
are equal to zero.

Equalities (2.3.10)-(2.3.12) are equivalent to the following relations:
_ _ t
Ek,m,n — Fk‘,m,n(t) o / (t o T)D—lﬂrk,m,n [
0
Fht2mn fkm+2n fkmnt2 fktlmtln fok+lmntl Ek,m+1,n+1] (r)dr, (2.3.13)
where the components of the vector functions Fk’m’”(t) are defined by

km.mn T kmymn T km,n T km,n T kmmn T kmmn T kmmn
FR(E) = Sper™ + Spey™ " + Sppey ™ + t<Sllgl + 5192 + 51393 )

t

s [ (ST )+ BT + SEA™ )
0
1
where k =p,p—1,....,0;, m=p,p—1,...,0; n=p,p—1,...,0and 7 [=1,2,3
l
are diagonal elements of D! that is inverse of D.
Procedure of finding E*™"
We suppose that the components of the vector functions
ek,m,n — (elf,m,n’ eg‘,m,n’ elg,m,n>’ gk,m,n _ (gf,m,njg;c,m,n, g,m,n)7

ER(E) = (FE (L), TR, ()

are known forall k =p,p—1,...,0; m=p,p—1,....0; n=p,p—1,...,0. The
procedure of finding E*™" consists of the sequence of the following iterative steps of

constructing some formulae from the others using the relation (2.3.13).
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Step 0:

Ep+2,m7n — Ek,p+27n — Ek,m,p+2 — Ep+1,m,n — Ek,p—i—l,n — Ek,m,p—H =0

whenk=p+2,p+1, ....00m=p+2,p+1,...,00n=p+2,p+1, .. 0. This
fact follows from (2.3.9).

Step 1: using zero values from step 0 we compute formulae for
Epmn ERPrCERTE p—p op—1, .., 0 m=p,p—1,.,0, n=p p—1, .., 0.
Step 2: from the relations obtained on previous steps we compute

Ep_l’m’”, Ek’p_l’”, Ek’m’p_l, k=p—1,..,0, m=p—1,..,0, n=p—1, ..., 0.

Step p: from the relations obtained on previous steps we compute
Etmn BB BRI for k=1,0; m=1,0; n=1,0;

and E%°0,

Finally, components of EF™" are found by EF™" = SEF™" for all k = p,p —
1,..,0;, m=p,p—1,..,0; n=p,p—1,...,0.

Constructing an explicit formula for a solution of (2.3.1), (2.3.2) with polynomial

data

Using the procedure described in Section 3.2 and symbolic computations, a solution
E = (Ey, Es, E3) of the IVP (2.3.1), (2.3.2) is constructed. The implementation of
this method has been made in Maple 10. The explicit formulae for the components
of E = (E,, Es, E3) have been constructed for arbitrary polynomial initial data and
polynomial inhomogeneous terms. Using the direct substitution we have checked that

constructed formulae give exact solutions of the IVP. We note that when a degree of
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polynomials is greater than 10 the formulae for components of E are cumbersome and
take several printed pages. The robustness of the method is illustrated by the following

example.

Example: Let £ and M be arbitrary matrices defined as follows:

3 1 1 25 9 0
E=11 3 1|, M= 9 25 0
11 3 0 0 3

The polynomial data and polynomial inhomogeneous term are given by f = 0; e = 0;

g = (91, g2, g3), Where

g1(x) = (z1 + 5wy + T23)® + (623 +2)3 + (23 +7) + (622 + 5)?,

g2(z) =0, g3(x) =0.

Applying our method we compute the explicit formulae for the components of E =
(E1, Es, E5) and then we verify that E(z, t) is an exact solution of (2.3.1), (2.3.2). The

formula for the first component of E is

12890969 16648236747 9
FBy=— -t —1/42 ) ast — [ — 10— = ¢4
! 2720 / > 3 157216000000000 s )Tt
42 102255408409 353 82
—z° ity 26250 2 x5° 2
5 T Tst agao000 ¢ 2t T T
) . s 5 3 7146489
+ 26250t Tr1 Ty T3 + 10500¢ 1 T2 X3 + 2176 t Tr1 Ty T3
7146489
+ 2100 %2, 3z0 %05 + 210 221 Yy 24 + 0830 tr12xy x5 + 73500 t2xy 2035
9 2 2 o 00025423 , 2 2.3 2 2 2.3
+22050t°x1 2o x5 —i—Wt T1 o x3°+2940t 2% x5 x3° +102900t° 21 22 23°+

2785143077 ¢ 1

20580 t2x,> 3 4+ 720302 4 - — 4 5/2¢% ) 152
T1 To T3 + T1 T T3 + 23120000 +272 —|— / XT3 +

15803 89659509633399 50025423
0 t* + ——— t'zyws® + 91875 7wy s
O e
43 1901 Ty + 6 t221° 19 + 75 201 2y

1701545 , 5 50025423 , ,

tl’l XT3

2

t -
10880 TU2 T 0810000
—t4 2 2 500t2 3 3 t
i35 v T2t e PRI Teenn
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2382163 , 4 102255408409

54400 1T 73699200000

100842
t2x11354—100842t2x2x35+-(

tﬁfEl T3 + 3750 thl l‘25
90486639

4624000000
20713427 18258382989 6 3

1 4 1/10¢2 141
+1/3 ( 13600 t'+1/10¢ ) T3 +1/3 ( 462400000 t 1600
( 11586204279 8 36 ( 2105971682967 10

— ¢ 54+1/3 (-
1572160000000 + 5 > w1/ 53453440000000000

+ 147 t2I14£L'32 +

+ 1875 2w 2wt +

t84—18t2);xﬁ

#+ﬂ>@2

365207660377 4

25332344433
1842 ) 2 + To

T —1/3 =/ ittt
68000 o / <628864000000 7398400000
61803 , 106350977 , , 157377087 , . 15626

L2 07" + —— 1,°
108800 1156000000
217752 6 54189t4 7 216t2 9 14727821839t6 9 484813t4 4

5 0T T g000 Tt T s U T 308000000 ¢ T 217600 ¢
( 4686508009809, 8667 4) 11910815 ,
1

L, 2000y
51381376000000000 © 272007 ) 1T Tor7g TR
163701753831 , 69 N o, 14, . 117649 ,

5
194800333
—U3Cz£%—#+ﬂﬂ2xf+ﬁ%ﬁm%f+%%%#m%f

. 116725987 . 116725987 .
171 2.3.3 1 9 2.3.3 4 3 4 3.
+ 171500 t*z9 w3 + 1372721 23" + TE100 T1 T3 +—10880 To T3

Computational Comparison of Polynomial and Non-polynomial Solutions

In this Section we consider one example of an exact solution of (2.3.1), (2.3.2),
corresponding to non-polynomial smooth data. This exact solution is presented by
an explicit formula. Using our method we compute the polynomial solutions for data
which are polynomial approximation of given smooth data. The numerical values of
the computed polynomial solution and the numerical values of the non-polynomial
solution are compared at the same fixed points. The results of this comparison are

presented in the tables.

Example: Let & = diag(9,16,25), M = diag(16,25,36), e = 0, f = 0, g =
(91, 92, g3), where

. To, . T
g1 = sm(72) sm(g), g2 = g3 =0. (2.3.14)

By the direct calculation we can check that the vector function E = (E,, Es, Ej),
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where
1890 1 1 V421
E, = i sin(?xz) sin(§x3) sin( 1890 t), E,=E;=0,

is an exact solution of (2.3.1), (2.3.2) corresponding to the given data. To find a

polynomial solution we approximate g; by polynomial. Here we use the formula

i )2m+1
Sln G/Z
= 2m + 1

After approximation of g; we have an IVP with polynomial data. Applying our method
we have found an explicit formula for a polynomial solution EV = (EN EY EN).
Taking points (z1, z9, x3) as (1,1,1), (3,1,2), (2,2,2), (3,2,3), (4,4,4), (5,5,5) we
find the numerical values of the exact and polynomial solutions. These values and
results of the comparison of the first components of exact and polynomial solutions for

N = 5and N = 30 are listed in Table 2.6 and Table 2.7.

Table 2.6 Numerical values of £y and EX¥ for N = 5 at fixed points.

t T ) T3 El(l‘, t) E{\f(tf,t) |E1 — E{V|
75 1 1 1 0.02210 0.02210 0.5-107

1 3 1 2 0.03137 0.03137 0.82-107°

2 2 2 2  0.12422 0.12422 0.170- 1077
75 3 2 3 0.12909 0.12909 0.503 - 1077

2 4 4 4 046503 0.46503 0.41361 - 107
2 5 5 5 0.81163 0.81168 0.0000507747
% 0.1 0.1 0.1 0.01211 0.01211 0.60647 - 1076

Table 2.7 Numerical values of £ and E{V for N = 30 at fixed points.

Ty 13  Ei(z,t) EN(z,t) |Ey, — BV
1 0.02210 0.02210 0.

2 0.03137 0.03137 0.1-10710
2 0.12422 0.12422 0.1-107°
3 0.12909 0.12909 0.1-107°
4
5
0

046503 046503  0.2-107°
0.81163  0.81163  0.1-1071°
1 001211 001211  0.1-1071

J

~~

(9
S Nk W WS
. —
SUL AP~ —
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2.3.3 Computing and Simulating Electric Fields in Electrically and Magnetically
Anisotropic Media

In this Section we describe an application of our method for computing electric fields
and simulating their images in four different anisotropic media. The initial data are
given by Shannon’s kernels. Shannon’s kernels are not polynomials and they are
widely used for modelling data in real processes and phenomena (see, Bonciu &

Leger & Thiel, 1998), (see, Wei, 2001). We take data as follows e = 0, f = 0,
g = (91, g2, g3), Where

1 1
g1(zq, 9, 23) = (362—7) sm(%)(ms—ﬂ) sin(%), (2.3.15)

92($17$27$3) = 93(%, 1727133) =0. (2.3.16)

We approximate g, (x1, 22, x3) by the finite Taylor series

N N N
gy =Y > gy ratalay, (2.3.17)

where N = 30.

The electric field in the sapphire

Let us consider the sapphire (this is a positive uniaxial crystal) in its principal axes
(see, Werner & Cary, 2007, Nye, 1967). In the axes obtained from principal by rotating
on 30° about z;-axis and then on 45° about z3-axis the magnetic permeability i and
the dielectric permittivity € can be written in the form (see, Werner & Cary, 2007)

It = oM, = 0. Here

10.225 —0.825 —0.55,/2
g=—1, M=1 £E= —0.825 10.225 0.55,/2 (2.3.18)

055,/ 055\/8 9.9
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where c is the speed of light, 1 is the magnetic permeability of vacuum, I is the
identity 3 x 3 matrix. For matrices £, M defined by (2.3.18) in the rotated axes, the
system (2.3.1) is a mathematical model describing the electric wave propagation in the
sapphire in a special time scale. In this Section we consider the system (2.3.1) subject
to data (2.3.2), where e = 0, f = 0, g = (g1, 92, 93)> 91(71, T2, x3) = gV (21, 2o, 13),
Go(w1, 2o, w3) = g3(x1,79,23) = 0. Here g (w1, o, 73) is defined by (2.3.17) for
N = 30. Using our method we compute an explicit formula for the electric field (a
polynomial solution EN = (EN, EN EYN) of (2.3.1), (2.3.2)). The graphs of the first
component of EV at z; = 0, ¢ = 1 are presented in Fig.1(a)-1(b).

0,0025

0,002

0,0015+

0,001

0,0005

(a) 3-D plot of E1(0, x2,x3,1) (b) 2-D plot of E1(0, z2,23,1)

Figure 2.3 The first component of the electric field in sapphire: 1 = 0, ¢ = 1.

Fig. 1(a) is a 3 — D plot of E;(0,xs,x3,1), where horizontal axes are =, and
3, respectively. The vertical axis is the magnitude of E¥ (0,29, x3,1). The different
colors correspond to different values of Ei¥ (0, z9,x3,1). Fig.1(b) is a screen shot of
2D level plot of the same surface E(0, 2o, 73,1), i.e. a view on the surface z =
E{V (0, z9, x3, 1) presented in Fig.1(a) from the top of z-axis. Fig.2(a)-(b) contain 2-D
plots of EN (0, xq, z3,t) fort = 3.4, 3.6, 4, 4.2, 4.4, 4.6.
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Electric fields in electrically and magnetically anisotropic media

In this Section we consider three anisotropic media with different material properties.
Two of them are electrically anisotropic but magnetically isotropic. The third medium
is electrically and magnetically anisotropic. The matrices of dielectric permittivity
& and magnetically permeability M are listed below and do not correspond to real
materials. We have taken these data for clarity in the graphical illustrations of the

behavior of electric fields in the different anisotropic media.

Electrically anisotropic medium 1. The permittivity and permeability of this

medium are defined by

0.00937 0.01776 0.01477
E=1 0.01776  0.005327 0.3453 |; M=1
0.01477 0.3453 0.08101

Electrically anisotropic medium 2. This medium is characterized by the

permittivity £ and the permeability M defined by

17.1598  13.0178 0
=1 13.0178  23.6686 0 ; M=L
0 0 44.4444

Electrically and magnetically anisotropic medium 3. Here we consider a medium
which is both electrically and magnetically anisotropic. The characteristics of this

medium are given by
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17.1598  13.0178 0 25 4 0
=1 13.0178  23.6686 0 ;o M= 4 25 0
0 0 44.4444 0 0 9

For each of the mentioned media we take the same data: e = 0, f = 0, g =

(91, 92,93), 92 = g3 = 0, g1 = g1V, where g¥" is defined by (2.3.17) for N = 30.

The results of the computation and simulation of electric fields for different
anisotropic media 1-3 are presented on Fig.3-5, which are 2-D plots of the first
component of the electric fields E1¥ (0,5, x3,t) of anisotropic media 1-3 for the

different values ¢t and N = 30.



(a) 2-D plot of E,(0, z2, 3, 1) (b) 2-D plot of E1(0, z3, x5, 20)

(c) 2-D plot of E1(0, x2, x3,24) (d) 2-D plot of E1(0, z2, x5, 28)

(e) 2-D plot of E (0, 22, 3, 32) (f) 2-D plot of E, (0, z2, z3, 36)

Figure 2.4  2-D plots of the first component of the electric field in the sapphire
atzy =0,t =1, 20; 24, 28; 32, 36.
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(a) 2-D plot of E4(0,x2,x3,1/16) (b) 2-D plot of F4(0, z2,x3,3/8)

(c) 2-D plot of E4(0,x2,z3,7/16) (d) 2-D plot of E4(0, z2,x3,1/2)

(e) 2-D plot of E; (0, 2, x3,9/16) (f) 2-D plot of E, (0, 2, 23, 5/8)

Figure 2.5 2-D plots of the first component of the electric
field in the electrically anisotropic medium 1 at x; = 0,
t=1/16, 3/8; 7/16, 1/2; 9/16, 5/8.
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(a) 2-D plot of E4(0, 22, z3,1) (b) 2-D plot of E1(0, 22, x3,24)

(c) 2-D plot of E1(0, x2, x3, 26) (d) 2-D plot of E1(0, z2, x5, 28)

(e) 2-D plot of E (0, z2, 3, 30) (f) 2-D plot of E, (0, z2, x3,32)

Figure 2.6 2-D plots of the first component of the electric field in the
electrically anisotropic medium 2 at z; = 0, t = 1; 24; 26; 28; 30; 32.
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(a) 2-D plot of E1(0, 22, z3,40) (b) 2-D plot of E1(0, 22, x3,64)

(c) 2-D plot of E1(0, z2, x5, 80) (d) 2-D plot of E1(0, z2,x3, 88)

(e) 2-D plot of E (0, z2, 3, 96) (f) 2-D plot of F (0, z2, 3, 104)

Figure 2.7 2-D plots of the first component of the electric field in the
electrically and magnetically anisotropic medium 3 at zr;y = 0, t =
40; 64; 80; 88; 96; 104.
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2.4 Theoretical and Computational Comparison of Polynomial and

Non-polynomial Solutions for IVP of Electric Field Equations

The meta-approach of energy estimates for hyperbolic systems is well-known (Courant
& Hilbert, 1979). In this Section we adjust this general approach for the description
of stability estimates (energy inequalities) of solutions of the initial value problem
(2.3.1), (2.3.2). Using these stability estimates we establish that polynomial solutions
are approximate solutions of (2.3.1), (2.3.2) with non-polynomial smooth data. The
results of a comparison of numerical values of an exact solution of (2.3.1), (2.3.2),
corresponding to non-polynomial data, and values of polynomial solutions, which are

computed by our method for approximated data, are presented in this Section.
2.4.1 Energy Estimates of IVP of Electric Field Equations

Initial Value Problem (2.3.1), (2.3.2) in the Form of the Cauchy Problem for a
Symmetric Hyperbolic System

Letti
etting t
H(z,t) = —/\/l_l/ curl, E(x, 7)dr,
0

jlx,t) = Eg(x) +/0 f(x, 7)dr,

we find that (2.3.1), (2.3.2) is equivalent to the following Initial Value Problem (IVP)

for the first order partial differential equation system

OE

EE — curl,H = j(x,t), (2.4.1)
M7 teurl,E = —%—?, (2.4.2)
E(z,0) = e(x), H(x,0)=0. (2.4.3)

The IVP (2.4.1), (2.4.2), (2.4.3) can be written in the form of the Cauchy problem
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for the symmetric hyperbolic system

3

oU oU

Ag— Ay— =F 3 2.4.4

°8t+Z;k%m T ER >0, (2.4.4)
U(z,0) = ®(z), (2.4.5)

where U = (Ul, ceey U(;)T, Uk = Ek, U3+k = Hk, k= 1,2,3; P = (61, 62,63,0,0,0)T;
F = (j17j27j3707070)T7

g O X 0 X B
Ay = AN A= T TR k=123 (2.4.6)
0343 M B 0343
0 0 0 00 —1 0 10
Bi=|l0 0 1], B=loo o |, B=| =100
0 -1 0 10 0 0 0 0

Here ey, ey, e3 are components of e; j1, jo, j3 are components of j; Ey, kK =1,2,3
are components of E and Hy, k = 1,2, 3 are components of H. [5.3 is the identity
matrix of the order 3 x 3, 0343 is the zero matrix of order 3 x 3. BkT is the transpose
matrix of By. Since matrices £ and M are symmetric, positive definite matrices then
Ay defined by (2.4.6) is symmetric, positive definite and therefore there exists a real
symmetric, positive definite matrix S (Goldberg, 1992) such that A;' = S? (i.e. S =
Ay %). Letting

U(z,t) = SV(z,t) (2.4.7)

and substituting (2.4.7) into (2.4.4) and multiplying the obtained relation by S from

the left-hand side we have ,

oV ~ 0V <
— Ay— =F 24.8
5 T2 Ay, =F (2.4.8)
k=1
where
Ay = SA,S, F=SF.
Since S and Aj are real symmetric matrices, we have that 21{ = (S4,9)T =

ST(SAL)T = STALST = SALS = Ay and hence A}, is symmetric. Initial data (2.4.5)
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may be written as

V(z,0) = ®(z), (2.4.9)

where ®(z) = S~'®(x). Therefore (2.3.1), (2.3.2) is written equivalently as the
Cauchy problem (2.4.8), (2.4.9).

Stability Estimate for the Cauchy Problem of a Symmetric Hyperbolic System

Let V(x,t) and V*(x,t) be two continuously differentiable solutions of (2.4.8), (2.4.9)
corresponding to initial data ® (), ®*(z) and inhomogeneous terms F(z, t), F*(x, t),
respectively. Denoting V=V-V,&=0_-0" F=F— F  we find from (2.4.8),
(2.4.9)

~ (‘)V A
Z re R t>0, (2.4.10)
8Ik
V(z,0) = ®(z), =€ R (2.4.11)

Let T be a fixed positive number, £ = (£1,&2,&3) € R3 be a parameter; A(€) be a
matrix defined by A(¢) = Zizl A& An(€), n=1,2,...,6 be eigenvalues of A(¢).
The positive number M is defined by

M = X Iél'a}l( IAn(E)]- (2.4.12)

Using T and M we introduce the family of spheres in R* by

Sh)={z e R :|zx| <M(T—-h)}, 0<h<T. (2.4.13)

Applying the reasoning similar to (Courant & Hilbert, 1979) (p. 652-661)(see also
Appendix B) we find the following estimate for the solution of (2.4.8), (2.4.9)

h
/ V(z, h)|%dz < eh[ / | (2)|2dz + / ( / |F(x,t)|2dx)dt] (2.4.14)
S(h) 5(0) 0 S(t)
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Stability Estimates of IVP of Electric Field Equations

Let now E = (F4, F», F3) and E* = (ET, E;, EX) be two continuous differentiable
solutions of (2.3.1), (2.3.2) corresponding to given initial data e = (e, e, e3), g =

(91,92,93), € = (ef,e5,€3), g8 = (97,95, 95) and inhomogeneous terms f =

(f17f27f3)7 = (fikaf2*7f?>>k)7 respectively.

Let Ek = Ek —E;;, ék = €k —62, gAk = gk—g;:,, fk = fk —f]:, ]{J = 1,2,3;
P = (by,...,06), Dy =5, P31, =0, k=1,2,3;

F = (Fly "'7F6)7 Fk = (j17j27j37070a0)
where jj are components of j that is defined as j(z,t) = £g(x) + fot f(x, 7)dr,
U= (U1, ... Us), Uy = E}, Usyy = Hy,

where H), are components of H that is defined as

t
H(x,t) = —./\/l_l/ curl, E(z, 7)dr.
0

Applying results of Section 2.4.1 and using the inequality (2.4.14) we find the
stability estimate for solution of (2.3.1), (2.3.2)

Ol

/ A0 (2, b)|2dx < eh[/ A2 & (2)[2da
S(h) S(0)

h 1
+/ (/ |A65F(x,t)|2dx>dt] (2.4.15)
0 S(t)

1
where A is the symmetric positive definite matrix defined by (2.4.6), A is the square

_1 1
root of Ay, A, ? is the inverse matrix to A;.
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2.4.2 Theoretical Comparison of Polynomial and Non-polynomial Solutions

Let T be a given positive number, M be the number defined by (2.4.12); S(h) be the
family of spheres in R* defined by (2.4.13); T" be a cone with the vertex (0, 7") defined
by

F'={(z,t):0<t<T, x| < M(T—1t)}. (2.4.16)

Let E be a solution of (2.3.1), (2.3.2) corresponding to polynomial data e, g
and polynomial inhomogeneous term f of the forms (2.3.3), (2.3.4), (2.3.5); E* be
a continuously differentiable solution of (2.3.1), (2.3.2) corresponding to e*, g*, f* and
let e*(z), g*(z), f*(x,t) coincide with e(z), g(z), f(x,t) for x € S(0) and (z,t) € T
only, and the behavior of e*(x),g*(x),f*(x,t) be unrestricted outside S(0) and T,

respectively.

Using polynomial presentations of e(z),g(z),f(x,t) we construct polynomial
expansions of E(z, ) in the form (2.3.6) by the analytic method described in Section
2. Applying the inequality (2.4.15) we find that E*(z,t) = E(z,t) for (z,t) € T.
This means that this analytic method can be used to validate a computational code for
finding a solution E*(x,t) in the bounded domain I if data are polynomial in I" only.
We note also that the stability estimate (2.4.15) shows that a small variation of data
e(x), g(z) for z € S(0) and inhomogeneous term f(z,t) for (x,t) € ' corresponds
to a small variation of the solution E(z,t) for (x,t) € I". This theoretical result is

confirmed by computational examples.



CHAPTER THREE
FUNDAMENTAL SOLUTIONS OF LINEAR ANISOTROPIC ELASTICITY:
PROPERTIES, DERIVATION, APPLICATIONS

Fundamental solutions of partial differential equations play an important role in both
applied and theoretical studies on physics of solids (see, e.g.(Stokes, 1883); (Poisson,
1829), (Volterra, 1894); (Fredholm, 1908); (Mindlin, 1936); (Mindlin & Cheng, 1950);
(Phan-Thien, 1983); (Huang & Wang, 1991)). In this chapter, the system of partial
differential equations of anisotropic elasticity is considered. The inhomogeneous
term of this system has a finite support. This system is considered for cases when
displacement vector depends on one, two or three space and the time variables. A new
method is suggested to find fundamental solutions for these cases. This method is based
on properties: fundamental solutions of the considered system have finite supports with
respect to space variables for any fixed time variable; the Fourier images of solution
components are analytic functions with respect to parameters of the Fourier transform
and these Fourier images can be expanded in power series. The method consists of
following. The system of equations of anisotropic elasticity is written for each cases.
These equalities are written in the form of the Fourier images. Using power series
presentations with unknown coefficients depending on t we construct the recurrence
relations. These unknown coefficients are obtained using a procedure. Using these
coefficients Fourier images of solution components can be obtained. Applying inverse
Fourier transform to these images, fundamental solutions of the system of anisotropic
elasticity can be constructed. Using mathematical tools (Maple 10) simulation of
fundamental solutions in different anisotropic materials are presented. Computation
examples confirm the robustness of our approach. In the chapter applications of the
fundamental solutions for solving the Initial Value Problems (IVP) for the system of

anisotropic elasticity is described.

47
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3.1 Definitions and General Equations of Elasticity

In this section we consider basic definitions and equations of linear elasticity.
Detailed explanation can be found in the books (Dieulesaint & Royer, 1980), (Fedorov,
1963), (Landau & Lifshitz, 1998).

Consider a solid body which is subject to external forces. This body deforms in
shape and points inside the body move. Let z be a point in the undeformed body
whose coordinates are (1, o, z3) and 2’ denote the same point after deformation with
coordinates (2!, =5, 2%). The displacement of the point z at time ¢ is the vector U =
(Uy, Uy, Us), called displacement vector, with components

)

—a, i=1,23. (3.1.1)

Since different points in the body displace differentially during deformation, U is a

vector-function of the coordinates of the point in the body.

Let x and 7 be points infinitely close to each other, with small displacement dx =

(dzy,dxs, dxs), where

We denote the new locations of these points after deformation with 2’ and z/, and

the displacement of them with dz’. Then we have
dr; = dx; + dUi(x,t), i=1,2,3,

where dU;(x,t) = U;(Z,t) — U;(z, t). Noting the relation

the squared difference of the displacements dx and dx’ can be found as

3 3

S (dal)? = 3 (de) =
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23: <8Ui($,t) aUk (x,1) Z oU,(z,t) OU,(x, t)> dordr,

, oxy, oxy, ox;
i,k=1

from which we define ¢;;, in the form

€ = 1 <8U1($,t> (9Uk ZE t Z 8Ul ZE t (9Ul QL' t)) ’ (312)

2 oxy, Oxy, 0x;

ik=123

The terms €, i, k = 1,2, 3 form a second-order tensor with 9 components, which
is called strain tensor. It follows from formula (3.1.2) that strain tensor is symmetrical,
ie.

€ik = €k

It is usually assumed that the deformation of a solid is small. Therefore we can omit

the last term in (3.1.2) to define strain tensor for small deformations with relation

1 (0Ui(z,t) = OUp(x,t)
€ik = 5 ( Dy + oz, : (3.1.3)

Let the forces applied to elastic body that cause deformation be removed. In this
case it tends to return its original state. This occurs due to internal forces arising in the

deformed body. These forces are called internal stresses.

Let f = (f1, fo, f3) be the force per unit volume. Then the total force F =

(Fy, Fy, F3) on a volume V' can be found by the volume integral

F:/ﬂm
Vv

where fdV is the force on the volume element dV'. Since these forces also act on the
surface bounding that volume, F can also be written as a surface integral. To do this

we define f; as the divergence of a second-order tensor with the formula

8alk .
=1,2,3
ZM i=12,
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and apply divergence theorem which gives

3 3
(9aik .
/fidv— /; oz, av = ]{;mknkd&

The tensor oy is called the stress tensor. From the fact that in equilibrium, the sum
of the moments of all forces must be zero the symmetry property of the stress tensor
follows, i.e.

Oik = Okiy 1, k= 17 273

As we stated above when external forces are applied to an elastic material, internal
stresses arise to remove the deformation. It is clear that if the deformation is big the
stresses will be big. So there is a relation between stress and strain, which can be stated

by writing stress as a function of strain
Ojk = ajk(elm).

We write the Maclaurin series expansion of each 0. Since ¢;,,, are small we neglect

the terms after first degree and obtain

3
0o
oje = o(0) + > ( a‘;”) €im. (3.1.4)
m €1m=0

I,m=1

Noting that if there is no deformation the stress is zero we have 0,,(0) = 0. So

(3.1.4) becomes
3

Ojk = CikimEim: (3.1.5)
I,m=1
where
aO'jk>
Ciklm = ( . (3.1.6)
J 8elm =0

Formula (3.1.5) is called Hooke’s law and c;;,, are called elastic moduli, which
form a fourth-order tensor. This tensor is called the tensor of elastic moduli and it has

3% = 81 components. Recalling the symmetry properties o5 = Oj, €m = €, Of stress
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and strain tensors we get the following symmetry properties for elastic moduli

Cikim = Ckjim = Cjkmi, (3.1.7)

which reduces the number of independent components to 36. Furthermore, due to

considerations for the density of potential energy

3 3
1 1
Q= 9 Z TikCik = 5 Z Cikim€jkElm (3.1.8)

]’kzl j7k7l?m:1

arise an additional symmetry property

Ciklm = Clmjk, (3.1.9)

which decrease the number of independent c;,,, to 21. Due to the properties (3.1.7),
(3.1.9) it is convenient to represent the fourth-order tensor of elastic moduli in terms
of a 6 x 6 matrix called stiffness matrix, which we denote by C. This representation
is realized by replacing the pairs (j, k) of indices j,k = 1,2,3 with a single index

a =1,...,6 according to the following rules:

(1,1) «—1,  (2,2)—2,  (3,3) — 3,
(2,3),(3,2) «— 4,  (1,3),(3,1) — 5,  (1,2),(2,1) «— 6.

(3.1.10)

Similarly, replacing the pairs (I, m) of indices [, = 1,2,3 withindex 5 = 1,...,6

in accordance with (3.2.1) gives
CaB = Cjkim,

where c,s are components of the matrix C. From property (3.1.9) we have the

symmetry condition ¢, = cgo, Which implies that C is a symmetric matrix.

Definition 3.1.1. The tensor of elastic moduli ¢, are positive-definite if the

inequality
3

> Crambinkim > 0 (3.1.11)

jvkvlvmzl

is satisfied for arbitrary non-zero second-order tensor & = (&;i)3x3. (Knops & Payne,
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In the thesis we assume that the tensor of elastic moduli is positive definite. Note

that (3.1.11) can be written in the form

6
N Casals >0, E£0.

a,f=1

(3.1.12)

As aresult, the tensor of elastic moduli can be written as a 6 X 6 symmetric, positive-

definite matrix

with 21 independent components in general.

C11
Ci2
C13
Ci4
C15

C16

C12
C22
C23
C24
Ca5

C26

C13
Ca3
C33
C34
C35

C36

Ci4
Caq
C34
Cqq
C45

C46

C15
Ca5
C35
C45
Cs5

Cs6

Ci6
C26
C36
C46
Cs6

Ce6

: (3.1.13)

Anisotropic materials are classified into

7 systems, and (3.1.13) is the stiffness matrix of the most general anisotropic system

called triclinic. Each system has special form of stiffness matrix. The other 6 systems

and their stiffness matrices are presented in Table 3.1.



Table 3.1 Table of stiffness matrices.
[ ci1 ci2 i3 0 0 ¢ |
Cla C2 c3 0 0 o
c13 C23 ¢33 0 0 c36
0 0 0 Cqq4 Cy5 0
0 0 0 Cq45 Cs5 0
| c16 c6 6 0 0 e |

Monoclinic

[ e Cl2 €13 Cia  —C2p
€12 €11 €13 —Ci4 C25
c1i3 ¢z c3 0 0
ciy —cuu 0 cy 0
—co5 co5 0 0 C44

L 0 0 0 C25 C14

[ cii ¢z ¢z 0 0 Ci6
ciz ¢ ¢z 0 0 —cie
ci3 ¢z ¢33 0 0 0
0 0 0 Cqq 0 0
0 0 0 0 cy 0

L Cig —Ci6 0 0 0 Ce6

[ Ci11 C12 C13 0 0 0
Ci2 C11 C13 0 0 0
Ci13 C13 C33 0 0 0
0 0 0 Cy4 0 0
0 0 0 0 Cy4 0
0O 0 0 0 0 %

I—iexagonal

[ C11 Ci2 (13
Ci2 Ca2 C23
C13 C23 Cs3
0O 0 O
0 0 0
i 0 0 0
Orthorhombic
0 [ en c2 cs3
0 12 c11 €13
0 €13 €13 €33
C25 ciy —cuu O
Cl4 0 0 0
C11—C12 0 O 0
Trigonal
1 [ Ci1 Ci12 C13
Ci2 Ci1 C13
€13 C13 (33
0 0 0
0 0 0
| 0 0 0
Tetragonal
1 [ C11 Ci2 Ci12
Ci2 Ci1 Ci2
Ci2 Ci2 C11
0 0 0
0 0 0
i i 0 0 0
Cubic

0
0
0
Ca4
0
0

C14
—C14
0

Ca4
0
0

0
Ca4
0
0

0
Ca4
0
0

o O O O

C

O ot
>

o O O O

Ca4
C14

[a) o O OO

o O OO

e
N
~

e}

S OO OO

Ce6

o O O

0
C14

€i1—C12

o OO OO

Ce6

S OO OO

Ca4
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The formulation of equations of motion of a deformed elastic body is derived from
the fact that the sum of all forces must be equal to zero under equilibrium condition.
Denoting the density of external forces with [}, 7 = 1,2, 3 and neglecting the body

forces the equations of motion can be written in the form

Z D4 Fi(a,t),  j=1,23, (3.1.14)
8xk

8752

where © = (21,22, 23) € R%, ¢ > 0and Uj(z,t); (j = 1,2, 3) are the components of
the unknown displacement vector U(z,t). F;(z,t); (j = 1,2,3) are the components

of nonhomogeneous vector function F(z, t) depending on z, t.

3.1.1 IVP for the System of Elasticity

The mathematical model of elastic wave propagation in a homogeneous, anisotropic

medium [(Royer & Dieulesaint, 2000); (Cohen, 2002)] is described by

Z 9 + Fi(z,t), j=1,2,3, (3.1.15)

8t2 8£L'k

oU;(x, 1)

Uj(l‘,O) :Gj(x)7 ot

= H;(z), (3.1.16)

t=0

where * = (z1,29,23) € R ¢t > 0 and Uj(z,t); (j = 1,2,3) are the
components of the unknown displacement vector U(x,t). F;(z,t); (j = 1,2,3) are
the components of nonhomogeneous vector function F(x,t) depending on x,¢ and
G, H; are components of initial data G(x); H(z) depending on x variable only. The

constant p > 0 is the density of the medium. Stress tensor o, are defined as
3
Ok =D CktmEum, (3.1.17)
I,m=1
and the strain tensor is defined as

ol | %>. (3.1.18)

Clm = (axm ox;
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{¢; klm};’ k.1.m—1 are elastic moduli of the medium which is a forth-order positive definite
constant tensor that satisfy the symmetry properties Cjiim = Cimjk = Cijim = Cjkmi

[(Fedorov, 1963); (Royer & Dieulesaint, 2000); (Knops & Payne, 1971)].

The system (3.1.15) is hyperbolic. The proof related with hyperbolicity of dynamic

elastic system is given in Appendix.

3.2 IVP for the System of Elasticity Depending on x5 and ¢ Variables

3.2.1 Reduction of System Depending on x3 and t Variables to a First-Order
Symmetric Hyperbolic System

In this section we explain the process of writing (3.1.15), (3.1.16) as a symmetric

hyperbolic system when displacement vector depends on x3 and ¢ variables.

Let us consider IVP of elastic system when inhomogeneous term F(x3,¢) be given
function depending x5 and t variables and initial data G(x3); H(z3) be given functions
depending x5 variable. Thus, solution U of (3.1.15), (3.1.16) depends on x3 and ¢

variables.

Noting the symmetry properties 0, = 0y;, €, = €; of stress and strain tensors and

the rule
(1,1) <1, (2,2) <2, (3,3) < 3,
(2,3),(3,2) = 4, (1,3),(3,1) =5, (1,2),(2,1) < 6, (3.2.1)
we denote a pair (j, k) of indices j, k = 1,2, 3 as a single index a, « = 1, ..., 6. Using

this renumeration we can write

T = [0-170-270-370-470-5a0-6]*7 €= [617627637 64765766]*a (322)
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where * is the sign of transposition. Let us define

Y: [61,62,63,264,265,266]*, Ij: [Ul,UQ,Ug]*, (323)
where
— 0U;
L= =1,2,3. 24
1 8t ) 1 ) 73 (3 )
Since B ,

ou;,  0°U;
= 3.2.5
ot ot? ( )

the left-hand side of (3.1.15) can be written in vector form

0*U ou
= p— 3.2.6
Porr ~ o (5:2:0)
3
. do jk . . .
Consider the term Z 5 on the right-hand side of (3.1.15). Applying rule (3.2.1)
Tk

k=1
forj = 1,2, 3 gives

3
aO'lk 80'13 (90'5
pu— = — .2-7
0xy, Oxrs  Oxs’ (3.27
k=1
3
802k 80'23 (90'4
pu— = — .2-
0xy, Oxrs  Oxs’ (3.2.8)
k=1
3
803k 80'33 (90'3
= = —_— .2.
p oxy, 0x3 03 (3.29)

Using the vector T, (3.2.7)-(3.2.9) takes the form

3
0 oT
aalk - [0707070a 170] : a_a
iy 9Tk T3
3
0 oT
aa2k - [070707 1a 070] : a_a
i 97Tk T3
3
ang oT
= 10,0,1,0,0,0] - —.
axk [ ) ) ) ) ) ] axg

k=1
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) ) oT ) )
Noting the coefficient vectors of terms ETee we introduce the matrix
I3

00 0 0 —10
Al=100 0 -1 0 0 (3.2.10)
00 -1 0 0 0

3
9o
and represent Z %, 7 =1,2,3 in the form
k=1

3
3 9o _ _ p19T (3.2.11)
8xk

P 0m
From (3.2.6) and (3.2.11) it follows that we can rewrite (3.1.15) as

ou oT
T+ Al =f 2.12
Por T8, T 1 (3:2.12)

where f = (f1, f2, f3)-

Relation (3.1.17) can be written as two summations

3 3
Ok = Z Ciklm€im + Z Cikim€im, J,k=1,2,3. (3.2.13)

lym=1 lym=1
l=m l#m

Denoting the pair of indices (j, k) witha, « = 1,...,6, ([, m) with 5, 3 =1,...,6,

according to rule (3.2.1), relation (3.2.13) can be written as

3 6
Ta =Y Capés+2 Cages, (3.2.14)
B=1 B=4

or in terms of vectors T and Y as
T =CY, (3.2.15)

where C = (cop)6x6 18 stiffness matrix defined with (3.1.13) that is symmetric and

positive definite (See, Section 3.1).
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Taking derivative of (3.2.15) with respect to ¢ and multiplying both sides by the

inverse of C, denoted C~!, we find

9T _9Y

%~ o (3.2.16)

Differentiating (3.1.18) with respect to ¢ and using (3.2.4) the following relations

can easily be obtained

an . 863 8U3
—=0,5=12; — ==
ot~ T 0T ot T ary
(3.2.17)
Oy _ 00, 05 _OUL O _
ot Oxs’ ot Oxg’ o
Using these formulas we get
oY ouU
—— = (A)=— 3.2.18
at ( 3) 8[E37 ( )

where Aé is given in (3.2.10). Substitution of (3.2.18) into (3.2.16) results the

expression

0T
C IE + (A})

*O_U = 0. (3.2.19)
8x3

Let V and F be vectors with 9 components in the form

U f
V= , F= , (3.2.20)
T 06,1
A3, be the 9 x 9 matrix
I; O 0 Al
Ag= | 72 S| A= 33 51 (3.2.21)
03 C* (A3)* Ogg

where I,,, is the unit matrix of order m x m and 0;,, is the zero matrix of order [ x
m. Since C is symmetric and positive definite matrix then C~! is symmetric and
positive definite matrix (see, appendix). Notice that the matrix A3 is also symmetric

and positive definite.
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Using these notations we can combine (3.2.12) and (3.2.19) to obtain a first-order
system
oV ov.

Ag— +A;— =F 3.2.22
08t+ 30x3 ( )

where 3 € R, t > 0. We finish this section by the following lemma.

Lemma 3.2.1. (see, (Courant & Hilbert, 1979), p.593-594), (see, (Yakhno & Akmaz,
2005) System (3.2.22) can be transformed into the following form
AY AY

Ip— +As— =F 3.2.23
98t+ 35)%3 ) ( )

which is an symmetric hyperbolic system.

Proof. Consider the symmetric positive-definite matrix C. There exists a symmetric
positive-definite matrix M such that C~! = M? (see Theorem A.1.2 of Section A.1),
and the matrix M, which is inverse of M., is also symmetric (see Theorem A.1.1 of

Section A.1). Using these facts we define the matrix

—3I; 0
s— |7 T (3.2.24)

06,3 M-t

and denote the vector V as

V = SV. (3.2.25)

Substituting (3.2.25) into (3.2.22) and multiplying the resulting formula with matrix
S from left-hand side we obtain (3.2.23), where

SAS=1,, A;=SA;S, F=SF. (3.2.26)

Since S and Aj, are symmetric, the matrices A, is also symmetric, which implies

that (3.2.23) is symmetric hyperbolic system. [
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3.2.2 Existence and Uniqueness of a Classical Solution of IVP for System Depending

on x3,t Variables . Properties of Solutions.

In this section we prove the existence of unique classical solutions depending on x5,
t variables. Also a property for existence of unique solutions with finite support is
proved when inhomogeneous term and initial data are infinitely differentiable and have

finite support.

Theorem 3.2.2. Let T be a fixed positive number, G(z3); H(xs) and F(x3,t) be
given functions such that G(x3) € H3(R); H(z3) € H*R) and F(x3,t) €
C([0,T); H3(R)). Then there exists a unique solution of Cauchy problem (3.1.15),
(3.1.16)

Uls, 1) € C(0,T]; H3(R)) 1 C3((0,T); HA(R)).

Proof. For the case when all functions appearing in (3.1.15), (3.1.16) do not depend
on x; and x5 variables, the IVP can be written as an IVP for the following symmetric

first order hyperbolic system

ov.  ~ oV -

2L AL _F R, t 227

or T gy, — 1 mER 120, (3:2:27)
V(z,0) = Vo(z3), (3.2.28)

where V, F, V(z3) are defined by formulae

V=25 , F=5 . Vo=S , (3.2.29)

_ U ~ F
T 06,1 T

t=0

where S is defined by the matrix (3.2.24) and T, U, ﬁg defined by the equations
(3.2.2), (3.2.4), (3.2.26). Using existence theorem (Mizohata, 1973)(p. 335) (also,
appendix b) for the symmetric hyperbolic first order system (3.2.27), (3.2.28), it can

be shown that there exists a unique solution of (3.1.15), (3.1.16) in the class
Ulas, t) € CL([0, T]; H*(R)) N C2([0, T]; H*(R))

for any given initial data G(z3) € H*(R); H(z3) € H*(R) and inhomogeneous term
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F(x3,t) € C([0,T]; H3(R)). O

Theorem 3.2.3. Let T be a fixed positive number, G(z3); H(xs) and F(x3,t) be
given functions such that G(xz3) € C°(R); H(zs) € C§°(R) and F(z3,t) €
C([0,T]; C°(R)). Then the solution U(xs,t) of Cauchy problem (3.1.15), (3.1.16)

belongs to

C*([0, T]; Cg°(R)).

Proof. Using Theorem 3.2.2 it can be found that if D) € H3(R); D°H(xz3) €
H*(R) and D°F(z3,t) € C([0,T]; H*(R)), where T is a fixed positive number and

laf
D

=—,a=12 ... Then DU belongs to the class
0x§

D*Ul(zs,t) € C*([0,T); H*(R)) N C*([0, T); H*(R)).

Thus, V|a| <1, 1 =1,2,...; U(zs, t) € C*(0, T); H*T(R)) n C%([0, T]; H*M(R)).

Using this fact and applying Sobolev’s lemma (See, appendixA.3), we get
U(xs, t) € C*([0, T]; C*(R)) N C?([0, T]; C'(R)). For arbitrary [ we have

U(xs, t) € C*([0,T); C(R)).

To prove that the function has a compact support, let us consider reduction of
the Cauchy problem (3.1.15), (3.1.16) to the first order symmetric hyperbolic system
(3.2.27), (3.2.28) that is where 9 X 9 matrix gg is a real, symmetric with constant
elements. Let 7" be a fixed positive number, £ € R be a parameter; A(¢) be a matrix
defined by A(§) = A€ Xi(€), i =1,2,...,9 be eigenvalues of A({). The positive
number M is defined by

M = X (€)]. 3.2.30
pax %i}f’ 3] ( )

We claim that M is the upper bound on the speed of waves in any direction.
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Using 7" and M we define the following domains

S(zo,h) ={x eR: |z —xo| < M(T—-h)}, 0<h<T
D(zo, T) ={(x,t) : 0<t < T, |x —zo| < M(T —t)}
R(zo,h) ={(x,t) : 0 <t < h, |t —xo| = M(T —1)}

Here I'(x,T') is the conoid with vertex (zo,7"); S(xzg, h) is the surface constructed
by the intersection of the plane ¢ = h and the conoid I'(xy,T"); R(xg,h) is the
lateral surface of the conoid I'(z(,T") bounded by S(x¢,0) and S(zg,h). Let 2 be
the region in R x (0, co) bounded by S(z0,0), S(xo, h) and R(zq, h) with boundary
00 = S(x0,0) U S(zg, h) U R(xg,h).

Ea 1
G e
T P ¢ )
h gL (e D1 ) (08 DT B
/ SCn,0) /\ /\
T ~,
. . o XEn
ez A=l Utxt)=0
T(%,.T) Flad)=0 Fiafi=0
G x)=0 HA=0
Hixl=0 Hix=0

Figure 3.1 Domains of Dependence

Applying the reasoning similar to (Courant & Hilbert, 1979) (p. 652-661)(see also
Appendix B) we find the following estimate for the solution of (3.2.27), (3.2.28)

h
/ IV (w, h)[2dx geh[/ |V0(m)|2da7+/ (/ |F(x,t)|2dx>dt] (3.2.31)
S(h) 5(0) 0 S(t)

Let us define P(K) = {z3 € R : |z3] < K}. Since G(z3) € C{°(R); H(x3) €
Ci°(R); and F(zs,t) € C([0,7];C°(R)) then there exists X' > 0 such that
supp G C P(K), supp H C P(K) and F(z3,t) as a function of the variable z,
has a finite support which is located in P(K) for any fixed t from [0, 7]. Also let us
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denote

D(T,K) = {(23,¢) : 0 < t < T, D(w,t) N P(K) = 0}.

If (z3,t) € D(T, K) then U(x3,¢) = 0. This means U(z3,¢) = 0 for any ¢t € [0, 7]
and |z3] > MT + K.

Hence, supp U C P(MT + K). As aresult U(x3,t) belongs to the class

Ul(zs,t) € C*([0, T); C3°(R)).

3.2.3 IVP for the System Depending on x3 and t Variables

In Section 3.2.1 we have shown that IVP of elastic system (3.1.15), (3.1.16) has a
unique solution U(x3,t) belongs to C*([0,7]; C5°(R)) when inhomogeneous term
F(x3,t) € C([0,T]; C5°(R)) be given function depending '3 and t variables and initial
data G(z3) € C°(R); H(zz) € C§°(R) are given functions depending z3 variable
only. In this case we can rewrite IVP of elastic system (3.1.15), (3.1.16)

02U, 02U, 02U, 0*Us

— = — + F! t 3.2.32
P o = O 02 + Csa 72 + Cs3 07 + Fi(zs,1), ( )

Uy 0*U, 0*U, 0*Us

P 9z Ca5 02 + Cay 02 +c43(9—:1:'§ + Fy(xs,t), (3.2.33)
0*Us 9*U, 92U, 02U
P o012 = C35 a:cg + C34 8:&% +0338_x§ + F3(x3,t), (3.2.34)
oU,(x3,t
Uj(s,0) = Gj(x3), % = Hj(z3). (3.2.35)
t=0

Simply, equations (3.2.32)-(3.2.35) can be written as follows

2
paa—tg = L[U] + F(x3,t), t>0, (3.2.36)
U(zs,0) = G(3), au - _ H(z;), (3.2.37)
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where 23 € R, ¢ > 0 and L[U] is the matrix operator defined with components L;;U;

that is given with the formulas

Ly = c5505,; Lip = c5402,;  Lig = c530%,
L21 = 045633; L22 — 64483233; L23 = 043833; (32.38)

— 2 . _ 2 . _ 2
L3 = 0358%, L3y = 0343273, L3z = 0338%-

3.3 1-D Fundamental Solution of IVP for the System Depending on z3 and ¢

Variables

A matrix U(z3,t) = [U,s(3,t)]3x3 is called 1-D fundamental solution or IVP for the

system depending on one space x3 and the time variable ¢ if s—th column

U15<x37 t)
US(I37t) = U23(£37t)
Uss(xs,t)
satisfies )
0-U,
= LU 3.3.1
p 8t2 [ 8]7 ( )
oU, 1
Us(x3,0) =0, e ;e d(z3), (3.3.2)

where z3 € R, t € Rand s = 1,2,3; e! = (1,0,0), ¢ = (0,1,0), ¢ = (0,0,1);
Ujs(x3,t) are the components of the unknown displacement vector U (x5, t) and L[U]
is the matrix operator defined with components L;;Uj, that is given with the formulas

(3.2.38).

3.3.1 Some Properties of 1-D Fundamental Solution

Remark 3.3.1. Let Uy(z3,t) be a fundamental solution then U, (x5, t) = 0(t)U, (23, )
satisfies .
0*U,

o = LU + e (xs.1), (3.3.3)

U,(z5,8)| =0, (3.3.4)
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where 73 € R, t € Rand s = 1,2,3; e! = (1,0,0), ¢ = (0,1,0), e = (0,0,1);
Ujs(z3,t) are the components of the unknown displacement vector U, (x5, t) and L[Uy]

is the matrix operator defined with components L;;Uj that is given with the formulas

(3.2.38).

Proof. Since U(zs,t) = O(t)U(x3,t), derivative of U(zs, t) with respect to t is

a(ﬂ(xg, t)>
5 = 0)U(2,0) +O(t) 5 Ulas, t),
0? (fJ(:cg, t)) 1., 9
o2 = ;e 6(t)d(z3) + @(t)a_U<.’B3,t)7
and also we have
L[U] = ©(t)L[U]
then o 2
P%TE ~ L[U] = piésé(t)é(xg) + p@<t>é:3,7 —O(t)L[U],

It is well known that (see, Hormander-Lojasiewicz theorem in appendix) the
arbitrary differential equation or system with constant coefficients has a fundamental
solution of slow growth. Thus, system with constant coefficients given with equations

(3.3.1), (3.3.2) has a fundamental solution

U,(z3,t) € C*(0,T); S'(R)).

Our aim is to study some of the properties of this fundamental solution and suggest

a method to find fundamental solutions.
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Let us denote convolution of functions U,(z3, t), with cap-shaped function w.(x3) is
us(z3,t) = (ugs, ugs, uss). Taking convolution with cap-shaped function, the problem

(3.3.1)-(3.3.2) can be written as

0*uc E
Pom = L), z3€R, teR, (3.3.5)
e 1
(23, 0) = 0, 36113 = ewelzs). (3.3.6)

Using Theorem 3.2.3 of Section 3.2.2, it can be proved that problem (3.3.5), (3.3.6)
has a unique solution u(z3,t) € C*([0, T]; C5°(R)) where
supp uS(x3,t) € P(MT +&9); Ve € (0,e0).

Property 1. As e — +0, uS(x3,t) approaches to Uy(z3,t) in S'(R); Vt € [0,T].

Proof. Tt can be proved that as ¢ — +0, w.(x) approaches to §(z) in S’(R). Using this
fact and using the continuity of the convolution u(z, t) * w.(x) with respect to w.(x)

theorem is proved. O

Property 2. Let T be a fixed positive number. There exists a unique solution of Cauchy

problem (3.3.1)-(3.3.2)

U,(z3,t) € C*([0,T]; &' (R)).

Proof. We need to show that
(Us, ) =0; Yo eS8 and supp p CR\ P(MT + ¢).
From property 1, we know that

(Us,0) = lim (u$, 0); Vo €S

e—+40
In the beginning of this section we have shown that us(xz3,t) € C*([0,T]; C5°(R))

where supp ug(z3,t) C P(MT + ¢y); Ve € (0,&0). Thus,

limo(ui,w) =0; VpeS.

e—+
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This means supp Us C P(MT + y); Ve € (0,£0). So we prove that Ug(x3,1)

is a tempered distribution with compact support that is unique solution of the Cauchy

problem i.e.

U,(x,t) € C*([0,T); £'(R)).

Property 3. Let Ug(x3,t) be solution of the problem (3.3.1), (3.3.2) and U,(v,t) =
(018(1), t), Uss(v, 1), Uss(v, t)) be the Fourier transform image of U(x, t) with respect

to x3 € R. Then the Fourier image f]s(v, t) is an entire analytic function and satisfies

following system of equations:

paaU2 + Cs55v Uls + c54v UZs + Cs3v U3$a

aaU; + 450 Uls + Cqqv Uzs + c43v U337

aaU; + c35v 2Uss + C34V Uy + C33V U337

Ujs(3,0) = 0, W = hjs(23),
t=0

where ﬁjs = <%e5> .
J

(3.3.7)

(3.3.8)

(3.3.9)

(3.3.10)

Proof. Let U, (v, ) be the Fourier transform image of U, (x, t) with respect to x5 € R,

i.e.

0s(0,0) = (T1s(0,6), Uao(0,1), U (0,1))
Us(v,t) = Fo[Ui); 1=1,2,3;v €R;

where the Fourier operator J, is defined by

fx[Uls] —/ Uls(xii,t)eivx?’dl’g; i2 = —1.

o0

Since U,(z,t) € C*([0,T]; E'(R)), according to Paley-Wiener theorem (Reed &

Simon, 1975), Fourier transform of the function U(x3, t) is an entire analytic function
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with respect to v € R, and can be written as a power series

U,(v,t) = iﬁlz(t)vk.

If we apply Fourier transform with respect to space variable problem (3.3.1), (3.3.2)

can be written in terms of Fourier images given with the equations (3.3.7)-(3.3.10). [
3.3.2 Derivation of 1-D Fundamental Solution
Problem in Terms of Coefficients of the Series Expansion

Using property 3, power series expansion of U,(v, t), h(v) can be considered i.e.

U(v,t) = Y UL (), (3.3.11)
k=0
hy(v) = SR, (3.3.12)
k=0

~ J; . ~ k .
where h, are given real numbers; U, (¢) are unknown coefficients we need to find.

Substituting (3.3.11)-(3.3.12) into (3.3.7)-(3.3.10) we obtain

Uk - 8 N
P 8t21s + essUL % + csalUp? + es3Uss 2 = 0, (3.3.13)
O*Us - . N
P Of2 * 4 easUST? + canlUsy 2 + easUsy 2 = 0, (3.3.14)
D*Uk - 8 3
P s Ui + sl ™ + eqsUsT? = 0, (3.3.15)
~ OUE (x3,t) N
Ufs(xg,O) =0, JT - h;?S, (3.3.16)

t=0

where h”_ are given real numbers such that A%, = 1 and h, = Le*forl =1,2, ...
js js Js T p
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Equations (3.3.13)-(3.3.16) can be written equivalently as the following recurrence

relations:

a?ﬁ;:; 1Tk t>0 7j=1,23 (3.3.17)
— —— Y > == D
atQ p ]7 ) j ) ) M
g aﬁks(t) 7 .
U~ (0) =0, ét =hk, j=123. (3.3.18)
t=0
where

T = c5sUF2 4 c5,UF2 + 55052, (3.3.19)
T = s UE2 + cpUET2 4 ¢y5UE2, (3.3.20)
Tg = 03501168_2 -+ 63402’65_2 + C33U§5_2. (3321)

The solutions of the problems (3.3.17), (3.3.18) for 7 = 1,2, 3 will be
t ~
UL(t) = /0 (t —7)Y;(r)dr + hit, j=1,2,3. (3.3.22)

Using (3.3.22) all coefficients fJf of fJS can be found. Solution of the IVP
(3.3.7)-(3.3.10) can be obtained as follows

Uss(v,t) =Y UL (t)* (3.3.23)
k=0

where Ufs(t), j = 1,2, 3 are defined in equations (3.3.22).

Procedure of Finding U”

The procedure of finding ﬁlz; s = 1,2,3, consists of the sequence of the following
iterative steps of constructing some formulae from the others using the relation
(3.3.22).

Step1: U;2=U;'=0,

Step 2: using zero values from step 1 we compute fjg,
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Step 3: from the relations obtained on previous steps we compute fji,

Step p: from the relations obtained on previous steps we compute U?.

Inverse Fourier Transform and the Solutions of Original IVP

Applying inverse Fourier transform to U ;s(v,t) defined by the formula (3.3.23)
solution Uy(z,t); s = 1,2, 3 of problem (3.3.1), (3.3.2) can be obtained for 1-D Case.

3.3.3 Simulation of 1-D Fundamental Solution

In this section we consider problem (3.3.1), (3.3.2) for two different type of anisotropy:
hexagonal and monoclinic type of anisotropies (see, Section 3.1). The aim is to create

simulations of elastic wave propagations, by the method described in Section 3.3.2.

The hexagonal crystal with density (gr/cm?), and elastic moduli (10'? dyn/cm?)
is as follows:
Zinc (Hexagonal): p = 7.134, c¢1; = 1.6368, c15 = 0.3640, c13 = 0.53, c33 =

0.6347, c55 = 0.3879, ca0 = c11, Ca3 = C13, Caa = Cs5, Co6 = (C11 — C12) /2.

The monoclinic crystal with density (gr/cm?), and elastic moduli (10'? dyn/cm?)

is as follows:

(Monoclinic): p = 2649, c¢;3 = 867, cio = —083, ¢35 = 2.71,
cy = —037, cs5 = 0, cg = 0, g = —0.83, coo = 1298,
co3 = —0.74, coy = 057, co5 = 0, co6 = 0, c31 = 2.71, ¢35 = —0.74,
c33 = 10.28, ¢33 = 099, ¢35 = 0, c36 = 0, ¢y1 = —0.37, cyo = 0.57,
cg3 = 099, ¢y = 386, c45 = 0, cg6 = 0, 51 = 0, ¢c50 = 0, 53 = 0,
csa = 0, c55 = 6.88, c56 = 0.25, cg1 = 0, cg2 = 0, cg3 = 0, cgu = 0,

Cgs — 025, Cee — 2.9.



71

Using the method of Section 3.3.2, we compute the elements of the fundamental
solution matrix U (x3,t) whose s—th column is Ug(xs,t) with the components
U,(z3,t) = (Urs(w3,t), Uss(x3,1), Uss(w3,t))". For simplicity let us consider s = 1

for given problem.

Notice that for hexagonal type of anisotropy and s = 1; problem given in equations

(3.3.1), (3.3.2) becomes
(92U11 82U11

P 12 = 0558—,%2))’ (3324)

82U21 82U21
pW = C448—$§, (3325)

82U31 82U31
P 12 = 0338—13;2;’ (3326)

; t 1
Uji(x3,0) =0, % = —&%(x3); j=1,2,3. (3.3.27)
t=0

If we apply Fourier transform with respect to space variable to problem

(3.3.24)-(3.3.27) then (3.3.24)-(3.3.27) can be written in terms of Fourier images as

follows: B
,Oa;i];l + 550204 = 0, (3.3.28)
pa;%1 + c4402Us; = 0, (3.3.29)
pa;%’l + 330205, = 0, (3.3.30)
Uji(v,0) =0, % = 151; j=1,23. (3.3.31)
t=0

Solution of Ordinary Differential Equations (ODE) (3.3.28)-(3.3.31) is given by the

formula:

. Ot 5 .

oo, t) = 20 g (, /%UQ; Ui (v,8) = 0; Ug(v,t) =0  (3.3.32)
JEe W

Table 3.2 shows the comparison of ﬁll and Uﬁ where Un is the solution of ODE

given in equation (3.3.32) and Ufl is the solution of the same problem (3.3.28)-(3.3.31)

solved by using method we suggested in Section 3.3.2.



72

Table 3.2 Values of Uy; and U,

p t v Un U7 Error
50 1 8 0.07190 0.07190 0.1%1071
50 5 8 0.00731 0.00731 0.59 % 10710
70 10 8 -0.01456 -0.01456 0.27 % 107
70 10 9 0.05637 0.05637 0.11%107°

As another example we consider (3.3.1), (3.3.2) when s = 1 (¢* = (1,0,0)) for
monoclinic type of anisotropy. This problem is complicated to find a solution directly.
By the method we suggested, we obtain the solutions and these fundamental solutions

can be simulated as shown in figures3.3.
Analysis of figures

In these figures the horizontal axis is x3, the vertical axis is density plots of first
component of the first column of fundamental solution matrix U (x3, t) thatis Uy (2, t).
This component is presented for varying values of ¢. In figure3.2, we consider (3.3.1),
(3.3.2) for s = 1 (¢* = (1,0,0)) and we draw the graph of the first component of
Us(x3,t) for hexagonal type of anisotropy. In figure3.3 we consider same problem
for monoclinic type of anisotropy. Analyzing figures we can see arising of the
elastic waves. Wave propagate according to time. Notice that for hexagonal type of
anisotropy, problem is given by (3.3.24), (3.3.27). This problem is an IVP for wave

equation that has the exact formula:

o) | /
U11<.’L‘3,t) = QLp) 6—25@(( C—;5t)2 — .’L’%), U21<x3,t) = 0, U31<.’L‘3,t) =0.

(3.3.33)
In figure 3.2, the difference between two results can be seen. For monoclinic type
of anisotropy, it is complicated to find a solution directly. So we can not do such a

comparison for IVP (3.3.1), (3.3.2) in monoclinic case.
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3.4 IVP for the System of Elasticity Depending on x,, z3; and ¢ Variables

3.4.1 Reduction of System Depending on x,,x3 and t Variables to a First-Order
Symmetric Hyperbolic System

In this section we explain the process of writing (3.1.15), (3.1.16) as a symmetric

hyperbolic system when displacement vector depends on x5, 3 and ¢ variables.

Let us consider IVP of elastic system when inhomogeneous term F(xzq, x3,t) be
given function depending x2, x3 and t variables and initial data G(xq, x3); H(xs,x3)
be given functions depending x, x3 variable. Thus, solution U of (3.1.15), (3.1.16)

depends on x5, x3 and ¢ variables.

Using denotations and renumarations defined in (3.2.1)-(3.2.5), the left-hand side

of (3.1.15) can be written in vector form

0?U ouU
= p—= 3.4.1
Porr ~ o G4
°. o,
Consider the term Z 3 % on the right-hand side of (3.1.15). Applying rule (3.2.1)
Tk
k=1
forj =1,2,3 gives
3
80’1k 80'12 80'13 80'1 80'6 80'5
= = 34.2
Oy, Dxo * dxs  Or * Dxg * dxg’ (34-2)
3
80'2k 80'22 80'23 60'6 80'2 80'4
= = 3423
Oy, Dxo * dxs  Or * Dxg * dxg’ (343)
3
80’3k 80'32 80'33 80'5 80'4 80'3
= = . 344
p oxy, 0xo + 0xs 0xy + 0o + 0xs ( )

75



Using the vector T, (3.4.2)-(3.4.4) takes the form

&nk 8T
= 10,0,0,0,0,1| - =—+10,0,0,0,1,0
Zaxk [77777]ax2+[ 77]
80% 8T
= 10,1,0,0,0,0] - — 4+ 10,0,0,1,0,0] -
Za.’l?k [””’]8372_'_[””’] T3
ang oT
= 10,0,0,1,0,0/ - =— +10,0,1,0,0,0
Zaxk [777’7]ax2+[ )y ]

) ) 0T
Noting the coefficient vectors of terms FTe k=
Tk

0O 0 0 0 0 -1 00 0 O
A=10 -10 0 0 0| , A3=]00 0 -1
0O 0 0 -1 0 O 00 -1 0
and represent Z = 1,2, 3 in the form
o
81‘k
@O'Qk 5 18T
— A_
Zaxk Z kaxk
k=2
>
| = O ]

From (3.4.1) and (3.4.6) it follows that we can rewrite (3.1.15) as
oT

Al
o at Z kOwn

where f = (f1, fo, f3).

Relation (3.1.17) can be written as two summations

3
Z Ciklm€im, j> k= 17 27 3.
lym=1

l#m

3
Ojk = E Ciklm€im +

l,m=1
l=m

-1

0
0

2, 3 we introduce the matrices

0
0
0

76
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(3.4.5)

(3.4.6)

(3.4.7)

(3.4.8)
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Denoting the pair of indices (j, k) witha, a = 1,...,6, ([, m) with 5,3 =1,...,6,
according to rule (3.2.1), relation (3.4.8) can be written as

3 6

Ta =) Capés+2 Cages, (3.4.9)
B=1 B=4

or in terms of vectors T and Y as
T = CY, (3.4.10)

where C = (cop)6x6 18 stiffness matrix defined with (3.1.13) that is symmetric and

positive definite (See, Section 3.1).

Taking derivative of (3.4.10) with respect to ¢ and multiplying both sides by the

inverse of C, denoted C~!, we find

9T _0Y

5 = B (3.4.11)

Differentiating (3.1.18) with respect to ¢ and using (3.2.4) the following relations

can easily be obtained

861 86]' an . 864 (9(72 8[73
[ -J _~7J =923 o2 _ 7= it
T A PO gt Ors | 0wy’
(3.4.12)
2% = 8_(71 2% = (9_(71
ot N al’;g’ ot N 85(72'
Using these formulas we get
Y <, . .., 00
— o = Z(Aj) 8_%, (3.4.13)

=2

where Ajl- are given in (3.4.5). Substitution of (3.4.13) into (3.4.11) results the

expression
T o0

Cc'— A)— =0. 3.4.14

o T2 (A) 5= =0 (3.4.14)

Jj=2
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Let V and F be vectors with 9 components in the form

U f
V = , F = , (3.4.15)
T 06,1
A;,7=0,2,3be the 9 x 9 matrices
I; O 0 Al
Ag— | 1T A= | T =123, (3416
06,3 C_l (A]l)* 06,6

where L,,, is the unit matrix of order m x m and 0y ,,, is the zero matrix of order [ x m.
Since C is symmetric and positive definite matrix then C~! is symmetric and positive
definite matrix (see, appendix). Notice that the matrices A;, j = 0,2,3 are also

symmetric and positive definite.

Using these notations we can combine (3.4.7) and (3.4.14) to obtain a first-order

system
3

oV oV
Ay— A,— =F. 3.4.17

0757 + ]z:; i, ( )
We finish this section by the following lemma.

Lemma 3.4.1. (see, (Courant & Hilbert, 1979), p.593-594), (see, (Yakhno & Akmaz,
2005) System (3.4.17) can be transformed into the following form

-~ 3
1981+2A»ﬁ =F, (3.4.18)

which is an symmetric hyperbolic system.

Proof. Consider the symmetric positive-definite matrix C. There exists a symmetric
positive-definite matrix M such that C~! = M? (see Theorem A.1.2 of Section A.1),
and the matrix M, which is inverse of M, is also symmetric (see Theorem A.1.1 of

Section A.1).
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Using these facts we define the matrix

P_%Is 036
06,3 M-t

S = : (3.4.19)

and denote the vector V as

V =SV. (3.4.20)

Substituting (3.4.20) into (3.4.17) and multiplying the resulting formula with matrix
S from left-hand side we obtain (3.4.18), where

SAS=1,, A;=SA;S, F=SF. (3.4.21)

Since S and A;, 7 = 2,3 are symmetric, the matrices Aj, j = 2,3 are
also symmetric (see Theorem A.1.3 of Section A.1), which implies that (3.4.18) is

symmetric hyperbolic system. [

3.4.2 Existence and Uniqueness of a Classical Solution of IVP for System Depending

on x5, x3 and t Variables. Properties of Solutions.

In this section we prove the existence of unique classical solutions depending on x5, x3
and ¢ variables. Also a property for existence of unique solution with finite support is
proved when inhomogeneous term and initial data are infinitely differentiable and have

finite support.

Theorem 3.4.2. Let T be a fixed positive number, G(xa,x3); H(xe,x3) and
F (w3, x3,t) be given functions such that G(xo,x3) € H*(R?); H(xo,x3) € H(R?)
and F(zq,13,t) € C([0,T]; H*(R?)). Then there exists a unique solution of Cauchy
problem (3.1.15), (3.1.16)

U(zg, 23,t) € CH([0, T); H*(R?)) N C2([0, T; H*(R?)).

Proof. For the case when all functions appearing in (3.1.15), (3.1.16) do not depend

on z; variable, the IVP can be written as an IVP for the following symmetric first order
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hyperbolic system

~ OV ~
Z 0 F, 1R >0, (3.4.22)
axk
V(z,0) = Vo(za, 73), (3.4.23)

where V, F, Vi (z2,z3) are defined by formulae

V=25 , F=5 . Vp=5 , (3.4.24)

t=0

_ U ~ F
T

H a

where S is defined by the matrix (3.4.19) and T, U, ﬁk; k = 2,3 are defined by the
equations (3.2.2), (3.2.4), (3.4.21).

Using existence theorem (Mizohata, 1973)(p. 335) (also, appendix b) for the
symmetric hyperbolic first order system (3.4.22), (3.4.23), it can be shown that there

exists a unique solution of (3.1.15), (3.1.16) in the class
U(xq, 73,t) € CH([0, T); H*(R?)) N C*([0, T]; H*(R?))

for any given initial data G(xq,23) € H*(R?); H(zz,23) € H°(R?) and
inhomogeneous term F(zo, v3,t) € C([0,T]; H*(R?)). O

Theorem 3.4.3. Let T be a fixed positive number, G(xa,x3); H(xe,x3) and
F (x4, x3,t) be given functions such that G(z,x3) € C°(R?); H(zs,73) € C*(R?)
and F(zo,13,t) € C([0,T); C°(R?)). Then the solution U(xy,x3,t) of Cauchy
problem (3.1.15), (3.1.16) belongs to

C*([0, 7]; C3° (R?)).
Proof. Using Theorem 3.4.2 it can be found that if D%y € H*(R?); D*H(xy,z3) €

H5(R?) and D*F (9, z3,t) € C([0,T]; H*(R?)), where T is a fixed positive number

and for an arbitrary multi-index o = (ay, a2) where |a] = a3 + a9, oy; @ = 1,2 are
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olel
nonnegative integers, D® = —,——-. Then D*U belongs to the class
0xy' 0xs?

D*U(zy, x3,t) € CH([0,T]; H*(R?)) N C2([0, T]; H*(R?)).
Using this fact and applying Sobolev’s lemma (See, appendixA.3) it can be proved that

U(xq, 73,1) € C*([0, T]; C*°(R?)).

To prove that the function has a compact support, let us consider reduction of
the Cauchy problem (3.1.15), (3.1.16) to the first order symmetric hyperbolic system
(3.4.22), (3.4.23) that is where all matrices Zk are real symmetric matrices with
constant elements. Let T be a fixed positive number, £ = (&5, £3) € R? be a parameter;
A(€) be a matrix defined by A(¢) = 37;_, A& M(6), i =1,2,...,9 be eigenvalues
of A(§). The positive number M is defined by

M = pax Ellfl( IXi(€)]. (3.4.25)

We claim that M is the upper bound on the speed of waves in any direction.

Using 7" and M we define the following domains

S(zo,h) ={z €R?*: |z —xo| < M(T—h)}, 0<h<T
{(z,t) : 0<t<T, |x— x| < M(T —1t)}
R(zg,h) ={(z,t) : 0 <t < h, |z —xo| = M(T —1)}

3
8
S
3
I

Here I'(x,T') is the conoid with vertex (zo,7"); S(xzg,h) is the surface constructed
by the intersection of the plane ¢ = h and the conoid I'(zo, T'); R(xg, h) is the lateral
surface of the conoid I'(xg, T") bounded by S(x¢,0) and S(xg, h). Let €2 be the region
in R? x (0,00) bounded by S(zg,0), S(zo,h) and R(xo,h) with boundary 9Q =
S(x9,0) U S(xg, h) U R(xo, h).

Applying the reasoning similar to (Courant & Hilbert, 1979) (p. 652-661)(see,
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-
(%1 IXT ) (4,1 I T, K)
S /«_\ %
Ufs.01=0 <4 xeR
= *
Mz, T Flx,51=0 ;’r.(fi‘:aL S
G =1 A=
Hixl=0 =l

Figure 3.4 Domains of Dependence

Appendix B) we find the following estimate for the solution of (3.2.27), (3.2.28)

h
/ IV (z, h)|2da:§eh[ / Vo(2)2dz + / ( / |F(x,t)|2dx)dt] (3.4.26)
S(h) S(0) 0 S(t)

Let us define P(K) = {x = (w2,23) € R* : |z| < K}. Since G(zq,23) €
C°(R?); H(wa,z3) € C°(R?); and F(xy,23,t) € C([0,T];C°(R?)) then there
exists X' > 0 such that supp G C P(K), supp H C P(K) and F(xq,x3,t) as a
function of the variable (x2, z3), has a finite support which is located in P(K') for any

fixed t from [0, 7).

Also let us denote
D(T,K) = {(z2,23,t) : 0 <t < T, T'(x2,23,t) N P(K) = 0}.

If (zq,23,t) € D(T, K) then U(xo,z3,t) = 0. This means U(zy, x3,t) = 0 for any
te€[0,T)and |z| > MT + K.

Hence, supp U C P(MT + K). As aresult U(zy, x3,t) belongs to the class

U(xq, 73,1) € C*([0,T]; Cg°(R?)).
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3.4.3 IVP for the System Depending on x-, x3 and t Variables

In Section 3.4.2 we have shown that IVP of elastic system (3.1.15), (3.1.16) has a
unique solution U(zy, 73, ) belongs to C*([0, T]; C¢°(R?)) when inhomogeneous term
F(zy,23,t) € C([0,T]; C5°(R?)) be given function depending x5, z3 and t variables
and initial data G(zq,z3) € C°(R?); H(wg,z3) € (9,73) € C{°(R?) are given
functions depending x,, x3 variable only. In this case we can rewrite IVP of elastic
system (3.1.15), (3.1.16)

0*t 0*Us 0*Us 0*U,

=c +ce3——— t¢
Pror % 02 % 0xy0x5 0 Ol

LTI

82U2 62U3> Le 62(]2 Le 82U3
Or90x3  Ox3 ) 3

+C56

(92U1 (92U1 ((92U2 82U3 ) Fl (3427)

+c +c
Oradzs 0 022 | '\ 0x2 | Oxy07s

02U, 02U, 0?Us 02U,

Por =P T e T 0

0*U,

+c
2 8x28x3

82U2 82U3> (92U2 82U3

ten <8x28x3 13

C42 + C43
6’x28x3 3x§

02U, 02U, 02U, 02U,
522 —%(44( 522 +»8x28x3) + P, (3.4.28)

0*Us U, 0*Us 0*U,

=c +c +c
Pt~ a2 T 000, | 8 043

‘|—C45

82U1 c ( 82U2 82U3> ¢ 82U2 82U3
al’gaxg 4 8m28x3 (‘3x§ 326’x26x3

92U, 92U, P2U, Uy
F 42
02 e 02 *’axzax3>'+ 3 (3.4.29)
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an(l’g, xs3, t)

Uj<x27x370) :Gj(x%'x?))v ot

= Hj(ill'z,.%’g), (3430)

t=0
where = (22, 23) € R?, t > 0. Simply, equations (3.4.27)-(3.4.30) can be written
as follows
0*U
Pz = L[U] + F(zy,25,t), t>0, (3.4.31)
ou

U($2,$3,0) = G(LUQ,LL’?,), = H(IQ,SL’g), (3432)

Ot li=o
where © = (23,23) € R?, t > 0 and L[U] is the matrix operator defined with

components L;;U; that is given with the formulas

_ 2 2 2 2
LH = 0660x2 -+ 66581213 + 0568x2x3 -+ 055(9x3,

_ 2 2 2 2
Lis = c620;, + C6405,,, + 5205, + C5u05,,

_ 2 2 2 2
Li3 = ¢630;,,, + 6405, + 5305, + 54054,

Loy = ¢603, + ¢2507,,, + 1603, + 150z,
L22 = 622852 -+ 024a§2x3 + 042852933 + C448§3, (3433)

2 2 2 2
Log = ¢930;,,, + 2407, + 4305, + ca10;, ..,

_ 2 2 2 2
L3y = c460;, + 1505, + €3604,5, + C3505,,

_ 2 2 2 2
L3y = c420;, + ca40;, ., + 3205, + €3405,,

_ 2 2 2 2
L33 = C43896,2963 + 6448502 + 0338963 + 03481,2:03.

3.5 2-D Fundamental Solutions of IVP for the System Depending on -, x5 and ¢

Variables

A matrix U(xq, x3,t) = [Uys(x2, T3,1)]3x3 is called 2-D fundamental solution or IVP

for the system depending on two space 2, x3 and the time variable ¢ if s—th column

Uls(x% X3, t)
Us(22,3,t) = | Uss(o, 23, t)
U35(£27 xs, t)

satisfies

i R LA (3.5.1)
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ou, 1.
ot = ;6 (5(1’2,1’3), (352)

where © = (w9,23) € R?, t € R;e! = (1,0,0), €2 = (0,1,0), ¢ = (0,0,1);

Us<x27 x3, O) = 07

Ujs(z2,z3,t) are the components of the unknown displacement vector Ug(z2, x3,1)
and L[U;] is the matrix operator defined with components L;;U;, that is given with the

formulas (3.4.33).

3.5.1 Some properties of 2-D Fundamental Solution

Remark 3.5.1. Let Uy(zy,x3,t) be a fundamental solution then U,(xy,z3,t) =
0(t)Us(z2, x3,t) satisfies

02U,
P o

= L[U,] + €6 (x, 3, 1), (3.5.3)

A

Us(xo, z3,1) =0, 3.54)

t<0
s = 1,2,3; where © = (z0,73) € R?2, t € R;e! = (1,0,0), €2 = (0,1,0),
e3 = (0,0,1); Ujs(xq,3,t) are the components of the unknown displacement vector
U (g, x3,t) and L[Uy] is the matrix operator defined with components L;;U;; that is

given with the formulas (3.4.33).

Proof. Since U(zy, x3,1) = O(t)u(x,, 3, 1), derivative of U(z, 23, t) with respect to

t1is A
0(0(ws,5,1)) 9
5 =0(t)U(z,0) + @(t)EU(xml’&t),
82 <ﬂ($2,$3,t)> 1 . 62
BrE) = ;6 5(t)5(!132, 1‘3) + @<t)ﬁU(ZE27 T3, t)v
and also we have
L[ﬂ] = O(t)L[U]

then

020 . 1, *U




86

It is well known that (see, Hormander-Lojasiewicz theorem in appendix) the
arbitrary differential equation or system with constant coefficients has a fundamental
solution of slow growth. Thus, system with constant coefficients given with equations

(3.5.1), (3.5.2) has a fundamental solution

U, (y, 73,t) € C*([0,T); S'(R?)).

Our aim is to study some of the properties of this fundamental solution and suggest

a method to find fundamental solutions.

Let us denote convolution of functions Ug(z,t), with cap-shaped function w.(x)
is ui(z,t) = (uys,uss,uss). Taking convolution with cap-shaped function, the

generalized Cauchy problem (3.5.1)-(3.5.2) can be written as

0%uc . )
P ot2 - L[“s]’ (33'2,513'3) €eR , te Ra (355)
out 1
u; (2, x3,0) = 0, a‘;s — ;gswa(@,x?)), (3.5.6)

Using Theorem 3.2.3 of Section 3.4.2, it can be proved that problem (3.5.1), (3.5.2)
has a unique solution v (zy, z3,t) € C*([0,T]; C5°(R?)) and
supp U (xq, x3,t) € P(MT + &9) Ve € (0, ).

Property 4. As ¢ — +0, us(zo,x3,t) approaches to Uy(zs,x3,t) in S'(R?); Vt €
[0,7].

Proof. 1t can be proved that as ¢ — +0, w.(x) approaches to §(z) in S’'(R?). Using
this fact and using the continuity of the convolution u(xs, 3, t) * w.(z) with respect to

we(x) theorem is proved. O
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Property S. Let T be a fixed positive number. There exists a unique solution of Cauchy
problem (3.5.1), (3.5.2)

U, (2o, 23, ) € C*([0,T); &' (R?)).

Proof. We need to show that
(Us,p) =0; Vo8 and supp o CR\ P(MT + &)

(Us, ) = 11310(“2,@); Vpe s

= 0.
This means supp U; C P(MT +¢) Ve € (0, ¢p). Also using property(4) we conclude
that there exist a unique solution of the Cauchy problem (3.5.1), (3.5.2)

U, (2o, 23, ) € C*([0,T]; &' (R?)).

]

Property 6. Let Ug(xo,x3,t) be solution of the problem (3.5.1), (3.5.2) and

Us(vg, v3,t) = ((715, Uss, U;;S) be the Fourier transform image of Us(xz, x3,t) with
respect to (9, 13) € R2 Then the Fourier image U,(vy,vs,t) is an entire analytic

Sfunction and satisfies following system of equations:

U

s 277 2 277
Pop = Co2v2 Uss + ¢e30203U35 + o603 Uss

+065U2U3ﬁls + Cg4 <U2U3U2s + U§03s> + C52U2U3023 + C53U§U3s
‘|‘C56U2’U3015 + 0551)%015 + Cs4 <U§UQS + UgUgUgs), (357)

UQS

277 7 277
Pop = 2202 Uss + €a30203U35 + Cag03Uss
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- - or - -
+ca50203U5 s 4 coa <U2’03U25 + v U33> + Ca202U3Uss + c4305Us3;4

+es6v203015 + C45U§U15 + Ca4q <U§(725 + 0203035), (3.5.8)

O e ~ :
2 2
Pap = Ca2vs Uss + €a30203U35 + ca603Uss

. . or . -
+ea50203U75 + Ccaa <712U3U25 + v5 U35> + C3202U3Us5 + c3305U3;4

+03602U3[71s + 035U§U1s + C34 <U§U25 + v203(~]33), (3.5.9)

~ anS(SCQ,l'g,t)

Uss(22,23,0) = 0, o = hjs(22, 73), (3.5.10)

t=0

- 1
where hjs = (—es> .
j

Proof. Let U,(v,t) be the Fourier transform image of U, (z,t) with respect to z =

((L’g, .Z‘g) S RQ, ie.

U.(0,1) = (O1u(0,1), Oay(0,1), Use(0,1))
Us(v,t) = Fo[Us]; 1=1,2,3;0 = (02, 03) € R%:

where the Fourier operator F , is defined by

F .U :/ / Uss(x,t)e™ " dw dy;

TV = T1U] + ToUs9; i?=—1.

Since U, (zy, x3,t) € C*([0,T]; £'(R?)), according to Paley-Wiener theorem (Reed
& Simon, 1975), Fourier transform of the function U,(z2, x3,1) is an entire analytic

function with respect to v = (vq, v3) € R?, and can be written as a power series
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If we apply Fourier transform with respect to © = (z2,73) € R?, problem
(3.5.1), (3.5.2) can be written in terms of Fourier images given with the equations

(3.5.7)-(3.5.10). [l

3.5.2 Derivation of 2-D Fundamental Solution

Problem in Terms of Coefficients of the Series Expansion

According to Paley-Wiener Theorem, power series expansion of U,(v,t), h,(v) can

be considered i.e.

Uuo.t) =3 S 0 (t)koy, (3.5.11)
k=0 m=0
ho(o) =S B b, (3.5.12)
k=0 m=0
where ﬁl:’m are given real numbers; C l:m(t) are unknown coefficients we need to find.

Substituting (3.5.11)-(3.5.12) into (3.5.7)-(3.5.10) we obtain

rrk,m

1s rrk—2,m rrk—1,m—1 rrk—2,m

rrk—1,m—1 rrk—1,m—1 Frk—2,m rrk—1,m—1 rrk,m—2
+cesU + Cea <U25 + Us;g ) + c52Usg + e53Us,

eslt 7+ s U ey (U5 4 T3 ) =0, (3.5.13)

Frk,m

2s Frk—2,m rk—1,m—1 Frk—2,m
P50 + 22Uy, + c23Us, + 26Uy

rrk—1,m—1 rrk—1,m—1 rrk—2m rrk—1,m—1 rrk,m—2
+cosUss +c <U2s + Us, ) + caaUsg + cu3Us;

FeaglUR Tl 4 s TR =2 4 ey, <U§;m*2 + U;;mel) —0, (3.5.14)
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~k:,m R
P 8152 +C42U25 +C43U§;1 +C46Uk 2,m
‘|—C45U m-l + Cy4 (05;177”71 + 0;;2,m) + 03205;1’7”71 + C33Ukm 2
FesgUET Y o eas U2 +634<U’“” 2 4 gk-tme 1) —0, (3.5.15)
8 QU™ (14, x5,1)
k,m . js ) ) 7 km
U, (x9,23,0) =0, a1 =hi, (3.5.16)
t=0
where h%_ are given real numbers such that ho = 1 and hl = lesforl =1,2, ...
Js p

Equations (3.5.13)-(3.5.16) can be written equivalently as the following recurrence

relations: _
oL 1ot ,
g =0 >0, =123, (3.5.17)
N U™ (¢
Uﬁ;m(o) =0, Jg—t() = hfsm, j=1,2,3. (3.5.18)
t=0
where

km rrk—2,m rrk—1,m—1 rTk—2,m rrk—1,m—1
Tl = C62U25 + 063U35 + Cﬁ6U18 + C@5U
k—1,m—1 k—2,m rrk—1,m—1 Frk,m k—1,m—1
+Cg4 (U U > + C52U2S + C53U3S + C56U

+c550f;m—2+c54<U’“m 2 [htme 1), (3.5.19)

k,m rrk—2,m rrhk—1,m—1 1k k—1,m—1
T35 = cooU,, + co3Us, +026U15 s 25U

k—1,m—1 k—2m rrk—1,m—1 Frk,m k—1,m—1
“+Coy <U28 + U33 ) + C42U28 + C43U3s +C46U15

+c45U{1jm—2+c44(U’“m 2 [kt 1), (3.5.20)
Tg,m :C42U§S—2,m+c43(7§5—1,m—1 +C46(~]fs_2’m+045[7ﬁ_1’m_1 +632Uk 1,m—1
+C44(Uk 1,m—1 Uk 2m) +033[~]§S +036Uk 1,m—1

+035Ufs’m_2+034(Ukm 2 [kt 1). (3.5.21)
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The solutions of the problems (3.5.17)- (3.5.18) for j = 1, 2, 3 will be

t
Em (1) = / (t— )T, (r)dr + B, j=1,2.3, (35.22)
0

Js

Using (3.5.22) all coefficients fJ];m of U, can be found. Solution of the IVP
(3.5.7)-(3.5.10) can be obtained as follows

Ti6(vg, 3, ii tyvkom (3.5.23)

k=0 m=0

where (NJJ%m(t), j = 1,2, 3 are defined in equations (3.5.22).

Procedure of Finding U*™

The procedure of finding ﬁ’;m s = 1,2, 3, consists of the sequence of the following

iterative steps of constructing some formulae from the others using the relation
(3.5.22).

Step 1:

U—Q,m — Uk’,—2 — U—l,m — Uk’_l =0

S S S S

when k= -2, —1,0,...m=-2, —1, 0, ....

Step 2: using zero values from step 1 we compute

ﬁg’m» ﬁ§’07 k=0,1,2,..; m=0,1,2, ...

Step 3: from the relations obtained on previous steps we compute
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Step p: from the relations obtained on previous steps we compute

fﬁs”m,fjf’p, for ' k=p,p+1,p+2, ..o m=p,p+1,p+2, ...

Inverse Fourier Transform and the Solutions of Original IVP

Applying inverse Fourier transform to Uj (v, v, t) defined by the formula (3.5.23),
solution U(x,t); s = 1,2, 3 of problem (3.5.1), (3.5.2) can be obtained for 2-D Case

with with hy(x,t) = %esé(xg, x3).

3.5.3 Simulation of 2-D Fundamental Solution

In this part of the section we consider problem (3.5.1), (3.5.2) for different types of
anisotropy. The aim is to create simulations of elastic wave propagations, obtained

according to the method we have explained, in different crystals under same conditions.

We study problem (3.5.1), (3.5.2) for hy(x,t) = ,l)elé(azg, x3) and in some crystals
from different types of anisotropy. The name of these crystals, their densities (gr/cm?),

elastic moduli (10'? dyn/cm?) and type of anisotropy are as follows:

1. Zinc (Hexagonal): p = 7.134, c¢;1 = 1.6368, c1o = 0.3640, ¢35 =
053, C33 — 06347, Cs; — 03879, Cog2 = C11, C23 = C(C13, C44 = Css,

ce6 = (c11 — C12) /2.

2. (Monoclinic): p = 2.649, c¢;; = 867, co = —0.83, c3 = 2.71,
ciy = —037, c5 = 0, c6 = 0, ¢ = —083, c9o = 12.98,
co3 = —0.74, coqg = 0.57, co5 = 0, co6 = 0, c31 = 2.71, c30 = —0.74,
c3z3 = 10.28, ¢34 = 0.99, ¢35 = 0, c36 = 0, ¢4 = —0.37, ¢cg0 = 0.57,
cg3 = 099, ¢y = 386, cy5 =0, c46 = 0, ¢c51 = 0, c52 = 0, c53 = 0,
csa = 0, 55 = 6.88, c56 = 0.25, c61 = 0, cg20 = 0, c63 = 0, cg4 = 0,

Cgs — 025, Ce6 — 2.9.
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3. Copper Sulphate Pentahydrate (Triclinic): p = 2.649, c¢; = 5.65,
c1g = 2.65, c13 = 3.21, ¢y = —033, ¢35 = —0.08, c;3 = —0.39,
Co1 = 2.65, coo = 4.33, co3 = 347, coy = —0.07, co5 = —0.21,
cog = 0.02, c31 = 3.21, c39 = 347, c33 = 5.69, c3y = —0.44,
c3s = —0.21, c33 = —0.16, cyy = —0.33, cgo = —0.07, cy3 = —0.44,
cyy = 173, cgi5 = 0.09, cy6 = 0.03, ¢c5n = —0.08, ¢z = —0.21,
cs3 = —0.21, ¢ = 0.09, c55 = 1.22, c56 = —0.26, cg1 = —0.39,

Cg2 — 002, Cg3 — —016, Ceqa — 003, Cgs — —026, Ceg — 1.

Using the method of the Section (3.5), we compute the elements of the fundamental
solution matrix U (xs, z3,t) whose s—th column is Uy (25, x3,t) with the components
U, (29, 23,t) = (Ups(, 3,1), Uss(29, 73, 1), Usy (w2, 73,t))".  In figure3.5, we
consider (3.3.3), (3.3.4) for s = 1 (¢* = (1,0,0)) and we draw the graph of the first

component of Ug(x2, z3,1).

Example: We study problem (3.5.1), (3.5.2) inside the crystal Zinc for hy(z,t) =

%915(12, r3).

Example: We study problem (3.5.1), (3.5.2) inside the monoclinic crystal for

hy(z,t) = Leld(az, 23).

Example: We study problem (3.5.1), (3.5.2) inside the triclinic crystal for
hy (2, £) = Le'6(as, 3).
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(a) 3-D plOt of Ull(ilig, I3, 1/2) (b) 2-D plOt of U11($2, s, 1/2)

(c) 3-D plot of Uy, (1‘27 xs3, 394/100) (d) 2-D plot of Uy, ((L‘Q, rs, 394/100)

#

'
,""iw i

(e) 3-D plot of Uy (z2, 23, 75/10) (f) 2-D plot of Uy (22, 23, 75/10)

Figure 3.5 3-D and 2-D level plots of U;; hexagonal media.



(a) 2-D plot of Uy (x2, x3,87/1000) (b) 2-D plot of Uy; (2, x3,43/100)

(¢) 2-D plot of Uy (2, 23, 65/100) (d) 2-D plot of Uty (2, x3,877/1000)

(e) 2-D plot of Uyy(x2, z3,1315/1000)

Figure 3.6  2-D level plots of U;; monoclinic media.
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(a) 2-D plot of Uyy (w2, z3,1/10) (b) 2-D plot of Uyy (2, x3,1/2)

(c) 2-D plOt of []11(%27 x3, 138/100) (d) 2-D plOt of U11(£E2, xs3, 21/10)

(e) 2-D plot of U11(£Z?2, x3, 25/10)

Figure 3.7 2-D level plots of Uy triclinic media.
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Analysis of figures

In these figures 3.5-3.7 the first component of the first column of fundamental
solution matrix U (z, x3,t) that is Uyy(z2, 23, ) in different media is presented. In
figure 3.5, simulations of Uy (zy,x3,t) inside Hexagonal crystal are presented for
varying values of ¢. 3-D plots of density of Uy(x2,z3,t) are presented in figure
3.5; (a),(c),(e) with horizontal axes x5 and x3, respectively. The vertical axis is the
magnitude of Uy (x4, 23, t) for varying values of ¢. Figures 3.5; (b),(d),(f) are screen
plot of 2-D level plots of the same surface Uy; (22, x3,t) i.e. a view on the surface
z = Uy (xq, x3,1/2) is presented in figures 3.5; (a) from the top of z-axis. In figures
3.6-3.7, fundamental solution of elastic system is considered in monoclinic and triclinic
media respectively. These figures are screen shot of 2-D level plot of the surface
Uy (x2, 23, ). In each figures wave front can be seen as a boundary and we can observe

wave propagates according to time.



3.6 IVP for the System of Elasticity Depending on z, 25, x3 and ¢ Variables

3.6.1 Reduction of System Depending on x, -, x5 and t Variables to a First-Order
Symmetric Hyperbolic System

In this section we explain the process of writing (3.1.15), (3.1.16) as a symmetric

hyperbolic system when displacement vector depends on x1, z2, x3 and ¢ variables.

Let us consider IVP of elastic system when inhomogeneous term F(z1, o, x3,1)
be given function depending xs,x3 and t variables and initial data G(zq,x2,23);

H(x1, z9, x3) be given functions depending x5, x3 variable.

Using denotations and renumarations defined in (3.2.1)-(3.2.5), the left-hand side

of (3.1.15) can be written in vector form

0*U ou
= p— .6.1
Par =P o 6.1
°. do;
Consider the term Z 5 % on the right-hand side of (3.1.15). Applying rule (3.2.1)
Tk
k=1
for j = 1,2, 3 gives
3
0 0 0 0 0 0 0
O1k _ 011+ (712+ 013 _ 01+ CT6+ (757 (3.6.2)
1 alL‘k aZL‘l 6@ 8ZL‘3 6x1 8x2 8[E3
3
0 0 0 0 0 0 0
02k _ 021 4 (722+ 023 _ 06+ CT2+ 047 (3.6.3)
1 al‘k aZL‘l 6@ 8ZL‘3 6x1 8x2 8[E3
3
0 0 0 0 0 0 0
O3k _ 031 i 032+ 033 _ U5+ U4+ 03' (3.6.4)
1 alL'k 8x1 6.172 8x3 8x1 8:1;2 8[E3

Using the vector T, (3.6.2)-(3.6.4) takes the form

3

0oy, oT JT oT

= [1,0,0,0,0,0f - =— +10,0,0,0,0,1] - =— +10,0,0,0,1,0] - =—

k:1 axk [7 Y ) 7 7] axl +[7 Y Y Y 7] axQ +[7 ? 7 Y 7] 8]}37
3

00% OT 8T 0T

= 1[0,0,0,0,0,1] - =— +10,1,0,0,0,0] - =— +10,0,0,1,0,0] - =—

k:1 axk [7 Y ) 7 7] axl +[7 Y Y Y 7] axQ +[7 ) 7 Y 7] 8]}37
3

o3y, oT oT oT

= 1[0,0,0,0,1,0f - =—+10,0,0,1,0,0] - =— +10,0,1,0,0,0] - =—.

k:1axk [7’777] axl—i_[???’)] 8x2+[77777] 8]}3

98
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. . oT . .
Noting the coefficient vectors of terms —, k = 1, 2, 3 we introduce the matrices

0xk
-1000 0 0 00 0 0 0 —1
Al =l 0o 000 0 —-1|, Al=l0-10 0 0 0 |,
0 000 -1 0 0 0 0-10 0

00 0 0 —10
Al=l00 0 -1 0 0 (3.6.5)
00 -1 0 0 0

and represent Z = 1,2, 3 in the form

Z 0oy,

a.’lfk
80% . 3 1 8T

Z o | T ZAka_m' (3.6.6)

dosy,
Z 8xk

L k=1 |

From (3.6.1) and (3.6.6) it follows that we can rewrite (3.1.15) as

OT
1
§ jAk o = (3.6.7)

where f = (f1, fo, f3)-

Relation (3.1.17) can be written as two summations
Ok = D Cittm€im + Y Cikimeim, -k =1,2,3. (3.6.8)

Denoting the pair of indices (j, k) witha, a = 1,...,6, ([,m) with 5, 3 =1,...,6,

according to rule (3.2.1), relation (3.6.8) can be written as

3 6
Oq = Z Cap€p + 2 Z CapB€s, (369)
f=1 =4
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or in terms of vectors T and Y as
T = CY, (3.6.10)

where C = (cop)6x6 18 stiffness matrix defined with (3.1.13) that is symmetric and

positive definite (See, Section 3.1).

Taking derivative of (3.6.10) with respect to ¢ and multiplying both sides by the

inverse of C, denoted C~!, we find

19T _9Y

% o (3.6.11)

Differentiating (3.1.18) with respect to ¢ and using (3.2.4) the following relations

can easily be obtained

Oe;  OU; : de, Uy  OUs
— = =1,2,3; 20— = —+ —
ot oz, T 0o 9t Ows | Omy’

(3.6.12)
865 801 6(73 866 801 8UQ
22— ==+ — 2 ==+ —.
gt~ Ous | om’ ot Omy | O

Using these formulas we get
Y o 00
I = Ay == 6.1
o =2 _(A) o (3.6.13)

Jj=1

where Ajl- are given in (3.6.5). Substitution of (3.6.13) into (3.6.11) results the

expression
IT o0
71— 1 ¥ =
C 5 + g (A7) oz, 0. (3.6.14)

j=1

Let V and F be vectors with 9 components in the form

V:

U f
, F= : (3.6.15)
T
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A;,7=0,1,2,3 be the 9 x 9 matrices

033 Aj .
A=| > =123 (36.16)
J 1)\x*
(Aj)" O

pls 036

Ay =
06,3 C_l

where L,,, is the unit matrix of order m x m and 0y, is the zero matrix of order [ x m.
Since C is symmetric and positive definite matrix then C~! is symmetric and positive
definite matrix (see, appendix). Notice that the matrices A;, 7 = 0,1,2,3 are also

symmetric and positive definite.

Using these notations we can combine (3.6.7) and (3.6.14) to obtain a first-order

system

oV oV
Ag— A —=F. .6.17
05+ D Ao (3.6.17)

We finish this section by the following lemma.

Lemma 3.6.1. (see, (Courant & Hilbert, 1979), p.593-594), (see, (Yakhno & Akmaz,
2005) System (3.6.17) can be transformed into the following form

=~ 3
198—V+ZA»2 =F, (3.6.18)

which is an symmetric hyperbolic system.

Proof. Consider the symmetric positive-definite matrix C. There exists a symmetric
positive-definite matrix M such that C~' = M? (see Theorem A.1.2 of Section A.1),
and the matrix M, which is inverse of M, is also symmetric (see Theorem A.1.1 of

Section A.1).

Using these facts we define the matrix

S — 2 (3.6.19)
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and denote the vector V as

V =SV. (3.6.20)

Substituting (3.6.20) into (3.6.17) and multiplying the resulting formula with matrix
S from left-hand side we obtain (3.6.18), where

SAS=1,, A,=SA,;S, F=SF. (3.6.21)

Since S and A;, j = 1,2,3 are symmetric, the matrices Aj, 7 = 1,2,3 are
also symmetric (see Theorem A.1.3 of Section A.1), which implies that (3.6.18) is

symmetric hyperbolic system. 0

3.6.2 Existence and Uniqueness of a Classical Solution of IVP for System Depending

on x1,x,,v3 and t Variables. Properties of Solutions.

In this section we prove the existence of unique classical solutions depending on x5, x3
and ¢ variables. Also a property for existence of unique solution with finite support is
proved when inhomogeneous term and initial data are infinitely differentiable and have

finite support.

Theorem 3.6.2. Let T be a fixed positive number, G(x1, xo, x3); H(x1, 29, x3) and
F (1,29, 23,t) be given functions such that G(x, 7o, 13) € HY(R?); H(x1,29,73) €
H5(R3) and F(x1, xq, x3,t) € C([0,T]; H*(R?)). Then there exists a unique solution
of Cauchy problem (3.1.15), (3.1.16)

U(xy, 29, 23,1) € CH([0, T]; H*(R?)) N C*([0, T); H?*(R?)).

Proof. Cauchy problem defined with the equations (3.1.15), (3.1.16) can be written as

an IVP for symmetric first order hyperbolic system
~ 8V ~ .
Z =F, z€R? t>0, (3.6.22)

V(ZE,O) = VO(mlvl‘ang)) (3623)
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where V., F, Vo(x1, z9, x3) are defined by formulae

_ U - F U

V=25 . F=S V=58 , (3.6.24)
T T

t=0

where S is defined by the matrix (3.6.19) and T, U, ﬁk; k = 1,2,3 defined by the
equations (3.2.2), (3.2.4), (3.6.21).

Using existence theorem (Mizohata, 1973)(p. 335) (also, appendix b) for the
symmetric hyperbolic first order system (3.6.22), (3.6.23), it can be shown that there

exists a unique solution of (3.1.15), (3.1.16) in the class
U(z,t) € CY([0,T); H(R"™)) N C*([0, T]; H*(R™))

for any given initial data G(z) € H*(R"); H(z) € H°(R") and inhomogeneous term
F(z,t) € C([0,T]; H{(R")). O
Theorem 3.6.3. Let T be a fixed positive number, G(x); H(x) and F(x,t) be
given functions such that G(x) € C(R?); H(x) € C(R3) and F(z,t) €
C([0,T); Cs°(R3)). Then the solution U(z,t) of Cauchy problem (3.1.15), (3.1.16)

belongs to

C*([0, TT; C5°(R?)).

Proof. Using Theorem 3.6.2 it can be found that if D) € H*(R3); D°H(z) €
H5(R3) and D*F(z,t) € C([0,T); H*(R3)) where T is a fixed positive number and

for an arbitrary multi-index o = (1, aa, 3) where |a] = ag + s +as, ay; i =1,2,3
ol

are nonnegative integers, D = ———————. Then D®U belongs to the class
0x{'0x5?0x3®
DU(x,t) € C1([0,T); H*(R¥) N C2([0, T); H¥(BY)).
Using this fact and applying Sobolev’s lemma (See, appendixA.3) it can be proved that

U(x,t) € C*([0,T); C*(R?)).

To prove that the function has a compact support, let us consider reduction of
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the Cauchy problem (3.1.15), (3.1.16) to the first order symmetric hyperbolic system
(3.6.22), (3.6.23) that is where all matrices ;(k are real symmetric matrices with
constant elements. Let T be a fixed positive number, § = (£,&,&) € R3 be a
parameter; A(§) be a matrix defined by A(§) = 22:1 Ak Xi(€), 1 =1,2,...,9be
eigenvalues of A(¢). The positive number M is defined by

M = max max|)\;(§)] (3.6.25)

i=1,2,...,9 |¢|=1

We claim that M is the upper bound on the speed of waves in any direction.

Using 7" and M we define the following domains

R
8
<
=
I

{reR3: |z —ao| <M(T—h)}, 0<h<T
D(xo, T) =A{(x,t) : 0<t <T, |z — x| < M(T —1)}
R(zo,h) ={(x,t) : 0 <t < h, |v — x| = M(T —t)}

Here I'(x,T") is the conoid with vertex (xg,T"); S(zo,h) is the surface constructed
by the intersection of the plane ¢ = h and the conoid I'(zg, T"); R(x¢, h) is the lateral
surface of the conoid I'(zg, T") bounded by S(z¢,0) and S(xg, h). Let 2 be the region
in R? x (0,00) bounded by S(x¢,0), S(xg,h) and R(x¢, k) with boundary 9Q =
S(z0,0) U S(xg,h) U R(xo, h).

-
(2] INT, K] (x0e LK)
Bt /x\
S EX
Ulxf)=0 .
Fldiged) Fla,0=0 gl:ﬁi}?:l}lj
GA1=0 A=l
Hixl=0 Einl=i

Figure 3.8 Domains of Dependence

Applying the reasoning similar to (Courant & Hilbert, 1979) (p. 652-661)(see also
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Appendix B) we find the following estimate for the solution of (3.2.27), (3.2.28)

h
/ V(z, h);?dxgeh[ / Vo(z)|%dz + / ( / \F(x,t)ﬁda;)dt] (3.6.26)
S(h) 5(0) 0 S(t)

Let us define P(K) = {z € R? : |z| < K}. Since G(z) € C°(R?); H(z) €
Cs°(R?); and F(z,t) € C([0,T];C5(R?)) then there exists K > 0 such that
supp G C P(K), supp H C P(K) and F(z,t) as a function of the variable z,
has a finite support which is located in P(K) for any fixed t from [0, T'].

Also let us denote
D(T,K)={(z,t): 0<t<T, I'(z,t) N P(K) =0}.

If (z,t) € D(T, K) then U(x,t) = 0. This means U(z,t) = 0 for any ¢ € [0,7] and
lz] > MT + K.

Hence, supp U C P(MT + K). As aresult U(z, t) belongs to the class

U(z,t) € C*([0,T]; C5°(R?)).

3.6.3 IVP for the System Depending on x|, x5, v3 and t Variables

In Section 3.6.2 we have shown that IVP of elastic system (3.1.15), (3.1.16) has a
unique solution U(z, 79, 73, t) belongs to C*([0, T]; C3°(R*)) when inhomogeneous
term F(xq, 29, 23,t) € C([0,T]; C5°(R?)) be given function depending x5, 3 and t
variables and initial data G(z1, 22, 73) € C5°(R?); H(x1, 29, 23) € C5°(R?) are given
functions depending z1, xo, x3 variables. In this case we can rewrite IVP of elastic

system (3.1.15), (3.1.16)



0*U, 0*U,
P g = Cu B2 +C12

02U,
(933'1(9332

. 0?Us
13 81'18373

02U,

0?Us

+016( O°Ur + 82U2) + 015<

0r90x, 022 0x10x3

02U,
3.7318132

02U,

2
Oxs

+C61 + Ce2

82U2 82Ul

2
Oxy

0?Us

)

+ 82U1> + c65<

+c (

81’181’2 81’28I3

02U,
81’281’3

82U3>

ot ( 3

0*U,
+Cs1=—F%— + C52

8$18$3

02U,
8:17281:3

02U, 02U,

3x18x2

+C56< ) + C55<82U1 +

0x90x3 011073

02U,
3

‘|‘C54 (

0*U, 0*U,
2 + Cg2

Pop — @ 0z

02U,
8x18x2

. 0*Us
03 8x18x3

02Uy

82 U3 )
0r3  Ox10z3

0?Us

0*U, N 82U2) N CG5<

+Ceo (6x23x1 oz?

89&18933

0?U,
8x18x3

0%Us )

+C64( 8%181‘2

2
Oxy

)

)
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(3.6.27)



o UL OPUy 0P
N 10zs 2022 | P Or,01s
U, 8%, 92U,
+626(8x18x2 T oz )+ 025<8x28x3 *
U,  9°U,
e 24(8:628:63 013 )

0*Us

83:18;1:2

e 0*U, e 0*U, ey 0*U,
002101 | 20wa0zs | P02
0*U, 0%*U, 0*U, 0%*Us,
+C46(8x28x3 8x18x3> + C45< 03 + 8:61(?x3>
0*U, 0%Us
F
+C44< 3 * 8@095;;) o
0’Us . 0*U, e 0*U, e 0*U,
Pt = Vo T 00,00, | P 01102,
0*U, 0*U, 0*U, 0%Us
+C56<8x23x1 + oz? ) + C55<8x18x3 or? )
0*U, 0*U,
+Cse (ax13x3 01102 )
e 0%, ey 82U2 ey 0*U,
N e10zs |+ 922 T 91,01,
0*U, 0*U, 0*U, 0*U,
+C46(8:c18x2 013 ) + c45<8x28x3 * 01101
0*U, 0%Us
e (axgaxg 922 )

)

)
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(3.6.28)
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0*U; 0*U, 0*Us
+C317—F=— + C32 + c33 3
0x3

8;1:1(91:3 83726333

0*U, 9%U, ) 635<82Ul 0%Us, )

8$28$3 + 81’18$3 +

e 822 ' Or10zs

(3.6.29)

02U. 02U.
2 3 )+F3.

+es( 82 | 91,073

8Uj(x17 L2, T3, t)
ot

Uj(x1, 9, x3,0) = G;(21, 22, x3), = H,(x1, %9, x3),

t=0
(3.6.30)
where © = (xy,19,23) € R3¢ > 0. Simply, equations (3.6.27)-(3.6.30) can be

written as follows

9°U
pgp = LU+ Flay, 2, 25,1), t>0, (3.6.31)

ou

E t=0 - H(xl’ Z2, x3)7 (3.6.32)

U('Tl; Lo, T3, 0) - G(:L‘17 T, 1'3),

where © = (71, 79,73) € R®, ¢ > 0 and L[U] is the matrix operator defined with
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components L;;U; that is given with the formulas

Lu = Cnagl + 61685112 + 0158:%1333 + 61485113 + 0618:%1302 + 066832 + 0658;%2353
+C518§1$3 + 656832363 + C558§3,

Lig = 1202 ,, + 1605, + €202, + Co602, 4, + 64030, + C5202,4, + C5602, oy + C5205,,

Lis = 1302 ,, 4 1507, + €103 ,, + C6307,,, + C6504 4, + 6402, + €530, + €507 .,
+Cs48§2137

Lgl = 661821 + 0668;@ + 665621333 + Cﬁ4a§1$3 + cmégm + 026822 + 02583232I3
+C418§113 + C4Ga§2x3 -+ C458§3,

Loy = €202 4, + Co60, + 2202, + 2602 4, + €240%,,. + €202, + €1603 4, + €1403,,

L23 = 063851933 + 065831 + 064831332 + nga§2x3 + 025851332 + 024832 + C438§3 + 0458§1x3
+C443§2x37

L31 = C518§1 + 05682,1:02 + C558§1x3 + C548£1x3 + C418§1x2 + C46(9§2 + 0458§2x3 + 031831903
+e3607,4, + 3502,

L32 = C526§1x2 -+ 656(9;%1 + C426§2 —+ 046821:02 + 0448932363 -+ 632(9%2333 + 036851953 -+ 0348:%3,

L33 = C538§1$3 + 055831 + 054(‘33%1” + C438£2I3 -+ 0458§1x2 + C44832 -+ 0338:%3 + 0358z113
—|—0340§2x3.

(3.6.33)

3.7 3-D Fundamental Solution of IVP for the System Depending on z, x5, x3 and
t Variables

A matrix U(z,t) = [U,s(x,t)]3x3 is called 3-D fundamental solution or IVP for the

system depending on space x € R? and the time variable ¢ if s—th column

Uls(ﬂf,t)
Us(l',t) = UQs(xat)
Ugs(ﬂf,t)
satisfies )
0-U, 3
p oY = L[Uq], z€R’ t>0, (3.7.1)
oU;, 1
U,(z1, 72, 73,0) = 0, o 5555(5E1,$2,$3), (3.7.2)
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where = (z1,70,73) € R3, t € R; ¢! = (1,0,0), ¢ = (0,1,0), € =
(0,0, 1);and Ujg(z1, z2, x3,t) are the components of the unknown displacement vector
U, (21, z2, z3,t) and L[U,] is the matrix operator defined with components L;;U; that

is given with the formulas (3.6.33).

3.7.1 Some Properties of 3-D Fundamental Solution

Remark 3.7.1. Let Uy(z,t) be a fundamental solution then U,(z,t) = 6(t)Us(z, 1)

satisfies

9?0, . .
P o = LUy + €°6(x, ), (3.7.3)

A

U,(z,t) =0, (3.7.4)

t<0

s = 1,2,3; where x = (11,29,73) € R} t € R; ¢! = (1,0,0), ¢ = (0,1,0),
e’ = (0,0,1);and Ujs(z,t) are the components of the unknown displacement vector
Us(x,t) and LU, is the matrix operator defined with components L;;U; that is given

with the formulas (3.6.33).

Proof. Since U(z,t) = ©(t)u(x, t), derivative of U(z, t) with respect to t is

8(ﬁ(x, t)) B
—— = =0 U(x,0) + (1) 5 U(w, 1),
*(0@.) o
— g = ,50) + Ot 55U, 1)
and also we have
L[U] = ©(t)L[U]
then - 2
p%_tg —L[0] = p%és(;(t)(s(x) + p@a)%t‘j - 0L,
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It is well known that (see, Hormander-Lojasiewicz theorem in appendix) the
arbitrary differential equation or system with constant coefficients has a fundamental
solution of slow growth. Thus, system with constant coefficients given with equations

(3.7.1), (3.7.2) has a fundamental solution

Us(,t) € C*([0,T]; S'(R?)).

Our aim is to study some of the properties of this fundamental solution and suggest

a method to find fundamental solutions.

Let us denote convolution of functions Ug(x,t), with cap-shaped function w.(x)
is ui(z,t) = (uys,uss,uss). Taking convolution with cap-shaped function, the

generalized Cauchy problem (3.7.1)-(3.7.2) can be written as

O*us E .
P o — L], (z1,22,23) €R’, t€R, (3.7.5)
one 1
ui(z,0) =0, ;f = ;?we(xl)ws(azz)ws(m). (3.7.6)

Using Theorem 3.2.3 of Section 3.6.2, it can be proved that problem (3.7.1), (3.7.2)
has a unique solution u¢(x,t) € C*([0, T]; Cg°(R?)) and
supp ui(x,t) € P(MT + &9) Ve € (0, ¢9).

Property 7. As ¢ — +0, u(z,t) approaches to U(z,t) in S'(R?); vVt € [0,T).

Proof. It can be proved that as ¢ — +0, w.(x) approaches to §(z) in S'(R?). Using
this fact and using the continuity of the convolution u(z, ) * w.(z) with respect to

we () theorem is proved. O

Property 8. Let T' be a fixed positive number. There exists a unique solution of Cauchy

problem (3.7.1), (3.7.2)

U (z,t) € C*([0,T]; E'(R?)).
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Proof. We need to show that
(Us,0) =0; Yo €S8 and supp o CR*\ P(MT + &)

(Us ) = lim (u5, 0); Vo8

e—+

=0.

This means supp Uy C P(MT +¢) Ve € (0,&). Also using property(7) we conclude
that there exist a unique solution of the Cauchy problem (3.7.1), (3.7.2)

U,(x,t) € C*([0,T); £'(R?)).

]

Property 9. Let U (x,t) be solution of the problem (3.7.1), (3.7.2) and U,(v,t) =
(Uls(v, t), UQS(U, t), Ugs(v, t)) where v = (U1, vy, v3) € R? be the Fourier transform
image of Us(x,t) with respect to (x1, T, x3) € R3. Then the Fourier image U,(v,t) is

an entire analytic function and satisfies following system of equations:

Pl - i i - -
p_8t21 41102 U s+C1901VaUss 1301 3Uss+-Ci6 (Uzvl U1S+U%UQS> +c15 <U1U3U13+’U%U35>
+Ci4 <U1U3U25 +01U2U3s> +061U1U2U15 +662U§ﬁ25+063U2U3U35+066 <U1U2U25+U§ﬁls)
+Ce5 (1221)3(715 +01U2(735> +Cp4 (U2U3025+U§U35> +C5101U3(~]15+052U2U3025+C53U§ﬁ3s

+Cs6 (11203015 + 0103025> + Cs5 (Ugﬁls + 01?13033) + C54 (Ugﬁzs + U2U3ﬁ3s> , (3.77.7)

92U,

P o2 +C61'U% Uls+C62U1'U2 023+C637)1'U3033+C66 (UQ'Ul 0154-'11%023) +Cg5 <'U1U3015—|—’U%[735>

- - - - N N -
+C64 <01U3U25 —H/1U2U35> +C210102U 15+ Co205 Usg +Co30203Us +Cog <U1U2U25+U2 Uls)

- - . - . . -
+cCo5 <U2U3U13 +U1U2U35> +Co4 (UQU3U2S+UQ U3s> + 10103015+ Cagv203Uss +ca3v3Usss
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+C46 <U2U3015 + ’U1U3[~f23> + Cy5 (Ug[jls + U1U3U3s> + Cyy (U?,Uzs + 7}21}3033) , (3.7.8)

02U,
P~ o

277 7 7 2 275 7 27
+c5107 Urs+cs50v102Uss+c530103Us5+C56 (112711 Us+v] U2s> +Cs5 <01U3U15+U1 U35>
- - - or N N or
+Cs4 <U103U25 +U1U2U3s> + 102U+ 205 Usg+a3v203Us s +Ca <U1?)2U23+U2 Uls)
- - - - N - -
+cC45 <U27)3U15 +U102U35> +Caq <U2U3U25+U2 U35> +e310103U 15+ C320203Uss + 3303 Usg

+C36 (U2U3015 + U1U3(~fzs> + C35 (Ug[jls + Ulv3U3s> + C34 (U?,Uzs + 02U3U3s) , (3.7.9)

. U, (x,t)

Ujo(,0) = 0, =2 - (—es>j. (3.7.10)

t=0

Proof. Let U,(v,t) be the Fourier transform images of U,(z, ) with respect to & =

(71,29, 73) € R% ie.

U,(v,1) = (Uls(v,t),f]gs(v,t), Ugs(v,t)>

Uls(vat) = ]:x[Uls]a [ = 17273;1} = (Ulav%US) € Rgv

where the Fourier operator JF, is defined by

J-'x[uls]:/ / / ws (7, t) e daydrydas;

TV = T1U] + ToU2 + T3Us; i = —1.

Since U, (z,t) € C?([0,T); £'(R?)), according to Paley-Wiener theorem (Reed &
Simon, 1975), Fourier transform of the function U(x, t) is an entire analytic function

with respect to v = (v, U9, v3) € R3, and can be written as a power series

Nk
U, (totoy oy
=0

U, t)=> Y

k=0 m=0n
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If we apply Fourier transform with respect to space variable problem (3.7.1)-(3.7.2)

can be written in terms of Fourier images given with the equations (3.7.7)-(3.7.10).

3.7.2 Derivation of 3-D Fundamental Solution
Problem in Terms of Coefficients of the Series Expansion

According to Paley-Wiener Theorem, power series expansion of U,(v,t), h,(v) can

be considered i.e.

U,(v,t) = i io: f: ﬁf’m’n(t)vlfvgnvg, (3.7.11)

k=0 m=0 n=0
o0 oo e} &
~ ~k,mmn
ho(v) = D > b ofogs, (3.7.12)
k=0 m=0 n=0
~kmmn . ~ km,mn .
where h, are given real numbers; U, " (¢) are unknown coefficients we need to

find.
Substituting (3.7.11-(3.7.12) into (3.7.7)-(3.7.10) we obtain
ag ka,m,n

1s rrk—2,m,n rrk—1,m—1,n rrk—1,mn—1 rrk—1m—1n | 17k—2,m,n
p—atQ +011U15 +c12Uqg +c13U3, +Ci16 ( 1s +U25 )

rrk—1,m,n—1 k—2,m,n rrk—1,m,n—1 k—1,m—1n k—1,m—1,n
+cis <U1s + Us, > +cua (UZS + Us, ) + c61U,
rk,m—2n rrkom—1n—1 rrk—1,m—1,n rrk,m—2n
+ce2Uy, + ce3Us; + Ce6 <U23 + Uy, )

km—1n—1 k—1,m—1n rrkom—1n—1 rrhk,m—2.n rrk—1,m,n—1
+CG5 (UIS + U3S ) + 664 (UQS + U3S ) + C51 1s

km—1,n—1 k,m,n—2 km—1,n—1 rrk—1,mn—1
+C52U28 + 053(]3S + Cs6 (Uls + U28 >

s ( Thmn=2 | 03{“;1’"“”*1) + c54<~2’2’”’"*2 + Ufgm*’”*l) —0, (37.13)
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a Ukmn

p 8152 +061Uk 2mn+CG2Uk 1,m— 1n_|_CG3Uk 1,m,n— 1+066<Uk 1,m—1n Uk 2mn>

+065(Uk 1,mmn—1 Uk 2mn> +064(Uk 1,mmn—1 Uk 1,m— 1n) +C21Uk 1,m—1n
+C22U§S’ +CQ3U§Sm 1= 1+026<(~]2k;1’m71’n+Uﬁ,m Qn)

+C25<Uf;m_l’n L+ Uyt M) +C24<(7§;m_1’n L+ Ugm 2”) +en Uy
_I_C42Ukm L=l 4 e Ukmn 2+C46<Ukm 1,n—1 Uk: 1,m,n— 1>

a Ukmn I o i .
pT+C51U1s mn 52Uk 1,m—1 +C53Uk 1 L. 56<Uk 1m—1 Uk 2, )
—|—C55<Uk 1,mmn—1 Uk 2mn>+654<Uk 1,mmn—1 Uk 1,m— 1n>+c41Uk 1,m—1n

+C42Ukm 2n+c43Ukm 1,n— 1+C46<Uk 1,m—1n Ukm 2n>
+C45<Ukm 1n—1 Uk 1,m— 1n> —|—C44<Ukm 1,n—1 Ukm 2n> —|—631Uk 1,m,n—1

k —1,n—-1 k -2 k -1, 1 k 1, -1

+035<Ukmn 2 Uk 1,mmn— 1) +034<Ukmn 2 Ukm 1,n— 1) —0. (3715)

- QU™ (x:,1) N
k,m,n o js ) _ Tkmn
U™ (2,0) =0, —=——|  =h"" (3.7.16)
t=0
where 1, are given real numbers such that A9, = 1 and A, = es forl =1,2,....

Equations (3.7.13)-(3.7.16) can be written equivalently as the following recurrence

relations: -
2 7m7n
0°U;;

1 k,m,n .
G = ;T >0 =128, (3.7.17)
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QUF™™ ()

U™ (0) =0, J@t = RE™ j=1,2,3. (3.7.18)

t=0

where
k,mmn rrk—2,m,n k—1,m—1n k—1,m,n—1 k—1,m—1n k—2,m,n
Tl = CllUls +012U +013U + C16 <U U )

—|—Cl5<Uk 1,m,n—1 Uk: 2mn> +Cl4<Uk 1,m,n—1 Uk 1,m— 1n> +061Uk 1,m—1n
+eaalUs ™" + caaUsy ™ "™ 1+066<Uk b=l grem= 2n>
+665<Ukm 1,n—1 Uk 1,m— 1n> +664<Ukm 1,n—1 Ukm 2n> +c51Uk Lmn—1
+052Ukm b= 1‘*’0530;;7”’” +C56(Ukm Ln—1 Uk Lm,n= 1)

_'_055<Ukmn 2 Uk 1,mmn— 1) +C54<Ukmn 2 Ukm 1,n— 1)) (3719)

kmmn rrhk—2,m,n k—1,m—1,n k—1,m,n—1 k—1,m—1mn k—2,m,n
TQ = 061U15 +062U —I—CﬁgU + Cg6 <U U )

+065<Uk 1,mn—1 Uk 2mn>+064<Uk 1mn—1 Uk: 1,m— 1n>+c21Uk Lm—1m
+C22U§§m72’n+623Ukm b 1+026(Uk 1m= 1”—|-Ukm 2”)

+025(Ukm brmt o gt 1n> —|—024<Ukm b=ty e 2”) + e Ut
+c42Ukm 1,n— 1+C43U§S,m,n +C46(Ukm 1n—1 Uk 1,m,n— 1)

+c45<U'“"” 2 h-tmn= 1) +c44<U’”"” 2 hkmtns 1), (3.7.20)

k,mmn rrk—2,m,n k—1,m—1n k—1,m,n—1 k—1,m—1n k—2,m,n
TEMN = e UE2m 4 5, U + 55U + 5o (O + 05

+C55<Uk 1,mmn—1 Ulc 2mn> +C54<Uk 1,mn—1 Uk 1,m— 1n> +C41Uk 1,m—1n

k: -2, k —1n—-1 k 1,m—1, k -2,
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+eas (Uf;mfl’”’l + U?f;l’m*l’") +cu (Ug’“,;m*’"’l + Ug’“;m*?’") + eq Ut
_i_CsQU-ka,mfl,nfl I 6330:;2171,7172 ¥ 36 (U{cs,mfl,nfl X Uéﬁsfl,m,nfl)
+c35 (Uﬁ’m’"_Z + U:,’fs‘l’m’"*) + 3 (Uz’“;m’"‘z + Ug’fs’m‘l’"‘l) (3.7.21)

The solutions of the problems (3.7.17), (3.7.18) for 7 = 1,2, 3 will be
~ t ~
U™ (t) = /0 (t —7)Y;(r)dr + RS, j=1,2,3. (3.7.22)

Using (3.7.22) all coefficients ﬁ’;’m’n of U, can be found. Solution of the IVP
(3.7.7)-(3.7.10) can be obtained as follows

Ujs(v1, 02,03, 1) = Z Z Z ﬁfgm’"(t)vlfv;"vg (3.7.23)

where U fs’m’"(t), j = 1,2, 3 are defined in equations (3.7.22).

Procedure of Finding U*™"

.k, . .
The procedure of finding U, s = 1,2, 3, consists of the sequence of the following
iterative steps of constructing some formulae from the others using the relation

(3.7.22).

Step 1:
672,m,n — ﬁk,fln — ﬁk,m,fQ _ ﬁfl,m,n — ﬁk,fl,n — I’jk,m,fl -0
whenk =-2, —1,0,...m=-2, —1,0,...,n=-2, —1, 0, ....

Step 2: using zero values from step 1 we compute compute

gomn ghon gm0 1 =0,1,2, .., m=0,1,2,..;n=0,1,2, ...
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Step 3: from the relations obtained on previous steps we compute

r7l,mn y1k,1,n 1T1km,l
gy uset, ugete,

k=1,2,..;m

1,2, .on=12, ..

Step p: from the relations obtained on previous steps we compute

Uzsxm,n’ UI'SWJL7 U/’;,m,p7 for

n=p,p+1,p+2, ..

kE=p,p+1,p+2,..; m=p,p+1,p+2 ..

Inverse Fourier Transform and the Solutions of Original IVP

Applying inverse Fourier transform to U (vy, vy, vs, t) defined by the formula (3.7.23),
solution of problem (3.7.1), (3.7.2) can be obtained for 3-D Case with with hy(z,t) =

%esé(xl,xg,xg); s=1.

3.7.3 Simulation of 3-D Fundamental Solution

In this part of the section we consider problem (3.7.1), (3.7.2) for monoclinic type

of anisotropy (see, Section (3.1)). The aim is to create simulations of elastic wave

propagations, by the method described in Section (3.7.2).

The monoclinic crystal with density (gr/cm?) and elastic moduli (10'? dyn/cm?)

is as follows:

Monoclinic: p = 2.649, cy
cu = =037, c5 = 0, c
co3 = —0.74, coy = 0.57, co5 =
cs3 = 10.28, c3y = 0.99, ¢35 =

= 867, c2 = —083, c3 = 2.71,
= 0, ¢y = —083, «c9 = 1298,
0, cog = 0, c31 = 2.71, c30 = —0.74,
0, c36 = 0, cu1 = —0.37, ¢4 = 0.57,



Cq3 — 099, Cqq4 = 386, Cq5 — 0, Ci6 — O, Cy1 — O, Cz2 — 0, Cr3 — 0,
csa = 0, ¢55 = 688, ¢56 = 0.25, ¢c61 = 0, cg2 = 0, 63 = 0, ca = 0,

Cgr = 0257 Ce — 2.9.

Using the method of the Section (3.7), we compute the elements of the fundamental
solution matrix U (z, t) whose s—th column is Ug(z, t) with the components Ug(z,t) =
(Uis(x,t), Uss(, 1), Uss(w,t))". In figure3.2, we consider (3.7.1), (3.7.2) for s = 1
(e* = (1,0,0)) and we draw the graph of the first component of U(x, t).

Example: We study problem (3.7.1), (3.7.2) inside the Monoclinic crystal for
hy(z,t) = %elé(xl,xg, x3). In Figures the density plots of first, second and third
components of the first column Uy (z, t) of fundamental solution matrix is presented at

t = 11/10.
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Figure 39 2-D level plots of Uj1(0,z2,23,11/10),
U21(0,l‘2,3§'3,11/10) and U31(O,:c2,w3,11/10) when gy = 0
of Monoclinic Crystal
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Analysis of figures

In figure 3.9, 2-D level plots of first, second and third components of first column of
fundamental solution matrix of elastic system depending on four variables z1, xo, 3,1
in monoclinic crystal is presented for time ¢ = 11/10 and x; = 0. At time ¢ =
11/10, the difference of wave propagations of different components of U, (x, t) can be

observed.

3.8 Application

In previous sections, IVP for system of anisotropic elasticity is described. We consider
the system for cases when displacement vector depends on one, two or three space and
time variables. For each case, generalized Cauchy problem is stated and derivation of

fundamental solution is explained.

Fundamental solution plays an important role in constructing solutions to various
kinds of boundary-value and IVPs. In this section we consider IVP for the system of
anisotropic elasticity as an application and by the help of fundamental solution we will

show that solution of IVP can be obtained.

Let us consider the Cauchy problem for system of anisotropic elasticity that is given

with equations

82uj 5 8ojk[u]
— 2 =N L (e t), §=1,2,3, 3.8.1
p 8t2 Pt 8xk fj( ) j ( )

s
u;(z,0) = g;(2), % = h;(z), (3.8.2)

t=0

where © = (21,19, 23) € R®, ¢t > 0and u;(z,t); (j = 1,2, 3) are the components of
the unknown displacement vector u(z,t). f;(z,t); (j = 1,2,3) are the components
of nonhomogeneous vector function depending on z,t and g;, h; are components of

initial data depending on x variable only.

The mathematical model given with the equations (3.8.1), (3.8.2) can be written as
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follows
0*u 5
Po = Ll +1(z.t), zeR, >0, (3.8.3)
u(e,0) =g(x), 2| =) (3.84)
Y = 8 Ot li=o ) -0

where ¥ = (21,29, 23) € R*, ¢ > 0 and L[U] is the matrix operator defined with

components L;;U; that is given with the formulas (3.6.33).

Lemma 3.8.1. If u(x,t) is a solution of (3.8.3), (3.8.4); then v(x,t) = O(t)u(z,t) is
a solution of the following problem

0%*v

pw = Lv] + F(z,1), (3.8.5)

v(z,t)| =0, (3.8.6)

<0

where ¥ € R3t € R, v(z,t) is unknown displacement vector with the components
vj(x,t) and L[u] is the matrix operator defined with components L;ju; defined in
(3.6.33) and nonhomogeneous term is defined as F(x,t) = O(t)f (x,t) + pd' (t)g(x) +
po(t)h(x).

Proof. Since v(z,t) = O(t)u(x,t), derivative of v(z, t) with respect to ¢ is

(v(x,t))t = 5(t)u(z,0) + @(t)%u(m,t),

2

(V(x, t))tt = §'(t)g(x) + 6(t)h(z) + @(t)%u(x, ),

and also we have

Llv] = ©(t)L[u]
then ) 2
pg% — L[v] = pd'(t)g(z) + pd(t)h(zx) + p@(t)%_t‘; — O(t)L[u,
pf—;’ — L[v] = pd'()g(z) 4+ pd(t)h(z) + O(t)f(x, t)
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Lemma 3.8.2. Let us denote fundamental solution as G(x,t) that is solution of the

following problem
G = L[G] + d(z,t) (3.8.7)
p atQ - 9 ) R
G(z,t) =0, (3.8.8)
<0

then v(z,t) = (G * F)(x,t) is a solution of the Cauchy problem given with the
equations (3.8.5), (3.8.6).

Proof. Consider

v 0? G
o ~op G F =g F
0*v 0? G
a2 = o2 G = g o F
J J J
SO
0%v 9%(G % F) 9%G
’OW_L[V]_/) 5 _L[(G*F)]:<p8t2 —LIG))*xF=0«F=F,
v(z,t) o = 0

Using Lemma 3.8.1 and Lemma 3.8.2 we conclude that solution of the IVP (3.8.1),

(3.8.2) can be obtained using fundamental solution that we have mention in Chapter 2.

In this section, we have an application that shows importance of fundamental
solution constructing solution to the given Cauchy problem. There are various kinds
of problems and methods (for example, boundary element method) where fundamental

solution takes an important place for constructing solutions.

3.9 Concluding Remarks

In this chapter of the thesis, a new method for finding fundamental solutions of elastic

system depending on two (z3, t), three (x4, x3,t) and four (xy, xo, x3, t) variables with
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different inhomogeneous term and initial data that have finite support is described.
This method is based on Fourier transformation, Paley-Wiener theorem and some
properties of fundamental solutions. Computational examples confirm robustness of
the method. By theoretical study and computational examples we conclude that this
method can be applied modeling fundamental solutions of elastic system in different

types of homogeneous anisotropic media.



CHAPTER FOUR
CONCLUSION

In the thesis two new analytic methods are applied for solving initial value problems

for equations of anisotropic electrodynamics and elasticity.

The first method is PS method. This method is based on polynomial presentation of
initial data and inhomogeneous terms of the systems. The solutions are found also in
the form of polynomials with respect to space variables. This method uses essentially
symbolic calculations. In the thesis PS method has been applied for solving an initial
value problem of the system of electrodynamics related with recovering the electric
field in electrically and magnetically anisotropic materials. In the thesis the robustness
of this method has been checked by computational examples. Using PS method the
simulation of electric fields has been obtained in different electrically and magnetically
anisotropic materials and presented in the form of pictures. In the thesis we show that
PS method can be used for construction of approximate solutions of electrodynamic
system if initial data and inhomogeneous term have non polynomial presentation (for
example, smooth or continuous functions). Theorem about the estimate of approximate

and exact solutions has been proved in the thesis.

The second analytic method is based on properties of hyperbolic systems: solutions
of hyperbolic system have finite supports with respect to space variables for any
fixed time variable if initial data and inhomogeneous terms have finite supports.
This property is proved in the thesis for the system of anisotropic elasticity. Using
Paley-Wiener theorem we find that the Fourier image of the solutions with finite
supports with respect to space variables are analytic functions with respect to Fourier
parameters. Using the presentation of unknown solution in the form of a power series
with respect to Fourier parameters we can find the recurrence relations for unknown
coefficients of the power series from the considered system of anisotropic elasticity
and initial data. Using these relations we recover all unknown coefficients. Finally, the

inverse Fourier transform is applied for the constructed power series for Fourier image

125
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of the solution. This method has been applied in the thesis for the construction of
the fundamental solutions for equations of anisotropic elasticity. The method has been
tested and its robustness has been checked. The simulation of elastic wave propagations

in different anisotropic materials has been obtained in the thesis.
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APPENDICES

A.1 Some Facts From Matrix Theory

This section contains some basic facts from matrix theory related with symmetric and

positive-definite matrices, which are used inside the thesis (Goldberg, 1992).

Theorem A.1.1. Let C be a real, symmetric, positive-definite matrix of dimension

m x m. Then Ct is a real, symmetric, positive-definite matrix.

Proof. Since C™1C = CC™! = I, using the symmetry property of C and the rule
(AB)* = B*A* we get I = C(C1)*. Multiplying both sides of the last equality by
C~! from left-hand side we get C~! = (C~1)*, which implies symmetry property of
cL

If X is an eigenvalue of C, then % is an eigenvalue of C~!. Since the eigenvalues of
a positive-definite matrix are positive, all eigenvalues of C are positive, which implies

that C~! has all positive eigenvalues. Hence C~! is positive-definite. [

Theorem A.1.2. Let C be a real, symmetric, positive-definite matrix of dimension
m X m. Then there exists a real, symmetric, positive-definite matrix M such that

C1 =M=

Proof. According to Theorem A.1.1, C! is real, symmetric, positive-definite and is
congruent to a diagonal matrix of its eigenvalues. That is, there exists an orthogonal

matrix Q such that
Q' C'Q=A, Q' =Q " (A.1.1)

Since C~! is symmetric and positive-definite, its eigenvalues \;, i = 1,2,...,m are

real and positive. Let Az and M be defined as follows

1

= diag(A\2,i=1,2,...,m), M= QA2Q". (A.1.2)

S

A
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Noting that Q) is orthogonal we have Q*Q = I, and therefore

M? = (QA2Q")(QA:Q) = QAQ* = C 7. (A.1.3)

Clearly, M = QA%Q* is positive-definite. ]

Theorem A.1.3. Let A, S be real and symmetric matrices of dimension m x m. Then

the matrix Aj = SA;S is real and symmetric.

Proof. The proof follows from equalities
A’ = (SA;S)" =S"(SA;)" =S"AS* =SA;S=A,;. (A.1.4)

]

A.2 Hyperbolicity of Elastic and Electromagnetic Systems
A.2.1 Hyperbolicity of Elastic system for Isotropic Media

. . . . . 3 . . o .
In isotropic medium elastic moduli {Cjkim}3 4 =1 Which is a forth-order positive

definite constant tensor defined as (see, (Dieulesaint & Royer, 1980), p.141).
Cikim = Aéjkfslm + ,U((Sglakm -+ (5jm6kl), (A21)

and satisfy the symmetry conditions cjxim = Cijim = Cjkmi-
3
Lemma A.2.1. If {¢jpm}? | Is positive definite, then Z CiktmErEmnim > 0.

Jsk,l,m=
j7k7l’m:1

Proof. Let €j, = (& + &nj) 5 J,k = 1,2,3 are non-zero vectors. Since

3 . ., . .
{€ikim}; .1.m=1 18 positive-definite then we have

3
E Cikim€jk€im > 0,

7.k, lm=1
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3
1
) Z Ciktm (5 + EkMj)€tm > 0,
7.k, lm=1
1< 1 &
b Z Cikim&jM€im + 5 Z Cikim&ENj€im > 0,
Jikil,m=1 7,k lm=1

changing j < k to the first part of the summation and since ¢;i, = Cjim We have

3 3

1 1
3 g Chjim&kNj €tm + 3 E Cikim&kNj€m > 0,
7.k, lm=1 7,k lm=1
3 3
1 1
B g Cikim&rNj€tm + 5 E CiktmSkMNj€tm > 0,
7,k lm=1 7,k lm=1
3
§ Ciktm&rNj€tm > 0,
jakalvm:]-

and setting €, = %(fﬂ?m + &) 5 L, m = 1,2, 3 are non-zero vectors. We have

3
Z Cjklmgknjelm >0 ’

gk lm=1

3

1
Z Cjkszkﬁj§(fz77m +&nm) >0,

j:kzlvmzl

3 3
1 1
3 E Cikim&xNi&Mm + 3 E Cikim&kNiEmm > 0,
JhkLm=1

jkdm=1

changing [ <~ m to the first part of the summation and since ¢;i;, = i We have

3 3
1 1
3 > Crmi&eniGnm + 3 > Cirm&nimm > 0,

j7k7l7m:1 j?k7l7m:1

3 3
1 1
5 E Cittm&ERniEmm + 3 g Ciktm&rNi&mm > 0,

jvkvlvm:]- j,k’,lﬂTL:l

3

Z Cikim&rNj&mm > 0,

jkdm=1
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3

Z Ciktm&xNiEmm # 0.

j,k,l,m:l

Using (A.2.1) system of elasticity in isotropic medium can be rewritten as follows

p 3252 Z Z i g 0x 896 (A2.2)
=

where f = (fi,f2, f3) and A;;(i,j = 1,2,3) are symmetric matrices whose

components are elastic moduli. The formulas of these matrices are as follows

A+2u 0 0 1 0 0
Ay = 0 p 0 |, Ao=1| 0 X+2u 0 |,
0 0 u 0 0 I
w0 0 0 AX4+p O
1
Az=1 0 p 0 ) A12=§ A+ u 0 01,
0 0 A+2u 0 0 0
0 0 A+u 0 0 0
1 1
A13=§ 0 0 0 , A23=§ 0 0 A+u
Ad4p 0 0 0O A+p O

Characteristic polynomial of equation (A.2.2) has the form

det (Pprs - Anff - A22§§ - A33§§ - Amfl& - A13§153 - A23§2§3>, (A.2.3)

where [3is 3 x 3 identity matrix.We will find characteristic roots of (A.2.3). Let us

denote A+ = 3, = a then (A.2.3) can be written in the form

pp* — al€]? — BEE —B&1&2 —B&183
—B&1&2 pp° — 04|f’2 - ﬁfg — 883 = 0.
—B&1&3 — 38263 sz - 04|§|2 - ﬁfg
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Doing analysis we obtain

pl,zz\/E!f\, p3,4=—\/E’§|>
P P
A+ 2 A+ 2
= /2l pe= /2 el.
P P

If u>0 p>0, A+2u >0 then all eigenvalues will be real so given system is

hyperbolic.
A.2.2 Hyperbolicity of Elastic system for General Anisotropic Media

In anisotropic medium {Cjklm}?,k,l,mzl are elastic moduli which is a forth-order
positive definite constant tensor that satisfy the symmetry conditions cjiim, = Crjim =

Cjkmi- System of elasticity in anisotropic medium can be written as follows

0%u 3 0*u
— = E Ay, ———— +f A2.4
P ot? hm 01,0, (z.1) ( )

k,m=1

where u = (uy,us,u3), £ = (fi, fo, f3) and Ay, are 3 x 3 matrices with (j,1)
component

; 1
Al = 5 (Cihim + Cijm) -
Principal part of (A.2.4) is given by the formula
o2 3 o2
Py=p— — Apn=———
0= Po kmz g 011L,0T

and for hyperbolicity we look for characteristic roots of characteristic polynomial that

is

det(pA2I; — Z Apm&ilm) - (A.2.5)
km=1
Let us denote ,
A=) A - (A.2.6)

k,m=1
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If A is symmetric positive-definite, characteristic roots of (A.2.5) are real and

positive. This shows that (A.2.4) is a hyperbolic system.

Remark A.2.2. The matrix A defined in (A.2.6) is symmetric.

Proof.
3 3
A : 1
l z : l E +
= k,m=1 A‘;mgkfm B k,m=1 §(Cjklm Clk;jm)gk’gm ’

changing j «— [ we have
3

3
. 1 . .
At = Z §(Cucjm + Cjkim)EpEm = Z Aﬁfméké*m =AY .

k,m=1 k,m=1

Remark A.2.3. The matrix A defined defined as

3

k,m=1

is positive-definite .

Proof. Letn = (1,12, 73) be an arbitrary vector. We are trying to show

3
N An =" Ay >0,

jl=1
substituting A7 into this we get
3 3 138
1
' An = ;Ujﬁz(kzlflimfkfm) =3 klz 1<Clkjm + Cjktm ) Er€mMyn
J? = 7m: .7’ ? 7m:

3 3

1 1
nTAn = 5 Z clkjmfké’mnjm + 5 Z Cjklmgkgmnjnl )

7.k, l,m=1 7k, lm=1



changing [ «— j to the first part and since ¢, = cgjim We have

3 3
1 1
' An = 3 > CirmErbmnym + 3 > Cumbemmn; =

j,k,l,m:l j,k:,l,m:l

3

Z Cikim&Er&mMi M-

jkdm=1

Since {Cjklm}?,k:,l,mzl is positive definite, then by lemma (A.2.1) we have

3

Z Cikim&r&mnim > 0.

7.k, lm=1

Thus ,
n"An =" Alnm >0,

ji=1

so A is positive definite.
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According to given definitions and theorems the matrix A defined in (A.2.6) is

symmetric and positive definite which implies that its real eigenvalues are positive and

there exists orthogonal 7' such that TTAT = D where D = diag(d;; i = 1,2,3)

are eigenvalues of matrix A. So all eigenvalues of D are positive and real. Using

theorems, the characteristic polynomial (A.2.5) can be rewritten in the form
det(pA\?I3 — A) = det(TT (pA\?I3 — A)T) = det(p\*TTT — TT AT),

since 77T = I then

det(p)\zlg — A) = det(p/\213 — D) = (p)\2 — dl)(p/\Q — dg)(p>\2 — dg),

where d;, 7 = 1,2,3 are eigenvalues of D that are positive and real. Thus all roots

of characteristic equation (A.2.5) are positive and real. According to the definition

given elastic system is hyperbolic in anisotropic medium.
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A.2.3 Hpyperbolicity of the Electromagnetic System for the Isotropic Media

Letz € Rg,t > 0. LetE = (El,EQ,Eg), f= (fl)f?af?)) and ¢ = 801, o= I isa

symmetric, positive-definite matrix where I is identity matrix and £y > 0.

Consider the system (2.2.1). Principal parts of (2.2.1) for isotropic case will be

82
Py = 50@ + curl,curl,. (A.2.7)
Setting )
0 0 0
)\ Y- - C
875 ’ al'j 537 c%ﬁxk gjgk ’

the characteristic polynomial of (A.2.7) is
det(\2eol — A(€)), (A.2.8)

where

& -8 L& §1€3
A(§) = & -6 &
§1&3 §283 —& - &

Characteristic roots of (A.2.8) can be found by solving

g0N? — 55 - f% ISt §1&3
162 g\ — & — & §283 =0.
&1&3 £&3 0N — 6% — 53

Taking |£]? = & + &2 + £2 and using it we can rearrange the last determinant that is

e — €7 =& ST §163
§162 goN? — €2 — & 283 =0,
§1&3 §263 goN? — |2 — &3



and setting p = gg\? + |]* we get

p+E& +6& &
& p+E& L& | =0.
&8 +&& p+ &

Doing analysis we obtain

PPl =0,

Solving the last equation we get

pl - _|£|27 pQ - Oa p3 - 0 )

and also we know that p = ggA? — |£]? using this we have

eoN” = [§* = —[€]", X —[E[P =0, eoX’ —[¢[*=0.

Thus,
)\1,2 - 07
]
NP
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since €y > 0 characteristic roots are all real and positive then according to the given

definition magnetic system for isotropic case is hyperbolic.

A.2.4 Hyperbolicity of the Electromagnetic System for General

Anisotropic Media

Letz € R* t > 0. LetE = (Ey, By, E3), £ = (f1, f2, f3) and pu = diag(pa1, f22, f133)

and ¢ is a symmetric, positive definite matrix with elements depending on z. Assume

that ;((i)) is also positive definite.
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Consider the system (2.3.1). Principal parts of (2.3.1) for anisotropic case will be

e(x) 02
Py = — . A2.
0 (z) 92 + curlycurl, (A.2.9)
Setting ,
0 0 0
5% — A, a_:E] — &, Du,0mr — &

the characteristic polynomial of equation (A.2.9) is

Py(&,x,t) = det(v% + A(€)), (A.2.10)
where
—£5 - & §1é2 183
A(6) = §1&2 & -6 §283
§1€3 §263 —& - &

Let us denote % = S(x).

Theorem A.2.4. (see, (Goldberg, 1992), p.366-383) If S is positive definite and A
is symmetric, positive semi-definite matrix then there exists a nonsingular matrix M
such that

MTSM =1,

M A(§)M = D,

where D = (dy,dy,ds), d; >0 (j =1,2,3) is the diagonal matrix with eigenvalues
of S=3AS"2 on diagonal.

ST2ASE s symmetric and positive definite which implies that its real eigenvalues
are positive. So d;; (j = 1,2,3) are positive and real. Using this theorem (A.2.4)

and below relation

MT(A28 — A)M‘ — ‘MT‘ azs - A’ : ‘M ,
the characteristic polynomial (A.2.10) becomes
1
IN2S — Al = ‘MT(AQS—A)M’

| ME] - [M]
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1
= IN(MTSM)— (MTAM
|MﬂwMﬂ( SM) — ( )|
B 1
|MT|-|M]|

A2 - D‘,
since |M7T|-|M| # 0, the characteristic polynomial can be obtained by solving
|A? — D| =0.

Thus all roots of characteristic equation are positive and real. According to the

definition of hyperbolicity, given magnetic system is hyperbolic in anisotropic medium.

A.3 Definitions of ? and Sobolev Spaces

L? Spaces
Let f(z) denote the function defined on R™ and that satisfies
| f(z)|*dr < oo
R

The collection of all such functions will be denoted by L?(R") and called as square

integrable functions.
Norm of a function f(z) in L?*(R") is defined as

il = ([ Iropar)

The functions f and g from L?(R") are said to be equivalent if

1f=9glle2 =0 ie. . |f(x) — g(z)|*dx = 0.

Roughly speaking, this means that they are equal almost everywhere. It is easy to

verify that this is an equivalence relation, and it follows that functions can be divided
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into equivalence classes, each class consisting of all functions equivalent to a given

function.

Sobolev Space on R™ Let «; be nonnegative integers, « = (a,...,a,), be an
arbitrary multi-index where || = a7 + ... + «,, and let us use notation D for partial

derivative defined as follows

olel

D= ——
a1
Oxi"...0xon

If s is a nonnegative integer, we define the Sobolev space H®* = H*(R") of order s
to be the set of all u € L?(R™) whose derivatives D®u belongs to L?(R") for |o| < s :
(SeeFolland, 1995)

H®* ={u e L*: D*u € L? for |a| < s}.

There is an easier equivalent characterization of H* in terms of the Fourier transform

that is easier to work with:(SeeFolland, 1995)

w € HS(R™)iff (1 + |¢]%)%a € L*(R™)

Sobolev Lemma:Let k& and n be naturel numbers and s be a real number such that

s>k + [%} Then any function f € H*(R") belongs to C*.

Definition A.3.1. The spaces £2(R"; R™), C*(R"; R™), H*(R™;R™), (k = 0,1,...)
consist of all vector functions w = (wy, wy, . . ., w,,) such that w; belongs to £*(R"),

CF(R™), H*(R™), j = 1,...,m, respectively.

Following theorem and corollary is from (Vladimirov, 1979)

Theorem A.3.2. Hormander-Lojasiewicz Theorem The equation

where P(D) # 0, is solvable in S’ forall f € S'.
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Corollary: Every nonzero linear differential operator with constant coefficients has

a fundamental solution of slow growth.

Following theorem is from (Reed & Simon, 1975)

Theorem A.3.3. Paley-Wiener Theorem A distribution T € S'(R™) has compact
support if and only if Fourier transform of T, T, has an analytic continuation to an

entire analytic function of n variables T(n) that satisfies
[T(m)| < C(1+ [p])Neftm (A3.1)

for all n € C™ and some constants C, N, R. Moreover, if (A.3.1) holds, the support of

T is contained in the ball of radius R.

A4 Some Existence and Uniqueness Theorems for Symmetric Hyperbolic

Systems

In this section we present the existence and uniqueness theorems for first order
symmetric hyperbolic systems. Consider the initial value problem for the first order

symmetric hyperbolic system Let the symmetric hyperbolic system be written in the

form .
%—ZJF;AJ-%:F, zeR", te(0,T), (A4.1)
V(z,0) = ®(x) xeR" (A42)
where T is a fixed positive number, V = (V, V5, ..., V},) is the vector-function with
components V; = Vj(z,t),j = 1,2,....,n, Aj,j = 1,...,n are real, symmetric,

m X m matrices with constant elements.

The statement and the proof of this theorem can be found in the book (Mizohata,

1973)

Theorem A4.1. Let A;(z,t), j =1,...,n, Aj(x,t) be N x N symmetric matrices,

®(z) € H™(R™;R™), F(x,t) € C([0,T]; H™(R™;R™)), where m = 2,3, .... Then
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there exists a unique solution V (x,t) of the problem (A.4.1), (A.4.2) such that
V(r,1) € C([0, Th H" (R R™) (€0, Tl K™ (RS R (A43)

Theorem A.4.2. Let m > [|%|] + 2 in Theorem A.4.1. Then V (z,t) is a classical
solution of (A.4.1), (A.4.2) such that

n

V(z,t) € c(o, 7);cm U= @ rmy) M (o, 77 U2 (R R™).
(A4.4)

In this part of the section, we adjust the general approach Courant & Hilbert (1979)
(see, pages 652-661) for finding stability estimates of solutions for the symmetric
hyperbolic system. Let the symmetric hyperbolic system be written in the form given

with the equations (A.4.1), (A.4.2)

Let { = (&1,..,6,) € R"and A(§) = > A& M), i = 1,2,..,9 be the
j=1

eigenvalues of A(£). We defined the constant M as

M=, e, ey A(E)l (443)

Let 7" be a given positive number. Using M and 1" we define the following domains

['={(z,t): 0<t <T,|z| < M(T - 1t)}, (A.4.6)
S(hy={zeR":|z|<M(T—-h)}, 0<h<T, (A.4.7)
R(h) = {(z,t): 0 <t < h,|z| = M(T —t)}. (A.4.8)

Here I' is the conoid with vertex (0,77); S(h) is the surface constructed by the
intersection of the plane ¢ = h and the conoid I'; R(h) is the lateral surface of
the conoid I' bounded by S(0) and S(h). Let €2 be the region in R x (0, 00)
bounded by S(0), S(h), R(h) with the boundary 92 = S(0) U S(h) U R(h).
Further we assume that ®(z), F(z,t), V(x, t) are vector functions with continuously

differentiable components in S(0) and I, respectively. Multiplying (A.4.1) with V and
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integrating over ) we have

oV A% ~
/Q <V, W> + <V, <; Aja—xj) > dedt = /Q <F V> dudt. (A4.9)

Noting the relations

ot/ 2 ot

" A 1<~ 0
VvV A — = — — A A4.11
< (z a)> VAN )

2
<V aV> _ 19V (A.4.10)

we rewrite (A.4.9) as

L (ove o .
5/9( o +;%<V7A]V>)dxdt—/ﬂ<F,V>dxdt (A4.12)

J

Applying divergence theorem to left hand side of the last equality we find

1 ) = -
5/@9 <|V| ” +jzl (V,A;V) yj> ds = /Q <FV> dzdt, (A4.13)

where v = (v, ..., vy, %) is the outward unit normal on 0. Since 02 = S(0)US(h)U
R(h) and

v = (0,...,0,1) on S(h), (A4.14)

v = (0,..,0,—1) on S(0), (A.4.15)
(21, ooy Ty, M*(T — 1))

= h A4l

N (A410

formula (A.4.13) takes the form

1/ , 1 , 1 , M
- |V (x,h)|“de — —/ |V (x,0)] dx~|——/ V(z,t)|" —=dS
2 Jsn 2 Js) 2 Jr) VI+M?

n
Lj

1
3 /R(h) Z (V. 4;V) (T — )M /1 + M?

Jj=1

as
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h
_ / / (F(x,0), V(x.1)) drdt (A4.17)
0 Js)

Let us denote & = (&1, ..., &), Where &; are defined by

(=)

We have || = 1 and the following equality is satisfied

1/ - €T
- VAV J s
2 R<h>j21< ! >(T—t)M\/1+M2

1
= —— V,A()V)dS A4.18
ST o (VAOY) (A418)

Substituting (A.4.18) into (A.4.17) we find

1 1
5[ VPl -5 [ Vot
2 Jsn 2 Js00)

et L (e

h
:// <V,f‘(m,t)>dxdt. (A.4.19)
0 JS(@)

Let us consider the matrix M1 + A (). Since A(¢) is diagonalizable then we can

find a matrix Z which reduces A (&) to a diagonal matrix of its eigenvalues, denoted
A = diag(Aq, ..., \g), i.e.

ZH(MI+A(E)Z = MI+A,
(A.4.20)

Noting formula (A.4.5), we conclude that the matrix // I+ A has non-negative elements
on the diagonal. It means that the matrix M I+ A () has non-negative eigenvalues. This
fact Goldberg (1992) (see, pages 365-367) implies the positive semi-definiteness of the
matrix MT + A(€), ie. <V, [MI + A(¢)] V> > 0 forany € € R, |¢] = 1 and any
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vector-function V (z,¢). Using this remark and denoting } fS(T) |V (z,7)]*dx = w(T),

we find from (A.4.19)

h 1 [h )
w(h) < w(0) —I—/ w(T)dT + —/ / |F|*dxdt,
0 2J)o Jsw

or

w(h) < g(h) + /Ohw(T)dT, (A4.21)

I . 1 .
memm:-/"/ Wﬁm#+i/ 1B (2) [2dz,
2 ) Jsw 2 /s
Using Gronwall’s Lemma Saff & Nagle& Snider (2004) we find from (A.4.21)
w(h) < g(h)e", (A.4.22)

or

h
l/ w@mwmga{/ @@Ww+/ /|m@m%mp
S(h) S(0) o Jsw



