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MULTI-STAGE CLASSIFICATION OF ABNORMAL PATTERNS IN EEG
AND ECG USING MODEL-FREE METHODS

ABSTRACT

In this study, computer based pattern recognition and classification systems are
proposed for EEG and ECG patterns which are one dimensional biomedical signals.
In the first phase of the study, artificial neural network based automatic recognition
system for epileptiform events in EEG is proposed. Recognition process is performed
both using single MLP based classifier and using multi-stage classifier. Different
methods are used to increase the classification accuracy of the single MLP based
system. In the second phase of the study, a novel multi-stage automatic arrhythmia
recognition and classification system is proposed. The system performs beat-based
classification and classifies 16 different beat types. The first stage of the system
classifies five main groups then, in the second stage of the system each main group is
classified into subgroups. In both classification stages the best feature set for each
main group and subgroup is determined and used in classification process. With this
approach, the curse of dimensionality effect is reduced. In addition, selecting and
using the most discriminative features for each group increases the classification
performance of the system. Furthermore, the third stage is added to the system for
classifying beats that are labeled as unclassified beats in the first two classification
stages. KNN classifier and raw data as input vector is used in this stage. The
performances of the proposed systems are finally evaluated using real EEG and ECG

data and results are discussed.

Keywords:Biomedical signal processing, Electrocardiogram, Electroencephalogram,

Pattern recognition.
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MODELDEN BAGIMSIZ YONTEMLER KULLANILARAK EEG VE EKG
ICINDEKIi ANORMAL ORUNTULERIN COK KATLI
SINIFLANDIRILMASI

0z

Bu ¢alismada bir boyutlu biyomedikal sinyaller olan EEG ve EKG sinyallerindeki
belli Oriintiileri otomatik olarak tanima ve siniflandirma i¢in bilgisayar destekli
Oriintii tanima ve siniflandirma sistemleri Onerilmistir. Calismanin ilk asamasinda
EEG isaretinde klinik uygulamalar1 destekleyen, yapay sinir ag1 tabanli otomatik
epileptik Oriintli tanima sistemi Onerilmektedir. Tanima islemi, hem bir yapay sinir ag
smiflandirict kullanilarak, hem de ¢ok asamali bir siniflandirict sistem kullanilarak
gerceklestirilmistir. Bu sistemde siniflandirma basarimini arttirmak i¢in farkl
yontemler denenmis ve sonuglar1 sunulmustur. Bunu takip eden calismada, yine
klinik uygulamalar1 destekleyen, EKG isareti i¢in ¢ok asamali yeni bir otomatik
aritmi tanima sistemi Onerilmistir. Sistem vuru tabanli olup 16 aritmi tipi
siniflandirabilmektedir. Bu sistemde aritmiler ilk asamada 5 ana smifa gruplanirken
ikinci agsamada her bir ana grup alt aritmi gruplarina ayristirilmaktadir. Siiflama
islemi yapilirken, her iki asamada da her grup ve alt grup icin o grubu en iyi
tanimlayan Oznitelikler belirlenmis ve siniflamada bu 6znitelikler kullanilmistir. Bu
yaklagimla hem 0Oznitelik vektorlerinin boyutlar1 diisiiriilerek, bagsarim tizerindeki
olumsuz etkileri azaltilmig, hem de her bir sinif i¢in o gruba ait Oznitelikler
kullanilarak siniflama basarimi arttirilmistir.  Ayrica, ilk iki asamada siniflanamayan
vurular 16 aritmi tipine aymrmak ig¢in, sisteme tgilincii bir asama eklenmistir. Bu
asamada, siniflandirici olarak k-en yakin komsu ve giris vektorii olarak da ham EKG
verisi kullanilarak ilk iki asamada siniflanamayan vurular siniflandirilmistir. Sunulan
sistemlerin basarimlar1 ger¢ek EEG ve EKG verileri kullanilarak belirlenmis ve

sonuglart tartisilmistir.

Anahtar  sozciikler: Biyomedikal sinyal isleme, Elektrokardiyogram,

Elektroansefalogram, Oriintii tanima.
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CHAPTER ONE
INTRODUCTION

1.1 Introduction

There has been a new period in medical diagnostic techniques, since the
introduction of high technology equipments into health care. Since then, electronics
and subsequently computers have become essential components of biomedical signal
analysis, performing a variety of tasks such as data acquisition and preprocessing,
feature extraction and interpretation. Applications of electronic instrumentation and
computers have been widely used in biological and physiological systems and
phenomena, such as the electrical activity of the cardiovascular system, the brain, the

neuromuscular system, and the gastric system, etc.

Biomedical signal processing focuses on the acquisition of vital signals extracted
from biologic and physiologic systems (Haddad & Serdijn, 2009). These signals
allow getting information about the state of living systems. Hence, monitoring and
interpretation of these signals have significant diagnostic value for clinicians and
researchers to obtain information related to human health and diseases. In literature,
there are many valuable books about biomedical signal processing and its importance

such as (Feng, 2007; Haddad & Serdijn, 2009; Rangaraj, 2002; Sawhney, 2007).

In a signal processing system, obtaining a measurable electrical signal is very
important. Therefore, sensors and instrumentation must be developed. Then the
measured signals from physiological systems can be analyzed. Unfortunately,
analyzing such signals is not an easy task for a physician or life-sciences specialist
since noise and interferences often mask the clinically relevant information in the
signals and it may not be easily comprehensible by the visual or auditory systems of
a human observer. Furthermore, the variability of signal from one subject to another,
and the inter-observer variability inherent in subjective analysis performed by
physicians make consistent understanding or evaluation of any phenomenon difficult.
In investigations of physiological systems, these factors created the need not only for

improved instrumentation, but also for the development of methods for objective



analysis via signal processing algorithms implemented in electronic hardware or on

computers.

Until a few years ago, biomedical signal processing was mainly directed toward
filtering, spectral analysis and modeling. The filtering is used for removal of noise
and power-line interference. The spectral analysis is performed to understand the
frequency characteristics of signals. Modeling is utilized for feature representation
and parameterization. But new trends in biomedical signal processing have been
toward quantitative or objective analysis of systems via signal analysis. The
biomedical signal analysis has moved forward to the stage of practical application of
signal processing and pattern analysis techniques in order to efficient and improved
noninvasive diagnosis (Rangaraj, 2002). The field of engineering aims to apply
engineering principles to analyze and solve problems in life sciences and medicine.
Techniques developed by engineers are increasingly accepted by practicing
clinicians, and the role of engineering in diagnoses and treatment is gaining much

deserved respect.

In the application of computers for biomedical signal analysis, the basic strength
lies in the ability of signal processing and modeling techniques for quantitative or
objective analysis. Observation by human sense is generally perceptual limitation for
example, inter-personal variation, errors caused by fatigue, errors caused by the very
low rate of incidence of a certain sign of abnormality, environmental distraction, etc.
The interpretation of a signal by an expert varies according to the weight of the
experience and expertise of the analyst. Such analysis is almost always personal.
Computer based analysis has the potential to add objectivity to the interpretation of
the expert. Therefore, it is possible to improve the diagnostic confidence and
accuracy of even an expert with many years of experience. This approach could be

named as computer aided diagnosis.

Automatic recognition helps in the diagnosis and facilitates the expert’s work. It is
especially useful during long-term monitoring such as electroencephalography
(EEG) and electrocardiography (ECG) based monitoring systems. Examination of a

record obtained over a period of days or weeks would be much time consuming if it



is done manually. Therefore, an automatic recognition system will intensely reduce

the elapsing time.

The rapid development in the field of medicine applies variety of imaging
techniques of the human body. The group of biomedical signal measurements
includes items as ECG, EEG, electromyography (EMG), magnetoencephalography
(MEG), computer tomography (CT), magnetic resonance imaging (MRI), functional
MRI etc. EEG reads scalp electrical activity generated by brain structures, and ECG
is reads electrical activity of heart. EEG and ECG are completely noninvasive
procedures that can be applied repeatedly to patients, normal adults and children with

virtually no possible risk or limitation.

Clinical recording of human brain electrical activity is the most important
examination method for diagnosis of neurological disorders related to epilepsy. The
EEG, which is used to display the electrical activity of the brain, has been a valuable
clinical tool for this purpose. It has been accepted for a long time that epileptic spike
activity, which is a type of transient waveform that appear in the inter-ictal period,
1.e. in between seizures, have a high correlation with seizure occurrence. Therefore,
the presence of spikes in the scalp EEG recordings is accepted as a confirmation for
the diagnosis of epilepsy (Chatrian et al., 1974; Kiloh, McComas, Osselton, &
Upton, 1981; Niedermeyer & Silva, 1993). For this reason, inter-ictal spike detection
plays a crucial role in the diagnosis of epilepsy. Unfortunately, these spikes are very
similar to and thus can easily be confused with non-spike waveforms produced by

other brain disorders.

Similarly, the accurate recognition of the beats from an electrocardiographic
(ECG) record has been a very important subject in intensive care units (ICU) and
critical care units (CCU). This is due to the fact that the accurate recognition and
classification of the various types of arrhythmias is essential for the correct treatment
of the patient. Various algorithms for the automatic detection of ECG beats have
been developed by different investigators for this purpose. These researchers used

different features and classification methods. Despite all these developments, there is



still room for improvement in this area. A major problem challenging today’s
automatic ECG analysis algorithms 1is the considerable variations in the
morphologies of ECG waveforms among different patients. Therefore, an ECG beat
classifier performing well for a given training database could easily fail when
confronted with a different patient’s ECG signal. Because of this reason, the
performance of the arrhythmia classification systems degrades when the number of
arrhythmias to be classified is increased. This seems to be a major hurdle that
prevents highly reliable, fully automated ECG processing systems to be widely used

clinically.

In this thesis, considering the needs and trends in biomedical signal processing
field, one dimensional biomedical signals, ECG and EEG, are studied to produce
robust solutions for two major clinical problems, namely automatic spike detection

and automatic heartbeat classification.

1.2 Organization of Thesis

This thesis consists of six chapters. Chapter 1 states the problems and outlines the

motivation and the objectives of the thesis.

Chapter 2 provides background information about the physiological biomedical

signal and abnormalities of these signals are also given in detail.

Chapter 3 provides background on pattern recognition methods. This chapter
describes main processes of the pattern recognition system. Methods used in the
proposed system are given in detail such as preprocessing, feature extraction,
visualization of high dimensional features, feature dimension reduction methods and

classification.

In Chapter 4, neural network based classification system and a multi-stage
classification system are investigated for automatic recognition of epileptiform

pattern in EEG signal. Multilayer perceptron networks trained by different training



algorithms are constructed. The training algorithms are compared in terms of their
classification performances, and also different transform techniques which are
applied the data are compared. A multi-stage classification system is introduced for

automatic recognition of epileptiform pattern in EEG signal.

In Chapter 5, multi-stage system is introduced for automatic heartbeat recognition
system in ECG records. Different feature extraction techniques are utilized. Feature
selection algorithm is performed with sequential floating search and genetic
algorithm to determine suboptimal solution. Also artificial neural networks are used
for dimension reduction. Ensemble of classifiers system is constructed for both
stages of the system. In the first stage, all heartbeats are classified into five main
groups, and in the second stage, main groups are then separated into heartbeat

classes.

Finally, Chapter 6 gives conclusion and contributions of the thesis and

recommendations for future work.



CHAPTER TWO
PHYSIOLOGICAL BACKGROUND

Living organisms consist of many systems. For instance, the human body includes the
nervous system, the cardiovascular system, and the musculoskeletal system. Each

system consists of several subsystems that carry on many physiological processes.

The physiological processes include nervous or hormonal stimulation and control;
inputs and outputs which could be similar to physical material, neurotransmitters, or
information; and action that could be mechanical, electrical, or biochemical. Therefore,
they are complex phenomena. Most physiological processes are accompanied by or
appear themselves as signals that reflect their nature and activities. The signals could be
different types, such as biochemical in the form of hormones and neurotransmitters,
electrical in the form of potential or current, and physical in the form of pressure or

temperature (Haddad & Serdijn, 2009).

When the signal is simple and it appears at the outer surface of the body, the task is
not so hard. For instant, a rise in the temperature of the body is caused by most
infections. It may be sensed very easily using simple thermometer or via hand. A
single temperature is a scalar, and it shows the thermal state of the body at a single
instant of time ¢. If the temperature is recorded continuously in some form, signal is
obtained as a function of time. The example of body temperature is a rather simple
example of a biomedical signal. On the other hand, other diseases such as abnormalities
of cardiovascular system, respiratory system cannot be understood by simple observation

way (Haddad & Serdijn, 2009).

Figure 2.1 shows a block diagram of medical care system that monitors and analyzes
physiological signals from a patient. In data collection stage the physiological signals of
patient are measured by sensors and converted to produce electrical signals. The
electrical signals are then analyzed by a processor or computer system in data analysis

part. The results of analysis are reported. According to the results of signal analysis, the



processor may perform direct therapeutic intervention on a patient or only reports the

results of the analysis.

Patient

[ |
' ' Collection of
| |
: Therapvy : Data
N /
A
\
\
Decision Analavysis of
Making Data

Figure 2.1 Basic elements of a medical care system.

Three basic types of data typically are used in the hospital. These are alphanumeric,
medical images, and physiological signals. The patient’s name and address,
identification number, results of lab tests and physicians’ notes are called as
alphanumeric data. Medical images include X-rays and scans from computer
tomography, magnetic resonance imaging, and ultrasound. Physiological signals are the

electrocardiogram (ECG), the electroencephalogram (EEG), and blood pressure tracings.

Physiological signals like ECG, EEG, and EMG, represent an electrical activity.
The electrical activity results from the chemical reaction in the cells. Chemical
reactions inside and outside the cell provide mobile ions, and a small number of them
move through the membrane. The permeability of ions varies for different ions. An
imbalance of ions across the membrane of a cell causes voltage level, which changes

with the movement of ions.

Table 2.1 shows characteristics of some physiological signals such as frequency

band and measurement techniques.



Table 2.1 Medical and physiological parameters (Webster, 1998)

Parameter or Measuring Principal Measurement  Signal Frequency Standard Sensor or
Technique Range of Parameter Range, (Hz) Method
Electrocardiography 0.5-4mV 0.01-250 Skin electrodes
Electroencephalography 5-300pV 0-150 Scalp electrodes
Electrocorticography and Brain surface or depth
10-5000 pV 0-150

Brain depth electrodes

Skin surface
Electrogastrography 10-1000 pV 0-1

electrodes
Electromyography 0.1-5mV 0-10000 Needle electrodes

Surface or needle
Electroneurography 0.01-3mV 0-10000

electrodes

The electroneurogram (ENG) is an electrical signal observed as a stimulus and the
associated nerve action potential propagate over the length of a nerve. It may be used
to measure the velocity of propagation of a stimulus or action potential in a nerve.
ENGs may be recorded using concentric needle electrodes or silver-silver-chloride

electrodes at the surface of the body (Haddad & Serdijn, 2009).

The electromyogram (EMGQ) signal indicates the level of activity of a muscle, and
may be used to diagnose neuromuscular diseases such as neuropathy and myopathy.
EMG signals are recorded using surface electrodes. Skeletal muscle fibers are
considered to be twitch fibers because they produce a mechanical twitch response for

a single stimulus and generate a propagated action potential (Haddad & Serdijn,

2009).

The electroencephalogram (EEG) signal represents the electrical activity of the
brain. It is popularly known as brain waves. In clinical practice, several channels of
the EEG are recorded simultaneously from various locations on the scalp for
comparative analysis of activities in different regions of the brain (Haddad & Serdijn,

2009).



The electrocardiogram (ECG) is one dimensional signal which indicates the
electrical activity of the heart and can be recorded fairly easily with surface electrodes
on the limbs or chest. The ECG is perhaps the most commonly known, recognized,

and used biomedical signal (Haddad & Serdijn, 2009).

The EEG and the ECG signals are the most commonly used biomedical signals
which represent the electrical activity of brain and heart, respectively. In this thesis,
these signals are investigated for diagnostic purposes. In the following subsections

EEG and ECG signals are examined in detail.

2.1 The electroencephalogram (EEG)

EEG, which is also known as brain waves, represents the electrical activity of the
brain and an important clinical tool in diagnosing, monitoring and managing of
neurological disorders. It has also been used for investigating brain dynamics in
neural engineering. It is comprised of electrical rhythms and transient discharges
which are distinguished by location, frequency, amplitude, form, periodicity, and

functional properties.

Generated signals by physiological control processes, thought processes, and
external stimuli in the corresponding parts of the brain may be recorded at the scalp
using surface electrodes. The scalp EEG is an average of the diverse activities of
many small zones of the cortical surface beneath the electrode. The 10-20 system of
electrode localization for clinical EEG recording has been recommended by the
International Federation of Societies for Electroencephalography and Clinical

Neurophysiology (Haddad & Serdijn, 2009).

The name 10-20 means that the electrodes along the midline are located at 10%,
20%, 20%, 20%, 20%, and 10% of the total nasion - inion distance; the other series
of electrodes are also located at similar fractional distances of the corresponding
reference distances. The scalp electrode localization is schematically illustrated in

Figure 2.2.
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Figure 2.2 The 10-20 electrode placement system
(Acir, 2004).

19 locations are obtained on the scalp according the 10-20 system. Right-sided
electrodes are even numbered and left-sided electrodes are odd numbered. Letters
preceding the numbers refer to cortical regions. Frontal is ‘F’, prefrontal is ‘Fp’ (or
frontopolar), parietal is ‘P’, temporal is ‘T’, central is ‘C’ and occipital is ‘O’.
Electrodes along the midline have no numbers only the letter ‘z’. Figure 2.3 shows a

sample of 19 channel EEG record.
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Figure 2.3 A sample of 19 channel EEG record.

EEG signals present several patterns of rhythmic or periodic activity. EEG
rhythms are associated with various physiological and mental processes (Rangaraj,

2002). The commonly used terms for EEG frequency bands are:

eDelta: 0.5-4 Hz;
eTheta: 4 -8 Hz;

e Alpha: 8-13 Hz;
eBeta: 13-22 Hz; and
e(Gamma: 22-30 Hz.
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The delta activities appear at deep stages of sleep. The theta activities appear at
the beginning stages of sleep. The amplitude of theta and delta activity is less than
100pV (peak-to-peak). They are strongest over the central region of brain and are
indications of sleep. The alpha rhythm is the principal resting rhythm of the brain.
The amplitude of alpha activity is usually less than 10uV (peak-to-peak). Auditory
and mental arithmetic tasks with the closed eyes cause strong alpha waves and when
the eyes are opened it is suppressed. High frequency beta activities appear as
background activity in tense and anxious subjects. The amplitude of beta activity is
less than 20V (peak-to-peak). High states of wakefulness and desynchronized alpha
patterns generate produce beta activities. The amplitude of gamma activity is less
than 2uV (peak-to-peak) and it consists of low amplitude, high-frequency waves that
result from attention or sensory stimulation. (Haddad & Serdijn, 2009; Acir, 2004).

2.1.1 Abnormalities in EEG

EEG signals may be used to study the nervous system, monitoring of sleep stages,
biofeedback and control, and diagnosis of diseases such as epilepsy. Epilepsy is a
very common neurological disorder. It is defined as sudden, excessive and abnormal
discharges in brain which may be caused by a variety of pathological processes of
genetic or acquired origin. This disorder is often identified by sharp recurrent and
transient disturbances of mental function or movements of different body parts
(Goksan, 1998). Clinical recording of human brain electrical activity is the most
important examination method for diagnosis of neurological disorders related to
epilepsy. It relates to a number of diseases associated to the abnormal function of the
brain. Episodes of sudden disturbances of consciousness, mental functions, motor,
sensory and autonomic activities are called seizures (Fisch, 1991). Sharp transient
waveforms are characteristics of the epileptic seizures of focal origin in EEG. They
are different from the background and exhibit a paroxysmal or abrupt, high voltage
potential. The amplitude and morphologies of them vary from sharp transient to
sharp transient. Such epileptiform sharp transients include both spikes with duration
between 20 and 70 ms and sharp waves with duration between 70 and 200 ms

(Chatrian et al., 1974).
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2.2 The electrocardiogram (ECG)

The heart has four chambers (as shown in Figure 2.4) and circulates blood through
the body as a pump. The main pumps are the two lower chambers called the
ventricles. The upper two chambers, the atria, act as temporary storage for the blood
while the ventricles pump blood to the rest of the body. Pumping is a two-phase
process consisting of diastole and systole. Diastole is the resting and filling phase.
Systole is the contracting and pumping phase. The contractions of both the atria and
ventricles are coordinated by electrical activations. These activations propagate
through the structure of the heart and cause depolarization and repolarization of

cardiac muscle cells.

Superior
Vena Cava

Pulmonary
Artery

Pulmonary
Vein

.............. Mitral
Valve
Pulmonary L™ (I ETONN D et L artic
Valve "\ N\ Valve
Tricuspid -
Valve

Inferior Vena Cava

Figure 2.4 Anatomic diagram of the heart (frontal
section) (Heart Structure, 2009).

For a normal rhythm activation begins at the sino-atrial (SA) node, also called the
pacemaker of the heart. The SA node is located at the right atrium. It controls the rate
of heart and rhythm. The atrioventricular (AV) rings prevent conduction between the
chambers with the exception of a pathway through the AV node and AV bundle.
Conduction continues from the AV node to the ventricles via the rapidly conducting
His-Purkinje system. Figure 2.5 illustrates the activation sequence of the electrical

activity for sinus rhythm.
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Right Atrium
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Right Bundle
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Right Ventricle

Purkinje Fibers
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Figure 2.5 Activation sequence of sinus rhythm
starting from the sino-atrial node (Activation

sequence, 2009).

The electrocardiogram is the prevalent means of non-invasively observing the
electrical activity of the heart. The series of activations of the heart result in potential
differences that are spatially distributed and vary in time. The ECG can be recorded
on the surface of the body; it provides an inexpensive and non-invasive means to

monitor the heart's electrical activity.

The ECG signal repeats beat by beat, but the heartbeat rate of a recorded ECG
changes with time. The mean and variance of the beat rate vary with time. Therefore,
the ECG signal is considered to be quasi-periodic and non-stationary (Rangaraj,

2002).

In order to record ECG, standard twelve lead system is used. A standard twelve
lead electrocardiograph uses ten electrodes. Six of these electrodes, which are named
the precordial leads, are placed near the heart at anatomically defined positions on
the left side of the chest wall as shown in Figure 2.6a. The remaining four electrodes
are placed on the left arm (LA), left leg (LL), right arm (RA) and right leg (RL),
respectively, as shown in Figure 2.6b. Of these, the right leg electrode is chosen to be
the relative ground of the system. Three leads are defined between the electrodes on
the arms and legs: lead I, between LA and RA, lead II, between LL and RA, and lead
III, between LL and LA. The other three unipolar frontal leads, known as 'aVL',



15

'aVR', and 'aVF', which are usually called augmented unipolar leads, can be recorded
from the same electrodes as the three leads LA, LL, and RA (Figure 2.7). The
electrode on the right leg acts as a virtual ground for the system (Webster, 1998).
Figure 2.8 shows an example of 12 lead ECG record.

/ lﬁ-x_ va
L] ®
Vi Vi Vi Vs RL /\ LL

Vi

a) b)

Figure 2.6 Positions of ten electrodes a) precordial leads on the chest wall, b)
standard limb lead vectors (Webster, 1993).

aVR aViL

Figure 2.7 (a), (b), (c) Connections of electrodes for the augmented limb
leads, (d) Vector diagram showing the directions of limb lead vectors in
the frontal plane (Webster, 1998).
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Figure 2.8 An example of 12 lead ECG record, using the BIOPAC MP30 bio-signal recording
device.

The potentials arising from the depolarization, and subsequent repolarization, of a
large group of heart muscle cells can be recorded by measuring the surface electric
potential of the skin. Following is a brief description of how variations in the surface
potential are related to the activity of the heart. The sum of these potentials results on

the ECG is shown in Figure 2.9.

The electric activation has begun at the SA node as a small electrical activity,
called the P wave. The generated action potential is propagated rapidly through the
both atria walls. After the depolarization has propagated over the atrial walls, it
reaches the AV node. The propagation through the AV junction is very slow. It
results in a delay in the progress of activation. This is a desirable pause which allows
giving the atria time to contract and empty blood into the ventricles before the
ventricles contract. When the electrical activation has reached the ventricles, the
propagation continues along the Purkinje fibers to the inner walls of the ventricles. In
the next phase, depolarization waves occur on both sides of the septum. The
progressive depolarization of the ventricular muscle cells result in the QRS complex
on the ECG. This coincides with ventricular muscle contraction, a period known as
the systole. Approximately 0.2 seconds after the QRS complex comes the T wave,

which represents the repolarization of the ventricular muscle cells.
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Figure 2.9 Electrophysiology of the heart (Webster, 1993).

In the case of a normal cardiac rhythm, the onset and offset of the QRS complex
and the other waves can be readily identified and the shape of the QRS complex is
evident. In fact, practicing cardiologists primarily exploit the shape to focus their

attention on the ECG features to be studied in detail (Bottoni et al. 1990).

Generally the noise present in ECG recordings is introduced by the electrodes,
either by them serving as antenna for electromagnetic radiation or by recording
corrupted signals. The most common sources of signal corruption in
electrocardiography are power line interference, motion artifacts, skeletal muscle

contractions, baseline drift, electrosurgical noise, and electrode contact noise.

2.2.1 Cardiac Arrhythmias

Some of the most distressing types of heart failure occur not as result of abnormal
heart muscle but because of abnormal rhythm. Deviation in the heart's rhythm from
the normal physiological behavior is called arrhythmia, which is usually associated
with abnormal pump function, thus resulting in reduction of life quality, or even
death. Arrhythmias can be classified based on their underlying mechanisms into
three groups: arrhythmias of abnormal impulse initiation (including automaticity and

triggered activity), abnormalities of impulse propagation (including slowed
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conduction/block, reentry and unidirectional block, ordered and random reentry), or
combined (simultaneous abnormalities of both impulse formation and propagation)

(Alpert, 1980; Gertsch, 2003; Webster, 1993; Wagner, 2001; Crawford, 2004).

There are many types of arrhythmias. Arrhythmias are identified by where they
occur in the heart (atria or ventricles) and by what happen to the heart's rhythm when

they occur. They also are classified as ectopic beats and pattern type arrhythmias.

Ectopic heartbeat is an irregularity of the heart rate and heart rhythm involving
extra or skipped heartbeats. Extra heartbeats, called ectopic beats, are very common
diseases. They may come either from the atria, the upper chambers of the heart, or
the ventricle, the lower chambers. Ectopic beats are not in themselves dangerous and
do not damage the heart. Types of ectopic beats and their properties are summarized

below.

Supraventricular ectopic beat: 1t is a heartbeat that is caused by an ectopic

impulse that occurs somewhere above the level of the ventricles.

Premature atrial contraction: The heart rate stays normal, but the rhythm
becomes irregular due to the premature P wave. This arrhythmia type can cause

palpitation, atrial flutter or atrial fibrillation.

Atrial escape beat: They are ectopic atrial beats that emerge after long sinus
pauses or sinus arrest. They may be single or multiple; escape beats from a single
focus may produce a continuous rhythm (called ectopic atrial rhythm). Heart rate is
typically slower, the P wave morphology is typically different, and PR interval is
slightly shorter than in sinus rhythm.

Ventricular premature beat (ventricular ectopic beat, premature ventricular
contraction): It is an extra heartbeat resulting from abnormal electrical activation

originating in the ventricles before a normal heartbeat would occur.
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Premature ventricular contraction: Heart rate is variable. P wave is usually
obscured by the QRS, PST or T wave of the premature ventricular contraction. The
wideness of the QRS complex is more than 0.12 seconds and its morphology is
unusual with the ST segment and the T wave opposite in polarity. QRS complex may

be multi-focal and exhibit different morphologies.

Ventricular escape beat: It is an ectopic beat that occurs after an extended pause
in a rhythm, indicating either the failure of the SA node to initiate a beat or the

failure of the conduction of this beat to the AV node.

Premature junctional beat: it originates near the AV node junction. In general,

they do not require treatment.

Left bundle branch block: activation of the left ventricle is delayed, which results
in the left ventricle contracting later than the right ventricle. The duration is caused

expansion of QRS complex.

Right bundle branch block: During a right bundle branch block, the right ventricle
is not directly activated by impulses traveling through the right bundle branch.
However, the left ventricle is still normally activated by the left bundle branch and
these impulses travel through the left ventricle's myocardium to the right ventricle

and activate the right ventricle. The duration is caused expansion of QRS complex.

Junctional escape beat: 1t is a delayed heartbeat produced from an ectopic focus
somewhere in the AV junction. When the rate of depolarization of the SA node falls
below the rate of the AV node, it occurs. This dysrhythmia may also occur when the
electrical impulses from the SA node could not reach the AV node because of SA or

AV block.

The other kinds of arrhythmias are pattern type arrhythmias. These types of
arrhythmias are identified by the characteristic of consecutive beats, and grouped as

supraventricular or ventricular.
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Supraventricular arrhythmias occur in two upper chambers of heart (atrium).
Types of supraventricular arrhythmias include atrial fibrillation (AF), atrial flutter,
paroxysmal supraventricular tachycardia (PSVT). Ventricular arrhythmias occur in
two lower chambers of heart (ventricles). Types of ventricular arrhythmias include
ventricular fibrillation (AF), ventricular flutter, and ventricular tachycardia. The most
dangerous types of arrhythmias are ventricular arrhythmias, since they may cause

death.

Atrail fibrillation: 1t is an electrical rhythm disturbance. Abnormal electrical
impulses in the atria cause the muscle to contract erratically and pump blood
inefficiently. Hence, the atrial chambers are not able to completely empty blood into
the ventricles. Pooling of blood in the atria can cause red blood cells to stick together
and form a clot. The most worrisome complication of atrial fibrillation is
dislodgement of a clot and embolism of the clot material to one of the major organs

of the body (e.g., the brain) (Crawford, 2004).

Ventricular fibrillation: Ventricular fibrillation occurs when parts of the ventricles
depolarize repeatedly in an erratic, uncoordinated manner. The ECG in ventricular
fibrillation shows random, apparently unrelated waves. Ventricular fibrillation is
almost invariably fatal because the uncoordinated contractions of ventricular
myocardium result in ineffective pumping and little or no blood flow to the body.
There is lack of a pulse and pulse pressure and patient lose consciousness rapidly.

When the patient has no pulse and respiration, he/she is said to be in cardiac arrest.

Ventricular flutter: This is especially dangerous when the heart rate exceeds 250
beats per minute. The chambers of the heart contract so quickly that there is hardly
any time for the blood to flow into and fill the chambers. In this situation, the heart
transports only a little blood into the circulation. The person who is experiencing this

is close to unconsciousness.

Ventricular tachycardia: Ventricular tachycardia is a rapid heartbeat initiated
within the ventricles, characterized by 3 or more consecutive premature ventricular

beats.



CHAPTER THREE
PATTERN RECOGNITION METHODS

3.1 Introduction

The main aim of pattern recognition is the classification of some patterns. Basic
pattern recognition system consists of the following parts: preprocessing, feature

extraction/selection, and classification as shown Figure 3.1.

g —
Features

extraction/
selection

O

——————

Data

Acquisition

Classification

Figure 3.1 Basic process of pattern recognition system.

Data acquisition, noise removal, signal enhancement, and preparing data for feature
extraction are the main operations of pre-processing. Feature extraction and selection
are very important and crucial steps in pattern recognition. Feature extraction is the
determination of a feature or a feature vector from a pattern. The feature vector is
comprised of the set of all features which describe a pattern. The feature vector is
reduced in size at the feature selection step. The classification step will be the final
stage in automatic pattern recognition system. It makes a classification decision

according to the input feature vector representing the sample data.

3.2 Pre-processing

In data acquisition step, data almost always be affected and corrupted by the
environment. Other then the desired signal, interference, artifact, or simply noise are

always present in the acquisition data. The sources of noise can be physiological, the

used instrumentation, or the environment of the experiment. It is especially a big

21
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problem for biomedical signals. All biomedical applications require an accurate
analysis of the signal. Thus, noise in the signal must be removed in pre-processing

stage.

Preparing signal for feature extraction stage is also operation of preprocessing

stage such as peak detection, determining region of interest etc...

3.3 Feature Extraction

Feature extraction is an important step in pattern recognition. It is the process of
information extraction which represents the characteristics of the pattern. The set of

extracted information or features is called feature vector.

Various methods can be used for feature extraction to obtain information from the
signal. Each feature can independently represent the original data, but none of them
completely represents the all data for practical recognition applications. Furthermore,
there seems to be no simple way to measure relevance of the features for a pattern
classification task (Bhaskar, Hoyle, & Singh, 2006; Jain, Duin, & Mao, 2000; Duda,
Hart, & Stock, 2001). In this case, diverse set of features often need to be used in
order to achieve robust performance. The rapidly growing technology has also
facilitated the use of detailed and diverse methods for data analysis and classification.
Hence, the set of features will be selected from a large pool of candidate features
including morphological, temporal, spectral, time-frequency, and higher-order

statistical ones.

3.3.1 Raw Data

A specific window is determined and amplitude values of data in the window are
used as a feature vector. It is a simple feature extraction method. Furthermore, it is
not required additional computational process. The window size is a parameter that

may be investigated to achieve good performance.
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3.3.2 Higher Order Statistics

In signal processing, the first and second order statistics are widely used tools for
signal representation. But they are not always sufficient for representing some
signals. Higher order statistical methods are used, when the signals can’t be
examined properly by second order statistical methods. while the first and second
order statistics contain mean and variance, higher order statistics contain higher order
moments (m3, my, ...) and non linear combinations of higher order moments which
are known as cumulants (c¢;, ¢,, ¢; ...). Cumulants are blind to any kind of a Gaussian
process.  Therefore, cumulant-based methods boost signal-to-noise ratio when

signals are corrupted by Gaussian measurement noise (Mendel, 1991).

For zero mean discrete time signal moments and cumulants are defined as:

my(i) = E{X(n).X(n+i) 3.1)
my(ij) = E{X(n).X(n+1i) X(n+j)} (3.2)
my(ijk) = E{X(n)X(n+1i) X(n + j) X(n +k)} (3.3)

where E(.) is defined as the expectation operation, and X is the random process.

¢y ()= my(1) G4

Cs(i,j) = my(ij) (3.5)
Cy(tj, k)= my(ij,k)—my()m,(j — k)~

-m,(j)m,(k —i) — m,(k)m, (i — j) (3.6)

Higher-order statistics are applicable for non-Gaussian processes. Many

applications in real world are truly non-Gaussian.
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In addition to representing the signals in time domain, we can also compute the
spectra of the random signal, which is called the power spectrum. Power spectrum is

given as the discrete Fourier Transform (DFT) of the second order moment c;.
P,(f) = DFT( c,(m))= ) c,(mje”*™ (3.7)

Similarly, the spectrum of the 3™ order cumulant, the bispectrum, is given as:

0

The bispectrum is a function of two frequencies and carries information about the

phase. The power spectrum does not carry any information about the phase.
3.3.3 Frequency Domain Measures

Fourier transform (FT) is often called the frequency domain representation of the
original signal. It describes which frequencies are present in the original signal so it
is important tool for the digital signal processing. Implementation of algorithm of FT
can be found in many popular digital signals processing book such as (Ingle &

Proakis, 2000)

Discrete Fourier Transform (DFT) of an N-point evenly-spaced sequence is

N-I 7ﬁkn
X,=YxeV k=0,1...N-1 (3.9)
n=0

where, X} is the DFT of x,,.

The energy spectral density describes how the energy of a signal is distributed

with frequency and given as

" F(@)F ()

> (3.10)

W)=\ =D [

n=—00

where, F(w) is DFT of f,.
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3.3.4 Time-Frequency Domain Measures

The original signal or function can be represented in terms of wavelet expansions.
The wavelet expansions are coefficients in a linear combination of the wavelet
functions and the corresponding wavelet coefficients can be used in practice as
features to represent the signal. Wavelet analysis has found wide area applications,
since wavelet analysis can be applied to both stationary signals and non-stationary

signals.

Wavelets are functions that satisfy certain mathematical requirements. The wavelet
analysis procedure consists of determining a wavelet prototype function, and
calculating the correlation between the signal and the dilated and shifted wavelet
prototype function. The wavelet prototype function is called mother wavelet denoted
as P(t). A set of basic functions used in wavelet transform are the scaled and

translated versions of the ¥(?).

1 —
T@Aﬁ)=———T(x Z) t€R (3.11)

Ja U a

where, 7 is a shift position, a is a positive scaling factor, @ > I corresponds to a
dilation, while 0 < a < [ to a contraction of ¥(#), and R denotes the set of real

numbers.

Equation 3.11 shows that wavelets are used with different scaling factor a. This
preserves the same shape and changes the size. Such a dilation or contraction property

is used to represent a non- stationary function through wavelet transform (Meyer,

1993).

The continuous wavelet transform (CWT) of a real valued function x(?) is given as

cx¢r)=jx@yl—w
a

- ("'TJan (3.12)

a
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where, ¥(?) is the mother wavelet and x(z) is the original signal, C(a, 7 ) is called
wavelet coefficients, which represent the correlation between the signal and the

chosen wavelet at different scales.

For a given shift 7, the CWT is the result of the local analysis of the signal x(?) at
the given position 7 with wavelet function whose width depends on the scale factor
a. The amplitude of the coefficients is reaches the maximum at a position 7 where the

scaled prototype best matches the original function.

The mother wavelet ¥(z), must be band-limited in the frequency domain, must be

a zero mean function, and must be a function with finite energy.

The discrete wavelet transform (DWT) has been presented in order to reduce the
redundancy of the continuous wavelet transform. The algorithm to implement the
DWT through multi-resolution analysis using filter banks is described by (Mallat,
1989). The general procedure of this DWT algorithm is to decompose the discrete
signal into an approximation signal H; and a detail signal G;. Where, i represents
scale level in the multi-resolution analysis. While the approximation signal is the
low-passed signal, the detailed signal is the high-passed signal. Both of these signals

have been down sampled after each scale.

Figure 3.2 shows the filter bank scheme of decomposing a signal. The
implementation procedure of the multi-resolution decomposition of the signal by
filter banks H and G is shown. The signal is decomposed into detail part by G and
approximation by H, then down-sampled by 2, respectively. The decomposition and
down-sampling for approximation are repeated again and again until a chosen scale is

met or only one sample is left in the resulting approximation.
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Figure 3.2 The filter bank scheme of decomposing a

signal.

DWT are commonly used in biomedical pattern recognition problems for feature
extraction. The wavelet packet decomposition (WPD) method is an expansion of the
classical DWT (Daubechies, 1992). The DWT only decomposes the low frequency
components. Not only does the WPD utilizes the low frequency components but also
the high frequency components (details) (Daubechies, 1990; Learned & Willsky,
1995; Misiti et al., 2004; Unser & Aldroubi, 1996). Figure 3.3 shows the wavelet
decomposition trees of DWT and WPD. In Figure 3.3a, the signals are split into high
frequency components (Details: D) and low frequency components (Approximations:
A). The approximation achieved from the first level is split into new detail and
approximation components and then this process is repeated. Therefore, it may miss
important information which is located in higher frequency components. The original
signal S is split as shown in Figure 3.3b for the 3-level decomposition. The top level
of the WPD is the time representation of the signal. But the bottom level has better
frequency resolution (Learned & Willsky, 1995). Thus, using WPD, a better

frequency resolution can be achieved for the decomposed signal.
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Figure 3.3 Decomposition trees (a) discrete wavelet
transform and (b) wavelet packet analysis.

The advantage of the wavelet packet analysis is that it is possible to combine the

different levels of decomposition in order to construct the original signal.

3.3.5 Morphological Representation

Morphological feature extraction method is one of the classical feature extraction
methods. This approach is based on peak point in the signals. Morphological
properties such as amplitude of peak, width of peak, slope of peak etc. are used as

features.

3.4 Feature Transformation

Each data set is further transformed by using different transform methods such as
normalization, nonlinear transformation, principal component analysis (PCA), and
whitening transformation. These transformation methods are described in detail

below.
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eNormalization: The process of transforming the data from its original
value into the range of -1 and 1 is called as normalization. There are
several ways to normalize a data. The approach used in this study works
by dividing the actual value by the absolute maximum value of each

sample vector (Bishop, 1995; Duda, Hart, & Stock, 2001).

(3.13)

where, Y* is the normalized data vector and X* is the ™ sample vector.

eNonlinear Transformation: Nonlinear transformation is another
process of transforming data from its original value into a new range
(Ozdamar & Kalayci, 1998). In this study, hyperbolic sigmoid function is

utilized as the nonlinear function

2
Yi=—"— -1 (3.14)
l+e2¥

where Y* is the transformed data matrix and X* is the normalized
original data matrix. (Before the nonlinear transformation is applied, the

original data is normalized first).

ePrinciple Component Analysis (PCA): PCA is a linear
transformation method (Bishop, 1995; Duda, Hart, & Stock, 2001;
Wiskott, 2004). In this method, first the d-dimensional mean vector and
dxd covariance matrix are computed for the full data set. Next, the
eigenvectors and eigenvalues of the covariance matrix are found and
stored according to decreasing eigenvalue. The representation of original
data by PCA consists of projecting the data onto a new subspace whose

dimensionality K could be equal to or less than the dimensionality of the
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original data d. The PCA transforms X to Y by the following equation;

Y=XV (3.15)

where Y is the transformed data matrix, X is original data matrix and V is
portioned matrix consisting of  eigenvectors corresponding to the

eigenvalues decreasing value of the covariance matrix.

e Whitening Transformation: The whitening transformation is also a
linear transformation (Duda, Hart, & Stock, 2001; Tang, Suganthan, Yao,
& Qin, 2005). It performs a coordinate transformation that converts an
arbitrary multivariate normal distribution into a spherical one. Therefore,
the new distribution of data has a covariance matrix proportional to the
identity matrix /. The whitening transformation transforms X to Y by the

following equation;

h<
Il

VX (3.16)

where Y is the transformed data matrix, X is the original data matrix,

and V is a transformation matrix calculated by

y=D"’E" (3.17)

Here D is the diagonal matrix of eigenvalues and E represents the
portioned matrix consisting of the corresponding eigenvectors of the

covariance matrix.
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3.5 Visualization of Multidimensional Data using Self Organizing Maps

Self-organizing maps (SOMs) are biologically inspired neural network
architectures trained by unsupervised learning algorithms based on competitive
learning rule (Kohonen, 1982; Kohonen, 2001). The SOM was invented by Kohonen
(1982). SOM usage is divided as two main categories in the literature. In the first
one, the neurons in the SOM represent different clusters in the data space. The
number of neurons in this network corresponds to the number of clusters that exist in
the input data. So, neuron size is very small; it is generally less than twenty. The
other usage of SOM is related to the low dimensional visualization of high
dimensional data (Ultsch, 2003). Humans simply cannot visualize high dimensional
data. Therefore, different techniques have been developed to help visualize this kind
of high dimensional data. One of these methods is the Unified Distance Matrix (U-
matrix). U-matrices are invented for the visualization purposes of these high
dimensional structural features. The U-Matrix is the canonical tool for the display of
the distance (and topological) structures of the input data (Ultsch, 1992). In these

models of SOM, very large numbers of neurons are used, generally over 1000.

The SOM is an unsupervised type neural network architecture used to visualize
and interpret high-dimensional data sets on the map. The map usually consists of a
two-dimensional regular (rectangular or hexagonal) grid of nodes called neurons as
shown Figure 3.4 and Figure 3.5. Each sample of high dimensional input data is
associated with a unit which is the winner. Not only the winning neuron but also its
neighbors on the lattice are allowed to learn and adapt their weights towards the
input. This way, the representations will become ordered on the map. After training,
the responses of the SOM network are ordered on the map. This is the essence of the

SOM algorithm and its main distinction from other networks.
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Figure 3.4 Rectangular grid structures.

Figure 3.5 Hexagonal grid structures.

An N-dimensional input is presented to each neurons of a SOM network as shown
in Figure 3.6. Then the winner unit (indicated by the index c), i.e. best match, is

identified by the condition shown below for each sample,
1%, (@) = w. (@) ||=min || x; (&) = w, @) | (3.18)

where x; is input vector with N dimension, w; is the i weight, and ¢ indicates the

winning neuron.
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Input Vector (M dimension)

Figure 3.6 Self-Organizing Map Structure.

The update of the weights in the SOM network is limited by neighborhood
function (£2.(i)). The neighborhood function plays a main role in SOM algorithm
regardless of the type of the learning algorithm. Three frequently used neighborhood
functions are Gaussian, rectangular and cut Gaussian. The weight of the winning

unit and its neighbors are updated by the formula

Aw, =n(x—-w,)Q (i) ieNB. (3.19)

where 7 is the learning rate in the interval 0 <y <1, Q.(i) is the neighborhood
function and NB. indicates the neighbor neurons centered around node c, i.e. the

winning neuron.

3.5.1 U-Matrix

After training the SOM network, the weight vectors that connect the high

dimensional input vector space to 2-D output map grid are obtained. The distance
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between the two mapped units on the projected plane is obtained through their
respective weight vectors. The U-matrix method determines the distances between
weight vectors of the adjacent map units. A U-matrix is originally defined on planar
map spaces and a U-matrix representation of the Self-Organizing Map visualizes the
distances between the neurons. The distance between the neighbor neurons is

calculated and presented with different colorings.

There are various methods for U-matrix calculation from the trained weight
vectors (Ultsch, 1992; Ultsch, 1993; Livarinen, Kohonen, Kangas, & Kaski, 1994;
Oja et al., 2002). One of the methods used in the construction of the U-matrix uses
the sum of the distances of the weight vectors to their neighboring weight vectors at
each map coordinate (X;Y) (Ultsch, 1992). Another method is the median method. In
this method, the distances between all adjacent neighbors are computed using the
same distance metric. The median distance corresponds to the distance measure for
that grid. Another commonly used approach uses a dummy grid in between every
pair of map grids. In this method, the distance between two map grids are calculated
and then assigned to the dummy grids as shown Figure 3.7. This is one simple way
of calculation of the U-matrix with dummy grids (Oja et al. 2002). The value to be
assigned to the original map grids are taken as the median distance of all its
neighbors. A different method of U-matrix computation for various types of lattice

grids is discussed in the literature (Livarinen et al., 1994).

o fel(y

Figure 3.7 A simple way of calculating the U-matrix with dummy grids.

The computed U-matrix is visualized via a colored image or a gray-level image.
The resultant gray-level image is a hexagonal grid map with different shades of gray-
scale for the grids. The gray-scale map carries input pattern identification labels. The

formation of clusters in the data and location of outlier observations become visible
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from such a gray-scale image. Typically, lighter shade patches indicate the location
of data vectors which are similar and have less mutual distance; darker shade
patches, on the other hand, indicate the location of data vectors having larger
distance with observations in adjoining lighter shade areas. The outliers are identified

as observations located in the darkest patches of the projected map.

Figure 3.8 shows a U-matrix representation of a SOM network with gray-level
image. The neurons of the network are marked as black dots. The representation
shows that they correspond to separate clusters in the upper right corner of this

representation. The clusters are separated by a dark gap.

Figure 3.8 U-matrix representation of the SOM network with gray-level image.

The distances between the neighboring units are represented as heights in a 3-
dimensional landscape. This is called as the hill-valley landscape visualization of the
SOM. In this representation, there are valleys where the reference vectors in the
lattice are close to each other and hills where there are larger mutual distances
indicating dissimilarities in the input data. The height of the hills reveals the degree
of dissimilarity among the data vectors. So the hills represent border of the clusters
as shown in Figure 3.9. Outliers can be identified from this 'hill-valley' landscape
visualization as they are typically located at higher locations on the hills. The degree
of leverage of the outliers is associated with the height of the peaks of the

corresponding hills.
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Figure 3.9 Three dimensional landscape visualization of high dimensional

data.

3.6 Dimensionality Reduction

Determination of the relevant features and reduction of the dimension of the feature
space is very important in a pattern classification task to improve the classification
accuracy and reduce the computational cost. For this purpose there are three
approaches that could be applied. In the first case, feature selection methods are used
to find best subset from a large group of features to maximize classification
performance. The selected features keep original physiological meaning, which may be
important for understanding the physiological properties of the pattern. The other
approaches are feature extraction and dimension reduction (Bhaskar, Hoyle, & Singh,
2006; Jain, Duin, & Mao, 2000). These methods create a reduced number of new
features using combined features. These methods may not keep physiological meaning
of the features. On the other hand, they may have better discriminative power (Jain,
Duin, & Mao, 2000). PCA, SOM, and MLP are widely used effective methods in
pattern recognition for feature dimensionality reduction and feature extraction

(Bhaskar, Hoyle, & Singh, 2006; Jain, Duin, & Mao, 2000).

Feature selection is identified as: given a set of d features selects a subset of m
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features that leads to the smallest classification error. Feature selection methods consist
of detecting the relevant features and discarding the irrelevant features. Therefore, it
improves generalization performance of the machine learning algorithm, and reduces
data size for limiting storage requirements. Feature selection methods grouped as filter
methods (open-loop methods) and wrapper methods (closed-loop methods) (Maroio,
Betanzos, & Sanroman, 2007; John, Kohavi, & Pfleger, 1994; Kohavi & John, 1997)
as shown Figure 3.10. Filter methods are based mostly on selection of features using
the statistical measures and they do not depend on a classifier. Wrapper methods are,
on the other hand, based on feature selection using a classifier performance as the
selection criterion. Feature selection with wrapper method is used to find best subset

from a large group of features that maximize classification performance of a specified

classifier.
Feature Selected
Features .
Selection Features
a)
Features E Feature Classifier E Best Selected
! Selection | Performance Features
i
Performance
Evaluation
b)

Figure 3.10 Block diagram of feature selection a) with filter methods and b) with

wrapper methods.

In order to find optimal solution exhaustive search is used. But exhaustive search
requires a lot of time to test the performance of the possible subset combinations of
features (Jain, Duin, & Mao, 2000). So using deterministic or stochastic approach
suboptimal feature set may be found in wrapper method. Sequential floating search
and genetic algorithm are the most used methods for feature selection for finding

suboptimal feature set.
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3.6.1 Feature Selection with Sequential Floating Search

The sequential floating search methods (SFSM) are effective feature selection
techniques (Pudil, Novovicova, & Kittler, 1994; Bhaskar, Hoyle, & Singh, 2006;
Jain, Duin, & Mao, 2000; Duda, Hart, & Stock, 2001). The floating search method
has two main categories: sequential forward search (SFS) and sequential backward
search (SBS). The SFS algorithm starts with a null feature subset. For each step, the
best feature that satisfies some criterion function is included to the current feature
subset and this is repeated n times or it is repeated for all features and best subset
which has best criterion value is chosen. The SBS algorithm starts with all features
and for each step, the worst feature (concerning the criterion function) is eliminated
from the subset and this is repeated  times or all features. For all features, the best

subset which has best criterion value is chosen.

Extended case of SFSM uses both SFS and SBS as shown in Figure 3.11, which is
called n-take r-away search algorithm or Plus-/-Minus-» method. This algorithm
starts with a null feature set and in the case of forward search, for each step, the best
feature that satisfies some criterion function is included to the current feature set and
this is repeated n times. In the case of sequential backward search, the worst feature
(concerning the criterion function) is eliminated from the set and this is repeated r
times. SFS proceeds dynamically increasing the number of features and SBS
proceeds decreasing the number of features until the desired feature size is reached or

criterion function begin to decrease.
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Features

nstep of 5F5 algorithm

¥ step of SBS algorithm

Check
termination
criteria

Yes

Selected feature set

Figure 3.11 Block diagram of n-take r-away

algorithm.

3.6.2 Feature Selection with Genetic Algorithm

Genetic Algorithms were discovered by John Holland (1975). It is a model for the
evolution of a population in a special environment (Holland, 1975; Goldberg, 1989).
Each member of the population is represented by a chromosome that consists of a
series of genes. Each gene has two or more possible values and is transformed into a
parameter of the problem space. A fitness function represents the environment. It

evaluates each individual and determines a fitness value for each individual.

The algorithm is started with chromosomes which represents a set of solutions
called population. The solutions from one population are taken and used to generate
a new population. Generating new population, selection, crossover and mutation
process are applied, then fitness values are evaluated. These processes are repeated
until some criteria, i.e., reaching the best solution or certain number of population,

elapsed time etc. Corresponding block diagram is shown in Figure 3.12.
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The new population will be better than the old one since at least one best solution
is copied without changes to a new population. It is called elitist strategy. The
genetic operators such as representation, selection, crossover, mutation are described

to construct GAs for optimization problems.

Initialization

Evaluation [ Solution
Selection
Determine
Crossover the best solution

Mutation

Termination
test

Yes

Elitizm strategy

The best solution

Figure 3.12 Block diagram of a typical genetic algorithm

The representation of chromosomes may be categorized into the two methods
binary coding and real coding. For instance, the string shown Figure 3.13 is stored as
a binary bit-string (binary representation) or as an array of integers (real-coded
representation). The string by the binary coding consists of Os and 1s. The binary
string is decoded to the parameter value in integer, real number, or any parameter

used with fitness function in GA. The binary representation is generally used in GA.

Binary Representation Real-coded representation

[1]ofo[1]a[1]ofo]1] [2]s[o]7[8[8]7[9]1]

Figure 3.13 Representation of chromosomes
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Each of candidate solutions is evaluated for optimization problems according to a
fitness function. The fitness function is a criterion function which determines how
well the candidate solution is. The GA searches a string (member of the population)

with a better fitness value in the population.

Selection is an operator to select two parent strings for generating new strings. A
string with a high fitness value has a higher probability to be selected. In GA parents
are selected by random. The fitness value of each string is used for calculating the
selection probability. The roulette wheel selection scheme and the rank-based

selection scheme are often employed.

Crossover is an operator to generate offspring from parent strings. Various
crossover operators have been proposed for GAs. One-point crossover for the binary
coding is as an example of standard crossover operators. Two parents are selected
randomly from the population. Then one crossover point is selected randomly and
two new strings are generated by changing the substring along the crossover point.

One point crossover operation is shown Figure 3.14.

Crossover point

Parent 1 |1|1|l!1|1|1|1|1|1| Offspring 1 |1|1|1!0|0|0|0|0|0|

Parent2  [00]0}olo]oT0]0l0] Offspring 2 [OIOTO[TTTTTTITI]T]

Figure 3.14 The standard one-point crossover for binary strings

Mutation is an operator to change elements in a string generated by a crossover
operator with low probability. When applying mutation operator to strings in GAs,
randomly selected one bit in a string is changed. An example of this mutation is
shown in Figure 3.15. The stars are located as mutation points where 1 in the first
and second position is changed to 0. Mutation supplies genetic variety and enables

the genetic algorithm to investigate a broader space.
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* * Mutation * *
[1]ofol1[t]1]ofo]1] — [1]olofof1]1[ofo]0]

Figure 3.15 Two bit mutation for a binary string

Implementation of feature selection with GA is illustrated by the simple flow
diagram shown in Figure 3.16. Each individual of population is represented by

binary string. Fitness function for evaluation is the classifier performance.

Initialization

Pool of Candidates

Evaluation by
Classifier

,

Perform GA
operators

( selection,
crossover,mutation,
and elitizm)

N

Termination
test

Yes

Mo

The best Teature
subset

Figure 3.16 Wrapper type feature

subset selection with GA.

3.6.3 Dimension Reduction using Neural Networks

A simple three layer linear network can be used as a dimension reduction tool.
Figure 3.17 shows the structure of three layer neural networks. Each pattern of data
set is applied to both input and output layer. Network trained by gradient descent on
a sum squared error criterion. Activation functions of network are linear for all
layers. So, dimension of the input data is d. The transformation F; is linear projection

onto a K dimensional subspace. The transformation matrix is the weights of the first
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layer of the network. The transformed data of y is the output of the linear hidden

layer of networks.

V=D WX, (3.20)

The inverse transformation matrix is the weights of the last layer of the network.
As a result of transformation, d dimension of input data is reduced to K dimension
(k<d). When linear activation function is used in the network, it provides the

principle components (Duda, Hart, & Stock, 2001).

X1 linear 1

X2 @ X2
“ @

X3 @ _ @ X3

Input

S5
Output

@k

SSANSESS)

X4 Xd
B —— S
Fi F;

Figure 3.17 Three layer neural networks with linear hidden layer.

The SOM is also used as a dimension reduction method. The SOM is an
unsupervised type of neural network architecture used to visualize and interpret high-
dimensional data sets on the map (described in chapter 3.1.4). The map usually
consists of a two-dimensional regular grid of neurons. Each sample vector of
multidimensional input data is associated with a neuron on the map. An N-
dimensional input is presented to each neurons of a map. Then the index of neuron
which represents the input pattern is used as feature (Bhaskar, Hoyle, & Singh, 2006;
Jain, Duin, & Mao, 2000; Kutlu & Kuntalp, 2009).
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3.7 Classification

The final stage in pattern recognition is classification of a pattern. The recognition
of a pattern generally consists of either supervised classification or unsupervised
classification (Watanabe, 1985). In supervised classification, the classes are
determined by the system designer and it is used as output of the system while
training the system. On the other hand, in unsupervised classification, the class labels

are not used. They are learned based on the similarity of patterns.

Increases in computing power have made possible the use of elaborate and diverse
methods for data analysis and classification. In more recently, demands on automatic
pattern recognition systems have raised enormously due to the availability of large
databases and high performance computers. In great number of recognition
applications, it is clear that there is no optimal approach for classification (Duda,
Hart, & Stock, 2001). Thus, multiple methods are needed to employed and
combining several methods and classifiers is now commonly used practice in pattern

recognition problems (Jain, Duin, & Mao, 2000).

3.7.1 K-Nearest Neighbor (KNN)

K-nearest neighbor (KNN) algorithm is one of the most classical and effective
nonparametric method in pattern recognition (Cover & Hart, 1968; Duda, Hart, &
Stock, 2001). The KNN algorithm is a method for classifying objects based on
closest training samples in the feature space. Because of identification of neighbors,
the objects are represented by position vector in multidimensional feature space.
More accurately, by a K-nearest neighbor method, a new pattern, X, is assigned to
that category to which the plurality of its K closest neighbors belong. A training set is
m labeled patterns, and a nearest-neighbor method decides that some new pattern, X,

belongs to the same category as do its closest neighbors in training set.

The KNN algorithm is among the simplest of all machine learning algorithms,

because it based on only the distance measure. Different distance measures can be
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used in this algorithm. Simple Euclidean distance commonly used as the distance
measure in nearest-neighbor methods. That is, the distance between two patterns, (x;,

X2, X3, ... Xp ) and (ys, ¥2, ¥3, - Y ), 18:

d = Zn:(xj—yj)z (3.21)
Jj=1

K is usually chosen small positive integer. If K=I, then the object is simply
assigned to the class of its nearest neighbor as shown in the example given in Figure
3.18. There are two classes which are illustrated as stars and circles in Figure 3.18.
The test sample (triangle) is considered according to the distance and classified either
to the first class of stars or to the second class of circles. If K =1 it is classified to the
first class due to the closest class members is star. If K = 3, it is classified to the

second class because there are 2 circles and only 1 star inside the inner circle.
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Figure 3.18 Example of KNN classification.

KNN is a supervised classifier. A set of object with class labels is required for the
distance measurement of new object. This can be thought of as training set for the

algorithm. As a matter of fact, it has no explicit training step. The algorithm is
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independent from statistical distribution of training samples (Duda, Hart, & Stock,

2001).

Nearest-neighbor methods may require more memory. In order to achieve good
generalization, a large number of training patterns must be stored. High memory cost

1s the major drawback of the method and its derivatives.

3.7.2 Artificial Neural Networks

ANNSs, which are inspired by biologic neural networks, are composed of neuron-
like units connected together through input and output paths that have adjustable
weights (Bishop, 1995; Haykin, 1999). Each unit (neuron) produces an output signal,

which is a function of the sum of its inputs. This function is formulated as:

N
Yi= f(zxiwi) (3.22)
i=1

where, w; represents the weights, x; is the input, f(.) is the activation function, and y;
is the output of the i unit. A variety of functions can be utilized as the activation

function but most often a sigmoid (or hyperbolic tangent) function is used.

Among different structures used in the ANNs, multi-layer perceptrons (MLPs) are
the mostly used ones. An MLP consists of successive layers, each of which includes
a different number of processing units. The units in the first layer receive inputs from
the outside world and are fully connected to units in the hidden layer. The units in the
hidden layer, in their turn, are fully connected to output layer units, The units in the

output layer produce the output of the MLP (see Figure 3.19).
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Figure 3.19 Architecture of the MLP network.

Learning Algorithms: An ANN should first be trained in order to accomplish the
desired task. This means that the values of the connection weights are to be adjusted
so that the network would produce the correct output for each given input pattern.
The proper weights are determined under the control of a training algorithm. There
are a large number of training algorithms and their variants (Haykin, 1999). It should
be noted that the ultimate aim of training a neural network is not to force it to learn
the training set perfectly. Instead good generalization ability is desired, this means
producing correct output values for inputs which are not seen during the training
process. The early stopping method (Amari, 1995; Demuth & Beale, 1998; Hagiwara
& Kuno, 2000) is the approach used during training to increase the generalization
performance of the network to avoid overtraining. In this method, a validation set,
which is different from the training set, is chosen. During the training process, the
validation error is used as the stopping criterion. As shown in Figure 3.20, when the
validation error reaches its minimum, the training is finished. In this study, most of
the training algorithms, except the last one which is based on the regularization

method, are applied using the early stopping criteria.
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Figure 3.20 Training and validation errors versus iteration number.

Gradient Descent (GD): A gradient descent based optimization algorithm such as
back propagation is the most common method used to adjust the connection weights
in MLP iteratively in order to minimize an error function (Bishop, 1995; Duda, Hart,
& Stock, 2001; Hecht-Nielsen, 1989; Yu, Efe, & Kaynak, 2002). Generally the error
function used is the Mean Square Error (MSE):

1 N
Eye(¥) = EZ(tj _y_/)2 (3.23)
J=1

where ¢ is the target, y is the output, and Ejs is the error function.

The errors calculated at the output units are then propagated backward to units in
other layers. In order to minimize the error occurred in backpropagation phase, the

value of each weight is updated by

Aw!, =nsDy{ (3.24)

where 7 is the learning rate and 0 is the derivative of error function with respect

to the weight, i.e.
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S(n) = °E (3.25)
ow

Gradient Descent with Adaptive Learning Rate (GDALR): In plain gradient
descent, as described above, the learning rate is held fixed during the training phase.
However, changing the learning rate during the training process is a method that
could increase the performance of the network (Yu & Liu, 2002). In this variant of
gradient descent, when the new error exceeds the previous one, the learning rate is
decreased and the new weight and bias values are discarded. If, on the other hand,

the new error is less than the old one, the learning rate is increased by

e (n) = E(”);(i()n - (3.26)

where E(n) is the current error, E(n-1) is the previous error and e, is the relative
factor. During the training process, the learning rate is changed according to relative

factor

fore, <0, n(n+1)=nn)(I+ u.e'e'(”))
(3.27)
fore, >0, n(n+1) = n(n)(]_u_e-er(n))

where n(n+1) is the updated learning rate, #(n) is the previous learning rate and u

is the relative control parameter (O<u<1).

Levenberg-Marquart (LM) Algorithm : The LM method shows the fastest
convergence during the training process based on gradient descent methods because
it acts as a compromise between the stability of the first-order optimization methods
(e.g., steepest-descent method) and the fast convergence properties of the second-
order optimization methods (e.g., Gauss-Newton method) (Hagan & Menhaj, 1994;
Chen, Han, Au, & Tham, 2003). When training with the LM method, the update of

the weights are obtained as follows
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AW:[JTJ+2«I]_1JT6 (328)

where J is the Jacobian matrix, 4 is the learning parameter, and e is the sum of

C1Tror squarcs.

Regularization Method: Another method that does not use early stopping but also
increases the generalization performance of an ANN is the regularization method
(Amari, 1995; Chan, Ngan, Rad, & Ho, 2002; Demuth & Beale, 1998; Hagiwara &
Kuno, 2000). In this method, a penalty term is added to the error function as shown

below

E=E+vQ (3.29)
¢

Q==>w (3.30)
n o

where E is the mean square error function, v is the control parameter of the
penalty term, and € is the penalty term. Using this method has the similar effect of
applying early stopping during the training process.

3.7.3 Modular Classifiers

In many of pattern recognition applications, it is clear that there is no optimal
approach for classification (Duda, Hart, & Stock, 2001). Therefore, there have recently
been widespread interests in the usage of multiple models for pattern classification.
The aim is to solve a complex problem by dividing it into simpler problems whose
solutions can be combined to yield a final solution. A multiple classifier system
combines an ensemble of diverse classifiers as shown Figure 3.21. The combination of
diverse experts has better results than single classifiers (Bhaskar, Hoyle, & Singh,
2006). Such classifier models which consist of more than one classifier are variously
called mixture of expert models, ensemble classifiers, modular classifiers, committee

machine or sometimes pooled classifiers as shown in Figure 3.21. Committee Machine
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is a supervised learning method based on divide-and-conquer principle. It divides input
space into subspaces and combines individual results of each expert. Experts share
common input or each expert uses diverse input. Each expert is trained differently (if a
number of neural networks are used). Individual outputs of experts are then combined

to find the overall output.

Classifier 1

Classifier 2

Classifier I

Figure 3.21 Simple structures of modular classifiers.

3.7.4 Performance Measures

Any diagnostic system decide either “1” or “0” which means "positive" or
"negative". Each decision may be "true" or "false". So there are two kinds of responses
for each decision. According to two-class case, there are four possible situations as a
decision (Gibbons et al., 1997). If the instance is positive and it is classified as
positive, it is assigned as true positive (TP); if it is classified as negative, then it is
assigned as false negative (FN). If the instance is negative and it is classified as
negative, it is assigned as true negative (TN); if it is classified as positive, it is

assigned as false positive (FP).
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Given a recognition system, a two-by-two decision matrix can be constructed
according to decision of the test set. This matrix is also known as a contingency table

or confusion matrix as shown in Table 3.1.

Table 3.1 Two-by-two decision matrix

Output of the System
Normal Failure
:; Normal True Negative (TN) False Positive (FP)
=
K= Failure False Negative (FN) True Positive (7P)

The performance of a recognition system is measured by several parameters using
the decision matrix (Eberhart & Dobbins, 1990). Sensitivity (SEN), selectivity (SEL),

specificity (SPE), and overall accuracy (ACC) are the most used parameters.

Sensitivity is described as the ratio of the number of positive decisions correctly
classified by the recognition system to the total number of positive decisions made by
the expert. It shows the ratio of correctly classified abnormal patterns to abnormal

pattern.

Sensitivity = %xl 00% (3.31)
+

Specificity is described as the ratio of the number of negative decisions correctly
made by the recognition system to the total number of negative decisions made by the

expert. It shows the ratio of correctly classified normal patterns to normal pattern.

Specificity = % x100% (3.32)

Selectivity is described as the ratio of the number of positive decisions correctly
made by the recognition system to the total number of positive decisions made by the
recognition system. It shows the ratio of correctly classified abnormal patterns to

pattern which are classified as abnormal.
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TP

T X100% (3.33)
P

+ FP

Overall Accuracy is the ratio of the total number of positive decisions and negative

decisions correctly made by the recognition system to the all decisions.

OverallAccuracy =

TP +TN (334)

x100%
TP+ FN +1IN + FP

When the system is a multi- class recognition system, the decision matrix can be

also constructed according to decision of the test set. But calculation of the measures is

a little different. For example, five different heartbeats (N, S, V, F, and Q) will be

classified by the system. The decision matrix is constructed as shown in Table 3.2.

Table 3.2 Multi-class decision matrix

Classifier Results

N|[S|V]|F|Q
3 N | 7Py | FNy | FNy| FNy| FNy
f S |FPy| TN | TN | TN | TN
5]
€| V |EPy| IN| TN | TN [ TN
% F |EPy| TN | TN | TN | TN
~ Q |FPy| IN| TN | TN | TN

where

TP - True Positives:Number of heartbeats of an arrhythmia type correctly classified

by the system

TN - True Negatives:Number of other arrhythmia heartbeats correctly classified by

the system

FP - False Positives:Number of heartbeats incorrectly classified by the system

FN - False Negatives:Number of other heartbeats incorrectly classified by the system
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SEN, SEL, SPE, and overall accuracy are given for each class as:

TP,
Sensitivity = ———— x100% (3.35)
TP + FN,
TN,
Specificity = ———— x100% 3.36
pecificity N, + FP 0 ( )
TP
Selectivity = ———— x100% (3.37)
TP + FP.
TP, +TP, +.. .+ TP,
Over all accuracy = — 2 - x100% (3.38)
All Beats

where the sub indices denote the heartbeat type.

Another performance evaluation tool is Receiver Operating Characteristic (ROC)
analysis. It is a plot of sensitivity versus specificity values as shown in Figure 3.22. It
is widely used in the medical applications to evaluate the performance of diagnostic
tests. ROC curves contain a wealth of information for understanding and improving
performance of classifiers. Area under the ROC curve is a measure of discrimination,
or the performance measure of a diagnostic test. Overall accuracy or overall
misclassification rate is not a useful measure when the disparity between classes is
high (Alberg et al., 2004). Reported accuracies in this study are also measured by the
area under the ROC curve as shown in Figure 3.22. An area of 1 represents a perfect
test; an area of 0.5 represents a worthless test. The traditional academic point system is
used to evaluate the performance of a diagnostic test: if the area is between 0.90-1 it is
excellent, between 0.80-.90 it is good, between 0.70-0.80 it is fair, 0.60-0.70 it is poor,
and between 0.50-0.60 it is fail (Erkel & Pattynama, 1998; Fawcett, 2006; Alberg et
al., 2004).
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Figure 3.22 Area under ROC curve

There are many methods to determine area under ROC curve. Two methods are
commonly used to compute the area of ROC curve: a non-parametric method based on
constructing trapezoids under the curve to approximate the integral or the area under
the curve and a parametric method, using a maximum likelihood estimator to fit a

smooth curve to the data points.



CHAPTER FOUR
AUTOMATIC RECOGNITION OF EPILEPTIFORM EVENTS IN EEG

4.1 Introduction

Epilepsy, which is a very common neurological disorder, is defined as sudden,
excessive and abnormal discharges in brain that may be caused by a variety of
pathological processes of genetic or acquired origin. This disorder is often identified
by sharp recurrent and transient disturbances of mental function or movements of

different body parts (Goksan, 1998).

The evaluation of an EEG record for the detection of epileptic activity is usually
performed by experienced electroencephalographers (EEGers) based on the visual
scanning of the EEG record. However, this process is very time-consuming, error-
prone, and too subjective (Ktonas, 1987). For this reason, there is an ever-increasing
need for the development of automated systems to detect these abnormal wave
patterns and there have been different attempts mainly based on artificial neural
network (ANN) structures to automate the epileptic spike detection process. For
example, (Webber, Litt, Wilson, & Lesser, 1994) utilized ANNs and mimetic
methods. Kalayc1 & Ozdamar (1995) also used ANN-based systems for classification
purposes and reported very satisfactory results. James, Jones, Bones, & Carroll,
(1999) employed multi-stage approaches. Tarassenko, Khan, & Holt (1998) also used
ANN-based recognition systems. (Ozdamar & Kalayci, 1998 ; Ozdamar, Yaylali,
Jayaker, & Lopez, 1991) also used ANN-based systems. Dingle, Jones, Carroll, &
Fright, (1993) used a multistage system to detect epileptiform activity. Nuh, Jazidie,
& Muslim, (2002) utilized a different type of neural network, i.e. a wavelet neural
network. Adjouadi et al. (2004) developed an algorithm using the Walsh
transformation. Acir & Giizelis (2004) utilized a two stage classification system
based on support vector machine (SVM). Acir, Oztura, Kuntalp, Baklan, & Giizelis,
(2005) employed a two stage classification system based on the radial basis function

network (RBFN). Exarchos, Tzallas, & Fotiadis, (2006) used a rule based

56
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classification system. Inan & Kuntalp, (2007) used a two stage unsupervised

classification system.

In some of these systems, the extracted waves were used as windowed raw input
to the classification system; whereas, in others, specific waveform features are fed
into the system as the input. The use of the parameterized approach reduces data load
on the system and processing time and increases the performance of the classifier. In
the parameterized approach, however, the success of the spike detection algorithm
relies heavily on the proper selection of the features. These features may include
frequency domain parameters like total power, or time domain parameters like
amplitude, duration, and slope. Using raw data, on the other hand, avoids any data
loss that parameterization techniques will inevitably introduce but provides the
system with a high-dimensional input data. This could reduce the performance of the
classifiers due to the curse of dimensionality effect. Therefore, both approaches have
their own advantages and disadvantages. In this study, both the parameterized and

raw forms of data are used as input and their effects are compared.

As the classification system, different multilayer perceptron (MLP) networks
utilizing between 3 and 15 hidden neurons are constructed for the automatic
detection of epileptic spikes in the EEG records for the diagnosis of epilepsy. For
training the MLP networks, early stopping versions of backpropagation (Amari,
1995; Bishop, 1995; Demuth & Beale, 1998; Duda, Hart, & Stock, 2001; Hagiwara
& Kuno, 2000; Hecht-Nielsen, 1989; Yu, Efe, & Kaynak, 2002), backpropagation
with adaptive learning rate (Yu & Liu, 2002), Levenberg-Marquardt (LM)
algorithms (Chen et al., 2003), and regularization methods (Amari, 1995; Hagiwara
& Kuno, 2000) are used. The aim of using early stopping and regularization is to

increase the generalization performance of the classifier.

The inputs used for the training of the networks are constructed as follows. As the
first step, the individual spike-like waves are extracted from all records. These waves
include both epileptic spike waves and non-epileptic spike waves which are similar

to epileptic spikes. From here on, both of them will be referred to as spike-like
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waves. As the next step, either of the following two methods is applied. In the first
method, specific morphologic features, which are extracted by numerical techniques
from the wave patterns, are given as input to the detection system. In the other
method, the raw waveform is directly presented as input to the system after a proper
scaling and windowing process. The aim here is to compare the effects of using
either raw data or extracted features. However, in addition to the original forms of
both raw data and extracted features, the networks are also fed with their transformed
versions which are obtained by using different transformation methods. The
performances of all the constructed classifiers are then evaluated and compared
based on sensitivity, selectivity, and specificity measures since these parameters have
been accepted and used as the standard for EEG spike detection algorithms (Pang,
Upton, Shine, & Kamath, 2003).

In this chapter, the proposed automated recognition systems are described in
detail. The general block diagrams of the constructed systems are shown in Figure
4.1. At first, single MLP based classification system is constructed. Then, a multi-

stage classification system is constructed.
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Figure 4.1 Block diagram of the constructed classification systems for spike detection in EEG a) Single

MLP based classification system, b) multi-stage classification system.
4.2 EEG Data
4.2.1 Data acquisition and its properties

The EEG data used in this study are obtained from the Neurology Department of
Dokuz Eyliil University Hospital, Izmir, Turkey. The EEG data are acquired with
Ag/AgCl disk electrodes placed using the 10-20 international electrode placement
system. The EEG signals are recorded from 19 channels at a sampling frequency of
256 Hz and then band-pass filtered between 1 and 70 Hz. These EEG recordings are
initially labeled for spikes by two experienced EEGers. Only the wave patterns
which are labeled as epileptic spikes by both EEGers are accepted as spike waves.
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4.3 Pre-processing

The first step of the pre-processing stage is the mean removal by which the
average of each individual EEG record is calculated and then subtracted from the
signal itself. The second step is the determination of the locations of all peaks
(positive and negative) in the record since the spike waves generally reveal
themselves in the form of transient spikes with a pointed peak. The peaks obtained
are then processed based on the approach described in (Acir et al., 2005): First of all,
the amplitude differences between each peak are calculated. This gives the slope
between these data points. If the slope is positive, the signal is increasing; otherwise,
the signal is decreasing. Whenever the slope changes from positive to negative, this
means that it is a positive peak. In the same manner, if there is a change in the slope

from negative to positive then it is a negative peak.

In order to eliminate the artifacts from the signal and ignore irrelevant small
changes with high frequencies, the following simple algorithm is used. If the length
of a segment between two adjacent peaks is shorter than the length of the previous
and next segments and if the duration of this segment is shorter than 20 ms and its
amplitude is smaller than 2uV, then the peak is accepted as an artifact and eliminated
(Acir et al.,, 2005). This filtering process also eliminates mains electricity
interference and sharp, short-duration waves similar to spike activity resulting from

the movement of the patient.

After the application of the processes mentioned above, a total of 119 spike-like
waves are extracted from the available EEG data. Based on the views of the EEGers,
39 of these waves are labeled as epileptic spikes and 80 as non-epileptic waves. In
order to improve the generalization performance of the MLP based classifiers,
“training with noise” method is used whereby new training samples are generated by
adding zero mean Gaussian noise with a variance of 10% to the available 119 spike-
like waves (Amari, 1995; Bishop, 1995; Duda, Hart, & Stock, 2001; Minnix, 1991;
Nicholson, 2002; Tsukuda, Kurokawa, & Mori, 1995, Kutlu, Kuntalp, & Kuntalp,

2006). As a result of this process, a new set with 390 spike and 400 non-spike waves
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is created. These samples are used for training purposes only as if they were normal
training data sampled from the same source distributions. The real spike-like waves,

1.e. 119 waves without Gaussian noise added, are used for testing the classifiers.
4.4 Feature Extraction and Transformation

4.4.1 Raw EEG

For applying the extracted waves to the classifiers as raw input, a window with a
length of 41 data points is used in which the peak of the wave is located at the 1"
point. The reason for choosing this value is that it corresponds to approximately 150-
160 ms of the EEG signal and is an average value for the epileptic spike duration.

Several samples of spike-like waves are given in Figure 4.2.
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Figure 4.2 Samples of spike-like waves.

4.4.2.Morphological Features

Six morphologic features are acquired from each spike-like wave. These features

include first half wave amplitude (G1), second half wave amplitude (G2), first half
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wave duration (T1), second half wave duration (T1), first half wave slope

(S1=G1/T1), and second half wave slope (S2=G2/T2) (see Figure 4.3).
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Figure 4.3 Morphologic features obtained from candidate waves.

4.4.3 Feature Transformation

Each spike candidate (i.e. a spike-like wave), whether it is represented by 41
consecutive points or by the six morphologic features, is further transformed by
using four different transform methods: 1) Normalization, ii) Nonlinear
transformation, iii) Principal Component Analysis (PCA), and iv) Whitening

transformation. These transformation methods are described in section 3.1.4.

4.5 Classification

4.5.1 Recognition with a MLP based classifier

The classifiers implemented in this study are developed by using Matlab.
Classification procedure is performed off-line on data stored on the hard disk. Seven
different MLP networks are constructed utilizing between 3, 5, 7, 9, 11, 13, and 15
hidden units, respectively (Kutlu, Isler, Kuntalp, & Kuntalp, 2006). Each network is
trained with all four different training methods described in Section 3. For each
method, 10 different data sets are used; these data sets consist of original and

transformed versions of both raw data and extracted features. This corresponds to a
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total of 280 (7 MLP structures x 4 training algorithms x 10 data sets) different MLP
classifiers. All the network structures are trained five times starting from different
initial conditions and tested separately. The outcome of each MLP classifier is based

on the average of these 5 testing results.

The performance of each classification system for the automatic detection of
epileptic spikes is obtained using three standard statistical measures: sensitivity,

specificity, and selectivity.

However, instead of using these three measures separately, two different
combinations of them are used: (1) the average of sensitivity and selectivity, and (2)
the average of sensitivity and specificity. This way, it would be possible to directly
compare the performances of our systems with other classifiers given in the literature

using different performance measures (Kutlu, Kuntalp, & Kuntalp, 2009b).

Of all the 280 classifiers, the one that displays the best performance in terms of
both average sensitivity/selectivity  (ASenSel) (90.8%) and average
sensitivity/specificity (ASenSpe) (94.9%) measures is found to be the one which has
15 hidden units and is trained with the Gradient Descent Algorithm with Early
Stopping (with Adaptive Learning Rate) method using whitened transformed data.
All the classifiers trained with other training algorithms using whitened data also

revealed very high performances.

4.5.2 Recognition with a multi-stage classifier

Multi-stage classification procedure is performed both to reduce the computation
time of the entire classification procedure and to increase the overall detection
performance. The first stage classification is to eliminate trivial non-spikes and also
to determine definite spikes and to determine spike like non-spikes. The peaks are
classified into three groups (two dimensional description is shown in Figure 4.4):
epileptiform waves (Region I), non- epileptiform waves (Region II), and possible

epileptiform waves and possible non- epileptiform waves (Region III). For this
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purpose, two classifiers are used in the first stage: One classifier determines definite
epileptiform waves; the other one determine definite non-epileptiform waves. The
Region III is represent possible epileptiform waves and possible non- epileptiform
waves which are also intersection of the first stage classifiers. Neural networks are
used in all stages of the classifier which are trained with adaptive learning rate
algorithm. In the first stage, classifiers used 1 hidden unit. Raw ECG signal is used in
the first stage of classifier as input vector. In the second MLP classifier is utilized 15
hidden units. Whitened parameters are used in the second stage. All classifiers are
trained several times with different initial values. In the first stage, the best
selectivity measure is used and in the second stage overall accuracy is used as

performance criteria because of the aim of the classifier.

Figure 4.4 Two dimensional description of classification of
first stage: The peaks are classified into three subgroups in
the first stage: (*) represents spikes, (0) represents non-
spikes, Region I represents definite spikes, Region II
represents definite non-spikes, and Region III represents
possible spikes and possible non-spikes.

4.6 Result and Discussion

Many MLP structures are constructed. Figure 4.5-4.8 and Figure 4.9-4.12 show in
detail the effect of hidden layer size on the performance of the classifiers for raw data
and extracted features, respectively. As can be seen from these figures, there is no

direct correlation between the number of hidden units and the performance obtained.
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Figure 4.5 The average accuracy values versus hidden neuron size using
raw data of 41 samples with Gradient descent.
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Figure 4.6 The average accuracy values versus hidden neuron size using
raw data of 41 samples with Gradient descent with adaptive learning rate.

Generd paformanca (%)

Marmber of mearon

|—0—Origma| —B— Mormalized —&— Monlinear —»¢— Whitening —e— PCA

Figure 4.7 The average accuracy values versus hidden neuron size using
raw data of 41 samples with LM.
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Figure 4.8 The average accuracy values versus hidden neuron size
using raw data of 41 samples with regularization algorithm.
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Figure 4.9 Using 6 features, the average accuracy of GD algorithm
versus number of neuron at hidden layer.
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Figure 4.10 Using 6 features, the average accuracy of GD
algorithm with adaptive learning rate, versus number of neuron at
hidden layer.
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Figure 4.11 Using 6 features, the average accuracy of LM
algorithm versus number of neuron at hidden layer.
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Figure 4.12 Using 6 features, the average accuracy of
regularization methods versus number of neuron at hidden layer.

The best performance measures obtained for different structures constructed in
this study are shown in Tables 4.1 and 4.2. Each value in these tables represents the
best performance from among the ones obtained by using different hidden unit
numbers. As can be seen from these results, the classifiers trained and tested with
extracted features instead of raw data perform better. Additionally, the classifiers
displaying the best performances in terms of both measures are the ones trained with

whitened transformed input data.
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Of all the 280 classifiers, the one that displays the best performance in terms of
both  average sensitivity/selectivity  (ASenSel) (90.8%) and average
sensitivity/specificity (ASenSpe) (94.9%) measures is found to be the one which has
15 hidden units and is trained with the Gradient Descent Algorithm with Early
Stopping (with Adaptive Learning Rate) method using whitened transformed data.

The second classification system is a multi-stage system. MLP classifiers are used
in the constructed system. The best performance in terms of both average
sensitivity/selectivity (ASenSel) and average sensitivity/specificity (ASenSpe)

measures are 93.7% and 95.6%, respectively.

In addition to the above mentioned performance criteria, the training times of the
constructed systems are also observed. It is seen that training times vary according to
the training algorithm used and the number of units in the hidden layer. The fastest
algorithm in this respect is found to be the back-propagation algorithm with adaptive

learning rate using early stopping criteria.

Epilepsy is a very common neurological disorder leading to disturbing seizures. In
the inter-ictal period, i.e. in between seizures, epileptic transients, in the form of
spikes and sharp waves, are typically observed in the EEG recordings. For this
reason, the inter-ictal spike detection plays a crucial role in the diagnosis of epilepsy.
In the present study, spike waves are aimed to be detected from EEG records by
different classifiers constructed using MLP structures utilizing different number of
hidden neurons, different training algorithms, and different preprocessing of input

data.

ANN-based detection systems found in the literature generally use two
approaches. In the first approach, the raw EEG data is directly used as the input to
the ANN. In the second approach, some features are extracted from the EEG records
and fed into the ANN as the input. Using the parameterized approach has the
advantage of using fewer inputs. However, it requires the correct definition of input
features that would be selected for the detection of spikes. As a result, in order to

find the best set of features for optimum detection, this approach does not make full
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use of the power of an ANN. Nevertheless some researchers have successfully made
use of the extracted features for the detection of epileptic activity (Gabor & Seyal,
1992; Webber et al., 1994). On the other hand, using raw EEG data has the
advantage of avoiding the possible false classification that could arise from data loss
in the parameterization of the EEG data (Ko & Chung, 2000; Ozdamar & Kalayci,
1998). However, the performance of the classifiers trained with this approach could
also be reduced due to the curse of dimensionality effect since the dimension of input
data is generally very high. In this study, both the parameterized and raw forms of

data are used as the input and the results obtained are compared.

For training the MLP networks, early stopping versions of backpropagation,
backpropagation with adaptive learning rate, Levenberg-Marquardt (LM) algorithm,
and regularization methods are used. The aim of using early stopping and
regularization method is to obtain better generalization performance from the
classifiers. In addition, in order to increase the generalization performance of the
constructed systems, training with noise method is used. For this purpose, zero mean
Gaussian noise with a variance of 10% is added to real data. While these new
samples are used only for training the networks as if they were normal training data
sampled from the same source distributions, the real data is reserved for the testing
process. Furthermore, to be able to observe the effect of applying preprocessing on
input data, different linear and nonlinear transformations are used on the available
data set. The classifiers constructed are also trained and tested with these transformed
data. The overall performances of the constructed classification systems are
computed based on the average sensitivity/specificity and average
sensitivity/selectivity measures. The average sensitivity/specificity is also represents

the measures of ROC area.

The first outcome obtained from this study is that all the classifiers perform better
when trained and tested with extracted features instead of raw data. The second
important result is that the classifiers displaying the best performances in terms of
both measures are the ones trained with whitened transformed data. Being specific,
the classifier that displays the best performance in terms of both average

sensitivity/selectivity (90.8%) and average sensitivity/specificity (94.9%) measures is
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found to be the one which has 15 hidden units and is trained with the Gradient
Descent Algorithm with Early Stopping method using whitened transformed data.
All the classifiers trained with the other training algorithms using whitened data also
reveal very close performances. The second classification system is constructed as a
multi-stage system using MLP network that has the best performance measure. The
best performances in terms of both average sensitivity/selectivity (ASenSel) and
average sensitivity/specificity (ASenSpe) measures become 93.7% and 95.6%,

respectively.

The comparison of the systems constructed in this study with similar detection
systems given in the literature is not straightforward due to the varieties in the
network types, architectures, data sources (e.g., channel numbers, displaying
montages, degrees of artifact presence, recording type, status of subject), and
performance measures used. Nevertheless, some objective conclusions can be drawn.
For example, Webber et al. (1994) have tested their system on parameterized EEG
records and reported 74% sensitivity and 74% selectivity values by using mimetic
and ANN methods. Tarassenko, Khan, & Holt (1998) have studied both time and
frequency domain parameters of the EEG signal and reported the results of 90.5%
and 93.2% for specificity and sensitivity, respectively. Ozdamar et al. (1991) have
reported good results for sensitivity (90%); but selectivity was found to be relatively
low at about 69% using raw EEG data. Dingle et al. (1993) have given a very good
result for selectivity (100%) although the sensitivity was relatively low at 58%.
James et al. (1999) have also reported the results of 82% and 55% for selectivity and
sensitivity, respectively. Kalayci & Ozdamar, (1995) have reported the results of
93.3% and 87.3% for specificity and sensitivity, respectively, using the wavelet
transform. Acir et al. (2005) have reported that the best performance was obtained
with the RB-SVM method providing an average sensitivity of 89.1% and average
selectivity of 85.9%. Nuh, Jazidie, & Muslim, (2002) have studied wavelet neural
network which combines wavelet analysis and ANN in a single algorithm and
obtained 82% sensitivity and 90.4% selectivity values. Adjouadi et al. (2004) have
reported 79% and 85% for sensitivity and selectivity indices, respectively, using the

Walsh transformation. Acir & Giizelis (2004) have reported the results of 90.3% for
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sensitivity and 88.1% for selectivity analysis using a two stage classification system
based on only SVM. Acir et al. (2005) have obtained the values of 91.1% and 89.2%
for sensitivity and selectivity measures, respectively, using an RBFN system.
Exarchos, Tzallas, & Fotiadis (2006) have used morphological and power spectrum
features and have reported 86% sensitivity, 92% specificity and 83%  selectivity
values by using a rule based classification system. Inan & Kuntalp, (2007) have
reported 93% sensitivity, 74% selectivity and 28% specificity values using a two

stage unsupervised classification system.



CHAPTER FIVE
AUTOMATIC RECOGNITION OF ARRHYTHMIAS IN ECG RECORD

5.1 Introduction

The goal of this study is to develop a robust system that will be capable of
classifying a large number of arrhythmia types with higher accuracy than the other
methods in the literature. The best set of features that could be used will be selected
by a genetic algorithm from a large pool of candidate features including
morphologic, spectral, time-frequency, and higher-order statistical ones. This project
will differ radically from all the other systems in the literature, by taking into account
all possible features simultaneously and by determining the best features for each

arrhythmia type from among them.

Electrocardiography is an important tool in diagnosing the condition of the heart.
It provides valuable information about the functional aspects of the heart and
cardiovascular system. Early detection of heart diseases/abnormalities can prolong
life and enhance the quality of living through appropriate treatment. Therefore,
numerous research and work analyzing the electrocardiogram (ECG) signals have

been reported.

In the literature, many researchers have addressed the problem of automatic
detection and classification of cardiac rhythms. In most of the studies, MIT-BIH
ECG database is used. Some techniques are based on the detection of a single
arrhythmia type and its discrimination from normal sinus rhythm, or the
discrimination between two different types of arrhythmia (Afonso & Tompkins,
1995; Ham & Han, 1996; Chen, Clarkson, & Fan, 1996; Thakor, Zhu, & Pan,
1990; Clayton, Murray, & Campbell, 1993; Clayton, Murray, & Campbell, 1994;
Yang, Device, & Macfarlane, 1994). Other classes of proposed methods for
arrhythmia detection and classification are based on the detection of different heart
rhythms and their classification into two or three arrhythmia types and the normal

sinus rhythm (Thakor, Natarajan, & Tomaselli, 1994; Khadra, Al-Fahoum, & Al-
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Nashash, 1997; Minami, Nakajima, & Toyoshima, 1999; Al-Fahoum & Howitt,
1999; Zhang, Zhu, Thakor, & Wang, 1999; Wang, Zhu, Thakor, & Xu, 2001; Owis,
Abou-ZiedYoussef, & Kadah, 2002). Another field of interest is the ECG beat-by-
beat classification, where each beat is classified into several different rhythm types
(Hu, Palreddy, & Tompkins, 1997; Lagerholm, Peterson, & Braccini, 2000; Dokur
& Olmez, 2001; Osowski & Linh, 2001; Hosseini, Reynolds, & Powers, 2001;
Tsipourasa, Fotiadisa, & Sideris, 2005; Ubeyli, 2007; Chazal & Reilly, 2006;
Besrour, Lachiri, & Ellouze, 2008; Melgani & Yakoub, 2008; Arif, Akram, & Afsar,
2009; Moazzen, Ahmadzadeh, Doost-Hoseini, & Omidi, 2009; Nasiri, Naghibzadeh,
Yazdi, & Naghibzadeh, 2009; Yong, Wenxue,& Yonghong, 2009; Raghav & Mishra,
2008; Chia-Hung Lin, Chao-Lin Kuo, Jian-Liung Chen, & Wei-Der Chang, 2009;
Osowski, Siroic & Siwek, 2009). These methods can classify more arrhythmic beat
types.

In all these studies, the researchers used a variety of features to represent the ECG
signal and a number of classification methods. The features has been based on higher
order statistics (Alliche & Mokrani, 2003; Besrour, Lachiri, & Ellouze, 2008;
Khadra, Al-Fahoum, & Binajjaj, 2005; Osowski, Hoai, & Markiewicz, 2004;
Osowski & Linh, 2001; Torun, Isler, Kuntalp, & Kuntalp, 2006), wavelet transform
(Acir, 2005; Arif, Akram, & Afsar, 2009; Song et al., 2005), Fourier transform
(Acir, 2005; Heidari, Shahidi, Aminian, & Sadati, 1998; Minami, Nakajima, &
Toyoshima, 1999; Minami, Nakajima, & Toyoshima, 1997), principle component
analysis (Nadal & Bossan, 1993; Nasiri et al., 2009), Helmite function coefficients (
Braccini et al. 1997; Osowski, Hoai, & Markiewicz, 2004), fractal properties (Chia-
Hung Lin et al., 2009; Raghav & Mishra, 2008), morphological features (RR-
interval, QRS complex, QRS duration in time, T wave duration in time, P wave flag,
T-wave segment, etc. (Besrour, Lachiri, & Ellouze, 2008; Braccini et al. 1997; Hu,
Palreddy, & Tompkins, 1997; Hosseini, Reynolds, & Powers, 2001; Minami,
Nakajima, & Toyoshima, 1999; Melo, Caloba, & Nadal, 2000; Nasiri et al., 2009;
Osowski & Linh, 2001; Nadal & Bossan, 1993).
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Moreover, different systems are used as classifier in the researches. For instance,
multi-layer perceptron are used as a classifier by (Acir, 2005; Chia-Hung Lin et al.,
2009; Hosseini, Reynolds, & Powers, 2001; Minami, Nakajima, & Toyoshima, 1997,
Minami, Nakajima, & Toyoshima, 1999; Nadal & Bossan, 1993;0sowski & Linh,
2001; Torun, Isler, Kuntalp, & Kuntalp, 2006; Song et al., 2005; Yong, Wenxue,&
Yonghong, 2009); support vector machine are performed by (Acir, 2005; Besrour,
Lachiri, & Ellouze, 2008; Melgani & Yakoub, 2008; Song et al., 2005; Nasiri et al.,
2009; Osowski, Siroic & Siwek, 2009); mixture of experts approach (Hu, Palreddy,
& Tompkins, 1997), fuzzy logic (Osowski & Linh, 2001; Song et al., 2005), RBF
(Heidari, Shahidi, Aminian, & Sadati, 1998), K-nearest neighbor (Arif, Akram, &
Afsar, 2009; Karimifard, Ahmadian, & Khoshnevisan, 2006; Isler & Kuntalp, 2007),
and SOM (Braccini et al. 1997; Hosseini, Reynolds, & Powers, 2001) are also used

as classifier.

The structure of the heartbeat classification system is shown in Figure 5.1. The
first step of the constructed system consists of preprocessing. In this step, removing
base line wander effect and power line interface, QRS detection, and segmentation of
the raw data are performed. In the feature extraction step, higher order statistics of
wavelet packet decomposition (WPD) coefficients, frequency domain features,
morphological features and higher order statistic features are extracted. Then two
classification stages follow. They both have feature selection and classification steps.
At the first stage, all heartbeats are classified into five main groups. In other word, all
heartbeats in database are grouped into five classes according to “Association for the
Advancement of Medical Instrumentation” (AAMI) standards (Chazal, O’Dwyer, &
Reilly, 2004). In the feature selection step, optimum feature set is determined for
each beat group using feature selection algorithm. Genetic algorithm and sequential
floating search methods are used as feature selection algorithm. For the second stage
of classification, each main group are separated into subgroups of heartbeat types.
For each subgroup, optimum feature set is determined for each beat type using
feature selection algorithm. Combined KNN classifier and also combined MLP

classifier are implemented and the classification performance of each is compared
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with the other. For the second stage of classification, combined KNN classifiers are

constructed to separate main groups into subgroups of heartbeat types.
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Figure 5.1 The general block diagram of the constructed system.

All ECG recordings will be provided from the publicly available MIT/BIH

database which has become a standard for the ECG researchers in recent years.

MATLAB will be the primary development platform for all the algorithms to be

developed. The performance of the systems developed will be calculated and

compared both with each other and with other systems in the literature based on the

sensitivity, selectivity, specificity, and ROC area measures.
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5.2. ECG Data

5.2.1. Data Acquisition and Its Properties

The source of the ECG records is obtained from the MIT-BIH Arrhythmia
Database (Goldberger et al., 2000). The database is a set of over 4000 long-term
Holter recordings that are obtained by the Beth Israel Hospital Arrhythmia
Laboratory. The database contains 48 recording. The subjects are 25 men aged 32 to
89 years, and 22 women aged 23 to 89 years. But only 30 minutes long of the records
is online available in pyhsionet freely. Each record contains two ECG lead signals
denoted lead A and B. In 45 records of lead A are modified-lead II and the other
three are lead V5. 40 records of Lead B are lead VI and the others are either lead 11,
V2, V4, or V5. The data are band-pass filtered at 0.1 - 100 Hz and sampled at 360
Hz. The lead A (lead II) is used in this study because of more clear QRS complexes.

Each record is annotated by two or more cardiologists independently. Amount of
labeled beats of arrhythmias in the database is shown in the Table 5.1, and samples

of each heartbeat type are shown in Figure 5.2.
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Table 5.1 Mapping of MIT-BIH arrhythmia database heartbeat types to the AAMI heartbeat classes

and amount of arrhythmias in the database

hgﬁtl:;[:at Labeled Classes Amount
classes

I | Normal Beat (NORMAL) 75054
2 | Left Bundle Branch Block Beat (LBBB) 8075
Ngreljscg%ic 3 | Right Bundle Branch Block Beat (RBBB) 7259
4 | Nodal (Junctional) Escape Beat (NESC) 229
5 Atrial Escape Beat (AESC) 16
6 | Aberrated Atrial Premature Beat (AAPB) 150
Supraventricular 7 | Premature or Ectopic Supraventricular Beat (PESB) 2
Ectopic Beats () 8 | Atrial Premature Contraction (APC) 2545
9 | Nodal (Junctional) Premature Beat (NPB) 83
Ventricular 10 | Ventricular Flutter Wave (VF) 472
Ectopic Beats 1T | Ventricular Escape Beat (VESC) 106
™ 12| Premature Ventricular Contraction (PVO) 7129
Fusion Beats (F) 13 | Fusion of Ventricular And Normal Beat (FUSION) 803
14| paced Beat (PACE) 7028
Unkno(vg)l Beats 15 | Unclassifiable Beat (Others) 33
16 | Fusion of Paced And Normal Beat (PFUS) 982
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Figure 5.2 Samples of each heartbeat types.

5.3 Pre-Processing

5.3.1 Filtering

The baseline wandering and the power line interference are the most substantial
noises and can strongly affect ECG signal analysis (Tompkins, 1993; Acharya, Suri,
Spaan, & Krishnan, 2007). Baseline wander due to respiration contains low
frequency components; power line interference contains high frequencies. All ECG
signals are filtered with two median filters to remove the baseline wander. After the
signal is processed with two median filters, which have 200ms and 600ms widths,
respectively, the obtained signal is the baseline of the ECG signal. The result is
subtracted from the original signal to remove the baseline wander effect of ECG

signal.

Then power-line frequency is removed from the median filtered ECG by a notch
filter. Records in database have 60 Hz power line interference. So with a proper
notch filter power line frequency is removed. Result of filtering process is shown in

Figure 5.3. The filtered ECG signals are used in all subsequent processing steps.
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Figure 5.3 Result of filtering process a) Original signal with power line

interference and base line wonder b) Filtered signal.

5.3.2 QRS Detection

In fact, many systems have already been constructed and executed for biomedical
applications such as holter tape analysis, real-time patient monitoring etc... All these
applications require an accurate detection of the QRS complex of the ECG. QRS
detection is difficult, because of the physiological variability of the QRS complexes,
and also because of the various types of noise that can be present in the ECG signal.
In addition to the QRS complex, the ECG waveform contains P and T waves, power

line interference, EMG from muscles, motion artifact from the electrode and skin
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interface, and possibly other interference from electro surgery equipment in the
operating room. It is important to extract the QRS complex from the other noise

sources such as the P and T waves.

A QRS detection algorithm developed by Tompkins (Pan & Tompkins, 1985) is
realized in this thesis. The energy of QRS complex is known to be concentrated
approximately in the 5-15 Hz range (Hamilton & Tompkins, 1986; Pan & Tompkins,
1985). This QRS detection algorithm is based on analyses of the R point. The slope
of the R wave is a common feature used to locate the QRS complex in many QRS
detectors. However, a derivative amplifies the undesirable higher frequency noise
components. Also, many abnormal QRS complexes with large amplitudes and long
durations may be missed in a purely derivative approach because of their relatively
low R wave slopes. Therefore, R wave slope lonely is insufficient for correct QRS
detection. Hence, the algorithm consists of low-pass and high-pass filter,

differentiator, squarer and moving average filter as seen in Figure 5.4.

ECG Record

o2

Low-Pass Filter

Lo

High-Pass Filter

w2

Differentiation

te s
Nonlinear

Transformation

Moving Average

o2

E. Point Detection

Figure 5.4 Block diagram of R point detection
Algorithm.
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In order to attenuate noise, the signal is passed through a band pass filter
composed of cascaded high-pass and low-pass integer filters. Low-pass filter cut off
frequency is about 11 Hz and the delay is five sample (or 25ms for a sampling rate of

200sps) and the gain is 36. The transfer function of second order low-pass filter is
H(z)= _—)Z 5.1
1= Y

The difference equation of this filter is

y(nT)=2y(nT —T)—y(nT - 2T)+ x(nT) - 2x(nT —6T) + x(nT —12T7) (5.2)

Instead of the high-pass filter Tompkins used low-pass filter, which has cut off
frequency at 5 Hz, gain of 32, and subtracted from the original signal. The delay is

about 80ms. Transfer function of high-pass filter is

=32

1-z
H(z)=z"— % (5.3)

The difference equation of this filter is

y(nT —T)+ x(nT)—x(nT —32T)

y(nT)=x(nT —16T) — T

(5.4)

The center of the pass-band frequency is at 10 Hz. At this process P, T waves are
suppressed and the frequency characteristic of a QRS complex is optimally passed.

Base line drift and power line interference are also eliminated from the signal.

The differentiation process is used to make clear the R point in the ECG signal.

This process amplifies the higher frequency characteristic of QRS complex and
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further attenuates the lower frequency of P and T waves. Five point derivatives has

the transfer function
H(z)=01Q2+z"'-z7-2z7% (5.5)

This derivative is implemented with the following difference equation

Y(nT) = 2x(nT)+x(nT—T)—x§nT—3T)—2x(nT—4T) (5.6)

The following process is the squaring process which is a nonlinear

transformation. The equation is

y(nT) = [x(nT)] (5.7)

This process increases the intensity of the output of the differentiation process.
The last process is the time averaging process called moving window integral. The

equation of moving window is
1 N-1
y(nT) =WZX((”_/‘)T) (5.8)
k=1

This integrator sums the area under the squared waveform over a 150-ms interval

while moving in time domain step by step.

Figure 5.5 shows the outputs of each processing steps. It starts from the original
ECG and finishes with founded QRS point in the ECG signal. Figure 5.6 shows

frequency response of the filters.
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Figure 5.5 Output of QRS detection algorithm processing steps: Original
ECG Signal, Output of the Notch Filter, Output of the High-pass Filter,
Output of the Low-pass, Filter, Output of the Differentiator Filter, Output of
the Squarer, and Output of the Moving Average Filter, respectively.
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Figure 5.6 Frequency response of QRS detection algorithm processing steps: Original ECG
Signal, Output of the Notch filter, Output of the High-pass filter, Output of the Low-pass

filter, respectively.

Peak detector is the last process of the QRS detection algorithm. The locations of
R peaks are determined by the algorithm. The output of the moving window process
includes a large amplitude peak and some small amplitude peaks. Therefore, peak
detector can sense these small peaks as R peak and can generate a wrong QRS
detection. This can be avoided by using local maxima peak detector.

Two sets of thresholds are used to detect R points. Each set has two threshold
levels. The set of thresholds that is applied to the waveform from the moving

window integrator is

SPKI = 0.125(PEAKI) + 0.875(SPKI) if PEAKI is the signal peak  (5.9)

NPKI = 0.125(PEAKI) + 0.875(NPKI) if PEAKI is the noise peak  (5.10)

THRESHOLDI! = NPKI+0.25(SPKI-NPKI) (5.11)

THRESHOLDI2 = 0.5 THRESHOLDI1 (5.12)
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where PEAKI is the overall peak, SPKI is the running estimate of the signal peak,
NPKI is the running estimate of the noise peak, THRESHOLDI1 is the first threshold
applied, and THRESHOLDI?2 is the second threshold applied. Figure 5.7 shows the

outputs of R point detection steps.

Detection of . points

T

Figure 5.7 Outputs of R point detection steps.

5.3.3 Segmentation

The segmentation process is applied to the filtered signal after the R point is
detected. The window with a length of 341 data points (the R peak of the wave is
located at the 171th point) is extracted from the ECG record for each beat type. This
corresponds to approximately 944 ms of the ECG signal. The window with a length
of 944 ms is shown in Figure 5.8 for a normal ECG signal. The windowed beats are

prepared as train and test sets as shown in Table 5.2.
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Figure 5.8 A window with a length of 341 data points for normal ECG signal.
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Table 5.2. Mapping of MIT-BIH arrhythmia database heartbeat types to the AAMI heartbeat

classes and amount of arrhythmias for training and testing

AAMI heartbeat classes (Iabels) | MIT-BIH heartbeat classes label Tg::n Test Set
1 350 250
2 350 250
Non-Ectopic Beats (N) 3 350 250
4 114 113
5 8 8
6 74 74
7 1 1
Supraventricular Ectopic Beats (S)
8 350 250
9 42 41
10 236 236
Ventricular Ectopic Beats (V) 11 53 53
12 350 250
Fusion Beats (F) 13 350 250
14 350 250
Unknown Beats (Q) 15 17 16
16 350 250
Total : | 3345 2542

5.4 Feature Extraction

Windowed data set from MIT-BIH arrhythmia database is further processed to

extract other features.

5.4.1 Raw ECG

The raw ECG data which had different window sizes are used to investigate the
effect of window size (Kutlu, Kuntalp, & Kuntalp, 2007). In order to take a long
enough time segment for all probable cases, the feature sets are created with different
window sizes. Each feature set are constituted by adding new part of 14ms (5
consecutive points) to this interval as shown in Figure 5.9. Total length of the
window size is at most 1400ms (700ms right side and 700ms left side of R point).
Figure 5.9 shows seven probable cases which are only a small part of right side of the

R point.
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Figure 5.9 Amount of consecutive points and window size for each feature set.

K-nearest neighborhood method is used as classifier in search process. The
performance is measured based on three standard statistical measures: sensitivity,
specificity, and selectivity According to results of network structures. 161 raw ECG
points (130 previous points and 30 next points) is the best performance for KNN

based system.
5.4.2.Higher Order Statistics

The second, third and fourth order cumulants are calculated for each beat taking
lag 0 (Kutlu, Kuntalp, & Kuntalp, 2008b). The zero-lag cumulants have special
names: ¢,(0) is the variance and is denoted by o%; ¢3(0,0) and ¢4(0,0,0) are denoted by

73 and y4, known as the skewness and the kurtosis, respectively.

5.4.3. Wavelet Packet Decomposition

Different mother wavelets, such as Daubechies 2 (db2), Daubechies 4 (db4), and

Daubechies 6 (db6) (as shown Figure 5.10), are examined as mother wavelet
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function for estimating the wavelet packet coefficients in the study. Classification
accuracy of extracted features from each mother wavelet is compared. ECG signals
are decomposed up to level 4. Therefore the number of sub bands is 30 for the fourth

level of wavelet packet decomposition.

a3
e
T
]

¢)
Figure 5.10 Mother wavelet function; a) daubechies 2, b) daubechies 4, ¢) daubechies 6.

The wavelet packet decomposition is a feature extraction tool. Not only does the
WPD utilizes the low frequency components (approximations) but also the high
frequency components (details). But the size of the feature vector might be too high
to be applied as input to a classification system. The HOS methods are used to
extract new and fewer number of features from the wavelet packet decomposition
coefficients. Using the higher order statistical methods, the second, third and fourth
order cumulants of each level of sub bands are calculated (Kutlu & Kuntalp, 2009b).
There are thirty sub bands for the four levels. Three features are extracted for each
sub band using HOS (2™, 3™, 4™ order) and a total of 90 HOS features (Six features
from first level, 12 features from second level, 24 features from third level, and 48

features from fourth level) are obtained for all sub bands of WPD. By using HOS of
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sub band signals, it becomes possible to define hidden features embedded in the QRS

complex.

HOS features are extracted for each mother wavelet. The classification
performances are measured using KNN classifier. The results are shown in Table 5.3,
5.4, and 5.5. In the literature, many studies in the analysis of ECG preferred db4
wavelet as mother wavelet, because of the similarity of the QRS complex (Bakardijin
&Yamamoto, 1995;Pic hot et al., 1999; Ubeyli, 2008). In this application the best
result for performance measures of the normal beat (for label 1) is obtained with db4
wavelet as well. But performance measures of other beats are not as good as the
normal beat. The performance measures of db2 and db6 wavelet are almost the same
as average value of performance measures. But overall accuracies are 72.8%, 73.3%,
and 74.9% for db2, db4, db6, respectively. Although it is not clearly seen any
difference, the best one is obtained with db6 wavelet. Consequently, these features

are used in the constructed system.

Table 5.3 Performance measure of features for db2 wavelet

Area

Under

Label SEN SEL SPE Curve
1 60.00 64.02 96.92 0.78
2 83.00 77.18 97.81 0.90
3 82.50 76.91 97.86 0.90
4 53.00 57.00 98.69 0.76
5 62.00 67.82 97.46 0.80
6 75.00 69.65 96.97 0.86
7 41.24 47.00 99.12 0.70
8 72.00 63.38 96.07 0.84
9 0.00 0.00 99.95 0.50
10 88.45 86.09 99.72 0.94
11 63.96 70.04 98.71 0.81
12 85.00 81.85 98.56 0.92
13 6.25 11.29 99.73 0.53
14 75.33 83.59 98.53 0.87
15 9.50 13.67 99.77 0.55
16 70.00 73.04 97.71 0.84
Average 57.95 58.91 98.35 0.78




Table 5.4 Performance measure of features for db4 wavelet

Area

Under

Label SEN SEL SPE Curve
1 94.40 97.12 99.69 0.97
2 91.20 88.03 98.65 0.95
3 79.20 96.59 99.69 0.89
4 16.22 36.36 99.15 0.58
5 64.40 42.04 90.31 0.77
6 32.80 51.90 96.68 0.65
7 39.02 32.65 98.68 0.69
8 76.40 63.04 95.11 0.86
9 0.00 0.00 100.00 0.50
10 37.74 52.63 99.28 0.69
11 84.07 82.61 99.18 0.92
12 94.00 95.14 99.48 0.97
13 12.50 22.22 99.72 0.56
14 75.00 81.57 98.27 0.87
15 0.00 0.00 99.76 0.50
16 84.00 75.81 97.08 0.91
Average 55.06 57.36 98.17 0.77

Table 5.5 Performance measure of features for db6 wavelet

Area

Under

Label SEN SEL SPE Curve
1 86.40 94.32 99.43 0.93
2 90.80 88.67 98.73 0.95
3 84.00 97.67 99.78 0.92
4 32.32 45.86 98.99 0.66
5 63.60 46.39 92.23 0.78
6 38.80 64.12 97.82 0.68
7 37.15 37.84 99.04 0.68
8 79.60 53.29 92.28 0.86
9 0.00 0.00 100.00 0.50
10 38.85 76.00 99.76 0.69
11 88.50 87.21 99.34 0.94
12 94.80 96.73 99.65 0.97
13 0.00 0.00 98.81 0.49
14 74.61 83.64 98.35 0.86
15 0.00 0.00 99.76 0.50
16 87.20 73.72 96.34 0.92
Average 56.04 59.09 98.14 0.78

92
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5.4.4 Morphological Features

This approach is based on R point in the ECG record. Therefore, informations of
QRS detection are used in this step. The Q and S points are limited within the 150 ms
period which is centered by the R point (Tompkins, 1993). The sampling frequency
of the data set is 360 Hz. and 150ms equal to nearly 55 consecutive points. This is
the region of interest (ROI). Hence the fiducial points are limited with nearly 28
point left and 28 point right. By using these statistical data with the first derivative of
ECG, the Q and S points are determined.

The time-derivative of the signal f{z) are calculated and its zero-crossings are
found. For a discrete signal f/n/=f(t)|;=n,r it can be obtained by searching the

inflection points based on the following criteria:

 If f/n]- f[n-1] <0< f[n+1]- f[n], then this is a negative peak; it is stored

with index.

o If [fIn]- fIn-1] ].[ fIn+1]- f[n]]>0, then this is not a peak; it is
discarded.

This procedure is indeed a numerical differentiation technique such that
the equation (f(n+1)-f(n))/T represents the first-order forward approximation to the
derivative of f(?) at t=nT.

Using R, Q and S points, amplitudes of QR (G1), amplitudes of RS (G2), QR
width (T1), RS width (T2), and slope of right and left side of R point are extracted

as features as shown in Figure 5.11.
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Figure 5.11 Morphological features of a sample normal signal.

5.4.5.Discrete Fourier Transform

Fourier transform is often called the frequency domain representation of the
original signal. Frequency of ECG signals is in the range of 0-100Hz. But in clinical
process band of 0-50Hz is analyzed. So in this study frequency band of 0-50Hz is
considered. A sample energy spectrum of a normal ECG signal is shown in Figure
5.12. Using 256 sample Fourier transform, 46 energy values of the coefficients which

are less than 50 Hz are used as features.
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Figure 5.12 A sample energy spectrum of normal signal.

5.5 Visualization of Feature Sets Using Self Organizing Maps

SOM is used for different approach such as visualization data, clustering, feature
extracting (Kutlu, Kuntalp, & Kuntalp, 2008a, Kutlu, Kuntalp, & Kuntalp, 2008c,
Kutlu & Kuntalp, 2009a, Kutlu, Kuntalp, & Kuntalp 2009a, Kutlu, Kuntalp, &
Kuntalp 2009¢). In this step, the arrhythmias in the electrocardiograph (ECG)
signals are analyzed by using Self Organizing Maps (SOM). The feature sets
obtained with different methods are used for training the SOM networks diversely.
The maps are examined using U-matrix representation method. That way, high
dimensional data are examined in two dimensions. The clusters that appear in U-
matrix representation is examined for different feature sets. U-matrix representation
of a SOM network is given using three visualization: colored image, gray level
image with clusters, and three-dimensional the hill-valley landscape visualization.

They are described in section 3.5. The cluster color code is shown in Table below.

SOM structures are constructed with 3500 (70x50) neurons and hexagonal
topology. Then U-matrix is calculated from trained SOM structures. The computed

U-matrix is visualized through a colored image.
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Table 5.6 Cluster color code in U-matrix representation

Class

Mormal Beat (WORMAL)
Left Bundle Branch Block Beat (LEBE)

Right Bundle Branch Block Beat (REEE)
Aberrated Atrial Premature Beat (AAPE)

Premature Ventricular Contraction (PVC)

Fusion of Ventricwlar And Normal Beat (FITEI0ON)
Modal (Jutictional) Premature Beat (HPB)

Atrial Premature Contraction (APC)

Premature or Ectopic Supraventricular Beat (PESE)
Ventricular Escape Beat (VESC)

Modal (Junctional) Escape Beat (MESC)

Paced Beat (PACE)

Unelasgifiable Beat (Others)

Ventricular Flutter Wave (VE)

Atrial Escape Beat (AEIC)

Fugion of Paced And Motmal Beat (FFUE)

iDDDDDdDIDIDDIDh

Figures 5.13 - 5.17 show the U-matrix analysis of HOS features, Fourier
Transform, Morphological Features, HOS features of only third level of WTP

analysis, respectively.
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Figure 5.13 U-matrix representation of a SOM network for raw ECG data, a) colored image

visualization, b) gray level visualization with colored clusters, ¢) 3D hill-valley landscape

visualization.
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Figure 5.14 U-matrix representation of a SOM network for HOS features, a) colored image

visualization, b) gray level visualization with colored clusters, ¢) 3D hill-valley landscape

visualization.
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Figure 5.15 U-matrix representation of a SOM network for Fourier Transform coefficient, a)
colored image visualization, b) gray level visualization with colored clusters, c¢) 3D hill-valley

landscape visualization.
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Figure 5.16 U-matrix representation of a SOM network for morphological Features, a) colored
image visualization, b) gray level visualization with colored clusters, ¢) 3D hill-valley

landscape visualization.
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Figure 5.17 U-matrix representation of a SOM network for HOS features of only third level of
WTP analysis, a) colored image visualization, b) gray level visualization with colored clusters,

¢) 3D hill-valley landscape visualization.

In general looking at these results two patterns are identified in colored image
visualizations. First, there are big homogeneous areas which are colored blue. Here it
can be said that the datasets have a high degree of similarity in each dark area. For
example, colored image visualization in Figure 5.16.a the big blue region (top left)
represents cluster of an arrhythmia type (seen in Figure 5.16.b). On the other hand,
lighter shade indicates location of data vectors having high distance. It also indicates

the border of the clusters where the dark areas indicate the clusters. For example,
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colored image visualization in Figure 5.16.a the big dark blue region bordered lighter
color (bottom right) represents cluster of an arrhythmia type (seen in Figure 5.16.b)
and the lighter color indicates border of the cluster. 3-dimensional visualization of
the SOM has valleys which indicate similarities in the input data and hills which
indicate distance in the input data. That means hills indicate the border of the
clusters. For example, 3-dimension visualizations of the same regions (bottom right

and top left) in Figure 5.16.a are also given in Figure 5.16.c.

According to results of different feature sets, no unique robust feature set is able
to classify all heartbeat types. For example, no cluster is clearly separated in Figure
5.14. LBBB, RBBB and paced beat types are clearly separated in Figure 5.16.
Therefore the ECG heartbeat classification becomes a typical problem of

classification which requires the exploration of diverse set of features.

5.6 Dimensionality Reduction

After the feature extraction processes, total of 150 features were extracted which
are 8 form HOS, 90 from HOSofWPT, 6 from morphology, and 46 from Fourier
transform. Features are labeled as numbers for the selection algorithm. HOS features
label are numbered as f1-f8. Label of morphological features are numbered as {9-f14.
Label of HOS features of WPD are numbered as f15-f104. And Fourier coefficient
labels are numbered as f105-f150. To decrease dimension of feature set, wrapper

method is used.

5.6.1 Feature Dimension Reduction using Selection Algorithm

Automatic feature selection is an optimization technique that, given a set of m
features, attempts to select a subset of size » that leads to the maximization of some
criterion function. Feature selection algorithms are important in recognition and
classification systems because if a feature space with a large dimension is used, the
performance of the classifier will decrease with respect to execution time and to

recognition rate. Two feature selection algorithms are used in this process: sequential
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floating search methods (SFSM) and Genetic Algorithm (GA).

In sequential search algorithm, the feature selection criterion is the overall
accuracy of the KNN classifiers. Two step SFS (n=2) and one step SBS (r=1) are

utilized.

In the GA, population size is taken 300; one point Crossover is utilized; elitizm
strategy is used and the number of best individuals is two that are guaranteed to
survive to the next generation; stochastic uniform selection is utilized; mutation is

performed by randomly selecting a bit in a string and changing its value.

Feature selection process block diagram is shown in Figure 5.18. In the selection
algorithm K-nearest neighborhood algorithm is used as classifier. Overall accuracy of

classifier and ROC area measures are used as performance criteria of selection

algorithm.
: N Feature o
Features ‘ 2 el ‘ Classifier
L : Best . Selected
Performance } Features
Performans |,
| Evaluation . Wrapper
e Method

Figure 5.18 Block diagram of feature selection.

The constructed system has two classification stages. In the first stage, it
classifies all heartbeats into five main groups. Therefore, feature selection algorithm
is performed for each of these five groups. In addition, genetic algorithm and
sequential floating search methods are both used in feature selection stage. At first,
overall accuracy of classifier is used as performance criteria of selection algorithm.
The results of the selection process are shown in Table 5.7 for GA and in Table 5.8

for SFSM. The feature sizes of the each main group (N, S, V, F, and Q) are 51, 64,
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64, 61, and 69, respectively, with GA, and 61, 62, 67, 74, and 100, respectively, with
SFSM.

Table 5.7. Amount of selected features for main groups with GA using

overall accuracy as performance measure

Label Selected Features
N 2 HOSF, 1 MF, 24 HOSofWPT, 24 FTF
S 2 HOSF, 1 MF, 45 HOSofWPT, 16 FTF
\% 2 HOSF, 1 MF, 47 HOSofWPT, 14 FTF
F 2 HOSF, 3 MF, 37 HOSofWPT, 19 FTF
Q 4 HOSF, 3 MF, 40 HOSofWPT, 22 FTF

Table 5.8. Amount of selected features for main groups with SFSM using

overall accuracy as performance measure

Label Selected Features
N 1 HOSF, 37 HOSofWPT, 23 FTF
S 2 HOSF, 31 HOSofWPT, 29 FTF
\% 1 HOSF, 2 MF, 28 HOSofWPT, 36 FTF
F 3 HOSF, 1 MF, 36 HOSofWPT, 34 FTF
Q 4 HOSF, 56 HOSofWPT, 40 FTF

*HOSF: Higher Order Statistics Features,
*MF: Morphological Features,
*HOSof WPT:HOS Features of Wavelet Packet Transform,
*FTF: Fourier Transform Features

Performance measures of classifiers for five main groups are shown in Table 5.9
for the cases of using all features, using selected features with SFSM and using
selected features with GA. Overall accuracies are %83.01, %87.49 and %93.04 for
all features, selected features with SFSM and seclected features with GA,
respectively. Results show that the best performance is obtained with features of GA

selection. Therefore, first stage of the system is constructed using features obtained

with GA these results.
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Table 5.9 Performance measures of KNN based classifier using all features and selected features with

SFSM and GA using overall accuracy as performance measure

Selected Features

All Features Selected Features with SFSM with GA

Label SEN SEL SPE ROC SEN SEL SPE ROC SEN  SEL SPE ROC
Area Area Area

N 87.72 93.40 96.77 92.24 9437 99.40  99.70 97.04 9518 99.04 99.52 97.35

S 86.89 62.48 91.22 89.05 83.06 94.41 99.17 91.12 8770 94.13 99.08 93.39
A% 85.16 75.62 92.61 88.88  86.64 9629  99.10 92.87 8887 96.57 99.15 94.01
F 27.20 70.83 98.78 62.99 48.80 99.19 99.96 7438 92.00 9544 99.52 95.76
Q 97.09 97.85 99.46 9828 98.64 64.84 8638 9251 98.06 80.70 94.03 96.04
Average 76.81 80.04 95.77 86.29 8230 90.82 96.86 89.58 92.36 93.18 98.26 95.31

In the second stage, the constructed system classifies each main group into

heartbeats. The feature selection algorithm is also applied in the second stage to

select optimal features for subgroups of each main group. For this purpose, the

following features (see Table 5.10) are chosen as the best discriminative features.

Since the main group F has no subgroup, the selected features for the subgroups of

remaining four main groups are used at the second stage. Results of overall accuracy

of subgroup classifiers are %100, %96.06, %99.62 and %98.8 for subgroups of N,

subgroups of S, subgroups of V and subgroups of Q, respectively.



Table 5.10 Number of selected features for subgroups of each main group using

overall accuracy as performance measure

Main group Label Selected Features of Subgroups

1 1 MF, 1 HOSofWPT, 2 FTF

2 1 HOSofWPT, 2 FTF
Main group N 3 2 FTF

4 2 MF, 1 HOSofWPT, 41 FTF

5 1 MF, 2 HOSofWPT, 1 FTF

6 1 HOSF, 1 MF, 1 HOSofWPT, 5 FTF
Main group S 7 1 MF, 1 HOSofWPT, 4 FTF

8 1 HOSF, 1 MF, 2 HOSofWPT, 5 FTF

9 1 HOSF, 20 FTF

10 9 HOSofWPT, 8 FTF
Main group V 11 3 HOSofWPT, 2 FTF

12 2 MF, 7 HOSofWPT, 34 FTF
Main group F 13 2 HOSF, 3 MF, 37 HOSofWPT, 19 FTF

14 2 HOSF, 10 HOSofWPT, 38 FTF
Main group Q 15 4 HOSofWPT, 39 FTF

16 5 HOSofWPT, 14 FTF

*HOSF: Higher Order Statistics Features,
*MF: Morphological Features,
*HOSof WPT:HOS Features of Wavelet Packet Transform,

*FTF: Fourier Transform Features
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When ROC area measure of classifier is used as performance criteria of selection

algorithm: In the first stage, the results of the selection process are shown in Table

5.11 for GA and in Table 5.12 for SFSM. The feature sizes of the each main group
(N, S, V, F, and Q) are 63, 68, 64, 68, and 76, respectively, with GA, and 70, 63, 71,
70, and 95, respectively, with SFSM.
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Table 5.11. Amount of selected features for main groups with GA using

ROC area as performance measure

Label Selected Features
N 0 HOSF, 1 MF, 37 HOSofWPT, 25 FTF
S 2 HOSF, 1 MF, 47 HOSofWPT, 18 FTF
\% 2 HOSF, 1 MF, 43 HOSofWPT, 18 FTF
F 2 HOSF, 3 MF, 41 HOSofWPT, 22 FTF
Q 5 HOSF, 4 MF, 49 HOSofWPT, 18 FTF

Table 5.12. Amount of selected features for main groups with SFSM

using ROC area as performance measure

Label Selected Features
N 1 HOSF, 1 MF, 44 HOSofWPT, 24 FTF
S 0 HOSF, 0 MF, 40 HOSofWPT, 23 FTF
\% 1 HOSF, 2 MF, 30 HOSofWPT, 38 FTF
F 1 HOSF, 2 MF, 31 HOSofWPT, 36 FTF
Q 3 HOSF, 0 MF, 52 HOSofWPT, 40 FTF

*HOSF: Higher Order Statistics Features,
*MF: Morphological Features,
*HOSofWPT:HOS Features of Wavelet Packet Transform,
*FTF: Fourier Transform Features

Performance measures of classifiers for five main groups are shown in Table 5.13
for the cases of using selected features with SFSM and using selected features with
GA. Overall accuracies are %88.00 and %92.62 for selected features with SFSM and

selected features with GA, respectively.

Table 5.13 Performance measures of KNN based classifier using selected

features with SFSM and GA using ROC area as performance measure

Selected Features with SFSM Selected Features with GA

Label SEN SEL SPE ROC SEN SEL SPE ROC
Area Area

N 84.73  99.33 99.70  0.92 9529 9846 99.22  0.97

S 80.05 96.38 99.49  0.90 85.79 9573 9936 0.93
A\ 88.13 97.14 99.30 0.94 88.13 97.14 9930 094
F 83.20 98.11 99.83  0.92 91.20 9540 99.52  0.95
Q 99.03 64.36 86.03 093 98.26 78.85 9329  0.96

Average 87.03 91.06 96.87 0.92 91.73 93.11 98.14 0.95

Results show that there is no clear difference between using overall accuracy and
using ROC area as performance criteria of selection algorithm. This may be

limitation of feature pool. Results show that the best performance is obtained with
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features of GA selection using overall accuracy as performance measure. Therefore,

first stage of the system is constructed using the best features sets.

In the second stage, the feature selection algorithm is also applied in the second
stage to select optimal features for subgroups of each main group. The best
discriminative features are shown in Table 5.14. Results of overall accuracy of
subgroup classifiers are %100, %95.86, %99.42 and %99.01 for subgroups of N,
subgroups of S, subgroups of V and subgroups of Q, respectively.

Table 5.14 Number of selected features for subgroups of each main group using

ROC area as performance measure

Main group Label Selected Features of Subgroups
1 1 MF, 1 HOSofWPT, 2 FTF
2 1 HOSofWPT, 2 FTF
Main group N 3 2 FTF
4 2 MF, 1 HOSofWPT, 41 FTF
5 1 MF, 2 HOSofWPT, 1 FTF
6 1 HOSF, 1 MF, 1 HOSofWPT, 7 FTF
Main group S 7 1 MF, 1 HOSofWPT, 4 FTF
8 1 HOSF, 1 MF, 2 HOSofWPT, 6 FTF
9 1 HOSF, 20 FTF
10 10 HOSofWPT, 9 FTF
Main group V 11 3 HOSofWPT, 5 FTF
12 2 MF, 7 HOSofWPT, 34 FTF
Main group F 13 2 HOSF, 3 MF, 41 HOSofWPT, 22 FTF
14 2 HOSF, 10 HOSofWPT, 38 FTF
Main group Q 15 4 HOSofWPT, 39 FTF

16 5 HOSofWPT, 14 FTF

*HOSF: Higher Order Statistics Features,

*MF: Morphological Features,

*HOSof WPT:HOS Features of Wavelet Packet Transform,
*FTF: Fourier Transform Features

Results of second stage using ROC area as performance criteria of selection
algorithm are almost same as using overall accuracy as performance criteria of
selection algorithm. The second stage of the system is constructed overall accuracy

as performance criteria of selection algorithm.
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5.6.2 Feature Dimension Reduction with Neural Network

A simple three layer linear network can be used as feature dimension reduction
tool. Figure 5.19 shows the structure of three layer neural network. All of the
extracted features are used at both input and output layer. Network trained by
gradient descent on a sum squared error criterion. Activation functions of network
are linear for all layers. Dimension of input data is 150. The transformation is linear
projection onto a different dimensional subspace which is represented by hidden

neuron size of network.

linear

Input
S5

S5
Output

X4 Xd
Fi F;

Figure 5.19 Three layer neural networks with linear hidden layer.

In this work, many neural networks with different hidden neuron size are
constructed to investigate lower dimensional features set. The hidden neuron size,
which represents new and reduced feature vector size, changes between 30 and 150.
Each neural network with new hidden neuron is performed several times with
different initial values of the network. Network with the best value of mean squared
error (MSE) is used for new feature set extraction. Extracted feature sets with
different sizes are used to investigate the classification accuracy of five main groups.
Multilayer perceptron (MLP) networks are used as classifier. MLP structure is
constructed as shown Figure 5.20 and Figure 5.21. The first model (in Figure 5.20)

used single MLP structures with five outputs. The second model (in Figure 5.21)
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used five MLP structures. Each network separates only one main group from others.

Then the outputs of the networks are combined to make a decision.

Outputl
Output2
[ o K v
Outputd
Outputs

Figure 5.20 Classification systems for five

classes with single MLP structure.

vg]cecgts stryc’lt_sres 1/0for N
\.flv:cﬁg:s strl’:ﬂchljres 1/0forsS
vlgcﬁz:s strm"lt_sres 1/0forV
\.flv:cﬁg:s strl’:ﬂchljres 1/0forF
\.flv:cﬁg:s strm“'t_sres 1/0ferQ

¥ Decision

Figure 5.21 Classification system for five classes with five different MLP.

At first, the single MLP network is constructed with different hidden neuron size

using all features as input vector. Each network is trained several times with different
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initial values. The best values of overall accuracy of classifiers are shown in Table

5.15.

Table 5.15 Results of overall accuracy of single

MLP classifiers using all features

Overall Accuracy (%)
5 72.90
8 73.72
11 78.48
5
g 14 81.78
Z 17 82.49
Ny 20 80.80
—
= 23 80.61
S
° 26 76.75
a 29 81.00
=
£ 32 78.99
z 35 77.93
g 38 79.71
= 41 77.42
44 79.94
47 79.31
50 76.44

The single MLP network is constructed with different hidden neuron size and with
different input vectors to classify five main groups with better performances. Each
network is trained several times with different initial values. The best values of

overall accuracy of classifiers are shown in Table 5.16.

The MLP network is constructed for each main group. Each network is built with
19 different hidden neurons and trained for 13 new feature sets. Therefore, total of
247 MLP structure are constructed for each main group. Each MLP structure is
trained several times with different initial values of the network. The best values of
overall accuracy of classifiers are shown in Table 5.17 for N, in Table 5.18 for S, in

Table 5.19 for V, in Table 5.20 for F, and in Table 5.21 for Q.
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The best performance of the single MLP structures is 82.49% of overall accuracy

with 17 hidden neurons using all features.

The best performance of the single MLP networks is 86.90% of overall accuracy

with 90 new feature vector size and MLP structures with 8 hidden neurons.

In the case of different MLPs for each main group, the best performance is
95.83% obtained with feature vector size of 80 and MLP structure with 8 hidden
neurons for N; the best performance is 94.73% obtained with feature vector size of
40 and MLP structure with 14 hidden neurons for S; the best performance is 94.37%
obtained with feature vector size of 120 and MLP structure with 5 hidden neurons
for V; the best performance is 95.87% obtained with feature vector size of 150 and
MLP structure with 35 hidden neurons for F ; the best performance is 99.45%
obtained feature vector size of 90 and MLP structure with 26 hidden neurons for Q.
Networks with best performance are used to construct an ensemble system and the

outputs of the networks are combined to make a decision.

The MLP network is constructed for each main group. Each network is built with
19 different hidden neurons and trained for 13 new feature sets. Therefore, total of
247 MLP structure are constructed for each main group. Each MLP structure is
trained several times with different initial values of the network. The best values of
ROC area measure of classifiers are shown in Table 5.22 for N, in Table 5.23 for S,

in Table 5.24 for V, in Table 5.25 for F, and in Table 5.26 for Q.
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In the case of different MLPs for each main group, the best performance of ROC
area is 0.9507 obtained with feature vector size of 60 and MLP structure with 20
hidden neurons for N; the best performance of ROC area is 0.8886 obtained with
feature vector size of 140 and MLP structure with 32 hidden neurons for S; the best
performance of ROC area is 0.9317 obtained with feature vector size of 130 and
MLP structure with 5 hidden neurons for V; the best performance of ROC area is
0.8755% obtained with feature vector size of 150 and MLP structure with 38 hidden
neurons for F ; the best performance of ROC area is 0.9878 obtained feature vector
size of 90 and MLP structure with 26 hidden neurons for Q. Networks with best
performance of ROC area are used to construct an ensemble system and the outputs

of the networks are combined to make a decision.

Overall accuracy of single MLP classifier with all features, overall accuracy of
single MLP classifier with new feature vector, overall accuracy of MLP based
combined classifier using overall accuracy as performance criteria for each network
and overall accuracy of MLP based combined classifier using ROC Area as
performance criteria for each network are 82.49%, 86.90%, 91.54%, and 91.07%,

respectively. The other performance measures are shown Table 5.27.



Table 5.27 Performance measures of MLP based classifiers

Single MLP Classifier
using all features

Single MLP Classifier
using new features vector

Label SEN SEL SPE ROC SEN SEL SPE ROC

Area Area

N 82.43 9573 98.09 90.26 90.59 98.26 99.16 94.87

S 83.33 59.11 90.30 86.82 93.17 73.81 94.44  93.80

\4 91.47 74.02 9136 9141 90.54 76.97 92.71 91.62

F 31.60 76.70 98.95 65.28 3520 72.73 98.56  66.88

Q 97.29 99.01 99.75 9852 9748 96.36 99.06 98.27

Average 77.22 80.92 95.69 86.46 81.39 83.63 96.79 89.09
MLP Based combined

Classifiers using Overall MLP Based combined

Acc. as performance

Classifiers using ROC Area

criteria as performance criteria
Label SEN SEL SPE ROC SEN SEL SPE ROC
Area Area
N 93.92 97.61 98.80 96.36 90.82 97.65 98.86 0.948
S 85.52 89.17 98.25 91.89 90.98 80.24 96.23  0.936
\4 92.02 88.26 96.70 94.36 90.54 89.71 9720 0.939
F 78.40 69.26 96.20 87.30 79.60 75.67 9721 0.884
Q 97.67 99.21 99.80 98.74 97.67 9882 99.70  0.987
Average 89.51 88.70 97.95 93.73 89.92 88.42 97.84 0.939
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Results show that the ensemble classification system is performed better than

single network classifier. MLP based feature extraction and reduction method and

the performances of MLP classifiers are as good as KNN based classifiers with

features selected with GA features. Measures of MLP based combined classifier

using ROC Area as performance criteria are a bit better than the MLP based

combined classifiers using overall accuracy as performance criteria of each network

structure.

In the construction of the whole system, combined KNN classifier with the

selected features by GA are used in the first stage of the classification system.

5.7 Classification

The classification model is an important part of the pattern recognition systems. It

should be easily comprehensible and have high performance. The purpose of this
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research is to explore methods for improving the performance of automated ECG
beat classifiers. Therefore, the constructed system has two stages: in the first stage, it
separates all beats to few classes which are called main groups (as shown in Table
5.2.) then in the second stage, each main group is further separated into subclasses
(Kutlu, & Kuntalp, 2010). Proposed classification model is shown in Figure 5.22. In
the first classifier stage, five KNN classifiers are used. One KNN classifier separates
one main group from others. Then combination of individual decisions produces the
final decision of the first stage. In the second classification stage, separated main
groups are classified into the subgroups as similar to the first stage. Each main group
is separated into subgroups by combined KNN classifiers. At the end of the
constructed system final decision is evaluated. The constructed system with

combined KNN classifiers is shown in Figure 5.23.

Each classifier in constructed system uses different input sets because of the beat-
based feature selection algorithm. For the first stage classifier, the best input vectors
are obtained from the GA based feature selection algorithm. At the second stage
classifier, the input vectors are obtained from the SFSM based feature selection

algorithm.
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Figure 5.22 Two stage classification system.
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The purpose of this research is to explore methods for improving the
performance of automated ECG beat classifiers. Therefore, the constructed system
has two stages: in the first stage, it separates all beats to few classes which are called
main groups then in the second stage, each main group is further separated into
subclasses. But, combination of classifier may cause a contradiction and these beats
from each stage are labeled as unclassified beat. This approach decreases the
performance measures of classification model. Therefore, the third stage is added in
the system to classified only unclassified beats into 16 beat types. KNN classifier and
raw data as input vector is used in this stage. The constructed three stage system is

shown in Figure 5.24.

Maingroup Subgroup
Classifiers Classifiers

Classify ’
Subgroups of N

Classify
Subgroups of 8

Classify main Classify
ECG Data Preprocessing Groups Sub — v
NS V.EQ e

Classify
Subgroups of F

Classify
Subgroups of Q

v v v v

Third Stage
|_ Unclassified C{?!:slfy:LL bg?;ts _’
Beats Each Stage sing Raw E

Figure 5.24 Three stage classification system.

5.8 Results and Discussion

In this implementation, a classification system is constructed for automatic
heartbeat recognition. For this purpose, in feature extraction stage, total of 150
features were extracted from HOS measures, HOSofWPT measures, morphology

measures, and frequency domain measures. After feature extraction stage, beat-based
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feature selection is performed in two stages. In the first stage of classification, two
different selection algorithms are used: GA based feature selection algorithm and
SFSM base feature selection algorithm. Overall accuracy and ROC area measure of
classifier are used as performance measure for selection algorithm. According to the
results of these algorithms, the features which are obtained by GA algorithm provide
better classification performance. Results of the selection algorithms are given in
detail in Table 5.9. In addition, dimension of extracted features is reduced from 150
to different new dimensions using an MLP network. Results are discussed in detailed
in section 5.6. Previously a single MLP classifier and combined MLP classifiers are
used to classify five main groups of the first stage of classification using reduced
dimension feature sets. The results show that the features obtained with GA and

combined KNN classifiers have better results than MLP based classification process.

Consequently, the desired system is constructed with combined KNN classifier
using the obtained features by GA in the first classifier stage. In the second classifier

stage, also combined KNN classifiers using features obtained by SFSM are used.

Using all of the extracted features, the classification performance of the
constructed two stage system is %79.50 for overall accuracy, and the other

performance measures are given in Table 5.28.
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Table 5.28 Performance measures of two stage system for all features

Labels SEN SEL SPE  ROC
Area

1 95.20 95.58 99.52 0.97

2 96.00 96.77 99.65 0.98

3 67.20 97.11 99.78 0.83

4 94.69 76.98 98.68 0.97

5 87.50 77.78 99.92 0.94

6 28.38 33.33 98.30 0.63

7 0.00 0.00 100.00 0.50

8 92.40 60.16 93.32 0.93

9 53.66 35.48 98.40 0.76

10 75.42 89.45 99.09 0.87
11 92.45 89.09 99.76 0.96
12 79.60 56.37 93.28 0.86
13 27.20 70.83 98.78 0.63
14 99.60 96.89 99.65 1.00
15 0.00 0.00 99.96 0.50
16 97.60 96.06 99.56 0.99
Average  67.93 66.99 98.60 0.83

Using only selected features with GA, the classification performance of the
constructed two stage system is %91.97 for overall accuracy, and the other

performance measures are shown in Table 5.29.



Table 5.29 Performance measures of the constructed two stage

system for selected features with GA

Labels SEN SEL SPE ROC
Area

1 97.20 100.00 100.00 0.99

2 96.80 100.00 100.00 0.98

3 91.60 100.00 100.00 0.96

4 99.12 95.73 99.79 0.99

5 37.50 100.00 100.00 0.69

6 43.24 91.43 99.88 0.72

7 100.00 100.00 100.00 1.00

8 95.20 91.89 99.08 0.97

9 85.37 97.22 99.96 0.93

10 86.86 98.56 99.87 0.93
11 88.68 100.00 100.00 0.94
12 86.00 94.30 99.43 0.93
13 92.00 95.44 99.52 0.96
14 100.00 98.43 99.83 1.00
15 37.50 8.70 97.51 0.68
16 100.00 75.76 96.51 0.98
Average  83.57 90.47 99.46 0.92
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The third stage is added in the system to increase the performance of the multi-

stage classification system. Using raw data as feature set and KNN classifier for the

third stage, the classification performance of the proposed three stage system is

%93.59 for overall accuracy, and the other performance measures are shown in Table

5.30.
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Table 5.30 Performance measures of the constructed three

stage system using selected features

Labels SEN SEL SPE ROC
Area

1 97.20 100.0 100.0 0.99

2 98.00 99.19 99.91 0.99

3 95.20 100.0 100.0 0.98

4 99.12 91.06 99.55 0.99

5 50.00 100.0 100.0 0.75

6 48.65 90.00 99.84 0.74

7 100.0 100.0 100.0 1.00

8 95.60 91.22 99.00 0.97

9 97.56 97.56 99.96 0.99

10 88.98 97.22 99.74 0.94
11 90.57 100.0 100.0 0.95
12 90.80 93.03 99.26 0.95
13 92.80 93.93 99.35 0.96
14 100.0 98.43 99.83 1.00
15 25.00 100.0 100.0 0.63
16 100.0 75.76 96.51 0.98
Average 85.59 95.46 99.56 0.93

The proposed system can work as a real time recognition system since it is beat
based. It means that system requires features which are obtained only from the
segmented beat and all ECG record is not necessary. This may be a limitation,
because time domain measures such as R-R intervals, which are significant
discriminative features for some beat types (ventricular beats, supraventricular beats),
are not used in this system. Time domain measures, 30 R-R intervals (15 previous
and 15 next), are prepared from the ECG signals and used as additional features.
However, in this approach, 30 second record time is needed to start the recognition
algorithm. When feature selection steps are restarted with new feature set, which
includes time domain measures, the overall accuracy of the three stage classification

system becomes 97.76% and other performance measures are given in Table 5.31.
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Table 5.31 Performance measures of the three stage system

using new feature set (including time domain measures)

Labels SEN SEL SPE ROC
Area

1 100.0 100.0 100.0 1.00

2 100.0 99.60 99.96 1.00

3 98.40 100.0 100.0 0.99

4 97.35 93.22 99.67 0.99

5 100.0 100.0 100.0 1.00

6 74.32 100.0 100.0 0.87

7 100.0 100.0 100.0 1.00

8 99.60 93.61 99.26 0.99

9 100.0 93.18 99.88 1.00

10 100.0 98.33 99.83 1.00
11 92.45 100.0 100.0 0.96

12 99.20 94.66 99.39 0.99
13 95.60 97.55 99.74 0.98
14 100.0 99.60 99.96 1.00
15 18.75 100.0 100.0 0.59
16 100.0 98.81 99.87 1.00
Average 92.23 98.04 99.85 0.96

Comparison of proposed system with other systems reported in the literature is
really difficult because of the varieties in the classification techniques and data
properties (e.g. different number of beat types belonging to different patients). But
still, results show that the proposed novel system based on two stage combined KNN
classifier for discriminating a broad range of heartbeats performs very good with
average sensitivity, average selectivity, average specificity, average ROC area and

overall accuracy of 85.59%, 95.46%, 99.56%, 0.93, and 93.59% respectively.

Hosseini, Reynolds, & Powers, (2001) used three stage ANN based system to
classify six arrhythmias using QRS area, PR, QT, RS interval, ST segment area, QRS
energy, ST slope, ST level, Autocorrelation coefficient, 52 sample QRS window that
resample as 4:1. In first stage of system, using MLP and classify three classes and

others (used in second stage), second stage: using MLP and classify three classes and
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others (used in third stage) and third stage: using SOM for increase performance and
classify the unknown beats which come from stage 2. Overall recognition rate is

0.883.

Nasiri et al. (2009) have presented a recognition system to discriminate four beat
types. Only morphological measures of the QRS complexes are extracted as features.
They applied all features, principle components and selected features by genetic-
SVM method to classify heartbeats. Genetic algorithm with SVM method is
presented as feature selection. The overall accuracy of 93.46% has reported using

SVM classifier with selected features by GA.

Osowski & Linh, (2001) used two stage system to classify seven arrhythmias
using 60 sample window, cumulants (second, third, and fourth), RR interval, QRS
width, average RR interval (last 10). Fuzzy self organizing layer was used for pre-
classifier, and MLP was used for final classifier in two stage classification system.
The output of Fuzzy NN was used as the input of MLP and output of MLP is 7 that is
class size. The efficiency of the system is 96.06%, misclassification rate of the

system is 3.94%.

Chazal, O’Dwyer, & Reilly, (2004) used a linear discriminant based classification
system. Morphology (QRS duration in time, T wave duration in time, P wave flag,
QRS complex (10 sample), T-wave segment (9 sample), RR interval: Pre RR, Post
RR interval, average RR interval, Local average RR interval (10 sample),
Normalized (std), and combination of all were used as feature sets. They reported
sensitivity of 75.9%, positive prediction of 38.5%, false prediction of 4.7% for
performance of supraventricular beats and sensitivity of 77.7%, and positive
prediction of 81.9%, false prediction of 1.2% for performance of ventricular beats.
The system has been constructed to classify five classes (normal beat (N),
supraventricular ectopic beat (S), ventricular ectopic beat (V), fusion beat (F), and
unknown beat (Q)) according to AAMI. Average sensitivity, selectivity and
specificity have been calculated from Table V in the work of Chazal et al. The
measures were 73%, 45%, and 96% for sensitivity, selectivity and specificity,

respectively.
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Song et al, (2005) used ANN, Fuzzy Inference System, Support Vector Machine
to classify six classes using pre RR and post RR intervals, 144 sample window, WT
coefficient (4, 5, 6, 7 order). Using LDA, PCA features was reduced 4 features. The
average performance of classifiers are sensitivity 98.9% , specificity %93.7 accuracy
%98.1 for original feature, sensitivity 98.2%, specificity 92.5%, accuracy 97.5% for
PCA feature, sensitivity %99.6, specificity 95.1%, accuracy 98.9% for LDA feature.
According to feature set LDA features have best accuracy. Using LDA feature
average sensitivity 92.2%, specificity %98.1, accuracy 98.6% for MLP, sensitivity
89.6%, specificity 98.0%, accuracy %98.9 for FIS, sensitivity %92.3, specificity
99.1%, accuracy 99.3% for SVM.

Tsipourasa, Fotiadisa, & Sideris (2005) used decision tree and simple threshold
technique to classify four class arrhythmias using RR intervals, Pre RR, Current RR,
and Post RR intervals. Sensitivity, positive prediction and accuracy are 94.9%,

96.1% and 98.2%, respectively.

Alliche & Mokrani (2003) used distance measurement method to classify three

arrhythmias using higher order statistic (HOS). The misclassification rate is 5.5%.

Acir (2005) used MLP and least Square SVM system to classify six class of
arrhythmias using Raw data, DFT (Discrete Fourier Transform), DCT (Discrete
Cosine Transform), DWT (Discrete Wavelet Transform), AAR ( 15th order). Using
Dynamic programming feature redundant and for each group 15 features was taken
for each set. Sensitivity, specificity and accuracy are 97.6%, 93.8%, and 95.2%,
respectively, for LS-SVM, 94.4%, 89.2%, and 91.2%, respectively, for MLP.

The expert system methods are presented by Hu, Palreddy, & Tompkins (1997).
They applied Global Expert (GE), Local Expert (LE), and the mixture of expert
(MOE) for classification into four main groups (normal beats (N), ventricular ectopic
beats (V), fusion beats (F), and unknown beats (Q)). The average classification rate

obtained by MOE was 94% and the average error obtained by LE was 4.1%.
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Besrour, Lachiri, & Ellouze (2008) applied two ECG feature sets reported
sensitivity of 98.3% and specificity of 94.4% for 12-rhythm types, applying HOS (2,
3, 4 cumulant obtained and used only five point different lag(15,30,45,60,75)) and
Morphological features ( min max of QRS, QRS width, area of QRS, slope) and RR
interval (RR interval between a given heartbeat and the previous heartbeat and post
RR interval between a given heartbeat and the following heartbeat) with SVM

classifier.

Lagerholm, Peterson, & Braccini (2000) presented a recognition system using 16
beat types existed in the MIT-BIH database. Hermite function representation of the
QRS complexes and self-organized clustering method are presented. It is reported a
total classification accuracy of 98.5%. Other performance measures of 16 heartbeat
types from the confusion matrix in Table VI in the work of (Lagerholm, Peterson, &
Braccini, 2000) have been calculated as average sensitivity of 67.3%, average

selectivity of 81.8%, and average specificity of 99.8%.

Chazal & Reilly (2006) constructed system to classify five classes (normal beat
(N), supraventricular ectopic beat (S), ventricular ectopic beat (V), fusion beat (F),
and unknown beat (Q)). It is reported that sensitivity of 94.34%, selectivity of
94.30%, and specificity of 98.63% for only performance of ventricular beats. But the
constructed system was used to classify five classes (normal beat (N),
supraventricular ectopic beat (S), ventricular ectopic beat (V), fusion beat (F), and
unknown beat (Q)). Average sensitivity, selectivity and specificity have been
calculated from Table V in the work of Chazal & Reilly (2006). The measures were
70%, 53%, and 97% for average sensitivity, average selectivity and average

specificity, respectively.

Melgani & Yakoub (2008) presented a particle swarm optimization and SVM
based systems for six types of ECG beats (normal beat, atrial premature beat,
ventricular premature beat, right bundle branch block, left bundle branch block, and

paced beat). It is reported a total classification accuracy of 91.67%.
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Chia-Hung Lin et al. (2009) used probabilistic neural network to classify five
classes using fractal properties as features. They reported 96%-97% of overall

accuracy.

Arif, Akram, & Afsar (2009) reported that overall recognition rate is 97.33%
using a Fuzzy K-NN based system to classify six arrhythmias using statistical

properties of wavelet transform and R-R interval.

These results show that the classifier designed in this study has very good
performance with an average sensitivity of 83.57%, average selectivity of 90.46%,
average specificity of 99.46%, and ROC area of 0.92 for 16 heartbeat types.
However, it should be noted that, in each study in the literature, different number of
beat types belonging to different patients have been recognized, thus, it is really

difficult to compare the results in a fair and objective way.



CHAPTER SIX
CONCLUSIONS

Automatic pattern recognition systems for EEG and ECG patterns have been
proposed in this thesis. Pattern recognition techniques, ECG signals, EEG signals,
performance measures and combined classifier models have been introduced for

pattern classification.

The first phase of the study focuses on the automatic spike detection from EEG
records. Interictal spike detection plays a crucial role in the diagnosis of epilepsy.
Epilepsy is a very common neurological disorder leading to disturbing seizures. In
the interictal period; i.e., in between seizures, epileptic transients, in the form of

spikes and sharp waves, are typically observed in the EEG recordings.

True spike waves are aimed to be detected from EEG records by different
nonlinear classifiers constructed using single MLP structures utilizing different
number of hidden neurons. For training the MLP networks, early stopping versions
of backpropagation, backpropagation with adaptive learning rate, Levenberg-
Marquardt algorithms and regularization methods are used. In this study, two
approaches, the parameterized and raw forms of data, are used as input in MLP-
based detection systems. In the first approach, the raw EEG data is directly used as
the input to the MLP. In the second approach, some features are extracted from the
EEG records and fed into the MLP as the input. In addition, different linear and
nonlinear transformations are applied to the available data set in order to obtain
different representations of them. The best classifier designed in this study has better
performance (with an average sensitivity of 94.1%, an average selectivity of 87.5%,
and an average specificity of 95.8%) than all studies in literature. The second system
is constructed as a multi-stage classification system. In this approach two classifiers

are used in the first stage and one classifier used in the second stage. The definite
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spike and definite non-spikes are determined in the first stage and possible spikes and
possible non-spikes are used in the second stage. The best performance measures of
constructed multi-stage classification system are sensitivity of 94.8%, selectivity of
92.5%, specificity of 96.3%, and overall accuracy of 95.8%. Due to high accuracy
rates, the proposed systems could be used to help the physicians in diagnosing

epileptic activity in clinical environments.

The second part of this study aims to construct a robust arrhythmia classification
system. The detection of different types of arrhythmias from an electrocardiogram
has been a very important subject. This is due to the fact that the accurate recognition
and classification of various types of arrhythmias are essential for the correct
treatment of the patient. This study introduces an automatic classification system
based on a diverse set of features for the automatic detection of 16 heartbeat classes.
Nearest neighbor based multi-stage classification system is constructed in this

respect.

The studies in literature show that there is no unique robust feature set which
could successfully discriminate all 16 arrhythmic type beats from each other.
Therefore, diverse range of features should be examined to represent each beat in the
classification system to achieve a robust performance. A beat-based feature selection
is performed to determine the most discriminative feature set for each beat type. The
genetic algorithm is used for finding the optimal or near-optimal combination of
features for discrimination. Experimental results indicate that the feature selection
step not only eliminates a large number of redundant features but also helps to avoid

the curse of dimensionality problem.

Most of the similar work reported in the literature seems to deal with the
classification of only a few beat types. A major reason for this situation is the lack of
available data for some arrhythmic beats so that it is almost impossible to train a
classifier such as neural networks for these beat types. Another reason is related to
the fact that no unique robust feature set has yet to be found to successfully

discriminate all beat types. Regarding these facts, the proposed system shows very
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satisfactory performance in discriminating 16 different beat types. The success of the
proposed system is due to its beat-based feature selection from a diverse set of
various features such as higher order statistics, Fourier transform components, the
higher order statistics of wavelet packet decomposition, and morphological features.
In the proposed system, the nearest neighbor rule is used as the classifier. There are
two reasons for using this algorithm. Wrapper type feature selection algorithms
require extensive time during the selection process. Having a classification
algorithm, which does not demand a training step such as nearest neighbor algorithm,
reduces the processing time in this step. The other reason for preferring nearest
neighbor rule as classifier is the fact that it is provides robust results compared to

other algorithms that have more parameters and training step.

In conclusion, the proposed method can be put into practice easily in any
computer-based monitoring system. The proposed system is consists of three
classification stages. At the first stage, heartbeats are classified into 5 main groups
using optimal feature sets for each main group. Then at the second stage, main
groups are classified into subgroups using optimal features for each subgroup. A
diverse set of features including higher order statistics, morphological features,
Fourier transform coefficients, higher order statistics of the wavelet package
coefficients are extracted for each different type of ECG beat. At the first stage
optimal features for main groups are determined by using a wrapper type feature
selection algorithm. Then at the second stage optimal features are similarly selected
for discriminating each subgroup of the main groups. In both stages, the classifiers
are based on the nearest neighbor algorithm. Then at the third stage unclassified
beats from both first and second stages are classified into 16 heartbeats using raw
ECG data. The results show that the proposed novel system based on multi-stage
classifier for discriminating a broad range of heartbeats performs very good with
average sensitivity, average selectivity, average specificity, average ROC area and
overall accuracy of 85.59%, 95.46%, 99.56%, 0.93, and 93.59% respectively when it

is compared with the studies in literature.



142

Obviously, the performance of the system depends on the classifiers since feature
selection steps is based on wrapper approach. In the proposed system, KNN and
MLP classifiers are used. Furthermore, other feature extraction techniques which are
not used in this thesis, and other classifiers such as support vector machines, radial
basis function networks, could be explored for improving the performance of

automated ECG beat classifiers as a future work.



143

REFERENCES

Acharya, R. U., Suri, J. S.,; Spaan, J.A.E., & Krishnan, S.M. (2007). Advances in

Cardiac Signal Processing. Springer

Actr, N. (2004). Automatic pattern recognition in EEG by using artificial neural
networks. Dokuz Eyliil University, The Graduate School of Natural and Applied
Sciences, Ph.D. Thesis.

Acir, N. (2005). Classification of ECG beats by using a fast least square support
vector machines with a dynamic programming feature selection algorithm”,

Neural Computing and Applications, 14(4), 299-309.

Acir, N., & Giizelis, C. (2004). Automatic spike detection in EEG by a two-stage

procedure based on support vector machines. Computers in Biology and Medicine,
34, 561-575.

Acir, N., Oztura, 1., Kuntalp, M., Baklan, B., & Giizelis, C. (2005).Automatic
Detection of Epileptiform Events in EEG by a Three-Stage Procedure Based on

Artificial Neural Networks, IEEE Transactions On Biomedical Engineering,
52(1),30-40.

Activation sequence, (2009). Activation sequence of sinus rthythm, Retrieved July 3,

2009, from http://www.bioen.utah.edu/faculty/sri/Lab8 humancardiovascular.htm

Adjouadi, M., Sanchez, D., Cabrerizo, M., Ayala, M., Jayakar, P., Yaylali, 1., et al.
(2004). Interictal Spike Detection Using the Walsh Transform, /EEE Transactions

On Biomedical Engineering, vol. 51, no. 5.

Afonso, V.X., & Tompkins, W.J. (1995). Detecting ventricular fibrillation. /EEE
Eng Med Biol., 14, 152-159.



144

Alberg, A.J., Park, J. W., Hager, B. W., BA, Malcolm V Brock, MD, & Marie
Diener-West, (2004). The Use of “Overall Accuracy” to Evaluate the Validity of
Screening or Diagnostic Tests, J Gen Intern Med., pp.460—465.

Al-Fahoum, A.S., & Howitt, 1. (1999). Combined wavelet transformation and radial
basis neural networks for classifying life-threatening cardiac arrhythmias. Med

Biol Eng Comp., 37, 566-573.

Alliche, A., Mokrani, K. (2003). Higher order statistics and ECG arrhythmia
classification,;Signal Processing and Information Technology, 2003. ISSPIT
2003. Proceedings of the 3rd IEEE International Symposium on :641-643.

Alpert, M.A. (1980). Cardiac arrhythmias. Chicago: Year Book Medical.

Amari, S. (1995).Training Error, Generalization Error and Learning Curves in Neural
Learning, Artificial Neural Networks and Expert Systems, Proceedings., Second

New Zealand International Two-Stream Conference, 4-5.

Arian R. van Erkel, & Peter M. Th. Pattynama, (1998). Receiver operating
characteristic (ROC) analysis: Basic principles and applications in radiology,

European Journal of Radiology, Volume 27, Issue 2, Pages 88-94.

Arif, M., Akram, M.U., & Afsar, F.A., (2009). Arrhythmia Beat Classification Using
Pruned Fuzzy K-Nearest Neighbor  Classifier Soft Computing and Pattern
Recognition. SOCPAR '09. International Conference, p37-42 .

Besrour, R., Lachiri, Z., & Ellouze, N. (2008) ECG Beat Classilfier Using Support
Vector Machine. 3rd International Conference on Information and

Communication Technologies: From Theory to Applications, ICTTA 2008, 1-5.

Bhaskar, H., Hoyle, D.C., & Singh, S. (2006). Machine learning in bioinformatics: A



145

brief survey and recommendations for practitioners. Computer in Biology and

Medicine, 36, 1104-1125,

Bishop, C.M. (1995).Neural Networks For Pattern Recognition, NY, Oxford Unv.

Press.

Bottoni, P., Cigada, M., De Giuli, A., Di Cristofaro, B., & Mussio, P. (1990). Shape
Description as a Key to ECG Analysis. IEEE Conference: Computers in
Cardiology, IEEE Computer Society Press, Los Alamitos, CA, 443-6

Braccini, G., Edenbrandt, L., Lagerholm, M., Peterson, C., Rauer, O., Rittner, R. et
al. (1997). Self-organizing maps and Hermite functions for classification of ECG
complexes. Comp Cardiol, 425-428.

Chan, Z.S.H., Ngan, H.W., Rad, A.B., & Ho, T.K. (2002). Regularization Alleviation
Overfitting Via Genetically Regularized Neural Network, Electronics Letters,
38(15), 809-810.

Chatrian, E., Bergamini, L., Dondey, M., Klas, D.W., Lennox-Buchthal, M., &
Petersen, 1. (1974). A glossary of terms most commonly used by clinical

electroencephalographs, Electroencephalogr. Clinical Neurophysiology, 37, 538-
548.

Chazal, P. de, O’Dwyer, M., & Reilly, R. (2004). Automatic classification of
heartbeats using ECG morphology and heartbeat interval features. /EEE Trans.
Biomed. Eng., vol. 51, no. 7, 1196-1206.

Chazal, P. de, & Reilly, R. (2006). A Patient-Adapting Heartbeat Classifier Using
ECG Morphology and Heartbeat Interval Features, IEEE Transactions On
Biomedical Engineering, 2535-2543.



146

Chen, S.W., Clarkson, P.M., & Fan, Q. (1996). A robust sequential detection
algorithm for cardiac arrhythmia classification. /[EEE Trans Biomed Eng, 43,
1120-1125.

Chen, T.C., Han, D.J., Au, F.T.K., & Tham, L.G. (2003). Acceleration of Levenberg-
Marquardt Training of Neural Networks with Variable Decay Rate, Neural
Networks, Proceedings of the International Joint Conference, 3, 1873-1878.

Chia-Hung Lin, Chao-Lin Kuo, Jian-Liung Chen, & Wei-Der Chang, (2009). Fractal
features for cardiac arrhythmias recognition using neural network based classifier,
Networking, Sensing and Control, 2009. ICNSC '09. International Conference,
pp:930 —935.

Clayton, R.H., Murray, A. & Campbell, RW.F. (1993). Comparison of four
techniques for recognition of ventricular fibrillation of the surface ECG. Med.

Biol. Eng. Comp., 31, 111-117.

Clayton, R.H., Murray, A., & Campbell, R.-W.F. (1994). Recognition of ventricular
fibrillation using neural networks. Med Biol Eng Comp,32,217-220.

Cover, T. M. & Hart, P. E. (1968). Nearest neighbor pattern classification, /EEE
Trans. Inform. Theory, 21-27.

Crawford, M.H. (2004) Crawford kardiyoloji, London, Mosby press.

Daubechies, I. (1990). The wavelet transform, time-frequency localization and signal

analysis. IEEE Transactions on Information Theory, 36(5), 961-1005.

Demuth, H., & Beale, M. (1998). Neural Network Toolbox for use with MATLAB,
The MathWorks, Inc.



147

Dingle, A.A., Jones, R.D., Carroll, G.J., & Fright, W.R. (1993). A multistage system
to detect epileptiform activity in the EEG, IEEE Trans. Biomed. Eng., 40(12),
1260-1268.

Dokur, Z., & Olmez, T. (2001). ECG beat classification by a hybrid neural network.
Comp Meth Prog Biomed, 66, 167- 181.

Duda, R.O., Hart, P.E., & Stock, D.G. (2001). Pattern Classification, John
Wiley&Sons.

Eberhart, R.C. & Dobbins, R.-W. (1990). Neural network PC tools. San Diego:

Academic Press.

Erkel, A.R. van, & Pattynama, P. M. Th. (1998). Receiver operating characteristic
(ROC) analysis: Basic principles and applications in radiology, European Journal

of Radiology, 27(2), 88-94.

Exarchos, T.P., Tzallas, A.T., & Fotiadis, D.I. (2006). EEG Transient Event
Detection and Classification Using Association Rules. /EEE Transactions on

Information Technology in Biomedicine, vol. 10, no 3.

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters,
27(8), 861-874.

Feng, D. (2007). Biomedical Information Technology. Elsevier.

Fisch, BJ. (1991). Spehimann’s EEG primer. Amsterdam: Elsevier Publication.

Gabor, A.J., & Seyal, M. (1992). Automated inter-ictal EEG spike detection using
artificial neural networks, Electroenceph. Clinical Neurophysiology, 83, 271-280.



148

Gertsch, M. (2003). The ECG A Two Step Approach to Diagnosis. Springer.

Gibbons, R.J., Balady, G.J., Beasley, J.W., Bricker, J.T., Duvernoy, W.F., Froelicher,
V.F., et al. (1997). ACC/AHA guidelines for exercise testing, a report of the
American College of Cardiology/ American Heart Association Task Force on

Practice guidelines (committee on exercise testing). Journal of the American

College of Cardiology, 30(1), 260-311.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization and Machine

Learning, Kluwer Academic Publishers, Boston, MA,

Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P. Ch, Mark,
R.G. et al. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a
New Research Resource for Complex Physiologic Signals. Circulation
101(23):e215-e220 Circulation Electronic Pages;
http://circ.ahajournals.org/cgi/content/full/101/23/e215.

Goksan, B. (1998). Epilepside Tani YoOntemleri. Epilepsilerde Tani ve Tedavi
Sempozyumu, Istanbul, 39-50.

Haddad, S.A.P., & Serdijn, W. A. (2009). Ultra Low-Power Biomedical Signal

Processing, Springer.

Hagan, M. T., & Menhaj, M. B. ( 1994). Training feed forward networks with the
Marquardt algorithm. /EEE Trans. On Neural Net., 6. 989-993.

Hagiwara, K., & Kuno, K. (2000). Regularization Learning And Early Stopping In
Linear Networks. Neural Networks, IJCNN 2000, Proceedings of the IEEE-INNS-
ENNS International Joint Conference, 4, 511-516. (Haykin, 1999) Haykin, S.
(1999). Neural Networks, Prentice Hall.



149

Ham, F.M., & Han, S. (1996). Classification of cardiac arrhythmias using fuzzy
ARTMAP. IEEE Trans Biomed Eng, 43, 425-430. (Hecht-Nielsen, 1989) Hecht-
Nielsen, R. (1989). Theory of the backpropagation neural network, Neural
Networks. IJCNN., International Joint Conference, 1, 593-605.

Hamilton, P.S., & Tompkins, W.J. (1986). Quantitative investigation of QRS
detection rules using the MIT/BIH arrhythmiac database, /EEE Trans. Biomed.
Eng. 33, 1157-1165.

Heart Structure, (2009). Heart Structure, Retrieved July 3, 2009, from
http://en.wikibooks.org/wiki/Wikijunior:Human Body/Heart

Heidari, H., Shahidi, A.V., Aminian, K., & Sadati, N. (1998). Analysis of the
Sustained Ventricular Arrhythmias from SAECG Using Artificial Neural Network
and Fuzzy Clustering Algorithm. Proceedings of the 20th Annual International
Conference of the ZEEE Engineering in Medicine and Biology Society, vol. 20,

no 1.

Holland, J.H. (1975). Adaptation in Natural and Artificial Systems, first ed.,
University of Michigan Press, Ann Arbor, MI,

Hosseini, H.G., Reynolds, K.J., & Powers, D. (2001). A Multi-stage Neural Network
Classifier for ECG Events, Proceedings of the 23rd International Conference of
the IEEE Engineering in Medicine and Biology Society, 25-28.

Hu, Y.Z., Palreddy, S., & Tompkins, W.J. (1997). A patient-adaptable ECG beat
classifier using a mixture of experts approach. /IEEE Trans Biomed Eng,44:891-
900.



150

Isler, Y., & Kuntalp, M. (2007). Combining Classical HRV Indices With Wavelet
Entropy Measures Improves to Performance in Diagnosing Congestive Heart

Failure, Computers in Biology and Medicine, vol.37(10), 1502-1510.

Inan, Z.H., & Kuntalp, M. (2007). A study on fuzzy C-means clustering-based
systems in automatic spike detection. Computers in Biology and Medicine 37,

1160 — 1166.

Ingle, V.K. & Proakis, J.G. (2000). Digital Signal Process,ng Using Matlab. Pacific
Grove, USA: Brooks/Cole Publishing Company.

Jain, A.K., Duin, R.P.W., & Mao, J. (2000). Statistical pattern recognition: a review.
IEEE Trans. Pattern Analysis and Machine Intelligence, 22(1), 4-37.

James, C.J., Jones, R.D., Bones, P.J., & Carroll, G.J. (1999). Detection of
epileptiform discharges in the EEG by a hybrid system comprising mimetic, self-
organized artificial neural network, and fuzzy logic stages, Clinical

Neurophysiology, 110, 2049-2063.

John, G. Kohavi, R. & Pfleger, K. (1994). Irrelevant features and the subset selection
problem. In Machine Learning: Proceedings of the Eleventh International

Conference.

Kalayci, T., & Ozdamar, O. (1995). Wavelet Processing For Automated Neural
Network Detection of EEG Spikes, IEEE Eng. Med. Biol. Mag., 13, 160-166.

Karimifard, S., Ahmadian, A., & Khoshnevisan, M. (2006). Morphological heart
arrhythmia detection using hermitian basis functions and kNN classifier. 28th

Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, Vols 1-15, 4489-4492.



151

Khadra, L., Al-Fahoum, A.S., & Al-Nashash, H. (1997). Detection of life-threatening
cardiac arrhythmias using wavelet transformation. Med Biol Eng Comp, 35, 626-

632.

Khadra, L., Al-Fahoum, A. & Binajjaj, S. (2005 ). A Quantitative Analysis Approach
for Cardiac Arrhythmia Classi- fication Using Higher Order Spectral Techniques.

IEEFE Transactions on Biomedical Engineering.

Kiloh, L.G., McComas, A.J., Osselton, JW., & Upton, A. (1981). Clinical
electroencephalography (4th ed). London UK: Butterworths.

Ko, C.W., & Chung, H.W. (2000). Automatic spike detection via an artificial neural
network using raw EEG data: effect of data preparatio n and implications in the

limitations of online recognition, Clinical Neurophysiology, 111, 477-481.

Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial
Intelligence, 97, 273-324

Kohonen, T. (1982). Self-Organized formation of topologically correct feature
maps”, Biological Cybernetics, 43, 59-69.

Kohonen, T. (2001). Self-Organizing Maps, 3rd edn., Springer.

Ktonas, P.Y. (1987). Methods of analysis of brain electrical and magnetic signals,
EEG, Elsevier; Amsterdam: Handbook.

Kutlu, Y., Isler, Y., Kuntalp, D., & Kuntalp, M. (2006). Cok katmanli Ag Yapilar:
Kullanmilarak Diken Dalgalarin Algilanmas:, IEEE 14th Signal Processing and
Communications Applications Conference (SIU2006), Antalya / Turkey, 17-19
April 2006.



152

Kutlu, Y., Kuntalp, D., & Kuntalp, M. (2006). Giiriiltii Eklenmis EEG Verisi
Kullanilarak Cok Katmanli Ag Yapilariyla Diken Dalgalarin Ayiklanmasi,
Biyomedikal Miihendisligi Ulusal Toplantisi, (BIYOMUT2006), Istanbul /
Turkey, 125-28 May1s 2006

Kutlu, Y., Kuntalp, M. & Kuntalp, D. (2007). Cok katmanli Ag Yapilar
Kullanmilarak Aritmi Algilanmasinda Pencere Boyutu etkisi, IEEE 15th Signal
Processing and Communications Applications Conference (SIU2007), Eskisehir /

Turkey, 11-13 June 2007

Kutlu, Y., Kuntalp, M. & Kuntalp, D. (2008a). Oz Diizenleyici Haritalar
Kullanilarak Diken Dalgalarin Analizi, Geng Bilim Insanlar1 ile Beyin Biyofizigi
II. Calistay1, Izmir / Turkey, 21-23 Feb 2008

Kutlu, Y., Kuntalp, M. & Kuntalp, D. (2008b). Yiiksek Mertebeden Istatistik
kullanilarak Aritmi  Siniflandirilmasi, 1EEE 16th Signal Processing and
Communications Applications Conference (SIU2008), Didim / Aydin / Turkey,
20-22 April 2008,

Kutlu, Y., Kuntalp, M. & Kuntalp, D. (2008c). Oz Diizenleyici Haritalar
Kullanilarak Aritmik Ekg Vurularmin Topografik Analizi, XI11.Biyomedikal
Miihendisligi Ulusal toplantist BIYOMUT 2008, Ankara / Turkey, 29-31 May
2008

Kutlu, Y. & Kuntalp, D. (2009a). Feature Reduction Method Using Self Organizing
Maps, 6th International Conference on Electrical and Electronics Engineering,5-8

November 2009, Bursa, TURKEY.

Kutlu, Y. & Kuntalp, D. (2009b). Feature Extraction for ECG Heartbeats Using
Higher Order Statistics of Wavelet Packet Decomposition Coefficients, Pattern

recognition, under review, since june 6, 2009.



153

Kutlu, Y., Kuntalp, M., & Kuntalp, D. (2009a). EKG Vurularimin Morfolojik
Ozniteliklerin Topografik Analizi, XIV. Biyomedikal Miihendisligi Ulusal
toplantist BIYOMUT 2009, izmir / Turkey, 20-23 May 2009,

Kutlu, Y., Kuntalp, M., & Kuntalp, D. (2009b). Optimizing the performance of an
MLP classifier for the automatic detection of epileptic spikes, Expert Systems with

Applications, Volume 36, Issue 4, May 2009, Pages 7567-7575

Kutlu, Y., Kuntalp, M., & Kuntalp, D. (2009c). The Applied Brain Biophysics,
chapter: Visualization of SOM as a U-matrix, pages 309-319, 2009, Dokuz Eyliil
Universitesi Tip Fakiiltesi Yaynlari, ISBN: 978-975-441-259-8

Kutlu, Y. & Kuntalp, D. (2010). Multi-Stage Automatic Heartbeat Recognition,

ready to submition.

Lagerholm, M., Peterson, C., & Braccini, G. (2000). Ebendrandt L, Sornmo L.
Clustering ECG complexes using hermite functions and self-organizing maps.

IEEE Trans Biomed Eng.,47, 838-848.

Learned, R.E., & Willsky, A.S. (1995). A wavelet packet approach to transient signal
classification. Applied and Computational Harmonic Analysis, 2. 265-278.

Livarinen, J., Kohonen, T., Kangas, J., & Kaski, S. (1994). Visualizing the clusters
on the self-organizing map. Proceedings of the Conference on Artificial

Intelligence Research in Finland, 122-126.

Mallat, S.G. (1989). A theory for multiresolution signal decomposition: the wavelet
representation. /[EEE Trans. Pattern Anal. Machine Intell., 11, 674-693.

Maroino, N. S., Betanzos, A.A., & Sanroman, M.T. (2007). Filter methods for

selection — A comparative study. Intelligent Data Engineering and Automated



154

Learning - IDEAL 2007, 178-187.

Melgani, F, & Yakoub, B. ( 2008). Classification of ECG signals with Support
Vector Machine and Particle Swarm Optimization. 3rd . [EEE Transactions on

Information Technologyin Biomedicine, 12, 667-677.

Melo, S.L., Caloba, L.P. & Nadal, J. (2000). Arrhythmia analysis using artificial
neural network and decimated electrocardiographic data. Comp Cardiol, 27, 73-

76.

Mendel, J.M. (1991). Tutorial on higher-order statistics (spectra) in signal processing
and system theory: theoretical results and some applications, Proceedings of the

IEEE, 79(3), 278 - 305

Meyer, Y. (1993). Wavelet algorithm and application. Philadephia,PN: SIAM,

Minami, K., Nakajima, H. & Toyoshima, T. (1997). Arrhythmia diagnosis with
discrimination of rhythm origin and measurement of heart-rate variation. Comp

Cardiol, 243—-246.

Minami, K., Nakajima, H., & Toyoshima, T. (1999). Real-time discrimination of
ventricular tachyarrhythmia with Fourier-transform neural network. /EEE Trans

Biomed Eng, 46,179-185.

Minnix, J.I. (1991). An analysis of the effects of the noisy training sets on the fault
tolerance of neural networks, Decision Aiding for Complex Systems, Conference

Proceedings., IEEE International Conference on, 2, 713-718.

Misiti, M., Misiti, Y., Oppenheim, G., & Poggi, J. M. (2004). Wavelet toolbox for
use with Matlab, User’s Guide, Ver. 3.



155

Moazzen, 1., Ahmadzadeh, M.R., Doost-Hoseini, A.M., & Omidi, M.J., (2009). An
intelligent  classifier for cardiac  arrhythmias recognition, Wireless
Communications & Signal Processing, 2009. WCSP 2009. International
Conference, pp 1-5.

Nadal, J. & Bossan, M. (1993). Classification of cardiac arrhythmia based on
principal components analysis and feedforward neural Networks”, Comput

Cardiol, , 341-344.

Nasiri, J.A., Naghibzadeh, M., Yazdi, H.S., Naghibzadeh, B., (2009). ECG
Arrhythmia Classification with Support Vector Machines and Genetic Algorithm,
Computer Modeling and Simulation, 2009. EMS '09. Third UKSim European
Symposium, Page 187 —192.

Nicholson, A. (2002). Generalization Error Estimates and Training Data Valuation,

thesis, California Institute of Technology.

Niedermeyer, E., & Silva, F.L.D. (1993). Electroencephalography, basic principles,
clinical applications and related fields, (3rd ed), Baltimore, MD: Williams &
Wilkins.

Nuh, M., Jazidie, A., & Muslim, M.A. (2002). Automatic detection of epileptic
spikes based on wavelet neural network, Circuits and Systems, APCCAS '02. Asia-
Pacific Conference on, 483 - 486.

Oja, M., Nikkila, J., Toronen, P., Wong, G., Castr'en, E., & Kaski, S. (2002).
Exploratory clustering of gene expression profiles of mutated yeast strains. In W.
Zhang & 1. Shmulevich (Eds.), Computational and Statistical Approaches to

Genomics, Kluwer Academic Publishers.



156

Osowski, S., & Linh, T.H. (2001). ECG beat recognition using fuzzy hybrid neural
network. /EEE Trans Biomed Eng;48:1265-71.

Osowski, S., Hoai, L.T. & Markiewicz, T. (2004). Support Vector Machine-Based
Expert System for Reliable Heartbeat Reliable Heartbeat Recognition”, IEEE
Trans. on BME, 51(4).

Osowski, S., Siroic, R. & Siwek, K., (2009). Genetic algorithm for integration of
ensemble of classifiers in arrhythmia recognition, Instrumentation and
Measurement Technology Conference, 2009. I2MTC '09. IEEE, Page(s): 1496 —
1500.

Owis, M.I., Abou-Zied, A.H., Youssef, A.M., & Kadah, Y.M. (2002). Study of
features based on nonlinear dynamical modelling in ECG arrhythmia detection and

classification. IEEE Trans Biomed Eng, 49, 733-736.

Ozdamar, O., & Kalayci, T. (1998). Detection of spikes with artificial neural
networks using raw EEG, Computers and Biomedical Research, 31, 122—142.

Ozdamar, O., Yaylali, 1., Jayaker, P., & Lopez, C.N. (1991). Multilevel neural
network system for EEG spike detection, Computer-Based Medical Systems,
Proceedings of the Fourth Annual IEEE Symposium, 272-279.

Pan, J., & Tompkins, W.J. (1985). A Real-Time QRS Detection Algorithm, /EEE
Trans. Biomed. Eng., 32(3), 230-236.

Pang, C.C., Upton, A.R.M., Shine, G., & Kamath, M.V. (2003). A comparison of
algorithms for detection of spikes in the electroencephalogram, [EEE

Transactions Biomedical Engineering, 50(4), 521-526.



157

Pudil, P., Novovicova, J., & Kittler, J. (1994). Floating Search Methods in Feature
Selection. Pattern Recognition Letters, 15, 1119- 1125.

Raghav, S., & Mishra, A.K., (2008). Fractal feature based ECG arrhythmia
classification, TENCON 2008 IEEE Region 10 Conference,p 1 — 5.

Rangaraj, M.R. (2002). Biomedical signal analysis. IEEE Press.

Sawhney, G.S. (2007). Fundamentals of biomedical engineering. —New Age
Publishers.

Somol, P., Pudil, P., Novovicova, J., & Paclik, P. (1999). Adaptive Floating search

methods in feature selection. Pattern Recognition Letters, 20, 1157-1163,

Song, M.H., Lee, J., Cho, S.P., Lee, K.J., & Yoo, S.K. (2005). Support Vector
Machine Based Arrhythmia Classification Using Reduced Features. International

Journal of Control, Automation, and Systems, 3(4), 571-579.

Tang, E.K., Suganthan, P.N., Yao, X., & Qin, A.K. (2005). Linear dimensionality
reduction using relevance weighted LDA , Pattern Recognition, 38(4), 485-493.

Tarassenko, L., Khan, Y.U., & Holt, M.R.G. (1998). Identification of inter- ictal
spikes in the EEG using neural network analysis, Inst. Elect. Eng.-Proc. Sci.

Meas. Technol., 145(6), 270-278.

Thakor, N.V., Natarajan, A.,& Tomaselli, G. (1994). Multiway sequential hypothesis
testing for tachyarrhythmia discrimination. IEEE Trans Biomed Eng, 41,480-487.

Thakor, N.V., Zhu, Y.S., & Pan, K.Y. (1990). Ventricular tachycardia and fibrillation
detection by a sequential hypothesis testing algorithm. /EEE Trans Biomed Eng,
37,837-43.



158

Tompkins, W. J. (1993). Biomedical Digital Signal Processing: C-Language
Examples .and Laboratory Experiments for the IBM Pc. Prentice Hal.

Torun, M.U., sler, Y., Kuntalp, D. & Kuntalp, M. (2006). Dal Blogu Vurularin
Yiiksek Mertebeden Izgel Coziimleme ve Yapay Sinir Aglart ile Simiflandirilmasi.
IEEE 14. Sinyal Isleme ve iletisim Uygulamalar1 Kurultay.

Tsipourasa, M.G., Fotiadisa, D.I., & Sideris, D. (2005). An arrhythmia classification
system based on the RR-interval signal, Artificial Intelligence in Medicine 33,
237-250.

Tsukuda, Y., Kurokawa, H., & Mori, S. (1995). Investigation of generalization
ability by using noise to enhance MLP performance, Neural Networks,

Proceedings., IEEE International Conference on, 5,2795-2798.

Ultsch, A. (2003). Maps for the Visalization of high-dimensional Data Spaces, in
Proc. Workshop on Self organizing Maps, 225 - 230.

Ultsch, A. (1992). Self-Organizing Neural Networks for Visualization and

Classification, Proc. Conf. Soc. for Information and Classification.

Ultsch, A. (1993). Self-organizing neural networks for visualization and
classification. Information and Classification, eds. O.Opitz, B.Lausen and R.Klar,

Springer-Verlag, Berlin, 307- 313.

Unser, M., & Aldroubi, A. (1996). A review of wavelets in biomedical applications.
Proceedings of the IEEE, 84(4), 626—638.



159

Ubeyli, E.D. (2007). ECG beats classification using multiclass support vector
machines with error correcting output codes. Digital Signal Processing, vol 17,

675-684

Wagner, G.S. (2001). Marriott 'un Pratik Elektrokardiyografisi (10™ ed). Lippincott
W&W.

Wang, Y., Zhu, Y.S., Thakor, N.V., & Xu, Y.H. (2001). A short-time multifractal
approach for arrhythmia detection based on fuzzy neural network. IEEE Trans

Biomed. Eng. 48, 989-995.

Watanabe, S. (1985). Pattern recognition: human and mechanical. New York: John

Wiley & Sons Inc.

Webber, W.R.S., Litt, B., Wilson, K., & Lesser, R. (1994). Practical detection of
epileptiform discharges (ED’s) in the EEG using an artificial neural network: a
comparison of raw and parameterized data, Electroencephalography and Clinical

Neurophysiology, 91, 194-204.

Webster, J.G. (1993). Design of Cardiac Pacemakers. IEEE Press.

Webster, J.G. (1998) Medical instrumentation application and design (3 ed). John
Wiley&sons.

Wiskott, L. (2004). Principal Component Analysis, Humboldt-University Berlin.

Yang, T.F., Device, B., & Macfarlane, P.W. (1994). Artificial neural networks for
the diagnosis of atrial fibrillation. Med Biol Eng Comp.32,615-619.



160

Yong, Z., Wenxue, H., & Yonghong, X. (2009). ECG Beats Feature Extraction
Based on Geometric Algebra, Computational Intelligence and Software

Engineering, 2009. CiSE 2009. International Conference, pp. 1 —3.

Yu, C.C,, & Liu, B.D. (2002). A backpropagation algorithm with adaptive learning
rate and momentum coefficient. Neural Networks, IJCNN '02. Proceedings of the
2002 International Joint Conference, 2, 1218-1223.

Yu, X., Efe, M.O., & Kaynak, O. (2002). A general backpropagation algorithm for
feedforward Neural Networks learning, Neural Networks, IEEE Transactions on,

13(1), 251-254.

Zhang, X.S., Zhu, Y.S., Thakor, N.V., & Wang, Z.Z. (1999). Detecting ventricular
tachycardia and fibrillation by complexity measure. /[EEE Trans Biomed Eng,
45,548-555.



