
DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

SOLVING BUFFER ALLOCATION PROBLEM IN

PRODUCTION LINES USING TABU SEARCH

BASED APPROACHES

by

Leyla DEMİR

April, 2011

İZMİR

SOLVING BUFFER ALLOCATION PROBLEM IN

PRODUCTION LINES USING TABU SEARCH

BASED APPROACHES

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Doctor of

Philosophy in Industrial Engineering, Industrial Engineering Program

by

Leyla DEMİR

April, 2011

İZMİR

 iii

ACKNOWLEDGMENTS

First and foremost, I would like to thank my supervisor Prof. Dr. Semra Tunalı,

for her guidance, insights and encouragement throughout this Ph.D. study. Her

inspiration, guidance and counsel throughout the period of my study at Dokuz Eylül

University were invaluable. Her advice always gave me the direction especially

when I was lost during the research. She always encouraged me when I was

desperate. She is not only a Ph.D. supervisor for me but also a great friend who

listens all my problems and continuously supports me. It was extremely helpful for

my academic career to have a chance to work with her.

I would like to express my appreciation to the other members of my thesis

committee. I would like to thank Assoc. Prof. Dr. Arslan M. Örnek for his

continuous support during my doctoral education at Dokuz Eylul University. I would

also like to express my deepest appreciation to Assist. Prof. Dr. Deniz Türsel Eliiyi,

for her valuable suggestions and guidance throughout this Ph.D. study. She spared

her precious time for me like a co-advisor and continuously supported me during my

Ph.D. study. I really appreciate for her friendship and continuous support.

I would also like to extend my gratitude to Prof. Dr. M. Bülent Durmuşoğlu and

Assoc. Prof. Dr. Şeyda A. Topaloğlu for accepting to serve on my dissertation

committee in the midst of all their activities.

I would like to thank two important people who continuously supported me when

I was in Norway for my Ph.D. researches. First, I would like to express my deepest

appreciation to Prof. Arne Løkketangen for his valuable suggestions, insights and

guidance during my Ph.D. study. I would also like to thank to Prof. Geir Dahl for his

continuous support and encouragement when I was in Norway.

I would also like to thank to my colleagues for their guidance during my studies at

Dokuz Eylul University. Great thanks to my friends, Hacer Güner Gören and Simge

 iv

Yelkenci Köse, who are special for me, for listening to my complaints and providing

continuous support and smile whenever I need the most.

Last, but the most, I would like to emphasize my thankfullnes with ultimate

respect and gratitude to my parents and siblings. The continuous support, care, and

love of my family is the source and encouragement of this work. I would like to

thank my mother, Sultan Demir and my father, Hüseyin Önder Demir, from the

bottom of my heart. I feel extremely lucky to have such wonderful parents who have

made many sacrifices over the years to ensure that their children receive high quality

education. My sister, Haval Demir, and my brother, Abidin Demiray Demir, have

also had a tremendous positive influence on my life. They were always with me

whenever I needed. I would like to emphasize my thankfullnes to both because of

their love, confidence, encouragement and endless support in my whole life.

Leyla Demir

Izmir, April, 2011

 v

SOLVING BUFFER ALLOCATION PROBLEM IN PRODUCTION LINES

USING TABU SEARCH BASED APPROACHES

ABSTRACT

The buffer allocation problem, which involves the distribution of buffer space

among the intermediate buffers of a production line, arises in a wide range of

manufacturing systems, and it is one of the most important optimization problems

faced by manufacturing systems designers. The primary aim of this Ph.D. study is to

introduce novel tabu search based solution approaches for solving buffer allocation

problem in production lines. In this thesis, the buffer allocation problem is solved in

three stages. In the first stage, a novel TS algorithm including new move definitions

is proposed to solve the buffer allocation problem under the objective of throughput

maximization for homogeneous production lines involving unreliable machines with

deterministic processing times. Following a pilot experiment to identify the best TS

parameters, the new move definitions for buffer allocation problem are introduced. In

the second stage, the problem is extended to non-homogeneous production lines, and

an adaptive TS algorithm is proposed to solve the revised problem under the

objective of throughput maximization. Besides proposing a new strategy to tune the

parameters of TS adaptively during the search, an experimental study is carried out

to select an intelligent initial solution scheme among three alternatives so as to

decrease the search effort to obtain the best solutions. Finally, in the last stage, three

approaches are proposed to solve the buffer allocation problem for non-

homogeneous production lines involving unreliable machines with deterministic

processing times. These three approaches which integrate binary search, tabu search,

and simulated annealing with an adaptive tabu search mechanism aim at minimizing

the total buffer size to achieve a desired throughput level. To improve the searching

efficiency of TS and SA algorithms alternative neighborhood generation mechanisms

are suggested and their performance are tested.

Keywords: Buffer allocation problem, Production lines, Tabu search, Simulated

annealing

 vi

ÜRETİM HATLARINDA TAMPON STOK DAĞILIMI PROBLEMİ İÇİN

TABU ARAMA TABANLI ÇÖZÜM YAKLAŞIMLARI

ÖZ

Üretim sistemi tasarımcılarının karşılaştığı başlıca eniyileme problemlerinden biri

olan tampon stok dağılımı problemi bir üretim sisteminde tampon stokların bu

stoklar için ayrılmış alana en iyi şekilde dağıtılmasını içermektedir. Bu doktora

tezinin başlıca amacı üretim hatlarında tampon stok dağılımı problemini çözmek

üzere özgün tabu arama tabanlı yaklaşımlar sunmaktır. Tampon stok dağılımı

problemi bu tezde üç aşamada çözülmüştür. İlk aşamada, deterministik üretim

zamanlarına sahip ve bozulmalara maruz kalan makinelerin oluşturduğu homojen

üretim hatlarında tampon stok dağılımı problemini çözmek için yeni hareket

tanımlarını içeren özgün bir tabu arama algoritması önerilmiştir. En iyi tabu arama

parametrelerini belirlemek üzere yapılan bir pilot çalışmadan sonra tampon stok

dağılımı problemi için yeni hareket tanımları sunulmuştur. İkinci aşamada, söz

konusu problem, homojen olmayan üretim hatlarında tampon stok dağılımı olarak

genişletilerek, üretim oranınını maksimize etmek amacıyla özgün bir adaptif tabu

arama algoritması önerilmiştir. Tabu arama parametrelerini arama süresince adaptif

bir şekilde değiştirmek üzere yeni bir stratejinin önerilmesinin yanı sıra, arama için

sarf edilen eforun azaltılması amacıyla üç alternatif başlangıç çözümü önerilmiştir.

Önerilen bu alternatif başlangıç çözümlerinden birini seçmek üzere de deneysel bir

çalışma yürütülmüştür. Bu doktora çalışmasının son aşamasında da bozulmalara

maruz kalan ve deterministik üretim zamanlarına sahip makinelerden oluşan üretim

hatlarında tampon stok dağılımı problemini çözmek üzere üç ayrı yaklaşım

önerilmiştir. İkili arama, tabu arama ve tavlama benzetimi algoritmalarını bir adaptif

tabu arama mekanizması ile birleştiren bu üç yaklaşım istenilen üretim oranını

sağlamak üzere hattaki toplam tampon miktarını minimize etmeyi amaçlamaktadır.

Tabu arama ve tavlama benzetimi algoritmalarının arama etkinliğini artırmak üzere

alternatif komşuluk yaratma mekanizmaları önerilmiş ve bunların performansları test

edilmiştir.

Anahtar sözcükler: Tampon stok dağılımı problemi, Üretim hatları, Tabu arama,

Tavlama benzetimi

 vii

CONTENTS

 Page

Ph.D. THESIS EXAMINATION RESULT FORMii

ACKNOWLEDGMENTSiii

ABSTRACTv

ÖZ .. .vi

CHAPTER ONE – INTRODUCTION1

1.1. Objectives and Motivations1

1.2. Research Methodology.. ..2

1.3 Outline of the Thesis4

CHAPTER TWO - BACKGROUND INFORMATION7

2.1 Introduction7

2.2 The Buffer Allocation Problem7

2.2.1 Characteristics of the Buffer Allocation Problem8

2.2.2 Classification of the Problems ... 11

2.3 General Procedure to Solve the Buffer Allocation Problem 13

2.3.1 Evaluative Methods ... 15

2.3.2 Generative Methods ... 16

2.4 Background Information on Solution Approaches Employed 18

2.4.1 Decomposition Method ... 19

2.4.2 Tabu Search ... 20

2.4.2.1 Search Space and Neighborhood Structure 21

2.4.2.2 Tabus .. 21

2.4.2.3 Aspiration Criteria ... 22

2.4.2.4 Termination Criteria ... 22

2.4.2.5 Intensification .. 23

2.4.2.6 Diversification.. 24

 viii

2.4.3 Simulated Annealing ... 25

2.4.3.1 Neighborhood Generation Mechanism .. 27

2.4.3.2 Initial Temperature... 27

2.4.3.3 Cooling Schedule ... 27

2.4.3.4 Final Temperature .. 28

2.4.3.5 Number of Iterations .. 28

2.5 Chapter Summary .. 29

CHAPTER THREE - LITERATURE SURVEY .. 30

3.1 Introduction ... 30

3.2 Proposed Classification Scheme and Discussion of Current Literature 31

3.2.1 Reliable Lines .. 32

3.2.2 Unreliable Lines... 42

3.3 Motivation ... 55

3.4 Chapter Summary .. 57

CHAPTER FOUR - A TABU SEARCH APPROACH FOR THROUGHPUT

MAXIMIZATION IN UNRELIABLE HOMOGENEOUS PRODUCTION

LINES .. 58

4.1. Introduction .. 58

4.2 Problem Specifications .. 58

4.3 Proposed TS Algorithm ... 60

4.3.1 Move Representation and Tabu Moves ... 60

4.3.2 Search Space and Neighborhood Structure ... 61

4.3.3 Diversification Strategy ... 62

4.3.4 Aspiration Criterion ... 62

4.3.5 Stopping Condition .. 63

4.4 Computational Experiments .. 65

4.4.1 Identification of the Best Tabu Search Parameters.................................. 65

4.4.2 Experiments on Benchmark Problems .. 67

 ix

4.4.2.1 Five Machine Line ... 68

4.4.2.2 Nine Machine Lines ... 68

4.4.2.3 Ten Machine Line .. 69

4.4.2.4 Long Production Lines ... 71

4.5 Chapter Summary .. 73

CHAPTER FIVE - AN ADAPTIVE TABU SEARCH APPROACH FOR

THROUGHPUT MAXIMIZATION IN UNRELIABLE NON-

HOMOGENEOUS PRODUCTION LINES .. 75

5.1 Introduction ... 75

5.2 Problem Specifications .. 75

5.3 Proposed ATS Algorithm .. 77

5.3.1 Move Representation and Tabu Moves ... 77

5.3.2 Search Space and Neighborhood Structure ... 78

5.3.3 Initialization Scheme ... 78

5.3.4 Tabu Tenure ... 80

5.3.5 Intensification Strategy .. 80

5.3.6 Diversification Strategy ... 81

5.3.7 Stopping Condition .. 81

5.4 Computational Experiments .. 83

5.4.1 Results of Small-Sized Problems .. 84

5.4.2 Results of Medium-Sized Problems .. 86

5.4.3 Results for Large-Sized Problems ... 89

5.4.4 Summary of the findings ... 93

5.5 Chapter Summary .. 95

CHAPTER SIX - AN INTEGRATED APPROACH FOR THROUGHPUT

MAXIMIZATION WITH MINIMUM TOTAL BUFFER SIZE 97

6.1 Introduction ... 97

6.2 Problem Specifications .. 97

 x

6.3 Proposed Integrated Approach .. 99

6.3.1 Binary Search Algorithm ... 99

6.3.2 Tabu Search Algorithm .. 101

6.3.2.1 Search Space ... 101

6.3.2.2 Move Representation and Tabu Moves .. 101

6.3.2.3 Neighborhood Generation Mechanism ... 101

6.3.2.4 Neighborhood Size and Tabu Tenure ... 102

6.3.2.5 Aspiration Criterion .. 102

6.3.2.6 Stopping Condition ... 102

6.3.3 Simulated Annealing Algorithm ... 104

6.4 Computational Experiments ... 106

6.4.1 Determination of Neighborhood Generation Mechanism 107

6.4.2 Experiments on Test Problems ... 114

6.4.2.1 Results of Small-Sized Problems .. 115

6.4.2.2 Results of Medium-Sized Problems.. 118

6.4.2.3 Results of Large-Sized Problems .. 121

6.4.3 Summary of the Findings ... 123

6.5 Chapter Summary ... 124

CHAPTER SEVEN – CONCLUSION .. 125

7.1 Summary of the Thesis ... 125

7.2 Contributions .. 127

7.3 Future Research Directions .. 128

REFERENCES .. 130

APPENDICES ... 143

 1

CHAPTER ONE

INTRODUCTION

1.1 Objectives and Motivations

Production systems are often organized with machines connected in series and

separated by buffers. This arrangement is often called a production line. A five-

machine line is presented by Figure 1.1 where the squares represent machines and

the circles represent buffers. Each part goes through all the machines exactly in same

order in the direction of the arrows, from upstream inventory to the first machine for

an operation, to the first buffer where it waits for the second machine, to the second

machine, etc.

Figure 1.1 Five-machine production line

The performance of such a production line is affected by both variations in the

processing times and the reliability parameters of the machines. The effects of such

variations can be reduced by using buffers between the machines. Allocating buffers

between the machines is to allow machines to operate more independently of each

other. This reduces the idle time due to starving (no input available) and blocking (no

space to dispose of output). Less idle time increases the average production rate of

the line. However, allocating buffers into a production line can be expensive, and

there is generally a physical limit to the floor space in the system. The buffer

allocation problem (BAP), which is concerned with the allocation of a certain

amount of buffers among the intermediate buffer locations of a production line to

achieve a specific objective function, is the subject of this Ph.D. thesis.

Due to its importance and complexity, a considerable amount of work has been

done in this area. The previous studies in this area mainly focus on characterizing

2

and describing optimal buffer distributions. In last ten years, the main focus of many

research studies has been on developing methods to optimize buffer sizes in

production lines.

The purpose of this Ph.D. thesis is also to construct and describe efficient

algorithms for production line design. It is hoped that these algorithms will help

manufacturing system designers to determine how buffers should be allocated.

Generally, the buffer allocation problem is classified into two categories

according to the objective function employed to solve this problem. The first one

aims at maximizing the throughput rate of the line and the second one focuses on

total buffer size minimization. The throughput maximization problem has been

studied more extensively in the literature. Moreover, employing meta-heuristic

methods to solve buffer allocation problem is a new trend in this area. To better

search the solution space, the recent trend is to hybridize the meta-heuristics with

other methods. However, a few studies attempt to solve buffer allocation problem by

hybrid methods.

In the light of current relevant literature, this Ph.D. study aims at developing new

hybrid approaches to solve buffer allocation problem under the objective of total

buffer size minimization.

1.2 Research Methodology

The general problem involves how to allocate buffers so as to improve the

performance of the production line. Solution to this problem depends on the

characteristics of the production line studied. In this Ph.D. thesis, the scope of the

problem is limited to production lines involving unreliable machines. So, the

machines in the line are subject random breakdowns with random repair times.

In general, solution approaches to solve the buffer allocation problem involve a

setting where generative methods and evaluative methods are combined in a closed

3

loop configuration. In such a configuration, an evaluative method is used to obtain

the value of the objective function for a set of inputs. The value of the objective

function is then communicated to the generative method. Simulation, traditional

Markov state models, aggregation methods, generalized expansion method, and

decomposition methods are examples of evaluative methods. In this study, the

decomposition method is used as an evaluative method due to its ability to obtain the

throughput of a production line quite accurately and quickly for unreliable serial

lines with deterministic processing times.

There are various optimization techniques used as a generative method. Complete

enumeration is the simplest method but it is only applicable for small-sized

problems. Since the total number of feasible solutions grows exponentially when the

total number of machines and the total buffer capacity increases, it is impossible to

employ complete enumeration for large-sized problems. Therefore the researchers

employed several traditional optimization and search methods, such as dynamic

programming, gradient search methods, Hooke-Jeeves method and knowledge-based

methods. However, traditional search methods have disadvantages. The main

disadvantage of these methods is that they cannot escape local optima in search of

the global optimum. To overcome this difficulty, in recent years, heuristic and meta-

heuristic methods, such as simulated annealing (SA), tabu search (TS), genetic

algorithms (GA), and ant colony optimization (ACO) are widely used to solve the

buffer allocation problem.

Among these meta-heuristics, the application of TS received a considerable

attention from the researchers, since it provides an alternative to traditional

optimization techniques by using memory-based strategies to escape the local optima

and it is also successfully employed on many combinatorial optimization problems.

However, as problems get larger and more complex as in real life, basic TS may lack

the capability of exploring the search space effectively. As a remedy, over the last

years, while some of the studies attempt to employ TS in an adaptive way the others

attempt to hybridize TS with other optimization methods.

4

Within this framework, in this Ph.D. study, the buffer allocation problem is solved

in three stages. In the first stage, a TS algorithm is proposed to solve buffer

allocation problem under the objective of throughput maximization for unreliable

and also homogeneous production lines where all the machines in the line have the

same deterministic processing times. Following a pilot experiment to identify the

best TS parameters, the new move definitions for buffer allocation problem are

introduced.

In the second stage, the problem is extended to non-homogeneous production

lines where the processing times of the machines are different, and an adaptive TS

algorithm is proposed to solve the revised problem under the objective of throughput

maximization. To our knowledge, ours is the first extensive study dealing with buffer

allocation problem for unreliable and also non-homogeneous lines. Imposing buffer

space constraints for each buffer location makes the problem at hand even harder.

Besides proposing a new strategy to tune the parameters of TS adaptively during the

search, an experimental study is carried out to select an intelligent initial solution

scheme among three alternatives so as to decrease the search effort to obtain the best

solutions.

Finally, in the last stage, three approaches are proposed to solve the buffer

allocation problem for non-homogeneous production lines involving unreliable

machines with deterministic processing times. These three approaches which

integrate binary search, tabu search, and simulated annealing with an adaptive tabu

search mechanism aim at minimizing the total buffer size to achieve a desired

throughput level. To improve searching efficiency of TS and SA algorithms

alternative neighborhood generation mechanisms are suggested and their

performance are tested.

1.3 Outline of the Thesis

This Ph.D. thesis is organized as follows:

5

In Chapter 2, to gain a more comprehensive understanding of the problem studied

in this Ph.D. thesis, various concepts related to the buffer allocation problem, i.e.,

characteristics, formulations and the solution methods employed in literature to solve

this problem are described. Additionally, the basic concepts of TS and SA which are

employed as a solution method in this study are presented.

In Chapter 3, a structural framework is proposed to review the current relevant

research on buffer allocation problem in production lines. Using this structural

framework, the current research issues are identified and the motivation for this

Ph.D. study is presented.

In Chapter 4, a TS approach is proposed to solve the buffer allocation problem in

unreliable and homogeneous production lines under the objective of throughput

maximization. Prior to using the proposed TS approach, a pilot experiment is carried

out to identify the best TS parameters. Next, using these best TS parameters,

comparative experiments are carried out on a set of benchmark problems published

in the literature.

In Chapter 5, an adaptive TS approach is proposed for solving the buffer

allocation problem to maximize the throughput in unreliable and also non-

homogeneous production lines. Moreover, a pilot experiment is carried out to

identify the best initialization scheme. To test the performance of proposed adaptive

TS approach an experimental study is carried out on randomly generated problem

sets involving both small and large-sized problems.

In Chapter 6, three solution approaches are proposed to solve buffer allocation

problem for unreliable and also non-homogeneous lines under the objective of total

buffer size minimization. The proposed solution approaches for solving the problem

involve three algorithms: binary search, tabu search and simulated annealing. All of

these algorithms involve an adaptive tabu search algorithm to minimize the total

buffer size to achieve a desired throughput level. Additionally, to improve the search

6

performance of TS and SA algorithms, alternative neighborhood generation

mechanisms are suggested and they are tested.

Finally in Chapter 7, the summary and the contributions of this Ph.D. study are

discussed. Moreover, the possible future research directions are presented.

7

CHAPTER TWO

BACKGROUND INFORMATION

2.1 Introduction

The aim of this Ph.D. study is to develop efficient algorithms to solve buffer

allocation problem for unreliable serial production lines. In order to gain an

understanding of important issues related to the buffer allocation problem and also

the solution methodologies proposed to deal with this problem, this chapter gives a

general background information.

The chapter is organized as follows. In Section 2.2, the problem characteristics are

given and the buffer allocation problem is classified based on these characteristics. In

section 2.3, the general process of solution of buffer allocation problems is presented.

In section 2.4, the basic principles of decomposition method, tabu search and

simulated annealing are explained so that an understanding can be gained to the

background of the methods employed in this Ph.D. study. Finally, in section 2.5, the

context of this chapter is summarized.

2.2 The Buffer Allocation Problem

The buffer allocation problem, BAP, is concerned with the allocation of a certain

amount of buffers, N, among the K-1 intermediate buffer locations of a production

line to achieve some specific objective and it is one of the major optimization

problems faced by manufacturing systems designers. It should be noted that while

this problem is being handled, it is assumed that other manufacturing design

problems, the workload and server allocation problems, have already been solved.

The primary reason for having storage buffers is to allow sequential workstations

to operate more independently of each other. This reduces the idle time due to

starving (no input available) and blocking (no space to dispose of output). Less idle

8

time increases the average production rate of the line. On the other hand, inclusion of

buffers requires additional capital investment and floor space, which may be

expensive. Buffering also increases in-process inventory. If the buffers are too large

then the capital cost incurred may outweigh the benefit of the increased productivity.

If the buffers are too small, the machines will be underutilized or demand will not be

met. Because of the importance of finding good or optimal buffer configurations, the

buffer allocation problem is still an important optimization problem.

The buffer allocation problem arises in a wide range of manufacturing systems,

such as transfer lines, flexible manufacturing systems or robotic assembly lines. In

this Ph.D. thesis we mainly concerned with the buffer allocation problem in serial

production lines. The characteristics of the buffer allocation problem in serial

production lines are given in the following section.

2.2.1 Characteristics of the Buffer Allocation Problem

A production line consists of machines connected in series and separated by

buffers. A K-machine production line is represented in Figure 2.1, in which the

squares represent machines and the circles represent buffers. Material moves in the

direction of the arrows, from upstream machine to the downstream machine. Material

flow may be disrupted by machine failures or variable processing times. Buffers are

inserted between machines, so that the propagation of disruptions can be limited and

hence, the average production rate of the line can be increased.

 Figure 2.1 K-machine production line

There are several unique characteristics inherent to the buffer allocation problem

which complicates the application of existing ordinary search techniques. The

9

following is the summary of the discussion on these difficulties as it is stated by Park

(1993):

(A) The system performance of throughput rate over buffer size is monotonically

increasing. Okamura and Yamashina (1977) show that the throughput rate of

the production line, which is composed of more than two stages, steeply

increases in the range of small buffer sizes and thereafter this increment

continues with gradually smaller improvement until it reaches an upper bound.

(B) There may be one or more stagnant areas in the function of a throughput rate

over buffer sizes. Since the throughput rate is not likely to increase strictly as

the buffer size increases, no increase in throughput rate may occur through a

certain range of buffer sizes, as shown in Figure 2.2. Increasing the size of any

buffer in the line may generate a local gain in the throughput rate of the line.

However, the local throughput gain may or may not subsequently be

propagated through the upstream and/or downstream machines due to

complex interactions of processing, failure and repair rates of the machines

and buffer sizes. Only if it can be propagated through both upstream and

downstream machines, the local gain can be realized as a production gain for

overall system. Otherwise, there will be no increase in production rate of the

line. In most cases, the traditional optimization techniques get stuck at the

stagnant area. This phenomenon is expanded to K-stage problems with K-1

buffers, in that reduction of a buffer size may be compensated by the

increasing sizes of other buffers to obtain the same production rate.

10

 Figure 2.2 A function of throughput rate over buffer size (Park, 1993)

(C) There is a limit on the degree of the system performance gained by

increments in buffer sizes. The “threshold” in Figure 2.2 indicates the

upper bound on the throughput rate. Also, in the vicinity of the threshold,

considerable buffer storage is usually required to achieve even a small

improvement in system performance. Since there is no change in system

throughput rate beyond the threshold, one may face difficulties in finding a

global optimal solution if the objective of the buffer allocation problem is

to maximize the throughput rate of the line.

(D) The buffer sizing problem is discrete in nature. In general, due to their

combinatorial complexity, optimization problems with discrete control

variables are more difficult to solve than the problems with continuous

decision variables. Moreover, since there is no algebraic relation between

the throughput of the line and buffer sizes, it is much harder to solve the

buffer allocation problem.

(E) The throughput rate function over buffer sizes is not usually unimodal in

case of multiple buffers. Since many traditional optimization methods

11

require the unimodality condition to obtain a global optimal solution, they

are often likely to fail in finding global optimal buffer sizes.

2.2.2 Classification of the Problems

The buffer allocation problem can be expressed mainly in three forms depending

on the objective function. These objective functions may be concerned with

maximizing throughput rate of the production line, minimizing total buffer size in the

line and minimizing average work-in-process inventory. These forms can be given as

follows:

Problem 1 (BAP1): This formulation of the problem expresses the maximization of

the throughput rate, for a given fixed amount of buffers, as follows:

Find 1 2 1(, ,...,)KB B B B  so as to

max ()f B (1)

subject to

1

1
i

K

i

B N




 (2)

 nonnegative integers (1,2,..., 1) iB i K  (3)

where N is a fixed nonnegative integer denoting the total buffer space available in the

system which has to be allocated among the K-1 buffer locations so as to maximize

the throughput rate of the K-machine production line. In this formulation B

represents a buffer size vector, iB is the buffer size for each location, and f(B)

represents the throughput rate of the production line as a function of the buffers’ size

vector.

Problem 2 (BAP2): The solution approaches to this problem aims achieving the

desired throughput rate with the minimum total buffer size, as follows:

Find 1 2 1(, ,...,)KB B B B  so as to

1

1

min i

K

i

B



 (4)

12

subject to

*()f B f (5)

nonnegative integers (1,2,..., 1) i i KB   (6)

where K is the number of machines in the line, B is a buffer size vector, iB is the

buffer size for each location, f(B) is the throughput rate of the production line and f
*

is the desired throughput rate.

Problem 3 (BAP3): This last formulation expresses the minimization of the average

work-in-process inventory subject to the total buffer size constraint as well as the

desired throughput rate constraint, as follows:

Find 1 2 1(, ,...,)KB B B B  so as to

min ()Q B (7)

subject to

1

1
i

K

i

B N




 (8)

*()f B f (9)

 nonnegative integers (1,2,..., 1) iB i K  (10)

where K is the number of machines in the line, B is a buffer size vector, Q(B)

denotes the average work-in-process inventory as a function of buffer size vector, iB

is the buffer size for each location, N is a fixed nonnegative integer denoting the total

buffer size, f(B) is the throughput rate of the production line and f
*
 is the desired

throughput rate.

As it is stated by Park (1993), allocating buffer storage based on monetary

criteria, such as maximizing profit or minimizing total cost, is a management concern

in real production systems. Objective functions involving monetary criteria are

expressed in a form of profits or costs.

Meester and Shanthikumar (1990) show that the throughput rate of the tandem

queuing systems is an increasing, concave function of the buffer sizes. Based on their

proof Papadopoulos et al. (2009) stated that the problem BAP1 is an increasing

13

function of the total buffer size N. Hence, the results obtained for problem BAP1 can

be used to solve the problem BAP2. Thus, the above three problems can be reduced

to two problems as it is stated by Papadopoulos et al. (2009).

The buffer allocation problem is difficult for two reasons, as indicated by Chow

(1987): (1) the lack of an algebraic relation between the throughput of the line and

buffer sizes; and (2) the nature of combinatorial optimization inherent in the buffer

design problem. For a production line with K machines and the total buffer capacity

N, the total number of possible buffer configurations for the problem BAP1 can be

calculated as follows:

2 (1)(2)...(2)

2 (2)!

N K N N N K

K K

     


 

 
 
 

 (11)

As it can be observed above, the total number of feasible solutions increases

exponentially when N and K are large. For instance if the production line involves

only ten machines and the number of total buffers to be allocated is 50, then the total

number of feasible buffer allocations becomes 1.916.797.311 indicating the

computational difficulty to search through the whole solution space by complete

enumeration even for small sized problems. So, numerical approaches to the solution

of the problems are inevitable even in situations with relatively small problems.

Hence, to overcome this difficulty various solution techniques are employed to solve

buffer allocation problem. Next section summarizes these solution techniques.

2.3 General Procedure to Solve the Buffer Allocation Problem

Solution approaches to solve buffer allocation problem involve applying a

generative method and an evaluative method in an iterative manner. In other words

generative methods and evaluative methods are combined in a closed loop

configuration as depicted in Figure 2.3. In this configuration an evaluative method is

used to obtain the value of the objective function for a set of inputs. To search for an

14

optimal solution, the value of the objective function is then communicated to the

generative method.

Figure 2.3 General process of solution of buffer allocation problems (Papadopoulos et al., 2009)

Evaluative methods, which provide the prediction of various performance

measures such as the throughput rate and the mean queue lengths, are based on

analytical methods and simulation. Analytical methods can be classified as exact and

approximate methods. Since the analytical methods can be applicable only for small-

sized problems, approximate methods are usually employed as evaluative method for

solving buffer allocation problem. There are also various optimization techniques

used as generative method. Complete enumeration is the simplest method but it is

applicable for small-sized problems. Since the total number of feasible solutions

grows exponentially when the total number of machines and the total buffer capacity

increases, it is impossible to employ complete enumeration for large-sized problems.

Therefore, the researchers widely adopted various search methods and meta-

heuristics to effectively deal with the buffer allocation problem.

In the following subsections, alternative evaluative and generative methods used

for solving buffer allocation problem in the literature are discussed.

15

2.3.1 Evaluative Methods

As it is stated before, basically two methods are used for evaluation: analytical

methods and simulation. Exact analytical results based on the queuing models are

difficult to obtain, and are only available for short production lines. For long

production lines, generally approximate evaluative methods are employed. Most

frequently used approximate evaluative methods to solve the buffer allocation

problem are decomposition method, aggregation method, and generalized expansion

method.

Among these methods, the decomposition method is the most widely used

evaluation method for solving buffer allocation problem (Gershwin and Schor 2000,

Helber, 2001, Shi and Men, 2003, Nourelfath et al., 2005, Nahas et al., 2006, Demir

and Tunali, 2008, Shi and Gershwin 2009, Massim et al., 2010, and Demir et al.,

2011). The common idea in this method is to decompose the analysis of the original

model into the analysis of a set of smaller subsystems which are easier to deal with.

The main advantage of the decomposition method is its computational efficiency and

its accuracy to reach the solution. However, the disadvantage of decomposition

method is that it can be applicable only under the assumptions that processing rates

are either deterministic or exponentially distributed and failure and repair rates are

either geometric or exponentially distributed random variables. In this Ph.D. study,

the decomposition method is used as an evaluative method due to its ability to obtain

the throughput of a production line quite accurately and quickly. The details of the

method are given in section 2.4.1.

Another approximation method based on the queuing models is the generalized

expansion method. Contrast to the decomposition method the generalized expansion

method can be used for generally distributed service times and reliable machines and

it can be applicable to split and merge configurations as well as serial configurations.

Applications of generalized expansion method for buffer allocation problem can be

found in the studies of Spinellis et al. (2000), Daskalaki and MacGregor Smith

16

(2004), MacGregor Smith and Cruz (2005), Cruz et al. (2008), Aksoy and Gupta

(2010) and Cruz et al. (2010).

Another evaluative method which can be used to solve buffer allocation problem

is the aggregation method. Dolgui et al. (2002, 2007) successfully employ the

aggregation method to evaluate the performance of buffer allocation decisions in

unreliable production lines. The basic idea of aggregation is to first place a two-

station one-buffer sub-line by a single equivalent station. Then this equivalent station

is combined with a buffer and station of the original line to form a new two-station

one-buffer sub-line, which is then aggregated into a single equivalent station. This

process is repeated until the last or first station is reached, depending on the direction

of the aggregation is performed.

If the objective is to realistically model a large and complex system, simulation

provides many advantages in comparison to analytical methods. But the chief

disadvantage of simulation modeling is that it is very time consuming. Simulation

modeling is best suited to addressing design and operational problems at the detailed

level, where other mathematical techniques are not sufficiently accurate to be

applied. The studies of Jeong and Kim (2000), Gurkan (2000), Sabuncuoglu et al.

(2002, 2006), Bulgak (2006), Altiparmak et al. (2007), Battini et al. (2008), Can and

Heavey (2009) and Kose (2010) can be given as applications of simulation for

solving buffer allocation problem.

2.3.2 Generative Methods

Generative methods focus on finding optimal buffer sizes to improve the system

performance. The simplest generative method is complete enumeration. However,

this method is applicable only for small systems since the total number of feasible

solutions grows exponentially when the total number of machines and the total buffer

size to be allocated in the system increase. Therefore for large systems it is

impossible to search through the whole solution space by complete enumeration. In

recent years, the researchers widely adopted various search methods and meta-

17

heuristics to effectively deal with the combinatorial nature of the buffer allocation

problem.

Search methods including both traditional and also heuristic search algorithms

tend to resolve the exponential explosion in the number of alternative buffer vectors

by quickly shifting through many alternative buffer vectors to discover those which

yield close to optimal results. Ho et al. (1979), Gershwin and Schor (2000), Seong et

al. (1995, 2000) and Helber (2001) apply gradient search algorithm. Vouros and

Papadopoulos (1998) employ knowledge based methods. Altiok and Stidham (1983)

use the pattern search technique of Hooke and Jeeves. Nahas et al. (2006) employ

degraded ceiling local search heuristic. Fuxman (1998), Harris and Powell (1999),

Jeong and Kim (2000), Papadopoulos and Vidalis (2001), Hemachandra and

Eedupuganti (2003), Tempelmeier (2003), Sabuncuoglu et al. (2006), Zequeira et al.

(2008), and Aksoy and Gupta (2010) develop problem specific search algorithms for

solving buffer allocation problem. There are mainly two disadvantages of traditional

search methods. One of these disadvantages is that traditional search methods

sometimes cannot jump over local optimal solutions in search of the global optimal

ones. The other disadvantage is that with these approximate methods it is difficult to

observe how small changes in buffer sizes affect the system performance.

Meta-heuristics are search methods which use strategies that guide the search

process and explore the search space in order to find optimal/near-optimal solutions.

Meta-heuristic algorithms are approximate and usually non-deterministic. Typical

solution methods in this area include Tabu Search (Lutz et al., 1998, Demir et al.,

2011), Simulated Annealing (Spinellis and Papadopoulus, 2000a, 2000b, Spinellis et

al. 2000), Genetic Algorithms (Spinellis and Papadopoulus, 2000b, Dolgui et al.,

2002, Qudeiri et al., 2007, 2008, Yamamoto et al., 2008, Cruz et al. 2010, Kose,

2010), and Ant Colony Optimization (Nourelfath et al., 2005, Nahas et al., 2009). To

better search the solution space, the recent trend is to hybridize the meta-heuristics

with other methods such as Nested Partitions (Shi and Men, 2003) and Branch and

Bound methods (Dolgui et al., 2007). The chief advantage of meta-heuristics over

traditional search methods is that they can jump over local optimal solutions in

18

search of the global optimal ones. Their main disadvantage is that they are not

problem specific and thus, they have to tune-up to produce solutions to a specific

problem type.

Moreover, dynamic programming, a well known optimization method (Chow,

1987, Jafari and Shanthikumar, 1989, Yamashita and Altiok, 1998, Diamantidis and

Papadopoulos 2004), artificial neural networks (Bulgak, 2006, Altiparmak et al.,

2007) and also immune system algorithm (Massim et al., 2010) are successfully

employed for solving buffer allocation problem in production lines.

Lastly, a number of studies including Sabuncuoglu et al. (2002) and Raman and

Jamaludin (2008) employed various experimental designs for evaluating the

solutions to the buffer allocation problem.

Due to its ability to evaluate the throughput of a production line quite accurately

and quickly, in this Ph.D. study, the decomposition method is used as an evaluative

method. Unlike population-based search algorithms such as genetic algorithms,

which require long time to converge, single point search algorithms such as tabu

search and simulated annealing focus on exploitation and they are faster. Hence, to

reduce the computational difficulty especially for evaluating the throughput of the

line for medium and large-sized problems, tabu search and simulated annealing are

employed as a generative method for solving the buffer allocation problem.

The following sections present the details of evaluation (decomposition method)

and generative methods (tabu search and simulated annealing) employed in this

study.

2.4 Background Information on Solution Approaches Employed

This section gives background information on solution approaches used in this

Ph.D. study. Next section presents the basic idea of decomposition method. Basic

19

information on tabu search and simulated annealing are given in sections 2.4.2 and

2.4.3, respectively.

2.4.1 Decomposition Method

The decomposition method, proposed by Gershwin (1987), is an efficient method

to estimate the performance measures of serial production lines. The method works

as follows. An original line L is broken into K-1 two-machine lines as illustrated in

Figure 2.4. Line L(i) is composed of an upstream machine Mu(i), a downstream

machine Md(i), and buffer B(i). The capacity of B(i), Ni, is the same as the capacity of

buffer Bi in line L. In order to determine the average throughput rate of this

production line, the system is modeled as a Markov process for which the steady-

state behavior is determined. Since the performance characteristics of two-machine

lines can be obtained exactly, the decomposition method requires the derivation of a

set of equations that link the decomposed two-machine lines together. These

nonlinear equations are solved to determine the unknown parameters of each line

L(i), i.e. the processing rates (i), failure rates (pi) and repair rates (ri) of upstream

and downstream machines, so that the behavior of the material flow in buffer B(i) in

line L(i) closely matches that of the flow in buffer Bi of original line L.

Dallery et al. (1988) develop the decomposition equations and an algorithm called

DDX to solve these equations for homogeneous lines, i.e. the machines in the line

have the same processing times amounting to one unit of time. Later, Burman (1995)

extends this study to the non-homogeneous lines, i.e. the machines in the line have

different processing times, and develops the algorithm called as accelerated-DDX

(ADDX). Due to its ability to evaluate the throughput of a production line quite

accurately and quickly, in this Ph.D. study, while the DDX algorithm is employed for

homogenous lines and the ADDX algorithm is employed for non-homogeneous lines.

The details of both algorithms are given in Appendix A.

20

Figure 2.4 The decomposition method (Burman, 1995)

2.4.2 Tabu Search

Tabu Search (TS) is a meta-heuristic for solving combinatorial optimization

problems. Originating from the work by Glover (1977), TS basic ideas were first

introduced in Glover (1986). TS explicitly uses the history of the search, both to

escape from local optima and to implement an explorative search. For more details

about TS the reader can refer to Glover and Laguna (1997).

Suppose that TS is employed to deal with the following combinatorial

optimization problem:

(P) Minimize () :f x x X in nR .

The objective function ()f x may be linear or nonlinear, and the condition x X is

assumed to constrain specified components of x to discrete values. In some settings

(P) may represent a modified form of some original problem, as where X is a

superset of the vectors that normally qualify as feasible, and ()f x is a penalty

function, designed to assure that optimal solutions to (P) likewise are optimal for the

problem from which it is derived (Glover, 1989).

21

A fundamental element of TS is the use flexible memory functions, called tabu

lists, to forbid the transitions, called moves, from the current solution to other

candidate solutions that are previously visited. A move m is defined as follows:

: ()m X m X .

Associated with x X is the set ()NB x which consists of those moves m NB that

can be applied to x; i.e.,  () : ()NB x m NB x X m   . The set ()NB x is called the

neighborhood of x. Within this framework the basic elements of tabu search can be

described as follows.

2.4.2.1 Search Space and Neighborhood Structure

Choosing a search space along with a neighborhood structure is the most critical

step of any TS implementation. The search space of TS is simply the space of all

feasible solutions that can be visited during the search. It should be noted that it is

not always a good idea to restrict the search space to feasible solutions. In many

cases, allowing the search to move infeasible solutions is desirable (see Gendreau

and Potvin, 2005, for further details). To define the neighborhood structures of the

current solution, there are several choices depending on the specific problem at hand.

For instance in the buffer allocation problem context, one choice could be to consider

the full neighborhood of the current buffer configuration while the other could be to

consider only a subset of the neighborhood of the current solution.

2.4.2.2 Tabus

Tabus are one of the basic elements of TS. Tabus are used to prevent cycling

while escaping from local optima via non-improving moves. Tabus are also useful to

help the search move away from previously visited areas of the search space and thus

perform more extensive exploration. Tabus are stored in a tabu list, which is the

short term memory of the search, and in general only a fixed and fairly limited

quantity of information is recorded in this list. The most commonly used tabus

involve recording the last few moves performed on the current solution and

22

forbidding reverse moves; others are based on key characteristics of the solutions

themselves.

The length of the tabu list, called tabu tenure (TT), is an important search

parameter of TS. Tabu tenure is the number of iterations that tabus stay in the tabu

list. As indicated by Glover et al. (1993) the size of tabu list providing good results

often grows with the size of the problem. However, no single rule has been found to

yield an effective tenure for all classes of problems. This is partly because an

appropriate list size depends on the strength of the tabu restrictions employed (where

stronger restrictions are generally coupled with smaller sizes) (Glover and Laguna,

1997). If the size of the tabu tenure is too small, preventing the cycling might not be

achieved; conversely a too long length creates too many restrictions. As indicated by

Reeves (1996) a value of 7 for TT has often found to be sufficient to prevent cycling;

other commonly used values are nTT  where n is some natural measure of the

problem size. Dynamic rules may be useful too, usually this means choosing lower

and upper bounds minTT and maxTT on the tabu tenure, and allowing TT to vary in

some way between them.

2.4.2.3 Aspiration Criteria

It is not difficult to realize that tabus may forbid moving to attractive unvisited

solutions. It is therefore necessary to overrule the tabu status of moves in certain

situations. This is performed by means of aspiration criteria. The simplest and most

commonly used aspiration criterion consists of allowing a move, even if it is tabu, if

it results in a solution with an objective value better than the current best-known

solution.

2.4.2.4 Termination Criteria

The most commonly used termination criteria in TS are:

 after a fixed number of iterations or a fixed amount of CPU time,

23

 after some number of iterations without an improvement in the objective

function value,

 when the objective function value reaches a pre-specified threshold value.

Table 2.1 represents the basic Tabu Search algorithm and the flowchart of the

standard tabu search algorithm is presented in Figure 2.5.

 Table 2.1 Basic tabu search algorithm

Select an initial x X and let
*

:x x . Set the iteration counter 0k  and begin with T empty.

while termination conditions not met do

 Set : 1k k  and select the best ()
k

m NB x T  where the elements of

()NB X T are not tabu or they satisfy at least one aspiration criterion.

 Set
*

:x x where
*

x denotes the best solution currently found

 Update the tabu list and aspiration criteria

Basic TS as described above can sometimes successfully solve difficult problems,

but in most cases, the following additional elements have to be included in the search

to make it fully effective.

2.4.2.5 Intensification

The key idea behind the concept of intensification is to implement some strategies

so that the areas of the search space that seem promising can be explored more

thoroughly. In general, intensification is based on intermediate-term memory, such as

a recency memory, in which one records the number of consecutive iterations that

various solution components have been present in the current solution without

interruption. Intensification is used in many TS implementations, but it is not always

necessary. This is because there are many situations where the search performed by

the normal searching process is thorough enough (Gendreau and Potvin, 2005). Thus

there is no need to spend time exploring in depth the portions of the search space that

have already been visited, and this time can be used more effectively.

24

Figure 2.5 The flowchart of a standard tabu search algorithm

2.4.2.6 Diversification

Unlike intensification which helps more intensively searching the regions which

contain good solutions diversification guides the search to unexplored regions.

Diversification is usually based on long-term memory, such as a frequency memory,

where the total number of iterations of the performed moves or visited solutions is

recorded. There are two major diversification techniques known as restart

diversification and continuous diversification while the first one is performed by

several random restarts, the second one is integrated into the regular searching

process to penalize frequently performed moves or solutions.

25

2.4.3 Simulated Annealing

Simulated Annealing (SA) is another meta-heuristic method used for solving

combinatorial optimization problems. The ideas that form the basis of simulated

annealing were first published by Metropolis et al. (1953). Annealing is the physical

process of heating up a solid and then cooling it down slowly until it crystallizes. The

atoms in the material have high energies at high temperatures and have more

freedom to arrange themselves. As the temperature is reduced, the atomic energies

decrease. A crystal with regular structure is obtained at the state where the system

has minimum energy. If the cooling is carried out very quickly, which is known as

rapid quenching, widespread irregularities and defects are seen in the crystal

structure. The system does not reach the minimum energy state and ends in a

polycrystalline state which has a higher energy (Pham and Karaboga, 2000).

Essentially, Metropolis’s algorithm simulates the change in the energy of the

system when subject to cooling process, until it converges to a steady frozen state. In

1983, Kirkpatrick et al. (1983) suggested that this type of simulation could be used

for solving combinatorial optimization problems.

Simulated annealing algorithm consists of a sequence of iterations. At each

iteration, the neighborhoods of the current solution are generated randomly or in a

systematic way by using a neighborhood generation mechanism. Once a new

solution is created the corresponding change in the acceptance function is computed

to decide whether the newly produced solution can be accepted as the current

solution. If the change in the acceptance function is negative the newly produced

solution is directly taken as the current solution. Otherwise, it is accepted according

to Metropolis’s criterion based on Boltzman’s probability.

According to Metropolis’s criterion, if the difference between the acceptance

function values of the current and the newly produced solutions is equal to or larger

than zero, a random number [0,1]R is generated from a uniform distribution. If

exp(/)R E T 

26

then the newly produce solution is accepted as the current solution. Otherwise, the

current solution is unchanged. Here E is the difference between the acceptance

function values of the current solution and newly produced solution and T is the

value of temperature. The flowchart of a standard SA algorithm is shown in Figure

2.6.

The important issues need to be considered in implementation the SA algorithm

are summarized in the following sections.

Figure 2.6 Flowchart of a standard simulated annealing algorithm

27

2.4.3.1 Neighborhood Generation Mechanism

In general, the neighborhoods are sampled randomly in implementing SA

algorithm. However, sampling in a systematic or adaptive has a higher chance to

produce better results. To define the neighborhood structures of the current solution,

there are several choices depending on the specific problem at hand. In this Ph.D.

study, the neighborhood generation to solve the buffer allocation problem is carried

out in a systematic way. The details regarding this issue are given in chapter 6.

2.4.3.2 Initial Temperature

Generally the SA algorithm starts with “high” initial temperature allowing many

inferior moves to be accepted. In practice this may require some knowledge of

magnitude of neighboring solutions; in the absence of such knowledge, one may

choose what appears to be a large value, and run the algorithm for a short time and

observe the acceptance rate. As it is stated by Reeves (1996), if this acceptance rate

is “suitably high” this value of temperature may be used to start the algorithm. Even

if “suitably high” acceptance rate varies from one situation to another, Reeves (1996)

states that an acceptance rate of between 40% and 60% seems to give good results in

many cases.

2.4.3.3 Cooling Schedule

There are basically two types of schedule, having analogies to homogeneous and

inhomogeneous Markov chains, respectively. In the homogeneous case, annealing is

carried out at a fixed temperature until equilibrium is reached. Once this state is

judged to have been reached, the temperature is reduced, and the procedure is

repeated. The number of attempted moves at each temperature may be quite large,

although the temperature steps can be relatively large also. In the inhomogeneous

case, the temperature is reduced (but by a very small amount) after every move. This

is less complicated than the homogeneous case, and is the one more commonly used

in practice (Reeves, 1996).

28

In either case, one has to decide on the shape of the cooling curve. The simplest

and most common one is the geometric schedule. In the geometric schedule, the

temperature is updated by the following formula:

1 0,1,...i iT cT i  

where c is a temperature factor which is a constant close to 1 (typically in the range

0.90 to 0.99).

The other method is proposed by Lundy and Mees (1986). This method updates

the temperature by the following formula:

1 0,1,...
1

i
i

i

T
T i

T
  



where  is the constant near to zero.

2.4.3.4 Final Temperature

In theory, the algorithm continues until the final temperature is zero, but in

practice it is sufficient to stop the algorithm when the chance of accepting inferior

solutions becomes negligible. This is a problem dependent issue and as in the case of

selecting an initial temperature, selecting final temperature may involve some

monitoring of the ratio of acceptances. For this purpose Lundy and Mees (1986)

proposed stopping when

ln[(1) /]
T

S




 

where S is the solution space. This is designed to produce a solution which is within

 of the optimum with probability .

2.4.3.5 Number of Iterations

The number of iterations can be determined by the following formulas (Reeves,

1996):

0log log

log

fT T
k

c




29

and

0

0

f

f

T T
k

T T




for homogenous and non-homogeneous cases respectively, where fT is the final

temperature and 0T is the initial temperature.

Since both methods are point based search methods and it is known that point

based methods needs less solution time as compared to the population based search

methods such as genetic algorithms, these two methods are employed as generative

methods. It is known that simulated annealing is successfully employed for solving

buffer allocation problem. Moreover, since tabu search provides an alternative to

traditional optimization techniques by using memory-based strategies to escape the

local optima and it is also successfully employed on many combinatorial

optimization problems.

2.5 Chapter Summary

In this chapter, the characteristics, formulations and solutions methods of buffer

allocation problem are given in detail. The solution of the buffer allocation problem

involves using an evaluative method and a generative method in an iterative manner.

In this Ph.D. study, the decomposition method is used as an evaluative method and

two meta-heuristic methods - tabu search and simulated annealing- are employed as

generative method. Hence, in this chapter, background information on all these

methods is given.

Next chapter is devoted to the review of the related literature on buffer allocation

problem. To our knowledge since the study of Gershwin and Schor (2000) there is no

any comprehensive survey on buffer allocation problem. Thus, in the next chapter we

aim at filling the perceived gap in this area and also state our contributions to this

area.

30

CHAPTER THREE

LITERATURE SURVEY

3.1 Introduction

Due to its importance and complexity, the buffer allocation problem has been

studied for over 50 years and numerous publications are available in the literature.

The first study in this area is presented by Koenigsberg (1959), which gives an

analysis and review of the basic problems associated with the efficient operation of

production systems. A detailed analysis of mathematical models describing the effect

of the buffer storage can be found in the following references (Buzacott and

Shanthikumar, 1993, Papadopoulos et al., 1993, Papadopoulos et al., 2009) and in

some comprehensive survey studies (Dallery and Gershwin, 1992, Papodopoulos and

Heavey, 1996).

As mentioned in chapter 2, the buffer allocation problem can be formulated in

three forms, BAP1, BAP2 and BAP3. Among these, the BAP1 and BAP2 have been

studied more extensively in the literature. As stated by Enginarlar (2003), BAP1 and

BAP2 can be solved using algorithmic and also rule-based approaches (see Figure

3.1). While algorithmic approaches involve an optimization algorithm to solve the

problem, rule-based approaches employ simple rules to obtain a good solution. In

comparison to BAP1 and BAP2, the problem BAP3 which involves minimizing

average work in process (WIP) in the system is a relatively less studied problem.

This could be due to the fact that BAP3 involves more challenging constraints than

the other two. The studies addressing these three problems are discussed in following

sections.

This chapter presents a comprehensive survey on buffer allocation problem in

production lines. Next section introduces our classification scheme to review the

studies published after 1998. For other studies published before 1998, the reader can

refer to Park (1993) and Gershwin and Schor (2000).

31

Figure 3.1 Classification of the literature on buffer allocation problem (Enginarlar, 2003)

The insight gained as a result of surveying the current literature and the

motivation of this Ph.D. study are given in section 3.3. Finally, the context of this

chapter is summarized in section 3.4.

3.2 Proposed Classification Scheme and Discussion of Current Literature

In this section the studies dealing with buffer allocation problem in production

lines, published since 1998, are reviewed based on the following classification

scheme:

Topology of the line: The relevant studies are classified according to the topology of

line as follows:

S : Serial

S-P : Serial-Parallel

GN : General Network

A : Assembly

FMS : Flexible Manufacturing Systems

CMS : Cellular Manufacturing Systems

32

Objective function: The following objective functions are noted in the current

relevant literature:

 Objective 1: Throughput maximization

 Objective 2: Total buffer size / Work in Process (WIP) minimization

 Objective 3: Cost minimization

Objective 4: Profit maximization

Objective 5: Other objective functions, such as maximizing customer service

level, minimizing the mean waiting time of a job, reducing idle time,

minimizing cycle time, and minimizing average flow time of the product.

Solution methodology: The existing literature is classified according to the type of

the evaluative and generative solution method employed to solve the buffer

allocation problem.

To review the current relevant literature, first the studies are divided into two

categories: 1. Reliable lines which are not subject to failure, 2. Unreliable lines

which are subject to failure. Based on three criteria defined above, the following two

sections present the review of studies done for reliable and unreliable production

lines, respectively.

3.2.1 Reliable Lines

Using the classification scheme explained in previous section, Table 3.1

chronologically lists the studies for reliable lines published since 1998. It should be

noted that the notation used in this table is given in previous section.

3
3

Table 3.1 Overview on buffer allocation literature: Reliable lines

Authors

Topology of the Line Objective Solution Methodology

S S-P GN A FMS CMS 1 2 3 4 5 Evaluative Generative

Fuxman (1998) x x Levner’s Graph Heuristic

Lutz et al. (1998) x x x Simulation Tabu Search

Papadopoulos & Vidalis

(1998)
x x Markovian State Model The Modified Hooke-Jeeves Method

Powell and Pyke (1998) x x Simulation Heuristic

Yamashita & Altiok
(1998)

x x Simulation Dynamic Programming

Harris & Powell (1999) x x Simulation
Spendley-Hext & Nelder-Mead Simplex

Search Algorithms

Hillier (2000) x x Markov Chain Model Heuristic

Spinellis & Papadopoulos

(2000a)
x x Decomposition Method Simulated Annealing

Spinellis & Papadopoulos

(2000b)
x Decomposition Method

Genetic Algorithms & Simulated

Annealing

Spinellis et al. (2000) x x Expansion Method Simulated Annealing

Huang et al. (2002) x x x Approximate Analytic Algorithm Dynamic Programming

Sabuncuoglu et al. (2002) x x Simulation Design of Experiments

Chaharsooghi &

Nahavandi (2003)
x x Markov State Model Heuristic

Hemachandra and

Eedupuganti (2003)
 x x x Markov State Model Heuristic

Yamada and Matsui (2003) x x Simulation Complex Method

Daskalaki, & MacGregor

Smith (2004)
 x x x Expansion Method Powell’s Algorithm

Diamantidis &
Papadopoulos (2004)

x x Aggregation Method Dynamic Programming

3
4

Table 3.1 Overview on buffer allocation literature: Reliable lines (cont.)

Authors

Topology of the Line Objective Solution Methodology

S S-P GN A FMS CMS 1 2 3 4 5 Evaluative Generative

MacGregor Smith & Cruz
(2005)

 x x Expansion Method Powell’s Algorithm

Hillier & Hillier (2006) x x Markov Chain Model Heuristic

Kwon (2006) x Decomposition Method Heuristic

Nieuwenhuyse et al.

(2007)
x x Queuing Model Mathematical Model

Um et al. (2007) x x Simulation Evolution Strategy

Can et al. (2008) x x Simulation Genetic Algorithms

Cruz et al. (2008) x x Expansion Method
Lagrange Relaxation & Derivative-free

Search

Raman and Jamaludin

(2008)
x x Simulation Design of Experiments

Yuzukirmizi &MacGregor

Smith (2008)
 x x x Expanded Mean Value Analysis Powell’s Algorithm

Can & Heavey (2009) x x Simulation
Genetic Programming & Particle Swarm

Optimization

Aksoy & Gupta (2010) x x Expansion Method Heuristic

Cruz et al. (2010) x x x x Expansion Method Genetic Algorithms

Van Woensel et al. (2010) x x
Two-moment Approximation &

Expansion Method
Powell’s Algorithm

Total 16 1 5 5 2 1 18 10 2 3 2

35

The first study employing a meta-heuristic method for solving buffer allocation

problem was presented by Lutz et al. (1998). In this study, a tabu search algorithm

combined with simulation was suggested to solve the buffer allocation problem in a

six-machine reliable production line. The objective was to maximize the throughput

of the line while minimizing the total buffer size in the system. The results obtained

from this study were consistent with the other studies which considered the same

type of production lines. The authors indicated that the advantage of their simulation-

search procedure was its ability to model any line configuration regardless of its

scheduling policy or any other characteristics. However, it should be noted that this

advantage was gained at the expense of a long computation time to model large or

extremely complex manufacturing systems.

Another study employing simulation was presented by Yamashita and Altiok

(1998). The objective of this study was to minimize the total buffer size for achieving

desired throughput rate in a reliable line with phase-type processing times. For this

purpose, the authors developed a dynamic programming algorithm. Moreover, they

provided numerical examples to show the buffer allocation and compared the

corresponding simulated throughput and its bounds with the desired throughput.

Papadopoulos and Vidalis (1998) considered the buffer allocation problem in

balanced reliable production lines. The authors developed a search technique, which

was a modified Hooke-Jeeves algorithm and they presented two basic design rules

using this method. As an evaluative method the authors employed the Markovian

state model developed by Heavey et al. (1993).

Fuxman (1998) presented an analytical model which allows computation of the

minimum required number of buffers and an optimal allocation thereof in an

asynchronous reliable mixed-model assembly line to maintain the highest possible

throughput rate. The author developed a simple and efficient algorithm called BELA

(i.e., buffer elimination algorithm) to identify buffer configurations and used the

Levner’s graph to obtain the throughput of the system. Powell and Pyke (1998) also

studied simple asynchronous reliable assembly systems with variable processing

36

times and they developed simple heuristic rules that can be used to improve system

performance. The authors employed simulation to evaluate the sensitivity of location

of the first buffer against the parameters of the processing time distributions.

Harris and Powell (1999) developed a simple search algorithm for optimal buffer

allocation to maximize throughput of the line under total buffer size constraint. The

algorithm, which is an adaptation of the Spendley-Hext and Nelder-Mead simplex

search algorithms, uses simulation to estimate throughput for every allocation

considered.

The characterization of optimal buffer allocation for reliable production lines with

variable processing times was presented by Hillier (2000). The production line was

modeled by using Markov chains and the optimal buffer sizes were obtained by a

heuristic approach so as to maximize the profit. The aim of this study was to suggest

the rules of thumbs rather than develop algorithms for optimal buffer allocation in

short reliable lines. This study was later extended by Hillier and Hillier (2006) to

simultaneous optimization of workload and buffer allocation using Markov chains.

In recent years, meta-heuristic approaches are extensively used for solving buffer

allocation problem. Simulated annealing is the most widely used method in this area.

One of these studies employing simulated annealing was presented by Spinellis and

Papadopoulos (2000a). In this study the decomposition method was employed as an

evaluative method and simulated annealing was employed as a generative method for

maximizing the production rate of the line. In another study, the authors (Spinellis

and Papadopoulos, 2000b) compared the performance of simulated annealing

algorithm with the performance of genetic algorithms, which is another meta-

heuristic method frequently used for solving buffer allocation problem. The authors

aimed at maximizing the throughput of the line for large-sized problems. Like their

previous study, the decomposition method was employed to obtain the throughput

rate of the line. The numerical experiments showed that simulated annealing

produced larger number of optimal configurations than genetic algorithms but the

performance of the genetic algorithm was superior to the performance of simulated

37

annealing. Hence, the authors suggested using these two methods in a

complementary way. Genetic algorithms can be employed in real time applications

for the swift recalculation of optimal configurations and simulated annealing can be

utilized in batch-oriented calculations for obtaining an optimal configuration.

In another study, Spinellis et al. (2000) focused on a series-parallel production

line to maximize the throughput under the constraints of total buffer size, total

number of available servers and the summation of expected service time. A

simulated annealing approach was presented to solve this problem for long

production lines including 60 stations and 120 buffers. The expansion method was

used to evaluate the system performance. Regarding the allocation of buffers, the

number of servers and their service rate, the results of comparative experimental

study exhibited some interesting similarities, but also striking differences from the

earlier relevant research. The authors stated that these patterns of allocation were one

of the most important insights which were emerged in solving very long production

lines.

Huang et al. (2002) employed dynamic programming to solve the buffer

allocation problem in a flow shop type production system under the objectives of

minimizing work-in-process, cycle time and blocking probability, maximizing

throughput, or their combinations. They evaluated the performance of this system by

using an approximate analytic procedure.

Sabuncuoglu et al. (2002) studied the effect of the number of component stations

(parallelism), work transfer, processing time distributions, and buffer allocation

schemes on throughput rate and also on inter-departure time variability of assembly

systems. The authors conducted simulation experiments so as to give some rule of

thumbs that could guide practitioners to design more effective systems. Another

study on assembly lines was presented by Hemachandra and Eedupuganti (2003).

The authors considered a finite capacity fork–join queuing model for open assembly

systems with arrival and departure synchronizations and they proposed a heuristic

approach for enumerating the state space. The authors considered three objectives,

38

such as maximizing the throughput of the system, minimizing the mean waiting time

of a typical job and minimizing the WIP of the system, while finding the optimal

buffer configurations.

Yamada and Matsui (2003) developed a management design approach for

assembly lines by considering both the cost and lead-time under demand

fluctuations. In this study, the optimal buffer size which minimizes the buffer and

overflow cost at each station was determined by iterative simulation. Here, the

complex method was employed to optimize the buffer sizes.

Chararsoghi and Nahavandi (2003) proposed a heuristic approach for optimal

allocation of buffers under the objective of throughput maximization. The throughput

rate of the studied system was evaluated using simulation. Computational tests

showed the efficiency of the proposed approach.

A dynamic programming implementation for solving buffer allocation problem

was presented by Diamantidis and Papadopoulos (2004). The objective of this study

was to maximize the throughput of the line subject to total buffer space constraint.

To obtain the throughput of the system an aggregation method was used. The

numerical results showed that the proposed dynamic algorithm was very fast and

always converged.

Daskalaki and MacGregor Smith (2004) combined routing and buffer allocation

problems in serial-parallel queuing networks. An iterative two-step methodology was

proposed to solve the optimal routing and buffer allocation problems with the

objectives of maximizing throughput and minimizing total buffer size. This

methodology involved the expansion method as an evaluative method and Powell’s

algorithm as a generative method. The effectiveness of the proposed methodology

was demonstrated through several experiments.

MacGregor Smith and Cruz (2005) solved buffer allocation problem for general

queuing networks so as to minimize the total buffer size in the system. The

39

generalized expansion method was employed to evaluate the performance of the

system and Powell’s unconstrained search algorithm was used to optimize the buffer

sizes. The efficiency of the solution approach was demonstrated by extensive

computational experiments.

A flexible manufacturing system with parallel workstations was considered by

Kwon (2006). The author employed the decomposition method to evaluate the

performance of the system and proposed a heuristic algorithm to optimize the buffer

sizes so as to maximize the throughput rate of the system. While the numerical tests

showed the efficiency of the proposed algorithm for small-sized problems, the

experimental results were not encouraging for large-sized problems.

Um et al. (2007) employed simulation methodology for the buffer size

determination in a flexible manufacturing system cell line. Buffer allocation was

categorized into cell buffer and machine buffer. The authors used the evolution

strategy in order to find the optimal buffer sizes so as to maximize the throughput

rate of the system and also minimizing AGV congestion and maximizing AGV

utilization. Another simulation based study was carried out by Othman et al. (2007)

for optimal buffer allocation in short production lines including eight machines. The

authors aimed at giving a guideline to manufacturing system designers for the

application of simulation methodology to the buffer allocation problem.

Optimization of finished good inventories was considered by Nieuwenhuyse et al.

(2007). In this study, the authors developed a queuing model to evaluate customer

service levels and buffer size requirements in semi-process industry. The objective of

this study was to reduce finished good buffer requirements without compromising

customer service level by determining optimal campaign sizes.

Raman and Jamaludin (2008) suggested three strategies to reduce the WIP

inventory in a three-machine line and they tested the performance of these strategies

via simulation modeling.

40

Cruz et al. (2008) considered the buffer allocation problem in an arbitrary queuing

network. They aimed at finding the minimum total buffer size which achieves the

desired throughput rate. Like their previous study (MacGregor Smith and Cruz,

2005) the generalized expansion method was employed to obtain the throughput rate

of the system. For optimizing the buffer sizes, an algorithm based on a Lagrangian

relaxation was proposed. In comparison with the exact simulation results, their

proposed algorithm seemed to produce very fast and accurate solutions.

Yuzukirmizi and MacGregor Smith (2008) presented an optimal buffer allocation

procedure for closed queuing networks. The performance measures were evaluated

using the expanded mean value analysis and the buffer sizes were optimized by

utilizing Powell method which was a non-linear optimization method. The objective

function involved maximizing the throughput rate of the system, and also minimizing

the total average waiting delay of a customer from entry to completion. The

efficiency of the proposed solution approach was demonstrated through several

numerical experiments.

In same year, Can et al. (2008) presented a comparative study of different

stochastic components of genetic algorithms, such as operators, fitness assignment

strategies and elitism, for simulation-based optimization of the buffer allocation

problem. They also incorporated problem specific knowledge to further enhance the

practicality of genetic algorithms in decision making for buffer allocation problem.

Later, Can and Heavey (2009) presented a simulation-based evolutionary framework

for constructing analytical meta-models and applied it to solve the buffer allocation

problem in manufacturing lines. In this framework, a particle swarm algorithm was

integrated with genetic programming to perform symbolic regression of the problem.

The sampling data was sequentially generated by the particle swarm algorithm, while

genetic programming evolved symbolic functions of the domain. The experimental

results were promising in terms of efficiency in design of experiments and accuracy

in global meta-modeling.

41

An efficient algorithm for finding the near optimal buffer allocation of a given

number of total buffer sizes in a cellular remanufacturing system where the servers

follow the N-policy with finite buffers was presented by Aksoy and Gupta (2010). In

this study, the expected total cost of the remanufacturing system which was a

function of the each station’s throughput was considered. The system was modeled

by using expansion method. The performance of the proposed algorithm was tested

for both balanced and unbalanced lines covering a large experimental region and it

has been observed that their proposed algorithm produced excellent results in a

variety of experimental conditions.

Cruz et al. (2010) developed a multi-objective approach for the buffer allocation

and throughput trade-off problem for single server queuing networks. It has been

stated that combining generalized expansion method with a multi-objective genetic

algorithm gave insightful Pareto curves. These curves explicitly showed the trade-off

between buffer spaces and throughput. Their experimental results showed

consistency with the optimal solutions found in earlier studies and supported the

merits of the proposed solution approach.

Finally, Van Woensel et al. (2010) considered the joint optimization of the

number of buffers and servers. The performance of the line was evaluated by using a

combination of two-moment approximation and the generalized expansion method.

The model presented in this study minimized the number of buffers and servers such

that the resulting throughput is greater than a predefined threshold throughput rate.

Similar to previous studies considering the same type of production systems

(Daskalaki and MacGregor Smith, 2004, MacGregor Smith and Cruz, 2005,

Yuzukirmizi and MacGregor Smith, 2008), the authors employed Powell’s algorithm

for optimization.

42

3.2.2 Unreliable Lines

In this section, the studies done since 1998 for buffer allocation problem in

unreliable lines published are reviewed. A chronological list of these studies with

respect to three classification criteria is presented in Table 3.2.

Vouros and Papadopoulos (1998) employed a knowledge based system to obtain

the optimal buffer allocation plan for unreliable lines so as to maximize the

throughput rate of the line. Simulation was used an evaluative method. The results of

proposed solution approach were compared with the results of exact method. The

authors stated that using specific types of knowledge the proposed system was

computationally efficient and the results obtained were very close to the optimal.

A study by Gershwin and Schor (2000) which was based on M.S. thesis of Schor

(1995) focused on both BAP1 and BAP2 problems which were previously defined in

Chapter 2. In this study, the authors named BAP1 as a dual problem and BAP2 as a

primal problem and they also considered profit maximization as an objective.

Gradient based search algorithms were proposed to solve these problems. They first

solved the dual problem and then used this solution to solve the primal problem. The

performance of the proposed algorithms was tested on existing benchmark problems

and better results were obtained. The throughput rate of the line was evaluated by

using decomposition method. Moreover, a survey of related literature was provided

in this study.

Seong et al. (2000) also proposed a gradient based search algorithm to solve the

buffer allocation problem in a continuous flow unreliable production line so as to

maximize the net profit of the system. Unlike the study of Gershwin and Schor

(2000), the authors solved the buffer allocation problem under the linear constraints

on buffer sizes and total buffer size capacity. Their computational experiments

showed that the proposed gradient based algorithm was produced good solutions.

The authors also showed the robustness of the proposed algorithm to the initial

solution through numerical experiments.

4
3

Table 3.2 Overview on buffer allocation literature: Unreliable lines

Authors
Topology of the Line Objective Solution Methodology

S S-P GN A FMS CMS 1 2 3 4 5 Evaluative Generative

Vouros &
Papadopoulos (1998)

x x Simulation Knowledge Based Method

Gershwin & Schor

(2000)
x x x x Decomposition Method Gradient Search

Gurkan (2000) x x Generalized Semi-Markov Process
Sample Path Optimization & Stochastic

Approximation

Jeong and Kim

(2000)
 x x Simulation Heuristic

Lee (2000) x x Simulation Heuristic

Seong et al. (2000) x x Decomposition Method Gradient Search

Helber (2001) x x x Decomposition Method Gradient Search

Kim & Lee (2001) x x Approximate Analytic Algorithm Heuristic

Sörensen & Janssens

(2001)
x x Approximate Analytic Algorithm Heuristic

Papadopoulos &
Vidalis (2001)

x x Markovian State Model Heuristic

Dolgui et al. (2002) x x Aggregation Method Genetic Algorithms

Enginarlar et al.
(2002)

x x Analytic Model & Simulation Rules-of-Thumbs

Han & Park (2002) x x Approximate Analytic Algorithm Penalty Function & Steepest Descent Methods

Lee & Ho (2002) x x Simulation Response Surface Methodology

Roser et al. (2003) x x Simulation Shifting Bottleneck Detecting Approach

Shi & Men (2003) x x Decomposition Method
Hybrid Method

(Tabu Search & Nested Partitions)

Tempelmeier (2003) x x x Decomposition Method Heuristic

4
4

Table 3.2 Overview on buffer allocation literature: Unreliable lines (cont.)

Authors

Topology of the Line Objective Solution Methodology

S S-P GN A FMS CMS 1 2 3 4 5 Evaluative Generative

Louw & Page (2004) x x
Open Queuing Network Model &

Simulation
Analytic Method

Zequeira et al. (2004) x x Mathematical Model Grid Search

Aksoy & Gupta

(2005)
 x x Expansion Method Heuristic

Allon et al. (2005) x x Simulation Cross-Entropy Method

Enginarlar et al.
(2005)

x x Analytic Model Rules-of-Thumbs

Nourelfath et al.

(2005)
x x

Decomposition

Method
Ant Colony Optimization

Matta et al. (2005) x x Simulation Design of Experiments

Bulgak (2006) x x Simulation Genetic Algorithms & Artificial Neural Networks

Nahas et al. (2006) x x Decomposition Method
Degraded Ceiling Algorithm & Simulated

Annealing

Sabuncuoglu et al.
(2006)

x x Simulation Heuristic

Altiparmak et al.

(2007)
 x x Simulation Artificial Neural Networks

Dolgui et al. (2007) x x Aggregation Method
Hybrid Method (Genetic Algorithms & Branch-

and-Bound)

Qudeiri et al. (2007) x x Simulation Genetic Algorithms

Ribeiro et al. (2007) x x
Mixed Integer Linear Programming

Model
Mixed Integer Linear Programming Model

Battini et al. (2008) x x Simulation Experimental Cross Matrix

Demir & Tunali

(2008)
x x Decomposition Method

Hybrid Method (Genetic Algorithms &

Subgradient Method)

Qudeiri et al. (2008) x x Aggregation Method & Simulation Genetic Algorithms

4
5

Table 3.2 Overview on buffer allocation literature: Unreliable lines (cont.)

Authors

Topology of the Line Objective Solution Methodology

S S-P GN A FMS CMS 1 2 3 4 5 Evaluative Generative

Yamamoto et al.
(2008)

x x Simulation Genetic Algorithms

Zequeira et al. (2008) x x Mathematical Model Heuristic

Lee et al. (2009) x x x Simulation Genetic Algorithms & Artificial Neural Networks

Nahas et al. (2009) x x Decomposition Method Ant Colony Optimization & Simulated Annealing

Shi & Gershwin
(2009)

x x Decomposition Method Nonlinear Programming

Vitanov et al. (2009) x x Simulation Ant Colony Optimization

Chehade et al. (2010) x x x Simulation Ant Colony Optimization

Colledani et al. (2010) x x Approximate Analytic Algorithm Colledani et al. (2002)

Demir et al. (2010) x x Decomposition Method Adaptive Tabu Search

Kose (2010) x x Simulation Genetic Algorithms

Massim et al. (2010) x x x Decomposition Method Artificial Immune Algorithm

Demir et al. (2011) x x x Decomposition Method Tabu Search

Total 30 5 3 7 0 1 24 11 7 8 3

46

Gurkan (2000) employed sample path optimization and stochastic approximation

in unreliable serial production lines where the product type was fluid. The author

derived recursive expressions to compute one-sided directional derivatives of

throughput by utilizing a generalized semi-Markov process representation of the

system. The objective was to minimize the function involving total buffer size and

scaled throughput under some linear constraints. The author employed sample path

optimization and stochastic approximation to optimize the buffer sizes. The

experimental studies showed that both methods worked equally for small-sized

problems while sample path optimization was superior to stochastic approximation in

terms of computational effort for large-sized problems.

Lee (2000) addressed the buffer sizing problem under the objective of total cost

minimization in a cellular manufacturing system. The cost function to be minimized

includes the set-up cost to install the buffer storage and the cost of production loss

due to limited buffer storage. This function was minimized by using a heuristic

approach based on non-linear search strategy. Later, Lee and Ho (2002) solved to

same problem for serial and job shop type production systems with multiple part

types. In this study, simulation was used for modeling and buffer sizes were

optimized via response surface methodology.

Jeong and Kim (2000) studied a different type of buffer allocation problem

involving the selection of machines for each station and determination of buffer

capacities in a tree-structured unreliable assembly system. The authors suggested

three heuristics to find the minimum cost configuration which achieves a desired

throughput rate. Starting from a lower (which consists of less efficient machines and

large size buffers) or upper configuration (which consists of more efficient machines

and small size buffers) these heuristics first generate promising machine

configurations and then find the best buffer configurations for each machine

configuration.

Considering the buffer allocation problem as an investment problem Helber

(2001) employed gradient algorithm to determine the buffer allocation and the

47

performance of the algorithm was evaluated by using decomposition technique. To

assess the economic consequences of the buffer allocation, the author linked the

production rates and inventory levels to the projected cash flow and maximized the

expected net present value of the investment including machines, buffers and

inventory.

Papadopoulos and Vidalis (2001) investigated the buffer allocation problem in

short unbalanced unreliable production lines consisting of up to six machines. They

developed a heuristic algorithm based on sectioning approach to maximize the

throughput of the line and like in their previous study (Papadopoulos and Vidalis,

1998), for performance evaluation they used Markovian state model method

developed by Heavey et al. (1993).

Sörensen and Janssens (2001) developed an approximation model to determine

the total availability for an unreliable production system. The total cost of the system

was determined as a function of the required or desired availability of the system and

of the total or average usage of the available buffer space. This cost was minimized

by using a search algorithm.

Kim and Lee (2001) proposed a heuristic algorithm which was the modified

version of the algorithm proposed by Seong et al. (1995) to solve the buffer

allocation problem in a production line under given total buffer capacity and the

minimum required throughput.

Han and Park (2002) presented an approximation method for the analysis of

average steady state throughput of serial production lines with unreliable machines,

finite buffers and quality inspection machines. Employing this approximation

method, the authors proposed an analytic method for the optimal buffer allocation to

achieve a desired throughput rate. The method involved penalty function and steepest

descent methods and it was validated by computer simulations.

48

Enginarlar et al. (2002) investigated the smallest level of buffering to ensure the

desired throughput rate in serial lines with unreliable machines. In this study, the

reliability of machines was assumed to obey either exponential, Erlang or Rayleigh

models. The dependence of level of buffering on the reliability model, the number of

machines, the average uptime, and the efficiency was analyzed and as a result some

rules-of-thumbs were provided to select buffer capacity so as to achieve desired

throughput rate. Later, Enginarlar et al. (2005) considered the same problem in

unreliable serial lines with identical exponential machines and they provided

qualitative insights into the nature of lean buffering in serial production lines.

In recent years, it has been observed that meta-heuristic methods are successfully

employed for solving buffer allocation problem. Genetic algorithm is one of these

well-known methods. Dolgui et al. (2002) proposed genetic algorithm to solve buffer

allocation problem for unreliable serial-parallel production lines so as to maximize

the profit. It was assumed that the failure and repair rates of the machines were

exponentially distributed and the machines have deterministic processing times. The

performance measures of this line were evaluated using Markov-model aggregation

method. The performance of the proposed genetic algorithm was compared with the

pure genetic algorithm, complete enumeration and the Monte Carlo methods and

better quality of solutions were obtained with the proposed GA. Later, Dolgui et al.

(2007) proposed a hybrid approach involving genetic algorithms and branch-and-

bound method for the same problem. The authors used genetic algorithm to obtain

the initial solution for branch-and-bound method and stated that to do so shortens the

total running time of the algorithm comparing with pure branch-and-bound

algorithm.

Another study hybridizing a meta-heuristic method with any other search

techniques was presented by Shi and Men (2003). In this study the nested partitions

method was hybridized with tabu search method. The basic tabu search method was

incorporated into the nested partitions framework so as to maximize the throughput

rate of the line. The decomposition method was used as an evaluative method. The

results obtained by the proposed hybrid approach was compared to the results

49

obtained by the basic tabu search and local search algorithms and it was found that

their proposed hybrid approach was the best one among the others in terms of both

solution quality and solution time.

Roser et al. (2003) described a prediction model to estimate the effect of increased

buffer capacity onto the system performance based on only a single simulation.

Although the proposed method was meant to be for large balanced and unbalanced

systems and serial/parallel manufacturing systems, the authors stated that it can be

adapted to non-manufacturing discrete event systems.

The real life problems considering the optimal buffer allocation problem in

unreliable production lines were presented by Tempelmeier (2003). Both

deterministic and variable processing times were considered. The author employed

decomposition method for evaluating system performance and a heuristic approach

for finding the optimal buffer and workload allocation simultaneously.

To estimate the size of the time buffers in theory of constraints controlled flow

lines an open queuing network analysis approach was presented by Louw and Page

(2004). Simulation experiments performed suggested that this approach could be

efficiently applied in practice to estimate the length of the required time buffers.

Zequeira et al. (2004) presented a mathematical model to determine optimal

buffer inventories and also optimal operational times to satisfy the demand during

the maintenance action on a manufacturing facility. Later, Zequeira et al. (2008)

added the issue of imperfect production possibility into the model and assumed that

the opportunities to produce the buffer inventory and opportunities to carry out a

maintenance action were random. The authors proposed a heuristic algorithm to

determine the optimal buffer sizes and they used the mathematical model presented

in Zequeira et al. (2004) for performance evaluation.

Nourelfath et al. (2005) employed ant colony optimization for solving buffer

allocation problem in unreliable serial lines. The objective of this study was to

50

maximize the efficiency of the line subject to a total cost constraint. The performance

of the line was estimated by using decomposition method. Moreover, to improve the

performance of the ant colony optimization algorithm the authors developed two

improvement algorithms. It has been observed that by combining these algorithms

with ant colony optimization algorithm, the optimal/near-optimal solutions could be

obtained more quickly.

The buffer allocation problem in remanufacturing systems was considered by

Aksoy and Gupta (2005). In this study, Aksoy and Gupta (2005) developed a near

optimal buffer allocation algorithm for cellular remanufacturing system with finite

buffer capacities and unreliable servers. Authors considered server unavailability in

the remanufacturing system by means of exponential breakdown and repair rate. To

analyze this system expansion method was employed and a heuristic algorithm was

suggested to optimize the buffer size so as to minimize the total cost. The

performance of the algorithm was tested for both balanced and unbalanced cells

covering a large experimental region.

A new stochastic algorithm named as cross-entropy method was employed by

Allon et al. (2005). The objective was to maximize the throughput of the line and the

performance of the line was evaluated using simulation. Matta et al. (2005) also

employed simulation to evaluate the performance of flow lines including common

buffer area. An experimental design was conducted to determine significant factors

on production rate of the system. The authors presented some practical

considerations for manufacturing system designers.

Another study which employed simulation as an evaluative method was presented

by Sabuncuoglu et al. (2006). The authors studied the cases with single and multiple

bottleneck stations under various experimental conditions and presented a heuristic

algorithm to maximize the throughput rate of the line. The results of computational

experiments showed that the proposed heuristic algorithm was very efficient in terms

of both solution quality and also solution time. Moreover, some-rules-of thumbs for

characterizing the optimal buffer allocation were given in this study.

51

Nahas et al. (2006) proposed a degraded ceiling algorithm for solving buffer

allocation problem under the objective of throughput maximization for unreliable

production lines. To estimate the throughput rate of the line the decomposition

method was employed. The results obtained by degraded ceiling algorithm were

compared with simulated annealing algorithm using existing benchmark problems

which involved both homogeneous and non-homogeneous production lines. It was

reported that better results were obtained by degraded ceiling algorithm since

degraded ceiling algorithm converged to the optimum solutions quickly than

simulated annealing algorithm. In 2009, Nahas et al. (2009) considered both buffer

allocation and machine selection problem in a series-parallel production line so as to

maximize the production rate of the line. To estimate the performance of this

production line an analytical decomposition-type approximation was employed. The

decision variables, i.e. buffer sizes and the number of parallel machines were

optimized by using ant colony optimization. The results obtained by ant colony

optimization were compared with the results obtained by simulated annealing

algorithm. It has been observed that ant colony optimization produced better results

than simulated annealing algorithm.

Bulgak (2006) studied optimal interstage buffer allocation problem of split-and-

merge unpaced open assembly systems. The system studied in this paper was a

modified version of the assembly system described by Hemachandra and

Eedupuganti (2003). The author developed a simulation model in conjunction with

genetic algorithms to find optimal inter-stage buffer configurations yielding a

maximum production rate. To make the proposed method computationally more

efficient, the author also proposed simulation meta-modeling based on artificial

neural networks. Altiparmak et al. (2007) also investigated meta-modeling

opportunities in buffer allocation and performance modeling in asynchronous

unreliable assembly systems. In this study, a meta-model based on the artificial

neural network was developed and simulation was employed as an evaluative

method. The authors stated that the artificial neural network could successfully be

used for modeling assembly systems.

52

Another study employing genetic algorithm was presented by Qudeiri et al.

(2007). In this study, a simulator which includes a genetic algorithm to optimize the

buffer sizes for complex production systems was developed. The authors introduced

a new encoding method called multi-vector encoding method for genetic algorithms

and stated that using this new encoding method the optimal buffer sizes can be

obtained after a few number of generations. Following this study, Yamamoto et al.

(2008) employed the same solution methodology to determine the buffer sizes for a

flexible transfer line with bypass lines and Qudeiri et al. (2008) proposed genetic

algorithms for optimal buffer allocation in an unreliable serial-parallel production

line. Qudeiri et al. (2008) used the gene family arrangement method to express the

chromosome and proposed new crossover and mutation methods. The authors

evaluated the performance of the line using aggregation method and they optimized

buffer sizes between each pair of workstations, number of machines in each

workstation and the types of machines. It was observed that the production efficiency

was improved by using their proposed solution method.

Ribeiro et al. (2007) aimed at jointly optimizing the maintenance of a capacity

constrained resource, its feed machine/operation and inlet buffer size. A mixed

integer linear programming model was developed to maximize total profit in the

planning horizon. A two-machine line example was used to illustrate the

implementation of the model.

Demir and Tunali (2008) proposed a hybrid solution approach combining

subgradient algorithm proposed by Gasimov and Ustun (2007) and genetic

algorithms within the same framework to maximize the throughput of the production

line. To evaluate the throughput of the line an analytical decomposition

approximation method was used. The performance of the proposed approach was

demonstrated by a case study and promising results were obtained.

In same year, Battini et al. (2008) presented a new paradigm: the buffer design for

availability. The main idea was to construct the buffer configuration based on

availability performance of production lines. In this study, only micro downtimes

53

were considered. Simulation was used as an evaluation method and a new

experimental cross matrix based on the guide index was provided as a generative

method to determine the optimal buffer sizes. Moreover, the authors evaluated the

effects of workstation reliability parameters on buffer capacities using simulation and

also presented simple guidelines to support and help manufacturing system designers

for rapid and robust buffer design.

In a recent study, Shi and Gershwin (2009) presented a nonlinear programming

approach for maximizing profits through buffer size optimization in production lines.

In this study, both buffer space cost and average inventory cost with distinct cost

coefficients for different buffers and also a nonlinear production rate constraint have

been considered. Moreover, numerical results were provided to show the efficiency

and accuracy of the proposed algorithm for both short and long production lines.

Another ant colony optimization algorithm for solving buffer allocation problem

in assembly lines was proposed by Vitanov et al. (2009). The algorithm was designed

to work in conjunction with a simulation model and adapted to have both

combinatorial and stochastic problem solving capacity.

Lee et al. (2009) proposed an artificial intelligence based method to investigate

the buffer allocation of unbalanced-unreliable flow type production lines. Genetic

algorithm combined with simulation method was used in attempting to quickly figure

out the best solutions. In turn, these optimal solutions were fed into an artificial

neural network for predicting buffer allocations. The performance of the proposed

method was evaluated by using benchmark problems previously published in

literature.

Colledani et al. (2010) proposed a new methodology based on analytical methods

to support Scania, the manufacturer of heavy trucks, buses, and industrial and marine

diesel engines. Besides improving the performance of the system through re-

configuration, the authors also considered repair crew optimization and buffer size

54

optimization problems. The buffer allocation problem was solved using the method

proposed by Colledani et al. (2004) under the objective of throughput maximization.

Demir et al. (2010) presented an adaptive tabu search approach to maximize the

throughput rate of the line for non-homogeneous lines. In this study, tabu search

parameters were tuned adaptively during the search so as to improve the search

process. The performance of the proposed solution approach was tested on randomly

generated test problems. In another study, Demir et al. (2011) proposed a tabu search

approach for solving buffer allocation problem under the objective of both

throughput maximization and also total buffer size minimization in homogeneous

lines. The performance of the proposed approach was tested on previously published

benchmark problems and promising results were obtained.

Another implementation of genetic algorithms for solving buffer allocation

problem was presented by Kose (2010). In this study a real production system was

modeled using simulation and buffer sizes were optimized using genetic algorithms.

Chehade et al. (2010) proposed a new multi-objective solution approach for

solving buffer allocation problem in assembly lines. For each buffer size a range was

considered including a lower and upper bound. Two objectives were taken in

consideration: throughput maximization and total buffer size minimization. The

proposed solution method was based on a multi-objective ant colony optimization

algorithm using the Lorenz dominance instead of the well-known Pareto dominance

relationship. The author stated that the Lorenz dominance relationship provided a

better domination area by rejecting the solutions founded on the extreme sides of the

Pareto front. The results obtained were compared with those of a classical multi-

objective ant colony optimization algorithm. The numerical results showed the

advantages and the efficiency of the Lorenz dominance.

Finally, in the study of Massim et al. (2010), an artificial immune algorithm was

proposed to solve buffer allocation problem for unreliable production lines so as to

maximize the throughput of the line and also profit under the total buffer capacity

55

constraint. The algorithm was tested on previously published benchmark problems,

and equivalent or improved results were obtained.

3.3 Motivation

Based on the survey of the current studies on buffer allocation problem (see

Tables 3.1and 3.2), we could list our findings as follows:

 Most of the studies consider the issue of machine breakdowns (46 out of

76 studies).

 The serial line configuration is the most studied line configuration (46 out

of 76 studies).

 The throughput maximization problem (i.e. BAP1) is the most studied

problem in the current literature (41 out of 76 studies).

 Only 8 out of 76 studies solve the problem under the objective of both

throughput maximization and also total buffer size minimization.

 A great majority of studies (49 out of 76 studies) employ analytic methods

as an evaluative method for solving the problem. It has been observed that

when the line studied becomes more complex as in the case of assembly

lines, simulation is used as an evaluative method. It has been noted that 8

out of 11 studies involving assembly lines employ simulation as an

evaluative method.

 In recent years, the meta-heuristics are widely used for solving the buffer

allocation problem because of their capability in handling combinatorial

optimization problems. More than half of these studies (13 out of 22

studies) employ genetic algorithms as a generative method.

 Only 3 out of 76 studies employ a hybrid approach to optimize the buffer

sizes (Shi and Men, 2003, Dolgui et al., 2007, and Demir and Tunali,

2008) and all of these studies solve the buffer allocation problem under the

objective of throughput maximization.

In the light of the current literature, we could state that a great majority of

researchers studied the buffer allocation problem either under the objective of

56

throughput maximization or total buffer size minimization. Since the buffering

allows the machines to operate nearly independently of each other and in this way it

helps to increase the throughput rate of the system, there are usually floor space and

budget constraints in reality. Generally, the ultimate aim is to improve the system

performance with the minimum cost as in the case of all manufacturing system

problems. So, one should consider both objectives while solving buffer allocation

problem so as to obtain the best solution.

Moreover, there were a few studies using hybrid meta-heuristic approaches to

solve this complex problem. As it is stated before, the buffer allocation problem is an

NP-hard combinatorial optimization problem where the decision variables, i.e. buffer

sizes, are integer. As in all cases of combinatorial problems, to find optimum

solutions by exact methods in a reasonable amount of time is impossible when the

problem size increases. To overcome to this difficulty and to find (near-) optimal

solutions, in recent years, meta-heuristic methods are widely employed for solving

combinatorial optimization problems. Moreover, to improve the search process,

meta-heuristic methods are hybridized with any other meta-heuristic or optimization

methods in a complementary fashion. Over the last years, it has been reported that

the best results for many combinatorial problems are obtained by hybrid algorithms.

Combinations of algorithms such as simulated annealing, tabu search and

evolutionary algorithms have provided very powerful algorithms as it can be seen in

the buffer allocation problem context (see Shi and Men, 2003, Dolgiu et al. 2007,

and Demir and Tunali, 2008). However, the buffer allocation problem is solved only

under the objective of throughput maximization in all mentioned studies. Hence,

solving buffer allocation problem by using a hybrid meta-heuristic approach and

testing its efficiency on total buffer size minimization problem seems an open area in

buffer allocation literature.

Considering these opportunities and unfulfilled research potential in this area, this

Ph.D. study aims at suggesting hybrid algorithms to solve the buffer allocation

problem in unreliable production lines under the objective of both throughput

maximization and also total buffer size minimization.

57

3.4 Chapter Summary

In this chapter, the current studies on buffer allocation problem were extensively

reviewed to identify the current research gaps and also state the motivation for this

Ph.D. thesis.

Our review includes the studies published after 1998. To review the current

relevant literature, first the studies are divided into two categories: reliable lines

which are not subject to failure, and unreliable lines which are subject to failure. The

studies are classified according to the topology of the line, considered objective

function and the type of the evaluative and generative solution method employed to

solve the buffer allocation problem.

Based on the findings of this survey, this Ph.D. study aims at suggesting tabu

search algorithms to solve the buffer allocation problem in unreliable production

lines under the objective of both throughput maximization and also total buffer size

minimization. For this purpose, the buffer allocation problem is first solved under the

objective of throughput maximization. Next chapter presents the details of our

proposed TS algorithm for throughput maximization problem in unreliable

homogeneous production lines.

58

CHAPTER FOUR

A TABU SEARCH APPROACH FOR THROUGHPUT MAXIMIZATION IN

UNRELIABLE HOMOGENEOUS PRODUCTION LINES

4.1 Introduction

The main objective of this Ph.D. study is to develop efficient algorithms for

solving buffer allocation problem in unreliable production lines. For this purpose, we

solved the problem in three stages as it is stated in the first chapter. This chapter

presents what we have done at the first stage of this Ph.D. study.

In this chapter, a TS algorithm is proposed to solve buffer allocation problem

under the objective of throughput maximization for homogeneous production lines

involving unreliable machines with deterministic processing times. The new move

definitions for buffer allocation problem are introduced and a pilot experiment is

carried out to identify the best TS parameters. The performance of the proposed TS

algorithm is tested on benchmark problems previously published in literature.

The rest of this chapter is organized as follows. In section 4.2, the specifications

of the problem are given. The details of the proposed TS algorithm are presented in

section 4.3. The results of experimental studies carried out to test the performance of

the proposed TS algorithm are discussed in Section 4.4. Finally, in Section 4.5 the

context of this chapter is summarized.

4.2 Problem Specifications

This chapter focuses on serial production lines involving unreliable machines with

the same processing rates. The objective is to find the optimal buffer allocations so

that the throughput rate of the line can be maximized for a given fixed amount of

buffers. As given earlier in chapter 2, this problem is called as BAP1. To deal with

59

this problem, a tabu search algorithm which is adapted to the intrinsic features of this

problem is proposed in this chapter.

The following gives the summary of the features of the production line studied:

 All the machines along the line have the same processing rate of one unit

of time.

 There is an intermediate location for storage between each pair of

machines.

 Each part goes through all the machines in exactly the same order.

 The machines are subject to breakdown and the repair and failure rates of

the machines are geometrically distributed.

 The first machine is never starved, i.e. input is always available, and the

last machine is never blocked, i.e. there is always space to dispose of the

output.

Assuming that there are K machines and K-1 buffers in the production line, our

objective is to maximize the throughput rate of the production line, subject to a given

total buffer capacity. The problem can be formulated as follows:

Find 1 2 1(, ,...,)KB B B B  so as to

max ()f B (1)

subject to

1

1
i

K

i

B N




 (2)

nonnegative integers (1,2,..., 1) iB i K  (3)

where N is a fixed nonnegative integer denoting the total buffer space available in the

system which has to be allocated among the K-1 buffer locations so as to maximize

the throughput rate of the production line. In this formulation B represents a buffer

vector, iB is the buffer size for each location and f(B) represents the throughput rate

of the production line with respect to the buffer configuration B.

To solve this buffer allocation problem, we propose a tabu search based meta-

heuristic approach specifically adapted to the intrinsic features of this problem.

60

Unlike the studies of Lutz et al. (1998) and Shi and Men (2003), who also employ

tabu search for the buffer allocation problem, a different tabu criterion, which is

explained in next section, is employed in our TS algorithm and the problem is solved

for both short and long production lines. In addition, considering the large size of the

search space, a diversification strategy is incorporated into the algorithm to improve

the search process for long production lines. The performance of the proposed

algorithm (i.e., the throughput rate of the production line) is evaluated by using the

decomposition method (Gershwin, 1987) which is explained in chapter 2.

4.3 Proposed TS Algorithm

The design of a meta-heuristic method to solve a combinatorial optimization

problem first requires the definition of the basic components of the method. The

following sections present the specifics of the proposed TS algorithm for solving

buffer allocation problem.

4.3.1 Move Representation and Tabu Moves

In this study, the moves are depicted by the notation  ,i j , meaning that one

buffer is added at location i, and one buffer is subtracted at the location j (i and j can

be any locations). As in all TS applications, constructing the tabu criterion is the

most important element of the tabu search process. There are three natural ways to

create the tabu criterion for the buffer allocation problem. The first one is to choose

the full move as tabu which means if the move  ,i j produces the best objective

function, then the reverse move is not permitted. Therefore the move  ,j i becomes

a tabu for TT number of iterations. The second one is to choose the location as a tabu

where one buffer is added. More precisely if the move  ,i j produces the best

objective function, then the move [all (),]j i j i is not permitted for TT number of

iterations. In this way more than one move is blocked. This move is called as move to

target location. The third way to create the tabu criterion is to choose the location as

a tabu where one buffer is subtracted. More precisely if the move  ,i j produces the

61

best objective function, then the move [,all ()]j i i j is not permitted for TT number

of iterations. This move is called as move from source location.

In all previous TS applications on buffer allocation problem and also many other

combinatorial problems, employing full move as a tabu criterion is the common

sense. It should be noted that the performance of TS can be affected by the type of

move chosen. Hence, we carried out an experimental study to test the effects of move

types on the search performance and we showed that the performance of the search

process is affected by the move type (see section 4.4.1).

4.3.2 Search Space and Neighborhood Structure

Identifying a search space along with a neighborhood structure is the most critical

step of any TS implementation. The search space of the TS is simply the space of all

feasible solutions that can be visited during the search. As it is stated by Gendreau

and Potvin (2005) in some cases, allowing the search to move infeasible solutions is

desirable. In buffer allocation problem context, since there is an integrality constraint

on buffer sizes and also the total buffer size constraint, it is not reasonable to allow

the infeasible solutions. So, in this study, the search space involves only the feasible

solutions.

To define the neighborhood structures of the current solution, there are several

choices. For instance, one choice could be to consider the full neighborhood of the

current buffer configuration while the other could be to consider only a subset of the

neighborhood of the current solution as in the study of Lutz. et al. (1998). In their

study, since simulation is employed as an evaluative method and it takes more time

to evaluate all neighborhoods by simulation, they consider only a small subset of the

neighborhood of the current solution. Unlike their study, since we obtain the

throughput rate of the line by employing decomposition method quickly, we evaluate

all neighbors of the current solution. It also allows us not to disregard good solutions

during the search.

62

4.3.3 Diversification Strategy

Diversification guides the search to unexplored regions to avoid local optimality.

If the solution space is too large diversification should be used to explore the search

space effectively. There are two major diversification techniques known as restart

diversification and continuous diversification. While the first is performed by several

random restarts, the latter is integrated into the regular search process.

Considering the large size of the search space, using the frequency based memory

structures of TS we employ the continuous diversification strategy in a systematic

way to improve the search process for large sized problems. Since we have a

knowledge of the performed moves during the search it is more reasonable to employ

continuous diversification than restart diversification which involves randomness and

has a chance to perform same moves previously visited.

This strategy is implemented as follows. A counter is added to the algorithm to

count the moves at each position. When the counter becomes a pre-specified value

for any position, it is penalized to make it less attractive. In doing so, the search is

moved to other unexplored areas of the search space.

4.3.4 Aspiration Criterion

Tabus may prohibit attractive moves, even when there is no danger of cycling, or

they may lead to an overall stagnation of the searching process. Thus it is necessary

to use aspiration criterion to allow the attractive moves. The aspiration criterion used

in this study is the most common criterion used in the literature. According to

aspiration criterion a tabu move is allowed to be made if and only if the resulting

buffer configuration is better than the best configuration found so far. It should be

noted that the new solution has not been previously visited.

63

4.3.5 Stopping Condition

The algorithm is terminated if within a certain number of iterations, no better

solution has been found.

The proposed TS algorithm is outlined in Table 4.1. The notation used in this

table is explained as follows:

0B initial buffer configuration

kB buffer configuration at iteration k

()kNB B the full neighborhood of the current buffer configuration

bestB the best buffer configuration during the whole TS algorithm

tabubestB  the best buffer configuration in ()kNB B that can be reached

from kB by a tabu move in the current neighborhood

nontabubestB  the best buffer configuration ()kNB B that can be reached from

kB by a non-tabu move in the current neighborhood

f(B) the throughput rate of the line for the given buffer

configuration B

bestf the best throughput rate of the line during the whole TS

algorithm

TT tabu tenure

64

 Table 4.1 Proposed TS algorithm for throughput maximization

Initialization

Generate an initial buffer configuration randomly. Initially tabu list (TL) is empty and iteration

number 0k  . Set
0

()
best

f f B and
0best

B B .

Step 1

Create all neighborhoods of the current solution, ()
k

NB B , and invoke the evaluation function

for each neighbor of the current solution to determine the potential new objective function value,

i.e. the throughput rate of the line.

Step 2

Select the buffer configuration in ()
k

NB B such that one of the following will hold:

1. If () max((), ())
best best nontabu best tabu

f B f B f B
 

 , set
1k best nontabu

B B
 
 , put the moves

[all (),]j i j i in TL for the TT number of iterations where the move  ,i j produces

the buffer configuration B
best-nontabu

,

2. If () max((), ())
best nontabu best best tabu

f B f B f B
 

 , set
1k best nontabu

B B
 
 ,

1best k
B B


 ,

1
()

best k
f f B


 , put the moves [all (),]j i j i in TL for the TT number of iterations

where the move  ,i j produces the buffer configuration B
best-nontabu

,

3. Aspiration criterion: If () max((), ())
best tabu best best nontabu

f B f B f B
 

 , then set

1k best tabu
B B

 
 ,

1best kB B  ,
1

()
best k

f f B


 , put the moves [all (),]j i j i in

TL for the TT number of iterations where the move  ,i j produces the buffer

configuration B
best-tabu

.

Step 3

Set 1k k  and go to Step 1 until the termination criterion is satisfied.

Termination criterion

The algorithm is terminated if within a certain number of iterations, no better solution has been

found.

As it is seen in Table 4.1, the step 2 is the phase where the best solution is

updated. At each iteration, the best buffer configuration which can be reached by a

non-tabu move in the current neighborhood is selected for the next step. The only

exception is defined by the aspiration criterion which allows a tabu move to be made

if and only if the resulting buffer configuration is better than the best configuration

found so far. The algorithm is terminated if within a certain number of iterations, no

better solution has been found.

65

4.4 Computational Experiments

In this section, the computational experiments carried out to test the performance

of the proposed TS algorithm by using existing benchmark problems are presented.

Before giving the details of our computational study, we first present how tabu

search parameters used throughout the search process are determined.

4.4.1 Identification of the Best Tabu Search Parameters

Since the search performance is heavily affected by the search parameters chosen,

identifying best search parameters is an important step of any meta-heuristic

application. So this section is devoted to identification of efficient tabu search

parameters for solving buffer allocation problem so as to increase the search

performance. The search parameters investigated are the type of tabu move and the

size of the tabu list, i.e. tabu tenure. The types of moves are explained in section

4.3.1.

The other search parameter investigated is tabu tenure. The tabu tenure can be

constant or it may change dynamically during the search as it is stated in section

2.4.2.2. In this study, the performance of these two types of tabu tenure is evaluated

in three levels (see Table 4.2). Regarding three levels of constant TT, the tabu tenure

is set to n where n is the total number of all neighborhoods of the current buffer

configuration. Likewise the region of experimentation for dynamic TT has been

identified as a result of some number of pilot experiments.

 Table 4.2 The levels for tabu tenure

Tabu Parameter Levels

1 2 3

Constant TT 3 9 19

Dynamic TT Uniform(3,7) Uniform(7,15) Uniform(9,27)

The performance of two types of TT and three types of tabu moves are evaluated

on six sets of problems each involving three instances. It should be noted that these

three instances are generated by changing the failure/repair rates of machines and

66

also the total buffer size to be allocated to the machines. Using a 3 GHz Pentium (R)

4 CPU processor 10 runs are carried out at each design point leading to 180 runs in

total.

The results of experiments are summarized in Table 4.3 with respect to the

number of iterations required for convergence and also the CPU time used by the TS

algorithm with different search parameters. As seen in Table 4.3, regarding the

performance of three tabu move criteria investigated, except for the fifth problem set,

both in small-sized problems (i.e., involving five machines) and also large-sized

problems (i.e., involving 20 machines), move to target location has slightly better

rate of convergence. As summarized in Table 4.3, employing the tabu search

algorithm with constant TT and employing full move as a tabu criterion solves the

fifth set of problems with higher convergence rates and in less CPU time. For small-

sized problems, involving five machines, a significant difference between the

performances of three moves has not been observed.

Lastly, regarding the three levels of constant and dynamic TT, it has been noted

that using constant TT results in higher rate of convergence and also less CPU time in

solving great majority of the problems studied. As a result of experimental study, in

testing the performance of our TS algorithm, we decided to employ constant TT in

solving all types of problems, the full move in solving only large-sized problems

with same machine failure/repair rates and the move to target location in solving all

other problems.

67

 Table 4.3 The results of experimental study for tabu search parameters

Problem

Set

of

Machines

Failure/

Repair
rates*

Tabu

Tenure*
*

Tabu Move

Criterion***

Instance 1 Instance 2 Instance 3

CPU

(sec)

of Iteration
for

Convergence

CPU

(sec)

of Iteration
for

Convergence

CPU

(sec)

of Iteration
for

Convergence

1 5 S

Con/1 1 0.01 7 0.01 7 0,02 7

Con/1 2 0.01 7 0.01 7 0.02 7

Con/1 3 0.01 7 0.01 7 0.02 7

Dyn/1 1 0.01 7 0.01 7 0.02 7

Dyn/1 2 0.01 7 0.01 7 0.02 7

Dyn/1 3 0.01 7 0.01 7 0.02 7

2 5 D

Con/1 1 0.11 7 0.17 9 0.36 35

Con/1 2 0.12 5 0.17 7 0.34 33

Con/1 3 0.12 6 0.17 8 0.35 45

Dyn/1 1 0.13 7 0.17 9 0.34 63

Dyn/1 2 0.14 7 0.18 9 0.34 66

Dyn/1 3 0.14 8 0.19 9 0.37 60

3 10 S

Con/2 1 2.84 14 4.59 13 5.16 14

Con/2 2 2.84 15 4.70 14 5.28 16

Con/2 3 2.95 14 4.70 13 5.26 16

Dyn/2 1 2.85 15 4.61 14 5.17 14

Dyn/2 2 2.85 13 4.71 14 5.31 14

Dyn/2 3 2.98 17 4.71 14 5.37 14

4 10 D

Con/2 1 4.45 23 6.77 63 7.24 102

Con/2 2 4.42 24 6.68 68 7.18 107

Con/2 3 4.48 24 6.74 69 7.21 102

Dyn/2 1 4.45 27 6.87 67 7.24 108

Dyn/2 2 4.51 26 6.73 75 7.32 101

Dyn/2 3 4.52 26 6.72 83 7.32 97

5 20 S

Con/3 1 31.44 30 79.38 35 80.36 32

Con/3 2 31.95 34 79.73 71 81.79 73

Con/3 3 32.08 55 79.70 85 81.11 56

Dyn/3 1 32.10 30 79.45 38 82.55 40

Dyn/3 2 31.87 34 80.94 88 83.84 36

Dyn/3 3 31.98 42 79.85 72 83.43 59

6 20 D

Con/3 1 63.58 79 198.80 151 109.27 250

Con/3 2 62.34 64 194.94 155 104.59 236

Con/3 3 62.39 70 197.56 297 108.58 243

Dyn/3 1 63.34 69 285.17 116 219.19 269

Dyn/3 2 62.54 75 278.91 165 236.80 248

Dyn/3 3 62.75 83 280.62 269 239.86 290

* S: Failure/repair rates are same for all machines in the line, D: Failure/repair rates are different for all machines in the

line

** Con/i: Con:Constant, i=1,2,3: Levels of tabu tenure (See Table 4.2)

** Dyn/i: Dyn:Dynamic, i=1,2,3: Levels of tabu tenure (See Table 4.2)

*** 1: Full move, 2: Move to target location, 3: Move from source location

4.4.2 Experiments on Benchmark Problems

The experimental studies consisted of five sets of problems (i.e., five, nine, ten,

twenty and forty-machine production lines). The machine parameters, i.e. the mean

time to repair and the mean time between failures are denoted by MTTR and MTBF,

respectively, in the following tables. Both the proposed TS algorithm and DDX

algorithm to evaluate the throughput of the line are implemented in the C language.

68

Tabu search parameters are determined as follows:

 Initial buffer sizes are generated randomly from a uniform distribution, U(0,

(2)
1

N

K



). Since the buffer sizes must be integer, the upper bound value is

rounded up to the next integer value. This procedure is repeated until the

constraint related to the total number of buffers to be allocated is satisfied.

 The search continues until the best throughput value does not change during

the certain number of iterations.

Using a 3 GHz Pentium (R) 4 CPU processor, 10 runs are carried out for each

example under different initial buffer allocations.

4.4.2.1 Five Machine Line

This example is initially proposed by Ho et al. (1979) and used in Gershwin and

Schor (2000). The parameters of the line are given in Table 4.4. The total buffer size

is set to 31.

Table 4.4 Five machine line parameters
Machine 1 2 3 4 5

MTTR=1/ri 11 19 12 7 7

MTBF=1/pi 20 167 22 22 26

As a result of experimental studies, it has been noted that the proposed TS

algorithm managed to obtain the same throughput value, 0.4943 as in Gershwin and

Schor (2000) with optimal buffer allocation, }4,10,10,7{B after six iterations on

average. It should be noted that reaching the optimal solution quickly, as in this case,

could be a great advantage in solving large sized problems.

4.4.2.2 Nine Machine Lines

These test cases are proposed in Shi and Men (2003) where the authors employ

the DDX algorithm for evaluation and the Nested Partitions/Tabu Search (NP/TS)

method for optimization. The authors implement the TS in its simplest form to speed

69

up the NP method. The results of comparative experimental studies are given in

Table 4.5. All the machines in the line are subject to the same probability of failure

(pi) and probability of repair (ri) (see the first and second columns). Moreover, the

total buffer size is set to 160.

As given in Table 4.5, the proposed TS algorithm results in nearly the same

throughput in comparison to the two approaches used in Shi and Men (2003). The

observed subtle differences among three approaches can be attributed to applying

different convergence rates. While in this study the convergence rate of the DDX

algorithm is set 10
-6

, in Shi and Men (2003) this rate has not been reported.

Table 4.5 Results of comparative experimental studies

Parameters Throughput

pi ri TS

(Shi&Men, 2003)

NP/TS

(Shi&Men, 2003)
Proposed TS

0.3 0.05 0.108143 0.108143 0.108159

0.3 0.1 0.197546 0.200250 0.200360

0.3 0.2 0.345491 0.345491 0.345576

0.3 0.3 0.452074 0.452074 0.451660

0.3 0.4 0.528466 0.532002 0.532184

0.4 0.05 0.088777 0.088777 0.088771

0.4 0.1 0.166232 0.166232 0.166226

0.4 0.2 0.293041 0.293041 0.293060

0.4 0.3 0.388517 0.390814 0.390962

4.4.2.3 Ten Machine Line

The failure and repair rates for this ten-machine production line are given in Table

4.6 (Nahas et al. 2006). The total buffer size is set to 270.

Table 4.6 Ten machine line parameters

Machine 1 2 3 4 5 6 7 8 9 10

MTTR=1/ri 7 7 5 10 9 14 5 8 10 10

MTBF=1/pi 20 30 22 22 25 40 23 30 45 20

In Nahas et al. (2006) the authors employ the DDX algorithm suggested in

Dallery et al. (1989) to obtain the throughput of the line and they use the degraded

70

ceiling method for optimization. In this example the same evaluation method, i.e.

DDX algorithm, is employed and the convergence rate of the DDX algorithm is set

to 10
-4

 as in the study of Nahas et al. (2006). The best throughput obtained by the

proposed TS method is 0.641348 with buffer allocation

 14,19,30,54,45,26,23,25,34B  .

The two algorithms are also compared with respect to the number of iterations

required for convergence. As it is seen in Figure 4.1 and 4.2, the proposed TS

algorithm converges faster (78 iterations) to the optimal solution than the degraded

ceiling algorithm (14 000 iterations). Having set the same convergence rate for two

algorithms, we can state that the proposed TS has great advantage to reach the best

solution as it requires much less number of iterations.

Figure 4.1 Convergence of degraded ceiling algorithm (Nahas et al., 2006)

71

0,58000

0,60000

0,62000

0,64000

0 200 400 600 800 1000

Iterations

T
h

ro
u

g
h

p
u

t

Figure 4.2 Convergence of the proposed TS algorithm

4.4.2.4 Long Production Lines

The motivation for this example is to test the efficiency of our TS algorithm in

solving the buffer allocation problem on long production lines. Throughout the

experiments it has been assumed that the machines have the same probability and

failure rates, i.e. 1.0 ii rp up to 9.0 ii rp in increments of 0.1. Considering

the large size of the search space, the continuous diversification strategy is employed

to improve the search process so that the most interesting parts of the search space

can be explored more thoroughly. This strategy is implemented as follows:

 A counter is added to the algorithm to count the moves at each position.

 When the counter becomes 100 for any position, it is penalized to make it

less attractive.

 As a result of pilot experimental studies, the weight to penalize is

determined as 410 for all cases. In doing so, the search is moved to other

unexplored areas of the search space.

The total buffer size to be allocated is set to 100 for 20-machine line and 200 for

40-machine line, respectively. The convergence rate of the DDX algorithm is set to

410 . The results of experimental studies comparing the proposed TS to the basic TS

with respect to both throughput and the CPU time are given in Table 4.7. As opposed

to the earlier experiments involving 10 runs for each example, due to the large size of

72

problem only five runs with different starting solutions have been conducted in these

sets of experiments.

Table 4.7 Results of experimental studies for 20-machine lines

Parameters Throughput CPU (sec.)

pi ri Basic TS Proposed TS Basic TS Proposed TS

0.1 0.1 0.233963 0.234191 361.90 1082.65

0.2 0.2 0.296989 0.297025 436.86 1162.94

0.3 0.3 0.334450 0.334450 475.63 1139.95

0.4 0.4 0.359637 0.359637 506.37 1148.21

0.5 0.5 0.377842 0.377895 512.10 1213.13

0.6 0.6 0.391712 0.391846 518.04 1291.44

0.7 0.7 0.402760 0.402760 541.05 1011.59

0.8 0.8 0.411629 0.411638 531.87 1033.17

0.9 0.9 0.419017 0.419018 516.60 1009.83

As seen in Table 4.7, in all of the cases, the proposed TS algorithm results in

equal or slightly better throughput compared to the basic TS algorithm. This can be

attributed to adopting the continuous diversification method into the regular tabu

search in this study. Furthermore, by using the frequency memory the search is

extended to the unexplored areas of the search space, thus it has been escaped from

local optima. However, as seen in Table 4.7, the good performance of the proposed

TS with respect to throughput has been achieved at the expense of significantly

increasing the search time. This shows the trade-off between search time and solution

quality. As it is presented in Table 4.8, the results of comparative experimental

studies involving 40-machine line are similar to those of 20-machine line.

In summary, the solution quality of the proposed TS algorithm in solving buffer

allocation problem in long production lines is good enough. However, if the

proposed TS algorithm is to be implemented in a real world system involving much

larger number of machines, further research needs to be done to reduce the solution

time.

73

Table 4.8 Results of experimental studies for 40-machine lines

Parameters Throughput CPU (sec.)

pi ri Basic TS Proposed TS Basic TS Proposed TS

0.1 0.1 0.219060 0.221273 5573.56 8399.04

0.2 0.2 0.286347 0.282169 7615.08 9780.96

0.3 0.3 0.325256 0.325256 8319.73 12796.32

0.4 0.4 0.351391 0.351494 8681.03 11272.68

0.5 0.5 0.370653 0.370666 7584.05 12581.64

0.6 0.6 0.385290 0.385328 7613.19 11897.04

0.7 0.7 0.396903 0.397255 7478.19 9773.04

0.8 0.8 0.406232 0.406559 7929.55 9473.40

0.9 0.9 0.413541 0.413990 7274.45 10815.12

4.5 Chapter Summary

In this chapter a tabu search algorithm is proposed to solve the buffer allocation

problem for unreliable homogeneous production lines, and its performance is

compared to other algorithms using previously published benchmark problems. It

should be noted that these benchmark problems include both short and long

production lines so that the efficiency of the proposed TS can be tested thoroughly

on a wide range of problem instances. The results of experimental studies are found

to be quite encouraging. Namely, it has been observed that the proposed TS

algorithm finds the best configuration much faster than other algorithms for short

production lines. Likewise, the solution quality of the proposed TS algorithm in

solving buffer allocation problem in long production lines is also good, but this is

achieved at the expense of increased search time.

During the experimental studies, it has been noted that the search time greatly

depends on the quality of the initial solution and the value of the convergence rate

used in the DDX algorithm. If the initial buffers are equally distributed among the

machines where all the machines in the line have the same reliability parameters it

has been observed that search time is significantly reduced and likewise, if the

convergence criterion used in the DDX algorithm is set to a large value then the

search time is reduced too. Also, in some problem sets where the same repair and

74

failure rates are assumed for all machines in the line it has been noted that, the

evaluation function quickly converges.

Due to its restrictive assumptions, the buffer allocation problem in homogeneous

production lines does not realistically represent most of the real-world production

lines. Consequently, it is absolutely necessary to consider a more realistic version of

the production lines, i.e., non-homogeneous production lines. In the following

chapter, the problem will be extended to the buffer allocation problem in unreliable

non-homogenous production lines and an adaptive tabu search algorithm will be

proposed to deal with this problem.

75

CHAPTER FIVE

AN ADAPTIVE TABU SEARCH APPROACH FOR THROUGHPUT

MAXIMIZATION IN UNRELIABLE NON-HOMOGENEOUS

PRODUCTION LINES

5.1 Introduction

In this chapter, an adaptive tabu search is proposed to solve the buffer allocation

problem in unreliable non-homogeneous production lines. To our knowledge, ours is

the first extensive study dealing with buffer allocation problem for unreliable and

also non-homogeneous lines. Imposing buffer space constraints for each buffer

location makes the problem at hand even harder. An adaptive search strategy of

intensification and diversification is proposed to solve the buffer allocation problem

in both short and long production lines. An experimental study is carried out to select

an intelligent initial solution scheme among three alternatives so as to decrease the

search effort to obtain the best solutions.

This chapter is organized as follows. Section 5.2 presents the problem

specifications. The proposed adaptive tabu search is described in detail in Section

5.3. The results of computational experiments to test the performance of the

proposed adaptive tabu search algorithm are discussed in Section 5.4. Finally,

Section 5.5 summarizes the context of this chapter.

5.2 Problem Specifications

The features of the buffer allocation problem in a non-homogeneous unreliable

production line can be listed as follows:

 Each part goes through all machines in exactly the same order.

 There is an intermediate location for storage (buffer) between each pair of

machines.

 Machines in the line have unique deterministic processing times.

76

 Machines are subject to breakdown, and the repair and failure rates are

geometrically distributed.

 The first machine is never starved, i.e. input is always available, and the last

machine is never blocked, i.e. there is always space to dispose of the output.

Assuming there are K machines and K-1 buffers in a production line, the

objective is to maximize the throughput rate of the production line, subject to buffer

size constraints for each buffer location. The mathematical model for the problem is

given as follows:

Find
1 2 1

(, ,...,)
K

B B B B


 so as to

()max f B (1)

subject to

1

1

K
B N
i

i




  (2)

0 B u
i i
 (1,2,..., 1)i K  (3)

(1,2,..., 1)nonnegative integers i i KB   (4)

where N is a fixed nonnegative integer denoting the total buffer space available in

the system, B represents a buffer vector, and f(B) represents the throughput rate of

the production line. Constraint (3) shows upper (ui) bounds for each buffer location.

It should be noted that upper (ui) bounds for each buffer location are chosen such

that their summation will be larger than N.

To solve the buffer allocation problem under the above assumptions, an adaptive

tabu search is proposed as a generative method. To evaluate the throughput of the

line Accelerated-DDX (ADDX) algorithm proposed by Burman (1995) is employed.

In next section, the proposed adaptive tabu search algorithm (ATS) is described in

detail.

77

5.3 Proposed ATS Algorithm

To employ a tabu search on any combinatorial optimization problem, first the

basic components of tabu search should be defined. The following sections present

the specifics of the proposed ATS algorithm for solving buffer allocation problem.

5.3.1 Move Representation and Tabu Moves

The moves are represented by [i, j], where i shows the location that a given

amount of buffer is added and j shows the location that the same amount of buffer is

subtracted. These locations can correspond to any two buffer storages. For instance,

for a five-machine line there will be four locations for buffer storages. If the initial

buffer configuration is assumed to be [5, 5, 5, 5] the first neighborhood of this initial

solution is created by subtracting one buffer from the first location and adding one

buffer to the second location, while the size of all other buffers remains the same and

the total buffer size is constant. One neighboring solution then becomes [4, 6, 5, 5].

The process is repeated until all neighboring solutions of the current solution are

created. Since there are four locations for allocating buffers in a five-machine-line,

there will be twelve solutions in the neighborhood for this example.

The increment (decrement) of a buffer size is problem-dependent. We tune the

increment (decrement) of the buffer sizes based on problem size. While it is set to

one for small and medium-sized problems, i.e. five and ten machine lines, for large-

sized problems involving twenty and forty machine lines, the increment (decrement)

is set to %1 of the total buffer size.

Once a move is realized, the reverse of this move is recorded as a tabu. Namely,

if the move [i, j] produces the best solution for the current step, then the reverse

move [j, i] is considered as a tabu for a certain number of iterations.

78

5.3.2 Search Space and Neighborhood Structure

Identifying a search space along with a neighborhood structure is the most critical

step of any TS implementation. The search space of the TS is simply the space of all

feasible solutions that can be visited during the search. In this study, all feasible

solutions are considered as search space.

To define the neighborhood structures of the current solution, there are several

choices depending on the specific problem at hand. In the buffer allocation problem

context, one choice could be to consider the full neighborhood of the current buffer

configuration while the other could be to consider only a subset of the neighborhood

of the current solution. In the proposed ATS approach, the complete neighborhood

of the current solution is created and evaluated.

5.3.3 Initialization Scheme

It is known that for some problems the performance of the meta-heuristics is

affected by the choice of the initial solution/solutions. If the initial solution is good

enough, the probability of finding better solutions generally increases and the

convergence to the near-optimal or optimal solution can be faster. In this study, a

pilot experiment was carried out to assess the performance of the following

initialization methods:

 The ratio of failure to repair rate: Buffer sizes are allocated according to the

ratio of failure to repair rate of each machine. More buffers are allocated to the

machines having high ratios of failure to repair rate.

 Processing time: More buffers are allocated to the machines having long

processing times.

 Random initialization: Buffer sizes are randomly allocated to each machine.

The experiments involve four problem sets, each containing 10 instances. Table

5.1 shows the results of the pilot experiment. In the table, K and N stand for the

number of machines and the total buffer capacity, respectively.

79

Table 5.1 Results of pilot experiments on the performance of initial algorithms

Problem

Set
K N Instance

Random Initialization
Processing Rate

Initialization
F/R Ratio Initialization

of Iteration

for

Convergence

Best

throughput

rate

of Iteration

for

Convergence

Best

throughput

rate

of Iteration

for

Convergence

Best

throughput

rate

1 10 100

1 172 0.0439 120 0.0424 52 0.0441

2 37 0.0497 59 0.0497 25 0.0497

3 1389 0.0526 25 0.0521 74 0.0526

4 40 0.0531 55 0.0531 35 0.0531

5 132 0.0564 101 0.0564 96 0.0564

6 147 0.0121 21 0.0121 179 0.0121

7 81 0.0146 40 0.0146 34 0.0146

8 54 0.0159 41 0.0160 178 0.0160

9 43 0.0165 34 0.0165 31 0.0165

10 44 0.0201 31 0.0200 23 0.0265

2 10 200

1 277 0.0433 3 0.0425 68 0.0444

2 181 0.0508 71 0.0522 49 0.0522

3 67 0.0526 122 0.0526 623 0.0526

4 1169 0.0542 72 0.0542 4822 0.0542

5 939 0.0580 4077 0.0580 1680 0.0574

6 895 0.0121 357 0.0121 167 0.0121

7 3166 0.0148 2787 0.0148 2725 0.0148

8 3491 0.0160 3172 0.0160 4423 0.0160

9 677 0.0165 1459 0.0165 53 0.0165

10 1398 0.0201 3671 0.0200 4459 0.0200

3 20 200

1 196 0.0437 89 0.0409 34 0.0441

2 3346 0.0493 55 0.0483 4998 0.0497

3 1723 0.0520 67 0.0526 133 0.0526

4 27 0.0545 17 0.0553 24 0.0553

5 6 0.0491 66 0.0514 51 0.0519

6 1674 0.0121 4998 0.0121 4998 0.0121

7 4998 0.0146 4998 0.0146 4998 0.0146

8 4998 0.0160 2612 0.0160 4998 0.0160

9 4998 0.0162 4497 0.0157 4994 0.0162

10 1908 0.0164 4938 0.0165 4833 0.0165

4 20 400

1 4997 0.0434 743 0.0423 444 0.0440

2 2673 0.0520 1034 0.0522 3253 0.0523

3 2714 0.0526 4999 0.0526 18 0.0526

4 1141 0.0575 4998 0.0575 119 0.0575

5 1703 0.0493 28 0.0525 2380 0.0491

6 4998 0.0121 3200 0.0121 4994 0.0121

7 4995 0.0148 4999 0.0148 2595 0.0148

8 4998 0.0160 4680 0.0160 4992 0.0160

9 4996 0.0162 4999 0.0162 4999 0.0162

10 4578 0.0165 4998 0.0165 4998 0.0165

As shown in Table 5.1 above, both the solution quality and the convergence rate

are observed. The initialization methods are first compared with respect to solution

quality, and in case the same solution quality is observed, the convergence rate is

used as a tie-breaking rule. As can be seen from Table 5.1, the performance of ratio

of failure to repair rate method is better in 23 problem instances out of 40. Especially

80

for the first problem set, its performance is quite remarkable. Hence, this method is

used as an initialization scheme in the proposed adaptive tabu search approach.

5.3.4 Tabu Tenure

The length of the tabu list, called the tabu tenure (TT), is another important

search parameter of TS. Tabu tenure is the number of iterations that tabu moves stay

in the tabu list. In this study, the tabu tenure is tuned adaptively based on the quality

of the current solution and the frequency of the moves. Initially, the tabu tenure is

set to a predefined minimum value. Then, the value of the tabu tenure for each move

is determined using the following formula (Lü and Hao, 2010):

() * ()i i iTT m T T freq T  (5)

min max()iTT TT m TT  (6)

The first part of the formula given by Eq. (5) represents the effect of solution

quality on the tabu tenure. Namely, if the selected move does not improve the

objective function (i.e., throughput rate of the production line), the value of TT is

increased by 1. Likewise, if the selected move improves the objective function, the

value of TT is decreased by 1. While making these changes, the tenure is not allowed

to surpass the pre-specified minimum or maximum values, as indicated by Eq. (6).

The basic idea behind the second part of the formula is to penalize a move which is

repeated too often.

5.3.5 Intensification Strategy

The key idea behind the concept of intensification is to implement some

strategies so that the areas of the search space that seem promising can be explored

more thoroughly. In general, intensification is based on a recency memory, in which

one records the number of consecutive iterations that various solution components

have been presented in the current solution without interruption.

81

In this study, the intensification strategy is implemented only for large-sized

problems involving 20 and 40 machine lines, since the increment (decrement) values

of the moves is set to greater than one for these problems. During the iterative

search, if a solution found to be best so far remains to be the best one for a certain

number of iterations, the increment (decrement) of moves is set to one. For example,

if there are 400 total buffers to be allocated to the twenty-machine line, the

increment (decrement) value of moves is set to 4 in the regular phase of the ATS. If

incumbent solution remains to be same for 100 iterations, the increment (decrement)

of moves is set to 1. In this way, the areas of the search space that contain promising

solutions are investigated more thoroughly.

5.3.6 Diversification Strategy

Unlike intensification that is used to search regions containing good solutions

more intensively, diversification guides the search to unexplored regions to avoid

local optimality. Diversification is usually based on a frequency memory where the

total number of iterations of the performed moves or visited solutions is recorded.

There are two major diversification techniques known as restart diversification and

continuous diversification. While the first is performed by several random restarts,

the latter is integrated into the regular search process.

We employ both of the diversification methods explained above to diversify the

search. In the continuous diversification, frequently performed moves are penalized

in the regular search process. If the objective function does not change for a certain

number of iterations, a random restart is applied, directing the search toward

unvisited areas of the search space.

5.3.7 Stopping Condition

The algorithm is terminated if one of the following criteria is satisfied: (a) within

a certain number of iterations, no better solution is found, or (b) the number of

iterations reaches the maximum allowable number. The values of these two

82

parameters are problem-dependent. While the maximum allowable number is set to

50 times of total buffer size for each problem set, the iteration number for the first

condition is set to half of the maximum allowable number.

The framework of the proposed ATS procedure is given in Figure 5.1.

Figure 5.1 The framework of the proposed ATS procedure

The next section presents the results of our experimental studies for evaluating

the performance of the proposed ATS algorithm.

83

5.4 Computational Experiments

We design a computational experiment to observe the effects of parameter

changes on the performance of the developed algorithm. In our computational

experiments, five, ten, twenty and forty-machine lines (K = 5, 10, 20, 40) are

considered. For each of these levels, the total buffer size is set to 5, 10 and 20 times

of the number of machines in the line. Hence, a total of 12 problem sets are

considered. As seen in Table 5.2, by identifying different levels for processing rates

and reliability parameters, eight different settings are generated for each problem set.

The processing rates of the machines are generated from a uniform distribution and

the failure and repair rates are generated from a geometric distribution.

Table 5.2 Properties of problem instances

Setting Processing Rate Failure Rate Repair Rate

1 (5,15) (1,200) (1,10)

2 (5,15) (1,200) (1,40)

3 (5,15) (1,2000) (1,100)

4 (5,15) (1,2000) (1,400)

5 (5,45) (1,200) (1,10)

6 (5,45) (1,200) (1,40)

7 (5,45) (1,2000) (1,100)

8 (5,45) (1,2000) (1,400)

The performance of the proposed ATS algorithm is compared to the basic TS

algorithm over the generated settings. For each setting, 10 runs are made totaling to

960 runs. All algorithms are implemented in C language. The execution is done on a

computer having 2.26 GHz Intel Core i5 430M CPU processor and 4 GB of RAM.

In our experimental study, the problem sets are denoted by K.N, where K is the

number of machines in the line and N is the total buffer size to be allocated. It should

be noted that for small-sized problems involving 5 machines and medium-sized

problems involving the problem set 10.50, the results were compared to those found

by complete enumeration (CE) method. However, for all other problem sets the

performance of proposed ATS algorithm is compared to the basic TS (BTS)

84

algorithm since large problem sets can be solved to optimality within a reasonable

amount of time.

The following sections are devoted to the discussion of our experimental results.

We give the average results for all problem sets in the following tables. The detailed

results for all problems are given in the tables in Appendix B.

5.4.1 Results of Small-Sized Problems

Table 5.3 presents the results of our experimental studies for small-sized

problems. The second column of this table presents the problem settings which are

explained in Table 5.2. For each setting 10 instances are considered. The third and

fourth columns represent the number of instances optimally solved for each

algorithm. For both BTS and ATS, the average deviation from the optimal solution

is measured using the following formulas and they are presented in fifth and sixth

columns:

Deviation for BTS:
() ()

100 ()
()

f CE f BTS

f CE




Deviation for ATS:
() ()

100 ()
()

f CE f ATS

f CE




Finally, the last three columns show the solution times of each method in CPU

seconds. For these problems, the convergence rate of the ADDX algorithm is set to

10
-6

.

As seen in Table 5.3, while the proposed ATS algorithm finds the optimum

solution for all problem settings in problem set 5.25, BTS algorithm gets stuck at the

local optimum for problem settings 2, 3, and 4 for this problem set. Moreover, no

discernible pattern has been observed for the solution times of the algorithms. While

the solution time of ATS algorithm is noted to be nearly two times of the solution

time of BTS for the problem settings 1, 4, 6, and 7 (see Table 5.3), for other problem

settings, no significant difference has been observed at all.

85

 Table 5.3 Results of experimental studies for small-sized problems

Problem

Set
Setting

of Instances

Optimally

Solved

Avg. Deviation

From Optimum

(%)

CPU (sec.)

BTS ATS BTS ATS CE BTS ATS

5.25

1 10 10 0.00 0.00 0.01 0.12 0.21

2 7 10 0.71 0.00 0.03 0.50 0.65

3 7 10 1.42 0.00 0.03 0.42 0.57

4 8 10 2.19 0.00 0.03 0.32 0.50

5 10 10 0.00 0.00 0.01 0.14 0.18

6 10 10 0.00 0.00 0.03 0.34 0.79

7 10 10 0.00 0.00 0.02 0.14 0.30

8 10 10 0.00 0.00 0.03 0.36 0.41

5.50

1 10 10 0.00 0.00 0.07 0.41 0.55

2 7 10 0.53 0.00 0.19 0.53 1.34

3 7 10 0.18 0.00 0.19 1.02 1.26

4 4 10 3.84 0.00 0.19 0.68 1.07

5 10 10 0.00 0.00 0.08 0.30 0.60

6 9 10 0.15 0.00 0.16 1.00 1.63

7 9 10 0.78 0.00 0.09 0.42 0.69

8 8 10 0.33 0.00 0.16 0.65 1.12

5.100

1 10 10 0.00 0.00 0.48 0.81 1.50

2 6 9 4.33 0.12 1.79 1.82 2.26

3 7 9 0.17 0.04 1.57 5.01 6.64

4 6 7 1.36 1.16 1.38 1.66 2.77

5 8 10 5.56 0.00 0.73 0.77 0.99

6 10 10 0.00 0.00 0.94 0.99 2.36

7 9 10 0.40 0.00 0.56 0.73 1.84

8 8 10 0.89 0.00 1.06 1.25 2.62

For the problem set 5.50, the proposed ATS algorithm finds the optimum solution

for all problem settings while BTS algorithm reaches the optimum solution for only

problem settings 1 and 5 which involve machines with short repair times. The

superiority of ATS algorithm over BTS algorithm becomes much more apparent

when the repair times of the machines get much longer (see problem settings 2, 4

and 6 in Table 5.3). The results with respect to solution times of the two algorithms

are similar to the ones obtained for problem set 5.25. As noted earlier, the solution

time heavily depends on the convergence time required by the ADDX algorithm.

Changing the parameters, i.e. machine processing times, failure and repair rates in

each problem setting either increases or decreases the complexity of the problem

which affects the convergence time of ADDX algorithm and hence solution times of

algorithms change across the problem types. As expected, the solution time of both

86

algorithms increase as problem size increases. Moreover, on average, the solution

time of ATS algorithm is higher than the solution time of BTS algorithm for all

problem settings.

For the problem set 5.100, the proposed ATS algorithm achieves the optimum

solution in 5 out of 8 settings, and for remaining three problem settings (2, 3, and 4)

small deviations from the optimum values are observed. As seen in Table 5.3, BTS

algorithm can reach the optimal solution only for two problems settings (1 and 6).

Moreover, the superiority of proposed ATS over BTS becomes more apparent as

variability in machine processing times increases (see the results for the last four

problem settings in Table 5.3). Unlike apparent success of ATS in dealing with

variability in processing times, for BTS, the highest deviation from the optimum

solution has been observed for the problem setting 5 involving more variability in

processing times and frequently failed machines with short repair times. As for the

solution time, similar trends have been observed like in problem sets 5.25 and 5.50.

In summary, for small-sized problem sets involving five machines the proposed

ATS algorithm reaches the optimum solution in 235 out of 240 in very small

computation times. Hence it can be said that the proposed ATS algorithm is very

efficient to solve buffer allocation problem for small-sized instances.

5.4.2 Results of Medium-Sized Problems

Table 5.4 presents the results of our experimental studies for medium-sized

problems. As it is stated before, for the problem set 10.50 the results obtained from

both TS algorithms are compared to CE results. For all other problem sets including

20 and 40 machine lines, since complete enumeration cannot provide optimal results

within a reasonable amount of time, the comparison of BTS and ATS algorithms is

done with respect to solution quality as follows:

Improvement over BTS
() ()

100 ()
()

f ATS f BTS

f BTS




87

For the problem set 10.50, BTS algorithm cannot find the optimal solution for

any problem type, while the proposed ATS algorithm reaches the optimal solution

for 4 out of 8 problem settings (1, 5, 6 and 7). It should be noted that the proposed

ATS finds the optimal solution for 63 out of 80 problems (see Appendix B4). As

seen in Table 5.4, when the variability of processing time increases the efficiency of

the proposed ATS also increases except for the problem setting 8 where the

machines fail less frequently. Moreover, it has been observed that the proposed ATS

algorithm is less efficient for the problem setting 3 with the average deviation from

optimum, 2.08%. It should be noted that, this problem setting involves rarely failed

machines having long repair times. Overall, it can be said that the proposed ATS

algorithm is more successful for the problem settings involving more variability in

processing times.

It has been observed that for ATS the average deviations from the optimal are

very small for this problem set. It should be noted that the convergence rate of the

ADDX algorithm is set to 10
-5

 for the cases involving 10 machines and the

comparison is based on 6 decimal digits, hence the difference between the optimal

and the best solution found by the proposed ATS algorithm is not large for this

problem set. So it can be concluded that the proposed ATS algorithm obtains very

good solutions for this problem set. Moreover, the CPU times for both algorithms

are comparable, and all CPU times are under one minute as seen in Table 5.4.

For the problem set 10.100, the proposed ATS algorithm finds better solutions

than BTS algorithm in 31 out of 80 problems (see Appendix B5). Unlike the

previous experiments, in these experiments the proposed ATS algorithm is found to

be more efficient for problem settings involving less variability in processing times.

Moreover, it has been observed that the superiority of ATS is more observable for

the problem setting 4 with the average improvement over BTS, 6.45%. It should be

noted that this problem set involves rarely failed machines having long repair times

and also less variability processing times.

88

Table 5.4 Results of experimental studies for medium-sized problems

Problem

Set
Setting

of Instances

Optimally

Solved

Avg. Deviation

From Optimum

(%)

CPU (sec.)

BTS ATS BTS ATS CE BTS ATS

10.50

1 8 10 0.46 0.00 10118.53 16.66 20.25

2 3 7 2.45 0.10 13656.45 53.11 33.06

3 4 6 2.84 2.08 15230.31 38.25 42.30

4 1 5 9.47 0.55 9142.00 16.68 18.05

5 7 10 0.76 0.00 8804.06 14.59 13.23

6 5 10 1.09 0.00 12268.71 21.12 29.26

7 6 10 0.21 0.00 10201.89 16.97 25.59

8 1 5 6.18 0.68 13841.16 31.31 28.60

Problem

Set
Setting

of Instances

Obtained Better

Solutions than

BTS

Avg. Improvement

Over BTS (%)

CPU (sec.)

BTS ATS

10.100

1 2 0.81 31.05 30.52

2 4 1.18 47.37 54.29

3 4 1.35 41.84 62.62

4 8 6.45 71.35 45.91

5 2 0.30 29.19 41.14

6 2 0.63 37.62 50.64

7 2 0.28 25.63 40.52

8 7 3.87 45.03 64.27

10.200

1 2 0.57 86.53 115.6

3 2 6 1.17 66.69 136.2

3 3 4 1.57 116.21 124.4

7 4 5 3.87 70.42 132.4

4 5 1 0.81 42.45 68.94

6 3 4.92 85.06 82.08

7 3 2.69 47.76 80.93

8 5 5.11 64.23 133.9

8

As stated before, the solution time of the algorithms heavily depends on the

convergence of the ADDX algorithm and hence, the solution times of BTS and ATS

change across the problem types. As expected, the solution times of both algorithms

increase as problem size increases.

As in the case of problem set 10.100 the solution quality of the proposed ATS

algorithm is better than BTS algorithm for the problem set 10.200. In comparison to

BTS algorithm, the proposed ATS algorithm finds better solutions in 29 out of 80

problems (see Appendix B6). Like in the previous problem sets involving ten

89

machines, the superiority of the proposed ATS algorithm is more observable for

problem settings 4 and 8 involving less frequently failed machines with long repair

times. However, the effect of processing time variability on solution quality is not

significant unlike the previous problem sets involving ten machine lines. Moreover,

the solution times of both algorithms show similar trend like in the case of problem

set 10.100.

In summary, for medium-sized problems involving ten machines, the solution

quality of proposed ATS algorithm is better than BTS algorithm. This is achieved at

the expense of a small increase in computation time for some settings. Based on our

experimental results, it can be concluded that the proposed ATS algorithm is more

efficient to solve medium-sized problems for the lines having rarely failed machines

with long repair times.

5.4.3 Results for Large-Sized Problems

In this section we discuss the experimental results for large sized problems

involving 20 and 40 machines. It should be noted that the convergence rate of the

ADDX algorithm is set to 10
-4

 for these problems.

The experimental results for large-sized problems involving 20 machines are

given in Table 5.5. For the problem set 20.100, the proposed ATS algorithm

outperforms BTS algorithm with respect to solution quality. The superiority of the

proposed ATS is more observable as compared to the medium-sized problems

involving ten machine lines. For this problem set, the proposed ATS find better

solutions in 51 out of 80 problems (see Appendix B7). The superiority of proposed

ATS algorithm is more observable for the problem settings 2, 4 and 8. While the

problem settings 4 and 8 involve rarely failed machines with long repair times, the

problem setting 2 involve frequently failed machines with long repair times.

Moreover, the proposed ATS algorithm is more efficient for solving the problem

settings having less variability in processing times. Based on these results, it can be

said that the proposed ATS algorithm is more efficient for the problem settings

90

having less variable processing times and long repair times. As for the solution time,

the proposed ATS algorithm requires slightly longer CPU times than BTS, except

for problem setting 7.

 Table 5.5 Results of experimental studies for large-sized problems: 20 machines

Problem

Set
Setting

of Instances

Obtained Better

Solutions than BTS

Avg.

Improvement

Over BTS (%)

CPU (sec.)

BTS ATS

20.100

1 3 7.82 472.59 610.15

2 7 16.82 535.80 582.61

3 9 3.66 743.63 881.92

4 10 31.27 631.30 659.17

5 6 6.72 525.12 457.88

6 5 3.93 326.89 436.40

7 4 0.41 1305.61 773.77

8 7 16.55 461.63 664.97

20.200

1 3 0.58 721.13 838.76

2 5 16.76 744.34 861.97

3 7 3.03 1495.78 1512.25

4 9 15.22 946.05 1448.12

5 4 1.54 900.11 741.51

6 6 10.97 518.78 848.52

7 2 1.19 922.39 1501.18

8 8 20.95 780.61 1175.98

20.400

1 4 0.62 1646.59 2221.27

2 4 12.29 1156.94 2323.79

3 5 2.23 2431.42 4060.22

4 8 5.76 1066.12 2885.77

5 3 2.75 1072.34 1535.51

6 4 9.29 1066.70 2076.95

7 4 1.70 2634.22 3099.10

8 3 6.93 1265.69 1988.09

The results obtained for the problem set 20.200 are similar to the ones obtained

for problem set 20.100. As it can be seen from Table 5.5, as problem size increases

the superiority of ATS algorithm over BTS algorithm becomes more apparent for all

problems having long repair times (see problem settings 2, 4, 6, and 8 in Table 5.5).

So, overall ATS algorithm is more efficient for problem settings having long repair

times. However, unlike the previous problem set where the solution quality of the

proposed ATS algorithm is affected by the variability in machine processing times,

91

in this problem set, no such behavior has been observed. As for the solution time, the

same trend is observed as in the case of problem set 20.100.

For the problem set 20.400, the proposed ATS algorithm finds better results in 35

out of 80 problems (see Appendix B9). The superiority of the proposed ATS over

BTS is more observable for the problem settings 2, 4, 6 and 8 like in the previous

problem set (see Table 5.5.) As in the case of the problem set 20.200, the solution

quality of proposed ATS is much better for the problems involving machines with

long repair times. However, this is achieved at the expense of increasing the

computation time. For this problem set, the solution time of ATS algorithm is nearly

two times of BTS algorithm. Similar to the earlier problem, in this problem set it is

also noted that the solution quality of the proposed ATS is not affected by the

variability in processing times.

In summary, the proposed ATS algorithm is very efficient to solve the buffer

allocation problem for large-sized problems involving 20 machines (130 out of 240

problems). When the problem size increases, especially for the lines having long

repair times, the superiority of proposed ATS becomes more apparent. Moreover, as

problem size increases the solution time of the proposed ATS algorithm increases

more than the solution time of BTS algorithm.

Table 5.6 shows the results of experimental study for large-sized problems

involving 40 machines. As in the case of 20-machine lines, the solution quality of

the proposed ATS algorithm is better than BTS for the problem set 40.200. The

proposed ATS finds better solutions in 55 out of 80 problems for this problem set

(see Appendix B10). Similar to the previous problem set involving 20 machines, the

superiority of ATS algorithm over BTS algorithm is observed in the same problem

settings, i.e., 2, 4, 6 and 8 (see Table 5.6). Besides these four settings, the proposed

ATS is found to be more successful than BTS in dealing with the problems

involving more frequently failing machines with short repair times (see the results

for the first problem setting in Table 5.6). Overall, it can be said that when the

problem size increases the efficiency of the proposed ATS also increases. As for

92

solution time, the proposed ATS algorithm takes much longer time than BTS

algorithm as it is seen in Table 5.6.

Table 5.6 Results of experimental studies for large-sized problems: 40 machines

Problem

Set
Setting

of Instances

Obtained Better

Solutions than BTS

Avg.

Improvement

Over BTS

(%)

CPU (sec.)

BTS ATS

40.200

1 5 5.03 3055.47 14182.22

2 7 6.35 5926.02 13734.16

3 9 2.73 6846.08 19377.56

4 9 11.68 6249.59 15585.69

5 2 2.50 2806.04 11062.05

6 5 5.08 2949.22 11130.49

7 8 2.03 5511.91 12972.34

8 10 15.04 7501.24 20265.23

40.400

1 5 2.98 6493.01 29218.54

2 5 2.02 8994.71 30270.03

3 9 0.77 10989.18 35234.01

4 6 6.22 11215.27 32214.51

5 2 0.76 14228.44 31228.77

6 6 5.35 9449.98 24737.21

7 6 1.42 9197.03 34408.30

8 10 15.34 9419.63 30980.34

40.800

1 4 3.98 11433.08 38311.94

2 6 5.38 17578.23 44480.83

3 8 1.52 18410.88 40041.72

4 10 6.30 22582.94 52410.80

5 3 1.06 16594.29 41678.42

6 7 9.62 20066.05 39523.48

7 3 1.31 20189.94 42415.71

8 8 18.03 18777.31 46475.92

For the problem set 40.400, the proposed ATS algorithm finds better solution

than BTS algorithm in 49 out of 80 problems (see Appendix B11). The superiority

for ATS algorithm over BTS algorithm is more apparent especially for the problem

settings 4, 6 and 8 involving machines with long repair times. However, the

improvement of ATS algorithm over BTS algorithm is not too much in comparison

to the improvement in problem set 40.200. Also, it has been observed that when the

variability of processing times increases, the efficiency of the proposed ATS

algorithm also increases (see problem settings 2, 4, 6 and 8 in Table 5.6). As in the

93

case of problem set 40.200, the solution time of the proposed ATS increases when

the problem size increases.

The proposed ATS algorithm finds better solutions in 49 out of 80 problems (see

Appendix B12) for the problem set 40.800. Similar to the problem sets 40.200 and

40.400, the efficiency of the proposed ATS algorithm is apparent for the problem

settings 2, 4, 6 and 8 involving machines with long repair times. As in the previous

problem set, it has been observed that when the variability of processing times

increases the efficiency of the proposed ATS algorithm also increases. As for the

solution time, the proposed ATS algorithm takes much longer time than BTS

algorithm.

In summary, the proposed ATS algorithm is quite efficient to solve buffer

allocation problem for long production lines involving 40 machines. The proposed

ATS algorithm finds better solutions in 153 out of 240 problems. The efficiency of

ATS algorithm is much better especially for the problem settings involving

machines with long repair times and having more variability in machine processing

times. However, the solution time of proposed ATS greatly increases when the

problem size increases.

5.4.4 Summary of the Findings

In this section, the performance of the proposed ATS algorithm is compared to

that of BTS algorithm over wide range of problems with varying difficulty. The

overall results are summarized in Table 5.7. It can be concluded that the proposed

ATS algorithm works very well to obtain good quality solutions across all problem

types studied. Moreover, it has been observed that the solution quality of ATS

algorithm is much better especially for the problem settings involving machines with

long repair times. Also, the solution quality of ATS algorithm gets much better

while the problem size increases where the average improvement over BTS becomes

6.91% (see Table 5.7). Embedding intensification and diversification strategies into

the BTS algorithm and also tuning the tabu tenure adaptively clearly improves the

94

solution quality of the proposed ATS algorithm. However, as expected, the

execution time of the proposed ATS algorithm gets longer for large-sized problems

since the convergence of the ADDX algorithm and evaluation of the complete

neighborhood of a solution during the search requires longer time (see Figure 5.2).

Nevertheless, it should be noted that the ATS approach proposed in this study is not

designed to solve buffer allocation problem in “real-time”. In fact, since the buffer

allocation problem is a manufacturing design problem, the emphasis should be

placed on finding good quality solutions in reasonable times rather than obtaining

quick solutions.

 Table 5.7 Summary of experimental studies

Problem Size Problem Set

Avg.

Improvement

Over BTS (%)
*

CPU Time (sec.)

BTS ATS

Small

5.25 0.54 0.29 0.45

5.50 0.73 0.63 1.03

5.100 1.81 1.63 2.62

Average 1.02 0.85 1.37

Medium

10.50 2.96 26.09 26.29

10.100 1.86 41.14 48.74

10.200 2.59 72.42 109.34

Average 2.47 46.55 61.46

Large

20.100 10.90 625.32 633.36

20.200 8.78 878.65 1116.04

20.400 5.20 1542.50 2523.84

40.200 6.31 5105.69 14788.72

40.400 4.36 9454.77 29231.16

40.800 5.90 17231.94 41618.89

Average 6.91 5806.48 14985.33
*
Avg. Improvement Over BTS (%) = 100*

[f(ATS)-f(BTS)] / f(BTS)

95

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

5
.2
5

5
.5
0

5
.1
0
0

1
0
.5
0

1
0
.1
0
0

1
0
.2
0
0

2
0
.1
0
0

2
0
.2
0
0

2
0
.4
0
0

4
0
.2
0
0

4
0
.4
0
0

4
0
.8
0
0

Problem Set

C
P

U
 T

im
e
 (

s
e
c
.)

BTS

ATS

 Figure 5.2 Solution times of both algorithms with respect to the problem sets

As a result, it can be said that the proposed ATS algorithm is quite effective in

solving the buffer allocation problem in unreliable non-homogeneous production

lines for all problem instances studied.

5.5 Chapter Summary

In this chapter, we proposed an adaptive tabu search algorithm to obtain the

optimal buffer allocations for maximizing the throughput rate of the line in

unreliable non-homogeneous production lines. To our knowledge, this is the first

extensive study to deal with buffer allocation problem in unreliable and also non-

homogeneous production lines. Imposing buffer space constraints for each buffer

location makes the problem harder. In the proposed solution approach,

intensification and diversification strategies in tabu search are utilized to solve the

buffer allocation problem in both short and long lines. Moreover, an experimental

study is carried out to select an initial solution generation scheme.

The performance of the proposed ATS algorithm is tested on randomly generated

test problems and its performance is compared to the basic TS algorithm. The results

of experimental study show that the proposed ATS algorithm is quite efficient to

reach optimal/near optimal solutions in very small computation times. The

superiority of the proposed algorithm is observed especially for large-sized

96

problems, i.e. 20 and 40 machine lines, since the solution quality is much better than

BTS algorithm.

We consider the problem from a throughput maximization perspective throughout

this chapter. Since our ultimate objective is to propose a solution approach for total

buffer size minimization problem, in the next chapter, this study will be extended to

minimize the total buffer size by using proposed ATS algorithm.

97

CHAPTER SIX

AN INTEGRATED APPROACH FOR THROUGHPUT MAXIMIZATION

WITH MINIMUM TOTAL BUFFER SIZE

6.1 Introduction

In this chapter, an integrated approach is proposed to solve the buffer allocation to

maximize the throughput rate of the line with minimum total buffer size. The

proposed integrated approach has two control loops, i.e., the inner loop and outer

loop. While the inner loop control includes the adaptive tabu search algorithm

proposed in the previous chapter, the outer loop control includes three different

algorithms, i.e., binary search, tabu search and simulated annealing. These nested

loops aim at minimizing the total buffer size to achieve a desired throughput level.

To improve searching efficiency of the proposed tabu search and simulated annealing

algorithms alternative neighborhood generation mechanisms are suggested and their

performance are tested.

This chapter is organized as follows. Next section presents the specifications of

the problem. In section 6.3, the proposed solution approaches are described in detail.

The results of computational experiments to test the performance of the proposed

algorithms are discussed in Section 6.4. Finally, Section 6.5 summarizes the context

of this chapter.

6.2 Problem Specifications

Like in the previous chapter, we address the buffer allocation problem in an

unreliable serial production line with deterministic processing times. The features of

this line can be listed as follows:

 Each part goes through all machines in exactly the same order.

 There is an intermediate location for storage (buffer) between each pair of

machines.

98

 Machines in the line have unique deterministic processing times.

 Machines are subject to breakdown, and the repair and failure rates are

geometrically distributed.

 The first machine is never starved, i.e. input is always available, and the last

machine is never blocked, i.e. there is always space to dispose of the output.

Assuming that there are K machines and K-1 buffers in a production line, our

main objective is to minimize the total buffer size so as to achieve desired throughput

rate. This problem can be formulated as follows:

Find 1 2 1(, ,...,)KB B B B  so as to

1

1

min = i

K

i

N B



 (1)

subject to

*()Nf B f (2)

0 B u
i i

  (1,2,..., 1)i K  (3)

1,2,..., 1 nonnegative integers ()KB i
i

 (4)

where K is the number of machines in the line, B is a buffer vector, N is the total

buffer size, ui is the upper bound for each location, f(B
N
) is the throughput rate of the

production line obtained by total buffer size N and f
*
 is the desired throughput rate. It

should be noted that upper (ui) bounds for each buffer location are chosen such that

their summation will be larger than the total buffer size (N) in the system.

To solve this buffer allocation problem, an integrated approach involving two

control loops is proposed. While the inner loop control includes an adaptive tabu

search algorithm to obtain the maximum throughput rate of the line for a given total

buffer size, the outer loop control includes three different algorithms, i.e., binary

search, tabu search and simulated annealing to minimize the total buffer size in the

system so that the desired throughput rate can be achieved.

The details of this integrated approach are presented in next section.

99

6.3 Proposed Integrated Approach

As stated before, this integrated approach involves an inner and an outer loop

algorithm. The inner loop algorithm is the proposed adaptive tabu search algorithm

presented in Chapter 5. The outer loop algorithm is implemented by either using

binary search, or tabu search or simulated annealing algorithms.

Figure 6.1 shows the execution mechanism of the proposed integrated approach.

As it is seen from Figure 6.1, each outer algorithm is started with a pre-specified N

value, the maximum throughput rate which can be obtained with this N value is

calculated and it is compared to the desired throughput rate. In an iterative way, the

outer loop algorithm is run again to obtain new N values, and this procedure

continues until the desired throughput rate is achieved with the minimum total buffer

size.

The following sections present the details of the proposed outer loop algorithms.

6.3.1 Binary Search Algorithm

The first algorithm is a binary search algorithm. Table 6.1 shows the steps of the

algorithm. This algorithm starts with a number M which is big enough and continues

to search between H and L until the desired throughput rate is obtained. Hereafter,

when H is equal to L, the algorithm continues to search between 0 and N
min

 which is

the best total buffer size value found so far. In this way, the algorithm explores the

whole search space.

100

Figure 6.1 The framework of algorithms for total buffer size minimization

 Table 6.1 Binary search algorithm

Initialization

Set H=M and L=0

Step 1. Set () / 2N H L 

Step 2. Run ATS algorithm for N.

Step 3. If
*

()
N

f B f , set L N and () / 2N H L 

 If
*

()
N

f B f ,set H N and () / 2N H L  ,

 If H=L, set H=N
min

, L=0, () / 2N H L  .

Step 4. until N=1 go to Step 2, otherwise terminate the

algorithm.

However, exploring search space in this way needs more computational effort.

Therefore, to improve search efficiency so that computational cost can be reduced it

is proposed to employ two meta-heuristic methods as outer loop control algorithms,

101

i.e., tabu search and simulated annealing. The details about these approaches are

given in the following sections.

6.3.2 Tabu Search Algorithm

The tabu search algorithm employs memory-based strategies to reach the global

optimum. The following sections explain the specifics of the proposed tabu search

algorithm for solving buffer allocation problem under the objective of total buffer

size minimization.

6.3.2.1 Search Space

Identifying a search space along with a neighborhood structure is the most critical

step of any TS implementation. The search space of the TS is simply the space of all

feasible solutions that can be visited during the search. In this study, all feasible

solutions are considered as the search space.

6.3.2.2 Move Representation and Tabu Moves

In the proposed TS algorithm, the moves are defined depending on the values of

the total buffer size, N. Throughout the algorithm the value of total buffer size is

decreased by some specified value determined by the neighborhood generation

mechanism which is explained in next section. At each iteration, the neighborhood of

the current solution becomes tabu for a certain number of iterations. For instance if

the current solution is 100 and the neighbors of this solutions are 90, 80, 70 and 60,

then all of those values become tabu and they are not evaluated for the next TT (tabu

tenure) number of iterations.

6.3.2.3 Neighborhood Generation Mechanism

Since the aim of this study is to minimize the total buffer size it is important to

decide how the current value of N will be decremented during the search so that the

102

search space can be explored effectively to find the global minima. To deal with this

issue, a pilot experiment is carried out and the decrement value is determined based

on the results of this study. The details of neighborhood generation mechanism and

the results of these pilot experiments are discussed in section 6.4.1.

6.3.2.4 Neighborhood Size and Tabu Tenure

The neighborhood size, i.e. the number of solutions evaluated at each iteration is

set to 4 and it is kept constant during the search. Likewise, the value of tabu tenure,

i.e. the number of iterations that tabus stay in the tabu list is kept constant depending

on problem size during the search.

6.3.2.5 Aspiration Criterion

At each iteration, the minimum N value which can be reached by a non-tabu move

in the current solution is selected for the next step. The only exception is defined by

the aspiration criterion which allows a tabu move to be made if and only if the

resulting total buffer size is better than the best total buffer size found so far.

6.3.2.6 Stopping Condition

The algorithm is terminated if one of the following criteria is satisfied: (a) within

a certain number of iterations, no better solution has been found, or (b) the number of

iterations reaches the maximum allowable number. The values of these two

parameters are also problem-dependent. Depending on the size of the problem, these

parameters are set to small values with small size of N and they are kept big enough

for large size of N.

The proposed TS algorithm is outlined in Table 6.2. The notation used in this

table is explained as follows:

bestB the best buffer configuration during the whole TS algorithm

103

kNB the best buffer configuration obtained by the total buffer size N

at kth iteration

f(N
k
) the best throughput rate value which is equal to or greater than

the desired value obtained by total buffer size N at kth

iteration.

bestf the best throughput rate value which is equal to or greater than

the desired value during the whole TS algorithm

TT tabu tenure

 Table 6.2 Tabu search algorithm

Initialization

Set N to its pre-specified value,
0

N N . Initially tabu list is empty and iteration

count is set to 0k  . Run the ATS algorithm to obtain the best throughput value for N.

Set
0

()
best

f f N , and
0

best N
B B . Put N

0
 into tabu list for TT number of iterations.

Step 1

Create all neighbors of the current solution according to the neighborhood generation

mechanism and run the ATS algorithm for each neighbor to obtain the throughput rate

values.

Step 2

If all neighbors produce throughput values equal or greater than the desired value:

1. Select the minimum N that is non-tabu and less than the current best value.

2. Select the minimum tabu move that has a lower value than the current best

value if all moves are tabu, and update the neighborhood generation

mechanism (Aspiration criterion).

3. Set f
best

= f(N
k
) and

k
best N

B B and update the tabu list.

Else

1. Set
1k k

N N

 and update the neighborhood generation mechanism.

2. Update the tabu list.

Step 3

Set 1k k  , and go to Step 1 until one of the termination criteria is satisfied.

Termination criteria

The algorithm is terminated if one of the following criteria is satisfied:

1. within a certain number of iterations, no better solution is found, or

2. the number of iterations reaches the maximum allowable number.

104

As seen from Table 6.2, the algorithm is started with a pre-specified N value and

the neighborhoods of this value are generated by using neighborhood generation

mechanism which is explained in section 6.3.2.3. The ATS algorithm is run for each

neighborhood solution to obtain the throughput value. It should be noted that if one

of these neighborhood solutions is in tabu list, the ATS algorithm is run only for non-

tabu values of N. Using these memory properties of tabu search reduces the running

time of the algorithm. At each iteration, the minimum N value which can be reached

by a non-tabu move in the current solution is selected for the next step. The only

exception is defined by the aspiration criterion which allows a tabu move to be made

if and only if the resulting N is lower than the minimum total size value found so far.

This procedure continues until one of the stopping conditions is satisfied.

6.3.3 Simulated Annealing Algorithm

Simulated annealing is a meta-heuristic method derived from statistical

mechanics. Kirkpatrick et al. (1983) proposed an algorithm which is based on the

analogy between the annealing of solids and the problem of solving combinatorial

optimization problems.

The analogy between the buffer allocation problem and the annealing process can

be stated as follows: The states of the solid represent the feasible solutions of the

problem, the energies of the states correspond to the values of the throughput rates

computed at those solutions, the minimum energy state corresponds to the optimal

solution to the problem and rapid quenching can be viewed as local optimization.

The proposed simulated annealing algorithm is outlined in Table 6.3. The notation

used in this table is the same as in Table 6.2. The proposed algorithm consists of a

sequence of iterations. Each iteration consists of changing the current solution to

create a new solution in the neighborhood of the current solution. The neighborhoods

of the current solution are generated by using neighborhood generation mechanism

as defined in section 6.3.2.3 (Step 3). To select the best neighborhood generation

mechanism a pilot experiment is carried out as in the case of proposed TS algorithm

105

and the results of these experiments are discussed in section 6.4.1. Once a new

solution is created the corresponding change in the throughput rate is computed as

given in the step 4 of the algorithm to decide whether the newly produced solution

can be accepted as the current solution.

 Table 6.3 Simulated annealing algorithm

Step 0 (Initialization)

Set N to its pre-specified value. Run the ATS algorithm to obtain the best throughput

value for N. Set ()
best

f f N , and
0best

B B .

Step 1 (Initialization of temperature)

Set the initial temperature 10T   .

Step 2 (Initialization of step and success count)

Set the iteration count to 0k  and success count to 0U 

Step 3 (Neighborhood generation)

Create all neighbors of the current solution according to the neighborhood

generation mechanism and run the ATS algorithm for each neighbor to obtain the

throughput rate values.

Step 4 (Calculation of energy differential)

Set
*

()
k

f f NE   .

Step 5 (Acceptance criteria)

 If 0E  , select the minimum N value that satisfies this condition for the

next iteration. Set ()
best k

f f N ,
k

best N
B B , and 1U U  .

 If 0E  and (buffer size reduction)>1, keep the current best N value for

the next iteration, and update the neighborhood generation mechanism.

 If 0E  and (buffer size reduction)=1, select the N value that satisfies

the following condition:
(/)

rand(0...1)
E T

e


 .

Step 6 (Repeat for current temperature)

Set 1k k  , if k<(maximum number of steps) go to Step 3, otherwise go to Step 5.

Step 7 (Lower the annealing temperature)

Set (0 1)T cT c   .

Step 8 (Termination criterion)

If 0U  go to step 2, otherwise terminate the algorithm.

As given in step 5 of the proposed algorithm (see Table 6.3), if the desired

throughput rate is obtained by less total buffer size then this value is directly taken as

106

the current solution. Otherwise it is accepted according to Metropolis’s criterion

(Metropolis et al., 1953).

According to Metropolis’s criterion, if the difference between the throughput rate

values of the current and newly produced solutions is greater than zero, a random

number in (0,1) is generated from a uniform distribution and if

(/)
rand(0...1)

E T
e


 then the newly produced solution is accepted as the current

solution. Since the addressed problem is a minimization problem and our algorithm

is designed in the form of decreasing N value we consider the Metropolis’s criterion

if and only if the value of buffer size reduction is 1.

In designing cooling schedule for the proposed SA algorithm, the initial

temperature is set to -10. Since the problem addressed in this study is a minimization

problem, the cooling schedule becomes like a heating schedule. In the proposed

algorithm we employ the geometric cooling rule which is a common and very simple

cooling strategy. This rule updates the temperature by the formula given in the

seventh step of the algorithm. In this formula c is a temperature factor which is a

constant smaller than 1 but close to 1. In our computational study, we tried different

values for c and decided to use 0.98c  throughout the experiments.

The experimental studies carried out to test the performance of the proposed

integrated approach are given in the next section.

6.4 Computational Experiments

In this section, randomly generated test problems are used to test the performance

of the proposed algorithms. Before giving the details of our computational study,

first the results of pilot experiments which are carried out to determine the

neighborhood generation mechanism of the proposed TS and SA algorithms are

presented.

107

6.4.1 Determination of Neighborhood Generation Mechanism

In this study, the neighborhood generation mechanism is defined as follows:

 At the initialization step of both TS and SA algorithms, the total buffer

size, N, is set to a pre-specified value and the neighbors of this solution are

generated by setting the value of buffer reduction to N/x. Here x is a

divisor of N. During the pilot experiments, different values of x, i.e., 2, 3,

4 and 5 are used to generate the neighborhoods of the current solution. For

instance, if the total buffer size, the neighborhood size and x are initially

set to 200, 3 and 4, respectively, then the neighborhoods of this solution

become 150, 100, and 50.

 In the following steps, the value of buffer reduction is set to min1
(/)

2
N x .

Here N
min

 is the current best solution found so far. Continuing with the

previous example, if a total buffer size of 100 achieves the best throughput

rate during the second step of the algorithm, then the neighborhoods of

this solution become 87, 74, and 61 by setting the value of buffer

reduction to 13, i.e., 100/8=12,5~13 (since buffer sizes must be integer,

N
min

/8 is rounded to integer value). This process continues until the value

of buffer reduction becomes 1, i.e., N
min

/16 during the third step, N
min

 /32

during the fourth step, etc. In this way, it is focused on promising solution

areas of the search space, i.e., intensification.

As mentioned above, a set of pilot experiments is carried out to determine the

value of divisor, x. The values of x tested are 2, 3, 4 and 5. These experiments

involve a ten-machine line with initial total buffer size of 100. By changing the

failure/repair rates of machines (see Table 5.2 in chapter 5) eight sets of problems are

generated. To determine the desired throughput rates using ATS algorithm, all

considered problems are solved by setting the total buffer size value to 50 which is

the half of the initial total buffer size value. In doing so, we aim at searching for

whether the proposed algorithms can achieve the desired throughput rate value with

108

the pre-specified total buffer size. Using a 2 GHz Intel ® Core ™ 2 Duo CPU

processor 5 runs are carried out at each design point leading to 320 runs in total.

Tables 6.4 and 6.5 present the results obtained by the proposed TS and SA

algorithms, respectively. In these tables, the first two columns show the problem

setting and the problem instances for each setting. While the third column presents

the desired throughput rate, the fourth column presents the minimum total buffer size

found by the binary search algorithm to achieve this desired throughput rate. The

following columns show the performance of the proposed algorithm for each x value.

Table 6.4 shows the results obtained by the proposed TS algorithm for each x

value. As seen in Table 6.4, for the problem settings 1, 3, 5 and 7, all x values

produce the same results. For the third problem instances in problem setting 2 and 8,

and for the first problem instance in problem setting 4, none of x values reaches the

optimum solution. Considering the results of pilot experiments, setting the divisor, x

to 3 seems to be a good decision since it can reach the optimum solution in 37 out of

40 problems and for other problems it produces better results than the other x values.

1
0
9

Table 6.4 Results of pilot experiments for neighborhood generation mechanism by using the proposed TS algorithm

P
r
o

b
le

m
 S

e
tt

in
g

In
st

a
n

c
e

N
o

D
e
si

re
d

 R
a

te

N

x=2 x=3 x=4 x=5

A
c
h

ie
v

e
d

R
a

te

N

T
o

t.
 #

 o
f

It
e
r
a

ti
o

n
s

#
 o

f
It

e
r.

 f
o

r

C
o

n
v
g

.

C
P

U
 (

se
c
.)

A
c
h

ie
v

e
d

R
a

te

N

T
o

t.
 #

 o
f

It
e
r
a

ti
o

n
s

#
 o

f
It

e
r.

 f
o

r

C
o

n
v
g

.

C
P

U
 (

se
c
.)

A
c
h

ie
v

e
d

R
a

te

N

T
o

t.
 #

 o
f

It
e
r
a

ti
o

n
s

#
 o

f
It

e
r.

 f
o

r

C
o

n
v
g

.

C
P

U
 (

se
c
.)

A
c
h

ie
v

e
d

R
a

te

N

T
o

t.
 #

 o
f

It
e
r
a

ti
o

n
s

#
 o

f
It

e
r.

 f
o

r

C
o

n
v
g

.

C
P

U
 (

se
c
.)

1

1 0.08694 13 0.08694 13 14 4 172.02 0.08694 13 14 4 208.84 0.08694 13 13 3 198.67 0.08694 13 21 11 263.16

2 0.07338 38 0.07338 38 13 3 923.55 0.07338 38 17 7 1091.97 0.07338 38 14 4 1578.45 0.07338 38 14 4 1158.71

3 0.06442 13 0.06442 13 14 4 276.28 0.06442 13 14 4 309.77 0.06442 13 13 3 311.56 0.06442 13 15 5 344.33

4 0.07554 23 0.07554 23 15 5 389.50 0.07554 23 15 5 440.11 0.07554 23 14 4 431.30 0.07554 23 17 7 619.52

5 0.07907 28 0.07907 28 17 7 180.80 0.07907 28 17 7 234.56 0.07907 28 20 10 171.13 0.07907 28 15 5 166.24

Avg 0.07587 23 0.07587 23 15 5 388.43 0.07587 23 15 5 457.05 0.07587 23 15 5 538.22 0.07587 23 16 6 510.39

2

1 0.05596 48 0.05603 48 15 5 571.31 0.05598 48 21 11 773.94 0.05602 48 16 6 720.92 0.05603 49 16 6 714.81

2 0.06253 48 0.06266 48 15 5 455.88 0.06266 48 15 5 507.97 0.06266 48 16 6 590.11 0.06266 48 14 4 472.67

3 0.06730 38 0.07281 45 19 9 1182.66 0.07281 39 23 13 1398.20 0.06739 48 22 12 1575.69 0.07024 48 17 7 1143.97

4 0.05925 48 0.05925 48 15 5 799.69 0.05925 48 15 5 920.55 0.05925 48 16 6 1032.42 0.05925 48 14 4 837.84

5 0.06936 48 0.06936 48 15 5 999.42 0.06936 48 15 5 1017.11 0.06936 48 16 6 1195.30 0.06936 48 17 7 1235.75

Avg 0.06288 46 0.06402 47 16 6 801.79 0.06401 46 18 8 923.55 0.06294 48 17 7 1022.89 0.06351 48 16 6 881.01

3

1 0.07214 48 0.07214 48 15 5 377.16 0.07214 48 16 6 478.39 0.07214 48 15 5 420.81 0.07214 48 14 4 385.39

2 0.06911 43 0.06911 43 16 6 430.67 0.06911 43 15 5 457.83 0.06911 43 16 6 463.09 0.06911 43 16 6 539.53

3 0.08565 53 0.08571 53 20 10 2453.53 0.08618 53 19 9 1755.80 0.08571 53 16 6 1609.52 0.08618 53 16 6 1334.78

4 0.06365 48 0.06365 48 15 5 901.91 0.06365 48 16 6 1091.73 0.06365 48 15 5 1000.59 0.06365 48 14 4 975.45

5 0.06659 48 0.06660 48 15 5 250.73 0.06660 48 16 6 306.84 0.06660 48 15 5 281.47 0.06660 48 14 4 273.81

Avg 0.07143 48 0.07144 48 16 6 882.80 0.07154 48 16 6 818.12 0.07144 48 15 5 755.10 0.07154 48 15 5 701.79

4

1 0.05021 13 0.17492 16 30 28 877.47 0.13110 14 13 3 248.97 0.22953 20 30 23 1833.86 0.36402 20 30 30 1994.13

2 0.04972 78 0.05134 78 18 8 2205.36 0.05134 78 16 6 1756.86 0.05134 78 20 10 2520.56 0.05134 78 15 5 1534.56

3 0.05610 38 0.05610 38 13 3 376.03 0.05610 38 17 7 720.39 0.05610 38 14 4 531.36 0.05610 38 14 4 524.45

4 0.04156 48 0.04156 48 15 5 1241.27 0.04156 48 24 14 2341.20 0.04156 50 12 2 1009.63 0.04156 50 12 2 1245.76

5 0.05589 9 0.05631 9 4 4 244.55 0.05631 9 4 4 273.13 0.05631 9 9 4 250.98 0.05631 9 9 4 257.88

Avg 0.05070 33 0.07604 38 16 10 988.94 0.06728 37 15 7 1068.11 0.08697 39 17 9 1229.28 0.11386 39 16 9 1111.36

1
1
0

Table 6.4 Results of pilot experiments for neighborhood generation mechanism by using the proposed TS algorithm (cont.)

P
r
o

b
le

m
 S

e
tt

in
g

In
st

a
n

c
e

N
o

D
e
si

re
d

 R
a

te

N

x=2 x=3 x=4 x=5

A
c
h

ie
v

e
d

 R
a

te

N

T
o

t.
 #

 o
f

It
e
r
a

ti
o

n
s

#
 o

f
It

e
r.

 f
o

r

C
o

n
v
g

.

C
P

U
 (

se
c
.)

A
c
h

ie
v

e
d

 R
a

te

N

T
o

t.
 #

 o
f

It
e
r
a

ti
o

n
s

#
 o

f
It

e
r.

 f
o

r

C
o

n
v
g

.

C
P

U
 (

se
c
.)

A
c
h

ie
v

e
d

 R
a

te

N

T
o

t.
 #

 o
f

It
e
r
a

ti
o

n
s

#
 o

f
It

e
r.

 f
o

r

C
o

n
v
g

.

C
P

U
 (

se
c
.)

A
c
h

ie
v

e
d

 R
a

te

N

T
o

t.
 #

 o
f

It
e
r
a

ti
o

n
s

#
 o

f
It

e
r.

 f
o

r

C
o

n
v
g

.

C
P

U
 (

se
c
.)

5

1 0.03089 6 0.03089 6 5 5 127.16 0.03089 6 5 5 153.34 0.03089 6 5 5 169.72 0.03089 6 5 5 186.97

2 0.02444 12 0.02444 12 14 4 68.19 0.02444 12 14 4 76.69 0.02444 12 5 5 54.88 0.02444 12 13 3 87.02

3 0.02340 8 0.02340 8 5 5 128.78 0.02340 8 5 5 161.88 0.02340 8 5 5 166.42 0.02340 8 5 4 196.76

4 0.02347 8 0.02347 8 5 5 103.95 0.02347 8 5 5 124.91 0.02347 8 5 5 132.03 0.02347 8 5 5 143.05

5 0.03700 28 0.03700 28 17 7 223.06 0.03700 28 15 5 181.67 0.03700 28 17 7 282.73 0.03700 28 15 5 239.06

Avg 0.02784 12 0.02784 12 9 5 130.23 0.02784 12 9 5 139.70 0.02784 12 7 5 161.16 0.02784 12 9 4 170.57

6

1 0.01849 23 0.01849 23 15 5 475.19 0.01849 23 15 5 501.75 0.01849 23 14 4 500.84 0.01849 23 17 7 763.14

2 0.02342 23 0.02343 23 30 27 1610.44 0.02343 23 21 11 596.19 0.02343 23 30 29 1780.81 0.02342 94 28 18 2959.75

3 0.02322 48 0.02322 48 15 5 405.23 0.02322 48 16 6 471.76 0.02322 48 15 5 411.03 0.02322 48 14 4 399.17

4 0.02892 48 0.02892 48 15 5 1153.42 0.02892 48 16 6 1461.27 0.02892 48 15 5 1333.83 0.02892 48 14 4 1156.58

5 0.02505 48 0.02505 48 15 5 463.33 0.02505 48 16 6 587.45 0.02505 48 15 5 517.25 0.02505 48 14 4 496.86

Avg 0.02382 38 0.02382 38 18 9 821.52 0.02382 38 17 7 723.68 0.02382 38 18 10 908.75 0.02382 52 17 7 1155.10

7

1 0.02165 43 0.02165 43 16 6 183.25 0.02165 43 15 5 196.28 0.02165 43 16 6 202.41 0.02165 43 16 6 234.14

2 0.02169 48 0.02169 48 28 18 844.33 0.02169 48 20 10 508.72 0.02169 48 17 7 510.98 0.02169 48 20 10 461.84

3 0.02167 18 0.02167 18 16 6 102.52 0.02167 18 15 5 89.67 0.02167 18 15 5 93.72 0.02167 18 13 3 88.55

4 0.02558 43 0.02558 43 16 6 1193.31 0.02558 43 15 5 1220.34 0.02558 43 16 6 1289.27 0.02558 43 16 6 1428.91

5 0.01396 23 0.01396 23 15 5 71.44 0.01396 23 15 5 76.63 0.01396 23 14 4 77.92 0.01396 23 17 7 116.38

Avg 0.02091 35 0.02091 35 18 8 478.97 0.02091 35 16 6 418.33 0.02091 35 16 6 434.86 0.02091 35 16 6 465.96

8

1 0.01742 43 0.01744 43 16 6 238.61 0.01744 43 24 14 639.58 0.01744 43 21 11 470.92 0.01744 43 20 10 498.61

2 0.01280 48 0.01280 49 27 17 1068.11 0.01280 48 24 14 1068.11 0.01293 53 16 6 712.23 0.01280 48 26 16 1003.89

3 0.03790 48 0.03790 48 15 5 731.67 0.03790 48 16 6 913.09 0.03790 48 17 7 1091.75 0.03790 48 18 8 1111.13

4 0.01337 40 0.01337 48 15 5 306.70 0.01337 48 16 6 365.40 0.01337 48 17 7 425.28 0.01337 48 14 4 414.72

5 0.01610 49 0.01610 49 15 5 462.63 0.01610 49 17 7 705.51 0.01610 49 15 5 537.75 0.01610 49 16 6 603.36

Avg 0.01952 46 0.01952 47 18 8 602.52 0.01952 47 19 9 738.34 0.01955 48 17 7 647.59 0.01952 47 19 9 726.34

111

The results of pilot experiments for neighborhood generation mechanism by using

the proposed SA algorithm are shown in Table 6.5. As seen in Table 6.5, for the

problem settings 1, 3, 5 and 6 all x values produce the same results. For the third

problem instance in problem setting 2, none of x values reaches the optimum

solution. Considering the results of pilot experiments, setting the divisor, x to 3

seems to be a good decision since it can reach to the optimum solution in 38 out of

40 problems.

1
1
2

Table 6.5 Results of pilot experiments for neighborhood generation mechanism by using the proposed SA algorithm

P
r
o

b
le

m
 S

e
tt

in
g

In
st

a
n

c
e

N
o

D
e
si

re
d

 R
a

te

N

x=2 x=3 x=4 x=5

A
c
h

ie
v

e
d

R
a

te

N

T
o

t.
 #

 o
f

It
e
r
a

ti
o

n
s

#
 o

f
It

e
r.

 f
o

r

C
o

n
v
g

.

C
P

U
 (

se
c
.)

A
c
h

ie
v

e
d

R
a

te

N

T
o

t.
 #

 o
f

It
e
r
a

ti
o

n
s

#
 o

f
It

e
r.

 f
o

r

C
o

n
v
g

.

C
P

U
 (

se
c
.)

A
c
h

ie
v

e
d

R
a

te

N

T
o

t.
 #

 o
f

It
e
r
a

ti
o

n
s

#
 o

f
It

e
r.

 f
o

r

C
o

n
v
g

.

C
P

U
 (

se
c
.)

A
c
h

ie
v

e
d

R
a

te

N

T
o

t.
 #

 o
f

It
e
r
a

ti
o

n
s

#
 o

f
It

e
r.

 f
o

r

C
o

n
v
g

.

C
P

U
 (

se
c
.)

1

1 0.08694 13 0.08694 13 8 4 161.94 0.08694 13 9 5 199.76 0.08694 13 8 3 199.88 0.08694 13 9 5 242.28

2 0.07338 38 0.07338 38 10 3 1088.23 0.07338 38 10 5 1338.22 0.07338 38 10 3 1141.78 0.07338 38 10 4 1335.70

3 0.06442 13 0.06442 13 5 4 185.92 0.06442 13 5 4 225.23 0.06442 13 5 3 226.45 0.06442 13 6 5 313.23

4 0.07554 23 0.07554 23 9 4 366.24 0.07554 23 10 5 470.67 0.07554 23 9 4 376.08 0.07554 23 10 4 523.53

5 0.07907 28 0.07907 28 15 6 204.97 0.07907 28 10 5 154.08 0.07907 29 10 5 174.46 0.07907 28 10 3 166.06

Avg 0.07587 23 0.07587 23 9 4 401.46 0.07587 23 9 5 477.59 0.07587 23 8 4 423.73 0.07587 23 9 4 516.16

2

1 0.05596 48 0.05602 49 10 5 660.36 0.05602 48 10 4 707.34 0.05597 49 10 5 736.20 0.05597 48 10 5 743.19

2 0.06253 48 0.06266 48 10 5 491.00 0.06266 48 10 4 535.79 0.06266 48 10 5 747.46 0.06266 48 10 3 564.14

3 0.06730 38 0.06923 39 15 10 1349.50 0.06730 48 15 8 1673.11 0.07281 44 10 4 952.02 0.07281 42 10 4 970.75

4 0.05925 48 0.05925 48 10 5 1062.94 0.05925 48 10 4 1266.22 0.05925 48 10 5 1160.25 0.05925 48 10 3 1256.39

5 0.06936 48 0.06936 48 10 5 953.95 0.06936 48 10 5 1242.23 0.06936 48 10 5 1146.46 0.06936 48 10 3 1164.31

Avg 0.06288 46 0.06331 46 11 6 903.55 0.06292 48 11 5 1084.94 0.06401 47 10 5 948.48 0.06401 47 10 4 939.76

3

1 0.07214 48 0.07214 48 10 5 423.31 0.07214 48 10 4 458.23 0.07214 48 10 5 441.14 0.07214 48 10 3 489.16

2 0.06911 43 0.06911 43 10 5 415.73 0.06911 43 10 5 476.19 0.06911 43 10 5 629.23 0.06911 43 10 5 524.91

3 0.08565 50 0.08589 50 15 7 2100.92 0.08616 50 15 6 1880.45 0.08589 50 10 5 1896.14 0.08640 50 10 5 1433.55

4 0.06365 48 0.06365 48 10 5 1057.22 0.06365 48 10 4 1113.55 0.06365 48 10 5 1215.94 0.06365 48 10 3 1150.17

5 0.06659 48 0.06660 48 10 5 269.17 0.06660 48 10 4 295.13 0.06660 48 10 5 311.43 0.06660 48 10 3 313.36

Avg 0.07143 47 0.07148 47 11 5 853.27 0.07153 47 11 5 844.71 0.07148 47 10 5 898.78 0.07158 47 10 4 782.23

4

1 0.05021 13 0.22174 23 13 9 597.44 0.13110 13 13 12 910.34 0.13110 14 19 17 1342.31 0.22174 23 11 7 707.17

2 0.04972 78 0.05134 78 15 7 2564.76 0.05134 78 15 6 2499.44 0.05134 78 10 4 1798.88 0.05134 78 10 5 1788.16

3 0.05610 38 0.05610 38 10 3 431.33 0.05610 38 10 4 492.34 0.05610 38 10 3 535.64 0.05610 38 10 4 541.67

4 0.04156 48 0.04156 50 10 2 1293.22 0.04156 48 10 3 1476.85 0.04156 50 10 3 1347.89 0.04156 48 10 4 1420.56

5 0.05589 9 0.05631 9 5 5 187.68 0.05631 9 5 5 200.50 0.05631 9 5 5 229.83 0.05631 9 5 5 215.67

Avg 0.05070 37 0.08541 40 11 5 1014.89 0.06728 37 11 6 1115.89 0.06728 38 11 6 1050.91 0.08541 39 9 5 934.65

1
1
3

Table 6.5 Results of pilot experiments for neighborhood generation mechanism by using the proposed SA algorithm (cont.)

P
r
o

b
le

m
 S

e
tt

in
g

In
st

a
n

c
e

N
o

D
e
si

re
d

 R
a

te

N

x=2 x=3 x=4 x=5

A
c
h

ie
v

e
d

 R
a

te

N

T
o

t.
 #

 o
f

It
e
r
a

ti
o

n
s

#
 o

f
It

e
r.

 f
o

r

C
o

n
v
g

.

C
P

U
 (

se
c
.)

A
c
h

ie
v

e
d

 R
a

te

N

T
o

t.
 #

 o
f

It
e
r
a

ti
o

n
s

#
 o

f
It

e
r.

 f
o

r

C
o

n
v
g

.

C
P

U
 (

se
c
.)

A
c
h

ie
v

e
d

 R
a

te

N

T
o

t.
 #

 o
f

It
e
r
a

ti
o

n
s

#
 o

f
It

e
r.

 f
o

r

C
o

n
v
g

.

C
P

U
 (

se
c
.)

A
c
h

ie
v

e
d

 R
a

te

N

T
o

t.
 #

 o
f

It
e
r
a

ti
o

n
s

#
 o

f
It

e
r.

 f
o

r

C
o

n
v
g

.

C
P

U
 (

se
c
.)

5

1 0.03089 6 0.03089 6 6 6 128.25 0.03089 6 6 6 167.80 0.03089 6 6 6 192.20 0.03089 6 6 6 204.31

2 0.02444 12 0.02444 12 6 4 55.05 0.02444 12 6 4 63.59 0.02444 12 7 5 79.66 0.02444 12 6 3 70.83

3 0.02340 8 0.02340 8 6 6 130.78 0.02340 8 6 6 63.59 0.02340 8 6 6 195.51 0.02340 8 6 6 219.70

4 0.02347 8 0.02347 8 6 6 102.30 0.02347 8 6 6 124.52 0.02347 8 6 6 153.22 0.02347 8 6 6 152.44

5 0.03700 28 0.03700 28 10 5 167.25 0.03700 28 10 5 181.42 0.03700 28 10 4 233.23 0.03700 28 10 4 252.47

Avg 0.02784 12 0.02784 12 7 5 116.73 0.02784 12 7 5 120.18 0.02784 12 7 5 170.76 0.02784 12 7 5 179.95

6

1 0.01849 23 0.01849 23 10 4 430.69 0.01849 23 10 5 508.09 0.01849 23 10 4 461.91 0.01849 23 10 4 578.83

2 0.02342 23 0.02343 23 10 4 698.75 0.02343 23 10 5 726.24 0.02343 23 16 11 817.46 0.02342 23 15 10 865.12

3 0.02322 48 0.02322 48 10 5 411.31 0.02322 48 10 4 440.95 0.02322 48 10 5 491.15 0.02322 48 10 3 466.19

4 0.02892 48 0.02892 48 10 5 1270.39 0.02892 48 10 4 1455.66 0.02892 48 10 5 1419.43 0.02892 48 10 3 1516.69

5 0.02505 48 0.02505 48 10 5 529.22 0.02505 48 10 4 573.45 0.02505 48 10 5 803.23 0.02505 48 10 3 614.11

Avg 0.02382 38 0.02382 38 10 5 668.07 0.02382 38 10 4 740.88 0.02382 38 11 6 798.64 0.02382 38 11 5 808.19

7

1 0.02165 43 0.02165 43 10 5 182.26 0.02165 43 10 5 204.66 0.02165 43 10 5 208.25 0.02165 43 10 5 227.98

2 0.02169 48 0.02169 53 10 5 426.24 0.02169 48 15 7 581.33 0.02169 50 10 2 432.48 0.02169 48 10 3 383.55

3 0.02167 18 0.02167 18 10 5 81.81 0.02167 18 9 4 79.72 0.02167 18 9 4 82.42 0.02167 18 9 3 93.45

4 0.02558 43 0.02558 43 10 5 1235.56 0.02558 43 10 5 1312.13 0.02558 43 10 5 1220.02 0.02558 43 10 5 1475.77

5 0.01396 23 0.01396 23 9 4 60.78 0.01396 23 10 5 75.05 0.01396 23 9 4 73.88 0.01396 23 9 4 85.05

Avg 0.02091 35 0.02091 36 10 5 397.33 0.02091 35 11 5 450.58 0.02091 35 10 4 403.41 0.02091 35 10 4 453.16

8

1 0.01742 43 0.01744 43 15 5 372.93 0.01744 43 15 6 383.33 0.01744 43 10 5 268.83 0.01744 43 10 5 338.31

2 0.01280 43 0.01280 49 10 5 605.75 0.01280 48 10 4 620.94 0.01280 43 10 3 600.98 0.01280 50 10 4 658.34

3 0.03790 48 0.03790 50 10 2 671.70 0.03790 48 10 3 737.89 0.03790 48 10 3 820.37 0.03790 48 10 3 795.67

4 0.01818 48 0.01818 48 10 5 550.92 0.01818 48 10 4 594.27 0.01818 48 10 5 614.58 0.01818 48 10 3 587.65

5 0.01610 49 0.01610 49 15 5 723.77 0.01610 49 15 6 967.06 0.01610 49 10 5 893.46 0.01610 49 10 5 659.08

Avg 0.02048 46 0.02048 48 12 4 585.01 0.02048 47 12 5 660.70 0.02048 46 10 4 639.64 0.02048 48 10 4 607.81

114

6.4.2 Experiments on Test Problems

We design a computational experiment to test the performance of the proposed

algorithms. In our computational experiments, five, ten, and twenty-machine lines (K

= 5, 10, 20) are considered. For small and medium-sized problems, i.e. 5 and 10

machine-lines, the initial total buffer size is set to 10, 20 and 40 times of the number

of machines in the line. However, to reduce the computational cost, for large-sized

problems involving 20 machines the initial total buffer size is set to 200. To

determine the desired throughput rates using ATS algorithm, all considered problems

are solved by setting the total buffer size value to the half of the initial total buffer

size value. Hence, a total of 7 problem sets are considered. As seen in Table 6.6, by

identifying different levels for processing rates and reliability parameters, eight

different settings are generated for each problem set. The processing rates of the

machines are generated from a uniform distribution and the failure and repair rates

are generated from a geometric distribution. For each setting, 5 runs are made

totaling to 800 runs. All algorithms are implemented in C language. The execution is

done on a computer having 2.26 GHz Intel Core i5 430M CPU processor and 4 GB

of RAM.

 Table 6.6 Properties of problem instances

Setting Processing rate Failure Rate Repair Rate

1 (5,15) (1,200) (1,10)

2 (5,15) (1,200) (1,40)

3 (5,15) (1,2000) (1,100)

4 (5,15) (1,2000) (1,400)

5 (5,45) (1,200) (1,10)

6 (5,45) (1,200) (1,40)

7 (5,45) (1,2000) (1,100)

8 (5,45) (1,2000) (1,400)

Performance comparison of the three algorithms, i.e., binary search, tabu search

and simulated annealing is done with respect to solution quality and solution time. It

should be noted that since the optimal solution for large sized problems using binary

search algorithm can not be reached in reasonable computation time, the comparative

115

experiments for large sized problems involved only the comparison of the tabu

search algorithm to the simulated annealing algorithm.

In our experimental study, the problem sets are denoted by K.N, where K is the

number of machines in the line and N is the initial total buffer size to be allocated. In

the following tables, we give the average results obtained for all problem sets. The

detailed results are given in Appendix C.

6.4.2.1 Results of Small-Sized Problems

Table 6.7 presents the results of our experimental studies for small-sized

problems. In this table, the first two columns represent the problem set and problem

setting. Other columns represent the performance of three algorithms with respect to

the number of instances achieved the desired throughput rate, minimum value of total

buffer size, total number of iterations, the number of iterations for convergence and

the CPU time in seconds.

As seen in Table 6.7, for the first problem set, all algorithms converge the

optimum solution for all problems. However, the proposed TS and SA algorithms

reach the optimum solution with less number of iterations than the binary search

algorithm and hence, the solution times of proposed TS and SA algorithms are much

less than the solution time of binary search algorithm. Comparing the solution time

of TS algorithm to SA, except for the problem setting 5 where the two algorithms

have the same solution time, on average, the solution time of proposed TS algorithm

is less than the proposed SA algorithm. Overall, it can be said that for solving the

problem set 5.50, the solution quality of three algorithms is the same, and the

proposed TS algorithm dominates the other two with respect to the solution time.

For the problem set 5.100, both two algorithms get stuck at the local optima for

only one problem (see the fourth problem in problem setting 3 for TS and the fourth

problem in problem setting 1 for SA in Appendix C2). The convergence rate of TS

and SA algorithms is almost the same. As for the solution time, TS algorithm is

116

slightly better than SA algorithm and in overall, as expected the binary search

algorithm has worse performance than the other two.

For problem set 5.200, both TS and SA algorithms reach the optimum solution.

Moreover, the convergence rate and the solution times of both algorithms are very

close. Like in the case of problem set 5.100, the solution times of both algorithms are

better than the binary search algorithm.

In summary, for small-sized problems, the proposed TS and SA algorithms are

efficient to solve buffer allocation problem under the objective of total buffer size

minimization. The solution times and also the convergence rates of both algorithms

are very close and the proposed TS algorithm gets stuck at the local optimum for

only one problem in all considered small-sized problems.

1
1

7

 Table 6.7 Results of experimental studies for small-sized problems

Problem

Set

Problem

Setting

Binary Search Tabu Search Simulated Annealing

of

Instances

Achieved

Desired

Rate

N
Total # of

Iterations

CPU

(sec.)

of

Instances

Achieved

Desired

Rate

N
Total # of

Iterations

of Iterations

for

Convergence

CPU

(sec.)

of

Instances

Achieved

Desired

Rate

N
Total # of

Iterations

of Iterations

for

Convergence

CPU

(sec.)

5.50

1 5 15 23 2.10 5 15 11 6 1.77 5 15 10 5 2.12

2 5 22 29 7.60 5 22 8 3 3.12 5 22 10 3 4.72

3 5 24 31 8.04 5 24 8 3 3.83 5 24 10 4 5.37

4 5 25 32 6.17 5 25 7 2 2.73 5 25 10 2 3.71

5 5 10 16 1.72 5 10 8 3 1.54 5 10 6 4 1.54

6 5 17 24 4.90 5 17 9 4 3.31 5 17 8 4 3.46

7 5 24 32 5.98 5 24 8 3 2.59 5 24 10 3 3.67

8 5 25 32 9.24 5 25 8 3 4.06 5 25 10 3 5.67

Avg. 5 20 27 5.72 5 20 8 3 2.87 5 20 9 3 3.78

5.100

1 5 20 29 4.58 5 20 16 6 5.25 5 21 10 5 5.63

2 5 49 57 20.89 5 49 14 4 9.64 5 49 10 4 11.64

3 5 45 55 22.68 5 48 14 4 14.10 5 45 11 4 16.64

4 5 50 58 27.85 5 50 13 3 12.37 5 50 10 3 14.96

5 5 15 23 4.27 5 15 13 5 4.46 5 15 8 5 3.90

6 5 39 47 16.62 5 39 16 6 11.42 5 39 11 6 11.36

7 5 46 55 20.17 5 46 15 5 10.52 5 46 12 5 12.77

8 5 50 58 34.85 5 50 13 3 14.91 5 50 10 3 18.78

Avg. 5 39 48 18.99 5 39 14 4 10.33 5 39 10 4 11.96

5.200

1 5 20 33 9.67 5 20 22 7 10.32 5 20 11 5 10.25

2 5 75 103 80.69 5 75 21 6 37.94 5 75 12 5 34.81

3 5 96 106 146.13 5 96 20 5 64.66 5 96 14 5 75.16

4 5 100 109 129.46 5 100 19 4 50.96 5 100 12 4 53.90

5 5 15 24 7.92 5 15 21 6 9.78 5 15 9 6 8.68

6 5 58 68 40.48 5 58 21 6 27.54 5 58 13 6 28.63

7 5 60 125 148.72 5 60 24 9 39.49 5 60 14 6 36.88

8 5 89 98 103.48 5 89 21 6 51.60 5 89 15 6 60.35

Avg. 5 64 83 83.32 5 64 21 6 36.54 5 64 12 5 38.58

1
1
7

118

6.4.2.2 Results of Medium-Sized Problems

Table 6.8 presents the results of our experimental studies for medium-sized

problems.

For the problem set 10.100, both the TS and SA algorithms get stuck at the local

optimum for the same problems (see the third problem in problem setting 2 and the

first problem in problem setting 1, in Appendix C4). For the problem setting 2, SA

algorithm finds better solution than TS algorithm while TS finds better solution than

SA for the problem setting 4. Moreover, except for the problem settings 6 and 8 (see

Table 6.8), on average, the convergence rate of both TS and SA algorithms are very

close. Also, the proposed TS and SA algorithms reach the optimum solution with less

number of iterations than binary search algorithm and hence, on average, the solution

times of proposed TS and SA algorithms are much less than the solution time of

binary search algorithm.

Comparing the solution time of TS algorithm to SA, on average, SA algorithm has

better performance than the TS algorithm in 6 out of 8 problem settings. Overall, it

can be said that for solving the problem set 10.100, the solution quality of both TS

and SA algorithms is nearly the same, and the proposed SA algorithm dominates the

other two with respect to the solution time.

For the problem set 10.200 the proposed TS algorithm reaches the optimum

solution in 36 out of 40 problems while the proposed SA algorithm finds the

optimum solution in 35 out of 40 problems (see Appendix C5). Unlike the problem

set 10.100, the proposed TS finds better solution than the proposed SA for the

problem setting 2 and SA algorithm reaches the desired throughput rate with less

total buffer size than TS algorithm for the problem setting 4. Moreover, on average,

the convergence rate of both TS and SA algorithms are very close. Also, the

proposed TS and SA algorithms reach the optimum solution with less number of

iterations than binary search algorithm and hence, on average, the solution times of

119

proposed TS and SA algorithms are much less than the solution time of binary search

algorithm as in the case of the problem set 10.100.

Comparing the solution time of TS algorithm to SA, on average, the solution time

of proposed TS algorithm is less than the proposed SA algorithm in 5 out of 8

problem settings. Overall, it can be said that for solving the problem set 10.200, the

solution quality of TS is slightly better than SA algorithm, and the proposed TS

algorithm dominates the other two with respect to solution time.

For the problem set 10.400, the proposed TS algorithm reaches the optimum

solution in 36 out of 40 problems while the proposed SA algorithm finds the

optimum solution in 34 out of 40 problems (see Appendix C6). Moreover, on

average, the convergence rate of both TS and SA algorithms are very close. Also, the

proposed TS and SA algorithms reach the optimum solution with less number of

iterations than binary search algorithm and hence, on average, the solution times of

proposed TS and SA algorithms are much less than the solution time of binary search

algorithm as it is expected.

Comparing the solution time of TS algorithm to SA, on average, the solution time

of proposed TS algorithm is less than the proposed SA algorithm in 6 out of 8

problem settings. Overall, it can be said that for solving the problem set 10.400, the

solution quality of TS is slightly better than SA algorithm, and the proposed TS

algorithm dominates the other two with respect to solution time.

1
2

0

 Table 6.8 Results of experimental studies for medium-sized problems

Problem

Set

Problem

Setting

Binary Search Tabu Search Simulated Annealing

of

Instances

Achieved

Desired

Rate

N
Total # of

Iterations

CPU

(sec.)

of

Instances

Achieved

Desired

Rate

N
Total # of

Iterations

of

Iterations

for

Convergence

CPU

(sec.)

of

Instances

Achieved

Desired

Rate

N
Total # of

Iterations

of

Iterations

for

Convergence

CPU

(sec.)

10.100

1 5 23 39 321.01 5 23 16 6 324.84 5 23 8 4 275.42

2 5 46 64 964.01 5 48 16 6 863.86 5 47 10 5 616.51

3 5 48 67 1091.25 5 48 15 5 672.14 5 48 10 5 584.20

4 5 32 47 676.24 5 33 13 5 417.36 5 34 10 5 485.92

5 5 12 21 80.92 5 12 15 5 117.56 5 12 7 5 117.90

6 5 38 50 735.12 5 38 18 10 573.28 5 38 11 6 519.11

7 5 35 53 426.19 5 35 15 5 287.37 5 35 10 4 262.21

8 5 46 74 727.73 5 46 19 9 539.71 5 46 10 4 418.54

Avg. 5 35 52 627.81 5 35 16 6 474.51 5 36 10 5 409.98

10.200

1 5 23 32 366.42 5 23 23 8 432.78 5 23 11 5 426.31

2 5 81 129 2910.72 5 93 22 7 1685.59 5 94 14 7 2015.40

3 5 80 92 1929.69 5 82 20 5 872.67 5 82 13 5 1131.55

4 5 64 79 2221.59 5 70 27 12 1996.59 5 64 17 9 1856.38

5 5 12 27 145.16 5 12 19 7 206.65 5 12 9 6 202.85

6 5 61 72 1529.89 5 61 21 6 913.16 5 61 15 7 1195.00

7 5 48 58 683.12 5 48 21 6 501.58 5 48 12 5 511.10

8 5 81 96 1707.80 5 81 22 7 713.23 5 81 12 5 891.38

Avg. 5 56 73 1436.80 5 59 22 7 915.28 5 58 13 6 1028.75

10.400

1 5 23 38 577.60 5 23 25 10 916.92 5 23 13 8 828.24

2 5 133 249 10545.51 5 140 29 16 4622.00 5 136 18 12 4695.92

3 5 140 153 4728.79 5 142 20 5 1565.74 5 142 14 5 2100.76

4 5 146 158 4362.45 5 182 23 8 2554.89 5 175 17 9 3091.36

5 5 12 23 318.96 5 12 25 10 552.72 5 12 13 10 548.64

6 5 99 151 3898.07 5 99 25 10 2531.18 5 101 16 7 2580.87

7 5 79 90 1989.83 5 79 23 8 1150.16 5 79 14 7 1178.61

8 5 179 233 8391.94 5 194 24 9 2440.90 5 195 14 6 2494.23

Avg. 5 102 137 4351.65 5 109 24 9 2041.81 5 108 15 8 2189.83

1
2
0

121

In summary, both TS and SA algorithms are efficient to solve the buffer allocation

under the objective of total buffer size minimization for medium-sized problems. It is

noted that in comparison to the SA algorithm, the TS algorithm needs less number of

iterations for terminating the algorithm leading to a better solution time performance

for TS. This could be attributed to the fact that during the search some values

become tabu, hence tabu algorithm evaluates less number of N values throughout the

search. Moreover, TS algorithm reaches the optimum solution for larger number of

problems than SA algorithm. So it can be said that the proposed TS algorithm is

more efficient than SA algorithm in solving medium-sized problems in terms of both

solution quality and also solution time.

6.4.2.3 Results of Large-Sized Problems

Table 6.9 represents the results of large-sized problems. As it is stated before,

since the optimal solution for large sized problems using binary search algorithm can

not be reached in a reasonable computation time, the comparative experiments for

large sized problems involved only the comparison of the tabu search algorithm to

the simulated annealing algorithm.

As in the previous problem sets, the solution quality of SA algorithm is better than

TS algorithm for problem setting 4 which involves rarely failed machines with long

repair times and for problem setting 7, TS algorithm achieves the desired throughput

rate with less buffer sizes than SA algorithm. Although, on average, the performance

of TS and SA algorithms is very close (see Table 6.9), it is not possible to draw a

general conclusion. It seems that the solution quality of the proposed algorithms is

somehow affected by the features of the problem at hand. As for the solution time,

TS algorithm is much better than SA algorithm even if, the total number of iterations

for stopping the proposed TS algorithm is higher than the proposed SA algorithm. In

summary, TS algorithm is clearly better than SA algorithm in terms of solution time

for large-sized problems involving 20 machines.

1
2

2

 Table 6.9 Results of experimental studies for large-sized problems

Problem

Set

Problem

Setting

Tabu Search Simulated Annealing

of Instances

Achieved

Desired Rate

N
Total # of

Iterations

of

Iterations

for

Convergence

CPU

(sec.)

of Instances

Achieved

Desired Rate

N
Total # of

Iterations

of

Iterations

for

Convergence

CPU

(sec.)

20.200

1 5 48 21 6 5666.20 5 48 11 5 12228.99

2 5 46 16 7 5256.70 5 46 22 19 26546.11

3 5 80 22 10 14238.91 5 80 16 12 36599.90

4 5 64 18 6 9754.57 5 62 13 8 16372.69

5 5 30 18 6 7759.27 5 30 10 6 7593.38

6 5 73 22 7 9955.45 5 73 10 5 6147.75

7 5 69 26 11 24429.62 5 70 13 7 28809.44

8 5 91 22 7 15826.44 5 91 11 6 17340.51

Avg. 5 63 21 8 11610.90 5 63 13 9 18954.85

1
2
2

123

6.4.3 Summary of the Findings

In this section, the performance of three heuristic algorithms is tested on wide

range of problems with varying difficulty. The results are summarized in Table 6.10.

As seen in Table 6.10, regarding solution quality, the proposed TS and SA

algorithms have the same performance for small-sized problems and as for solution

time, TS algorithm has slightly better performance than SA algorithm. For medium-

sized and large-sized problems TS algorithm finds better solution for larger number

of problems in less time than the proposed SA algorithm (see Table 6.10 and also

Figure 6.2). Hence, it can be concluded that the proposed TS is better than the

proposed SA in terms of both solution quality and also solution time when the

problem size increases. It should be noted that the superiority of SA algorithm is

more observable for the problem setting 4 which involves rarely failed machines

with long repair times for all considered problem sets. As a result, it can be

concluded that the proposed TS algorithm is the most efficient algorithms among the

others for solving buffer allocation problem in unreliable and also non-homogeneous

lines under the objective of total buffer size minimization.

 Table 6.10 Summary of experimental studies

Problem

Size
Problem Set

Of Instances Find

Optimum
CPU Time (sec.)

TS SA TS SA

Small

5.50 40 40 2.87 3.78

5.100 39 39 10.33 11.96

5.200 40 40 36.54 38.58

Average 40 40 16.58 18.11

Medium

10.100 38 37 474.51 409.98

10.200 36 35 915.28 1028.75

10.400 36 34 2041.81 2189.83

Average 37 35 1143.87 1209.52

Problem

Size
Problem Set

Of Instances Find

Better Solution than SA

CPU Time (sec.)

TS SA

Large 20.200 6 11610.90 18954.85

124

0,00

2000,00

4000,00

6000,00

8000,00

10000,00

12000,00

14000,00

16000,00

18000,00

20000,00

5.
50

5.
10

0

5.
20

0

10
.1
00

10
.2
00

10
.4
00

20
.2
00

Problem set

C
P

U
 T

im
e
 (

S
e
c
.)

TS

SA

 Figure 6.2 Solution times of both algorithms with respect to the problem sets

6.5 Chapter Summary

In this chapter, we proposed an integrated approach to solve buffer allocation

problem for unreliable and also non-homogeneous production lines to maximize the

throughput rate of the line with minimum total buffer size. The proposed integrated

approach has two control loops, i.e., the inner loop and outer loop. While the inner

loop control includes the adaptive tabu search algorithm proposed in the previous

chapter, the outer loop control includes three different algorithms, i.e., binary search,

tabu search and simulated annealing. These nested loops aim at minimizing the total

buffer size to achieve a desired throughput level. To improve searching efficiency of

the proposed TS and SA algorithms alternative neighborhood generation mechanisms

are suggested and their performance are tested.

The performance of proposed algorithms is tested on randomly generated test

problems. In general, the results of experimental study show that the proposed TS

algorithm is much better than the proposed SA algorithm in terms of both the

solution quality and solution time especially when problem size increases. It is also

observed that the solution quality of the proposed algorithms can be somehow

affected by the features of the problem at hand.

125

CHAPTER SEVEN

CONCLUSION

7.1 Summary of the Thesis

The buffer allocation problem, which involves the distribution of buffer space

among the intermediate buffers of a production line, arises in a wide range of

manufacturing systems, such as transfer lines, flexible manufacturing systems or

robotic assembly lines and it is one of the major optimization problems faced by

manufacturing systems designers.

Due to its importance and complexity, a considerable amount of work has been

done in this area. The previous studies in this area mainly focus on characterizing

and describing optimal buffer distributions. In last ten years, the main focus of many

research studies has been on developing methods to optimize buffer sizes in

production lines. The purpose of this Ph.D. thesis is also to construct and describe

efficient algorithms to be used in the design of production lines.

Generally, the buffer allocation problem is classified into two categories

according to the objective function employed to solve this problem. The first one

aims at maximizing the throughput rate of the line and the second one focuses on

total buffer size minimization. The throughput maximization problem has been

studied more extensively in the literature. Moreover, employing meta-heuristic

methods to solve buffer allocation problem is a new trend in this area. To better

search the solution space, the recent trend is to hybridize the meta-heuristics with

other methods. However, a few studies attempt to solve buffer allocation problem by

hybrid methods.

Hence, to fill the perceived gaps in current relevant literature, this Ph.D. study:

 focuses on the buffer allocation problem in unreliable non-homogeneous

production lines

126

 proposes a new adaptive tabu search algorithm to solve this problem under

the objective of throughput maximization,

 hybridizes this adaptive tabu search algorithm with other meta-heuristics

to integrate the issue of total buffer size minimization into the solution of

this problem,

 minimizes the total buffer size subject to achieve the desired level of

throughput.

In summary, to solve the buffer allocation problem, this Ph.D. study not only

proposes stand-alone search methods it also proposes new hybrid approaches which

consider the minimization of total buffer subject to the desired throughput level. The

objectives of this Ph.D. study listed above are fulfilled in three stages. In the first

stage, a TS algorithm is proposed to solve the buffer allocation problem under the

objective of throughput maximization for homogeneous production lines involving

unreliable machines with deterministic processing times. Following a pilot

experiment to identify the best TS parameters, the new move definitions for buffer

allocation problem are introduced.

In the second stage, the problem is extended to non-homogeneous production

lines, and an adaptive TS algorithm is proposed to solve the revised problem under

the objective of throughput maximization. Besides proposing a new strategy to tune

the parameters of TS adaptively during the search, an experimental study is carried

out to select an intelligent initial solution scheme among three alternatives so as to

decrease the search effort to obtain the best solutions.

Finally, in the last stage, three hybrid approaches are proposed to solve the buffer

allocation problem for non-homogeneous production lines involving unreliable

machines with deterministic processing times. These three approaches which

integrate binary search, tabu search, and simulated annealing with an adaptive tabu

search mechanism aim at minimizing the total buffer size to achieve a desired

throughput level. To improve the searching efficiency of the proposed TS and SA

127

algorithms alternative neighborhood generation mechanisms are suggested and their

performance are tested.

7.2 Contributions

The original contributions of this thesis can be summarized as follows:

 This is the first extensive study employing tabu search to solve the buffer

allocation problem for unreliable and also non-homogeneous production

lines. Only two studies employing tabu search for buffer allocation

problem are noted in the literature. While Shi and Men (2003) employ

tabu search in a simple form and combines it with the nested partitions

method to solve the problem in unreliable homogenous lines with nine

machines, Lutz et al. (1998) employ tabu search for solving the problem in

reliable lines with six machines. Unlike these studies, we focus on the

buffer allocation problem in unreliable non-homogeneous lines and we

test the performance of proposed search methods not only in small-sized

production lines but also large-sized production lines.

 Proposed tabu search methods are not implemented in a simple form, new

move definitions are introduced and the efficiency of these moves is tested

in a large range of problems.

 The buffer allocation problem is generalized by adding buffer space

constraints for each buffer location and an adaptive search strategy of

intensification and diversification is proposed to solve the buffer

allocation problem. The performance of the proposed adaptive search

algorithms is tested both in short and long production lines.

 Unlike the current relevant research employing random initialization, to

improve the search efficiency, alternative initialization schemes utilizing

problem specific features such as machine failure/repair rate and machine

128

processing time are suggested and their performance are tested on various

size of problems.

 Unlike the current relevant studies which deal with buffer allocation

problem only under the objective of throughput maximization, this study

also integrates the issue of total buffer size minimization into the solution

approaches. Specifically, we hybridize the proposed adaptive tabu search

algorithm with other search methods to solve the buffer allocation problem

under the objective of total buffer size minimization subject to desired

throughput rate.

7.3 Future Research Directions

Future research directions can be summarized with respect to the scope the

problem studied and the scope of the solution approaches proposed to deal with this

problem.

Regarding the scope of the problem, some of the future research directions can be

stated as follows:

 In this study we only consider the serial lines. The proposed algorithms

can be tested on serial-parallel lines, assembly lines or other systems

having general network topology.

 The assumption of deterministic machine processing times can be

extended to stochastic processing times.

 Besides geometric distribution for machine reliability parameters other

distributions such as phase-type distribution can be considered.

 The problem studied in this thesis can be extended to BAP3 which

considers work in process minimization and the performance of the

129

proposed algorithms can be tested on this problem. As stated in Chapter 3,

this problem is the least studied one in buffer allocation literature.

 Lastly, objective functions involving monetary criteria which are

expressed in a form of profits or costs, can be considered and solved by

the proposed algorithms.

Regarding the proposed solution methods, some of the future research directions

can be stated as follows:

 The proposed algorithms can be combined with other evaluation methods,

such as aggregation method or simulation.

 The proposed adaptive tabu search algorithm can be hybridized with other

meta-heuristic algorithms such as genetic algorithms or ant colony

optimization for total buffer size minimization.

 The problem can be solved in a multi-objective manner by using pareto

optimization methods.

Furthermore, as it is stated in the beginning of this study, the aim of the study is

construct efficient algorithms for buffer allocation in production lines. When

implemented in a real world environment, the proposed algorithms can provide the

practitioners with valuable information about how to allocate limited amount of

buffers. However, it is not realistic to expect that the practitioners will be able to

easily use these approaches in designing production lines. Hence, to improve the

practicality of the proposed approaches, in a future study, these buffer allocation

algorithms can be integrated into a decision support system with a user-friendly

interface.

130

REFERENCES

Aksoy, K. H. & Gupta, S. M. (2005). Buffer allocation plan for a remanufacturing

cell. Computers&Industrial Engineering, 48, 657-677.

Aksoy, K. H. & Gupta, S. M. (2010). Near optimal buffer allocation in

remanufacturing systems with N-policy. Computers&Industrial Engineering, 59,

496-508

Allon, G., Kroese, D.P., Raviv, T. & Rubinstein. R.Y. (2005). Application of the

Cross-Entropy Method to the Buffer Allocation Problem in a Simulation-Based

Environment. Annals of Operations Research, 134 (1), 137-151.

Altiok, T. & Stidham, S. (1983). The allocation of interstage buffer capacities in

production lines. IIE Transactions, 18, 251-261.

Altiparmak, F., Dengiz, B. & Bulgak, A. A. (2007). Buffer allocation and

performance modeling in asynchronous assembly system operations: An artificial

neural network metamodeling approach. Applied Soft Computing, 7, 946-956.

Battini, D., Persona, A. & Regattieri, A. (2009). Buffer size design linked to

reliability performance: A simulative study. Computers&Industrial Engineering,

56(4), 1633-1641.

Bulgak, A. A. (2006). Analysis and design of split and merge unpaced assembly

systems by metamodelling and stochastic search. International Journal of

Production Research, 44 (18-19), 4067-4080.

Burman. M. (1995). New results in flow line analysis. Ph.D. Thesis, MIT,

Department of Electrical Engineering and Computer Science, Cambridge MA.

Buzacott, J. A. (1967). Automatic Transfer Lines with Buffer Stocks. International

Journal of Production Research, 5 (3), 183-200.

131

Buzacott, J.A. & Shanthikumar, J.G. (1993). Stochastic Models of Manufacturing

Systems. New Jersey:Prentice-Hall.

Can, B., Beham, A. & Heavey, C. (2008). A comparative study of genetic algorithm

components in simulation-based optimisation. Proceedings of the 2008 Winter

Simulation Conference, 1829-1837.

Can, B. & Heavey, C. (2009). Sequential metamodelling with genetic programming

and particle swarms. Proceedings of the 2009 Winter Simulation Conference,

3150-3157.

Chaharsooghi, S. K. & Nahavandi, N. (2003). Buffer Allocation Problem, A

Heuristic Approach, Scientia Iranica, 10 (4), 401-409.

Chehade, H., Yalaoui, F., Amodeo, L. & Dugardin, F. (2010). Buffers sizing in

assembly lines using a Lorenz multiobjective ant colony optimization algorithm.

IEEE International Conference on Machine and Web Intelligence, 283-287.

Chow, W-M. (1987). Buffer capacity analysis for sequential production lines with

variable process times. International Journal of Production Research, 25 (8),

1183-1196.

Colledani, M., et al. (2004). A new analytical method for buffer space allocation in

production lines. 37
th

 CIRP International Seminar on Manufacturing Systems,

231-237.

Colledani, M., Ekvall, M., Lundholm, T, Moriggi, P., Polato A. & Tolio, T. (2010).

Analytical methods to support continuous improvements at Scania. International

Journal of Production Research, 48 (7), 1913-1945.

Cruz, F. R. B., Duarte, A. R. & Van Woensel, T. (2008). Buffer allocation in general

single-server queuing networks. Computers and Operations Research. 35(11),

3581-3598.

132

Cruz, F. R. B., Van Woensel, T. & MacGregor Smith, J. (2010). Buffer and

throughput trade-offs in M/G/1/K queuing networks: A bi-criteria approach.

International Journal of Production Economics, 125, 224-234.

Dallery, Y., David, R. & Xie, X-L. (1988). An efficient algorithm for analysis of

transfer lines with unreliable machines and finite buffers. IIE Transactions, 23 (3),

280-283.

Dallery, Y., David, R. and Xie, X-L. (1989). Approximate analysis of transfer lines

with unreliable machines and finite buffers. IEEE Transactions on Automatic

Control, 34 (9), 943-953.

Dallery, Y. & Gershwin, S.B. (1992). Manufacturing flow line systems: a review of

models and analytical results. Queuing Systems, 12 (1-2), 3-94.

Daskalaki, S. & MacGregor Smith, J. (2004). Combining routing and buffer

allocation problems in serial-parallel queuing networks. Annals of Operations

Research, 125, 47-68.

Demir, L. & Tunali, S. (2008). A new approach for optimal buffer allocation in

unreliable production lines. Proceedings of 38th International Conference on

Computers and Industrial Engineering, 1962-1970.

Demir, L., Tunali, S. & Eliiyi, D. T. (2010). An adaptive tabu search approach for

buffer allocation problem in unreliable production lines. 24th Mini EURO

Conference on Continuous Optimization and Information-based Technologies in

the Financial Sector, Selected Papers, 207-212.

Demir, L., Tunali, S. & Løkketangen A. (2011). A tabu search approach for buffer

allocation in production lines with unreliable machines. Engineering

Optimization, 43 (2), 213-231.

Diamantidis, A. C. & Papadopoulos, C. T. (2004). A dynamic programming

algorithm for the buffer allocation problem in homogeneous asymptotically

133

reliable serial production lines. Mathematical Problems in Engineering, 3, 209-

223.

Dolgui, A., Eremeev, A., Kolokolov, A. & Sigaev, V. (2002). A genetic algorithm

for the allocation of buffer storage capacities in a production line with unreliable

machines. Journal of Mathematical Modeling and Algorithms, 1, 89-104.

Dolgui, A., Eremeev, A. & Sigaev, V. (2007). HBBA: hybrid algorithm for buffer

allocation in tandem production lines. Journal of Intelligent Manufacturing, 18,

411-420.

Enginarlar, E., Li, J., Meerkov., S.M. & Zhang, R.Q. (2002). Buffer capacity for

accommodating machine downtime in serial production lines. International

Journal of Production Research, 40, 601–624.

Enginarlar, E. (2003). Lean buffering in production systems: A quantitative

approach. Ph.D. Thesis, The University of Michigan, Electrical Engineering:

Systems.

Enginarlar, E., Li, J. & Meerkov, S. M. (2005). How lean can lean buffers be? IIE

Transactions, 37, 333-342.

Fuxman, L. (1998). Optimal buffer allocation in asynchronous cyclic mixed model

assembly lines. Production and Operations Management, 7 (3), 294-311.

Gasimov, R. N. & Ustun, O. (2007). Solving the quadratic assignment problem using

F-MSG algorithm”, Journal of Industrial and Management Optimization, 3 (2),

173-191.

Gendreau, M. & Potvin. J-Y. (2005). Tabu Search. In: E. Burke and G. Kendall, eds.

Search Methodologies: Introductory Tutorials in Optimization and Decision

Support Techniques. Newyork: Springer, 165-186.

134

Gershwin, S. B., and Schick, I. C. (1983). Modeling and Analysis of Three-Stage

Transfer Lines with Unreliable Machines and Finite Buffers, Operations

Research, Vol. 31, No. 2, 354-380.

Gershwin, S.B. (1987). An efficient decomposition method for the approximate

evaluation of tandem queues with finite storage space and blocking. Operations

Research, 35 (2), 291-305.

Gershwin, S.B., & Schor. J.E. (2000). Efficient algorithms for buffer space

allocation. Annals of Operations Research, 93, 117-144.

Glover, F. (1977). Heuristics for integer programming using surrogate constraints.

Decision Sciences, 8, 156-166.

Glover, F. (1986). Future paths for integer programming and links to artificial

intelligence. Computers&Operations Research, 13, 533-549.

Glover. F. (1989). Tabu Search-Part I. ORSA Journal on Computing,1 (3), 190-206.

Glover, F., Taillard, E. & Werra. D. (1993). A user’s guide to tabu search. Annals of

Operations Research, 41, 3-28.

Glover, F. &Laguna. M. (1997). Tabu Search. Dordrecht:Kluwer Academic

Publishers.

Gurkan, G. (2000). Simulation optimization of buffer allocations in production lines

with unreliable machines. Annals of Operations Research, 93, 177-216.

Han, M-S. & Park, D-J. (2002). Optimal buffer allocation of serial production lines

with quality inspection machines. Computers&Industrial Engineering, 42, 75-89.

Harris, J. H. & Powell, S. G. (1999). An algorithm for optimal buffer placement in

reliable serial lines. IIE Transactions, Vol. 31, 287-302.

135

Heavey, C., Papadopoulos, H. T. & Browne, J. (1993). The throughput rate of

multistation unreliable production lines. European Journal of Operational

Research, 68, 69-89.

Helber, S. (2001). Cash-flow-oriented buffer allocation in stochastic flow lines.

International Journal of Production Research, 39 (14), 3061-3083.

Hemachandra, N. & Eedupuganti, S. K. (2003). Performance analysis and buffer

allocations in some open assembly systems. Computers & Operations Research,

30, 695-704.

Hillier, S. M. (2000). Characterizing the optimal allocation of storage space in

production line systems with variable processing times. IIE Transactions, 32, 1-8.

Hillier, S. M. & Hillier F. S. (2006). Simultaneous optimization of work and buffer

space in unpaced production lines with random processing times. IIE

Transactions, 38, 39-51.

Ho, Y.C., Eyler, M.A. & Chien, T.T. (1979). A gradient technique for general buffer

storage design in a production line. International Journal of Production Research,

17 (2), 557-580.

Huang, M-G., Chang, P-L. & Chou Y-C. (2002). Buffer allocation in flow-shop-type

production systems with general arrival and service patterns. Computers &

Operations Research, 29,103-121.

Jafari, M.A. & Shanthikumar, J.G. (1989). Determination of optimal buffer storage

capacities and optimal allocation in multistage automatic transfer lines. IIE

Transactions, 21 (2), 130-135.

Jeong, K.-C. & Kim, Y.-D. (2000). Heuristics for selecting machines and

determining buffer capacities in assembly systems. Computers & Industrial

Engineering, 38, 341-360.

136

Kim, S. & Lee, H-J. (2001). Allocation of buffer capacity to minimize average work-

in-process. Production Planning & Control, 12 (7), 706-716.

Kirkpatrick, S., Gelatt, C. D. Jr. & Vecchi, M. P. (1983). Optimization by simulated

annealing. Science, 220 (4598), 671-680.

Koenigsberg, E. (1959). Production lines and internal storage-a review. Management

Science, 5, 410-433.

Kose, S. Y. (2010). Capacity improvement in a real manufacturing system using a

hybrid simulation/genetic algorithm approach. M.S. Thesis, Dokuz Eylul

University, Graduate School of Natural and Applied Sciences.

Kwon, S-T. (2006). On the optimal buffer allocation of an FMS with finite in-

process buffers. LNCS 3982, 767-776.

Lee, S-D. (2000). Buffer sizing in complex cellular manufacturing systems.

International Journal of Systems Science. 31 (8), 937-948.

Lee, S-D. & Ho, S-H. (2002). Buffer sizing in manufacturing production systems

with complex routings. Int. J. Computer Integrated Manufacturing, 15 (5), 440-

452.

Lee, H-T., Chen, S-K. & Shunder Chang S. (2009).A meta-heuristic approach to

buffer allocation in production line. Journal of C.C.I.T., 38 (1), 167-178.

Louw, L. & Page, D. C. (2004). Queuing network analysis approach for estimating

the sizes of the time buffers in Theory of Constraints-controlled production

systems. International Journal of Production Research, 42 (6), 1207-1226.

Lutz, C.M., Davis, K.R. & Sun, M. (1998). Determining buffer location and size in

production lines using tabu search. European Journal of Operational Research,

106, 301-316.

Lü, Z. & Hao, J. K. (2010). Adaptive tabu search for course timetabling. European

Journal of Operational Research. 200(1), 235-244.

137

MacGregor Smith, J. & Cruz, F. R. B. (2005). The buffer allocation problem for

general finite buffer queuing networks. IIE Transactions. 37(4), 343-365.

Massim, Y., Yalaoui, F., Amodeo, L., Chatelet, E. & Zeblah, A. (2010). Efficient

combined immune-decomposition algorithm for optimal buffer allocation in

production lines for throughput and profit maximization. Computers &

Operations Research, 37(4), 611-620.

Matta, A., Runchina, M. & Tolio, T. (2005). Automated flow lines with shared

buffer. OR Spectrum, 27, 265-286.

Meester, L. E. & Shanthikumar, J. G. (1990). Concavity of the throughput of tandem

queuing systems with finite buffer storage space. Advances in Applied

Probability, 22, 764–767.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E.

(1953). Equation of state calculations by fast computing machines. J. of Chem.

Phys., 21 (6), 1087-1092.

Nahas, N., Ait-Kadi, D. & Nourelfath, M. (2006). A new approach for buffer

allocation in unreliable production lines. International Journal of Production

Economics, 103, 873-881.

Nahas, N., Ait-Kadi, D. & Nourelfath, M. (2009). Selecting machines and buffers in

unreliable series-parallel production lines. International Journal of Production

Research. 47 (14), 3741-3774.

Nieuwenhuyse, I. V., Vandaele, N., Rajaram, K & Karmarkar, U. S. (2007). Buffer

sizing in multi-product multi-reactor batch processes: Impact of allocation and

campaign sizing policies. European Journal of Operational Research, 179, 424-

443.

Nourelfath, M., Nahas, N. & Ait-Kadi, D. (2005). Optimal design of series

production lines with unreliable machines and finite buffers. Journal of Quality in

Maintenance Engineering, 11 (2), 121-138.

138

Okamura, K. & Yamashina, H. (1977). Analysis of the effect of buffer storage

capacity in transfer line systems. AIIE Transactions, 9 (2), 127-135.

Othman, Z., Kamaruddin, S. & Ismail , M. S. (2007). Optimal Buffer Allocation for

Unpaced Balanced and Unbalanced Mean Processing Time, Jurnal Teknologi, 46

(A), 31–42.

Papadopoulos, H.T., Heavey. C. & Browne, J. (1993). Queuing Theory in

Manufacturing Systems Analysis and Design. London: Chapman and Hall.

Papadopoulos, H.T. & Heavey, C. (1996). Queuing theory in manufacturing systems

analysis and design: A classification of models for production and transfer lines,

European Journal of Operational Research, 92, 1-27.

Papadopoulos, H. T. & Vidalis, M. I. (1998). Optimal buffer storage allocation in

balanced reliable production lines. Int. Trans. Opl Res., 5 (4), 325-339.

Papadopoulos, H. T. & Vidalis, M. I. (2001). A heuristic algorithm for the buffer

allocation in unreliable unbalanced production lines. Computers&Industrial

Engineering, 41, 261-277.

Papadopoulos, C. T., O’Kelly, M. E. J., Vidalis, M. J. & Spinellis, D. (2009).

Analysis and Design of Discrete Part Production Lines. New York: Springer

Science+Business Media.

Park, T. (1993). A two-phase heuristic algorithm for determining buffer sizes of

production lines. International Journal of Production Research, 31 (3), 613-631.

Pham, D. T. & Karaboga, D. (2000). Intelligent Optimization Techniques. London:

Springer-Verlag.

Powell, S. G. & Pyke, D. F. (1998). Buffering unbalanced assembly systems. IIE

Transactions, 30, 55-65.

Qudeiri, J. A., Yamamoto, H., Ramli, R. & Al-Momani, K.R. (2007). Development

of production simulator for buffer size decisions in complex production systems

139

using genetic algorithms. Journal of Advanced Mechanical Design, Systems, and

Manufacturing, 1(3), 418-429.

Qudeiri, J. A., Yamamoto, H., Ramli, R. & Jamali, A. (2008). Genetic algorithm for

buffer size and work station capacity in serial–parallel production lines. Artificial

Life and Robotics, 12, 102-106.

Raman, N. A. & Jamaludin, E. K. R. (2008). Implementation of Toyota Production

System (TPS) in the production line of a local automotive parts manufacturer.

Proceedings of International Conference on Mechanical & Manufacturing

Engineering.

Reeves, C.R. (1996). Modern Heuristic Techniques. In: Rayward-Smith, V.J.,

Osman, I.H., Reeves, C.R, and Smith, G.D., eds. Modern Heuristic Search

Methods (1
st
 ed.) (1-25). England: John Wiley&Sons.

Ribeiro, M. A., Silveira, J. L. & Qassim, R. Y. (2007). Joint optimization of

maintenance and buffer size in a manufacturing system. European Journal of

Operational Research, 176, 405-413.

Roser, C., Nakano, M. & Tanaka, M. (2003). Buffer allocation model based on a

single simulation. Proceedings of the Winter Simulation Conference, 1238-1246.

Sabuncuoglu, I., Erel E., & Kok, A. G. (2002). Analysis of assembly systems for

interdeparture time variability and throughput. IIE Transactions, 34, 23-40.

Sabuncuoglu, I., Erel, E., & Gocgun, Y. (2006). Analysis of serial production lines:

characterization study and a new heuristic procedure for optimal buffer allocation.

International Journal of Production Research, 44 (13), 2499-2523.

Schor, J. E. (1995). Efficient algorithms for buffer allocation. M.S. Thesis, MIT,

Department of Electrical Engineering and Computer Science, Cambridge, MA.

140

Seong, D., Chang, Y.S. & Hong, Y. (1995). Heuristic algorithms for buffer allocation

in a production line with unreliable machines. International Journal of Production

Research, 33 (7), 1989-2005.

Seong, D., Chang, Y.S., and Hong, Y. (2000). An algorithm for buffer allocation

with linear resource constraints in a continuous-flow unreliable production line.

Asia-Pacific Journal of Operational Research, 17, 169-180.

Shi, L. & Men, S. (2003). Optimal buffer allocation in production lines. IIE

Transactions, 35, 1-10.

Shi, C. & Gershwin, S. B. (2009). An efficient buffer design algorithm for

production line profit maximization. International Journal of Production

Economics. 122, 725-740.

Spinellis, D. D. & Papadopoulos, C.T. (2000a). A simulated annealing approach for

buffer allocation in reliable production lines. Annals of Operations Research, 93,

373-384.

Spinellis, D. D. & Papadopoulos, C. T. (2000b). Stochastic Algorithms for Buffer

Allocation in Reliable Production Lines. Mathematical Problems in Engineering,

Vol. 5, 441-458.

Spinellis, D., Papadopoulos, C. & MacGregor-Smith, J. (2000). Large production

line optimization using simulated annealing. International Journal of Production

Research, 38 (3), 509-541.

Sörensen K. & Janssens, G. K. (2001). Buffer allocation and required availability in

a transfer line with unreliable machines. International Journal of Production

Economics, 74, 163-173.

Tempelmeier, H. (2003). Practical considerations in the optimization of flow

production systems. International Journal of Production Research, 41 (1), 149-

170.

141

Um, I., Lee, H. & Cheon, H. (2007). Determination of Buffer Sizes in Flexible

Manufacturing System by Using the Aspect-oriented Simulation. International

Conference on Control, Automation and Systems, 1729-1733.

Van Woensel, T., Andriansyah R., Cruz, F. R. B., MacGregor Smith, J. & Kerbache,

L. (2010). Buffer and server allocation in general multi-server queuing Networks.

International Transactions in Operational Research, 17, 257-286.

Vitanov, I. V., Vitanov, V. I. & Harrison, D. K. (2009). Buffer capacity allocation

using ant colony optimization algorithm. Proceedings of the 2009 Winter

Simulation Conference, 3158-3168.

Vouros, G.A. & Papadopoulos, H.T. (1998). Buffer allocation in unreliable

production lines using a knowledge-based system, Computers and Operations

Research, 25 (12), 1005-1067.

Yamada, T. & Matsui, M. (2003). A management design approach to assembly line

systems. International Journal of Production Economics, 84, 193-204.

Yamamoto, H., Qudeiri, J. A. & Marui, E. (2008). Definition of FTL with bypass

lines and its simulator for buffer size decision. International Journal of

Production Economics, 112, 18-25.

Yamashita, H. & Altiok, T. (1998). Buffer capacity allocation for a desired

throughput in production lines. IIE Transactions, 30, 883-891.

Yuzukirmizi, M. & MacGregor Smith, J. (2008). Optimal buffer allocation in finite

closed networks with multiple servers. Computers & Operations Research, 35,

2579-2598.

Zequeira, R., Prida, B. & Valdes, J. E. (2004). Optimal buffer inventory and

preventive maintenance for an imperfect production process. International

Journal of Production Research, 42 (5), 959-974.

142

Zequeira, R., Valdes, J. E. & Berenguer C. (2008). Optimal buffer inventory and

opportunistic preventive maintenance under random production capacity

availability. International Journal of Production Economics, 111, 686-696.

143

APPENDICES

144

APPENDIX A

DDX AND ADDX ALGORITHMS

145

A1. Model and Assumptions

In this section, we consider a homogeneous production line, denoted by L,

composed of K machines,  1,..., KM M , separated by K-1 buffers,  1 1,..., KB B  . Let

Ni be the finite capacity of buffer Bi. A part enters the first machine from outside the

system. Each part is processed by machine 1, after which it moves to buffer B1. The

part moves in the downstream direction, from machine i to buffer i and on to

machine i+1, until it processed by the last station, machine K and leaves the system.

It is assumed that raw parts are always available at the input of the line and there are

always empty spaces at the output of the line. The processing time of a part on a

machine is deterministic, i.e., it requires a fixed amount of time. Moreover, it is

assumed that this time is the same for all machines and, without loss of generality, is

taken as the time unit. The machines are unreliable: during the processing of a part,

machine Mi has a probability pi of failing. When machine Mi, is down, it is under

repair and it has a probability ri, of being repaired during a time unit. The mean time

to failures (MTTF) and the mean time to repair (MTTR) of machine Mi are 1/pi, and

1/ri, respectively. The isolated efficiency of machine Mi, is given by Buzacott (1967):

i
i

i i

r
e

r p



 (1)

The behavior of such a production line is fairly complex. This is especially due to

the interaction between machines due to the finite buffers. When machine Mi is

down, the number of parts in buffer Bi-1 increases while the number of parts in buffer

Bi decreases. If this condition persists, Bi-1 may become full and therefore machine

Mi-1 is blocked, or Bi may become empty and therefore machine Mi+1 is starved. It is

assumed that the first machine is never starved and the last machine is never blocked.

Also it is assumed that the machines can be failed only when it is working, starved or

blocked machine cannot be failed.

In such system the production rate P when all buffer sizes are infinite is the

minimum of the production rates of all the machines in the line. That is,

146

1,...,
(,...,) min i

i K
P e


   (2)

The production rate when all buffers have size 0 is:

1

1
(0,...,0)

1 /
K

i ii

P
p r






 (3)

When there are more than two machines and all Ni are neither infinite nor zero, the

production rate and average inventory levels cannot be calculated analytically or

exactly even numerically. In these situations approximate decomposition methods or

simulation can be used. Because of simulation requires long computational time

decomposition method is widely used for modeling such production systems. In the

following sections first we describe decomposition method then we give DDX and

ADDX algorithms to solve decomposition equations.

A2. Decomposition Method and DDX Algorithm

Decomposition method is proposed by Gershwin (1987). This method is based on a

decomposition of the line into a set of K-1 two machine lines L(i), for i=1,…,K-1.

Line L(i) is composed of an upstream machine Mu(i), and a downstream machine

Md(i) and buffer B(i) which has the same capacity as buffer Bi in line L, Ni. Machines

Mu(i) and Md(i) are defined by their failure, repair and processing rates

(), (), ()u u up i r i i and (), (), ()d d dp i r i i , respectively. The purpose of the method is

to determine these parameters so that the behavior of the material flow in buffer B(i)

in line L(i) closely matches that of the flow in buffer Bi of line L. This decomposition

is previously illustrated in Figure 2.4 in Chapter 2.

For each two-machine line L(i), for i=1,…,K-1, we define:

 E(i): efficiency (production rate) of line L(i);

 ps(i): probability of buffer B(i) being empty in line L(i);

 pb(i): probability of buffer B(i) being full in line L(i).

147

These quantities are functions of the four unknown parameters pu(i), ru(i), pd(i),

rd(i). Since the DDX algorithm is designed for homogeneous lines and it is assumed

that all machines have one unit processing rates, the unknown parameters involve

only failure and repair rates. The exact solution of the two-machine line derived in

Gershwin and Shick (1983) can be used to calculate these quantities. The required

formulas can be found in Gershwin (1987).

In order to determine the unknown parameters of each line L(i) Gershwin(1987)

establish the following set of equations:

(1) (2) ... (1)E E E K    (4)

(1) () 1 1
2 for 2,..., 1

(1) () ()

d u

d u i

p i p i
i K

r i r i E i e


     


 (5)

() (1) (1) for 2,..., 1u u ir i Zr i Z r i K      (6)

where
() (1)

() ()

u s

u

r i p i
Z

p i E i




(1) () (1) for 2,..., 1d d ir i Tr i T r i K      (7)

where
(1) ()

(1) (1)

d b

d

r i p i
T

p i E i




 

1

1

(1)

(1)

(1)

(1)

u

d K

u

d K

p p

p K p

r r

r K r




 



  

 (8)

Equation (4) is related to the conservation of flow. Because there is no mechanism

for the creation or destruction of material flow is conserved. Equation (5) is called

148

the flow rate idle time equation which is based on the assumption that the probability

of a station being simultaneously blocked and starved is zero. Equation (6) and

equation (7) show the relationship between repair probabilities in neighboring two

machine lines and in the original line. Equation (6) is obtained by stating that a

failure of machine Mu(i) represents either a failure of machine Mi, or a starvation of

machine Mi due to a failure of one of the upstream machines (Mi-1, Mi-2, …), which is

represented by a failure of machine Mu(i-1). Equation (7) can similarly be obtained

by considering the failure of machine Md(i-1). Finally equation (8) denotes the

boundary conditions.

There are a total of 4(K-1) equations among (4), (5), (6), (7), and (8) in 4(K-1)

unknowns: pu(i), ru(i), pd(i), rd(i). Gershwin used an iterative procedure to solve this

set of equations. The algorithm, which consists of three loops, is fairly complicated.

Because of the complexity and some numerical problems of Gershwin’s algorithm

Dallery et al. (1988) propose a new algorithm to solve these equations efficiently.

The idea is replace to previous set of equations by an equivalent one. Using equation

(4) and replacing E(i) by E(i-1) in equation (5) and in expression (6) and similarly,

replacing E(i-1) by E(i) in expression(7) the followings are obtained:

(1) () 1 1
2 for 2,..., 1

(1) () (1)

d u

d u i

p i p i
i K

r i r i E i e


     

 
 (9)

() (1)

() (1)

u s

u

r i p i
Z

p i E i





 (10)

(1) ()

(1) ()

d b

d

r i p i
T

p i E i





 (11)

Dallery et al. (1988) defined following quantities:

()
()

()
 for 1,..., 1

()
()

()

u
u

u

d
d

d

p i
I i

r i
i K

p i
I i

r i











 



 (12)

149

Using these quantities and expression (10), equations (9) and (6) may be written as:

1 1
() (1) 2 for 2,..., 1

(1)
u d

i

I i I i i K
E i e

      


 (13)

() (1) (1) for 2,..., 1u u ir i Zr i Z r i K      (14)

where
(1)

() (1)

s

u

p i
Z

I i E i






Similarly, using expression (11) and by shifting i-1 to i, equations (5) and (7) can

be expressed as:

1

1 1
() (1) 2 for 1,..., 2

(1)
ud

i

I i I i i K
E i e 

      


 (15)

1() (1) (1) for 1,..., 2d d ir i Tr i T r i K      (16)

where
(1)

() (1)

b

d

p i
T

I i E i






The parameters of upstream machine of line L(i), Iu(i), ru(i), and therefore pu(i)

can be obtained from the parameters of line L(i-1) by means of equations (13)

and(14). Similarly, the parameters of the downstream machine of line L(i), Id(i), rd(i),

and therefore pd(i), can be obtained from the parameters of line L(i+1) by means of

equations (15) and(16). E(i-1) and ps(i-1) and E(i+1) and pb(i+1) can be derived

from the parameters of lines L(i-1) and L(i+1) respectively using the formulas given

in Table 1. This new formulation leads to the following algorithm which iteratively

calculates the unknown parameters, i.e. pu(i), ru(i), pd(i), rd(i). The algorithm is given

in Table A1.

150

Table A1 DDX Algorithm

Initialization

1

1

1

1

() 1,..., 1

() 1,..., 1

()

()

d i

d i

u

u

p i p i K

r i r i K

p i p

r i r





  


  



 

Step 1:

For i=2, 3,…, K-1, calculate Iu(i), ru(i), and pu(i) using equations (13), (14), and (12).

Step 2:

For i=K-2, K-3,…, 1, calculate Id(i), rd(i), and pd(i) using equations (15), (16), and (12).

Go to step 1 until convergence.

A3. ADXX Algorithm

Burman (1995) extends to DDX algorithm for non-homogenous production lines

where the machines may have different processing times. Burman (1995) presents

closed form solution for unknown parameters, i.e. (), (), ()u u up i r i i and

(), (), ()d d dp i r i i .

The equations for these unknown parameters are given as follows:

2 3 1 3

2 3 1 3

() i i i i
u

i

p K K r p rK K
p i

r K K K K

 


 
 (17)

2 3 1 3

1 3 2 3

() i i i i
u

i

p K K r p rK K
r i

p K K K K

 


 
 (18)

3

2 3 1 3

()
() i i

u

i

K p r
i

r K K K K





 
 (19)

where

-1 -1
1

p (0,1,1) (1) p (0,0,1)
((1)) () (1)

(1) (1) (1)

i u i
i u

d

i
K p r i

P i i P i






   

  
 (20)

151

-1
2

p (0,0,1)
((1))()

(1)

i
u iK r i r

P i
  


 (21)

3

1

1 1 1

(1) (1) (1)i i d d

K

P i e e i i 



 
  

 (22)

A similar procedure can be used to generate:

1 5 6 1 1 1 4 6

1 5 6 4 6

() i i i i
d

i

p K K r p r K K
p i

r K K K K

   



 


 
 (23)

1 5 6 1 1 1 4 6

1 4 6 5 6

() i i i i
d

i

p K K r p r K K
r i

p K K K K

   



 


 
 (24)

6 1 1

1 5 6 4 6

()
() i i

d

i

K p r
i

r K K K K
  






 
 (25)

where

1 1 1 1
4 1

p (,1,1) (1) p (,1,0)
((1)) () (1)

(1) (1) (1)

i i d i i
i d

u

N i N
K p r i

P i i P i




   




   

  
 (26)

1 1
5 1

p (,1,0)
((1))()

(1)

i i
d i

N
K r i r

P i

 
  


 (27)

6

1 1

1

1 1 1

(1) (1) (1)i i u u

K

P i e e i i  



 
  

 (28)

In these formulas 1 2p(, ,)n   is defined as the probability that there are n parts in

the buffer and that Mi is in state i where

152

0 if machine is under repair
1,...,

1 if machine is operational
i

i
i K

i






 

Together (17) - (28) form a new set of decomposition equations. The ADDX

algorithm for solving these equations is given in Table A2.

Table A2 ADDX Algorithm

Initialization

1

1

1

()

()

()

()

()

()

u i

u i

u i

d i

d i

d i

p i p

r i r

i

p i p

r i r

i

 

 



















 i=1, …, K-1

Step 1:

For i=2, 3,…, K-1, calculate (), (), ()u u up i r i i using equations (17), (18), and (19).

Step 2:

For i=K-2, K-3,…, 1, calculate (), (), ()d d dp i r i i using equations (23), (24), and (25).

Go to step 1 until convergence.

As it is stated by Burman (1995), the ADDX algorithm is faster than the original

DDX algorithm by as much as ten times and has a reliability of convergence of

nearly 100%.

153

APPENDIX B

DETAILED REULTS FOR CHAPTER 5

154

 Appendix B1 Results of experimental studies for the problem set 5.25

Problem

Setting

Instance

No

Throughput Rate Deviation(%)

CPU (sec.)

CE BTS ATS BTS ATS CE BTS ATS

1

1 0.07327 0.07327 0.07327 0.00 0.00 0.01 0.14 0.34

2 0.07495 0.07495 0.07495 0.00 0.00 0.00 0.06 0.20

3 0.07952 0.07952 0.07952 0.00 0.00 0.01 0.09 0.27

4 0.07952 0.07952 0.07952 0.00 0.00 0.00 0.27 0.14

5 0.07338 0.07338 0.07338 0.00 0.00 0.00 0.13 0.17

6 0.08682 0.08682 0.08682 0.00 0.00 0.01 0.14 0.31

7 0.06803 0.06803 0.06803 0.00 0.00 0.01 0.09 0.20

8 0.09560 0.09560 0.09560 0.00 0.00 0.00 0.11 0.17

9 0.06901 0.06901 0.06901 0.00 0.00 0.01 0.13 0.28

10 0.08674 0.08674 0.08674 0.00 0.00 0.00 0.08 0.00

Avg 0.07868 0.07868 0.07868 0.00 0.00 0.01 0.12 0.21

2

1 0.06404 0.06404 0.06404 0.00 0.00 0.03 0.16 0.20

2 0.05846 0.05846 0.05846 0.00 0.00 0.01 0.11 0.25

3 0.07958 0.07883 0.07958 0.95 0.00 0.02 0.50 0.34

4 0.06952 0.06952 0.06952 0.00 0.00 0.06 0.72 1.17

5 0.06355 0.06355 0.06355 0.00 0.00 0.02 0.33 0.39

6 0.07527 0.07470 0.07527 0.76 0.00 0.05 0.72 1.20

7 0.06923 0.06551 0.06923 5.37 0.00 0.02 0.30 0.50

8 0.08164 0.08164 0.08164 0.00 0.00 0.02 0.37 0.70

9 0.07360 0.07360 0.07360 0.00 0.00 0.05 1.61 1.45

10 0.07570 0.07570 0.07570 0.00 0.00 0.00 0.14 0.31

Avg 0.07106 0.07055 0.07106 0.71 0.00 0.03 0.50 0.65

3

1 0.07297 0.07297 0.07297 0.00 0.00 0.01 0.16 0.39

2 0.06543 0.06540 0.06543 0.06 0.00 0.08 1.84 2.53

3 0.07763 0.07763 0.07763 0.00 0.00 0.01 0.16 0.30

4 0.06032 0.06024 0.06032 0.15 0.00 0.03 0.44 0.30

5 0.07235 0.07235 0.07235 0.00 0.00 0.03 0.11 0.31

6 0.09005 0.09005 0.09005 0.00 0.00 0.03 0.30 0.37

7 0.07852 0.06750 0.07852 14.03 0.00 0.01 0.12 0.23

8 0.09482 0.09482 0.09482 0.00 0.00 0.03 0.55 0.37

9 0.08473 0.08473 0.08473 0.00 0.00 0.03 0.41 0.59

10 0.07297 0.07297 0.07297 0.00 0.00 0.01 0.11 0.30

Avg 0.07698 0.07586 0.07698 1.42 0.00 0.03 0.42 0.57

4

1 0.05930 0.05930 0.05930 0.00 0.00 0.03 0.24 0.44

2 0.04374 0.04374 0.04374 0.00 0.00 0.05 0.36 0.41

3 0.05317 0.05317 0.05317 0.00 0.00 0.02 0.17 0.22

4 0.06064 0.05599 0.06064 7.67 0.00 0.05 0.78 1.23

5 0.05273 0.05273 0.05273 0.00 0.00 0.03 0.20 0.27

6 0.06283 0.06283 0.06283 0.00 0.00 0.03 0.58 1.03

7 0.06209 0.05326 0.06209 14.22 0.00 0.03 0.41 0.36

8 0.06773 0.06773 0.06773 0.00 0.00 0.01 0.14 0.33

9 0.06215 0.06215 0.06215 0.00 0.00 0.02 0.19 0.39

10 0.06180 0.06180 0.06180 0.00 0.00 0.03 0.16 0.30

Avg 0.05862 0.05727 0.05862 2.19 0.00 0.03 0.32 0.50

155

Appendix B1 Results of experimental studies for the problem set 5.25 (cont.)

Problem

Setting

Instance

No

Throughput Rate Deviation(%) CPU (sec.)

CE BTS ATS BTS ATS CE BTS ATS

5

1 0.02619 0.02619 0.02619 0.00 0.00 0.01 0.11 0.30

2 0.02252 0.02252 0.02252 0.00 0.00 0.00 0.05 0.08

3 0.02843 0.02843 0.02843 0.00 0.00 0.01 0.17 0.00

4 0.02770 0.02770 0.02770 0.00 0.00 0.00 0.08 0.16

5 0.02454 0.02454 0.02454 0.00 0.00 0.01 0.17 0.23

6 0.03676 0.03676 0.03676 0.00 0.00 0.03 0.23 0.51

7 0.02362 0.02362 0.02362 0.00 0.00 0.01 0.20 0.27

8 0.03713 0.03713 0.03713 0.00 0.00 0.00 0.08 0.11

9 0.03085 0.03085 0.03085 0.00 0.00 0.03 0.25 0.02

10 0.03369 0.03369 0.03369 0.00 0.00 0.01 0.05 0.11

Avg 0.02914 0.02914 0.02914 0.00 0.00 0.01 0.14 0.18

6

1 0.02831 0.02831 0.02831 0.00 0.00 0.03 0.39 0.59

2 0.02256 0.02256 0.02256 0.00 0.00 0.03 0.27 0.53

3 0.02540 0.02540 0.02540 0.00 0.00 0.09 1.22 2.17

4 0.02375 0.02375 0.02375 0.00 0.00 0.02 0.27 0.23

5 0.02508 0.02508 0.02508 0.00 0.00 0.01 0.09 0.20

6 0.01966 0.01966 0.01966 0.00 0.00 0.06 0.34 2.06

7 0.02145 0.02145 0.02145 0.00 0.00 0.01 0.09 0.25

8 0.03383 0.03383 0.03383 0.00 0.00 0.06 0.58 1.44

9 0.02838 0.02838 0.02838 0.00 0.00 0.02 0.09 0.27

10 0.01800 0.01800 0.01800 0.00 0.00 0.01 0.08 0.20

Avg 0.02464 0.02464 0.02464 0.00 0.00 0.03 0.34 0.79

7

1 0.02616 0.02616 0.02616 0.00 0.00 0.03 0.11 0.27

2 0.02221 0.02221 0.02221 0.00 0.00 0.02 0.09 0.30

3 0.02844 0.02844 0.02844 0.00 0.00 0.01 0.08 0.22

4 0.02767 0.02767 0.02767 0.00 0.00 0.01 0.11 0.00

5 0.02593 0.02593 0.02593 0.00 0.00 0.01 0.16 0.33

6 0.03342 0.03342 0.03342 0.00 0.00 0.05 0.25 0.37

7 0.02349 0.02349 0.02349 0.00 0.00 0.02 0.11 0.23

8 0.03719 0.03719 0.03718 0.00 0.01 0.03 0.39 1.01

9 0.03101 0.03101 0.03101 0.00 0.01 0.00 0.08 0.17

10 0.03369 0.03369 0.03369 0.00 0.00 0.00 0.05 0.08

Avg 0.02892 0.02892 0.02892 0.00 0.00 0.02 0.14 0.30

8

1 0.02349 0.02349 0.02349 0.00 0.00 0.01 0.23 0.42

2 0.01835 0.01835 0.01835 0.00 0.00 0.05 0.28 0.59

3 0.02401 0.02401 0.02401 0.00 0.00 0.02 0.31 0.23

4 0.02235 0.02235 0.02235 0.00 0.00 0.05 0.94 0.58

5 0.02461 0.02461 0.02461 0.00 0.00 0.00 0.09 0.25

6 0.02256 0.02256 0.02256 0.00 0.00 0.01 0.47 0.50

7 0.01986 0.01986 0.01986 0.00 0.00 0.02 0.28 0.33

8 0.02757 0.02757 0.02757 0.00 0.00 0.05 0.41 0.39

9 0.02751 0.02751 0.02751 0.00 0.00 0.03 0.34 0.50

10 0.01864 0.01864 0.01864 0.00 0.00 0.01 0.27 0.33

Avg 0.02290 0.02290 0.02290 0.00 0.00 0.03 0.36 0.41

156

 Appendix B2 Results of experimental studies for the problem set 5.50

Problem

Setting

Instance

No

Throughput Rate Deviation(%)

CPU (sec.)

CE BTS ATS BTS ATS CE BTS ATS

1

1 0.08200 0.08200 0.08200 0.00 0.00 0.09 0.53 0.41

2 0.07495 0.07495 0.07495 0.00 0.00 0.05 0.22 0.51

3 0.07952 0.07952 0.07952 0.00 0.00 0.08 0.36 0.66

4 0.07952 0.07952 0.07952 0.00 0.00 0.05 0.55 0.19

5 0.07338 0.07338 0.07338 0.00 0.00 0.08 0.33 0.67

6 0.08682 0.08682 0.08682 0.00 0.00 0.08 0.14 0.73

7 0.06803 0.06803 0.06803 0.00 0.00 0.09 0.53 0.81

8 0.09560 0.09560 0.09560 0.00 0.00 0.06 0.80 0.64

9 0.06901 0.06901 0.06901 0.00 0.00 0.08 0.45 0.76

10 0.08674 0.08674 0.08674 0.00 0.00 0.02 0.16 0.13

Avg 0.07956 0.07956 0.07956 0.00 0.00 0.07 0.41 0.55

2

1 0.06418 0.06418 0.06418 0.00 0.00 0.11 0.28 0.53

2 0.05947 0.05947 0.05947 0.00 0.00 0.09 0.19 0.73

3 0.08163 0.08084 0.08163 0.97 0.00 0.14 0.72 0.80

4 0.06958 0.06958 0.06958 0.00 0.00 0.20 0.70 1.09

5 0.06415 0.06415 0.06415 0.00 0.00 0.11 0.31 0.48

6 0.07641 0.07572 0.07641 0.91 0.00 0.30 1.33 1.15

7 0.06947 0.06710 0.06947 3.41 0.00 0.14 0.33 1.08

8 0.08303 0.08303 0.08303 0.00 0.00 0.14 0.48 1.11

9 0.07537 0.07537 0.07537 0.00 0.00 0.61 0.58 5.82

10 0.07575 0.07575 0.07575 0.00 0.00 0.05 0.37 0.61

Avg 0.07190 0.07152 0.07190 0.53 0.00 0.19 0.53 1.34

3

1 0.07327 0.07327 0.07327 0.00 0.00 0.11 0.33 0.80

2 0.06719 0.06695 0.06719 0.36 0.00 0.67 5.66 4.26

3 0.07893 0.07893 0.07893 0.00 0.00 0.09 0.25 0.86

4 0.06109 0.06107 0.06109 0.04 0.00 0.17 1.08 1.00

5 0.07309 0.07309 0.07309 0.00 0.00 0.09 0.51 0.76

6 0.09384 0.09257 0.09384 1.36 0.00 0.16 0.58 1.29

7 0.06772 0.06772 0.06772 0.00 0.01 0.11 0.23 0.66

8 0.09529 0.09529 0.09529 0.00 0.00 0.14 0.28 0.92

9 0.08591 0.08591 0.08591 0.00 0.00 0.25 1.03 1.06

10 0.08395 0.08395 0.08395 0.00 0.00 0.12 0.25 0.94

Avg 0.07803 0.07787 0.07803 0.18 0.00 0.19 1.02 1.26

4

1 0.07486 0.07201 0.07486 3.81 0.00 0.16 0.84 0.55

2 0.04864 0.04708 0.04864 3.20 0.00 0.23 1.00 1.28

3 0.05754 0.05754 0.05754 0.00 0.00 0.12 0.39 0.61

4 0.06345 0.06228 0.06345 1.85 0.00 0.33 1.36 1.69

5 0.05682 0.05682 0.05682 0.00 0.00 0.13 0.28 1.04

6 0.08785 0.08033 0.08785 8.56 0.00 0.28 0.89 1.33

7 0.06440 0.05626 0.06440 12.65 0.00 0.16 0.98 1.09

8 0.07299 0.07299 0.07299 0.00 0.00 0.16 0.34 0.97

9 0.06396 0.06396 0.06396 0.00 0.00 0.14 0.28 1.12

10 0.06735 0.06176 0.06735 8.30 0.00 0.14 0.48 1.00

Avg 0.06579 0.06310 0.06579 3.84 0.00 0.19 0.68 1.07

157

Appendix B2 Results of experimental studies for the problem set 5.50 (cont.)

Problem

Setting

Instance

No

Throughput Rate Deviation(%) CPU (sec.)

CE BTS ATS BTS ATS CE BTS ATS

5

1 0.02619 0.02619 0.02619 0.00 0.00 0.09 0.38 0.72

2 0.02252 0.02252 0.02252 0.00 0.00 0.03 0.09 0.14

3 0.02843 0.02843 0.02843 0.00 0.00 0.06 0.38 0.58

4 0.02770 0.02770 0.02770 0.00 0.00 0.03 0.05 0.42

5 0.02454 0.02454 0.02454 0.00 0.00 0.09 0.45 0.62

6 0.03676 0.03676 0.03676 0.00 0.00 0.25 0.41 1.16

7 0.02901 0.02901 0.02901 0.00 0.00 0.14 0.55 0.41

8 0.03713 0.03713 0.03713 0.00 0.00 0.03 0.13 0.67

9 0.03085 0.03085 0.03085 0.00 0.00 0.09 0.45 0.84

10 0.03369 0.03369 0.03369 0.00 0.00 0.01 0.11 0.42

Avg 0.02968 0.02968 0.02968 0.00 0.00 0.08 0.30 0.60

6

1 0.02775 0.02732 0.02775 1.55 0.00 0.14 0.47 0.59

2 0.02256 0.02256 0.02256 0.00 0.00 0.20 0.34 0.92

3 0.02540 0.02540 0.02540 0.00 0.00 0.37 6.14 8.46

4 0.02375 0.02375 0.02375 0.00 0.00 0.05 0.06 0.58

5 0.02510 0.02510 0.02510 0.00 0.00 0.06 0.19 0.53

6 0.01966 0.01966 0.01966 0.00 0.00 0.30 1.45 1.51

7 0.02145 0.02145 0.02145 0.00 0.00 0.08 0.27 0.69

8 0.03383 0.03383 0.03383 0.00 0.00 0.28 0.58 1.79

9 0.02855 0.02855 0.02855 0.00 0.00 0.08 0.36 0.64

10 0.01800 0.01800 0.01800 0.00 0.00 0.05 0.13 0.59

Avg 0.02460 0.02456 0.02460 0.15 0.00 0.16 1.00 1.63

7

1 0.02618 0.02618 0.02618 0.00 0.00 0.11 0.45 0.86

2 0.02225 0.02225 0.02225 0.01 0.00 0.09 0.19 0.45

3 0.02844 0.02844 0.02844 0.00 0.00 0.08 0.16 0.58

4 0.02767 0.02767 0.02767 0.00 0.00 0.05 0.34 0.78

5 0.02593 0.02593 0.02593 0.00 0.00 0.09 0.30 0.76

6 0.03613 0.03332 0.03613 7.77 0.00 0.20 1.48 1.15

7 0.02350 0.02350 0.02350 0.00 0.00 0.08 0.19 0.70

8 0.03723 0.03723 0.03723 0.00 0.00 0.09 0.86 0.55

9 0.03102 0.03102 0.03102 0.00 0.00 0.05 0.09 0.58

10 0.03387 0.03387 0.03387 0.00 0.00 0.05 0.11 0.44

Avg 0.02922 0.02894 0.02922 0.78 0.00 0.09 0.42 0.69

8

1 0.02526 0.02445 0.02526 3.18 0.00 0.17 1.03 0.97

2 0.01892 0.01892 0.01892 0.00 0.00 0.22 0.52 1.01

3 0.02517 0.02517 0.02517 0.00 0.00 0.11 0.33 1.08

4 0.02349 0.02349 0.02349 0.00 0.00 0.25 1.40 2.12

5 0.02500 0.02497 0.02500 0.14 0.00 0.08 0.11 0.72

6 0.02490 0.02490 0.02490 0.00 0.00 0.19 0.69 1.42

7 0.02066 0.02066 0.02066 0.00 0.00 0.09 0.34 0.47

8 0.03164 0.03164 0.03164 0.00 0.00 0.23 1.04 1.58

9 0.02751 0.02751 0.02751 0.00 0.00 0.14 0.58 1.11

10 0.02012 0.02012 0.02012 0.00 0.00 0.08 0.47 0.73

Avg 0.02427 0.02418 0.02427 0.33 0.00 0.16 0.65 1.12

158

 Appendix B3 Results of experimental studies for the problem set 5.100

Problem

Setting

Instance

No

Throughput Rate Deviation(%)

CPU (sec.)

CE BTS ATS BTS ATS CE BTS ATS

1

1 0.08200 0.08200 0.08200 0.00 0.00 0.67 0.94 2.31

2 0.07495 0.07495 0.07495 0.00 0.00 0.28 0.33 1.86

3 0.07952 0.07952 0.07952 0.00 0.00 0.56 0.77 0.78

4 0.07952 0.07952 0.07952 0.00 0.00 0.20 1.09 0.51

5 0.07338 0.07338 0.07338 0.00 0.00 0.55 0.77 0.89

6 0.08682 0.08682 0.08682 0.00 0.00 0.53 0.86 1.87

7 0.06803 0.06803 0.06803 0.00 0.00 0.66 0.91 2.34

8 0.09560 0.09560 0.09560 0.00 0.00 0.50 1.25 1.95

9 0.06901 0.06901 0.06901 0.00 0.00 0.66 0.86 2.03

10 0.08674 0.08674 0.08674 0.00 0.00 0.16 0.31 0.44

Avg 0.07956 0.07956 0.07956 0.00 0.00 0.48 0.81 1.50

2

1 0.07352 0.06419 0.07352 12.70 0.00 0.76 0.42 1.84

2 0.05961 0.05961 0.05961 0.00 0.00 0.48 0.28 1.34

3 0.08246 0.06780 0.08246 17.78 0.00 0.83 0.59 2.57

4 0.06959 0.06959 0.06959 0.00 0.00 0.78 0.55 2.56

5 0.06419 0.06419 0.06419 0.00 0.00 0.67 0.36 2.25

6 0.07681 0.07590 0.07590 1.18 1.18 1.65 1.79 2.00

7 0.06749 0.05961 0.06749 11.67 0.00 0.89 0.48 2.56

8 0.08318 0.08318 0.08318 0.00 0.00 0.66 0.52 2.62

9 0.07591 0.07591 0.07591 0.00 0.00 10.87 12.92 4.27

10 0.07575 0.07575 0.07575 0.00 0.00 0.28 0.33 0.56

Avg 0.07285 0.06957 0.07276 4.33 0.12 1.79 1.82 2.26

3

1 0.07332 0.07332 0.07332 0.00 0.00 0.80 0.52 1.20

2 0.06790 0.06783 0.06783 0.10 0.10 6.96 43.24 44.05

3 0.07923 0.07923 0.07923 0.00 0.00 0.67 0.45 1.95

4 0.06124 0.06124 0.06124 0.00 0.00 1.03 0.92 2.68

5 0.07321 0.07321 0.07321 0.01 0.00 0.69 0.45 1.92

6 0.09485 0.09330 0.09458 1.63 0.28 1.01 1.00 2.62

7 0.06774 0.06774 0.06774 0.00 0.00 0.80 0.50 2.31

8 0.09536 0.09536 0.09536 0.00 0.00 0.61 0.38 1.17

9 0.08653 0.08653 0.08653 0.00 0.00 2.36 1.93 5.88

10 0.07316 0.07316 0.07316 0.00 0.00 0.81 0.70 2.59

Avg 0.07725 0.07709 0.07722 0.17 0.04 1.57 5.01 6.64

4

1 0.08250 0.07790 0.07808 5.57 5.35 1.08 3.21 2.45

2 0.05115 0.05115 0.05115 0.00 0.00 1.64 0.95 4.71

3 0.06230 0.06230 0.06230 0.00 0.00 1.03 0.73 3.06

4 0.06809 0.06809 0.06809 0.00 0.00 2.67 3.42 2.65

5 0.06075 0.06075 0.06075 0.00 0.00 1.06 1.33 2.95

6 0.09046 0.08724 0.08761 3.56 3.15 1.92 4.07 3.13

7 0.06698 0.06691 0.06698 0.11 0.00 1.11 0.86 1.36

8 0.07840 0.07840 0.07840 0.00 0.00 1.04 0.76 2.79

9 0.06648 0.06648 0.06648 0.00 0.00 1.04 0.42 2.85

10 0.07352 0.07032 0.07125 4.35 3.08 1.17 0.86 1.76

Avg 0.07006 0.06895 0.06911 1.36 1.16 1.38 1.66 2.77

159

Appendix B3 Results of experimental studies for the problem set 5.100 (cont.)

Problem

Setting

Instance

No

Throughput Rate Deviation(%) CPU (sec.)

CE BTS ATS BTS ATS CE BTS ATS

5

1 0.03457 0.02619 0.03457 24.24 0.00 0.67 0.87 0.87

2 0.02252 0.02252 0.02252 0.00 0.00 0.72 0.94 0.76

3 0.03475 0.03475 0.03475 0.00 0.00 0.87 1.26 1.01

4 0.02770 0.02770 0.02770 0.00 0.00 0.31 0.01 0.61

5 0.03578 0.02454 0.03578 31.41 0.00 0.75 1.25 0.89

6 0.03676 0.03676 0.03676 0.00 0.00 1.90 1.56 1.65

7 0.02901 0.02901 0.02901 0.00 0.00 1.14 0.89 1.19

8 0.03713 0.03713 0.03713 0.00 0.00 0.19 0.73 1.64

9 0.03085 0.03085 0.03085 0.00 0.00 0.62 0.00 0.83

10 0.03369 0.03369 0.03369 0.00 0.00 0.14 0.19 0.44

Avg 0.03228 0.03032 0.03228 5.56 0.00 0.73 0.77 0.99

6

1 0.02908 0.02908 0.02908 0.00 0.00 0.86 0.97 2.61

2 0.02256 0.02256 0.02256 0.00 0.00 1.34 1.79 3.01

3 0.02540 0.02540 0.02540 0.00 0.00 1.39 1.22 3.32

4 0.02375 0.02375 0.02375 0.00 0.00 0.27 0.62 2.20

5 0.02510 0.02510 0.02510 0.00 0.00 0.42 0.50 1.54

6 0.01966 0.01966 0.01966 0.00 0.00 1.93 2.15 3.49

7 0.02862 0.02862 0.02862 0.00 0.00 1.01 0.73 1.01

8 0.03383 0.03383 0.03383 0.00 0.00 1.34 0.98 3.84

9 0.02857 0.02857 0.02857 0.00 0.00 0.51 0.58 1.92

10 0.01800 0.01800 0.01800 0.00 0.00 0.33 0.31 0.61

Avg 0.02546 0.02546 0.02546 0.00 0.00 0.94 0.99 2.36

7

1 0.02618 0.02618 0.02618 0.00 0.00 0.73 1.08 2.43

2 0.02225 0.02225 0.02225 0.00 0.00 0.62 0.31 1.26

3 0.02844 0.02844 0.02844 0.00 0.00 0.55 0.58 0.92

4 0.02767 0.02767 0.02767 0.00 0.00 0.30 0.89 2.45

5 0.02593 0.02593 0.02593 0.00 0.00 0.69 0.69 2.70

6 0.03368 0.03233 0.03368 4.01 0.00 1.25 1.03 3.09

7 0.02350 0.02350 0.02350 0.00 0.00 0.53 0.66 0.84

8 0.03723 0.03723 0.03723 0.00 0.00 0.45 1.59 1.28

9 0.03102 0.03102 0.03102 0.00 0.00 0.25 0.30 1.68

10 0.03388 0.03388 0.03388 0.00 0.00 0.25 0.19 1.73

Avg 0.02898 0.02884 0.02898 0.40 0.00 0.56 0.73 1.84

8

1 0.02767 0.02570 0.02767 7.11 0.00 1.40 1.40 3.43

2 0.01928 0.01928 0.01928 0.00 0.00 1.36 0.83 3.40

3 0.02578 0.02578 0.02578 0.00 0.00 0.78 1.52 3.63

4 0.02352 0.02352 0.02352 0.00 0.00 1.29 0.94 2.53

5 0.02507 0.02507 0.02507 0.00 0.00 0.51 0.44 2.04

6 0.02707 0.02707 0.02707 0.00 0.00 1.42 1.50 4.23

7 0.02107 0.02107 0.02107 0.00 0.00 0.62 0.34 0.92

8 0.03230 0.03171 0.03230 1.81 0.00 1.76 4.35 2.37

9 0.02786 0.02786 0.02786 0.00 0.00 0.87 0.39 1.78

10 0.02096 0.02096 0.02096 0.00 0.00 0.56 0.83 1.84

Avg 0.02506 0.02480 0.02506 0.89 0.00 1.06 1.25 2.62

160

 Appendix B4 Results of experimental studies for the problem set 10.50

Problem

Setting

Instance

No

Throughput Rate Deviation(%)

CPU (sec.)

CE BTS ATS BTS ATS CE BTS ATS

1

1 0.08694 0.08694 0.08694 0.00 0.00 7470.40 12.61 18.30

2 0.07338 0.07338 0.07338 0.00 0.00 17425.47 33.94 54.38

3 0.06442 0.06442 0.06442 0.00 0.00 9986.93 44.55 12.45

4 0.07554 0.07554 0.07554 0.00 0.00 6792.48 8.98 20.67

5 0.07907 0.07907 0.07907 0.00 0.00 4080.16 4.54 12.20

6 0.07976 0.07832 0.07976 1.80 0.00 13410.86 31.06 16.22

7 0.07049 0.07049 0.07049 0.00 0.00 11591.44 7.32 14.77

8 0.06952 0.06952 0.06952 0.00 0.00 5045.41 7.82 7.78

9 0.07713 0.07500 0.07713 2.77 0.00 17304.16 7.96 33.25

10 0.06880 0.06880 0.06880 0.00 0.00 8078.02 7.85 12.45

Avg 0.07450 0.07415 0.07450 0.46 0.00 10118.53 16.66 20.25

2

1 0.05603 0.05027 0.05596 10.28 0.12 9309.26 23.48 15.06

2 0.06253 0.06253 0.06253 0.00 0.01 13022.07 23.78 18.63

3 0.05223 0.05223 0.05223 0.00 0.00 13255.60 17.29 13.68

4 0.07191 0.06950 0.07142 3.35 0.68 21165.35 34.54 28.37

5 0.06572 0.06542 0.06572 0.46 0.00 12597.77 32.23 36.66

6 0.05925 0.05925 0.05925 0.00 0.00 11265.77 47.12 22.76

7 0.06188 0.06038 0.06188 2.42 0.00 12243.06 100.76 17.24

8 0.07324 0.07157 0.07324 2.28 0.00 15954.19 95.57 56.30

9 0.06897 0.06502 0.06882 5.72 0.21 9645.34 108.16 65.11

10 0.06608 0.06606 0.06608 0.03 0.00 18106.07 48.18 56.77

Avg 0.06378 0.06222 0.06371 2.45 0.10 13656.45 53.11 33.06

3

1 0.07214 0.07214 0.07214 0.00 0.00 18184.14 38.59 27.54

2 0.07361 0.07335 0.07351 0.35 0.13 12089.04 13.91 21.47

3 0.06815 0.06815 0.06815 0.00 0.00 7591.47 22.68 38.27

4 0.06909 0.06748 0.06888 2.33 0.31 9052.20 21.48 36.13

5 0.07086 0.07086 0.07086 0.00 0.00 31618.15 49.17 115.89

6 0.06865 0.06828 0.06865 0.54 0.00 22935.23 113.27 84.68

7 0.07799 0.07360 0.07714 5.63 1.10 19787.61 40.16 38.48

8 0.06779 0.06762 0.06779 0.26 0.01 9781.58 67.32 39.67

9 0.08079 0.06521 0.06521 19.29 19.28 6033.33 9.59 13.09

10 0.06660 0.06660 0.06660 0.00 0.01 2065.69 6.35 7.80

Avg 0.07157 0.06933 0.06989 2.84 2.08 15230.31 38.25 42.30

4

1 0.05029 0.05021 0.05021 0.17 0.17 6534.82 8.70 11.19

2 0.00785 0.00785 0.00785 0.00 0.00 8560.73 6.14 6.26

3 0.04144 0.04044 0.04091 2.42 1.29 11279.95 16.34 22.39

4 0.05311 0.04662 0.05151 12.22 3.02 10741.37 20.76 37.50

5 0.04406 0.04304 0.04380 2.32 0.59 11160.58 11.18 20.22

6 0.05610 0.03711 0.05610 33.86 0.00 7399.05 8.25 14.48

7 0.04242 0.03991 0.04242 5.92 0.00 8381.59 21.24 17.39

8 0.03423 0.03376 0.03423 1.36 0.00 9683.85 25.02 16.66

9 0.03164 0.02557 0.03149 19.18 0.46 7153.07 15.94 15.76

10 0.05576 0.04616 0.05576 17.22 0.00 10524.99 33.25 18.60

Avg 0.04169 0.03707 0.04143 9.47 0.55 9142.00 16.68 18.05

161

Appendix B4 Results of experimental studies for the problem set 10.50 (cont.)

Problem

Setting

Instance

No

Throughput Rate Deviation(%) CPU (sec.)

CE BTS ATS BTS ATS CE BTS ATS

5

1 0.03089 0.03007 0.03089 2.65 0.00 8113.45 31.32 13.49

2 0.02345 0.02344 0.02345 0.03 0.00 11238.31 12.28 16.33

3 0.02444 0.02444 0.02444 0.00 0.00 3249.22 3.04 2.31

4 0.02614 0.02485 0.02614 4.96 0.00 11950.31 10.55 9.87

5 0.02769 0.02769 0.02769 0.00 0.00 5130.26 11.15 6.05

6 0.02340 0.02340 0.02340 0.00 0.00 9696.40 10.76 13.23

7 0.02347 0.02347 0.02347 0.00 0.00 11516.88 4.55 9.50

8 0.02437 0.02437 0.02437 0.00 0.00 7850.06 7.91 9.38

9 0.03700 0.03700 0.03700 0.00 0.00 7339.22 13.03 15.07

10 0.02351 0.02351 0.02351 0.00 0.00 11956.50 41.29 37.06

Avg 0.02644 0.02622 0.02644 0.76 0.00 8804.06 14.59 13.23

6

1 0.01849 0.01849 0.01849 0.00 0.00 20235.51 10.37 21.29

2 0.02103 0.02103 0.02103 0.00 0.00 8075.22 13.22 25.05

3 0.02463 0.02368 0.02463 0.04 0.00 6055.65 10.35 14.59

4 0.02786 0.02785 0.02786 0.00 0.00 5561.70 21.41 25.33

5 0.02347 0.02333 0.02347 0.01 0.00 5453.36 17.17 24.56

6 0.01986 0.01986 0.01986 0.00 0.00 17703.50 20.37 27.71

7 0.02322 0.02174 0.02322 0.06 0.00 9320.15 12.46 14.10

8 0.02892 0.02892 0.02892 0.00 0.00 12330.67 21.35 37.53

9 0.02507 0.02506 0.02507 0.00 0.00 22505.36 65.76 78.33

10 0.02213 0.02213 0.02213 0.00 0.00 15445.97 18.78 24.06

Avg 0.02347 0.02321 0.02347 1.09 0.00 12268.71 21.12 29.26

7

1 0.02488 0.02488 0.02488 0.00 0.00 5306.97 4.71 3.63

2 0.02199 0.02196 0.02199 0.00 0.00 7656.30 8.52 10.19

3 0.02167 0.02167 0.02167 0.00 0.00 4888.31 4.98 4.06

4 0.02558 0.02558 0.02558 0.00 0.00 15848.16 23.34 37.08

5 0.02365 0.02365 0.02365 0.00 0.00 8961.77 14.48 14.74

6 0.02250 0.02216 0.02250 0.01 0.00 18571.17 37.11 67.73

7 0.02796 0.02786 0.02796 0.00 0.00 8609.40 50.59 71.12

8 0.02224 0.02224 0.02224 0.00 0.00 15506.98 5.04 13.07

9 0.02909 0.02906 0.02909 0.00 0.00 7033.93 16.24 20.25

10 0.02397 0.02397 0.02397 0.00 0.00 9635.94 4.65 14.01

Avg 0.02435 0.02430 0.02435 0.21 0.00 10201.89 16.97 25.59

8

1 0.01845 0.01730 0.01845 6.20 0.00 10353.56 4.81 15.99

2 0.01333 0.01140 0.01333 14.51 0.00 7373.68 6.50 17.72

3 0.01843 0.01832 0.01839 0.64 0.23 18605.25 85.86 58.77

4 0.02214 0.01984 0.02181 10.36 1.48 17981.73 35.21 33.57

5 0.00670 0.00670 0.00670 0.00 0.00 4380.44 5.74 5.05

6 0.02194 0.02017 0.02194 8.04 0.00 18336.02 50.62 25.85

7 0.02104 0.01885 0.02104 10.44 0.00 13823.67 27.33 26.02

8 0.01657 0.01656 0.01656 0.07 0.07 10636.85 14.65 16.21

9 0.01819 0.01695 0.01760 6.81 3.25 13771.64 36.40 33.73

10 0.02464 0.02348 0.02422 4.71 1.72 23148.75 45.99 53.07

Avg 0.01814 0.01696 0.01800 6.18 0.68 13841.16 31.31 28.60

162

 Appendix B5 Results of experimental studies for the problem set 10.100

Problem

Setting

Instance

No

Throughput Rate
Deviation(%)

 CPU (sec.)

BTS ATS BTS ATS

1

1 0.08694 0.08694 0.00 14.85 38.00

2 0.07338 0.07338 0.00 12.14 43.76

3 0.06442 0.06442 0.00 86.70 13.43

4 0.07554 0.07554 0.00 7.05 27.58

5 0.07907 0.07907 0.01 3.88 6.46

6 0.07398 0.07976 7.81 42.06 25.49

7 0.07049 0.07049 0.00 15.48 22.99

8 0.06952 0.06952 0.00 6.79 5.43

9 0.07501 0.07519 0.24 37.35 58.19

10 0.07061 0.07061 0.00 84.24 63.87

Avg 0.07389 0.07449 0.81 31.05 30.52

2

1 0.05128 0.05128 0.00 35.71 50.06

2 0.06398 0.06398 0.00 17.89 27.91

3 0.05225 0.05225 0.00 9.66 13.82

4 0.07505 0.07669 2.19 69.37 70.20

5 0.06620 0.06651 0.47 18.27 40.34

6 0.05929 0.05929 0.00 9.05 25.16

7 0.06119 0.06442 5.27 12.64 20.05

8 0.07488 0.07488 0.00 76.19 90.64

9 0.06852 0.07147 4.31 151.49 160.28

10 0.07019 0.07024 0.08 73.38 44.46

Avg 0.06428 0.06510 1.18 47.37 54.29

3

1 0.07394 0.07394 0.00 36.46 53.26

2 0.06911 0.07353 6.39 22.64 34.29

3 0.06816 0.06816 0.00 18.89 20.45

4 0.06959 0.07065 1.52 33.06 48.56

5 0.07067 0.07087 0.29 102.81 89.11

6 0.06876 0.06876 0.00 44.13 154.25

7 0.07802 0.08215 5.29 44.93 54.65

8 0.06808 0.06808 0.00 92.12 92.04

9 0.06615 0.06616 0.02 7.61 23.41

10 0.07010 0.07010 0.00 15.79 56.21

Avg 0.07026 0.07124 1.35 41.84 62.62

4

1 0.05082 0.05371 5.69 31.47 55.49

2 0.00847 0.00848 0.13 7.89 14.84

3 0.04700 0.04700 0.00 81.70 39.09

4 0.05417 0.05896 8.85 81.98 81.20

5 0.00682 0.00682 0.00 20.08 23.87

6 0.05147 0.05151 0.08 325.51 58.28

7 0.03937 0.04751 20.68 30.34 37.83

8 0.03876 0.03922 1.18 22.31 32.43

9 0.03036 0.03733 22.98 26.04 62.95

10 0.05522 0.05793 4.89 86.21 53.09

Avg 0.03825 0.04085 6.45 71.35 45.91

163

Appendix B5 Results of experimental studies for the problem set 10.100 (cont.)

(cont.)

Problem

Setting

Instance

No

Throughput Rate
Deviation(%)

 CPU (sec.)

BTS ATS BTS ATS

5

1 0.02999 0.03089 2.99 51.78 36.77

2 0.02345 0.02345 0.00 23.57 53.45

3 0.02444 0.02444 0.00 6.12 9.83

4 0.02708 0.02709 0.02 30.47 65.86

5 0.02769 0.02769 0.01 29.06 36.22

6 0.02359 0.02359 0.00 32.07 27.75

7 0.02487 0.02487 0.01 15.77 17.43

8 0.02437 0.02437 0.00 11.17 23.31

9 0.03700 0.03700 0.01 28.81 70.14

10 0.02351 0.02351 0.00 63.04 70.64

Avg 0.02660 0.02669 0.30 29.19 41.14

6

1 0.03012 0.03012 0.00 14.07 47.27

2 0.02104 0.02104 0.00 22.37 24.09

3 0.02467 0.02467 0.00 55.99 46.64

4 0.02788 0.02788 0.00 20.11 33.46

5 0.02091 0.02212 5.76 17.61 47.00

6 0.02004 0.02004 0.00 33.32 88.62

7 0.02364 0.02364 0.00 17.57 16.13

8 0.02876 0.02893 0.58 53.41 42.18

9 0.02507 0.02507 0.00 125.38 131.79

10 0.02213 0.02213 0.00 16.38 29.25

Avg 0.02443 0.02456 0.63 37.62 50.64

7

1 0.02493 0.02493 0.00 10.02 15.54

2 0.02196 0.02199 0.13 13.56 40.06

3 0.02167 0.02167 0.01 6.18 14.45

4 0.02558 0.02558 0.00 35.94 56.02

5 0.02365 0.02365 0.00 31.03 48.48

6 0.02187 0.02217 1.38 44.77 61.59

7 0.02794 0.02828 1.24 42.98 59.61

8 0.02224 0.02224 0.00 18.61 37.63

9 0.02910 0.02911 0.05 44.44 48.67

10 0.02397 0.02397 0.00 8.74 23.13

Avg 0.02429 0.02436 0.28 25.63 40.52

8

1 0.01042 0.01049 0.68 32.71 40.58

2 0.01367 0.01635 19.59 12.61 35.69

3 0.01948 0.01948 0.02 99.76 193.96

4 0.02151 0.02303 7.02 32.14 80.62

5 0.00673 0.00673 0.00 11.19 26.72

6 0.02278 0.02288 0.44 47.64 58.05

7 0.02151 0.02197 2.18 46.02 37.03

8 0.01825 0.01825 0.00 15.55 56.21

9 0.01953 0.02052 5.09 66.64 55.88

10 0.02539 0.02632 3.67 85.99 57.98

Avg 0.01793 0.01860 3.87 45.03 64.27

164

 Appendix B6 Results of experimental studies for the problem set 10.200

Problem

Setting

Instance

No

Throughput Rate Deviation(%)
 CPU (sec.)

BTS ATS BTS ATS

1

1 0.08694 0.08694 0.00 58.14 134.77

2 0.07338 0.07338 0.00 165.55 231.74

3 0.06442 0.06442 0.00 80.78 22.79

4 0.07554 0.07554 0.00 75.24 105.41

5 0.07906 0.07907 0.01 101.06 60.17

6 0.07976 0.07976 0.00 17.77 53.60

7 0.07011 0.07406 5.64 42.29 75.19

8 0.06952 0.06952 0.00 29.61 24.43

9 0.07499 0.07499 0.00 168.14 163.93

10 0.07061 0.07061 0.00 126.75 284.31

Avg 0.07443 0.07483 0.57 86.53 115.63

2

1 0.05128 0.05128 0.00 48.78 137.72

2 0.06422 0.06462 0.62 90.67 120.08

3 0.05224 0.05225 0.02 67.20 40.42

4 0.07726 0.07809 1.08 139.81 158.94

5 0.06516 0.06629 1.74 34.40 128.04

6 0.05929 0.05929 0.00 17.85 42.45

7 0.06247 0.06760 8.22 122.69 70.82

8 0.07513 0.07513 0.00 62.31 248.27

9 0.07267 0.07269 0.03 63.27 359.10

10 0.06612 0.06612 0.00 19.95 56.48

Avg 0.06458 0.06534 1.17 66.69 136.23

3

1 0.07476 0.07476 0.00 265.39 52.23

2 0.06911 0.07379 6.76 47.59 158.44

3 0.06816 0.06816 0.00 34.82 34.96

4 0.07080 0.07154 1.04 38.97 108.11

5 0.07087 0.07087 0.00 25.07 54.65

6 0.06877 0.07039 2.36 335.18 475.80

7 0.07923 0.08363 5.56 141.94 175.67

8 0.06815 0.06815 0.00 237.25 90.12

9 0.06645 0.06645 0.00 19.03 35.21

10 0.07014 0.07014 0.00 16.85 59.53

Avg 0.07064 0.07179 1.57 116.21 124.47

4

1 0.01059 0.01059 0.00 63.02 72.68

2 0.00954 0.00954 0.00 54.60 60.33

3 0.05259 0.05259 0.00 110.24 136.98

4 0.06323 0.06447 1.96 89.61 219.79

5 0.00682 0.00682 0.00 40.23 57.45

6 0.05915 0.05916 0.02 99.82 280.64

7 0.04559 0.05441 19.34 50.28 69.87

8 0.04450 0.04450 0.00 39.31 62.60

9 0.03560 0.04048 13.69 80.71 150.51

10 0.06202 0.06428 3.65 76.36 213.50

Avg 0.03896 0.04068 3.87 70.42 132.44

165

Appendix B6 Results of experimental studies for the problem set 10.200 (cont.)

Problem

Setting

Instance

No

Throughput Rate
Deviation(%)

 CPU (sec.)

BTS ATS BTS ATS

5

1 0.03089 0.03089 0.00 19.34 88.51

2 0.02345 0.02345 0.01 60.75 100.89

3 0.02444 0.02444 0.00 12.37 23.13

4 0.02709 0.02709 0.00 58.58 109.20

5 0.02769 0.02769 0.00 19.44 40.31

6 0.02363 0.02363 0.00 19.31 57.35

7 0.02487 0.02487 0.00 26.94 46.80

8 0.03099 0.03352 8.13 32.07 69.11

9 0.03700 0.03700 0.00 65.46 74.79

10 0.02351 0.02351 0.00 110.28 79.33

Avg 0.02736 0.02806 0.81 42.45 68.94

6

1 0.02122 0.03012 41.95 53.98 71.81

2 0.02104 0.02104 0.00 48.67 41.59

3 0.02467 0.02467 0.00 57.70 88.55

4 0.02788 0.02788 0.00 75.43 73.40

5 0.02212 0.02356 6.51 56.03 62.99

6 0.02013 0.02013 0.00 40.00 67.84

7 0.02371 0.02388 0.70 31.30 116.84

8 0.02893 0.02893 0.00 148.51 64.61

9 0.02507 0.02507 0.00 312.73 171.37

10 0.02213 0.02213 0.00 26.27 61.78

Avg 0.02369 0.02474 4.92 85.06 82.08

7

1 0.02493 0.02493 0.00 17.72 26.22

2 0.02196 0.02199 0.12 38.76 45.71

3 0.02167 0.02167 0.00 13.72 23.93

4 0.02558 0.02558 0.00 54.27 148.07

5 0.02365 0.02365 0.00 19.34 56.39

6 0.02187 0.02220 1.52 91.32 178.62

7 0.02830 0.02830 0.00 77.52 103.08

8 0.02224 0.02224 0.00 19.31 63.30

9 0.02324 0.02912 25.28 33.68 109.32

10 0.02397 0.02397 0.00 111.98 54.65

Avg 0.02374 0.02436 2.69 47.76 80.93

8

1 0.01565 0.01565 0.00 54.09 71.45

2 0.01449 0.01842 27.14 58.55 63.62

3 0.01981 0.01981 0.00 50.93 208.88

4 0.01898 0.02335 23.02 46.65 144.97

5 0.00673 0.00673 0.00 16.74 27.38

6 0.02293 0.02293 0.00 130.67 222.21

7 0.02220 0.02221 0.02 51.29 159.95

8 0.01929 0.01929 0.01 18.55 55.61

9 0.02147 0.02156 0.38 62.98 87.39

10 0.02749 0.02763 0.51 151.81 298.35

Avg 0.01890 0.01976 5.11 64.23 133.98

166

 Appendix B7 Results of experimental studies for the problem set 20.100

Problem

Setting

Instance

No

Throughput Rate Deviation(%)
 CPU (sec.)

BTS ATS BTS ATS

1

1 0.07983 0.07983 0.00 514.09 632.35

2 0.07093 0.07349 3.62 528.01 479.06

3 0.06884 0.06884 0.00 526.12 1919.35

4 0.08056 0.08056 0.00 441.91 523.46

5 0.07924 0.07924 0.00 407.51 618.62

6 0.10068 0.10068 0.00 451.13 267.48

7 0.07070 0.07167 1.38 515.25 243.64

8 0.09473 0.09473 0.00 510.36 525.47

9 0.06566 0.11369 73.15 399.82 445.11

10 0.08877 0.08877 0.00 431.66 446.97

Avg 0.07999 0.08515 7.82 472.59 610.15

2

1 0.04606 0.06961 51.15 455.09 348.55

2 0.02104 0.02106 0.10 473.20 316.42

3 0.00641 0.00642 0.09 376.86 258.35

4 0.06209 0.07121 14.69 714.02 872.43

5 0.03307 0.03307 0.00 418.32 215.00

6 0.06506 0.06506 0.00 663.18 995.41

7 0.04643 0.06737 45.09 415.34 894.88

8 0.06498 0.06498 0.00 489.57 717.46

9 0.06303 0.09318 47.83 809.98 873.65

10 0.07589 0.08292 9.26 542.39 333.96

Avg 0.04841 0.05749 16.82 535.80 582.61

3

1 0.06623 0.07356 11.07 1088.44 1827.51

2 0.06990 0.07080 1.29 521.13 577.29

3 0.06912 0.06912 0.00 617.04 655.50

4 0.06561 0.06652 1.39 530.23 489.88

5 0.06438 0.06933 7.70 858.22 1383.10

6 0.06796 0.06890 1.38 858.22 620.27

7 0.07172 0.07570 5.54 635.22 856.18

8 0.06947 0.06950 0.04 630.24 947.95

9 0.07755 0.07900 1.87 821.25 766.60

10 0.06466 0.06877 6.35 876.28 694.95

Avg 0.06866 0.07112 3.66 743.63 881.92

4

1 0.08216 0.08816 7.30 444.59 616.22

2 0.04566 0.04593 0.60 500.48 276.38

3 0.04511 0.07416 64.39 1026.45 1160.45

4 0.06005 0.06137 2.20 557.64 628.68

5 0.03277 0.04197 28.06 638.92 865.91

6 0.08740 0.08857 1.33 525.45 412.09

7 0.04388 0.12184 177.69 771.14 956.75

8 0.04205 0.04786 13.80 631.43 430.28

9 0.10754 0.11973 11.33 466.62 477.55

10 0.04757 0.05041 5.97 750.24 767.40

Avg 0.05942 0.07400 31.27 631.30 659.17

167

Appendix B7 Results of experimental studies for the problem set 20.100 (cont.)

00 (cont.)

Problem

Setting

Instance

No

Throughput Rate
Deviation(%)

 CPU (sec.)

BTS ATS BTS ATS

5

1 0.02566 0.02800 9.10 347.16 370.13

2 0.02663 0.02663 0.00 663.86 767.41

3 0.02516 0.02575 2.35 527.71 598.45

4 0.02278 0.02280 0.06 506.05 479.25

5 0.02625 0.02625 0.00 509.67 340.38

6 0.02251 0.02666 18.45 523.91 305.07

7 0.02414 0.02610 8.12 551.04 241.35

8 0.02225 0.02872 29.09 502.95 821.64

9 0.02593 0.02593 0.00 486.74 240.22

10 0.03369 0.03369 0.00 632.13 414.90

Avg 0.02550 0.02705 6.72 525.12 457.88

6

1 0.00441 0.00441 0.00 247.80 130.49

2 0.01701 0.02104 23.73 467.62 273.95

3 0.01724 0.01732 0.45 193.11 429.13

4 0.02466 0.02475 0.34 532.64 492.56

5 0.02483 0.02799 12.71 314.07 394.15

6 0.02751 0.02751 0.00 475.62 542.87

7 0.02337 0.02337 0.00 306.00 1062.50

8 0.02131 0.02131 0.00 282.93 368.43

9 0.02073 0.02073 0.00 222.00 188.76

10 0.03375 0.03444 2.06 227.15 481.17

Avg 0.02148 0.02229 3.93 326.89 436.40

7

1 0.02477 0.02477 0.00 1182.51 771.95

2 0.02173 0.02176 0.12 1082.48 215.39

3 0.02226 0.02226 0.01 2194.73 1052.91

4 0.02520 0.02520 0.00 1216.48 875.19

5 0.02210 0.02284 3.35 1112.16 739.00

6 0.02212 0.02219 0.33 1250.37 762.00

7 0.03132 0.03132 0.00 1239.29 920.61

8 0.02279 0.02279 0.00 1178.15 904.21

9 0.02796 0.02804 0.31 1150.21 916.72

10 0.02352 0.02352 0.00 1449.70 579.76

Avg 0.02438 0.02447 0.41 1305.61 773.77

8

1 0.00820 0.00821 0.05 289.53 311.68

2 0.01666 0.01666 0.00 425.08 395.50

3 0.02017 0.02127 5.48 572.84 1240.66

4 0.02218 0.02380 7.34 462.05 879.67

5 0.01748 0.02072 18.54 582.67 556.57

6 0.02037 0.02974 46.01 535.14 667.84

7 0.01609 0.02544 58.07 662.19 792.75

8 0.01911 0.02180 14.07 351.73 617.72

9 0.02226 0.02582 15.99 263.36 537.19

10 0.02377 0.02377 0.00 471.72 650.15

Avg 0.01863 0.02172 16.55 461.63 664.97

168

 Appendix B8 Results of experimental studies for the problem set 20.200

Problem

Setting

Instance

No

Throughput Rate Deviation(%)
 CPU (sec.)

BTS ATS BTS ATS

1

1 0.07998 0.07998 0.00 1263.56 1034.76

2 0.07044 0.07349 4.34 748.64 1023.74

3 0.06884 0.06884 0.00 919.56 1208.49

4 0.08056 0.08056 0.00 486.73 963.68

5 0.07924 0.07924 0.00 625.46 1206.60

6 0.10068 0.10068 0.00 548.12 769.74

7 0.07070 0.07167 1.38 406.66 336.57

8 0.09477 0.09477 0.00 679.37 517.56

9 0.06570 0.06573 0.04 487.08 575.83

10 0.08877 0.08877 0.00 1046.09 750.66

Avg 0.07997 0.08037 0.58 721.13 838.76

2

1 0.04612 0.06961 50.93 808.25 1282.70

2 0.05492 0.05492 0.00 535.20 676.34

3 0.00641 0.00641 0.00 432.05 299.01

4 0.07217 0.07227 0.13 657.38 1140.36

5 0.03307 0.03307 0.00 465.61 502.93

6 0.06508 0.06508 0.00 508.49 1491.16

7 0.04003 0.06737 68.32 595.60 336.13

8 0.06529 0.06529 0.00 805.05 973.21

9 0.06341 0.09134 44.03 1513.90 1242.85

10 0.08220 0.08567 4.22 1121.84 675.00

Avg 0.05287 0.06110 16.76 744.34 861.97

3

1 0.07441 0.07441 0.00 581.01 1689.59

2 0.06663 0.06695 0.48 195.76 785.74

3 0.06986 0.06987 0.02 2187.92 1642.96

4 0.06576 0.06769 2.92 230.74 814.10

5 0.06668 0.07042 5.61 308.60 1441.47

6 0.06952 0.06953 0.01 638.04 1572.50

7 0.07793 0.08391 7.67 347.99 1489.51

8 0.06977 0.06977 0.00 506.27 1535.59

9 0.06990 0.07942 13.62 2171.74 1953.90

10 0.06883 0.06883 0.00 1809.32 2197.18

Avg 0.06993 0.07208 3.03 1495.78 1512.25

4

1 0.08227 0.10730 30.43 796.73 1417.61

2 0.04860 0.04902 0.87 221.86 594.99

3 0.07585 0.07792 2.73 2700.41 2752.77

4 0.06352 0.06575 3.50 510.25 1268.11

5 0.04296 0.04925 14.63 2414.79 1115.89

6 0.08915 0.09207 3.28 227.59 986.78

7 0.04940 0.06661 34.83 539.90 2403.47

8 0.04675 0.05133 9.81 632.72 1334.41

9 0.09477 0.14420 52.16 464.40 833.93

10 0.05634 0.05634 0.00 951.85 1773.26

Avg 0.06496 0.07598 15.22 946.05 1448.12

169

Appendix B8 Results of experimental studies for the problem set 20.200 (cont.)

00 (cont.)

Problem

Setting

Instance

No

Throughput Rate Deviation(%)
 CPU (sec.)

BTS ATS BTS ATS

5

1 0.02656 0.02800 5.40 1407.30 654.51

2 0.02663 0.02663 0.00 597.55 877.89

3 0.02516 0.02554 1.50 895.55 968.64

4 0.02313 0.02313 0.00 632.33 901.37

5 0.02625 0.02625 0.00 1405.96 721.86

6 0.02666 0.02666 0.00 460.53 669.51

7 0.02414 0.02610 8.12 559.75 490.53

8 0.02872 0.02872 0.00 523.12 705.68

9 0.02583 0.02593 0.38 1486.00 555.08

10 0.03369 0.03369 0.00 1032.97 870.03

Avg 0.02668 0.02706 1.54 900.11 741.51

6

1 0.00441 0.00441 0.00 451.34 388.86

2 0.01678 0.02318 38.18 472.02 837.78

3 0.01724 0.01724 0.00 1658.10 1597.24

4 0.01987 0.02478 24.70 292.89 928.53

5 0.02972 0.02991 0.66 409.22 682.77

6 0.02261 0.02751 21.67 546.31 1111.25

7 0.02337 0.02337 0.00 750.69 723.31

8 0.02131 0.02131 0.00 263.50 944.19

9 0.02069 0.02073 0.20 191.65 408.19

10 0.02805 0.03486 24.27 152.09 863.12

Avg 0.02040 0.02902 10.97 518.78 848.52

7

1 0.02477 0.02477 0.00 3228.14 1441.97

2 0.02153 0.02153 0.00 240.29 486.41

3 0.02227 0.02227 0.00 257.87 3825.08

4 0.02520 0.02520 0.00 1110.18 1511.89

5 0.02305 0.02305 0.00 238.15 851.12

6 0.02212 0.02221 0.41 717.54 607.14

7 0.02830 0.03155 11.47 398.89 984.61

8 0.02279 0.02279 0.00 440.15 2645.83

9 0.02805 0.02805 0.00 1481.54 1355.20

10 0.02352 0.02352 0.00 1111.17 1302.56

Avg 0.02416 0.02449 1.19 922.39 1501.18

8

1 0.00823 0.00823 0.01 235.31 213.28

2 0.01783 0.01785 0.15 749.56 554.14

3 0.02273 0.02274 0.05 791.49 1137.40

4 0.02384 0.02384 0.00 564.15 756.12

5 0.02187 0.02366 8.15 1732.98 1391.76

6 0.02806 0.03096 10.32 333.41 1340.03

7 0.02067 0.02697 30.44 561.75 2476.94

8 0.02137 0.02465 15.34 855.17 2380.58

9 0.01040 0.02547 144.98 565.29 486.63

10 0.02530 0.02531 0.00 1416.98 1022.91

Avg 0.02003 0.02297 20.95 780.61 1175.98

170

 Appendix B9 Results of experimental studies for the problem set 20.400

Problem

Setting

Instance

No

Throughput Rate Deviation(%)
 CPU (sec.)

BTS ATS BTS ATS

1

1 0.08000 0.08000 0.02 1402.42 2274.33

2 0.07096 0.07420 4.57 1668.24 2974.49

3 0.06884 0.06884 0.00 1789.24 3947.73

4 0.08056 0.08056 0.00 1354.84 2014.96

5 0.07924 0.07924 0.00 4395.31 2748.54

6 0.10045 0.10068 0.22 797.75 1371.94

7 0.07070 0.07167 1.38 979.87 1545.36

8 0.09477 0.09477 0.00 834.75 1073.44

9 0.06570 0.06573 0.04 1276.22 2228.18

10 0.08877 0.08877 0.00 1967.24 2033.73

Avg 0.08000 0.08045 0.62 1646.59 2221.27

2

1 0.04612 0.07070 53.29 1047.53 4041.17

2 0.05652 0.05652 0.00 503.60 1567.10

3 0.00641 0.00641 0.02 148.29 802.76

4 0.07206 0.07303 1.35 1495.71 4569.22

5 0.03307 0.03307 0.00 742.33 1241.17

6 0.06508 0.06508 0.00 1359.79 2875.22

7 0.04008 0.06737 68.09 1291.20 757.94

8 0.06529 0.06529 0.00 2842.96 1994.40

9 0.06335 0.06345 0.16 1815.47 3900.43

10 0.08707 0.08707 0.00 322.47 1488.52

Avg 0.05351 0.05880 12.29 1156.94 2323.79

3

1 0.07441 0.08440 13.43 3683.31 3767.83

2 0.07205 0.07324 1.65 1662.74 4083.45

3 0.07003 0.07003 0.00 1475.67 10726.03

4 0.06804 0.06806 0.04 1203.65 1371.73

5 0.07068 0.07068 0.00 2669.55 3456.61

6 0.06956 0.06966 0.14 2242.61 3780.87

7 0.07896 0.08455 7.08 1366.78 4399.89

8 0.06983 0.06983 0.00 3310.92 3742.49

9 0.07946 0.07946 0.00 3865.24 2656.06

10 0.06884 0.06884 0.00 2833.76 2617.19

Avg 0.07218 0.07387 2.23 2431.42 4060.22

4

1 0.00823 0.00823 0.00 123.46 4108.05

2 0.05263 0.05263 0.00 727.57 1174.79

3 0.06011 0.06221 3.50 1946.38 3329.65

4 0.06260 0.06753 7.88 1115.54 3060.88

5 0.05430 0.06133 12.94 1358.84 4003.40

6 0.09098 0.09544 4.90 436.61 1921.41

7 0.06000 0.07227 20.45 806.43 4560.43

8 0.05564 0.05881 5.69 1772.24 3390.74

9 0.06349 0.06439 1.43 959.54 856.33

10 0.06089 0.06141 0.86 1414.56 2452.06

Avg 0.05689 0.06043 5.76 1066.12 2885.77

171

Appendix B9 Results of experimental studies for the problem set 20.400 (cont.)

00 (cont.)

Problem

Setting

Instance

No

Throughput Rate Deviation(%)
 CPU (sec.)

BTS ATS BTS ATS

5

1 0.03207 0.03540 10.38 1318.12 1238.61

2 0.02663 0.02663 0.00 1569.85 2033.28

3 0.02595 0.02598 0.12 684.51 1424.64

4 0.02326 0.02326 0.00 982.66 1638.13

5 0.03638 0.03638 0.00 378.71 967.74

6 0.02666 0.02666 0.00 1671.68 1123.48

7 0.02414 0.02825 17.04 1720.37 1527.65

8 0.02872 0.02872 0.00 535.32 1782.82

9 0.02593 0.02593 0.00 900.06 1867.39

10 0.03369 0.03369 0.00 962.16 1751.40

Avg 0.02834 0.02909 2.75 1072.34 1535.51

6

1 0.00440 0.00440 0.11 753.37 1232.76

2 0.01678 0.02341 39.49 1639.39 3150.58

3 0.01724 0.01724 0.00 676.85 1396.25

4 0.01987 0.02478 24.67 537.33 2419.84

5 0.02380 0.03060 28.58 2091.39 2213.61

6 0.02751 0.02751 0.00 2146.80 2188.06

7 0.02337 0.02337 0.00 383.79 1118.32

8 0.02131 0.02131 0.00 299.47 1953.43

9 0.02073 0.02073 0.00 730.24 3365.64

10 0.03485 0.03488 0.09 1408.37 1731.01

Avg 0.02099 0.02282 9.29 1066.70 2076.95

7

1 0.02477 0.02480 0.12 6452.50 4941.10

2 0.02167 0.02170 0.11 1812.66 4880.82

3 0.02227 0.02227 0.00 3034.03 2380.59

4 0.02520 0.02520 0.00 2729.32 2665.11

5 0.02306 0.02306 0.00 1954.15 3741.20

6 0.02215 0.02221 0.24 3630.24 1063.50

7 0.02707 0.03155 16.57 2567.84 2147.27

8 0.02279 0.02279 0.00 1486.08 4062.45

9 0.02805 0.02805 0.00 1574.10 3677.55

10 0.02352 0.02352 0.00 1101.30 1431.41

Avg 0.02405 0.02451 1.70 2634.22 3099.10

8

1 0.00823 0.00823 0.00 1009.38 1647.06

2 0.01867 0.01867 0.00 1050.45 1296.64

3 0.02380 0.02380 0.00 1052.00 1777.92

4 0.02384 0.02384 0.00 739.72 1637.61

5 0.02372 0.02493 5.11 4558.11 3550.95

6 0.02371 0.03149 32.84 996.92 2242.15

7 0.02122 0.02787 31.32 922.18 1974.11

8 0.02701 0.02701 0.00 599.85 2429.41

9 0.02578 0.02578 0.00 610.03 1146.93

10 0.02637 0.02637 0.00 1118.27 2178.11

Avg 0.02223 0.02379 6.93 1265.69 1988.09

172

 Appendix B10 Results of experimental studies for the problem set 40.200

Problem

Setting

Instance

No

Throughput Rate Deviation(%)
 CPU (sec.)

BTS ATS BTS ATS

1

1 0.07327 0.08200 11.92 2815.94 13552.11

2 0.06027 0.06027 0.00 1174.70 11863.92

3 0.07957 0.07957 0.00 3056.91 12311.99

4 0.07952 0.07952 0.00 1973.86 10925.34

5 0.07338 0.07346 0.11 2646.05 9988.17

6 0.06721 0.08597 27.90 4216.20 16540.13

7 0.06803 0.06812 0.13 4100.84 14278.52

8 0.09560 0.09560 0.00 1421.41 16651.79

9 0.03156 0.03480 10.26 4995.30 23352.77

10 0.08674 0.08674 0.00 4153.45 12357.47

Avg 0.07151 0.07460 5.03 3055.47 14182.22

2

1 0.06547 0.09746 48.87 6543.52 15792.22

2 0.09626 0.09663 0.38 1115.05 6271.30

3 0.07888 0.08022 1.71 2458.77 11470.12

4 0.06936 0.06954 0.25 6546.20 11141.63

5 0.06366 0.06500 2.12 7864.83 33952.58

6 0.05883 0.05883 0.00 16168.44 25836.86

7 0.06923 0.06923 0.00 1518.34 5728.60

8 0.08170 0.08210 0.50 7365.01 13978.12

9 0.07312 0.07312 0.00 3835.86 7802.66

10 0.06904 0.07571 9.66 5844.13 5367.52

Avg 0.07255 0.07679 6.35 5926.02 13734.16

3

1 0.07292 0.07305 0.19 6023.73 15447.66

2 0.06707 0.06707 0.00 1963.70 5027.43

3 0.07483 0.07830 4.65 15815.53 26778.01

4 0.06085 0.06109 0.39 1756.45 4391.06

5 0.07268 0.07274 0.08 8936.36 25387.56

6 0.07966 0.08312 4.34 8919.91 24489.68

7 0.06754 0.07852 16.26 5560.72 21465.61

8 0.09433 0.09451 0.19 6255.59 20900.17

9 0.08458 0.08527 0.82 8022.93 28562.42

10 0.08606 0.08643 0.43 5205.87 21326.04

Avg 0.07605 0.07801 2.73 6846.08 19377.56

4

1 0.05897 0.06984 18.43 5080.15 21412.47

2 0.04542 0.04666 2.71 2189.63 6539.40

3 0.04307 0.05292 22.88 16311.28 26558.22

4 0.05751 0.06156 7.05 4219.17 14515.56

5 0.04565 0.05165 13.14 13663.22 21208.65

6 0.07553 0.07789 3.13 2075.05 6922.93

7 0.05281 0.06209 17.56 5153.79 12044.58

8 0.05788 0.06896 19.14 7650.00 12440.17

9 0.06642 0.06642 0.00 1207.70 22490.63

10 0.05748 0.06483 12.79 4945.88 17551.04

Avg 0.05607 0.06228 11.68 6249.59 15585.69

173

Appendix B10 Results of experimental studies for the problem set 40.200 (cont.)

0 (cont.)

00 (cont.)

Problem

Setting

Instance

No

Throughput Rate Deviation(%)
 CPU (sec.)

BTS ATS BTS ATS

5

1 0.02572 0.02572 0.00 4532.03 14535.20

2 0.02513 0.02513 0.00 2003.23 7599.48

3 0.02495 0.02496 0.04 2488.64 13870.25

4 0.02650 0.02650 0.00 2351.25 16177.85

5 0.02487 0.02487 0.00 2700.03 10753.72

6 0.02293 0.02293 0.00 3307.66 7461.38

7 0.02334 0.02334 0.00 1987.13 6461.80

8 0.02169 0.02710 24.92 1681.25 13156.19

9 0.02168 0.02168 0.00 5759.06 12850.29

10 0.03292 0.03292 0.00 1250.16 7754.29

Avg 0.02497 0.02552 2.50 2806.04 11062.05

6

1 0.02875 0.02948 2.56 2176.67 16729.51

2 0.01930 0.01930 0.00 3371.52 9610.69

3 0.02337 0.03011 28.84 2558.16 9431.27

4 0.02456 0.02456 0.00 2446.48 8042.12

5 0.02203 0.02203 0.00 2745.19 11029.80

6 0.02232 0.02242 0.44 3028.26 7631.35

7 0.02047 0.02307 12.73 2801.36 10328.14

8 0.03202 0.03202 0.00 2400.70 6771.24

9 0.02614 0.02778 6.25 3497.80 20571.80

10 0.02875 0.02875 0.00 4466.03 11159.02

Avg 0.02477 0.02595 5.08 2949.22 11130.49

7

1 0.02574 0.02582 0.30 6034.09 14136.17

2 0.02215 0.02229 0.66 4438.19 10203.99

3 0.02781 0.02803 0.76 5089.61 10985.18

4 0.02796 0.02797 0.05 7293.75 13342.20

5 0.02595 0.02609 0.51 6702.91 18100.61

6 0.03269 0.03841 17.51 5132.66 10328.95

7 0.02317 0.02325 0.35 3998.66 8833.30

8 0.03670 0.03670 0.00 4081.36 8575.73

9 0.02980 0.02986 0.21 8100.55 24915.04

10 0.03287 0.03287 0.00 4247.28 10302.23

Avg 0.02848 0.02913 2.03 5511.91 12972.34

8

1 0.01856 0.02773 49.37 12618.81 42253.54

2 0.01703 0.01705 0.12 5054.92 13085.27

3 0.01912 0.02241 17.22 10970.84 28875.46

4 0.02224 0.02396 7.73 4596.08 14181.67

5 0.02054 0.02064 0.46 12404.01 13233.24

6 0.02079 0.02953 42.05 6831.69 16844.55

7 0.01892 0.02332 23.26 7025.14 19843.68

8 0.02729 0.02904 6.42 2963.74 16434.03

9 0.02463 0.02485 0.91 8298.10 22987.44

10 0.02723 0.02801 2.89 4249.05 14913.41

Avg 0.02163 0.02465 15.04 7501.24 20265.23

174

 Appendix B11 Results of experimental studies for the problem set 40.400

Problem

Setting

Instance

No

Throughput Rate Deviation(%)
 CPU (sec.)

BTS ATS BTS ATS

1

1 0.08200 0.08200 0.00 6078.41 29163.88

2 0.06027 0.06027 0.00 3539.51 16926.48

3 0.07952 0.07957 0.06 10658.80 37448.29

4 0.07952 0.07952 0.00 4636.64 28288.55

5 0.07338 0.07346 0.11 4988.56 32450.96

6 0.06721 0.08597 27.90 7568.82 34732.79

7 0.06803 0.06808 0.08 5863.07 29255.94

8 0.09560 0.09560 0.00 1591.14 18620.74

9 0.06788 0.06902 1.68 10247.36 29178.62

10 0.08674 0.08674 0.00 9757.81 36119.17

Avg 0.07601 0.07802 2.98 6493.01 29218.54

2

1 0.06428 0.07352 14.38 10298.55 27928.16

2 0.09669 0.09669 0.00 3528.71 15018.90

3 0.07908 0.08178 3.41 5356.44 22185.66

4 0.06947 0.06958 0.16 15060.64 26849.99

5 0.06424 0.06547 1.92 7459.03 62964.94

6 0.05886 0.05886 0.00 16739.39 40051.36

7 0.06923 0.06948 0.36 6350.44 30914.72

8 0.08304 0.08304 0.00 9700.77 28932.40

9 0.07496 0.07496 0.00 12795.39 36496.87

10 0.07575 0.07575 0.00 2657.76 11357.30

Avg 0.07356 0.07492 2.02 8994.71 30270.03

3

1 0.07332 0.07337 0.06 16280.78 35756.84

2 0.06799 0.06831 0.48 5754.05 11151.21

3 0.07619 0.07908 3.79 5392.91 13368.90

4 0.06124 0.06124 0.00 13642.39 29584.57

5 0.07313 0.07315 0.03 4379.03 11426.90

6 0.08569 0.08614 0.53 24482.97 72147.65

7 0.07852 0.07858 0.08 12603.60 77072.13

8 0.09519 0.09521 0.02 9418.82 49508.60

9 0.08381 0.08605 2.68 7524.56 21249.27

10 0.08658 0.08659 0.01 10412.73 31074.05

Avg 0.07816 0.07877 0.77 10989.18 35234.01

4

1 0.05897 0.06227 5.59 9299.57 41080.21

2 0.04991 0.05172 3.63 3531.21 15363.42

3 0.05309 0.05871 10.59 24695.76 47090.40

4 0.05751 0.06378 10.91 5809.01 23556.20

5 0.05332 0.06087 14.16 23637.81 44445.38

6 0.07989 0.07989 0.00 4164.93 20755.54

7 0.05281 0.05281 0.00 5068.12 22251.41

8 0.05242 0.05242 0.00 9717.13 24551.60

9 0.06642 0.06642 0.00 16158.59 41511.09

10 0.05213 0.06115 17.30 10070.61 41539.81

Avg 0.05765 0.06100 6.22 11215.27 32214.51

175

Appendix B11 Results of experimental studies for the problem set 40.400 (cont.)

00 (cont.)

Problem

Setting

Instance

No

Throughput Rate Deviation(%)
 CPU (sec.)

BTS ATS BTS ATS

5

1 0.02572 0.02572 0.00 11414.59 32423.50

2 0.02513 0.02590 3.04 21482.39 44447.34

3 0.02574 0.02574 0.00 19847.79 39543.70

4 0.02650 0.02650 0.00 12657.03 35981.93

5 0.02487 0.02600 4.56 18826.44 36479.01

6 0.02293 0.02293 0.00 12353.07 35059.82

7 0.02334 0.02334 0.00 13364.70 36094.15

8 0.02710 0.02710 0.00 6862.80 19588.40

9 0.02168 0.02168 0.00 17086.35 22161.86

10 0.03292 0.03292 0.00 8389.19 10508.01

Avg 0.02559 0.02578 0.76 14228.44 31228.77

6

1 0.02875 0.02948 2.56 4497.03 13401.10

2 0.01946 0.02085 7.10 11029.17 20771.88

3 0.02453 0.03011 22.76 10700.12 32010.98

4 0.02456 0.02456 0.00 3950.45 10852.74

5 0.02203 0.02203 0.00 7749.09 21745.00

6 0.02232 0.02275 1.92 10290.66 30781.95

7 0.02043 0.02307 12.91 4154.28 12642.09

8 0.03203 0.03203 0.02 11771.58 35413.34

9 0.02614 0.02778 6.25 14988.45 34162.73

10 0.02875 0.02875 0.00 15369.00 35590.27

Avg 0.02490 0.02614 5.35 9449.98 24737.21

7

1 0.02558 0.02582 0.93 7548.97 23869.70

2 0.02230 0.02246 0.69 6418.31 25349.30

3 0.02797 0.02804 0.24 8159.45 32424.01

4 0.02797 0.02797 0.00 16931.75 46688.22

5 0.02355 0.02609 10.80 14365.40 47299.64

6 0.03798 0.03842 1.15 4553.02 28686.44

7 0.02315 0.02324 0.38 6451.81 31213.94

8 0.03671 0.03671 0.00 7339.54 38413.25

9 0.02986 0.02986 0.00 13421.89 33886.45

10 0.03287 0.03287 0.00 6780.16 36252.01

Avg 0.02879 0.02915 1.42 9197.03 34408.30

8

1 0.02009 0.04073 102.74 8779.82 46878.15

2 0.01815 0.01897 4.52 7666.96 25017.55

3 0.02364 0.02426 2.61 8105.85 26452.88

4 0.02138 0.02435 13.89 18219.98 44569.98

5 0.02035 0.02186 7.43 5508.15 16425.51

6 0.02578 0.02653 2.91 6817.52 21542.36

7 0.01932 0.02018 4.46 7193.17 25976.72

8 0.02728 0.03106 13.89 11964.66 40895.15

9 0.02548 0.02555 0.27 9091.24 27732.27

10 0.02848 0.02866 0.65 10848.98 34312.86

Avg 0.02299 0.02621 15.34 9419.63 30980.34

176

 Appendix B12 Results of experimental studies for the problem set 40.800

Problem

Setting

Instance

No

Throughput Rate Deviation(%)
 CPU (sec.)

BTS ATS BTS ATS

1

1 0.07331 0.08200 11.86 13709.00 38312.57

2 0.06027 0.06027 0.00 4179.39 21848.03

3 0.07952 0.07961 0.11 10845.56 44140.25

4 0.07952 0.07952 0.00 8472.16 45321.93

5 0.07338 0.07346 0.11 10549.55 40101.03

6 0.06729 0.08597 27.76 16988.08 48964.56

7 0.06808 0.06808 0.00 6670.13 33550.01

8 0.09560 0.09560 0.00 3537.11 18955.65

9 0.06910 0.06910 0.00 20775.13 47392.53

10 0.08674 0.08674 0.00 18604.66 44532.86

Avg 0.07528 0.07803 3.98 11433.08 38311.94

2

1 0.06428 0.07351 14.36 21650.11 54905.34

2 0.09626 0.09669 0.45 4266.89 12806.70

3 0.06788 0.08180 20.51 13645.66 40939.68

4 0.06959 0.06959 0.00 25250.64 55751.93

5 0.06419 0.06547 2.00 17222.05 49666.51

6 0.05886 0.05886 0.00 23665.34 55995.01

7 0.05970 0.06948 16.40 15697.89 40390.76

8 0.08318 0.08318 0.00 23800.69 53204.70

9 0.07573 0.07579 0.07 17050.95 40452.18

10 0.07575 0.07575 0.00 13532.06 40695.47

Avg 0.07154 0.07500 5.38 17578.23 44480.83

3

1 0.07332 0.07337 0.06 17838.03 39576.32

2 0.06831 0.06895 0.94 10390.50 25371.06

3 0.07908 0.07923 0.20 28219.16 59343.12

4 0.06120 0.06124 0.07 6987.19 15979.81

5 0.07321 0.07321 0.00 32224.67 67949.00

6 0.08281 0.08614 4.02 9926.56 22858.26

7 0.07238 0.07858 8.55 11081.59 26861.02

8 0.09535 0.09535 0.00 35735.00 70970.38

9 0.08563 0.08665 1.19 13974.13 32332.18

10 0.08660 0.08675 0.18 17732.01 39176.06

Avg 0.07779 0.07893 1.52 18410.88 40041.72

4

1 0.06227 0.06305 1.27 18864.14 43542.39

2 0.05160 0.05256 1.85 19836.88 45565.83

3 0.06135 0.06817 11.11 25559.53 58457.08

4 0.06541 0.06849 4.71 14812.42 36393.63

5 0.06087 0.06763 11.11 40075.88 91099.92

6 0.07989 0.08070 1.01 5025.30 14444.38

7 0.06600 0.06805 3.09 7276.46 21935.54

8 0.07767 0.08175 5.26 16417.22 40569.39

9 0.06326 0.07415 17.21 67775.68 148747.75

10 0.07323 0.07790 6.38 10185.89 23352.08

Avg 0.06615 0.07024 6.30 22582.94 52410.80

177

Appendix B12 Results of experimental studies for the problem set 40.800 (cont.)

00 (cont.)

Problem

Setting

Instance

No

Throughput Rate
Deviation(%)

 CPU (sec.)

BTS ATS BTS ATS

5

1 0.02989 0.02989 0.00 22134.55 52758.95

2 0.02590 0.02590 0.00 2653.14 13796.13

3 0.02574 0.02614 1.52 32486.17 73462.19

4 0.02650 0.02650 0.00 17656.86 43803.57

5 0.02600 0.02728 4.93 25197.63 58885.11

6 0.02293 0.02389 4.17 5006.55 18502.95

7 0.02468 0.02468 0.00 25757.34 60004.53

8 0.02710 0.02710 0.00 5044.58 18579.01

9 0.02168 0.02168 0.00 12466.87 33423.59

10 0.03292 0.03292 0.00 17539.17 43568.19

Avg 0.02633 0.02660 1.06 16594.29 41678.42

6

1 0.02261 0.02948 30.38 35920.93 71233.23

2 0.01919 0.02085 8.63 16449.11 32289.59

3 0.02362 0.03011 27.48 40649.29 80689.95

4 0.02456 0.02456 0.00 9674.54 18740.45

5 0.02203 0.02203 0.00 29029.44 57450.25

6 0.02232 0.02275 1.92 21382.10 42155.57

7 0.02275 0.02307 1.43 10325.74 20042.85

8 0.03203 0.03481 8.70 5927.10 11245.57

9 0.02614 0.03076 17.65 15790.94 30973.25

10 0.02875 0.02875 0.00 15511.35 30414.07

Avg 0.02440 0.02672 9.62 20066.05 39523.48

7

1 0.02574 0.02574 0.00 30085.50 62206.83

2 0.02234 0.02351 5.26 17673.63 37383.09

3 0.02804 0.02951 5.26 7142.50 16320.83

4 0.02797 0.02797 0.00 23306.31 48648.45

5 0.02355 0.02414 2.51 29987.11 62010.05

6 0.03366 0.03368 0.05 10170.83 22377.49

7 0.02315 0.02315 0.00 13053.20 28142.23

8 0.03671 0.03671 0.00 21161.33 44358.49

9 0.02986 0.02986 0.00 30271.90 62579.63

10 0.03287 0.03287 0.00 19047.09 40130.01

Avg 0.02839 0.02871 1.31 20189.94 42415.71

8

1 0.02255 0.05540 145.73 21592.05 59194.26

2 0.01897 0.02108 11.11 18210.42 44402.02

3 0.02426 0.02451 1.01 12935.56 30687.38

4 0.02435 0.02705 11.11 24371.60 60421.09

5 0.02186 0.02186 0.00 16576.69 40154.32

6 0.02653 0.02764 4.17 15678.35 37818.64

7 0.02018 0.02102 4.17 15804.35 38146.24

8 0.03106 0.03170 2.04 16665.03 40384.01

9 0.02613 0.02613 0.00 27711.02 69103.58

10 0.02848 0.02875 0.95 18227.98 44447.68

Avg 0.02444 0.02851 18.03 18777.31 46475.92

178

APPENDIX C

DETAILED RESULTS FOR CHAPTER 6

1
7
9

 Appendix C1 Results of experimental studies for the problem set 5.50

Problem

Setting
Instance

Desired

Rate

(N=25)

Binary Search Tabu Search Simulated Annealing

Achieved

Rate
N

Total # of

Iterations

CPU

(sec.)

Achieved

Rate
N

Total # of

Iterations

of

Iterations

for

Convergence

CPU

(sec.)

Achieved

Rate
N

Total # of

Iterations

of

Iterations

for

Convergence

CPU

(sec.)

1

1 0.07327 0.07327 14 22 2.39 0.07327 14 11 6 2.15 0.07327 14 10 5 2.34

2 0.07495 0.07495 20 28 2.56 0.07495 20 10 5 1.78 0.07495 20 10 5 2.53

3 0.07952 0.07952 17 25 2.43 0.07952 17 10 5 1.73 0.07952 17 10 4 2.17

4 0.07952 0.07952 9 17 1.12 0.07952 9 11 6 1.34 0.07952 9 10 5 1.42

5 0.07338 0.07338 14 22 2.01 0.07338 14 11 6 1.86 0.07338 14 10 5 2.12

Avg 0.07613 0.07613 15 23 2.10 0.07613 15 11 6 1.77 0.07613 15 10 5 2.12

2

1 0.06404 0.06930 9 17 1.79 0.06930 9 11 6 2.09 0.06930 9 9 7 2.78

2 0.05846 0.05846 25 32 4.49 0.05846 25 7 2 1.79 0.05846 25 10 2 2.67

3 0.06376 0.06376 25 32 6.05 0.06376 25 7 2 2.48 0.06376 25 10 2 3.50

4 0.06952 0.06952 25 32 19.59 0.06952 25 7 2 6.85 0.06952 25 10 2 11.00

5 0.06355 0.06355 25 32 6.08 0.06355 25 7 2 2.39 0.06355 25 10 2 3.63

Avg 0.06386 0.06492 22 29 7.60 0.06492 22 8 3 3.12 0.06492 22 10 3 4.72

3

1 0.09005 0.09018 20 28 9.47 0.09018 20 10 5 5.35 0.09018 20 12 6 7.47

2 0.06728 0.06731 24 32 3.52 0.06731 24 9 4 1.87 0.06731 24 10 4 2.33

3 0.09482 0.09482 25 32 11.30 0.09482 25 7 2 4.15 0.09482 25 10 2 6.75

4 0.08473 0.08473 24 32 10.28 0.08473 24 9 4 5.48 0.08473 24 10 4 7.00

5 0.07306 0.07306 25 32 5.65 0.07306 25 7 2 2.29 0.07306 25 10 2 3.32

Avg 0.08198 0.08202 24 31 8.04 0.08202 24 8 3 3.83 0.08202 24 10 4 5.37

4

1 0.06093 0.06093 25 32 6.68 0.06093 25 7 2 2.82 0.06093 25 10 2 3.85

2 0.04998 0.04998 25 32 5.02 0.04998 25 7 2 2.04 0.04998 25 10 2 2.93

3 0.06773 0.06773 25 32 6.07 0.06773 25 7 2 2.50 0.06773 25 10 2 3.57

4 0.06215 0.06230 24 32 6.21 0.06230 24 9 4 3.39 0.06230 24 10 4 4.23

5 0.05550 0.05550 25 32 6.86 0.05550 25 7 2 2.90 0.05550 25 10 2 3.98

Avg 0.05926 0.05929 25 32 6.17 0.05929 25 7 2 2.73 0.05929 25 10 2 3.71

1
8
0

Appendix C1 Results of experimental studies for the problem set 5.50 (cont.)

 (cont.)

Problem

Setting
Instance

Desired

Rate

(N=25)

Binary Search Tabu Search Simulated Annealing

Achieved

Rate
N

Total # of

Iterations

CPU

(sec.)

Achieved

Rate
N

Total # of

Iterations

of

Iterations

for

Convergence

CPU

(sec.)

Achieved

Rate
N

Total # of

Iterations

of

Iterations

for

Convergence

CPU

(sec.)

5

1 0.03676 0.03676 14 22 3.73 0.03676 14 11 6 3.54 0.03676 14 9 5 3.49

2 0.02362 0.02362 5 9 0.89 0.02362 5 5 0 0.92 0.02362 5 5 4 0.97

3 0.03713 0.03713 5 9 0.55 0.03713 5 5 0 0.61 0.03713 5 5 4 0.62

4 0.03085 0.03085 17 25 3.03 0.03085 17 10 5 2.21 0.03085 17 9 4 2.23

5 0.03369 0.03369 7 14 0.42 0.03369 7 8 3 0.44 0.03369 7 4 3 0.41

Avg 0.03241 0.03241 10 16 1.72 0.03241 10 8 3 1.54 0.03241 10 6 4 1.54

6

1 0.01485 0.01485 17 25 1.97 0.01485 17 10 5 1.42 0.01485 17 9 4 1.45

2 0.02256 0.02256 22 29 7.19 0.02256 22 9 4 3.84 0.02256 22 10 4 5.23

3 0.02540 0.02540 13 20 10.27 0.02540 13 8 3 7.41 0.02540 13 6 3 6.60

4 0.02375 0.02375 8 16 1.62 0.02375 8 11 6 2.01 0.02375 8 7 5 1.70

5 0.02508 0.02508 24 32 3.45 0.02508 24 9 4 1.86 0.02508 24 10 4 2.34

Avg 0.02233 0.02233 17 24 4.90 0.02233 17 9 4 3.31 0.02233 17 8 4 3.46

7

1 0.03088 0.03088 25 32 10.12 0.03088 25 7 2 4.07 0.03088 25 10 2 5.72

2 0.02349 0.02349 24 32 3.82 0.02349 24 9 4 2.12 0.02349 24 10 4 2.62

3 0.03719 0.03719 25 32 10.08 0.03719 25 7 2 3.51 0.03719 25 10 2 6.07

4 0.03101 0.03101 24 32 3.07 0.03101 24 9 4 1.70 0.03101 24 10 4 2.04

5 0.03369 0.03369 24 32 2.79 0.03369 24 9 4 1.56 0.03369 24 10 4 1.92

Avg 0.03125 0.03125 24 32 5.98 0.03125 24 8 3 2.59 0.03125 24 10 3 3.67

8

1 0.01460 0.01460 24 32 10.87 0.01460 24 9 4 5.60 0.01460 24 10 4 7.35

2 0.01835 0.01835 25 32 10.17 0.01835 25 7 2 4.09 0.01835 25 10 2 5.88

3 0.02401 0.02401 25 32 5.68 0.02401 25 7 2 2.37 0.02401 25 10 2 3.24

4 0.02235 0.02235 25 32 15.51 0.02235 25 7 2 5.99 0.02235 25 10 2 9.14

5 0.02461 0.02462 24 32 3.99 0.02462 24 9 4 2.23 0.02462 24 10 4 2.76

Avg 0.02078 0.02079 25 32 9.24 0.02079 25 8 3 4.06 0.02079 25 10 3 5.67

1
8
1

 Appendix C2 Results of experimental studies for the problem set 5.100

Problem

Setting
Instance

Desired

Rate

(N=50)

Binary Search Tabu Search Simulated Annealing

Achieved

Rate
N

Total # of

Iterations

CPU

(sec.)

Achieved

Rate
N

Total # of

Iterations

of

Iterations

for

Convergence

CPU

(sec.)

Achieved

Rate
N

Total # of

Iterations

of

Iterations

for

Convergence

CPU

(sec.)

1

1 0.082002 0.082002 32 40 8.95 0.082002 32 16 6 9.58 0.082002 32 13 6 12.45

2 0.074952 0.074952 27 36 5.52 0.074952 27 17 7 5.83 0.074952 27 15 7 6.55

3 0.079517 0.079517 17 26 3.45 0.079517 17 17 7 4.79 0.079517 17 15 7 5.25

4 0.079516 0.079516 9 18 1.86 0.079516 9 15 5 2.42 0.079516 14 3 3 1.45

5 0.073379 0.073379 14 23 3.11 0.073379 14 13 3 3.65 0.073379 14 3 3 2.46

Avg 0.077873 0.077873 20 29 4.58 0.077873 20 16 6 5.25 0.077873 21 10 5 5.63

2

1 0.075750 0.075750 47 55 14.63 0.075750 47 15 5 8.83 0.075750 47 10 5 9.35

2 0.059465 0.059465 50 58 17.32 0.059465 50 12 2 7.10 0.059465 50 10 2 9.27

3 0.063879 0.063879 47 55 21.01 0.063879 47 15 5 12.86 0.063879 47 10 5 12.73

4 0.059568 0.059568 49 58 14.82 0.059568 49 15 5 8.36 0.059568 49 10 5 9.22

5 0.083032 0.083032 50 58 30.42 0.083032 50 12 2 11.05 0.083032 50 10 2 17.64

Avg 0.068339 0.068339 49 57 20.89 0.068339 49 14 4 9.64 0.068339 49 10 4 11.64

3

1 0.073273 0.073273 49 58 22.17 0.073273 49 15 5 12.11 0.073273 49 10 5 13.64

2 0.066721 0.066721 50 58 34.65 0.066721 50 12 2 14.26 0.066721 50 10 2 18.42

3 0.078925 0.078925 50 58 20.20 0.078925 50 12 2 8.25 0.078925 50 10 2 10.80

4 0.056857 0.057020 27 45 16.33 0.056934 39 20 10 27.58 0.057020 27 17 11 29.70

5 0.073089 0.073089 50 58 20.03 0.073089 50 12 2 8.30 0.073089 50 10 2 10.62

Avg 0.069773 0.069806 45 55 22.68 0.069788 48 14 4 14.10 0.069806 45 11 4 16.64

4

1 0.065298 0.065298 50 58 33.46 0.065298 50 12 2 13.74 0.065298 50 10 2 17.44

2 0.053414 0.053414 50 58 19.59 0.053414 50 12 2 8.00 0.053414 50 10 2 10.39

3 0.072989 0.072989 50 58 26.40 0.072989 50 12 2 11.20 0.072989 50 10 2 13.98

4 0.063962 0.064161 49 58 26.63 0.064161 49 15 5 15.02 0.064161 49 10 5 15.48

5 0.059712 0.059712 50 58 33.18 0.059712 50 12 2 13.88 0.059712 50 10 2 17.50

Avg 0.063075 0.063115 50 58 27.85 0.063115 50 13 3 12.37 0.063115 50 10 3 14.96

1
8
2

Appendix C2 Results of experimental studies for the problem set 5.100 (cont.)

Problem

Setting
Instance

Desired

Rate

(N=50)

Binary Search Tabu Search Simulated Annealing

Achieved

Rate
N

Total # of

Iterations

CPU

(sec.)

Achieved

Rate
N

Total # of

Iterations

of

Iterations

for

Convergence

CPU

(sec.)

Achieved

Rate
N

Total # of

Iterations

of

Iterations

for

Convergence

CPU

(sec.)

5

1 0.036759 0.036759 14 23 6.35 0.036759 14 13 3 6.19 0.036759 14 3 3 4.26

2 0.029006 0.029006 34 43 8.58 0.029006 34 15 5 7.07 0.029006 34 10 5 6.69

3 0.037133 0.037133 5 10 1.34 0.037133 5 6 6 1.75 0.037133 5 6 6 1.81

4 0.030850 0.030850 17 26 3.87 0.030850 17 17 7 5.82 0.030850 17 11 7 5.07

5 0.033691 0.033691 7 15 1.19 0.033691 7 15 5 1.48 0.033691 7 8 6 1.67

Avg 0.033488 0.033488 15 23 4.27 0.033488 15 13 5 4.46 0.033488 15 8 5 3.90

6

1 0.019655 0.019655 17 26 9.84 0.019655 17 17 7 14.24 0.019655 17 11 7 11.95

2 0.021452 0.021452 32 40 7.85 0.021452 32 16 6 7.92 0.021452 32 13 6 7.36

3 0.033825 0.033825 49 58 36.85 0.033825 49 15 5 18.08 0.033825 49 10 5 20.51

4 0.028550 0.028550 49 58 17.32 0.028550 49 15 5 9.64 0.028550 49 10 5 9.98

5 0.018001 0.018001 47 55 11.25 0.018001 47 15 5 7.24 0.018001 47 10 5 6.99

Avg 0.024297 0.024297 39 47 16.62 0.024297 39 16 6 11.42 0.024297 39 11 6 11.36

7

1 0.031343 0.031343 50 58 46.57 0.031343 50 12 2 18.75 0.031343 50 10 2 25.02

2 0.023497 0.023497 39 48 10.47 0.023497 39 17 7 9.52 0.023497 39 15 7 10.83

3 0.037226 0.037226 49 58 22.29 0.037226 49 15 5 11.34 0.037226 49 10 5 12.65

4 0.031018 0.031018 44 52 9.72 0.031018 44 14 4 6.18 0.031018 44 15 6 8.36

5 0.033869 0.033869 49 58 11.82 0.033869 49 15 5 6.79 0.033869 49 10 5 6.99

Avg 0.031391 0.031391 46 55 20.17 0.031391 46 15 5 10.52 0.031391 46 12 5 12.77

8

1 0.014675 0.014675 49 58 34.07 0.014675 49 15 5 17.33 0.014675 49 10 5 19.27

2 0.018924 0.018924 50 58 36.18 0.018924 50 12 2 14.20 0.018924 50 10 2 19.06

3 0.025171 0.025171 50 58 28.41 0.025171 50 12 2 11.23 0.025171 50 10 2 14.80

4 0.023489 0.023489 50 58 58.41 0.023489 50 12 2 21.40 0.023489 50 10 2 30.84

5 0.025001 0.025004 49 58 17.16 0.025004 49 15 5 10.38 0.025004 49 10 5 9.95

Avg 0.021452 0.021453 50 58 34.85 0.021453 50 13 3 14.91 0.021453 50 10 3 18.78

1
8
3

 Appendix C3 Results of experimental studies for the problem set 5.200

Problem

Setting
Instance

Desired

Rate

(N=100)

Binary Search Tabu Search Simulated Annealing

Achieved

Rate
N

Total # of

Iterations

CPU

(sec.)

Achieved

Rate
N

Total # of

Iterations

of

Iterations

for

Convergence

CPU

(sec.)

Achieved

Rate
N

Total # of

Iterations

of

Iterations

for

Convergence

CPU

(sec.)

1

1 0.082002 0.082002 32 56 20.09 0.082002 32 22 7 17.43 0.082002 32 10 4 12.87

2 0.074952 0.074952 27 37 7.91 0.074952 27 23 8 11.29 0.074952 27 15 6 11.03

3 0.079517 0.079517 17 27 8.42 0.079517 17 21 6 8.19 0.079517 17 10 5 10.31

4 0.079516 0.079516 9 19 4.31 0.079516 9 21 6 5.87 0.079516 9 10 6 5.79

5 0.073379 0.073379 14 24 7.64 0.073379 14 21 6 8.83 0.073379 14 8 5 11.25

Avg 0.077873 0.077873 20 33 9.67 0.077873 20 22 7 10.32 0.077873 20 11 5 10.25

2

1 0.073524 0.073524 82 91 80.34 0.073524 82 22 7 54.66 0.073524 82 15 6 50.81

2 0.059610 0.059610 99 109 81.29 0.059610 99 21 6 38.20 0.059610 99 15 6 44.24

3 0.063879 0.063879 47 56 21.65 0.063879 47 20 5 17.60 0.063879 47 10 5 15.32

4 0.069585 0.069585 54 64 56.36 0.069585 54 22 7 41.50 0.069585 54 10 5 30.87

5 0.064190 0.064190 94 197 163.82 0.064190 94 20 5 37.72 0.064190 94 10 5 32.81

Avg 0.066158 0.066158 75 103 80.69 0.066158 75 21 6 37.94 0.066158 75 12 5 34.81

3

1 0.094845 0.094845 100 111 250.55 0.094845 100 17 2 85.21 0.094845 100 10 3 80.25

2 0.068029 0.068029 99 109 72.40 0.068029 99 21 6 34.60 0.068029 99 15 6 45.19

3 0.095359 0.095359 97 106 90.17 0.095359 97 21 6 39.45 0.095359 97 15 6 50.78

4 0.086525 0.086525 99 109 236.64 0.086525 99 21 6 120.29 0.086525 99 15 6 151.43

5 0.073168 0.073168 87 97 80.89 0.073168 87 21 6 43.76 0.073168 87 15 6 48.13

Avg 0.083585 0.083585 96 106 146.13 0.083585 96 20 5 64.66 0.083585 96 14 5 75.16

4

1 0.070071 0.070071 100 109 154.66 0.070071 100 17 2 55.49 0.070071 100 10 2 56.71

2 0.056413 0.056426 99 109 86.27 0.056426 99 21 6 40.97 0.056426 99 15 6 50.40

3 0.078401 0.078401 100 109 123.46 0.078401 100 17 2 45.16 0.078401 100 10 2 47.08

4 0.066478 0.066489 99 109 117.58 0.066489 99 21 6 53.80 0.066489 99 15 6 52.45

5 0.062756 0.062756 100 109 165.33 0.062756 100 17 2 59.37 0.062756 100 10 2 62.84

Avg 0.066824 0.066829 100 109 129.46 0.066829 100 19 4 50.96 0.066829 100 12 4 53.90

1
8
4

Appendix C3 Results of experimental studies for the problem set 5.200 (cont.)

Problem

Setting
Instance

Desired

Rate

(N=100)

Binary Search Tabu Search Simulated Annealing

Achieved

Rate
N

Total # of

Iterations

CPU

(sec.)

Achieved

Rate
N

Total # of

Iterations

of

Iterations

for

Convergence

CPU

(sec.)

Achieved

Rate
N

Total # of

Iterations

of

Iterations

for

Convergence

CPU

(sec.)

5

1 0.036759 0.036759 14 24 11.57 0.036759 14 21 6 14.76 0.036759 14 10 5 13.35

2 0.029006 0.029006 34 44 12.96 0.029006 34 21 6 15.05 0.029006 34 10 5 12.15

3 0.037133 0.037133 5 11 3.71 0.037133 5 22 7 4.91 0.037133 5 8 7 5.07

4 0.030850 0.030850 17 27 7.05 0.030850 17 21 6 8.97 0.030850 17 9 5 7.80

5 0.033691 0.033691 7 16 4.29 0.033691 7 22 7 5.23 0.033691 7 9 7 5.02

Avg 0.033488 0.033488 15 24 7.92 0.033488 15 21 6 9.78 0.033488 15 9 6 8.68

6

1 0.019655 0.019655 17 27 14.51 0.019655 17 21 6 17.91 0.019655 17 10 5 16.77

2 0.028621 0.028621 64 74 40.33 0.028621 64 22 7 31.64 0.028621 64 15 6 28.20

3 0.033833 0.033833 74 84 72.93 0.033833 74 21 6 37.94 0.033833 74 15 6 49.53

4 0.028572 0.028572 89 99 61.06 0.028572 89 23 8 39.05 0.028572 89 15 7 39.09

5 0.018001 0.018001 47 56 13.57 0.018001 47 20 5 11.17 0.018001 47 10 5 9.56

Avg 0.025736 0.025736 58 68 40.48 0.025736 58 21 6 27.54 0.025736 58 13 6 28.63

7

1 0.031408 0.031408 92 379 659.63 0.031408 92 34 19 133.53 0.031408 92 15 6 116.97

2 0.023497 0.023497 39 49 13.54 0.023497 39 22 7 13.98 0.023497 39 15 6 13.01

3 0.037226 0.037226 49 59 27.66 0.037226 49 21 6 20.55 0.037226 49 15 6 24.32

4 0.031018 0.031018 44 53 11.48 0.031018 44 20 5 9.98 0.031018 44 10 4 8.77

5 0.033877 0.033877 74 84 31.31 0.033877 74 21 6 19.42 0.033877 74 15 6 21.32

Avg 0.031405 0.031405 60 125 148.72 0.031405 60 24 9 39.49 0.031405 60 14 6 36.88

8

1 0.014685 0.014685 84 94 74.99 0.014685 84 21 6 41.51 0.014685 84 15 6 44.80

2 0.019281 0.019281 99 109 138.79 0.019281 99 21 6 61.84 0.019281 99 15 6 73.32

3 0.025784 0.025784 99 109 123.49 0.025784 99 21 6 52.65 0.025784 99 15 6 65.32

4 0.023520 0.023520 64 74 102.79 0.023520 64 22 7 62.12 0.023520 64 15 6 72.92

5 0.025074 0.025074 97 106 77.36 0.025074 97 21 6 39.87 0.025074 97 15 6 45.37

Avg 0.021669 0.021669 89 98 103.48 0.021669 89 21 6 51.60 0.021669 89 15 6 60.35

1
8
5

 Appendix C4 Results of experimental studies for the problem set 10.100

Problem

Setting
Instance

Desired

Rate

(N=50)

Binary Search Tabu Search Simulated Annealing

Achieved

Rate
N

Total # of

Iterations

CPU

(sec.)

Achieved

Rate
N

Total # of

Iterations

of

Iterations

for

Convergence

CPU

(sec.)

Achieved

Rate
N

Total # of

Iterations

of

Iterations

for

Convergence

CPU

(sec.)

1

1 0.08694 0.08694 13 34 129.15 0.08694 13 17 7 144.89 0.08694 13 8 3 129.92

2 0.07338 0.07338 38 46 904.85 0.07338 38 14 4 665.61 0.07338 38 10 3 742.16

3 0.06442 0.06442 13 21 138.69 0.06442 13 13 3 248.68 0.06442 13 5 3 147.19

4 0.07554 0.07554 23 32 258.63 0.07554 23 14 4 325.46 0.07554 23 9 4 244.45

5 0.07907 0.07907 28 64 173.71 0.07907 28 21 11 252.00 0.07907 29 10 5 113.40

Avg 0.07587 0.07587 23 39 321.01 0.07587 23 16 6 324.84 0.07587 23 8 4 275.42

2

1 0.05596 0.05602 48 57 710.80 0.05596 48 15 5 1279.37 0.05597 49 10 5 478.53

2 0.06253 0.06266 48 57 650.63 0.06266 48 15 5 677.13 0.06266 48 10 5 485.85

3 0.06730 0.06776 38 45 582.16 0.07183 47 17 7 749.69 0.07281 44 10 4 618.81

4 0.05925 0.05925 48 57 1096.30 0.05925 48 16 6 664.08 0.05925 48 10 5 754.16

5 0.06936 0.06936 48 102 1780.16 0.06936 48 17 7 949.01 0.06936 48 10 5 745.20

Avg 0.06288 0.06301 46 64 964.01 0.06381 48 16 6 863.86 0.06401 47 10 5 616.51

3

1 0.07214 0.07214 48 57 408.61 0.07214 48 15 5 302.91 0.07214 48 10 5 286.74

2 0.06911 0.06911 43 52 523.49 0.06911 43 16 6 427.25 0.06911 43 10 5 409.00

3 0.08597 0.08618 53 113 3113.34 0.08618 53 16 6 1501.83 0.08589 53 10 5 1232.49

4 0.06365 0.06365 48 57 1099.02 0.06365 48 15 5 908.58 0.06365 48 10 5 790.36

5 0.06660 0.06660 48 57 311.77 0.06660 48 15 5 220.13 0.06660 48 10 5 202.43

Avg 0.07149 0.07154 48 67 1091.25 0.07154 48 15 5 672.14 0.07148 48 10 5 584.20

4

1 0.05029 0.13110 13 57 289.86 0.17492 16 13 3 176.61 0.22174 24 13 9 496.83

2 0.04972 0.05134 78 87 2289.82 0.05134 78 16 6 1073.19 0.05134 78 10 4 1041.88

3 0.04304 0.04389 28 37 277.34 0.04389 28 15 5 352.90 0.04389 28 10 3 354.11

4 0.05610 0.05610 38 46 415.24 0.05610 38 14 4 363.65 0.05610 38 10 5 367.60

5 0.05589 0.05631 4 6 108.95 0.05631 4 5 5 120.45 0.05631 4 6 6 169.18

Avg 0.05101 0.06775 32 47 676.24 0.07651 33 13 5 417.36 0.08587 34 10 5 485.92

1
8
6

Appendix C4 Results of experimental studies for the problem set 10.100 (cont.)

Problem

Setting
Instance

Desired

Rate

(N=50)

Binary Search Tabu Search Simulated Annealing

Achieved

Rate
N

Total # of

Iterations

CPU

(sec.)

Achieved

Rate
N

Total # of

Iterations

of

Iterations

for

Convergence

CPU

(sec.)

Achieved

Rate
N

Total # of

Iterations

of

Iterations

for

Convergence

CPU

(sec.)

5

1 0.03089 0.03089 6 14 72.38 0.03089 6 15 5 110.45 0.03089 6 8 6 134.00

2 0.02444 0.02444 12 21 39.05 0.02444 12 14 4 57.47 0.02444 12 7 5 51.78

3 0.02340 0.02340 8 17 89.76 0.02340 8 15 5 121.52 0.02340 8 6 5 147.27

4 0.02347 0.02347 8 17 61.09 0.02347 8 15 5 95.53 0.02347 8 6 5 104.83

5 0.03700 0.03700 28 37 142.33 0.03700 28 17 7 202.83 0.03700 28 10 4 151.60

Avg 0.02784 0.02784 12 21 80.92 0.02784 12 15 5 117.56 0.02784 12 7 5 117.90

6

1 0.01849 0.01849 23 32 282.88 0.01849 23 14 4 326.56 0.01849 23 10 4 300.24

2 0.02347 0.02343 23 45 889.73 0.02343 23 30 29 886.30 0.02343 23 16 11 531.35

3 0.02322 0.02322 48 57 464.83 0.02322 48 15 5 318.26 0.02322 48 10 5 319.25

4 0.02892 0.02892 48 57 1298.27 0.02892 48 15 5 856.80 0.02892 48 10 5 922.63

5 0.02505 0.02505 48 57 739.89 0.02505 48 15 5 478.50 0.02505 48 10 5 522.10

Avg 0.02383 0.02382 38 50 735.12 0.02382 38 18 10 573.28 0.02382 38 11 6 519.11

7

1 0.02165 0.02165 43 52 169.79 0.02165 43 16 6 168.51 0.02165 43 10 5 135.36

2 0.02169 0.02169 48 101 775.23 0.02169 48 15 5 352.30 0.02169 50 10 2 281.11

3 0.02167 0.02167 18 27 48.25 0.02167 18 15 5 69.78 0.02167 18 9 4 53.57

4 0.02558 0.02558 43 52 1092.27 0.02558 43 16 6 787.72 0.02558 43 10 5 793.01

5 0.01396 0.01396 23 32 45.43 0.01396 23 14 4 58.53 0.01396 23 9 4 48.02

Avg 0.02091 0.02091 35 53 426.19 0.02091 35 15 5 287.37 0.02091 35 10 4 262.21

8

1 0.01747 0.01744 43 52 211.68 0.01744 43 21 11 365.57 0.01744 43 10 5 174.74

2 0.01280 0.01280 43 101 947.54 0.01780 43 27 17 804.16 0.01280 43 10 3 390.64

3 0.03790 0.03790 48 104 1275.82 0.03790 48 16 6 515.81 0.03790 48 10 3 533.24

4 0.01818 0.01818 48 56 612.83 0.01818 48 16 6 615.39 0.01818 48 10 5 614.58

5 0.01610 0.01610 49 58 590.80 0.01610 49 15 5 397.63 0.01610 49 10 5 379.50

Avg 0.02049 0.02048 46 74 727.73 0.02148 46 19 9 539.71 0.02048 46 10 4 418.54

1
8
7

 Appendix C5 Results of experimental studies for the problem set 10.200

Problem

Setting
Instance

Desired

Rate

(N=100)

Binary Search Tabu Search Simulated Annealing

Achieved

Rate
N

Total # of

Iterations

CPU

(sec.)

Achieved

Rate
N

Total # of

Iterations

of

Iterations

for

Convergence

CPU

(sec.)

Achieved

Rate
N

Total # of

Iterations

of

Iterations

for

Convergence

CPU

(sec.)

1

1 0.08694 0.08694 13 21 168.44 0.08694 13 21 6 247.13 0.08694 13 12 6 261.05

2 0.07338 0.07338 38 47 968.68 0.07338 38 18 3 866.90 0.07338 38 10 3 890.29

3 0.06442 0.06442 13 22 186.16 0.06442 13 23 8 425.13 0.06442 13 13 8 373.81

4 0.07554 0.07554 23 33 359.38 0.07554 23 19 4 434.06 0.07554 23 10 4 448.78

5 0.07907 0.07907 28 37 149.45 0.07907 28 36 21 190.68 0.07907 30 10 5 157.62

Avg 0.07587 0.07587 23 32 366.42 0.07587 23 23 8 432.78 0.07587 23 11 5 426.31

2

1 0.05682 0.05684 83 252 4756.88 0.05683 87 21 6 1076.00 0.05684 89 15 10 1699.47

2 0.06398 0.06407 98 108 3259.61 0.06407 98 21 6 1851.57 0.06407 98 15 6 2129.57

3 0.06836 0.07281 41 84 1286.43 0.06836 100 21 6 2085.34 0.06836 100 15 7 2355.93

4 0.05929 0.05929 83 93 1025.67 0.05929 83 22 7 1003.66 0.05929 83 10 4 1012.86

5 0.07228 0.07228 98 108 4225.02 0.07228 98 24 9 2411.39 0.07228 98 15 7 2879.19

Avg 0.06415 0.06506 81 129 2910.72 0.06417 93 22 7 1685.59 0.06417 94 14 7 2015.40

3

1 0.07394 0.07394 98 108 1434.35 0.07394 98 21 6 653.14 0.07394 98 15 6 865.72

2 0.06911 0.06911 48 58 701.42 0.06911 48 20 5 594.17 0.06911 48 10 5 529.79

3 0.07087 0.07087 58 78 2981.95 0.07087 68 17 2 966.84 0.07087 68 10 2 1334.97

4 0.06506 0.06506 98 108 3127.48 0.06506 98 21 6 1426.11 0.06506 98 15 6 1981.70

5 0.06802 0.06803 98 108 1403.25 0.06802 98 21 6 723.08 0.06803 98 15 7 945.58

Avg 0.06940 0.06940 80 92 1929.69 0.06940 82 20 5 872.67 0.06940 82 13 5 1131.55

4

1 0.05423 0.13110 13 47 481.18 0.10816 41 48 33 3277.72 0.13110 13 25 22 1497.85

2 0.05134 0.05134 78 87 2684.64 0.05134 78 21 6 1654.57 0.05134 78 15 6 1987.15

3 0.05790 0.05790 73 83 2467.56 0.05790 73 22 7 1598.45 0.05790 73 15 6 1856.71

4 0.05916 0.05916 98 108 2506.76 0.05916 98 21 6 1567.89 0.05916 98 15 6 1834.65

5 0.05798 0.05798 58 68 2967.82 0.05798 58 21 6 1884.34 0.05798 58 15 6 2105.55

Avg 0.05612 0.07150 64 79 2221.59 0.06691 70 27 12 1996.59 0.07150 64 17 9 1856.38

1
8
8

Appendix C5 Results of experimental studies for the problem set 10.200 (cont.)

Problem

Setting
Instance

Desired

Rate

(N=100)

Binary Search Tabu Search Simulated Annealing

Achieved

Rate
N

Total # of

Iterations

CPU

(sec.)

Achieved

Rate
N

Total # of

Iterations

of

Iterations

for

Convergence

CPU

(sec.)

Achieved

Rate
N

Total # of

Iterations

of

Iterations

for

Convergence

CPU

(sec.)

5

1 0.03089 0.03089 6 15 155.19 0.03089 6 8 8 248.11 0.03089 6 10 8 263.66

2 0.02444 0.02444 12 22 78.61 0.02444 12 21 6 123.85 0.02444 12 10 6 113.93

3 0.02769 0.02769 8 18 101.20 0.02769 8 22 7 157.89 0.02769 8 8 7 158.67

4 0.02347 0.02347 8 18 102.16 0.02347 8 22 7 172.43 0.02347 8 8 7 171.43

5 0.03700 0.03700 28 61 288.66 0.03700 28 20 5 330.95 0.03700 28 10 4 306.54

Avg 0.02870 0.02870 12 27 145.16 0.02870 12 19 7 206.65 0.02870 12 9 6 202.85

6

1 0.01849 0.01849 23 33 472.84 0.01849 23 19 4 510.09 0.01849 23 10 4 651.91

2 0.02454 0.02455 13 29 381.69 0.02457 13 21 6 403.98 0.02457 13 18 15 850.50

3 0.02364 0.02364 98 108 1894.61 0.02364 98 21 6 935.95 0.02364 98 15 6 1218.30

4 0.02893 0.02893 73 83 2418.18 0.02893 73 22 7 1543.93 0.02893 73 15 6 1761.57

5 0.02507 0.02507 98 108 2482.15 0.02507 98 21 6 1171.84 0.02507 98 15 6 1492.72

Avg 0,02413 0.02414 61 72 1529.89 0.02414 61 21 6 913.16 0.02414 61 15 7 1195.00

7

1 0.02166 0.02166 58 68 359.33 0.02166 58 23 8 397.32 0.02166 58 10 5 275.86

2 0.02175 0.02175 98 108 1730.67 0.02175 98 21 6 858.47 0.02175 98 15 6 1149.02

3 0.02167 0.02167 18 28 83.58 0.02167 18 21 6 130.49 0.02167 18 13 6 127.37

4 0.02558 0.02558 43 53 1162.78 0.02558 43 20 5 1015.34 0.02558 43 10 5 901.12

5 0.01396 0.01396 23 33 79.23 0.01396 23 19 4 106.28 0.01396 23 10 4 102.12

Avg 0.02092 0.02092 48 58 683.12 0.02092 48 21 6 501.58 0.02092 48 12 5 511.10

8

1 0.01751 0.01751 58 86 579.59 0.01751 58 24 9 318.83 0.01751 58 10 5 344.60

2 0.01361 0.01361 98 108 1846.84 0.01361 98 21 6 832.56 0.01361 98 15 6 1188.77

3 0.01754 0.01754 98 108 2060.08 0.01754 98 21 6 788.88 0.01754 99 10 5 778.42

4 0.01908 0.05198 53 72 1683.77 0.05198 53 22 7 812.56 0.05198 53 10 5 796.65

5 0.01661 0.01661 98 108 2368.73 0.01661 98 21 6 813.33 0.01661 98 15 6 1348.45

Avg 0.01687 0.02345 81 96 1707.80 0.02345 81 22 7 713.23 0.02345 81 12 5 891.38

1
8
9

 Appendix C6 Results of experimental studies for the problem set 10.400

Problem

Setting
Instance

Desired

Rate

(N=200)

Binary Search Tabu Search Simulated Annealing

Achieved

Rate
N

Total # of

Iterations

CPU

(sec.)

Achieved

Rate
N

Total # of

Iterations

of

Iterations

for

Convergence

CPU

(sec.)

Achieved

Rate
N

Total # of

Iterations

of

Iterations

for

Convergence

CPU

(sec.)

1

1 0.08694 0.08694 13 23 381.70 0.08694 13 32 17 658.34 0.08694 14 13 9 650.18

2 0.07338 0.07338 38 48 1189.39 0.07338 38 20 5 1464.62 0.07338 38 10 5 1336.19

3 0.06442 0.06442 13 23 344.46 0.06442 13 26 11 929.65 0.06442 13 12 11 785.76

4 0.07554 0.07554 23 33 577.50 0.07554 23 24 9 1043.04 0.07554 23 14 9 965.27

5 0.07907 0.07907 28 65 394.93 0.07907 28 25 10 488.97 0.07907 29 15 6 403.82

Avg 0.07587 0.07587 23 38 577.60 0.07587 23 25 10 916.92 0.07587 23 13 8 828.24

2

1 0.05703 0.05720 124 340 12379.43 0.05704 157 50 46 9105.03 0.05704 140 40 40 11747.86

2 0.06462 0.06462 188 198 14621.69 0.06462 188 19 4 3362.46 0.06462 188 10 4 3484.95

3 0.05225 0.05225 118 330 8254.40 0.05225 118 25 10 1814.55 0.05225 118 15 6 2050.34

4 0.05929 0.05929 83 94 2347.65 0.05929 83 22 7 1386.41 0.05929 83 10 4 1183.07

5 0.07273 0.07274 153 284 19200.56 0.07274 153 29 14 7441.57 0.07274 153 15 6 5013.38

Avg 0.06118 0.06122 133 249 10545.51 0.06119 140 29 16 4622.00 0.06119 136 18 12 4695.92

3

1 0.07476 0.07476 198 209 6183.84 0.07476 198 21 6 1657.66 0.07476 198 15 6 2239.66

2 0.06911 0.06911 48 59 872.26 0.06911 48 21 6 928.48 0.06911 48 15 6 1028.82

3 0.07087 0.07087 58 79 3256.76 0.07087 68 18 3 1245.67 0.07087 68 10 3 1553,15

4 0.06578 0.06578 198 209 6789.45 0.06578 198 21 6 2383.43 0.06578 198 15 6 3284.68

5 0.06889 0.06889 198 209 6541.66 0.06889 198 21 6 1613.45 0.06889 198 15 6 2397.51

Avg 0.06988 0.06988 140 153 4728.79 0.06988 142 20 5 1565.74 0.06988 142 14 5 2100.76

4

1 0.05735 0.13110 13 29 733.78 0.05737 194 25 10 4232.44 0.13632 158 20 13 5913.80

2 0.05441 0.05441 124 134 3224.05 0.05441 124 25 10 1674.95 0.05441 124 20 12 1769.45

3 0.04924 0.04924 198 209 5376.66 0.04924 198 21 6 2000.32 0.04924 198 15 6 2373.12

4 0.05993 0.05993 198 209 5679.43 0.05993 198 21 6 2501.34 0.05993 198 15 6 2857.11

5 0.06415 0.06415 198 209 6798.31 0.06415 198 21 6 2365.41 0.06415 198 15 6 2543.30

Avg 0.05701 0.07176 146 158 4362.45 0.05702 182 23 8 2554.89 0.07281 175 17 9 3091.36

1
9
0

Appendix C6 Results of experimental studies for the problem set 10.400 (cont.)

Problem

Setting
Instance

Desired

Rate

(N=200)

Binary Search Tabu Search Simulated Annealing

Achieved

Rate
N

Total # of

Iterations

CPU

(sec.)

Achieved

Rate
N

Total # of

Iterations

of

Iterations

for

Convergence

CPU

(sec.)

Achieved

Rate
N

Total # of

Iterations

of

Iterations

for

Convergence

CPU

(sec.)

5

1 0.03089 0.03089 6 16 349.83 0.03089 6 26 11 649.63 0.03089 6 13 11 655.06

2 0.02444 0.02444 12 23 248.57 0.02444 12 25 10 399.53 0.02444 12 14 10 397.96

3 0.02769 0.02769 8 19 280.27 0.02769 8 26 11 460.90 0.02769 8 12 11 457.57

4 0.02347 0.02347 8 19 215.50 0.02347 8 26 11 439.33 0.02347 8 12 11 438.27

5 0.03700 0.03700 28 39 500.65 0.03700 28 22 7 814.20 0.03700 28 13 8 794.32

Avg 0.02870 0.02870 12 23 318.96 0.02870 12 25 10 552.72 0.02870 12 13 10 548.64

6

1 0.01849 0.01849 119 332 8967.45 0.01849 119 35 20 6134.80 0.01849 130 20 12 5774.05

2 0.02104 0.02104 83 94 2390.76 0.02104 83 22 7 1110.60 0.02104 83 15 6 1256.76

3 0.02371 0.02371 123 134 3224.05 0.02371 123 24 9 2294.92 0.02371 123 15 6 2324.70

4 0.02893 0.02893 73 84 2432.50 0.02893 73 22 7 1716.74 0.02893 73 15 6 1867.54

5 0.02507 0.02507 98 109 2475.61 0.02507 98 21 6 1398.82 0.02507 98 15 6 1681.29

Avg 0.02345 0.02345 99 151 3898.07 0.02345 99 25 10 2531.18 0.02345 101 16 7 2580.87

7

1 0.02171 0.02171 153 164 2886.10 0.02171 153 23 8 1561.59 0.02171 153 15 6 1496.09

2 0.02177 0.02177 158 169 5221.89 0.02177 158 22 7 2105.10 0.02177 158 15 6 2330.49

3 0.02167 0.02167 18 29 204.30 0.02167 18 25 10 368.13 0.02167 18 15 10 354.88

4 0.02558 0.02558 43 54 1404.05 0.02558 43 19 4 1332.59 0.02558 43 10 4 1332.20

5 0.01396 0.01396 23 34 232.83 0.01396 23 24 9 383.40 0.01396 23 13 9 379.39

Avg 0.02094 0.02094 79 90 1989.83 0.02094 79 23 8 1150.16 0.02094 79 14 7 1178.61

8

1 0.01755 0.01755 110 321 8923.12 0.01755 184 33 18 3588.02 0.01755 188 10 5 1804.60

2 0.01391 0.01391 198 209 8666.31 0.01391 198 21 6 2383.44 0.01391 198 15 6 3282.95

3 0.01768 0.01768 198 209 8258.33 0.01768 198 21 6 1955.49 0.01768 198 15 6 2437.90

4 0.01947 0.01947 198 209 8042.54 0.01947 198 21 6 2194.33 0.01947 198 15 6 2443.73

5 0.01670 0.01670 193 219 8069.42 0.01670 193 22 7 2083.24 0.01670 193 15 6 2501.95

Avg 0.01706 0.01706 179 233 8391.94 0.01706 194 24 9 2440.90 0.01706 195 14 6 2494.23

1
9
1

 Appendix C7 Results of experimental studies for the problem set 20.200

Problem

Setting
Instance

Desired

Rate

(N=100)

Tabu Search Simulated Annealing

Achieved

Rate
N

Total # of

Iterations

of Iterations

for

Convergence

CPU (sec.)
Achieved

Rate
N

Total # of

Iterations

of Iterations

for

Convergence

CPU (sec.)

1

1 0.07349 0.07984 35 22 7 7316.12 0.07984 35 10 5 15673.98

2 0.08056 0.08056 35 18 3 6714.03 0.08056 35 10 5 15768.88

3 0.07924 0.07924 25 22 7 3533.75 0.07924 25 10 5 3166.35

4 0.10068 0.10068 65 22 7 7368.36 0.10068 65 15 6 13665.39

5 0.07167 0.07167 65 22 7 5048.66 0.07167 65 10 5 12870.34

Avg 0.08113 0.08304 48 21 6 5666.20 0.08304 48 11 5 12228.99

2

1 0.04606 0.06495 13 9 9 4897.94 0.06495 13 26 26 24780.50

2 0.02106 0.02106 95 22 7 8970.16 0.02106 95 10 5 27880.45

3 0.00642 0.00775 10 8 8 3094.13 0.00775 10 26 26 16287.12

4 0.03307 0.14200 16 19 4 1666.93 0.07375 16 37 35 32218.58

5 0.06737 0.06737 95 22 7 7654.32 0.06737 95 10 5 31563.91

Avg 0.03480 0.06063 46 16 7 5256.70 0.04698 46 22 19 26546.11

3

1 0.06596 0.06666 84 22 7 15563.24 0.06706 95 15 10 24679.21

2 0.06657 0.07953 93 36 21 14789.21 0.08204 104 20 12 32728.48

3 0.06933 0.10256 10 8 8 5110.89 0.07128 12 26 26 51066.71

4 0.06896 0.06896 95 22 7 16785.56 0.06896 95 10 5 35768.87

5 0.07574 0.07574 95 22 7 18945.67 0.07574 95 10 5 38756.22

Avg 0.06770 0.07301 80 22 10 14238.91 0.07869 75 16 12 36599.90

4

1 0.00822 0.04284 10 6 6 1995.65 0.04284 10 18 18 9489.94

2 0.04593 0.04973 75 21 6 6746.21 0.09997 66 15 9 14729.71

3 0.06137 0.06137 95 22 7 16681.57 0.06137 95 10 5 25748.99

4 0.08784 0.08839 95 22 7 21843.12 0.08839 95 10 5 28955.95

5 0.06164 0.06179 45 18 3 1506.31 0.06179 45 10 5 2938.84

Avg 0.05300 0.06082 64 18 6 9754.57 0.07087 62 13 8 16372.69

1
9
2

Appendix C7 Results of experimental studies for the problem set 20.200 (cont.)

Problem

Setting
Instance

Desired

Rate

(N=100)

Tabu Search Simulated Annealing

Achieved

Rate
N

Total # of

Iterations

of Iterations

for

Convergence

CPU (sec.)
Achieved

Rate
N

Total # of

Iterations

of Iterations

for

Convergence

CPU (sec.)

5

1 0.02800 0.02800 10 7 7 3978.64 0.02800 10 7 7 3332.24

2 0.02575 0.02575 85 21 6 22118.11 0.02575 85 15 6 24115.50

3 0.02666 0.02666 25 19 4 3999.72 0.02666 25 10 5 3597.76

4 0.02610 0.02610 15 22 7 3700.42 0.02610 15 8 6 3093.40

5 0.02872 0.02872 15 22 7 4999.47 0.02872 15 8 6 3828.02

Avg 0.02705 0.02705 30 18 6 7759.27 0.02705 30 10 6 7593.38

6

1 0.00441 0.00441 55 24 9 6109.73 0.00441 55 10 5 3194.51

2 0.02104 0.02104 95 22 7 5879.65 0.02104 95 10 5 4875.33

3 0.01724 0.01724 25 19 4 4611.94 0.01724 25 10 5 4267.50

4 0.02337 0.02337 95 22 7 24501.72 0.02337 95 10 5 12655.98

5 0.02073 0.02073 95 22 7 8674.23 0.02073 95 10 5 5745.41

Avg 0.01736 0.01736 73 22 7 9955.45 0.01736 73 10 5 6147.75

7

1 0.02141 0.02212 62 22 7 12549.68 0.02164 65 15 6 12270.80

2 0.02226 0.02226 95 22 7 39711.75 0.02226 95 10 5 49832.82

3 0.02284 0.02284 95 39 24 34771.29 0.02284 96 10 5 26093.93

4 0.02218 0.02219 58 30 15 25328.18 0.02218 62 10 5 25979.42

5 0.02352 0.06072 33 19 4 9787.22 0.05828 32 19 13 29870.25

Avg 0.02244 0.03003 69 26 11 24429.62 0.02944 70 13 7 28809.44

8

1 0.00820 0.00820 95 22 7 12205.36 0.00820 95 10 5 9836.94

2 0.01666 0.01666 95 22 7 18678.65 0.01666 95 10 5 15468.34

3 0.02127 0.02127 95 22 7 16435.23 0.02127 95 10 5 20547.66

4 0.02382 0.02382 95 22 7 20456.17 0.02382 95 10 5 26395.45

5 0.02453 0.02453 75 22 7 11356.78 0.02453 75 15 9 14454.14

Avg 0.01889 0.01889 91 22 7 15826.44 0.01889 91 11 6 17340.51

	SKMBT_C25211050510210
	PhD.LD.05.05.11

