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SOLVING BUFFER ALLOCATION PROBLEM IN PRODUCTION LINES 

USING TABU SEARCH BASED APPROACHES 

 

ABSTRACT 

 

The buffer allocation problem, which involves the distribution of buffer space 

among the intermediate buffers of a production line, arises in a wide range of 

manufacturing systems, and it is one of the most important optimization problems 

faced by manufacturing systems designers. The primary aim of this Ph.D. study is to 

introduce novel tabu search based solution approaches for solving buffer allocation 

problem in production lines. In this thesis, the buffer allocation problem is solved in 

three stages. In the first stage, a novel TS algorithm including new move definitions 

is proposed to solve the buffer allocation problem under the objective of throughput 

maximization for homogeneous production lines involving unreliable machines with 

deterministic processing times. Following a pilot experiment to identify the best TS 

parameters, the new move definitions for buffer allocation problem are introduced. In 

the second stage, the problem is extended to non-homogeneous production lines, and 

an adaptive TS algorithm is proposed to solve the revised problem under the 

objective of throughput maximization. Besides proposing a new strategy to tune the 

parameters of TS adaptively during the search, an experimental study is carried out 

to select an intelligent initial solution scheme among three alternatives so as to 

decrease the search effort to obtain the best solutions. Finally, in the last stage, three 

approaches are proposed to solve the buffer allocation problem for non-

homogeneous production lines involving unreliable machines with deterministic 

processing times. These three approaches which integrate binary search, tabu search, 

and simulated annealing with an adaptive tabu search mechanism aim at minimizing 

the total buffer size to achieve a desired throughput level. To improve the searching 

efficiency of TS and SA algorithms alternative neighborhood generation mechanisms 

are suggested and their performance are tested.  

 

Keywords: Buffer allocation problem, Production lines, Tabu search, Simulated 

annealing 
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ÜRETİM HATLARINDA TAMPON STOK DAĞILIMI PROBLEMİ İÇİN 

TABU ARAMA TABANLI ÇÖZÜM YAKLAŞIMLARI 

 

ÖZ 

 

Üretim sistemi tasarımcılarının karşılaştığı başlıca eniyileme problemlerinden biri 

olan tampon stok dağılımı problemi bir üretim sisteminde tampon stokların bu 

stoklar için ayrılmış alana en iyi şekilde dağıtılmasını içermektedir. Bu doktora 

tezinin başlıca amacı üretim hatlarında tampon stok dağılımı problemini çözmek 

üzere özgün tabu arama tabanlı yaklaşımlar sunmaktır. Tampon stok dağılımı 

problemi bu tezde üç aşamada çözülmüştür. İlk aşamada, deterministik üretim 

zamanlarına sahip ve bozulmalara maruz kalan makinelerin oluşturduğu homojen 

üretim hatlarında tampon stok dağılımı problemini çözmek için yeni hareket 

tanımlarını içeren özgün bir tabu arama algoritması önerilmiştir. En iyi tabu arama 

parametrelerini belirlemek üzere yapılan bir pilot çalışmadan sonra tampon stok 

dağılımı problemi için yeni hareket tanımları sunulmuştur. İkinci aşamada, söz 

konusu problem, homojen olmayan üretim hatlarında tampon stok dağılımı olarak 

genişletilerek, üretim oranınını maksimize etmek amacıyla özgün bir adaptif tabu 

arama algoritması önerilmiştir. Tabu arama parametrelerini arama süresince adaptif 

bir şekilde değiştirmek üzere yeni bir stratejinin önerilmesinin yanı sıra, arama için 

sarf edilen eforun azaltılması amacıyla üç alternatif başlangıç çözümü önerilmiştir. 

Önerilen bu alternatif başlangıç çözümlerinden birini seçmek üzere de deneysel bir 

çalışma yürütülmüştür. Bu doktora çalışmasının son aşamasında da bozulmalara 

maruz kalan ve deterministik üretim zamanlarına sahip makinelerden oluşan üretim 

hatlarında tampon stok dağılımı problemini çözmek üzere üç ayrı yaklaşım 

önerilmiştir. İkili arama, tabu arama ve tavlama benzetimi algoritmalarını bir adaptif 

tabu arama mekanizması ile birleştiren bu üç yaklaşım istenilen üretim oranını 

sağlamak üzere hattaki toplam tampon miktarını minimize etmeyi amaçlamaktadır. 

Tabu arama ve tavlama benzetimi algoritmalarının arama etkinliğini artırmak üzere 

alternatif komşuluk yaratma mekanizmaları önerilmiş ve bunların performansları test 

edilmiştir.  

 

Anahtar sözcükler: Tampon stok dağılımı problemi, Üretim hatları, Tabu arama, 

Tavlama benzetimi 
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CHAPTER ONE 

INTRODUCTION 

 

 

1.1 Objectives and Motivations 

 

Production systems are often organized with machines connected in series and 

separated by buffers. This arrangement is often called a production line. A five-

machine line is presented by Figure 1.1 where the squares represent machines and 

the circles represent buffers. Each part goes through all the machines exactly in same 

order in the direction of the arrows, from upstream inventory to the first machine for 

an operation, to the first buffer where it waits for the second machine, to the second 

machine, etc. 

 

 

Figure 1.1 Five-machine production line 

 

The performance of such a production line is affected by both variations in the 

processing times and the reliability parameters of the machines. The effects of such 

variations can be reduced by using buffers between the machines. Allocating buffers 

between the machines is to allow machines to operate more independently of each 

other. This reduces the idle time due to starving (no input available) and blocking (no 

space to dispose of output). Less idle time increases the average production rate of 

the line. However, allocating buffers into a production line can be expensive, and 

there is generally a physical limit to the floor space in the system. The buffer 

allocation problem (BAP), which is concerned with the allocation of a certain 

amount of buffers among the intermediate buffer locations of a production line to 

achieve a specific objective function, is the subject of this Ph.D. thesis. 

 

Due to its importance and complexity, a considerable amount of work has been 

done in this area. The previous studies in this area mainly focus on characterizing 
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and describing optimal buffer distributions. In last ten years, the main focus of many 

research studies has been on developing methods to optimize buffer sizes in 

production lines.  

 

The purpose of this Ph.D. thesis is also to construct and describe efficient 

algorithms for production line design. It is hoped that these algorithms will help 

manufacturing system designers to determine how buffers should be allocated. 

 

Generally, the buffer allocation problem is classified into two categories 

according to the objective function employed to solve this problem. The first one 

aims at maximizing the throughput rate of the line and the second one focuses on 

total buffer size minimization. The throughput maximization problem has been 

studied more extensively in the literature. Moreover, employing meta-heuristic 

methods to solve buffer allocation problem is a new trend in this area. To better 

search the solution space, the recent trend is to hybridize the meta-heuristics with 

other methods. However, a few studies attempt to solve buffer allocation problem by 

hybrid methods. 

 

In the light of current relevant literature, this Ph.D. study aims at developing new 

hybrid approaches to solve buffer allocation problem under the objective of total 

buffer size minimization. 

 

1.2 Research Methodology 

 

The general problem involves how to allocate buffers so as to improve the 

performance of the production line. Solution to this problem depends on the 

characteristics of the production line studied. In this Ph.D. thesis, the scope of the 

problem is limited to production lines involving unreliable machines. So, the 

machines in the line are subject random breakdowns with random repair times. 

 

In general, solution approaches to solve the buffer allocation problem involve a 

setting where generative methods and evaluative methods are combined in a closed 
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loop configuration. In such a configuration, an evaluative method is used to obtain 

the value of the objective function for a set of inputs. The value of the objective 

function is then communicated to the generative method. Simulation, traditional 

Markov state models, aggregation methods, generalized expansion method, and 

decomposition methods are examples of evaluative methods. In this study, the 

decomposition method is used as an evaluative method due to its ability to obtain the 

throughput of a production line quite accurately and quickly for unreliable serial 

lines with deterministic processing times. 

 

There are various optimization techniques used as a generative method. Complete 

enumeration is the simplest method but it is only applicable for small-sized 

problems. Since the total number of feasible solutions grows exponentially when the 

total number of machines and the total buffer capacity increases, it is impossible to 

employ complete enumeration for large-sized problems. Therefore the researchers 

employed several traditional optimization and search methods, such as dynamic 

programming, gradient search methods, Hooke-Jeeves method and knowledge-based 

methods. However, traditional search methods have disadvantages. The main 

disadvantage of these methods is that they cannot escape local optima in search of 

the global optimum. To overcome this difficulty, in recent years, heuristic and meta-

heuristic methods, such as simulated annealing (SA), tabu search (TS), genetic 

algorithms (GA), and ant colony optimization (ACO) are widely used to solve the 

buffer allocation problem.  

 

Among these meta-heuristics, the application of TS received a considerable 

attention from the researchers, since it provides an alternative to traditional 

optimization techniques by using memory-based strategies to escape the local optima 

and it is also successfully employed on many combinatorial optimization problems. 

However, as problems get larger and more complex as in real life, basic TS may lack 

the capability of exploring the search space effectively. As a remedy, over the last 

years, while some of the studies attempt to employ TS in an adaptive way the others 

attempt to hybridize TS with other optimization methods. 
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Within this framework, in this Ph.D. study, the buffer allocation problem is solved 

in three stages. In the first stage, a TS algorithm is proposed to solve buffer 

allocation problem under the objective of throughput maximization for unreliable 

and also homogeneous production lines where all the machines in the line have the 

same deterministic processing times. Following a pilot experiment to identify the 

best TS parameters, the new move definitions for buffer allocation problem are 

introduced. 

 

In the second stage, the problem is extended to non-homogeneous production 

lines where the processing times of the machines are different, and an adaptive TS 

algorithm is proposed to solve the revised problem under the objective of throughput 

maximization. To our knowledge, ours is the first extensive study dealing with buffer 

allocation problem for unreliable and also non-homogeneous lines. Imposing buffer 

space constraints for each buffer location makes the problem at hand even harder. 

Besides proposing a new strategy to tune the parameters of TS adaptively during the 

search, an experimental study is carried out to select an intelligent initial solution 

scheme among three alternatives so as to decrease the search effort to obtain the best 

solutions. 

 

Finally, in the last stage, three approaches are proposed to solve the buffer 

allocation problem for non-homogeneous production lines involving unreliable 

machines with deterministic processing times. These three approaches which 

integrate binary search, tabu search, and simulated annealing with an adaptive tabu 

search mechanism aim at minimizing the total buffer size to achieve a desired 

throughput level. To improve searching efficiency of TS and SA algorithms 

alternative neighborhood generation mechanisms are suggested and their 

performance are tested.  

 

1.3 Outline of the Thesis 

 

This Ph.D. thesis is organized as follows:  
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In Chapter 2, to gain a more comprehensive understanding of the problem studied 

in this Ph.D. thesis, various concepts related to the buffer allocation problem, i.e., 

characteristics, formulations and the solution methods employed in literature to solve 

this problem are described. Additionally, the basic concepts of TS and SA which are 

employed as a solution method in this study are presented. 

 

In Chapter 3, a structural framework is proposed to review the current relevant 

research on buffer allocation problem in production lines. Using this structural 

framework, the current research issues are identified and the motivation for this 

Ph.D. study is presented. 

 

In Chapter 4, a TS approach is proposed to solve the buffer allocation problem in 

unreliable and homogeneous production lines under the objective of throughput 

maximization. Prior to using the proposed TS approach, a pilot experiment is carried 

out to identify the best TS parameters. Next, using these best TS parameters, 

comparative experiments are carried out on a set of benchmark problems published 

in the literature.  

 

In Chapter 5, an adaptive TS approach is proposed for solving the buffer 

allocation problem to maximize the throughput in unreliable and also non-

homogeneous production lines. Moreover, a pilot experiment is carried out to 

identify the best initialization scheme. To test the performance of proposed adaptive 

TS approach an experimental study is carried out on randomly generated problem 

sets involving both small and large-sized problems. 

 

In Chapter 6, three solution approaches are proposed to solve buffer allocation 

problem for unreliable and also non-homogeneous lines under the objective of total 

buffer size minimization. The proposed solution approaches for solving the problem 

involve three algorithms: binary search, tabu search and simulated annealing. All of 

these algorithms involve an adaptive tabu search algorithm to minimize the total 

buffer size to achieve a desired throughput level. Additionally, to improve the search 
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performance of TS and SA algorithms, alternative neighborhood generation 

mechanisms are suggested and they are tested.  

 

Finally in Chapter 7, the summary and the contributions of this Ph.D. study are 

discussed. Moreover, the possible future research directions are presented. 
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CHAPTER TWO 

BACKGROUND INFORMATION 

 

 

2.1 Introduction 

 

The aim of this Ph.D. study is to develop efficient algorithms to solve buffer 

allocation problem for unreliable serial production lines. In order to gain an 

understanding of important issues related to the buffer allocation problem and also 

the solution methodologies proposed to deal with this problem, this chapter gives a 

general background information. 

 

The chapter is organized as follows. In Section 2.2, the problem characteristics are 

given and the buffer allocation problem is classified based on these characteristics. In 

section 2.3, the general process of solution of buffer allocation problems is presented. 

In section 2.4, the basic principles of decomposition method, tabu search and 

simulated annealing are explained so that an understanding can be gained to the 

background of the methods employed in this Ph.D. study. Finally, in section 2.5, the 

context of this chapter is summarized. 

 

2.2 The Buffer Allocation Problem 

 

The buffer allocation problem, BAP, is concerned with the allocation of a certain 

amount of buffers, N, among the K-1 intermediate buffer locations of a production 

line to achieve some specific objective and it is one of the major optimization 

problems faced by manufacturing systems designers. It should be noted that while 

this problem is being handled, it is assumed that other manufacturing design 

problems, the workload and server allocation problems, have already been solved. 

 

The primary reason for having storage buffers is to allow sequential workstations 

to operate more independently of each other. This reduces the idle time due to 

starving (no input available) and blocking (no space to dispose of output). Less idle 
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time increases the average production rate of the line. On the other hand, inclusion of 

buffers requires additional capital investment and floor space, which may be 

expensive. Buffering also increases in-process inventory. If the buffers are too large 

then the capital cost incurred may outweigh the benefit of the increased productivity. 

If the buffers are too small, the machines will be underutilized or demand will not be 

met. Because of the importance of finding good or optimal buffer configurations, the 

buffer allocation problem is still an important optimization problem. 

 

The buffer allocation problem arises in a wide range of manufacturing systems, 

such as transfer lines, flexible manufacturing systems or robotic assembly lines. In 

this Ph.D. thesis we mainly concerned with the buffer allocation problem in serial 

production lines. The characteristics of the buffer allocation problem in serial 

production lines are given in the following section.  

 

2.2.1 Characteristics of the Buffer Allocation Problem 

 

A production line consists of machines connected in series and separated by 

buffers. A K-machine production line is represented in Figure 2.1, in which the 

squares represent machines and the circles represent buffers. Material moves in the 

direction of the arrows, from upstream machine to the downstream machine. Material 

flow may be disrupted by machine failures or variable processing times. Buffers are 

inserted between machines, so that the propagation of disruptions can be limited and 

hence, the average production rate of the line can be increased. 

 

 

         Figure 2.1 K-machine production line 

 

There are several unique characteristics inherent to the buffer allocation problem 

which complicates the application of existing ordinary search techniques. The 
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following is the summary of the discussion on these difficulties as it is stated by Park 

(1993):  

 

(A) The system performance of throughput rate over buffer size is monotonically 

increasing. Okamura and Yamashina (1977) show that the throughput rate of 

the production line, which is composed of more than two stages, steeply 

increases in the range of small buffer sizes and thereafter this increment 

continues with gradually smaller improvement until it reaches an upper bound.  

 

(B) There may be one or more stagnant areas in the function of a throughput rate 

over buffer sizes. Since the throughput rate is not likely to increase strictly as 

the buffer size increases, no increase in throughput rate may occur through a 

certain range of buffer sizes, as shown in Figure 2.2. Increasing the size of any 

buffer in the line may generate a local gain in the throughput rate of the line. 

However, the local throughput gain may or may not subsequently be 

propagated through the upstream and/or downstream machines due to 

complex interactions of processing, failure and repair rates of the machines 

and buffer sizes. Only if it can be propagated through both upstream and 

downstream machines, the local gain can be realized as a production gain for 

overall system. Otherwise, there will be no increase in production rate of the 

line. In most cases, the traditional optimization techniques get stuck at the 

stagnant area. This phenomenon is expanded to K-stage problems with K-1 

buffers, in that reduction of a buffer size may be compensated by the 

increasing sizes of other buffers to obtain the same production rate. 
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                      Figure 2.2 A function of throughput rate over buffer size (Park, 1993) 

 

(C) There is a limit on the degree of the system performance gained by 

increments in buffer sizes. The “threshold” in Figure 2.2 indicates the 

upper bound on the throughput rate. Also, in the vicinity of the threshold, 

considerable buffer storage is usually required to achieve even a small 

improvement in system performance. Since there is no change in system 

throughput rate beyond the threshold, one may face difficulties in finding a 

global optimal solution if the objective of the buffer allocation problem is 

to maximize the throughput rate of the line. 

 

(D) The buffer sizing problem is discrete in nature. In general, due to their 

combinatorial complexity, optimization problems with discrete control 

variables are more difficult to solve than the problems with continuous 

decision variables. Moreover, since there is no algebraic relation between 

the throughput of the line and buffer sizes, it is much harder to solve the 

buffer allocation problem. 

 

(E) The throughput rate function over buffer sizes is not usually unimodal in 

case of multiple buffers. Since many traditional optimization methods 
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require the unimodality condition to obtain a global optimal solution, they 

are often likely to fail in finding global optimal buffer sizes. 

 

2.2.2 Classification of the Problems 

 

The buffer allocation problem can be expressed mainly in three forms depending 

on the objective function. These objective functions may be concerned with 

maximizing throughput rate of the production line, minimizing total buffer size in the 

line and minimizing average work-in-process inventory. These forms can be given as 

follows: 

 

Problem 1 (BAP1): This formulation of the problem expresses the maximization of 

the throughput rate, for a given fixed amount of buffers, as follows: 

Find 1 2 1( , ,..., )KB B B B   so as to  

max  ( )f B          (1) 

subject to 

1

1
i

K

i

B N




          (2) 

 nonnegative integers ( 1,2,..., 1) iB i K       (3) 

where N is a fixed nonnegative integer denoting the total buffer space available in the 

system which has to be allocated among the K-1 buffer locations so as to maximize 

the throughput rate of the K-machine production line. In this formulation B 

represents a buffer size vector, iB  is the buffer size for each location, and f(B) 

represents the throughput rate of the production line as a function of the buffers’ size 

vector. 

 

Problem 2 (BAP2): The solution approaches to this problem aims achieving the 

desired throughput rate with the minimum total buffer size, as follows: 

Find 1 2 1( , ,..., )KB B B B   so as to  

1

1

min  i

K

i

B



          (4) 
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subject to 

*( )f B f          (5) 

nonnegative integers ( 1,2,..., 1) i i KB        (6) 

where K is the number of machines in the line, B is a buffer size vector, iB  is the 

buffer size for each location, f(B) is the throughput rate of the production line and f
*
 

is the desired throughput rate. 

 

Problem 3 (BAP3): This last formulation expresses the minimization of the average 

work-in-process inventory subject to the total buffer size constraint as well as the 

desired throughput rate constraint, as follows: 

Find 1 2 1( , ,..., )KB B B B   so as to  

min  ( )Q B          (7) 

subject to 

1

1
i

K

i

B N




          (8) 

*( )f B f          (9) 

 nonnegative integers ( 1,2,..., 1) iB i K       (10) 

where K is the number of machines in the line, B is a buffer size vector, Q(B) 

denotes the average work-in-process inventory as a function of buffer size vector, iB  

is the buffer size for each location, N is a fixed nonnegative integer denoting the total 

buffer size, f(B) is the throughput rate of the production line and f
*
 is the desired 

throughput rate. 

 

As it is stated by Park (1993), allocating buffer storage based on monetary 

criteria, such as maximizing profit or minimizing total cost, is a management concern 

in real production systems. Objective functions involving monetary criteria are 

expressed in a form of profits or costs. 

 

Meester and Shanthikumar (1990) show that the throughput rate of the tandem 

queuing systems is an increasing, concave function of the buffer sizes. Based on their 

proof Papadopoulos et al. (2009) stated that the problem BAP1 is an increasing 
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function of the total buffer size N. Hence, the results obtained for problem BAP1 can 

be used to solve the problem BAP2. Thus, the above three problems can be reduced 

to two problems as it is stated by Papadopoulos et al. (2009).  

 

The buffer allocation problem is difficult for two reasons, as indicated by Chow 

(1987): (1) the lack of an algebraic relation between the throughput of the line and 

buffer sizes; and (2) the nature of combinatorial optimization inherent in the buffer 

design problem. For a production line with K machines and the total buffer capacity 

N, the total number of possible buffer configurations for the problem BAP1 can be 

calculated as follows: 

 

2 ( 1)( 2)...( 2)

2 ( 2)!

N K N N N K

K K

     


 

 
 
 

    (11) 

 

As it can be observed above, the total number of feasible solutions increases 

exponentially when N and K are large. For instance if the production line involves 

only ten machines and the number of total buffers to be allocated is 50, then the total 

number of feasible buffer allocations becomes 1.916.797.311 indicating the 

computational difficulty to search through the whole solution space by complete 

enumeration even for small sized problems. So, numerical approaches to the solution 

of the problems are inevitable even in situations with relatively small problems. 

Hence, to overcome this difficulty various solution techniques are employed to solve 

buffer allocation problem. Next section summarizes these solution techniques. 

 

2.3 General Procedure to Solve the Buffer Allocation Problem 

 

Solution approaches to solve buffer allocation problem involve applying a 

generative method and an evaluative method in an iterative manner. In other words 

generative methods and evaluative methods are combined in a closed loop 

configuration as depicted in Figure 2.3. In this configuration an evaluative method is 

used to obtain the value of the objective function for a set of inputs. To search for an 
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optimal solution, the value of the objective function is then communicated to the 

generative method. 

 

 

Figure 2.3 General process of solution of buffer allocation problems (Papadopoulos et al., 2009) 

 

Evaluative methods, which provide the prediction of various performance 

measures such as the throughput rate and the mean queue lengths, are based on 

analytical methods and simulation. Analytical methods can be classified as exact and 

approximate methods. Since the analytical methods can be applicable only for small-

sized problems, approximate methods are usually employed as evaluative method for 

solving buffer allocation problem. There are also various optimization techniques 

used as generative method. Complete enumeration is the simplest method but it is 

applicable for small-sized problems. Since the total number of feasible solutions 

grows exponentially when the total number of machines and the total buffer capacity 

increases, it is impossible to employ complete enumeration for large-sized problems. 

Therefore, the researchers widely adopted various search methods and meta-

heuristics to effectively deal with the buffer allocation problem. 

 

In the following subsections, alternative evaluative and generative methods used 

for solving buffer allocation problem in the literature are discussed.  
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2.3.1 Evaluative Methods 

 

As it is stated before, basically two methods are used for evaluation: analytical 

methods and simulation. Exact analytical results based on the queuing models are 

difficult to obtain, and are only available for short production lines. For long 

production lines, generally approximate evaluative methods are employed. Most 

frequently used approximate evaluative methods to solve the buffer allocation 

problem are decomposition method, aggregation method, and generalized expansion 

method. 

 

Among these methods, the decomposition method is the most widely used 

evaluation method for solving buffer allocation problem (Gershwin and Schor 2000, 

Helber, 2001, Shi and Men, 2003, Nourelfath et al., 2005, Nahas et al., 2006, Demir 

and Tunali, 2008, Shi and Gershwin 2009, Massim et al., 2010, and Demir et al., 

2011). The common idea in this method is to decompose the analysis of the original 

model into the analysis of a set of smaller subsystems which are easier to deal with. 

The main advantage of the decomposition method is its computational efficiency and 

its accuracy to reach the solution. However, the disadvantage of decomposition 

method is that it can be applicable only under the assumptions that processing rates 

are either deterministic or exponentially distributed and failure and repair rates are 

either geometric or exponentially distributed random variables. In this Ph.D. study, 

the decomposition method is used as an evaluative method due to its ability to obtain 

the throughput of a production line quite accurately and quickly. The details of the 

method are given in section 2.4.1. 

 

Another approximation method based on the queuing models is the generalized 

expansion method. Contrast to the decomposition method the generalized expansion 

method can be used for generally distributed service times and reliable machines and 

it can be applicable to split and merge configurations as well as serial configurations. 

Applications of generalized expansion method for buffer allocation problem can be 

found in the studies of Spinellis et al. (2000), Daskalaki and MacGregor Smith 
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(2004), MacGregor Smith and Cruz (2005), Cruz et al. (2008), Aksoy and Gupta 

(2010) and Cruz et al. (2010). 

 

Another evaluative method which can be used to solve buffer allocation problem 

is the aggregation method. Dolgui et al. (2002, 2007) successfully employ the 

aggregation method to evaluate the performance of buffer allocation decisions in 

unreliable production lines. The basic idea of aggregation is to first place a two-

station one-buffer sub-line by a single equivalent station. Then this equivalent station 

is combined with a buffer and station of the original line to form a new two-station 

one-buffer sub-line, which is then aggregated into a single equivalent station. This 

process is repeated until the last or first station is reached, depending on the direction 

of the aggregation is performed.  

 

If the objective is to realistically model a large and complex system, simulation 

provides many advantages in comparison to analytical methods. But the chief 

disadvantage of simulation modeling is that it is very time consuming. Simulation 

modeling is best suited to addressing design and operational problems at the detailed 

level, where other mathematical techniques are not sufficiently accurate to be 

applied. The studies of Jeong and Kim (2000), Gurkan (2000), Sabuncuoglu et al. 

(2002, 2006), Bulgak (2006), Altiparmak et al. (2007), Battini et al. (2008), Can and 

Heavey (2009) and Kose (2010) can be given as applications of simulation for 

solving buffer allocation problem. 

 

2.3.2 Generative Methods 

 

Generative methods focus on finding optimal buffer sizes to improve the system 

performance. The simplest generative method is complete enumeration. However, 

this method is applicable only for small systems since the total number of feasible 

solutions grows exponentially when the total number of machines and the total buffer 

size to be allocated in the system increase. Therefore for large systems it is 

impossible to search through the whole solution space by complete enumeration. In 

recent years, the researchers widely adopted various search methods and meta-
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heuristics to effectively deal with the combinatorial nature of the buffer allocation 

problem.  

 

Search methods including both traditional and also heuristic search algorithms 

tend to resolve the exponential explosion in the number of alternative buffer vectors 

by quickly shifting through many alternative buffer vectors to discover those which 

yield close to optimal results. Ho et al. (1979), Gershwin and Schor (2000), Seong et 

al. (1995, 2000) and Helber (2001) apply gradient search algorithm. Vouros and 

Papadopoulos (1998) employ knowledge based methods. Altiok and Stidham (1983) 

use the pattern search technique of Hooke and Jeeves. Nahas et al. (2006) employ 

degraded ceiling local search heuristic. Fuxman (1998), Harris and Powell (1999), 

Jeong and Kim (2000), Papadopoulos and Vidalis (2001), Hemachandra and 

Eedupuganti (2003), Tempelmeier (2003), Sabuncuoglu et al. (2006), Zequeira et al. 

(2008), and Aksoy and Gupta (2010) develop problem specific search algorithms for 

solving buffer allocation problem. There are mainly two disadvantages of traditional 

search methods. One of these disadvantages is that traditional search methods 

sometimes cannot jump over local optimal solutions in search of the global optimal 

ones. The other disadvantage is that with these approximate methods it is difficult to 

observe how small changes in buffer sizes affect the system performance.  

 

Meta-heuristics are search methods which use strategies that guide the search 

process and explore the search space in order to find optimal/near-optimal solutions. 

Meta-heuristic algorithms are approximate and usually non-deterministic. Typical 

solution methods in this area include Tabu Search (Lutz et al., 1998, Demir et al., 

2011), Simulated Annealing (Spinellis and Papadopoulus, 2000a, 2000b, Spinellis et 

al. 2000), Genetic Algorithms (Spinellis and Papadopoulus, 2000b, Dolgui et al., 

2002, Qudeiri et al., 2007, 2008, Yamamoto et al., 2008, Cruz et al. 2010, Kose, 

2010), and Ant Colony Optimization (Nourelfath et al., 2005, Nahas et al., 2009). To 

better search the solution space, the recent trend is to hybridize the meta-heuristics 

with other methods such as Nested Partitions (Shi and Men, 2003) and Branch and 

Bound methods (Dolgui et al., 2007). The chief advantage of meta-heuristics over 

traditional search methods is that they can jump over local optimal solutions in 
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search of the global optimal ones. Their main disadvantage is that they are not 

problem specific and thus, they have to tune-up to produce solutions to a specific 

problem type.  

 

Moreover, dynamic programming, a well known optimization method (Chow, 

1987, Jafari and Shanthikumar, 1989, Yamashita and Altiok, 1998, Diamantidis and 

Papadopoulos 2004), artificial neural networks (Bulgak, 2006, Altiparmak et al., 

2007) and also immune system algorithm (Massim et al., 2010) are successfully 

employed for solving buffer allocation problem in production lines. 

 

Lastly, a number of studies including Sabuncuoglu et al. (2002) and Raman and 

Jamaludin (2008) employed various experimental designs for evaluating the 

solutions to the buffer allocation problem.  

 

Due to its ability to evaluate the throughput of a production line quite accurately 

and quickly, in this Ph.D. study, the decomposition method is used as an evaluative 

method. Unlike population-based search algorithms such as genetic algorithms, 

which require long time to converge, single point search algorithms such as tabu 

search and simulated annealing focus on exploitation and they are faster. Hence, to 

reduce the computational difficulty especially for evaluating the throughput of the 

line for medium and large-sized problems, tabu search and simulated annealing are 

employed as a generative method for solving the buffer allocation problem. 

 

The following sections present the details of evaluation (decomposition method) 

and generative methods (tabu search and simulated annealing) employed in this 

study. 

 

2.4 Background Information on Solution Approaches Employed 

 

This section gives background information on solution approaches used in this 

Ph.D. study. Next section presents the basic idea of decomposition method. Basic 
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information on tabu search and simulated annealing are given in sections 2.4.2 and 

2.4.3, respectively. 

 

2.4.1 Decomposition Method 

 

The decomposition method, proposed by Gershwin (1987), is an efficient method 

to estimate the performance measures of serial production lines. The method works 

as follows. An original line L is broken into K-1 two-machine lines as illustrated in 

Figure 2.4. Line L(i) is composed of an upstream machine Mu(i), a downstream 

machine Md(i), and buffer B(i). The capacity of B(i), Ni, is the same as the capacity of 

buffer Bi in line L. In order to determine the average throughput rate of this 

production line, the system is modeled as a Markov process for which the steady-

state behavior is determined. Since the performance characteristics of two-machine 

lines can be obtained exactly, the decomposition method requires the derivation of a 

set of equations that link the decomposed two-machine lines together. These 

nonlinear equations are solved to determine the unknown parameters of each line 

L(i), i.e. the processing rates ( i ), failure rates (pi) and repair rates (ri) of upstream 

and downstream machines, so that the behavior of the material flow in buffer B(i) in 

line L(i) closely matches that of the flow in buffer Bi of original line L.  

 

Dallery et al. (1988) develop the decomposition equations and an algorithm called 

DDX to solve these equations for homogeneous lines, i.e. the machines in the line 

have the same processing times amounting to one unit of time. Later, Burman (1995) 

extends this study to the non-homogeneous lines, i.e. the machines in the line have 

different processing times, and develops the algorithm called as accelerated-DDX 

(ADDX). Due to its ability to evaluate the throughput of a production line quite 

accurately and quickly, in this Ph.D. study, while the DDX algorithm is employed for 

homogenous lines and the ADDX algorithm is employed for non-homogeneous lines. 

The details of both algorithms are given in Appendix A.  
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Figure 2.4 The decomposition method (Burman, 1995) 

 

2.4.2 Tabu Search 

 

Tabu Search (TS) is a meta-heuristic for solving combinatorial optimization 

problems. Originating from the work by Glover (1977), TS basic ideas were first 

introduced in Glover (1986). TS explicitly uses the history of the search, both to 

escape from local optima and to implement an explorative search. For more details 

about TS the reader can refer to Glover and Laguna (1997).  

 

Suppose that TS is employed to deal with the following combinatorial 

optimization problem: 

(P)  Minimize ( ) :f x x X  in nR . 

The objective function ( )f x  may be linear or nonlinear, and the condition x X  is 

assumed to constrain specified components of x to discrete values. In some settings 

(P) may represent a modified form of some original problem, as where X is a 

superset of the vectors that normally qualify as feasible, and ( )f x  is a penalty 

function, designed to assure that optimal solutions to (P) likewise are optimal for the 

problem from which it is derived (Glover, 1989). 
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A fundamental element of TS is the use flexible memory functions, called tabu 

lists, to forbid the transitions, called moves, from the current solution to other 

candidate solutions that are previously visited. A move m is defined as follows: 

: ( )m X m X . 

Associated with x X  is the set ( )NB x  which consists of those moves m NB  that 

can be applied to x; i.e.,  ( ) : ( )NB x m NB x X m   . The set ( )NB x  is called the 

neighborhood of x. Within this framework the basic elements of tabu search can be 

described as follows. 

 

2.4.2.1 Search Space and Neighborhood Structure 

 

Choosing a search space along with a neighborhood structure is the most critical 

step of any TS implementation. The search space of TS is simply the space of all 

feasible solutions that can be visited during the search. It should be noted that it is 

not always a good idea to restrict the search space to feasible solutions. In many 

cases, allowing the search to move infeasible solutions is desirable (see Gendreau 

and Potvin, 2005, for further details). To define the neighborhood structures of the 

current solution, there are several choices depending on the specific problem at hand. 

For instance in the buffer allocation problem context, one choice could be to consider 

the full neighborhood of the current buffer configuration while the other could be to 

consider only a subset of the neighborhood of the current solution.  

 

2.4.2.2 Tabus 

 

Tabus are one of the basic elements of TS. Tabus are used to prevent cycling 

while escaping from local optima via non-improving moves. Tabus are also useful to 

help the search move away from previously visited areas of the search space and thus 

perform more extensive exploration. Tabus are stored in a tabu list, which is the 

short term memory of the search, and in general only a fixed and fairly limited 

quantity of information is recorded in this list. The most commonly used tabus 

involve recording the last few moves performed on the current solution and 
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forbidding reverse moves; others are based on key characteristics of the solutions 

themselves. 

 

The length of the tabu list, called tabu tenure (TT), is an important search 

parameter of TS. Tabu tenure is the number of iterations that tabus stay in the tabu 

list. As indicated by Glover et al. (1993) the size of tabu list providing good results 

often grows with the size of the problem. However, no single rule has been found to 

yield an effective tenure for all classes of problems. This is partly because an 

appropriate list size depends on the strength of the tabu restrictions employed (where 

stronger restrictions are generally coupled with smaller sizes) (Glover and Laguna, 

1997). If the size of the tabu tenure is too small, preventing the cycling might not be 

achieved; conversely a too long length creates too many restrictions. As indicated by 

Reeves (1996) a value of 7 for TT has often found to be sufficient to prevent cycling; 

other commonly used values are nTT   where n is some natural measure of the 

problem size. Dynamic rules may be useful too, usually this means choosing lower 

and upper bounds minTT  and maxTT  on the tabu tenure, and allowing TT to vary in 

some way between them. 

 

2.4.2.3 Aspiration Criteria 

 

It is not difficult to realize that tabus may forbid moving to attractive unvisited 

solutions. It is therefore necessary to overrule the tabu status of moves in certain 

situations. This is performed by means of aspiration criteria. The simplest and most 

commonly used aspiration criterion consists of allowing a move, even if it is tabu, if 

it results in a solution with an objective value better than the current best-known 

solution.  

 

2.4.2.4 Termination Criteria 

 

The most commonly used termination criteria in TS are: 

 after a fixed number of iterations or a fixed amount of CPU time, 
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 after some number of iterations without an improvement in the objective 

function value, 

 when the objective function value reaches a pre-specified threshold value. 

 

Table 2.1 represents the basic Tabu Search algorithm and the flowchart of the 

standard tabu search algorithm is presented in Figure 2.5. 

 

   Table 2.1 Basic tabu search algorithm 

Select an initial x X  and let 
*

:x x . Set the iteration counter 0k   and begin with T empty. 

while termination conditions not met do 

 Set : 1k k   and select the best ( )
k

m NB x T   where the elements of   

( )NB X T  are not tabu or they satisfy at least one aspiration criterion. 

 Set 
*

:x x  where 
*

x  denotes the best solution currently found 

 Update the tabu list and aspiration criteria 

 

Basic TS as described above can sometimes successfully solve difficult problems, 

but in most cases, the following additional elements have to be included in the search 

to make it fully effective.  

 

2.4.2.5 Intensification 

 

The key idea behind the concept of intensification is to implement some strategies 

so that the areas of the search space that seem promising can be explored more 

thoroughly. In general, intensification is based on intermediate-term memory, such as 

a recency memory, in which one records the number of consecutive iterations that 

various solution components have been present in the current solution without 

interruption. Intensification is used in many TS implementations, but it is not always 

necessary. This is because there are many situations where the search performed by 

the normal searching process is thorough enough (Gendreau and Potvin, 2005). Thus 

there is no need to spend time exploring in depth the portions of the search space that 

have already been visited, and this time can be used more effectively. 
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Figure 2.5 The flowchart of a standard tabu search algorithm 

 

2.4.2.6 Diversification 

 

Unlike intensification which helps more intensively searching the regions which 

contain good solutions diversification guides the search to unexplored regions. 

Diversification is usually based on long-term memory, such as a frequency memory, 

where the total number of iterations of the performed moves or visited solutions is 

recorded. There are two major diversification techniques known as restart 

diversification and continuous diversification while the first one is performed by 

several random restarts, the second one is integrated into the regular searching 

process to penalize frequently performed moves or solutions.  
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2.4.3 Simulated Annealing 

 

Simulated Annealing (SA) is another meta-heuristic method used for solving 

combinatorial optimization problems. The ideas that form the basis of simulated 

annealing were first published by Metropolis et al. (1953). Annealing is the physical 

process of heating up a solid and then cooling it down slowly until it crystallizes. The 

atoms in the material have high energies at high temperatures and have more 

freedom to arrange themselves. As the temperature is reduced, the atomic energies 

decrease. A crystal with regular structure is obtained at the state where the system 

has minimum energy. If the cooling is carried out very quickly, which is known as 

rapid quenching, widespread irregularities and defects are seen in the crystal 

structure. The system does not reach the minimum energy state and ends in a 

polycrystalline state which has a higher energy (Pham and Karaboga, 2000). 

 

Essentially, Metropolis’s algorithm simulates the change in the energy of the 

system when subject to cooling process, until it converges to a steady frozen state. In 

1983, Kirkpatrick et al. (1983) suggested that this type of simulation could be used 

for solving combinatorial optimization problems. 

 

Simulated annealing algorithm consists of a sequence of iterations. At each 

iteration, the neighborhoods of the current solution are generated randomly or in a 

systematic way by using a neighborhood generation mechanism. Once a new 

solution is created the corresponding change in the acceptance function is computed 

to decide whether the newly produced solution can be accepted as the current 

solution. If the change in the acceptance function is negative the newly produced 

solution is directly taken as the current solution. Otherwise, it is accepted according 

to Metropolis’s criterion based on Boltzman’s probability.  

 

According to Metropolis’s criterion, if the difference between the acceptance 

function values of the current and the newly produced solutions is equal to or larger 

than zero, a random number [0,1]R  is generated from a uniform distribution. If  

exp( / )R E T   
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then the newly produce solution is accepted as the current solution. Otherwise, the 

current solution is unchanged. Here E  is the difference between the acceptance 

function values of the current solution and newly produced solution and T is the 

value of temperature. The flowchart of a standard SA algorithm is shown in Figure 

2.6. 

 

The important issues need to be considered in implementation the SA algorithm 

are summarized in the following sections. 

 

 

Figure 2.6 Flowchart of a standard simulated annealing algorithm 
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2.4.3.1 Neighborhood Generation Mechanism 

 

In general, the neighborhoods are sampled randomly in implementing SA 

algorithm. However, sampling in a systematic or adaptive has a higher chance to 

produce better results. To define the neighborhood structures of the current solution, 

there are several choices depending on the specific problem at hand. In this Ph.D. 

study, the neighborhood generation to solve the buffer allocation problem is carried 

out in a systematic way. The details regarding this issue are given in chapter 6.   

 

2.4.3.2 Initial Temperature 

 

Generally the SA algorithm starts with “high” initial temperature allowing many 

inferior moves to be accepted. In practice this may require some knowledge of 

magnitude of neighboring solutions; in the absence of such knowledge, one may 

choose what appears to be a large value, and run the algorithm for a short time and 

observe the acceptance rate. As it is stated by Reeves (1996), if this acceptance rate 

is “suitably high” this value of temperature may be used to start the algorithm. Even 

if “suitably high” acceptance rate varies from one situation to another, Reeves (1996) 

states that an acceptance rate of between 40% and 60% seems to give good results in 

many cases.  

 

2.4.3.3 Cooling Schedule 

 

There are basically two types of schedule, having analogies to homogeneous and 

inhomogeneous Markov chains, respectively. In the homogeneous case, annealing is 

carried out at a fixed temperature until equilibrium is reached. Once this state is 

judged to have been reached, the temperature is reduced, and the procedure is 

repeated. The number of attempted moves at each temperature may be quite large, 

although the temperature steps can be relatively large also. In the inhomogeneous 

case, the temperature is reduced (but by a very small amount) after every move. This 

is less complicated than the homogeneous case, and is the one more commonly used 

in practice (Reeves, 1996). 
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In either case, one has to decide on the shape of the cooling curve. The simplest 

and most common one is the geometric schedule. In the geometric schedule, the 

temperature is updated by the following formula:  

1   0,1,...i iT cT i    

where c is a temperature factor which is a constant close to 1 (typically in the range 

0.90 to 0.99). 

 

The other method is proposed by Lundy and Mees (1986). This method updates 

the temperature by the following formula: 

1   0,1,...
1

i
i

i

T
T i

T
  


 

where   is the constant near to zero. 

 

2.4.3.4 Final Temperature  

 

In theory, the algorithm continues until the final temperature is zero, but in 

practice it is sufficient to stop the algorithm when the chance of accepting inferior 

solutions becomes negligible. This is a problem dependent issue and as in the case of 

selecting an initial temperature, selecting final temperature may involve some 

monitoring of the ratio of acceptances. For this purpose Lundy and Mees (1986) 

proposed stopping when 

ln[( 1) / ]
T

S




 
 

where S is the solution space. This is designed to produce a solution which is within 

  of the optimum with probability . 

 

2.4.3.5 Number of Iterations 

 

The number of iterations can be determined by the following formulas (Reeves, 

1996): 

0log log

log

fT T
k

c


  
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and  

0

0

f

f

T T
k

T T


  

for homogenous and non-homogeneous cases respectively, where fT  is the final 

temperature and 0T  is the initial temperature. 

 

Since both methods are point based search methods and it is known that point 

based methods needs less solution time as compared to the population based search 

methods such as genetic algorithms, these two methods are employed as generative 

methods. It is known that simulated annealing is successfully employed for solving 

buffer allocation problem. Moreover, since tabu search provides an alternative to 

traditional optimization techniques by using memory-based strategies to escape the 

local optima and it is also successfully employed on many combinatorial 

optimization problems. 

 

2.5 Chapter Summary 

 

In this chapter, the characteristics, formulations and solutions methods of buffer 

allocation problem are given in detail. The solution of the buffer allocation problem 

involves using an evaluative method and a generative method in an iterative manner. 

In this Ph.D. study, the decomposition method is used as an evaluative method and 

two meta-heuristic methods - tabu search and simulated annealing- are employed as 

generative method. Hence, in this chapter, background information on all these 

methods is given. 

 

Next chapter is devoted to the review of the related literature on buffer allocation 

problem. To our knowledge since the study of Gershwin and Schor (2000) there is no 

any comprehensive survey on buffer allocation problem. Thus, in the next chapter we 

aim at filling the perceived gap in this area and also state our contributions to this 

area. 
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CHAPTER THREE 

LITERATURE SURVEY 

 

 

3.1 Introduction 

 

Due to its importance and complexity, the buffer allocation problem has been 

studied for over 50 years and numerous publications are available in the literature. 

The first study in this area is presented by Koenigsberg (1959), which gives an 

analysis and review of the basic problems associated with the efficient operation of 

production systems. A detailed analysis of mathematical models describing the effect 

of the buffer storage can be found in the following references (Buzacott and 

Shanthikumar, 1993, Papadopoulos et al., 1993, Papadopoulos et al., 2009) and in 

some comprehensive survey studies (Dallery and Gershwin, 1992, Papodopoulos and 

Heavey, 1996). 

 

As mentioned in chapter 2, the buffer allocation problem can be formulated in 

three forms, BAP1, BAP2 and BAP3. Among these, the BAP1 and BAP2 have been 

studied more extensively in the literature. As stated by Enginarlar (2003), BAP1 and 

BAP2 can be solved using algorithmic and also rule-based approaches (see Figure 

3.1). While algorithmic approaches involve an optimization algorithm to solve the 

problem, rule-based approaches employ simple rules to obtain a good solution. In 

comparison to BAP1 and BAP2, the problem BAP3 which involves minimizing 

average work in process (WIP) in the system is a relatively less studied problem. 

This could be due to the fact that BAP3 involves more challenging constraints than 

the other two. The studies addressing these three problems are discussed in following 

sections. 

 

This chapter presents a comprehensive survey on buffer allocation problem in 

production lines. Next section introduces our classification scheme to review the 

studies published after 1998. For other studies published before 1998, the reader can 

refer to Park (1993) and Gershwin and Schor (2000). 



 

 

31 

 

 

 

Figure 3.1 Classification of the literature on buffer allocation problem (Enginarlar, 2003) 

 

The insight gained as a result of surveying the current literature and the 

motivation of this Ph.D. study are given in section 3.3. Finally, the context of this 

chapter is summarized in section 3.4. 

 

3.2 Proposed Classification Scheme and Discussion of Current Literature 

 

In this section the studies dealing with buffer allocation problem in production 

lines, published since 1998, are reviewed based on the following classification 

scheme: 

 

Topology of the line: The relevant studies are classified according to the topology of 

line as follows: 

S  : Serial 

S-P  : Serial-Parallel 

GN  : General Network 

A  : Assembly 

FMS : Flexible Manufacturing Systems 

CMS : Cellular Manufacturing Systems 
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Objective function: The following objective functions are noted in the current 

relevant literature: 

 Objective 1: Throughput maximization 

 Objective 2: Total buffer size / Work in Process (WIP) minimization 

 Objective 3: Cost minimization 

Objective 4: Profit maximization 

Objective 5: Other objective functions, such as maximizing customer service 

level, minimizing the mean waiting time of a job, reducing idle time, 

minimizing cycle time, and minimizing average flow time of the product. 

 

Solution methodology: The existing literature is classified according to the type of 

the evaluative and generative solution method employed to solve the buffer 

allocation problem.  

 

To review the current relevant literature, first the studies are divided into two 

categories: 1. Reliable lines which are not subject to failure, 2. Unreliable lines 

which are subject to failure. Based on three criteria defined above, the following two 

sections present the review of studies done for reliable and unreliable production 

lines, respectively. 

 

3.2.1 Reliable Lines 

 

Using the classification scheme explained in previous section, Table 3.1 

chronologically lists the studies for reliable lines published since 1998. It should be 

noted that the notation used in this table is given in previous section. 
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Table 3.1 Overview on buffer allocation literature: Reliable lines 

Authors 

Topology of the Line Objective Solution Methodology 

S S-P GN A FMS CMS 1 2 3 4 5 Evaluative Generative 

Fuxman (1998)    x   x     Levner’s Graph Heuristic 

Lutz et al. (1998) x      x x    Simulation Tabu Search 

Papadopoulos & Vidalis 

(1998) 
x      x     Markovian State Model The Modified Hooke-Jeeves Method 

Powell and Pyke (1998)    x   x     Simulation Heuristic 

Yamashita & Altiok 
(1998) 

x       x    Simulation Dynamic Programming 

Harris & Powell (1999) x      x     Simulation 
Spendley-Hext & Nelder-Mead Simplex 

Search Algorithms 

Hillier (2000) x         x  Markov Chain Model Heuristic 

Spinellis & Papadopoulos 

(2000a) 
x      x     Decomposition Method Simulated Annealing 

Spinellis & Papadopoulos 

(2000b) 
x           Decomposition Method 

Genetic Algorithms & Simulated 

Annealing 

Spinellis et al. (2000) x      x     Expansion Method Simulated Annealing 

Huang et al. (2002) x      x x    Approximate Analytic Algorithm Dynamic Programming 

Sabuncuoglu et al. (2002)    x   x     Simulation Design of Experiments 

Chaharsooghi & 

Nahavandi (2003) 
x      x     Markov State Model Heuristic 

Hemachandra and 

Eedupuganti (2003) 
   x   x x    Markov State Model Heuristic 

Yamada and Matsui (2003)    x     x   Simulation Complex Method 

Daskalaki, & MacGregor 

Smith (2004) 
 x     x x    Expansion Method Powell’s Algorithm 

Diamantidis & 
Papadopoulos (2004) 

x      x     Aggregation Method Dynamic Programming 
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Table 3.1 Overview on buffer allocation literature: Reliable lines (cont.) 

Authors 

Topology of the Line Objective Solution Methodology 

S S-P GN A FMS CMS 1 2 3 4 5 Evaluative Generative 

MacGregor Smith & Cruz 
(2005) 

  x     x    Expansion Method Powell’s Algorithm 

Hillier & Hillier (2006) x         x  Markov Chain Model Heuristic 

Kwon (2006)     x       Decomposition Method Heuristic 

Nieuwenhuyse et al. 

(2007) 
x          x Queuing Model Mathematical Model 

Um et al. (2007)     x  x     Simulation Evolution Strategy 

Can et al. (2008) x      x     Simulation Genetic Algorithms 

Cruz et al. (2008)   x     x    Expansion Method 
Lagrange Relaxation & Derivative-free 

Search 

Raman and Jamaludin 

(2008) 
x       x    Simulation Design of Experiments 

Yuzukirmizi &MacGregor 

Smith (2008) 
  x    x    x Expanded Mean Value Analysis Powell’s Algorithm 

Can & Heavey (2009) x      x     Simulation 
Genetic Programming & Particle Swarm 

Optimization 

Aksoy & Gupta (2010)      x   x   Expansion Method Heuristic 

Cruz et al. (2010)   x    x x  x  Expansion Method Genetic Algorithms 

Van Woensel et al. (2010)   x     x    
Two-moment Approximation & 

Expansion Method 
Powell’s Algorithm 

Total 16 1 5 5 2 1 18 10 2 3 2   
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The first study employing a meta-heuristic method for solving buffer allocation 

problem was presented by Lutz et al. (1998). In this study, a tabu search algorithm 

combined with simulation was suggested to solve the buffer allocation problem in a 

six-machine reliable production line. The objective was to maximize the throughput 

of the line while minimizing the total buffer size in the system. The results obtained 

from this study were consistent with the other studies which considered the same 

type of production lines. The authors indicated that the advantage of their simulation-

search procedure was its ability to model any line configuration regardless of its 

scheduling policy or any other characteristics. However, it should be noted that this 

advantage was gained at the expense of a long computation time to model large or 

extremely complex manufacturing systems. 

 

Another study employing simulation was presented by Yamashita and Altiok 

(1998). The objective of this study was to minimize the total buffer size for achieving 

desired throughput rate in a reliable line with phase-type processing times. For this 

purpose, the authors developed a dynamic programming algorithm. Moreover, they 

provided numerical examples to show the buffer allocation and compared the 

corresponding simulated throughput and its bounds with the desired throughput.  

 

Papadopoulos and Vidalis (1998) considered the buffer allocation problem in 

balanced reliable production lines. The authors developed a search technique, which 

was a modified Hooke-Jeeves algorithm and they presented two basic design rules 

using this method. As an evaluative method the authors employed the Markovian 

state model developed by Heavey et al. (1993). 

 

Fuxman (1998) presented an analytical model which allows computation of the 

minimum required number of buffers and an optimal allocation thereof in an 

asynchronous reliable mixed-model assembly line to maintain the highest possible 

throughput rate. The author developed a simple and efficient algorithm called BELA 

(i.e., buffer elimination algorithm) to identify buffer configurations and used the 

Levner’s graph to obtain the throughput of the system. Powell and Pyke (1998) also 

studied simple asynchronous reliable assembly systems with variable processing 
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times and they developed simple heuristic rules that can be used to improve system 

performance. The authors employed simulation to evaluate the sensitivity of location 

of the first buffer against the parameters of the processing time distributions. 

 

Harris and Powell (1999) developed a simple search algorithm for optimal buffer 

allocation to maximize throughput of the line under total buffer size constraint. The 

algorithm, which is an adaptation of the Spendley-Hext and Nelder-Mead simplex 

search algorithms, uses simulation to estimate throughput for every allocation 

considered.  

 

The characterization of optimal buffer allocation for reliable production lines with 

variable processing times was presented by Hillier (2000). The production line was 

modeled by using Markov chains and the optimal buffer sizes were obtained by a 

heuristic approach so as to maximize the profit. The aim of this study was to suggest 

the rules of thumbs rather than develop algorithms for optimal buffer allocation in 

short reliable lines. This study was later extended by Hillier and Hillier (2006) to 

simultaneous optimization of workload and buffer allocation using Markov chains. 

 

In recent years, meta-heuristic approaches are extensively used for solving buffer 

allocation problem. Simulated annealing is the most widely used method in this area. 

One of these studies employing simulated annealing was presented by Spinellis and 

Papadopoulos (2000a). In this study the decomposition method was employed as an 

evaluative method and simulated annealing was employed as a generative method for 

maximizing the production rate of the line. In another study, the authors (Spinellis 

and Papadopoulos, 2000b) compared the performance of simulated annealing 

algorithm with the performance of genetic algorithms, which is another meta-

heuristic method frequently used for solving buffer allocation problem. The authors 

aimed at maximizing the throughput of the line for large-sized problems. Like their 

previous study, the decomposition method was employed to obtain the throughput 

rate of the line. The numerical experiments showed that simulated annealing 

produced larger number of optimal configurations than genetic algorithms but the 

performance of the genetic algorithm was superior to the performance of simulated 
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annealing. Hence, the authors suggested using these two methods in a 

complementary way. Genetic algorithms can be employed in real time applications 

for the swift recalculation of optimal configurations and simulated annealing can be 

utilized in batch-oriented calculations for obtaining an optimal configuration.  

 

In another study, Spinellis et al. (2000) focused on a series-parallel production 

line to maximize the throughput under the constraints of total buffer size, total 

number of available servers and the summation of expected service time. A 

simulated annealing approach was presented to solve this problem for long 

production lines including 60 stations and 120 buffers. The expansion method was 

used to evaluate the system performance. Regarding the allocation of buffers, the 

number of servers and their service rate, the results of comparative experimental 

study exhibited some interesting similarities, but also striking differences from the 

earlier relevant research. The authors stated that these patterns of allocation were one 

of the most important insights which were emerged in solving very long production 

lines.  

 

Huang et al. (2002) employed dynamic programming to solve the buffer 

allocation problem in a flow shop type production system under the objectives of 

minimizing work-in-process, cycle time and blocking probability, maximizing 

throughput, or their combinations. They evaluated the performance of this system by 

using an approximate analytic procedure. 

 

Sabuncuoglu et al. (2002) studied the effect of the number of component stations 

(parallelism), work transfer, processing time distributions, and buffer allocation 

schemes on throughput rate and also on inter-departure time variability of assembly 

systems. The authors conducted simulation experiments so as to give some rule of 

thumbs that could guide practitioners to design more effective systems. Another 

study on assembly lines was presented by Hemachandra and Eedupuganti (2003). 

The authors considered a finite capacity fork–join queuing model for open assembly 

systems with arrival and departure synchronizations and they proposed a heuristic 

approach for enumerating the state space. The authors considered three objectives, 
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such as maximizing the throughput of the system, minimizing the mean waiting time 

of a typical job and minimizing the WIP of the system, while finding the optimal 

buffer configurations. 

 

Yamada and Matsui (2003) developed a management design approach for 

assembly lines by considering both the cost and lead-time under demand 

fluctuations. In this study, the optimal buffer size which minimizes the buffer and 

overflow cost at each station was determined by iterative simulation. Here, the 

complex method was employed to optimize the buffer sizes.  

 

Chararsoghi and Nahavandi (2003) proposed a heuristic approach for optimal 

allocation of buffers under the objective of throughput maximization. The throughput 

rate of the studied system was evaluated using simulation. Computational tests 

showed the efficiency of the proposed approach.  

 

A dynamic programming implementation for solving buffer allocation problem 

was presented by Diamantidis and Papadopoulos (2004). The objective of this study 

was to maximize the throughput of the line subject to total buffer space constraint. 

To obtain the throughput of the system an aggregation method was used. The 

numerical results showed that the proposed dynamic algorithm was very fast and 

always converged. 

 

Daskalaki and MacGregor Smith (2004) combined routing and buffer allocation 

problems in serial-parallel queuing networks. An iterative two-step methodology was 

proposed to solve the optimal routing and buffer allocation problems with the 

objectives of maximizing throughput and minimizing total buffer size. This 

methodology involved the expansion method as an evaluative method and Powell’s 

algorithm as a generative method. The effectiveness of the proposed methodology 

was demonstrated through several experiments. 

 

MacGregor Smith and Cruz (2005) solved buffer allocation problem for general 

queuing networks so as to minimize the total buffer size in the system. The 
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generalized expansion method was employed to evaluate the performance of the 

system and Powell’s unconstrained search algorithm was used to optimize the buffer 

sizes. The efficiency of the solution approach was demonstrated by extensive 

computational experiments. 

 

A flexible manufacturing system with parallel workstations was considered by 

Kwon (2006). The author employed the decomposition method to evaluate the 

performance of the system and proposed a heuristic algorithm to optimize the buffer 

sizes so as to maximize the throughput rate of the system. While the numerical tests 

showed the efficiency of the proposed algorithm for small-sized problems, the 

experimental results were not encouraging for large-sized problems.  

 

Um et al. (2007) employed simulation methodology for the buffer size 

determination in a flexible manufacturing system cell line. Buffer allocation was 

categorized into cell buffer and machine buffer. The authors used the evolution 

strategy in order to find the optimal buffer sizes so as to maximize the throughput 

rate of the system and also minimizing AGV congestion and maximizing AGV 

utilization. Another simulation based study was carried out by Othman et al. (2007) 

for optimal buffer allocation in short production lines including eight machines. The 

authors aimed at giving a guideline to manufacturing system designers for the 

application of simulation methodology to the buffer allocation problem. 

 

Optimization of finished good inventories was considered by Nieuwenhuyse et al. 

(2007). In this study, the authors developed a queuing model to evaluate customer 

service levels and buffer size requirements in semi-process industry. The objective of 

this study was to reduce finished good buffer requirements without compromising 

customer service level by determining optimal campaign sizes.  

 

Raman and Jamaludin (2008) suggested three strategies to reduce the WIP 

inventory in a three-machine line and they tested the performance of these strategies 

via simulation modeling. 
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Cruz et al. (2008) considered the buffer allocation problem in an arbitrary queuing 

network. They aimed at finding the minimum total buffer size which achieves the 

desired throughput rate. Like their previous study (MacGregor Smith and Cruz, 

2005) the generalized expansion method was employed to obtain the throughput rate 

of the system. For optimizing the buffer sizes, an algorithm based on a Lagrangian 

relaxation was proposed. In comparison with the exact simulation results, their 

proposed algorithm seemed to produce very fast and accurate solutions.  

 

Yuzukirmizi and MacGregor Smith (2008) presented an optimal buffer allocation 

procedure for closed queuing networks. The performance measures were evaluated 

using the expanded mean value analysis and the buffer sizes were optimized by 

utilizing Powell method which was a non-linear optimization method. The objective 

function involved maximizing the throughput rate of the system, and also minimizing 

the total average waiting delay of a customer from entry to completion. The 

efficiency of the proposed solution approach was demonstrated through several 

numerical experiments. 

 

In same year, Can et al. (2008) presented a comparative study of different 

stochastic components of genetic algorithms, such as operators, fitness assignment 

strategies and elitism, for simulation-based optimization of the buffer allocation 

problem. They also incorporated problem specific knowledge to further enhance the 

practicality of genetic algorithms in decision making for buffer allocation problem. 

Later, Can and Heavey (2009) presented a simulation-based evolutionary framework 

for constructing analytical meta-models and applied it to solve the buffer allocation 

problem in manufacturing lines. In this framework, a particle swarm algorithm was 

integrated with genetic programming to perform symbolic regression of the problem. 

The sampling data was sequentially generated by the particle swarm algorithm, while 

genetic programming evolved symbolic functions of the domain. The experimental 

results were promising in terms of efficiency in design of experiments and accuracy 

in global meta-modeling. 
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An efficient algorithm for finding the near optimal buffer allocation of a given 

number of total buffer sizes in a cellular remanufacturing system where the servers 

follow the N-policy with finite buffers was presented by Aksoy and Gupta (2010). In 

this study, the expected total cost of the remanufacturing system which was a 

function of the each station’s throughput was considered. The system was modeled 

by using expansion method. The performance of the proposed algorithm was tested 

for both balanced and unbalanced lines covering a large experimental region and it 

has been observed that their proposed algorithm produced excellent results in a 

variety of experimental conditions. 

 

Cruz et al. (2010) developed a multi-objective approach for the buffer allocation 

and throughput trade-off problem for single server queuing networks. It has been 

stated that combining generalized expansion method with a multi-objective genetic 

algorithm gave insightful Pareto curves. These curves explicitly showed the trade-off 

between buffer spaces and throughput. Their experimental results showed 

consistency with the optimal solutions found in earlier studies and supported the 

merits of the proposed solution approach.  

 

Finally, Van Woensel et al. (2010) considered the joint optimization of the 

number of buffers and servers. The performance of the line was evaluated by using a 

combination of two-moment approximation and the generalized expansion method. 

The model presented in this study minimized the number of buffers and servers such 

that the resulting throughput is greater than a predefined threshold throughput rate. 

Similar to previous studies considering the same type of production systems 

(Daskalaki and MacGregor Smith, 2004, MacGregor Smith and Cruz, 2005, 

Yuzukirmizi and MacGregor Smith, 2008), the authors employed Powell’s algorithm 

for optimization. 
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3.2.2 Unreliable Lines 

 

In this section, the studies done since 1998 for buffer allocation problem in 

unreliable lines published are reviewed. A chronological list of these studies with 

respect to three classification criteria is presented in Table 3.2.  

 

Vouros and Papadopoulos (1998) employed a knowledge based system to obtain 

the optimal buffer allocation plan for unreliable lines so as to maximize the 

throughput rate of the line. Simulation was used an evaluative method. The results of 

proposed solution approach were compared with the results of exact method. The 

authors stated that using specific types of knowledge the proposed system was 

computationally efficient and the results obtained were very close to the optimal.  

 

A study by Gershwin and Schor (2000) which was based on M.S. thesis of Schor 

(1995) focused on both BAP1 and BAP2 problems which were previously defined in 

Chapter 2. In this study, the authors named BAP1 as a dual problem and BAP2 as a 

primal problem and they also considered profit maximization as an objective. 

Gradient based search algorithms were proposed to solve these problems. They first 

solved the dual problem and then used this solution to solve the primal problem. The 

performance of the proposed algorithms was tested on existing benchmark problems 

and better results were obtained. The throughput rate of the line was evaluated by 

using decomposition method. Moreover, a survey of related literature was provided 

in this study. 

 

Seong et al. (2000) also proposed a gradient based search algorithm to solve the 

buffer allocation problem in a continuous flow unreliable production line so as to 

maximize the net profit of the system. Unlike the study of Gershwin and Schor 

(2000), the authors solved the buffer allocation problem under the linear constraints 

on buffer sizes and total buffer size capacity. Their computational experiments 

showed that the proposed gradient based algorithm was produced good solutions. 

The authors also showed the robustness of the proposed algorithm to the initial 

solution through numerical experiments. 
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Table 3.2 Overview on buffer allocation literature: Unreliable lines 

Authors 
Topology of the Line Objective Solution Methodology 

S S-P GN A FMS CMS 1 2 3 4 5 Evaluative Generative 

Vouros & 
Papadopoulos (1998) 

x      x     Simulation Knowledge Based Method 

Gershwin & Schor 

(2000) 
x      x x  x  Decomposition Method Gradient Search 

Gurkan (2000) x       x    Generalized Semi-Markov Process 
Sample Path Optimization & Stochastic 

Approximation 

Jeong and Kim 

(2000) 
   x     x   Simulation Heuristic 

Lee (2000)      x   x   Simulation Heuristic 

Seong et al. (2000) x         x  Decomposition Method Gradient Search 

Helber (2001) x   x      x  Decomposition Method Gradient Search 

Kim & Lee (2001) x       x    Approximate Analytic Algorithm Heuristic 

Sörensen & Janssens 

(2001) 
x        x   Approximate Analytic Algorithm Heuristic 

Papadopoulos & 
Vidalis (2001) 

x      x     Markovian State Model Heuristic 

Dolgui et al. (2002)  x        x  Aggregation Method Genetic Algorithms 

Enginarlar et al. 
(2002) 

x       x    Analytic Model  & Simulation Rules-of-Thumbs 

Han & Park (2002) x       x    Approximate Analytic Algorithm Penalty Function & Steepest Descent Methods 

Lee & Ho (2002)   x      x   Simulation Response Surface Methodology 

Roser et al. (2003)  x         x Simulation Shifting Bottleneck Detecting Approach 

Shi & Men (2003) x      x     Decomposition Method 
Hybrid Method 

(Tabu Search & Nested Partitions) 

Tempelmeier (2003) x   x    x    Decomposition Method Heuristic 
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Table 3.2 Overview on buffer allocation literature: Unreliable lines (cont.) 

Authors 

Topology of the Line Objective Solution Methodology 

S S-P GN A FMS CMS 1 2 3 4 5 Evaluative Generative 

Louw & Page (2004)   x        x 
Open Queuing Network Model & 

Simulation 
Analytic Method 

Zequeira et al. (2004) x        x   Mathematical Model Grid Search 

Aksoy & Gupta 

(2005) 
     x   x   Expansion Method Heuristic 

Allon et al. (2005) x      x     Simulation Cross-Entropy Method 

Enginarlar et al. 
(2005) 

x       x    Analytic Model  Rules-of-Thumbs 

Nourelfath et al. 

(2005) 
x      x     

Decomposition 

Method 
Ant Colony Optimization 

Matta et al. (2005) x      x     Simulation Design of Experiments 

Bulgak (2006)    x   x     Simulation Genetic Algorithms & Artificial Neural Networks 

Nahas et al. (2006) x      x     Decomposition Method 
Degraded Ceiling Algorithm & Simulated 

Annealing 

Sabuncuoglu et al. 
(2006) 

x      x     Simulation Heuristic 

Altiparmak et al. 

(2007) 
   x   x     Simulation Artificial Neural Networks 

Dolgui et al. (2007)  x        x  Aggregation Method 
Hybrid Method (Genetic Algorithms & Branch-

and-Bound) 

Qudeiri et al. (2007)   x    x     Simulation Genetic Algorithms 

Ribeiro et al. (2007) x         x  
Mixed Integer Linear Programming 

Model 
Mixed Integer Linear Programming Model 

Battini et al. (2008) x       x    Simulation Experimental Cross Matrix 

Demir & Tunali 

(2008) 
x      x     Decomposition Method 

Hybrid Method (Genetic Algorithms & 

Subgradient Method) 

Qudeiri et al. (2008)  x     x     Aggregation Method & Simulation Genetic Algorithms 
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Table 3.2 Overview on buffer allocation literature: Unreliable lines (cont.) 

Authors 

Topology of the Line Objective Solution Methodology 

S S-P GN A FMS CMS 1 2 3 4 5 Evaluative Generative 

Yamamoto et al. 
(2008) 

x      x     Simulation Genetic Algorithms 

Zequeira et al. (2008) x        x   Mathematical Model Heuristic 

Lee et al. (2009) x      x x    Simulation Genetic Algorithms & Artificial Neural Networks 

Nahas et al. (2009)  x     x     Decomposition Method Ant Colony Optimization & Simulated Annealing 

Shi & Gershwin 
(2009) 

x         x  Decomposition Method Nonlinear Programming 

Vitanov et al. (2009)    x   x     Simulation Ant Colony Optimization 

Chehade et al. (2010)    x   x x    Simulation Ant Colony Optimization 

Colledani et al. (2010) x      x     Approximate Analytic Algorithm Colledani et al. (2002) 

Demir et al. (2010) x      x     Decomposition Method Adaptive Tabu Search 

Kose (2010)   x    x     Simulation Genetic Algorithms 

Massim et al. (2010) x      x   x  Decomposition Method Artificial Immune Algorithm 

Demir et al. (2011) x      x x    Decomposition Method Tabu Search 

Total 30 5 3 7 0 1 24 11 7 8 3   
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Gurkan (2000) employed sample path optimization and stochastic approximation 

in unreliable serial production lines where the product type was fluid. The author 

derived recursive expressions to compute one-sided directional derivatives of 

throughput by utilizing a generalized semi-Markov process representation of the 

system. The objective was to minimize the function involving total buffer size and 

scaled throughput under some linear constraints. The author employed sample path 

optimization and stochastic approximation to optimize the buffer sizes. The 

experimental studies showed that both methods worked equally for small-sized 

problems while sample path optimization was superior to stochastic approximation in 

terms of computational effort for large-sized problems. 

 

Lee (2000) addressed the buffer sizing problem under the objective of total cost 

minimization in a cellular manufacturing system. The cost function to be minimized 

includes the set-up cost to install the buffer storage and the cost of production loss 

due to limited buffer storage. This function was minimized by using a heuristic 

approach based on non-linear search strategy. Later, Lee and Ho (2002) solved to 

same problem for serial and job shop type production systems with multiple part 

types. In this study, simulation was used for modeling and buffer sizes were 

optimized via response surface methodology. 

 

Jeong and Kim (2000) studied a different type of buffer allocation problem 

involving the selection of machines for each station and determination of buffer 

capacities in a tree-structured unreliable assembly system. The authors suggested 

three heuristics to find the minimum cost configuration which achieves a desired 

throughput rate. Starting from a lower (which consists of less efficient machines and 

large size buffers) or upper configuration (which consists of more efficient machines 

and small size buffers) these heuristics first generate promising machine 

configurations and then find the best buffer configurations for each machine 

configuration.  

 

Considering the buffer allocation problem as an investment problem Helber 

(2001) employed gradient algorithm to determine the buffer allocation and the 



 

 

47 

 

performance of the algorithm was evaluated by using decomposition technique. To 

assess the economic consequences of the buffer allocation, the author linked the 

production rates and inventory levels to the projected cash flow and maximized the 

expected net present value of the investment including machines, buffers and 

inventory. 

 

Papadopoulos and Vidalis (2001) investigated the buffer allocation problem in 

short unbalanced unreliable production lines consisting of up to six machines. They 

developed a heuristic algorithm based on sectioning approach to maximize the 

throughput of the line and like in their previous study (Papadopoulos and Vidalis, 

1998), for performance evaluation they used Markovian state model method 

developed by Heavey et al. (1993). 

 

Sörensen and Janssens (2001) developed an approximation model to determine 

the total availability for an unreliable production system. The total cost of the system 

was determined as a function of the required or desired availability of the system and 

of the total or average usage of the available buffer space. This cost was minimized 

by using a search algorithm.  

 

Kim and Lee (2001) proposed a heuristic algorithm which was the modified 

version of the algorithm proposed by Seong et al. (1995) to solve the buffer 

allocation problem in a production line under given total buffer capacity and the 

minimum required throughput.  

 

Han and Park (2002) presented an approximation method for the analysis of 

average steady state throughput of serial production lines with unreliable machines, 

finite buffers and quality inspection machines. Employing this approximation 

method, the authors proposed an analytic method for the optimal buffer allocation to 

achieve a desired throughput rate. The method involved penalty function and steepest 

descent methods and it was validated by computer simulations. 
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Enginarlar et al. (2002) investigated the smallest level of buffering to ensure the 

desired throughput rate in serial lines with unreliable machines. In this study, the 

reliability of machines was assumed to obey either exponential, Erlang or Rayleigh 

models. The dependence of level of buffering on the reliability model, the number of 

machines, the average uptime, and the efficiency was analyzed and as a result some 

rules-of-thumbs were provided to select buffer capacity so as to achieve desired 

throughput rate. Later, Enginarlar et al. (2005) considered the same problem in 

unreliable serial lines with identical exponential machines and they provided 

qualitative insights into the nature of lean buffering in serial production lines.  

 

In recent years, it has been observed that meta-heuristic methods are successfully 

employed for solving buffer allocation problem. Genetic algorithm is one of these 

well-known methods. Dolgui et al. (2002) proposed genetic algorithm to solve buffer 

allocation problem for unreliable serial-parallel production lines so as to maximize 

the profit. It was assumed that the failure and repair rates of the machines were 

exponentially distributed and the machines have deterministic processing times. The 

performance measures of this line were evaluated using Markov-model aggregation 

method. The performance of the proposed genetic algorithm was compared with the 

pure genetic algorithm, complete enumeration and the Monte Carlo methods and 

better quality of solutions were obtained with the proposed GA. Later, Dolgui et al. 

(2007) proposed a hybrid approach involving genetic algorithms and branch-and-

bound method for the same problem. The authors used genetic algorithm to obtain 

the initial solution for branch-and-bound method and stated that to do so shortens the 

total running time of the algorithm comparing with pure branch-and-bound 

algorithm.  

 

Another study hybridizing a meta-heuristic method with any other search 

techniques was presented by Shi and Men (2003). In this study the nested partitions 

method was hybridized with tabu search method. The basic tabu search method was 

incorporated into the nested partitions framework so as to maximize the throughput 

rate of the line. The decomposition method was used as an evaluative method. The 

results obtained by the proposed hybrid approach was compared to the results 
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obtained by the basic tabu search and local search algorithms and it was found that 

their proposed hybrid approach was the best one among the others in terms of both 

solution quality and solution time.  

 

Roser et al. (2003) described a prediction model to estimate the effect of increased 

buffer capacity onto the system performance based on only a single simulation. 

Although the proposed method was meant to be for large balanced and unbalanced 

systems and serial/parallel manufacturing systems, the authors stated that it can be 

adapted to non-manufacturing discrete event systems. 

 

The real life problems considering the optimal buffer allocation problem in 

unreliable production lines were presented by Tempelmeier (2003). Both 

deterministic and variable processing times were considered. The author employed 

decomposition method for evaluating system performance and a heuristic approach 

for finding the optimal buffer and workload allocation simultaneously.  

 

To estimate the size of the time buffers in theory of constraints controlled flow 

lines an open queuing network analysis approach was presented by Louw and Page 

(2004). Simulation experiments performed suggested that this approach could be 

efficiently applied in practice to estimate the length of the required time buffers. 

 

Zequeira et al. (2004) presented a mathematical model to determine optimal 

buffer inventories and also optimal operational times to satisfy the demand during 

the maintenance action on a manufacturing facility. Later, Zequeira et al. (2008) 

added the issue of imperfect production possibility into the model and assumed that 

the opportunities to produce the buffer inventory and opportunities to carry out a 

maintenance action were random. The authors proposed a heuristic algorithm to 

determine the optimal buffer sizes and they used the mathematical model presented 

in Zequeira et al. (2004) for performance evaluation. 

 

Nourelfath et al. (2005) employed ant colony optimization for solving buffer 

allocation problem in unreliable serial lines. The objective of this study was to 
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maximize the efficiency of the line subject to a total cost constraint. The performance 

of the line was estimated by using decomposition method. Moreover, to improve the 

performance of the ant colony optimization algorithm the authors developed two 

improvement algorithms. It has been observed that by combining these algorithms 

with ant colony optimization algorithm, the optimal/near-optimal solutions could be 

obtained more quickly. 

 

The buffer allocation problem in remanufacturing systems was considered by 

Aksoy and Gupta (2005). In this study, Aksoy and Gupta (2005) developed a near 

optimal buffer allocation algorithm for cellular remanufacturing system with finite 

buffer capacities and unreliable servers. Authors considered server unavailability in 

the remanufacturing system by means of exponential breakdown and repair rate. To 

analyze this system expansion method was employed and a heuristic algorithm was 

suggested to optimize the buffer size so as to minimize the total cost. The 

performance of the algorithm was tested for both balanced and unbalanced cells 

covering a large experimental region.  

 

A new stochastic algorithm named as cross-entropy method was employed by 

Allon et al. (2005). The objective was to maximize the throughput of the line and the 

performance of the line was evaluated using simulation. Matta et al. (2005) also 

employed simulation to evaluate the performance of flow lines including common 

buffer area. An experimental design was conducted to determine significant factors 

on production rate of the system. The authors presented some practical 

considerations for manufacturing system designers.  

 

Another study which employed simulation as an evaluative method was presented 

by Sabuncuoglu et al. (2006). The authors studied the cases with single and multiple 

bottleneck stations under various experimental conditions and presented a heuristic 

algorithm to maximize the throughput rate of the line. The results of computational 

experiments showed that the proposed heuristic algorithm was very efficient in terms 

of both solution quality and also solution time. Moreover, some-rules-of thumbs for 

characterizing the optimal buffer allocation were given in this study. 
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Nahas et al. (2006) proposed a degraded ceiling algorithm for solving buffer 

allocation problem under the objective of throughput maximization for unreliable 

production lines. To estimate the throughput rate of the line the decomposition 

method was employed. The results obtained by degraded ceiling algorithm were 

compared with simulated annealing algorithm using existing benchmark problems 

which involved both homogeneous and non-homogeneous production lines. It was 

reported that better results were obtained by degraded ceiling algorithm since 

degraded ceiling algorithm converged to the optimum solutions quickly than 

simulated annealing algorithm. In 2009, Nahas et al. (2009) considered both buffer 

allocation and machine selection problem in a series-parallel production line so as to 

maximize the production rate of the line. To estimate the performance of this 

production line an analytical decomposition-type approximation was employed. The 

decision variables, i.e. buffer sizes and the number of parallel machines were 

optimized by using ant colony optimization. The results obtained by ant colony 

optimization were compared with the results obtained by simulated annealing 

algorithm. It has been observed that ant colony optimization produced better results 

than simulated annealing algorithm. 

 

Bulgak (2006) studied optimal interstage buffer allocation problem of split-and-

merge unpaced open assembly systems. The system studied in this paper was a 

modified version of the assembly system described by Hemachandra and 

Eedupuganti (2003). The author developed a simulation model in conjunction with 

genetic algorithms to find optimal inter-stage buffer configurations yielding a 

maximum production rate. To make the proposed method computationally more 

efficient, the author also proposed simulation meta-modeling based on artificial 

neural networks. Altiparmak et al. (2007) also investigated meta-modeling 

opportunities in buffer allocation and performance modeling in asynchronous 

unreliable assembly systems. In this study, a meta-model based on the artificial 

neural network was developed and simulation was employed as an evaluative 

method. The authors stated that the artificial neural network could successfully be 

used for modeling assembly systems. 
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Another study employing genetic algorithm was presented by Qudeiri et al. 

(2007). In this study, a simulator which includes a genetic algorithm to optimize the 

buffer sizes for complex production systems was developed. The authors introduced 

a new encoding method called multi-vector encoding method for genetic algorithms 

and stated that using this new encoding method the optimal buffer sizes can be 

obtained after a few number of generations. Following this study, Yamamoto et al. 

(2008) employed the same solution methodology to determine the buffer sizes for a 

flexible transfer line with bypass lines and Qudeiri et al. (2008) proposed genetic 

algorithms for optimal buffer allocation in an unreliable serial-parallel production 

line. Qudeiri et al. (2008) used the gene family arrangement method to express the 

chromosome and proposed new crossover and mutation methods. The authors 

evaluated the performance of the line using aggregation method and they optimized 

buffer sizes between each pair of workstations, number of machines in each 

workstation and the types of machines. It was observed that the production efficiency 

was improved by using their proposed solution method.  

 

Ribeiro et al. (2007) aimed at jointly optimizing the maintenance of a capacity 

constrained resource, its feed machine/operation and inlet buffer size. A mixed 

integer linear programming model was developed to maximize total profit in the 

planning horizon. A two-machine line example was used to illustrate the 

implementation of the model.  

 

Demir and Tunali (2008) proposed a hybrid solution approach combining 

subgradient algorithm proposed by Gasimov and Ustun (2007) and genetic 

algorithms within the same framework to maximize the throughput of the production 

line. To evaluate the throughput of the line an analytical decomposition 

approximation method was used. The performance of the proposed approach was 

demonstrated by a case study and promising results were obtained. 

 

In same year, Battini et al. (2008) presented a new paradigm: the buffer design for 

availability. The main idea was to construct the buffer configuration based on 

availability performance of production lines. In this study, only micro downtimes 
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were considered. Simulation was used as an evaluation method and a new 

experimental cross matrix based on the guide index was provided as a generative 

method to determine the optimal buffer sizes. Moreover, the authors evaluated the 

effects of workstation reliability parameters on buffer capacities using simulation and 

also presented simple guidelines to support and help manufacturing system designers 

for rapid and robust buffer design.  

 

In a recent study, Shi and Gershwin (2009) presented a nonlinear programming 

approach for maximizing profits through buffer size optimization in production lines. 

In this study, both buffer space cost and average inventory cost with distinct cost 

coefficients for different buffers and also a nonlinear production rate constraint have 

been considered. Moreover, numerical results were provided to show the efficiency 

and accuracy of the proposed algorithm for both short and long production lines. 

 

Another ant colony optimization algorithm for solving buffer allocation problem 

in assembly lines was proposed by Vitanov et al. (2009). The algorithm was designed 

to work in conjunction with a simulation model and adapted to have both 

combinatorial and stochastic problem solving capacity.  

 

Lee et al. (2009) proposed an artificial intelligence based method to investigate 

the buffer allocation of unbalanced-unreliable flow type production lines. Genetic 

algorithm combined with simulation method was used in attempting to quickly figure 

out the best solutions. In turn, these optimal solutions were fed into an artificial 

neural network for predicting buffer allocations. The performance of the proposed 

method was evaluated by using benchmark problems previously published in 

literature.  

 

Colledani et al. (2010) proposed a new methodology based on analytical methods 

to support Scania, the manufacturer of heavy trucks, buses, and industrial and marine 

diesel engines. Besides improving the performance of the system through re-

configuration, the authors also considered repair crew optimization and buffer size 
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optimization problems. The buffer allocation problem was solved using the method 

proposed by Colledani et al. (2004) under the objective of throughput maximization. 

 

Demir et al. (2010) presented an adaptive tabu search approach to maximize the 

throughput rate of the line for non-homogeneous lines. In this study, tabu search 

parameters were tuned adaptively during the search so as to improve the search 

process. The performance of the proposed solution approach was tested on randomly 

generated test problems. In another study, Demir et al. (2011) proposed a tabu search 

approach for solving buffer allocation problem under the objective of both 

throughput maximization and also total buffer size minimization in homogeneous 

lines. The performance of the proposed approach was tested on previously published 

benchmark problems and promising results were obtained. 

 

Another implementation of genetic algorithms for solving buffer allocation 

problem was presented by Kose (2010). In this study a real production system was 

modeled using simulation and buffer sizes were optimized using genetic algorithms. 

 

Chehade et al. (2010) proposed a new multi-objective solution approach for 

solving buffer allocation problem in assembly lines. For each buffer size a range was 

considered including a lower and upper bound. Two objectives were taken in 

consideration: throughput maximization and total buffer size minimization. The 

proposed solution method was based on a multi-objective ant colony optimization 

algorithm using the Lorenz dominance instead of the well-known Pareto dominance 

relationship. The author stated that the Lorenz dominance relationship provided a 

better domination area by rejecting the solutions founded on the extreme sides of the 

Pareto front. The results obtained were compared with those of a classical multi-

objective ant colony optimization algorithm. The numerical results showed the 

advantages and the efficiency of the Lorenz dominance. 

 

Finally, in the study of Massim et al. (2010), an artificial immune algorithm was 

proposed to solve buffer allocation problem for unreliable production lines so as to 

maximize the throughput of the line and also profit under the total buffer capacity 
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constraint. The algorithm was tested on previously published benchmark problems, 

and equivalent or improved results were obtained.  

 

3.3 Motivation  

 

Based on the survey of the current studies on buffer allocation problem (see 

Tables 3.1and 3.2), we could list our findings as follows:  

 Most of the studies consider the issue of machine breakdowns (46 out of 

76 studies). 

 The serial line configuration is the most studied line configuration (46 out 

of 76 studies). 

 The throughput maximization problem (i.e. BAP1) is the most studied 

problem in the current literature (41 out of 76 studies). 

 Only 8 out of 76 studies solve the problem under the objective of both 

throughput maximization and also total buffer size minimization.  

 A great majority of studies (49 out of 76 studies) employ analytic methods 

as an evaluative method for solving the problem. It has been observed that 

when the line studied becomes more complex as in the case of assembly 

lines, simulation is used as an evaluative method. It has been noted that 8 

out of 11 studies involving assembly lines employ simulation as an 

evaluative method. 

 In recent years, the meta-heuristics are widely used for solving the buffer 

allocation problem because of their capability in handling combinatorial 

optimization problems. More than half of these studies (13 out of 22 

studies) employ genetic algorithms as a generative method.  

 Only 3 out of 76 studies employ a hybrid approach to optimize the buffer 

sizes (Shi and Men, 2003, Dolgui et al., 2007, and Demir and Tunali, 

2008) and all of these studies solve the buffer allocation problem under the 

objective of throughput maximization. 

 

In the light of the current literature, we could state that a great majority of 

researchers studied the buffer allocation problem either under the objective of 
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throughput maximization or total buffer size minimization. Since the buffering 

allows the machines to operate nearly independently of each other and in this way it 

helps to increase the throughput rate of the system, there are usually floor space and 

budget constraints in reality. Generally, the ultimate aim is to improve the system 

performance with the minimum cost as in the case of all manufacturing system 

problems. So, one should consider both objectives while solving buffer allocation 

problem so as to obtain the best solution. 

 

Moreover, there were a few studies using hybrid meta-heuristic approaches to 

solve this complex problem. As it is stated before, the buffer allocation problem is an 

NP-hard combinatorial optimization problem where the decision variables, i.e. buffer 

sizes, are integer. As in all cases of combinatorial problems, to find optimum 

solutions by exact methods in a reasonable amount of time is impossible when the 

problem size increases. To overcome to this difficulty and to find (near-) optimal 

solutions, in recent years, meta-heuristic methods are widely employed for solving 

combinatorial optimization problems. Moreover, to improve the search process, 

meta-heuristic methods are hybridized with any other meta-heuristic or optimization 

methods in a complementary fashion. Over the last years, it has been reported that 

the best results for many combinatorial problems are obtained by hybrid algorithms. 

Combinations of algorithms such as simulated annealing, tabu search and 

evolutionary algorithms have provided very powerful algorithms as it can be seen in 

the buffer allocation problem context (see Shi and Men, 2003, Dolgiu et al. 2007, 

and Demir and Tunali, 2008). However, the buffer allocation problem is solved only 

under the objective of throughput maximization in all mentioned studies. Hence, 

solving buffer allocation problem by using a hybrid meta-heuristic approach and 

testing its efficiency on total buffer size minimization problem seems an open area in 

buffer allocation literature. 

 

Considering these opportunities and unfulfilled research potential in this area, this 

Ph.D. study aims at suggesting hybrid algorithms to solve the buffer allocation 

problem in unreliable production lines under the objective of both throughput 

maximization and also total buffer size minimization.  
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3.4 Chapter Summary 

 

In this chapter, the current studies on buffer allocation problem were extensively 

reviewed to identify the current research gaps and also state the motivation for this 

Ph.D. thesis.  

 

Our review includes the studies published after 1998. To review the current 

relevant literature, first the studies are divided into two categories: reliable lines 

which are not subject to failure, and unreliable lines which are subject to failure. The 

studies are classified according to the topology of the line, considered objective 

function and the type of the evaluative and generative solution method employed to 

solve the buffer allocation problem.  

 

Based on the findings of this survey, this Ph.D. study aims at suggesting tabu 

search algorithms to solve the buffer allocation problem in unreliable production 

lines under the objective of both throughput maximization and also total buffer size 

minimization. For this purpose, the buffer allocation problem is first solved under the 

objective of throughput maximization. Next chapter presents the details of our 

proposed TS algorithm for throughput maximization problem in unreliable 

homogeneous production lines. 
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CHAPTER FOUR 

A TABU SEARCH APPROACH FOR THROUGHPUT MAXIMIZATION IN 

UNRELIABLE HOMOGENEOUS PRODUCTION LINES  

 

 

4.1 Introduction 

 

The main objective of this Ph.D. study is to develop efficient algorithms for 

solving buffer allocation problem in unreliable production lines. For this purpose, we 

solved the problem in three stages as it is stated in the first chapter. This chapter 

presents what we have done at the first stage of this Ph.D. study. 

 

In this chapter, a TS algorithm is proposed to solve buffer allocation problem 

under the objective of throughput maximization for homogeneous production lines 

involving unreliable machines with deterministic processing times. The new move 

definitions for buffer allocation problem are introduced and a pilot experiment is 

carried out to identify the best TS parameters. The performance of the proposed TS 

algorithm is tested on benchmark problems previously published in literature. 

 

The rest of this chapter is organized as follows. In section 4.2, the specifications 

of the problem are given. The details of the proposed TS algorithm are presented in 

section 4.3. The results of experimental studies carried out to test the performance of 

the proposed TS algorithm are discussed in Section 4.4. Finally, in Section 4.5 the 

context of this chapter is summarized.  

 

4.2 Problem Specifications  

 

This chapter focuses on serial production lines involving unreliable machines with 

the same processing rates. The objective is to find the optimal buffer allocations so 

that the throughput rate of the line can be maximized for a given fixed amount of 

buffers. As given earlier in chapter 2, this problem is called as BAP1. To deal with
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this problem, a tabu search algorithm which is adapted to the intrinsic features of this 

problem is proposed in this chapter.  

 

The following gives the summary of the features of the production line studied:  

 All the machines along the line have the same processing rate of one unit 

of time. 

 There is an intermediate location for storage between each pair of 

machines.  

 Each part goes through all the machines in exactly the same order. 

 The machines are subject to breakdown and the repair and failure rates of 

the machines are geometrically distributed. 

 The first machine is never starved, i.e. input is always available, and the 

last machine is never blocked, i.e. there is always space to dispose of the 

output.  

 

Assuming that there are K machines and K-1 buffers in the production line, our 

objective is to maximize the throughput rate of the production line, subject to a given 

total buffer capacity. The problem can be formulated as follows:  

Find 1 2 1( , ,..., )KB B B B   so as to 

max  ( )f B          (1) 

subject to 

1

1
i

K

i

B N




          (2) 

nonnegative integers ( 1,2,..., 1) iB i K       (3) 

where N is a fixed nonnegative integer denoting the total buffer space available in the 

system which has to be allocated among the K-1 buffer locations so as to maximize 

the throughput rate of the production line. In this formulation B represents a buffer 

vector, iB  is the buffer size for each location and f(B) represents the throughput rate 

of the production line with respect to the buffer configuration B. 

 

To solve this buffer allocation problem, we propose a tabu search based meta-

heuristic approach specifically adapted to the intrinsic features of this problem. 
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Unlike the studies of Lutz et al. (1998) and Shi and Men (2003), who also employ 

tabu search for the buffer allocation problem, a different tabu criterion, which is 

explained in next section, is employed in our TS algorithm and the problem is solved 

for both short and long production lines. In addition, considering the large size of the 

search space, a diversification strategy is incorporated into the algorithm to improve 

the search process for long production lines. The performance of the proposed 

algorithm (i.e., the throughput rate of the production line) is evaluated by using the 

decomposition method (Gershwin, 1987) which is explained in chapter 2.  

 

4.3 Proposed TS Algorithm 

 

The design of a meta-heuristic method to solve a combinatorial optimization 

problem first requires the definition of the basic components of the method. The 

following sections present the specifics of the proposed TS algorithm for solving 

buffer allocation problem.  

 

4.3.1 Move Representation and Tabu Moves 

 

In this study, the moves are depicted by the notation  ,i j , meaning that one 

buffer is added at location i, and one buffer is subtracted at the location j (i and j can 

be any locations). As in all TS applications, constructing the tabu criterion is the 

most important element of the tabu search process. There are three natural ways to 

create the tabu criterion for the buffer allocation problem. The first one is to choose 

the full move as tabu which means if the move  ,i j  produces the best objective 

function, then the reverse move is not permitted. Therefore the move  ,j i  becomes 

a tabu for TT number of iterations. The second one is to choose the location as a tabu 

where one buffer is added. More precisely if the move  ,i j  produces the best 

objective function, then the move [all  ( ), ]j i j i  is not permitted for TT number of 

iterations. In this way more than one move is blocked. This move is called as move to 

target location. The third way to create the tabu criterion is to choose the location as 

a tabu where one buffer is subtracted. More precisely if the move  ,i j  produces the 
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best objective function, then the move [ ,all  ( )]j i i j  is not permitted for TT number 

of iterations. This move is called as move from source location.  

 

In all previous TS applications on buffer allocation problem and also many other 

combinatorial problems, employing full move as a tabu criterion is the common 

sense. It should be noted that the performance of TS can be affected by the type of 

move chosen. Hence, we carried out an experimental study to test the effects of move 

types on the search performance and we showed that the performance of the search 

process is affected by the move type (see section 4.4.1). 

 

4.3.2 Search Space and Neighborhood Structure 

 

Identifying a search space along with a neighborhood structure is the most critical 

step of any TS implementation. The search space of the TS is simply the space of all 

feasible solutions that can be visited during the search. As it is stated by Gendreau 

and Potvin (2005) in some cases, allowing the search to move infeasible solutions is 

desirable. In buffer allocation problem context, since there is an integrality constraint 

on buffer sizes and also the total buffer size constraint, it is not reasonable to allow 

the infeasible solutions. So, in this study, the search space involves only the feasible 

solutions. 

 

To define the neighborhood structures of the current solution, there are several 

choices. For instance, one choice could be to consider the full neighborhood of the 

current buffer configuration while the other could be to consider only a subset of the 

neighborhood of the current solution as in the study of Lutz. et al. (1998). In their 

study, since simulation is employed as an evaluative method and it takes more time 

to evaluate all neighborhoods by simulation, they consider only a small subset of the 

neighborhood of the current solution. Unlike their study, since we obtain the 

throughput rate of the line by employing decomposition method quickly, we evaluate 

all neighbors of the current solution. It also allows us not to disregard good solutions 

during the search.  
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4.3.3 Diversification Strategy 

 

Diversification guides the search to unexplored regions to avoid local optimality. 

If the solution space is too large diversification should be used to explore the search 

space effectively. There are two major diversification techniques known as restart 

diversification and continuous diversification. While the first is performed by several 

random restarts, the latter is integrated into the regular search process.  

 

Considering the large size of the search space, using the frequency based memory 

structures of TS we employ the continuous diversification strategy in a systematic 

way to improve the search process for large sized problems. Since we have a 

knowledge of the performed moves during the search it is more reasonable to employ 

continuous diversification than restart diversification which involves randomness and 

has a chance to perform same moves previously visited. 

 

This strategy is implemented as follows. A counter is added to the algorithm to 

count the moves at each position. When the counter becomes a pre-specified value 

for any position, it is penalized to make it less attractive. In doing so, the search is 

moved to other unexplored areas of the search space.  

 

4.3.4 Aspiration Criterion 

 

Tabus may prohibit attractive moves, even when there is no danger of cycling, or 

they may lead to an overall stagnation of the searching process. Thus it is necessary 

to use aspiration criterion to allow the attractive moves. The aspiration criterion used 

in this study is the most common criterion used in the literature. According to 

aspiration criterion a tabu move is allowed to be made if and only if the resulting 

buffer configuration is better than the best configuration found so far. It should be 

noted that the new solution has not been previously visited.  
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4.3.5 Stopping Condition 

 

The algorithm is terminated if within a certain number of iterations, no better 

solution has been found. 

 

The proposed TS algorithm is outlined in Table 4.1. The notation used in this 

table is explained as follows: 

0B    initial buffer configuration  

kB    buffer configuration at iteration k 

( )kNB B   the full neighborhood of the current buffer configuration 

bestB   the best buffer configuration during the whole TS algorithm 

tabubestB   the best buffer configuration in ( )kNB B  that can be reached 

from kB  by a tabu move in the current neighborhood 

nontabubestB   the best buffer configuration ( )kNB B  that can be reached from 

kB  by a non-tabu move in the current neighborhood 

f(B) the throughput rate of the line for the given buffer 

configuration B 

bestf  the best throughput rate of the line during the whole TS 

algorithm 

TT   tabu tenure 
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 Table 4.1 Proposed TS algorithm for throughput maximization 

Initialization 

Generate an initial buffer configuration randomly. Initially tabu list (TL) is empty and iteration 

number 0k  . Set 
0

( )
best

f f B  and
0best

B B . 

Step 1 

Create all neighborhoods of the current solution, ( )
k

NB B , and invoke the evaluation function 

for each neighbor of the current solution to determine the potential new objective function value, 

i.e. the throughput rate of the line.
 

Step 2 

Select the buffer configuration in ( )
k

NB B  such that one of the following will hold: 

1. If ( ) max( ( ), ( ))
best best nontabu best tabu

f B f B f B
 

 , set 
1k best nontabu

B B
 
 , put the moves 

[all  ( ), ]j i j i  in TL for the TT number of iterations where the move  ,i j  produces 

the buffer configuration B
best-nontabu

, 

2. If ( ) max( ( ), ( ))
best nontabu best best tabu

f B f B f B
 

 , set 
1k best nontabu

B B
 
 , 

1best k
B B


 , 

1
( )

best k
f f B


 , put the moves [all  ( ), ]j i j i  in TL for the TT number of iterations 

where the move  ,i j  produces the buffer configuration B
best-nontabu

, 

3. Aspiration criterion: If ( ) max( ( ), ( ))
best tabu best best nontabu

f B f B f B
 

 , then set 

1k best tabu
B B

 
 , 

1best kB B  , 
1

( )
best k

f f B


 , put the moves [all  ( ), ]j i j i  in 

TL for the TT number of iterations where the move  ,i j  produces the buffer 

configuration B
best-tabu

. 

Step 3 

Set 1k k   and go to Step 1 until the termination criterion is satisfied. 

Termination criterion 

The algorithm is terminated if within a certain number of iterations, no better solution has been 

found. 

 

As it is seen in Table 4.1, the step 2 is the phase where the best solution is 

updated. At each iteration, the best buffer configuration which can be reached by a 

non-tabu move in the current neighborhood is selected for the next step. The only 

exception is defined by the aspiration criterion which allows a tabu move to be made 

if and only if the resulting buffer configuration is better than the best configuration 

found so far. The algorithm is terminated if within a certain number of iterations, no 

better solution has been found.  



 

 

65 

 

4.4 Computational Experiments 

 

In this section, the computational experiments carried out to test the performance 

of the proposed TS algorithm by using existing benchmark problems are presented. 

Before giving the details of our computational study, we first present how tabu 

search parameters used throughout the search process are determined. 

 

4.4.1 Identification of the Best Tabu Search Parameters 

 

Since the search performance is heavily affected by the search parameters chosen, 

identifying best search parameters is an important step of any meta-heuristic 

application. So this section is devoted to identification of efficient tabu search 

parameters for solving buffer allocation problem so as to increase the search 

performance. The search parameters investigated are the type of tabu move and the 

size of the tabu list, i.e. tabu tenure. The types of moves are explained in section 

4.3.1.  

 

The other search parameter investigated is tabu tenure. The tabu tenure can be 

constant or it may change dynamically during the search as it is stated in section 

2.4.2.2. In this study, the performance of these two types of tabu tenure is evaluated 

in three levels (see Table 4.2). Regarding three levels of constant TT, the tabu tenure 

is set to n  where n is the total number of all neighborhoods of the current buffer 

configuration. Likewise the region of experimentation for dynamic TT has been 

identified as a result of some number of pilot experiments. 

 

       Table 4.2 The levels for tabu tenure 

Tabu Parameter Levels 

1 2 3 

Constant TT 3 9 19 

Dynamic TT Uniform(3,7) Uniform(7,15) Uniform(9,27) 

 

The performance of two types of TT and three types of tabu moves are evaluated 

on six sets of problems each involving three instances. It should be noted that these 

three instances are generated by changing the failure/repair rates of machines and 
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also the total buffer size to be allocated to the machines. Using a 3 GHz Pentium (R) 

4 CPU processor 10 runs are carried out at each design point leading to 180 runs in 

total. 

 

The results of experiments are summarized in Table 4.3 with respect to the 

number of iterations required for convergence and also the CPU time used by the TS 

algorithm with different search parameters. As seen in Table 4.3, regarding the 

performance of three tabu move criteria investigated, except for the fifth problem set, 

both in small-sized problems (i.e., involving five machines) and also large-sized 

problems (i.e., involving 20 machines), move to target location has slightly better 

rate of convergence. As summarized in Table 4.3, employing the tabu search 

algorithm with constant TT and employing full move as a tabu criterion solves the 

fifth set of problems with higher convergence rates and in less CPU time. For small-

sized problems, involving five machines, a significant difference between the 

performances of three moves has not been observed. 

 

Lastly, regarding the three levels of constant and dynamic TT, it has been noted 

that using constant TT results in higher rate of convergence and also less CPU time in 

solving great majority of the problems studied. As a result of experimental study, in 

testing the performance of our TS algorithm, we decided to employ constant TT in 

solving all types of problems, the full move in solving only large-sized problems 

with same machine failure/repair rates and the move to target location in solving all 

other problems.  
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   Table 4.3 The results of experimental study for tabu search parameters 

Problem 

Set 

# of 

Machines 

Failure/ 

Repair 
rates* 

Tabu 

Tenure*
* 

Tabu Move 

Criterion*** 

Instance 1 Instance 2 Instance 3 

CPU 

(sec) 

# of Iteration 
for 

Convergence 

CPU 

(sec) 

# of Iteration 
for 

Convergence 

CPU 

(sec) 

# of Iteration 
for 

Convergence 

1 5 S 

Con/1 1 0.01 7 0.01 7 0,02 7 

Con/1 2 0.01 7 0.01 7 0.02 7 

Con/1 3 0.01 7 0.01 7 0.02 7 

Dyn/1 1 0.01 7 0.01 7 0.02 7 

Dyn/1 2 0.01 7 0.01 7 0.02 7 

Dyn/1 3 0.01 7 0.01 7 0.02 7 

2 5 D 

Con/1 1 0.11 7 0.17 9 0.36 35 

Con/1 2 0.12 5 0.17 7 0.34 33 

Con/1 3 0.12 6 0.17 8 0.35 45 

Dyn/1 1 0.13 7 0.17 9 0.34 63 

Dyn/1 2 0.14 7 0.18 9 0.34 66 

Dyn/1 3 0.14 8 0.19 9 0.37 60 

3 10 S 

Con/2 1 2.84 14 4.59 13 5.16 14 

Con/2 2 2.84 15 4.70 14 5.28 16 

Con/2 3 2.95 14 4.70 13 5.26 16 

Dyn/2 1 2.85 15 4.61 14 5.17 14 

Dyn/2 2 2.85 13 4.71 14 5.31 14 

Dyn/2 3 2.98 17 4.71 14 5.37 14 

4 10 D 

Con/2 1 4.45 23 6.77 63 7.24 102 

Con/2 2 4.42 24 6.68 68 7.18 107 

Con/2 3 4.48 24 6.74 69 7.21 102 

Dyn/2 1 4.45 27 6.87 67 7.24 108 

Dyn/2 2 4.51 26 6.73 75 7.32 101 

Dyn/2 3 4.52 26 6.72 83 7.32 97 

5 20 S 

Con/3 1 31.44 30 79.38 35 80.36 32 

Con/3 2 31.95 34 79.73 71 81.79 73 

Con/3 3 32.08 55 79.70 85 81.11 56 

Dyn/3 1 32.10 30 79.45 38 82.55 40 

Dyn/3 2 31.87 34 80.94 88 83.84 36 

Dyn/3 3 31.98 42 79.85 72 83.43 59 

6 20 D 

Con/3 1 63.58 79 198.80 151 109.27 250 

Con/3 2 62.34 64 194.94 155 104.59 236 

Con/3 3 62.39 70 197.56 297 108.58 243 

Dyn/3 1 63.34 69 285.17 116 219.19 269 

Dyn/3 2 62.54 75 278.91 165 236.80 248 

Dyn/3 3 62.75 83 280.62 269 239.86 290 

* S: Failure/repair rates are same for all machines in the line, D: Failure/repair rates are different for all machines in the 

line 

** Con/i: Con:Constant, i=1,2,3: Levels of tabu tenure ( See Table 4.2) 

** Dyn/i: Dyn:Dynamic, i=1,2,3: Levels of tabu tenure ( See Table 4.2) 

*** 1: Full move, 2: Move to target location, 3: Move from source location 

 

4.4.2 Experiments on Benchmark Problems 

 

The experimental studies consisted of five sets of problems (i.e., five, nine, ten, 

twenty and forty-machine production lines). The machine parameters, i.e. the mean 

time to repair and the mean time between failures are denoted by MTTR and MTBF, 

respectively, in the following tables. Both the proposed TS algorithm and DDX 

algorithm to evaluate the throughput of the line are implemented in the C language.  
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Tabu search parameters are determined as follows:  

 Initial buffer sizes are generated randomly from a uniform distribution, U(0, 

(2 )
1

N

K



). Since the buffer sizes must be integer, the upper bound value is 

rounded up to the next integer value. This procedure is repeated until the 

constraint related to the total number of buffers to be allocated is satisfied.  

 The search continues until the best throughput value does not change during 

the certain number of iterations.  

 

Using a 3 GHz Pentium (R) 4 CPU processor, 10 runs are carried out for each 

example under different initial buffer allocations. 

 

4.4.2.1 Five Machine Line 

 

This example is initially proposed by Ho et al. (1979) and used in Gershwin and 

Schor (2000). The parameters of the line are given in Table 4.4. The total buffer size 

is set to 31.  

 

Table 4.4 Five machine line parameters 
Machine 1 2 3 4 5 

MTTR=1/ri 11 19 12 7 7 

MTBF=1/pi 20 167 22 22 26 

 

As a result of experimental studies, it has been noted that the proposed TS 

algorithm managed to obtain the same throughput value, 0.4943 as in Gershwin and 

Schor (2000) with optimal buffer allocation, }4,10,10,7{B  after six iterations on 

average. It should be noted that reaching the optimal solution quickly, as in this case, 

could be a great advantage in solving large sized problems. 

 

4.4.2.2 Nine Machine Lines 

 

These test cases are proposed in Shi and Men (2003) where the authors employ 

the DDX algorithm for evaluation and the Nested Partitions/Tabu Search (NP/TS) 

method for optimization. The authors implement the TS in its simplest form to speed 
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up the NP method. The results of comparative experimental studies are given in 

Table 4.5. All the machines in the line are subject to the same probability of failure 

(pi) and probability of repair (ri) (see the first and second columns). Moreover, the 

total buffer size is set to 160. 

 

As given in Table 4.5, the proposed TS algorithm results in nearly the same 

throughput in comparison to the two approaches used in Shi and Men (2003). The 

observed subtle differences among three approaches can be attributed to applying 

different convergence rates. While in this study the convergence rate of the DDX 

algorithm is set 10
-6

, in Shi and Men (2003) this rate has not been reported.  

 

Table 4.5 Results of comparative experimental studies 

Parameters Throughput 

pi ri TS 

(Shi&Men, 2003) 

NP/TS 

(Shi&Men, 2003) 
Proposed TS 

0.3 0.05 0.108143 0.108143 0.108159 

0.3 0.1 0.197546 0.200250 0.200360 

0.3 0.2 0.345491 0.345491 0.345576 

0.3 0.3 0.452074 0.452074 0.451660 

0.3 0.4 0.528466 0.532002 0.532184 

0.4 0.05 0.088777 0.088777 0.088771 

0.4 0.1 0.166232 0.166232 0.166226 

0.4 0.2 0.293041 0.293041 0.293060 

0.4 0.3 0.388517 0.390814 0.390962 

 

4.4.2.3 Ten Machine Line 

 

The failure and repair rates for this ten-machine production line are given in Table 

4.6 (Nahas et al. 2006). The total buffer size is set to 270. 

 

Table 4.6 Ten machine line parameters 

Machine 1 2 3 4 5 6 7 8 9 10 

MTTR=1/ri 7 7 5 10 9 14 5 8 10 10 

MTBF=1/pi 20 30 22 22 25 40 23 30 45 20 

 

In Nahas et al. (2006) the authors employ the DDX algorithm suggested in 

Dallery et al. (1989) to obtain the throughput of the line and they use the degraded 
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ceiling method for optimization. In this example the same evaluation method, i.e. 

DDX algorithm, is employed and the convergence rate of the DDX algorithm is set 

to 10
-4

 as in the study of Nahas et al. (2006). The best throughput obtained by the 

proposed TS method is 0.641348 with buffer allocation 

 14,19,30,54,45,26,23,25,34B  . 

 

The two algorithms are also compared with respect to the number of iterations 

required for convergence. As it is seen in Figure 4.1 and 4.2, the proposed TS 

algorithm converges faster (78 iterations) to the optimal solution than the degraded 

ceiling algorithm (14 000 iterations). Having set the same convergence rate for two 

algorithms, we can state that the proposed TS has great advantage to reach the best 

solution as it requires much less number of iterations.  

 

 

Figure 4.1 Convergence of degraded ceiling algorithm (Nahas et al., 2006) 
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Figure 4.2 Convergence of the proposed TS algorithm 

 

4.4.2.4 Long Production Lines 

 

The motivation for this example is to test the efficiency of our TS algorithm in 

solving the buffer allocation problem on long production lines. Throughout the 

experiments it has been assumed that the machines have the same probability and 

failure rates, i.e. 1.0 ii rp  up to 9.0 ii rp  in increments of 0.1. Considering 

the large size of the search space, the continuous diversification strategy is employed 

to improve the search process so that the most interesting parts of the search space 

can be explored more thoroughly. This strategy is implemented as follows:  

 A counter is added to the algorithm to count the moves at each position.  

 When the counter becomes 100 for any position, it is penalized to make it 

less attractive.  

 As a result of pilot experimental studies, the weight to penalize is 

determined as 410  for all cases. In doing so, the search is moved to other 

unexplored areas of the search space.  

 

The total buffer size to be allocated is set to 100 for 20-machine line and 200 for 

40-machine line, respectively. The convergence rate of the DDX algorithm is set to 

410 . The results of experimental studies comparing the proposed TS to the basic TS 

with respect to both throughput and the CPU time are given in Table 4.7. As opposed 

to the earlier experiments involving 10 runs for each example, due to the large size of 
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problem only five runs with different starting solutions have been conducted in these 

sets of experiments. 

 

Table 4.7 Results of experimental studies for 20-machine lines 

Parameters Throughput CPU (sec.) 

pi ri Basic TS Proposed TS Basic TS Proposed TS 

0.1 0.1 0.233963 0.234191 361.90 1082.65 

0.2 0.2 0.296989 0.297025 436.86 1162.94 

0.3 0.3 0.334450 0.334450 475.63 1139.95 

0.4 0.4 0.359637 0.359637 506.37 1148.21 

0.5 0.5 0.377842 0.377895 512.10 1213.13 

0.6 0.6 0.391712 0.391846 518.04 1291.44 

0.7 0.7 0.402760 0.402760 541.05 1011.59 

0.8 0.8 0.411629 0.411638 531.87 1033.17 

0.9 0.9 0.419017 0.419018 516.60 1009.83 

 

As seen in Table 4.7, in all of the cases, the proposed TS algorithm results in 

equal or slightly better throughput compared to the basic TS algorithm. This can be 

attributed to adopting the continuous diversification method into the regular tabu 

search in this study. Furthermore, by using the frequency memory the search is 

extended to the unexplored areas of the search space, thus it has been escaped from 

local optima. However, as seen in Table 4.7, the good performance of the proposed 

TS with respect to throughput has been achieved at the expense of significantly 

increasing the search time. This shows the trade-off between search time and solution 

quality. As it is presented in Table 4.8, the results of comparative experimental 

studies involving 40-machine line are similar to those of 20-machine line. 

 

In summary, the solution quality of the proposed TS algorithm in solving buffer 

allocation problem in long production lines is good enough. However, if the 

proposed TS algorithm is to be implemented in a real world system involving much 

larger number of machines, further research needs to be done to reduce the solution 

time.  
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Table 4.8 Results of experimental studies for 40-machine lines 

Parameters Throughput CPU (sec.) 

pi ri Basic TS Proposed TS Basic TS Proposed TS 

0.1 0.1 0.219060 0.221273 5573.56 8399.04 

0.2 0.2 0.286347 0.282169 7615.08 9780.96 

0.3 0.3 0.325256 0.325256 8319.73 12796.32 

0.4 0.4 0.351391 0.351494 8681.03 11272.68 

0.5 0.5 0.370653 0.370666 7584.05 12581.64 

0.6 0.6 0.385290 0.385328 7613.19 11897.04 

0.7 0.7 0.396903 0.397255 7478.19 9773.04 

0.8 0.8 0.406232 0.406559 7929.55 9473.40 

0.9 0.9 0.413541 0.413990 7274.45 10815.12 

 

4.5 Chapter Summary  

 

In this chapter a tabu search algorithm is proposed to solve the buffer allocation 

problem for unreliable homogeneous production lines, and its performance is 

compared to other algorithms using previously published benchmark problems. It 

should be noted that these benchmark problems include both short and long 

production lines so that the efficiency of the proposed TS can be tested thoroughly 

on a wide range of problem instances. The results of experimental studies are found 

to be quite encouraging. Namely, it has been observed that the proposed TS 

algorithm finds the best configuration much faster than other algorithms for short 

production lines. Likewise, the solution quality of the proposed TS algorithm in 

solving buffer allocation problem in long production lines is also good, but this is 

achieved at the expense of increased search time.  

 

During the experimental studies, it has been noted that the search time greatly 

depends on the quality of the initial solution and the value of the convergence rate 

used in the DDX algorithm. If the initial buffers are equally distributed among the 

machines where all the machines in the line have the same reliability parameters it 

has been observed that search time is significantly reduced and likewise, if the 

convergence criterion used in the DDX algorithm is set to a large value then the 

search time is reduced too. Also, in some problem sets where the same repair and 
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failure rates are assumed for all machines in the line it has been noted that, the 

evaluation function quickly converges. 

 

Due to its restrictive assumptions, the buffer allocation problem in homogeneous 

production lines does not realistically represent most of the real-world production 

lines. Consequently, it is absolutely necessary to consider a more realistic version of 

the production lines, i.e., non-homogeneous production lines. In the following 

chapter, the problem will be extended to the buffer allocation problem in unreliable 

non-homogenous production lines and an adaptive tabu search algorithm will be 

proposed to deal with this problem.  
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CHAPTER FIVE 

AN ADAPTIVE TABU SEARCH APPROACH FOR THROUGHPUT 

MAXIMIZATION IN UNRELIABLE NON-HOMOGENEOUS 

PRODUCTION LINES 

 

 

5.1 Introduction 

 

In this chapter, an adaptive tabu search is proposed to solve the buffer allocation 

problem in unreliable non-homogeneous production lines. To our knowledge, ours is 

the first extensive study dealing with buffer allocation problem for unreliable and 

also non-homogeneous lines. Imposing buffer space constraints for each buffer 

location makes the problem at hand even harder. An adaptive search strategy of 

intensification and diversification is proposed to solve the buffer allocation problem 

in both short and long production lines. An experimental study is carried out to select 

an intelligent initial solution scheme among three alternatives so as to decrease the 

search effort to obtain the best solutions.  

 

This chapter is organized as follows. Section 5.2 presents the problem 

specifications. The proposed adaptive tabu search is described in detail in Section 

5.3. The results of computational experiments to test the performance of the 

proposed adaptive tabu search algorithm are discussed in Section 5.4. Finally, 

Section 5.5 summarizes the context of this chapter. 

 

5.2 Problem Specifications  

 

The features of the buffer allocation problem in a non-homogeneous unreliable 

production line can be listed as follows: 

 Each part goes through all machines in exactly the same order. 

 There is an intermediate location for storage (buffer) between each pair of 

machines.  

 Machines in the line have unique deterministic processing times. 
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 Machines are subject to breakdown, and the repair and failure rates are 

geometrically distributed. 

 The first machine is never starved, i.e. input is always available, and the last 

machine is never blocked, i.e. there is always space to dispose of the output.  

 

Assuming there are K machines and K-1 buffers in a production line, the 

objective is to maximize the throughput rate of the production line, subject to buffer 

size constraints for each buffer location. The mathematical model for the problem is 

given as follows: 

Find 
1 2 1

( , ,..., )
K

B B B B


  so as to  

( )max f B          (1) 

subject to 

1

1

K
B N
i

i




           (2) 

0 B u
i i
   ( 1,2,..., 1)i K       (3) 

( 1,2,..., 1)nonnegative integers  i i KB        (4) 

where N is a fixed nonnegative integer denoting the total buffer space available in 

the system, B represents a buffer vector, and f(B) represents the throughput rate of 

the production line. Constraint (3) shows upper (ui) bounds for each buffer location. 

It should be noted that upper (ui) bounds for each buffer location are chosen such 

that their summation will be larger than N. 

 

To solve the buffer allocation problem under the above assumptions, an adaptive 

tabu search is proposed as a generative method. To evaluate the throughput of the 

line Accelerated-DDX (ADDX) algorithm proposed by Burman (1995) is employed. 

In next section, the proposed adaptive tabu search algorithm (ATS) is described in 

detail.  
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5.3 Proposed ATS Algorithm 

 

To employ a tabu search on any combinatorial optimization problem, first the 

basic components of tabu search should be defined. The following sections present 

the specifics of the proposed ATS algorithm for solving buffer allocation problem. 

 

5.3.1 Move Representation and Tabu Moves 

 

The moves are represented by [i, j], where i shows the location that a given 

amount of buffer is added and j shows the location that the same amount of buffer is 

subtracted. These locations can correspond to any two buffer storages. For instance, 

for a five-machine line there will be four locations for buffer storages. If the initial 

buffer configuration is assumed to be [5, 5, 5, 5] the first neighborhood of this initial 

solution is created by subtracting one buffer from the first location and adding one 

buffer to the second location, while the size of all other buffers remains the same and 

the total buffer size is constant. One neighboring solution then becomes [4, 6, 5, 5]. 

The process is repeated until all neighboring solutions of the current solution are 

created. Since there are four locations for allocating buffers in a five-machine-line, 

there will be twelve solutions in the neighborhood for this example. 

 

The increment (decrement) of a buffer size is problem-dependent. We tune the 

increment (decrement) of the buffer sizes based on problem size. While it is set to 

one for small and medium-sized problems, i.e. five and ten machine lines, for large-

sized problems involving twenty and forty machine lines, the increment (decrement) 

is set to %1 of the total buffer size.  

 

Once a move is realized, the reverse of this move is recorded as a tabu. Namely, 

if the move [i, j] produces the best solution for the current step, then the reverse 

move [j, i] is considered as a tabu for a certain number of iterations. 
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5.3.2 Search Space and Neighborhood Structure 

 

Identifying a search space along with a neighborhood structure is the most critical 

step of any TS implementation. The search space of the TS is simply the space of all 

feasible solutions that can be visited during the search. In this study, all feasible 

solutions are considered as search space.  

 

To define the neighborhood structures of the current solution, there are several 

choices depending on the specific problem at hand. In the buffer allocation problem 

context, one choice could be to consider the full neighborhood of the current buffer 

configuration while the other could be to consider only a subset of the neighborhood 

of the current solution. In the proposed ATS approach, the complete neighborhood 

of the current solution is created and evaluated.  

 

5.3.3 Initialization Scheme 

 

It is known that for some problems the performance of the meta-heuristics is 

affected by the choice of the initial solution/solutions. If the initial solution is good 

enough, the probability of finding better solutions generally increases and the 

convergence to the near-optimal or optimal solution can be faster. In this study, a 

pilot experiment was carried out to assess the performance of the following 

initialization methods:  

 The ratio of failure to repair rate: Buffer sizes are allocated according to the 

ratio of failure to repair rate of each machine. More buffers are allocated to the 

machines having high ratios of failure to repair rate. 

 Processing time: More buffers are allocated to the machines having long 

processing times. 

 Random initialization: Buffer sizes are randomly allocated to each machine. 

The experiments involve four problem sets, each containing 10 instances. Table 

5.1 shows the results of the pilot experiment. In the table, K and N stand for the 

number of machines and the total buffer capacity, respectively.  
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Table 5.1 Results of pilot experiments on the performance of initial algorithms 

Problem 

Set 
K N Instance 

Random Initialization 
Processing Rate 

Initialization 
F/R Ratio Initialization 

# of Iteration 

for 

Convergence 

Best 

throughput 

rate 

# of Iteration 

for 

Convergence 

Best 

throughput 

rate 

# of Iteration 

for 

Convergence 

Best 

throughput 

rate 

1 10 100 

1 172 0.0439 120 0.0424 52 0.0441 

2 37 0.0497 59 0.0497 25 0.0497 

3 1389 0.0526 25 0.0521 74 0.0526 

4 40 0.0531 55 0.0531 35 0.0531 

5 132 0.0564 101 0.0564 96 0.0564 

6 147 0.0121 21 0.0121 179 0.0121 

7 81 0.0146 40 0.0146 34 0.0146 

8 54 0.0159 41 0.0160 178 0.0160 

9 43 0.0165 34 0.0165 31 0.0165 

10 44 0.0201 31 0.0200 23 0.0265 

2 10 200 

1 277 0.0433 3 0.0425 68 0.0444 

2 181 0.0508 71 0.0522 49 0.0522 

3 67 0.0526 122 0.0526 623 0.0526 

4 1169 0.0542 72 0.0542 4822 0.0542 

5 939 0.0580 4077 0.0580 1680 0.0574 

6 895 0.0121 357 0.0121 167 0.0121 

7 3166 0.0148 2787 0.0148 2725 0.0148 

8 3491 0.0160 3172 0.0160 4423 0.0160 

9 677 0.0165 1459 0.0165 53 0.0165 

10 1398 0.0201 3671 0.0200 4459 0.0200 

3 20 200 

1 196 0.0437 89 0.0409 34 0.0441 

2 3346 0.0493 55 0.0483 4998 0.0497 

3 1723 0.0520 67 0.0526 133 0.0526 

4 27 0.0545 17 0.0553 24 0.0553 

5 6 0.0491 66 0.0514 51 0.0519 

6 1674 0.0121 4998 0.0121 4998 0.0121 

7 4998 0.0146 4998 0.0146 4998 0.0146 

8 4998 0.0160 2612 0.0160 4998 0.0160 

9 4998 0.0162 4497 0.0157 4994 0.0162 

10 1908 0.0164 4938 0.0165 4833 0.0165 

4 20 400 

1 4997 0.0434 743 0.0423 444 0.0440 

2 2673 0.0520 1034 0.0522 3253 0.0523 

3 2714 0.0526 4999 0.0526 18 0.0526 

4 1141 0.0575 4998 0.0575 119 0.0575 

5 1703 0.0493 28 0.0525 2380 0.0491 

6 4998 0.0121 3200 0.0121 4994 0.0121 

7 4995 0.0148 4999 0.0148 2595 0.0148 

8 4998 0.0160 4680 0.0160 4992 0.0160 

9 4996 0.0162 4999 0.0162 4999 0.0162 

10 4578 0.0165 4998 0.0165 4998 0.0165 

 

As shown in Table 5.1 above, both the solution quality and the convergence rate 

are observed. The initialization methods are first compared with respect to solution 

quality, and in case the same solution quality is observed, the convergence rate is 

used as a tie-breaking rule. As can be seen from Table 5.1, the performance of ratio 

of failure to repair rate method is better in 23 problem instances out of 40. Especially 
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for the first problem set, its performance is quite remarkable. Hence, this method is 

used as an initialization scheme in the proposed adaptive tabu search approach. 

 

5.3.4 Tabu Tenure 

 

The length of the tabu list, called the tabu tenure (TT), is another important 

search parameter of TS. Tabu tenure is the number of iterations that tabu moves stay 

in the tabu list. In this study, the tabu tenure is tuned adaptively based on the quality 

of the current solution and the frequency of the moves. Initially, the tabu tenure is 

set to a predefined minimum value. Then, the value of the tabu tenure for each move 

is determined using the following formula (Lü and Hao, 2010): 

 

( ) * ( )i i iTT m T T freq T         (5) 

min max( )iTT TT m TT         (6) 

 

The first part of the formula given by Eq. (5) represents the effect of solution 

quality on the tabu tenure. Namely, if the selected move does not improve the 

objective function (i.e., throughput rate of the production line), the value of TT is 

increased by 1. Likewise, if the selected move improves the objective function, the 

value of TT is decreased by 1. While making these changes, the tenure is not allowed 

to surpass the pre-specified minimum or maximum values, as indicated by Eq. (6). 

The basic idea behind the second part of the formula is to penalize a move which is 

repeated too often. 

 

5.3.5 Intensification Strategy  

 

The key idea behind the concept of intensification is to implement some 

strategies so that the areas of the search space that seem promising can be explored 

more thoroughly. In general, intensification is based on a recency memory, in which 

one records the number of consecutive iterations that various solution components 

have been presented in the current solution without interruption.  
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In this study, the intensification strategy is implemented only for large-sized 

problems involving 20 and 40 machine lines, since the increment (decrement) values 

of the moves is set to greater than one for these problems. During the iterative 

search, if a solution found to be best so far remains to be the best one for a certain 

number of iterations, the increment (decrement) of moves is set to one. For example, 

if there are 400 total buffers to be allocated to the twenty-machine line, the 

increment (decrement) value of moves is set to 4 in the regular phase of the ATS. If 

incumbent solution remains to be same for 100 iterations, the increment (decrement) 

of moves is set to 1. In this way, the areas of the search space that contain promising 

solutions are investigated more thoroughly. 

 

5.3.6 Diversification Strategy 

 

Unlike intensification that is used to search regions containing good solutions 

more intensively, diversification guides the search to unexplored regions to avoid 

local optimality. Diversification is usually based on a frequency memory where the 

total number of iterations of the performed moves or visited solutions is recorded. 

There are two major diversification techniques known as restart diversification and 

continuous diversification. While the first is performed by several random restarts, 

the latter is integrated into the regular search process.  

 

We employ both of the diversification methods explained above to diversify the 

search. In the continuous diversification, frequently performed moves are penalized 

in the regular search process. If the objective function does not change for a certain 

number of iterations, a random restart is applied, directing the search toward 

unvisited areas of the search space.  

 

5.3.7 Stopping Condition 

 

The algorithm is terminated if one of the following criteria is satisfied: (a) within 

a certain number of iterations, no better solution is found, or (b) the number of 

iterations reaches the maximum allowable number. The values of these two 
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parameters are problem-dependent. While the maximum allowable number is set to 

50 times of total buffer size for each problem set, the iteration number for the first 

condition is set to half of the maximum allowable number.  

 

The framework of the proposed ATS procedure is given in Figure 5.1.  

 

 

Figure 5.1 The framework of the proposed ATS procedure 

 

The next section presents the results of our experimental studies for evaluating 

the performance of the proposed ATS algorithm.  
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5.4 Computational Experiments 

 

We design a computational experiment to observe the effects of parameter 

changes on the performance of the developed algorithm. In our computational 

experiments, five, ten, twenty and forty-machine lines (K = 5, 10, 20, 40) are 

considered. For each of these levels, the total buffer size is set to 5, 10 and 20 times 

of the number of machines in the line. Hence, a total of 12 problem sets are 

considered. As seen in Table 5.2, by identifying different levels for processing rates 

and reliability parameters, eight different settings are generated for each problem set. 

The processing rates of the machines are generated from a uniform distribution and 

the failure and repair rates are generated from a geometric distribution.  

 

Table 5.2 Properties of problem instances 

Setting Processing Rate Failure Rate Repair Rate 

1 (5,15) (1,200) (1,10) 

2 (5,15) (1,200) (1,40) 

3 (5,15) (1,2000) (1,100) 

4 (5,15) (1,2000) (1,400) 

5 (5,45) (1,200) (1,10) 

6 (5,45) (1,200) (1,40) 

7 (5,45) (1,2000) (1,100) 

8 (5,45) (1,2000) (1,400) 

 

The performance of the proposed ATS algorithm is compared to the basic TS 

algorithm over the generated settings. For each setting, 10 runs are made totaling to 

960 runs. All algorithms are implemented in C language. The execution is done on a 

computer having 2.26 GHz Intel Core i5 430M CPU processor and 4 GB of RAM.  

 

In our experimental study, the problem sets are denoted by K.N, where K is the 

number of machines in the line and N is the total buffer size to be allocated. It should 

be noted that for small-sized problems involving 5 machines and medium-sized 

problems involving the problem set 10.50, the results were compared to those found 

by complete enumeration (CE) method. However, for all other problem sets the 

performance of proposed ATS algorithm is compared to the basic TS (BTS) 
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algorithm since large problem sets can be solved to optimality within a reasonable 

amount of time.  

 

The following sections are devoted to the discussion of our experimental results. 

We give the average results for all problem sets in the following tables. The detailed 

results for all problems are given in the tables in Appendix B. 

 

5.4.1 Results of Small-Sized Problems 

 

Table 5.3 presents the results of our experimental studies for small-sized 

problems. The second column of this table presents the problem settings which are 

explained in Table 5.2. For each setting 10 instances are considered. The third and 

fourth columns represent the number of instances optimally solved for each 

algorithm. For both BTS and ATS, the average deviation from the optimal solution 

is measured using the following formulas and they are presented in fifth and sixth 

columns:  

Deviation for BTS:  
( ) ( )

100 ( )
( )

f CE f BTS

f CE


  

Deviation for ATS:  
( ) ( )

100 ( )
( )

f CE f ATS

f CE


  

Finally, the last three columns show the solution times of each method in CPU 

seconds. For these problems, the convergence rate of the ADDX algorithm is set to 

10
-6

.  

 

As seen in Table 5.3, while the proposed ATS algorithm finds the optimum 

solution for all problem settings in problem set 5.25, BTS algorithm gets stuck at the 

local optimum for problem settings 2, 3, and 4 for this problem set. Moreover, no 

discernible pattern has been observed for the solution times of the algorithms. While 

the solution time of ATS algorithm is noted to be nearly two times of the solution 

time of BTS for the problem settings 1, 4, 6, and 7 (see Table 5.3), for other problem 

settings, no significant difference has been observed at all.  
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  Table 5.3 Results of experimental studies for small-sized problems 

Problem 

Set 
Setting 

# of Instances 

Optimally 

Solved 

Avg. Deviation 

From Optimum 

(%) 

CPU (sec.) 

BTS ATS BTS ATS CE BTS ATS 

5.25 

1 10 10 0.00 0.00 0.01 0.12 0.21 

2 7 10 0.71 0.00 0.03 0.50 0.65 

3 7 10 1.42 0.00 0.03 0.42 0.57 

4 8 10 2.19 0.00 0.03 0.32 0.50 

5 10 10 0.00 0.00 0.01 0.14 0.18 

6 10 10 0.00 0.00 0.03 0.34 0.79 

7 10 10 0.00 0.00 0.02 0.14 0.30 

8 10 10 0.00 0.00 0.03 0.36 0.41 

5.50 

1 10 10 0.00 0.00 0.07 0.41 0.55 

2 7 10 0.53 0.00 0.19 0.53 1.34 

3 7 10 0.18 0.00 0.19 1.02 1.26 

4 4 10 3.84 0.00 0.19 0.68 1.07 

5 10 10 0.00 0.00 0.08 0.30 0.60 

6 9 10 0.15 0.00 0.16 1.00 1.63 

7 9 10 0.78 0.00 0.09 0.42 0.69 

8 8 10 0.33 0.00 0.16 0.65 1.12 

5.100 

1 10 10 0.00 0.00 0.48 0.81 1.50 

2 6 9 4.33 0.12 1.79 1.82 2.26 

3 7 9 0.17 0.04 1.57 5.01 6.64 

4 6 7 1.36 1.16 1.38 1.66 2.77 

5 8 10 5.56 0.00 0.73 0.77 0.99 

6 10 10 0.00 0.00 0.94 0.99 2.36 

7 9 10 0.40 0.00 0.56 0.73 1.84 

8 8 10 0.89 0.00 1.06 1.25 2.62 

 

For the problem set 5.50, the proposed ATS algorithm finds the optimum solution 

for all problem settings while BTS algorithm reaches the optimum solution for only 

problem settings 1 and 5 which involve machines with short repair times. The 

superiority of ATS algorithm over BTS algorithm becomes much more apparent 

when the repair times of the machines get much longer (see problem settings 2, 4 

and 6 in Table 5.3). The results with respect to solution times of the two algorithms 

are similar to the ones obtained for problem set 5.25. As noted earlier, the solution 

time heavily depends on the convergence time required by the ADDX algorithm. 

Changing the parameters, i.e. machine processing times, failure and repair rates in 

each problem setting either increases or decreases the complexity of the problem 

which affects the convergence time of ADDX algorithm and hence solution times of 

algorithms change across the problem types. As expected, the solution time of both 
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algorithms increase as problem size increases. Moreover, on average, the solution 

time of ATS algorithm is higher than the solution time of BTS algorithm for all 

problem settings.  

 

For the problem set 5.100, the proposed ATS algorithm achieves the optimum 

solution in 5 out of 8 settings, and for remaining three problem settings (2, 3, and 4) 

small deviations from the optimum values are observed. As seen in Table 5.3, BTS 

algorithm can reach the optimal solution only for two problems settings (1 and 6). 

Moreover, the superiority of proposed ATS over BTS becomes more apparent as 

variability in machine processing times increases (see the results for the last four 

problem settings in Table 5.3). Unlike apparent success of ATS in dealing with 

variability in processing times, for BTS, the highest deviation from the optimum 

solution has been observed for the problem setting 5 involving more variability in 

processing times and frequently failed machines with short repair times. As for the 

solution time, similar trends have been observed like in problem sets 5.25 and 5.50. 

 

In summary, for small-sized problem sets involving five machines the proposed 

ATS algorithm reaches the optimum solution in 235 out of 240 in very small 

computation times. Hence it can be said that the proposed ATS algorithm is very 

efficient to solve buffer allocation problem for small-sized instances. 

 

5.4.2 Results of Medium-Sized Problems 

 

Table 5.4 presents the results of our experimental studies for medium-sized 

problems. As it is stated before, for the problem set 10.50 the results obtained from 

both TS algorithms are compared to CE results. For all other problem sets including 

20 and 40 machine lines, since complete enumeration cannot provide optimal results 

within a reasonable amount of time, the comparison of BTS and ATS algorithms is 

done with respect to solution quality as follows:  

Improvement over BTS  
( ) ( )

100 ( )
( )

f ATS f BTS

f BTS


  
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For the problem set 10.50, BTS algorithm cannot find the optimal solution for 

any problem type, while the proposed ATS algorithm reaches the optimal solution 

for 4 out of 8 problem settings (1, 5, 6 and 7). It should be noted that the proposed 

ATS finds the optimal solution for 63 out of 80 problems (see Appendix B4). As 

seen in Table 5.4, when the variability of processing time increases the efficiency of 

the proposed ATS also increases except for the problem setting 8 where the 

machines fail less frequently. Moreover, it has been observed that the proposed ATS 

algorithm is less efficient for the problem setting 3 with the average deviation from 

optimum, 2.08%. It should be noted that, this problem setting involves rarely failed 

machines having long repair times. Overall, it can be said that the proposed ATS 

algorithm is more successful for the problem settings involving more variability in 

processing times.  

 

It has been observed that for ATS the average deviations from the optimal are 

very small for this problem set. It should be noted that the convergence rate of the 

ADDX algorithm is set to 10
-5

 for the cases involving 10 machines and the 

comparison is based on 6 decimal digits, hence the difference between the optimal 

and the best solution found by the proposed ATS algorithm is not large for this 

problem set. So it can be concluded that the proposed ATS algorithm obtains very 

good solutions for this problem set. Moreover, the CPU times for both algorithms 

are comparable, and all CPU times are under one minute as seen in Table 5.4. 

 

For the problem set 10.100, the proposed ATS algorithm finds better solutions 

than BTS algorithm in 31 out of 80 problems (see Appendix B5). Unlike the 

previous experiments, in these experiments the proposed ATS algorithm is found to 

be more efficient for problem settings involving less variability in processing times. 

Moreover, it has been observed that the superiority of ATS is more observable for 

the problem setting 4 with the average improvement over BTS, 6.45%. It should be 

noted that this problem set involves rarely failed machines having long repair times 

and also less variability processing times.  
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Table 5.4 Results of experimental studies for medium-sized problems 

Problem 

Set 
Setting 

# of Instances 

Optimally 

Solved 

Avg. Deviation 

From Optimum 

(%) 

CPU (sec.) 

BTS ATS BTS ATS CE BTS ATS 

10.50 

1 8 10 0.46 0.00 10118.53 16.66 20.25 

2 3 7 2.45 0.10 13656.45 53.11 33.06 

3 4 6 2.84 2.08 15230.31 38.25 42.30 

4 1 5 9.47 0.55 9142.00 16.68 18.05 

5 7 10 0.76 0.00 8804.06 14.59 13.23 

6 5 10 1.09 0.00 12268.71 21.12 29.26 

7 6 10 0.21 0.00 10201.89 16.97 25.59 

8 1 5 6.18 0.68 13841.16 31.31 28.60 

Problem 

Set 
Setting 

# of Instances 

Obtained Better 

Solutions than 

BTS 

Avg. Improvement 

Over BTS (%) 

CPU (sec.) 

BTS ATS 

10.100 

1 2 0.81 31.05 30.52 

2 4 1.18 47.37 54.29 

3 4 1.35 41.84 62.62 

4 8 6.45 71.35 45.91 

5 2 0.30 29.19 41.14 

6 2 0.63 37.62 50.64 

7 2 0.28 25.63 40.52 

8 7 3.87 45.03 64.27 

10.200 

1 2 0.57 86.53 115.6

3 2 6 1.17 66.69 136.2

3 3 4 1.57 116.21 124.4

7 4 5 3.87 70.42 132.4

4 5 1 0.81 42.45 68.94 

6 3 4.92 85.06 82.08 

7 3 2.69 47.76 80.93 

8 5 5.11 64.23 133.9

8  

As stated before, the solution time of the algorithms heavily depends on the 

convergence of the ADDX algorithm and hence, the solution times of BTS and ATS 

change across the problem types. As expected, the solution times of both algorithms 

increase as problem size increases.  

 

As in the case of problem set 10.100 the solution quality of the proposed ATS 

algorithm is better than BTS algorithm for the problem set 10.200. In comparison to 

BTS algorithm, the proposed ATS algorithm finds better solutions in 29 out of 80 

problems (see Appendix B6). Like in the previous problem sets involving ten 
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machines, the superiority of the proposed ATS algorithm is more observable for 

problem settings 4 and 8 involving less frequently failed machines with long repair 

times. However, the effect of processing time variability on solution quality is not 

significant unlike the previous problem sets involving ten machine lines. Moreover, 

the solution times of both algorithms show similar trend like in the case of problem 

set 10.100. 

 

In summary, for medium-sized problems involving ten machines, the solution 

quality of proposed ATS algorithm is better than BTS algorithm. This is achieved at 

the expense of a small increase in computation time for some settings. Based on our 

experimental results, it can be concluded that the proposed ATS algorithm is more 

efficient to solve medium-sized problems for the lines having rarely failed machines 

with long repair times. 

 

5.4.3 Results for Large-Sized Problems 

 

In this section we discuss the experimental results for large sized problems 

involving 20 and 40 machines. It should be noted that the convergence rate of the 

ADDX algorithm is set to 10
-4

 for these problems. 

 

The experimental results for large-sized problems involving 20 machines are 

given in Table 5.5. For the problem set 20.100, the proposed ATS algorithm 

outperforms BTS algorithm with respect to solution quality. The superiority of the 

proposed ATS is more observable as compared to the medium-sized problems 

involving ten machine lines. For this problem set, the proposed ATS find better 

solutions in 51 out of 80 problems (see Appendix B7). The superiority of proposed 

ATS algorithm is more observable for the problem settings 2, 4 and 8. While the 

problem settings 4 and 8 involve rarely failed machines with long repair times, the 

problem setting 2 involve frequently failed machines with long repair times. 

Moreover, the proposed ATS algorithm is more efficient for solving the problem 

settings having less variability in processing times. Based on these results, it can be 

said that the proposed ATS algorithm is more efficient for the problem settings 
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having less variable processing times and long repair times. As for the solution time, 

the proposed ATS algorithm requires slightly longer CPU times than BTS, except 

for problem setting 7.  

 

   Table 5.5 Results of experimental studies for large-sized problems: 20 machines 

Problem 

Set 
Setting 

# of Instances 

Obtained Better 

Solutions than BTS 

Avg. 

Improvement 

Over BTS (%) 

CPU (sec.) 

BTS ATS 

20.100 

1 3 7.82 472.59 610.15 

2 7 16.82 535.80 582.61 

3 9 3.66 743.63 881.92 

4 10 31.27 631.30 659.17 

5 6 6.72 525.12 457.88 

6 5 3.93 326.89 436.40 

7 4 0.41 1305.61 773.77 

8 7 16.55 461.63 664.97 

20.200 

1 3 0.58 721.13 838.76 

2 5 16.76 744.34 861.97 

3 7 3.03 1495.78 1512.25 

4 9 15.22 946.05 1448.12 

5 4 1.54 900.11 741.51 

6 6 10.97 518.78 848.52 

7 2 1.19 922.39 1501.18 

8 8 20.95 780.61 1175.98 

20.400 

1 4 0.62 1646.59 2221.27 

2 4 12.29 1156.94 2323.79 

3 5 2.23 2431.42 4060.22 

4 8 5.76 1066.12 2885.77 

5 3 2.75 1072.34 1535.51 

6 4 9.29 1066.70 2076.95 

7 4 1.70 2634.22 3099.10 

8 3 6.93 1265.69 1988.09 

 

The results obtained for the problem set 20.200 are similar to the ones obtained 

for problem set 20.100. As it can be seen from Table 5.5, as problem size increases 

the superiority of ATS algorithm over BTS algorithm becomes more apparent for all 

problems having long repair times (see problem settings 2, 4, 6, and 8 in Table 5.5). 

So, overall ATS algorithm is more efficient for problem settings having long repair 

times. However, unlike the previous problem set where the solution quality of the 

proposed ATS algorithm is affected by the variability in machine processing times, 



 

 

91 

 

 

in this problem set, no such behavior has been observed. As for the solution time, the 

same trend is observed as in the case of problem set 20.100.  

 

For the problem set 20.400, the proposed ATS algorithm finds better results in 35 

out of 80 problems (see Appendix B9). The superiority of the proposed ATS over 

BTS is more observable for the problem settings 2, 4, 6 and 8 like in the previous 

problem set (see Table 5.5.) As in the case of the problem set 20.200, the solution 

quality of proposed ATS is much better for the problems involving machines with 

long repair times. However, this is achieved at the expense of increasing the 

computation time. For this problem set, the solution time of ATS algorithm is nearly 

two times of BTS algorithm. Similar to the earlier problem, in this problem set it is 

also noted that the solution quality of the proposed ATS is not affected by the 

variability in processing times.  

 

In summary, the proposed ATS algorithm is very efficient to solve the buffer 

allocation problem for large-sized problems involving 20 machines (130 out of 240 

problems). When the problem size increases, especially for the lines having long 

repair times, the superiority of proposed ATS becomes more apparent. Moreover, as 

problem size increases the solution time of the proposed ATS algorithm increases 

more than the solution time of BTS algorithm.  

 

Table 5.6 shows the results of experimental study for large-sized problems 

involving 40 machines. As in the case of 20-machine lines, the solution quality of 

the proposed ATS algorithm is better than BTS for the problem set 40.200. The 

proposed ATS finds better solutions in 55 out of 80 problems for this problem set 

(see Appendix B10). Similar to the previous problem set involving 20 machines, the 

superiority of ATS algorithm over BTS algorithm is observed in the same problem 

settings, i.e., 2, 4, 6 and 8 (see Table 5.6). Besides these four settings, the proposed 

ATS is found to be more successful than BTS in dealing with the problems 

involving more frequently failing machines with short repair times (see the results 

for the first problem setting in Table 5.6). Overall, it can be said that when the 

problem size increases the efficiency of the proposed ATS also increases. As for 
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solution time, the proposed ATS algorithm takes much longer time than BTS 

algorithm as it is seen in Table 5.6. 

 

Table 5.6 Results of experimental studies for large-sized problems: 40 machines 

Problem 

Set 
Setting 

# of Instances 

Obtained Better 

Solutions than BTS 

Avg. 

Improvement 

Over BTS 

(%) 

CPU (sec.) 

BTS ATS 

40.200 

1 5 5.03 3055.47 14182.22 

2 7 6.35 5926.02 13734.16 

3 9 2.73 6846.08 19377.56 

4 9 11.68 6249.59 15585.69 

5 2 2.50 2806.04 11062.05 

6 5 5.08 2949.22 11130.49 

7 8 2.03 5511.91 12972.34 

8 10 15.04 7501.24 20265.23 

40.400 

1 5 2.98 6493.01 29218.54 

2 5 2.02 8994.71 30270.03 

3 9 0.77 10989.18 35234.01 

4 6 6.22 11215.27 32214.51 

5 2 0.76 14228.44 31228.77 

6 6 5.35 9449.98 24737.21 

7 6 1.42 9197.03 34408.30 

8 10 15.34 9419.63 30980.34 

40.800 

1 4 3.98 11433.08 38311.94 

2 6 5.38 17578.23 44480.83 

3 8 1.52 18410.88 40041.72 

4 10 6.30 22582.94 52410.80 

5 3 1.06 16594.29 41678.42 

6 7 9.62 20066.05 39523.48 

7 3 1.31 20189.94 42415.71 

8 8 18.03 18777.31 46475.92 

 

For the problem set 40.400, the proposed ATS algorithm finds better solution 

than BTS algorithm in 49 out of 80 problems (see Appendix B11). The superiority 

for ATS algorithm over BTS algorithm is more apparent especially for the problem 

settings 4, 6 and 8 involving machines with long repair times. However, the 

improvement of ATS algorithm over BTS algorithm is not too much in comparison 

to the improvement in problem set 40.200. Also, it has been observed that when the 

variability of processing times increases, the efficiency of the proposed ATS 

algorithm also increases (see problem settings 2, 4, 6 and 8 in Table 5.6). As in the 
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case of problem set 40.200, the solution time of the proposed ATS increases when 

the problem size increases.  

 

The proposed ATS algorithm finds better solutions in 49 out of 80 problems (see 

Appendix B12) for the problem set 40.800. Similar to the problem sets 40.200 and 

40.400, the efficiency of the proposed ATS algorithm is apparent for the problem 

settings 2, 4, 6 and 8 involving machines with long repair times. As in the previous 

problem set, it has been observed that when the variability of processing times 

increases the efficiency of the proposed ATS algorithm also increases. As for the 

solution time, the proposed ATS algorithm takes much longer time than BTS 

algorithm. 

 

In summary, the proposed ATS algorithm is quite efficient to solve buffer 

allocation problem for long production lines involving 40 machines. The proposed 

ATS algorithm finds better solutions in 153 out of 240 problems. The efficiency of 

ATS algorithm is much better especially for the problem settings involving 

machines with long repair times and having more variability in machine processing 

times. However, the solution time of proposed ATS greatly increases when the 

problem size increases. 

 

5.4.4 Summary of the Findings 

 

In this section, the performance of the proposed ATS algorithm is compared to 

that of BTS algorithm over wide range of problems with varying difficulty. The 

overall results are summarized in Table 5.7. It can be concluded that the proposed 

ATS algorithm works very well to obtain good quality solutions across all problem 

types studied. Moreover, it has been observed that the solution quality of ATS 

algorithm is much better especially for the problem settings involving machines with 

long repair times. Also, the solution quality of ATS algorithm gets much better 

while the problem size increases where the average improvement over BTS becomes 

6.91% (see Table 5.7). Embedding intensification and diversification strategies into 

the BTS algorithm and also tuning the tabu tenure adaptively clearly improves the 
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solution quality of the proposed ATS algorithm. However, as expected, the 

execution time of the proposed ATS algorithm gets longer for large-sized problems 

since the convergence of the ADDX algorithm and evaluation of the complete 

neighborhood of a solution during the search requires longer time (see Figure 5.2). 

Nevertheless, it should be noted that the ATS approach proposed in this study is not 

designed to solve buffer allocation problem in “real-time”. In fact, since the buffer 

allocation problem is a manufacturing design problem, the emphasis should be 

placed on finding good quality solutions in reasonable times rather than obtaining 

quick solutions.  

    Table 5.7 Summary of experimental studies 

Problem Size Problem Set 

Avg. 

Improvement 

Over BTS (%)
*
 

CPU Time (sec.) 

BTS ATS 

Small 

5.25 0.54 0.29 0.45 

5.50 0.73 0.63 1.03 

5.100 1.81 1.63 2.62 

Average 1.02 0.85 1.37 

Medium 

10.50 2.96 26.09 26.29 

10.100 1.86 41.14 48.74 

10.200 2.59 72.42 109.34 

Average 2.47 46.55 61.46 

Large 

20.100 10.90 625.32 633.36 

20.200 8.78 878.65 1116.04 

20.400 5.20 1542.50 2523.84 

40.200 6.31 5105.69 14788.72 

40.400 4.36 9454.77 29231.16 

40.800 5.90 17231.94 41618.89 

Average 6.91 5806.48 14985.33 
* 
Avg. Improvement Over BTS (%) = 100*

 
[f(ATS)-f(BTS)] / f(BTS) 
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     Figure 5.2 Solution times of both algorithms with respect to the problem sets 

 

As a result, it can be said that the proposed ATS algorithm is quite effective in 

solving the buffer allocation problem in unreliable non-homogeneous production 

lines for all problem instances studied. 

 

5.5 Chapter Summary 

 

In this chapter, we proposed an adaptive tabu search algorithm to obtain the 

optimal buffer allocations for maximizing the throughput rate of the line in 

unreliable non-homogeneous production lines. To our knowledge, this is the first 

extensive study to deal with buffer allocation problem in unreliable and also non-

homogeneous production lines. Imposing buffer space constraints for each buffer 

location makes the problem harder. In the proposed solution approach, 

intensification and diversification strategies in tabu search are utilized to solve the 

buffer allocation problem in both short and long lines. Moreover, an experimental 

study is carried out to select an initial solution generation scheme.  

 

The performance of the proposed ATS algorithm is tested on randomly generated 

test problems and its performance is compared to the basic TS algorithm. The results 

of experimental study show that the proposed ATS algorithm is quite efficient to 

reach optimal/near optimal solutions in very small computation times. The 

superiority of the proposed algorithm is observed especially for large-sized 
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problems, i.e. 20 and 40 machine lines, since the solution quality is much better than 

BTS algorithm.  

 

We consider the problem from a throughput maximization perspective throughout 

this chapter. Since our ultimate objective is to propose a solution approach for total 

buffer size minimization problem, in the next chapter, this study will be extended to 

minimize the total buffer size by using proposed ATS algorithm. 
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CHAPTER SIX 

AN INTEGRATED APPROACH FOR THROUGHPUT MAXIMIZATION 

WITH MINIMUM TOTAL BUFFER SIZE 

 

 

6.1 Introduction 

 

In this chapter, an integrated approach is proposed to solve the buffer allocation to 

maximize the throughput rate of the line with minimum total buffer size. The 

proposed integrated approach has two control loops, i.e., the inner loop and outer 

loop. While the inner loop control includes the adaptive tabu search algorithm 

proposed in the previous chapter, the outer loop control includes three different 

algorithms, i.e., binary search, tabu search and simulated annealing. These nested 

loops aim at minimizing the total buffer size to achieve a desired throughput level. 

To improve searching efficiency of the proposed tabu search and simulated annealing 

algorithms alternative neighborhood generation mechanisms are suggested and their 

performance are tested.  

 

This chapter is organized as follows. Next section presents the specifications of 

the problem. In section 6.3, the proposed solution approaches are described in detail. 

The results of computational experiments to test the performance of the proposed 

algorithms are discussed in Section 6.4. Finally, Section 6.5 summarizes the context 

of this chapter. 

 

6.2 Problem Specifications 

 

Like in the previous chapter, we address the buffer allocation problem in an 

unreliable serial production line with deterministic processing times. The features of 

this line can be listed as follows: 

 Each part goes through all machines in exactly the same order. 

 There is an intermediate location for storage (buffer) between each pair of 

machines.
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 Machines in the line have unique deterministic processing times. 

 Machines are subject to breakdown, and the repair and failure rates are 

geometrically distributed. 

 The first machine is never starved, i.e. input is always available, and the last 

machine is never blocked, i.e. there is always space to dispose of the output.  

 

Assuming that there are K machines and K-1 buffers in a production line, our 

main objective is to minimize the total buffer size so as to achieve desired throughput 

rate. This problem can be formulated as follows:  

Find 1 2 1( , ,..., )KB B B B   so as to  

1

1

min  = i

K

i

N B



         (1) 

subject to 

*( )Nf B f          (2) 

0 B u
i i

             ( 1,2,..., 1)i K       (3) 

1,2,..., 1 nonnegative integers ( )KB i
i

      (4) 

where K is the number of machines in the line, B is a buffer vector, N is the total 

buffer size, ui is the upper bound for each location, f(B
N
) is the throughput rate of the 

production line obtained by total buffer size N and f
*
 is the desired throughput rate. It 

should be noted that upper (ui) bounds for each buffer location are chosen such that 

their summation will be larger than the total buffer size (N) in the system. 

 

To solve this buffer allocation problem, an integrated approach involving two 

control loops is proposed. While the inner loop control includes an adaptive tabu 

search algorithm to obtain the maximum throughput rate of the line for a given total 

buffer size, the outer loop control includes three different algorithms, i.e., binary 

search, tabu search and simulated annealing to minimize the total buffer size in the 

system so that the desired throughput rate can be achieved.  

 

The details of this integrated approach are presented in next section.  
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6.3 Proposed Integrated Approach 

 

As stated before, this integrated approach involves an inner and an outer loop 

algorithm. The inner loop algorithm is the proposed adaptive tabu search algorithm 

presented in Chapter 5. The outer loop algorithm is implemented by either using 

binary search, or tabu search or simulated annealing algorithms.  

 

Figure 6.1 shows the execution mechanism of the proposed integrated approach. 

As it is seen from Figure 6.1, each outer algorithm is started with a pre-specified N 

value, the maximum throughput rate which can be obtained with this N value is 

calculated and it is compared to the desired throughput rate. In an iterative way, the 

outer loop algorithm is run again to obtain new N values, and this procedure 

continues until the desired throughput rate is achieved with the minimum total buffer 

size.  

 

The following sections present the details of the proposed outer loop algorithms. 

 

6.3.1 Binary Search Algorithm  

 

The first algorithm is a binary search algorithm. Table 6.1 shows the steps of the 

algorithm. This algorithm starts with a number M which is big enough and continues 

to search between H and L until the desired throughput rate is obtained. Hereafter, 

when H is equal to L, the algorithm continues to search between 0 and N
min

 which is 

the best total buffer size value found so far. In this way, the algorithm explores the 

whole search space.  
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Figure 6.1 The framework of algorithms for total buffer size minimization 

 

   Table 6.1 Binary search algorithm 

Initialization 

Set H=M and L=0 

Step 1. Set ( ) / 2N H L   

Step 2. Run ATS algorithm for N. 

Step 3. If 
*

( )
N

f B f , set L N  and ( ) / 2N H L   

            If 
*

( )
N

f B f ,set H N  and ( ) / 2N H L  , 

            If H=L, set H=N
min

, L=0, ( ) / 2N H L  . 

Step 4. until N=1 go to Step 2, otherwise terminate the 

algorithm. 

 

However, exploring search space in this way needs more computational effort. 

Therefore, to improve search efficiency so that computational cost can be reduced it 

is proposed to employ two meta-heuristic methods as outer loop control algorithms, 
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i.e., tabu search and simulated annealing. The details about these approaches are 

given in the following sections. 

 

6.3.2 Tabu Search Algorithm 

 

The tabu search algorithm employs memory-based strategies to reach the global 

optimum. The following sections explain the specifics of the proposed tabu search 

algorithm for solving buffer allocation problem under the objective of total buffer 

size minimization. 

 

6.3.2.1 Search Space  

 

Identifying a search space along with a neighborhood structure is the most critical 

step of any TS implementation. The search space of the TS is simply the space of all 

feasible solutions that can be visited during the search. In this study, all feasible 

solutions are considered as the search space.  

 

6.3.2.2 Move Representation and Tabu Moves 

 

In the proposed TS algorithm, the moves are defined depending on the values of 

the total buffer size, N. Throughout the algorithm the value of total buffer size is 

decreased by some specified value determined by the neighborhood generation 

mechanism which is explained in next section. At each iteration, the neighborhood of 

the current solution becomes tabu for a certain number of iterations. For instance if 

the current solution is 100 and the neighbors of this solutions are 90, 80, 70 and 60, 

then all of those values become tabu and they are not evaluated for the next TT (tabu 

tenure) number of iterations. 

 

6.3.2.3 Neighborhood Generation Mechanism 

 

Since the aim of this study is to minimize the total buffer size it is important to 

decide how the current value of N will be decremented during the search so that the 
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search space can be explored effectively to find the global minima. To deal with this 

issue, a pilot experiment is carried out and the decrement value is determined based 

on the results of this study. The details of neighborhood generation mechanism and 

the results of these pilot experiments are discussed in section 6.4.1. 

 

6.3.2.4 Neighborhood Size and Tabu Tenure 

 

The neighborhood size, i.e. the number of solutions evaluated at each iteration is 

set to 4 and it is kept constant during the search. Likewise, the value of tabu tenure, 

i.e. the number of iterations that tabus stay in the tabu list is kept constant depending 

on problem size during the search.  

 

6.3.2.5 Aspiration Criterion 

 

At each iteration, the minimum N value which can be reached by a non-tabu move 

in the current solution is selected for the next step. The only exception is defined by 

the aspiration criterion which allows a tabu move to be made if and only if the 

resulting total buffer size is better than the best total buffer size found so far. 

 

6.3.2.6 Stopping Condition 

 

The algorithm is terminated if one of the following criteria is satisfied: (a) within 

a certain number of iterations, no better solution has been found, or (b) the number of 

iterations reaches the maximum allowable number. The values of these two 

parameters are also problem-dependent. Depending on the size of the problem, these 

parameters are set to small values with small size of N and they are kept big enough 

for large size of N.  

 

The proposed TS algorithm is outlined in Table 6.2. The notation used in this 

table is explained as follows: 

bestB   the best buffer configuration during the whole TS algorithm 



 

 

103 

 

 

kNB  the best buffer configuration obtained by the total buffer size N 

at kth iteration 

f(N
k
) the best throughput rate value which is equal to or greater than 

the desired value obtained by total buffer size N at kth 

iteration.  

bestf  the best throughput rate value which is equal to or greater than 

the desired value during the whole TS algorithm 

TT tabu tenure 

 

   Table 6.2 Tabu search algorithm 

Initialization 

Set N to its pre-specified value, 
0

N N . Initially tabu list is empty and iteration 

count is set to 0k  . Run the ATS algorithm to obtain the best throughput value for N. 

Set 
0

( )
best

f f N , and 
0

best N
B B . Put N

0
 into tabu list for TT number of iterations. 

Step 1 

Create all neighbors of the current solution according to the neighborhood generation 

mechanism and run the ATS algorithm for each neighbor to obtain the throughput rate 

values.
 

Step 2 

If all neighbors produce throughput values equal or greater than the desired value: 

1. Select the minimum N that is non-tabu and less than the current best value.  

2. Select the minimum tabu move that has a lower value than the current best 

value if all moves are tabu, and update the neighborhood generation 

mechanism (Aspiration criterion). 

3. Set f
best

= f(N
k
) and 

k
best N

B B  and update the tabu list. 

Else 

1. Set 
1k k

N N

  and update the neighborhood generation mechanism. 

2. Update the tabu list. 

Step 3 

Set 1k k  , and go to Step 1 until one of the termination criteria is satisfied. 

Termination criteria 

The algorithm is terminated if one of the following criteria is satisfied: 

1. within a certain number of iterations, no better solution is found, or  

2. the number of iterations reaches the maximum allowable number. 
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As seen from Table 6.2, the algorithm is started with a pre-specified N value and 

the neighborhoods of this value are generated by using neighborhood generation 

mechanism which is explained in section 6.3.2.3. The ATS algorithm is run for each 

neighborhood solution to obtain the throughput value. It should be noted that if one 

of these neighborhood solutions is in tabu list, the ATS algorithm is run only for non-

tabu values of N. Using these memory properties of tabu search reduces the running 

time of the algorithm. At each iteration, the minimum N value which can be reached 

by a non-tabu move in the current solution is selected for the next step. The only 

exception is defined by the aspiration criterion which allows a tabu move to be made 

if and only if the resulting N is lower than the minimum total size value found so far. 

This procedure continues until one of the stopping conditions is satisfied. 

 

6.3.3 Simulated Annealing Algorithm 

 

Simulated annealing is a meta-heuristic method derived from statistical 

mechanics. Kirkpatrick et al. (1983) proposed an algorithm which is based on the 

analogy between the annealing of solids and the problem of solving combinatorial 

optimization problems. 

 

The analogy between the buffer allocation problem and the annealing process can 

be stated as follows: The states of the solid represent the feasible solutions of the 

problem, the energies of the states correspond to the values of the throughput rates 

computed at those solutions, the minimum energy state corresponds to the optimal 

solution to the problem and rapid quenching can be viewed as local optimization. 

 

The proposed simulated annealing algorithm is outlined in Table 6.3. The notation 

used in this table is the same as in Table 6.2. The proposed algorithm consists of a 

sequence of iterations. Each iteration consists of changing the current solution to 

create a new solution in the neighborhood of the current solution. The neighborhoods 

of the current solution are generated by using neighborhood generation mechanism 

as defined in section 6.3.2.3 (Step 3). To select the best neighborhood generation 

mechanism a pilot experiment is carried out as in the case of proposed TS algorithm 
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and the results of these experiments are discussed in section 6.4.1. Once a new 

solution is created the corresponding change in the throughput rate is computed as 

given in the step 4 of the algorithm to decide whether the newly produced solution 

can be accepted as the current solution.  

 

      Table 6.3 Simulated annealing algorithm 

Step 0 (Initialization) 

Set N to its pre-specified value. Run the ATS algorithm to obtain the best throughput 

value for N. Set ( )
best

f f N , and 
0best

B B . 

Step 1 (Initialization of temperature) 

Set the initial temperature 10T   . 

Step 2 (Initialization of step and success count) 

Set the iteration count to 0k   and success count to 0U   

Step 3 (Neighborhood generation) 

Create all neighbors of the current solution according to the neighborhood 

generation mechanism and run the ATS algorithm for each neighbor to obtain the 

throughput rate values.
 

Step 4 (Calculation of energy differential) 

Set 
*

( )
k

f f NE   . 

Step 5 (Acceptance criteria) 

 If 0E  , select the minimum N value that satisfies this condition for the 

next iteration. Set ( )
best k

f f N , 
k

best N
B B , and 1U U  . 

 If 0E   and (buffer size reduction)>1, keep the current best N value for 

the next iteration, and update the neighborhood generation mechanism.  

 If 0E   and (buffer size reduction)=1, select the N value that satisfies 

the following condition: 
( / )

rand(0...1)
E T

e


 . 

Step 6 (Repeat for current temperature) 

Set 1k k  , if k<(maximum number of steps) go to Step 3, otherwise go to Step 5. 

Step 7 (Lower the annealing temperature) 

Set  (0 1)T cT c   . 

Step 8 (Termination criterion) 

If 0U   go to step 2, otherwise terminate the algorithm. 

 

As given in step 5 of the proposed algorithm (see Table 6.3), if the desired 

throughput rate is obtained by less total buffer size then this value is directly taken as 
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the current solution. Otherwise it is accepted according to Metropolis’s criterion 

(Metropolis et al., 1953). 

 

According to Metropolis’s criterion, if the difference between the throughput rate 

values of the current and newly produced solutions is greater than zero, a random 

number in (0,1) is generated from a uniform distribution and if 

( / )
rand(0...1)

E T
e


  then the newly produced solution is accepted as the current 

solution. Since the addressed problem is a minimization problem and our algorithm 

is designed in the form of decreasing N value we consider the Metropolis’s criterion 

if and only if the value of buffer size reduction is 1.  

 

In designing cooling schedule for the proposed SA algorithm, the initial 

temperature is set to -10. Since the problem addressed in this study is a minimization 

problem, the cooling schedule becomes like a heating schedule. In the proposed 

algorithm we employ the geometric cooling rule which is a common and very simple 

cooling strategy. This rule updates the temperature by the formula given in the 

seventh step of the algorithm. In this formula c is a temperature factor which is a 

constant smaller than 1 but close to 1. In our computational study, we tried different 

values for c and decided to use 0.98c   throughout the experiments.  

 

The experimental studies carried out to test the performance of the proposed 

integrated approach are given in the next section. 

 

6.4 Computational Experiments 

 

In this section, randomly generated test problems are used to test the performance 

of the proposed algorithms. Before giving the details of our computational study, 

first the results of pilot experiments which are carried out to determine the 

neighborhood generation mechanism of the proposed TS and SA algorithms are 

presented. 
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6.4.1 Determination of Neighborhood Generation Mechanism 

 

In this study, the neighborhood generation mechanism is defined as follows: 

 At the initialization step of both TS and SA algorithms, the total buffer 

size, N, is set to a pre-specified value and the neighbors of this solution are 

generated by setting the value of buffer reduction to N/x. Here x is a 

divisor of N. During the pilot experiments, different values of x, i.e., 2, 3, 

4 and 5 are used to generate the neighborhoods of the current solution. For 

instance, if the total buffer size, the neighborhood size and x are initially 

set to 200, 3 and 4, respectively, then the neighborhoods of this solution 

become 150, 100, and 50. 

 In the following steps, the value of buffer reduction is set to min1
( / )

2
N x . 

Here N
min

 is the current best solution found so far. Continuing with the 

previous example, if a total buffer size of 100 achieves the best throughput 

rate during the second step of the algorithm, then the neighborhoods of 

this solution become 87, 74, and 61 by setting the value of buffer 

reduction to 13, i.e., 100/8=12,5~13 (since buffer sizes must be integer, 

N
min

/8 is rounded to integer value). This process continues until the value 

of buffer reduction becomes 1, i.e., N
min

/16 during the third step, N
min

 /32 

during the fourth step, etc. In this way, it is focused on promising solution 

areas of the search space, i.e., intensification. 

 

As mentioned above, a set of pilot experiments is carried out to determine the 

value of divisor, x. The values of x tested are 2, 3, 4 and 5. These experiments 

involve a ten-machine line with initial total buffer size of 100. By changing the 

failure/repair rates of machines (see Table 5.2 in chapter 5) eight sets of problems are 

generated. To determine the desired throughput rates using ATS algorithm, all 

considered problems are solved by setting the total buffer size value to 50 which is 

the half of the initial total buffer size value. In doing so, we aim at searching for 

whether the proposed algorithms can achieve the desired throughput rate value with 
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the pre-specified total buffer size. Using a 2 GHz Intel ® Core ™ 2 Duo CPU 

processor 5 runs are carried out at each design point leading to 320 runs in total. 

 

Tables 6.4 and 6.5 present the results obtained by the proposed TS and SA 

algorithms, respectively. In these tables, the first two columns show the problem 

setting and the problem instances for each setting. While the third column presents 

the desired throughput rate, the fourth column presents the minimum total buffer size 

found by the binary search algorithm to achieve this desired throughput rate. The 

following columns show the performance of the proposed algorithm for each x value.  

 

Table 6.4 shows the results obtained by the proposed TS algorithm for each x 

value. As seen in Table 6.4, for the problem settings 1, 3, 5 and 7, all x values 

produce the same results. For the third problem instances in problem setting 2 and 8, 

and for the first problem instance in problem setting 4, none of x values reaches the 

optimum solution. Considering the results of pilot experiments, setting the divisor, x 

to 3 seems to be a good decision since it can reach the optimum solution in 37 out of 

40 problems and for other problems it produces better results than the other x values. 
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Table 6.4 Results of pilot experiments for neighborhood generation mechanism by using the proposed TS algorithm 
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1 

1 0.08694 13 0.08694 13 14 4 172.02 0.08694 13 14 4 208.84 0.08694 13 13 3 198.67 0.08694 13 21 11 263.16 

2 0.07338 38 0.07338 38 13 3 923.55 0.07338 38 17 7 1091.97 0.07338 38 14 4 1578.45 0.07338 38 14 4 1158.71 

3 0.06442 13 0.06442 13 14 4 276.28 0.06442 13 14 4 309.77 0.06442 13 13 3 311.56 0.06442 13 15 5 344.33 

4 0.07554 23 0.07554 23 15 5 389.50 0.07554 23 15 5 440.11 0.07554 23 14 4 431.30 0.07554 23 17 7 619.52 

5 0.07907 28 0.07907 28 17 7 180.80 0.07907 28 17 7 234.56 0.07907 28 20 10 171.13 0.07907 28 15 5 166.24 

Avg 0.07587 23 0.07587 23 15 5 388.43 0.07587 23 15 5 457.05 0.07587 23 15 5 538.22 0.07587 23 16 6 510.39 

2 

1 0.05596 48 0.05603 48 15 5 571.31 0.05598 48 21 11 773.94 0.05602 48 16 6 720.92 0.05603 49 16 6 714.81 

2 0.06253 48 0.06266 48 15 5 455.88 0.06266 48 15 5 507.97 0.06266 48 16 6 590.11 0.06266 48 14 4 472.67 

3 0.06730 38 0.07281 45 19 9 1182.66 0.07281 39 23 13 1398.20 0.06739 48 22 12 1575.69 0.07024 48 17 7 1143.97 

4 0.05925 48 0.05925 48 15 5 799.69 0.05925 48 15 5 920.55 0.05925 48 16 6 1032.42 0.05925 48 14 4 837.84 

5 0.06936 48 0.06936 48 15 5 999.42 0.06936 48 15 5 1017.11 0.06936 48 16 6 1195.30 0.06936 48 17 7 1235.75 

Avg 0.06288 46 0.06402 47 16 6 801.79 0.06401 46 18 8 923.55 0.06294 48 17 7 1022.89 0.06351 48 16 6 881.01 

3 

1 0.07214 48 0.07214 48 15 5 377.16 0.07214 48 16 6 478.39 0.07214 48 15 5 420.81 0.07214 48 14 4 385.39 

2 0.06911 43 0.06911 43 16 6 430.67 0.06911 43 15 5 457.83 0.06911 43 16 6 463.09 0.06911 43 16 6 539.53 

3 0.08565 53 0.08571 53 20 10 2453.53 0.08618 53 19 9 1755.80 0.08571 53 16 6 1609.52 0.08618 53 16 6 1334.78 

4 0.06365 48 0.06365 48 15 5 901.91 0.06365 48 16 6 1091.73 0.06365 48 15 5 1000.59 0.06365 48 14 4 975.45 

5 0.06659 48 0.06660 48 15 5 250.73 0.06660 48 16 6 306.84 0.06660 48 15 5 281.47 0.06660 48 14 4 273.81 

Avg 0.07143 48 0.07144 48 16 6 882.80 0.07154 48 16 6 818.12 0.07144 48 15 5 755.10 0.07154 48 15 5 701.79 

4 

1 0.05021 13 0.17492 16 30 28 877.47 0.13110 14 13 3 248.97 0.22953 20 30 23 1833.86 0.36402 20 30 30 1994.13 

2 0.04972 78 0.05134 78 18 8 2205.36 0.05134 78 16 6 1756.86 0.05134 78 20 10 2520.56 0.05134 78 15 5 1534.56 

3 0.05610 38 0.05610 38 13 3 376.03 0.05610 38 17 7 720.39 0.05610 38 14 4 531.36 0.05610 38 14 4 524.45 

4 0.04156 48 0.04156 48 15 5 1241.27 0.04156 48 24 14 2341.20 0.04156 50 12 2 1009.63 0.04156 50 12 2 1245.76 

5 0.05589 9 0.05631 9 4 4 244.55 0.05631 9 4 4 273.13 0.05631 9 9 4 250.98 0.05631 9 9 4 257.88 

Avg 0.05070 33 0.07604 38 16 10 988.94 0.06728 37 15 7 1068.11 0.08697 39 17 9 1229.28 0.11386 39 16 9 1111.36 
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Table 6.4 Results of pilot experiments for neighborhood generation mechanism by using the proposed TS algorithm (cont.) 
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5 

1 0.03089 6 0.03089 6 5 5 127.16 0.03089 6 5 5 153.34 0.03089 6 5 5 169.72 0.03089 6 5 5 186.97 

2 0.02444 12 0.02444 12 14 4 68.19 0.02444 12 14 4 76.69 0.02444 12 5 5 54.88 0.02444 12 13 3 87.02 

3 0.02340 8 0.02340 8 5 5 128.78 0.02340 8 5 5 161.88 0.02340 8 5 5 166.42 0.02340 8 5 4 196.76 

4 0.02347 8 0.02347 8 5 5 103.95 0.02347 8 5 5 124.91 0.02347 8 5 5 132.03 0.02347 8 5 5 143.05 

5 0.03700 28 0.03700 28 17 7 223.06 0.03700 28 15 5 181.67 0.03700 28 17 7 282.73 0.03700 28 15 5 239.06 

Avg 0.02784 12 0.02784 12 9 5 130.23 0.02784 12 9 5 139.70 0.02784 12 7 5 161.16 0.02784 12 9 4 170.57 

6 

1 0.01849 23 0.01849 23 15 5 475.19 0.01849 23 15 5 501.75 0.01849 23 14 4 500.84 0.01849 23 17 7 763.14 

2 0.02342 23 0.02343 23 30 27 1610.44 0.02343 23 21 11 596.19 0.02343 23 30 29 1780.81 0.02342 94 28 18 2959.75 

3 0.02322 48 0.02322 48 15 5 405.23 0.02322 48 16 6 471.76 0.02322 48 15 5 411.03 0.02322 48 14 4 399.17 

4 0.02892 48 0.02892 48 15 5 1153.42 0.02892 48 16 6 1461.27 0.02892 48 15 5 1333.83 0.02892 48 14 4 1156.58 

5 0.02505 48 0.02505 48 15 5 463.33 0.02505 48 16 6 587.45 0.02505 48 15 5 517.25 0.02505 48 14 4 496.86 

Avg 0.02382 38 0.02382 38 18 9 821.52 0.02382 38 17 7 723.68 0.02382 38 18 10 908.75 0.02382 52 17 7 1155.10 

7 

1 0.02165 43 0.02165 43 16 6 183.25 0.02165 43 15 5 196.28 0.02165 43 16 6 202.41 0.02165 43 16 6 234.14 

2 0.02169 48 0.02169 48 28 18 844.33 0.02169 48 20 10 508.72 0.02169 48 17 7 510.98 0.02169 48 20 10 461.84 

3 0.02167 18 0.02167 18 16 6 102.52 0.02167 18 15 5 89.67 0.02167 18 15 5 93.72 0.02167 18 13 3 88.55 

4 0.02558 43 0.02558 43 16 6 1193.31 0.02558 43 15 5 1220.34 0.02558 43 16 6 1289.27 0.02558 43 16 6 1428.91 

5 0.01396 23 0.01396 23 15 5 71.44 0.01396 23 15 5 76.63 0.01396 23 14 4 77.92 0.01396 23 17 7 116.38 

Avg 0.02091 35 0.02091 35 18 8 478.97 0.02091 35 16 6 418.33 0.02091 35 16 6 434.86 0.02091 35 16 6 465.96 

8 

1 0.01742 43 0.01744 43 16 6 238.61 0.01744 43 24 14 639.58 0.01744 43 21 11 470.92 0.01744 43 20 10 498.61 

2 0.01280 48 0.01280 49 27 17 1068.11 0.01280 48 24 14 1068.11 0.01293 53 16 6 712.23 0.01280 48 26 16 1003.89 

3 0.03790 48 0.03790 48 15 5 731.67 0.03790 48 16 6 913.09 0.03790 48 17 7 1091.75 0.03790 48 18 8 1111.13 

4 0.01337 40 0.01337 48 15 5 306.70 0.01337 48 16 6 365.40 0.01337 48 17 7 425.28 0.01337 48 14 4 414.72 

5 0.01610 49 0.01610 49 15 5 462.63 0.01610 49 17 7 705.51 0.01610 49 15 5 537.75 0.01610 49 16 6 603.36 

Avg 0.01952 46 0.01952 47 18 8 602.52 0.01952 47 19 9 738.34 0.01955 48 17 7 647.59 0.01952 47 19 9 726.34 
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The results of pilot experiments for neighborhood generation mechanism by using 

the proposed SA algorithm are shown in Table 6.5. As seen in Table 6.5, for the 

problem settings 1, 3, 5 and 6 all x values produce the same results. For the third 

problem instance in problem setting 2, none of x values reaches the optimum 

solution. Considering the results of pilot experiments, setting the divisor, x to 3 

seems to be a good decision since it can reach to the optimum solution in 38 out of 

40 problems. 
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Table 6.5 Results of pilot experiments for neighborhood generation mechanism by using the proposed SA algorithm 
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1 

1 0.08694 13 0.08694 13 8 4 161.94 0.08694 13 9 5 199.76 0.08694 13 8 3 199.88 0.08694 13 9 5 242.28 

2 0.07338 38 0.07338 38 10 3 1088.23 0.07338 38 10 5 1338.22 0.07338 38 10 3 1141.78 0.07338 38 10 4 1335.70 

3 0.06442 13 0.06442 13 5 4 185.92 0.06442 13 5 4 225.23 0.06442 13 5 3 226.45 0.06442 13 6 5 313.23 

4 0.07554 23 0.07554 23 9 4 366.24 0.07554 23 10 5 470.67 0.07554 23 9 4 376.08 0.07554 23 10 4 523.53 

5 0.07907 28 0.07907 28 15 6 204.97 0.07907 28 10 5 154.08 0.07907 29 10 5 174.46 0.07907 28 10 3 166.06 

Avg 0.07587 23 0.07587 23 9 4 401.46 0.07587 23 9 5 477.59 0.07587 23 8 4 423.73 0.07587 23 9 4 516.16 

2 

1 0.05596 48 0.05602 49 10 5 660.36 0.05602 48 10 4 707.34 0.05597 49 10 5 736.20 0.05597 48 10 5 743.19 

2 0.06253 48 0.06266 48 10 5 491.00 0.06266 48 10 4 535.79 0.06266 48 10 5 747.46 0.06266 48 10 3 564.14 

3 0.06730 38 0.06923 39 15 10 1349.50 0.06730 48 15 8 1673.11 0.07281 44 10 4 952.02 0.07281 42 10 4 970.75 

4 0.05925 48 0.05925 48 10 5 1062.94 0.05925 48 10 4 1266.22 0.05925 48 10 5 1160.25 0.05925 48 10 3 1256.39 

5 0.06936 48 0.06936 48 10 5 953.95 0.06936 48 10 5 1242.23 0.06936 48 10 5 1146.46 0.06936 48 10 3 1164.31 

Avg 0.06288 46 0.06331 46 11 6 903.55 0.06292 48 11 5 1084.94 0.06401 47 10 5 948.48 0.06401 47 10 4 939.76 

3 

1 0.07214 48 0.07214 48 10 5 423.31 0.07214 48 10 4 458.23 0.07214 48 10 5 441.14 0.07214 48 10 3 489.16 

2 0.06911 43 0.06911 43 10 5 415.73 0.06911 43 10 5 476.19 0.06911 43 10 5 629.23 0.06911 43 10 5 524.91 

3 0.08565 50 0.08589 50 15 7 2100.92 0.08616 50 15 6 1880.45 0.08589 50 10 5 1896.14 0.08640 50 10 5 1433.55 

4 0.06365 48 0.06365 48 10 5 1057.22 0.06365 48 10 4 1113.55 0.06365 48 10 5 1215.94 0.06365 48 10 3 1150.17 

5 0.06659 48 0.06660 48 10 5 269.17 0.06660 48 10 4 295.13 0.06660 48 10 5 311.43 0.06660 48 10 3 313.36 

Avg 0.07143 47 0.07148 47 11 5 853.27 0.07153 47 11 5 844.71 0.07148 47 10 5 898.78 0.07158 47 10 4 782.23 

4 

1 0.05021 13 0.22174 23 13 9 597.44 0.13110 13 13 12 910.34 0.13110 14 19 17 1342.31 0.22174 23 11 7 707.17 

2 0.04972 78 0.05134 78 15 7 2564.76 0.05134 78 15 6 2499.44 0.05134 78 10 4 1798.88 0.05134 78 10 5 1788.16 

3 0.05610 38 0.05610 38 10 3 431.33 0.05610 38 10 4 492.34 0.05610 38 10 3 535.64 0.05610 38 10 4 541.67 

4 0.04156 48 0.04156 50 10 2 1293.22 0.04156 48 10 3 1476.85 0.04156 50 10 3 1347.89 0.04156 48 10 4 1420.56 

5 0.05589 9 0.05631 9 5 5 187.68 0.05631 9 5 5 200.50 0.05631 9 5 5 229.83 0.05631 9 5 5 215.67 

Avg 0.05070 37 0.08541 40 11 5 1014.89 0.06728 37 11 6 1115.89 0.06728 38 11 6 1050.91 0.08541 39 9 5 934.65 
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Table 6.5 Results of pilot experiments for neighborhood generation mechanism by using the proposed SA algorithm (cont.) 
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5 

1 0.03089 6 0.03089 6 6 6 128.25 0.03089 6 6 6 167.80 0.03089 6 6 6 192.20 0.03089 6 6 6 204.31 

2 0.02444 12 0.02444 12 6 4 55.05 0.02444 12 6 4 63.59 0.02444 12 7 5 79.66 0.02444 12 6 3 70.83 

3 0.02340 8 0.02340 8 6 6 130.78 0.02340 8 6 6 63.59 0.02340 8 6 6 195.51 0.02340 8 6 6 219.70 

4 0.02347 8 0.02347 8 6 6 102.30 0.02347 8 6 6 124.52 0.02347 8 6 6 153.22 0.02347 8 6 6 152.44 

5 0.03700 28 0.03700 28 10 5 167.25 0.03700 28 10 5 181.42 0.03700 28 10 4 233.23 0.03700 28 10 4 252.47 

Avg 0.02784 12 0.02784 12 7 5 116.73 0.02784 12 7 5 120.18 0.02784 12 7 5 170.76 0.02784 12 7 5 179.95 

6 

1 0.01849 23 0.01849 23 10 4 430.69 0.01849 23 10 5 508.09 0.01849 23 10 4 461.91 0.01849 23 10 4 578.83 

2 0.02342 23 0.02343 23 10 4 698.75 0.02343 23 10 5 726.24 0.02343 23 16 11 817.46 0.02342 23 15 10 865.12 

3 0.02322 48 0.02322 48 10 5 411.31 0.02322 48 10 4 440.95 0.02322 48 10 5 491.15 0.02322 48 10 3 466.19 

4 0.02892 48 0.02892 48 10 5 1270.39 0.02892 48 10 4 1455.66 0.02892 48 10 5 1419.43 0.02892 48 10 3 1516.69 

5 0.02505 48 0.02505 48 10 5 529.22 0.02505 48 10 4 573.45 0.02505 48 10 5 803.23 0.02505 48 10 3 614.11 

Avg 0.02382 38 0.02382 38 10 5 668.07 0.02382 38 10 4 740.88 0.02382 38 11 6 798.64 0.02382 38 11 5 808.19 

7 

1 0.02165 43 0.02165 43 10 5 182.26 0.02165 43 10 5 204.66 0.02165 43 10 5 208.25 0.02165 43 10 5 227.98 

2 0.02169 48 0.02169 53 10 5 426.24 0.02169 48 15 7 581.33 0.02169 50 10 2 432.48 0.02169 48 10 3 383.55 

3 0.02167 18 0.02167 18 10 5 81.81 0.02167 18 9 4 79.72 0.02167 18 9 4 82.42 0.02167 18 9 3 93.45 

4 0.02558 43 0.02558 43 10 5 1235.56 0.02558 43 10 5 1312.13 0.02558 43 10 5 1220.02 0.02558 43 10 5 1475.77 

5 0.01396 23 0.01396 23 9 4 60.78 0.01396 23 10 5 75.05 0.01396 23 9 4 73.88 0.01396 23 9 4 85.05 

Avg 0.02091 35 0.02091 36 10 5 397.33 0.02091 35 11 5 450.58 0.02091 35 10 4 403.41 0.02091 35 10 4 453.16 

8 

1 0.01742 43 0.01744 43 15 5 372.93 0.01744 43 15 6 383.33 0.01744 43 10 5 268.83 0.01744 43 10 5 338.31 

2 0.01280 43 0.01280 49 10 5 605.75 0.01280 48 10 4 620.94 0.01280 43 10 3 600.98 0.01280 50 10 4 658.34 

3 0.03790 48 0.03790 50 10 2 671.70 0.03790 48 10 3 737.89 0.03790 48 10 3 820.37 0.03790 48 10 3 795.67 

4 0.01818 48 0.01818 48 10 5 550.92 0.01818 48 10 4 594.27 0.01818 48 10 5 614.58 0.01818 48 10 3 587.65 

5 0.01610 49 0.01610 49 15 5 723.77 0.01610 49 15 6 967.06 0.01610 49 10 5 893.46 0.01610 49 10 5 659.08 

Avg 0.02048 46 0.02048 48 12 4 585.01 0.02048 47 12 5 660.70 0.02048 46 10 4 639.64 0.02048 48 10 4 607.81 
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6.4.2 Experiments on Test Problems 

 

We design a computational experiment to test the performance of the proposed 

algorithms. In our computational experiments, five, ten, and twenty-machine lines (K 

= 5, 10, 20) are considered. For small and medium-sized problems, i.e. 5 and 10 

machine-lines, the initial total buffer size is set to 10, 20 and 40 times of the number 

of machines in the line. However, to reduce the computational cost, for large-sized 

problems involving 20 machines the initial total buffer size is set to 200. To 

determine the desired throughput rates using ATS algorithm, all considered problems 

are solved by setting the total buffer size value to the half of the initial total buffer 

size value. Hence, a total of 7 problem sets are considered. As seen in Table 6.6, by 

identifying different levels for processing rates and reliability parameters, eight 

different settings are generated for each problem set. The processing rates of the 

machines are generated from a uniform distribution and the failure and repair rates 

are generated from a geometric distribution. For each setting, 5 runs are made 

totaling to 800 runs. All algorithms are implemented in C language. The execution is 

done on a computer having 2.26 GHz Intel Core i5 430M CPU processor and 4 GB 

of RAM.  

 

   Table 6.6 Properties of problem instances 

Setting Processing rate Failure Rate Repair Rate 

1 (5,15) (1,200) (1,10) 

2 (5,15) (1,200) (1,40) 

3 (5,15) (1,2000) (1,100) 

4 (5,15) (1,2000) (1,400) 

5 (5,45) (1,200) (1,10) 

6 (5,45) (1,200) (1,40) 

7 (5,45) (1,2000) (1,100) 

8 (5,45) (1,2000) (1,400) 

 

Performance comparison of the three algorithms, i.e., binary search, tabu search 

and simulated annealing is done with respect to solution quality and solution time. It 

should be noted that since the optimal solution for large sized problems using binary 

search algorithm can not be reached in reasonable computation time, the comparative 
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experiments for large sized problems involved only the comparison of the tabu 

search algorithm to the simulated annealing algorithm.  

 

In our experimental study, the problem sets are denoted by K.N, where K is the 

number of machines in the line and N is the initial total buffer size to be allocated. In 

the following tables, we give the average results obtained for all problem sets. The 

detailed results are given in Appendix C. 

 

6.4.2.1 Results of Small-Sized Problems 

 

Table 6.7 presents the results of our experimental studies for small-sized 

problems. In this table, the first two columns represent the problem set and problem 

setting. Other columns represent the performance of three algorithms with respect to  

the number of instances achieved the desired throughput rate, minimum value of total 

buffer size, total number of iterations, the number of iterations for convergence and 

the CPU time in seconds. 

 

As seen in Table 6.7, for the first problem set, all algorithms converge the 

optimum solution for all problems. However, the proposed TS and SA algorithms 

reach the optimum solution with less number of iterations than the binary search 

algorithm and hence, the solution times of proposed TS and SA algorithms are much 

less than the solution time of binary search algorithm. Comparing the solution time 

of TS algorithm to SA, except for the problem setting 5 where the two algorithms 

have the same solution time, on average, the solution time of proposed TS algorithm 

is less than the proposed SA algorithm. Overall, it can be said that for solving the 

problem set 5.50, the solution quality of three algorithms is the same, and the 

proposed TS algorithm dominates the other two with respect to the solution time.  

 

For the problem set 5.100, both two algorithms get stuck at the local optima for 

only one problem (see the fourth problem in problem setting 3 for TS and the fourth 

problem in problem setting 1 for SA in Appendix C2). The convergence rate of TS 

and SA algorithms is almost the same. As for the solution time, TS algorithm is 
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slightly better than SA algorithm and in overall, as expected the binary search 

algorithm has worse performance than the other two.  

 

For problem set 5.200, both TS and SA algorithms reach the optimum solution. 

Moreover, the convergence rate and the solution times of both algorithms are very 

close. Like in the case of problem set 5.100, the solution times of both algorithms are 

better than the binary search algorithm. 

 

In summary, for small-sized problems, the proposed TS and SA algorithms are 

efficient to solve buffer allocation problem under the objective of total buffer size 

minimization. The solution times and also the convergence rates of both algorithms 

are very close and the proposed TS algorithm gets stuck at the local optimum for 

only one problem in all considered small-sized problems.  
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 Table 6.7 Results of experimental studies for small-sized problems 

Problem 

Set 

Problem 

Setting 

Binary Search Tabu Search Simulated Annealing 

# of 

Instances 

Achieved 

Desired 

Rate 

N 
Total # of 

Iterations 

CPU 

(sec.) 

# of 

Instances 

Achieved 

Desired 

Rate 

N 
Total # of 

Iterations 

# of Iterations 

for 

Convergence 

CPU 

(sec.) 

# of 

Instances 

Achieved 

Desired 

Rate 

N 
Total # of 

Iterations 

# of Iterations 

for 

Convergence 

CPU 

(sec.) 

5.50 

1 5 15 23 2.10 5 15 11 6 1.77 5 15 10 5 2.12 

2 5 22 29 7.60 5 22 8 3 3.12 5 22 10 3 4.72 

3 5 24 31 8.04 5 24 8 3 3.83 5 24 10 4 5.37 

4 5 25 32 6.17 5 25 7 2 2.73 5 25 10 2 3.71 

5 5 10 16 1.72 5 10 8 3 1.54 5 10 6 4 1.54 

6 5 17 24 4.90 5 17 9 4 3.31 5 17 8 4 3.46 

7 5 24 32 5.98 5 24 8 3 2.59 5 24 10 3 3.67 

8 5 25 32 9.24 5 25 8 3 4.06 5 25 10 3 5.67 

Avg. 5 20 27 5.72 5 20 8 3 2.87 5 20 9 3 3.78 

5.100 

1 5 20 29 4.58 5 20 16 6 5.25 5 21 10 5 5.63 

2 5 49 57 20.89 5 49 14 4 9.64 5 49 10 4 11.64 

3 5 45 55 22.68 5 48 14 4 14.10 5 45 11 4 16.64 

4 5 50 58 27.85 5 50 13 3 12.37 5 50 10 3 14.96 

5 5 15 23 4.27 5 15 13 5 4.46 5 15 8 5 3.90 

6 5 39 47 16.62 5 39 16 6 11.42 5 39 11 6 11.36 

7 5 46 55 20.17 5 46 15 5 10.52 5 46 12 5 12.77 

8 5 50 58 34.85 5 50 13 3 14.91 5 50 10 3 18.78 

Avg. 5 39 48 18.99 5 39 14 4 10.33 5 39 10 4 11.96 

5.200 

1 5 20 33 9.67 5 20 22 7 10.32 5 20 11 5 10.25 

2 5 75 103 80.69 5 75 21 6 37.94 5 75 12 5 34.81 

3 5 96 106 146.13 5 96 20 5 64.66 5 96 14 5 75.16 

4 5 100 109 129.46 5 100 19 4 50.96 5 100 12 4 53.90 

5 5 15 24 7.92 5 15 21 6 9.78 5 15 9 6 8.68 

6 5 58 68 40.48 5 58 21 6 27.54 5 58 13 6 28.63 

7 5 60 125 148.72 5 60 24 9 39.49 5 60 14 6 36.88 

8 5 89 98 103.48 5 89 21 6 51.60 5 89 15 6 60.35 

Avg. 5 64 83 83.32 5 64 21 6 36.54 5 64 12 5 38.58 
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6.4.2.2 Results of Medium-Sized Problems 

 

Table 6.8 presents the results of our experimental studies for medium-sized 

problems.  

 

For the problem set 10.100, both the TS and SA algorithms get stuck at the local 

optimum for the same problems (see the third problem in problem setting 2 and the 

first problem in problem setting 1, in Appendix C4). For the problem setting 2, SA 

algorithm finds better solution than TS algorithm while TS finds better solution than 

SA for the problem setting 4. Moreover, except for the problem settings 6 and 8 (see 

Table 6.8), on average, the convergence rate of both TS and SA algorithms are very 

close. Also, the proposed TS and SA algorithms reach the optimum solution with less 

number of iterations than binary search algorithm and hence, on average, the solution 

times of proposed TS and SA algorithms are much less than the solution time of 

binary search algorithm.  

 

Comparing the solution time of TS algorithm to SA, on average, SA algorithm has 

better performance than the TS algorithm in 6 out of 8 problem settings. Overall, it 

can be said that for solving the problem set 10.100, the solution quality of both TS 

and SA algorithms is nearly the same, and the proposed SA algorithm dominates the 

other two with respect to the solution time.  

 

For the problem set 10.200 the proposed TS algorithm reaches the optimum 

solution in 36 out of 40 problems while the proposed SA algorithm finds the 

optimum solution in 35 out of 40 problems (see Appendix C5). Unlike the problem 

set 10.100, the proposed TS finds better solution than the proposed SA for the 

problem setting 2 and SA algorithm reaches the desired throughput rate with less 

total buffer size than TS algorithm for the problem setting 4. Moreover, on average, 

the convergence rate of both TS and SA algorithms are very close. Also, the 

proposed TS and SA algorithms reach the optimum solution with less number of 

iterations than binary search algorithm and hence, on average, the solution times of 
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proposed TS and SA algorithms are much less than the solution time of binary search 

algorithm as in the case of the problem set 10.100. 

 

Comparing the solution time of TS algorithm to SA, on average, the solution time 

of proposed TS algorithm is less than the proposed SA algorithm in 5 out of 8 

problem settings. Overall, it can be said that for solving the problem set 10.200, the 

solution quality of TS is slightly better than SA algorithm, and the proposed TS 

algorithm dominates the other two with respect to solution time.  

 

For the problem set 10.400, the proposed TS algorithm reaches the optimum 

solution in 36 out of 40 problems while the proposed SA algorithm finds the 

optimum solution in 34 out of 40 problems (see Appendix C6). Moreover, on 

average, the convergence rate of both TS and SA algorithms are very close. Also, the 

proposed TS and SA algorithms reach the optimum solution with less number of 

iterations than binary search algorithm and hence, on average, the solution times of 

proposed TS and SA algorithms are much less than the solution time of binary search 

algorithm as it is expected. 

 

Comparing the solution time of TS algorithm to SA, on average, the solution time 

of proposed TS algorithm is less than the proposed SA algorithm in 6 out of 8 

problem settings. Overall, it can be said that for solving the problem set 10.400, the 

solution quality of TS is slightly better than SA algorithm, and the proposed TS 

algorithm dominates the other two with respect to solution time.  
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   Table 6.8 Results of experimental studies for medium-sized problems 

Problem 

Set 

Problem 

Setting 

Binary Search Tabu Search Simulated Annealing 

# of 

Instances 

Achieved 

Desired 

Rate 

N 
Total # of 

Iterations 

CPU 

(sec.) 

# of 

Instances 

Achieved 

Desired 

Rate 

N 
Total # of 

Iterations 

# of 

Iterations 

for 

Convergence 

CPU 

(sec.) 

# of 

Instances 

Achieved 

Desired 

Rate 

N 
Total # of 

Iterations 

# of 

Iterations 

for 

Convergence 

CPU 

(sec.) 

10.100 

1 5 23 39 321.01 5 23 16 6 324.84 5 23 8 4 275.42 

2 5 46 64 964.01 5 48 16 6 863.86 5 47 10 5 616.51 

3 5 48 67 1091.25 5 48 15 5 672.14 5 48 10 5 584.20 

4 5 32 47 676.24 5 33 13 5 417.36 5 34 10 5 485.92 

5 5 12 21 80.92 5 12 15 5 117.56 5 12 7 5 117.90 

6 5 38 50 735.12 5 38 18 10 573.28 5 38 11 6 519.11 

7 5 35 53 426.19 5 35 15 5 287.37 5 35 10 4 262.21 

8 5 46 74 727.73 5 46 19 9 539.71 5 46 10 4 418.54 

Avg. 5 35 52 627.81 5 35 16 6 474.51 5 36 10 5 409.98 

10.200 

1 5 23 32 366.42 5 23 23 8 432.78 5 23 11 5 426.31 

2 5 81 129 2910.72 5 93 22 7 1685.59 5 94 14 7 2015.40 

3 5 80 92 1929.69 5 82 20 5 872.67 5 82 13 5 1131.55 

4 5 64 79 2221.59 5 70 27 12 1996.59 5 64 17 9 1856.38 

5 5 12 27 145.16 5 12 19 7 206.65 5 12 9 6 202.85 

6 5 61 72 1529.89 5 61 21 6 913.16 5 61 15 7 1195.00 

7 5 48 58 683.12 5 48 21 6 501.58 5 48 12 5 511.10 

8 5 81 96 1707.80 5 81 22 7 713.23 5 81 12 5 891.38 

Avg. 5 56 73 1436.80 5 59 22 7 915.28 5 58 13 6 1028.75 

10.400 

1 5 23 38 577.60 5 23 25 10 916.92 5 23 13 8 828.24 

2 5 133 249 10545.51 5 140 29 16 4622.00 5 136 18 12 4695.92 

3 5 140 153 4728.79 5 142 20 5 1565.74 5 142 14 5 2100.76 

4 5 146 158 4362.45 5 182 23 8 2554.89 5 175 17 9 3091.36 

5 5 12 23 318.96 5 12 25 10 552.72 5 12 13 10 548.64 

6 5 99 151 3898.07 5 99 25 10 2531.18 5 101 16 7 2580.87 

7 5 79 90 1989.83 5 79 23 8 1150.16 5 79 14 7 1178.61 

8 5 179 233 8391.94 5 194 24 9 2440.90 5 195 14 6 2494.23 

Avg. 5 102 137 4351.65 5 109 24 9 2041.81 5 108 15 8 2189.83 
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In summary, both TS and SA algorithms are efficient to solve the buffer allocation 

under the objective of total buffer size minimization for medium-sized problems. It is 

noted that in comparison to the SA algorithm, the TS algorithm needs less number of 

iterations for terminating the algorithm leading to a better solution time performance 

for TS. This could be attributed to the fact that during the search some values 

become tabu, hence tabu algorithm evaluates less number of N values throughout the 

search. Moreover, TS algorithm reaches the optimum solution for larger number of 

problems than SA algorithm. So it can be said that the proposed TS algorithm is 

more efficient than SA algorithm in solving medium-sized problems in terms of both 

solution quality and also solution time.  

 

6.4.2.3 Results of Large-Sized Problems 

 

Table 6.9 represents the results of large-sized problems. As it is stated before, 

since the optimal solution for large sized problems using binary search algorithm can 

not be reached in a reasonable computation time, the comparative experiments for 

large sized problems involved only the comparison of the tabu search algorithm to 

the simulated annealing algorithm.  

 

As in the previous problem sets, the solution quality of SA algorithm is better than 

TS algorithm for problem setting 4 which involves rarely failed machines with long 

repair times and for problem setting 7, TS algorithm achieves the desired throughput 

rate with less buffer sizes than SA algorithm. Although, on average, the performance 

of TS and SA algorithms is very close (see Table 6.9), it is not possible to draw a 

general conclusion. It seems that the solution quality of the proposed algorithms is 

somehow affected by the features of the problem at hand. As for the solution time, 

TS algorithm is much better than SA algorithm even if, the total number of iterations 

for stopping the proposed TS algorithm is higher than the proposed SA algorithm. In 

summary, TS algorithm is clearly better than SA algorithm in terms of solution time 

for large-sized problems involving 20 machines.  
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  Table 6.9 Results of experimental studies for large-sized problems 

Problem 

Set 

Problem 

Setting 

Tabu Search Simulated Annealing 

# of Instances 

Achieved 

Desired Rate 

N 
Total # of 

Iterations 

# of 

Iterations 

for 

Convergence 

CPU 

(sec.) 

# of Instances 

Achieved 

Desired Rate 

N 
Total # of 

Iterations 

# of 

Iterations 

for 

Convergence 

CPU 

(sec.) 

20.200 

1 5 48 21 6 5666.20 5 48 11 5 12228.99 

2 5 46 16 7 5256.70 5 46 22 19 26546.11 

3 5 80 22 10 14238.91 5 80 16 12 36599.90 

4 5 64 18 6 9754.57 5 62 13 8 16372.69 

5 5 30 18 6 7759.27 5 30 10 6 7593.38 

6 5 73 22 7 9955.45 5 73 10 5 6147.75 

7 5 69 26 11 24429.62 5 70 13 7 28809.44 

8 5 91 22 7 15826.44 5 91 11 6 17340.51 

Avg. 5 63 21 8 11610.90 5 63 13 9 18954.85 
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6.4.3 Summary of the Findings 

 

In this section, the performance of three heuristic algorithms is tested on wide 

range of problems with varying difficulty. The results are summarized in Table 6.10. 

As seen in Table 6.10, regarding solution quality, the proposed TS and SA 

algorithms have the same performance for small-sized problems and as for solution 

time, TS algorithm has slightly better performance than SA algorithm. For medium-

sized and large-sized problems TS algorithm finds better solution for larger number 

of problems in less time than the proposed SA algorithm (see Table 6.10 and also 

Figure 6.2). Hence, it can be concluded that the proposed TS is better than the 

proposed SA in terms of both solution quality and also solution time when the 

problem size increases. It should be noted that the superiority of SA algorithm is 

more observable for the problem setting 4 which involves rarely failed machines 

with long repair times for all considered problem sets. As a result, it can be 

concluded that the proposed TS algorithm is the most efficient algorithms among the 

others for solving buffer allocation problem in unreliable and also non-homogeneous 

lines under the objective of total buffer size minimization. 

 

 Table 6.10 Summary of experimental studies 

Problem 

Size 
Problem Set 

# Of Instances Find 

Optimum 
CPU Time (sec.) 

TS SA TS SA 

Small 

5.50 40 40 2.87 3.78 

5.100 39 39 10.33 11.96 

5.200 40 40 36.54 38.58 

Average 40 40 16.58 18.11 

Medium 

10.100 38 37 474.51 409.98 

10.200 36 35 915.28 1028.75 

10.400 36 34 2041.81 2189.83 

Average 37 35 1143.87 1209.52 

Problem 

Size 
Problem Set 

# Of Instances Find 

Better Solution than SA 

CPU Time (sec.) 

TS SA 

Large 20.200 6 11610.90 18954.85 
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 Figure 6.2 Solution times of both algorithms with respect to the problem sets 

 

6.5 Chapter Summary 

 

In this chapter, we proposed an integrated approach to solve buffer allocation 

problem for unreliable and also non-homogeneous production lines to maximize the 

throughput rate of the line with minimum total buffer size. The proposed integrated 

approach has two control loops, i.e., the inner loop and outer loop. While the inner 

loop control includes the adaptive tabu search algorithm proposed in the previous 

chapter, the outer loop control includes three different algorithms, i.e., binary search, 

tabu search and simulated annealing. These nested loops aim at minimizing the total 

buffer size to achieve a desired throughput level. To improve searching efficiency of 

the proposed TS and SA algorithms alternative neighborhood generation mechanisms 

are suggested and their performance are tested.  

 

The performance of proposed algorithms is tested on randomly generated test 

problems. In general, the results of experimental study show that the proposed TS 

algorithm is much better than the proposed SA algorithm in terms of both the 

solution quality and solution time especially when problem size increases. It is also 

observed that the solution quality of the proposed algorithms can be somehow 

affected by the features of the problem at hand. 
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CHAPTER SEVEN 

CONCLUSION 

 

 

7.1 Summary of the Thesis 

 

The buffer allocation problem, which involves the distribution of buffer space 

among the intermediate buffers of a production line, arises in a wide range of 

manufacturing systems, such as transfer lines, flexible manufacturing systems or 

robotic assembly lines and it is one of the major optimization problems faced by 

manufacturing systems designers.  

 

Due to its importance and complexity, a considerable amount of work has been 

done in this area. The previous studies in this area mainly focus on characterizing 

and describing optimal buffer distributions. In last ten years, the main focus of many 

research studies has been on developing methods to optimize buffer sizes in 

production lines. The purpose of this Ph.D. thesis is also to construct and describe 

efficient algorithms to be used in the design of production lines.  

 

Generally, the buffer allocation problem is classified into two categories 

according to the objective function employed to solve this problem. The first one 

aims at maximizing the throughput rate of the line and the second one focuses on 

total buffer size minimization. The throughput maximization problem has been 

studied more extensively in the literature. Moreover, employing meta-heuristic 

methods to solve buffer allocation problem is a new trend in this area. To better 

search the solution space, the recent trend is to hybridize the meta-heuristics with 

other methods. However, a few studies attempt to solve buffer allocation problem by 

hybrid methods. 

 

Hence, to fill the perceived gaps in current relevant literature, this Ph.D. study: 

 focuses on the buffer allocation problem in unreliable non-homogeneous 

production lines 
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 proposes a new adaptive tabu search algorithm to solve this problem under 

the objective of throughput maximization, 

 hybridizes this adaptive tabu search algorithm with other meta-heuristics 

to integrate the issue of total buffer size minimization into the solution of 

this problem,  

 minimizes the total buffer size subject to achieve the desired level of 

throughput. 

 

In summary, to solve the buffer allocation problem, this Ph.D. study not only 

proposes stand-alone search methods it also proposes new hybrid approaches which 

consider the minimization of total buffer subject to the desired throughput level. The 

objectives of this Ph.D. study listed above are fulfilled in three stages. In the first 

stage, a TS algorithm is proposed to solve the buffer allocation problem under the 

objective of throughput maximization for homogeneous production lines involving 

unreliable machines with deterministic processing times. Following a pilot 

experiment to identify the best TS parameters, the new move definitions for buffer 

allocation problem are introduced. 

 

In the second stage, the problem is extended to non-homogeneous production 

lines, and an adaptive TS algorithm is proposed to solve the revised problem under 

the objective of throughput maximization. Besides proposing a new strategy to tune 

the parameters of TS adaptively during the search, an experimental study is carried 

out to select an intelligent initial solution scheme among three alternatives so as to 

decrease the search effort to obtain the best solutions. 

 

Finally, in the last stage, three hybrid approaches are proposed to solve the buffer 

allocation problem for non-homogeneous production lines involving unreliable 

machines with deterministic processing times. These three approaches which 

integrate binary search, tabu search, and simulated annealing with an adaptive tabu 

search mechanism aim at minimizing the total buffer size to achieve a desired 

throughput level. To improve the searching efficiency of the proposed TS and SA 
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algorithms alternative neighborhood generation mechanisms are suggested and their 

performance are tested.  

 

7.2 Contributions 

 

The original contributions of this thesis can be summarized as follows: 

 

 This is the first extensive study employing tabu search to solve the buffer 

allocation problem for unreliable and also non-homogeneous production 

lines. Only two studies employing tabu search for buffer allocation 

problem are noted in the literature. While Shi and Men (2003) employ 

tabu search in a simple form and combines it with the nested partitions 

method to solve the problem in unreliable homogenous lines with nine 

machines, Lutz et al. (1998) employ tabu search for solving the problem in 

reliable lines with six machines. Unlike these studies, we focus on the 

buffer allocation problem in unreliable non-homogeneous lines and we 

test the performance of proposed search methods not only in small-sized 

production lines but also large-sized production lines.  

 

 Proposed tabu search methods are not implemented in a simple form, new 

move definitions are introduced and the efficiency of these moves is tested 

in a large range of problems. 

 

 The buffer allocation problem is generalized by adding buffer space 

constraints for each buffer location and an adaptive search strategy of 

intensification and diversification is proposed to solve the buffer 

allocation problem. The performance of the proposed adaptive search 

algorithms is tested both in short and long production lines.  

 

 Unlike the current relevant research employing random initialization, to 

improve the search efficiency, alternative initialization schemes utilizing 

problem specific features such as machine failure/repair rate and machine 
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processing time are suggested and their performance are tested on various 

size of problems. 

 

 Unlike the current relevant studies which deal with buffer allocation 

problem only under the objective of throughput maximization, this study 

also integrates the issue of total buffer size minimization into the solution 

approaches. Specifically, we hybridize the proposed adaptive tabu search 

algorithm with other search methods to solve the buffer allocation problem 

under the objective of total buffer size minimization subject to desired 

throughput rate. 

 

7.3 Future Research Directions 

 

Future research directions can be summarized with respect to the scope the 

problem studied and the scope of the solution approaches proposed to deal with this 

problem.  

 

Regarding the scope of the problem, some of the future research directions can be 

stated as follows: 

 

 In this study we only consider the serial lines. The proposed algorithms 

can be tested on serial-parallel lines, assembly lines or other systems 

having general network topology.  

 

 The assumption of deterministic machine processing times can be 

extended to stochastic processing times.  

 

 Besides geometric distribution for machine reliability parameters other 

distributions such as phase-type distribution can be considered. 

 

 The problem studied in this thesis can be extended to BAP3 which 

considers work in process minimization and the performance of the 
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proposed algorithms can be tested on this problem. As stated in Chapter 3, 

this problem is the least studied one in buffer allocation literature.  

 

 Lastly, objective functions involving monetary criteria which are 

expressed in a form of profits or costs, can be considered and solved by 

the proposed algorithms. 

 

Regarding the proposed solution methods, some of the future research directions 

can be stated as follows: 

 

 The proposed algorithms can be combined with other evaluation methods, 

such as aggregation method or simulation.  

 

 The proposed adaptive tabu search algorithm can be hybridized with other 

meta-heuristic algorithms such as genetic algorithms or ant colony 

optimization for total buffer size minimization. 

 

 The problem can be solved in a multi-objective manner by using pareto 

optimization methods. 

 

Furthermore, as it is stated in the beginning of this study, the aim of the study is 

construct efficient algorithms for buffer allocation in production lines. When 

implemented in a real world environment, the proposed algorithms can provide the 

practitioners with valuable information about how to allocate limited amount of 

buffers. However, it is not realistic to expect that the practitioners will be able to 

easily use these approaches in designing production lines. Hence, to improve the 

practicality of the proposed approaches, in a future study, these buffer allocation 

algorithms can be integrated into a decision support system with a user-friendly 

interface.



 

 

130 

 

 

 

 

REFERENCES  

Aksoy, K. H. & Gupta, S. M. (2005). Buffer allocation plan for a remanufacturing 

cell. Computers&Industrial Engineering, 48, 657-677. 

Aksoy, K. H. & Gupta, S. M. (2010). Near optimal buffer allocation in 

remanufacturing systems with N-policy. Computers&Industrial Engineering, 59, 

496-508 

Allon, G., Kroese, D.P., Raviv, T. & Rubinstein. R.Y. (2005). Application of the 

Cross-Entropy Method to the Buffer Allocation Problem in a Simulation-Based 

Environment. Annals of Operations Research, 134 (1), 137-151. 

Altiok, T. & Stidham, S. (1983). The allocation of interstage buffer capacities in 

production lines. IIE Transactions, 18, 251-261. 

Altiparmak, F., Dengiz, B. & Bulgak, A. A. (2007). Buffer allocation and 

performance modeling in asynchronous assembly system operations: An artificial 

neural network metamodeling approach. Applied Soft Computing, 7, 946-956. 

Battini, D., Persona, A. & Regattieri, A. (2009). Buffer size design linked to 

reliability performance: A simulative study. Computers&Industrial Engineering, 

56(4), 1633-1641. 

Bulgak, A. A. (2006). Analysis and design of split and merge unpaced assembly 

systems by metamodelling and stochastic search. International Journal of 

Production Research, 44 (18-19), 4067-4080. 

Burman. M. (1995). New results in flow line analysis. Ph.D. Thesis, MIT, 

Department of Electrical Engineering and Computer Science, Cambridge MA. 

Buzacott, J. A. (1967). Automatic Transfer Lines with Buffer Stocks. International 

Journal of Production Research, 5 (3), 183-200. 

 



 

 

131 

 

 

 

 

Buzacott, J.A. & Shanthikumar, J.G. (1993). Stochastic Models of Manufacturing 

Systems. New Jersey:Prentice-Hall. 

Can, B., Beham, A. & Heavey, C. (2008). A comparative study of genetic algorithm 

components in simulation-based optimisation. Proceedings of the 2008 Winter 

Simulation Conference, 1829-1837. 

Can, B. & Heavey, C. (2009). Sequential metamodelling with genetic programming 

and particle swarms. Proceedings of the 2009 Winter Simulation Conference, 

3150-3157. 

Chaharsooghi, S. K. & Nahavandi, N. (2003). Buffer Allocation Problem, A 

Heuristic Approach, Scientia Iranica, 10 (4), 401-409. 

Chehade, H., Yalaoui, F., Amodeo, L. & Dugardin, F. (2010). Buffers sizing in 

assembly lines using a Lorenz multiobjective ant colony optimization algorithm. 

IEEE International Conference on Machine and Web Intelligence, 283-287. 

Chow, W-M. (1987). Buffer capacity analysis for sequential production lines with 

variable process times. International Journal of Production Research, 25 (8), 

1183-1196. 

Colledani, M., et al. (2004). A new analytical method for buffer space allocation in 

production lines. 37
th

 CIRP International Seminar on Manufacturing Systems, 

231-237.  

Colledani, M., Ekvall, M., Lundholm, T, Moriggi, P., Polato A. & Tolio, T. (2010). 

Analytical methods to support continuous improvements at Scania. International 

Journal of Production Research, 48 (7), 1913-1945. 

Cruz, F. R. B., Duarte, A. R. & Van Woensel, T. (2008). Buffer allocation in general 

single-server queuing networks. Computers and Operations Research. 35(11), 

3581-3598. 



 

 

132 

 

 

 

 

Cruz, F. R. B., Van Woensel, T. & MacGregor Smith, J. (2010). Buffer and 

throughput trade-offs in M/G/1/K queuing networks: A bi-criteria approach. 

International Journal of Production Economics, 125, 224-234. 

Dallery, Y., David, R. & Xie, X-L. (1988). An efficient algorithm for analysis of 

transfer lines with unreliable machines and finite buffers. IIE Transactions, 23 (3), 

280-283. 

Dallery, Y., David, R. and Xie, X-L. (1989). Approximate analysis of transfer lines 

with unreliable machines and finite buffers. IEEE Transactions on Automatic 

Control, 34 (9), 943-953. 

Dallery, Y. & Gershwin, S.B. (1992). Manufacturing flow line systems: a review of 

models and analytical results. Queuing Systems, 12 (1-2), 3-94. 

Daskalaki, S. & MacGregor Smith, J. (2004). Combining routing and buffer 

allocation problems in serial-parallel queuing networks. Annals of Operations 

Research, 125, 47-68. 

Demir, L. & Tunali, S. (2008). A new approach for optimal buffer allocation in 

unreliable production lines. Proceedings of 38th International Conference on 

Computers and Industrial Engineering, 1962-1970. 

Demir, L., Tunali, S. & Eliiyi, D. T. (2010). An adaptive tabu search approach for 

buffer allocation problem in unreliable production lines. 24th Mini EURO 

Conference on Continuous Optimization and Information-based Technologies in 

the Financial Sector, Selected Papers, 207-212. 

Demir, L., Tunali, S. & Løkketangen A. (2011). A tabu search approach for buffer 

allocation in production lines with unreliable machines. Engineering 

Optimization, 43 (2), 213-231. 

Diamantidis, A. C. & Papadopoulos, C. T. (2004). A dynamic programming 

algorithm for the buffer allocation problem in homogeneous asymptotically 



 

 

133 

 

 

 

 

reliable serial production lines. Mathematical Problems in Engineering, 3, 209-

223. 

Dolgui, A., Eremeev, A., Kolokolov, A. & Sigaev, V. (2002). A genetic algorithm 

for the allocation of buffer storage capacities in a production line with unreliable 

machines. Journal of Mathematical Modeling and Algorithms, 1, 89-104. 

Dolgui, A., Eremeev, A. & Sigaev, V. (2007). HBBA: hybrid algorithm for buffer 

allocation in tandem production lines. Journal of Intelligent Manufacturing, 18, 

411-420. 

Enginarlar, E., Li, J., Meerkov., S.M. & Zhang, R.Q. (2002). Buffer capacity for 

accommodating machine downtime in serial production lines. International 

Journal of Production Research, 40, 601–624. 

Enginarlar, E. (2003). Lean buffering in production systems: A quantitative 

approach. Ph.D. Thesis, The University of Michigan, Electrical Engineering: 

Systems. 

Enginarlar, E., Li, J. & Meerkov, S. M. (2005). How lean can lean buffers be? IIE 

Transactions, 37, 333-342. 

Fuxman, L. (1998). Optimal buffer allocation in asynchronous cyclic mixed model 

assembly lines. Production and Operations Management, 7 (3), 294-311. 

Gasimov, R. N. & Ustun, O. (2007). Solving the quadratic assignment problem using 

F-MSG algorithm”, Journal of Industrial and Management Optimization, 3 (2), 

173-191. 

Gendreau, M. & Potvin. J-Y. (2005). Tabu Search. In: E. Burke and G. Kendall, eds. 

Search Methodologies: Introductory Tutorials in Optimization and Decision 

Support Techniques. Newyork: Springer, 165-186.  



 

 

134 

 

 

 

 

Gershwin, S. B., and Schick, I. C. (1983). Modeling and Analysis of Three-Stage 

Transfer Lines with Unreliable Machines and Finite Buffers, Operations 

Research, Vol. 31, No. 2, 354-380. 

Gershwin, S.B. (1987). An efficient decomposition method for the approximate 

evaluation of tandem queues with finite storage space and blocking. Operations 

Research, 35 (2), 291-305. 

Gershwin, S.B., & Schor. J.E. (2000). Efficient algorithms for buffer space 

allocation. Annals of Operations Research, 93, 117-144. 

Glover, F. (1977). Heuristics for integer programming using surrogate constraints. 

Decision Sciences, 8, 156-166. 

Glover, F. (1986). Future paths for integer programming and links to artificial 

intelligence. Computers&Operations Research, 13, 533-549. 

Glover. F. (1989). Tabu Search-Part I. ORSA Journal on Computing,1 (3), 190-206. 

Glover, F., Taillard, E. & Werra. D. (1993). A user’s guide to tabu search. Annals of 

Operations Research, 41, 3-28. 

Glover, F. &Laguna. M. (1997). Tabu Search. Dordrecht:Kluwer Academic 

Publishers. 

Gurkan, G. (2000). Simulation optimization of buffer allocations in production lines 

with unreliable machines. Annals of Operations Research, 93, 177-216. 

Han, M-S. & Park, D-J. (2002). Optimal buffer allocation of serial production lines 

with quality inspection machines. Computers&Industrial Engineering, 42, 75-89. 

Harris, J. H. & Powell, S. G. (1999). An algorithm for optimal buffer placement in 

reliable serial lines. IIE Transactions, Vol. 31, 287-302. 



 

 

135 

 

 

 

 

Heavey, C., Papadopoulos, H. T. & Browne, J. (1993). The throughput rate of 

multistation unreliable production lines. European Journal of Operational 

Research, 68, 69-89. 

Helber, S. (2001). Cash-flow-oriented buffer allocation in stochastic flow lines. 

International Journal of Production Research, 39 (14), 3061-3083. 

Hemachandra, N. & Eedupuganti, S. K. (2003). Performance analysis and buffer 

allocations in some open assembly systems. Computers & Operations Research, 

30, 695-704. 

Hillier, S. M. (2000). Characterizing the optimal allocation of storage space in 

production line systems with variable processing times. IIE Transactions, 32, 1-8. 

Hillier, S. M. & Hillier F. S. (2006). Simultaneous optimization of work and buffer 

space in unpaced production lines with random processing times. IIE 

Transactions, 38, 39-51. 

Ho, Y.C., Eyler, M.A. & Chien, T.T. (1979). A gradient technique for general buffer 

storage design in a production line. International Journal of Production Research, 

17 (2), 557-580. 

Huang, M-G., Chang, P-L. & Chou Y-C. (2002). Buffer allocation in flow-shop-type 

production systems with general arrival and service patterns. Computers & 

Operations Research, 29,103-121. 

Jafari, M.A. & Shanthikumar, J.G. (1989). Determination of optimal buffer storage 

capacities and optimal allocation in multistage automatic transfer lines. IIE 

Transactions, 21 (2), 130-135. 

Jeong, K.-C. & Kim, Y.-D. (2000). Heuristics for selecting machines and 

determining buffer capacities in assembly systems. Computers & Industrial 

Engineering, 38, 341-360. 



 

 

136 

 

 

 

 

Kim, S. & Lee, H-J. (2001). Allocation of buffer capacity to minimize average work-

in-process. Production Planning & Control, 12 (7), 706-716. 

Kirkpatrick, S., Gelatt, C. D. Jr. & Vecchi, M. P. (1983). Optimization by simulated 

annealing. Science, 220 (4598), 671-680. 

Koenigsberg, E. (1959). Production lines and internal storage-a review. Management 

Science, 5, 410-433. 

Kose, S. Y. (2010). Capacity improvement in a real manufacturing system using a 

hybrid simulation/genetic algorithm approach. M.S. Thesis, Dokuz Eylul 

University, Graduate School of Natural and Applied Sciences. 

Kwon, S-T. (2006). On the optimal buffer allocation of an FMS with finite in-

process buffers. LNCS 3982, 767-776. 

Lee, S-D. (2000). Buffer sizing in complex cellular manufacturing systems. 

International Journal of Systems Science. 31 (8), 937-948. 

Lee, S-D. & Ho, S-H. (2002). Buffer sizing in manufacturing production systems 

with complex routings. Int. J. Computer Integrated Manufacturing, 15 (5), 440-

452. 

Lee, H-T., Chen, S-K. & Shunder Chang S. (2009).A meta-heuristic approach to 

buffer allocation in production line. Journal of C.C.I.T., 38 (1), 167-178. 

Louw, L. & Page, D. C. (2004). Queuing network analysis approach for estimating 

the sizes of the time buffers in Theory of Constraints-controlled production 

systems. International Journal of Production Research, 42 (6), 1207-1226. 

Lutz, C.M., Davis, K.R. & Sun, M. (1998). Determining buffer location and size in 

production lines using tabu search. European Journal of Operational Research, 

106, 301-316. 

Lü, Z. & Hao, J. K. (2010). Adaptive tabu search for course timetabling. European 

Journal of Operational Research. 200(1), 235-244. 



 

 

137 

 

 

 

 

MacGregor Smith, J. & Cruz, F. R. B. (2005). The buffer allocation problem for 

general finite buffer queuing networks. IIE Transactions. 37(4), 343-365. 

Massim, Y., Yalaoui, F., Amodeo, L., Chatelet, E. & Zeblah, A. (2010). Efficient 

combined immune-decomposition algorithm for optimal buffer allocation in 

production lines for throughput and profit maximization. Computers & 

Operations Research, 37(4), 611-620. 

Matta, A., Runchina, M. & Tolio, T. (2005). Automated flow lines with shared 

buffer. OR Spectrum, 27, 265-286. 

Meester, L. E. & Shanthikumar, J. G. (1990). Concavity of the throughput of tandem 

queuing systems with finite buffer storage space. Advances in Applied 

Probability, 22, 764–767. 

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. 

(1953). Equation of state calculations by fast computing machines. J. of Chem. 

Phys., 21 (6), 1087-1092. 

Nahas, N., Ait-Kadi, D. & Nourelfath, M. (2006). A new approach for buffer 

allocation in unreliable production lines. International Journal of Production 

Economics, 103, 873-881. 

Nahas, N., Ait-Kadi, D. & Nourelfath, M. (2009). Selecting machines and buffers in 

unreliable series-parallel production lines. International Journal of Production 

Research. 47 (14), 3741-3774. 

Nieuwenhuyse, I. V., Vandaele, N., Rajaram, K & Karmarkar, U. S. (2007). Buffer 

sizing in multi-product multi-reactor batch processes: Impact of allocation and 

campaign sizing policies. European Journal of Operational Research, 179, 424-

443. 

Nourelfath, M., Nahas, N. & Ait-Kadi, D. (2005). Optimal design of series 

production lines with unreliable machines and finite buffers. Journal of Quality in 

Maintenance Engineering, 11 (2), 121-138. 



 

 

138 

 

 

 

 

Okamura, K. & Yamashina, H. (1977). Analysis of the effect of buffer storage 

capacity in transfer line systems. AIIE Transactions, 9 (2), 127-135. 

Othman, Z., Kamaruddin, S. & Ismail , M. S. (2007). Optimal Buffer Allocation for 

Unpaced Balanced and Unbalanced Mean Processing Time, Jurnal Teknologi, 46 

(A), 31–42. 

Papadopoulos, H.T., Heavey. C. & Browne, J. (1993). Queuing Theory in 

Manufacturing Systems Analysis and Design. London: Chapman and Hall. 

Papadopoulos, H.T. & Heavey, C. (1996). Queuing theory in manufacturing systems 

analysis and design: A classification of models for production and transfer lines, 

European Journal of Operational Research, 92, 1-27. 

Papadopoulos, H. T. & Vidalis, M. I. (1998). Optimal buffer storage allocation in 

balanced reliable production lines. Int. Trans. Opl Res., 5 (4), 325-339. 

Papadopoulos, H. T. & Vidalis, M. I. (2001). A heuristic algorithm for the buffer 

allocation in unreliable unbalanced production lines. Computers&Industrial 

Engineering, 41, 261-277. 

Papadopoulos, C. T., O’Kelly, M. E. J., Vidalis, M. J. & Spinellis, D. (2009). 

Analysis and Design of Discrete Part Production Lines. New York: Springer 

Science+Business Media. 

Park, T. (1993). A two-phase heuristic algorithm for determining buffer sizes of 

production lines. International Journal of Production Research, 31 (3), 613-631. 

Pham, D. T. & Karaboga, D. (2000). Intelligent Optimization Techniques. London: 

Springer-Verlag. 

Powell, S. G. & Pyke, D. F. (1998). Buffering unbalanced assembly systems. IIE 

Transactions, 30, 55-65. 

Qudeiri, J. A., Yamamoto, H., Ramli, R. & Al-Momani, K.R. (2007). Development 

of production simulator for buffer size decisions in complex production systems 



 

 

139 

 

 

 

 

using genetic algorithms. Journal of Advanced Mechanical Design, Systems, and 

Manufacturing, 1(3), 418-429. 

Qudeiri, J. A., Yamamoto, H., Ramli, R. & Jamali, A. (2008). Genetic algorithm for 

buffer size and work station capacity in serial–parallel production lines. Artificial 

Life and Robotics, 12, 102-106. 

Raman, N. A. & Jamaludin, E. K. R. (2008). Implementation of Toyota Production 

System (TPS) in the production line of a local automotive parts manufacturer. 

Proceedings of International Conference on Mechanical & Manufacturing 

Engineering. 

Reeves, C.R. (1996). Modern Heuristic Techniques. In: Rayward-Smith, V.J., 

Osman, I.H., Reeves, C.R, and Smith, G.D., eds. Modern Heuristic Search 

Methods (1
st
 ed.) (1-25). England: John Wiley&Sons.  

Ribeiro, M. A., Silveira, J. L. & Qassim, R. Y. (2007). Joint optimization of 

maintenance and buffer size in a manufacturing system. European Journal of 

Operational Research, 176, 405-413. 

Roser, C., Nakano, M. & Tanaka, M. (2003). Buffer allocation model based on a 

single simulation. Proceedings of the Winter Simulation Conference, 1238-1246. 

Sabuncuoglu, I., Erel E., & Kok, A. G. (2002). Analysis of assembly systems for 

interdeparture time variability and throughput. IIE Transactions, 34, 23-40. 

Sabuncuoglu, I., Erel, E., & Gocgun, Y. (2006). Analysis of serial production lines: 

characterization study and a new heuristic procedure for optimal buffer allocation. 

International Journal of Production Research, 44 (13), 2499-2523. 

Schor, J. E. (1995). Efficient algorithms for buffer allocation. M.S. Thesis, MIT, 

Department of Electrical Engineering and Computer Science, Cambridge, MA. 



 

 

140 

 

 

 

 

Seong, D., Chang, Y.S. & Hong, Y. (1995). Heuristic algorithms for buffer allocation 

in a production line with unreliable machines. International Journal of Production 

Research, 33 (7), 1989-2005. 

Seong, D., Chang, Y.S., and Hong, Y. (2000). An algorithm for buffer allocation 

with linear resource constraints in a continuous-flow unreliable production line. 

Asia-Pacific Journal of Operational Research, 17, 169-180. 

Shi, L. & Men, S. (2003). Optimal buffer allocation in production lines. IIE 

Transactions, 35, 1-10.  

Shi, C. & Gershwin, S. B. (2009). An efficient buffer design algorithm for 

production line profit maximization. International Journal of Production 

Economics. 122, 725-740. 

Spinellis, D. D. & Papadopoulos, C.T. (2000a). A simulated annealing approach for 

buffer allocation in reliable production lines. Annals of Operations Research, 93, 

373-384. 

Spinellis, D. D. & Papadopoulos, C. T. (2000b). Stochastic Algorithms for Buffer 

Allocation in Reliable Production Lines. Mathematical Problems in Engineering, 

Vol. 5, 441-458.  

Spinellis, D., Papadopoulos, C. & MacGregor-Smith, J. (2000). Large production 

line optimization using simulated annealing. International Journal of Production 

Research, 38 (3), 509-541. 

Sörensen K. & Janssens, G. K. (2001). Buffer allocation and required availability in 

a transfer line with unreliable machines. International Journal of Production 

Economics, 74, 163-173. 

Tempelmeier, H. (2003). Practical considerations in the optimization of flow 

production systems. International Journal of Production Research, 41 (1), 149-

170. 



 

 

141 

 

 

 

 

Um, I., Lee, H. & Cheon, H. (2007). Determination of Buffer Sizes in Flexible 

Manufacturing System by Using the Aspect-oriented Simulation. International 

Conference on Control, Automation and Systems, 1729-1733.  

Van Woensel, T., Andriansyah R., Cruz, F. R. B., MacGregor Smith, J. & Kerbache, 

L. (2010). Buffer and server allocation in general multi-server queuing Networks. 

International Transactions in Operational Research, 17, 257-286. 

Vitanov, I. V., Vitanov, V. I. & Harrison, D. K. (2009). Buffer capacity allocation 

using ant colony optimization algorithm. Proceedings of the 2009 Winter 

Simulation Conference, 3158-3168. 

Vouros, G.A. & Papadopoulos, H.T. (1998). Buffer allocation in unreliable 

production lines using a knowledge-based system, Computers and Operations 

Research, 25 (12), 1005-1067. 

Yamada, T. & Matsui, M. (2003). A management design approach to assembly line 

systems. International Journal of Production Economics, 84, 193-204.  

Yamamoto, H., Qudeiri, J. A. & Marui, E. (2008). Definition of FTL with bypass 

lines and its simulator for buffer size decision. International Journal of 

Production Economics, 112, 18-25. 

Yamashita, H. & Altiok, T. (1998). Buffer capacity allocation for a desired 

throughput in production lines. IIE Transactions, 30, 883-891. 

Yuzukirmizi, M. & MacGregor Smith, J. (2008). Optimal buffer allocation in finite 

closed networks with multiple servers. Computers & Operations Research, 35, 

2579-2598. 

Zequeira, R., Prida, B. & Valdes, J. E. (2004). Optimal buffer inventory and 

preventive maintenance for an imperfect production process. International 

Journal of Production Research, 42 (5), 959-974. 



 

 

142 

 

 

 

 

Zequeira, R., Valdes, J. E. & Berenguer C. (2008). Optimal buffer inventory and 

opportunistic preventive maintenance under random production capacity 

availability. International Journal of Production Economics, 111, 686-696.



 

 

143 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDICES



 

 

144 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX A 

 

DDX AND ADDX ALGORITHMS



 

 

145 

 

 

 

 

A1. Model and Assumptions 

 

In this section, we consider a homogeneous production line, denoted by L, 

composed of K machines,  1,..., KM M , separated by K-1 buffers,  1 1,..., KB B  . Let 

Ni be the finite capacity of buffer Bi. A part enters the first machine from outside the 

system. Each part is processed by machine 1, after which it moves to buffer B1. The 

part moves in the downstream direction, from machine i to buffer i and on to 

machine i+1, until it processed by the last station, machine K and leaves the system. 

It is assumed that raw parts are always available at the input of the line and there are 

always empty spaces at the output of the line. The processing time of a part on a 

machine is deterministic, i.e., it requires a fixed amount of time. Moreover, it is 

assumed that this time is the same for all machines and, without loss of generality, is 

taken as the time unit. The machines are unreliable: during the processing of a part, 

machine Mi has a probability pi of failing. When machine Mi, is down, it is under 

repair and it has a probability ri, of being repaired during a time unit. The mean time 

to failures (MTTF) and the mean time to repair (MTTR) of machine Mi are 1/pi, and 

1/ri, respectively. The isolated efficiency of machine Mi, is given by Buzacott (1967): 

 

i
i

i i

r
e

r p



        (1) 

 

The behavior of such a production line is fairly complex. This is especially due to 

the interaction between machines due to the finite buffers. When machine Mi is 

down, the number of parts in buffer Bi-1 increases while the number of parts in buffer 

Bi decreases. If this condition persists, Bi-1 may become full and therefore machine 

Mi-1 is blocked, or Bi may become empty and therefore machine Mi+1 is starved. It is 

assumed that the first machine is never starved and the last machine is never blocked. 

Also it is assumed that the machines can be failed only when it is working, starved or 

blocked machine cannot be failed. 

 

In such system the production rate P when all buffer sizes are infinite is the 

minimum of the production rates of all the machines in the line. That is, 
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1,...,
( ,..., ) min i

i K
P e


         (2) 

 

The production rate when all buffers have size 0 is: 

1

1
(0,...,0)

1 /
K

i ii

P
p r






      (3) 

 

When there are more than two machines and all Ni are neither infinite nor zero, the 

production rate and average inventory levels cannot be calculated analytically or 

exactly even numerically. In these situations approximate decomposition methods or 

simulation can be used. Because of simulation requires long computational time 

decomposition method is widely used for modeling such production systems. In the 

following sections first we describe decomposition method then we give DDX and 

ADDX algorithms to solve decomposition equations. 

 

A2. Decomposition Method and DDX Algorithm 

 

Decomposition method is proposed by Gershwin (1987). This method is based on a 

decomposition of the line into a set of K-1 two machine lines L(i), for i=1,…,K-1. 

Line L(i) is composed of an upstream machine Mu(i), and a downstream machine 

Md(i) and buffer B(i) which has the same capacity as buffer Bi in line L, Ni. Machines 

Mu(i) and Md(i) are defined by their failure, repair and processing rates 

( ),  ( ),  ( )u u up i r i i  and ( ),  ( ),  ( )d d dp i r i i , respectively. The purpose of the method is 

to determine these parameters so that the behavior of the material flow in buffer B(i) 

in line L(i) closely matches that of the flow in buffer Bi of line L. This decomposition 

is previously illustrated in Figure 2.4 in Chapter 2.  

 

For each two-machine line L(i), for i=1,…,K-1, we define: 

 E(i): efficiency (production rate) of line L(i); 

 ps(i): probability of buffer B(i) being empty in line L(i); 

 pb(i): probability of buffer B(i) being full in line L(i). 
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These quantities are functions of the four unknown parameters pu(i), ru(i), pd(i), 

rd(i). Since the DDX algorithm is designed for homogeneous lines and it is assumed 

that all machines have one unit processing rates, the unknown parameters involve 

only failure and repair rates. The exact solution of the two-machine line derived in 

Gershwin and Shick (1983) can be used to calculate these quantities. The required 

formulas can be found in Gershwin (1987).  

 

In order to determine the unknown parameters of each line L(i) Gershwin(1987) 

establish the following set of equations: 

 

(1) (2) ... ( 1)E E E K           (4) 
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         (8) 

Equation (4) is related to the conservation of flow. Because there is no mechanism 

for the creation or destruction of material flow is conserved. Equation (5) is called 
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the flow rate idle time equation which is based on the assumption that the probability 

of a station being simultaneously blocked and starved is zero. Equation (6) and 

equation (7) show the relationship between repair probabilities in neighboring two 

machine lines and in the original line. Equation (6) is obtained by stating that a 

failure of machine Mu(i) represents either a failure of machine Mi, or a starvation of 

machine Mi due to a failure of one of the upstream machines (Mi-1, Mi-2, …), which is 

represented by a failure of machine Mu(i-1). Equation (7) can similarly be obtained 

by considering the failure of machine Md(i-1). Finally equation (8) denotes the 

boundary conditions. 

 

There are a total of 4(K-1) equations among (4), (5), (6), (7), and (8) in 4(K-1) 

unknowns: pu(i), ru(i), pd(i), rd(i). Gershwin used an iterative procedure to solve this 

set of equations. The algorithm, which consists of three loops, is fairly complicated. 

Because of the complexity and some numerical problems of Gershwin’s algorithm 

Dallery et al. (1988) propose a new algorithm to solve these equations efficiently. 

The idea is replace to previous set of equations by an equivalent one. Using equation 

(4) and replacing E(i) by E(i-1) in equation (5) and in expression (6) and similarly, 

replacing E(i-1) by E(i) in expression(7) the followings are obtained: 
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Dallery et al. (1988) defined following quantities: 
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Using these quantities and expression (10), equations (9) and (6) may be written as: 

 

1 1
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Similarly, using expression (11) and by shifting i-1 to i, equations (5) and (7) can 

be expressed as: 
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The parameters of upstream machine of line L(i), Iu(i), ru(i), and therefore pu(i) 

can be obtained from the parameters of line L(i-1) by means of equations (13) 

and(14). Similarly, the parameters of the downstream machine of line L(i), Id(i), rd(i), 

and therefore pd(i), can be obtained from the parameters of line L(i+1) by means of 

equations (15) and(16). E(i-1) and ps(i-1) and E(i+1) and pb(i+1) can be derived 

from the parameters of lines L(i-1) and L(i+1) respectively using the formulas given 

in Table 1. This new formulation leads to the following algorithm which iteratively 

calculates the unknown parameters, i.e. pu(i), ru(i), pd(i), rd(i). The algorithm is given 

in Table A1. 
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Table A1 DDX Algorithm 

Initialization 

1

1

1

1

( )   1,..., 1

( )    1,..., 1

( )

( )

d i

d i

u

u

p i p i K

r i r i K

p i p

r i r


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  



 

 

Step 1: 

For i=2, 3,…, K-1, calculate Iu(i), ru(i), and pu(i) using equations (13), (14), and (12). 

Step 2: 

For i=K-2, K-3,…, 1, calculate Id(i), rd(i), and pd(i) using equations (15), (16), and (12). 

Go to step 1 until convergence. 

 

A3. ADXX Algorithm 

 

Burman (1995) extends to DDX algorithm for non-homogenous production lines 

where the machines may have different processing times. Burman (1995) presents 

closed form solution for unknown parameters, i.e. ( ),  ( ),  ( )u u up i r i i  and 

( ),  ( ),  ( )d d dp i r i i . 

 

The equations for these unknown parameters are given as follows: 
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A similar procedure can be used to generate:  
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In these formulas 1 2p( , , )n    is defined as the probability that there are n parts in 

the buffer and that Mi is in state i  where  
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0 if machine  is under repair
1,...,

1 if machine  is operational
i

i
i K
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
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Together (17) - (28) form a new set of decomposition equations. The ADDX 

algorithm for solving these equations is given in Table A2. 

 

Table A2 ADDX Algorithm 

Initialization 

1

1

1

( )

( )

( )

( )

( )
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u i

u i

u i

d i

d i
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p i p
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p i p
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i
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

                             i=1, …, K-1 

Step 1: 

For i=2, 3,…, K-1, calculate ( ),  ( ),  ( )u u up i r i i using equations (17), (18), and (19). 

Step 2: 

For i=K-2, K-3,…, 1, calculate ( ),  ( ),  ( )d d dp i r i i using equations (23), (24), and (25). 

Go to step 1 until convergence. 

 

As it is stated by Burman (1995), the ADDX algorithm is faster than the original 

DDX algorithm by as much as ten times and has a reliability of convergence of 

nearly 100%. 
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DETAILED REULTS FOR CHAPTER 5 
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  Appendix B1 Results of experimental studies for the problem set 5.25 

Problem 

Setting 

Instance 

No 

Throughput Rate Deviation(%)
 

CPU (sec.) 

CE BTS ATS BTS ATS CE BTS ATS 

1 

1 0.07327 0.07327 0.07327 0.00 0.00 0.01 0.14 0.34 

2 0.07495 0.07495 0.07495 0.00 0.00 0.00 0.06 0.20 

3 0.07952 0.07952 0.07952 0.00 0.00 0.01 0.09 0.27 

4 0.07952 0.07952 0.07952 0.00 0.00 0.00 0.27 0.14 

5 0.07338 0.07338 0.07338 0.00 0.00 0.00 0.13 0.17 

6 0.08682 0.08682 0.08682 0.00 0.00 0.01 0.14 0.31 

7 0.06803 0.06803 0.06803 0.00 0.00 0.01 0.09 0.20 

8 0.09560 0.09560 0.09560 0.00 0.00 0.00 0.11 0.17 

9 0.06901 0.06901 0.06901 0.00 0.00 0.01 0.13 0.28 

10 0.08674 0.08674 0.08674 0.00 0.00 0.00 0.08 0.00 

Avg 0.07868 0.07868 0.07868 0.00 0.00 0.01 0.12 0.21 

2 

1 0.06404 0.06404 0.06404 0.00 0.00 0.03 0.16 0.20 

2 0.05846 0.05846 0.05846 0.00 0.00 0.01 0.11 0.25 

3 0.07958 0.07883 0.07958 0.95 0.00 0.02 0.50 0.34 

4 0.06952 0.06952 0.06952 0.00 0.00 0.06 0.72 1.17 

5 0.06355 0.06355 0.06355 0.00 0.00 0.02 0.33 0.39 

6 0.07527 0.07470 0.07527 0.76 0.00 0.05 0.72 1.20 

7 0.06923 0.06551 0.06923 5.37 0.00 0.02 0.30 0.50 

8 0.08164 0.08164 0.08164 0.00 0.00 0.02 0.37 0.70 

9 0.07360 0.07360 0.07360 0.00 0.00 0.05 1.61 1.45 

10 0.07570 0.07570 0.07570 0.00 0.00 0.00 0.14 0.31 

Avg 0.07106 0.07055 0.07106 0.71 0.00 0.03 0.50 0.65 

3 

1 0.07297 0.07297 0.07297 0.00 0.00 0.01 0.16 0.39 

2 0.06543 0.06540 0.06543 0.06 0.00 0.08 1.84 2.53 

3 0.07763 0.07763 0.07763 0.00 0.00 0.01 0.16 0.30 

4 0.06032 0.06024 0.06032 0.15 0.00 0.03 0.44 0.30 

5 0.07235 0.07235 0.07235 0.00 0.00 0.03 0.11 0.31 

6 0.09005 0.09005 0.09005 0.00 0.00 0.03 0.30 0.37 

7 0.07852 0.06750 0.07852 14.03 0.00 0.01 0.12 0.23 

8 0.09482 0.09482 0.09482 0.00 0.00 0.03 0.55 0.37 

9 0.08473 0.08473 0.08473 0.00 0.00 0.03 0.41 0.59 

10 0.07297 0.07297 0.07297 0.00 0.00 0.01 0.11 0.30 

Avg 0.07698 0.07586 0.07698 1.42 0.00 0.03 0.42 0.57 

4 

1 0.05930 0.05930 0.05930 0.00 0.00 0.03 0.24 0.44 

2 0.04374 0.04374 0.04374 0.00 0.00 0.05 0.36 0.41 

3 0.05317 0.05317 0.05317 0.00 0.00 0.02 0.17 0.22 

4 0.06064 0.05599 0.06064 7.67 0.00 0.05 0.78 1.23 

5 0.05273 0.05273 0.05273 0.00 0.00 0.03 0.20 0.27 

6 0.06283 0.06283 0.06283 0.00 0.00 0.03 0.58 1.03 

7 0.06209 0.05326 0.06209 14.22 0.00 0.03 0.41 0.36 

8 0.06773 0.06773 0.06773 0.00 0.00 0.01 0.14 0.33 

9 0.06215 0.06215 0.06215 0.00 0.00 0.02 0.19 0.39 

10 0.06180 0.06180 0.06180 0.00 0.00 0.03 0.16 0.30 

Avg 0.05862 0.05727 0.05862 2.19 0.00 0.03 0.32 0.50 
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Appendix B1 Results of experimental studies for the problem set 5.25 (cont.) 

Problem 

Setting 

Instance 

No 

Throughput Rate Deviation(%) CPU (sec.) 

CE BTS ATS BTS ATS CE BTS ATS 

5 

1 0.02619 0.02619 0.02619 0.00 0.00 0.01 0.11 0.30 

2 0.02252 0.02252 0.02252 0.00 0.00 0.00 0.05 0.08 

3 0.02843 0.02843 0.02843 0.00 0.00 0.01 0.17 0.00 

4 0.02770 0.02770 0.02770 0.00 0.00 0.00 0.08 0.16 

5 0.02454 0.02454 0.02454 0.00 0.00 0.01 0.17 0.23 

6 0.03676 0.03676 0.03676 0.00 0.00 0.03 0.23 0.51 

7 0.02362 0.02362 0.02362 0.00 0.00 0.01 0.20 0.27 

8 0.03713 0.03713 0.03713 0.00 0.00 0.00 0.08 0.11 

9 0.03085 0.03085 0.03085 0.00 0.00 0.03 0.25 0.02 

10 0.03369 0.03369 0.03369 0.00 0.00 0.01 0.05 0.11 

Avg 0.02914 0.02914 0.02914 0.00 0.00 0.01 0.14 0.18 

6 

1 0.02831 0.02831 0.02831 0.00 0.00 0.03 0.39 0.59 

2 0.02256 0.02256 0.02256 0.00 0.00 0.03 0.27 0.53 

3 0.02540 0.02540 0.02540 0.00 0.00 0.09 1.22 2.17 

4 0.02375 0.02375 0.02375 0.00 0.00 0.02 0.27 0.23 

5 0.02508 0.02508 0.02508 0.00 0.00 0.01 0.09 0.20 

6 0.01966 0.01966 0.01966 0.00 0.00 0.06 0.34 2.06 

7 0.02145 0.02145 0.02145 0.00 0.00 0.01 0.09 0.25 

8 0.03383 0.03383 0.03383 0.00 0.00 0.06 0.58 1.44 

9 0.02838 0.02838 0.02838 0.00 0.00 0.02 0.09 0.27 

10 0.01800 0.01800 0.01800 0.00 0.00 0.01 0.08 0.20 

Avg 0.02464 0.02464 0.02464 0.00 0.00 0.03 0.34 0.79 

7 

1 0.02616 0.02616 0.02616 0.00 0.00 0.03 0.11 0.27 

2 0.02221 0.02221 0.02221 0.00 0.00 0.02 0.09 0.30 

3 0.02844 0.02844 0.02844 0.00 0.00 0.01 0.08 0.22 

4 0.02767 0.02767 0.02767 0.00 0.00 0.01 0.11 0.00 

5 0.02593 0.02593 0.02593 0.00 0.00 0.01 0.16 0.33 

6 0.03342 0.03342 0.03342 0.00 0.00 0.05 0.25 0.37 

7 0.02349 0.02349 0.02349 0.00 0.00 0.02 0.11 0.23 

8 0.03719 0.03719 0.03718 0.00 0.01 0.03 0.39 1.01 

9 0.03101 0.03101 0.03101 0.00 0.01 0.00 0.08 0.17 

10 0.03369 0.03369 0.03369 0.00 0.00 0.00 0.05 0.08 

Avg 0.02892 0.02892 0.02892 0.00 0.00 0.02 0.14 0.30 

8 

1 0.02349 0.02349 0.02349 0.00 0.00 0.01 0.23 0.42 

2 0.01835 0.01835 0.01835 0.00 0.00 0.05 0.28 0.59 

3 0.02401 0.02401 0.02401 0.00 0.00 0.02 0.31 0.23 

4 0.02235 0.02235 0.02235 0.00 0.00 0.05 0.94 0.58 

5 0.02461 0.02461 0.02461 0.00 0.00 0.00 0.09 0.25 

6 0.02256 0.02256 0.02256 0.00 0.00 0.01 0.47 0.50 

7 0.01986 0.01986 0.01986 0.00 0.00 0.02 0.28 0.33 

8 0.02757 0.02757 0.02757 0.00 0.00 0.05 0.41 0.39 

9 0.02751 0.02751 0.02751 0.00 0.00 0.03 0.34 0.50 

10 0.01864 0.01864 0.01864 0.00 0.00 0.01 0.27 0.33 

Avg 0.02290 0.02290 0.02290 0.00 0.00 0.03 0.36 0.41 
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  Appendix B2 Results of experimental studies for the problem set 5.50 

Problem 

Setting 

Instance 

No 

Throughput Rate Deviation(%)
 

CPU (sec.) 

CE BTS ATS BTS ATS CE BTS ATS 

1 

1 0.08200 0.08200 0.08200 0.00 0.00 0.09 0.53 0.41 

2 0.07495 0.07495 0.07495 0.00 0.00 0.05 0.22 0.51 

3 0.07952 0.07952 0.07952 0.00 0.00 0.08 0.36 0.66 

4 0.07952 0.07952 0.07952 0.00 0.00 0.05 0.55 0.19 

5 0.07338 0.07338 0.07338 0.00 0.00 0.08 0.33 0.67 

6 0.08682 0.08682 0.08682 0.00 0.00 0.08 0.14 0.73 

7 0.06803 0.06803 0.06803 0.00 0.00 0.09 0.53 0.81 

8 0.09560 0.09560 0.09560 0.00 0.00 0.06 0.80 0.64 

9 0.06901 0.06901 0.06901 0.00 0.00 0.08 0.45 0.76 

10 0.08674 0.08674 0.08674 0.00 0.00 0.02 0.16 0.13 

Avg 0.07956 0.07956 0.07956 0.00 0.00 0.07 0.41 0.55 

2 

1 0.06418 0.06418 0.06418 0.00 0.00 0.11 0.28 0.53 

2 0.05947 0.05947 0.05947 0.00 0.00 0.09 0.19 0.73 

3 0.08163 0.08084 0.08163 0.97 0.00 0.14 0.72 0.80 

4 0.06958 0.06958 0.06958 0.00 0.00 0.20 0.70 1.09 

5 0.06415 0.06415 0.06415 0.00 0.00 0.11 0.31 0.48 

6 0.07641 0.07572 0.07641 0.91 0.00 0.30 1.33 1.15 

7 0.06947 0.06710 0.06947 3.41 0.00 0.14 0.33 1.08 

8 0.08303 0.08303 0.08303 0.00 0.00 0.14 0.48 1.11 

9 0.07537 0.07537 0.07537 0.00 0.00 0.61 0.58 5.82 

10 0.07575 0.07575 0.07575 0.00 0.00 0.05 0.37 0.61 

Avg 0.07190 0.07152 0.07190 0.53 0.00 0.19 0.53 1.34 

3 

1 0.07327 0.07327 0.07327 0.00 0.00 0.11 0.33 0.80 

2 0.06719 0.06695 0.06719 0.36 0.00 0.67 5.66 4.26 

3 0.07893 0.07893 0.07893 0.00 0.00 0.09 0.25 0.86 

4 0.06109 0.06107 0.06109 0.04 0.00 0.17 1.08 1.00 

5 0.07309 0.07309 0.07309 0.00 0.00 0.09 0.51 0.76 

6 0.09384 0.09257 0.09384 1.36 0.00 0.16 0.58 1.29 

7 0.06772 0.06772 0.06772 0.00 0.01 0.11 0.23 0.66 

8 0.09529 0.09529 0.09529 0.00 0.00 0.14 0.28 0.92 

9 0.08591 0.08591 0.08591 0.00 0.00 0.25 1.03 1.06 

10 0.08395 0.08395 0.08395 0.00 0.00 0.12 0.25 0.94 

Avg 0.07803 0.07787 0.07803 0.18 0.00 0.19 1.02 1.26 

4 

1 0.07486 0.07201 0.07486 3.81 0.00 0.16 0.84 0.55 

2 0.04864 0.04708 0.04864 3.20 0.00 0.23 1.00 1.28 

3 0.05754 0.05754 0.05754 0.00 0.00 0.12 0.39 0.61 

4 0.06345 0.06228 0.06345 1.85 0.00 0.33 1.36 1.69 

5 0.05682 0.05682 0.05682 0.00 0.00 0.13 0.28 1.04 

6 0.08785 0.08033 0.08785 8.56 0.00 0.28 0.89 1.33 

7 0.06440 0.05626 0.06440 12.65 0.00 0.16 0.98 1.09 

8 0.07299 0.07299 0.07299 0.00 0.00 0.16 0.34 0.97 

9 0.06396 0.06396 0.06396 0.00 0.00 0.14 0.28 1.12 

10 0.06735 0.06176 0.06735 8.30 0.00 0.14 0.48 1.00 

Avg 0.06579 0.06310 0.06579 3.84 0.00 0.19 0.68 1.07 
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Appendix B2 Results of experimental studies for the problem set 5.50 (cont.) 

Problem 

Setting 

Instance 

No 

Throughput Rate Deviation(%) CPU (sec.) 

CE BTS ATS BTS ATS CE BTS ATS 

5 

1 0.02619 0.02619 0.02619 0.00 0.00 0.09 0.38 0.72 

2 0.02252 0.02252 0.02252 0.00 0.00 0.03 0.09 0.14 

3 0.02843 0.02843 0.02843 0.00 0.00 0.06 0.38 0.58 

4 0.02770 0.02770 0.02770 0.00 0.00 0.03 0.05 0.42 

5 0.02454 0.02454 0.02454 0.00 0.00 0.09 0.45 0.62 

6 0.03676 0.03676 0.03676 0.00 0.00 0.25 0.41 1.16 

7 0.02901 0.02901 0.02901 0.00 0.00 0.14 0.55 0.41 

8 0.03713 0.03713 0.03713 0.00 0.00 0.03 0.13 0.67 

9 0.03085 0.03085 0.03085 0.00 0.00 0.09 0.45 0.84 

10 0.03369 0.03369 0.03369 0.00 0.00 0.01 0.11 0.42 

Avg 0.02968 0.02968 0.02968 0.00 0.00 0.08 0.30 0.60 

6 

1 0.02775 0.02732 0.02775 1.55 0.00 0.14 0.47 0.59 

2 0.02256 0.02256 0.02256 0.00 0.00 0.20 0.34 0.92 

3 0.02540 0.02540 0.02540 0.00 0.00 0.37 6.14 8.46 

4 0.02375 0.02375 0.02375 0.00 0.00 0.05 0.06 0.58 

5 0.02510 0.02510 0.02510 0.00 0.00 0.06 0.19 0.53 

6 0.01966 0.01966 0.01966 0.00 0.00 0.30 1.45 1.51 

7 0.02145 0.02145 0.02145 0.00 0.00 0.08 0.27 0.69 

8 0.03383 0.03383 0.03383 0.00 0.00 0.28 0.58 1.79 

9 0.02855 0.02855 0.02855 0.00 0.00 0.08 0.36 0.64 

10 0.01800 0.01800 0.01800 0.00 0.00 0.05 0.13 0.59 

Avg 0.02460 0.02456 0.02460 0.15 0.00 0.16 1.00 1.63 

7 

1 0.02618 0.02618 0.02618 0.00 0.00 0.11 0.45 0.86 

2 0.02225 0.02225 0.02225 0.01 0.00 0.09 0.19 0.45 

3 0.02844 0.02844 0.02844 0.00 0.00 0.08 0.16 0.58 

4 0.02767 0.02767 0.02767 0.00 0.00 0.05 0.34 0.78 

5 0.02593 0.02593 0.02593 0.00 0.00 0.09 0.30 0.76 

6 0.03613 0.03332 0.03613 7.77 0.00 0.20 1.48 1.15 

7 0.02350 0.02350 0.02350 0.00 0.00 0.08 0.19 0.70 

8 0.03723 0.03723 0.03723 0.00 0.00 0.09 0.86 0.55 

9 0.03102 0.03102 0.03102 0.00 0.00 0.05 0.09 0.58 

10 0.03387 0.03387 0.03387 0.00 0.00 0.05 0.11 0.44 

Avg 0.02922 0.02894 0.02922 0.78 0.00 0.09 0.42 0.69 

8 

1 0.02526 0.02445 0.02526 3.18 0.00 0.17 1.03 0.97 

2 0.01892 0.01892 0.01892 0.00 0.00 0.22 0.52 1.01 

3 0.02517 0.02517 0.02517 0.00 0.00 0.11 0.33 1.08 

4 0.02349 0.02349 0.02349 0.00 0.00 0.25 1.40 2.12 

5 0.02500 0.02497 0.02500 0.14 0.00 0.08 0.11 0.72 

6 0.02490 0.02490 0.02490 0.00 0.00 0.19 0.69 1.42 

7 0.02066 0.02066 0.02066 0.00 0.00 0.09 0.34 0.47 

8 0.03164 0.03164 0.03164 0.00 0.00 0.23 1.04 1.58 

9 0.02751 0.02751 0.02751 0.00 0.00 0.14 0.58 1.11 

10 0.02012 0.02012 0.02012 0.00 0.00 0.08 0.47 0.73 

Avg 0.02427 0.02418 0.02427 0.33 0.00 0.16 0.65 1.12 
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 Appendix B3 Results of experimental studies for the problem set 5.100 

Problem 

Setting 

Instance 

No 

Throughput Rate Deviation(%)
 

CPU (sec.) 

CE BTS ATS BTS ATS CE BTS ATS 

1 

1 0.08200 0.08200 0.08200 0.00 0.00 0.67 0.94 2.31 

2 0.07495 0.07495 0.07495 0.00 0.00 0.28 0.33 1.86 

3 0.07952 0.07952 0.07952 0.00 0.00 0.56 0.77 0.78 

4 0.07952 0.07952 0.07952 0.00 0.00 0.20 1.09 0.51 

5 0.07338 0.07338 0.07338 0.00 0.00 0.55 0.77 0.89 

6 0.08682 0.08682 0.08682 0.00 0.00 0.53 0.86 1.87 

7 0.06803 0.06803 0.06803 0.00 0.00 0.66 0.91 2.34 

8 0.09560 0.09560 0.09560 0.00 0.00 0.50 1.25 1.95 

9 0.06901 0.06901 0.06901 0.00 0.00 0.66 0.86 2.03 

10 0.08674 0.08674 0.08674 0.00 0.00 0.16 0.31 0.44 

Avg 0.07956 0.07956 0.07956 0.00 0.00 0.48 0.81 1.50 

2 

1 0.07352 0.06419 0.07352 12.70 0.00 0.76 0.42 1.84 

2 0.05961 0.05961 0.05961 0.00 0.00 0.48 0.28 1.34 

3 0.08246 0.06780 0.08246 17.78 0.00 0.83 0.59 2.57 

4 0.06959 0.06959 0.06959 0.00 0.00 0.78 0.55 2.56 

5 0.06419 0.06419 0.06419 0.00 0.00 0.67 0.36 2.25 

6 0.07681 0.07590 0.07590 1.18 1.18 1.65 1.79 2.00 

7 0.06749 0.05961 0.06749 11.67 0.00 0.89 0.48 2.56 

8 0.08318 0.08318 0.08318 0.00 0.00 0.66 0.52 2.62 

9 0.07591 0.07591 0.07591 0.00 0.00 10.87 12.92 4.27 

10 0.07575 0.07575 0.07575 0.00 0.00 0.28 0.33 0.56 

Avg 0.07285 0.06957 0.07276 4.33 0.12 1.79 1.82 2.26 

3 

1 0.07332 0.07332 0.07332 0.00 0.00 0.80 0.52 1.20 

2 0.06790 0.06783 0.06783 0.10 0.10 6.96 43.24 44.05 

3 0.07923 0.07923 0.07923 0.00 0.00 0.67 0.45 1.95 

4 0.06124 0.06124 0.06124 0.00 0.00 1.03 0.92 2.68 

5 0.07321 0.07321 0.07321 0.01 0.00 0.69 0.45 1.92 

6 0.09485 0.09330 0.09458 1.63 0.28 1.01 1.00 2.62 

7 0.06774 0.06774 0.06774 0.00 0.00 0.80 0.50 2.31 

8 0.09536 0.09536 0.09536 0.00 0.00 0.61 0.38 1.17 

9 0.08653 0.08653 0.08653 0.00 0.00 2.36 1.93 5.88 

10 0.07316 0.07316 0.07316 0.00 0.00 0.81 0.70 2.59 

Avg 0.07725 0.07709 0.07722 0.17 0.04 1.57 5.01 6.64 

4 

1 0.08250 0.07790 0.07808 5.57 5.35 1.08 3.21 2.45 

2 0.05115 0.05115 0.05115 0.00 0.00 1.64 0.95 4.71 

3 0.06230 0.06230 0.06230 0.00 0.00 1.03 0.73 3.06 

4 0.06809 0.06809 0.06809 0.00 0.00 2.67 3.42 2.65 

5 0.06075 0.06075 0.06075 0.00 0.00 1.06 1.33 2.95 

6 0.09046 0.08724 0.08761 3.56 3.15 1.92 4.07 3.13 

7 0.06698 0.06691 0.06698 0.11 0.00 1.11 0.86 1.36 

8 0.07840 0.07840 0.07840 0.00 0.00 1.04 0.76 2.79 

9 0.06648 0.06648 0.06648 0.00 0.00 1.04 0.42 2.85 

10 0.07352 0.07032 0.07125 4.35 3.08 1.17 0.86 1.76 

Avg 0.07006 0.06895 0.06911 1.36 1.16 1.38 1.66 2.77 
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Appendix B3 Results of experimental studies for the problem set 5.100 (cont.) 

Problem 

Setting 

Instance 

No 

Throughput Rate Deviation(%) CPU (sec.) 

CE BTS ATS BTS ATS CE BTS ATS 

5 

1 0.03457 0.02619 0.03457 24.24 0.00 0.67 0.87 0.87 

2 0.02252 0.02252 0.02252 0.00 0.00 0.72 0.94 0.76 

3 0.03475 0.03475 0.03475 0.00 0.00 0.87 1.26 1.01 

4 0.02770 0.02770 0.02770 0.00 0.00 0.31 0.01 0.61 

5 0.03578 0.02454 0.03578 31.41 0.00 0.75 1.25 0.89 

6 0.03676 0.03676 0.03676 0.00 0.00 1.90 1.56 1.65 

7 0.02901 0.02901 0.02901 0.00 0.00 1.14 0.89 1.19 

8 0.03713 0.03713 0.03713 0.00 0.00 0.19 0.73 1.64 

9 0.03085 0.03085 0.03085 0.00 0.00 0.62 0.00 0.83 

10 0.03369 0.03369 0.03369 0.00 0.00 0.14 0.19 0.44 

Avg 0.03228 0.03032 0.03228 5.56 0.00 0.73 0.77 0.99 

6 

1 0.02908 0.02908 0.02908 0.00 0.00 0.86 0.97 2.61 

2 0.02256 0.02256 0.02256 0.00 0.00 1.34 1.79 3.01 

3 0.02540 0.02540 0.02540 0.00 0.00 1.39 1.22 3.32 

4 0.02375 0.02375 0.02375 0.00 0.00 0.27 0.62 2.20 

5 0.02510 0.02510 0.02510 0.00 0.00 0.42 0.50 1.54 

6 0.01966 0.01966 0.01966 0.00 0.00 1.93 2.15 3.49 

7 0.02862 0.02862 0.02862 0.00 0.00 1.01 0.73 1.01 

8 0.03383 0.03383 0.03383 0.00 0.00 1.34 0.98 3.84 

9 0.02857 0.02857 0.02857 0.00 0.00 0.51 0.58 1.92 

10 0.01800 0.01800 0.01800 0.00 0.00 0.33 0.31 0.61 

Avg 0.02546 0.02546 0.02546 0.00 0.00 0.94 0.99 2.36 

7 

1 0.02618 0.02618 0.02618 0.00 0.00 0.73 1.08 2.43 

2 0.02225 0.02225 0.02225 0.00 0.00 0.62 0.31 1.26 

3 0.02844 0.02844 0.02844 0.00 0.00 0.55 0.58 0.92 

4 0.02767 0.02767 0.02767 0.00 0.00 0.30 0.89 2.45 

5 0.02593 0.02593 0.02593 0.00 0.00 0.69 0.69 2.70 

6 0.03368 0.03233 0.03368 4.01 0.00 1.25 1.03 3.09 

7 0.02350 0.02350 0.02350 0.00 0.00 0.53 0.66 0.84 

8 0.03723 0.03723 0.03723 0.00 0.00 0.45 1.59 1.28 

9 0.03102 0.03102 0.03102 0.00 0.00 0.25 0.30 1.68 

10 0.03388 0.03388 0.03388 0.00 0.00 0.25 0.19 1.73 

Avg 0.02898 0.02884 0.02898 0.40 0.00 0.56 0.73 1.84 

8 

1 0.02767 0.02570 0.02767 7.11 0.00 1.40 1.40 3.43 

2 0.01928 0.01928 0.01928 0.00 0.00 1.36 0.83 3.40 

3 0.02578 0.02578 0.02578 0.00 0.00 0.78 1.52 3.63 

4 0.02352 0.02352 0.02352 0.00 0.00 1.29 0.94 2.53 

5 0.02507 0.02507 0.02507 0.00 0.00 0.51 0.44 2.04 

6 0.02707 0.02707 0.02707 0.00 0.00 1.42 1.50 4.23 

7 0.02107 0.02107 0.02107 0.00 0.00 0.62 0.34 0.92 

8 0.03230 0.03171 0.03230 1.81 0.00 1.76 4.35 2.37 

9 0.02786 0.02786 0.02786 0.00 0.00 0.87 0.39 1.78 

10 0.02096 0.02096 0.02096 0.00 0.00 0.56 0.83 1.84 

Avg 0.02506 0.02480 0.02506 0.89 0.00 1.06 1.25 2.62 
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 Appendix B4 Results of experimental studies for the problem set 10.50 

Problem 

Setting 

Instance 

No 

Throughput Rate Deviation(%)
 

CPU (sec.) 

CE BTS ATS BTS ATS CE BTS ATS 

1 

1 0.08694 0.08694 0.08694 0.00 0.00 7470.40 12.61 18.30 

2 0.07338 0.07338 0.07338 0.00 0.00 17425.47 33.94 54.38 

3 0.06442 0.06442 0.06442 0.00 0.00 9986.93 44.55 12.45 

4 0.07554 0.07554 0.07554 0.00 0.00 6792.48 8.98 20.67 

5 0.07907 0.07907 0.07907 0.00 0.00 4080.16 4.54 12.20 

6 0.07976 0.07832 0.07976 1.80 0.00 13410.86 31.06 16.22 

7 0.07049 0.07049 0.07049 0.00 0.00 11591.44 7.32 14.77 

8 0.06952 0.06952 0.06952 0.00 0.00 5045.41 7.82 7.78 

9 0.07713 0.07500 0.07713 2.77 0.00 17304.16 7.96 33.25 

10 0.06880 0.06880 0.06880 0.00 0.00 8078.02 7.85 12.45 

Avg 0.07450 0.07415 0.07450 0.46 0.00 10118.53 16.66 20.25 

2 

1 0.05603 0.05027 0.05596 10.28 0.12 9309.26 23.48 15.06 

2 0.06253 0.06253 0.06253 0.00 0.01 13022.07 23.78 18.63 

3 0.05223 0.05223 0.05223 0.00 0.00 13255.60 17.29 13.68 

4 0.07191 0.06950 0.07142 3.35 0.68 21165.35 34.54 28.37 

5 0.06572 0.06542 0.06572 0.46 0.00 12597.77 32.23 36.66 

6 0.05925 0.05925 0.05925 0.00 0.00 11265.77 47.12 22.76 

7 0.06188 0.06038 0.06188 2.42 0.00 12243.06 100.76 17.24 

8 0.07324 0.07157 0.07324 2.28 0.00 15954.19 95.57 56.30 

9 0.06897 0.06502 0.06882 5.72 0.21 9645.34 108.16 65.11 

10 0.06608 0.06606 0.06608 0.03 0.00 18106.07 48.18 56.77 

Avg 0.06378 0.06222 0.06371 2.45 0.10 13656.45 53.11 33.06 

3 

1 0.07214 0.07214 0.07214 0.00 0.00 18184.14 38.59 27.54 

2 0.07361 0.07335 0.07351 0.35 0.13 12089.04 13.91 21.47 

3 0.06815 0.06815 0.06815 0.00 0.00 7591.47 22.68 38.27 

4 0.06909 0.06748 0.06888 2.33 0.31 9052.20 21.48 36.13 

5 0.07086 0.07086 0.07086 0.00 0.00 31618.15 49.17 115.89 

6 0.06865 0.06828 0.06865 0.54 0.00 22935.23 113.27 84.68 

7 0.07799 0.07360 0.07714 5.63 1.10 19787.61 40.16 38.48 

8 0.06779 0.06762 0.06779 0.26 0.01 9781.58 67.32 39.67 

9 0.08079 0.06521 0.06521 19.29 19.28 6033.33 9.59 13.09 

10 0.06660 0.06660 0.06660 0.00 0.01 2065.69 6.35 7.80 

Avg 0.07157 0.06933 0.06989 2.84 2.08 15230.31 38.25 42.30 

4 

1 0.05029 0.05021 0.05021 0.17 0.17 6534.82 8.70 11.19 

2 0.00785 0.00785 0.00785 0.00 0.00 8560.73 6.14 6.26 

3 0.04144 0.04044 0.04091 2.42 1.29 11279.95 16.34 22.39 

4 0.05311 0.04662 0.05151 12.22 3.02 10741.37 20.76 37.50 

5 0.04406 0.04304 0.04380 2.32 0.59 11160.58 11.18 20.22 

6 0.05610 0.03711 0.05610 33.86 0.00 7399.05 8.25 14.48 

7 0.04242 0.03991 0.04242 5.92 0.00 8381.59 21.24 17.39 

8 0.03423 0.03376 0.03423 1.36 0.00 9683.85 25.02 16.66 

9 0.03164 0.02557 0.03149 19.18 0.46 7153.07 15.94 15.76 

10 0.05576 0.04616 0.05576 17.22 0.00 10524.99 33.25 18.60 

Avg 0.04169 0.03707 0.04143 9.47 0.55 9142.00 16.68 18.05 
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Appendix B4 Results of experimental studies for the problem set 10.50 (cont.) 

Problem 

Setting 

Instance 

No 

Throughput Rate Deviation(%) CPU (sec.) 

CE BTS ATS BTS ATS CE BTS ATS 

5 

1 0.03089 0.03007 0.03089 2.65 0.00 8113.45 31.32 13.49 

2 0.02345 0.02344 0.02345 0.03 0.00 11238.31 12.28 16.33 

3 0.02444 0.02444 0.02444 0.00 0.00 3249.22 3.04 2.31 

4 0.02614 0.02485 0.02614 4.96 0.00 11950.31 10.55 9.87 

5 0.02769 0.02769 0.02769 0.00 0.00 5130.26 11.15 6.05 

6 0.02340 0.02340 0.02340 0.00 0.00 9696.40 10.76 13.23 

7 0.02347 0.02347 0.02347 0.00 0.00 11516.88 4.55 9.50 

8 0.02437 0.02437 0.02437 0.00 0.00 7850.06 7.91 9.38 

9 0.03700 0.03700 0.03700 0.00 0.00 7339.22 13.03 15.07 

10 0.02351 0.02351 0.02351 0.00 0.00 11956.50 41.29 37.06 

Avg 0.02644 0.02622 0.02644 0.76 0.00 8804.06 14.59 13.23 

6 

1 0.01849 0.01849 0.01849 0.00 0.00 20235.51 10.37 21.29 

2 0.02103 0.02103 0.02103 0.00 0.00 8075.22 13.22 25.05 

3 0.02463 0.02368 0.02463 0.04 0.00 6055.65 10.35 14.59 

4 0.02786 0.02785 0.02786 0.00 0.00 5561.70 21.41 25.33 

5 0.02347 0.02333 0.02347 0.01 0.00 5453.36 17.17 24.56 

6 0.01986 0.01986 0.01986 0.00 0.00 17703.50 20.37 27.71 

7 0.02322 0.02174 0.02322 0.06 0.00 9320.15 12.46 14.10 

8 0.02892 0.02892 0.02892 0.00 0.00 12330.67 21.35 37.53 

9 0.02507 0.02506 0.02507 0.00 0.00 22505.36 65.76 78.33 

10 0.02213 0.02213 0.02213 0.00 0.00 15445.97 18.78 24.06 

Avg 0.02347 0.02321 0.02347 1.09 0.00 12268.71 21.12 29.26 

7 

1 0.02488 0.02488 0.02488 0.00 0.00 5306.97 4.71 3.63 

2 0.02199 0.02196 0.02199 0.00 0.00 7656.30 8.52 10.19 

3 0.02167 0.02167 0.02167 0.00 0.00 4888.31 4.98 4.06 

4 0.02558 0.02558 0.02558 0.00 0.00 15848.16 23.34 37.08 

5 0.02365 0.02365 0.02365 0.00 0.00 8961.77 14.48 14.74 

6 0.02250 0.02216 0.02250 0.01 0.00 18571.17 37.11 67.73 

7 0.02796 0.02786 0.02796 0.00 0.00 8609.40 50.59 71.12 

8 0.02224 0.02224 0.02224 0.00 0.00 15506.98 5.04 13.07 

9 0.02909 0.02906 0.02909 0.00 0.00 7033.93 16.24 20.25 

10 0.02397 0.02397 0.02397 0.00 0.00 9635.94 4.65 14.01 

Avg 0.02435 0.02430 0.02435 0.21 0.00 10201.89 16.97 25.59 

8 

1 0.01845 0.01730 0.01845 6.20 0.00 10353.56 4.81 15.99 

2 0.01333 0.01140 0.01333 14.51 0.00 7373.68 6.50 17.72 

3 0.01843 0.01832 0.01839 0.64 0.23 18605.25 85.86 58.77 

4 0.02214 0.01984 0.02181 10.36 1.48 17981.73 35.21 33.57 

5 0.00670 0.00670 0.00670 0.00 0.00 4380.44 5.74 5.05 

6 0.02194 0.02017 0.02194 8.04 0.00 18336.02 50.62 25.85 

7 0.02104 0.01885 0.02104 10.44 0.00 13823.67 27.33 26.02 

8 0.01657 0.01656 0.01656 0.07 0.07 10636.85 14.65 16.21 

9 0.01819 0.01695 0.01760 6.81 3.25 13771.64 36.40 33.73 

10 0.02464 0.02348 0.02422 4.71 1.72 23148.75 45.99 53.07 

Avg 0.01814 0.01696 0.01800 6.18 0.68 13841.16 31.31 28.60 
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  Appendix B5 Results of experimental studies for the problem set 10.100 

Problem 

Setting 

Instance 

No 

Throughput Rate 
Deviation(%)

 CPU (sec.) 

BTS ATS BTS ATS 

1 

1 0.08694 0.08694 0.00 14.85 38.00 

2 0.07338 0.07338 0.00 12.14 43.76 

3 0.06442 0.06442 0.00 86.70 13.43 

4 0.07554 0.07554 0.00 7.05 27.58 

5 0.07907 0.07907 0.01 3.88 6.46 

6 0.07398 0.07976 7.81 42.06 25.49 

7 0.07049 0.07049 0.00 15.48 22.99 

8 0.06952 0.06952 0.00 6.79 5.43 

9 0.07501 0.07519 0.24 37.35 58.19 

10 0.07061 0.07061 0.00 84.24 63.87 

Avg 0.07389 0.07449 0.81 31.05 30.52 

2 

1 0.05128 0.05128 0.00 35.71 50.06 

2 0.06398 0.06398 0.00 17.89 27.91 

3 0.05225 0.05225 0.00 9.66 13.82 

4 0.07505 0.07669 2.19 69.37 70.20 

5 0.06620 0.06651 0.47 18.27 40.34 

6 0.05929 0.05929 0.00 9.05 25.16 

7 0.06119 0.06442 5.27 12.64 20.05 

8 0.07488 0.07488 0.00 76.19 90.64 

9 0.06852 0.07147 4.31 151.49 160.28 

10 0.07019 0.07024 0.08 73.38 44.46 

Avg 0.06428 0.06510 1.18 47.37 54.29 

3 

1 0.07394 0.07394 0.00 36.46 53.26 

2 0.06911 0.07353 6.39 22.64 34.29 

3 0.06816 0.06816 0.00 18.89 20.45 

4 0.06959 0.07065 1.52 33.06 48.56 

5 0.07067 0.07087 0.29 102.81 89.11 

6 0.06876 0.06876 0.00 44.13 154.25 

7 0.07802 0.08215 5.29 44.93 54.65 

8 0.06808 0.06808 0.00 92.12 92.04 

9 0.06615 0.06616 0.02 7.61 23.41 

10 0.07010 0.07010 0.00 15.79 56.21 

Avg 0.07026 0.07124 1.35 41.84 62.62 

4 

1 0.05082 0.05371 5.69 31.47 55.49 

2 0.00847 0.00848 0.13 7.89 14.84 

3 0.04700 0.04700 0.00 81.70 39.09 

4 0.05417 0.05896 8.85 81.98 81.20 

5 0.00682 0.00682 0.00 20.08 23.87 

6 0.05147 0.05151 0.08 325.51 58.28 

7 0.03937 0.04751 20.68 30.34 37.83 

8 0.03876 0.03922 1.18 22.31 32.43 

9 0.03036 0.03733 22.98 26.04 62.95 

10 0.05522 0.05793 4.89 86.21 53.09 

Avg 0.03825 0.04085 6.45 71.35 45.91 
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Appendix B5 Results of experimental studies for the problem set 10.100 (cont.) 

 

 

(cont.) 

 

Problem 

Setting 

Instance 

No 

Throughput Rate 
Deviation(%)

 CPU (sec.) 

BTS ATS BTS ATS 

5 

1 0.02999 0.03089 2.99 51.78 36.77 

2 0.02345 0.02345 0.00 23.57 53.45 

3 0.02444 0.02444 0.00 6.12 9.83 

4 0.02708 0.02709 0.02 30.47 65.86 

5 0.02769 0.02769 0.01 29.06 36.22 

6 0.02359 0.02359 0.00 32.07 27.75 

7 0.02487 0.02487 0.01 15.77 17.43 

8 0.02437 0.02437 0.00 11.17 23.31 

9 0.03700 0.03700 0.01 28.81 70.14 

10 0.02351 0.02351 0.00 63.04 70.64 

Avg 0.02660 0.02669 0.30 29.19 41.14 

6 

1 0.03012 0.03012 0.00 14.07 47.27 

2 0.02104 0.02104 0.00 22.37 24.09 

3 0.02467 0.02467 0.00 55.99 46.64 

4 0.02788 0.02788 0.00 20.11 33.46 

5 0.02091 0.02212 5.76 17.61 47.00 

6 0.02004 0.02004 0.00 33.32 88.62 

7 0.02364 0.02364 0.00 17.57 16.13 

8 0.02876 0.02893 0.58 53.41 42.18 

9 0.02507 0.02507 0.00 125.38 131.79 

10 0.02213 0.02213 0.00 16.38 29.25 

Avg 0.02443 0.02456 0.63 37.62 50.64 

7 

1 0.02493 0.02493 0.00 10.02 15.54 

2 0.02196 0.02199 0.13 13.56 40.06 

3 0.02167 0.02167 0.01 6.18 14.45 

4 0.02558 0.02558 0.00 35.94 56.02 

5 0.02365 0.02365 0.00 31.03 48.48 

6 0.02187 0.02217 1.38 44.77 61.59 

7 0.02794 0.02828 1.24 42.98 59.61 

8 0.02224 0.02224 0.00 18.61 37.63 

9 0.02910 0.02911 0.05 44.44 48.67 

10 0.02397 0.02397 0.00 8.74 23.13 

Avg 0.02429 0.02436 0.28 25.63 40.52 

8 

1 0.01042 0.01049 0.68 32.71 40.58 

2 0.01367 0.01635 19.59 12.61 35.69 

3 0.01948 0.01948 0.02 99.76 193.96 

4 0.02151 0.02303 7.02 32.14 80.62 

5 0.00673 0.00673 0.00 11.19 26.72 

6 0.02278 0.02288 0.44 47.64 58.05 

7 0.02151 0.02197 2.18 46.02 37.03 

8 0.01825 0.01825 0.00 15.55 56.21 

9 0.01953 0.02052 5.09 66.64 55.88 

10 0.02539 0.02632 3.67 85.99 57.98 

Avg 0.01793 0.01860 3.87 45.03 64.27 
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  Appendix B6 Results of experimental studies for the problem set 10.200 

Problem 

Setting 

Instance 

No 

Throughput Rate Deviation(%)
 CPU (sec.) 

BTS ATS BTS ATS 

1 

1 0.08694 0.08694 0.00 58.14 134.77 

2 0.07338 0.07338 0.00 165.55 231.74 

3 0.06442 0.06442 0.00 80.78 22.79 

4 0.07554 0.07554 0.00 75.24 105.41 

5 0.07906 0.07907 0.01 101.06 60.17 

6 0.07976 0.07976 0.00 17.77 53.60 

7 0.07011 0.07406 5.64 42.29 75.19 

8 0.06952 0.06952 0.00 29.61 24.43 

9 0.07499 0.07499 0.00 168.14 163.93 

10 0.07061 0.07061 0.00 126.75 284.31 

Avg 0.07443 0.07483 0.57 86.53 115.63 

2 

1 0.05128 0.05128 0.00 48.78 137.72 

2 0.06422 0.06462 0.62 90.67 120.08 

3 0.05224 0.05225 0.02 67.20 40.42 

4 0.07726 0.07809 1.08 139.81 158.94 

5 0.06516 0.06629 1.74 34.40 128.04 

6 0.05929 0.05929 0.00 17.85 42.45 

7 0.06247 0.06760 8.22 122.69 70.82 

8 0.07513 0.07513 0.00 62.31 248.27 

9 0.07267 0.07269 0.03 63.27 359.10 

10 0.06612 0.06612 0.00 19.95 56.48 

Avg 0.06458 0.06534 1.17 66.69 136.23 

3 

1 0.07476 0.07476 0.00 265.39 52.23 

2 0.06911 0.07379 6.76 47.59 158.44 

3 0.06816 0.06816 0.00 34.82 34.96 

4 0.07080 0.07154 1.04 38.97 108.11 

5 0.07087 0.07087 0.00 25.07 54.65 

6 0.06877 0.07039 2.36 335.18 475.80 

7 0.07923 0.08363 5.56 141.94 175.67 

8 0.06815 0.06815 0.00 237.25 90.12 

9 0.06645 0.06645 0.00 19.03 35.21 

10 0.07014 0.07014 0.00 16.85 59.53 

Avg 0.07064 0.07179 1.57 116.21 124.47 

4 

1 0.01059 0.01059 0.00 63.02 72.68 

2 0.00954 0.00954 0.00 54.60 60.33 

3 0.05259 0.05259 0.00 110.24 136.98 

4 0.06323 0.06447 1.96 89.61 219.79 

5 0.00682 0.00682 0.00 40.23 57.45 

6 0.05915 0.05916 0.02 99.82 280.64 

7 0.04559 0.05441 19.34 50.28 69.87 

8 0.04450 0.04450 0.00 39.31 62.60 

9 0.03560 0.04048 13.69 80.71 150.51 

10 0.06202 0.06428 3.65 76.36 213.50 

Avg 0.03896 0.04068 3.87 70.42 132.44 
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Appendix B6 Results of experimental studies for the problem set 10.200 (cont.) 

 

 

Problem 

Setting 

Instance 

No 

Throughput Rate 
Deviation(%)

 CPU (sec.) 

BTS ATS BTS ATS 

5 

1 0.03089 0.03089 0.00 19.34 88.51 

2 0.02345 0.02345 0.01 60.75 100.89 

3 0.02444 0.02444 0.00 12.37 23.13 

4 0.02709 0.02709 0.00 58.58 109.20 

5 0.02769 0.02769 0.00 19.44 40.31 

6 0.02363 0.02363 0.00 19.31 57.35 

7 0.02487 0.02487 0.00 26.94 46.80 

8 0.03099 0.03352 8.13 32.07 69.11 

9 0.03700 0.03700 0.00 65.46 74.79 

10 0.02351 0.02351 0.00 110.28 79.33 

Avg 0.02736 0.02806 0.81 42.45 68.94 

6 

1 0.02122 0.03012 41.95 53.98 71.81 

2 0.02104 0.02104 0.00 48.67 41.59 

3 0.02467 0.02467 0.00 57.70 88.55 

4 0.02788 0.02788 0.00 75.43 73.40 

5 0.02212 0.02356 6.51 56.03 62.99 

6 0.02013 0.02013 0.00 40.00 67.84 

7 0.02371 0.02388 0.70 31.30 116.84 

8 0.02893 0.02893 0.00 148.51 64.61 

9 0.02507 0.02507 0.00 312.73 171.37 

10 0.02213 0.02213 0.00 26.27 61.78 

Avg 0.02369 0.02474 4.92 85.06 82.08 

7 

1 0.02493 0.02493 0.00 17.72 26.22 

2 0.02196 0.02199 0.12 38.76 45.71 

3 0.02167 0.02167 0.00 13.72 23.93 

4 0.02558 0.02558 0.00 54.27 148.07 

5 0.02365 0.02365 0.00 19.34 56.39 

6 0.02187 0.02220 1.52 91.32 178.62 

7 0.02830 0.02830 0.00 77.52 103.08 

8 0.02224 0.02224 0.00 19.31 63.30 

9 0.02324 0.02912 25.28 33.68 109.32 

10 0.02397 0.02397 0.00 111.98 54.65 

Avg 0.02374 0.02436 2.69 47.76 80.93 

8 

1 0.01565 0.01565 0.00 54.09 71.45 

2 0.01449 0.01842 27.14 58.55 63.62 

3 0.01981 0.01981 0.00 50.93 208.88 

4 0.01898 0.02335 23.02 46.65 144.97 

5 0.00673 0.00673 0.00 16.74 27.38 

6 0.02293 0.02293 0.00 130.67 222.21 

7 0.02220 0.02221 0.02 51.29 159.95 

8 0.01929 0.01929 0.01 18.55 55.61 

9 0.02147 0.02156 0.38 62.98 87.39 

10 0.02749 0.02763 0.51 151.81 298.35 

Avg 0.01890 0.01976 5.11 64.23 133.98 
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  Appendix B7 Results of experimental studies for the problem set 20.100 

Problem 

Setting 

Instance 

No 

Throughput Rate Deviation(%)
 CPU (sec.) 

BTS ATS BTS ATS 

1 

1 0.07983 0.07983 0.00 514.09 632.35 

2 0.07093 0.07349 3.62 528.01 479.06 

3 0.06884 0.06884 0.00 526.12 1919.35 

4 0.08056 0.08056 0.00 441.91 523.46 

5 0.07924 0.07924 0.00 407.51 618.62 

6 0.10068 0.10068 0.00 451.13 267.48 

7 0.07070 0.07167 1.38 515.25 243.64 

8 0.09473 0.09473 0.00 510.36 525.47 

9 0.06566 0.11369 73.15 399.82 445.11 

10 0.08877 0.08877 0.00 431.66 446.97 

Avg 0.07999 0.08515 7.82 472.59 610.15 

2 

1 0.04606 0.06961 51.15 455.09 348.55 

2 0.02104 0.02106 0.10 473.20 316.42 

3 0.00641 0.00642 0.09 376.86 258.35 

4 0.06209 0.07121 14.69 714.02 872.43 

5 0.03307 0.03307 0.00 418.32 215.00 

6 0.06506 0.06506 0.00 663.18 995.41 

7 0.04643 0.06737 45.09 415.34 894.88 

8 0.06498 0.06498 0.00 489.57 717.46 

9 0.06303 0.09318 47.83 809.98 873.65 

10 0.07589 0.08292 9.26 542.39 333.96 

Avg 0.04841 0.05749 16.82 535.80 582.61 

3 

1 0.06623 0.07356 11.07 1088.44 1827.51 

2 0.06990 0.07080 1.29 521.13 577.29 

3 0.06912 0.06912 0.00 617.04 655.50 

4 0.06561 0.06652 1.39 530.23 489.88 

5 0.06438 0.06933 7.70 858.22 1383.10 

6 0.06796 0.06890 1.38 858.22 620.27 

7 0.07172 0.07570 5.54 635.22 856.18 

8 0.06947 0.06950 0.04 630.24 947.95 

9 0.07755 0.07900 1.87 821.25 766.60 

10 0.06466 0.06877 6.35 876.28 694.95 

Avg 0.06866 0.07112 3.66 743.63 881.92 

4 

1 0.08216 0.08816 7.30 444.59 616.22 

2 0.04566 0.04593 0.60 500.48 276.38 

3 0.04511 0.07416 64.39 1026.45 1160.45 

4 0.06005 0.06137 2.20 557.64 628.68 

5 0.03277 0.04197 28.06 638.92 865.91 

6 0.08740 0.08857 1.33 525.45 412.09 

7 0.04388 0.12184 177.69 771.14 956.75 

8 0.04205 0.04786 13.80 631.43 430.28 

9 0.10754 0.11973 11.33 466.62 477.55 

10 0.04757 0.05041 5.97 750.24 767.40 

Avg 0.05942 0.07400 31.27 631.30 659.17 
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Appendix B7 Results of experimental studies for the problem set 20.100 (cont.) 

00 (cont.) 

 

Problem 

Setting 

Instance 

No 

Throughput Rate 
Deviation(%)

 CPU (sec.) 

BTS ATS BTS ATS 

5 

1 0.02566 0.02800 9.10 347.16 370.13 

2 0.02663 0.02663 0.00 663.86 767.41 

3 0.02516 0.02575 2.35 527.71 598.45 

4 0.02278 0.02280 0.06 506.05 479.25 

5 0.02625 0.02625 0.00 509.67 340.38 

6 0.02251 0.02666 18.45 523.91 305.07 

7 0.02414 0.02610 8.12 551.04 241.35 

8 0.02225 0.02872 29.09 502.95 821.64 

9 0.02593 0.02593 0.00 486.74 240.22 

10 0.03369 0.03369 0.00 632.13 414.90 

Avg 0.02550 0.02705 6.72 525.12 457.88 

6 

1 0.00441 0.00441 0.00 247.80 130.49 

2 0.01701 0.02104 23.73 467.62 273.95 

3 0.01724 0.01732 0.45 193.11 429.13 

4 0.02466 0.02475 0.34 532.64 492.56 

5 0.02483 0.02799 12.71 314.07 394.15 

6 0.02751 0.02751 0.00 475.62 542.87 

7 0.02337 0.02337 0.00 306.00 1062.50 

8 0.02131 0.02131 0.00 282.93 368.43 

9 0.02073 0.02073 0.00 222.00 188.76 

10 0.03375 0.03444 2.06 227.15 481.17 

Avg 0.02148 0.02229 3.93 326.89 436.40 

7 

1 0.02477 0.02477 0.00 1182.51 771.95 

2 0.02173 0.02176 0.12 1082.48 215.39 

3 0.02226 0.02226 0.01 2194.73 1052.91 

4 0.02520 0.02520 0.00 1216.48 875.19 

5 0.02210 0.02284 3.35 1112.16 739.00 

6 0.02212 0.02219 0.33 1250.37 762.00 

7 0.03132 0.03132 0.00 1239.29 920.61 

8 0.02279 0.02279 0.00 1178.15 904.21 

9 0.02796 0.02804 0.31 1150.21 916.72 

10 0.02352 0.02352 0.00 1449.70 579.76 

Avg 0.02438 0.02447 0.41 1305.61 773.77 

8 

1 0.00820 0.00821 0.05 289.53 311.68 

2 0.01666 0.01666 0.00 425.08 395.50 

3 0.02017 0.02127 5.48 572.84 1240.66 

4 0.02218 0.02380 7.34 462.05 879.67 

5 0.01748 0.02072 18.54 582.67 556.57 

6 0.02037 0.02974 46.01 535.14 667.84 

7 0.01609 0.02544 58.07 662.19 792.75 

8 0.01911 0.02180 14.07 351.73 617.72 

9 0.02226 0.02582 15.99 263.36 537.19 

10 0.02377 0.02377 0.00 471.72 650.15 

Avg 0.01863 0.02172 16.55 461.63 664.97 
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 Appendix B8 Results of experimental studies for the problem set 20.200 

Problem 

Setting 

Instance 

No 

Throughput Rate Deviation(%)
 CPU (sec.) 

BTS ATS BTS ATS 

1 

1 0.07998 0.07998 0.00 1263.56 1034.76 

2 0.07044 0.07349 4.34 748.64 1023.74 

3 0.06884 0.06884 0.00 919.56 1208.49 

4 0.08056 0.08056 0.00 486.73 963.68 

5 0.07924 0.07924 0.00 625.46 1206.60 

6 0.10068 0.10068 0.00 548.12 769.74 

7 0.07070 0.07167 1.38 406.66 336.57 

8 0.09477 0.09477 0.00 679.37 517.56 

9 0.06570 0.06573 0.04 487.08 575.83 

10 0.08877 0.08877 0.00 1046.09 750.66 

Avg 0.07997 0.08037 0.58 721.13 838.76 

2 

1 0.04612 0.06961 50.93 808.25 1282.70 

2 0.05492 0.05492 0.00 535.20 676.34 

3 0.00641 0.00641 0.00 432.05 299.01 

4 0.07217 0.07227 0.13 657.38 1140.36 

5 0.03307 0.03307 0.00 465.61 502.93 

6 0.06508 0.06508 0.00 508.49 1491.16 

7 0.04003 0.06737 68.32 595.60 336.13 

8 0.06529 0.06529 0.00 805.05 973.21 

9 0.06341 0.09134 44.03 1513.90 1242.85 

10 0.08220 0.08567 4.22 1121.84 675.00 

Avg 0.05287 0.06110 16.76 744.34 861.97 

3 

1 0.07441 0.07441 0.00 581.01 1689.59 

2 0.06663 0.06695 0.48 195.76 785.74 

3 0.06986 0.06987 0.02 2187.92 1642.96 

4 0.06576 0.06769 2.92 230.74 814.10 

5 0.06668 0.07042 5.61 308.60 1441.47 

6 0.06952 0.06953 0.01 638.04 1572.50 

7 0.07793 0.08391 7.67 347.99 1489.51 

8 0.06977 0.06977 0.00 506.27 1535.59 

9 0.06990 0.07942 13.62 2171.74 1953.90 

10 0.06883 0.06883 0.00 1809.32 2197.18 

Avg 0.06993 0.07208 3.03 1495.78 1512.25 

4 

1 0.08227 0.10730 30.43 796.73 1417.61 

2 0.04860 0.04902 0.87 221.86 594.99 

3 0.07585 0.07792 2.73 2700.41 2752.77 

4 0.06352 0.06575 3.50 510.25 1268.11 

5 0.04296 0.04925 14.63 2414.79 1115.89 

6 0.08915 0.09207 3.28 227.59 986.78 

7 0.04940 0.06661 34.83 539.90 2403.47 

8 0.04675 0.05133 9.81 632.72 1334.41 

9 0.09477 0.14420 52.16 464.40 833.93 

10 0.05634 0.05634 0.00 951.85 1773.26 

Avg 0.06496 0.07598 15.22 946.05 1448.12 
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Appendix B8 Results of experimental studies for the problem set 20.200 (cont.) 

00 (cont.) 

 

Problem 

Setting 

Instance 

No 

Throughput Rate Deviation(%)
 CPU (sec.) 

BTS ATS BTS ATS 

5 

1 0.02656 0.02800 5.40 1407.30 654.51 

2 0.02663 0.02663 0.00 597.55 877.89 

3 0.02516 0.02554 1.50 895.55 968.64 

4 0.02313 0.02313 0.00 632.33 901.37 

5 0.02625 0.02625 0.00 1405.96 721.86 

6 0.02666 0.02666 0.00 460.53 669.51 

7 0.02414 0.02610 8.12 559.75 490.53 

8 0.02872 0.02872 0.00 523.12 705.68 

9 0.02583 0.02593 0.38 1486.00 555.08 

10 0.03369 0.03369 0.00 1032.97 870.03 

Avg 0.02668 0.02706 1.54 900.11 741.51 

6 

1 0.00441 0.00441 0.00 451.34 388.86 

2 0.01678 0.02318 38.18 472.02 837.78 

3 0.01724 0.01724 0.00 1658.10 1597.24 

4 0.01987 0.02478 24.70 292.89 928.53 

5 0.02972 0.02991 0.66 409.22 682.77 

6 0.02261 0.02751 21.67 546.31 1111.25 

7 0.02337 0.02337 0.00 750.69 723.31 

8 0.02131 0.02131 0.00 263.50 944.19 

9 0.02069 0.02073 0.20 191.65 408.19 

10 0.02805 0.03486 24.27 152.09 863.12 

Avg 0.02040 0.02902 10.97 518.78 848.52 

7 

1 0.02477 0.02477 0.00 3228.14 1441.97 

2 0.02153 0.02153 0.00 240.29 486.41 

3 0.02227 0.02227 0.00 257.87 3825.08 

4 0.02520 0.02520 0.00 1110.18 1511.89 

5 0.02305 0.02305 0.00 238.15 851.12 

6 0.02212 0.02221 0.41 717.54 607.14 

7 0.02830 0.03155 11.47 398.89 984.61 

8 0.02279 0.02279 0.00 440.15 2645.83 

9 0.02805 0.02805 0.00 1481.54 1355.20 

10 0.02352 0.02352 0.00 1111.17 1302.56 

Avg 0.02416 0.02449 1.19 922.39 1501.18 

8 

1 0.00823 0.00823 0.01 235.31 213.28 

2 0.01783 0.01785 0.15 749.56 554.14 

3 0.02273 0.02274 0.05 791.49 1137.40 

4 0.02384 0.02384 0.00 564.15 756.12 

5 0.02187 0.02366 8.15 1732.98 1391.76 

6 0.02806 0.03096 10.32 333.41 1340.03 

7 0.02067 0.02697 30.44 561.75 2476.94 

8 0.02137 0.02465 15.34 855.17 2380.58 

9 0.01040 0.02547 144.98 565.29 486.63 

10 0.02530 0.02531 0.00 1416.98 1022.91 

Avg 0.02003 0.02297 20.95 780.61 1175.98 
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  Appendix B9 Results of experimental studies for the problem set 20.400 

Problem 

Setting 

Instance 

No 

Throughput Rate Deviation(%)
 CPU (sec.) 

BTS ATS BTS ATS 

1 

1 0.08000 0.08000 0.02 1402.42 2274.33 

2 0.07096 0.07420 4.57 1668.24 2974.49 

3 0.06884 0.06884 0.00 1789.24 3947.73 

4 0.08056 0.08056 0.00 1354.84 2014.96 

5 0.07924 0.07924 0.00 4395.31 2748.54 

6 0.10045 0.10068 0.22 797.75 1371.94 

7 0.07070 0.07167 1.38 979.87 1545.36 

8 0.09477 0.09477 0.00 834.75 1073.44 

9 0.06570 0.06573 0.04 1276.22 2228.18 

10 0.08877 0.08877 0.00 1967.24 2033.73 

Avg 0.08000 0.08045 0.62 1646.59 2221.27 

2 

1 0.04612 0.07070 53.29 1047.53 4041.17 

2 0.05652 0.05652 0.00 503.60 1567.10 

3 0.00641 0.00641 0.02 148.29 802.76 

4 0.07206 0.07303 1.35 1495.71 4569.22 

5 0.03307 0.03307 0.00 742.33 1241.17 

6 0.06508 0.06508 0.00 1359.79 2875.22 

7 0.04008 0.06737 68.09 1291.20 757.94 

8 0.06529 0.06529 0.00 2842.96 1994.40 

9 0.06335 0.06345 0.16 1815.47 3900.43 

10 0.08707 0.08707 0.00 322.47 1488.52 

Avg 0.05351 0.05880 12.29 1156.94 2323.79 

3 

1 0.07441 0.08440 13.43 3683.31 3767.83 

2 0.07205 0.07324 1.65 1662.74 4083.45 

3 0.07003 0.07003 0.00 1475.67 10726.03 

4 0.06804 0.06806 0.04 1203.65 1371.73 

5 0.07068 0.07068 0.00 2669.55 3456.61 

6 0.06956 0.06966 0.14 2242.61 3780.87 

7 0.07896 0.08455 7.08 1366.78 4399.89 

8 0.06983 0.06983 0.00 3310.92 3742.49 

9 0.07946 0.07946 0.00 3865.24 2656.06 

10 0.06884 0.06884 0.00 2833.76 2617.19 

Avg 0.07218 0.07387 2.23 2431.42 4060.22 

4 

1 0.00823 0.00823 0.00 123.46 4108.05 

2 0.05263 0.05263 0.00 727.57 1174.79 

3 0.06011 0.06221 3.50 1946.38 3329.65 

4 0.06260 0.06753 7.88 1115.54 3060.88 

5 0.05430 0.06133 12.94 1358.84 4003.40 

6 0.09098 0.09544 4.90 436.61 1921.41 

7 0.06000 0.07227 20.45 806.43 4560.43 

8 0.05564 0.05881 5.69 1772.24 3390.74 

9 0.06349 0.06439 1.43 959.54 856.33 

10 0.06089 0.06141 0.86 1414.56 2452.06 

Avg 0.05689 0.06043 5.76 1066.12 2885.77 
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Appendix B9 Results of experimental studies for the problem set 20.400 (cont.) 

00 (cont.) 

 

Problem 

Setting 

Instance 

No 

Throughput Rate Deviation(%)
 CPU (sec.) 

BTS ATS BTS ATS 

5 

1 0.03207 0.03540 10.38 1318.12 1238.61 

2 0.02663 0.02663 0.00 1569.85 2033.28 

3 0.02595 0.02598 0.12 684.51 1424.64 

4 0.02326 0.02326 0.00 982.66 1638.13 

5 0.03638 0.03638 0.00 378.71 967.74 

6 0.02666 0.02666 0.00 1671.68 1123.48 

7 0.02414 0.02825 17.04 1720.37 1527.65 

8 0.02872 0.02872 0.00 535.32 1782.82 

9 0.02593 0.02593 0.00 900.06 1867.39 

10 0.03369 0.03369 0.00 962.16 1751.40 

Avg 0.02834 0.02909 2.75 1072.34 1535.51 

6 

1 0.00440 0.00440 0.11 753.37 1232.76 

2 0.01678 0.02341 39.49 1639.39 3150.58 

3 0.01724 0.01724 0.00 676.85 1396.25 

4 0.01987 0.02478 24.67 537.33 2419.84 

5 0.02380 0.03060 28.58 2091.39 2213.61 

6 0.02751 0.02751 0.00 2146.80 2188.06 

7 0.02337 0.02337 0.00 383.79 1118.32 

8 0.02131 0.02131 0.00 299.47 1953.43 

9 0.02073 0.02073 0.00 730.24 3365.64 

10 0.03485 0.03488 0.09 1408.37 1731.01 

Avg 0.02099 0.02282 9.29 1066.70 2076.95 

7 

1 0.02477 0.02480 0.12 6452.50 4941.10 

2 0.02167 0.02170 0.11 1812.66 4880.82 

3 0.02227 0.02227 0.00 3034.03 2380.59 

4 0.02520 0.02520 0.00 2729.32 2665.11 

5 0.02306 0.02306 0.00 1954.15 3741.20 

6 0.02215 0.02221 0.24 3630.24 1063.50 

7 0.02707 0.03155 16.57 2567.84 2147.27 

8 0.02279 0.02279 0.00 1486.08 4062.45 

9 0.02805 0.02805 0.00 1574.10 3677.55 

10 0.02352 0.02352 0.00 1101.30 1431.41 

Avg 0.02405 0.02451 1.70 2634.22 3099.10 

8 

1 0.00823 0.00823 0.00 1009.38 1647.06 

2 0.01867 0.01867 0.00 1050.45 1296.64 

3 0.02380 0.02380 0.00 1052.00 1777.92 

4 0.02384 0.02384 0.00 739.72 1637.61 

5 0.02372 0.02493 5.11 4558.11 3550.95 

6 0.02371 0.03149 32.84 996.92 2242.15 

7 0.02122 0.02787 31.32 922.18 1974.11 

8 0.02701 0.02701 0.00 599.85 2429.41 

9 0.02578 0.02578 0.00 610.03 1146.93 

10 0.02637 0.02637 0.00 1118.27 2178.11 

Avg 0.02223 0.02379 6.93 1265.69 1988.09 
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  Appendix B10 Results of experimental studies for the problem set 40.200 

Problem 

Setting 

Instance 

No 

Throughput Rate Deviation(%)
 CPU (sec.) 

BTS ATS BTS ATS 

1 

1 0.07327 0.08200 11.92 2815.94 13552.11 

2 0.06027 0.06027 0.00 1174.70 11863.92 

3 0.07957 0.07957 0.00 3056.91 12311.99 

4 0.07952 0.07952 0.00 1973.86 10925.34 

5 0.07338 0.07346 0.11 2646.05 9988.17 

6 0.06721 0.08597 27.90 4216.20 16540.13 

7 0.06803 0.06812 0.13 4100.84 14278.52 

8 0.09560 0.09560 0.00 1421.41 16651.79 

9 0.03156 0.03480 10.26 4995.30 23352.77 

10 0.08674 0.08674 0.00 4153.45 12357.47 

Avg 0.07151 0.07460 5.03 3055.47 14182.22 

2 

1 0.06547 0.09746 48.87 6543.52 15792.22 

2 0.09626 0.09663 0.38 1115.05 6271.30 

3 0.07888 0.08022 1.71 2458.77 11470.12 

4 0.06936 0.06954 0.25 6546.20 11141.63 

5 0.06366 0.06500 2.12 7864.83 33952.58 

6 0.05883 0.05883 0.00 16168.44 25836.86 

7 0.06923 0.06923 0.00 1518.34 5728.60 

8 0.08170 0.08210 0.50 7365.01 13978.12 

9 0.07312 0.07312 0.00 3835.86 7802.66 

10 0.06904 0.07571 9.66 5844.13 5367.52 

Avg 0.07255 0.07679 6.35 5926.02 13734.16 

3 

1 0.07292 0.07305 0.19 6023.73 15447.66 

2 0.06707 0.06707 0.00 1963.70 5027.43 

3 0.07483 0.07830 4.65 15815.53 26778.01 

4 0.06085 0.06109 0.39 1756.45 4391.06 

5 0.07268 0.07274 0.08 8936.36 25387.56 

6 0.07966 0.08312 4.34 8919.91 24489.68 

7 0.06754 0.07852 16.26 5560.72 21465.61 

8 0.09433 0.09451 0.19 6255.59 20900.17 

9 0.08458 0.08527 0.82 8022.93 28562.42 

10 0.08606 0.08643 0.43 5205.87 21326.04 

Avg 0.07605 0.07801 2.73 6846.08 19377.56 

4 

1 0.05897 0.06984 18.43 5080.15 21412.47 

2 0.04542 0.04666 2.71 2189.63 6539.40 

3 0.04307 0.05292 22.88 16311.28 26558.22 

4 0.05751 0.06156 7.05 4219.17 14515.56 

5 0.04565 0.05165 13.14 13663.22 21208.65 

6 0.07553 0.07789 3.13 2075.05 6922.93 

7 0.05281 0.06209 17.56 5153.79 12044.58 

8 0.05788 0.06896 19.14 7650.00 12440.17 

9 0.06642 0.06642 0.00 1207.70 22490.63 

10 0.05748 0.06483 12.79 4945.88 17551.04 

Avg 0.05607 0.06228 11.68 6249.59 15585.69 
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Appendix B10 Results of experimental studies for the problem set 40.200 (cont.) 

0 (cont.) 

00 (cont.) 

 

Problem 

Setting 

Instance 

No 

Throughput Rate Deviation(%)
 CPU (sec.) 

BTS ATS BTS ATS 

5 

1 0.02572 0.02572 0.00 4532.03 14535.20 

2 0.02513 0.02513 0.00 2003.23 7599.48 

3 0.02495 0.02496 0.04 2488.64 13870.25 

4 0.02650 0.02650 0.00 2351.25 16177.85 

5 0.02487 0.02487 0.00 2700.03 10753.72 

6 0.02293 0.02293 0.00 3307.66 7461.38 

7 0.02334 0.02334 0.00 1987.13 6461.80 

8 0.02169 0.02710 24.92 1681.25 13156.19 

9 0.02168 0.02168 0.00 5759.06 12850.29 

10 0.03292 0.03292 0.00 1250.16 7754.29 

Avg 0.02497 0.02552 2.50 2806.04 11062.05 

6 

1 0.02875 0.02948 2.56 2176.67 16729.51 

2 0.01930 0.01930 0.00 3371.52 9610.69 

3 0.02337 0.03011 28.84 2558.16 9431.27 

4 0.02456 0.02456 0.00 2446.48 8042.12 

5 0.02203 0.02203 0.00 2745.19 11029.80 

6 0.02232 0.02242 0.44 3028.26 7631.35 

7 0.02047 0.02307 12.73 2801.36 10328.14 

8 0.03202 0.03202 0.00 2400.70 6771.24 

9 0.02614 0.02778 6.25 3497.80 20571.80 

10 0.02875 0.02875 0.00 4466.03 11159.02 

Avg 0.02477 0.02595 5.08 2949.22 11130.49 

7 

1 0.02574 0.02582 0.30 6034.09 14136.17 

2 0.02215 0.02229 0.66 4438.19 10203.99 

3 0.02781 0.02803 0.76 5089.61 10985.18 

4 0.02796 0.02797 0.05 7293.75 13342.20 

5 0.02595 0.02609 0.51 6702.91 18100.61 

6 0.03269 0.03841 17.51 5132.66 10328.95 

7 0.02317 0.02325 0.35 3998.66 8833.30 

8 0.03670 0.03670 0.00 4081.36 8575.73 

9 0.02980 0.02986 0.21 8100.55 24915.04 

10 0.03287 0.03287 0.00 4247.28 10302.23 

Avg 0.02848 0.02913 2.03 5511.91 12972.34 

8 

1 0.01856 0.02773 49.37 12618.81 42253.54 

2 0.01703 0.01705 0.12 5054.92 13085.27 

3 0.01912 0.02241 17.22 10970.84 28875.46 

4 0.02224 0.02396 7.73 4596.08 14181.67 

5 0.02054 0.02064 0.46 12404.01 13233.24 

6 0.02079 0.02953 42.05 6831.69 16844.55 

7 0.01892 0.02332 23.26 7025.14 19843.68 

8 0.02729 0.02904 6.42 2963.74 16434.03 

9 0.02463 0.02485 0.91 8298.10 22987.44 

10 0.02723 0.02801 2.89 4249.05 14913.41 

Avg 0.02163 0.02465 15.04 7501.24 20265.23 
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  Appendix B11 Results of experimental studies for the problem set 40.400 

Problem 

Setting 

Instance 

No 

Throughput Rate Deviation(%)
 CPU (sec.) 

BTS ATS BTS ATS 

1 

1 0.08200 0.08200 0.00 6078.41 29163.88 

2 0.06027 0.06027 0.00 3539.51 16926.48 

3 0.07952 0.07957 0.06 10658.80 37448.29 

4 0.07952 0.07952 0.00 4636.64 28288.55 

5 0.07338 0.07346 0.11 4988.56 32450.96 

6 0.06721 0.08597 27.90 7568.82 34732.79 

7 0.06803 0.06808 0.08 5863.07 29255.94 

8 0.09560 0.09560 0.00 1591.14 18620.74 

9 0.06788 0.06902 1.68 10247.36 29178.62 

10 0.08674 0.08674 0.00 9757.81 36119.17 

Avg 0.07601 0.07802 2.98 6493.01 29218.54 

2 

1 0.06428 0.07352 14.38 10298.55 27928.16 

2 0.09669 0.09669 0.00 3528.71 15018.90 

3 0.07908 0.08178 3.41 5356.44 22185.66 

4 0.06947 0.06958 0.16 15060.64 26849.99 

5 0.06424 0.06547 1.92 7459.03 62964.94 

6 0.05886 0.05886 0.00 16739.39 40051.36 

7 0.06923 0.06948 0.36 6350.44 30914.72 

8 0.08304 0.08304 0.00 9700.77 28932.40 

9 0.07496 0.07496 0.00 12795.39 36496.87 

10 0.07575 0.07575 0.00 2657.76 11357.30 

Avg 0.07356 0.07492 2.02 8994.71 30270.03 

3 

1 0.07332 0.07337 0.06 16280.78 35756.84 

2 0.06799 0.06831 0.48 5754.05 11151.21 

3 0.07619 0.07908 3.79 5392.91 13368.90 

4 0.06124 0.06124 0.00 13642.39 29584.57 

5 0.07313 0.07315 0.03 4379.03 11426.90 

6 0.08569 0.08614 0.53 24482.97 72147.65 

7 0.07852 0.07858 0.08 12603.60 77072.13 

8 0.09519 0.09521 0.02 9418.82 49508.60 

9 0.08381 0.08605 2.68 7524.56 21249.27 

10 0.08658 0.08659 0.01 10412.73 31074.05 

Avg 0.07816 0.07877 0.77 10989.18 35234.01 

4 

1 0.05897 0.06227 5.59 9299.57 41080.21 

2 0.04991 0.05172 3.63 3531.21 15363.42 

3 0.05309 0.05871 10.59 24695.76 47090.40 

4 0.05751 0.06378 10.91 5809.01 23556.20 

5 0.05332 0.06087 14.16 23637.81 44445.38 

6 0.07989 0.07989 0.00 4164.93 20755.54 

7 0.05281 0.05281 0.00 5068.12 22251.41 

8 0.05242 0.05242 0.00 9717.13 24551.60 

9 0.06642 0.06642 0.00 16158.59 41511.09 

10 0.05213 0.06115 17.30 10070.61 41539.81 

Avg 0.05765 0.06100 6.22 11215.27 32214.51 
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Appendix B11 Results of experimental studies for the problem set 40.400 (cont.) 

00 (cont.) 

 

Problem 

Setting 

Instance 

No 

Throughput Rate Deviation(%)
 CPU (sec.) 

BTS ATS BTS ATS 

5 

1 0.02572 0.02572 0.00 11414.59 32423.50 

2 0.02513 0.02590 3.04 21482.39 44447.34 

3 0.02574 0.02574 0.00 19847.79 39543.70 

4 0.02650 0.02650 0.00 12657.03 35981.93 

5 0.02487 0.02600 4.56 18826.44 36479.01 

6 0.02293 0.02293 0.00 12353.07 35059.82 

7 0.02334 0.02334 0.00 13364.70 36094.15 

8 0.02710 0.02710 0.00 6862.80 19588.40 

9 0.02168 0.02168 0.00 17086.35 22161.86 

10 0.03292 0.03292 0.00 8389.19 10508.01 

Avg 0.02559 0.02578 0.76 14228.44 31228.77 

6 

1 0.02875 0.02948 2.56 4497.03 13401.10 

2 0.01946 0.02085 7.10 11029.17 20771.88 

3 0.02453 0.03011 22.76 10700.12 32010.98 

4 0.02456 0.02456 0.00 3950.45 10852.74 

5 0.02203 0.02203 0.00 7749.09 21745.00 

6 0.02232 0.02275 1.92 10290.66 30781.95 

7 0.02043 0.02307 12.91 4154.28 12642.09 

8 0.03203 0.03203 0.02 11771.58 35413.34 

9 0.02614 0.02778 6.25 14988.45 34162.73 

10 0.02875 0.02875 0.00 15369.00 35590.27 

Avg 0.02490 0.02614 5.35 9449.98 24737.21 

7 

1 0.02558 0.02582 0.93 7548.97 23869.70 

2 0.02230 0.02246 0.69 6418.31 25349.30 

3 0.02797 0.02804 0.24 8159.45 32424.01 

4 0.02797 0.02797 0.00 16931.75 46688.22 

5 0.02355 0.02609 10.80 14365.40 47299.64 

6 0.03798 0.03842 1.15 4553.02 28686.44 

7 0.02315 0.02324 0.38 6451.81 31213.94 

8 0.03671 0.03671 0.00 7339.54 38413.25 

9 0.02986 0.02986 0.00 13421.89 33886.45 

10 0.03287 0.03287 0.00 6780.16 36252.01 

Avg 0.02879 0.02915 1.42 9197.03 34408.30 

8 

1 0.02009 0.04073 102.74 8779.82 46878.15 

2 0.01815 0.01897 4.52 7666.96 25017.55 

3 0.02364 0.02426 2.61 8105.85 26452.88 

4 0.02138 0.02435 13.89 18219.98 44569.98 

5 0.02035 0.02186 7.43 5508.15 16425.51 

6 0.02578 0.02653 2.91 6817.52 21542.36 

7 0.01932 0.02018 4.46 7193.17 25976.72 

8 0.02728 0.03106 13.89 11964.66 40895.15 

9 0.02548 0.02555 0.27 9091.24 27732.27 

10 0.02848 0.02866 0.65 10848.98 34312.86 

Avg 0.02299 0.02621 15.34 9419.63 30980.34 
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  Appendix B12 Results of experimental studies for the problem set 40.800 

Problem 

Setting 

Instance 

No 

Throughput Rate Deviation(%)
 CPU (sec.) 

BTS ATS BTS ATS 

1 

1 0.07331 0.08200 11.86 13709.00 38312.57 

2 0.06027 0.06027 0.00 4179.39 21848.03 

3 0.07952 0.07961 0.11 10845.56 44140.25 

4 0.07952 0.07952 0.00 8472.16 45321.93 

5 0.07338 0.07346 0.11 10549.55 40101.03 

6 0.06729 0.08597 27.76 16988.08 48964.56 

7 0.06808 0.06808 0.00 6670.13 33550.01 

8 0.09560 0.09560 0.00 3537.11 18955.65 

9 0.06910 0.06910 0.00 20775.13 47392.53 

10 0.08674 0.08674 0.00 18604.66 44532.86 

Avg 0.07528 0.07803 3.98 11433.08 38311.94 

2 

1 0.06428 0.07351 14.36 21650.11 54905.34 

2 0.09626 0.09669 0.45 4266.89 12806.70 

3 0.06788 0.08180 20.51 13645.66 40939.68 

4 0.06959 0.06959 0.00 25250.64 55751.93 

5 0.06419 0.06547 2.00 17222.05 49666.51 

6 0.05886 0.05886 0.00 23665.34 55995.01 

7 0.05970 0.06948 16.40 15697.89 40390.76 

8 0.08318 0.08318 0.00 23800.69 53204.70 

9 0.07573 0.07579 0.07 17050.95 40452.18 

10 0.07575 0.07575 0.00 13532.06 40695.47 

Avg 0.07154 0.07500 5.38 17578.23 44480.83 

3 

1 0.07332 0.07337 0.06 17838.03 39576.32 

2 0.06831 0.06895 0.94 10390.50 25371.06 

3 0.07908 0.07923 0.20 28219.16 59343.12 

4 0.06120 0.06124 0.07 6987.19 15979.81 

5 0.07321 0.07321 0.00 32224.67 67949.00 

6 0.08281 0.08614 4.02 9926.56 22858.26 

7 0.07238 0.07858 8.55 11081.59 26861.02 

8 0.09535 0.09535 0.00 35735.00 70970.38 

9 0.08563 0.08665 1.19 13974.13 32332.18 

10 0.08660 0.08675 0.18 17732.01 39176.06 

Avg 0.07779 0.07893 1.52 18410.88 40041.72 

4 

1 0.06227 0.06305 1.27 18864.14 43542.39 

2 0.05160 0.05256 1.85 19836.88 45565.83 

3 0.06135 0.06817 11.11 25559.53 58457.08 

4 0.06541 0.06849 4.71 14812.42 36393.63 

5 0.06087 0.06763 11.11 40075.88 91099.92 

6 0.07989 0.08070 1.01 5025.30 14444.38 

7 0.06600 0.06805 3.09 7276.46 21935.54 

8 0.07767 0.08175 5.26 16417.22 40569.39 

9 0.06326 0.07415 17.21 67775.68 148747.75 

10 0.07323 0.07790 6.38 10185.89 23352.08 

Avg 0.06615 0.07024 6.30 22582.94 52410.80 
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Appendix B12 Results of experimental studies for the problem set 40.800 (cont.) 

00 (cont.) 

 

Problem 

Setting 

Instance 

No 

Throughput Rate 
Deviation(%)

 CPU (sec.) 

BTS ATS BTS ATS 

5 

1 0.02989 0.02989 0.00 22134.55 52758.95 

2 0.02590 0.02590 0.00 2653.14 13796.13 

3 0.02574 0.02614 1.52 32486.17 73462.19 

4 0.02650 0.02650 0.00 17656.86 43803.57 

5 0.02600 0.02728 4.93 25197.63 58885.11 

6 0.02293 0.02389 4.17 5006.55 18502.95 

7 0.02468 0.02468 0.00 25757.34 60004.53 

8 0.02710 0.02710 0.00 5044.58 18579.01 

9 0.02168 0.02168 0.00 12466.87 33423.59 

10 0.03292 0.03292 0.00 17539.17 43568.19 

Avg 0.02633 0.02660 1.06 16594.29 41678.42 

6 

1 0.02261 0.02948 30.38 35920.93 71233.23 

2 0.01919 0.02085 8.63 16449.11 32289.59 

3 0.02362 0.03011 27.48 40649.29 80689.95 

4 0.02456 0.02456 0.00 9674.54 18740.45 

5 0.02203 0.02203 0.00 29029.44 57450.25 

6 0.02232 0.02275 1.92 21382.10 42155.57 

7 0.02275 0.02307 1.43 10325.74 20042.85 

8 0.03203 0.03481 8.70 5927.10 11245.57 

9 0.02614 0.03076 17.65 15790.94 30973.25 

10 0.02875 0.02875 0.00 15511.35 30414.07 

Avg 0.02440 0.02672 9.62 20066.05 39523.48 

7 

1 0.02574 0.02574 0.00 30085.50 62206.83 

2 0.02234 0.02351 5.26 17673.63 37383.09 

3 0.02804 0.02951 5.26 7142.50 16320.83 

4 0.02797 0.02797 0.00 23306.31 48648.45 

5 0.02355 0.02414 2.51 29987.11 62010.05 

6 0.03366 0.03368 0.05 10170.83 22377.49 

7 0.02315 0.02315 0.00 13053.20 28142.23 

8 0.03671 0.03671 0.00 21161.33 44358.49 

9 0.02986 0.02986 0.00 30271.90 62579.63 

10 0.03287 0.03287 0.00 19047.09 40130.01 

Avg 0.02839 0.02871 1.31 20189.94 42415.71 

8 

1 0.02255 0.05540 145.73 21592.05 59194.26 

2 0.01897 0.02108 11.11 18210.42 44402.02 

3 0.02426 0.02451 1.01 12935.56 30687.38 

4 0.02435 0.02705 11.11 24371.60 60421.09 

5 0.02186 0.02186 0.00 16576.69 40154.32 

6 0.02653 0.02764 4.17 15678.35 37818.64 

7 0.02018 0.02102 4.17 15804.35 38146.24 

8 0.03106 0.03170 2.04 16665.03 40384.01 

9 0.02613 0.02613 0.00 27711.02 69103.58 

10 0.02848 0.02875 0.95 18227.98 44447.68 

Avg 0.02444 0.02851 18.03 18777.31 46475.92 
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      Appendix C1 Results of experimental studies for the problem set 5.50 

Problem 

Setting 
Instance 

Desired 

Rate 

(N=25) 

Binary Search Tabu Search Simulated Annealing 

Achieved 

Rate 
N 

Total # of 

Iterations 

CPU 

(sec.) 

Achieved 

Rate 
N 

Total # of 

Iterations 

# of 

Iterations 

for 

Convergence 

CPU 

(sec.) 

Achieved 

Rate 
N 

Total # of 

Iterations 

# of 

Iterations 

for 

Convergence 

CPU 

(sec.) 

1 

1 0.07327 0.07327 14 22 2.39 0.07327 14 11 6 2.15 0.07327 14 10 5 2.34 

2 0.07495 0.07495 20 28 2.56 0.07495 20 10 5 1.78 0.07495 20 10 5 2.53 

3 0.07952 0.07952 17 25 2.43 0.07952 17 10 5 1.73 0.07952 17 10 4 2.17 

4 0.07952 0.07952 9 17 1.12 0.07952 9 11 6 1.34 0.07952 9 10 5 1.42 

5 0.07338 0.07338 14 22 2.01 0.07338 14 11 6 1.86 0.07338 14 10 5 2.12 

Avg 0.07613 0.07613 15 23 2.10 0.07613 15 11 6 1.77 0.07613 15 10 5 2.12 

2 

1 0.06404 0.06930 9 17 1.79 0.06930 9 11 6 2.09 0.06930 9 9 7 2.78 

2 0.05846 0.05846 25 32 4.49 0.05846 25 7 2 1.79 0.05846 25 10 2 2.67 

3 0.06376 0.06376 25 32 6.05 0.06376 25 7 2 2.48 0.06376 25 10 2 3.50 

4 0.06952 0.06952 25 32 19.59 0.06952 25 7 2 6.85 0.06952 25 10 2 11.00 

5 0.06355 0.06355 25 32 6.08 0.06355 25 7 2 2.39 0.06355 25 10 2 3.63 

Avg 0.06386 0.06492 22 29 7.60 0.06492 22 8 3 3.12 0.06492 22 10 3 4.72 

3 

1 0.09005 0.09018 20 28 9.47 0.09018 20 10 5 5.35 0.09018 20 12 6 7.47 

2 0.06728 0.06731 24 32 3.52 0.06731 24 9 4 1.87 0.06731 24 10 4 2.33 

3 0.09482 0.09482 25 32 11.30 0.09482 25 7 2 4.15 0.09482 25 10 2 6.75 

4 0.08473 0.08473 24 32 10.28 0.08473 24 9 4 5.48 0.08473 24 10 4 7.00 

5 0.07306 0.07306 25 32 5.65 0.07306 25 7 2 2.29 0.07306 25 10 2 3.32 

Avg 0.08198 0.08202 24 31 8.04 0.08202 24 8 3 3.83 0.08202 24 10 4 5.37 

4 

1 0.06093 0.06093 25 32 6.68 0.06093 25 7 2 2.82 0.06093 25 10 2 3.85 

2 0.04998 0.04998 25 32 5.02 0.04998 25 7 2 2.04 0.04998 25 10 2 2.93 

3 0.06773 0.06773 25 32 6.07 0.06773 25 7 2 2.50 0.06773 25 10 2 3.57 

4 0.06215 0.06230 24 32 6.21 0.06230 24 9 4 3.39 0.06230 24 10 4 4.23 

5 0.05550 0.05550 25 32 6.86 0.05550 25 7 2 2.90 0.05550 25 10 2 3.98 

Avg 0.05926 0.05929 25 32 6.17 0.05929 25 7 2 2.73 0.05929 25 10 2 3.71 
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Appendix C1 Results of experimental studies for the problem set 5.50 (cont.) 

 (cont.) 

 

 

 

 

Problem 

Setting 
Instance 

Desired 

Rate 

(N=25) 

Binary Search Tabu Search Simulated Annealing 

Achieved 

Rate 
N 

Total # of 

Iterations 

CPU 

(sec.) 

Achieved 

Rate 
N 

Total # of 

Iterations 

# of 

Iterations 

for 

Convergence 

CPU 

(sec.) 

Achieved 

Rate 
N 

Total # of 

Iterations 

# of 

Iterations 

for 

Convergence 

CPU 

(sec.) 

5 

1 0.03676 0.03676 14 22 3.73 0.03676 14 11 6 3.54 0.03676 14 9 5 3.49 

2 0.02362 0.02362 5 9 0.89 0.02362 5 5 0 0.92 0.02362 5 5 4 0.97 

3 0.03713 0.03713 5 9 0.55 0.03713 5 5 0 0.61 0.03713 5 5 4 0.62 

4 0.03085 0.03085 17 25 3.03 0.03085 17 10 5 2.21 0.03085 17 9 4 2.23 

5 0.03369 0.03369 7 14 0.42 0.03369 7 8 3 0.44 0.03369 7 4 3 0.41 

Avg 0.03241 0.03241 10 16 1.72 0.03241 10 8 3 1.54 0.03241 10 6 4 1.54 

6 

1 0.01485 0.01485 17 25 1.97 0.01485 17 10 5 1.42 0.01485 17 9 4 1.45 

2 0.02256 0.02256 22 29 7.19 0.02256 22 9 4 3.84 0.02256 22 10 4 5.23 

3 0.02540 0.02540 13 20 10.27 0.02540 13 8 3 7.41 0.02540 13 6 3 6.60 

4 0.02375 0.02375 8 16 1.62 0.02375 8 11 6 2.01 0.02375 8 7 5 1.70 

5 0.02508 0.02508 24 32 3.45 0.02508 24 9 4 1.86 0.02508 24 10 4 2.34 

Avg 0.02233 0.02233 17 24 4.90 0.02233 17 9 4 3.31 0.02233 17 8 4 3.46 

7 

1 0.03088 0.03088 25 32 10.12 0.03088 25 7 2 4.07 0.03088 25 10 2 5.72 

2 0.02349 0.02349 24 32 3.82 0.02349 24 9 4 2.12 0.02349 24 10 4 2.62 

3 0.03719 0.03719 25 32 10.08 0.03719 25 7 2 3.51 0.03719 25 10 2 6.07 

4 0.03101 0.03101 24 32 3.07 0.03101 24 9 4 1.70 0.03101 24 10 4 2.04 

5 0.03369 0.03369 24 32 2.79 0.03369 24 9 4 1.56 0.03369 24 10 4 1.92 

Avg 0.03125 0.03125 24 32 5.98 0.03125 24 8 3 2.59 0.03125 24 10 3 3.67 

8 

1 0.01460 0.01460 24 32 10.87 0.01460 24 9 4 5.60 0.01460 24 10 4 7.35 

2 0.01835 0.01835 25 32 10.17 0.01835 25 7 2 4.09 0.01835 25 10 2 5.88 

3 0.02401 0.02401 25 32 5.68 0.02401 25 7 2 2.37 0.02401 25 10 2 3.24 

4 0.02235 0.02235 25 32 15.51 0.02235 25 7 2 5.99 0.02235 25 10 2 9.14 

5 0.02461 0.02462 24 32 3.99 0.02462 24 9 4 2.23 0.02462 24 10 4 2.76 

Avg 0.02078 0.02079 25 32 9.24 0.02079 25 8 3 4.06 0.02079 25 10 3 5.67 
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      Appendix C2 Results of experimental studies for the problem set 5.100 

Problem 

Setting 
Instance 

Desired 

Rate 

(N=50) 

Binary Search Tabu Search Simulated Annealing 

Achieved 

Rate 
N 

Total # of 

Iterations 

CPU 

(sec.) 

Achieved 

Rate 
N 

Total # of 

Iterations 

# of 

Iterations 

for 

Convergence 

CPU 

(sec.) 

Achieved 

Rate 
N 

Total # of 

Iterations 

# of 

Iterations 

for 

Convergence 

CPU 

(sec.) 

1 

1 0.082002 0.082002 32 40 8.95 0.082002 32 16 6 9.58 0.082002 32 13 6 12.45 

2 0.074952 0.074952 27 36 5.52 0.074952 27 17 7 5.83 0.074952 27 15 7 6.55 

3 0.079517 0.079517 17 26 3.45 0.079517 17 17 7 4.79 0.079517 17 15 7 5.25 

4 0.079516 0.079516 9 18 1.86 0.079516 9 15 5 2.42 0.079516 14 3 3 1.45 

5 0.073379 0.073379 14 23 3.11 0.073379 14 13 3 3.65 0.073379 14 3 3 2.46 

Avg 0.077873 0.077873 20 29 4.58 0.077873 20 16 6 5.25 0.077873 21 10 5 5.63 

2 

1 0.075750 0.075750 47 55 14.63 0.075750 47 15 5 8.83 0.075750 47 10 5 9.35 

2 0.059465 0.059465 50 58 17.32 0.059465 50 12 2 7.10 0.059465 50 10 2 9.27 

3 0.063879 0.063879 47 55 21.01 0.063879 47 15 5 12.86 0.063879 47 10 5 12.73 

4 0.059568 0.059568 49 58 14.82 0.059568 49 15 5 8.36 0.059568 49 10 5 9.22 

5 0.083032 0.083032 50 58 30.42 0.083032 50 12 2 11.05 0.083032 50 10 2 17.64 

Avg 0.068339 0.068339 49 57 20.89 0.068339 49 14 4 9.64 0.068339 49 10 4 11.64 

3 

1 0.073273 0.073273 49 58 22.17 0.073273 49 15 5 12.11 0.073273 49 10 5 13.64 

2 0.066721 0.066721 50 58 34.65 0.066721 50 12 2 14.26 0.066721 50 10 2 18.42 

3 0.078925 0.078925 50 58 20.20 0.078925 50 12 2 8.25 0.078925 50 10 2 10.80 

4 0.056857 0.057020 27 45 16.33 0.056934 39 20 10 27.58 0.057020 27 17 11 29.70 

5 0.073089 0.073089 50 58 20.03 0.073089 50 12 2 8.30 0.073089 50 10 2 10.62 

Avg 0.069773 0.069806 45 55 22.68 0.069788 48 14 4 14.10 0.069806 45 11 4 16.64 

4 

1 0.065298 0.065298 50 58 33.46 0.065298 50 12 2 13.74 0.065298 50 10 2 17.44 

2 0.053414 0.053414 50 58 19.59 0.053414 50 12 2 8.00 0.053414 50 10 2 10.39 

3 0.072989 0.072989 50 58 26.40 0.072989 50 12 2 11.20 0.072989 50 10 2 13.98 

4 0.063962 0.064161 49 58 26.63 0.064161 49 15 5 15.02 0.064161 49 10 5 15.48 

5 0.059712 0.059712 50 58 33.18 0.059712 50 12 2 13.88 0.059712 50 10 2 17.50 

Avg 0.063075 0.063115 50 58 27.85 0.063115 50 13 3 12.37 0.063115 50 10 3 14.96 
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Appendix C2 Results of experimental studies for the problem set 5.100 (cont.) 

 

 

 

 

Problem 

Setting 
Instance 

Desired 

Rate 

(N=50) 

Binary Search Tabu Search Simulated Annealing 

Achieved 

Rate 
N 

Total # of 

Iterations 

CPU 

(sec.) 

Achieved 

Rate 
N 

Total # of 

Iterations 

# of 

Iterations 

for 

Convergence 

CPU 

(sec.) 

Achieved 

Rate 
N 

Total # of 

Iterations 

# of 

Iterations 

for 

Convergence 

CPU 

(sec.) 

5 

1 0.036759 0.036759 14 23 6.35 0.036759 14 13 3 6.19 0.036759 14 3 3 4.26 

2 0.029006 0.029006 34 43 8.58 0.029006 34 15 5 7.07 0.029006 34 10 5 6.69 

3 0.037133 0.037133 5 10 1.34 0.037133 5 6 6 1.75 0.037133 5 6 6 1.81 

4 0.030850 0.030850 17 26 3.87 0.030850 17 17 7 5.82 0.030850 17 11 7 5.07 

5 0.033691 0.033691 7 15 1.19 0.033691 7 15 5 1.48 0.033691 7 8 6 1.67 

Avg 0.033488 0.033488 15 23 4.27 0.033488 15 13 5 4.46 0.033488 15 8 5 3.90 

6 

1 0.019655 0.019655 17 26 9.84 0.019655 17 17 7 14.24 0.019655 17 11 7 11.95 

2 0.021452 0.021452 32 40 7.85 0.021452 32 16 6 7.92 0.021452 32 13 6 7.36 

3 0.033825 0.033825 49 58 36.85 0.033825 49 15 5 18.08 0.033825 49 10 5 20.51 

4 0.028550 0.028550 49 58 17.32 0.028550 49 15 5 9.64 0.028550 49 10 5 9.98 

5 0.018001 0.018001 47 55 11.25 0.018001 47 15 5 7.24 0.018001 47 10 5 6.99 

Avg 0.024297 0.024297 39 47 16.62 0.024297 39 16 6 11.42 0.024297 39 11 6 11.36 

7 

1 0.031343 0.031343 50 58 46.57 0.031343 50 12 2 18.75 0.031343 50 10 2 25.02 

2 0.023497 0.023497 39 48 10.47 0.023497 39 17 7 9.52 0.023497 39 15 7 10.83 

3 0.037226 0.037226 49 58 22.29 0.037226 49 15 5 11.34 0.037226 49 10 5 12.65 

4 0.031018 0.031018 44 52 9.72 0.031018 44 14 4 6.18 0.031018 44 15 6 8.36 

5 0.033869 0.033869 49 58 11.82 0.033869 49 15 5 6.79 0.033869 49 10 5 6.99 

Avg 0.031391 0.031391 46 55 20.17 0.031391 46 15 5 10.52 0.031391 46 12 5 12.77 

8 

1 0.014675 0.014675 49 58 34.07 0.014675 49 15 5 17.33 0.014675 49 10 5 19.27 

2 0.018924 0.018924 50 58 36.18 0.018924 50 12 2 14.20 0.018924 50 10 2 19.06 

3 0.025171 0.025171 50 58 28.41 0.025171 50 12 2 11.23 0.025171 50 10 2 14.80 

4 0.023489 0.023489 50 58 58.41 0.023489 50 12 2 21.40 0.023489 50 10 2 30.84 

5 0.025001 0.025004 49 58 17.16 0.025004 49 15 5 10.38 0.025004 49 10 5 9.95 

Avg 0.021452 0.021453 50 58 34.85 0.021453 50 13 3 14.91 0.021453 50 10 3 18.78 
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     Appendix C3 Results of experimental studies for the problem set 5.200 

Problem 

Setting 
Instance 

Desired 

Rate 

(N=100) 

Binary Search Tabu Search Simulated Annealing 

Achieved 

Rate 
N 

Total # of 

Iterations 

CPU 

(sec.) 

Achieved 

Rate 
N 

Total # of 

Iterations 

# of 

Iterations 

for 

Convergence 

CPU 

(sec.) 

Achieved 

Rate 
N 

Total # of 

Iterations 

# of 

Iterations 

for 

Convergence 

CPU 

(sec.) 

1 

1 0.082002 0.082002 32 56 20.09 0.082002 32 22 7 17.43 0.082002 32 10 4 12.87 

2 0.074952 0.074952 27 37 7.91 0.074952 27 23 8 11.29 0.074952 27 15 6 11.03 

3 0.079517 0.079517 17 27 8.42 0.079517 17 21 6 8.19 0.079517 17 10 5 10.31 

4 0.079516 0.079516 9 19 4.31 0.079516 9 21 6 5.87 0.079516 9 10 6 5.79 

5 0.073379 0.073379 14 24 7.64 0.073379 14 21 6 8.83 0.073379 14 8 5 11.25 

Avg 0.077873 0.077873 20 33 9.67 0.077873 20 22 7 10.32 0.077873 20 11 5 10.25 

2 

1 0.073524 0.073524 82 91 80.34 0.073524 82 22 7 54.66 0.073524 82 15 6 50.81 

2 0.059610 0.059610 99 109 81.29 0.059610 99 21 6 38.20 0.059610 99 15 6 44.24 

3 0.063879 0.063879 47 56 21.65 0.063879 47 20 5 17.60 0.063879 47 10 5 15.32 

4 0.069585 0.069585 54 64 56.36 0.069585 54 22 7 41.50 0.069585 54 10 5 30.87 

5 0.064190 0.064190 94 197 163.82 0.064190 94 20 5 37.72 0.064190 94 10 5 32.81 

Avg 0.066158 0.066158 75 103 80.69 0.066158 75 21 6 37.94 0.066158 75 12 5 34.81 

3 

1 0.094845 0.094845 100 111 250.55 0.094845 100 17 2 85.21 0.094845 100 10 3 80.25 

2 0.068029 0.068029 99 109 72.40 0.068029 99 21 6 34.60 0.068029 99 15 6 45.19 

3 0.095359 0.095359 97 106 90.17 0.095359 97 21 6 39.45 0.095359 97 15 6 50.78 

4 0.086525 0.086525 99 109 236.64 0.086525 99 21 6 120.29 0.086525 99 15 6 151.43 

5 0.073168 0.073168 87 97 80.89 0.073168 87 21 6 43.76 0.073168 87 15 6 48.13 

Avg 0.083585 0.083585 96 106 146.13 0.083585 96 20 5 64.66 0.083585 96 14 5 75.16 

4 

1 0.070071 0.070071 100 109 154.66 0.070071 100 17 2 55.49 0.070071 100 10 2 56.71 

2 0.056413 0.056426 99 109 86.27 0.056426 99 21 6 40.97 0.056426 99 15 6 50.40 

3 0.078401 0.078401 100 109 123.46 0.078401 100 17 2 45.16 0.078401 100 10 2 47.08 

4 0.066478 0.066489 99 109 117.58 0.066489 99 21 6 53.80 0.066489 99 15 6 52.45 

5 0.062756 0.062756 100 109 165.33 0.062756 100 17 2 59.37 0.062756 100 10 2 62.84 

Avg 0.066824 0.066829 100 109 129.46 0.066829 100 19 4 50.96 0.066829 100 12 4 53.90 
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Appendix C3 Results of experimental studies for the problem set 5.200 (cont.) 

 

 

 

 

Problem 

Setting 
Instance 

Desired 

Rate 

(N=100) 

Binary Search Tabu Search Simulated Annealing 

Achieved 

Rate 
N 

Total # of 

Iterations 

CPU 

(sec.) 

Achieved 

Rate 
N 

Total # of 

Iterations 

# of 

Iterations 

for 

Convergence 

CPU 

(sec.) 

Achieved 

Rate 
N 

Total # of 

Iterations 

# of 

Iterations 

for 

Convergence 

CPU 

(sec.) 

5 

1 0.036759 0.036759 14 24 11.57 0.036759 14 21 6 14.76 0.036759 14 10 5 13.35 

2 0.029006 0.029006 34 44 12.96 0.029006 34 21 6 15.05 0.029006 34 10 5 12.15 

3 0.037133 0.037133 5 11 3.71 0.037133 5 22 7 4.91 0.037133 5 8 7 5.07 

4 0.030850 0.030850 17 27 7.05 0.030850 17 21 6 8.97 0.030850 17 9 5 7.80 

5 0.033691 0.033691 7 16 4.29 0.033691 7 22 7 5.23 0.033691 7 9 7 5.02 

Avg 0.033488 0.033488 15 24 7.92 0.033488 15 21 6 9.78 0.033488 15 9 6 8.68 

6 

1 0.019655 0.019655 17 27 14.51 0.019655 17 21 6 17.91 0.019655 17 10 5 16.77 

2 0.028621 0.028621 64 74 40.33 0.028621 64 22 7 31.64 0.028621 64 15 6 28.20 

3 0.033833 0.033833 74 84 72.93 0.033833 74 21 6 37.94 0.033833 74 15 6 49.53 

4 0.028572 0.028572 89 99 61.06 0.028572 89 23 8 39.05 0.028572 89 15 7 39.09 

5 0.018001 0.018001 47 56 13.57 0.018001 47 20 5 11.17 0.018001 47 10 5 9.56 

Avg 0.025736 0.025736 58 68 40.48 0.025736 58 21 6 27.54 0.025736 58 13 6 28.63 

7 

1 0.031408 0.031408 92 379 659.63 0.031408 92 34 19 133.53 0.031408 92 15 6 116.97 

2 0.023497 0.023497 39 49 13.54 0.023497 39 22 7 13.98 0.023497 39 15 6 13.01 

3 0.037226 0.037226 49 59 27.66 0.037226 49 21 6 20.55 0.037226 49 15 6 24.32 

4 0.031018 0.031018 44 53 11.48 0.031018 44 20 5 9.98 0.031018 44 10 4 8.77 

5 0.033877 0.033877 74 84 31.31 0.033877 74 21 6 19.42 0.033877 74 15 6 21.32 

Avg 0.031405 0.031405 60 125 148.72 0.031405 60 24 9 39.49 0.031405 60 14 6 36.88 

8 

1 0.014685 0.014685 84 94 74.99 0.014685 84 21 6 41.51 0.014685 84 15 6 44.80 

2 0.019281 0.019281 99 109 138.79 0.019281 99 21 6 61.84 0.019281 99 15 6 73.32 

3 0.025784 0.025784 99 109 123.49 0.025784 99 21 6 52.65 0.025784 99 15 6 65.32 

4 0.023520 0.023520 64 74 102.79 0.023520 64 22 7 62.12 0.023520 64 15 6 72.92 

5 0.025074 0.025074 97 106 77.36 0.025074 97 21 6 39.87 0.025074 97 15 6 45.37 

Avg 0.021669 0.021669 89 98 103.48 0.021669 89 21 6 51.60 0.021669 89 15 6 60.35 
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    Appendix C4 Results of experimental studies for the problem set 10.100 

Problem 

Setting 
Instance 

Desired 

Rate 

(N=50) 

Binary Search Tabu Search Simulated Annealing 

Achieved 

Rate 
N 

Total # of 

Iterations 

CPU 

(sec.) 

Achieved 

Rate 
N 

Total # of 

Iterations 

# of 

Iterations 

for 

Convergence 

CPU 

(sec.) 

Achieved 

Rate 
N 

Total # of 

Iterations 

# of 

Iterations 

for 

Convergence 

CPU 

(sec.) 

1 

1 0.08694 0.08694 13 34 129.15 0.08694 13 17 7 144.89 0.08694 13 8 3 129.92 

2 0.07338 0.07338 38 46 904.85 0.07338 38 14 4 665.61 0.07338 38 10 3 742.16 

3 0.06442 0.06442 13 21 138.69 0.06442 13 13 3 248.68 0.06442 13 5 3 147.19 

4 0.07554 0.07554 23 32 258.63 0.07554 23 14 4 325.46 0.07554 23 9 4 244.45 

5 0.07907 0.07907 28 64 173.71 0.07907 28 21 11 252.00 0.07907 29 10 5 113.40 

Avg 0.07587 0.07587 23 39 321.01 0.07587 23 16 6 324.84 0.07587 23 8 4 275.42 

2 

1 0.05596 0.05602 48 57 710.80 0.05596 48 15 5 1279.37 0.05597 49 10 5 478.53 

2 0.06253 0.06266 48 57 650.63 0.06266 48 15 5 677.13 0.06266 48 10 5 485.85 

3 0.06730 0.06776 38 45 582.16 0.07183 47 17 7 749.69 0.07281 44 10 4 618.81 

4 0.05925 0.05925 48 57 1096.30 0.05925 48 16 6 664.08 0.05925 48 10 5 754.16 

5 0.06936 0.06936 48 102 1780.16 0.06936 48 17 7 949.01 0.06936 48 10 5 745.20 

Avg 0.06288 0.06301 46 64 964.01 0.06381 48 16 6 863.86 0.06401 47 10 5 616.51 

3 

1 0.07214 0.07214 48 57 408.61 0.07214 48 15 5 302.91 0.07214 48 10 5 286.74 

2 0.06911 0.06911 43 52 523.49 0.06911 43 16 6 427.25 0.06911 43 10 5 409.00 

3 0.08597 0.08618 53 113 3113.34 0.08618 53 16 6 1501.83 0.08589 53 10 5 1232.49 

4 0.06365 0.06365 48 57 1099.02 0.06365 48 15 5 908.58 0.06365 48 10 5 790.36 

5 0.06660 0.06660 48 57 311.77 0.06660 48 15 5 220.13 0.06660 48 10 5 202.43 

Avg 0.07149 0.07154 48 67 1091.25 0.07154 48 15 5 672.14 0.07148 48 10 5 584.20 

4 

1 0.05029 0.13110 13 57 289.86 0.17492 16 13 3 176.61 0.22174 24 13 9 496.83 

2 0.04972 0.05134 78 87 2289.82 0.05134 78 16 6 1073.19 0.05134 78 10 4 1041.88 

3 0.04304 0.04389 28 37 277.34 0.04389 28 15 5 352.90 0.04389 28 10 3 354.11 

4 0.05610 0.05610 38 46 415.24 0.05610 38 14 4 363.65 0.05610 38 10 5 367.60 

5 0.05589 0.05631 4 6 108.95 0.05631 4 5 5 120.45 0.05631 4 6 6 169.18 

Avg 0.05101 0.06775 32 47 676.24 0.07651 33 13 5 417.36 0.08587 34 10 5 485.92 
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Appendix C4 Results of experimental studies for the problem set 10.100 (cont.) 

 

 

 

 

Problem 

Setting 
Instance 

Desired 

Rate 

(N=50) 

Binary Search Tabu Search Simulated Annealing 

Achieved 

Rate 
N 

Total # of 

Iterations 

CPU 

(sec.) 

Achieved 

Rate 
N 

Total # of 

Iterations 

# of 

Iterations 

for 

Convergence 

CPU 

(sec.) 

Achieved 

Rate 
N 

Total # of 

Iterations 

# of 

Iterations 

for 

Convergence 

CPU 

(sec.) 

5 

1 0.03089 0.03089 6 14 72.38 0.03089 6 15 5 110.45 0.03089 6 8 6 134.00 

2 0.02444 0.02444 12 21 39.05 0.02444 12 14 4 57.47 0.02444 12 7 5 51.78 

3 0.02340 0.02340 8 17 89.76 0.02340 8 15 5 121.52 0.02340 8 6 5 147.27 

4 0.02347 0.02347 8 17 61.09 0.02347 8 15 5 95.53 0.02347 8 6 5 104.83 

5 0.03700 0.03700 28 37 142.33 0.03700 28 17 7 202.83 0.03700 28 10 4 151.60 

Avg 0.02784 0.02784 12 21 80.92 0.02784 12 15 5 117.56 0.02784 12 7 5 117.90 

6 

1 0.01849 0.01849 23 32 282.88 0.01849 23 14 4 326.56 0.01849 23 10 4 300.24 

2 0.02347 0.02343 23 45 889.73 0.02343 23 30 29 886.30 0.02343 23 16 11 531.35 

3 0.02322 0.02322 48 57 464.83 0.02322 48 15 5 318.26 0.02322 48 10 5 319.25 

4 0.02892 0.02892 48 57 1298.27 0.02892 48 15 5 856.80 0.02892 48 10 5 922.63 

5 0.02505 0.02505 48 57 739.89 0.02505 48 15 5 478.50 0.02505 48 10 5 522.10 

Avg 0.02383 0.02382 38 50 735.12 0.02382 38 18 10 573.28 0.02382 38 11 6 519.11 

7 

1 0.02165 0.02165 43 52 169.79 0.02165 43 16 6 168.51 0.02165 43 10 5 135.36 

2 0.02169 0.02169 48 101 775.23 0.02169 48 15 5 352.30 0.02169 50 10 2 281.11 

3 0.02167 0.02167 18 27 48.25 0.02167 18 15 5 69.78 0.02167 18 9 4 53.57 

4 0.02558 0.02558 43 52 1092.27 0.02558 43 16 6 787.72 0.02558 43 10 5 793.01 

5 0.01396 0.01396 23 32 45.43 0.01396 23 14 4 58.53 0.01396 23 9 4 48.02 

Avg 0.02091 0.02091 35 53 426.19 0.02091 35 15 5 287.37 0.02091 35 10 4 262.21 

8 

1 0.01747 0.01744 43 52 211.68 0.01744 43 21 11 365.57 0.01744 43 10 5 174.74 

2 0.01280 0.01280 43 101 947.54 0.01780 43 27 17 804.16 0.01280 43 10 3 390.64 

3 0.03790 0.03790 48 104 1275.82 0.03790 48 16 6 515.81 0.03790 48 10 3 533.24 

4 0.01818 0.01818 48 56 612.83 0.01818 48 16 6 615.39 0.01818 48 10 5 614.58 

5 0.01610 0.01610 49 58 590.80 0.01610 49 15 5 397.63 0.01610 49 10 5 379.50 

Avg 0.02049 0.02048 46 74 727.73 0.02148 46 19 9 539.71 0.02048 46 10 4 418.54 
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     Appendix C5 Results of experimental studies for the problem set 10.200 

Problem 

Setting 
Instance 

Desired 

Rate 

(N=100) 

Binary Search Tabu Search Simulated Annealing 

Achieved 

Rate 
N 

Total # of 

Iterations 

CPU 

(sec.) 

Achieved 

Rate 
N 

Total # of 

Iterations 

# of 

Iterations 

for 

Convergence 

CPU 

(sec.) 

Achieved 

Rate 
N 

Total # of 

Iterations 

# of 

Iterations 

for 

Convergence 

CPU 

(sec.) 

1 

1 0.08694 0.08694 13 21 168.44 0.08694 13 21 6 247.13 0.08694 13 12 6 261.05 

2 0.07338 0.07338 38 47 968.68 0.07338 38 18 3 866.90 0.07338 38 10 3 890.29 

3 0.06442 0.06442 13 22 186.16 0.06442 13 23 8 425.13 0.06442 13 13 8 373.81 

4 0.07554 0.07554 23 33 359.38 0.07554 23 19 4 434.06 0.07554 23 10 4 448.78 

5 0.07907 0.07907 28 37 149.45 0.07907 28 36 21 190.68 0.07907 30 10 5 157.62 

Avg 0.07587 0.07587 23 32 366.42 0.07587 23 23 8 432.78 0.07587 23 11 5 426.31 

2 

1 0.05682 0.05684 83 252 4756.88 0.05683 87 21 6 1076.00 0.05684 89 15 10 1699.47 

2 0.06398 0.06407 98 108 3259.61 0.06407 98 21 6 1851.57 0.06407 98 15 6 2129.57 

3 0.06836 0.07281 41 84 1286.43 0.06836 100 21 6 2085.34 0.06836 100 15 7 2355.93 

4 0.05929 0.05929 83 93 1025.67 0.05929 83 22 7 1003.66 0.05929 83 10 4 1012.86 

5 0.07228 0.07228 98 108 4225.02 0.07228 98 24 9 2411.39 0.07228 98 15 7 2879.19 

Avg 0.06415 0.06506 81 129 2910.72 0.06417 93 22 7 1685.59 0.06417 94 14 7 2015.40 

3 

1 0.07394 0.07394 98 108 1434.35 0.07394 98 21 6 653.14 0.07394 98 15 6 865.72 

2 0.06911 0.06911 48 58 701.42 0.06911 48 20 5 594.17 0.06911 48 10 5 529.79 

3 0.07087 0.07087 58 78 2981.95 0.07087 68 17 2 966.84 0.07087 68 10 2 1334.97 

4 0.06506 0.06506 98 108 3127.48 0.06506 98 21 6 1426.11 0.06506 98 15 6 1981.70 

5 0.06802 0.06803 98 108 1403.25 0.06802 98 21 6 723.08 0.06803 98 15 7 945.58 

Avg 0.06940 0.06940 80 92 1929.69 0.06940 82 20 5 872.67 0.06940 82 13 5 1131.55 

4 

1 0.05423 0.13110 13 47 481.18 0.10816 41 48 33 3277.72 0.13110 13 25 22 1497.85 

2 0.05134 0.05134 78 87 2684.64 0.05134 78 21 6 1654.57 0.05134 78 15 6 1987.15 

3 0.05790 0.05790 73 83 2467.56 0.05790 73 22 7 1598.45 0.05790 73 15 6 1856.71 

4 0.05916 0.05916 98 108 2506.76 0.05916 98 21 6 1567.89 0.05916 98 15 6 1834.65 

5 0.05798 0.05798 58 68 2967.82 0.05798 58 21 6 1884.34 0.05798 58 15 6 2105.55 

Avg 0.05612 0.07150 64 79 2221.59 0.06691 70 27 12 1996.59 0.07150 64 17 9 1856.38 
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Appendix C5 Results of experimental studies for the problem set 10.200 (cont.) 

 

 

 

Problem 

Setting 
Instance 

Desired 

Rate 

(N=100) 

Binary Search Tabu Search Simulated Annealing 

Achieved 

Rate 
N 

Total # of 

Iterations 

CPU 

(sec.) 

Achieved 

Rate 
N 

Total # of 

Iterations 

# of 

Iterations 

for 

Convergence 

CPU 

(sec.) 

Achieved 

Rate 
N 

Total # of 

Iterations 

# of 

Iterations 

for 

Convergence 

CPU 

(sec.) 

5 

1 0.03089 0.03089 6 15 155.19 0.03089 6 8 8 248.11 0.03089 6 10 8 263.66 

2 0.02444 0.02444 12 22 78.61 0.02444 12 21 6 123.85 0.02444 12 10 6 113.93 

3 0.02769 0.02769 8 18 101.20 0.02769 8 22 7 157.89 0.02769 8 8 7 158.67 

4 0.02347 0.02347 8 18 102.16 0.02347 8 22 7 172.43 0.02347 8 8 7 171.43 

5 0.03700 0.03700 28 61 288.66 0.03700 28 20 5 330.95 0.03700 28 10 4 306.54 

Avg 0.02870 0.02870 12 27 145.16 0.02870 12 19 7 206.65 0.02870 12 9 6 202.85 

6 

1 0.01849 0.01849 23 33 472.84 0.01849 23 19 4 510.09 0.01849 23 10 4 651.91 

2 0.02454 0.02455 13 29 381.69 0.02457 13 21 6 403.98 0.02457 13 18 15 850.50 

3 0.02364 0.02364 98 108 1894.61 0.02364 98 21 6 935.95 0.02364 98 15 6 1218.30 

4 0.02893 0.02893 73 83 2418.18 0.02893 73 22 7 1543.93 0.02893 73 15 6 1761.57 

5 0.02507 0.02507 98 108 2482.15 0.02507 98 21 6 1171.84 0.02507 98 15 6 1492.72 

Avg 0,02413 0.02414 61 72 1529.89 0.02414 61 21 6 913.16 0.02414 61 15 7 1195.00 

7 

1 0.02166 0.02166 58 68 359.33 0.02166 58 23 8 397.32 0.02166 58 10 5 275.86 

2 0.02175 0.02175 98 108 1730.67 0.02175 98 21 6 858.47 0.02175 98 15 6 1149.02 

3 0.02167 0.02167 18 28 83.58 0.02167 18 21 6 130.49 0.02167 18 13 6 127.37 

4 0.02558 0.02558 43 53 1162.78 0.02558 43 20 5 1015.34 0.02558 43 10 5 901.12 

5 0.01396 0.01396 23 33 79.23 0.01396 23 19 4 106.28 0.01396 23 10 4 102.12 

Avg 0.02092 0.02092 48 58 683.12 0.02092 48 21 6 501.58 0.02092 48 12 5 511.10 

8 

1 0.01751 0.01751 58 86 579.59 0.01751 58 24 9 318.83 0.01751 58 10 5 344.60 

2 0.01361 0.01361 98 108 1846.84 0.01361 98 21 6 832.56 0.01361 98 15 6 1188.77 

3 0.01754 0.01754 98 108 2060.08 0.01754 98 21 6 788.88 0.01754 99 10 5 778.42 

4 0.01908 0.05198 53 72 1683.77 0.05198 53 22 7 812.56 0.05198 53 10 5 796.65 

5 0.01661 0.01661 98 108 2368.73 0.01661 98 21 6 813.33 0.01661 98 15 6 1348.45 

Avg 0.01687 0.02345 81 96 1707.80 0.02345 81 22 7 713.23 0.02345 81 12 5 891.38 
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 Appendix C6 Results of experimental studies for the problem set 10.400 

Problem 

Setting 
Instance 

Desired 

Rate 

(N=200) 

Binary Search Tabu Search Simulated Annealing 

Achieved 

Rate 
N 

Total # of 

Iterations 

CPU 

(sec.) 

Achieved 

Rate 
N 

Total # of 

Iterations 

# of 

Iterations 

for 

Convergence 

CPU 

(sec.) 

Achieved 

Rate 
N 

Total # of 

Iterations 

# of 

Iterations 

for 

Convergence 

CPU 

(sec.) 

1 

1 0.08694 0.08694 13 23 381.70 0.08694 13 32 17 658.34 0.08694 14 13 9 650.18 

2 0.07338 0.07338 38 48 1189.39 0.07338 38 20 5 1464.62 0.07338 38 10 5 1336.19 

3 0.06442 0.06442 13 23 344.46 0.06442 13 26 11 929.65 0.06442 13 12 11 785.76 

4 0.07554 0.07554 23 33 577.50 0.07554 23 24 9 1043.04 0.07554 23 14 9 965.27 

5 0.07907 0.07907 28 65 394.93 0.07907 28 25 10 488.97 0.07907 29 15 6 403.82 

Avg 0.07587 0.07587 23 38 577.60 0.07587 23 25 10 916.92 0.07587 23 13 8 828.24 

2 

1 0.05703 0.05720 124 340 12379.43 0.05704 157 50 46 9105.03 0.05704 140 40 40 11747.86 

2 0.06462 0.06462 188 198 14621.69 0.06462 188 19 4 3362.46 0.06462 188 10 4 3484.95 

3 0.05225 0.05225 118 330 8254.40 0.05225 118 25 10 1814.55 0.05225 118 15 6 2050.34 

4 0.05929 0.05929 83 94 2347.65 0.05929 83 22 7 1386.41 0.05929 83 10 4 1183.07 

5 0.07273 0.07274 153 284 19200.56 0.07274 153 29 14 7441.57 0.07274 153 15 6 5013.38 

Avg 0.06118 0.06122 133 249 10545.51 0.06119 140 29 16 4622.00 0.06119 136 18 12 4695.92 

3 

1 0.07476 0.07476 198 209 6183.84 0.07476 198 21 6 1657.66 0.07476 198 15 6 2239.66 

2 0.06911 0.06911 48 59 872.26 0.06911 48 21 6 928.48 0.06911 48 15 6 1028.82 

3 0.07087 0.07087 58 79 3256.76 0.07087 68 18 3 1245.67 0.07087 68 10 3 1553,15 

4 0.06578 0.06578 198 209 6789.45 0.06578 198 21 6 2383.43 0.06578 198 15 6 3284.68 

5 0.06889 0.06889 198 209 6541.66 0.06889 198 21 6 1613.45 0.06889 198 15 6 2397.51 

Avg 0.06988 0.06988 140 153 4728.79 0.06988 142 20 5 1565.74 0.06988 142 14 5 2100.76 

4 

1 0.05735 0.13110 13 29 733.78 0.05737 194 25 10 4232.44 0.13632 158 20 13 5913.80 

2 0.05441 0.05441 124 134 3224.05 0.05441 124 25 10 1674.95 0.05441 124 20 12 1769.45 

3 0.04924 0.04924 198 209 5376.66 0.04924 198 21 6 2000.32 0.04924 198 15 6 2373.12 

4 0.05993 0.05993 198 209 5679.43 0.05993 198 21 6 2501.34 0.05993 198 15 6 2857.11 

5 0.06415 0.06415 198 209 6798.31 0.06415 198 21 6 2365.41 0.06415 198 15 6 2543.30 

Avg 0.05701 0.07176 146 158 4362.45 0.05702 182 23 8 2554.89 0.07281 175 17 9 3091.36 
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Appendix C6 Results of experimental studies for the problem set 10.400 (cont.) 

 

 

 

 

Problem 

Setting 
Instance 

Desired 

Rate 

(N=200) 

Binary Search Tabu Search Simulated Annealing 

Achieved 

Rate 
N 

Total # of 

Iterations 

CPU 

(sec.) 

Achieved 

Rate 
N 

Total # of 

Iterations 

# of 

Iterations 

for 

Convergence 

CPU 

(sec.) 

Achieved 

Rate 
N 

Total # of 

Iterations 

# of 

Iterations 

for 

Convergence 

CPU 

(sec.) 

5 

1 0.03089 0.03089 6 16 349.83 0.03089 6 26 11 649.63 0.03089 6 13 11 655.06 

2 0.02444 0.02444 12 23 248.57 0.02444 12 25 10 399.53 0.02444 12 14 10 397.96 

3 0.02769 0.02769 8 19 280.27 0.02769 8 26 11 460.90 0.02769 8 12 11 457.57 

4 0.02347 0.02347 8 19 215.50 0.02347 8 26 11 439.33 0.02347 8 12 11 438.27 

5 0.03700 0.03700 28 39 500.65 0.03700 28 22 7 814.20 0.03700 28 13 8 794.32 

Avg 0.02870 0.02870 12 23 318.96 0.02870 12 25 10 552.72 0.02870 12 13 10 548.64 

6 

1 0.01849 0.01849 119 332 8967.45 0.01849 119 35 20 6134.80 0.01849 130 20 12 5774.05 

2 0.02104 0.02104 83 94 2390.76 0.02104 83 22 7 1110.60 0.02104 83 15 6 1256.76 

3 0.02371 0.02371 123 134 3224.05 0.02371 123 24 9 2294.92 0.02371 123 15 6 2324.70 

4 0.02893 0.02893 73 84 2432.50 0.02893 73 22 7 1716.74 0.02893 73 15 6 1867.54 

5 0.02507 0.02507 98 109 2475.61 0.02507 98 21 6 1398.82 0.02507 98 15 6 1681.29 

Avg 0.02345 0.02345 99 151 3898.07 0.02345 99 25 10 2531.18 0.02345 101 16 7 2580.87 

7 

1 0.02171 0.02171 153 164 2886.10 0.02171 153 23 8 1561.59 0.02171 153 15 6 1496.09 

2 0.02177 0.02177 158 169 5221.89 0.02177 158 22 7 2105.10 0.02177 158 15 6 2330.49 

3 0.02167 0.02167 18 29 204.30 0.02167 18 25 10 368.13 0.02167 18 15 10 354.88 

4 0.02558 0.02558 43 54 1404.05 0.02558 43 19 4 1332.59 0.02558 43 10 4 1332.20 

5 0.01396 0.01396 23 34 232.83 0.01396 23 24 9 383.40 0.01396 23 13 9 379.39 

Avg 0.02094 0.02094 79 90 1989.83 0.02094 79 23 8 1150.16 0.02094 79 14 7 1178.61 

8 

1 0.01755 0.01755 110 321 8923.12 0.01755 184 33 18 3588.02 0.01755 188 10 5 1804.60 

2 0.01391 0.01391 198 209 8666.31 0.01391 198 21 6 2383.44 0.01391 198 15 6 3282.95 

3 0.01768 0.01768 198 209 8258.33 0.01768 198 21 6 1955.49 0.01768 198 15 6 2437.90 

4 0.01947 0.01947 198 209 8042.54 0.01947 198 21 6 2194.33 0.01947 198 15 6 2443.73 

5 0.01670 0.01670 193 219 8069.42 0.01670 193 22 7 2083.24 0.01670 193 15 6 2501.95 

Avg 0.01706 0.01706 179 233 8391.94 0.01706 194 24 9 2440.90 0.01706 195 14 6 2494.23 
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        Appendix C7 Results of experimental studies for the problem set 20.200 

Problem 

Setting 
Instance 

Desired 

Rate 

(N=100) 

Tabu Search Simulated Annealing 

Achieved 

Rate 
N 

Total # of 

Iterations 

# of Iterations 

for 

Convergence 

CPU (sec.) 
Achieved 

Rate 
N 

Total # of 

Iterations 

# of Iterations 

for 

Convergence 

CPU (sec.) 

1 

1 0.07349 0.07984 35 22 7 7316.12 0.07984 35 10 5 15673.98 

2 0.08056 0.08056 35 18 3 6714.03 0.08056 35 10 5 15768.88 

3 0.07924 0.07924 25 22 7 3533.75 0.07924 25 10 5 3166.35 

4 0.10068 0.10068 65 22 7 7368.36 0.10068 65 15 6 13665.39 

5 0.07167 0.07167 65 22 7 5048.66 0.07167 65 10 5 12870.34 

Avg 0.08113 0.08304 48 21 6 5666.20 0.08304 48 11 5 12228.99 

2 

1 0.04606 0.06495 13 9 9 4897.94 0.06495 13 26 26 24780.50 

2 0.02106 0.02106 95 22 7 8970.16 0.02106 95 10 5 27880.45 

3 0.00642 0.00775 10 8 8 3094.13 0.00775 10 26 26 16287.12 

4 0.03307 0.14200 16 19 4 1666.93 0.07375 16 37 35 32218.58 

5 0.06737 0.06737 95 22 7 7654.32 0.06737 95 10 5 31563.91 

Avg 0.03480 0.06063 46 16 7 5256.70 0.04698 46 22 19 26546.11 

3 

1 0.06596 0.06666 84 22 7 15563.24 0.06706 95 15 10 24679.21 

2 0.06657 0.07953 93 36 21 14789.21 0.08204 104 20 12 32728.48 

3 0.06933 0.10256 10 8 8 5110.89 0.07128 12 26 26 51066.71 

4 0.06896 0.06896 95 22 7 16785.56 0.06896 95 10 5 35768.87 

5 0.07574 0.07574 95 22 7 18945.67 0.07574 95 10 5 38756.22 

Avg 0.06770 0.07301 80 22 10 14238.91 0.07869 75 16 12 36599.90 

4 

1 0.00822 0.04284 10 6 6 1995.65 0.04284 10 18 18 9489.94 

2 0.04593 0.04973 75 21 6 6746.21 0.09997 66 15 9 14729.71 

3 0.06137 0.06137 95 22 7 16681.57 0.06137 95 10 5 25748.99 

4 0.08784 0.08839 95 22 7 21843.12 0.08839 95 10 5 28955.95 

5 0.06164 0.06179 45 18 3 1506.31 0.06179 45 10 5 2938.84 

Avg 0.05300 0.06082 64 18 6 9754.57 0.07087 62 13 8 16372.69 
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Appendix C7 Results of experimental studies for the problem set 20.200 (cont.) 

 

 

 

Problem 

Setting 
Instance 

Desired 

Rate 

(N=100) 

Tabu Search Simulated Annealing 

Achieved 

Rate 
N 

Total # of 

Iterations 

# of Iterations 

for 

Convergence 

CPU (sec.) 
Achieved 

Rate 
N 

Total # of 

Iterations 

# of Iterations 

for 

Convergence 

CPU (sec.) 

5 

1 0.02800 0.02800 10 7 7 3978.64 0.02800 10 7 7 3332.24 

2 0.02575 0.02575 85 21 6 22118.11 0.02575 85 15 6 24115.50 

3 0.02666 0.02666 25 19 4 3999.72 0.02666 25 10 5 3597.76 

4 0.02610 0.02610 15 22 7 3700.42 0.02610 15 8 6 3093.40 

5 0.02872 0.02872 15 22 7 4999.47 0.02872 15 8 6 3828.02 

Avg 0.02705 0.02705 30 18 6 7759.27 0.02705 30 10 6 7593.38 

6 

1 0.00441 0.00441 55 24 9 6109.73 0.00441 55 10 5 3194.51 

2 0.02104 0.02104 95 22 7 5879.65 0.02104 95 10 5 4875.33 

3 0.01724 0.01724 25 19 4 4611.94 0.01724 25 10 5 4267.50 

4 0.02337 0.02337 95 22 7 24501.72 0.02337 95 10 5 12655.98 

5 0.02073 0.02073 95 22 7 8674.23 0.02073 95 10 5 5745.41 

Avg 0.01736 0.01736 73 22 7 9955.45 0.01736 73 10 5 6147.75 

7 

1 0.02141 0.02212 62 22 7 12549.68 0.02164 65 15 6 12270.80 

2 0.02226 0.02226 95 22 7 39711.75 0.02226 95 10 5 49832.82 

3 0.02284 0.02284 95 39 24 34771.29 0.02284 96 10 5 26093.93 

4 0.02218 0.02219 58 30 15 25328.18 0.02218 62 10 5 25979.42 

5 0.02352 0.06072 33 19 4 9787.22 0.05828 32 19 13 29870.25 

Avg 0.02244 0.03003 69 26 11 24429.62 0.02944 70 13 7 28809.44 

8 

1 0.00820 0.00820 95 22 7 12205.36 0.00820 95 10 5 9836.94 

2 0.01666 0.01666 95 22 7 18678.65 0.01666 95 10 5 15468.34 

3 0.02127 0.02127 95 22 7 16435.23 0.02127 95 10 5 20547.66 

4 0.02382 0.02382 95 22 7 20456.17 0.02382 95 10 5 26395.45 

5 0.02453 0.02453 75 22 7 11356.78 0.02453 75 15 9 14454.14 

Avg 0.01889 0.01889 91 22 7 15826.44 0.01889 91 11 6 17340.51 
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