
DOKUZ EYLÜL UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

ELECTRIC, MAGNETIC AND ELASTIC WAVES
IN ANISOTROPIC MATERIALS

by
Handan ÇERDİK YASLAN

May, 2011
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ELECTRIC, MAGNETIC AND ELASTIC WAVES IN ANISOTROPIC

MATERIALS

ABSTRACT

In this thesis new methods for the fundamental solutions of elastodynamics

of anisotropic crystals, quasicrystals and fundamental solutions of

electromagnetodynamics of anisotropic materials are suggested. These methods

are based on the Fourier transformation with respect to space variables and some

matrix computations. Robustness of the methods are confirmed by computational

examples. Simulation of elastic, electric and magnetic waves arising from pulse

point sources in crystals and quasicrystals, electrically and magnetically anisotropic

materials are obtained. Moreover, a new method for solving the initial value problem

for the system of electromagnetoelasticity is proposed and theorems about existence

and uniqueness of the solution of the initial value problem are proved.

Keywords: Time-dependent equations of anisotropic elasticity in crystals,

quasicrystals, Maxwell’s equations of anisotropic electrodynamics, equations of the

electromagnetoelasticity, fundamental solution, analytical method, computational

experiments, simulation.
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İSOTROPİK OLMAYAN MATERYALLERDE ELEKTRİK, MANYETİK VE

ELASTİK DALGALAR

ÖZ

Bu tezde isotropik olmayan kristaller ile yarı kristallerde ve isotropik olmayan

materyallerde elastodinamiğin ve elektromagnetodinamiklerin temel çözümlerini

bulmak için yeni metodlar sunulmuştur. Bu metodlar uzay değişkenlerine göre

Fourier dönüşümlerine ve bazı matris hesaplamalarına dayanır. Metodların doğruluğu

hesaplamalı örneklere dayanarak gösterilmiştir. Kristallerde, yarı kristallerde,

elektriksel ve manyetiksel isotropik olmayan materyallerde nokta kaynaktan doğan

elastik, manyetik ve elektrik dalgaların simülasyonları elde edilmiştir. Ayrıca

elektromagnetoelastik sisteminin başlangıç değer problemini çözmek için yeni bir

metod önerilmiştir. Bu başlangıç değer probleminin çözümüyle ilgili varlık ve teklik

teoremlerinin ispatları verilmiştir.

Anahtar sözcükler: Kristallerde ve yarı kristallerde isotropik olmayan elastiğin

zamana bağlı denklemleri, isotropik olmayan elektrodinamiğin Maxwell denklemleri,

elektromagnetoelastiğin denklemleri, temel çözüm, analitik metod, hesaplamalı

örnekler, simülasyon.
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CHAPTER ONE
INTRODUCTION

Search and development of new materials with specific properties are needed for

different industries such as chemistry, microelectronics, etc. When new materials are

created we must be able to have the possibility to model and study their properties.

Mathematical models of physical processes can provide cutaway views that let you see

aspects of something that would be invisible in the real artifact but computer models

can also provide visualization tools.

The physical properties of a homogeneous isotropic medium do not depend on

the direction and the position inside the medium. Physical properties of anisotropic

media essentially depend on orientation and position. An anisotropic medium is

called homogeneous when its physical properties depend on orientation and do

not depend on position. The medium can be isotropic relative to some physical

properties and anisotropic with respect to others. For example, anisotropic crystals and

dielectrics are magnetically isotropic but electrically anisotropic. Some of materials are

magnetically anisotropic but electrically isotropic and some of materials are electrically

and magnetically anisotropic. Anisotropy of materials is related to their atomic

lattice. A smallest block (three dimensional array of atoms) of anisotropic materials

is determined by repeated replication in three dimensions. Its symmetry tells how the

constituent atoms are arranged in a regular repeating configuration. The structure of

these three- dimensional unit cell of atoms in anisotropic materials may have one of

seven basic shapes: cubic, hexagonal, tetragonal, trigonal, orthorhombic, monoclinic

and triclinic (see, for example, Nye (1967)). Thesis includes mathematical modeling

and simulating the wave propagation in anisotropic solids and crystals.

Crystal is a solid in which the constituent atoms, molecules, or ions are packed in

a regularly ordered. The physical and chemical properties of a crystal to depend not

1
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only on the nature of the atoms in each cell, but also on the geometrical arrangement

of the cells, that is the lattice symmetry. Thus, independently of the cell contents,

crystals with the same point symmetry give related behaviour for physical quantities,

in corresponding orientations. Tensor analysis expresses this behaviour well. Physical

properties of crystals are represented by tensors.

The crystalline medium is characterized by an infinity of geometrical points, each

equivalent to any point O in the crystal. All of these equivalent points have the

same atomic environment, and they can be deduced from one another by means of

a succession of elementary translations along three vectors a,b,c. The set of all these

points forms a three-dimensional lattice. In classifying crystals according to the point

symmetry of the lattice, we define the seven crystal systems. A crystal system is

characterized by the geometrical form of the cell. These forms vary from the most

general parallelepiped as follows (Dieulesaint & Royer (1980))

• Triclinic α ̸= β ̸= γ; a ̸= b ̸= c

• Monoclinic α = β,γ > 90; a ̸= b ̸= c

• Orthorhombic α = β = γ = 90; a ̸= b ̸= c

• Trigonal α = β = γ ̸= 90; a = b = c

• Tetragonal α = β = γ = 90; a = b ̸= c

• Hexagonal α = β = 90,γ = 120; a = b ̸= c

• Cubic α = β = γ = 90; a = b = c.

Here α is an angle between c and b, β is an angle between a and c, γ is an angle between

a and b.
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Numerous significant problems of structural mechanics, geophysics and material

sciences are closely related to studies of wave propagations in continuous anisotropic

elastic media. The main core of these problems consists in the determination of

displacement and stresses fields induced by impulsive loading as well as calculations

of the behavior of structures subjected to sudden shocks. The behavior of the wave

processes essentially depends on properties of materials and media (density and elastic

moduli). We note that the forms of wave fronts from the pulse point sources in

elastic materials with general structure of anisotropy (monoclinic, triclinic) are not

spherical and have very peculiar forms. If elastic waves arise from an impulsive

force concentrated at the fixed point then the computation of the displacement and

stresses at the points near by the source is complicated because the displacements and

stresses are generalized functions (distributions) (see Vladimirov (1971), Vladimirov

(1979), Reed & Simon (1975), Hormander (1963)). The mathematical model of

the motion of homogeneous anisotropic elastic media is presented by the dynamic

system of equations of linear theory of elasticity (Ting (1996), Ting & Barnett

& Wu (1990), Dieulesaint & Royer (1980), Federov (1968), Poruchikov (1993)).

This system consists of three partial differential equations of the second order with

constant coefficients ( Ting (1996), Ting & Barnett & Wu (1990), Dieulesaint &

Royer (1980), Donida & Bernetti (1991), Yakhno & Akmaz (2007), Yakhno & Akmaz

(2005)). The differential equations of anisotropic elastodynamics describe the dynamic

processes of the wave phenomena in anisotropic materials and media. The problems of

elastodynamics are often stated in the form of computing displacement components

at internal points of anisotropic solids. Analytical and numerical methods play

the important role in the study of these problems (see, for example, Poruchikov

(1993), Chang & Wu (2003), Carrer & Mansur (1999), Sladek & Sladek &

Zhang (2005), Moosavi & Khelil (2009), Dauksher & Emery (2000)). Besides that

fundamental solutions (FSs) or Green’s functions (GFs) of equations of elastodynamics

are important tools for solving these problems (see for example, Mansur & Loureiro
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(2009), Mansur & Loureiro & Soares & Dors (2007), Soares & Mansur (2005),

Vea-Tudela & Telles (2005), Rangelov & Manolis & Dineva (2008), Rangelov (2003),

Berger & Tewary (1996), Tewary (1995), Wang & Achenbach (1994), Wang &

Achenbach (1995)). Fundamental solutions of partial differential equations play an

important role in both applied and theoretical studies on physics of solids (Stokes

(1883),Volterra (1894), Mindlin (1936), Huang & Wang (1991)).

The existence proofs for fundamental solutions (FSs) in the spaces of generalized

functions for any linear differential equations with constant coefficients were given

by Malgrange (1955-1956), Ehrenpreis (1960), Hormander (1963). Ignoring

here many approaches of finding FSs for scalar differential equations with constant

coefficients we point out only some of methods to determine FSs for equations of

elastodynamics. The analytical computation of the explicit formulae for FSs in

homogeneous isotropic linearly elastic solids offers no difficulty (see, for example, Aki

& Richard (1980), Payton (1983)). But this is not the case for general homogeneous

anisotropic media.

The fundamental solutions for anisotropic elastic media have been studied by

Buchwald (1959), Lighthill (1960), Burridge (1967a),Burridge (1967b), Burridge

(1971), Kraut (1963), Musgrave (1970), Willis (1973), Payton (1983), Tsvankin

& Chesnokov (1989), Wu & Ting & Barnett (1990), Payton (1992), Wang &

Achenbach (1992), Tewary & Fortunko (1992), Zhu (1992), Budreck (1993) and

other authors. The fundamental solutions of anisotropic elasticity in the papers

mentioned above are either approximations or they have complicated mathematical

forms which are difficult to evaluate numerically. Most of approaches for finding

the time-dependent fundamental solutions are related with the Fourier-Laplace

presentation in a wave-vector-frequency space. The oscillatory nature of the

Fourier-Laplace representation and the principal value calculation at the singularities

create computational difficulties.
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An interesting approach of finding fundamental solutions by the Radon transform

for 3D and 2D time-domain elastodynamic has been suggested by Wang & Achenbach

(1994). They found fundamental solutions in the form of a surface integral over a unit

sphere for 3D case. Physically, the integral can be interpreted as superpositions of

plane waves propagating in all directions. The resulting expression has a complicated

form containing the integration over the slowness surface. We note that for some

anisotropic materials (cubic, transversely isotropic) fundamental solutions can be

evaluated numerically using this approach (see, Wang & Achenbach (1994)). In the

paper of Tewary (1995) the formula for the time-dependent fundamental solution

in three dimensional anisotropic elastic infinite solids has been derived by Radon

transform and solving the Christoffel equation in terms of the delta function. The

computational advantages of this method and method of Wang & Achenbach (1994)

are following: it does not require integration over frequency, the integration is made

over two out of three variables. However the method of Tewary (1995) calculates

numerically the transient displacement field due to a point source in infinite anisotropic

cubic solids. The numerical realization of this method for general anisotropic elastic

solids (triclinic, monoclinic and etc) is questionable because the computation of the

weight function in the obtained Radon representation is not clear for the general case.

The computation of fundamental solutions for general linear equations of

elastodynamics with three space and one time variables has been obtained only for

particular cases of anisotropy (cubic, isotropic, transversely isotropic, orthotropic

structures)( Wang & Achenbach (1994), Tewary (1995),Wang & Achenbach (1995),

Yang & Pan & Tewary (2004), Rangelov (2003), Kocak (2009), Khojasteh &

Rahimian & Pak (2008), Wang & Pan & Feng (2007), Rangelov & Manolis & Dineva

(2008)). The computation of the fundamental solutions in such anisotropic elastic

media as trigonal, monoclinic, triclinic has not been achieved so far.

Since the icosahedral quasicrystal structure was discovered in Al-Mn alloys in 1984
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( Shechtman & Blech & Gratias & Cahn (1980)), great progress has been made in

experimental and theoretical studies in physics of quasicrystals ( Wang & Chen & Kuo

(1987), Wollgarten & Beyss & Urban & Liebertz & Koster (1987), Ovidko (1998)).

These experiments and theoretical analyses have shown that quasicrystals(QCs)

are new materials with a complex structure and unusual properties ( Ronchetti

(1987), Socolar & Lubensky & Steinhardt (1986), Wang & Yang & Hu (1997), Fan

(1999), Fan & Mai (2004) etc.). This has created an important opportunity for new

basic research. For large single-grain quasicrystals, over one hundred different alloys

with thermodynamic stability have been produced. This suggests that quasicrystals

may become a new class of functional and structural materials, which have many

prospective engineering applications. The significance of quasi-crystals, in theory and

practice, has created a great deal of attention by researchers in a range of fields, such as

solid state physics, crystallography, materials science, applied mathematics, and solid

mechanics. Thesis includes mathematical modeling and simulating the elastic wave

propagation in quasicrystals.

Quasicrystalline materials (QCs) are clearly fascinating materials: crystal structures

and properties are surprising and could be remarkably useful. Most of these properties

combine effectively to give technologically interesting applications which have been

protected recently by several patents ( Blaaderen (2009), Dubois (2005)). For instance,

the combination of such kind of properties as high hardness, low friction and corrosive

resistance of QCs gives almost ideal material for motor-car engines. The application

of QCs in motor-car engines would be undoubtedly result in reduced air pollution and

increase engine lifetimes. The same set of associated properties (hardness, low friction,

corrosive resistance) combined with bio-compatibility is also very promising for

introducing QCs in surgical applications as parts used for bone repair and prostheses

( Blaaderen (2009), Dubois (2005), Dubois (2000)).

1D, 2D and 3D QCs are defined as three dimensional body with the special atom
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arrangements. The atom arrangement of 1D QC is quasi-periodic in direction and

periodic in the plane which is orthogonal to this direction. The atom arrangement of

2D QC is quasi-periodic in a plane and periodic in the orthogonal direction. The atom

arrangement of 3D QC is quasi-periodic in three dimensions without periodic direction.

Three-dimensional QCs such as icosahedral QCs (e.g. Al-Cu-Fe and Al-Li-Cu) are

quasiperiodic in three dimensions, without periodic direction. They play a central role

in the study of QCs.

Elasticity is one of important properties of QCs. The expressions of the generalized

Hooke’s law, equations of the equilibrium and motion have been analyzed in works

Yang & Wang & Ding & Hu (1993), Ding & Wang & Yang & Hu (1995), Ding &

Yang & Hu & Wang (1993), Fan (1999), Fan & Mai (2004), Fan & Guo (2005), Gao &

Zhao (2006), Gao & Zhao & Xu (2008), Gao (2009), Liu & Fan & Guo (2003), Peng

& Fan & Zhang & Sun (2001), Peng & Fan (2002).

Among various QCs, one-dimensional QCs are of particular interest for the

researchers after the success of Merlin & Bajema & Clarke & Juang & Bhattacharya

(1985) in growing model systems, where quasi-periodicity is built up. Wang & Yang

& Hu (1997) derived all the possible point groups and space groups of 1D QCs; Liu

& Fu & Dong (1997) studied the physical properties of 1D QCs. Gao (2009) and

Chen & Ma & Ding (2004) have presented general solutions of three-dimensional

elastostatic problems for 1D hexagonal quasicrystals. Gao & Zhao & Xu (2008) have

developed theory of general solutions of three-dimensional elastostatic(3D) problems

for 1D hexagonal quasicrystals. Peng & Fan & Zhang & Sun (2001) have solved

the three-dimensional elasticity equations of 1D hexagonal quasicrystals for static

case using a new perturbation technique. Gao & Zhao (2006) have obtained the

general solutions of three-dimensional elasticity equations of 2D dodecagonal and 1D

hexagonal quasicrystals for static case using a new perturbation technique. Peng & Fan

(2000) have obtained the general solutions of three-dimensional elasticity equations of
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1D hexagonal quasicrystals for static case in terms of four harmonic functions. Peng &

Fan & Zhang & Sun (2001) have obtained the general solutions of three-dimensional

elasticity equations of 1D hexagonal quasicrystals for static case using Fourier series

and Hankel transform. Wang (2006) has given a general solution of 1D hexagonal

quasicrystals for dynamic and static elasticity. Fan & Mai (2004) have discussed three

dimensional elasticity of 1D, 2D and 3D QCs for dynamic case.

The fundamental theory based on the motion of continuum model to describe the

elastic behavior of QCs is well known (see, for example, Ding & Yang & Hu &

Wang (1993), Hu & Wang & Ding (2000), Gao & Zhao (2006), Rochal & Lorman

(2002)). The elastic equations in 3D elasticity of QCs are more complicated than

those of classical elasticity. In QCs a phason displacement field exits in addition

to a phonon displacement. All existing models of QC elastodynamics are given

by partial differential equations. The exam of the consistency of models, given by

partial differential equations, is related to the comparison values of solutions for

these equations with experimental data. Solutions of elastodynamic equations for

QCs are difficult to obtain than for crystals. Computation values of solutions of

elastodynamic equations for 3D QCs are more complicated than those of 1D and

2D QCs. Because of the complexities of the solution of elastodynamic equations

most authors consider only elastic plane problems for QCs (Ding & Yang & Hu &

Wang (1993), Akmaz & Akinci (2009), Fan & Mai (2004)), i.e. they suppose that the

elastic fields induced in QCs are independent of the variable z. The plane elasticity

problems of 3D and 2D quasicrystals has been studied for static case in Ding & Wang

& Yang & Hu (1995). Based on the stress potential function general solution of

the plane elasticity problems of icosahedral quasicrystals has been studied for static

case in Li & Fan (2006). Gao (2009) has established general solutions for plane

elastostatic of cubic quasicrystals using an operator method. Fan & Guo (2005) has

developed the potential function theory for plane elastostatic of three-dimensional
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icosahedral quasicrystals. The dynamic plane elastic problems in 2D QCs with

dodecagonal, pentagonal and decagonal structures have been studied in Akmaz &

Akinci (2009). The time-dependent elastic problems in QCs have been studied in Fan

& Mai (2004), Wang (2006), Akmaz & Akinci (2009), Akmaz (2009) Yakhno & Yaslan

(2011). Using decomposition and superposition procedures 2D dynamic problems for

1D and 2D hexagonal QCs have been solved Fan & Mai (2004). Wang (2006) has

found a general solution for 3D dynamic problem in 1D hexagonal QCs. Using PS

method related with polynomial presentation of data 3D elastic problems in 3D QCs

have been solved in Akmaz (2009). A method for the derivation of the time-dependent

fundamental solution with three space variables in 2D QCs with arbitrary system of

anisotropy have been proposed in Yakhno & Yaslan (2011).

Three-dimensional quasicrystals, such as icosahedral quasicrystals (e.g., Al-Cu-Fe

and Al-Li-Cu) play a central role in the study of quasicrystalline solids. It is

more difficult to obtain rigorous analytic solutions for the elasticity problems of 3D

QCs. Yang & Wang & Ding & Hu (1993) have discussed the expressions of the

generalized Hooke’s law and equilibrium for cubic QCs in static case. Zhou & Fan

(2000) have studied axisymmetric elasticity problem of cubic quasicrystal. The plane

elasticity problems of 3D and 2D quasicrystals has been studied for static case in Ding

& Wang & Yang & Hu (1995). Based on the stress potential function general solution

of the plane elasticity problems of icosahedral quasicrystals has been studied for static

case in Li & Fan (2006). Gao (2009) has established general solutions for plane

elastostatic of cubic quasicrystals using an operator method. Fan & Guo (2005) has

developed the potential function theory for plane elastostatic of three-dimensional

icosahedral quasicrystals.

It is well known that fundamental solutions (Green’s functions in free space)

play a crucial role in the elasticity theory. An analytical presentation of elastostatic

fundamental solution (FS) has been derived for icosahedral quasicrystals in the paper
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Bachteler & Trebin (1998). In De & Pelcovits (1987) have computed fundamental

solution (FS) for the elastic equations and used them for finding general solutions of the

inhomogenous linear elastostatic equations of pentagonal QCs. In Akmaz & Akinci

(2009) have obtained Fourier images of a fundamental solution (FS) for dynamic plane

elasticity problems of 2D dodecagonal, pentagonal and decagonal QCs. In Ding &

Wang & Yang & Hu (1995) have studied the elastic fundamental solution (FS) for QCs

in the static case. We note that computation of FSs for equations of elastodynamics

and elastostatics in 2D QCs has been obtained only for particular cases of anisotropy

( Ding & Wang & Yang & Hu (1995), Gao & Zhao & Xu (2008), Gao (2009), Liu &

Fan & Guo (2003), Peng & Fan (2002), Akmaz & Akinci (2009)). The computation

of FSs for general equations of elastodynamics in 1D, 2D and 3D QCs with arbitrary

system of anisotropy has not been achieved so far.

Many technically important materials (media) which become popular in new

technologies are anisotropic. For example, the widely used substrate material sapphire

and the lithium niobate (LiNbO3), which is used in the design of integrated optics

devices, are anisotropic. The medium can be isotropic relative to some physical

properties and anisotropic with respect to others. For example, for the study of the

light propagation in crystals (the problems of the crystal optics), we can assume that

a medium is magnetically isotropic but electrically anisotropic. Materials react to

applied electromagnetic fields in a variety of ways. For example, if a point pulse

source is located in an optical homogeneous isotropic crystal, then fronts of electric

and magnetic waves have spherical shapes. The shapes of the fronts in anisotropic

materials are not spherical and have very peculiar forms. The simulation of invisible

electromagnetic wave phenomena is a very important issue of modern inter-discipline

engineering areas.

Analytic methods of fundamental solutions (Green’s function of the free space)

constructions have been studied for isotropic and anisotropic materials in Haba (2004),
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Li & Liu & Leong & Yeo (2001), Ortner & Wagner (2004), Yakhno (2005). An

analytical method for solving IVP for the time-dependent electromagnetic fields in

homogenous electrically and magnetically anisotropic media is studied in Yakhno &

Yakhno (2007), Yakhno (2008). Most of the electromagnetic wave problems have been

solved by numerical methods, in particular finite element method, boundary elements

method, finite difference method, nodal method (see, for example, Cohen (2002),

Cohen & Heikkola & Joly & Neittaanmaki (2003), Monk (2003)).

To deal with electromagnetic wave propagation different problems and methods of

their solving have been applied. For the isotropic materials decomposition method

is applied (see, Lindell (1990)). Analytic method of Green’s functions constructions

have been studied for isotropic and anisotropic materials in Haba (2004), Wijnands &

Pendry & Garcia-Vidal & Bell & Roberts & Moreno (1997), Li & Liu & Leong & Yeo

(2001), Gottis & Kondylis (1995), Ortner & Wagner (2004), Yakhno (2005), Dmitriev

& Silkin & Farzan (2002). To modeling lossy anisotropic dielectric wave-guides in

inhomogeneous biaxial anisotropic media the method of lines has been made (see,

Berrini & Wu (1996)). An analytical method for solving IVP for the system of crystal

optics with polynomial data and a polynomial inhomogeneous term is suggested in

Yakhno & Altunkaynak (2008), and also time-dependent electromagnetic fields in

homogenous anisotropic media is studied in Yakhno (2008).

When an electrical-conducting elastic body oscillates in an electromagnetic field,

variations of the electrical and magnetic fields are observed as a result of this

motion. Similar processes are observed when seismic waves propagate in the

Earth’s crust. Variations of elastic and electromagnetic fields arising in this case are

called electromagnetoelastic waves. Such waves contain a certain information about

electromagnetic and elastic parameters of the medium. In this case, as a rule, the

following types of electromagnetoelastic interactions are distinguished: the interaction

based on the electrokinetic properties of a medium, the interaction based on the
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piezoelectric properties of a medium, the interaction based on the velocity effect.

The theory of electromagnetoelasticity is concerned with the interacting effects of

an externally applied electromagnetic field on the elastic deformations of a solid body.

The theory has developed quickly in recent decades because of the possibilities of

its extensive practical applications in diverse fields such as geophysics, mechanics

of continua, electrodynamics and other relevant areas. In recent years mathematical

problems on the propagation of electromagnetoelastic waves have been studied in

Priimenko & Vishnevskii (2010), Priimenko & Vishnevskii (2008), Priimenko &

Vishnevskii (2005 ).

Mathematical models of wave propagations in anisotropic elasticity and

electromagneticity are described by systems of partial differential equations. Due

to their special characteristics, research on the behavior of magneto-electro-elastic

structures has been widely carried out. There is a great interest to develop new methods

for solving initial value problems and initial boundary value problems for these systems

and simulate invisible elastic and electromagnetic waves. Magneto-electro-elastic

materials also have important applications in the fields of electric, microwave,

supersonics, acoustic, hydrophones, medical ultrasonic imaging, laser, infrared

and so on. Unfortunately the exact solutions can not be found for all complex

equations and systems. And so using the computer programming the approximate

solutions can be found for these problems. Literature dealing with research on the

behaviour of magneto-electro-elastic structures has gained more importance recently.

Two-dimensional and three-dimensional time-harmonic Green’s functions for linear

magnetoelectroelastic solids have been derived by means of Radon-transform by

Diaz & Saez & Sanchez & Zhang (2008). The dynamic potentials of a quasi-plane

magneto-electro-elastic medium of transversely isotropic symmetry with an inclusion

of arbitrary shape have been derived and the explicit expressions of the dynamic Greens

functions of this medium have been also obtained both in the space-time domain
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and in the space-frequency domain by Chen & Shen & Tian (2006). An analytical

treatment on the propagation of harmonic waves in an infinitely extended, magneto-

electro-elastic (6mm crystal), and multilayered plate have been presented using the

method of propagator (or transfer) matrix by Chen & Pan & Chen (2007). Free

vibrations of infinite magneto-electro-elastic cylinders for hexagonal crystal have been

studied using a finite element formulation by Buchanan (2003).

The functionally graded (FG) material structure has attracted wide and increasing

attentions to scientists and engineers. FG materials plays an essential role in

most advanced integrated systems for vibration control and health monitoring.

Recently, a new class of smart (or intelligent) materials, called functionally graded

materials, has been rapidly developed and used in engineering applications for sensing,

actuating and controlling purposes due to their direct and converse multi-field effects.

The performance of intelligent devices whose responses depend upon the coupled

properties of magneto- electroelastic composites is of increasing current interest.

Thus, there is considerable motivation in studying defects in these media. Unlike

the conventional multilayered devices of which material properties suddenly change

at the interfaces between adjacent layers, the material properties of these FG plates and

shells are gradually varied through the thickness coordinate. That largely improves the

working performance and lifetime of the devices composed of the FG material. Tsai &

Wu (2008) have presented the 3D dynamics responses of FG magneto-electro-elastic

shells (orthotropic solid) with open-circuit surface conditions using the method of

multiple scales. Wu & Lu (2009) have studied the 3D dynamic responses of FG

magneto-electro-elastic plates (orthotropic solid) using a modified Pagano method.

The dynamic versions for the 3D solutions of the smart structures (orthotropic solid)

have been presented by Chen & Chen & Pan & Heyliger (2007) and Pan & Heyliger

(2002). Chen & Lee (2003) and Chen & Lee & Ding (2005) have proposed the

alternative state space formulation to determine 3D solutions for the static and dynamic
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responses of functionally graded transversely isotropic magneto-electro-elastic plates

using the method of propagator (or transfer) matrix. A three-dimensional (3D) free

vibration analysis of simply supported, doubly curved functionally graded (FG) time

dependent magneto-electro-elastic shells (orthotropic solid) with closed-circuit surface

conditions has been presented using the method of perturbation by Wu & Tsai (2010).

A dynamic solution have been presented for the propagation of harmonic waves in

inhomogeneous (FG) magneto-electroelastic hollow cylinders and plates composed

of piezoelectric BaTiO3 and magnetostrictive CoFe2O4 by Yu & Ma & Su (2008),

Wu & Yu & He (2008). Based on Legendre orthogonal polynomial series expansion

approach, a dynamic solution has been presented for the propagation of circumferential

harmonic waves in piezoelectric-piezomagnetic FG cylindrical curved plates by Yu &

Wu (2009). Zhong & Yu (2006) have proposed a state space formulation to study 3D

free and forced vibration of FG piezoelectric plates (orthotropic solid).

The goal of the thesis is to

• develop methods for the computation of fundamental solutions of differential

equations of elastodynamics and electrodynamics for general anisotropic solids,

crystals, quasicrystals, dielectrics, electrically and magnetically anisotropic

materials;

• obtain the visualization of the pure elastic, phonon elastic, phason elastic, electric

and magnetic waves in different crystals, quasicrystals and anisotropic materials;

• create an analytical method of finding a solution of equations of

electromagnetoelasticity for a general anisotropic vertically inhomogenous

electromagnetoelastic material with given initial data.

The plan of the thesis as follows. In Chapter 2 to find the fundamental solution for

the dynamic system of anisotropic elasticity three different methods are presented.
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In the first and second method the second order partial differential equations of

elastodynamics are written in the form of the first order symmetric hyperbolic system

with respect to the displacement velocity and stresses. The first method consists in

the following. The Fourier transform image of the fundamental solution with respect

to space variables is presented as a power series expansion relative to the Fourier

parameters. This presentation is based on the properties of generalized solutions

of the initial value problems for symmetric hyperbolic system and Paley-Wiener

theorem. Then explicit formulae for the coefficients of this power series are derived

successively. The inverse Fourier transform of the obtained Fourier image of the

fundamental solution as 3D integration over a bounded domain has been implemented

numerically. As a result of this integration we find the fundamental solution in a

regularized form. This regularized form of the fundamental solution belongs to the

class of classical functions and has finite values for any space and time variables. Let

us note that the fundamental solution of the motion equations for indefinite isotropic

solids can be given by explicit formulae. We use these formulae for evaluation of

our method. Using our method the computer calculation of fundamental solution

components (displacement velocity and stresses components arising from pulse point

forces) has been made and the simulation of elastic waves has been obtained in general

anisotropic media (orthorhombic, monoclinic).

We note here that the approach to reduce the second order system of elastodynamics

in frequency domain for isotropic heterogeneous media into a system containing the

partial derivatives of the first order has been applied by Manolis & Shaw & Pavlou

(1998). The first order system obtained in Manolis & Shaw & Pavlou (1998) is written

in a matrix form with non symmetric matrix coefficients.

In the second method we derive a new method for deriving the time-dependent FSs

for indefinite linear homogeneous media (solids) with arbitrary anisotropy which is

based on its natural mathematical and physical properties. Namely, the FSs of motion
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equations for elastic media are generalized functions (distributions) with a compact

supports for a fixed time variable. Physically it means that the perturbation from

the pulse point force is propagated in a bounded domain of isotropic or anisotropic

indefinite solids for a fixed time and therefore there is a quiet in all points outside of this

bounded domain. Using the Paley-Wiener theorem (see, for example, Reed & Simon

(1975)) we obtain that the Fourier transform of the FS with respect to space variables is

an analytic function depending on wave-vector variables (Fourier parameters). Hence

the expression of the FSs presented in terms of wave-vector variables does not contain

singularities and this expression is integrable over an arbitrary 3D bounded domain

of wave-vector variables. The inverse Fourier transform of this expression as 3D

integration over a bounded domain can be implemented numerically. As a result of

this integration we find the FS in a regularized form. This regularized FS belongs to

the class of classical functions and has finite values for any space and time variables.

Let us note that the FS of the motion equations for indefinite isotropic (transversely

isotropic) solids can be given by explicit formula in terms of wave-vector variables

as well as space variables. We use these formulae for testing our method. The first

part of the numerical experiments of the present paper has shown that values of the

FS in terms of wave-vector variables found by the suggested method and values of the

FS obtained by the explicit formula for the isotropic (transversely isotropic) indefinite

solids are almost the same (the accuracy in these experiments is less or equal to 10−10).

Moreover, we have shown that values of the FSs found by the suggested method can

be efficiently used for the computation of the integrals when the integrand contains the

FSs as terms. By computational experiments we have obtained very close values of

integrals when we use either values of the FS found by the suggested method or values

of the explicit formula in the case of isotropic or transversely isotropic infinite solids.

The suggested method consists of the several steps: equations for each column of the

fundamental matrix (FS) are reduced to a symmetric hyperbolic system; the Fourier

transform with respect to the space variables is applied to this symmetric hyperbolic
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system; as a result of it we obtain a system of the ordinary differential equations with

respect to the time variable whose coefficients depend on the Fourier parameters; using

the matrix transformation an explicit formula for a solution of the obtained system is

computed; as a result of these computations we obtain explicit formulae for Fourier

images of the fundamental matrix columns; finally, the FS is computed by the inverse

Fourier transform to the obtained Fourier image of fundamental matrix. Using the

suggested method the following new computational aspects of FSs for anisotropic

solids have been obtained: the values of FSs have been computed in homogeneous

solids with trigonal (aluminum oxide), monoclinic (diopside) and triclinic (albite)

structures of anisotropy; the simulation of the wave propagation in these solids has been

made. Computational examples confirm the robustness of the suggested approach for

the computation of FS of elastodynamics in general homogeneous anisotropic media.

As an application of the FSs an explicit formula for the displacement components of

general homogeneous anisotropic media arising from an arbitrary force is obtained.

In the third method a new approach for finding the displacement in unbounded

general anisotropic media is suggested. This approach consists of the following. The

equations of elastodynamics are written in terms of displacement. These equations

form a system of the partial differential equations of the second order. Applying

the Fourier transform with respect to space variables to these equations we obtain a

system of second order ordinary differential equations whose coefficients depend on

Fourier parameters. Using the matrix transformations and properties of coefficients

the Fourier image of the fundamental solution is computed. Finally, the fundamental

solution is computed by the inverse Fourier transform to obtained Fourier image.

The implementation and justification of the suggested method have been made by

computational experiments in MATLAB. Computational experiments confirm the

robustness of the suggested method. The visualization of the displacement components

in general homogeneous anisotropic solids by modern computer tools allows us to see
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and evaluate the dependence between the structure of solids and the behavior of the

displacement field. Our method allows users to observe the elastic wave propagation

arising from pulse point forces of the form emδ(x)δ(t) in monoclinic, triclinic and other

anisotropic solids. The visualization of displacement components gives knowledge

about the form of fronts of elastic wave propagation in Sodium Thiosulfate with

monoclinic and Copper Sulphate Pentahydrate with triclinic structures of anisotropy.

Chapter 3 consist of three sections. In these sections the dynamic three dimensional

motion equations of 1D, 2D and 3D QCs are considered, respectively. We studied

a method for the derivation of the time-dependent fundamental solution (Green’s

function) with three space variables in QCs with arbitrary system of anisotropy. This

method consists of the following. The dynamic equations of the motion for QCs

are written in terms of the Fourier transform with respect to space variables as a

vector ordinary differential equation with matrix coefficients depending on the Fourier

parameters. Applying the matrix transformations and properties of matrix coefficients

a solution of the vector ordinary differential equation is computed. Finally, the

fundamental solution is computed by the inverse Fourier transform. Computational

examples confirm the robustness of the suggested method for computation of FS in

1D, 2D and 3D QCs with arbitrary type of anisotropy. Computational images of

phonon and phason displacements for anisotropic 1D QCs with triclinic, monoclinic,

orthorhombic, tetragonal, trigonal structures are given at the end of the first section.

Computational images of phonon and phason displacements for anisotropic 2D QCs

with dodecagonal, octagonal, decagonal, pentagonal, hexagonal, triclinic structures

are given at the end of the second section. And in the third section simulations of the

fundamental solution of the icosahedral QCs are given. It is shown that the constructed

fundamental solution of elasticity for QCs can be efficiently used for computation of

the initial value problem for the considered dynamic differential equations of elasticity

for QCs with arbitrary given external force and initial data.
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In chapter 4 a homogeneous non-dispersive electrically and magnetically

anisotropic media, characterized by a symmetric positive definite permittivity

and permeability tensors are considered. An analytic method for deriving the

time-dependent fundamental solution (Green’s function of the free space) in these

anisotropic media is studied. This method consists of the following: equations for

each column of the fundamental solution are reduced to a symmetric hyperbolic

system; using the Fourier transform with respect to the space variables and matrix

transformations we obtain formulae for Fourier images of the fundamental solution

columns, finally, the fundamental solution is computed by the inverse Fourier

transform. Computational examples confirm the robustness of the suggested method.

In chapter 5 IVP for the system of linear, inhomogenous, anisotropic dynamics of

electromagnetoelasticity (EME) is considered. An analytic method of solving IVP for

EME is given. First of all IVP is rewritten in terms of the Fourier images with respect

to the space lateral variables. We denote this problem as FIVP. After that the obtained

FIVP is transformed into an equivalent second kind vector integral equation of the

Volterra type. Applying the successive approximations method to this integral equation

we have constructed its solution. At last using the equivalence of this vector integral

equation to FIVP and the real Paley-Wiener theorem we found a solution of IVP for the

system of linear, inhomogenous, anisotropic dynamics of electromagnetoelasticity.



CHAPTER TWO

MODELLING AND SIMULATION OF ELASTIC WAVES IN CRYSTALS

In this chapter of the thesis fundamental solution of anisotropic elastodynamics is

calculated using three different methods.

2.1 Equations of anisotropic elastodynamics as a symmetric hyperbolic system:

deriving the time-dependent fundamental solution

2.1.1 Equations of anisotropic elastodynamics

A body which is acted on by external forces is said to be in a state of stress. If we

consider a volume element situated within a stressed body there are forces exerted on

the surface of the element by the material surrounding it. These forces are proportional

to the area of the surface of the element, and the force per unit area is called the stress

(Nye (1957)).

Strain is the geometrical expression of deformation caused by the action of stress

on a physical body. Strain is calculated by first assuming a change between two body

states: the beginning state and the final state. Then the difference in placement of two

points in this body in those two states expresses the numerical value of strain. Strain

therefore expresses itself as a change in size or shape. If strain is equal over all parts of

a body, it is referred to as homogeneous strain; otherwise, it is inhomogeneous strain.

In its most general form, the strain is a symmetric tensor. Hooke’s law of elasticity

is an approximation that states that the amount by which a material body is deformed

(the strain) is linearly related to the force causing the deformation (the stress).

20
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Here, the stress is denoted by the components τ jk of τ. The resistance of the material

is called strain tensor is denoted by ε. The stress-strain law can be written as

τi j = ci jklεkl (2.1)

Here, ci jkl are the components of fourth rank tensor C which denotes the elastic

moduli and determines the properties of the material. And it must satisfy the following

symmetry property

ci jkl = c jikl, ci jkl = c jilk, ci jkl = ckli j (2.2)

To show the second condition of symmetry property in (2.2), we use the first and the

third conditions, i.e

ci jkl = ckli j = clki j = ci jlk

The first condition of the symmetry property in (2.2), follows from the symmetry

property of the stress

τi j = τ ji, for i, j = 1,2,3. (2.3)

To show the third condition of the symmetry property in (2.2), it is not enough to use

the symmetry property of strain tensor

εi j = ε ji, for i, j = 1,2,3. (2.4)

By using the symmetry property of the strain in (2.4), we can write

τi j =
1
2

ci jklεkl +
1
2

ci jklεkl =
1
2

ci jklεkl +
1
2

ci jlkεlk =
1
2
(ci jkl + ci jlk)εkl

The strain energy W of per unit volume of the material is

W =
∫ εpq

0
τi jdεi j =

∫ εpq

0
ci jklεkldεi j (2.5)
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This integral is independent of the path taken by εi j. Otherwise, we extract amount of

the energy which is impossible for a real material. The integral depends only the final

strain εpq. Then this implies that it is the total differential of dW ,i.e

ci jklεkldεi j = dW =
∂W
∂εi j

dεi j

Then for arbitrary dεi j,

τi j = ci jklεkl =
∂W
∂εi j

(2.6)

The differentiation of the above equality follows that

ci jkl =
∂W 2

∂εkl∂εi j

The double differentiation is interchangeable so

ci jkl = ckli j for i, j,k, l = 1,2,3.

So we have the full symmetry property,

ci jkl = ckli j = clki j = ci jlk (2.7)

Additionally, the equation (2.6) follows that

W =
1
2

ci jklεi jεkl

Since the strain energy must be positive then

ci jklεi jεkl > 0, for i, j,k, l = 1,2,3.
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so, the quadratic form,

3

∑
i, j,k,l=1

ci jklεi jεkl > 0, εi j ̸= 0, εkl ̸= 0. (2.8)

These notations and definitions can be found in Ting (1996).

The transformation between the subscripts i jkl and αβ is accomplished by

replacing the subscripts i j( or kl) with the subscript α( or β) using the following

rules:

α =

 i, if i = j;

9− i− j, if i ̸= j.
β =

 k, if k = l;

9− k− l, if k ̸= l.
(2.9)

So, the subscripts are taken as

i j or kl → α( or β)

11 → 1

22 → 2

33 → 3

23 or 32 → 4

31 or 13 → 5

21 or 12 → 6.

(2.10)

So the matrix

C = (cαβ)6×6, (2.11)

of all moduli is symmetric. The stress-strain law in (2.1) can be written as

τα = cαβεβ, cαβ = cβα. (2.12)
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The quadratic form in (2.8) can be written

6

∑
α,β=1

cαβεαεβ > 0, εα ̸= 0, εβ ̸= 0 (2.13)

and implies the positive-definiteness of the 6×6 matrix C.

Let x = (x1,x2,x3) ∈ R3. We assume that R3 is an elastic medium, whose small

vibrations

u(x, t) = (u1(x, t),u2(x, t),u3(x, t))

are governed by the system of partial differential equations

ρ
∂2ui

∂t2 =
3

∑
j=1

∂τi j

∂x j
+ fi, x = (x1,x2,x3) ∈ R3, t ∈ R, i = 1,2,3, (2.14)

where ρ > 0 is the density of the medium; f = ( f1, f2, f3) is an external force, fi =

fi(x, t), i = 1,2,3; fi(x, t) is a given function.

Stresses τi j = τi j(x, t) are defined as

τi j =
3

∑
k,l=1

ci jkl
∂uk

∂xl
, i, j = 1,2,3, (2.15)

where {ci jkl}3
i, j,k,l=1 are the elastic moduli of the medium.
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2.1.2 Reduction of (2.14) to a symmetric hyperbolic system

Using the symmetry properties of the elastic moduli and the rule (2.10) the relation

(2.15) can be written as

τα = cα1
∂u1

∂x1
+ cα6

∂u1

∂x2
+ cα5

∂u1

∂x3
+ cα6

∂u2

∂x1
+ cα2

∂u2

∂x2

+ cα4
∂u2

∂x3
+ cα5

∂u3

∂x1
+ cα4

∂u3

∂x2
+ cα3

∂u3

∂x3
, α = 1,2, ...,6. (2.16)

Here τ = (τ1,τ2,τ3,τ4,τ5,τ6). Let

Ui =
∂ui

∂t
, i = 1,2,3, (2.17)

Y = (
∂U1

∂x1
,
∂U2

∂x2
,
∂U3

∂x3
,(

∂U3

∂x2
+

∂U2

∂x3
),(

∂U3

∂x1
+

∂U1

∂x3
),(

∂U2

∂x1
+

∂U1

∂x2
)),

U = (U1,U2,U3). (2.18)

Differentiating (2.16) with respect to t and using vectors τ and Y we have

∂τ
∂t

= CY, (2.19)

where C is defined by (2.11). Multiplying (2.19) by the inverse of C, denoted C−1, we

find

C−1 ∂τ
∂t

−Y = 0. (2.20)
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Equation (2.20) can be written in the form

C−1 ∂τ
∂t

+
3

∑
j=1

(A1
j)
∗ ∂U

∂x j
= 0, (2.21)

where ∗ is the transposition of sign,

A1
1 =


−1 0 0 0 0 0

0 0 0 0 0 −1

0 0 0 0 −1 0

 , A1
2 =


0 0 0 0 0 −1

0 −1 0 0 0 0

0 0 0 −1 0 0

 ,

A1
3 =


0 0 0 0 −1 0

0 0 0 −1 0 0

0 0 −1 0 0 0

 . (2.22)

Using the notation mentioned above the left-hand side of (2.14) can be written as

ρ
∂2u
∂t2 = ρ

∂U
∂t

. (2.23)

Now let us consider the term
3
∑
j=1

∂τi j
∂x j

in the right-hand side of (2.14). Taking into

account the symmetry properties of the elastic moduli and the rule (2.10) we have

3

∑
j=1

∂τ1 j

∂x j
=

∂τ1

∂x1
+

∂τ6

∂x2
+

∂τ5

∂x3
,

3

∑
j=1

∂τ2 j

∂x j
=

∂τ6

∂x1
+

∂τ2

∂x2
+

∂τ4

∂x3
,

3

∑
j=1

∂τ3 j

∂x j
=

∂τ5

∂x1
+

∂τ4

∂x2
+

∂τ3

∂x3
.
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Using these equations and (2.23) equations (2.14) can be written as

ρ
∂U
∂t

+
3

∑
j=1

(A1
j)

∂τ
∂x j

= f. (2.24)

The relations (2.21) and (2.24) can be presented by a single system as (Yakhno &

Akmaz (2005))

A0
∂V
∂t

+
3

∑
j=1

A j
∂V
∂x j

= F, x ∈ R3, t ∈ R, (2.25)

where F = (f,06,1),

V = (U1,U2,U3,τ1,τ2,τ3,τ4,τ5,τ6),

A0 =

 ρI3,3 03,6

06,3 C−1

 ,A j =

 03,3 A1
j

(A1
j)
∗ 06,6

 . (2.26)

Here Im,m is the unit matrix of the order m×m and 0l,m is the zero matrix of the order

l ×m, matrices A1
j , j = 1,2,3, are defined by (2.22).

We note that the matrix A0 is symmetric positive definite and matrices A1
j , j =

1,2,3 are symmetric. Therefore the system (2.25) is a symmetric hyperbolic system

(see, for example, Lax (2006), Courant & Hilbert (1962)). In this section we call

(2.25) as the symmetric hyperbolic system of elasticity (SHSE) and the second order

system (2.14) as the anisotropic elastic system (AES).
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2.1.3 Some properties of fundamental solution for the system of anisotropic

elasticity

Let us consider (2.14) and (2.15) with initial conditions

u(x,0) = ψ(x),
∂u
∂t

(x,0) = φ(x), x ∈ R3, t ∈ R. (2.27)

Here ψ(x) = (ψ1(x),ψ2(x),ψ3(x)) and φ(x) = (φ1(x),φ2(x),φ3(x)). Using equalities

Ui(x,0) = φi(x), τi j |t=0=
3

∑
k,l=1

ci jkl
∂ψk

∂xl
, i, j = 1,2,3.

Initial conditions (2.27) can be written in the vector form

V(x,0) = V0(x), x ∈ R3. (2.28)

Lemma 2.1. System (2.25) can be transformed into the following form (see, similar

reasoning in Yakhno & Akmaz (2005))

I9
∂Ṽ
∂t

+
3

∑
j=1

Ã j
∂Ṽ
∂x j

= F̃(x, t), x ∈ R3, t ∈ R, (2.29)

which is a symmetric hyperbolic system.

Proof. For the symmetric positive definite matrix C there exists a symmetric positive

definite matrix M such that C−1 = M2 (Goldberg (1992)) and the matrix M−1, which

is inverse of M, is symmetric (see Appendix). Let

S =

 ρ− 1
2 I3,3 03,6

06,3 M−1

 .
Applying the transformation V(x, t) = SṼ(x, t) into (2.25) and multiplying it by the
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matrix S from the left hand side we find (2.29). Here

Ã j = SA jS, F̃ = SF. (2.30)

We note that Ã j, j = 1,2,3, are still symmetric, which implies that (2.29) is symmetric

hyperbolic system.

Initial conditions (2.28) can be written as

Ṽ(x,0) = S−1V0(x) = Ṽ0(x) (2.31)

Theorem 2.2. Let T be a fixed positive number, ψ(x); φ(x) and f(x, t) be given

functions such that ψ(x) ∈ H2(R3); φ(x) ∈ H1(R3) and f(x, t) ∈ C([0,T ];H1(R3)).

Then there exists a unique solution of Cauchy problem (2.29),(2.31) (see, similar

reasoning in Yakhno & Akmaz (2005))

Ṽ(x, t) ∈C1([0,T ];L2(R3))∩C([0,T ];H1(R3)).

Proof. Using existence theorem for symmetric hyperbolic system of the first order

(Mizohata (1973), see Appendix) it can be shown that there exists a unique solution of

(2.29),(2.31) in the class C1([0,T ];L2(R3))∩C([0,T ];H1(R3)).

Theorem 2.3. Let T be a fixed positive number, ψ(x); φ(x) and f(x, t) be given

functions such that ψ(x) ∈ C∞
0 (R

3); φ(x) ∈ C∞
0 (R

3) and f(x, t) ∈ C([0,T ];C∞
0 (R

3)).

Then the solution Ṽ(x, t) of Cauchy problem (2.29), (2.31) belongs to

C1([0,T ];C∞
0 (R

3)).

Proof. Using Theorem 2.2 it can be found that if Dαψ(x)∈ H4(R3); Dαφ(x)∈ H3(R3)

and Dαf(x, t) ∈C([0,T ];H3(R3)) where T is a fixed positive number, α = (α1,α2,α3)
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is an arbitrary multi-index, |α|= α1+α2 +α3, αi; i = 1,2,3 are nonnegative integers,

Dα = ∂|α|
∂x

α1
1 ∂x

α2
2 ∂x

α3
3

. Then DαṼ(x, t) belongs to the class (see, similar reasoning in

Yakhno & Akmaz (2005))

DαṼ(x, t) ∈C1([0,T ];H2(R3))∩C([0,T ];H3(R3)).

Using this fact and applying Sobolev’s lemma (see Appendix) it can be proved that

Ṽ(x, t) ∈C1([0,T ];C∞(R3)).

Now we need to prove that the function Ṽ(x, t) has a compact support. Let us

consider symmetric hyperbolic system of the first order (2.29) where all matrices

Ãk are real symmetric matrices with constant elements. Let T be a fixed positive

number, ξ = (ξ1,ξ2,ξ3) ∈ R3 be a parameter; A(ξ) be a matrix defined by A(ξ) =

∑3
k=1 Ãkξk; λi(ξ), i = 1,2, ...,9 be eigenvalues of A(ξ). The positive number M is

defined by

M = max
n=1,2,...,9

max
|ξ|=1

|λi(ξ)|. (2.32)

We claim that M is the upper bound on the speed of waves in any direction.

Using T and M we define the following domains

S(x0,h) = {x ∈ R3 : |x− x0| ≤ M(T −h), 0 ≤ h ≤ T}

Γ(x0,T ) = {(x, t) : 0 ≤ t ≤ T, |x− x0| ≤ M(T − t)}

R(x0,h) = {(x, t) : 0 ≤ t ≤ h, |x− x0|= M(T − t)}

Here Γ(x0,T ) is the conoid with vertex (x0,T ); S(x0,h) is the surface constructed by the

intersection of the plane t = h and the conoid Γ(x0,T ); R(x0,h) is the lateral surface of

the conoid Γ(x0,T ) bounded by S(x0,0) and S(x0,h). Let Ω be the region in R3×(0,∞)
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bounded by S(x0,0), S(x0,h) and R(x0,h) with boundary ∂Ω = S(x0,0)∪ S(x0,h)∪

R(x0,h).

Applying the energy inequality (Courant & Hilbert (1962), see Appendix) we find

the following estimate for the solution of (2.29), (2.31)

∫
S(h)

|Ṽ(x,h)|2dx ≤ eh
[∫

S(0)
|Ṽ0(x)|2dx+

∫ h

0

(∫
S(t)

|F̃(x, t)|2dx
)

dt
]
. (2.33)

Let us define P(K) = {x ∈ R3 : |x| ≤ K}. Since ψ(x) ∈C∞
0 (R

3); φ(x) ∈C∞
0 (R

3) and

f(x, t) ∈C([0,T ];C∞
0 (R

3)) then there exits K > 0 such that supp ψ ⊆ P(K), supp φ ⊆

P(K) and f(x, t) as a function of the variable x, has a finite support which is located in

P(K) for any fixed t from [0,T ].

Also let us denote

D(T,K) = {(x, t) : 0 ≤ t ≤ T, Γ(x, t)∩P(K) = /0}.

If (x, t) ∈ D(T,K) then Ṽ(x, t) = 0. This means Ṽ(x, t) = 0 for any t ∈ [0,T ] and

|x|> MT +K.

Hence, supp Ṽ ⊆ P(MT +K). As a result Ṽ(x, t) belongs to the class

Ṽ(x, t) ∈C1([0,T ];C∞
0 (R

3)).

Theorem 2.4. Let W̃m be a fundamental solution of

I9,9
∂W̃m

∂t
+

3

∑
j=1

Ã j
∂W̃m

∂x j
= Emδ(x)δ(t), x ∈ R3, t ∈ R, (2.34)

W̃m(x, t)|t<0 = 0.
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And Wm(x, t) be a solution of the following IVP

I9,9
∂Wm

∂t
+

3

∑
j=1

Ã j
∂Wm

∂x j
= 0, x ∈ R3, t ∈ R, (2.35)

Wm(x,0) = Emδ(x).

Then W̃m(x, t) = θ(t)Wm. Here m = 1,2,3; E1 = (1,0,0,0,0,0,0,0,0)∗, E2 =

(0,1,0,0,0,0,0,0,0)∗, E3 = (0,0,1,0,0,0,0,0,0)∗; δ(t) is the Dirac delta function

with support at t = 0; δ(x) is the Dirac delta function with respect to space variables,

i.e. δ(x) = δ(x1)δ(x2)δ(x3); matrices Ã j, j = 1,2,3, are defined by (2.30).

Proof. Since W̃m(x, t) = θ(t)Wm(x, t), derivative of W̃m with respect to t is

∂W̃m

∂t
= δ(t)Wm(x,0)+θ(t)

∂Wm

∂t

and

I9,9
∂W̃m

∂t
+

3

∑
j=1

Ã j
∂W̃m

∂x j
= Emδ(x)δ(t)+θ(t)(I9,9

∂Wm

∂t
+

3

∑
j=1

Ã j
∂Wm

∂x j
)

= Emδ(x)δ(t).

It is well known that Hormander-Lojasiewicz theorem (Vladimirov (1979), see

Appendix) the arbitrary differential equation and system with constant coefficients has

a fundamental solution of slow growth. Thus, system with constant coefficients given

with equations (2.35) has a fundamental solution

Wm(x, t) ∈C1([0,T ];S′(R3)).
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Our aim is to study some of the properties of this fundamental solution and suggest

a method to find fundamental solutions.

Let us denote convolution of functions Wm(x, t) with cap-shaped function wε(x)

by Wm
ε (x, t). Taking convolution with cap-shaped function, the problem (2.35) can be

written as

I9,9
∂Wm

ε
∂t

+
3

∑
j=1

Ã j
∂Wm

ε
∂x j

= 0, x ∈ R3, t ∈ R,

Wm
ε (x,0) = Emwε(x). (2.36)

Using Theorem 2.3, it can be proved that problem (2.36) has a unique solution

Wm
ε (x, t) ∈C1([0,T ];C∞

0 (R
3)) where supp Wm

ε (x, t)⊆ P(MT + ε0) ∀ε ∈ (0,ε0).

Property 1. As ε → +0, Wm
ε (x, t) approaches to Wm(x, t) in S′(R3); ∀t ∈ [0,T ].

Proof of property 1. It can be proved that as ε → +0, wε(x) approaches to δ(x) in

S′(R3). Using this fact and using the continuity of the convolution, property is proved.

Property 2. Let T be a fixed positive number. There exists a solution of Cauchy

problem (2.35)

Wm(x, t) ∈C1([0,T ];E ′(R3)).

Proof of property 2. We need to show that

(Wm,φ) = 0; ∀φ ∈ S and supp φ ⊆ R3 \P(MT + ε0).

From property 1, we know that

(Wm,φ) = lim
ε→+0

(Wm
ε ,φ); ∀φ ∈ S

= 0.

This means supp Wm ⊆ P(MT + ε0) ∀ε ∈ (0,ε0). So we prove that Wm(x, t) is a
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tempered distribution with compact support, solution of the Cauchy problem (2.35)

belongs to the following space

Wm(x, t) ∈C1([0,T ];E ′(R3)).

Property 3. Since Wm(x, t) ∈C1([0,T ];E ′(R3)), according to Paley-Wiener theorem

(Reed & Simon (1975), see Appendix), Fourier transform of the function Wm(x, t) is

an entire analytic function with respect to ν = (ν1,ν2,ν3) ∈ R3, and can be written as

a power series

Ŵm(ν, t) =
∞

∑
n=0

∞

∑
p=0

∞

∑
k=0

(Wm)n+1,p+1,k+1(t)νn
1νp

2νk
3. (2.37)

2.1.4 Fundamental solutions of SHSE and AES

The fundamental solution of SHSE (2.25) is defined as a matrix G(x, t) of the order

9×3 whose columns Vm(x, t) = (V m
1 (x, t), ...,V m

9 (x, t)) satisfy

A0
∂Vm

∂t
+

3

∑
j=1

A j
∂Vm

∂x j
= Emδ(x)δ(t), x ∈ R3, t ∈ R, (2.38)

Vm(x, t) |t<0= 0, (2.39)

where m = 1,2,3; E1 = (1,0,0,0,0,0,0,0,0)∗, E2 = (0,1,0,0,0,0,0,0,0)∗, E3 =

(0,0,1,0,0,0,0,0,0)∗; δ(t) is the Dirac delta function with support at t = 0; δ(x) is

the Dirac delta function with respect to space variables, i.e. δ(x) = δ(x1)δ(x2)δ(x3);

matrices A0, A j, j = 1,2,3, are defined by (2.22), (2.26).

Remark 1. The fundamental solution of the system of the form (2.25) with a vector

function F(x, t), whose nine components are arbitrary functions for t ≥ 0 and equal
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to zero for t < 0, can be defined as a matrix G(x, t) of the order 9× 9 for which the

formula

V(x, t) =
∞∫

−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

G(x−ξ, t −η)F(ξ,η)dξ1dξ2dξ3dη (2.40)

gives a solution of (2.25). Here ξ = (ξ1,ξ2,ξ3) ∈ R3, x = (x1,x2,x3)∈ R3, t ∈ R. Using

the fact that the first three components of

F = ( f1(ξ,η), f2(ξ,η), f3(ξ,η),0, ...,0)

are nonzero and other components are identically equal to zero we find that columns

of G(x, t) started from fourth do not have any influence on the solution V(x, t) defined

by (2.40). Therefore the fundamental solution of SHSE (2.25) is naturally defined as a

matrix G(x, t) of the order 9×3 for which the formula

V(x, t) =
∞∫

−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

G(x−ξ, t −η)f(ξ,η)dξ1dξ2dξ3dη

gives a solution of SHSE (2.25), where f(ξ,η) = ( f1(ξ,η), f2(ξ,η), f3(ξ,η)) is 3D

vector column. We note also that each column of the fundamental solution G(x, t) of

SHSE (2.25) satisfies (2.38), (2.39).

A fundamental solution of AES (2.14) is defined as a matrix G(x, t) of the order

3× 3 whose columns um(x, t) = (um
1 (x, t),u

m
2 (x, t),u

m
3 (x, t))

∗ satisfy equations (2.14)

for fi = δm
i δ(x)δ(t). Here δm

i is the Kroneker symbol, i.e. δm
i = 1 if i = m and δm

i = 0

if i ̸= m; i = 1,2,3; m = 1,2,3; δ(x) = δ(x1) · δ(x2) · δ(x3) is the Dirac delta function

concentrated at x1 = 0, x2 = 0, x3 = 0; δ(t) is the Dirac delta function concentrated at

t = 0.

Remark 2. If the fundamental solution G(x, t) of SHSE (2.25) is given (found)
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then elements of the fundamental solution G(x, t) of AES (2.14) can be computed by

the following formulae

um
j (x, t) =

t∫
0

V m
j (x,η)dη, m = 1,2,3; j = 1,2,3. (2.41)

2.1.5 Deriving the fundamental solution of SHSE

In this section we derive the explicit formulae for all components of the

fundamental solution G(x, t). The derivation of fundamental solution columns have the

following steps. In the first step equations (2.38)-(2.39) are written in terms of Fourier

transform with respect to space variables x1,x2,x3 and then the images Ṽm
(ν, t) of the

Fourier transform of Vm(x, t) are found in the form of the power series with respect

to 3-D Fourier parameter ν ∈ R3 with unknown coefficients depending on the time

variable t. We obtain recurrence relations for unknown coefficients in the next step.

Using these relations all power series coefficients are derived explicitly. Applying

the inverse Fourier transform to the found formulae for Ṽm
(ν, t) we obtain explicit

formulae for each column Vm(x, t) of the fundamental solution G(x, t) in the last step.

2.1.5.1 Symmetric hyperbolic system in terms of Fourier transform

Let Ṽm
(ν, t) be the Fourier transform image of Vm(x, t) with respect to x =

(x1,x2,x3) ∈ R3, i.e.

Ṽj
m
(ν, t) = Fx[V m

i ](ν, t), j = 1,2, ...,9,
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where

Fx[V m
j ](ν, t) =

∞∫
−∞

∞∫
−∞

∞∫
−∞

V m
j (x, t)e

ix·νdx1dx2dx3,

ν = (ν1,ν2,ν3) ∈ R3, x ·ν = x1ν1 + x2ν2 + x3ν3, i2 =−1.

Equations (2.38)-(2.39) can be written in terms of the Fourier image Ṽm
(ν, t) as

follows:

A0
∂Ṽm

∂t
− i(ν1A1 +ν2A2 +ν3A3)Ṽ

m
= Emδ(t), t ∈ R, (2.42)

Ṽm
(ν, t)|t≤0 = 0, ν ∈ R3. (2.43)

Using the matrix formalism in MATLAB we construct a non-singular matrix T and a

diagonal matrix D with real-valued elements such that

T∗A0T = I, T∗A3T = D, (2.44)

where I is the identity matrix, T∗ is the transposed matrix to T. The technique of this

diagonalization can be found in Yakhno & Yakhno & Kasap (2006).

We find a solution of (2.42) and (2.43) in the form

Ṽm
(ν, t) = T(Xm(ν, t)+ iYm(ν, t)), (2.45)

where the matrix T satisfies the relations (2.44). Vector functions Xm(ν, t) and Ym(ν, t)

are unknown. Substituting (2.45) into (2.42)-(2.43) and multiplying by T∗ from left
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hand side and using the relations (2.44) we find

∂Xm

∂t
+ν1BYm +ν2CYm +ν3DYm = T∗Emδ(t), Xm(ν, t) |t≤0= 0, (2.46)

∂Ym

∂t
−ν1BXm −ν2CXm −ν3DXm = 0, Ym(ν,0) |t≤0= 0 (2.47)

where B = D∗A1D and C = T∗A2T.

2.1.5.2 Explicit formula for a solution of IVP (2.42), (2.43)

Using properties of the fundamental solution in section 2.1.3 the vector functions

Xm(ν, t), Ym(ν, t) can be written as

Xm(ν, t) =
∞

∑
n=0

∞

∑
p=0

∞

∑
k=0

(Xm)n+1,p+1,k+1(t)νn
1νp

2νk
3, (2.48)

Ym(ν, t) =
∞

∑
n=0

∞

∑
p=0

∞

∑
k=0

(Ym)n+1,p+1,k+1(t)νn
1νp

2νk
3, (2.49)

Substituting these series into (2.46)-(2.47) we have

∂(Xm)1,1,1

∂t
= 0, (Xm)1,1,1(t) |t=0 = T∗Em.

∂(Xm)n+1,p+1,k+1

∂t
+ B(Ym)n,p+1,k+1 +C (Ym)n+1,p,k+1

+ D(Ym)n+1,p+1,k = 0, n, p,k = 0,1, ...,

(Xm)n+1,p+1,k+1(t) |t=0= 0, n, p,k = 0,1, ...; n+ p+ k ̸= 0 (2.50)
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and

∂(Ym)n+1,p+1,k+1

∂t
− B(Xm)n,p+1,k+1 −C (Xm)n+1,p,k+1

− D(Xm)n+1,p+1,k = 0, n, p,k = 0,1, ...,

(Ym)n+1,p+1,k+1(t) |t=0 = 0, n, p,k = 0,1, .... (2.51)

where

(Xm)0,r,s(t) = 0, (Xm)l,0,s(t) = 0, (Xm)l,r,0(t) = 0,

(Ym)0,r,s(t) = 0, (Ym)l,0,s(t) = 0, (Ym)l,r,0(t) = 0, l,r,s = 0,1,2, ...

Solving IVP (2.50)-(2.51) we have the following recurrence relations

(Xm)1,1,1(t) = T∗ Em, (Ym)1,1,1(t) = 0,

(Xm)n+1,p+1,k+1(t) =
t∫

0

{−B(Ym)n,p+1,k+1 −C (Ym)n+1,p,k+1

− D(Ym)n+1,p+1,k}(τ)dτ (n, p,k = 0,1,2, ...; n+ k+ p ̸= 0), (2.52)

(Ym)n+1,p+1,k+1(t) =
t∫

0

{B(Xm)n,p+1,k+1 +C (Xm)n+1,p,k+1

+ D(Xm)n+1,p+1,k}(τ)dτ (n, p,k = 0,1,2, ...) (2.53)

Using the recurrence relations (2.52)-(2.53) unknown vector coefficients

(Xm)n+1,p+1,k+1, (Ym)n+1,p+1,k+1, n, p,k = 0,1, ...

are determined.
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Substituting the obtained vector coefficients into the series (2.48)-(2.49) we find the

solution of the systems (2.46)-(2.47) and then, using (2.45), the solution Ṽm
(ν, t) of

(2.42), (2.43).

2.1.5.3 Explicit formula for a solution of IVP (2.38)-(2.39)

Let Ṽm
(ν, t) be the found solution of (2.42), (2.43). The solution Vm(x, t) =

(V m
1 (x, t), ...,V m

9 (x, t)) of IVP (2.38)-(2.39) is determined by the inverse Fourier

transform of Ṽm
(ν, t), i.e. by the formula:

Vm(x, t) =
θ(t)
(2π)3

∞∫
−∞

∞∫
−∞

∞∫
−∞

Ṽm
(ν, t)e−ix·νdν1dν2dν3, (2.54)

where θ(t) is the Heaviside step function, i.e. θ(t) = 1 for t ≥ 0 and θ(t) = 0 for t < 0.

We get from (2.45) the following relation

Ṽm
(ν, t)e−ix·ν = [TXm(ν, t)cos(x ·ν)+TYm(ν, t)sin(x ·ν)]

+i [TYm(ν, t)cos(x ·ν)−TYm(ν, t)sin(x ·ν)] . (2.55)

Taking into account that components of the vector function Vm(x, t) as well as

components of vector functions TXm(ν, t) and TYm(ν, t) have real values, the

imaginary part of the right hand side of (2.54) is equal to zero. As a result of it we

find from (2.54) and (2.55) the following formula for mth column of the fundamental

solution of SHSE:

Vm(x, t) =
θ(t)
(2π)3

∞∫
−∞

∞∫
−∞

∞∫
−∞

[TXm(ν, t)cos(x1ν1 + x2ν2 + x3ν3)

+ TYm(ν, t)sin(x1ν1 + x2ν2 + x3ν3)]dν1dν2dν3. (2.56)
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2.1.6 Computational experiments: implementation and justification

2.1.6.1 The regularization of some singular generalized functions

An explicit formula of the FS of equations of isotropic elastodynamics is well

known (see, for example, Aki & Richard (1980)). For example, components of the

first column of FS can be written in the form

G1
1(x1,x2,x3, t) =

1
4πρ

(
3x2

1
|x|5

− 1
|x|3

)θ(t − |x|
CL

) θ(
|x|
CT

− t)t

+
1

4πρC2
P

x2
1

|x|3
δ(t − |x|

CL
)+

1
4πρC2

T |x|
(1−

x2
1

|x|2
)δ(t − |x|

CT
), (2.57)

G1
2(x1,x2,x3, t) =

1
4πρ

3x1x2

|x|5
θ(t − |x|

CL
) θ(

|x|
CT

− t)t

+
1

4πρC2
L

x1x2

|x|3
δ(t − |x|

CL
)− 1

4πρC2
T

x1x2

|x|3
)δ(t − |x|

CT
), (2.58)

G1
3(x1,x2,x3, t) =

1
4πρ

3x1x3

|x|5
θ(t − |x|

CL
) θ(

|x|
CT

− t)t

+
1

4πρC2
L

x1x3

|x|3
δ(t − |x|

CL
)− 1

4πρC2
T

x1x3

|x|3
)δ(t − |x|

CT
), (2.59)

where C2
T = µ

ρ , C2
L = λ+2µ

ρ . These formulae contain singular terms δ(CT t −

|x|)/(4πC2
T ρ|x|) and δ(CLt − |x|)/(4πC2

Lρ|x|). The supports of these singular terms

are the characteristic cones tCT = |x| and tCL = |x| in the space of variables x1,x2,x3, t.

Usually the classical functions are defined by the point-wise manner and we can draw

their graphs. Unfortunately this point-wise definition and its graphic presentation is

not adequate to singular generalized functions (Vladimirov (1979), Vladimirov (1971),

Reed & Simon (1975)). For this reason they are very often replaced by regularized

functions which are classical and have graphic presentations. This regularization has
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a parameter of the regularization and the singular generalized function is a limit in

the sense of the generalized functions space when the parameter of this regularization

tends to +∞ (or +0). For example, the singular generalized function δ(t) can be

regularized by 1
2
√

πε exp
(
−t2/(4ε)

)
and the singular generalized function δ(CT t −|x|)

by 1
2
√

πε exp
[
−(CT t −|x|)2/(4ε)

]
(see Vladimirov (1979) ).

On the other hand δ(CT t −|x|)/(4πC2
T ρ|x|) can be regularized by

hA(x, t) =
1

(2π)3

A∫
−A

A∫
−A

A∫
−A

sin(CT |ν|t)
ρCT |ν|

e−ix·νdν1dν2dν3, t > 0, (2.60)

i2 =−1, ν = (ν1,ν2,ν3) ∈ R3, x = (x1,x2,x3) ∈ R3, x ·ν = x1ν1 + x2ν2 + x3ν3.

when A →+∞, because we know that (see Vladimirov (1979))

lim
A→+∞

1
(2π)3

A∫
−A

A∫
−A

A∫
−A

sin(CT |ν|t)
ρCT |ν|

e−ixνdν1dν2dν3 = F−1
ν [

sin(CT |ν|t)
ρCT |ν|

](x)

and

F−1
ν [

sin(CT |ν|t)
ρCT |ν|

](x) =
1

4πC2
T |x|ρ

δ(CT t −|x|).

Here F−1
ν is the 3D inverse Fourier transform defined by (2.54). Since the function

sin(CT |ν|t)/(ρCT |ν|) is even we can replace the 3D integral of (2.60) by

A∫
−A

A∫
−A

A∫
−A

sin(CT |ν|t)
ρCT |ν|

cos(x ·ν)dν1dν2dν3

and then approximately the obtained integral can be written by the following triple
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sums

N

∑
n=−N

N

∑
m=−N

N

∑
l=−N

sin(CT |ν|t)
ρCT |ν|

∣∣
ν=(n∆ν,m∆ν,l∆ν) cos(∆ν(nx1 +mx2 + lx3))(∆ν)3,

where N is a natural number for which A = N∆ν and real numbers A and ∆ν

have been chosen from empirical observations and natural logic. Namely, using

the obtained integral sums we compute the values of hA(x, t) for ∆ν = 1, ∆ν =

0.5, ∆ν = 0.025, A = 20, A = 30, A = 40, A = 50 and so on numerically in

MATLAB . We compare the results of computation with values of the function

1
2
√

πε exp
[
−(CT t −|x|)2/(4ε)

]
/(4πC2

T ρ|x|) (ε = 0.0001) which is a regularization of

δ(CT t − |x|)/(4πC2
T ρ|x|). We have observed that the difference between values of

hA(x, t) and 1
2
√

πε exp
[
−(CT t −|x|)2/(4ε)

]
/(4πC2

T ρ|x|), (ε = 0.0001) corresponding

to ∆ν = 0.5 and A = 40, A = 50, A = 60, A = 70 becomes small and the increment of

the regularization for the parameter A is not essential according to the case ∆ν = 0.5,

A = 40. For this reason we choose ∆ν = 0.5, A = 40 as suitable parameters for hA(x, t)

as regularization of δ(CT t −|x|)/(4πC2
T ρ|x|) by the 3D integral sum.

2.1.6.2 Correctness of the method

For the computation of the fundamental solution of SHSE we use the formula

(2.56) and then we derive the fundamental solution of AES by (2.41). The formula

(2.56) contains 3D integral over the whole space R3. We replace this integral by the

integral over the bounded domain (−A,A)×(−A,A)×(−A,A), where the number A is

chosen by the empirical observation on the singular terms of the fundamental solution

corresponding to isotropic elastic media which is described in section 2.1.6.1

We note also that terms Xm(ν, t) and Ym(ν, t), appearing in (2.56), are presented in

the form of triple series (2.48), (2.49) with infinite number of terms. We replace these
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triple series by sums with finite number of terms of the form

M

∑
n=0

M

∑
p=0

M

∑
k=0

(Xm)n+1,p+1,k+1(t)νn
1νp

2νk
3,

M

∑
n=0

M

∑
p=0

M

∑
k=0

(Ym)n+1,p+1,k+1(t)νn
1νp

2νk
3, (2.61)

where the number M is chosen by the following natural logic. An explicit formula for

the fundamental solution of isotropic elastodynamics as well as an explicit formula for

its Fourier transform image with respect to space variables are well known ( Aki &

Richard (1980)). Thus the formula for the Fourier transform image of the first column

of this fundamental solution has the form

û1(ν, t) = (û1
1(ν, t), û

1
2(ν, t), û

1
3(ν, t)),

where

û1
1(ν, t) =

θ
ρ | ν |3

{sin(CT | ν | t)
CT

(ν2
2 +ν2

3)+
sin(CL | ν | t)

CL
ν2

1},

û1
2(ν, t) =

θ(t)
ρ | ν |3

ν2ν1{
sin(CL | ν | t)

CL
− sin(CT | ν | t)

CT
},

û1
3(ν, t) =

θ(t)
ρ | ν |3

ν3ν1{
sin(CL | ν | t)

CL
− sin(CT | ν | t)

CT
}.

Here elastic moduli for the isotropic medium are defined as ci jkl = λδ j
i δl

k + µ(δk
i δl

j +

δl
iδ

k
j), where µ and λ are Lame parameters; δ j

i is the Kronecker symbol.

On the other hand we can find the first column of the Fourier transform image of

the fundamental solution by our method using formulae (2.48) - (2.49), where triple

series with infinite number of terms are replaced by sums (2.61) with finite number

of terms. We have chosen M such that difference between components of û1(ν, t) and

components of ũ1(ν, t) computed by our method was negligible (of the order 10−4)

when |ν j|< A, j = 1,2,3. The similar has been done for the second and third columns
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of this fundamental solution. As a result we have got that suitable values are: A ≥ 40

and M ≥ 60.

For the justification of these values and evaluation of our method we have used the

following properties of the fundamental solution of isotropic elastodynamics:

∞∫
−∞

∞∫
−∞

u1
1(x1,x2,x3, t)dx1dx2 =

1
2ρCT

θ(CT t −|x3|),

∞∫
−∞

u1
1(x1,x2,x3, t)dx1 =

1
2πρCT

θ(CT t −
√

x2
2 + x2

3)√
C2

T t2 − x2
2 − x2

3

,

where u1
1(x1,x2,x3, t) is the first element of the first column of the fundamental solution

of isotropic elastodynamics.

For the illustration we have considered the isotropic elastic material sillica ( SiO2

) characterized by µ = 3.12, λ = 1.61 ( 1010Pa ), ρ = 2.203 (103kg/m3) (see, for

example, Dieulesaint & Royer (2000), p.163 ). Using reasoning described above

we have chosen numbers A = 45 and M = 90 and then applied our method based

on formulae (2.41), (2.56). As a result of it we have computed V 1
1 (x1,x2,x3, t) and

u1
1(x1,x2,x3, t). After that we have derived integrals

∞∫
−∞

∞∫
−∞

u1
1(x1,x2,x3, t)dx1dx2,

∞∫
−∞

u1
1(x1,x2,x3, t)dx1. (2.62)

For the computation of the integrals we have used the natural property

u1
1(x1,x2,x3, t) = 0, if

√
x2

2 + x2
3 ≥ tCL, or |x3| ≥ tCL

and the integration has been taken over the bounded interval and bounded domain.

The results of the computation and comparison are presented in the Fig.2.1-Fig.2.2.

In Fig.2.1 we have computed the first integral in (2.62) for M = 60, A = 45, t = 2.
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Fig.2.1 gives 2D plot of this integral. Here the horizontal axis is x3. In Fig.2.2 we have

computed the second integral in (2.62) for x2 = x3 = a, M = 60, A= 40, t = 0.5. Figure

2.2 gives 2D plot of this integral. Here the horizontal axis is a.

2.1.7 Images of elements of the fundamental solution of SHSE

The computational experiments of this section confirm the robustness of our method

to produce images of elements of fundamental solution of SHSE (2.25). These images

are the simulation of wave propagations arising from directional pulse point forces in

general anisotropic media. We consider the following homogeneous elastic materials

with orthorhombic and monoclinic structures of anisotropy.

Orthorhombic crystal α-iodic acid (HIO3) (see Dieulesaint & Royer (2000)) has

the following properties: ρ = 4.640 (103kg/m3); and

c11 = 3.01, c12 = c21 = 1.61, c13 = c31 = 1.11,

c22 = 5.8, c23 = c23 = 0.80, c33 = 4.29,

c44 = 1.69, c55 = 2.06, c66 = 1.58, (1010 Pa)

other elements of the matrix C are equal to zero.

Monoclinic crystal AT-cut quartz (see Batra & Qian & Chen (2004)) has the

density ρ = 2.649 (103kg/m3); elements of the matrix C defined by

c11 = 8.67, c12 = c21 =−0.83, c13 = c31 = 2.71, c14 = c41 =−0.37,

c22 = 12.98, c23 = c23 =−0.74,c24 = c24 = 0.57 c33 = 10.28,

c34 = c43 = 0.99, c44 = 3.86, c55 = 6.88, c66 = 2.9, c56 = c65 = 0.25
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(1010Pa) and other elements of the matrix C are equal to zero.

In computational experiments we compute the third column of the fundamental

solution of SHSE (2.25), i.e. we take m = 3 in (2.38), (2.39). Using the matrix

formalism from Yakhno & Yakhno & Kasap (2006) the matrices T, T∗, D have

been computed in MATLAB. Further, using formula (2.56) and procedures, described

in section 2.1.5, we have derived values of V 3
k (x, t), k = 1,2, ...,9; i.e. all components

of the displacement speed and stresses for each anisotropic material. We have used the

following parameters for the computations : A = 40 and M = 60.

Figs.2.3a-c are the screen shots of 3-D level plots of V 3
3 (x1,0,x3,0.25),

V 3
3 (x1,0,x3,2) and V 3

3 (x1,0,x3,3.5). The horizontal axes are x1 and x3. The vertical

axis is the magnitude of V3(x1,0,x3, t) for t = 0.25,2,3.5. Figs.2.4a-c are the screen

shots of 2-D level plots of the same surfaces V 3
3 (x1,0,x3,0.25), V 3

3 (x1,0,x3,2) and

V 3
3 (x1,0,x3,3.5). This is a view from the top of z-axis (the plan). The Figs.2.3 and 2.4

demonstrate dynamics of the wave propagation in the orthorhombic crystal.

The Figs.2.5a-c contain 2-D plots (a view from the top of z-axis) of z =

V 3
k (x1,0,x3, t), k = 1,5,9 for t = 0.8 corresponding to the monoclinic crystal.

The obtained results of simulations give the information about fronts of elastic

wave propagations and behavior of the displacement speeds and stresses in elastic

media with general structure of anisotropy (orthorhombic, monoclinic). We note here

that for isotropic media we can get such kind of information by explicit formulae

for columns of the fundamental solutions. These explicit formulae contain terms

with singularities on the surface of characteristic cones in (x, t) space, where x =

(x1,x2,x3) is a 3D space variable and t is a 1D time variable. If the time variable

is fixed then singularities are located on the surfaces of spheres. These surfaces of

spheres are fronts of elastic waves (longitudinal and transverse waves) in isotropic
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media. There are three waves in the general anisotropic elastic media. One wave is

quasi-longitudinal and two waves are quasi-transverse ( Aki & Richard (1980)). The

speed of the quasi-longitudinal is the biggest one. The results of the computational

experiments presented in Figs.2.4-2.5 demonstrate configurations of the front traces

of quasi-longitudinal waves for x2 = 0 and t = const. These front traces have very

peculiar forms as compared with the isotropic case. We note that the front traces of

quasi-transverse waves are unrecognizable through other fluctuations arising in the

disturbed domains.

Figure 2.1: The graph of I2(x3, t) =
∞∫

−∞

∞∫
−∞

u1
1(x1,x2,x3, t)dx1dx2 at t = 2 computed

by ... our method; — exact values of I(x3, t) at t = 2.
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Figure 2.2: The graph of I1(x2,x3, t) =
∞∫

−∞
u1

1(x1,x2,x3, t)dx1 at t = 0.5, x2 = x3 computed by

— our method; ... exact values of I1(x2,x3, t) solution
at t = 0.5, x2 = x3.
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(a) t=0.25

(b) t=2

(c) t=3.5

Figure 2.3: Images of z = V 3
3 (x1,0,x3, t) at t = 0.25,

t = 2, t = 3.5 in orthorhombic crystal; the horizontal
axes are x1 and x3, the vertical axis is the magnitude
of V 3

3 (x1,0,x3, t).
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(a) t=0.25

(b) t=2

(c) t=3.5

Figure 2.4: Images of V 3
3 (x1,0,x3, t) at t = 0.25, t = 2,

t = 3.5 in orthorhombic crystal; the view from the top
of z-axis on the surfaces z =V 3

3 (x1,0,x3, t) (plan).
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(a) 2-D plot of V 3
1 (x1,0,x3,0.8)

(b) 2-D plot of V 3
5 (x1,0,x3,0.8)

(c) 2-D plot of V 3
9 (x1,0,x3,0.8)

Figure 2.5: Images of the third column components of
the fundamental solution of SHSE at t = 0.8, x2 = 0
in the monoclinic crystal; the view from the top of z
axis on surfaces z =V 3

j (x1,0,x3,3.5), j = 1,5,9.
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2.2 Computation of the time-dependent fundamental solution for equations of

elastodynamics in general anisotropic media

2.2.1 Statement of the problem

The time-dependent FS of anisotropic elastodynamics (2.14) (AES) is defined as a

matrix G(x, t) of the order 3×3 whose columns

um(x, t) = (um
1 (x, t),u

m
2 (x, t),u

m
3 (x, t))

satisfy equalities

ρ
∂2um

i
∂t2 =

3

∑
j=1

∂τm
i j

∂x j
+δm

i δ(x)δ(t), x = (x1,x2,x3) ∈ R3, t ∈ R, i = 1,2,3, (2.63)

um
i |t<0 = 0, i = 1,2,3, (2.64)

where δm
i is the Kronecker symbol, i.e. δm

i = 1 if i = m and δm
i = 0 if i ̸= m; i =

1,2,3; m = 1,2,3.

From the physical point of view the m-th column of FS is the displacement of

the considered anisotropic medium arising from the pulse point force emδ(x)δ(t),

where e1 = (1,0,0), e2 = (0,1,0), e3 = (0,0,1) are basis vectors of the Cartesian

coordinates.

(2.14) can be reduce to the first order symmetric hyperbolic system (2.25) (see

section 2.1.2). The main problem of this section is to find fundamental solution

of SHSE (2.25), i.e. to solve the initial value problem (2.38)-(2.39) and to

find fundamental solution of AES (2.14), i.e. to solve the initial value problem
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(2.63)-(2.64).

2.2.2 Method of the solution

Applying the Fourier transform with respect to x in the initial value problem

(2.38)-(2.39) we have

A0
∂Ṽm

∂t
− iB(ν)Ṽm = Emδ(t), (2.65)

Ṽm
(ν, t)|t<0 = 0, , (2.66)

where B(ν) = (ν1A1 +ν2A2 +ν3A3).

Step 1: Diagonalization A0 and B(ν) simultaneously. The matrix A0 is symmetric

positive definite and B(ν) is symmetric. In this step we construct a non-singular

matrix T(ν) and a diagonal matrix D(ν) = diag(dk(ν), k = 1,2, ...,9) with real valued

elements such that

T∗(ν)A0T(ν) = I, T∗(ν)B(ν)T(ν) = D(ν), (2.67)

where I is the identity matrix, T∗(ν) is the transposed matrix to T(ν).

Computing T(ν) and D(ν) can be made by the following way: we find A−1/2
0 and

then using the matrix A−1/2
0 B(ν)A−1/2

0 we construct T(ν) and D(ν).

Finding A−1/2
0 . For the given positive definite matrix A0 we compute an orthogonal

matrix R by the eigenfunctions of A0 such that R ∗A0R = L , where R ∗ is the

transpose matrix to R and L = diag(λk, k = 1,2, ...,9) is the diagonal matrix with

positive elements λk which are eigenvalues of A0. The matrix L1/2 is defined by the

formula L1/2 = diag(
√

λk, k = 1,2, ...,9) and A1/2
0 is defined by A1/2

0 = R L1/2R ∗.
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The matrix A−1/2
0 is the inverse to A1/2

0 .

Finding T(ν) and D(ν). Let matrix B(ν) be given and matrix A−1/2
0 be found.

Let us consider the matrix A−1/2
0 B(ν)A−1/2

0 which is symmetric with real valued

elements. The diagonal matrix D(ν) is constructed by eigenvalues of A−1/2
0 B(ν)A−1/2

0 .

The columns of the orthogonal matrix Q(ν) are formed by normalized orthogonal

eigenfunctions of A−1/2
0 B(ν)A−1/2

0 corresponding to eigenvalues dk(ν), k = 1,2, ...,9.

The matrix T(ν) is defined by the formula T(ν) = A−1/2
0 Q(ν).

Step 2: Deriving a solution of (2.65)-(2.66). Let D(ν) and T(ν), satisfying (2.67),

be constructed. We find the solution of (2.65)-(2.66) in the form

Ṽm(ν, t) = T(ν)Ym(ν, t), (2.68)

where Ym(ν, t) is unknown vector function. Substituting (2.68) into (2.65)-(2.66) and

then multiplying the obtained vector differential equation by T∗(ν) and using (2.67)

we find

∂Ym

∂t
− iD(ν)Ym = T∗(ν)Emδ(t), t ∈ R (2.69)

Ym(ν, t)|t≤0 = 0. (2.70)

Using the ordinary differential equations technique (see, for example, Boyce &

DiPrima (1992)), a solution of this initial value problem (2.69)-(2.70) is given by

Ym(ν, t) = θ(t) [cos(D(ν)t)+ isin(D(ν)t)]T∗(ν)Em,

where θ(t) is the Heaviside function, i.e. θ(t) = 1 for t ≥ 0 and θ(t) = 0 for

t < 0; cos(D(ν)t) and sin(D(ν)t) are diagonal matrices whose diagonal elements are

cos(dk(ν)t) and sin(dk(ν)t), k = 1,2, ...,9, respectively.
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Finally, a solution of (2.65)-(2.66) is determined by

Ṽm(ν, t) = θ(t)T(ν) [cos(D(ν)t)+ isin(D(ν)t)]T∗(ν)Em. (2.71)

Step 3: Deriving a solution of Problem (2.38). Noting that every solution of (2.38)

is a real valued vector function and using formulae (2.54), (2.71) we find that a solution

of (2.38) is given by

Vm(x, t) =
θ(t)
(2π)3

∞∫
−∞

∞∫
−∞

∞∫
−∞

T(ν)cos
(

D(ν)t − I(ν · x)
)

T∗(ν)Emdν1dν2dν3, (2.72)

where cos
(

D(ν)t − I(ν · x)
)

is the diagonal matrix with diagonal elements

cos
(

dk(ν)t −ν · x
)
, k = 1,2, ...,9.

2.2.3 Explicit formulae for FS of displacement, displacement speed and stress

Let Em, m = 1,2,3, be defined in the statement of (2.38). Let us consider the

formula (2.72). The first three components of the vector function Vm(x, t) in (2.72)

are elements of m-th column of the matrix ∂G(x,t)
∂t , where G(x, t) is FS of anisotropic

elasticity (fundamental solution of AES). To find m-th column of G(x, t) we need

to integrate the right hand side of (2.72) with respect to t from zero to t. Since

T(ν),T∗(ν),Em do not depend on t the integration of the right hand side of (2.72)

is related with the calculation of the integral of the matrix cos(D(ν)τ− I(ν · x)) with

respect to τ from 0 to t. We find this integral explicitly. The result of this integration is
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the matrix S(ν, t,x) whose elements are found by formulae

Sk j(ν, t,x) = 0, j ̸= k;

Skk(ν, t,x) = t cos(ν · x) i f dk(ν) = 0;

Skk(ν, t,x) =
sin(dk(ν)t −ν · x)

dk(ν)
+

sin(νx)
dk(ν)

i f dk(ν) ̸= 0; k, j = 1, ...,9.(2.73)

As a result of it we find explicit formulae for components of the vector function um

(m-th column of G(x, t)) in the form

um
n (x, t) =

θ(t)
(2π)3

∞∫
−∞

∞∫
−∞

∞∫
−∞

[T(ν)S(ν, t,x)T∗(ν)Em]ndν1dν2dν3, (2.74)

where n = 1,2,3; elements of the matrix S(ν, t,x) are defined by (2.73);

[T(ν)S(ν, t,x)T∗(ν)Em]n is the n-th component of the vector T(ν)S(ν, t,x)T∗(ν)Em.

The last six components of the vector function Vm(x, t) in (2.72) are fundamental

solution of stress. The first three components of the vector function Vm(x, t) in (2.72)

are fundamental solution of displacement speed.

2.2.4 Formulae of the displacement, displacement speed and stress from an

arbitrary force

As one of important applications of FS we describe the derivation of the

displacement, displacement speed and stress arising from an arbitrary force in the

considered anisotropic media. Here we base on the suggested method for the FS

construction. Let G(x, t) be FS of SHSE and G̃(ν, t) be the Fourier transform of G(x, t)

with respect to the space variable x = (x1,x2,x3) ∈ R3. We note that the first three

components of the vector function Ṽ
m
(ν, t) defined by (2.71) for Em are components

of m-th column of ∂
∂t G̃(ν, t). Integrating (2.71) with respect to t from 0 to t we find
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components of m-th column of G̃(ν, t) (FS of AES) by the following formulae

ũm
n (ν, t) = θ(t)[T(ν)P(ν, t)T∗(ν)Em]n, (2.75)

where n = 1,2,3, P(ν, t) is the diagonal matrix whose diagonal elements are defined

by

Pkk(ν, t) = t f or dk(ν) = 0,

Pkk(ν, t) =
sin(dk(ν)t)

dk(ν)
+ i

(1− cos(dk(ν)t))
dk(ν)

f or dk(ν) ̸= 0; k = 1, ...,9.(2.76)

This means that the Fourier image G̃(ν, t) of G(x, t) can be derived immediately after

steps 1 and 2 by formulae (2.75), (2.76). The Fourier image G̃(ν, t) of FS can be

applied for the computation of the displacement u(x, t) = (u1(x, t),u2(x, t),u3(x, t))

arising from an arbitrary given force f(x, t) = ( f1(x, t), f2(x, t), f3(x, t)) satisfying f(x, t)

for t < 0. Really, let f̃(ν, t) be the Fourier transform of f(x, t) with respect to x =

(x1,x2,x3) ∈ R3. Then

u(x, t) =
θ(t)
(2π)3

t∫
0

∞∫
−∞

∞∫
−∞

∞∫
−∞

G̃(ν, t − τ)̃f(ν,τ)e−iν·xdν1dν2dν3dτ. (2.77)

Similarly, the computation of the displacement speed and stress arising from an

arbitrary given force F(x, t) = ( f1(x, t), f2(x, t), f3(x, t),0,0,0,0,0,0) satisfying F(x, t)

for t < 0 are given by

V(x, t) =
θ(t)
(2π)3

t∫
0

∞∫
−∞

∞∫
−∞

∞∫
−∞

G̃(ν, t − τ)F̃(ν,τ)e−iν·xdν1dν2dν3dτ. (2.78)
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2.2.5 Computational examples

2.2.5.1 General characteristics of computations and visualizations

We have implemented two types of computational experiments. The first one

shows a high accuracy in computing values of FSs in terms of wave-vector variables

for isotropic (transversely isotropic) elastic indefinite media. In these experiments

we consider the isotropic material Sillica (SiO2) and transversely isotropic material

graphite-epoxy composite. The values of FSs have been derived for these materials in

two ways: by explicit formulae as well as by the method of Section 2.2.2. The results

of the comparison are presented in Tables 2.1-2.2. Moreover, we have obtained that

values of the FSs found by the method of Sections 2.2.2, 2.2.3 can be efficiently used

for the computation of integrals when the integral contains the FS as terms.

In the second type of computational experiments we have considered three

homogenous anisotropic materials with trigonal, monoclinic and triclinic structures of

anisotropy, respectively. They are aluminium oxide (Al2O3), diopside (CaMgSi2O6)

and albite (NaAlSi3O8). For these experiments we have taken the pulse force situated

in each material and modeled by e3δ(x1)δ(x2)δ(x3)δ(t), where e3 = (0,0,1), δ(·) is

the Dirac delta function. The responses of the considered anisotropic materials on this

source are the displacement, displacement speed and stress vectors depending on the

position and the time. Using the method of Sections 2.2.2, 2.2.3 (see steps 1-3) we

compute T(ν),T∗(ν),D(ν) and then using the formula (2.72), (2.74) we have derived

numerically components of u3 and V3.

The pulse point force e3δ(x1)δ(x2)δ(x3)δ(t) produces diverging elastic waves. The

behavior of elastic fields (dynamics of wave propagations, the traces of fronts and

distribution of magnitudes of the displacement for three different anisotropic media
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(aluminum oxide, diopside and albite) are presented in the form of components u3

in the Figures 2.8-2.10. The traces of fronts and distribution of magnitudes of the

displacement, displacement speed and stress for triclinic anisotropic media (albite) are

presented in the form of the second and fifth components V3 in the Figures 2.11-2.12.

2.2.5.2 Description of input data and corresponding images

Example 1. Isotropic material - sillica(SiO2)

The density and Lame parameters of this material are equal to ( Dieulesaint & Royer

(2000))

ρ = 2.203(103kg/m3), λ = 1.61, µ = 3.12(1010Pa).

For this example we take the pulse force of the form e1δ(x1)δ(x2)δ(x3)δ(t), where

e1 = (1,0,0). Using the method of Section 2.2.2 we compute T(ν), T∗(ν), D(ν) and

then using the formulae (2.75), (2.76) we find elements of the FS (matrix) G̃(ν, t) in

terms of wave-vector values ν = (ν1,ν2,ν3) for any fixed time t. The first column of

this FS is the displacement vector ũ1(ν, t) = (ũ1
1(ν, t), ũ

1
2(ν, t), ũ

1
3(ν, t)) depending on

wave-vector parameter ν = (ν1,ν2,ν3) and time t. On the other hand for the pulse

force e1δ(x1)δ(x2)δ(x3)δ(t) we can use the explicit formula for the first column of FS

for isotropic elastic infinite materials ( Aki & Richard (1980), Kausel (2006)). We

denote the FS for isotropic elastic materials in terms of wave-vector and time variables

as Ẽ(ν, t) and in terms of space and time variables as E(x, t). Here ν = (ν1,ν2,ν3) is

the wave-vector variable and x = (x1,x2,x3) is the space variable. The components of
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the first column of Ẽ(ν, t) can be written explicitly as follows

Ẽ1
1 (ν, t) =

θ(t)
ρ | ν |3

{sin(CT | ν | t)
CT

(ν2
2 +ν2

3)+
sin(CL | ν | t)

CL
ν2

1}, (2.79)

Ẽ1
2 (ν, t) =

θ(t)
ρ | ν |3

ν2ν1{
sin(CL | ν | t)

CL
− sin(CT | ν | t)

CT
},

Ẽ1
3 (ν, t) =

θ(t)
ρ | ν |3

ν3ν1{
sin(CL | ν | t)

CL
− sin(CT | ν | t)

CT
},

where C2
T = µ

ρ , C2
L = λ+2µ

ρ .

Some values of ũ1
1(ν, t) and Ẽ1

1 (ν, t) and their comparison are given in Table 2.1.

In this table the following notations are used: ∆ = 25.10−4; Ẽ1
1 (ν1,ν2,ν3, t) are values

computed by the formula (2.79); ũ1
1(ν1,ν2,ν3, t) are values of the first component of

the first column of FS G̃(ν1,ν2,ν3, t) computed by our method; ũ1
1 − Ẽ1

1 are values of

ũ1
1(ν1,ν2,ν3, t)− Ẽ1

1 (ν1,ν2,ν3, t) which mean the error between values ũ1
1(ν1,ν2,ν3, t)

found by our method and exact values Ẽ1
1 (ν1,ν2,ν3, t).

Using computed values T(ν) and D(ν) (2.73)-(2.74), we can derive u1
1(x1,x2,x3, t)

and then compute numerically the integral

g1
1(z, t) =

∫ t

0

∫ ∞

−∞
u1

1(x1,x2,x3,τ)dx1dτ |x2=x3=z .

At the same time the integral

e1
1(z, t) =

∫ t

0

∫ ∞

−∞
E1

1 (x1,x2,x3,τ)dx1dτ |x2=x3=z

can be derived explicitly as follows

e1
1(z, t) =

1
2πρC2

T
[ln

t +

√
t2 − (

| x |
CT

)2

− ln
(
| x |
CT

)
].

The graphs of functions g1
1(z, t) and e1

1(z, t) for t = 1 and their comparison are presented
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in the Fig.2.6.

Example 2. Transversely isotropic solid - graphite-epoxy composite

The elastic constants in units of 1010Pa are given by ( Wang & Achenbach (1994))

c11 = c22 = 13.92, c12 = c21 = 6.92,

c13 = c23 = c31 = c32 = 6.44, c33 = 160.7,

c44 = c55 = 7.07 c66 =
13.92−160.7

2
.

Other elastic constants are equal to zero. The density ρ = 1(103kg/m3).

In this example we take the pulse force of the form e2δ(x1)δ(x2)δ(x3)δ(t), where

e2 = (0,1,0). Using the method of Section 2.2.2 we compute T(ν), T∗(ν), D(ν)

and then using the formulae (2.75), (2.76) we find elements of the fundamental

matrix G̃(ν, t) in terms of wave-vector values ν = (ν1,ν2,ν3) for the fixed time

t. The second column of the fundamental matrix is the displacement ũ2(ν, t) =

(ũ2
1(ν, t), ũ

2
2(ν, t), ũ

2
3(ν, t)) depending on wave-vector parameter ν = (ν1,ν2,ν3) and

time t. On the other hand for the pulse force e2δ(x1)δ(x2)δ(x3)δ(t) we can use the

explicit formula for the second column of Ẽ(ν, t) for ν2 = 0. Here Ẽ(ν, t) is the FS

of transversely isotropic material (graphite-epoxy composite) in terms of wave-vector

variable ν = (ν1,ν2,ν3) and time variable t. The components of the second column of

Ẽ(ν, t) for ν2 = 0 can be written explicitly as follows

Ẽ2
1 (ν, t) = Ẽ2

3 (ν, t) = 0, (ν2 = 0)

Ẽ2
2 (ν, t) |ν2=0 =

θ(t)√
ρ(c66ν2

1 + c44ν2
3)

sin

t

√
(c66ν2

1 + c44ν2
3)

ρ

 . (2.80)

Values of ũ2
2(ν, t), Ẽ2

2 (ν, t) for ν2 = 0 and their comparison are given in Table 2.2. In

this table the following notations are used: ∆ = 25.10−4; Ẽ2
2 (ν1,0,ν3, t) are values
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computed by the formula (2.80); ũ2
2(ν1,0,ν3, t) are values of the second component of

the second column of FS G̃(ν1,0,ν3, t) computed by our method. ũ2
2 − Ẽ2

2 are values

of ũ2
2(ν1,0,ν3, t)− Ẽ2

2 (ν1,0,ν3, t) which mean the error between values ũ2
2(ν1,0,ν3, t)

found by our method and exact values Ẽ2
2 (ν1,0,ν3, t).

Using computed values T(ν), D(ν) and formulae (2.73), (2.74) we derive the second

column u2(x, t) of the fundamental matrix G(x, t) for graphite-epoxy composite in

terms of space and time variables and then compute numerically the integral

g2
2(z, t) =

∫ t

0

∫ ∞

−∞
u2

2(x1,x2,x3, t − τ) f (τ)dx2dτ |x1=x3=z,

where u2
2(x1,x2,x3, t) is the second component of the vector column u2(x, t), x =

(x1,x2,x3); f (τ) = τ2 exp(−3τ2) (see similar example in Wang & Achenbach (1994)).

Let E(x, t) be the FS of the graphite-epoxy composite in terms of the space and

time variables; E2
2 (x, t) be the second element of the second column of E(x, t). We can

derive explicitly

∫ ∞

−∞
E2

2 (x1,x2,x3, t)dx2 =
θ(t −

√
x2

1ρ
c66

+
x2

3ρ
c44

)

2π√c66c44

√
t2 − (

x2
1ρ

c66
+

x2
3ρ

c44
)

and then, compute the integral

e2
2(z, t) =

∫ t

0

∫ ∞

−∞
E2

2 (x1,x2,x3,τ) f (τ)dx2dτ|x1=x3=z

=
1

2π

∫ t

0

θ(t − τ−
√

x2
1ρ

c66
+

x2
3ρ

c44
)

√
c66c44

√
(t − τ)2 − (

x2
1ρ

c66
+

x2
3ρ

c44
)

f (τ)dτ.

The graphs of functions g2
2(z, t) and e2

2(z, t) for t = 1 and their comparison are
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presented on the Fig.2.7.

Example 3. A crystal of trigonal anisotropic structure - aluminum oxide(Al2O3)

The density ρ is equal to 3.986(103kg/m3) and the matrix of elastic moduli C =

(cαβ)6×6 is given by (see, for example, Dieulesaint & Royer (2000))

c11 = 49.7, c12 = c21 = 16.4, c13 = c31 = 11.2,

c14 = c41 =−2.35, c33 = 49.9, c44 = 14.7

c56 = c65 =−2.35, c66 =
49.7−16.4

2
(1010Pa).

Other elements of the symmetric matrix C are equal to zero. Fig.2.8 show dynamic of

the distribution the first component of the displacement u3(x1,0,x3, t) in the aluminum

oxide at t = 0.8. Fig.2.8 contain screen shot of 2-D level plot of the same surface

u3
1(x1,0,x3,0.8), i.e. a view of the surface from the top of z-axis. The figure

illustrate the behavior of the first component of the displacement vector u3(x1,0,x3, t)

in aluminum oxide at t = 0.8.

Example 4. A crystal of the monoclinic structure - diopside(CaMgSi2O6)

The density ρ = 3.31(103kg/m3) and elements of the matrix C = (cαβ)6×6 are

defined by (see, for example, Alexandrov (1964) )

c11 = 2.040, c12 = c21 = 0.884, c13 = c31 = 0.0883, c15 = c51 =−0.193,

c22 = 1.750, c23 = c32 = 0.482, c25 = c52 =−0.196, c33 = 2.38,

c35 = c53 =−0.336, c44 = 0.675, c46 = c64 =−0.113, c55 = 0.588,

c66 = 0.705(1011Pa).

Other elements are equal to zero. Fig.2.9 presents of the first component of the
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displacement speed u3(x1,0,x3, t) at the time t = 3 in diopside. The different colors

correspond to different values u3
1(x1,0,x3,3). Fig.2.9 present the view from the top of

z-axis.

Example 5. A crystal of the triclinic structure - albite(NaAlSi3O8)

The density ρ = 2(103kg/m3) and elastic moduli C = (cαβ)6×6 are defined by (see,

for example, Brown & Abramson & Angel (2006))

c11 = 69.1, c12 = c21 = 34.0, c13 = c13 = 30.8, c14 = c41 = 5.1,

c15 = c15 =−2.4, c16 = c61 =−0.9 c22 = 183.5, c23 = c32 = 5.5,

c24 = c42 =−3.9 c25 = c52 =−7.7, c26 = c62 =−5.8, c33 = 179.5

c34 = c43 =−8.7, c35 = c53 = 7.1, c36 = c63 =−9.8, c44 = 24.9,

c45 = c54 =−2.4, c46 = c64 =−7.2 c55 = 26.8, c56 = c65 = 0.5,c66 = 33.5(GPa).

Fig.2.10 show the first component of the displacement u3(x1,0,x3, t), at the time t = 0.3

in albite. Fig.2.11, Fig.2.12 show the second component of the displacement speed and

stress of V3(x1,0,x3, t), at the time t = 0.3 in albite. Fig.2.10-Fig.2.12 present the view

from the top of z-axis.

2.2.5.3 Analysis of the visualization

The simulation of the displacement, displacement speed, stress components in

general anisotropic media by modern computer tools allow us to see and evaluate

dependence between media structures and behavior of displacement, displacement

speed, stress components. The method allows users to observe the elastic wave

propagation arising from pulse point sources of the form emδ(x1)δ(x2)δ(x3)δ(t) in

trigonal, monoclinic, triclinic and other anisotropic materials. We can see in the



66

Figures 2.8 - 2.12 that the different anisotropic structures of media produce different

responses of displacement, displacement speed, stress inside these media. The

visualization of the displacement components, presented on the Figures 2.8 - 2.12 gives

knowledge about the form of fronts of elastic wave propagations in aluminum oxide,

diopside and albite. We see that fronts are not spherical and have very peculiar forms.

Table 2.1. The accuracy of computing ũ1
1(ν1,ν2,ν3, t) in isotropic material sillica (SiO2)

t ν1 ν2 ν3 ũ1
1(ν1,ν2,ν3, t) ũ1

1 − Ẽ1
1

1 ∆ ∆ ∆ 0.4539234397 −0.4×10−15

∆ ∆×10 ∆×102 0.4471914039 0.3×10−12

∆×10 ∆×102 ∆×105 0.1227898668×10−2 0.5×10−11

∆×105 ∆×105 ∆×105 0.1540383945×10−3 0.3×10−10

2 ∆ ∆ ∆ 0.9078287344 −0.3×10−14

∆ ∆×10 ∆×102 0.8546908803 0.2×10−11

∆×10 ∆×102 ∆×105 −0.1457632983×10−2 0.5×10−11

∆×105 ∆×105 ∆×105 0.2754393629×10−3 0.6×10−10

3 ∆ ∆ ∆ 1.361697740 −0.1×10−13

∆ ∆×10 ∆×102 1.186330242 0.7×10−11

∆×10 ∆×102 ∆×105 0.5024509308×10−3 −0.3×10−10

∆×105 ∆×105 ∆×105 0.3418815169×10−3 0.7×10−10
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Table 2.2. The accuracy of computing ũ2
2(ν1,0,ν3, t) in transversely isotropic material

graphite epoxy composite.

t ν1 ν3 ũ2
2(ν1,0,ν3, t) ũ2

2 − Ẽ2
2

1 ∆ ∆ 0.9999889896 0
∆ ∆×104 −0.7215342900×10−2 −0.9×10−18

∆×10 ∆×10 0.9988993220 0
∆×105 ∆×105 0.9514609420×10−3 −0.4×10−16

2 ∆ ∆ 1.999911918 −0.2×10−15

∆ ∆×104 0.1266250282×10−1 0.2×10−17

∆×10 ∆×10 1.991203297 0
∆×105 ∆×105 −0.1206444628×10−2 −0.3×10−16

3 ∆ ∆ 2.999702728 0
∆ ∆×104 −0.1500660552×10−1 0.2×10−16

∆×10 ∆×10 2.970360126 0
∆×105 ∆×105 0.5783008964×10−3 0.2×10−15

4 ∆ ∆ 3.999295371 −0.4×10−15

∆ ∆×104 0.1367320809×10−1 0
∆×10 ∆×10 3.929904814 0
∆×105 ∆×105 0.4731638603×10−3 −0.3×10−15
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Figure 2.6: Graphs of g1
1(z, t) and e1

1(z, t). The dotted line
represents g1

1(z, t) at t = 1 (our method ). The continuous line
represents e1

1(z, t) at t = 1 (the explicit formula ( 2.80)).

Figure 2.7: Graphs of g2
2(z, t) and e2

2(z, t). The dotted line
represents g2

2(z, t) at t = 1 (our method ). The continuous line
represents e2

2(z, t) at t = 1 (the explicit formula ( 2.81)).
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Figure 2.8: 2-D plot of the first component of the displacement
u3(x1,0,x3, t) for t = 0.8 in aluminum oxide (trigonal structure
of anisotropy)

Figure 2.9: 2-D plot of the first component for the
displacement u3(x1,0,x3, t) for t = 3 in diopside (monoclinic
structure of anisotropy)
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Figure 2.10: 2-D plot of the first component of the
displacement u3(x1,0,x3, t) for t = 0.3 in albite (triclinic
structure of anisotropy)

Figure 2.11: 2-D plot of the second component of the
displacement speed V3

2(x1,0,x3, t) for t = 0.3 in albite (triclinic
structure of anisotropy)
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Figure 2.12: 2-D plot of the second component of the stress
V3

5(x1,0,x3, t) for t = 0.3 in albite (triclinic structure of
anisotropy)

2.3 Solids with general structure of anisotropy: computation of the

time-dependent fundamental solution and wave fronts

2.3.1 Statement of the problem

Let us consider (2.14) and (2.15). Substituting (2.15) into (2.14) we have

ρ
∂2ui(x, t)

∂t2 =
3

∑
j,k,l=1

ci jkl
∂2uk(x, t)

∂x j∂xl
+ fi(x, t), x ∈ R3, t ∈ R. (2.81)

System (2.81) can be written as follows

ρ
∂2u(x, t)

∂t2 =
3

∑
j,l=1

A jl
∂2u(x, t)
∂x j∂xl

+ f(x, t), x ∈ R3, t ∈ R, (2.82)
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where f(x, t) = ( f1(x, t), f2(x, t), f3(x, t)),

A jl =


c1 j1l c1 j2l c1 j3l

c2 j1l c2 j2l c2 j3l

c3 j1l c3 j2l c3 j3l

 . (2.83)

Let us consider the point forces of the form emδ(x)h(t), where m= 1,2,3; e1 =(1,0,0),

e2 = (0,1,0), e3 = (0,0,1) are basis vectors of the space R3; δ(x) = δ(x1)δ(x2)δ(x3) is

the 3D Dirac delta function concentrated at the point (0,0,0) from R3; h(t) is a function

such that h(t) = 0 for t < 0.

Let um(x, t) = (um
1 (x, t),u

m
2 (x, t),u

m
3 (x, t)) be a solution of (2.82) for f(x, t) =

emδ(x)h(t) satisfying um(x, t)|t<0 = 0, i.e.

ρ
∂2um(x, t)

∂t2 =
3

∑
j,l=1

A jl
∂2um(x, t)

∂x j∂xl
+ emδ(x)h(t), (2.84)

um(x, t)|t<0 = 0, (2.85)

The time-dependent FS of equations of linear anisotropic elastodynamics is

defined as a matrix G(x, t) of the order 3 × 3 whose columns Gm(x, t) =

(Gm
1 (x, t),G

m
2 (x, t),G

m
3 (x, t)), m = 1,2,3 satisfy (2.84), (2.85) for h(t) = δ(t), where

δ(t) is the 1D Dirac delta function concentrated at t = 0. From the physical point of

view the mth column of the FS of equations of linear anisotropic elastodynamics is the

displacement of the considered anisotropic elastic solid arising from the pulse point

force emδ(x)δ(t). The computation of the vector function um(x, t) satisfying (2.84),

(2.85) is the main problem of this section.
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2.3.2 Computation of a solution of (2.84), (2.85)

The method of deriving um(x, t) satisfying (2.84) and (2.85) consists of the

following. In the first step equations (2.84) and (2.85) are written in terms of the

Fourier transform with respect to x ∈ R3. In the second step, a solution of the obtained

initial value problem is derived by matrix transformations and the ordinary differential

equations technique. In the last step, the solution of (2.84), (2.85) is found by the

inverse Fourier transform.

2.3.2.1 Equations (2.84), (2.85) in terms of Fourier images

Let ũm(ν, t) = (ũ1
m(ν, t), ũ2

m(ν, t), ũ3
m(ν, t)) be the Fourier image of um(x, t) with

respect to x = (x1,x2,x3) ∈ R3. Equations (2.84) and (2.85) can be written in terms of

ũm(ν, t) as follows

ρ
d2ũm

dt2 +A(ν)ũm = emh(t), ν ∈ R3, t ∈ R, (2.86)

ũm(ν, t)|t<0 = 0. (2.87)

Here

A(ν) =
3

∑
j,l=1

A jlν jνl, (2.88)

where matrices A jl are defined by (2.83).
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2.3.2.2 Formula for a solution of (2.86), (2.87) for ν = 0

A solution of (2.86), (2.87) for ν1 = 0, ν2 = 0, ν3 = 0 is given by

ũm(0, t) =
θ(t)

ρ

(∫ t

0
(t − τ)h(τ)dτ

)
em, (2.89)

where θ(t) is the Heaviside function, i.e. θ(t) = 1 for t ≥ 0 and θ(t) = 0 for t < 0.

2.3.2.3 Diagonalization of the matrix A(ν) for ν ̸= 0

Using the symmetry and positivity of elastic constants ci jkl (see conditions (2.12),

(2.13)) we obtain that the matrix A(ν), defined by (2.88), is symmetric positive definite

for ν ̸= 0 (see Appendix). Using the linear algebra technique for the given matrix A(ν)

we construct an orthogonal matrix T(ν) and a diagonal matrix D(ν) = diag(dk(ν), k =

1,2,3) with positive elements such that

T∗(ν)A(ν)T(ν) = D(ν), (2.90)

where T∗(ν) is the transposed matrix to T(ν).

2.3.2.4 The derivation of a solution of (2.86), (2.87) for ν ̸= 0

Let T(ν) and D(ν) = diag(dk(ν), k = 1,2,3) be constructed. A solution of (2.86),

(2.87) can be found as

ũm(ν, t) = T(ν)Ym(ν, t), (2.91)
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where Ym(ν, t) is unknown vector function. Substituting (2.91) into (2.86), (2.87) and

then multiplying the obtained equations by T∗(ν) and using (2.90) we find

ρ
d2Ym

dt2 +D(ν)Ym = T∗(ν)emh(t), (2.92)

Ym(ν, t)|t<0 = 0, t ∈ R, ν ∈ R3. (2.93)

We note that the explicit formula of the fundamental solution for the ordinary

differential operator (ρd2/dt2+dk(ν)), when dk(ν)> 0, is given by (see, for example,

Vladimirov (1971))

Ek(ν, t) =
θ(t)√
ρdk(ν)

sin(t
√

dk(ν)/ρ). (2.94)

Each component of the vector solution of the problem (2.92), (2.93) can be found

by (see, for example, Vladimirov (1971) ) the convolution of the FS Ek(ν, t) and

[T∗(ν)em]k h(t) i.e.

Ym
k (ν, t) = Ek ∗ [T∗(ν)em]k h(t),

where the notation [T∗(ν)em]k means kth component of the vector T∗(ν)em.

Using formula (2.94) the convolution can be computed explicitly and as a result of

it we find for dk(ν)> 0:

Ym
k (ν, t) = θ(t)

∫ t

0

[T∗(ν)em]k h(τ)√
ρdk(ν)

sin

(
(t − τ)

√
dk(ν)

ρ

)
dτ. (2.95)

Finally, a solution of (2.86), (2.87) is determined by (2.89), (2.91), (2.95).



76

2.3.2.5 A formula for the Fourier image of the FS of equations of anisotropic

elastodynamics

The Fourier image of the FS of equations of linear anisotropic elastodynamics is

a matrix of the order 3× 3 whose columns G̃m(ν, t) = (G̃m
1 (ν, t), G̃

m
2 (ν, t), G̃

m
3 (ν, t)),

m = 1,2,3 satisfy

ρ
d2G̃m

dt2 +A(ν)G̃m = emδ(t), (2.96)

G̃m(ν, t)|t<0 = 0, ν ∈ R3, t ∈ R. (2.97)

Similar to Sections 2.3.2.2 and 2.3.2.3 we find G̃m(0, t) by

G̃m(0, t) =
θ(t)

ρ
tem (2.98)

and we compute G̃m(ν, t) for ν ̸= 0 as follows

G̃m(ν, t) = T(ν)Ym(ν, t), (2.99)

where components of

Ym(ν, t) = (Y m
1 (ν, t),Y m

2 (ν, t),Y m
3 (ν, t))

are given by

Ym
k (ν, t) = θ(t)

[T∗(ν)em]k√
ρdk(ν)

sin

(√
dk(ν)

ρ
t

)
. (2.100)
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2.3.2.6 Formulae for a solution of (2.86), (2.87) and for the FS of equations of

anisotropic elastodynamics

Let ũm(ν, t) be the solution of (2.86), (2.87) defined by (2.89), (2.91), (2.95). A

solution um(x, t) of (2.84), (2.85) is defined by the inverse Fourier transform of ũm(ν, t),

i.e. by the formula

um(x, t) = F−1
ν [ũm(ν, t)](x) =

1
(2π)3

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

ũm(ν, t) e−ix·νdν1dν2dν3,

ν = (ν1,ν2,ν3) ∈ R3, x = (x1,x2,x3) ∈ R3. (2.101)

Taking into account that the components of the vector function um(x, t) as well as the

components of vector functions ũm(ν, t) have real values, the imaginary part of the

right hand side of (2.101) is equal to zero. As a result of it we find the following

formula for a solution of (2.86), (2.87) from (2.101):

um(x, t) =
θ(t)
(2π)3

∞∫
−∞

∞∫
−∞

∞∫
−∞

ũm(ν, t) cos(x1ν1 + x2ν2 + x3ν3)dν1dν2dν3. (2.102)

Using the similar reasonings and formulae (2.98), (2.99) and (2.100) we obtain a

formula for mth column of the FS of equations of anisotropic elastodynamics

Gm(x, t) =
θ(t)
(2π)3

∞∫
−∞

∞∫
−∞

∞∫
−∞

G̃m(ν, t) cos(x1ν1 + x2ν2 + x3ν3)dν1dν2dν3, (2.103)

where G̃m(ν, t) is defined by (2.98), (2.99) and (2.100).
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2.3.3 Computational experiments: implementation and justification

2.3.3.1 The accuracy of the suggested method in finding the Fourier image of the FS

We consider the isotropic material Silica (SiO2) characterized by the density

ρ = 2.203 (103kg/m3) and Lame parameters λ = 1.61, µ = 3.12(1010Pa) (see, for

example, Dieulesaint & Royer (2000), p.163). For this computational experiment

we take the pulse point force e3δ(x1)δ(x2)δ(x3)δ(t), where e3 = (0,0,1). Using our

method we compute T(ν), T∗(ν), D(ν) and then using the formula (2.98), (2.99)

and (2.100) we find the third column of the Fourier image of the FS G̃3(ν, t) for

arbitrary ν = (ν1,ν2,ν3) ∈ R3 and any fixed time t. On the other hand the FS of

motion equations of the indefinite isotropic solid as well as its Fourier image can be

given by explicit formulae (see, for example, Aki & Richard (1980)). If we denote

the FS of equations of isotropic elastodynamics by 3×3 matrix E(x, t) with columns

Em(x, t)= (Em
1 (x, t),E

m
2 (x, t),E

m
3 (x, t)) and the Fourier image of E(x, t) by 3×3 matrix

Ẽ(ν, t) with columns Ẽm
(ν, t) = (Ẽm

1 (ν, t), Ẽ
m
2 (ν, t), Ẽ

m
3 (ν, t)) then, for example, for

components of the third column Ẽ3
(ν, t) the following explicit formulae take place

Ẽ3
1(ν, t) =

θ(t)
ρ | ν |3

ν1ν3

(
sin(CL | ν | t)

CL
− sin(CT | ν | t)

CT

)
, (2.104)

Ẽ3
2(ν, t) =

θ(t)
ρ | ν |3

ν2ν3

(
sin(CL | ν | t)

CL
− sin(CT | ν | t)

CT

)
, (2.105)

Ẽ3
3(ν, t) =

θ(t)
ρ | ν |3

(
sin(CL | ν | t)

CL
ν2

3 +
sin(CT | ν | t)

CT
(ν2

1 +ν2
2)

)
, (2.106)

where C2
T = µ/ρ, C2

L = (λ+2µ)/ρ.

Using our method and explicit formulae (2.104)–(2.106) we have computed values
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G̃3(ν, t) and Ẽ3
(ν, t). Some values of G̃3

3(ν, t) and G̃3
3(ν, t)− Ẽ3

3(ν, t) are given in Table

2.3. The results of this computational experiment have shown that values of the Fourier

image of the FS found by our method and by the explicit formulae are almost the same

(the accuracy in this experiment is less or equal to 10−15).

2.3.3.2 Correctness of computation of integrals (2.102) and (2.103)

In this section we consider several computational experiments confirming the

correctness of our method. For the numerical computation of (2.102) and (2.103)

in MATLAB we have replaced the 3D integration over the whole space R3 by

the integration over the bounded domain (−A,A) × (−A,A) × (−A,A) and then

approximated 3D integrals over this bounded domain by the triple sums, similar to

Section 2.1.6.1, with A = 40 and ∆ν = 0.5.

Example 1. In this example we consider an isotropic solid with wave speed quotient

CL/CT = 2, ( µ = 1, λ = 2 (1010Pa), ρ = 0.75 (103kg/m3) ) similar to Wang &

Achenbach (1994), Payton (1983). Using formula (2.102) and our method we have

computed u3(x, t) for

h(t) = θ(t)t2 exp(−3t2). (2.107)

On the other hand there exists explicit formulae for components of the solution

u3(x, t) of (2.84), (2.85) for the case of homogeneous isotropic solids (see Aki

& Richard (1980)). Using these formulae we have found for u3
3(0,0,z, t) and

u3
3(
√

6z/4,
√

6z/4,z/2, t):

u3
3(0,0,z, t) =

1
2πρ | z |3

|z|/CT∫
|z|/CL

τθ(t − τ)(t − τ)2 exp
(
−3(t − τ)2)dτ
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+
1

4πρC2
L | z |

θ(t − |z|
CL

)(t − |z|
CL

)2 exp
(
−3(t − |z|

CL
)2
)
, (2.108)

u3
3(

√
6

4
z,

√
6

4
z,

z
2
, t) =− 1

16πρ | z |3

|z|/CT∫
|z|/CL

τθ(t − τ)(t − τ)2 exp
(
−3(t − τ)2)dτ

+
1

16πρC2
L | z |

θ(t − |z|
CL

)(t − |z|
CL

)2 exp
(
−3(t − |z|

CL
)2
)

+
3

16πρC2
T | z |

θ(t − |z|
CT

)(t − |z|
CT

)2 exp
(
−3(t − |z|

CT
)2
)
. (2.109)

We note that the function h(t) of the form (2.107) has been taken from the paper

Wang & Achenbach (1994) to compare results of computation by our method with

results of computation by methods of Payton (1983) and Wang & Achenbach (1994)

presented in the paper Wang & Achenbach (1994) by graphs. The graphs of functions

u3
3(0,0,z, t) and u3

3(
√

6z/4,
√

6z/4,z/2, t) for t = 5
√

ρ/µ obtained by our method and

by explicit presentations (2.108), (2.109) are presented in Figs 2.13 and 2.14. As we

can see these graphs have excellent agreement.

Example 2. In this example we consider the isotropic material Silica (SiO2) and in

equation (2.84) we take m = 1, h(t) = θ(t), where θ(t) is the Heaviside step function.

Using our method we have found values of matrices T(ν), T∗(ν), D(ν) and then using

the formula (2.102) we have computed u1(x, t). On the other hand we have used the

explicit formulae for the components of the solution u1(x, t) of (2.84), (2.85) for the

case of homogeneous isotropic solids ( Aki & Richard (1980)). Using these formulae

we have found the following presentations for u1
1(z,z,z, t) and u1

2(z,z,z, t):

u1
1(z,z,z, t) =

1
12

√
3πρ|z|

[
1

C2
L

θ

(
t −

√
3|z|

CL

)
+

2
C2

T
θ

(
t −

√
3|z|

CT

)]
, (2.110)
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u1
2(z,z,z, t) =

1
24

√
3πρ|z|

(
1

C2
T
− 1

C2
L

)
for t >

√
3|z|

CT
;

u1
2(z,z,z, t) =

1
24

√
3πρ

(
t2

|z|3
− 1

|z|C2
L

)
for

√
3|z|

CL
< t <

√
3|z|

CT
;

u1
2(z,z,z, t) = 0 for t <

√
3|z|

CL
. (2.111)

The graphs of the functions u1
1(z,z,z, t) and u1

2(z,z,z, t) for t = 1 obtained by our

method and by explicit formulae (2.110) and (2.111) are presented in Figs 2.15 and

2.16. As we can see these graphs have excellent agreement.

Example 3. In this example we consider the isotropic material silica (SiO2). We

take m = 1 and h(t) = δ(t) in equation (2.84), where δ(t) is the Dirac delta function.

Using formula (2.102) and our method we have computed G1(x, t), i.e. the first column

of the FS of elastodynamics. On the other hand we have used the explicit formulae

(2.57)-(2.59) for the components of the first column of the FS of elastodynamics

(Aki & Richard (1980)). For drawing graphs of components of G1(x, t) we replace

singular terms δ(t −|x|/CT ) and δ(t −|x|/CL) by 1
2
√

πε exp
[
−(t −|x|/CT )

2/(4ε)
]

and

1
2
√

πε exp
[
−(t −|x|/CL)

2/(4ε)
]

with ε = 0.0001, respectively.

The graphs of functions G1
1(z,z,z, t) and G1

2(z,z,z, t) for t = 1 obtained by our

method and by formulae (2.57)- (2.59) are presented in Figs. 2.17 and 2.18. The

curves of graphs G1
1(z,z,z,1) and G1

2(z,z,z,1) obtained by our method fluctuate around

curves of graphs of the functions G1
1(z,z,z,1) and G1

2(z,z,z,1) obtained by formulae

(2.57)- (2.59). We can see in Figs. 2.17 and 2.18 that all peaks of graphs obtained

by our method and by formulae (2.57)- (2.59) have the same positions and similar

magnitudes.

Taking into account that Gm(x, t) is the elastic field arising from the pulse source

emδ(x)δ(t) we have a chance to compute and visualize behavior of the elastic field at

fixed time on a fixed plane, for example, on the plane x2 = 0 at t = 1.5. The graphs of
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G1
1(x1,0,x3,1.5) obtained by formula (2.57) and by our method are presented in Figs.

2.19 and 2.20, respectively. In these Figures the horizontal axis is x1 and vertical axis

is x2. The graphs of these Figures mean the view from the top of the magnitude axis

of G1
1 and different colors correspond to different magnitudes. In these Figures we see

clearly two fronts related to longitudinal and transverse waves. We can see also that

these waves propagate perpendicular to each other.

2.3.3.3 Computational examples of the FS of equations of anisotropic elastodynamics

In this section the following two examples of homogeneous elastic solids with

general structure of anisotropy are considered.

Example 4. The solid of monoclinic structure: Sodium Thiosulfate (Na2S2O3).

The density ρ = 1.7499 kg/cm3 and elastic constants are defined (see, for

example, Hearmon (1956) ) by

c1111 = 0.3323, c1122 = c2211 = 0.1814, c1133 = c3311 = 0.1875,

c1113 = c1311 = 0.0225, c2222 = 0.2953, c2233 = c3322 = 0.1713,

c2213 = c1322 = 0.0983, c3333 = 0.459, c3313 = c1333 =−0.0678,

c2323 = 0.0569, c2312 = c1223 =−0.0268, c1313 = 0.107, c1212 = 0.0598(GPa).

Other elastic constants are equal to zero.

Example 5. The solid of triclinic structure: Copper Sulphate Pentahydrate .

The density ρ= 2.649 kg/cm3 and elastic moduli are defined (see, for example, Brown
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& Abramson & Angel (2006)) by

c1111 = 5.65, c1122 = c2211 = 2.65, c1133 = c3311 = 3.21, c1123 = c2311 =−0.33,

c1113 = c1311 =−0.08, c1112 = c1211 =−0.39, c2222 = 4.33, c2233 = c3322 = 3.47,

c2223 = c2322 =−0.07, c2213 = c1322 =−0.21, c2212 = c1222 = 0.02, c3333 = 5.69,

c3323 = c2333 =−0.44, c3313 = c1333 =−0.21, c3312 = c1233 =−0.16,

c2323 = 1.73, c2313 = c1323 = 0.09, c2312 = c1223 = 0.03,

c1313 = 1.22, c1312 = c1213 =−0.26, c1212 = 1(GPa).

For the computational experiments we take equation (2.84) with h(t) = δ(t). The

goal of these computational experiments is to derive the FS of elastodynamics and

to obtain the graphic presentations of the elements of the FS using formula (2.102),

our method and MATLAB tools. The physical meaning of mth column of the FS is

the vector of displacement depending on the position (i.e. space variables x1, x2, x3)

and the time variable t arising from the pulse point force of the form emδ(x)δ(t) in the

considered elastic anisotropic solid. The graphic presentation of the components of this

displacement in points of the space gives a possibility to observe the wave propagation

phenomenon, in particular, wave fronts arising from pulse point sources at different

times in general anisotropic solids.

Using our method we have computed numerically the components of Gm(x, t).

Fig.2.21 presents the first component of the displacement G1(x1,0,x3, t) at t = 4.

Here the horizontal and vertical axes are x1 and x3, respectively. Fig.2.21 presents

a view from the top of the magnitude axis G1
1 (i.e. the view of the surface z =

G1
1(x1,0,x3,4) from the top of z axis ).

Similar, Fig. 2.22 presents the second component of the displacement G1(x1,x2,0, t)

at t = 5. Here the horizontal and vertical axes are x1 and x2, respectively. Fig.2.23
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presents the third component of the displacement G1(x1,0,x3, t) at the time t = 4. Here

the horizontal and vertical axes are x1 and x3, respectively.

In Figs 2.21- 2.23 we can see the behavior of the components of the elastic field in

the monoclinic solid Sodium Thiosulfate arising from the pulse point force e1δ(x)δ(t).

We can see peculiar forms of the traces of wave fronts which we observe on the planes

x2 = 0, x3 = 0.

Fig.2.24 presents the first component of the displacement G3(x1,0,x3, t) at t = 1.75.

Fig.2.25 presents the second component of the displacement G3(0,x2,x3, t) at t = 1.75.

Fig.2.26 presents the third component of the displacement G3(0,x2,x3, t) at the time

t = 1.75. Figs.2.24-2.26 are the screen shots of 2 − D level plots of the surfaces

G3
1(x1,0,x3,1.75), G3

2(0,x2,x3,1.75), G3
3(0,x2,x3,1.75), respectively. This is a view

from the top of z-axis (the plan). In Figs. 2.24-2.26 we can see the behavior of

components of the elastic field in the triclinic solid Copper Sulphate Pentahydrate

arising from the pulse point force e3δ(x)δ(t). We can see peculiar forms of the traces

of wave fronts which we observe on the planes x1 = 0, x2 = 0.
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Table 2.3. The accuracy of computing G̃3
3(ν, t) in isotropic material silica (SiO2)

t ν1 ν2 ν3 G̃3
3(ν, t) G̃3

3(ν, t)− Ẽ3
3 (ν, t)

1 10−5 10−5 10−5 0.4539264639 −0.1×10−15

10−5 10−4 10−3 0.4539261932 −0.1×10−15

10−4 10−4 10−4 0.4539264591 0.6×10−16

10−3 10−3 10−3 0.4539259800 0.1×10−15

10−2 10−2 10−2 0.4538780786 0
10−1 10−2 10−3 0.4528447980 0
10−1 10−1 10−1 0.4491066612 0

1 1 1 0.1236007290 0.6×10−16

101 101 101 0.1884405489×10−1 −0.3×10−17

102 102 102 −0.1273480138×10−2 −0.4×10−16

101 102 103 −0.7528755459×10−4 −0.5×10−16

103 103 103 0.8709300174×10−4 −0.4×10−16

105 104 103 −0.3012966019×10−5 −0.3×10−16

2 10−5 10−5 10−5 0.9078529274 −0.1×10−15

10−5 10−4 10−3 0.9078507625 −0.2×10−15

10−4 10−4 10−4 0.9078528891 0
10−3 10−3 10−3 0.9078490569 0.1×10−15

10−2 10−2 10−2 0.9074658907 −0.1×10−15

10−1 10−2 10−3 0.8992181580 −0.2×10−15

10−1 10−1 10−1 0.8697446556 0
1 1 1 −0.1102871416 0.1×10−16

101 101 101 −0.2958623228×10−2 0.5×10−16

102 102 102 −0.7422665165×10−3 0.2×10−16

101 102 103 −0.1514006209×10−3 −0.8×10−16

103 103 103 0.5202463403×10−4 −0.8×10−16

105 104 103 −0.3663436948×10−5 0.3×10−16

3 10−5 10−5 10−5 0.9078529274 −0.1×10−15

10−5 10−4 10−3 1.361779390 −0.2×10−15

10−4 10−4 10−4 1.361779261 0.2×10−15

10−3 10−3 10−3 1.361766327 0.4×10−15

10−2 10−2 10−2 1.360473397 0.4×10−15

10−1 10−2 10−3 1.332741143 0
10−1 10−1 10−1 1.235652336 0.2×10−15

1 1 1 −0.3190631567×10−1 −0.2×10−15

101 101 101 −0.1528018422×10−1 0.5×10−16

102 102 102 −0.1021957343×10−2 0.6×10−16

101 102 103 −0.1988284129×10−3 −0.2×10−17

103 103 103 0.1567941374×10−3 −0.5×10−16

105 104 103 −0.1442495824×10−5 0.2×10−15
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Figure 2.13: Graphs of the third component u3
3(0,0,z, t)

of solutions (2.84), (2.85) for h(t) = θ(t)t2 exp(−3t2) at

t = 5
√

ρ
µ for an isotropic solid with wave speed quotient

CL/CT = 2. The dotted line represents analytical solution
found by (2.108). The continuous line represents our
method.
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Figure 2.14: Graphs of the third component
u3

3(
√

6z/4,
√

6z/4,z/2, t) of solutions (2.84), (2.85)

for h(t) = θ(t)t2 exp(−3t2) at t = 5
√

ρ
µ for an isotropic

solid with wave speed quotient CL/CT = 2. The dotted
line represents analytical solution found by (2.109). The
continuous line represents our method.
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Figure 2.15: Graphs of the first component u1
1(z,z,z, t)

of solutions (2.84), (2.85) for h(t) = θ(t) at t = 1 for the
isotropic solid Silica (SiO2). The line denoted by ***
represents analytical solution found by formula (2.110).
The line denoted by —— represents our method.

2.4 Concluding Remarks

In this chapter of the thesis fundamental solution of anisotropic elastodynamics

is derived using three different methods. The first method is based on Fourier

transformation, Paley-Wiener theorem and some properties of fundamental solutions.

In the second method and third method system of anisotropic elastodynamics

is reduced to a first order symmetric hyperbolic system and a second order

matrix equation, respectively. And using Fourier transformation and some

matrix computations fundamental solution of anisotropic elastodynamics is derived.

Computational examples confirm robustness of the given methods.
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Figure 2.16: Graphs of the second component u1
2(z,z,z, t)

of solutions (2.84), (2.85) for h(t) = θ(t) at t = 1 for the
isotropic solid Silica (SiO2). The line denoted by ***
represents analytical solution found by formulae (??) and
(2.111). The line denoted by —— represents our method.

Figure 2.17: Graphs of the first component G1
1(z,z,z, t)

of solutions (2.84), (2.85) for h(t) = δ(t) at t =
1 for the isotropic solid Silica (SiO2). The line
denoted by *** represents analytical solution found
by formula (2.57), where δ(t) is approximated by
exp
[
−t2/(4ε)

]
/(2

√
πε), ε = 0.0001. The line denoted by

—— represents our method.
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Figure 2.18: Graphs of the second component
G1

2(z,z,z, t) of solutions (2.84), (2.85) for h(t) = δ(t)
at t = 1 for the isotropic solid Silica (SiO2). The
line denoted by *** represents analytical solution found
by formula (2.58), where δ(t) is approximated by
exp
[
−t2/(4ε)

]
/(2

√
πε), ε = 0.0001. The line denoted by

—— represents our method.

Figure 2.19: The map surface plot of 3D surface z =
G1

1(x1,0,x3,1.5), where G1
1(x1,x2,x3, t) is computed by

formula (2.57) for the isotropic elastic solid Silica (SiO2);
the Dirac delta function δ(t) is approximated in (2.57) by
exp
[
−t2/(4ε)

]
/(2

√
πε), ε = 0.0001.
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Figure 2.20: The map surface plot of 3D surface z =
G1

1(x1,0,x3,1.5), where G1
1(x1,x2,x3, t) is computed by

our method for the isotropic elastic solid Silica (SiO2).

Figure 2.21: The map surface plot of 3D surface z =
G1

1(x1,0,x3,4), where G1
1(x1,x2,x3, t) is computed by our

method for Sodium Thiosulfate (monoclinic structure of
anisotropy).
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Figure 2.22: The map surface plot of 3D surface z =
G1

2(x1,x2,0,5), where G1
2(x1,x2,x3, t) is computed by our

method for Sodium Thiosulfate (monoclinic structure of
anisotropy).

Figure 2.23: The map surface plot of 3D surface z =
G1

3(x1,0,x3,4), where G1
3(x1,x2,x3, t) is computed by our

method for Sodium Thiosulfate (monoclinic structure of
anisotropy).
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Figure 2.24: The map surface plot of 3D surface z =
G3

1(x1,0,x3,1.75), where G3
1(x1,x2,x3, t) is computed by

our method for Copper Sulphate Pentahydrate (triclinic
structure of anisotropy).

Figure 2.25: The map surface plot of 3D surface z =
G3

2(x1,0,x3,1.75), where G3
2(x1,x2,x3, t) is computed by

our method for Copper Sulphate Pentahydrate (triclinic
structure of anisotropy).
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Figure 2.26: The map surface plot of 3D surface z =
G3

3(x1,0,x3,1.75), where G3
3(x1,x2,x3, t) is computed by

our method for Copper Sulphate Pentahydrate (triclinic
structure of anisotropy).



CHAPTER THREE

MODELLING AND SIMULATION OF ELASTIC WAVES IN

QUASICRYSTALS

In this chapter the dynamic three dimensional elasticity problems of 1D, 2D and 3D

quasicrystals are considered. This chapter consist of three sections. In these sections

the fundamental solutions of the dynamic three dimensional elasticity problems of 1D,

2D and 3D quasicrystals are computed.

3.1 Three dimensional elastodynamics of 1D quasicrystals: the derivation of the

time-dependent fundamental solution

3.1.1 The basic equations for 1D QCs

Let x = (x1,x2,x3) ∈ R3 be a space variable, t ∈ R be a time variable. According to

the generalized elasticity theory ( Ding & Yang & Hu & Wang (1993), Wang & Yang

& Hu (1997), Gao & Zhao (2006)), Hooke’s law for 1-D QCs can be written in the

form

σi j = ci jklεkl +Ri j3lw3l, (3.112)

H3 j = Rkl3 jεkl +K3 j3lw3l, i, j,k, l = 1,2,3. (3.113)

where εkl and w3l are defined as follows

εkl =
1
2
(
∂uk

∂xl
+

∂ul

∂xk
), w3l =

∂w3

∂xl
, k, l = 1,2,3. (3.114)

Here uk,k = 1,2,3 the phonon displacements and w3 is phason displacement.

95
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ci jkl represents the elastic constants of the phonon field which satisfy symmetry

properties

ci jkl = c jikl = ci jlk = ckli j. (3.115)

K3 j3l represents the elastic constants of the phason field which satisfy symmetry

properties

K3 j3l = K3l3 j, (3.116)

and Ri j3l are phonon-phason coupling elastic constants which satisfy symmetry

properties

Ri j3l = R ji3l. (3.117)

The positivity of elastic strain energy density requires that the elastic constant tensors

ci jkl, K3 j3l, Ri j3l must be positive definite. Namely, when the strain tensors εkl , w3l

are not zero entirely, the elastic constant tensors satisfy the following inequality ( Gao

& Zhao (2006))

3

∑
i, j,l=1

ci jklεi jεkl > 0,
3

∑
j,l=1

K3 j3lw3 jw3l > 0,
3

∑
i, j,l=1

Ri j3lεi jw3l > 0. (3.118)

The dynamic equilibrium equations can be written in the following form ( Ding &

Yang & Hu & Wang (1993))

ρ
∂2ui(x, t)

∂t2 =
3

∑
j=1

∂σi j(x, t)
∂x j

+ fi(x, t), i = 1,2,3, (3.119)

ρ
∂2w3(x, t)

∂t2 =
3

∑
j=1

∂H3 j(x, t)
∂x j

+g3(x, t), x ∈ R3, t ∈ R, (3.120)

where ρ > 0 is the density; f(x, t) = ( f1(x, t), f2(x, t), f3(x, t)), g3(x, t) are body forces
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densities for the phonon and phason displacements, respectively; σi j and H3 j, i, j =

1,2,3 are phonon and phason stresses (see, for example, Ding & Yang & Hu & Wang

(1993),Hu & Wang & Ding (2000),Gao & Zhao (2006),Yang & Wang & Ding & Hu

(1993)).

There exits the following classification of 1-D QCs ( Wang & Yang & Hu (1997)):

Triclinic, Monoclinic, Orthorhombic, Tetragonal, Trigonal and Hexagonal crystal

systems (see Appendix.).

3.1.2 Time-dependent fundamental solution of elasticity for 1D QCs

Substituting (3.112) and (3.113) into (3.119) and (3.120) we have for i = 1,2,3

ρ
∂2ui(x, t)

∂t2 =
3

∑
j,k,l=1

ci jkl
∂2uk(x, t)

∂x j∂xl
+

3

∑
j,l=1

Ri j3l
∂2w3(x, t)

∂x j∂xl
+ fi, (3.121)

ρ
∂2w3(x, t)

∂t2 =
3

∑
j,k,l=1

Rkl3 j
∂2uk(x, t)

∂x j∂xl
+

3

∑
j,l=1

K3 j3l
∂2w3(x, t)

∂x j∂xl
+g3. (3.122)

The system (3.121)-(3.122) can be written in the form of one vector partial differential

equation as follows ( Akmaz (2009))

ρ
∂2V
∂t2 =

3

∑
j,l=1

P jl
∂2V

∂x j∂xl
+F(x, t),x ∈ R3, t ∈ R, (3.123)

where V = (u1,u2,u3,w3), F = ( f1, f2, f3,g3) and matrices P jl are defined by

P jl =



c1 j1l+c1l1 j
2

c1 j2l+c1l2 j
2

c1 j3l+c1l3 j
2

R1 j3l+R1l3 j
2

c2 j1l+c2l1 j
2

c2 j2l+c2l2 j
2

c2 j3l+c2l3 j
2

R2 j3l+R2l3 j
2

c3 j1l+c3l1 j
2

c3 j2l+c3l2 j
2

c3 j3l+c3l3 j
2

R3 j3l+R3l3 j
2

R1 j3l+R1l3 j
2

R2 j3l+R2l3 j
2

R3 j3l+R3l3 j
2

K3 j3l+K3l3 j
2


. (3.124)
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The time-dependent fundamental solution (FS) of elastodynamics in 3D QCs is a 4×4

matrix whose mth column is a vector function

Vm(x, t) = (um
1 (x, t),u

m
2 (x, t),u

m
3 (x, t),w

m
3 (x, t))

satisfying

ρ
∂2Vm

∂t2 =
3

∑
j,l=1

P jl
∂2Vm

∂x j∂xl
+Emδ(x)δ(t), x ∈ R3, t ∈ R, (3.125)

Vm(x, t)|t<0 = 0, (3.126)

Here δ(x) = δ(x1)δ(x2)δ(x3) is the Dirac delta function of the space variable

concentrated at x1 = 0, x2 = 0, x3 = 0; δ(t) is the Dirac delta function of the time

variable concentrated at t = 0; m = 1, ...,4; Em = (δm
1 ,δ

m
2 ,δ

m
3 ,δ

m
4 ), δm

n is the Kronecker

symbol i.e. δm
n = 1 if n = m and δm

n = 0 if n ̸= m, n = 1, ...,4. P jl are matrices defined

by (3.124).

3.1.3 Computation of mth column for time-dependent FS of 1D QCs

In this section we will solve IVP (3.125)-(3.126). Let

Ṽm(ν, t) = (ũ1
m, ũ2

m, ũ3
m, w̃3

m)

be the Fourier image of Vm(x, t) with respect to x = (x1,x2,x3) ∈ R3, i.e.

Ṽj
m
(ν, t) =

∞∫
−∞

∞∫
−∞

∞∫
−∞

V m
j (x, t)e

ix·νdx1dx2dx3,
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where

ν = (ν1,ν2,ν3) ∈ R3, x ·ν = x1ν1 + x2ν2 + x3ν3, i2 =−1, j = 1,2,3,4.

The IVP (3.125)-(3.126) can be written in terms of Ṽm
(ν, t) as follows

ρ
∂2Ṽm

∂t2 +A(ν)Ṽm
= Emδ(t), ν ∈ R3, t ∈ R, (3.127)

Ṽm
(ν, t)|t<0 = 0. (3.128)

Here

A(ν) =
3

∑
j,l=1

P jlν jνl, (3.129)

P jl are matrices defined by (3.124).

3.1.3.1 Explicit formula for a solution of (3.127), (3.128)

From (3.118) A(ν) is a positive semi definite matrix (see Appendix) and from

(3.115), (3.116), (3.117) A(ν) is a symmetric matrix. Then we can construct an

orthogonal matrix T(ν) and a diagonal matrix D(ν) = diag(dk(ν), k = 1,2,3,4) with

nonnegative elements such that

T∗(ν)A(ν)T(ν) = D(ν), (3.130)

where T∗(ν) is the transposed matrix to T(ν).

Using the transformation

Ṽm(ν, t) = T(ν)Ym(ν, t), (3.131)
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where Ym(ν, t) is unknown vector function, for (3.127)-(3.128) and then multiplying

the obtained vector differential equation by T∗(ν) and using (3.130) we find

ρ
∂2Ym

∂t2 +D(ν)Ym = T∗(ν)Emδ(t), t ∈ R, ν ∈ R3 (3.132)

Ym(ν, t)|t≤0 = 0. (3.133)

Using the ordinary differential equations technique (see, for example, Boyce &

DiPrima (1992)), a solution of the initial value problem (3.132)-(3.133) is given by

Ym
k (ν, t) = θ(t)

(T∗(ν)Em)k√
ρdk(ν)

sin(t

√
dk(ν)√ρ

), f or dk(ν)> 0,

Ym
k (ν, t) = θ(t)

(T∗(ν)Em)k

ρ
t, f or dk(ν) = 0,

where k = 1,2,3,4, θ(t) is the Heaviside function, i.e. θ(t) = 1 for t ≥ 0 and θ(t) = 0

for t < 0. Finally, a solution of (3.127), (3.128) is determined by

Ṽm(ν, t) = θ(t)T(ν)Ym(ν, t). (3.134)

3.1.3.2 Explicit formula for mth column for time-dependent FS of 1D QCs

The values of Vm(x, t), Ṽm(ν, t), T(ν) and D(ν) = diag(dk(ν), k = 1,2,3,4) are

real. So applying the inverse Fourier transform to (3.134) (see, for example Vladimirov

(1971)) we find that a solution of (3.125), (3.126) is given by

Vm(x, t) =
θ(t)
(2π)3 Re

 ∞∫
−∞

∞∫
−∞

∞∫
−∞

T(ν)Ym(ν, t)cos(ν · x)dν1dν2dν3


=

θ(t)
(2π)3

∞∫
−∞

∞∫
−∞

∞∫
−∞

T(ν)Ym(ν, t)cos(ν · x)dν1dν2dν3. (3.135)
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3.1.4 Computational examples

3.1.4.1 General characteristics of computations and visualizations

In this section, we consider six 1D quasicrystals for anisotropic dynamic elasticity:

hexagonal, trigonal, tetragonal, orthorhombic, monoclinic and triclinic structures,

respectively. For our examples we take the pulse force situated in each crystal and

modeled by E3δ(x1)δ(x2)δ(x3)δ(t) and E4δ(x1)δ(x2)δ(x3)δ(t), where E3 = (0,0,1,0),

E4 = (0,0,0,1) and δ(.) is the Dirac delta function. The responses of the considered

anisotropic quasicrystals on this source are the phonon and phason displacement

vectors depending on the position (i.e. space variables x1,x2,x3) and the time variable

t. Using the method of Section 3.1.3 we compute T(ν),T∗(ν),D(ν) and then using the

formula (3.135) we have derived numerically components of V3(x, t) and V4(x, t). The

first three components of the vector function Vi(x, t), i = 3,4, are components of the

phonon displacement ui
1(x, t),u

i
2(x, t),u

i
3(x, t) and the fourth component is the phason

displacement wi
3(x, t), i = 3,4.

We note here that the vectors V3(x, t) and V4(x, t) are the third and fourth columns

of G(x, t), where G(x, t) is the FS of anisotropic elasticity for quasicrystals.
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3.1.4.2 Description of input data and corresponding images

Example 1. (Hexagonal Crystal.) The density ρ is equal to 1.848 and the independent

elastic constants are

c1111 = 29.23, c1122 = c2211 = 2.67, c1133 = c3311 = 1.4, c3333 = 33.64,

c2323 = c2332 = c3223 = c3232 = 16.25, c1212 = c1221 = c2112 = c2121 = 13.28;

R1133 = 1.35, R3333 = 1, R3131 = R1331 = 0.4, R2331 = R3231 =−2.1;

K3333 = 1, K3131 = 2.

Figures 3.27, 3.28 show dynamics of the distribution of the first phonon displacement

u3
1(x1,0,x3,0.75) and phason displacement w3

3(x1,0,x3,0.75), respectively. These

figures contain screen shots of 2-D level plots of the u3
1(x1,0,x3,0.75) and

w3
3(x1,0,x3,0.75), i.e. a view of these surfaces from the top of z-axis.

Example 2. (Trigonal Crystal.) The density ρ is equal to 3.986 and the

independent elastic constants are

c1111 = 49.7, c1122 = c2211 = 16.4, c1133 = c3311 = 11.2,

c1123 = c2311 = c1132 = c3211 =−2.35, c3333 = 49.9,

c2323 = c3223 = c3232 = c2332 = 14.7, c1212 = c1221 = c2112 = c2121 = 16.65;

R1133 = 1, R3333 = 0.4, R2332 = R3232 = 0.1, R1132 = 2.1; K3333 = 1, K3131 = 2.

Figures 3.29, 3.30 present 2-D plot of the first phonon displacement u3
1(x1,0,x3,0.8)

and pahon displacement w4
3(x1,0,x3,3.75). All pictures are the view from the top of

z-axis.

Example 3. (Tetragonal Crystal.) The density ρ is equal to 4.255 and the
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independent elastic constants are

c1111 = 14.5, c1122 = c2211 = 6.6, c1133 = c3311 = 4.46, c3333 = 12.65

c1112 = c1211 = c2111 = c1121 = 1.3, c2323 = c2332 = c3223 = c3232 = 3.69,

c1212 = c1221 = c2112 = c2121 = 4.5; R1133 = 1.35, R3333 = 0.4,

R2332 = R3232 = 1, R2331 = R3231 = 2; K3333 = 1, K3131 = 2.

Figures 3.31, 3.32 present of the first phonon displacement u3
1(x1,0,x3,1.75) and the

phason displacement w3
3(x1,0,x3,1.75). All pictures are the view from the top of z-axis.

Example 4. (Orthorhombic Crystal.) The density ρ is equal to 4.64 and the

independent elastic constants are

c1111 = 3.01, c1122 = c2211 = 1.61, c1133 = c3311 = 1.11, c2222 = 5.8,

c3131 = c1331 = c3113 = c1313 = 2.06, c2233 = c3322 = 0.8, c3333 = 4.29,

c2323 = c2332 = c3223 = c3232 = 1.69, c1212 = c1221 = c2112 = c2121 = 1.58;

R1133 = 1.5, R3333 = 6.6, R2332 = R3232 =−2.5, R3131 = R1331 = 1.11,

R2233 = 2.1; K3333 = 11.1, K3131 = 1.3 K3232 = 4.

Figures 3.33, 3.34 present of the first phonon displacement u4
1(x1,0,x3,1.5) and the

second phason displacement w3
3(x1,0,x3,1.5). All pictures are the view from the top

of z-axis.

Example 5. (Monoclinic Crystal.) The density ρ is equal to 3.31 and the nonzero
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elastic constants are

c1111 = 2.040, c1122 = c2211 = 0.884, c1133 = c3311 = 0.0883,

c1131 = c3111 = c1311 = c1113 =−0.193, c2222 = 1.750, c3333 = 2.38

c2233 = c3322 = 0.482, c2231 = c3122 = c1322 = c2213 =−0.196,

c3331 = c3133 = c1333 = c3313 =−0.336, c2323 = c2332 = c3223 = c3232 = 0.675,

c2312 = c3212 = c1232 = c1223 = c3221 = c2132 = c2321 = c2123 =−0.113,

c3131 = c1331 = c3113 = c1313 = 0.588, c1212 = c1221 = c2112 = c2121 = 0.705;

R1133 = 0.035, R2233 =−1.04, R3333 = 0.1, R3133 = R1333 =−0.2,

R1131 = 0.1, R2231 =−2.5, R3331 =−0.1, R3131 = R1331 = 1.5,

R2332 = R3232 = 0.01, R1232 = R2132 =−0.3; K3333 = 4,

K3331 = K3133 = 3.1, K3131 = 5, K3232 = 3.

Figures 3.35, 3.36 show dynamics of the distribution of the first phonon displacement

u4
1(x1,0,x3,2) the phason displacement w4

3(x1,0,x3,2). Figures 3.35, 3.36 contain

screen shots of 2-D level plots of the first phonon and phason displacements,

respectively, i.e. a view of these surfaces from the top of z-axis.

Example 6. (Triclinic Crystal).

The density ρ = 2 and the nonzero elastic constants are

c1111 = 69.1, c1122 = c2211 = 34.0, c1133 = c3311 = 30.8, c3333 = 179.5,

c1123 = c2311 = c3211 = c1132 = 5.1,c1131 = c3111 = c1311 = c1113 −2.4,

c1112 = c1121 = c2111 = c1211 =−0.9,c2222 = 183.5, c2233 = c3322 = 5.5,

c2223 = c2322 = c3222 = c2232 =−3.9, c3131 = c3113 = c1331 = c1313 = 26.8,

c2231 = c3122 = c1322 = c2213 =−7.7, c2212 = c2221 = c2122 = c1222 =−5.8,
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c3323 = c3332 = c3233 = c2333 =−8.7, c3331 = c3313 = c1333 = c3133 = 7.1,

c3312 = c3321 = c2133 = c1233 =−9.8, c2323 = c2332 = c3223 = c3232 = 24.9,

c3112 = c3121 = c2131 = c1231 = c1312 = c1213 = c1321 = c2113 = 0.5,

c2331 = c2313 = c1323 = c3123 = c3231 = c3132 = c3213 = c1332 =−2.4,

c2312 = c2321 = c2123 = c1223 = c3212 = c1232 = c3221 = c2132 =−7.2,

c1212 = c1221 = c2112 = c2121 = 33.5; R1131 =−1.35, R1132 =−5.4,

R1231 = R2131 =−2,R1133 = 1, R1232 = R2132 = 3, R1233 = R2133 = 4,

R1331 = R3131 =−1.1, R1332 = R3132 = 0.5, R1333 = R3133 = 1.3,

R2231 = 7.3, R2232 = 1.3, R2233 = 4.1, R2331 = R3231 =−0.7,

R2333 = R3233 = 3.3, R2332 = R3232 = 1.5 R3331 = 2.6, R3332 = 0.01,

R3333 = 4.2; K3131 = 6, K3132 = K3231 = 1, K3133 = K3331 = 0.5,

K3232 = 2.2, K3233 = K3332 = 2.1, K3333 = 3.

Figures 3.37, 3.38 present of the first phonon displacement u3
1(x1,0,x3,0.3) and the

phason displacement w4
3(x1,0,x3,1.5) on the plane x2 = 0. Here the horizontal axes

are x1 and x3. All pictures are the view from the top of z-axis.

3.1.4.3 Analysis of the visualization

The simulation of the phonon and phason displacements in general anisotropic

media by modern computer tools allow us to see and evaluate dependence between

media structures and behavior of these displacement. The approach of the method

allows users to observe the elastic wave propagation arising from pulse point sources

of the form Emδ(x1)δ(x2)δ(x3)δ(t) in 1D QCs (hexagonal, trigonal, tetragonal,

orthorhombic monoclinic, triclinic). Here Em = (δm
1 ,δ

m
2 ,δ

m
3 ,δ

m
4 ) . We can see on

the Figures 3.27-3.38 that the different 1D QCs structures of media produce different
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responses of phonon and phason displacement fields inside these media. The various

shapes of elastic waves (different forms of fronts and magnitude fluctuations of phonon

and phason displacement fields) are shown in presented figures.

Figure 3.27: The map surface plot (plan) of 3D
surface z = u4

1(x1,0,x3, t) for t = 0.75 in hexagonal
QC
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Figure 3.28: The map surface plot (plan) of 3D
surface z = w3

3(x1,0,x3, t) for t = 0.75 in hexagonal
QC

Figure 3.29: The map surface plot (plan) of 3D
surface z = u3

1(x1,0,x3, t) for t = 0.8 in trigonal QC
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Figure 3.30: The map surface plot (plan) of 3D
surface z = w4

3(x1,0,x3, t) for t = 3.75 in trigonal QC

Figure 3.31: The map surface plot (plan) of 3D
surface z = u3

1(x1,0,x3, t) for t = 1.75 in tetragonal
QC
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Figure 3.32: The map surface plot (plan) of 3D
surface z = w3

3(x1,0,x3, t) for t = 1.75 in tetragonal
QC

Figure 3.33: The map surface plot (plan) of 3D
surface z = u4

1(x1,0,x3, t) for t = 1.5 in orthorhombic
QC
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Figure 3.34: The map surface plot (plan) of 3D
surface z = w3

3(x1,0,x3, t) for t = 1.5 in orthorhombic
QC

Figure 3.35: The map surface plot (plan) of 3D
surface z = u4

1(x1,0,x3, t) for t = 2 in monoclinic QC
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Figure 3.36: The map surface plot (plan) of 3D
surface z = w4

3(x1,0,x3, t) for t = 2 in monoclinic QC

Figure 3.37: The map surface plot (plan) of 3D
surface z = u4

1(x1,0,x3, t) for t = 2 in triclinic QC
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Figure 3.38: The map surface plot (plan) of 3D
surface z = w4

3(x1,0,x3, t) for t = 1.5 in triclinic QC
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3.2 Three dimensional elastodynamics of 2D quasicrystals: the derivation of the

time-dependent fundamental solution

3.2.1 The basic equations for 2D QCs

Let us consider a quasicrystal with two dimensional quasiperiodic and one

dimensional periodic structure. Let x = (x1,x2,x3) ∈ R3 be a space variable, t ∈ R

be a time variable. The generalized Hooke’s laws of the elasticity problem of 2D QCs

is given by (Gao (2009), Grimmer (2008))

σi j = ci jklεkl +Ri jαlwαl, (3.136)

Hβ j = Rklβ jεkl +Kβ jαlwαl, i, j,k, l = 1,2,3, α,β = 1,2, (3.137)

where εkl(x, t), wαl(x, t), l = 1,2,3, α = 1,2 are defined as follows

εkl =
1
2
(
∂uk

∂xl
+

∂ul

∂xk
), wαl =

∂wα
∂xl

, k, l = 1,2,3, α = 1,2, (3.138)

are phonon and phason strains, Here uk, k = 1,2,3 and wα,α = 1,2 are the phonon and

phason displacements; εkl(x, t), wαl(x, t), k, l = 1,2,3, α = 1,2 are phonon and phason

strains.

ci jkl represent the phonon elastic constants, Kβ jαl are the phason elastic constants,

Ri jαl are the phonon-phason coupling elastic constants. Similar to Ding & Yang & Hu

& Wang (1993), we assume that the following symmetric properties are satisfied

ci jkl = c jikl = ci jlk = ckli j, Kβ jαl = Kαlβ j, Ri jαl = R jiαl. (3.139)

The positivity of the elastic strain energy density requires that the elastic constant

tensors ci jkl , Ri jαl , Kβ jαl must be positive definite. Namely, when the strain tensors εi j,
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wαl are not zero entirely, the elastic constant tensors satisfy the following inequality

(see Gao & Zhao (2006))

3

∑
j,l,i,k=1

ci jklεi jεkl > 0,
3

∑
j,l=1

2

∑
α,β=1

Kβ jαlwβ jwαl > 0,
3

∑
j,l,i=1

2

∑
α=1

Ri jαlεi jwαl > 0.

The dynamic equilibrium equations can be written in the following form (Ding & Yang

& Hu & Wang (1993))

ρ
∂2ui(x, t)

∂t2 =
3

∑
j=1

∂σi j(x, t)
∂x j

+ fi(x, t), i = 1,2,3, (3.140)

ρ
∂2wβ(x, t)

∂t2 =
3

∑
j=1

∂Hβ j(x, t)
∂x j

+gβ(x, t), β = 1,2, x ∈ R3, t ∈ R, (3.141)

where the constant ρ > 0 is the density; fi(x, t), i = 1,2,3 and g j(x, t), j = 1,2 are

body forces densities for the phonon and phason displacements, respectively; σi j and

Hβ j, i, j = 1,2,3, β = 1,2 are phonon and phason stresses (see, for example, Ding &

Yang & Hu & Wang (1993),Hu & Wang & Ding (2000),Gao & Zhao (2006),Yang &

Wang & Ding & Hu (1993)).

3.2.2 Time-dependent fundamental solution of elasticity for 2D QCs

Let m run values 1,2,3,4,5; δm
n be the Kronecker symbol i.e. δm

n = 1 if n = m

and δm
n = 0 if n ̸= m; n = 1,2,3,4,5; m = 1,2,3,4,5. The time-dependent Green’s

function (GF) of elasticity for 2D QCs is a 5×5 matrix whose mth column is a vector

function

Vm(x, t) = (um
1 (x, t),u

m
2 (x, t),u

m
3 (x, t),w

m
1 (x, t),w

m
2 (x, t))
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satisfying the following equations

ρ
∂2um

i (x, t)
∂t2 =

3

∑
j,k,l=1

ci jkl
∂2um

k (x, t)
∂x j∂xl

+
3

∑
j,l=1

2

∑
α=1

Ri jαl
∂2wm

α(x, t)
∂x j∂xl

+ δm
i δ(x)δ(t), (3.142)

ρ
∂2wm

β (x, t)

∂t2 =
3

∑
j,k,l=1

Rklβ j
∂2um

k (x, t)
∂x j∂xl

+
3

∑
j,l=1

2

∑
α=1

Kβ jαl
∂2wm

α(x, t)
∂x j∂xl

+ δm
β δ(x)δ(t), (3.143)

and conditions

um
i (x, t) |t<0= 0, wm

β (x, t) |t<0= 0. (3.144)

Here i = 1,2,3; β = 1,2; δ(x) = δ(x1)δ(x2)δ(x3) is the Dirac delta function of the

space variable concentrated at x1 = 0, x2 = 0, x3 = 0; δ(t) is the Dirac delta function

of the time variable concentrated at t = 0. Equations (3.142)-(3.144) can be written in

the following form

ρ
∂2Vm

∂t2 =
3

∑
j,l=1

P jl
∂2Vm

∂x j∂xl
+ Emδ(x)δ(t), x ∈ R3, t ∈ R, (3.145)

Vm(x, t) |t<0 = 0, (3.146)

where Em = (δm
1 ,δ

m
2 ,δ

m
3 ,δ

m
4 ,δ

m
5 ),

P jl =
1
2
×



c1 j1l + c1l1 j c1 j2l + c1l2 j c1 j3l + c1l3 j R1 j1l +R1l1 j R1 j2l +R1l2 j

c2 j1l + c2l1 j c2 j2l + c2l2 j c2 j3l + c2l3 j R2 j1l + r2l1 j R2 j2l + r2l2 j

c3 j1l + c3l1 j c3 j2l + c3l2 j c3 j3l + c3l3 j R3 j1l +R3l1 j R3 j2l +R3l2 j

R1 j1l +R1l1 j R2 j1l +R2l1 j R3 j1l +R3l1 j K1 j1l +K1l1 j K1 j2l +K1l2 j

R1 j2l +R1l2 j R2 j2l +R2l2 j R3 j2l +R3l2 j K2 j1l +K2l1 j K2 j2l +K2l2 j


,
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We note that matrices P jl are symmetric here. The similar presentations of the motion

equations of elastic crystals and QCs have been used before in papers of Yakhno &

Akmaz (2005), Akmaz (2009).

The computation of mth column for the time-dependent fundamental solution (FS)

This problem is related with finding a vector function Vm(x, t) satisfying (3.145) and

(3.146).

3.2.3 Computation of mth column for time-dependent FS of 2D QCs

The method of deriving Vm(x, t) satisfying (3.145) and (3.146) consists of the

following. In the first step equations (3.145) and (3.146) are written in terms of the

Fourier transform with respect to x ∈ R3. In the second step, a solution of the obtained

initial value problem is derived by matrix transformations and the ordinary differential

equations technique. In the last step, an explicit formula for mth column of FS is found

by the inverse Fourier transform.

3.2.3.1 Equations for mth column of FS in terms of Fourier images

Let

Ṽm(ν, t) = (ũ1
m(ν, t), ũ2

m(ν, t), ũ3
m(ν, t), w̃1

m(ν, t), w̃2
m(ν, t))

be the Fourier image of Vm(x, t) with respect to x = (x1,x2,x3) ∈ R3, i.e.

Ṽj
m
(ν, t) =

∞∫
−∞

∞∫
−∞

∞∫
−∞

V m
j (x, t)e

ix·νdx1dx2dx3,
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where

ν = (ν1,ν2,ν3) ∈ R3, x ·ν = x1ν1 + x2ν2 + x3ν3, i2 =−1, j = 1,2,3,4,5.

Applying the Fourier transform with respect to x = (x1,x2,x3) ∈ R3 to equations

(3.145) and (3.146) we find

ρ
∂2Ṽm

∂t2 +A(ν)Ṽm
= Emδ(t), ν ∈ R3, t ∈ R, (3.147)

Ṽm
(ν, t)|t<0 = 0. (3.148)

Here

A(ν) =
3

∑
j,l=1

P jlν jνl, (3.149)

where matrices P jl are defined after condition (3.146).

We use the obtained equalities (3.147) and (3.148) for deriving unknown vector

function Ṽm
(ν, t) depending on 3D parameter ν = (ν1,ν2,ν3) ∈ R3 and the time

variable t.

3.2.3.2 Explicit formula for a solution of (3.147), (3.148)

Using the positivity of elastic constant tensors ci jkl, Ri jαl, Kβ jαl we obtain that the

matrix A(ν), defined by (3.149), is symmetric positive semi-definite (see Appendix).

For this matrix A(ν) we construct an orthogonal matrix T(ν) and a diagonal matrix

D(ν) = diag(dk(ν), k = 1,2,3,4,5) with nonnegative elements such that

T∗(ν)A(ν)T(ν) = D(ν), (3.150)
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where T∗(ν) is the transposed matrix to T(ν).

Let T(ν) and D(ν) = diag(dk(ν), k = 1,2,3,4,5) be constructed. A solution of

(3.147), (3.148) can be found using the transformation

Ṽm(ν, t) = T(ν)Ym(ν, t), (3.151)

where Ym(ν, t) is unknown vector function. Substituting (3.151) into (3.147), (3.148)

and then multiplying the obtained equations by T∗(ν) and using (3.150) we find

ρ
∂2Ym

∂t2 +D(ν)Ym = T∗(ν)Emδ(t), t ∈ R, ν ∈ R3 (3.152)

Ym(ν, t)|t≤0 = 0. (3.153)

Using the ordinary differential equations technique (see, for example, Boyce &

DiPrima (1992)) we find that a solution of (3.152)-(3.153) is defined by

Ym
k (ν, t) = θ(t)

(T∗(ν)Em)k√
ρdk(ν)

sin(t

√
dk(ν)√ρ

), f or dk(ν)> 0, (3.154)

Ym
k (ν, t) = θ(t)

(T∗(ν)Em)k

ρ
t, f or dk(ν)> 0. (3.155)

Here θ(t) is the Heaviside function, i.e. θ(t) = 1 for t ≥ 0 and θ(t) = 0 for t < 0.

Finally, a solution of (3.147), (3.148) is determined by

Ṽm(ν, t) = θ(t)T(ν)Ym(ν, t). (3.156)
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3.2.3.3 Explicit formula for mth column for time-dependent FS of 2D QCs

We note that values of Vm(x, t), Ṽm(ν, t), T(ν) and D(ν) = diag(dk(ν), k =

1,2,3,4,5) are real. Therefore, applying the inverse Fourier transform to (3.156), we

find the following explicit formula for mth column for the time-dependent FS of 2D

QCs

Vm(x, t) =
θ(t)
(2π)3

∞∫
−∞

∞∫
−∞

∞∫
−∞

T(ν)Ym(ν, t)cos(ν · x)dν1dν2dν3. (3.157)

Here the components of the vector function Ṽm(ν, t) are defined explicitly by (3.154)

and (3.155).

3.2.4 Computational examples

3.2.4.1 General characteristics of computations and visualizations

The aim of computational examples is to derive values of elements for

fundamental’s matrices and then draw graphs of Green’s matrix elements for different

anisotropic 2D QCs. For the computational examples we consider six 2D QCs with

different structures of anisotropy: dodecagonal, octagonal, decagonal, pentagonal,

hexagonal, triclinic, respectively. We consider third, fourth and fifth columns of

Green’s matrix for the visualization. This means that we take m = 3, m = 4 and m = 5

in (3.145) and (3.146), i.e. the pulse point forces are situated in each QCs and modeled

by

E3δ(x1)δ(x2)δ(x3)δ(t), E4δ(x1)δ(x2)δ(x3)δ(t) and E5δ(x1)δ(x2)δ(x3)δ(t),
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where E3 = (0,0,1,0,0), E4 = (0,0,0,1,0), E5 = (0,0,0,0,1) and δ(·) is the Dirac

delta function. The responses of the considered anisotropic QCs on these sources are

the phonon and phason displacement vectors depending on the position (i.e. space

variables x1,x2,x3) and the time variable t. Using the method of Section 3.2.3

we compute T(ν), T∗(ν), D(ν) and then using the formula (3.157) we have derived

solutions V3(x, t), V4(x, t) and V5(x, t) of (3.145), (3.146) numerically for m= 3, m= 4

and m = 5, respectively. We note that the first three components of the vector function

Vi(x, t) are components of the phonon displacement ui
1(x, t),u

i
2(x, t),u

i
3(x, t), the fourth

and fifth components are the phason displacements wi
1(x, t), wi

2(x, t), i = 3,4,5. As

a result of visualization in computational examples we have seen the fluctuations of

phason and phonon displacement components at points located in the short distance

from a pulse point force. Moreover we have got images of the wave fronts arising from

pulse point sources in QCs with different structures of anisotropy.

3.2.4.2 Description of input data and corresponding images

Example 1. (Dodecagonal Crystal.) The density ρ is equal to 1. We assume that

phonon, phason, phonon-phason coupling elastic constants satisfy conditions of the

dodecagonal 2D QC system (see Appendix). We take the independent elastic constants

as (Lei & Wang & Hu & Ding (2000))

c1111 = 1, c1122 = c2211 =−0.6, c1133 = c3311 =−0.1, c3333 = 0.4,

c2323 = c2332 = c3223 = c3232 = 0.2, c1212 = c1221 = c2112 = c2121 = 0.8;

K1111 = K2222 = 0.6, K1221 = K2112 = 0.4, K1122 = K2211 = 0.5,

K2323 = K1313 = 0.7, K1212 = K2121 = 1.5, K1112 = K1211 = K1121 = K2111 = 0.2.
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Figures 3.39-3.40 show the third phonon displacement u3
3(x1,0,x3,3.3) and the

second phason displacement w5
2(x1,0,x3,2.5) corresponding to sources E3δ(x)δ(t),

E5δ(x)δ(t). Figures 3.39-3.40 are the screen shots of 2 − D level plots of

u3
3(x1,0,x3,3.3), w5

2(x1,0,x3,2.5). This is a view from the top of z-axis (the plan).

Using the symbolic math toolbox in MATLAB we have calculated the matrix T(ν)

and D(ν) as follows:

d1(ν) =
4ν2

1 +4ν2
2 +ν2

3
5

,

d2(ν) =
3
5

ν2
1 +

3
5

ν2
2 +

3
10

ν2
3 +

1
10

(ν4
3 −7ν2

2ν2
3 −7ν2

1ν2
3 +16ν4

2 +32ν2
1ν2

2 +16ν4
1)

1
2 ,

d3(ν) =
3
5

ν2
1 +

3
5

ν2
2 +

3
10

ν2
3 −

1
10

(ν4
3 −7ν2

2ν2
3 −7ν2

1ν2
3 +16ν4

2 +32ν2
1ν2

2 +16ν4
1)

1
2 ,

d4(ν) =
21
20

ν2
1 +

21
20

ν2
2 +

7
10

ν2
3 +

√
97

20
ν2

1 +

√
97

20
ν2

2,

d5(ν) =
21
20

ν2
1 +

21
20

ν2
2 +

7
10

ν2
3 −

√
97

20
ν2

1 −
√

97
20

ν2
2.

And each row of the matrix T(ν) is

T1(ν) = (1,
ν1(−ν2

3 +4ν2
2 +4ν2

1 +A)
ν3(ν2

1 +ν2
2)

,−
ν1(ν2

3 −4ν2
2 −4ν2

1 +A)
ν3(ν2

1 +ν2
2)

,0,0),

T2(ν) = (−ν1

ν2
,
ν2(−ν2

3 +4ν2
2 +4ν2

1 +A)
ν3(ν2

1 +ν2
2)

,−
ν2(ν2

3 −4ν2
2 −4ν2

1 +A)
ν3(ν2

1 +ν2
2)

,0,0),

T3(ν) = (0,1,1,0,0),

T4(ν) = (0,0,0,
1
2

9ν2
2 −9ν2

1 +
√

97ν2
1 +

√
97ν2

2 +8ν1ν2

2ν2
1 +9ν1ν2 −2ν2

2

,
−1
2

−9ν2
2 +9ν2

1 +
√

97ν2
1 +

√
97ν2

2 −8ν1ν2

2ν2
1 +9ν1ν2 −2ν2

2
)),

T5(ν) = (0,0,0,1,1).

Here A = (ν4
3 −7ν2

2ν2
3 −7ν2

1ν2
3 +16ν4

2 +32ν2
1ν2

2 +16ν4
1)

1
2 .
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MATLAB commands to find the matrices T(ν), T∗(ν) and D(ν) are listed below.

Input: ρ, ci jkl, Ri jαl, Kβ jαl

syms ν1 ν2 ν3 real

[EigVecA(ν),EigValA(ν)] = eig(A(ν));

T (ν) = EigVecA(ν);

D(ν) = EigValA(ν);

Output: T(ν), T∗(ν), D(ν).

Example 2. (Octagonal Crystal.) The density ρ is equal to 1. We assume that

phonon, phason, phonon-phason coupling elastic constants satisfy conditions of the

octagonal 2D QC system (see Appendix). Similar to Lei & Hu & Wang & Ding

(1999), we take

c1111 = 0.9, c1122 = c2211 =−0.3, c1133 = c3311 = 0.2, c3333 = 0.3,

c2323 = c2332 = c3223 = c3232 = 0.5, c1212 = c1221 = c2112 = c2121 = 0.6;

R1111 = R1122 = R1221 = R2121 = 0.04,

R1112 = R2221 = R1211 = R2111 = R1222 = R2122 = 0.02; K1111 = K2222 = 0.9,

K1221 = K2112 =−0.3, K1122 = K2211 =−0.2, K2323 = K1313 = 0.4,

K1212 = K2121 = 0.4, K1112 = K1211 = K1121 = K2111 = 0.1.

Figures 3.41- 3.42 present the second phonon displacement u4
2(x1,0,x3,2.5) and the

second phason displacement w4
2(x1,0,x3,3.3) on the plane x2 = 0 corresponding

to source E4δ(x)δ(t). Figures 3.41- 3.42 contain 2 − D plots of u4
2(x1,0,x3,2.5),

w4
2(x1,0,x3,3.3) (i.e. a view of the surfaces z = u4

2(x1,0,x3,2.5), z = w4
2(x1,0,x3,3.3

from the top of z axis, respectively).
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Example 3. (Decagonal Crystal.) The density ρ is equal to 1. The phonon,

phason, phonon-phason coupling elastic constants satisfy conditions of decagonal 2D

QC system (see Appendix), and the nonzero phonon elastic constants of Al-Ni-Co (see,

for example, Chernikov & Ott & Bianchi (1998)), phason, phonon-phason coupling

elastic constants are

c1111 = 2.343, c1122 = c2211 = 0.5736, c1133 = c3311 = 0.6662, c3333 = 2.3221,

c2323 = c2332 = c3223 = c3232 = 0.7019, c1212 = c1221 = c2112 = c2121 = 0.8845;

R1111 = R1122 = R1221 = R2121 = 0.1; K2323 = K1313 = 1.87

K1111 = K2222 = K1212 = K2121 = 10.1, K1122 = K2211 =−7.5.

Figures 3.43-3.44 show dynamics of the distribution for the second phonon

displacement u5
2(x1,0,x3,1) and the first phason displacement w4

1(x1,0,x3,0.8)

corresponding to source E5δ(x)δ(t) and E4δ(x)δ(t), respectively. Figures 3.45-3.48

show dynamics of the distribution for the third phonon displacement u3
3(x1,0,x3, t) at

the time t = 0.5, 1.3 arising from the force E3δ(x)δ(t). Figures 3.46, 3.48 are 3D

plots of u3
3(x1,0,x3, t) for t = 0.5, 1.3. Here the horizontal axes are x1 and x3. The

vertical axis is the magnitude of u3
3(x1,0,x3, t) for t = 0.5, 1.3. The different colors

correspond to different values of u3
3(x1,0,x3, t). Figures 3.45, 3.47 contain screen shots

of 2D level plots of the same surfaces u3
3(x1,0,x3,0.5), u3

3(x1,0,x3,1.3), i.e. a view of

these surfaces from the top of z-axis (the plan).

Example 4. (Pentagonal Crystal.) The density ρ is equal to 1 and the independent

phonon, phason, phonon-phason coupling elastic constants are (similar to Lei & Wang
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& Hu & Ding (1998))

c1111 = 0.9, c1122 = c2211 =−0.3, c1133 = c3311 =−0.1, c3333 = 0.6,

c2323 = c2332 = c3223 = c3232 = 0.5, c1212 = c1221 = c2112 = c2121 = 0.6;

R1111 = R1122 = R1221 = R2121 = 0.05,

R1112 = R2221 = R1211 = R2111 = R1222 = R2122 = 0.06,

R2312 = R3212 = R2321 = R3221 = R3122 = R1322 =−0.15,

R2311 = R3211 = R3112 = R1312 = R3121 = R1321 = 0.1, R1113 = 0.08,

R1123 = R1213 = R2113 =−0.04; K2323 = K1313 = 0.8,

K1111 = K2222 = K1212 = K2121 = 0.9, K1122 = K2211 = 1.3,

K1113 = K1311 = K2213 = K1322 = K2312 = K1223 = 0.3,

K1123 = K2311 = K2223 = K2322 = K1321 = K2113 = 0.2.

These constants satisfy conditions of pentagonal 2D QC system (see Appendix).

Figures 3.49- 3.50 show the third phonon displacement u3
3(x1,0,x3, t) and the first

phason displacement w3
1(x1,0,x3, t) at the time t = 3 on the plane x2 = 0 corresponding

to source E3δ(x)δ(t). Figures 3.49- 3.50 contain 2−D plots (a view from the top of

z-axis) of z = u3
3(x1,0,x3, t), z = w3

1(x1,0,x3, t) for t = 3, respectively.

Example 5. (Hexagonal Crystal.) In this example the density ρ is equal to 1.848.

The nonzero phonon elastic constant of hexagonal crystal NbSi2 (see, for example,

Chernikov & Ott & Bianchi (1998)), nonzero phason and phonon-phason coupling
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elastic constants are

c1111 = 3.8223, c1122 = c2211 = 0.8124, c1133 = c3311 = 0.8804, c3333 = 4.6802,

c2323 = c2332 = c3223 = c3232 = 1.4474, c1212 = c1221 = c2112 = c2121 = 1.5267;

R1111 = R2222 =−0.02, R1122 = R2211 =−0.6, R3322 = R3311 = 2.8,

R1313 = R3113 = 1.4, R1212 = R2112 = R1221 = R2121 = 0.29;

K1111 = K2222 = 10.1, K1122 = K2211 = 8.4, K1212 = K2121 = 1.3,

K2323 = K1313 = 4.2, K1221 = K2112 = 0.4.

These constants satisfy conditions of hexagonal 2D QC system (see Appendix).

Figures 3.51-3.52 present the third phonon displacement u3
3(x1,0,x3,1) and the first

phason displacement w3
1(x1,0,x3,1) arising from the source E3δ(x)δ(t). Figures

3.51-3.52 are the screen shots of 2 − D level plots of the surfaces u3
3(x1,0,x3,1),

w3
1(x1,0,x3,1), respectively. This is a view from the top of z-axis (the plan).

Example 6. (Triclinic Crystal.) In this example we take the density ρ is equal to 2.

The phonon, phason and phonon-phason coupling elastic constants satisfy conditions

of triclinic 2D QC system (see Appendix). We take

c1111 = 69.1, c1122 = c2211 = 34.0, c1133 = c3311 = 30.8,

c1123 = c2311 = c3211 = c1132 = 5.1,c1131 = c3111 = c1311 = c1113 −2.4,

c1112 = c1121 = c2111 = c1211 =−0.9,c2222 = 183.5, c2233 = c3322 = 5.5,

c2223 = c2322 = c3222 = c2232 =−3.9, c3333 = 179.5,

c2231 = c3122 = c1322 = c2213 =−7.7, c2212 = c2221 = c2122 = c1222 =−5.8,

c3323 = c3332 = c3233 = c2333 =−8.7, c3331 = c3313 = c1333 = c3133 = 7.1,
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c3312 = c3321 = c2133 = c1233 =−9.8, c2323 = c2332 = c3223 = c3232 = 24.9,

c3112 = c3121 = c2131 = c1231 = c1312 = c1213 = c1321 = c2113 = 0.5,

c2331 = c2313 = c1323 = c3123 = c3231 = c3132 = c3213 = c1332 =−2.3,

c2312 = c2321 = c2123 = c1223 = c3212 = c1232 = c3221 = c2132 =−7.2

c3131 = c3113 = c1331 = c1313 = 26.8, c1212 = c1221 = c2112 = c2121 = 33.5;

R1111 = 8.35, R1112 = 1.4, R1113 = 15.5, R1211 = R2111 = 1.2,

R1212 = R2112 = 4.3, R1213 = R2113 =−7.1, R1311 = R3111 = 2.1,

R1312 = R3112 =−10.15, R1313 = R3113 = 6.3, R1121 = 7.3, R1122 = 1.3,

R1123 = 8.01, R1221 = R2121 = 1.7, R1222 = R2122 = 16.5, R1223 = R2123 = 13.7,

R1321 = R3121 = 1.06 R1322 = R3122 = 18, R1323 = R3123 =−10.5,

R2211 = 3.1, R2212 = 0.012, R2213 = 3.01, R2311 = R3211 = 0.02,

R2312 = R3212 = 0.03, R2313 = R3213 = 1.04, R2221 =−10.11, R2222 = 7.2,

R2223 = 0.4, R2321 = R3221 =−20.2, R2322 = R3222 = 3.3, R2323 = R3223 = 3.4,

R3311 = 0.05, R3312 = 0.06, R3313 =−1.7, R3321 = 1.8, R3322 =−4.9,

R3323 = 0.07; K1111 = 31.2, K1112 = K1211 =−10.2, K1113 = K1311 = 14.04,

K1212 = 21.01, K1213 = K1312 =−9.1, K1313 = 13.3, K1121 = K2111 =−3.1,

K1122 = K2211 = 10.6, K1123 = K2311 =−16.9, K1221 = K2112 = 8.5,

K1222 = K2212 = 1.2, K1223 = K2312 = 1.11, K1321 = K2113 = 0.1,

K1322 = K1322 =−0.1, K1323 = K2313 =−19.2, K2121 = 15.5, K2122 = K2221 = 1.6,

K2123 = K2321 = 13.1, K2222 = 30, K2223 = K2322 =−0.15, K2323 = 60.5.

Other components, which are not defined by given values and triclinic 2D QC

conditions, are equal to zero. Figure 3.53 shows dynamic distribution of the first

phonon displacement u3
1(x1,0,x3,0.2) arising from the force E3δ(x)δ(t). Figure 3.54

shows dynamic distribution of the second phonon displacement u4
2(x1,0,x3,0.4) arising

from the force E4δ(x)δ(t). Figures 3.55-3.56 show dynamic distribution of the first
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phason displacement w3
1(x1,0,x3, t) at t = 0.1, 0.3 arising from the force E3δ(x)δ(t).

Figures 3.53-3.56 contain 2−D plots (a view from the top of z-axis) of the surfaces

u3
1(x1,0,x3,0.2), u4

2(x1,0,x3,0.4), w3
1(x1,0,x3,0.1), w3

1(x1,0,x3,0.3). In these figures

the axes are x1 and x3; the different color correspond to different values of the

displacement components.

3.2.4.3 Analysis of the visualization

The simulation of the phonon and phason displacements in anisotropic QCs by

modern computer tools allows us to see and evaluate the dependence between media

structures and behavior of these displacements. The approach of the method allows

users to observe the elastic wave propagation arising from pulse point sources of

the form Emδ(x1)δ(x2)δ(x3)δ(t) in 2D QCs (dodecagonal, octagonal, decagonal,

pentagonal, hexagonal, triclinic). Here Em = (δm
1 ,δ

m
2 ,δ

m
3 ,δ

m
4 ,δ

m
5 ), where δm

i , i =

1,2,3,4,5, is the Kronecker symbol. We can see on the Figures 3.39-3.56 that

the different 2D QCs structures produce different responses of phonon and phason

displacement fields inside these QCs. The various shapes of elastic waves (different

forms of fronts and magnitude fluctuations of phonon and phason displacement fields)

are shown in presented figures.



128

Figure 3.39: The map surface plot (plan) of 3D
surface z = u3

3(x1,0,x3,3.3) (dodecagonal crystal).
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Figure 3.40: The map surface plot (plan) of 3D
surface z = w5

2(x1,0,x3,2.5) (dodecagonal crystal).



130

Figure 3.41: The map surface plot (plan) of 3D
surface z = u4

2(x1,0,x3,2.5) (octagonal crystal1).
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Figure 3.42: The map surface plot (plan) of 3D
surface z = w4

2(x1,0,x3,3.3) (octagonal crystal).

Figure 3.43: The map surface plot (plan) of 3D
surface z = u5

2(x1,0,x3,1) (decagonal crystal).
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Figure 3.44: The map surface plot (plan) of 3D
surface z = w4

1(x1,0,x3,0.8) (decagonal crystal).

Figure 3.45: The map surface plot (plan) of 3D
surface z = u3

3(x1,0,x3,0.5) (decagonal crystal).



133

Figure 3.46: 3D surface z = u3
3(x1,0,x3,0.5)

(decagonal crystal).

Figure 3.47: The map surface plot (plan) of 3D
surface z = u3

3(x1,0,x3,1.3) (decagonal crystal).
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Figure 3.48: 3D surface z = u3
3(x1,0,x3,1.3)

(decagonal crystal).

Figure 3.49: The map surface plot (plan) of 3D
surface z = u3

3(x1,0,x3,3) (pentagonal crystal).
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Figure 3.50: The map surface plot (plan) of 3D
surface z = w3

1(x1,0,x3,3) (pentagonal crystal).

Figure 3.51: The map surface plot (plan) of 3D
surface z = u3

3(x1,0,x3,1) (hexagonal crystal).
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Figure 3.52: The map surface plot (plan) of 3D
surface z = w3

1(x1,0,x3,1) (hexagonal crystal).

Figure 3.53: The map surface plot (plan) of 3D
surface z = u3

1(x1,0,x3,0.2) (triclinic crystal).
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Figure 3.54: The map surface plot (plan) of 3D
surface z = u4

2(x1,0,x3,0.4) (triclinic crystal).

Figure 3.55: The map surface plot (plan) of 3D
surface z = w3

1(x1,0,x3,0.1) (triclinic crystal).
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Figure 3.56: The map surface plot (plan) of 3D
surface z = w3

1(x1,0,x3,0.3) (triclinic crystal).
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3.3 Three dimensional elastodynamics of 3D quasicrystals: the derivation of the

time-dependent fundamental solution

3.3.1 The basic equations for 3D QCs

Let x = (x1,x2,x3) ∈ R3 be a space variable, t ∈ R be a time variable. The

generalized Hooke’s laws of the elasticity problem of 3D QCs are given by (see, for

example, Ding & Yang & Hu & Wang (1993), Hu & Wang & Ding (2000), Gao &

Zhao (2006))

σi j = ci jklεkl +Ri jklwkl, (3.158)

Hi j = Rkli jεkl +Ki jklwkl, (3.159)

where εkl and wkl are defined as follows

εkl =
1
2
(
∂uk

∂xl
+

∂ul

∂xk
), wkl =

∂wk

∂xl
, k, l = 1,2,3. (3.160)

Here uk and wk,k = 1,2,3 are the phonon and phason displacements; εkl(x, t),

wkl(x, t), k, l = 1,2,3 are phonon and phason strains.

ci jkl are the phonon elastic constants, Ki jkl are the phason elastic constants, Ri jkl are

the phonon-phason coupling elastic constants. Moreover, they satisfy the following

symmetric properties

ci jkl = c jikl = ci jlk = ckli j, Ki jkl = Kkli j, Ri jkl = R jikl. (3.161)

The positivity of elastic strain energy density requires that the elastic constant tensors

ci jkl, Ki jkl , Ri jkl must be positive definite. Namely, when the strain tensors εi j, wi j are

not zero entirely, the elastic constant tensors satisfy the following inequality Gao &
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Zhao (2006)

3

∑
i, j,k,l=1

ci jklεi jεkl > 0,
3

∑
i, j,k,l=1

Ki jklwi jwkl > 0,
3

∑
i, j,k,l=1

Ri jklεi jwkl > 0. (3.162)

The dynamic equilibrium equations can be written in the following form

ρ
∂2ui(x, t)

∂t2 =
3

∑
j=1

∂σi j(x, t)
∂x j

+ fi(x, t), (3.163)

ρ
∂2wi(x, t)

∂t2 =
3

∑
j=1

∂Hi j(x, t)
∂x j

+gi(x, t), i = 1,2,3, x ∈ R3, t ∈ R, (3.164)

where the constant ρ > 0 is the density; fi(x, t) and gi(x, t), i = 1,2,3 are body forces

densities for the phonon and phason displacements, respectively; σi j and Hi j, i, j =

1,2,3 are phonon and phason stresses (see, for example, Ding & Yang & Hu & Wang

(1993),Hu & Wang & Ding (2000),Gao & Zhao (2006),Yang & Wang & Ding & Hu

(1993)).

3.3.2 Time-dependent fundamental solution of elasticity for 3D QCs

Substituting (3.158) and (3.159) into (3.163) and (3.164) we have for i = 1,2,3

ρ
∂2ui(x, t)

∂t2 =
3

∑
j,k,l=1

ci jkl
∂2uk(x, t)

∂x j∂xl
+

3

∑
j,l=1

Ri jkl
∂2wk(x, t)

∂x j∂xl
+ fi(x, t), (3.165)

ρ
∂2wi(x, t)

∂t2 =
3

∑
j,k,l=1

Rkli j
∂2uk(x, t)

∂x j∂xl
+

3

∑
j,l=1

Ki jkl
∂2wi(x, t)

∂x j∂xl
+gi(x, t).(3.166)

The system (3.165)-(3.166) can be written in the form of one vector partial differential

equation as follows

ρ
∂2V
∂t2 =

3

∑
j,l=1

P jl
∂2V

∂x j∂xl
+F(x, t),x ∈ R3, t ∈ R, (3.167)
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where V = (u1,u2,u3,w1,w2,w3), F = ( f1, f2, f3,g1,g2,g3) and matrices P jl are

defined by

P jl =
1
2



C1 j1l +C1l1 j C1 j2l +C1l2 j C1 j3l +C1l3 j R1 j1l +R1l1 j R1 j2l +R1l2 j R1 j3l +R1l3 j

C2 j1l +C2l1 j C2 j2l +C2l2 j C2 j3l +C2l3 j R2 j1l +R2l1 j R2 j2l +R2l2 j R2 j3l +R2l3 j

C3 j1l +C3l1 j C3 j2l +C3l2 j C3 j3l +C3l3 j R3 j1l +R3l1 j R3 j2l +R3l2 j R3 j3l +R3l3 j

R1 j1l +R1l1 j R2 j1l +R2l1 j R3 j1l +R3l1 j K1 j1l +K1l1 j K1 j2l +K1l2 j K1 j3l +K3l1 j

R1 j2l +R1l2 j R2 j2l +R2l2 j R3 j2l +R3l2 j K2 j1l +K2l1 j K2 j2l +K2l2 j K2 j3l +K2l3 j

R1 j3l +R1l3 j R2 j3l +R2l3 j R3 j3l +R3l3 j K3 j1l +K3l1 j K3 j2l +K3l2 j K3 j3l +K3l3 j


.

The time-dependent fundamental solution (FS) of elastodynamics in 3D QCs is a 6×6

matrix whose mth column is a vector function

Vm(x, t) = (um
1 (x, t),u

m
2 (x, t),u

m
3 (x, t),w

m
1 (x, t),w

m
2 (x, t),w

m
3 (x, t))

satisfying

ρ
∂2Vm

∂t2 =
3

∑
j,l=1

P jl
∂2Vm

∂x j∂xl
+Emδ(x)δ(t), (3.168)

Vm(x, t) |t<0= 0. (3.169)

Here δ(x) = δ(x1)δ(x2)δ(x3) is the Dirac delta function of the space variable

concentrated at x1 = 0, x2 = 0, x3 = 0; δ(t) is the Dirac delta function of the time

variable concentrated at t = 0; m = 1, ...,6; Em = (δm
1 ,δ

m
2 ,δ

m
3 ,δ

m
4 ,δ

m
5 ,δ

m
6 ), δm

n is the

Kronecker symbol i.e. δm
n = 1 if n = m and δm

n = 0 if n ̸= m, n = 1, ...,6. P jl are

matrices defined above.

The computation of mth column for the time-dependent FS of 3D QCs is the main

problem of this section. This problem is related with finding a vector function Vm(x, t)

satisfying (3.168) and (3.169).
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3.3.3 Computation of mth column for time-dependent FS of 3D QCs

The method of deriving Vm(x, t) satisfying (3.168) and (3.169) consists of the

following. In the first step equations (3.168) and (3.169) are written in terms of the

Fourier transform with respect to x ∈ R3. In the second step, a solution of the obtained

initial value problem is derived by matrix transformations and the ordinary differential

equations technique. In the last step, an explicit formula for mth column of FS is found

by the inverse Fourier transform.

3.3.3.1 Equations for mth column of FS in terms of Fourier images

Let

Ṽm(ν, t) = (ũ1
m, ũ2

m, ũ3
m, w̃1

m, w̃2
m, w̃3

m)

be the Fourier image of Vm(x, t) with respect to x = (x1,x2,x3) ∈ R3, i.e.

Ṽj
m
(ν, t) =

∞∫
−∞

∞∫
−∞

∞∫
−∞

V m
j (x, t)e

ix·νdx1dx2dx3,

ν = (ν1,ν2,ν3) ∈ R3, x ·ν = x1ν1 + x2ν2 + x3ν3, i2 =−1, j = 1, ...,6.

The IVP (3.168) and (3.169) can be written in terms of Ṽm
(ν, t) as follows

ρ
∂2Ṽm

∂t2 +A(ν)Ṽm
= Emδ(t), (3.170)

Ṽm
(ν, t)|t<0 = 0, ν ∈ R3, t ∈ R, . (3.171)

Here

A(ν) =
3

∑
j,l=1

P jlν jνl, (3.172)
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where matrices P jl are defined after (3.167).

We use the obtained equalities (3.170) and (3.171) for deriving unknown vector

function Ṽm
(ν, t) depending on 3D parameter ν = (ν1,ν2,ν3) ∈ R3 and the time

variable t.

3.3.3.2 Explicit formula for a solution of (3.170), (3.171)

Using the positivity of elastic constant tensors ci jkl, Ri jkl, Ki jkl we obtain that the

matrix A(ν), defined by (3.172), is symmetric positive semi-definite (see Appendix).

For the matrix A(ν) we construct an orthogonal matrix T(ν) and a diagonal matrix

D(ν) = diag(dk(ν), k = 1,2,3,4,5,6) with nonnegative elements such that

T∗(ν)A(ν)T(ν) = D(ν), (3.173)

where T∗(ν) is the transposed matrix to T(ν).

Let T(ν) and D(ν) = diag(dk(ν), k = 1,2,3,4,5,6) be constructed. A solution of

(3.170), (3.171) can be found as

Ṽm(ν, t) = T(ν)Ym(ν, t), (3.174)

where Ym(ν, t) is unknown vector function. Substituting (3.174) into (3.170), (3.171)

and then multiplying the obtained equations by T∗(ν) and using (3.173) we find

ρ
∂2Ym

∂t2 +D(ν)Ym = T∗(ν)Emδ(t), (3.175)

Ym(ν, t)|t≤0 = 0, t ∈ R, ν ∈ R3. (3.176)

Using the ordinary differential equations technique (Boyce & DiPrima (1992)), a
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solution of the initial value problem (3.175)-(3.176) is given by for dk(ν) > 0, k =

1,2,3,4,5,6,

Ym
k (ν, t) = θ(t)

(T∗(ν)Em)k√
ρdk(ν)

sin(t

√
dk(ν)√ρ

), (3.177)

for dk(ν) = 0

Ym
k (ν, t) = θ(t)

(T∗(ν)Em)k

ρ
t, (3.178)

where θ(t) is the Heaviside function, i.e. θ(t) = 1 for t ≥ 0 and θ(t) = 0 for t < 0.

Finally, a solution of (3.170), (3.171) is determined by

Ṽm(ν, t) = T(ν)Ym(ν, t). (3.179)

3.3.3.3 Explicit formula for mth column for time-dependent FS of 3D QCs

We note that values of Vm(x, t), Ṽm(ν, t), T(ν) and D(ν) = diag(dk(ν), k =

1,2,3,4,5,6) are real. Therefore, applying the inverse Fourier transform to (3.179)

we find that a solution of (3.168), (3.169) is given by

Vm(x, t) =
θ(t)
(2π)3

∞∫
−∞

∞∫
−∞

∞∫
−∞

T(ν)Ym(ν, t)cos(ν · x)dν1dν2dν3. (3.180)
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3.3.4 Computational examples

3.3.4.1 General characteristics of computations and visualizations

The aim of computational examples is to derive values of elements for Green

matrices and then draw graphs of Green’s matrix elements for anisotropic 3D QC. In

this section, we consider 3D icosahedral quasicrystal for anisotropic dynamic elasticity.

For our example we take the pulse force situated in E3δ(x1)δ(x2)δ(x3)δ(t) and

E6δ(x1)δ(x2)δ(x3)δ(t), where E3 = (0,0,1,0,0,0), E6 = (0,0,0,0,0,1) and δ(.) is the

Dirac delta function. The responses of the considered anisotropic quasicrystal on this

source are the phonon and phason displacement vectors depending on the position (i.e.

space variables x1,x2,x3) and the time variable t. Using the method of Section 3.3.3

we compute T(ν),T∗(ν),D(ν) and then using the formula (3.180) we have derived

numerically components of V3(x, t) and V6(x, t). The first three components of the

vector function Vi(x, t), i = 3,6, are the phonon displacements ui
1(x, t),u

i
2(x, t),u

i
3(x, t)

and the other components are the phason displacements wi
1(x, t),w

i
2(x, t),w

i
3(x, t), i =

3,6.

As a result of visualization in computational examples we have seen the fluctuations

of phason and phonon displacement components at points located in the short distance

from a pulse point force. Moreover we have got images of the wave fronts arising from

pulse point sources in QCs with icosahedral structure of anisotropy.

Example. For three-dimensional icosahedral quasicrystals ci jkl has the form

(Akmaz (2009), Ding & Yang & Hu & Wang (1993), Hu & Wang & Ding (2000))

ci jkl = λδi jδkl +µ(δ jlδik +δilδ jk),



146

where λ and µ are Lame constants. The nonzero phason elastic constants are

K1111 = K2222 = K1212 = K2121 = K1,

K1131 = K1113 = K2213 = K2312 =−K2231 =−K2321 =−K1232 =−K3221 = K2,

K3333 = K1 +K2, K2323 = K3131 = K3232 = K1313 = K1 −K2.

The nonzero phonon-phason coupling elastic constants are

R1111 = R1122 = R1133 = R1113 = R2233 = R2332 = R3111 = R3131 = R1221 = R,

R2211 = R2222 = R2213 = R2312 = R2321 = R3122 = R1223 = R1212 =−R,

R3333 = −2R.

For icosahedral quasicrystal Al-Cu-Li λ = 30.4GPa, µ = 40.9GPa, K1 = 300MPa,

K2 = 150MPa and R = 0.8GPa (Li & Fan & Wu (2009)). We chosen density

ρ = 1(103kg/m3).

Figures 3.57 is the screen shot of 2-D level plot of the first phonon displacement

u3
1(x1,0,x3,0.3). Figure 3.58 contains 2-D plot of the first phason displacement

w3
1(0,x2,x3,0.19). Figure 3.59 shows dynamic of the distribution for the second phason

displacement w3
2(x1,x2,0,0.15). Figure 3.60 presents 2-D plot of the first phonon

displacement u6
1(x1,0,x3,0.15). Figure 3.61 is the screen shot of 2-D level plot of the

second phonon displacement u6
2(0,x2,x3,0.15). Figure 3.62 contains 2-D plot of the

third phonon displacement u6
3(x1,x2,0,0.15). Figure 3.63 contains screen shorts of 2D

level plot of the second phason displacement w6
2(0,x2,x3,0.15). These figures are view

from the top of z-axis (the plan). Figures 3.64, 3.66 show 2-D plot of the third phason

displacement w6
3(x1,x2,0, t) for t = 0.02, 0.15, respectively. These figures are view

from the top of z-axis (the plan). Figures 3.65, 3.67 are 3-D plots of w6
3(x1,x2,0, t) for

t = 0.02, 0.15, respectively. Here the horizontal axes are x1 and x2. The vertical axis

is the magnitude of w6
3(x1,x2,0, t) for t = 0.02, 0.15. The different colors correspond
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to different values of w6
3(x1,x2,0, t).

3.3.4.2 Analysis of the visualization

The explicit formula of the time-dependent FS of elasticity for 3D QCs has been

derived by the matrix transformations, solutions of some ordinary differential equations

depending on the Fourier parameters and the inverse Fourier transform. The formula

for FS of elasticity for 3D QCs has been presented in the form convenient for

computation of the transient phonon and phason displacement fields.

The simulation of the phonon and phason displacements in general anisotropic

media by modern computer tools allow us to see and evaluate dependence between

media structures and behavior of these displacement. The approach of the method

allows users to observe the elastic wave propagation arising from pulse point

sources of the form Emδ(x1)δ(x2)δ(x3)δ(t) in 3D QCs (icosahedral). Here Em =

(δm
1 ,δ

m
2 ,δ

m
3 ,δ

m
4 ,δ

m
5 ,δ

m
6 ).

3.4 Concluding Remarks

In this chapter of the thesis fundamental solution of the dynamic three dimensional

motion equations of 1D, 2D and 3D QCs are obtained using Fourier transformation

and some matrix computations. Computational images of phonon and phason

displacements for anisotropic 1D, 2D and 3D QCs are given.
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Figure 3.57: The map surface plot (plan) of 3D surface
z = u3

1(x1,0,x3,0.3) in Al-Cu-Li.

Figure 3.58: The map surface plot (plan) of 3D surface
z = w3

1(0,x2,x3,0.19) in Al-Cu-Li.
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Figure 3.59: The map surface plot (plan) of 3D surface
z = w3

2(x1,x2,0,0.15) in Al-Cu-Li.

Figure 3.60: The map surface plot (plan) of 3D surface
z = u6

1(x1,0,x3,0.15) in Al-Cu-Li .
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Figure 3.61: The map surface plot (plan) of 3D surface
z = u6

2(0,x2,x3,0.15) in Al-Cu-Li .

Figure 3.62: The map surface plot (plan) of 3D surface
z = u6

3(x1,x2,0,0.15) in Al-Cu-Li .
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Figure 3.63: The map surface plot (plan) of 3D surface
z = w6

2(0,x2,x3,0.15) in Al-Cu-Li .

Figure 3.64: The map surface plot (plan) of 3D surface
z = w6

3(x1,x2,0,0.02) in Al-Cu-Li .
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Figure 3.65: 3D surface zw6
3(x1,x2,0,0.02) in Al-Cu-Li

.

Figure 3.66: The map surface plot (plan) of 3D surface
z = w6

3(x1,x2,0,0.15) in Al-Cu-Li .
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Figure 3.67: 3D surface z = w6
3(x1,x2,0,0.15) in

Al-Cu-Li .



CHAPTER FOUR

COMPUTATION OF FUNDAMENTAL SOLUTION

FOR ELECTRICALLY AND MAGNETICALLY ANISOTROPIC MEDIA

In this chapter an analytic method for deriving the time-dependent fundamental

solution (Green’s function of the free space) in a homogeneous non-dispersive

electrically and magnetically anisotropic media is studied.

4.1 Basic equations of Electromagnetism

The time-dependent electric and magnetic fields in homogeneous non-dispersive

materials are governed by the following Maxwell’s system in Gaussian units (Pope

(2010), Tikhonov & Samarskii (1963))

curlxH =
1
c

ε
∂E
∂t

+
4π
c

J, curlxE =−1
c

µ
∂H
∂t

, (4.181)

divx(εE) = 4πρe, divx(µH) = 0, (4.182)

where x = (x1,x2,x3)∈ R3 is a space variable, t ∈ R is a time variable, E = (E1,E2,E3)

and H = (H1,H2,H3) are the electric and magnetic fields with components: Ei =

Ei(x, t), Hi = Hi(x, t), i = 1,2,3; J = (J1,J2,J3) is the density of the electric

current with components Ji = Ji(x, t); c = 1/
√

ε0µ0 is the light velocity, ε0 and

µ0 are the permittivity and permeability of the free space, respectively. And µ0 =

1.257×10−6(farad/meter), ε0 = 8.854×10−12(henry/meter). ε = (εi j)3×3 is the 3×3

permittivity matrix ; µ = (µi j)3×3 is the 3× 3 permeability matrix; ρe is the density

of electric charges. The electric charges and current are sources of electromagnetic

154
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waves. We assume these sources are given. It follows from (4.181)-(4.182) that electric

charges and current have to satisfy the conservation law of charges

∂ρe

∂t
+divxJ = 0. (4.183)

A medium is said to be electrically and magnetically anisotropic if ε and µ are arbitrary

matrices (see, for example, Kong (1986)). Some of materials have the magnetic

permeability as a matrix µ and the permittivity as a identity matrix (i.e. ε= I, where I is

the identity matrix). These materials are said to be magnetically anisotropic. Materials

which have the permittivity as a matrix ε and the magnetic permeability as a a identity

matrix (i.e. µ = I) are said to be electrically anisotropic. Crystals (dielectrics) are

electrically anisotropic materials.

In this chapter a homogeneous non-dispersive electrically and magnetically

anisotropic media, characterized by a symmetric positive definite permittivity

and permeability tensors are considered. An analytic method for deriving the

time-dependent fundamental solution (FS) in these anisotropic media is suggested.

This method consists of the following: equations for each column of the FS are reduced

to a symmetric hyperbolic system; using the Fourier transform with respect to the

space variables and matrix transformations we obtain explicit formulae for Fourier

images of the FS columns; finally, the FS is computed by the inverse Fourier transform.

Computational examples confirm the robustness of the suggested method.

In this chapter we suppose that

E = 0, H = 0, J = 0, ρe = 0, for t < 0. (4.184)

Remark 1. The equations (4.181) under conditions (4.184) imply the equalities of

(4.182) (we assume here that (4.183) is satisfied).



156

Proof. Applying divergence operator to the first equation of (4.181) and using the

first equation of (4.182) we have the conservation law of charges (4.183). Using the

divergence operator to the first equation of (4.181)

1
c

∂
∂t

divx(εE)+
4π
c

divxJ = 0. (4.185)

Substituting (4.183) into (4.185)

1
c

∂
∂t
(divx(εE)−4πρe) = 0, (4.186)

and using the initial conditions (4.184) we have the first equalities of (4.182).

Similarly applying divergence operator to the second equation of (4.181) we have

1
c

∂
∂t

divx(µH) = 0,

and using the initial conditions (4.184) we have the second equalities of (4.182).

4.2 Maxwell’s equations as a first order symmetric hyperbolic system

In this section we reduce the first and second equations of (4.181) to a first order

symmetric hyperbolic system.

Using definition of curlx the first equation of (4.181) can be rewritten in the

following form:

1
c

ε
∂E
∂t

+
3

∑
j=1

A1
j
∂H
∂x j

=−4π
c

J, (4.187)
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where

A1
1 =


0 0 0

0 0 1

0 −1 0

 ,A1
2 =


0 0 −1

0 0 0

1 0 0

 ,A1
3 =


0 1 0

−1 0 0

0 0 0

 . (4.188)

Similarly, the second equation of (4.181) can be rewritten in the following form:

1
c

µ
∂H
∂t

+
3

∑
j=1

(A1
j)
∗ ∂E

∂x j
= 0. (4.189)

Then the first and second equations of (4.181) can be written as the following first order

symmetric hyperbolic system

1
c

A0
∂V
∂t

+
3

∑
j=1

A j
∂V
∂x j

= F (4.190)

where

V = (E1,E2,E3,H1,H2,H3), F =
4π
c
(−J1,−J2,−J3,0,0,0),

A0 =

 ε 03,3

03,3 µ


6×6

, A j =

 03,3 A1
j

(A1
j)
∗ 03,3


3×3

,

∗ denotes transposition, 03,3 is the zero matrix which has the order 3×3.

4.3 Equations for the time-dependent fundamental solution(FS) of electrically

and magnetically anisotropic media

The FS for the time-dependent Maxwell’s equations (4.181) is defined as a matrix

G(x, t) of the order 6×3 whose columns (Em,Hm) = (Em
1 ,E

m
2 ,E

m
3 ,H

m
1 ,Hm

2 ,Hm
3 ), m =
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1,2,3, satisfy

curlxHm =
1
c

ε
∂Em

∂t
+

4πem

c
δ(x)δ(t), curlxEm =−1

c
µ

∂Hm

∂t
,

Em |t<0 = 0, Hm |t<0= 0, (4.191)

Here e1 = (1,0,0), e2 = (0,1,0), e3 = (0,0,1) are basis vectors of the Cartesian

coordinates; δ(x) = δ(x1)δ(x2)δ(x3) is the Dirac delta function of the space variable

concentrated at x1 = 0, x2 = 0, x3 = 0; δ(t) is the Dirac delta function of the time

variable concentrated at t = 0.

Elements of the m-th column (Em,Hm) of the FS are the electric and magnetic fields

in the considered anisotropic medium arising from the pulse dipole emδ(x)δ(t).

Equalities (4.191) can be written as

1
c

A0
∂Vm

∂t
+

3

∑
j=1

A j
∂Vm

∂x j
=

4π
c

Emδ(x)δ(t), Vm |t<0= 0, m = 1,2,3, (4.192)

where Em = (−em,0,0,0) is such vector with six components that the first three

components are components of −em and other components are equal to zero.

4.4 Deriving formulae for electric and magnetic fields

Let Ṽm
(ν, t) = (Ṽ1

m
(ν, t),Ṽ2

m
(ν, t),Ṽ3

m
(ν, t),Ṽ4

m
(ν, t),Ṽ5

m
(ν, t),Ṽ6

m
(ν, t)) be the

Fourier image of Vm(x, t) with respect to x = (x1,x2,x3) ∈ R3, i.e. for j = 1,2,3

Ṽj
m
(ν, t) =

∞∫
−∞

∞∫
−∞

∞∫
−∞

V m
j (x, t)e

ix·νdx1dx2dx3,

ν = (ν1,ν2,ν3) ∈ R3, x ·ν = x1ν1 + x2ν2 + x3ν3, i2 =−1.



159

Equalities (4.192) can be written in terms of Ṽm
(ν, t) as follows

A0
∂Ṽm

∂t
− icB(ν)Ṽm = 4πEmδ(t), Ṽm

(ν, t)|t<0 = 0, (4.193)

where B(ν) = (ν1A1 +ν2A2 +ν3A3).

Diagonalization A0 and B(ν) simultaneously. The matrix A0 is symmetric

positive definite and B(ν) is symmetric. In this step we construct a non-singular

matrix T(ν) and a diagonal matrix D(ν) = diag(dk(ν), k = 1,2, ...,6) with real valued

elements such that

T∗(ν)A0T(ν) = I, T∗(ν)B(ν)T(ν) = D(ν), (4.194)

where I is the identity matrix, T∗(ν) is the transposed matrix to T(ν).

Computing T(ν) and D(ν) can be made by the following way: we find A−1/2
0 and

then using the matrix A−1/2
0 B(ν)A−1/2

0 we construct T(ν) and D(ν).

Finding A−1/2
0 . For the given positive definite matrix A0 we compute an orthogonal

matrix R by the eigenfunctions of A0 such that R ∗A0R = L , where R ∗ is the

transpose matrix to R and L = diag(λk, k = 1,2, ...,6) is the diagonal matrix with

positive elements λk which are eigenvalues of A0. The matrix L1/2 is defined by the

formula L1/2 = diag(
√

λk, k = 1,2, ...,6) and A1/2
0 is defined by A1/2

0 = R L1/2R ∗.

The matrix A−1/2
0 is the inverse to A1/2

0 .

Finding T(ν) and D(ν). Let matrix B(ν) be given and matrix A−1/2
0 be found.

Let us consider the matrix A−1/2
0 B(ν)A−1/2

0 which is symmetric with real valued

elements. The diagonal matrix D(ν) is constructed by eigenvalues of A−1/2
0 B(ν)A−1/2

0 .

The columns of the orthogonal matrix Q(ν) are formed by normalized orthogonal

eigenfunctions of A−1/2
0 B(ν)A−1/2

0 corresponding to eigenvalues dk(ν), k = 1,2, ...,6.
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The matrix T(ν) is defined by the formula T(ν) = A−1/2
0 Q(ν).

Deriving a solution of IVP (4.192). Let D(ν) and T(ν), satisfying (4.194), be

constructed. We find a solution of (4.193) in the form Ṽm(ν, t) = T(ν)Ym(ν, t), where

Ym(ν, t) is unknown vector function. Substituting Ṽm(ν, t)=T(ν)Ym(ν, t) into (4.193)

and then multiplying the obtained vector differential equation by T∗(ν) and using

(4.194) we find

∂Ym

∂t
− icD(ν)Ym = 4πT∗(ν)Emδ(t), t ∈ R, Ym(ν, t)|t≤0 = 0. (4.195)

Using the ordinary differential equations technique a solution of the initial value

problem (4.195) is given by

Ym(ν, t) = 4πθ(t) [cos(cD(ν)t)+ isin(cD(ν)t)]T∗(ν)Em,

where θ(t) is the Heaviside function, i.e. θ(t) = 1 for t ≥ 0 and θ(t) = 0 for t <

0; cos(cD(ν)t) and sin(cD(ν)t) are diagonal matrices whose diagonal elements are

cos(cdk(ν)t) and sin(cdk(ν)t), k = 1,2, ...,6, respectively.

A solution of (4.193) is determined by

Ṽm(ν, t) = 4πθ(t)T(ν) [cos(cD(ν)t)+ isin(cD(ν)t)]T∗(ν)Em. (4.196)

Finally the vector function Vm(ν, t) satisfying (4.192) can be found by the inverse

Fourier transform

Vm(x, t) =
1

(2π)3

∞∫
−∞

∞∫
−∞

∞∫
−∞

Ṽm(ν, t)e−iν·xdν1dν2dν3. (4.197)

Noting that every solution of (4.192) is a real valued vector function and using formulae
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(4.196), (4.197) we find that a solution of IVP (4.192) is given by

Vm(x, t) =
θ(t)
2π2

∞∫
−∞

∞∫
−∞

∞∫
−∞

T(ν)cos
(

cD(ν)t − I(ν · x)
)

T∗(ν)Emdν1dν2dν3, (4.198)

where cos
(

cD(ν)t − I(ν · x)
)

is the diagonal matrix with diagonal elements

cos
(

cdk(ν)t −ν · x
)
, k = 1,2, ...,6.

4.5 Computation of scalar-vector potentials and FS of Maxwell’s equations in

isotropic media

4.5.1 Scalar and vector potentials for Maxwell’s equations

Let ε = εI3,3 and µ = µI3,3 in (4.181)-(4.182), where ε and µ are positive constants.

Let us consider the following Cauchy problem,

∂
∂t
(divx(µH)) = 0, (4.199)

divx(µH)|t<0 = 0 (4.200)

Therefore, divx(µH) = 0 for t ∈ R. The vector µH can be written in the following form,

µ H(x, t) = curlx
−→
A (x, t)+∇xψ(x, t) (4.201)

where
−→
A is a vector function and ψ(x, t) is a scalar function. We choose

−→
A and ψ

satisfying (4.201) such that
−→
A ̸=−→

0 and ψ = 0. Then H can be represented as

H(x, t) =
1
µ

curlx
−→
A (x, t), (4.202)
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where
−→
A is called the electrodynamic potential vector. Substituting (4.202) into the

second equation of (4.181) we have

curlxE =−µ
c

∂
∂t
(
1
µ

curlx
−→
A (x, t)) (4.203)

curlx(E+
1
c

∂
∂t
−→
A (x, t)) = 0. (4.204)

From the theory of vector analysis the vector E+ 1
c

∂
∂t
−→
A can be written as,

E+
1
c

∂
∂t
−→
A = curlx

−→
B (x, t)+∇xφ(x, t) (4.205)

we choose
−→
B and φ such that

−→
B = 0 and φ ̸= 0. φ(x, t) is a scalar function and called

the scalar electrodynamic potential and also curlx∇xφ = 0. Then E can be represented

as,

E(x, t) =−1
c

∂
∂t
−→
A (x, t)+∇xφ(x, t) (4.206)

Substituting (4.202), (4.206) into the first equation (4.181) we have

curlx(
1
µ

curlx
−→
A ) =

1
c

ε
∂
∂t

(
−1

c
∂
−→
A

∂t
+∇xφ

)
+

4π
c

J. (4.207)

Using curlxcurlx
−→
A =−△x

−→
A +∇xdivx

−→
A , the last equation becomes

1
µ
(−△x

−→
A +∇xdivx

−→
A ) =− 1

c2 ε
∂2−→A
∂t2 +

1
c

ε∇x
∂φ
∂t

+
4π
c

J (4.208)

equivalently,

∇x

(
−ε

c
∂φ
∂t

+
1
µ

divx
−→
A
)
+

(
ε
c2

∂2−→A
∂t2 − 1

µ
△x

−→
A − 4π

c
J

)
= 0 (4.209)
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equality (4.209) holds if
−→
A and φ are chosen from relations

∂φ(x, t)
∂t

=
c
εµ

divx
−→
A (x, t), (4.210)

∂2−→A (x, t)
∂t2 − c2

εµ
△x

−→
A (x, t) =

4πc
ε

J(x, t). (4.211)

For holding the equations

φ(x, t)|t<0 = 0, (4.212)

−→
A (x, t)|t<0 = 0 (4.213)

are sufficient.

4.5.2 FS for equations of scalar and vector potentials

FS for the equation of vector potential is a matrix GA of the order 3× 3 whose

columns Am = (Am
1 ,A

m
2 ,A

m
3 ), m = 1,2,3, satisfy

∂2−→Am(x, t)
∂t2 − c2

εµ
△x

−→
Am(x, t) =

4πc
ε

δ(x)δ(t)em,

−→
Am(x, t)|t<0 = 0, (4.214)

where e1 = (1,0,0), e2 = (0,1,0), e3 = (0,0,1) are basis vectors of the Cartesian

coordinates; δ(x) = δ(x1)δ(x2)δ(x3) is the Dirac delta function of the space variable

concentrated at x1 = 0, x2 = 0, x3 = 0; δ(t) is the Dirac delta function of the time

variable concentrated at t = 0.

Applying the Fourier transformation with respect to x to (4.214) we have the
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following IVP

∂2
−→̃
Am(ν, t)

∂t2 +
c2 | ν |2

εµ

−→̃
Am(ν, t) =

4πc
ε

δ(t)em,

−→̃
Am(ν, t) |t<0 = 0. (4.215)

Solving IVP (4.215) we have

−→̃
Am

j (ν, t) = θ(t)
4π
| ν |

√
µ
ε

sin(
c

√
µε

| ν | t)δm
j . (4.216)

Here δm
j is the Kronecker symbol, i.e. δm

j = 1 if j = m and δm
j = 0 if j ̸= m; j =

1,2,3; m = 1,2,3.

FS for the equation of scalar potential is a vector Gφ whose components φm, m =

1,2,3 satisfy the following IVP

∂φm(x, t)
∂t

=
c
εµ

divx
−→
Am(x, t),

φm(x, t) |t<0 = 0 (4.217)

Applying Fourier transformation with respect to x to (4.217) we have the following

IVP

∂φ̃m(ν, t)
∂t

=
c
εµ

(−iν1Ãm
1 − iν2Ãm

2 − iν3Ãm
3 )(ν, t),

φ̃m(ν, t) |t<0 = 0 (4.218)

Using (4.216) and solving IVP (4.218) we have

φ̃m
j (ν, t) = iν j

4π
ε | ν |2

(cos(
c

√
εµ

| ν | t)−1), j = 1,2,3. (4.219)
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4.5.3 FS of Maxwell equations in isotropic media

The FS for the time-dependent Maxwell’s equations (4.181) in isotropic medium

is defined as a matrix GI(x, t) of the order 6 × 3 whose columns (EIm
,HIm

) =

(Em
1 ,Em

2 ,Em
3 ,H m

1 ,H m
2 ,H m

3 ), m = 1,2,3, satisfy

curlxHIm
=

1
c

ε
∂EIm

∂t
+

4πem

c
δ(x)δ(t), curlxEIm

=−1
c

µ
∂HIm

∂t
,

EIm |t<0 = 0, HIm |t<0= 0. (4.220)

From (4.202) and (4.206) we can write

HIm
(x, t) =

1
µ

curlx
−→
A m(x, t), (4.221)

EIm
(x, t) =−1

c
∂
∂t
−→
A m(x, t)+∇xφm(x, t). (4.222)

Applying Fourier transformation with respect to x to (4.221) and (4.222) and using

the (4.216) and (4.219) the Fourier image of FS GI(x, t) = (EI(x, t),HI(x, t)) for the

time-dependent Maxwell’s equations in isotropic medium can be written as follows

ẼI(ν, t) = −I3,3
4π
ε

cos(
c

√
εµ

| ν | t)

+


ν2

1 ν1ν2 ν1ν3

ν1ν2 ν2
2 ν3ν2

ν1ν3 ν3ν2 ν2
3

 4π
ε | ν |2

(cos(
c

√
εµ

| ν | t)−1). (4.223)

H̃I(ν, t) =


0 iν3 −iν2

−iν3 0 iν1

iν3 −iν1 0

θ(t)
4π

√
µε | ν |

(sin(
c

√
εµ

| ν | t), (4.224)
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where I3,3 is the identity matrix of order 3×3.

4.6 Computation of the fundamental solution of (4.190) with arbitrary source

The computation of the fundamental solution for the system of the form (4.190)

arising from an arbitrary given force F(x, t) = ( f1(x, t), f2(x, t), f3(x, t),0,0,0), whose

components fi(x, t), i = 1,2,3 are arbitrary functions for t ≥ 0 and equal to zero for

t < 0, can be defined as a matrix G(x, t) of the order 6×6 for which the formula

V (x, t) =
∞∫

−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

G(x−ξ, t −η)F(ξ,η)dξ1dξ2dξ3dη (4.225)

gives a solution of (4.190). Here the columns of G are defined by (4.192), ξ =

(ξ1,ξ2,ξ3) ∈ R3, x = (x1,x2,x3) ∈ R3, t ∈ R, η ∈ R.

Using the fact that the first three components of

F = ( f1(ξ,η), f2(ξ,η), f3(ξ,η),0,0,0)

are nonzero and other components are identically equal to zero we find that columns of

G(x, t) started from fourth do not have any influence on the solution V (x, t) defined by

(4.225). Therefore the fundamental solution of (4.190) is naturally defined as a matrix

G(x, t) of the order 6×3 for which the formula

V (x, t) =
∞∫

−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

G(x−ξ, t −η)f(ξ,η)dξ1dξ2dξ3dη

gives a solution of (4.190), where f(ξ,η) = ( f1(ξ,η), f2(ξ,η), f3(ξ,η)) is 3D vector

column. We note also that each column of the fundamental solution G(x, t) of (4.190)

satisfies (4.192).
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4.7 Computational examples

We have implemented two types of computational experiments. The first one shows

a high accuracy in computing values of FS for Maxwell equations in isotropic media.

The values of Fourier image of FS have been derived for isotropic material in two

ways: by explicit formulae as well as by the method of Section 4.4. The results of the

comparison are presented in Tables 4.1.-4.2. And Fourier images of FS in isotropic

medium have been given by Figs. 4.68-4.71.

In the second type of computational experiments we consider five homogeneous

non-dispersive anisotropic materials: a biaxial crystal, positive uniaxial crystal

(sapphire), monoclinic dielectric, triclinic dielectric, an electrically and magnetically

anisotropic medium. The point pulse current situating in each material radiates

diverging electromagnetic waves. The interference figures of the electric and magnetic

fields into these five media computed by obtained explicit formula (4.198) are

presented and analyzed in this section. The interference patterns of electric and

magnetic fields and diverging spherical fronts emitted by this special type of the

current (a pulse dipole with a fixed polarization) will accumulate astigmatism on wave

propagations arising from the anisotropy of the materials. For all applications the

current density J is taken in the form

J(x, t) = e3δ(x1)δ(x2)δ(x3)δ(t)

where δ(x1)δ(x2)δ(x3)δ(t) is the Dirac delta function concentrated at the origin of the

coordinates at the time t = 0 in the direction e3 = (0,0,1). This is a pulse dipole with

the polarization e3.

Using the procedure of Section 4.4 the matrices T, T∗, D were computed for every

given symmetric positive definite matrices ε and µ. Further, using formula (4.198)
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we have found explicit formulae for the electric field components and magnetic field

components.

4.7.1 Accuracy of the method

Taking µ = 1 and ε = 9.4 and using formulae (4.223)-(4.224) we have calculated

exact solution of the Fourier images of FS GI corresponding to source J = e3δ(x)δ(t),

i.e. Ẽ1
3
(ν, t), Ẽ2

3
(ν, t), Ẽ3

3
(ν, t), H̃1

3
(ν, t), H̃2

3
(ν, t), H̃3

3
(ν, t) in t = 1/c. Using

the method of Section 4.4 we have computed T(ν), T∗(ν), D(ν) and then using the

formula (4.196) we have found Fourier image of the third column of FS G̃(ν, t) in

terms of values ν = (ν1,ν2,ν3) for time t = 1/c, i.e we have calculated values of

Ẽ3
1(ν, t), Ẽ3

2(ν, t), Ẽ3
3(ν, t), H̃3

1 (ν, t), H̃3
2 (ν, t), H̃3

3 (ν, t) in t = 1/c. Some values of

Ẽ3
j (ν, t) and H̃3

j (ν, t), j = 1,2,3 and their comparison are given in Table 4.1. and Table

4.2., respectively.

In these table the following notations are used: Ẽ j
3
(ν1,ν2,ν3, t), H̃ j

3
(ν1,ν2,ν3, t)

are values computed by the formula (4.223), (4.224); Ẽ3
j (ν1,ν2,ν3, t) and

H̃3
j (ν1,ν2,ν3, t) are values of the third column of FS G̃(ν1,ν2,ν3, t) computed by

our method; Ẽ3
j − Ẽ j

3 are values of Ẽ3
j (ν1,ν2,ν3, t)− Ẽ j

3
(ν1,ν2,ν3, t) which mean

the error between values Ẽ3
j (ν1,ν2,ν3, t) found by our method and exact values

Ẽ j
3
(ν1,ν2,ν3, t); H̃3

j − H̃ j
3

are values of H̃3
j (ν1,ν2,ν3, t)− H̃ j

3
(ν1,ν2,ν3, t) which

mean the error between values H̃3
j (ν1,ν2,ν3, t) found by our method and exact values

H̃ j
3
(ν1,ν2,ν3, t).

The graphs of functions Ẽ3
j (z, t), Ẽ3

j (z, t), j = 1,2,3 obtained by our method and

by formula (4.223) are presented in Figs. 4.68-4.69; the graphs of functions H̃3
j (z, t),

H̃ 3
j (z, t), j = 1,2 obtained by our method and by formula (4.224) are presented in Figs.

4.70-4.71. Here ν1 = ν2 = ν3 = z and t = 1/c.
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Table 4.1. The accuracy of computing of electric field (isotropic case) for t = 1/c.

ν1 ν2 ν3 Ẽ3
1 Ẽ3

1 − Ẽ1
3

Ẽ3
2 Ẽ3

2 − Ẽ2
3

Ẽ3
3 Ẽ3

3 − Ẽ3
3

10−4 10−5 10−6 −5.7×10−13 −3×10−17 −5.7×10−14 2×10−17 −0.1064 1×10−15

10−2 10−3 10−4 −5.7×10−9 1×10−17 −6×10−10 5×10−18 −0.1064 2×10−16

10−1 10−2 10−3 −5.7×10−7 −1×10−18 −6×10−8 1×10−17 −0.1063 2×10−16

1 1 1 −0.0055 −7×10−17 −0.0055 4×10−17 −0.0954 4×10−16

101 102 103 −5.6×10−4 2×10−15 −0.0056 8×10−15 −0.1058 −7×10−16

102 103 104 −0.0012 1×10−14 −0.0124 −3×10−15 −0.1051 4×10−16

104 105 106 −2.4×10−4 −1×10−12 −0.0024 −1×10−11 −0.1061 1×10−11

Table 4.2. The accuracy of computing of magnetic field (isotropic case) for t = 1/c.

ν1 ν2 ν3 H̃3
1 H̃3

1 − H̃1
3

H̃3
2 H̃3

2 − H̃2
3

H̃3
3 − H̃3

3

10−4 10−5 10−6 −1.1×10−6 2×10−20 1.1×10−5 −1×10−19 1×10−22

10−2 10−3 10−4 −1.1×10−4 −6×10−19 0.0011 −5×10−18 1×10−22

10−1 10−2 10−3 −0.0011 5×10−18 0.0106 −6×10−17 2×10−19

1 1 1 −0.1008 7×10−16 0.1008 −1×10−15 6×10−18

101 102 103 −0.0286 1×10−14 0.0029 −4×10−15 3×10−18

102 103 104 0.0319 −2×10−15 −0.0032 −1×10−14 1×10−15

104 105 106 −0.0205 −5×10−11 0.002 5×10−11 6×10−30

4.7.2 Simulation of electric and magnetic field in different materials

Example 1. A biaxial crystal. The matrix of the dielectric permittivity ε and

magnetic permeability µ have been taken from Burridge & Qian (2006). They are

ε = diag(2.25,1,0.25), µ = diag(1,1,1). We have taken these data similar to Burridge

& Qian (2006) for clarity in the graphical illustrations of the behavior of electric and

magnetic fields in a biaxial crystal (an electrically anisotropic media). Examples of

images of electric and magnetic fields in the bi-axial anisotropic material are presented

in Fig.4.72 and Fig.4.73. These figures include several geometrical objects. The

object in the center of each picture looks like ellipse. The 3D surfaces plots of

z=E3
2(x1,x2,−

√
1/3x1,1/c) and z=H3

2 (x1,x2,−
√

1/3x1,1/c) are given in Fig.4.72b

and Fig.4.73b. Here the horizontal axes are x1 and x2. The vertical axis is the magnitude

of z = E3
2(x1,x2,−

√
1/3x1,1/c) and z = H3

2 (x1,x2,−
√

1/3x1,1/c), respectively. The

different colors correspond to different values of z = E3
2(x1,x2,−

√
1/3x1,1/c) and
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z = H3
2 (x1,x2,−

√
1/3x1,1/c). Fig.4.72a and Fig.4.73a contain screen shots of 2D

level plots of the same surfaces, i.e. view of these surfaces from the top of z axis.

Example 2. A positive uniaxial crystal (sapphire) in the principal symmetry

axes. We take the matrix ε = diag(9.4,9.4,11.6), µ = diag(1,1,1). Fig.4.74 shows

dynamic of the distribution of the electric field component z = E3
3(x1,x2,−

√
1/2x1 −√

1/2x2, t). In Fig.4.74 there is a circle for different times. So we can see how the

circle are progressing. Fig.4.74a,b are 2D plots z = E3
3(x1,x2,−

√
1/2x1 −

√
1/2x2, t)

for t = 1/c,8/c, respectively.

Example 3. Monoclinic Dielectric. The matrix ε is given by (Yakhno & Yakhno

& Kasap (2006))

ε =


17.1598 13.0178 0

13.0178 23.6686 0

0 0 44.4444

 .

And we take µ= diag(1,1,1). The results of the simulation of the electric and magnetic

wave propagation in this monoclinic dielectric are presented in Fig.4.75. In Fig.4.75

there is a ellipse. Inside of this ellipse there is a circle and ellipse with the same

center. Fig.4.75a show dynamic of the distribution of the electric field component

E3
2(x1,0,x3,6/c). Fig.4.75b show dynamic of the distribution of the magnetic field

component H3
3 (x1,0,x3,6/c). The results of the simulations are 2D plots. Here x1 and

x3 are axis.

Example 4. Triclinic Dielectric. ε is given by (Yakhno & Yakhno & Kasap (2006))

ε =


30.7929 −12.7337 −14.3432

−12.7337 5.51479 5.86982

−14.3432 5.86982 6.74556

 .
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And we take µ = diag(1,1,1). Fig.4.76a contain screen shot of 2D level

plot of E3
2(x1,0,x3,(0.5)/c). Fig.4.76b contain screen shot of 2D level plot of

H3
1 (x1,x2,0,(0.5)/c).

Example 5. An electrically and magnetically anisotropic medium. The

matrix of dielectric permittivity is given by ε = diag(16,25,36) and the matrix of

magnetic permeability is defined by µ = diag(36,25,16) (Yakhno (2008)). The

medium is electrically and magnetically anisotropic. The 3D surfaces plots of z =

E3
1(x1,0,x3,50/c) and z = H3

2 (x1,0,x3,50/c) are given in Fig.4.77b and Fig.4.78b.

Here the horizontal axes are x1 and x3. The vertical axis is the magnitude of

z = E3
1(x1,0,x3,50/c) and z = H3

2 (x1,0,x3,50/c), respectively. The different colors

correspond to different values of z = E3
1(x1,0,x3,50/c) and z = H3

2 (x1,0,x3,50/c).

Fig.4.77a and Fig.4.78a contain screen shots of 2D level plots of the same surfaces, i.e.

view of these surfaces from the top of z axis. In these figures include ellipse. And the

object in the center of Fig.4.77 has the complex configuration.

4.7.3 Analysis of the visualization

The simulation of electric and magnetic fields in anisotropic media by modern

computer tools allow us to see dependence between media structures and behavior

of electric and magnetic fields. Using the presented method we have generated

images of electric and magnetic fields components which are a result of the

electromagnetic radiations arising from a pulse dipole with a fixed polarization

in different electrically and magnetically anisotropic homogeneous media. The

different structures of electrically and magnetically anisotropic media produce different

responses of electromagnetic radiation inside these anisotropic media. The various

shapes of electric and magnetic waves (different forms of fronts and magnitude
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fluctuations) are shown in Examples 1-5.

4.8 Concluding Remarks

In this chapter of the thesis an analytic method for deriving the time-dependent

fundamental solution (FS) in a homogeneous, non-dispersive, electrically and

magnetically anisotropic media is studied. This method is based on Fourier

transformation and some matrix computations. Accuracy of the method is shown

by some numerical computations. Computational images of FS in a homogeneous,

non-dispersive, different anisotropic materials are given.

Figure 4.68: Graphs of Ẽ j
3
(z, t) and Ẽ j

3
(z, t).

The dotted line represents Ẽ j
3
(ν, t)(z, t) at t =

1/c (our method ). The continuous line
represents Ẽ j

3
(z, t) at t = 1/c (the explicit

formula ( 4.223)), j = 1,2.
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Figure 4.69: Graphs of Ẽ3
3
(z, t) and Ẽ3

3
(z, t).

The dotted line represents Ẽ3
3
(ν, t)(z, t) at t =

1/c (our method ). The continuous line
represents Ẽ3

3
(z, t) at t = 1/c (the explicit

formula ( 4.223)).

Figure 4.70: Graphs of H̃1
3
(z, t) and H̃1

3
(z, t).

The dotted line represents H̃1
3
(ν, t)(z, t) at t =

1/c (our method ). The continuous line

represents H̃1
3
(z, t) at t = 1/c (the explicit

formula ( 4.224)).
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Figure 4.71: Graphs of H̃2
3
(z, t) and H̃2

3
(z, t).

The dotted line represents H̃2
3
(ν, t)(z, t) at t =

1/c (our method ). The continuous line

represents H̃2
3
(z, t) at t = 1/c (the explicit

formula ( 4.224)).

(a) E3
2 (x1,x2,−

√
1/3x1,1/c) (b) E3

2 (x1,x2,−
√

1/3x1,1/c)

Figure 4.72: 2D and 3D plots of electric field in a biaxial crystal.
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(a) H3
2 (x1,x2,−

√
1/3x1,1/c) (b) H3

2 (x1,x2,−
√

1/3x1,1/c)

Figure 4.73: 2D and 3D plots of magnetic field in a biaxial crystal.
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(a) t = 1/c

(b) t = 8/c

Figure 4.74: 2D plots of electric field in
sapphire (uniaxial crystal in principal axes)
of E3

3 (x1,x2,−
√

1/2x1 −
√

1/2x2, t), t =
1/c,6/c,8/c.
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(a) E3
2 (x1,0,x3,6/c)

(b) H3
3 (x1,0,x3,6/c)

Figure 4.75: 2-D level plots of
E3

2 (x1,0,x3,6/c) and H3
3 (x1,0,x3,6/c)

for monoclinic dielectric.
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(a) E3
2 (x1,0,x3,(0.5)/c)

(b) H3
1 (x1,x2,0,(0.5)/c)

Figure 4.76: 2D of the electric and magnetic
field in electrically triclinic medium.
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(a) E3
1 (x1,0,x3,50/c) (b) E3

1 (x1,0,x3,50/c)

Figure 4.77: 2D and 3D plots of electric field in an electrically and magnetically
anisotropic medium.

(a) H3
2 (x1,0,x3,50/c) (b) H3

2 (x1,0,x3,50/c)

Figure 4.78: 2D and 3D plots of magnetic field in an electrically and magnetically
anisotropic medium.



CHAPTER FIVE

AN ANALYTIC METHOD OF SOLVING IVP

FOR ELECTROMAGNETOELASTIC SYSTEM

In this chapter an analytic method for deriving for the initial value problem of linear,

inhomogenous, anisotropic dynamics of electromagnetoelasticity (EME) is studied.

5.1 Basic equations for system of electromagnetoelasticity

The basic equations for the linear, inhomogenous, anisotropic dynamics of

electromagnetoelasticity (EME) can be expressed by ( Yakhno & Merazhov (2000),

Dunkin & Eringen (1963))

ρ
∂2ui

∂t2 =
3

∑
j=1

∂σi j

∂x j
+ fi, i = 1,2,3, (5.226)

curlxH =
∂D
∂t

+J, (5.227)

curlxE =−∂B
∂t

, (5.228)

divxB = 0, divxD = ρe (5.229)

Due to the coupling of elastic, electric and magnetic behaviors, the constitutive

equations for a inhomogeneous, linear and fully anisotropic magnetoelectroelastic

solid are given by ( Chen & Shen (2007), Tsai & Wu (2008))

σi j =
3

∑
k,l=1

ci jkl
∂uk

∂xl
−

3

∑
k=1

eki jEk −
3

∑
k=1

hki jHk, i, j = 1,2,3, (5.230)

180
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Di =
3

∑
k=1

εikEk +
3

∑
k, j=1

ei jk
∂uk

∂x j
+

3

∑
k=1

dikHk, i = 1,2,3, (5.231)

Bi =
3

∑
k=1

dikEk +
3

∑
k, j=1

hi jk
∂uk

∂x j
+

3

∑
k=1

µikHk, i = 1,2,3. (5.232)

Let us consider the following initial conditions

u(x, t) |t=0 = γ(x),
∂u(x, t)

∂t
|t=0= ψ(x),

E(x, t) |t=0 = 0, H(x, t) |t=0= 0, x ∈ R3, t ∈ R, (5.233)

where x = (x1,x2,x3) ∈ R3 is the space variable, t ∈ R is the time variable, γ(x), ψ(x)

are given vector functions with components: γi = γi(x), ψi = ψi(x), i = 1,2,3;

ρ = ρ(x3) > 0 is the density of the inhomogeneous medium; u = (u1,u2,u3) is the

displacement vector with component ui = ui(x, t), i = 1,2,3; ρe(x, t) is the density of

electric charges; E = (E1,E2,E3) and H = (H1,H2,H3) are the electric and magnetic

fields with components: Ei = Ei(x, t), Hi = Hi(x, t), i = 1,2,3; B = (B1,B2,B3) is the

magnetic induction with components: Bi = Bi(x, t); D = (D1,D2,D3) is the electric

displacement with components: Di = Di(x, t), i = 1,2,3; σi j(x, t) are the components

of the stress tensor; J = (J1,J2,J3) is electric current with components Ji = Ji(x, t);

f = ( f1, f2, f3) is external force with components fi = fi(x, t). ci jkl = ci jkl(x3) are

the elastic moduli of the medium; eki j = eki j(x3) are the piezoelectric moduli of

the medium; hki j = hki j(x3) are the piezomagnetic moduli of the medium; εi j(x3)

are the dielectric moduli of the medium; dki(x3) are the electromagnetic moduli of

the medium; µik(x3) are moduli of magnetic permeability of the medium. These

coefficients satisfy following symmetric properties ( Diaz & Saez & Sanchez & Zhang

(2008), Wang & Mai (2004))

ci jkl = c jikl = ci jlk = ckli j, eki j = ek ji, hki j = hk ji,

dki = dik, µki = µik, εi j = ε ji. (5.234)
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Using the symmetry properties (5.234) it is convenient to describe the elastic moduli in

terms of a 6×6 matrix according to the following conventions relating pairs of indices

(i j) and (kl) to single indices α and β:

(11)↔ 1, (22)↔ 2, (33)↔ 3,

(23),(32)↔ 4, (13),(31)↔ 5 (12),(21)↔ 6.
(5.235)

The obtained matrix C = (cαβ)6×6 of all moduli, where α = (i j), β = (kl), is

symmetric. Similarly the matrices

E = (εi j(x3)), D = (di j(x3)), M = (µi j(x3)), i, j = 1,2,3,

are symmetric. And C, E , M are positive definite matrices (Yakhno & Merazhov

(2000), Wang & Mai (2004), Diaz & Saez & Sanchez & Zhang (2008)). And also C−1

which is the inverse matrix of C is positive definite.

The electric charges and current have to satisfy the conservation law of charges

∂ρe

∂t
+divxJ = 0. (5.236)

In this chapter we also suppose that

J = 0, ρe = 0, for t = 0. (5.237)

Remark 1. The equations of (5.227)-(5.228) under conditions (5.233)-(5.237)

imply the equalities of (5.229) (we assume here that (5.236) is satisfied).
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5.2 Reduction of IVP for Electromagnetoelastic System to IVP for a First-Order

Symmetric Hyperbolic System

Let

Ui =
∂ui

∂t
, i = 1,2,3, τα =

3

∑
k,l=1

cαkl
∂ul

∂xk
, α = 1,2, ...,6. (5.238)

Using the symmetry properties of the elastic moduli, Eq.(5.238) and the rule (5.235)

we can write for α = 1,2,3,4,5,6

∂τα
∂t

= cα1
∂U1

∂x1
+ cα6

∂U1

∂x2
+ cα5

∂U1

∂x3
+ cα6

∂U2

∂x1

+cα2
∂U2

∂x2
+ cα4

∂U2

∂x3
+ cα5

∂U3

∂x1
+ cα4

∂U3

∂x2
+ cα3

∂U3

∂x3
. (5.239)

Let us define

Y = (
∂U1

∂x1
,
∂U2

∂x2
,
∂U3

∂x3
,(

∂U3

∂x2
+

∂U2

∂x3
),(

∂U3

∂x1
+

∂U1

∂x3
),(

∂U2

∂x1
+

∂U1

∂x2
))

and

τ = (τ1,τ2,τ3,τ4,τ5,τ6).

Eq.(5.239) can be written in the form

∂τ
∂t

= CY, (5.240)

where C = (cαβ)6×6. Multiplying both sides by the inverse of C, denoted C−1, we find

C−1 ∂τ
∂t

−Y = 0. (5.241)
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Letting

V = (U1,U2,U3,T1,T2,T3,T4,T5,T6,E1,E2,E3,H1,H2,H3),

(5.241) can be written in the form

M0
∂V
∂t

+
3

∑
j=1

M j
∂V
∂x j

= 0, (5.242)

where 0m,n is the zero matrix which has the order m×n, here m is the number of lines,

n is the number of columns.

M0 =

[
06,3 C−1 06,6

]
; M j =

[
(A1

j)
∗ 06,6 06,6

]
, j = 1,2,3,

A1
1 =


−1 0 0 0 0 0

0 0 0 0 0 −1

0 0 0 0 −1 0

 , A1
2 =


0 0 0 0 0 −1

0 −1 0 0 0 0

0 0 0 −1 0 0

 ,

A1
3 =


0 0 0 0 −1 0

0 0 0 −1 0 0

0 0 −1 0 0 0

 . (5.243)

Here ∗ denotes the transposition of sign. Let us consider Eq.(5.230). Using the

symmetry properties of elastic moduli, piezoelectric moduli, piezomagnetic moduli

and the rule (5.235), Eq.(5.230) can be written in the following form for α =
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1,2,3,4,5,6

σα = cα1
∂u1

∂x1
+ cα6

∂u1

∂x2
+ cα5

∂u1

∂x3
+ cα6

∂u2

∂x1
+ cα2

∂u2

∂x2
+ cα4

∂u2

∂x3

+ cα5
∂u3

∂x1
+ cα4

∂u3

∂x2
+ cα3

∂u3

∂x3
− e1αE1

− e2αE2 − e3αE3 −h1αH1 −h2αH2 −h3αH3

or

σα = τα − e1αE1 − e2αE2 − e3αE3 −h1αH1 −h2αH2 −h3αH3. (5.244)

The left-hand side of (5.226) can be written in the vector form

ρ
∂2u
∂t2 = ρ

∂U
∂t

. (5.245)

Now consider the term
3
∑
j=1

∂σi j
∂x j

on the right-hand side of (5.226). Applying rule

(5.235) for i = 1,2,3 gives

3

∑
j=1

∂σ1 j

∂x j
=

∂σ11

∂x1
+

∂σ12

∂x2
+

∂σ13

∂x3
=

∂σ1

∂x1
+

∂σ6

∂x2
+

∂σ5

∂x3
, (5.246)

3

∑
j=1

∂σ2 j

∂x j
=

∂σ21

∂x1
+

∂σ22

∂x2
+

∂σ23

∂x3
=

∂σ6

∂x1
+

∂σ2

∂x2
+

∂σ4

∂x3
, (5.247)

3

∑
j=1

∂σ3 j

∂x j
=

∂σ31

∂x1
+

∂σ32

∂x2
+

∂σ33

∂x3
=

∂σ5

∂x1
+

∂σ4

∂x2
+

∂σ3

∂x3
. (5.248)

Substituting (5.244) into (5.246)-(5.248) and using (5.245), (5.226) can be written

as

R0
∂V
∂t

+
3

∑
j=1

R j
∂V
∂x j

+ Q̄V = f, (5.249)
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where Im,m is the identity matrix of the order m×m.

R0 =

[
ρI3,3 03,6 03,6

]
; R j =

[
03,3 (A1

j) (A2
j) (A3

j)

]
, j = 1,2,3,

A2
1 =


e11 e21 e31

e16 e26 e36

e15 e25 e35

 ,A2
2 =


e16 e26 e36

e12 e22 e32

e14 e24 e34

 ,A2
3 =


e15 e25 e35

e14 e24 e34

e13 e23 e33

 ,

A3
1 =


h11 h21 h31

h16 h26 h36

h15 h25 h35

 ,A3
2 =


h16 h26 h36

h12 h22 h32

h14 h24 h34

 ,A3
3 =


h15 h25 h35

h14 h24 h34

h13 h23 h33

 ;

Q̄ =

[
03,9 Q1 Q2

]
, Q1 =

d
dx3

A2
3, Q2 =

d
dx3

A3
3. (5.250)

Let us consider (5.227). Taking derivative with respect to t of (5.231) we obtain

∂Di

∂t
= (εi1,εi2,εi3)

∂E
∂t

+(ei1,ei6,ei5)
∂U
∂x1

+(ei6,ei2,ei4)
∂U
∂x2

+ (ei5,ei4,ei3)
∂U
∂x3

+(di1,di2,di3)
∂H
∂t

. (5.251)

Substituting this equality into (5.227), we obtain

S0
∂V
∂t

+
3

∑
j=1

S j
∂V
∂x j

=−J, (5.252)

where

S0 =

[
03,3 03,6 E D

]
; S j =

[
(A2

j)
∗ 03,6 03,3 (A4

j)

]
, j = 1,2,3;
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A4
1 =


0 0 0

0 0 1

0 −1 0

 ,A4
2 =


0 0 −1

0 0 0

1 0 0

 ,A4
3 =


0 1 0

−1 0 0

0 0 0

 . (5.253)

Similarly let us consider (5.228). Taking derivative with respect to t of (5.232) we

obtain in the following form

∂Bi

∂t
= (di1,di2,di3)

∂E
∂t

+(hi1,hi6,hi5)
∂U
∂x1

+(hi6,hi2,hi4)
∂U
∂x2

+ (hi5,hi4,hi3)
∂U
∂x3

+(µi1,µi2,µi3)
∂H
∂t

. (5.254)

Substituting this equality into (5.228), we obtain

N0
∂V
∂t

+
3

∑
j=1

N j
∂V
∂x j

= 0, (5.255)

where M = (µi j), i, j = 1,2,3,

N0 =

[
03,3 03,6 D M

]
; N j =

[
(A3

j)
∗ 03,6 (A4

j)
∗ 03,3

]
, j = 1,2,3;

Combining (5.242), (5.249), (5.252) and (5.255), we obtain the matrix representation

of EME in the form

A0
∂V
∂t

+
3

∑
j=1

A j
∂V
∂x j

+QV = F. (5.256)

Here

V = (U1,U2,U3,τ1,τ2,τ3,τ4,τ5,τ6,E1,E2,E3,H1,H2,H3),
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A j =



03,3 A1
j A2

j A3
j

(A1
j)
∗ 06,6 06,3 06,3

(A2
j)
∗ 03,6 03,3 A4

j

(A3
j)
∗ 03,6 (A4

j)
∗ 03,3


, j = 1,2,3; A0 =


ρ(x3)I3,3 03,6 03,6

06,3 C−1 06,6

06,3 06,6 L

 ,

L =

 E D

D M

 ; Q =

 Q̄

012,15

 ; F = (f,06,1,−J,03,1)
∗.

The matrices Ak
j, j = 1,2,3, k = 1,2,3,4, and Q̄ are defined by (5.243), (5.250),

(5.253).

Since the matrix L is positive definite (Karamany (2009)), ρ > 0, the inverse matrix

C−1 is positive definite A0(x3) is also positive definite and symmetric matrix. And

Ai(x3), i = 1,2,3, are symmetric matrices.

The initial conditions (5.233) can be written as

V(x, t) |t=0 = V0(x), x ∈ R3, t ∈ R, (5.257)

where

V0(x) = (ψ1,ψ2,ψ3,τ0
1,τ

0
2,τ

0
3,τ

0
4,τ

0
5,τ

0
6,0,0,0,0,0,0)

∗,

τ0
α =

3

∑
k,l=1

cαkl
∂γl

∂xk
, α = 1,2, ...,6.

Assumptions

In this chapter we suppose that
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1. There exits a constant ρ0 > 0 such that for x3 ∈ (−∞,∞), ρ(x3)≥ ρ0 > 0.

2 . There exits a constant c0 > 0 such that for the inverse matrix C−1(x3) and x3 ∈

(−∞,∞) and for every nonzero vector η ∈ R6, < C−1(x3)η,η >≥ c0|η|2.

3 . There exits a constant L0 > 0 such that for all x3 ∈ (−∞,∞) and for every nonzero

vector η ∈ R6 the matrix

L(x3) =

 E(x3) D(x3)

D(x3) M (x3)


satisfies < L(x3)η,η >≥ L0|η|2.

4 . There exit constants a23 > 0 and a33 > 0 such that for x3 ∈ (−∞,∞)

| (A23(x3))i j |≤ a23, | (A3
3(x3))i j |≤ a33, i, j = 1, ...,15.

5. Let T be a given positive number; a0 =max{ρ0,c0,L0}, a3 =max{a23,a33}, M = a3
a0

∆(M,T ) = {(x3, t); 0 ≤ t ≤ T, −M(T − t)≤ x3 ≤ M(T − t)}. (5.258)

6.The function ρ(x3) ∈ C2([−MT,MT ]) ∩ C(R); elements of matrices

E(x3),M (x3),D(x3),C−1(x3), A2
3 and A3

3 from the class C2([−MT,MT ]) ∩C(R);

elements of matrices A2
1, A2

2, A3
1 and A3

2 from the class C1([−MT,MT ]).

7. f̃(ν,x3, t), J̃(ν,x3, t), γ̃(ν,x3), ψ̃(ν,x3) be Fourier images with respect to x1, x2 of
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f(x, t), J(x, t), γ(x), ψ(x), respectively.

f̃(ν,x3, t), J̃(ν,x3, t) ∈C0(R2,C1(∆(M,T ))),

γ̃(ν,x3) ∈C0(R2,C2([−MT,MT ])), ψ̃(ν,x3) ∈C0(R2,C1([−MT,MT ])),

where C0(R2) denotes the class of all functions from C(R2) with compact support.

C0(R2;C1(∆(M,T ))) is a class of all continuous mapping of ν ∈ R2 into the class

C1(∆(M,T )) of functions (x3, t) ∈ ∆(M,T ) and these functions have finite support

with respect to ν. C0(R2;C2(∆(M,T ))) is a class of all continuous mapping of ν ∈ R2

into the class C2(∆(M,T )) of functions (x3, t) ∈ ∆(M,T ) and have finite support with

respect to ν.

For any fixed x3 ∈ [−MT,MT ] functions γ̃(ν,x3), ψ̃(ν,x3) have finite supports lying

in SA; for any fixed (x3, t) ∈ ∆(M,T ) functions f̃(ν,x3, t), J̃(ν,x3, t) have finite supports

lying in SA. Here

SA = {ν ∈ R2; ν2
1 +ν2

2 ≤ A2},

and A is a positive number.

5.3 Diagonalization of matrices A0(x3) and A3(x3) simulteneously

In this section we will find nonsingular matrix T(x3) and diagonal D(x3) satisfying

the following relations ( Goldberg (1992))

T∗(x3)A0(x3)T(x3) = I,T∗(x3)A3(x3)T(x3) = D(x3), (5.259)

where I is the identity matrix, T∗(x3) is the transposed matrix to T(x3).

Since A0(x3) is the symmetric and positive definite matrix and we can find a matrix
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S(x3) such that S2 = A0. S(x3) is denoted as A1/2
0 (x3). The inverse matrix to A1/2

0 (x3)

is denoted as A−1/2
0 (x3), i.e. A−1/2

0 (x3) = (A1/2
0 )−1(x3). There are the following

properties of A−1/2
0 (x3)

A−1/2
0 (x3) = P(x3)S−1/2(x3)P∗(x3), (5.260)

where P(x3) is an orthogonal matrix and S(x3) is a diagonal matrix. The diagonal

element of S(x3) are the eigenvalues of A0(x3) and the columns of P(x3) are the

corresponding eigenvectors. Using the facts we have

A1/2
0 (x3) = P(x3)S1/2(x3)P−1(x3).

Let us consider the matrix A−1/2
0 (x3)A3(x3)A

−1/2
0 (x3). Using the symmetric property

we can write

A−1/2
0 (x3)A3(x3)A

−1/2
0 (x3) = Z(x3)D(x3)Z−1(x3),

where the orthogonal matrix Z(x3) consists of eigenvectors and the diagonal matrix

D(x3) consists of eigenvalues of given matrix. From the last equality we have

Z−1(x3)A
−1/2
0 (x3)A3(x3)A

−1/2
0 (x3)Z(x3) = D(x3).

For T(x3)=A−1/2
0 (x3)Z(x3), we can say that there exists the matrix T such that (5.259)

are satisfied.

Properties of matrices A0, D, T:

Property 1. Let a0 =max{ρ0,c0,L0}. Then for x3 ∈ (−∞,∞) and every nonzero vector

η ∈ R15 < A0(x3)η,η >≥ a0|η|2.
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Proof of property 1. Proof of property 1 follows from assumptions 1-3.

Property 2. Let x3 ∈ R and A−1/2
0 be defined in (5.260). Then

∥ A−1/2
0 ∥≤∥ S−1/2 ∥≤ 1

√
a0

, (5.261)

where

∥ A0 ∥ = max
i,k=1,...,15, x3∈(−∞,∞)

| (A0)i,k(x3) | . (5.262)

Proof of property 2. If v j(x3), j = 1,2, ...,15, are eigenfunctions of A0(x3) and

λ j, j = 1,2, ...,15, are corresponding eigenvalues then

(A0) j(x3)v j(x3) = λ j(x3)v j(x3).

And using property 1 we have

< (A0) j(x3)v j(x3),v j(x3)>≥ a0|v j(x3)|2, j = 1,2, ...,15,

and

λ j(x3)|v j(x3)|2 ≥ a0|v j(x3)|2, j = 1,2, ...,15,

1√
λ j(x3)

≤ 1
√

a0
, j = 1,2, ...,15.

and so

∥ A−1/2
0 ∥≤∥ S−1/2 ∥≤ 1

√
a0

. (5.263)
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Property 3. If x3 ∈ R and D(x3) is defined by (5.259). Then

∥ D ∥≤ a3

a0
,

where ∥ . ∥ is defined by (5.262).

Proof of property 3. Since A0 is the symmetric and positive definite matrix and A3 is

the symmetric matrix we have

Z−1(x3)A
−1/2
0 (x3)A3(x3)A

−1/2
0 (x3)Z(x3) = D(x3).

From assumption 4 we have

∥ A3 ∥≤ a3.

And

∥ D ∥ ≤ ∥ Z−1 ∥∥ A−1/2
0 ∥∥ A3 ∥∥ A−1/2

0 ∥∥ Z ∥,

≤ 1.
1

√
a0

.a3.
1

√
a0

.1 ≤ a3

a0
.

Property 4. If x3 ∈ R and T(x3) is defined by (5.259). Then

∥ T ∥≤ 1
√

a0
,

where ∥ . ∥ is defined by (5.262).

Proof of property 4. Using T(x3) = A−1/2
0 (x3)Z(x3) we have

∥ T ∥ ≤ ∥ A−1/2
0 ∥∥ Z ∥

≤ 1
√

a0
.1 ≤ 1

√
a0

.
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5.4 IVP (5.256)-(5.257) in terms of the Fourier transform and its reduction to a

vector integral equation

In this section IVP (5.256)-(5.257) is written in terms of the Fourier images with

respect to the space variables x1,x2, we denote FIVP. We show that FIVP is equivalent

to a second kind vector integral equation of Volterra type. Properties of this vector

integral equation are described. This FIVP consists of a system of fifteen partial

differential equations with two independent variables x3, t. The two-dimensional

Fourier transform parameter ν = (ν1,ν2) ∈ R2 is appeared in the obtained system. The

principal part of this system contains function-coefficients depending on x3.

5.4.1 IVP (5.256)-(5.257) in terms of the Fourier transform

Let components of vector functions Ṽ(ν,x3, t) and F̃(ν,x3, t) be defined by

Ṽ j(ν,x3, t) = Fx1,x2[V j](ν,x3, t), F̃ j(ν,x3, t) = Fx1,x2 [F j](ν,x3, t),

j = 1,2, ...,15, ν = (ν1,ν2) ∈ R2,

where Fx1,x2 is the Fourier transform with respect to x1,x2, i.e.

Fx1,x2[V](ν,x3, t) =
∞∫

−∞

∞∫
−∞

V(x, t)ei(x1ν1+x2ν2)dx1dx2, i2 =−1.

Lemma 5.5. The IVP (5.256)-(5.257) can be written as

A0(x3)
∂Ṽ
∂t

+A3(x3)
∂Ṽ
∂x3

= B(ν,x3)Ṽ−Q(x3)Ṽ+ F̃(ν,x3, t), (5.264)

Ṽ(ν,x3, t) |t=0= Ṽ0(ν,x3), ν ∈ R2, x3 ∈ R, t ∈ R, (5.265)
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where B(ν,x3) = i(ν1A1(x3) + ν2A2(x3)), Ṽ(ν,x3, t) and F̃(ν,x3, t) are the Fourier

images of V(x, t) and F(x, t) with respect to x1,x2, respectively.

Proof. Applying the operator Fx1,x2 to (5.256)-(5.257) we can write the problem

(5.256)-(5.257) in terms of the Fourier image Ṽ(ν,x3, t) as follows

A0
∂Ṽ
∂t

+A3
∂Ṽ
∂x3

− i(ν1A1 +ν2A2)Ṽ+QṼ = F̃(ν,x3, t),

Ṽ(ν1,ν2,x3, t) |t=0= Ṽ0(ν,x3), x3 ∈ R, (ν1,ν2) ∈ R2, t ∈ R.

Lemma 5.6. The IVP (5.264)-(5.265) can be written as

∂W̃
∂t

+D(x3)
∂W̃
∂x3

= B(ν,x3)W̃+ F̄(ν,x3, t), (5.266)

W̃(ν,x3, t) |t=0= W̃0(ν,x3), ν ∈ R2, x3 ∈ R, t ∈ R, (5.267)

where

B(ν,x3) = T∗(x3)B(ν,x3)T(x3)−T∗(x3)A3(x3)
dT
dx3

(x3)

− T∗(x3)Q(x3)T(x3), (5.268)

F̄(ν,x3, t) = T∗(x3)F̃(ν,x3, t), W̃0(ν,x3) = T−1(x3)Ṽ0(ν,x3).

And T(x3), D(x3) are defined by (5.259).

Proof. Using the following transformation in (5.264)

Ṽ(ν,x3, t) = T(x3)W̃(ν,x3, t)
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we have

A0T
∂W̃
∂t

+A3T
∂W̃
∂x3

+A3
dT
dx3

W̃ = BTW̃−QTW̃+ F̃.

Multiplying the above system by T∗ and using relations (5.259)

∂W̃
∂t

+D
∂W̃
∂x3

=−T∗A3
dT
dx3

W̃+T∗BTW̃−T∗QTW̃+T∗F̃.

Now let us consider the initial condition (5.265)

T(x3)W̃(ν,x3, t) |t=0 = Ṽ0(ν,x3),

W̃(ν,x3, t) |t=0 = T−1(x3)Ṽ0(ν,x3).

5.4.2 Construction of characteristics for ∂u(x,t)
∂t +d(x)∂u(x,t)

∂x = f (x, t)

Let T,M be arbitrary positive numbers; ∆(M,T ) be defined by (5.258). Let us

consider the following partial differential equation

∂u(x, t)
∂t

+d(x)
∂u(x, t)

∂x
= f (x, t), (x, t) ∈ ∆(M,T ). (5.269)

Here d(x) ∈C(−∞,∞), | d(x) |≤ M for all x ∈ R, d(x) ∈C2([−MT,MT ]).

The partial differential equation (5.269) can be written as

∂u(ξ,τ)
∂τ

+d(ξ)
∂u(ξ,τ)

∂ξ
= f (ξ,τ).
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And characteristics equations are

d
dτ

ξ(τ) = d(ξ(τ)), τ ∈ [0, t], (5.270)

ξ(τ) |τ=t = x. (5.271)

IVP (5.270)-(5.271) can be written as

ξ(τ;x, t) = x+
∫ τ

t
d(ξ(η;x, t))dη. (5.272)

Applying method of successive approximations to the above integral equation we

have

ξ0(τ;x, t) = x,

ξn(τ;x, t) = x+
∫ τ

t
d(ξn−1(η;x, t))dη. (5.273)

Lemma 5.7. Let T,M be arbitrary positive numbers; ∆(M,T ) be defined by (5.258);

(x, t) be fixed point from ∆(M,T ); ξn(τ;x, t) be functions defined by (5.273). Then the

values of ξn(τ;x, t) satisfies

1.

ξn(τ;x, t) ∈ [x−M(t − τ),x+M(t − τ)]⊂ [−MT,MT ] f or 0 ≤ τ ≤ t ≤ T. (5.274)

2. There exits a positive constant K = K(M,T ) such that

| ξn+1(τ;x, t)−ξn(τ;x, t) |≤ K
∫ t

τ
| ξn(η;x, t)−ξn−1(η;x, t) | dη. (5.275)

Proof. 1. From (5.273) we have

| ξn(τ;x, t)− x |≤
∫ t

τ
| d(ξn−1(η;x, t)) | dη ≤ M(t − τ).
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From the last inequality

x−M(t − τ)≤ ξn(τ)≤ x+M(t − τ).

Now, we will show [x−M(t − τ),x+M(t − τ)]⊂ [−MT,MT ]. From

∆(M,T ) = {(x, t); 0 ≤ t ≤ T, −M(T − t)≤ x ≤ M(T − t)}

we can write

x+M(t − τ)≤ M(T − t)+M(t − τ)≤ MT −Mτ ≤ MT.

Similarly

x−M(t − τ)≥−M(T − t)−M(t − τ)≥−MT +Mτ ≥−MT.

So

[x−M(t − τ),x+M(t − τ)]⊂ [−MT,MT ].

2.

From (5.273) we have

ξn+1(τ;x, t)−ξn(τ;x, t) =
∫ τ

t
{d(ξn(η;x, t))−d(ξn−1(η;x, t))}dη. (5.276)

Using the following relation

d(z)−d(y) =
∫ z

y
d′(s)ds, [y,z]⊂ [−MT,MT ], (5.277)
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(5.276) can be written as

ξn+1(τ;x, t)−ξn(τ;x, t) =
∫ τ

t

∫ ξn(η;x,t)

ξn−1(η;x,t)
d′(s)dsdη.

| ξn+1(τ;x, t)−ξn(τ;x, t) | ≤
∫ t

τ
|
∫ ξn(η;x,t)

ξn−1(η;x,t)
d′(s)ds | dη

≤
∫ t

τ
K |

∫ ξn(η;x,t)

ξn−1(η;x,t)
ds | dη

≤ K
∫ t

τ
| ξn−1(η;x, t)−ξn(η;x, t) | dη.

Lemma 5.8. Let us consider the following Neumann series

ξ0(τ;x, t)+
∞

∑
n=0

{ξn+1(τ;x, t)−ξn(τ;x, t)}. (5.278)

The series (5.278) uniformly converges to a continuous function ξ(τ;x, t)∈C([0, t]) for

any (x, t) ∈ ∆(M,T ).

Proof. The partial sum of the series (5.278) is

SN(τ;x, t) = ξ0(τ;x, t)+
N−1

∑
n=0

{ξn+1(τ;x, t)−ξn(τ;x, t)}= ξN(τ;x, t). (5.279)

Let us denote

z0(τ;x, t) = x

zn+1(τ;x, t) = ξn+1(τ;x, t)−ξn(τ;x, t). (5.280)
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From (5.273)

ξ1(τ;x, t) = x+
∫ τ

t
d(ξ0(τ;x, t))dτ

ξ1(τ;x, t)− x =
∫ τ

t
d(ξ0(τ))dτ.

From (5.280)

| z1(τ;x, t) | = | ξ1(τ;x, t)−ξ0(τ;x, t) |≤| ξ1(τ)− x |≤
∫ t

τ
| d(ξ0(τ)) | dτ

≤
∫ t

τ
Mdτ ≤ M(t − τ)≤ MT, 0 ≤ τ ≤ t ≤ T.

Using (5.275) we can write

| zn+1(τ;x, t) |≤ K
∫ t

τ
| zn(η;x, t) | dη. (5.281)

For n = 1

| z2(τ;x, t) | ≤ K
∫ t

τ
| z1(η;x, t) | dη

≤ K
∫ t

τ
M(t −η)dη = KM

(t − τ)2

2!
.

And we have

| zn+1(τ;x, t) |≤ M
K
(KT )n+1

(n+1)!
.

The series
∞

∑
k=0

(KT )k+1

(k+1)!

is convergent to exp(KT ). And from (5.273) ξn(τ;x, t) are continuous functions with
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respect to τ for any (x, t) ∈ ∆(M,T ). By Weierstrass theorem (Apostol (1967))

∞

∑
k=0

zk(τ;x, t)

uniformly converges to continuous function ξ(τ;x, t) ∈ C([0, t]) for any (x, t) ∈

∆(M,T ). Consequently, from (5.279) the series (5.278) uniformly converges to a

continuous function ξ(τ;x, t) ∈C([0, t]) for any (x, t) ∈ ∆(M,T ).

Lemma 5.9. Let T,M be arbitrary positive numbers; ∆(M,T ) be defined by (5.258);

(x, t) be fixed point from ∆(M,T ); ξn(τ;x, t) ∈ C([0, t]) be a sequence of functions

defined by (5.273); ξn(τ;x, t) be uniformly converges to a continuous function

ξ(τ;x, t) ∈C([0, t]) for any (x, t) ∈ ∆(M,T ); d(x) be a continuous function in R. Then

d(ξn(τ;x, t)) uniformly converges to a continuous function d(ξ(τ;x, t)).

Proof. If ξn(τ) uniformly converges to a continuous function ξ(τ) then for ∀ ε > 0,

∃ N = N(ε): ∀ k ≥ N sup
η∈[0,t]

| ξk(η)−ξ(η) |< ε
K . From (5.277) we can write

| d(ξk(η))−d(ξ(η)) |=|
∫ ξ(η)

ξk(η)
d′(s)ds |≤ K

∫ ξ(η)

ξk(η)
ds ≤ K | ξk(η)−ξ(η) | .

And

sup
η∈[0,t]

| d(ξk(η))−d(ξ(η)) |≤ K sup
η∈[0,t]

| ξk(η)−ξ(η) |< ε.

Theorem 5.10. Let T,M be arbitrary positive numbers; ∆(M,T ) be defined by (5.258);

(x, t) be fixed point from ∆(M,T ). Then ξ(τ;x, t) ∈C([0, t]) is a unique solution of IVP

(5.270)-(5.271).

Proof. From lemma 5.8 the sequence of functions ξn(τ;x, t) defined by (5.273)

uniformly converges to a function ξ(τ;x, t) ∈ C([0, t]) for any (x, t) ∈ ∆(M,T ). Now,
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we will show that function ξ(τ;x, t) is a solution of IVP (5.270)-(5.271). Taking limit

as n → ∞ in (5.273) we have

lim
n→∞

ξn(τ;x, t) = x+ lim
n→∞

∫ τ

t
d(ξn−1(η;x, t))dη.

From lemma (5.8)

ξ(τ;x, t) = x+ lim
n→∞

∫ τ

t
d(ξn−1(η;x, t))dη.

From the second Weierstrass theorem (Apostol (1967)) and lemma (5.9)

ξ(τ;x, t) = x+
∫ τ

t
lim
n→∞

d(ξn−1(η;x, t))dη = x+
∫ τ

t
d(ξ(η;x, t))dη.

To show uniqueness let ξ1(τ;x, t) and ξ2(τ;x, t) be two solutions of (5.270)-(5.271) and

ξ̄(τ;x, t) = ξ1(τ;x, t)−ξ2(τ;x, t) then ξ̄(τ;x, t) satisfies the following integral equality

ξ̄(τ;x, t) =
∫ τ

t
(d(ξ1(η;x, t))−d(ξ2(η;x, t)))dη, (x, t) ∈ ∆(M,T ), 0 ≤ τ ≤ t ≤ T.

And we have

| ξ̄(τ;x, t) | ≤
∫ t

τ
| d(ξ1(η;x, t))−d(ξ2(η;x, t)) | dη ≤

∫ t

τ
|
∫ ξ1

ξ2

d′(y)dy | dη

≤ K
∫ t

τ
| ξ1(η;x, t)−ξ2(η;x, t) | dη

≤ K
∫ t

0
| ξ̄(η;x, t) | dη. (5.282)

Applying Grownwall’s lemma (Nagle & Saff & Snider (2005)) to (5.282) we find

ξ1(τ;x, t)≡ ξ2(τ;x, t), (x, t) ∈ ∆(M,T ), 0 ≤ τ ≤ t ≤ T.

Lemma 5.11. Let T,M be arbitrary positive numbers; ∆(M,T ) be defined by (5.258);
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(x, t) be fixed point from ∆(M,T ); ξ(τ;x, t) be the solution of IVP (5.270)-(5.271). Then

ξ(τ;x, t) ∈C1(∆(M,T );C([0, t])).

Proof. Let us consider integral equation (5.272). Taking derivative with respect to x

we obtain

d
dx

ξ(τ;x, t) = 1+
∫ τ

t
d′(ξ(η;x, t))

d
dx

ξ(η;x, t)dη. (5.283)

Let us denote ϕ(τ;x, t)≡ d
dxξ(τ;x, t). Let us consider the following equality

ϕ(τ;x+∆x, t +∆t)−ϕ(τ;x, t) =
τ∫

t+∆t

{d′(ξ(η;x+∆x, t +∆t))ϕ(η,x+∆x, t +∆t)

− d′(ξ(η;x, t))ϕ(η,x, t)}dη+

t∫
t+∆t

d′(ξ(η;x, t))ϕ(η,x, t)dη.

From the integral equation (5.283) and d(x) ∈ C2[−MT,MT ] we can say that there

exits positive constant K1 such that

| ϕ(τ;x, t) |≤ K1, ∀(x, t) ∈ ∆(M,T ), 0 ≤ τ ≤ t.

Then we can write

| ϕ(τ;x+∆x, t +∆t)−ϕ(τ;x, t) |≤ K
t+∆t∫
τ

| ϕ(η,x+∆x, t +∆t)−ϕ(η,x, t) | dη

+

t+∆t∫
τ

| d′(η,x+∆x, t +∆t)−d′(η,x, t) || ϕ(τ;x+∆x, t +∆t) | dη+K1K∆t

From the Grownwall’s Lemma

| ϕ(τ;x+∆x, t +∆t)−ϕ(τ;x, t) |≤ (K1K∆t +
t+∆t∫
τ

| d′(η,x+∆x, t +∆t)−d′(η,x, t) |

. | ϕ(τ;x+∆x, t +∆t) | dη).expK(t +∆t − τ).
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If ∆x and ∆t approaches to zero then | ϕ(τ;x+∆x, t +∆t)− ϕ(τ;x, t) | approaches to

zero. This means that ϕ(τ;x, t) is a continuous function with respect to x and t for

(x, t) ∈ ∆(M,T ). And we have ξ(τ;x, t) ∈C1
x (∆(M,T );C([0, t])).

Now, we will show that the solution of IVP (5.270)-(5.271) from the space

C1
t (∆(M,T );C([0, t])). Taking derivative with respect to t in (5.272) we obtain

ς(τ;x, t) =
∫ τ

t
d′(ξ(η;x, t))ς(η;x, t)dη−d(ξ(t;x, t)), (5.284)

where ς(τ;x, t)≡ d
dt ξ(τ;x, t).

ς(τ;x+∆x, t +∆t)− ς(τ;x, t) =
τ∫

t+∆t

{d′(ξ(η;x+∆x, t +∆t))ς(η,x+∆x, t +∆t)

− d′(ξ(η;x, t))ς(η,x, t)}dη+

t∫
t+∆t

d′(ξ(η;x, t))ς(η,x, t)dη

+ d(ξ(t;x, t))−d(ξ(t +∆t;x+∆x, t +∆t)).

And we can write

| ς(τ;x+∆x, t +∆t)− ς(τ;x, t) |≤ K1

t+∆t∫
τ

| d′(ξ(η;x+∆x, t +∆t))−d′(ξ(η; , t)) | dη

+ K
t+∆t∫
τ

| ς(η;x+∆x, t +∆t)− ς(η;x, t) | dη+K1K∆t

+ | d(ξ(t;x+, t))−d(ξ(t +∆t;x+∆x, t +∆t)) | .

Applying the Grownwall’s Lemma and taking limit as ∆x and ∆t approaches to zero

then we find | ς(τ;x + ∆x, t + ∆t)− ς(τ;x, t) | approaches to zero. This means that

ς(τ;x, t) is a continuous function with respect to x and t for (x, t) ∈ ∆(M,T ). And we

have ξ(τ;x, t) ∈C1
t (∆(M,T );C([0, t])). This complete proof of the lemma.
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5.4.3 Reduction of IVP (5.266)-(5.267) to an equivalent vector integral equation

Lemma 5.12. Let T be a given positive number; ∆(M,T ) be defined by (5.258). IVP

(5.266)-(5.267) can be written the following Volterra type integral equation

W̃ j(ν,x3, t) = G j(ν,x3, t)+
∫ t

0
(K jW̃)(ν,φ j(τ;x3, t),τ)dτ, j = 1,2, ...,15, (5.285)

where φ j(τ;x3, t), j = 1,2, ...,15, are characteristics of IVP (5.266)-(5.267),

G j(ν,x3, t) = W̃(ν,φ j(0;x3, t),0)+
∫ t

0
F̄ j(ν,φ j(τ;x3, t),τ)dτ, j = 1,2, ...,15,(5.286)

and operator K j, j = 1,2, ...,15, is

(K jW̃)(ν,x3, t,τ) = [B(ν,φ j(τ;x3, t))W̃(ν,φ j(τ;x3, t),τ)] j. (5.287)

(5.285) can be written as

W̃(ν,x3, t) = G(ν,x3, t)+
∫ t

0
(KW̃)(ν,x3, t,τ)dτ, (5.288)

K = (K1,K2, ...,K15), G = (G1,G2, ...,G15).

Proof. Applying the method of characteristics to IVP (5.266)-(5.267) characteristic

equation of (5.266) is

dφ j(τ;x3, t)
dτ

= D j(φ j(τ;x3, t)), j = 1,2, ...,15,

φ j(τ;x3, t) |τ=t = x3. (5.289)

From lemma 5.11 (5.289) has a solution from C1(∆(M,T );C([0, t])). (5.266) along of
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the characteristics may be written in the form

∂W̃ j(ν,φ j,τ)
∂τ

= (B(ν,φ j)W̃(ν,φ j,τ)) j + F̄ j(ν,φ j,τ)

integrating from τ = 0 to τ = t

W̃ j(ν,x3, t) = W̃ j(ν,φ j(0;x3, t),0)+
∫ t

0
{[B(ν,φ j(τ;x3, t))W̃(ν,φ j(τ;x3, t),τ)] j

+ F̄ j(ν,φ j(τ;x3, t),τ)}dτ, j = 1,2, ...,15,

where

W̃ j(ν,φ j(0;x3, t),0) = (T−1(φ j(0;x3, t))Ṽ0(ν,φ j(0;x3, t))) j j = 1,2, ...,15.

5.4.4 Properties of the vector integral equation (5.288)

In this section the properties of the inhomogeneous term and the kernel of (5.288)

are described. These properties will be used for solving (5.288). We state these

properties in the form of the following lemmas.

Lemma 5.13. Let T be a fixed positive number, components of G = (G1,G2, ...,G15)

be defined by (5.286). Then under assumptions 1-6 the functions G j(ν,x3, t), j =

1,2, ...,15 belong the space C(R2;C1(∆(M,T ))).

Proof. From the assumptions 5-6 T−1(x3), T∗(x3) ∈C2([−MT,MT ]) and Ṽ0(ν,x3) ∈

C0(R2;C1([−MT,MT ])), F̄(ν,x3, t) ∈ C0(R2;C1([−MT,MT ])). From lemma 5.11

φ j(τ;x3, t) ∈C1(∆(M,T );C([0, t])), j = 1,2, ...,15. Using formula (5.286) we find that

the functions G j(ν,x3, t) ∈C(R2;C1(∆(M,T ))), j = 1,2, ...,15.
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Lemma 5.14. Let T be a fixed positive number and ∆(M,T ) be defined by (5.258).

Suppose that the Assumptions 1-6 are true and the components of the vector operator

K = (K1,K2, ...,K15) are defined by (5.287). Then for any vector function W̃(ν,x3, t)

with continuous components in R2 ×C1(∆(M,T ))

1. K j, j = 1,2, ...,15, is a linear operator and

∫ t

0
(K jW̃)(ν,x3, t,τ)dτ, j = 1,2, ...,15 (5.290)

belongs to the space C(R2;C1(∆(M,T )));

2.for any positive number Ω the following inequalities are satisfied

|
∫ t

0
(K jW̃)(ν,x3, t,τ)dτ |≤ B0

∫ t

0
∥ W̃ ∥ (ν,τ,M,T )dτ, j = 1,2, ...,15; (5.291)

where

∥ W̃ ∥ (ν,τ,M,T ) = max
k, j=1,2,...,15, 0≤η≤τ, (φ j,τ)∈∆(M,T )

| W̃k(ν,φ j,η) |,

(x3, t)∈∆(M,T ), | ν |≤Ω, and B0 is a positive number depending on values of T,M,Ω.

Proof. From assumptions 5-6 the matrix B(ν,x3) has continuous components for

(ν,x3) ∈ R2 ×C1([−MT,MT ]). From lemma 5.11 φ j(τ;x3, t) ∈C1(∆(M,T );C([0, t])),

j = 1,2, ...,15. φ j(τ;x3, t)⊂ [−MT,MT ] for any (x3, t) ∈ ∆(M,T ) and 0 ≤ τ ≤ t ≤ T .

Using the equalities

(K jW̃)(ν,x3, t,τ) = [B(ν,φ j(τ;x3, t))W̃(ν,φ j(τ;x3, t),τ)] j,

B(ν,x3) = iT∗(x3)(ν1A1(x3)+ν2A2(x3))T(x3)−T∗(x3)A3(x3)
dT
dx3

(x3)

− T∗(x3)Q(x3)T(x3), (5.292)



208

linearity of the operator K j is satisfied.

Let (x3, t) be an arbitrary point from ∆(M,T ); the components of the matrices

T(x3), A3(x3) are twice continuously differentiable functions for x3 ∈ [−MT,MT ];

the components of the matrices dT(x3)
dx3

, A1(x3), A2(x3) and Q(x3) are continuously

differentiable functions for x3 ∈ [−MT,MT ]. From lemma 5.11 φ j(τ;x3, t) ∈

C1(∆(M,T );C([0, t])), j = 1,2, ...,15. And φ j(τ;x3, t) ⊂ [−MT,MT ] for any (x3, t) ∈

∆(M,T ) and 0 ≤ τ ≤ t ≤ T . Using formulae (5.292) for any vector functions

W̃ = (W̃1, ...,W̃15) with components W̃ j(ν,x3, t) in C(R2×C1(∆(M,T ))) we find that

(5.290) is from C(R2;C1(∆(M,T ))).

From assumptions 5-6 we know Al(x3) ∈ C1([−MT,MT ]), l = 1,2; T(x3) ∈

C2([−MT,MT ]); Q(x3) ∈ C1([−MT,MT ]). From lemma 5.11 we have φ j(τ;x3, t) ∈

C1(∆(M,T );C([0, t])); φ j(τ;x3, t)⊂ [−MT,MT ] for any (x3, t) ∈ ∆(M,T ) and 0 ≤ τ ≤

t ≤ T . Using the facts we find positive constants a1(M,T ), a2(M,T ), q(M,T ), c(M,T )

such that

max
k=1,2,...,15, φ j∈[−MT,MT ]

| (Al) jk(φ j) |≤ al(M,T ); l = 1,2; j = 1, ...,15,

max
k=1,2,...,15, φ j∈[−MT,MT ]

|
dTjk(ξ)

dξ
|ξ=φ j(τ;x3,t)≤ c; j = 1, ...,15,

max
k=1,2,...,15, φ j∈[−MT,MT ]

| Q jk(φ j) |≤ q(M,T ); j = 1, ...,15. (5.293)



209

Using (5.292) and the inequalities (5.293) we can obtain the following inequality

|
∫ t

0
(K jW̃)(ν,x3, t,τ)dτ |≤

∫ t

0
| [B(ν,φ j(τ;x3, t))W̃(ν,φ j(τ;x3, t),τ)] j | dτ,

=
∫ t

0
| [B j,1(ν,φ j(τ;x3, t))W̃1(ν,φ j(τ;x3, t),τ)

+ B j,2(ν,φ j(τ;x3, t))W̃2(ν,φ j(τ;x3, t),τ)+ ...

+ B j,15(ν,φ j(τ;x3, t))W̃15(ν,φ j(τ;x3, t),τ)] | dτ,

≤ 15
∫ t

0
max

k=1,2,...,15, φ j∈[−MT,MT ]
| B jk(φ j) |∥ W̃ ∥ (ν,τ,M,T )dτ,

≤ B0(M,T,Ω)
∫ t

0
∥ W̃ ∥ (ν,τ,M,T )dτ,

j = 1,2, ...,15, (x3, t) ∈ ∆(M,T ), 0 ≤ τ ≤ T, | ν |≤ Ω.

Here ξ(τ;x3, t) = φ j(τ;x3, t), j = 1,2, ...15, for all (x3, t) ∈ ∆(M,T ), | ν |≤ Ω and

B0(M,T,Ω) = 15{| ν1 |
a1

a0
+ | ν2 |

a2

a0
+

a3c
√

a0
+

q
a0

}.

5.5 Solving the integral equation (5.288) by successive approximations

Let T be a fixed positive number, ∆(M,T ) be defined by (5.258). In this section we

solve the integral equation (5.288) by the method of successive approximations and

then show that this solution is unique in the class of vector functions with components

(5.285) from C(R2,C1(∆(M,T ))).



210

5.5.1 Solving integral equation (5.285) by successive approximations

Let us consider integral equation (5.285) for ν ∈ R2, (x3, t) ∈ ∆(M,T ). For finding

a solution of this equation we apply the following successive approximations for j =

1,2, ...,15

W̃ j
0
(ν,x3, t) = G j(ν,x3, t), (5.294)

W̃ j
(p)

(ν,x3, t) =
∫ t

0
(K jW̃(p−1))(ν,φ j(τ;x3, t),τ)dτ p = 1,2, .... (5.295)

Let Ω be an arbitrary positive number. We will show that for | ν |≤Ω, (x3, t)∈ ∆(M,T )

the series
∞
∑

k=0
W̃(k)(ν,x3, t) = (

∞
∑

k=0
W̃1

(k)
(ν,x3, t), ...,

∞
∑

k=0
W̃15

(k)
(ν,x3, t)) is uniformly

convergent to a vector function W̃(ν,x3, t) = (W̃1(ν,x3, t), ...,W̃15(ν,x3, t)) and this

vector function W̃(ν,x3, t) is a solution of (5.288). Indeed, we find from (5.294)

and Lemmas (5.13)-(5.14) that W̃k(ν,x3, t), k = 0,1, ... are vector functions with

components W̃ j
(k)
(ν,x3, t)∈C(R2;C1(∆(M,T ))), j = 1, ...,15, k = 0,1, ... for | ν |≤Ω,

(x3, t) ∈ ∆(M,T ) and

| W̃ j
(k)
(ν,x3, t) |≤ B0

∫ t

0
∥ W̃(k−1) ∥ (ν,τ,M,T )dτ, t ∈ [0,T ], (5.296)

where ∥ . ∥ (ν,τ,M,T ) and B0 are defined in Lemma (5.14).

It follows from (5.296) that

| W̃ j
(k)
(ν,x3, t) |≤

(B0T )k

k!
∥ G ∥ (ν, t,M,T ), k = 0,1, ..., | ν |≤ Ω, (5.297)

where

∥ G ∥ (ν, t,M,T ) = max
j=1,...,15

max
0≤τ≤t, (x3,t)∈∆(M,T )

| G j(ν,x3,τ) | .
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The uniform convergence of
∞
∑

k=0
W̃ j

k
(ν,x3, t) to a continuous function W̃ j(ν,x3, t)

for | ν |≤ Ω, (x3, t) ∈ ∆(M,T ) follows from inequality (5.297) and the first Weierstrass

theorem ( Apostol (1967)). Let us consider the vector function W̃(ν,x3, t) =

(W̃1(ν,x3, t), ...,W̃15(ν,x3, t)) for | ν |≤ Ω, (x3, t) ∈ ∆(M,T ). We show below that the

vector function W̃(ν,x3, t) ∈ C(R2;C1(∆(M,T ))) is a solution of (5.288). Summing

the Eq.(5.294) from 1 to N we have

N

∑
k=1

W̃(k)(ν,x3, t) =
N−1

∑
k=0

∫ t

0
(KW̃(k))(ν,x3, t,τ)dτ, (5.298)

where
∞

∑
k=0

W̃(k)(ν,x3, t) = (
∞

∑
k=0

W̃1
(k)
(ν,x3, t), ...,

∞

∑
k=0

W̃15
(k)
(ν,x3, t)).

Adding both sides G(ν,x3, t) of Eq.(5.298) we have

N

∑
k=0

W̃(k)(ν,x3, t) = G(ν,x3, t)+
∫ t

0

N−1

∑
k=0

(KW̃(k))(ν,x3, t,τ)dτ. (5.299)

Approaching N the infinity and using the second Weierstrass theorem ( Apostol (1967))

we find that W̃(ν,x3, t) satisfies (5.288) for | ν |≤ Ω, (x3, t) ∈ ∆(M,T ). Since Ω is an

arbitrary positive number we find that W̃(ν,x3, t) ∈ C(R2;C1(∆(M,T ))) is a solution

of (5.288) for ν ∈ R2, (x3, t) ∈ ∆(M,T ).

5.5.2 Uniqueness of solution

We prove here that a solution W̃(ν,x3, t) of (5.288) is unique in the class of

vector functions with components W̃ j(ν,x3, t) ∈ C(R2,C1(∆(M,T ))), j = 1, ...,15.

Indeed, let W̃(ν,x3, t) and W̃∗(ν,x3, t) be two solutions of (5.288) corresponding to the

same vector function G(ν,x3, t) and ˜̂W(ν,x3, t) = W̃(ν,x3, t)−W̃∗(ν,x3, t) for ν ∈ R2,

(x3, t) ∈ ∆(M,T ).
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The vector function ˜̂W(ν,x3, t) satisfies the following operator integral equality

˜̂W(ν,x3, t) =
∫ t

0
(K˜̂W)(ν,x3, t,τ)dτ, ν ∈ R2, (x3, t) ∈ ∆(M,T ). (5.300)

Let Ω be an arbitrary positive number. Using the Lemma 5.14 and (5.300) we have

∥ ˜̂W ∥ (ν, t,M,T )≤ B0

∫ t

0
∥ ˜̂W ∥ (ν,τ,M,T )dτ, | ν |≤ Ω, t ∈ [0,T ], (5.301)

where ∥ . ∥ (ν,τ,M,T ) and B0 are defined in Lemma (5.14).

Applying Grownwall’s lemma (Nagle & Saff & Snider (2005)) to (5.301) we have

∥ ˜̂W ∥ (ν, t,M,T )≤ 0, | ν |≤ Ω, t ∈ [0,T ]. (5.302)

Since Ω is an arbitrary and ˜̂W(ν,x3, t) is continuous we find from (5.302)

˜̂W(ν,x3, t)≡ 0, ν ∈ R2, (x3, t) ∈ ∆(M,T ).

This means that W̃(ν,x3, t)≡ W̃∗(ν,x3, t) for ν ∈ R2, (x3, t) ∈ ∆(M,T ).

5.6 Solving IVP for EMES (5.226)-(5.233)

In this section we describe a class of functions where this inverse Fourier transform

works correctly (similar reasoning in Yakhno & Sevimlican (2010)). We will use the

following notions and notations. For the exponent α = (α1,α2) with α j ∈ 0,1,2, ...

and | α |= α1 +α2, the partial derivatives of higher order

∂|α|

∂νl
W̃ j(ν,x3, t), j = 1, ...,15, l = 1,2,
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will be denoted by

Dα
ν W̃ j(ν,x3, t).

For vector functions W̃(ν,x3, t) = (W̃1(ν,x3, t), ...,W̃15(ν,x3, t)) and each α we define

Dα
ν W̃(ν,x3, t) by

Dα
ν W̃ = (Dα

ν W̃1, ...,Dα
ν W̃15).

The Paley-Wiener space is denoted by PW . C(PW (R2);C1(∆(M,T ))) is a class of

all continuous mapping of PW (R2) into the class C1(∆(M,T )).

Theorem 5.15. Let T be a positive number; f̃ = ( f̃1, f̃2, f̃3), J̃ = (J̃1, J̃2, J̃3), γ̃ =

(γ̃1, γ̃2, γ̃3) and ψ̃ = (ψ̃1, ψ̃2, ψ̃3) be the Fourier transform with respect to x1,x2 of the

inhomogenous term f, J, γ and ψ in (5.226)-(5.233) such that for each α

Dα
ν f̃ j, Dα

ν J̃ j ∈C0(R2;C1(∆(M,T ))), j = 1,2,3.

Dα
ν ψ̃ j ∈C0(R2;C1(∆(M,T ))), Dα

ν γ̃ j ∈C0(R2;C2(∆(M,T ))), j = 1,2,3.

Then under Assumptions1-6, there exits a unique generalized solution of IVP

(5.226)-(5.233) such that

u(x, t) ∈ C2(∆(M,T );PW (R2)), E(x, t) ∈C1(∆(M,T );PW (R2)),

H(x, t) ∈ C1(∆(M,T );PW (R2)).

Proof. We note that under hypothesis of the theorem the functions G j(ν,x3, t), j =

1, ...,15, defined by (5.286) for any α satisfy the following conditions

Dα
ν G j(ν,x3, t) ∈C0(R2;C1(∆(M,T ))), j = 1, ...,15. (5.303)

α = (α1,α2), α j ∈ 0,1, ..., ν = (ν1,ν2) ∈ R2, (x3, t) ∈ ∆(M,T ). Applying Dα
ν to the
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vector integral equation (5.288) we obtain for ν ∈ R2, (x3, t) ∈ ∆(M,T )

Dα
ν W̃(ν,x3, t) = Dα

ν G(ν,x3, t)+
∫ t

0
(KDα

ν W̃)(ν,x3, t,τ)dτ. (5.304)

Eq.(5.304) has the same form as (5.288). Using the reasoning of Section 5.5 for any α

we have

Dα
ν W̃(ν,x3, t) ∈C(R2;C1(∆(M,T ))).

Let Ω be an arbitrary positive number. Then using (5.304) and (5.291) for any α

and | ν |≤ Ω we obtain the following inequality

∥ Dα
ν W̃ ∥ (ν, t,M,T )≤∥ Dα

ν G ∥ (ν, t,M,T )+B0

∫ t

0
∥ Dα

ν W̃ ∥ (ν,τ,M,T )dτ,(5.305)

where ∥ . ∥ (ν,τ,M,T ) and B0 are defined in Lemma (5.14). Applying the Grownwall’s

lemma (Nagle & Saff & Snider (2005)) for the inequality (5.305) we find

∥ Dα
ν W̃ ∥ (ν, t,M,T )≤ exp(B0T ) max

|ν|≤Ω
∥ Dα

ν G ∥ (ν, t,M,T ),ν ∈ R2, t ∈ [0,T ].(5.306)

Since Ω is an arbitrary positive number then we find from (5.303), (5.306) that the

solution W̃ (ν,x3, t) of (5.288) satisfies for any α the following property

Dα
ν W̃(ν,x3, t) ∈C0(R2;C1(∆(M,T ))).

So

W̃(ν,x3, t) ∈C∞
0 (R

2;C1(∆(M,T ))).

From the equality

Ṽ(ν,x3, t) = T(x3)W̃(ν,x3, t)

there exits a unique solution of IVP (5.264)-(5.265) such that Ṽ (ν,x3, t) ∈
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C∞
0 (R

2;C1(∆(M,T ))). Applying the inverse Fourier transform with respect to ν1,ν2

to the Ṽ (ν,x3, t) and using the real version of the Paley-Wiener theorem (Reed &

Simon (2005)) we find that V (x, t) = F−1[Ṽ ] is a unique generalized solution of

(5.256)-(5.257) such that V (x, t) ∈C1(∆(M,T );PW (R2)).

Consequently, IVP for EMES (5.226)-(5.233) has a unique generalized solution

such that

u(x, t) ∈ C2(∆(M,T );PW (R2)), E(x, t) ∈C1(∆(M,T );PW (R2)),

H(x, t) ∈ C1(∆(M,T );PW (R2)).

5.7 Concluding Remarks

In this chapter of the thesis an analytic method of solving IVP for linear,

inhomogenous, anisotropic dynamics of electromagnetoelasticity is given. This

method is based on the Fourier transform, successive approximations and Paley-Wiener

theorem. Theorems about existence and uniqueness of the solution are proved.



CHAPTER SIX

CONCLUSION

New methods for the computation of fundamental solutions of differential

equations of elastodynamics and electrodynamics for general anisotropic solids,

crystals, electrically and magnetically anisotropic materials have been developed.

In particular three new analytical methods are developed for computation of

fundamental solution of anisotropic elastodynamics. In the first method dynamical

equations of the motion of homogeneous elastic anisotropic media have been written

in the form of the symmetric hyperbolic system of the first order partial differential

equations. If initial data and inhomogenous terms have finite supports then solutions

of hyperbolic systems have finite supports with respect to space variables for any

fixed time variable. This property is proved in the thesis for the system of anisotropic

elasticity. Using Paley-Wiener theorem we find that the Fourier image of the solutions

with finite supports with respect to space variables are analytic functions with respect

to Fourier parameters. Using the presentation of unknown solution in the form of

a power series with respect to Fourier parameters we can find the recurrence relations

for unknown coefficients of the power series from the considered system of anisotropic

elasticity and initial data. Using these relations we recover all unknown coefficients.

Finally, the inverse Fourier transform is applied for the considered power series for

Fourier image of the solution. We have justified the suggested method using the explicit

formula of the fundamental solution for the isotropic elastic media. The computational

experiments confirm the robustness of our method to produce images of elements of

fundamental solution of symmetric hyperbolic system of elasticity.

In the second method the fundamental solution (FS) of anisotropic elastodynamics is a

matrix whose columns are solutions of motion equations with pulse point forces. The

direction of these forces are basic vectors. The columns of FS are vector functions

with finite supports and their Fourier transforms with respect to space variables are

216
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analytic vector functions. The FSs in terms of wave-vector variables are differentiable

matrix functions without singularities. The time-dependent FSs of electrodynamics

in general anisotropic media in terms of wave-vector variables is derived by matrix

transformations and solutions of some ordinary differential equations depending on 3D

wave-vector variables and the time variable. The computational demonstrate that the

accuracy of values of FSs in terms of wave-vector variables computed by the suggested

method is less then 10−10. The values of FSs in terms of space and time variables are

derived numerically from the values of FS in terms of wave-vector variables and 3D

integration of the inverse Fourier transform. The computational illustrate that integrals

of FSs are found with high accuracy in the case of isotropic (or transversely isotropic)

solids. The computational examples show that the suggested method is applicable

for the computation of all elements of the time-dependent FSs of elastodynamics in

general homogeneous anisotropic solids (trigonal, monoclinic, triclinic) as well as the

computation of the displacement speed, stress components arising from arbitrary force.

The computational examples have confirmed the robustness of the suggested approach.

In the third method a new method of computation of the fundamental solution for

anisotropic elastodynamics is proposed. Applying the Fourier transform with respect

to space variables to system of anisotropic elastodynamic we obtain a system of second

order ordinary differential equations whose coefficients depend on Fourier parameters.

Using the matrix transformations and properties of coefficients the Fourier image of

the fundamental solution is computed. Finally, the fundamental solution is computed

by the inverse Fourier transform to obtained Fourier image. The implementation and

justification of the suggested method have been made by computational experiments

in MATLAB. Computational experiments confirm the robustness of the suggested

method.

The explicit formula of the time-dependent fundamental solution of elastodynamics

in 1D, 2D and 3D QCs has been derived by the matrix transformations, solutions
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of some ordinary differential equations depending on the Fourier parameters and the

inverse Fourier transform. The formula for the FS of elastodynamics in 1D, 2D and 3D

QCs has been presented in the form convenient for computation of the transient phonon

and phason displacement fields. Computational experiment confirms the robustness

of our method for the computation of the time-dependent fundamental solution in

quasicrystals.

A novel efficient method of constructing the time-dependent fundamental solution

(Green’s function of the free space) for electrically and magnetically anisotropic

homogeneous media is developed. This method is based on matrix computations and

the inverse Fourier transform which is done numerically. This method combines in a

rational way analytical techniques and numerical computations.

The visualization of the elastic waves, phonon and phason elastic fields, electric

and magnetic waves in different anisotropic crystals, quasicrystals and electrically and

magnetically anisotropic materials has been obtained. These images are the simulation

of wave propagations arising from directional pulse point forces in homogeneous

elastic crystals and quasicrystals. We have generated images of electric and magnetic

fields components which are a result of the electromagnetic radiations arising from

a pulse dipole with a fixed polarization in different electrically and magnetically

anisotropic homogeneous media. The visualization of wave propagations in general

homogeneous anisotropic materials and solids by modern computer tools allows us to

see and evaluate the dependence between the structure of solids, crystals, quasicrystals,

electrically and magnetically anisotropic materials and the behavior of the waves.

Our method allows users to observe the wave propagations arising from pulse point

sources of the form emδ(x)δ(t) in general anisotropic solids, crsyals, quasicrystals and

electrically and magnetically anisotropic materials.

A new analytical method of finding a solution of the initial value problem (IVP)
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for equations of electromagnetoelasticity (EMES) in a general anisotropic vertically

inhomogenous electromagnetoelastic material has been suggested. This method

consists of the following. The Fourier transform of IVP for EMEs with respect

to lateral variables is obtained. Transformed IVP reduces to a second kind vector

integral equation of the Volterra type. Solving this integral equation by the method of

successive approximations. The inverse Fourier transform with the real Paley-Wiener

theorem to the obtained Fourier images is applied. At the same time a theorem about

the existence of a unique solution of IVP for EME is proved.

The main results of the thesis were published in the following papers:

• Yakhno, V.G., Çerdik Yaslan, H. (2011). Three dimensional elastodynamics of

2D quasicrystals: The derivation of the time-dependent fundamental solution.

Applied Mathematical Modelling 35, 3092-3110.

• Yakhno, V.G., Çerdik Yaslan, H. (2011). Equations of anisotropic

elastodynamics as a symmetric hyperbolic system: Deriving the time-dependent

fundamental solution. Journal of Computational and Applied Mathematics. doi:

10.1016/j.cam.2010.10.048.

• Yakhno, V.G., Çerdik Yaslan, H. (2011). Computation of the time-dependent

fundamental solution for equations of elastodynamics in general anisotropic

media. Computers and Structures. 89, 646-655.

One of the results of this thesis was presented in 14th International Congress on

Computational and Applied Mathematics, September 2009, Antalya.
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CHAPTER

APPENDIX

A.1 Some Facts From Matrix Theory

This section contains some basic facts from matrix theory related with symmetric

and positive-definite matrices, which are used inside the thesis (Goldberg (1992)).

Theorem A.16. Let C be a real, symmetric, positive-definite matrix of dimension m×

m. Then C−1 is a real, symmetric, positive-definite matrix.

Proof. Since C−1C = CC−1 = I, using the symmetry property of C and the rule

(AB)∗ = B∗A∗ we get I = C(C−1)∗. Multiplying both sides of the last equality by

C−1 from left-hand side we get C−1 = (C−1)∗, which implies symmetry property of

C−1.

If λ is an eigenvalue of C, then 1
λ is an eigenvalue of C−1. Since the eigenvalues of

a positive-definite matrix are positive, all eigenvalues of C are positive, which implies

that C−1 has all positive eigenvalues. Hence C−1 is positive-definite.

Theorem A.17. Let C be a real, symmetric, positive-definite matrix of dimension m×

m. Then there exists a real, symmetric, positive-definite matrix M such that C−1 = M2.

Proof. According to Theorem A.16, C−1 is real, symmetric, positive-definite and is

congruent to a diagonal matrix of its eigenvalues. That is, there exists an orthogonal

matrix Q such that

Q∗C−1Q = Λ, Q∗ = Q−1.
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Since C−1 is symmetric and positive-definite, its eigenvalues λi, i = 1,2, . . . ,m are real

and positive. Let Λ
1
2 and M be defined as follows

Λ
1
2 = diag(λ

1
2
i , i = 1,2, . . . ,m), M = QΛ

1
2 Q∗.

Noting that Q is orthogonal we have Q∗Q = I, and therefore

M2 = (QΛ
1
2 Q∗)(QΛ

1
2 Q∗) = QΛQ∗ = C−1.

Clearly, M = QΛ
1
2 Q∗ is positive-definite.

Theorem A.18. Let A j, S be real and symmetric matrices of dimension m×m. Then

the matrix Ã j = SA jS is real and symmetric.

Proof. The proof follows from equalities

Ã∗
j = (SA jS)∗ = S∗(SA j)

∗ = S∗A∗
jS

∗ = SA jS = Ã j.

A.2 Some Existence and Uniqueness Theorems for Symmetric Hyperbolic

Systems

In this section we present the existence and uniqueness theorems for symmetric

hyperbolic systems of the first order. For the statements of these theorems we will use

the following notation. L2(Rn,Rm), Ck(Rn,Rm), Hk(Rn,Rm), k = 0,1, ..., consist of all

vector functions w = (w1,w2, ...,wn) such that w j belongs to L2(Rn), Ck(Rn), Hk(Rn),

L2(Rn), j = 1,2, ...,m, respectively. Here Ck is the space of k times continuously

differentiable functions; Hk is Sobolev space (Evans (1998)) and L2 = H0, C = C0.
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The spaces C1([0,T ];Hk(Rn;Rm)), C1([0,T ];Ck(Rn;Rm)) are the spaces of all k times

continuously differentiable functions with respect to t which is defined by from [0,T ]

to Hk(Rn;Rm) and [0,T ] to Ck(Rn;Rm), respectively. The space Mm×m is the space of

all matrices of dimension m×m.

Let x = (x1,x2, ...,xn) ∈ Rn, t ∈ [0,∞). Consider the system (Evans, 1998)

ut +
n

∑
i=1

Ai(x, t)uxi +B(x, t)u(x, t) = F(x, t). (A.307)

Here the unknown u : Rn × [0,∞)→ Rm, and the functions

Ai(x, t),B(x, t) : Rn× [0,∞)→ Mm×m(i = 1,2, ...n),F : Rn× [0,∞)→ Rm are given. Fix

ξ ∈ Rn. Let

A(x, t,ξ) =
n

∑
i=1

Ai(x, t)ξi,

The system (A.307) is called hyperbolic if the matrix A(x, t,ξ) is diagonalizable for

all x,ξ ∈ Rn, t > 0.

In particular, a system is hyperbolic if the matrix A(x, t,ξ) has m real eigenvalue

λ1(x, t,ξ)≤ λ2(x, t,ξ)≤ ...≤ λm(x, t,ξ),

and corresponding eigenvectors ri(x, t,ξ)(i = 1,2, ...n) which form a basis of Rm for all

ξ,x ∈ Rn, t > 0. There are two special cases of hyperbolocity which we now define.

1) If Ai(x, t) is symmetric for i = 1,2, ...n, then A(x, t,ξ) is symmetric for all ξ ∈ Rn.

Recall that if the m×m matrix A(x, t,ξ) is symmetric, then it is diagonalizable. For

the case when the matrices Ai(x, t) are all symmetric we say that the system (A.307) is

symmetric hyperbolic.
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2) If A(x, t,ξ) has m real, distinct eigenvalues

λ1(x, t,ξ)< λ1(x, t,ξ)< ... < λm(x, t,ξ),

for all x,ξ ∈ Rn, t > 0, then A(x, t,ξ) is diagonalizable. In this case, we say system

(A.307) is strictly hyperbolic.

Consider the initial value problem a symmetric hyperbolic system of the first order.

Let the symmetric hyperbolic system be written in the form

∂V
∂t

+
3

∑
j=1

A j
∂V
∂x j

= F, x ∈ Rn, t ∈ (0,T ) (A.308)

V(x,0) = ϕ(x) x ∈ Rn, (A.309)

where T is a fixed positive number, V = (V1, ...,Vn) is the vector function with

components Vj = Vj(x, t), j = 1,2, ...,n, A j, j = 1,2, ...,n are real, symmetric, m×m

matrices with constant elements.

In this part of the section, we adjust the general approach (Courant & Hilbert (1962))

for finding stability estimates of solutions for the symmetric hyperbolic system. Let

the symmetric hyperbolic system be written in the form given with the equations

(A.308)-(A.309).

Let ξ = (ξ1, ...,ξn) ∈ Rn and A(ξ) =
n
∑
j=1

A jξ j and λ j(ξ), j = 1, . . . ,9 be the

eigenvalues of A(ξ). We define the constant M as

M = max
i=1,...,9

max
|ξ|=1

|λi(ξ)|. (A.310)
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Let T be a given positive number. Using M and T we define the following domains

Γ(P) = {(x, t) : 0 ≤ t ≤ T, |x| ≤ M(T − t)} , (A.311)

S(h) = {x ∈ Rn : |x| ≤ M|T −h|, 0 ≤ h ≤ T} , (A.312)

R(h) = {(x, t) : 0 ≤ t ≤ h, |x|= M|T − t|} . (A.313)

Here Γ is the conoid with vertex (0,T ); S(h) is the surface constructed by the

intersection of the plane t = h and the conoid Γ; R(h) is the lateral surface of the

conoid Γ bounded by S(0) and S(h). Let Ω be the region in Rn × (0,∞) bounded by

S(0), S(h) and R(h) with boundary ∂Ω = S(0)∪ S(h)∪R(h). Further we assume that

ϕ(x), F(x, t), V(x, t) are vector functions with continuously differentiable components

in S(0) and Γ, respectively. Multiplying (A.308) with V and integrating over Ω we

have ∫
Ω

V.
∂V
∂t

+V.

(
n

∑
j=1

A j
∂V
∂x j

)
dxdt =

∫
Ω

F.Vdxdt. (A.314)

Noting the relations

V.
∂V
∂t

=
1
2

∂|V|2

∂t
,

V.

(
n

∑
j=1

A j
∂V
∂x j

)
=

1
2

n

∑
j=1

∂
∂x j

(
V.A jV

)
we rewrite (A.314) as

1
2

∫
Ω

∂|V|2

∂t
+

n

∑
j=1

∂
∂x j

(
V.A jV

)
dxdt =

∫
Ω

F.Vdxdt.

Applying divergence theorem to left hand side of the last equality we find

1
2

∫
∂Ω

|V|2νt +
n

∑
j=1

(
V.A jV

)
ν jdS =

∫
Ω

F.BVdxdt, (A.315)

where ν = (ν1, . . . ,νn,νt) is the outward unit normal on ∂Ω. Since ∂Ω = S(0)∪S(h)∪
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R(h) and

ν = (0, . . . ,1) on S(h),

ν = (0, . . . ,−1) on S(0),

ν =
(x1, . . . ,xn,M2(T − t))

(T − t)M
√

1+M2
on R(h),

formula (A.315) takes the form

1
2

∫
S(h)

|V(x,h)|2dx − 1
2

∫
S(0)

|V(x,0)|2dx+
1
2

∫
R(h)

|V(x, t)|2 M√
1+M2

dS

+
1
2

∫
R(h)

n

∑
j=1

(
V.A jV

) x j

(T − t)M
√

1+M2
dS

=
1
2

h∫
0

∫
S(t)

F(x, t).V(x, t)dxdt (A.316)

Let us denote

ξ j =
(x j)

(T − t)M
, j = 1, . . . ,n,

which satisfies |ξ|=
√

ξ2
1 + . . .+ξ2

n = 1. Using

A(ξ) =
n

∑
j=1

A jξ j

we write the following equality

1
2

∫
R(h)

n

∑
j=1

(
V.A jV

) x j

(T − t)M
√

1+M2
dS

=
1

2
√

1+M2

∫
R(h)

n

∑
j=1

(
V.A jξ jV

)
dS

=
1

2
√

1+M2

∫
R(h)

(V.A(ξ)V)dS (A.317)
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Substituting (A.317) into (A.316) we get

1
2

∫
S(h)

|V(x,h)|2dx− 1
2

∫
S(0)

|V(x,0)|2dx

+
1

2
√

1+M2

∫
R(h)

[
|V|2M+V.A(ξ)V

]
dS

=

h∫
0

∫
S(t)

V(x, t).F(x, t)dxdt (A.318)

Let us consider the matrix MI+A(ξ), where I is the identity matrix of order m×m.

Since A(ξ) is diagonalizable we can find a matrix Z which reduces A(ξ) to a diagonal

matrix of its eigenvalues, denoted Λ = diag(λ1,λ2, . . . ,λm). Multiplying MI+A(ξ)

with matrix Z from right, and with its inverse Z−1, from left we have

Z−1 (MI+A(ξ))Z = Z−1MIZ+Z−1A(ξ)Z = MI+Z−1A(ξ)Z

= MI+Λ. (A.319)

Noting (A.310), we conclude that the matrix MI+Λ has non-negative elements on the

diagonal. It means that the matrix MI+A(ξ) has non-negative eigenvalues. This fact

Goldberg (1992) implies the positive semi-definiteness of the matrix MI+A(ξ), i.e.

V.(MI+A(ξ))V ≥ 0 for any ξ ∈ Rn, | ξ |= 1 and any vector-function V(x, t). Using

this remark and denoting 1
2

∫
S(τ)

|V(x, t)|2dx = w(τ), we find from (A.318)

w(h)≤ w(0)+
h∫

0

w(τ)dτ+
1
2

h∫
0

∫
S(t)

|F|2dxdt

or

w(h)≤ g(h)+
h∫

0

w(τ)dτ, (A.320)
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where g(h) = 1
2

h∫
0

∫
S(t)

|F|2dxdt + 1
2

∫
S(0)

|ϕ(x)|2dx. Using Gronwall’s Lemma (Nagle &

Saff & Snider (2005)) we find from (A.320)

w(h)≤ g(h)eh,

or

∫
S(h)

|V(x,h)|2dx ≤ eh
[∫

S(0)
|ϕ(x)|2dx+

∫ h

0

(∫
S(t)

|F̃(x, t)|2dx
)

dt
]
.

Theorem A.19. (see, for example, work Mizohata (1973)). Let A j(x, t), j = 1, ...,n, be

N ×N symmetric matrices, ϕ(x) ∈ Hm(Rn;Rm), F(x, t) ∈C([0,T ];Hm(Rn;Rm)), where

m = 1,2, .... Then there exits a unique solution V(x, t) of the problem (A.308)-(A.309)

such that

V(x, t) ∈C([0,T ];Hm(Rn;Rm))∩C1([0,T ];Hm−1(Rn;Rm)).

Theorem A.20. Let m ≥ [|n
2 |]+2 in Theorem A.19. Then V(x, t) is a classical solution

of (A.308)-(A.309) such that

V(x, t) ∈C([0,T ];Cm−[| n
2 |]−1(Rn;Rm))∩C1([0,T ];Hm−[| n

2 |]−2(Rn;Rm)).

Theorem A.21. A special case of Sobolev Lemma (see, for example, work Mizohata

(1973)). Let Hm(Rn;Rm) be Sobolev space and

Bp(Rn;Rm) = { f : Rn → Rm; Dα f is bounded and continuous, |α| ≤ p}.

Then H1+p+[| n
2 |] ⊂ Bp, p = 0,1,2, ...

Theorem A.22. Hormander-Lojasiezwicz Theorem (see, for example, work Vladimirov
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(1979)). The equation

P(D)u = f ,

where P(D) ̸= 0, is solvable in S′ for all f ∈ S′.

Corollary: Every nonzero linear differential operator with constant coefficients has

a fundamental solution of slow growth.

Theorem A.23. Paley-Wiener Theorem (see, for example, work Reed & Simon (1975)).

A distribution T ∈ S′(R3) has compact support if and only if Fourier transform of T ,

T̂ , has an analytic continuation to an entire analytic function of n variables T̂ (η) that

satisfies

| T̂ (η) |≤C(1+ | η |)N exp(R | Imη |)

for all η ∈ Cn and some constants C, N, R. Moreover, if A.23 holds, the support of T

is contained in the ball of radius R.

A.3 Positive definiteness of A(ν), defined by (2.88)

The matrix A(ν), defined by (2.88), is symmetric with real valued elements. Let us

show that A(ν) is positive-definite for any nonzero (ν1,ν2,ν3) from R3, i.e. the matrix

A(ν) has to satisfy

V∗A(ν)V > 0 (A.321)

for arbitrary nonzero vectors (u1,u2,u3) ∈ R3 and (ν1,ν2,ν3) ∈ R3.

We assume that ci jkl satisfy condition (2.13) for any non-zero real symmetric tensor
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εi j. The relations (2.13) can be written in the form

3

∑
j,l,i,k=1

ci jkluiukν jνl > 0 (A.322)

when

εi j =
1
2
(uiν j +u jνi),

here ν1, ν2, ν3, u1, u2, u3 are arbitrary nonzero real numbers.

From (4.201) we can write

u∗A(ν)u =
3

∑
j,l,i,k=1

ci jkluiukν jνl (A.323)

where u = (u1,u2,u3) ∈ R3 and (ν1,ν2,ν3) ∈ R3 are arbitrary nonzero vectors.

The inequality (A.321) follows from (A.322) and (A.323) for all nonzero u =

(u1,u2,u3) ∈ R3 and (ν1,ν2,ν3) ∈ R3.

Remark: For all (ν1,ν2,ν3) ∈ R3 the matrix A(ν) defined by (4.201) is positive

semi definite matrix.

A.4 Properties of 1D QCs

There exits the following classification of 1-D QCs ( Wang & Yang & Hu (1997)):

Triclinic: In the triclinic 1-D QC system, the point group may be 1 or 1. There

are 21 independent phonon elastic constants, 6 independent phason elastic constants

and 18 independent phonon-phason coupling constants in the triclinic crystal system.

Therefore, the total number of independent elastic constants is 45.
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Monoclinic: In the monoclinic 1-D QC system, there are two Laue classes, i.e.

2/mh and 2h/m. For invariants of the point groups 2/mh we obtain the non-zero elastic

constants as follows

c1111 , c2222, c3333, c1122, c1133, c1112, c2233, c2212, c3312,

c3232 , c3231, c3131, c1212, K3333, K3131, K3232, K3132

R1133 , R2233, R3333, R1233, R2331, R2332, R3131, R3132.

Therefore, the total number of independent elastic constants is 25.

For invariants of the point groups 2h/m we obtain the non-zero elastic constants as

follows

c1111 , c2222, c3333, c1122, c1133, c1131, c2233, c2231, c3331,

c2323 , c1212, c3131, c2312, K3333, K3131, K3232, K3331

R1133 , R2233, R3333, R3133, R1131, R2231, R3331, R3131,R2332, R1232.

Therefore, the total number of independent elastic constants is 27.

Orthorhombic: The point groups 2h2h2, mm2, 2hmmh and mmmh in this system

belong to the same Laue class. And the non-zero elastic constants

c1111 , c2222, c3333, c1122, c1133, c2233, c2323, c1212, c3131,

K3333 , K3131, K3232, R1133, R2233, R3333, R3131,R2332.

Therefore, the total number of independent elastic constants is 17.

Tetragonal: Two Laue classes, i.e. 4/mh and 4/mhmm belong to this system. For
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the Laue class 4/mh the non-zero elastic constants are

c1111 = c2222, c3333, c2323 = c3131, c1122, c1212, c1133 = c2233,

c1112 = −c2212, K3333, K3131 = K3232,

R1133 = R2233, R3333, R3131 = R2332, R2331 =−R3132.

Therefore, the total number of independent elastic constants is 13.

For the Laue class 4/mhmm the non-zero elastic constants are

c1111 = c2222, c3333, c1133 = c2233, c1122, c1212, c2323 = c3131,

K3131 = K3232, K3333, R1133 = R2233, R3333, R3131 = R2332.

Therefore, the total number of independent elastic constants is 11.

Trigonal: Two Laue classes, i.e. 3 and 3m belong to the trigonal 1D QC system.

For the first Laue class the non-zero elastic constants are

c1111 = c2222, c3333, c2323 = c3131 c1133 = c2233, c1122,

2c1212 = (c1111 − c1122), c1123 =−c2223 = c3112,

c2231 = c2312 =−c1131, K3131 = K3232,K3333, R1133 = R2233, R3333,

R3131 = R2332, R2331 =−R3132, R1131 =−R2231 =−R1232,

R1132 = −R2232 = R1231. (A.324)

Therefore, the total number of independent elastic constants is 15. For the Laue class in

(A.324) c1131 = 0, R1131 = 0 and R2331 = 0 and hence the total number of independent

elastic constants is 12.

Hexagonal: Two Laue classes, i.e. 6/mh and 6/mhmm, belong to the hexagonal
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1D QC system. For the first Laue class the non-zero elastic constants are

c1111 = c2222, c3333, c2323 = c3131 c1133 = c2233, c1122,

2c1212 = (c1111 − c1122), K3333, K3131 = K3232,

R1133 = R2233, R3333, R3131 = R2332, R2331 =−R3132. (A.325)

Therefore, the total number of independent elastic constants is 11. For the latter Laue

class their elastic constants are the same as (A.325) except that R2331 = 0.

Positive definiteness of A(ν), defined by (3.129): The matrix A(ν), defined

by (3.129), is symmetric with real valued elements. Let us show that A(ν) is

positive-definite for any nonzero (ν1,ν2,ν3) from R3, i.e. the matrix A(ν) has to satisfy

V∗A(ν)V > 0 (A.326)

for arbitrary nonzero vectors V = (u1,u2,u3,w3) ∈ R4 and (ν1,ν2,ν3) ∈ R3.

We assume that ci jkl, Ri j3l, K3 j3l satisfy conditions (3.118) for any symmetric

matrix (εi j)3×3 and any vector (w3l)1×3.

The relations (3.118) can be written in the form

3

∑
j,l,i,k=1

ci jkluiukν jνl > 0,
3

∑
j,l,i=1

Ri j3luiw3ν jνl > 0,
3

∑
j,l=1

K3 j3lw2
3ν jνl > 0 (A.327)

when

εi j =
1
2
(uiν j +u jνi), w3l = νlw3,

here ν1, ν2, ν3, u1, u2, u3, w3 are arbitrary nonzero real numbers.
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Using (3.129) we can write

V∗A(ν)V =
1
2

3

∑
j,l,i,k=1

(ci jkl + cilk j)uiukν jνl +
3

∑
j,l,i=1

(Ri j3l +Ril3 j)uiw3ν jνl

+
1
2

3

∑
j,l=1

(K3 j3l +K3l3 j)w2
3ν jνl, (A.328)

where V = (u1,u2,u3,w3) ∈ R4 and (ν1,ν2,ν3) ∈ R3 are arbitrary nonzero vectors.

The inequality (A.326) follows from (A.327) and (A.328) for all nonzero

(ν1,ν2,ν3) ∈ R3 and V = (u1,u2,u3,w3) ∈ R4.

Remark: For all (ν1,ν2,ν3) ∈ R3 the matrix A(ν) defined by (3.129) is positive

semi definite matrix.

A.5 Properties of 2D QCs

Follow works Lei & Wang & Hu & Ding (1998), Lei & Hu & Wang & Ding (1999),

Lei & Wang & Hu & Ding (2000), Gao (2009), Peng & Fan (2002), Hu & Wang &

Ding (2000) we consider the following types of anisotropic 2D QCs: dodecagonal,

octagonal, decagonal, pentagonal, hexagonal, triclinic. Similar to Ding & Yang & Hu

& Wang (1993) we assume that elastic constants ci jkl , Kβ jαl , Ri jαl satisfy conditions

(3.139) for all types of anisotropic QCs. Moreover these elastic constants satisfy

specific properties for each type of anisotropy for 2D QCs. Let us point out these

specific properties.

Dodecagonal: Nonzero elastic constants are (see, for example, Lei & Wang & Hu
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& Ding (2000))

c1111 = c2222, c1122, c1133 = c2233, c3333, c4444 = c5555, c1212 =
c1111 − c1122

2
,

K1111 = K2222, K1122, K1221, K2323 = K1313, K1212 = K2121 = K1111 +K1122 +K1221,

K1112 = K1121 =−K2212 =−K2221.

Octagonal: Nonzero elastic constants are (see, for example, Lei & Hu & Wang &

Ding (1999))

c1111 = c2222, c1122, c1133 = c2233, c3333, c4444 = c5555, c1212 =
c1111 − c1122

2
,

R1111 = R1122 =−R2211 =−R2222 = R1221 =−R1212,

R1112 = −R1121 =−R2212 = R2221 = R1211 = R1222, K1111 = K2222, K1122, K1221,

K1313 = K2323,K1212 = K2121 = K1111 +K1122 +K1221,

K1112 = K1121 =−K2212 =−K2221.

Decagonal: Nonzero elastic constants are (see, for example, Peng & Fan (2002))

c1111 = c2222, c1122, c1133 = c2233, c3333, c4444 = c5555, c1212 =
c1111 − c1122

2
,

R1111 = R1122 = R1221 =−R2211 =−R2222 =−R1212,

K1111 = K2222 = K1212 = K2121, K1122 =−K1221, K2323 = K1313.

Pentagonal: Nonzero elastic constants are (see, for example, Lei & Wang & Hu &
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Ding (1998))

c1111 = c2222, c1122, c1133 = c2233, c3333, c4444 = c5555, c1212 =
c1111 − c1122

2
,

R1111 = R1122 =−R2211 =−R2222 = R1221 =−R1212,

R1112 = −R1121 =−R2212 = R2221 = R1211 = R1222,

R2312 = R2321 =−R3111 = R3122, R2311 =−R2322 = R3112 = R3121,

R1113 = −R2213 =−R1223,R1123 =−R2223 = R1213, K1111 = K2222 = K1212 = K2121,

K1122 = −K1221, K1313 = K2323, K1113 = K2213 = K2312 =−K2321,

K1123 = K2223 =−K1213 = K1321.

Hexagonal: Nonzero elastic constants are (see, for example, Gao (2009))

c1111 = c2222, c1122, c1133 = c2233, c3333, c4444 = c5555,c1212 =
c1111 − c1122

2
,

R1111 = R2222, R1122 = R2211, R3322 = R3311, R1313,

R1212 = R1221 =
R1111 −R2222

2
, K1111 = K2222, K1122,

K1212 = K2121, K2323 = K1313, K1221 = K1111 −K1122 −K1212.

Triclinic: The total number of independent elastic constants is 78 (see, for example,

Hu & Wang & Ding (2000)) in the triclinic 2-D QC system. There are 21 independent

phonon elastic constants, 21 independent phason elastic constants and 36 independent

phonon-phason coupling constants.

The classification of 2D QCs is given by Table A.1( Hu & Wang & Ding (2000)).

Positive definiteness of A(ν), defined by (3.149)

The matrix A(ν), defined by (3.149), is symmetric with real valued elements.
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Table A.1. Systems, Laue classes, point groups and the number of independent elastic
constants for 2D QCs. NC, NK and NR are the numbers of independent elastic constants
associated with the phonon field, the phason field and the phonon-phason
coupling,respectively.

Systems No of Laue classes Point groups NC NK NR Sum
Triclinic 1 1, 1 21 21 36 78
Monoclinic 2 2, m, 2/m 13 13 20 46

3 12, 1m, 12/m 13 12 18 43
Orthorhombic 4 2mm, 222, mmm, mm2 9 8 10 27
Tetragonal 5 4, 4, 4/m 7 7 10 24

6 4mm, 422, 4m2, 4/mmm 6 5 5 16
Trigonal 7 3, 3 7 7 12 26

8 3m, 32, 3m 6 5 6 17
Hexagonal 9 6, 6m, 6/m 5 5 8 18

10 6mm, 622, 6m2, 6/mmm 5 4 4 13
Pentagonal 11 5, 5 5 5 6 16

12 5m, 52, 5m 5 4 3 12
Decagonal 13 10, 10, 10/m 5 3 2 10

14 10mm, 1022, 10m2, 10/mmm 5 3 1 9
Octagonal 15 8, 8, 8/m 5 5 2 12

16 8mm, 822, 8m2, 8/mmm 5 4 1 10
Dodecagonal 17 12, 12, 12/m 5 5 0 10

18 12mm, 1222, 12m2, 12/mmm 5 4 0 9

Let us show that A(ν) is positive-definite for any nonzero (ν1,ν2,ν3) from R3, i.e. the

matrix A(ν) has to satisfy

V∗A(ν)V > 0 (A.329)

for arbitrary nonzero vectors V = (u1,u2,u3,w1,w2) ∈ R5 and (ν1,ν2,ν3) ∈ R3.

We assume that ci jkl, Ri jαl, Kβ jαl satisfy conditions (3.140) for any symmetric

matrix (εi j)3×3 and any matrix (wαl)2×3.
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The relations (3.140) can be written in the form

3

∑
j,l,i,k=1

Ci jkluiukν jνl > 0,
3

∑
j,l,i=1

2

∑
α=1

Ri jαluiwαν jνl > 0,

3

∑
j,l=1

2

∑
α,β=1

Kβ jαlwβwαν jνl > 0 (A.330)

when

εi j =
1
2
(uiν j +u jνi), wαl = νlwα,

here ν1, ν2, ν3, u1, u2, u3, w1, w2 are arbitrary nonzero real numbers.

Using (3.149) we can write

V∗A(ν)V =
1
2

3

∑
j,l,i,k=1

(ci jkl + cilk j)uiukν jνl +
3

∑
j,l,i=1

2

∑
α=1

(Ri jαl

+Rilα j)uiwαν jνl +
1
2

3

∑
j,l=1

2

∑
α,β=1

(Kβ jαl +Kβlα j)wβwαν jνl, (A.331)

where V = (u1,u2,u3,w1,w2) ∈ R5 and (ν1,ν2,ν3) ∈ R3 are arbitrary nonzero vectors.

The inequality (A.329) follows from (A.330) and (A.331) for all nonzero

(ν1,ν2,ν3) ∈ R3 and V = (u1,u2,u3,w1,w2) ∈ R5.

Remark: For all (ν1,ν2,ν3) ∈ R3 the matrix A(ν) defined by (3.149) is positive

semi definite matrix.

A.6 Positive definiteness of A(ν), defined by (3.172)

The matrix A(ν), defined by (3.172), is symmetric with real valued elements. Let

us show that A(ν) is positive-definite for any nonzero (ν1,ν2,ν3) from R3, i.e. the
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matrix A(ν) has to satisfy

V∗A(ν)V > 0 (A.332)

for arbitrary nonzero vectors V = (u1,u2,u3,w1,w2,w3) ∈ R6 and (ν1,ν2,ν3) ∈ R3.

We assume that ci jkl, Ri jkl, Ki jkl satisfy conditions (3.162) for any symmetric

matrix (εi j)3×3 and any matrix (wi j)3×3.

The relations (3.162) can be written in the form

3

∑
j,l,i,k=1

Ci jkluiukν jνl > 0,
3

∑
i, j,k,l=1

Ri jkluiwkν jνl > 0,

3

∑
i, j,k,l=1

Ki jklwiwkν jνl > 0 (A.333)

when

εi j =
1
2
(uiν j +u jνi), wkl = νlwk,

here ν1, ν2, ν3, u1, u2, u3, w1, w2, w3 are arbitrary nonzero real numbers.

Using (3.172) we find

V∗A(ν)V =
1
2

3

∑
j,l,i,k=1

(ci jkl + cilk j)uiukν jνl +
3

∑
j,l,i,k=1

(Ri jkl +Rilk j)uiwkν jνl

+
1
2

3

∑
j,l,i,k=1

(Ki jkl +Kilk j)wiwkν jνl, (A.334)

where V = (u1,u2,u3,w1,w2,w3) ∈ R6 and (ν1,ν2,ν3) ∈ R3 are arbitrary nonzero

vectors.

The inequality (A.332) follows from (A.333) and (A.334) for all nonzero V =

(u1,u2,u3,w1,w2,w3) ∈ R6 and (ν1,ν2,ν3) ∈ R3.
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Remark: For all (ν1,ν2,ν3) ∈ R3 the matrix A(ν) defined by (3.172) is positive

semi definite matrix.
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