DOKUZ EYLUL UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

MULTIVARIATE STATISTICAL PROCESS
CONTROL AND MONITORING WITH CHANGE
POINT ANALYSIS

by
Eralp DOGU

October, 2011
IZMIR



MULTIVARIATE STATISTICAL PROCESS
CONTROL AND MONITORING WITH CHANGE
POINT ANALYSIS

A Thesis Submitted to the
Graduate School of Natural and Applied Sciences of Dokuz Eylul University
In Partial Fulfilment of the Requirements for the Degree of Doctor of
Philosophy in Statistics Program

by
Eralp DOGU

October, 2011
IZMIiR



Ph.D. THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “MULTIVARIATE STATISTICAL
PROCESS CONTROL AND MONITORING WITH CHANGE POINT
ANALYSIS” completed by ERALP DOGU under supervision of DR. iPEK
DEVECI-KOCAKOC and we certify that in our opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Doctor of Philosophy.

Assoc. Prof. Dr. ipek DEVECI-KOCAKOC

Supervisor
Assist. Prof. Dr. Ali Riza FIRUZAN Assoc. Prof. Dr. Cenk OZLER
Thesis Committee Member Thesis Committee Member
Examining Committee Member Examining Committee Member

Prof. Dr. Mustafa SABUNCU
Director
Graduate School of Natural and Applied Sciences



ACKNOWLEDGEMENTS

| owe appreciation to many people for their help and support which made this

work possible and existing.

Professionally, there are people | respect and would like to express my deepest
appreciation for their support and guidance. Firstly, I would like to thank my advisor
Dr. ipek Deveci-Kocakog. She was just right there for me when | needed. Her
encouragement, mentoring and instructions helped me a lot to finalize this work.
Furthermore, | would like to thank my committee members Dr. Cenk Ozler and Dr.
Ali Riza Firuzan for their support and feedbacks throughout the research process.
Lastly, 1 will always be grateful to Dr. Harriet B. Nembhard for her support and
feedback about the general flow of this work. | also really appreciate the financial
support of the Scientific and Technological Research Council of Turkey
(TUBITAK) during my research.

Personally, | wish to give a very special thanks to my wife Zeynep for her
ongoing morale, patience, support and encouragement. We traveled together from
the very beginning to the end of this journey. | am grateful to my beloved daughter
Ela Ceren for the luck and cheer she brought to my life. Special thanks to my family

for their constant support and understanding.

Eralp DOGU



MULTIVARIATE STATISTICAL PROCESS CONTROL AND
MONITORING WITH CHANGE POINT ANALYSIS

ABSTRACT

Multivariate statistical process control (MSPC) efforts are widely used in order to
detect changes in processes where more than one inter-related quality characteristic
is considered. The existing monitoring methods like Hotelling’s T2 control chart are
capable of generating signals to show the existence of the change. However, this
certain signal does not always mean that the change occurred at that particular time.
Because of this obstacle, the process professionals need to look for a special cause
after a signal and for many cases it is quite difficult to identify the time of a change

with only this information.

Change point methods help Statistical Process Control (SPC) practitioners to
identify the time of a change after a control chart generates a signal. Using change
point estimation with the monitoring tool surely improves the special cause

detection ability of the monitoring system.

In this study, change point procedures for multivariate processes are proposed.
Firstly, the change point model for monitoring covariance matrices is discussed. The
simulation results showed that this model accurately and precisely estimated the
change point after a generalize variance control chart issued a signal. Secondly, a
change point procedure for simultaneously monitoring the mean vector and
covariance matrix is proposed. This procedure is shown to be successful to find the
change point for multivariate joint estimation of a step change. The research also
includes a comparative study for multivariate single control charts via change point

estimation performance.

Keywords: Change Point Estimation, Multivariate Statistical Process Control (MSPC),
Generalized Variance Control Chart, Multivariate Combination Control Chart, Multivariate

Single Control Charts.



DEGIiSIM NOKTASI ANALIZi iLE COK DEGISKENLIi iSTATiSTIiKSEL
SUREC KONTROLU VE iZLENMESI

Oz

Birden fazla kalite karakteristiginin birlikte incelenmesinin gerektigi durumlarda
cok degiskenli istatistiksel slre¢ kontrol caligmalar1 yaygin olarak yapilmaktadir.
Hotelling’s T2 kontrol karti gibi mevcut metotlar bir degisimin ortaya ¢iktigini
iirettikleri sinyal ile gosterebilirler. Ancak bu sinyal her zaman degisimin sinyalin
iiretildigi zamanda ortaya ¢iktigin1 gostermez. Bu zorluktan dolayi siire¢ uzmanlari
sinyalden sonra 6zel nedenin ortaya ¢ikti§1 zamani arastirmak zorundadir. Bu bilgi

ile degisimin zamanini tespit etmek ¢ogu durum i¢in oldukg¢a zordur.

Degisim noktas: metotlar1 Istatistiksel Siireg Kontrolu (ISK) uygulayicilarina
kontrol karti sinyal verdikten sonar degisimin zamanini belirlemede yardimci
olurlar. Degisim noktasi tahmini yardimiyla yapilan izleme faaliyeti, siliphesiz

izleme sisteminin 6zel neden tespit etme yetenegini arttirir.

Bu calismada, cok degiskenli siiregler i¢in degisim noktasit yontemleri
onerilmektedir. Ilk olarak, kovaryans matrisinin izlenmesinde kullanilan bir degisim
noktast metodu tartisilmistir.  Simulasyon  sonuglart  Onerilen  yOontemin
genellestirilmis varyans kontrol karti sinyal verdikten sonra dogrulukla ve kesinlikle
tahmin yapabildigini gdstermistir. ikinci olarak, ortalama vektorii ve kovaryans
matrisinin esanli izlenmesini saglayacak bir degisim noktasi prosediirii onerilmistir.
Bu prosedlriin bilesik degisim noktasi tahminin basar1 ile gerceklestirdigi
gosterilmistir. Bu arastirmada ayrica ¢ok degiskenli tek kontrol kartlar1 i¢in degisim
noktasi tahmin performanslar1 bakimindan bir karsilagtirmali ¢alisma da

bulunmaktadir.

Anahtar Kelimeler:  Degisim Noktas1 Tahmini, Cok Degiskenli Istatistiksel Siireg
Kontrolii (CDISK), Genellestirilmis Varyans Kontrol Karti, Cok Degiskenli Kombinasyon
Kontrol Karti, Cok Degiskenli Tek Kontrol Kartlari.
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CHAPTER ONE
INTRODUCTION

1.1 Introduction

Statistical Process Control (SPC) as a sub-area of Statistical Quality Control has
been an essential tool in industry and service for quality improvement.
Understanding the causes of variation is in great importance for these efforts.
Generally, the causes of variation are classified into two classes: common causes
and assignable (or special) causes. The common causes are considered to stem from
inherent nature of the process and they are hard to eliminate without changing the
process itself. The other class is the assignable causes of variation and they interfere

to the process. They are easy to detect respectively and should be eliminated.

Control charts which were first developed by Shewhart is widely used in order to
detect the causes of variability. Since their development, this tool set has been a
principle statistical tool in industry and service. A control chart basically checks the
measures and tries to detect whether the underlying probability distribution remains
constant over time. This stable situation is defined as ‘in-control’ situation. If there
is some change in the probability distribution, then this situation is defined as ‘out-
of-control’. The effectiveness of the control charts also attracts practitioners by its
visual representation. Figure 1.1 and 1.3 shows examples of control charts. The
checks for each time slot are recorded on a graph and this series is compared with a
threshold to define the in-control situation. The threshold is considered to be a

specific value which is achieved by a significance level.

The estimation of the parameters is a major concern of SPC. If the parameters are
unknown, then in order to estimate them a calibration exercise is performed and this
is called a Phase | study. The aim of Phase I is to check if a process has been in-

control with a set of historical readings. After this calibration step, the samples are



taken sequentially and used to detect departures from in-control parameters and this
is called a Phase Il study. Woodall (2000) concluded that much effort; process
knowledge and process improvement is needed for a transition from Phase | to
Phase II.

1.2 Multivariate Statistical Process Control

The increasing practice of SPC in industry creates demand to use more effective
methods that are able to detect changes of quality level quickly. The literature is rich
in univariate checks of the processes to ensure the parameters are in-control.
However, many processes are capable of producing multiple process readings.
Therefore, there are many situations in which simultaneous monitoring of two or
more inter-related quality characteristics. Following examples of multiple process

reading cases are provided by Hawkins and Olwell (1998) as follows:

e Measuring different properties on each unit produced: In manufacturing
roller bearings the process professional may measure the length, maximum
diameter, and minimum diameter of each sampled bearings.

e Measuring a number of different but connected processes: The measurements
can be made on the different processes but connected processes. For
instance, in semiconductor wafer fabrication, chips go through sequences of
processing steps. The quality of a chip depends on the current process step
and the outcomes of all previous process steps. Thus the causes of poor
quality may stem from the current process step and also the problems created
previously.

e Measuring a number of different processes some of which cannot be
controlled: For instance, in a coal washing plant, the yield and ash content of
the washed coal are important quality characteristics of the washing process.
These characteristics are highly connected to the quality of raw coal entered
to the plant. The causes of variability are likely to occur by the internal and

external processes.



The multivariate approach deals with a vector of different but possibly correlated
process readings rather than a single process reading at each time point.
Montgomery (2009) presented two ways of managing this situation. The first way is
ignoring the correlation and treating the measurements as separate univariate quality
characteristics. If we use this setting as a monitoring tool for related quality metrics,
the ignorance of correlation may yield to a point which is in-control for each
univariate control chart and out-of-control when the variables are monitored
simultaneously. Moreover, the Type | error and probability of a point correctly
plotting in control are not equal to their specified levels. For example, in bivariate

case the Type | error for each control chart is «and the Type | error of using
separate control chart for multivariate readings is 1—(1—a)? which is not equal to

a.

The other way of dealing with multivariate process readings is thinking about the
collection of measures as a multivariate measure and control this measures with
multivariate methods. A major benefit is that the monitoring may be much more
sensitive compared to the first approach. Another benefit may be the increased
diagnostic aids. Hawkins and Olwell (1998) gave an example to explain this benefit.
If we do not monitor the incoming coal quality then an increase in the ash content of
the washed coal could be attributed to the problems of washing while in fact, the

reason may be the incoming coal quality.

In our study we will assume that the process readings follow a p—variate
multivariate normal distribution. X; is a px1 vector which represents the

p—component on the j" observation in the i™ sample of size n. The multivariate
normal distribution can be described as the vectors X; follow a common
multivariate normal distribution with some mean vector p, and some covariance
matrix X,. This can be abbreviated to X; ~ Np(po,):o). The covariance matrix

represents the relationship between the measures and if the off-diagonal elements
are different from zero, then the practitioner would have maximum benefit from

thinking a multivariate approach.



1.3 x* —|8| Control Charts

In the MSPC literature, there are several multivariate control charts proposed.
The most popular among them is the T2 control chart proposed by Hotelling(1947).

It is considered as the multivariate analog of the univariate X chart.

Consider p—variate vector X; ~ N_(iy,%,). If we want to test the following
hypothesis; H,:p=p, ,H,:p#p, then the most powerful test statistic is
T? =n(X, —uo)'zgl(ii —n,) where n is the sample size and X, is the sample mean
vector for the i" process readings. When the process parameters are known or can
be estimated, this chart plots n()_(i—uo),f.gl()_(i—uo); where X, ~ N (p,,Z,),

j=12,...,n. If a point falls beyond the upper control limit UCL:Z;M, the

process is considered to be out of control. This control chart is also called Phase Il

X ?chartor x? chart (Bersimis et al., 2007).

As monitoring only the mean vector is not an effective way of controlling the
process, many authors focused on developing the methods to monitor dispersion. Alt
(1985) and Alt and Smith (1988) proposed different procedures of carrying out
multivariate dispersion control and monitoring. They proposed the multivariate

analogue of the univariate S-chart and named it as generalized variance (|S|) control

chart. S,["* values are plotted when the control limits are:

UCL=1%o[(2, ouia ) JAln -1

LCL = [o[(Z0 a1 f /40 -1] (L1)

where S;isa px p matrix,

Si =i(xij _>_<i ) (Xij _Xi)'/(n_l) (1.2)



and X, =ixij /n. (1.3)

j=1

When several characteristics of a manufactured component are to be monitored

simultaneously, multivariate Shewhart-type »*and |S| control charts can be used. As

long as the points plotted on the y* and |S| control charts fall below the upper

control limits (UCL) of the charts, the process is assumed to operate under a stable
system of common causes and, hence, in a state of control. When one or more points
exceed the UCL, the process is deemed out of control due to one or more special
causes and an investigation is carried out to detect these special causes (Nedumaran
et al., 2000).

§ g . TiL‘l"M M;.A\_ﬂ:fw.‘:;:)%ﬁ;l. 'H’Fs.ﬂf
TR TR
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t t
Xbar chart for x1 Xbar chart for x2

Figure 1.1 Univariate control charts for bivariate standard normal process readings.
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Figure 1.2 Scatter plot for bivariate standard normal process readings.

Figure 1.1 and 1.3 shows the univariate and multivariate control charts for related
quality characteristics, respectively. The data was generated from multivariate
standard normal distribution with o =0.7 which can be expressed as a strong
positive correlation where p is the Pearson correlation coefficient. Figure 1.2 shows
this relationship between the quality characteristics. When the control charts set to
the same Type | error rate (a =0.0027), X charts do not generate any signal and
look almost perfect. On the other hand, y* chart generates a signal around twentieth

observation vector. Moreover, [S| issued another signal at around hundred

nineteenth observation vector. These signals are not apparent in Figure 1.1. For
discussions and reviews of multivariate mean and dispersion control charts, see, for
example, Lowry and Montgomery (1995), Montgomery (2009), Tracy et al. (1997),
Hawkins and Olwell (1998), Fuch and Benjamini (1998), Alt (1985), Alt and Smith
(1988), Surtihadi et al. (2004), Khoo and Quah (2004), Bersimis et al. (2007) and
Vargas and Lagos (2007).



Observations
3]

L
Observations
2
1

{EGE S !

0 50 100 150 200 0 50 100 150 200

T2 control chart for x1 and x2 Gen. var. control chart for x1 and x2

Figure 1.3 Multivariate control charts for bivariate standard normal process readings.
1.4 Change Point Model for SPC

Control charts are widely used tools for detecting changes of a process and
identifying special causes. A change in the process distribution leads the control
chart to generate an out-of-control signal. The time in which the signal issued is
considered as the stopping time and at this point of time process professionals start
searching for assignable causes of the change. The signal does not always indicate
that a special cause actually occurred at that particular point of time. A typical
illustration of a control chart is given in Figure 1.4. The control chart aims to
monitor the mean of the process with a step change and the observations are
standardized normal readings. Thus, the center line is ‘0’, the upper control limit is
‘+3” and the lower control limit is ‘-3°. It is well known that the process has altered
to its new level after the 50" observation for this process. The vertical line
represents the actual time of this step change. However, the control chart generated
its first signal at the 70" observation. The practitioners need some additional run
rules in order to identify the time of the change, but this approach may not always

provide realistic change point estimation.
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Figure 1.4 A control chart with a step change in the mean; the signal issued at 70™ process reading

while the change was introduced after 50" process reading.

From the SPC point of view, it is possible to employ change point models to
control charts. A change-point model focuses on finding the point in time where the
underlying model generating a series of observation has changed in some manner
(Montgomery, 2009). In order to summarize the procedure, two distributions are

used to model the quality characteristic of a process.

x ~ f(X,0,), i=12,-7.
x, ~ f(X.,0,), i=c+1,---T.

where X; is the i ™ observation of the process and 7 at which the process parameter
shifts from 6, to &, is referred to be the process change-point. The process follows
the distribution f(X,@O) up to the change point 7 in time and then follows another

distribution such as f(X,8,) after the change is occurred.

Many researchers studied the integration of statistical process control and change

point applications for various distributions of the quality characteristics. Samuel et



al. (1998a, 1998b) proposed estimators to find the most likely location of the change
for normally distributed quality characteristics. They considered step changes in the

mean and the variance of a normal distribution, respectively. They compared

performances of the estimators with X and S control charts, respectively. Samuel
and Pignatiello (2001) showed the superiority of the performance of the maximum
likelihood estimator (MLE) when compared to the built-in change point estimators
of exponentially weighted moving average (EWMA) and cumulative sum (CUSUM)
for a normal process mean. Pignatiello and Simpson (2002) proposed a magnitude-
robust control chart to monitor a normal process mean and obtained useful change
point statistics. Perry and Pignatiello (2006) investigated the linear trend disturbance
in the mean for normally distributed quality characteristics. Timmer and Pignatiello
(2003) investigated change point estimates for the parameters of an AR(1) process.

Samuel and Pignatiello (1998c) proposed a change-point estimator based on the
maximum likelihood function of a Poisson random variable. They investigated the
performance of their estimator on a Shewhart c-chart for step changes in the rate
parameter. Perry et al. (2005, 2007) also presented maximum likelihood estimators
for the change-point of a Poisson rate parameter with a linear trend disturbance and
monotonically changing rates, respectively. Perry et al. (2007) provided a change
point estimation procedure for a process fraction nonconforming with a monotonic
change disturbance. Perry and Pignatiello (2005) showed that the performance of the
MLE based change point estimator is superior to the built-in change point estimators
of EWMA and CUSUM to identify the change point of a binomial process. The
change point estimation procedures were also proposed for high quality processes.
Noorossana et al. (2009) provided a maximum likelihood estimator in order to
identify the time of a step change in high-yield processes. They studied the change
point estimation for a geometric process as the number of items until the occurrence
of the first non-conforming item can be modeled by a geometric distribution. The
add-on procedure was used with the geometric chart and provided accurate and

precise estimations for different magnitudes of shifts in p, the process non-

conformity proportion.
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Some authors investigated the change point for multivariate processes.
Nedumaran et al. (2000) proposed a change point estimator for a multivariate

process mean vector when the observations follow a multivariate normal
distribution. The estimator is considered as a follow-up procedure for y*chart under

the assumption of constant covariance structure. Dogu and Deveci-Kocakoc (2011a)
proposed a change point estimator to identify the step change in generalized
variance control charts. Another approach is proposing sequential generalized
likelihood ratio (GLR) test statistic based control charts. These charts can provide a
change point estimator along with the control chart statistics. Sullivan and Woodall
(2000) proposed a single multivariate control chart based on GLR for multivariate
individual process readings. Zamba and Hawkins (2009) proposed a multivariate
unknown parameter change point model through GLR statistics for estimating the

change in mean vector and/or covariance structure.

1.5 Change Point Estimation for y* Control Chart

This part focuses on the change point procedure for a typical x° control chart.
This estimation was based on the likelihood functions and proposed by Nedumaran
et al. (2000) and we will follow a similar approach for jointly monitoring the mean
vector and covariance matrix changes in this text. This follow-up approach for

homoscedastic case is summarized as follows:

The process readings are monitored with a »° control chart. When the

control chart generates a signal, the reason for this signal is assumed to be a

step change.

The change point estimation procedure starts to find the most likely location
of the change and provides an estimation of the time of the step change.

The point where the log-likelihood function attains its maximum is
considered as the change point.

The process professionals start looking for the special cause at that particular

point of time or in a search window of possible change points.
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Let  X; =X Xjoe Xijp)' be a px1 vector which represents the p
characteristics on the j™ observation (j =1,2,---,n) in the i™ subgroup of size n.
Suppose further that when the process is in control, the X ’s are independent and
identically distributed (iid) and follow a p—variate Normal distribution with mean

vector p,and covariance matrix X, that is, the X;’s are iid N (uy, X,)when the

process is in control. We let n denote the subgroup size and we let X, denote the

average vector of the i ™ sub grouping and can be calculated with (1.3).

When the ith subgroup is observed, the statistic z,” =n(X, —p,) £, (X, —p,)
has a chi-square distribution with p degrees of freedom. This statistic is plotted on a
z°control chart with UCL set at ;(;a , Where Zﬁ,a is the (1— ) th percentile point

of the chi-square distribution with p degrees of freedom and « is the probability of

a false alarm for each subgroup plotted on the chart.

It is assumed that when the multivariate process mean changes, there has been a

step-change from its in-control value of p =p, to an unknown value p=p, where

n, #p,. If y2 exceeds the UCL of the y*control chart, it is concluded that the

step-change in the process mean occurred after some unknown time z, where

0<7<T-1. Hence, we assume that the subgroup averages X,,X,,---,X_. came

from in-control process and the subgroup averages X .., X .-, X, came from the

411 N g2 "

out-of-control process. It is further assumed that the process mean remains at the

new level p, until the special cause has been identified. The maximum likelihood
estimator of z can be the value of t for which the statistic M, attains its
maximum; that is,

t=argmax(M,), t=01,--T-1 (1.4)

where M, = (T —t)(>=<t,r —uo)'251(>:<n — M) (1.5)
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_ T
and X, ; = % in Is the average of the (T —t) most recent subgroup averages.
“li=ty

1.5.1 [llustrative Example

A hypothetical example was considered by Nedumaran et al. (2000) for the

machining of steel sleeves in which the inside diameter, the outside diameter, and
the length are the p =3 important quality characteristics. A y* control chart is used

to monitor these characteristics. Based on historical data, the process is known to be

stable and in control, and observations are as follows:

105.0 90 96 54
n,=|150.0| and =,=[9.6 16.0 4.8 |
120.0 54 48 12.0

For n=5 subgroups y”statistics are calculated periodically and plotted on the
chart. The probability of a false alarm is set at & =0.0027 . The UCL of the y?
control chart is then UCL_, = ;40,7 =14.157. The sample averages of 21

subgroups and the corresponding y° statistics are shown in Table 1.1. The control

chart has issued an alarm for the twenty-first subgroup. Thus, T =21. The proposed

— 21
estimator can now be applied to estimate the change point. )_<t'21=]/(21—t)ZXi

i=t+1

for t=0,1,2,---,T-1. M, values can be calculated easily from

M, = (Zl—t)(>=<t: _”o)’251(>=<m —Ho)-



Table 1.1 Subgroup averages, reverse cumulative averages, M, and ;(2 statistics

13

it

X,

Reverse cumulative

averages

Mt

2

Ve

104.757
105.432
104.449
101.822
106.986
106.887
104.486
104.314
103.76

104.488
104.638
102.711
107.061
103.276
105.761
108.153
104.841
104.956
108.306
106.464
109.940
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150.151
150.252
151.325
146.074
150.596
153.377
148.822
147.559
149.237
149.475
150.276
147.623
152.098
148.987
151.890
151.391
147.558
147.410
151.819
150.938
153.406

119.243
122.584
120.496
118.236
121.009
118.408
119.61

120.316
118.594
119.524
120.708
119.969
122.726
119.682
120.036
120.350
119.485
118.942
119.715
118.532
121.605

105.404
105.436
105.436
105.491
105.707
105.627
105.543
105.618
105.719
105.882
106.009
106.146
106.528
106.461
106.916
107.108
106.899
107.414
108.236
108.202
109.940

150.012
150.005
149.993
149.919
150.145
150.117
149.899
149.976
150.162
150.239
150.309
150.312
150.611
150.425
150.630
150.420
150.226
150.893
152.054
152.172
153.406

119.988
120.026
119.891
119.857
119.887
119.887
119.985
120.012
119.989
120.105
120.158
120.103
120.118
119.792
119.807
119.769
119.653
119.694
119.951
120.069
121.605

1.27
1.38
1.58
2.23
2.69
2.17
2.05
2.09
2.02
2.47
2.79
3.53
4.94
5.19
7.31
8.71
6.67
6.48
6.24
3.80
3.64

0.35
3.19
411
5.86
431
7.22
0.51
291
1.32
0.16
1.08
3.98
3.63
2.67
1.36
10.93
4.87
6.82
12.40
5.02
18.19

From Table 1.1, it is concluded that, the estimated change point is 7 =15. Hence,

it is estimated that the process mean has changed during the time between the

formation of subgroup 15 and 16. The process engineers may look up their process

records for especially at t =15 and t =16 that a special cause would occur.
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Figure 1.5 Plot of change point likelihoods and ;(2 control chart for steel sleeve example.

Figure 1.5 shows the likelihoods of the change point and y* control chart for this

example. Traditionally, the process engineers could have started examining their
records at the time of signal and searched backward until a special cause was found.

However, using this estimator is a more efficient way of inspecting special causes.

1.6 Objective of the Dissertation

The primary objective of this research is to develop new change point procedures
for multivariate processes. This research is motivated by the works of Pignatiello
and Samuel et al. (1998a, 1998b), Nedumaran et al. (2000) and Samuel (2001). A
signal generated from the monitoring procedure does not always mean that the
assignable cause actually occurred at that point. Finding the actual change point has
been in great importance for many industries. Nedumaran et al. (2000) focused on

the procedure which is capable of identifying the step change in mean vector when

the process was monitored with a y* control chart.
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Controlling and monitoring only the multivariate normal mean vector is not
always sufficient because multivariate normal process dispersion does not remain
constant for many industrial applications. The need to control multivariate normal
process dispersion led several different extensions to control and monitor process
dispersion to appear. The approaches proposed by Alt (1985) and Alt and Smith
(1988) are the most commonly used control charts. These schemes do not provide a
built-in change point estimator. Our first target is to propose a change point
estimation procedure which is capable of detecting step changes when the process is

monitored with a |S| control chart.

Since a successful monitoring program requires monitoring both mean vector and
covariance shifts, the importance of simultaneously monitoring process mean and
variability has been increased. The traditional way of simultaneous monitoring is
constructing two charts: one for the mean and one for the variability. In other words,

7% and |S| control charts are used simultaneously and if any of them or both of them

generates a signal the process is considered to be out-of-control. Our second
objective is to develop a change point estimation procedure for simultaneous

monitoring of mean vector and covariance matrix. Our assumption here is that the

monitoring tool is a combination of 4 and [S| control charts.

Cheng and Thaga (2006) concluded that this practice of combining two charts
needs more resources such as quality professionals and time. Alt (1985) also noted
the importance of the need to develop single control chart for the simultaneous
monitoring of both mean and dispersion. There are some single control charts such
as Max- MEWMA (Chen et al., 2005) and MELR (Zhang et al., 2010) charts in the
literature. Since these control charts have better performance than the traditional
combination chart, another concern is the performance of the joint estimation
procedure under the assumption that the process is being monitored with a

multivariate single control chart.
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The remainder of this research is as follows: the following chapter gives the

details for the change point estimation in the [S|control chart, the third chapter

includes the joint change point estimation procedure for »® and |S| combination

chart, the fourth chapter is a research paper on the performance of the joint
estimation procedure with multivariate single control charts. Each chapter is
organized to include its own literature review, statistical model, simulation details
and assessment of the estimators. This manuscript also provides a final chapter for

conclusions which includes total results and future research directions.



CHAPTER TWO
ESTIMATION OF CHANGE POINT IN
GENERALIZED VARIANCE CONTROL CHART

2.1 Introduction

In many industrial implementations of control charting, dealing with several
interrelated quality characteristics is unavoidable. Controlling and monitoring
multivariate normal mean vector is not sufficient because multivariate normal
process dispersion does not remain constant for many industrial applications. The
need to control multivariate normal process dispersion led several different

extensions to control and monitor process dispersion to appear.

Alt (1985) and Alt and Smith (1988) proposed different procedures of carrying

out multivariate dispersion control and monitoring. The first approach is a direct

extension of the univariate S® control chart. In this procedure, the following statistic
to be charted is calculated based on a modification of the generalized likelihood

ratio test.
W, =—pn+ pnlog (n)—nlog (A|/|Z) +1tr (Z5' xA;),

where A, =(n-1)S;, S; is the sample variance covariance matrix for sample i and
can be calculated using (1.2), n is the sample size, and tr is the trace operator. If W,
statistic is plotted above the UCLz;(j,p(pﬂ),z, where p refers to the number of

quality characteristics to be controlled, then the process is out of control.

17
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The second approach for monitoring |S| is constructed using only the first two
moments of |S|and the property that the most of the probability distribution of || is
contained in the interval EQS|)J_r3,MS|iWhere EQS|):b1|ZO| and, VQS|):|ZO|2b2.

Here;

b, =(n-1)° pl (n—i), and

s~ (-0 100 [T0- 142 [ )|

=1 =1

If the plotted statistics are within UCL and LCL, then the process is evaluated to
be statistically in-control. When the LCL is negative, it is set to zero. The limits for

this approach are as follows;

UCL ==, (b, +30¥2),
CL =by|%,|, and

LCL =[Z,[(b, —30¥'2).

The third approach is considered to be the multivariate analogue of the univariate
S-chart. In this approach, the distributional properties of |S|“2 are used. Hence,
when two quality characteristics are considered to be monitored, then

2(n—1)["* /|=,["* is distributed as zZ, ,. To calculate the UCL and LCL, the

distribution of |S| is used.

o= P(LCL >|S| >UCL)= P{\/ LCL><|;><|(n—1) S ;(ZZM \/UCLX|§><|(n—1)j
0 0

2 2 2
= P(Zzn-zt,l—(a/z) > Xon-a > Zzn-4,a/2)
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Hence,

UCL =[24|(42 ..o f /]a(n—1)7], and

LCL =[Z4/(72, 41 orn | /[8n—121]. 2.1)

Aparisi et al. (1999, 2001) studied the statistical properties of the |S| -chart. The

control limits and power of the generalized variance control chart with its
distributional properties are considered in these studies. There are several
comparative studies on which approach to be selected. For discussions and reviews
of multivariate dispersion control charts designed for process control, see, Lowry
and Montgomery (1995), Alt (1985) and Alt and Smith (1988), and Bersimis et al.
(2007). Surtihadi et al. (2004) discussed different cases of covariance matrix shifts

and proposed effective control charts for each case of structured shift.

Khoo and Quah (2004) discussed the use of run rules in multivariate variability
control. Vargas and Lagos (2007) compared four multivariate control charts for
process dispersion, discussed robust estimation of covariance matrix and proposed
RG chart which is a modification of G chart (Levinson et al., 2002). Djauhari (2005)
and Djauhari et al. (2008) discussed the Improved Generalized Variance (GV) chart
and Vector Variance (VV) chart to solve the problems about the estimation and
interpretation of generalized variance. Costa and Machado (2009) proposed a new
multivariate control chart for process dispersion. They proposed VMAX statistic
which is based on the standardized sample variance of p quality characteristics to
construct the VMAX chart.

Beside the fact that, charting is a reliable way of controlling and monitoring
multivariate dispersion of a process, in many situations, knowing when a change
occurred is vital for special cause identification. With control efforts, if the exact
time of change of the process dispersion is determined, practitioners can easily solve
the root causes of variability. Samuel et al. (1998a, 1998b) considered finding the

time of a permanent change for a univariate normal process mean and variance and
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proposed maximum likelihood estimators used when the related control charts issue
a signal. Park and Park (2004) proposed a maximum likelihood estimator for
identifying the time of the simultaneous change of univariate mean and variance.
When a change occurs in controlling several quality characteristics of a
manufactured product; in other words, for multivariate cases, Nedumaran et al.
(2000) proposed a maximum likelihood estimator to detect the time of the mean

vector shifts. This change point detection procedure which is a follow up procedure
for y? control chart is based on the assumption of normality and constant

covariance structure.

Zamba and Hawkins (2006, 2009) proposed multivariate change point estimation
procedures using the unknown (or not fully known) - parameter likelihood ratio test
for a change in mean vector and/or covariance matrix. When compared to the
procedures proposed by Zamba and Hawkins, our estimator serves to Phase Il
applications following the work of Samuel et al. (1998a, 1998b), Nedumaran et al.

(2000) and Pignatiello and Samuel (2001) and our estimator is a complementary

procedure of the |S| -chart. Our proposed estimator focuses on estimating the most
likely location of the step change in the parameter of variation after a signal has

been issued by the |S| -chart. This retrospective procedure allows process engineers

and professionals to search for the causes of change in the variability. The proposed

‘add-on’ procedure is very useful in practice while many industrial professionals

prefer to apply |S| -chart for their control and monitoring activities of covariance

matrix. When they encounter an out of control situation, they can easily practice the
further action with the proposed estimator and find the estimated change point using

the information provided by the chart.

Sullivan et al. (2007) extended the step-down technique to apply the parameters
in the covariance matrix and to the other parameters in addition to those making up
the mean vector. They assume that other methods have been used to detect a shift
and estimate the time of the change. So as a retrospective application, step down

analysis can be applied with the proposed change point estimation procedure.
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Some other alternative multivariate variability charting techniques including
multivariate cumulative sum (MCUSUM) and multivariate exponentially weighted
moving average (MEWMA) procedures can be applied to this procedure, but our

study focuses on the change point estimation for |S| -chart which is the most

frequently used in industrial practice.

In this study, we consider the use of the change point estimator of the
multivariate dispersion once the sample generalized variance, |S| -chart, in which the
required statistics are calculated based on its distributional properties, issues a
signal. In the next section, the process model assumptions are given. The derivation
of the maximum likelihood estimator (MLE) of the proposed change point estimator
is based on Hinkley (1970) and its performance measurements-including accuracy
and precision- are investigated for different magnitudes of shift and sample sizes.
An illustrative example is given to indicate the practical use of the proposed

estimator.
2.2 Process model assumption

Assume that X; follows a p —dimensional normal distribution, and there are m

samples of size n>1 available from the process. Just as it is important to monitor
the process mean vector p in the multivariate case, it is also important to monitor
process variability. Process variability is summarized in the pxp covariance

matrix, £ (Lowry and Montgomery, 1995).

In this study, it is assumed that p correlated quality characteristics monitored with
generalized variance control chart are distributed multivariate normal with known
mean vector of w= (4, 4,,--, 44 ,)" and a known variance-covariance matrix,
;. Let X =(Xy, X, Xy,) be a px1 vector which represents the p

characteristics on the j ™ observation (j=1,2,---,n) in the i ™ subgroup of size n.
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Suppose further that when the process is in control, the X ’s are independent and

identically distributed (iid) and follow a p-variate Normal distribution with mean

vector p, and covariance matrix X, ; that is, the X;’s are iid N, (n,,X,) when the

process is in control. And let the process be statistically in control until the process

parameters change from (p,,X,) to (n,,X,) at an unknown change point in time
denoted by r where X, =X, with unknown change magnitudes in variances,

respectively. The step change in process covariance matrix remains at the new level

until the special cause is identified and eliminated.

We let n denote the subgroup size and we let X, denote the average vector of
the i™ subgroup; calculated with (1.3), and, S, is sample covariance matrix for

sample i; calculated with (1.2). Thus, let T be the time of the signal of the
generalized variance control chart. Hence, we assume that the subgroup covariances

S,.S,,---,S, came from in-control process and the subgroup covariances

S...,S,.,,---,S; came from the out-of-control process. It is further assumed that the

41197421

process mean remains the same and covariance remains the same at the new level

X, until the special cause has been issued by the generalized variance control chart.

2.3 Estimation of the change point

After determining the process model assumptions, we consider the derivation of
the maximum likelihood estimator (MLE) of the change point z when a step change
occurs in the process covariance matrix. It is assumed that the process covariance
has changed at an unknown time, 7. The change is detected at the time T by the

generalized variance control chart.

Given the observations X; = (X, Xjj,, -+ Xy,) , derivation of the maximum

likelihood estimator (MLE) of 7, the multivariate process dispersion change point,

is as follows:
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1 T 1 T-7
log, L(7,X,) = Iog{(Zn)”p’2|Zo|”/2} + |OQE[WJ
3B 306 s, )| -3 S50, )]

i=1 j=1 i=r+1lj=1

The first part of the function can be written as:

~0g.(ox)ea) - "5 o (7))

There are two unknowns in the likelihood function; zand X, . If the time of the
step change were known, the MLE of X,, namely the covariance matrix of the

(T —t) most recent subgroup averages would be:

!

X = t)lz Z( )( uo)

t+1 j=1

Substituting the MLE of X, back into the log-likelihood function, we obtain

log, L(r,%,) =~ ;121( o) (X, —1o)
ii(xu _llo) (Xij _llo),

i=t+1 j=1 .
n(T —t) ‘ '

n(T —t)
- lo
2 Je

The MLE of 7, denoted by 7 is the value of t that maximizes the log-likelihood

function, or 7 is the maximum value of C statistics. So;

#=argmax(C,) t=0,1,..., T, (2.2)

O<t<T-1
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where

B L]
>3 0%, o) (%~ 7

i=t+1 j=1

(2.3)

(r

_np(T -1)

t
0. n(T -t) 2

Note that Samuel et al. (1998b) proposed the MLE estimator of z for univariate

processes is as follows and when p=1, then our proposed multivariate process

dispersion estimator turns into the univariate form:

i ”
n i=r nT -z
7 = arg max| = 1 - )
0<t<T-1 20‘0 2

T n
ZZ
log, =2

_n(T-7)
n(T 7)ot 2 '

2.4 Performance evaluation of the proposed estimator

In this part of the study, the performance of our proposed estimator is
investigated and evaluated by using Monte Carlo simulation. The simulation study is
focused on Phase 11 performance of the proposed estimator. In the literature, change
point estimators are proposed by Samuel et al. (1998a, 1998b), Nedumaran et al.
(2000) and Park and Park (2004) for different types of control charts. These studies
used two major performance indicator of the estimator, namely, “average change
point estimate” and “the empirical distribution of the estimated change point around
the actual change point”. During the simulation study, although our proposed
estimator can be applied for all cases of multivariate implementations, for

simplifying the forms of the alternatives to be studied the bivariate case (p = 2) was

considered. Matlab® is used to carry out the simulation study.
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Observations were randomly generated from a N (n,,X,) distribution

wheni <100, the on-target mean vector was p, =(0,0) and the in-control covariance

matrix was selected as follows:

1 »p
EO:{ }'
p 1

where 0 < p <1 is the correlation coefficient between two quality characteristics. In
this study, the correlation coefficient was set to 0.5 and Type | error probability was
set to 0.0027. For the first hundred runs it is assumed to be no false alarms. Starting
with subgroup 101, the observations are randomly generated from N (p,,X,) until

the generalized variance control chart issued a signal. The structure of the changed

variance-covariance matrix is given as:

2 2
d, x o, pxélxézxaxxay
% = 2 2
pxélxézxaxxay ézxo-y

In order to simulate the changes in the variance-covariance matrix the following

cases are considered as in Vargas and Lagos (2007):

e The standard deviation of one of the quality characteristics increases from

o, 1o o, xo,(or o, to 5,x0o,) for 6, >1 (or 6, >1), or decreases from
o, 1o o, xo,(0r o, to 5,x0,) for 6, <1(or 6, <1), while the others

remains the same.

e The standard deviations of both quality characteristics increase from o, to
o, xo, and o, to J,xo, for 6, >1and &, >1, or decrease from o, to

o, xo,and o, to 6, %o, for 6, <1 and &, <1, by the same magnitude.
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e The standard deviation of one of the quality characteristics increases from

o, to 6, xo, for 5, >1 while the other decreases from o, to &, xo, for

0, <1.

For every run, when the control chart issued a signal, the time of the change was
calculated with the proposed estimator. This procedure was repeated a total of
10,000 times for each of the case and different magnitudes, denoted by &, and three
subgroup sizes n=4,n=10, and n=15. The average of change point estimates for
every simulation run was computed along with its standard error to investigate the
accuracy of our estimator. Additionally, the empirical distributions of the estimated
change point around the actual change point for all cases, sample sizes and
magnitudes of shift were considered in order to evaluate the precision of the

estimator.

2.4.1 Accuracy Evaluation

For a control chart, the average run length (ARL) is the expected number of
required sub-groups to be controlled to detect a change in the process distribution or
parameters. To measure the power of the control charts ARL is frequently used. For
the control chart designed from generalized variance sample distribution, the power

is defined when the covariance matrix changes to £, (X, =X,). Aparisi et al.

(1999, 2001) gave the control limits and power of generalized variance control chart.
The power of generalized variance control chart with upper and lower control limits

is defined as follows where S is the Type Il error probability and 1— 4 is the

power:

1-g=P(LCL>[3|>UCL/E=X,)

_p Kona a2 X2|20| >[9|> 7522n4<a/2>><|220| T=%, |
4x(n-1) 4x(n-1)
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If determinant ratio (DR) is [£,[/|Z,|, it gives:

2
Xon-a,(1-a/2) 2 ZZn 4(a/2)
1-p=P| —F—=2>2y,, ., 2 =X |.
B ( ‘DR Xon-a /— 1

The out of control ARL, as the reverse of power is then found as follows:

ARL(DR) = 5 !
(Zzn 41a?) Z ZZn 4(a/2))
/_ 2n— 4 /DR

For instance, considering the equal increasing shift (o = o, = 0, =1.2) for both of

the quality characteristics, where « =0.0027 and n=10, X, is calculated as

follows. The ARL calculation is also illustrated in Table 1.1 for this case.

1.0 05

For 1 <100, EO:{OS 10

}, and then for i >100,

512><a§ p><51><52><ax><ay
Y =
! pxélxézxaxxay 522><0'§
1.44x1 0.5x1.2x1.2x1x1 144 0.72
Hence, X, = = .
0.5x1.2x1.2x1x1 1.44x1 0.72 1.44

Using the aforementioned ARL calculation,

ARL(DR) = 12 =21.8, and
P(0.04> 42 , >2.87)

E(T) =100+ ARL (DR) =100+ 21.8 =121.8.
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Using the fact that the exact change point of the simulation process for all sample
sizes and magnitudes is = =100, the change point estimates are expected to be close
to the exact change point. Analyzing the average of change point estimations (7 ),
for all sample sizes and magnitudes, the outputs are fairly close to the actual change
point. In general, our proposed change point estimator can be evaluated to be close
to the actual change point without considering different sample sizes and
magnitudes of shift in covariance matrix. In Table 2.1-2.5, 7, standard errors and

E(T) are summarized.

For instance, the results for the Case 1 when & >1 are given in Table 2.1, and
that of & <1 are given in Table 2.2. The results indicate that, even small shifts in
standard deviations of the quality characteristics, the average change point estimates
are quite close to 100. When & =1.1 for both quality characteristics, the average
change point estimates are 107.83, 101.71, and 100.41 for sample sizes
n=4,10,15. When compared to the expected times of the signals, the values are
fairly close to the actual change point for all sample sizes. For example, when

n=10, E(T) is 188.66 and 7 is 101.71. For the small magnitudes of shift, we

realized that E(T ) values are very far from 100. Even we take 15 measurements for

each subgroup, E(T) is 308.13 when & =0.9, on the other hand, 7 =100.66. That

means our estimator has good detection potential for all magnitudes of shifts; on the

other hand, generalized variance control chart has not for especially small shifts.
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Table 2.1 Average of the change point estimates and their standard errors when quality characteristics

increase fromo, to 6, xoyand o, t0 6, xo, (6 =6, =56 >1).

1)
1.1 1.2 13 14 1.5 2.0
n=4 E(T) 255.53 166.23 130.65 1171 110.42 102.85
7 107.83 100.00 99.31 99.32 99.23 99.32
Std. error 0.364 0.147 0.104 0.085 0.078 0.059
n=10 E(T) 188.66 121.80 108.22 104.2 104.15 101.12
7 101.71 99.33 99.13 98.97 98.86 99.61
Std. error 0.185 0.093 0.079 0.076 0.079 0.043
n=15 E(T) 199.05 121.98 106.86 103.29 102.07 101.05
7 100.41 99.24 99.43 99.28 99.39 99.93
Std. error 0.13 0.096 0.052 0.062 0.053 0.012

Table 2.2 Average of the change point estimates and their standard errors when quality characteristics

decrease fromo, to 6, xoyand o, to 5, xo, (6 =05, =6 <1).

5
0.9 0.8 0.7 0.6 0.5 0.25
n=4 E() 537.85  411.98 285.82 203.24 151.09 104.76
7 102.77 99.24 99.67 99.76 99.81 99.92
Std. error 0.343 0.087 0.04 0.028 0.028 0.017
n=10 E(T) 305.62 157.19 115.6 104.53 101.72 101.00
7 10050  99.83 99.71 99.64 99.57 99.99
Std. error 0.140 0.047 0.038 0.039 0.042 0.000
n=15 E(T) 308.13 156.91 103.63 101.49 101.71 101.00
7 100.66  99.76 98.92 99.20 99.58 100.00
Std. error 0.151 0.051 0.074 0.058 0.044 0.000
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Table 2.3 Average of the change point estimates and their standard errors when one quality

characteristic increase fromo, to 6, x o, (or o, to 6, x o) (;(or 6,) =5 >1).

5
1.1 12 13 1.4 15 2.0

n=4 E(T) 354.4 265.88 209.41 174.73 152.67 115.61

7 116.73  101.84 10037  100.06 ~ 100.06  99.87

Std. error 0.570 0.201 0.117 0.080 0.064 0.040
n=10 E(T) 304.02 19498 14699 1264 116.39  103.81

7 10400  100.31  99.97 99.79 99.82 99.85

Std. error 0.276 0.096 0.063 0.053 0.041 0.030
n=15 E(T) 30575 19573 15147 12629 11518  103.06

7 104.22 10020  99.89 99.96 99.89 99.94

Std. error 0.272 0.099 0.046 0.030 0.031 0.019

Table 2.4 Average of the change point estimates and their standard errors when one

characteristic decrease from o, to 6, x o, (or o, to 5, x o) (;(or 5,) =5 <1).

quality

o
0.9 0.8 0.7 0.6 0.5 0.25
n=4 E(M) 546.01 541.85 457.86 371.00 291.06 151.4
3 108.98 98.71 99.16 99.54 99.71 99.96
Std. error 0.547 0.140 0.061 0.035 0.027 0.011
n=10 E(M) 443.04 290.46 192.21 140.02 116.64 101.69
¢ 101.39 99.63 99.79 99.91 99.87 99.95
Std. error 0.243 0.061 0.030 0.016 0.023 0.015
n=15 E(M) 294.36 292.34 119.99 108.64 116.54 101.71
7 100.53 99.61 99.50 99.54 99.90 99.96
Std. error 0.185 0.065 0.052 0.048 0.021 0.01
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Table 2.5 Average of the change point estimates and their standard errors when one of the quality

characteristics increases from o, to 6, x o, (6, >1) while the other decreases from o, to 5, x o,

(0, <1).
61
11 1.2 1.3 1.4 15 2.0
52
0.9 0.8 0.7 0.6 0.5 0.25
n=4 E(T) 475.26 504.28 543.65 556.39 509.63 291.36
7 101.01 99.57 99.73 99.84 99.91 99.98
Std. error 0.270 0.074 0.036 0.021 0.014 0.004
n=10 E(M) 480.92 490.19 458.27 345.47 234.15 116.95
7 99.93 99.88 99.97 99.97 99.98 100.00
std. error 0.118 0.312 0.104 0.008 0.004 0.000
n=15 E(M) 263.35 240.39 200.35 159.84 129.54 103.82
7 99.42 99.84 99.94 99.95 99.99 100.00
Std. error 0.097 0.029 0.013 0.015 0.004 0.000

Our proposed estimator also successfully yields for the Case 2 when both 6 >1
and & <1. For the different magnitudes of shift and sample sizes, 7 values are close
to 100. In Tables 2.3 and 2.4, the 7 and E(T) results are given. When the change is
intentionally structured in only one quality characteristic, the accuracy of the
estimator is not influenced. For instance, when 6 =0.7, the estimates are 99.16,
99.79 and 99.50 for different sample sizes. Table 2.5 is given for the Case 3 when
0, >land o, <1. As it is indicated in the Table 2.5, the average estimates are very
close to the 100, regardless of the sample size and magnitude of shift. Even though,
generalized variance control chart showed good detection performance for increases
in the standard deviations of the variables, the proposed estimator showed better

detection performance for all cases.
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2.4.2 Precision Evaluation

For the three cases, empirical distribution of 7 around 7 are given in Tables 2.6-
2.10. Each table is constructed to show the estimated probability of being in the k™
neighborhood of the actual change point. In other words, the observed frequency
which our proposed estimator of the time of the step change was within k subgroups
of the actual time of the change is summarized in these tables. The results for Case 1
are summarized in Tables 2.6 and 2.7.

For example, when 6 =13 and n=15, in 60.4% of the runs, the proposed
estimator correctly identified the change point . When & =0.6 and n =10, then, the
change point is estimated to be within +5 subgroups of the actual change point in
98.9% of the 10,000 simulation runs. From Table 2.7 whilen =4, it can be seen that
for a 50% decrease in both quality characteristics, our proposed estimator identified
the change point correctly in 76.7% of the trials. Our estimate was within four
subgroups of the true change point in 99.4% of the trials. When n=15 and
0 =0.25 then 99.9% of the trials the estimator identified the true change point.

Tables 2.8 and 2.9 give the results for Case 2 when 6 >1 or 6 <1 for one of the
quality characteristics. When n =4, for a 40% increase in the standard deviations of
one of the quality characteristics, simulation study resulted correct identification in
26.7% of the trials. The change point was estimated to be within + 3 subgroup of the
actual change point in 70.1% of the trials and be within + 10 subgroup of the actual
change point in 92.7% of the trials. Also, any decrease in standard deviation of one
of the quality characteristics are very well determined by our proposed estimator.
For example, when n =10, for a 20% decrease in one of the standard deviations, our
estimator correctly identified the true change point in 28.4% of the trials. The
change point was estimated to be within + 1 subgroup of the actual change point in
51.2% of the trials and be within + 7 subgroup of the actual change point in almost
89.3% of the trials. It is a very important property of our proposed estimator to be

efficient even in small magnitudes of shift.
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Table 2.10 gives the results for Case 3 when 6, >1 and o, <1, respectively. As

an example from the table, when n =15 for a 20% increase in the standard deviation
of the first quality characteristic and 20% decrease in the standard deviation of the
second characteristic resulted in correct identification in 57% of the simulation runs.
Moreover, in 99% of the trials, the estimated change points are within + 7 subgroup.
Whilen =4, for 50% increase in the first standard deviation and 50% decrease in
the second standard deviation, the estimator correctly identified the true change
point in 73.1% of the trials and, in 99.2% of the trials, the estimated change points

are within + 3 subgroup.
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Table 2.6 Empirical distribution of 7 around z when o, increases to 6, xco,and o increases to

8, xo, (8 =6, =6 >1).

PIS 1.1 1.2 1.3 1.4 15 2.0
n=4 P(f=1) 0.051 0.154 0.270 0.388 0.474 0.762
P(¢—7 <1 0117 0314 048 0626 0714 0916
P(e-7<2) 0174 0420 0615 0751 0827  0.951
P(e-7<3) 0223 0502 0699 0820 0885  0.965
Pl -7 <4 0266 0566  0.764  0.868 0921 0972
P(¢ -7 <5) 0302 0622 0809 0902 0940  0.976
P(7—7/<6) 0336 0663 0842 0920 0953  0.978
P(e-7<7) 0364 0700  0.868 0934 0961  0.980
P(7-7|<8) 0390 0732 0887 0946 0967  0.981
P(¢ -7 <9) 0418 0758 0904 0954 0971  0.983
P(#—7|<10) 0442 0780 0918 0960 0974  0.984
n=10 P(f=1) 0107 0294 0492 0617 0706  0.932
P —<1) 0230 0520 0728 0826 0805  0.975
P(e-7<2) 0327 0658 0833 0901 0931  0.983
P(#-7<3) 0397 0739 0890 0932 0950  0.987
P(e-7<4) 0461 0795 0922 0946 0959  0.989
P(# -7 <5) 0513 0839 0941 0956 0963  0.990
P(?-7/<6) 0554  0.869 0952 0961 0967  0.991
Pl -7 <7) 0593  0.890 0959 0965 0970  0.991
P(¢—7|<8) 0626 0908 0965 0968 0972  0.992
P(¢ -7 <9) 0654 0922 0968 0971 0973  0.992
P(#-7|<10) 0676 0933 0972 0973 0975  0.993
n=15 P(f=1) 0.164 0305  0.604 0739 0826  0.973
P <1 0329 0533 0830 0905 0938  0.992
P(e-<2) 0438 0654 0904 0950 0963  0.995
Pt -7<3 0516 0740 0939 0965 0973  0.99
P(e <4 0579 0801 0957 0971 0976  0.997
P —<5) 0633 0844 0968 0976 0979  0.997
P2 —<|<6) 0677 0872 0973 0978 0982  0.998
P(e—<7) 0716 0894 0976 0980 0984  0.998
P2 —7|<9) 0749 0911 0979 0982 098  0.998
P —<9) 0772 0924 0981 0983 098  0.999

P(t-7|<10) 0.795 0.933 0.982 0.984 0.987
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Table 2.7 Empirical distribution of 7 around z when o, decreasesto &, X o,and o, decreases to

5, X0, (8, =8, =5<1).

PIS 0.9 0.8 0.7 0.6 0.5 0.25
n=4 P(f=1) 0.056 0.225 0.417 0.620 0.767 0.970
P(¢—7 <1 0128 0420 0674 0849 0933 099
P(e-7<2) 0194 0548 0797 0927 0975  0.997
P(e-7<3) 0250 0632 0863 0960 00989  0.997
Pl -7 <4 0298 0696 0908 0977 0994 0997
P(¢ -7 <5) 0342 0746 0937 0987 0995  0.998
P(7—7/<6) 0378 0781 0953 0991 0996  0.998
P(e-7<7) 0412 0816 0965 0994 0997  0.998
P(7-7|<8) 0.445 0842 0973 099 0997  0.999
P(¢ -7 <9) 0472 0862 0979 0997 0998  0.999
P(#—7|<10) 0499 0880 0984 0997 0998  0.999
n=10 P(f=1) 0107 0401 0644 0825 0905  0.997
P —<1) 0230 0649 0863 0951 0969  0.999
P(e-7<2) 0327 0770 0932 0976  0.980
P(#-7<3) 0397 0847 0962 0983  0.984
P(e-7<4) 0461  0.890 0978 0987  0.986
P(# -7 <5) 0513 0919 098 0989  0.988
P(?-7/<6) 0554 0939 098 0990  0.990
Pl -7 <7) 0593 0954 0991 0991  0.991
P(¢—7|<8) 0626 0965 0992 0992  0.991
P(¢ -7 <9) 0.654 0974 0992 0993  0.992
P(#-7|<10) 0676 0980 0993 0993  0.992
n=15 P(f=1) 0126 0402 0721 0866 0909  0.999
P <1 0272 0651  0.894 0943  0.970
P(e-<2) 0374 0771 0939 0961  0.981
Pt -7<3 0453 0842 0955 0969  0.986
P(e <4 0515  0.88 0964 0973  0.988
P —<5) 0568 0916 0969 0977  0.989
P2 —<|<6) 0614 0938 0972 0979  0.990
P(e—<7) 0.648 0954 0974 0980  0.991
P2 —7|<9) 0681 0965 0976 00982  0.992
P —<9) 0710 0971 0977 0983  0.992

P(t-7|<10) 0.737 0.977 0.978 0.984 0.993




Table 2.8 Empirical distribution of 7 around r when o, increases to o, X o, to (or o

to §,xa,) (5(0rs,)=5>1).

y
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increases

PIS 1.1 1.2 1.3 1.4 15 2.0
n=4 P(f=1) 0.031 0.101 0.180 0.267 0.339 0.623
P(¢—7 <1 0076 0220 0357 0449 0587  0.850
P(e-7<2) 0114 0301 0479 0617 0712 0932
P(e-7<3) 0152 0376 0568 0701 0792  0.960
Pl -7 <4 0185 0436 0638 0761 0898  0.976
P(¢ -7 <5) 0211 048 068 0811 088 0984
P(7—7/<6) 0235 0529 0732 0846 0912 0987
P(e-7<7) 0258 0569 0767 0874 0930  0.990
P(7-7|<8) 0284 0602 0795 0894 0943  0.991
P(¢ -7 <9) 0307 0631 0820 0913 0953  0.992
P(#—7|<10) 0327 0658 0842 0927 0961  0.993
n=10 P(f=1) 0076 0214 0356 0483 0584  0.866
P —<1) 0167 0406 0601 0734 0817 0971
P(e-7<2) 0235 0525 0727 0842 0909  0.988
P(#-7<3) 0293 0618 0809 0902 0947  0.992
P(e-7<4) 0.344 0685 0860 0934 0966  0.994
P(# -7 <5) 0387 0738 089 0954 0977  0.995
P(?-7/<6) 0424 0777 0919 0967 0983  0.996
Pl -7 <7) 0459 0811 0936 0975 0987  0.996
P(¢—7|<8) 0487 0839 0950 0979 00989  0.997
P(¢ -7 <9) 0514 0862 0960 0983 0991  0.997
P(#-7|<10) 0538 0880 0967 098 0991  0.997
n=15 P(f=1) 0.068 0208 0465 0617 0708  0.937
P <1 0156 0398 0721 0841 0902  0.991
P(e-<2) 0225 0520 0837 0920 0959  0.996
Pt -7<3 0.287 0607 0895 0958 0980  0.997
P(e <4 0339 0674 0930 0975 0998  0.998
P —<5) 0384 0727 0949 0985 0992  0.998
P2 —<|<6) 0419 0770 0964 0989 0994  0.999
P(e—<7) 0455 0806 0973 0992 0995  0.999
P2 —7|<9) 0487 0834 0979 0994 0996  0.999
P —<9) 0518 0857 0983 0995 0996  0.999
P(?-+|<10) 0.543 0.876 0.987 0.995 0.997 0.999
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Table 2.9 Empirical distribution of 7 around 7 when o, decreasesto 6, X o, (or o, decreases to

5, x0,) (6,(0rs,)=6<1).

PIS 0.9 0.8 0.7 0.6 0.5 0.25

n=4 P(f=1) 0.032 0.139 0.285 0.464 0.628 0.934
P(¢—7 <1 008 0291 0515 0720  0.858  0.992
P(e-7<2) 0132 0398 0657 0832 0938 0998
P(e-7<3) 0170 0483 0739 0897 0969  0.999
Pl -7 <4 0204 0547 0798 0935 0983  0.999
P(¢ -7 <5) 0235 0605 0843 0958 0990  0.999
P(7—7/<6) 0265 0647 0877 0973 099  0.999
P(e-7<7) 0292 0685 0900 0982  0.997
P(7-7|<8) 0314 0716 0919 0987  0.998
P(¢ -7 <9) 0337 0746 0933 0990  0.998
P(#—7|<10) 0359 0771 0946 0993  0.998

n=10 P(f=1) 0.083 0284 0519 0708 0855  0.990
P —<1) 0189 0512 0814 0911 0971  0.997
P(e-7<2) 0267 0645 0876 0965 0991  0.998
P(#-7<3) 0326 0731 0926 0983 0995  0.998
P(e-7<4) 0382 0794 0954 0992 0996  0.998
P(# -7 <5) 0433 0838 0969 0995 0997  0.998
P(?-7/<6) 0476  0.868 0980 099 0997  0.999
Pl -7 <7) 0513 0893 0987 0997  0.997
P(¢—7|<8) 0546 0914 0990 0998  0.998
P(¢ -7 <9) 0573 0929 0993 0998  0.998
P(#-7|<10) 0603 0941 0995 0998  0.998

n=15 P(f=1) 0106 0286 0613 0806  0.855  0.990
P <1 0232 0509 0836 0944 0975  0.997
P(e-<2) 0323 0638 0920 0974 0992  0.998
Pt -7<3 0398 0724 0955 0982 0996  0.999
P(e <4 0456 0784 0972 0987 0997  0.999
P —<5) 0507 0832 0980 0989 0998  0.999
P2 —<|<6) 0550  0.866 0984 0990 0998  0.999
P(e—<7) 0592  0.892 098  0.990  0.998
P2 —7|<9) 0623 0911 0988 0991  0.998
P —<9) 0652 0928 0989 0992  0.999
P(?-+|<10) 0.677 0.939 0.990 0.992 0.999
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Table 2.10 Empirical distribution of 7 around z when o, increasesto &, X o, (6, >1) while o

decreases to 6, x o, (5, <1).

21 11 1.2 13 1.4 15 2.0
52 0.9 0.8 0.7 0.6 0.5 0.25
n=4 P(f=1) 0.076 0.230 0.415 0.597 0.731 0.966
P —<1) 0172 0446 0674 0833 0923  0.998
P(e-7<2) 0.244 0575 0801 0924 0974
P(#-7<3) 0308 0668 0874 0960  0.992
Pl -7 <4) 0359 0734 0917 0980  0.997
P(# -7 <5) 0408  0.785 0943 0989  0.998
P(?—7/<6) 0450  0.822 0959 0993  0.999
Pl -7 <7) 0483 0853 0971 0995  0.999
P(¢-7|<8) 0513 0875 0979  0.997
P(¢ -7 <9) 0543  0.894 0984  0.998
P(#-7|<10) 0570 0911 0989  0.998
n=10 P(f=1) 0.162 0460 0691 0855 0942  0.999
P <1 0338 0713 0902 0975  0.995
P(e-<2) 0450  0.828 0963  0.994  0.999
Pt -7<3 0531 0890 0983  0.998
P(e <4 0599 0928 0993  0.999
P —<5) 0.646 0951  0.996
P2 —<|<6) 06901 0966  0.998
P(e—<7) 0726 0976  0.999
P2 -7|<9) 0.758  0.984
P —<9) 0782  0.988
P(?-7|<10) 0.803  0.991
n=15 P(f=1) 0220 0570 0807 0931 0980  0.999
P(7 -7 <1 0419 0808 0952 0991  0.999
P(e-7<2) 0548 0902 098 0997  0.999
P(¢-7<3) 0635 0944 0995 0998  0.999
Pl -7 <4) 0701 0966 0997 0999  0.999
P(# -7 <5) 0.749 0979 0998  0.999
P —7/<6) 0790 098 0998  0.999
Pl -7 <7) 0821 0990 0998  0.999
P(¢-7/<8) 0.847 0992 0999  0.999
P(#—7|<10) 0.887 0994 0999  0.999
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2.5 llustrative example

We will now give an illustrative example on how to use the proposed estimator in
practice. Considering the lumber manufacturing example of Alt (1985), data

generated from the in-control mean vector and covariance matrix are given as:

_ (265, 470) , and x, =| 0 0
Ho ) °Tles  121|

The given quality characteristics are stiffness ( X,) and bending strength ( X, ) on

lumber boards. Each subgroup consists of n =10 lumber boards. Our procedure will
be illustrated with generalized variance control chart based on its distributional
properties. When the desired Type-I error («) is 0.0054, then, the upper control
limit for this chart is 31,349 and the lower control limit is 512.87. Under the
assumption that the process is in-control, the first 15 samples were generated from

iid N,(p,,X,) and the remaining samples were generated from iid N, (n,,X;) until

the control chart issued a signal. Here, X, denotes the changed covariance matrix

where the standard deviations of each quality characteristics have increased by 30

percent:

(1.3 x100 (1.3)° x66 }
.
1

{169.00 111.54}
(1.3 x66 (1.3)° x12 '

111.54 204.49

When the twentieth subgroup was generated, generalized variance control chart
has issued a signal. That means following the signal at T= 20, the C statistics can
be calculated. Our aim in this procedure is to find the maximum value of C, in other

words, to find where the change occurred in the interval of 0 <t <T —1.
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According to Table 2.11, the generalized control chart did not issue a signal until
the twentieth subgroup was generated. On the other hand, the change point estimator
has its maximum value in the sixteenth subgroup. That means, the fifteenth
subgroup was the last subgroup obtained from in-control process and the sixteenth

Table 2.11 Subgroup average vectors, generalized variances and C statistics

i X, X, S| t C,

1 263.77 469.83 5,673 0 3.77
2 266.33 468.63 4,975.9 1 4.03
3 264.40 470.88 3,418.2 2 3.40
4 265.67 469.07 7,803.5 3 4.05
5 267.91 471.15 2,199.2 4 4.36
6 269.53 470.94 6,442.5 5 4.90
7 270.88 474.23 2,009.3 6 5.15
8 265.66 469.93 8,734.6 7 5.75
9 263.01 471.20 2,982.2 8 5.60
10 261.97 469.06 8,337.8 9 5.88
11 263.01 466.69 6,996.5 10 6.27
12 264.13 469.62 6,583.5 11 6.96
13 266.21 471.76 5,427.5 12 8.12
14 264.69 470.15 6,535.5 13 9.20
15 267.73 475.78 4,500.1 14 10.68
16 263.08 473.58 23,455 15 12.86
17 265.94 469.82 24,666 16 9.60
18 274.40 470.35 6,207.7 17 8.39
19 258.72 464.66 10,628 18 6.12
20 268.59 47484 41421 19 5.47

subgroup was the first subgroup of the changed process, as we initially aimed.

For the practitioners, investigating the signal issued subgroup is not sufficient to find
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out the special cause. As it is occurred in our illustrative example, a step change may

exist several subgroups earlier from the signal of the control chart.

2.6 Conclusions

Maximum likelihood estimation of a change point combined with control charts
is a practical and considerably rational way of identification of the time of a step
change and its special causes in industrial processes. For univariate and multivariate
statistical process control, several estimators have been proposed. The certain
information of the time of a step change is in great importance in statistical process
control, including multivariate cases. Even though, the generalized variance control
chart is designed to detect the change in multivariate normal process variance, a
considerable delay may exist in issuing a signal after the change occurs. Moreover,
the detection performance of the chart decreases, respectively, with small
magnitudes of shift in covariance matrix. Using generalized variance control chart
with the proposed procedure would be beneficial for detecting changes and

identifying special causes for practitioners.

In this section, a change point estimator (7 ) is proposed which is capable of
identifying the change point of a step change in a multivariate normal process
covariance. The proposed estimator is assumed to be calculated under the
assumption that the mean vector remains the same after the change and only the
covariance matrix changes. The estimator indicates the time of the change after a
signal is issued by generalized variance control chart. The performance of the
estimator is evaluated with Monte Carlo simulation results. For different structural
changes in covariance matrix and various sample sizes, it is indicated that our
change point estimator is considerably effective in both accuracy and precision. It is
shown that, the estimator is respectively effective in estimating the time for the case
when one of the standard deviation increases while the other decreases. The
simulation runs help us to show that the estimator performs well for various sample
sizes and even for small changes (decrease or increase) which yield large run lengths

in the control chart. An illustrative example is considered to indicate the practical
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use of the change point estimator. This hypothetical example indicates the ease of

implementation and interpretation.
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CHAPTER THREE
A MULTIVARIATE CHANGE POINT DETECTION PROCEDURE FOR
MONITORING MEAN AND COVARIANCE SIMULTANEOUSLY

3.1 Introduction

Control charts have proven to be effective for improving process performance in
addition to the fact that they are easy for practitioners to apply and interpret. There
has been an increasing interest in multivariate quality control practices in the
industry. Many industrial processes are characterized by several inter-related quality
metrics. The efforts to monitor the mean vector started with Hotelling’s T ? control

chart in 1947. When the process parameters are known or can be estimated, this
chart plots n(X; —p, ) £:(X; —, ) where X; ~ N, (1o, Z,), i=12,...,n. If a point
falls beyond the upper control limit UCL = ;(;H, the process is considered to be out

of control. This control chart is also called Phase Il X *chart or y? chart (Bersimis

et al., 2007). As monitoring only the mean vector is not an effective way of
controlling the process, many authors focused on developing the methods to monitor
dispersion. Alt (1985) and Alt and Smith (1988) proposed different procedures of
carrying out multivariate dispersion control and monitoring. They proposed the

multivariate analogue of the univariate S-chart. In this chart, |Si|1/2 values are plotted

when the control limits are given in (1.1).

For discussions and reviews of multivariate mean and dispersion control charts,
see, for example, Lowry and Montgomery (1995), Alt (1985) and Alt and Smith
(1988), Surtihadi et al. (2004), Khoo and Quah (2004), Bersimis et al. (2007), and
Vargas and Lagos (2007).

The mean vector monitoring procedures are affected by the shifts in covariance
but it is known that a variance chart is not affected by the shifts in mean vector. This
leads to an understanding of the importance of joint performance of the mean and

variance charts. Since a successful monitoring program requires monitoring both
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mean vector and covariance shifts, the importance of simultaneously monitoring
process mean and variability has been increased. The traditional way of

simultaneous monitoring is done by constructing two charts: one for the mean and

one for the variability. In other words, x> and |S| charts are used simultaneously. If

any of them or both of them generates a signal the process is considered to be out-
of-control. There are several simultaneous control alternatives to this approach in the
literature. Chen et al. (2005) proposed a single multivariate exponentially moving
average (MEWMA) control chart to monitor mean vector and covariance matrix
simultaneously. Thaga and Gabaitiri (2006) proposed the Multivariate Maximum
Control Chart which is capable of jointly monitoring the mean and covariance shifts.
The basic idea in these procedures, namely the Max-MEWMA and Max-M charts, is
to transform the monitoring statistics for mean and covariance to standardized
normal random variables and determining the maximum of these standard normal
readings. Machado et al. (2009) proposed the MVMAX chart and the joint use of
two charts based on the non-central chi-square statistic. Zhang et al. (2010) proposed
a single MEWMA chart based on the generalized likelihood ratio (GLR) test for

joint monitoring both the multivariate mean and variability.

Control charts generate a signal when a change in the process distribution is
detected and has a potential delay to generate this signal. However, the signal does
not indicate that a special cause actually occurred at that particular point in trigger
time (Park and Park, 2004). Since accurate and precise estimation of the change
point is vital for many processes, using follow-up change point estimation
procedures is recommended. Park and Park (2004) applied the univariate joint
maximum likelihood estimator (MLE) of the change point for mean and variance.
They investigated the performance of their follow-up estimator for

X —S combination control chart. Lee and Park (2007) proposed the MLEs for the
change point to detect the time of a change in process mean and/or variability with
both fixed sampling rate and variable sampling rate. They investigated the
performance of this estimator for Shewhart, EWMA and CUSUM charts. Sullivan
and Woodall (2000) proposed a single multivariate control chart based on GLR for

multivariate individual process readings. They also divided the test statistics into a
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part for the mean shift and another part for the covariance shift. Their approach was
able to detect the location of a shift, the presence of multiple changes and the type of
the change (mean shift, covariance shift or combination shift). Zamba and Hawkins
(2009) proposed a multivariate change point model through GLR statistics for
estimating the change in mean vector and/or covariance structure. Their change
point model is able to monitor short runs and unknown or not fully known parameter

processes.

In this study, joint estimation of a change point is applied to multivariate normal
processes for monitoring both mean and covariance shifts. A follow up change point
estimation procedure is proposed for Phase Il applications following the work of
Samuel et al. (1998a, 1998b), Nedumaran et al. (2000), Pignatiello and Samuel
(2001), and Dogu and Deveci-Kocakoc(2011a). The proposed change point
estimator is a complementary procedure for multivariate mean and covariance
monitoring control charts. Our proposed estimator focuses on estimating the most
likely location of the change after a single or combination multivariate control chart
issues a signal. This procedure helps process engineers and professionals to find the

location of the change when monitoring the mean vector and covariance matrix

simultaneously. As many industrial professionals prefer applying x> and |S|

control charts simultaneously for this case, the proposed ‘add-on’ procedure is very
useful in practice. When the combination chart generates a signal, they can estimate
the change point and investigate the assignable cause(s). Some other alternative
multivariate charting techniques including MCUSUMs and MEWMAs for

simultaneous location and dispersion monitoring can be applied to this procedure,

but our performance analysis focuses on the change point estimation for y* and |S|

charts.

The remainder of this paper is organized as follows: the next section gives the
details of the model assumptions. In the third section, estimation procedure is given.
Performance assessment and other performance measurements are provided in the
following section. Then an illustrative example for spring manufacturing and

conclusions are presented.
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3.2 Process model assumptions

It is assumed that the process distribution is p —variate normal with known mean

vector p, and known covariance matrix X,. Suppose that p-—critical quality

characteristics are monitored with x* and S| control charts. Let

Xii = (Xjus Xijzre+ X;,)" bea px1 vector which represents the p characteristics of
the j™ observation (j=1,2,---,n)for the i ™ subgroup of size n. Suppose further
that when the process is in control, the X;’s are independent and identically
distributed (iid) and follow a p—dimensional Normal distribution with mean vector

K, and covariance matrix X, thatis, the X; ’s are iid N, (ny,X,). We let n denote

the subgroup size and we let X, denote the average vector of the i ™ subgroup. It is

assumed that when the multivariate process mean and dispersion changes, there has

been a step-change from its in-control value of p=p,and X =2X,to an unknown
value p=p, and X=X, where p, #p, and X, # X,. If control chart statistics

exceed the control limits, it is concluded that the step-change in the process
parameters occurred after some unknown time 7, where 0<z<T -1 and T is the

time that the combination chart signals.

3.3 Estimation of the change point

After determining the process model assumptions, we consider the derivation of
the maximum likelihood estimator (MLE) of the change point z when a step change
occurs in the process mean vector and/or covariance matrix. It is assumed that the
process experiences a change at an unknown time, z . The change is detected at the

time T by the combination control chart. We assume that the subgroup averages

X, X,,---,X_ and subgroup covariances S,,S,,---,S. come from in-control

process and the subgroup averages X ., X .-, X; and the subgroup covariances

T+l r+21°

S....S

1194217

-,S; come from the out-of-control process. It is further assumed that

the process mean vector and covariance matrix remains at the new level until the
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special cause is identified. The MLE of z can be the value of t for which the

statistic MC attains its maximum; that is,

Tye =argmax(MC,), t=0,1, ---,T-, (3.1)
t

where

ve [ EEDMENCEN)|

i=t+l j=1

(3.2)

_nU D jog, U;;( X, )X, —?Tyt)’J/n(T—t)Zo}—W}
and
A, =X :—ZX and 3, = ZZ( i, ) (X, —i,) are the

| t+1 t)l =t+1 j=1
MLE’s of mean vector and covariance matrix of the (T —t) most recent subgroup

averages.

Derivation of the MLE of 7, the multivariate joint process change point

estimator is as follows:

r T-r
1 1
logL(z,X,)) = Ioge[Wj + |098(WJ

n

23w ) 5] 5|

2 i=1 j=1 i=r+l j=1

The first part of the function can be written as;

~ 100, (o)) g, (o))
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There are three unknowns in the likelihood function; z, p,and X, . If the change

point z would be known, the MLE of p, and X, would be;

P EEE 1) A TR LY

t+1 j=1

Substituting fi, and £, into the log likelihood function, then

log, L(z,X,) = Z Z( ) (Xij _”0)

[ S5, R . i 0

The MLE estimate of ¢ is the value of t that maximizes the log-likelihood

function. So;
ve [%22?% )@r%@j
| 305,56, - 720,

e =argmax[MC, |

O<t<T-1

_wm{ﬁ[lzz@ %, M@

O<t<T-1 i=t+1 j=1

/n(T —t)ZOJ— ”paz‘t)].

[ii(xu %), jn)}
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3.4 Performance assessment of the proposed estimator

The performance assessment of our proposed estimator is investigated and
evaluated by Monte Carlo simulation. The simulation study is focused on Phase Il
performance of the proposed estimator. The ‘average change point estimate’ and
‘the empirical distribution of the estimated change point around the actual change
point” were used by Samuel et al. (1998a, 1998b), Nedumaran et al. (2000), Park
and Park (2004) and Dogu and Deveci-Kocakoc (2011a) as the performance
indicators. The simulation study settings are constructed for bivariate case for

simplicity and these performance indicators are investigated.

Observations were randomly generated from a N (n,,X,) distribution when

i <50, the on-target mean vector was m,=(0,0) and the in-control covariance

matrix was selected as follows:

1
ZO: p y
p 1

where —1< p <1 is the correlation coefficient between two quality characteristics.
In this study, the correlation coefficient was set to 0.0, 0.5 and 0.9 and Type | error
probability was set to 0.0027 which is frequently used in SPC applications. While
the process is in-control, the observations which exceed the control limits are
considered as false alarms. If a false alarm at the i observation (i < z) occurred, it
was treated in the same way that a false alarm would be treated on an actual process.
When an actual false alarm is determined in a process, the process professionals
consider the process is in control and let the monitoring restart. The same approach
is used in the simulation study. If i"™ observation was a false alarm, then the control

chart restarted at (i+1)™ observation and the change point remained in its scheduled
point. Starting with subgroup 51, the observations were randomly generated from

N, (n,,X;) until the combination control chart issued a signal. The structure of the

changed mean vector and covariance matrix are given as:
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2. 2
. [t A J; X0, PXO X0y %0, X0,

2 2
Hy + Ay PXO X0, X0, X0, 0, X0y

For every run, when the combination control chart issued a signal, the time of the
change was calculated with the proposed estimator. This procedure was repeated a
total of 10,000 times for each of the case and different magnitudes, denoted by &
and A, for the subgroup size of n=4. The average of change point estimates for
every simulation run was computed along with its standard error to investigate the
accuracy of our estimator. Additionally, the empirical distributions of the estimated
change point around the actual change point for all cases and magnitudes of shift
were considered in order to evaluate the precision of the estimator.

3.4.1 Accuracy Evaluation

In order to measure the accuracy performance of the change point estimator, the

average change point estimation is considered, which is denoted by E(T) of the
combination chart. E(T) can be expressed as the sum of Average Run Length
(ARL) and exact change point (7). If the practitioner chose ¢, = &, = &, then the

combination of »? and |S| charts has a combined Type | error probability of
1-(1-a). As we chose «=0.0027, the ARL of the combination chart was

expected to be J/l—(l—oz)2 =1/0.0054 =185 when no shifts of mean vector and

covariance matrix were introduced.

Since this simulation study aimed to compute the estimation of 7, the last sample

from the in control process, 7 should be close to 50.
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Table 3.1 Expected time of a signal, average change point estimates and their standard errors after a

combination chart signals; z =50, p = 0.0 and 10,000 independent simulation runs

Mean Shift Setting

1 2 3 4 5 6 7

Covariance Shift
Setting A 0 0 0 0.5 1 0 2
o 0, A, 0 0.5 1 1 1 2 2
1 1 E(T) 234.68 10755 59.20 56.41 53.08 51.32 51.01
7 - 51.19 4991 49.77 49.67 4954 49.85
Std. error - 008 004 004 003 003 002
1.3 1 E(T) 9212 7392 56.66 54.88 52.70 52.70 51.02
7 53.19  50.34 49.77 4975 49.65 49.63 49.84
std. error 0.14 006 004 003 003 003 002
1.3 1.3 E(T) 6597 6055 5448 5368 5236 5134 51.03
7 50.31  49.89 49.67 4959 4956 49.56 49.85
std. error 0.09 007 004 004 004 003 002
1.5 1.3 E(T) 5940 57.01 53.72 53.13 53.65 52.20 51.04
7 49.71 4955 4951 4951 4957 4954 49.85
std. error 0.07 006 005 004 005 004 002
2 2 E(T) 5202 5191 51.67 5145 51.47 51.23 51.06
7 4921 4928 4940 4949 4945 49.68 49.88

Std. error 0.05 004 004 004 004 003 0.1

Table 3.2 Expected time of a signal, average change point estimates and their standard errors after a

combination chart signals; 7 =50, p =0.5 and 10,000 independent simulation runs

Mean Shift Setting

1 2 3 4 5 6 7

Covariance Shift
Setting 4 0 0 0 05 1 0 2
o 0, 4, 0 05 1 1 1 2 2
1 1 E(T) 23468 9323 5573 5911 5579 51.11 51.10
7 - 50.61 49.76 49.94 49.78 49.70 49.69
Std. error - 0.06 004 003 0.03 002 003
1.3 1 E(T) 90.22 65.46 5453 56.74 5441 51.10 51.13
7 52.53 50.37 49.69 49.85 4973 49.70 49.67
Std. error 012  0.06 004 003 004 003 003
1.3 1.3 E(T) 59.40 59.19 5345 5449 5346 51.16 51.16
a 4966 49.72 4951 49.64 49.64 49.67 49.68
Std. error 0.07 0.06 004 004 004 003 003
15 1.3 E(T) 59.30 56.51 53.01 53.67 5299 51.15 51.17
¢ 4953 4957 4956 49.50 49.54 49.67 49.70
Std. error 0.07  0.05 004 004 004 003 002
2 2 E(T) 52.00 51.88 5158 51.67 5159 51.15 51.17
r 49.21 4926 49.39 49.40 49.47 49.76 49.73

Std. error 0.05 0.05 004 004 004 002 0.02
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Table 3.3 Expected time of a signal, average change point estimates and their standard errors after a

combination chart signals; z =50, p = 0.9 and 10,000 independent simulation runs

Mean Shift Setting

1 2 3 4 5 6 7

Covariance Shift
Setting 4 0 0 0 05 1 0 2
o 0, 4, 0 05 1 1 1 2 2
1 1 E(T) 234.68 5590 51.11 53.44 5847 51.00 51.26
7 - 49.77 49.67 49.65 49.81 50.00 49.55
Std. error - 003 002 003 004 0.00 0.03
1.3 1 E(T) 75.02 54.28 51.13 52.85 5551 51.00 51.00
7 50.49 49.79 49.74 49.74 49.84 50.00 49.99
Std. error 005 0.03 002 003 003 000 0.00
1.3 1.3 E(T) 66.10 5351 51.17 52.59 54.32 51.00 51.32
7 50.23 49.56 49.69 49.57 4959 49.99 49.61
Std. error 009 004 002 004 004 000 0.03
1.5 1.3 E(T) 58.79 52.97 51.16 52.30 53.48 51.00 51.31
¢ 49.66 4954 49.71 4956 49.61 49.99 49.68
Std. error 006 0.04 003 004 004 000 0.03
2 2 E(T) 52.03 5159 51.16 51.49 51.65 51.00 51.21
¢ 4921 49.42 49.78 49.49 49.41 49.99 49.68

Std. error 005 004 002 004 004 000 0.03

Analyzing the average of change point estimates (7 ), for all magnitudes of shift,
the outputs are fairly close to the actual change point. In general, our proposed
change point estimator can be evaluated to be close to the actual change point
without considering different magnitudes of shift in mean vector and (or) covariance

matrix.

For example, when a shift setting [4,,4,,d,, 5,]=[0.0,0.5,1.3,1.0] is considered,
the average change point estimates are 50.34, 50.37 and 49.79 for different

correlation values, respectively. The average run lengths after the signal provided by
the combination chart are 23.79, 15.46 and 4.28 from Table 3.1-3.3 respectively. As
the correlation between the variables increase, the run length of the combination
chart decreases. However, the closest run length to the actual change point is
approximately four samples after the change. When the magnitude of shift
decreases, the detection performance of the combination chart decreases (See Table
3.1-3.3 and Table 3.8). But the change point estimator has a fairly successful
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detection performance for all cases. The most remarkable accuracy results were

obtained when the magnitude of shift is small.

3.4.2 Precision Evaluation

Empirical distribution of 7 around 7 are given in Tables 3.4-3.6. Each table is
constructed to show the estimated probability of being in the k™ neighborhood of the

actual change point for various magnitudes of shift and strengths of correlation.

When a shift setting [4,4,,,, 5,]=[0.0,1.0,1.3,1.3] is considered, the exact

detection probabilities are 0.527, 0.643 and 0.884 for different correlation values,
respectively. The observed frequencies of the change point estimates which are
within a given number of periods (k) of the actual change point are also provided.
The detection probabilities for the change point estimator and the control chart are
shown in Table 3.4-3.6 and Table 3.9.

Figure 3.1 presents the measures versus various mean shift settings and
covariance combinations as a summary of the tables. When k=5, at least 60% of the
simulation results fall in this interval for all shift settings. As the magnitude of shift
increases, the percentage increases to approximately 90% regardless of the level of

correlation between the variables.
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k=5and rho=0.0 & k=5and rho=0.5 ¢ k=5andrho=09 ®
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Figure 3.1 Plots of precision measures versus various mean-
dispersion shift settings when |f—r| <5; 7=50,

o =0.0,0.5and 0.9 and 10,000 independent simulation runs

The combination chart can give its earliest signal right after the shift is
introduced. For our case this happens when ARL=1. We defined the cases which
had ARL=1 as the cases in which the change point is detected exactly by the
combination chart. On the other hand, the exact detection performance of the change
point estimator can be evaluated. For this purpose, we considered the cases in which
=50 to compare the performance of the combination chart and our proposed
estimator. Table 3.7 indicates that our proposed estimator over-performs the
combination chart by means of exact detection performances. Figure 3.2 indicates
the exact change point detection ability of the combination chart and the change

point estimator.
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Figure 3.2 Plots of exact detection probabilities for change point estimator and combination chart

versus various mean-dispersion shift settings; z =50, p=0.0,0.5and 0.9 and 10,000 independent

simulation runs

The proposed change point estimator

showed a

remarkable precision

performance. While a simultaneous shift is introduced, the change point estimation

procedure detected the change point exactly in at least 30% of the simulation runs

for all levels of correlation coefficient tested.
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Table 3.4 Empirical distribution of 7 around 7 after a combination chart signals; z =50, p=0.0
and 10,000 independent simulation runs

Mean Shift Setting

1 2 3 4 5 6 7

Covariance Shift Setting /11 0 0 0 0.5 1 0 2
2 5, A 0 05 1 1 1 2 2
1 1 P(e—<0) 0220 0532 0587 0706 0858 0.958
P -<1) 0421 0768 0810 0887 0945 0982

P(t-7<2) 0540 0.866 00900 0.949 0.964 0.988

P(-7<5) 0733 0962 00972 0981 0.980 0.994

P(7 -7/<10) 0.868 0987 0986 0989 0987 0.996

1.3 1 Pe-7<0) 0128 0208 0562 0602 0698 0707 0955

Ple-7<D) 0266 0518 079 0825 0884 0889 0.985
P(e-7<2) 0358 0643 0889 0908 0941 0941 0991
P(?-7<5 o546 0825 0968 0972 0978 0977 0995
P(7-7<10) 0724 0934 0984 0985 0988 0987 0.996

13 13 PE-7<0) 0229 0312 0527 0590 0687 0833 0947
Pe-7/<D 0414 0532 0762 0813 0875 0941 0.980
P(e-7<2) 0538 0659 0864 0900 0933 0962 0988
PUe-7<5 0737 0830 0959 0964 0973 0979 0.994
P(e-7<10) 0871 0964 0981 0980 0983 0988 0996

15 13 P(e-7<0) 0325 0412 0541 0616 0554 0704 0943
P(E-7/<D o550 0650 0778 0832 0784 0889 0979
P(e-7<2) 0673 0766 0877 0911 0876 0940 0987
Ple-7<5 0851 0909 0955 0965 0957 0973 0.994
P(e-7<10) 0939 0964 0976 0979 0978 0984 0996

2 2 P(e-7<0) 6o 0722 0765 0813 0804 0873 0939
PE-7/<D 0872 0886 0915 0936 0930 0958 0982
PUe-7<2) 0922 0931 0951 0962 0957 0973 0989
P(?-7<5) 0961 0961 0973 0978 0976 0986 0996
P(e-7<10) 0976 0977 0982 0986 0984 0991 0996




57

Table 3.5 Empirical distribution of 7 around 7 after a combination chart signals; z =50, p=0.5
and 10,000 independent simulation runs

Mean Shift Setting

1 2 3 4 5 6 7

Covariance Shift Setting /11 0 0 0 0.5 1 0 2
2 5, A 0 05 1 1 1 2 2
1 1 P(e-<0) 0288 0610 0535 0607 0906 0914
Pl -7 <1 0501 0828 0765 0832 0964 0967

P(e-1<2) 0.624 00907 0868 0915 0973 0.978

P(-7<5) 0810 0971 0964 0975 0986 0988

P(?-7<10) 0920 0988 0988 0.988 0.992 0.993

13 1 P(f-71<0) 0153 0306 0633 0580 0604 0917 0.901

Ple-7<1) 0297 0533 0845 0805 0831 0967 0.964
PE-7<2) 0309 0656 0919 0893 0911 0977 0975
PUe-7<5 0602 0843 0973 0968 0970 0988 0.986
P(e-7<10) 0772 0942 0986 0986 0986 0993 0992

13 13 P(-7<0) 0330 0351 0643 0528 0593 0882 0902
P(-7<D) o554 0587 0846 0766 0815 0955 0962
Pe-1<2) 0681 0719 0916 0864 0897 0971 0.965
PUe-7<5 (0853 0883 0973 0954 0967 0985 0.987
P(e-7<10) 0941 0952 0982 0978 0982 0991 0993

15 13 P(e-71<0) 0337 0433 0645 0598 0625 0898 0.888
P(e-7<D o562 0668 0847 0810 0836 0963 0961
Ple-7<2) (688 0785 0916 0893 0911 0975 0.976
P(?-7<5 0gs2 0921 0969 0961 0966 0986 0.986
P(e-7<10) (939 0968 0982 0977 0980 0991 0.992

2 2 PE-7<0) 0706 0722 0789 0765 0794 0909 0901
P(e-7<1)  0gs2 0888 0924 0905 0925 0971 0.967
PUe-1<2) 0929 0934 0949 0941 0956 0981 0.978
P(?-7<5 0961 0962 0970 0969 0976 0988 0.989
P(e-7<10) (975 0976 0982 0980 0985 0993 0.993
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Table 3.6 Empirical distribution of 7 around 7 after a combination chart signals; z =50, p =0.9
and 10,000 independent simulation runs

Mean Shift Setting

1 2 3 4 5 6 7

Covariance Shift Setting /L_ 0 0 0 0.5 1 0 2
2 5, A 0 05 1 1 1 2 2
1 1 Pt <0 0613 0908 0693 0546 0997 0.869
P(? -7 <1 0.827 0962 0876 0774 0999 0951

P(e-1<2) 0911 00973 0939 0871 1.000 0.965

P(7-<5) 0970 0985 0977 0960 1.000 0981

P(7-<10) 0613 0908 0.693 0546 0.997 0.869

13 1 P(e-71<0) 0320 0677 0918 0661 0636 0997 0.995

P(-7<D 0556 0876 0971 0863 0851 1.000 0.999
Pe-7<2) 0679 0939 0981 0932 0926 1000 1.000
Ple-7<5 0gs6 0982 0988 0979 0978 1.000 1.000
P(¢-7<10) 0953 0991 0993 0988 0990 1.000 1.000

13 13 Ple-71<0) 0220 0506 0884 0675 0538 0995 0.841
PE-7/<D 0414 0815 0959 0871 0770 0999 0946
P(-7<2) (533 0898 0973 0930 0865 1.000 0.970
PUe-7<5 0732 0960 0986 0970 0954 1.000 0.983
P(e-7<10) 0872 0980 0992 0982 0977 1000 0989

15 13 Pe-7<0) 0370 0645 0901 0724 0615 0994 0853
PE-7<D 0607 0856 0967 0900 0829 0999 0951
P(-71<2) 0726 0923 0979 0948 0907 0999 0.971
P(?-7<5  0gs9 0968 0988 0976 0969 1.000 0986
P(7-7<10) (954 0981 0992 0986 0982 1000 0.992

2 2 PE-7<0) 0gs0 0772 0918 0825 0767 0996 0900
PE-7/<D 0857 0922 0976 0942 0921 0999 0971
P(-7<2) 0921 0957 0985 0966 0959 1.000 0.981
P(e-7/<5 0965 0979 0992 0983 0979 1.000 0.990
P(7-7<10) (979 0987 0995 0991 0986 1.000 0.994
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Table 3.7 Exact detection probabilities of the change point estimator and the combination chart;

7 =50 and 10,000 independent simulation runs

A p 0 0 0 05 1 0 2

o, 0, A o 05 1 1 1 2 2
1 1 P(? =7) 0.0 022 053 059 071 086 096
P(E(T) =7+1) 002 011 016 033 0.76 0.99

1.3 1 P(?=1) 0.13 030 056 0.60 070 0.71 0.95
P(E(T) =7+1) 0.02 004 015 021 037 0.73 0.98

1.3 1.3 P( =7 023 031 053 059 069 0.83 0.95
P(E(T) =7 +1) 0.06 005 022 028 042 074 097

15 1.3 P(f=1) 032 041 054 062 070 0.80 0.94
P(E(T) =7+1) 010 014 027 032 046 068 0.96

2 2 P(?=1) 070 072 077 081 080 087 0.94
P(E(T) =7+1) 050 052 060 069 068 081 094

1 1 P(? =7) 0.5 029 061 054 061 091 091
P(E(T) =7 +1) 0.02 018 010 018 0.90 091

1.3 1 P(z=1) 015 031 063 058 060 092 0.90
P(E(T) =7 +1) 0.02 007 022 015 023 091 0.88

1.3 1.3 P(?=71) 0.33 035 064 053 059 0.88 0.90
P(E(T) =7+1) 010 011 024 022 029 087 0.89

1.5 1.3 P(?=71) 0.34 043 065 0.60 062 090 0.89
P(E(T) =7 +1) 011 016 034 028 034 088 0.6

2 2 P(z=1) 071 072 079 077 079 091 0.90
P(E(T) =7 +1) 048 053 062 061 065 0.88 0.86

1 1 P(? =1) 0.9 061 091 069 055 100 087
P(E(T) =7+1) 017 090 029 012 100 0.79

1.3 1 P(?=71) 0.32 068 092 066 064 1.00 0.9
P(E(T) =7 +1) 004 024 088 036 018 1.00 1.00

1.3 1.3 P(z=1) 022 060 088 0.68 054 1.00 0.84
P(E(T) =7 +1) 006 029 086 038 023 100 0.76

15 1.3 P(? =1) 037 065 090 072 061 099 085
P(E(T) =7+1) 011 034 087 043 030 100 0.76

2 2 P(?=71) 071 078 090 0.80 076 099 0.88

P(E(T) =7+1) 050 063 0.86 067 0.61 100 0.82
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3.4.3 Comparison with other change point estimators

Under the assumption of the process is jointly being monitored by a combination

of xand |s| control charts, it is also possible to use a combination of the change

point estimators for process mean vector and process covariance matrix. The change

point estimator for the mean vector , 7,,, was proposed by Nedumaran et al. (2000)

givenin (1.4) and (2.2).

w =argmax(M ) where M, =(T —t)(>_<m _llo),zal()_(m — M) and
t=0,1, ---,T-1. The change point estimator for the covariance matrix, 7., was

proposed by Dogu and Deveci-Kocakoc (2011a):

7. =argmax(C,)

e, {2 330, |

i=t+1 j=1

n(T2 ) log, (det{ i Zn:(xij - uo) (Xij ~ Mo )}/n(l’ _t)|2°|J _@,

=t+1 j=1

and t=0,1, ---,T-1. In order to compare the performance of the proposed joint
monitoring procedure with these change point estimators we propose a combination

of 7, and 7., 7., Park and Park (2004) used a similar procedure for univariate
joint change point estimation.

. . if only the y* control chart generates a signal.
z-Comb = (33)

- Tc, If |S| control chart or both charts generate a signal.

A simulation study for this comparison was also conducted. Table 3.8-3.9
indicates the accuracy and precision results of this simulation study. Figure 3.3

illustrates the accuracy performance of the proposed change point procedure and
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combination change point procedure. From Table 3.8-3.9 it can be concluded that
our proposed estimator over-performs the combination change point estimator in
terms of accuracy and precision of the estimates. Especially for small magnitudes of
shift, the proposed estimator performs far better than the combination estimator. For
example, when a shift setting [4,4,,d,,8,]=[0.0,0.0,1.1,1.3] is considered, the
average estimation of combination change point estimator is 65.59 and the average
estimation of proposed change point estimator is 52.08 (7 =50). In this case, the

exact detection probabilities are 0.099 and 0.156, respectively.

Combined
o Change Point  #
Estimator

Change Point

EMm v Estimator

[Deltal, Delta?]
[1.0-1.0] [1.0-1.1] [1.1-1.1]

150 r

100 r

[1.1-1.3] [1.3-1.9] [2.0-2.0]

N r 150

E(T) and Change Point Estimate

N 100

Mean Shift Setting

Figure 3.3 Plots of E(T), 7yc and fqoy, VErsus various mean-
dispersion shift settings; 7 =50, p =0.5 and 10,000 independent

simulation runs
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Table 3.8 Expected time of a signal, averages of proposed and combination change point estimates

after a combination chart signals; 7 =50, p =0.5 and 10,000 independent simulation runs

A 0 0 0.25 0.5 0.5 1 0 2
6 6 A 0 0.25 05 075 1 1 2 2
1 1 E(T) 234.68  167.72 107.85 71.07 59.28 5567 51.11 51.11
Tyc 5742  51.20 50.22 49.93 49.75 49.69 49.68
fComb 79.64 5317 50.12 4991 4979 49.86 49.86
1 1.1 E@) 16156 12260 87.11 6598 57.62 5527 5113 51.11
Tve 9263 5574 5147 50.16 49.85 49.73 49.66 49.68
‘comb 12174 5879 5174 5025 49.93 49.83 49.85 49.84
1.1 11 E() 12325 102.36 80.02 6350 56.97 5478 51.13 51.13
Tve 7198 5460 51.03 50.17 49.83 49.78 4965 49.64
Comb 9437 5813 51.79 50.31 49.93 49.89 49.85 49.86
1.1 13 E() 80.32 7326 6553 5895 5539 5411 51.17 51.15
Tme 52.08 51.08 5052 50.05 49.84 4971 49.65 49.68
Fcomb 6559  56.24  52.05 50.68 50.16 49.94 49.87 49.89
1.3 15 E() 59.39 5843 56.84 5501 53.66 53.00 5119 51.15
Tme 4954 4957 4959 4961 4953 4952 4969 49.68
‘ Comb 53.01 5222 5130 5057 50.19 49.97 49.87 49.89
2 15  E() 53.10 52.96 52,77 5245 51.98 5212 51.12 51.17
Tyc 4921 4924 4924 4934  49.43 4948 4977 49.75
*Comb 50.20  50.18  49.93 49.97 49.90 4991 49.85 49.88
2 2 E(T) 52,00 51.99 5192 5157 51.66 5157 5114 5115
Tme 4923 4923 4917 49.44 4932 4942 4975 49.77
¥ comb 49.80  49.76  49.72 4974  49.74 4976 49.87 49.92




Table 3.9 Precision evaluation for proposed and combination change point estimates after a

combination chart signals; z =50, p =0.5 and 10,000 independent simulation runs

63

CP* PP** CP PP CP PP CP PP CP PP
o A 0 0 0.25 0.5
5, 4 0 0.25 0.5 1
1 PE-1=0) 0070 0086 0221 0224 0594 0535 0674 0.612
1 PlE-7<D) 0.52 0183 0403 0413 0822 0770 0876 0.828
Ple-7<2) 0215 0260 0515 0532 0908 0872 0940 0.909
P(¢-7/<5) 0344 0416 0698 0729 0975 0963 0982 0.973
P(7-7<10) 0477 0578 0827 0871 0991 0988 0992 0.987
1 PE-14<0) 017 o021 0569 0636 0209 0215 0559 0512 0665 0605
11 PEE-7<D 03 o051 0773 0840 0382 0397 0794 0751 0869 0819
PE-7<2) o060 0078 0864 0907 0498 0513 0891 0857 0939 0.907
P(7-71<5) 0119 0153 0953 0959 0696 0716 0971 0956 0983 0.971
P(e-7/<10) (198 0241 0982 0974 0845 0858 0990 0983 0993 0986
11 PE-1<0) 08 0035 0079 0106 0197 0221 0561 056 0652 0587
11 PEE-7<D 066 0085 0174 0226 0369 0409 0792 0754 0860 0810
PUE-7<2) 0099 0122 0245 0312 0483 0530 0883 0855 0932 0899
P(7-7]<5) 0160 0216 0401 0488 0692 0734 0968 0955 0983 0.970
P(f-7<10) a6 0344 0568 0661 0844 0873 0988 0982 0991 0.987
11 PEE-1<0) 009 0156 0040 0110 0214 0278 0513 0508 0616 0592
13 PEE-7<D 108 0307 0190 0280 0390 0484 0746 0747 0838 0816
PE-1<2) 0267 0412 0320 0470 0512 0612 0853 0852 0919 0.898
P(7-71<5) 0404 0611 0470 0670 0714 0807 0960 0952 0979 0.967
P(7-7<10) 54 0770 0660 0860 0871 0925 0987 0981 0991 0984
13 PEE-1<0) 250 0290 0260 0320 0320 0390 0520 0540 0590 0622
15 PE-7<D o410 0560 0480 0650 0570 0690 0770 0740 0812 0835
PUE-7<2) (480 0640 0640 0770 0660 0770 0870 0870 0904 0911
PU?-71<5 0670 0860 0730 0850 0820 0920 0970 0960 0973 0966
P(7-7<10) (850 0960 0870 0970 0960 0990 0990 0970 0988 0.980
2 P(E-7<0) 6s 0697 0690 0690 0720 0690 0760 0780 0750 0790
2 P(7-7<)  0ges 0874 0920 0890 0880 0860 0970 0930 0900 0920
PUE-7<2) (927 0925 0960 0940 0940 0890 0990 0950 0940 0.950
P(7-7<5 o976 0960 0980 0970 0970 0930 1000 0970 0960 0.960
P(?-7<10) (987 0976 0990 0980 0980 0950 1000 0980 0970 0.980

*Combination Procedure, **Proposed Procedure
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3.4.4 Confidence Sets Based on the Change Likelihood Function

In this part, the confidence sets on the process change point (7 ) are considered.
The confidence sets for the time of the process change will provide useful
information about the potential change points. The set of candidate change points
will help process professionals to focus on quick and correct identification of the
special cause and taking appropriate actions. This search window approach can

improve quality and reduce special cause identification time.

n(Lt)- (( 3306 -molx, mjj

i=t+1 j=1

10D e 33, e, %, o |- 2T

=t+1 j=1

is the value of log likelihood function at t, and D is the reference value to develop

a 100(1— @)% confidence set. Box and Cox (1964) proposed using D =(1/2)z7,

which vyields a value of 1.353 for a 90% confidence set. On the other hand,
Siegmund(1986) proposed using D = —In(l—(l—a)“z) which yields a value of 2.97
for a 90% confidence set. If In(L(t)) exceeds the limit of In(L(#))-D, then t is a
candidate change point. We considered a set of reference values that
D:{1.353,1.5, 2.00,2.5, 2.97} and investigated the coverage probabilities of each
shift setting. The coverage probability represents the percentage of the sets which
include the exact change point within 10,000 simulation runs. Also the sizes
(cardinality) of the sets are recorded (See Table 3.10). It is also possible to
investigate the coverage probabilities and expected cardinalities of the sets for
different magnitudes of shift and different values of z . We have chosen five levels
of 7 (7=10,50,100, 200,300). The results are summarized in Table 3.11 for a
critical value of D=2.97. The performance results indicate that the coverage
probability is approximately 0.85 for a mean shift of [0.0, 0.5] and no shift in
covariance matrix. These probabilities are close to this value over the range of 7 and

increase with the increase of the magnitude of shift. The results are shown
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graphically in Figure 3.4-3.5. As the coverage probabilities do not alter for various

levels of 7, using 7 =50 seems to be a reasonable choice.

1353 & 15 o 2 + 25 x 207 ¢©
[Deltal, Delta2]
[1.0-1.0] [1.3-13]
0.9 \‘ \l -
0.8 r
=
3
T 07 A -
2
o
& 06 - L
s [15-15] [20-20]
3
O %\m
pit
% T r 09
E
L i 0.8
b Fo7
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T T T T T T T T
2 4 3 8

Average Cardinality

Figure 3.4 Plot of coverage probabilities versus estimated
cardinality of confidence sets for various magnitudes of shift
following a signal from a combination chart using different critical
values of D; 7 =50 and 10,000 Independent Simulation Runs
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Figure 3.5 Plots of coverage probabilities and average

cardinalities versus various change points; 7 =50and 10,000

independent simulation runs
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Table 3.10 Average cardinality and coverage probability values obtained using different critical

values ( D) after a combination chart signal; = =50 and 10,000 independent simulation runs

4 0 05
Ay 05 0.5
o 6 D 135 150 200 250 297|135 150 200 250 2.97
1 1 Average Cardinality 378 428 587 761 921|385 428 583 7.65 940
Coverage Probability ~ 0.63 0.64 0.72 079 085|061 064 073 080 0.84
13 13  Average Cardinality ~ 3.07 341 471 621 778|313 349 480 631 7.93
Coverage Probability ~ 0.63 0.65 0.73 079 0.84 | 062 065 073 079 0.84
15 15  Average Cardinality 265 293 400 530 6.69 | 257 284 390 517 651
Coverage Probability ~ 070 0.73 079 0.84 088|071 073 080 0.85 0.88
2 2 AverageCardinality ~ 1.91 205 2.67 344 427|191 207 271 353 445
Coverage Probability ~ 0.86 0.88 090 0093 094|086 0.87 090 092 0.94
4 05 1
Ay 1 1
o 6 D 135 150 200 250 297|135 150 200 250 2.97
1 1 Average Cardinality ~ 209 225 2.85 358 436|187 200 251 3.13 3.82
Coverage Probability ~ 0.75 0.76 0.82 0.86 0.89 [ 079 080 085 088 091
13 13  Average Cardinality ~ 220 240 3.14 4.04 504|201 217 281 3.60 448
Coverage Probability ~ 073 0.75 0.80 085 088|077 079 0.83 0.87 090
15 15  Average Cardinality ~ 210 228 298 3.85 4.82|194 210 273 350 4.37
Coverage Probability ~ 0.77 079 0.84 0.87 090|080 081 085 089 091
2 2 AverageCardinality =~ 175 1.88 240 303 376|170 1.82 230 294 3.64
Coverage Probability ~ 0.88 0.89 091 094 095|088 0.89 092 094 0.95
4 1 2
A 2 2
o, 6 D 135 150 200 250 297|135 150 200 250 2.97
1 1 Average Cardinality 141 148 177 213 260|128 132 153 1.80 2.14
Coverage Probability ~ 0.93 0.93 095 096 097|096 096 097 098 0.98
13 13  Average Cardinality =~ 1.45 152 1.82 223 271|131 137 158 188 224
Coverage Probability ~ 0.92 0.93 095 096 097|095 095 096 097 0.98
15 15  Average Cardinality 145 152 1.83 221 268|134 139 162 193 228
Coverage Probability ~ 0.92 0.92 094 096 097|094 095 096 097 098
2 2 AverageCardinality  1.36 142 1.68 201 242|129 134 154 1.81 211
Coverage Probability ~ 0.94 0.94 096 097 097|096 096 097 0098 0.98
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Table 3.11 Average cardinality and coverage probability values various change points; = =50 and

10,000 independent simulation runs

e 0 05
Ay 05 05
2 5, D 10 50 100 200 300 10 50 100 200 300
1 1 Average Cardinality 7.92 9.21 974 1072 1097 | 7.92 940 974 1063 11.00
Coverage Probability 0.84 0.85 0.83 0.84 0.83 | 084 084 083 0.84 0.83
1.3 1.3 Average Cardinality 5.78 7.78 958 1275 1433|580 793 954 1154 14.49
Coverage Probability 084 084 083 083 0.83 |083 084 083 084 0.83
15 15 Average Cardinality 454 6.69 844 1111 1379|459 651 855 1092 14.37
Coverage Probability 0.89 088 087 087 0.87 |089 088 088 087 0.88
2 2 Average Cardinality 297 4.27 548 781 1006|297 445 559 815 10.32
Coverage Probability 0.95 094 094 095 094 |095 094 094 095 094
4 05 1
Ay 1 1
o 0 D 10 50 100 200 300 10 50 100 200 300
1 1 Average Cardinality 3.76 4.36 4.63 551 589 | 319 382 420 4.9 5.68
Coverage Probability 0.89 089 090 090 089 |091 091 091 091 0091
1.3 1.3 Average Cardinality 3.78 5.04 584 7.44 8.87 | 3.36 448 544 7.8 8.04
Coverage Probability 0.88 088 083 088 0.88 | 090 090 090 091 0.89
15 15 Average Cardinality 350 4.82 6.14 811 10.19|3.18 437 532 7.72 8.59
Coverage Probability 0.91 090 091 090 091 |091 091 092 091 090
2 2 Average Cardinality 2.63 3.76 4.81 6.64 798 | 252 364 446 6.20 7.72
Coverage Probability 095 095 095 094 095 | 096 095 095 095 0.95
e 1 2
Ay 2 2
2 0, D 10 50 100 200 300 10 50 100 200 300
1 1 Average Cardinality 1.96 2.60 2.90 4.01 511 | 1.70 214 252 3.15 3.88
Coverage Probability 097 097 097 097 098 | 099 098 098 098 0.98
1.3 1.3 Average Cardinality 2.09 271 3.11 4.04 490 | 182 224 258 3.05 3.94
Coverage Probability 0.97 097 0.97 0.96 0.97 | 098 098 0.98 0.98 0.98
15 15 Average Cardinality 2.08 268 3.17 3.73 470 | 182 228 260 3.10 3.78
Coverage Probability 097 097 096 097 0.97 | 098 098 098 098 0.98
2 2 Average Cardinality 1.90 242 275 3.69 3.76 | 1.73 211 252 297 3.62
Coverage Probability 0.98 097 0.98 0.97 0.97 | 098 098 0.98 0.98 0.98
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In Figure 3.4 the lines represent each critical value, the symbols represent
different mean shift settings and each panel represents a covariance shift setting.
Following the lines the biggest critical value ( D =2.97) satisfies approximately 90%
confidence region for each simulation settings. The choice of r has an impact on
the expected cardinalities. As the change point 7 increases, the size of the

confidence sets increase.

3.5 Hlustrative example

The following illustrative example is considered in order to show the practical
usage of our estimator. The illustrative example is from spring manufacturing. Two

critical quality characteristics are considered: spring inner diameter ( X,) with a
specification of 28.30+0.10 and spring elasticity (X,) with a specification of
46.00+0.50. The first ten observations are from Chen et al. (2005) and the

historical mean and covariance are as follows:

, 0.0035 —0.0046
n, =(28.29 45.85) and, X, = :
~0.0046  0.0226

After the 10™ process reading a combination of mean and covariance shift
(4. 4.6, 6,]=[05,05,1.3,1.0))is introduced. When the 20" subgroup was
generated, the combination chart has issued a signal. That means following the

signal at T= 20, the MC, statistics can be calculated. Our aim in this procedure is to
find the maximum value of MC, , in other words, to find where the change occurred

in the interval of 0<t<T -1.

According to Table 3.12, the combination chart did not issue a signal until the
20™ subgroup was generated. On the other hand, the change point estimator has its
maximum value in the 11" subgroup. That means, the 10" subgroup was the last
subgroup obtained from in-control process and the 11" subgroup was the first
subgroup of the changed process, as we initially aimed. For the practitioners,

investigating the point at which a signal issued is not sufficient to find out the
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special cause because of the potential delay. As it has occurred in our illustrative

example, a step change may exist several subgroups earlier from the signal of the

control chart.

Table 3.12 Spring data, chi-squares, generalized variances, M, , C, and MC, statistics

I t )?il >zi2 )(2 |S| =10 M, C, MC,
1 0 28.236 45,934 4217 0.529 5.005 7.525 15.777
2 1 28.334 45.880 5.096 0.292 5.937 8.014 17.781
3 2 28.310 45.686 6.300 0.135 5.134 5.397 14.707
4 3 28.260 45.890 1.286 0.060 5.982 5.913 16.328
5 4 28.310 45.838 0.633 0.243 6.818 6.532 18.289
6 5 28.282 45.886 0.288 0.051 6.832 6.977 18.440
7 6 28.328 45,784 2.141 0.156 7.265 8.252 19.933
8 7 28.314 45,776 1.367 0.198 7.258 8.991 20.236
9 8 28.324 45.800 1.660 0.825 7.813 9.547 21.463
10 9 28.316 45.804 1.008 0.035 7.945 7.118 20.864
11 10 28.361 45.840 9.447 0.691 8.387 8.251 22.596
12 11 28.364 45.777 8.242 0.624 7.013 6.316 18.703
13 12 28.317 45.830 1.152 0.496 6.439 5.487 16.937
14 13 28.333 45.849 3.676 0.558 6.769 6.225 17.526
15 14 28.276 46.034 8.672 0.539 6.487 6.538 16.966
16 15 28.309 45.897 2.101 0.602 5.156 5.656 13.552
17 16 28.311 45,994 9.647 2.000 4,921 6.071 13.182
18 17 28.345 45.826 5.124 0.468 3.114 3.283 8.9689
19 18 28.271 45,985 4.234 0.865 2.986 2.441 8.5846
20 19 28.323 46.006 13.870 0.191 2.774 3.506 8.5871

In order to construct the confidence set on the change point, the points satisfy

max(MC) - (MC,) < 2.97 are considered as candidate change points. In other words,

the log likelihood values exceed 19.63 were considered to be the potential change

points. The corresponding group for our example was CS,,. ={7, 8, 9,10,11} and the

cardinality of the confidence set was 5 subgroups. Confidence set construction is

presented in Figure 3.7. The points over the threshold are the candidate change

points.



71

Likelihoods at Possible Change Point
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Figure 3.6 Plot of likelihood values at possible change

points and the threshold for spring data.

3.6 Conclusions

A follow-up change point estimation procedure for jointly monitoring the mean
and covariance of a p-variate process is proposed. The proposed estimator is capable
of detecting the step change successfully. We compared the performance of our

estimator under the assumption that the process is monitored with a combination of

x% and |S| charts as the most widely used joint multivariate monitoring tool. The

main advantage of the proposed estimator is to use one statistic for all the complex

process information to detect the change point.

The performance evaluation has shown that the change point formulation has
high detection ability. The performance evaluation also has the comparison with a
combination of the beforehand proposed change point estimators. Our simultaneous
estimation procedure performs better than the combination estimator by means of
accuracy and precision. An illustrative example is considered to indicate the
practical use of the change point estimator. This hypothetical example indicates the

ease of implementation and interpretation. While the change point estimation
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procedure achieves the goal of detecting the shifts in the process, it is also important
to identify whether it is a mean shift, covariance shift or both. So we recommend

using diagnostic tools in order to improve the identification ability of the method.



CHAPTER FOUR
CHANGE POINT ESTIMATION FOR
MULTIVARIATE SINGLE CONTROL CHARTS

4.1 Introduction

Shewhart control charts are effective tools to improve quality of a product or
process. The basic practice is to determine the quality of an item with a single
quality characteristic. However, many industrial processes are characterized by more

than one inter-related quality metrics. Several monitoring approaches are proposed

in the literature for these multi-dimensional processes. Hotelling’s T 2 control chart
(1947) started the efforts for multivariate quality control of the mean vector. Alt
(1985) and Alt and Smith (1988) proposed different procedures of multivariate
dispersion control and monitoring. Recently, the researchers mostly focused on
developing multivariate control charts which are able to detect small shifts. For
discussions and reviews of multivariate mean and dispersion control charts, see, Alt
(1985), Alt Smith (1988), Lowry and Montgomery (1995), and Bersimis et al.
(2007).

The multivariate monitoring effort includes monitoring the central tendency and
dispersion of the process. In multivariate quality control, traditionally separate
control charts were used to monitor the process mean and dispersion. Alt (1985)
noted the importance of the need to develop a single control chart for simultaneous
monitoring of both mean and dispersion. Cheng and Thaga (2006) also concluded
that this practice needs more resources such as quality professionals and time. The
simultaneous monitoring approaches are scarce in the literature. The existing studies
are as follows: the traditional combination of the »* and |S| control charts, Max-
MEWMA chart proposed by Chen et al. (2005), Multivariate Maximum Control
Chart proposed by Thaga and Gabaitiri (2006), Multivariate Max-CUSUM control
chart proposed by Cheng and Thaga (2005) and MELR chart by Zhang et al. (2010).
The basic idea in the max procedures, namely the Max-M, Max- MEWMA and

73
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Max-CUSUM charts, is to transform the monitoring statistics for mean and
covariance into standardized normal random variables and determine the maximum
of these standard normal readings, and then apply a multivariate Shewhart
procedure. According to Thaga and Gabaitiri (2006), these control charts are
practical because the complex multivariate readings are transformed into
standardized univariate scores and monitoring can proceed using the existing charts
for univariate processes. Also the practitioners can monitor both the mean and the
variability using only a single control chart. The superiority of these monitoring
schemes is their ability of giving diagnostic aids along with the control chart
statistic. A recent remarkable multivariate single control chart was proposed by
Zhang et al. (2010). They proposed using the generalized likelihood ratio test
statistic differently from the above work flow.

A signal generated from the monitoring procedure does not always mean that the
assignable cause actually occurred at that point. Finding the actual change point has
been in great importance for many industries. For multivariate processes,
Nedumaran et al. (2000) proposed an add-on change point estimation procedure
when only mean shift is considered and Dogu and Deveci-Kocakoc (2011a)
proposed an add-on change point estimator when only covariance shift is
considered. Dogu and Deveci-Kocakoc (2011b) proposed a change point estimation

procedure for x* and |S| combination chart emphasising the simultaneous
monitoring of mean and variability for multivariate normal processes. The estimator
(7)) focuses on estimating the most likely location of the change after a single or

combination multivariate control chart issues a signal. The performance assessment

of the estimator can be found in Dogu and Deveci-Kocakoc (2011b). Their

assumption was that the »* and |S| combination chart should generate a signal in
order to start the follow-up procedure. However, the ARL performance of y° and

|S| combination chart may be inadequate for many industrial processes. The pressure

to have high quality and yield processes forces organizations to improve their
monitoring tools. Recently, only small shifts are tolerable for many implementations

and industries. Exponentially weighted moving average (EWMA) based control
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charts like Max-MEWMA and MELR are proper tools for these cases. Although,
Zhang et al. (2010) showed that their procedure over-performs other alternatives in
terms of run length results, we used Max-MEWMA and MELR control charts with
the follow up change point estimator and summarized the simulation results in
Section 4.4.

The monitoring approaches generally should have good special cause detection
and identification abilities. The change point estimation procedures enhance the
detection ability of the monitoring procedure. The estimator (7 ) when used with a
multivariate joint monitoring scheme helps practitioners to find the actual time of a
step change. Therefore, it improves the detection ability of the monitoring system.
For multivariate single charts, it is not always easy to distinguish the actual
responsible of the special cause between mean and variability. So when using a
change point estimator along with the multivariate control charts, we recommend
using some diagnostic tools to find out if the change is a mean shift, a covariance
shift or both. As Max-MEWMA procedure provides diagnostic aids along with the
chart statistics, some practitioners may prefer using this approach. In section 4.5, an
illustrative example is provided to show the practice of the add-on change point
estimation procedure. Our aim here is to investigate the detection performance of the
change point estimator with various alternative monitoring tools such as: Max-
MEWMA and MELR control chats. We believe that change point detection
performance of a monitoring tool is as important as its quick response ability to a
shift.

The remainder of this paper is organized as follows: the next section provides the
details of the Max-MEWMA and MELR control charts. The third section gives the
details of the change point model. In the forth section, performance assessment and
other performance measurements are provided. Then an illustrative example and

conclusions are presented.
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4.2 Maximum Multivariate Exponentially Weighted Moving Average (Max-
MEWMA) and Multivariate Exponentially Weighted Likelihood Ratio Charts
(MELR)

In order to show the performance of the follow-up change point estimator with
multivariate single control charts, we will consider Max-MEWMA control chart
proposed by Chen et al. (2005) and MELR chart proposed by Zhang et al. (2010).
These control charts are the competing procedures for multivariate simultaneous
monitoring. Zhang et al. (2010) showed that MELR chart performs better than Max-
MEWMA chart in terms of ARL performances. However, Max-MEWMA control
chart provides diagnostics while MELR does not. When an out-of-control signal is
generated by the Max-MEWMA control chart, the chart indicates whether it is a
mean shift, covariance shift or both. We will show the performance of the change

point estimator with both procedures.

The Max-MEWMA chart simply plots the maximum absolute values of mean and
dispersion control chart statistics. It is capable of monitoring mean vector and

covariance matrix simultaneously with a single control chart. Consider

Z, = (X, —po )+ (- ®)Z,, where Z,=0,, o is a smoothing factor satisfying

O<w<l1land T, = n2-0) —~Z;X,'Z, then define the monitoring statistic for
oll-(1- o)
1 n(Z—a)) r -1 . ;
the mean vector as U, =®7| H | —Z 2y Z, || where H (") is the chi-
oll-(1- o)

square distribution function with p degrees of freedom and @™ is the inverse

standard normal distribution.

In order to obtain a monitoring statistic for the variability define
n N _
W, = (xtj—xt)zgl(xtj—xt) and Wt~;(§(n_1). If a transformation
j=1

®HH . W,)| is applied then Y, =@®*{H ,,W,)}+({L-@)Y,,. When the

process is in control and the starting point is Y,=0, then define



7

n(2-w)

V. =
of—-o)

\ Y,. As U, and V, are independent and follow standard normal

distribution when the process is in-control, a combination of U, and V, is

determined as the single charting statistic:
Max—-MEWMA, =max(|Ut|,[\/t|). (4.1)

If Max- MEWMA, > h,, then the process is considered to be out-of-control, where
h, >0 is the upper control limit which achieves a specific significance level and

some values of h, can be obtained from Chen et al. (2005).

MELR control chart is a single MEWMA control chart based on the generalized
likelihood ratio (GLR) test for joint monitoring both the multivariate mean and
variability. The run length results for various magnitudes of shift showed that
MELR control chart over performs the competing single and combination charts.

The following hypotheses are considered in MELR procedure.

The null hypothesis is Hy:z=0 and X =1 and the alternative hypothesis is

H,:u#0 and Z#1,. The GLR statistic is obtained as follows:

MELR, = tr(v,)—log|v,|+ p|u,|’. (4.2)

Here, u, =X, +(l-o)u,,,v, =S, +1-0)v,,, S;“:Zn:(xtj—ut)'(xtj—ut)/n,

j=1
u,=0,, and v, =1,. o is a smoothing factor satisfying 0<w<1. MELR, >h,,
then the process is considered to be out-of-control, where h, >0 is a threshold to

achieve a specified IC ARL. The MELR does not provide diagnostics and Zhang et
al. (2010) stated that this omnibus procedure may be problematic in diagnosing

which parameter or parameters have shifted.
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4.3 Multivariate Joint Change Point Estimation for Single Control Charts

A very important issue of simultaneous multivariate process monitoring is the
identification of the location or time of a special cause. While the single control
charts provide a stopping time for the process professionals after a shift, this signal
does not always mean that the assignable cause occurred at that particular time. In
other words, the control charts have a potential delay to detect the change point. The
change point analysis provides a solution to this setback of the control charts.
Nedumaran et al. (2000) and Dogu and Deveci-Kocakoc (2011a) proposed add-on
change point estimators for multivariate processes. Nedumaran et al. (2000) focused
on the mean shift only model while Dogu and Deveci-Kocakoc (2011a) proposed a
change point estimator for covariance shift only model. Dogu and Deveci-Kocakoc
(2011b) proposed a multivariate change point procedure in order to detect step
changes of mean and dispersion simultaneously and showed that their estimator
works better than a combination change point estimator to find the most likely time
of the special cause. The idea of the follow-up estimation of the change point based
on backward CUSUMs started with the work of Samuel et al. (1998a, 1998b) for
Phase Il analysis. The MLE of change point is performed after a control chart

generates a signal.

Dogu and Deveci-Kocakoc(2011b) provided the accuracy and precision

evaluation for the follow-up change point estimator when the process is monitored

with »* and [S| combination chart. In order to show the consistency of this

estimator we considered the estimation procedure for the same magnitudes of shift
when the process is monitored with the Max-MEWMA and the MELR and

compared the results with the case when the process is monitored with x> and |S|
combination chart.

Let X =(Xp, X2, X;,)" be a px1 vector which represents the p
characteristics of the j th observation (j=1,2,---,n)for the i " subgroup of size n.

Suppose further that when the process is in-control, the X;;’s are iid N (g, X,).
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We let n denote the subgroup size and we let X, denote the average vector of the

™ subgroup. It is assumed that when the multivariate process mean and dispersion

changes, there has been a step-change from its in-control value of p=p, and
X =X, to an unknown value p=p, and X=X, where p, zp, and X, = X,. If

control chart statistics exceed the control limits, it is concluded that the step-change
in the process parameters occurred after some unknown time 7z, where 0<7<T -1

and T is the time that the combination chart signals.

The maximum likelihood estimator of r can be the value of t for which the

statistic MC attains its maximum; that is,

ve =argmax(MC,), t=0,1, ---,T-,
t

where

e E L LR )|

O<t<T-1 i=t+1 j=1

- n(Tz—t) Ioge[det{izn:(xij —)=(T,t)(Xij ~X;, )'}/n(T —t)Zo]— np(';—t)}

i=t+1 j=1

R i 1 Gy o <\ .
where fi, = X, =T > X, and X, = t) ZZ( ) (X, -R,) e
i=t+1 i=t+1 j=1

the MLE’s of mean vector and covariance matrix of the (T —t) most recent

subgroup averages.

4.4 Performance assessment

The add-on change point estimation procedure provides additional benefits such
as the estimation of the time of a step change. We now investigate the combination
and single charts’ detection performance along with the change point estimator. We
specifically calculate the ‘average change point estimate’ and ‘the empirical
distribution of the estimated change point around the actual change point’ for each

monitoring procedure. These performance indicators were used by Samuel et al.
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(1998a, 1998b), Nedumaran et al. (2000), Park and Park (2004) and Dogu and
Deveci-Kocakoc (2011a, 2011b). The simulation study settings are constructed for
bivariate case for simplicity and the performance comparison was conducted under

the assumption that a step change of magnitude [21,12, o, 52] occurs following the

r " observation vector.

Observations were randomly generated from an in-control N (py,X,)

distribution when <50, the on-target mean vector was p, =(0,0) and the in-

control covariance matrix was selected as follows:

1
p 1

where —1< p <1 is the correlation coefficient between two quality characteristics.
In this study, the correlation coefficient was set to 0.0, 0.5 and 0.9. While the
process is in-control, the observations which exceed the control limits are considered
as false alarms. If a false alarm at the i observation (i < z) occurred, it was treated
in the same way that a false alarm would be treated on an actual process. When an
actual false alarm is determined in a process, the process professionals consider the
process is in control and let the monitoring restart. The same approach is used in the
simulation study. If the i observation is a false alarm, then the control chart

restarted at (i +1)™ observation and the change point remained in its scheduled point.
Starting with subgroup 51, the observations are randomly generated from

N, (n,,X;) until the combination control chart issued a signal. The structure of the

changed mean vector and covariance matrix are given as:

2 2

(A o X0, PLX 0 X0, X0, X0,

"‘1= ’Z = 9
/uy+ﬂ’2

2
PLX Oy X0, X0, X0, Jd, X0,
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For every run, when the control chart issued a signal, the time of the signal and
the time of the change were calculated with the proposed estimator. This procedure
was repeated a total of 10,000 times for each of the case and different magnitudes,

denoted by 6 and A, for the subgroup size of n=4.

A calibration procedure was used for each control chart so that they all had the

same in-control ARL. If the practitioner chose « . =4 =, then the combination

of x” and |3 charts has a combined Type | error probability of 1-(1—a)’. As we
choose « =0.0027, the ARL of the combination chart is expected to be

1/1-(1- )’ =1/0.0054 =185 when no shifts of mean vector and covariance matrix

are introduced. In order to be consistent in the comparison, the ARL of the Max-
MEWMA and MELR control charts are calibrated to 185. The smoothing constant
for these control charts is 0.2 and upper control limits are calculated to achieve this

specified in-control run length.
4.4.1 Accuracy Evaluation

In order to measure the accuracy performance of the change point estimator, the
average change point estimation is considered with the expected signal point, which

is denoted by E(T). E(T) can be considered as the sum of Average Run Length
(ARL) and exact change point (7).
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Table 4.1 Expected time of a signal, average change point estimates and their standard errors after

;(2—|S|, Max-MEWMA and MELR control charts signal; 7 =50,

independent simulation runs

p,=0.0 and 10,000

Mean Shift Setting

1 2 3 4 5 6
Covariance Shift Setting A 0 0 0.25 0.5 0.5 1
0 0, A, 0 025 05 075 1 1
1 1 12—|3| E(T) 181.19 95.07 62.72 56.47 53.07
7 62.06 50.83 49.99 49.83 49.66

Std. error 023 009 003 003 004

Max-MEWMA  E(T) 110.85 61.18 55.07 53.83 52.91

¢ 60.55 50.40 49.34 49.43 49.56

Std. error 026 008 006 0.04 003

MELR E(T) 7955 60.31 54.87 53.66 52.67

¢ 57.55 50.67 49.41 49.38 49.40

Std. error 018 008 005 0.04 0.04

11 11 7 -] E(T) 12251 10562 7517 5923 5523 5280
¢ 71.74 56.35 50.91 49.88 49.74 49.59

Std.eror  0.39 019 009 004 0.06 0.02

Max-MEWMA — E(T) 104.01 81.10 60.03 54.98 53.76 52.86

7 66.36 5550 50.23 4959 49.44 49.58

Std.eror  0.33 018 008 005 0.04 0.03

MELR E(T) 117.84 7955 59.19 54.64 5350 52.62

7 75.75 5755 50.40 49.40 49.31 49.52

Std.eror  0.39 018 008 0.06 0.05 0.03

1.1 1.3 /—|3| E(T) 80.72 7548 64.36 56.75 54.45 52.59
7 52.28 51.47 50.34 49.88 49.72 49.62

Std.eror  0.21 013 006 005 0.04 0.04

Max-MEWMA  E(T) 67.10 64.00 58.06 54.67 53.68 52.84

7 51.12 50.50 49.82 49.47 4951 49.59

Std. error 0.12 0.11 0.07 0.05 0.04 0.03

MELR E(T) 66.77 62.69 56.90 54.12 53.22 52.47

¢ 53.10 52.02 50.11 49.39 49.47 49.48

Std. error 0.12 0.10 0.07 0.05 0.04 0.04

1.3 15 /*|S| E(T) 59.56 58.67 56.47 54.09 53.18 52.20
¢ 49.62 4959 49.44 49.48 4950 49.57

Std.eror  0.09 006 006 003 004 003

Max-MEWMA  E(T) 56.20 55.87 54.98 53.85 53.28 52.68

z 49.04 4911 49.40 49.48 4951 49.64

Std.eror  0.08 007 006 004 0.04 0.03

MELR E(T) 55.87 5546 5430 53.23 5266 52.18

7 4954 4974 4952 49.48 49.44 49.48

Std.eror  0.07 006 006 005 0.04 0.04
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Table 4.2 Expected time of a signal, average change point estimates and their standard errors after

;(2—|S|, Max-MEWMA and MELR control charts signal, 7 =50, p, =05 and 10,000

independent simulation runs

Mean Shift Setting

1 2 3 4 5 6
Covariance Shift Setting A 0 0 0.25 0.5 0.5 1
2 6, Ay 0 0.25 05 075 1 1
2
1 1 X —|3| E(T) 138.73 79.44 59.62 55.65 53.06
7 50.36 50.27 50.04 49.85 49.77
Std. error 006 005 003 003 002
Max-
MEWMA E(T) 101.44 60.91 55.17 53.87 52097
7 49.97 49.87 49.61 49.69 49.70
Std. error 0.05 005 004 003 0.03
MELR E(T) 60.00 56.30 54.06 53.27 52.50
¢ 50.24 49.47 49.42 49.48 49.52
Std. error 0.07 0.06 0.05 0.04 0.03
2
1.1 1.1 X —|S| E(T) 109.49 8223 6950 57.79 54.98 52.84
7 50.78 50.23 50.30 50.04 49.87 49.71
std.error  0.07 006 004 004 003 003
Max-
MEWMA E(T) 91.80 7793 59.70 55.08 53.88 52.95
7 50.07 50.03 49.89 49.72 49.66 49.67
std.error  0.07 0.06 005 004 0.04 0.03
MELR E(T) 60.21 58.86 55.85 53.83 53.12 52.42
2 50.61 50.15 49.67 49.36 49.37 49.47
std.error  0.08 0.08 006 0.05 005 0.04
2
1.1 1.3 V4 *|5| E(T) 80.15 75,52 63.26 56.37 5421 52.68
7 50.56 50.34 50.24 49.97 49.86 49.72
std.error  0.07 0.06 004 004 004 0.02
Max-
MEWMA E(T) 66.05 63.65 57.87 5475 53.78 52.92
7 49.99  49.90 49.81 49.64 49.67 49.73
std.error ~ 0.06 0.06 005 004 0.04 0.03
MELR E(T) 5745 56.73 5499 5348 5291 5231
7 50.11 50.09 49.68 49.39 4950 4956
std.error  0.07 0.07 006 005 0.04 0.03
2
1.3 15 V4 *|5| E(T) 61.09 60.29 57.11 54.43 5341 5241
7 4995 50.01 49.87 49.86 49.69 49.66
std.error  0.07 0.05 005 004 004 0.03
Max-
MEWMA E(T) 56.25 55.97 55.05 55.02 53.35 52.75
7 4950 49.54 49.63 49.42 49.62 49.78
std.error  0.06 005 005 006 0.04 0.03
MELR E(T) 5449 5426 5363 5289 5250 52.11
7 4959  49.58 49.43 49.46 4951 49.47
std.error  0.06 0.06 006 0.05 0.04 0.04
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Table 4.3 Expected time of a signal, average change point estimates and their standard errors after

;(2—|S|, Max-MEWMA and MELR control charts signal; z =50,

independent simulation runs

p, =09 and 10,000

Mean Shift Setting

1 2 3 4 5 6

Covariance Shift Setting A 0 0 0.25 0.5 0.5 1
0 0, A, 0 0.25 05 075 1 1
1 1 /—|3| E(T) 93.20 69.36 58.08 5521 55.16
7 49.99 49.99 49.97 49.97 49.99

Std. error 003 002 002 002 0.01

Max-MEWMA  E(T) 80.25 60.08 55.17 53.90 53.01

¢ 49.89 49.90 49.90 49.92 49.91

Std. error 001 001 001 001 0.01

MELR E(T) 5431 5375 53.05 5273 52.22

¢ 49.71 49.71 49.73 49.82 49.82

Std. error 002 002 002 0.02 002

1.1 1.1 /*|5| E(T) 85.31 79.93 6454 56.89 54.61 52.82
¢ 49.98 50.00 49.98 49.98 49.95 49.92

Std.error  0.03 002 002 003 0.02 001

Max-MEWMA  E(T) 7821 7254 59.05 55.06 53.86 52.98

7 49.89  49.90 49.88 49.88 49.90 49.91

Std.error  0.01 001 001 002 001 001

MELR E(T) 53.98 53.92 5347 5288 5257 52.14

7 49.66  49.67 49.72 49.71 49.77 49.77

Std.error  0.03 003 002 003 0.02 002

11 13 s E(T) 7364 7011 6121 5586 5418 5276
7 4997  49.99 50.00 49.97 49.96 49.92

Std.error  0.03 002 002 002 002 002

Max-MEWMA  E(T) 64.38 63.05 57.61 5471 53.79 52.95

7 49.88  49.89 49.89 49.86 49.90 49.92

Std.eror  0.01 001 002 002 002 001

MELR E(T) 53.51 5346 53.12 5264 5240 52.04

¢ 49.62 49.68 49.67 49.66 49.77 49.78

Std.error  0.03 003 003 003 002 0.02

1.3 15 /*|S| E(T) 62.59 60.10 57.86 54.84 53.70 52.61
¢ 50.00 49.93 49.99 49.96 49.94 49.94

Std.eror  0.03 002 002 002 001 0.02

Max-MEWMA  E(T) 56.46  56.20 55.11 53.92 53.37 52.78

¢ 49.87 49.86 49.90 49.89 4991 49.91

Std.error  0.02 002 002 002 002 002

MELR E(T) 52.79 5276 5255 5229 5211 51.85

7 49.65 49.68 49.58 49.65 49.68 49.74

Std.error  0.03 003 003 003 0.03 002
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As this particular study aimed to show the accuracy performance of the change

A

point estimator with various alternative charting schemes, 7 should be close to 50.

Table 4.1-4.3 show the accuracy results for different values of p,. The average of

change point estimates (7 ), for all magnitudes of shift, are fairly close to the actual

change point.

For example, when a shift setting [4,,4,, &,, 5,]=[0.25,0.5,1.3,1.5] and p, =0.5
are considered, the average change point estimates are 49.87, 49.63 and 49.43 for
different control chart alternatives, from Table 4.2 respectively. The average run
lengths after the signal provided by the control charts are 7.11, 5.05 and 3.63,
respectively. If the magnitude of shift is relatively large, then the change point
estimator gives similar results for every control chart alternative. The best ARL
performance was mostly obtained with the MELR chart. However, if the magnitude
of shift is small, then the change point estimation surprisingly differs. The
procedures with the MELR charts produce the farthest change point estimation to
the actual change point. For instance, when a shift setting

[, 4,,6,,6,]=[00,00,1.1,1.1] and p, =0.0 are considered, the average change

point estimates are 71.74, 66.36 and 75.75 for different control chart alternatives,
respectively. This is most likely because there is more information available to
estimate the change point when ARL is larger. For example in this case the ARL of
the combination chart is 72.51 while the ARL of the MELR is 67.84. As the
correlation between the variables increase, the run lengths of the control charts

decrease and the accuracy performance increases for all procedures.
4.4.2 Precision Evaluation

The precision performance of the estimator with various control charts is also
investigated. The three control chart options are considered and the results are
compared for different magnitudes of shift settings. Generally, the precision
performance of the change point estimator with the combination and Max-MEWMA
charts are higher than the MELR chart scheme. This is probably because the MELR
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chart has lower run length results than the others. As an alternative single
multivariate control chart to the combination chart, Max-MEWMA has similar

precision performance with the combination chart.

For example, when a shift setting [4,4,, 8,, 5,]=[1.0,1.0,1.3,1.5] and p, =0.5
are considered, the exact detection probabilities are 0.67, 0.67 and 0.64 for different
monitoring procedures, respectively. The observed frequencies of the change point
estimates which are within a given number of periods (k) of the actual change point
are also obtained. The detection probabilities for the change point estimator for
various control charts are shown in Table 4.4-4.6. When the magnitudes of shift for
mean vector, covariance matrix and correlation coefficient increase, then the
detection performances increase and the difference between them becomes

unapparent.
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Table 4.4 Empirical distribution of 7 around 7 after ;(2 —|S|, Max-MEWMA and MELR control

charts signal; 7 =50, p, = 0.0 and 10,000 independent simulation runs

3

Mean Shift Setting

4

5

6

Covariance
Shift Setting

0.25
0.5

0.5
0.75

0.5
1

1
1

7 -l
Max-MEWMA
MELR

0.264

0.220
0.215

0.486

0.437
0.428

0.586

0.550
0.557

0.712

0.705
0.686

0.467

0.407
0.398

0.717

0.671
0.656

0.816

0.766
0.774

0.895

0.876
0.871

0.782

0.726
0.724

0.947

0.911
0.914

0.970

0.951
0.950

0.980

0.972
0.964

11 11

7 -l
Max-MEWMA
MELR

0.038

0.038
0.031

0.252

0.225
0.218

0.460

0.433
0.417

0.568

0.551
0.535

0.686

0.685
0.675

0.089

0.090
0.080

0.462

0.415
0.407

0.698

0.660
0.646

0.797

0.763
0.759

0.881

0.868
0.861

0.231

0.245
0.211

0.778

0.739
0.740

0.939

0.919
0.909

0.967

0.951
0.949

0.974

0.973
0.968

11 13

7 -l
Max-MEWMA
MELR

0.140

0.137
0.120

0.302

0.273
0.256

0.463

0.453
0.431

0.592

0.550
0.525

0.688

0.682
0.671

0.281

0.275
0.253

0.520

0.484
0.464

0.710

0.680
0.665

0.812

0.779
0.752

0.881

0.869
0.862

0.582

0.572
0.545

0.831

0.804
0.801

0.940

0.922
0.917

0.967

0.953
0.945

0.975

0.970
0.968

13 15

7 -l
Max-MEWMA
MELR

0.316

0.306
0.293

0.414

0.399
0.376

0.525

0.520
0.499

0.616

0.591
0.571

0.701

0.703
0.676

0.547

0.526
0.517

0.652

0.633
0.616

0.761

0.752
0.731

0.832

0.807
0.796

0.885

0.886
0.868

0.851

0.838
0.834

0.911

0.906
0.905

0.949

0.946
0.941

0.964

0.959
0.954

0.974

0.973
0.967
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Table 4.5 Empirical distribution of 7 around 7 after y° —|S|, Max-MEWMA and MELR control

charts signal; = =50, p, = 0.5 and 10,000 independent simulation runs

Mean Shift Setting

1 2 3 4 5 6

Covariance /11 0 0 0.25 0.5 0.5 1
Shift Setting

S, S, A 0 025 05 0.75 1 1

1 1 |5(|f _ T| <0) - |S| 0.323 0.404 0.537 0.615 0.703

Max-MEWMA 0.317 0.384 0.505 0.599 0.699

MELR 0.250 0.335 0.477 0572 0.675

|5(|5_T| <1 0.552 0.645 0.775 0.836 0.895

0.544 0.621 0.737 0.818 0.882

0.451 0.558 0.709 0.793 0.866

F3(|f—r| <5) 0.853 0.919 0.968 0.979 0.982

0.849 0.895 0.950 0.969 0.978

0.775 0.859 0.932 0.958 0.968

1.1 1.1 F3(|f _ T| <0) 4 - |S| 0.261 0.398 0.368 0.504 0.593 0.678

Max-MEWMA  0.257 0.293 0.356 0.476 0.575 0.676

MELR 0.209 0.234 0.317 0.452 0.552 0.648

ﬁ(f_d <1 0.474 0.633 0.606 0.745 0.819 0.881

0.471 0526 0592 0.713 0.797 0.868

0.391 0.432 0540 0.688 0.780 0.842

I5(|f—r| <5) 0.798 0.908 0.897 0.961 0.972 0.980

0.798 0.836 0.885 0.942 0.96 0.974

0.719 0.770 0.858 0.928 0.952 0.962

1.1 1.3 |5(|; _ r| <0) 4 - |S| 0.297 0.316 0.392 0.392 0.499 0.670

Max-MEWMA  0.286 0.306 0.372 0.486 0.560 0.667

MELR 0.242 0.271 0.338 0.457 0.542 0.651

ﬁ(f_d <1) 0.510 0.546 0.625 0.627 0.739 0.873

0.510 0.532 0.6035 0.721 0.794 0.866

0.447 0.480 0.569 0.694 0.773 0.858

F3(|;_f| <5) 0.834 0.858 0.904 0.908 0.955 0.978

0.829 0.852 0.891 0.944 0.963 0.977

0.782 0.821 0.875 0.931 0.953 0.968

1.3 15 |5(|; _ T| <0) 12 B |S| 0.384 0.414 0.466 0535 0.611 0.676

Max-MEWMA  0.377 0.399 0.441 0.444 0.585 0.675

MELR 0.342 0.360 0.414 0.495 0.565 0.640

ﬁ(f_d <1) 0.639 0.656 0.709 0.779 0.830 0.874

0.617 0.637 0.679 0.666 0.811 0.870

0.579 0.597 0.654 0.740 0.800 0.849

P(|r—r| <5) 0.917 0.922 0.944 0.963 0.969 0.976

0.893 0.909 0.925 0.917 0.963 0.978

0.880 0.892 0.915 0.946 0.959 0.963
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Table 4.6 Empirical distribution of 7 around 7 after y° —|S|, Max-MEWMA and MELR control

charts signal; = =50, p, = 0.9 and 10,000 independent simulation runs

3

Mean Shift Setting

4

5

6

Covariance
Shift Setting

A
ﬂ“Z

0.25

0.25
0.5

0.5
0.75

0.5
1

1
1

P(F -7 <0)

7 -l
Max-MEWMA
MELR

0.844

0.849
0.790

0.843

0.843
0.794

0.846

0.850
0.807

0.863

0.867
0.834

0.863

0.882
0.857

P(F -7 <1)

0.964

0.966
0.925

0.962

0.968
0.924

0.963

0.966
0.939

0.972

0.970
0.951

0.974

0.973
0.960

P(?-1<5)

0.999

0.997
0.984

0.998

0.996
0.983

0.997

0.995
0.986

0.998

0.995
0.989

0.998

0.995
0.990

1.1 1.1

P(t-17<0)

7 -l
Max-MEWMA
MELR

0.822

0.824
0.745

0.826

0.833
0.753

0.814

0.825
0.760

0.830

0.832
0.776

0.845

0.849
0.813

0.857

0.863
0.830

P(z-1 <)

0.957

0.961
0.901

0.956

0.963
0.911

0.956

0.957
0.912

0.961

0.960
0.925

0.967

0.963
0.942

0.970

0.969
0.952

P(7-1<5)

0.999

0.996
0.980

0.999

0.996
0.981

0.998

0.995
0.983

0.998

0.995
0.984

0.998

0.995
0.986

0.996

0.996
0.988

11 13

P(F-17<0)

7 -l
Max-MEWMA
MELR

0.794

0.797
0.729

0.803

0.803
0.729

0.801

0.805
0.733

0.809

0.805
0.762

0.822

0.832
0.793

0.837

0.850
0.814

P(F-<1)

0.946

0.944
0.888

0.949

0.949
0.900

0.953

0.949
0.901

0.952

0.948
0.916

0.958

0.959
0.936

0.963

0.962
0.947

P(F-7/<5)

0.997

0.995
0.976

0.998

0.995
0.980

0.998

0.994
0.980

0.997

0.993
0.981

0.996

0.995
0.985

0.996

0.995
0.988

13 15

P(z-17<0)

7 -l
Max-MEWMA
MELR

0.760

0.755
0.685

0.409

0.759
0.705

0.774

0.762
0.713

0.782

0.789
0.745

0.800

0.806
0.767

0.819

0.825
0.787

P(F -7 <1)

0.935

0.928
0.881

0.653

0.930
0.890

0.938

0.931
0.890

0.943

0.939
0.910

0.952

0.948
0.922

0.957

0.956
0.935

P(F-1|<5)

0.997

0.992
0.976

0.923

0.992
0.977

0.997

0.994
0.974

0.997

0.994
0.977

0.995

0.995
0.980

0.996

0.995
0.985
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4.4.3 Confidence Sets Based on the Change Likelihood Function

The accuracy and precision evaluations showed that there is no best in our three
monitoring approaches. If the process professionals target to detect small shifts
quickly, then they would choose the MEWMA based control charts. As a result, they
may not have better change point estimation performance. A solution to this
problem can be the construction of some confidence region for the change point
estimation. This way, the practitioners may investigate an interval or a set of
possible change points. An empirical confidence interval can be constructed using
the simulation result in part 4.4 as well. Constructing confidence sets for change
point estimates were first introduced by Pignatiello and Samuel (2001). The

confidence set of the multivariate joint change point estimator was constructed for
the y? —|S|combination chart scheme by Dogu and Deveci-Kocakoc (2011b). The
set of potential change points will help process professionals to focus on quick and

correct identification of the special cause and taking appropriate actions when they
use any control chart in order to obtain a signal of the change.

n

(L) - g(u(z; 330, o), —ij

_@mg{det{ > i(xij ~X. ) (x, —)=(T,t)?/n(l'—t)|20|]_@

is the value of log likelihood function at t, and D is the reference value to develop

a 100(1— )% confidence set. Pignatiello and Samuel (2001) used an interval of

reference value where the lower limit is Box and Cox’s (1964) proposal and the

upper limit is Siegmund’s(1986) proposal for a 90% confidence set.

If In(L(t)) exceeds the limit of In(L())— D, then t is a candidate change point.
We considered a set of reference values as D:{1.353,1.5, 2.00,2.5, 2.97} and

investigated the coverage probabilities of each shift setting for each control chart

option we used. The coverage probability represents the percentage of the sets which
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include the exact change point within 10,000 simulation runs. Also the sizes
(cardinality) of the sets are recorded (See Table 4.7-4.8).

We noted that, however, the ARL for the combination chart is larger than the
other single charts, the cardinalities and coverage probabilities of confidence sets are
generally smaller. This situation is more obvious when the magnitude of shift is
small. When the magnitude of shift is greater than 0.5 for mean vector and
covariance matrix, the results for different monitoring schemes become similar.
Considering the tables, the largest critical value (D =2.97) satisfies approximately

90% confidence region for mean shifts greater than 0.5 (for any covariance shift).
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Table 4.7 Average cardinality and coverage probability values obtained using different critical Values
(D) after ;(2 —|S|, Max-MEWMA and MELR control charts signal; = =50, mean shift setting 3

and 4 and 10,000 independent simulation runs

A 0.25 0.50
A 0.50 0.75
5, o, D 135 150 200 250 297|135 150 200 250 297
1 1 AfCardinality 7 | 280 305 396 492 590|205 220 276 340 408
C. Probability 070 073 079 084 088|075 077 082 086 0.89
Max- 298 3.27 433 554 6.77 | 228 248 320 403 492
MEWMA

068 071 078 084 088|073 075 081 086 0.89

MELR  3.02 334 454 6.01 758|238 259 341 437 5.46
061 063 071 078 083|070 072 078 083 0.87

1.1 1.1 A Cardinality 2 |S| 294 322 422 533 648|217 234 299 373 454
C. Probability 066 069 076 082 086|072 074 080 085 0.88

Max- 313 345 464 597 733|236 25 336 427 525
065 068 076 082 086|070 072 079 084 0.88

MELR  3.09 342 470 6.20 783|246 268 357 463 579
059 061 069 076 081|068 070 076 081 0.86

11 13 A. Cardinality 2 |S| 278 305 4.03 515 6.28|219 236 3.05 383 4.68
C. Probability 067 069 076 082 086|071 073 079 083 0.87

Max- 3.03 334 449 582 719|239 260 342 436 537
MEWM

066 0.68 0.76 081 086|071 073 080 084 0.88

MELR 300 331 455 6.00 758|243 265 353 457 572
059 062 069 076 081|067 069 075 081 0.85

1.3 15 A Cardinality 2 |S| 251 274 366 470 581|212 229 298 380 4.68
C. Probability 0.70 0.72 078 083 087|073 075 080 085 0.88

Max- 268 294 399 518 644 |25 282 383 503 6.36
MEWM

069 071 078 083 087|068 071 077 083 0.87

MELR 263 290 393 517 650|228 249 332 430 538
0.65 0.67 0.74 080 084|069 070 076 082 0.86
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Table 4.8 Average Cardinality and Coverage Probability Values Obtained Using Different Critical

Values ( D )after ;(2 —|S|, Max-MEWMA and MELR control charts signal; z =50, mean shift

setting 5 and 6 and 10,000 Independent Simulation Runs

A 0.5 1
2, 1 1
5 5, D 135 150 200 250 297|135 150 200 250 2.97
1 1 A. Cardinalit 2
Yoz —|5| 180 191 234 286 341|162 172 207 252 3.04
C. Probability 079 081 085 088 091|084 08 089 091 093
Max-
MEWMA 193 207 261 325 395|168 178 217 265 3.17
0.78 080 084 088 091|084 085 089 091 093
MELR 503 219 281 356 440|175 187 231 285 346
0.76 078 0.83 0.86 090|082 083 087 090 0092
1.1 1.1 A. Cardinalit 2
Yz *|S| 197 204 255 314 380|171 18 223 275 3.32
C. Probability 0.78 079 084 087 090|083 084 087 090 0092
Max-
MEWMA 204 220 279 349 427|175 18 230 283 3.42
077 079 084 088 091|082 083 087 090 092
MELR 510 228 294 375 466|185 198 250 3.12 381
0.74 076 081 085 089|080 08 085 088 091
1.1 1.3 A. Cardinalit 2
Yz *|5| 193 206 260 324 394|172 183 223 276 3.37
C. Probability 077 078 0.83 087 089|082 083 087 090 092
Max-
MEWMA 205 221 284 358 437|176 187 231 285 3.42
0.76 077 0.82 086 089|082 083 087 090 0092
MELR 510 228 296 377 468|182 195 245 305 3.70
073 075 080 084 088|080 08l 085 088 091
1.3 15 A. Cardinalit 2
Y ‘|3| 193 207 266 336 411|172 184 231 288 3.52
C. Probability 077 079 084 087 090|081 083 0.86 089 092
Max-
MEWMA 200 216 277 350 428|171 18 225 277 335
0.77 078 084 088 090|081 083 086 089 092
MELR 506 224 290 372 461|187 201 254 318 391
0.75 077 081 085 088|079 08l 085 088 091

4.4.4 Comparison with Generalized Likelihood Ratio Test Statistics based
Change Point Estimator

Another most widely used change point estimation procedure is to perform

sequential likelihood ratio tests and find the maximum of these statistics. The

problem of simultaneous changes in the mean vector and covariance matrix of a

Gaussian model was studied by Chen and Gupta (2000). They noted that instead of

using the usual GLR test statistic, one can use the log likelihood statistic:
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NS
A X
Tor =| MaxX| l0g—r— || , (4.3)
ZO 2‘l
.z 13 = 1 v
where fip =Xy, =+ > X, ity = Xop = Y X,
ti3 T-to5
1 ©v .
X,= ZZ( )( l‘o) 21 ZZ( )(X lll)
n(t) == t) i=t+1 j=1
ﬁ:% n ., and Z—%Zn:(xij —a)(xij —;i) are the MLE’s of mean vector and
i=1 j=1

covariance matrix. The location of the change is estimated by 7, where 7 is the

value of t such that 7 ; has its maximum. In our case, we will use this estimator in

order to find out the special cause when a MELR chart generates a signal. The in-
control ARL is set to 185 and the smoothing constant is chosen to as 0.2. As our
focus is Phase Il analysis of the processes, we use the known parameters of central
tendency and dispersion. Here in our simulation study, the known parameters are

p,=0and X, =1.

Table 4.9 shows the accuracy results of these two estimators. Since GLR based
estimator has similarities with the likelihood based estimation procedure in
formulation, the results are fairly close. The MLE based procedure has a slightly
better performance when the small covariance shifts are introduced. On the other
hand, the GLR based procedure has a slightly better performance for small mean
shifts. For the other cases, the two procedures have high detection capabilities. Table
4.10 shows the empirical distributions of these estimators around 7. The MLE
based estimation procedure performs slightly better than the GLR based method, but
this difference is less obvious when the magnitude of shift and correlation between
variables increase. With pure statistical perspective, natural logarithm of likelihood
ratio test statistics gives us a function which includes overall, pre and post shift
covariances. The MLE of the change point simply contains pre and post shift
probability distributions. The MLE based procedure may be criticized as the

traditional distributional results of the change-point theory may not be applicable.
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However, the distributional assumptions are enough to run these procedures for

many applications of special cause identification.

Table 4.9 Expected time of a signal, average change point estimates for MLE and GLR and their
standard errors after MELR control charts signal; 7 =50, p, =0.0and 0.5, 10,000 independent
simulation runs

p, =00 p, =05

/11 12 51 52 E(T) Tme TGlR  E(T)  Tmc T6LR

025 0 1 1 11658 63.41 59.17 61.82 50.33 50.24
0.60 0.27 028 0.07 0.07 0.09

0 0 125 1 83.50 57.03 63.62 59.94 5045 50.38

0.30 0.17 028 006 0.07 0.09

025 050 1 1 62.09 50.79 49.73 57.11 49.89 49.38
0.08 0.07 010 004 0.05 0.07

0.5 1 1 1 53.99 4951 49.14 5350 49.54 49.22
0.02 0.04 0.06 001 0.04 0.05

1 1 1 1 52.89 49.60 49.34 52.67 49.56 49.37

0.01 0.03 0.04 001 0.03 0.04

0.25 050 130 150 54.69 49.83 49.31 53.93 49.71 49.20
0.03 0.05 0.07 002 0.05 0.07

050 1 150 2 52.02 49.62 49.40 52.00 49.67 49.36
0.01 0.03 0.04 001 0.03 0.05

0 0 130 150 5650 49.98 49.41 5489 49.75 49.31

0.04 0.06 0.09 003 0.06 0.08

0 0 150 2 52.62 4953 49.16 52.49 49.65 49.31

0.01 0.04 006 001 0.04 0.05

A control chart also can be developed from the likelihood ratio test statistic.
Sullivan and Woodall (2000) proposed a single multivariate control chart based on
GLR for multivariate individual process readings. They used a similar statistic with
Chen and Gupta (2000). They also divided the test statistics into a part for the mean
shift and another part for the covariance shift. Their approach was able to detect the
location of a shift, the presence of multiple changes and the type of the change
(mean shift, covariance shift or combination shift). Zamba and Hawkins (2009)
proposed a multivariate change point model through GLR statistics for estimating
the change in mean vector and/or covariance structure. Their change point model is
able to monitor short runs and unknown or not fully known parameter processes. A
similar statistic also was used by Zamba and Hawkins (2009) and if the maximum of

this statistic exceeds a threshold then a signal of the change is considered to be
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generated. The point (t) such yields the maximum is diagnosed as the change point.
This approach of change point detection may be criticized because of the
computational work load. In this approach, the critical value or the threshold
depends on the number of observations. Therefore, the threshold has to be
recalculated as each new observation enters the monitoring system along with the

control chart statistics and MLE of the change point.
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Table 4.10 Empirical distributions of 7#,,. and 75 around 7 after MELR chart signals; z =50,
L= 0.0 and 0.5, 10,000 independent simulation runs

p, =00 p, =05

2’.I. /12 51 52 gMC fGLR z?MC ;GLR
025 0 1 1 p(i<0) 0051 0049 0259 0.237

B(e-o<1) 0122 0.116 0460 0430
B(e-c|<5) 0306 0288 0784 0746
B(s-c|<10) 0452 0.429 0916 0.833
025 05 1 1  p(r_ <o) 0223 0217 0351 0338
B(e-o<1) 0417 0.402 0578 0558
B(¢-<5) 0736 0719 0879 0853
B(s-c|<10) 0894 0.871 0959 0.942
05 1 1 1  p(i— <o) 0563 0556 0576 0.568
B(e-d<1) 0783 0772 0789 0779
B(e-<5) 0955 0.946 0960 0951
B(é-<10) 0979 0.969 0981 0.973
025 050 130 150 p(r_<p) 0392 0377 0.420 0400
B(e-o<1) 0627 0.601 0663 0638
B(e-c|<5) 0908 0884 0926 0.908
B(e-7<10) 0968 0.951 0971 0956
0 0 125 1 p(r_<0) 0083 0064 0241 0218
B(e-o<1) 0192 0.148 0446 0411
B(e-c|<5) 0438 0348 0770 0721
B(?-7<10) 0614 0496 0905 0868
0 0 13 15 p(r_<0) 0309 0285 0356 0.336
Bf—c<1) 0528 0490 0592 0562
B(¢-<5) 0845 0.802 0836 0859
B(e-r<10) 0942 0914 0959 0942

4.5 Illustrative example

The change point estimation procedure is applied to a simulated data set to
illustrate the practical use of control charts and the change point estimator. The
change point estimation procedure is used under the assumption that the parameters

are known. The illustration is for a bivariate data set and n=4. The in-control
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parameters are p,=(0,0) and X,=1,. The out-of-control parameters are

n,=(05,0) and E,=[L00.50.51.0]. In this example, a combination shift is

introduced after the 50™ observation vector. Data generation process stopped when
the combination chart issued a signal. The combination chart issued its first signal at
the 61 observation. We used this 61 process readings with the investigated control

charts and change point estimators. *—|S| combination chart is given in Figure

4.1.

10

15

T2
10
1
det(S)

Figure 4.1 ;(2 - |S| combination charts for the illustrative example

Figure 4.1 shows that the y2control chart generated a signal at the 617

observation. After generating the first signal, the process was considered to be out-
of-control and the time of the shift was investigated. Max-MEWMA control chart
was also drawn for the same data set from (4.1). The Max-MEWMA control chart
produced its first signal at the 58" process reading. Figure 4.2 shows diagnostic
outputs (U and V) along with the Max-MEWMA control chart. After obtaining the
signal we run the change point procedure with the Max-MEWMA control chart for

the first 58 observations. Lastly, we used the same data set in order to show the
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performance under the assumption that the signal was issued with the MELR control
chart using (4.2). Figure 4.3 shows the MELR chart for the simulated data set.
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Figure 4.2 The Max-MEWMA control chart, mean shift and covariance shift monitoring statistics for

the illustrative example

In Figure 4.3, like the Max-MEWMA control chart the first signal is issued after
the 57" process reading. The add-on procedure was run and additionally GLR based

estimation procedure was run for the first 58 observation vectors. Figure 4.4 shows
the change point estimation results for y*—|S|combination chart, the Max-

MEWMA and the MELR control charts.
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10

Figure 4.3 The MELR control chart, mean shift and covariance shift monitoring

statistics for the illustrative example

Figure 4.4 includes the four versions of change point estimation. Looking closely
to the results, one can easily interpret that the time where the likelihoods are
maximum is around 50. Using the add-on procedure with the combination chart, the
change was estimated to occur after the 50" observation. The same result was
obtained with the procedure of the Max-MEWMA control chart. On the other hand,
the procedure with the MELR control chart and the GLR based estimation procedure
calculated with (4.3) showed that the change was after the 49" observation. As the
information gathered from the process during applying different monitoring
approaches is approximate, the plots are barely different. But the actual change point
was estimated when using the combination chart and the Max-MEWMA control
cart. While the MELR control chart provides no insight about the responsible of the
shift, the combination and the Max-MEWMA control charts provided helpful
diagnostics. The Max-MEWMA control chart diagnostics (U and V) shows a shift in
mean vector and a slight shift in covariance matrix while the combination chart only
showed a shift in mean vector. The Max-MEWMA reflected the actual case

successfully and gave quick response to the shift.
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Figure 4.4 Plots of likelihood values at possible change points ;(2 - |S| combination chart, the Max-

MEWMA and the MELR control charts

4.6 Conclusions

Today, industrial processes produce huge amounts of data and joint assessment of
multivariate process quality is needed for most of the cases. Since, there is an
increasing pressure to produce high quality products and services, the practitioners
need help to find out special causes of variability and identify the time of a small,
moderate or large shift in mean and/or variability. The change point analysis with
existing monitoring tools is a highly effective technique to investigate the special

causes.

A follow-up change point estimation procedure for jointly monitoring the mean
and covariance of a p-variate process is proposed by Dogu and Deveci-Kocakoc
(2011b). In this study, we examined the performance of this estimation procedure
under the assumption that the process is monitored with the y® —|S|combination

chart or multivariate single control charts. Since the performance with the

combination chart is shown previously, we focused on the performance with the
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multivariate single control chart alternatives and compared them. The single charts
are easy to apply and visually attractive because one control chart is enough to
jointly monitor the mean and variability. The two competing control charts are used
in this study. These are the Max-MEWMA and the MELR control charts.

The proposed estimator is capable of detecting the step change successfully with
all of the above control charts. The performance evaluation has shown that the
change point formulation has high detection ability independently from control chart
type. However, the performance is satisfactory for each monitoring approach, the
combination chart has slightly better performance for small magnitudes of shift. This
result raised here because the run length of the combination chart is greater than the
others. This means that the change point procedure would run with a longer series of
process readings. As the information gathered from the process increases, the better
estimates are obtained. The change point procedure with multivariate single control
charts does not have a better performance for small magnitudes of shift but they
have their own advantages. Not estimating the change point for very small
magnitudes of shift as accurate as the procedure with the combination chart is a
result of the quick detection ability of the multivariate single control charts. Thus,
the practitioner may spend effort to construct confidence sets for the change point
and investigate this search window for the change point instead of inspecting more
products or services. This approach obviously would save time, and man-power for

inspection.

We used the likelihood functions of the pre and post shift distributions and
followed the work of Pignatiello and Samuel (2001) to find the estimator. In the
literature, change point theory widely uses the likelihood ratio test statistics. Thus,
we compared the two approaches of change point estimation. Even though, the two
estimators have similar accuracies, MLE based change point estimation procedure is
slightly more precise than the GLR based approach. An illustrative example is given
to indicate the practical use of the change point estimator with multivariate single

control charts. This hypothetical example indicates the ease of implementation and
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interpretation of the control charts with the change point procedure for jointly

monitoring mean and variability.



CHAPTER FIVE
CONCLUSIONS

The primary objective of this research was to develop new change point
procedures for multivariate processes. Traditional way of looking for the special
cause after a signal does not always work for many processes. More sophisticated
tools are needed for better identification of the time of a special cause. The change
point analysis as an add-on procedure in SPC has been shown to be effective and
successful for this purpose (see for example Samuel et al. (1998a, 1998b),
Pignatiello and Samuel (2001), Nedumaran et al. (2000)). We focused on the
multivariate frame and proposed change point procedures for well-known
multivariate monitoring approaches in this research. After a signal is generated from
a multivariate control chart, our proposed procedures are capable of detecting the

time of a step change accurately and precisely.

Our first change point proposal was for the |S| control chart. Following the work

of Nedumaran et al. (2000), we developed a multivariate change point procedure for
only covariance shift assuming no mean shift. Our assumption here was that the shift
occurred only in covariance matrix. We showed that our proposed procedure
correctly detects a step change for small, moderate and large magnitudes of shift.

The performance analysis was conducted under the assumption that the process was

being monitored with a |S| control chart.

Another main objective in our study was to propose a procedure for simultaneous

monitoring of mean vector and covariance matrix. Since the most widely used
monitoring approach is a y* and |S| combination chart, we developed a procedure
for x* and [S| combination chart. We showed that this procedure performs

satisfactory in terms of accuracy and precision. The MLE of the process change
point allows the construction of a confidence set on the true change point. This

confidence set provides valuable knowledge and a search window to
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process professionals in order to start looking for the exact time of the change. This
set of possible candidates of change point helps the practitioner to identify the
special cause easily. We constructed confidence sets for various reference values
and showed that this approach is practical for joint estimation of a step change in

multivariate setting.

Since a successful monitoring program requires monitoring mean and covariance
shifts, the importance of simultaneously monitoring process mean and variability
has been increased. On the other hand, the practice of combining existing control
charts for mean and variability has been discussed to be unproductive and various
multivariate single control charts proposed by Chen et al. (2005), Cheng and Thaga
(2005), Thaga and Gabaitiri (2006) and Zhang et al. (2010). As this control charts
have better performances than the traditional combination chart, our concern was to
show the performance of the joint estimation procedure under the assumption that
the process is being monitored with a multivariate single control chart. After
conducting simulation studies for various shift combinations and magnitudes, we
noted that the proposed joint estimator is capable of detecting the step change
successfully with all the single charts. However the performance is satisfactory for
each monitoring approach, the traditional combination chart has slightly better
performance for small magnitudes of shift. The reason for this result was the better
estimation of the parameters obtained from the data gathered from the procedure of
combination chart. As the combination chart has long run lengths compared to the
single charts, longer series of process readings are available. This surprising
performance loss can be easily repaired using the confidence set along with the
change point estimation. We conducted a simulation study and showed examples of

the confidence sets and coverage probabilities for all the monitoring approaches.
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Figure 5.1 Plots of coverage probabilities and average cardinalities versus various references (D) for

mean shift setting 4 = (0.25, 0.5) ; 7 =50, p = 0.5and 10,000 independent simulation runs
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Figure 5.2 Plots of coverage probabilities and average cardinalities versus various references (D) for

mean shift setting 4 =(1,1); =50, p = 0.5 and 10,000 independent simulation runs

Figure 5.1 and 5.2 shows the average cardinality and coverage probability for
each simulation setting and reference. If the reference value is chosen as 2.97,
proposed by Siegmund (1986), then all of the procedures produce at least 80%
coverage, and coverage probabilities are fairly similar. But this preference causes

the cardinalities to get larger. The largest set lengths and the lowest coverage



107

probabilities were obtained when the procedure was run under the assumption that
the monitoring tool was a MELR chart. Even though MELR chart quickly detects
the change, this property affects the identification performance of the change point
estimator. As a result, if process professionals prefer quick detection for small shifts,
then they need to put more effort for exact special cause identification. In other

words, they will have a wider search window to look for the special cause.

The procedure with »? and |S| combination chart provides the shortest set

lengths and highest coverage probabilities. This means that the change point
estimator work best with the combination chart among these monitoring tools. The
professionals will have a narrow search window and higher caption ability. On the
other hand, combination charts have their own disadvantages. They are good at
detecting large magnitudes of shift. In contrast, when the magnitude is small, then
they could not respond quickly. The other disadvantage is that they need more
resources such as professionals and time. If the process is stable then the

professionals will have to run two separate control charts for a long period of time.

Another alternative monitoring tool is using the Max procedures. Max-MEWMA
chart based procedure provides shorter set lengths and higher coverage probabilities
compared to the procedure with MELR. If the assumption is that the monitoring tool
is a Max-MEWMA chart, the results are similar to the one with the combination
chart. While Max-MEWMA chart produces shorter run lengths than the combination
chart, it also provides acceptable set lengths and coverage probabilities. This results
show that if the practitioners are trying to detect small and moderate shifts, then
using a Max-MEWMA chart with an add-on change point procedure is a preferable
choice. Max-MEWMA based procedure practically gives quick signals and better
change point detection performances. Moreover, it can provide diagnostics about the
change. The control chart statistic can be partitioned and the user can figure out
whether it is a mean shift, covariance shift or both. So the need for traditionally
proposed approach of investigating separate univariate control charts for mean and

variability becomes unnecessary.
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Since our research problem was developing new multivariate change point
schemes for SPC, we proposed two change point estimators. The first one was the
covariance change only model and the second is the simultaneous change of mean
vector and/or covariance matrix model. We showed that these estimators perform
quite accurate and precise estimations for various magnitudes of shift. As our
assumption is that the procedure starts after the control chart issues a signal, we
investigated the performance of the joint estimation procedure for several control
chart alternatives. We noted their advantages and disadvantages. The main
performance criteria are the run lengths for control charts. The literature is rich in
run length comparisons of various control charts for univariate and multivariate
observations. Our study showed that looking only ARL may result in misleading
control chart selection. We showed that the practitioner should evaluate the control
charts via change detection, special cause identification, providing helpful
diagnostics abilities rather than only detection ability. Strong quick detection ability

may result in weak ability of assignable cause identification.

Our change point procedure was under the assumption that the process
experiences a step change. Many industrial processes may experience a linear trend
or more generally monotonic type changes. Future research can include an
investigation for other types of change in multivariate setting. Here in this study, the
application area was restricted to typical industrial processes, such as steel
manufacturing. Recently many other areas of implementation are available. The
application of these methods can be adapted to these areas such as health care
delivery and financial analysis. The results of this research have been published in
Dogu and Deveci-Kocakoc (2011a, 2011b).

Our estimation procedures are using pure statistical sense. Advanced estimation
techniques to determine the change point can also be used. An increasing number of
researches have been done about heuristic, neural network based or clustering based
estimators (see Ghazanfari et al. (2008), Alaeddini et al. (2009), and Atashgar and
Noorossana (2011)). Another interesting future research could be to propose new

estimators and compare them with the existing methods.
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One of our assumptions was that the process readings follow a multivariate
normal distribution. For many industrial processes, this assumption may fail and the
distribution may follow an unknown distribution or even we may not able to define a
distribution. In this case, a new future research area emerges. Dealing with
distribution free change point detection methods for SPC can be a very attractive

further research.

In order to construct a successful monitoring program, the process professional
has to decide on many aspects and think about many process parameters. For
example, in Six Sigma logic the main target is to reduce variability and the

acceptable range of a quality characteristic is x+6c while classical approach is to
use u+3c limits. Thus, the pressure to produce high quality products forces

organizations to use more aggressive tolerance and specification limits. Nowadays,
quickly eliminating the large shifts, quickly detecting small and moderate shifts and
higher identification performance of the time of a shift, or in other words; correctly
identifying the time of an assignable cause are vital. We believe that the change
point estimation procedures, our investigation, and the results will be helpful for the

practitioners for their process monitoring decisions.
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