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MULTIVARIATE STATISTICAL PROCESS CONTROL AND 

MONITORING WITH CHANGE POINT ANALYSIS 

 

ABSTRACT 

 

Multivariate statistical process control (MSPC) efforts are widely used in order to 

detect changes in processes where more than one inter-related quality characteristic 

is considered. The existing monitoring methods like Hotelling‟s T
2 

control chart are 

capable of generating signals to show the existence of the change. However, this 

certain signal does not always mean that the change occurred at that particular time. 

Because of this obstacle, the process professionals need to look for a special cause 

after a signal and for many cases it is quite difficult to identify the time of a change 

with only this information. 

 

Change point methods help Statistical Process Control (SPC) practitioners to 

identify the time of a change after a control chart generates a signal. Using change 

point estimation with the monitoring tool surely improves the special cause 

detection ability of the monitoring system.  

 

In this study, change point procedures for multivariate processes are proposed. 

Firstly, the change point model for monitoring covariance matrices is discussed. The 

simulation results showed that this model accurately and precisely estimated the 

change point after a generalize variance control chart issued a signal. Secondly, a 

change point procedure for simultaneously monitoring the mean vector and 

covariance matrix is proposed. This procedure is shown to be successful to find the 

change point for multivariate joint estimation of a step change. The research also 

includes a comparative study for multivariate single control charts via change point 

estimation performance.  

   

Keywords:  Change Point Estimation, Multivariate Statistical Process Control (MSPC), 

Generalized Variance Control Chart, Multivariate Combination Control Chart, Multivariate 

Single Control Charts. 
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DEĞİŞİM NOKTASI ANALİZİ İLE ÇOK DEĞİŞKENLİ İSTATİSTİKSEL 

SÜREÇ KONTROLÜ VE İZLENMESİ 

 

ÖZ 

 

Birden fazla kalite karakteristiğinin birlikte incelenmesinin gerektiği durumlarda 

çok değişkenli istatistiksel süreç kontrol çalışmaları yaygın olarak yapılmaktadır. 

Hotelling‟s T
2 

kontrol kartı gibi mevcut metotlar bir değişimin ortaya çıktığını 

ürettikleri sinyal ile gösterebilirler. Ancak bu sinyal her zaman değişimin sinyalin 

üretildiği zamanda ortaya çıktığını göstermez. Bu zorluktan dolayı süreç uzmanları 

sinyalden sonra özel nedenin ortaya çıktığı zamanı araştırmak zorundadır. Bu bilgi 

ile değişimin zamanını tespit etmek çoğu durum için oldukça zordur.  

 

Değişim noktası metotları İstatistiksel Süreç Kontrolu (İSK) uygulayıcılarına 

kontrol kartı sinyal verdikten sonar değişimin zamanını belirlemede yardımcı 

olurlar. Değişim noktası tahmini yardımıyla yapılan izleme faaliyeti, şüphesiz 

izleme sisteminin özel neden tespit etme yeteneğini arttırır. 

 

 Bu çalışmada, çok değişkenli süreçler için değişim noktası yöntemleri 

önerilmektedir. İlk olarak, kovaryans matrisinin izlenmesinde kullanılan bir değişim 

noktası metodu tartışılmıştır. Simülasyon sonuçları önerilen yöntemin 

genelleştirilmiş varyans kontrol kartı sinyal verdikten sonra doğrulukla ve kesinlikle 

tahmin yapabildiğini göstermiştir. İkinci olarak, ortalama vektörü ve kovaryans 

matrisinin eşanlı izlenmesini sağlayacak bir değişim noktası prosedürü önerilmiştir. 

Bu prosedürün bileşik değişim noktası tahminin başarı ile gerçekleştirdiği 

gösterilmiştir. Bu araştırmada ayrıca çok değişkenli tek kontrol kartları için değişim 

noktası tahmin performansları bakımından bir karşılaştırmalı çalışma da 

bulunmaktadır. 

  

Anahtar Kelimeler:  Değişim Noktası Tahmini, Çok Değişkenli İstatistiksel Süreç 

Kontrolü (ÇDİSK), Genelleştirilmiş Varyans Kontrol Kartı, Çok Değişkenli Kombinasyon 

Kontrol Kartı, Çok Değişkenli Tek Kontrol Kartları. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Introduction 

  

Statistical Process Control (SPC) as a sub-area of Statistical Quality Control has 

been an essential tool in industry and service for quality improvement. 

Understanding the causes of variation is in great importance for these efforts. 

Generally, the causes of variation are classified into two classes: common causes 

and assignable (or special) causes. The common causes are considered to stem from 

inherent nature of the process and they are hard to eliminate without changing the 

process itself. The other class is the assignable causes of variation and they interfere 

to the process. They are easy to detect respectively and should be eliminated.  

 

Control charts which were first developed by Shewhart is widely used in order to 

detect the causes of variability. Since their development, this tool set has been a 

principle statistical tool in industry and service. A control chart basically checks the 

measures and tries to detect whether the underlying probability distribution remains 

constant over time. This stable situation is defined as „in-control‟ situation. If there 

is some change in the probability distribution, then this situation is defined as „out-

of-control‟. The effectiveness of the control charts also attracts practitioners by its 

visual representation. Figure 1.1 and 1.3 shows examples of control charts. The 

checks for each time slot are recorded on a graph and this series is compared with a 

threshold to define the in-control situation. The threshold is considered to be a 

specific value which is achieved by a significance level.  

 

The estimation of the parameters is a major concern of SPC. If the parameters are 

unknown, then in order to estimate them a calibration exercise is performed and this 

is called a Phase I study. The aim of Phase I is to check if a process has been in-

control with a set of historical readings.  After this calibration step, the samples are 
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taken sequentially and used to detect departures from in-control parameters and this 

is called a Phase II study. Woodall (2000) concluded that much effort; process 

knowledge and process improvement is needed for a transition from Phase I to 

Phase II.  

 

1.2 Multivariate Statistical Process Control 

 

The increasing practice of SPC in industry creates demand to use more effective 

methods that are able to detect changes of quality level quickly. The literature is rich 

in univariate checks of the processes to ensure the parameters are in-control. 

However, many processes are capable of producing multiple process readings. 

Therefore, there are many situations in which simultaneous monitoring of two or 

more inter-related quality characteristics. Following examples of multiple process 

reading cases are provided by Hawkins and Olwell (1998) as follows: 

 

 Measuring different properties on each unit produced: In manufacturing 

roller bearings the process professional may measure the length, maximum 

diameter, and minimum diameter of each sampled bearings. 

 Measuring a number of different but connected processes: The measurements 

can be made on the different processes but connected processes. For 

instance, in semiconductor wafer fabrication, chips go through sequences of 

processing steps. The quality of a chip depends on the current process step 

and the outcomes of all previous process steps. Thus the causes of poor 

quality may stem from the current process step and also the problems created 

previously.  

 Measuring a number of different processes some of which cannot be 

controlled: For instance, in a coal washing plant, the yield and ash content of 

the washed coal are important quality characteristics of the washing process. 

These characteristics are highly connected to the quality of raw coal entered 

to the plant. The causes of variability are likely to occur by the internal and 

external processes.  
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The multivariate approach deals with a vector of different but possibly correlated 

process readings rather than a single process reading at each time point. 

Montgomery (2009) presented two ways of managing this situation. The first way is 

ignoring the correlation and treating the measurements as separate univariate quality 

characteristics. If we use this setting as a monitoring tool for related quality metrics, 

the ignorance of correlation may yield to a point which is in-control for each 

univariate control chart and out-of-control when the variables are monitored 

simultaneously. Moreover, the Type I error and probability of a point correctly 

plotting in control are not equal to their specified levels. For example, in bivariate 

case the Type I error for each control chart is  and the Type I error of using 

separate control chart for multivariate readings is 
2)1(1   which is not equal to 

 .  

 

The other way of dealing with multivariate process readings is thinking about the 

collection of measures as a multivariate measure and control this measures with 

multivariate methods. A major benefit is that the monitoring may be much more 

sensitive compared to the first approach. Another benefit may be the increased 

diagnostic aids. Hawkins and Olwell (1998) gave an example to explain this benefit. 

If we do not monitor the incoming coal quality then an increase in the ash content of 

the washed coal could be attributed to the problems of washing while in fact, the 

reason may be the incoming coal quality.    

 

In our study we will assume that the process readings follow a p variate 

multivariate normal distribution. ijX  is a  1p  vector which represents the 

p component on the 
thj  observation in the 

thi  sample of size n . The multivariate 

normal distribution can be described as the vectors ijX  follow a common 

multivariate normal distribution with some mean vector 0μ  
and some covariance 

matrix 0Σ . This can be abbreviated to  00,~ ΣμX pij N . The covariance matrix 

represents the relationship between the measures and if the off-diagonal elements 

are different from zero, then the practitioner would have maximum benefit from 

thinking a multivariate approach. 
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1.3 S2  Control Charts 

 

In the MSPC literature, there are several multivariate control charts proposed. 

The most popular among them is the 2T control chart proposed by Hotelling(1947). 

It is considered as the multivariate analog of the univariate X chart.  

 

Consider p variate vector  00,~ ΣμX pij N . If we want to test the following 

hypothesis; 00 : μμ H , 01 : μμ H then the most powerful test statistic is 

   0

1

00

2
μXΣμX 


 

iii nT  where n  is the sample size and iX  is the sample mean 

vector for the  
thi  process readings. When the process parameters are known or can 

be estimated, this chart plots    0

1

00 μXΣμX 


 

iin ; where  00,~ ΣμX pij N , 

nj ,,2,1  . If a point falls beyond the upper control limit 2

1,   pUCL , the 

process is considered to be out of control. This control chart is also called Phase II 

2X chart or  2  chart (Bersimis et al., 2007). 

 

As monitoring only the mean vector is not an effective way of controlling the 

process, many authors focused on developing the methods to monitor dispersion. Alt 

(1985) and Alt and Smith (1988) proposed different procedures of carrying out 

multivariate dispersion control and monitoring. They proposed the multivariate 

analogue of the univariate S-chart and named it as generalized variance ( S ) control 

chart. 
2/1

iS  values are plotted when the control limits are: 

 

    ,14
222

2/,42   nUCL n 0Σ   

    222

)2/(1,42 14   nLCL n 0Σ                                    (1.1) 

 

where iS is a pp matrix, 

    )1(
1







n
n

j

iijijii XXXXS                                                            (1.2)                   
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and n
n

j

iji 



1

XX .                                                                                               (1.3) 

 

When several characteristics of a manufactured component are to be monitored 

simultaneously, multivariate Shewhart-type 
2 and S control charts can be used. As 

long as the points plotted on the 
2  and S control charts fall below the upper 

control limits (UCL) of the charts, the process is assumed to operate under a stable 

system of common causes and, hence, in a state of control. When one or more points 

exceed the UCL, the process is deemed out of control due to one or more special 

causes and an investigation is carried out to detect these special causes (Nedumaran 

et al., 2000). 

 

 

Figure 1.1 Univariate control charts for bivariate standard normal process readings. 
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Figure 1.2 Scatter plot for bivariate standard normal process readings. 

 

Figure 1.1 and 1.3 shows the univariate and multivariate control charts for related 

quality characteristics, respectively. The data was generated from multivariate 

standard normal distribution with 7.0  which can be expressed as a strong 

positive correlation where   is the Pearson correlation coefficient. Figure 1.2 shows 

this relationship between the quality characteristics. When the control charts set to 

the same Type I error rate ( 0027.0 ), X charts do not generate any signal and 

look almost perfect. On the other hand, 
2  chart generates a signal around twentieth 

observation vector. Moreover, S  issued another signal at around hundred 

nineteenth observation vector. These signals are not apparent in Figure 1.1. For 

discussions and reviews of multivariate mean and dispersion control charts, see, for 

example, Lowry and Montgomery (1995), Montgomery (2009), Tracy et al. (1997), 

Hawkins and Olwell (1998), Fuch and Benjamini (1998), Alt (1985), Alt and Smith 

(1988), Surtihadi et al. (2004), Khoo and Quah (2004), Bersimis et al. (2007) and 

Vargas and Lagos (2007).   
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Figure 1.3 Multivariate control charts for bivariate standard normal process readings. 

 

1.4 Change Point Model for SPC 

 

Control charts are widely used tools for detecting changes of a process and 

identifying special causes. A change in the process distribution leads the control 

chart to generate an out-of-control signal. The time in which the signal issued is 

considered as the stopping time and at this point of time process professionals start 

searching for assignable causes of the change. The signal does not always indicate 

that a special cause actually occurred at that particular point of time. A typical 

illustration of a control chart is given in Figure 1.4. The control chart aims to 

monitor the mean of the process with a step change and the observations are 

standardized normal readings. Thus, the center line is „0‟, the upper control limit is 

„+3‟ and the lower control limit is „-3‟. It is well known that the process has altered 

to its new level after the 50
th

 observation for this process. The vertical line 

represents the actual time of this step change. However, the control chart generated 

its first signal at the 70
th

 observation. The practitioners need some additional run 

rules in order to identify the time of the change, but this approach may not always 

provide realistic change point estimation. 



8 

 

 

 

Figure 1.4 A control chart with a step change in the mean; the signal issued at 70
th

 process reading 

while the change was introduced after 50
th

 process reading. 

 

From the SPC point of view, it is possible to employ change point models to 

control charts. A change-point model focuses on finding the point in time where the 

underlying model generating a series of observation has changed in some manner 

(Montgomery, 2009). In order to summarize the procedure, two distributions are 

used to model the quality characteristic of a process. 

 

 

  . ,1,    ,,~

.,2, ,1   ,,~

1

0

TiXfx

iXfx

i

i












 

 

where ix  is the i
th

 observation of the process and   at which the process parameter 

shifts from 0  to 1  is referred to be the process change-point. The process follows 

the distribution  0,Xf  up to the change point   in time and then follows another 

distribution such as  1,Xf  after the change is occurred.  

 

Many researchers studied the integration of statistical process control and change 

point applications for various distributions of the quality characteristics. Samuel et 
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al. (1998a, 1998b) proposed estimators to find the most likely location of the change 

for normally distributed quality characteristics. They considered step changes in the 

mean and the variance of a normal distribution, respectively. They compared 

performances of the estimators with X  and S control charts, respectively. Samuel 

and Pignatiello (2001) showed the superiority of the performance of the maximum 

likelihood estimator (MLE) when compared to the built-in change point estimators 

of exponentially weighted moving average (EWMA) and cumulative sum (CUSUM) 

for a normal process mean. Pignatiello and Simpson (2002) proposed a magnitude-

robust control chart to monitor a normal process mean and obtained useful change 

point statistics. Perry and Pignatiello (2006) investigated the linear trend disturbance 

in the mean for normally distributed quality characteristics. Timmer and Pignatiello 

(2003) investigated change point estimates for the parameters of an AR(1) process. 

 

Samuel and Pignatiello (1998c) proposed a change-point estimator based on the 

maximum likelihood function of a Poisson random variable. They investigated the 

performance of their estimator on a Shewhart c-chart for step changes in the rate 

parameter. Perry et al. (2005, 2007) also presented maximum likelihood estimators 

for the change-point of a Poisson rate parameter with a linear trend disturbance and 

monotonically changing rates, respectively. Perry et al. (2007) provided a change 

point estimation procedure for a process fraction nonconforming with a monotonic 

change disturbance. Perry and Pignatiello (2005) showed that the performance of the 

MLE based change point estimator is superior to the built-in change point estimators 

of EWMA and CUSUM to identify the change point of a binomial process. The 

change point estimation procedures were also proposed for high quality processes. 

Noorossana et al. (2009) provided a maximum likelihood estimator in order to 

identify the time of a step change in high-yield processes. They studied the change 

point estimation for a geometric process as the number of items until the occurrence 

of the first non-conforming item can be modeled by a geometric distribution. The 

add-on procedure was used with the geometric chart and provided accurate and 

precise estimations for different magnitudes of shifts in p , the process non-

conformity proportion. 
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Some authors investigated the change point for multivariate processes. 

Nedumaran et al. (2000) proposed a change point estimator for a multivariate 

process mean vector when the observations follow a multivariate normal 

distribution. The estimator is considered as a follow-up procedure for 
2 chart under 

the assumption of constant covariance structure. Dogu and Deveci-Kocakoc (2011a) 

proposed a change point estimator to identify the step change in generalized 

variance control charts. Another approach is proposing sequential generalized 

likelihood ratio (GLR) test statistic based control charts. These charts can provide a 

change point estimator along with the control chart statistics. Sullivan and Woodall 

(2000) proposed a single multivariate control chart based on GLR for multivariate 

individual process readings. Zamba and Hawkins (2009) proposed a multivariate 

unknown parameter change point model through GLR statistics for estimating the 

change in mean vector and/or covariance structure.  

 

1.5 Change Point Estimation for 
2  Control Chart 

 

This part focuses on the change point procedure for a typical 
2  control chart. 

This estimation was based on the likelihood functions and proposed by Nedumaran 

et al. (2000) and we will follow a similar approach for jointly monitoring the mean 

vector and covariance matrix changes in this text. This follow-up approach for 

homoscedastic case is summarized as follows:  

 

 The process readings are monitored with a 
2  control chart. When the 

control chart generates a signal, the reason for this signal is assumed to be a 

step change.  

 The change point estimation procedure starts to find the most likely location 

of the change and provides an estimation of the time of the step change. 

 The point where the log-likelihood function attains its maximum is 

considered as the change point. 

 The process professionals start looking for the special cause at that particular 

point of time or in a search window of possible change points. 
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Let   ),,,( 21 ijpijijij XXX X  be a 1p  vector which represents the p  

characteristics on the j
th

 observation n) , 2, ,1( j  in the i
th

 subgroup of size n. 

Suppose further that when the process is in control, the ijX ‟s are independent and 

identically distributed (iid) and follow a p variate Normal distribution with mean 

vector 0μ and covariance matrix 0Σ that is, the ijX ‟s are iid ),( 00 ΣμpN when the 

process is in control. We let n  denote the subgroup size and we let iX  denote the 

average vector of the i
th

 sub grouping and can be calculated with (1.3).

 
 

When the i th subgroup is observed, the statistic )()( 0

1

0

'

0

2
μXΣμX  

iii n  

has a chi-square distribution with p degrees of freedom. This statistic is plotted on a 

2 control chart with UCL set at 2

, p  , where 2

, p  is the )1(  th percentile point 

of the chi-square distribution with p degrees of freedom and  is the probability of 

a false alarm for each subgroup plotted on the chart. 

 

It is assumed that when the multivariate process mean changes, there has been a 

step-change from its in-control value of 0μμ 
 
to an unknown value 1μμ   where 

10 μμ  . If 
2

T  exceeds the UCL of the 
2 control chart, it is concluded that the 

step-change in the process mean occurred after some unknown time  , where 

10  T . Hence, we assume that the subgroup averages XXX ,,, 21   came 

from in-control process and the subgroup averages TXXX ,,, 21    came from the 

out-of-control process. It is further assumed that the process mean remains at the 

new level 1μ  until the special cause has been identified. The maximum likelihood 

estimator of   can be the value of  t  for which the statistic iM  attains its 

maximum; that is,  

 

)(maxargˆ
t

i

M ,   1-T, 1, 0, t                                                                       (1.4) 

where )())(( 0,

1

00, μXΣμX  

TtTtt tTM                                                         (1.5) 
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and 



T

ti

iTt
tT 1

,

1
XX is the average of the ( tT  ) most recent subgroup averages. 

 

1.5.1 Illustrative Example  

 

A hypothetical example was considered by Nedumaran et al. (2000) for the 

machining of steel sleeves in which the inside diameter, the outside diameter, and 

the length are the 3p  important quality characteristics. A 
2 control chart is used 

to monitor these characteristics. Based on historical data, the process is known to be 

stable and in control, and observations are as follows: 

 



















0.120

0.150
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4.56.90.9

0

















Σ  

 

For 5n  subgroups 
2 statistics are calculated periodically and plotted on the 

chart. The probability of a false alarm is set at 0027.0 . The UCL of the 
2  

control chart is then 157.142

0027.0,32  
T

UCL . The sample averages of 21 

subgroups and the corresponding 
2  statistics are shown in Table 1.1. The control 

chart has issued an alarm for the twenty-first subgroup. Thus, 21T . The proposed 

estimator can now be applied to estimate the change point.  



21

1

21, 211
ti

it t XX  

for 1-, 2, 1, 0, Tt  . tM
 

values can be calculated easily from 

).())(21( 0,

1

00, μXΣμX  

TtTtt tM  
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Table 1.1 Subgroup averages, reverse cumulative averages, tM  and 
2 statistics 

i t 
iX  Reverse cumulative 

averages 
tM  2  

1 0 104.757 150.151 119.243 105.404 150.012 119.988 1.27 0.35 

2 1 105.432 150.252 122.584 105.436 150.005 120.026 1.38 3.19 

3 2 104.449 151.325 120.496 105.436 149.993 119.891 1.58 4.11 

4 3 101.822 146.074 118.236 105.491 149.919 119.857 2.23 5.86 

5 4 106.986 150.596 121.009 105.707 150.145 119.887 2.69 4.31 

6 5 106.887 153.377 118.408 105.627 150.117 119.887 2.17 7.22 

7 6 104.486 148.822 119.61 105.543 149.899 119.985 2.05 0.51 

8 7 104.314 147.559 120.316 105.618 149.976 120.012 2.09 2.91 

9 8 103.76 149.237 118.594 105.719 150.162 119.989 2.02 1.32 

10 9 104.488 149.475 119.524 105.882 150.239 120.105 2.47 0.16 

11 10 104.638 150.276 120.708 106.009 150.309 120.158 2.79 1.08 

12 11 102.711 147.623 119.969 106.146 150.312 120.103 3.53 3.98 

13 12 107.061 152.098 122.726 106.528 150.611 120.118 4.94 3.63 

14 13 103.276 148.987 119.682 106.461 150.425 119.792 5.19 2.67 

15 14 105.761 151.890 120.036 106.916 150.630 119.807 7.31 1.36 

16 15 108.153 151.391 120.350 107.108 150.420 119.769 8.71 10.93 

17 16 104.841 147.558 119.485 106.899 150.226 119.653 6.67 4.87 

18 17 104.956 147.410 118.942 107.414 150.893 119.694 6.48 6.82 

19 18 108.306 151.819 119.715 108.236 152.054 119.951 6.24 12.40 

20 19 106.464 150.938 118.532 108.202 152.172 120.069 3.80 5.02 

21 20 109.940 153.406 121.605 109.940 153.406 121.605 3.64 18.19 

 

 

From Table 1.1, it is concluded that, the estimated change point is 15ˆ  . Hence, 

it is estimated that the process mean has changed during the time between the 

formation of subgroup 15 and 16. The process engineers may look up their process 

records for especially at 15t  and 16t  that a special cause would occur.  
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Figure 1.5 Plot of change point likelihoods and 
2  control chart for steel sleeve example. 

 

Figure 1.5 shows the likelihoods of the change point and 
2  control chart for this 

example. Traditionally, the process engineers could have started examining their 

records at the time of signal and searched backward until a special cause was found. 

However, using this estimator is a more efficient way of inspecting special causes. 

 

1.6 Objective of the Dissertation 

 

The primary objective of this research is to develop new change point procedures 

for multivariate processes. This research is motivated by the works of Pignatiello 

and Samuel et al. (1998a, 1998b), Nedumaran et al. (2000) and Samuel (2001). A 

signal generated from the monitoring procedure does not always mean that the 

assignable cause actually occurred at that point. Finding the actual change point has 

been in great importance for many industries. Nedumaran et al. (2000) focused on 

the procedure which is capable of identifying the step change in mean vector when 

the process was monitored with a 
2  control chart.  
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Controlling and monitoring only the multivariate normal mean vector is not 

always sufficient because multivariate normal process dispersion does not remain 

constant for many industrial applications. The need to control multivariate normal 

process dispersion led several different extensions to control and monitor process 

dispersion to appear. The approaches proposed by Alt (1985) and Alt and Smith 

(1988) are the most commonly used control charts. These schemes do not provide a 

built-in change point estimator. Our first target is to propose a change point 

estimation procedure which is capable of detecting step changes when the process is 

monitored with a S  control chart.  

 

Since a successful monitoring program requires monitoring both mean vector and 

covariance shifts, the importance of simultaneously monitoring process mean and 

variability has been increased. The traditional way of simultaneous monitoring is 

constructing two charts: one for the mean and one for the variability. In other words, 

2  and S  control charts are used simultaneously and if any of them or both of them 

generates a signal the process is considered to be out-of-control. Our second 

objective is to develop a change point estimation procedure for simultaneous 

monitoring of mean vector and covariance matrix. Our assumption here is that the 

monitoring tool is a combination of 2  and S  control charts. 

 

Cheng and Thaga (2006) concluded that this practice of combining two charts 

needs more resources such as quality professionals and time. Alt (1985) also noted 

the importance of the need to develop single control chart for the simultaneous 

monitoring of both mean and dispersion. There are some single control charts such 

as Max- MEWMA (Chen et al., 2005) and MELR (Zhang et al., 2010) charts in the 

literature. Since these control charts have better performance than the traditional 

combination chart, another concern is the performance of the joint estimation 

procedure under the assumption that the process is being monitored with a 

multivariate single control chart.  

 

  



16 

 

 

The remainder of this research is as follows: the following chapter gives the 

details for the change point estimation in the S control chart, the third chapter 

includes the joint change point estimation procedure for 2  and S  combination 

chart, the fourth chapter is a research paper on the performance of the joint 

estimation procedure with multivariate single control charts.  Each chapter is 

organized to include its own literature review, statistical model, simulation details 

and assessment of the estimators. This manuscript also provides a final chapter for 

conclusions which includes total results and future research directions.    
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CHAPTER TWO 

ESTIMATION OF CHANGE POINT IN 

GENERALIZED VARIANCE CONTROL CHART 

 

2.1 Introduction 

 

In many industrial implementations of control charting, dealing with several 

interrelated quality characteristics is unavoidable. Controlling and monitoring 

multivariate normal mean vector is not sufficient because multivariate normal 

process dispersion does not remain constant for many industrial applications. The 

need to control multivariate normal process dispersion led several different 

extensions to control and monitor process dispersion to appear.  

 

Alt (1985) and Alt and Smith (1988) proposed different procedures of carrying 

out multivariate dispersion control and monitoring. The first approach is a direct 

extension of the univariate 2S  control chart. In this procedure, the following statistic 

to be charted is calculated based on a modification of the generalized likelihood 

ratio test. 

 

)( )/(log)(log ii trnnpnpnW AΣΣA
1

00i   ,           

 

where ii n SA )1(  , iS  is the sample variance covariance matrix for sample i and 

can be calculated using (1.2), n is the sample size, and tr is the trace operator.  If iW  

statistic is plotted above the 2

2/)1(,  ppUCL  , where p refers to the number of 

quality characteristics to be controlled, then the process is out of control.
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The second approach for monitoring S  is constructed using only the first two 

moments of S and the property that the most of the probability distribution of S  is 

contained in the interval    SS VE 3 where   0ΣS 1bE   and,    2

2
bV 0ΣS  . 

Here; 
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If the plotted statistics are within UCL and LCL, then the process is evaluated to 

be statistically in-control. When the LCL is negative, it is set to zero.  The limits for 

this approach are as follows; 

 

 2/1

21 3bbUCL  0Σ ,                                               

0Σ1bCL  , and                                                  

 2/1

21 3bbLCL  0Σ .             

                                   

The third approach is considered to be the multivariate analogue of the univariate 

S-chart. In this approach, the distributional properties of 
2/1

S  are used. Hence, 

when two quality characteristics are considered to be monitored, then 

 
2/12/1

12 0ΣSn  is distributed as 2

42 n . To calculate the UCL and LCL, the 

distribution of S  is used. 
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Hence,  

 

    222

2/,42 14   nUCL n 0Σ , and  

    222

)2/(1,42 14   nLCL n 0Σ .                                                                (2.1)      

 

Aparisi et al. (1999, 2001) studied the statistical properties of the S -chart. The 

control limits and power of the generalized variance control chart with its 

distributional properties are considered in these studies. There are several 

comparative studies on which approach to be selected. For discussions and reviews 

of multivariate dispersion control charts designed for process control, see, Lowry 

and Montgomery (1995), Alt (1985) and Alt and Smith (1988), and Bersimis et al. 

(2007). Surtihadi et al. (2004) discussed different cases of covariance matrix shifts 

and proposed effective control charts for each case of structured shift.  

 

Khoo and Quah (2004) discussed the use of run rules in multivariate variability 

control. Vargas and Lagos (2007) compared four multivariate control charts for 

process dispersion, discussed robust estimation of covariance matrix and proposed 

RG chart which is a modification of G chart (Levinson et al., 2002). Djauhari (2005) 

and Djauhari et al. (2008) discussed the Improved Generalized Variance (GV) chart 

and Vector Variance (VV) chart to solve the problems about the estimation and 

interpretation of generalized variance. Costa and Machado (2009) proposed a new 

multivariate control chart for process dispersion. They proposed VMAX statistic 

which is based on the standardized sample variance of p quality characteristics to 

construct the VMAX chart.  

 

Beside the fact that, charting is a reliable way of controlling and monitoring 

multivariate dispersion of a process, in many situations, knowing when a change 

occurred is vital for special cause identification. With control efforts, if the exact 

time of change of the process dispersion is determined, practitioners can easily solve 

the root causes of variability.  Samuel et al. (1998a, 1998b) considered finding the 

time of a permanent change for a univariate normal process mean and variance and 
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proposed maximum likelihood estimators used when the related control charts issue 

a signal. Park and Park (2004) proposed a maximum likelihood estimator for 

identifying the time of the simultaneous change of univariate mean and variance. 

When a change occurs in controlling several quality characteristics of a 

manufactured product; in other words, for multivariate cases, Nedumaran et al. 

(2000) proposed a maximum likelihood estimator to detect the time of the mean 

vector shifts. This change point detection procedure which is a follow up procedure 

for 2  control chart is based on the assumption of normality and constant 

covariance structure.  

 

Zamba and Hawkins (2006, 2009) proposed multivariate change point estimation 

procedures using the unknown (or not fully known) - parameter likelihood ratio test 

for a change in mean vector and/or covariance matrix.  When compared to the 

procedures proposed by Zamba and Hawkins, our estimator serves to Phase II 

applications following the work of Samuel et al. (1998a, 1998b), Nedumaran et al. 

(2000) and Pignatiello and Samuel (2001) and our estimator is a complementary 

procedure of the S -chart. Our proposed estimator focuses on estimating the most 

likely location of the step change in the parameter of variation after a signal has 

been issued by the S -chart. This retrospective procedure allows process engineers 

and professionals to search for the causes of change in the variability. The proposed 

„add-on‟ procedure is very useful in practice while many industrial professionals 

prefer to apply S -chart for their control and monitoring activities of covariance 

matrix. When they encounter an out of control situation, they can easily practice the 

further action with the proposed estimator and find the estimated change point using 

the information provided by the chart.  

 

Sullivan et al. (2007) extended the step-down technique to apply the parameters 

in the covariance matrix and to the other parameters in addition to those making up 

the mean vector. They assume that other methods have been used to detect a shift 

and estimate the time of the change. So as a retrospective application, step down 

analysis can be applied with the proposed change point estimation procedure.  
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Some other alternative multivariate variability charting techniques including 

multivariate cumulative sum (MCUSUM) and multivariate exponentially weighted 

moving average (MEWMA) procedures can be applied to this procedure, but our 

study focuses on the change point estimation for S -chart which is the most 

frequently used in industrial practice.    

 

In this study, we consider the use of the change point estimator of the 

multivariate dispersion once the sample generalized variance, S -chart, in which the 

required statistics are calculated based on its distributional properties, issues a 

signal. In the next section, the process model assumptions are given. The derivation 

of the maximum likelihood estimator (MLE) of the proposed change point estimator 

is based on Hinkley (1970) and its performance measurements-including accuracy 

and precision- are investigated for different magnitudes of shift and sample sizes. 

An illustrative example is given to indicate the practical use of the proposed 

estimator.  

 

2.2 Process model assumption 

 

Assume that ijX  follows a p dimensional normal distribution, and there are m  

samples of size 1n  available from the process. Just as it is important to monitor 

the process mean vector μ  in the multivariate case, it is also important to monitor 

process variability. Process variability is summarized in the pp  covariance 

matrix, Σ  (Lowry and Montgomery, 1995).  

 

In this study, it is assumed that p correlated quality characteristics monitored with 

generalized variance control chart are distributed multivariate normal with known 

mean vector of ),,,( ,02,01,0
 p μ  and a known variance-covariance matrix, 

0Σ . Let  
 ),,,( 21 ijpijijij XXX X  be a 1p  vector which represents the p 

characteristics on the j
th 

observation n) , 2, ,1( j  in the i
th

 subgroup of size n.  
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Suppose further that when the process is in control, the ijX ‟s are independent and 

identically distributed (iid) and follow a p-variate Normal distribution with mean 

vector 0μ  and covariance matrix 0Σ ; that is, the ijX ‟s are iid ),( 00 ΣμpN  when the 

process is in control. And let the process be statistically in control until the process 

parameters change from ),( 00 Σμ  to ),( 10 Σμ  at an unknown change point in time 

denoted by   where 10 ΣΣ   with unknown change magnitudes in variances, 

respectively. The step change in process covariance matrix remains at the new level 

until the special cause is identified and eliminated.  

 

We let n  denote the subgroup size and we let iX  denote the average vector of 

the i
th

 subgroup; calculated with (1.3), and, iS  is sample covariance matrix for 

sample i; calculated with (1.2). Thus, let T be the time of the signal of the 

generalized variance control chart. Hence, we assume that the subgroup covariances 

SSS ,,, 21   came from in-control process and the subgroup covariances 

TSSS ,,, 21    came from the out-of-control process. It is further assumed that the 

process mean remains the same and covariance remains the same at the new level 

1Σ  until the special cause has been issued by the generalized variance control chart. 

 

2.3 Estimation of the change point 

 

After determining the process model assumptions, we consider the derivation of 

the maximum likelihood estimator (MLE) of the change point   when a step change 

occurs in the process covariance matrix. It is assumed that the process covariance 

has changed at an unknown time,  . The change is detected at the time T by the 

generalized variance control chart.  

 

Given the observations 
 ),,,( 21 ijpijijij XXX X , derivation of the maximum 

likelihood estimator (MLE) of  , the multivariate process dispersion change point, 

is as follows: 
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The first part of the function can be written as: 
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ee

Tnn 
 .                           

 

There are two unknowns in the likelihood function; 1 and Σ . If the time of the 

step change were known, the MLE of 1Σ , namely the covariance matrix of the 

( tT  ) most recent subgroup averages would be: 
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Substituting the MLE of 1Σ  back into the log-likelihood function, we obtain 
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The MLE of  , denoted by ̂  is the value of t that maximizes the log-likelihood 

function, or ̂  is the maximum value of C  statistics. So; 

 

         )(maxargˆ
t
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C
Tt 

  t=0, 1, 1 ,T- ,                                                                     (2.2) 
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where 
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Note that Samuel et al. (1998b) proposed the MLE estimator of   for univariate 

processes is as follows and when 1p , then our proposed multivariate process 

dispersion estimator turns into the univariate form: 
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2.4 Performance evaluation of the proposed estimator 

 

In this part of the study, the performance of our proposed estimator is 

investigated and evaluated by using Monte Carlo simulation. The simulation study is 

focused on Phase II performance of the proposed estimator. In the literature, change 

point estimators are proposed by Samuel et al. (1998a, 1998b), Nedumaran et al. 

(2000) and Park and Park (2004) for different types of control charts. These studies 

used two major performance indicator of the estimator, namely, “average change 

point estimate” and “the empirical distribution of the estimated change point around 

the actual change point”. During the simulation study, although our proposed 

estimator can be applied for all cases of multivariate implementations, for 

simplifying the forms of the alternatives to be studied the bivariate case  2p  was 

considered. Matlab® is used to carry out the simulation study. 
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Observations were randomly generated from a ),( 00 ΣμpN  distribution 

when 100i , the on-target mean vector was   0,00μ and the in-control covariance 

matrix was selected as follows: 

 









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1

1

0




Σ , 

 

where 10    is the correlation coefficient between two quality characteristics. In 

this study, the correlation coefficient was set to 0.5 and Type I error probability was 

set to 0.0027. For the first hundred runs it is assumed to be no false alarms. Starting 

with subgroup 101, the observations are randomly generated from ),( 10 ΣμpN  until 

the generalized variance control chart issued a signal. The structure of the changed 

variance-covariance matrix is given as: 
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In order to simulate the changes in the variance-covariance matrix the following 

cases are considered as in Vargas and Lagos (2007): 

 

 The standard deviation of one of the quality characteristics increases from 

x  to x 1 (or y  to y 2 ) for 11   (or 12  ), or decreases from 

x  to x 1 (or y  to y 2 ) for 11  (or 12  ), while the others 

remains the same. 

 The standard deviations of both quality characteristics increase from x  to 

x 1  and y  to y 2  for 11  and 12   , or decrease from x  to 

x 1  and y  to y 2  for 11   and 12   , by the same magnitude. 
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 The standard deviation of one of the quality characteristics increases from 

x  to x 1  for 11   while the other decreases from y  to y 2  for 

12  . 

 

For every run, when the control chart issued a signal, the time of the change was 

calculated with the proposed estimator. This procedure was repeated a total of 

10,000 times for each of the case and different magnitudes, denoted by  , and three 

subgroup sizes 4n , 10n , and 15n . The average of change point estimates for 

every simulation run was computed along with its standard error to investigate the 

accuracy of our estimator. Additionally, the empirical distributions of the estimated 

change point around the actual change point for all cases, sample sizes and 

magnitudes of shift were considered in order to evaluate the precision of the 

estimator.  

 

2.4.1 Accuracy Evaluation 

 

For a control chart, the average run length (ARL) is the expected number of 

required sub-groups to be controlled to detect a change in the process distribution or 

parameters. To measure the power of the control charts ARL is frequently used. For 

the control chart designed from generalized variance sample distribution, the power 

is defined when the covariance matrix changes to 1Σ    10 ΣΣ  . Aparisi et al. 

(1999, 2001) gave the control limits and power of generalized variance control chart. 

The power of generalized variance control chart with upper and lower control limits 

is defined as follows where   is the Type II error probability and 1  is the 

power:              
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If determinant ratio (DR) is 01 ΣΣ , it gives: 
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The out of control ARL, as the reverse of power is then found as follows: 
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For instance, considering the equal increasing shift ( 2.121   ) for both of 

the quality characteristics, where 0027.0  and 10n , 1Σ  is calculated as 

follows. The ARL calculation is also illustrated in Table 1.1 for this case.  
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Using the aforementioned ARL calculation,  
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Using the fact that the exact change point of the simulation process for all sample 

sizes and magnitudes is 100 , the change point estimates are expected to be close 

to the exact change point. Analyzing the average of change point estimations (̂ ), 

for all sample sizes and magnitudes, the outputs are fairly close to the actual change 

point. In general, our proposed change point estimator can be evaluated to be close 

to the actual change point without considering different sample sizes and 

magnitudes of shift in covariance matrix. In Table 2.1-2.5, ̂ , standard errors and 

 TE  are summarized.  

 

For instance, the results for the Case 1 when 1  are given in Table 2.1, and 

that of 1  are given in Table 2.2. The results indicate that, even small shifts in 

standard deviations of the quality characteristics, the average change point estimates 

are quite close to 100. When 1.1  for both quality characteristics, the average 

change point estimates are 107.83, 101.71, and 100.41 for sample sizes 

,4n 10 ,15 . When compared to the expected times of the signals, the values are 

fairly close to the actual change point for all sample sizes. For example, when 

10n ,  TE  is 188.66 and ̂  is 101.71. For the small magnitudes of shift, we 

realized that  TE  values are very far from 100. Even we take 15 measurements for 

each subgroup,  TE  is 308.13 when 9.0 , on the other hand, ̂ =100.66. That 

means our estimator has good detection potential for all magnitudes of shifts; on the 

other hand, generalized variance control chart has not for especially small shifts. 
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Table 2.1 Average of the change point estimates and their standard errors when quality characteristics 

increase from x  to x 1 and y  to y 2  ( 121   ). 

   

  1.1 1.2 1.3 1.4 1.5 2.0 

n=4 )(TE  255.53 166.23 130.65 117.1 110.42 102.85 

 ̂  107.83 100.00 99.31 99.32 99.23 99.32 

 Std. error 0.364 0.147 0.104 0.085 0.078 0.059 

n=10 )(TE  188.66 121.80 108.22 104.2 104.15 101.12 

 ̂  101.71 99.33 99.13 98.97 98.86 99.61 

 Std. error 0.185 0.093 0.079 0.076 0.079 0.043 

n=15 )(TE  199.05 121.98 106.86 103.29 102.07 101.05 

 ̂  100.41 99.24 99.43 99.28 99.39 99.93 

 Std. error 0.13 0.096 0.052 0.062 0.053 0.012 

 

Table 2.2 Average of the change point estimates and their standard errors when quality characteristics 

decrease from x  to x 1 and y  to y 2  ( 121   ). 

   

  0.9 0.8 0.7 0.6 0.5 0.25 

n=4 )(TE  537.85 411.98 285.82 203.24 151.09 104.76 

 ̂  102.77 99.24 99.67 99.76 99.81 99.92 

 Std. error 0.343 0.087 0.04 0.028 0.028 0.017 

n=10 )(TE  305.62 157.19 115.6 104.53 101.72 101.00 

 ̂  100.50 99.83 99.71 99.64 99.57 99.99 

 Std. error 0.140 0.047 0.038 0.039 0.042 0.000 

n=15 )(TE  308.13 156.91 103.63 101.49 101.71 101.00 

 ̂  100.66 99.76 98.92 99.20 99.58 100.00 

 Std. error 0.151 0.051 0.074 0.058 0.044 0.000 
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Table 2.3 Average of the change point estimates and their standard errors when one quality 

characteristic increase from x  to x 1 (or y  to y 2 ) ( 1)or ( 21   ). 

   

  1.1 1.2 1.3 1.4 1.5 2.0 

n=4 )(TE  354.4 265.88 209.41 174.73 152.67 115.61 

 ̂  116.73 101.84 100.37 100.06 100.06 99.87 

 Std. error 0.570 0.201 0.117 0.080 0.064 0.040 

n=10 )(TE  304.02 194.98 146.99 126.4 116.39 103.81 

 ̂  104.00 100.31 99.97 99.79 99.82 99.85 

 Std. error 0.276 0.096 0.063 0.053 0.041 0.030 

n=15 )(TE  305.75 195.73 151.47 126.29 115.18 103.06 

 ̂  104.22 100.20 99.89 99.96 99.89 99.94 

 Std. error 0.272 0.099 0.046 0.030 0.031 0.019 

 

Table 2.4 Average of the change point estimates and their standard errors when one quality 

characteristic decrease from x  to x 1 (or y  to y 2 ) ( 1)or ( 21   ). 

   

  0.9 0.8 0.7 0.6 0.5 0.25 

n=4 )(TE  546.01 541.85 457.86 371.00 291.06 151.4 

 ̂  108.98 98.71 99.16 99.54 99.71 99.96 

 Std. error 0.547 0.140 0.061 0.035 0.027 0.011 

n=10 )(TE  443.04 290.46 192.21 140.02 116.64 101.69 

 ̂  101.39 99.63 99.79 99.91 99.87 99.95 

 Std. error 0.243 0.061 0.030 0.016 0.023 0.015 

n=15 )(TE  294.36 292.34 119.99 108.64 116.54 101.71 

 ̂  100.53 99.61 99.50 99.54 99.90 99.96 

 Std. error 0.185 0.065 0.052 0.048 0.021 0.01 
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Table 2.5 Average of the change point estimates and their standard errors when one of the quality 

characteristics increases from x  to x 1 ( 11  ) while the other decreases from y  to y 2  

( 12  ). 

 
1  

  1.1 1.2 1.3 1.4 1.5 2.0 

 
2  

  0.9 0.8 0.7 0.6 0.5 0.25 

n=4 )(TE  475.26 504.28 543.65 556.39 509.63 291.36 

 ̂  101.01 99.57 99.73 99.84 99.91 99.98 

 Std. error 0.270 0.074 0.036 0.021 0.014 0.004 

n=10 )(TE  480.92 490.19 458.27 345.47 234.15 116.95 

 ̂  99.93 99.88 99.97 99.97 99.98 100.00 

 Std. error 0.118 0.312 0.104 0.008 0.004 0.000 

n=15 )(TE  263.35 240.39 200.35 159.84 129.54 103.82 

 ̂  99.42 99.84 99.94 99.95 99.99 100.00 

 Std. error 0.097 0.029 0.013 0.015 0.004 0.000 

 

Our proposed estimator also successfully yields for the Case 2 when both 1  

and 1 . For the different magnitudes of shift and sample sizes, ̂  values are close 

to 100. In Tables 2.3 and 2.4, the ̂  and  TE  results are given. When the change is 

intentionally structured in only one quality characteristic, the accuracy of the 

estimator is not influenced. For instance, when 7.0 , the estimates are 99.16, 

99.79 and 99.50 for different sample sizes. Table 2.5 is given for the Case 3 when 

11  and 12  . As it is indicated in the Table 2.5, the average estimates are very 

close to the 100, regardless of the sample size and magnitude of shift. Even though, 

generalized variance control chart showed good detection performance for increases 

in the standard deviations of the variables, the proposed estimator showed better 

detection performance for all cases. 

 

 



32 

 

 

2.4.2 Precision Evaluation 

 

For the three cases, empirical distribution of ̂  around   are given in Tables 2.6-

2.10. Each table is constructed to show the estimated probability of being in the k
th

 

neighborhood of the actual change point. In other words, the observed frequency 

which our proposed estimator of the time of the step change was within k subgroups 

of the actual time of the change is summarized in these tables. The results for Case 1 

are summarized in Tables 2.6 and 2.7.  

 

For example, when  3.1  and 15n , in 60.4% of the runs, the proposed 

estimator correctly identified the change point . When  6.0  and 10n , then, the 

change point is estimated to be within  5 subgroups of the actual change point in 

98.9% of the 10,000 simulation runs. From Table 2.7 while 4n , it can be seen that 

for a 50% decrease in both quality characteristics, our proposed estimator identified 

the change point correctly in 76.7% of the trials. Our estimate was within four 

subgroups of the true change point in 99.4% of the trials. When 15n  and 

25.0  then 99.9% of the trials the estimator identified the true change point.  

 

Tables 2.8 and 2.9 give the results for Case 2 when 1  or 1  for one of the 

quality characteristics. When 4n , for a 40% increase in the standard deviations of 

one of the quality characteristics, simulation study resulted correct identification in 

26.7% of the trials. The change point was estimated to be within  3 subgroup of the 

actual change point in 70.1% of the trials and be within  10 subgroup of the actual 

change point in 92.7% of the trials. Also, any decrease in standard deviation of one 

of the quality characteristics are very well determined by our proposed estimator. 

For example, when 10n , for a 20% decrease in one of the standard deviations, our 

estimator correctly identified the true change point in 28.4% of the trials. The 

change point was estimated to be within  1 subgroup of the actual change point in 

51.2% of the trials and be within  7 subgroup of the actual change point in almost 

89.3% of the trials. It is a very important property of our proposed estimator to be 

efficient even in small magnitudes of shift. 
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Table 2.10 gives the results for Case 3 when 11   and 12  , respectively. As 

an example from the table, when 15n  for a 20% increase in the standard deviation 

of the first quality characteristic and 20% decrease in the standard deviation of the 

second characteristic resulted in correct identification in 57% of the simulation runs. 

Moreover, in 99% of the trials, the estimated change points are within  7 subgroup. 

While 4n , for 50% increase in the first standard deviation and 50% decrease in 

the second standard deviation, the estimator correctly identified the true change 

point in 73.1% of the trials and, in 99.2% of the trials, the estimated change points 

are within  3 subgroup. 
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Table 2.6 Empirical distribution of ̂  around   when x  increases to x 1 and y  increases to 

y 2  ( 121   ). 

 P/  1.1 1.2 1.3 1.4 1.5 2.0 

n=4 )ˆ(ˆ  P  0.051 0.154 0.270 0.388 0.474 0.762 

 )1ˆ(ˆ P  0.117 0.314 0.488 0.626 0.714 0.916 

 )2ˆ(ˆ P  0.174 0.420 0.615 0.751 0.827 0.951 

 )3ˆ(ˆ P  0.223 0.502 0.699 0.820 0.885 0.965 

 )4ˆ(ˆ P  0.266 0.566 0.764 0.868 0.921 0.972 

 )5ˆ(ˆ P  0.302 0.622 0.809 0.902 0.940 0.976 

 )6ˆ(ˆ P  0.336 0.663 0.842 0.920 0.953 0.978 

 )7ˆ(ˆ P  0.364 0.700 0.868 0.934 0.961 0.980 

 )8ˆ(ˆ P  0.390 0.732 0.887 0.946 0.967 0.981 

 )9ˆ(ˆ P  0.418 0.758 0.904 0.954 0.971 0.983 

 )10ˆ(ˆ P  0.442 0.780 0.918 0.960 0.974 0.984 

n=10 )ˆ(ˆ  P  0.107 0.294 0.492 0.617 0.706 0.932 

 )1ˆ(ˆ P  0.230 0.520 0.728 0.826 0.805 0.975 

 )2ˆ(ˆ P  0.327 0.658 0.833 0.901 0.931 0.983 

 )3ˆ(ˆ P  0.397 0.739 0.890 0.932 0.950 0.987 

 )4ˆ(ˆ P  0.461 0.795 0.922 0.946 0.959 0.989 

 )5ˆ(ˆ P  0.513 0.839 0.941 0.956 0.963 0.990 

 )6ˆ(ˆ P  0.554 0.869 0.952 0.961 0.967 0.991 

 )7ˆ(ˆ P  0.593 0.890 0.959 0.965 0.970 0.991 

 )8ˆ(ˆ P  0.626 0.908 0.965 0.968 0.972 0.992 

 )9ˆ(ˆ P  0.654 0.922 0.968 0.971 0.973 0.992 

 )10ˆ(ˆ P  0.676 0.933 0.972 0.973 0.975 0.993 

n=15 )ˆ(ˆ  P  0.164 0.305 0.604 0.739 0.826 0.973 

 )1ˆ(ˆ P  0.329 0.533 0.830 0.905 0.938 0.992 

 )2ˆ(ˆ P  0.438 0.654 0.904 0.950 0.963 0.995 

 )3ˆ(ˆ P  0.516 0.740 0.939 0.965 0.973 0.996 

 )4ˆ(ˆ P  0.579 0.801 0.957 0.971 0.976 0.997 

 )5ˆ(ˆ P  0.633 0.844 0.968 0.976 0.979 0.997 

 )6ˆ(ˆ P  0.677 0.872 0.973 0.978 0.982 0.998 

 )7ˆ(ˆ P  0.716 0.894 0.976 0.980 0.984 0.998 

 )8ˆ(ˆ P  0.749 0.911 0.979 0.982 0.986 0.998 

 )9ˆ(ˆ P  0.772 0.924 0.981 0.983 0.986 0.999 

 )10ˆ(ˆ P  0.795 0.933 0.982 0.984 0.987  
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Table 2.7 Empirical distribution of ̂  around   when x  decreases to x 1 and y  decreases to 

y 2  ( 121   ). 

 P/  0.9 0.8 0.7 0.6 0.5 0.25 

n=4 )ˆ(ˆ  P  0.056 0.225 0.417 0.620 0.767 0.970 

 )1ˆ(ˆ P  0.128 0.420 0.674 0.849 0.933 0.994 

 )2ˆ(ˆ P  0.194 0.548 0.797 0.927 0.975 0.997 

 )3ˆ(ˆ P  0.250 0.632 0.863 0.960 0.989 0.997 

 )4ˆ(ˆ P  0.298 0.696 0.908 0.977 0.994 0.997 

 )5ˆ(ˆ P  0.342 0.746 0.937 0.987 0.995 0.998 

 )6ˆ(ˆ P  0.378 0.781 0.953 0.991 0.996 0.998 

 )7ˆ(ˆ P  0.412 0.816 0.965 0.994 0.997 0.998 

 )8ˆ(ˆ P  0.445 0.842 0.973 0.996 0.997 0.999 

 )9ˆ(ˆ P  0.472 0.862 0.979 0.997 0.998 0.999 

 )10ˆ(ˆ P  0.499 0.880 0.984 0.997 0.998 0.999 

n=10 )ˆ(ˆ  P  0.107 0.401 0.644 0.825 0.905 0.997 

 )1ˆ(ˆ P  0.230 0.649 0.863 0.951 0.969 0.999 

 )2ˆ(ˆ P  0.327 0.770 0.932 0.976 0.980  

 )3ˆ(ˆ P  0.397 0.847 0.962 0.983 0.984  

 )4ˆ(ˆ P  0.461 0.890 0.978 0.987 0.986  

 )5ˆ(ˆ P  0.513 0.919 0.986 0.989 0.988  

 )6ˆ(ˆ P  0.554 0.939 0.989 0.990 0.990  

 )7ˆ(ˆ P  0.593 0.954 0.991 0.991 0.991  

 )8ˆ(ˆ P  0.626 0.965 0.992 0.992 0.991  

 )9ˆ(ˆ P  0.654 0.974 0.992 0.993 0.992  

 )10ˆ(ˆ P  0.676 0.980 0.993 0.993 0.992  

n=15 )ˆ(ˆ  P  0.126 0.402 0.721 0.866 0.909 0.999 

 )1ˆ(ˆ P  0.272 0.651 0.894 0.943 0.970  

 )2ˆ(ˆ P  0.374 0.771 0.939 0.961 0.981  

 )3ˆ(ˆ P  0.453 0.842 0.955 0.969 0.986  

 )4ˆ(ˆ P  0.515 0.886 0.964 0.973 0.988  

 )5ˆ(ˆ P  0.568 0.916 0.969 0.977 0.989  

 )6ˆ(ˆ P  0.614 0.938 0.972 0.979 0.990  

 )7ˆ(ˆ P  0.648 0.954 0.974 0.980 0.991  

 )8ˆ(ˆ P  0.681 0.965 0.976 0.982 0.992  

 )9ˆ(ˆ P  0.710 0.971 0.977 0.983 0.992  

 )10ˆ(ˆ P  0.737 0.977 0.978 0.984 0.993  
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Table 2.8 Empirical distribution of ̂  around   when x  increases to x 1  to (or y  increases 

to y 2 ) ( 1)or ( 21   ). 

 P/  1.1 1.2 1.3 1.4 1.5 2.0 

n=4 )ˆ(ˆ  P  0.031 0.101 0.180 0.267 0.339 0.623 

 )1ˆ(ˆ P  0.076 0.220 0.357 0.449 0.587 0.850 

 )2ˆ(ˆ P  0.114 0.301 0.479 0.617 0.712 0.932 

 )3ˆ(ˆ P  0.152 0.376 0.568 0.701 0.792 0.960 

 )4ˆ(ˆ P  0.185 0.436 0.638 0.761 0.898 0.976 

 )5ˆ(ˆ P  0.211 0.486 0.688 0.811 0.886 0.984 

 )6ˆ(ˆ P  0.235 0.529 0.732 0.846 0.912 0.987 

 )7ˆ(ˆ P  0.258 0.569 0.767 0.874 0.930 0.990 

 )8ˆ(ˆ P  0.284 0.602 0.795 0.894 0.943 0.991 

 )9ˆ(ˆ P  0.307 0.631 0.820 0.913 0.953 0.992 

 )10ˆ(ˆ P  0.327 0.658 0.842 0.927 0.961 0.993 

n=10 )ˆ(ˆ  P  0.076 0.214 0.356 0.483 0.584 0.866 

 )1ˆ(ˆ P  0.167 0.406 0.601 0.734 0.817 0.971 

 )2ˆ(ˆ P  0.235 0.525 0.727 0.842 0.909 0.988 

 )3ˆ(ˆ P  0.293 0.618 0.809 0.902 0.947 0.992 

 )4ˆ(ˆ P  0.344 0.685 0.860 0.934 0.966 0.994 

 )5ˆ(ˆ P  0.387 0.738 0.896 0.954 0.977 0.995 

 )6ˆ(ˆ P  0.424 0.777 0.919 0.967 0.983 0.996 

 )7ˆ(ˆ P  0.459 0.811 0.936 0.975 0.987 0.996 

 )8ˆ(ˆ P  0.487 0.839 0.950 0.979 0.989 0.997 

 )9ˆ(ˆ P  0.514 0.862 0.960 0.983 0.991 0.997 

 )10ˆ(ˆ P  0.538 0.880 0.967 0.986 0.991 0.997 

n=15 )ˆ(ˆ  P  0.068 0.208 0.465 0.617 0.708 0.937 

 )1ˆ(ˆ P  0.156 0.398 0.721 0.841 0.902 0.991 

 )2ˆ(ˆ P  0.225 0.520 0.837 0.920 0.959 0.996 

 )3ˆ(ˆ P  0.287 0.607 0.895 0.958 0.980 0.997 

 )4ˆ(ˆ P  0.339 0.674 0.930 0.975 0.998 0.998 

 )5ˆ(ˆ P  0.384 0.727 0.949 0.985 0.992 0.998 

 )6ˆ(ˆ P  0.419 0.770 0.964 0.989 0.994 0.999 

 )7ˆ(ˆ P  0.455 0.806 0.973 0.992 0.995 0.999 

 )8ˆ(ˆ P  0.487 0.834 0.979 0.994 0.996 0.999 

 )9ˆ(ˆ P  0.518 0.857 0.983 0.995 0.996 0.999 

 )10ˆ(ˆ P  0.543 0.876 0.987 0.995 0.997 0.999 
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Table 2.9 Empirical distribution of ̂ around   when x  decreases to x 1  (or y  decreases to 

y 2 ) ( 1)or ( 21   ). 

 P/  0.9 0.8 0.7 0.6 0.5 0.25 

n=4 )ˆ(ˆ  P  0.032 0.139 0.285 0.464 0.628 0.934 

 )1ˆ(ˆ P  0.086 0.291 0.515 0.720 0.858 0.992 

 )2ˆ(ˆ P  0.132 0.398 0.657 0.832 0.938 0.998 

 )3ˆ(ˆ P  0.170 0.483 0.739 0.897 0.969 0.999 

 )4ˆ(ˆ P  0.204 0.547 0.798 0.935 0.983 0.999 

 )5ˆ(ˆ P  0.235 0.605 0.843 0.958 0.990 0.999 

 )6ˆ(ˆ P  0.265 0.647 0.877 0.973 0.994 0.999 

 )7ˆ(ˆ P  0.292 0.685 0.900 0.982 0.997  

 )8ˆ(ˆ P  0.314 0.716 0.919 0.987 0.998  

 )9ˆ(ˆ P  0.337 0.746 0.933 0.990 0.998  

 )10ˆ(ˆ P  0.359 0.771 0.946 0.993 0.998  

n=10 )ˆ(ˆ  P  0.083 0.284 0.519 0.708 0.855 0.990 

 )1ˆ(ˆ P  0.189 0.512 0.814 0.911 0.971 0.997 

 )2ˆ(ˆ P  0.267 0.645 0.876 0.965 0.991 0.998 

 )3ˆ(ˆ P  0.326 0.731 0.926 0.983 0.995 0.998 

 )4ˆ(ˆ P  0.382 0.794 0.954 0.992 0.996 0.998 

 )5ˆ(ˆ P  0.433 0.838 0.969 0.995 0.997 0.998 

 )6ˆ(ˆ P  0.476 0.868 0.980 0.996 0.997 0.999 

 )7ˆ(ˆ P  0.513 0.893 0.987 0.997 0.997  

 )8ˆ(ˆ P  0.546 0.914 0.990 0.998 0.998  

 )9ˆ(ˆ P  0.573 0.929 0.993 0.998 0.998  

 )10ˆ(ˆ P  0.603 0.941 0.995 0.998 0.998  

n=15 )ˆ(ˆ  P  0.106 0.286 0.613 0.806 0.855 0.990 

 )1ˆ(ˆ P  0.232 0.509 0.836 0.944 0.975 0.997 

 )2ˆ(ˆ P  0.323 0.638 0.920 0.974 0.992 0.998 

 )3ˆ(ˆ P  0.398 0.724 0.955 0.982 0.996 0.999 

 )4ˆ(ˆ P  0.456 0.784 0.972 0.987 0.997 0.999 

 )5ˆ(ˆ P  0.507 0.832 0.980 0.989 0.998 0.999 

 )6ˆ(ˆ P  0.550 0.866 0.984 0.990 0.998 0.999 

 )7ˆ(ˆ P  0.592 0.892 0.986 0.990 0.998  

 )8ˆ(ˆ P  0.623 0.911 0.988 0.991 0.998  

 )9ˆ(ˆ P  0.652 0.928 0.989 0.992 0.999  

 )10ˆ(ˆ P  0.677 0.939 0.990 0.992 0.999  
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Table 2.10 Empirical distribution of ̂  around   when x  increases to x 1 ( 11  ) while y  

decreases to y 2  ( 12  ). 

 1  1.1 1.2 1.3 1.4 1.5 2.0 

 2  0.9 0.8 0.7 0.6 0.5 0.25 

n=4 )ˆ(ˆ  P  0.076 0.230 0.415 0.597 0.731 0.966 

 )1ˆ(ˆ P  0.172 0.446 0.674 0.833 0.923 0.998 

 )2ˆ(ˆ P  0.244 0.575 0.801 0.924 0.974  

 )3ˆ(ˆ P  0.308 0.668 0.874 0.960 0.992  

 )4ˆ(ˆ P  0.359 0.734 0.917 0.980 0.997  

 )5ˆ(ˆ P  0.408 0.785 0.943 0.989 0.998  

 )6ˆ(ˆ P  0.450 0.822 0.959 0.993 0.999  

 )7ˆ(ˆ P  0.483 0.853 0.971 0.995 0.999  

 )8ˆ(ˆ P  0.513 0.875 0.979 0.997   

 )9ˆ(ˆ P  0.543 0.894 0.984 0.998   

 )10ˆ(ˆ P  0.570 0.911 0.989 0.998   

n=10 )ˆ(ˆ  P  0.162 0.460 0.691 0.855 0.942 0.999 

 )1ˆ(ˆ P  0.338 0.713 0.902 0.975 0.995  

 )2ˆ(ˆ P  0.450 0.828 0.963 0.994 0.999  

 )3ˆ(ˆ P  0.531 0.890 0.983 0.998   

 )4ˆ(ˆ P  0.599 0.928 0.993 0.999   

 )5ˆ(ˆ P  0.646 0.951 0.996    

 )6ˆ(ˆ P  0.691 0.966 0.998    

 )7ˆ(ˆ P  0.726 0.976 0.999    

 )8ˆ(ˆ P  0.758 0.984     

 )9ˆ(ˆ P  0.782 0.988     

 )10ˆ(ˆ P  0.803 0.991     

n=15 )ˆ(ˆ  P  0.220 0.570 0.807 0.931 0.980 0.999 

 )1ˆ(ˆ P  0.419 0.808 0.952 0.991 0.999  

 )2ˆ(ˆ P  0.548 0.902 0.986 0.997 0.999  

 )3ˆ(ˆ P  0.635 0.944 0.995 0.998 0.999  

 )4ˆ(ˆ P  0.701 0.966 0.997 0.999 0.999  

 )5ˆ(ˆ P  0.749 0.979 0.998 0.999   

 )6ˆ(ˆ P  0.790 0.986 0.998 0.999   

 )7ˆ(ˆ P  0.821 0.990 0.998 0.999   

 )8ˆ(ˆ P  0.847 0.992 0.999 0.999   

 )10ˆ(ˆ P  0.887 0.994 0.999 0.999   
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2.5 Illustrative example 

 

We will now give an illustrative example on how to use the proposed estimator in 

practice. Considering the lumber manufacturing example of Alt (1985), data 

generated from the in-control mean vector and covariance matrix are given as: 

 

  470 , 2650μ , and 









121

66

66

100
0Σ . 

 

The given quality characteristics are stiffness ( 1X ) and bending strength ( 2X ) on 

lumber boards. Each subgroup consists of 10n  lumber boards. Our procedure will 

be illustrated with generalized variance control chart based on its distributional 

properties. When the desired Type-I error ( ) is 0.0054, then, the upper control 

limit for this chart is 31,349 and the lower control limit is 512.87. Under the 

assumption that the process is in-control, the first 15 samples were generated from 

iid ),( 002 ΣμN  and the remaining samples were generated from iid ),( 102 ΣμN  until 

the control chart issued a signal. Here, 1Σ  denotes the changed covariance matrix 

where the standard deviations of each quality characteristics have increased by 30 

percent: 
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When the twentieth subgroup was generated, generalized variance control chart 

has issued a signal. That means following the signal at T 20 , the C  statistics can 

be calculated. Our aim in this procedure is to find the maximum value of C , in other 

words, to find where the change occurred in the interval of 10  Tt . 
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According to Table 2.11, the generalized control chart did not issue a signal until 

the twentieth subgroup was generated. On the other hand, the change point estimator 

has its maximum value in the sixteenth subgroup. That means, the fifteenth 

subgroup was the last subgroup obtained from in-control process and the sixteenth 

 

Table 2.11 Subgroup average vectors, generalized variances and C  statistics 

i 1iX  2iX  S  t tC  

1 263.77 469.83 5,673 0 3.77 

2 266.33 468.63 4,975.9 1 4.03 

3 264.40 470.88 3,418.2 2 3.40 

4 265.67 469.07 7,803.5 3 4.05 

5 267.91 471.15 2,199.2 4 4.36 

6 269.53 470.94 6,442.5 5 4.90 

7 270.88 474.23 2,009.3 6 5.15 

8 265.66 469.93 8,734.6 7 5.75 

9 263.01 471.20 2,982.2 8 5.60 

10 261.97 469.06 8,337.8 9 5.88 

11 263.01 466.69 6,996.5 10 6.27 

12 264.13 469.62 6,583.5 11 6.96 

13 266.21 471.76 5,427.5 12 8.12 

14 264.69 470.15 6,535.5 13 9.20 

15 267.73 475.78 4,500.1 14 10.68 

16 263.08 473.58 23,455 15 12.86 

17 265.94 469.82 24,666 16 9.60 

18 274.40 470.35 6,207.7 17 8.39 

19 258.72 464.66 10,628 18 6.12 

20 268.59 474.84 41,421 19 5.47 

 

 

subgroup was the first subgroup of the changed process, as we initially aimed. 

For the practitioners, investigating the signal issued subgroup is not sufficient to find 
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out the special cause. As it is occurred in our illustrative example, a step change may 

exist several subgroups earlier from the signal of the control chart. 

 

2.6 Conclusions 

 

Maximum likelihood estimation of a change point combined with control charts 

is a practical and considerably rational way of identification of the time of a step 

change and its special causes in industrial processes. For univariate and multivariate 

statistical process control, several estimators have been proposed. The certain 

information of the time of a step change is in great importance in statistical process 

control, including multivariate cases. Even though, the generalized variance control 

chart is designed to detect the change in multivariate normal process variance, a 

considerable delay may exist in issuing a signal after the change occurs. Moreover, 

the detection performance of the chart decreases, respectively, with small 

magnitudes of shift in covariance matrix. Using generalized variance control chart 

with the proposed procedure would be beneficial for detecting changes and 

identifying special causes for practitioners.   

 

In this section, a change point estimator (̂ ) is proposed which is capable of 

identifying the change point of a step change in a multivariate normal process 

covariance. The proposed estimator is assumed to be calculated under the 

assumption that the mean vector remains the same after the change and only the 

covariance matrix changes. The estimator indicates the time of the change after a 

signal is issued by generalized variance control chart. The performance of the 

estimator is evaluated with Monte Carlo simulation results. For different structural 

changes in covariance matrix and various sample sizes, it is indicated that our 

change point estimator is considerably effective in both accuracy and precision. It is 

shown that, the estimator is respectively effective in estimating the time for the case 

when one of the standard deviation increases while the other decreases. The 

simulation runs help us to show that the estimator performs well for various sample 

sizes and even for small changes (decrease or increase) which yield large run lengths 

in the control chart. An illustrative example is considered to indicate the practical 
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use of the change point estimator. This hypothetical example indicates the ease of 

implementation and interpretation.   
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CHAPTER THREE 

A MULTIVARIATE CHANGE POINT DETECTION PROCEDURE FOR 

MONITORING MEAN AND COVARIANCE SIMULTANEOUSLY 

 

3.1 Introduction 

 

Control charts have proven to be effective for improving process performance in 

addition to the fact that they are easy for practitioners to apply and interpret. There 

has been an increasing interest in multivariate quality control practices in the 

industry. Many industrial processes are characterized by several inter-related quality 

metrics. The efforts to monitor the mean vector started with Hotelling‟s 2T control 

chart in 1947.  When the process parameters are known or can be estimated, this 

chart plots    0

1

00 μXΣμX 


 

iin  where  00 ,~ ΣμX pi N , ni ,,2,1  . If a point 

falls beyond the upper control limit 2

1,   pUCL , the process is considered to be out 

of control. This control chart is also called Phase II 2X chart or  2  chart (Bersimis 

et al., 2007). As monitoring only the mean vector is not an effective way of 

controlling the process, many authors focused on developing the methods to monitor 

dispersion. Alt (1985) and Alt and Smith (1988) proposed different procedures of 

carrying out multivariate dispersion control and monitoring. They proposed the 

multivariate analogue of the univariate S-chart. In this chart, 
2/1

iS  values are plotted 

when the control limits are given in (1.1). 

 

For discussions and reviews of multivariate mean and dispersion control charts, 

see, for example, Lowry and Montgomery (1995), Alt (1985) and Alt and Smith 

(1988), Surtihadi et al. (2004), Khoo and Quah (2004), Bersimis et al. (2007), and 

Vargas and Lagos (2007).   

 

The mean vector monitoring procedures are affected by the shifts in covariance 

but it is known that a variance chart is not affected by the shifts in mean vector. This 

leads to an understanding of the importance of joint performance of the mean and 

variance charts. Since a successful monitoring program requires monitoring both 
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mean vector and covariance shifts, the importance of simultaneously monitoring 

process mean and variability has been increased. The traditional way of 

simultaneous monitoring is done by constructing two charts: one for the mean and 

one for the variability. In other words, 2  and S  charts are used simultaneously. If 

any of them or both of them generates a signal the process is considered to be out-

of-control. There are several simultaneous control alternatives to this approach in the 

literature. Chen et al. (2005) proposed a single multivariate exponentially moving 

average (MEWMA) control chart to monitor mean vector and covariance matrix 

simultaneously. Thaga and Gabaitiri (2006) proposed the Multivariate Maximum 

Control Chart which is capable of jointly monitoring the mean and covariance shifts. 

The basic idea in these procedures, namely the Max-MEWMA and Max-M charts, is 

to transform the monitoring statistics for mean and covariance to standardized 

normal random variables and determining the maximum of these standard normal 

readings. Machado et al. (2009) proposed the MVMAX chart and the joint use of 

two charts based on the non-central chi-square statistic. Zhang et al. (2010) proposed 

a single MEWMA chart based on the generalized likelihood ratio (GLR) test for 

joint monitoring both the multivariate mean and variability.   

 

Control charts generate a signal when a change in the process distribution is 

detected and has a potential delay to generate this signal. However, the signal does 

not indicate that a special cause actually occurred at that particular point in trigger 

time (Park and Park, 2004). Since accurate and precise estimation of the change 

point is vital for many processes, using follow-up change point estimation 

procedures is recommended. Park and Park (2004) applied the univariate joint 

maximum likelihood estimator (MLE) of the change point for mean and variance. 

They investigated the performance of their follow-up estimator for 

SX  combination control chart. Lee and Park (2007) proposed the MLEs for the 

change point to detect the time of a change in process mean and/or variability with 

both fixed sampling rate and variable sampling rate. They investigated the 

performance of this estimator for Shewhart, EWMA and CUSUM charts. Sullivan 

and Woodall (2000) proposed a single multivariate control chart based on GLR for 

multivariate individual process readings. They also divided the test statistics into a 
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part for the mean shift and another part for the covariance shift.  Their approach was 

able to detect the location of a shift, the presence of multiple changes and the type of 

the change (mean shift, covariance shift or combination shift).  Zamba and Hawkins 

(2009) proposed a multivariate change point model through GLR statistics for 

estimating the change in mean vector and/or covariance structure. Their change 

point model is able to monitor short runs and unknown or not fully known parameter 

processes.   

 

In this study, joint estimation of a change point is applied to multivariate normal 

processes for monitoring both mean and covariance shifts. A follow up change point 

estimation procedure is proposed for Phase II applications following the work of 

Samuel et al. (1998a, 1998b), Nedumaran et al. (2000), Pignatiello and Samuel 

(2001), and Dogu and Deveci-Kocakoc(2011a). The proposed change point 

estimator is a complementary procedure for multivariate mean and covariance 

monitoring control charts. Our proposed estimator focuses on estimating the most 

likely location of the change after a single or combination multivariate control chart 

issues a signal. This procedure helps process engineers and professionals to find the 

location of the change when monitoring the mean vector and covariance matrix 

simultaneously.  As many industrial professionals prefer applying 2  and S  

control charts simultaneously for this case, the proposed „add-on‟ procedure is very 

useful in practice. When the combination chart generates a signal, they can estimate 

the change point and investigate the assignable cause(s). Some other alternative 

multivariate charting techniques including MCUSUMs and MEWMAs for 

simultaneous location and dispersion monitoring can be applied to this procedure, 

but our performance analysis focuses on the change point estimation for 2  and S  

charts.  

 

The remainder of this paper is organized as follows: the next section gives the 

details of the model assumptions. In the third section, estimation procedure is given. 

Performance assessment and other performance measurements are provided in the 

following section. Then an illustrative example for spring manufacturing and 

conclusions are presented.  
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3.2 Process model assumptions 

 

It is assumed that the process distribution is p variate normal with known mean 

vector 0μ  and known covariance matrix 0Σ . Suppose that p critical quality 

characteristics are monitored with 
2  and S  control charts. Let  

),,,( 21
 ijpijijij XXX X  be a 1p  vector which represents the p  characteristics of 

the j
th

 observation ) , 2, 1,( nj  for the i
th

 subgroup of size n. Suppose further 

that when the process is in control, the ijX ‟s are independent and identically 

distributed (iid) and follow a p dimensional Normal distribution with mean vector 

0μ  and covariance matrix 0Σ  that is, the ijX ‟s are iid ),( 00 ΣμpN . We let n  denote 

the subgroup size and we let iX  denote the average vector of the i
th

 subgroup. It is 

assumed that when the multivariate process mean and dispersion changes, there has 

been a step-change from its in-control value of 0μμ  and 0ΣΣ  to an unknown 

value 1μμ   and 1ΣΣ   where 10 μμ   and 10 ΣΣ  . If control chart statistics 

exceed the control limits, it is concluded that the step-change in the process 

parameters occurred after some unknown time  , where 10  T  and T  is the 

time that the combination chart signals. 

 

3.3 Estimation of the change point 

 

After determining the process model assumptions, we consider the derivation of 

the maximum likelihood estimator (MLE) of the change point   when a step change 

occurs in the process mean vector and/or covariance matrix. It is assumed that the 

process experiences a change at an unknown time,  . The change is detected at the 

time T by the combination control chart. We assume that the subgroup averages 

XXX ,,, 21   and subgroup covariances SSS ,,, 21   come from in-control 

process and the subgroup averages TXXX ,,, 21    and the subgroup covariances 

TSSS ,,, 21     come from the out-of-control process. It is further assumed that 

the process mean vector and covariance matrix remains at the new level until the 
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special cause is identified. The MLE of   can be the value of  t  for which the 

statistic MC  attains its maximum; that is,  

 

)(maxargˆ
t

t
MC MC ,   ,110 ,T-, , t                                                                  (3.1) 
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MLE‟s of mean vector and covariance matrix of the ( tT  ) most recent subgroup 

averages. 

 

Derivation of the MLE of  , the multivariate joint process change point 

estimator is as follows: 
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The first part of the function can be written as; 
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There are three unknowns in the likelihood function; 1 1  and , Σμ . If the change 

point   would be known, the MLE of 1 1  and Σμ  would be; 
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Substituting 1 1
ˆ andˆ Σμ  into the log likelihood function, then 
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The MLE estimate of   is the value of t that maximizes the log-likelihood 

function. So; 
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3.4 Performance assessment of the proposed estimator 

 

The performance assessment of our proposed estimator is investigated and 

evaluated by Monte Carlo simulation. The simulation study is focused on Phase II 

performance of the proposed estimator. The „average change point estimate‟ and 

„the empirical distribution of the estimated change point around the actual change 

point‟ were used by Samuel et al. (1998a, 1998b), Nedumaran et al. (2000), Park 

and Park (2004) and Dogu and Deveci-Kocakoc (2011a) as the performance 

indicators. The simulation study settings are constructed for bivariate case for 

simplicity and these performance indicators are investigated. 

  

Observations were randomly generated from a ),( 00 ΣμpN  distribution when 

50i , the on-target mean vector was   0,00μ and the in-control covariance 

matrix was selected as follows: 

 











1

1

0




Σ , 

 

where 11    is the correlation coefficient between two quality characteristics. 

In this study, the correlation coefficient was set to 0.0, 0.5 and 0.9 and Type I error 

probability was set to 0.0027 which is frequently used in SPC applications. While 

the process is in-control, the observations which exceed the control limits are 

considered as false alarms. If a false alarm at the i
th

 observation ( i ) occurred, it 

was treated in the same way that a false alarm would be treated on an actual process. 

When an actual false alarm is determined in a process, the process professionals 

consider the process is in control and let the monitoring restart. The same approach 

is used in the simulation study. If i
th

 observation was a false alarm, then the control 

chart restarted at  1i
th

 observation and the change point remained in its scheduled 

point. Starting with subgroup 51, the observations were randomly generated from 

),( 11 ΣμpN  until the combination control chart issued a signal. The structure of the 

changed mean vector and covariance matrix are given as: 
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For every run, when the combination control chart issued a signal, the time of the 

change was calculated with the proposed estimator. This procedure was repeated a 

total of 10,000 times for each of the case and different magnitudes, denoted by   

and  , for the subgroup size of 4n . The average of change point estimates for 

every simulation run was computed along with its standard error to investigate the 

accuracy of our estimator. Additionally, the empirical distributions of the estimated 

change point around the actual change point for all cases and magnitudes of shift 

were considered in order to evaluate the precision of the estimator.  

 

3.4.1 Accuracy Evaluation 

 

In order to measure the accuracy performance of the change point estimator, the 

average change point estimation is considered, which is denoted by )(TE  of the 

combination chart. )(TE  can be expressed as the sum of Average Run Length 

(ARL) and exact change point ).(  If the practitioner chose   21 , then the 

combination of  2  and S  charts has a combined Type I error probability of  

 211  . As we chose 0027.0 , the ARL of the combination chart was 

expected to be   1850054.01111
2

   when no shifts of mean vector and 

covariance matrix were introduced.  

 

Since this simulation study aimed to compute the estimation of  , the last sample 

from the in control process, ̂  should be close to 50.  
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Table 3.1 Expected time of a signal, average change point estimates and their standard errors after a 

combination chart signals; 50 , 0.0  and 10,000 independent simulation runs  

Mean Shift Setting 

   1 2 3 4 5 6 7 

Covariance Shift 

Setting 1  0 0 0 0.5 1 0 2 

1  2  2  0 0.5 1 1 1 2 2 

1 1 )(TE  234.68 107.55 59.20 56.41 53.08 51.32 51.01 

  ̂  - 51.19 49.91 49.77 49.67 49.54 49.85 

    Std. error - 0.08 0.04 0.04 0.03 0.03 0.02 

1.3 1 )(TE  92.12 73.92 56.66 54.88 52.70 52.70 51.02 

  ̂  53.19 50.34 49.77 49.75 49.65 49.63 49.84 

    Std. error 0.14 0.06 0.04 0.03 0.03 0.03 0.02 

1.3 1.3 )(TE  65.97 60.55 54.48 53.68 52.36 51.34 51.03 

  ̂  50.31 49.89 49.67 49.59 49.56 49.56 49.85 

    Std. error 0.09 0.07 0.04 0.04 0.04 0.03 0.02 

1.5 1.3 )(TE  59.40 57.01 53.72 53.13 53.65 52.20 51.04 

  ̂  49.71 49.55 49.51 49.51 49.57 49.54 49.85 

    Std. error 0.07 0.06 0.05 0.04 0.05 0.04 0.02 

2 2 )(TE  52.02 51.91 51.67 51.45 51.47 51.23 51.06 

  ̂  49.21 49.28 49.40 49.49 49.45 49.68 49.88 

    Std. error 0.05 0.04 0.04 0.04 0.04 0.03 0.01 

 

Table 3.2 Expected time of a signal, average change point estimates and their standard errors after a 

combination chart signals; 50 , 5.0  and 10,000 independent simulation runs  

Mean Shift Setting 

   1 2 3 4 5 6 7 

Covariance Shift 

Setting 1  0 0 0 0.5 1 0 2 

1  2  2  0 0.5 1 1 1 2 2 

1 1 )(TE  234.68 93.23 55.73 59.11 55.79 51.11 51.10 

  ̂  - 50.61 49.76 49.94 49.78 49.70 49.69 

    Std. error - 0.06 0.04 0.03 0.03 0.02 0.03 

1.3 1 )(TE  90.22 65.46 54.53 56.74 54.41 51.10 51.13 

  ̂  52.53 50.37 49.69 49.85 49.73 49.70 49.67 

    Std. error 0.12 0.06 0.04 0.03 0.04 0.03 0.03 

1.3 1.3 )(TE  59.40 59.19 53.45 54.49 53.46 51.16 51.16 

  ̂  49.66 49.72 49.51 49.64 49.64 49.67 49.68 

    Std. error 0.07 0.06 0.04 0.04 0.04 0.03 0.03 

1.5 1.3 )(TE  59.30 56.51 53.01 53.67 52.99 51.15 51.17 

  ̂  49.53 49.57 49.56 49.50 49.54 49.67 49.70 

    Std. error 0.07 0.05 0.04 0.04 0.04 0.03 0.02 

2 2 )(TE  52.00 51.88 51.58 51.67 51.59 51.15 51.17 

  ̂  49.21 49.26 49.39 49.40 49.47 49.76 49.73 

    Std. error 0.05 0.05 0.04 0.04 0.04 0.02 0.02 
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Table 3.3 Expected time of a signal, average change point estimates and their standard errors after a 

combination chart signals; 50 , 9.0  and 10,000 independent simulation runs  

Mean Shift Setting 

   1 2 3 4 5 6 7 

Covariance Shift 

Setting 1  0 0 0 0.5 1 0 2 

1  2  2  0 0.5 1 1 1 2 2 

1 1 )(TE  234.68 55.90 51.11 53.44 58.47 51.00 51.26 

  ̂  - 49.77 49.67 49.65 49.81 50.00 49.55 

    Std. error - 0.03 0.02 0.03 0.04 0.00 0.03 

1.3 1 )(TE  75.02 54.28 51.13 52.85 55.51 51.00 51.00 

  ̂  50.49 49.79 49.74 49.74 49.84 50.00 49.99 

    Std. error 0.05 0.03 0.02 0.03 0.03 0.00 0.00 

1.3 1.3 )(TE  66.10 53.51 51.17 52.59 54.32 51.00 51.32 

  ̂  50.23 49.56 49.69 49.57 49.59 49.99 49.61 

    Std. error 0.09 0.04 0.02 0.04 0.04 0.00 0.03 

1.5 1.3 )(TE  58.79 52.97 51.16 52.30 53.48 51.00 51.31 

  ̂  49.66 49.54 49.71 49.56 49.61 49.99 49.68 

    Std. error 0.06 0.04 0.03 0.04 0.04 0.00 0.03 

2 2 )(TE  52.03 51.59 51.16 51.49 51.65 51.00 51.21 

  ̂  49.21 49.42 49.78 49.49 49.41 49.99 49.68 

    Std. error 0.05 0.04 0.02 0.04 0.04 0.00 0.03 

 

Analyzing the average of change point estimates (̂ ), for all magnitudes of shift, 

the outputs are fairly close to the actual change point. In general, our proposed 

change point estimator can be evaluated to be close to the actual change point 

without considering different magnitudes of shift in mean vector and (or) covariance 

matrix.  

 

For example, when a shift setting    0.1,3.1,5.0,0.0,,, 2121   is considered, 

the average change point estimates are 50.34, 50.37 and 49.79 for different 

correlation values, respectively. The average run lengths after the signal provided by 

the combination chart are 23.79, 15.46 and 4.28 from Table 3.1-3.3 respectively. As 

the correlation between the variables increase, the run length of the combination 

chart decreases. However, the closest run length to the actual change point is 

approximately four samples after the change. When the magnitude of shift 

decreases, the detection performance of the combination chart decreases (See Table 

3.1-3.3 and Table 3.8). But the change point estimator has a fairly successful 
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detection performance for all cases. The most remarkable accuracy results were 

obtained when the magnitude of shift is small.  

 

3.4.2 Precision Evaluation 

 

Empirical distribution of ̂  around   are given in Tables 3.4-3.6. Each table is 

constructed to show the estimated probability of being in the k
th

 neighborhood of the 

actual change point for various magnitudes of shift and strengths of correlation.  

 

When a shift setting    3.1,3.1,0.1,0.0,,, 2121   is considered, the exact 

detection probabilities are 0.527, 0.643 and 0.884 for different correlation values, 

respectively. The observed frequencies of the change point estimates which are 

within a given number of periods (k) of the actual change point are also provided. 

The detection probabilities for the change point estimator and the control chart are 

shown in Table 3.4-3.6 and Table 3.9.  

 

Figure 3.1 presents the measures versus various mean shift settings and 

covariance combinations as a summary of the tables. When k=5, at least 60% of the 

simulation results fall in this interval for all shift settings. As the magnitude of shift 

increases, the percentage increases to approximately 90% regardless of the level of 

correlation between the variables. 
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Figure 3.1 Plots of precision measures versus various mean-

dispersion shift settings when 5ˆ  ; 50 , 

9.0 and 5.0,0.0  and 10,000 independent simulation runs 

 

The combination chart can give its earliest signal right after the shift is 

introduced. For our case this happens when ARL=1. We defined the cases which 

had ARL=1 as the cases in which the change point is detected exactly by the 

combination chart. On the other hand, the exact detection performance of the change 

point estimator can be evaluated. For this purpose, we considered the cases in which 

50ˆ   to compare the performance of the combination chart and our proposed 

estimator. Table 3.7 indicates that our proposed estimator over-performs the 

combination chart by means of exact detection performances. Figure 3.2 indicates 

the exact change point detection ability of the combination chart and the change 

point estimator.  
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     Change Point Estimator            Combination Chart 

Figure 3.2 Plots of exact detection probabilities for change point estimator and combination chart 

versus various mean-dispersion shift settings; 50 , 9.0 and 5.0,0.0  and 10,000 independent 

simulation runs 

 

The proposed change point estimator showed a remarkable precision 

performance. While a simultaneous shift is introduced, the change point estimation 

procedure detected the change point exactly in at least 30% of the simulation runs 

for all levels of correlation coefficient tested.  
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Table 3.4 Empirical distribution of ̂  around   after a combination chart signals; 50 , 0.0  

and 10,000 independent simulation runs 

Mean Shift Setting 

   1 2 3 4 5 6 7 

Covariance Shift Setting 1  0 0 0 0.5 1 0 2 

1  2  2  0 0.5 1 1 1 2 2 

1 1 )0ˆ(ˆ P   0.220 0.532 0.587 0.706 0.858 0.958 

  )1ˆ(ˆ P   0.421 0.768 0.810 0.887 0.945 0.982 

  )2ˆ(ˆ P   0.540 0.866 0.900 0.949 0.964 0.988 

  )5ˆ(ˆ P   0.733 0.962 0.972 0.981 0.980 0.994 

    )10ˆ(ˆ P    0.868 0.987 0.986 0.989 0.987 0.996 

1.3 1 )0ˆ(ˆ P  0.128 0.298 0.562 0.602 0.698 0.707 0.955 

  )1ˆ(ˆ P  0.266 0.518 0.796 0.825 0.884 0.889 0.985 

  )2ˆ(ˆ P  0.358 0.643 0.889 0.908 0.941 0.941 0.991 

  )5ˆ(ˆ P  0.546 0.825 0.968 0.972 0.978 0.977 0.995 

    )10ˆ(ˆ P  0.724 0.934 0.984 0.985 0.988 0.987 0.996 

1.3 1.3 )0ˆ(ˆ P  0.229 0.312 0.527 0.590 0.687 0.833 0.947 

  )1ˆ(ˆ P  0.414 0.532 0.762 0.813 0.875 0.941 0.980 

  )2ˆ(ˆ P  0.538 0.659 0.864 0.900 0.933 0.962 0.988 

  )5ˆ(ˆ P  0.737 0.830 0.959 0.964 0.973 0.979 0.994 

    )10ˆ(ˆ P  0.871 0.964 0.981 0.980 0.983 0.988 0.996 

1.5 1.3 )0ˆ(ˆ P  0.325 0.412 0.541 0.616 0.554 0.704 0.943 

  )1ˆ(ˆ P  0.552 0.650 0.778 0.832 0.784 0.889 0.979 

  )2ˆ(ˆ P  0.673 0.766 0.877 0.911 0.876 0.940 0.987 

  )5ˆ(ˆ P  0.851 0.909 0.955 0.965 0.957 0.973 0.994 

    )10ˆ(ˆ P  0.939 0.964 0.976 0.979 0.978 0.984 0.996 

2 2 )0ˆ(ˆ P  0.698 0.722 0.765 0.813 0.804 0.873 0.939 

  )1ˆ(ˆ P  0.872 0.886 0.915 0.936 0.930 0.958 0.982 

  )2ˆ(ˆ P  0.922 0.931 0.951 0.962 0.957 0.973 0.989 

  )5ˆ(ˆ P  0.961 0.961 0.973 0.978 0.976 0.986 0.996 

    )10ˆ(ˆ P  0.976 0.977 0.982 0.986 0.984 0.991 0.996 
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Table 3.5 Empirical distribution of ̂  around   after a combination chart signals; 50 , 5.0  

and 10,000 independent simulation runs 

Mean Shift Setting 

   1 2 3 4 5 6 7 

Covariance Shift Setting 1  0 0 0 0.5 1 0 2 

1  2  2  0 0.5 1 1 1 2 2 

1 1 )0ˆ(ˆ P   0.288 0.610 0.535 0.607 0.906 0.914 

  )1ˆ(ˆ P   0.501 0.828 0.765 0.832 0.964 0.967 

  )2ˆ(ˆ P   0.624 0.907 0.868 0.915 0.973 0.978 

  )5ˆ(ˆ P   0.810 0.971 0.964 0.975 0.986 0.988 

    )10ˆ(ˆ P    0.920 0.988 0.988 0.988 0.992 0.993 

1.3 1 )0ˆ(ˆ P  0.153 0.306 0.633 0.580 0.604 0.917 0.901 

  )1ˆ(ˆ P  0.297 0.533 0.845 0.805 0.831 0.967 0.964 

  )2ˆ(ˆ P  0.399 0.656 0.919 0.893 0.911 0.977 0.975 

  )5ˆ(ˆ P  0.602 0.843 0.973 0.968 0.970 0.988 0.986 

    )10ˆ(ˆ P  0.772 0.942 0.986 0.986 0.986 0.993 0.992 

1.3 1.3 )0ˆ(ˆ P  0.330 0.351 0.643 0.528 0.593 0.882 0.902 

  )1ˆ(ˆ P  0.554 0.587 0.846 0.766 0.815 0.955 0.962 

  )2ˆ(ˆ P  0.681 0.719 0.916 0.864 0.897 0.971 0.965 

  )5ˆ(ˆ P  0.853 0.883 0.973 0.954 0.967 0.985 0.987 

    )10ˆ(ˆ P  0.941 0.952 0.982 0.978 0.982 0.991 0.993 

1.5 1.3 )0ˆ(ˆ P  0.337 0.433 0.645 0.598 0.625 0.898 0.888 

  )1ˆ(ˆ P  0.562 0.668 0.847 0.810 0.836 0.963 0.961 

  )2ˆ(ˆ P  0.688 0.785 0.916 0.893 0.911 0.975 0.976 

  )5ˆ(ˆ P  0.852 0.921 0.969 0.961 0.966 0.986 0.986 

    )10ˆ(ˆ P  0.939 0.968 0.982 0.977 0.980 0.991 0.992 

2 2 )0ˆ(ˆ P  0.706 0.722 0.789 0.765 0.794 0.909 0.901 

  )1ˆ(ˆ P  0.882 0.888 0.924 0.905 0.925 0.971 0.967 

  )2ˆ(ˆ P  0.929 0.934 0.949 0.941 0.956 0.981 0.978 

  )5ˆ(ˆ P  0.961 0.962 0.970 0.969 0.976 0.988 0.989 

    )10ˆ(ˆ P  0.975 0.976 0.982 0.980 0.985 0.993 0.993 
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Table 3.6 Empirical distribution of ̂  around   after a combination chart signals; 50 , 9.0  

and 10,000 independent simulation runs 

Mean Shift Setting 

   1 2 3 4 5 6 7 

Covariance Shift Setting 1  0 0 0 0.5 1 0 2 

1  2  2  0 0.5 1 1 1 2 2 

1 1 )0ˆ(ˆ P   0.613 0.908 0.693 0.546 0.997 0.869 

  )1ˆ(ˆ P   0.827 0.962 0.876 0.774 0.999 0.951 

  )2ˆ(ˆ P   0.911 0.973 0.939 0.871 1.000 0.965 

  )5ˆ(ˆ P   0.970 0.985 0.977 0.960 1.000 0.981 

    )10ˆ(ˆ P   0.613 0.908 0.693 0.546 0.997 0.869 

1.3 1 )0ˆ(ˆ P  0.320 0.677 0.918 0.661 0.636 0.997 0.995 

  )1ˆ(ˆ P  0.556 0.876 0.971 0.863 0.851 1.000 0.999 

  )2ˆ(ˆ P  0.679 0.939 0.981 0.932 0.926 1.000 1.000 

  )5ˆ(ˆ P  0.856 0.982 0.988 0.979 0.978 1.000 1.000 

    )10ˆ(ˆ P  0.953 0.991 0.993 0.988 0.990 1.000 1.000 

1.3 1.3 )0ˆ(ˆ P  0.222 0.596 0.884 0.675 0.538 0.995 0.841 

  )1ˆ(ˆ P  0.414 0.815 0.959 0.871 0.770 0.999 0.946 

  )2ˆ(ˆ P  0.533 0.898 0.973 0.930 0.865 1.000 0.970 

  )5ˆ(ˆ P  0.732 0.960 0.986 0.970 0.954 1.000 0.983 

    )10ˆ(ˆ P  0.872 0.980 0.992 0.982 0.977 1.000 0.989 

1.5 1.3 )0ˆ(ˆ P  0.370 0.645 0.901 0.724 0.615 0.994 0.853 

  )1ˆ(ˆ P  0.607 0.856 0.967 0.900 0.829 0.999 0.951 

  )2ˆ(ˆ P  0.726 0.923 0.979 0.948 0.907 0.999 0.971 

  )5ˆ(ˆ P  0.889 0.968 0.988 0.976 0.969 1.000 0.986 

    )10ˆ(ˆ P  0.954 0.981 0.992 0.986 0.982 1.000 0.992 

2 2 )0ˆ(ˆ P  0.650 0.772 0.918 0.825 0.767 0.996 0.900 

  )1ˆ(ˆ P  0.857 0.922 0.976 0.942 0.921 0.999 0.971 

  )2ˆ(ˆ P  0.921 0.957 0.985 0.966 0.959 1.000 0.981 

  )5ˆ(ˆ P  0.965 0.979 0.992 0.983 0.979 1.000 0.990 

    )10ˆ(ˆ P  0.979 0.987 0.995 0.991 0.986 1.000 0.994 
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Table 3.7 Exact detection probabilities of the change point estimator and the combination chart; 

50 and 10,000 independent simulation runs 

  
1  

  
0 0 0 0.5 1 0 2 

1  2  2  0 0.5 1 1 1 2 2 

1 1 )ˆ(ˆ  P  0.0 
  0.22 0.53 0.59 0.71 0.86 0.96 

    )1)((ˆ TEP    0.02 0.11 0.16 0.33 0.76 0.99 

1.3 1 )ˆ(ˆ  P  0.13 0.30 0.56 0.60 0.70 0.71 0.95 

    )1)((ˆ TEP  0.02 0.04 0.15 0.21 0.37 0.73 0.98 

1.3 1.3 )ˆ(ˆ  P  0.23 0.31 0.53 0.59 0.69 0.83 0.95 

    )1)((ˆ TEP  0.06 0.05 0.22 0.28 0.42 0.74 0.97 

1.5 1.3 )ˆ(ˆ  P  0.32 0.41 0.54 0.62 0.70 0.80 0.94 

    )1)((ˆ TEP  0.10 0.14 0.27 0.32 0.46 0.68 0.96 

2 2 )ˆ(ˆ  P  0.70 0.72 0.77 0.81 0.80 0.87 0.94 

    )1)((ˆ TEP  0.50 0.52 0.60 0.69 0.68 0.81 0.94 

1 1 )ˆ(ˆ  P  0.5 
  0.29 0.61 0.54 0.61 0.91 0.91 

    )1)((ˆ TEP   
  0.02 0.18 0.10 0.18 0.90 0.91 

1.3 1 )ˆ(ˆ  P   
0.15 0.31 0.63 0.58 0.60 0.92 0.90 

    )1)((ˆ TEP   
0.02 0.07 0.22 0.15 0.23 0.91 0.88 

1.3 1.3 )ˆ(ˆ  P   
0.33 0.35 0.64 0.53 0.59 0.88 0.90 

    )1)((ˆ TEP   
0.10 0.11 0.24 0.22 0.29 0.87 0.89 

1.5 1.3 )ˆ(ˆ  P   
0.34 0.43 0.65 0.60 0.62 0.90 0.89 

    )1)((ˆ TEP   
0.11 0.16 0.34 0.28 0.34 0.88 0.86 

2 2 )ˆ(ˆ  P   
0.71 0.72 0.79 0.77 0.79 0.91 0.90 

    )1)((ˆ TEP   
0.48 0.53 0.62 0.61 0.65 0.88 0.86 

1 1 )ˆ(ˆ  P  0.9 
  0.61 0.91 0.69 0.55 1.00 0.87 

    )1)((ˆ TEP   
  0.17 0.90 0.29 0.12 1.00 0.79 

1.3 1 )ˆ(ˆ  P   
0.32 0.68 0.92 0.66 0.64 1.00 0.99 

    )1)((ˆ TEP   
0.04 0.24 0.88 0.36 0.18 1.00 1.00 

1.3 1.3 )ˆ(ˆ  P   
0.22 0.60 0.88 0.68 0.54 1.00 0.84 

    )1)((ˆ TEP   
0.06 0.29 0.86 0.38 0.23 1.00 0.76 

1.5 1.3 )ˆ(ˆ  P   
0.37 0.65 0.90 0.72 0.61 0.99 0.85 

    )1)((ˆ TEP   
0.11 0.34 0.87 0.43 0.30 1.00 0.76 

2 2 )ˆ(ˆ  P   
0.71 0.78 0.90 0.80 0.76 0.99 0.88 

    )1)((ˆ TEP   
0.50 0.63 0.86 0.67 0.61 1.00 0.82 
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3.4.3 Comparison with other change point estimators 

 

Under the assumption of the process is jointly being monitored by a combination 

of 2 and S  control charts, it is also possible to use a combination of the change 

point estimators for process mean vector and process covariance matrix. The change 

point estimator for the mean vector , M̂ , was proposed by Nedumaran et al. (2000) 

given in (1.4) and (2.2). 

 

)max(argˆ
tM M  where )())(( 0,

1

00, μXΣμX  

TtTtt tTM
 

and 

110 ,T-, , t  . The change point estimator for the covariance matrix, C̂ , was 

proposed by Dogu and Deveci-Kocakoc (2011a):  
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and 110 ,T-, , t  . In order to compare the performance of the proposed joint 

monitoring procedure with these change point estimators we propose a combination 

of  M̂  and C̂ , Comb̂ . Park and Park (2004) used a similar procedure for univariate 

joint change point estimation.  

 








signal. a generate chartsboth or chart  control  if,ˆ

signal. a generateschart  control  only the if,ˆ
ˆ

2

SC

M

Comb



                             (3.3) 

 

A simulation study for this comparison was also conducted. Table 3.8-3.9 

indicates the accuracy and precision results of this simulation study. Figure 3.3 

illustrates the accuracy performance of the proposed change point procedure and 



61 

 

 

combination change point procedure. From Table 3.8-3.9 it can be concluded that 

our proposed estimator over-performs the combination change point estimator in 

terms of accuracy and precision of the estimates. Especially for small magnitudes of 

shift, the proposed estimator performs far better than the combination estimator. For 

example, when a shift setting    3.1,1.1,0.0,0.0,,, 2121   is considered, the 

average estimation of combination change point estimator is 65.59 and the average 

estimation of proposed change point estimator is 52.08 ( 50 ). In this case, the 

exact detection probabilities are 0.099 and 0.156, respectively.  

 

 

Figure 3.3 Plots of )(TE , MC̂  and Comb̂  versus various mean-

dispersion shift settings; 50 ,  5.0  and 10,000 independent 

simulation runs 
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Table 3.8 Expected time of a signal, averages of proposed and combination change point estimates 

after a combination chart signals; 50 , 5.0  and 10,000 independent simulation runs 

  

  1  0 0 0.25 0.5 0.5 1 0 2 

1  2  2  0 0.25 0.5 0.75 1 1 2 2 

1 1 )(TE  234.68 167.72 107.85 71.07 59.28 55.67 51.11 51.11 

  MC̂   57.42 51.20 50.22 49.93 49.75 49.69 49.68 

    Comb
̂  

  79.64 53.17 50.12 49.91 49.79 49.86 49.86 

1 1.1 )(TE  161.56 122.60 87.11 65.98 57.62 55.27 51.13 51.11 

  MC̂  92.63 55.74 51.47 50.16 49.85 49.73 49.66 49.68 

    Comb
̂  

121.74 58.79 51.74 50.25 49.93 49.83 49.85 49.84 

1.1 1.1 )(TE  123.25 102.36 80.02 63.50 56.97 54.78 51.13 51.13 

  MC̂  71.98 54.60 51.03 50.17 49.83 49.78 49.65 49.64 

    Comb
̂  

94.37 58.13 51.79 50.31 49.93 49.89 49.85 49.86 

1.1 1.3 )(TE  80.32 73.26 65.53 58.95 55.39 54.11 51.17 51.15 

  MC̂  52.08 51.08 50.52 50.05 49.84 49.71 49.65 49.68 

    Comb
̂  

65.59 56.24 52.05 50.68 50.16 49.94 49.87 49.89 

1.3 1.5 )(TE  59.39 58.43 56.84 55.01 53.66 53.00 51.19 51.15 

  MC̂  49.54 49.57 49.59 49.61 49.53 49.52 49.69 49.68 

    Comb
̂  

53.01 52.22 51.30 50.57 50.19 49.97 49.87 49.89 

2 1.5 )(TE  53.10 52.96 52.77 52.45 51.98 52.12 51.12 51.17 

  MC̂  49.21 49.24 49.24 49.34 49.43 49.48 49.77 49.75 

    Comb
̂  

50.20 50.18 49.93 49.97 49.90 49.91 49.85 49.88 

2 2 )(TE  52.01 51.99 51.92 51.57 51.66 51.57 51.14 51.15 

  MC̂  49.23 49.23 49.17 49.44 49.32 49.42 49.75 49.77 

    Comb
̂  

49.80 49.76 49.72 49.74 49.74 49.76 49.87 49.92 
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Table 3.9 Precision evaluation for proposed and combination change point estimates after a 

combination chart signals; 50 , 5.0  and 10,000 independent simulation runs 

  C-P* PP** C-P P-P C-P P-P C-P P-P C-P P-P 

1  1  0 0 0.25 0.5 1 

2  2  0 0.25 0.5 1 1 

1 )0ˆ(ˆ P  
  0.070 0.086 0.221 0.224 0.594 0.535 0.674 0.612 

1 )1ˆ(ˆ P  
  0.152 0.183 0.403 0.413 0.822 0.770 0.876 0.828 

 )2ˆ(ˆ P    0.215 0.260 0.515 0.532 0.908 0.872 0.940 0.909 

 )5ˆ(ˆ P  
  0.344 0.416 0.698 0.729 0.975 0.963 0.982 0.973 

  )10ˆ(ˆ P  
  0.477 0.578 0.827 0.871 0.991 0.988 0.992 0.987 

1 )0ˆ(ˆ P  0.017 0.021 0.569 0.636 0.209 0.215 0.559 0.512 0.665 0.605 

1.1 )1ˆ(ˆ P  0.038 0.051 0.773 0.840 0.382 0.397 0.794 0.751 0.869 0.819 

 )2ˆ(ˆ P  0.060 0.078 0.864 0.907 0.498 0.513 0.891 0.857 0.939 0.907 

 )5ˆ(ˆ P  0.119 0.153 0.953 0.959 0.696 0.716 0.971 0.956 0.983 0.971 

  )10ˆ(ˆ P  0.198 0.241 0.982 0.974 0.845 0.858 0.990 0.983 0.993 0.986 

1.1 )0ˆ(ˆ P  0.028 0.035 0.079 0.106 0.197 0.221 0.561 0.526 0.652 0.587 

1.1 )1ˆ(ˆ P  0.066 0.085 0.174 0.226 0.369 0.409 0.792 0.754 0.860 0.810 

 )2ˆ(ˆ P  0.099 0.122 0.245 0.312 0.483 0.530 0.883 0.855 0.932 0.899 

 )5ˆ(ˆ P  0.169 0.216 0.401 0.488 0.692 0.734 0.968 0.955 0.983 0.970 

  )10ˆ(ˆ P  0.268 0.344 0.568 0.661 0.844 0.873 0.988 0.982 0.991 0.987 

1.1 )0ˆ(ˆ P  0.099 0.156 0.040 0.110 0.214 0.278 0.513 0.508 0.616 0.592 

1.3 )1ˆ(ˆ P  0.198 0.307 0.190 0.280 0.390 0.484 0.746 0.747 0.838 0.816 

 )2ˆ(ˆ P  0.267 0.412 0.320 0.470 0.512 0.612 0.853 0.852 0.919 0.898 

 )5ˆ(ˆ P  0.404 0.611 0.470 0.670 0.714 0.807 0.960 0.952 0.979 0.967 

  )10ˆ(ˆ P  0.544 0.770 0.660 0.860 0.871 0.925 0.987 0.981 0.991 0.984 

1.3 )0ˆ(ˆ P  0.250 0.290 0.260 0.320 0.320 0.390 0.520 0.540 0.590 0.622 

1.5 )1ˆ(ˆ P  0.410 0.540 0.480 0.650 0.570 0.690 0.770 0.740 0.812 0.835 

 )2ˆ(ˆ P  0.480 0.640 0.640 0.770 0.660 0.770 0.870 0.870 0.904 0.911 

 )5ˆ(ˆ P  0.670 0.860 0.730 0.850 0.820 0.920 0.970 0.960 0.973 0.966 

  )10ˆ(ˆ P  0.860 0.960 0.870 0.970 0.960 0.990 0.990 0.970 0.988 0.980 

2 )0ˆ(ˆ P  0.682 0.697 0.690 0.690 0.720 0.690 0.760 0.780 0.750 0.790 

2 )1ˆ(ˆ P  0.865 0.874 0.920 0.890 0.880 0.860 0.970 0.930 0.900 0.920 

 )2ˆ(ˆ P  0.927 0.925 0.960 0.940 0.940 0.890 0.990 0.950 0.940 0.950 

 )5ˆ(ˆ P  0.976 0.960 0.980 0.970 0.970 0.930 1.000 0.970 0.960 0.960 

  )10ˆ(ˆ P  0.987 0.976 0.990 0.980 0.980 0.950 1.000 0.980 0.970 0.980 

*Combination Procedure, **Proposed Procedure 
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3.4.4 Confidence Sets Based on the Change Likelihood Function 

 

In this part, the confidence sets on the process change point ( ) are considered. 

The confidence sets for the time of the process change will provide useful 

information about the potential change points. The set of candidate change points 

will help process professionals to focus on quick and correct identification of the 

special cause and taking appropriate actions. This search window approach can 

improve quality and reduce special cause identification time.  
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is the value of log likelihood function at t , and D  is the reference value to develop 

a )%1(100   confidence set. Box and Cox (1964) proposed using   2

,121 D  

which yields a value of 1.353 for a 90% confidence set. On the other hand, 

Siegmund(1986) proposed using  2/1)1(1ln D  which yields a value of 2.97 

for a 90% confidence set. If  )(ln tL  exceeds the limit of   DL )ˆ(ln  , then t  is a 

candidate change point.  We considered a set of reference values that 

 2.97 2.00,2.5, 1.5, 1.353,D  and investigated the coverage probabilities of each 

shift setting. The coverage probability represents the percentage of the sets which 

include the exact change point within 10,000 simulation runs. Also the sizes 

(cardinality) of the sets are recorded (See Table 3.10). It is also possible to 

investigate the coverage probabilities and expected cardinalities of the sets for 

different magnitudes of shift and different values of  . We have chosen five levels 

of  ( 300,200,100,50,10 ). The results are summarized in Table 3.11 for a 

critical value of 97.2D . The performance results indicate that the coverage 

probability is approximately 0.85 for a mean shift of  5.0,0.0  and no shift in 

covariance matrix. These probabilities are close to this value over the range of  and 

increase with the increase of the magnitude of shift. The results are shown 
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graphically in Figure 3.4-3.5. As the coverage probabilities do not alter for various 

levels of  , using 50  seems to be a reasonable choice. 

 

 

Figure 3.4 Plot of coverage probabilities versus estimated 

cardinality of confidence sets for various magnitudes of shift 

following a signal from a combination chart using different critical 

values of D; 50 and 10,000 Independent Simulation Runs  
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Figure 3.5 Plots of coverage probabilities and average 

cardinalities versus various change points; 50 and 10,000 

independent simulation runs  
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Table 3.10 Average cardinality and coverage probability values obtained using different critical 

values ( D ) after a combination chart signal; 50 and 10,000 independent simulation runs  

  1  0 0.5 

  2  0.5 0.5 

1  2  D  1.35 1.50 2.00 2.50 2.97 1.35 1.50 2.00 2.50 2.97 

1 1 Average Cardinality 3.78 4.28 5.87 7.61 9.21 3.85 4.28 5.88 7.65 9.40 

    Coverage Probability 0.63 0.64 0.72 0.79 0.85 0.61 0.64 0.73 0.80 0.84 

1.3 1.3 Average Cardinality 3.07 3.41 4.71 6.21 7.78 3.13 3.49 4.80 6.31 7.93 

    Coverage Probability 0.63 0.65 0.73 0.79 0.84 0.62 0.65 0.73 0.79 0.84 

1.5 1.5 Average Cardinality 2.65 2.93 4.00 5.30 6.69 2.57 2.84 3.90 5.17 6.51 

    Coverage Probability 0.70 0.73 0.79 0.84 0.88 0.71 0.73 0.80 0.85 0.88 

2 2 Average Cardinality 1.91 2.05 2.67 3.44 4.27 1.91 2.07 2.71 3.53 4.45 

    Coverage Probability 0.86 0.88 0.90 0.93 0.94 0.86 0.87 0.90 0.92 0.94 

  1  0.5 1 

  2  1 1 

1  2  D  1.35 1.50 2.00 2.50 2.97 1.35 1.50 2.00 2.50 2.97 

1 1 Average Cardinality 2.09 2.25 2.85 3.58 4.36 1.87 2.00 2.51 3.13 3.82 

    Coverage Probability 0.75 0.76 0.82 0.86 0.89 0.79 0.80 0.85 0.88 0.91 

1.3 1.3 Average Cardinality 2.20 2.40 3.14 4.04 5.04 2.01 2.17 2.81 3.60 4.48 

    Coverage Probability 0.73 0.75 0.80 0.85 0.88 0.77 0.79 0.83 0.87 0.90 

1.5 1.5 Average Cardinality 2.10 2.28 2.98 3.85 4.82 1.94 2.10 2.73 3.50 4.37 

    Coverage Probability 0.77 0.79 0.84 0.87 0.90 0.80 0.81 0.85 0.89 0.91 

2 2 Average Cardinality 1.75 1.88 2.40 3.03 3.76 1.70 1.82 2.30 2.94 3.64 

    Coverage Probability 0.88 0.89 0.91 0.94 0.95 0.88 0.89 0.92 0.94 0.95 

  1  1 2 

  2  2 2 

1  2  D  1.35 1.50 2.00 2.50 2.97 1.35 1.50 2.00 2.50 2.97 

1 1 Average Cardinality 1.41 1.48 1.77 2.13 2.60 1.28 1.32 1.53 1.80 2.14 

    Coverage Probability 0.93 0.93 0.95 0.96 0.97 0.96 0.96 0.97 0.98 0.98 

1.3 1.3 Average Cardinality 1.45 1.52 1.82 2.23 2.71 1.31 1.37 1.58 1.88 2.24 

    Coverage Probability 0.92 0.93 0.95 0.96 0.97 0.95 0.95 0.96 0.97 0.98 

1.5 1.5 Average Cardinality 1.45 1.52 1.83 2.21 2.68 1.34 1.39 1.62 1.93 2.28 

    Coverage Probability 0.92 0.92 0.94 0.96 0.97 0.94 0.95 0.96 0.97 0.98 

2 2 Average Cardinality 1.36 1.42 1.68 2.01 2.42 1.29 1.34 1.54 1.81 2.11 

    Coverage Probability 0.94 0.94 0.96 0.97 0.97 0.96 0.96 0.97 0.98 0.98 
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Table 3.11 Average cardinality and coverage probability values various change points; 50 and 

10,000 independent simulation runs  

  1  0 0.5 

  2  0.5 0.5 

1  2  D  10 50 100 200 300 10 50 100 200 300 

1 1 Average Cardinality 7.92 9.21 9.74 10.72 10.97 7.92 9.40 9.74 10.63 11.00 

    Coverage Probability 0.84 0.85 0.83 0.84 0.83 0.84 0.84 0.83 0.84 0.83 

1.3 1.3 Average Cardinality 5.78 7.78 9.58 12.75 14.33 5.80 7.93 9.54 11.54 14.49 

    Coverage Probability 0.84 0.84 0.83 0.83 0.83 0.83 0.84 0.83 0.84 0.83 

1.5 1.5 Average Cardinality 4.54 6.69 8.44 11.11 13.79 4.59 6.51 8.55 10.92 14.37 

    Coverage Probability 0.89 0.88 0.87 0.87 0.87 0.89 0.88 0.88 0.87 0.88 

2 2 Average Cardinality 2.97 4.27 5.48 7.81 10.06 2.97 4.45 5.59 8.15 10.32 

    Coverage Probability 0.95 0.94 0.94 0.95 0.94 0.95 0.94 0.94 0.95 0.94 

  1  0.5 1 

  2  1 1 

1  2  D  10 50 100 200 300 10 50 100 200 300 

1 1 Average Cardinality 3.76 4.36 4.63 5.51 5.89 3.19 3.82 4.20 4.94 5.68 

    Coverage Probability 0.89 0.89 0.90 0.90 0.89 0.91 0.91 0.91 0.91 0.91 

1.3 1.3 Average Cardinality 3.78 5.04 5.84 7.44 8.87 3.36 4.48 5.44 7.18 8.04 

    Coverage Probability 0.88 0.88 0.88 0.88 0.88 0.90 0.90 0.90 0.91 0.89 

1.5 1.5 Average Cardinality 3.50 4.82 6.14 8.11 10.19 3.18 4.37 5.32 7.72 8.59 

    Coverage Probability 0.91 0.90 0.91 0.90 0.91 0.91 0.91 0.92 0.91 0.90 

2 2 Average Cardinality 2.63 3.76 4.81 6.64 7.98 2.52 3.64 4.46 6.20 7.72 

    Coverage Probability 0.95 0.95 0.95 0.94 0.95 0.96 0.95 0.95 0.95 0.95 

  1  1 2 

  2  2 2 

1  2  D  10 50 100 200 300 10 50 100 200 300 

1 1 Average Cardinality 1.96 2.60 2.90 4.01 5.11 1.70 2.14 2.52 3.15 3.88 

    Coverage Probability 0.97 0.97 0.97 0.97 0.98 0.99 0.98 0.98 0.98 0.98 

1.3 1.3 Average Cardinality 2.09 2.71 3.11 4.04 4.90 1.82 2.24 2.58 3.05 3.94 

    Coverage Probability 0.97 0.97 0.97 0.96 0.97 0.98 0.98 0.98 0.98 0.98 

1.5 1.5 Average Cardinality 2.08 2.68 3.17 3.73 4.70 1.82 2.28 2.60 3.10 3.78 

    Coverage Probability 0.97 0.97 0.96 0.97 0.97 0.98 0.98 0.98 0.98 0.98 

2 2 Average Cardinality 1.90 2.42 2.75 3.69 3.76 1.73 2.11 2.52 2.97 3.62 

    Coverage Probability 0.98 0.97 0.98 0.97 0.97 0.98 0.98 0.98 0.98 0.98 
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In Figure 3.4 the lines represent each critical value, the symbols represent 

different mean shift settings and each panel represents a covariance shift setting. 

Following the lines the biggest critical value ( D =2.97) satisfies approximately 90% 

confidence region for each simulation settings. The choice of   has an impact on 

the expected cardinalities. As the change point   increases, the size of the 

confidence sets increase.  

 

3.5 Illustrative example 

 

The following illustrative example is considered in order to show the practical 

usage of our estimator. The illustrative example is from spring manufacturing. Two 

critical quality characteristics are considered: spring inner diameter ( 1X ) with a 

specification of  10.030.28   and spring elasticity ( 2X ) with a specification of 

50.000.46  . The first ten observations are from Chen et al. (2005) and the 

historical mean and covariance are as follows: 

  

  85.45  29.280μ  and, 











0226.0

0046.0

0046.0

0035.0
0Σ . 

 

After the 10
th

 process reading a combination of mean and covariance shift 

    0.1,3.1,5.0,5.0,,, 2121  is introduced. When the 20
th

 subgroup was 

generated, the combination chart has issued a signal. That means following the 

signal at T 20 , the tMC  statistics can be calculated. Our aim in this procedure is to 

find the maximum value of tMC , in other words, to find where the change occurred 

in the interval of 10  Tt . 

 

According to Table 3.12, the combination chart did not issue a signal until the 

20
th

 subgroup was generated. On the other hand, the change point estimator has its 

maximum value in the 11
th

 subgroup. That means, the 10
th

 subgroup was the last 

subgroup obtained from in-control process and the 11
th

 subgroup was the first 

subgroup of the changed process, as we initially aimed. For the practitioners, 

investigating the point at which a signal issued is not sufficient to find out the 
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special cause because of the potential delay. As it has occurred in our illustrative 

example, a step change may exist several subgroups earlier from the signal of the 

control chart.  

 

Table 3.12 Spring data, chi-squares, generalized variances, tM , tC  and tMC statistics 

i t 
1iX  2iX  

2  
410S  tM  tC  

tMC  

1 0 28.236 45.934 4.217 0.529 5.005 7.525 15.777 

2 1 28.334 45.880 5.096 0.292 5.937 8.014 17.781 

3 2 28.310 45.686 6.300 0.135 5.134 5.397 14.707 

4 3 28.260 45.890 1.286 0.060 5.982 5.913 16.328 

5 4 28.310 45.838 0.633 0.243 6.818 6.532 18.289 

6 5 28.282 45.886 0.288 0.051 6.832 6.977 18.440 

7 6 28.328 45.784 2.141 0.156 7.265 8.252 19.933 

8 7 28.314 45.776 1.367 0.198 7.258 8.991 20.236 

9 8 28.324 45.800 1.660 0.825 7.813 9.547 21.463 

10 9 28.316 45.804 1.008 0.035 7.945 7.118 20.864 

11 10 28.361 45.840 9.447 0.691 8.387 8.251 22.596 

12 11 28.364 45.777 8.242 0.624 7.013 6.316 18.703 

13 12 28.317 45.830 1.152 0.496 6.439 5.487 16.937 

14 13 28.333 45.849 3.676 0.558 6.769 6.225 17.526 

15 14 28.276 46.034 8.672 0.539 6.487 6.538 16.966 

16 15 28.309 45.897 2.101 0.602 5.156 5.656 13.552 

17 16 28.311 45.994 9.647 2.000 4.921 6.071 13.182 

18 17 28.345 45.826 5.124 0.468 3.114 3.283 8.9689 

19 18 28.271 45.985 4.234 0.865 2.986 2.441 8.5846 

20 19 28.323 46.006 13.870 0.191 2.774 3.506 8.5871 

 

In order to construct the confidence set on the change point, the points satisfy 

97.2)(-)(max tMCMC  are considered as candidate change points. In other words, 

the log likelihood values exceed 19.63 were considered to be the potential change 

points. The corresponding group for our example was }11,10,9,8,7{CS MC and the 

cardinality of the confidence set was 5 subgroups. Confidence set construction is 

presented in Figure 3.7. The points over the threshold are the candidate change 

points.  
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Figure 3.6 Plot of likelihood values at possible change 

points and the threshold for spring data. 

 

3.6 Conclusions 

 

A follow-up change point estimation procedure for jointly monitoring the mean 

and covariance of a p-variate process is proposed. The proposed estimator is capable 

of detecting the step change successfully. We compared the performance of our 

estimator under the assumption that the process is monitored with a combination of 

2  and S  charts as the most widely used joint multivariate monitoring tool. The 

main advantage of the proposed estimator is to use one statistic for all the complex 

process information to detect the change point.  

 

The performance evaluation has shown that the change point formulation has 

high detection ability. The performance evaluation also has the comparison with a 

combination of the beforehand proposed change point estimators. Our simultaneous 

estimation procedure performs better than the combination estimator by means of 

accuracy and precision.  An illustrative example is considered to indicate the 

practical use of the change point estimator. This hypothetical example indicates the 

ease of implementation and interpretation.  While the change point estimation 
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procedure achieves the goal of detecting the shifts in the process, it is also important 

to identify whether it is a mean shift, covariance shift or both. So we recommend 

using diagnostic tools in order to improve the identification ability of the method. 
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CHAPTER FOUR 

CHANGE POINT ESTIMATION FOR  

MULTIVARIATE SINGLE CONTROL CHARTS 

 

4.1 Introduction 

 

Shewhart control charts are effective tools to improve quality of a product or 

process. The basic practice is to determine the quality of an item with a single 

quality characteristic. However, many industrial processes are characterized by more 

than one inter-related quality metrics. Several monitoring approaches are proposed 

in the literature for these multi-dimensional processes. Hotelling‟s 2T control chart 

(1947) started the efforts for multivariate quality control of the mean vector.  Alt 

(1985) and Alt and Smith (1988) proposed different procedures of multivariate 

dispersion control and monitoring. Recently, the researchers mostly focused on 

developing multivariate control charts which are able to detect small shifts. For 

discussions and reviews of multivariate mean and dispersion control charts, see, Alt 

(1985), Alt Smith (1988), Lowry and Montgomery (1995), and Bersimis et al. 

(2007).   

 

The multivariate monitoring effort includes monitoring the central tendency and 

dispersion of the process. In multivariate quality control, traditionally separate 

control charts were used to monitor the process mean and dispersion. Alt (1985) 

noted the importance of the need to develop a single control chart for simultaneous 

monitoring of both mean and dispersion. Cheng and Thaga (2006) also concluded 

that this practice needs more resources such as quality professionals and time. The 

simultaneous monitoring approaches are scarce in the literature. The existing studies 

are as follows: the traditional combination of the 2  and S
 
control charts, Max-

MEWMA chart proposed by  Chen et al. (2005), Multivariate Maximum Control 

Chart  proposed by Thaga and Gabaitiri (2006), Multivariate Max-CUSUM control 

chart proposed by Cheng and Thaga (2005) and MELR chart by Zhang et al. (2010). 

The basic idea in the max procedures, namely the Max-M, Max- MEWMA and 
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Max-CUSUM charts, is to transform the monitoring statistics for mean and 

covariance into standardized normal random variables and determine the maximum 

of these standard normal readings, and then apply a multivariate Shewhart 

procedure. According to Thaga and Gabaitiri (2006), these control charts are 

practical because the complex multivariate readings are transformed into 

standardized univariate scores and monitoring can proceed using the existing charts 

for univariate processes.  Also the practitioners can monitor both the mean and the 

variability using only a single control chart. The superiority of these monitoring 

schemes is their ability of giving diagnostic aids along with the control chart 

statistic.  A recent remarkable multivariate single control chart was proposed by 

Zhang et al. (2010). They proposed using the generalized likelihood ratio test 

statistic differently from the above work flow.   

 

A signal generated from the monitoring procedure does not always mean that the 

assignable cause actually occurred at that point. Finding the actual change point has 

been in great importance for many industries. For multivariate processes, 

Nedumaran et al. (2000) proposed an add-on change point estimation procedure 

when only mean shift is considered and Dogu and Deveci-Kocakoc (2011a) 

proposed an add-on change point estimator when only covariance shift is 

considered. Dogu and Deveci-Kocakoc (2011b) proposed a change point estimation 

procedure for 2  and S
 

combination chart emphasising the simultaneous 

monitoring of mean and variability for multivariate normal processes. The estimator 

(̂ ) focuses on estimating the most likely location of the change after a single or 

combination multivariate control chart issues a signal. The performance assessment 

of the estimator can be found in Dogu and Deveci-Kocakoc (2011b). Their 

assumption was that the 2  and S
 
combination chart should generate a signal in 

order to start the follow-up procedure. However, the ARL performance of 2  and 

S
 
combination chart may be inadequate for many industrial processes. The pressure 

to have high quality and yield processes forces organizations to improve their 

monitoring tools. Recently, only small shifts are tolerable for many implementations 

and industries. Exponentially weighted moving average (EWMA) based control 
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charts like Max-MEWMA and MELR are proper tools for these cases. Although,  

Zhang et al. (2010) showed that their procedure over-performs other alternatives in 

terms of run length results, we used Max-MEWMA and MELR control charts with  

the follow up change point estimator and summarized the simulation results in 

Section 4.4.  

 

The monitoring approaches generally should have good special cause detection 

and identification abilities. The change point estimation procedures enhance the 

detection ability of the monitoring procedure. The estimator (̂ ) when used with a 

multivariate joint monitoring scheme helps practitioners to find the actual time of a 

step change. Therefore, it improves the detection ability of the monitoring system. 

For multivariate single charts, it is not always easy to distinguish the actual 

responsible of the special cause between mean and variability. So when using a 

change point estimator along with the multivariate control charts, we recommend 

using some diagnostic tools to find out if the change is a mean shift, a covariance 

shift or both. As Max-MEWMA procedure provides diagnostic aids along with the 

chart statistics, some practitioners may prefer using this approach. In section 4.5, an 

illustrative example is provided to show the practice of the add-on change point 

estimation procedure. Our aim here is to investigate the detection performance of the 

change point estimator with various alternative monitoring tools such as: Max-

MEWMA and MELR control chats. We believe that change point detection 

performance of a monitoring tool is as important as its quick response ability to a 

shift. 

 

The remainder of this paper is organized as follows: the next section provides the 

details of the Max-MEWMA and MELR control charts. The third section gives the 

details of the change point model. In the forth section, performance assessment and 

other performance measurements are provided. Then an illustrative example and 

conclusions are presented. 
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4.2 Maximum Multivariate Exponentially Weighted Moving Average (Max-

MEWMA) and Multivariate Exponentially Weighted Likelihood Ratio Charts 

(MELR)  

 

In order to show the performance of the follow-up change point estimator with 

multivariate single control charts, we will consider Max-MEWMA control chart 

proposed by Chen et al. (2005) and MELR chart proposed by Zhang et al. (2010). 

These control charts are the competing procedures for multivariate simultaneous 

monitoring. Zhang et al. (2010) showed that MELR chart performs better than Max-

MEWMA chart in terms of ARL performances. However, Max-MEWMA control 

chart provides diagnostics while MELR does not. When an out-of-control signal is 

generated by the Max-MEWMA control chart, the chart indicates whether it is a 

mean shift, covariance shift or both. We will show the performance of the change 

point estimator with both procedures.  

 

The Max-MEWMA chart simply plots the maximum absolute values of mean and 

dispersion control chart statistics. It is capable of monitoring mean vector and 

covariance matrix simultaneously with a single control chart. Consider 

    10 1  ttt ZμXZ   where p0Z 0 ,   is a smoothing factor satisfying 

10   and 
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 where  pH  is the chi-

square distribution function with p degrees of freedom and 1  is the inverse 

standard normal distribution.  

 

In order to obtain a monitoring statistic for the variability define 

   
ttj

n

j

ttjtW XXΣXX 







1

1

0  and 
2

)1(~ nptW  . If a transformation 

 )()1(

1

tnp WH 

  is applied then     1)1(

1 1)( 

  ttnpt YWHY  . When the 

process is in control and the starting point is 00 Y , then define 
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 
   ttt Y

n
V

2
11

2








 . As tU  and 

tV  are independent and follow standard normal 

distribution when the process is in-control, a combination of tU  and tV  is 

determined as the single charting statistic: 

 

),max(MEWMAMax ttt VU .                                                                        (4.1)   

 

If 1MEWMA-Max ht  , then the process is considered to be out-of-control, where 

01 h  is the upper control limit which achieves a specific significance level and 

some values of 1h  can be obtained from Chen et al. (2005). 

 

 

MELR control chart is a single MEWMA control chart based on the generalized 

likelihood ratio (GLR) test for joint monitoring both the multivariate mean and 

variability. The run length results for various magnitudes of shift showed that 

MELR control chart over performs the competing single and combination charts.  

The following hypotheses are considered in MELR procedure.  

 

The null hypothesis is 0:0H  and pI and the alternative hypothesis is 

0:1H  and .pI  The GLR statistic is obtained as follows: 

 

  .logtrMELR
2

tttt p uvv                                                                          (4.2)
 

 

Here,   11  ttt uXu  ,   11  ttt vSv  ,     n
n

j

ttjttjt 


 



1

uXuXS , 

p0u 0 ,  and pIv 0 .   is a smoothing factor satisfying .10   2MELR ht  , 

then the process is considered to be out-of-control, where 02 h  is a threshold to 

achieve a specified IC ARL. The MELR does not provide diagnostics and Zhang et 

al. (2010) stated that this omnibus procedure may be problematic in diagnosing 

which parameter or parameters have shifted.    
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4.3 Multivariate Joint Change Point Estimation for Single Control Charts 

 

A very important issue of simultaneous multivariate process monitoring is the 

identification of the location or time of a special cause. While the single control 

charts provide a stopping time for the process professionals after a shift, this signal 

does not always mean that the assignable cause occurred at that particular time. In 

other words, the control charts have a potential delay to detect the change point. The 

change point analysis provides a solution to this setback of the control charts.  

Nedumaran et al. (2000) and Dogu and Deveci-Kocakoc (2011a) proposed add-on 

change point estimators for multivariate processes. Nedumaran et al. (2000) focused 

on the mean shift only model while Dogu and Deveci-Kocakoc (2011a) proposed a 

change point estimator for covariance shift only model. Dogu and Deveci-Kocakoc 

(2011b) proposed a multivariate change point procedure in order to detect step 

changes of mean and dispersion simultaneously and showed that their estimator 

works better than a combination change point estimator to find the most likely time 

of the special cause. The idea of the follow-up estimation of the change point based 

on backward CUSUMs started with the work of Samuel et al. (1998a, 1998b) for 

Phase II analysis. The MLE of change point is performed after a control chart 

generates a signal.  

 

Dogu and Deveci-Kocakoc(2011b) provided the accuracy and precision 

evaluation for the follow-up change point estimator when the process is monitored 

with 2  and S
 

combination chart. In order to show the consistency of this 

estimator we considered the estimation procedure for the same magnitudes of shift 

when the process is monitored with the Max-MEWMA and the MELR and 

compared the results with the case when the process is monitored with 2  and S
 

combination chart.  

 

Let  ),,,( 21
 ijpijijij XXX X  be a 1p  vector which represents the p  

characteristics of the j th observation n) , 2, 1,( j for the i
th

 subgroup of size n. 

Suppose further that when the process is in-control, the ijX ‟s are iid ),( 00 ΣμpN . 
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We let n  denote the subgroup size and we let iX  denote the average vector of the 

i
th

 subgroup. It is assumed that when the multivariate process mean and dispersion 

changes, there has been a step-change from its in-control value of 0μμ 
 
and 

0ΣΣ 
 
to an unknown value 1μμ   and 1ΣΣ   where 10 μμ   and 10 ΣΣ  . If 

control chart statistics exceed the control limits, it is concluded that the step-change 

in the process parameters occurred after some unknown time  , where 10  T  

and T  is the time that the combination chart signals. 

 

The maximum likelihood estimator of   can be the value of t for which the 

statistic MC  attains its maximum; that is,  
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the MLE‟s of mean vector and covariance matrix of the ( tT  ) most recent 

subgroup averages. 

 

4.4 Performance assessment 

 

The add-on change point estimation procedure provides additional benefits such 

as the estimation of the time of a step change. We now investigate the combination 

and single charts‟ detection performance along with the change point estimator. We 

specifically calculate the „average change point estimate‟ and „the empirical 

distribution of the estimated change point around the actual change point‟ for each 

monitoring procedure. These performance indicators were used by Samuel et al. 
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(1998a, 1998b), Nedumaran et al. (2000), Park and Park (2004) and Dogu and 

Deveci-Kocakoc (2011a, 2011b). The simulation study settings are constructed for 

bivariate case for simplicity and the performance comparison was conducted under 

the assumption that a step change of magnitude  2121 ,,,   occurs following the 

 th
 observation vector.  

 

Observations were randomly generated from an in-control ),( 00 ΣμpN  

distribution when 50i , the on-target mean vector was   0,00μ and the in-

control covariance matrix was selected as follows: 

 


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1

0




Σ

, 

 

where 11    is the correlation coefficient between two quality characteristics. 

In this study, the correlation coefficient was set to 0.0, 0.5 and 0.9. While the 

process is in-control, the observations which exceed the control limits are considered 

as false alarms. If a false alarm at the i
th

 observation ( i ) occurred, it was treated 

in the same way that a false alarm would be treated on an actual process. When an 

actual false alarm is determined in a process, the process professionals consider the 

process is in control and let the monitoring restart. The same approach is used in the 

simulation study. If the i
th

 observation is a false alarm, then the control chart 

restarted at  1i
th

 observation and the change point remained in its scheduled point. 

Starting with subgroup 51, the observations are randomly generated from 

),( 11 ΣμpN  until the combination control chart issued a signal. The structure of the 

changed mean vector and covariance matrix are given as: 
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For every run, when the control chart issued a signal, the time of the signal and 

the time of the change were calculated with the proposed estimator. This procedure 

was repeated a total of 10,000 times for each of the case and different magnitudes, 

denoted by   and  , for the subgroup size of 4n .  

 

A calibration procedure was used for each control chart so that they all had the 

same in-control ARL. If the practitioner chose 



S2 , then the combination 

of  2  and S  charts has a combined Type I error probability of   211  . As we 

choose 0027.0 , the ARL of the combination chart is expected to be 

  1850054.01111
2

  when no shifts of mean vector and covariance matrix 

are introduced. In order to be consistent in the comparison, the ARL of the Max-

MEWMA and MELR control charts are calibrated to 185. The smoothing constant 

for these control charts is 0.2 and upper control limits are calculated to achieve this 

specified in-control run length.  

 

4.4.1 Accuracy Evaluation 

 

In order to measure the accuracy performance of the change point estimator, the 

average change point estimation is considered with the expected signal point, which 

is denoted by )(TE . )(TE  can be considered as the sum of Average Run Length 

(ARL) and exact change point )( .  
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Table 4.1 Expected time of a signal, average change point estimates and their standard errors after 

S2
 , Max-MEWMA and MELR control charts signal; 50 , 0.01   and 10,000 

independent simulation runs  

    Mean Shift Setting 

    1 2 3 4 5 6 

Covariance Shift Setting  
1  0 0 0.25 0.5 0.5 1 

1  2   
2  0 0.25 0.5 0.75 1 1 

1 1 S
2

  )(TE   181.19 95.07 62.72 56.47 53.07 

   ̂   62.06 50.83 49.99 49.83 49.66 

   Std. error  0.23 0.09 0.03 0.03 0.04 

  Max-MEWMA )(TE   110.85 61.18 55.07 53.83 52.91 

   ̂   60.55 50.40 49.34 49.43 49.56 

   Std. error  0.26 0.08 0.06 0.04 0.03 

  MELR )(TE   79.55 60.31 54.87 53.66 52.67 

   ̂   57.55 50.67 49.41 49.38 49.40 

    
 

Std. error  0.18 0.08 0.05 0.04 0.04 

1.1 1.1 S
2

  )(TE  122.51 105.62 75.17 59.23 55.23 52.80 

   ̂  71.74 56.35 50.91 49.88 49.74 49.59 

   Std. error 0.39 0.19 0.09 0.04 0.06 0.02 

  Max-MEWMA )(TE  104.01 81.10 60.03 54.98 53.76 52.86 

   ̂  66.36 55.50 50.23 49.59 49.44 49.58 

   Std. error 0.33 0.18 0.08 0.05 0.04 0.03 

  MELR )(TE  117.84 79.55 59.19 54.64 53.50 52.62 

   ̂  75.75 57.55 50.40 49.40 49.31 49.52 

     
Std. error 0.39 0.18 0.08 0.06 0.05 0.03 

1.1 1.3 S
2

  )(TE  80.72 75.48 64.36 56.75 54.45 52.59 

   ̂  52.28 51.47 50.34 49.88 49.72 49.62 

   Std. error 0.21 0.13 0.06 0.05 0.04 0.04 

  Max-MEWMA )(TE  67.10 64.00 58.06 54.67 53.68 52.84 

   ̂  51.12 50.50 49.82 49.47 49.51 49.59 

   Std. error 0.12 0.11 0.07 0.05 0.04 0.03 

  MELR )(TE  66.77 62.69 56.90 54.12 53.22 52.47 

   ̂  53.10 52.02 50.11 49.39 49.47 49.48 

     Std. error 0.12 0.10 0.07 0.05 0.04 0.04 

1.3 1.5 S
2

  )(TE  59.56 58.67 56.47 54.09 53.18 52.20 

   ̂  49.62 49.59 49.44 49.48 49.50 49.57 

   Std. error 0.09 0.06 0.06 0.03 0.04 0.03 

  Max-MEWMA )(TE  56.20 55.87 54.98 53.85 53.28 52.68 

   ̂  49.04 49.11 49.40 49.48 49.51 49.64 

   Std. error 0.08 0.07 0.06 0.04 0.04 0.03 

  MELR )(TE  55.87 55.46 54.30 53.23 52.66 52.18 

   ̂  49.54 49.74 49.52 49.48 49.44 49.48 

     
Std. error 0.07 0.06 0.06 0.05 0.04 0.04 
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Table 4.2 Expected time of a signal, average change point estimates and their standard errors after 

S2
 , Max-MEWMA and MELR control charts signal; 50 , 5.0

1
  and 10,000 

independent simulation runs  

    Mean Shift Setting 

    1 2 3 4 5 6 

Covariance Shift Setting  
1  0 0 0.25 0.5 0.5 1 

1  2   
2  0 0.25 0.5 0.75 1 1 

1 1 S
2

  )(TE   138.73 79.44 59.62 55.65 53.06 

   ̂   50.36 50.27 50.04 49.85 49.77 

   Std. error  0.06 0.05 0.03 0.03 0.02 

  
Max-

MEWMA )(TE   101.44 60.91 55.17 53.87 52.97 

   ̂   49.97 49.87 49.61 49.69 49.70 

   Std. error  0.05 0.05 0.04 0.03 0.03 

  MELR )(TE   60.00 56.30 54.06 53.27 52.50 

   ̂   50.24 49.47 49.42 49.48 49.52 

    
 

Std. error  0.07 0.06 0.05 0.04 0.03 

1.1 1.1 S
2

  )(TE  109.49 82.23 69.50 57.79 54.98 52.84 

   ̂  50.78 50.23 50.30 50.04 49.87 49.71 

   Std. error 0.07 0.06 0.04 0.04 0.03 0.03 

  
Max-

MEWMA )(TE  91.80 77.93 59.70 55.08 53.88 52.95 

   ̂  50.07 50.03 49.89 49.72 49.66 49.67 

   Std. error 0.07 0.06 0.05 0.04 0.04 0.03 

  MELR )(TE  60.21 58.86 55.85 53.83 53.12 52.42 

   ̂  50.61 50.15 49.67 49.36 49.37 49.47 

     
Std. error 0.08 0.08 0.06 0.05 0.05 0.04 

1.1 1.3 S
2

  )(TE  80.15 75.52 63.26 56.37 54.21 52.68 

   ̂  50.56 50.34 50.24 49.97 49.86 49.72 

   Std. error 0.07 0.06 0.04 0.04 0.04 0.02 

  
Max-
MEWMA )(TE  66.05 63.65 57.87 54.75 53.78 52.92 

   ̂  49.99 49.90 49.81 49.64 49.67 49.73 

   Std. error 0.06 0.06 0.05 0.04 0.04 0.03 

  MELR )(TE  57.45 56.73 54.99 53.48 52.91 52.31 

   ̂  50.11 50.09 49.68 49.39 49.50 49.56 

     Std. error 0.07 0.07 0.06 0.05 0.04 0.03 

1.3 1.5 S
2

  )(TE  61.09 60.29 57.11 54.43 53.41 52.41 

   ̂  49.95 50.01 49.87 49.86 49.69 49.66 

   Std. error 0.07 0.05 0.05 0.04 0.04 0.03 

  
Max-

MEWMA )(TE  56.25 55.97 55.05 55.02 53.35 52.75 

   ̂  49.50 49.54 49.63 49.42 49.62 49.78 

   Std. error 0.06 0.05 0.05 0.06 0.04 0.03 

  MELR )(TE  54.49 54.26 53.63 52.89 52.50 52.11 

   ̂  49.59 49.58 49.43 49.46 49.51 49.47 

     
Std. error 0.06 0.06 0.06 0.05 0.04 0.04 
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Table 4.3 Expected time of a signal, average change point estimates and their standard errors after 

S2
 , Max-MEWMA and MELR control charts signal; 50 , 9.01   and 10,000 

independent simulation runs  

    Mean Shift Setting 

    1 2 3 4 5 6 

Covariance Shift Setting  
1  0 0 0.25 0.5 0.5 1 

1  2   
2  0 0.25 0.5 0.75 1 1 

1 1 S
2

  )(TE   93.20 69.36 58.08 55.21 55.16 

   ̂   49.99 49.99 49.97 49.97 49.99 

   Std. error  0.03 0.02 0.02 0.02 0.01 

  Max-MEWMA )(TE   80.25 60.08 55.17 53.90 53.01 

   ̂   49.89 49.90 49.90 49.92 49.91 

   Std. error  0.01 0.01 0.01 0.01 0.01 

  MELR )(TE   54.31 53.75 53.05 52.73 52.22 

   ̂   49.71 49.71 49.73 49.82 49.82 

    
 

Std. error  0.02 0.02 0.02 0.02 0.02 

1.1 1.1 S
2

  )(TE  85.31 79.93 64.54 56.89 54.61 52.82 

   ̂  49.98 50.00 49.98 49.98 49.95 49.92 

   Std. error 0.03 0.02 0.02 0.03 0.02 0.01 

  Max-MEWMA )(TE  78.21 72.54 59.05 55.06 53.86 52.98 

   ̂  49.89 49.90 49.88 49.88 49.90 49.91 

   Std. error 0.01 0.01 0.01 0.02 0.01 0.01 

  MELR )(TE  53.98 53.92 53.47 52.88 52.57 52.14 

   ̂  49.66 49.67 49.72 49.71 49.77 49.77 

     
Std. error 0.03 0.03 0.02 0.03 0.02 0.02 

1.1 1.3 S
2

  )(TE  73.64 70.11 61.21 55.86 54.18 52.76 

   ̂  49.97 49.99 50.00 49.97 49.96 49.92 

   Std. error 0.03 0.02 0.02 0.02 0.02 0.02 

  Max-MEWMA )(TE  64.38 63.05 57.61 54.71 53.79 52.95 

   ̂  49.88 49.89 49.89 49.86 49.90 49.92 

   Std. error 0.01 0.01 0.02 0.02 0.02 0.01 

  MELR )(TE  53.51 53.46 53.12 52.64 52.40 52.04 

   ̂  49.62 49.68 49.67 49.66 49.77 49.78 

     Std. error 0.03 0.03 0.03 0.03 0.02 0.02 

1.3 1.5 S
2

  )(TE  62.59 60.10 57.86 54.84 53.70 52.61 

   ̂  50.00 49.93 49.99 49.96 49.94 49.94 

   Std. error 0.03 0.02 0.02 0.02 0.01 0.02 

  Max-MEWMA )(TE  56.46 56.20 55.11 53.92 53.37 52.78 

   ̂  49.87 49.86 49.90 49.89 49.91 49.91 

   Std. error 0.02 0.02 0.02 0.02 0.02 0.02 

  MELR )(TE  52.79 52.76 52.55 52.29 52.11 51.85 

   ̂  49.65 49.68 49.58 49.65 49.68 49.74 

     
Std. error 0.03 0.03 0.03 0.03 0.03 0.02 
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As this particular study aimed to show the accuracy performance of the change 

point estimator with various alternative charting schemes, ̂  should be close to 50. 

Table 4.1-4.3 show the accuracy results for different values of 
1 . The average of 

change point estimates (̂ ), for all magnitudes of shift, are fairly close to the actual 

change point.  

 

For example, when a shift setting    5.1,3.1,5.0,25.0,,, 2121   and 5.01   

are considered, the average change point estimates are 49.87, 49.63 and 49.43 for 

different control chart alternatives, from Table 4.2 respectively. The average run 

lengths after the signal provided by the control charts are 7.11, 5.05 and 3.63, 

respectively. If the magnitude of shift is relatively large, then the change point 

estimator gives similar results for every control chart alternative. The best ARL 

performance was mostly obtained with the MELR chart. However, if the magnitude 

of shift is small, then the change point estimation surprisingly differs. The 

procedures with the MELR charts produce the farthest change point estimation to 

the actual change point. For instance, when a shift setting 

   1.1,1.1,0.0,0.0,,, 2121   and 0.01   are considered, the average change 

point estimates are 71.74, 66.36 and 75.75 for different control chart alternatives, 

respectively. This is most likely because there is more information available to 

estimate the change point when ARL is larger. For example in this case the ARL of 

the combination chart is 72.51 while the ARL of the MELR is 67.84. As the 

correlation between the variables increase, the run lengths of the control charts 

decrease and the accuracy performance increases for all procedures.  

 

4.4.2 Precision Evaluation 

 

The precision performance of the estimator with various control charts is also 

investigated. The three control chart options are considered and the results are 

compared for different magnitudes of shift settings. Generally, the precision 

performance of the change point estimator with the combination and Max-MEWMA 

charts are higher than the MELR chart scheme. This is probably because the MELR 
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chart has lower run length results than the others. As an alternative single 

multivariate control chart to the combination chart, Max-MEWMA has similar 

precision performance with the combination chart.  

    

For example, when a shift setting    5.1,3.1,0.1,0.1,,, 2121   and 5.01   

are considered, the exact detection probabilities are 0.67, 0.67 and 0.64 for different 

monitoring procedures, respectively. The observed frequencies of the change point 

estimates which are within a given number of periods (k) of the actual change point 

are also obtained. The detection probabilities for the change point estimator for 

various control charts are shown in Table 4.4-4.6. When the magnitudes of shift for 

mean vector, covariance matrix and correlation coefficient increase, then the 

detection performances increase and the difference between them becomes 

unapparent. 
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Table 4.4 Empirical distribution of ̂  around   after S2
 , Max-MEWMA and MELR control 

charts signal; 50 , 0.01   and 10,000 independent simulation runs 

Mean Shift Setting 

    1 2 3 4 5 6 

Covariance  

Shift Setting 1   0 0 0.25 0.5 0.5 1 

1  2  2   0 0.25 0.5 0.75 1 1 

1 1 )0ˆ(ˆ P  S
2

   0.067 0.264 0.486 0.586 0.712 

   Max-MEWMA  0.056 0.220 0.437 0.550 0.705 

   MELR  0.052 0.215 0.428 0.557 0.686 

  )1ˆ(ˆ P    0.146 0.467 0.717 0.816 0.895 

     0.136 0.407 0.671 0.766 0.876 

     0.122 0.398 0.656 0.774 0.871 

  )5ˆ(ˆ P    0.349 0.782 0.947 0.970 0.980 

     0.333 0.726 0.911 0.951 0.972 

     0.297 0.724 0.914 0.950 0.964 

1.1 1.1 )0ˆ(ˆ P  S
2

  0.038 0.088 0.252 0.460 0.568 0.686 

   Max-MEWMA 0.038 0.080 0.225 0.433 0.551 0.685 

   MELR 0.031 0.077 0.218 0.417 0.535 0.675 

  )1ˆ(ˆ P   0.089 0.192 0.462 0.698 0.797 0.881 

    0.090 0.182 0.415 0.660 0.763 0.868 

    0.080 0.169 0.407 0.646 0.759 0.861 

  )5ˆ(ˆ P   0.231 0.432 0.778 0.939 0.967 0.974 

    0.245 0.425 0.739 0.919 0.951 0.973 

    0.211 0.398 0.740 0.909 0.949 0.968 

1.1 1.3 )0ˆ(ˆ P  S
2

  0.140 0.182 0.302 0.463 0.592 0.688 

   Max-MEWMA 0.137 0.163 0.273 0.453 0.550 0.682 

   MELR 0.120 0.149 0.256 0.431 0.525 0.671 

  )1ˆ(ˆ P   0.281 0.344 0.520 0.710 0.812 0.881 

    0.275 0.325 0.484 0.680 0.779 0.869 

    0.253 0.294 0.464 0.665 0.752 0.862 

  )5ˆ(ˆ P   0.582 0.661 0.831 0.940 0.967 0.975 

    0.572 0.632 0.804 0.922 0.953 0.970 

    0.545 0.619 0.801 0.917 0.945 0.968 

1.3 1.5 )0ˆ(ˆ P  S
2

  0.316 0.347 0.414 0.525 0.616 0.701 

   Max-MEWMA 0.306 0.328 0.399 0.520 0.591 0.703 

   MELR 0.293 0.306 0.376 0.499 0.571 0.676 

  )1ˆ(ˆ P   0.547 0.584 0.652 0.761 0.832 0.885 

    0.526 0.552 0.633 0.752 0.807 0.886 

    0.517 0.531 0.616 0.731 0.796 0.868 

  )5ˆ(ˆ P   0.851 0.872 0.911 0.949 0.964 0.974 

    0.838 0.857 0.906 0.946 0.959 0.973 

    0.834 0.857 0.905 0.941 0.954 0.967 
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Table 4.5 Empirical distribution of ̂  around   after S
2

 , Max-MEWMA and MELR control 

charts signal; 50 , 5.01   and 10,000 independent simulation runs 

Mean Shift Setting 

    1 2 3 4 5 6 

Covariance  

Shift Setting 1   0 0 0.25 0.5 0.5 1 

1  2  2   0 0.25 0.5 0.75 1 1 

1 1 )0ˆ(ˆ P  S
2

   0.323 0.404 0.537 0.615 0.703 

   Max-MEWMA  0.317 0.384 0.505 0.599 0.699 

   MELR  0.250 0.335 0.477 0.572 0.675 

  )1ˆ(ˆ P    0.552 0.645 0.775 0.836 0.895 

     0.544 0.621 0.737 0.818 0.882 

     0.451 0.558 0.709 0.793 0.866 

  )5ˆ(ˆ P    0.853 0.919 0.968 0.979 0.982 

     0.849 0.895 0.950 0.969 0.978 

     0.775 0.859 0.932 0.958 0.968 

1.1 1.1 )0ˆ(ˆ P  S
2

  0.261 0.398 0.368 0.504 0.593 0.678 

   Max-MEWMA 0.257 0.293 0.356 0.476 0.575 0.676 

   MELR 0.209 0.234 0.317 0.452 0.552 0.648 

  )1ˆ(ˆ P   0.474 0.633 0.606 0.745 0.819 0.881 

    0.471 0.526 0.592 0.713 0.797 0.868 

    0.391 0.432 0.540 0.688 0.780 0.842 

  )5ˆ(ˆ P   0.798 0.908 0.897 0.961 0.972 0.980 

    0.798 0.836 0.885 0.942 0.96 0.974 

    0.719 0.770 0.858 0.928 0.952 0.962 

1.1 1.3 )0ˆ(ˆ P  S
2

  0.297 0.316 0.392 0.392 0.499 0.670 

   Max-MEWMA 0.286 0.306 0.372 0.486 0.560 0.667 

   MELR 0.242 0.271 0.338 0.457 0.542 0.651 

  )1ˆ(ˆ P   0.510 0.546 0.625 0.627 0.739 0.873 

    0.510 0.532 0.6035 0.721 0.794 0.866 

    0.447 0.480 0.569 0.694 0.773 0.858 

  )5ˆ(ˆ P   0.834 0.858 0.904 0.908 0.955 0.978 

    0.829 0.852 0.891 0.944 0.963 0.977 

    0.782 0.821 0.875 0.931 0.953 0.968 

1.3 1.5 )0ˆ(ˆ P  S
2

  0.384 0.414 0.466 0.535 0.611 0.676 

   Max-MEWMA 0.377 0.399 0.441 0.444 0.585 0.675 

   MELR 0.342 0.360 0.414 0.495 0.565 0.640 

  )1ˆ(ˆ P   0.639 0.656 0.709 0.779 0.830 0.874 

    0.617 0.637 0.679 0.666 0.811 0.870 

    0.579 0.597 0.654 0.740 0.800 0.849 

  )5ˆ(ˆ P   0.917 0.922 0.944 0.963 0.969 0.976 

    0.893 0.909 0.925 0.917 0.963 0.978 

    0.880 0.892 0.915 0.946 0.959 0.963 
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Table 4.6 Empirical distribution of ̂  around   after S
2

 , Max-MEWMA and MELR control 

charts signal; 50 , 9.01   and 10,000 independent simulation runs 

Mean Shift Setting 

    1 2 3 4 5 6 

Covariance  

Shift Setting 1   0 0 0.25 0.5 0.5 1 

1  2  2   0 0.25 0.5 0.75 1 1 

1 1 )0ˆ(ˆ P  S
2

   0.844 0.843 0.846 0.863 0.863 

   Max-MEWMA  0.849 0.843 0.850 0.867 0.882 

   MELR  0.790 0.794 0.807 0.834 0.857 

  )1ˆ(ˆ P    0.964 0.962 0.963 0.972 0.974 

     0.966 0.968 0.966 0.970 0.973 

     0.925 0.924 0.939 0.951 0.960 

  )5ˆ(ˆ P    0.999 0.998 0.997 0.998 0.998 

     0.997 0.996 0.995 0.995 0.995 

     0.984 0.983 0.986 0.989 0.990 

1.1 1.1 )0ˆ(ˆ P  S
2

  0.822 0.826 0.814 0.830 0.845 0.857 

   Max-MEWMA 0.824 0.833 0.825 0.832 0.849 0.863 

   MELR 0.745 0.753 0.760 0.776 0.813 0.830 

  )1ˆ(ˆ P   0.957 0.956 0.956 0.961 0.967 0.970 

    0.961 0.963 0.957 0.960 0.963 0.969 

    0.901 0.911 0.912 0.925 0.942 0.952 

  )5ˆ(ˆ P   0.999 0.999 0.998 0.998 0.998 0.996 

    0.996 0.996 0.995 0.995 0.995 0.996 

    0.980 0.981 0.983 0.984 0.986 0.988 

1.1 1.3 )0ˆ(ˆ P  S
2

  0.794 0.803 0.801 0.809 0.822 0.837 

   Max-MEWMA 0.797 0.803 0.805 0.805 0.832 0.850 

   MELR 0.729 0.729 0.733 0.762 0.793 0.814 

  )1ˆ(ˆ P   0.946 0.949 0.953 0.952 0.958 0.963 

    0.944 0.949 0.949 0.948 0.959 0.962 

    0.888 0.900 0.901 0.916 0.936 0.947 

  )5ˆ(ˆ P   0.997 0.998 0.998 0.997 0.996 0.996 

    0.995 0.995 0.994 0.993 0.995 0.995 

    0.976 0.980 0.980 0.981 0.985 0.988 

1.3 1.5 )0ˆ(ˆ P  S
2

  0.760 0.409 0.774 0.782 0.800 0.819 

   Max-MEWMA 0.755 0.759 0.762 0.789 0.806 0.825 

   MELR 0.685 0.705 0.713 0.745 0.767 0.787 

  )1ˆ(ˆ P   0.935 0.653 0.938 0.943 0.952 0.957 

    0.928 0.930 0.931 0.939 0.948 0.956 

    0.881 0.890 0.890 0.910 0.922 0.935 

  )5ˆ(ˆ P   0.997 0.923 0.997 0.997 0.995 0.996 

    0.992 0.992 0.994 0.994 0.995 0.995 

    0.976 0.977 0.974 0.977 0.980 0.985 
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4.4.3 Confidence Sets Based on the Change Likelihood Function 

 

The accuracy and precision evaluations showed that there is no best in our three 

monitoring approaches. If the process professionals target to detect small shifts 

quickly, then they would choose the MEWMA based control charts. As a result, they 

may not have better change point estimation performance. A solution to this 

problem can be the construction of some confidence region for the change point 

estimation. This way, the practitioners may investigate an interval or a set of 

possible change points.  An empirical confidence interval can be constructed using 

the simulation result in part 4.4 as well. Constructing confidence sets for change 

point estimates were first introduced by Pignatiello and Samuel (2001). The 

confidence set of the multivariate joint change point estimator was constructed for 

the S2 combination chart scheme by Dogu and Deveci-Kocakoc (2011b). The 

set of potential change points will help process professionals to focus on quick and 

correct identification of the special cause and taking appropriate actions when they 

use any control chart in order to obtain a signal of the change.  
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is the value of log likelihood function at t , and D  is the reference value to develop 

a )%1(100   confidence set. Pignatiello and Samuel (2001) used an interval of 

reference value where the lower limit is Box and Cox‟s (1964) proposal and the 

upper limit is Siegmund‟s(1986) proposal for a 90% confidence set.  

 

If  )(ln tL  exceeds the limit of   DL )ˆ(ln  , then t  is a candidate change point.  

We considered a set of reference values as  2.97 2.00,2.5, 1.5, 1.353,D  and 

investigated the coverage probabilities of each shift setting for each control chart 

option we used. The coverage probability represents the percentage of the sets which 
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include the exact change point within 10,000 simulation runs. Also the sizes 

(cardinality) of the sets are recorded (See Table 4.7-4.8).  

 

We noted that, however, the ARL for the combination chart is larger than the 

other single charts, the cardinalities and coverage probabilities of confidence sets are 

generally smaller. This situation is more obvious when the magnitude of shift is 

small. When the magnitude of shift is greater than 0.5 for mean vector and 

covariance matrix, the results for different monitoring schemes become similar.  

Considering the tables, the largest critical value ( D =2.97) satisfies approximately 

90% confidence region for mean shifts greater than 0.5 (for any covariance shift).  
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Table 4.7 Average cardinality and coverage probability values obtained using different critical Values 

( D ) after S2
 , Max-MEWMA and MELR control charts signal; 50 ,  mean shift setting 3 

and 4 and 10,000 independent simulation runs  

 

  
1   0.25 0.50 

  
2   0.50 0.75 

1  2  D   1.35 1.50 2.00 2.50 2.97 1.35 1.50 2.00 2.50 2.97 

1 1 A. Cardinality S
2

  
2.80 3.05 3.96 4.92 5.90 2.05 2.20 2.76 3.40 4.08 

  C. Probability  0.70 0.73 0.79 0.84 0.88 0.75 0.77 0.82 0.86 0.89 

   Max-

MEWMA 
2.98 3.27 4.33 5.54 6.77 2.28 2.48 3.20 4.03 4.92 

    0.68 0.71 0.78 0.84 0.88 0.73 0.75 0.81 0.86 0.89 

   MELR 3.02 3.34 4.54 6.01 7.58 2.38 2.59 3.41 4.37 5.46 

    0.61 0.63 0.71 0.78 0.83 0.70 0.72 0.78 0.83 0.87 

1.1 1.1 A. Cardinality S
2

  
2.94 3.22 4.22 5.33 6.48 2.17 2.34 2.99 3.73 4.54 

  C. Probability  0.66 0.69 0.76 0.82 0.86 0.72 0.74 0.80 0.85 0.88 

   Max-

MEWMA 
3.13 3.45 4.64 5.97 7.33 2.36 2.56 3.36 4.27 5.25 

    0.65 0.68 0.76 0.82 0.86 0.70 0.72 0.79 0.84 0.88 

   MELR 3.09 3.42 4.70 6.20 7.83 2.46 2.68 3.57 4.63 5.79 

    0.59 0.61 0.69 0.76 0.81 0.68 0.70 0.76 0.81 0.86 

1.1 1.3 A. Cardinality S
2

  
2.78 3.05 4.03 5.15 6.28 2.19 2.36 3.05 3.83 4.68 

  C. Probability  0.67 0.69 0.76 0.82 0.86 0.71 0.73 0.79 0.83 0.87 

   Max-
MEWMA 

3.03 3.34 4.49 5.82 7.19 2.39 2.60 3.42 4.36 5.37 

    0.66 0.68 0.76 0.81 0.86 0.71 0.73 0.80 0.84 0.88 

   MELR 3.00 3.31 4.55 6.00 7.58 2.43 2.65 3.53 4.57 5.72 

    0.59 0.62 0.69 0.76 0.81 0.67 0.69 0.75 0.81 0.85 

1.3 1.5 A. Cardinality S
2

  
2.51 2.74 3.66 4.70 5.81 2.12 2.29 2.98 3.80 4.68 

  C. Probability  0.70 0.72 0.78 0.83 0.87 0.73 0.75 0.80 0.85 0.88 

   Max-

MEWMA 
2.68 2.94 3.99 5.18 6.44 2.56 2.82 3.83 5.03 6.36 

    0.69 0.71 0.78 0.83 0.87 0.68 0.71 0.77 0.83 0.87 

   MELR 2.63 2.90 3.93 5.17 6.50 2.28 2.49 3.32 4.30 5.38 

    0.65 0.67 0.74 0.80 0.84 0.69 0.70 0.76 0.82 0.86 
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Table 4.8 Average Cardinality and Coverage Probability Values Obtained Using Different Critical 

Values ( D )after S2
 , Max-MEWMA and MELR control charts signal; 50 ,  mean shift 

setting 5 and 6 and 10,000 Independent Simulation Runs  

  
1   0.5 1 

  
2   1 1 

1  2  D   1.35 1.50 2.00 2.50 2.97 1.35 1.50 2.00 2.50 2.97 

1 1 A. Cardinality S
2

  1.80 1.91 2.34 2.86 3.41 1.62 1.72 2.07 2.52 3.04 

  C. Probability  0.79 0.81 0.85 0.88 0.91 0.84 0.86 0.89 0.91 0.93 

   Max-
MEWMA 1.93 2.07 2.61 3.25 3.95 1.68 1.78 2.17 2.65 3.17 

    0.78 0.80 0.84 0.88 0.91 0.84 0.85 0.89 0.91 0.93 

   MELR 2.03 2.19 2.81 3.56 4.40 1.75 1.87 2.31 2.85 3.46 

    
0.76 0.78 0.83 0.86 0.90 0.82 0.83 0.87 0.90 0.92 

1.1 1.1 A. Cardinality S
2

  1.97 2.04 2.55 3.14 3.80 1.71 1.82 2.23 2.75 3.32 

  C. Probability  0.78 0.79 0.84 0.87 0.90 0.83 0.84 0.87 0.90 0.92 

   Max-

MEWMA 2.04 2.20 2.79 3.49 4.27 1.75 1.86 2.30 2.83 3.42 

    0.77 0.79 0.84 0.88 0.91 0.82 0.83 0.87 0.90 0.92 

   MELR 
2.10 2.28 2.94 3.75 4.66 1.85 1.98 2.50 3.12 3.81 

    0.74 0.76 0.81 0.85 0.89 0.80 0.81 0.85 0.88 0.91 

1.1 1.3 A. Cardinality S
2

  1.93 2.06 2.60 3.24 3.94 1.72 1.83 2.23 2.76 3.37 

  C. Probability  
0.77 0.78 0.83 0.87 0.89 0.82 0.83 0.87 0.90 0.92 

   Max-

MEWMA 2.05 2.21 2.84 3.58 4.37 1.76 1.87 2.31 2.85 3.42 

    
0.76 0.77 0.82 0.86 0.89 0.82 0.83 0.87 0.90 0.92 

   MELR 2.10 2.28 2.96 3.77 4.68 1.82 1.95 2.45 3.05 3.70 

    0.73 0.75 0.80 0.84 0.88 0.80 0.81 0.85 0.88 0.91 

1.3 1.5 A. Cardinality S
2

  1.93 2.07 2.66 3.36 4.11 1.72 1.84 2.31 2.88 3.52 

  C. Probability  0.77 0.79 0.84 0.87 0.90 0.81 0.83 0.86 0.89 0.92 

   Max-
MEWMA 2.00 2.16 2.77 3.50 4.28 1.71 1.82 2.25 2.77 3.35 

    0.77 0.78 0.84 0.88 0.90 0.81 0.83 0.86 0.89 0.92 

   MELR 2.06 2.24 2.90 3.72 4.61 1.87 2.01 2.54 3.18 3.91 

    0.75 0.77 0.81 0.85 0.88 0.79 0.81 0.85 0.88 0.91 

 

4.4.4 Comparison with Generalized Likelihood Ratio Test Statistics based 

Change Point Estimator 

 

Another most widely used change point estimation procedure is to perform 

sequential likelihood ratio tests and find the maximum of these statistics. The 

problem of simultaneous changes in the mean vector and covariance matrix of a 

Gaussian model was studied by Chen and Gupta (2000). They noted that instead of 

using the usual GLR test statistic, one can use the log likelihood statistic: 

 



94 

 

 

,
ˆˆ

ˆ

logmaxˆ

2

1

10

0




































tTt

T

Tt
GLR

ΣΣ

Σ
                                                                             (4.3)

 

where 



t

i

jit
t 1

,,00

1
ˆ XXμ , 




T

ti

iTt
tT 1

,1

1
ˆ XXμ ,  

   
 





t

i

n

j

ijij
tn 1 1

000
ˆˆ

)(

1ˆ μXμXΣ ,    
 








T

ti

n

j

ijij
tTn 1 1

111
ˆˆ

)(

1ˆ μXμXΣ ,  





n

i

i
n 1

1
ˆ Xμ , and    







n

j

ijij
n 1

ˆˆ
1ˆ μXμXΣ

 

are the MLE‟s of mean vector and 

covariance matrix. The location of the change is estimated by ̂ , where ̂  is the 

value of t  such that GLR̂  has its maximum. In our case, we will use this estimator in 

order to find out the special cause when a MELR chart generates a signal. The in-

control ARL is set to 185 and the smoothing constant is chosen to as 0.2. As our 

focus is Phase II analysis of the processes, we use the known parameters of central 

tendency and dispersion. Here in our simulation study, the known parameters are  

0μ 0  and pIΣ 0 .  

 

Table 4.9 shows the accuracy results of these two estimators. Since GLR based 

estimator has similarities with the likelihood based estimation procedure in 

formulation, the results are fairly close. The MLE based procedure has a slightly 

better performance when the small covariance shifts are introduced. On the other 

hand, the GLR based procedure has a slightly better performance for small mean 

shifts. For the other cases, the two procedures have high detection capabilities. Table 

4.10 shows the empirical distributions of these estimators around  . The MLE 

based estimation procedure performs slightly better than the GLR based method, but 

this difference is less obvious when the magnitude of shift and correlation between 

variables increase. With pure statistical perspective, natural logarithm of likelihood 

ratio test statistics gives us a function which includes overall, pre and post shift 

covariances. The MLE of the change point simply contains pre and post shift 

probability distributions. The MLE based procedure may be criticized as the 

traditional distributional results of the change-point theory may not be applicable. 
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However, the distributional assumptions are enough to run these procedures for 

many applications of special cause identification. 

 

Table 4.9 Expected time of a signal, average change point estimates for MLE and GLR  and their 

standard errors after MELR control charts signal; 50 , 0.5and0.01  , 10,000 independent 

simulation runs  

    0.01   0.51   

 1   2  1  2  )(TE  MC̂  GLR̂  )(TE  MC̂  GLR̂  

0.25 0 1 1 116.58 63.41 59.17 61.82 50.33 50.24 

        0.60 0.27 0.28 0.07 0.07 0.09 

0 0 1.25 1 83.50 57.03 63.62 59.94 50.45 50.38 

        0.30 0.17 0.28 0.06 0.07 0.09 

0.25 0.50 1 1 62.09 50.79 49.73 57.11 49.89 49.38 

        0.08 0.07 0.10 0.04 0.05 0.07 

0.5 1 1 1 53.99 49.51 49.14 53.50 49.54 49.22 

        0.02 0.04 0.06 0.01 0.04 0.05 

1 1 1 1 52.89 49.60 49.34 52.67 49.56 49.37 

        0.01 0.03 0.04 0.01 0.03 0.04 

0.25 0.50 1.30 1.50 54.69 49.83 49.31 53.93 49.71 49.20 

        0.03 0.05 0.07 0.02 0.05 0.07 

0.50 1 1.50 2 52.02 49.62 49.40 52.00 49.67 49.36 

        0.01 0.03 0.04 0.01 0.03 0.05 

0 0 1.30 1.50 56.50 49.98 49.41 54.89 49.75 49.31 

        0.04 0.06 0.09 0.03 0.06 0.08 

0 0 1.50 2 52.62 49.53 49.16 52.49 49.65 49.31 

        0.01 0.04 0.06 0.01 0.04 0.05 

 

A control chart also can be developed from the likelihood ratio test statistic. 

Sullivan and Woodall (2000) proposed a single multivariate control chart based on 

GLR for multivariate individual process readings. They used a similar statistic with 

Chen and Gupta (2000). They also divided the test statistics into a part for the mean 

shift and another part for the covariance shift.  Their approach was able to detect the 

location of a shift, the presence of multiple changes and the type of the change 

(mean shift, covariance shift or combination shift).  Zamba and Hawkins (2009) 

proposed a multivariate change point model through GLR statistics for estimating 

the change in mean vector and/or covariance structure. Their change point model is 

able to monitor short runs and unknown or not fully known parameter processes. A 

similar statistic also was used by Zamba and Hawkins (2009) and if the maximum of 

this statistic exceeds a threshold then a signal of the change is considered to be 
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generated. The point ( t ) such yields the maximum is diagnosed as the change point. 

This approach of change point detection may be criticized because of the 

computational work load. In this approach, the critical value or the threshold 

depends on the number of observations. Therefore, the threshold has to be 

recalculated as each new observation enters the monitoring system along with the 

control chart statistics and MLE of the change point.      
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Table 4.10 Empirical distributions of MC̂  and GLR̂  around   after MELR chart signals; 50 , 

0.5and0.01  , 10,000 independent simulation runs 

     0.01   0.51   

 1   2  1  2    
MC̂  GLR̂  MC̂  GLR̂  

0.25 0 1 1 )0ˆ(ˆ P  0.051 0.049 0.259 0.237 

    )1ˆ(ˆ P  0.122 0.116 0.460 0.430 

    )5ˆ(ˆ P  0.306 0.288 0.784 0.746 

        )10ˆ(ˆ P  0.452 0.429 0.916 0.888 

0.25 0.5 1 1 )0ˆ(ˆ P  0.223 0.217 0.351 0.338 

    )1ˆ(ˆ P  0.417 0.402 0.578 0.558 

    )5ˆ(ˆ P  0.736 0.719 0.879 0.853 

        )10ˆ(ˆ P  0.894 0.871 0.959 0.942 

0.5 1 1 1 )0ˆ(ˆ P  0.563 0.556 0.576 0.568 

    )1ˆ(ˆ P  0.783 0.772 0.789 0.779 

    )5ˆ(ˆ P  0.955 0.946 0.960 0.951 

        )10ˆ(ˆ P  0.979 0.969 0.981 0.973 

0.25 0.50 1.30 1.50 )0ˆ(ˆ P  0.392 0.377 0.420 0.400 

    )1ˆ(ˆ P  0.627 0.601 0.663 0.638 

    )5ˆ(ˆ P  0.908 0.884 0.926 0.908 

        )10ˆ(ˆ P  0.968 0.951 0.971 0.956 

0 0 1.25 1 )0ˆ(ˆ P  0.083 0.064 0.241 0.218 

    )1ˆ(ˆ P  0.192 0.148 0.446 0.411 

    )5ˆ(ˆ P  0.438 0.348 0.770 0.721 

        )10ˆ(ˆ P  0.614 0.496 0.905 0.868 

0 0 1.3 1.5 )0ˆ(ˆ P  0.309 0.285 0.356 0.336 

    )1ˆ(ˆ P  0.528 0.490 0.592 0.562 

    )5ˆ(ˆ P  0.845 0.802 0.886 0.859 

        )10ˆ(ˆ P  0.942 0.914 0.959 0.942 

 

4.5 Illustrative example 

 

The change point estimation procedure is applied to a simulated data set to 

illustrate the practical use of control charts and the change point estimator. The 

change point estimation procedure is used under the assumption that the parameters 

are known. The illustration is for a bivariate data set and n=4. The in-control 
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parameters are   0,00μ  and 20 IΣ  . The out-of-control parameters are 

  0,5.01μ  and ]0.15.0;5.00.1[1 Σ . In this example, a combination shift is 

introduced after the 50
th

 observation vector. Data generation process stopped when 

the combination chart issued a signal. The combination chart issued its first signal at 

the 61
st
 observation. We used this 61 process readings with the investigated control 

charts and change point estimators. S2  combination chart is given in Figure 

4.1.  

 

 

Figure 4.1 S2
 combination charts for the illustrative example 

 

Figure 4.1 shows that the 
2 control chart generated a signal at the 61

st
 

observation. After generating the first signal, the process was considered to be out-

of-control and the time of the shift was investigated. Max-MEWMA control chart 

was also drawn for the same data set from (4.1). The Max-MEWMA control chart 

produced its first signal at the 58
th

 process reading. Figure 4.2 shows diagnostic 

outputs (U and V) along with the Max-MEWMA control chart. After obtaining the 

signal we run the change point procedure with the Max-MEWMA control chart for 

the first 58 observations. Lastly, we used the same data set in order to show the 
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performance under the assumption that the signal was issued with the MELR control 

chart using (4.2). Figure 4.3 shows the MELR chart for the simulated data set. 

 

 

Figure 4.2 The Max-MEWMA control chart, mean shift and covariance shift monitoring statistics for 

the illustrative example 

 

In Figure 4.3, like the Max-MEWMA control chart the first signal is issued after 

the 57
th

 process reading. The add-on procedure was run and additionally GLR based 

estimation procedure was run for the first 58 observation vectors. Figure 4.4 shows 

the change point estimation results for S2 combination chart, the Max- 

MEWMA and the MELR control charts.  
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Figure 4.3 The MELR control chart, mean shift and covariance shift monitoring  

statistics for the illustrative example 

 

Figure 4.4 includes the four versions of change point estimation. Looking closely 

to the results, one can easily interpret that the time where the likelihoods are 

maximum is around 50. Using the add-on procedure with the combination chart, the 

change was estimated to occur after the 50
th

 observation. The same result was 

obtained with the procedure of the Max-MEWMA control chart. On the other hand, 

the procedure with the MELR control chart and the GLR based estimation procedure 

calculated with (4.3) showed that the change was after the 49
th

 observation. As the 

information gathered from the process during applying different monitoring 

approaches is approximate, the plots are barely different. But the actual change point 

was estimated when using the combination chart and the Max-MEWMA control 

cart. While the MELR control chart provides no insight about the responsible of the 

shift, the combination and the Max-MEWMA control charts provided helpful 

diagnostics. The Max-MEWMA control chart diagnostics (U and V) shows a shift in 

mean vector and a slight shift in covariance matrix while the combination chart only 

showed a shift in mean vector. The Max-MEWMA reflected the actual case 

successfully and gave quick response to the shift.  
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Figure 4.4 Plots of likelihood values at possible change points S2
 combination chart, the Max- 

MEWMA and the MELR control charts 

 

4.6 Conclusions 

 

Today, industrial processes produce huge amounts of data and joint assessment of 

multivariate process quality is needed for most of the cases. Since, there is an 

increasing pressure to produce high quality products and services, the practitioners 

need help to find out special causes of variability and identify the time of a small, 

moderate or large shift in mean and/or variability. The change point analysis with 

existing monitoring tools is a highly effective technique to investigate the special 

causes.   

 

A follow-up change point estimation procedure for jointly monitoring the mean 

and covariance of a p-variate process is proposed by Dogu and Deveci-Kocakoc 

(2011b). In this study, we examined the performance of this estimation procedure 

under the assumption that the process is monitored with the S2 combination 

chart or multivariate single control charts. Since the performance with the 

combination chart is shown previously, we focused on the performance with the 
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multivariate single control chart alternatives and compared them. The single charts 

are easy to apply and visually attractive because one control chart is enough to 

jointly monitor the mean and variability. The two competing control charts are used 

in this study. These are the Max-MEWMA and the MELR control charts.  

 

The proposed estimator is capable of detecting the step change successfully with 

all of the above control charts. The performance evaluation has shown that the 

change point formulation has high detection ability independently from control chart 

type. However, the performance is satisfactory for each monitoring approach, the 

combination chart has slightly better performance for small magnitudes of shift. This 

result raised here because the run length of the combination chart is greater than the 

others. This means that the change point procedure would run with a longer series of 

process readings. As the information gathered from the process increases, the better 

estimates are obtained. The change point procedure with multivariate single control 

charts does not have a better performance for small magnitudes of shift but they 

have their own advantages. Not estimating the change point for very small 

magnitudes of shift as accurate as the procedure with the combination chart is a 

result of the quick detection ability of the multivariate single control charts. Thus, 

the practitioner may spend effort to construct confidence sets for the change point 

and investigate this search window for the change point instead of inspecting more 

products or services. This approach obviously would save time, and man-power for 

inspection.  

 

We used the likelihood functions of the pre and post shift distributions and 

followed the work of Pignatiello and Samuel (2001) to find the estimator. In the 

literature, change point theory widely uses the likelihood ratio test statistics. Thus, 

we compared the two approaches of change point estimation. Even though, the two 

estimators have similar accuracies, MLE based change point estimation procedure is 

slightly more precise than the GLR based approach. An illustrative example is given 

to indicate the practical use of the change point estimator with multivariate single 

control charts. This hypothetical example indicates the ease of implementation and 
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interpretation of the control charts with the change point procedure for jointly 

monitoring mean and variability.  
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CHAPTER FIVE 

CONCLUSIONS 

 

The primary objective of this research was to develop new change point 

procedures for multivariate processes. Traditional way of looking for the special 

cause after a signal does not always work for many processes. More sophisticated 

tools are needed for better identification of the time of a special cause. The change 

point analysis as an add-on procedure in SPC has been shown to be effective and 

successful for this purpose (see for example Samuel et al. (1998a, 1998b), 

Pignatiello and Samuel (2001), Nedumaran et al. (2000)). We focused on the 

multivariate frame and proposed change point procedures for well-known 

multivariate monitoring approaches in this research. After a signal is generated from 

a multivariate control chart, our proposed procedures are capable of detecting the 

time of a step change accurately and precisely.  

 

Our first change point proposal was for the S  control chart. Following the work 

of Nedumaran et al. (2000), we developed a multivariate change point procedure for 

only covariance shift assuming no mean shift. Our assumption here was that the shift 

occurred only in covariance matrix. We showed that our proposed procedure 

correctly detects a step change for small, moderate and large magnitudes of shift. 

The performance analysis was conducted under the assumption that the process was 

being monitored with a S  control chart.  

 

Another main objective in our study was to propose a procedure for simultaneous 

monitoring of mean vector and covariance matrix. Since the most widely used 

monitoring approach is a 2  and S  combination chart, we developed a procedure 

for 2  and S  combination chart. We showed that this procedure performs 

satisfactory in terms of accuracy and precision. The MLE of the process change 

point allows the construction of a confidence set on the true change point. This 

confidence set provides valuable knowledge and a search window to
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process professionals in order to start looking for the exact time of the change. This 

set of possible candidates of change point helps the practitioner to identify the 

special cause easily. We constructed confidence sets for various reference values 

and showed that this approach is practical for joint estimation of a step change in 

multivariate setting. 

 

Since a successful monitoring program requires monitoring mean and covariance 

shifts, the importance of simultaneously monitoring process mean and variability 

has been increased. On the other hand, the practice of combining existing control 

charts for mean and variability has been discussed to be unproductive and various 

multivariate single control charts proposed by Chen et al. (2005), Cheng and Thaga 

(2005), Thaga and Gabaitiri (2006) and  Zhang et al. (2010). As this control charts 

have better performances than the traditional combination chart, our concern was to 

show the performance of the joint estimation procedure under the assumption that 

the process is being monitored with a multivariate single control chart. After 

conducting simulation studies for various shift combinations and magnitudes, we 

noted that the proposed joint estimator is capable of detecting the step change 

successfully with all the single charts. However the performance is satisfactory for 

each monitoring approach, the traditional combination chart has slightly better 

performance for small magnitudes of shift. The reason for this result was the better 

estimation of the parameters obtained from the data gathered from the procedure of 

combination chart. As the combination chart has long run lengths compared to the 

single charts, longer series of process readings are available. This surprising 

performance loss can be easily repaired using the confidence set along with the 

change point estimation. We conducted a simulation study and showed examples of 

the confidence sets and coverage probabilities for all the monitoring approaches.  
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Figure 5.1 Plots of coverage probabilities and average cardinalities versus various references )(D for 

mean shift setting )5.0,25.0( ; 50 , 5.0 and 10,000 independent simulation runs  

 

 

 

Figure 5.2 Plots of coverage probabilities and average cardinalities versus various references )(D for 

mean shift setting )1,1( ; 50 , 5.0  and 10,000 independent simulation runs  

 

Figure 5.1 and 5.2 shows the average cardinality and coverage probability for 

each simulation setting and reference. If the reference value is chosen as 2.97, 

proposed by Siegmund (1986), then all of the procedures produce at least 80% 

coverage, and coverage probabilities are fairly similar. But this preference causes 

the cardinalities to get larger. The largest set lengths and the lowest coverage 
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probabilities were obtained when the procedure was run under the assumption that 

the monitoring tool was a MELR chart. Even though MELR chart quickly detects 

the change, this property affects the identification performance of the change point 

estimator. As a result, if process professionals prefer quick detection for small shifts, 

then they need to put more effort for exact special cause identification. In other 

words, they will have a wider search window to look for the special cause.  

 

The procedure with 2  and S  combination chart provides the shortest set 

lengths and highest coverage probabilities. This means that the change point 

estimator work best with the combination chart among these monitoring tools. The 

professionals will have a narrow search window and higher caption ability. On the 

other hand, combination charts have their own disadvantages. They are good at 

detecting large magnitudes of shift. In contrast, when the magnitude is small, then 

they could not respond quickly. The other disadvantage is that they need more 

resources such as professionals and time. If the process is stable then the 

professionals will have to run two separate control charts for a long period of time.  

 

Another alternative monitoring tool is using the Max procedures. Max-MEWMA 

chart based procedure provides shorter set lengths and higher coverage probabilities 

compared to the procedure with MELR. If the assumption is that the monitoring tool 

is a Max-MEWMA chart, the results are similar to the one with the combination 

chart. While Max-MEWMA chart produces shorter run lengths than the combination 

chart, it also provides acceptable set lengths and coverage probabilities. This results 

show that if the practitioners are trying to detect small and moderate shifts, then 

using a Max-MEWMA chart with an add-on change point procedure is a preferable 

choice. Max-MEWMA based procedure practically gives quick signals and better 

change point detection performances. Moreover, it can provide diagnostics about the 

change. The control chart statistic can be partitioned and the user can figure out 

whether it is a mean shift, covariance shift or both. So the need for traditionally 

proposed approach of investigating separate univariate control charts for mean and 

variability becomes unnecessary.  
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Since our research problem was developing new multivariate change point 

schemes for SPC, we proposed two change point estimators. The first one was the 

covariance change only model and the second is the simultaneous change of mean 

vector and/or covariance matrix model. We showed that these estimators perform 

quite accurate and precise estimations for various magnitudes of shift.  As our 

assumption is that the procedure starts after the control chart issues a signal, we 

investigated the performance of the joint estimation procedure for several control 

chart alternatives. We noted their advantages and disadvantages. The main 

performance criteria are the run lengths for control charts. The literature is rich in 

run length comparisons of various control charts for univariate and multivariate 

observations. Our study showed that looking only ARL may result in misleading 

control chart selection. We showed that the practitioner should evaluate the control 

charts via change detection, special cause identification, providing helpful 

diagnostics abilities rather than only detection ability. Strong quick detection ability 

may result in weak ability of assignable cause identification.    

 

Our change point procedure was under the assumption that the process 

experiences a step change. Many industrial processes may experience a linear trend 

or more generally monotonic type changes. Future research can include an 

investigation for other types of change in multivariate setting. Here in this study, the 

application area was restricted to typical industrial processes, such as steel 

manufacturing. Recently many other areas of implementation are available. The 

application of these methods can be adapted to these areas such as health care 

delivery and financial analysis. The results of this research have been published in 

Dogu and Deveci-Kocakoc (2011a, 2011b). 

 

Our estimation procedures are using pure statistical sense. Advanced estimation 

techniques to determine the change point can also be used. An increasing number of 

researches have been done about heuristic, neural network based or clustering based 

estimators (see Ghazanfari et al. (2008), Alaeddini et al. (2009), and Atashgar and 

Noorossana (2011)). Another interesting future research could be to propose new 

estimators and compare them with the existing methods.  
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One of our assumptions was that the process readings follow a multivariate 

normal distribution. For many industrial processes, this assumption may fail and the 

distribution may follow an unknown distribution or even we may not able to define a 

distribution. In this case, a new future research area emerges. Dealing with 

distribution free change point detection methods for SPC can be a very attractive 

further research.  

 

In order to construct a successful monitoring program, the process professional 

has to decide on many aspects and think about many process parameters. For 

example, in Six Sigma logic the main target is to reduce variability and the 

acceptable range of a quality characteristic is  6  while classical approach is to 

use  3  limits. Thus, the pressure to produce high quality products forces 

organizations to use more aggressive tolerance and specification limits. Nowadays, 

quickly eliminating the large shifts, quickly detecting small and moderate shifts and 

higher identification performance of the time of a shift, or in other words; correctly 

identifying the time of an assignable cause are vital. We believe that the change 

point estimation procedures, our investigation, and the results will be helpful for the 

practitioners for their process monitoring decisions. 
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