
DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

ELECTRONIC STRUCTURE OF PARABOLIC
CONFINING QUANTUM WIRES WITH RASHBA

AND DRESSELHAUS SPIN-ORBIT COUPLING IN A
PERPENDICULAR MAGNETIC FIELD

by

Sevil SARIKURT

August, 2013
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ELECTRONIC STRUCTURE OF PARABOLIC CONFINING QUANTUM

WIRES WITH RASHBA AND DRESSELHAUS SPIN-ORBIT COUPLING IN

A PERPENDICULAR MAGNETIC FIELD

ABSTRACT

In this thesis, we have investigated theoretically the effect of spin-orbit coupling

on the energy level spectrum and spin texturing of a quantum wire with parabolic

confining potential subjected to perpendicular magnetic field. Additionally we have

also taken into account exchange-correlation contribution. We have used finite element

method to get numerical solutions of Schrödinger equation with high accuracy.

Our results have been revealed that the interplay of the spin-orbit coupling with

effective magnetic field considerably modifies the band structure, producing additional

subband extrema and energy gaps. In addition to these, we have obtained that the

magnitude of spin splitting between energy subbands depends on the strength of

the magnetic field. We have also found that spin orientation strongly depends on

the applied external magnetic field and the strengths of SO couplings. Competing

effects between external magnetic field and spin-orbit coupling terms have introduced

complex features in spin texturing owing to couplings in energy subbands. We

have seen that spatial modulation of spin density along the wire width can be

considerably modified by spin-orbit coupling strength, magnetic field and charge

carrier concentration. We have observed that the presence of exchange-correlation

contribution leads to a softening behavior in the local maxima at subbands and shifts

all energy subbands to lower energy values. We have also obtained that the combined

effect of exchange-correlation and spin-orbit coupling produces asymmetry in the

dispersion relations.

Keywords: Spin-orbit coupling, quantum wire, spin texture, density functional theory,

exchange-correlation effect.

v



DİK MANYETİK ALAN ALTINDA RASHBA VE DRESSELHAUS SPİN

YÖRÜNGE ETKİLEŞİMLİ PARABOLİK KUŞATILMIŞ KUANTUM

TELİNİN ELEKTRONİK YAPISI

ÖZ

Bu tezde, spin-yörünge çiftleniminin dik manyetik alan altındaki parabolik hapsetme

potansiyeline sahip kuantum telinin enerji spektrumu ve spin dağılımları üzerine

etkisini teorik olarak inceledik. Buna ek olarak, değiştokuş-korelasyon katkısını

içeren spin-yörünge sistemlerini de inceledik. Sonlu elemanlar yöntemini kullanarak

Schrödinger denkleminin nümerik çözümlerini yüksek hassasiyetle elde ettik.

Elde etiğimiz sonuçlar, spin-yörünge çiftlenimi ile etkin manyetik alan arasındaki

etkileşimlerin band yapısını önemli derecede değiştirdiğini, ek altband uçdeğerleri ve

enerji aralıkları oluşturduğunu ortaya koymaktadır. Bu sonuçlara ek olarak enerji

altbandları arasındaki spin ayrılmalarının büyüklüğünün manyetik alanın şiddetine

bağlı olduğunu elde ettik. Ayrıca spin dağılım desenlerinin uygulanan manyetik alana

ve spin-yörünge çiftleniminin şiddetine güçlü bir şekilde bağlı olduğu sonucunu elde

ettik. Dış manyetik alan ve spin-yörünge çiftlenim terimleri arasındaki yarışmacı

etkileşim enerji altbandlarındaki çiftlenimlerden dolayı spin dağılımında karmaşık

özellikleri ortaya çıkarmaktadır. Kuantum telinin genişliği boyunca spin yoğunluğunun

uzaysal dağılımının spin-yörünge çiftleniminin kuvveti, manyetik alan ve yük taşıyıcı

yoğunluğu aracılığı ile önemli ölçüde değiştirilebildiğini gördük. Değiştokuş-korelasyon

katkısının altbandların yerel maksimumları civarında bandın düzleşen bir davranışa

sebep olduğunu ve bütün enerji altbandlarını daha düşük enerji değerlerine kaydırdığını

gözlemledik. Ayrıca, değiştokuş-korelasyon ve spin-yörünge çiftleniminin enerji

dağılımında asimetriye neden olduğu sonucunu elde ettik.

Anahtar Sözcükler : Spin-yörünge çiftlenimi, kuantum teli, spin yönelimi, yoğunluk

fonksiyoneli teorisi, değiştokuş-korelasyon etkisi.
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CHAPTER ONE

INTRODUCTION

In recent years, spintronics (short for spin transport electronics or spin-based

electronics) has become an ever-evolving research field of magnetic electronics which

uses the spin of electrons rather than its charge to store information (Bader & Parkin,

2010). The aim of this multidisciplinary field is to understand the interaction between

the particle’s spin and its solid-state environment, to investigate spin transport in

electronic materials and to produce useful electronic devices (e.g. spin-FETs (field

effect transistor), MRAM (magnetoresistive random-access memory), etc.) based on

the quantum properties of the electron (Fabian, Matos-Abiaguea, Ertlera, Stano, &

Zutic, 2007, Zutic, Fabian, & Sarma, 2004).

In spin-based semiconductor devices, spin-orbit (SO) interaction is considered as

an important tool for controlling and manipulating of the spin orientation (Malet,

Pi, Barranco, Serra, & Lipparini, 2007, Zhang, Liang, Zhang, Zhang, & Liu, 2006,

Knobbe & Schäpers, 2005). For a two-dimensional electron gas (2DEG), confined

in a semiconductor heterostructure, two major SO terms are usually present. The

first one is Rashba SO coupling (Rashba, 1960) arising due to structure inversion

asymmetry along the growth direction in quantum heterostructures where 2DEG is

realized. The other term is Dresselhaus SO coupling (Dresselhaus, 1955) which is due

to bulk inversion asymmetry of the lattice (Winkler, 2003). The strengths of the SO

terms are difficult to measure independently, but a full understanding of their strengths

is crucial (Schliemann, Egues, & Loss, 2003) for investigations of spin dependent

phenomena in low dimensional structures (Debald & Kramer, 2005, Serra, Sanchez, &

Lopez, 2005, Giglberger, Golub, Bel’kov, Danilov, Schuh, Gerl, & et al., 2007).

Spin density modulation emerged in quantum confined systems known as "spin

texturing effect" is important for spintronics due to the fact that it provides information

about the spatial distribution of the effective magnetic field in the presence of SO

interaction (Upadhyaya, Pramanik, Bandyopadhyay, & Cahay, 2008b, Gujarathi,

Alam, & Pramanik, 2012). In recent years, investigations of SO coupling effects in
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low-dimensional systems have attracted a considerable amount of interest. There are

many theoretical (Governale & Zülicke, 2002, Upadhyaya et al., 2008b, Governale &

Zülicke, 2004) and experimental (Meier, Salis, Shorubalko, Gini, Schön, & Ensslin,

2007, Guzenko, Bringer, Knobbe, Hardtdegen, & Schäpers, 2007, Schäpers, Guzenko,

Bringer, Akabori, Hagedorn, & Hardtdegen, 2009, Quay, Hughes, Sulpizio, Pfeiffer,

Baldwin, West, & et al., 2010) studies which survey extensively the effects of

SO coupling on the electronic and transport properties of these systems. Moroz

& Barnes (1999, 2000) and Mireles & Kirczenow (2001) theoretically calculated

the influence of Rashba SO interaction on the band structure and transport at low

temperature of quasi-one-dimensional (1D) electron systems. Perroni, Bercioux,

Ramaglia, & Cataudella (2007) discussed spectral and the transport properties of

a quasi-1D quantum wire (QWR) with hard-wall boundaries in the presence of

Rashba SO interaction while Pramanik, Bandyopadhyay, & Cahay (2007) numerically

calculated the energy dispersion relations and spatial variation of spin components of

InAs QWR in the presence of both SO interactions. More recently Gujarathi et al.

(2012) reported the subband structure and spatial modulation of spin density in a

QWR with hard-wall confinement for a wide range of magnetic field, Dreseelhaus SO

coupling strength and carrier concentration. The electronic structure of Rashba spin-

split QWR that is parabolically confined under the influence of perpendicular magnetic

field has been studied by Knobbe & Schäpers (2005) and Debald & Kramer (2005).

Furthermore Zhang, Liang & et al. (2006) obtained the energy band structure of QWRs

described by a parabolic confinement potential and subjected to an external magnetic

field taking into account both Rashba and Dresselhaus SO interaction. In Ref. Zhang,

Zhao, & Li (2009), researchers reported that the interplay of Rashba, Dresselhaus and

the lateral SO interaction as well as applied magnetic field in a parabolic QWR leads

to rather complex electrosubbands. An analytical approximation schemes suitable

for obtaining the energy spectrum of quasi-1D QWR with SO coupling has been

developed by Erlingsson, Egues, & Loss (2010) and Gharaati & Khordad (2012).

Experimental works have been performed by several researchers. The effect of Rashba

SO coupling in InGaAs/InP QWR structures has been discussed in Refs. Guzenko et al.

(2007), Schäpers, Knobbe, Guzenko, & van der Hart (2004b) and Schäpers, Knobbe,
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& Guzenko (2004a). On the other hand, in Ref. Schäpers, Guzenko & et al. (2009) the

effect of both SO coupling terms in 2DEG and QWR structures have been investigated.

Although there are several studies related to Rashba and Dresselhaus SO interactions

in quantum confined systems, to our knowledge, less attention has been paid on the spin

texture calculations for parabolically confined QWRs in an external magnetic field.

Detailed investigation of electrosubbands and spin density modulation could be useful

for identification of spin polarization in zinc-blende QWRs.

In this thesis, we focus on the Rashba and Dresselhaus SO couplings and external

magnetic field extensively. We calculate the energy spectrum of spin-split subbands

and spin orientations of a parabolically confined QWR considering various strengths of

Rashba and/or Dresselhaus SO couplings in the existence or absence of perpendicular

magnetic field for different carrier concentrations. We also study the exchange-

correlation effects to the energy band with Rashba and/or Dresselhaus SO coupling

for different strengths of magnetic field.

This work is organized as follows: In Chapter 2 general knowledge about 2DEG and

semiconductor QWRs is presented. And then a brief description of SO coupling and

Zeeman effect is given. Both types of SO coupling terms (Rashba and Dresselhaus) are

also presented concisely. A short statement about the theoretical fundamental theorems

and numerical solution methods which are used in this thesis are given in Chapter

3. We identify the Schrödinger equation and also finite element method formalism

of the physical system in Chapter 4. We derive the analytical formulations for the

solution of total Hamiltonian which includes SO coupling contribution, Zeeman effect

and additional potentials (e.g. confinement potential, exchange-correlation potential).

Afterwards, in Chapter 5 we present numerical results for analyzing how the SO

coupling and externally applied magnetic field affects the energy subband dispersion

and spin-texturing of a parabolically confined quasi-1D QWR. We examine several

cases with the presence or absence of a uniform magnetic field. Based on these results

we discuss the interplay between different SO interaction contributions and various

strengths of external magnetic field. We also investigate the spin orientation for various

3



SO coupling strengths. We then present numerical results that indicate the influence

of exchange-correlation potential on energy band structure of the quasi-1D QWR. The

conclusions and discussions of the thesis are summarized in Chapter 6.
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CHAPTER TWO

LOW-DIMENSIONAL SYSTEMS & SPIN-ORBIT COUPLING

In this chapter we briefly introduce the physics of low-dimensional systems and

then give information about spin-based electronics substantially.

In section 2.1.1, a short description of quantum wire is given exclusively. Section 2.2

includes a brief information about spintronics. Fundamental studies of spintronics

include understanding spin dynamics and spin relaxation. It is important to mention

that, SO interactions have major influences on the emerging field of spintronics by

virtue of the fact that these interactions provide means to manipulate spins without

the use of magnetic fields (Bin, 2010). In section 2.3, we review the basic physical

concepts that needed to understand the physics of SO interaction. We give a brief

introduction of Rashba and Dresselhaus SO coupling under Section 2.4.

2.1 Two Dimensional Electron Gases

Semiconductor heterostructures are now tremendously used in electronics and

optoelectronics. Heterostructures are primarily used to confine electrons and holes

and to produce low-dimensional electronic systems (Singh, 2003).

A heterojunction is made by growing materials with similar lattice constants

but different band gaps. One of the most widely used heterostructure systems is

that formed from the compound semiconductor GaAs and the semiconductor alloy

AlxGa1−xAs. Their lattice constants are nearly identical and also this semiconductor

pair is well lattice-matched at any alloy composition x (Shik, 1998). The difference

between their band gaps are considerable and also the Fermi energy in the widegap

AlGaAs layer is higher than that in the narrow gap GaAs layer (see Fig. 2.1) (Datta,

1995).

When AlGaAs and GaAs layers are brought in contact with each other, electrons

flow from the higher potential in the AlGaAs into the GaAs, leaving behind positively-
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charged donors. This space charge gives rise to an electrostatic potential that leads the

bands edges to bend near the interface. Due to the discontinuities in the bands, a narrow

triangle-like potential well occurs in the GaAs layer at the GaAs/AlxGa1−xAs interface

as it is illustrated in Fig. 2.1. And thus, electrons are confined by this triangular

potential. The electrons are free to move in the plane parallel to the heterojunction

but restricted in the confinement direction that perpendicular to the interface. Hereby

a two-dimensional electron gas is formed (Schöll, 1998).

Figure 2.1 Energy bands of two components of a GaAs/AlGaAs heterojunction. By mixing layers of

materials with different band gaps it is possible to restrict electron movement to the interface between

the materials. As a result 2DEG is formed at the interface between two semiconductors.

The quantum confinement restricts the motion of electrons in one or more directions.

Depending on whether the confinement occurs in one, two or even all three spatial

directions, the electrons can move only in the remaining two, one or zero directions,

respectively (Fig. 2.2). And these structures can be quantum wells (2D), quantum

wires (1D), or quantum dots (0D). A quantum well (QW) is formed when the motion

of electrons is restricted only one direction. In the case of QWRs, the electrons

have only one free dimension to move, the other two dimensions are restricted.
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Figure 2.2 Schematic representation of quantum confinement structures. In bulk semiconductor

materials, the electrons move freely in all directions. As the dimensions of the material restrict, the

effect of quantum confinement arises.

Additional confinement in the remaining direction completely confines the motion of

electrons. Such systems are called quantum dots (QD). It is beneficial to indicate that

aforementioned situation of the electron motion exhibits quantum effects which is a

powerful way in the design of electronic devices (Weisbuch & Vinter, 1991).

2.1.1 Quantum Wire

In the past few years, a great deal of attention has been focused on the physics

of low-dimensional semiconductor structures such as QWs, QWRs, and QDs since

nowadays electronic devices have been intensionally approaching ever smaller size

and therefore reduced physical dimensionalities. Extensive research on the quantum

mechanical nature of restricted semiconductor systems exhibit fascinating new electronic

and optical properties that permit improvement in the performance of electronic

devices (Khordad, 2013).

QWRs of all these low-dimensional semiconductor structures have shown noteworthy

optical, electronic, magnetic, and mechanical properties that have a wide range of

applications in future technologies such as conducting nanowire in quantum computing

devices (Banerjee, Dan, & Chakravorty, 2002, Kumar, Lahon, Jha, & Mohan, 2013).

Semiconductor QWRs (or quasi-1D electron gases), which are realized by applying

split gates on top of a 2DEG in a semiconductor heterostructure, have been studied
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intensively for a wide spectrum of materials. Most QWRs fabricated and studied

experimentally are of GaAs/AlxGa1−xAs heterostructures (Sun, 1995).

The most widespread used methods for fabrication of QWR structures rely on

the growth of heterostructures by molecular-beam epitaxy (MBE) (Herman, 1994) or

metal-organic chemical vapor deposition (MOCVD) (Thompson, 1997) and afterwards

lateral restriction of the electron motion either by gates, or by lithography in

conjunction with etching techniques (Weisbuch & Vinter, 1991).

In 1982, Petro, Gossard, Logan, & Wiegmann reported for the first time the

fabrication of GaAs/AlGaAs quantum well-wires using MBE growth method combined

with electron-beam lithography and wet/dry chemical etching. Kash and his

coworkers (Kash, Scherer, M.Worklock, Craighead, & Tamargo, 1986) manufactured

QWRs in a different way which was based on the direct processing of QWs into QWRs

using the same growth technique. Refs. Asahi (1997) and Wang & Voliotis (2006)

involve an overview of the growth methods and formation of various QWR structures

extensively. A QWR sample that fabricated from GaAs/AlGaAs heterostructures using

the cleaved-edge overgrowth (CEO) technique by de Picciotto and his

coworkers (Picciotto, Stormer, Pfeiffer, Baldwin, & West, 2001) is demonstrated in

Fig. 2.3.

Figure 2.3 Schematical view of a QWR that was fabricated by cleaved-edge over- growth method. The

fabrication starts with a high-quality 2DEG created by epitaxial growth of a unilaterally doped GaAs

quantum well onto a GaAs substrate. The pre-fabricated tungsten gate electrodes (for example, gate 1)

are used to separate the 2DEG from the wire.
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This thesis is about semiconductor QWRs that presents theoretical studies of the

electronic structure of QWRs under the effects of both type of SO coupling and

externally applied magnetic field.

2.2 Semiconductor Spintronics

Spintronics, which offer a new generation of information storage and manufacturing

of electronic equipments, refers to manipulate and control the electron spin in

quantum-electronic devices. This is usually achieved by applying an external magnetic

field to rotate the spin, and one can control the spin electronically in the presence of

SO coupling. In recent years, there has been fascinating improvement in this field,

both in experiment and in developing theoretical concepts. On account of the fact

that the aims of spintronics are considerably intriguing, research is developing along

several fields (Rashba, 2007). This spin-based electronics characterizes electrical,

optical, and magnetic properties of solids. Fundamental studies of spintronics include

exploration of spin polarization and spin transport in electronic materials, as well as of

spin dynamics and spin relaxation (Fabian et al., 2007).

The Giant Magneto-Resistive (GMR) effect, which is discovered in 1988 by French

and German physicists, is considered as the beginning of the spintronics. This effect

is the primary operating principle behind current hard-drive technology and also the

subject of the 2007 Nobel Prize in physics (Fert, 2007, Grünberg, 2007).

The comprising spin of electrons besides its charge contributes to the electronic

devices to gain new functionalities and one of the most ambitious goals of spintronics

is accomplishing quantum computing with electron spins (Fabian et al., 2007, Rashba,

2007).

Semiconductor spintronics combines semiconductor microelectronics with spin

dependent effects that arise from the interaction between the spin of a charge carrier

and the magnetic properties of the materials. In spintronic devices, the spin degree

9



of freedom of the electron which provides functionality in addition to the charge

of the electron plays an important role. Adding the spin degree of freedom to

conventional charge-based electronics or using the spin degree of freedom alone

will add more capability and performance to electronic products (Wolf, Awschalom,

Buhrman, Daughton, von Molnár, Roukes, & et al., 2001).

2.3 Origin of Spin-Orbit Coupling

“Spin-orbit” coupling is described as the interaction between an electron’s spin and

its motion through the electromagnetic field of the nucleus, which shifts atomic energy

levels. The SO interaction can remove the degeneracy of electron energy levels in

many atoms, molecules and solids. Doubly degenerated bands split into spin-up and

spin-down levels in the presence of SO coupling.

SO interaction can be included as a relativistic correction to the Schrödinger

equation. To obtain a representation for the SO interaction, we need to start with

the Dirac equation which is the main equation for electronic systems. This equation

describes the electron spin and involves its relativistic feature.

The derivation of the SO interaction has been taken from J. J. Sakurai (Sakurai,

1967) and R. Winkler (Winkler, 2003).

Time-dependent Schrödinger equation is known as

ih̄
∂Ψ

∂t
=HΨ (2.3.1)

For a free particle the Dirac Hamitonian can be written in the form:

H = cα · p+β mc2+V (2.3.2)

where m is the free electron mass, c is the speed of light, p is the momentum operator,
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V is arbitrary scalar potential

V = V · I =

 V 0

0 V


and α ,β are four-dimensional matrices:

α =

 0 σ

σ 0

 β =

 I 0

0 −I

 (2.3.3)

Here, I is the two-by-two identity matrix and σ = (σx,σy,σz) are the well known Pauli

spin matrices.

σx =

 0 1

1 0

 σy =

 0 −i

i 0

 σz =

 1 0

0 −1

 (2.3.4)

With using Eqs. (2.3.1) and (2.3.2), the Dirac equation can be introduced by

ih̄
∂Ψ

∂t
= (cα · p+β mc2+V)Ψ (2.3.5)

Here, Ψ is the solution of Dirac equation and this wave function denotes a four-

component spinor which can be defined by two component spinors ψA (upper spinor)

and ψB (lower spinor):

Ψ =

 ψA

ψB

 (2.3.6)

With using the definition of the matrices α and β (Eq. (2.3.3)), an expression for the

coupled equations can be written in terms of two-component spinors ψA and ψB as in

the following equations:

(σ ·p) ψB =
1
c

(E′−V)ψA (2.3.7a)

(σ ·p) ψA =
1
c

(E′−V +2mc2)ψB (2.3.7b)

Consequently, Dirac equation becomes a set of coupled equations for ψA and ψB. We

assume that E′ = E−mc2 to study the non-relativistic limit of the Dirac equation. Using

the second equation (Eq. (2.3.7b)) we obtain lower spinor ψB in terms of upper spinor
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ψA.

ψB = σ ·p
[

c
(E′−V +2mc2)

]
ψA (2.3.8)

Substituting this expression of ψB into Eq. (2.3.7a) we can get

(σ ·p) (σ ·p)
[

c2

(E′−V +2mc2)

]
ψA = (E′−V)ψA (2.3.9)

We can expand the energy denominator
[
E′−V +2mc2

]−1
in the non-relativistic

limit ((E′−V)/2mc2≪ 1), into

c2

E′−V +2mc2 =
1

2m

(
1+

E′−V
2mc2

)−1

≈ 1
2m

[
1− E′−V

2mc2 + . . .

]
(2.3.10)

If we neglected the terms of order (v/c)2 we would get the Pauli equation. Keeping

only the first term in this expansion (Eq. (2.3.10)) we get ψB as follows:

ψB ≈
1

2mc
(σ · p)ψA (2.3.11)

And inserting the above equation into Eq. (2.3.9) we simply obtain the non-relativistic

limit of the Dirac equation, or the Pauli equation

[
1

2m
(σ · p)2+V

]
ψA = E′ ψA (2.3.12)

This eigenvalue equation can be thought as the time-dependent Schrödinger equation

for ψA. Due to the fact that, ψA itself does not satisfy the normalization requirement

we cannot identify ψA as a full wave function. The probabilistic interpretation of the

Dirac theory requires that

∫
d3r Ψ†Ψ =

∫
d3r (ψ†A ψA+ψ

†
B ψB) = 1 (2.3.13)

With using the definition of ψB in terms of ψA we can rewrite the normalization
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requirement as in the following equation

∫
d3r ψ†A

(
1+

p2

4m2c2

)
ψA = 1 (2.3.14)

Here, we also use this equality:

(σ · X)(σ · Y) = X ·Y+ iσ · [X×Y] ⇒ (σ · p)2 = p2

Eq. (2.3.14) suggests that we should work with a new two-component wave function

Ψ defined by

Ψ =

(
1+

p2

8m2c2

)
ψA

which is correctly normalized to unity.

Replacing ψA in Eq. (2.3.9) by ψA =
[
1+p2/(8m2c2)

]−1
Ψ and using the expansion

Eq. (2.3.10), we obtain after some rearrangement (Sakurai, 1967) the Pauli equation,

or the non-relativistic limit of Dirac equation,

[
p2

2m
+V − p4

8m3 c2 −
h̄

4m2 c2σ ·
[
p×∇V

]
+

h̄2

8m2 c2∇
2V

]
Ψ = EΨ (2.3.15)

The first and second term on the left hand side are the non-relativistic kinetic and

potential energy, respectively. The third term is the relativistic correction to the kinetic

energy and the fourth is the SO coupling term. The last term is called the Darwin term

and it gives a shift in energy.

2.4 Spin-Orbit Interaction and Inversion Asymmetry

SO interaction leads to a coupling between the spin of a particle and its orbital

motion. SO coupling lifts the spin degeneracy of the conduction band electrons of

III-V compound semiconductor heterostructures without any external magnetic field.

The general form of the SO interaction in a single particle Hamiltonian is given by
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Pauli equation (Eq. (2.3.15)):

Hso = −
h̄

4m2 c2σ ·
[
p×∇V

]
(2.4.1)

where V is the electric potential.

A moving electron in an electric field feels an effective magnetic field even in the

absence of external magnetic field. The spin magnetic moment of the electron is

influenced by this effective magnetic field (Sugahara & Nitta, 2010). The principle

of SO interaction is based on these effects. In analogy to Zeeman Hamiltonian,

HZ = µBσ ·B, the strength of effective magnetic field of the SO interaction is

Be f f =
p×E
2mc2 (2.4.2)

This equation indicates that the direction of this effective magnetic field is perpendicular

to both the electron momentum and the electric field.

In III-V semiconductor heterostructures, spin-splitting in energy subbands results

from the lack of inversion symmetries namely bulk inversion asymmetry (BIA) and

structural inversion asymmetry (SIA).

The inversion symmetry in space and time change the wave vector k into −k, and

furthermore, the time inversion also flips the orientation of the spin.

Behavior under time reversal ⇒ E(k,↑) = E(−k,↓)

Behavior under spatial inversion ⇒ E(k,↑) = E(−k,↑)

Result ⇒ E(k,↑) = E(k,↓)

Here, ↑ and ↓ label spin-up and spin-down projections, respectively. In III-V zinc

blende semiconductors, there is no inversion symmetry (E(k,↑) , E(k,↓)) and thus for

k , 0 the spin bands can be split in energy. Spatial inversion asymmetry in crystal

structures leads to coupling between the motion of a charge carriers and its spin states,

and thus it results in spin-splitting of the energy band.
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Inversion asymmetry properties of low-dimensional systems give rise to the

Dresselhaus (Dresselhaus, 1955) and Rashba (Rashba, 1960, Bychkov & Rashba,

1960) SO couplings. The SO coupling caused by bulk inversion asymmetry of

the crystal structure is known as the Dresselhaus SO coupling. The structural

inversion asymmetry of the confinement potential of electrons in a semiconductor

heterostructure leads to Rashba type SO coupling.

2.4.1 Dresselhaus Spin-Orbit Coupling

The moving electrons through the lattice of III-V zinc-blende semiconductor

structures experience an asymmetric crystal potential which is defined as bulk inversion

asymmetry. This asymmetry causes a spin-depending energy splitting in k-space that

was investigated theoretically by Dresselhaus (Dresselhaus, 1955).

The Hamiltonian that represent the Dresselhaus SO coupling for a bulk zinc blende

structure is given as (Schäpers et al., 2009)

HD = γD

∑
c.p.(x,y,z)

{
σxKx, K2

y −K2
z

}
(2.4.3)

where γD is known as cubic Dresselhaus SO coupling parameter that depends on width

and thickness of the QWR (Pramanik et al., 2007, Zhang et al., 2009). And here

K = (p+ eA) is the canonical momentum where A is the vector potential. The curly

brackets represent the anticommutation relation: {A,B} = 1
2 (AB+BA).

If we consider that the thickness of the QWR is so small such that ⟨p2
z ⟩≫ ⟨p2

y⟩, ⟨p2
x⟩,

with using the components of canonical momentum we can get Dresselhaus SO

Hamiltonian as in the following form:

HD =
β

h̄

[
σyKy−σxKx

]
+γD

[
σx

{
Kx, K2

y

}
−σy

{
Ky, K2

x

}]
(2.4.4)

where β = h̄γD⟨k2
z ⟩ is the linear Dresselhaus SO coupling constant with kz being the

wave number. The strength of Dresselhaus SO interaction (β) is considered to be a
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material constant parameter because it depends on the material band parameters and

the thickness of the 2DEG. Correspondingly, the Dresselhaus SO coupling contribution

can be tuned by sample thickness or electron density (Schäpers et al., 2009, Chang,

Chu, & Mal’shukov, 2009).

In heterostructures, where electrons are confined in one direction (generally

assumed along ẑ direction) to a 2DEG (in the x̂ − ŷ plane), expectation value of

the momenta vanishes (< pz >= 0) and the term < p2
z >= h̄2⟨k2

z ⟩ has a finite value.

Accordingly, the Hamiltonian in Eq. (2.4.4) is reduced to the linear form

HD =
β

h̄

[
σy(py+ eAy)−σx(px+ eAx)

]
(2.4.5)

The bulk inversion asymmetry leads to an effective electric field inside the crystal.

According to the relativistic effect, the electric field is seen as an effective magnetic

field by moving electrons. This relativistically generated pseudo-magnetic field known

as effective Dresselhaus pseudo-magnetic field (BD).

2.4.2 Rashba Spin-Orbit Coupling

The second important SO coupling is the Rashba SO coupling which is caused by

the structural inversion asymmetry. It is known that the Rashba SO coupling term

is dominant over the Dresselhaus SO coupling term in heterostructures consisting of

narrow-gap semiconductors (Kaneko, Koshino, & Ando, 2008).

When the potential of 2D electron system is symmetric, the Rashba SO interaction

caused by an electric field in this system is zero and spin states are degenerated.

As shown in Fig. 2.4, by applying an external gate bias voltage on the top of the

quantum well, the potential has an asymmetric profile that leads to a finite Rashba

SO interaction. This asymmetric potential profile in the heterostructure lifts the spin

degeneracy since the internal electric field is finite.
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Figure 2.4 The schematic band profile of 2DEG quantum well. The spin configuration at Fermi

energy is shown in right bottom figure. Fermi momentum difference between spin-up and spin-down is

proportional to the Rashba SO interaction parameter α (Sugahara & Nitta, 2010).

Bychkov and Rashba (Bychkov & Rashba, 1960) described the Rashba SO

interaction Hamiltonian as in the following equation

HR =
α

h̄
[σ× (p+ eA)]z (2.4.6)

in which α is the Rashba SO coupling coefficient. The strength of the Rashba SO

coupling, the magnitude of α, can be tuned by changing the gate voltage (Nitta,

Akazaki, Takayanagi, & Enoki, 1997). The electrical control of the Rashba SO

interaction is represented in Fig. 2.4.

If the confining potential is along the ẑ direction, electrons move freely in the other

two spatial coordinates and accordingly the Rashba Hamiltonian can be written as

HR =
α

h̄

[
σx (py+ eAy)−σy (px+ eAx)

]
(2.4.7)

Unlike the Dresselhaus SO coupling term, the Rashba SO contribution only has a linear

dependency in k.
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Figure 2.5 The Rashba SO interaction in a system with SIA along the ẑ direction. (a) The effective

field from the Rashba term is linear in k and always perpendicular to k (b) Energy dispersion of Rashba

spin-split subbands for a one-dimensional system. The internal magnetic field in the Hamiltonian will

shift the two spin sub-bands of the conduction band. In addition spin-up and spin-down electrons move

with different velocities. (c) Energy subbands for two-dimensional system. Arrows denote the direction

of the spin eigenstates (Stern, 2008, Rahman, 2007).

The effective Rashba pseudo-magnetic field (BR) that generated by the electric field

is directed along the plane of the 2DEG and is perpendicular to both the direction of

electric field and the electron’s velocity vector. In the absence of external magnetic

field, the spin of the moving electron precesses around the direction of BR, similar

to the Larmor-precession around an external magnetic field. The Rashba SIA term is

extremely important in gated heterostructures where there is an electric field out-of-

plane in the ẑ direction (Fig. 2.5).

2.5 Zeeman Effect

The splitting of the energy levels of an atom by an externally applied magnetic

field is known as “Zeeman effect”. It was first observed in 1896 by Pieter Zeeman.

Energy band is doubly-degenerated at zero magnetic field. In the presence of Zeeman

effect, each atomic level is split into two sublevels which correspond to spin-up and

spin-down electrons. The splitting occurs because of the interaction of the magnetic

moment µ of the atom with an externally applied magnetic field B slightly shifts the

energy of the atomic levels by an amount ∆E = −µ ·B. This energy shift depends on
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the relative orientation of the magnetic moment and the magnetic field.

In general, there are two type of magnetic moment. The first one is electron’s

magnetic moment that arises from orbital angular momentum, and the other one is the

magnetic moment of the electron spin which occurs due to the intrinsic spin angular

momentum (S) of the electrons. The spin of an electron can be assumed to have two

values ±h̄/2. Traditional approaches to using electron spin are based on the alignment

of a spin (either “up”or “down”) relative to a reference such as an applied magnetic

field (Wolf et al., 2001).

If an atom has only a single electron and the electron has only intrinsic spin angular

momentum, the Zeeman Hamiltonian can be written as follows:

HZ = −µ ·B = g∗µB S ·B (2.5.1)

where g∗ is the effective Lande-g factor of electron (g ≈ 2 for free electrons) and

µB = eh̄/2m∗ is the Bohr magneton. Here, the magnetic moment µ is defined in terms

of µB and S such as µ = −g∗µB S.

The interaction of the spin with magnetic fields (applied externally or inherent in a

material) is the underlying mechanism of spintronics devices (Nix, 2006).
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CHAPTER THREE

THEORETICAL BACKGROUND

In this chapter we give a brief overview of approximation methods which are used

to calculate the electronic structures of atoms and molecules. Owing to electronic

structure we can obtain information about physical, chemical and optical properties of

materials.

In the first section, some fundamental approximations which are necessary in

order to solve Schrödinger equation are presented. In the next section, the physical

interpretation of the density functional theory (DFT) and all approximations that are

used to simplfy DFT are described and the formal derivations are given. In the

other section, approximations for exchange and correlation are introduced briefly:

The local density approximation (LDA), which is the simplest and most successful

approximation within DFT , and local spin density approximation (LSDA) which is

the spin-scaled generalization of LDA.

In the following section, Finite Element Method (FEM) and its formulations are

introduced (Section 3.5). And then the application steps of the method are discussed.

In this thesis, we employ the FEM to obtain the solution of Schrödinger equation

which identifies the physical system numerically. This numerical technique has been

known as one of the major numerical solution techniques and employs the philosophy

of constructing piecewise approximations of solutions to problems described by

differential equations (Reddy, 1993).

3.1 The Electronic Structure Problem

Most of the electronic structure properties of atoms, molecules and solids can be

obtained by solving the nonrelativistic time-independent many-electron Schrödinger

equation:

HΨ(R,r) = EΨ(R,r) (3.1.1)
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H is the Hamiltonian operator consisting of the kinetic energy, mutual Coulomb

interaction and external confinement operators. Ψ(R,r) is a many-electron wave

function that depends on the nuclear coordinates ({R = RI}, I = 1, . . . ,Nn) and the

positions of the electrons ({r = ri}, i = 1, . . . ,Ne).

Such physical systems consist not only of electrons but also of nuclei and each of

these particles moves in the field generated by the others. Hamiltonian of the system

that includes Ne electrons and Nn nuclei can be written as

H = −
Nn∑
I=1

h̄2

2MI
∇2

I −
Ne∑
i=1

h̄2

2m
∇2

i −
Nn∑
I=1

Ne∑
i=1

ZIe2

|RI − ri|
+

1
2

Ne∑
i, j=1
i, j

e2

|ri− r j|
+

1
2

Nn∑
I,J=1
I,J

ZIZJe2

|RI −RJ |

(3.1.2)

The indices i and j refers to the electrons, I and J denote the nuclei, m is the

electron mass and MI is the mass of each different nuclei. The first two terms are

the operators for kinetic energies of all the electrons and nuclei, respectively. The third

term describes the attractive electrostatic interaction (Coulomb attraction) between the

electrons and nuclei. The last two terms describe the electron-electron and nucleus-

nucleus repulsion energy operators, respectively.

Eq. (3.1.1) is deceivingly simple by its form but insuperably complex to solve, even

for a simple two electron system such as helium atom or hydrogen molecule, because

of the electrostatic correlations between each component. Accordingly, there occurs a

need to use approximation methods for reducing this complexity. Born-Oppenheimer

approximation is the first approximation to simplify the Schrödinger equation.

3.1.1 Born-Oppenheimer Approximation

The first important approximation is Born-Oppenheimer approximation which is

based on the great difference of mass between the nuclei and electrons (me/M ≃ 10−3−

10−5). Due to the fact that nuclei are much heavier than the electrons, they move at

much slower speeds compared to the speed at which electrons move. Therefore, one

can consider that the nuclei do not move and the interacting electrons move in the field
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of static nuclei (Born & Oppenheimer, 1927).

In consideration of this approximation, the first term of Eq. (3.1.2), the kinetic

energy of the nuclei, can be ignored and the final term of Eq. (3.1.2), the repulsion

between the nuclei, can be considered to a constant for a fixed configuration of the

nuclei. Any constant added to an operator only adds to the operator eigenvalues and

has no effect on the operator eigenfunctions. The remaining terms in Eq. (3.1.2) are

called the “electronic Hamiltonian”. This Hamiltonian describes the motion of Ne

electrons in the field generated by Nn point charges and reduces to

He = −
Ne∑
i=1

h̄2

2m
∇2

i −
Nn∑
I=1

Ne∑
i=1

ZIe2

|RI − ri|
+

1
2

Ne∑
i, j=1
i, j

e2

|ri− r j|
(3.1.3)

We may write this equation more compactly as

He = T +Vext +Vee (3.1.4)

Due to this approach, Schrödinger equation is given by

He Ψe(R,r) = Ee Ψe(R,r) (3.1.5)

where Ee is the electronic energy and Ψe(R,r) = Ψe(R1,R2, . . . ,RNn ,r1,r2, . . . ,rNe)

is the electronic wavefunction. There is a parametric dependence of the electronic

wavefunction on the set of nuclear coordinates R, hence we can conceal the fixed

configuration of nuclei.

The third term of Eq. (3.1.3) contains the interactions between the electrons and

all many-body quantum effects. Consequently this many-body problem is still too

difficult to solve. There exist several ways of approximating the eigenfunctions of

the Hamiltonian (Eq. (3.1.3)). There are two major categories of these methods:

wave function based methods such as Hartree-Fock approximation and density based

methods (e.g. Density Functional Theory).
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3.2 Hartree and Hartree-Fock Approximation

In the beginning of the age of quantum mechanics (in 1928), first approximation

was proposed by Hartree. It assumes that N-electron wave function can be written as

product of one-electron wave functions each of which satisfies one-particle Schrödinger

equation in an effective potential (Hartree, 1928).

Ψ(r1,r2, . . . ,rn) =
N∏

i=1

ϕi(ri) (3.2.1)

The coordinates ri of electron i comprise space coordinates xi and spin coordinates σi:

ri = (xi,σi)

The Hartree approximation describes a state of the system where the motion of

each electron is independent of the motion of other electrons and it takes no account

of the indistinguishability of electrons. It implies that the Hartree approximation does

not include the influence of interchange of the space and spin coordinates of any two

electrons (which is known as exchange terms) and also correlation terms which are

created by the motion of the other electrons on the energy of each electron.

Many-electron wave function must obey to Pauli exclusion principle, which states

that two fermions (etc. electrons) cannot occupy the same quantum state, and

accordingly wave function should be antisymmetric with respect to the interchange

of the coordinate r (both space and spin) of any two fermions:

Ψ(r1, . . . ,ri, . . . ,r j, . . . ,rn) = −Ψ(r1, . . . ,r j, . . . ,ri, . . . ,rn) (3.2.2)

Since Hartree approximation does not take into account the fermionic structure of

electrons, V. Fock (1930) and J. C. Slater (1928) improved this approximation by

including the Pauli exclusion principle. This approximation is known as Hartree-

Fock (HF) approximation which considers the many-electron wave functions can
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be written as either a single Slater determinant or a linear combination of Slater

determinants (Szabo & Ostlund, 1996).

Slater determinant is defined as

Ψ(r1,r2, . . . ,rn) =
1
√

N!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(x1,σ1) ψ2(x1,σ2) . . . ψN(x1,σN)

ψ1(x2,σ1) ψ2(x2,σ2) . . . ψN(x2,σN)
...

...
...

ψ1(xN ,σ1) ψ2(xN ,σ2) . . . ψN(xN ,σN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.2.3)

where the factor 1/
√

N! is a normalization factor. In Eq. (3.2.3), the rows of an N-

electron Slater determinant are labeled by spatial coordinates and the columns are

labeled by spin orbitals. Interchanging the spatial and spin coordinates of two electrons

corresponds to commute two rows of the Slater determinant, as a consequence of that

the determinant changes sign and therefore Slater determinants meet the requirement

of the antisymmetry principle. Having two electrons occupying the same spin orbital

corresponds to having two columns of the determinant equal, which makes the

determinant zero. Thus no more than one electron can occupy a spin orbital and this

corresponds to Pauli exclusion principle (Szabo & Ostlund, 1996).

The procedure for solving Hartree-Fock equation is called the self-consistent-field

(SCF). The self consistency iterative procedure is carried out as follows: By making a

initial guess at the spin orbitals, one can calculate the Hartree potential (average field

seen by each electron) and then solve the Schrödinger equation with this potential for

a new set of spin orbitals which are used in turn to construct a new potential. This

process is repeated over and over until convergence is achieved (Szabo & Ostlund,

1996, Thijssen, 1999).

HF approximation contains exchange terms and treats electrons as if they were

moving independently of each other, this means correlation terms not taken into

account in HF formalism. As a consequence of that HF approximation is assumed as

a starting point for more accurate approximations which include the effects of electron

correlation.
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3.3 Density Functional Theory

The limitation of the HF approximation is that only the systems which have

small number of electrons can be investigated, many-body wave function is not

necessarily well-represented by a single Slater determinant. The systems with a large

number of electrons can be examined by DFT.

In DFT, the electron density is used instead of the many-body wave function

to describe the ground state properties of interacting system. The electron density

corresponds to number of electrons and so we can get information about all groundstate

electronic properties of system by means of electron density . Density is a function

of only spatial coordinates (r = (x,y,z)) while the wavefunction of a system with

N electrons is dependent on 3N variables (three spatial variables for each of the N

electrons).

DFT starts with Thomas-Fermi (TF) model (Thomas, 1927, Fermi, 1928) which

defines the total energy of electrons as a functional of the electron density instead of

wavefunction. The electron density (ρ(r)), which determines the probability of finding

any of the N electrons within volume element dr, is defined by following equation

ρ(r) = N
∫
. . .

∫
|Ψ(r,r2, . . .rN)|2 dσ dr2 . . .drN (3.3.1)

The integral of the electron density over all space gives the total number of electrons,

∫
ρ(r)dr = N (3.3.2)

They assumed a uniform gas of noninteracting electrons (homogeneous electron

gas) in order to derive a representation of the kinetic energy in terms of the density.

They neglected all exchange energy and correlation effects and thereby, the total

energy functional involves only the direct Coulomb repulsion (Hartree energy) and

the coupling to the external potential terms.
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Considerable effort was expended in order to enhance this TF theory. It was initially

improved by Dirac in 1930 with the inclusion of exchange term (Dirac, 1930). In other

respects, first correlation contributions were introduced by Wigner in 1934 (Wigner,

1934). Later Slater (Slater, 1951b,a), Gáspár (Gáspár, 1954) and other researchers

improved the Thomas-Fermi theory with the use of an approximate exchange potential.

The assumption that only electron density is sufficient to describe all observable

quantities of the system by itself is contributed by Hohenberg-Kohn theorem (Hohenberg

& Kohn, 1964).

3.3.1 Hohenberg-Kohn Theorems

The original Thomas-Fermi theory is formally completed by Hohenberg-Kohn

theorem (Hohenberg & Kohn, 1964). In 1964, P. Hohenberg and W. Kohn showed

that if the ground state particle density is known, all properties of the system with

many-electron can be determined. Shortly following in 1965, W. Kohn and L. J.

Sham (Kohn & Sham, 1965) suggested a general method to solve the many-body

problem uncomplicatedly.

The Hohenberg-Kohn (HK) theory, which forms the basis of DFT, is described by

two theorems:

The first HK theorem states that the ground state electron density (ρ0(r)) for any

system of interacting particles determines the external potential (Vext(r)) uniquely.

In other words, the external potential is a unique and well-defined functional of the

electron density. The electron density alone is enough to determine all observable

quantities of the system.

The second HK theorem, which provides the energy Variational Principle, indicating

that the energy of an electron distribution can be described as a functional(F[ρ]) of the

electron density. This functional is a minimum for the ground state density.
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The ground state energy could be obtained by solving the Schrödinger equation

directly or from the Rayleigh-Ritz minimal principle:

E = min
⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩ (3.3.3)

For systems without degenerate ground states, there is only unique electron density

which corresponds to external potential and the minimum energy is obtained with this

ground state density. The ground state energy is given by this equation:

E0[ρ] = ⟨Ψ[ρ]|(T +Vee+Vext)|Ψ[ρ]⟩ = FHK[ρ]+
∫

d(r) ρ(r)Vext(r) (3.3.4)

where

FHK[ρ] = ⟨Ψ[ρ]|(T +Vee)|Ψ[ρ]⟩

is a universal functional of electron density ρ(r).

The first HK theorem can be defined as “presence theory” and the second one

is “uniqueness theorem”. The below diagram denotes the Hohenberg-Kohn theorem

briefly.
Vext(r) HK

⇐= ρ0(r)

⇓ ⇑

Ψi(r) ⇒ Ψ0(r)

Mean of the short arrows is the usual solution of the Schrödinger equation where the

potential Vext(r) determines all the states of the system Ψi(r), including the ground

state Ψ0(r) and ground state density ρ0(r). The long arrow labeled “HK” indicates the

Hohenberg-Kohn theorem, which completes the loop (Martin, 2004).

3.3.2 Kohn-Sham Equations

W. Kohn and L. Sham (1965) turned original many-body problem into an independent

electron problem. They proposed that kinetic energy of an interacting system can be

replaced with that of an equivalent non-interacting system with same density as the
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real system. With this assumption the ground state electron density of an interacting

system can be defined in terms of single electron wave functions of non-interacting

system.

ρ(r) =
Ne∑
i=1

|Ψi(r)|2 (3.3.5)

These orbitals are called Kohn-Sham orbitals.

Due to theory of Kohn-Sham, minimization of total energy functional provides us

to obtain the ground state electron density and energy. So then self-consistent solutions

of Schrödinger equation need to be performed. Kohn-Sham ansatz can be described

by the following scheme.

Vext(r) HK
⇐= ρ0(r)

[
KS
⇐⇒

]
ρ0(r) HK0

=⇒ VKS (r)

⇓ ⇑ ⇑ ⇓

Ψi({r}) ⇒ Ψ0({r}) Ψi=1,Ne(r) ⇐ Ψi(r)

In this scheme, HK0 represents the HK theorem applied to the non-interacting problem.

The connection between the many-body and independent particle systems is indicated

with two sided KS arrow which attaches any point to other point. Accordingly, solution

of the independent particle Kohn-Sham problem determines all properties of the full

many-body system (Martin, 2004).

Kohn-Sham formulation states that instead of the full many-electron system we can

consider an auxiliary system of single-electron orbitals that have the same ground state

density as the real system (Toffoli, 2009). Therefore the kinetic energy of the Kohn-

Sham orbitals can be written as

TS [ρ] =
Ne∑
i=1

⟨Ψi(r)| − h̄2

2m
∇2|Ψi(r)⟩ (3.3.6)

The kinetic energy of the real system can be defined with a correction term

T [ρ] = TS [ρ]+∆ T [ρ] (3.3.7)
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There is a correction term in electron-electron repulsive potential energy also.

Vee[ρ] =
1
2

∫ ∫
dr dr′

ρ(r) ρ(r′)
|r− r′| +∆Vee[ρ] (3.3.8)

The total ground state energy which is defined in Eq. (3.3.4) can be rewritten as

EKS [ρ] =
Ne∑
i=1

⟨Ψi(r)| − h̄2

2m
∇2|Ψi(r)⟩+

∫
d(r) ρ(r)Vext(r)

+
1
2

∫ ∫
dr dr′

ρ(r) ρ(r′)
|r− r′| +∆ T [ρ]+∆Vee[ρ]

(3.3.9)

The sum of last two correction terms (the difference between the exact kinetic

energy and TS , the nonclassical part of Vee[ρ] respectively) are known as exchange-

correlation energy term. As can be seen in the above equation this energy contains all

the unknown correlation contributions.

Exc[ρ] = ∆ T [ρ]+∆Vee[ρ] (3.3.10)

The main reason of this term is the difference between a system of Ne interacting and

non-interacting particles.

EKS [ρ] =
Ne∑
i=1

⟨Ψi(r)| − h̄2

2m
∇2|Ψi(r)⟩+

∫
d(r) ρ(r)Vext(r)

+
1
2

∫ ∫
dr dr′

ρ(r) ρ(r′)
|r− r′| +Exc[ρ]

(3.3.11)

In this equation the first term denotes the kinetic energy of noninteracting electrons and

it can be calculated with the help of derivation of Kohn-Sham orbitals from ground

state density. The second and third terms can be obtained if ground state density is

known. The last term, which includes all the effects of the many-body character of

the true electron system, is the “exchange-correlation” term. To evaluate this unknown

functional, there should be a proper method.

Kohn-Sham equation:

HKSΨ = EKSΨ (3.3.12)
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For non-degenerate ground states, the Kohn-Sham ground state wavefunction is a

single Slater determinant

Ψ =
1
√

N!
det

[
ψ1(r1,σ1) . . . . . . ψN(rNe ,σNe)

]
(3.3.13)

Kohn-Sham equation can be rewritten in terms of the single-particle orbitals as follow

[
− h̄2

2m
∇2+Ve f f (r)

]
ψi = εiψi (3.3.14)

The total energy of the system is:

EKS =
∑

i

εi (3.3.15)

Ve f f (r) =Vext(r)+
∫

dr′
ρ(r′)
|r− r′| +Vxc(r) (3.3.16)

Solution of the Kohn-Sham equation is summarized in the Fig. (3.1)

3.4 Exchange-Correlation Energy Functional

Hartree, Hartree-Fock and Kohn-Sham theories provide one electron equations for

describing many-body electronic systems. The Kohn-Sham theory is distinguished

from the Hartree-Fock theory on account of the fact that it includes the exchange-

correlation effect of electrons.

Exact functionals for exchange and correlation are known only for the homogeneous

(uniform) electron gas. If Exc[ρ] is known obviously by the help of any successive

better approximation, electron density and total energy can be obtained exactly (Parr &

Yang, 1989). The most widely used approximation is local density approximation. The

spin-density-dependent version of LDA is known as local spin-density approximation-

LSDA. And this approximation is used whenever spin-polarization is present.
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Figure 3.1 Schematic representation of the self-consistent solution of Kohn-Sham Equation

3.4.1 Local Density Approximation

The local density approximation introduced by Kohn and Sham in 1965, has been

the cornerstone of all approximations to exchange-correlation energy functionals. And

this approximation is valid for homogenous 2D electrons and also for systems with

small variation in electron density.

The exchange-correlation potential is a functional derivative of the exchange

correlation energy with respect to the local density. And for a homogeneous electron

gas, this will depend on the value of the electron density.

Vxc(r) =
δExc[ρ(r)]
δρ(r)

(3.4.1)
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The main idea of LDA is the assumption that the functional is the same with the

model of homogeneous electron gas. In other words, the energy depends on only the

local density at the point where the functional is evaluated (Kohn & Sham, 1965).

In this approximation, total exchange-correlation energy can be derived from the

following integration

ELDA
xc [ρ] =

∫
ρ(r)εLDA

xc (ρ(r)) dr (3.4.2)

Here εxc(ρ(r)) is the local exchange-correlation energy per particle with density ρ(r).

LDA assumes that this local exchange-correlation energy per particle is equal to the

local exchange-correlation energy per particle of a homogeneous electron gas within

the same density which is numerically known.

εLDA
xc (ρ(r)) = εhom

xc (ρ(r)) (3.4.3)

Corresponding exchange-correlation potential is defined as

VLDA
xc (r) =

δELDA
xc [ρ(r)]
δρ(r)

= εxc(ρ(r))+ρ(r)
∂εxc(ρ(r))
∂ρ(r)

(3.4.4)

And the Kohn-Sham equation can be rewritten as follows:

[
− h̄2

2m
∇2+Vext(r)+

∫
dr′

ρ(r′)
|r− r′| +V

LDA
xc (r)

]
ψi = εiψi (3.4.5)

3.4.2 Local Spin Density Approximation

Local Spin Density Approximation in which the functional is written in terms of

spin density is the extension of the LDA to spin-polarized systems.

In LDA formalism, the total energy is written as a functional of density alone and

this energy does not depend on spin densities. In the local spin density approximation

the exchange-correlation energy not only depends on the density but also on the

spin polarization. If the functional is expressed in terms of the spin densities, the
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corresponding LSDA can be expressed as

ELS DA
xc [ρ↑(r),ρ↓(r)] =

∫
ρ(r) εLS DA

xc (ρ(r), ζ(r)) dr (3.4.6)

where εLS DA
xc (ρ(r), ζ(r)) is the exchange and correlation energy per particle of a

homogeneous, spin-polarized electron gas with spin-up (ρ↑(r)) and spin-down (ρ↓(r))

densities, ζ(r) represents the spin polarization

ζ(r) =
(ρ↑−ρ↓)
ρ(r)

(3.4.7)

The total density ρ(r) is defined by ρ(r) = ρ↑(r)+ρ↓(r).

εxc can be divided into exchange and correlation energy parts:

εxc(ρ) = εx(ρ)+εc(ρ) (3.4.8)

There are various parametrizations for determining the exchange-correlation energy

which are based on Quantum Monte Carlo simulations. The most commonly used

parametrizations in the literature for the exchange-correlation energy are that of von

Barth and Hedin which was mainly interested with intrinsically spin polarized systems

such as transition metals and non-singlet atoms for intermediate polarizations (Barth

& Hedin, 1972), that of Ceperley and Alder in 3D for the non-polarized (ζ(r) = 0)

and ferromagnetic (ζ(r) = 1) cases (Ceperley & Alder, 1980), and that of Tanatar and

Ceperley for electronic systems confined in 2D (Tanatar & Ceperley, 1989). The recent

parametrization is defined by Attaccalite and co-workers (Attaccalite, Moroni, Gori-

Giorgi, & Bachelet, 2002, 2003). The last one performed for the whole range of spin

polarization (0 ≤ ζ ≤ 1) and wide range of electron densities (1 < rs < 40) (Räsänen,

2004). This new parametrization satisfies the complete results at the low and high-

density limits in the 2DEG (Gori-Giorgi, Attaccalite, Moroni, & Bachelet, 2003).

The exchange-correlation energy formulation of Attaccalite and coworkers is given
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by (Attaccalite et al., 2002)

εxc(rs, ζ) = εx(rs, ζ)+ (e−βrs −1)ε6
x(rs, ζ)+α0(rs)+α1(rs)ζ2+α2(rS )ζ4 (3.4.9)

where the exchange energy is equal to

εx(rs, ζ) = − 2
√

2
3π rs

[(1+ ζ)3/2+ (1− ζ)3/2] (3.4.10)

In these equations, rs = 1/
√
π n is the density parameter for the 2DEG with an electron

number density n at zero temperature, α’s are density-dependent functions of the

generalized Perdew-Wang form (Perdew & Wang, 1992), the parameter β is equal to

1.3386, and ε6
x(rs, ζ) is the Taylor expansion of εx beyond the fourth order in ζ at ζ = 0.

The parametrization of Attaccalite and coworkers (Attaccalite et al., 2002) is

considerably more accurate than the form of Tanatar and Ceperley (Tanatar &

Ceperley, 1989) in zero magnetic field case (Räsänen, 2004).

3.5 Numerical Methodology: Finite Element Method

Finite Element Method (FEM) is a powerful computational technique devised to

evaluate differential and integral equations that arise in various fields of engineering

and applied sciences (Hutton, 2004, Zieliński, 2012). This method based on the

discretization of the physical region and the representation of the wavefunction by

piecewise polynomials (Ram-Mohan, 2002). This discretization has two advantages.

It allows accurate representation of complex geometries and inclusion of dissimilar

materials. It enables accurate representation of the solution within each element, to

bring out local effects (Reddy, 1993).

The advantages of FEM are numerous and important. One of the major advantages

of FEM is that it is applicable to any field problem (e.g. heat transfer, stress analysis,

magnetic fields etc.) and to the various kinds of problems with any complex shape

simply. Also, it can be applied to the systems which have different boundary conditions
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on different portions of the boundary. With ease using the finite element method,

different elements (behaviour and mathematical descriptions) can be combined in a

single finite element model. The main advantage of FEM is that the results can be

obtained with a very high accuracy (Kwon & Bang, 1997, Ram-Mohan, 2002, Hutton,

2004).

3.5.1 Area Coordinates and Linear Basis Functions in 1D

In FEM, the domain of the problem is represented by a collection of subdomains and

each subdomain is called a “global element”. Therefore, the problem domain consists

of many global element patches. When one of these global elements is discretized into

subdomains, we get “local element”. In other words, total of the local elements in

related subdomain generate each global element. To connect the local elements and

impose continuity of the solution at nodes common to elements, the endpoints of each

element are known as “element nodes” (Reddy, 1993, Kwon & Bang, 1997).

Figure 3.2 Global element, local element and element nodes in 1D

The abbreviations that are used for the analytical derivation of FEM and also in

Fig. (3.3) represent for the terms as follows:
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ngen : Number of global element nodes

nge : Number of global element

ntn : Number of total nodes (ntn = nge · (ngen−1)+1)

N(x) : Global element basis functions

N(x) : Whole space basis functions

Figure 3.3 Schematic representation of the problem domain in 1D

If we represent the number of sub-domains and global element nodes with Nnge and

Nngen respectively, number of basis functions in the work space will be Nnge ·Nngen.

But due to the fact that there is a degeneracy at the point Nnge−1, the total number of

basis functions will be
[
Nnge ·Nngen− (Nnge−1)

]
.

Subdividing a geometrically complex domain into parts that allow the evaluation

of desired quantities is a practical approach. Approximation of the solution over each

element of the domain is simpler than its approximation over the entire domain. Better

results can be obtained by the use of more elements and also through the use of higher

order interpolation functions (Reddy, 1993).

Approximate solution over the work space is assumed to be a linear combination of

appropriately chosen approximation functions Ni(x) and undetermined coefficients ci

ψ(x) =
Nntn∑
i=1

ciNi(x) (3.5.1)

In FEM, the approximation functions Ni(x) are called “basis functions” (also

shape functions or interpolation functions) which span the whole space. These basis

functions in FEM are often polynomials that are derived using interpolation theory. We

choose the “Lagrange Polynomials” as the basis functions for the polynomial space

basis functions (Pask, Klein, Sterne, & Fong, 2001).
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Basis functions have to satisfy the condition below.

Ni(x j) = δi j (3.5.2)

where Ni is the i th parent basis function and x j is the j th node. Each basis function

has a value of 1 at its own node and zero at all other nodes (Pask et al., 2001).

3.5.1.1 Linear Basis Functions in 1D

We can define the basis functions with using area coordinates. Let us consider a

finite element such as in Fig. (3.4(a)) and take two nodes for each global element (Fig.

(3.4(b))):

(a)

(b)

Figure 3.4 (a) Work space which is divided into global elements. (b) Global element which has two

nodes (1D).

Here x1 and x2 are coordinates at each nodes and h represents the element size.

h = x2− x1

h1 = x− x1 h2 = x2− x

h = h1+h2 ⇒ 1 =
h1

h
+

h2

h
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1 =
(x2− x)
x2− x1

+
(x− x1)
x2− x1

Consequently area coordinates (L1, L2) can be defined with the following equation

L1(x) =
(x2− x)
x2− x1

L2(x) =
(x− x1)
x2− x1

(3.5.3)

It is important to note that area coordinates have to satisfy the condition

Li(x j) = δi, j (3.5.4)

as in basis functions (Eq. 3.5.2).

So we can define a boundary condition for the area coordinates:

L1(x)+L2(x) = 1 (3.5.5)

Basis functions can be defined in terms of area coordinates which span only global

elements. The interpolation functions in terms of area coordinates in one dimensional

space:
N1(x) = L1(x)

N2(x) = L2(x)
(3.5.6)

If we take the node coordinates such as x1 = 0 and x2 = 1, we can obtain the

interpolation functions from Eq. (3.5.3)

N1(x) = L1(x) = 1− x N2(x) = L2(x) = x (3.5.7)
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Figure 3.5 One dimensional shape functions with two nodes (Nngen = 2) in a global element

3.5.1.2 High Order Basis Functions in 1D

If number of nodes is equal to three (Nngen = 3), area coordinates need to comply

with a following condition:

(L1+L2)2 = L2
1+2L1L2+L2

2 = 1 (3.5.8)

This condition gives information about which area coordinates can we use to determine

the interpolation functions. The first one and the last one of the interpolation function

consists of two L1 and two L2 area coordinates respectively. The second one includes

both of L1 and L2 area coordinates.

(a) (b)

Figure 3.6 Area coordinates and positions of nodes in a global element

To determine the first interpolation function, we need to envelop first node point.
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Afterwards an equation is written which makes the area coordinate L1 zero at the other

node points. That is to say, L1 itself equals zero at z3 and L1− (1/2) comes up to zero

at z2.

Consequently, we can define first interpolation function with the following equation:

N1(x) =CL1

(
L1−

1
2

)
(3.5.9)

where C is a normalization constant that can be obtained with boundary condition (Eq.

3.5.4). In other words the value of C is to provide unity value for N1(x) at node z1.

N1(x = 0) = 1 ⇒ 1 =C ·1 · 1
2
⇒ C = 2

N1(x) = 2L1

(
L1−

1
2

)
(3.5.10)

To obtain a formulation for the second interpolation function we take the second

node point z2 as a reference which is a degenerate point for L1 and L2. At z2, area

coordinates has the same value L1 = L2 = 1/2 . L1 and L2 are equal to zero at the right

hand side and the left hand side of the related point respectively.

Therefore;

N2(x) =C ·L1 ·L2

N2(x = 1/2) = 1 ⇒ 1 =C · 1
2
· 1
2
⇒ C = 4

N2(x) = 4L1L2 (3.5.11)

We use the node point z3 for the last interpolation function which involve only L2

area coordinate. According to condition Ni(x j) = δi j for related interpolation function,

L2 itself and L2− (1/2) have a value of zero at node z2 and z1 node points respectively.

N3(x) =C ·L2

(
L2−

1
2

)
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N3(x = 1) = 1 ⇒ 1 =C ·1 · 1
2
⇒ C = 2

So, result formulation for the interpolation function is written as

N3(x) = 2L2

(
L2−

1
2

)
(3.5.12)

Figure 3.7 One dimensional shape functions with three nodes (Nngen = 3) in a global element

When the number of nodes is Nngen = 4, related formulations can be derived such

as below equations similarly.

(a) (b)

Figure 3.8 Area coordinates and positions of nodes in a global element

(L1+L2)N0−1 = 1 ⇒ (L1+L2)3 = 1

(L1+L2)3 = L3
1+3L2

1L2+3L1L2
2+L2

3 (3.5.13)

Due to this equation; N1 has three of L1 area coordinates, N2 has two of L1 and

one of L2, N3 has one of L1 and two of L2, the last one N4 has three of L2

41



area coordinates. These interpolation functions can be obtained using the boundary

condition (Eq. (3.5.4)) as mentioned before.

N1 =C ·L1 ·
(
L1−

1
3

)
·
(
L1−

2
3

)

1 =C ·1 ·
(
1− 1

3

)(
1− 2

3

)
⇒ C =

9
2

N1(x) =
9
2

L1

(
L1−

1
3

)(
L1−

2
3

)
(3.5.14)

N2(x) =C ·L1 ·
(
L1−

1
3

)
·L2

1 =C · 2
3
·
(
2
3
− 1

3

)
· 1
3
⇒ C =

27
2

N2(x) =
27
2

L1

(
L1−

1
3

)
L2 (3.5.15)

N3(x) =
27
2

L1

(
L2−

1
3

)
L2 (3.5.16)

N4(x) =
9
2

L2

(
L2−

1
3

)(
L2−

2
3

)
(3.5.17)

Figure 3.9 One dimensional shape functions with four nodes (Nngen = 4) in a global element
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If there are Nngen = 5 node points in one global element, definition of interpolation

functions in terms of area coordinates are given with the following equations:

Figure 3.10 A global element with five nodes in (1D)

The interpolation functions are given as

(L1+L2)4 = L4
1+4L3

1L2+6L2
1L2

2+4L1L3
2+L2

4

N1(x) = L1

(
L1−

1
4

)(
L1−

2
4

)(
L1−

3
4

)
64
6

N2(x) = L1

(
L1−

1
4

)(
L1−

2
4

)
L2

64 ·4
6

N3(x) = L1

(
L1−

1
4

)(
L2−

1
4

)
L2

64 ·4
4

(3.5.18)

N4(x) = L1

(
L2−

2
4

)(
L2−

2
4

)
L2

64 ·4
6

N5(x) =
(
L2−

3
4

)(
L2−

2
4

)(
L2−

1
4

)
L2

64
6

Each interpolation function has value of unity at its associated node and value zero

at the other nodes (Fig. 3.11).

In this thesis, we derive interpolation functions for maximum Nngen = 10 node points

in one global element.
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Figure 3.11 One dimensional shape functions with five nodes (Nngen = 5) in a global element

3.5.2 Solution of the Confined Quantum Mechanical Systems with FEM

The Hamiltonian of a particle moving in a confinement potential V(r) is

H = − h̄2

2m
∇2+V(r) (3.5.19)

We can use the Bohr radius and effective Hartree energy with intent to get the

dimensionless form of Hamiltonian.

H = −1
2
∇2

d +V(r) (3.5.20)

where the subscript “d” stands for the dimension of the system. The eigenvalue

equation is known as in the following form:

HΨ(r) = EΨ(r) (3.5.21)

Due to the variational principle we need to start with a suggestion for the trial wave

function which describes the physical system. Using our experience with the wave

function we next write down the Schrödinger equation and then solve this equation

via the minimization principle to obtain a set of wave functions. Accordingly, the

Schrödinger equation is described with this trial wave function ψ(r) instead of the
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wave function Ψ(r) :

Ψ(r)→ ψ(r) ⇒ Hψ(r) = Eψ(r)

(H −E) ψ(r) � 0
(3.5.22)

As a first step to derive the solution of the Schrödinger equation (Eq. 3.5.22), the

physical region is divided into subregions. Therefore, wave function can be defined as

a complete set of basis functions which span the related domain

ψ(r) =
Nntn∑
i=1

ψi Ni(r) (3.5.23)

where Nntn is the number of total nodes in discretizated solution space.

The representation of square matrix, column and row matrices which is used in

FEM can be seen in Table (3.1).

Table 3.1 Matrix representations in FEM notation

FEM

Matrix X =

 ∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗

 {{X}}

Column Matrix X =

 ∗∗∗
 {X}

Row Matrix X =
(
∗ ∗ ∗

)
{X}T

Matrix notation of the wave function over all the nodes in the solution space can be

written as

ψ(r) =
Nntn∑
i=1

ψi Ni(r) =
{
ψ1 ψ2 . . . ψNntn

}
·



N1(r)

N2(r)
...

NNntn(r)


= {ψ}T {N(r)} (3.5.24)

ψ(r) = {N(r)}T · {ψ} (3.5.25)
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where

{N(r)}T = (
N1(r),N2(r),N3(r), . . .NNntn(r)

)
(3.5.26)

{ψ}T = (
ψ1,ψ2,ψ3, . . . ,ψNntn

)
(3.5.27)

The hermitian conjugate of wave function is

ψ†(r) = {ψ}† · {N(r)} (3.5.28)

To derive variational parameters (ψi(r)) “Galerkin’s Method” can be used. We can

describe the mathematical procedure such as: Firstly the Schrödinger equation is

written with searched wave function ψ(r). Then the equation is multiplied by hermitian

conjugate of the wave function on the left hand side and integral is taken of this

outcome equality over the associated solution space to obtain the expression which

makes the variation parameters minimum.

G =
∫
Ω

ψ†(r)(H −EI)ψ(r) dΩ (3.5.29)

where I is the unitary matrix (N ×N). With using the definitions of the wave function

(Eq. 3.5.25) and it’s hermitian conjugate (Eq. 3.5.28) in Eq. (3.5.29) the following

equation is obtained.

G = {ψ}† ·


∫
Ω

{N}(H −EI){N}T dΩ

 · {ψ} (3.5.30)

We can use the variational method to determine the wave function by minimizing

the G expression. A set of wave functions which minimize the integration of G also

minimize the energy of the system.

∂G
∂ψ†
= 0 ⇒


∫
Ω

{N}(H −EI){N}T dΩ

 · {ψ} = 0 (3.5.31)
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When the Hamiltonian expression Eq. (3.5.20) is written in Eq. (3.5.31)
∫
Ω

dΩ
[
−1

2
{N} ·∇2

d{N}
T + {N}V(r){N}T

] · {ψ} = E


∫
Ω

dΩ{N}{N}T
 · {ψ} (3.5.32)

The first term which includes the kinetic energy can be written as

−
∫
Ω

{N} ·∇2
d{N}

T dΩ =
∫
Ω

∇d{N} ·∇d{N}T dΩ−
∫
Ω

∇d
(
{N} ·∇d{N}T

)
dΩ (3.5.33)

The second integration term of this equation can be turned into a surface integral by

Gauss Theorem:

∫
Ω

∇d({N} ·∇{N}T ) dΩ =
∫
∂Ω

{N}(∇d{N}T ) ·dS (3.5.34)

According to the boundary conditions of the confined physical system, the wave

function and its conjugate must be zero on the surface of the solution space. This

condition is valid for exact solution ψ(r) and also trial wave function. Therefore Eq.

(3.5.34) equals to zero.

Consequetly we can rearrange the Eq. (3.5.32) with using Eqs. (3.5.33) and

(3.5.34).
∫
Ω

dΩ
[
1
2
∇d{N} ·∇d{N}T + {N}V(r){N}T

] · {ψ} = E


∫
Ω

dΩ{N}{N}T
 · {ψ} (3.5.35)

In the matrix notation this equation is described with the following equation

{{K}} · {ψ} = E {{M}} · {ψ} (3.5.36)

where {{K}} is “Stiffness Matrix” and {{M}} is “Mass Matrix”. Eq. (3.5.36) is a

representation of generalized eigenvalue equation of the system. To calculate the

energy eigenvalues of the system we need to solve this eigenvalue equation.

The stiffness matrix ({{K}}) is a coefficient matrix whose elements do not include
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the energy term. This matrix is defined with the below equation explicitly

{{K}} =
∫
Ω

dΩ
[
1
2
∇d{N} ·∇d{N}T + {N}V(r){N}T

]
(3.5.37)

The mass matrix ({{M}}) is a coefficient matrix also but this coefficients consist of the

energy term and explicit form of the mass matrix is

{{M}} =
∫
Ω

dΩ{N}{N}T (3.5.38)

If we discretize the solution space, summation of the integrals over the divided solution

space elements is equal to integrals over the whole solution space

∫
Ω

dΩ =
Ne∑

e=1

∫
Ωe

dΩe (3.5.39)

where Ne represents the number of global elements. Consequently we can re-describe

the stiffness and mass matrices in the discretized solution space:

{{K}} =
Ne∑

e=1

{{ke}} (3.5.40a)

{{ke}} =
∫
Ωe

dΩe

[
1
2
∇d{N} ·∇d{N}T + {N}V(r){N}T

]
(3.5.40b)

{{ke}} matrix includes both of the kinetic energy term and potential energy term.

{{ke}} = {{ke,kin}}+ {{ke,pot}}

{{ke,kin}} =
∫
Ωe

dΩe

[
1
2
∇d{N}∇d{N}T

]
(3.5.41)

{{ke,pot}} =
∫
Ωe

dΩe
[
{N}V{N}T

]
(3.5.42)

{{M}} =
Ne∑

e=1

{{me}} (3.5.43a)
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{{me}} =
∫
Ωe

dΩe {N}{N}T (3.5.43b)

In these equations {N} and {N} represent the global element basis function and the

whole space basis functions respectively. Integration over each elements can be

performed since basis functions are known functions.

By making a transformation for global elements which constitute the parts of

discretized space, we can pass through to area coordinates from global element

coordinates. So we need to write shape functions as a function of area coordinates.

In a d-dimensional space following transformation can be done for the transition

from its self coordinates to area coordinates

dΩe =

d∏
i=1

dxi

{N}T =
(

N1 N2 · · · Nd+1

)
dΩe = Je dL1dL2 · · ·dLd

where Je is the Jacobi Determinant. It describes the transformation matrix between the

coordinates. Boundary condition for the area coordinates is as follows:

1 = L1+L2+ . . .+Ld +Ld+1

The matrix elements which belong the kinetic part of the stiffness matrix (Eq. (3.5.41))

can be written obviously as in the following equations

{{ke,kin}} =
∫
Ωe

dΩe

[
1
2
∇d{N}∇d{N}T

]

∇d{N}∇d{N}T =
d∑

i=1

∂{N}
∂xi

∂{N}T
∂xi
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{{ke,kin}} =
d∑

i=1

∫
Ωe

dΩe
1
2

(
∂{N}
∂xi

)(
∂{N}T
∂xi

)

The derivative of global element basis function is defined in terms of area coordinates

such as

∂{N}
∂xi
=



∂N1
∂xi

∂N2
∂xi

∂N3
∂xi
...

∂Nngen
∂xi


=

d∑
j=1

(
∂L j

∂xi

)(
∂{N}
∂L j

)

where the abbreviation “ngen” expresses the number of global element nodes.

And we can write the transpose of this expression similarly

∂{N}T
∂xi

=

d∑
k=1

(
∂Lk

∂xi

)(
∂{N}T
∂Lk

)

{{ke,kin}} =
d∑

i=1

d∑
j=1

d∑
k=1

∫
Ωe

dΩe
1
2

(
∂L j

∂xi

∂{N}
∂L j

)(
∂Lk

∂xi

∂{N}T
∂Lk

)

{{ke,kin}} =
d∑

i=1

d∑
j=1

d∑
k=1

1
2

(
∂L j

∂xi

)(
∂Lk

∂xi

)
· Je

·
1∫

0

dL1

1−L1∫
0

dL2

1−L1−L2∫
0

dL3 · · ·
1−L1−L2−···−Ld−1∫

0

dLd

(
∂{N(L)}
∂L j

)(
∂{N(L)}T
∂Lk

)
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(l,m) th matrix element can be written as

(
ke,kin

)
lm =

d∑
i=1

d∑
j=1

d∑
k=1

1
2

(
∂L j

∂xi

)(
∂Lk

∂xi

)
· Je

·
1∫

0

dL1

1−L1∫
0

dL2

1−L1−L2∫
0

dL3 · · ·
1−L1−L2−···−Ld−1∫

0

dLd

(
∂Nl(L)
∂L j

)(
∂NT

m(L)
∂Lk

)
(3.5.44)

(ke,kin)lm =

d∑
i=1

d∑
j=1

d∑
k=1

1
2

(
∂L j

∂xi

)(
∂Lk

∂xi

)
· Je · (kinv)lm (3.5.45)

{{ke,kin}} → Je {{kinv}}

where {{kinv}} is an invariant matrix and Je contains the information about coordinates

of node.

{{kinv}} =
ngen∑
l=1

ngen∑
m=1

1∫
0

dL1

1−L1∫
0

dL2

1−L1−L2∫
0

dL3 · · ·
1−L1−L2−···−Ld−1∫

0

dLd

(
∂Nl(L)
∂L j

)(
∂NT

m(L)
∂Lk

)

The matrix elements of potential terms in {{K}}:

{{ke,pot}} =
∫
Ωe

dΩe
[
{N}V{N}T

]

V =
ngen∑
k=1

Vk ·Nk

(i, j) th matrix element for potential part of ke can be written as

(
ke,pot

)
i j
=

ngen∑
k=1

Vk · Je

1∫
0

dL1

1−L1∫
0

dL2

1−L1−L2∫
0

dL3 · · ·
1−L1−L2−···−Ld−1∫

0

dLd Ni(L)Nk(L)N j(L)

(3.5.46)
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(
ke,pot

)
i j
=

ngen∑
k=1

Vk · Je
((

ke,pot
)
k

)
i j

(3.5.47)

And the matrix elements of me in terms of area coordinates can be defined as in the

following equation

{{me}} =
∫
Ωe

dΩ{N}{N}T

(i, j) th matrix element of me

(
me

)
i j
= Je

1∫
0

dL1

1−L1∫
0

dL2

1−L1−L2∫
0

dL3 · · ·
1−L1−L2−···−Ld−1∫

0

dLd Ni(L)N j(L)

(3.5.48)

(me)i j = Je (minv)i j

{{me}} = Je {{minv}}

where {{minv}} represents the invariant matrix

{{minv}}=
ngen∑
i=1

ngen∑
j=1

1∫
0

dL1

1−L1∫
0

dL2

1−L1−L2∫
0

dL3 · · ·
1−L1−L2−···−Ld−1∫

0

dLd Ni(L)N j(L)

3.5.3 Solution of Coupled Systems with FEM

In Table (3.2) mathematical notation of matrices for coupled systems which we use

in finite element analysis is described.

The classical Hamiltonian representation for coupled systems is given by

H =HA+HBpξ +HC p2
ξ (3.5.49)

where pξ = −i ∂∂ξ is the dimensionless canonical momentum operator. The Hamiltonian
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Table 3.2 Mathematical notation of matrices for coupled systems

FEM Coupled System

Square Matrix X =

 ∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗

 {{X}} X

Column Matrix X =

 ∗∗∗
 {X} X

Row Matrix X =
(
∗ ∗ ∗

)
{X}T X

T

of coupled systems in quantum mechanical formulation can be written as

H =
∞∑

n=0

 1
n!
∂nH
∂pn

ξ

∣∣∣∣∣∣∣∣
pξ=0

, pn
ξ

 = {HA,1}+ {HB, pξ}+ {HC , p2
ξ} (3.5.50)

where HA is a part of the total Hamiltonian which does not contain the canonical

momentum operator pξ. HB and HC contain the canonical momentum operator pξ

and the square of it p2
ξ , respectively.

{
HA,1

}
=

1
2

(
HA ·1+1 ·HA

)
=HA (3.5.51)

{
HB, pξ

}
=

1
2

(
HB pξ + pξ HB

)
(3.5.52)

{
HC , p2

ξ

}
=

1
2

(
HC p2

ξ + p2
ξ HC

)

=
1
2

((
pξHC +

[
HC , pξ

])
pξ + pξ

(
HC pξ −

[
HC , pξ

]))
{
HC , p2

ξ

}
= pξ HC pξ +

1
2

[
[HC , pξ ], pξ

]
(3.5.53)
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If we use these definitions in Eq. (3.5.50), we can get

H =HA+
1
2

(
HB pξ + pξ HB

)
+ pξ HC pξ +

1
2

[
[HC , pξ], pξ

]
(3.5.54)

If theHC contains only the terms which depend on spatial coordinates, the last term

in Eq. (3.5.54) can be added to the HA Hamiltonian expression as a correction term.

And in this consideration we can rearrange the Hamiltonian expression such as

H =HA+
1
2

(
HB pξ + pξ HB

)
+ pξ HC pξ (3.5.55)

Within FEM’s compass, approximate solution is searched in the finite-size function

space where this function space is discretized into finite number of subregion or

element. The function space is often known as “solution region”.

The wave function for nc coupled band system can be defined as

X(ξ) =



X1(ξ)

X2(ξ)

...

Xnc(ξ)


where nc is the measurement of coupling.

And the wave function of the set of basis functions can be written in a serial form
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as follows
X1(ξ) =

ntn∑
i=1
Xi1Ni(ξ)

X2(ξ) =
ntn∑
i=1
Xi2Ni(ξ)

...

Xnc(ξ) =
ntn∑
i=1
Xi(nc)Ni(ξ)

(3.5.56)

The wave function, which we want to achieve, can be shown in matrix notation over

the nodes of related space.

X(ξ) =



N1(ξ) 0 . . . 0 N2(ξ) 0 . . . 0 Nntn(ξ) 0 . . . 0

0 N1(ξ) . . . 0 0 N2(ξ) . . . 0 0 Nntn(ξ) . . . 0

.

.

. . . .
. . .

.

.

.
.
.
. . . .

. . .
.
.
.

.

.

. . . .
. . .

.

.

.

0 . . . 0 N1(ξ) 0 . . . 0 N2(ξ) 0 . . . 0 Nntn(ξ)



·



X11

X12

.

.

.

X1(nc)

X21

X22

.

.

.

X2(nc)

.

.

.

.

.

.

Xntn1

Xntn2

.

.

.

Xntn(nc)



(3.5.57)
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X(ξ) =
(
N1 · Inc×nc,N2 · Inc×nc,N3 · Inc×nc, . . . ,Nntn · Inc×nc

)


X1

X2
...
...

Xntn


Thus, we can write the wave function and its hermitian conjugate of it in matrix

notation of FEM

X(ξ) =
{
N(ξ)I

}†
{X} (3.5.58)

X †(ξ) =
(
X†1(ξ),X†2(ξ), . . . ,X†nc(ξ)

)
= {X}†

{
N(ξ)I

}
(3.5.59)

And so the unknown variational parameters X(nc) can be derived with “Galerkin’s

Method”

G =
ξ f∫
ξi

dξ X †(ξ) (H −ε I) X(ξ) (3.5.60)

where I is the unitary matrix (ngen×ngen).

If one can write the wave function and hermitian conjugate of it in matrix notation,

the following equation is obtained

G = {X}†

ξ f∫
ξi

dξ
{
N(ξ)

}(
H −εI

){
N(ξ)

}† {X}

We minimize the “G” term with respect to the ({X}†). As aforementioned (section

3.5.2) ({X}, {X}†) family is also minimize the energy of the system.

∂G
∂{X}†

= 0 (3.5.61)


ξ f∫
ξi

dξ {N(ξ)}
(
H −εI

)
{N(ξ)}†

 {X} = 0 (3.5.62)
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
ξ f∫
ξi

dξ {N(ξ)} H {N(ξ)}†
 {X} = ε


ξ f∫
ξi

dξ{N(ξ)}{N(ξ)}†
 {X} (3.5.63)

The generalized eigenvalue equation of the system can be defined by using the new

presentation

{{K}}{X} = ε{{M}}{X} (3.5.64)

where {{K}} represents the “Stiffness Matrix” and {{M}} denotes the “Mass Matrix” for

the coupled system. Explicit forms of these matrix expressions are;

{{K}} =
ξ f∫
ξi

dξ {N(ξ)} H {N(ξ)}† (3.5.65)

{{M}} =
ξ f∫
ξi

dξ {N(ξ)} {N(ξ)}† (3.5.66)

The integrals over the whole solution space can be re-described as the summation of

the integrals over the divided solution space elements.

ξ f∫
ξi

dξ →
nge∑
e=1

ξe+1∫
ξe

dξ

We can rewrite the stiffness matrix and mass matrix by using the integration of the

stiffness matrix and the mass matrix over the each global element

{{K}} =
nge∑
e=1

{{ke}} (3.5.67)

{{ke}} =
ξe+1∫
ξe

dξ {N(ξ)} H {N(ξ)}† (3.5.68)
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{{M}} =
nge∑
e=1

{{me}} (3.5.69)

{{me}} =
ξe+1∫
ξe

dξ {Ne(ξ)}{Ne(ξ)}† =
ξe+1∫
ξe

dξ{Ne(ξ)}{Ne(ξ)}† (3.5.70)

With below transformation we can take place [0,1] space and then we can generate

FEM bases in this space. If we divide the [0,1] space into n pieces, we get (n+1) basis

functions which are given by nth degree polynomial.

[0,1]→ [s0, s1]+ [s1, s2]+ · · · [sk, sk+1] · · ·+ [sn−1, sn] (3.5.71)

where s0 = 0 and sn = 1.

s =
ξ− ξe

ξe+1− ξe
he = ξe+1− ξe (3.5.72)

⇒ ξ = s ·he+ ξe heds = dξ (3.5.73)

ξe+1∫
ξe

dξ → (he)

1∫
0

ds

{Ne(ξ)} → {Ne(s)} , s ∈ [0,1]

(3.5.74)
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Therefore Eq. (3.5.70)

{{me}} = (he)

1∫
0

ds{N(s)}{N(s)}†

︸                  ︷︷                  ︸
{{m}} : (invariant matrix)

{{m}} =
1∫

0

ds



N1(s)

N2(s)

...

Nngen(s)



{
N1(s), N2(s), . . . , Nngen(s)

}
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{{m}} =
1∫

0
ds



N1(s) 0 . . . 0

0 N1(s) . . . 0
...

...
. . .

...

0 . . . 0 N1(s)

N2(s) 0 . . . 0

0 N2(s) . . . 0
...

...
. . .

...

0 . . . 0 N2(s)

...
...

...
...

...
...

...
...

Nngen(s) 0 . . . 0

0 Nngen(s) . . . 0
...

...
. . .

...

0 . . . 0 Nngen(s)



·



N1(s) 0 . . . 0 N2(s) 0 . . . 0 Nngen(s) 0 . . . 0

0 N1(s) . . . 0 0 N2(s) . . . 0 0 Nngen(s) . . . 0

.

.

. . . .
. . .

.

.

.
.
.
. . . .

. . .
.
.
.

.

.

. . . .
. . .

.

.

.

0 . . . 0 N1(s) 0 . . . 0 N2(s) 0 . . . 0 Nngen(s)



{{m}} =
1∫

0

ds



N1(s) ·N1(s) · I, N1(s) ·N2(s) · I, . . . , N1(s) ·Nngen(s) · I

N2(s) ·N1(s) · I, N2(s) ·N2(s) · I, . . . , N2(s) ·Nngen(s) · I

. . . . . . . . . . . .

Nngen(s) ·N1(s) · I, Nngen(s) ·N2(s) · I, . . . , N2
ngen(s) · I


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I =



1 0 . . . . . . 0

0 1
...

...
...

...
...

. . .
...

...

0 . . . . . . 0 1


(nc)×(nc)

{{m}} =
1∫

0

ds



N1(s) ·N1(s), N1(s) ·N2(s), . . . , N1(s) ·Nngen(s)

N2(s) ·N1(s), N2(s) ·N2(s), . . . , N2(s) ·Nngen(s)

. . . . . . . . . . . .

Nngen(s) ·N1(s), Nngen(s) ·N2(s), . . . , N2
ngen(s)



⊗ I

{{m}} = {{m}}⊗ I Kronecker Product (3.5.75)

{{m}} =
1∫

0

ds{N(s)}{N(s)}† (3.5.76)

{{me}} = (he){{m}}⊗ I (3.5.77)

Eq. (3.5.65);

{{K}} =
ξ f∫
ξi

dξ {N(ξ)} H {N(ξ)}†

and the Hamiltonian which is given in Eq. (3.5.55)

H =HA+
1
2

(
HB pξ + pξ HB

)
+ pξ HC pξ

After inserting this Hamiltonian expression into stiffness matrix equation we can use
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integration by parts for the last two terms. Consequently surface terms appear.

{{K}} =
ξ f∫
ξi

dξ{N(ξ)}HA{N(ξ)}†+
ξ f∫
ξi

dξ{N(ξ)} 1
2i
HB

∂

∂ξ
{N(ξ)}†

+
1
2i
{N(ξ)}︸︷︷︸

0

HB{N(ξ)}†
∣∣∣∣∣∣∣∣
ξ f

ξi

−
ξ f∫
ξi

dξ
∂{N(ξ)}
∂ξ

1
2i
HB{N(ξ)}†

− {N(ξ)}︸︷︷︸
0

HC
∂

∂ξ
{N(ξ)}†

∣∣∣∣∣∣∣∣
ξ f

ξi

+

ξ f∫
ξi

dξ
∂

∂ξ
{N(ξ)}HC

∂

∂ξ
{N(ξ)}†

(3.5.78)

If the physical system whose solution is desired to get is confined in a specific region

of work space, the wave function of this physical system decay on the surface of the

solution space. According to this physical boundary condition, the surface terms in

Eq. (3.5.78) do not contribute to the stiffness matrix term.

{N(ξi)} = {N(ξ f )} = 0

{{K}} =
ξ f∫
ξi

dξ{N(ξ)}HA{N(ξ)}†+
ξ f∫
ξi

dξ{N(ξ)} 1
2i
HB

∂

∂ξ
{N(ξ)}†

−
ξ f∫
ξi

dξ
∂{N(ξ)}
∂ξ

1
2i
HB{N(ξ)}†+

ξ f∫
ξi

dξ
∂

∂ξ
{N(ξ)}HC

∂

∂ξ
{N(ξ)}†

(3.5.79)

We need to go back to Eqs. (3.5.67) and (3.5.68) to make the transformation which

is given in Eqs. (3.5.72) and (3.5.73). By using the expressions in Eqs. (3.5.72) and

(3.5.73), we can get the definition of {{ke}} in terms of s:
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{{ke}} = he

1∫
0

ds{N(s)}HA(s){N(s)}†

+
1
2i

1∫
0

ds
(
{N(s)}HB(s)

∂

∂s
{N(s)}†− ∂

∂s
{N(s)}HB(s){N(s)}†

)

+
1
he

1∫
0

ds
∂

∂s
{N(s)}HC(s)

∂

∂s
{N(s)}†

(3.5.80)

The Eq. (3.5.80) can be divided into parts related to Hamiltonian components:

{{ke}} = {{kA,e}}+
(
{{kBR,e}}− {{kBL,e}}

)
+ {{kC,e}} (3.5.81)

{{kA,e}} = he

1∫
0

ds{N(s)}HA(s){N(s)}† (3.5.82)

{{kA,e}} = he

1∫
0

ds



N1(s) ·N1(s) ·HA(s), N1(s) ·N2(s) ·HA(s), . . . , N1(s) ·Nngen(s) ·HA(s)

N2(s) ·N1(s) ·HA(s), N2(s) ·N2(s) ·HA(s), . . . , N2(s) ·Nngen(s) ·HA(s)

. . . . . . . . . . . .

Nngen(s) ·N1(s) ·HA(s), Nngen(s) ·N2(s) ·HA(s), . . . , N2
ngen(s) ·HA(s)


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{{kA,e}} = he

1∫
0

ds



N1(s) ·N1(s), N1(s) ·N2(s), . . . , N1(s) ·Nngen(s)

N2(s) ·N1(s), N2(s) ·N2(s), . . . , N2(s) ·Nngen(s)

. . . . . . . . . . . .

Nngen(s) ·N1(s), Nngen(s) ·N2(s), . . . , N2
ngen(s)



⊗
(
HA(s)

)

(3.5.83)

HA(s) =
ngen∑
j=1

HA(s j)N j(s) (3.5.84)

HA(s j) =HA, j

{{kA,e}} = he

ngen∑
j=1


1∫
0

ds
(
{N(s)}N j(s){N(s)}†

)⊗ (
HA(s j)

)
(3.5.85)

{{kA,e}} = he

ngen∑
j=1

{{kA}}⊗HA(s j) (3.5.86)

{{kBR,e}} =
1
2i

1∫
0

ds{N(s)}HB(s)
∂

∂s
{N(s)}† (3.5.87)
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{{kBR,e}} =
1
2i

1∫
0

ds



N1(s) · ∂N1(s)
∂s

, N1(s) · ∂N2(s)
∂s

, . . . , N1(s) ·
∂Nngen(s)

∂s

N2(s) · ∂N1(s)
∂s

, N2(s) · ∂N2(s)
∂s

, . . . , N2(s) ·
∂Nngen(s)

∂s

. . . . . . . . . . . .

Nngen(s) · ∂N1(s)
∂s

, Nngen(s) · ∂N2(s)
∂s

, . . . , Nngen(s) ·
∂Nngen(s)

∂s



⊗
(
HB(s)

)

(3.5.88)

HB(s) =
ngen∑
j=1

HB(s j)N j(s) (3.5.89)

{{kBR,e}} =
1
2i

ngen∑
j=1


1∫
0

ds
(
{N(s)}N j(s)

∂

∂s
{N(s)}†

)⊗ (
HB(s j)

)
(3.5.90)

{{kBR,e}} =
1
2i

ngen∑
j=1

{{kBR}}⊗HB(s j) (3.5.91)

{{kBL,e}} =
1
2i

1∫
0

ds
∂

∂s
{N(s)}HB(s){N(s)}† (3.5.92)

{{kBL,e}} =
1
2i

1∫
0

ds



∂N1(s)
∂s

·N1(s),
∂N1(s)
∂s

·N2(s), . . . ,
∂N1(s)
∂s

·Nngen(s)

∂N2(s)
∂s

·N1(s),
∂N2(s)
∂s

·N2(s), . . . ,
∂N2(s)
∂s

·Nngen(s)

. . . . . . . . . . . .

∂Nngen(s)
∂s

·N1(s),
∂Nngen(s)

∂s
N2(s), . . . ,

∂Nngen(s)
∂s

·Nngen(s)



⊗
(
HB(s)

)

(3.5.93)
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{{kBL,e}} =
1
2i

ngen∑
j=1


1∫
0

ds
(
∂

∂s
{N(s)}N j(s){N(s)}†

)⊗ (
HB(s j)

)
(3.5.94)

{{kBL,e}} =
1
2i

ngen∑
j=1

{{kBL}}⊗HB(s j) (3.5.95)

{{kBL}} = {{kBR}}† (3.5.96)

{{kC,e}} =
1
he

1∫
0

ds
∂

∂s
{N(s)}HC(s)

∂

∂s
{N(s)}† (3.5.97)

{{kC,e}} =
1
he

1∫
0

ds



∂N1(s)
∂s

· ∂N1(s)
∂s

,
∂N1(s)
∂s

· ∂N2(s)
∂s

, . . . ,
∂N1(s)
∂s

·
∂Nngen(s)

∂s

∂N2(s)
∂s

· ∂N1(s)
∂s

,
∂N2(s)
∂s

· ∂N2(s)
∂s

, . . . ,
∂N2(s)
∂s

·
∂Nngen(s)

∂s

. . . . . . . . . . . .

∂Nngen(s)
∂s

· ∂N1(s)
∂s

,
∂Nngen(s)

∂s
∂N2(s)
∂s

, . . . ,
∂Nngen(s)

∂s
·
∂Nngen(s)

∂s



⊗
(
HC(s)

)

(3.5.98)

HC(s) =
ngen∑
j=1

HC(s j)N j(s) (3.5.99)

{{kC,e}} =
1
he

ngen∑
j=1


1∫
0

ds
(
∂

∂s
{N(s)}N j(s)

∂

∂s
{N(s)}†

)⊗ (
HC(s j)

)
(3.5.100)

{{kC,e}} =
1
he

ngen∑
j=1

{{kC}}⊗HC(s j) (3.5.101)

We use the Eqs. (3.5.86), (3.5.91), (3.5.95) and (3.5.101) to solve eigenvalue

equation (Eq. (3.5.64)).
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CHAPTER FOUR

FORMALISM OF THE PHYSICAL SYSTEM

In this chapter we give a description of the physical system. We also give

information about how we calculate the electronic structure of this physical system.

4.1 Introduction

In this thesis our aim is to investigate theoretically the ground state electronic

structure of a confined QWR subjected to a perpendicular magnetic field, including

both Rashba and Dresselhaus SO interactions and exchange-correlation effects.

We consider a quasi-1D QWR with SO interaction in a perpendicular magnetic

field. We assume that the wire lies in the xy plane with ŷ direction parallel to the wire

and has a parabolic confinement in the x̂ direction Vcon f (x) = (m∗/2)ω2
0x2. Charge

carriers move freely along the y− direction, accordingly translational invariance along

this direction exists. The magnetic field is oriented along the growth direction, taken

to be ẑ, B = (0,0,B), with corresponding magnetic vector potential in Landau gauge

expressed as A = (0,Bx,0).

Figure 4.1 Schematic representation of the wire system (Debald & Kramer, 2005).

Translational invariance along ŷ direction allows us to decompose the eigenfunction

of total Hamiltonian into plane waves in the longitudinal direction and a spinor part
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depending on the transverse coordinate x such as

Ψn(x,y) = eikyy

 φn,ky(x,↑)

φn,ky(x,↓)

 =: eikyyφn,ky(x) (4.1.1)

where wave numbers ky are good quantum numbers of the system, the index n stands

for the energy level and φn,ky (x,↑ (↓)) defines the spinor function.

4.2 Hamiltonian of the Physical System

The single particle Hamiltonian in quasi-1D with SO coupling is given by

H =H0+HZ +Hso (4.2.1)

The first term in Eq. (4.2.1) contains kinetic energy and confining potential V(x)

contributions,

H0 =

(
1

2m∗
[
p2

x+ (py+ eBx)2
]
+V(x)

)
σ0 (4.2.2)

where px, py are components of electron momentum and σ0 is the (2×2) unit matrix.

The second term is Zeeman Hamiltonian which is known as:

HZ =
1
2

g∗µBσzB (4.2.3)

where g∗ is the effective Lande-g factor, µB is the Bohr magneton (µB = eh̄/(2me)) and

σz is the z component of Pauli spin matrix. The last term in Eq. (4.2.1),Hso, is total SO

Hamiltonian which involves Rashba and Dresselhaus SO couplings. The Dresselhaus

term has two components, one linear in the momentum and the other cubic (Dyakonov

& Kachorovskii, 1986). Here, we regard only linear Dresselhaus term and neglect the

cubic Dresselhaus term which is important for 2D quantum wells (Miller, Zumbühl,

Marcus, Lyanda-Geller, Goldhaber-Gordon, Campman, & et al., 2003).

Hso =HR+HD
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The Rashba SO Hamiltonian is given by

HR =
α

h̄
[σ× (p+ eA)]z =

α

h̄

[
σx(py+ eBx)−σy px

]
(4.2.4)

whereas Dresselhaus SO Hamiltonian is

HD =
β

h̄

[
σy

(
py+ eBx

)
−σx px

]
(4.2.5)

In these Hamiltonians α and β stand for the Rashba and Dresselhaus SO coupling

parameters, respectively. σx and σy denote Pauli spin matrix components.

With the wavefunction ansatz, which is given in Eq. (4.1.1), the Schrödinger

equation becomes separable in x and y. So, the explicit form of the H0 and Hso

Hamiltonians can be written as follows:

H0 =

− h̄2

2m∗
d2

dx2 +
1
2

m∗ω2(x− x0)2+
ω2

0

ω2

h̄2k2
y

2m∗

σ0 (4.2.6)

Hso = α

[
σx

(
ky+

eB
h̄

x
)
+ iσy

d
dx

]
+β

[
σy

(
ky+

eB
h̄

x
)
+ iσx

d
dx

]
(4.2.7)

where ω = (ω2
0 + ω

2
c)1/2 is the effective oscillator frequency with the cyclotron

frequency

ωc =
eB
m∗

(4.2.8)

and, x0 is the center coordinate of the harmonic oscillator

x0 = −
(
ωc

ω

)2 h̄ky

eB
= −

(
ωc ω0

ω2

)
l20 ky (4.2.9)

and l0 is the harmonic oscillator length.

l0 =

√
h̄

m∗ω0
(4.2.10)
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4.3 Dimensionless Form of Hamiltonian

We need to scale all parameters in the Schrödinger equation to get solutions. For

this purpose, we consider the harmonic oscillator length l0 as a length scale and

consecutively all energies are calculated in terms of h̄ω0.

Here are some definitions to get dimensionless form of each Hamiltonian term:

x = ξl0 ⇒ d
dx
=

1
l0

d
dξ
=

1
l0

Dξ ⇒ d2

dx2 =
1
l20

D2
ξ (4.3.1)

pξ =
1
i
∂

∂ξ
=

1
i

Dξ ⇒ Dξ = i pξ ⇒ D2
ξ = −p2

ξ (4.3.2)

K0 = ky l0 ⇒ ky =
1
l0
K0 (4.3.3)

By using Eqs. (4.3.1) - (4.3.3) inH0 Hamiltonian term (Eq. (4.2.6)), one can get

H0 =
h̄2

m∗l20

−1
2

D2
ξ +

1
2

m∗l20
h̄2

m∗ω2l20(ξ− ξ0)2+
1
2

(
ω0

ω

)2
K2

0

σ0 . (4.3.4)

By dividing the both sides of the above equation by h̄ω0 energy, one can obtain the

scaled form ofH0 Hamiltonian like in the following equation:

H0

h̄ω0
=

1
2

p2
ξ +

1
2

(
ω

ω0

)2

(ξ− ξ0)2+
1
2

(
ω0

ω

)2
K2

0

σ0 . (4.3.5)

The frequency ratio (ω/ω0) expression can be written in terms of cyclotron frequency

such as:

ω =
√
ω2

0+ω
2
c ⇒ ω

ω0
=

√
1+

(
ωc

ω0

)2

. (4.3.6)

Zeeman Hamiltonian (Eq. (4.2.3)) can be rewritten in terms of cyclotron frequency

using the definition of Bohr magneton (µB):

HZ =
1
2

g∗µBB σz =
1
2

g∗
(
1
2

m0h̄ωc

)
σz (4.3.7)
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where m0 = m∗/me .

As a result, the dimensionless form of the Zeeman Hamiltonian can be expressed as

in the following equation:
HZ

h̄ω0
=

[
1
2

g∗ B

]
σz (4.3.8)

where

B =
1
2

m0

(
ωc

ω0

)
. (4.3.9)

By substituting dimensionless parameters that are given in Eqs. (4.3.1) - (4.3.3) into

Rashba Hamiltonian expression (first term of Eq. (4.2.7)) one can obtain

HR = α

[
σx

(
ky+

eB
h̄

x
)
+ iσy

d
dx

]
=
α

l0

σx

K0+
l20
l2B
ξ

+ iσy Dξ


where lB is the magnetic length.

lB =

√
h̄

m∗ωc
(4.3.10)

After some arrangements, one can get dimensionless expression for Rashba

Hamiltonian as follows

HR

h̄ω0
= ηR

[
σx

(
K0+

ωc

ω0
ξ

)
−σy pξ

]
(4.3.11)

where

ηR =
α

l0 (h̄ω0)
(4.3.12)

On the other hand characteristic Rashba SO energy is known as

∆R
so =

m∗α2

2h̄2 (4.3.13)

⇒ ∆R
so =

m∗

2h̄2 η
2
R(l0 h̄ω0)2 =

1
2

m∗ η2
R

(
h̄

m∗ω0

)
ω2

0 ⇒ ∆
R
so =

1
2
η2

R (h̄ω0)

With the help of the above equation, one can write the dimensionless parameter ηR in
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terms of characteristic Rashba SO energy:

ηR =

[
2
(
∆R

so

h̄ω0

)]1/2

(4.3.14)

Dresselhaus Hamiltonian, which is defined by the last term of Eq. (4.2.7), can also

be rewritten in dimensionless form similar to the Rashba Hamiltonian.

HD = β

[
σy

(
ky+

eB
h̄

x
)
+ iσx

d
dx

]
=
β

l0

σy

K0+
l20
l2B
ξ

+ iσx Dξ


⇒ HD

h̄ω0
= ηD

[
σy

(
K0+

ωc

ω0
ξ

)
−σx pξ

]
(4.3.15)

Here, ηD is given by

ηD =
β

l0 (h̄ω0)
(4.3.16)

The definition of the characteristic Dresselhaus SO energy is known as follows

∆D
so =

m∗β2

2h̄2 (4.3.17)

In the same way as Eq. (4.3.14), we can write the dimensionless parameter ηD in

terms of characteristic Dresselhaus SO energy:

ηD =

[
2
(
∆D

so

h̄ω0

)]1/2

(4.3.18)

Consequently, scaled form of total Hamiltonian can be written as in the following

equation:

H
h̄ω0

=

1
2

p2
ξ +

1
2

(
ω

ω0

)2

(ξ− ξ0)2+
1
2

(
ω0

ω

)2
K2

0

σ0+

[
1
2

g∗ B

]
σz

+ ηR

[
σx

(
K0+

ωc

ω0
ξ

)
−σy pξ

]
+ηD

[
σy

(
K0+

ωc

ω0
ξ

)
−σx pξ

]
(4.3.19)
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As mentioned in subsection (3.5.3), we need to write the Hamiltonian in quantum

mechanical formulation. This formulation was given in Eq. (3.5.50) previously.

H =
∞∑

n=0

 1
n!
∂nH
∂pn

ξ

∣∣∣∣∣∣∣∣
pξ=0

, pn
ξ

 = {HA,1}+ {HB, pξ}+ {HC , p2
ξ}

HA = H
∣∣∣∣∣
pξ=0

= h̄ω0

1
2

(
ω

ω0

)2

(ξ− ξ0)2+
1
2

(
ω0

ω

)2
K2

0

σ0+ h̄ω0

[
1
2

g∗ B

]
σz

+h̄ω0

[
ηR

(
K0+

ωc

ω0
ξ

)
σx+ηD

(
K0+

ωc

ω0
ξ

)
σy

]
(4.3.20)

HB =
∂H
∂pξ

∣∣∣∣∣∣∣∣
pξ=0

= h̄ω0
[
pξ σ0−ηRσy−ηDσx

]
pξ=0

HB = h̄ω0
[
−ηRσy−ηDσx

]
(4.3.21)

HC =
1
2!

∂2H
∂p2

ξ

∣∣∣∣∣∣∣∣
pξ=0

= h̄ω0

[
1
2
σ0

]
(4.3.22)

Numerical solution of the Schrödinger equation is performed by Finite Element

Method (FEM) which is based on expressing of the wave function as a linear

combination of interpolation polynomials multiplied by as-yet-unknown coefficients

in each of these elements (Pask et al., 2001, Ram-Mohan, 2002).

Up to now we have not taken into account the exchange-correlation term and now

we will mention about noncollinear local-spin density approximation.
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4.3.1 Kohn-Sham Hamiltonian and Exchange-Correlation Potential

In the analysis of electronic, structural and optical properties of molecules, solids

and other nano-structures, electronic structure calculations that consist in the solution

of the Kohn-Sham density functional theory play an important role. The ground-state

electron density ρ(x) of an atomistic system can be obtained from the self-consistent

solution of the Kohn-Sham equations.

HKSψ(x) = εψ(x) (4.3.23)

where HKS is the Kohn-Sham Hamiltonian that depends on ρ(x), ψ(x) are the Kohn-

Sham orbitals. These Kohn-Sham orbitals are two component spinors for the system

which includes SO coupling.

ψn(r) = eikyy

 φn,ky(x,↑)

φn,ky(x,↓)


Using the Kohn-Sham orbitals, we can define the electron density by

ρ(µ,β;r) =
∑

n

L
2π

∫
dk⟨ψn,k|δ(r′− r)|ψn,k⟩r′ fµ(ϵnk) (4.3.24)

At finite temperature (T = 1/(kBβ)), the occupation numbers in Eq. (4.3.24) can be

chosen according to the Fermi-Dirac distribution function

fµ(ϵnk) =
1

(1+ e(ϵnk−µ)/kBT )
(4.3.25)

where µ is the chemical potential.

Translational invariance along the wire refers to all densities - actually all physical

variables- only depend on x. Therefore, electron density of this physical system
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depends on x and it can be written as

ρ(x) =
∑

n

1
2π

∫
dky

[
|φn,ky(x,↑)|2+ |φn,ky(x,↓)|2

]
fµ(ϵnk) (4.3.26)

The one-dimensional electron density along the QWR is the integral of ρ(x) over x.

ρ1D =

∫
dx ρ(x) (4.3.27)

The spin magnetization that is used to calculate of the spin orientation at a given

point can be defined as in the following equation:

ma(r) =
∑

n

L
2π

∫
dk⟨ψn,k|δ(r′− r)σa|ψn,k⟩r′ fµ(ϵnk) (4.3.28)

where the subscript identify x, y, z

Therefore substituting each Pauli spin matrices into above equation, we can get the

corresponding spin magnetization components as follows

mx(x) =
∑

n

1
2π

∫
dky 2Re

[
φ∗n,ky

(x,↑)φn,ky(x,↓)
]

fµ(ϵnk) (4.3.29)

my(x) =
∑

n

1
2π

∫
dky 2Im

[
φ∗n,ky

(x,↑)φn,ky(x,↓)
]

fµ(ϵnk) (4.3.30)

mz(x) =
∑

n

1
2π

∫
dky (|φn,ky(x,↑)|2− |φn,ky(x,↓)|2) fµ(ϵnk) (4.3.31)

Kohn-Sham Hamiltonian involves the sum of all terms: kinetic energy and confining

potential, zeeman effect contribution which arise from perpendicular magnetic filed,

SO interaction terms and exchange correlation energy.

H =H0+HZ +HR+HD+Vxc (4.3.32)

The exchange-correlation potential (Vxc) is derived from exchange-correlation

75



energy functional (Exc). Spin dependent exchange-correlation potential is defined as

follows,

Vηη′
xc (r) ≡

δExc
[
ρηη′(r)

]
δρηη′(r)

(4.3.33)

Here, η subscript represents spin up case (↑), η′ represents the down spin (↓). The

density matrix ρ(r) is generally assumed to be diagonal for all r. This indicates that

the direction of the magnetization is considered to be constant and hence only up- and

down-spin densities are used in Kohn-Sham equations (Heinonen, Kinaret, & Johnson,

1999). We need to know the exchange-correlation energy of a uniform system as a

function of density (ρ(r)) and polarization (ζ(r)) for LDA.

4.3.1.1 Non-collinear Local-Spin Density Approximation

There are multifarious spin-density functional calculations of the energy band

structure and related electronic properties of spin polarized systems. Common to all

of these theories and calculations is the treatment of the magnetic moment as having

only two directions, namely up and down. These moment arrangements are entitled

“collinear”. If the magnetic moments of atoms in a system are oriented in different

directions, this case is called “non-collinear magnetism”.

For the systems whose magnetization direction changes in space, the approximation

of constant magnetization direction no longer valid. A generalization of local spin

density functional (Barth & Hedin, 1972) theory in which electron density is replaced

by the single-particle density matrix to non-collinear magnetism was implemented by

Kübler and co-workers (Kübler, Höck, Sticht, & Williams, 1988a,b, Sticht, Höck, &

Kübler, 1989) for the first time. The main idea is to locally rotate the spin quantization

axis to obtain a representation that locally diagonalizes the single-particle density

matrix (Kübler et al., 1988a, Heinonen et al., 1999).

Here, we use the approximation which was developed by Kübler and co-workers

to locally findVηη′
xc . Since exchange-correlation energy functional is a function of up-

spin and down-spin electron densities, according to chain rule we can write the spin
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dependent exchange-correlation potential term as

Vηη′
xc =

δExc[n↑,n↓]
δn↑

∂n↑
∂ρηη′

+
δExc[n↑,n↓]

δn↓

∂n↓
∂ρηη′

(4.3.34)

The density matrix denoted by ρηη′ can be defined in terms of particle and

magnetization densities in the non-collinear case such as following equation.

ρηη′(x) =
∑

n

1
2π

∫
dkyφ

∗
nky

(x,η)φn,ky(x,η′) fβ(ϵn,ky)

⇒

 ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓

 = 1
2

 ρ+mz mx+ imy

mx− imy ρ−mz

 (4.3.35)

The density matrix can be diagonalized by means of local unitary transformation

matrix.

Uρ(x)U† = n ≡

 n↑ 0

0 n↓

 (4.3.36)

where the local unitary transformation matrix is given by

U =


eiϕ(x)/2 cos(θ(x)/2) e−iϕ(x)/2 sin(θ(x)/2)

−eiϕ(x)/2 sin(θ(x)/2) e−iϕ(x)/2 cos(θ(x)/2)

 (4.3.37)

where ϕ and θ are local spin rotation angles.

During the diagonalization process of the density matrix ρ(x), local spin rotation

angles that give the orientation of the spin are obtained as

tanϕ(x) = −
my(x)
mx(x)

(4.3.38a)

tanθ(x) =

√
m2

x(x)+m2
y(x)

mz(x)
(4.3.38b)

Also, we can derive the spin density terms n↑ and n↓ which are the diagonal elements
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in Eq. (4.3.36)

n↑ = ρ↑↑ cos2(θ/2)+
1
2

[
ρ↑↓eiϕ+ρ↓↑e−iϕ

]
sin(θ)+ρ↓↓ sin2(θ/2)

n↑ =
1
2
[
ρ(x)+mz(x)cos(θ)

]
+Re

{
ρ↑↓eiϕ sinθ

}
(4.3.39)

n↓ = ρ↑↑ sin2(θ/2)− 1
2

[
ρ↑↓eiϕ+ρ↓↑e−iϕ

]
sin(θ)+ρ↓↓ cos2(θ/2)

n↓ =
1
2
[
ρ(x)−mz(x)cos(θ)

]−Re
{
ρ↑↓eiϕ sinθ

}
(4.3.40)

We can use the familiar relations of collinear LSDA to compute the exchange-

correlation potentials

 υ↑ 0

0 υ↓

 ≡


δExc[n↑,n↓]
δn↑

0

0
δExc[n↑,n↓]

δn↓


(4.3.41)

Using these descriptions, we can obtain the form of exchange correlation potential

from Eq.(4.3.34).

V↑↑xc = υ↑
∂n↑
∂ρ↑↑

+υ↓
∂n↓
∂ρ↑↑

V↑↓xc = υ↑
∂n↑
∂ρ↑↓

+υ↓
∂n↓
∂ρ↑↓

V↓↑xc = υ↑
∂n↑
∂ρ↓↑

+υ↓
∂n↓
∂ρ↓↑

V↓↓xc = υ↑
∂n↑
∂ρ↓↓

+υ↓
∂n↓
∂ρ↓↓

(4.3.42)

Derivatives of n↑ and n↓ with respect to ρηη′ give the terms that are related to local spin

rotation angles θ and ϕ. As a result, formulation of the exchange correlation potential

Vηη′
xc is obtained as (Malet et al., 2007, Gişi, 2012)

Vηη′
xc =


υ0+∆υcosθ ∆υeiϕ sinθ

∆υe−iϕ sinθ υ0−∆υcosθ

 (4.3.43)
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where υ0 ≡ (υ↑+υ↓)/2 and ∆υ ≡ (υ↑−υ↓)/2 .

The relation between density and filling factor is ν(x) = 2πb2
0n(x) and we can write

exchange-correlation energy

Exc =

∫
dxn(x)Exc[ν(x), ζ(x)] (4.3.44)

where Exc is the exchange-correlation energy per particle in an infinite, homogenous

system of filling factor ν(x) = 2πb2
0ρ(x) and polarization ζ = (n↑−n↓)/(n↑+n↓)

Up- and down-spin electron densities may be defined in terms of polarization and

total electron density

ρ(x) = n↑+n↓

ζ =
(n↑−n↓)
ρ(x)

⇒ n↑−n↓ = ζ ·ρ(x)

n↑ =
1
2
ρ(x)[1+ ζ] (4.3.45)

n↓ =
1
2
ρ(x)[1− ζ] (4.3.46)

Once again we can write the Eq.(4.3.41):

υ↑ =
δExc[n↑,n↓]

δn↑
=
δ(ρ · Exc)
δn↑

υ↓ =
δExc[n↑,n↓]

δn↓
=
δ(ρ · Exc)
δn↓

derivatives with respect to up- and down-spin electron densities (n↑ and n↓) can be

defined as partial derivatives of total electron desity and polarization.

δ

δn↑
=
∂

∂ρ
+

1
ρ

[
1− ζ] ∂

∂ζ
(4.3.47)

δ

δn↓
=
∂

∂ρ
− 1
ρ

[
1+ ζ

] ∂
∂ζ

(4.3.48)
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Accordingly υ↑ and υ↓ can be defined as

υ↑ =

[
∂

∂ρ
+

1
ρ

[
1− ζ] ∂

∂ζ

]
(ρ · Exc) (4.3.49)

υ↓ =

[
∂

∂ρ
− 1
ρ

[
1+ ζ

] ∂
∂ζ

]
(ρ · Exc) (4.3.50)

Relation between the filling factor and electron density was denoted by ν(x) =

2πl20 ρ(x). Therefore υ↑ and υ↓ can be written in terms of filling factor.

υ↑ =

[
∂

∂ν
+

1
ν

[
1− ζ] ∂

∂ζ

]
(ν · Exc) (4.3.51)

υ↓ =

[
∂

∂ν
− 1
ν

[
1+ ζ

] ∂
∂ζ

]
(ν · Exc) (4.3.52)

Exchange-correlation energy functional was taken from the work of Attaccalite and

co-workers (Attaccalite et al., 2002).

4.4 Spin Orientation

The spin components of the eigenspinor φn(ky, x) in the nth subband are given by

sn
j(ky, x) = [φ∗n,↑(ky, x) φ∗n,↓(ky, x)] σ j [φn,↑(ky, x) φn,↓(ky, x)]T (4.4.1)

where j = (x,y,z) and [φn,↑(ky, x) φn,↓(ky, x)]T is the spinor wave function in the nth

spin-split level. And therefore we can define “spin density” components S n
j (ky, x) for a

given ky in the nth level as (Upadhyaya et al., 2008b, Gujarathi et al., 2012)

S n
j (ky, x) =

sn
j(ky, x)√

s2
x(ky, x)+ s2

y(ky, x)+ s2
z (ky, x)

(4.4.2)

The spin density components depend on wave vector ky, the level index n(↑,↓), and also

confinement direction x. Consequently, for an electron belonging to a particular energy
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level with certain wave vector ky spin orientations will vary with location along the

width of the QWR. SO interaction-induced this spatial modulation of the spin density

across the wire width is known as “spin texturing” (Upadhyaya et al., 2008b,a)

In order to calculate the real-space spin density (S j(x)), we need to merge the spin

density contribution from all occupied states:

S j(x) =
N∑

n=1

k+Fn∫
k−Fn

S n
j (ky, x) dky

k+Fn− k−Fn
j = (x,y,z) (4.4.3)

where N is the number of occupied spin-split levels whose bottoms are below the Fermi

energy. In Eqn. 4.4.3, intersection points between the Fermi energy and E − ky curve

on the right (left) denote k+Fn (k−Fn) wave vectors of the nth level (see Fig. 4.2(a)). For

sake of simplicity, we assumed the low temperature limit which means that only the

states below the Fermi level are fully occupied.

Figure 4.2 A representation for intersection points between the Fermi energy and E− ky curve.

The above definition (Eqn. 4.4.3) for real-space spin density can be used when

the Fermi level intersects the subband only at two points, each of them locating at

the opposite sides of the ky axis. However in special case when E − ky curve has a

camelback shape, Fermi level can intersect the same band at four different points (see

Fig. 4.2(b)). Thereby Eqn. 4.4.3 needs to be adjusted as follows:
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S j(x) =

kF2∫
kF1

S j(ky, x) dky

kF2− kF1
+

k′F2∫
k′F1

S j(ky, x) dky

k′F2− k′F1
(4.4.4)

Here kF1, kF2 (k′F1, k′F2) are the wave vectors of intersection points between the

Fermi level and the E− ky curve on the left (right) of the energy axis.
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CHAPTER FIVE

RESULTS AND DISCUSSIONS

We consider a quasi-1D QWR with SO interaction in a perpendicular magnetic

field. We assume that the wire material is GaAs so that the effective mass of electrons

is 0.067 times the free electron mass (m∗ = 0.067m0) and the effective Lande-g factor

g∗ = −0.44. Both type of SO coupling constants (α, β) are chosen in the order of

10−11 eV m (Miller et al.,2003, Shafir, Shen, & Saikin,2004, Könemann, Haug, Maude,

Fal’ko, & Altshuler,2005) which are in the same order of experimental values.

5.1 Numerical Results

The numerical results can be divided into three main parts. In the first part, we

present energy eigenvalues and eigenfunctions for the physical system with/without

SO coupling contribution and external magnetic field. In the second part, we exhibit

spin texture figures and express the results. In the third and last part of numerical

results we present the energy band dispersions and spin orientations for the system

which includes exchange-correlation contribution.

5.1.1 Energy Bands

To clarify the interplay of different SO interaction contributions, first of all we

calculate the energy dispersion relations of the subbands for a various strengths of

Rashba and Dresselhaus SO couplings without magnetic field. Thereafter we take into

consideration external magnetic field and calculate the energy bands to see how the

magnetic field affects the subbands.

We can distinguish Rashba and Dresselhaus SO interactions into two regimes: weak

lso ≫ l0, and strong lso . l0 where lR(D)
so = h̄2/2m∗α(β) is the length associated with

SO couplings. In the presence of both types of SO couplings or only one type, the

eigenenergies of the system are uniformly shifted downward by total characteristic SO
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energy ∆T
so = ∆

R
so+∆

D
so where ∆R

so = m∗α2/2h̄2 and ∆D
so = m∗β2/2h̄2 denote the Rashba

and Dresselhaus SO couplings, respectively (Zhang et al., 2006, Knobbe & Schäpers,

2005).

5.1.1.1 Without Magnetic Field

With individual SO interaction (α , 0 and β = 0): Initially, in order to identify the

effect of individual SO coupling, in Fig. 5.1 we present the energy level spectrum

of the QWR for different strengths of Rashba SO interaction in the absence of

external magnetic field. Solid curves denote the energy dispersion with an individual

mechanism of SO interaction whereas the dash-dot curves indicate the case for the

absence of SO interaction.

When we calculate the energy dispersion for Rashba and Dresselhaus SO interaction

individually, we get similar energy subband dispersions for each same characteristic

SO energy. So, we show the case of which includes only Rashba SO coupling

contribution in Fig. 5.1.

In case both external magnetic field and SO interaction terms are zero, all subbands

are spin degenerate (the dash-dot curves in Fig. 5.1). As seen in Fig. 5.1(a), by

inclusion of Rashba SO interaction spin-splitting occurs in doubly-degenerated energy

bands at ky , 0 and spin degeneracy is preserved only for eigenstates with ky = 0.

This can be explained on the basis of dependency of SO interaction to the electron

momentum (Debald & Kramer, 2005). For a weak Rashba SO contribution, the

coupling between different subbands does not take place clearly. As the Rashba SO

interaction parameter is strengthened to a stronger value, coupling between spin-split

levels causes an intraband mixing.

In order to illustrate to what extend the Rashba effect modifies the energy dispersion

in a one-dimensional structure, in Fig. 5.1(b) and (c) we present the energy subband

dispersions for two strong regimes of Rashba SO coupling, ∆R
so/h̄ω0 = 0.25 and

∆R
so/h̄ω0 = 1.
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Figure 5.1 Quantum-wire energy dispersions with no Dresselhauss SO interaction term (∆D
so/h̄ω0 = 0)

at zero magnetic field for three different Rashba SO strengths, (a) ∆R
so/h̄ω0 = 0.025, (b) ∆R

so/h̄ω0 = 0.25,

and (c) ∆R
so/h̄ω0 = 1. The dash-dot curves represent the energy subbands in the absence of both SO

interaction and external magnetic field.

Deviation from the parabolicity and rising coupling between neighbouring subbands

with increase of the characteristic Rashba SO energy (∆R
so/h̄ω0) is clearly visible.

In the neighbourhood of ky = 0 “camel-back” shape arises from the effect of SO

coupling for spin branches of lower energy levels. For a stronger ∆R
so/h̄ω0, described

by the larger off-diagonal elements of the Hamiltonian matrix, significant coupling

between neighbouring subbands leads to pronounced anticrossing (nonmonotonic

portion) especially at higher levels. We should note that there is an energy shift in

the subbands which is proportional with the magnitude of SO coupling energy.

Interplay of both SO interaction : We calculate the energy levels of the QWR for

Rashba and Dresselhaus SO couplings to determine how the simultaneous contribution

of both of SO interaction terms affect the energy dispersion.
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E − ky curves for weak Rashba and Dresselhaus SO coupling regimes is given in

Fig. 5.2(a). With inclusion of Dresselhaus term the spin degeneracy is removed except

ky = 0 point, as in the case for individual SO contribution (Fig. 5.1), and this term

results in a downward energy shift at degeneracy point ky = 0. In addition to this

for weak Rashba and Dresselhaus SO interaction, the coupling between neighbouring

subbands does not seen as clearly. In strong SO regimes, deviation from parabolicity

of the subbands and anticrossing in higher subbands is visible.
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Figure 5.2 Subband energy spectra of QWR for various Rashba and Dresselhaus SO coupling strengths

at B = 0. (a) ∆R
so/h̄ω0 = 0.025, ∆D

so/h̄ω0 = 0.0125, (b) ∆R
so/h̄ω0 = 0.5, ∆D

so/h̄ω0 = 0.125, (c) ∆R
so/h̄ω0 =

1, ∆D
so/h̄ω0 = 0.25

Comparison of the Figs. 5.1 and 5.2 reveals that more pronounced anticrossings

occur between subbands of different levels in the vicinity of ky = 0 when both of

the SO interaction terms coexist. And we can say that amount of the downward

shifting of energy increases with increasing total characteristic SO coupling energy

(∆T
so/h̄ω0) (Zhang et al., 2006).
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5.1.1.2 With Magnetic Field

To elucidate the interplay of the SO interaction with magnetic field, at this part we

consider QWR subjected to a perpendicular magnetic field. As can be seen in following

figures, applying a magnetic field results in a subband separation and the degeneracy

at ky = 0 is removed.

In the absence of SO interaction : Fig. 5.3 shows the energy dispersion of electrons

in a QWR without SO interactions for strong magnetic field values. When only the

contribution of magnetic field is considered, one can argue that the magnetic field lifts

the degeneracy in each energy band by the Zeeman effect. The energy spectrum in

the absence of SO interaction and magnetic field is also given by dash-dot lines for

comparison.

Increased magnetic field enhances the confinement potential which results in

vertically upward shifting in the bottom of flattened energy subbands and increment

in energy spacing between upper and lower level of each subband.

In the presence of SO interaction : Next, we consider the case when both SO

interaction and magnetic field are present. In Fig. 5.4, we calculate the energy

dispersion with a strong Rashba SO interaction under weak and strong magnetic

fields. For weak magnetic field value, spin splitting which arose from Zeeman effect

is imperceptible to the eye in Fig. 5.4(a) (especially between the lowest subbands).

Moreover anticrossings between different energy subbands still exist as in zero

magnetic field case.

From Fig. 5.4(b) and (c) we obviously see varying separation between each energy

subband branches due by the effect of magnetic field as index of energy level increases.

The degeneracy at the point ky = 0 that has been removed with the effect of magnetic

field is more evidently seen in strong B-field regime. Higher magnetic field values

cause to negligible anticrossing between the subbands and extinguish the “camel-back”

shape of the lower energy subbands.
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Figure 5.3 (a) Energy spectrum at ky = 0 as a function of ωc/ω0. (b)-(c) Energy dispersion of a QWR

subjected to external magnetic field in the absence of SO interactions (ωc/ω0 = 0.5 and ωc/ω0 = 2,

respectively)

In order to illustrate the competing effect between Rashba and Dresselhaus SO

interaction, we plot Figs. 5.5 and 5.6. Figs. 5.5(a) and 5.6(a) represent the corresponding

level spectrum with different and same SO coupling strengths. For different coupling

strengths anticrossings between different subbands stand out whereas for the same SO

interaction strengths crossings take place. In Figs. 5.5(b) and 5.6(b) variation of the

energy with respect to ωc/ω0 at ky = 0 is given. In both figures, different (same)

amount of contribution of SO interaction gives rise to a remarkable (unremarkable)

separation of spin-up and spin-down branches of the energy states. When the magnetic

field increases, the subband separation becomes larger owing to an increasing h̄ωc

for small-indexes of energy levels. We also calculate the energy bands for different

and same Rashba and Dresselhaus SO coupling strengths in the presence of strong

magnetic field (Figs. 5.5(c) and 5.6(c)). For a fixed magnetic field, the magnitude of
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Figure 5.4 Energy dispersion of the spin-split subbands under the influence of external magnetic field

and Rashba SO interaction (∆R
so/h̄ω0 = 0.5) (a) ωc/ω0 = 0.2 (b) ωc/ω0 = 1 (c) ωc/ω0 = 2.

spin splitting between energy subbands of different states undergoes change depending

on the interplay of SO coupling and external magnetic field. Based on this observation

and looking the feature of Fig. 5.6(c) we can say that Rashba and Dresselhaus SO

coupling terms can cancel each other by leading to a rather complex behavior in the

energy dispersion in contrast with the different SO coupling strength case.

With the assumption of negligible intersubband crossing, the critical magnetic

field for which the camelback shape cease to exist can be described as Bc =

2m∗ηS OI/(|g|µBh̄2) where ηS OI represent α or β (Gujarathi et al., 2012, Upadhyaya

et al., 2008b). This fact reveals an important feature in energy dispersions: for cases

with different SO interaction contributions, camelback shapes preserves when the total

effective magnetic field corresponding to SO interactions is greater than the applied

magnetic field.
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Figure 5.5 (a) Energy subband dispersion at B = 0 with Rashba (∆R
so/h̄ω0 = 0.5) and Dresselhaus

(∆D
so/h̄ω0 = 0.25) SO coupling effect (b) Energy spectrum at ky = 0 as a function of ωc/ω0. (c) Energy

dispersion of the wire at a finite magnetic field (ωc/ω0 = 2)

We obtain that the energy state spin-splitting strongly depends on the strengths of

the Rashba and Dresselhaus SO coupling and also applied magnetic field.

5.1.2 Wave Functions

We plot the spinor components of the wave functions separately for the dimensionless

wave vector values kyl0 for first lowest spin-split subband in the presence and also

absence of SO interactions.

Fig. 5.7 shows the wave function of an electron in a finite magnetic field (ωc/ω0 = 2)

without SO interaction. These spinor wave functions at kyl0 = ±2 correspond to the

energy spectrum in Fig. 5.3(c) .
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Figure 5.6 (a) Energy subband dispersion at B = 0 with the equal strength of Rashba and Dresselhaus

SO interaction (∆R
so/h̄ω0 = ∆

D
so/h̄ω0 = 0.25) (b) Energy spectrum at ky = 0 as a function of ωc/ω0. (c)

Energy dispersion of the wire at a finite magnetic field (ωc/ω0 = 2).

Skew direction of wave functions is determined by the Lorentz force associated

with the magnetic field. Depending on whether the electrons are forward or backward

traveling this force deflects electrons toward either the left or the right edge of the

QWR (Pramanik et al., 2007).

By considering x dependency of the real and imaginary parts of the spinor wave

function, Fig. 5.7 emphasizes that [φ↑(ky, x) φ↓(ky, x)]T can be separated in a spatial

part and a space independent spinor part.

In Figs. 5.8-5.9, real and imaginary parts of the spinor wave function are plotted

separately [φ↑(ky, x) φ↓(ky, x)]T for an electron in the lowest spin-split band under

strong magnetic field.
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Figure 5.7 Real and imaginary parts of the spinor wave function as a function of x/l0 in the first subband

for the case of strong magnetic field (ωc/ω0 = 2.0) and the absence of SO interaction at kyl0 = ±2. The

subscript L(U) indicates the lower(upper) spin-split level of the first subband.

In the presence of Rashba and/or Dresselhaus SO coupling of any strength, emerged

completely different situation imposes the fact that x dependent spinor wave function

cannot be written as the product of space dependent and eigenspinor part. This

observation is in accordance with previous works in literature (Pramanik et al., 2007,

Moroz & Barnes, 1999, 2000, Gujarathi et al., 2012, Upadhyaya et al., 2008a).
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Figure 5.8 Real and imaginary parts of the spinor wave function as a function of x/l0 in the first subband

when the QWR is under the effect of Rashba SO interaction (∆R
so/h̄ω0 = 0.5) and external magnetic field

(ωc/ω0 = 2).
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Figure 5.9 Spinor wave function components as a function of x/l0 for the lowest spin-split level in the

presence of weak Dresselhaus SO interaction (∆D
so/h̄ω0 = 0.025) and strong magnetic field (ωc/ω0 = 2).
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Figure 5.10 The components of the spinor wave function when both SO interaction (∆R
so/h̄ω0 =

2 ∆D
so/h̄ω0 = 0.5) and external magnetic field (ωc/ω0 = 2) are present. Value of the wave vector is

kyl0 = ∓2.

5.1.3 Spin Orientation

In the following part, we present a detailed study of the spin texturing in a

parabolically confined QWR with Rashba and/or Dresselhaus SO interaction and

93



external magnetic field. We express our results in terms of ρ1Dl0 that is dimensionless

form of the one-dimensional electron density (ρ1D) across the wire and corresponding

to densities in the range of ∼ 5×106 − 2×108 m−1 (Malet, Pi, Barranco, & Lipparini,

2005).

5.1.3.1 Without Spin-Orbit Interaction

Initially we investigate the case when only the existence of external magnetic field

causes vertical splitting of each subband. When only the lowest Zeeman-split band is

occupied, one can foresee that x̂ and ŷ components (S x(x) and S y(x)) of spin density

will vanish even though ẑ component (S z(x)) will take a nonzero positive value due

to g− factor in case of strong magnetic field (ωc/ω0 = 3.0). x-independence of the

magnetic field leads to no spatial modulation of spin density as seen in Fig. 5.11(a).

We should state that if the system is under the effect of moderate external magnetic

field such as ωc/ω0 = 0.3 and 0.6, all components of S(x) are zero since the g− factor

as small.

When we consider the case where the Fermi level is above the bottom of the

upper spin-split level of first subband, the magnitude of the S z(x) will be almost zero

according to Eqn. (4.4.3). In other words spins of the upper Zeeman branch are in

the opposite direction with the lower Zeeman branch and therefore almost cancel each

other.
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Figure 5.11 Spin density components in the absence of Rashba and Dresselhaus SO interactions at

h̄ω0 = 2 meV (a) low-density limit and ωc/ω0 = 3 (b) high-density limit and ωc/ω0 = 6.
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5.1.3.2 Without External Magnetic Field

Next, we want to illustrate to what extend the Rashba and Dresselhaus SO

interaction effect modify the spin orientation. For this purpose, we calculate the spin

textures for weak and strong SO interaction regimes. In this case spin-degenerate band

is splitted into two horizantally displaced branches under the influence of SO coupling

terms and the system has a degeneracy point at ky = 0 (see Fig. 5.1).

In connection with the Rashba and Dresselhaus SO coupling effects, there exist

effective Rashba (BR) and Dresselhaus (BD) pseudomagnetic fields, respectively, that

give contribution to the net magnetic field. The direction of Rashba magnetic field

is perpendicular to the ŷ directed electron velocity and electric field associated with

Rashba effect that is in ẑ direction (Upadhyaya et al., 2008a,b, Cummings, 2009,

Camenzind, 2012). The effective Dresselhaus magnetic field is ky dependent and

oriented along the wire axis (ŷ) (Gujarathi et al.,2012, Meier, Salis, Gini, Shorubalko,

& Ensslin, 2008, Studer, Walser, Baer, Rusterholz, Schön, Schuh, & et al., 2010).

When only the lowest spin-split band is occupied (small electron density limit)

and weak SO interaction regime is considered, we see that there is not any spatial

modulation because of the weak coupling effects between the spin-split subbands. The

Fig. 5.12(a) shows spin components for the case of one type of SO coupling. For weak

Rashba (Dresselhaus) SO interaction there is no magnetic field along ŷ or ẑ (x̂ or ẑ)

so S(x) components along these directions are zero. On the other hand nonmagnetic

feature of the material also results in zero S x(x) (S y(x)).

In Fig. 5.12(b) similar behavior is obtained when both SO interaction terms are

taken into account that can be explained by the afore mentioned reasons.

95



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x/l0

sp
in

d
en
si
ty

∆
R
so/h̄ω0 =0.025

∆
D
so/h̄ω0 =0

ωc/ω0 =0

ρ1Dl0 =0.11923

 

 

S
x

S
y

S
z

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x/l0

sp
in

d
en
si
ty

∆
R
so/h̄ω0 =0.025

∆
D
so/h̄ω0 =0.0125

ωc/ω0 =0

ρ1Dl0 =0.16693

 

 

S
x

S
y

S
z

(a) (b)

Figure 5.12 Spin densities under the influence of weak SO couplings at ωc/ω0 = 0 and h̄ω0 = 2 meV .

(a) ∆R
so/h̄ω0 = 0.025, ∆D

so/h̄ω0 = 0, (b) ∆R
so/h̄ω0 = 0.025, ∆D

so/h̄ω0 = 0.0125.

5.1.3.3 In The Presence of Both Spin-Orbit Interaction and External Magnetic

Field

In the present case, the system is under the influence of x̂ and ŷ directed effective

magnetic fields caused by Rashba and Dresselhaus SO interaction terms in addition to

applied external magnetic field. As a consequence of that components of S(x) have

nonzero values along all three different (x̂, ŷ, ẑ) directions. The spin orientation will

vary based on the relative values of characteristic Rashba and Dresselhaus SO energies,

and also external magnetic field. Pseudomagnetic fields due to SO interactions are ky

dependent (Upadhyaya et al., 2008b, Gujarathi et al., 2012, Meier et al., 2008, Studer

et al., 2010).

Low electron densities : This density limit means that only the lowest spin-split

subband of the first energy level lies below the Fermi energy. For different magnetic

field values we get real-space spin textures in the presence of weak Rashba and

Dresselhaus SO coupling strengths as shown in Fig. 5.13.

The x̂ and ŷ components of S(x) are zero at the center of the wire since they

experience no BR and BD, and they take different signs at opposite edges of the wire.

The ẑ component has minimum values near the two edges and reaches a maximum

value at the center of the wire in that the net magnetic field is ẑ directed. The magnitude

of all spin components increases with increasing external magnetic field.
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Figure 5.13 Spatial variation of spin density components in the presence of weak Rashba and

Dresselhaus SO coupling strengths (∆R
so/h̄ω0 = 0.025, ∆D

so/h̄ω0 = 0.0125) at different magnetic fields.

(a) ωc/ω0 = 0.5, (b) ωc/ω0 = 1, and (c) ωc/ω0 = 3. We consider the case when only the lowest spin-split

band is occupied.

In the strong Rashba and Dresselhaus SO coupling regime, at first we consider

that the external magnetic field effect is weak (ωc/ω0 = 0.05). As one can see in

Fig. 5.14(a), x̂ and ŷ components of S(x) are zero at the center of the wire and both

of them have opposite signs at the two edges. The ẑ component of spin has minimum

values near the edges and reaches a maximum value in the region close to the wire-

center. On the other hand, with stronger SO interaction strengths spin distribution

behaves more oscillatory that causes shortening in the "wavelength" of the standing

wave of spin components as can be seen from Fig. 5.13(b) and Fig. 5.14(c).

Qualitative explanation of the features in Fig. 5.14 can be as follows. Pseudomagnetic

Rashba field is proportional to translational velocity of electrons whereas Dresselhaus

field is ky dependent. So, centrally localized electrons will experience neither Rashba

nor Dresselhaus effective magnetic field. The only field exerted on the electrons at

the center is the external one that leads to only one nonzero valued spin component

97



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x/l0

sp
in

d
en
si
ty

∆
R
so/h̄ω0 =0.5

∆
D
so/h̄ω0 =0.25

ωc/ω0 =0.5

ρ1Dl0 =0.47693

 

 

S
x

S
y

S
z

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x/l0

sp
in

d
en
si
ty

∆
R
so/h̄ω0 =0.5

∆
D
so/h̄ω0 =0.25

ωc/ω0 =3

ρ1Dl0 =0.47693

 

 

S
x

S
y

S
z

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x/l0

sp
in

d
en
si
ty

∆
R
so/h̄ω0 =0.5

∆
D
so/h̄ω0 =0.25

ωc/ω0 =1

ρ1Dl0 =0.47693

 

 

S
x

S
y

S
z

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

x/l0

sp
in

d
en
si
ty

∆
R
so/h̄ω0 =0.5

∆
D
so/h̄ω0 =0.25

ωc/ω0 =0.05

ρ1Dl0 =0.47693

 

 

S
x

S
y

S
z

(b)

(d)(c)

(a)

Figure 5.14 Spin texture for the strong Rashba and Dresselhaus SO couplings (∆R
so/h̄ω0 = 0.5, ∆D

so/h̄ω0 =

0.25). Magnetic field is varied from weak to strong limit. (a) ωc/ω0 = 0.05, (b) ωc/ω0 = 0.5, (c)

ωc/ω0 = 1, and (d) ωc/ω0 = 3, respectively. The lowest spin-split band at h̄ω0 = 2 meV is occupied in

all cases.

(S z(x)). In spite of that different situation come out at the edges of the wire where

anymore BR(x) and BD(x) are different than zero. Electrons located near the different

edge points have oppositely directed translational velocities. Furthermore, S x(x) and

S y(x) spin components will line up parallel to BR(x) and BD(x) to produce maximums

with opposite signs at opposite edges of the wire.

If we consider the system when it is under the effect of strong magnetic field

(ωc/ω0 = 1.0, 3.0), we can get the spin textures as shown in Figs. 5.14(c)-(d). S x(x)

has similar feature with the weak B case whereas the S y(x) component undergoes a

sign reversal. This behavior can be attributed to the flattening of the camelback shape

in the energy spectrum with increasing external field.

Another important observation is that in the presence of both SO coupling terms

S z component of spin orientation shows positional variation with respect to x
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regardless of SO coupling strengths. Meanwhile stronger SO interaction limits cause

more pronounced modulation both in spatial behavior and sign reversal of all spin

components.

High electron densities : In this case, we analyze the treatment of the spin

components when both of the lower and the upper spin-split branches of the lowest

subband are occupied.

In Fig. 5.15 we show the spin distribution for strong SO interaction for different

magnetic fields (ωc/ω0 = 0.5 − 3). At the center of the wire, electrons are oriented

along the external magnetic field because the fact that the net field comprises only of

the applied magnetic field. Therefore, the ẑ component of S(x) takes a higher values

at the wire center. Besides S x(x) and S y(x) have zero value at the wire center and take

opposite signs at different edge points since the values of BR and BD effective magnetic

fields will increase for the electrons that are far away from the center of the wire. The

magnitude of all spin components takes greater values when the applied magnetic field

increases. The common feature in Fig. 5.15 reveals the fact that competing effects

between different magnetic fields lead to more complicated oscillating behavior in

spin distribution. Comparison between different density cases shows that for the high

density limit rapid spatial variation of all spin components is more evident than the low

density case.

5.1.4 Effects of Exchange-Correlation Energy

We investigate the exchange-correlation effects on energy dispersion relations of the

subbands in addition to the contributions of SO interaction terms and externally applied

magnetic field by using non-collinear local spin density approximation. We solve

Kohn-Sham equations of our physical system in a self-consistent scheme which was

previously described in Fig. 3.1. We assume that harmonic oscillator energy is h̄ω0 =

2 meV which specify the strength of the parabolic confinement potential. To compare

the differences in the energy subband dispersion we plot each subband energy spectra
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Figure 5.15 Spin texture for the case when both spin-split branches of the lowest subband are occupied.

Strong Rashba and Dresselhaus SO couplings case (∆R
so/h̄ω0 = 0.5, ∆D

so/h̄ω0 = 0.25) is considered for

three different values of magnetic field: (a) ωc/ω0 = 0.5, (b) ωc/ω0 = 1, and (c) ωc/ω0 = 3.

of the QWR both in the presence and absence of the exchange-correlation effect. In

all figures solid curves indicate the energy dispersions of subbands in the absence

of exchange correlation interaction (Vxc = 0) while the dashed curves represent the

situation which includes the exchange-correlation contributions (Vxc , 0). The Fermi

energy level has also been drawn on all figures for either case.

5.1.4.1 Energy Bands Without Magnetic Field

In the first instance, we analyse the energy subband structures for taking only

Rashba SO interaction term into account when the magnetic field is zero and the value

of electron density is low. Fig. 5.16 shows the energy subband dispersion for three

different Rashba SO strengths at ρ1Dl0 ≃ 0.24 and zero magnetic field case. As one

can see in this figure, the exchange-correlation interaction term causes a downward

shift in the energy subbands. As the strength of Rashba SO interaction increases
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(∆R
so/h̄ω0 = 0.5), one can see a noticeable increment in the amount of separation

between the branches of each spin-split subbands near ky = 0 point.
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Figure 5.16 Exchange-correlation effect on the energy subband structure of the QWR in the absence

of Dresselhaus SO interaction term at zero magnetic field for low density regime (ρ1Dl0 ≃ 0.24). (a)

∆R
so/h̄ω0 = 0.05, (b) ∆R

so/h̄ω0 = 0.5, (c) ∆R
so/h̄ω0 = 1.

In Fig. 5.17(a) and (b), we present energy dispersions of the QWR for the case

of different contributions of both Rashba and Dresselhaus SO coupling terms coexist

(weak and strong, respectively). In this case, exchange-correlation effects are also

obvious. For strong Dresselhaus SO coupling term, the band bending in spin branches

of each level in the neighbourhood of ky = 0 becomes more smoothly by the effect of

exchange-correlation energy term.
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We also calculate the energy dispersion of the subbands with strong Rashba and

Dresselhaus SO interactions to determine how the exchange-correlation contribution

affects on the energy subbands for different electron density values at zero magnetic

field. The downward energy shift in the subbands increases slightly with increasing

electron density as shown in Fig. 5.17(b)-(c).
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Figure 5.17 Energy dispersion relations of the subbands for weak and strong SO interactions at B= 0. (a)

Weak regime of Rashba and Dresselhaus SO interaction such as ∆R
so/h̄ω0 = 0.05 and ∆D

so/h̄ω0 = 0.025

for low electron density limit ρ1Dl0 ≃ 0.24, (b) Strong regime of Rashba and Dresselhaus SO interaction

such as ∆R
so/h̄ω0 = 0.5 and ∆D

so/h̄ω0 = 0.25 for the same density value as in (a), (c) The same energy

subband dispersion as in (b) for different electron density value: ρ1Dl0 ≃ 0.57.
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5.1.4.2 Energy Bands With Magnetic Field

Fig. 5.18 shows the exchange-correlation effect for strong Rashba SO interaction

(∆R
so/h̄ω0 = 0.5) and various magnetic field values when any Dresselhaus SO interaction

term does not exist. The exchange-correlation energy causes a shift in the energy

subbands as in the case for zero magnetic field. In consideration of the effect of external

magnetic field, asymmetries occur in the vicinity of ky = 0 for the first lowest subbands

of odd energy levels.

When only Rashba SO coupling is considered in the presence of a certain

perpendicular magnetic field and exchange-correlation interaction, near the ky = 0 point

an asymmetry occurs conspicuously in the first lowest spin-split subband for higher

magnetic field strengths (ωc/ω0 = 1 and 2) with respect to the case of that includes

only Dresselhaus SO coupling contribution (compare Figs. 5.18(b)-(c) and 5.19(a)-

(b)).

To determine the interplay of the different strengths of individual SO coupling with

magnetic field when Vxc term exists, in Fig. 5.20 and 5.21 we present the energy

subband dispersions for three different values of characteristic Rashba and Dresselhaus

SO energies under strong magnetic field, respectively. Since we obtain similar subband

energy spectra for each same characteristic SO energy in weak SO regimes, we show

the case for the existence of only weak Rashba SO coupling in Fig. 5.20(a). For a fixed

magnetic field strength, the asymmetric feature of the lowest subband, which arises

only in the existence of exchange-correlation energy, undergoes change depending

on the strength of Rashba SO coupling as shown in Fig. 5.20. Comparison of the

Figs. 5.20(b)-(c) and 5.21(a)-(b) brings out into open that the interplay between each

type of SO interaction strength and external magnetic field shows an alteration under

the effect of exchange-correlation.

As a common feature of individual mechanism of SO interaction, we can say that

with inclusion of exchange-correlation interaction energy “camel-back” shape that

arises at spin branches of the lowest energy level has remained in the neighbourhood
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Figure 5.18 Energy subband dispersion at ρ1Dl0 ≃ 0.43 with strong regime of Rashba SO coupling

(∆R
so/h̄ω0 = 0.5) and zero Dresselhaus SO coupling (∆D

so/h̄ω0 = 0). The strength of the magnetic field is

varied from weak to strong limit. (a) ωc/ω0 = 0.05, (b) ωc/ω0 = 0.5, (c) ωc/ω0 = 1, (d) ωc/ω0 = 2

of ky = 0 even though the QWR is under the effect of external magnetic field. On the

other hand when exchange-correlation contribution is not considered, magnetic field

leads to flattening of the camelback shape in the lower energy subbands as previously

described in Section 5.1.1.

Moreover, the asymmetry in the lowest subband changes markedly with increasing

magnetic field. In connection with this result, one can consider that exchange-

correlation interaction contributes to the lowest energy subbands as if there has been
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Figure 5.19 Energy subband dispersion at ρ1Dl0 ≃ 0.43 with zero Rashba SO coupling (∆R
so/h̄ω0 = 0)

and strong regime of Dresselhaus SO coupling (∆D
so/h̄ω0 = 0.5) for two different values of magnetic

field. (a) ωc/ω0 = 0.5, (b) ωc/ω0 = 1.

an additional effective pseudomagnetic field for certain external magnetic fields and

this interaction term has different influences on the energy subbands for each type of

SO coupling term. Stronger magnetic field values cause the flattening of camelback

shape in the subband structure in a similar manner as in the case for the no exchange-

correlation energy is taken into account.

As can be seen in Figs. 5.22(a) and (b), with inclusion of weak Dresselhaus

contribution in addition to strong Rashba SO effect and different magnetic field

strengths, the asymmetry in the first lowest subband no longer exists for the case of

exchange-correlation interaction is considered (see also Figs. 5.18(b) and (c)). The

contributions from Dresselhaus SO coupling tend to extinguish the asymmetry in the

lowest subband.

In order to analyze the effect of both electron density and exchange-correlation

energy, we calculate the energy spectrum of the QWR which is under the influence of

external magnetic field and different regimes of Rashba and Dresselhaus SO coupling

contributions. In Fig. 5.23, we present the energy subband dispersion for weak

regime of both SO coupling. When electron density is varied from low to high limit,

separation between spin-split subbands of same energy level decreases and the amount
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Figure 5.20 Subband energy spectra of the QWR with no Dresselhaus SO interaction term (∆D
so/h̄ω0 = 0)

at strong magnetic field (ωc/ω0 = 1) and low electron density (ρ1Dl0 ≃ 0.43). Rashba SO coupling

strength is varied from weak to strong regime. (a) ∆R
so/h̄ω0 = 0.025, (b) ∆R

so/h̄ω0 = 0.25, (c) ∆R
so/h̄ω0 = 1

of downward energy shifting to lower energies increases at ky = 0 point in the presence

ofVxc.

Fig. 5.24 represents the energy level spectrum for equal strength of both SO

coupling terms and different values of electron density in the presence of external

magnetic field. Similar to the previous ones, for weak SO regime and low electron

density limit (Fig. 5.24(a)) the increment of spin-splitting between lowest energy

subbands can be seen clearly when exchange-correlation contribution is taken into

account. On the contrary, for high electron density limit spin splitting is imperceptible
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Figure 5.21 Subband energy spectra of QWR with no Rashba SO interaction term (∆R
so/h̄ω0 = 0) at

strong magnetic field (ωc/ω0 = 1) and low electron density (ρ1Dl0 ≃ 0.43) for two different values of

Dresselhaus SO coupling strength. (a) ∆D
so/h̄ω0 = 0.25, (b) ∆D

so/h̄ω0 = 1.
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Figure 5.22 Energy dispersion of the spin-split subbands at ρ1Dl0 ≃ 0.43 for two different values of

magnetic field when Rashba SO interaction is strong (∆R
so/h̄ω0 = 0.5) and Dresselhaus SO interaction is

weak (∆D
so/h̄ω0 = 0.025). (a) ωc/ω0 = 0.5, (b) ωc/ω0 = 1.

to the eye in the existence of the exchange-correlation effect at ky = 0 point.

Furthermore, at low electron density limit there exists an asymmetry in the lower

spin-split subband of the even energy level which includes the exchange-correlation

contribution (inset in Fig. 5.24(a)). In either case, degeneracy has remained at

ky = 0 point in the presence or absence of exchange-correlation energy as shown in
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Figure 5.23 Energy subband dispersion for weak strength of Rashba and Dresselhaus SO interactions

(∆R
so/h̄ω0 = 0.025, ∆D

so/h̄ω0 = 0.0125) at a finite magnetic field (ωc/ω0 = 1). (a) ρ1Dl0 ≃ 0.24, (b)

ρ1Dl0 ≃ 1.19.

Figs. 5.24(c) and (d).

For low electron density case, increasing SO coupling strength leads to an

asymmetry in the energy subband as shown in Fig. 5.25(a). The asymmetry in the

lowest subband is more pronounced for strong Dresselhaus SO coupling case rather

than strong Rashba SO coupling (compare Fig. 5.25(a) with Fig. 5.25(c)). As a

consequence we can say that this asymmetry depends on which type of SO coupling

term is effective according to another (Rashba or Dresselhaus). Decreasing spin-

splitting between energy subbands and disappearance of asymmetric shape in the

lowest subband is clearly visible with increasing electron density as seen in Fig 5.25(b).

The feature of Fig. 5.25(d) states that with the increment of SO coupling strength,

asymmetry in the lowest subband varies due to the interplay between SO coupling

strength and exchange-correlation energy under a certain magnetic field.

When strong regime of both characteristic Rashba and Dresselhaus SO coupling

energies is considered, energy subband distributions are similar to each other for the

same density limits (compare Fig. 5.26(a) with (c) for low density limit, Fig. 5.26(b)

with (d) for high density limit )
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Figure 5.24 Energy subband dispersion for equal strength of weak and strong SO interactions at a finite

magnetic field (ωc/ω0 = 1). (a) Weak SO regime: ∆R
so/h̄ω0 = ∆

D
so/h̄ω0 = 0.025 in low electron density

(ρ1Dl0 ≃ 0.24) limit. The inset shows the asymmetry in the lower spin-split subband of the even energy

level. (b) The same energy subband dispersion as in (a) with high electron density (ρ1Dl0 ≃ 1.19) limit.

(c)-(d) The same energy subband dispersion as in (a) for strong SO regime: ∆R
so/h̄ω0 = ∆

D
so/h̄ω0 = 0.35

with low density (ρ1Dl0 ≃ 0.24) and high density (ρ1Dl0 ≃ 1.19) limits, respectively.

5.1.4.3 Spin Orientation Without Spin-Orbit Interaction

At first, we calculate the spin textures when only the contribution of magnetic field

is considered in the presence of exchange-correlation effect. As shown in Fig. 5.27(a),

the spin component S z(x) is different from zero for non-small values of the magnetic

field at low electron density limit. There is no spatial modulation of spin density due
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Figure 5.25 Energy subband dispersion for different mechanism of Rashba and Dresselhaus SO

interactions. (a) ∆R
so/h̄ω0 = 0.025 and ∆D

so/h̄ω0 = 0.25 at a finite magnetic field (ωc/ω0 = 1) for

low density limit (ρ1Dl0 ≃ 0.24), (b) Same SO coupling strengths as in (a) with high density limit

(ρ1Dl0 ≃ 1.19), (c)-(d) same energy subband dispersion as in (a) with strong Rashba (∆R
so/h̄ω0 = 0.25

and ∆R
so/h̄ω0 = 0.5, respectively) and weak Dresselhaus (∆D

so/h̄ω0 = 0.025) SO coupling.

to the fact that externally applied magnetic field has no x-dependency. For the high

density limit, the magnitude of S z(x) becomes zero (see section 5.1.3.1).
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Figure 5.26 Subband energy spectra of QWR with strong SO coupling strengths for two density limits

at a finite magnetic field (ωc/ω0 = 1). (a) ∆R
so/h̄ω0 = 0.5, ∆D

so/h̄ω0 = 0.25 low density ρ1Dl0 ≃ 0.43,

(b) ∆R
so/h̄ω0 = 0.5, ∆D

so/h̄ω0 = 0.25 high density (ρ1Dl0 ≃ 1.19), (c) ∆R
so/h̄ω0 = 0.25, ∆D

so/h̄ω0 = 0.5 low

density ρ1Dl0 ≃ 0.43 (d) ∆R
so/h̄ω0 = 0.25, ∆D

so/h̄ω0 = 0.5 high density (ρ1Dl0 ≃ 1.19).

5.1.4.4 Spin Orientation Without Magnetic Field

To identify the effect of Rashba and Dresselhaus SO interaction on spin orientation

in the presence of exchange-correlation contribution, we calculate the spin textures

for weak SO interaction regimes at zero magnetic field. For low electron density

limit, we obtain that there is no spatial modulation due to aforementioned reasons

in section (5.1.3.2) and also weak interaction between SO coupling and exchange-
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Figure 5.27 Spin density components in the absence of both SO coupling terms atωc/ω0 = 1 for different

density limits. (a) low-density limit (b) high-density limit.

correlation (see Fig. 5.17(a)). This behavior in spin distribution is similar with the case

for no exchange-correlation effect is considered (see Fig. 5.12).
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Figure 5.28 Spin densities under the influence of exchange-correlation and weak SO couplings at

ωc/ω0 = 0 and h̄ω0 = 2 meV . (a) ∆R
so/h̄ω0 = 0.025, ∆D

so/h̄ω0 = 0, (b) ∆R
so/h̄ω0 = 0.05, ∆D

so/h̄ω0 = 0.025.

5.1.4.5 Spin Orientation In The Presence of Both Spin-Orbit Interaction and

Magnetic Field

Previously (in section 5.1.3.3), we obtained that spin components had non-zero

values along x̂, ŷ, ẑ directions by inclusion of both type of SO coupling term and

external magnetic field. This spatial dependency of spin components remains when the

effect of exchange-correlation contribution is considered as can be seen in Fig. 5.29.

In this figure, we get spin textures in the absence/presence of exchange-correlation

contribution for different strengths of SO interaction. The spin components S x(x) and
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S y(x) are zero at the center of the wire in the absence/presence of exchange-correlation

effect. Both symmetric and parabolic behavior of spin components are destroyed with

the effect of exchange-correlation contribution.
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Figure 5.29 Spatial variation of spin density components for the case of different SO coupling strengths

at a finite magnetic field value (ωc/ω0 = 1) and low density regime (ρ1Dl0 ≃ 0.43). (a) ∆R
so/h̄ω0 = 0.25,

∆D
so/h̄ω0 = 0.0125 with no exchange-correlation effect, (b) The same SO coupling strengths as in (a)

with nonzero exchange-correlation contribution (c)-(d) ∆R
so/h̄ω0 = 0.25, ∆D

so/h̄ω0 = 0.125 in the absence

and presence of the exchange-correlation contribution, respectively.

To determine how the magnitude of external magnetic field modify the spin

distribution, we calculate the spin orientations for different strengths of magnetic field

which is varied from weak to strong limit. At the center of the wire, electrons are

only under the influence of external magnetic field. So the spin component S z(x)

has a maximum value at this point. At the edges of the wire, effective Rashba and

Dresselhaus pseudo-magnetic fields give contribution to the net magnetic field. So,

S x(z) and S y(x) spin components are different than zero and they take different signs

at opposite edges of the wire. As the magnetic field strengthen to a stronger value, the

magnitude of all spin components change.
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Figure 5.30 Spin texture for the strong Rashba and Dresselhaus SO couplings (∆R
so/h̄ω0 = 0.5, ∆D

so/h̄ω0 =

0.25) in the absence/presence of the exchange-correlation effect. The lowest spin-split band is occupied

in all cases. The figures in the left side refers to the condition that the contribution of the exchange-

correlation effect is not considered. The figures in the right side stands for the case of nonzero exchange-

correlation effect. Magnetic field is varied from weak to strong limit. (a)-(b) ωc/ω0 = 0.05, (c)-(d)

ωc/ω0 = 0.5, (e)-(f) ωc/ω0 = 1
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CHAPTER SIX

CONCLUSION

In this thesis, we have investigated electronic properties of parabolically confined

quasi-1D QWR that is subjected to an externally applied perpendicular magnetic field

and also under the effect of both Rashba and/or Dresselhaus SO couplings and taking

into account the exchange-correlation interaction. We have calculated numerically

energy subband dispersions, wavefunctions and also spin texturing by using the FEM.

We have begun our study by considering the contribution of only SO interaction

for the physical system without a magnetic field to determine the SO coupling effects

on the energy dispersion. In this context, we have investigated the subband energy

spectra for different regimes of characteristic SO coupling energies. For comparison

we have also calculated the energy eigenvalues in the absence of SO interaction at zero

magnetic field. All energy subbands are spin degenerate when SO coupling terms and

magnetic field are zero. The presence of Rashba and/or Dresselhaus SO coupling lifts

the degeneracy in the spin-split bands except ky = 0 point. Energy dispersion of the

spin-split subbands is symmetric throughout the ky axis. Increasing the SO coupling

strength leads to pronounced deviation from the parabolicity of energy subbands and

anticrossing has been seen between neighbouring subbands with opposite spin indices.

In the neighbourhood of ky = 0, “camel-back” shape arises from the effect of SO

coupling for spin branches of lower energy levels. Additionally the amount of the

downward shifting of energy increases with increasing total characteristic SO coupling

energy.

We have also studied the effect of perpendicular magnetic field on the subband

structure of QWR with/without Rashba and/or Dresselhaus SO couplings. When only

the external magnetic field is present, the degeneracy has been removed in each energy

subband for all ky points. In other words, each energy band splits up into a doublet

in the presence of external magnetic field and the amount of splitting is proportional

to the magnitude of this applied magnetic field. For the case of nonzero magnetic

field and the existence of SO interaction, we have observed that the magnitude of spin
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splitting between energy subbands of different states undergoes change depending on

the interplay of SO coupling with the external magnetic field. Increased magnetic field

enhances the confinement potential which results in vertically upward shifting in the

bottom of flattened energy subbands and increment in energy spacing between upper

and lower level of each subband. For different SO interaction contributions, camel-

back shapes preserves under certain conditions.

Afterwards, we have investigated the effect of a perpendicular magnetic field on

the spin texturing of a parabolically confined QWR taking into account Rashba and

Dresselhaus SO couplings. Our results show that competing effects between magnetic

field and SO interactions introduce complex features in spin texturing. By comparing

different SO coupling regimes, we can say that energy subband dispersion and spin

orientation for the strong SO coupling regime are more intricate than for the case of

weak SO regime.

In addition to understanding the interplay of Rashba and/or Dresellhaus SO

coupling with external magnetic field and the effect of these contributions on energy

subband structure and spin orientation, another purpose of this thesis is to obtain

the influence of exchange-correlation interaction on subband energy spectra of the

QWR. In order to handle the QWR system with exchange-correlation interaction, we

have used the noncollinear local-spin density approximation within the framework of

density functional theory. We have used Attaccalite formalism (Attaccalite et al., 2002)

for exchange-correlation energy functional.

The subband separation, which is produced by the effect of external magnetic field,

remains when exchange-correlation interaction has been taken into account. When

both SO coupling strengths are equal, the inclusion of Vxc does not change the crossing

properties of the subbands and that it only induces a small subband splitting.

With inclusion of exchange-correlation interaction the energy subbands are shifted

to lower energies in the absence/presence of SO interactions and/or external magnetic

field. The magnitude of the energy shift increases with increasing electron density.
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The effect of exchange-correlation at low density limit leads to an asymmetric double

minimum in the lowest subbands when the QWR is under the effect of external

magnetic field and SO coupling term.

If we want to emphasize the results of this thesis, in a nutshell we can argue the

following: We find that the interplay between the magnetic field and SO couplings

affects strongly the energy subband dispersion of the QWR. Energy subband structure

varies depending on which type of SO coupling strength is considered and also

the magnitude of SO coupling. Our numerical calculations show that the spatial

distribution of spin components can be modulated by SO coupling, external magnetic

field and carrier concentration of the system. We expect that these observations

can assist in understanding of transport and optical properties of quasi-1D quantum

structures.

117



REFERENCES

Arakawa, Y., Nagamune, Y., Nishioka, M., & Tsukamoto, S. (1993). Fabrication and

optical properties of GaAs quantum wires and dots by MOCVD selective growth.

Semiconductor Science and Technology, 8(6), 1082.

Asahi, H. (1997). Self-organized quantum wires and dots in III-V semiconductors.

Advanced Materials, 9(13), 1019–1026.

Attaccalite, C., Moroni, S., Gori-Giorgi, P., & Bachelet, G. B. (2002). Correlation

energy and spin polarization in the 2D electron gas. Physical Review Letters, 88(25),

256601.

Attaccalite, C., Moroni, S., Gori-Giorgi, P., & Bachelet, G. B. (2003). Erratum:

Correlation energy and spin polarization in the 2D electron gas [physical review

letters 88, 256601 (2002)]. Physical Review Letters, 91(10), 109902.

Bader, S. D., & Parkin, S. S. P. (2010). Spintronics. Annual Review of Condensed

Matter Physics, 1, 71–88.

Banerjee, S., Dan, A., & Chakravorty, D. (2002). Review: Synthesis of conducting

nanowires. Journal of Materials Science, 37(20), 4261–4271.

Barth, U. V., & Hedin, L. (1972). A local exchange-correlation potential for the spin

polarized case. i. Journal of Physics C: Solid State Physics, 5(13), 1629–1642.

Bin, S. Z. (2010). Transport in nanostructures with spin orbit interaction. Master’s

Thesis, National University of Singapore.

Born, M., & Oppenheimer, J. R. (1927). On the quantum theory of molecules. Annalen

der Physik, 389(20), 457–484.

Bransden, B. H., & Joachain, C. J. (1990). Physics of atoms and molecules. (2nd ed.).

Prentice Hall.

Bulaev, D. V., & Loss, D. (2005). Spin relaxation and anticrossing in quantum dots:

Rashba versus Dresselhaus spin-orbit coupling. Physical Review B, 71, 205324.

118



Burk, K. (2003). The abc of DFT. Department of Chemistry, Rutgers University.

Retrieved May 3, 2013, from http://dft.rutgers.edu/kieron/beta.

Bychkov, Y. A., & Rashba, E. I. (1960). Oscillatory effects and the magnetic

susceptibility of carriers in inversion layers. Journal of Physics C: Solid State

Physics, 17(33), 6039.

Camenzind, L. (2012). Quantum transport signatures of electric dipole spin resonance

near the persistent spin helix in GaAs quantum wells. Master’s Thesis, University

Of Basel.

Ceperley, D. M., & Alder, B. J. (1980). Ground state of the electron gas by a stochastic

method. Physical Review Letters, 45(7), 566–569.

Chang, M.-C. (2005). Effect of in-plane magnetic field on the spin hall effect in a

Rashba-Dresselhaus system. Physical Review B, 71, 085315.

Chang, R. S., Chu, C. S., & Mal’shukov, A. G. (2009). Competing interplay between

Rashba and cubic-k Dresselhaus spin-orbit interactions in spin-hall effect. Physical

Review B, 79, 195314.

Cummings, A. W. (2009). The spin Hall effect in quantum wires. Ph.D. Thesis, Arizona

State University.

Datta, S. (1995). Electronic transport in mesoscopic systems. (1st ed.). Cambridge:

Cambridge University Press.

Debald, S., & Kramer, B. (2005). Rashba effect and magnetic field in semiconductor

quantum wires. Physical Review B, 71, 115322.

Dirac, P. A. M. (1930). Note on exchange phenomena in the thomas atom.

Mathematical Proceedings of the Cambridge Philosophical Society, 26(3), 376–

385.

Doğan, Ü. (2009). Mesh generation and electronic structure of quantum wires. Ph.D.

Thesis, Dokuz Eylül University.

119



Dresselhaus, G. (1955). Spin-orbit coupling effects in zinc blende structures. Physical

Review, 100(2), 580–586.

Dyakonov, M. I., & Kachorovskii, V. Y. (1986). Spin relaxation of two-dimensional

electrons in noncentrosymmetric semiconductors. Soviet Physics: Semiconductors,

20, 110.

Erlingsson, S. I., Egues, J. C., & Loss, D. (2010). Energy spectra for quantum wires

and two-dimensional electron gases in magnetic fields with Rashba and Dresselhaus

spin-orbit interactions. Physical Review B, 82(15), 155456.

Fabian, J., Matos-Abiaguea, A., Ertlera, C., Stano, P., & Zutic, I. (2007).

Semiconductor spintronics. Acta Physica Slovaca, 57(4& 5), 565–907.

Fermi, E. (1928). Eine statistische methode zur bestimmung einiger eigenschaften des

atoms und ihre anwendung auf die theorie des periodischen systems der elemente.

Zeitschrift Für Physik, 48(1-2), 73–79.

Fert, A. (2007). Nobel lecture: The origin, development and future of

spintronics. The Nobel Foundation 2007. Retrieved May 25, 2013, from

http://www.nobelprize.org/nobelprizes/physics/laureates/2007/fert-lecture.html.

Fock, V. (1930). Approximation method for the solution of the quantum mechanical

more-particle problem. Zeitschrift für Physik, 61(1), 126–148.

Gáspár, R. (1954). On an approximation of Hartree-Fock potentials through a universal

potential. Acta Physica Hungarica, 3, 263.

Gharaati, A., & Khordad, R. (2012). Effects of magnetic field and spin-orbit interaction

on energy levels in 1D quantum wire: Analytical solution. Optical and Quantum

Electronics, 44(8–9), 425–436.

Giglberger, S., Golub, L. E., Bel’kov, V. V., Danilov, S. N., Schuh, D., Gerl, C., & et

al. (2007). Rashba and Dresselhaus spin splittings in semiconductor quantum wells

measured by spin photocurrents. Physical Review B, 75, 035327.

120
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