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CURRICULUM PLAN OPTIMIZATION WITH RULE BASED GENETIC 

ALGORITHMS 

 

ABSTRACT 

 

In corporations, accurate planning should be applied to manage the in – service 

training task within an optimum time period and without hindering the working 

tempo of the employees. For this reason, it is better to consider the curriculum 

planning task as a timetabling problem. However, when the timetables are prepared 

manually, it may turn out to be a complicated and time consuming problem. In this 

study, an effective solution to the curriculum planning problem by using a rule – 

based genetic algorithm is put forward. The data, which is used by the fitness 

function of the GA to obtain the results, is the prerequisite rule set of the modules of 

the training program. The contribution to the literature is handling the structure of its 

data set successfully, despite tightly related rules among the modules. The modules 

of a training material were ranked effectively and while performing the ranking 

process, parameter tuning for GA was done to determine the best parameter 

combination of GA. The tests were done for two different amounts of modules. The 

results were then compared with the suggestion of an expert trainer by using 

Spearman rank correlation test, which is nonparametric, and the best parameter 

combination of the GA giving the most similar result to that of the expert’s was 

determined. According to the tests, the results gathered were considered to be 98.53 

percent reliable for the smaller size of module ranges (chromosomes) and 97.06 

percent reliable for the larger size of module ranges when compared with the 

corresponding suggested module range. Same tests were repeated with a control data 

set, having the same characteristics with the first one and two different sizes, and the 

results verified that same parameter combinations give the same successful module 

ranges in the same reliability percentages.   

  

 

Keywords: Genetic algorithm, rule base, curriculum plan optimization, Spearman 

rank correlation. 
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KURAL TABANLI GENETİK ALGORİTMALAR İLE EĞİTİM PLANI 

OPTİMİZASYONU 

 

ÖZ 

 

Şirketlerde, şirket içi eğitim sürecinin optimum sürede ve çalışanların iş 

temposunu etkilemeden gerçekleştirilmesi için kesin ve hassas bir planlama 

yapılması gerekmektedir. Bu sebeple bir eğitim planı hazırlanması işlemini bir 

zaman çizelgeleme problemi olarak ele almak uygun olur. Zaman çizelgeleri elle 

hazırlandığı zaman karmaşık ve çok zaman alan bir probleme dönüşebilmektedir. Bu 

çalışmada, kural tabanlı genetik algoritma (GA) kullanılarak eğitim planı hazırlama 

problemine etkin bir çözüm ortaya konmaktadır. GA’nın uygunluk fonksiyonunun 

çözüm elde etmek için kullandığı veriler, eğitim programındaki bölümlerin 

birbirlerine gore ön koşul durumlarını içeren bir kurallar kümesinden oluşmaktadır. 

Çalışmanın literature katkısı birbirine sıkı kurallarla bağlı modülleri olan bir eğitim 

materyalinin veri kümesini başarılı bir şekilde işleyebilmesidir. Eğitim materyalinin 

bölümleri olan modüller etkin bir biçimde sıralanabilmekte ve bu işlem esnasında da 

sıralama işlemi için kullanılacak en uygun parametre kombinasyonunu tespit etmek 

üzere parametre uyumlaması yapılmaktadır. Testler iki farklı modül sayısı için 

gerçekleştirilmiştir. Sonuçlar bir uzman önerisi ile parametrik olmayan Spearman 

sıra korelasyon testi kullanılarak karşılaştırılmış ve uzman önerisine en yakın sonuç 

tespit edilmiştir. Buna göre, elde edilen sonuçlar uzman önerisi ile 

karşılaştırıldığında, küçük boyutlu modül dizilimleri için yüzde 98,53, büyük boyutlu 

modül dizilimleri için ise yüzde 97,06 oranında “güvenilir” bulunmuştur. Aynı 

özelliklere sahip ve iki farklı büyüklükte bir kontrol veri grubu ile testler 

tekrarlanmış ve aynı parametre kombinasyonları ile en başarılı dizilim sonuçlarının 

alınabildiği doğrulanmıştır.  

 

Anahtar sözcükler: Genetik algoritma, kural tabanı, eğitim planı optimizasyonu, 

Spearman sıra korelasyonu. 
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CHAPTER ONE 

INTRODUCTION 

 

In the 1950’s the idea of “thinking machines” was stated by Alan Turing and it 

was predicted that these intelligent machines would play a major part in our lives 

within a century. Machines are not very capable of thinking as humans yet, however, 

studies about “intelligence” have become very popular over the years. Artificial 

intelligence (AI), which is a branch of computer science, aims to understand 

“intelligence” by developing some computer programs which can behave as an 

intelligent being. A computer is supposed to behave as a human to be accepted as 

“intelligent”. These intelligent programs are used commonly in every area of our 

daily lives. For this reason, artificial intelligence has some sub branches, in which the 

researchers apply some search techniques to solve optimization and scheduling 

problems of today’s world.  

 

For decades, the researchers have dealt with studies about understanding the 

human brain and its behavior. For this purpose, they tried to simulate the behavior of 

the brain as a chain of actions and reactions of the neurons. These simulations have 

been used for both scientific modeling purposes in theoretical approaches and 

solving practical problems. During these studies, many different sub-branches of 

artificial intelligence emerged. The methodologies invented as the results of these 

sub-branches have found many different application areas in people’s life. These 

techniques have mostly been used for solving complex problems, the problems that 

take too much time to solve manually or the ones that the solution is not very 

obvious at the beginning. By this means, artificial intelligence permits people to 

construct solution models to the problems and provides automatic design methods.   

 

Practical problems generally appear in real – world problems rather than isolated 

laboratory environments. For example in business life, many problems, which need 

the help of some modeling techniques to be solved, emerge. The companies need to 

be well equipped in terms of solving problems in order to compete with other 

companies in the same sector. In order to catch up with the technological 
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improvements and higher life standards, companies use timetables or curriculum 

plans, which help to determine the workflow of the companies and to make use of 

the personnel and technical hardware effectively. Also they organize some training 

programs to make the employees be aware of the innovations in the sector. Since 

awareness means well trained personnel, some training programs must be used and 

these must be scheduled well. Therefore, the concept of curriculum planning can be 

mentioned as a rather popular research area. However, preparing an optimum 

curriculum plan manually might turn out to be a quite complex and time consuming 

problem. So many people from different departments of the company have to gather 

together to find the optimum curriculum plan for their trainees and this is a quite 

challenging task. In a corporation, it is a must to take the constraints of each 

component (instructors and classrooms for a school, flight traffic for an airport, nurse 

rostering or operating room timetable for a hospital (Cardoen, Demeulemeester & 

Belien, 2010), etc.) as in timetabling problems into consideration. For this reason, it 

is a good application area for the researchers who work on optimization problems of 

real life. 

 

Researchers studied on different computer programs with different techniques to 

find solutions to the daily life problems. In some problems every data used in the 

program are certain and precise, where in some cases there are uncertain things in the 

definition of the problem. In 1990’s a new notion, Soft Computing (SC), is 

introduced by Zadeh (1994) and it suggests solutions to the cases where uncertainty 

occurs. SC inspires from the working principles of the human mind because human 

mind has always a tolerance for the imprecise and uncertain data. However in hard 

computing, the analysis of the problem and the model for the solution must be stated 

precisely. The inputs and the outputs of the program should be defined clearly.  

 

SC optimizes the time and the quality of the solution while solving problems 

which are unsolvable or difficult to solve with traditional methods. SC is made up of 

different components like Fuzzy Logic (FL), Neurocomputing (NC), Machine 

Learning (ML), Evolutionary Computation (EC), Particle Swarm Optimization 

(PSO) and Probabilistic Reasoning (PR). These methods are considered as 
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complementary for each other rather than being alternatives (Selouani, 2011). This 

means that these techniques perform better in solving a problem when they are used 

together. There is a wide application area for SC. These are briefly as follows: 

Biometrics, bioinformatics, biomedical systems, robotics, vulnerability analysis, 

character recognition, natural language processing (NLP), multi-objective 

optimizations, wireless networks, financial time series prediction, image processing, 

toxicology, machine control, software engineering, information management, picture 

compression, music, noise removal, data mining and social network analysis (Shukla, 

Tiwari & Kala, 2010).     

 

In optimization problems, when it is needed to find an optimum solution with the 

minimum cost, the solution can be generated with soft computing techniques. 

Another advantage of SC methods is that, it is not needed to specify every detail of 

the solution model of the system from the beginning (Castillo & Melin, 1996) 

because they are non-linear systems and are able to approximate to the solution 

easily than linear models (Castillo, Melin, Kacprzyk & Pedrycz, 2008).  For 

example, timetabling and curriculum planning problems are generally difficult to 

manage manually or with linear programming solutions. For this reason, some 

evolutionary algorithms and stochastic search techniques are used while dealing with 

such complex problems.     

 

As one of the soft computing techniques, Genetic algorithms (GA) are said to be 

the most appropriate search methodology for optimization problems. They were first 

suggested by Holland (1975) and developed by Goldberg (1989). The GAs are still 

being improved since Holland and Goldberg within the same principles’ framework. 

The algorithm basically inspires from the natural selection mechanism of nature, in 

which the best living things survive and the worst ones die. In other words, it is the 

simulation of the evolution mechanism of nature in computer environment. The 

transportation mechanism of the genetic material in living organisms in nature is 

simulated as a population of individuals and the genetic operators of the GA. As the 

result of the genetic reproduction mechanisms, the genetic diversity of the 

individuals causes the algorithm to reach many different possible solutions. GA does 
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not find only one solution to a problem; but instead, finds a solution set, in which all 

solutions in the set are valid. This means that individuals of the final population 

should be the ones carrying more qualified genetic material to survive for more 

number of generations.  

 

GA may be applied to many different application areas like job shop scheduling, 

circuit design, weather forecast, bidding strategies, prediction of a protein structure, 

automatic programming, modeling natural immunity systems, understanding 

behavior of insect colonies, evolution and learning, telecommunication and network 

design.  

 

With genetic algorithms, Expert Systems (ES) can also be used in solving 

curriculum planning problems. Expert systems are computer programs, designed to 

solve real world problems instead of a human expert in a certain subject to make 

decisions and find solutions to a problem by using its own inference mechanisms and 

human expertise data (Giarratano & Riley, 2004). Expert systems are also called 

knowledge based systems (KBS) because it contains the knowledge of an expert, 

collected heuristically or by experience. KBS simulates the reasoning mechanism of 

a human by applying specific knowledge to the case to be accomplished. The cases 

to be solved generally require human intelligence. A KBS has to combine specialized 

knowledge with intelligence, as well as a human does while solving or deciding 

about a problem. The knowledge is represented as data or rules in the computer 

symbolically. These symbols help the system to make decisions. The knowledge can 

be gathered from books, manuals or a human expert. The data is converted to 

knowledge by using some mathematical or logical presentations, which a computer 

can make use of it as facts or rules of a KBS.  

 

Some of the application areas of the KBS are medical treatment, chemistry, 

microbiology, engineering failure analysis, fault analysis and technological risk 

management systems, risk management systems, troubleshooting systems, 

electronics, thermodynamics, knowledge representation, climate forecasting, 

decision making, decision planning, chemical process controlling, education, 
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scheduling, planning, agriculture and geographical information systems (GIS). 

Educational corporations are the corporations that use the KBS more frequently 

because curriculum planning and preparing schedules manually is a quite complex 

process.  

 

Expert systems can be developed by getting use of other artificial intelligence 

techniques like GA, Fuzzy Logic (FL) or Neural Networks (NN), which try to help to 

simulate different aspects of human intelligence to computers. Thus, the usage of an 

ES mechanism can be integrated with a GA by using some of the components of the 

ES with the GA. This mechanism can be defined as a “hybrid” system to be used in 

optimization problems.  

 

There exist many studies in which the GA and ES techniques are used together. The 

application areas that most of the hybrid studies are made are product design 

(Chaoan, 2007), image processing (Yu, Zhao, Ni & Zhu, 2009), material handling 

(Hamid, Mirhosseyni & Webb, 2009), cost management (Chou, 2009), different 

application areas of decision making like decision making in apparel coordination in 

fashion (Wong, Zeng & Au, 2009) and decision making for selecting basketball 

players (Ballı, Karasulu, Uğur & Korukoğlu, 2009) and different sectors and 

optimization problems like optimization of optical measurement systems (Otero, 

Sanchez, & Alcala-Fdez, 2008), composite laminate design with various rule 

constraints (Kim, 2007) and optimum location search (Chakravorty & Thukral, 

2009).  

 

Conventional methods use algorithms and data structures to solve a problem. For 

the solution of more difficult problems, heuristic strategies, which act as the human 

brain, are needed (Abraham, 2005). The rule based systems contain rules that help to 

formalize the definition of such difficult problems. It uses the rules related to the 

problem and evaluates or processes these rules in order to find a solution to the 

problem. These rules can be represented in different formats according to the needs 

of the system and they are recalled to solve the problem. Mostly, mathematical and 

logical representations are used because they are easier to integrate them to a 
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computer program. One of the most popular and useful ways is to represent the rules 

as “If – Then” statements. A rule based system does not have to be an expert system; 

instead, different rule based mechanisms also exist. There is an obvious similarity 

between rule based systems and GA because a typical GA also evaluates the 

chromosomes according to fitness functions and which are implemented according to 

the rules.  

 

1.1 The Aim of the Thesis 

 

There are many studies, in which GA is used with other branches of artificial 

intelligence like expert systems, fuzzy logic or neural networks. Although ES and its 

components are combined with GA techniques in some studies to solve optimization 

problems, the rule base component of ES, isolated from ES, used within GA for 

solving optimization problems is considered as another research subject. Here 

emerges the concept of Rule Based Genetic Algorithms (RBGA). In the thesis, since 

rule base component of the ES is used as a part of the curriculum planning system, 

the system itself is not an ES; but a rule-based GA is in question.  

 

Rule based methods are deterministic but GA indeed does not use deterministic 

rules and it contains randomness. It does not guarantee to converge to the solution 

within a fixed time (Sivanandam & Deepa, 2008). Our contribution to the literature is 

using the deterministic rule base component of an expert system within the fitness 

function of the genetic algorithm to prepare a curriculum plan for a specific course 

via a rule-based genetic algorithm. The rules are saved in the system both in logical 

and mathematical representation. The mathematical representation is then used to 

obtain the initial population of the GA. Saving the rules in these two formats (logical 

representation with XML and mathematical representation with matrices) brings the 

project flexibility and takes the advantage of adaptability of XML to any 

environment and representation formats. 
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The training data of this study is the in-service training data of a software 

company. There are rules among the parts of the training data. These rules are the 

prerequisite rules among the modules, which makes the optimization problem more 

difficult to manage. To ensure that the obtained results with the training data 

mentioned here are reliable, a control data having the same characteristics, which 

includes the parts of a database course, which is given in computer programming 

departments, is used. The thesis also contains an automated parameter tuning 

mechanism. With the help of the parameter tuning process, we also aimed to obtain 

more effective solutions to curriculum planning problem. With different parameter 

combinations of the GA, a set of curriculum plans are obtained for both datasets as 

output. These results are then evaluated with statistical analysis to find the most 

appropriate plan. The parameter combination giving the best curriculum plan is also 

discussed in respect to the values of the parameters. 

 

The two datasets of the project differ from other datasets, which are used to solve 

optimization problems. They have tight prerequisite rules, which affect the size of 

the rule base and difficulty of the sequencing operation. This is the main reason of 

evaluating the module range in terms of reliability. In order to decide whether the 

modules’ range is valid or not, it is needed to make a correlation test. In the 

correlation test, the output of the software is compared with the suggestion of a 

human expert. All of the results obtained with different parameter combinations of 

the GA are tested in order to find the most reliable range. The parameter combination 

giving the best module range is also important because that combination is 

considered as the best to solve this type of problems with GA. The most appropriate 

parameter combination giving the most reliable range is also verified with the results 

of the control data. 

 

It is aimed to implement a generic GA to be used for preparing the curriculum 

plan for any kind of educational foundation; it can be an education plan for the 

courses of a faculty to put the courses in an optimum range or training material of in-

service training programs in companies. The software developed for this purpose will 

be helpful in cases where the instructors have trouble with preparing an education 
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program for their students / trainees. The study also has a different application area 

for the XML technology. The XML files include the rule base data as the input of the 

initial population of the genetic algorithm and the timetable output can also be saved 

in XML format. XML is chosen because it is a generic data format, which can be 

transferred and parsed by different platforms like programming languages or 

databases. 

 

1.2 Organization of the Thesis Chapters 

 

The first chapter of the thesis is considered as a welcoming about the thesis 

subjects emphasizing the aim of the thesis. In Chapter Two, GA, with all its 

mechanisms is introduced. The idea behind, and the biological terms used to define a 

GA is explained in detail. In Chapter Three, a detailed literature survey about GA 

and its usage in optimization problems takes place. 

 

Chapter Four includes the problem definition and the sample cases used in the 

tests are introduced. Chapter Five is about the analysis of the problem and the 

solution generated is explained in detail. The sixth chapter is about the software 

development environment with all its cooperative technologies like database design 

and XML technology. Chapter Seven explains the results gathered by the execution 

of the system as a conclusion. A detailed analysis of the results resides in this 

chapter. Depending on the previous chapter, Chapter Eight includes the comments 

about the results of the study and suggests a future work. The MS Excel outputs, the 

tables including the most reliable module ranges, the source code of the software and 

XML files are also given in Appendices.  
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CHAPTER TWO 

GENETIC ALGORITHMS 

 

Genetic algorithms (GA) are introduced in 1970’s by John Holland (1975). 

Holland is the person who had thought of simulating the Darwin’s evolution theory 

in computer environment. Later on, his student Goldberg (1989) had developed the 

GA notion and thereupon, GAs became the most popular branch of evolutionary 

programming as known today. GAs are stochastic search algorithms which are 

widely used to find the optimum result as the solution of a problem in cases that the 

problem cannot be solved in a polynomial execution time. GA works on large 

populations of possible solutions instead of a single individual. This is the main point 

that a GA differs from other heuristic search methods. It obtains the set of best 

possible solutions with iterative methods as the answer of a complex problem. For 

this reason, it plays a great role on artificial intelligence, computation and evaluation 

models. Since natural selection in nature affects the biological systems on the world, 

evaluating the artificial systems with a similar selection mechanism is a vital 

component of artificial life.    

 

Today GA is the most popular branch of evolutionary programming because the 

reproduction process, as the transportation mechanism of the genetic material in 

living organisms, is simulated to reach the best individuals of the population as 

occurs in natural life. GA applies some genetic operators to the individuals of its 

population to improve them. The improved, “better” individuals became the new 

members of the population instead of the older ones. The individuals who 

accommodate to the natural conditions survive and the ones which cannot stand to 

the conditions die. As the result of the genetic reproduction mechanisms, the genetic 

diversity of the individuals causes the algorithm to reach many different possible 

solutions. Since GA leads a parallel search mechanism among the possible solutions, 

the result of the genetic algorithm is not a simple individual, but the set of the 

individuals, whose properties are closest to the required properties in given 

conditions.   
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2.1 Terms of Genetic Algorithms 

 

Since a GA is inspired from the nature, the terms used in these algorithms are 

taken from the biological terms. Within the cells in the living organisms, there are 

big molecule structures, which are called chromosomes. Within the chromosomes 

there are individual genes. Each gene on a chromosome encodes a specific feature of 

the individual (a person’s eye color or height that is identified by specific genes) and 

the values of the genes are used to evaluate individuals. 

 

When two individuals mate, according to the laws of sexual reproduction, both 

parents pass their chromosomes onto their offspring. In humans, who have 46 paired 

chromosomes in total, both parents pass on 23 chromosomes each to their child. The 

two chromosomes come together and swap genetic material, and only one of the new 

chromosome strands is passed to the child. In sexual reproduction, genes are 

exchanged among each chromosome couple and two new children chromosomes are 

formed. Sometimes the genes of the parents are copied and passed to the offspring as 

identically the same. If only a nucleotide exchange, which is the smallest unit of 

DNA, occurs between the parent and the offspring, it is called mutation. To bring up 

more qualified generations, the chromosomes with higher quality must be chosen.  

 

Sequences of genes being chained together in chromosomes make up the DNA of 

an individual. According to the Pittsburgh approach (Lin & Wei, 2009), each 

chromosome represents a complete solution to a problem. For this reason GA tries to 

obtain a set of best solutions to the given problem. With this approach, the possibility 

to transfer the better features of a qualified population to the next generations is 

higher because GA produce successful solutions and successful solutions have better 

genetic material to transfer.  

 

There are three more approaches (Michigan approach, Iterative Rule Learning 

(IRL) approach and Genetic Cooperative – Competitive Learning (GCCL) 

approach), which basically adopt the idea of “one chromosome contains one rule” 



11 
 

(Rodriguez, Escalante & Peregrin, 2011). How to represent a chromosome is tightly 

related with the characteristics of the problem to be solved.  

 

The main components of the GA can be listed as follows: 

− A problem to solve 

− Encoding 

− Initial population 

− Selection of parents 

− Evaluation (Fitness) value and function 

− Reproduction operators 

− Elitism 

− Stopping criterion 

 

To generate a GA, there must be a problem, which is not quite easy to find a 

solution with traditional search methodologies. Some problems may take very long 

time to be solved with linear methods. In such cases it is consulted to a GA solution 

in widely differing application areas.  

 

2.1.1 Encoding  

 

The input values of a possible solution are represented in a chromosome in 

different ways. This representation is called chromosome encoding and there are 

several different methods to handle the encoding task like binary encoding (0s and 

1s), real number encoding, integer or literal permutation encoding and general data 

structure encoding (Kaya, 2009). The first encoding type that Holland suggested was 

binary string representation, where the chromosome consists of only 0s and 1s 

(Holland, 1975).  

 

Permutation coded GA is used for two purposes. One is ordering, in which the 

elements occur before the others. The other one is adjacency, where the 

neighborhood between two elements has importance. In permutation coded GA, the 

chromosomes cannot be encoded as if they were bit strings. Instead, nonrecurring 
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sequence of the elements on the chromosome plays a severe role on GA. Therefore 

some crossover methodologies mentioned in further sections were developed only 

for permutation coded GA.      

 

2.1.2 Initial Population 

 

A set of chromosomes representing a set of solutions to a specific problem is 

prepared before the GA is run. This set of individuals at the very beginning is called 

as the initial population of the GA. The initial population is prepared randomly, 

mostly generated from a single chromosome representing a sample solution for the 

problem. Each chromosome in the population is also called an individual. The 

number of individuals composing the initial population has an effect on the 

performance of GA. It directly affects the amount of genetic material which is 

included to the search. There is not a rule to determine the number of individuals in a 

population (Sivanandam & Deepa, 2008). On the contrary, it has to be chosen 

according to the characteristics of the problem. In the thesis the population size is in 

the interval of 100 – 200.    

 

2.1.3 Selection of Parents  

 

Through the generations of the GA, the chromosomes to be transferred to the next 

generation should be chosen with regard to some rules. These rules have been 

simulated from the Darwinian evolution theory. This theory states that the nature 

applies a “natural selection” mechanism on living things to find the best individuals 

to survive (Maulik, Bandyopadhyay & Mukhopadhyay, 2011). Better individuals can 

transfer better genes to next generations. The same rule is available in GA. There are 

many selection methods that can be applied on the chromosomes like tournament 

selection, roulette wheel selection and linear rank selection.  

 

Tournament Selection: A random group of individuals are chosen from the 

population. The best individual in the group is chosen as done in a football 

championship (Teams play with each other and the best team wins) (Elmas, 2007).  
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Roulette Wheel Selection: The selection probabilities of the chromosomes are 

placed in a roulette wheel as in a pie chart of percentages and the wheel is rotated. 

The individual is selected according to the point that the needle in a roulette table 

shows. The one having the bigger percentage in the pie is more probable to be 

chosen.  

 

Linear Rank Selection: The individuals are ranked according to their evaluation 

values. These selection methods all aim to choose more qualified chromosomes to 

transfer their genetic material to the next generation (Greffenstette & Baker, 1989).    

 

In the selection mechanism, the higher probabilities of the chromosomes to be 

chosen has importance, but the chromosome having the higher probability may not 

be chosen. Randomness of the selection mechanism of GA is the most dominant 

factor of the evolution process. 

  

2.1.4 Fitness Value and Fitness Function 

 

Selection operator selects the chromosomes in the population to reproduce and 

bring up more quality generations according to the evaluation data of the 

chromosomes. Once the initial population is produced, the evolution process starts. 

The only information that GA needs to perform the evolution task is some measure 

of fitness value about a point in the space (sometimes known as an objective function 

value). This value gives information about closeness of the individual to the optimal 

solution (Hamid, Mirhosseyni & Webb, 2009). Once the GA knows the current 

measure of "goodness" about a point, it can use this to continue searching for the 

optimum. The fitness value of an organism is the surviving probability of the 

organism in order to reproduce. It is a measurement of how appropriate solution it 

encrypts. An individual having a better fitness value is more likely to be selected to 

produce children for the next generation. Fitness value is calculated by the help of a 

fitness function. GA deals with the problems that maximize the fitness function 

(Sivanandam & Deepa, 2008). 
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It is an important advantage of the genetic algorithms, that the chromosomes are 

selected and evaluated according to their fitness values, not any other criteria. 

Therefore GA does not require any problem – specific knowledge. The only 

mechanism to be programmed is the fitness function. Once the fitness function 

calculates the fitness values of the individuals, three kinds of fitness values should be 

taken into consideration. These are the best, average and worst fitness values. Best 

fitness value gives an idea about the performance of GA. Especially when parameter 

tuning is done, the same algorithms is run for different parameter combinations. In 

this case the best fitness values of results with different parameter combinations 

gives hints about the right parameter combination. Average fitness value gives an 

idea about the average solution and the worst value about the worst solution (Shukla, 

Tiwari & Kala, 2010).  

 

2.1.5 GA Operators 

 

The GA is first run on the initial population and is transferred to another 

population by means of a kind of operators (methods) like reproduction, crossover or 

mutation. In reproduction, as stated in the elitist strategy, the selected two parents are 

transferred to the next generation without changing their genetic contents (Mendes, 

2008). Crossover and mutation are the main operators which are applied on the 

selected chromosomes to obtain new offspring.   

 

 2.1.5.1 Crossover 

 

In sexual reproduction, crossover occurs; genes are exchanged among each 

chromosome couple and two new children chromosomes are formed. There are 

several ways to accomplish this operation. The type of the crossover method to be 

applied depends on the type of chromosome encoding. The most common ones are 

uniform crossover, one – point crossover, two – point crossover, position – based 

crossover and partially – mapped crossover, which is mentioned below: 
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Uniform Crossover: A template chromosome composed of binary numbers (0s 

and 1s) in the same length with the parent chromosomes is used. Bits of the parent 

chromosomes are interchanges in positions where the binary template has “1” 

(Maulik, Bandyopadhyay & Mukhopadhyay, 2011). With uniform crossover, each 

gene of the chromosome has a chance to be a crossover point but it should be used 

for small population sizes (Picek & Golub, 2010). 

 

One – Point Crossover: In bit string coded chromosomes, a randomly chosen 

point on the chromosome is selected for both of the parents chosen to mate. The two 

parents exchange their genetic material with each other from the selected point of the 

chromosome (Shukla, Tiwari & Kala, 2010). This point is called the crossover point 

or the cut point. As a result of this operation, the first offspring takes the first part 

from Parent 1 and the second part (after the point chosen randomly) from Parent 2. 

The same applies for the second chromosome, first part from Parent 2 and the second 

part from Parent 1 (Coley, 1998), as depicted in Figure 2.1.  

 

 
Figure 2.1 Example for 1 – point crossover: The offspring are produced by exchanging the two parts 

of a chromosome divided from the crossover point shown with a bar.  

 

Two – Point Crossover: In bit strings, the genetic materials of the parents between 

randomly chosen two crossover points are exchanged with each other to produce two 

new individuals (Figure 2.2). This kind of crossover helps the genetic diversity of the 

population (Shukla, Tiwari & Kala, 2010). Two – point crossover is generally 

considered better than one – point crossover (Sivanandam & Deepa, 2008).  

 

One – point and two – point crossover operators work properly for the 

chromosomes encoded as the bit strings but with the chromosomes encoded with 

permutation encoding (ordered chromosomes), it does not work properly. In 
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permutation encoding, the genes of the chromosome are not allowed to repeat in the 

chromosome. For this reason some unwanted offspring may be produced with 

standard one – point and two – point crossover. To avoid this problem, another 

crossover technique is developed. Order crossover is used in such cases.  

 

 
Figure 2.2 Example for 2 – point crossover: The interval between the two crossover points is 

exchanged from Parent 1 to Child 2 and from Parent 2 to Child 1. 

 

One – Point Order Crossover: In this type of crossover, the chromosome up to the 

crossover point is taken directly from the parents; the rest of the chromosome is 

completed with the genes in the same order with that of the parent’s (Davis, 1991) as 

shown in Figure 2.3. 

 

Two – Point Order Crossover: In permutation coded chromosomes, two crossover 

points are determined and the first and the last parts of the parents are transferred 

directly to the children. This means, Child 1 inherits the first and last parts of Parent 

1 and Child 2 inherits the first and last parts of Parent 2 directly. But the middle 

section of Child 1 is taken from the unused genes of Parent 2 and middle section of 

Child 2 is taken from the unused genes of Parent 1 in the order they appear in the 

chromosome as explained in Figure 2.4.    

 

 
Figure 2.3 Example for 1 – point order crossover: The first part of the Child 1 is taken from Parent 1 

and the second part of Child 1 is taken from Parent 2, the genes which are not taken from Parent 1. 
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Figure 2.4 Example for 2 – point order crossover: The interval between the two crossover points is 

exchanged from Parent 1 to Child 2 and from Parent 2 to Child 1.  

 

Position Based Crossover: According to a given pattern, the parents exchange 

their genetic material. An example to position based crossover is given in Figure 2.5. 

The genetic material corresponding to the 0s in the pattern is exchanged in the 

example. 

 

Partially Matched Crossover (PMX): Two crossover points are selected randomly 

as in two – point crossover. The genetic material of parents is divided into three 

sections with the crossover points. The middle sections of the parents are exchanged, 

but since this operator is applied on permutation encoded chromosomes, repeating 

genes must be avoided. To solve this problem, a repair operator is used (Sivanandam 

& Deepa, 2008). While the middle section of Parent 2 is inserted in the middle 

section of Parent 1, the original genes in the middle section of Parent 1 goes to the 

positions of Parent 1, where resides the genes from Parent 2. As shown in Figure 2.6, 

when the genes 2, 7 and 9 from Parent 2 are transferred to Parent 1, the genes 3, 6, 5 

of Parent 1 goes to the places of 2, 7, 9 in Parent 1 to form Child 1. Same applies for 

Child 2 when 3, 6, 5 are transferred from Parent 1 to Parent 2.  
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Figure 2.5 Example for position – based crossover: The genes are exchanged according to the pattern. 

The pattern is decided randomly also.  

 

 
Figure 2.6 Example for partially – matched crossover: The genes between the chosen interval are 

exchanged as in 2 – point order crossover and a repair operator is used to avoid recurrence. 

 

2.1.5.2 Mutation 

 

The crossover in GA is controlled with a probability value. If the crossover 

probability is high, most of the chromosomes are put to the crossover operation. But 

sometimes the genes of the parents are copied and passed to the offspring without 

crossover, as identically the same. If only a gene is changed from parent to the child, 

then it is called mutation. This method avoids the local minimum and supports 

genetic diversity.  

 

By applying mutation on a population with a reasonable mutation rate, the 

algorithm may be able to find better solutions among mutated chromosomes. There 

are several ways to apply mutation on chromosomes. Some frequently used types of 

mutation are uniform mutation swap mutation, inversion mutation and insertion 

mutation.  

 

Uniform Mutation: In bit strings, mutation is simply the process of changing the 

value of a randomly chosen gene (0, if it is 1, 1, if it is 0) (Shukla, Tiwari & Kala, 
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2010) as given in Figure 2.7.  

 

 
Figure 2.7 Example for uniform mutation: The gene to be mutated is chosen randomly. 

 

Swap mutation: In this type of mutation, two randomly chosen genes are swapped 

(Chiou & Wu, 2009). It can be used in both bit string and permutation coded 

chromosome representations (Figure 2.8).  

 

 
Figure 2.8 Example for swap mutation: Two randomly chosen genes swap. 

 

Inversion Mutation: A random interval is determined on the chromosome and the 

genes in this interval are reversed to produce two offspring different than their 

parents (Figure 2.9) (Kaya, 2009), (Molla-Alizadeh-Zavardehi, Hajiaghaei-Keshteli 

& Tavakkoli-Moghaddam, 2011). 

 

Insertion Mutation: A randomly chosen gene is inserted to a randomly chosen 

position on the chromosome. If the position to be inserted is located before the 

original location of the gene, the genes from the insertion position are shifted one 

position to the right. But if the position to be inserted is located after the original 

location of the gene, the genes from the insertion position are shifted one position to 

the left (Meng, Zhang & Li, 2010) as shown in (Figure 2.10). 
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Figure 2.9 Example for inversion mutation: The genes between the two randomly chosen points of 

Parent 1 are reversed to produce the Child 1. 

 

 
Figure 2.10 Example for insertion mutation: The chosen gene changes its place while shifting the 

other genes to left or to right.  
 

2.1.6 Elitism 

 

When the new generation of individuals is generated, some individuals having the 

best fitness values may not be selected for the reproduction process. In order to 

prevent the loss of the best individuals, elitism mechanism is applied to the 

population. That is, some of the best chromosomes of the previous generation are 

copied to the new population directly, without applying any genetic operator. Other 

individuals are selected and reproduced for the next generation in a classical GA 

process (Maulik, Bandyopadhyay & Mukhopadhyay, 2011). This mechanism 

protects the best individuals against crossover or mutation.  

 

Elitism is a powerful strategy improving a GA’s performance in a positive way 

(Sivanandam & Deepa, 2008). Generally there are two basic methods to apply elitist 

strategy to a population (Deb, 2001). The first one is to copy directly some percent of 

the population directly to the next generation. The second way is to compare two 

offsprings with their parents and choose the better two individual among the four for 
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the next generation (Mokhtari, Abadi & Zegordi, 2011). In both cases, elitism should 

be applied with a reasonable amount of individuals. Transferring all best individuals 

of a population directly to the next generation may cause lack of diversity. Not 

applying elitism may also cause to lose best individuals.  

 

2.1.7 Stopping Criterion 

 

In a typical GA, an initial population of individuals is generated randomly. Each 

step of the iteration is called a generation. The individuals in the current population 

are evaluated according to the criteria, which was defined before the iterations start. 

These criteria are defined by the fitness function of the algorithm. To form a new 

population as the next generation of the algorithm, individuals are selected according 

to their fitness values. By doing so, the expected number of times an individual is 

chosen is approximately proportional to its relative performance in the population.  

 

The number of generations is a common stopping criterion for the GA. The 

algorithm has to stop somewhere and at the end, must have the set of best results. 

There are several ways to stop the GA: 

− A certain number of generations can be assigned to stop the program  

− The program may stop when there occur no changes in the fitness values of 

the individuals (if the solution set does not improve) 

− Fitness value reaches its maximum (Srndic, Pandzo, Dervisevic & Konjicija, 

2009). 

 

Since it has some disadvantages to use a standard GA, researchers try to find the 

best GA to solve the optimization problems in the best way it can. Traditional GA 

highly depends on the initial population and tends to converge rapidly. The genetic 

operators may also decrease the diversity of the individuals in the population. As a 

result of these handicaps, many studies are done to handle the problems of GA.  
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2.2 The Steps of a Standard GA 

 

The following pseudocode can be written for a standard genetic algorithm: 

 

initpop P 
For each solutioni from P 
 calculateFitness(solutioni) 
repeat 
 select parents solution1 and solution2 from P 
 child = crossover(solution1, solution2)  

 mutate(child) 
 calculateFitness(child) 
 replaceChild(P, child) 
until stoppingcriteron 

 

2.3 Application Areas of Genetic Algorithms 

 

GA can be used in a wide scale of applications in control systems engineering, 

materials engineering and electrical engineering. These applications include topics 

like:  

− Speech recognition and natural language processing (NLP),  

− Telecommunication and network design, 

− Optimization,  

− Economics,  

− Scheduling in different application areas,  

− Automatic programming and machine learning,  

− Computer – aided design (CAD),  

− Game theory,  

− Astronomy and weather forecasting,  

− Mathematics,  

− Chemistry and biology,  

− Bioinformatics and ecological models,  

− Data mining.  

 

To find solutions of the problems of these areas, GA can be combined with other 

AI techniques like Robotics, Fuzzy Logic (FL), Neural Networks (NN) or Machine 
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Learning. Among the application areas, solving the optimization problems of the 

systems is the most popular one. It is an iterative procedure that consists of a 

constant-size population of individuals, each one represented by a finite string of 

symbols, encoding a possible solution in a given problem space. It is called the 

search space, which comprises all possible solutions to the problem.  
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CHAPTER THREE 

LITERATURE OVERVIEW 

 

GA is a quite popular research area in computer science and there are many 

studies including different aspects of GA. The studies including GA can be classified 

into two main groups. Some studies deals with the performance of the GA, where 

some combine GA with other artificial intelligence techniques. Below some studies 

of both groups are listed.  

 

3.1 Optimization 

 

GA is mostly used as an optimization technique. For this reason, many of the 

studies using GA deal with some optimization problems. There are several 

optimization types that GA is used like global optimization, constrained 

optimization, combinatorial optimization and multi-objective optimization (Lau, 

Tang, Ho & Chan, 2009), (Kaya, 2010). For example since risk management has 

become one of the most studied topics with GA, a heuristic approach to portfolio 

optimization problem in different risk measures is handled by using this 

methodology (Chang, Yang & Chang 2009).  

 

There are many studies mentioning the solutions of optimization problems with 

Rule-Based GAs (RBGA) because rule based systems play an important role to 

improve the performance of the search methodologies. In the usage of rule based 

systems with GA, rule base may help GA while evaluating the individuals of the new 

generation (Wang, Liu & Yu, 2009), (Choy, Leung, Chow, Poon, Kwong, Ho & et 

al., 2011) or GA can be used in rule extraction. A GA can be based on some heuristic 

rules for problems of large size (He & Hui, 2008), (Fernandez, del Jesus & Herrera, 

2009). Except optimization problems, rule based systems are also used in genetic 

programming (Weise, Zapf & Geihs, 2007), network security (Mishra, Jhapate & 

Kumar, 2009), scheduling (Zhang & Tu, 2010).  
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Another topic that needs an optimization solution is feature selection. Selecting 

the optimal set of features among many of them is done by using a GA (Li, Zhang & 

Zeng, 2009). Like feature selection, decision making is a remarkable application area 

for the evolutionary techniques because solutions to such problems can be obtained 

effectively with genetic algorithms with lower costs of processing times. Order – 

acceptance problem with tardiness penalties is a good example of this kind of 

problems (Rom & Slotnick, 2009). In molecular biology domain, multiple sequence 

alignment issue plays an important role and an approach different than GA like 

Decomposition with GA (DGA) is applied. The overall performance of DGA has 

been found better than traditional GA (Naznin, Sarker & Essam, 2010). Machining 

sequencing is one of the application areas of GA, in which special chromosome 

structures and encoding schemes can be applied according to the problem definition 

(Shu, Gong & Wang, 2010).  

 

3.2 Scheduling and Timetabling 

 

Scheduling and planning problems can be considered as the optimization 

problems because researchers seek for the optimal solutions to solve this kind of 

problems. While seeking the optimal solution to scheduling problems, the value of 

population size, the design of the fitness function, and parameters of genetic 

operators should be decided carefully (Lee, Wu & Liu, 2009). Route planning 

problem is one of those in which GA is used (Wu, Shih & Chen, 2009). In the study, 

an efficient solution to a cross-fab route planning problem for semiconductor wafer 

manufacturing is handled and quite satisfactory results are obtained by implementing 

a standard GA with one-point crossover operator. In manufacturing environment, GA 

can also be used for scheduling a decision support model to minimize job tardiness 

(Choy, Leung, Chow, Poon, Kwong, Ho, et al., 2011).  

 

Scheduling problems also arise in multiprocessors and parallel and distributed 

systems. Studies done so far on these application areas with GA have shown that 

Artificial Immune systems, especially Immune GA (IGA), perform well in reducing 

the number of iterations and exploring the search space to find the solution 
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(Moghaddam & Monyadi, 2011). In production scheduling problems, GA is used and 

can be combined with different mathematical models to solve the problem with 

better results (Fakhrzad & Zare, 2009). 

 

Using GA is a popular technique to solve job – shop scheduling problems. These 

techniques can easily been applied to any kind of job – shop problems like no – wait 

and blocking job – shops (Brizuela, Zhao & Sannomiya, 2001).  Combining GA with 

other local search techniques ends up with more effective results. A study has been 

done on job – shop scheduling problem, where it brings assertive results thanks to the 

crossover technique used in the hybrid GA (Tseng & Lin, 2010). Researchers have 

shown that dividing the problem into sub problems and performing a hybrid GA on 

these parts improves the solution quality on job – shop scheduling problems (Pan & 

Huang, 2009). Another study have shown that the results of improved adaptive 

genetic algorithm (IAGA) to a job – shop scheduling problem reports a more 

efficient production and more efficient usage of the machines (Wang & Tang, 2011). 

Simulated annealing is also another method for job – shop planning and scheduling 

problem. In one of the studies it has been combined with GA as Adaptive Annealing 

GA (AAGA) to solve the local convergence problems of a classical GA and 

improving the convergence rapidity of GA (Liu, Sun, Yan & Kang, 2011).  

 

Using GA methodologies in multi – product parallel machines help to reduce the 

setup time for sheet metal shops and the same job can be routed in multiple machines 

with a reduced make – span (Chan, Choy & Bibhushan, 2011). The way of 

representing the chromosomes also affects the performance of the scheduling process 

in multi – product systems. (Ramteke & Srinivasan, 2011). For scheduling 

simultaneous multiple resources, bi – vector encoding GA (bvGA) is applied as 

another solution method. In this method, chromosome representation of GA and rules 

for resource assignment play an important role in solving the problem. bvGA 

improves the solution quality and reduces the computation time as well (Wu, Hao, 

Chien & Gen, 2011). GA basically offers efficient solution techniques with minimum 

number of GA variables in scheduling problems and low computational burden 

(Sasikala & Ramaswamy, 2010).     
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Arrival Sequencing and Scheduling (ASS) is also an important application area 

for evolutionary approaches. Especially Ant Colony Systems (ACS) seems to be an 

effective way to solve such kind of traffic control problems. The experimental work 

on ACS for ASS outperforms well and reduces the computational burden in 

optimization (Zhan, Zhang & Gong, 2009). ASS can be solved with Bee 

Evolutionary Genetic Algorithms (BEGA) and this approach helps to obtain an 

optimum landing sequence and landing time effectively (Wang, 2009). An aircraft 

category based GA is used in a study which obtains better results in a real time 

application (Meng Zhang & Li, 2010).  

 

Similarly, aircraft landing scheduling problem is considered as a tough 

optimization problem with many hard constraints since it has to be handled in real 

time. As distinct from the traditional optimization methods, researchers have 

obtained better solutions by using genetic algorithms (Yu, Cao, Hu, Du & Zhang, 

2009). Different GA methodologies have also been applied and compared in aircraft 

Departure Sequencing Problem (DSP) like Basic GA, Adaptive GA and Improved 

GA (IGA). Among these methodologies it is concluded that IGA has a better 

performance when compared to Basic and Adaptive GA methodologies (Wang, Hu 

& Gong, 2009). Ripple Spreading GA (RSGA) is one of the techniques applied on 

aircraft sequencing problems, which inspires from the ripple – spreading 

phenomenon of nature in liquid surfaces. This methodology has many advantages 

like being flexible, extendible, memory – efficient and filtering the bad solutions 

automatically (Hu & DiPaolo, 2011). In some of the solutions found for airline 

rostering problems, novel chromosome representation techniques are introduced, 

improved crossover and mutation operators are applied and both operators can be 

used alternatively (Souai & Teghem, 2009). 

 

Nurse scheduling problem is very popular research area and GA is used to prepare 

an optimal schedule taking the constraints of the job into consideration (Tsai & Li, 

2009). Planning surgical operations require an effective scheduling to prevent any 

violations in human resources and conflicts in operating rooms. GA solves the 
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scheduling problem of surgical activities in terms of time and resource constraints 

(Roland, Di Martinelly, Riane & Pochet, 2010). Other search techniques like Tabu 

Search can also be combined with genetic algorithms to solve complex scheduling 

problems like scheduling an in-line-stepper in a semiconductor fab (Chiou & Wu, 

2009) or compressor selection in natural gas pipelines (Nguyen, Uraikul, Chan & 

Tontiwachwuthikul, 2008). Hybrid GA methodologies are also applied to solve no-

wait job shop scheduling problems (Mokhtari, Abadi & Zegordi, 2011). A hybrid 

system may contain local search mechanism and a traditional GA. Local search, in 

this case, is used to improve the initial population (Whitley, 1995). Using multi – 

objective evolutionary algorithms (MOEA) in scheduling problems has become a 

popular problem solving technique. With this approach, researchers have reached 

well – performing results. Multi – objectivization concept has developed and has 

been supported with helper objectives to find an optimum sequence of the objectives 

(Lochtefeld & Ciarallo, 2010).  

 

In education domain, GA is also used to prepare timetables and schedules. There 

exist so many studies to develop different scheduling methods for educational 

timetabling problems. Timetabling problems are considered as NP-hard problems 

and most of the studies have dealt with educational timetabling by constructing some 

methodologies to achieve timetabling task for an educational issue (Burke, 

McCollum, Meisels, Petrovic & Qu, 2007), (Aldasht, Alsaheb, Adi & Qopita, 2009) 

(Khonggamnerd & Innet, 2009) (Raghavjee & Pillay, 2010).  

 

Researchers have looked for alternative solution approaches to the distinct 

branches of timetabling problems like examination timetabling (Carter & Laporte, 

1996), (Derakhshi & Zandi, 2010), (Pillay & Banzhaf, 2010), (Cupic, Golub & 

Jakobovic, 2009), course timetabling (Carter & Laporte, 1998), (Abdullah, Turabieh, 

McCollum & McMullan, 2010a), (Abdullah, Turabieh, McCollum & McMullan, 

2010b), (Chinnasri & Sureerattanan, 2010), (Jat & Yang, 2011) , (Ayob & Jaradat, 

2009). Some researchers have tried to classify (Bardadym, 1996) and automatize the 

timetabling problems (Burke, Jackson, Kingston & Weare, 1997), (Schaerf, 1999), 

(Burke & Petrovic, 2002).  
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On the other hand, university timetabling became another type of timetabling 

problem, in which many remarkable studies have been done. The hard constraints 

and soft constraints of a timetabling problem and detecting these constraints 

precisely play a great role in finding the most appropriate timetables (Petrovic & 

Burke, 2004). Alsmadi, Abo-Hammour, Abu-Al-Nadi & Algsoon tried to solve a 

university timetabling problem by developing a GA to handle the constraints, 

diminishing the hard constraint violations (2011). Parallelization of GA is another 

choice to handle university timetabling problems, solving the problem with a master 

– slave architecture (Karol, Tomasz & Henryk, 2006). In one of the studies done on 

university timetabling, a hybrid grouping GA is developed and applied on a real 

application. It is concluded that a hybrid GA method can assign the students to the 

laboratory groups with a maximum capacity and less conflict (Agustin – Blas, 

Salcedo – Sanz, Ortiz – Garcia, Portilla – Figueras & Perez – Bellido, 2009).  

 

Except educational timetabling, some other application areas of timetabling can 

be mentioned like nurse rostering (Cheang, Li, Lim & Rodrigues, 2003), (Burke, De 

Causmaecker, Berghe & Van Landeghem, 2004), sports timetabling (Easton, 

Nemhauser & Trick, 2004), transportation timetabling (Kwan, 2004), finding the best 

match problem among many candidates and tasks (Altay, Kayakutlu & Topcu, 2010) 

and grid scheduling (Adamuthe & Bichkar, 2011). Train sequencing on the railways 

has also been considered as a transportation timetabling problem to be solved with 

genetic algorithms (Chung, Oh & Choi, 2009). 

 

Curriculum sequencing, which can be defined as a Constraint Satisfaction 

Problem (CSP), is one of the favorite research areas that optimization techniques like 

GA are used (Hong, Chen, C.-M., Chang & Chen, S.-C., 2007), (De Marcos, 

Barchino, Martinez, Gutierrez & Hilera, 2008) (Olsen, 2009). Even complex 

sequencing scenarios can also be processed by applying a model of permutation 

constraint satisfaction problem (De Marcos, Martinez, Gutierrez, Barchino & 

Gutierrez, 2008). For arranging employee training programs, GA is also preferred as 
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a scheduling methodology and an optimal curriculum arrangement can be done easily 

and effectively (Juang, Lin & Kao, 2007).  

 

For solving the curriculum sequencing problems, one approach is to develop 

agents by using evolutionary computation methods (De Marcos, Barchino & 

Martinez, 2008). Another approach is considered as the permutation – based genetic 

algorithms, which is used to perform sequencing optimization (Li-li & Ding-wei, 

2008). Permutation – coded genetic algorithms can be applied to different problems 

like weapon – target assignment problem (Julstrom, 2009).  

 

In precedence – constrained sequencing problems (PSCP), optimization is done to 

locate the optimal sequence with the shortest travelling time. Some hybrid genetic 

algorithm (HGA) techniques with adaptive local search help to produce the most 

effective results when compared with the results of other traditional methodologies 

(Yun, Gen & Moon, 2010).     

 

One of the most famous sequencing problems is Travelling Salesman Problem 

(TSP). The solution to the problem aims to find the shortest path for the salesman to 

traverse different cities, stopping by the same city only once. Many researchers have 

constructed many solution methods on TSPs (Singh & Baghel, 2009). GA brings 

some effective solutions to TSP and some hybrid algorithms are implemented (Pop 

& Iordache, 2011). When GA is the point in question, diversity control is an 

important notion in TSP problems because if the diversity reduce rapidly, the 

solution to the TSP can be worse in quality. Researchers have studied on diversity 

control in TSP problems and gathered encouraging results (Chang, Huang & Ting, 

2010).  

 

The techniques used to find solutions to TSP problems are not widely different 

than the methodologies used in permutation sequencing problems. For this reason, 

some TSP solution methodologies can be adapted to GA. TSP is a good area of 

applying and testing the performances of new crossover (Deep & Mebrahtu, 2011), 

(Ahmed, 2010) or mutation (Kaya, 2010) operators. New type of GA, a whole with 
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its chromosome representation and reproduction operators, can also be applied and 

tested on TSP. For example, a grouping based GA has been applied on multiple 

travelling salesperson problems (Singh & Baghel, 2009) and the results are rather 

promising.    

 

3.3 GA Performance and Parameter Tuning 

 

Except the studies combining different artificial intelligence techniques, there are 

other studies which only deal with improving the performance of the GA. 

Performance evaluations in a GA can be done in several ways. 

 

The parameter tuning notion involves with choosing the exact control parameters 

for GA to run and produce the best results. The parameters, to a large extent, affect 

the performance of GA. The determination of the correct combination of parameters 

itself is also an optimization problem. The researchers have made many studies on 

parameter tuning. To handle the parameter control problem in GA, many solutions 

have been suggested. One of these even offers a scripting language implementation 

for controlling the parameters of evolutionary algorithms (Liu, Mernik & Bryant, 

2004).   

 

As an example of this research area, different crossover operators can be 

implemented (Marano, 2011) and be compared with each other (Lin & Wei, 2009), 

(Vazquez-Rodriguez & Petrovic, 2010). There are some studies in which the 

crossover techniques are surveyed for different GA types (Tutkun, 2009). But 

mostly, improvement in the performance of the GA is handled by making some 

parameter tuning operations. In order to make parameter tuning, the same GA must 

be executed many times with different number of generations, crossover and 

mutation rates and population sizes. In most of the studies, at least two or three 

different values are tested for each parameter and the execution times are calculated 

(Rau & Cho, 2009), (Choy & et al., 2011). The best parameter combination is found 

according to the least execution time value. But in some of the studies dealing with 
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parameter tuning, new chromosome encoding techniques and crossover operators can 

be introduced (Barrero, Gonzales – Pardo, Camacho & R – Moreno, 2010).  

 

The parameters used in a GA directly affect the performance and the quality of the 

result set. The analysis of the parameters itself is also a difficult task to manage. 

There are many studies dealing with this notion. For example, Eiben and Smit 

worked on the analysis of the parameters in evolutionary algorithms (Eiben & Smit, 

2010). In their study, they classify the parameters into two groups: qualitative and 

quantitative parameters. In their study, they aimed to prove that parameter tuning is a 

must and it must be available in all studies dealing with evolutionary algorithms.    

 

The parameters of a GA are meaningful when they are combined in a harmony to 

find solutions to the optimization problems. That is, all parameters values about 

crossover, mutation, number of individuals, number of generations, the selection 

mechanisms and elitism, must be thought together. There are several studies in which 

these parameters are stated as a whole (Alsmadi, Abo-Hammour, Abu-Al-Nadi & 

Algsoon, 2011). When the same parameter combination is used for another 

application area, the results can be compared and the parameter combination may 

give an idea about the performance of the system. Contrary, in one of the studies, 

instead of genetic operators such as crossover and mutation, the concept of compact 

Genetic Algorithms (cGA) come up with the idea of probability vector (Lee, Kim  & 

Lee, 2011). 

 

Elitism is one of the quite powerful weapons of GA to affect the performance of 

the algorithm. For this reason, it is used in many studies dealing with GAs. 

Especially in timetabling problems, keeping a good individual for generations is 

important to obtain the optimum solution. In a study solving the timetabling problem 

with GA, Jorge, Martin and Hector applied elitism to 1 % of the population (Jorge, 

Martin & Hector, 2010). They also worked on the parameter tuning strategies to 

improve the performance of their system about solving the academic timetabling 

problem (Jorge, Martin & Hugo, 2010). 
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Castelli, Manzoni and Vanneschi have found a novel way to transfer the genetic 

material of some of the good individuals from one generation to the next one. They 

proposed a mechanism to replace the worst individuals of the new generation with 

the good from the previous generation. By doing so, they gave the better individuals 

chance to mate and reproduce (Castelli, Manzoni & Vanneschi, 2011).  

 

Cheng, Shi, Yin and Li have used elitist strategy for streaming pattern discovery 

in wireless sensor networks as a different application area of GA (Cheng, Shi, Yin & 

Li, 2011). The algorithm with the elitist strategy has the power to reduce the 

reconstruction error and is fully applicable in the wireless sensor networks area.  

 

Dynamic Optimization Problems (DOP) is a good application area for performing 

the elitist strategy. Lee and McKay have studied on three well-known optimization 

problems and observed the behavior of the evolutionary algorithms having elitism 

mechanism (Lee & McKay, 2011).   

 

As the characteristic of the fitness function of a GA, it has to produce fitness 

values to be accepted as “valid” for the solution of the problem. These values may 

tend to converge either to a maximum or to a minimum value. Maximizing the 

fitness values to find the optimum population of individuals is often used in GA 

applications (Ahmet & Zhoujun, 2010), (Li, Lv, Mei & Xu, 2010). In most of the 

GAs, a penalty score is calculated for the genes in the chromosome. The 

chromosome having the least penalty score is accepted as the best individual of the 

population. If the penalty score of the chromosome is written as the denominator of 

the fitness function, then the individual having the least penalty score has the largest 

fitness value. This is one of the ways of maximizing the fitness values. It can be used 

with optimization of timetables because the constraints of the problem can be 

considered as the penalty score of the individuals. The same approach can also be 

used in fixed – charge transportation problems (Molla-Alizadeh-Zavardehi, 

Hajiaghaei-Keshteli & Tavakkoli-Moghaddam, 2011) or network broadcast control 

of the GSM systems (Biroğul, Elmas, Çetin, 2011).     
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According to the problems and the solution techniques needed for the problems, 

GAs have also improved since they were first stated. Today, some hybrid or 

modified GAs are used in solving some of the problems. Marano has a study on such 

modified GAs, in which he has improved the GA operators also (2011). Adaptive 

GA (AGA) is popular in parameter optimization and finds itself some real – world 

application areas like optimization of traffic in a computer network (Prieto & Perez, 

2008), (Fernandez – Prieto, Canada – Bago, Gadeo – Martos & Velasco, 2011).  

 

3.4 GA and Correlation Tests 

 

When an optimum result for an optimization problem is gathered by using GAs, 

the results must be tested and evaluated whether they are “reliable” and “valid” or 

not. There are many evaluation techniques to accomplish this task. In sequencing 

problems, usually the results are compared with the suggestions of a human expert. 

To make a reliable decision, non-parametrical tests can be applied to the results. 

Spearman Correlation Test is one of these test techniques. It is used when the range 

of the observations, not the values, is important (Sheskin, 2000). Since GAs deal 

with optimization and sequencing problems, Spearman correlation test has also been 

used with some of the studies.  

 

Ebrahimipour and Nagasaka have used Spearman correlation to verify the results 

of a GA in their study about power sector performance (Ebrahimipour & Nagasaka, 

2003). The result of the GA is compared with the results of Principal Component 

Analysis (PCA) model and Numerical Taxonomy (NT) by using Spearman 

Correlation test.  

 

GA and Spearman can also be used together to make hardware performance 

prediction of a system (Hoste, Phansalkar & Eeckhout, 2006). The results obtained 

from Normalization, GA and PCA are compared and it is observed that the 

estimation results of GA have a better correlation than the other methods. 
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GA is used with Variable Subset Selection (VSS) approach in Pavan, Mauri and 

Todeschini’s study and the models based on VSS are evaluated with Spearman rank 

index (Pavan, Mauri & Todeschini, 2004). For the estimation of surface-based duct 

parameters from radar clutter, Xiao-Feng, Si-Xun and Zheng have used Spearman 

rank correlation with GAs (2010). In another study, Spearman is used to evaluate the 

results of a GA making an optimization for the isolation of the translational 

efficiency bias and the traditionally generated results (Raiford, Krane, Doom & 

Raymer, 2011). According to their Spearman evaluations, GA, as a search based 

method, has performed better than the traditional method.        

 

GA is used for the optimization of a culture medium for producing the toxic marine 

dinoflagellate microalga. The evaluations of the results of GA are again done with 

Spearman rank correlation and it is concluded that the medium generated with a GA 

optimization gave a better result than those of the other control media (Camacho, 

Rodriguez, Miron, Christi & Grima, 2011). 

 

3.5 GA with Other AI Techniques 

 

GA is best combined with Fuzzy Logic (FL) and Neural Networks (NN) in many 

of the studies. In one of the studies, fuzzy GA approach, which integrates fuzzy rule 

sets and their membership function sets in a chromosome, is developed to solve an 

optimization problem (Lau, et. al. 2009), (Fernandez, del Jesus & Herrera, 2009). 

Fuzzy systems can be combined with GA in a harmony to solve real – world 

problems like stock markets and the combination of the two methods ends up with an 

improved performance (Hung, 2009). Also determining the optimum weights on 

each edge of network traffic is an important problem to be solved to manage 

unbalanced networks. A study about wireless sensor networks in done by integrating 

FL and GA (Yun, Lee, Chung, Kim, & Kim, 2009). In the study, edge weights in the 

network are modeled with FL and optimized with GA. 

 

Ant colony systems – like particle swarm optimizations (PSO) – can also find 

answers to scheduling problems. GA finds itself a valid application area in 
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combining PSO with GA (Valdez, Melin & Castillo, 2011), (Anghinolfi, 

Montemanni, Paolucci & Gambardella, 2011). For a flow shop scheduling problem, 

Yağmahan and Yenisey have obtained better results than that of the other methods 

compared (Yağmahan & Yenisey, 2010).   

 

GA is used with data mining in some rule extracting applications (Rodriguez, 

Escalante & Peregrin, 2011). They used GA for the rule extraction for a system that 

states a new method for data distribution in computer networks. The algorithm 

applied has some advantages when compared with other distribution algorithms. 

 

The recent studies show that there are some Expert Systems (ES) which are 

combined with GA techniques. These techniques are mostly used in education and 

many scheduling systems are produced for this purpose. In some studies, rule 

extraction of the ES is managed by using GA (Fan, Tseng, Chern & Huang, 2009). In 

the study, the rules that ES uses are generated and updated in each generation. GA 

and ES are used together even in an unmanned aerial vehicle (UAV) navigation 

system (Kuroki, Young & Haupt, 2010). GA is used within a rule- based system to 

tune the variables of the system until the output matches the observations. 
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CHAPTER FOUR 

PROBLEM DEFINITION 

 

4.1 Characteristics of Data 

 

The system is designed to find an optimum sequence for the contents of a course / 

training, where there are some obligatory rules among the parts of the course. This 

system is appropriate for the cases that not all of the course material is taken into 

consideration but instead, some selected parts, which are called modules, of the 

education material is in question to be placed in the curriculum plan. This means that 

the instructor can make a selection among the modules and make a decision about 

the length of the dataset. Instructor can select the modules to be included to the 

course via the user interface of the software as explained in Chapter Six. The 

information about the course material (the modules and their features) can also be 

added and dropped via a user interface. When modules are added for a training 

program, the names and module numbers are inserted in a database. 

 

Two different data sets with same kind of properties are used in the thesis. One of 

them is the training data including the training program of an in – service training 

program of a software company. The other one is the control data set including the 

topics of a database course given in a computer programming department of a 

vocational school as the modules of the course. The names of the modules and the 

prerequisite module numbers for each module are listed in Appendix A for both the 

training data and the control data sets. 

 

The most important criterion about the modules is the prerequisite conditions. 

When the module i has the module j as its prerequisite, this means that, to get module 

i, the trainee should pass the module j successfully. This can be considered as a 

precedence constraint which Mendes mentions in his study (2008). For the system to 

work properly, the time periods of all modules and prerequisite modules of the 

modules (if any) must be determined clearly.  
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The data containing the prerequisite conditions of the modules form the rule base 

of the system and sequencing process is based on the prerequisite rules of the 

modules. For this reason the rules must be transmitted to the system carefully. The 

rule based of the system behaves as if it was an ES component because the 

prerequisite modules of a module are represented as logically like IF-THEN 

statements as used in ES methodologies. An example to the IF-THEN statements 

used for the prerequisite rules of the modules is represented in Figure 4.1. For 

example “If M1 and M2 then M4” means module M4 has M1 and M2 as its 

prerequisites. The trainee has to be successful from modules M1 and M2 to have the 

module M4. A more detailed versions of the IF-THEN rules used for the training 

and control datasets are given in Appendix B.  

 

There is an important point about the rules of the modules that there must not be 

any cyclic rule definition. That is, if Mp is defined as the prerequisite of Mq, then Mq 

must not be defined among the prerequisites of Mp.  

 

 
Figure 4.1 Prerequisite rules among the modules 

 

4.2 Obtaining the Module Features 

 

The modules that will be included to the system take shape according to the 

choices, made via the user interface by the instructor. The course must be planned 

with an optimum content sequence for the students. For this reason, the system uses 

two different sizes of both content sets; first one is the smaller (called SDST) 

IF M1 THEN M2 
IF M1 THEN M3 
IF M1 AND M2 AND M3 THEN M4 
IF M1 AND M3 AND M6 THEN M7 
IF M1 AND M2 AND M4 AND M5 AND M8 THEN M9 
… 
IF M1 AND M14 THEN M16 
IF M1 AND M2 AND M3 AND M12 THEN M20 
IF M1 AND M2 AND M12 AND M15 AND M17 AND M20 THEN M22 
… 
IF M1 AND M3 AND M7 AND M27 THEN M28 
IF M1 AND M3 AND M7 AND M27 AND M28 THEN M29 
… 
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including approximately half of the content to produce a course of one semester, and 

the second one (called LDST) to produce a course of two semesters.  

 

After the data for a course and its modules are provided properly, the system runs 

the genetic algorithm phase on these modules to optimize the sequence of the 

modules of the course. The number of chosen modules determines the length of the 

chromosomes used in the GA. For different training materials, the number of 

modules may differ; therefore, reason the chromosome sizes are not equal for each 

training program. Regardless from the length of the chromosome, the initial 

population of the GA is produced in the same way from the first module range 

obtained. In this study, there are two different sizes of the same dataset, having 17 

and 30 modules among 39 modules of the whole training program. The same amount 

of modules for two different module range sizes (17 and 30) are also chosen from the 

control data, which has 42 modules. The prerequisite rules among the modules are 

the most important point making the sequencing process more difficult to manage. 

For this reason, two different sizes of the dataset are needed to analyze the 

performance of the GA. 

 

While GA is performed, the fitness function of the GA to be applied to these 

chromosomes use a rule set that includes the prerequisite information of each module 

as mentioned above in contrast with the systems coding a rule as one chromosome 

consisting of several segments (Tseng, Chen, Hwang & Shen, 2008). The result of 

the GA produces the most reliable and useful range of the modules to be used in the 

compensation training.  

 

An example to the module evaluation of the system for the training data set is 

given in Table 4.1. The chosen modules are selected among the total list of the 

modules and their duration is calculated. In the table, the numbers of chosen modules 

are shown. This data is important for the system because the initial population of the 

GA is generated from these module numbers.  

 



40 
 

This kind of a dataset has some handicaps. The modules to be chosen and the size 

of the chromosomes are not known at the beginning of the process. There are tight 

prerequisite rules among the modules. For this reason sequencing task has to take 

these rules into consideration. The tighter is the rules among the modules, the more 

difficult to obtain more reliable results.  

 
Table 4.1 Modules Chosen for the Training Program 

M# 8 5 23 2 17 4 6 7 12 20 29 3 9 10 18 28 

Hours 4 2 2 6 4 4 16 8 4 6 2 12 4 6 4 6 
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CHAPTER FIVE 

SYSTEM ANALYSIS AND DESIGN 

 

Before performing the optimization process, the conditions and constraints of the 

problem should be stated clearly. In order to express the phases of the system 

explicitly, making a system analysis is a must. The system analysis includes the 

workflow of the system, design of the GA to be used with all its operators and 

planning the parameter tuning step. The workflow is an important phase because it 

can be considered as the route map to the project. 

 

5.1 The Workflow of the System 

 

The workflow for the project is explained in two major phases. In the first phase, 

a rule based genetic algorithm for module ranking is generated as given below in 

Figure 5.1. Fig 5.2 explains the details of the module sequencing process – the first 

step of Figure 5.1 - in more detail.  

 

As the first phase, the rule based module sequencing software consists of 

gathering the needed data of modules as rules, finding the optimum range of modules 

by running the GA and producing raw data (runtime and fitness values, module 

ranges and data required for the further steps of the workflow) and XML outputs for 

the training program. The following phases are about the evaluation process of the 

results; that is, the obtained results are evaluated with a non – parametric correlation 

test and the best module range is determined. In detail, in the second phase, obtained 

results are routed to the rank correlation test phase. For evaluating the results, 

Spearman Rank Correlation Test is applied to the results and at the last step, the best 

module range is obtained. The parameter combination giving the best module range 

is also emphasized. The same process is also applied on the control data set to verify 

the results of the training data set. 

 

The workflow of the system is applied in the same way to both the training data 

and the control data. 
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Figure 5.1 The general workflow of the system 

 

The steps of the Rule Based Module Ranking Software is given below: 

• The education material is divided into M modules. 

• The time period and the prerequisite information of each module must be 

inserted into the system.  

• Module names, module numbers and their durations reside in a database.  

• The modules to be included to the curriculum plan are determined by the 

instructor via user interface according to the students’ / trainees’ demands or needs 

(Knowledge Acquisition phase in Figure 5.2.). 

• The prerequisite rules of the modules are written in an XML file and attached 

to the software as XML. 

• The first individual of the GA is formed by ranging the chosen module 

numbers randomly and the initial population is produced from the first individual.  

• When the software is run, a module range is produced by the algorithm and a 

schedule for those modules is prepared and saved as an XML file.  

 

Module sequencing process was being done by human experts manually before. 

Therefore, human experts naturally have a suggestion about how the correct 

sequence may be. The best module sequence obtained from the software should be 

compared with the suggestion of the human expert in order to be sure about its 

reliability. The number of the prerequisite rules among the modules is one of the 

factors that affect the reliability of the module range when compared with that of the 

human expert’s.  

 

Rulebased 
Module 
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Output 
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Figure 5.2 Detailed workflow for the Rule-based module ranking software 

 

5.2 The Design of the Genetic Algorithm 

 

The GA used in the project works on the chromosomes, which are composed of 

the module numbers. Each module number can take place in a chromosome only 

once; therefore permutation encoding technique is used for chromosome encoding 

(Julstrom, 2009). The module numbers that build up the chromosome are taken from 

database, but the prerequisite rules of the selected modules are taken from the XML 

file.  
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In the rule based GA stated in the thesis, which adopts the Pittsburg approach 

(Rodriguez, Escalante & Peregrin, 2011), there is only one rule behind each gene and 

the genes forming the chromosome represent a possible solution to the sequencing 

problem. For this reason, when a chromosome is formed from the selected modules 

of a course, a subset of the rule base is included to the system and GA only deals 

with the rules of the selected genes. Some modules may not be selected for the 

sequencing process; therefore the rules of the modules which are not selected are not 

included to the subset of the rule base.  

 

A module may not have a prerequisite module. In that case, if the module does not 

have any prerequisites, then there is no rule about the module in the rule subset. The 

modules without prerequisites are easier to manage. Sequencing them is even easier, 

unless they are prerequisites for other modules. 

 

5.2.1  Initial Population 

 

The initial population of the GA is generated by using the module numbers to be 

ranged. These module numbers are ranged randomly (Derakhshi & Zandi, 2010) to 

form the first individual of the initial population. Then, by using the module numbers 

of the first individual, n different module ranges are generated for a population of n 

individuals. In the thesis, different sizes of populations with values of 100, 120, 140, 

160, 180 and 200 are used. 

 

5.2.2 GA Operators 

 

The operators which are used in the project are explained briefly below. Three 

different types of crossover operators, two different types of mutation operators and a 

selection operator are in question in the thesis. Elitism is also applied. 
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5.2.2.1 Crossover 

 

In the project, a standard GA is used with one – point order crossover, two – point 

crossover (Picek & Golub, 2010) and PMX. In one – point order crossover, the 

parents change their genetic material according to the randomly chosen splitting 

point. But since permutation encoding is used, the exchanging parts of the 

chromosomes are arranged considering the nonrecurring of the genes. In two-point 

crossover, the genes between two randomly chosen positions on the chromosome are 

inversed to obtain two new children for the next generation. PMX is an improved 

version of two – point order crossover, exchanging the genes between randomly 

chosen intervals and repairing the gene to prevent the repetitions. 

 

The three crossover techniques are used in four different ways; we call them OX, 

OX2, PMX and OX’ respectively. 

• OX, 1-point order crossover of Davis (1991),  

• OX2, 2 –point order crossover of Coley (1998), 

• PMX, partially matched crossover (Sivanandam & Deepa, 2008),  

• OX’, one of the three crossover methods (OX, OX2, PMX) chosen randomly 

in each generation (Tseng, Chen, Hwang & Shen, 2008).  

 

5.2.2.2 Mutation 

 

Inversion mutation and swap mutation is applied in various probabilities as the 

mutation method in the study. The mutation is applied in low mutation probability 

values not to destroy the evolution period of the chromosomes. Using swap mutation 

and inversion mutation in various probabilities helps to manage the parameter tuning 

task of the GA.  

 

When a chromosome is mutated with swap mutation, randomly chosen two genes 

(module numbers in this case) are swapped and a new child for the population is 

produced. With inversion mutation, an interval of genes is chosen and inversed. The 

aim of the mutation process is to sustain the diversity of the population and prevent 
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the fitness values converge rapidly to maximum. 

 

5.2.2.3 Selection 

 

The selection operator is determined as the Linear Rank Selection operator 

(Greffenstette & Baker, 1989) as given in (1). 
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where rankvali represents the rank value of the ith individual in the population,  

N represents the population size,  

ranki represents the order of the ith individual, 

max + min = 2 and 1 ≤ max ≤ 2 (Chakraborty & Chakraborty, 1997). 

 
 
5.2.2.4 Elitism 

 

The elitism mechanism is also applied to protect the best individual in the 

population by passing a group of best individuals directly to the next generation 

(Cheng, Shi, Yin & Li, 2011). According to the elitist strategy, our system transfers 

10% of the population having the best fitness values directly to the next generation. 

This ratio carries the individuals having the best fitness values to the next generation 

without being exposed to any genetic operators. 

 

5.2.3 The Fitness Function 

 

The input data of the fitness function of the project is the XML file in which the 

prerequisite rules of the modules are saved. The XML file including the rules is 

given in Figure 5.3. A more detailed XML files of the rules for the training data and 

the control data are given in Appendix C. 

 

 

The logical representation of module rules resides in an XML file and then the 
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XML file is converted to a sparse matrix, where each row represents a module and 

the elements of a row consist of 0s. If the module has prerequisites, then the column 

representing the prerequisite module number is set to 1. Too many 1s in a row means 

that the module is more tightly related to its prerequisites.   

 

 
Figure 5.3 XML file including rules among the training modules 

 

The number of modules to be sequenced determines the length of the 

chromosomes used in the GA. The initial population of the GA is produced from the first 

module range obtained. While GA is performed, the fitness function of the GA to be applied 

to these chromosomes use a rule set that includes the prerequisite information of each 

module as mentioned above.  

 

 

The fitness function mechanism works by parsing the 1s in the prerequisite matrix 
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and the penalty scores calculated for the modules on the chromosome. It is quite 

practical way of transferring the rules to a mathematical representation. Saving the 

rules in a matrix has a few benefits. The system does not have to execute any queries 

from database to acquire the rule data. It is easier to save and process data when it is 

in a sparse matrix format. An XML file including the rules can be converted to a 

sparse matrix easily. An example of the sparse matrix is given in Figure 5.4. 

 

 
Figure 5.4 Sparse matrix representation of the XML files including the rules 

 

When a prerequisite of a module appears after that module in the chromosome, 

the penalty point is increased by calculating with a weight value of the module. 

Weight values for each module are calculated according to the number of 

prerequisites. The module with more prerequisites is more difficult to locate in the 
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curriculum plan. The pseudo code written for the fitness function is given in Figure 

5.5. 

 

When the penalty score calculation for the ith chromosome ended, the fitness value 

of the chromosome is calculated by using (2).  

 

 
 

where m is the number of modules in a chromosome, penaltycount is the number 

of prerequisite modules for module k exisiting in the chromosome and prereqcount is 

the total number of prerequisite modules for module k.  

   

 
Figure 5.5 Pseudo code for calculating the fitness function 

 

While calculating the penalty point for each individual according to the 

prerequisites of the modules on the chromosome, the lower penalty point shows that 

the fitness value of the individual is higher. Having a higher fitness value means the 

individual is more suitable as the solution of the problem. On the other hand, the 

chromosome with the highest penalty score is defined as the worst individual of the 

population according to Formula (2). GA tries to minimize the penalty scores and 

for each individual i do 
begin 
  penaltypoint = 0; 
  for each module in the chromosome do 
  begin 
     penaltycount = 0; 
     for each module after itself do 
     begin 
        if a prerequisite module exists after itself 
        then penaltycounti++; 
     end                   
     penaltyratioi= penaltycounti/total prereqcounti                     
     penaltypoint = penaltypoint + penaltyratioi 
  end                 
  fitnessvaluei = (1/ (penaltypoint+1)) 

end  

 

(2) 
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maximize the fitness values (Hung, 2009). In the fitness functions in which penalty 

scores are calculated, the aim is always minimizing the penalties and maximizing the 

fitness value (Zheng, Liu, Geng & Yang, 2009). The chromosome with the minimum 

value of the penalty score turns out to be the best individual of the generation. As 

required as a rule of fitness evaluation, the individuals are then sorted from the worst 

fitness value to the best. 

 

5.3 Parameter Tuning 

 

In order to obtain the best results from the GA, parameter tuning is done by 

changing the three basic parameters of the GA. These parameters are:  

• Number of generation (maxgen),  

• Crossover rate (crate) and  

• Mutation rate (mrate).  

 

The parameters used for different scenarios (S1 – S63) are given in Table 5.2. 

These parameters are applied to all four GAs (OX, OX2, PMX and OX’) for six 

different population sizes. The same is applied on both a smaller dataset having 17 

genes in a chromosome and a larger dataset having 30 genes in a chromosome. 

 

The curriculum sequencing is done for the cases, in which all the modules of a 

whole training / course are not included to the system. The fitness function of the 

genetic algorithm has been improved and tested with new parameter combinations 

given in Table 5.1.  

 
Table 5.1 GA Parameters for Different Scenarios 

Parameter Value 
Population Size 100, 120, 140, 160, 180, 200 
# of Generations 500, 750, 1000 
Crossover Rate (crate) 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1 
Mutation Rate (mrate) 0.1, 0.15, 0.2 

 

 

Briefly, the GA of the software is tested for: 
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• 2 datasets of different size (which are called SDST and LDST for the smaller 

and larger ones respectively), 

• 6 different population sizes (given in Table 5.1), 

• 4 crossover operators 

• 63 scenarios for each operator (3 generation values, 7 crossover rate values 

and 3 mutation rate values) 

• 20 run for each scenario. 

 

Although mutation is naturally included into the parameter tuning process with 3 

different mutation rate values, the two different mutation operators are used 

randomly in all of the executions. This means that, swap mutation and inversion 

mutation have the same amount of effects on the scenarios.  

 
Table 5.2 Parameter Tuning with the scenarios for 500 (S1 – S21), 750 (S22 – S42) and 1000 (S43 – 

S63) generations respectively. 

Scenario crate mrate Scenario Crate mrate Scenario Crate Mrate 
S1 0.70 0.1 S22 0.70 0.1 S43 0.70 0.1 
S2 0.70 0.15 S23 0.70 0.15 S44 0.70 0.15 
S3 0.70 0.2 S24 0.70 0.2 S45 0.70 0.2 
S4 0.75 0.1 S25 0.75 0.1 S46 0.75 0.1 
S5 0.75 0.15 S26 0.75 0.15 S47 0.75 0.15 
S6 0.75 0.2 S27 0.75 0.2 S48 0.75 0.2 
S7 0.80 0.1 S28 0.80 0.1 S49 0.80 0.1 
S8 0.80 0.15 S29 0.80 0.15 S50 0.80 0.15 
S9 0.80 0.2 S30 0.80 0.2 S51 0.80 0.2 
S10 0.85 0.1 S31 0.85 0.1 S52 0.85 0.1 
S11 0.85 0.15 S32 0.85 0.15 S53 0.85 0.15 
S12 0.85 0.2 S33 0.85 0.2 S54 0.85 0.2 
S13 0.90 0.1 S34 0.90 0.1 S55 0.90 0.1 
S14 0.90 0.15 S35 0.90 0.15 S56 0.90 0.15 
S15 0.90 0.2 S36 0.90 0.2 S57 0.90 0.2 
S16 0.95 0.1 S37 0.95 0.1 S58 0.95 0.1 
S17 0.95 0.15 S38 0.95 0.15 S59 0.95 0.15 
S18 0.95 0.2 S39 0.95 0.2 S60 0.95 0.2 
S19 1.00 0.1 S40 1.00 0.1 S61 1.00 0.1 
S20 1.00 0.15 S41 1.00 0.15 S62 1.00 0.15 
S21 1.00 0.2 S42 1.00 0.2 S63 1.00 0.2 

 
 

Here GA is run for 63 different parameter combinations. These combinations are 

shown in Table 5.2 (S1 – S63). When GA is executed for these different parameter 
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combinations and crossover techniques, each combination for 20 times (Roeva, 

2008), 24 different results sets are obtained for both SDST and LDST. Each result set 

includes 63 different solutions, since there are 63 scenarios tested. All of these 

solutions are included to the evaluation process without eliminating any of them 

manually. The parameter combination, which gives the most reliable module range, 

is accepted as the most appropriate combination to be used in sequencing problems 

about curriculum planning.  

 

Executing the same parameter combination 20 times guarantees to find the best 

solution. Also calculating the average values for these runs of the same scenario 

gives an idea about the success of the paramaters. Each set of results are compared 

with the human-expert’s suggestion by testing them with a non-parametric 

correlation test. The result ranges are tested with Spearman Rank Correlation to 

decide their reliability. Among these, best module ranges and the number of reliable 

ranges are obtained. The parameter combination having the most reliable results is 

also important from the parameter tuning point of view where the number of reliable 

module ranges is also important as how reliable they are.   

 

These combinations are very time consuming to handle one by one. The results 

are a great amount to manage when all 1260 runs for each GA is done manually. 

Instead, parameter tuning process is automatized within the software. In previous 

studies, automated parameter tuning was done for only one parameter at a time (Liu, 

Mernik & Bryant, 2004). In this study, all values of crossover and mutation operators 

and number of generation values are tuned together and it takes a long time for the 

computer find 1260 different results. For this reason, except the module range 

results, the system also calculates the execution time for each automated process. 

The algorithm for automated parameter tuning done in the study is given in Figure 

5.6. 
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Figure 5.6 Algorithm for automated parameter tuning of GA is given. It performs 1260 runs at the 

same time with 3 different generation values, 7 different crossover values and 3 different mutation 

values. 

 

5.4 Spearman Rank Correlation 

 

When a solution to a sequencing problem is found, it is important to show the 

reliability of the results to verify that the study has a scientific value. The statistical 

analysis is used in such cases to convince people about the trustfullness of the results. 

When the GA is run with the given features and parameters, n module ranges for n 

individuals of the population are obtained as follows:  

 

Indv1  1-32-4-8-9-14-10-13-6-26-15-16-20-23-35-29-38 

Indv2  4-1-9-35-38-6-10-14-8-13-15-16-32-23-29-26-20 

… 

Indvn  4-1-38-26-9-10-14-8-13-29-16-23-6-32-15-20-35 

 

The reliability of these module ranges must be tested by comparing with a range 

given by an expert (The instructor of the training in this case). It is possible to make 

maxgen = 500; 
while (maxgen < 1001) 
{ 
  int scenario = 1; 
  crate = 0.7; 
  while (crate < 1.05) 
  { 
     mrate = 0.1; 
     while (mrate <= 0.2) 
     { 
        for (int xyz = 0; xyz < 20; xyz++) 
        { 
            runga(pop, modulsayisi); 
        } 
        scenario++; 
        mrate = mrate + 0.05; 
     } 
     crate = crate + 0.05; 
   } 
   maxgen = maxgen + 250; 
} 
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any judgements about the ranges only after applying these tests. The test to be 

applied for this purpose is Spearman Rank Correlation, which is a non – parametric 

test used in statistical analysis. It is used in cases where testing the reliability of the 

range of data is more important than the numerical values of the data (Sheskin, 

2000). Formula (3) is used to apply the Spearman Rank Correlation test. 

 

        (3) 

 

where ρ indicates Spearman Rank Correlation coefficient, di indicates the 

difference between the expected and observed rank values and n is the number of 

alternatives (observations). The hypothesis is set as given below: 

 

H0: There is no correlation between the two ranges. 

H1: There is a correlation between the two ranges. 

Using ρ  values, t values are calculated with the Formula (4). 

 

        (4)    

 

For each parameter combination, 20 t values are calculated because 20 different 

module ranges are obtained with each single parameter combination by executing the 

software 20 times.  

 

After calculating the t values, they are compared with the critical value of the t 

Table (t – Table used in this study is given in Appendix E (Bissonette, 2011)). If the t 

value of a range is greater than the critical value given in the table, then hypothesis 

H0 can be rejected and it can be said that the range is reliable. While determining the 

correct t value to be compared from t Table, the Degree of Freedom (DF) and 

Confidence Level must be clearly decided.  

 

DF = n – 2, where n, in this case, is the number of modules included in the range. 

Confidence Level is the level of probability value, in which the results can be 
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accepted as “reliable”. In the study, the confidence level is set to 99%, therefore, the t 

value to be observed in t – Table must be found according to α = 0.01.  

 

The result set containing the module ranges is written in an MS Excel file and the 

file is parsed and read by the software implemented (called Curriculum Organizer) to 

make the evaluation process. With the software, the ρ and t values are calculated 

automatically for all solution sets. It is implemented in MS Visual Studio 2008 

environment with C# and is able to work on MS Excel 2007 files. The calculated ρ 

and t values are saved in another MS Excel file.  

 

They assess the reliability of the ranges; the t values are tested according to the 

criteria given in Table 5.3.  

 
Table 5.3 Spearman Evaluation Criteria 

Number of Modules (n) 17 30 
Degree of Freedom (n-2) 15 28 
Tolerance 1% 
Confidence Level (p) (two tailed) 0.005  0.005  
T value 2.947 2.763 

 

The reliability of the module ranges are evaluated with a tolerance percentage of 

1% (p<0.01). According to the hypothesis, to be able to understand whether there is a 

correlation between the output and the expert suggestion, the t values must be 

compared with the value of 2.947 for SDST and with the value of 2.763 for LDST. 
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CHAPTER SIX 

PROJECT IMPLEMENTATION 

 

6.1 The Software Environment 

 

The project has been developed in Microsoft Visual Studio 2008 platform with 

Microsoft Visual C# 2008 programming language. Microsoft SQL Server 2008 is 

used to manage the database tasks of the system. The experimental results are 

gathered with an Intel Core i7 2630QM 2.00 GHz/8GB computer.  

 

6.2 The Database Design 

 

The database design of the project is constructed with Microsoft SQL Server 2008 

R2 Management Studio, which the user interface is shown in Figure 6.1. The tables 

and the relations among the tables are explained below in detail.  

 

 
Figure 6.1. SQL Server 2008 R2 Management Studio environment 
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6.2.1 The Database Tables 

 

The data about the courses to be optimized is kept in table TBLCOURSES. The 

primary key of this table (CNO) is used in other tables to distinguish the modules of 

different courses. 
 
Table 6.1 TBLCOURSES 

Column Data Type Constraints 

CNO Smallint PK 

Name Varchar(50) NOT NULL 

Description Varchar(100)  

 

The data about the modules of the courses reside in table TBLMODULES. The 

primary key of this table (MNO) represents the modules in a chromosome. For this 

reason, the data in this table has great importance for the software. The data in 

“hour” column is used to calculate the duration of the sequenced modules.  
 

Table 6.2 TBLMODULES 

Column Data Type Constraints 

MNO Smallint PK 

NAME Varchar(100) NOT NULL 

Prerequisite Smallint  

Hour Smallint  

Lıd Smallint  

CNO Smallint Foreign key, References (CNO) on 

TBLCOURSES 

 

The data about the trainees of the courses reside in table TBLTRAINEE. The 

primary key of this table (TNO) is used to determine the failed modules of the 

trainees.  
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Table 6.3 TBLTRAINEE 

Column Data Type Constraints 

TNO Smallint PK 

Name Varchar(50) NOT NULL 

TotalNet Smallint  

Lıd Smallint  

 

The data about the trainee – failed module pairs reside in table 

TBLFAILEDMODULES. The foreign keys of this table (TNO and MNO) are used 

to determine the failed modules of the trainees. When the module numbers are 

distinctly selected from the table, the modules to be ranged with the GA is obtained. 

For this reason, the data in this table has a great importance for the system.  

 
Table 6.4 – TBLFAILEDMODULES 

Column Data Type Constraints 

TNO Smallint Foreign key, References (TNO) on TBLTRAINEE 

MNO Smallint Foreign key, References (MNO) on TBLMODULES 

 

The scheme showing the relations among the tables of the database is given in 

Figure 6.2. 

 

 
Figure 6.2. Relations among the tables 
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6.3 The Module Ranking Software 

 

The project has a user-friendly UI, where the instructors can insert rules about the 

modules of a course or add/drop courses and modules (Fig 6.3).  

 

 
Figure 6.3. Main menu 

 

There are three steps to be handled in the program before the genetic algorithm is 

run. The users of this project are expected to be the instructors of a course to be 

given. So, they have to add or delete the courses to the system with their modules. 

The users can add or delete courses and add or delete modules to the chosen course 

from the second form opened (Figure 6.4 and Figure 6.5). 

 

 
Figure 6.4 Add / Delete Courses 
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Figure 6.5 Add / Delete Modules 

 

The database of the project is directly affected by the added or deleted courses or 

modules. When the user closes this form, he is guided to the main form again. With 

the second button on the main menu, the user can define the rules of a course by 

determining the prerequisite modules of each module included to that course. To add 

a rule, the user selects a module from the first list on the left and can choose more 

than one modules from the list on the right at the same time as the prerequisite of the 

module. When “Add as Rule” button is pressed (Figure 6.6), the chosen module and 

prerequisite information is saved to a matrix. After defining all prerequisites for all 

modules on the list, the user presses “Create XML” button. At this step, the program 

forms an XML file by using the prerequisites information gathered in the matrix.    

 

After defining the rules, the user can choose the unsuccessful modules of each 

user, which the new training program will be composed of. When a trainee is chosen, 

the modules that the trainee is responsible for appear. The user chooses the modules 

in which the trainee was unsuccessful and presses the “Add to Working Memory” 

button. This is another aspect of knowledge acquisition for the system (Figure 6.7). If 

the user needs, he can clear the previous data given to the system with the “Clear 

Previous Data” button. 
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Figure 6.6 Add Rules Screen for the Training Data 

 

 
Figure 6.7 Determining the Chosen Modules of Users for the Training Data 

 

After adding the unsuccessful modules for the trainees to the system, the user 

closes the form and turns back to the main menu. From the menu, the user presses 

the “Run GA” button and a new form is opened to run and view the results of the 

genetic algorithm as shown in Figure 6.8.   
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Figure 6.8 Running the GA – When “Start GA” button is clicked, the program executes 1260 times 

and writes all results to *.csv files. On the screen, only the best module range and its information is 

shown. 
 

When the button “Start GA” is pressed, the program gives the numbers of the 

modules are listed from the most requested to the least. The total time period for the 

chosen modules is calculated. The resulting order of the modules are listed both 

above in the “Best Individual” text box with numbers only and in the list box to the 

right of the screen with their names. Fitness and population information given below 

are only to check whether the program has operated properly or not (Figure 6.9.). 

since the module ranges are saved as “*.csv” files, the module ranges as output are 

saved in “moduleranges.csv” file. An example of module ranges as a .csv file is 

given in Figure 6.10. 

 

According to the total duration of the modules, an approximate duration for the 

schedule is calculated and shown in the “Estimated Days” text box. Runtime period 

is calculated in each run of the genetic algorithm and this runtime information is used 

to make an evaluation about the performance of different crossover methods used in 

the project. Since 1260 runs are handled at once, the runtime values are given in 

minutes. 
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Figure 6.9 GA Results for the Training Data 

 

 
Figure 6.10 A sample module range in a .csv file (The numbers represent the modules) 

 

The output course schedule is both written to an XML file and to a DataGrid 

object in the program. The DataGrid view for one of the obtained results is given in 

Figure 6.11. In the figure, the schedule is shown day by day, where it is not possible 

to show the whole schedule with DataGrid. For this reason, XML files seem to be a 

better solution to keep the output data. The XML file including the final timetable is 

given in Appendix D. 

 



64 
 

 
Figure 6.11 The training program shown day by day 
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CHAPTER SEVEN 

RESULTS 

 

7.1 Runtime Values 

 

Execution times for both the training and the control data for SDST and LDST are 

also given in Table 7.1(a), Table 7.1(b), Table 7.2(a) and Table 7.2(b) respectively. 

 
Table 7.1(a) Execution times for SDST for the training data (min) 

 GAs 

Pop. Size OX OX2 PMX OX’ 

100 34.50 19.41 22.67 31.14 

120 40.09 23.94 26.35 36.15 

140 47.41 28.76 32.98 44.90 

160 58.53 33.35 37.66 51.87 

180 65.12 39.24 43.39 60.27 

200 75.08 43.53 50.01 69.05 

 
Table 7.1(b) Execution times for SDST for the control data (min) 

 GAs 

Pop. Size OX OX2 PMX OX’ 

100 32.88 19.12 22.19 23.23 

120 40.02 24.51 26.47 28.63 

140 47.68 28.39 32.97 35.42 

160 56.75 33.43 37.40 41.08 

180 66.15 41.83 43.59 46.96 

200 71.45 43.20 48.14 52.28 

 

For SDST, the execution time for OX2 is by far the best among other GAs for all 

population sizes for both of the training and control data sets. This is because of the 

performance of 2 – point order crossover is much better than the performances of 1 – 

point crossover and PMX. PMX is the second crossover operator performing well 

and when the three are used together, the execution times give the third best results 

in OX’.   
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Table 7.2(a) Execution times for LDST for the training data (min) 

 GAs 

Pop. Size OX OX2 PMX OX’ 

100 105.02 48.11 42.63 78.78 

120 130.24 51.89 52.63 97.94 

140 154.96 60.63 64.81 115.45 

160 173.88 72.27 71.93 135.59 

180 199.66 79.74 81.69 152.96 

200 223.18 91.36 94.37 172.64 

 
Table 7.2(b) Execution times for LDST for the control data (min) 

 GAs 

Pop. Size OX OX2 PMX OX’ 

100 107.38 42.94 44.05 56.27 

120 125.85 50.32 51.67 70.73 

140 148.13 61.77 60.97 83.00 

160 173.87 68.66 70.68 88.48 

180 204.03 80.64 80.05 104.93 

200 215.08 91.11 89.95 120.36 

 

For LDST, the execution times for OX2 and PMX are better than OX and OX’. 

There is not an obvious difference between OX2 and PMX for a larger dataset. Both 

the training and the control data sets give similar results, in which the results of the 

control data set verify the results of the training data set. 

 

Comparative runtime graphs of the training data, which show the effect of data set 

growth for 100 individuals for both the training and the control data are given in 

Figure 7.1(a) and Figure 7.1(b) respectively. The runtime graphs of other population 

sizes are listed in Appendix P. 
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Figure 7.1(a) Runtime graphs showing the dataset growth of training data for 100 individuals. 

 

 
Figure 7.1(b) Runtime graphs showing the dataset growth of control data for 100 individuals. 

 

Execution times for the larger dataset show that, increasing the dataset size almost 

by two does not affect the performance of PMX much. For OX and OX2, although 

OX2 performs the best for SDST, the execution times almost tripled when compared 

to the results of the smaller dataset. But execution times for PMX increased only for 

two times for the smallest population of 100 individuals. This proves that, PMX is 

the crossover operator which is affected from the data set growth for at least. As the 

population size grows, the gap between the execution times of small and larger data 

sets diminishes. As a result of this, for the larger populations, OX2 performs better 

than OX, PMX and OX’. 
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For each GA, there is a different trend of increase in runtime values with the 

increasing population sizes. The trends of increase in runtimes for OX, OX2, PMX 

and OX’ for both training and control data are given in Appendix Q respectively.  

 

According to the trend of increase graphs of runtime values, OX2 and PMX again 

outperform the other GAs because the trend of increase for LDST is similar to the 

trend of increase of SDST in both.  

 

7.2 Genetic Operators of Successful Scenarios 

 

In this study there is not only one solution of module range, but instead, there are 

many module ranges as the output because the software is run many times for 

different paramater combinations. All of these ranges are compared with that of the 

expert’s suggestion and the aim is not only finding the best module range, but also 

determining the parameter combination giving the most number of reliable ranges.  

 

When Table 5.2 is examined for the corresponding crate values of the successful 

scenarios, it can be observed that the number of scenarios having 0.75, 0.80 and 1.0 

as the crate is more than the others for the smaller dataset as can be seen in Table 7.3. 

Figure 7.2 shows the performance of crate = 0.80 for SDST. For the larger dataset, 

higher crates produce more successful scenarios and the number of scenarios having 

1.00 as the crate is more than the others.  

 
Table 7.3 Number of successful scenarios for crate values 

Dataset \ Crate 0.70 0.75 0.80 0.85 0.90 0.95 1.00 
SDST 2 5 5 2 2 3 5 
LDST 4 2 4 4 3 1 6 
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Figure 7.2 Performance of crossover rates in terms of the amounts of successful scenarios for SDST 

and LDST 

 

The same extraction can be done for the mutation rates. The number of scenarios 

having 0.1 and 0.15 as the mrate is more than the others for the smaller dataset as can 

be seen in Table 7.4. Higher mrates does not perform well for a smaller dataset. For 

the larger dataset, higher mrates produce more successful scenarios and the number 

of scenarios having 0.2 as the mrate is more than the others. 

 
Table 7.4 Number of successful scenarios for mate values. 

Dataset \ Mrate 0.1 0.15 0.2 
SDST 9 9 6 
LDST 4 9 11 

 

 
Figure 7.3 Performance of mutation rates in terms of the amounts of successful scenarios for SDST 

and LDST 
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When the scenarios giving the best module ranges for all GAs and population 

sizes for SDST and LDST of the control data set are examined, it is observed that the 

number of scenarios having 0.95 as the crate is more than the others for the smaller 

dataset as can be seen in Table 7.5. Figure 7.4 shows the performance of crate = 0.95 

for SDST. For the larger dataset, lower crates produce more successful scenarios and 

the number of scenarios having 0.70 as the crate is more than the others.  

 
Table 7.5 Number of successful scenarios for crate values 

Dataset \ Crate 0.70 0.75 0.80 0.85 0.90 0.95 1.00 
SDST 3 5 3 2 3 6 2 
LDST 7 5 4 3 1 2 2 

 

 
Figure 7.4 Performance of crossover rates in terms of the amounts of successful scenarios for SDST 

and LDST 

 

The same extraction can be done for the mutation rates. The number of scenarios 

having 0.1 as the mrate is more than the others for the smaller dataset as can be seen 

in Table 7.6. Higher mrates does not perform well for a smaller dataset. For the 

larger dataset, the number of scenarios having 0.2 as the mrate is more than the 

others. 

 
Table 7.6 Number of successful scenarios for mate values. 

Dataset \ Mrate 0.1 0.15 0.2 
SDST 12 5 7 
LDST 10 2 12 
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Figure 7.5 Performance of mutation rates in terms of the amounts of successful scenarios for SDST 

and LDST 

 

7.3 Best t Values 

 

The amount of successful solutions are calculated according to the t value formula 

of Spearman Rank Correlation (Formula (4) in Chapter Five). The calculated values 

are then compared with the corresponding value in t – Table (Appendix E). The 

corresponding t value of t – Table to compare is detected according to the Spearman 

Evaluation Criteria given in Table 5.5. The software implemented also gives the best 

t value of each 1260 runs and it can be seen on user screen as shown in Figure 7.6.  

 

 
Figure 7.6 The User interface showing the best t value calculated. This user interface is an example of 

SDST for 100 individuals. 
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These best t value results for all population sizes for both SDST and LDST for the 

training and the control data are given in Table 7.7(a), Table 7.7(b), Table 7.7(c) and 

Table 7.7(d) respectively.  

 
Table 7.7(a) Best t values for SDST for the training data set. 

 GAs 

Pop. Size OX OX2 PMX OX’ 

100 10.54 16.33 14.40 17.17 

120 10.78 17.17 13.42 12.99 

140 10.78 14.97 13.88 19.26 

160 12.99 18.13 9.71 18.13 

180 11.90 22.33 22.33 11.90 

200 8.73 20.63 10.78 15.61 

 
Table 7.7(b) Best t values for SDST for the control data set. 

 GAs 

Pop. Size OX OX2 PMX OX’ 

100 12.99 14.97 11.90 18.13 

120 14.40 19.26 11.04 14.97 

140 12.99 16.34 13.42 20.63 

160 15.61 16.34 12.60 14.97 

180 13.42 22.33 11.04 18.13 

200 12.24 14.97 13.42 12.24 

 

Table 7.7(c) Best t values for LDST for the training data set. 

 GAs 

Pop. Size OX OX2 PMX OX’ 

100 12.99 20.85 9.73 12.53 

120 11.96 17.81 10.16 12.82 

140 10.04 21.35 9.88 12.94 

160 13.95 17.61 12.29 16.44 

180 15.60 15.82 11.30 14.34 

200 18.35 17.32 12.73 21.02 

 

 

 

 



73 
 

Table 7.7(d) Best t values for LDST for the control data set. 

 GAs 

Pop. Size OX OX2 PMX OX’ 

100 14.51 22.06 13.08 19.69 

120 13.12 20.25 13.30 17.71 

140 13.50 20.86 14.28 18.35 

160 14.40 18.13 17.92 16.96 

180 13.21 23.93 14.51 19.04 

200 13.80 18.13 14.28 22.83 

 

Having the highest t value indicates that, the result giving the highest t value is the 

best solution among the result set. Mostly, the best t values of different population 

sizes are from the operator OX2 for both the training and control data. This shows 

that 2 – point order crossover gives the best module range results predominantly. 

Complete t value results for SDST of 100 individuals for the training data are given 

in Appendix F. 

 

7.4 Reliable Module Range Amounts for Each GA 

 

Being the best solution is not the only anwser that this study looks for. Except the 

best result, number of all reliable results should be taken into consideration. For each 

GA and each population size, different amounts of reliable solutions have been 

acquired. The graphics of the number of reliable module ranges for each scenario in 

SDST and LDST for the training and control data are given in Appendix I.  

 

The total number of reliable modules for each GA and population sizes are given 

in Table 7.8(a), Table 7.8(b), Table 7.8(c) and Table 7.8(d) for SDST and LDST for 

the training and the control data sets respectively. 
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Table 7.8(a) Total number of reliable results for SDST for the training data set 

 GAs 

Pop. Size OX OX2 PMX OX’ 

100 572 947 713 728 

120 585 999 598 712 

140 579 1035 637 766 

160 624 1049 687 875 

180 660 1069 687 848 

200 667 1124 864 899 

 

Table 7.8(b) Total number of reliable results for SDST for the control data set 

 GAs 

Pop. Size OX OX2 PMX OX’ 

100 967 1148 785 1045 

120 991 1188 840 1097 

140 1049 1218 914 1142 

160 1053 1231 948 1180 

180 1085 1238 986 1206 

200 1114 1253 1050 1216 

 
Table 7.8(c) Total number of reliable results for LDST for the training data set 

 GAs 

Pop. Size OX OX2 PMX OX’ 

100 836 1181 743 905 

120 943 1195 964 1055 

140 970 1220 1021 1150 

160 1027 1226 1074 1162 

180 1035 1244 1123 1205 

200 1045 1256 1093 1197 
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Table 7.8(d) Total number of reliable results for LDST for the control data set 
 GAs 

Pop. Size OX OX2 PMX OX’ 

100 1252 1260 1225 1258 

120 1250 1260 1247 1258 

140 1256 1260 1245 1260 

160 1260 1260 1238 1259 

180 1258 1260 1248 1259 

200 1258 1260 1251 1260 

 

According to the tables given above, OX2 is the best algorithm for both the 

training and the control data sets with highest numbers of reliable solutions among 

the other GAs. The graphics about the number of reliable solutions for each 

population size in both the training and control data are given in Appendix H.  

 

7.5 Best Module Ranges 

 

For each size of dataset, there are 6 best results for all sizes of population. The 

best reliable module range can be detected from the output shown in user interface. 

Figure 7.7 shows the best scenario number out of 1260.  

 

 
Figure 7.7 The number of Best Scenario 

 

The best reliable ranges for all dataset and population sizes are found among the 

raw .csv files. These module ranges are then compared with that of the expert’s 
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suggestion. Best module ranges to be compared with the Expert’s are given in 

Appendix J for the training data and in Appendix K for the control data respectively.  

 

For the two different sizes of data sets, the human expert has two different 

suggestions. These suggestions are used to apply Spearman Rank Correlation on the 

calculated results to determine the reliability percentage of the solutions. Table 7.9(a) 

shows the reliability percentages of the module ranges of SDST for the training data 

and Table 7.9(b) the reliability percentages of the module ranges of SDST for the 

control data according to their population sizes when compared with the expert’s 

suggestion (Wessa, 2012). The tables with the module ranges of given percentages 

are given in Appendix L for the training data and in Appendix M for the control data 

respectively in detail. 

 
Table 7.9(a) Reliability Percentages for six population sizes of SDST for the training data set 

  Reliability Percentages 
Pop. Size OX OX2 PMX OX’ 
100 93.87% 97.30% 96.56% 97.55% 
120 94.11% 97.55% 96.07% 95.83% 
140 94.11% 96.81% 96.32% 98.04% 
160 95.83% 97.79% 92.89% 97.79% 
180 95.10% 98.53% 98.53% 95.10% 
200 94.60% 98.28% 94.11% 97.06% 

 

Table 7.9(b) Reliability Percentages for six population sizes of SDST for the control data set 

  Reliability Percentages 
Pop. Size OX OX2 PMX OX’ 
100 95.83% 96.81% 95.10% 97.79% 
120 96.56% 98.04% 94.36% 96.81% 
140 95.83% 97.30% 96.08% 98.28% 
160 97.06% 97.30% 95.59% 96.81% 
180 96.08% 98.53% 94.36% 97.80% 
200 95.34% 96.81% 96.07% 95.34% 

 

According to the results of SDST, population size of 180 with 2 – point order 

crossover and PMX give the most reliable results with a percentage of 98.53. The 

two – tailed p value for this range is less than 0.0001 (p<0.01); therefore this range is 

accepted as extremely significant. The crossover rates of the scenarios (S8 and S40 

from Table 5.2.) giving the most reliable module range (crate) is 0.80 and 1.00. 

mutation rates are 0.10 and 0.15. choosing the crossover rate 0.80 or 1.00 and 
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choosing the mutation rate  0.10 or 0.15 gives the optimum solutions having the 

highest reliability percentage.  

 

Figure 7.8(a) and Figure 7.8(b) show the comparison graphics of most reliable 

results of SDST for training and control data with that of the expert’s. In each case, 

the population size of 180 with OX2 give the best results for both training and 

control data. The x axis in figures represents the expected rank number of the 

module, where y axis represents the observed rank number of the module (Wessa, 

2012). When the dots are ranged more linearly in the graphic, it indicates a more 

reliable range. The graphics of other population sizes for SDST for training and 

control data are given in Appendix N. 

 

With 180 individuals, there exist two best results for OX2 and PMX in training 

data. Here the result of OX2 is considered because the execution time for OX2 is 

better. 

 

 
Figure 7.8(a) Comparing the most reliable module range result of training data – SDST for a 

population size of 180 with Expert’s Suggestion. The solution is 98.53% reliable in OX2 and PMX. 
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Figure 7.8(b) Comparing the most reliable module range result of control data – SDST for a 

population size of 180 with Expert’s Suggestion. The solution is 98.53% reliable in OX2 and PMX. 

 

Table 7.10(a) shows the reliability percentages of the module ranges of SDST for 

the training data and Table 7.10(b) the reliability percentages of the module ranges of 

LDST for the control data according to their population sizes when compared with 

the expert’s suggestion (Wessa, 2012). The tables with the module ranges of given 

percentages are given in Appendix L for the training data and in Appendix M for the 

control data respectively in detail. 

 
Table 7.10(a) Reliability Percentages for six population sizes of LDST for the training data set 

  Reliability Percentages 
Pop. Size OX OX2 PMX OX’ 
100 92.61% 96.93% 87.85% 92.12% 
120 91.45% 95.86% 88.70% 92.43% 
140 88.47% 97.06% 88.16% 92.57% 
160 93.50% 95.77% 91.85% 95.19% 
180 94.70% 94.84% 90.56% 93.81% 
200 96.08% 95.64% 92.34% 96.97% 

 
Table 7.10(b) Reliability Percentages for six population sizes of LDST for the control data set 

  Reliability Percentages 
Pop. Size OX OX2 PMX OX’ 
100 93.94% 97.14% 92.70% 96.57% 
120 92.74% 96.75% 92.65% 95.81% 
140 93.10% 96.93% 93.77% 96.08% 
160 93.86% 96.00% 95.90% 95.46% 
180 92.83% 97.64% 93.94% 96.35% 
200 93.37% 95.99% 93.77% 97.41% 
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According to the results of LDST, population size of 140 with 2 – point order 

crossover gives the most reliable results with a percentage of 97.06. The two – tailed 

p value for this range is less than 0.0001 (p<0.01); therefore this range is accepted as 

extremely significant. The crossover rates of the scenario (S24 from Table 5.2.) 

giving the most reliable module range is 0.70. Mutation rate is 0.2. This means that, 

choosing the crossover rate 0.70 and choosing the mutation rate  0.2 gives the 

optimum solutions having the highest reliability percentage for a larger dataset with 

longer chromosomes.  

 

Figure 7.9(a) and Figure 7.9(b) show the comparison graphics of most reliable 

results of LDST for training and control data with that of the expert’s (Wessa, 2012). 

The population size of 140 for the training data and the population size of 180 for the 

control data give the best results. The graphics of other population sizes for LDST 

for training and control data are given in Appendix O. The deviations in the graphs 

depend on the characteristics of the data sets used for both trainnig and control data. 

 

 
Figure 7.9(a) Comparing the most reliable module range result of training data – LDST for a 

population size of 140 with Expert’s Suggestion. The solution is 97.06% reliable in OX2. 
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Figure 7.9(b) Comparing the most reliable module range result of control data – LDST for a 

population size of 180 with Expert’s Suggestion. The solution is 97.64% reliable in OX2. 

 

7.6 Best Fitness Values 

 

The fitness values for the best scenarios of the training and control data for SDST 

for all population sizes are given in Table 7.11(a) and Table 7.11(b). According to 

the best fitness values, SDST has many fitness values of 1 as maximum. This means 

that, a smaller data set has more chance to obtain the most successful module ranges. 

 
Table 7.11(a) Best fitness values of training data for SDST. 

Pop. Size OX OX2 PMX OX’ 
100 1 1 1 1 
120 0.990449 1 0.990449 1 
140 1 1 0.977484 1 
160 1 1 0.991783 0.990449 
180 1 1 0.985465 0.991783 
200 0.991783 1 1 1 

 
Table 7.11(b) Best fitness values of control data for SDST. 

Pop. Size OX OX2 PMX OX’ 
100 1 0.970394 1 1 
120 1 1 0.99279 0.988597 
140 0.988597 1 1 1 
160 1 1 0.99279 1 
180 0.977452 1 0.991783 1 
200 0.99279 1 1 1 
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The fitness values for the best scenarios of the training and control data for LDST 

for all population sizes are given in Table 7.12(a) and Table 7.12(b). 

 
Table 7.12(a) Best fitness values of training data for LDST. 

Pop. Size OX OX2 PMX OX’ 
100 0,941969 0,989932 0,958366 0,940128 
120 0,922741 0,975127 0,936834 0,974124 
140 0,972276 0,992605 0,921092 0,961518 
160 0,958085 0,943518 0,971504 0,977296 
180 0,980838 0,990698 0,963411 0,989189 
200 0,973544 0,993085 0,975832 0,984438 

 
Table 7.12(b) Best fitness values of control data for LDST. 

Pop. Size OX OX2 PMX OX’ 
100 0.995902 0.995902 0.982835 0.995902 
120 0.989461 0.995902 0.896098 0.983103 
140 0.973344 0.995902 0.975586 0.995902 
160 0.995902 0.995902 1 0.995902 
180 0.989461 1 0.991837 0.995902 
200 0.995902 1 0.981565 1 

 

For LDST, the maximum fitness values are mostly obtained in OX2 (except for 

160 individuals). This shows that, OX2 is more effective when the data set grows.  
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CHAPTER EIGHT 

CONCLUSIONS 

 

 

According to the preliminary results, it was concluded that the results of the tests 

that 2 – point order crossover operator is used give better results in terms of runtime 

and fitness values (Abidin and Çakır, 2011). Accordingly, the number of reliable 

module ranges found in tests with 2 – point order crossover operator was higher than 

the number of reliable module ranges with 1 – point order crossover operator. These 

tests were done for two population sizes (100 and 200). 

 

In the final work, the population size interval was given as 100 – 200 (100, 120, 

140, 160, 180 and 200). The system needed to test different sizes of populations 

because increasing the population size to a certain extend encourages the diversity of 

the population that the GA deals with. This means that, as the population size 

increases, the possibility of having individuals with various values of fitnesses also 

increases. With populations of small size, runtime and fitness values were more 

likely to be the best. As the population grows, finding “very reliable” solutions gets 

more difficult. Within this study, finding reliable solutons very similar to that of the 

expert’s suggestions was not very difficult because the parameter tuning process 

helped to find the optimum module sequence with the most appropriate GA 

parameters.   

 

It is very important to verify that the study stands as a reliable one among all other 

scientific researches in the relevant field literature. In this study, the output of the 

software was compared with the solution suggestion of a human to decide about the 

curriculum planning system’s reliability. For this reason, all of the results obtained in 

the study with all scenarios and genetic operators were accepted as the best solutions 

at the beginning of the evaluation process and the Spearman Rank Correlation test 

was applied to all.   
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The Spearman test is a nonparametric statistical analysis method, which is used in 

cases where two data sets have to be observed with regard to their sequences. With 

this test, the module ranges similar to the range of the expert’s suggestions and the 

numbers of reliable module ranges for each scenario are retained. Having many 

reliable module ranges is as important as obtaining the best module range because 

the system produces many reliable solutions and they can not be neglected during 

evaluation. 

 

From the genetic operators point of view, keeping the crossover rates higher gives 

better results (0.9) both in 1 – point order and 2 – point order crossover operators. 

The mutation rates tested were extremely high in this study when compared with 

similar studies in literature, though the preliminary tests of the study indicated that 

lower mutation rates do not give better results in this kind of sequencing problems. 

 

The way of representing the data became an important subject in the study. The 

platform independenceness of XML helped to store data in any format and it helped 

to convert the data to a mathematical representation like a matrix. Benefits of storing 

rules in matrix representation can be listed in a few topics: Convenience of storing 

and processing rules, easy transformation of rule set from an XML file to a sparse 

matrix, not taking up space in database. The source code to write the XML file with 

the prerequisite rules is given in Appendix G. 

 

What was done with the dataset containing a curriculum content had to be verified 

with another dataset having the same characteristics; another curriculum for another 

course, if possible. To provide this, a control dataset, which had the same 

prerequisite features, was prepared and the same tests were done on it. The results 

verified that same parameter combinations gave the same successful module ranges 

in the same reliability percentages. 

  

The results suggest that, the rule – based GA developed in this study can be used 

as a reliable system to optimize a curriculum sequence having tight prerequisite rules 

among the sections of educational material.  
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As the future work of this study, it is aimed to find a wider application area for the 

module ranking methodology in education. Since the presentation of the course 

content to students play an important role on their education, each course’s content 

should be ranked in the most appropriate order. This can be an important factor on 

raising more equipped students to compete with each other in industry after 

graduation.  

 

Another future aim is to find the optimum curriculum plan with many lectures all 

together. The contents of the lectures can already be ranked according to the ranking 

method put forward in the thesis and the whole curriculum, e.g. eight semesters of 

courses for a faculty of four years, can also be ranked with this technique.  
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APPENDICES 

A. MODULE NAMES AND PREREQUISITE NUMBERS 

 

A.1 Module Names and Prerequisite Numbers of the Training Data 

Module Name Prerequisites 
1 – Giriş  - 
2 – Cari Modül Giriş  1 
3 – Stok Modülü Giriş 1 – 2  
4 – Fatura Modülü Giriş 3 
5 – Cari Modul İleri 2 – 3  
6 – Stok Modul İleri 1 – 3 – 4  
7 – Fatura Modul İleri 1 1 – 3 – 4 – 6  
8 – Talep / Teklif Modulü 1 – 2 – 3 – 4  
9 – Banka Modülü 1 – 2 – 4 – 5 – 7  
10 – Müşteri Çekleri 1 – 2 – 4 – 5 – 7 – 9   
11 – Borç Çekleri 1 – 2 – 4 – 8 – 9 – 10  
12 – Dekont Modülü 2 – 4 – 7 – 9 – 10  
13 – Entegrasyon Modülü 1 – 2 – 3 – 4 – 8 – 10 – 12  
14 – Muhasebe Giriş   2 – 4 – 5 – 7 – 9 – 10 – 11  
15 – Muhasebe Modülü 1 – 3 – 4 – 6 – 7 – 8 – 9 – 13 – 14  
16 – Rapor Modülü 1 – 3 – 4 – 8 – 12 – 13 – 14 
17 – E - Netsis 1 – 16  
18 – Dinamik Depo 1 – 3 – 4 – 6 – 7 – 12 – 13 – 16  
19 – Fatura Modulu İleri 2 3 – 4 – 6 – 7 – 10 – 12 – 13 – 14  
20 – Dekont Özel Uygulamalar   1 – 4 – 10 – 12 – 14 – 15 – 16  
21 – Dizayn Modülü 1 – 3 – 6 – 9 – 10 – 11 – 12 – 13 – 16 – 17  
22 – CRM  1 – 3 – 6 – 8 – 13 – 16 – 17 – 20  
23 – Netpos Modülü 1 – 2 – 5 – 8 – 10 – 11 – 12 – 14 – 16 – 17 – 21  
24 – Personel Bordro Modülü 1 – 4 – 7 – 8 – 10 – 11 – 12 – 13 – 16 – 18 – 20 – 23   
25 – Personel Özel Uygulamaları 1 – 24  
26 – Demirbaş  1 – 3 – 6 – 13 – 18  
27 – Üretim Modülü 4 – 7 – 9 – 13 – 14 – 16 – 18 – 21 – 22  
28 – MRP Modulü 1 – 13 – 16 – 17 – 18 – 21 – 22 – 26  
29 – İÜP / AÜP 1 – 17 – 27  
30 – Maliyet Muhasebesi 1 – 14 – 15 – 17 – 25 – 29  
31 – Teknik 1 17 – 21 – 23 – 28  
32 – Teknik 2 17 – 31  
33 – Yazılım  17 – 31 – 32  
34 – Netsis Süreçleri 1 – 13 – 17 – 21 – 22 – 23 – 29  
35 – Kalite Kontrol 8 – 13 – 16 – 18 – 22 – 23 – 24  
36 – Kullanıcı İşlemleri 1 – 13 – 14 – 16 – 25 – 26 – 34  
37 – İnsan Kaynakları 1 – 10 – 16 – 17 – 24 – 25 – 35  
38 – NDI  1 – 17 – 23  
39 – Dinamik Kodlama 17 – 23 – 31  
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A.2 Module Names and Prerequisite Numbers of the Control Data 

Module Name Prerequisites 
1 –Introduction to DBMS - 
2 – DBMS-DBA 1 
3 – Data Models 1 
4 – Table 1 – 2  
5 – Referential Integrity 1 – 2 – 4   
6 – Algebraic Operators 1 – 2 – 4 
7 – PK 1 – 3 – 4 – 5  
8 – FK 1 – 3 – 4 – 5 – 7  
9 – Normalization 1 – 4 – 5 – 7 – 8  
10 – DB Design 1 – 4 – 5 – 7 – 9 
11 – Data Types 3 – 4 – 10  
12 – SQL-Select 3 – 4 – 5 – 7 – 8 – 11  
13 – SQL-Insert 3 – 4 – 5 – 7 – 8 – 11 – 12  
14 – SQL Operators 4 – 12 – 13  
15 – SQL-Update 3 – 4 – 5 – 7 – 8 – 11 – 12 – 14  
16 – SQL-Delete 3 – 4 – 5 – 7 – 8 – 11 – 12 – 14 
17 – Sequences 4 – 7 – 8  
18 – Index 4 – 7 – 8 – 11  
19 – Equi-join 4 – 7 – 8 – 11 – 12 – 14 
20 – Nonequi-join 4 – 7 – 8 – 11 – 12 – 14 – 19  
21 – Self-join 4 – 7 – 8 – 11 – 12 – 14 – 19 
22 – Subquery 4 – 7 – 8 – 12 – 14 
23 – Create Table/View 3 – 4 – 5 – 7 – 8 – 11 
24 – View 4 – 7 – 8 – 12 – 23  
25 – Alter Table/View 3 – 4 – 5 – 7 – 8 – 11 – 23  
26 – Defaults 4 – 11 – 23 – 25  
27 – Rules 4 – 11 – 23 – 25 
28 – Synonym 4 – 11 – 23 – 25 
29 – Drop Table/View 3 – 4 – 5 – 7 – 8 – 16 – 23 – 25 
30 – Trigger 4 – 5 – 7 – 8 – 11 – 12 – 13 – 15 – 16  
31 – Prog. for Stored Proc. 4 – 11  
32 – Stored Procedure 4 – 5 – 7 – 8 – 12 – 13 – 15 – 16 – 31  
33 – Create User/Role 1 – 2  
34 – Privileges 4 – 12 – 13 – 15 – 16 – 23 – 25 – 29  
35 – Grant/Revoke 4 – 12 – 13 – 15 – 16 – 23 – 25 – 33 – 34  
36 – System Catalog 4 – 11 – 12  
37 – Transactions 12 – 13 – 15 – 16  
38 – Commit/Rollback/Savepoint 12 – 13 – 15 – 16 – 37 
39 – ADODB 4 – 5 – 7 – 8 – 11 – 12 – 13 – 15 – 16 – 23 – 25 – 29   
40 – SQL Server 4 – 5 – 7 – 8 – 11 – 12 – 13 – 15 – 16 – 23 – 25 – 29 
41 – MS Access 4 – 5 – 7 – 8 – 11 – 12 – 13 – 15 – 16 – 23 – 25 – 29 
42 – XML with DB 4 – 12 – 13  
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B. LOGICAL REPRESENTATION OF RULES  

 

B.1 Rules for The Training Data 

− IF M1 THEN M2 
− IF M1 AND M2 THEN M3 
− IF M3 THEN M4 
− IF M2 AND M3 THEN M5 
− IF M1 AND M3 AND M4 THEN M6 
− IF M1 AND M3 AND M4 AND M6 THEN M7 
− IF M1 AND M2 AND M3 AND M4 THEN M8 
− IF M1 AND M2 AND M4 AND M5 AND M7 THEN M9 
− IF M1 AND M2 AND M4 AND M5 AND M7 AND M9 THEN M10 
− IF M1 AND M2 AND M4 AND M8 AND M9 AND M10 THEN M11 
− IF M2 AND M4 AND M7 AND M9 AND M10 THEN M12 
− IF M1 AND M2 AND M3 AND M4 AND M8 AND M10 AND M12 THEN M13 
− IF M2 AND M4 AND M5 AND M7 AND M9 AND M10 AND M11 THEN M14 
− IF M1 AND M3 AND M4 AND M6 AND M7 AND M8 AND M9 AND M13 AND M14 

THEN M15 
− IF M1 M3 AND M4 AND M8 AND M12 AND M13 AND M14 THEN M16 
− IF M1 AND M16 THEN M17 
− IF M1 AND M3 AND M4 AND M6 AND M7 AND M12 AND M13 AND M16 THEN M18 
− IF M3 AND M4 AND M6 AND M7 AND M10 AND M12 AND M13 AND M14 THEN M19 
− IF M1 AND M4 AND M10 AND M12 AND M14 AND M15 AND M16 THEN M20 
− IF M1 AND M3 AND M6 AND M9 AND M10 AND M11 AND M12 AND M13 AND M16 

AND M17 THEN M21 
− IF M1 AND M3 AND M6 AND M8 AND M13 AND M16 AND M17 AND M20 THEN M22 
− IF M1 AND M2 AND M5 AND M8 AND M10 AND M11 AND M12 AND M14 AND M16 

AND M17 AND M21 THEN M23 
− IF M1 AND M4 AND M7 AND M8 AND M10 AND M11 AND M12 AND M13 AND M16 

AND M18 AND M20 AND M23 THEN M24 
− IF M1 AND M24 THEN M25 
− IF M1 AND M3 AND M6 AND M13 AND M18 THEN M26 
− IF M4 AND M7 AND M9 AND M13 AND M14 AND M16 AND M18 AND M21 AND M22 

THEN M27 
− IF M1 AND M13 AND M16 AND M17 AND M18 AND M21 AND M22 AND M27 THEN 

M28 
− IF M1 AND M17 AND M27 THEN M29 
− IF M1 AND M14 AND M15 AND M17 AND M25 AND M29 THEN M30 
− IF M17 AND M21 AND M23 AND M28 THEN M31 
− IF M17 AND M31 THEN M32 
− IF M17 AND M31 AND M32 THEN M33 
− IF M1 AND M13 AND M17 AND M21 AND M22 AND M23 AND M29 THEN M34 
− IF M8 AND M13 AND M16 AND M18 AND M22 AND M23 AND M24 THEN M35 
− IF M1 AND M13 AND M14 AND M16 AND M25 AND M26 AND M34 THEN M36 
− IF M1 AND M10 AND M16 AND M17 AND M24 AND M25 AND M35 THEN M37 
− IF M1 AND M17 AND M23 THEN M38 
− IF M17 AND M23 AND M31 AND M32 AND M33 THEN M39 
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B.2 Rules for The Control Data 

 
− IF M1 THEN M2 
− IF M1 THEN M3 
− IF M1 AND M2 THEN M4 
− IF M1 AND M2 AND M4 THEN M5 
− IF M1 AND M2 AND M4 THEN M6 
− IF M1 AND M3 AND M4 AND M5 THEN M7 
− IF M1 AND M3 AND M5 AND M5 AND M7 THEN M8 
− IF M1 AND M4 AND M5 AND M7 AND M8 THEN M9 
− IF M1 AND M3 AND M4 AND M5 AND M9 THEN M10 
− IF M3 AND M4 AND M10 THEN M11 
− IF M3 AND M4 AND M5 AND M7 AND M8 AND M11 THEN M12 
− IF M3 AND M4 AND M5 AND M7 AND M8 AND M11 AND M12 THEN M13 
− IF M4 AND M12 AND M13 THEN M14 
− IF M3 AND M4 AND M5 AND M7 AND M8 AND M11 AND M12 AND M14 THEN M15 
− IF M3 AND M4 AND M5 AND M7 AND M8 AND M11 AND M12 AND M14 THEN M16 
− IF M4 AND M7 AND M8 AND M11 THEN M17 
− IF M4 AND M7 AND M8 AND M11 THEN M18 
− IF M4 AND M7 AND M8 AND M11 AND M12 AND M14 THEN M19 
− IF M4 AND M7 AND M8 AND M11 AND M12 AND M14 AND M19 THEN M20 
− IF M4 AND M7 AND M8 AND M11 AND M12 AND M14 AND M19 THEN M21 
− IF M4 AND M7 AND M8 AND M12 AND M14 THEN M22 
− IF M3 AND M4 AND M5 AND M7 AND M8 AND M11 THEN M23 
− IF M4 AND M7 AND M8 AND M12 AND M23 THEN M24 
− IF M3 AND M4 AND M5 AND M7 AND M8 AND M11 AND M23 THEN M25 
− IF M4 AND M11 AND M23 AND M25 THEN M26 
− IF M4 AND M11 AND M23 AND M25 THEN M27 
− IF M4 AND M11 AND M23 AND M25 THEN M28 
− IF M3 AND M4 AND M5 AND M7 AND M8 AND M16 AND M23 AND M25 THEN M29 
− IF M4 AND M5 AND M7 AND M8 AND M11 AND M12 AND M13 AND M15 AND M16 

THEN M30 
− IF M4 AND M11 THEN M31 
− IF M4 AND M5 AND M7 AND M8 AND M12 AND M13 AND M15 AND M16 AND M31 

THEN M32 
− IF M1 AND M2 THEN M33 
− IF M4 AND M12 AND M13 AND M15 AND M16 AND M23 AND M25 AND M29 THEN 

M34 
− IF M4 AND M12 AND M13 AND M15 AND M16 AND M23 AND M25 AND M29 AND 

M33 AND M34 THEN M35 
− IF M4 AND M11 AND M12 THEN M36 
− IF M12 AND M13 AND M15 AND M16 THEN M37 
− IF M12 AND M13 AND M15 AND M16 AND M37 THEN M38 
− IF M4 AND M7 AND M8 AND M11 AND M12 AND M13 AND M15 AND M16 AND M23 

AND M25 AND M29 THEN M39 
− IF M4 AND M7 AND M8 AND M11 AND M12 AND M13 AND M15 AND M16 AND M23 

AND M25 AND M29 THEN M40 
− IF M4 AND M7 AND M8 AND M11 AND M12 AND M13 AND M15 AND M16 AND M23 

AND M25 AND M29 THEN M41 
− IF M4 AND M12 AND M13 THEN M42 
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C. XML FILES OF THE RULES FOR THE TRAINING AND CONTROL DATA 
 

C.1 XML of Training Data 
<?xml version="1.0"?> 
<modules> 
  <module mno="0" hour="4" /> 
  <module mno="1" hour="6"> 
    <prereq>0</prereq> 
  </module> 
  <module mno="2" hour="12"> 
    <prereq>0</prereq> 
    <prereq>1</prereq> 
  </module> 
  <module mno="3" hour="3"> 
    <prereq>2</prereq> 
  </module> 
  <module mno="4" hour="2"> 
    <prereq>1</prereq> 
    <prereq>2</prereq> 
  </module> 
  <module mno="5" hour="16"> 
    <prereq>0</prereq> 
    <prereq>2</prereq> 
    <prereq>3</prereq> 
  </module> 
  <module mno="6" hour="8"> 
    <prereq>0</prereq> 
    <prereq>2</prereq> 
    <prereq>3</prereq> 
    <prereq>5</prereq> 
  </module> 
  <module mno="7" hour="4"> 
    <prereq>0</prereq> 
    <prereq>1</prereq> 
    <prereq>2</prereq> 
    <prereq>3</prereq> 
  </module> 
  <module mno="8" hour="4"> 
    <prereq>0</prereq> 
    <prereq>1</prereq> 
    <prereq>3</prereq> 
    <prereq>4</prereq> 
    <prereq>6</prereq> 
  </module> 
  <module mno="9" hour="6"> 
    <prereq>0</prereq> 
    <prereq>1</prereq> 
    <prereq>3</prereq> 
    <prereq>4</prereq> 
    <prereq>6</prereq> 
    <prereq>8</prereq> 
  </module> 
  <module mno="10" hour="8"> 
    <prereq>0</prereq> 
    <prereq>1</prereq> 
    <prereq>3</prereq> 
    <prereq>7</prereq> 
    <prereq>8</prereq> 
    <prereq>9</prereq> 
  </module> 
  <module mno="11" hour="3"> 
    <prereq>1</prereq> 
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    <prereq>3</prereq> 
    <prereq>6</prereq> 
    <prereq>8</prereq> 
    <prereq>9</prereq> 
  </module> 
  <module mno="12" hour="12"> 
    <prereq>0</prereq> 
    <prereq>1</prereq> 
    <prereq>2</prereq> 
    <prereq>3</prereq> 
    <prereq>7</prereq> 
    <prereq>9</prereq> 
    <prereq>11</prereq> 
  </module> 
  <module mno="13" hour="10"> 
    <prereq>1</prereq> 
    <prereq>3</prereq> 
    <prereq>4</prereq> 
    <prereq>6</prereq> 
    <prereq>8</prereq> 
    <prereq>9</prereq> 
    <prereq>10</prereq> 
  </module> 
  <module mno="14" hour="3"> 
    <prereq>0</prereq> 
    <prereq>2</prereq> 
    <prereq>3</prereq> 
    <prereq>5</prereq> 
    <prereq>6</prereq> 
    <prereq>7</prereq> 
    <prereq>8</prereq> 
    <prereq>12</prereq> 
    <prereq>13</prereq> 
  </module> 
  <module mno="15" hour="2"> 
    <prereq>0</prereq> 
    <prereq>2</prereq> 
    <prereq>3</prereq> 
    <prereq>7</prereq> 
    <prereq>11</prereq> 
    <prereq>12</prereq> 
    <prereq>13</prereq> 
  </module> 
  <module mno="16" hour="4"> 
    <prereq>0</prereq> 
    <prereq>15</prereq> 
  </module> 
  <module mno="17" hour="4"> 
    <prereq>0</prereq> 
    <prereq>2</prereq> 
    <prereq>3</prereq> 
    <prereq>5</prereq> 
    <prereq>6</prereq> 
    <prereq>11</prereq> 
    <prereq>12</prereq> 
    <prereq>15</prereq> 
  </module> 
  <module mno="18" hour="8"> 
    <prereq>2</prereq> 
    <prereq>3</prereq> 
    <prereq>5</prereq> 
    <prereq>6</prereq> 
    <prereq>9</prereq> 
    <prereq>11</prereq> 
    <prereq>12</prereq> 
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    <prereq>13</prereq> 
  </module> 
  <module mno="19" hour="6"> 
    <prereq>0</prereq> 
    <prereq>3</prereq> 
    <prereq>9</prereq> 
    <prereq>11</prereq> 
    <prereq>13</prereq> 
    <prereq>14</prereq> 
    <prereq>15</prereq> 
  </module> 
  <module mno="20" hour="8"> 
    <prereq>0</prereq> 
    <prereq>2</prereq> 
    <prereq>5</prereq> 
    <prereq>8</prereq> 
    <prereq>9</prereq> 
    <prereq>10</prereq> 
    <prereq>11</prereq> 
    <prereq>12</prereq> 
    <prereq>15</prereq> 
    <prereq>16</prereq> 
  </module> 
  <module mno="21" hour="4"> 
    <prereq>0</prereq> 
    <prereq>2</prereq> 
    <prereq>5</prereq> 
    <prereq>7</prereq> 
    <prereq>12</prereq> 
    <prereq>15</prereq> 
    <prereq>16</prereq> 
    <prereq>19</prereq> 
  </module> 
  <module mno="22" hour="2"> 
    <prereq>0</prereq> 
    <prereq>1</prereq> 
    <prereq>4</prereq> 
    <prereq>7</prereq> 
    <prereq>9</prereq> 
    <prereq>10</prereq> 
    <prereq>11</prereq> 
    <prereq>13</prereq> 
    <prereq>15</prereq> 
    <prereq>16</prereq> 
    <prereq>20</prereq> 
  </module> 
  <module mno="23" hour="12"> 
    <prereq>0</prereq> 
    <prereq>3</prereq> 
    <prereq>6</prereq> 
    <prereq>7</prereq> 
    <prereq>9</prereq> 
    <prereq>10</prereq> 
    <prereq>11</prereq> 
    <prereq>12</prereq> 
    <prereq>15</prereq> 
    <prereq>17</prereq> 
    <prereq>19</prereq> 
    <prereq>22</prereq> 
  </module> 
  <module mno="24" hour="16"> 
    <prereq>0</prereq> 
    <prereq>23</prereq> 
  </module> 
  <module mno="25" hour="3"> 
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    <prereq>0</prereq> 
    <prereq>2</prereq> 
    <prereq>5</prereq> 
    <prereq>12</prereq> 
    <prereq>17</prereq> 
  </module> 
  <module mno="26" hour="4"> 
    <prereq>3</prereq> 
    <prereq>6</prereq> 
    <prereq>8</prereq> 
    <prereq>12</prereq> 
    <prereq>13</prereq> 
    <prereq>15</prereq> 
    <prereq>17</prereq> 
    <prereq>20</prereq> 
    <prereq>21</prereq> 
  </module> 
  <module mno="27" hour="6"> 
    <prereq>0</prereq> 
    <prereq>12</prereq> 
    <prereq>15</prereq> 
    <prereq>16</prereq> 
    <prereq>17</prereq> 
    <prereq>20</prereq> 
    <prereq>21</prereq> 
    <prereq>25</prereq> 
  </module> 
  <module mno="28" hour="2"> 
    <prereq>0</prereq> 
    <prereq>16</prereq> 
    <prereq>26</prereq> 
  </module> 
  <module mno="29" hour="4"> 
    <prereq>0</prereq> 
    <prereq>13</prereq> 
    <prereq>14</prereq> 
    <prereq>16</prereq> 
    <prereq>24</prereq> 
    <prereq>28</prereq> 
  </module> 
  <module mno="30" hour="4"> 
    <prereq>16</prereq> 
    <prereq>20</prereq> 
    <prereq>22</prereq> 
    <prereq>27</prereq> 
  </module> 
  <module mno="31" hour="3"> 
    <prereq>16</prereq> 
    <prereq>30</prereq> 
  </module> 
  <module mno="32" hour="4"> 
    <prereq>16</prereq> 
    <prereq>30</prereq> 
    <prereq>31</prereq> 
  </module> 
  <module mno="33" hour="2"> 
    <prereq>0</prereq> 
    <prereq>12</prereq> 
    <prereq>16</prereq> 
    <prereq>20</prereq> 
    <prereq>21</prereq> 
    <prereq>22</prereq> 
    <prereq>28</prereq> 
  </module> 
  <module mno="34" hour="4"> 
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    <prereq>7</prereq> 
    <prereq>12</prereq> 
    <prereq>15</prereq> 
    <prereq>17</prereq> 
    <prereq>21</prereq> 
    <prereq>22</prereq> 
    <prereq>23</prereq> 
  </module> 
  <module mno="35" hour="2"> 
    <prereq>0</prereq> 
    <prereq>12</prereq> 
    <prereq>13</prereq> 
    <prereq>15</prereq> 
    <prereq>24</prereq> 
    <prereq>25</prereq> 
    <prereq>33</prereq> 
  </module> 
  <module mno="36" hour="4"> 
    <prereq>0</prereq> 
    <prereq>9</prereq> 
    <prereq>15</prereq> 
    <prereq>16</prereq> 
    <prereq>23</prereq> 
    <prereq>24</prereq> 
    <prereq>34</prereq> 
  </module> 
  <module mno="37" hour="3"> 
    <prereq>0</prereq> 
    <prereq>16</prereq> 
    <prereq>22</prereq> 
  </module> 
  <module mno="38" hour="4"> 
    <prereq>16</prereq> 
    <prereq>22</prereq> 
    <prereq>30</prereq> 
    <prereq>31</prereq> 
    <prereq>32</prereq> 
  </module> 
</modules> 
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C.2 XML of Control Data 

 
<?xml version="1.0"?> 
<modules> 
  <module mno="0" hour="2" /> 
  <module mno="1" hour="2"> 
    <prereq>0</prereq> 
  </module> 
  <module mno="2" hour="3"> 
    <prereq>0</prereq> 
  </module> 
  <module mno="3" hour="4"> 
    <prereq>0</prereq> 
    <prereq>1</prereq> 
  </module> 
  <module mno="4" hour="2"> 
    <prereq>0</prereq> 
    <prereq>1</prereq> 
    <prereq>3</prereq> 
  </module> 
  <module mno="5" hour="4"> 
    <prereq>0</prereq> 
    <prereq>1</prereq> 
    <prereq>3</prereq> 
  </module> 
  <module mno="6" hour="3"> 
    <prereq>0</prereq> 
    <prereq>2</prereq> 
    <prereq>3</prereq> 
    <prereq>4</prereq> 
  </module> 
  <module mno="7" hour="2"> 
    <prereq>0</prereq> 
    <prereq>2</prereq> 
    <prereq>3</prereq> 
    <prereq>4</prereq> 
    <prereq>6</prereq> 
 </module> 
  <module mno="8" hour="4"> 
    <prereq>0</prereq> 
    <prereq>3</prereq> 
    <prereq>4</prereq> 
    <prereq>6</prereq> 
    <prereq>7</prereq> 
  </module> 
  <module mno="9" hour="8"> 
    <prereq>0</prereq> 
    <prereq>2</prereq> 
    <prereq>3</prereq> 
    <prereq>4</prereq> 
    <prereq>8</prereq> 
  </module> 
  <module mno="10" hour="4"> 
    <prereq>2</prereq> 
    <prereq>3</prereq> 
    <prereq>9</prereq> 
  </module> 
  <module mno="11" hour="4"> 
    <prereq>2</prereq> 
    <prereq>3</prereq> 
    <prereq>4</prereq> 
    <prereq>6</prereq> 
    <prereq>7</prereq> 
    <prereq>10</prereq> 
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  </module> 
  <module mno="12" hour="2"> 
    <prereq>2</prereq> 
    <prereq>3</prereq> 
    <prereq>4</prereq> 
    <prereq>6</prereq> 
    <prereq>7</prereq> 
    <prereq>10</prereq> 
    <prereq>11</prereq> 
  </module> 
  <module mno="13" hour="4"> 
    <prereq>3</prereq> 
    <prereq>11</prereq> 
    <prereq>12</prereq> 
  </module> 
  <module mno="14" hour="2"> 
    <prereq>2</prereq> 
    <prereq>3</prereq> 
    <prereq>4</prereq> 
    <prereq>6</prereq> 
    <prereq>7</prereq> 
    <prereq>10</prereq> 
    <prereq>11</prereq> 
    <prereq>13</prereq> 
  </module> 
  <module mno="15" hour="2"> 
    <prereq>2</prereq> 
    <prereq>3</prereq> 
    <prereq>4</prereq> 
    <prereq>6</prereq> 
    <prereq>7</prereq> 
    <prereq>10</prereq> 
    <prereq>11</prereq> 
    <prereq>13</prereq> 
  </module> 
  <module mno="16" hour="1"> 
    <prereq>3</prereq> 
    <prereq>6</prereq> 
    <prereq>7</prereq> 
  </module> 
  <module mno="17" hour="1"> 
    <prereq>3</prereq> 
    <prereq>6</prereq> 
    <prereq>7</prereq> 
    <prereq>10</prereq> 
  </module> 
  <module mno="18" hour="3"> 
    <prereq>3</prereq> 
    <prereq>6</prereq> 
    <prereq>7</prereq> 
    <prereq>10</prereq> 
    <prereq>11</prereq> 
    <prereq>13</prereq> 
  </module> 
  <module mno="19" hour="3"> 
    <prereq>3</prereq> 
    <prereq>6</prereq> 
    <prereq>7</prereq> 
    <prereq>10</prereq> 
    <prereq>11</prereq> 
    <prereq>13</prereq> 
    <prereq>18</prereq> 
  </module> 
  <module mno="20" hour="2"> 
    <prereq>3</prereq> 
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    <prereq>6</prereq> 
    <prereq>7</prereq> 
    <prereq>10</prereq> 
    <prereq>11</prereq> 
    <prereq>13</prereq> 
    <prereq>18</prereq> 
  </module> 
  <module mno="21" hour="6"> 
    <prereq>3</prereq> 
    <prereq>6</prereq> 
    <prereq>7</prereq> 
    <prereq>11</prereq> 
    <prereq>13</prereq> 
  </module> 
  <module mno="22" hour="3"> 
    <prereq>2</prereq> 
    <prereq>3</prereq> 
    <prereq>4</prereq> 
    <prereq>6</prereq> 
    <prereq>7</prereq> 
    <prereq>10</prereq> 
  </module> 
  <module mno="23" hour="2"> 
    <prereq>3</prereq> 
    <prereq>6</prereq> 
    <prereq>7</prereq> 
    <prereq>11</prereq> 
    <prereq>22</prereq> 
  </module> 
  <module mno="24" hour="2"> 
    <prereq>2</prereq> 
    <prereq>3</prereq> 
    <prereq>4</prereq> 
    <prereq>6</prereq> 
    <prereq>7</prereq> 
    <prereq>10</prereq> 
    <prereq>22</prereq> 
  </module> 
  <module mno="25" hour="1"> 
    <prereq>3</prereq> 
    <prereq>10</prereq> 
    <prereq>22</prereq> 
    <prereq>24</prereq> 
  </module> 
  <module mno="26" hour="1"> 
    <prereq>3</prereq> 
    <prereq>10</prereq> 
    <prereq>22</prereq> 
    <prereq>24</prereq> 
  </module> 
  <module mno="27" hour="1"> 
    <prereq>3</prereq> 
    <prereq>10</prereq> 
    <prereq>22</prereq> 
    <prereq>24</prereq> 
  </module> 
  <module mno="28" hour="1"> 
    <prereq>2</prereq> 
    <prereq>3</prereq> 
    <prereq>4</prereq> 
    <prereq>6</prereq> 
    <prereq>7</prereq> 
    <prereq>15</prereq> 
    <prereq>22</prereq> 
    <prereq>24</prereq> 
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  </module> 
  <module mno="29" hour="2"> 
    <prereq>3</prereq> 
    <prereq>4</prereq> 
    <prereq>6</prereq> 
    <prereq>7</prereq> 
    <prereq>10</prereq> 
    <prereq>11</prereq> 
    <prereq>12</prereq> 
    <prereq>14</prereq> 
    <prereq>15</prereq> 
  </module> 
  <module mno="30" hour="2"> 
    <prereq>3</prereq> 
    <prereq>10</prereq> 
  </module> 
  <module mno="31" hour="3"> 
    <prereq>3</prereq> 
    <prereq>4</prereq> 
    <prereq>6</prereq> 
    <prereq>7</prereq> 
    <prereq>11</prereq> 
    <prereq>12</prereq> 
    <prereq>14</prereq> 
    <prereq>15</prereq> 
    <prereq>30</prereq> 
  </module> 
  <module mno="32" hour="3"> 
    <prereq>0</prereq> 
    <prereq>1</prereq> 
  </module> 
  <module mno="33" hour="2"> 
    <prereq>3</prereq> 
    <prereq>11</prereq> 
    <prereq>12</prereq> 
    <prereq>14</prereq> 
    <prereq>15</prereq> 
    <prereq>22</prereq> 
    <prereq>24</prereq> 
    <prereq>28</prereq> 
  </module> 
  <module mno="34" hour="2"> 
    <prereq>3</prereq> 
    <prereq>11</prereq> 
    <prereq>12</prereq> 
    <prereq>14</prereq> 
    <prereq>15</prereq> 
    <prereq>22</prereq> 
    <prereq>24</prereq> 
    <prereq>28</prereq> 
    <prereq>32</prereq> 
    <prereq>33</prereq> 
  </module> 
  <module mno="35" hour="3"> 
    <prereq>3</prereq> 
    <prereq>10</prereq> 
    <prereq>11</prereq> 
  </module> 
  <module mno="36" hour="2"> 
    <prereq>11</prereq> 
    <prereq>12</prereq> 
    <prereq>14</prereq> 
    <prereq>15</prereq> 
  </module> 
  <module mno="37" hour="2"> 
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    <prereq>11</prereq> 
    <prereq>12</prereq> 
    <prereq>14</prereq> 
    <prereq>15</prereq> 
    <prereq>36</prereq> 
  </module> 
  <module mno="38" hour="4"> 
    <prereq>3</prereq> 
    <prereq>6</prereq> 
    <prereq>7</prereq> 
    <prereq>10</prereq> 
    <prereq>11</prereq> 
    <prereq>12</prereq> 
    <prereq>14</prereq> 
    <prereq>15</prereq> 
    <prereq>22</prereq> 
    <prereq>24</prereq> 
    <prereq>28</prereq> 
  </module> 
  <module mno="39" hour="4"> 
    <prereq>3</prereq> 
    <prereq>6</prereq> 
    <prereq>7</prereq> 
    <prereq>10</prereq> 
    <prereq>11</prereq> 
    <prereq>12</prereq> 
    <prereq>14</prereq> 
    <prereq>15</prereq> 
    <prereq>22</prereq> 
    <prereq>24</prereq> 
    <prereq>28</prereq> 
  </module> 
  <module mno="40" hour="6"> 
    <prereq>3</prereq> 
    <prereq>6</prereq> 
    <prereq>7</prereq> 
    <prereq>10</prereq> 
    <prereq>11</prereq> 
    <prereq>12</prereq> 
    <prereq>14</prereq> 
    <prereq>15</prereq> 
    <prereq>22</prereq> 
    <prereq>24</prereq> 
    <prereq>28</prereq> 
  </module> 
  <module mno="41" hour="6"> 
    <prereq>3</prereq> 
    <prereq>11</prereq> 
    <prereq>12</prereq> 
  </module> 
</modules> 
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D. SAMPLE XML FILE OF THE PROGRAM 
 
<?xml version="1.0"?> 
<program> 
 <day dno="0"> 
  <ders saat="1">FATURA MODÜLÜ GIRIS</ders> 
  <ders saat="2">FATURA MODÜLÜ GIRIS</ders> 
  <ders saat="3">FATURA MODÜLÜ GIRIS</ders> 
  <ders saat="4" /> 
  <ders saat="5">GIRIS</ders> 
  <ders saat="6">GIRIS</ders> 
  <ders saat="7">GIRIS</ders> 
  <ders saat="8">GIRIS</ders> 
 </day> 
 <day dno="1"> 
  <ders saat="1">BANKA MODÜLÜ</ders> 
  <ders saat="2">BANKA MODÜLÜ</ders> 
  <ders saat="3">BANKA MODÜLÜ</ders> 
  <ders saat="4">BANKA MODÜLÜ</ders> 
  <ders saat="5">TALEP / TEKLIF  MODULÜ</ders> 
  <ders saat="6">TALEP / TEKLIF  MODULÜ</ders> 
  <ders saat="7">TALEP / TEKLIF  MODULÜ</ders> 
  <ders saat="8">TALEP / TEKLIF  MODULÜ</ders> 
 </day> 
 <day dno="2"> 
  <ders saat="1">MÜSTERI ÇEKLERI</ders> 
  <ders saat="2">MÜSTERI ÇEKLERI</ders> 
  <ders saat="3">MÜSTERI ÇEKLERI</ders> 
  <ders saat="4">MÜSTERI ÇEKLERI</ders> 
  <ders saat="5">MÜSTERI ÇEKLERI</ders> 
  <ders saat="6">MÜSTERI ÇEKLERI</ders> 
  <ders saat="7">STOK MODUL ILERI</ders> 
  <ders saat="8">STOK MODUL ILERI</ders> 
 </day> 
 <day dno="3"> 
  <ders saat="1">STOK MODUL ILERI</ders> 
  <ders saat="2">STOK MODUL ILERI</ders> 
  <ders saat="3">STOK MODUL ILERI</ders> 
  <ders saat="4">STOK MODUL ILERI</ders> 
  <ders saat="5">STOK MODUL ILERI</ders> 
  <ders saat="6">STOK MODUL ILERI</ders> 
  <ders saat="7">STOK MODUL ILERI</ders> 
  <ders saat="8">STOK MODUL ILERI</ders> 
 </day> 
 <day dno="4"> 
  <ders saat="1">STOK MODUL ILERI</ders> 
  <ders saat="2">STOK MODUL ILERI</ders> 
  <ders saat="3">STOK MODUL ILERI</ders> 
  <ders saat="4">STOK MODUL ILERI</ders> 
  <ders saat="5">STOK MODUL ILERI</ders> 
  <ders saat="6">STOK MODUL ILERI</ders> 
  <ders saat="7">MUHASEBE GIRIS  </ders> 
  <ders saat="8">MUHASEBE GIRIS  </ders> 
 </day> 
 <day dno="5"> 
  <ders saat="1">MUHASEBE GIRIS  </ders> 
  <ders saat="2">MUHASEBE GIRIS  </ders> 
  <ders saat="3">MUHASEBE GIRIS  </ders> 
  <ders saat="4">MUHASEBE GIRIS  </ders> 
  <ders saat="5">MUHASEBE GIRIS  </ders> 
  <ders saat="6">MUHASEBE GIRIS  </ders> 
  <ders saat="7">MUHASEBE GIRIS  </ders> 
  <ders saat="8">MUHASEBE GIRIS  </ders> 



122 
 

 </day> 
 <day dno="6"> 
  <ders saat="1">TEKNIK  2</ders> 
  <ders saat="2">TEKNIK  2</ders> 
  <ders saat="3">TEKNIK  2</ders> 
  <ders saat="4" /> 
  <ders saat="5">NETPOS MODÜLÜ</ders> 
  <ders saat="6">NETPOS MODÜLÜ</ders> 
  <ders saat="7">ENTEGRASYON MODÜLÜ</ders> 
  <ders saat="8">ENTEGRASYON MODÜLÜ</ders> 
 </day> 
 <day dno="7"> 
  <ders saat="1">ENTEGRASYON MODÜLÜ</ders> 
  <ders saat="2">ENTEGRASYON MODÜLÜ</ders> 
  <ders saat="3">ENTEGRASYON MODÜLÜ</ders> 
  <ders saat="4">ENTEGRASYON MODÜLÜ</ders> 
  <ders saat="5">ENTEGRASYON MODÜLÜ</ders> 
  <ders saat="6">ENTEGRASYON MODÜLÜ</ders> 
  <ders saat="7">ENTEGRASYON MODÜLÜ</ders> 
  <ders saat="8">ENTEGRASYON MODÜLÜ</ders> 
 </day> 
 <day dno="8"> 
  <ders saat="1">ENTEGRASYON MODÜLÜ</ders> 
  <ders saat="2">ENTEGRASYON MODÜLÜ</ders> 
  <ders saat="3">IÜP / AÜP</ders> 
  <ders saat="4">IÜP / AÜP</ders> 
  <ders saat="5">DEMIRBAS</ders> 
  <ders saat="6">DEMIRBAS</ders> 
  <ders saat="7">DEMIRBAS</ders> 
  <ders saat="8" /> 
 </day> 
 <day dno="9"> 
  <ders saat="1">NDI</ders> 
  <ders saat="2">NDI</ders> 
  <ders saat="3">NDI</ders> 
  <ders saat="4" /> 
  <ders saat="5">MUHASEBE MODÜLÜ</ders> 
  <ders saat="6">MUHASEBE MODÜLÜ</ders> 
  <ders saat="7">MUHASEBE MODÜLÜ</ders> 
  <ders saat="8" /> 
 </day> 
 <day dno="10"> 
  <ders saat="1">RAPOR MODÜLÜ</ders> 
  <ders saat="2">RAPOR MODÜLÜ</ders> 
  <ders saat="3">DEKONT ÖZEL UYGULAMALAR  </ders> 
  <ders saat="4">DEKONT ÖZEL UYGULAMALAR  </ders> 
  <ders saat="5">DEKONT ÖZEL UYGULAMALAR  </ders> 
  <ders saat="6">DEKONT ÖZEL UYGULAMALAR  </ders> 
  <ders saat="7">DEKONT ÖZEL UYGULAMALAR  </ders> 
  <ders saat="8">DEKONT ÖZEL UYGULAMALAR  </ders> 
 </day> 
 <day dno="11"> 
  <ders saat="1">KALITE KONTROL</ders> 
  <ders saat="2">KALITE KONTROL</ders> 
  <ders saat="3">KALITE KONTROL</ders> 
  <ders saat="4">KALITE KONTROL</ders> 
  <ders saat="5" /> 
  <ders saat="6" /> 
  <ders saat="7" /> 
  <ders saat="8" /> 
 </day> 
</program> 
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E. CRITICAL VALUES OF THE T DISTRIBUTION 
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F. BEST T VALUES OF SDST FOR ALL SCENARIOS OF 100 INDIVIDUALS 
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G. SOURCE CODE TO WRITE RULES TO XML 
 
 
public void ruleyaz() 
{ 
    XmlTextReader reader = new XmlTextReader("RulesXML.xml"); 
    TreeNode tnmodules = new TreeNode(); 
    tnmodules.Text = "modules"; 
    treeView1.Nodes.Add(tnmodules); 
    TreeNode tnmodule = null; 
    TreeNode tnprereq = null; 
 
    while (reader.Read()) 
    { 
      if (reader.NodeType == XmlNodeType.Element && reader.Name == 
"module") 
      { 
          tnmodule = new TreeNode(); 
          tnmodule.Text = reader.GetAttribute("mno"); 
          row = Convert.ToInt32(tnmodule.Text);                     
          tnmodules.Nodes.Add(tnmodule); 
      } 
      else if (reader.NodeType == XmlNodeType.Element && reader.Name 
== "prereq") 
      { 
          reader.Read(); 
          tnprereq = new TreeNode(); 
          tnprereq.Text = reader.Value; 
          col = Convert.ToInt32(tnprereq.Text); 
          tnmodule.Nodes.Add(tnprereq); 
          prereqs[row, col] = 1; 
       } 
     } 
     reader.Close(); 
} 
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H. COMPARISON OF NUMBER OF RELIABLE SOLUTIONS FOR THE TRAINING 
AND CONTROL DATA 

 

 
Figure H.1(a) – Comparison of number of reliable solutions for the 

training data of 100 individuals. 

 

 
Figure H.1(b) – Comparison of number of reliable solutions for the 

training data of 120 individuals. 
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Figure H.1(c) – Comparison of number of reliable solutions for the 

training data of 140 individuals. 

 

 
Figure H.1(d) – Comparison of number of reliable solutions for the 

training data of 160 individuals. 

 

 
Figure H.1(e) – Comparison of number of reliable solutions for the 

training data of 180 individuals. 
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Figure H.1(f) – Comparison of number of reliable solutions for the 

training data of 200 individuals. 

 

 
Figure H.2(a) – Comparison of number of reliable solutions for the 

control data of 100 individuals. 

 

 
Figure H.2(b) – Comparison of number of reliable solutions for the 

control data of 120 individuals.  
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Figure H.2(c) – Comparison of number of reliable solutions for the 

control data of 140 individuals. 

 

 
Figure H.2(d) – Comparison of number of reliable solutions for the 

control data of 160 individuals. 

 

 
Figure H.2(e) – Comparison of number of reliable solutions for the 

control data of 180 individuals. 
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Figure H.2(f) – Comparison of number of reliable solutions for the 

control data of 200 individuals. 
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İ. THE GRAPHICS OF THE NUMBER OF RELIABLE MODULE RANGES FOR 
TRAINING AND CONTROL DATA 
 

Training Data 

 
Figure I.1(a) – Number of reliable module ranges in training data – SDST for a 

population size of 100. 

 

 
Figure I.1(b) – Number of reliable module ranges in training data – SDST for a 

population size of 120. 
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Figure I.1(c) – Number of reliable module ranges in training data – SDST for a 

population size of 140. 
 

 
Figure I.1(d) – Number of reliable module ranges in training data – SDST for a 

population size of 160. 

 

 
Figure I.1(e) – Number of reliable module ranges in training data – SDST for a 

population size of 180. 
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Figure I.1(f) – Number of reliable module ranges in training data – SDST for a 

population size of 200. 

 

 
Figure I.2(a) – Number of reliable module ranges in training data – LDST for a 

population size of 100. 

 

 
Figure I.2(b) – Number of reliable module ranges in training data – LDST for a 

population size of 120. 
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Figure I.2(c) – Number of reliable module ranges in training data – LDST for a 

population size of 140. 

 

 
Figure I.2(d) – Number of reliable module ranges in training data – LDST for a 

population size of 160. 

 

 
Figure I.2(e) – Number of reliable module ranges in training data – LDST for a 

population size of 180. 
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Figure I.2(f) – Number of reliable module ranges in training data – LDST for a 

population size of 200. 

 

Control Data 

 
Figure I.3(a) – Number of reliable module ranges in control data – SDST for a 

population size of 100. 

 

 
Figure I.3(b) – Number of reliable module ranges in control data – SDST for a 

population size of 120. 
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Figure I.3(c) – Number of reliable module ranges in control data – SDST for a 

population size of 140. 
 

 
Figure I.3(d) – Number of reliable module ranges in control data – SDST for a 

population size of 160. 

 

 
Figure I.3(e) – Number of reliable module ranges in control data – SDST for a 

population size of 180. 
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Figure I.3(f) – Number of reliable module ranges in control data – SDST for a 

population size of 200. 

 

 
Figure I.4(a) – Number of reliable module ranges in control data – LDST for a 

population size of 100. 

 

 
Figure I.4(b) – Number of reliable module ranges in control data – LDST for a 

population size of 120. 
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Figure I.4(c) – Number of reliable module ranges in control data – LDST for a 

population size of 140. 

 

 
Figure I.4(d) – Number of reliable module ranges in control data – LDST for a 

population size of 160. 

 

 
Figure I.4(e) – Number of reliable module ranges in control data – LDST for a 

population size of 180. 
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Figure I.4(f) – Number of reliable module ranges in control data – LDST for a 

population size of 200. 
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J. BEST MODULE RANGES FOR THE TRAINING DATA 
 

Table J.1(a) – Best module ranges for SDST and 100 individuals. 

OX OX2 PMX OX’ 
4 1 4 1 
1 4 1 4 
8 8 8 9 
9 9 6 6 

10 10 9 8 
13 13 10 10 
14 6 13 14 
6 14 14 13 

15 15 15 15 
16 16 26 16 
20 20 16 23 
29 23 20 26 
23 29 32 29 
35 26 23 20 
26 32 35 32 
38 35 29 35 
32 38 38 38 

 
Table J.1(b) – Best module ranges for SDST and 120 individuals. 

OX OX2 PMX OX’ 
1 4 1 4 
4 1 4 1 

10 8 10 6 
8 6 6 9 
6 9 8 10 
9 10 9 8 

14 14 14 13 
13 13 13 14 
15 15 15 16 
16 16 16 15 
20 26 20 26 
29 20 29 23 
23 23 23 20 
38 35 35 35 
35 32 32 38 
32 29 26 29 
26 38 38 32 
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Table J.1(c) – Best module ranges for SDST and 140 individuals. 

OX OX2 PMX OX’ 
4 4 1 1 
1 1 4 4 
8 8 8 9 
9 9 6 8 

10 10 13 6 
13 6 9 10 
14 13 15 14 
6 14 14 13 

16 16 16 16 
23 15 10 15 
15 20 20 23 
26 29 23 20 
20 26 29 26 
29 23 26 29 
32 32 32 35 
38 38 35 32 
35 35 38 38 

 
Table J.1(d) – Best module ranges for SDST and 160 individuals. 

OX OX2 PMX OX’ 
1 1 1 4 
4 4 4 1 
6 8 6 8 
9 6 8 10 
8 9 9 6 

10 10 13 13 
14 14 26 9 
13 13 10 14 
16 15 14 15 
23 16 16 16 
15 23 23 23 
20 20 15 20 
29 26 20 26 
38 32 29 29 
32 35 32 32 
26 38 38 35 
35 29 35 38 
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Table J.1(e) – Best module ranges for SDST and 180 individuals. 

OX OX2 PMX OX’ 
1 1 4 1 
4 4 1 4 
6 6 6 6 
8 9 9 8 
9 8 8 9 

10 10 14 13 
13 13 13 10 
26 14 10 14 
14 16 15 26 
15 15 16 16 
16 20 20 23 
20 23 23 15 
32 26 26 20 
23 29 29 35 
29 38 32 32 
38 35 35 29 
35 32 38 38 

 
Table J.1(f) – Best module ranges for SDST and 200 individuals. 

OX OX2 PMX OX’ 
4 4 1 1 
1 1 4 4 
6 6 9 9 
8 8 8 8 

13 9 10 6 
9 10 14 10 

10 14 6 14 
14 13 13 13 
16 16 15 15 
23 15 16 16 
15 26 29 20 
32 23 20 23 
26 20 26 26 
20 29 23 38 
38 32 38 32 
29 35 35 29 
35 38 32 35 
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Table J.2(a) – Best module ranges for LDST and 100 individuals. 

OX OX2 PMX OX’ 
10 1 1 1 
1 2 2 2 
2 4 4 4 
4 6 6 8 
9 5 10 13 

11 9 5 5 
12 10 12 9 
5 8 17 10 
8 11 8 6 

14 12 26 11 
13 17 13 21 
6 14 9 14 

17 13 11 25 
15 16 25 12 
20 23 15 16 
21 20 21 20 
16 21 14 15 
32 15 16 17 
23 31 23 23 
31 22 20 31 
24 32 31 29 
33 24 22 26 
26 25 32 32 
29 26 38 22 
22 33 33 38 
25 29 35 34 
34 34 29 24 
36 36 34 35 
38 35 24 36 
35 38 36 33 
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Table J.2 (b) – Best module ranges for LDST and 120 individuals. 

OX OX2 PMX OX’ 
8 4 4 1 
1 5 1 4 
4 1 10 9 
2 2 2 2 
9 8 8 10 

17 10 11 8 
14 9 14 12 
6 11 9 13 

11 14 6 11 
20 6 12 5 
10 12 15 14 
5 13 5 17 

15 16 17 16 
12 17 23 6 
13 23 29 23 
21 25 20 20 
22 15 13 21 
25 20 35 15 
16 22 16 26 
23 24 21 29 
26 29 26 22 
31 21 22 34 
29 31 31 24 
32 32 24 25 
33 33 25 35 
24 34 34 31 
38 26 36 36 
35 36 38 38 
34 38 32 32 
36 35 33 33 
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Table J.2(c) – Best module ranges for LDST and 140 individuals. 

OX OX2 PMX OX’ 
4 4 1 5 
1 1 8 1 
2 2 2 2 

17 5 9 4 
9 6 5 8 
8 9 10 10 

10 8 15 9 
5 10 4 6 

11 12 17 12 
6 13 12 14 

12 11 20 13 
13 14 14 15 
14 15 13 16 
21 16 25 11 
20 17 6 17 
23 23 11 21 
29 20 22 20 
31 21 21 22 
15 22 16 32 
32 26 23 23 
26 29 26 29 
16 34 31 35 
22 24 34 26 
24 25 29 34 
38 35 35 38 
35 38 36 36 
33 31 32 31 
25 33 33 24 
34 32 38 25 
36 36 24 33 
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Table J.2(d) – Best module ranges for LDST and 160 individuals. 

OX OX2 PMX OX’ 
5 4 1 1 
1 1 2 4 
4 2 4 2 
9 5 5 6 
2 6 9 8 
6 8 8 5 

10 9 6 10 
14 10 11 12 
12 12 12 13 
8 11 17 11 

13 14 29 9 
11 13 10 14 
16 16 14 15 
20 26 13 16 
17 17 16 17 
24 21 15 21 
22 15 25 26 
21 23 26 23 
26 20 23 25 
29 24 21 20 
34 25 20 22 
15 31 22 29 
25 32 24 34 
23 22 35 31 
36 33 31 32 
31 35 34 38 
32 38 36 36 
33 29 38 33 
38 34 33 24 
35 36 32 35 
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Table J.2(e) – Best module ranges for LDST and 180 individuals. 

OX OX2 PMX OX’ 
4 4 4 1 
2 1 1 4 
1 2 2 2 
8 8 9 9 
5 12 8 10 
9 6 12 6 

10 5 11 12 
14 9 13 8 
6 10 6 11 

12 13 5 5 
13 11 14 14 
15 14 10 13 
11 16 21 16 
16 17 16 15 
17 21 15 17 
20 29 26 21 
22 23 17 26 
21 26 29 23 
26 15 23 29 
23 20 31 20 
38 24 20 24 
31 22 38 38 
24 31 22 22 
32 25 35 31 
29 34 24 35 
35 36 32 32 
34 32 25 25 
25 33 34 33 
33 38 36 34 
36 35 33 36 

 

 

 
 

 

 

 

 

 

 

 

 



149 
 

Table J.2(f) – Best module ranges for LDST and 200 individuals. 

OX OX2 PMX OX’ 
1 1 1 1 
2 2 4 2 
9 4 8 4 
4 5 2 5 
6 8 5 9 
8 9 9 6 

10 6 12 10 
11 10 6 8 
12 14 10 14 
14 12 13 12 
13 13 17 13 
17 16 14 16 
5 20 16 11 

16 17 11 17 
21 11 15 15 
22 15 29 23 
15 21 23 20 
23 23 22 26 
20 24 26 24 
26 29 20 21 
24 22 38 22 
29 35 24 25 
25 25 21 33 
34 38 31 29 
31 26 35 38 
32 31 32 31 
35 32 25 32 
33 33 34 34 
38 34 36 35 
36 36 33 36 
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K. BEST MODULE RANGES FOR THE CONTROL DATA 
 

Table K.1(a) – Best module ranges for SDST and 100 individuals. 

OX OX2 PMX OX’ 
1 1 1 1 
3 5 4 3 
4 4 3 4 
5 9 5 5 

11 3 11 7 
7 7 7 9 

12 11 12 11 
9 12 9 12 

14 14 14 14 
19 19 19 29 
29 29 30 19 
22 21 29 21 
34 22 22 22 
30 30 21 34 
21 34 40 36 
36 40 36 30 
40 36 34 40 

 
Table K.1(b) – Best module ranges for SDST and 120 individuals. 

OX OX2 PMX OX’ 
1 1 1 1 
4 4 4 4 
3 5 3 3 

11 3 5 5 
5 7 11 14 
7 11 7 7 

12 12 14 11 
14 9 12 9 
9 14 9 12 

19 19 19 19 
22 22 29 21 
21 21 21 22 
29 29 34 29 
30 34 36 30 
36 30 22 36 
34 36 30 34 
40 40 40 40 
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Table K.1(c) – Best module ranges for SDST and 140 individuals. 

OX OX2 PMX OX’ 
1 1 1 1 
4 4 4 3 
3 5 3 4 
7 3 5 5 
5 11 7 7 

11 7 11 11 
12 9 9 12 
9 12 12 9 

29 14 14 14 
14 19 19 22 
19 21 21 19 
21 29 29 21 
30 22 34 29 
22 30 36 30 
34 40 22 36 
36 36 40 34 
40 34 30 40 

 
Table K.1(d) – Best module ranges for SDST and 160 individuals. 

OX OX2 PMX OX’ 
1 1 1 1 
4 4 4 4 
5 3 3 5 
3 5 14 3 
7 11 5 7 
9 7 7 11 

11 12 9 9 
12 9 11 12 
14 14 12 14 
19 19 19 19 
21 21 22 22 
29 29 21 29 
34 22 29 30 
22 30 34 21 
40 40 30 36 
30 36 36 40 
36 34 40 34 
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Table K.1(e) – Best module ranges for SDST and 180 individuals. 

OX OX2 PMX OX’ 
1 1 1 1 
4 4 3 3 
3 3 4 4 
9 5 5 5 

11 7 11 11 
5 9 12 7 
7 11 7 9 

12 12 14 12 
14 14 9 14 
19 19 19 19 
22 22 29 22 
30 21 21 21 
29 29 22 29 
21 30 36 34 
34 40 40 40 
36 36 34 30 
40 34 30 36 

 
Table K.1(f) – Best module ranges for SDST and 200 individuals. 

OX OX2 PMX OX’ 
1 1 1 1 
3 4 4 3 
4 3 3 4 
5 5 5 5 

11 7 11 11 
14 11 7 7 
7 12 12 12 
9 14 9 14 

12 9 14 22 
19 19 19 9 
22 29 29 19 
21 21 21 21 
36 22 22 29 
30 36 40 34 
29 30 30 30 
34 34 36 40 
40 40 34 36 
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Table K.2(a) – Best module ranges for LDST and 100 individuals. 

OX OX2 PMX OX’ 
1 1 11 1 
4 4 1 3 
5 3 3 4 
3 5 4 5 
7 11 7 7 

14 7 5 11 
11 14 13 14 
18 13 23 16 
23 9 17 9 
25 16 25 22 
13 19 14 19 
9 18 18 21 

22 23 16 17 
19 21 9 18 
17 25 29 23 
28 22 19 25 
16 28 28 13 
21 17 21 26 
26 31 22 29 
29 29 33 30 
30 33 26 28 
31 26 30 31 
33 30 31 33 
34 34 34 34 
35 35 35 37 
37 37 37 38 
38 38 38 35 
39 39 39 39 
41 40 40 40 
40 41 41 41 
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Table K.2 (b) – Best module ranges for LDST and 120 individuals. 

OX OX2 PMX OX’ 
1 1 1 1 
4 4 4 4 
3 14 14 7 
5 3 7 5 

11 11 5 3 
7 7 16 14 
9 5 9 11 

14 13 13 19 
23 22 17 9 
17 9 22 22 
16 16 3 16 
13 18 18 23 
30 19 19 13 
31 23 25 17 
18 21 26 25 
19 17 23 18 
25 25 21 26 
26 26 11 21 
28 30 30 30 
29 29 28 31 
21 28 31 29 
22 31 33 28 
33 33 29 33 
34 34 34 34 
35 35 35 35 
37 37 37 37 
40 38 38 38 
38 39 39 39 
39 40 40 40 
41 41 41 41 
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Table K.2(c) – Best module ranges for LDST and 140 individuals. 

OX OX2 PMX OX’ 
1 1 1 1 
3 4 4 4 
4 3 5 3 

14 14 3 11 
21 11 7 5 
5 5 18 7 

11 7 17 14 
7 9 11 9 
9 13 13 16 

16 16 14 13 
23 17 9 19 
22 23 16 18 
13 19 19 23 
17 25 25 17 
18 22 26 33 
31 28 33 25 
29 18 23 22 
19 21 28 21 
25 30 21 31 
26 29 34 29 
30 26 30 30 
34 34 31 26 
28 31 22 28 
33 33 29 34 
35 35 35 37 
39 37 37 35 
37 38 38 38 
38 39 39 39 
40 40 40 40 
41 41 41 41 
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Table K.2(d) – Best module ranges for LDST and 160 individuals. 

OX OX2 PMX OX’ 
1 1 1 1 
4 4 4 4 
3 14 5 14 
5 3 3 3 

14 5 7 5 
7 7 11 7 

11 11 13 9 
17 9 9 11 
9 13 14 16 

16 23 19 13 
13 18 17 19 
23 22 22 23 
30 19 23 22 
31 16 25 25 
18 17 16 21 
19 21 28 30 
25 25 29 18 
21 26 21 26 
26 30 18 17 
28 29 31 29 
29 33 26 28 
22 31 34 33 
33 34 33 31 
34 37 30 34 
35 28 35 35 
37 35 37 37 
38 38 38 38 
39 39 40 39 
40 40 39 40 
41 41 41 41 
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Table K.2(e) – Best module ranges for LDST and 180 individuals. 

OX OX2 PMX OX’ 
1 1 1 1 
4 4 4 4 
3 5 3 14 

14 3 11 5 
7 7 5 3 
5 17 7 7 

11 11 14 11 
16 13 19 16 
9 14 16 9 

17 9 13 13 
23 16 9 18 
22 19 17 23 
13 23 23 25 
30 22 22 19 
31 21 28 22 
18 18 18 17 
19 25 30 21 
25 28 25 29 
26 31 29 31 
28 30 31 26 
29 26 21 30 
33 33 37 28 
21 29 26 33 
34 34 33 34 
35 35 41 37 
37 37 34 35 
38 38 39 39 
40 39 35 38 
39 40 38 41 
41 41 40 40 
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Table K.2(f) – Best module ranges for LDST and 200 individuals. 

OX OX2 PMX OX’ 
1 1 1 1 
4 4 4 4 
5 5 14 3 
3 3 3 5 
7 11 5 7 

11 7 11 9 
14 9 9 17 
19 13 7 11 
9 14 18 13 

16 16 25 14 
13 19 16 16 
31 23 19 23 
23 21 13 18 
22 30 17 25 
21 22 23 19 
30 25 28 21 
17 17 30 22 
18 18 21 31 
25 28 33 30 
26 33 26 29 
28 26 29 33 
29 29 22 26 
33 31 31 28 
34 34 34 34 
40 37 35 35 
35 35 41 37 
37 38 37 38 
38 39 38 39 
39 40 39 40 
41 41 40 41 
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L. RELIABLE MODULE RANGES WITH RELIABILITY PERCENTAGES OF THE 
TRAINING DATA 

 

Table L.1(a) – Reliability of best module ranges of SDST for a population size of 100. 

Expert OX OX2 PMX OX’ 
Reliability 93.87% 97.30% 96.56% 97.55% 

1 4 1 4 1 
4 1 4 1 4 
6 8 8 8 9 
8 9 9 6 6 
9 10 10 9 8 

10 13 13 10 10 
13 14 6 13 14 
14 6 14 14 13 
15 15 15 15 15 
16 16 16 26 16 
20 20 20 16 23 
23 29 23 20 26 
26 23 29 32 29 
29 35 26 23 20 
32 26 32 35 32 
35 38 35 29 35 
38 32 38 38 38 

 

Table L.1(b) – Reliability of best module ranges of SDST for a population size of 120. 

Expert OX OX2 PMX OX’ 
Reliability 94.11% 97.55% 96.07% 95.83% 

1 1 4 1 4 
4 4 1 4 1 
6 10 8 10 6 
8 8 6 6 9 
9 6 9 8 10 

10 9 10 9 8 
13 14 14 14 13 
14 13 13 13 14 
15 15 15 15 16 
16 16 16 16 15 
20 20 26 20 26 
23 29 20 29 23 
26 23 23 23 20 
29 38 35 35 35 
32 35 32 32 38 
35 32 29 26 29 
38 26 38 38 32 
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Table L.1(c) – Reliability of best module ranges of SDST for a population size of 140. 

Expert OX OX2 PMX OX’ 
Reliability 94.11% 96.81% 96.32% 98.04% 

1 4 4 1 1 
4 1 1 4 4 
6 8 8 8 9 
8 9 9 6 8 
9 10 10 13 6 

10 13 6 9 10 
13 14 13 15 14 
14 6 14 14 13 
15 16 16 16 16 
16 23 15 10 15 
20 15 20 20 23 
23 26 29 23 20 
26 20 26 29 26 
29 29 23 26 29 
32 32 32 32 35 
35 38 38 35 32 
38 35 35 38 38 

 
Table L.1(d) – Reliability of best module ranges of SDST for a population size of 160. 

Expert OX OX2 PMX OX’ 
Reliability 95.83% 97.79% 92.89% 97.79% 

1 1 1 1 4 
4 4 4 4 1 
6 6 8 6 8 
8 9 6 8 10 
9 8 9 9 6 

10 10 10 13 13 
13 14 14 26 9 
14 13 13 10 14 
15 16 15 14 15 
16 23 16 16 16 
20 15 23 23 23 
23 20 20 15 20 
26 29 26 20 26 
29 38 32 29 29 
32 32 35 32 32 
35 26 38 38 35 
38 35 29 35 38 
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Table L.1(e) – Reliability of best module ranges of SDST for a population size of 180. 

Expert OX OX2 PMX OX’ 
Reliability 95.10% 98.53% 98.53% 95.10% 

1 1 1 4 1 
4 4 4 1 4 
6 6 6 6 6 
8 8 9 9 8 
9 9 8 8 9 

10 10 10 14 13 
13 13 13 13 10 
14 26 14 10 14 
15 14 16 15 26 
16 15 15 16 16 
20 16 20 20 23 
23 20 23 23 15 
26 32 26 26 20 
29 23 29 29 35 
32 29 38 32 32 
35 38 35 35 29 
38 35 32 38 38 

 
Table L.1(f) – Reliability of best module ranges of SDST for a population size of 200. 

Expert OX OX2 PMX OX’ 
Reliability 94.60% 98.28% 94.11% 97.06% 

1 4 4 1 1 
4 1 1 4 4 
6 6 6 9 9 
8 8 8 8 8 
9 13 9 10 6 

10 9 10 14 10 
13 10 14 6 14 
14 14 13 13 13 
15 16 16 15 15 
16 23 15 16 16 
20 15 26 29 20 
23 32 23 20 23 
26 26 20 26 26 
29 20 29 23 38 
32 38 32 38 32 
35 29 35 35 29 
38 35 38 32 35 
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Table L.2(a) – Reliability of best module ranges of LDST for a population size of 100. 

Expert OX OX2 PMX OX’ 
Reliability 92.61% 96.93% 87.85% 92.12% 

1 10 1 1 1 
2 1 2 2 2 
4 2 4 4 4 
5 4 6 6 8 
6 9 5 10 13 
8 11 9 5 5 
9 12 10 12 9 

10 5 8 17 10 
11 8 11 8 6 
12 14 12 26 11 
13 13 17 13 21 
14 6 14 9 14 
15 17 13 11 25 
16 15 16 25 12 
17 20 23 15 16 
20 21 20 21 20 
21 16 21 14 15 
22 32 15 16 17 
23 23 31 23 23 
24 31 22 20 31 
25 24 32 31 29 
26 33 24 22 26 
29 26 25 32 32 
31 29 26 38 22 
32 22 33 33 38 
33 25 29 35 34 
34 34 34 29 24 
35 36 36 34 35 
36 38 35 24 36 
38 35 38 36 33 
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Table L.2(b) – Reliability of best module ranges of LDST for a population size of 120. 

Expert OX OX2 PMX OX’ 
Reliability 91.45% 95.86% 88.70% 92.43% 

1 8 4 4 1 
2 1 5 1 4 
4 4 1 10 9 
5 2 2 2 2 
6 9 8 8 10 
8 17 10 11 8 
9 14 9 14 12 

10 6 11 9 13 
11 11 14 6 11 
12 20 6 12 5 
13 10 12 15 14 
14 5 13 5 17 
15 15 16 17 16 
16 12 17 23 6 
17 13 23 29 23 
20 21 25 20 20 
21 22 15 13 21 
22 25 20 35 15 
23 16 22 16 26 
24 23 24 21 29 
25 26 29 26 22 
26 31 21 22 34 
29 29 31 31 24 
31 32 32 24 25 
32 33 33 25 35 
33 24 34 34 31 
34 38 26 36 36 
35 35 36 38 38 
36 34 38 32 32 
38 36 35 33 33 
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Table L.2(c) – Reliability of best module ranges of LDST for a population size of 140. 

Expert OX OX2 PMX OX’ 
Reliability 88.47% 97.06% 88.16% 92.57% 

1 4 4 1 5 
2 1 1 8 1 
4 2 2 2 2 
5 17 5 9 4 
6 9 6 5 8 
8 8 9 10 10 
9 10 8 15 9 

10 5 10 4 6 
11 11 12 17 12 
12 6 13 12 14 
13 12 11 20 13 
14 13 14 14 15 
15 14 15 13 16 
16 21 16 25 11 
17 20 17 6 17 
20 23 23 11 21 
21 29 20 22 20 
22 31 21 21 22 
23 15 22 16 32 
24 32 26 23 23 
25 26 29 26 29 
26 16 34 31 35 
29 22 24 34 26 
31 24 25 29 34 
32 38 35 35 38 
33 35 38 36 36 
34 33 31 32 31 
35 25 33 33 24 
36 34 32 38 25 
38 36 36 24 33 
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Table L.2(d) – Reliability of best module ranges of LDST for a population size of 160. 

Expert OX OX2 PMX OX’ 
Reliability 93.50% 95.77% 91.85% 95.19% 

1 5 4 1 1 
2 1 1 2 4 
4 4 2 4 2 
5 9 5 5 6 
6 2 6 9 8 
8 6 8 8 5 
9 10 9 6 10 

10 14 10 11 12 
11 12 12 12 13 
12 8 11 17 11 
13 13 14 29 9 
14 11 13 10 14 
15 16 16 14 15 
16 20 26 13 16 
17 17 17 16 17 
20 24 21 15 21 
21 22 15 25 26 
22 21 23 26 23 
23 26 20 23 25 
24 29 24 21 20 
25 34 25 20 22 
26 15 31 22 29 
29 25 32 24 34 
31 23 22 35 31 
32 36 33 31 32 
33 31 35 34 38 
34 32 38 36 36 
35 33 29 38 33 
36 38 34 33 24 
38 35 36 32 35 
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Table L.2(e) – Reliability of best module ranges of LDST for a population size of 180. 

Expert OX OX2 PMX OX’ 
Reliability 94.70% 94.84% 90.56% 93.81% 

1 4 4 4 1 
2 2 1 1 4 
4 1 2 2 2 
5 8 8 9 9 
6 5 12 8 10 
8 9 6 12 6 
9 10 5 11 12 

10 14 9 13 8 
11 6 10 6 11 
12 12 13 5 5 
13 13 11 14 14 
14 15 14 10 13 
15 11 16 21 16 
16 16 17 16 15 
17 17 21 15 17 
20 20 29 26 21 
21 22 23 17 26 
22 21 26 29 23 
23 26 15 23 29 
24 23 20 31 20 
25 38 24 20 24 
26 31 22 38 38 
29 24 31 22 22 
31 32 25 35 31 
32 29 34 24 35 
33 35 36 32 32 
34 34 32 25 25 
35 25 33 34 33 
36 33 38 36 34 
38 36 35 33 36 
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Table L.2(f) – Reliability of best module ranges of LDST for a population size of 200. 

Expert OX OX2 PMX OX’ 
Reliability 96.08% 95.64% 92.34% 96.97% 

1 1 1 1 1 
2 2 2 4 2 
4 9 4 8 4 
5 4 5 2 5 
6 6 8 5 9 
8 8 9 9 6 
9 10 6 12 10 

10 11 10 6 8 
11 12 14 10 14 
12 14 12 13 12 
13 13 13 17 13 
14 17 16 14 16 
15 5 20 16 11 
16 16 17 11 17 
17 21 11 15 15 
20 22 15 29 23 
21 15 21 23 20 
22 23 23 22 26 
23 20 24 26 24 
24 26 29 20 21 
25 24 22 38 22 
26 29 35 24 25 
29 25 25 21 33 
31 34 38 31 29 
32 31 26 35 38 
33 32 31 32 31 
34 35 32 25 32 
35 33 33 34 34 
36 38 34 36 35 
38 36 36 33 36 
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M. RELIABLE MODULE RANGES WITH RELIABILITY PERCENTAGES OF THE 
CONTROL DATA 

 

Table M.1(a) – Reliability of best module ranges of SDST for a population size of 100. 

Expert OX OX2 PMX OX’ 
Reliability 95.83 96.81 95.10 97.79 

1 1 1 1 1 
3 3 5 4 3 
4 4 4 3 4 
5 5 9 5 5 
7 11 3 11 7 
9 7 7 7 9 

11 12 11 12 11 
12 9 12 9 12 
14 14 14 14 14 
19 19 19 19 29 
21 29 29 30 19 
22 22 21 29 21 
29 34 22 22 22 
30 30 30 21 34 
34 21 34 40 36 
36 36 40 36 30 
40 40 36 34 40 

 

Table M.1 (b) – Reliability of best module ranges of SDST for a population size of 120. 

Expert OX OX2 PMX OX’ 
Reliability 96.56 98.04 94.36 96.81 

1 1 1 1 1 
3 4 4 4 4 
4 3 5 3 3 
5 11 3 5 5 
7 5 7 11 14 
9 7 11 7 7 

11 12 12 14 11 
12 14 9 12 9 
14 9 14 9 12 
19 19 19 19 19 
21 22 22 29 21 
22 21 21 21 22 
29 29 29 34 29 
30 30 34 36 30 
34 36 30 22 36 
36 34 36 30 34 
40 40 40 40 40 
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Table M.1 (c) – Reliability of best module ranges of SDST for a population size of 140. 

Expert OX OX2 PMX OX’ 
Reliability 95.83 97.30 96.08 98.28 

1 1 1 1 1 
3 4 4 4 3 
4 3 5 3 4 
5 7 3 5 5 
7 5 11 7 7 
9 11 7 11 11 

11 12 9 9 12 
12 9 12 12 9 
14 29 14 14 14 
19 14 19 19 22 
21 19 21 21 19 
22 21 29 29 21 
29 30 22 34 29 
30 22 30 36 30 
34 34 40 22 36 
36 36 36 40 34 
40 40 34 30 40 

 
Table M.1 (d) – Reliability of best module ranges of SDST for a population size of 160. 

Expert OX OX2 PMX OX’ 
Reliability 97.06 97.30 95.59 96.81 

1 1 1 1 1 
3 4 4 4 4 
4 5 3 3 5 
5 3 5 14 3 
7 7 11 5 7 
9 9 7 7 11 

11 11 12 9 9 
12 12 9 11 12 
14 14 14 12 14 
19 19 19 19 19 
21 21 21 22 22 
22 29 29 21 29 
29 34 22 29 30 
30 22 30 34 21 
34 40 40 30 36 
36 30 36 36 40 
40 36 34 40 34 
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Table M.1 (e) – Reliability of best module ranges of SDST for a population size of 180. 

Expert OX OX2 PMX OX’ 
Reliability 96.08 98.53 94.36 97.80 

1 1 1 1 1 
3 4 4 3 3 
4 3 3 4 4 
5 9 5 5 5 
7 11 7 11 11 
9 5 9 12 7 

11 7 11 7 9 
12 12 12 14 12 
14 14 14 9 14 
19 19 19 19 19 
21 22 22 29 22 
22 30 21 21 21 
29 29 29 22 29 
30 21 30 36 34 
34 34 40 40 40 
36 36 36 34 30 
40 40 34 30 36 

 
Table M.1(f) – Reliability of best module ranges of SDST for a population size of 200. 

Expert OX OX2 PMX OX’ 
Reliability 95.34 96.81 96.07 95.34 

1 1 1 1 1 
3 3 4 4 3 
4 4 3 3 4 
5 5 5 5 5 
7 11 7 11 11 
9 14 11 7 7 

11 7 12 12 12 
12 9 14 9 14 
14 12 9 14 22 
19 19 19 19 9 
21 22 29 29 19 
22 21 21 21 21 
29 36 22 22 29 
30 30 36 40 34 
34 29 30 30 30 
36 34 34 36 40 
40 40 40 34 36 

 

 

 



171 
 

Table M.2(a) – Reliability of best module ranges of LDST for a population size of 100. 

Expert OX OX2 PMX OX’ 
Reliability 93.94 97.14 92.70 96.57 

1 1 1 11 1 
3 4 4 1 3 
4 5 3 3 4 
5 3 5 4 5 
7 7 11 7 7 
9 14 7 5 11 

11 11 14 13 14 
13 18 13 23 16 
14 23 9 17 9 
16 25 16 25 22 
17 13 19 14 19 
18 9 18 18 21 
19 22 23 16 17 
21 19 21 9 18 
22 17 25 29 23 
23 28 22 19 25 
25 16 28 28 13 
26 21 17 21 26 
28 26 31 22 29 
29 29 29 33 30 
30 30 33 26 28 
31 31 26 30 31 
33 33 30 31 33 
34 34 34 34 34 
35 35 35 35 37 
37 37 37 37 38 
38 38 38 38 35 
39 39 39 39 39 
40 41 40 40 40 
41 40 41 41 41 
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Table M.2 (b) – Reliability of best module ranges of LDST for a population size of 120. 

Expert OX OX2 PMX OX’ 
Reliability 92.74 96.75 92.65 95.81 

1 1 1 1 1 
3 4 4 4 4 
4 3 14 14 7 
5 5 3 7 5 
7 11 11 5 3 
9 7 7 16 14 

11 9 5 9 11 
13 14 13 13 19 
14 23 22 17 9 
16 17 9 22 22 
17 16 16 3 16 
18 13 18 18 23 
19 30 19 19 13 
21 31 23 25 17 
22 18 21 26 25 
23 19 17 23 18 
25 25 25 21 26 
26 26 26 11 21 
28 28 30 30 30 
29 29 29 28 31 
30 21 28 31 29 
31 22 31 33 28 
33 33 33 29 33 
34 34 34 34 34 
35 35 35 35 35 
37 37 37 37 37 
38 40 38 38 38 
39 38 39 39 39 
40 39 40 40 40 
41 41 41 41 41 
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Table M.2(c) – Reliability of best module ranges of LDST for a population size of 140. 

Expert OX OX2 PMX OX’ 
Reliability 93.10 96.93 93.77 96.08 

1 1 1 1 1 
3 3 4 4 4 
4 4 3 5 3 
5 14 14 3 11 
7 21 11 7 5 
9 5 5 18 7 

11 11 7 17 14 
13 7 9 11 9 
14 9 13 13 16 
16 16 16 14 13 
17 23 17 9 19 
18 22 23 16 18 
19 13 19 19 23 
21 17 25 25 17 
22 18 22 26 33 
23 31 28 33 25 
25 29 18 23 22 
26 19 21 28 21 
28 25 30 21 31 
29 26 29 34 29 
30 30 26 30 30 
31 34 34 31 26 
33 28 31 22 28 
34 33 33 29 34 
35 35 35 35 37 
37 39 37 37 35 
38 37 38 38 38 
39 38 39 39 39 
40 40 40 40 40 
41 41 41 41 41 
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Table M.2 (d) – Reliability of best module ranges of LDST for a population size of 160. 

Expert OX OX2 PMX OX’ 
Reliability 93.86 96.00 95.90 95.46 

1 1 1 1 1 
3 4 4 4 4 
4 3 14 5 14 
5 5 3 3 3 
7 14 5 7 5 
9 7 7 11 7 

11 11 11 13 9 
13 17 9 9 11 
14 9 13 14 16 
16 16 23 19 13 
17 13 18 17 19 
18 23 22 22 23 
19 30 19 23 22 
21 31 16 25 25 
22 18 17 16 21 
23 19 21 28 30 
25 25 25 29 18 
26 21 26 21 26 
28 26 30 18 17 
29 28 29 31 29 
30 29 33 26 28 
31 22 31 34 33 
33 33 34 33 31 
34 34 37 30 34 
35 35 28 35 35 
37 37 35 37 37 
38 38 38 38 38 
39 39 39 40 39 
40 40 40 39 40 
41 41 41 41 41 
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Table M.2 (e) – Reliability of best module ranges of LDST for a population size of 180. 

Expert OX OX2 PMX OX’ 
Reliability 92.83 97.64 93.94 96.35 

1 1 1 1 1 
3 4 4 4 4 
4 3 5 3 14 
5 14 3 11 5 
7 7 7 5 3 
9 5 17 7 7 

11 11 11 14 11 
13 16 13 19 16 
14 9 14 16 9 
16 17 9 13 13 
17 23 16 9 18 
18 22 19 17 23 
19 13 23 23 25 
21 30 22 22 19 
22 31 21 28 22 
23 18 18 18 17 
25 19 25 30 21 
26 25 28 25 29 
28 26 31 29 31 
29 28 30 31 26 
30 29 26 21 30 
31 33 33 37 28 
33 21 29 26 33 
34 34 34 33 34 
35 35 35 41 37 
37 37 37 34 35 
38 38 38 39 39 
39 40 39 35 38 
40 39 40 38 41 
41 41 41 40 40 
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Table M.2(f) – Reliability of best module ranges of LDST for a population size of 200. 

Expert OX OX2 PMX OX’ 
Reliability 93.37 95.99 93.77 97.41 

1 1 1 1 1 
3 4 4 4 4 
4 5 5 14 3 
5 3 3 3 5 
7 7 11 5 7 
9 11 7 11 9 

11 14 9 9 17 
13 19 13 7 11 
14 9 14 18 13 
16 16 16 25 14 
17 13 19 16 16 
18 31 23 19 23 
19 23 21 13 18 
21 22 30 17 25 
22 21 22 23 19 
23 30 25 28 21 
25 17 17 30 22 
26 18 18 21 31 
28 25 28 33 30 
29 26 33 26 29 
30 28 26 29 33 
31 29 29 22 26 
33 33 31 31 28 
34 34 34 34 34 
35 40 37 35 35 
37 35 35 41 37 
38 37 38 37 38 
39 38 39 38 39 
40 39 40 39 40 
41 41 41 40 41 
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N. COMPARISON GRAPHICS OF TRAINING AND CONTROL DATA FOR SDST 
 

 
Figure N.1(a) –Comparing the most reliable module range result of 

training data – SDST for a population size of 100 with Expert’s 

Suggestion. The solution is 97.55% reliable in OX’. 

 

 
Figure N.1(b) –Comparing the most reliable module range result 

of training data – SDST for a population size of 120 with Expert’s 

Suggestion. The solution is 97.55% reliable in OX2. 
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Figure N.1(c) –Comparing the most reliable module range result of 

training data – SDST for a population size of 140 with Expert’s 

Suggestion. The solution is 98.04% reliable in OX’. 

 

 
Figure N.1(d) –Comparing the most reliable module range result 

of training data – SDST for a population size of 160 with Expert’s 

Suggestion. The solution is 97.79% reliable in OX2. 
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Figure N.1(e) –Comparing the most reliable module range of 

training data – SDST result for a population size of 200 with 

Expert’s Suggestion. The solution is 98.28% reliable in OX2. 

 

 
Figure N.2(a) –Comparing the most reliable module range of 

control data – SDST result for a population size of 100 with 

Expert’s Suggestion. The solution is 97.79% reliable in OX’. 
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Figure N.2(b) –Comparing the most reliable module range of 

control data – SDST result for a population size of 120 with 

Expert’s Suggestion. The solution is 98.04% reliable in OX2. 

 

 
Figure N.2(c) –Comparing the most reliable module range of 

control data – SDST result for a population size of 140 with 

Expert’s Suggestion. The solution is 98.28% reliable in OX’. 
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Figure N.2(d) –Comparing the most reliable module range of 

control data – SDST result for a population size of 160 with 

Expert’s Suggestion. The solution is 97.30% reliable in OX2. 

 

 
Figure N.2(e) –Comparing the most reliable module range of 

control data – SDST result for a population size of 200 with 

Expert’s Suggestion. The solution is 96.81% reliable in OX2. 
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O. COMPARISON GRAPHICS OF TRAINING AND CONTROL DATA FOR LDST 
 

 
Figure O.1(a) –Comparing the most reliable module range result of 

training data – LDST for a population size of 100 with Expert’s 

Suggestion. The solution is 96.93% reliable in OX2. 

 

 
Figure O.1(b) –Comparing the most reliable module range result 

of training data – LDST for a population size of 120 with Expert’s 

Suggestion. The solution is 95.86% reliable in OX2. 
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Figure O.1(c) –Comparing the most reliable module range result of 

training data – LDST for a population size of 160 with Expert’s 

Suggestion. The solution is 95.77% reliable in OX2. 

 

 
Figure O.1(d) –Comparing the most reliable module range result 

of training data – LDST for a population size of 180 with Expert’s 

Suggestion. The solution is 94.84% reliable in OX2. 
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Figure O.1(e) –Comparing the most reliable module range result of 

training data – LDST for a population size of 200 with Expert’s 

Suggestion. The solution is 96.97% reliable in OX’. 

 

 
Figure O.2(a) –Comparing the most reliable module range result of 

control data – LDST for a population size of 100 with Expert’s 

Suggestion. The solution is 97.14% reliable in OX2. 
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Figure O.2(b) –Comparing the most reliable module range result 

of control data – LDST for a population size of 120 with Expert’s 

Suggestion. The solution is 96.75% reliable in OX2. 

 

 
Figure O.2(c) –Comparing the most reliable module range result of 

control data – LDST for a population size of 140 with Expert’s 

Suggestion. The solution is 96.93% reliable in OX2. 
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Figure O.2(d) –Comparing the most reliable module range result 

of control data – LDST for a population size of 160 with Expert’s 

Suggestion. The solution is 96.00% reliable in OX2. 

 

 
Figure O.2(e) –Comparing the most reliable module range result of 

control data – LDST for a population size of 200 with Expert’s 

Suggestion. The solution is 97.41% reliable in OX’. 
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P. RUNTIME GRAPHICS OF TRAINING AND CONTROL DATA 
 

 
Figure P.1(a) – Runtime graphs showing the dataset growth for 

training data of 120 individuals. 

 

 
Figure P.1(b) – Runtime graphs showing the dataset growth for 

training data of 140 individuals. 
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Figure P.1(c)– Runtime graphs showing the dataset growth for 

training data of 160 individuals. 

 

 
Figure P.1(d) – Runtime graphs showing the dataset growth for 

training data of 180 individuals. 

 

 
Figure P.1(e) – Runtime graphs showing the dataset growth for 

training data of 200 individuals. 
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Figure P.2(a) – Runtime graphs showing the dataset growth for 

control data of 120 individuals. 

 

 
Figure P.2(b) – Runtime graphs showing the dataset growth for 

control data of 140 individuals. 

 

 
Figure P.2(c) – Runtime graphs showing the dataset growth for 

control data of 160 individuals. 
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Figure P.2(d) – Runtime graphs showing the dataset growth for 

control data of 180 individuals. 

 

 
Figure P.2(e) – Runtime graphs showing the dataset growth for 

control data of 200 individuals. 
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Q. TRENDS OF INCREASE IN RUNTIMES FOR THE TRAINING AND CONTROL 
DATA 

 

 
Figure Q.1(a) – Trend of increase in runtime values of training data 

for OX. 

 

 
Figure Q.1(b) – Trend of increase in runtime values of training data 

for OX2. 
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Figure Q.1(c) – Trend of increase in runtime values of training data 

for PMX. 

 

 
Figure Q.1(d) – Trend of increase in runtime values of training data 

for OX’. 

 

 
Figure Q.2(a) – Trend of increase in runtime values of control data for 

OX. 
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Figure Q.2(b) – Trend of increase in runtime values of control data for 

OX2.  

 

 
Figure Q.2(c) – Trend of increase in runtime values of control data for 

PMX. 

 

 
Figure Q.2(d) – Trend of increase in runtime values of control data for 

OX’. 
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