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CURRICULUM PLAN OPTIMIZATION WITH RULE BASED GENETIC
ALGORITHMS

ABSTRACT

In corporations, accurate planning should be applied to manage the in — service
training task within an optimum time period and without hindering the working
tempo of the employees. For this reason, it is better to consider the curriculum
planning task as a timetabling problem. However, when the timetables are prepared
manually, it may turn out to be a complicated and time consuming problem. In this
study, an effective solution to the curriculum planning problem by using a rule —
based genetic algorithm is put forward. The data, which is used by the fitness
function of the GA to obtain the results, is the prerequisite rule set of the modules of
the training program. The contribution to the literature is handling the structure of its
data set successfully, despite tightly related rules among the modules. The modules
of a training material were ranked effectively and while performing the ranking
process, parameter tuning for GA was done to determine the best parameter
combination of GA. The tests were done for two different amounts of modules. The
results were then compared with the suggestion of an expert trainer by using
Spearman rank correlation test, which is nonparametric, and the best parameter
combination of the GA giving the most similar result to that of the expert’s was
determined. According to the tests, the results gathered were considered to be 98.53
percent reliable for the smaller size of module ranges (chromosomes) and 97.06
percent reliable for the larger size of module ranges when compared with the
corresponding suggested module range. Same tests were repeated with a control data
set, having the same characteristics with the first one and two different sizes, and the
results verified that same parameter combinations give the same successful module

ranges in the same reliability percentages.

Keywords: Genetic algorithm, rule base, curriculum plan optimization, Spearman

rank correlation.



KURAL TABANLI GENETIK ALGORITMALAR iLE EGIiTiM PLANI
OPTIMiZASYONU

0z

Sirketlerde, sirket i¢i egitim silirecinin optimum siirede ve calisanlarin is
temposunu etkilemeden gercgeklestirilmesi i¢in kesin ve hassas bir planlama
yapilmasi gerekmektedir. Bu sebeple bir egitim plani hazirlanmasi islemini bir
zaman cizelgeleme problemi olarak ele almak uygun olur. Zaman cizelgeleri elle
hazirlandig1 zaman karmasik ve ¢ok zaman alan bir probleme doniisebilmektedir. Bu
caligmada, kural tabanli genetik algoritma (GA) kullanilarak egitim plani hazirlama
problemine etkin bir ¢6ziim ortaya konmaktadir. GA’nin uygunluk fonksiyonunun
¢oziim elde etmek i¢in kullandig veriler, egitim programindaki boliimlerin
birbirlerine gore 6n kosul durumlarini igeren bir kurallar kiimesinden olugmaktadir.
Caligmanin literature katkis1 birbirine siki kurallarla bagli modiilleri olan bir egitim
materyalinin veri kiimesini basarili bir sekilde isleyebilmesidir. Egitim materyalinin
boliimleri olan modiiller etkin bir bigimde siralanabilmekte ve bu islem esnasinda da
siralama islemi i¢in kullanilacak en uygun parametre kombinasyonunu tespit etmek
lizere parametre uyumlamasi yapilmaktadir. Testler iki farkli modiil sayist igin
gerceklestirilmistir. Sonuglar bir uzman o6nerisi ile parametrik olmayan Spearman
sira korelasyon testi kullanilarak karsilastirilmis ve uzman onerisine en yakin sonug
tespit edilmistir. Buna gore, elde edilen sonuglar uzman Onerisi ile
karsilastirildiginda, kiigiik boyutlu modiil dizilimleri igin yizde 98,53, biyik boyutlu
modul dizilimleri igin ise yuzde 97,06 oraninda “giivenilir” bulunmustur. Aymn
Ozelliklere sahip ve iki farkli biiyiiklikte bir kontrol veri grubu ile testler
tekrarlanmis ve ayni parametre kombinasyonlari ile en basarili dizilim sonuglarinin

alinabildigi dogrulanmustir.

Anahtar sozcikler: Genetik algoritma, kural tabani, egitim plani1 optimizasyonu,

Spearman sira korelasyonu.
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CHAPTER ONE
INTRODUCTION

In the 1950’s the idea of “thinking machines” was stated by Alan Turing and it
was predicted that these intelligent machines would play a major part in our lives
within a century. Machines are not very capable of thinking as humans yet, however,
studies about “intelligence” have become very popular over the years. Atrtificial
intelligence (Al), which is a branch of computer science, aims to understand
“intelligence” by developing some computer programs which can behave as an
intelligent being. A computer is supposed to behave as a human to be accepted as
“intelligent”. These intelligent programs are used commonly in every area of our
daily lives. For this reason, artificial intelligence has some sub branches, in which the
researchers apply some search techniques to solve optimization and scheduling
problems of today’s world.

For decades, the researchers have dealt with studies about understanding the
human brain and its behavior. For this purpose, they tried to simulate the behavior of
the brain as a chain of actions and reactions of the neurons. These simulations have
been used for both scientific modeling purposes in theoretical approaches and
solving practical problems. During these studies, many different sub-branches of
artificial intelligence emerged. The methodologies invented as the results of these
sub-branches have found many different application areas in people’s life. These
techniques have mostly been used for solving complex problems, the problems that
take too much time to solve manually or the ones that the solution is not very
obvious at the beginning. By this means, artificial intelligence permits people to

construct solution models to the problems and provides automatic design methods.

Practical problems generally appear in real — world problems rather than isolated
laboratory environments. For example in business life, many problems, which need
the help of some modeling techniques to be solved, emerge. The companies need to
be well equipped in terms of solving problems in order to compete with other

companies in the same sector. In order to catch up with the technological



improvements and higher life standards, companies use timetables or curriculum
plans, which help to determine the workflow of the companies and to make use of
the personnel and technical hardware effectively. Also they organize some training
programs to make the employees be aware of the innovations in the sector. Since
awareness means well trained personnel, some training programs must be used and
these must be scheduled well. Therefore, the concept of curriculum planning can be
mentioned as a rather popular research area. However, preparing an optimum
curriculum plan manually might turn out to be a quite complex and time consuming
problem. So many people from different departments of the company have to gather
together to find the optimum curriculum plan for their trainees and this is a quite
challenging task. In a corporation, it is a must to take the constraints of each
component (instructors and classrooms for a school, flight traffic for an airport, nurse
rostering or operating room timetable for a hospital (Cardoen, Demeulemeester &
Belien, 2010), etc.) as in timetabling problems into consideration. For this reason, it
is a good application area for the researchers who work on optimization problems of

real life.

Researchers studied on different computer programs with different techniques to
find solutions to the daily life problems. In some problems every data used in the
program are certain and precise, where in some cases there are uncertain things in the
definition of the problem. In 1990’s a new notion, Soft Computing (SC), is
introduced by Zadeh (1994) and it suggests solutions to the cases where uncertainty
occurs. SC inspires from the working principles of the human mind because human
mind has always a tolerance for the imprecise and uncertain data. However in hard
computing, the analysis of the problem and the model for the solution must be stated

precisely. The inputs and the outputs of the program should be defined clearly.

SC optimizes the time and the quality of the solution while solving problems
which are unsolvable or difficult to solve with traditional methods. SC is made up of
different components like Fuzzy Logic (FL), Neurocomputing (NC), Machine
Learning (ML), Evolutionary Computation (EC), Particle Swarm Optimization

(PSO) and Probabilistic Reasoning (PR). These methods are considered as



complementary for each other rather than being alternatives (Selouani, 2011). This
means that these techniques perform better in solving a problem when they are used
together. There is a wide application area for SC. These are briefly as follows:
Biometrics, bioinformatics, biomedical systems, robotics, vulnerability analysis,
character recognition, natural language processing (NLP), multi-objective
optimizations, wireless networks, financial time series prediction, image processing,
toxicology, machine control, software engineering, information management, picture
compression, music, noise removal, data mining and social network analysis (Shukla,
Tiwari & Kala, 2010).

In optimization problems, when it is needed to find an optimum solution with the
minimum cost, the solution can be generated with soft computing techniques.
Another advantage of SC methods is that, it is not needed to specify every detail of
the solution model of the system from the beginning (Castillo & Melin, 1996)
because they are non-linear systems and are able to approximate to the solution
easily than linear models (Castillo, Melin, Kacprzyk & Pedrycz, 2008). For
example, timetabling and curriculum planning problems are generally difficult to
manage manually or with linear programming solutions. For this reason, some
evolutionary algorithms and stochastic search techniques are used while dealing with

such complex problems.

As one of the soft computing techniques, Genetic algorithms (GA) are said to be
the most appropriate search methodology for optimization problems. They were first
suggested by Holland (1975) and developed by Goldberg (1989). The GAs are still
being improved since Holland and Goldberg within the same principles’ framework.
The algorithm basically inspires from the natural selection mechanism of nature, in
which the best living things survive and the worst ones die. In other words, it is the
simulation of the evolution mechanism of nature in computer environment. The
transportation mechanism of the genetic material in living organisms in nature is
simulated as a population of individuals and the genetic operators of the GA. As the
result of the genetic reproduction mechanisms, the genetic diversity of the

individuals causes the algorithm to reach many different possible solutions. GA does



not find only one solution to a problem; but instead, finds a solution set, in which all
solutions in the set are valid. This means that individuals of the final population
should be the ones carrying more qualified genetic material to survive for more

number of generations.

GA may be applied to many different application areas like job shop scheduling,
circuit design, weather forecast, bidding strategies, prediction of a protein structure,
automatic programming, modeling natural immunity systems, understanding
behavior of insect colonies, evolution and learning, telecommunication and network

design.

With genetic algorithms, Expert Systems (ES) can also be used in solving
curriculum planning problems. Expert systems are computer programs, designed to
solve real world problems instead of a human expert in a certain subject to make
decisions and find solutions to a problem by using its own inference mechanisms and
human expertise data (Giarratano & Riley, 2004). Expert systems are also called
knowledge based systems (KBS) because it contains the knowledge of an expert,
collected heuristically or by experience. KBS simulates the reasoning mechanism of
a human by applying specific knowledge to the case to be accomplished. The cases
to be solved generally require human intelligence. A KBS has to combine specialized
knowledge with intelligence, as well as a human does while solving or deciding
about a problem. The knowledge is represented as data or rules in the computer
symbolically. These symbols help the system to make decisions. The knowledge can
be gathered from books, manuals or a human expert. The data is converted to
knowledge by using some mathematical or logical presentations, which a computer

can make use of it as facts or rules of a KBS.

Some of the application areas of the KBS are medical treatment, chemistry,
microbiology, engineering failure analysis, fault analysis and technological risk
management systems, risk management systems, troubleshooting systems,
electronics, thermodynamics, knowledge representation, climate forecasting,

decision making, decision planning, chemical process controlling, education,



scheduling, planning, agriculture and geographical information systems (GIS).
Educational corporations are the corporations that use the KBS more frequently
because curriculum planning and preparing schedules manually is a quite complex

process.

Expert systems can be developed by getting use of other artificial intelligence
techniques like GA, Fuzzy Logic (FL) or Neural Networks (NN), which try to help to
simulate different aspects of human intelligence to computers. Thus, the usage of an
ES mechanism can be integrated with a GA by using some of the components of the
ES with the GA. This mechanism can be defined as a “hybrid” system to be used in

optimization problems.

There exist many studies in which the GA and ES techniques are used together. The
application areas that most of the hybrid studies are made are product design
(Chaoan, 2007), image processing (Yu, Zhao, Ni & Zhu, 2009), material handling
(Hamid, Mirhosseyni & Webb, 2009), cost management (Chou, 2009), different
application areas of decision making like decision making in apparel coordination in
fashion (Wong, Zeng & Au, 2009) and decision making for selecting basketball
players (Balli, Karasulu, Ugur & Korukoglu, 2009) and different sectors and
optimization problems like optimization of optical measurement systems (Otero,
Sanchez, & Alcala-Fdez, 2008), composite laminate design with various rule
constraints (Kim, 2007) and optimum location search (Chakravorty & Thukral,
2009).

Conventional methods use algorithms and data structures to solve a problem. For
the solution of more difficult problems, heuristic strategies, which act as the human
brain, are needed (Abraham, 2005). The rule based systems contain rules that help to
formalize the definition of such difficult problems. It uses the rules related to the
problem and evaluates or processes these rules in order to find a solution to the
problem. These rules can be represented in different formats according to the needs
of the system and they are recalled to solve the problem. Mostly, mathematical and

logical representations are used because they are easier to integrate them to a



computer program. One of the most popular and useful ways is to represent the rules
as “If — Then” statements. A rule based system does not have to be an expert system;
instead, different rule based mechanisms also exist. There is an obvious similarity
between rule based systems and GA because a typical GA also evaluates the
chromosomes according to fitness functions and which are implemented according to

the rules.

1.1 The Aim of the Thesis

There are many studies, in which GA is used with other branches of artificial
intelligence like expert systems, fuzzy logic or neural networks. Although ES and its
components are combined with GA techniques in some studies to solve optimization
problems, the rule base component of ES, isolated from ES, used within GA for
solving optimization problems is considered as another research subject. Here
emerges the concept of Rule Based Genetic Algorithms (RBGA). In the thesis, since
rule base component of the ES is used as a part of the curriculum planning system,

the system itself is not an ES; but a rule-based GA is in question.

Rule based methods are deterministic but GA indeed does not use deterministic
rules and it contains randomness. It does not guarantee to converge to the solution
within a fixed time (Sivanandam & Deepa, 2008). Our contribution to the literature is
using the deterministic rule base component of an expert system within the fitness
function of the genetic algorithm to prepare a curriculum plan for a specific course
via a rule-based genetic algorithm. The rules are saved in the system both in logical
and mathematical representation. The mathematical representation is then used to
obtain the initial population of the GA. Saving the rules in these two formats (logical
representation with XML and mathematical representation with matrices) brings the
project flexibility and takes the advantage of adaptability of XML to any

environment and representation formats.



The training data of this study is the in-service training data of a software
company. There are rules among the parts of the training data. These rules are the
prerequisite rules among the modules, which makes the optimization problem more
difficult to manage. To ensure that the obtained results with the training data
mentioned here are reliable, a control data having the same characteristics, which
includes the parts of a database course, which is given in computer programming
departments, is used. The thesis also contains an automated parameter tuning
mechanism. With the help of the parameter tuning process, we also aimed to obtain
more effective solutions to curriculum planning problem. With different parameter
combinations of the GA, a set of curriculum plans are obtained for both datasets as
output. These results are then evaluated with statistical analysis to find the most
appropriate plan. The parameter combination giving the best curriculum plan is also

discussed in respect to the values of the parameters.

The two datasets of the project differ from other datasets, which are used to solve
optimization problems. They have tight prerequisite rules, which affect the size of
the rule base and difficulty of the sequencing operation. This is the main reason of
evaluating the module range in terms of reliability. In order to decide whether the
modules’ range is valid or not, it is needed to make a correlation test. In the
correlation test, the output of the software is compared with the suggestion of a
human expert. All of the results obtained with different parameter combinations of
the GA are tested in order to find the most reliable range. The parameter combination
giving the best module range is also important because that combination is
considered as the best to solve this type of problems with GA. The most appropriate
parameter combination giving the most reliable range is also verified with the results

of the control data.

It is aimed to implement a generic GA to be used for preparing the curriculum
plan for any kind of educational foundation; it can be an education plan for the
courses of a faculty to put the courses in an optimum range or training material of in-
service training programs in companies. The software developed for this purpose will

be helpful in cases where the instructors have trouble with preparing an education



program for their students / trainees. The study also has a different application area
for the XML technology. The XML files include the rule base data as the input of the
initial population of the genetic algorithm and the timetable output can also be saved
in XML format. XML is chosen because it is a generic data format, which can be
transferred and parsed by different platforms like programming languages or

databases.

1.2 Organization of the Thesis Chapters

The first chapter of the thesis is considered as a welcoming about the thesis
subjects emphasizing the aim of the thesis. In Chapter Two, GA, with all its
mechanisms is introduced. The idea behind, and the biological terms used to define a
GA is explained in detail. In Chapter Three, a detailed literature survey about GA
and its usage in optimization problems takes place.

Chapter Four includes the problem definition and the sample cases used in the
tests are introduced. Chapter Five is about the analysis of the problem and the
solution generated is explained in detail. The sixth chapter is about the software
development environment with all its cooperative technologies like database design
and XML technology. Chapter Seven explains the results gathered by the execution
of the system as a conclusion. A detailed analysis of the results resides in this
chapter. Depending on the previous chapter, Chapter Eight includes the comments
about the results of the study and suggests a future work. The MS Excel outputs, the
tables including the most reliable module ranges, the source code of the software and

XML files are also given in Appendices.



CHAPTER TWO
GENETIC ALGORITHMS

Genetic algorithms (GA) are introduced in 1970’s by John Holland (1975).
Holland is the person who had thought of simulating the Darwin’s evolution theory
in computer environment. Later on, his student Goldberg (1989) had developed the
GA notion and thereupon, GAs became the most popular branch of evolutionary
programming as known today. GAs are stochastic search algorithms which are
widely used to find the optimum result as the solution of a problem in cases that the
problem cannot be solved in a polynomial execution time. GA works on large
populations of possible solutions instead of a single individual. This is the main point
that a GA differs from other heuristic search methods. It obtains the set of best
possible solutions with iterative methods as the answer of a complex problem. For
this reason, it plays a great role on artificial intelligence, computation and evaluation
models. Since natural selection in nature affects the biological systems on the world,
evaluating the artificial systems with a similar selection mechanism is a vital

component of artificial life.

Today GA is the most popular branch of evolutionary programming because the
reproduction process, as the transportation mechanism of the genetic material in
living organisms, is simulated to reach the best individuals of the population as
occurs in natural life. GA applies some genetic operators to the individuals of its
population to improve them. The improved, “better” individuals became the new
members of the population instead of the older ones. The individuals who
accommodate to the natural conditions survive and the ones which cannot stand to
the conditions die. As the result of the genetic reproduction mechanisms, the genetic
diversity of the individuals causes the algorithm to reach many different possible
solutions. Since GA leads a parallel search mechanism among the possible solutions,
the result of the genetic algorithm is not a simple individual, but the set of the
individuals, whose properties are closest to the required properties in given

conditions.



2.1 Terms of Genetic Algorithms

Since a GA is inspired from the nature, the terms used in these algorithms are
taken from the biological terms. Within the cells in the living organisms, there are
big molecule structures, which are called chromosomes. Within the chromosomes
there are individual genes. Each gene on a chromosome encodes a specific feature of
the individual (a person’s eye color or height that is identified by specific genes) and

the values of the genes are used to evaluate individuals.

When two individuals mate, according to the laws of sexual reproduction, both
parents pass their chromosomes onto their offspring. In humans, who have 46 paired
chromosomes in total, both parents pass on 23 chromosomes each to their child. The
two chromosomes come together and swap genetic material, and only one of the new
chromosome strands is passed to the child. In sexual reproduction, genes are
exchanged among each chromosome couple and two new children chromosomes are
formed. Sometimes the genes of the parents are copied and passed to the offspring as
identically the same. If only a nucleotide exchange, which is the smallest unit of
DNA, occurs between the parent and the offspring, it is called mutation. To bring up
more qualified generations, the chromosomes with higher quality must be chosen.

Sequences of genes being chained together in chromosomes make up the DNA of
an individual. According to the Pittsburgh approach (Lin & Wei, 2009), each
chromosome represents a complete solution to a problem. For this reason GA tries to
obtain a set of best solutions to the given problem. With this approach, the possibility
to transfer the better features of a qualified population to the next generations is
higher because GA produce successful solutions and successful solutions have better

genetic material to transfer.
There are three more approaches (Michigan approach, Iterative Rule Learning

(IRL) approach and Genetic Cooperative — Competitive Learning (GCCL)
approach), which basically adopt the idea of “one chromosome contains one rule”
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(Rodriguez, Escalante & Peregrin, 2011). How to represent a chromosome is tightly
related with the characteristics of the problem to be solved.

The main components of the GA can be listed as follows:
— A problem to solve
— Encoding
— Initial population
— Selection of parents
— Evaluation (Fitness) value and function
— Reproduction operators
— Elitism

— Stopping criterion

To generate a GA, there must be a problem, which is not quite easy to find a
solution with traditional search methodologies. Some problems may take very long
time to be solved with linear methods. In such cases it is consulted to a GA solution

in widely differing application areas.

2.1.1 Encoding

The input values of a possible solution are represented in a chromosome in
different ways. This representation is called chromosome encoding and there are
several different methods to handle the encoding task like binary encoding (0Os and
1s), real number encoding, integer or literal permutation encoding and general data
structure encoding (Kaya, 2009). The first encoding type that Holland suggested was
binary string representation, where the chromosome consists of only Os and 1s
(Holland, 1975).

Permutation coded GA is used for two purposes. One is ordering, in which the
elements occur before the others. The other one is adjacency, where the
neighborhood between two elements has importance. In permutation coded GA, the

chromosomes cannot be encoded as if they were bit strings. Instead, nonrecurring
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sequence of the elements on the chromosome plays a severe role on GA. Therefore
some crossover methodologies mentioned in further sections were developed only

for permutation coded GA.

2.1.2 Initial Population

A set of chromosomes representing a set of solutions to a specific problem is
prepared before the GA is run. This set of individuals at the very beginning is called
as the initial population of the GA. The initial population is prepared randomly,
mostly generated from a single chromosome representing a sample solution for the
problem. Each chromosome in the population is also called an individual. The
number of individuals composing the initial population has an effect on the
performance of GA. It directly affects the amount of genetic material which is
included to the search. There is not a rule to determine the number of individuals in a
population (Sivanandam & Deepa, 2008). On the contrary, it has to be chosen
according to the characteristics of the problem. In the thesis the population size is in
the interval of 100 — 200.

2.1.3 Selection of Parents

Through the generations of the GA, the chromosomes to be transferred to the next
generation should be chosen with regard to some rules. These rules have been
simulated from the Darwinian evolution theory. This theory states that the nature
applies a “natural selection” mechanism on living things to find the best individuals
to survive (Maulik, Bandyopadhyay & Mukhopadhyay, 2011). Better individuals can
transfer better genes to next generations. The same rule is available in GA. There are
many selection methods that can be applied on the chromosomes like tournament

selection, roulette wheel selection and linear rank selection.
Tournament Selection: A random group of individuals are chosen from the

population. The best individual in the group is chosen as done in a football

championship (Teams play with each other and the best team wins) (Elmas, 2007).
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Roulette Wheel Selection: The selection probabilities of the chromosomes are
placed in a roulette wheel as in a pie chart of percentages and the wheel is rotated.
The individual is selected according to the point that the needle in a roulette table
shows. The one having the bigger percentage in the pie is more probable to be
chosen.

Linear Rank Selection: The individuals are ranked according to their evaluation
values. These selection methods all aim to choose more qualified chromosomes to
transfer their genetic material to the next generation (Greffenstette & Baker, 1989).

In the selection mechanism, the higher probabilities of the chromosomes to be
chosen has importance, but the chromosome having the higher probability may not
be chosen. Randomness of the selection mechanism of GA is the most dominant

factor of the evolution process.

2.1.4 Fitness Value and Fitness Function

Selection operator selects the chromosomes in the population to reproduce and
bring up more quality generations according to the evaluation data of the
chromosomes. Once the initial population is produced, the evolution process starts.
The only information that GA needs to perform the evolution task is some measure
of fitness value about a point in the space (sometimes known as an objective function
value). This value gives information about closeness of the individual to the optimal
solution (Hamid, Mirhosseyni & Webb, 2009). Once the GA knows the current
measure of "goodness" about a point, it can use this to continue searching for the
optimum. The fitness value of an organism is the surviving probability of the
organism in order to reproduce. It is a measurement of how appropriate solution it
encrypts. An individual having a better fitness value is more likely to be selected to
produce children for the next generation. Fitness value is calculated by the help of a
fitness function. GA deals with the problems that maximize the fitness function
(Sivanandam & Deepa, 2008).
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It is an important advantage of the genetic algorithms, that the chromosomes are
selected and evaluated according to their fitness values, not any other criteria.
Therefore GA does not require any problem - specific knowledge. The only
mechanism to be programmed is the fitness function. Once the fitness function
calculates the fitness values of the individuals, three kinds of fitness values should be
taken into consideration. These are the best, average and worst fitness values. Best
fitness value gives an idea about the performance of GA. Especially when parameter
tuning is done, the same algorithms is run for different parameter combinations. In
this case the best fitness values of results with different parameter combinations
gives hints about the right parameter combination. Average fitness value gives an
idea about the average solution and the worst value about the worst solution (Shukla,
Tiwari & Kala, 2010).

2.1.5 GA Operators

The GA is first run on the initial population and is transferred to another
population by means of a kind of operators (methods) like reproduction, crossover or
mutation. In reproduction, as stated in the elitist strategy, the selected two parents are
transferred to the next generation without changing their genetic contents (Mendes,
2008). Crossover and mutation are the main operators which are applied on the

selected chromosomes to obtain new offspring.

2.1.5.1 Crossover

In sexual reproduction, crossover occurs; genes are exchanged among each
chromosome couple and two new children chromosomes are formed. There are
several ways to accomplish this operation. The type of the crossover method to be
applied depends on the type of chromosome encoding. The most common ones are
uniform crossover, one — point crossover, two — point crossover, position — based

crossover and partially — mapped crossover, which is mentioned below:
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Uniform Crossover: A template chromosome composed of binary numbers (0s
and 1s) in the same length with the parent chromosomes is used. Bits of the parent
chromosomes are interchanges in positions where the binary template has “1”
(Maulik, Bandyopadhyay & Mukhopadhyay, 2011). With uniform crossover, each
gene of the chromosome has a chance to be a crossover point but it should be used
for small population sizes (Picek & Golub, 2010).

One — Point Crossover: In bit string coded chromosomes, a randomly chosen
point on the chromosome is selected for both of the parents chosen to mate. The two
parents exchange their genetic material with each other from the selected point of the
chromosome (Shukla, Tiwari & Kala, 2010). This point is called the crossover point
or the cut point. As a result of this operation, the first offspring takes the first part
from Parent 1 and the second part (after the point chosen randomly) from Parent 2.
The same applies for the second chromosome, first part from Parent 2 and the second
part from Parent 1 (Coley, 1998), as depicted in Figure 2.1.

Parent 1 = 11010110001110111010
Parent 2 - 10000110111000110101

Child 1 - 11010110111000110101
Child 2 - 10000110001110111010

Figure 2.1 Example for 1 — point crossover: The offspring are produced by exchanging the two parts

of a chromosome divided from the crossover point shown with a bar.

Two — Point Crossover: In bit strings, the genetic materials of the parents between
randomly chosen two crossover points are exchanged with each other to produce two
new individuals (Figure 2.2). This kind of crossover helps the genetic diversity of the
population (Shukla, Tiwari & Kala, 2010). Two — point crossover is generally

considered better than one — point crossover (Sivanandam & Deepa, 2008).
One — point and two — point crossover operators work properly for the

chromosomes encoded as the bit strings but with the chromosomes encoded with

permutation encoding (ordered chromosomes), it does not work properly. In
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permutation encoding, the genes of the chromosome are not allowed to repeat in the
chromosome. For this reason some unwanted offspring may be produced with
standard one — point and two — point crossover. To avoid this problem, another

crossover technique is developed. Order crossover is used in such cases.

Parent 1 2 1101)01100011110111010
Parent 2 > 100001101110j00110101

Chitd 1 - 11010110111010111010
Child 2 - 10000110001100110101

Figure 2.2 Example for 2 — point crossover: The interval between the two crossover points is
exchanged from Parent 1 to Child 2 and from Parent 2 to Child 1.

One — Point Order Crossover: In this type of crossover, the chromosome up to the
crossover point is taken directly from the parents; the rest of the chromosome is
completed with the genes in the same order with that of the parent’s (Davis, 1991) as

shown in Figure 2.3.

Two — Point Order Crossover: In permutation coded chromosomes, two crossover
points are determined and the first and the last parts of the parents are transferred
directly to the children. This means, Child 1 inherits the first and last parts of Parent
1 and Child 2 inherits the first and last parts of Parent 2 directly. But the middle
section of Child 1 is taken from the unused genes of Parent 2 and middle section of
Child 2 is taken from the unused genes of Parent 1 in the order they appear in the

chromosome as explained in Figure 2.4.

Parent1 - ADKE SCGFHB
Parent2 - HBKEASDCFG

Child1 - ADKEHBSCFG
Child2 - HBKEADSCGF

Figure 2.3 Example for 1 — point order crossover: The first part of the Child 1 is taken from Parent 1

and the second part of Child 1 is taken from Parent 2, the genes which are not taken from Parent 1.
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Parent 1 > ADKI|ESCG|FHB
Parent 2 > HBK|EAFD|CSG

Child1 > ADKECSGFHB
Child2 > HBKADEFCSG

Figure 2.4 Example for 2 — point order crossover: The interval between the two crossover points is

exchanged from Parent 1 to Child 2 and from Parent 2 to Child 1.

Position Based Crossover: According to a given pattern, the parents exchange
their genetic material. An example to position based crossover is given in Figure 2.5.
The genetic material corresponding to the Os in the pattern is exchanged in the

example.

Partially Matched Crossover (PMX): Two crossover points are selected randomly
as in two — point crossover. The genetic material of parents is divided into three
sections with the crossover points. The middle sections of the parents are exchanged,
but since this operator is applied on permutation encoded chromosomes, repeating
genes must be avoided. To solve this problem, a repair operator is used (Sivanandam
& Deepa, 2008). While the middle section of Parent 2 is inserted in the middle
section of Parent 1, the original genes in the middle section of Parent 1 goes to the
positions of Parent 1, where resides the genes from Parent 2. As shown in Figure 2.6,
when the genes 2, 7 and 9 from Parent 2 are transferred to Parent 1, the genes 3, 6, 5
of Parent 1 goes to the places of 2, 7, 9 in Parent 1 to form Child 1. Same applies for
Child 2 when 3, 6, 5 are transferred from Parent 1 to Parent 2.
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Parent1 > 3471304782
Parent2 >002(573(89(43 |01

Pattern > 111/000(11/00(1/0

Child1 ->347|573|47 43 3|1
Child2 ->002(130(89 82|05

Figure 2.5 Example for position — based crossover: The genes are exchanged according to the pattern.

The pattern is decided randomly also.

Parent 1 >487(365|/11092
Parent2 >314(279|/10865

Child1-> 486 279 11053
Child2-> 214 365 10879

Figure 2.6 Example for partially — matched crossover: The genes between the chosen interval are

exchanged as in 2 — point order crossover and a repair operator is used to avoid recurrence.

2.1.5.2 Mutation

The crossover in GA is controlled with a probability value. If the crossover
probability is high, most of the chromosomes are put to the crossover operation. But
sometimes the genes of the parents are copied and passed to the offspring without
crossover, as identically the same. If only a gene is changed from parent to the child,
then it is called mutation. This method avoids the local minimum and supports

genetic diversity.

By applying mutation on a population with a reasonable mutation rate, the
algorithm may be able to find better solutions among mutated chromosomes. There
are several ways to apply mutation on chromosomes. Some frequently used types of
mutation are uniform mutation swap mutation, inversion mutation and insertion

mutation.

Uniform Mutation: In bit strings, mutation is simply the process of changing the

value of a randomly chosen gene (O, if it is 1, 1, if it is 0) (Shukla, Tiwari & Kala,
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2010) as given in Figure 2.7.

Parent 1 = 11010110001110111010

Child1 - 11010110101110111010

Figure 2.7 Example for uniform mutation: The gene to be mutated is chosen randomly.

Swap mutation: In this type of mutation, two randomly chosen genes are swapped
(Chiou & Wu, 2009). It can be used in both bit string and permutation coded
chromosome representations (Figure 2.8).

Parent 1 > ADVKESTCGFHBZ

Child 1 > ADVFESTCGKHBZ

Figure 2.8 Example for swap mutation: Two randomly chosen genes swap.

Inversion Mutation: A random interval is determined on the chromosome and the
genes in this interval are reversed to produce two offspring different than their
parents (Figure 2.9) (Kaya, 2009), (Molla-Alizadeh-Zavardehi, Hajiaghaei-Keshteli
& Tavakkoli-Moghaddam, 2011).

Insertion Mutation: A randomly chosen gene is inserted to a randomly chosen
position on the chromosome. If the position to be inserted is located before the
original location of the gene, the genes from the insertion position are shifted one
position to the right. But if the position to be inserted is located after the original
location of the gene, the genes from the insertion position are shifted one position to
the left (Meng, Zhang & Li, 2010) as shown in (Figure 2.10).
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Parent 1 > ADVK|ESTCGF|HBZ

Child 1 - ADVK|FGCTSE|HBZ

Figure 2.9 Example for inversion mutation: The genes between the two randomly chosen points of

Parent 1 are reversed to produce the Child 1.

Parent > 123458789
Child >126345789
or
Parent > 123&56789

Child -123567849

Figure 2.10 Example for insertion mutation: The chosen gene changes its place while shifting the

other genes to left or to right.

2.1.6 Elitism

When the new generation of individuals is generated, some individuals having the
best fitness values may not be selected for the reproduction process. In order to
prevent the loss of the best individuals, elitism mechanism is applied to the
population. That is, some of the best chromosomes of the previous generation are
copied to the new population directly, without applying any genetic operator. Other
individuals are selected and reproduced for the next generation in a classical GA
process (Maulik, Bandyopadhyay & Mukhopadhyay, 2011). This mechanism
protects the best individuals against crossover or mutation.

Elitism is a powerful strategy improving a GA’s performance in a positive way
(Sivanandam & Deepa, 2008). Generally there are two basic methods to apply elitist
strategy to a population (Deb, 2001). The first one is to copy directly some percent of
the population directly to the next generation. The second way is to compare two

offsprings with their parents and choose the better two individual among the four for
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the next generation (Mokhtari, Abadi & Zegordi, 2011). In both cases, elitism should
be applied with a reasonable amount of individuals. Transferring all best individuals
of a population directly to the next generation may cause lack of diversity. Not

applying elitism may also cause to lose best individuals.

2.1.7 Stopping Criterion

In a typical GA, an initial population of individuals is generated randomly. Each
step of the iteration is called a generation. The individuals in the current population
are evaluated according to the criteria, which was defined before the iterations start.
These criteria are defined by the fitness function of the algorithm. To form a new
population as the next generation of the algorithm, individuals are selected according
to their fitness values. By doing so, the expected number of times an individual is
chosen is approximately proportional to its relative performance in the population.

The number of generations is a common stopping criterion for the GA. The
algorithm has to stop somewhere and at the end, must have the set of best results.
There are several ways to stop the GA:

— A certain number of generations can be assigned to stop the program

— The program may stop when there occur no changes in the fitness values of

the individuals (if the solution set does not improve)

— Fitness value reaches its maximum (Srndic, Pandzo, Dervisevic & Konjicija,

2009).

Since it has some disadvantages to use a standard GA, researchers try to find the
best GA to solve the optimization problems in the best way it can. Traditional GA
highly depends on the initial population and tends to converge rapidly. The genetic
operators may also decrease the diversity of the individuals in the population. As a

result of these handicaps, many studies are done to handle the problems of GA.
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2.2 The Steps of a Standard GA

The following pseudocode can be written for a standard genetic algorithm:

initpop P

For each solution; from P
calculateFitness(solution;)

repeat
select parents solution; and solution, from P
child = crossover(solution;, solution,)
mutate(child)
calculateFitness(child)
replaceChild(P, child)

until stoppingcriteron

2.3 Application Areas of Genetic Algorithms

GA can be used in a wide scale of applications in control systems engineering,

materials engineering and electrical engineering. These applications include topics

like:
— Speech recognition and natural language processing (NLP),
— Telecommunication and network design,
— Optimization,
— [Economics,
— Scheduling in different application areas,
— Automatic programming and machine learning,
— Computer — aided design (CAD),
— Game theory,
— Astronomy and weather forecasting,
— Mathematics,
— Chemistry and biology,
— Bioinformatics and ecological models,

— Data mining.

To find solutions of the problems of these areas, GA can be combined with other

Al techniques like Robotics, Fuzzy Logic (FL), Neural Networks (NN) or Machine
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Learning. Among the application areas, solving the optimization problems of the
systems is the most popular one. It is an iterative procedure that consists of a
constant-size population of individuals, each one represented by a finite string of
symbols, encoding a possible solution in a given problem space. It is called the

search space, which comprises all possible solutions to the problem.
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CHAPTER THREE
LITERATURE OVERVIEW

GA is a quite popular research area in computer science and there are many
studies including different aspects of GA. The studies including GA can be classified
into two main groups. Some studies deals with the performance of the GA, where
some combine GA with other artificial intelligence techniques. Below some studies

of both groups are listed.

3.1 Optimization

GA is mostly used as an optimization technique. For this reason, many of the
studies using GA deal with some optimization problems. There are several
optimization types that GA is used like global optimization, constrained
optimization, combinatorial optimization and multi-objective optimization (Lau,
Tang, Ho & Chan, 2009), (Kaya, 2010). For example since risk management has
become one of the most studied topics with GA, a heuristic approach to portfolio
optimization problem in different risk measures is handled by using this
methodology (Chang, Yang & Chang 2009).

There are many studies mentioning the solutions of optimization problems with
Rule-Based GAs (RBGA) because rule based systems play an important role to
improve the performance of the search methodologies. In the usage of rule based
systems with GA, rule base may help GA while evaluating the individuals of the new
generation (Wang, Liu & Yu, 2009), (Choy, Leung, Chow, Poon, Kwong, Ho & et
al., 2011) or GA can be used in rule extraction. A GA can be based on some heuristic
rules for problems of large size (He & Hui, 2008), (Fernandez, del Jesus & Herrera,
2009). Except optimization problems, rule based systems are also used in genetic
programming (Weise, Zapf & Geihs, 2007), network security (Mishra, Jhapate &
Kumar, 2009), scheduling (Zhang & Tu, 2010).
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Another topic that needs an optimization solution is feature selection. Selecting
the optimal set of features among many of them is done by using a GA (Li, Zhang &
Zeng, 2009). Like feature selection, decision making is a remarkable application area
for the evolutionary techniques because solutions to such problems can be obtained
effectively with genetic algorithms with lower costs of processing times. Order —
acceptance problem with tardiness penalties is a good example of this kind of
problems (Rom & Slotnick, 2009). In molecular biology domain, multiple sequence
alignment issue plays an important role and an approach different than GA like
Decomposition with GA (DGA) is applied. The overall performance of DGA has
been found better than traditional GA (Naznin, Sarker & Essam, 2010). Machining
sequencing is one of the application areas of GA, in which special chromosome
structures and encoding schemes can be applied according to the problem definition
(Shu, Gong & Wang, 2010).

3.2 Scheduling and Timetabling

Scheduling and planning problems can be considered as the optimization
problems because researchers seek for the optimal solutions to solve this kind of
problems. While seeking the optimal solution to scheduling problems, the value of
population size, the design of the fitness function, and parameters of genetic
operators should be decided carefully (Lee, Wu & Liu, 2009). Route planning
problem is one of those in which GA is used (Wu, Shih & Chen, 2009). In the study,
an efficient solution to a cross-fab route planning problem for semiconductor wafer
manufacturing is handled and quite satisfactory results are obtained by implementing
a standard GA with one-point crossover operator. In manufacturing environment, GA
can also be used for scheduling a decision support model to minimize job tardiness
(Choy, Leung, Chow, Poon, Kwong, Ho, et al., 2011).

Scheduling problems also arise in multiprocessors and parallel and distributed
systems. Studies done so far on these application areas with GA have shown that
Artificial Immune systems, especially Immune GA (IGA), perform well in reducing

the number of iterations and exploring the search space to find the solution
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(Moghaddam & Monyadi, 2011). In production scheduling problems, GA is used and
can be combined with different mathematical models to solve the problem with
better results (Fakhrzad & Zare, 2009).

Using GA is a popular technique to solve job — shop scheduling problems. These
techniques can easily been applied to any kind of job — shop problems like no — wait
and blocking job — shops (Brizuela, Zhao & Sannomiya, 2001). Combining GA with
other local search techniques ends up with more effective results. A study has been
done on job — shop scheduling problem, where it brings assertive results thanks to the
crossover technique used in the hybrid GA (Tseng & Lin, 2010). Researchers have
shown that dividing the problem into sub problems and performing a hybrid GA on
these parts improves the solution quality on job — shop scheduling problems (Pan &
Huang, 2009). Another study have shown that the results of improved adaptive
genetic algorithm (IAGA) to a job — shop scheduling problem reports a more
efficient production and more efficient usage of the machines (Wang & Tang, 2011).
Simulated annealing is also another method for job — shop planning and scheduling
problem. In one of the studies it has been combined with GA as Adaptive Annealing
GA (AAGA) to solve the local convergence problems of a classical GA and
improving the convergence rapidity of GA (Liu, Sun, Yan & Kang, 2011).

Using GA methodologies in multi — product parallel machines help to reduce the
setup time for sheet metal shops and the same job can be routed in multiple machines
with a reduced make — span (Chan, Choy & Bibhushan, 2011). The way of
representing the chromosomes also affects the performance of the scheduling process
in multi — product systems. (Ramteke & Srinivasan, 2011). For scheduling
simultaneous multiple resources, bi — vector encoding GA (bvGA) is applied as
another solution method. In this method, chromosome representation of GA and rules
for resource assignment play an important role in solving the problem. bvGA
improves the solution quality and reduces the computation time as well (Wu, Hao,
Chien & Gen, 2011). GA basically offers efficient solution techniques with minimum
number of GA variables in scheduling problems and low computational burden
(Sasikala & Ramaswamy, 2010).

26



Arrival Sequencing and Scheduling (ASS) is also an important application area
for evolutionary approaches. Especially Ant Colony Systems (ACS) seems to be an
effective way to solve such kind of traffic control problems. The experimental work
on ACS for ASS outperforms well and reduces the computational burden in
optimization (Zhan, Zhang & Gong, 2009). ASS can be solved with Bee
Evolutionary Genetic Algorithms (BEGA) and this approach helps to obtain an
optimum landing sequence and landing time effectively (Wang, 2009). An aircraft
category based GA is used in a study which obtains better results in a real time
application (Meng Zhang & Li, 2010).

Similarly, aircraft landing scheduling problem is considered as a tough
optimization problem with many hard constraints since it has to be handled in real
time. As distinct from the traditional optimization methods, researchers have
obtained better solutions by using genetic algorithms (Yu, Cao, Hu, Du & Zhang,
2009). Different GA methodologies have also been applied and compared in aircraft
Departure Sequencing Problem (DSP) like Basic GA, Adaptive GA and Improved
GA (IGA). Among these methodologies it is concluded that IGA has a better
performance when compared to Basic and Adaptive GA methodologies (Wang, Hu
& Gong, 2009). Ripple Spreading GA (RSGA) is one of the techniques applied on
aircraft sequencing problems, which inspires from the ripple — spreading
phenomenon of nature in liquid surfaces. This methodology has many advantages
like being flexible, extendible, memory — efficient and filtering the bad solutions
automatically (Hu & DiPaolo, 2011). In some of the solutions found for airline
rostering problems, novel chromosome representation techniques are introduced,
improved crossover and mutation operators are applied and both operators can be
used alternatively (Souai & Teghem, 2009).

Nurse scheduling problem is very popular research area and GA is used to prepare
an optimal schedule taking the constraints of the job into consideration (Tsai & Li,
2009). Planning surgical operations require an effective scheduling to prevent any

violations in human resources and conflicts in operating rooms. GA solves the
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scheduling problem of surgical activities in terms of time and resource constraints
(Roland, Di Martinelly, Riane & Pochet, 2010). Other search techniques like Tabu
Search can also be combined with genetic algorithms to solve complex scheduling
problems like scheduling an in-line-stepper in a semiconductor fab (Chiou & Wu,
2009) or compressor selection in natural gas pipelines (Nguyen, Uraikul, Chan &
Tontiwachwuthikul, 2008). Hybrid GA methodologies are also applied to solve no-
wait job shop scheduling problems (Mokhtari, Abadi & Zegordi, 2011). A hybrid
system may contain local search mechanism and a traditional GA. Local search, in
this case, is used to improve the initial population (Whitley, 1995). Using multi —
objective evolutionary algorithms (MOEA) in scheduling problems has become a
popular problem solving technique. With this approach, researchers have reached
well — performing results. Multi — objectivization concept has developed and has
been supported with helper objectives to find an optimum sequence of the objectives
(Lochtefeld & Ciarallo, 2010).

In education domain, GA is also used to prepare timetables and schedules. There
exist so many studies to develop different scheduling methods for educational
timetabling problems. Timetabling problems are considered as NP-hard problems
and most of the studies have dealt with educational timetabling by constructing some
methodologies to achieve timetabling task for an educational issue (Burke,
McCollum, Meisels, Petrovic & Qu, 2007), (Aldasht, Alsaheb, Adi & Qopita, 2009)
(Khonggamnerd & Innet, 2009) (Raghavjee & Pillay, 2010).

Researchers have looked for alternative solution approaches to the distinct
branches of timetabling problems like examination timetabling (Carter & Laporte,
1996), (Derakhshi & Zandi, 2010), (Pillay & Banzhaf, 2010), (Cupic, Golub &
Jakobovic, 2009), course timetabling (Carter & Laporte, 1998), (Abdullah, Turabieh,
McCollum & McMullan, 2010a), (Abdullah, Turabieh, McCollum & McMullan,
2010b), (Chinnasri & Sureerattanan, 2010), (Jat & Yang, 2011) , (Ayob & Jaradat,
2009). Some researchers have tried to classify (Bardadym, 1996) and automatize the
timetabling problems (Burke, Jackson, Kingston & Weare, 1997), (Schaerf, 1999),
(Burke & Petrovic, 2002).
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On the other hand, university timetabling became another type of timetabling
problem, in which many remarkable studies have been done. The hard constraints
and soft constraints of a timetabling problem and detecting these constraints
precisely play a great role in finding the most appropriate timetables (Petrovic &
Burke, 2004). Alsmadi, Abo-Hammour, Abu-Al-Nadi & Algsoon tried to solve a
university timetabling problem by developing a GA to handle the constraints,
diminishing the hard constraint violations (2011). Parallelization of GA is another
choice to handle university timetabling problems, solving the problem with a master
— slave architecture (Karol, Tomasz & Henryk, 2006). In one of the studies done on
university timetabling, a hybrid grouping GA is developed and applied on a real
application. It is concluded that a hybrid GA method can assign the students to the
laboratory groups with a maximum capacity and less conflict (Agustin — Blas,
Salcedo — Sanz, Ortiz — Garcia, Portilla — Figueras & Perez — Bellido, 2009).

Except educational timetabling, some other application areas of timetabling can
be mentioned like nurse rostering (Cheang, Li, Lim & Rodrigues, 2003), (Burke, De
Causmaecker, Berghe & Van Landeghem, 2004), sports timetabling (Easton,
Nembhauser & Trick, 2004), transportation timetabling (Kwan, 2004), finding the best
match problem among many candidates and tasks (Altay, Kayakutlu & Topcu, 2010)
and grid scheduling (Adamuthe & Bichkar, 2011). Train sequencing on the railways
has also been considered as a transportation timetabling problem to be solved with
genetic algorithms (Chung, Oh & Choi, 2009).

Curriculum sequencing, which can be defined as a Constraint Satisfaction
Problem (CSP), is one of the favorite research areas that optimization techniques like
GA are used (Hong, Chen, C.-M., Chang & Chen, S.-C., 2007), (De Marcos,
Barchino, Martinez, Gutierrez & Hilera, 2008) (Olsen, 2009). Even complex
sequencing scenarios can also be processed by applying a model of permutation
constraint satisfaction problem (De Marcos, Martinez, Gutierrez, Barchino &
Gutierrez, 2008). For arranging employee training programs, GA is also preferred as
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a scheduling methodology and an optimal curriculum arrangement can be done easily
and effectively (Juang, Lin & Kao, 2007).

For solving the curriculum sequencing problems, one approach is to develop
agents by using evolutionary computation methods (De Marcos, Barchino &
Martinez, 2008). Another approach is considered as the permutation — based genetic
algorithms, which is used to perform sequencing optimization (Li-li & Ding-wel,
2008). Permutation — coded genetic algorithms can be applied to different problems

like weapon — target assignment problem (Julstrom, 2009).

In precedence — constrained sequencing problems (PSCP), optimization is done to
locate the optimal sequence with the shortest travelling time. Some hybrid genetic
algorithm (HGA) techniques with adaptive local search help to produce the most
effective results when compared with the results of other traditional methodologies
(Yun, Gen & Moon, 2010).

One of the most famous sequencing problems is Travelling Salesman Problem
(TSP). The solution to the problem aims to find the shortest path for the salesman to
traverse different cities, stopping by the same city only once. Many researchers have
constructed many solution methods on TSPs (Singh & Baghel, 2009). GA brings
some effective solutions to TSP and some hybrid algorithms are implemented (Pop
& lordache, 2011). When GA is the point in question, diversity control is an
important notion in TSP problems because if the diversity reduce rapidly, the
solution to the TSP can be worse in quality. Researchers have studied on diversity
control in TSP problems and gathered encouraging results (Chang, Huang & Ting,
2010).

The techniques used to find solutions to TSP problems are not widely different
than the methodologies used in permutation sequencing problems. For this reason,
some TSP solution methodologies can be adapted to GA. TSP is a good area of
applying and testing the performances of new crossover (Deep & Mebrahtu, 2011),
(Ahmed, 2010) or mutation (Kaya, 2010) operators. New type of GA, a whole with
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its chromosome representation and reproduction operators, can also be applied and
tested on TSP. For example, a grouping based GA has been applied on multiple
travelling salesperson problems (Singh & Baghel, 2009) and the results are rather

promising.

3.3 GA Performance and Parameter Tuning

Except the studies combining different artificial intelligence techniques, there are
other studies which only deal with improving the performance of the GA.

Performance evaluations in a GA can be done in several ways.

The parameter tuning notion involves with choosing the exact control parameters
for GA to run and produce the best results. The parameters, to a large extent, affect
the performance of GA. The determination of the correct combination of parameters
itself is also an optimization problem. The researchers have made many studies on
parameter tuning. To handle the parameter control problem in GA, many solutions
have been suggested. One of these even offers a scripting language implementation
for controlling the parameters of evolutionary algorithms (Liu, Mernik & Bryant,
2004).

As an example of this research area, different crossover operators can be
implemented (Marano, 2011) and be compared with each other (Lin & Wei, 2009),
(Vazquez-Rodriguez & Petrovic, 2010). There are some studies in which the
crossover techniques are surveyed for different GA types (Tutkun, 2009). But
mostly, improvement in the performance of the GA is handled by making some
parameter tuning operations. In order to make parameter tuning, the same GA must
be executed many times with different number of generations, crossover and
mutation rates and population sizes. In most of the studies, at least two or three
different values are tested for each parameter and the execution times are calculated
(Rau & Cho, 2009), (Choy & et al., 2011). The best parameter combination is found
according to the least execution time value. But in some of the studies dealing with
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parameter tuning, new chromosome encoding techniques and crossover operators can

be introduced (Barrero, Gonzales — Pardo, Camacho & R — Moreno, 2010).

The parameters used in a GA directly affect the performance and the quality of the
result set. The analysis of the parameters itself is also a difficult task to manage.
There are many studies dealing with this notion. For example, Eiben and Smit
worked on the analysis of the parameters in evolutionary algorithms (Eiben & Smit,
2010). In their study, they classify the parameters into two groups: qualitative and
quantitative parameters. In their study, they aimed to prove that parameter tuning is a
must and it must be available in all studies dealing with evolutionary algorithms.

The parameters of a GA are meaningful when they are combined in a harmony to
find solutions to the optimization problems. That is, all parameters values about
crossover, mutation, number of individuals, number of generations, the selection
mechanisms and elitism, must be thought together. There are several studies in which
these parameters are stated as a whole (Alsmadi, Abo-Hammour, Abu-Al-Nadi &
Algsoon, 2011). When the same parameter combination is used for another
application area, the results can be compared and the parameter combination may
give an idea about the performance of the system. Contrary, in one of the studies,
instead of genetic operators such as crossover and mutation, the concept of compact
Genetic Algorithms (cGA) come up with the idea of probability vector (Lee, Kim &
Lee, 2011).

Elitism is one of the quite powerful weapons of GA to affect the performance of
the algorithm. For this reason, it is used in many studies dealing with GAs.
Especially in timetabling problems, keeping a good individual for generations is
important to obtain the optimum solution. In a study solving the timetabling problem
with GA, Jorge, Martin and Hector applied elitism to 1 % of the population (Jorge,
Martin & Hector, 2010). They also worked on the parameter tuning strategies to
improve the performance of their system about solving the academic timetabling
problem (Jorge, Martin & Hugo, 2010).
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Castelli, Manzoni and Vanneschi have found a novel way to transfer the genetic
material of some of the good individuals from one generation to the next one. They
proposed a mechanism to replace the worst individuals of the new generation with
the good from the previous generation. By doing so, they gave the better individuals

chance to mate and reproduce (Castelli, Manzoni & Vanneschi, 2011).

Cheng, Shi, Yin and Li have used elitist strategy for streaming pattern discovery
in wireless sensor networks as a different application area of GA (Cheng, Shi, Yin &
Li, 2011). The algorithm with the elitist strategy has the power to reduce the

reconstruction error and is fully applicable in the wireless sensor networks area.

Dynamic Optimization Problems (DOP) is a good application area for performing
the elitist strategy. Lee and McKay have studied on three well-known optimization
problems and observed the behavior of the evolutionary algorithms having elitism
mechanism (Lee & McKay, 2011).

As the characteristic of the fitness function of a GA, it has to produce fitness
values to be accepted as “valid” for the solution of the problem. These values may
tend to converge either to a maximum or to a minimum value. Maximizing the
fitness values to find the optimum population of individuals is often used in GA
applications (Ahmet & Zhoujun, 2010), (Li, Lv, Mei & Xu, 2010). In most of the
GAs, a penalty score is calculated for the genes in the chromosome. The
chromosome having the least penalty score is accepted as the best individual of the
population. If the penalty score of the chromosome is written as the denominator of
the fitness function, then the individual having the least penalty score has the largest
fitness value. This is one of the ways of maximizing the fitness values. It can be used
with optimization of timetables because the constraints of the problem can be
considered as the penalty score of the individuals. The same approach can also be
used in fixed — charge transportation problems (Molla-Alizadeh-Zavardehi,
Hajiaghaei-Keshteli & Tavakkoli-Moghaddam, 2011) or network broadcast control
of the GSM systems (Birogul, Elmas, Cetin, 2011).

33



According to the problems and the solution techniques needed for the problems,
GAs have also improved since they were first stated. Today, some hybrid or
modified GAs are used in solving some of the problems. Marano has a study on such
modified GAs, in which he has improved the GA operators also (2011). Adaptive
GA (AGA) is popular in parameter optimization and finds itself some real — world
application areas like optimization of traffic in a computer network (Prieto & Perez,
2008), (Fernandez — Prieto, Canada — Bago, Gadeo — Martos & Velasco, 2011).

3.4 GA and Correlation Tests

When an optimum result for an optimization problem is gathered by using GAs,
the results must be tested and evaluated whether they are “reliable” and “valid” or
not. There are many evaluation techniques to accomplish this task. In sequencing
problems, usually the results are compared with the suggestions of a human expert.
To make a reliable decision, non-parametrical tests can be applied to the results.
Spearman Correlation Test is one of these test techniques. It is used when the range
of the observations, not the values, is important (Sheskin, 2000). Since GAs deal
with optimization and sequencing problems, Spearman correlation test has also been
used with some of the studies.

Ebrahimipour and Nagasaka have used Spearman correlation to verify the results
of a GA in their study about power sector performance (Ebrahimipour & Nagasaka,
2003). The result of the GA is compared with the results of Principal Component
Analysis (PCA) model and Numerical Taxonomy (NT) by using Spearman

Correlation test.

GA and Spearman can also be used together to make hardware performance
prediction of a system (Hoste, Phansalkar & Eeckhout, 2006). The results obtained
from Normalization, GA and PCA are compared and it is observed that the

estimation results of GA have a better correlation than the other methods.
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GA is used with Variable Subset Selection (VSS) approach in Pavan, Mauri and
Todeschini’s study and the models based on VSS are evaluated with Spearman rank
index (Pavan, Mauri & Todeschini, 2004). For the estimation of surface-based duct
parameters from radar clutter, Xiao-Feng, Si-Xun and Zheng have used Spearman
rank correlation with GAs (2010). In another study, Spearman is used to evaluate the
results of a GA making an optimization for the isolation of the translational
efficiency bias and the traditionally generated results (Raiford, Krane, Doom &
Raymer, 2011). According to their Spearman evaluations, GA, as a search based

method, has performed better than the traditional method.

GA is used for the optimization of a culture medium for producing the toxic marine
dinoflagellate microalga. The evaluations of the results of GA are again done with
Spearman rank correlation and it is concluded that the medium generated with a GA
optimization gave a better result than those of the other control media (Camacho,
Rodriguez, Miron, Christi & Grima, 2011).

3.5 GA with Other Al Techniques

GA is best combined with Fuzzy Logic (FL) and Neural Networks (NN) in many
of the studies. In one of the studies, fuzzy GA approach, which integrates fuzzy rule
sets and their membership function sets in a chromosome, is developed to solve an
optimization problem (Lau, et. al. 2009), (Fernandez, del Jesus & Herrera, 2009).
Fuzzy systems can be combined with GA in a harmony to solve real — world
problems like stock markets and the combination of the two methods ends up with an
improved performance (Hung, 2009). Also determining the optimum weights on
each edge of network traffic is an important problem to be solved to manage
unbalanced networks. A study about wireless sensor networks in done by integrating
FL and GA (Yun, Lee, Chung, Kim, & Kim, 2009). In the study, edge weights in the

network are modeled with FL and optimized with GA.

Ant colony systems — like particle swarm optimizations (PSO) — can also find

answers to scheduling problems. GA finds itself a valid application area in
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combining PSO with GA (Valdez, Melin & Castillo, 2011), (Anghinolfi,
Montemanni, Paolucci & Gambardella, 2011). For a flow shop scheduling problem,
Yagmahan and Yenisey have obtained better results than that of the other methods

compared (Yagmahan & Yenisey, 2010).

GA is used with data mining in some rule extracting applications (Rodriguez,
Escalante & Peregrin, 2011). They used GA for the rule extraction for a system that
states a new method for data distribution in computer networks. The algorithm

applied has some advantages when compared with other distribution algorithms.

The recent studies show that there are some Expert Systems (ES) which are
combined with GA techniques. These techniques are mostly used in education and
many scheduling systems are produced for this purpose. In some studies, rule
extraction of the ES is managed by using GA (Fan, Tseng, Chern & Huang, 2009). In
the study, the rules that ES uses are generated and updated in each generation. GA
and ES are used together even in an unmanned aerial vehicle (UAV) navigation
system (Kuroki, Young & Haupt, 2010). GA is used within a rule- based system to
tune the variables of the system until the output matches the observations.
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CHAPTER FOUR
PROBLEM DEFINITION

4.1 Characteristics of Data

The system is designed to find an optimum sequence for the contents of a course /
training, where there are some obligatory rules among the parts of the course. This
system is appropriate for the cases that not all of the course material is taken into
consideration but instead, some selected parts, which are called modules, of the
education material is in question to be placed in the curriculum plan. This means that
the instructor can make a selection among the modules and make a decision about
the length of the dataset. Instructor can select the modules to be included to the
course via the user interface of the software as explained in Chapter Six. The
information about the course material (the modules and their features) can also be
added and dropped via a user interface. When modules are added for a training

program, the names and module numbers are inserted in a database.

Two different data sets with same kind of properties are used in the thesis. One of
them is the training data including the training program of an in — service training
program of a software company. The other one is the control data set including the
topics of a database course given in a computer programming department of a
vocational school as the modules of the course. The names of the modules and the
prerequisite module numbers for each module are listed in Appendix A for both the

training data and the control data sets.

The most important criterion about the modules is the prerequisite conditions.
When the module i has the module j as its prerequisite, this means that, to get module
i, the trainee should pass the module j successfully. This can be considered as a
precedence constraint which Mendes mentions in his study (2008). For the system to
work properly, the time periods of all modules and prerequisite modules of the
modules (if any) must be determined clearly.
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The data containing the prerequisite conditions of the modules form the rule base
of the system and sequencing process is based on the prerequisite rules of the
modules. For this reason the rules must be transmitted to the system carefully. The
rule based of the system behaves as if it was an ES component because the
prerequisite modules of a module are represented as logically like IF-THEN
statements as used in ES methodologies. An example to the IF-THEN statements
used for the prerequisite rules of the modules is represented in Figure 4.1. For
example “If M1 and M2 then M4” means module M4 has M1 and M2 as its
prerequisites. The trainee has to be successful from modules M1 and M2 to have the
module M4. A more detailed versions of the IF-THEN rules used for the training

and control datasets are given in Appendix B.

There is an important point about the rules of the modules that there must not be
any cyclic rule definition. That is, if M, is defined as the prerequisite of Mg, then Mg

must not be defined among the prerequisites of M.

IF M1 THEN M2

IF M1 THEN M3

IF M1 AND M2 AND M3 THEN M4

IF M1 AND M3 AND M6 THEN M7

IF M1 AND M2 AND M4 AND M5 AND M8 THEN M9

IF M1 AND M14 THEN M16
IF M1 AND M2 AND M3 AND M12 THEN M20
IF M1 AND M2 AND M12 AND M15 AND M17 AND M20 THEN M22

IF M1 AND M3 AND M7 AND M27 THEN M28
IF M1 AND M3 AND M7 AND M27 AND M28 THEN M29

Figure 4.1 Prerequisite rules among the modules

4.2 Obtaining the Module Features

The modules that will be included to the system take shape according to the
choices, made via the user interface by the instructor. The course must be planned
with an optimum content sequence for the students. For this reason, the system uses

two different sizes of both content sets; first one is the smaller (called SDST)
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including approximately half of the content to produce a course of one semester, and
the second one (called LDST) to produce a course of two semesters.

After the data for a course and its modules are provided properly, the system runs
the genetic algorithm phase on these modules to optimize the sequence of the
modules of the course. The number of chosen modules determines the length of the
chromosomes used in the GA. For different training materials, the number of
modules may differ; therefore, reason the chromosome sizes are not equal for each
training program. Regardless from the length of the chromosome, the initial
population of the GA is produced in the same way from the first module range
obtained. In this study, there are two different sizes of the same dataset, having 17
and 30 modules among 39 modules of the whole training program. The same amount
of modules for two different module range sizes (17 and 30) are also chosen from the
control data, which has 42 modules. The prerequisite rules among the modules are
the most important point making the sequencing process more difficult to manage.
For this reason, two different sizes of the dataset are needed to analyze the

performance of the GA.

While GA is performed, the fitness function of the GA to be applied to these
chromosomes use a rule set that includes the prerequisite information of each module
as mentioned above in contrast with the systems coding a rule as one chromosome
consisting of several segments (Tseng, Chen, Hwang & Shen, 2008). The result of
the GA produces the most reliable and useful range of the modules to be used in the

compensation training.

An example to the module evaluation of the system for the training data set is
given in Table 4.1. The chosen modules are selected among the total list of the
modules and their duration is calculated. In the table, the numbers of chosen modules
are shown. This data is important for the system because the initial population of the

GA is generated from these module numbers.
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This kind of a dataset has some handicaps. The modules to be chosen and the size
of the chromosomes are not known at the beginning of the process. There are tight
prerequisite rules among the modules. For this reason sequencing task has to take
these rules into consideration. The tighter is the rules among the modules, the more

difficult to obtain more reliable results.

Table 4.1 Modules Chosen for the Training Program
M# (852321746 |7(12]20(29| 3 [9]10|18 |28

Hours |42 2 |6|4|4|16|8|4 |6 |2 (12,46 | 4|6
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CHAPTER FIVE
SYSTEM ANALYSIS AND DESIGN

Before performing the optimization process, the conditions and constraints of the
problem should be stated clearly. In order to express the phases of the system
explicitly, making a system analysis is a must. The system analysis includes the
workflow of the system, design of the GA to be used with all its operators and
planning the parameter tuning step. The workflow is an important phase because it

can be considered as the route map to the project.

5.1 The Workflow of the System

The workflow for the project is explained in two major phases. In the first phase,
a rule based genetic algorithm for module ranking is generated as given below in
Figure 5.1. Fig 5.2 explains the details of the module sequencing process — the first

step of Figure 5.1 - in more detail.

As the first phase, the rule based module sequencing software consists of
gathering the needed data of modules as rules, finding the optimum range of modules
by running the GA and producing raw data (runtime and fitness values, module
ranges and data required for the further steps of the workflow) and XML outputs for
the training program. The following phases are about the evaluation process of the
results; that is, the obtained results are evaluated with a non — parametric correlation
test and the best module range is determined. In detail, in the second phase, obtained
results are routed to the rank correlation test phase. For evaluating the results,
Spearman Rank Correlation Test is applied to the results and at the last step, the best
module range is obtained. The parameter combination giving the best module range
is also emphasized. The same process is also applied on the control data set to verify

the results of the training data set.

The workflow of the system is applied in the same way to both the training data

and the control data.
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Figure 5.1 The general workflow of the system

The steps of the Rule Based Module Ranking Software is given below:

e The education material is divided into M modules.

e The time period and the prerequisite information of each module must be
inserted into the system.

e  Module names, module numbers and their durations reside in a database.

e The modules to be included to the curriculum plan are determined by the
instructor via user interface according to the students’ / trainees’ demands or needs
(Knowledge Acquisition phase in Figure 5.2.).

e The prerequisite rules of the modules are written in an XML file and attached
to the software as XML.

e The first individual of the GA is formed by ranging the chosen module
numbers randomly and the initial population is produced from the first individual.

e When the software is run, a module range is produced by the algorithm and a
schedule for those modules is prepared and saved as an XML file.

Module sequencing process was being done by human experts manually before.
Therefore, human experts naturally have a suggestion about how the correct
sequence may be. The best module sequence obtained from the software should be
compared with the suggestion of the human expert in order to be sure about its
reliability. The number of the prerequisite rules among the modules is one of the
factors that affect the reliability of the module range when compared with that of the

human expert’s.
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Figure 5.2 Detailed workflow for the Rule-based module ranking software

5.2 The Design of the Genetic Algorithm

The GA used in the project works on the chromosomes, which are composed of
the module numbers. Each module number can take place in a chromosome only
once; therefore permutation encoding technique is used for chromosome encoding
(Julstrom, 2009). The module numbers that build up the chromosome are taken from

database, but the prerequisite rules of the selected modules are taken from the XML

file.
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In the rule based GA stated in the thesis, which adopts the Pittsburg approach
(Rodriguez, Escalante & Peregrin, 2011), there is only one rule behind each gene and
the genes forming the chromosome represent a possible solution to the sequencing
problem. For this reason, when a chromosome is formed from the selected modules
of a course, a subset of the rule base is included to the system and GA only deals
with the rules of the selected genes. Some modules may not be selected for the
sequencing process; therefore the rules of the modules which are not selected are not

included to the subset of the rule base.

A module may not have a prerequisite module. In that case, if the module does not
have any prerequisites, then there is no rule about the module in the rule subset. The
modules without prerequisites are easier to manage. Sequencing them is even easier,

unless they are prerequisites for other modules.

5.2.1 Initial Population

The initial population of the GA is generated by using the module numbers to be
ranged. These module numbers are ranged randomly (Derakhshi & Zandi, 2010) to
form the first individual of the initial population. Then, by using the module numbers
of the first individual, n different module ranges are generated for a population of n
individuals. In the thesis, different sizes of populations with values of 100, 120, 140,
160, 180 and 200 are used.

5.2.2 GA Operators
The operators which are used in the project are explained briefly below. Three

different types of crossover operators, two different types of mutation operators and a

selection operator are in question in the thesis. Elitism is also applied.
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5.2.2.1 Crossover

In the project, a standard GA is used with one — point order crossover, two — point
crossover (Picek & Golub, 2010) and PMX. In one — point order crossover, the
parents change their genetic material according to the randomly chosen splitting
point. But since permutation encoding is used, the exchanging parts of the
chromosomes are arranged considering the nonrecurring of the genes. In two-point
crossover, the genes between two randomly chosen positions on the chromosome are
inversed to obtain two new children for the next generation. PMX is an improved
version of two — point order crossover, exchanging the genes between randomly

chosen intervals and repairing the gene to prevent the repetitions.

The three crossover techniques are used in four different ways; we call them OX,
0X2, PMX and OX’ respectively.

e OX, 1-point order crossover of Davis (1991),

e 0OX2, 2 —point order crossover of Coley (1998),

e PMX, partially matched crossover (Sivanandam & Deepa, 2008),

e OX’, one of the three crossover methods (OX, OX2, PMX) chosen randomly
in each generation (Tseng, Chen, Hwang & Shen, 2008).

5.2.2.2 Mutation

Inversion mutation and swap mutation is applied in various probabilities as the
mutation method in the study. The mutation is applied in low mutation probability
values not to destroy the evolution period of the chromosomes. Using swap mutation
and inversion mutation in various probabilities helps to manage the parameter tuning
task of the GA.

When a chromosome is mutated with swap mutation, randomly chosen two genes
(module numbers in this case) are swapped and a new child for the population is
produced. With inversion mutation, an interval of genes is chosen and inversed. The

aim of the mutation process is to sustain the diversity of the population and prevent
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the fitness values converge rapidly to maximum.

5.2.2.3 Selection

The selection operator is determined as the Linear Rank Selection operator
(Greffenstette & Baker, 1989) as given in (1).

rankval, = %(min_,_ (max— mln)(ranki —1)] )

N-1

where rankval; represents the rank value of the i individual in the population,
N represents the population size,

rank; represents the order of the i" individual,

max + min =2 and 1 < max < 2 (Chakraborty & Chakraborty, 1997).

5.2.2.4 Elitism

The elitism mechanism is also applied to protect the best individual in the
population by passing a group of best individuals directly to the next generation
(Cheng, Shi, Yin & Li, 2011). According to the elitist strategy, our system transfers
10% of the population having the best fitness values directly to the next generation.
This ratio carries the individuals having the best fitness values to the next generation
without being exposed to any genetic operators.

5.2.3 The Fitness Function

The input data of the fitness function of the project is the XML file in which the
prerequisite rules of the modules are saved. The XML file including the rules is
given in Figure 5.3. A more detailed XML files of the rules for the training data and
the control data are given in Appendix C.

The logical representation of module rules resides in an XML file and then the
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XML file is converted to a sparse matrix, where each row represents a module and
the elements of a row consist of 0s. If the module has prerequisites, then the column
representing the prerequisite module number is set to 1. Too many 1s in a row means

that the module is more tightly related to its prerequisites.

=?xml version="1.0"?=
- =modules=
<module hour="4" mno="0"/>
- zmodule hour="6" mno="1">
zprereq=0</prereg=
< /module=
- <module hour="12" mno="2"=
=prereg=0</prereg=
zprereg=1</prereg=
< /module=
- zmodule hour="3" mno="3">
<prereg=2</prereg=
< /module:=
- <module hour="2" mno="4"=
<prereq=1</prereq>
<prereq=2</prereg:=
< /module=
- =module hour="16" mno="5">
=prereg=0</prereg>
<prereg=2</prereg=
<prereq=3</preregqs>
< /module:=
- =module hour="8" mno="6"=
=prereg=0</prereg=
<prereq=2</prereg:=
zprereg=3</prereg>
<prereg=5</prereg=
< /module:=
- <module hour="4" mno="7">
<prereg=0</prereg=
<prereg=1</prereg=
zprereg=2</prereg>
zprereq=3</prereg>
</module>

Figure 5.3 XML file including rules among the training modules

The number of modules to be sequenced determines the length of the
chromosomes used in the GA. The initial population of the GA is produced from the first
module range obtained. While GA is performed, the fitness function of the GA to be applied
to these chromosomes use a rule set that includes the prerequisite information of each

module as mentioned above.

The fitness function mechanism works by parsing the 1s in the prerequisite matrix

47



and the penalty scores calculated for the modules on the chromosome. It is quite
practical way of transferring the rules to a mathematical representation. Saving the
rules in a matrix has a few benefits. The system does not have to execute any queries
from database to acquire the rule data. It is easier to save and process data when it is
in a sparse matrix format. An XML file including the rules can be converted to a
sparse matrix easily. An example of the sparse matrix is given in Figure 5.4.

000000000000000000000000000000000000000
100000000000000000000000000000000000000
110000000000000000000000000000000000000
001000000000000000000000000000000000000
01100000000000000 0000000000 000000000000
101100000000000000000000000000000000000
101100000000000000000000000000000 000000
111100000000000000000000000000000000000
110110100000000000000000000000000000000
11011010100000000 0000000000 000000000000
110100011 10000000 0000000000 000000000000
010100101 10000000 0000000000000000000000
11110001010 100000 0000000000 000000000000
010110101 11000000 0000000000000000000000
1011011110000 1000 0000000000000000000000
1011000100011 1000 0000000000 000000000000
100000000000000 10 000000000000 0000000000
10110110000 1100100000000000000000000000
0011011001011 1000 0000000000 000000000000
10010000010 1011 100000000000000000000000
101001001 11 110011 0000000000 000000000000
1010010100000 0011 0010000000 000000000000
11001001011 101011 0001 000000000000000000
10010011011110010 101001 0000000000 000000
10000000000000000 000000 1000000000000000
10100100000010000 1000000000000000000000
0001001010001 10101001 100000000000 000000
10000000000010011 1001 1000 10000000000000
10000000000000001 0000000001000000000000
10000000000001101 000000010001 0000000000
00000000000000001 0001010000 100000000000
00000000000000001 0000000000000100000000
00000000000000001 00000000000001 10000000
10000000000000001 0001 11000001 0000000000
0000000100001 0010 1000 11 T000000000000000
1000000000001 101000000001 10000000 100000
10000000010000011 000000 1100000000010000
10000000000000001 0000010000000000000000
00000000000000001 000001 00000001 11000000

Figure 5.4 Sparse matrix representation of the XML files including the rules

When a prerequisite of a module appears after that module in the chromosome,
the penalty point is increased by calculating with a weight value of the module.
Weight values for each module are calculated according to the number of
prerequisites. The module with more prerequisites is more difficult to locate in the
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curriculum plan. The pseudo code written for the fitness function is given in Figure
5.5.

When the penalty score calculation for the i chromosome ended, the fitness value

of the chromosome is calculated by using (2).

1
m benaltycount, (2)
=1 preregcount,

fitness[i] =
X

where m is the number of modules in a chromosome, penaltycount is the number
of prerequisite modules for module k exisiting in the chromosome and preregcount is

the total number of prerequisite modules for module k.

for each individual 1 do
begin
penaltypoint = O;
for each module in the chromosome do
begin
penaltycount = O;
for each module after itself do
begin
iT a prerequisite module exists after itself
then penaltycount;++;
end
penaltyratio;= penaltycount;/total prereqcount;
penaltypoint = penaltypoint + penaltyratio;
end
fitnessvalue; = (1/ (penaltypoint+l))
end

Figure 5.5 Pseudo code for calculating the fitness function

While calculating the penalty point for each individual according to the
prerequisites of the modules on the chromosome, the lower penalty point shows that
the fitness value of the individual is higher. Having a higher fitness value means the
individual is more suitable as the solution of the problem. On the other hand, the
chromosome with the highest penalty score is defined as the worst individual of the
population according to Formula (2). GA tries to minimize the penalty scores and
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maximize the fitness values (Hung, 2009). In the fitness functions in which penalty
scores are calculated, the aim is always minimizing the penalties and maximizing the
fitness value (Zheng, Liu, Geng & Yang, 2009). The chromosome with the minimum
value of the penalty score turns out to be the best individual of the generation. As
required as a rule of fitness evaluation, the individuals are then sorted from the worst

fitness value to the best.

5.3 Parameter Tuning

In order to obtain the best results from the GA, parameter tuning is done by
changing the three basic parameters of the GA. These parameters are:

e Number of generation (maxgen),

e Crossover rate (crate) and

e Mutation rate (mrate).

The parameters used for different scenarios (S1 — S63) are given in Table 5.2.
These parameters are applied to all four GAs (OX, OX2, PMX and OX’) for six
different population sizes. The same is applied on both a smaller dataset having 17

genes in a chromosome and a larger dataset having 30 genes in a chromosome.

The curriculum sequencing is done for the cases, in which all the modules of a
whole training / course are not included to the system. The fitness function of the
genetic algorithm has been improved and tested with new parameter combinations

given in Table 5.1.

Table 5.1 GA Parameters for Different Scenarios

Value
Population Size

# of Generations
Crossover Rate (crate
Mutation Rate (mrate

Briefly, the GA of the software is tested for:
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e 2 datasets of different size (which are called SDST and LDST for the smaller
and larger ones respectively),
e 6 different population sizes (given in Table 5.1),
e 4 crossover operators
e 63 scenarios for each operator (3 generation values, 7 crossover rate values
and 3 mutation rate values)

e 20 run for each scenario.

Although mutation is naturally included into the parameter tuning process with 3
different mutation rate values, the two different mutation operators are used
randomly in all of the executions. This means that, swap mutation and inversion

mutation have the same amount of effects on the scenarios.

Table 5.2 Parameter Tuning with the scenarios for 500 (S1 — S21), 750 (S22 — S42) and 1000 (S43 -

S63) generations respectively.

Scenario | crate | mrate Scenario | Crate mrate Scenario | Crate Mrate
S1 0.70 0.1 S22 0.70 0.1 S43 0.70 0.1
S2 0.70 0.15 S23 0.70 0.15 S44 0.70 0.15
S3 0.70 0.2 S24 0.70 0.2 S45 0.70 0.2
S4 0.75 0.1 S25 0.75 0.1 S46 0.75 0.1
S5 0.75 0.15 S26 0.75 0.15 S47 0.75 0.15
S6 0.75 0.2 S27 0.75 0.2 S48 0.75 0.2
S7 0.80 0.1 S28 0.80 0.1 S49 0.80 0.1
S8 0.80 0.15 S29 0.80 0.15 S50 0.80 0.15
S9 0.80 0.2 S30 0.80 0.2 S51 0.80 0.2
S10 0.85 0.1 S31 0.85 0.1 S52 0.85 0.1
S11 0.85 0.15 S32 0.85 0.15 S53 0.85 0.15
S12 0.85 0.2 S33 0.85 0.2 S54 0.85 0.2
S13 0.90 0.1 S34 0.90 0.1 S55 0.90 0.1
S14 0.90 0.15 S35 0.90 0.15 S56 0.90 0.15
S15 0.90 0.2 S36 0.90 0.2 S57 0.90 0.2
S16 0.95 0.1 S37 0.95 0.1 S58 0.95 0.1
S17 0.95 0.15 S38 0.95 0.15 S59 0.95 0.15
S18 0.95 0.2 S39 0.95 0.2 S60 0.95 0.2
S19 1.00 0.1 S40 1.00 0.1 S61 1.00 0.1
S20 1.00 0.15 S41 1.00 0.15 S62 1.00 0.15
S21 1.00 0.2 S42 1.00 0.2 S63 1.00 0.2

Here GA is run for 63 different parameter combinations. These combinations are
shown in Table 5.2 (S1 — S63). When GA is executed for these different parameter
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combinations and crossover techniques, each combination for 20 times (Roeva,
2008), 24 different results sets are obtained for both SDST and LDST. Each result set
includes 63 different solutions, since there are 63 scenarios tested. All of these
solutions are included to the evaluation process without eliminating any of them
manually. The parameter combination, which gives the most reliable module range,
Is accepted as the most appropriate combination to be used in sequencing problems

about curriculum planning.

Executing the same parameter combination 20 times guarantees to find the best
solution. Also calculating the average values for these runs of the same scenario
gives an idea about the success of the paramaters. Each set of results are compared
with the human-expert’s suggestion by testing them with a non-parametric
correlation test. The result ranges are tested with Spearman Rank Correlation to
decide their reliability. Among these, best module ranges and the number of reliable
ranges are obtained. The parameter combination having the most reliable results is
also important from the parameter tuning point of view where the number of reliable

module ranges is also important as how reliable they are.

These combinations are very time consuming to handle one by one. The results
are a great amount to manage when all 1260 runs for each GA is done manually.
Instead, parameter tuning process is automatized within the software. In previous
studies, automated parameter tuning was done for only one parameter at a time (Liu,
Mernik & Bryant, 2004). In this study, all values of crossover and mutation operators
and number of generation values are tuned together and it takes a long time for the
computer find 1260 different results. For this reason, except the module range
results, the system also calculates the execution time for each automated process.
The algorithm for automated parameter tuning done in the study is given in Figure
5.6.
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maxgen = 500;
while (maxgen < 1001)
{
int scenario = 1;
crate = 0.7;
while (crate < 1.05)

{

mrate = 0.1;

while (mrate <= 0.2)

{
for (int xyz = 0; Xyz < 20; xyz++)
{

runga(pop, modulsayisi);

scenario++;
mrate = mrate + 0.05;

}

crate = crate + 0.05;

}

maxgen = maxgen + 250;

}

Figure 5.6 Algorithm for automated parameter tuning of GA is given. It performs 1260 runs at the
same time with 3 different generation values, 7 different crossover values and 3 different mutation

values.
5.4 Spearman Rank Correlation

When a solution to a sequencing problem is found, it is important to show the
reliability of the results to verify that the study has a scientific value. The statistical
analysis is used in such cases to convince people about the trustfullness of the results.
When the GA is run with the given features and parameters, n module ranges for n

individuals of the population are obtained as follows:

Indv, , 1-32-4-8-9-14-10-13-6-26-15-16-20-23-35-29-38
Indv; , 4-1-9-35-38-6-10-14-8-13-15-16-32-23-29-26-20

Indvy, , 4-1-38-26-9-10-14-8-13-29-16-23-6-32-15-20-35

The reliability of these module ranges must be tested by comparing with a range

given by an expert (The instructor of the training in this case). It is possible to make
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any judgements about the ranges only after applying these tests. The test to be
applied for this purpose is Spearman Rank Correlation, which is a non — parametric
test used in statistical analysis. It is used in cases where testing the reliability of the
range of data is more important than the numerical values of the data (Sheskin,

2000). Formula (3) is used to apply the Spearman Rank Correlation test.

6 Ld
n(n?-1)

p:]_— 3)

where p indicates Spearman Rank Correlation coefficient, d; indicates the
difference between the expected and observed rank values and n is the number of
alternatives (observations). The hypothesis is set as given below:

Ho: There is no correlation between the two ranges.
H1: There is a correlation between the two ranges.
Using p values, t values are calculated with the Formula (4).

.
= — 4
t J (- p2)(n-2) “)

For each parameter combination, 20 t values are calculated because 20 different
module ranges are obtained with each single parameter combination by executing the
software 20 times.

After calculating the t values, they are compared with the critical value of the t
Table (t — Table used in this study is given in Appendix E (Bissonette, 2011)). If the t
value of a range is greater than the critical value given in the table, then hypothesis
Ho can be rejected and it can be said that the range is reliable. While determining the
correct t value to be compared from t Table, the Degree of Freedom (DF) and

Confidence Level must be clearly decided.

DF =n - 2, where n, in this case, is the number of modules included in the range.

Confidence Level is the level of probability value, in which the results can be
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accepted as “reliable”. In the study, the confidence level is set to 99%, therefore, the t

value to be observed in t — Table must be found according to a = 0.01.

The result set containing the module ranges is written in an MS Excel file and the
file is parsed and read by the software implemented (called Curriculum Organizer) to
make the evaluation process. With the software, the p and t values are calculated
automatically for all solution sets. It is implemented in MS Visual Studio 2008
environment with C# and is able to work on MS Excel 2007 files. The calculated p

and t values are saved in another MS Excel file.

They assess the reliability of the ranges; the t values are tested according to the

criteria given in Table 5.3.

Table 5.3 Spearman Evaluation Criteria

Number of Modules (n) 17 30
Degree of Freedom (n-2) 15 28
Tolerance 1%
Confidence Level (p) (two tailed) 0.005 0.005
T value 2.947 2.763

The reliability of the module ranges are evaluated with a tolerance percentage of
1% (p<0.01). According to the hypothesis, to be able to understand whether there is a
correlation between the output and the expert suggestion, the t values must be
compared with the value of 2.947 for SDST and with the value of 2.763 for LDST.
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CHAPTER SIX
PROJECT IMPLEMENTATION

6.1 The Software Environment

The project has been developed in Microsoft Visual Studio 2008 platform with
Microsoft Visual C# 2008 programming language. Microsoft SQL Server 2008 is
used to manage the database tasks of the system. The experimental results are
gathered with an Intel Core i7 2630QM 2.00 GHz/8GB compulter.

6.2 The Database Design

The database design of the project is constructed with Microsoft SQL Server 2008
R2 Management Studio, which the user interface is shown in Figure 6.1. The tables

and the relations among the tables are explained below in detail.
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Figure 6.1. SQL Server 2008 R2 Management Studio environment
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6.2.1 The Database Tables

The data about the courses to be optimized is kept in table TBLCOURSES. The

primary key of this table (CNO) is used in other tables to distinguish the modules of

different courses.

Table 6.1 TBLCOURSES

Column Data Type Constraints
CNO Smallint PK

Name Varchar(50) | NOT NULL
Description Varchar(100)

The data about the modules of the courses reside in table TBLMODULES. The

primary key of this table (MNO) represents the modules in a chromosome. For this

reason, the data in this table has great importance for the software. The data in

“hour” column is used to calculate the duration of the sequenced modules.

Table 6.2 TBLMODULES

Column Data Type Constraints

MNO Smallint PK

NAME Varchar(100) | NOT NULL

Prerequisite Smallint

Hour Smallint

Lid Smallint

CNO Smallint Foreign key, References (CNO) on

TBLCOURSES

The data about the trainees of the courses reside in table TBLTRAINEE. The

primary key of this table (TNO) is used to determine the failed modules of the

trainees.
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Table 6.3 TBLTRAINEE

Column Data Type Constraints
TNO Smallint PK

Name Varchar(50) NOT NULL
TotalNet Smallint

Lid Smallint

The data about the
TBLFAILEDMODULES. The foreign keys of this table (TNO and MNO) are used
to determine the failed modules of the trainees. When the module numbers are

trainee -

failed module pairs reside in table

distinctly selected from the table, the modules to be ranged with the GA is obtained.

For this reason, the data in this table has a great importance for the system.

Table 6.4 - TBLFAILEDMODULES

Column Data Type | Constraints
TNO Smallint Foreign key, References (TNO) on TBLTRAINEE
MNO Smallint Foreign key, References (MNO) on TBLMODULES

The scheme showing the relations among the tables of the database is given in

Figure 6.2.
TBLCOURSES TBELMODULES TBLTRAINEE
CNO (PK) —1 MNO (PE) TNO (PK)
Name NAME Name
Description Prerequisite TotallNet
Hour Lid
Lid
5| CNO (FK)
TBLFAILEDMODULES |
TNO (FK) <
> MNO (FK)

Figure 6.2. Relations among the tables
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6.3 The Module Ranking Software

The project has a user-friendly Ul, where the instructors can insert rules about the

modules of a course or add/drop courses and modules (Fig 6.3).

=

-
o= Training ES | B

Manage Courses/Modules

Add Rules

Add Failed Modules

[

[

[

[ Run GA
| |

Figure 6.3. Main menu

There are three steps to be handled in the program before the genetic algorithm is
run. The users of this project are expected to be the instructors of a course to be
given. So, they have to add or delete the courses to the system with their modules.
The users can add or delete courses and add or delete modules to the chosen course

from the second form opened (Figure 6.4 and Figure 6.5).

= Form3 =Jokd
Add / Delete Courses | Add / Delete Modules
Course Mame: Maths
Course Description: thematics course for beginners
Add Course
Course Hame: NFR N
CLOSE

Figure 6.4 Add / Delete Courses
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a5’ Form3 E]@

Add 7 Delete Courses | Add / Delete Modules

Course Name: |Maths it

Module Hame: | Prime Numbers

Hours: B it

Add Module

Course Name: |Maths w [ Delete All Modules

Module Hame: it

Delete Module
CLOSE

Figure 6.5 Add / Delete Modules

The database of the project is directly affected by the added or deleted courses or
modules. When the user closes this form, he is guided to the main form again. With
the second button on the main menu, the user can define the rules of a course by
determining the prerequisite modules of each module included to that course. To add
a rule, the user selects a module from the first list on the left and can choose more
than one modules from the list on the right at the same time as the prerequisite of the
module. When “Add as Rule” button is pressed (Figure 6.6), the chosen module and
prerequisite information is saved to a matrix. After defining all prerequisites for all
modules on the list, the user presses “Create XML” button. At this step, the program
forms an XML file by using the prerequisites information gathered in the matrix.

After defining the rules, the user can choose the unsuccessful modules of each
user, which the new training program will be composed of. When a trainee is chosen,
the modules that the trainee is responsible for appear. The user chooses the modules
in which the trainee was unsuccessful and presses the “Add to Working Memory”
button. This is another aspect of knowledge acquisition for the system (Figure 6.7). If
the user needs, he can clear the previous data given to the system with the “Clear
Previous Data” button.
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o Formd BEX
Course: NPF adl
Modules Prerequisite Modules
GIRIS ~ GIRIS ~
C4RI MODOL GIRIS 1| CARIMODOL GIRIS 1
STOK MODOLD GIRIS STOK MODOLO GIRIS
FATURA MODOLO GIRIS FATURA MODOLO GIRIS
CARI MODUL ILERI CARI MODUL ILERI
STOK MODUL ILERI STOFK MODUL ILERI
FATURS MODUL ILERI FATURA MODUL ILERI 1
TALEF / TEKLIF MODULD TALEP / TEKLIF MODULD
BANKA MODOLO BANKA MODOLO
MUSTERI CEKLERI MUSTERI CEKLERI
BORC CEKLERI BORC CEKLERI
DEKONT MODOLOD DEKONT MODOLO
EMTEGRASYON MODOLO EMNTEGRASYON MODOLO
MUHASERE GIRIS MUHASERE GIRIS
MUHASEBE MODOLO MUHASERE MODOLO
RAPOR MODOLOD RAPOR MODOLOD
E-METSIS E-METSIS
DIMAMIK. DEPO DINAMIK DEPO
FATURS MODULU ILERI 2 FATURA MODULU ILERI 2
DEKONT OZEL UYGULAMALAR | |DEKONT OZEL UYGULAMALAR hdl

Figure 6.6 Add Rules Screen for the Training Data

a2z Form5

M[=1% ]

Clear Previous Data

Trainee: | Didem Oktem

Trainee's Modules

CARI MODLL ILERI

STOK MODUL ILERI
FATURA MODLUL ILERI 1
BANKA MODOLO
MUSTERI CEKLERI

BORC CEELERI
MUHASEBE MODOLO
E-METSIS

DINAMIK DEPD

FATURA MODULU ILERI 2
PERSOMEL OZEL UYGULAMALARI
URETIM MODULO

TEKNIE 1

TEKNIK 2

YAZILIM

Trainee's Failed Modules

FATURA MODUL ILERI 1
EORG CEKLERI

PERSOMEL OZEL UYGULAMALARI

[ Add To Working Memory ]

[

Close ]

Figure 6.7 Determining the Chosen Modules of Users for the Training Data

After adding the unsuccessful modules for the trainees to the system, the user
closes the form and turns back to the main menu. From the menu, the user presses
the “Run GA” button and a new form is opened to run and view the results of the
genetic algorithm as shown in Figure 6.8.
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Best Scenario:

rho Value:
| t Value:
Total Runtime:

# of Hours:

# of Days:

[ close |

Figure 6.8 Running the GA — When “Start GA” button is clicked, the program executes 1260 times
and writes all results to *.csv files. On the screen, only the best module range and its information is

shown.

When the button “Start GA” is pressed, the program gives the numbers of the
modules are listed from the most requested to the least. The total time period for the
chosen modules is calculated. The resulting order of the modules are listed both
above in the “Best Individual” text box with numbers only and in the list box to the
right of the screen with their names. Fitness and population information given below
are only to check whether the program has operated properly or not (Figure 6.9.).
since the module ranges are saved as “*.csv” files, the module ranges as output are
saved in “moduleranges.csv” file. An example of module ranges as a .csv file is

given in Figure 6.10.

According to the total duration of the modules, an approximate duration for the
schedule is calculated and shown in the “Estimated Days” text box. Runtime period
is calculated in each run of the genetic algorithm and this runtime information is used
to make an evaluation about the performance of different crossover methods used in
the project. Since 1260 runs are handled at once, the runtime values are given in

minutes.
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Course: NFF v
Modules: 141435386891013151620232625 32

Best Range:

(FSJ?;{—IUSRA MODULD GIRIS Best Scenario: 01- 545
TALEF / TEKLIF MODULO _ 0.980382156362
STOK MODUIU_IIE]ERI tho Value: =
BANKA MODUIL =
MOSTERI CEKLERI | Value: 19.26881233270
ENTEGRASYON MODULD 1601345
MUHASEBE GIRIS Total Runtime:
RAPOR MODULUU : |
MUHASEBE MODUL Hours: &7
DEKONT OZEL UYGULAMALAR e = B
DEMIRBAS T
NETPOS MODOLD # of Days:
IUP / A0P
e
KALITE KONTROL
TEKNIK 2 )

Program igin Tiklayin

Figure 6.9 GA Results for the Training Data

| A B C D E F G
1 Module Range
2 4
3 1
| a 9
5 )
6 10
7 6
8 14
9 32
10 23
11 13
12| 29
13 26
14 38
15 15
16 16
17 20
18 35
19

Figure 6.10 A sample module range in a .csv file (The numbers represent the modules)

The output course schedule is both written to an XML file and to a DataGrid
object in the program. The DataGrid view for one of the obtained results is given in
Figure 6.11. In the figure, the schedule is shown day by day, where it is not possible
to show the whole schedule with DataGrid. For this reason, XML files seem to be a
better solution to keep the output data. The XML file including the final timetable is
given in Appendix D.
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| ders_Text
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BANKA MOD
BANKA MOD
BANKA MOD
TALEP/ TEK
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Figure 6.11 The training program shown day by day
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CHAPTER SEVEN
RESULTS

7.1 Runtime Values

Execution times for both the training and the control data for SDST and LDST are
also given in Table 7.1(a), Table 7.1(b), Table 7.2(a) and Table 7.2(b) respectively.

Table 7.1(a) Execution times for SDST for the training data (min)

GAs
Pop. Size OX 0X2 PMX ox’
100 34.50 19.41 22.67 31.14
120 40.09 23.94 26.35 36.15
140 47.41 28.76 32.98 44.90
160 58.53 33.35 37.66 51.87
180 65.12 39.24 43.39 60.27
200 75.08 43.53 50.01 69.05

Table 7.1(b) Execution times for SDST for the control data (min)

GAs
Pop. Size OX 0X2 PMX ox’
100 32.88 19.12 22.19 23.23
120 40.02 2451 26.47 28.63
140 47.68 28.39 32.97 35.42
160 56.75 33.43 37.40 41.08
180 66.15 41.83 43.59 46.96
200 71.45 43.20 48.14 52.28

For SDST, the execution time for OX2 is by far the best among other GAs for all
population sizes for both of the training and control data sets. This is because of the
performance of 2 — point order crossover is much better than the performances of 1 —
point crossover and PMX. PMX is the second crossover operator performing well
and when the three are used together, the execution times give the third best results
in OX’.
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Table 7.2(a) Execution times for LDST for the training data (min)

GAs
Pop. Size OoX OoX2 PMX ox’
100 105.02 48.11 42.63 78.78
120 130.24 51.89 52.63 97.94
140 154.96 60.63 64.81 115.45
160 173.88 72.27 71.93 135.59
180 199.66 79.74 81.69 152.96
200 223.18 91.36 94.37 172.64

Table 7.2(b) Execution times for LDST for the control data (min)

GAs
Pop. Size OX 0X2 PMX ox’
100 107.38 42.94 44.05 56.27
120 125.85 50.32 51.67 70.73
140 148.13 61.77 60.97 83.00
160 173.87 68.66 70.68 88.48
180 204.03 80.64 80.05 104.93
200 215.08 91.11 89.95 120.36

For LDST, the execution times for OX2 and PMX are better than OX and OX’.
There is not an obvious difference between OX2 and PMX for a larger dataset. Both

the training and the control data sets give similar results, in which the results of the

control data set verify the results of the training data set.

Comparative runtime graphs of the training data, which show the effect of data set
growth for 100 individuals for both the training and the control data are given in
Figure 7.1(a) and Figure 7.1(b) respectively. The runtime graphs of other population

sizes are listed in Appendix P.
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Figure 7.1(a) Runtime graphs showing the dataset growth of training data for 100 individuals.

220
200
180
160

E 140
£
£ 100
£ o0 W LDST
= 56,27

60 42,94 44,05

40 328

19,1 22,1 23,2
20
0 - .
GA1 GA2 GA3 GA4

Figure 7.1(b) Runtime graphs showing the dataset growth of control data for 100 individuals.

Execution times for the larger dataset show that, increasing the dataset size almost
by two does not affect the performance of PMX much. For OX and OX2, although
OX2 performs the best for SDST, the execution times almost tripled when compared
to the results of the smaller dataset. But execution times for PMX increased only for
two times for the smallest population of 100 individuals. This proves that, PMX is
the crossover operator which is affected from the data set growth for at least. As the
population size grows, the gap between the execution times of small and larger data
sets diminishes. As a result of this, for the larger populations, OX2 performs better
than OX, PMX and OX’.
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For each GA, there is a different trend of increase in runtime values with the
increasing population sizes. The trends of increase in runtimes for OX, OX2, PMX

and OX’ for both training and control data are given in Appendix Q respectively.

According to the trend of increase graphs of runtime values, OX2 and PMX again
outperform the other GAs because the trend of increase for LDST is similar to the
trend of increase of SDST in both.

7.2 Genetic Operators of Successful Scenarios

In this study there is not only one solution of module range, but instead, there are
many module ranges as the output because the software is run many times for
different paramater combinations. All of these ranges are compared with that of the
expert’s suggestion and the aim is not only finding the best module range, but also

determining the parameter combination giving the most number of reliable ranges.

When Table 5.2 is examined for the corresponding crate values of the successful
scenarios, it can be observed that the number of scenarios having 0.75, 0.80 and 1.0
as the crate is more than the others for the smaller dataset as can be seen in Table 7.3.
Figure 7.2 shows the performance of crate = 0.80 for SDST. For the larger dataset,
higher crates produce more successful scenarios and the number of scenarios having

1.00 as the crate is more than the others.

Table 7.3 Number of successful scenarios for crate values

Dataset \ Crate | 0.70 | 0.75 | 0.80 | 0.85 | 0.90 | 0.95 | 1.00
SDST 2 5 5 2 2 3
LDST 4 2 4 4 3 1 6

(9]

68



Number of Successful Scenarios

0.70

0.75

0.80 0.85 0.90

Crossover Rates

0.95

1.00

W SDST
W LDST

Figure 7.2 Performance of crossover rates in terms of the amounts of successful scenarios for SDST

and LDST

The same extraction can be done for the mutation rates. The number of scenarios
having 0.1 and 0.15 as the mrate is more than the others for the smaller dataset as can
be seen in Table 7.4. Higher mrates does not perform well for a smaller dataset. For

the larger dataset, higher mrates produce more successful scenarios and the number

of scenarios having 0.2 as the mrate is more than the others.

Table 7.4 Number of successful scenarios for mate values.

Dataset \ Mrate 0.1 0.15 0.2
SDST 9 9 6
LDST 4 9 11

Number of Successful Scenarios

12

10

0.15
Mutation Rates

0.2

W SDST
W LDST

Figure 7.3 Performance of mutation rates in terms of the amounts of successful scenarios for SDST

and LDST
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When the scenarios giving the best module ranges for all GAs and population
sizes for SDST and LDST of the control data set are examined, it is observed that the
number of scenarios having 0.95 as the crate is more than the others for the smaller
dataset as can be seen in Table 7.5. Figure 7.4 shows the performance of crate = 0.95
for SDST. For the larger dataset, lower crates produce more successful scenarios and
the number of scenarios having 0.70 as the crate is more than the others.

Table 7.5 Number of successful scenarios for crate values

Dataset \ Crate | 0.70 | 0.75 | 0.80 | 0.85 | 0.90 | 0.95 | 1.00
SDST 3 5 3 2 3 6
LDST 7 5 4 3 1 2 2

N

W SDST

W LDST

Number of Successful Scenarios
I~

0.70 0.75 0.80 0.85 0.90 0.95 1.00

Crossover Rates

Figure 7.4 Performance of crossover rates in terms of the amounts of successful scenarios for SDST
and LDST

The same extraction can be done for the mutation rates. The number of scenarios
having 0.1 as the mrate is more than the others for the smaller dataset as can be seen
in Table 7.6. Higher mrates does not perform well for a smaller dataset. For the
larger dataset, the number of scenarios having 0.2 as the mrate is more than the

others.

Table 7.6 Number of successful scenarios for mate values.

Dataset \ Mrate 0.1 0.15 0.2
SDST 12 5 7
LDST 10 2 12
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Figure 7.5 Performance of mutation rates in terms of the amounts of successful scenarios for SDST
and LDST

7.3 Best t VValues

The amount of successful solutions are calculated according to the t value formula
of Spearman Rank Correlation (Formula (4) in Chapter Five). The calculated values
are then compared with the corresponding value in t — Table (Appendix E). The
corresponding t value of t — Table to compare is detected according to the Spearman
Evaluation Criteria given in Table 5.5. The software implemented also gives the best

t value of each 1260 runs and it can be seen on user screen as shown in Figure 7.6.

Course: PP M

Modules: 13
- Tme: _
MX Type: l

Best Range:

GIRIS Scenario: | 1161-558
FATURA MODULO GIRIS Best o

BANKA MODUOLD rtho Value:  0.975490156078

STOK MODUL ILERI
TALEP / TEKLIF MODULU
MUSTERI CEKLERI
MUHASEBE GIRIS . 958930
ENTEGRASYON MODUOLD Total Runtime: !

INTHIN] oIl

coc e

t Value: 17.16963366001

Figure 7.6 The User interface showing the best t value calculated. This user interface is an example of
SDST for 100 individuals.
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These best t value results for all population sizes for both SDST and LDST for the
training and the control data are given in Table 7.7(a), Table 7.7(b), Table 7.7(c) and
Table 7.7(d) respectively.

Table 7.7(a) Best t values for SDST for the training data set.

GAs
Pop. Size OoX OoX2 PMX ox’
100 10.54 16.33 14.40 17.17
120 10.78 17.17 13.42 12.99
140 10.78 14.97 13.88 19.26
160 12.99 18.13 9.71 18.13
180 11.90 22.33 22.33 11.90
200 8.73 20.63 10.78 15.61

Table 7.7(b) Best t values for SDST for the control data set.

GAs
Pop. Size OX 0X2 PMX ox’
100 12.99 14.97 11.90 18.13
120 14.40 19.26 11.04 14.97
140 12.99 16.34 13.42 20.63
160 15.61 16.34 12.60 14.97
180 13.42 22.33 11.04 18.13
200 12.24 14.97 13.42 12.24

Table 7.7(c) Best t values for LDST for the training data set.

GAs
Pop. Size OoX OoX2 PMX ox’
100 12.99 20.85 9.73 12.53
120 11.96 17.81 10.16 12.82
140 10.04 21.35 9.88 12.94
160 13.95 17.61 12.29 16.44
180 15.60 15.82 11.30 14.34
200 18.35 17.32 12.73 21.02
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Table 7.7(d) Best t values for LDST for the control data set.

GAs
Pop. Size OoX OoX2 PMX ox’
100 1451 22.06 13.08 19.69
120 13.12 20.25 13.30 17.71
140 13.50 20.86 14.28 18.35
160 14.40 18.13 17.92 16.96
180 13.21 23.93 14,51 19.04
200 13.80 18.13 14.28 22.83

Having the highest t value indicates that, the result giving the highest t value is the
best solution among the result set. Mostly, the best t values of different population
sizes are from the operator OX2 for both the training and control data. This shows
that 2 — point order crossover gives the best module range results predominantly.
Complete t value results for SDST of 100 individuals for the training data are given

in Appendix F.

7.4 Reliable Module Range Amounts for Each GA

Being the best solution is not the only anwser that this study looks for. Except the
best result, number of all reliable results should be taken into consideration. For each
GA and each population size, different amounts of reliable solutions have been
acquired. The graphics of the number of reliable module ranges for each scenario in

SDST and LDST for the training and control data are given in Appendix |.
The total number of reliable modules for each GA and population sizes are given

in Table 7.8(a), Table 7.8(b), Table 7.8(c) and Table 7.8(d) for SDST and LDST for
the training and the control data sets respectively.
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Table 7.8(a) Total number of reliable results for SDST for the training data set

GAs
Pop. Size OoX OoX2 PMX ox’
100 572 947 713 728
120 585 999 598 712
140 579 1035 637 766
160 624 1049 687 875
180 660 1069 687 848
200 667 1124 864 899

Table 7.8(b) Total number of reliable results for SDST for the control data set

GAs
Pop. Size OoX OoX2 PMX ox’
100 967 1148 785 1045
120 991 1188 840 1097
140 1049 1218 914 1142
160 1053 1231 948 1180
180 1085 1238 986 1206
200 1114 1253 1050 1216

Table 7.8(c) Total number of reliable results for LDST for the training data set

GAs
Pop. Size OoX OoX2 PMX ox’
100 836 1181 743 905
120 943 1195 964 1055
140 970 1220 1021 1150
160 1027 1226 1074 1162
180 1035 1244 1123 1205
200 1045 1256 1093 1197
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Table 7.8(d) Total number of reliable results for LDST for the control data set

GAs
Pop. Size OoX OoX2 PMX ox’
100 1252 1260 1225 1258
120 1250 1260 1247 1258
140 1256 1260 1245 1260
160 1260 1260 1238 1259
180 1258 1260 1248 1259
200 1258 1260 1251 1260

According to the tables given above, OX2 is the best algorithm for both the
training and the control data sets with highest numbers of reliable solutions among
the other GAs. The graphics about the number of reliable solutions for each

population size in both the training and control data are given in Appendix H.

7.5 Best Module Ranges

For each size of dataset, there are 6 best results for all sizes of population. The

best reliable module range can be detected from the output shown in user interface.

Figure 7.7 shows the best scenario number out of 1260.

The best reliable ranges for all dataset and population sizes are found among the

raw .csv files. These module ranges are then compared with that of the expert’s
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Figure 7.7 The number of Best Scenario
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suggestion. Best module ranges to be compared with the Expert’s are given in
Appendix J for the training data and in Appendix K for the control data respectively.

For the two different sizes of data sets, the human expert has two different
suggestions. These suggestions are used to apply Spearman Rank Correlation on the
calculated results to determine the reliability percentage of the solutions. Table 7.9(a)
shows the reliability percentages of the module ranges of SDST for the training data
and Table 7.9(b) the reliability percentages of the module ranges of SDST for the
control data according to their population sizes when compared with the expert’s
suggestion (Wessa, 2012). The tables with the module ranges of given percentages
are given in Appendix L for the training data and in Appendix M for the control data

respectively in detail.

Table 7.9(a) Reliability Percentages for six population sizes of SDST for the training data set

Reliability Percentages

Pop. Size | OX 0X2 PMX ox’

100 93.87% 97.30% 96.56% 97.55%
120 94.11% 97.55% 96.07% 95.83%
140 94.11% 96.81% 96.32% 98.04%
160 95.83% 97.79% 92.89% 97.79%
180 95.10% 98.53% 98.53% 95.10%
200 94.60% 98.28% 94.11% 97.06%

Table 7.9(b) Reliability Percentages for six population sizes of SDST for the control data set

Reliability Percentages

Pop. Size | OX 0X2 PMX ox’

100 95.83% 96.81% 95.10% 97.79%
120 96.56% 98.04% 94.36% 96.81%
140 95.83% 97.30% 96.08% 98.28%
160 97.06% 97.30% 95.59% 96.81%
180 96.08% 98.53% 94.36% 97.80%
200 95.34% 96.81% 96.07% 95.34%

According to the results of SDST, population size of 180 with 2 — point order
crossover and PMX give the most reliable results with a percentage of 98.53. The
two — tailed p value for this range is less than 0.0001 (p<0.01); therefore this range is
accepted as extremely significant. The crossover rates of the scenarios (S8 and S40
from Table 5.2.) giving the most reliable module range (crate) is 0.80 and 1.00.

mutation rates are 0.10 and 0.15. choosing the crossover rate 0.80 or 1.00 and
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choosing the mutation rate 0.10 or 0.15 gives the optimum solutions having the
highest reliability percentage.

Figure 7.8(a) and Figure 7.8(b) show the comparison graphics of most reliable
results of SDST for training and control data with that of the expert’s. In each case,
the population size of 180 with OX2 give the best results for both training and
control data. The x axis in figures represents the expected rank number of the
module, where y axis represents the observed rank number of the module (Wessa,
2012). When the dots are ranged more linearly in the graphic, it indicates a more
reliable range. The graphics of other population sizes for SDST for training and

control data are given in Appendix N.

With 180 individuals, there exist two best results for OX2 and PMX in training
data. Here the result of OX2 is considered because the execution time for OX2 is
better.
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Figure 7.8(a) Comparing the most reliable module range result of training data — SDST for a

population size of 180 with Expert’s Suggestion. The solution is 98.53% reliable in OX2 and PMX.
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Figure 7.8(b) Comparing the most reliable module range result of control data — SDST for a

population size of 180 with Expert’s Suggestion. The solution is 98.53% reliable in OX2 and PMX.

Table 7.10(a) shows the reliability percentages of the module ranges of SDST for

the training data and Table 7.10(b) the reliability percentages of the module ranges of

LDST for the control data according to their population sizes when compared with

the expert’s suggestion (Wessa, 2012). The tables with the module ranges of given

percentages are given in Appendix L for the training data and in Appendix M for the

control data respectively in detail.

Table 7.10(a) Reliability Percentages for six population sizes of LDST for the training data set

Reliability Percentages

Pop. Size | OX 0X2 PMX ox’

100 92.61% 96.93% 87.85% 92.12%
120 91.45% 95.86% 88.70% 92.43%
140 88.47% 97.06% 88.16% 92.57%
160 93.50% 95.77% 91.85% 95.19%
180 94.70% 94.84% 90.56% 93.81%
200 96.08% 95.64% 92.34% 96.97%

Table 7.10(b) Reliability Percentages for six population sizes of LDST for the control data set

Reliability Percentages

Pop. Size | OX 0X2 PMX ox’

100 93.94% 97.14% 92.70% 96.57%
120 92.74% 96.75% 92.65% 95.81%
140 93.10% 96.93% 93.77% 96.08%
160 93.86% 96.00% 95.90% 95.46%
180 92.83% 97.64% 93.94% 96.35%
200 93.37% 95.99% 93.77% 97.41%

78



According to the results of LDST, population size of 140 with 2 — point order
crossover gives the most reliable results with a percentage of 97.06. The two — tailed
p value for this range is less than 0.0001 (p<0.01); therefore this range is accepted as
extremely significant. The crossover rates of the scenario (S24 from Table 5.2.)
giving the most reliable module range is 0.70. Mutation rate is 0.2. This means that,
choosing the crossover rate 0.70 and choosing the mutation rate 0.2 gives the
optimum solutions having the highest reliability percentage for a larger dataset with

longer chromosomes.

Figure 7.9(a) and Figure 7.9(b) show the comparison graphics of most reliable
results of LDST for training and control data with that of the expert’s (Wessa, 2012).
The population size of 140 for the training data and the population size of 180 for the
control data give the best results. The graphics of other population sizes for LDST
for training and control data are given in Appendix O. The deviations in the graphs

depend on the characteristics of the data sets used for both trainnig and control data.
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Figure 7.9(a) Comparing the most reliable module range result of training data — LDST for a

population size of 140 with Expert’s Suggestion. The solution is 97.06% reliable in OX2.
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Figure 7.9(b) Comparing the most reliable module range result of control data — LDST for a

population size of 180 with Expert’s Suggestion. The solution is 97.64% reliable in OX2.

7.6 Best Fitness Values

The fitness values for the best scenarios of the training and control data for SDST
for all population sizes are given in Table 7.11(a) and Table 7.11(b). According to
the best fitness values, SDST has many fitness values of 1 as maximum. This means

that, a smaller data set has more chance to obtain the most successful module ranges.

Table 7.11(a) Best fitness values of training data for SDST.

Pop. Size | OX OX2 PMX ox’

100 1 1 1 1

120 0.990449 1 0.990449 1

140 1 1 0.977484 1

160 1 1 0.991783 0.990449
180 1 1 0.985465 0.991783
200 0.991783 1 1 1

Table 7.11(b) Best fitness values of control data for SDST.

Pop. Size | OX OX2 PMX ox’

100 1 0.970394 1 1

120 1 1 0.99279 0.988597
140 0.988597 1 1 1

160 1 1 0.99279 1

180 0.977452 1 0.991783 1

200 0.99279 1 1 1
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The fitness values for the best scenarios of the training and control data for LDST

for all population sizes are given in Table 7.12(a) and Table 7.12(b).

Table 7.12(a) Best fitness values of training data for LDST.

Pop. Size | OX OoX2 PMX ox’

100 0,941969 0,989932 0,958366 0,940128
120 0,922741 0,975127 0,936834 0,974124
140 0,972276 0,992605 0,921092 0,961518
160 0,958085 0,943518 0,971504 0,977296
180 0,980838 0,990698 0,963411 0,989189
200 0,973544 0,993085 0,975832 0,984438

Table 7.12(b) Best fitness values of control data for LDST.

Pop. Size | OX OoX2 PMX ox’

100 0.995902 0.995902 0.982835 0.995902
120 0.989461 0.995902 0.896098 0.983103
140 0.973344 0.995902 0.975586 0.995902
160 0.995902 0.995902 1 0.995902
180 0.989461 1 0.991837 0.995902
200 0.995902 1 0.981565 1

For LDST, the maximum fitness values are mostly obtained in OX2 (except for
160 individuals). This shows that, OX2 is more effective when the data set grows.
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CHAPTER EIGHT
CONCLUSIONS

According to the preliminary results, it was concluded that the results of the tests
that 2 — point order crossover operator is used give better results in terms of runtime
and fitness values (Abidin and Cakir, 2011). Accordingly, the number of reliable
module ranges found in tests with 2 — point order crossover operator was higher than
the number of reliable module ranges with 1 — point order crossover operator. These
tests were done for two population sizes (100 and 200).

In the final work, the population size interval was given as 100 — 200 (100, 120,
140, 160, 180 and 200). The system needed to test different sizes of populations
because increasing the population size to a certain extend encourages the diversity of
the population that the GA deals with. This means that, as the population size
increases, the possibility of having individuals with various values of fitnesses also
increases. With populations of small size, runtime and fitness values were more
likely to be the best. As the population grows, finding “very reliable” solutions gets
more difficult. Within this study, finding reliable solutons very similar to that of the
expert’s suggestions was not very difficult because the parameter tuning process
helped to find the optimum module sequence with the most appropriate GA

parameters.

It is very important to verify that the study stands as a reliable one among all other
scientific researches in the relevant field literature. In this study, the output of the
software was compared with the solution suggestion of a human to decide about the
curriculum planning system’s reliability. For this reason, all of the results obtained in
the study with all scenarios and genetic operators were accepted as the best solutions
at the beginning of the evaluation process and the Spearman Rank Correlation test

was applied to all.
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The Spearman test is a nonparametric statistical analysis method, which is used in
cases where two data sets have to be observed with regard to their sequences. With
this test, the module ranges similar to the range of the expert’s suggestions and the
numbers of reliable module ranges for each scenario are retained. Having many
reliable module ranges is as important as obtaining the best module range because
the system produces many reliable solutions and they can not be neglected during

evaluation.

From the genetic operators point of view, keeping the crossover rates higher gives
better results (0.9) both in 1 — point order and 2 — point order crossover operators.
The mutation rates tested were extremely high in this study when compared with
similar studies in literature, though the preliminary tests of the study indicated that

lower mutation rates do not give better results in this kind of sequencing problems.

The way of representing the data became an important subject in the study. The
platform independenceness of XML helped to store data in any format and it helped
to convert the data to a mathematical representation like a matrix. Benefits of storing
rules in matrix representation can be listed in a few topics: Convenience of storing
and processing rules, easy transformation of rule set from an XML file to a sparse
matrix, not taking up space in database. The source code to write the XML file with

the prerequisite rules is given in Appendix G.

What was done with the dataset containing a curriculum content had to be verified
with another dataset having the same characteristics; another curriculum for another
course, if possible. To provide this, a control dataset, which had the same
prerequisite features, was prepared and the same tests were done on it. The results
verified that same parameter combinations gave the same successful module ranges

in the same reliability percentages.
The results suggest that, the rule — based GA developed in this study can be used

as a reliable system to optimize a curriculum sequence having tight prerequisite rules

among the sections of educational material.
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As the future work of this study, it is aimed to find a wider application area for the
module ranking methodology in education. Since the presentation of the course
content to students play an important role on their education, each course’s content
should be ranked in the most appropriate order. This can be an important factor on
raising more equipped students to compete with each other in industry after
graduation.

Another future aim is to find the optimum curriculum plan with many lectures all
together. The contents of the lectures can already be ranked according to the ranking
method put forward in the thesis and the whole curriculum, e.g. eight semesters of

courses for a faculty of four years, can also be ranked with this technique.

84



REFERENCES

Abdullah, S., Turabieh, H., McCollum, B. & McMullan, P. (2010a). A Multi -
Objective Post Enrolment Course Timetabling Problems: A New Case Study.
Proceedings of IEEE Congress on Evolutionary Computation (CEC), IEEE, 1 -
7. Retrieved August 1, 2011 from IEEE Database.

Abdullah, S., Turabieh, H., McCollum, B. & McMullan, P. (2010b). A Hybrid
Metaheuristic Approach to the University Course Timetabling Problem. Journal
of Heuristics, 18 (1), Springer, 1 - 23. Retrieved August 1, 2011 from Springer
Database.

Abidin, D., Cakir, S. (2011). Rule-Based Genetic Algorithm for In-Service Training
Curriculum Plan. Proceedings of the International Conference on Computers,
Digital Communications and Computing (ICDCCC’11), 160 — 166.

Abraham, A. (2005). Evolutionary Computation. In Sydenham P.H., & Thorn R.,
(Eds.). Handbook of Measuring System Design (910-911). John Wiley & Sons.

Adamuthe, A.C., Bichkar, R.S. (2011). Minimizing Job Completion Time in Grid
Scheduling with Resource and Timing Constraints Using Genetic Algorithm.
Proceedings of the International Conference and Workshop on Emerging Trends
in Technology (ICWET 2011) — TCET, Mumbai, India, 338 — 343.

Agustin - Blas, L.E., Salcedo — Sanz, S., Ortiz — Garcia, E.G., Portilla - Figueras, A.,
Perez — Bellido, A.M. (2009). A Hybrid Group Genetic Algorithm for Assigning
Students to Preferred Laboratory Groups. Expert Systems with Applications Vol.
36, Elsevier, 10180 — 10187. Retrieved February 26, 2010 from Elsevier

Database.

Ahmed, Z.H. (2010). Genetic Algorithm for the Traveling Salesman Problem Using
Sequential Constructive Crossover Operator. International Journal of Biometrics
& Bioinformatics (1JBB), 3 (6), 96 — 105. Retrieved April 4, 2012 from Computer

Science Journals Database.

85



Ahmet, A., Zhoujun, L. (2010). Solving Course Timetabling Problem Using
Interrelated Approach. Proceedings of the International Conference on Granular
Computing, IEEE, 651 — 655. Retrieved August 1, 2011 from IEEExplore

Database.

Aldasht, M., Alsaheb, M., Adi S., Qopita, M.A. (2009). University Course
Scheduling Using Evolutionary Algorithms. Proceedings of 4th International
Multi — Conference on Computing in the Global Information Technology, IEEE,
47 - 51. Retrieved August 1, 2011 from IEEE Database.

Alsmadi, O.MK., Abo-Hammour, Z.S., Abu-Al-Nadi, D.l., Algsoon, A. (2011). A
Novel Genetic Algorithm Technique for Solving University Course Timetabling
Problems. Proceedings of 7™ International Workshop on Systems, Signal
Processing and Their Applications (WOSSPA’11), IEEE, 195 — 198. Retrieved
August 1, 2011 from IEEExplore Database.

Altay, A., Kayakutlu, G. & Topcu, Y.I. (2010). Win — Win Match Using a Genetic
Algorithm. Applied Mathematical Modelling 34, Elsevier, 2749 - 2762.
Retrieved August 1, 2011 from Elsevier Database.

Anghinolfi, D., Montemanni, R., Paolucci, M. & Gambardella, L.M. (2011). A
Hybrid Particle Swarm Optimization Approach for the Sequential Ordering
Problem. Computers & Operations Research 38, Elsevier, 1076 — 1085.
Retrieved April 5, 2011 from Elsevier Database.

Ayob, M. & Jaradat, G. (2009). Hybrid Ant Colony Systems for Course Timetabling
Problems. Proceedings of IEEE Second Conference on Data Mining and
Optimization, IEEE, 120 — 126. Retrieved August 1, 2011 from IEEE Xplore

Database.

Balli, S., Karasulu, B., Ugur, A., Korukoglu, S. (2009). Basketbolda Oyuncu Se¢imi
icin Sinirsel-Bulanik Karar Destek Sistemi. Journal of ITU/d, 8, No.1, 15-25.

Bardadym, V. (1996). Computer-Aided School and University Timetabling: The
New Wave. In E.K. Burke, P. Ross (Eds.). Selected Papers from the 1st

86



International Conference on the Practice and Theory of Automated Timetabling,
Lecture Notes in Computer Science, vol. 1153, 22-45.

Barrero, D.F., Gonzales — Pardo, A., Camacho, D., R — Moreno, M.D. (2010).
Distributed Parameter Tuning for Genetic Algorithms. International Journal of
Computer Science and Information Systems (ComSIS), Vol. 7. No. 3., 661 — 677.
Retrieved March 7, 2012 from ComSIS Database.

Birogul, S., Elmas, C., Cetin, A. (2011). Planning of the GSM Network Broadcast
Control Channel with Data Fusion. Expert Systems with Applications (38),
Elsevier Ltd., 2421 — 2431. Retrieved August 1, 2011 from ScienceDirect

Database.

Bissonette, V.L. (2011). Critical Values of the t Distribution. Retrieved January 23,
2012, from http://facultyweb.berry.edu/vbissonnette/tables/t.pdf.

Brizuela, C.A., Zhao, Y., Sannomiya, N. (2001). No — Wait and Blocking Job —
Shops: Challenging Problems for GA’s. Proceedings of IEEE International
Conference on Systems, Man and Cybernetics, Vol. 4, 2349 — 2354. Retrieved
March 8, 2012 from IEEE Database.

Burke, E.K., De Causmaecker, P., Berghe, G.V., Van Landeghem, H. (2004). The
State of the Art of Nurse Rostering. Journal of Scheduling 7 (6), 441-499.

Burke, E.K., Jackson, S., Kingston, H., Weare, F. (1997). Automated University
Timetabling: The State of the Art. The Computer Journal 40 (9), 565-571.

Burke, E.K., McCollum, B., Meisels, A., Petrovic, S., Qu, R. (2007). A Graph-Based
Hyper-Heuristic for Educational Timetabling Problems. European Journal of

Operational Research (176), 177-192.

Burke, E.K., Petrovic, S. (2002). Recent Research Directions in Automated
Timetabling. European Journal of Operational Research 140 (2), 266—280.

87



Cardoen, B., Demeulemeester, E., Belien, J. (2010). Operating Room Planning and
Scheduling: A Literature Review. European Journal of Operational Research,
Vol. 201, Elsevier, 921-932. Retrieved September 27, 2010 from ScienceDirect

Database.

Carter, M., Laporte, G. (1996). Recent Developments in Practical Exam Timetabling.
In E.K. Burke, P. Ross (Eds.). Selected Papers from the 1st International
Conference on the Practice and Theory of Automated Timetabling, Lecture Notes

in Computer Science, vol. 1153, 3-21.

Carter, M., Laporte, G. (1998). Recent Developments in Practical Course
Timetabling. In: E.K. Burke, P. Ross (Eds.). Selected Papers from the 2nd
International Conference on the Practice and Theory of Automated Timetabling,

Lecture Notes in Computer Science, vol. 1408, 3-19.

Castelli, M., Manzoni, L., Vanneschi, L. (2011). The Effect of Selection from Old
Populations in Genetic Algorithms. Proceedings of Genetic and Evolutionary
Computation Conference GECCO’11, 161 — 162. Dublin, Ireland.

Castillo, O., Melin, P. (1996). Automated Mathematical Modelling for Financial
Time Series Prediction Using Fuzzy Logic, Dynamical System Theory and
Fractal Theory. Proceedings of Computational Intelligence for Financial
Engineering IEEE/IAFE’96, 120 — 126. NY: IEEE Press. Retrieved September
20, 2007 from IEEExplore Database.

Castillo, O., Melin, P., Kacprzyk, J., Pedrycz, W. (2008). Soft Computing for Hybrid
Intelligent Systems. Studies in Computational Intelligence 154, 387 — 388.
Springer — Verlag.

Chakraborty, M., Chakraborty, U.K. (1997). An Analysis of Linear Ranking and

Binary Tournament Selection in Genetic Algorithms. Proceedings of

International Conference on Information, Communications and Signal

88



Processing ICICS’97, Singapore, 9 — 12 September, 1997, 407 — 411. Retrieved
January 5, 2010 from IEEE Xplore Database.

Chakravorty, S., Thukral, M. (2009). Choosing Distribution Substation Location
Using Soft Computing Technique. Proceedings of International Conference on
Advances in Computing, Communication and Control (ICAC3’09), ACM, 53-55.

Chan F.T.S., Choy K.L., Bibhushan. (2011). A Genetic Algorithm — Based Scheduler
for Multiproduct Parallel Machine Sheet Metal Job Shop. Expert Systems with
Applications, Elsevier, Vol. 38, 8703 — 8715. Retrieved August 5, 2011 from
Elsevier Database.

Chang, P.-C., Huang, W.-H., Ting, C.-J. (2010). Dynamic Diversity Control in
Genetic Algorithm for Mining Unsearched Solution Space in TSP Problems.
Expert Systems with Applications Vol. 37, Elsevier, 1863 — 1878. Retrieved
February 26, 2010 from Elsevier Database.

Chang, T.-J., Yang, S.-C., Chang, K.-J. (2009). Portfolio Optimization Problems in
Different Risk Measures Using Genetic Algorithm. International Journal of
Expert Systems with Applications 36, 10529 — 10537. Retrieved July 6, 2009
from ScienceDirect Database.

Chaoan, L. (2007). The Expert System of Product Design Based on CBR and GA.
International Conference on Computational Intelligence and Security
Workshops, IEEE, 144-147. Retrieved June 30, 2008 from IEEExplore Database.

Cheang, B., Li, H., Lim, A., Rodrigues, B. (2003). Nurse Rostering Problems: A
Bibliographic Survey. European Journal of Operational Research 151 (3), 447-
460.

Cheng, W., Shi, H., Yin, X,, Li, D. (2011). An Elitism Strategy Based Genetic
Algorithm for Streaming Pattern Discovery in Wireless Sensor Networks. IEEE
Communication Letters, Vol. 15, No. 4, 419 — 421. Retrieved January 2, 2012
from IEEExplore Database.

89



Chinnasri, W. & Sureerattanan, N. (2010). Comparison of Performance between
Different Selection Strategies on Genetic Algorithm with Course Timetabling
Problem. Proceedings of IEEE International Conference on Advanced
Management Science (ICAMS) 2, 105 — 108. Retrieved August 1, 2011 from
IEEE Xplore Database.

Chiou, C.-W., Wu, M.-C. (2009). A GA-Tabu Algorithm for Scheduling In-Line
Steppers in Low-Yield Scenarios. International Journal of Expert Systems with
Applications 36, 11925 — 11933. Retrieved July 6, 2009 from ScienceDirect
Database.

Chou, J-S. (2009). Generalized Linear Model-Based Expert System for Estimating
the Cost of Transportation Projects. Expert Systems with Applications 36,
Elsevier, 4253-4267. Retrieved February 26, 2010 from ScienceDirect Database.

Choy, K.L., Leung, Y.K., Chow, H.K.H., Poon, T.C., Kwong, C.K., Ho, G.T.S,, et
al. (2011). A Hybrid Scheduling Decision Support Model for Minimizing Job
Tardiness in a Make-to-Order Based Mould Manufacturing Environment. Expert
Systems with Applications (38), Elsevier Ltd., 1931 — 1941. Retrieved August 1,
2011 from ScienceDirect Database.

Chung, J.-W., Oh, S.-M., Choi, I.-C. (2009). A hybrid Genetic Algorithm for Train
Sequencing in the Korean Railway. The International Journal of Management
Science, Omega 37, 555 — 565. Elsevier Ltd. Retrieved August 5, 2011 from
ScienceDirect Database.

Coley, D.A. (1998). An Introduction to Genetic Algorithms for Scientists and
Engineers. World Scientific, London. Retrieved September 17, 2012 from
http://read.pudn.com.

Cupic, M., Golub, M. & Jakobovic, D. (2009). Exam Timetabling Using Genetic
Algorithm. Proceedings of the International Conference on Information
Technology Interfaces (ITI’09), 357 — 362. Cavtat, Croatia. Retrieved August 1,
2011 from Springer Database.

90



Davis, L. (1991). Handbook of Genetic Algorithms. Van Nostrand Reinhold, New
York.

De Marcos, L., Barchino, R., Martinez, J.J. (2008). Evolutionary Approaches for
Curriculum Sequencing. Proceedings of the 13th Annual Conference on
Innovation and Technology in Computer Science Education ITiCSE’08, 373.
Madrid, Spain. Retrieved January 5, 2009 from ACM Digital Library Database.

De Marcos, L., Martinez, J.-J., Gutierrez, J.-A., Barchino, R., Gutierrez, J.-M.
(2008). An Evolutionary Approach for Competency — Based Curriculum
Sequencing. Proceedings of the 10th Annual Conference on Genetic and
Evolutionary Computation, GECCO’08, 1697 — 1698. Atlanta, Georgia, USA.
Retrieved January 5, 2009 from ACM Digital Library Database.

De Marcos, L., Barchino, R., Martinez, J.-J., Gutierrez, J.-A., Hilera, J.-R. (2008).
Competency-Based Curriculum Sequencing: Comparing Two Evolutionary
Approaches. Proceedings of IEEE/WIC/ACM International Conference on Web
Intelligence and Intelligent Agent Technology, 339-342. Retrieved August 6,
2009 from IEEExplore Database.

Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. (103-
104). England: John Wiley and Sons LTD.

Deep, K. & Mebrahtu, H. (2011). New Variations of Order Crossover for Travelling
Salesman Problem. International Journal of Combinatorial Optimization and
Informatics 2 (1), 2 — 13. Retrieved April 4, 2012 from 1IJCOPI Database.

Derakhshi, M.R.F., Zandi, M. (2010). A Solution to the Problem of University
Examinations Timetabling Through Information Related to the Units Taken
Previous Terms. Proceedings of 2" International Conference on Computer and
Automation Engineering (ICCAE’10), Vol. 1, 559 — 562. IEEE. Retrieved August
1, 2011 from IEEExplore Database.

91



Easton, K., Nemhauser, G., & Trick, M. (2004). Sports Scheduling. In J. Leung,
(Ed.). Handbook of Scheduling: Algorithms, Models, and Performance Analysis.
(Chapter 52). CRC Press.

Ebrahimipour, V., Nagasaka, K. (2003). Deterministic and Non-Deterministic
Methods for Power Sector Performance Ranking Based on Machine Productivity.
Proceedings of International Conference of IEEE Power Tech Vol. 3, Bologna,
Italy, 8. Retrieved December 16, 2011 from IEEExplore Database.

Eiben, A.E., Smit, S.K. (2011). Parameter Tuning for Configuring and Analyzing
Evolutionary Algorithms. Journal of Swarm and Evolutionary Computation Vol.
1, Issue. 1, Elsevier, 19 — 31.

Elmas, C. (2007). Yapay Zeka Uygulamalar: (388-402). Ankara: Segkin Yayinevi.

Fakhrzad, M.B., Zare, H.K. (2009). Combination of Genetic Algorithm with
Lagrange Multipliers for Lot — Size Determination in Multi — Stage Production
Scheduling Problems. Expert Systems with Applications Vol. 36, Elsevier, 10180
—10187. Retrieved February 26, 2010 from Elsevier Database.

Fan, Y.-N., Tseng, T.-L., Chern, C.-C., Huang, C.-C. (2009). Rule Induction Based
on an Incremental Rough Set. International Journal of Expert Systems with
Applications 36, 11439 — 11450. Retrieved July 6, 2009 from ScienceDirect
Database.

Fernandez — Prieto, J.A., Canada — Bago, J., Gadeo — Martos, M.A. & Velasco, J.R.
(2011). Optimisation of Control Parameters for Genetic Algorithms to Test
Computer Networks Under Realistic Traffic Loads. Journal of Applied Soft
Computing, 11 (4), Elsevier, 3744 — 3752. Retrieved April 5, 2011 from Elsevier

Database.

Fernandez, A., del Jesus, M.J., Herrera, F. (2009). Hierarchical Fuzzy Rule Based

Classification Systems with Genetic Rule Selection for Imbalanced Data — Sets.

92



International Journal of Approximate Reasoning, Vol 50, Elsevier, 561 — 577.
Retrieved January 5, 2010 from IEEE Xplore Database.

Garcia-Camacho, F., Gallardo-Rodriguez, J.J., Sanchez-Miron, A., Christi, Y.,
Molina-Grima, E. (2011). Genetic Algorithm Based Medium Optimization for a
Toxic Dinoflagellate Microalga. Harmful Algae (10), Elsevier, 697 — 701.
Retrieved December 16, 2011 from ScienceDirect Database.

Giarratano, J., & Riley, G. (2004). Expert Systems: Principles and Programming (4™
Ed.). Course Technology Ptr.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization and Machine
Learning. Reading, MA: Addison Wesley.

Greffenstette, J.J., Baker, J.E. (1989). How Genetic Algorithms Work: A Critical
Look at Implicit Parallelism. Proceedings of the 3rd International Conference on
Genetic Algorithms, 20 — 27. San Mateo, CA: Morgan Kaufmann Publishers.

Hamid, S., Mirhosseyni, L., Webb, P. (2009). A Hybrid Fuzzy Knowledge-Based
Expert System and Genetic Algorithm for Efficient Selection and Assignment of
Material Handling Equipment. International Journal of Expert Systems with
Applications 36, 11875 — 11887. Retrieved July 6, 2009 from ScienceDirect

Database.

He, Y., Hui, C. — W. (2008). A Rule — Based Genetic Algorithm for the Scheduling
of Single — Stage Multi — Product Batch Plants with Parallel Units. Computers
and Chemical Engineering Vol. 32, 3067 — 3083. Retrieved February 26, 2010

from Elsevier Database.

Holland, H.J. (1975). Adaptation in Natural and Artificial Systems. Cambridge, MIT
Press.

Hong, C.-M., Chen, C.-M., Chang, M.-H., Chen, S.-C. (2007). Intelligent Web-

Based Tutoring System with Personalized Learning Path Guidance. Proceedings

93



of 7" IEEE International Conference on Advanced Learning Technologies
(ICALT2007), 512-516. Retrieved June 30, 2008 from IEEExplore Database.

Hoste, K., Phansalkar, A., Eeckhout, L. (2006). Performance Prediction Based on
Inherent Program Similarity. Proceedings of the 15" International Conference on
Parallel Architectures and Compilation Techniques, PACT’06, 114 - 122.
Washington: Seattle, USA. Retrieved December 16, 2011 from ACM Digital
Library Database.

Hu, X.-B., DiPaolo, E.A. (2011). A Ripple — Spreading Genetic Algorithm for the
Aircraft Sequencing Problem. Journal of Evolutionary Computation, Vol. 19(1),
Massachusetts Institute of Technology, 77 — 106. Retrieved August 5, 2011 from

MIT Press Journals Database.

Hung, J.-C. (2009). A Fuzzy GARCH Model Applied to Stack Market Scenario
Using a Genetic Algorithm. Expert Systems with Applications Vol. 36, Elsevier,
11710 - 11717. Retrieved July 6, 2009 from Elsevier Database.

Jat, S.N. & Yang, S. (2011). A Hybrid Genetic Algorithm and Tabu Search
Approach for Post Enrolment Course Timetabling. Journal of Scheduling 14 (6),
Springer, 617 — 637. Retrieved August 1, 2011 from Springer Database.

Jorge, A. S.A., Martin, C., Hugo, T.-M. (2010). Several Strategies to Improve the
Performance of Hyperheuristics for Academic Timetabling Design Problem.
Proceedings of the IEEE Electronics, Robotics and Automotive Mechanics
Conference (CERMA’10), 102 — 107. Retrieved August 1, 2011 from IEEExplore

Database.

Jorge, A., S.A., Martin, C., Hector, P. (2010). A New Approach of Design for the
Academic Timetabling Problem through Genetic Algorithms. Proceedings of the
IEEE Electronics, Robotics and Automotive Mechanics Conference
(CERMA’10), 96 — 101. IEEE. Retrieved August 1, 2011 from IEEExplore
Database.

94



Juang, Y. - S, Lin, S. - S, Kao, H. — P. (2007). An Adaptive Scheduling System
with Genetic Algorithms for Arranging Employee Training Programs. Expert
Systems with Applications Vol. 33, Elsevier, 642 — 651. Retrieved February 26,

2010 from Elsevier Database.

Julstrom, B.A. (2004). Encoding Bounded — Diameter Spanning Trees with
Permutations and with Random Keys. Proceedings of 6™ Annual Conference on
Genetic and Evolutionary Computation Conference GECCO’04, 1272 — 1281.
Seattle, Washington, USA. Retrieved April 5, 2011 from Elsevier Database.

Julstrom, B.A. (2009). String and Permutation Coded Genetic Algorithms for the
Static Weapon — Target Assignment Problem. Proceedings of 11" Annual
Conference on Genetic and Evolutionary Computation Conference GECCO’09,
2553 — 2558. Montreal, Quebec, Canada. Retrieved August 5, 2011 from ACM
Digital Library Database.

Karol, B., Tomasz, B., Henryk, K. (2006). Parallelisation of Genetic Algorithms for
Solving University Timetabling Problems. Proceedings of the International
Symposium on Parallel Computing in Electrical Engineering (PARELEC’06),
IEEE, 325 - 330. Retrieved January 5, 2010 from IEEE Xplore Database.

Kaya, M. (2010). Autonomous Classifiers with Understandable Rule Using Multi —
Objective Genetic Algorithms. Expert Systems with Applications Vol. 37,
Elsevier, 3489 — 3494. Retrieved February 26, 2010 from Elsevier Database.

Kaya, 1. (2009). A Genetic Algorithm Approach to Determine the Sample Size for
Control Charts with Variables and Attributes. International Journal of Expert
Systems with Applications 36, 8719 — 8734. Retrieved July 6, 2009 from

ScienceDirect Database.

Khonggamnerd, P. & Innet, S. (2009). On Improvement of Effectiveness in

Automatic  University Timetabling Arrangement with Applied Genetic

95



Algorithm. Proceedings of IEEE 4th International Conference on Computer
Sciences and Convergence Information Technology, 1266 — 1270. Retrieved
August 1, 2011 from IEEE Xplore Database.

Kim, J.-S. (2007). Development of a User-Friendly Expert System for Composite
Laminate Design. Composite Structures 79, Elsevier, 76-83. Retrieved October 5,
2007 from ScienceDirect Database.

Kuroki, Y., Young, G.S., Haupt, S.E. (2010). UAV Navigation by an Expert System
for Contaminant Mapping with a Genetic Algorithm. Expert Systems with
Applications, Vol. 37, Issue 6, 4687 - 4697. Retrieved February 26, 2010 from

ScienceDirect Database.

Kwan, R. (2004). Bus and Train Driver Scheduling. In: J. Leung (Ed.). Handbook of
Scheduling: Algorithms, Models, and Performance Analysis (Chapter 51). CRC
Press.

Lau, H.C.W., Tang, C.X.H., Ho, G.T.S., Chan, T.M. (2009). A Fuzzy Genetic
Algorithm fort he Discovery of Process Parameter Settings Using Knowledge
Representation. International Journal of Expert Systems with Applications 36,
7964 — 7974. Retrieved July 6, 2009 from ScienceDirect Database.

Lee, J. - Y., Kim, M. - S. & Lee, J. = J. (2011). Compact Genetic Algorithms Using
Belief Vectors. Applied Soft Computing 11 (4), Elsevier, 3385 — 3401. Retrieved
April 5, 2011 from Elsevier Database.

Lee, W. - C., Wu, C. - C,, Liu, M. — F. (2009). A Single — Machine Bi — Criterion
Learning Scheduling Problem with Release Times. Expert Systems with
Applications Vol. 36, Elsevier, 10295 — 10303. Retrieved February 26, 2010 from
Elsevier Database.

Lee, Y.-G., McKay, B. (2011). How Hard Should We Run? Trading off Exploration

for Dynamic Optimization Problems. Proceedings of 11" Annual Conference on

96



Genetic and Evolutionary Computation Conference GECCO’13, 1187 — 1194.
Dublin, Ireland. Retrieved January 2, 2012 from ACM Digital Library Database.

Li, X., Lv, X., Mei, W., Xu, H. (2010). Algorithm for Solving Time Table Questions
Based on GA. Proceedings of the 3" International Conference on Information
Sciences and Interaction Sciences (ICIS), 18 — 21.

Li, Y., Zhang, S., Zeng, X. (2009). Research of Multi-Population Agent Genetic
Algorithm for Feature Selection. International Journal of Expert Systems with
Applications 36, 11570 — 11581. Retrieved July 6, 2009 from ScienceDirect
Database.

Li-Li, L., Ding-Wei, W. (2008). Permutation-Based Dual Genetic Algorithm Applied
in Dynamic Sequencing Optimizations. Journal of Systems Engineering — Theory
and Practice (SETP), Vol.28, Issue 11, 129 — 134. Retrieved August 5, 2011 from

ScienceDirect Database.

Lin, J.-L., Wei, M.-C. (2009). Genetic Algorithm-Based Clustering Approach for k-
Anonymization. International Journal of Expert Systems with Applications 36,
9784 — 9792. Retrieved July 6, 2009 from ScienceDirect Database.

Liu, M., Sun, Z.-J., Yan, J.-W., Kang, J.-S. (2011). An Adaptive Annealing Genetic
Algorithm for the Job — Shop Planning. Expert Systems with Applications,
Elsevier, Vol. 38, 9248 — 9255. Retrieved August 5, 2011 from Elsevier

Database.

Liu, S.-H., Mernik, M., Bryant, B.R. (2004). Parameter Control in Evolutionary
Algorithms by Domain — Specific Scripting Language PPCga. Proceedings of
International Conference on Bioinspired Optimization Methods and their
Applications, BIOMA 2004. Ljubljana, Slovenia, 41 — 50. Retrieved March 7,
2012 from http://bioma.ijs.si/.

97



Lochtefeld, D.F. & Ciarallo, F.W. (2010). Deterministic Helper — Objective
Sequences Applied to Job — Shop Scheduling. Proceedings of 12" Annual
Conference on Genetic and Evolutionary Computation Conference GECCO’10,
431 - 438. Portland, Oregon, USA. Retrieved January 2, 2012 from ACM Digital
Library Database.

Marano, G.C. (2011). Modified Genetic Algorithm for the Dynamic Identification of
Structural Systems Using Incomplete Measurements. Journal of Computer —
Aided Civil and Infrastructure Engineering (26), 92 — 110.

Maulik, U., Bandyopadhyay, S., & Mukhopadhyay, A. (2011). Multiobjective
Genetic Algorithms for Clustering: Applications in Data Mining and

Bioinformatics. (31). Berlin: Springer — Verlag.

Mendes, J.M., (September 23-25, 2008). Project Scheduling Using a Competitive
Genetic Algorithm. Proceedings of 9™ WSEAS International Conference on
Simulation, Modeling and Optimization (SMO’08), 39 - 42. Santander,

Cantabria, Spain.

Meng, X., Zhang, P., Li, C. (2010). Aircraft Category Based Genetic Algorithm for
Aircraft Arrival Sequencing and Scheduling. Proceedings of the 29th IEEE
Chinese Control Conference, 5188 — 5193. Beijing, China. Retrieved August 5,
2011 from IEEE Database.

Mishra, A., Jhapate, A.K., Kumar, P. (2009). Desiging Rule Base for Genetic
Feedback AlgorithmBased Network Security Policy Framework Using State
Machine. Proceedings of International Conference on Signal Processing
Systems, 415 — 417. IEEE. Retrieved January 2, 2012 from IEEExplore Database.

Moghaddam, M.E., Monyadi, M.R. (2011). An Immune — Based Genetic Algorithm
with Reduced Search Space Coding for Multiprocessor Task Scheduling
Problem. International Journal of Parallel Programming, 2, 225 - 257.

Retrieved August 5, 2011 from SpringerLink Database.

98



Mokhtari, H., Abadi, I.N.K., Zegordi, S.H. (2011). Production Capacity Planning and
Scheduling in a No-Wait Environment with Controllable Processing Times: An
Integrated Modelling Approach. Expert Systems with Applications (38), Elsevier
Ltd., 12630 — 12642. Retrieved August 1, 2011 from ScienceDirect Database.

Molla-Alizadeh-Zavardehi, S., Hajiaghaei-Keshteli, M., Tavakkoli-Moghaddam, R.
(2011). Solving a Capacitated Fixed-Charge Transportation Problem by Artificial
Immune and Genetic Algorithms with Prifer Number Representation. Expert
Systems with Applications (38), Elsevier Ltd., 10462 — 10474. Retrieved August
1, 2011 from ScienceDirect Database.

Naznin, F., Sarker, N., Essam, D., (2010). DGA: Decomposition with Genetic
Algorithm for Multiple Sequence Alignment. Proceedings of IEEE Symposium
on Computational Intelligence, Bioinformatics and Computational Biology
(CIBCB’10), 1 — 8. Retrieved August 5, 2011 from IEEE Database.

Nguyen, H.H., Uraikul, V., Chan, C.W., Tontiwachwuthikul, P. (2008). A
Comparison of Automation Techniques for Optimization of Compressor

Scheduling. Advances in Engineering Software 39, 178-188.

Olsen, A.L. (2009). Evolutionary Computation in the Undergraduate Curriculum.
Journal of Computing Sciences in Colleges, Vol. 25, Issue 2, 115 - 121.
Retrieved February 26, 2010 from ACM Digital Library Database.

Otero, J., Sanchez, L., Alcala-Fdez, J. (2008). Fuzzy-Genetic Optimization of the
Parameters of a Low Cost System for the Optical Measurement of Several
Dimensions of Vehicles. Journal of Soft Computing 12, 751 — 764. Retrieved
July 16, 2009 from Web of Science Database.

Pan, J.C.-H., Huang, H.C. (2009). A Hybrid Genetic Algorithm for No — Wait Job

Shop Scheduling Problems. Expert Systems with Applications Vol. 36, Elsevier,
5800 — 5806. Retrieved February 26, 2010 from Elsevier Database.

99



Pavan, M., Mauri, A., Todeschini, R. (2004). Total Ranking Models by the Genetic
Algorithm Variable Subset Selection (GA-VSS) Approach for Environmental
Priority Settings. Analytical and Bioanalytical Chemistry, 380 (3), 430 — 444.
Springer-Verlag.

Petrovic, S., & Burke, E.K. (2004). University Timetabling. In J. Leung, (Ed.),
Handbook of Scheduling: Algorithms, Models, and Performance Analysis
(Chapter 45). CRC Press.

Picek, S., Golub, M. (2010). On the Efficiency of Crossover Operators in Genetic
Algorithms with Binary Representation. Proceedings of the 11" WSEAS
International Conference on Neural Networks, 11" WSEAS International
Conference on Evolutionary Computing and 11" WSEAS International
Conference on Fuzzy Systems (NN'10/EC'10/FS'10), 167-172.

Pillay, N., Banzhaf, W. (2010). An Informed Genetic Algorithm for the Examination
Timetabling Problem. Applied Soft Computing Vol. 10, Elsevier, 457 — 467.
Retrieved February 26, 2010 from Elsevier Database.

Pop, P.C. & lordache, S. (2011). A Hybrid Heuristic Approach for Solving the
Generalized Travelling Salesman Problem. Proceedings of Genetic and
Evolutionary Computation Conference GECCO’11, 481 — 488. Dublin, Ireland.
Retrieved September 17, 2012 from ACM Digital Library Database.

Prieto, J.A.F., Perez, J.R.V. (2008). Adaptive Genetic Algorithm Control Parameter
Optimization to Verify the Network Protocol Performance. Proceedings of 12"
International Conference on Information Processing and Management of
Uncertainty in Knowledge — Based Systems, Malaga, Spain, 785 — 791. Retrieved
March 7, 2012 from http://www.gimac.uma.es/IPMUQ8/proceedings/.

Raghavjee, R. & Pillay, N. (2010). Using Genetic Algorithms to Solve the South
African School Timetabling Problem. Proceedings of IEEE Second World
Congress on Nature and Biologically Inspired Computing (NaBIC), IEEE, 286 —
292. Retrieved August 1, 2011 from IEEE Xplore Database.

100



Raiford, D.W., Krane, D.E., Doom, T.E.W., Raymer, M.L. (2011). A Genetic
Optimization Approach for Isolating Translational Efficiency Bias. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, Vol. 8, No.2, 342 —
352. Retrieved December 16, 2011 from ACM Digital Library Database.

Ramteke, M., Srinivasan, R. (2011). Novel Genetic Algorithm for Short Term
Scheduling of Sequence Dependent Changeovers in Multiproduct Polymer
Plants. The Journal of Computers and Chemical Engineering. Vol. 35, Issue 12,
2945 — 2959. Retrieved August 5, 2011 from ScienceDirect Database.

Rau, H., Cho, K.-H. (2009). Genetic Algorithm Modeling for the Inspection
Allocation in Reentrant Production Systems. International Journal of Expert
Systems with Applications 36, 11287 — 11295. Retrieved July 6, 2009 from
ScienceDirect Database.

Rodriguez, M.A., Escalante, D.M., Peregrin A. (2011). Efficient Distributed Genetic
Algorithm for Rule Extraction. Journal of Applied Soft Computing Vol. 11, Issue
1, 733 — 743. Retrieved March 8, 2012 from IEEE Database.

Roeva, O. (May 2-4, 2008). Improvement of Genetic Algorithm Performance for
Identification of Cultivation Process Models. Proceedings of 9" WSEAS
International Conference on Evolutionary Computing (EC’08), 34 — 39. Sofia,

Bulgaria.

Roland, B., Di Martinelly, C., Riane, F., Pochet, Y. (2010). Scheduling an Operating
Theatre Under Human Resource Constraints. Computers and Industrial
Engineering Vol. 58, Issue 2, 212 — 220. Retrieved February 26, 2010 from

Elsevier Database.
Rom, W.O., Slotnick, S.A. (2009). Order Acceptance Using Genetic Algorithms.

Computers & Operations Research Vol. 36, 1758 — 1767. Elsevier Ltd. Retrieved
August 5, 2011 from ScienceDirect Database.

101



Sasikala, J., Ramaswamy, M. (2010). Optimal Gamma Based Fixed Head
Hydrothermal Scheduling Using Genetic Algorithm. Expert Systems with
Applications Vol. 37, Elsevier, 3352 — 3357. Retrieved February 26, 2010 from

Elsevier Database.

Schaerf, A. (1999). A Survey of Automated Timetabling. Artificial Intelligence
Review 13 (2), 87-127.

Selouani, S.-A. (2011). Speech Processing and Soft Computing. New York: Springer.

Sheskin, D.J. (2000). Handbook of Parametric and Non-Parametric Statistical
Procedures (2" Ed.). (870 - 872). Chapman & Hall / CRC.

Shu, Q., Gong, G., Wang, J. (2010). STEP — NC Based Machining Sequencing Using
Genetic Algorithm. Proceedings of Chinese Control and Decision Conference
(CCDC), IEEE, 1299 — 1304. Retrieved August 5, 2011 from IEEE Database.

Shukla, A., Tiwari, R., & Kala R., (2010). Real Life Applications of Soft Computing.
(4-8). CRC Press by Taylor and Francis Group LLC.

Singh, A., Baghel, A.S. (2009). A New Grouping Genetic Algorithm Approach to the
Multiple Traveling Salesperson Problem. Journal of Soft Computing 13, 95 —
101. Retrieved July 16, 2009 from Web of Science Database.

Sivanandam, S.N., & Deepa, S.N. (2008). Introduction to Genetic Algorithms. (49).
Berlin: Springer — Verlag.

Smit, S.K., Eiben, A.E. (2010). Parameter Tuning of Evolutionary Algorithms:
Generalist and Specialist. In Applications of Evolutionary Computation Vol.

6024, 542 — 551. Retrieved August 5, 2011 from Springer Database.

Souai, N., Teghem, J. (2009). Genetic Algorithm Based Approach for the Integrated

Airline Crew — Pairing and Rostering Problem. European Journal of Operational

102



Research, Vol. 199, Elsevier, 674 — 683. Retrieved February 26, 2010 from
Elsevier Database.

Srndic, N., Pandzo, E., Dervisevic, M., Konjicija, S. (2009). The Application of a
Parallel Genetic Algorithm to Timetabling of Elementary School Classes: A
Coarse Grained Approach. Proceedings of 22" International Symposium on
Information, Communication and Automation Technologies (ICAT’09), Sarajevo,

Bosnia — Herzegovina, 1 — 5. Retrieved August 1, 2011 from IEEE Database.

Tsai, C.-C., Li, S.H.A. (2009). A Two-Stage Modeling with Genetic Algorithms fort
he Nurse Scheduling Problem. International Journal of Expert Systems with
Applications 36, 9506 — 9512. Retrieved July 6, 2009 from ScienceDirect

Database.

Tseng, L.-Y., Lin, Y.-T. (2010). A Hybrid Genetic Algorithm for No — Wait
Flowshop Scheduling Problem. International Journal of Production Economics,
Elsevier, Vol. 128, 144 — 152. Retrieved August 5, 2011 from Elsevier Database.

Tseng, M.-H., Chen, S.-J., Hwang, G.-H., Shen, M.-Y. (2008). A Genetic Algorithm
Rule-Based  Approach for Land-Cover Classification. Journal of
Photogrammetry & Remote Sensing (ISPRS), No. 63, 202-212. Retrieved July 1,

2008 from Elsevier Database.

Tutkun, N. (2009). Optimization of Multimodal Continuous Functions Using a New
Crossover for the Real-Coded Genetic Algorithms. International Journal of
Expert Systems with Applications 36, 8172 — 8177. Retrieved July 6, 2009 from

ScienceDirect Database.

Valdez, F., Melin, P. & Castillo, O. (2011). An Improved Evolutionary Method with
Fuzzy Logic for Combining Particle Swarm Optimization and Genetic
Algorithms. Applied Soft Computing 11, Elsevier, 2625 — 2632. Retrieved April
5, 2011 from Elsevier Database.

103



Vazquez-Rodriguez, J.A., Petrovic, S. (2010). A New Dispatching Rule Based
Genetic Algorithm for the Multi-objective Job Shop Problem. Journal of
Heuristics (16), 771 — 793. Springer — Verlag.

Wang, L., Tang, D.-B. (2011). An Improved Adaptive Genetic Algorithm Based on
Hormone Modulation Mechanism for Job — Shop Scheduling Problem. Expert
Systems with Applications, Elsevier, Vol. 38, 7243 — 7250. Retrieved August 5,

2011 from Elsevier Database.

Wang, L.-J.,, Hu, D.-W., Gong, R.-Z. (2009). Improved Genetic Algorithm for
Aircraft Departure Sequencing Problem. Proceedings of the 3" IEEE
International Conference on Genetic and Evolutionary Computing, 35 — 38.
Retrieved August 5, 2011 from IEEE Database.

Wang, S. (2009). Solving Aircraft Sequencing Problem Based on Bee Evolutionary
Algorithm and Clustering Method. Proceedings of the 8" IEEE International
Conference on Dependable, Autonomic and Secure Computing, 157 — 161.
Retrieved August 5, 2011 from IEEE Database.

Wang, Z., Liu, J. - I. & Yu, X. (2009). Self — Fertilization Based Genetic Algorithm
for University Timetabling Problem. World Summit on Genetic and Evolutionary
Computation (GEC’09), 1001 — 1004. Shanghai, China. Retrieved August 5,
2011 from ACM Digital Library Database.

Weise, T., Zapf, M., Geihs, K. (2007). Rule-Based Genetic Programming.
Proceedings of Bio-Inspired Models of Network, Information and Computing
Systems (Bionetics’07), 8 — 15. IEEE. Retrieved January 2, 2012 from
IEEExplore Database.

Wessa, P. (2012), Free Statistics Software, Office for Research Development and

Education, version 1.1.23-r7, URL http://www.wessa.net/.

104



Whitley, D. (1995). Genetic Algorithms and Neural Networks. In J. Periaux, G.
Winter, (Eds.). Genetic Algorithms in Engineering and Computer Science (203-
216). Wiley & Sons Ltd.

Wong, W.K., Zeng, X.H., Au, W.M.R. (2009). A Decision Support Tool for Apparel
Coordination Through Integrating the Knowledge-Based Attribute Evaluation
Expert System and the T-S Fuzzy Neural Network. Expert Systems with
Applications 36, Elsevier, 2377-2390. Retrieved June 23, 2009 from

ScienceDirect Database.

Wu, J.-Z., Hao, X.-C., Chien, C.-F., Gen, M. (2011). A Novel Bi — Vector Encoding
Genetic Algorithm for the Simultaneous Multiple Resources Scheduling
Problem. Journal of Intelligent Manufactoring, Springer, DOI: 10.1007/s10845-
011-0570-0. Retrieved August 5, 2011 from Springer Database.

Wu, M.-C., Shih, C.-F., Chen, C.-F. (2009). An Efficient Approach to Cross-Tab
Route Planning for Water Manufacturing. International Journal of Expert
Systems with Applications 36, 11962 — 11968. Retrieved July 6, 2009 from

ScienceDirect Database.

Xiao-Feng, Z., Si-Xun, H., Zheng, S. (2010). Ray Tracing / Correlation Approach to
Estimation of Surface — Based Duct Parameters from Radar Clutter. Chinese
Physics B, Vol. 19, 1 — 8. Chinese Physical Society and I0P Publishing Ltd.

Yagmahan, B., Yenisey, M.M. (2010). A multi-objective Ant Colony System
Algorithm for Flow Shop Scheduling Problem. Expert Systems with Applications,
Vol. 37, 1361 — 1368. Retrieved February 26, 2010 from ScienceDirect Database.

Yu, S., Cao, X., Hu, M., Du, W., Zhang, J. (2009). A Real Time Schedule Method
for Aircraft Landing Scheduling Problem Based on Cellular Automaton. World
Summit on Genetic and Evolutionary Computation (GEC’09), 717 - 723.
Shanghai, China. Retrieved August 5, 2011 from ACM Digital Library Database.

105



Yu, L., Zhao, Y., Ni, R., Zhu, Z. (2009). PM1 Steganography in JPEG Images Using
Genetic Algorithm. Journal of Soft Computing 13, 393 — 400. Retrieved July 16,
2009 from Web of Science Database.

Yun, Y., Gen, M., Moon, C. (2010). Hybrid Genetic Algorithm with Adaptive Local
Search for Precedence — Constrained Sequencing Problems. Proceedings of the
40th IEEE Computers and Industrial Engineering (CIE’10), 1 — 6. Retrieved
August 5, 2011 from IEEE Database.

Yun, S., Lee, J., Chung, W., Kim, E., Kim, S. (2009). A Soft Computing Approach
to Localization in Wireless Sensor Networks. International Journal of Expert
Systems with Applications 36, 7552 — 7561. Retrieved July 6, 2009 from
ScienceDirect Database.

Zadeh, L. A. (March 1994). Fuzzy Logic, Neural Networks, and Soft Computing.
Communications of the ACM, 37 No. 3, 77-84.

Zhan, Z.-Z., Zhang, J., Gong, Y.-J. (2009). Ant Colony System Based on Receding
Horizon Control for Aircraft Arrival Sequencing and Scheduling. Proceedings of
11™ Annual Conference on Genetic and Evolutionary Computation Conference
GECCO’09, 1765 — 1766. Montreal, Quebec, Canada. Retrieved August 5, 2011
from ACM Digital Library Database.

Zhang, C., Tu, H. (2010). The Application of Rule Based Genetic Algorithm in Job-
Shop Production Scheduling. Proceedings of International Conference on
Computing, Control and Industrial Engineering, CCIE’10, 20 — 23. IEEE.
Retrieved January 2, 2012 from IEEExplore Database.

Zheng, Y., Liu, J.-F., Geng, W.-H., Yang, J.-Y. (2009). Quantum-Inspired Genetic

Evolutionary Algorithm for Course Timetabling. Proceedings of 3" International
Conference on Genetic and Evolutionary Computing, 750 — 753. IEEE.

106



APPENDICES

A. MODULE NAMES AND PREREQUISITE NUMBERS

A.1 Module Names and Prerequisite Numbers of the Training Data

Module Name

Prerequisites

1 — Giris

2 — Cari Modiil Giris

3 — Stok Modiilii Girig

N

4 — Fatura Modiili Giris

5 — Cari Modul Tleri

6 — Stok Modul Ileri

7 — Fatura Modul leri 1

8 — Talep / Teklif Moduli

9 — Banka Moduli

10 — Miisteri Cekleri

11 — Borg Cekleri

12 — Dekont Modulu

13 — Entegrasyon Modulii

14 — Muhasebe Giris

15 — Muhasebe Moduli

913 14

16 — Rapor Modiili

213 14

17 — E - Netsis

6

18 — Dinamik Depo

-12-13-16

19 — Fatura Modulu Tleri 2

7
10-12-13-14

20 — Dekont Ozel Uygulamalar

0-12-14-15-16

21 — Dizayn Modilu

10-11-12-13-16-17

22-CRM

23 — Netpos Moduli

24 — Personel Bordro Modil{i

4-6-
6-7-
10 —
6-9-
6-8-13-16-17-20
5-8-
7-8-

25 — Personel Ozel Uygulamalari

4

26 — Demirbag

13-18

27 — Uretim Modiilii

6—
9-13-14-16-18-21-22

28 — MRP Modulii

1

1-
3

2-3
1-3
1-3
1-2
1-2
1-2
1-2
2-4
1-2
2-4
1-3
1-3
1-1
1-3-
3-4-
1-4-
1-3-
1-3-
1-2-
1-4-
1-2
1-3-
4-7-
1-1

-13-16-17-18-21-22-26

29 — {UP/ AUP 1-17-27

30 — Maliyet Muhasebesi 1-14-15-17-25-29
31 - Teknik 1 17-21-23-28

32 — Teknik 2 17-31

33 - Yazilim 17-31-32

34 — Netsis Surecleri

1-13-17-21-22-23-29

35 — Kalite Kontrol

8-13-16-18-22-23-24

36 — Kullanici Islemleri

1-13-14-16-25-26-34

37 — Insan Kaynaklar

1-10-16-17-24-25-35

38 — NDI

1-17-23

39 — Dinamik Kodlama

17-23-31
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A.2 Module Names and Prerequisite Numbers of the Control Data

Module Name

Prerequisites

1 —Introduction to DBMS

2 - DBMS-DBA

3 — Data Models

4 —Table

5 — Referential Integrity

6 — Algebraic Operators

7-PK

8 -FK

9 — Normalization

10 — DB Design

11 - Data Types

12 — SQL-Select

13 - SQL-Insert

14 — SQL Operators

15 — SQL-Update

-11-12-14

16 — SQL-Delete

\1\1
oooo

-11-12-14

17 — Sequences

18 — Index

1

19 — Equi-join

1-12-14

20 — Nonequi-join

1-12-14-19

21 — Self-join

1-12-14-19

22 — Subquery

2-14

23 — Create Table/View

-8-11

24 — View

25 — Alter Table/View

\II—‘\IHHI—‘I—‘H

26 — Defaults

27 — Rules

28 — Synonym

29 — Drop Table/View

8-16-23-25

30 — Trigger

-7-
-8-11-12-13-15-16

31 — Prog. for Stored Proc.

[2=Y

32 — Stored Procedure

-7-8-12-13-15-16-31

33 — Create User/Role

»—\b4>4>oo4>4>4>whwbbbhbbwwhwww»—w—w—\pr—w—w—w—w—\-
I\JU'II—‘U'I-l>|—‘l—‘l—‘-h\l-b\l\l\l\l\l\l-h-bl—‘bbhhbWWNNl\)

34 — Privileges

4-12-13-15-16-23-25-29

35 — Grant/Revoke

4-12-13-15-16-23-25-33-34

36 — System Catalog

4-11-12

37 — Transactions

12-13-15-16

38 — Commit/Rollback/Savepoint

12-13-15-16-37

39 - ADODB

-8-11-12-13-15-16-23-25-29

40 — SQL Server

41 — MS Access

-8-11-12-13-15-16-23-25-29

42 — XML with DB

4-5-7
4-5-7-8-11-12-13-15-16-23-25-29
4-5-7

4-1

-12-13

108




B. LoGICAL REPRESENTATION OF RULES

B.1 Rules for The Training Data

- IFM1THEN M2

- IF M1 AND M2 THEN M3

- IFM3THEN M4

- IF M2 AND M3 THEN M5

- IF M1 AND M3 AND M4 THEN M6

- IF M1 AND M3 AND M4 AND M6 THEN M7

- IF M1 AND M2 AND M3 AND M4 THEN M8

— IF M1 AND M2 AND M4 AND M5 AND M7 THEN M9

- IF M1 AND M2 AND M4 AND M5 AND M7 AND M9 THEN M10

- IF M1 AND M2 AND M4 AND M8 AND M9 AND M10 THEN M11

— IF M2 AND M4 AND M7 AND M9 AND M10 THEN M12

- IF M1 AND M2 AND M3 AND M4 AND M8 AND M10 AND M12 THEN M13

- IF M2 AND M4 AND M5 AND M7 AND M9 AND M10 AND M11 THEN M14

- IF M1 AND M3 AND M4 AND M6 AND M7 AND M8 AND M9 AND M13 AND M14
THEN M15

- IF M1 M3 AND M4 AND M8 AND M12 AND M13 AND M14 THEN M16

- IF M1 AND M16 THEN M17

— IF M1 AND M3 AND M4 AND M6 AND M7 AND M12 AND M13 AND M16 THEN M18

— IF M3 AND M4 AND M6 AND M7 AND M10 AND M12 AND M13 AND M14 THEN M19

— IF M1 AND M4 AND M10 AND M12 AND M14 AND M15 AND M16 THEN M20

— IF M1 AND M3 AND M6 AND M9 AND M10 AND M11 AND M12 AND M13 AND M16
AND M17 THEN M21

- IF M1 AND M3 AND M6 AND M8 AND M13 AND M16 AND M17 AND M20 THEN M22

- IF M1 AND M2 AND M5 AND M8 AND M10 AND M11 AND M12 AND M14 AND M16
AND M17 AND M21 THEN M23

- IF M1 AND M4 AND M7 AND M8 AND M10 AND M11 AND M12 AND M13 AND M16
AND M18 AND M20 AND M23 THEN M24

- IF M1 AND M24 THEN M25

— IF M1 AND M3 AND M6 AND M13 AND M18 THEN M26

— IF M4 AND M7 AND M9 AND M13 AND M14 AND M16 AND M18 AND M21 AND M22
THEN M27

— IF M1 AND M13 AND M16 AND M17 AND M18 AND M21 AND M22 AND M27 THEN
M28

- IF M1 AND M17 AND M27 THEN M29

- IF M1 AND M14 AND M15 AND M17 AND M25 AND M29 THEN M30

- IF M17 AND M21 AND M23 AND M28 THEN M31

- IF M17 AND M31 THEN M32

- IF M17 AND M31 AND M32 THEN M33

— IF M1 AND M13 AND M17 AND M21 AND M22 AND M23 AND M29 THEN M34

— IF M8 AND M13 AND M16 AND M18 AND M22 AND M23 AND M24 THEN M35

— IF M1 AND M13 AND M14 AND M16 AND M25 AND M26 AND M34 THEN M36

— IF M1 AND M10 AND M16 AND M17 AND M24 AND M25 AND M35 THEN M37

— IF M1 AND M17 AND M23 THEN M38

- IF M17 AND M23 AND M31 AND M32 AND M33 THEN M39
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B.2 Rules for The Control Data

- IFM1THEN M2

- IFM1THEN M3

- IFM1AND M2 THEN M4

- IF M1 AND M2 AND M4 THEN M5

- IF M1 AND M2 AND M4 THEN M6

— IF M1 AND M3 AND M4 AND M5 THEN M7

— IF M1 AND M3 AND M5 AND M5 AND M7 THEN M8

- IF M1 AND M4 AND M5 AND M7 AND M8 THEN M9

- IF M1 AND M3 AND M4 AND M5 AND M9 THEN M10

- IF M3 AND M4 AND M10 THEN M11

— IF M3 AND M4 AND M5 AND M7 AND M8 AND M11 THEN M12

- IF M3 AND M4 AND M5 AND M7 AND M8 AND M11 AND M12 THEN M13

— IF M4 AND M12 AND M13 THEN M14

- IF M3 AND M4 AND M5 AND M7 AND M8 AND M11 AND M12 AND M14 THEN M15

- IF M3 AND M4 AND M5 AND M7 AND M8 AND M11 AND M12 AND M14 THEN M16

— IF M4 AND M7 AND M8 AND M11 THEN M17

— IF M4 AND M7 AND M8 AND M11 THEN M18

- IF M4 AND M7 AND M8 AND M11 AND M12 AND M14 THEN M19

— IF M4 AND M7 AND M8 AND M11 AND M12 AND M14 AND M19 THEN M20

— IF M4 AND M7 AND M8 AND M11 AND M12 AND M14 AND M19 THEN M21

- IF M4 AND M7 AND M8 AND M12 AND M14 THEN M22

— IF M3 AND M4 AND M5 AND M7 AND M8 AND M11 THEN M23

— IF M4 AND M7 AND M8 AND M12 AND M23 THEN M24

— IF M3 AND M4 AND M5 AND M7 AND M8 AND M11 AND M23 THEN M25

— IF M4 AND M11 AND M23 AND M25 THEN M26

— IF M4 AND M11 AND M23 AND M25 THEN M27

— IF M4 AND M11 AND M23 AND M25 THEN M28

- IF M3 AND M4 AND M5 AND M7 AND M8 AND M16 AND M23 AND M25 THEN M29

— IF M4 AND M5 AND M7 AND M8 AND M11 AND M12 AND M13 AND M15 AND M16
THEN M30

- IF M4 AND M11 THEN M31

— IF M4 AND M5 AND M7 AND M8 AND M12 AND M13 AND M15 AND M16 AND M31
THEN M32

- IF M1 AND M2 THEN M33

— IF M4 AND M12 AND M13 AND M15 AND M16 AND M23 AND M25 AND M29 THEN
M34

— IF M4 AND M12 AND M13 AND M15 AND M16 AND M23 AND M25 AND M29 AND
M33 AND M34 THEN M35

- IF M4 AND M11 AND M12 THEN M36

- IF M12 AND M13 AND M15 AND M16 THEN M37

- IF M12 AND M13 AND M15 AND M16 AND M37 THEN M38

— IF M4 AND M7 AND M8 AND M11 AND M12 AND M13 AND M15 AND M16 AND M23
AND M25 AND M29 THEN M39

— IF M4 AND M7 AND M8 AND M11 AND M12 AND M13 AND M15 AND M16 AND M23
AND M25 AND M29 THEN M40

— IF M4 AND M7 AND M8 AND M11 AND M12 AND M13 AND M15 AND M16 AND M23
AND M25 AND M29 THEN M41

- IF M4 AND M12 AND M13 THEN M42
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C. XML FILES OF THE RULES FOR THE TRAINING AND CONTROL DATA

C.1 XML of Training Data

<?xml version="1.0"?>
<modules>

<module mno="0" hour="4" />

<module mno="1" hour="6"">
<prereqg>0</prereq>

</module>

<module mno="2" hour="12">
<prereqg>0</prereq>
<prereg>l</prereq>

</module>

<module mno="3" hour="3">
<prereg>2</prereq>

</module>

<module mno="'4" hour="2">
<prereg>l</prereq>
<prereg>2</prereq>

</module>

<module mno="5" hour="16">
<prereqg>0</prereq>
<prereg>2</prereq>
<prereg>3</prereq>

</module>

<module mno="6" hour="8">
<prereg>0</prereq>
<prereg>2</prereq>
<prereqg>3</prereq>
<prereg>5</prereq>

</module>

<module mno="7" hour="4">
<prereg>0</prereq>
<prereg>l</prereq>
<prereg>2</prereq>
<prereqg>3</prereq>

</module>

<module mno="8" hour="4">
<prereqg>0</prereq>
<prereg>l</prereq>
<prereg>3</prereq>
<prereg>4</prereq>
<prereg>6</prereq>

</module>

<module mno="9" hour="6"">
<prereg>0</prereq>
<prereg>l</prereq>
<prereqg>3</prereq>
<prereg>4</prereq>
<prereg>6</prereq>
<prereg>8</prereq>

</module>

<module mno="10" hour="8">
<prereg>0</prereq>
<prereg>l</prereq>
<prereqg>3</prereq>
<prereqg>7</prereq>
<prereg>8</prereq>
<prereg>9</prereq>

</module>

<module mno="11" hour="3">
<prereg>l</prereq>
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<prereqg>3</prereq>
<prereg>6</prereq>
<prereg>8</prereq>
<prereg>9</prereq>

</module>

<module mno="12" hour="12">
<prereg>0</prereq>
<prereg>l</prereq>
<prereg>2</prereq>
<prereg>3</prereq>
<prereqg>7</prereq>
<prereg>9</prereq>
<prereqg>ll</prereq>

</module>

<module mno="13" hour="10">
<prereg>l</prereq>
<prereqg>3</prereq>
<prereg>4</prereq>
<prereg>6</prereq>
<prereg>8</prereq>
<prereg>9</prereq>
<prereq>10</prereq>

</module>

<module mno="14" hour="3">
<prereg>0</prereq>
<prereg>2</prereq>
<prereqg>3</prereq>
<prereg>5</prereq>
<prereg>6</prereq>
<prereqg>7</prereq>
<prereg>8</prereq>
<prereq>12</prereq>
<prereq>13</prereq>

</module>

<module mno="15" hour="2">
<prereqg>0</prereq>
<prereg>2</prereq>
<prereqg>3</prereq>
<prereqg>7</prereq>
<prereqg>ll</prereq>
<prereq>12</prereq>
<prereq>13</prereq>

</module>

<module mno="16" hour="4">
<prereqg>0</prereq>
<prereqg>15</prereq>

</module>

<module mno="17" hour="4">
<prereqg>0</prereq>
<prereg>2</prereq>
<prereg>3</prereq>
<prereg>5</prereq>
<prereg>6</prereq>
<prereqg>ll</prereq>
<prereq>12</prereq>
<prereq>15</prereq>

</module>

<module mno="18" hour="8">
<prereg>2</prereq>
<prereg>3</prereq>
<prereg>5</prereq>
<prereg>6</prereq>
<prereg>9</prereq>
<prereqg>ll</prereq>
<prereq>12</prereq>
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<prereq>13</prereq>

</module>

<module mno="19" hour="6">
<prereqg>0</prereq>
<prereg>3</prereq>
<prereg>9</prereq>
<prereqg>ll</prereq>
<prereq>13</prereq>
<prereq>l4</prereq>
<prereqg>15</prereq>

</module>

<module mno="20" hour="8">
<prereqg>0</prereq>
<prereg>2</prereq>
<prereg>5</prereq>
<prereg>8</prereq>
<prereg>9</prereq>
<prereq>10</prereq>
<prereqg>ll</prereq>
<prereq>12</prereq>
<prereq>15</prereq>
<prereq>16</prereq>

</module>

<module mno="21" hour="4">
<prereg>0</prereq>
<prereg>2</prereq>
<prereg>5</prereq>
<prereqg>7</prereq>
<prereq>12</prereq>
<prereqg>15</prereq>
<prereq>16</prereq>
<prereq>19</prereq>

</module>

<module mno="22" hour="2">
<prereqg>0</prereq>
<prereg>l</prereq>
<prereg>4</prereq>
<prereqg>7</prereq>
<prereg>9</prereq>
<prereq>10</prereq>
<prereqg>ll</prereq>
<prereq>13</prereq>
<prereqg>15</prereq>
<prereq>16</prereq>
<prereq>20</prereq>

</module>

<module mno="'23" hour="12">
<prereg>0</prereq>
<prereg>3</prereq>
<prereg>6</prereq>
<prereqg>7</prereq>
<prereqg>9</prereq>
<prereq>10</prereq>
<prereqg>ll</prereq>
<prereq>12</prereq>
<prereq>15</prereq>
<prereq>l7</prereq>
<prereq>19</prereq>
<prereq>22</prereq>

</module>

<module mno="24" hour="16"">
<prereg>0</prereq>
<prereq>23</prereq>

</module>

<module mno="25" hour="3">
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<prereq>0</prereq>

<prereg>2</prereq>

<prereg>5</prereq>

<prereg>12</prereq>

<prereg>17</prereq>
</module>

<module mno="26" hour="4">

<prereg>3</prereq>
<prereq>6</prereg>
<prereg>8</prereq>
<prereq>12</prereq>
<prereq>13</prereq>
<prereq>15</prereq>
<prereg>17</prereg>
<prereq>20</prereq>
<prereg>21</prereg>
</module>

<modulle mno="27" hour="6"">

<prereq>0</prereqg>

<prereg>12</prereq>
<prereq>15</prereq>
<prereq>16</prereq>
<prereq>l7</prereq>
<prereq>20</prereq>
<prereq>21</prereq>
<prereq>25</prereq>

</module>

<module mno="28" hour="2"

<prereq>0</prereqg>

<prereg>16</prereqg>

<prereq>26</prereq>
</module>

<module mno="29" hour="4"

<prereq>0</prereqg>

<prereg>13</prereqg>

<prereq>14</prereqg>

<pre req>16</p rereq>

<prereq>24</prereqg>

<prereq>28</prereq>
</module>

<module mno="30" hour="4"

<prereq>16</prereq>

<prereq>20</prereq>

<prereq>22</prereq>

<prereq>27</prereq>
</module>

<module mno="31" hour="3"

<prereq>16</prereqg>
<prereq>30</prereq>
</module>

<module mno="32" hour="4"

<prereqg>16</prereq>

<prereq>30</prereqg>

<prereq>31</prereq>
</module>

<module mno="33" hour="2"

<prereq>0</prereq>

<prereq>12</prereq>
<prereq>16</prereg>
<prereq>20</prereq>
<prereq>21</prereq>
<prereq>22</prereq>
<prereqg>28</prereq>

</module>

<module mno="34" hour="4"
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<prereqg>7</prereq>
<prereq>12</prereq>
<prereqg>15</prereq>
<prereq>l7</prereq>
<prereq>21</prereq>
<prereq>22</prereq>
<prereq>23</prereq>
</module>
<module mno="35" hour="2"
<prereqg>0</prereq>
<prereq>12</prereq>
<prereq>13</prereq>
<prereq>15</prereq>
<prereq>24</prereq>
<prereq>25</prereq>
<prereg>33</prereqg>
</module>
<module mno="36" hour="4"
<prereqg>0</prereq>
<prereg>9</prereq>
<prereq>15</prereq>
<prereq>16</prereq>
<prereq>23</prereq>
<prereq>24</prereq>
<prereq>34</prereq>
</module>
<module mno="37" hour="3"
<prereqg>0</prereq>
<prereq>16</prereq>
<prereq>22</prereq>
</module>
<module mno="38" hour="4"
<prereq>16</prereq>
<prereq>22</prereq>
<prereg>30</prereqg>
<prereq>31</prereq>
<prereq>32</prereq>
</module>
</modules>
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C.2 XML of Control Data

<?xml version="1.0"?>
<modules>

<module mno="0" hour="2" />

<module mno="1" hour="2">
<prereqg>0</prereq>

</module>

<module mno="2" hour="3">
<prereqg>0</prereq>

</module>

<module mno="3" hour="4">
<prereqg>0</prereq>
<prereg>l</prereq>

</module>

<module mno="4" hour="2">
<prereqg>0</prereq>
<prereg>l</prereq>
<prereqg>3</prereq>

</module>

<module mno="5" hour="4">
<prereqg>0</prereq>
<prereg>l</prereq>
<prereqg>3</prereq>

</module>

<module mno="6" hour="3">
<prereqg>0</prereq>
<prereg>2</prereq>
<prereg>3</prereq>
<prereg>4</prereq>

</module>

<module mno="7" hour="2">
<prereg>0</prereq>
<prereg>2</prereq>
<prereg>3</prereq>
<prereg>4</prereq>
<prereg>6</prereq>

</module>

<module mno="8" hour="4">
<prereg>0</prereq>
<prereqg>3</prereq>
<prereg>4</prereq>
<prereg>6</prereq>
<prereqg>7</prereq>

</module>

<module mno="'9" hour="8">
<prereg>0</prereq>
<prereg>2</prereq>
<prereqg>3</prereq>
<prereg>4</prereq>
<prereg>8</prereq>

</module>

<module mno="10" hour="4">
<prereg>2</prereq>
<prereqg>3</prereq>
<prereg>9</prereq>

</module>

<module mno="11" hour="4">
<prereg>2</prereq>
<prereg>3</prereq>
<prereg>4</prereq>
<prereg>6</prereq>
<prereqg>7</prereq>
<prereq>10</prereq>
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</module>

<module mno="12" hour="2">

<prereqg>2</prereq>
<prereg>3</prereq>
<prereg>4</prereq>
<prereg>6</prereq>
<prereqg>7</prereq>
<pre req>10</p rereq>
<prereg>11</prereq>
</module>

<module mno="13" hour="4">

<prereq>3</prereq>

<prereg>ll</prereq>

<prereq>12</prereqg>
</module>

<modulle mno="14" hour="2">

<prereg>2</prereq>
<prereq>3</prereq>
<prereq>4</prereq>
<prereg>6</prereq>
<prereq>7</prereq>
<pre req>10</p rereq>
<prereg>ll</prereq>
<pre req>13</p rereq>
</module>

<modulle mno="15" hour="2">

<prereq>2</prereg>
<prereg>3</prereq>
<prereq>4</prereg>
<prereq>6</prereq>
<prereq>7</prereg>
<prereg>10</prereqg>
<prereg>11</prereq>
<prereg>13</prereq>
</module>

<module mno="16" hour="1"

<prereq>3</prereq>

<prereq>6</prereq>

<prereg>7</prereq>
</module>

<module mno="17" hour="1"

<prereg>3</prereq>

<prereg>6</prereq>

<prereq>7</prereq>

<prereq>10</prereq>
</module>

<module mno="18" hour="3"

<prereq>3</prereq>

<prereg>6</prereq>

<prereq>7</prereg>

<prereg>10</prereqg>

<prereg>11</prereq>

<prereg>13</prereqg>
</module>

<module mno="19" hour="3"

<prereq>3</prereg>
<prereq>6</prereq>
<prereq>7</prereq>
<prereg>10</prereq>
<prereg>ll1</prereg>
<prereg>13</prereq>
<prereq>18</prereq>
</module>

<module mno="20" hour="2"

<prereq>3</prereg>
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<prereq>6</prereq>

<prereq>7</prereg>

<prereq>10</prereq>

<prereg>l1</prereq>

<prereg>13</prereqg>

<prereq>18</prereq>
</module>

<module mno="21" hour="6"

<prereq>3</prereg>

<prereg>6</prereq>

<prereq>7</prereg>

<prereg>11</prereq>

<prereg>13</prereq>
</module>

<module mno="22" hour="3"

<prereq>2</prereq>

<prereq>3</prereg>

<prereq>4</prereq>

<prereq>6</prereq>

<prereq>7</prereq>

<prereq>10</prereqg>
</module>

<module mno="23" hour="2"

<prereg>3</prereq>

<prereg>6</prereq>

<prereq>7</prereq>

<prereqg>ll</prereq>

<prereqg>22</prereq>
</module>

<module mno="24" hour="2"

<prereg>2</prereq>
<prereq>3</prereq>
<prereq>4</prereg>
<prereg>6</prereq>
<prereq>7</prereq>
<prereq>10</prereqg>
<prereq>22</prereq>
</module>

<module mno="25" hour="1"

<prereg>3</prereq>

<prereg>10</prereqg>

<prereq>22</prereq>

<prereq>24</prereq>
</module>

<module mno="26" hour="1"

<prereqg>3</prereqg>

<prereg>10</prereqg>

<prereq>22</prereq>

<prereq>24</prereq>
</module>

<module mno="27" hour="1"

<prereq>3</prereg>

<prereq>10</prereq>

<prereq>22</prereg>

<prereq>24</prereq>
</module>

<module mno="28" hour="1"

<prereg>2</prereq>
<prereg>3</prereq>
<prereq>4</prereq>
<prereq>6</prereq>
<prereq>7</prereq>
<prereq>15</prereqg>
<prereq>22</prereq>
<prereq>24</prereq>
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</module>

<module mno="29" hour="2">
<prereg>3</prereq>
<prereg>4</prereq>
<prereg>6</prereq>
<prereqg>7</prereq>
<prereq>10</prereq>
<prereqg>ll</prereq>
<prereq>12</prereq>
<prereqg>l4</prereq>
<prereq>15</prereq>

</module>

<module mno="30" hour="2">
<prereg>3</prereq>
<prereq>10</prereq>

</module>

<module mno="31" hour="3">
<prereg>3</prereq>
<prereg>4</prereq>
<prereg>6</prereq>
<prereqg>7</prereq>
<prereqg>ll</prereq>
<prereq>12</prereq>
<prereqg>l4</prereq>
<prereqg>15</prereq>
<prereg>30</prereqg>

</module>

<module mno="32" hour="3">
<prereg>0</prereq>
<prereg>l</prereq>

</module>

<module mno="33" hour="2">
<prereqg>3</prereq>
<prereqg>ll</prereq>
<prereq>12</prereq>
<prereq>l4</prereq>
<prereqg>15</prereq>
<prereq>22</prereq>
<prereq>24</prereq>
<prereq>28</prereq>

</module>

<module mno="34" hour="2">
<prereg>3</prereq>
<prereqg>ll</prereq>
<prereq>12</prereq>
<prereq>l4</prereq>
<prereqg>15</prereq>
<prereq>22</prereq>
<prereq>24</prereq>
<prereq>28</prereq>
<prereq>32</prereq>
<prereq>33</prereq>

</module>

<module mno="35" hour="3">
<prereg>3</prereq>
<prereq>10</prereq>
<prereqg>ll</prereq>

</module>

<module mno="36" hour="2">
<prereqg>ll</prereq>
<prereq>12</prereq>
<prereqg>l4</prereq>
<prereqg>15</prereq>

</module>

<module mno="37" hour="2">
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<prereqg>ll</prereq>
<prereq>12</prereq>
<prereqg>l4</prereq>
<prereqg>15</prereq>
<prereg>36</prereqg>
</module>
<module mno="38" hour="4">
<prereqg>3</prereq>
<prereg>6</prereq>
<prereqg>7</prereq>
<prereq>10</prereq>
<prereqg>ll</prereq>
<prereq>12</prereq>
<prereqg>l4</prereq>
<prereqg>15</prereq>
<prereq>22</prereq>
<prereq>24</prereq>
<prereq>28</prereq>
</module>
<module mno="39" hour="4">
<prereqg>3</prereq>
<prereg>6</prereq>
<prereqg>7</prereq>
<prereq>10</prereq>
<prereqg>ll</prereq>
<prereq>12</prereq>
<prereq>l4</prereq>
<prereqg>15</prereq>
<prereq>22</prereq>
<prereq>24</prereq>
<prereq>28</prereq>
</module>
<module mno="40" hour="6">
<prereqg>3</prereq>
<prereg>6</prereq>
<prereqg>7</prereq>
<prereq>10</prereq>
<prereqg>ll</prereq>
<prereq>12</prereq>
<prereq>l4</prereq>
<prereqg>15</prereq>
<prereq>22</prereq>
<prereq>24</prereq>
<prereq>28</prereq>
</module>
<module mno="41" hour="6">
<prereg>3</prereq>
<prereqg>ll</prereq>
<prereq>12</prereq>
</module>
</modules>
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D. SAMPLE XML FILE OF THE PROGRAM

<?xml
<program>

version="1.0"?>

<day dno="0">

<ders
<ders
<ders
<ders
<ders
<ders
<ders
<ders
</day>

saat=""1">FATURA MODULU GIRIS</ders>
saat=""2">FATURA MODULU GIRIS</ders>
saat=""3">FATURA MODULU GIRIS</ders>

saat="4" />

saat="5">GIRIS
saat=""6">GIRIS
saat="7">GIRIS
saat=""8">GIRIS

</ders>
</ders>
</ders>
</ders>

<day dno=""1">

<ders
<ders
<ders
<ders
<ders
<ders
<ders
<ders
</day>

saat=""1">BANKA
saat=""2">BANKA
saat=""3"">BANKA
saat=""4">BANKA
saat=""5">TALEP
saat="6">TALEP
saat=""7">TALEP
saat="8">TALEP

<day dno="2">
saat=""1">MUSTERI
saat=""2">MUSTERI
saat=""3">MUSTERI
saat=""4">MUSTERI
saat=""5">MUSTERI
saat=""6"">MUSTERI

<ders
<ders
<ders
<ders
<ders
<ders
<ders
<ders
</day>

saat=""7">STOK
saat=""8">STOK

<day dno="'3"">

<ders
<ders
<ders
<ders
<ders
<ders
<ders
<ders
</day>

saat=""1">STOK
saat=""2"">STOK
saat=""3">STOK
saat=""4">STOK
saat=""5">STOK
saat=""6">STOK
saat=""7">STOK
saat=""8">STOK

<day dno="4">

<ders
<ders
<ders
<ders
<ders
<ders
<ders
<ders
</day>

saat=""1">STOK
saat=""2">STOK
saat=""3"">STOK
saat=""4">STOK
saat=""5">STOK
saat=""6">STOK

saat=""7">MUHASEBE GIRIS
saat=""8">MUHASEBE GIRIS

<day dno="5">

<ders
<ders
<ders
<ders
<ders
<ders
<ders
<ders

saat=""1">MUHAS
saat=""2">MUHAS
saat=""3">MUHAS
saat=""4">MUHAS
saat=""5">MUHAS
saat=""6"">MUHAS
saat=""7">MUHAS
saat=""8"">MUHAS

MODULU</ders>
MODULU</ders>
MODULU</ders>
MODULU</ders>

/ TEKLIF
/ TEKLIF
/ TEKLIF
/ TEKLIF

MODULU</ders>
MODULU</ders>
MODULU</ders>
MODULU</ders>

CEKLERI</ders>
CEKLERI</ders>
CEKLERI</ders>
CEKLERI</ders>
CEKLERI</ders>
CEKLERI</ders>

MODUL
MODUL

MODUL
MODUL
MODUL
MODUL
MODUL
MODUL
MODUL
MODUL

MODUL
MODUL
MODUL
MODUL
MODUL
MODUL

EBE
EBE
EBE
EBE
EBE
EBE
EBE
EBE

GIRIS
GIRIS
GIRIS
GIRIS
GIRIS
GIRIS
GIRIS
GIRIS

ILERI</ders>
ILERI</ders>

ILERI</ders>
ILERI</ders>
ILERI</ders>
ILERI</ders>
ILERI</ders>
ILERI</ders>
ILERI</ders>
ILERI</ders>

ILERI</ders>
ILERI</ders>
ILERI</ders>
ILERI</ders>
ILERI</ders>
ILERI</ders>
</ders>
</ders>

</ders>
</ders>
</ders>
</ders>
</ders>
</ders>
</ders>
</ders>
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</day>

<day dno="6"">
saat=""1">TEKNIK 2</ders>
saat=""2">TEKNIK 2</ders>
saat=""3">TEKNIK 2</ders>

<ders
<ders
<ders
<ders
<ders
<ders
<ders
<ders
</day>

saat="4" />

saat=""5">NETPOS MODULU</ders>
saat=""6">NETPOS MODULU</ders>

saat=""7">ENTEGRASYON
saat=""8">ENTEGRASYON

<day dno="'7"">

<ders
<ders
<ders
<ders
<ders
<ders
<ders
<ders
</day>

saat=""1">ENTEGRASYON
saat=""2">ENTEGRASYON
saat=""3">ENTEGRASYON
saat=""4">ENTEGRASYON
saat=""5">ENTEGRASYON
saat=""6">ENTEGRASYON
saat=""7">ENTEGRASYON
saat=""8">ENTEGRASYON

<day dno="8">

<ders
<ders
<ders
<ders
<ders
<ders
<ders
<ders
</day>

saat=""1">ENTEGRASYON
saat=""2">ENTEGRASYON

MODULU</ders>
MODULU</ders>

MODULU</ders>
MODULU</ders>
MODULU</ders>
MODULU</ders>
MODULU</ders>
MODULU</ders>
MODULU</ders>
MODULU</ders>

MODULU</ders>
MoODULU</ders>

saat="3">10P / AUP</ders>
saat=""4">1UP / AUP</ders>
saat=""5">DEMIRBAS</ders>
saat="6"">DEMIRBAS</ders>
saat=""7">DEMIRBAS</ders>

saat="8" />

<day dno="9">

<ders
<ders
<ders
<ders
<ders
<ders
<ders
<ders
</day>

saat=""1">NDI</ders>
saat=""2">NDI</ders>
saat="3">NDI</ders>
saat="4" />

saat=""5">MUHASEBE MODULU</ders>
saat=""6"">MUHASEBE MODULU</ders>
saat=""7">MUHASEBE MODULU</ders>
saat="'8" />

<day dno="10"">

<ders
<ders
<ders
<ders
<ders
<ders
<ders
<ders
</day>

saat=""1">RAPOR MODULU</ders>

saat=""2">RAPOR MODULU</ders>

saat=""3">DEKONT OZEL UYGULAMALAR
saat=""4">DEKONT OZEL UYGULAMALAR
saat=""5">DEKONT OZEL UYGULAMALAR
saat=""6">DEKONT OZEL UYGULAMALAR
saat=""7">DEKONT OZEL UYGULAMALAR
saat=""8">DEKONT OZEL UYGULAMALAR

<day dno="11"">

<ders
<ders
<ders
<ders
<ders
<ders
<ders
<ders
</day>
</program>

saat=""1">KALITE KONTROL</ders>
saat=""2">KALITE KONTROL</ders>
saat=""3">KALITE KONTROL</ders>
saat=""4">KALITE KONTROL</ders>

saat="5" />
saat="'6" />
saat="7" />
saat="8" />

122

</ders>
</ders>
</ders>
</ders>
</ders>
</ders>



E. CRITICAL VALUES OF THE T DISTRIBUTION

Crirical Values of the t Distribution

df 2-tailed testing 1-tailed testing
a=.1 a=05] a=.01 a=.1 a=05| a=.01
3 2015 257 4.032 1.476 2015 3.365
6 1.943 2447 3.707 1.440 1.943 3143
7 1.895 2.365 3.499 1.415 1.895 2008
8 1.860 2.306 3.355 1.397 1.860 2.896
9 1.833 2.262 3.250 1.383 1.833 2.821
10 1.812 2228 3.169 1.372 1.812 2.764
11 1.796 2201 3.106 1.363 1.796 2.T18
12 1.782 2179 3.055 1.356 1.782 2.681
13 1.771 2160 3012 1.350 1.771 2.650
14 1.761 2.145 2977 1.345 1.7461 2.624
15 1.753 2.131 2047 1.341 1.753 2.602
16 1.746 2.120 2921 1.337 1.746 2583
7 1.740 2.110 2 898 1.333 1.740 2.567
18 1.734 2.101 X878 1.330 1.734 2.552
19 1.729 2.083 2.861 1.328 1.729 2.539
3 1.725 2086 2845 1.3235 1.725 2528
2 1.721 2080 2831 1.323 1.721 2518
2 1.7117 2074 2819 1.321 1.7117 2508
23 1.714 2.069 2807 1.319 1.714 2.500
24 1.711 2.064 27197 1.318 1.711 2492
25 1.708 2.060 2787 1.314 1.708 2485
26 1.706 2.056 277 1.315 1.706 2479
2 1.703 2.052 277 1.314 1.703 2473
28 1.701 2.048 2.753 1.313 1.701 2 467
2 1.699 2.045 2736 1.311 1.699 2.462
30 1.697 2.042 2.750 1.310 1.697 2.457
40 1.684 2021 2.704 1.303 1.684 2413
50 1.676 2.009 2678 1.299 1.676 2403
a0 1.671 2.000 2.660 1.294 1.671 2.390
80 1.664 1.990 2.639 1.292 1.664 2374
100 1.660 1.984 2.626 1.280 1.660 2.364
120 1.658 1.980 2617 1.289 1.658 2.358
v's 1.645 1.960 2576 1.282 1.645 2317
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F. BEST T VALUES OF SDST FOR ALL SCENARIOS OF 100 INDIVIDUALS

s1

3,704119
2,385961
1,472561

2,07944
5,235228
2,495697
5,190476
3,441278
3,336455
4,631914
1,435878
2,795291
2,295111
1,010468
3,286879
1,484202
1,213625

1,05235
2,983759
2,335189

s2

4,232501
2,325081
1,851859
1,202714
2,265442
4,39155
3,629749
2,47976
4,596194
2,416888
2,781518
4,631914
4,491867
2,149636
2,626545
3,120899
3,557457
1,75
3,330068
1,50759

s3

4,082649
2,817181

2,07944
4,818182
4,424562
3,418653
5,060524
5,060524
3,080938
6,608266
1,213625
2,416888
6,608266
4,596154
3,557457
1,614672
1,725004
7,172067

1,50759
3,396223

sd

3,605427
3441278
1,335464
2416888
1,826104
2,401383
3,181921
2416888
1,010468
4,232501
2,560358

247976
3,886455

2,67724
2,178172

1,65107
1,917139
1,725004
2,908448
4560954

s5

4,232501
2,889946
3,141083
2,010801
4,631914
3,120899
2,192542
1,877815
1,956945
3,286879
1,148541
3,729392
4,358352

2,87157
2,495697
1,864812
2,643341
2,495697
2,660238
2,325081

s6
2,527842
5,327017
2463911
1,614672
0,644758
2,609851
3,286879
3,286879
2,107326
2,065591
7,449548
3,120899
2,385961
3,629749
3,557457
2,149636
2,609851
3,581331
3,557457
2,295111

s7

3,373984

3,96872
1,602619
2,728883
3,286879
2432477
0,566013
0,865689
4,358952
2,643341
0,566013
3,002923
3,679091
2,795291
3,061255
2,799291
2,576759
1,346714
2,178172
1,010468

sB

3,806729
3,330068
4,818182
7,861974
2,626545
1,830871
1,273639
3,080988
4,326757

1,65107
4,818182
2,853319
0,824973
3,729392
5,146456
0,764382
1,472561
3,729392
3,141083
2,945339

s0

2,20698
8,737656
1,864812
1,614672
2,416888
3,041669

3,51036
5,953456
2,340182
2,221489
2,093352
0,845298
2,527342
1,787838
2,416888
2,432477
1,484202
2,385961
2,221489
0,396406

s10

2,325081
2,87157
4,742087
1,700186
2,626545
3,181921
@, 738877
7
4,326757
3,418653
1,890871
3,754915
2,143636
1,826104
1,010468
2416888
1,324244
3,257457
3,464102
3,24439

s11

5,728539
2,964732
1,700186
2,835189
4,232501

3,51036
2,2360608
2,983759

2,67724
3,022225
2,903448
3,181921
4,082649
3,351934
1,675543
3,418653

7,64913
2,192542
1,943622
3,996735

s12

3441278
5,146456
5,080524
3,780692
1,246519
1,687843
3,022225
2,945839
3,533802
2,295111
2,463911
2,853319
1,830871

3,51036
1,983759
6,012611
3,859605
5,520447
6,464549
6,395833

s13
3,441278
2,121365
2,983759
1,530607
4,977266
2,853319
2,310058
0,724288
2,560358
4,082649
3,080988
5,895514
1,290762
3,729392
2,16387
3,941006
2,135467
4,025056
1,943622
1,472561

s14
5,838742
2,853319
4,526183
1,838956
2,87157
2,416338
2,178172
2,20698
2,927078
1,159325
3,161423
3,418653
2,20693
6,328319
2,643341
2,853319
4,082649
3,265548
3,24439
4,39155

515
3,330068
3,96872
2,711561
4,141553
1,041997
3,265548
3,96872
4,857067
2,121365
0,429789
1,826104
3,308384
2,983759
1,531122
2,511724
4,857067
1,495878
1,301893
2,107326
2,295111

516
1,851859
2,093352

3,96872
3,654302

2,67724
1,519338

4,77986
4,631914
3,859605
1,943622
2,250719
2,192542
4,053692
1,864812
2,135467
4,704848
6,134751
2,495697
1,675543
2,432477

s17
3,080988
1,566699
0,88615
3,605427
3,022225
2,817181
3,886455
3,396223
2,76386
1,290762
1,116334
4,424562
4,111933
3,120899
0,814835
2,192542
1,8133
3,654302
2,527842
3,464102

s18
2,983759
2,051803
1,956945
2,231439
2,236068
2,47976
2,401383
2,121365
4,668128
2,265442
3,886455
2,47976
3,51036
3,941006
2,694347
2,121365
1,638897
4,025056
2,355362
3,557457

519
5,953456
1,675543
3,308384
4,053692
3,629749
4,111933
1,956945
3,780692
2,448151

2,76386
1,775179
3,373984
3,533802
2,983759

3,24439
3,754915
0,468529
3,351934
1,626764
3,351934

520
2,051803
2,527842
2,010801
4,704843

4,39155
3,022225
9,716245
2,694347
2,448151
2,149636
3,557457
1,235527
2,927078
2,576759
2,010801

2,67724

2,67724
7,973866
3,996735
1,590607

521
2,728383
3,441278
4,457993
2,853319
2,107326
3,418653
4,201829
5,374104
1,531122
3,533802
3,061255
2,370621
3,351934
3,780692

2,87157
0,546437
3,141083
2,370621
4,358952
1,566699

522
4,936592
3,202579
2,295111
1,324244
2,024409
0,896406
3,629749
1,930353
3,654302

2,20698
1,775179
2,660238

2,075944
3,679091

0,48795
2,107326
5,327017
1,380649
6,197838
2,038076

523
4,171516
3,487128
2,093352

2,76336
2,927078
0,968719
3,806729
1,775179
0,865689

4,77986
2,010801
4,201829
1,364812
2,463911
2,544053
1,105646
2,265442
1,762566
2,236068
3,833032

s24
2,310058
3,002923
2,250719
2,340182
1,531122
3,487128
1,75
4,025056
3,120899
3,581331
3,730692
5,520447
2,927078
5,190476
5,374104
4,704843
2,355362
3,859605
2,448151
3,464102
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525
3,351934
1,903979
8,334235
2,853319
2,107326
1,414868
1,332023
2,295111
3,886455
1,213625

5,01857
4,936592
6,134751
4560954
3,654302
5,422019

2,87157
3,022235
1,290762
1,449382

s26

5,783097
1,700186
6,328319
4,560954
3,080988
1,550607
2,265442
2,817181
4,053692
1,40343
3,780692
4,201829
3,859605
3,533802
2,149636
3,996735
1,8133
2,817181
10,32307
2,093352

s27

2,889946
3,002923
3,265548

2,87157
5,733097
4,936592
3,223402
2,325081
4,232501
2,660238
1,663286
1,542944

2,67724
1,614672
1,590607
2,033076
6,395833
3,581331
4,141553
3,308384

s28

7
2,310058
2,340182
2,67724
4,141553
5422019
6,535735
2,527842
2,817181
1,838956
2,609851
1,943622
4491867
1,116334
1,687843
2,87157
5422019
4,668128
1,531122
7,172067

529
4,201829
2,010801
3,396223
3,996735
3,557457
2,463911
4,326757

3,24439
1,787838
3,202579
3,120899
2,355382
5,728539
1,5542802
3,654302
2,576759
4,171516
2,448151
2,781518
2,927078

s30
1,9565945
3,629749
2,87157
4,025056
2,401383
4, 77986
1,369306
1,638897
1,917139
2,654347
1,554802
1,787838
2,325081
5,327017
4,742087
2,711561
2,093352
4,526183
1,472561
2,560358

s31

1,997251
4,232501
3,351934
1,970324
4,111933
1,250762
3,061255
2401383

2,76386
3,373984
1,877815
3,061255
4,491867
2,339946
3,080988
3,373984
2,835189
1,449382
2,8895946
4,936592

s32
3,022225
1,903979
2,121365
2,135467
3,605427
6,012611
2,135467
1,762566
3,223402
1,063124
3,223402
1495878
1,687843
3,100868
2,192542
2,853319
4,232501
2,149636
2,711561
2,065591

s33

4,082649

5,01857
2,694347
3,780692
4,201829
3,629749
9,359902
1,578634
0,784517
3,396223
4,742087
4,491867
5,103146

1,42634
3,022225
3,161423
3,120899
3,396223
2,626545
1,997251

s34

3,223402
1,638897
2,609851

1,50759
2,295111
2,265442
2463911
2,024409
2908448
4,082649
2626545
4,457998
3,120899
3,265548
2,817181
1,472561
4,596154

3,96872

1,40343
7.547773

s35

2,799291
2,527842
2,432477
3,654302

4,39155
3,780692
1,838956
2,511724
4,201829
0,794607
3,022225
2,325081

1,65107
4,631914
4,326757
2,149636
5,622535

3,24439
1,851859
1,566699

536
2,626545
2,355362
2,310058
2,527842
3,336455
3,080988
4,171516
1,850871
1,917139
1,614672
2,370621
3,080988
1,031466
1,573634
3,120899
3,629749
2,835189
2,511724
5,422019
1,687843

s37
1,50759
6,197838
1
1,930353
3,629749
3,161423
2,927078
5,895514
3,351934
1,246519
2,236068
1,933759
1,75
4,263541
3,859605
2,609851
3,330068
267724
3,141083
2,448151

s38

2,07944

7,35429
2,964732
3,120899
4,201829
1,170134
3,080988
1,663286
2,643341
4,668128
2,236068
3,833301
2,463911
3,533802
5,783097
3,654302
2,781518
4,358952
1,851859
4,668128

s30

3,223402
3,161423
4,936592
1,602619
2,746316
2,340182

2,67724
1,762566
3,100868

7,64913
2,340182
1,590607
3,859605
5,327017
1,917139
1,712573
2,432477
4,025056
2,511724
1,800545

s40

3,833032
1,9035979
3441378
1,224563
1,460954

4,39155
4,082649

3,24439
1,983759

2,20698
4,818182
2,401383
1,519338
2,983759
4,896532
2,192542
2,149636
3,396223
2,051803
2,051803

sd1

3,24439
4,560954
4,263541
3,913586
5,235228
2,908448
3,441278
2,560358
3,629749
2,853319
1,437844
4,457998
1,626764
1,8133
2,051803
2,07544
2,121385
2,16387
3,120899
2,385961

s2

2432477
3,886455
2, 416888
1,290762
3,202579
3,351934
2432477
2,236068
3,557457
4,111933
3,629749
4,896532
5,622535

3,96872
2,250719
1,346714
4,082649
7,861974
4,171516
3,441278

s43

3,396223
2964732
3,041669
3,806729
2,192542
2,964732
3,487128
3,654302

3,24439
2, 416888

5,01857
3,533802
6,262341
3,161423
2401383
2,609851
2,401383
2,781518
4,263541

3,51036

sdd

3,806729
5,327017
2,383961

2,67724

3,24439
3,373984
2,728883
2,121365
2,265442
2448151
1,877815
2,135467
0,634874
1,917139
2,385961
2,340182
2,149636
1,031466
4,977266
2,340182

sd45

3,729392
3,754915
2,236068
5,235228
1,930353
3,806729
2,065591

2,16387
2,065591
3,141083
1,983759
2,010801
2,25071%
4,171516
1,826104
2,385961
1,602619
1,626764
2,927078
2,192542

s46
1,460954
2983759
2,927078
1,137781
1,224563
3,330068
4,326757
0,855485
1,554802
3,839603
2,121365
6,395833
3,859605
1,983759
3,9135386
1,725004
3,141083
2,370621
3,308334
1,737479

sd7

2,983759
2,250719

1,40343
6,262341
3,629749

1,65107
1,268584
0,804714
3,041669
2,385901
1,213625
4,171516
4,896532
4,326757
2,927078

1,50759
3,002923
2,694347

3,24439
3,265548

sA8

4,053692
1,983759
0,497674
1,8350871
4,201829
4,596194
3,308384
3,161423

3,96872
4,526183
3,704119
5,520447
2,817181
2,853319
10,54839
2,051803
3,141083
2,051803
4,326757
3,141083

s49

3,330068
1,301893
2,889946
2,983759
3,223402
3,041669
4,053692

1,42634
2,416888
3,120899

4,39155

2,16387
7,973866

4,39155

2,20698
1,566699
3,441278
2,799291
2,626545
3,100868

s5

0 s51

s52

s53

s54

s55

s56

s57

6,262341
1,983759
1,380649

5,01857
4,818182
1,300545
2,178172
2,983759
1,775179
3,679091
4,294957
5,422019
2,495697
3,351934
1,554802

2,67724
5,422019
1,983759
3,679091
5,235228

3,533802
3,464102
2,853319
1,554802

7,35429

5,01857
3,041669
2,560358
2,093352
5,190476
1,638897
1,930353
2,609851
2,051803
3,581331

2,07944
2,781518

2,67724
1,725004
1,890871

1,191828
1,826104
2,817181
2,010801
2,945839
2,746316

1,08434
4,025056
4,596194

1,65107
2,964732
2,945839
3,265548
1,737479
2,576759
2,135467
1,917139
2,694347
2,121365
3,833032

1,08434
2,560358

1,40343
2,817181
3,654302
2,945839
2,660238

2,07944
3,704119
2,660238
2,560358
0,674484
4,424562
3,557457
2,544053
4,896532
1,997251
7,753799
2,192542
2,463911

3,373984
4,201829
1,775179
2,340182
4,141553

4,77986
2,051803
3,913586
2,325081

3,24439
2,024409
2,889946
4,818182
3,654302
1,191828
2,576759
4,631914
2,463911
2,983759
3,351934

1,301893
2,781518
1,010468
3,061255
4,232501
2,010801
2,051803
2,463911
5,327017
3,654302
2,835189
4,896532
1,290762
4,896532
2,401383
4,526183
4,977266
2,355362
2,660238
2,093352

2,728333
2,660238
3,080988
0,585631
0,896406
4,704848
2,192542
9,533789
4,936592
3,308384
2,280239
5,953456
1,554802
1,712573
1,917139
3,181921
3,330068
2,051803
1,170134
2,385961

3,441278
2,609851
1,675543
4,424562
3,061255
2,527842
2,660238
3,351934
3,202579
4,596194
4,201829
2,781518
5,190476
0,458831
1,380649
3,679091
3,581331
2,728833
4,704848
5,190476

s58

1,877815
1,970324
2,626545
3,806729
1,983759
3,654302
2,192542
1,851859
1,578634

3,24439
3,041669

1,42634
5,895514
4,171516
2,448151
1,762566
3,161423
3,886455
2,799291
2,432477

s59
2,250719
4,232501
2,010801
1,762566
3,100868
4,596194
2,121365
2,728883
0,674484
1,191828
10,10998
3,941006
0,478235
2,192542
3,308384
3,120899
3,441278
1,301893
0,896406
2,835189

s60

s61

s62

1,65107
1,838956
2,728833
1,983759
2,853319
1,614672
4,232501
5,190476
5,520447
2,385961
1,566699
0,855485
1,712573
2,093352
2,576759
3,080988
3,330068
1,301893
2,889946

2,67724

3,557457
4,232501
2,107326
3,581331
5,728539
1,864812
3,181921
2,495697
1,105646

2,16387
0,835127
2,448151

7,64913
3,729392
1,460954
2,355362
2,817181
4,424562
3,308384

0,73429

2,448151
5,470791
4,111933
1,301893
1,687843
1,519338
2,495697
4,171516
4,358952
2,340182
4,857067
1,903979
3,100868
5,060524
2,511724
1,519338
2,121365
3,202579
3,487128
3,330068

s63

2,835189
1,712573
5,374104
1,566699
5,953456

2,67724
2,121365

3,96872
2,560358
4,818182
1,554802
3,605427
2,051803
2,010801
2,121365

2,07944
3,022225
3,704119
3,833032
7,172067
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G. SOURCE CoDE To WRITE RULES TO XML

public void ruleyaz(Q)

{

XmlTextReader reader = new XmlTextReader("'RulesXML._.xml'");
TreeNode tnmodules = new TreeNode();

tnmodules.Text = "modules™;
treeViewl._.Nodes.Add(tnmodules);

TreeNode tnmodule null;

TreeNode tnprereq null;

while (reader.Read())

if (reader.NodeType == XmINodeType.Element && reader.Name ==

"module™)

{

tnmodule = new TreeNode();

tnmodule.Text = reader.GetAttribute("'mno™);
row = Convert.Tolnt32(tnmodule.Text);
tnmodules.Nodes.Add(tnmodule);

}

else if (reader._.NodeType == XmINodeType.Element && reader._Name
"prereq’)

{

reader.Read();

tnprereq = new TreeNode();
tnprereq.Text = reader_Value;

col = Convert.Tolnt32(tnprereq.Text);
tnmodule.Nodes.Add(tnprereq);
preregs[row, col] = 1;

}

reader.Close();
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H. CoMPARISON OF NUMBER OF RELIABLE SOLUTIONS FOR THE TRAINING
AND CONTROL DATA

1400

1181

1200

1000

800
W SDST

600
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Number of Reliable Solutions

200

GA1l GA2 GA3 GAA

Figure H.1(a) — Comparison of number of reliable solutions for the
training data of 100 individuals.
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Figure H.1(b) — Comparison of number of reliable solutions for the

training data of 120 individuals.
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Figure H.1(c) — Comparison of number of reliable solutions for the

training data of 140 individuals.

1400
1226

. 1200 - 1162
5 1027 104
£ 1000
3 875
w
U
= 800 687
% 624 mSDST
-4 600 -
5 = LDST
2 400
5
=
=

200 -

0 - : :
GA1 GA2 GA3 GA4

Figure H.1(d) — Comparison of number of reliable solutions for the

training data of 160 individuals.
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Figure H.1(e) — Comparison of number of reliable solutions for the
training data of 180 individuals.
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Figure H.1(f) — Comparison of number of reliable solutions for the

training data of 200 individuals.
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Figure H.2(a) - Comparison of number of reliable solutions for the

control data of 100 individuals.
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Figure H.2(b) — Comparison of number of reliable solutions for the

control data of 120 individuals.
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Figure H.2(c) — Comparison of number of reliable solutions for the

control data of 140 individuals.
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Figure H.2(d) — Comparison of number of reliable solutions for the

control data of 160 individuals.

W SDST
mLDST

Number of Reliable Solutions

GA1 GA2 GA3 GA4

Figure H.2(e) — Comparison of number of reliable solutions for the
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I. THE GRAPHICS OF THE NUMBER OF RELIABLE MODULE RANGES FOR
TRAINING AND CONTROL DATA

Training Data

i AN A NN
24 )\ V\ V=AY . =A/ ANAANY,
R M AN NN\ AW A - NAWN/
210 L/ WA WA N AN MWNS{S N
Ej’ ¥ % \V/ V

1 3 5 7 9111315171921232527293133353739414345474951535557596163
Scenarios

——100gal ——100ga2 ——100ga3 ——100ga4

Figure 1.1(a) — Number of reliable module ranges in training data — SDST for a

population size of 100.
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Figure 1.1(b) — Number of reliable module ranges in training data — SDST for a
population size of 120.
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Figure 1.1(c) — Number of reliable module ranges in training data — SDST for a

population size of 140.
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Figure 1.1(d) — Number of reliable module ranges in training data — SDST for a

population size of 160.
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Figure 1.1(e) — Number of reliable module ranges in training data — SDST for a

population size of 180.
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Figure 1.1(f) — Number of reliable module ranges in training data — SDST for a

population size of 200.

Number of Reliable Module Ranges

6
F!
2
0 rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 1 11T T T 1
1 35 7 9111315171921232527293133353739414345474951535557596163
Scenarios
—100gal ——100ga2 -——100ga3 ——100ga4d

Figure 1.2(a) — Number of reliable module ranges in training data — LDST for a

population size of 100.
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Figure 1.2(b) — Number of reliable module ranges in training data — LDST for a
population size of 120.

134



ML LA SAA AT TN AN SR
VIAVAVAL WA VA, '\VA'IVIA‘VA‘&VI‘HVL‘UW-"

M\"‘ V\V'IMM\ AV AR YA YN AVASRYA'

»
[
[.]
s
~
o
'}
E
s 12 L
20 V i
g ° J
T 6
o=
s 4
g 2
-1
EO rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 111 T17T1 T T1
z 1 3 5 7 9111315171921232527293133353739414345474951535557596163
Scenarios
——140gal ——140ga2 —— 140ga3 ——140ga4d

Figure 1.2(c) — Number of reliable module ranges in training data — LDST for a

population size of 140.
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Figure 1.2(d) — Number of reliable module ranges in training data — LDST for a

population size of 160.
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Figure 1.2(e) — Number of reliable module ranges in training data — LDST for a

population size of 180.
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Figure 1.2(f) — Number of reliable module ranges in training data — LDST for a
population size of 200.
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Figure 1.3(a) — Number of reliable module ranges in control data — SDST for a

population size of 100.
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Figure 1.3(b) — Number of reliable module ranges in control data — SDST for a
population size of 120.
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Figure 1.3(c) — Number of reliable module ranges in control data — SDST for a

population size of 140.
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Figure 1.3(d) — Number of reliable module ranges in control data — SDST for a

population size of 160.
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Figure 1.3(e) — Number of reliable module ranges in control data — SDST for a

population size of 180.
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Figure 1.3(f) — Number of reliable module ranges in control data — SDST for a
population size of 200.
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Figure 1.4(a) — Number of reliable module ranges in control data — LDST for a
population size of 100.
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Figure 1.4(b) — Number of reliable module ranges in control data — LDST for a
population size of 120.
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Figure 1.4(c) — Number of reliable module ranges in control data — LDST for a

population size of 140.
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Figure 1.4(d) — Number of reliable module ranges in control data — LDST for a

population size of 160.
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Figure 1.4(e) — Number of reliable module ranges in control data — LDST for a

population size of 180.
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Figure 1.4(f) — Number of reliable module ranges in control data — LDST for a

population size of 200.
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J. BEST MODULE RANGES FOR THE TRAINING DATA

Table J.1(a) — Best module ranges for SDST and 100 individuals.

OX 0OX2 PMX ox’

4 1 4 1

1 4 1 4

8 8 8 9

9 9 6 6
10 10 9 8
13 13 10 10
14 6 13 14

6 14 14 13
15 15 15 15
16 16 26 16
20 20 16 23
29 23 20 26
23 29 32 29
35 26 23 20
26 32 35 32
38 35 29 35
32 38 38 38

Table J.1(b) — Best module ranges for SDST and 120 individuals.

OX 0OX2 PMX ox’

1 4 1 4

4 1 4 1
10 8 10 6

8 6 6 9

6 9 8 10

9 10 9 8
14 14 14 13
13 13 13 14
15 15 15 16
16 16 16 15
20 26 20 26
29 20 29 23
23 23 23 20
38 35 35 35
35 32 32 38
32 29 26 29
26 38 38 32
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Table J.1(c) — Best module ranges for SDST and 140 individuals.

OX OX2 PMX ox’

4 4 1 1

1 1 4 4

8 8 8 9

9 9 6 8
10 10 13 6
13 6 9 10
14 13 15 14

6 14 14 13
16 16 16 16
23 15 10 15
15 20 20 23
26 29 23 20
20 26 29 26
29 23 26 29
32 32 32 35
38 38 35 32
35 35 38 38

Table J.1(d) — Best module ranges for SDST and 160 individuals.

OX 0OX2 PMX ox’
1 1 1 4
4 4 4 1
6 8 6 8
9 6 8 10
8 9 9 6
10 10 13 13
14 14 26 9
13 13 10 14
16 15 14 15
23 16 16 16
15 23 23 23
20 20 15 20
29 26 20 26
38 32 29 29
32 35 32 32
26 38 38 35
35 29 35 38
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Table J.1(e) — Best module ranges for SDST and 180 individuals.

OX OX2 PMX ox’
1 1 4 1
4 4 1 4
6 6 6 6
8 9 9 8
9 8 8 9
10 10 14 13
13 13 13 10
26 14 10 14
14 16 15 26
15 15 16 16
16 20 20 23
20 23 23 15
32 26 26 20
23 29 29 35
29 38 32 32
38 35 35 29
35 32 38 38

Table J.1(f) — Best module ranges for SDST and 200 individuals.

OX 0OX2 PMX ox’
4 4 1 1
1 1 4 4
6 6 9 9
8 8 8 8
13 9 10 6
9 10 14 10
10 14 6 14
14 13 13 13
16 16 15 15
23 15 16 16
15 26 29 20
32 23 20 23
26 20 26 26
20 29 23 38
38 32 38 32
29 35 35 29
35 38 32 35
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Table J.2(a) — Best module ranges for LDST and 100 individuals.

OX OX2 PMX ox’

10 1 1 1
1 2 2 2
2 4 4 4
4 6 6 8
9 5 10 13

11 9 5 5

12 10 12 9
5 8 17 10
8 11 8 6

14 12 26 11

13 17 13 21
6 14 9 14

17 13 11 25

15 16 25 12

20 23 15 16

21 20 21 20

16 21 14 15

32 15 16 17

23 31 23 23

31 22 20 31

24 32 31 29

33 24 22 26

26 25 32 32

29 26 38 22

22 33 33 38

25 29 35 34

34 34 29 24

36 36 34 35

38 35 24 36

35 38 36 33
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Table J.2 (b) — Best module ranges for LDST and 120 individuals.

OX OX2 PMX ox’
8 4 4 1
1 5 1 4
4 1 10 9
2 2 2 2
9 8 8 10
17 10 11 8
14 9 14 12
6 11 9 13
11 14 6 11
20 6 12 5
10 12 15 14
5 13 5 17
15 16 17 16
12 17 23 6
13 23 29 23
21 25 20 20
22 15 13 21
25 20 35 15
16 22 16 26
23 24 21 29
26 29 26 22
31 21 22 34
29 31 31 24
32 32 24 25
33 33 25 35
24 34 34 31
38 26 36 36
35 36 38 38
34 38 32 32
36 35 33 33
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Table J.2(c) — Best module ranges for LDST and 140 individuals.

OX OX2 PMX ox’
4 4 1 5
1 1 8 1
2 2 2 2
17 5 9 4
9 6 5 8
8 9 10 10
10 8 15 9
5 10 4 6
11 12 17 12
6 13 12 14
12 11 20 13
13 14 14 15
14 15 13 16
21 16 25 11
20 17 6 17
23 23 11 21
29 20 22 20
31 21 21 22
15 22 16 32
32 26 23 23
26 29 26 29
16 34 31 35
22 24 34 26
24 25 29 34
38 35 35 38
35 38 36 36
33 31 32 31
25 33 33 24
34 32 38 25
36 36 24 33
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Table J.2(d) — Best module ranges for LDST and 160 individuals.

OX OX2 PMX ox’
5 4 1 1
1 1 2 4
4 2 4 2
9 5 5 6
2 6 9 8
6 8 8 5
10 9 6 10
14 10 11 12
12 12 12 13
8 11 17 11
13 14 29 9
11 13 10 14
16 16 14 15
20 26 13 16
17 17 16 17
24 21 15 21
22 15 25 26
21 23 26 23
26 20 23 25
29 24 21 20
34 25 20 22
15 31 22 29
25 32 24 34
23 22 35 31
36 33 31 32
31 35 34 38
32 38 36 36
33 29 38 33
38 34 33 24
35 36 32 35

147



Table J.2(e) — Best module ranges for LDST and 180 individuals.

OX OX2 PMX ox’
4 4 4 1
2 1 1 4
1 2 2 2
8 8 9 9
5 12 8 10
9 6 12 6
10 5 11 12
14 9 13 8
6 10 6 11
12 13 5 5
13 11 14 14
15 14 10 13
11 16 21 16
16 17 16 15
17 21 15 17
20 29 26 21
22 23 17 26
21 26 29 23
26 15 23 29
23 20 31 20
38 24 20 24
31 22 38 38
24 31 22 22
32 25 35 31
29 34 24 35
35 36 32 32
34 32 25 25
25 33 34 33
33 38 36 34
36 35 33 36
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Table J.2(f) — Best module ranges for LDST and 200 individuals.

OX OX2 PMX ox’
1 1 1 1
2 2 4 2
9 4 8 4
4 5 2 5
6 8 5 9
8 9 9 6
10 6 12 10
11 10 6 8
12 14 10 14
14 12 13 12
13 13 17 13
17 16 14 16
5 20 16 11
16 17 11 17
21 11 15 15
22 15 29 23
15 21 23 20
23 23 22 26
20 24 26 24
26 29 20 21
24 22 38 22
29 35 24 25
25 25 21 33
34 38 31 29
31 26 35 38
32 31 32 31
35 32 25 32
33 33 34 34
38 34 36 35
36 36 33 36

149



K. BEST MODULE RANGES FOR THE CONTROL DATA

Table K.1(a) — Best module ranges for SDST and 100 individuals.

OX 0X2 PMX ox’
1 1 1 1
3 5 4 3
4 4 3 4
5 9 5 5
11 3 11 7
7 7 7 9
12 11 12 11
9 12 9 12
14 14 14 14
19 19 19 29
29 29 30 19
22 21 29 21
34 22 22 22
30 30 21 34
21 34 40 36
36 40 36 30
40 36 34 40

Table K.1(b) — Best module ranges for SDST and 120 individuals.

OX OX2 PMX ox’
1 1 1 1
4 4 4 4
3 5 3 3
11 3 5 5
5 7 11 14
7 11 7 7
12 12 14 11
14 9 12 9
9 14 9 12
19 19 19 19
22 22 29 21
21 21 21 22
29 29 34 29
30 34 36 30
36 30 22 36
34 36 30 34
40 40 40 40
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Table K.1(c) — Best module ranges for SDST and 140 individuals.

OX OX2 PMX ox’
1 1 1 1
4 4 4 3
3 5 3 4
7 3 5 5
5 11 7 7
11 7 11 11
12 9 9 12
9 12 12 9
29 14 14 14
14 19 19 22
19 21 21 19
21 29 29 21
30 22 34 29
22 30 36 30
34 40 22 36
36 36 40 34
40 34 30 40

Table K.1(d) — Best module ranges for SDST and 160 individuals.

OX 0OX2 PMX ox’
1 1 1 1
4 4 4 4
5 3 3 5
3 5 14 3
7 11 5 7
9 7 7 11
11 12 9 9
12 9 11 12
14 14 12 14
19 19 19 19
21 21 22 22
29 29 21 29
34 22 29 30
22 30 34 21
40 40 30 36
30 36 36 40
36 34 40 34
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Table K.1(e) — Best module ranges for SDST and 180 individuals.

OX OX2 PMX ox’
1 1 1 1
4 4 3 3
3 3 4 4
9 5 5 5
11 7 11 11
5 9 12 7
7 11 7 9
12 12 14 12
14 14 9 14
19 19 19 19
22 22 29 22
30 21 21 21
29 29 22 29
21 30 36 34
34 40 40 40
36 36 34 30
40 34 30 36

Table K.1(f) — Best module ranges for SDST and 200 individuals.

OX 0OX2 PMX ox’
1 1 1 1
3 4 4 3
4 3 3 4
5 5 5 5
11 7 11 11
14 11 7 7
7 12 12 12
9 14 9 14
12 9 14 22
19 19 19 9
22 29 29 19
21 21 21 21
36 22 22 29
30 36 40 34
29 30 30 30
34 34 36 40
40 40 34 36
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Table K.2(a) — Best module ranges for LDST and 100 individuals.

OX OX2 PMX ox’
1 1 11 1
4 4 1 3
5 3 3 4
3 5 4 5
7 11 7 7
14 7 5 11
11 14 13 14
18 13 23 16
23 9 17 9
25 16 25 22
13 19 14 19
9 18 18 21
22 23 16 17
19 21 9 18
17 25 29 23
28 22 19 25
16 28 28 13
21 17 21 26
26 31 22 29
29 29 33 30
30 33 26 28
31 26 30 31
33 30 31 33
34 34 34 34
35 35 35 37
37 37 37 38
38 38 38 35
39 39 39 39
41 40 40 40
40 41 41 41
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Table K.2 (b) — Best module ranges for LDST and 120 individuals.

OX OX2 PMX ox’
1 1 1 1
4 4 4 4
3 14 14 7
5 3 7 5
11 11 5 3
7 7 16 14
9 5 9 11
14 13 13 19
23 22 17 9
17 9 22 22
16 16 3 16
13 18 18 23
30 19 19 13
31 23 25 17
18 21 26 25
19 17 23 18
25 25 21 26
26 26 11 21
28 30 30 30
29 29 28 31
21 28 31 29
22 31 33 28
33 33 29 33
34 34 34 34
35 35 35 35
37 37 37 37
40 38 38 38
38 39 39 39
39 40 40 40
41 41 41 41
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Table K.2(c) — Best module ranges for LDST and 140 individuals.

OX OX2 PMX ox’
1 1 1 1
3 4 4 4
4 3 5 3
14 14 3 11
21 11 7 5
5 5 18 7
11 7 17 14
7 9 11 9
9 13 13 16
16 16 14 13
23 17 9 19
22 23 16 18
13 19 19 23
17 25 25 17
18 22 26 33
31 28 33 25
29 18 23 22
19 21 28 21
25 30 21 31
26 29 34 29
30 26 30 30
34 34 31 26
28 31 22 28
33 33 29 34
35 35 35 37
39 37 37 35
37 38 38 38
38 39 39 39
40 40 40 40
41 41 41 41
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Table K.2(d) — Best module ranges for LDST and 160 individuals.

OX OX2 PMX ox’
1 1 1 1
4 4 4 4
3 14 5 14
5 3 3 3
14 5 7 5
7 7 11 7
11 11 13 9
17 9 9 11
9 13 14 16
16 23 19 13
13 18 17 19
23 22 22 23
30 19 23 22
31 16 25 25
18 17 16 21
19 21 28 30
25 25 29 18
21 26 21 26
26 30 18 17
28 29 31 29
29 33 26 28
22 31 34 33
33 34 33 31
34 37 30 34
35 28 35 35
37 35 37 37
38 38 38 38
39 39 40 39
40 40 39 40
41 41 41 41
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Table K.2(e) — Best module ranges for LDST and 180 individuals.

OX OX2 PMX ox’
1 1 1 1
4 4 4 4
3 5 3 14
14 3 11 5
7 7 5 3
5 17 7 7
11 11 14 11
16 13 19 16
9 14 16 9
17 9 13 13
23 16 9 18
22 19 17 23
13 23 23 25
30 22 22 19
31 21 28 22
18 18 18 17
19 25 30 21
25 28 25 29
26 31 29 31
28 30 31 26
29 26 21 30
33 33 37 28
21 29 26 33
34 34 33 34
35 35 41 37
37 37 34 35
38 38 39 39
40 39 35 38
39 40 38 41
41 41 40 40
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Table K.2(f) — Best module ranges for LDST and 200 individuals.

OX OX2 PMX ox’
1 1 1 1
4 4 4 4
5 5 14 3
3 3 3 5
7 11 5 7
11 7 11 9
14 9 9 17
19 13 7 11
9 14 18 13
16 16 25 14
13 19 16 16
31 23 19 23
23 21 13 18
22 30 17 25
21 22 23 19
30 25 28 21
17 17 30 22
18 18 21 31
25 28 33 30
26 33 26 29
28 26 29 33
29 29 22 26
33 31 31 28
34 34 34 34
40 37 35 35
35 35 41 37
37 38 37 38
38 39 38 39
39 40 39 40
41 41 40 41

158



L. RELIABLE MODULE RANGES WITH RELIABILITY PERCENTAGES OF THE
TRAINING DATA

Table L.1(a) — Reliability of best module ranges of SDST for a population size of 100.

pe O O P O
Reliability 93.87% 97.30% 96.56% 97.55%

1 4 1 4 1
4 1 4 1 4
6 8 8 8 9
8 9 9 6 6
9 10 10 9 8
10 13 13 10 10
13 14 6 13 14
14 6 14 14 13
15 15 15 15 15
16 16 16 26 16
20 20 20 16 23
23 29 23 20 26
26 23 29 32 29
29 35 26 23 20
32 26 32 35 32
35 38 35 29 35
38 32 38 38 38

Table L.1(b) — Reliability of best module ranges of SDST for a population size of 120.

Expert OoX 0), ¥/ PMX ox’

Reliability 94.11% 97.55% 96.07% 95.83%
1 1 4 1 4
4 4 1 4 1
6 10 8 10 6
8 8 6 6 9
9 6 9 8 10
10 9 10 9 8
13 14 14 14 13
14 13 13 13 14
15 15 15 15 16
16 16 16 16 15
20 20 26 20 26
23 29 20 29 23
26 23 23 23 20
29 38 35 35 35
32 35 32 32 38
35 32 29 26 29
38 26 38 38 32
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Table L.1(c) — Reliability of best module ranges of SDST for a population size of 140.

pe O O P O
Reliability 94.11% 96.81% 96.32% 98.04%

1 4 4 1 1
4 1 1 4 4
6 8 8 8 9
8 9 9 6 8
9 10 10 13 6
10 i3 6 9 10
13 14 13 15 14
14 6 14 14 13
15 16 16 16 16
16 23 15 10 15
20 15 20 20 23
23 26 29 23 20
26 20 26 29 26
29 29 23 26 29
32 32 32 32 35
35 38 38 35 32
38 35 35 38 38

Table L.1(d) — Reliability of best module ranges of SDST for a population size of 160.

pe O O P O
Reliability 95.83% 97.79% 92.89% 97.79%

1 1 1 1 4
4 4 4 4 1
6 6 8 6 8
8 9 6 8 10
9 8 9 9 6
10 10 10 13 13
13 14 14 26 9
14 i3 13 10 14
15 16 15 14 15
16 28 16 16 16
20 15 23 23 23
23 20 20 15 20
26 29 26 20 26
29 38 32 29 29
32 32 35 32 32
35 26 38 38 35
38 35 29 35 38
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Table L.1(e) — Reliability of best module ranges of SDST for a population size of 180.

pe O O P O
Reliability 95.10% 98.53% 98.53% 95.10%
1 1 1 4 1
4 4 4 1 4
6 6 6 6 6
8 8 9 9 8
9 9 8 8 9
10 10 10 14 13
13 13 13 13 10
14 26 14 10 14
15 14 16 15 26
16 15 15 16 16
20 16 20 20 23
23 20 23 23 15
26 32 26 26 20
29 23 29 29 35
32 29 38 32 32
35 38 35 35 29
38 35 32 38 38

Table L.1(f) — Reliability of best module ranges of SDST for a population size of 200.

pe O O P O
Reliability 94.60% 98.28% 94.11% 97.06%
1 4 4 1 1
4 1 1 4 4
6 6 6 9 9
8 8 8 8 8
9 13 9 10 6
10 9 10 14 10
13 10 14 6 14
14 14 13 13 13
15 16 16 15 15
16 28 15 16 16
20 15 26 29 20
23 32 23 20 23
26 26 20 26 26
29 20 29 23 38
32 38 32 38 32
35 29 35 35 29
38 35 38 32 35
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Table L.2(a) — Reliability of best module ranges of LDST for a population size of 100.

Expert OoX OX2 PMX ox’
Reliability 92.61% 96.93% 87.85% 92.12%

1 10 1 1 1
2 1 2 2 2
4 2 4 4 4
5 4 6 6 8
6 9 5 10 13
8 11 9 5 5
9 12 10 12 9
10 5 8 17 10
11 8 11 8 6
12 14 12 26 11
13 13 17 13 21
14 6 14 9 14
15 17 13 11 25
16 15 16 25 12
17 20 23 15 16
20 21 20 21 20
21 16 21 14 15
22 32 15 16 17
23 23 31 23 23
24 31 22 20 31
25 24 32 31 29
26 33 24 22 26
29 26 25 32 32
31 29 26 38 22
32 22 33 33 38
33 25 29 35 34
34 34 34 29 24
35 36 36 34 35
36 38 35 24 36
38 35 38 36 33
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Table L.2(b) — Reliability of best module ranges of LDST for a population size of 120.

Expert OoX OX2 PMX ox’
Reliability 91.45% 95.86% 88.70% 92.43%

1 8 4 4 1
2 1 5 1 4
4 4 1 10 9
5 2 2 2 2
6 9 8 8 10
8 17 10 11 8
9 14 9 14 12
10 6 11 9 13
11 11 14 6 11
12 20 6 12 5
13 10 12 15 14
14 5 13 5 17
15 15 16 17 16
16 12 17 23 6
17 13 23 29 23
20 21 25 20 20
21 22 15 13 21
22 25 20 35 15
23 16 22 16 26
24 28 24 21 29
25 26 29 26 22
26 31 21 22 34
29 29 31 31 24
31 32 32 24 25
32 33 33 25 35
33 24 34 34 31
34 38 26 36 36
35 35 36 38 38
36 34 38 32 32
38 36 35 33 33
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Table L.2(c) — Reliability of best module ranges of LDST for a population size of 140.

Expert OoX OX2 PMX ox’
Reliability 88.47% 97.06% 88.16% 92.57%

1 4 4 1 5
2 1 1 8 1
4 2 2 2 2
5 17 5 9 4
6 9 6 5 8
8 8 9 10 10
9 10 8 15 9
10 5 10 4 6
11 11 12 17 12
12 6 13 12 14
13 12 11 20 13
14 13 14 14 15
15 14 15 13 16
16 21 16 25 11
17 20 17 6 17
20 23 23 11 21
21 29 20 22 20
22 31 21 21 22
23 15 22 16 32
24 32 26 23 23
25 26 29 26 29
26 16 34 31 35
29 22 24 34 26
31 24 25 29 34
32 38 35 35 38
33 35 38 36 36
34 33 31 32 31
35 25 33 33 24
36 34 32 38 25
38 36 36 24 33
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Table L.2(d) — Reliability of best module ranges of LDST for a population size of 160.

Expert OoX OX2 PMX ox’
Reliability 93.50% 95.77% 91.85% 95.19%

1 5 4 1 1
2 1 1 2 4
4 4 2 4 2
5 9 5 5 6
6 2 6 9 8
8 6 8 8 5
9 10 9 6 10
10 14 10 11 12
11 12 12 12 13
12 8 11 17 11
13 13 14 29 9
14 11 13 10 14
15 16 16 14 15
16 20 26 13 16
17 17 17 16 17
20 24 21 15 21
21 22 15 25 26
22 21 23 26 23
23 26 20 23 25
24 29 24 21 20
25 34 25 20 22
26 15 gl 22 29
29 25 32 24 34
31 28 22 35 31
32 36 33 31 32
33 31 35 34 38
34 32 38 36 36
35 33 29 38 33
36 38 34 33 24
38 35 36 32 35
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Table L.2(e) — Reliability of best module ranges of LDST for a population size of 180.

Expert OoX OX2 PMX ox’
Reliability 94.70% 94.84% 90.56% 93.81%

1 4 4 4 1
2 2 1 1 4
4 1 2 2 2
5 8 8 9 9
6 5 12 8 10
8 9 6 12 6
9 10 5 11 12
10 14 9 13 8
11 6 10 6 11
12 12 13 5 5
13 13 11 14 14
14 15 14 10 13
15 11 16 21 16
16 16 17 16 15
17 17 21 15 17
20 20 29 26 21
21 22 23 17 26
22 21 26 29 23
23 26 15 23 29
24 28 20 31 20
25 38 24 20 24
26 31 22 38 38
29 24 31 22 22
31 32 25 35 31
32 29 34 24 35
33 35 36 32 32
34 34 32 25 25
35 25 33 34 33
36 33 38 36 34
38 36 35 33 36
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Table L.2(f) — Reliability of best module ranges of LDST for a population size of 200.

Expert OoX OX2 PMX ox’
Reliability 96.08% 95.64% 92.34% 96.97%

1 1 1 1 1
2 2 2 4 2
4 9 4 8 4
5 4 5 2 5
6 6 8 5 9
8 8 9 9 6
9 10 6 12 10
10 11 10 6 8
11 12 14 10 14
12 14 12 13 12
13 13 13 17 13
14 17 16 14 16
15 5 20 16 11
16 16 17 11 17
17 21 11 15 15
20 22 15 29 23
21 15 21 23 20
22 23 23 22 26
23 20 24 26 24
24 26 29 20 21
25 24 22 38 22
26 29 35 24 25
29 25 25 21 33
31 34 38 31 29
32 31 26 35 38
33 32 gl 32 31
34 35 32 25 32
35 33 33 34 34
36 38 34 36 35
38 36 36 33 36
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M. RELIABLE MODULE RANGES WITH RELIABILITY PERCENTAGES OF THE
CONTROL DATA

Table M.1(a) — Reliability of best module ranges of SDST for a population size of 100.

Expert (0,4 OX2 PMX ox’

Reliability 95.83 96.81 95.10 97.79
1 1 1 1 1
3 3 5 4 3
4 4 4 3 4
5 5 9 5 5
7 11 3 11 7
9 7 7 7 9
11 12 11 12 11
12 9 12 9 12
14 14 14 14 14
19 19 19 19 29
21 29 29 30 19
22 22 21 29 21
29 34 22 22 22
30 30 30 21 34
34 21 34 40 36
36 36 40 36 30
40 40 36 34 40

Table M.1 (b) — Reliability of best module ranges of SDST for a population size of 120.

pe O O P O
Reliability 96.56 98.04 94.36 96.81

1 1 1 1 1
3 4 4 4 4
4 3 5 3 3
5 11 3 5 5
7 5 7 11 14
9 7 11 7 7
11 12 12 14 11
12 14 9 12 9
14 9 14 9 12
19 19 19 19 19
21 22 22 29 21
22 21 21 21 22
29 29 29 34 29
30 30 34 36 30
34 36 30 22 36
36 34 36 30 34
40 40 40 40 40
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Table M.1 (c) — Reliability of best module ranges of SDST for a population size of 140.

pe O O P O
Reliability 95.83 97.30 96.08 98.28

1 1 1 1 1
3 4 4 4 3
4 3 5 3 4
5 7 8 5 5
7 5 11 7 7
9 11 7 11 11
11 12 9 9 12
12 9 12 12 9
14 29 14 14 14
19 14 19 19 22
21 19 21 21 19
22 21 29 29 21
29 30 22 34 29
30 22 30 36 30
34 34 40 22 36
36 36 36 40 34
40 40 34 30 40

Table M.1 (d) — Reliability of best module ranges of SDST for a population size of 160.

pe O O P O
Reliability 97.06 97.30 95.59 96.81

1 1 1 1 1
3 4 4 4 4
4 5 3 3 5
5 3 5 14 3
7 7 11 5 7
9 9 7 7 11
11 11 12 9 9
12 12 9 11 12
14 14 14 12 14
19 19 19 19 19
21 21 21 22 22
22 29 29 21 29
29 34 22 29 30
30 22 30 34 21
34 40 40 30 36
36 30 36 36 40
40 36 34 40 34
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Table M.1 (e) — Reliability of best module ranges of SDST for a population size of 180.

pe O O X O
Reliability 96.08 98.53 94.36 97.80

1 1 1 1 1
3 4 4 3 3
4 3 3 4 4
5 9 5 5 5
7 11 7 11 11
9 5 9 12 7
11 7 11 7 9
12 12 12 14 12
14 14 14 9 14
19 19 19 19 19
21 22 22 29 22
22 30 21 21 21
29 29 29 22 29
30 21 30 36 34
34 34 40 40 40
36 36 36 34 30
40 40 34 30 36

Table M.1(f) — Reliability of best module ranges of SDST for a population size of 200.

pe O O P O
Reliability  95.34 96.81 96.07 95.34

1 1 1 1 1
3 3 4 4 3
4 4 3 3 4
5 5 5 5 5
7 11 7 11 11
9 14 11 7 7
11 7 12 12 12
12 9 14 9 14
14 12 9 14 22
19 19 19 19 9
21 22 29 29 19
22 21 21 21 21
29 36 22 22 29
30 30 36 40 34
34 29 30 30 30
36 34 34 36 40
40 40 40 34 36
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Table M.2(a) — Reliability of best module ranges of LDST for a population size of 100.

Expert OoX OX2 PMX oxX’
Reliability 93.94 97.14 92.70 96.57

1 1 1 11 1

3 4 4 1 3

4 5 3 3 4

5 3 5 4 5

7 7 11 7 7

9 14 7 5 11
11 11 14 13 14
13 18 13 23 16
14 23 9 17 9

16 25 16 25 22
17 13 19 14 19
18 9 18 18 21
19 22 23 16 17
21 19 21 9 18
22 17 25 29 23
23 28 22 19 25
25 16 28 28 13
26 21 17 21 26
28 26 31 22 29
29 29 29 33 30
30 30 33 26 28
31 31 26 30 31
33 33 30 31 33
34 34 34 34 34
35 35 35 35 37
37 37 37 37 38
38 38 38 38 35
39 39 89 39 39
40 41 40 40 40
41 40 41 41 41
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Table M.2 (b) — Reliability of best module ranges of LDST for a population size of 120.

Expert OoX OX2 PMX ox’
Reliability | 92.74 96.75 92.65 95.81
1 1 1 1 1
3 4 4 4 4
4 3 14 14 7
5 5 3 7 5
7 11 11 5 3
9 7 7 16 14
11 9 5 9 11
13 14 13 13 19
14 23 22 17 9
16 17 9 22 22
17 16 16 3 16
18 13 18 18 23
19 30 19 19 13
21 31 23 25 17
22 18 21 26 25
23 19 17 23 18
25 25 25 21 26
26 26 26 11 21
28 28 30 30 30
29 29 29 28 31
30 21 28 31 29
31 22 31 33 28
33 33 33 29 33
34 34 34 34 34
35 35 35 35 35
37 37 37 37 37
38 40 38 38 38
39 38 39 39 39
40 39 40 40 40
41 41 41 41 41
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Table M.2(c) — Reliability of best module ranges of LDST for a population size of 140.

Expert OoX OX2 PMX oxX’
Reliability 93.10 96.93 93.77 96.08

1 1 1 1 1

3 3 4 4 4

4 4 3 5 3

5 14 14 3 11
7 21 11 7 5

9 5 5 18 7

11 11 7 17 14
13 7 9 11 9

14 9 13 13 16
16 16 16 14 13
17 23 17 9 19
18 22 23 16 18
19 13 19 19 23
21 17 25 25 17
22 18 22 26 33
23 31 28 33 25
25 29 18 23 22
26 19 21 28 21
28 25 30 21 31
29 26 29 34 29
30 30 26 30 30
31 34 34 31 26
33 28 31 22 28
34 33 33 29 34
35 35 35 35 37
37 39 37 37 35
38 37 38 38 38
39 38 89 39 39
40 40 40 40 40
41 41 41 41 41
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Table M.2 (d) — Reliability of best module ranges of LDST for a population size of 160.

Expert OoX OX2 PMX ox’
Reliability | 93.86 96.00 95.90 95.46
1 1 1 1 1
3 4 4 4 4
4 3 14 5 14
5 5 3 3 3
7 14 5 7 5
9 7 7 11 7
11 11 11 13 9
13 17 9 9 11
14 9 13 14 16
16 16 23 19 13
17 13 18 17 19
18 23 22 22 23
19 30 19 23 22
21 31 16 25 25
22 18 17 16 21
23 19 21 28 30
25 25 25 29 18
26 21 26 21 26
28 26 30 18 17
29 28 29 31 29
30 29 33 26 28
31 22 31 34 33
33 33 34 33 31
34 34 37 30 34
35 35 28 35 35
37 37 35 37 37
38 38 38 38 38
39 39 39 40 39
40 40 40 39 40
41 41 41 41 41
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Table M.2 (e) — Reliability of best module ranges of LDST for a population size of 180.

Expert OoX OoX2 PMX ox’
Reliability 92.83 97.64 93.94 96.35

1 1 1 1 1

3 4 4 4 4

4 3 5 3 14
5 14 8 11 5

7 7 7 5 3

9 5 17 7 7

11 11 11 14 11
13 16 13 19 16
14 9 14 16 9

16 17 9 13 13
17 23 16 9 18
18 22 19 17 23
19 13 23 23 25
21 30 22 22 19
22 31 21 28 22
23 18 18 18 17
25 19 25 30 21
26 25 28 25 29
28 26 31 29 31
29 28 30 31 26
30 29 26 21 30
31 33 33 37 28
33 21 29 26 33
34 34 34 33 34
35 35 35 41 37
37 37 37 34 35
38 38 38 39 39
39 40 89 35 38
40 39 40 38 41
41 41 41 40 40
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Table M.2(f) — Reliability of best module ranges of LDST for a population size of 200.

Expert OoX OX2 PMX oxX’
Reliability 93.37 95.99 93.77 97.41

1 1 1 1 1

3 4 4 4 4

4 5 5 14 3

5 3 3 3 5

7 7 11 5 7

9 11 7 11 9

11 14 9 9 17
13 19 13 7 11
14 9 14 18 13
16 16 16 25 14
17 13 19 16 16
18 31 23 19 23
19 23 21 13 18
21 22 30 17 25
22 21 22 23 19
23 30 25 28 21
25 17 17 30 22
26 18 18 21 31
28 25 28 33 30
29 26 33 26 29
30 28 26 29 33
31 29 29 22 26
33 33 31 31 28
34 34 34 34 34
35 40 37 35 35
37 35 35 41 37
38 37 38 37 38
39 38 89 38 39
40 39 40 39 40
41 41 41 40 41
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N. COMPARISON GRAPHICS OF TRAINING AND CONTROL DATA FOR SDST

Scatter Plot of Rank Order
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Figure N.1(a) —Comparing the most reliable module range result of
training data — SDST for a population size of 100 with Expert’s
Suggestion. The solution is 97.55% reliable in OX”.

Scatter Plot of Rank Order
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Figure N.1(b) —Comparing the most reliable module range result
of training data — SDST for a population size of 120 with Expert’s
Suggestion. The solution is 97.55% reliable in OX2.
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Scatter Plot of Rank Order
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Figure N.1(c) —Comparing the most reliable module range result of
training data — SDST for a population size of 140 with Expert’s
Suggestion. The solution is 98.04% reliable in OX".
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Figure N.1(d) —Comparing the most reliable module range result
of training data — SDST for a population size of 160 with Expert’s
Suggestion. The solution is 97.79% reliable in OX2.
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Scatter Plot of Rank Order
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Figure N.1(e) —Comparing the most reliable module range of
training data — SDST result for a population size of 200 with
Expert’s Suggestion. The solution is 98.28% reliable in OX2.
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Figure N.2(a) —Comparing the most reliable module range of
control data — SDST result for a population size of 100 with

Expert’s Suggestion. The solution is 97.79% reliable in OX’.
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Scatter Plot of Rank Order
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Figure N.2(b) —Comparing the most reliable module range of
control data — SDST result for a population size of 120 with

Expert’s Suggestion. The solution is 98.04% reliable in OX2.

Scatter Plot of Rank Order

Figure N.2(c) —Comparing the most reliable module range of
control data — SDST result for a population size of 140 with

Expert’s Suggestion. The solution is 98.28% reliable in OX’.
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Scatter FPlot of Rank Order
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Figure N.2(d) —Comparing the most reliable module range of
control data — SDST result for a population size of 160 with

Expert’s Suggestion. The solution is 97.30% reliable in OX2.
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Figure N.2(e) —Comparing the most reliable module range of
control data — SDST result for a population size of 200 with

Expert’s Suggestion. The solution is 96.81% reliable in OX2.

181



O. COMPARISON GRAPHICS OF TRAINING AND CONTROL DATA FOR LDST

Scatter Plot of Rank Order
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Figure O.1(a) —Comparing the most reliable module range result of
training data — LDST for a population size of 100 with Expert’s
Suggestion. The solution is 96.93% reliable in OX2.
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Figure O.1(b) —Comparing the most reliable module range result
of training data — LDST for a population size of 120 with Expert’s
Suggestion. The solution is 95.86% reliable in OX2.
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Scatter Plot of Rank Order
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Figure O.1(c) —Comparing the most reliable module range result of
training data — LDST for a population size of 160 with Expert’s
Suggestion. The solution is 95.77% reliable in OX2.
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Figure O.1(d) —Comparing the most reliable module range result
of training data — LDST for a population size of 180 with Expert’s
Suggestion. The solution is 94.84% reliable in OX2.
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Scatter Plot of Rank Order
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Figure O.1(e) —Comparing the most reliable module range result of
training data — LDST for a population size of 200 with Expert’s
Suggestion. The solution is 96.97% reliable in OX".
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Figure O.2(a) —Comparing the most reliable module range result of
control data — LDST for a population size of 100 with Expert’s
Suggestion. The solution is 97.14% reliable in OX2.
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Scatter FPlot of Rank Order
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Figure O.2(b) —Comparing the most reliable module range result
of control data — LDST for a population size of 120 with Expert’s
Suggestion. The solution is 96.75% reliable in OX2.
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Figure O0.2(c) —Comparing the most reliable module range result of
control data — LDST for a population size of 140 with Expert’s
Suggestion. The solution is 96.93% reliable in OX2.
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Figure 0.2(d) —Comparing the most reliable module range result
of control data — LDST for a population size of 160 with Expert’s
Suggestion. The solution is 96.00% reliable in OX2.
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Figure O.2(e) —Comparing the most reliable module range result of
control data — LDST for a population size of 200 with Expert’s
Suggestion. The solution is 97.41% reliable in OX".
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P. RUNTIME GRAPHICS OF TRAINING AND CONTROL DATA

140

120

Runtimes in min.

130,24

97,94

W SDST

W LDST

GA1 GA2 GA3 GA4

Figure P.1(a) — Runtime graphs showing the dataset growth for

training data of 120 individuals.

180

160

140

120

100

80

Runtimes in min.

60

40

20

154,96

W SDST

W LDST

GA1 GA2 GA3 GA4

Figure P.1(b) — Runtime graphs showing the dataset growth for

training data of 140 individuals.
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Figure P.1(c)- Runtime graphs showing the dataset growth for

training data of 160 individuals.
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Figure P.1(d) — Runtime graphs showing the dataset growth for

training data of 180 individuals.
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Figure P.1(e) — Runtime graphs showing the dataset growth for

training data of 200 individuals.
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Figure P.2(a) — Runtime graphs showing the dataset growth for

control data of 120 individuals.

220

200

180

W SDST

mLDST

Runtimes {min)

148
148,
Al

13
53
80 61,77 60,97
60 | 47,
35,4
0 | ! 32,9 ,
20 -
0 -
G GA2 GA3 GA4

Figure P.2(b) — Runtime graphs showing the dataset growth for

control data of 140 individuals.
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Figure P.2(c) — Runtime graphs showing the dataset growth for

control data of 160 individuals.

189




220 704,03
200

180

2

(S

==
N
S

2

104,95 BSDST
80,64

80,05 W LDST
4“ I
0 - T
GA1 GA2 GA3 GA4

o]
=)
|

Runtimes (min)

[=)]
o
|

IS
o
1

[
o
I

Figure P.2(d) — Runtime graphs showing the dataset growth for
control data of 180 individuals.
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Figure P.2(e) — Runtime graphs showing the dataset growth for

control data of 200 individuals.
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Q. TRENDS OF INCREASE IN RUNTIMES FOR THE TRAINING AND CONTROL
DATA
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Figure Q.1(a) — Trend of increase in runtime values of training data

for OX.
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Figure Q.1(b) — Trend of increase in runtime values of training data
for OX2.

191



250

200
E
£ 150
]
£ —4—5DST
g 100
2 —m—LDST

] Me

0 T T T T
100 120 140 160 180 200

Population Size

Figure Q.1(c) — Trend of increase in runtime values of training data

for PMX.
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Figure Q.1(d) — Trend of increase in runtime values of training data

for OX.
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Figure Q.2(a) — Trend of increase in runtime values of control data for

OX.
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Figure Q.2(b) — Trend of increase in runtime values of control data for

0oXa2.
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Figure Q.2(c) — Trend of increase in runtime values of control data for

PMX.
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Figure Q.2(d) — Trend of increase in runtime values of control data for

oX.
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