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PIECEWISE AFFINE AND SUPPORT VECTOR MODELS  

FOR ROBUST AND LOW COMPLEX REGRESSION  

ABSTRACT 

Function representations defined with a s mall set of parameters are desirable not 

only for data and model reduction but  also for obtaining s ignal and system models 

which w ork w ell unde r t he r eal t est da ta. F unction a pproximation and r egression 

(Both w ill be  us ed i n the t hesis i nterchangeably.) provide f unction r epresentations 

which are usually designed based on a given finite set of domain-range samples by a 

learning a lgorithm a nd a re aimed to  p ossess good ge neralization pe rformances for 

the test data not used in the learning phase. The thesis proposes four different classes 

of r egression m odels w hich a re b ased on pi ecewise a ffine representations a nd/or 

support vector methods. 

The f irst c lass of  t he de veloped m odels i s t he s upport ve ctor r egression m odel 

class employing  with  “norms” for model parameter cost in order to reduce 

model complexity and saturating or linear loss functions for rejection or limiting the 

contributions of outliers in determination of model parameters. The second proposed 

class i s t he -insensitive l east s quare s upport v ector regression m odel which i s 

introduced as an extension of the least square support vector regression for reducing 

excessive number of support vectors appearing in the support vector approach. The 

third class of the developed regression models is the piecewise affine support vector 

regression models which are de rived b y exploiting the canonical r epresentations of  

piecewise affine functions and first order B-spline basis functions. The fourth class is 

the piecewise affine regression models which are designed by input-output clustering 

minimizing an unsupervised clustering error instead of regression error, i.e. the loss 

function i n s upport ve ctor r egression based models. T he pr oposed m odels a re 

analyzed in a qualitative way and also in a n umerical way, and also compared with 

the known support vector regression models for test functions and real data. 

 

Keywords: Function representation, support vector regression, loss functions, least 

square s upport ve ctor r egression, optimization m ethods, pi ecewise affine f unction, 

piecewise affine kernel, input-output clustering. 
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GÜRBÜZ VE YALIN REGRESYON İÇİN PARÇA PARÇA DOĞRUSAL VE 

DESTEK VEKTOR TABANLI MODELLER 

ÖZ 

Az sayıda parametre ile tanımlanan fonksiyon gösterilimleri, sadece v eri v eya 

modellerin karmaşıklığını azaltmak için değil, aynı zamanda gerçek test v erileri 

altında oldukça iyi çalışan işaret ve sistemlerin elde edilmesi için de arzu edilir. 

Fonksiyon yaklaşımı ve regresyon (Her ik i te rim de tezde eşanlamlı olarak 

kullanılacaktır.), genellikle, s onlu sayıda giriş-çıkış örnek verilerinden bir öğrenme 

algoritması yardımı ile tasarlanırlar ve öğrenme sürecinde kullanılmayan test 

örnekleri için iyi bir genelleme yeteneği olan fonksiyon gösterilimleri sağlarlar. 

Tezde, parça parça doğrusal ve/veya destek vektör yöntemlerine dayalı dört farklı 

regresyon model sınıfı önerilmiştir.  

Geliştirilen model sınıfından ilki, mo del p arametrelerinin b elirlenmesinde, mo del 

karmaşıklığını azaltmak üzere model parametre maliyeti için  olacak biçimde 

 “normu” ve model parametrelerinin belirlenmesinde aykırı verilerin katkısını yok 

etmek veya sınırlamak için doymalı veya doğrusal hata fonksiyonu kul lanmaktadır. 

İkinci olarak önerilen model sınıfı, en küçük karesel destek vektör modelinde 

karşılaşılan aşırı sayıda destek vektör oluşması problemini gidermek için önerilen ve 

en k üçük k aresel d estek v ektör modelinin bir uzantısı olan -duyarsız en küçük 

karesel d estek v ektör r egresyon m odel sınıfıdır. Geliştirilen fonksiyon yaklaşım 

modellerinin üç üncüsü, pa rça p arça doğrusal fonksiyonların yalın gösterilimleri v e 

B-spline taban fonksiyonlarından esinlenerek türetilen parça parça doğrusal destek 

vektör modelleridir. Geliştirilen dördüncü sınıf regresyon model sınıfı, destek vektör 

yaklaşım tabanlı modellerdeki yaklaşım hatası fonksiyonu yerine bir eğiticisiz 

öbekleme hatasını azaltan giriş-çıkış öbekleme algoritması ile tasarlanan diğer bir 

parça parça model sınıfıdır. Önerilen yöntemler nitel ve sayısal olarak incelenmiş ve 

gerçek veri ile bazı test fonksiyonları için bilinen destek vektör regresyon modelleri 

ile karşılaştırılmıştır. 

Anahtar kelimeler: Fonksiyon gösterimi, destek vektör yaklaşımı, hata 

fonksiyonları, en küçük karesel destek vektör regresyon, eniyileme yöntemleri, parça 

parça doğrusal fonksiyon, parça parça doğrusal kernel, giriş-çıkış öbekleme. 
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CHAPTER ONE 

INTRODUCTION 

 

Function representation problem for a function specified by a finite number of 

samples can be defined as finding an approximate function  which fits to 

a given set of domain-range sample pairs where   denotes the 

samples of the independent variable and  denotes the samples of the 

dependent variable. The first step in the function representation is to choose a 

model , more precisely building blocks so called basis functions and 

the type of combination of building blocks. Model selection is realized based on a 

priori information about the structure of the function to be approximated. The second 

step is to determine the parameters  of the chosen function model. The 

determination of the model function parameters is usually done based on 

minimization of an approximation error measure. 

 

Recently, Support Vector Regression (SVR) for function approximation has been 

developed by Vapnik (1996) and has been applied to solve regression problems 

(Vapnik, Golowich, & Smola 1996; Müller & Smola, 1997; Mukherjee, Osuna, & 

Girosi 1997). The superiority of SVR over ANN models is due to their better 

generalization ability which is achieved by minimizing not only the training error but 

also a norm of the model parameters to obtain less complex models. SVR solution is 

found by minimizing a convex quadratic cost in terms of dual variables 

corresponding to Lagrange multipliers (Smola & Scholkoph, 1998). The optimal 

function is represented by the combination of kernel functions and a small subset of 

all training data called Support Vectors (SV).  

 

A function representation defined with a relatively small number of parameters is 

needed especially when a large number of data is involved requiring large memory 

allocation and also time consumption. In other words, function representation is a 

way of data and model reduction. 
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In recent years, the sparse representation, which means that the number of basis 

function of the model is small, in the primal space, is studied for robust function 

approximation by many researchers (Tibshirani, 1996; Chen, 1995; Chen, Donoho & 

Saunders, 1995; Olshausen & Field, 1996; Daubechies, 1992; Mallat & Zhang, 1993; 

Coifman &Wickerhauser, 1992). The sparsity of the function is obtained by using  

norm unlike  norm of coefficients in the cost function. As an application of  

norm, Zhu,  Rosset,  Hastie, & Tibshirani (2003) is realized the classification 

problem by using Support Vector Machine (SVM) with  norm for the cases of 

redundant features. The thesis presents novel robust and low complex regression 

models by introducing new kind of linear and saturating or linear loss functions for 

rejecting or limiting outliers and noises, and  with  “norms” for model 

parameters in order to reduce model complexity. Herein, the quotation marks on the 

norm mean that  with  is not a norm actually which violates positive 

homogeneity condition for  and triangle inequality condition for . 

 

Least Square SVR (LS-SVR) which is a modified version of standard SVR 

introduced by Saunders & Gammerman, (1998) and extended to the weigthed 

version by Suykens, Brabanter, Lukas, & Vandewalle (2002). In conventional SVR, 

the -insensitive loss function is used as the cost function and it is represented by the 

inequality constraints. In the LS-SVR, the squared loss function is used as the cost 

function and the errors terms are represented as the equality constraints and the 

minimization problem is eventually converted to solving a linear algebraic equation 

system. Nonlinear identification and modeling, function approximation and optimal 

control are among the numerous applications of LS-SVR (Goethals, et all., 2005; 

Espinoza, Suykens,  & De Moor,  2004; Espinoza, et al., 2005; Suykens, Lukas,  & 

Wandewalle, , 2000; Jiang, Song, Zhao, Wu,  & Liang, 2009; Suykens,et. all 2001; 

Espinoza, et. all.,  2006; Wu, 2006; Pelckmans, Suykens, & De Moor, 2005). 

However, the LS-SVR case does not provide a sparse representation. To solve this 

problem, data set is partitioned by Hoegaerts, Suykens, Vandewalle and De Moor, 

(2005) or hierarchical modeling strategy is applied to data (Pelkmans, Suykens & De 

Moor, 2005). To provide sparsity in the dual space, the thesis proposes -insensitive 

version of LS-SVR and provides its associated solutions. The thesis further compares 
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the solutions of the proposed -insensitive LS-SVR with conventional Least Square 

Solution (LSR) and SVR solution in a qualitative way.  

 

The outline and contributions of the thesis are summarized in the sequel.  

 

In Chapter 2, a background on function approximation and regression is given. A  

taxonomy of function representations defined on continuous domains is presented. 

Several interpolation and approximation models and their associated design 

procedures are presented in a comparative way.  

 

Chapter 3 presents novel robust and low complex regression models by 

introducing new loss functions for rejecting outliers, and  with  “norms” for 

model parameters in order to reduce model complexity. The chapter begins with a 

description of support vector regression in the most general case ever known and 

then presents thesis’s contributions providing sparseness in the primal and dual 

space. 

 

In Chapter 4, -insensitive version of least square support vector regression is 

developed and its associated solution is compared with standard least square 

regression and support vector regression in a qualitative way.  

 

In Chapter 5, a new type of kernel which is called piecewise linear kernel where 

feature space is explicitly given with a piecewise affine mapping from the input 

space is developed. Chapter 5 also presents how SVR with piecewise affine kernel 

can be formulated for function approximation. The newly proposed PWA kernel is 

implemented and compared to the other kernel functions for benchmark data. 

 

In Chapter 6, for PWA function representation, an input-output clustering based 

design method is proposed and applied to the real ECG data.  

 

Finally, a summary of the contributions of the current work and two possible 

future research directions are presented in Chapter 7.  



1 
 

4 

CHAPTER TWO 

BACKGROUND 

 

A function  is a specific relation assigning a unique element from the 

range s et  for each e lement of  t he dom ain set . Functions pr ovide a  useful 

mathematical framework for signals and s ystems i n w hich analysis a nd de sign 

methods are based on a  functional form. A function used in de fining a  s ignal o r a  

system is, in rare cases, obtained as an analytical expression in terms of the known 

functions b y de rivations in the context of  underlying ph ysical l aws. In most of  the 

cases, functions are given a  s et of  domain-range data p airs where  

denotes the samples of the independent variable  and  denotes the samples of the 

dependent variable . The d ata p airs ar e o btained b y m easurements r ealized i n an  

experiment or in an observation or by sampling an already known function.  

 

 

Representing a function, which might be given as a set of data pairs or in any way, 

in t erms of  a  s et of  k nown f unctions can be cal led as  function r epresentation 

problem. A f unction representation de fined w ith a r elatively s mall n umber of 

parameters i s needed especially when a large number of  da ta i s involved requiring 

large me mory allocation a nd a lso time  c onsumption. In ot her w ords, function 

representation i s a  w ay of da ta r eduction a nd c ompression. The noi se a nd out liers 

which are unavoidable in any data generation process should be taken into account in 

the function representation. This can be done by employing smooth and less complex 

functions i gnoring out liers a nd s uppressing noi se as by not tr ying to  f it all o f th e 

given data. Another important point in function representation is to obtain a function 

which pr edicts ac ceptable range v alues f or t he d ata n ot av ailable i n t he f unction 

representation de sign phase. That i s, t he obt ained f unction s hould h ave good 

generalization ability.  
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Figure 2.1 gives t axonomy of  f unction r epresentations defined on c ontinuous 

domains in  te rms o f; i) d iscreteness of t he dom ain s et i n t he or iginal form of  t he 

given f unction, ii) f initeness o f th e d omain s et in th e o riginal f orm o f the g iven 

function, i ii) exactness of the resulting function representation iv) the orthogonality 

of the basis functions used in the resulting function representation, v) locality of the 

definition region for the basis functions used in the resulting function representation, 

vi) type of basis functions used in the resulting function representation and vii) type 

of the error functions used in the approximation. 

 

Function representations s uch as  F ourier, w avelet an d T aylor s eries defined on 

continuous, i .e. real, domain sets have a great impact on the analysis and design of  

continuous time/space signals and also systems due to their decomposition properties 

describing signals a nd s ystems as w eighted s ums of s imple signal/system b uilding 

blocks.  

 

One of the most widely used continuous variable representations is Taylor series 

expansion. It  is a l ocal r epresentation valid f or i nfinitely m any continuously 

differentiable functions and provides a  po lynomial r epresentation i n t he 

neighborhood of  a  point. T he t runcated ve rsion of T aylor s eries, s o c alled T aylor 

formula, g ives a n e xact r epresentation with a remainder for t he  th order 

continuously di fferentiable f unctions.  terms other t han t he r emainder in T aylor 

formula constitute a   th order pol ynomial of  t he i ndependent va riable a nd 

coefficients o f t he p olynomial ar e t he d erivatives o f t he functions ev aluated at  the 

considered point and t he remainder t erm is n egligible c ompare to  th e p olynomial 

terms in the vicinity of the point. The conceptual importance of Taylor series is due 

to the f act t hat a ny s mooth f unction c an be r epresented b y a pol ynomial f unction 

around a point of interest. Linearization which is indeed a f irst order special case of 

Taylor e xpansion allows e xploiting linear techniques for analyzing systems which 

are in fact nonlinear.  
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Figure 2.1 A taxonomy of function representations 
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Fourier series expansion, which is valid for periodical, piecewise continuous and 

square integrable functions, gives a d escription in terms of  the s inusoidal functions 

whose frequencies are integer multiple of  the frequency of  the periodic function. It 

reveals the frequency content of  the function as providing the amplitude and phase 

information of the constituting frequency components. The spectral coefficients, i.e. 

the Fourier coefficients, can be found easily by using the orthogonality of the bases 

functions, i.e. the complex exponential functions associated to the harmonics, in the 

inner product space defined by an integral. Although Fourier series is a very useful 

tool for understanding which frequency components exists and what their amplitudes 

and phases are, i t does not give the information related to the time evolution of the 

frequency c ontent. T his in sufficiency is  r emoved b y th e wavelet series e xpansion, 

which i s a nother g lobal r epresentation de fined b y or thogonal ba ses. T he w avelet 

series provides time-frequency s pectra carrying i nformation not  onl y on t he 

frequency spectra but also on its change in time.  

 

The a bove continuous representations r equire k nowing an analytical 

representation or a compact form for the original function. However, their truncated 

versions can  well b e used f or t he c ases w here functions a re given b y data pa irs 

obtained b y m easurements i n e xperiments/observations or  b y s ampling from a  

continuous function for some purposes such as for computer simulations. 

 

Function representation for a given discrete and finite set of data is a problem of 

finding a function which is defined in terms of a set of suitable functions with some 

desirable features and fits to the given data together with good prediction ability for 

data unseen beforehand. Fitting to data might be in an exact sense, i.e. the graph of 

the function may be required to pass all of the data points. In the other case, fitting is 

non-exact, i.e. the graph of the function is not required to pass all of the data rather it 

is required to be as  close as  possible to all o f the data. The l atter case i s cal led as  

function approximation while the former is called as interpolation.  
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The que stion of  e xistence of  a n i nterpolator f or single variable r eal d ata has a 

positive an swer: O ne c an al ways construct a  th order pol ynomial with r eal 

coefficients pa ssing t hrough any given s et of  ( ) d ata poi nts. As de scribed i n 

Section 2.1 .1, s uch a p olynomial c an be  f ound b y solving t he l inear a lgebraic 

equation s ystem d efined b y V andermonde m atrix w hich i s usually ill c onditioned 

yielding erroneous polynomial coefficients when t aking i ts i nverse. The mentioned 

numerical i nefficiency could be  ove rcome b y employing methods not  r equiring 

taking i nverse of  the Vandermonde m atrix. Newton a nd Lagrange i nterpolations 

which a re p resented i n S ection 2.1.2 a nd S ection 2. 1.3, r espectively, a re t wo 

interpolation methods to mention. 

 

Determination of  pol ynomial c oefficients i s s ubject t o r ound of f a nd ov er f low 

errors w hen c alculating t hem i n a ny i nterpolation m ethod. T he e rrors i n t he 

coefficients related to the high-order terms yields polynomials too much away from 

the or iginal f unction. A solution t o overcome this problem i s described in S ection 

2.1.4 which employs piecewise polynomial interpolation techniques including linear, 

quadratic and c ubic splines and al so canonical r epresentations f or p iecewise l inear 

functions. 

 

On t he ot her ha nd, t he i nterpolation r epresentations a re not s uitable w hen t here 

exist noise and outliers a nd a lso w hen t here e xist l arge num bers of  da ta r equiring 

large memory allocation and time consumption. Another important point in the exact 

function representation is to obtain a function which predicts acceptable range values 

for t he da ta not  available i n t he f unction r epresentation de sign ph ase. That i s, t he 

obtained f unction s hould ha ve good generalization a bility. A m ore a ppropriate 

strategy fo r t hese cases is to  e mploy smooth a nd l ess c omplex f unctions i gnoring 

outliers and suppress noise as by not trying to fit all of the given data. One way to 

achieve this is  to derive a known functional form that minimizes the error between 

the finite set of data points and the known functional form which is not required to 

pass all of the data but rather desired to be as much as possible close to the data. This 

known functional form is called function approximation to the given finite set of data 

and is detailed in section 2.2. 
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A p art o f t he r epresentations described above f or f inite num ber of  da ta can be  

extended f or i nfinite nu mber of  da ta c ase. Linear r egression e xpressed in t erms of  

auto-correlation a nd cross-correlation f unctions defined e ither f or d eterministic o r 

random but  bot h i nfinite dur ation s ignals c onstitutes a n e xample i n t his direction. 

Infinite number of data case is out of the scope of this thesis which actually focuses 

on the optimization t heory in  a  d eterministic f ramework as t he m ain m athematical 

tool. H owever, t he f inite num ber of  da ta r estriction i s qui te a cceptable i n m ost 

applications since signals and systems realized on a machine with finite word length 

such as today digital computers are defined on discrete and finite domain sets if no 

transformation is applied to map infinite data into a finite representation in a way. 

 

2.1 Exact representations (interpolation) 

 

Interpolation i s the pr ocess of  finding a f unction t hat pa sses di rectly through a  

given finite set o f domain-range data p airs. It is  w ell k nown th at o ne c an al ways 

construct an   th order polynomial with real coefficients passing through any given 

set o f  real data poi nts. It s hould be  not ed t hat a pol ynomial of  or der l ess 

than  could be sufficient when some of the point coincide. There are many different 

interpolation methods (equivalently saying exact representations) differing from each 

other either in the calculation of defining coefficients or in the kind of chosen basis 

function. This section gives t he most common o nes of  t hese exact r epresentations: 

Vandermonde M atrix pol ynomial r epresentation, Newton pol ynomials, Lagrange 

polynomials, Spline interpolation and piecewise linear canonical representation. 

 

2.1.1 Determining Coefficients of an interpolating polynomial (Vandermonde 

matrix)  

 

Polynomial interpolation can be realized for a real function  in a way 

described by the following theorem. 

 

Theorem 2.1 For a ny given s et o f  data p airs , with 

 there exist  a unique   th order polynomial  satisfying 
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 (2.1) 

 

, (2.2) 
 

where, the real coefficients of the polynomial in the Equation (2.2) can be calculated 

by taking the inverse of the Vandermonde matrix  given in the Equation (2.3). 

 

 (2.3) 

 

Proof   
 

The conditions in (2.1) lead to the following system of linear algebraic equations in 

terms of the  coefficients: 

 

 

 

 

 

(2.4) 

 

It can easily be seen that the system of linear equations in (2.4) has a unique solution 

if and only if the Vandermonde matrix in (2.3) is invertible and that the polynomial 

coefficients ’s can be calculated in a unique way by taking the inverse of . The 

necessary and sufficient condition for the invertibility of the Vandermonde matrix is 

the distinctness of the data points of ’s. When some of the data points are identical 

the system of linear equation of in (2.4) becomes underdetermined and still solvable. 

Herein the solvability follows f rom the fact that a  function assigns a  unique image 

for two identical points in the domain space. That i s,  for any 

 yielding the ’th and ’th equations in (2.4) are identical. The 

proof i s c ompleted b y t he obs ervation of  that d istinctness o f  is n ecessary and 

sufficient to the invertibility of  matrix. 

 ⁬ 
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2.1.2 Newton polynomial interpolation  

 

Taking inverse of  the Vandermonde matrix is numerically an inefficient way of 

determining c oefficients of  polynomial interpolation e specially for l arge d ata sets. 

This problem could be overcome by employing Newton and Lagrange interpolation 

methods not requiring taking inverse of the Vandermonde matrix.  

 

In order to get a polynomial interpolation to  data pairs  with 

, one can  p refer t o u se the  th order pol ynomial f orm i n ( 2.5) a s a n 

alternative to the  th order polynomial . 

 

 (2.5) 

 

The equivalence of these two polynomial forms of the same degree can be easily 

seen by observing the solvability of  in terms of  and vice versa: 
 

  

 

 

 
 

(2.6) 

For a  given s et of   data poi nts  with , t he 

coefficients  can be  obt ained b y t he following recursive procedure s o 

called “f inite d ivided d ifference”. T he fi rst order finite di vided di fference i s 

described by: 
 

 (2.7) 

 

The following second order finite divided difference represents the difference of two 

first divided differences.  
 

 (2.8) 
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Similarly, the  th finite divided difference is:  

 

 (2.9) 

 

These differences can be used to evaluate the interpolation coefficients of (2.5): 

 

 

 

 

 

(2.10) 

 

Then, the pol ynomial i nterpolation c an be  f ound by substituting the obtained 

coefficients in (2.10) into (2.5): 

 

 

(2.11) 

 

2.1.3 Lagrange polynomial interpolation 

 

The Lagrange pol ynomial i nterpolation i s a reformulation of  t he N ewton 

polynomial interpolation formulation. Observe that the first divided difference: 

 

 (2.12) 

 

can be reformulated as:  

 

 (2.13) 

 

First order Newton interpolation polynomial can be given as follows: 
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 (2.14) 

 

Using (2.13) in (2.14) yields: 

 

 (2.15) 

 

Observe that (2.15) can be rewritten as in the so called Lagrange form: 

 

 (2.16) 

 

Then, the second order Lagrange form is obtained as follows.   

 

 

 

The  th order version is finally given in (2.17)  

 with  (2.17) 

 

2.1.4 Spline interpolation for single variable functions 

 

Calculation of  polynomial c oefficients is h ighly sensitive to  round of f a nd ove r 

flow e rrors i n t he above c ited i nterpolation m ethods. S o, t he r esulting polynomial 

interpolation may deviate too much away from the original function due to the errors 

especially i n t he co efficients r elated t o t he h igh o rder t erms. To ove rcome t his 

problem, one may prefer to employ a  set of  locally defined low o rder polynomials 

which ar e co nnected t o each  o ther i n a s mooth w ay. In ot her w ords, one  m ay 

interpolate to  each subset of  the considered data set by a locally defined low order 
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polynomial and concatenate t hese l ocal i nterpolators i n s uch a w ay providing a  

sufficiently smooth global interpolator. Corresponding a straight line to each pair of 

successive points yielding eventually a pi ecewise l inear and continuous function i s 

the s implest t ype of  s uch s mooth pi ecewise pol ynomial i nterpolators s o called as 

spline functions. These i nterpolators di ffer f rom t he ot her t ypes o f p iecewise 

polynomial i nterpolators with the pr operty t hat, fo r a  th order s pline 

interpolator, they are smooth in a certain degree, say , at the data points where two 

splines meet. 

 

2.1.4.1 Linear spline interpolation 

 

The s implest f orm o f spline in terpolation is  the l inear s pline in terpolation 

employing first or der l ocal pol ynomials which is  equivalent t o piecewise linear 

interpolation and also to piecewise l inear canonical representation (Chua & Kang 

1978). In t his i nterpolation, t wo s uccessive poi nts de fine a  linear f unction. The 

resulting s pline f unction is n ecessarily a c ontinuous f unction since e ach poi nt i s 

shared by two successive local regions and also two successive local linear functions. 

Given a finite set of data pairs  with  and with the order

, the first order splines  can be defined as:  

 

 (2.18) 

 

The linear spline is continuous at each data point: 

 

 (2.19) 

 

To see (2.19), one can evaluate (2.18) at the s th and s+1 th sample points:  
 

 (2.20) 

 
(2.21) 

http://en.wikipedia.org/wiki/Linear_interpolation�
http://en.wikipedia.org/wiki/Linear_interpolation�
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Although l inear s pline interpolators are s imple and c ontinuous, they are not 

sufficient when differentiability is  n ecessary. A point w here tw o s plines me et is 

called knot or junction point or break point. For the l inear spline case, any point is 

also a knot. However, this is not true for higher order splines. In general, the slopes 

of t he l ines defining lo cal lin ear f unctions change at t he s o cal led k not resulting 

discontinuity of  t he first order derivative o f th e f unction. This pr oblem c an be 

overcome by introducing higher order polynomial splines.   

 

2.1.4.2 Quadratic spline interpolation 

 

Quadratic splines associate a second order polynomial for each interval defined by 

four successive data points. Let the second order polynomial be represented as: 

 

 (2.22) 

 

For  data p oints, t here ar e  intervals an d consequently  unknown 

constants ( ’s, ’s a nd ’s) t o e valuate. T herefore,  equations or  c onditions are 

required t o e valuate t he unknow ns. T he required e quations are derived within th e 

following steps. 

 

1. The f unction should b e c ontinuous a t e ach knot e xcept f or t he t erminal one s, 

namely at the in terior knots, so adjacent polynomials must have the same range 

values at a specific knot: 

 

 (2.23) 

 (2.24) 

 

for  to . S ince the num ber of  interior knot s is , t hen t he c ontinuity 

Equations in (2.23) and (2.24) provide, in total,  conditions. 

 

2. The evaluation of  first a nd l ast f unctions at the te rminal p oints yields th e 

following two additional equations: 
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 (2.25) 

 

 (2.26) 

 

With t hese t wo a dditional e quations, t he cumulative num ber of  equations 

becomes . 

 

3. In o rder t o r each a s mooth f unction, which h as a  c ontinuous derivative, the 

derivatives of two adjacent polynomials should be equal at the interior knots: 

 

 (2.27) 

 (2.28) 

 

for  to . So, the smoothness of the first order derivatives of the quadratic 

spline interpolator provides  additional conditions.  With these new additional 

equations, the cumulative number of equations becomes . 

 

4. In order to solve   unknown ( ’s, ’s and ’s) coefficients, one more equation is 

needed. The s olvability can be  a chieved b y a ssuming t he s econd derivative a s 

zero at the first data point (Equivalently by assuming first two points as connected 

by a straight line.):  

 

 (2.29) 

 

One can solve these  linear e quations for  unknown s pline i nterpolator 

parameters b y any numerical method d eveloped for l inear a lgebraic equations. For 

the case of three intervals, namely four data points, the system of equations can be 

given as in the following matrix form. 
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 (2.30) 

 

 

2.1.4.3 Cubic spline interpolation 

 

Cubic s plines a re de rived b y concatenating a s et o f l ocally d efined third or der 

polynomials. The polynomial for a specific interval can be represented as: 

 

 (2.31) 

 

For  data p oints, t here are  intervals a nd, c onsequently,  unknown 

coefficients ( ’s, ’s ’s ’s) to be evaluated. Just as for quadratic splines,  

equations are required to evaluate the unknown coefficients. These  equations are 

given as follows. 

 

1. The f unction va lues of  two adjacent local polynomials mu st b e e qual a t th e 

interior knots. (This condition yields  equations.) 

2. The f irst a nd la st local pol ynomials must pa ss t hrough t he e nd knots. ( This 

condition yields 2 equations.) 

3. The first order derivatives of two adjacent local polynomials must be equal at the 

interior knots. (This condition yields  equations.)  

4. The second derivatives at the interior knots must be equal. (This condition yields 

 equations.)  

5. The second derivatives are zero at the first and last knots. (This condition yields 2 

equations and means that the first and last functions are straight lines.)  
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The  coefficients c an be  s olved f rom the a bove g iven equations. An 

alternative way is presented below requiring the solution of only equations for  

(reduced) coefficients. 

  

The f irst s tep in  th is derivation ( Cheney & Kincaid, 1985)  i s ba sed on t he 

observation of t he f act that the s econd d erivative w ithin each in terval is  a  s traight 

line since each pair of knots is connected by a cubic polynomial. The polynomial in 

(2.31) can be differentiated twice to verify this observation as:  
 

 (2.32) 
 

Now, t he l inear function i n (2.32) can be r epresented by a f irst order L agrange 

interpolating polynomial: 
 

 (2.33) 

 

Where,  is t he va lue of  the s econd de rivative a t a ny poi nt x within th e s th 

interval.  

 

Then, an expression f or t he or iginal f unction  can be  obt ained b y i ntegrating 

twice the linear second order derivative in (2.33). 

 

 
(2.34) 

 

However, the expression in (2.34) contains two unknown integration constants (  

and ). T hese constants c an b e ev aluated b y using the fact t hat  must e qual 

 at  and  must equal  at . 

 

On the other hand, the function should give the range value at the data point 

  

,  
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So, one can get: 
 

 (2.35) 

 

 
(2.36) 

 

Where,  

 

To find , one can subtract (2.35) from (2.36): 

 

 

 

 (2.37) 

 

To find , one can substitute  into (2.35) 

 

 

 

 can be rewritten as in the following form: 

 

 (2.38) 

 

To find the cubic spline function, one can substitute the integral constants (  and ) 

to (2.34): 
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(2.39) 

 

The representation i n (2.39) provides a c ubic s pline i nterpolation f ormula. 

However, the Equation (2.39) is a much more complicated expression for the cubic 

spline f or t he s  th interval compare t o (2.31). (2.39) contains onl y t wo unknow n 

coefficients which are equal to the second derivatives  at the beginning and 

at t he e nd of  t he i nterval. H ence, i f one can de termine t he pr oper s econd 

derivative at each knot, (2.39) provides a third order polynomial that can be used to 

interpolate within the interval.  

 

The s econd derivatives can b e ev aluated b y using the condition of that the f irst 

derivatives at the knots must be continuous: 

 

 (2.40) 

 

To fi nd t he fi rst d erivative, one can differentiate t he function i n (2.39). Thus, t he 

derivative function  in the  th interval is given as: 
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(2.41) 

 

 

On the other hand,   in the interval  is given as: 

 

 

(2.42) 

 

The value of  at the point  is 

 

 

 

 

 

(2.43) 

 

 

The value of  at the point  is: 
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(2.44) 

 

According t o ( 2.40), both  and take t he s ame value at  t he 

point . That is , so one can get: 

 

 

 

 

 
(2.45) 

 

If ( 2.45) is  w ritten f or all in terior k nots, then  equations involving  

unknown second derivatives are obtained. The p roblem reduces to  equations 

with  unknowns since the second derivatives at the end knots are zero for cubic 

splines. Thus, the above equations constitute a system of algebraic equation system 

which can be written in matrix-vector form AX=B where X represents the vector of 

coefficients , B depends on  and A depends on . Then, one can substitute 

the coefficients into (2.39), thus the cubic spline is found for the interval .    
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2.1.4.4 B-spline interpolation 

 

Splines given in the last two previous sections are constructed by using piecewise 

polynomials satisfying certain degree of smoothness. Another type of splines, called 

B-splines (Schoenberg, 1967) , is p resented in t his s ection. In c ontrast t o s plines 

described i n t he p revious s ections obtained by co ncatenating l ocally defined 

functions, B-splines is a  l inear weighted sum of linearly independent bases (spline) 

functions which are defined by some parameters (order o f spline functions and the 

number of  knot s) and they span t he piecewise p olynomial smooth function s pace. 

Moreover, B -spline r epresentation i s a p arametric r epresentation n ot an ex plicit 

representation g iving dependent v ariable  in t erms of  t he i ndependent 

variable . Instead, i t provides a representation for the dependent  variable 

in terms of a parameter . 

 

B-splines with its  d istinguishing features have a number of  advantages over t he 

piecewise p olynomial representations ( de Boor, 1978;  S chumaker, 19 81). Spline 

bases locally support the function to be interpolated that is  the function used in the 

interpolation can be locally tuned in order to fit to the function given by the sample 

data by adjusting defined basis functions. The sum of the weights of the basis splines 

is c hosen a s uni ty f or each da ta poi nt w hich i s indeed s caled b y t he f unction 

value , so yielding t he de sired f unction va lue a t t he c onsidered da ta poi nt. The 

most important feature of B-splines is in the calculation of their parameters by using 

a recurrence relation in a numerical way (Cox, 1972; de Boor, 1972).  

 

The B-spline is a parametric representation  defined by 

a linear combination of B-splines basis functions of degree  and is represented by: 

 

 (2.46) 
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Where,  are called control points or de Boor points or coefficients ( like 

weights in  n eural n etworks), w hich a re c omposed of  a s et o f f inite d ata p airs 

 with  and  is the normalized B-spline basis function of 

order . The obtained B-spline interpolation function  degree is . As seen 

from Equation (2.46), B-spline interpolation function  is linear with respect to  

the coefficients but nonlinear in  due to nonlinearity of the basis function .  

 

A knot sequence  may be defined as follows: 
 

 (2.47) 

 

These k nots s atisfies th e r elation  where  and 

. 
 

Illustrated example 1: 

Let be given . For  and , the knot values are calculated by (2.47) as 

in the Table 2.1. 

 
Table 2.1 The knot values for a given  and , and  

    

 

 

 

 

 

 

 0 0 

 1 0 

 2 1 

 3 2 

 4 3 

 5 4 

 6 5 

 - 5 

 

As shown in Table 2.1, t he number of the knot sequence  depends on the order of 

the spline.  
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For t he ’th normalized B -spline ba sis f unction of  de gree , t he ba sis f unction  

 is defined by Cox - de Boor recursion formulas: 
 

    (2.48) 

 

  with . 

(2.49) 

 

Note th at  cannot ex ceed  which the limits above r ecursion 

formula. Based on t he k not sequence , the B -spline i s sa id to b e either uniform 

(knots are equidistant) or nonuniform (knots are not equidistant) B-spline.  

Illustrated example 2.1 Consider t he case . The domain of B-spline b asis 

functions ’s obtained by using the knot sequence in Table (2.1) is shown as in 

the following Table 2.2. 
 

Table 2.2 The domain of B-spline basis functions ’s for a given , and   

 

 

 

 

 

 

 

 

 

0 1 2 3 4 5 6

0

1
0

1
0

1
0

1
0

1
0

1

t7

L=5,k=1

 

x x
x x

x x

(0-1)

(1-2)

(2-3) (3-4)

(4-5)

(5-6)

t 2 t 5t 3 t 4 t 6t 0 t 10= 1=  
 



26 
 

 

Illustrated example 2.2 Consider t he case . The dom ain of  B-spline b asis 

functions ’s is shown as in the following Table 2.3. Finding parametric function 

 is the continuous piecewise affine function in terms of B-splines.   

 
Table 2.3 The domain of B-spline basis functions ’s for a given , and   
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2.1.5 Canonical representations  

 

A canonical representation of a function can be defined as a representation which 

is the minimal a nd the most c ompact f orm for t he function requiring min imum 

number of  pa rameters t o de fine t he f unction. This s ection pr esents two can onical 

representations: One f or p iecewise affine co ntinuous f unctions a nd t he other for 

continuous functions w hich ar e p iecewise af fine when hol ding fixed a ll o f th e 

variables except for a chosen one.  

 

2.1.5.1 Canonical representation for piecewise affine functions 

 

One Dimensional Case:  

A Piece-Wise Affine (PWA) function  with finite jump discontinuities is 

shown in Figure 2.1 where a PWA function with  breakpoints has  intervals 

 ….,  and  in each of which 

the function is affine and mj denotes the slope of segment j. 

 

 

 

 

 

 

 

 

     

f(x) 

x 

Figure 2 .1 A piece-wise af fine function f(x) with finite j ump discontinuities with 
samples are breakpoints 
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As s tated in  the following theorem proved b y ( Chua & Kang, 1977), any PWA 

function described above has a compact representation in terms of absolute value and 

sign functions. This representation is called as canonical since it is shown in (Chua & 

Kang, 1977) that it needs minimum number of parameters necessary to describe the 

function in a complete way. 

 

Theorem 2.2 [Chua & Kang 1977]: Any single va riable single va lued P WA 

function  with at most  finite jump discontinuities at the  breakpoints 

 can be represented uniquely by the expression:  

 

 (2.50) 

 

Where, denotes t he absolute va lue function,  denotes the signum 

function and  are equal to  breakpoints and the parameters  

can be calculated as follows: 

 

 

 

 

 

 

 

 

(2.51) 

⁬ 

 

The term  in (2.50) disappears when the function is continuous.  
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Theorem 2.2 provides a  w ay of  c omputing t he coefficients of a can onical 

representation of  a PWA function in terms of  the breakpoints and the slopes of the 

segments where, a slope associated to an interval can be calculated as the ratio of the 

range deviation over the deviation in the breakpoints belonging to the interval. The 

canonical representation g iven ab ove i s a global r epresentation not restricted to  a 

sub-region of the domain space but valid for the whole domain. The absolute value 

and s ign functions together w ith the addition and scalar multiplication are t he sole 

algebraic op erations used in de fining the PWA canonical functions. These features 

make t he P WA c anonical f unctions efficient i n many as pects. T he an alyses o f the 

systems defined by PWA canonical models can be realized by the algorithms easy to 

be programmable and they require minimal amount of storage.    

 

The observation of the above compact global absolute value based representation 

of one di mensional P WA f unctions led t o the de velopment of  c anonical 

representation for multi-variable PWA functions by Chua & Kang [1978].  

 

n - dimensional case: 

Chua a nd K ang extended one  di mensional c anonical r epresentation into hi gher 

dimensions by introducing the following canonical representation for n-dimensional 

m-valued PWA continuous functions that are affine over convex polyhedral regions 

constructed by lin ear p artitions. Herein, a  l ocally de fined affine f unction c an b e 

given by a Jacobian matrix   and offset vector  as   

 for  where 

 for a specific index set . 

 

Theorem 2.3 (Necessary and sufficient condition) [Chua & Kang, 1988; 

Güzeliş & Göknar, 1991]: A continuous P WA f unction  defined 

over a  l inear p artition determined b y a s et o f h yper-planes  with 

 has a 1-level canonical representation.  

 (2.52) 
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with a , ,  and  if a nd o nly i f it s atisfies th e 

consistent va riation pr operty. T he consistent va riation pr operty m eans t hat t here 

exists a unique  for each hyper-plane such that the variations in the jacobian 

matrices for each pair of n-dimensional regions  and  separated by the hyper-

plane  are the same:  

 

,   (2.53) 

 

Where,  and denote t he j acobian m atrices of  t he r egions  and . 

 for  and  for . The intersection between 

 and  must be a subset of an -dimensional hyperplane and can not be  

covered by any hyperplane of lower dimension.  
⁬ 

As the one in (2.50), the canonical representation in (2.52) is global in the sense 

that it is not valid for a specific domain region but for the whole domain covering all 

the convex pol yhedral regions separated by the h yperplanes  with 

. 

 

Although the canonical representation (2.50) can represent the whole s et of  one 

dimensional PWA functions  including di scontinuous one s, the 

representation (2.52) o nly c overs a  s ubset of  n-dimensional continuous P WA 

functions . T he consistent va riation pr operty is indeed satisfied fo r 

any kind of  continuous P WA f unctions w hose domain i s a  non -degenerate l inear 

partition. But, this is not always true for degenerate partitions.  

 

Definition 2.1 (Non-degenerate Partition) [Chua & Kang, 1988]: A l inear 

partition determined by the hyper-planes 
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is s aid t o be  nonde generate i f f or every s et of  l inearly dependent 

vectors  with  is s trictly 

less than the rank of the following  augmented matrix by ’s. 
 

  . 

 

A lin ear p artition c ontaining th ree lin es in tersecting a t a  c ommon p oint is  an 

example of degenerate partition in a 2 -dimensional space. This fact can be seen by 

the obs ervation t hat 2 -dimensional n ormal v ectors a ssociated to  th e th ree lin es is  

necessarily linearly dependent and the offsets of the three lines are consistent, so they 

do not increase the rank of the augmented matrix in Definition 2.1. A linear partition 

containing t hree pl anes having a common i ntersection of  di mension 1 is a nother 

example f or de generate pa rtitions. A  non -degenerate lin ear p artition is  a  lin ear 

partition where the dimension of the intersection of any i hyperplanes each of  

dimensional must be strictly less than  . The importance of nondegerenerate 

linear p artitions r elies o n th e f act th at th e c onsistent v ariation p roperty is a lways 

satisfied for P WA c ontinuous f unctions de fined ove r a  nonde generate l inear 

partition, so ensuring the existence of the canonical representation (2.52). 

 

Theorem 2.4 (Sufficient condition) [Chua & Kang, 1988]: A continuous PWA 

function  defined over a linear partition determined by a set of hyper-

planes  with  has a 1 -level can onical representation of  

the form (2.52) if the linearly partitioned domain space is nondegenerate.  

⁬ 

The 1-level canonical representation (2.52) has been extended by several s tudies 

in the literature [Kahlert & Chua 1990; Güzeliş & Göknar, 1991; Unbehauen, 1994; 

Julian, Desages & Agamennoni, 1999 ] i nto hi gher-level c anonical representations. 

These higher level representations employ bases functions defined by different levels 

of nested absolute value functions for handling inconsistent variations of each pair of 

the J acobian m atrices and o ffset v ectors th at d efine lo cal a ffine f unctions in  th e 

neighbouring regions seperated by the same hyperplane.  
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A 2 -level c anonical r epresentation given i n ( 2.54) proposed by Güzeliş and 

Göknar (1991) extends the representation (2.55) into the piecewise affine partitioned 

domain spaces which indeed constitute a special class of degenerate linear partitions.  
 

 

(2.54) 

 

The 1-level representation (2.57) which uses the conventional hyperplanes  
 

, (2.55) 
 

and also piecewise affine hyper-planes  
 

  (2.56) 

Where 

 

. (2.57) 

 

For t he canonical r epresentation ( 2.54), t he c onsistent va riation pr operty [ Chua 

and Kang, 1988] or, in other words, the consistency of continuity vectors [Güzeliş 

and G öknar, 1991 ] i s g iven b y t he e quations ( 2.58) a nd ( 2.59). F or a ny pa ir of  

regions  and  separated b y a co nventional hyperplane , the c onsistency of  

continuity vectors is the uniqueness of the continuity vectors ’s for all i, j and k:  

 

 (2.58) 

 

For t he p air of  regions of  and  separated b y a  P WA h yperplane , t he 

consistency of continuity vectors becomes the uniqueness of the following continuity 

vectors ’s for all i, j and k:  
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 (2.59) 

 

 

The ex istence o f t he continuity v ectors  in t he above e quations a re i ndeed t he 

necessary and sufficient conditions for the continuity o f the PWA function defined 

over the PWA partitioned domain space.    

 

Theorem 2.5 (Necessary and sufficient condition) [Güzeliş & Göknar, 1991]: 

A P WA c ontinuous f unction  defined ov er a  P WA pa rtition 

determined by the hyper-planes and PWA hyper-planes given in (2.55)-(2.58) can be 

represented b y t he c anonical f orm ( 2.54) i f a nd onl y i f i ts c ontinuity v ectors a re 

consistent in the sense of expressions given in (2.58)-(2.59). 

 ⁬ 
 

It is shown in [Güzeliş and Göknar, 1991] that the non-degeneracy of the PWA 

partition can be defined as in the l inear partition case, so a  necessary condition for 

the ex istence o f t he c anonical r epresentation ( 2.54) c an be  o btained as t he non -

degeneracy of the PWA partition. Although the 1-level representation (2.54) is quite 

general, it cannot cover the whole set of continuous PWA functions. In the literature 

[Chua & Kang, 1977;  Kang & Chua, 1978, C hua & Kang, 1988;  Kahlert & Chua, 

1990; Güzeliş & Göknar, 1991;  Kahlert & Chua, 1992;  Kevenaar, Leenarts & 

Bokhoven, 1994; Lin , Xu & Unbehauen, 1994, Lin & Unbehauen, 1995; Leenarts, 

1999; Julian, Desages & Agamennoni, 1999], there a re many attempts to represent 

the whole cl ass of continuous PWA functions using the absolute va lue f unction as 

the uni que nonl inear bui lding bl ock. A mong t hese a ttempts, t he w ork pr esented i n 

[Lin , Xu & Unbehauen, 1994] may be the most remarkable one as proving that any 

kind of  c ontinuous P WA f unction de fined ove r a  l inear pa rtition i n  can b e 

expressed b y an , at mo st level c anonical, representation e mploying n -nested 

absolute value functions.        
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2.1.5.2 Canonical representation for section-wise piecewise affine functions 

 

Canonical representations can also be used for multi variable functions which are 

not P WA a ccording to  a ll v ariables b ut P WA f or a  s ingle v ariable w hen a ll o ther 

variables are held f ixed. Chua and Kang introduced such a representation in [Chua 

and Kang, 1977]  and called it as section-wise PWA canonical representation:  

 

 (2.60) 

 

Where,  are the constant coefficients and  is a set of given data 

points (i.e. for the case , there are data points such as 

) and the basis functions are: 

 

 

 

 

 

 

 

(2.61) 

 

 

Various i nterpolation methods a re given i n S ection 2.1. T hey h ave w ide 

applicability f or t he c ases w here t he da ta i s k nown t o be  p recise. H owever, i n 

practice, the data is imprecise in most of  the cases. The noise and out liers are two 

possible s ources of  i mpreciseness. D ata r eduction, f iltering a nd e mploying a  l ow 

order i nterpolator not  p assing t hrough a ll of  t he da ta a re among t he s olutions f or 

handling imprecise d ata. The approximate r epresentations which will be  studied in 

the following section serve solutions for imprecise data and also for large data cases. 
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2.2 Approximate representations (regression) 

 

The i nterpolation, w hich i s s tudied i n S ection 2.1, i s not  onl y t he pr ocess of  

defining a  function pa ssing di rectly t hrough a given s et of  da ta pa irs b ut a lso t he 

process of predicting acceptable range values for the input data not available in the 

design phase o f t he i nterpolating function. However, t he i nterpolation may not  b e 

suitable especially when there exist noise and outliers. On the other hand, large set of 

data w hich a re us ed i n de signing a n i nterpolator r equires c onsiderable m emory 

allocation an d time c onsumption. A nother di sadvantage of  t he i nterpolation i s i ts 

very poor generalization ability even for moderate size data sets.  

 

In order to solve the mentioned problems dealing with interpolation, one can try to 

suppress the undesired data in a w ay. In this direction, one can eliminate the data at 

the beginning and then apply the interpolation to the reduced set of data. In a more 

general setting, one can employ an approximate function which does not aim to fit all 

of th e given d ata b ut to  f it th em with t he m inimum a pproximation e rror. S uch a n 

approach, called a s f unction a pproximation, yields m ore s imple function 

representations w hich h ave num erical efficiencies a nd t hey also pr ovide good  

generalization abilities. This section presents a diverse set of function approximation 

methods known in the literature in a comparative setting. 

 

Function a pproximation c an be  de fined a s a  problem of  f inding a  function 

 which f its to  a  given set of dom ain-range s ample p airs 

where   denotes the samples of the independent variable and  denotes 

the samples of the dependent variable. The domain-range sample pairs ’s are, 

indeed, samples of an unknown function corresponding to, for instance, a signal or a 

relation among some of the variables of a system. The samples are usually obtained 

by measurements in experiments and observations. This thesis assumes real domain 

and range sets, i.e.  and .  

 

The first step in the function approximation is to choose a model , 

more precisely building blocks so called basis functions and the type of combination 
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of bui lding blocks. Model selection i s r ealized based on a  pr iori information about 

the structure of the function to be approximated. The past experience of the user, the 

chosen i mplementation e nvironment, t he num erical e fficiency a nd t he structural 

capabilities such as flexibility, universality and generalization ability are among the 

factors t aken i nto a ccount i n the model s election pr ocess. T he s econd step i s t o 

determine the parameters  of the chosen function model. The determination 

of t he m odel f unction pa rameters i s us ually d one ba sed on m inimization of  a n 

approximation e rror m easure:  where  

denotes a function satisfying metric conditions (Rudin, 1976). 

 

The function approximation problem is described above for finite number of data 

case in a d eterministic s etting. A s imilar concept, which is  f rom th e s tatistical 

domain, is t he r egression. The r egression seeking for a r elation b etween t he r ange 

samples  and domain samples  is expressed as the estimation of an unknown 

conditional probability density function  from the set  of samples 

based on the following model.  

 

 (2.62) 

 

Where,  is a random error term, whose mean is zero ( ) and its variance is 

a constant ( ), and  is usually assumed to have normal (i.e. Gaussian) distribution 

(Montgomery & Peck, 1992). When  is parameterized by choosing a parametric 

model as , the estimation of unknown conditional probability density function 

 amounts to the estimation of an unknown parameter vector  

 

Two important approximate representations are presented in this section. The first 

one is based on orthogonal basis functions and the other is based on non-orthogonal 

basis functions. In both cases, the bases functions are constructed from the data pairs. 
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2.2.1 Approximate function representations  

 

In t his s ubsection, a  ge neral f ramework f or l east s quare f unction a pproximation 

valid for orthogonal and also nonorthogonal basis function sets is firstly given. Then, 

approximate representations em ploying orthogonal ba sis, na mely, polynomial, 

Fourier and wavelet basis functions are presented as special cases. Euclidean norm is 

chosen f or t he e rror m etric i n t he a pproximations, s o t he a pproximation t o be  

presented i s, i ndeed, t he l east s quare a pproximation w hich corresponds t o a  

parametric regression. For the sake of  s implicity, the functions to be  approximated 

and then the approximating model functions are assumed to be multi-variable single-

valued, i.e. . 

 

2.2.1.1 Least Square Approximation: A General Framework 

 

Assume that the model used for approximation is a linear weighted sum of a finite 

set  of bases.   

 

 (2.63) 

 

Where, each basis function is multi-variable and s ingle-valued: . In 

order to have an a ffine representation in the feature space defined by  ’s, one 

may choose , so  becomes a bias term. 

 

Now, t he f unction a pproximation c an be  pos ed a s a  pr oblem of  de termining t he 

coefficients  with  minimizing the f ollowing t otal s quared 

error for a given sample set  where  for   

 

 (2.64) 
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The total squared error in (2.64) has minimum points only since it is a positive semi-

definite quadratic function of the unknown  coefficients. When the quadratic error 

function is positive definite, there is a unique set  of coefficients defining the 

unique m inimum point. For t he uni que m inimum c ase, in or der t o de termine  

coefficients, one needs to consider only the first order necessary conditions which are 

obtained by taking the derivatives of the total squared error in (2.64) with respect to 

the  coefficients a nd t hen s etting t hem t o z ero. A s a r esult, t he first or der 

necessary c onditions, which a re also s ufficient f or t he pos itive s emi-definite 

quadratic t otal s quared e rror, yield t he f ollowing s et of  e quations c alled as nor mal 

equations.  
 

 

 

 

which yields: 

 

 

 

 

 

 

The normal equations obtained above can be recast into the following form defined 

by the Gram matrix. 
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  (2.65) 

 

Generalized inverse: 

A vector  which solves the system (2.65) may not exist, or if one exists, it may not 

be uni que. In s uch c ases, t he s o-called generalized i nverse s olutions c ould be  

employed to find a solution to the normal equations in the least square sense which 

actually c orrespond t o t he m inima of  t he t otal s quared error i n (2.64). Where, the 

generalized inverse  of a matrix  is defined as follows. 

 

 

  

The system (2.65) can be given in the following form: 

 

 (2.66) 

 

To find  minimizing (2.66), one can use the following identities. 

 

 

 

 

(2.67) 

 

The last expression can be rewritten as in (2.65) using the following properties of the 

generalized inverse. 
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Property 1:  

Property 2:  

Property 3:  

Property 4:  

 

 (2.68) 

 

It can be  s een t hat t he ge neralized i nverse s olution  minimizes the 

Euclidean norm of the error vector, so (2.68) as observing that the first term becomes 

zero and the last term is not dependent on . It should be noted that there are many 

methods for calculating the generalized inverse of a m atrix. One of the numerically 

efficient ones is based on  singular value decomposition (Golub & Van Loan, 1996). 

 

2.2.1.2 Least Square Polynomial Approximation 

 

For a  given s ample s et  where  for , 

consider polynomials  as basis functions. The least 

square approximation based on these polynomials is the function:  

 

 

 

Where, the coefficients  are the solutions of the following equation 

system. 
 

  (2.69) 

 

Solving the above set of equations requires finding the inverse of the input samples 

matrix. To find the coefficients easier, one can use orthonormal polynomials yielding 

diagonal input sample matrices. To construct such an orthonormal set, one can use 

Gram-Schmidt orthogonalization. 
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Gram-Schmidt Orthogonalization Procedure : Given a basis , one can 

construct an orthononormal basis  for the space spanned by  

via the following process called as Gram-Schmidt orthogonalization (Table 2.4). 

 
Table 2.4 Gram-Schmidt orthogonalization procedure 

Assume  

then     

 

 

 

 

 

 

 

 

Illustrated Example 2.2 

Consider t he s et of  pol ynomial ba sis function set a s . The G ram S chimdt 

orthogonalization process for this basis set  is given as: 
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2.2.1.3 Fourier approximation 

 

J. Fourier (1768-1830) is a French mathematician and physicist who improved a 

way to express a  function in terms of an infinite number of  s ine and cosine terms. 

Fourier s eries e xpansion, w hich i s va lid f or pe riodical, pi ecewise c ontinuous a nd 

square integrable functions, represents the function in terms of the discrete sequence 

of the s inusoidal f unctions w hose f requencies a re indeed, integer mu ltiples of t he 

frequency of the periodic function. It reveals the frequency content of the function as 

providing t he a mplitude a nd pha se i nformation of  t he c onstituting f requency 

components. F or a  f unction  with pe riod T which satisfies the w ell 

known Dirichlet conditions described in terms of the piecewise continuity and square 

integrability of the function, a Fourier series expansion can be represented by: 

 

 (2.70) 

 

Where,  is c alled th e fundamental frequency and its  c onstant mu ltiples 

 etc., ar e called harmonics. H ence, ( 2.70) re presents  as a 

linear c ombination of  t he set o f orthogonal ba sis 

functions  The coefficients  in (2.70) 

can be computed by inner product defined in the continuous domain by the following 

integrals: 

 

 
(2.71) 

 (2.72) 

 (2.73) 
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For a function  given by the set , the following truncated 

Fourier series can be used for obtaining an approximation  
 

 (2.74) 

 

Where,  can be chosen as  for periodic functions. It is known that quasi-

periodic functions have such an exact representation and a lmost pe riodic functions 

can be approximated well by such a finite series (Bohr, 1947). 

 

Finding  coefficients i s a s pecial case of t he procedure given i n 

Subsection ( 2.2.1.1) f or t he m ost g eneral s etting. It s hould a lso be  noted t hat 

determination of representative coefficients can be calculated in a eas ier way i f the 

trigonometric functions a re a lready or thogonalized in t he di screte space as done i n 

the previous subsection for the polynomial basis case.  

 

2.2.1.4 Wavelet approximation  
 

Wavelet series and t ransforms were developed to overcome the shortcomings of 

the Fourier series and transform (Morlet, Arens, Fourgeau, & Giard, 1982; Grossmann, 

&  Morlet, 1984). Fourier series employes basis functions with an infinite duration 

(full support but not localized) in the time domain, although it gives a sharp precision 

in t he f requency dom ain. In c ontrast, t he w avelet ap proximation decomposes a  

function ont o w avelets which a re l ocalized bot h i n t he t ime a nd t he frequency 

domain. 

 

A function in the wavelet series is represented by using a set of orthonormal basis 

function.  are i ndeed s hifted ( translated) and s caled (dilated) 

versions of  a  ba sis f unction  which ar e s o cal led w avelet o r m other 

wavelet: 

 

 (2.75) 
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Where, the terms  and  are the scaling and the shifting parameter, respectively. For 

a f unction  given b y t he s et , t he f ollowing t runcated 

wavelet series can be used for obtaining an approximation.  

 

 (2.76) 

 

Where,  are the wavelet coefficients.  

 

Finding  coefficients i s a s pecial cas e o f t he procedure given i n S ubsection 

(2.2.1.1) for the most general setting.  

 

Approximation with or thogonal or or thogonalized bases f unctions l ike 

polynomial, F ourier an d w avelets suffer from t he necessity o f excess number of 

coefficients for general data sets.  

 

In t his c ontext, non -orthogonal ba sis f unctions a re a lso w idely us ed i n t he 

literature. The next section presents three non-orthogonal basis set examples, namely 

artificial n eural n etworks as  n onlinear r egressions, support ve ctor r epressors a nd 

piecewise affine repressors. 

 

There i s no ba sis f unction s et w hich ha s good a pproximation a bility and 

implementation efficiency for all kind of data sets. Polynomial based approximations 

have good local approximation ability. Fourier s eries based approximations have a 

powerful global r epresentation property f or stationary f unctions pos sessing 

periodical ch anges. W avelet s eries b ased r epresentations h ave t he capability o f 

representing non -stationary p eriodical c hanges to gether w ith th e lo calization 

property not  onl y i n t he s pectral dom ain but  a lso i n t he or iginal dom ain s pace. A  

similar comparison can be done  f rom the implementation point of  vi ew such as i n 

terms of numerical and hardware and/or software realization issues.  
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2.2.2 Approximating functions by non-orthogonal basis functions 

 

Approximating functions by non-orthogonal basis functions can be implemented 

similar to  the orthogonal ba sis f unctions case as ex plained in t he Section 2.2.1.1. 

Artificial n eural n etworks, s upport ve ctor regression a nd a lso piecewise affine 

functions constitute such kind of approximations. 
 

2.2.2.1 Artificial neural networks 
 

Artificial N eural n etworks ( ANNs) h ave b een u sed f or diverse applications 

including pattern recognition, classification, identification, control, interpolation and 

function approximation (regression) problems over the last three decades. There are 

many efficient ANN architectures and many associated efficient learning algorithms 

for d esigning t hem b y a  f inite s et of  t raining d ata with pr oviding a pow erful 

generalization ability of responding well for the test data not learned before. Two of 

the most important ones of these architectures: Multi Layer Perceptrons (MLP) and 

Radial Basis Function Networks (RBFN).  

 

ANNs c an l earn i n s upervised or  in unsupervised w ays d epending on t he 

availability of data class labels, or on desired outputs in a more general setting. The 

experimental knowledge is coded (stored) in the connection weights associated to the 

set of  i nterconnected neurons which are t he functional uni ts of  t he ANN. T he 

knowledge s tored i n t he ne twork c an b e m odified b y changing t he va lues of  t he 

weights according to a l earning rule. Learning, which is the process of determining 

the co nnection w eights, is de fined a s an opt imization pr oblem where the co st 

function is the difference between desired and actual outputs for supervised learning 

cases an d t he q uantization er ror b etween t he l earned p rototype p attern an d t he 

sample data for unsupervised learning cases.  

 

MLP is a multilayer, algebraic network of neurons called as perceptrons which are 

multi-input, s ingle-output f unctional uni ts t aking f irstly a  w eighted s um of  t heir 

inputs a nd add bi as then pa ss i t t hrough the a ctivation f unction to fo rm its out put 

(See Figure 2 .2). T he architectural s tructure o f a n MLP ne twork c onsists of one 
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hidden layer and an output layer where neurons are fully connected. Signal flow in a 

feedforward way from left to right and on a layer by layer basis is depicted in Figure 

2.2 (Haykin,1999).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Structure of a neuron 
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Figure 2.2 Architectural structure of a multi layer perceptron with one hidden layer 
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As shown in Figure 2.3 output of the i th neuron with n inputs can be given by: 

 

 (2.77) 

 

Where,  is an activation function, ’s are the weights,  is the bias 

and  is the ’th input of  the neuron. There are many d ifferent t ypes o f act ivation 

functions ( i.e., t hreshold, pi ecewise l inear, s igmoidal etc.) which a re p referrable 

depending on the type of problem under consideration. Sigmoidal activation function 

is the most widely used for function approximation (regression) problems. [Cybenko, 

1989; Jones, 1990;  F errari & Stengel, 2005 ]. A unipolar s igmoidal function i s 

defined by: 

 

 (2.78) 

 

Where,  is th e s lope parameter o f th e s igmoidal function. By v arying t he 

parameter , one can obtain sigmoidal functions with different slopes as illustrated in 

Figure 2.4.  
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  Figure 2.4 Sigmoidal functions with different slopes 
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Function approximation problems can be successively solved via MLP and RBF 

networks. Because of their parallel architecture and nonlinear structure, they handle 

nonlinear, noisy and imprecise data quite well. Cybenko, (1989) and Hornik, (1989) 

have proved that M LPs are universal function a pproximators which a re capable of  

approximating to any continuous function in a compact set within arbitrary degree of 

accuracy, provided that a sufficient number of hidden layer neurons are used. 

 

Theorem 2.6 (Universal approximation for one layer perceptron) [Cybenko, 

1989; Hornik, Stinchcombe, & White, 1989; Funahashi, 1989]: Let  be any 

continuous s igmoidal f unction. Let  denote t he  dimensional uni t h ypercube 

. The space of continuous function on  is denoted by . Then, 

 

 (2.79) 

 

can a pproximate t o a ny continuous f unction  within a n a rbitrary 

accuracy by choosing sufficiently large number of hidden neurons m. In other words, 

given  and , there is  of the above form so that: 
 

    ⁬ 

 

MLP i s usually designed by determining the connection weights  using the 

error Back Propagation (BP) algorithm which is indeed a gradient descent technique 

used f or f inding a n a cceptable l ocal m inimum of t he s quared e rror be tween t he 

desired and actual outputs. The error at the output of neuron i is defined by: 
 

 (2.80) 
 

Where,  represents the error for a specific data sample. The total error function is 

obtained b y s umming up of s quare of  the er rors  obtained a t t he out put layer 

neurons. So, one may write:  

 (2.81) 
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Where,  represents al l neurons i n t he out put l ayer. T he error f unction c an be  

minimized by adjusting each weight by the BP algorithm that calculates the partial 

derivatives of  t he out put e rror i n E quation (2.81) with r espect t o t he c onnection 

weights by employing chain rule as shown in (2.82).  
 

 (2.82) 

 

The pa rtial de rivatives calculated a re t hen us ed f or upda ting t he c onnection 

weights i n t he oppos ite of t he gradient di rection t owards one  of  t he l ocal m inima 

with a  s ufficiently s mall s tep s ize , cal led al so as  l earning r ate. U pdate o f t he 

weights for the k th iteration is given by the following difference equation: 
 

 (2.83) 

 

That update of the weights is implemented in two different ways. In the pattern 

mode BP, the connection weights are changed for each sample. On the other hand, 

batch mode BP allows an update for the whole set of training samples once at each 

time instant which requires summing up t he i ndividual gradients obt ained for each 

specific sample to take a  s tep. The convergence of gradient-descent algorithms can 

be shown by using the so called descent Lemma (Bertsekas,1995). 
 

Lemma 2.1 (Descent) [Bertsekas, 1995]: Given a  c ontinuously di fferentiable 

scalar f unction . I f its g radient   is Lipschitz continuous w ith 

Lipschitz constant , i.e.,  
 

 

then 

 

⁬ 
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Theorem 2.7 (Convergence) [Bertsekas, 1995]: Assume th at  is a 

scalar f unction d efined on a c ompact s et. If t he l earning factor  is c hosen i n t he 

interval of   with Lipschitz c onstant  for , t hen t he di fference 

equation  

 

 

produces a sequence of points  converging to one of the minima of . 

⁬ 

Due t o the nonc onvexity of t he t otal s quare e rror function, BP al gorithm can  

converge to any o f lo cal min ima. Determining t he ne twork s ize f or t he M LP, i n 

particular, the number of hidden layer neurons and also the number of neurons in the 

hidden layer is a difficult problem in general. 

 

RBFN is used as an alternative ANN model in the literature. Its first layer neuron 

parameters, i .e., t he cen ters and widths of  the Gaussian activation functions can  be 

learned i n an uns upervised w ay ve ry efficiently. T hen, t he s econd l inear l ayer 

neurons can be t rained by an efficient l inear weight update rule. This possibility in 

the de sign of  R BFN m akes s uperior i t ov er ot her A NN m odels. Locally t unable 

property o f the first l ayer Gaussian neurons of  the RBFN is another r eason for the 

wide spread use of RBFNs. 
 

 

 

 

 

 

 

 

 

 

 

 
   Figure 2.5 Architecture of the Radial Basis Function Network 
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RBFNs consist of two layers interconnected in a feedforward way as shown Figure 

2.4. The input layer is made up of  i ts i nput neurons where each n euron applies a 

nonlinear t ransformation, called radial basis act ivation, to the inputs and the output 

layer which is made up of weighted sum of the outputs of the input neurons.  

 

The radial basis activation function is given by: 

 

 (2.84) 

 

where  is the center of the RBF,  is the Euclidean distance between the  

and  for neuron j, and  is chosen typically as Gaussian function: 

 

 (2.85) 

 

where,  is the width of the RBF.  

 

The outputs of  t he R BFN are s imply t he w eighted s um of  t he out puts of  t he 

neurons in the input layer as depicted Figure 2.4. 

 

 (2.86) 

 

If (2.88) is substituted into (2.89), then one may formulate the input-output mapping 

realized by the Gaussian RBF as follows: 

 

 (2.87) 

 

 



52 
 

 

Theorem 2.8 (Universal approximation for RBFN) [Park & Sandberg, 1991]: 

Let  be a n i ntegrable b ounded f unction s uch t hat  is c ontinuous 

almost everywhere and . Let  denote the family of RBF networks 

consisting of functions  represented by  

 

 

 

Where, ,  and . 

 

For any c ontinuous m apping  there i s an R BF n etwork w ith a s et o f 

centers  and a  c ommon w idth  such t hat t he i nput-output m apping 

 realized b y t he R BF n etwork i s cl ose t o  in t he  norm w ith 

. In other words, given  and , there is  of the above 

form so that 

 

 

⁬ 

For a given sample set  with  and , one can determine the 

linear connection weights  with  by solving the following linear 

algebraic e quation s ystem unde r t he a ssumption t hat t he centers a nd widths a re 

known. 

 

 (2.88) 

 

In or der t o de sign R BFN, one  m ay use a BP l ike gr adient d escent a lgorithm f or 

determining all n etwork p arameters. T he c ommon le arning s trategy in  the R BFN 

design is to employ hybrid learning that is to determine firstly the centers and widths 
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of t he fi rst layer G aussian ne urons a nd t hen apply t he l east m ean s quare r ule or  

generalized inverse for learning linear weights of the output neuron. Herein, centers 

can be assigned fixed, in a random way, from the input samples or can be calculated 

by a  c lustering me thod applied on i nput s amples (Moody, J. E . & Darken, C . J ., 

1989; M usavi, M . T ., A hmed, W ., C han, K . H ., Faris, K . B. &  Hummels, D . M .  

1992) or on input-output samples (Uykan, Z., Güzeliş, C. & Çelebi, M.E., 2000).    

 

2.2.2.2 Support Vector Machines 

 

Support V ector M achines ( SVMs) w ere initially developed t o s olve decision 

problems then applied to  c lassification (Vapnik &  Lerner, 1963;  Vapnik & 

Chervonenkis 1974),  regression (Vapnik, 1995, Gunn, 1998), and clustering (Ben-

Hur, A ., H orn, D ., S iegelmann, H .T. & V apnik, V ., 2001) . Ai m o f SVMs in 

classification is t o f ind a n opt imal s eparating bounda ry which ha s g ood 

generalization a bility for a g iven s et of  i nput-output da ta m apped i nto a  hi gh 

dimensional feature space. The opt imal separating boundary is, indeed, represented 

by a small subset of the whole training data, called Support Vectors (SV), and found 

by convex optimization methods.  

 

The s uperiority of S VMs over ANN m odels i s due  to th e p ossibility o f 

determining regression model in terms of only some samples called support vectors 

and a compact kernel representation and also due to their better generalization ability 

which is achieved by minimizing not only the training error but also a norm of the 

model p arameters to  o btain a less complex m odel. Vapnik (1995) defined the 

following epsilon ( ) insensitive loss function that ignore errors which are within a 

determined  distance of desired outputs (Figure 2.6).  

 

 

There are many different loss functions other than  insensitive such as Laplace, 

quadratic, Huber, etc. used in the literature.   

 (2.89) 
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   Figure 2.6 -insensitive loss function 

 

 

Linear Support Vector Regression (LSVR) 
 

Let a function  to be approximated be given by a finite set of input-

output data pairs  with  and . Support vector machine for 

linear regression attempts to find a function which is given by 
 

 (2.90) 
 

such that it should be at most  deviation from all of the measurements  for all the 

training data and, at the same time, the hyperplane defined in the feature space is as 

flat a s pos sible. This r egression pr oblem c an be  f ormulated a s t he f ollowing 

optimization: 

 

 

 

(2.91) 

 

Where,  is a constant. The -insensitive loss function  will be denoted 

as  in this thesis.  is a PWA continuous function, so can also be represented 

by the following canonical form in terms of the absolute value functions: 
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Flatness of the h yperplane de fined b y (2.90) can be  ensured by m inimizing t he 

squared Euclidean nor m . S o, one may reformulate th is c onstrained 

optimization pr oblem a s a  convex c ost function of   and c onstraints b eing l inear 

in . Thus, so called primal optimization problem is obtained as: 

 

 (2.92) 

 

In t he above primal optimization formulation, the e rrors du e to t he i nput-output 

sample data are minimized in the average sense. The following primal optimization 

problem w hich i s t he standard f ormulation of  l inear s upport ve ctor regression 

formulation ( SVR) ( Vapnik, 1995)  i s obt ained by i ntroducing penalization s lack 

variables  and . 

 

 

 

 

 

(2.93) 

 

where the constant parameter  is a u ser specified parameter and controls the trade-

off b etween t he f latness, s o the generalization a bility (small ) an d low e mpirical 

error (large ). T he p arameter  controls the w idth of  t he -insensitive t ube. 

Increasing  reduces t he num ber of  s upport ve ctors, so y ielding sparseness which 

produces a  smoother f unction. O n t he ot her ha nd, i f  is i ncreased t oo much, t he 

fitting error becomes unacceptable large. Thus, the user specified parameters  and  

controls the model complexity in two different ways. 
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This p rimal o ptimization p roblem c an b e s olved by transforming it in to the 

following dual form by the method of Lagrange multipliers (Bertsekas, 1995).  

 

 

(2.94) 

 

where, the nonne gative variables  and  are called as dual variables or 

Lagrange mu ltipliers. The s olution of  t he pr oblem ( 2.93) is  d etermined b y finding 

saddle poi nts of  t he Lagrangian f unction  via partial 

differentiating it w ith r espect to  th e p rimal v ariables  and s etting t he 

resulting gradients to zero. 

 

 (2.95) 

 
(2.96) 

 
(2.97) 

 
(2.98) 

 

Now, substituting (2.96) into (2.94), one obtains: 
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(2.99) 

 

Then, s ubstituting (2.95), ( 2.97) and (2.98) into the above formula, (2.100) is 

obtained. 

 

 

(2.100) 

 

Finally, after p erforming s everal s implifications th e following dual o ptimization 

formulation is obtained for the linear SVR. 
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(2.101) 

 

Where, and  are free parameters to be specified by the user which control the 

generalization a bility of t he a pproximation and  is t he i nner pr oduct of  t he 

input sample vector with the input variable vector. The dual optimization problem in 

(2.101) can be rewritten in the following matrix form: 

 

 

 
(2.102) 

 

Where,  and 

.  

 

The K arush-Kuhn-Tucker ( KKT) c onditions ( Karush, 1939;  K uhn a nd Tucker, 

1951) are . The support vectors are points where exactly 

one of the  Lagrange multipliers is greater than zero. 

 

Once Lagrange m ultipliers a re f ound b y s olving ( 2.102) o ne can  d etermine t he 

optimal  as follows. Equation (2.96) can be written as: 

 

 (2.103) 
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and the support vector regression function (2.90) becomes 

 

 (2.104) 

 

Computing  

The b ias t erm  is c omputed b y considering t he KKT c onditions as f ollows. T he 

product of dual variables with constraints should be equal to zero at the optimal: 

 

 

 
(2.105) 

and 

 

 
(2.106) 

 

(2.105) and (2.106) imply that only samples  with corresponding  and 

 lie o utside th e -insensitive t ube. A nother conclusion i s de scribed a s 

, i .e, t here c an ne ver b e a  s et of  dua l va riables  which a re bot h 

simultaneously nonzero because this would require nonzero slacks in both directions 

(Smola &  Schölkoph, 1998) . I f , t here i s a  contradiction due  t o t he 

definition of function that can never be multi-valued range data for a single sample 

data in the domain. So, one can conclude that  

 

 (2.107) 

 (2.108) 

 

A similar analysis on  yields 

 

 
(2.109) 

 



60 
 

 

For some dual variables  the inequalities become equalities. That is, 
 

 

 
(2.110) 

 

The bias term  can be calculated by using (2.110) just for a specific support vector. 

One of the possible alternatives for calculating the bias term  is to use the following 

formula (Chuang, Su, Jeng, & Hsiao, 2002). 

 

 

  

Nonlinear support vector regression  

 

Nonlinear support vector regression attempts to find a function which is given by: 
 

 (2.111) 

 

The constraint optimization problem can be formulated as: 
 

 

 

(2.112) 

 

This pr imal opt imization pr oblem c an be  s olved by transforming i t i nto a  dua l 

form via the method of Lagrange multipliers.  
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(2.113) 

 

Where, the nonnegative variables  and  are dual varaibles or Lagrange 

multipliers. The solution of the problem (2.113) is determined by finding the saddle 

points of Lagrangian function  via partial differentiating it 

with respect to the primal variables  and setting the results to zero. 

 

 (2.114) 

 
(2.115) 

 
(2.116) 

 
(2.117) 

 

Substituting (2.114), (2.115), (2.116) and (2.117) into Equation (2.113), one obtains 

the dual optimization problem after implementing several simplifications: 
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(2.118) 

 

Where, and  are f ree p arameters t o b e s pecified b y the u ser w hich co ntrol t he 

generalization ability of the approximation.  

 

Kernel Trick 

 

The algorithms described in the previous section construct the linear regression for 

a g iven set o f s amples in t he i nput space. T o c onstruct a  l inear 

regression in a feature space (which corresponds to nonlinear regression in the input 

space), one has to use a nonlinear function  mapping from an input space  

into a feature space  (Aizerman, Braverman, & Rozonotr, 1964, Nilson, 1965). For 

a real space,  can be given as 

 

 (2.119) 

 

where, . 

 

Then, the mapped data set becomes: 

 

 (2.120) 
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The mapping of each input data sample individually to the feature space leads to 

several problems. One of these problems is the inefficiency of the calculation of the 

mapped v ectors f or each s ample b y u sing t he v ector-valued nonl inear 

function . T herefore, instead o f m apping e ach i nput da ta s ample  

into the feature space yielding  and then calculating the inner products

, the following so cal led kernel function  is commonly used in the SVR 

literature.  

 

 (2.121) 

 

The regression problem can be defined and solved in terms of such a kernel function 

without know ing t he a ssociated m apping . W hen t he m apping i s know n t he 

determination of the corresponding kernel is straight forward. On the other hand, the 

Mercer’s T heorem given be low pr ovides t he conditions unde rwhich f or a  ke rnel 

there exists such a mapping  (Vapnik, 1995; Courant &  Hilbert, 1953). 

 

Theorem 2.9 (Mercer’s Conditions) [Mercer, 1909]: 

 

For a function  there exists a mapping  such that 

 

where,  might be infinite, if and only if 

 

 (2.122) 

 

for a ll s quared integrable f unctions  i.e.   and 

.  

⁬ 

If one uses a kernel which does not satisfy Mercer’s condition, then the Hessian may 

not be positive definite, so quadratic programming problem may have no solution. 

 



64 
 

 

Generally, there is more than one kernel to map the input space into the feature 

space. T ypical examples o f kernel functions are used in this thesis are given Table 

2.5. 

 
Table 2.5 Kernel functiona and representtions 

Type of kernel Representation of kernel  

Polynomial  

Gaussian  

  

Sigmoid   

Fourier  
 

-spline  

For L samples, kernel function, which is, indeed, the function of two independent n-

dimensional v ariables, d efine th e k ernel ma trix by e valuating it a t p air of s ample 

points:  
 

 
(2.123) 

 

The dual optimization problem in (2.122) can be rewritten in the following matrix 

form: 

 

 

 

(2.124) 

 

Where,  and 
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Equation (2.122) can be written as follows: 

 

 (2.125) 

 

and the support vector regression function (2.115) is obtained as: 

 

 

 

(2.126) 

 

It should be noted that the bias term  in (2.126) can also be provided by choosing 

the first basis function as unity, i.e. . However, for a kernel representation 

where  basis functions a re not  available,  should be  introduced explicitly as 

done above since there is no guarantee of having a unity basis function embedded in 

the kernel.  

in order to have an affine representation in the feature space defined by  ’s, one 

may choose , so  becomes a bias term. 

 

 

2.2.2.3 Piecewise affine regression  

 

Piecewise af fine interpolation for one dimensional case and canonical p iecewise 

linear interpolation f or multi d imensional functions are explained in S ection 2.1.4 

and, respectively, i n S ection 2.1.5 . W hen there e xists noi se a nd out liers and a lso 

large num ber o f da ta requiring memory a llocation a nd time  c onsumption, the 

piecewise affine interpolation is not suitable. Therefore, piecewise affine regression 

(approximation) which is a more appropriate strategy for such cases can be used. In 

the case o f p iecewise affine approximation, a given f inite set of  da ta i s divided up  

into smaller segments, and then simple linear regression is applied to each segment. 
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The poi nt w here one  segments j oins t he ne xt i s c alled as br eakpoint w here 

differentiability of the function cannot be ensured, but continuity of the function can 

be ensured. The location and the number of breakpoints are very crucial in piecewise 

affine approximation. V arious m ethods ha ve be en pr oposed in s tatistics a nd 

mathematics, and also in engineering disciplines (Parente, 1999;  S eber, 2003;  

Hudson, 1966;  Hudson, 1966;  G allant &  F uller, 1973;  F errari-Trecate, M uselli, 

Liberati, &  M orari, 2001;  F errari-Trecate, Muselli, 2001;  Konstantinides &  

Natarajan, 1994; Pittman J. & Murthy, 2000), bu t the determination of  the location 

and the number of breakpoints is still an open research problem.  

 

Let a set of finite data pairs  be given and let this domain be divided 

into  segments b y us ing  breakpoints s uch a s . 

Corresponding t o t he l + 1 segments which h ave b een l abeled co nsecutively f rom 

“0” (leftmost segment) through “l” (rightmost segment) and ‘mj’’ denote the slope 

of s egment j, p artition th e x-axis into l + 1 intervals  

….,  and . A t ypical continuous PWA function 

f(x) is shown in Figure 2.1.  

 

 

 

 
x 

f(x) 

 

Figure 2.7 A piece-wise affine continuous function f(x)  
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As explained by Theorem 2.1 in Section 2.1.5.1, any single valued continuous PWA 

with l breakpoints  can be represented uniquely by the expression: 

 (2.127) 

Least square PWA approximation can be formulated as determining  

parameters minimizing the following mean squared error: 

 (2.128) 

 

The solution to the problem (2.128) is determined by solving the following equation 

system. 

 

 

 (2.129) 



68 
 

 

2.2.2.4 Piecewise polynomial regression 

 

Piecewise polynomial regression is similar to the piecewise affine regression, but 

there i s an  i mportant d ifference; for e ach i nterval be tween t he br eakpoints, higher 

order polynomial such as quadratic and cubic polynomial is applied instead of  f irst 

order polynomial. 

 

Let a s et o f f inite data pairs  be g iven and l et t his domain be  d ivided 

into  segments b y u sing  breakpoints s uch a s . 

Corresponding t o t he l + 1 segments which h ave b een l abeled co nsecutively f rom 

“0” (leftmost segment) through “l” (rightmost segment) and ‘mj’’ denote the slope 

of s egment j, p artition th e x-axis into l + 1 intervals  

….,  and .  

 

A ’th order piecewise-polynomial regression is defined as the concatenation of the 

following polynomials which are defined for a specific interval.  

 

 (2.130) 

 

Where, ’s are coefficients of the polynomial of segment .  
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CHAPTER THREE 

ROBUST AND LOW COMPLEX  

SUPPORT VECTOR REGRESSION MODELS 

 

Support Vector Machines (SVMs) were initially developed to solve pattern 

recognition problems (Vapnik and Lerner, 1963; Vapnik and Chervonenkis 1974; 

Samanta, Al-Balushi, & Al-Araimi, 2003; Hao, 2008; Mohammadi and 

Gharehpetian, 2009), then they have been extended to the domain of regression 

problems so called Support Vector Regression (SVR) (Vapnik et al., 1997; Tao,  D. 

Tang, Li, & Wu, 2005; Goel and Pal, 2009; Osowski and Garanty, 2007; Colliez, 

Dufrenois, & Hamad, 2006;  Vong, Wong, & Li 2006; Bergeron, Cheriet, Ronsky,  

Zernicke, & Labelle 2005; Huang, Lai, Luo, & Yan, 2005; Wang, Wang, & Lai, 

2005; Bao, Liu, Guo, Wang, 2005; Sun and Sun, 2003; Wu, 2009; Lute, Upadhyay, 

& Singh, 2009; Wu, Yan, & Yang, 2008a,b). In order to extend SVMs into SVRs, 

Vapnik defined epsilon ( ) insensitive loss function that ignored errors which are 

within a determined epsilon distance of desired output. The proper choice of  is 

critical for generalization. There are many different loss functions other than -

insensitive such as Huber, quadratic etc. This chapter of the thesis presents novel 

robust and low complex regression models by introducing new loss functions for 

rejecting outliers and noises, and  with  “norms” for model parameters in 

order to reduce model complexity. 
 

3.1 Support vector nonlinear regression  
 

Let a function  to be approximated be given by a finite set of 

input-output data pairs  with  and . Let  

be a nonlinear basis function which maps the training data into a high dimensional 

feature space where the linear regression is performed by support vector algorithm. 

In this case, the approximated function is.  
 

 (3.1) 
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In the sequel, a quite general SVR formulation introduced in (Smola,1999) will be 

presented. The formulation is based on a general symmetric and convex loss function 

given in (3.2) where  is an arbitrary convex and differentiable function.  

 

 (3.2) 

 

As in any SVR formulation, the cost function consists of two terms one of which is 

the squared Euclidean norm of the  parameter vector and the other is the empirical 

error:  

 

 (3.3) 

 

Using slack variables , one can reformulate the above minimization 

problem as follows. 

 

 

 

(3.4) 

 

This primal optimization problem can be solved by transforming it into a dual 

form by the method of Lagrange multipliers.  
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(3.5) 

 

Where, the nonnegative variables  and  are Lagrange multipliers. The 

solution of the problem (3.4) is determined by finding saddle points of Lagrangian 

function  via partial differentiating it with respect to the 

primal variables  and setting the result equal to zero. 

 

Then, one obtains the following equations: 

 

 (3.6) 

 
(3.7) 

 
(3.8) 

 
(3.9) 

 

Substituting (3.7) into (3.5), (3.10) is obtained. 
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(3.10) 

Now, substituting (3.8) and (3.9) into the (3.10), the cost function takes the 

following form which is in terms of the Lagrange multipliers.  
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(3.11) 

 

Where,  and , and 

.  

 

Special choices of  is given below.  

 

-insensitive loss: 

This case is the original SVR case as described in Section 2.2.2.2. Since , 

then , or equivalently,  

 

Polynomial loss: 

Quadratic loss function is another special case for this loss function class.  
 

 (3.12) 

 

which yields 

 

 

 
(3.13) 

By substituting  for , one gets 
 

 and  (3.14) 
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Piecewise polynomial and linear loss: 

For some , 
 

 (3.15) 

 

This loss function is a special Huber loss function and is known as robust against 

outliers in the literature. Similar calculations yield  
 

 (3.16) 

which implies  

 (3.17) 

 

3.2 Novel robust and low complex regression models 

 

A general SVR formulation in terms of symmetric and convex loss function is 

presented in the previous section. These loss functions may suffer from poor 

generalization ability when presence of outliers. 

 

This section presents novel robust and low complex regression models by 

introducing new loss functions for rejecting outliers and noises, and  with  

“norms” for model parameters in order to reduce model complexity. The introduced 

model class is described by the following optimization formulation. 

 

 (3.18) 

 

Where, the first term in the cost forces the primal parameters (i.e. weights) to be 

sparse and the second forces the errors so the dual parameters (i.e. Lagrange 

multipliers) to be sparse.  and  might be a real number in the interval of . 
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For ,  belonging to , the functions  ,  do not 

define a norm. The positive homogeneity condition of norm is violated for  

while the triangle inequality condition is not satisfied for . On the other 

hand, the epsilon insensitive versions ,  define semi-norms for 

 since they can be zero for the points inside the epsilon tubes. 

 

The case of   
 

 

 

(3.19) 

Using slack variables , one can reformulate the above minimization 

problem as follows. 
 

 

 

(3.20) 

 

This primal optimization problem can be solved by transforming it into a dual 

form using the method of Lagrange multipliers.  
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(3.21) 

Where, the nonnegative variables  and ,  are Lagrange 

multipliers. The solution of the problem (3.20) is determined by partial 

differentiating it with respect to the primal variables  and setting 

the results equal to zero. 

 

 (3.22) 

 
(3.23) 

 
(3.24) 

 
(3.25) 

 (3.26) 

 (3.27) 
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The above necessary conditions do not provide to solve  in terms of the 

Lagrange multipliers in order to obtain a cost which is in terms of Lagrange 

multipliers only, thus a dual formulation cannot be obtained. So, the problem defined 

in (3.19) can be solved by solving the linear programming problem in (3.20) using 

simplex method or interior point method or any other numerical method developed 

for solving linear programming problems (Margaret, 1998).  

 

In order to reach a kernel representation associated with a quadratic cost 

minimization in terms of Lagrange multipliers, this thesis proposes to augment the 

cost in (3.20) by adding a squared Euclidean norm  with a small  and 

then derive the standard SVR formulation for the newly proposed formulation as 

done in the following. 

 

 (3.28) 

 

This optimization problem can be reformulated by introducing slack variables 

 as follows. 

 

 

 

(3.29) 

 

Minimization problem in (3.29) can be transformed into an unconstrained 

problem by the method of Lagrange multipliers.  
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(3.30) 

 

Where, the nonnegative variables  and ,  are Lagrange 

multipliers. The solution of the problem (3.30) is determined by partial 

differentiating it with respect to the primal variables  and setting 

the results equal to zero. 

 

 (3.31) 

 
(3.32) 

 
(3.33) 

 
(3.34) 

 (3.35) 

 (3.36) 
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Where, is the unit vector whose i’th component is 

unity while the others are all zero.  and  are parameters defined by the user. 

Now, substituting (3.32) into (3.30), one obtains (3.37).  

 

 

(3.37) 

 

 

Then, substituting (3.31), (3.33), (3.34), (3.35) and (3.36) into (3.37), one can obtain  

(3.38).   

 

 



80 
 

 

 

(3.38) 

 

 

Finally, after performing several simplifications, the following dual optimization 

formulation is obtained for the introduced low complex SVR. 
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(3.39) 

which is equivalent to 

 

 

(3.40) 

 

For small  values, the terms in the second line of (3.40) are dominated by the other 

three terms, so they can be omitted. The following truncated quadratic minimization 

problem is obtained as an equivalent problem in (3.19). It means that SVR with -

insensitive loss function and  norm for model parameters whose associated 

minimization problem described by (3.19) can be designed by solving the truncated 

dual SVR problem in (3.41). 
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(3.41) 

 

Solving (3.40) or (3.41), one can determine Lagrange multipliers, and then obtain the 

optimum  weight vector as: 

 

 (3.42) 

 

This yields the following regression function described in terms of the Lagrange 

multipliers.  

 

 (3.43) 

 

Although the first term in (3.43) can be represented in terms of the kernel function 

 without knowing  function itself, the 

second term requires knowing . However, if the samples ’s exist such 

that , then  can be calculated as  

so, (3.43) can have the following kernel representation.  

 

 (3.44) 
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Considering (3.28) with  norm for  parameter, one deduce that minimizations of 

(3.40) or (3.41) produce sparse primal parameter space representations which are 

convenient when  transformation is available and when  

with  are known. 

 

Inverse-Gaussian function as primal parameter flatness: 

The -insensitive norm in (3.19) and (3.28) formulations may be replaced with  

“norm” to obtain more sparseness in the primal parameter (weight) space. However, 

the minimization problems become now NP-hard, so computationally intractable. 

This thesis proposes to employ inverse-Gaussian function to approximate to  

“norm”. Then, the following optimization formulations are developed for low 

complex regression models.   

 

 (3.45) 

   

Or, 

 (3.46) 

 

It should be noted that the inverse-Gaussian function is not a convex function, so are 

the cost functions in (3.45) and (3.46). However, the inverse-Gaussian has a unique 

minimum point and no other extremum, so the minimization methods may be applied 

to find minimum points of (3.45) and (3.46) in some efficient ways. 

 

If the kernel  is available without knowing  explicitly, then one would 

try to use optimization formulations which provide sparseness in the dual parameter 

space, i.e. in the Lagrange multipliers. In the sequel, two different regression models 

will be proposed in this direction. The first one exploits flatness term in the dual 

parameter space. The second employs a loss function rejects the contribution of the 

outliers.  
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Flatness in the dual parameter space: 

 

Flatness of the function , can be ensured by minimizing the squared 

Euclidean norm  in primal space. 

 

 

(3.47) 

 

This primal optimization problem in (3.47) can be solved by transforming it into the 

following dual form by the method of Lagrange multipliers as mentioned in the 

Subsection (2.2.2.2). 

 

(3.48) 

 

Flatness parameter term  in the primal parameter space provides sparseness in 

the primal parameter space but it may not cause sparseness in the dual parameter 

space. For a kernel representation, the sparseness in the dual parameter space is the 

feature that is desired. For this purpose the -insensitive semi-norm  for the 

dual parameters are introduced in the thesis. So, (3.48) is augmented by using this 

proposed flatness term in the dual space as follows. 

 

(3.49) 
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 loss function for robustness: 

 

-insensitive (absolute value) loss function  has useful properties as follows. It 

ignores small errors so provides a filtering on the noise around the optimal regression 

function. On the other hand, it will be cleared by the qualitative analysis, 

summarized in the Table 4.1 at the end of the Chapter 4, that   loss function does 

not reject outliers even very far from the optimal regression function, however it 

limits their undesirable effects on the parameters of the regression function. This is a 

consequence of the fact that the Lagrange multipliers corresponding to the data 

outside of the epsilon tube are all the same, more precisely either C or –C, so their 

undesirable contributions to the kernel representation does not increase as the 

distance of the sample away from the optimal regression function increases.  has 

another useful property of being convex, allowing the application of convex 

optimization methods in the design of regression functions.  

 

In short, finding a loss function which has the properties of rejecting and/or limiting 

the bad effects of noise and outliers like  and of computationally tractable. It will 

be shown below that  can well be approximated by a continuously differentiable 

function defined as the composition of  and  functions. The introduced 

approximation is still a convex function enabling to exploit the optimization methods 

which are developed for convex and differentiable costs.  

 

First observe that, for large values of  parameters, the following function defined in 

terms of  and  functions approaches to . 

 

 (3.50) 

 

Where,  . When,  goes to infinity the  tends to  

and the derivative of   with respect to  tends to  For small 

values of  parameters, function becomes similar to Huber function. For 
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small  values,  with a small  behaves like a square function and, for 

large  values,  with a small  approaches to . Further observe that 

 function is a convex function for all  values. So, the continuously 

differentiable and convex function  with moderate  values can be used 

well as a loss function which limits bad effects of outliers and allows exploiting 

efficient optimization methods requiring differentiability and convexity. As in the -

insensitive loss function , the following -insensitive version of it might be 

preferable for suppressing the bad effect of noise around the optimal regression 

function.  

 

 (3.51) 

 

Now, considering the fact that , the function  can 

be seen to be approximated by the function in (3.52), as ignoring higher order terms 

in the Taylor series expansion of . 

 

 (3.52) 

 

The function in (3.52) is not a convex function but it has a unique minimum point 

with no other extremum. It should be noted that, for , (3.52) corresponds to a 

loss function whose minimization provides a regression which is optimal for Cauchy 

distribution. This thesis proposes the following -insensitive version of (3.52) as a 

saturating loss function for rejecting outliers while preserving the above mentioned 

useful properties of the -insensitive loss function .  

 

 (3.53) 
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3.3 A quantitative analysis of the developed robust and low complex regression 

models 

 

This subsection presents a numerical study for a comparison of the performances 

of inverse Gaussian norm based flat regression models and the models with  

 and   loss functions.  

 

Dual optimization formulations of a part of the developed regression models are 

failed to be obtained. On the other hand, a part of the obtained dual optimization 

formulations is not so suitable to be minimized in an efficient way. For the 

mentioned reasons, a quantitative comparison is given below based on the results 

obtained by minimizing the primal optimization problems. Since all of the primal 

optimization problems are constrained optimization where the costs are nonlinear 

and the constraints are linear inequalities, then the so called ellipsoid algorithm is 

chosen for finding a solution for each formulation.    

 

To compare the conventional SVR and the developed robust and low complex 

SVR models, the codes for ellipsoid method was written in Matlab 7.5. Two test 

functions are considered in the simulations. Outliers are added artificially. To 

measure the performance of the models (i.e. training and test errors, flatness and 

computational cost) Percentage of Root mean square Difference (PRD), Root Mean 

Square Error (RMSE), norm of  and CPU time are used. The results of various 

cases with different cost functions given in (3.45), (3.46), (3.51), (3.53), conventional 

SVR with  and with different ,  and  are presented in 

Table 3.1 and in Table 3.2.  
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Table 3.1 presents result for the affine test function given below.  

 

101 training patterns are generated for the affine function. Three artificial outliers are created. Linear SVR is chosen for approximating to 

the given affine function. 

 

Table 3.1 A comparison of -insensitive linear SVR and the developed robust & low complex SVR models for the affine function  with , . 

 Percentage of Root mean 
square Difference (PRD) 

Root Mean Square Error 
(RMSE) Norm of w CPU time 

(In seconds) 
 Epsilon 0 0.01 0.1 0 0.01 0.1 0 0.01 0.1 0 0.01 0.1 
SVR Models  

  
Train  36.200 37.521 36.762 11.136 11.134 10.675 5 5 5 0.344 0.344 0.328 
Test 39.785 37.628 37.876 11.084 11.082 11.709       

  
Train  35.311 35.423 36.825 10.693 11.134 10.675 5 5 5 0.359 0.328 0.344 
Test 40.130 40.398 37.449 11.731 11.082 11.709       

 
Train  36.669 37.016 36.419 11.133 10.688 10.663 4.999 4.999 4.999 0.344 0.344 0.344 
Test 38.544 37.318 37.989 11.081 11.725 11.706       

  Train  35.754 34.200 36.527 10.693 10.692 11.132 5 4.999 4.989 0.391 0.422 0.391 
Test 39.357 42.396 38.236 11.731 11.729 11.072       

-insensitive linear 
SVR 

Train  35.959 35.518 35.282 11.063 9.354 11.077 4.844 4.831 4.848 0.344 0.328 0.344 
Test 39.533 38.017 39.767 10.881 13.175 10.893       
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Table 3.2 presents results for the following nonlinear benchmark function. 

 
 

Where, 41 training patterns are generated for this nonlinear function. Polynomial SVR is chosen for approximating to the given nonlinear 

function. Where,  and .  
 

Table 3.2 A comparison of -insensitive polynomial SVR and the developed robust and low complex SVR models for the nonlinear function  with 
,  . 

 
Percentage of Root mean 
square Difference (PRD) 

Root Mean Square Error 
(RMSE) Norm of w CPU time 

(In seconds) 
 Epsilon 0 0.01 0.1 0 0.01 0.1 0 0.01 0.1 0 0.01 0.1 
SVR Models  

 
Train  48.006 38.822 41.645 0.194 0.159 0.170 0.747 0.679 0.663 0.328 0.344 0.344 
Test 52.365 54.511 50.942 0.227 0.232 0.218       

 
Train  48.253 40.193 37.224 0.181 0.169 0.158 0.738 0.635 0.656 0.328 0.328 0.344 
Test 49.984 52.875 58.724 0.234 0.216 0.228       

 
Train  43.556 44.248 44.794 0.183 0.180 0.197 0.629 0.649 0.596 0.344 0.344 0.344 
Test 56.694 46.619 50.447 0.202 0.199 0.189       

  Train  41.910 43.104 46.607 0.190 0.180 0.199 0.607 0.634 0.598 0.406 0.391 0.391 
Test 56.571 48.102 52.611 0.193 0.200 0.189       

-insensitive polynomial 
SVR 

Train  47.848 43.030 44.683 0.196 0.169 0.197 0.726 0.712 0.655 0.344 0.344 0.328 
Test 48.985 51.674 47.018 0.205 0.231 0.173       
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The obtained regression functions for both of the test functions are depicted in Figure 

3.1-3.8. 
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CHAPTER FOUR 

 

LEAST SQUARE SUPPORT VECTOR REGRESSION 

WITH EPSILON INSENSITIVE QUADRATIC LOSS FUNCTION 

 

This chapter extends Least Squares Support Vector Regression (LS-SVR) with 

squared loss function to the case of LS-SVR with epsilon insensitive squared loss 

function that ignores the small errors less than a predetermined number . The LS-

SVR ,which is a modified version of standard Support Vector Regression (SVR), is 

introduced by Saunders, et all, (1998) and Suykens, et all, (2002). In conventional 

SVR, the -insensitive loss function is used as the cost function and it is represented 

by the inequality constraints. In the LS-SVR, the squared loss function is used as the 

cost function and the errors terms are represented as the equality constraints and the 

minimization problem is eventually converted to solving a linear algebraic equation 

system. Nonlinear identification and modeling, function approximation and optimal 

control are among the numerous applications of LS-SVR (Goethals, et all., 2005; 

Espinoza, et al., 2005; Espinoza, et al., 2004; Suykens,et. all, 2000; Jiang, et. all, 

2009; Suykens,et. all, 2001; Suykens, 2001; Espinoza, et. all 2005, 2006; Wu, 2006; 

Pelckmans, et. all., 2005 ). 

 

In the following, the derivation of LS-SVR and its proposed -insensitive version 

will be presented and their associated solutions will be compared in a qualitative 

way. The comparison will also be made with conventional least square solution 

firstly for the linear one-dimensional case for simplicity by no means of loosing 

generality. 

 

4.1 Least Square Support Vector Regression  

 

In this subsection, LS-SVR is described in terms of least squares and ridge 

regression. 
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In Section 2.2, least square approximation is described in a general framework. 

According to this, for a set of domain-range samples  with  

, regression estimation is defined as  

 

 (4.1) 

 

Where,  is a nonlinear function which maps the input data into a high 

dimensional feature space,  is a weight vector,  is the error variable 

and  is the bias term. Then, the cost function is:  

 

The cost function of ridge regression is the following modified version of the least 

squares approximation cost (Saunders, Gammerman, & Vovk 1998): 

 

Where,  is a fixed positive constant. Note that the cost function in (4.3) consists of a 

least square error and a regularization term. , which is a special case of ridge 

regression, corresponds to least squares regression (Saunders, et all, 1998).  

 

One may desire to obtain the dual space representation instead of the primal space 

for computational purposes (Suyken et al., 2002). For the LS-SVR, the following 

optimization problem in the primal weight space can be described in the dual space 

as explained in the sequel. 

 

 

 

 

(4.4) 

 

 (4.2) 

 (4.3) 
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One defines the corresponding Lagrangian form as: 

 

 

Where,  are the Lagrange multipliers (also called as support vectors) in the 

SVR literature. First order necessary conditions for the optimality are: 

 

 (4.6) 

 
(4.7) 

 
(4.8) 

 
(4.9) 

 

These conditions are similar to the Vapnik’s SVR optimality conditions, except for 

the condition . Eliminating the variables  and , the following cost 

function which should be maximized is obtained: 

 

 (4.10) 

 

which can be rewritten as the following minimization problem. 

 

 

 
(4.11) 

 

 (4.5) 
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Instead of solving the above quadratic optimization problem, one may prefer to solve 

the following set of linear algebraic equation system which is obtained from first 

order optimality conditions.   

 

 

Where,  is an identity matrix, ,

, ,  

 

For the test sample x, one can predict the range of the learned approximate function 

as:  

 

Where, ’s and  are the solutions to the equation in (4.12). 

 

4.2 -insensitive Least Square Support Vector Regression 

 

This subsection presents -Insensitive Least Squares Support Vector Regression 

(LS-SVR) model which constitutes one of the contribution of the thesis. It is derived 

by inspiring Vapnik’s -insensitive loss function that ignores errors which are within 

a determined distance of desired output (Figure 4.1). It is an improvement on LS-

SVR model towards obtaining less number of support vectors. 

 

For the -insensitive LS-SVR derivation, the optimization problem is chosen as: 

 

 

 

(4.14) 

 

  (4.12) 

 (4.13) 



98 
 

 

Where, the -insensitive quadratic loss function is defined as: 

 

 (4.15) 

  

The graphs of the -insensitive quadratic cost and its derivative are illustrated by 

Figure 4.1 (a) and (b) respectively. 
 

 

                                     (a)                                                                      (b) 

Figure 4.1 (a) -insensitive quadratic loss functions (b) its derivative  

 

It should be noted that  is a continuous differentiable function whose derivative 

has the following canonical representation. 

 

 

 

One defines the Lagrangian form as: 

 

 

First order necessary conditions for its optimality are: 

 

 (4.16) 

ε+ε− e

( )2d e
de

ε

ε+ε− e
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(4.17) 

 

 

(4.18) 

 

 
(4.19) 

 (4.20) 

 

In order to reach a cost in terms of the Lagrange multipliers ’s,  should be solved 

in terms of  from (4.20). 

 

There are three different regions in each of which  and  are related to each other 

in an affine way: 

 

 

Where, 

 

 

, then 

  

 

, then 

  

 

, then 

  

 (4.21) 
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Where,  means that the signum function is identical to the usual signum function 

except at  values for which signum becomes multi-valued with  

with . On the other hand,  is the -insensitive version of the 

signum function which is defined as: 

 

 

                                             Figure 4.2  graphics with respect to   
 

So, eliminating the variables  and , the following formulation for the -

insensitive LS-SVR is obtained. 
 

 

 

Note that, as  , the bias term  is disappear. 

ε+

ε−
sα

se
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Where, 
 

  
 
 

 
  

(4.23) 

 

Or  alternatively, (4.22) can be rewritten as in the following minimization problem: 

 

As an alternative, using the compact representation in (4.21), (4.24) can be written 

as: 

 

(4.22) 

 

 

(4.24) 

 

(4.25) 
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Then, the following dual optimization formulation is obtained for the -Insensitive 

LS-SVR. 

 

 

 

As can be seen from (4.26) and (4.10), the difference between LS-SVR and -

insensitive LS-SVR is at the number support vector number due to the -insensitive 

tube. Because, the support vectors in the -insensitive tube are zero. 

 

With the optimum values of  obtained by solving (4.26), one may determine the 

optimum value of , and so the approximation function as:  

 

 

4.3 A qualitative analysis of -insensitive LS-SVR 

 
The analysis will be done for 1-dimensional and linear case for the sake of 

simplicity. Considering the sample set  with , -insensitive 

LSSVR can be formulated as the minimization of the following cost function. 

 

-insensitive squared loss function is continuously differentiable, so first order 

necessary condition for optimality can be stated as: 

 

(4.26) 

 

 
(4.27) 

 (4.28) 
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By using (4.29), one obtains  in terms of the  samples as: 
 

 

(4.30) is an implicit function of . It is shown in the sequel,  can be obtained 

explicitly in terms of the samples. For this purpose, one can write (4.30) as follows:  

 

 
Where, ,  and  sets are defined as in (4.23).  
 
Then, (4.31) can also be given as in (4.32). 
 

 
So, the optimal  is found as: 
 

 

As an alternative, it can be written as: 

 

 

(4.29) 

 (4.30) 

 (4.31) 

 

(4.32) 

 (4.33) 
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Where, 

 

 

 

 

4.4 Comparison of Least Square Regression, LS-SVR and SVR 
 

For a given a set of samples  with  and , the linear 

regression with  can be defined as:  

 

 (4.35) 

 

Where,  is the error variable. 

 

Linear least squares regression for 1-dimensional case: 

 

To determine the coefficient , one can minimize the following sum of squared error 

for a given sample set.  

 

 

To use first order necessary conditions for optimality, one may differentiate the 

total squared error with respect to the coefficient  and then setting it to zero. As a 

result, the normal equations are obtained. 

 

 (4.34) 

 (4.36) 
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which yields 

 

 

So, the optimal  is calculated as  

 

Then, the approximate function is given as: 

 

LS-SVR for 1-dimensional linear case: 

 

Assuming  and considering sample set  with , LS-SVR 

is formulated as the following minimization problem: 

 

 

 

(4.41) 

 

One defines the Lagrangian form as: 

 

 

  (4.37) 

 (4.38) 

  (4.39) 

 (4.40) 

 (4.42) 
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Where,  are the Lagrange multipliers. Its first order optimality conditions are: 

 

 (4.43) 

 (4.44) 

 (4.45) 

 

To find the optimal , Equation (4.44) and (4.45) can be substituted into the (4.43) 

and then solved as: 
 

 

 

 

 

 

The following Lagrange multipliers  in (4.46) serve as the weights determining the 

contributions of the samples to the optimal weight.  

 

 

The approximation obtained by LS-SVR is given as  

  (4.46) 

 (4.47) 

 (4.48) 
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SVR for 1-dimensional linear case: 

Considering sample set  with  and assuming , SVR is 

formulated as the following minimization problem: 
 

 

 

(4.49) 

The find the optimal coefficients for the minimization problem in (4.49), one can 

take the subgradient of the cost function with respect to  (Bertsekas, 1995). It is a 

fact that minimum of PWA convex function occurs at a vertex where  (zero) 

belongs to the subgradient (Bertsekas, 1995), i.e.  
 

 

 

On the other hand,  is the -insensitive version of the signum function 

which is defined as: 

 

 

 

Then,  can be solved in terms of the samples and specific values of  as: 
 

 (4.50) 

 

The approximation obtained by SVR is given as: 

To optimal  parameters obtained by four different regression methods are given in 

Table 4.1 for understanding their differences in a clear way. 

 (4.51) 
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Table 4.1 Optimal  parameters for linear regression in three methods, namely, Least Square Regression (LSR) , LS-SVR and SVR.  

 

Table 4.1 The value of optimal   in the least square, LS-SVR and SVR methods. 

 

 

 

 

LSR LS-SVR -Insensitive LS-SVR SVR 

    

 

 

 

Where, 

 

 

 

 

 

As can be seen Table 4.1, one can conclude that data points out of the prescribed parameter epsilon bound are support vectors in SVR. The 

contributions of support vectors contained out of the -insensitive to the optimal parameter are the same. On the other hand, the difference 

between LS-SVR and LSR is only at the complexity parameter . When  goes to infinity, LS-SVR solution approaches to LSR solution, more 

precisely, to the generalized inverse solution. In -insensitive LS-SVR, the contributions are only due to the support vectors which are the 

samples out of the -insensitive tube and the contributions changes from one support vector to another depending on its position on the sample 

space. 
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CHAPTER FIVE 

SUPPORT VECTOR REGRESSION 

WITH PIECEWISE AFFINE KERNEL 

 

The performance of the SVR largely depends on the kernels and the loss functions 

chosen. Therefore many different kernel functions for mapping are used in literature 

such as polynomial kernel, Gaussian kernel, sigmoidal kernel, etc. This chapter 

presents a new type of kernels which is called piecewise affine kernels where feature 

space is explicitly given with a piece-wise linear mapping from the input space. 

Moreover, it is also presented how the Support Vector Regression (SVR) with 

piecewise affine kernels can be formulated for function approximation. The 

introduced Piecewise Affine Regression (PWA-SVR) models are inspired by the 

canonical representations available for PWA functions described in Subsection 

(2.1.5). 

 

5.1 1-dimensional (PWA-SVR) models  

 

Let a function  be given by the samples . Consider the 

following piecewise affine function  mapping from a one-dimensional 

input space  into an m-dimensional feature space.  

 (5.1) 

Then, the mapped data set becomes 
 

 (5.2) 

 

One can use the following PWA approximation for obtaining a support vector 

regression model. 

 (5.3) 



110 
 

 

It should be noted that the bias term  is not included in the representation of (5.3) 

since the first basis function in (5.1) is chosen as unity for providing a bias term in 

the function space. The bias term  will not be included in the kernel representations 

developed in this section except for the compact kernel (5.31).  

 

This regression problem can be formulated as the following optimization: 

 

 

 

(5.4) 

 

Formulation of  in terms of the dual variables is obtained by using Lagrange 

multipliers as mentioned in the Subsection (2.2.2.2).  

 (5.5) 

and the support vector regression function (5.3) is found as: 

 (5.6) 

Where,  is the PWA kernel function defined as the follows. 

 

 

 

 

 

(5.7) 
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Substuting (5.7) into (5.6), one can obtain PWA-SVR model.  

 

(5.8) 

Where, the function  is a PWA function whose canonical parameters can found 

as follows. 

 

 

 

 (5.9) 

 

When  for all  with , the function in (5.9) can be 

represented as the following PWA canonical representation.  

 

 (5.10) 

 

5.2 n-dimensional PWA-SVR models (lattice partition case) 

 

Let a set of samples  be given. Where,  are the domain 

samples and  are the range samples. Consider a piecewise affine mapping 

 from the input space into the feature space.  
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(5.11) 

 

One can use the following PWA model for regression. 

 (5.12) 

 

Where, the PWA kernel  can be obtained as in (5.13) by using the mapping 

in (5.11).  

 

 

 

 

 

 

 

(5.13) 

Substuting (5.13) into (5.12), one can obtain SVR with PWA kernel for having 

lattice structure. 
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(5.14) 

Where, the function  is a PWA function whose parameters can be found in terms of the dual variables as the follows. 

 

 

 (5.15) 

 

Where,  

When  for all  with , the function in (5.15) can be represented as in the following. 

 (5.16) 
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5.3 n-dimensional PWA-SVR models (general partition case) 

 

Let a set of samples  be given. Where,  are the domain 

samples and  are the range samples. Consider the following piecewise affine 

function  for mapping the input space  into the feature space.  

 

 (5.17) 

One can use the following PWA model for regression. 

 

 (5.18) 

Where, the PWA kernel  can be obtained as in (5.19) by using the mapping 

in (5.17).  

 

 

 

 

                        

                        

(5.19) 

Substuting (5.19) into (5.18), one can obtain SVR with PWA kernel for having n 

dimensional general structure. 

 

(5.20) 

Where, the function  is a PWA function whose coefficients can be found in 

terms of the dual variables as the follows.
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 (5.21) 

When  and  for all  with , the function in (5.21) can be represented as in the following. 

 

 (5.22) 

 

The PWA kernel  can be written as in (5.23) by using (5.19) 
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(5.23) 

 

5.4 First degree B-spline PWA-SVR model 

 

Let a set of samples  be given. Where,  are the domain 

samples and  are the range samples. Consider a piecewise affine function 

 mapping from the input space  into the feature space.  

 

 (5.24) 

 

Then, the mapped data set becomes as: 
 

 (5.25) 

 

So, the regression function is obtained as in the following.  

 (5.26) 
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As mentioned in the previous subsection, one can use the following PWA kernel function to obtain PWA-SVR model in terms of first order 

B-splines.  

 

 

 

 

 

 

 

 

 

(5.27) 
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Substituting (5.27) into (5.26), one can obtain first degree B-spline PWA-SVR model. 

 

 

 

 

 
 

 
 

 
 

 
 

(5.28) 

 

 

Where, the function  is a PWA function whose parameters can be found in terms of the dual variables as follows.
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 (5.29) 

 

When  for all  with , the function in (5.29) can be 

represented as the following PWA canonical representation.  

 

 (5.30) 

 

However, the above kernel does not have a compact representation. The following 

function is also proposed in the thesis as a more compact kernel. 

 

 (5.31) 

 

Where, and are user specified parameters which serve as the amplitude and, in 

some sense, variance of kernel.  

  

 

 

Figure 5.1 Compact PWA kernel  
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5.5 A quantitative analysis of the developed PWA regression models  

 

This subsection presents performance analysis results of the developed PWA regression models.   function is taken as the 

test function for all examined models. Table 5.1 and Table 5.2 present the regression performances of the SVR models with the developed 

PWA kernels in comparison with the Gaussian kernel for and, respectively, for . 

 

Table 5.1 A comparison of Gaussian kernel and the developed PWA kernels for sinc function in -insensitive SVR model with . 

-insensitive SVR 
 

Percentage of Root mean 
square Difference (PRD) 

Root Mean Square Error 
(RMSE) 

 (Norm of w) CPU time 
(In second) 

 Epsilon 0 0.01 0.1 0 0.01 0.1 0 0.01 0.1 0 0.0
1 

0.1 

Kernels  
Gaussian 
 

Train  30.270 24.794 21.036 0.105 0.083 0.071 2.776 2.682 1.865 1.2 1.2 1.2 
Test 25.921 28.738 17.288 0.111 0.121 0.072       
# of SV  
& (%) 

12 
(19.7%) 

12 
(19.7%) 

11 
(18%) 

         

Canonical PWA kernel  
in (5.7) 

Train  12.113 12.94 21.756 0.042 0.047 0.071 0.040 0.039 0.024 1.3 1.3 1.3 
Test 11.729 10.548 19.185 0.050 0.047 0.078       
# of SV 
& (%) 

9 
(14.8%) 

10 
(10.4%) 

10 
(16.4%) 

         

Max 
{ } 
 

Train  4.827 4.888 24.145 0.019 0.018 0.095 0.854 0.788 0.537 1.8 1.0 1.1 
Test 5.552 9.945 20.058 0.028 0.045 0.103       
# of SV 
& (%) 

53 
(86.9%) 

51 
(83.6%) 

44 
(72.1%) 
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Table 5.2 A comparison of Gaussian kernel and the developed PWA kernels for sinc function in -insensitive SVR  model with . 

-insensitive SVR 
 

Percentage of Root mean square 
Difference (PRD) 

Root Mean Square 
Error (RMSE) 

Norm of w CPU time 
(In second) 

 Epsilon 0 0.01 0.1 0 0.01 0.1 0 0.01 0.1 0 0.01 0.1 

Kernels  

Gaussian 
 

Train  127.254 128.281 62.514 0.447 0.415 0.206 12.066 11.912 7.288 1.1 1.1 1.2 
Test 96.448 96.113 50.816 0.420 0.384 0.207       
# of SV  
& (%) 

10 
(16.4%) 

11 
(18%) 

6 
(9.8%) 

         

Canonical PWA 
kernel 
in (5.7) 

Train  132.704 13.966 19.128 0.504 0.048 0.066 0.0257 0.0392 0.0255 1.2 1.3 1.2 
Test 122.491 14.046 20.360 0.580 0.060 0.089       
# of SV 
& (%) 

6 
(9.8%) 

7 
(11.5%) 

11 
(18%) 

         

Max  
{ } 

Train  2.125 2.571 24.734 0.007 0.009 0.095 0.847 0.804 0.530 1.7 1.0 1.0 
Test 6.931 11.749 22.640 0.029 0.052 0.112       
# of SV 
& (%) 

47 
(77.0%) 

45 
(73.8%) 

44   
(72 %) 
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Table 5.3 and 5.4 presents the regression performances of the LS-SVR models with 

the developed PWA kernels in comparison with the Gaussian kernels for  and, 

respectively, for . 

 
Table 5.3 A comparison of Gaussian kernel and the developed PWA kernels for sinc function in LS-
SVR model with . 

LS-SVR  
 

Percentage of 
root mean 

square 
difference 

(PRD) 

Rroot Mean 
Square Error 

(RMSE) 
Norm of w 

Kernel  

Gaussian Train  27.417 0.109 1.196 
Test 21.975 0.108  

Canonical PWA kernel 
in (5.7) 

Train  1.829 0.006 0.045 
Test 4.510 0.018  

Max  
{ } 

Train  9.909 0.036 0.684 
Test 13.402 0.062  

 

 
Table 5.4 A comparison of Gaussian kernel and the developed PWA kernels for sinc function in LS-
SVR model with . 

LS-SVR  
 

Percentage of 
root mean 

square 
difference 

(PRD) 

Rroot Mean 
Square Error 

(RMSE) 
Norm of w 

Kernel  

Gaussian Train  7.525 0.026 2.920 
Test 6.632 0.029  

Canonical PWA kernel 
in (5.7) 

Train  0.327 0.001 0.049 
Test 2.569 0.011  

Max  
{ } 

Train  1.097 0.004 0.830 
Test 7.683 0.036  
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CHAPTER SIX 

INPUT-OUTPUT CLUSTERING BASED DESIGN OF APPROXIMATE  

PWA FUNCTIONS 

 

This chapter presents a new method for the PWA function representation. The 

idea behind the proposed method is to employ clustering to the given domain-range 

sample data set  to determine the nonempty regions partitioned by a 

finite number of hyperplanes, and then to determine the coefficients associated to 

each affine function by using the samples belonging to this specified region. The 

number of the partitioned regions is assumed known a priori. In order to obtain the 

parameters of each affine function valid for a specific region, two methods are 

proposed: The least square regression and orthogonal regression. 

 

In the least square regression, the mean square of error between the range samples 

and the regression value is considered as the error to be minimized. In the orthogonal 

regression, the sum of distances of the samples to the linear regression is considered 

as the error. 

 

6.1 PWA function  

 

Let a set of finite data pairs ,  be given. As 

explained in Section 2.1.5.1. the PWA functions, which can be represented by the 

following canonical representation under mild conditions, can be used to 

approximate the given sample set.  

 

 (6.1) 

 

with a , ,  and  if and only if it satisfies the 

consistent variation property.  
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This chapter gives a method which is based input-output clustering for 

determining the parameters of such a PWA regression function. Input-output 

clustering will be presented firstly and then the application of this clustering method 

will be given for determining affine regression models defined in each affine region 

and the linear partition of the domain space. 

 

6.2 Input-Output Clustering  

 

In the Input-Output Clustering (IOC), the vectors to which a clustering algorithm 

will be applied, are obtained by augmenting the weighted input sample vectors with 

the desired outputs as in (6.2) (Uykan, et. al.,2000). 

 

 (6.2) 

 
Where,  is a weighting factor.  
 

In this thesis, the IOC algorithm applies a batch mode clustering algorithm to the 

set of augmented vectors in (6.2) and then find the augmented centers of the clusters 

 where . The first  

entries are rescaled with . One can choose any metric for quantization error to be 

minimized by clustering. In this thesis study, Euclidean norm for quantization error 

and K-means clustering algorithm is used for partitioning the data in order to 

determine the linear partition of the PWA regression function under construction. 

 

6.3 PWA representation by using input-output clustering method 
 

The key point in the design of piecewise affine function representation is to 

specify the number and the locations of the breakpoints for one-dimensional case and 

hyperplanes partitioning the domain space for n-dimensional case. Once the locations 

of breakpoints and, in general, hyperplanes are determined, the optimal local 

regression function affine can be determined by using one of the linear regression 

methods, for instance, any method calculating generalized inverse solution. 
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The proposed IOC based PWA regression method is described in the flowchart of 

Figure 6.1. K-means used for clustering is just one of the possible choices. Different 

quantization error norms can be exploited to determine the linear partition of the 

domain space. 

 

 
Figure 6.1 Flowchart describing PWA function approximation with IOC 

 

The steps of the proposed algorithm are given as follow. 

 

Initialize set of I/Odata

IOC with K-means

Assign of an affine function to 

each of K clusters 

Re-cluster data

Splitting or merging

Assign of an affine function to 
each of new clusters 

Check

Finish

Yes  

No  
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I. The given set of finite data pairs  is clustered for a given initial 

cluster numbers K by using IOC with K-means clustering algorithm. 

 

II. After the given sample data are clustered, to assign an affine function to each 

of K clusters, two methods are proposed in the thesis: one is the orthogonal 

regression and the other is the least square regression. 

 

III. In this step, the whole data is again clustered iteratively in two different ways: 

Either orthogonal distance or penalized orthogonal distance between any 

individual input-output sample and each of affine functions are calculated, or 

then the sample is assigned to the closest line representing the associated 

cluster. 

 
IV. Iteration is terminated when the error measure is satisfied or the specified 

maximum iteration number is reached. 

 

The developed method will be described, in the sequel, for the one dimensional 

case, i.e. the function to be approximated is considered as . Below, the 

regression methods used for each affine region will be given firstly, and then the 

metrics i.e. orthogonal distance and penalized orthogonal distance used in the 

clustering will be explained.  

 

Orthogonal regression 

 

Consider the affine function  with . For orthogonal 

regression, the coefficients  and  are given by 
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Where,  and are the mean value of  and , respectively. 

 

Least square regression: 

The coefficients  and  are found by the following linear equation system. 

 

 

Orthogonal distance  

 

Take two points (end and last) on the ’th affine function  and 

, and a data point as , then the orthogonal distance is given by 

the following formula: 

 

 

 

Penalized orthogonal distance  

 

For penalized orthogonal distance, penalty parameter  defined by the user is added 

to the formula given for orthogonal distance. 
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The cost function for penalized orthogonal distance is defined as: 

 

 

 

Where,  is the ’th cluster, and  is the orthogonal distance between  

sample and the line belonging to the ’th cluster, and K is the number of cluster. For 

non penalized orthogonal distance, the penalty term  disappears. 

 

Note that there should exist at least two data points in each cluster.  If the number 

of data is less than two within a cluster, that cluster is eliminated and is merged to the 

closest cluster. There are some clusters that may overlap in the input space (See 

Figure 6.2 for the application of the method on ECG data.). In this case, the partition 

where the overlapping occurs is labeled as a new cluster and also the rest of 

partition(s) is labeled as new cluster(s). Then, the affine functions are assigned to the 

new labeled clusters (See Figure 6.3 for ECG signal approximation.). Thus, the new 

affine functions assigned locally defined. That is, affine functions assigned for each 

clusters are not allowed to be overlapped in this algorithm.  

 

By the above method, several affine functions each of which is defined locally in a 

bounded polyhedral region are obtained (See Figure 6.4 for one dimensional case 

where the regions are bounded intervals.). To obtain a continuous canonical PWA 

function, first and end points of these affine functions are used as breakpoints (See 

Figure 6.5). Coefficients of the PWA function can be found by using the generalized 

inverse solution. Finally, optimal continuous PWA function is obtained by 

minimizing the total squared error (See Figure 6.6). 

 

 



130 
 

 

 

 

 

 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Assignment of an affine function to each cluster

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
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Figure 6.2 Clusters whose input space projections overlap and the 

associated affine regressors. 

Figure 6.3 Obtaining the non-overlapping intervals by splitting or merging 
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Continuous PWA function for the ECG data

Figure 6.4 Reassigning data to the closest affine regressors and then 
redetermining the affine regressors associated to the non-overlapping 
intervals  
 

Figure 6.5 Determination of breakpoints of a continuous PWA 
regression by calculating the end points associated to the intervals 
defined by local affine regressors 
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Figure 6.6 Construction of a continuous PWA function using the entire 

data by applying the least square PWA regression method for the 

obtained breakpoints. 

 



133 
 

CHAPTER SEVEN 

CONCLUSION 

 

In this thesis, four novel classes of regression models which are based on 

piecewise affine and/or support vector methods are proposed. The first class is the 

support vector regression models employing  with  norms for model 

parameter cost in order to reduce model complexity and saturating and/or piecewise 

affine loss functions for rejection the contributions of outliers in determination of 

model parameters. The second class is the -insensitive least square support vector 

regression model class which is introduced as an extension of the least square 

support vector regression for reducing excessive number of support vectors 

appearing in the support vector approach. The third is the piecewise affine support 

vector regression model class which is derived by exploiting the canonical 

representations of piecewise affine functions and the first order B-spline basis 

functions. Finally, the piecewise affine models, which are designed by input-output 

clustering, are developed 

 

The developed methods improve the performances of available support regression 

models in terms of the generalization ability and/or robustness against to outliers. 

The presented studies can be extended by future researches in two directions. More 

efficient optimization tools which fit better to the specific natures of the proposed 

models may be developed. The proposed regression models may be applied to new 

application domains such as signal compression and system identification.  
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