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PIECEWISE AFFINE AND SUPPORT VECTOR MODELS
FOR ROBUST AND LOW COMPLEX REGRESSION
ABSTRACT

Function representations defined with a s mall set of parameters are desirable not
only for data and model reduction but also for obtaining signal and system models
which w ork w ell under the r eal t est da ta. F unction a pproximation and r egression
(Both will be used in the thesis interchangeably.) provide function r epresentations
which are usually designed based on a given finite set of domain-range samples by a
learning algorithm and are aimed to possess good generalization pe rformances for
the test data not used in the learning phase. The thesis proposes four different classes
of r egression m odels w hich are b ased on pi ecewise a ffine representations a nd/or

support vector methods.

The first class of the de veloped m odels is the s upport ve ctor r egression m odel
class employing £, with p < 1 “norms” for model parameter cost in order to reduce
model complexity and saturating or linear loss functions for rejection or limiting the
contributions of outliers in determination of model parameters. The second proposed
classisthe e-insensitive | east s quare s upport v ector regression m odel whichis
introduced as an extension of the least square support vector regression for reducing
excessive number of support vectors appearing in the support vector approach. The
third class of the developed regression models is the piecewise affine support vector
regression models which are derived by exploiting the canonical representations of
piecewise affine functions and first order B-spline basis functions. The fourth class is
the piecewise affine regression models which are designed by input-output clustering
minimizing an unsupervised clustering error instead of regression error, i.e. the loss
function i n s upport ve ctor r egression based models. T he pr oposed m odels a re
analyzed in a qualitative way and also in a numerical way, and also compared with

the known support vector regression models for test functions and real data.
Keywords: Function representation, support vector regression, 1oss functions, least

square s upport ve ctor r egression, optimization methods, piecewise affine function,

piecewise affine kernel, input-output clustering.
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GURBUZ VE YALIN REGRESYON iCiN PARCA PARCA DOGRUSAL VE
DESTEK VEKTOR TABANLI MODELLER
0z

Az sayida parametre ile tanimlanan fonksiyon gosterilimleri, sadece v eri v eya
modellerin karmagikligin1 azaltmak i¢in degil, ayn1 zamanda gergek test v erileri
altinda oldukca iyi calisan isaret ve sistemlerin elde edilmesi i¢in de arzu edilir.
Fonksiyon yaklasimi ve regresyon (Herik ite rim de tezde esanlamli olarak
kullanilacaktir.), genellikle, sonlu sayida giris-cikis 6rnek verilerinden bir 6grenme
algoritmasi yardimi ile tasarlanirlar ve Ogrenme silirecinde kullanilmayan test
ornekleri icin iyi bir genelleme yetenegi olan fonksiyon gosterilimleri saglarlar.
Tezde, parca parca dogrusal ve/veya destek vektdr yontemlerine dayali dort farkl

regresyon model sinifi 6nerilmistir.

Gelistirilen model sinifindan ilki, mo del p arametrelerinin b elirlenmesinde, mo del
karmasikligin1 azaltmak iizere model parametre maliyeti i¢cin p < 1 olacak bi¢imde
€, “normu” ve model parametrelerinin belirlenmesinde aykiri verilerin katkisini yok
etmek veya siirlamak i¢in doymali veya dogrusal hata fonksiyonu kullanmaktadir.
Ikinci olarak o©nerilen model sinifi, en kiiciik karesel destek vektdr modelinde
karsilagilan asir1 sayida destek vektor olusmasi problemini gidermek icin onerilen ve
en k {igiik k aresel d estek v ektdr modelinin bir uzantis1 olan e-duyarsiz en kiiciik
karesel d estek v ektor r egresyon m odel sinifidir. Gelistirilen fonksiyon yaklasim
modellerinin {i¢ linciisii, parca p ar¢a dogrusal fonksiyonlarin yalin gdsterilimleri ve
B-spline taban fonksiyonlarindan esinlenerek tiiretilen parca parca dogrusal destek
vektor modelleridir. Gelistirilen dordiincii sinif regresyon model sinifi, destek vektor
yaklasim tabanli modellerdeki yaklagim hatas1 fonksiyonu yerine bir egiticisiz
obekleme hatasini azaltan girig-¢cikis 6bekleme algoritmasi ile tasarlanan diger bir
parga parga model sinifidir. Onerilen ydntemler nitel ve sayisal olarak incelenmis ve
gergek veri ile bazi test fonksiyonlari i¢in bilinen destek vektor regresyon modelleri

ile karsilagtirilmastir.

Anahtar kelimeler: Fonksiyon gosterimi, destek vektér yaklasimi, hata
fonksiyonlari, en kiigiik karesel destek vektor regresyon, eniyileme yontemleri, parca

parc¢a dogrusal fonksiyon, parca par¢a dogrusal kernel, giris-cikis 6bekleme.
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CHAPTER ONE
INTRODUCTION

Function representation problem for a function specified by a finite number of
samples can be defined as finding an approximate function f(:): X - Y which fitsto
a given set {(x°,y*)}:_,of domain-range sample pairs where x* € X denotes the
samples of the independent variable and y° € Y denotes the samples of the
dependent variable. The first step in the function representation is to choose a
model f,,(-): R™ — R™, more precisely building blocks so called basis functions and
the type of combination of building blocks. Model selection is realized based on a
priori information about the structure of the function to be approximated. The second
step is to determine the parameters w € RP of the chosen function model. The
determination of the model function parameters is usually done based on

minimization of an approximation error measure.

Recently, Support Vector Regression (SVR) for function approximation has been
developed by Vapnik (1996) and has been applied to solve regression problems
(Vapnik, Golowich, & Smola 1996; Muller & Smola, 1997; Mukherjee, Osuna, &
Girosi 1997). The superiority of SVR over ANN models is due to ther better
generalization ability which is achieved by minimizing not only the training error but
also anorm of the model parameters to obtain less complex models. SVR solution is
found by minimizing a convex quadratic cost in terms of dua variables
corresponding to Lagrange multipliers (Smola & Scholkoph, 1998). The optimal
function is represented by the combination of kernel functions and a small subset of
all training data called Support Vectors (SV).

A function representation defined with arelatively small number of parametersis
needed especially when a large number of data is involved requiring large memory
allocation and also time consumption. In other words, function representation is a

way of data and model reduction.



In recent years, the sparse representation, which means that the number of basis
function of the model is small, in the prima space, is studied for robust function
approximation by many researchers (Tibshirani, 1996; Chen, 1995; Chen, Donoho &
Saunders, 1995; Olshausen & Field, 1996; Daubechies, 1992; Mallat & Zhang, 1993;
Coifman & Wickerhauser, 1992). The sparsity of the function is obtained by using ¢,
norm unlike €, norm of coefficients in the cost function. As an application of ¢,
norm, Zhu, Rosset, Hastie, & Tibshirani (2003) is realized the classification
problem by using Support Vector Machine (SVM) with £, norm for the cases of
redundant features. The thesis presents novel robust and low complex regression
models by introducing new kind of linear and saturating or linear loss functions for
rejecting or limiting outliers and noises, and ¢, with p <1 “norms” for model
parameters in order to reduce model complexity. Herein, the quotation marks on the
norm mean that ¢, with p <1 is not a norm actually which violates positive

homogeneity condition for p = 0 and triangle inequality conditionfor 0 < p < 1.

Least Square SVR (LS-SVR) which is a modified version of standard SVR
introduced by Saunders & Gammerman, (1998) and extended to the weigthed
version by Suykens, Brabanter, Lukas, & Vandewalle (2002). In conventional SVR,
the e-insensitive loss function is used as the cost function and it is represented by the
inequality constraints. In the LS-SVR, the squared loss function is used as the cost
function and the errors terms are represented as the equality constraints and the
minimization problem is eventually converted to solving a linear algebraic equation
system. Nonlinear identification and modeling, function approximation and optimal
control are among the numerous applications of LS-SVR (Goethals, et all., 2005;
Espinoza, Suykens, & De Moor, 2004; Espinoza, et al., 2005; Suykens, Lukas, &
Wandewalle, , 2000; Jiang, Song, Zhao, Wu, & Liang, 2009; Suykens,et. al 2001,
Espinoza, et. dl., 2006; Wu, 2006; Pelckmans, Suykens, & De Maoor, 2005).
However, the LS-SVR case does not provide a sparse representation. To solve this
problem, data set is partitioned by Hoegaerts, Suykens, Vandewalle and De Moor,
(2005) or hierarchical modeling strategy is applied to data (Pelkmans, Suykens & De
Moor, 2005). To provide sparsity in the dual space, the thesis proposes s-insensitive

version of LS-SVR and provides its associated solutions. The thesis further compares



the solutions of the proposed e-insensitive LS-SVR with conventional Least Square
Solution (LSR) and SVR solution in aqualitative way.

The outline and contributions of the thesis are summarized in the sequel.

In Chapter 2, a background on function approximation and regression is given. A
taxonomy of function representations defined on continuous domains is presented.
Severa interpolation and approximation models and their associated design

procedures are presented in a comparative way.

Chapter 3 presents novel robust and low complex regression models by
introducing new loss functions for rejecting outliers, and £, withp < 1 “norms’ for
model parameters in order to reduce model complexity. The chapter begins with a
description of support vector regression in the most general case ever known and
then presents thesis's contributions providing sparseness in the primal and dual

space.

In Chapter 4, e-insensitive version of least square support vector regression is
developed and its associated solution is compared with standard least square

regression and support vector regression in a qualitative way.

In Chapter 5, a new type of kernel which is called piecewise linear kernel where
feature space is explicitly given with a piecewise affine mapping from the input
space is developed. Chapter 5 also presents how SVR with piecewise affine kernel
can be formulated for function approximation. The newly proposed PWA kernel is

implemented and compared to the other kernel functions for benchmark data.

In Chapter 6, for PWA function representation, an input-output clustering based
design method is proposed and applied to the real ECG data.

Finally, a summary of the contributions of the current work and two possible

future research directions are presented in Chapter 7.



CHAPTER TWO
BACKGROUND

A function f(+): X = Y is a specific relation assigning a unique element from the
range s et Y for each e lement of t he dom ain set X. Functions pr ovide a useful
mathematical framework for signals and s ystemsin w hich analysis a nd de sign
methods are based on a functional form. A function used in defining a signal or a
system is, in rare cases, obtained as an analytical expression in terms of the known
functions by derivations in the context of underlying physical laws. In most of the
cases, functions are given a set of domain-range data pairs {(x%,y®)}%_, where x5
denotes the samples of the independent variable x and y*® denotes the samples of the
dependent variable y. The d ata p airs ar e o btained b y m easurements r ealized in an

experiment or in an observation or by sampling an already known function.

Representing a function, which might be given as a set of data pairs or in any way,
interms of a s etof k nown functions can be cal led as function r epresentation
problem. A f unction representation de fined w ith ar elatively s mall n umber of
parameters is needed especially when a large number of data is involved requiring
large me mory allocation a nd a Iso time ¢ onsumption. In ot her w ords, function
representation is a way of data reduction and c ompression. The noise and out liers
which are unavoidable in any data generation process should be taken into account in
the function representation. This can be done by employing smooth and less complex
functions i gnoring out liers and s uppressing noise as by not trying to fit all ofthe
given data. Another important point in function representation is to obtain a function
which pr edicts ac ceptable range v alues for t he d ata n ot av ailable i n t he function
representation de sign phase. Thati s, t he obt ained f unction s hould h ave good

generalization ability.



Figure 2.1 gives t axonomy of function r epresentations defined on ¢ ontinuous
domains in terms o f; i) discreteness of the domain set in the original form of the
given function, ii) finiteness o f th e d omain s et in th e o riginal form o f the given
function, 1i1) exactness of the resulting function representation iv) the orthogonality
of the basis functions used in the resulting function representation, v) locality of the
definition region for the basis functions used in the resulting function representation,
vi) type of basis functions used in the resulting function representation and vii) type

of the error functions used in the approximation.

Function representations such as F ourier, w avelet and T aylor s eries defined on
continuous, i.e. real, domain sets have a great impact on the analysis and design of
continuous time/space signals and also systems due to their decomposition properties

describing signals and systems as weighted sums of simple signal/system building
blocks.

One of the most widely used continuous variable representations is Taylor series
expansion. It is al ocal r epresentation valid f or i nfinitely m any continuously
differentiable functions and providesa po lynomial r epresentationi nt he
neighborhood of a point. T he truncated version of T aylor series, so called T aylor
formula, g ives a n e xactr epresentation witha remainder fort he k th order
continuously di fferentiable functions. k terms other t han t he r emainder in T aylor
formula constitutea k th order pol ynomial of t hei ndependent va riable a nd
coefficients o f the polynomial are the derivatives o f the functions ev aluated at the
considered point and the remainder term is negligible c ompare to th e p olynomial
terms in the vicinity of the point. The conceptual importance of Taylor series is due
to the fact that any s mooth function can be represented by a pol ynomial function
around a point of interest. Linearization which is indeed a first order special case of
Taylor e xpansion allows e xploiting linear techniques for analyzing systems which

are in fact nonlinear.



Function representations for
continuous domain

| |
| 1
Originally given on Originally given on discrete
continuous domain set domain set
| | | |
| 1 | 1
Finite number of Infinite number
Global Local
data of data
| 1
Orthogonal bases (e.g. Fourier Ort(h:go;]:I Il;:-:ses Exact representations Approximate representations
series, wavelet Series,...) 8. lay (Interpolation) (Regression)
series)
| l_I_l
| | | | | | 1
Non-orthogonal Lagrangg Newtor} Spline interpolation for single Canonical . .
Non-orthogonal bases polynomial polynomial N . . Linear Nonlinear
bases X " . " variable functions representations
interpolation interpolation
_Llnear spll_ne Piecewise afflne Brifrermenel s Non-orthogonal
interpolation representation bases
Quadratic spline Section-wise piecewise affine Polynomial
e : X = S == Neural networks
interpolation representations approximation
Cubic spline Fourier Support vector
i ; - e - )
interpolation approximation regression
B-spline Wavelet Piecewise affine
interpolation approximation regression
Piecewise
==  polynomial
regression

Figure 2.1 A taxonomy of function representations



Fourier series expansion, which is valid for periodical, piecewise continuous and
square integrable functions, gives a d escription in terms of the sinusoidal functions
whose frequencies are integer multiple of the frequency of the periodic function. It
reveals the frequency content of the function as providing the amplitude and phase
information of the constituting frequency components. The spectral coefficients, i.e.
the Fourier coefficients, can be found easily by using the orthogonality of the bases
functions, i.e. the complex exponential functions associated to the harmonics, in the
inner product space defined by an integral. Although Fourier series is a very useful
tool for understanding which frequency components exists and what their amplitudes
and phases are, it does not give the information related to the time evolution of the
frequency content. T his in sufficiency is removed by the wavelet series e xpansion,
which i s a nother g lobal r epresentation de fined b y or thogonal ba ses. T he w avelet
series provides time-frequency s pectra carryingi nformationnot onl yont he

frequency spectra but also on its change in time.

Thea bove continuous representationsr equire k nowing an analytical
representation or a compact form for the original function. However, their truncated
versions can well be used for the c ases w here functions are given by data pairs
obtained b y m easurements 1 n € Xxperiments/observations or b y s ampling froma

continuous function for some purposes such as for computer simulations.

Function representation for a given discrete and finite set of data is a problem of
finding a function which is defined in terms of a set of suitable functions with some
desirable features and fits to the given data together with good prediction ability for
data unseen beforehand. Fitting to data might be in an exact sense, i.e. the graph of
the function may be required to pass all of the data points. In the other case, fitting is
non-exact, i.e. the graph of the function is not required to pass all of the data rather it
isrequired to be as close as possible to all of the data. The latter case is called as

function approximation while the former is called as interpolation.



The que stion of e xistence of an interpolator for single variable real data has a
positive an swer: O ne ¢ an al ways construct a k th order pol ynomial with r eal
coefficients passing through any given set of (k + 1) data points. As described in
Section 2.1 .1, s uch ap olynomial ¢ anbe foundb y solvingt he ] inear a Igebraic
equation s ystem d efined by V andermonde m atrix w hich is usually ill ¢ onditioned
yielding erroneous polynomial coefficients when taking its inverse. The mentioned
numerical 1 nefficiency could be ove rcome b y employing methods not r equiring
taking i nverse of the Vandermonde m atrix. Newton a nd Lagrange i nterpolations
which a re p resented i n S ection 2.1.2a nd S ection 2. 1.3, r espectively, a re t wo

interpolation methods to mention.

Determination of pol ynomial c oefficients is subject to round of f and over flow
errors w hen ¢ alculating t hem i n a ny i nterpolation m ethod. T he e rrorsi nt he
coefficients related to the high-order terms yields polynomials too much away from
the original function. A solution to overcome this problem is described in Section
2.1.4 which employs piecewise polynomial interpolation techniques including linear,
quadratic and cubic splines and also canonical representations for piecewise linear

functions.

On the other hand, the interpolation representations are not suitable when there
exist noise and outliers and also when there exist large numbers of data requiring
large memory allocation and time consumption. Another important point in the exact
function representation is to obtain a function which predicts acceptable range values
for the data not available in the function representation de sign phase. That is, the
obtained f unction s hould ha ve good generalization a bility. A m ore a ppropriate
strategy for these cases is to employ smooth and 1 ess c omplex functions i gnoring
outliers and suppress noise as by not trying to fit all ofthe given data. One way to
achieve this is to derive a known functional form that minimizes the error between
the finite set of data points and the known functional form which is not required to
pass all of the data but rather desired to be as much as possible close to the data. This
known functional form is called function approximation to the given finite set of data

and is detailed in section 2.2.



A part o fthe representations described above for finite num ber of data can be
extended for infinite number of data case. Linear regression e xpressed in terms of
auto-correlation and cross-correlation functions defined e ither for d eterministic or
random but both infinite dur ation signals ¢ onstitutes an e xample in this direction.
Infinite number of data case is out of the scope of this thesis which actually focuses
on the optimization theory in a deterministic framework as the main m athematical
tool. H owever, t he f inite num ber of da ta r estriction i s qui te a cceptable i n m ost
applications since signals and systems realized on a machine with finite word length
such as today digital computers are defined on discrete and finite domain sets if no

transformation is applied to map infinite data into a finite representation in a way.

2.1 Exact representations (inter polation)

Interpolation is the process of finding a function that passes directly through a
given finite set o f domain-range data p airs. It is well known th at one c an al ways
construct an k th order polynomial with real coefficients passing through any given
setof (k + 1) real data points. It should be noted that a pol ynomial of order less
than k could be sufficient when some of the point coincide. There are many different
interpolation methods (equivalently saying exact representations) differing from each
other either in the calculation of defining coefficients or in the kind of chosen basis
function. This section gives the most common ones of these exact representations:
Vandermonde M atrix pol ynomial r epresentation, Newton pol ynomials, Lagrange

polynomials, Spline interpolation and piecewise linear canonical representation.

2.1.1 Determining Coefficients of an interpolating polynomial (Vandermonde

matrix)

Polynomial interpolation can be realized for a real function f;(-): R — R in a way

described by the following theorem.

Theorem 2.1 Forany givens eto f (k +1) datap airs {(x°,y*)}¥1, with

x%,y% € R there exist aunique k th order polynomial f; (-) satisfying
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fox) =S, s€{12,..k+1} 2.1)

fi(X) = wo + wyx + -+ + wyxk, (2.2)

where, the real coefficients of the polynomial in the Equation (2.2) can be calculated

by taking the inverse of the Vandermonde matrix W given in the Equation (2.3).

I I ¢

W= 1 (x:Z) (xf)" (2.3)
i (xk.+1) (xk-.l-l)k

Pr oof

The conditions in (2.1) lead to the following system of linear algebraic equations in

terms of the w; coefficients:

fGD) =y =wy+w(x1) + -+ w (a1
f(xz) =y2 = wy + wy(x2) + -+ w (x2)k s

f(xk+1) — yk = w, + Wl(xk+1) + -4 Wk(xk+1)k

It can easily be seen that the system of linear equations in (2.4) has a unique solution
if and only if the Vandermonde matrix in (2.3) is invertible and that the polynomial
coefficients w;’s can be calculated in a unique way by taking the inverse of W. The
necessary and sufficient condition for the invertibility of the Vandermonde matrix is
the distinctness of the data points of x°’s. When some of the data points are identical
the system of linear equation of in (2.4) becomes underdetermined and still solvable.
Herein the solvability follows from the fact that a function assigns a unique image
for two identical points in the domain space. Thatis, x° = x" - y* = y” forany
s,r € {1,2,-++,k + 1} yielding the s’th and r’th equations in (2.4) are identical. The
proofis c ompleted by the obs ervation of that distinctness o f x° is necessary and

sufficient to the invertibility of W matrix.
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2.1.2 Newton polynomial interpolation

Taking inverse of the Vandermonde matrix is numerically an inefficient way of
determining c oefficients of polynomial interpolation e specially for large d ata sets.
This problem could be overcome by employing Newton and Lagrange interpolation

methods not requiring taking inverse of the Vandermonde matrix.

In order to get a polynomial interpolation to (k + 1) data pairs {(x*, y*)}*_, with
x%,y° € R, one can prefertouse the k th order pol ynomial formin(2.5)asan

alternative to the k th order polynomial fi (x) = wo + wyx + - + wyxk.

fi(x) = bg + by (x = x°) + -+ by (x — x%) (x — x1) -+ (x — x71) (2.5)

The equivalence of these two polynomial forms of the same degree can be easily

seen by observing the solvability of a;'s in terms of b;'s and vice versa:

wo = bo—by (x%) + -+ + (=1)*b (x®) (x) -+ (x*71)

Wi—q = bg_1—bp(x® + xt -+ x*71) (2.6)

Wk=bk

Fora givens etof (k+1) datapoi nts{(x%,y*)}*! withx%,y*€eR,t he
coefficients by, by, :+, by can be obtained by the following recursive procedure so
called “f inite d ivided d ifference”. T he fi rst order finite di vided di fferencei s

described by:

INACORPICD 2.7)

xt—xJ

flxt %]

The following second order finite divided difference represents the difference of two

first divided differences.

_ f[xi'xj] _f[xj'xk] (2.8)

flxt %7, xK]:
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Similarly, the k th finite divided difference is:

~ f[xk,x""‘l,---,xl] _f[xk—l‘xk—Z‘“.JXO]
f[xk‘xk 11"'1x0]:= xk_xO (29)

These differences can be used to evaluate the interpolation coefficients of (2.5):

by = f(x°)
bl f[xl,xO]
b, = f[x?% x1,x°]

bk = f[xk‘xk—l‘___JXO]

(2.10)

Then, the pol ynomial i nterpolation ¢ an be f ound by substituting the obtained
coefficients in (2.10) into (2.5):

fie(x) = f(x®) + (x = x°) f[x", x°]
+ (x — x9)(x — x1) f[x?, x1,x°] - (2.11)

+ (x —x0)(c— x1) o (o = KT fack, xF e x0]
2.1.3 Lagrange polynomial interpolation

The Lagrange pol ynomial i nterpolationi s a reformulation of t he N ewton

polynomial interpolation formulation. Observe that the first divided difference:

— f(xl) - f(xo) (212)

flxt, x°]

can be reformulated as:

_ 6D G 213

xl_xO xO_xl

flxt, x°]

First order Newton interpolation polynomial can be given as follows:
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flt) = f(x%)

R (x — xo) (214)

fi(x) = f(x°) +

Using (2.13) in (2.14) yields:

fi(0) = F(x°) + ; F) + ’;1 £(x%) (2.15)

— x0 x0 —

Observe that (2.15) can be rewritten as in the so called Lagrange form:

1 0

filx) = f(xH (2.16)

f(x%) +

X—X
0 — 1 x

X—X
x 1 _ 0

Then, the second order Lagrange form is obtained as follows.

(x —x1)(x —x?) (x —x%)(x —x?)
CaEra e VAR cepp g VACR)
(x —x%)(x —x)
(x? —x%)(x? - xl)f(x

f2(x) =

%)

The k th order version is finally given in (2.17)

k x — x/J
£ = ) LCOF (%) wih  Li0D= Hm 2.17)
$=0 ji

2.1.4 Spline interpolation for single variable functions

Calculation of polynomial coefficients is highly sensitive to round off and over
flow errors in the above cited interpolation m ethods. S o, the resulting polynomial
interpolation may deviate too much away from the original function due to the errors
especially 1 n t he co efficients r elated t o t he h igh o rder t erms. To ove rcome t his
problem, one may prefer to employ a set of locally defined low order polynomials
which ar e co nnected t o each o therinas mooth w ay. In ot her w ords, one m ay

interpolate to each subset of the considered data set by a locally defined low order
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polynomial and concatenate t hese 1 ocal i nterpolators i n s uch a w ay providing a
sufficiently smooth global interpolator. Corresponding a straight line to each pair of
successive points yielding eventually a piecewise linear and continuous function is
the s implest t ype of such s mooth pi ecewise pol ynomial i nterpolators s o called as
spline functions. These i nterpolators di ffer f rom t he ot her t ypes o fp iecewise
polynomial i nterpolators with the pr opertyt hat,for a k+ 1 th orders pline
interpolator, they are smooth in a certain degree, say k, at the data points where two

splines meet.
2.1.4.1 Linear spline interpolation

The s implest f orm o f spline in terpolation is the | inear s pline in terpolation
employing first or der | ocal pol ynomials which is equivalentt o piecewise linear
interpolation and also to piecewise linear canonical representation (Chua & Kang
1978). Int his 1 nterpolation, t wo s uccessive poi nts de fine a linear f unction. The
resulting s pline function is n ecessarily a c ontinuous function since e ach pointis
shared by two successive local regions and also two successive local linear functions.

k+1

Given a finite set of data pairs {(x°, y*)}¥*! with x%,y°® € R and with the order x* <

x%? <o < x* < XM the first order splines f{5)(x) can be defined as:

s+1y _ S
fioy () = F(x°) + f(xxﬁz _ i(x Jx—x%),  se(lz - k+1) 2.18)

The linear spline is continuous at each data point:
fioy(x%) = fsay(x®),  s€{12, k+1} (2.19)

To see (2.19), one can evaluate (2.18) at the s th and s+1 th sample points:

feo@) = f(x®) + ! (xxﬁz :£ f’“ ) (x—x5)=y* (2.20)

F*) = fxH)

fisrn () = FE) + T (=) =y

2.21)

N
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Although | inear s pline interpolators are s imple and c ontinuous, they are not
sufficient when differentiability is n ecessary. A point w here tw o s plines me et is
called knot or junction point or break point. For the linear spline case, any pointis
also a knot. However, this is not true for higher order splines. In general, the slopes
of the lines defining lo cal lin ear functions change at the s o cal led knot resulting
discontinuity of t he first order derivative o f'th e function. This pr oblem c an be

overcome by introducing higher order polynomial splines.
2.1.4.2 Quadratic spline interpolation

Quadratic splines associate a second order polynomial for each interval defined by

four successive data points. Let the second order polynomial be represented as:
fey(®) = as + bs(x) + cs(x)%, s€{12,-,k+1} (2.22)

For (k + 1) datap oints, t here ar e k intervals and consequently 3k unknown
constants (a’s, b’s and c’s) to evaluate. T herefore, 3k equations or c onditions are
required to e valuate t he unknow ns. T he required e quations are derived within the

following steps.

1. The function should b e c ontinuous at e ach knot e xcept for t he t erminal one s,
namely at the interior knots, so adjacent polynomials must have the same range

values at a specific knot:

f(s)(x) =as_ 1+ bg_1(x°) + Cs—l(xs)z (2.23)
fioy(x) = as + bs(x®) + cg(x*)? (2.24)

for s = 2 to k. Since the num ber of interior knots is k — 1, t hen t he ¢ ontinuity

Equations in (2.23) and (2.24) provide, in total, 2k — 2 conditions.

2. The evaluation of firsta nd 1 ast f unctions at the te rminal p oints yields th e

following two additional equations:



16

f(s)(xl) = a; + by (x") + g (x)? (2.25)
f(s)(xk+1) = Qperq + Drpr (X + g (612 (2.26)

With t hese t wo a dditional e quations, t he cumulative num ber of equations

becomes 2k — 2 + 2 = 2k.

3. Inordertoreach as mooth function, which h as a ¢ ontinuous derivative, the

derivatives of two adjacent polynomials should be equal at the interior knots:

fisy(x°) = bs_y + 2¢5_1x° (2.27)
fis)(x°) = bg + 2¢4x® (2.28)

for s = 2 to k. So, the smoothness of the first order derivatives of the quadratic
spline interpolator provides k — 1 additional conditions. With these new additional

equations, the cumulative number of equations becomes 2k + k —1 = 3k — 1.

4. In order to solve 3k unknown (a’s, b’s and c’s) coefficients, one more equation is
needed. The s olvability can be achieved by assuming the s econd derivative as
zero at the first data point (Equivalently by assuming first two points as connected

by a straight line.):
2c, =0 (2.29)

One can solve these 3k linear e quations for 3k unknown s pline i nterpolator
parameters by any numerical method developed for linear algebraic equations. For
the case of three intervals, namely four data points, the system of equations can be

given as in the following matrix form.
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((x3)2 22 0 (X3) 04 0 1 0 Ay ((y3)—
0 (X) 0 0 (X) 0 0 1 as (y4-)
0 0 (JCZ) 0 0 1 0 O by (yZ)
0 (x3)? 0 0 (x* 0 0 1|[b2| |¢y3
—-2(x?) 0 1 -1 0 0 0 offbs| (}8) (2.30)
(x2)? 0 0 «» 0 0 1 ol |®
0 o @) o o 1 0 ol |oYH
26 208 0 1 -1 o0 o ol Lo

2.1.4.3 Cubic spline interpolation

Cubic s plines are derived by concatenating a s et o f 1 ocally d efined third or der

polynomials. The polynomial for a specific interval can be represented as:
f(s)(x) = a5+bs(x) +C5(x)2 +dS(X)3, SE {1;2;”';k+ 1} (2-31)

For (k + 1) data p oints, there are k intervals and, c onsequently, 4k unknown
coefficients (a’s, b’s ¢’s and d’s) to be evaluated. Just as for quadratic splines, 4k
equations are required to evaluate the unknown coefficients. These 4k equations are

given as follows.

1. The function va lues of two adjacent local polynomials mustbeequalatthe
interior knots. (This condition yields 2k — 2 equations.)

2. The first a nd la st local pol ynomials must pa ss t hrough t he e nd knots. ( This
condition yields 2 equations.)

3. The first order derivatives of two adjacent local polynomials must be equal at the
interior knots. (This condition yields k — 1 equations.)

4. The second derivatives at the interior knots must be equal. (This condition yields
k — 1 equations.)

5. The second derivatives are zero at the first and last knots. (This condition yields 2

equations and means that the first and last functions are straight lines.)
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The 4k coefficients ¢ an be s olved f rom the a bove g iven 4kequations. An
alternative way is presented below requiring the solution of only equations for k — 1

(reduced) coefficients.

The f irst s tep in th is derivation ( Cheney & Kincaid, 1985) i sba sedont he
observation of the fact that the second derivative within each interval is a straight
line since each pair of knots is connected by a cubic polynomial. The polynomial in

(2.31) can be differentiated twice to verify this observation as:
(x) = 2¢cs + 6dsx (2.32)

Now, the linear functionin (2.32) can ber epresented by a f irst order L agrange

interpolating polynomial:

N xS—l

X X
" — " -1 1
[0 = = FHO™) + = fH () (2.33)

Where, f('s') (x) is the value of the second derivative at any point X within the s th

interval.

Then, an expression for the original function f(x) can be obtained by integrating

twice the linear second order derivative in (2.33).

_ (xs - X)3 ' S— (x - xS—1)3 " s
fro(x) = mf(s) (x5 + _6(x5 — x5 1) fs)(x®) + c1x (2.34)
+c,

However, the expression in (2.34) contains two unknown integration constants (c;
and c,). These constants can be evaluated by using the fact that f(x) must e qual

fisy(x*™1) at x*~1 and f (x) must equal f{5)(x*) at x°.

On the other hand, the function should give the range value y* at the data point
xS .

f(xo) =y0af(x1) =y11"'1f(xs) =ys
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So, one can get:

(he)®
fio(x®) =y° = Wf(s)(xs) + c1x° + ¢ (2.35)
(hs)® _, (2.36)

f(s) (xs—l) = ys—l = 6h5 f(s) (xs—l) + Clxs_l +C;
Where, hy = x5 — x571,
To find c;, one can subtract (2.35) from (2.36):

ys—l 5 — (h5)3

- 6—hs[f('s')(xs_1) — [l ()] = c1hs

_ s—=1 _ ,,S h
¢, = 6% - Y )_l_ZS[f(rSr)(x_q—l)_f(;')(xS)] (2.37)

To find c,, one can substitute ¢, into (2.35)

hS 2 1 - STh—y* hS " -1 1
C=y° - ( 6) fio(x*) — <¥+Z[f(s)(xs ) — f(s)(xs)]>x5

c, can be rewritten as in the following form:

ys—lxs ysxs—l h . B ., B
€y = - — = [fi s xS — fih (xS (2.38)
hs hs 6

To find the cubic spline function, one can substitute the integral constants (c; and c;)

to (2.34):
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froy®) = %}Cl))(x e % x— x5-1y5 (yh_—y)x
+ hg £ Ge™) = £ (o) + % :x _Y sz:_l
A e — f )]
o) = 2Dy JOOD oy
* xi(f:—)1 o (xs—l)(:s - xs_l)l (xS = x) (2.39)
e S e [

The representationi n (2.39) provides a c ubic s pline i nterpolation f ormula.
However, the Equation (2.39) is a much more complicated expression for the cubic
spline for the s th interval compare to (2.31). (2.39) contains onl y t wo unknow n
coefficients which are equal to the second derivatives f(,s,—l) (x®) at the beginning and

f('s') (x®) at the end of the interval. Hence, i f one can de termine the proper s econd

derivative at each knot, (2.39) provides a third order polynomial that can be used to

interpolate within the interval.

The second derivatives can be evaluated by using the condition of that the first

derivatives at the knots must be continuous:

fis—1)(x®) = f5(x®) (2.40)

To find the first d erivative, one can differentiate the function in (2.39). Thus, the

derivative function f('s) (x) in the s th interval is given as:
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(xs _ X)2 (x _ xs—1)2 . .
206 —x° 1) mf(s)(x )

_ (f(xs_l) - f(x%)) (2.41)

xs — xs—l

fio(x) = - fio(e*™H +

x5 —

xs—l
t— [ es™) — froy ()]

On the other hand, f(,s—l) (x) in the interval s — 1 is given as:

, (xs—l _ x)z . . (x _ xs—2)2 . .
fo-00) = — 3 ey -0 &) +orm ey oD
o

xS—l _

xS—Z
A — [fi(x572) = fiy (¥ ™1)]

s—1;

The value of f¢;_;y(x) at the point x°~* is

(xs—l _ xs—l)z
z(xs—l — xs—Z)
(xs—l _ xs—2)2

+ 2(xs~1 — xs—Z)f(’S,) (1) -

fls—ny(x*™1) = — fls—1y(x*™%)

FED - &)

xS—l —_ xS—Z

xs—l _ xs—z
+——— & = 5]

S=1 __ ,.5—2 s—2y o1
ey = E D ey U 2 TG
(x5t —x57%) (2.43)
+ Tf('s') (x572)

s—1 :..

The value of f;,(x) at the point x5~ is:
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(xs _xs—1)2 . . ( s—1 __ s—1)2
mf(s)(x D+ 2(xs — x571)

UG Z ) ko

floGes™) = - £ G5

[f(lsl) (571 — f(’s’) (xs)]

xS —xs571 6
S s 1 s—1 s
frey = ~E T ey )xsffx )
s -1 (2.44)
X" —X
—f(’s’)( x*)

According to (2.40), both f(;_;y(x*™") and f,(x*™") take the s ame value at the

point x*~*. That s fi;_;y(x*™") = fi;(x°~1), so one can get:

(xs—l xS~ 2)

(F*2) = fx*” 1)) (=272

3 fr/( s— 1) o S—— 2 f(’sl)(xs—Z)
(x*—xh , o5~ (f&*H = f(x%)
—f(S)( 1) xS — xs-1

(xs xS~ 1)

- —f('s') (x*)

(xs—l s Z)f” (xs 1)+2f (xs 1)(x _xs 2)+(x _xS 1)f (XS)
_ () — f6 ) | 6(F () = f ) (245)

xS~ _x52 x_xsl

If (2.45) is written for all interior knots, then k — 1 equations involving k + 1
unknown second derivatives are obtained. The problem reduces to k — 1 equations
with k + 1 unknowns since the second derivatives at the end knots are zero for cubic
splines. Thus, the above equations constitute a system of al gebraic equation system
which can be written in matrix-vector form AX=B where X represents the vector of

coefficients f(5) (x*), B depends on y* and A depends on x*. Then, one can substitute

the coefficients into (2.39), thus the cubic spline is found for the interval (x5~ 1, x5).
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2.1.4.4 B-spline interpolation

Splines given in the last two previous sections are constructed by using piecewise
polynomials satisfying certain degree of smoothness. Another type of splines, called
B-splines (Schoenberg, 1967), is p resented in t his s ection. In c ontrast t o s plines
described i nt he p revious s ections obtained by co ncatenating I ocally defined
functions, B-splines is a linear weighted sum of linearly independent bases (spline)
functions which are defined by some parameters (order o f spline functions and the
number of knots) and they span the piecewise p olynomial smooth function s pace.
Moreover, B -spline r epresentation i s a p arametric r epresentation n ot an ex plicit
representation g iving dependent v ariable x,y € R int erms of t he i ndependent
variable t € R. Instead, it provides a representation for the dependent x, y variable

in terms of a parameter t € [0, 1].

B-splines with its distinguishing features have a number of advantages over the
piecewise p olynomial representations ( de Boor, 1978; S chumaker, 19 81). Spline
bases locally support the function to be interpolated that is the function used in the
interpolation can be locally tuned in order to fit to the function given by the sample
data by adjusting defined basis functions. The sum of the weights of the basis splines
is ¢ hosen a s uni ty f or each da ta poi nt w hich i s indeed s caled b y t he f unction
value y*, so yielding t he de sired function value at the c onsidered data point. The
most important feature of B-splines is in the calculation of their parameters by using

a recurrence relation in a numerical way (Cox, 1972; de Boor, 1972).

The B-spline is a parametric representation F(+): [ tx, t,_x] € R = R? defined by

a linear combination of B-splines basis functions of degree k and is represented by:

L
[;] — F(t) = Z PbE(D) (2.46)
s=0
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N

Where, P, = (;S) are called control points or de Boor points or coefficients (like

weights in n eural n etworks), w hich a re ¢ omposed of as et o f finite d ata p airs
{(x%, )}, with x5,y € R and b¥(t) is the normalized B-spline basis function of
order k. The obtained B-spline interpolation function F(t) degree is k — 1. As seen
from E quation (2.46), B-spline interpolation function F(t) is linear with respect to

the coefficients P, but nonlinear in t due to nonlinearity of the basis function b¥ (t).

A knot sequence tg may be defined as follows:

0, if s<k
t,=<s—k+1, ifk<s<lL (2.47)
L—k+2, if s>L

These k nots s atisfies th e r elation tg < t;,; where s € {0,1,2,---,L} and t € [t,

tr—kl-

Illustrated example 1:
Let be given L = 5. For k = 1 and k = 2, the knot values are calculated by (2.47) as
in the Table 2.1.

Table 2.1 The knot values fora givenk =1landk = 2,and L =5

L=5] t |k=1]k=2
s=0 to 0 0
s=1 t; 1 0
s=2 t, 2 1
S=3| t 3 2
s=41| ¢ 4 3
S=5| o 5 4
te 6 5
t, - 5

As shown in Table 2.1, the number of the knot sequence t; depends on the order of

the spline.
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For the s’th normalized B -spline ba sis f unction of de gree m, t he ba sis f unction

b¥(t) is defined by Cox - de Boor recursion formulas:

1, ifts<t<t .
lﬁ@)={0 -fstnmeEé withs € {1,2,---,L} (2.48)
bg™ (t)
t—ts - ls+m+1 — € - ,
— b () + —————— b (1), ifts<t<t
= {ts+m — s ’ tstm+1 — Us+1 s fts SH (2.49)
0, otherwise

S € {011121'“1[‘}1 m € {1;2;,k} Wlth 0/0 = 0

Note that s + m + 1 cannot exceed L + k + 1 which the limits above recursion
formula. Based ont he knot sequence t,, the B-spline is said to be either uniform
(knots are equidistant) or nonuniform (knots are not equidistant) B-spline.

Illustrated example 2.1 Consider t he case k = 1. The domain of B-spline b asis
functions b¥(t)’s obtained by using the knot sequence in Table (2.1) is shown as in

the following Table 2.2.

Table 2.2 The domain of B-spline basis functions b¥(t)’s fora givenk = 1,and L =5

L=5k=1
A
1 g
1 0<t<1
10y — (L sSts
bo(t) = {O, otherwise ) s S S m—
1 1<t<?2 0
1 —_ ) — — - A |
bi (1) = {O, otherwise '
0
1, 2<t<3 1 T T
1 — ) —= ¥ = !
bz (6) = {O, otherwise 0 ——
1 3<t<4 :
1) — (1 sSts 0 ‘
b3(t) = {O, otherwise L YTV 1
0 ‘
170y _ (1, 4<t<5 : ‘
bi(t) = 0 otherwise 0 23 s 67
X . X
bl(t)z{l, 5<t<6 « i (2-3) (3-4) «
> 0, otherwise @2 @)
X o ! X
,(0-1), | ! ! (5-6),
{o:ofl t2 fs f4 ts £6:1
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Illustrated example 2.2 Consider t he case k = 2. The dom ain of B-spline b asis
functions b¥(t)’s is shown as in the following Table 2.3. Finding parametric function

F(t) is the continuous piecewise affine function in terms of B-splines.

Table 2.3 The domain of B-spline basis functions b¥(t)’s fora given k = 2,and L =5

2 _ t7to 41 ta—t 11 1, t=20
by(t) = 7=, bo () + 2= b1 (0| bi(o) = {O, otherwise
t—0 1-t
0 1 2 bi(6) = {O, otherwise
_{1—LOSt51 L 1<i<2
L 0, otherwise 1)y=1>" =" =
o . by (t) {O, otherwise
2 — —l1 1 37 1
buo-;;;mayhrhma)b%ﬂ_{L 2<t<3
_ _ 3270, otherwise
= Z2bH(t) + = b3(t) L 3<i<y
1y =L =t=
3 {t, 0<t<1 by (t) = {O, otherwise
2-1),1=st=<2 L 1, 4<t<5
t—t ta—t bs(t) = {O otherwise
b3 (t) = —=b3(t) + ——b3(t) '
t3—ty ta=t3 L=5k=2
= b +bi0 | 4
1

_{@—1) 1<t<?2
(3 -0), 2<t<3
t_

b3(1) = ;=2 b3(1) + - b3(D)

ty—

] RO RO
5>
|
|
|
|
|
|
|
|

= Z2p1() + Z5h3(0)

_{@—2) 2<t<3
(4 -0, 3<t<4

b3() = 7= by (1) + === bA(0)
5744 67 L5

o RO PO

= =Zhi(0) + SbL (D)

_{@—3) 3<t<4
“l(5-1) 4<t<5
t_

bi(t) =

ts ;1 t;—t 1
o=

141 5-t
=—bs(t) +=-0
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0, otherwise ‘
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2.1.5 Canonical representations

A canonical representation of a function can be defined as a representation which
is the minimal a nd the most c ompact form for t he function requiring min imum
number of parameters t o de fine t he function. This s ection presents two can onical
representations: One f or p iecewise affine co ntinuous functions and t he other for
continuous functions w hich ar e p iecewise af fine when hol ding fixedallo fthe

variables except for a chosen one.
2.1.5.1 Canonical representation for piecewise affine functions

One Dimensional Case:

A Piece-Wise Affine (PWA) function f(+): R — R with finite jump discontinuities is
shown in Figure 2.1 where a PWA function with L breakpoints has L + 1 intervals
Io 2 (—o0,x1], Iy & (x4, %3], ...l —q 2 (x,-1,%,], and I, 2 (x,,0) in each of which

the function is affine and m; denotes the slope of segment j.

X

—_— N -~ - ~ B .
IO 11 12 13 14- IL—l IL

Figure 2.1 A piece-wise affine function f(x) with finite jump discontinuities with
samples are breakpoints
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As stated in the following theorem proved by (Chua & Kang, 1977), any PWA
function described above has a compact representation in terms of absolute value and
sign functions. This representation is called as canonical since it is shown in (Chua &
Kang, 1977) that it needs minimum number of parameters necessary to describe the

function in a complete way.

Theorem 2.2 [Chua & Kang 1977]: Any single variable single valued P WA
function f(:):R — R with at most L finite jump discontinuities at the L breakpoints

Y1 < Y2 < - <y, can be represented uniquely by the expression:

L

fx) =ay+a;x+ Z{bj | X =Y | + ¢jsign(x — yj)} (2.50)
j=1

Where, | . | denotes t he absolute va lue function, sign(-) denotes the signum

function and y; are equal to x*® breakpoints and the parameters ao, a,, bj, ¢; € R?

can be calculated as follows:
a; = (m©® +mWy/2
by = (mP —mU=)/2, withj € {1,2,-+,L}

0, if f(-)is continuous at the breakpoint x = y;

=11 (2.51)
“= z[f(x;') - f(x7)], otherwise
L
ag = - i ]/] —CngTl ]/]
f© = ) [b] vl Dl
=1
0

The term ¢jsgn(x — y;) in (2.50) disappears when the function is continuous.
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Theorem 2.2 providesa w ayof c omputingt he coefficients ofacan onical
representation of a PWA function in terms of the breakpoints and the slopes of the
segments where, a slope associated to an interval can be calculated as the ratio of the
range deviation over the deviation in the breakpoints belonging to the interval. The
canonical representation given aboveis a global r epresentation not restricted to a
sub-region of the domain space but valid for the whole domain. The absolute value
and sign functions together with the addition and scalar multiplication are the sole
algebraic op erations used in defining the P WA canonical functions. T hese features
make the P WA canonical functions efficient in many as pects. T he analyses of the
systems defined by PWA canonical models can be realized by the algorithms easy to

be programmable and they require minimal amount of storage.

The observation of the above compact global absolute value based representation
of one di mensional P WA f unctions ledt o thede velopment of c anonical

representation for multi-variable PWA functions by Chua & Kang [1978].

n - dimensional case:

Chua a nd K ang extended one di mensional ¢ anonical r epresentation into hi gher
dimensions by introducing the following canonical representation for n-dimensional
m-valued PWA continuous functions that are affine over convex polyhedral regions
constructed by lin ear p artitions. Herein, a 1 ocally de fined affine functioncanbe
given by a Jacobian matrix Jp, € R™*" and offset vector wg, € R™ as f(x) = Jg x
+wyg, for x € R, C R™ where R, = {Xx € R"|a]x—y; 2 0Vi €land a]x — y; <

Ovi € I} for a specific index set I € {1,2, ..., L}.

Theorem 2.3 (Necessary and sufficient condition) [Chua & Kang, 1988,
Giizelis & GoOknar, 1991]: A continuous P WA function f(:): R™ - R™ defined

over a | inear p artition determined b y as et o fh yper-planes aij —y; =0 with

Jj € {1,2,...,L} has a 1-level canonical representation.

L
f(x)=a+Ax+ij| alx—v;| (2.52)
=1
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witha ,b; € R™ a; ER" A€ R™" and y; €R' ifandonlyifits atisfiesthe
consistent va riation pr operty. T he consistent va riation pr operty m eans t hat t here
exists a unique q; € R™ for each hyper-plane such that the variations in the jacobian
matrices for each pair of n-dimensional regions Rj‘; and Rj; separated by the hyper-

plane @] x — y; = 0 are the same:
Tu, ~Jay =g, = Jw, = iy, = Ja, = 4505 J € (12, 1) (2.53)

Where, J RY, and J R; denote t he j acobian m atrices of t he r egions R;{ and Rj;.

af

'x—y; 20 for x € R}; and C{]TX —v¥; < 0 for x € Rj;. The intersection between

Rj‘; and Rj; must be a subset of an (n — 1)-dimensional hyperplane and can not be
covered by any hyperplane of lower dimension.

J

As the one in (2.50), the canonical representation in (2.52) is global in the sense

that it is not valid for a specific domain region but for the whole domain covering all

the convex pol yhedral regions separated by the h yperplanes C{]TX— y; with j €
{1,2,...,L}

Although the canonical representation (2.50) can represent the whole set of one
dimensional PWA functions f(-):R* - R™ including di scontinuous one s, the
representation (2.52) o nly c overs a s ubset of n-dimensional continuous P WA
functions f(-): R™ — R™. T he consistent va riation pr operty is indeed satisfied for
any kind of continuous P WA functions w hose domain is a non -degenerate | inear

partition. But, this is not always true for degenerate partitions.

Definition 2.1 (Non-degenerate Partition) [Chua & Kang, 1988]: A linear
partition determined by the hyper-planes
ajx—y; =0, je{12,..,L}
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iss aidt obe nonde generatei ff or everys etof 1 inearly dependent
vectors {&;,, Ay, -+ ot } with k € {1,2, ..., L} the rank of [a;, &y, - @] is strictly

less than the rank of the following (n + 1) x m augmented matrix by y;;’s.

dip Qi “ik]
Yiin Yiz - Yik

A lin ear p artition c ontaining th ree lin es in tersecting at a ¢ ommon p oint is an
example of degenerate partition in a 2 -dimensional space. This fact can be seen by
the obs ervation t hat 2 -dimensional n ormal v ectors a ssociated to the three lines is
necessarily linearly dependent and the offsets of the three lines are consistent, so they
do not increase the rank of the augmented matrix in Definition 2.1. A linear partition
containing t hree pl anes having a common i ntersection of di mension 1 is a nother
example f or de generate pa rtitions. A non -degenerate lin ear p artition is a lin ear
partition where the dimension of the intersection of any i hyperplanes each of n — 1
dimensional must be strictly less thann — i + 1 . The importance of nondegerenerate
linear p artitions r elies o n th e fact th at th e c onsistent v ariation p roperty is always
satisfied for P WA c ontinuous f unctions de fined ove ra nonde generate | inear

partition, so ensuring the existence of the canonical representation (2.52).

Theorem 2.4 (Sufficient condition) [Chua & Kang, 1988]: A continuous PWA
function f(+): R™ —» R™ defined over a linear partition determined by a set of hyper-
planes aij —vy; =0 with j € {1,2,...,L} has a | -level canonical representation of
the form (2.52) if the linearly partitioned domain space is nondegenerate.

J

The 1-level canonical representation (2.52) has been extended by several studies
in the literature [ Kahlert & Chua 1990; Giizelis & Goknar, 1991; Unbehauen, 1994 ;
Julian, Desages & Agamennoni, 1999 ] into hi gher-level c anonical representations.
These higher level representations employ bases functions defined by different levels
of nested absolute value functions for handling inconsistent variations of each pair of
the J acobian m atrices and o ffset v ectors th at d efine lo cal a ffine functions in the

neighbouring regions seperated by the same hyperplane.
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A 2 -level ¢ anonical r epresentation givenin ( 2.54) proposed by Giizelis and
Goknar (1991) extends the representation (2.55) into the piecewise affine partitioned

domain spaces which indeed constitute a special class of degenerate linear partitions.

f(x) =a+ Ax
L
+ij| ajx—y]|
= (2.54)
P L
+ch BLTx+6i+ZdU| alx— ;|
i=1 j=1

The 1-level representation (2.57) which uses the conventional hyperplanes
Hi={xeR" afx—y;=0},j €{12,..,L},@ ER™y; ER, (2.55)

and also piecewise affine hyper-planes

Si={xXeRrR"¥;(x) =0}i€e{1,2,..,P} (2.56)
Where
Yi(x) = BTx+8; + 2o dij| alx— ;). (2.57)

For the canonical r epresentation (2.54), the c onsistent variation property [ Chua
and Kang, 1988] or, in other words, the consistency of continuity vectors [Giizelis
and G oknar, 1991 Jis given byt he e quations ( 2.58) and ( 2.59). F or any pa ir of

regions R' and R’/ separated by a co nventional hyperplane Hj,, the c onsistency of

continuity vectors is the uniqueness of the continuity vectors q;'(’j ’s for all i, j and k:
Ui -7, wi—wl=qlar, -7 (2.58)

For the p air of regions of R’ and R’/ separated by a P WA hyperplane S, the

consistency of continuity vectors becomes the uniqueness of the following continuity

vectors q;'c’j ’s for all 1, j and k:
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[]i _]J‘ Wi - W]] = q;('] [ﬁ’l]c"! 6k] + Z dkp [a;;’ _Vp] - Z dkp [az;, —]/p] (259)

p€P1 pEPZ

The ex istence o fthe continuity v ectors q;'c’j in the above e quations are indeed the
necessary and sufficient conditions for the continuity of the PWA function de fined

over the PWA partitioned domain space.

Theorem 2.5 (Necessary and sufficient condition) [Giizelis & Goknar, 1991]:
A P WA ¢ ontinuous f unction f(-):R™ - R™ definedov era P WA pa rtition
determined by the hyper-planes and PWA hyper-planes given in (2.55)-(2.58) can be
represented b y t he c anonical form (2.54) ifand onlyifits c ontinuity v ectors are
consistent in the sense of expressions given in (2.58)-(2.59).

O

It is shown in [Giizelis and Goknar, 1991] that the non-degeneracy of the PWA
partition can be defined as in the linear partition case, so a necessary condition for
the ex istence o f't he ¢ anonical r epresentation ( 2.54) ¢ an be o btained as t he non -
degeneracy of the PWA partition. Although the 1-level representation (2.54) is quite
general, it cannot cover the whole set of continuous PWA functions. In the literature
[Chua & Kang, 1977; Kang & Chua, 1978, C hua & Kang, 1988; Kahlert & Chua,
1990; Giizelis & Goknar, 1991; Kahlert & Chua, 1992; Kevenaar, Leenarts &
Bokhoven, 1994; Lin , Xu & Unbehauen, 1994, Lin & Unbehauen, 1995; Leenarts,
1999; Julian, Desages & Agamennoni, 1999 ], there are many attempts to represent
the whole class of continuous P WA functions using the absolute value function as
the uni que nonl inear building bl ock. A mong these attempts, the work presented in
[Lin , Xu & Unbehauen, 1994] may be the most remarkable one as proving that any
kind of ¢ ontinuous P WA function de fined ove r a linear pa rtitionin R™ canb e
expressed b y an, at mo st n —level ¢ anonical, representation e mploying n -nested

absolute value functions.



34

2.1.5.2 Canonical representation for section-wise piecewise affine functions

Canonical representations can also be used for multi variable functions which are
not PWA according to all variables but PWA for a single variable when all other
variables are held fixed. Chua and Kang introduced such a representation in [ Chua

and Kang, 1977] and called it as section-wise PWA canonical representation:

N N N n
Flxp a3, = D0 Y Y alenka ks k) - | [ow) @60
j=1

ki=1k,=1 kp=1

Where, a(kq, ky, k3, -+, k;,) are the constant coefficients and N is a set of given data
points (i.e. for the case n = 3, there are N3data points such as (xll-, X2, x3k), i,j,k €

{1,2, ..., N}.) and the basis functions are:

01(x) =1
02(x;) = x5
03(%) = | 5 — x4 2.61)

<pN(xj) = |xj — XjN-2 |

Various i nterpolation methods a re giveni n S ection2.1. T heyh ave w ide
applicability for t he c ases w here t he datais k nownt o be p recise. H owever, i n
practice, the data is imprecise in most of the cases. The noise and outliers are two
possible s ources of i mpreciseness. D ata r eduction, filtering a nd e mploying a 1 ow
order interpolator not p assing through all of the data are among the s olutions for
handling imprecise data. The approximate representations w hich will be studied in

the following section serve solutions for imprecise data and also for large data cases.
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2.2 Approximate representations (regression)

The 1 nterpolation, w hich i s s tudied in S ection 2.1, 1s not onl y t he pr ocess of
defining a function passing directly through a given set of data pairs but also the
process of predicting acceptable range values for the input data not available in the
design phase o f'the interpolating function. However, the interpolation may not be
suitable especially when there exist noise and outliers. On the other hand, large set of
data w hich a re us ed 1 n de signing a n i nterpolator r equires ¢ onsiderable m emory
allocation and time ¢ onsumption. A nother di sadvantage of the interpolationisits

very poor generalization ability even for moderate size data sets.

In order to solve the mentioned problems dealing with interpolation, one can try to
suppress the undesired data in a way. In this direction, one can eliminate the data at
the beginning and then apply the interpolation to the reduced set of data. In a more
general setting, one can employ an approximate function which does not aim to fit all
of the given data but to fit them with the minimum approximation error. Such an
approach, calleda sf unctiona pproximation, yieldsm ores imple function
representations w hich h ave num erical efficiencies a nd t hey also pr ovide good
generalization abilities. This section presents a diverse set of function approximation

methods known in the literature in a comparative setting.

Function a pproximation ¢ an be de fineda sa problem of findinga function
f():X - Y which fitsto a given set {(x%,y*)}:_;of dom ain-range s ample p airs
where x* € X denotes the samples of the independent variable and y* € Y denotes
the samples of the dependent variable. The domain-range sample pairs (x°,y*)’s are,
indeed, samples of an unknown function corresponding to, for instance, a signal or a
relation among some of the variables of a system. The samples are usually obtained
by measurements in experiments and observations. This thesis assumes real domain

and range sets, i.e. X = R andY = R™.

The first step in the function approximation is to choose a model f,,(-): R™ — R™,

more precisely building blocks so called basis functions and the type of combination
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of building blocks. M odel selection is realized based on a priori information about
the structure of the function to be approximated. The past experience of the user, the
chosen i mplementation e nvironment, t he num erical e fficiency a nd t he structural
capabilities such as flexibility, universality and generalization ability are among the
factors t aken i nto a ccount in the model s election process. T he s econd stepisto
determine the parameters w € RP of the chosen function model. The determination
of t he m odel f unction pa rameters i s us ually d one ba sed on m inimization of an
approximation e rror m easure: y.-_, d(y°, f,,(x%)) where d(:-) : R™xR™ - R*

denotes a function satisfying metric conditions (Rudin, 1976).

The function approximation problem is described above for finite number of data
case in ad eterministic s etting. A s imilar concept, which is from th e s tatistical
domain, is the regression. The regression seeking for a relation between the range
samples y*'s and domain samples x°'s is expressed as the estimation of an unknown
conditional probability density function f(x%) from the set {(x%,y*)}:_; of samples

based on the following model.

y*=f(x*)+e’ (2.62)

Where, e is a random error term, whose mean is zero (4 = 0) and its variance is
a constant (62), and e® is usually assumed to have normal (i.e. Gaussian) distribution
(Montgomery & Peck, 1992). When f(x) is parameterized by choosing a parametric
model as fi, (x), the estimation of unknown conditional probability density function

f(x*) amounts to the estimation of an unknown parameter vector w € R?

Two important approximate representations are presented in this section. The first
one is based on orthogonal basis functions and the other is based on non-orthogonal

basis functions. In both cases, the bases functions are constructed from the data pairs.
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2.2.1 Approximate function representations

In this subsection, a general framework for l east s quare function approximation
valid for orthogonal and also nonorthogonal basis function sets is firstly given. Then,
approximate representations em ploying orthogonal ba sis, na mely, polynomial,
Fourier and wavelet basis functions are presented as special cases. Euclidean norm is
chosen f or t he e rror m etric i n t he a pproximations, s o t he a pproximation t o be
presented i s, 1 ndeed, t he | easts quare a pproximation w hich correspondst o a
parametric regression. For the sake of simplicity, the functions to be approximated
and then the approximating model functions are assumed to be multi-variable single-

valued, i.e. f(+):R™ — R1.
2.2.1.1 Least Square Approximation: A General Framework

Assume that the model used for approximation is a linear weighted sum of a finite

set {@y (x)}p=, of bases.

Y= 0= weBi(x) 2.:63)
k=1

Where, each basis function is multi-variable and single-valued: @,(-):R™ — R. In
order to have an affine representation in the feature space defined by @(+)’s, one

may choose @, (x) = 1, so w; becomes a bias term.

Now, t he function a pproximation ¢ an be posed asa problem of de termining t he
coefficients w, € R with k € {1,2, ..., m} minimizing the following t otal s quared

error for a given sample set {(x5,y5)}:_; where x* € R™,y* € R fors € {1,2, ..., L}.

L

> [ys - i W wk(xs)r (2.64)
k=1

s=1
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The total squared error in (2.64) has minimum points only since it is a positive semi-
definite quadratic function of the unknown wy, coefficients. When the quadratic error
function is positive definite, there is a unique set {wy, }jj=, of coefficients defining the
unique m inimum point. For t he uni que m inimum c ase, in or der t o de termine wy,
coefficients, one needs to consider only the first order necessary conditions which are
obtained by taking the derivatives of the total squared error in (2.64) with respect to
the wy, coefficients a nd t hen s ettingt hemt oz ero. As ar esult, t he first or der
necessary ¢ onditions, which a re also s ufficient f or t he pos itive s emi-definite
quadratic total squared error, yield the following set of equations called as normal

equations.

L m 2
d
A Z yS_ZWk¢k(XS) =0, kE{l,Z,---,m}
de
s=1 k=1

which yields:

0,(x*) =0

N e’

ys—= Z Wy B (x%)
k=1 i

|
[\
17)
D= iD-
=

|
[\]
— e
17}
1l
[y

Y= ) Wi hu(x) }cbz(xS) =0
k=1 .

—2 {ZL: l}’s - i Wy (Dk(xs)]} D (x°) =0
k=1

s=1

The normal equations obtained above can be recast into the following form defined

by the Gram matrix.
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]§=1 @, (x%). 0, (x%) §=1 ?,(x%).0,(x%) - §=1 B (x*). 01 (x*) T[W1

§=1 ¢1(X.S)- B, (x*) §=1 @, (XS) ?,(x*%) §=1 (bm()fs)- ?,(x*%) sz

L0, (). O () ks By (X%). O (X°) -+ Ty B (x°). B ()] W

§=1 v 0, (x*)

§=1 ys: 0, (x%) (2.65)

=1 0 (x%)

Generalized inverse:

A vector w which solves the system (2.65) may not exist, or if one exists, it may not
be uni que. In s uch c ases, t he s o-called generalized i nverse s olutions ¢ ould be

employed to find a solution to the normal equations in the least square sense which
actually correspond to the minima of the total squared error in (2.64). Where, the

generalized inverse ®* € R™™ of a matrix ® € R™*! is defined as follows.
ot = lgi_r)%[befb + eIt @7
The system (2.65) can be given in the following form:
dw=y (2.66)
To find w € R™ minimizing (2.66), one can use the following identities.

| dw -yl = (Pw—y)"(dw —y)
= wWleT —yH(dw-vy) (2.67)
=woTow —wTdTy —yTow +yTy

The last expression can be rewritten as in (2.65) using the following properties of the

generalized inverse.
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Property 1: ®*dd+ = ¢+
Property 2: ®®*d = @
Property 3:(®d*)T = ot
Property 4: (@*®)" = ¢+ @

|l dw—y 13 = (w—dy)dTd(w—dty) +yT(1- ddH)y (2.68)

It can be s een t hat t he ge neralized i nverse s olution w = ®*y minimizes the
Euclidean norm of the error vector, so (2.68) as observing that the first term becomes
zero and the last term is not dependent on w. It should be noted that there are many
methods for calculating the generalized inverse of a m atrix. One of the numerically

efficient ones is based on singular value decomposition (Golub & Van Loan, 1996).

2.2.1.2 Least Square Polynomial Approximation

Fora givens amples et {(x5,y*)}:_, where x%,yS€R for s €{1,2,..,L},
consider polynomials @;(x) = x! with i € {1,2, ..., k} as basis functions. The least

square approximation based on these polynomials is the function:

F(xX) = wy + wox + - + wyx®

Where, the coefficients wy, wy, -+, wy, are the solutions of the following equation

system.
s (D) b1 (x%) b (xE v byt
§,=1(x5) §=1(x5)2 §=1(x5)k+1 sz = §=1yS (x*) (2.69)
S (D) B ()R T (x%) %K TLWe by (x5)F

Solving the above set of equations requires finding the inverse of the input samples
matrix. To find the coefficients easier, one can use orthonormal polynomials yielding
diagonal input sample matrices. To construct such an orthonormal set, one can use

Gram-Schmidt orthogonalization.
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Gram-Schmidt Orthogonalization Procedure : Given a basis {@,(x)};-,, one can
construct an orthononormal basis {1, (X)}p=, for the space spanned by {@ (X)}r=1

via the following process called as Gram-Schmidt orthogonalization (Table 2.4).

Table 2.4 Gram-Schmidt orthogonalization procedure

Assume 2, = ¢1(x)
then Y, =

IIQ II
0, = B,(x) — (D2, Y1 )P4
Y2 = 2, |l
N3 = P3(x) — (D3, P1)P1 — (D3, P2 0P,
Y3 =7 25 |l

e =000 = ) @i i
k=1

s
2 |l

Y =

Ilustrated Example 2.2
Consider t he s et of pol ynomial ba sis function setas{1,x}. The G ram S chimdt

orthogonalization process for this basis set {1, x} is given as:

N,=0:(x)=1
0y 1 1
ll}l = = = —
21 §=1 1.1 \/Z

2, = 0y(x) — P1(D2, wy)

il

s=1

~ 1 (S x%)

Y- xS _Z(Z =1X°) 2
T |
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2.2.1.3 Fourier approximation

J. Fourier (1768-1830) is a French mathematician and physicist who improved a
way to express a function in terms of an infinite number of sine and cosine terms.
Fourier s eries e xpansion, w hich i s valid for pe riodical, pi ecewise ¢ ontinuous a nd
square integrable functions, represents the function in terms of the discrete sequence
of the sinusoidal functions w hose frequencies are indeed, integer mu ltiples of the
frequency of the periodic function. It reveals the frequency content of the function as
providing t he a mplitude a nd pha se i nformation of t he ¢ onstituting f requency
components. F ora function f(-):R — R with period T which satisfies the w ell
known Dirichlet conditions described in terms of the piecewise continuity and square

integrability of the function, a Fourier series expansion can be represented by:
a
flx) = ?0 + Z [ay cos(kwyx) + by, sin(kwyx)] (2.70)
k=1

Where, w, = Z?E is ¢ alled th e fundamental frequency and its c onstant mu Itiples

2wy, 3wy, -++ etc., are called harmonics. Hence, (2.70) re presents f(:):R - R asa
linear ¢ ombination of t he set o f orthogonal ba sis
functions {1, cos(kwyx) , sin(kwyx)}y-,; The coefficients ay, a, and b, in (2.70)
can be computed by inner product defined in the continuous domain by the following

integrals:

T
2 (2.71)
ap = TJ f(x)dx
0
5 T
ay = Tf f(x) cos(kwyx) dx (2.72)
0

T
b, = ;J- f(x) sin(kwyx) dx (2.73)
0
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For a function f(-): R = R given by the set {(x*,y")}%_,, the following truncated

Fourier series can be used for obtaining an approximation

fx) = % + ) [a, cos(wix) + by sin(w,x)] (2.74)
k=1

Where, wy, can be chosen as wy, = kw, for periodic functions. It is known that quasi-
periodic functions have such an exact representation and almost periodic functions

can be approximated well by such a finite series (Bohr, 1947).

Finding ay,ay and b,'s coefficientsi s as pecial case of t he procedure givenin
Subsection ( 2.2.1.1) f or t he m ost g eneral s etting. It s hould a Iso be noted t hat
determination of representative coefficients can be calculated in a eas ier way if the
trigonometric functions are already orthogonalized in the discrete space as done in

the previous subsection for the polynomial basis case.

2.2.1.4 Wavelet approximation

Wavelet series and transforms were developed to overcome the shortcomings o f
the Fourier series and transform (Morlet, Arens, Fourgeau, & Giard, 1982; Grossmann,
& Morlet, 1984). Fourier series employes basis functions with an infinite duration
(full support but not localized) in the time domain, although it gives a sharp precision
in t he f requency dom ain. In c ontrast, t he w avelet ap proximation decomposes a
function ont o w avelets which are 1l ocalized bothinthetimeandthe frequency

domain.

A function in the wavelet series is represented by using a set of orthonormal basis

function. 1; j(x) € L, (R) arei ndeeds hifted ( translated) ands caled (dilated)

versions of a ba sis function ¥ (:): R = R which ar e s o cal led w avelet o r m other

wavelet:

¥ (x) = 2%p(2ix — ) withi,j € Z (2.75)
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Where, the terms i and j are the scaling and the shifting parameter, respectively. For
afunction f(-):R > R givenb ytheset {(x%y5)}_,,t he f ollowing t runcated

wavelet series can be used for obtaining an approximation.

flx) = i i ciji,j () (2.76)

i=—k j=—1
Where, c¢;; are the wavelet coefficients.

Finding c;;'s coefficientsisas pecial case o fthe procedure givenin S ubsection

(2.2.1.1) for the most general setting.

Approximation with or thogonal oror thogonalized bases f unctions| ike
polynomial, F ourier an d w avelets suffer from the necessity o f excess number of

coefficients for general data sets.

In t his ¢ ontext, non -orthogonal ba sis f unctions a re a Iso w idely us edi nt he
literature. The next section presents three non-orthogonal basis set examples, namely
artificial n eural n etworks as n onlinear r egressions, support ve ctor r epressors a nd

piecewise affine repressors.

There i sno ba sis f unction s et w hich ha s good a pproximation a bility and
implementation efficiency for all kind of data sets. Polynomial based approximations
have good local approximation ability. Fourier series based approximations have a
powerful global r epresentation property f or stationary f unctions pos sessing
periodical ch anges. W avelet s eries b ased r epresentations h ave t he capability o f
representing non -stationary p eriodical ¢ hanges to gether w ith th e lo calization
property not only in the spectral domain but also in the original domain space. A
similar comparison can be done from the implementation point of view such asin

terms of numerical and hardware and/or software realization issues.
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2.2.2 Approximating functions by non-orthogonal basis functions

Approximating functions by non-orthogonal basis functions can be implemented
similar to the orthogonal basis functions case as ex plained in the Section 2.2.1.1.
Artificial n eural n etworks, s upport ve ctor regression a nd a Iso piecewise affine

functions constitute such kind of approximations.

2.2.2.1 Artificial neural networks

Artificial N eural n etworks ( ANNs) h ave b een u sed f or diverse applications
including pattern recognition, classification, identification, control, interpolation and
function approximation (regression) problems over the last three decades. There are
many efficient ANN architectures and many associated efficient learning algorithms
for d esigningt hem b y a finite s et of t raining d ata with pr oviding a pow erful
generalization ability of responding well for the test data not learned before. Two of
the most important ones of these architectures: Multi Layer Perceptrons (MLP) and

Radial Basis Function Networks (RBFN).

ANNsc anl earni n s upervised or in unsupervised w ays d epending ont he
availability of data class labels, or on desired outputs in a more general setting. The
experimental knowledge is coded (stored) in the connection weights associated to the
set of i nterconnected neurons which aret he functional uni ts of the ANN. T he
knowledge s tored i n t he ne twork ¢ an b e m odified by changing t he values of the
weights according to a | earning rule. Learning, which is the process of determining
the co nnection w eights, is de fined a s an opt imization pr oblem where the co st
function is the difference between desired and actual outputs for supervised learning
cases an d t he q uantization er ror b etween t he | earned p rototype p attern an d t he

sample data for unsupervised learning cases.

MLP is a multilayer, algebraic network of neurons called as perceptrons which are
multi-input, s ingle-output f unctional uni ts t aking firstly a w eighted s um of t heir
inputs and add bias then pass it through the activation function to form its output

(See Figure 2.2). T he architectural s tructure o fan MLP ne twork c onsists of one
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hidden layer and an output layer where neurons are fully connected. Signal flow in a
feedforward way from left to right and on a layer by layer basis is depicted in Figure
2.2 (Haykin,1999).

N
Input < Output
J
Input layer Hidden layer Output layer
Figure 2.2 Architectural structure of a multi layer perceptron with one hidden layer
b; = wy
( Activation
function
Output
—> Vi
Inputs<

Summing
function

Figure 2.3 Structure of a neuron
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As shown in Figure 2.3 output of the i th neuron with n inputs can be given by:

n
Vi = @; Z Wij Xj + Wo (277)
=1

Where, @;(+): R = R is an activation function, w;;’s are the weights, wy is the bias
and x; is the j’th input of the neuron. There are many different types of activation
functions ( i.e., t hreshold, pi ecewise | inear, s igmoidal etc.) which a re p referrable
depending on the type of problem under consideration. Sigmoidal activation function
is the most widely used for function approximation (regression) problems. [Cybenko,
1989; Jones, 1990; F errari & Stengel, 2005 ]. A unipolar s igmoidal functioni s
defined by:

1
p(x) = 1t e-ax (2.78)

Where, a isth es lope parameter o fth e s igmoidal function. By v aryingt he
parameter a, one can obtain sigmoidal functions with different slopes as illustrated in

Figure 2.4.
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Figure 2.4 Sigmoidal functions with different slopes
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Function approximation problems can be successively solved via MLP and RBF
networks. Because of their parallel architecture and nonlinear structure, they handle
nonlinear, noisy and imprecise data quite well. Cybenko, (1989) and Hornik, (1989)
have proved that M LPs are universal function approximators which are capable of
approximating to any continuous function in a compact set within arbitrary degree of

accuracy, provided that a sufficient number of hidden layer neurons are used.

Theorem 2.6 (Universal approximation for one layer perceptron) [Cybenko,
1989; Hornik, Stinchcombe, & White, 1989; Funahashi, 1989]: Let ¢(:) be any

continuous s igmoidal f unction. Let I, denotethe n dimensional unit h ypercube

[0,1]™. The space of continuous function on I,, is denoted by C(I,,). Then,

F(x) = Z wj (v x + b)) (2.79)
=1

can a pproximate t o a ny continuous f unction f(-):I, » R within a n a rbitrary
accuracy by choosing sufficiently large number of hidden neurons m. In other words,

given f(+) € C(I,) and € > 0, there is F(x) of the above form so that:

|F(Xq,,Xp) — f(Xq, -, Xp)| < ¢, forallx €[, O

MLP is usually designed by determining the connection weights w;;'s using the

error Back Propagation (BP) algorithm which is indeed a gradient descent technique
used for finding a n a cceptable 1 ocal m inimum of't he s quared e rror be tween t he

desired and actual outputs. The error at the output of neuron i is defined by:
e; = [di—yil (2.80)

Where, e; represents the error for a specific data sample. The total error function is
obtained by summing up of s quare of the errors e;'s obtained at the output layer

neurons. So, one may write:

1
E = Eziea[yi — 4, (2.81)
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Where, ¢ represents al | neurons i nt he out put 1 ayer. T he error f unction ¢ an be
minimized by adjusting each weight by the BP algorithm that calculates the partial
derivatives of t he out put e rror i n E quation (2.81) with r espect t o t he ¢ onnection

weights by employing chain rule as shown in (2.82).

0F oE aei ayl a(pl

aWij B aei 6yl 6(,01 an'j

(2.82)

The pa rtial de rivatives calculated a re t hen us ed f or upda ting t he ¢ onnection
weights in the opposite of the gradient direction towards one of the l ocal minima
with a s ufficiently s mall s tep size 7, cal led al so as 1earning r ate. U pdate o f't he

weights for the K th iteration is given by the following difference equation:

oE [K]
6WL-]-

wk+1)=w(k)—n (2.83)
That update of the weights is implemented in two different ways. In the pattern
mode BP, the connection weights are changed for each sample. On the other hand,
batch mode BP allows an update for the whole set of training samples once at each
time instant w hich requires summing up t he individual gradients obtained for each
specific sample to take a step. The convergence of gradient-descent al gorithms can

be shown by using the so called descent Lemma (Bertsekas,1995).

Lemma 2.1 (Descent) [Bertsekas, 1995]: Given a c¢ ontinuously di fferentiable
scalar function f(:): R™ — R.If its gradient Vf(x) is Lipschitz continuous w ith

Lipschitz constant K, i.e.,

3K < oo, W) -Vl <K-llx—yll. Yxy€R"
then

K
fx+y) < fX)+yT7f(x) + = lIyllz
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Theorem 2.7 (Convergence) [Bertsekas, 1995]: Assumethat f(-) € C! isa

scalar function d efined on a ¢ ompact set. If the 1earning factor 7 is chosen in the
interval of (0, 2/ k) With Lipschitz ¢ onstant K for Vf(x),t hent he di fference

equation

x(k +1) = x(k) —nVf(x(k))

produces a sequence of points X*'s converging to one of the minima of f (x).
J
Due t o the nonc onvexity of't he t otal s quare e rror function, BP al gorithm can
converge to any o f lo cal minima. Determining t he ne twork size for the M LP, in
particular, the number of hidden layer neurons and also the number of neurons in the

hidden layer is a difficult problem in general.

RBFN is used as an alternative ANN model in the literature. Its first layer neuron
parameters, i.e., the centers and widths of the Gaussian activation functions can be
learned i n an uns upervised w ay ve ry efficiently. T hen, t he s econd | inear 1 ayer
neurons can be trained by an efficient linear weight update rule. This possibility in
the de sign of R BFN m akes s uperior it ov er ot her A NN m odels. Locally t unable
property of the first layer Gaussian neurons of the RBFN is another reason for the

wide spread use of RBFNs.

p(x;c3)

Figure 2.5 Architecture of the Radial Basis Function Network
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RBFNs consist of two layers interconnected in a feedforward way as shown Figure
2.4. The input layer is made up of its input neurons where each neuron applies a
nonlinear transformation, called radial basis activation, to the inputs and the output
layer which is made up of weighted sum of the outputs of the input neurons.

The radial basis activation function is given by:

;= @;(lIx= ¢l (2.84)

where ¢; is the center of the RBF, ||x — ¢;| is the Euclidean distance between the x

and ¢; for neuron j, and ¢;(-): R™ — R is chosen typically as Gaussian function:

1
@;(x;¢) = exp <_§ Ix — cj||2> (2.85)
j

where, oj is the width of the RBF.

The outputs of the R BFN are s imply t he w eighted s um of t he out puts of the

neurons in the input layer as depicted Figure 2.4.
m

y= Z w; @;(%; ¢;) + (2.86)
j=1

If (2.88) is substituted into (2.89), then one may formulate the input-output mapping
realized by the Gaussian RBF as follows:

m
1
y = z wj exp <—? [|x — C]”%> +w, (2.87)
j=1 /
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Theorem 2.8 (Universal approximation for RBFN) [Park & Sandberg, 1991]:
Let @(-):R™ — R be an integrable b ounded function such that ¢(-) is ¢ ontinuous

almost everywhere and [ RN @(x)dx # 0. Let I, denote the family of RBF networks

consisting of functions F(-): R™ — R represented by

=S5
j=1

Where, 0 > 0, w; € R and ¢; € R™ for j € {1,2,---m}.

For any c ontinuous mapping f(-): R™ — R thereis an RBF network withas etof
centers {c;}7L; anda c ommon w idth ¢ > 0 such t hat t he i nput-output m apping
F(-):R™ > R realized by the RBF network iscloseto f(-) inthe L, norm with
p € [1,00]. In other words, given f(-) € (I,) and € > 0, there is F(-) of the above

form so that

|F(Xq,,Xp) — f(Xq, -, X)) | <&, forall x € (I,,)
U
For a given sample set {(x°,y°)}_; with x5 € R™ and y° € R, one can determine the
linear connection weights w;’s with j € {0,1,2, ..., m} by solving the following linear

algebraic e quation s ystem unde r t he a ssumption t hat t he centers and widths a re

known.
1 1 1 b
[ el il o I eml® )
ces m w
0 y
1 2 2 1 2 2 1 2 2
“Lie-al -Li-l ~ix—enl? || wy | |32
1 e e 9 e Om =Y (2.88)
: . .
1 1 1 m
| el el X cmll® Y
e 1 e 2 oo e m i

In order to design R BFN, one may use a BP like gradient d escent a lgorithm for
determining all n etwork p arameters. T he c ommon le arning s trategy in the R BFN

design is to employ hybrid learning that is to determine firstly the centers and widths
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of the first layer G aussian ne urons and then apply the | east m ean s quare r ule or
generalized inverse for learning linear weights of the output neuron. Herein, centers
can be assigned fixed, in a random way, from the input samples or can be calculated
by a clustering me thod applied on i nput s amples (Moody, J. E. & Darken, C.J.,
1989; Musavi, M. T., Ahmed, W., Chan, K. H., Faris, K. B. & Hummels, D. M.
1992) or on input-output samples (Uykan, Z., Giizelis, C. & Celebi, M.E., 2000).

2.2.2.2 Support Vector Machines

Support V ector M achines ( SVMs) w ere initially developedto s olve decision
problems then applied to c lassification (Vapnik & Lerner, 1963; Vapnik &
Chervonenkis 1974), regression (Vapnik, 1995, Gunn, 1998), and clustering (Ben-
Hur, A ., Horn, D ., S iegelmann, H .T. & V apnik, V .,2001) . Aimo f SVMs in
classification ist of inda nopt imals eparating bounda ry whichha sg ood
generalization a bility for a g ivens et of i nput-output da ta m apped i nto a hi gh
dimensional feature space. The optimal separating boundary is, indeed, represented
by a small subset of the whole training data, called Support Vectors (SV), and found

by convex optimization methods.

The s uperiority of S VMs over ANN m odelsi s due toth e p ossibility o f
determining regression model in terms of only some samples called support vectors
and a compact kernel representation and also due to their better generalization ability
which is achieved by minimizing not only the training error but also a norm of the
model p arameters to o btain a less complex m odel. Vapnik (1995) defined the
following epsilon (&) insensitive loss function that ignore errors which are within a

determined ¢ distance of desired outputs (Figure 2.6).

L.(y, f(x) = {' y—fX) - forly—-fxIze (2.89)

0 otherwise

There are many different l1oss functions other than ¢ insensitive such as Laplace,

quadratic, Huber, etc. used in the literature.
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Figure 2.6 e-insensitive loss function

Linear Support Vector Regression (LSVR)

Let a function f(-): R™ - R to be approximated be given by a finite set of input-
output data pairs {(x5,y*)}:_; with x5 € R™ and y* € R. Support vector machine for

linear regression attempts to find a function which is given by
fx)=wix+b (2.90)

such that it should be at most ¢ deviation from all of the measurements y* for all the
training data and, at the same time, the hyperplane defined in the feature space is as
flat a s pos sible. This r egression pr oblem ¢ an be f ormulated a st he f ollowing

optimization:

L
) _ 1 s s
Min Remp = 7 ;Ls(y f(x%) (2.91)

subject to inequality | w lI3< ¢,

Where, ¢, is a constant. The e-insensitive loss function L, (y?, f (x5)) will be denoted
as |e|, in this thesis. |e®|, is a PWA continuous function, so can also be represented

by the following canonical form in terms of the absolute value functions:
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= +1I I+1I +el
lels = —¢ > e—¢ > e+e

Flatness of the hyperplane defined by (2.90) can be ensured by minimizing the
squared Euclideannor m || w ll3.S o, one may reformulateth isc onstrained
optimization problem as a convex cost function of w and constraints b eing | inear

in w. Thus, so called primal optimization problem is obtained as:

L
1
min = || w II%+ C le®]e (2.92)
WeR™ 2

s=1

In the above primal optimization formulation, the errors due to the input-output
sample data are minimized in the average sense. The following primal optimization
problem w hich i st he standard f ormulation of | inear s upport ve ctor regression
formulation ( SVR) ( Vapnik, 1995) is obt ained by i ntroducing penalization s lack

variables {&,}_; and {&}E_,.

L
1
min = | w I3+ C E (& +&5)
weR™ 2 4
S=

(2.93)
yS —wix®—b <e+&
subjectto —y*+wixS+b <e+¢&]
&&= 0with se{1,...,L}

where the constant parameter C is a user specified parameter and controls the trade-
off b etween the flatness, so the generalization ability (small C) and low e mpirical
error (large C). T he p arameter ¢ controls the w idth of t he e-insensitive t ube.
Increasing € reduces the num ber of support ve ctors, so yielding sparseness which
produces a smoother function. On the other hand, if ¢ is increased too much, the
fitting error becomes unacceptable large. Thus, the user specified parameters € and C

controls the model complexity in two different ways.
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This p rimal o ptimization p roblem c an b e s olved by transforming it in to the

following dual form by the method of Lagrange multipliers (Bertsekas, 1995).

weg}'zgeR JW, b, ag, g, ¥5, V5,8, $5)
aS'ag'yS’Vs’fsfs’zO
se{1,..,L}
L
1 . ,
= SWTW+C ) (€ + 6D
s=1

L

—Za5(8+€5—ys+waS+b)

Zas(g'l'fs'l'y S_b)

ZL:(VSES + ¥58s)

(2.94)

where, the nonne gative variables g, ag and ys, s are called as dual variables or

Lagrange mu ltipliers. The solution of the problem (2.93) is determined by finding

saddle poi nts of t he Lagrangian f unction J(w,b, ag, al,vs, Ve, &, L) via partial

differentiating it w ith r espect to the p rimal v ariables (w, b, &, &5) and s etting t he

resulting gradients to zero.

RN
a_b=Z(as_as)=O
s=1

L
\7w]=w—z(a5—05;)xS =0
s=1

a—]—C—a -y =0
aES S S

9]
—=C—a;—y;=0
afs S S

Now, substituting (2.96) into (2.94), one obtains:

(2.95)

(2.96)

(2.97)

(2.98)
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.](w’ b’ aS’ a;’ VS’ ‘}/S” ES’ E;)

1 L TrL
=3 [Z(as - @) xS] [Z(ar - a) xr]
[Z(as—as)x] [Z(ar—ar)x
—sZ(as+as)+Zy (as—as)+b2(as

+CZ(ES+E£)—Z%€S—Z“§E§
s=1 s=1 s=1

L
= D s+ 1D
s=1

(2.99)

Then, s ubstituting (2.95), ( 2.97) and (2.98) into the above formula, (2.100) is

obtained.

Jw, b, as, ag, vs,¥s, & &5)

1% I
== [Z(as — a)) xS] [Z(ar —a}) xr]
s=1 r=1
- EZL:(OJS +al) +ZL:y5 (as —ag) + CZL:(fs + &)
s=1 s=1 s=1
—ZL:ES(“S +s) —ZL:{Q(“; +¥5)

(2.100)

Finally, after p erforming s everal s implifications th e following dual o ptimization

formulation is obtained for the linear SVR.
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gl?xx ](W b, as, as; Vs Vs, fs; Es) -
1 L L
Ez Z(as - a;)(ar - a;)(XS)TXT
L

-2 ) (o +a) +Zy (e — a?) =100

=1(as—as) =0

L
subject to{
: al, s € [0,C]

Where, € and C are free parameters to be specified by the user which control the

generalization a bility of the a pproximation and x5TX" is the i nner product of the
input sample vector with the input variable vector. The dual optimization problem in

(2.101) can be rewritten in the following matrix form:

23‘62 2 [a ] _X)i():T _X);)'(FT] [a ] [su + y] [a ]

subject to {[_uu] [;:,] =0and ag as € [0,C]

(2.102)

Where, u=[11--1]T € Rty = [yt y?---y*]T € Rt and XT 2 [x! x2? -+ x!] €
RnXL'

The K arush-Kuhn-Tucker ( KKT) c onditions ( Karush, 1939; K uhn and Tucker,
1951) are a;a; = 0 with se{1,2,---. L}. The support vectors are points where exactly

one of the a, a; Lagrange multipliers is greater than zero.

Once Lagrange multipliers are found by solving (2.102) one can d etermine the

optimal w as follows. Equation (2.96) can be written as:

L
w= Z(as — )X (2.103)
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and the support vector regression function (2.90) becomes
L
FX) = wix+b = Z(as —a)) (x4 b (2.104)
s=1

Computing b
The bias term b is computed by considering the KKT conditions as follows. T he

product of dual variables with constraints should be equal to zero at the optimal:

a;(e+&—yS+wlxS+b)=0

(2.105)
al(e+ & +ys—wixS—b)=0
and
C—ay)é =0
( f) ; (2.106)
(C—ag)és=0

(2.105) and (2.106) imply that only samples (x*, y®) with corresponding a; = C and
a; = C lic o utside th e &-insensitive t ube. A nother conclusioni s de scribed a s
a,a; =0,i.e,therecanneverbea setof dualvariables ag, a; which are both
simultaneously nonzero because this would require nonzero slacks in both directions
(Smola & Scholkoph, 1998) . 1f asag # 0,t hereisa contradiction due t ot he
definition of function that can never be multi-valued range data for a single sample

data in the domain. So, one can conclude that

e=yS+wlx+b=>0 and & =0 ifa,<C (2.107)
e—yS+wlx+b<0 ifag >0 (2.108)

A similar analysis on a; yields

max{—c +y* —w'x’|a; < Cora,>0}<bh
’ s> 0} (2.109)
< min{—¢+y* —w'x%|a;, > 0ora} < C}
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For some dual variables a;, a; € (0, C), the inequalities become equalities. That is,

b=y5—x)T(x") —¢ forase€ (0,C)

(2.110)
b=y5—x)Tx") +¢ foral €(0,0)

The bias term b can be calculated by using (2.110) just for a specific support vector.
One of the possible alternatives for calculating the bias term b is to use the following

formula (Chuang, Su, Jeng, & Hsiao, 2002).

L L
b= %{msin (ys - Z(as — ay) (xs)Tx> + min (ys - Z(Ofs - a5) (XS)TX>}

Nonlinear support vector regression

Nonlinear support vector regression attempts to find a function which is given by:

f(X)=ij @;(x)+b=w'o(x) +b (2.111)

]

The constraint optimization problem can be formulated as:

L
1
T 2 ’
min = w I3+ C Y (6 + &)
s=1

2.112
Y —wio(x*) —b < e+ (2.112)
subjectto < —yS + wT@(x*) + b < ¢ + ¢!
$s) E; =0, s €{1, ,L}

This primal opt imization pr oblem c an be solved by transformingitinto a dual

form via the method of Lagrange multipliers.
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pemin o Jw,byag, a8, 76,5, 85, 65
aSJa.;‘JySr}/.S{JfSV{;ZO
se{1,...L}
L
1
= SWIW+C ) (o + 8D
s=1
L
_z“s(€+§5—ys+wT®(xs)+b) (2.113)
s=1
L
=D aile+ & +y* - wTB) — b)
s=1
L
= ) (ks +1iED
s=1

Where, the nonnegative variables a,, ag and s, Y, are dual varaibles or Lagrange
multipliers. The solution of the problem (2.113) is determined by finding the saddle
points of Lagrangian function J(w, b, a,, as, Vs, Ve, &, €&) via partial differentiating it

with respect to the primal variables (w, b, &, é.) and setting the results to zero.

L
2_{;=Z(“*”_“S)=O 2.114)
s=1
L (2.115)
Pl = W= ) (@ = @) B(x%) = 0
s=1
o . (2.116)
a_fs_c A )/5_0
o] _ L 2.117)
a—ﬂ—C—aS—yS—O

Substituting (2.114), (2.115), (2.116) and (2.117) into Equation (2.113), one obtains

the dual optimization problem after implementing several simplifications:
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ma),(](w, b, as, ag, Vs, Vs, &5, §5)
as,al

L L
DD (@ - @@ - ape’(x) - (")
=1r=

N =

s=1r=1
L L
— Z(as + ag) + Z yi(as — as) (2.118)
s=1 s=1

L
subject to Z(as — ) =0
s=1

ag, a; €10,C)

Where, € and C are free p arameters to be specified by the user which control the

generalization ability of the approximation.
Kernel Trick

The algorithms described in the previous section construct the linear regression for
agiven seto fs amples {(x%,y*)}:_;int hei nput space. T oc onstructa I inear
regression in a feature space (which corresponds to nonlinear regression in the input
space), one has to use a nonlinear function @(-) € H mapping from an input space X
into a feature space F (Aizerman, Braverman, & Rozonotr, 1964, Nilson, 1965). For

a real space, @(+) can be given as

@(C):R™ > R™ (2.119)
where, m > n.

Then, the mapped data set becomes:

{(B(x),y5)}ezr, OE)ER™,  xS€R", y*€R (2.120)
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The mapping of each input data sample individually to the feature space leads to
several problems. One of these problems is the inefficiency of the calculation of the
mapped v ectorsf or eachs ampleb yu singt hev ector-valued nonl inear
function @(-): R™ — R™. T herefore, instead o f m apping each input data s ample x°
into the feature space yielding @(x®) and then calculating the inner products @T (x*) -
@(x"), the following so called kernel function K(:,-) is commonly used in the SVR

literature.
K(-,):R™ X R™ - R (2.121)

The regression problem can be defined and solved in terms of such a kernel function
without know ing t he a ssociated m apping @(-). W hen t he m apping i s know n t he
determination of the corresponding kernel is straight forward. On the other hand, the
Mercer’s T heorem given be low pr ovides t he conditions unde rwhich for a ke rnel

there exists such a mapping @(-) (Vapnik, 1995; Courant & Hilbert, 1953).
Theorem 2.9 (Mercer’s Conditions) [Mercer, 1909]:

For a function K(-,-): R™ X R™ — R there exists a mapping @(-): R™ - R™ such that
Kxy) = 0"(x) - 8(y)

where, m might be infinite, if and only if

ff Kx,y)p(x)q(y)dxdy = 0 (2.122)

for all squared integrable functions p(-),q(-) € R"* » R ie. [p(X)?dx < o and
[q(x)%dx < oo.

J
If one uses a kernel which does not satisfy Mercer’s condition, then the Hessian may

not be positive definite, so quadratic programming problem may have no solution.
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Generally, there is more than one kernel to map the input space into the feature
space. Typical examples of kernel functions are used in this thesis are given Table

2.5.

Table 2.5 Kernel functiona and representtions

Type of kernel Representation of kernel
Polynomial K(x%,x) = [xTx° + c]?, c =0, p>1
Gaussian (IIX-X”I%)
K(xS,x) = e\ 20° >0

Sigmoid K(x%,x) = tanh(p.x"x°+q), p>0andg<0
Fourier KO %) = 1—p? 2 S0

X = A —2pcos(x—x)) PP
B,-spline Kx%x) =B,(lIx—x%|13), n=2p+landn=>1

For L samples, kernel function, which is, indeed, the function of two independent n-
dimensional v ariables, d efine th e k ernel matrix by e valuating it a t pair of s ample

points:

K(x®,x") = [87(x%) - 0(x")]s;r

K(x!,xY) K&L,x?) - K xH)
_ |Kx2%xD)  K(x%x*) - K(x?%xD) (2.123)
K(xi, x1) K(XL., x?) - K(XL., xb)

The dual optimization problem in (2.122) can be rewritten in the following matrix

form:

1 NPT -PX)PX)" -y’
| M sl | R b
(2.124)

subject to {[_uu]T [CC:,] =0and ag, a, € [0,C]

Where,u =[11 --1]T € Rty = [y* y2---yL]T € RF and
o(x)" = [0(x") 8(x*) - B(x')]€R™*
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Equation (2.122) can be written as follows:

L
w= Z(aS —ag) 0(x%) (2.125)
s=1

and the support vector regression function (2.115) is obtained as:

L
FOO = wB) +b = ) (a; - a}) 0" (x)0()

’ (2.126)

= Z(aS —a)Kx*%,x)+b

s=1

It should be noted that the bias term b in (2.126) can also be provided by choosing
the first basis function as unity, i.e. @, (x) = 1. However, for a kernel representation
where @, (x) basis functions are not available, b should be introduced explicitly as
done above since there is no guarantee of having a unity basis function embedded in
the kernel.

in order to have an affine representation in the feature space defined by @,(-)’s, one

may choose @, (x) = 1, so w; becomes a bias term.

2.2.2.3 Piecewise affine regression

Piecewise affine interpolation for one dimensional case and canonical piecewise
linear interpolation for multi d imensional functions are explained in S ection 2.1.4
and, respectively, in S ection 2.1.5. W hen there e xists noi se and out liers and also
large num ber o fda ta requiring memory a llocation a nd time ¢ onsumption, the
piecewise affine interpolation is not suitable. Therefore, piecewise affine regression
(approximation) which is a more appropriate strategy for such cases can be used. In
the case of piecewise affine approximation, a given finite set of datais divided up

into smaller segments, and then simple linear regression is applied to each segment.
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The poi nt w here one segments j oinst he ne xti s c alled as br eakpoint w here
differentiability of the function cannot be ensured, but continuity of the function can
be ensured. The location and the number of breakpoints are very crucial in piecewise
affine approximation. V arious m ethods ha ve be en pr oposed in s tatistics a nd
mathematics, and also in engineering disciplines (Parente, 1999; S eber, 2003;

Hudson, 1966; Hudson, 1966; G allant & F uller, 1973; F errari-Trecate, M uselli,
Liberati, & M orari, 2001; F errari-Trecate, Muselli, 2001; Konstantinides &

Natarajan, 1994; Pittman J. & Murthy, 2000), but the determination of the location

and the number of breakpoints is still an open research problem.

Let a set of finite data pairs {(x*, y*)}L_, be given and let this domain be divided
into [+ 1 segmentsb yus ing [ <L breakpointss ucha s y; <y, <<y
Corresponding to the | + 1 segments which have been labeled consecutively from
“0” (leftmost segment) through “I”” (rightmost segment) and ‘m;’” denote the slope
of s egment j, p artitionth e x-axis into | + 1 intervals [, £ (—oo,y,], I} £
(275 2] e f— (YI—l,Vl]ﬂ and I; £ (y;,©). A typical continuous PWA function
f(x) is shown in Figure 2.1.

| f(x)

~ JHr_JH_JH_:J
Iy Iy I I5 I L.+ 1

Figure 2.7 A piece-wise affine continuous function f(x)
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As explained by Theorem 2.1 in Section 2.1.5.1, any single valued continuous PWA
with | breakpoints y; < ¥, < -+ < y; can be represented uniquely by the expression:

l
f(x)=a0+a1x+2bj|x—yl| (2.127)
j=1

Least square PWA approximation can be formulated as determining ay, a,, b; € R?
parameters minimizing the following mean squared error:

L 2

!
min a +ax5+zb- xS —y:| —y°S
Ao, a1,bj€RZ 0 L . jl yjl Y

je{1,2,-13 =1 J=1

(2.128)

The solution to the problem (2.128) is determined by solving the following equation

system.

L L

D -l D =l
s=1
L
les — ¥l - x?
s=1

s=1

L
les -yl -x®
s=1

Qo
s=1 s=1 a,
L L L L by
D=yl Y=yl Y=l =l e ) e —pl e =l
=1 s=1 s=1 s=1 by
L ' L L ' L '
2wl Qe Qe sl sl e ) e pl e
s=1 s=1 s=1 s=1 -
L
( Sy
s=1
L
Zysxs
s=1
=z (2.129)
Zyslxs ~ il
s=1
L
{Z yolx® =il
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2.2.2.4 Piecewise polynomial regression

Piecewise polynomial regression is similar to the piecewise affine regression, but
there is an important difference; for e ach interval be tween the br eakpoints, higher
order polynomial such as quadratic and cubic polynomial is applied instead of first

order polynomial.

Let a s et of finite data pairs {(x5,y°)}%_, be given and let this domain be divided
into [+1 segmentsb yu sing [ <L breakpointss ucha sy; <y, < <y.
Corresponding to the | + 1 segments which have been labeled consecutively from
“0” (leftmost segment) through “I”” (rightmost segment) and ‘m;’” denote the slope

of s egment j, p artitionth e x-axis into | + 1 intervals [, £ (—o,y,], I} £

Yo ¥al oooolics 2 (iooyi], and I £ (v, ).

A q’th order piecewise-polynomial regression is defined as the concatenation of the

following polynomials which are defined for a specific interval.

q
9;(x ) =zaijxi, i€ (1,2, q} (2.130)
i

Where, a;;’s are coefficients of the polynomial of segment j.



CHAPTER THREE
ROBUST AND LOW COMPLEX
SUPPORT VECTOR REGRESSION MODELS

Support Vector Machines (SVMs) were initially developed to solve pattern
recognition problems (Vapnik and Lerner, 1963; Vapnik and Chervonenkis 1974;
Samanta, Al-Balushi, & Al-Araimi, 2003; Hao, 2008; Mohammadi and
Gharehpetian, 2009), then they have been extended to the domain of regression
problems so called Support Vector Regression (SVR) (Vapnik et al., 1997; Tao, D.
Tang, Li, & Wu, 2005; Goel and Pal, 2009; Osowski and Garanty, 2007; Colliez,
Dufrenois, & Hamad, 2006; Vong, Wong, & Li 2006; Bergeron, Cheriet, Ronsky,
Zernicke, & Labelle 2005; Huang, Lai, Luo, & Yan, 2005; Wang, Wang, & Lai,
2005; Bao, Liu, Guo, Wang, 2005; Sun and Sun, 2003; Wu, 2009; Lute, Upadhyay,
& Singh, 2009; Wu, Yan, & Yang, 2008a,b). In order to extend SVMs into SVRs,
Vapnik defined epsilon (&) insensitive loss function that ignored errors which are
within a determined epsilon distance of desired output. The proper choice of ¢ is
critical for generalization. There are many different loss functions other than e-
insensitive such as Huber, quadratic etc. This chapter of the thesis presents novel
robust and low complex regression models by introducing new loss functions for
rejecting outliers and noises, and ¢, with p <1 “norms’ for model parameters in

order to reduce model complexity.
3.1 Support vector nonlinear regression

Let a function f(x) = R™ —» R to be approximated be given by a finite set of
input-output data pairs {(x5,y*)}:_, with x5 € R" andy® € R. Let @(-):R™ -» R™
be a nonlinear basis function which maps the training data into a high dimensional
feature space where the linear regression is performed by support vector algorithm.

In this case, the approximated function is.

f(x) =zwj 0;(x)+b=w'o(x)+b (3.1)
=1

69
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In the sequel, a quite general SVR formulation introduced in (Smola,1999) will be
presented. The formulation is based on a general symmetric and convex loss function

givenin (3.2) wheree(-): R — R isan arbitrary convex and differentiable function.

0 for|x| <e

e(|x| —€) otherwise (3.2

E(x) = {

Asin any SVR formulation, the cost function consists of two terms one of which is

the squared Euclidean norm of the w parameter vector and the other is the empirical

error:
1 L
: - 2 S _ T Sy _
WE%EERZ lwls+C E E(y* —w'@(x%) — b) (3.3

s=1

Using slack variablesé,, é; >0, one can reformulate the above minimization

problem as follows.

WER™M beR 2

L
min_3 1w I3+ C ) [e(6) + e(£)]

Y —WIo(x) —b <&+, G

subjectto{ —yS + wi@(x*) + b < e + &
{6620, s€{l,.. L}

This primal optimization problem can be solved by transforming it into a dual

form by the method of Lagrange multipliers.



pemin o Jw,b, ag, a5, Vs, V5, €, $s)

aSr“;rYS:VS{JES:{;ZO
se{1,..,L}

L
1
= EWTW + Czl[e(fs) +e(€:)]

L

=D e+ &y WO(x) + b)

s=1
L

_ Z al(e + &+ y5 — wTp(x®) — b)

s=1

L
= D ks 1D
s=1
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(3.5)

Where, the nonnegative variables ag, a; and y,, y. are Lagrange multipliers. The

solution of the problem (3.4) is determined by finding saddle points of Lagrangian

function J(w, b, ag, as, v, Ve, &, &5) via partial differentiating it with respect to the

primal variables (w, b, &, &7) and setting the result equal to zero.

Then, one obtains the following equations:

L
Vo =w— Z(as —ag) P(x*) =0
s=1

9] _ 0e($s) _
a_ES—C afs —0.’5—)/5—0
o] _ 0e(§s) ., ., _
o~ oy TR0

Substituting (3.7) into (3.5), (3.10) is obtained.

(3.6)

(3.7)

(3.8)

(3.9)
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](W, b’ aS’ a;’ )/S’ )/.S,’ ES’ E;)

1[x I<
=2 [Z(as —al) w(xS)] [Z(ar ) w(xﬂ]
LS_ T Lr_
[Z(as - @) @(xf)] lZ(ar - @) @(xr)]
r=1
- eZ(aS +al)+ Zy (a — ) + bZ(as o
- CZ[e(s‘s) +e(E) - Z s & - Z @
s=1 s=1 s=1

L
=D ke 1D
s=1

Now, substituting (3.8) and (3.9) into the (3.10), the cost function takes the

following form which isin terms of the Lagrange multipliers.

Jw, b, as, ag, Vs, Vs, €, &)
T

= [Z(as - ap) @(xS)] [E(ar - ) w(xr)] - sZ(aS +ap)

+ Zys(as —ag) + CZ[B(ES) el - CZSES e ]

at,
L
[OEED
_C;{"[ a8 l

= —% lZ(as —ay) @(xs)] [Z(ar —ay) (D(Xr)] - SZL:(% + ag)
s=1

L

£ e -+ CZ[e(m +e(E)]

s=1

(el

s=1
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](W b aS' aS' yS' yS' ES' ES

S ——[Z(as as)w(xs)‘ [i(ar—a;)w(xr)]
- sZ(aS +al) + Zy (a5 — ag)

+C[(Q(E) + (D))

(3.11)

Where, Xt i(a}—a;) =0 and¢ = inf{¢

azifs) Hand¢,a 20, and Q) =

de(és)
e(§) — S

Specia choices of e(¢) isgiven below.

e-insensitive loss:
This case is the origina SVR case as described in Section 2.2.2.2. Sincee(¢) = ¢,
then Q(&) = 0, or equivalently, Q(a) = 0 and a,, a; € [0, C]

Polynomial loss:

Quadratic loss function is another specia case for thisloss function class.

e(é) = %E” withp > 1 (3.12)
which yields

_1-p
Q) = 3 (3.13)

By substituting « for &, one gets

p

Q@ ==L(%)"" anda € [0,] (3.14)
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Piecewise polynomial and linear |oss:

For some u € R,

Ml‘plf” foré<u
e@=1 4 (3.15)

E+(5—1)M for&>p

This loss function is a special Huber loss function and is known as robust against

outliersin the literature. Similar calculations yield

1 —_
Q) =—Lev (3.16)
which implies
Q) = 1%) ut?p (%)”T and a,, al € [0, C] (3.17)

3.2 Novel robust and low complex regression models

A genera SVR formulation in terms of symmetric and convex loss function is
presented in the previous section. These loss functions may suffer from poor

generalization ability when presence of outliers.

This section presents novel robust and low complex regresson models by
introducing new loss functions for rejecting outliers and noises, and £, withp < 1
“norms” for model parameters in order to reduce model complexity. The introduced

model classis described by the following optimization formulation.

WER™ bER b.&

L
min_ IWID, +C ) lly* = wra(e) = bll, (318)
s=1

Where, the first term in the cost forces the primal parameters (i.e. weights) to be
sparse and the second forces the errors so the dual parameters (i.e. Lagrange

multipliers) to be sparse. p and g might be a real number in the interval of [0, o).
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For p, q belonging to [0,1), the functions ||-]|;: R™ = R* , |IlI3: R - R* do not
define a norm. The positive homogeneity condition of norm is violated for p,q = 0
while the triangle inequality condition is not satisfied for 0 < p,q < 1. On the other
hand, the epsilon insensitive versions |15 .., IIll2 ., define semi-norms for &, &, #

0 since they can be zero for the pointsinside the epsilon tubes.

Thecaseof p=q =1:

L
min IIw "1,gz+ CZb/S - WT(Z)(XS) - blgl

WER™ bER
s=1

(3.19)

Using slack variables &, &g, 1m,n" = 0, one can reformulate the above minimization

problem as follows.

m L
minZ(ni +n;) + CZ(fs + &)
i=1 s=1

(VS —wlg(x) —b < g +&
—yS +WTO(X®) + b < & + & (3.20)
Wi = &t
—w; < & + 1
ni, 77{: ES! E; =0
\s € {1,...,L}andi € {1,...,m}

subject to <

This prima optimization problem can be solved by transforming it into a dual

form using the method of Lagrange multipliers.
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min .](WI b; aSI a;: Bil ﬁl’l YSi )/S,J 51" 61,' ES' E;' 771‘: 77{)

WER™ bER

“s:“é:]’s&’s’rﬁi:ﬁ{ﬁiﬁ{:fsfs’r77i771{20
s€{1,..,L} and i€{1,...m}

=i(m +17) +ci(¢; +89)

a;(e, + & —yS + wlo(x5) + b)

~
=~ 1
=

2]
Il
[

(3.21)

0(5(81 + Es + y - WT@(XS) - b)

[\/‘]h

%]
Il
Juy

Ms

Bi(ez + 1y —wy) —zﬁ{(fz +ni +wy)

-~
Il
[

[\/‘]h

(rsfs + Vi) - Z(&m + 800

Il
Juy

S=

Where, the nonnegative variables ag,ay,vs,v4,6;,6; andp;, B; ae Lagrange
multipliers. The solution of the problem (3.20) is determined by partia
differentiating it with respect to the primal variables (w, b, &, &5, 1;,1;) and setting

the results equal to zero.

2 - Z(a; —a) = (322
=S -0 Y- a0 = o
aa_i e ;_1 (3.24)
aa—é=C—06§—Vs'—0 (3.25)
%=1—ﬁi—6i=0 (3.26)
%:1—3;—5;: (3:27)
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The above necessary conditions do not provide to solve w € R™ in terms of the
Lagrange multipliers in order to obtain a cost which is in terms of Lagrange
multipliers only, thus a dual formulation cannot be obtained. So, the problem defined
in (3.19) can be solved by solving the linear programming problem in (3.20) using
simplex method or interior point method or any other numerical method devel oped

for solving linear programming problems (Margaret, 1998).

In order to reach a kernel representation associated with a quadratic cost

minimization in terms of Lagrange multipliers, this thesis proposes to augment the
cost in (3.20) by adding a squared Euclidean normg Il w2 withasmall P € R* and

then derive the standard SVR formulation for the newly proposed formulation as

donein the following.

WER™ beER

L
P
min 5 w5+l wlly .+ CZIyS - (wlo(x®) — b)|, (3.28)
s=1

This optimization problem can be reformulated by introducing slack variables

¢, E6Lm,m" = 0 asfollows.

. P
min -
WER™ beR 2

m L
Iw I3+ ) 01+ 1)+ € ) (€ + 60
i=1 s=1

(VS —wio(x’) —b <& + &
—yS+wlo(x) + b < &g + ¢ (329)
Wi < &y + ni
-w; <&+
ni, Yh{' Es' E; =0
\s € {1,...,L}and i € {1,...,m}

subject to <

Minimization problem in (3.29) can be transformed into an unconstrained
problem by the method of Lagrange multipliers.
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mln .](WJ bl aSJ a;l ﬁll BL’J VSJ yS" 61.’ 51.” 55’ 55," nl‘ T’{)

WER™ beER

asra;r}/s:ys{:ﬁirﬁzlsir(s{VESJE.SI‘JnirI{zO
se{1,..,L} and i€{1,...,m}

m L
P
_ EwTw+Z(m +ul) + CZ(ES +&)
i=1 s=1
L

=Y e+ -y WO() + b)

s=1 (3.30)
L

_ Z al(e;, + &+ y5 — wTa(x®) — b)

m
Z 82 + ni — Wl Z :81 (82 + Yh + WL)

i=1

i(ysfs +YEED - Z(aml + 80

Where, the nonnegative variables ag,ay,vs,v4,6;,6; andp;, B; ae Lagrange
multipliers. The solution of the problem (3.30) is determined by partia
differentiating it with respect to the primal variables (w, b, &, &, 1;,1;) and setting

the results equal to zero.

% = Z(a; —a) = (3.31)
W = Pow= Y (@~ ) B0) + Y (B~ ) e =0 o
aa—é=6—as—ys=0 (3.33)
= C-ai-y=0 5%
%=1—ﬁi—6i= (3:35)
%:1—3;—5;: (3:36)
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Where, e; =[0---0 1 0---0]T € R™is the unit vector whose i’th component is
unity while the others are all zero. ¢4, &5, and C are parameters defined by the user.
Now, substituting (3.32) into (3.30), one obtains (3.37).

](aSJ 0.’;, :81'1 BL,J Vs yslﬁ 61’! 51,1 ESJ E;J i, 77{)

L m T L
r[1 1 , 1
== [;;(as — ah) O(x*) - ;;(m -8 ei] I;Zl(ar

- @) O(x") ——Z(ﬁ, ﬁ,)e,]

L - L m .T
1 1
- Z |7 ;mr - ) o) - F;(ﬁi ~Be| 00)
L '1 L 1 & 1"
£ a5 ) (@ - @) 8E) =2 ) (5= ) e| B
s=1 | r=1 j=1 |

(3.37)

—slz(as+a;)—zasfs—za;€;+SZL1yS(as—a;)
+bZ(a§—aS)+K§(m+nz)+ci(fs+f;)

_iﬁi<82+m——2(a5 as)(b(xs)—Z(ﬁl [;L)el>
i (gz+m+—Z(as—asm(xsnz(m ﬁl)el>

2 Ls=1

i (s + V4E0) - Z(&m + 8in0)

Then, substituting (3.31), (3.33), (3.34), (3.35) and (3.36) into (3.37), one can obtain
(3.38).
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](aSJ 0.’;, :81'1 BL,J Vs, yslﬁ 61’! 51’1 ESJ E;J ni, 77{)

L L
1
=) ) (@ - ) (@ — a) 07 ()P

s=1r=1

s i T
Mr-

~
1l
Juy
-
Il
Juy

N]=

(as — ag) (Bi — Bi) BT (x")e;

%]
Il
Juy

(as — a5) (B — Bi) &i" D(x*)

<
Il
Juy

—+

-

Bi — BB — B)) eiTej]

I
ol -
M=
1=
~
K

—ag)(a, — a;) 9T (x)B(x")

%]
Il
Juy
<
1l
Juy

(3.38)

- B
it N=

Il
Juy
1l
Juy

(as - as) (.81 .81) eLTQ)(xS) —& Z(“s s)

+Z;v (as—as)+b2(a5—as)+Z(m+m

' CZ(ES AR Z u(as 7)) - Z ACEIH
s=1 s=1 s=1

- i(ﬁt +8)m; — i(ﬂi’ +8)n; — i(ﬁi + B,

L
Z - ) B (B — B

s=1
i - B) 6 - )‘

"U|P—‘
£M5

"UIP—‘

£M3

Finally, after performing several simplifications, the following dua optimization

formulation is obtained for the introduced low complex SVR.



14 1A
L m,aX ](0(5; s, .Bir ﬁl)
Ys=1(as—as)=0
af,as€lo,Cland By,B{€[0,K]

L L
Z Z (as — ag)(a, — ay) Q)T(XS)(Z)(XT)

— &

(a5+as>+2y (“s—“s)—fzz(ﬁﬁ'ﬁt

'MS NG (ﬁ[\ﬁh ~c|'—‘

L
1
- Zl(as — @) 0,(x*)(B; — BD)
1 m
+50. 0 BB B =)
=1 j=1
whichisequivalent to
min J(as, ag, Bi, Bi)

Yéo(as—as)=0
aj,ase[0,Cland By,B{€[0,K]

L L
1
i [ﬁz > (@ - @)@ — @) 0T )P

s=1r=1

+ slz(as +ap) - Zy (as = ) + sZZ(ﬁL +B)

L

Pzz - ) B (B — B

i ~B) (6 - ﬁ;)]

3

| =

"U|'—‘
AMS ¥

81

(3.39)

(3.40)

For small P vaues, the termsin the second line of (3.40) are dominated by the other
three terms, so they can be omitted. The following truncated quadratic minimization
problem is obtained as an equivaent problem in (3.19). It means that SVR with &-
insensitive loss function and ¢; norm for model parameters whose associated
minimization problem described by (3.19) can be designed by solving the truncated

dual SVR problemin (3.41).
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]T(asr a;r .Bir :Bl,)

L ,11’1
Ys=1(as—as)=0
as,as€[0,Cland B, B{€[0,K]

(3.41)

Solving (3.40) or (3.41), one can determine Lagrange multipliers, and then obtain the

optimum w weight vector as:

L m
w= %[z (a5 — ag) D(x°) — Z(ﬂt - B) ei‘ (3.42)

This yields the following regression function described in terms of the Lagrange

multipliers.

=

1 1\
00 =5 ) (@ = @) (DB — 5 (B = B 8:%) (3:43)

s=1

Although the first term in (3.43) can be represented in terms of the kernel function
K(x%,x) = ¢T(x*) - #(x) without knowing @(-):R™ —» R™ function itself, the
second term requires knowing @(-). However, if the samplesx’s exist such
that @( x*) = e;, then @;(x) can be calculated as @;(x) = K( x},x) = 9T(x!) - 9(x)

S0, (3.43) can have the following kernel representation.

L m
1 1 .
f00 =5 ) (@ — e K& =5 > (B = B K(x\x) (3:44)
s=1 i=1
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Considering (3.28) with £, norm for w parameter, one deduce that minimizations of
(3.40) or (3.41) produce sparse primal parameter space representations which are
convenient when @(-): R - R™ transformation is available and when @(x') =¢;

withi € {1,2,---,m} are known.

I nverse-Gaussian function as primal parameter flatness:

The e-insensitive £, norm in (3.19) and (3.28) formulations may be replaced with £,
“norm” to obtain more sparseness in the primal parameter (weight) space. However,
the minimization problems become now NP-hard, so computationally intractable.
This thesis proposes to employ inverse-Gaussian function to approximate to
“norm”. Then, the following optimization formulations are developed for low

complex regression models.

L
+ CZIyS — WTo(x®) — bl (3.45)

min —e Sz
wERm,beR

Or,

min "W"2+Z 1—e 52
WERM beR 2

+ cZws ~WTOx®) - b, (3.46)

It should be noted that the inverse-Gaussian function is not a convex function, so are
the cost functions in (3.45) and (3.46). However, the inverse-Gaussian has a unique
minimum point and no other extremum, so the minimization methods may be applied

to find minimum points of (3.45) and (3.46) in some efficient ways.

If the kerndl K(x*,x) is available without knowing @(-) explicitly, then one would
try to use optimization formulations which provide sparseness in the dual parameter
space, i.e. in the Lagrange multipliers. In the sequel, two different regression models
will be proposed in this direction. The first one exploits flatness term in the dual
parameter space. The second employs a loss function reects the contribution of the

outliers.



Flatnessin the dual parameter space:

Flatness of the functionf (x) = w'x + b, can be ensured by minimizing the squared

Euclidean norm || w II5 in primal space.

WERM™ bER 2

1 L
min =l w3+ Czlys -wlo(x®) — bl,
s=1
(3.47)

—yS+wlox®) +b<e+é]
8520, s€fl,..,L}

yS—wlg(x) —b<e+&
subject to
This primal optimization problem in (3.47) can be solved by transforming it into the
following dua form by the method of Lagrange multipliers as mentioned in the

Subsection (2.2.2.2).
T

L L
D (as—a) @(xS)] [Z(ar - a) (z)(xr)‘

L L
Fe ) (@t a) - ) yi(a - a)
s=1 s=1

1
I(aSI a;) = +§

(3.48)

Flatness parameter term || w 1|3 in the primal parameter space provides sparseness in
the prima parameter space but it may not cause sparseness in the dual parameter
space. For a kernel representation, the sparseness in the dual parameter space is the
feature that is desired. For this purpose the e-insensitive £; semi-norm |a,|, for the
dual parameters are introduced in the thesis. So, (3.48) is augmented by using this

proposed flatness term in the dual space as follows.
T

L L
D (@—a) @(xS)] [Z(ar - a) w(xﬂ]

L L
+ sz(as +al) — z yé(as — al) (3.49)
s=1 s=1

, 1
I(aSI 0.’5,) = E

L
+8 ) llasle + laile]
s=1
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Incosh.(+) lossfunction for robustness:

e-insensitive (absolute value) loss function |e|, has useful properties as follows. It
ignores small errors so provides a filtering on the noise around the optimal regression
function. On the other hand, it will be cleared by the qualitative analyss,
summarized in the Table 4.1 at the end of the Chapter 4, that |e|, loss function does
not reject outliers even very far from the optimal regression function, however it
limits their undesirable effects on the parameters of the regression function. Thisisa
consequence of the fact that the Lagrange multipliers corresponding to the data
outside of the epsilon tube are all the same, more precisely either C or —C, so their
undesirable contributions to the kernel representation does not increase as the
distance of the sample away from the optimal regression function increases. |e|, has
another useful property of being convex, alowing the application of convex

optimization methods in the design of regression functions.

In short, finding a loss function which has the properties of rejecting and/or limiting
the bad effects of noise and outlierslike |e|, and of computationally tractable. It will
be shown below that |e|, can well be approximated by a continuously differentiable
function defined as the composition of cosh(+) and In(+) functions. The introduced
approximation is still a convex function enabling to exploit the optimization methods

which are developed for convex and differentiable costs.

First observe that, for large values of § parameters, the following function defined in

terms of cosh (+) and In () functions approachesto |e|.

%lncosh[ﬂe] =:%ln (cosh[Be]) (3.50)

efete=pe

Where, cosh[Be] = . When, B goes to infinity the%lncosh[ﬁe] tends to |e]

and the derivative of %lncosh[ﬁe] with respect to e tends to sign(e). For small

values of § parameters, %lncosh[ﬁe]function becomes similar to Huber function. For
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small e values, %lncosh[ﬁe] with a small 8 behaves like a square function and, for

large e values, %lncosh[ﬁe] with a small 8 approaches to |e|. Further observe that

%lncosh[ﬁe]) function is a convex function for all g values. So, the continuously

differentiable and convex function %lncosh[ﬁe] with moderate 8 values can be used

well as a loss function which limits bad effects of outliers and allows exploiting
efficient optimization methods requiring differentiability and convexity. Asin the e-
insensitive loss function |e|,, the following e-insensitive version of it might be
preferable for suppressing the bad effect of noise around the optimal regression

function.

1

g Incosh,[fBe] (3.51)

ePeyeBe

Now, considering the fact that cosh.[fBe] = , the function élncosh[ﬁe] can

be seen to be approximated by the function in (3.52), as ignoring higher order terms

in the Taylor series expansion of cosh[Be].

%m (1 + % [Be]z) (3.52)

The function in (3.52) is not a convex function but it has a unique minimum point
with no other extremum. It should be noted that, for § = 1, (3.52) corresponds to a
loss function whose minimization provides a regression which is optimal for Cauchy
distribution. This thesis proposes the following e-insensitive version of (3.52) as a
saturating loss function for rejecting outliers while preserving the above mentioned

useful properties of the e-insensitive loss function |e|,.

%m (145 18e1) (359
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3.3 A quantitative analysis of the developed robust and low complex regression
models

This subsection presents a numerical study for a comparison of the performances

of inverse Gaussian norm based flat regression models and the models with

élncoshs[ﬁe] and %ln (1 + % [ﬁe]?) loss functions.

Dual optimization formulations of a part of the developed regression models are
failed to be obtained. On the other hand, a part of the obtained dua optimization
formulations is not so suitable to be minimized in an efficient way. For the
mentioned reasons, a quantitative comparison is given below based on the results
obtained by minimizing the primal optimization problems. Since all of the primal
optimization problems are constrained optimization where the costs are nonlinear
and the constraints are linear inequalities, then the so called elipsoid agorithm is

chosen for finding a solution for each formulation.

To compare the conventional SVR and the developed robust and low complex
SVR models, the codes for elipsoid method was written in Matlab 7.5. Two test
functions are considered in the simulations. Outliers are added artificially. To
measure the performance of the models (i.e. training and test errors, flatness and
computational cost) Percentage of Root mean square Difference (PRD), Root Mean
Square Error (RMSE), norm of w and CPU time are used. The results of various
cases with different cost functions given in (3.45), (3.46), (3.51), (3.53), conventional
SVR with € = 10 and with differente; = 0, ; = 0.01 and g; = 0.1 are presented in
Table3.1and in Table 3.2



Table 3.1 presents result for the affine test function given below.
f(x) =5x -5 withx € [-10,10]
101 training patterns are generated for the affine function. Three artificial outliers are created. Linear SVR is chosen for approximating to

the given affine function.

Table 3.1 A comparison of €-insensitive linear SVR and the devel oped robust & low complex SVR models for the affine function f (x) = 5x — 5 withe, = 1, C = 10.

F) =5 -5 Percentage of Root mean Root Mean Square Error Norm of w CPU time
sguare Difference (PRD) (RMSE) (In seconds)
Epsilon | 0 | 0.01 | 0.1 0 | 0.01 | 0.1 0 joor |01 |O 001 |01
SVR Models
_w? Train 36.200 | 37521 |36.762 |11.136 |11.134 10.675 5 5 5 0.344 | 0.344 | 0.328
1—e & Test 39.785 | 37.628 | 37.876 | 11.084 | 11.082 11.709
w2\ [Train | 35311 | 35423 |36.825 | 10693 | 11134 |10675 |5 5 5 0.359 | 0.328 | 0.344
Pw? + (1 —e ) Test 40.130 |40.398 |37.449 |11.731 |11.082 |11.709
1l b Train | 36.669 | 37.016 |36.419 | 11.133 | 10.688 | 10.663 |4.999 | 4.999 | 4.999 | 0.344 | 0.344 | 0.344
gincoshe(Be) g 33544 |37.318 | 37.989 | 11081 |11.725 | 11.706
£ (1 41 [ ﬁe]z) Train 35.754 | 34.200 | 36.527 | 10.693 | 10.692 11.132 5 4999 | 4.989 | 0.391 | 0.422 | 0.391
B 2 ¢)  Test 39.357 |42.396 |38.236 |11.731 | 11.729 11.072
e-insensitive linear Train 35.959 | 35518 |35.282 |11.063 | 9.3%4 11.077 4844 | 4.831 | 4.848 | 0.344 | 0.328 | 0.344
SVR Test 39.533 |38.017 |39.767 | 10.881 | 13.175 10.893
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Table 3.2 presents results for the following nonlinear benchmark function.

Where, 41 training patterns are generated for this nonlinear function. Polynomia SVR is chosen for approximating to the given nonlinear

flx) = (xz)% with x € [-2,2]

function. Where, K(x%,x) = [x"x* + 1] and 9(x) = [x* V2 - x 1]T.

1
Table 3.2 A comparison of €-insensitive polynomial SVR and the developed robust and low complex SVR models for the nonlinear function f(x) = (x2)§ with

€2=1,C=10.

1 Percentage of Root mean | Root Mean Square Error CPU time
fx) = (x*)3 sguare Difference (PRD) (RMSE) Norm of w (In seconds)
Epsilon |0 001 |01 0 1001 |01 0 J|oo01 |01 |0 [oo1 |01
SVR Models
w? Train 48.006 | 38.822 | 41.645] 0.194 |0.159 |0.170 |0.747 | 0.679 | 0.663 | 0.328 | 0.344 | 0.344
1—e Test 52.365 | 54.511 | 50.942 | 0.227 | 0.232 |0.218
_w? Train 48.253 | 40.193 | 37.224 ] 0.181 |0.169 |0.158 |0.738|0.635 | 0.656 | 0.328 | 0.328 | 0.344
Pw2+<1—e & ) Test 49.984 | 52.875 | 58.724 | 0.234 | 0.216 |0.228
1 Incosh, (8¢) Train 43556 | 44.248 | 44.794 ] 0.183 |0.180 |0.197 |0.629 | 0.649 | 0.596 | 0.344 | 0.344 | 0.344
B £ Test 56.694 | 46.619 | 50.447 | 0.202 | 0.199 |0.189
1 (1 +3[Be]2) Train 41.910 | 43.104 | 46.607 | 0.190 |0.180 |0.199 | 0.607 | 0.634 | 0.598 | 0.406 | 0.391 | 0.391
B 2 e Test 56.571 | 48.102 | 52.611 | 0.193 | 0.200 | 0.189
e-insensitive polynomial | Train 47.848 | 43.030 | 44.683 | 0.196 |0.169 |0.197 |0.726 | 0.712 | 0.655 | 0.344 | 0.344 | 0.328
SVR Test 48.985 | 51.674 | 47.018 | 0.205 |0.231 |0.173
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The obtained regression functions for both of the test functions are depicted in Figure
3.1-3.8.
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Figure 3.1 e-insensitive polynomial SVR model obtained with 1 — e_g norm
for f(x) = (x?)3
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Figure 3.2 g-insensitive polynomial SVR model obtained with Elncoshs

for f(x) = (x?)5
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Figure 3.3 e-insensitivep polynomial SVR model obtained with % In (1 + % [,Be]g)

for f(x) = (x2)§
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Figure 3.4 e-insensitive polynomial SVR model for f(x) = (x2)§
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Figure 3.5 e-insensitive linear SYR mode! obtained with 1 — e &

for f(x) =5x—5
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Figure 3.6 5 €-insensitive linear SVR model obtained with élncoshs
for f(x) =5x—5
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Figure 3.7 5 &-insensitive linear SVR model obtained with éln (1 += [/;e]g)

forthe f(x) = 5x — 5
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Figure 3.8 -insensitive linear SVR model for f(x) = 5x — 5
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CHAPTER FOUR

LEAST SQUARE SUPPORT VECTOR REGRESSION
WITH EPSILON INSENSITIVE QUADRATIC LOSS FUNCTION

This chapter extends Least Squares Support Vector Regression (LS-SVR) with
squared loss function to the case of LS-SVR with epsilon insensitive squared loss
function that ignores the small errors less than a predetermined number . The LS
SVR ,which is a modified version of standard Support Vector Regression (SVR), is
introduced by Saunders, et all, (1998) and Suykens, et al, (2002). In conventional
SVR, the e-insensitive loss function is used as the cost function and it is represented
by the inequality constraints. In the LS-SVR, the squared loss function is used as the
cost function and the errors terms are represented as the equality constraints and the
minimization problem is eventually converted to solving a linear algebraic equation
system. Nonlinear identification and modeling, function approximation and optimal
control are among the numerous applications of LS-SVR (Goethals, et all., 2005;
Espinoza, et al., 2005; Espinoza, et a., 2004; Suykens,et. all, 2000; Jiang, et. all,
2009; Suykens,et. al, 2001; Suykens, 2001; Espinoza, et. all 2005, 2006; Wu, 2006;
Pelckmans, et. all., 2005 ).

In the following, the derivation of LS-SVR and its proposed e-insensitive version
will be presented and their associated solutions will be compared in a qualitative
way. The comparison will also be made with conventional least square solution
firstly for the linear one-dimensional case for simplicity by no means of loosing

generality.

4.1 Least Square Support Vector Regression

In this subsection, LS-SVR is described in terms of least squares and ridge

regression.
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In Section 2.2, least square approximation is described in a genera framework.
According to this, for a set of domain-range samples{(x*,y*)}:_, withxs € R®

y*® € R, regression estimation is defined as
yS =wlg(x5) + b+ e® (4.1)

Where, @(-): R" - R™ is anonlinear function which maps the input data into a high
dimensional feature space, w € R™ is a weight vector, e® € R is the error variable
and b isthe bias term. Then, the cost function is:

L

Lis0, f(0) = ) [y* = wla(x") + bT? 42)

s=1

The cost function of ridge regression is the following modified version of the least

squares approximation cost (Saunders, Gammerman, & Vovk 1998):

TN

L
L () =5 Il w I+ 5 [y = who(x) — bI? (43)

Where, C isafixed positive constant. Note that the cost function in (4.3) consists of a
least square error and a regularization term. € = 0, which is a specia case of ridge

regression, corresponds to least squares regression (Saunders, et al, 1998).

One may desire to obtain the dual space representation instead of the primal space
for computational purposes (Suyken et al., 2002). For the LS-SVR, the following
optimization problem in the primal weight space can be described in the dual space
as explained in the sequel.

: 1 2 C : 2
min =l w ||2+52(e5)
s=1

WERM bER 2

(4.4

subjectto y* = wl@(x%) + b + €5, sef{l,..,L}
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One defines the corresponding Lagrangian form as:

L L
1 C
Jw,b,e;ay) = EwTw + EZ:(eS)2 — Z as(wre(x5) + b + e5 —y%) (4.5)
s=1

s=1

Where, a, € R are the Lagrange multipliers (adso called as support vectors) in the

SVR literature. First order necessary conditions for the optimality are:

L L
dj sy _ _ s
W_W_Z%Q(X)_O_)W_Z%Q(X) (4.6)
ay L ) 4.7)
%_s=1a5_
d
d—e]S=aS—Ce5=O (49)
a . s s (4.9
das_w P(x5)+b+e’—y =0

These conditions are similar to the Vapnik’s SVR optimality conditions, except for
the condition a; = Ce,. Eliminating the variables w ande?®, the following cost

function which should be maximized is obtained:

L L L L
Jay) = —%ZZ @, 00 ("), ~ 5 ) st ) (4.10)

r=1

which can be rewritten as the following minimization problem.

min/(a) = =aTK&5, xa + iocTa —yTa
acRrl 2 ’ 2C

L (4.11)
subject to Z a, =0

s=1
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Instead of solving the above quadratic optimization problem, one may prefer to solve
the following set of linear algebraic equation system which is obtained from first

order optimality conditions.

0 T
o iz o= D) 12

Where, I € R¥™*L is an identity matrix,u =[1,..,1]7T € R}, a = [ay, ...,a,]T €
RYy =[y*, .., y"]" € R, K= K(x5,x") = [8T(x*) - B(x")]5, € RVE

For the test sample x, one can predict the range of the learned approximate function

as.

L L
fX)=wiox) +b = Z a0 (x%).0(x) + b = Z a, Kx5,x) + b (4.13)
s=1 s=1

Where, a,’sand b are the solutions to the equation in (4.12).
4.2 e-insensitive L east Square Support Vector Regression

This subsection presents e-Insensitive Least Squares Support Vector Regression
(LS-SVR) model which constitutes one of the contribution of the thesis. It is derived
by inspiring Vapnik’s e-insensitive loss function that ignores errors which are within
a determined distance of desired output (Figure 4.1). It is an improvement on LS

SVR model towards obtaining less number of support vectors.

For the e-insensitive LS-SVR derivation, the optimization problem is chosen as:

L

min = Il w I3+ EZ(eff)2

WER™ bER 2 ) €
s=1

(4.14)

subjectto y* —wT@(x%) — b = e with s € {1, ..., L}
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Where, the e-insensitive quadratic loss function is defined as:

(e — ¢)? ife>c¢
(e)2 =10 if —e<e<ce (4.15)
(e + &)? ife<-—c¢

The graphs of the e-insensitive quadratic cost and its derivative are illustrated by
Figure 4.1 (a) and (b) respectively.

pe) d(e)

de

-& | +¢ >€ /6‘ +e

(a) (b)

Figure 4.1 (a) e-insensitive quadratic loss functions (b) its derivative

It should be noted that (e)? is a continuous differentiable function whose derivative

has the following canonical representation.

d(e)z
de

=2e+|e—¢|—|e+¢|
One defines the Lagrangian form as:

L L

1 C
J(w,b,e;a;) = EWTW + Ez(es)ﬁ — Z a;(wro(x5) + b +e5—y°%) (4.16)
s=1

s=1

First order necessary conditions for its optimality are:
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L L
E=w—;%¢(xs> =0 ﬁw=;a5¢(x5) (4.17)

L (4.18)
d] S T

=y’ —=wox’)—b—e*=0
da,  ” () (4.19)
d C
dejs =E[—2e5+|es—s |—leS+el]l —as=0 (4.20)

In order to reach acost in terms of the Lagrange multipliersa,’s, e should be solved

intermsof «a, from (4.20).

There are three different regions in each of which e® and «, are related to each other

in an affine way:

if e > ¢, then

c 1
52(95—5)—a5=0—>es=5a5+s

if —e<e®<¢g then

0—a;=0—->a;,=0

if e < —¢, then

c 1
;2(35+s)—a5=0—>es=za5—e

Where,

1
sign*(a;) = {Awith 1 € [—-1,1]
-1

1
e’ = T + ¢ sign”(as) (4.21)
J
if az>0
if ag=0

if a;<0
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Where, * means that the signum function is identical to the usua signum function
except at @ = 0 values for which signum becomes multi-valued with sign*(a) = 4
with 2 € [-1,1]. On the other hand, sign;(a) is the e-insensitive version of the

signum function which is defined as:

Figure 4.2 e’ graphics with respect to a

So, eliminating the variables w ande?®, the following formulation for the e-
insensitive LS-SVR is obtained.

L
1
max ) () = EZ 2 @B O e

w5 (geore) 52 (Geme) w50

SEL4 SeL_ S€Lg

- ZL: a, Z a, B(x)TO(XE) + b

|3 s 3 o)+ Yol

S€EL4 SeL_ S€Lg

Notethat, as Y't_, a, = 0, the biasterm b is disappear.
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s=1s=1
C 1 2 ¢ 1 2
t3 (E“s“) t3 (E“S‘E) (4.22)
SeLy SEL_
L L
1 1 1 1
‘Z“s EE(E“S“)J“E (E“S‘E) Z“sy
s=1 SeLy SEL_ s=1

Where, L, 2{s€{l,..,L}| e°>¢}
L_2{se{l, .. L}]| e <—¢} (4.23)

Ly2{se{l,..,L}| —e<eS<c¢e}

Or dternatively, (4.22) can be rewritten as in the following minimization problem:

m1n](a)— ZZO(SK(X XD a,

s=1s=
2|2 Gore) + Y (Gome)
> C,as € C,as €
SEL4 SEL_
(4.24)
Py o) 33 () B
SeLy SEL_

L

subject to z a; =0

s=1

As an dternative, using the compact representation in (4.21), (4.24) can be written

as.

orr%kn](a) _ %iz @ K(xX5, X", _gi< as + & sign (as))

+i <a5+s sign®(ag) —y )

s=1

(4.25)



102

Then, the following dual optimization formulation is obtained for the e-Insensitive
LS-SVR.

L L

L L
_ 1 1
min J(2) = zZZ aK(x*, X )a + EZ(%)Z =) ay
S= s=

s=1 s=1

. (4.26)
2
+ - (sign' (@))?

As can be seen from (4.26) and (4.10), the difference between LS-SVR and e-
insensitive LS-SVR is at the number support vector number due to the e-insensitive

tube. Because, the support vectors in the e-insensitive tube are zero.

With the optimum values of a, obtained by solving (4.26), one may determine the

optimum value of w, and so the approximation function as:

yS =wlo(x5) +b
L L

= Z a, 0T (x%).0(x)+b= ) a,KEx5x)+b

s=1 S=

(4.27)

4.3 A qualitative analysis of e-insensitive LS-SVR

The analysis will be done for 1-dimensional and linear case for the sake of
simplicity. Considering the sample set {(x5, y*)}L_; withx®,y® € R, e-insensitive

LSSVR can be formulated as the minimization of the following cost function.

w? +

](W, es) =

N =
TR

L
Z(ys — wx¥)? (4.28)
s=1

e-insensitive squared loss function is continuously differentiable, so first order

necessary condition for optimality can be stated as:
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L
] C
—=W+—Z 208 —wx®) +HlyS—wx® —e | —y* —wx*+¢|
ow 2 s=1[ o ) Hly Y I 4o
(=x%) =0
By using (4.29), one obtains w in terms of the x° samples as:
C L
w = E[Z[Z(ys —wxS)+HlyS—wx’—¢el -y —wx*+el] xsl (4.30)
s=1

(4.30) is an implicit function of w. It is shown in the sequel, w can be obtained

explicitly in terms of the samples. For this purpose, one can write (4.30) as follows:

C C C
w= Ez 0 +Ez 200 —wat —e)x* 4o Z 2(y° —wx+e)x*  (4.31)

S€Lg S€ELy SeL_

Where, L, L, and L_ setsare defined asin (4.23).

Then, (4.31) can also be given asin (4.32).

w 1+CZ(x5)2+CZ(xS)2

S€eELy S€EL_ (4.32)

=CZ0+CZ(y5—e)x5+CZ(y5+s)x5

S€Lg SEL4 SeL_

So, the optimal w isfound as:

_ [C Disery 0+ CXser,, (2 —)x° +C Xge, (¥° + S)XS]

4.33
(14 € Seer, % + € Sey ()] -

As an dternative, it can be written as:
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W= [Yeo1 Sy -y % — e 51 S, - x°]
[% +YLS, - (xS)Z] (4.34)

Where,
_ 24sign(y® —wx® —¢) —sign(y® —wx® +¢)
B 2

St

S, = sign.(y* — wx?)

4.4 Comparison of Least Square Regression, LS-SVR and SVR

For a given a set of samples{(x®,y*)}:_; withx® € R andy® € R, the linear

regression with b = 0 can be defined as:

yS=f(x*) =wx’+e (4.35)
Where, e € R isthe error variable.

Linear least squares regression for 1-dimensional case:

To determine the coefficient w, one can minimize the following sum of squared error

for a given sample set.

ZL:(es)z = ZL:[VS — wx*]? (4.36)

To use first order necessary conditions for optimality, one may differentiate the
total squared error with respect to the coefficient w and then setting it to zero. As a

result, the normal equations are obtained.
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L
%(Z[ys _ Wxs]Z) =0, se{1,2,-,L} (4.37)

which yields

L
2 (Z[ys - wa]> X5 =0 (4.39)

s=1

So, the optimal w is calculated as
L L S-S
_ s=1Y'X
) e Ll 39
=1 X s=1

Then, the approximate function is given as:

L SA-S
s=1Y X

A Ve L

(4.40)

LS-SVR for 1-dimensional linear case:

Assuming b = 0 and considering sample set {(x*,y*)}:_; withx®,y* € R, LS-SVR

is formulated as the following minimization problem:
5\2
r‘Belg 2 Wity 2 Z(e ) (4.41)
subjectto y* = wx® + e?, sef{l,..,L}
One defines the Lagrangian form as:

L

L
1 1
Jw, e a;) = EWZ + ECZ:(eS)2 - Z as(wx® + e’ —y%) (4.42)
s=1

s=1
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Where, a; € R arethe Lagrange multipliers. Itsfirst order optimality conditions are:

L L
d

ﬁ=w—2asx5=0—>w=2asx5 (4.43)

s=1 s=1

d

d—e]S=Ces—a5= (444)
dJ s s

do, WX te—y =0 (4.45)

S

To find the optimal w, Equation (4.44) and (4.45) can be substituted into the (4.43)

and then solved as:

L L
w = (]Z:esxS = (]Z:(yS —wx®) x’
s=1 s=1
L L
w (1 + CZ(x5)2> = CZnyS
s=1 s=1

L S..S
s=1y X

L

s or w=

w=> {1 — ) 1y ey (4.46)
s=1 f"‘ b (x%)?

The following Lagrange multipliers a, in (4.46) serve as the weights determining the

contributions of the samplesto the optimal weight.

N

y
as = (4.47)
C + Zs 1(x5)?

The approximation obtained by LS-SVR is given as

L
y=f(x)= x5-x (4.48)
Z% 1(xs)2
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SVR for 1-dimensional linear case:
Considering sample set {(x5,y*)}:_; withx®,yS € R and assuming b = 0, SVR is

formulated as the following minimization problem:

L
1
i 2 s _ s

minows+C ) Iy —wxle (4.49)
s=1

The find the optimal coefficients for the minimization problem in (4.49), one can

take the subgradient of the cost function with respect tow (Bertsekas, 1995). It is a

fact that minimum of PWA convex function occurs at a vertex where 0 (zero)

belongs to the subgradient (Bertsekas, 1995), i.e.

L
VwJw,b) =w+ CZ signg[y® —wx’](—=x*) =0
s=1
On the other hand, sign;(a) is the e-insensitive version of the signum function
which is defined as:

+1, for a > ¢
-1, fora < —¢
signi(a) = 0, —e<a<e
A with A € [0,1], fora = ¢
A with 1 € [-1,0], fora = —¢

Then, w can be solved in terms of the samples and specific values of 1* as.

L
w= Cz signi[ys — wx®]x® (4.50)
s=1
The approximation obtained by SVR is given as.

L
y=f(x)= Cz signilys —wTxS]xs - x (4.51)

s=1

To optimal w parameters obtained by four different regression methods are given in

Table 4.1 for understanding their differencesin aclear way.



Table 4.1 Optimal w parameters for linear regression in three methods, namely, Least Square Regression (LSR) , LS-SVR and SVR.

Table 4.1 The value of optimal w in the least square, LS-SVR and SVR methods.

LSR LS-SVR e-Insensitive LS-SVR SVR
L [Z§=1S1'y5x5—3215=152 - x%] L
w Z [ I z x* | = 1 = Cz signg[wx® — yS]x®
Yeo1(x)? s=1 1(x5)2 [E + EemaSi (xs)z] s=1 )
Where,

2 +sign(y® —wx® —¢) —sign(y® —wx® +¢)
2

Sl=

Sz = sign(y* —wx*)

As can be seen Table 4.1, one can conclude that data points out of the prescribed parameter epsilon bound are support vectors in SVR. The

contributions of support vectors contained out of the e-insensitive to the optimal parameter are the same. On the other hand, the difference
between LS-SVR and LSR is only at the complexity parameter % When C goes to infinity, LS-SVR solution approaches to L SR solution, more

precisely, to the generalized inverse solution. In e-insensitive LS-SVR, the contributions are only due to the support vectors which are the
samples out of the e-insensitive tube and the contributions changes from one support vector to another depending on its position on the sample

space.
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CHAPTER FIVE
SUPPORT VECTOR REGRESSION
WITH PIECEWISE AFFINE KERNEL

The performance of the SVR largely depends on the kernels and the loss functions
chosen. Therefore many different kernel functions for mapping are used in literature
such as polynomial kernel, Gaussian kernel, sigmoidal kernel, etc. This chapter
presents a new type of kernels which is called piecewise affine kernels where feature
space is explicitly given with a piece-wise linear mapping from the input space.
Moreover, it is also presented how the Support Vector Regression (SVR) with
piecewise affine kernels can be formulated for function approximation. The
introduced Piecewise Affine Regression (PWA-SVR) models are inspired by the
canonical representations available for PWA functions described in Subsection
(2.1.5).

5.1 1-dimensional (PWA-SVR) models

Let a function f(-):R — R be given by the samples {(x*,y*)}L_,. Consider the
following piecewise affine function @(:): R - R™ mapping from a one-dimensional
input space into an m-dimensional feature space.

1
( X

| x =y
P(x) = = v2| (5.1)

| |x —y!
Then, the mapped data set becomes

{@(x%),y)}sz1,  O(°) €RM?, yS€R (5.2)
One can use the following PWA approximation for obtaining a support vector

regression model.
fx) =wTo(x) (5.3)

109
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It should be noted that the bias term b is not included in the representation of (5.3)
since the first basis function in (5.1) is chosen as unity for providing a bias term in
the function space. The bias term b will not be included in the kernel representations

developed in this section except for the compact kernel (5.31).

This regression problem can be formulated as the following optimization:

L
1
min= | w 134+ C E (& +&5)
w 2
s=1

yS —wlo(x®) < e+ & (54)

subjectto ¢ —yS +wT@g(x%) < e+ &
$s) E; =0, S € {1, ,L}

Formulation of w € R™ in terms of the dual variablesis obtained by using Lagrange

multipliers as mentioned in the Subsection (2.2.2.2).

L
W= (e - a) 8(x) (5.5)

and the support vector regression function (5.3) is found as:

L
F() = w000 = D (& — a) K, X) (56)

Where, K(x*,x) = 8T (x®) - 9(x) isthe PWA kernel function defined as the follows.

K(x*,x) =07 (x*) - 0(x)

( 1
X
lx =y
=[1 xS xs_l xS_Z... xs_l,
[ | v yel e | Al x — 2|
[ [x -y
=[1+x5x+ x5 =yt x =yt + x5 —y2 Ix — y2] + - (5.7)

+ x5 =y [x — yH]
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Substuting (5.7) into (5.6), one can obtain PWA-SVR model.

L
= s — ; 1+ x5.x+ s _ 1_ _ .1
£(x) ;(a ) [1+ x5 + x5 =y [x — 1] 59

+ x5 = y2Lx —y2 + 4 xS =y x = yH]

Where, the function f(x) is a PWA function whose canonical parameters can found

as follows.

L
)= ) (= @) [1+x% x4 x° =y e = yH ]+ 18 = 2] [x = y?] + -
s=1
+ x5 = x| - Jx = xt]
L

> @ —apxe

s=1

L

=D (a-a) +

s=1

L

D (e —ad - y1|] =]

s=1

X+

Qo az by

L
Z(as —ag) |x® — xll‘ lx — x!
s=1

by

= a + a1 x + bylx =yt + bylx — y?[ 4+ + blx — ¥

!
= a0+a1x+2bj|x—yj| (5.9
=1

When y/ = xS for al s€({1,..,L} with [ =L, the function in (5.9) can be

represented as the following PWA canonical representation.

L
f(x)=a,+ax+ z bg|x — x° (5.10
s=1

5.2 n-dimensional PWA-SVR models (lattice partition case)

Let a set of samples{(x®,y5)}:_, be given. Where, x* € R™ are the domain
samples and y* € R are the range samples. Consider a piecewise affine mapping

@(-): R™ - R™ from the input space into the feature space.
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O(x) = [1 Xp ot Xp X — V11| |x1 - V111| |, _Y21| |x2 - Vzlzl
r (5.11)
|xn - V&l |xn - yranl]
One can use the following PWA model for regression.
L
F() = who(x®) = Z(as — @) K(x5, %) (5.12)
s=1

Where, the PWA kernel K(x*,x) can be obtained as in (5.13) by using the mapping
in (5.11).

K(x%,x) = 97 (x%) - 0(x)

1 1 1
x; X4
Xn Xn
x5 — ¥l 1%, — 1l
Ixs _ L _ L
_ 1~ N | |21 )2 I
x5 = v3| lx, — ¥l
T C
|x25 - y22| |x2 - szl
x5 = Val |%n — ¥nl
C C
-|x1§ - ynn i -|xn - Ynn g

= (1 +xixy + o+ xnxn + xf —vil -l —yil+ o
l l
S P o I P T B R P e R o I
S L ) s 1 1 (513)
+ |x2 - Y | |X2—)/2 |+'"+ Ixn_)/nl : Ixn_)/nl + oo

+ % = v [ =)

Substuting (5.13) into (5.12), one can obtain SVR with PWA kernel for having
|attice structure.



flx) =

L
s=

I l l
(s — @) (14 xfxy + -+ x5 + 6 =yl 0 =y [+ 5 = o =t + 510
. .

AR I R e R e e B o o e e R P 7l R N E e il R PR )

Where, the function f (x) isaPWA function whose parameters can be found in terms of the dual variables as the follows.

L L L L
FG) = D (@ = a1 4 | (@ = ) x4 | D (@ = ad) I =y lx = | 4+ | ) e = @) Ix* = ¥ [ [x—
s=1 s=1 s=1 s=1
ag al bT bT
fx) = ao +aix+ bl |x—y*| + by |lx —¥?| + -+ b] |x — V!| (5.15)
l
= a, +a{x+zbj|x—yf|
j=1
Where, [x| = [|xy] [x] - x5 []7
Wheny® = x° foral s € {1, ..., L} with | = L, the function in (5.15) can be represented as in the following.
L
f(x)=a,+ a{x+Zb§|x—x5| (5.16)
s=1

erT
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5.3 n-dimensional PWA-SVR models (general partition case)

Let a set of samples{(x®,y5)}L_, be given. Where, x* € R™ are the domain
samples and y* € R are the range samples. Consider the following piecewise affine

function ®(-): R™ —» R™ for mapping the input space into the feature space.

®(x) =[1 x" |lalx—y!| |alx—y?| - |alx—yH]T (5.17)
One can use the following PWA model for regression.

L
f() = Wie@) = ) (@ — ) Kx,%) (518

Where, the PWA kernel K(x*,x) can be obtained as in (5.19) by using the mapping
in (5.17).

K(x%,x) = ®T(x%) - d(x)

( 1
X
laix — |
=1 XST C{TXS— 1 C{TXS— 2]... C{TXS— l
1 x)" |az vl lag &l la; V|]|a7z"x_y2|
[ lafx ']
=[1+ )" x+]aix’ -y lajx -y’
+lagx® —y?| - lagx —y2| + - (5.19)

+lalxs =y - lalx — ]

Substuting (5.19) into (5.18), one can obtain SVR with PWA kernel for having n

dimensional general structure.

L
(x)=2(a —a)[1+ &HT x4+ |alx® —yYT - |alx — y!|
f Z, s — ag) [1+ (%) 1 Y 1X—y (5.20)

+ lalxs — 2|7 [alx — 2|+ + |alxs = y!|T - |alx — y!]

Where, the function f (x) isa PWA function whose coefficients can be found in

terms of the dua variables as the follows.



fO) =Eemq(as—ad [T+ )T -x+ lafx® =y laix =y + laix® —y?|" - lajx = y?| + -+ o x* = y!|" - la]x — ']

X+

L
D (@ - a) lafx —y1|T] jalx— |+t
s=1

L L
D@ —ad) + ) @ - adx”
s=1 s=1

ao a] b," b,"

=ag+alx+b, |lalx—y!|+ b, lalx—y?| + -+ b, |la]x— y!|
l
=a,+alx+ Z b;"|alx — /|
=1

Wheny’ = (x*)Tx® and ag = x* forall s € {1, ..., L} with [ = L, the function in (5.21) can be represented asin the following.
L
f() = ag +ax+ Y b.I(¢) %~ (x)7x’]
s=1

The PWA kernel K(x*,x) can be written asin (5.23) by using (5.19)

L
Z(a’s —ag) la]x* —y!" | |alx — !
s=1

(5.21)

(5.22)

q1T
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K(x%,x) = ®T(x%) - d(x)
=[1+&H" x4+ [|x)x = &)X [(x)Tx - (x)Tx
+](x*)Tx° = (x*)Tx?|" - |(x*) x = (x*)TxP| + - (5.23)

+ 1 (xHTx = (KO- |(x)Tx = (xHTx!]]
5.4 First degree B-spline PWA-SVR model
Let a set of samples{(x%,y*)}:_, be given. Where, x5 € R™ are the domain

samples and y° € R are the range samples. Consider a piecewise affine function

9():R - R' mapping from the input space into the feature space.

( 1 1 1 2 1 ; 1 |
=yl =y +5sign(x -y
1 1
Sle=yi=lx =y + 35l =77
1 1
B(x) = F V= e g ey (5.24)
1 ' 1
Elx—yl‘zl —|x =y +§|x—yl|
1 1 1
Ty — =1 — Dy — ] — i _ a1
Sl =y =S lx =yl =5 sign(x —y )|
Then, the mapped data set becomes as:
{(B(x%),y)}s=1, B(°)€ER, y €R (5.25)

So, the regression function is obtained as in the following.

L
fx) =wlg(x®)+b = Z(as —a)Kx5,x)+ b (5.26)
s=1



As mentioned in the previous subsection, one can use the following PWA kernel function to obtain PWA-SVR model in terms of first order

B-splines.
K(x%,x) = 07 (x*) - 0(x)
1 1 1 .
—EMS—VH+5MS—VH+ESmn&S—VH
1 1
EMS—rW—MS—V”+EMS—Vﬂ
1
- Pt o Rl e A R i
1S 4 -2 s _ ., l-1 ls_l
gx Yy = 1xS -y |+ﬂx Al
S -1 1 s l 1 . s -
5M -y I—EM YI—Eﬂmwx—V

— 1|
= —Ex

1)_

1
EM—VH—M—V”+§M—Vﬂ

1
Ew—y”—w—yﬂ+zm—yﬂ

Eu—ybﬂ—w 1H+ M—VI

1 —
(——Ix y|+ Ix v += stgn(x— )

1 1 1
51—yt = S x =y = 5 sign =y

e —y|+1s1gn(x —yl)) (-3l =1+ 3=+ gtonte—h)
T IR S N P ) B NS B A |x—y|)
+(§|x5—y2|—|x5—y3|+1|x5—y ) (Gl —v2l =l =yl 4 e —y1)

T R s B U ) Y 2|—|x P = )

1 1
+«§MS—W]1——M —VI——ﬂmwx—le)(2M—VFH—EM—VI——QWKX—W*)

2

(5.27)

L1T



Substituting (5.27) into (5.26), one can obtain first degree B-spline PWA-SVR model.

fx) =wlg(x®) +b

! 1 N 1 1 S 2 1 . N 1 1 1 1 2 1 - 1
=Z(a5—as) —zlx -y |+§Ix -y |+551gn(x -y —Elx—y |+§Ix—y |+§Slgn(x—]/)

s=1

1 1
+(§|xs—y2|—|x5—y3|+§|x5—y4|) ( o=y = b=y 5 e y|) (529

1 1 1 1 1
+(5|xs—yl-1|—5|xs—yl|—Esign(xs ”)) (51 =yt = b = !l = g signCe = y'=))| + b

Where, the function f(x) is a PWA function whose parameters can be found in terms of the dual variables as follows.
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L
1 1 1 . 1
Z(ocs - ay) <—§|x5 =V A+l —yE 4 5 sign(x® — V1)>]§sign(x —yh

s=1

fG)=b+

Qo

C1

L

1 1 1 . _ 1
+ Z(as — ay) <—§ Ix$ =yt + > lxs = Y+ > sign(x® - Y 1)) 5 sign(x - )
s=1
C2
- 1 1
+ Z(as - ag) <Ix5 -y =2 =y + o lx — Y3l = 2 sign(x® — V1)>] lx — ¥
s=1

by

r L
3 , 3 1 1
+5 E(as—as)<—lxs—yll+§Ix5—yzl—Elxs—y3l+551gn(x5—yl)>] lx — 2

Ls=1

b,
3[< 3 3 1
2D = (1 =y =S e =y S e = gl —y‘*l)] =y 4 -

Ls=1

bz

L3
2

L
1 3 1
Z(as —ag) <§ lx —yi2] — L YU+ xS =y + 7 sign(x® — Vl_1)>] lx — x!
s=1

by

61T
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1 1 1 1 1 -1 1
F@) = 0+ 1 [5signCe =) + ¢, [5 sign(e =y )|+ bilx =y

+ bylx — Y2 + - + bylx — v

!
c c .
=a,+ [ésign(x -y + ?Zsign(x - yl‘l)] + Z bilx —v/| (5.29)
j=1

When y/ = x° for dl s €{1,..,L} with [ =L, the function in (5.29) can be

represented as the following PWA canonical representation.
L
C C
f(x)=a, + [?1 sign(x —y1) + %sign(x - yl"l)] + Z bs|x — x* (5.30)
s=1

However, the above kernel does not have a compact representation. The following

function is also proposed in the thesis as a more compact kernel.
pl
K(x%,x) = max {O, pl— ? |x$ — xl} (5.31)

Where, ptand p2are user specified parameters which serve as the amplitude and, in
some sense, variance of kernel.

A

v

Figure 5.1 Compact PWA kernel



5.5 A quantitative analysis of the developed PWA regression models

This subsection presents performance analysis results of the developed PWA regression models. sinc(x) = %(x) function is taken as the

test function for all examined models. Table 5.1 and Table 5.2 present the regression performances of the SVR models with the devel oped
PWA kernelsin comparison with the Gaussian kernel for € = 0.1 and, respectively, for C = 10.

Table 5.1 A comparison of Gaussian kernel and the developed PWA kernels for sinc function in e-insensitive SV R model with ¢ = 0.1.

e-insensitive SVR Percentage of Root mean Root Mean Square Error (Norm of w) CPU time
C=0.1 square Difference (PRD) (RMSE) (In second)
Epsilon 0 0.01 0.1 0 0.01 0.1 0 001 |01 (O (0001
1
Kernels
Gaussian Train 30.270 24.794 21.036 |0.105 |0.083 |0.071 |2776|2.682|1865|12|12 |12
Test 25.921 28.738 17288 |0.111 |0.121 | 0.072
#of SV 12 12 11
& (%) (19.7%) | (19.7%) | (18%)
Canonical PWA kernel| Train 12.113 12.94 21.756 |0.042 |0.047 |0.071 |0.040|0.039|0.024|13|13 |13
in (5.7) Test 11.729 10.548 19.185 | 0.050 |0.047 | 0.078
#of SV 9 10 10
& (%) (14.8%) | (10.4%) | (16.4%)
Max Train 4.827 4.888 24145 10019 |0.018 |0.095 |0.854|0.788|0.537|18|10 |11
{0,p! — pt x5 — x|} Test 5.552 9.945 20.058 |0.028 |0.045 | 0.103
p* # of SV 53 51 44
& (%) (86.9%) | (83.6%) | (72.1%)

TcT



Table 5.2 A comparison of Gaussian kernel and the developed PWA kernels for sinc function in e-insensitive SVR model with ¢ = 10.

e-insensitive SVR Percentage of Root mean square Root Mean Square Norm of w CPU time
Cc =10 Difference (PRD) Error (RMSE) (In second)
Epsilon | 0 | 0.01 | 0.1 0 | 0.01 R | 0.01 | 0.1 0 [o001 |01
Kernels
Gaussian Train 127254 | 128281 | 62514 | 0447 | 0415 | 0.206 | 12.066 | 11.912 | 7.288 11|11 |12
Test 96.448 96.113 50.816 | 0.420 | 0.384 | 0.207
#of SV | 10 11 6
& (%) | (16.4%) | (18%) (9.8%)
Canonical PWA Train 132.704 | 13.966 19.128 | 0504 | 0.048 | 0.066 | 0.0257 |0.0392 | 00255 |12 |13 |12
kernel Test 122.491 | 14.046 20.360 | 0.580 | 0.060 | 0.089
in (5.7) #0f SV | 6 7 11
& (%) | (9.806) | (11.5%) | (18%)
Max Train 2.125 2571 24734 | 0.007 | 0.009 | 0.095 |0.847 0.804 0.530 1710 |10
1_Pls _ Test 6.931 11.749 22.640 | 0.029 | 0.052 |0.112
{0.,p" =5 1x° —x[}
P #of SV | 47 45 44
& (%) | (77.0%) | (73.8%) | (72 %)

act
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Table 5.3 and 5.4 presents the regression performances of the LS-SVR models with
the developed PWA kernels in comparison with the Gaussian kernels for € = 1 and,

respectively, for C = 10.

Table 5.3 A comparison of Gaussian kernel and the developed PWA kernels for sinc function in LS-

SVR model with € = 1.

LS SVR Percentage of
C=1 root mean Rroot Mean
square Square Error | Norm of w
Kerne difference (RMSE)
(PRD)
Gaussian Train 27.417 0.109 1.196
Test 21.975 0.108
Canonical PWA kernel | Train 1.829 0.006 0.045
in (5.7) Test 4510 0.018
Max Train 9.909 0.036 0.684
{0, pl _ 2_: xS — x|} Test 13.402 0.062

Table 5.4 A comparison of Gaussian kernel and the developed PWA kernels for sinc function in LS-

SVR model with € = 10.

LS-SVR Percentage of
C =10 root mean Rroot Mean
square Square Error | Norm of w
Kernd difference (RMSE)
(PRD)
Gaussian Train 7.525 0.026 2.920
Test 6.632 0.029
Canonical PWA kernel Train 0.327 0.001 0.049
in(5.7) Test 2.569 0.011
Max Train 1.097 0.004 0.830
{0,pt — z_: x5 — x|} Test 7.683 0.036




CHAPTER SIX
INPUT-OUTPUT CLUSTERING BASED DESIGN OF APPROXIMATE

PWA FUNCTIONS

This chapter presents a new method for the PWA function representation. The
idea behind the proposed method is to employ clustering to the given domain-range
sample data set {(x%,y*)}:_, to determine the nonempty regions partitioned by a
finite number of hyperplanes, and then to determine the coefficients associated to
each affine function by using the samples belonging to this specified region. The
number of the partitioned regions is assumed known a priori. In order to obtain the
parameters of each affine function valid for a specific region, two methods are

proposed: The least square regression and orthogonal regression.

In the least square regression, the mean sgquare of error between the range samples
and the regression value is considered as the error to be minimized. In the orthogonal
regression, the sum of distances of the samples to the linear regression is considered
astheerror.

6.1 PWA function

Let a set of finite data pairs{(x®,y*)}t_,, x* € R™,y* € R™ be given. As
explained in Section 2.1.5.1. the PWA functions, which can be represented by the
following canonical representation under mild conditions, can be used to

approximate the given sample set.

!
f(x)=a+Ax+ij|aij—yj| (6.1)
=1

with a b; € R™ a; € R" A €R™" and y; € R if and only if it satisfies the

consistent variation property.
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This chapter gives a method which is based input-output clustering for
determining the parameters of such a PWA regression function. Input-output
clustering will be presented firstly and then the application of this clustering method
will be given for determining affine regression models defined in each affine region

and the linear partition of the domain space.
6.2 Input-Output Clustering

In the Input-Output Clustering (10C), the vectors to which a clustering agorithm
will be applied, are obtained by augmenting the weighted input sample vectors with
the desired outputs asin (6.2) (Uykan, et. a.,2000).

()70 = [yx)" (y)]" (6.2)
Where, y isaweighting factor.

In this thesis, the IOC algorithm applies a batch mode clustering algorithm to the

set of augmented vectors in (6.2) and then find the augmented centers of the clusters
. .. T .. T . .

m =[y(m]) (m}) ]" € R™*™ whereymy, € R*andmj) € R™. The first m

entries are rescaled Withl/y. One can choose any metric for quantization error to be

minimized by clustering. In this thesis study, Euclidean norm for quantization error
and K-means clustering algorithm is used for partitioning the data in order to
determine the linear partition of the PWA regression function under construction.

6.3 PWA representation by using input-output clustering method

The key point in the design of piecewise affine function representation is to
specify the number and the locations of the breakpoints for one-dimensional case and
hyperplanes partitioning the domain space for n-dimensional case. Once the locations
of breakpoints and, in general, hyperplanes are determined, the optimal local
regression function affine can be determined by using one of the linear regression
methods, for instance, any method cal culating generalized inverse solution.
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The proposed |OC based PWA regression method is described in the flowchart of
Figure 6.1. K-means used for clustering is just one of the possible choices. Different
quantization error norms can be exploited to determine the linear partition of the

domain space.

/ Initialize set of I/Odata /

10C with K-means

@

Assign of an affine function to

each of K clusters

4

Re-cluster data

@

Splitting or merging

\

Assign of an affine function to
each of new clusters

A

No

Yes

Finish

Figure 6.1 Flowchart describing PWA function approximation with |OC

The steps of the proposed a gorithm are given as follow.



127

The given set of finite data pairs {(x°, y*)}:_, is clustered for a given initial

cluster numbers K by using IOC with K-means clustering algorithm.

After the given sample data are clustered, to assign an affine function to each
of K clusters, two methods are proposed in the thesis: one is the orthogonal

regression and the other isthe least square regression.

In this step, the whole data is again clustered iteratively in two different ways:
Either orthogonal distance or penalized orthogonal distance between any
individual input-output sample and each of affine functions are calculated, or
then the sample is assigned to the closest line representing the associated

cluster.

Iteration is terminated when the error measure is satisfied or the specified

maximum iteration number is reached.

The developed method will be described, in the sequel, for the one dimensional

case, i.e. the function to be approximated is considered asf(-): R — R. Below, the

regression methods used for each affine region will be given firstly, and then the

metrics i.e. orthogonal distance and penaized orthogona distance used in the

clustering will be explained.

Orthogonal regression

Consider the affine function f(x) =wx+b withw,b € R. For orthogona

regression, the coefficientsw and b are given by

s _ 2_ s _ 2
W=Z(y ) = 2(x — )

23 (x5 — ) (v5 — py)

J(Z(ys —uy)’ =T - ux)z)2 +4[20c = ) (v — )]’
280 — ) (v — y)

+
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s _ 2 _ s __ 2
= Z(ys _ ‘uy)Z _ 2y :“y) 2% — py) Z(xs —u)?

23(x° — py) (v° — 1y)

\/(Z(ys —y) =B - Mx)z)2 + 4230 — 1) (v° = )]’ Z( e
230 =) (v — ) T

Where, u, and u, arethe mean value of x and y, respectively.

L east square regression:

The coefficientsw and b are found by the following linear equation system.

. LL=1 [b] i=1
w

Orthogonal distance

Take two points (end and last) on the i’th affine function P} = (x},y}) and P? =
(x%,v#), and adata point as P* = (x%,y"), then the orthogonal distance is given by

the following formula:

s |G —xDOi —y*) - (i —x) (i —¥i)

d:
Jaz =07+ 07 -y

2

Penalized orthogonal distance

For penalized orthogonal distance, penaty parameter A defined by the user is added

to the formula given for orthogonal distance.
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(e =Dl =y = = x)OF =)

J(xf — X2 4 (yE — y1)?

ds =

2

. , xs—ui
+AyS -l yS -] [ys B #gl

The cost function for penalized orthogonal distanceis defined as:

K . T .
argminE Z lldi 1l + 2 “xj] - uil “xj] - uil fori € {1,2,-,K}
s y’ y’

=1 [xJ
[y lest

Where, S; is the i’th cluster, and d; is the orthogona distance between (x*,y*)
sample and the line belonging to the i’th cluster, and K is the number of cluster. For

non penalized orthogonal distance, the penalty term A disappears.

Note that there should exist at least two data pointsin each cluster. If the number
of dataisless than two within acluster, that cluster is eliminated and is merged to the
closest cluster. There are some clusters that may overlap in the input space (See
Figure 6.2 for the application of the method on ECG data.). In this case, the partition
where the overlapping occurs is labeled as a new cluster and aso the rest of
partition(s) is labeled as new cluster(s). Then, the affine functions are assigned to the
new labeled clusters (See Figure 6.3 for ECG signa approximation.). Thus, the new
affine functions assigned locally defined. That is, affine functions assigned for each
clusters are not alowed to be overlapped in this algorithm.

By the above method, several affine functions each of which is defined locally in a
bounded polyhedral region are obtained (See Figure 6.4 for one dimensiona case
where the regions are bounded intervals.). To obtain a continuous canonical PWA
function, first and end points of these affine functions are used as breakpoints (See
Figure 6.5). Coefficients of the PWA function can be found by using the generalized
inverse solution. Finally, optimal continuous PWA function is obtained by
minimizing the total squared error (See Figure 6.6).
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Figure 6.2 Clusters whose input space projections overlap and the

associated affine regressors.

Splitting or merging

Figure 6.3 Obtaining the non-overlapping intervals by splitting or merging
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Local affine functions
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Figure 6.4 Reassigning data to the closest affine regressors and then
redetermining the affine regressors associated to the non-overlapping
intervals

Continuous PWA function for the ECG data
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Figure 6.5 Determination of breakpoints of a continuous PWA
regression by calculating the end points associated to the intervals
defined by local affine regressors
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Optimal PWA function for the ECG data
12 T T T T T T T T T
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Figure 6.6 Construction of a continuous PWA function using the entire
data by applying the least square PWA regression method for the
obtained breakpoints.



CHAPTER SEVEN
CONCLUSION

In this thesis, four novel classes of regresson models which are based on
piecewise affine and/or support vector methods are proposed. The first class is the
support vector regresson models employing £, with p <1 norms for model
parameter cost in order to reduce model complexity and saturating and/or piecewise
affine loss functions for rejection the contributions of outliers in determination of
model parameters. The second class is the -insensitive least square support vector
regression model class which is introduced as an extension of the least square
support vector regression for reducing excessive number of support vectors
appearing in the support vector approach. The third is the piecewise affine support
vector regression model class which is derived by exploiting the canonical
representations of piecewise affine functions and the first order B-spline basis
functions. Finally, the piecewise affine models, which are designed by input-output

clustering, are developed

The devel oped methods improve the performances of available support regression
models in terms of the generalization ability and/or robustness against to outliers.
The presented studies can be extended by future researches in two directions. More
efficient optimization tools which fit better to the specific natures of the proposed
models may be developed. The proposed regression models may be applied to new

application domains such as signal compression and system identification.
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