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İZMİR
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MONTE CARLO STUDY OF COMPENSATION AND CRITICAL
TEMPERATURES IN FERRIMAGNETIC MIXED ISING SYSTEMS

ABSTRACT

In this thesis, three different mixed Ising model is studied by using Monte Carlo
simulation method. Since real ferrimagnets have fairly complicated structures, mixed
Ising spin models have been used as simple systems that can characterize ferrimag-
netic behavior. Magnetic materials have been a very important part of our lives due to
numerous technological applications such as memory devices. Especially, ferrimag-
netism plays a key role in the physics behind magneto-optical recording. Therefore,
in this thesis, three different mixed Ising model have been examined.

In the first study, dependence on site dilution of critical and compensation temper-
atures of a two dimensional mixed spin-1/2 and spin-1 system has been investigated.
The dependence of the thermal and magnetic behaviors on dilution of mixed spin sys-
tem have been discussed. The results of this study show that dilution plays a significant
role on the critical and compensation points of a two dimensional mixed spin-1/2 and
spin-1 system. It has been shown that the critical and compensation temperatures of
diluted mixed spin system linearly decrease with increasing number of diluted sites.
Results of this study indicate that the compensation temperature of the real ferrimag-
netic spin systems can be changed by diluting the lattice with non-magnetic atoms, in
order to obtain desired compensation temperature.

In the second study, the compensation temperature of the mixed ferro-ferrimagnetic
ternary alloy composed of three different Ising spins (spin-3/2, spin-1 and spin-5/2) in
the presence of next nearest neighbor interaction between A ions is studied in cubic
lattice whose spin values corresponding to the Prussian blue analog of the type in ref.
(Okhoshi et al., 1997a) alloy with Ni. By changing concentration p and interaction pa-
rameter R, we obtain interesting properties of ferro-ferrimagnetic ternary compound.
Results of in this work show that the system has multi-compensation behavior with
suitable R, p parameters and next nearest neighbor interaction between A ions value.

In the third study, it has been investigated the effects of single-ion anisotropy on
magnetic properties of three dimensional mixed ferro-ferrimagnetic model consist-
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ing of three different Ising spins (spin-3/2, spin-2 and spin-5/2) which corresponds
to Prussian blue analog in ref. (Okhoshi et al., 1997a) alloy with Fe. It have been
found that the critical temperature of this system linearly changes dependent upon the
interaction ratio R for any mixing ratio p value, and critical interaction ratio value de-
creases for increasing D values. In addition, we have demonstrated that the magnetic
pole inversion can appear and compensation temperature decreases for increasing ex-
ternal magnetic field dependent upon some values of the Hamiltonian parameters. As
a result, we state that single-ion anisotropy can be used as a control parameter like
mixing rate p to arrange the critical and compensation temperature of the Prussian
blue analog in ref. (Okhoshi et al., 1997a) alloy with Fe.

Keywords: Monte Carlo simulation method, Mixed Ising spin systems, Compensa-
tion temperature, Ferro-ferrimagnetic ternary alloys.
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FERRİMANYETIK KARMA ISING SİSTEMLERİNDE KARŞILAMA VE
KRİTİK SICAKLIKLARIN MONTE CARLO İNCELEMESİ

ÖZ

Bu tez kapsamında, üç farklı karma spin Ising modeli Monte Carlo simülasyon
yöntemi kullanılarak çalışılmıştır. Gerçek ferrimanyetler oldukça kompleks bir yapıya
sahip oldukları için karma spin Ising modelleri ferrimanyetik davranışı karakterize
edebilen basit bir model olarak kullanılmaktadır. Kayıt cihazları gibi önemli teknolo-
jik uygulamalarından dolayı manyetik malzemeler hayatımızın önemli bir parçasıdır.
Özellikle ferrimanyetizma, manyeto-optik kayıtçıların ardındaki fizikte bir anahtar rol
oynamaktadır. Bundan dolayı, bu tez kapsamında üç farklı ferrimanyetik karma Ising
model çalışılmıştır.

İlk çalışmada, iki boyutlu bir karma spin-1/2 ve spin-1 sisteminin karşılama ve
kritik sıcaklıklarının konum seyreltmeye bağlılığı çalışılmıştır. Termal ve manyetik
davranışların karma spin sisteminin seyreltilmesine bağlılığı tartışılmıştır. Bu
çalışmanın sonuçları seyreltmenin iki boyutlu karma spin-1/2 ve spin-1 sisteminin
karşılama ve kritik sıcaklıkları üzerinde önemli bir rol oynadığını göstermektedir.
Seyreltilmiş karma spin sistemininin karşılama ve kritik sıcaklıklarının konum
seyreltme sayısının artışı ile doğrusal olarak azaldığı gösterilmiştir. Bu çalışmanın
sonuçları, istenilen karşılama sıcaklığının elde edilmesi için örgüyü
manyetik olmayan atomlar ile seyrelterek gerçek ferrimanyetik spin sistemlerinin
karşılama sıcaklığının değiştirilebileceğini göstermektedir.

İkinci çalışmada, üç farklı Ising spininden (spin-3/2, spin-1 ve spin5/2) oluşan
karma ferro-ferrimanyetik ternary alaşımının karşılama sıcaklığı A iyonları arasında
ikinci en yakın komşu etkileşmesinin varlığında çalışılmıştır. Buradaki örgü kübik
örgüdür ve spin değerleri (Okhoshi et al., 1997a) referansındaki Ni’ li Prussian blue
analog tipi bileşiğe uygun olarak seçilmiştir. Burada R etkileşim oranı parametresi ve
p konsantrasyonu değiştirilerek ilginç özellikler elde edilmiştir. Bu çalışmanın sonucu
uygun R, p parametreleri ve A iyonları arasındaki en yakın ikinci komşu etkileşim
oranı değeriyle sistemin çoklu-karşılama davranışına sahip olduğunu göstermiştir.

Üçüncü çalışmada, tek-iyon anizotropisinin üç farklı Ising spininden (spin-3/2,
spin-2 ve spin-5/2) oluşan (Okhoshi et al., 1997a) referansındaki Fe’li Prussian blue
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analog tipi bileşiğin manyetik özellikleri üzerine etkisi incelenmiştir. Sistemin kri-
tik sıcaklığının etkileşme oranı R ve karışım oranı p değerine bağlılığının doğrusal
olarak değiştiği bulunmuştur. Ayrıca, kritik etkileşme oranı R nin D değerinin artışıyla
azaldığı görülmüştür. Başka bir deyişle, modelin kritik ve karşılama sıcaklıklarının D

değerinin artışıyla yavaşça arttığı gösterilmiştir. Ek olarak, manyetik kutup terslen-
mesinin görülebileceği ve karşılama sıcaklığının artan dış manyetik alan değerinin
artışıyla azaldığı gösterilmiştir. Sonuç olarak, (Okhoshi et al., 1997a) referansındaki
Fe’li Prussian blue analog tipi bileşiğin kritik ve karşılama sıcaklıklarını düzenlemek
için, tek-iyon anizotropisinin de karışım oranı p gibi bir kontrol parametresi olarak
kullanılabileceği gösterildi.

Anahtar sözcükler: Monte Carlo simülasyon yöntemi, Karma Ising spin sistemleri,
Karşılama sıcaklığı, Ferro-ferrimagnetic ternary alaşımlar.
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CHAPTER ONE

INTRODUCTION

During the past several decades there has been intensive interest in the experimen-

tal and theoretical research of the ferrimagnetic compounds because of their poten-

tial device applications in technologically important materials such as high-density

magneto-optical recording (Tanaka et al., 1987; Alex et al., 1990). Ferrimagnetic ma-

terials have a special temperature point at which the resultant magnetization vanishes

below the transition temperature Tc (Néel, 1948), because of the different dependence

of the sublattice magnetization on temperature. Because its sublattice magnetizations

cancel exactly each other, this point is called compensation point. The occurrence of

a compensation point is of highly technological importance, because to change the

sign of resultant magnetization require only a small driving field at this point. It has

been shown that the coercive field is very strong at the compensation point favoring

the creation of small, stable, magnetic domains (Hansen, 1987; Hernando & Kulik,

1994; Multigner et al., 1996). In magneto-optical recording devices the coercivity is

changed by local heating of the media with a focused beam. Temperature dependence

of the coercivity near the compensation point can be applied to writing and erasing in

high-density magneto-optical recording media.

Numerous materials-science laboratories worldwide aim toward the discovery and

development of new, improved magnetic materials. One approach being investigated

for new magnets is based on molecules as building blocks. Molecule-based magnets

present several attributes unavailable in conventional metal/intermetallics and metal-

oxide magnets. The past decade has witnessed the discovery of several families of

molecule-based magnets (Miller J. S. & Epstein A.J., 2000). Molecule-based mag-

netic materials have been widely studied, because the design of their properties is

easier compared to that of classical magnetic materials such as metal alloys and metal

oxides (Kahn, O. 1993). In particular, Prussian blue analogues show various charac-

teristic magnetic properties depending on their transition metal ions (Ferlay, S., et al.,

1995; Ohkoshi, S., 1997). These compounds are attractive for the molecular design

of magnetic properties because various types metal ions can be incorporated there as

a spin center. Thus the magnetic properties can be precisely controlled during the
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2

synthesis process by changing the ratio of incorporated metal ions (spins). Also an-

alytic descriptions of molecular magnetic materials properties have been studied in

the mean field approximation, the effective field theory and Monte Carlo simulation

method. In general, Monte Carlo simulation method is performed to describe the be-

havior of these magnetic materials at the critical temperature using mixed Ising spin

model. Since real ferrimagnets have fairly complicated structures, mixed Ising spin

models have been used as simple systems that can characterize ferrimagnetic behav-

ior.

Therefore in this thesis, different mixed spin systems are examined by using Monte

Carlo simulation method. An introduction that consist of literature survey and motiva-

tion of this thesis is given in chapter one. Background section which cover the required

concepts and techniques are explained in chapter two, three. In chapter four, depen-

dence on site dilution of critical and compensation temperatures of two-dimensional

mixed spin system has been investigated and the dependence of the thermal and mag-

netic behaviors on dilution of mixed spin system has been discussed. In chapter five,

we have investigated the dependence of the critical and compensation temperatures

of the three dimensional mixed ferro-ferrimagnetic ternary alloy model on concentra-

tion and interaction parameters. In chapter six, magnetic properties of another mixed

ferro-ferrimagnetic ternary alloy model have been studied in the presence of a single

ion anisotropy on a cubic lattice. In the last chapter, it was explained that the results

of studies in this thesis.



CHAPTER TWO

MOLECULE-BASED MAGNETS

2.1 Introduction to Magnetism

Magnetism is the response of a material to an applied magnetic field and originates

from the movement of charge (i.e., electron spins). The essential component of any

magnetic material is the presence of an unpaired electron or more precisely, the spin

associated with an unpaired electron. Typically, unpaired electron spins are located in

d orbital of metals; however unpaired spins in s and p orbitals for organics (Kahn O.,

1987; Miller J. S. et. al., 1988) and f orbital for rare earth elements (Kahn, M. L. et.

al., 2000) have also been shown to contribute to the magnetism of a material.

Apart from which orbital the electron spins reside there are a variety of ways that

they can interact each other. In Figure 2.1 possible spin configurations of various types

of magnetic ordering are illustrated at two different time. Electrons occupy atomic or

molecular orbitals; and each orbital can contain a maximum of two electrons (one

spin up ↑ and one spin down ↓) as described by the Pauli’s exclusion principle. If the

orbital is filled, it will exhibit diamagnetism, which repeals the magnetic field. This

applies to most of the things around us such as plastic, wool and water. However, if the

orbital contains a single unpaired electron, it will exhibit paramagnetism, which will

attract an applied magnetic field. An ideal paramagnetic material has random spins

that are uncorrelated. When spins are correlated, magnetic interaction (or coupling)

takes place.

Magnetic interactions are common for isolated spins, particularly at low temper-

ature as the thermal energy, kT , is small. When the correlation is strong enough to

overcome kT , long range ordering can occur and form a magnet. Conventional mag-

nets, such as iron, have their spins aligned with the earth’s magnetic field when they

are formed. These spins become “locked” upon cooling and the material becomes a

magnet. When all the spins are aligned and locked, they become magnetically ordered

(a phenomenon that occurs below the critical temperature, Tc) (Shum, W. W., 2008).
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Figure 2.1 Illustration of spin configuration of various magnetic orders at
two different instants: t0 and t1 (Etzkorn, S. J., 2003).

In situations where strong long-range coupling between electron spin sites occurs

there are two main ways the spins will align and be considered magnets. Ferromagnets

are formed when the adjacent electron spins within a material align parallel to one

another in regions known as domains. In the absence of an applied magnetic field

aligned spins within different domains of a ferromagnet may or may not be aligned

with one another; however, in an applied field (often small) these domains will align

themselves. Antiferromagnets, are formed when the adjacent electron spins within a

material align antiparallel to one another and is attributed to a greater degree of orbital

overlap where the unpaired electron spins are located. This is a consequence of an

effect related to the Pauli Exclusion Principle. As a result of antiparallel arrangement

throughout the spin domains the material will have a resulting net magnetic moment

of zero.
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Finally, when the electron spins in a material with different magnitudes are strongly

coupled antiferromagnetically throughout the bulk material then the system is termed

a ferrimagnet (for more detail see section 2.2). Because the spins are of unequal

magnitude they do not completely compensate one another resulting in a finite net

moment observed for the bulk material. Therefore, a ferrimagnet is a special case

of an antiferromagnet; however, the material displays behavior much like that of a

ferromagnet (Nelson, K. J., 2007).

In addition to ferri- and ferromagnetic behavior, other magnetic-ordering phenom-

ena, such as metamagnetism, canted antiferromagnetism, and spin-glass behavior, may

occur. The transformation from an antiferromagnetic state to a high moment state (i.e.,

the spin alignment depicted in Figure 2.1b being transformed into that depicted in Fig-

ure 2.1a by an applied magnetic field) is called metamagnetism. A canted antiferro-

magnet (or weak ferromagnet) results from the relative canting of antiferromagneti-

cally coupled spins that leads to a net moment (Figure 2.1d). A spin glass occurs when

local spatial correlations with neighboring spins exist, but long-range order does not.

The spin alignment for a spin glass is that of a paramagnet (Figure 2.1e); however, un-

like paramagnets, for which the spin directions vary with time, the spin orientations of

a spin glass remain fixed or vary only very slowly with time. Examples of molecule-

based magnets exhibiting each of these behaviors have been reported (Miller J. S. &

Epstein A.J., 2000).

2.2 Ferrimagnetism and Compensation Temperature

Ferrimagnets consist of several sublattices with inequivalent moments interacting

antiferromagnetically. Under certain conditions, the sublattice magnetizations com-

pensate each other, then the resultant magnetization vanishes at a compensation tem-

perature Tcomp below the critical temperature Tc. The occurrence of a compensation

point is of great technological importance, since at this point only a small driving field

is required to change the sign of the resultant magnetization. This property is very

useful in thermomagnetic recording (Dakhama, A. & Benayad, N., 2000).
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Ferrimagnetic compounds have long been used for technological applications such

as high-density magneto-optical recording, but little is known about the mechanisms

responsible for this behavior. In a ferrimagnet the different temperature dependencies

of the sublattice magnetizations raise the possibility of the appearance of compensa-

tion temperatures: temperatures below the critical point, where the total magnetization

is zero. It has been shown experimentally that the coercive field is very strong at the

compensation point favoring the creation of small, stable, magnetic domains. This

temperature dependence of the coercivity near the compensation point can be applied

to writing and erasing in high-density magneto-optical recording media, where the

temperature changes are achieved by local heating the films by a focused laser beam.

Ferrimagnetism plays a key role in the physics behind Magneto-Optical recording

and read out. The materials used for the Magneto-Optic effect are amorphous alloys of

rare earth (RE) and transition metal (TM) elements. Most of these alloys are ferrimag-

netic, which means the magnetization of the transition metal sublattice is antiparallel

to that of the rare earth sublattice. The net magnetization for the material is thus the

vector sum of the individual magnetizations of the sublattices.

For some typical materials used for Magneto-Optical recording the general shape

of the curves for the magnetization of the sublattices (MT M and MRE) and the net-

magnetization Ms as a function of temperature are depicted in figure 2.2. The cou-

pling between the sublattices is responsible for the fact that the Curie-temperature for

both is the same. At low temperatures, the magnetic moment of the RE component

is bigger than that of the TM component. When the temperature increases, the mag-

netic moment of the RE component decreases faster than that of the TM component,

which causes the net magnetic moment to decrease. At a certain temperature Tcomp,

the compensation temperature, the magnetic moments of the TM and RE component

are identical but opposite, yielding a zero net magnetic moment. So, after this point

there is an increase in the net magnetic moment until the magnetic moments of the

sublattices start converging. In the end at the Curie temperature both magnetic mo-

ments vanish, so also the net magnetic moment. Beyond that temperature, the material

is in a paramagnetic state (Bilderbeek, M., 2001).



7

Figure 2.2 General behavior of the absolute magnetiza-
tion and the coercivity (Hc) of the RE sublattice (MRE)
and the TM sublattice (MT M) with temperature. The
net magnetization of both sublattices is opposite and de-
creases in a different way with temperature. This means
at a certain point (Tcomp) they cancel and in the end they
both vanish at the Curie temperature. The coercivity
shows a great peak around (Tcomp), where it is infinite
(Bilderbeek, M., 2001).

2.3 Magneto-Optical Recording

Data recording has a long history. The biggest part of it is recording just by ink on

paper or a similar recording medium. However, as we move in history to the present

day, the methods of recording appear to have advanced in an exponential way. Think of

the first analog recordings with the gramophone: vibrations were recorded on a roll by

a scratching needle. The first magnetic recording emerged in the 1940s. This was still

audio-only. The resulting tape recording techniques still prevail today, although they

are getting less and less popular since there are much better alternatives nowadays.

Later the technology of tape recording was extended to make video recording possible.

The preliminary techniques for this were already invented in 1956, but it took until the

mid-seventies until low-cost consumer products appeared on the market (Bilderbeek,

M., 2001).

At the end of the 1970s computers became more and more mature, which triggered

the development of digital data storage media. However, the important inventions

were already done much earlier. The rotating rigid disk for digital data storage was an
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innovation done in 1957 already. The flexible disk was realized in the mid-seventies

indeed mainly for use on personal computers. Also for this technology we can say it

is still in use today (Bilderbeek, M., 2001).

Although the disk is most common today, a long time only digital tapes were used

for data storage, mainly for back up of computer files. This technology has been

popular for a long time. Even today big archives are made on tape. It is recognized

though that for other purposes than archiving, tape is too limited, since the information

can only be accessed sequentially. Both for disk as well as for tape storage media, there

has been a great development with time. Not only the media itself improved, but also

the heads and the electronics, resulting in an increasing linear and track data density,

higher data transfer rate and shorter access times. To give an example: the capacity

of the hard-disk drives has roughly doubled every year since 1957 (Bilderbeek, M.,

2001).

Since 1985 there is a new invention in the recording business: optical-beam storage

technology, in short: Magneto Optical (MO) technology. It makes use of a laser beam

to read out magnetically stored data via the Magneto Optical Kerr Effect. The big

advantages are that it is a non-contact method (meaning less wear of components and

less sensitive for dirt) and the recording density can be increased until the diffraction

limit. This also enables the medium to be removable. So the removableness of the

floppy is combined with the main features of the hard disk (i.e., high capacity, high

data-transfer rate, rapid access) (Bilderbeek, M., 2001).

All magnetic materials have a characteristic temperature, called the Curie temper-

ature, above which they lose magnetization due to a complete disordering of their

magnetic domains. Therefore, they lose all the data they had stored before. More

importantly, the material’s coercivity, which is the measure of material’s resistance to

magnetization by the applied magnetic field, decreases as the temperature approaches

the Curie point, and reaches zero when this temperature is exceeded. For the mod-

ern magnetic materials used in MO systems, this Curie temperature is on the order of

200oC.
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Figure 2.3 Schematically view of MO recording. The heating of
the laser beam locally decreases the coercivity of the MO layer,
enabling the external field to magnetize it there

.

It is important (since this is a multiply-erasable system) that the only change to the

material when it is heated and cooled is the change in magnetization, with no damage

to the material itself. This fact that the material’s coercivity drops at higher tem-

peratures allows thermally-assisted magnetic recording with relatively weak magnetic

fields, which simplifies the drive’s design. Even a relatively weak laser can generate

high local temperatures when focused at a small spot (about 1 micron in case of MO

systems). When the material is heated, and its coercivity is low, a magnetization of the

media can be changed by applying a magnetic field from the magnet. When the ma-

terial is cooled to room temperature, its coercivity rises back to such a high level that

the magnetic data can not be easily affected by the magnetic fields we encounter in

our regular daily activity. The basic schematic of this recording process is illustrated

by Fig. 2.3 (Khurshudov A., 2001).

When the disk is inserted into the drive, the label side will face the magnet, and the

transparent side will face the laser. The direction of magnetization in the thin magnetic

films (on magnetic rigid disks, for example) can be parallel to the surface (longitudinal

recording) or perpendicular to the surface (perpendicular recording). The latter has

potential for higher density of magnetic recording. Most of the magnetic hard drives
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nowadays utilize longitudinal recording, while the MO systems use the perpendicular

direction of magnetization.

Unlike traditional magnetic recording systems, which use currents induced in the

magnetic heads by the changing magnetic fluxes on the disk surface to read the data,

MO systems use polarized light to read the data from the disk. The changes in light

polarization occur due to the presence of a magnetic field on the surface of the disk (the

Kerr effect) . If a beam of polarized light is shined on the surface, the light polarization

of the reflected beam will change slightly if it is reflected from a magnetized surface.

If the magnetization is reversed, the change in polarization (the Kerr angle) is reversed

too. The magnetized areas can not be seen in regular light, but only in polarized light.

The change is direction of magnetization could be associated with numbers 0 or 1,

making this technique useful for binary data storage.

2.4 Exchange Interactions

In a solid, interactions between electrons are often significant and extraordinarily

complex. Fortunately Pauli’s principle restricts the possible wave functions of an elec-

tron system. For most insulating solids, the problem of electron interactions can be

reduced to a problem of coupled spins. The notion of energy exchange is illustrated by

several examples from atomic and molecular physics. This will also serve to introduce

the tools of second quantization which are essential for representing states of several

electrons (Lévy, L. -P., 2000).

2.4.1 Direct Exchange Between Spins

Dipole-dipole interactions between spins, of the order

µ0µ2
B/a3

0 ≈ α2Ry ≈ 1K, (2.4.1)
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are much too weak to cause ferromagnetism. Electron magnetism comes from the

Coulomb interaction between electrons which forces spins into ordered states, because

of the Pauli principle. Indeed the latter requires the n-fermion wave function to be

completely antisymmetric in the exchange of any two particles (including their spins).

Neglecting spin-orbit interactions, the wave function is the product of spatial and spin

wave functions. The symmetry of the spatial wave function is determined by the

Coulomb interaction which must be minimal in the ground state. Given the global

antisymmetry requirement, the spin wave function is then determined too. Exchange

interactions therefore result mainly from the chemical bond. In order to understand

how a certain ion gives rise to ferromagnetic exchange in an ionic solid, whilst giving

antiferromagnetic exchange in a molecular solid, it must be begun by examining the

chemical bonds.

The main point here is to show that the Hamiltonian for a solid, with its complex

electrostatic forces, can be parametrised entirely in terms of the spins of the ions mak-

ing it up. The parameters in this effective Hamiltonian involve overlaps of exact wave

functions of ions in the solid and they are not easy to calculate. Experimental determi-

nation is often simpler and more accurate. The effective Hamiltonian is usually tahen

to be Heisenberg’s (Dirac P. A. M., 1926; Heisenberg W., 1926)

Heff =−∑
i, j

Ji, jSiS j, (2.4.2)

where Ji, j are the exchange constants and Si the total spin of the ith ion in the solid.

Although difficult to work with, this Hamiltonian is already vastly simpler than the

initial Hamiltonian which described the n electrons of each ion in a solid containing L

ions all interacting together via the Coulomb interaction, and included other degrees

of freedom too (Lévy, 2000).

2.4.2 Hund Rules

In an atom it is possible to have more than one electrons. Hund’s rule are used to

determine the quantum numbers that give the ground state of the multi-electron atoms
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(Kittel C., 1996). Hund rules are given as:

1. The lowest energy atomic state is the one which maximizes the total value of the

S. According to Pauli Exclusion Principle two electrons of the same spin can

not be at the same place. Thus the electrons stay apart when they have parallel

spins and the Coulomb energy is minimized.

2. The maximum value of L (consistent with rule 1) gives the lowest energy state

since the electrons orbiting in the same direction can avoid each other more

effectively and reduce the Coulomb energy.

3. The value of the total angular momentum J is given by J = |L− S| when the

shell is less than half full and by J = L+S when the shell is more than half full

so that spin-orbit energy is minimized.

The third rule tries to minimize the spin-orbit interaction that is due to the weak cou-

pling of spin and orbital angular momentums. Spin-orbit coupling is a relativistic

effect and proportional to Z4 (Z is the atomic number of the atom). Hund’s third rule

does not always apply especially when the spin-orbit energy is less significant than

other energies such as crystal field. The Hamiltonian for spin-orbit can be written as;

Hso = λS ·L (2.4.3)

When spin-orbit coupling is effective, L and S are not separately conversed but their

total J is conserved and the states of L and S split into levels of different J values

(|L−S|< J < |L+S|).

2.4.3 Anisotropic Exchange (Magnetocrystalline) Interaction

Magnetocrystalline anisotropy is the energy cost per atom to align its magnetiza-

tion from one crystallographic direction to another. It is a special case of magnetic

anisotropy. The spin-orbit interaction is the primary source of the magnetocrystalline



13

anisotropy. The direction of a magnetization relative to body that supports it is de-

termined mainly by two effects, shape anisotropy and magnetocrystalline anisotropy.

The first arises from magnetostatic effects and the second from spin-orbit coupling

between the spins and the lattice of the material. The magnetostatic effects can be

worked out from micromagnetic calculations, but the magnetocrystalline anisotropy

must be computed from the electronic structure of the material. This is an important

quantity because it determines whether a magnetic material can be made into a good

hard magnet, a good soft magnet or neither. Hard magnets are an essential component

of electromagnetic motors and soft magnets are an essential component of transform-

ers.

The magnetocrystalline energy is usually small compared to the exchange energy.

But the direction of the magnetization is determined only by the anisotropy, because

the exchange interaction just tries to align the magnetic moments parallel, no matter

in which direction.

Single-ion anisotropy (often referred to simply as “magnetocrystalline anisotropy”)

is determined by the interaction between the orbital state of a magnetic ion and the

surrounding crystalline field which is very strong. The anisotropy is a product of the

quenching of the orbital moment by the crystalline field. This field has the symmetry

of the crystal lattice. Hence the orbital moments can be strongly coupled to the lat-

tice. This interaction is transferred to the spin moments via the spin-orbit coupling,

giving a weaker electron coupling of the spins to the crystal lattice. When an exter-

nal field is applied the orbital moments may remain coupled to the lattice whilst the

spins are more free to turn. The magnetic energy depends upon the orientation of the

magnetization relative to the crystal axes.

2.4.3.1 Crystal Field

Crystal field effect is the splitting of the degenerate d-orbitals that are displayed in

Figure 2.4 due to electrostatic interactions between the electrons in the d-orbitals of

magnetic ion and those in the ligands (Watanabe H.,1966).
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Figure 2.4 The angular distribution of d orbitals. The levels dz2

and dx2−y2 grouped as eg levels. The remaining levels dxy, dxz and
dyz are grouped as t2g levels (Blundell, S., 2001)

.

Figure 2.5 The overlap of different d orbitals with the ligands. dxy orbital
has lower energy compare to dx2−y2 due to smaller overlap and electrostatic
interaction (a) dγ orbital (b) dε orbital (Kittel C., 1996).
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In most magnetic ionic crystals or rare-earth metals, the electrons in the incom-

pletely filled shell are in such a localized state. However, the state of the incompletely

filled shell is not the same as the free-ion state, but is more or less affected by sur-

rounding ions, notwithstanding its localized nature. Let us call influences from the

surrounding ions the crystal-field effect in a broad sense. The crystal-field effect in

the incompletely filled shell of iron-group metals is much larger than in the 4 f shell

of rare-earth metals. The main reason is that the 3d shell is outermost in the ions so

that it interacts directly with the electrons of surrounding ions. In iron-group elements

the crystal-field effect is larger than the LS coupling, whereas the reserve is true in

rare-earth elements. Therefore, in the former case the 2L+1 degenerate energy levels

(specified by L) split into several groups under the influence of the crystal field; the

LS coupling should then be taken into account for those lowest states split off due to

the crystal field. On the other hand, in the latter case, the crystal-field effect must be

taken into account for the 2J +1 degenerate states which belong to the lowest energy

split off due to the LS coupling (Yosida, K., 1998).

The simplest crystal-field effect is the electrostatic effect due to surrounding charges;

It is similar to the interaction between the nuclear quadrupole moment and the electric

field gradient. It is the most important crystal-field effect for electrons located at the

center of the ion (like the incompletely filled 4 f shell in rare-earth metals). In contrast,

it is not presumably an important effect for the incompletely filled 3d shell (which is

an outer orbital of the ion); these electrons interact directly with the electron on the

outer closed shell of surrounding anions. Let us consider the effect of this interac-

tion, using the molecular orbital method. First, having in mind an ionic crystal with

the NaCl-type structures (like FeO), it is assumed that the magnetic ion is surrounded

octahedrally by O2− anions.

dε : φxy =
1√
2i
(φ2 −φ−2), φyz =− 1√

2i
(φ1 +φ−1),

φzx = − 1√
2
(φ1 −φ−1), (2.4.4)

dγ : φx2−y2 =
1√
2
(φ2 +φ−2), φ3z2−r2 = φ0
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The electron-transfer Hamiltonian combines these wave functions with the p or-

bitals on neighboring 02− ions. As a result, the 3d orbitals are mixed with the ap-

propriate combinations of the p orbitals of surrounding anions. It is defined three p

orbitals of O2− as

φx = − 1√
2
(φ1 −φ−1),

φy = − 1√
2i
(φ1 +φ−1), (2.4.5)

φz = φ0

from symmetry, they mix with the 3d orbitals in (2.4.4) as depicted in Figure 2.5. As

evident from the figure, the dε and dγ orbitals mix differently with the p orbitals and

consequently the dε and dγ orbitals have different energies. Correspondingly, the p

orbitals φx, φy and φz of the O2− ion mix with surrounding d orbitals of the magnetic

ions. Since the 2p shell is completely filled, those p− d mixed orbitals are filled,

with six electrons total. They are the bonding orbitals of the p− d mixing, whereas

the d − p mixed orbitals derived from the d electrons are orthogonal to the bonding

orbitals and are called the antibonding orbitals. For the antibonding orbitals, a larger

mixing of the p orbitals into the d orbitals lead to a higher level. Therefore the dγ

energy becomes higher, if the energies of the dε and dγ orbitals are completed. This

tendency is the same as for the electrostatic effect, since the dε orbital has a larger

amplitude in the direction avoiding the negative charge of O2− , while the dγ orbital

extends along the direction toward the center of O2− ion (Yosida, K., 1998).

2.4.3.2 Single-İon Anisotropy

The magnetic moment of rare-earth ions is proportional to the total angular mo-

mentum J. In iron-group ions, on the other hand, the crystal-field splitting of the

2L+ 1 degenerate levels is much larger than both kT and the LS coupling, so that it

have to be considered the ground state due to the crystal field. In most ionic crystals

of iron-group compounds, magnetic ions are located at the center of an octahedron

formed with anions. Even when ground state degeneracy is present in the cubic field,
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it is usually lifted by a crystal field of lower symmetry. In most case the effect of the

lower-symmetry crystal field is smaller than that of the cubic field, but is still larger

than the LS coupling. In such a case one considers simply the nondegenerate ground

state.

Since the crystal-field Hamiltonian is given as a real function, its eigenfunctions

can be expressed also with real functions. On the other hand, the operator of the

total angular momentum L is pure imaginary. Since L is a Hermitian operator, the

diagonal matrix element must be real. From this it is seen that the expectation value

of the angular momentum over a nondegenerate eigenstate must be zero: namely it is

obtained for a nondegenerate ground state |0⟩

⟨0|L|0⟩= 0. (2.4.6)

This means that the orbital angular momentum is quenched in a nondegenerate ground

state, which is realized by the crystal-field splitting. This is called the quenching of

the orbital angular momentum. The quenched orbital angular momentum is partially

restored by the LS coupling.

Let En and |n⟩ be the energy level and the corresponding eigenfunction due to the

crystal-field splitting. The function |n⟩ may be regarded as the eigenfunction of the

Hamiltonian written with equivalent operators. In both cases one can assume that the

eigenfunction including the spin is given as a product of the orbital and spin parts.

At this stage the orbital state of the ion in the ground state |0⟩, in which the orbital

angular momentum is quenched, and the spin S is completely free with (2S+1)-fold

degeneracy; in this case the magnetic moment of the ion is given exclusively by the

spin. The free spin couples to the lattice only when we take into account the LS

coupling.Let us treat the LS coupling and Zeeman energy,

V = λL ·S+µBH · (2S+L), (2.4.7)

as a perturbation. Since the spin wave function is independent of the orbital part, the

spin S is left as an operator in this perturbation calculation. Because of the quenching
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of L, first-order perturbation theory leads to

∆E(1) = 2µBH ·S. (2.4.8)

Introducing Λµν defined by

Λµν = ∑
n

⟨0|Lµ |n⟩⟨n|Lnu|0⟩
En −E0

, (2.4.9)

we obtain the second-order energy as

∆E(2) =−∑
µν
[λ 2ΛµνSµSν +2λ µBΛµνHµSν +µ2

BΛµνHmuHnu], (2.4.10)

where µ and ν represent x, y or z. Adding ∆E(1) and ∆E(2), we have

HS = ∑
µν
[2µBHµ(δµν −λΛµνSν) (2.4.11)

− λ 2ΛµνSµSν −µ2
BΛµνHmuHnu]

as the effective Hamiltonian for a nondegenerate ground state split of by the crystal

field. The first term represents an effective Zeeman energy, which means that the g

value has been replaced by the g tensor

gµν = 2(δµν −λΛµν). (2.4.12)

Here the additional tensor −2λΛµν is the induced orbital moment, which arises from

the mixing with high-energy orbital states due to the LS coupling and is expressed as

a change of the magnetic moment accompanied with the spin S.

The second term is the spin Hamiltonian in a narrow sense or the anisotropy spin

Hamiltonian, which represents the anisotropy energy for the spin direction. Let us

take the principal axes of the crystal as x, y and z axes and express the components Λ

as Λx, Λy and Λz.

Then the anisotropy spin Hamiltonian can be written as



19

H = −λ 2

{
1
3
(Λx +Λy +Λz)S(S+1)

+
1
3

[
Λz −

1
2
(Λx +Λy)

]
[3S2

z −S(S+1)] (2.4.13)

+
1
2
(Λx −Λy)(S2

x −S2
y)

}
.

The anisotropy Hamiltonian lift the (2S+1)-fold degeneracy of the spin. Omitting the

constant term, we obtain from (2.4.13)

H = DS2
z +E(S2

x −S2
y) (2.4.14)

For integer S the first term in this Hamiltonian splits the spin energy levels into doubly

degenerate S levels Sz =±S,±(S−1), . . . ,±1 and a nondegenerate one with Sz = 0; for

half-odd integer S it leads to doubly degenerate S + 1 levels with

Sz = ±S,±(S− 1), . . . ,±1/2. The second term has finite matrix elements between

states with ∆Sz =±2. Therefore, for integer S, the doubly degenerate levels ∆Sz =±M

, which are produced by the first term, are split by the second term; as a result the

(2S+ 1)-fold degeneracy is lifted by the anisotropy Hamiltonian. However, for half-

odd integer S the integer so that there is no matrix element between these states. Con-

sequently, the double degeneracy due to the first term remains. The case of half-

odd integer S corresponds to a system with an odd number of electrons; for this case

the crystal field cannot lift the degeneracy completely, leaving double degeneracy.

This is called the Kramers theorem; the doubly degenerate levels remaining are called

Kramers doublet.

The Kramers theorem is a general result which can be derived when the Hamil-

tonian for the electron system is invariant in time reversal. Under time reversal the

orbital and spin orbital momenta change sings; therefore the Kramers degeneracy is

lifted first by the Zeeman energy (which changes sing under time reversal).

The third term in (2.4.11) is not related to the LS coupling; it comes rather from the

second-order perturbation of the Zeeman energy for the orbital angular momentum.

This gives a temperature independent (anisotropic) paramagnetic susceptibility, which
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is called the Van Vleck orbital paramagnetism. The Van Vleck orbital paramagnetism

gives a non-negligible contribution when the energy of the excited states is not too

high. In the case of transition metals, iron-group metals in particular, excited states are

present continuously from the Fermi energy; therefore a large orbital paramagnetism

is expected as pointed out by Kubo and Obata (Kubo, R. & Obata, Y., 1956). In

vanadium metal the paramagnetic susceptibility hardly changes between the normal

and superconducting states, suggesting that most of the paramagnetism in this metal

originates from the orbital paramagnetism (Yosida, K., 1998).

2.5 Molecule-Based Magnets

Most research in solid state physics and much of current technology is based on

the properties of simple chemical elements and compounds; for example, most mag-

nets are made of iron, cobalt, nickel or alloys of these. An alternative strategy for

making new magnetic materials is to use the flexibility of carbon chemistry which is

so successful in producing the rich variety of biological systems found in nature; this

approach leads to molecular magnets, that is to say magnetic materials in which the

fundamental building block is the molecular unit and not the atomic unit. This idea

leads to a wealth of new and highly controllable properties. (Blundell, S. J., 2007).

Molecular magnetism has been one of the active areas in molecular chemistry for

the last 20 years (Kahn O., 1993). The advantages of molecule-based magnets com-

pared to classical metal and metal oxide ones are that the magnets can be obtained

through a selection of proper spin sources (e.g., transition metal ions, organic radicals)

and coordinating ligands. One of the attractive targets in this field is the development

of functionalized magnets, in which magnetic properties can be controlled by external

stimulation (Ohkoshi S. & Hashimoto K., 2002).

To date, various molecule-based magnets have been obtained with bimetallic, metal-

organic, and organic systems. For example, MnIICuII (pbaOH) (H2O)3 (pba = 2-

hydroxy-1,3- propanediylbis(oxamato)) shows one dimensional (1-D) ferrimagnetic

behavior below 4.6 K (Kahn, O., 1993). A series of [MIICrIII(ox)3]
− (ox = oxalato,
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MII = FeII , CoII , NiII , and CuII) form 2-D or 3-D network structures, showing spon-

taneous magnetization (Tamaki, H., et. al., 1992). In these two systems, spin sources

are unpaired electrons in d orbitals of metal ions. A system having unpaired elec-

trons in both d-orbitals and p-orbitals is also extensively studied. The prepared ionic

salt [Fe(Cp∗)2]
•+[TCNE]•− (Cp* = pentamethlcyclopentadienide, TCNE = tetracya-

noethylene) shows a ferromagnetic transition below 4.8 K (Miller, J. S. & Epstein,

A.J., 1994). Moreover, V (TCNE)xyCH2Cl2 obtained from the reaction of bisbenzene

vanadium with TCNE in dichloromethane exhibits a high magnetic ordering tempera-

ture (Tc) of ca. 400 K (Tamaki, H., et. al., 1992).

The main targets in the field of molecule-based magnets are classified into the fol-

lowing two at present. One is to obtain magnets with a high Tc value. Another is to

design magnets with novel functionalities. As a prototype of the system having these

properties, Prussian blue analogues are attractive because various types of building

blocks [B(CN)]x− and metal ions A, where B and A are transition metal ions hav-

ing unpaired electrons, can be assembled in an alternating fashion (Ohkoshi, S. &

Hashimoto, K., 2002). Recently, due to its superb magnetic characteristics, the family

of Prussian blue compounds has received attention in molecule-based magnets.

2.5.1 Prussian Blue Analogues

Around 1700 Prussian Blue (PB, FeIII
4 [FeII(CN)6]3.14H2O) was accidentally dis-

covered by Johann Jacob Diesbach, a painter from Prussian city of Berlin who actually

tried to create a red coloured paint (Ludi A., 1981). Surprisingly though, the pigment

thus acquired actually had a very bright blue color, which earned it the name Prussian

Blue (PB) at the time. In terms of molecular build-up, it consists of FeII and FeIII

ions, which are linked through negatively charged cyano ligand molecules (CN−), ar-

ranged in a rock-salt structure (See Fig. 2.6). Thus, both metal ions are octahedrally

surrounded in this mixed-valence compound, by six carbon and six nitrogen atoms,

respectively. It has turned out possible to obtain a whole range of similar materials

by varying the metal ions involved, and thus a whole class of these coordinated ma-

terials exists; the so-called Prussian Blue Analogues (PBAs), named after the parent
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Figure 2.6 Schematic representation of the structure of Prussian Blue (Ana-
logues). For Prussian Blue itself, M

′
= FeIII and M = FeII . (a) Preferred ba-

sic rock-salt structure of PBAs, where the two constituent metal ions M and
M’ are connected through cyano (CN) bridges. In order to acquire charge
neutrality, the system incorporates [M(CN)6] defects in its structure, which
are filled by H2O molecules, as depicted on the right (b) (Lummen, T.T.A.,
et. al., 2008)

.

compound (Lummen, T.T.A., et. al., 2008).

In modern day synthesis of Prussian Blue Analogues, one typically mixes a solution

of an M
′
salt (e.g. FeCl3(aq.)) with a solution of an M(CN6) salt (e.g. K2Fe(CN)6(aq.)),

where M and M
′
are d-block metal ions. When these building blocks meet in solution,

the cubic superstructure (Fig. 2.6(a)) is formed virtually instantaneously, with the ma-

terial growing in an almost “polymeric” fashion after nucleation, and the thus-formed

solid Prussian Blue Analogue precipitates due to its insolubility. The preferred cubic

rock-salt structure however, is often not charge neutral due to the mixed-valence na-

ture of PBAs. In order to attain charge neutrality, the system can choose to incorporate

either of two additional elements. Firstly, the system can leave out some [M(CN)6]
3−

building blocks, which leaves vacancies in the structure that are subsequently filled by

water molecules (Fig. 2.6(b)).

The corresponding molecular formula for Prussian Blue is FeIII
4 [FeII(CN)6]3.zH2O,

for example. Alternatively, the system can enclose some alkali-cations (A+) in the

structure, on the interstitial sites. In this case, the metal constituents could occur in sto-

ichiometric amounts, which would result in the molecular formula AxM
′
[M(CN)6].zH2O.

Due to the very fast formation of the material, however, usually both scenarios occur
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and one ends up with a material of general formula AxM
′
[M(CN)6]y.zH2O where A is

alkali metal and M and M
′
are transition metal ions. In Prussian blue analogs the tran-

sition metals are connected by cyanide ligands (C-N) that are small and dissymmetric

and create stable molecular precursors with strong metal-carbon bonds. And indeed,

PBAs are notorious for the variation in their composition when only minimal changes

to their synthesis conditions are made (Lummen, T.T.A., et. al., 2008).



CHAPTER THREE

MODEL AND SIMULATION METHOD

3.1 Ising Model

3.1.1 Historical Background

The Ising model is the prototype model for all magnetic phase transitions and prob-

ably the most studied model of statistical physics. The model first was proposed by

Lenz and investigated by his graduate student, Ising, to study the phase transition from

a paramagnet to a ferromagnet. Ising studied the simplest possible model consisting

simply of a linear chain of spins, and his analysis showed that there was no phase

transition to a ferromagnetic ordered state at any temperature. Ising remarks that the

only contemporary citation of his paper was by Heisenberg.

Heisenberg proposed his own theory of ferromagnetism in 1928(W. Heisenberg,

1928). Thus Heisenberg used the supposed failure of the Lenz-Ising model to explain

ferromagnetism as one justification for developing his own theory based on a more

complicated interaction between spins. In this way the natural order of development

of theories of ferromagnetism was inverted; the more sophisticated Heisenberg model

was exploited first, and only later did theoreticians return to investigate the properties

of the simpler Lenz-Ising model (Brush S. G., 1967).

The first exact, quantitative result for the two-dimensional Ising model was ob-

tained by Kramers and Wannier (Kramers H. A. & Wannier G. H., 1941) who success-

fully located the critical temperature of the system. They did not succeed in obtaining

an exact solution in closed form, but they did develop a variational method which is

fairly accurate, and which has been used occasionally in later studies (Brush S. G.,

1967).

They were followed by Norwegian-born chemist Lars Onsager who derived an ex-

plicit expression for the free energy in zero field and thereby established the precise

24
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nature of the spesific-heat singularity (Onsager L., 1944). He got the Nobel prize in

chemistry in 1968 for his studies of nonequilibrium thermodynamics and this work

proved later useful in analyzing other complex systems, such as gases sticking to solid

surfaces, and hemoglobin molecules that absorb oxygen.

In order to simulate many-particle systems, appropriate models which describe the

physics of these systems have to be found. The Ising model is one of the oldest and

best studied models of this kind. Although it seems to be a rather simple model, it

shows the main characteristics observed in a real-life many-particle system (e. g. a

phase transition ). Initially it was invented as a simple model of a ferromagnet, but it

turned out that its applications reach into other areas of physics, chemistry, biology and

even sociology. To mention just a few examples, the Ising model is used in modeling

binary alloys, the adsorption of O2 on haemoglobine, neural networks, protein folding,

biological membranes, social imitation and social impact in human societies (Erkinger

H., 2000).

It have been considered a number of models that can be solved analytically in sta-

tistical mechanics e.g. ideal gas, 2-level molecules, 3-level molecules, N independent

harmonic oscillators. They are all non-interacting models. A major topic of interest

in statistical mechanics is the understanding of phase transitions (e.g. water → ice)

which requires the study of interacting models. The two dimensional Ising model is

one of the few interacting models that have been solved analytically. It also exhibits

a phase transition. The analytic and numerical solutions of the Ising model are im-

portant landmarks in the field of statistical mechanics. They have also significantly

influenced our understanding of phase transition in general.

In the mid-20th century it became possible to use high-speed electronic computers

to set up models of magnetic materials, to study the corresponding behaviour of those

models, and to compare the computational results with observations of real systems. In

recent years there have been many computational studies of the behavior of magnetic

materials at the critical temperature using Ising spin model. These studies often use

so-called “Monte Carlo” techniques (detailed discussed in another section), which are

methods relying on a stream of random numbers to drive a stochastic process, in this
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case the generation of a succession of many states of the spin model.

3.1.2 Theoretical Background

Ising model has been used to model phase transitions in solid state physics, with

a particular emphasis on ferromagnetism and antiferromagnetism. Metals like iron,

nickel, cobalt and some of the rare earths (gadolinium, dysprosium) exhibit a unique

magnetic behavior which is called ferromagnetism because iron is the most common

and most dramatic example. Ferromagnetic materials exhibit a long-range ordering

phenomenon at the atomic level which causes the unpaired electron spins to line up

parallel with each other in a region called a domain.

The long range order which creates magnetic domains in ferromagnetic materials

arises from a quantum mechanical interaction at the atomic level. This interaction is

remarkable in that it locks the magnetic moments of neighboring atoms into a rigid

parallel order over a large number of atoms in spite of the thermal agitation which

tends to randomize any atomic-level order. Sizes of domains range from a 0.1 mm to

a few mm. When an external magnetic field is applied, the domains already aligned in

the direction of this grow at the expense of their neighbors.

Another physical case where the application of the Ising model enjoys considerable

success is the description of antiferromagnetism. This is a type of magnetism where

adjacent ions spontaneously align themselves at relatively low temperatures into oppo-

site, or antiparallel, arrangements throughout the material so that it exhibits almost no

gross external magnetism. In antiferromagnetic materials, which include certain met-

als and alloys in addition to some ionic solids, the magnetism from magnetic atoms or

ions oriented in one direction is canceled out by the set of magnetic atoms or ions that

are aligned in the reverse direction. This spontaneous antiparallel coupling of atomic

magnets is disrupted by heating and disappears entirely above a certain temperature,

called the Néel temperature, characteristic of each antiferromagnetic material. Anti-

ferromagnetic solids exhibit special behavior in an applied magnetic field depending

upon the temperature. At very low temperatures, the solid exhibits no response to



27

the external field, because the antiparallel ordering of atomic magnets is rigidly main-

tained. At higher temperatures, some atoms break free of the orderly arrangement and

align with the external field. This alignment and the weak magnetism it produces in

the solid reach their peak at the Néel temperature. Above this temperature, thermal

agitation progressively prevents alignment of the atoms with the magnetic field, so that

the weak magnetism produced in the solid by the alignment of its atoms continuously

decreases as temperature is increased (Hjorth-Jensen, M., 2007).

The Ising model provides a simple way of describing how a magnetic material

responds to thermal energy and an external magnetic field. In this model, each domain

has a corresponding spin of north or south. The spins can be thought of as the poles

of a bar magnet. The direction of the spins influences the total potential energy of the

system.

Figure 3.1 Spin interactions with its nearest neighbors in one dimen-
sional Ising model.

Ising introduced a model consisting of a lattice of “spin” variables: Si, which can

be only take the values +1 for an ‘up’ (↑) spin and −1 for an ‘down’ (↓) spin. Every

spin interacts with its nearest neighbors (2 in 1D as illustrated in fig. 3.1) as well as

with an external magnetic field h.

The macroscopic properties of a system are determined by the nature of the acces-

sible microstates. Hence, it is necessary to now the dependence of the energy on the

configuration of spins. In mathematical physics, the Hamiltonian is the total energy of

a system, and it governs the dynamics. For the Ising model, the Hamiltonian is defined

by

H({Si}) =−J ∑
⟨i j⟩

SiS j −h∑
i

Si (3.1.1)

where h is proportional to a uniform external magnetic field. The first sum ⟨i j⟩ in
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Figure 3.2 Spin chain: Coupling J between spins
of arbitrary orientation. J < 0: ferromagnetic
alignment preferred; J > 0: antiferromagnetic
alignment preferred

(3.1.1) is over all nearest neighbor pairs ( j = i = ±1 in 1D). The exchange constant

J is a constant specifying the strength of interactions(fig. 3.2). The second sum in

(3.1.1) represents the energy of interaction of the magnetic moments associated with

the spins with an external magnetic field.

If J > 0, then the states ↑↑ and ↓↓ are energetically farored in comparison to the

states ↑↓ and ↓↑. Hence for J > 0, it is expected that the state of lowest total energy

is ferromagnetic, i.e., the spins all point in the same direction. If J < 0, the states ↑↓

and ↓↑ are favored and the state of lowest energy is expected to be antiferromagnetic,

i.e., alternate spins are aligned. If the spins are subjected to an external magnetic field

directed upward, the spins ↑ and ↓ posses an additional internal energy given by −h

and +h respectively.

An important virtue of the Ising model is it simplicity. Some of its simplifying fea-

tures are that the kinetic energy of the atoms associated with the lattice sites has been

neglected, only nearest neighbor contributions to the interaction energy have been in-

cluded, and the spins are allowed to have only two discrete values. In spite of the

simplicity of the model, it exhibits very interesting behavior (Gould, H. & Tobochnik,

J., 1996).

It is easy to solve the Ising model in the absence of external magnetic field in one

dimensional case exactly. The Hamiltonian of a linear chain of N spins with nearest
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neighbor interactions is given by

H1d =−J ∑
⟨nn⟩

SiSi+1 (3.1.2)

It is used periodic boundary conditions, that means that the spins will be arranged on a

ring as given in figure (3.3). Thus, the first spin and the N-th spins are nearest neighbor

and the system is periodic.

Figure 3.3 (a) In one dimensional Ising Model all spins interact with
two spins and SN+1 = S1 with periodic boundary conditions. (b)The
N-th spin interacts with the first spin so that the chain forms a ring.
As a result, all the spins have the same number of neighbors and the
chain does not have a surface.

The energy of the one-dimensional Ising Model is with periodic boundary condi-

tions is given by

H =−J(S1S2 +S2S3 +S3S4 + . . .+SN−1SN +SNS1). (3.1.3)

The partition function for this model become

Z = (2coshβJ)N · [1+(tanhβJ)N ]. (3.1.4)

Consider the two dimensional Ising model defined over a square lattice of N spins

under periodic boundary conditions as seen fig. (3.4).

In this model each spin has four nearest neighbors. Onsager’s solution in the ab-

sence of magnetic field (h=0) in the thermodynamic limit kBTc/J becomes 2/ ln(1+
√

2)≈ 2.269.
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Figure 3.4 (a)One of the possible 2N configurations of Ising spin system
for N = 16 in square lattice. (b) Periodic boundary condition (imagine the
top wrapping around to attach to the bottom and the left wrapping around
to attach to the right)in two dimensional Ising model.

3.1.3 Statistical Mechanics of Ising Model

Although the Ising model is too simple, it already contains much of the physics of

the ferromagnetic phase transition. In order to explore the properties of this model, it

is needed to calculate some physical quantities of interest, including the mean energy

⟨E⟩, the mean magnetization ⟨M⟩, the heat capacity C, and the magnetic susceptibility

χ .

In order to calculate expectation values such as the mean energy ⟨E⟩ or magnetiza-

tion ⟨M⟩ in statistical physics the thermal average of a quantity A at a finite temperature

T is given by a sum over all states:

⟨A⟩= 1
Z ∑

i
Ai exp(−βEi), (3.1.5)

with β = 1/kT being the inverse temperature, k the Boltzmann constant, Ai is the

value of the quantity A in the configuration i. Ei is the energy of that configuration. Z

is the partition function

Z = ∑
i=1

exp(−βEi) (3.1.6)

normalizes the probabilities pi = exp(−βEi)/Z. The mean energy is thermal equilib-

rium is

⟨E⟩= 1
Z ∑

i
Ee−βEi =− ∂

∂β
lnZ. (3.1.7)
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One way to measure the heat capacity differentiate ⟨E⟩ with respect to the temperature

T :

C =
∂ ⟨E⟩
∂T

. (3.1.8)

Another way is to use the statistical fluctuations for the total energy in the canonical

ensemble:

C =
1

kT 2 (⟨E
2⟩−⟨E⟩2). (3.1.9)

To obtain the system’s mean magnetization ⟨M⟩, it is differentiated the Gibb’s free

energy F with respect to h:

⟨M⟩=−∂ f
∂h

=
1
β

∂ lnZ
∂h

= ⟨∑
i

si⟩. (3.1.10)

The magnetic susceptibility χ is an example of a “response function”, since it mea-

sures the ability of a spin to “respond” o flip with a change in the external magnetic

field. The zero isothermal magnetic susceptibility is defined by the thermodynamic

derivative

χ = lim
h→0

∂ ⟨M⟩
∂h

. (3.1.11)

The zero field susceptibility can be related to the magnetization fluctuations in the

system:

χ =
1

kT
(⟨M2⟩−⟨M⟩2), (3.1.12)

where ⟨M2⟩ and ⟨M⟩2 are zero field values. (Feiguin, A.E., 2012)

The Ising model exhibits a phase transition, except for the one-dimensional case.

In zero external magnetic field there are two phases, separated by the transition tem-

perature Tc (or critical temperature). For temperatures larger than Tc, the system is in

a paramagnetic phase, whereas temperatures T < Tc lead to a spontaneous magneti-

zation that makes the system evolve from a disordered phase (T ≫ Tc) to an ordered

phase (T ≪ Tc). The latter point, and the model’s simplicity as well as the fact that

it is exactly solvable in one dimension, and particularly in two dimensions, makes the

Ising model a standard toy model in statistical physics.
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These phase transitions are of general interest due to the universality of the criti-

cal behavior of different systems. Conventionally one divides phase transitions into

those of first-order and those of higher than first-order, also called continuous phase

transitions (Werde, F., 2007). First-order phase transitions involve a latent heat, which

means the system absorbs or releases a fixed amount of energy. In the Ehrenfest clas-

sification of phase transitions, results from a discontinuity in the first derivative of

the Gibbs free energy with respect to a thermodynamic variable. Continuous phase

transitions involve no latent heat, but they exhibit discontinuities in higher than first-

order derivatives of the Gibbs free energy. They therefore correspond to divergent

susceptibilities which in turn are related to effective long-range interactions between

the system’s constituents (Werde, F., 2007).

A way to characterize phase transition is though studying the “critical behavior”

of the system. First, It has to be defined a quantity called “order parameter” which

vanishes above the critical temperature, and is finite below it. It is clearly seen that the

magnetization satisfies this criterion, and is a suitable candidate. The critical behavior

of the system is determined by the functional form of the order parameter near the

phase transition. In this region, physical quantities show a power law behavior

m(T )∼ (T −Tc)
β , (3.1.13)

where β is the “critical exponent”. Although M vanishes with T , thermodynamic

derivatives such as the heat capacity and susceptibility diverge at Tc:

χ ∼ |T −Tc|−γ , (3.1.14)

and

C ∼ |T −Tc|−α . (3.1.15)

It has been assumed that the exponent is the same on both sides of the transition.

Another measure of the magnetic fluctuations is the linear dimension ξ (T ) of a

typical magnetic domain. It is expected that this “correlation length” to be the order

of the lattice spacing for T ≫ Tc. Since the alignment of the spins will become more
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correlated as T approaches Tc from above, ξ will increase. It can be characterized the

divergent behavior of ξ (T ) near Tc by a critical exponent η

ξ (T )∼ |T −Tc|−η . (3.1.16)

As mentioned in previous section, the Ising model has a phase transition at finite T if

d > 1. In one-dimensional (d = 1) the transition is at zero temperature. Therefore it

can be said that one-dimensional is the lower critical dimension of the Ising model.

In the low-temperature phase, the symmetry is broken, the spins are ordered, the

order parameter is m ̸= 0, whereas in the high-temperature phase the symmetry is not

broken, m vanishes, the spins are disordered. Hence Ising model is a prototype of all

“order-disorder” transitions. These systems have the same critical behavior (depends

on d), for given d they all belong to the same universality class.

3.2 Monte Carlo Simulation Method

3.2.1 History of Monte Carlo Method

The idea of Monte Carlo calculation is a lot older than the computer. The name

Monte Carlo is relatively recent -it was coined by Nicolas Metropolis in 1949- but

under the older name of statistical sampling the method has a history streching back

well into the last century, when numerical calculations were performed by hand using

pencil and paper and perhaps a slide-rule (Newman M. E. J & Barkema G.T., 1999,

p23).

Historically, the Monte Carlo method was considered to be a technique, using ran-

dom numbers, to find a solution of a model under study. To solve numerical problems,

random sampling had been used much earlier in isolated and undeveloped instances.

An example is the experiment performed in the middle of the nineteenth century, con-

sisting of throwing a needle randomly on a board notched with parallel lines and in-

ferring the numerical value of π from the number times the needle intersects a line.
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This experiment is known as “Buffon’s needle”. A number of investigator made use

of this method over the years to calculate approximate values for π . The most famous

of these is Mario Lazzarini, who in 1901 announced that he had calculated a value

of 3.1415929 for π from an experiment in which a 2.5 cm needle was dropped 3408

times onto a sheet of paper ruled with lines 3 cm apart.

Possibly the first systematic application of statistical sampling techniques in sci-

ence and engineering was by Enrico Fermi in the early 1930’s to predict the results of

experiments related to the properties of the neutron which had recently been discov-

ered by James Chadwick in 1932 (Jäckel, P. & Platen, E., 2002).

Shortly after World War II, Los Alamos was a hotbed of applied mathematics and

theoretical physics. Much of the work was motivated by the intense focus on devel-

oping nuclear weapons. One particularly difficult problem was to estimate the behav-

ior of large (e.g., 1023) collections of atomic particles. The physical laws governing

their behavior-thermodynamics, statistical physics, and quantum mechanics-were in-

herently probabilistic and so complicated that traditional methods were not sufficient

for the sort of detailed analysis needed. In this setting a new idea took hold; instead of

searching for closed form, analytic solutions, one could simulate the behavior of the

system in order to estimate the desired solution. Producing simulations was a chal-

lenge. Before the late 1940s no device existed that could quickly and accurately carry

out large-scale random simulations. By the end of World War II, things were differ-

ent. Researchers at Los Alamos had access to such a device, the ENIAC (Electronic

Numerical Integrator and Computer) at the University of Pennsylvania. It was huge

(24 meters long, 18000 vacuum tubes), and could run at a (then) phenomenal rate of

5000 operations per second.

The spirit of this method was consistent with Stanislaw Ulam’s interest in random

processes-from the simple to the sublime. He relaxed playing solitaire; he was stim-

ulated by playing poker; he would cite the times he drove into a filled parking lot at

the same moment someone was accommodatingly leaving. More seriously, he created

the concept of “lucky numbers,” whose distribution was much like that of prime num-

bers; he was intrigued by the theory of branching processes and contributed much to
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its development, including its application during the war to neutron multiplication in

fission devices. For a long time his collection of research interests included pattern

development in two-dimensional games played according to very simple rules. Such

work has lately emerged as a cottage industry known as cellular automata (Metropolis

N., 1987).

In 1947, von Neumann and others were working on methods to estimate neutron

diffusion and multiplication rates in fission devices (i.e., nuclear bombs). Following

Ulam’s suggestion, von Neumann proposed a simple plan: create a relatively large

number of ”virtual” neutrons and use the computer to randomly simulate their evolu-

tion through the fissionable material. When finished, count the number of neutrons

remaining to estimate the desired rates. In modern terms, the scale was extremely

modest: a simulation of just 100 neutrons with 100 collisions each required about

five hours of computing time on the ENIAC. Nonetheless, the utility of this approach

was immediately apparent. From this point forward, randomized simulations-soon to

be called Monte Carlo methods-were an important technique in physics (Richey M.,

2010).

Their coworker Nicholas Metropolis dubbed the numerical technique “the Monte

Carlo method” partly inspired by Ulam’s anecdotes of his gambling uncle who just

had to go to “Monte Carlo”. A team headed by Metropolis carried out the first actual

Monte Carlo calculations on the ENIAC computer in 1948. In 1949, Metropolis and

Ulam published a paper on Monte Carlo methods, which sparked a lot of work on the

methods in the 50’s. Also in 1949 the first conference on Monte Carlo methods was

held in Los Alamos, attracting more than a hundred participants.

The calculations received a further boots in 1948 with the arrival at Los Alamos of a

new computer, humorously called the MANIAC. (Apparently the name was suggested

by Enrıco Fermi, who was tiring of computers with contrived acronyms for names-

he claimed that it stood for “Metropolis and Neumann Invent Awful Contraption”.)

MANIAC was a significant technical improvement over the ENIAC. It was faster and

contained a larger memory (40 kilobits, or 5 kilobytes in modern terms). A still more

sophisticated computer, MANIAC 2, was built at Los Alamos two years later, and
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both machines remained in service until the late fifties, producing a stream of results,

many of which have proved to be seminal contributions to the field of Monte Carlo

simulation (Newman M. E. J & Barkema G.T., 1999).

In 1953 of the paper by Nick Metropolis, Ariannna and Marshall Rosenbluth, Ed-

ward and Mici Teller, in which they describe for the first time the Monte Carlo tech-

nique that has com to be known as Metropolis algorithm. This algorithm was cited in

Computing in Science and Engineering as being among the top 10 algorithms having

the “greatest influence on the development and practice of science and engineering in

the 20th century.”

3.2.2 Random Sequences

Computing is completely deterministic by nature, and reproducing or simulating

naturally random processes is a particularly delicate matter. For carrying out a Monte

Carlo simulation, it is required that a sequence of numbers which are random, indepen-

dent, real and uniformly distributed in the range zero to one. Strictly, it can be called

a sequence of numbers random, if and only if it is generated by a random physical

process like radioactive decay, thermal noise in electronic devices, cosmic ray arrival

times, tossing of a coin etc.

A sequence of numbers are defined r1,r2, ...rn as random if there are no correla-

tions among the numbers in the sequence. A random sequence can have a distribution,

i.e. the probability of a number to appear in the sequence would correspond to some

distribution. If the distribution is uniform, all numbers are equally probable to appear.

Mathematically, the likehood of a number to occur is described by a distribution func-

tion P(r). This means that the probability of finding ri in the interval [r,r+dr] is given

by P(r)dr.

The usual random number generators provided by compilers or libraries generate

a uniform distribution between 0 and 1, that means P(r) = 1. Ideally this numbers

have equal probability, and it is independent of the previous one. The computer, the
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sequences are “pseudo-random because knowing a number rm and the preceding ri, it

can be predicted the next one rm+1. This is evident in the correlations (Feiguin, A.E.,

2012).

3.2.3 Pseudo-Random Numbers

Since a computer is a deterministic machine, truly random numbers do not exist

on a computer. One uses therefore pseudo-random numbers. Pseudo-random num-

bers are produced in the computer deterministically by a simple algorithm, and are

therefore not truly random, but any sequence of pseudo-random numbers is supposed

to appear random to someone who does not know the algorithm. More quantitatively

one performs for each proposed pseudo-random number generator a series of tests

T1,T2, ...,Tn. If the outcome of one test differs significantly from what one would ex-

pect from a truly random sequence, the pseudo-random number generator is classified

as “bad. Note that if a pseudo-random number generator has passed n tests, we can not

conclude that it will also pass test Tn+1. In this context also the term “quasi-random

numbers appears. Quasi-random numbers are not random at all, but produced by a

numerical algorithm and designed to be distributed as uniformly as possible, in order

to reduce the errors in Monte Carlo integration.

A good random number generator should satisfy the following criteria:

• Good distribution. The points should be distributed according to what one

would expect from a truly random distribution. Furthermore a pseudo-random

number generator should not introduce artificial correlations between succes-

sively generated points.

• Long period. Both pseudo-random and quasi-random generators always have a

period, after which they begin to generate the same sequence of numbers over

again. To avoid undesired correlations one should in any practical calculation

not come anywhere near exhausting the period.

• Repeatability. For testing and development, it may be necessary to repeat a cal-
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culation with exactly the same random numbers as in the previous run. Further-

more the generator should allow the possibility to repeat a part of a job without

doing the whole thing. This requires to be able to store the state of a generator.

• Long disjoint subsequences. For large problems it is extremely convenient to be

able to perform independent subsimulations whose results can later be combined

assuming statistical independence.

• Portability. This means not only that the code should be portable (i.e. in a high-

level language like Fortran or C), but that it should generate exactly the same

sequence of numbers on different machines.

• Efficiency. The generation of the pseudo-random numbers should not be too

time-consuming. Almost all generators can be implemented in a reasonably

efficient way (Weinzierl S., 2000).

3.2.4 Importance Sampling

There are several well-established numerical integration methods based on sample

points, which are equally spaced, e.g. the midpoint or trapezoidal rules, as well as

some more evolved adaptive methods. These methods work fine in lower dimensions.

However, if the space of integration is of higher dimension, they are practically not

applicable anymore, since the number of sample points grows exponentially with the

number of dimension. That is, numerical quadrature rules are inefficient for multidi-

mensional integrals. Monte Carlo integration offers a tool for numerical evaluation of

integrals in high dimensions. Furthermore Monte Carlo integration works for smooth

integrands as well as for integrands with discontinuities. This allows an easy applica-

tion to problems with complicated integration boundaries.

In numerical integration, it is needed M different sums, but in Monte Carlo integra-

tion only one is enough! This leads us to understand why Monte Carlo integration is

so important in many dimensions. In one dimensional there really is no major differ-

ence, and indeed using methods like Simpson’s the numerical integration can easily

be made quite accurate and efficient. But with increasing numbers of dimensions M,
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doing the M sums becomes increasingly cumbersome, and eventually using the Monte

Carlo approach which only needs one sum will clearly be simpler. Analogue simula-

tion is going to be extremely difficult and most often impossible. It is need to resort to

techniques that reduce the variance without in any way changing the averages of the

desired quantities. These are called variance reduction techniques and one of them is

called importance sampling.

The expectation values of thermodynamic observable are calculated in statistical

mechanics. For a spin system, the expectation value is defined as

⟨A⟩= ∑s Ae−βH

∑s e−βH
(3.2.1)

For example in an Ising system, the sum is over 2N configurations. This number is ex-

tremely large for all but very small systems. Therefore one must find a method which

estimates thermodynamic properties by sampling a small subset of representative con-

figurations. One possible strategy would be to scan randomly the whole configuration

space (scan randomly over all spin configurations). The expectation value of A would

then be obtained as a sum over the scanned configurations, weighted by the appropri-

ate Boltzmann factors. However, this random sampling has a very serious drawback.

Because of the Boltzmann factor which brings a negligible weight to most of the con-

figurations, very few configurations will contribute to the expectation value of A and

a very unreliable estimate will result. This problem occurs because only an extremely

restricted part of the configuration space is occupied with a considerable probability

in the thermodynamic limit. Therefore it makes sense to restrict the sampling only to

these states. This is the importance sampling (Vilfan I., ICTP).

In classical statistical mechanics, to evaluate the ensemble average of a well-behaved

phase space function A(x) given by

⟨A⟩=
∫

dxρ(x)A(x)∫
dxρ(x)

(3.2.2)

where x is a point in phase space of dimension D and ρ(x) is an unnormalized proba-

bility distribution of the statistical ensemble.
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In importance sampling, the multidimensional integration over the ensemble av-

erage is numerically evaluated by generating a sequence of n phase space points

x(i), (i = 1, ...,n) by a stochastic process such that the probability distribution of the

points being generated in this process is proportional to the probability distribution

ρ(x) of the statistical ensemble. Importance sampling thus ensures that the regions of

phase space that make the most important contributions to the integral will be sampled

most frequently. This method evaluates averages of the form of Eq. (3.2.2) as

⟨A⟩ ≈ 1
n

n

∑
i=1

A(x(i))≡ An, (3.2.3)

where the summation is taken over a sequence of random states x(i) generated from

the target distribution. An ingenious method has been devised by Metropolis et al.

(Metropolis N. et al., 1953) to generate such a sequence of random points x(i) in a way

that An converges to the ensemble average ⟨A⟩ after a large number of trials n. The

method is based on constructing a Markov chain (Tongsik L., 2010).

3.2.5 Markov Chain

A Markov chain is a sequence of randomly occurring trials in phase space in which

each trial depends only on the microscopic state that immediately proceeds it and

not on the previous history of the states. It can be shown that a unique equilibrium

distribution exists after a finite number of trials if every state of the system is accessible

from any other state. In this case, such a Markov chain is referred to as ergodic. A

process or algorithm is said to be ergodic, or to satisfy ergodicity, if any state can be

obtained from any other state, provided a sufficiently long simulation time to sample

all possible states of a system (Tongsik L., 2010).

An ergodic Markov chain is characterized by an irreducible matrix P(B|A) of the

stochastic transitions that link two states A and B, under which the distribution ρ(A)

is stationary, i.e. ρ(A) satisfies the eigenvalue equation for balance:

ρ(B) = ∑
A

P(B|A)ρ(A) (3.2.4)
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with eigenvalue unity, where the summation is taken over all states A, and

∑
B

P(B|A) = 1 (3.2.5)

The condition Eq. (3.2.4) is conventionally replaced by the stronger requirement of

microscopic reversibility or detailed balance:

P(B|A)ρ(A) = P(A|B) = ρ(B), (3.2.6)

which is a sufficient but not necessary condition for ergodicity. In Eq. (3.2.6) ρ(A) and

ρ(B) are probabilities of occupation at equilibrium. Working with classical systems,

the equilibrium distribution used is the Boltzmann distribution, which in a specific

state i is given by

pi =
1
Z

e−βEi, (3.2.7)

where β = 1/kT with k the Boltzmann constant (1.38×10−23JK−1) and T the temper-

ature, Ei is the internal energy for the state i and Z is the partition function

(Z = ∑i e−βEi). Thus, to satisfy detailed balance with a system following the Boltz-

mann distribution, Eq. (3.2.6) becomes

P(A|B)
P(B|A)

= e−β (∆E), (3.2.8)

where ∆E ≡ EB −EA. The stochastic transition probability P(B|A) can be written as

the product of the trial probability T (A → B) from state A to state B and an acceptance

probability acc(A → B) for such a trial:

P(B|A) = T (A → B)acc(A → B), (3.2.9)

where the stochastic matrix T (A → B) is also called the underlying transition matrix

of the Markov chain. The selection probability is the probability that the algorithm

generates a specific state B from state A and the acceptance ratio is the probability for

the system to change from state A to this state B.
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3.2.6 Metropolis Algorithm

The condition of detailed balance does not uniquely determine what transition prob-

abilities should be used. As such, this gives some flexibility to develop an efficient

algorithm that applies to the problem at hand, so long as the ergodicity and detailed

balance conditions are satisfied. For example, any implementation of P(A|B) and

P(B|A) that satisfies Eq. (3.2.8) will give a correct result. However, most choices are

simply not efficient and will not be useful.

As mentioned previous section the Metropolis-Hastings algorithm (Metropolis N.

et al.,1953), named after Nicholas Metropolis and W. Keith Hastings, is a particular

choice of the transition probabilities so as to very efficient. The original algorithm

was developed in 1953 by N. Metropolis using the Boltzmann distribution and was

extended to the general case in 1970 by W. K. Hastings. It is the most commonly used

Markov Chain Monte Carlo method due to its simplicity and efficiency.

The Metropolis algorithm has single-spin-flip dynamics, as it only considers a sin-

gle spin at a time. The derivation of the Metropolis algorithm follows from a few

simple steps (Newman M. E. J & Barkema G.T., 1999). From state A, there are N pos-

sible states that can be reached after one flip to create different states. The probability

to create a specific state B from A is thus T (A → B) = 1/N as they are all equally

favored; the probability of creating state A from B is also the same. The condition of

detailed balance, which mentioned above, can then be stated as

P(A|B)
P(B|A)

=
T (A → B)acc(A → B)
T (B → A)acc(B → A)

=
acc(A → B)
acc(B → A)

= e−β (∆E). (3.2.10)

The choice of acceptance ratio can be made in almost any fashion, so long as this

equation is obeyed; however, a low acceptance ratio would lead to many wasted cal-

culations, and as such a large acceptance ratios is therefore generally more efficient.

For this purpose, the larger of two acceptance ratios is usually taken to be unity while

the other one is adjusted accordingly.
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With this single-spin-flip algorithm, there are three situations: the energy of new

state can be either smaller or larger than the one of the current state or remain the

same. If ∆E > 0, e−β∆E will be smaller than unity, as β > 0. This means that

P(B|A)> P(A|B), so P(B|A) is set to 1 and P(A|B) = e−β∆E . If, however, ∆E < 0, the

exponential will be greater than unity and a similar logic is applied: P(A|B) is set to 1

and P(B|A) = e−β∆E . Having ∆E = 0 has P(A|B) = P(B|A) = 1, such that the spin is

flipped with no change in energy.

What this means is that when the spin flip reduces the energy (∆E < 0), the prob-

ability of accepting the new configuration is 1. On the other hand, when the spin flip

increases the energy, the new configuration is accepted with a probability given by

the weight ω = e−β∆E . To implement this, a random number r is chosen such that

0 ≤ r < 1. If r < ω , the spin is flipped. This is the Metropolis algorithm, which has

seen remarkable success. Other implementations of the acceptance ratio can be used if

they prove to be more applicable to the problem at hand, but the Metropolis algorithm

has shown itself to generally be very efficient. Ergodicity is assured by being able

to flip one spin at a time, indefinitely, to go from any state to another (Le Blanc M.,

2010).

The flowchart of Monte Carlo simulation with Metropolis Algorithm is shown in

Fig. 3.5. As a summary to the usage of the Metropolis algorithm in Monte Carlo

simulations, the following steps are done for one application of the algorithm:

1. Establish an initial state with energy Ei by positioning yourself at a random

position in the lattice

2. Change the initial configuration by flipping e.g., one spin only. Compute the

energy of this trial state E f .

3. Calculate ∆E = E f −Ei. The number of values ∆E is limited to five for the Ising

model in two dimensions

4. ∆E ≤ 0 we accept the new configuration, meaning that the energy is lowered and

we are hopefully moving towards the energy minimum at a given temperature.
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Figure 3.5 The flowchart of Monte Carlo simulation with Metropolis Algorithm.



45

Go to step 7.

5. If ∆E > 0, calculate ω = e−β∆E .

6. Compare ω with a random number r. If r ≤ ω , then accept the new configura-

tion, else we keep the old configuration.

7. The next step is to update various expectations values.

8. The steps (2)-(7) are then repeated in order to obtain a sufficiently good repre-

sentation of states.

9. Each time you sweep through the lattice, i.e., when you have summed over

all spins, constitutes what is called a Monte Carlo cycle. You could think of

one such cycle as a measurement. At the end, you should divide the various

expectation values with the total number of cycles. You can choose whether you

wish to divide by the number of spins or not. If you divide with the number of

spins as well, your result for e.g., the energy is now the energy per spin.

The crucial step is the calculation of the energy difference and the change in mag-

netization. This part needs to be coded in an as efficient as possible way since the

change in energy is computed many times. In the calculation of the energy difference

from one spin configuration to the other, it can be limited the change to the flipping

of one spin only. For the Ising model in two dimensions it means that there will only

be a limited set of values for ∆E. Actually, there are only five possible values. To see

this, select first a random spin position x,y and assume that this spin and its nearest

neighbors are all pointing up. The energy for this configuration is E = 4J, yielding

∆E = 8J.

↑ ↑

E =−4J ↑ ↑ ↑ ⇒ E = 4J ↑ ↓ ↑

↑ ↑

The four other possibilities are as follows
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↑ ↑

E =−2J ↓ ↑ ↑ ⇒ E = 2J ↓ ↓ ↑

↑ ↑

with ∆E = 4J,

↑ ↑

E = 0 ↓ ↑ ↑ ⇒ E = 0 ↓ ↓ ↑

↓ ↓

with ∆E = 0,

↓ ↓

E = 2J ↓ ↑ ↑ ⇒ E =−2J ↓ ↓ ↑

↓ ↓

with ∆E =−4J and finally

↓ ↓

E = 4J ↓ ↑ ↓ ⇒ E =−4J ↓ ↓ ↓

↓ ↓

with ∆E =−8J. This means in turn that it could be constructed an array which con-

tains all values of eβ∆E before doing the Metropolis sampling. Else, it would have to

be evaluated the exponential at each Monte Carlo sampling. For the two-dimensional

Ising model there are only five possible values. It is rather easy to convince oneself

that for the one-dimensional Ising model only three possible values exist (Jensen M.H,

2007).



CHAPTER FOUR

DEPENDENCE ON DILUTION OF CRITICAL

AND COMPENSATION TEMPERATURES OF A TWO DIMENSIONAL

MIXED SPIN-1/2 AND SPİN-1 SYSTEM

4.1 Introduction

Recently, ferrimagnetic (i.e., mixed spin) systems consist of two sublattices have

compensation temperature Tcomp have been attached to attention due to technological

applications such as magneto-optical materials. This kind of materials can be applied

to writing and erasing in high-density magneto-optical recording media since they

have compensation temperature Tcomp. Therefore, theoretical studies for mixed spin

systems may be give useful results to examine properties of the ferrimagnetic materi-

als.

Compensation point in ferrimagnetic materials are observed below the Néel tem-

perature (Néel, 1948) which is known as critical temperature Tc. Sublattices in ferri-

magnetic materials have inequivalent moments with interacting antiferromagnetically.

At low temperatures, these inequivalent moments are antiparallel but do not cancel

(Néel, 1948; Buendia & Novotny, 1997). However, sublattices compensate each other

completely at T = Tcomp below critical temperature Tc owing to the different temper-

ature dependencies of the sublattice magnetization. Hence compensation point occur

in ferrimagnetic system. At T = Tcomp, the total magnetization of the system vanishes.

At the compensation point of ferrimagnetic material, only a small driving field is re-

quired to reverse the sign of magnetization of locally heating magnetic domain by a

focused laser beam. Hence writing and erasing processes can be achieved at this point.

To develop high-density magneto-optical recording materials, many complex two-

and three-dimensional ferrimagnetic materials have been experimentally synthesized

such as organometallic ferrimagnets (Tamaki et al., 1992), networks of the mixed-

metal material (Drillon et al., 1983; Decurtins et al., 1994) and ferrimagnetic amor-

phous oxides containing Fe3+ ions (Srinivasan et al., 1991).

47
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The conditions for the appearance of a compensation point as well as the compo-

sition dependencies of the transition and the compensation temperatures have been

extensively investigated by a variety of techniques, for example, Cluster Variational

Method (Balcerzak et al., 2002), Effective-Field Theory (Kaneyoshi, 1987, 1988,

1989, 1990; Siqueira & Fitipaldi, 1986; Li & Kaneyoshi, 1988; Benayad et al., 1989;

Benyoussef et al., 1994), renormalization group theory (Schofield & Bowers, 1980;

Quadros & Salinas, 1994), high temperature series expansions (Hunter et al., 1983;

Yousif & Bowers, 1984), mean field theory (Kaneyoshi & Chen, 1991), Bethe-Pierls

method (Iwashita & Uryu, 1984). Critical temperatures and exponents of mixed spin-

(1/2,1) system with crystal field i.e., single ion anisotropy interaction are studied by

finite-size scaling theory with Monte Carlo simulation (Zhang & Yang, 1983). Com-

pensation temperature for two dimensional square lattice under crystal and external

fields has been obtained considering next nearest interactions (Buendia & Novotny,

1997; Buendia et al., 1998).

On the other hand, recently, dilution effect on the compensation temperature and

magnetic properties of mixed spin systems have been studied and interesting phenom-

ena have been found out. For example, some investigations have been made for mixed

spin-1/2 and spin-1 diluted honeycomb lattice by using effective field theory with cor-

relations (Bobák & Jascur, 1995; Xin et al., 1997). In these studies, it has been shown

mixed spin system in which two sublattices were independently diluted with different

number of non-magnetic atoms has two compensation points which was not predicted

in Néel theory when crystal field interaction is neglected. Tricritical point, reentrant

phenomena and two compensation points have been found out by using effective field

theory in diluted square lattice with crystal field (Xin et al., 1998a). Similarly, in

the study of diluted honeycomb lattice, tricritical point, reentrant phenomena and two

compensation points have been carried out for negative crystal field (Xin et al., 1997b).

Other magnetic and thermal properties of diluted mixed honeycomb and square lattice

have been discussed in ref. (Xin et al., 1998b). Dependence of magnetic properties

of mixed honeycomb lattice on dilution has been investigated by effective-field theory

(Xin et al., 1998c). Similar discussion are made using diluted honeycomb lattice in

which two sublattices diluted with equal number of non-magnetic atoms (Benyoussef

et al., 1994,Kaneyoshi, 1995). In a recent study, numerical and analytical results is
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given for the magnetic ordering in a bond-diluted spin-1/2 and spin-1 Ising system on

a honeycomb lattice with transverse field (Shi-Lei, 2002).

As it can be seen from pervious theoretical studies that to dilute the ferrimagnetic

lattice with vacancies such as non magnetic atoms, non-occupied sites play important

role on the compensation and critical temperature as well as in others magnetic prop-

erties of the system. Therefore, to understand the effects of the dilution on the systems

is important. Because, non magnetic atoms (or non-occupied sites) can be exist in

lattice formation of the materials which are experimentally synthesized.

As mentioned above discussion, it can be clearly concluded that dilution effect

on the system is depend on interactions considered Hamiltonian and type of lattice.

Therefore, we study behavior of the compensation, critical temperatures and other

magnetic and thermal properties of the site-diluted square lattice with Monte Carlo

simulation methods.

4.2 Model and Simulation Technique

In this study, we consider randomly diluted ferrimagnetic square lattice which con-

sist of two interpenetrating sublattices which can take the values σ = ±1/2 and S =

±1,0. Both of two sublattices are randomly diluted with equal number of non mag-

netic atom. We underline that in order to observe compensation point next-nearest-

neighbor interactions should be taken into account as discussed in ref. (Buendia &

Novotny, 1997; Buendia & Liendo, 1997; Landau D.P, Mon K. K & Schuttler H. B.,

1994).

In this case, the Hamiltonian is given by

H =−J1 ∑
<nn>

σiS j − J4 ∑
<nnn>

σiσk +D∑
j

S2
j (4.2.1)

where the first sum is over the nearest-neighbor and the second one is over the next-

nearest-neighbor spins. J1 and J4 parameters define an exchange interaction between
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the neighbor spins and D is the crystal field. Note that there is no exchange interac-

tion between the nearest-neighbor and the next-nearest-neighbor sites if there is a non

magnetic atom exists in the neighbor site. Similarly, the last term of the Hamiltonian

vanishes in case of there is a non magnetic atom instead of a spin variable in the S

sublattice. Here, the J1, J4 and D are all in energy units.

We employed standard importance sampling methods (Binder, K., 1979) to sim-

ulate the system described by the Hamiltonian (4.2.1) on a L×L square lattice with

periodic boundary conditions. The initial configurations were taken as saturated i.e.

both the S and σ sublattices are fully aligned. Equal number of site dilutions per

sublattice were distributed randomly after setting the lattice up with spin variables.

Configurations were generated by selecting the sites in sequence through the lattice

and making single-spin-flip attempts, which were accepted or rejected according to

the Metropolis algorithm. Data were generated with 25000 Monte Carlo steps per site

after discarding the first 2500 steps over 100 realization for L = 16,32 and 64 with

different numbers of non-magnetic atoms.

In order to study the effects of the random site dilution on compensation and crit-

ical temperatures, we computed some basic magnetic and thermodynamic quantities

like the sublattice magnetization MA and MB, the total magnetization M, the magnetic

susceptibility χ and the specific heat C for different densities of diluted sites. These

quantities are calculated as

MA =
2
L2

⟨
∑

j
S j

⟩
(4.2.2)

MB =
2
L2

⟨
∑

i
σi

⟩
(4.2.3)

M =
1
2
(MA +MB) (4.2.4)

χ =
1

kBT

(
⟨M2⟩−⟨M⟩2) (4.2.5)

C =
1

kBT 2

(
⟨E2⟩−⟨E⟩2) (4.2.6)

where T denotes temperature, E is the internal energy of the system, and kB is Boltz-
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mann constant (here kB = 1).

To determine the compensation temperature Tcomp from the computed magnetiza-

tion data, we have found the intersection point of the absolute values of the sublattice

magnetization. So, at the compensation point we must have

∣∣MA(Tcomp)
∣∣= ∣∣MB(Tcomp)

∣∣ (4.2.7)

sign(MA(Tcomp)) =−sign(MB(Tcomp)) (4.2.8)

with Tcomp < Tc, where Tc is the critical temperature. Compensation temperature ap-

pears at temperatures T < Tc where total magnetization is zero, whereas, at the same

temperature sublattice magnetization is different from zero.

4.3 Results and Discussion

In order to see the effect of the non-magnetic atoms on the magnetic and thermal

behaviors of a two dimensional mixed spin system defined with Eq.(4.2.1), choosing

J1 = −2, J4 = 8 and D = 2.6 we give the results of 64× 64 square lattice for N = 0,

64, 256, 512 in Figs. 4.1-6. Here we must state that the nearest-neighbor interaction

J1 in Eq.(4.2.1) does not play a role on the compensation temperature, whereas ob-

servation of the compensation temperature depends on the parameters J4 and D. This

point has been discussed in refs. (Buendia & Novotny, 1997; Buendia et. al., 1998).

Therefore, in this study, we have particularly focused on the effect of the different di-

lution rates with non-magnetic atoms N for arbitrary fixed J1, J4 and D. On the other

hand, to analyze the effect of the non-magnetic atoms on the critical and compensation

temperatures, for fixed J1 =−2, J4 = 8 and two different crystal field values D = 1.6

and D = 2.6 we give the results of different lattice sizes (L = 16, 32, 64) for different

densities of diluted site in Figs. 4.7 and 4.8.

Monte Carlo simulation results for spin-1/2 and spin-1 mixed ferrimagnetic square

lattice which is described by Eq. (4.2.1) are as follow: Firstly, in order to see temper-

ature dependencies of sublattice magnetization MA, MB and susceptibility χ of non
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Figure 4.1 The temperature dependencies of sublattice
magnetization MA, MB and susceptibility χ of non diluted
square lattice for J1 =−2, J4 = 8 and D = 2.6.

diluted square lattice, these physical quantities are plotted for J1 = −2, J4 = 8 and

D = 2.6 in Fig. (4.1). As expected that the system has a compensation point near

T/|J1|= 3.6 and a critical point near T/|J1|= 5.3 for chosen parameters as seen from

Fig. (4.1). The results of MA, MB and χ for these parameters are in an excellent agree-

ment with the results of ref. (Buendia & Novotny, 1997).

As stated in previous section , we carried out that diluting the lattice with non mag-

netic atoms plays significant role, particularly, on compensation and critical tempera-

ture as well as other thermal and magnetic properties such as sublattice magnetization,

specific heat and susceptibility.

Using Eq. (4.2.4), total magnetization versus reduced temperature is plotted for sev-

eral numbers of nonmagnetic atoms N (N = 0, 64, 256, 512) with D= 2.6 and J1 =−2,

J4 = 8 in Fig. (4.2). In this figure, there are two temperatures of total magnetization

curve which is zero for different numbers of non-magnetic atoms. First temperature

value at which total magnetization M is zero corresponds to compensation temperature

point and, on the other hand, second temperature value at which M = 0 corresponds

to critical temperature point. One can see some quantitative differences in the total
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Figure 4.2 Total magnetization M versus reduced tempera-
ture T/|J1| for different N with J1 =−2, J4 = 8 and D= 2.6.

magnetization curves for different number of non-magnetic atoms, but it is hard to

comment on this naive picture about dependence on dilution of the critical and com-

pensation temperatures. However, it might be also predicted that the compensation

and critical points appear near T/|J1| = 3.6 and T/|J1| = 5.3 for different numbers

non-magnetic atoms.

For different N (N = 0, 64, 256, 512) and fixed J1 =−2, J4 = 8, D = 2.6 values, be-

havior of the compensation and critical temperatures of spin-1 and spin-1/2 sublattice

magnetization MA and MB given Eqs. (4.2.2) and (4.2.3) are separately demonstrated

in Figs. (4.3) and (4.4), respectively. As seen from these figures, sublattice magneti-

zation is different from zero at compensation temperature values while as seen in Fig.

4.2, the total magnetization value is zero at the compensation point for all values of N.

These two figures inform us about behavior of the compensation points for different N

values. Indeed, it is possible to obtain the compensation points for different N values

if MA is mapped onto MB in the same figure as well as in Fig. 4.1. The first crosses

in the sublattice magnetization curves of MA and MB correspond to the compensation

points. One can easily predict from these figures that the compensation temperatures

decrease as the number of non-magnetic atoms N increases. The dilution dependence

of compensation temperature which we have obtained from Figs. 4.3 and 4.4 is given
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Figure 4.3 Spin-1 sublattice magnetization MA versus re-
duced temperature T/|J1| for different N with J1 = −2,
J4 = 8 and D = 2.6.
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Figure 4.4 Spin-1/2 sublattice magnetization MB versus re-
duced temperature T/|J1| for different N with J1 = −2,
J4 = 8 and D = 2.6.
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Figure 4.5 Magnetic susceptibility χ versus reduced tem-
perature T/|J1| for different N with J1 = −2, J4 = 8 and
D = 2.6. In the inset, susceptibility curves for N = 0,64 are
given.

above. However, it is still hard to comment on these figures about the dependence on

dilution of the critical temperature points.

Magnetic susceptibility defined Eq. (4.2.5) versus reduced temperature has been

plotted in Fig. (4.5) for several numbers of non-magnetic atoms N for the same values

of parameters. As it can be seen from Fig. (4.5) that there are two relatively sharp

peaks and humps in magnetic susceptibility curves. Each curve in the second peaks

and humps indicate the phase transition from ferrimagnetic to paramagnetic at critical

temperature, however, the curves in the first hump originate from D and they do not

indicate a compensation temperature or a phase transition in the model. The effect of

numbers of nonmagnetic atoms N on the two humps can be clearly seen in this figure.

In fact, in the second hump, the maximum points of the susceptibility curves become

smaller and slide to left with increasing N values, which means critical temperature

decreases with increasing N, while in the first hump, the maximum points of the sus-

ceptibility curves getting increased and slide to the left with increasing N values as

also seen from inset figure in Fig. (4.5). The reason for increment in the maxima of

the susceptibility curves in the first hump probably arises from that the increasing N
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Figure 4.6 Temperature dependence of the specific heat C
for different N values with J1 =−2, J4 = 8 and D = 2.6.

values may strengthen the effects of D. The existence of the non-magnetic atoms on

the lattice also affects the shapes of these humps in the susceptibility curves.

Similarly, temperature dependence of the specific heat given Eq. (4.2.6) is plotted

in Fig. (4.6) for different N values and fixed J1 =−2, J4 = 8, D = 2.6. There are also

two relatively sharp humps and peaks in specific heat. The first hump which behaves

ambiguously probably may also originate from D as well as first humps in magnetic

susceptibility. The second humps and peaks indicate the phase transition. As seen

from Fig. (4.6), maxima of the specific heat curves becomes smaller and slide to left

with increasing N values. It means critical temperature decreases with increasing N.

In order to understand effect of non magnetic atoms (i.e., dilution) on the com-

pensation temperature Tcomp and critical temperature Tc, using fixed J1 = −2, J4 = 8

and for two different crystal field values D = 1.6 and D = 2.6 with different lattice

sizes, temperature versus different N values are plotted in Fig. (4.7) and Fig. (4.8).

As it can be seen from Fig. (4.7), non-magnetic atoms play an important role on the

critical temperature of the system. Indeed, critical temperature of diluted system lin-

early decreases for fixed J and D with increasing density of diluted site in the lattice.

Similarly, the crystal field also affects the critical temperature of the system. It can be

seen from Fig. 4.7 that the critical temperature of the system decreases systematically



57

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

4.80

4.96

5.12

5.28

5.44

5.60

 L=16
 L=32
 L=64

         D=2.6

 L=16
 L=32
 L=64

         D=1.6

T c

Density of diluted Sites (N/L2)
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when the crystal field value is increased. On the other hand, we can say that the critical

temperature of the diluted mixed system does not affected from the lattice size.

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

3.36

3.52

3.68

3.84

4.00

4.16
 L=16
 L=32
 L=64D=1.6

D=2.6

T C
om

p

Density of diluted Sites (N/L2)

 L=16
 L=32
 L=64

 

 

Figure 4.8 Dependence on the density of diluted sites of
the compensation temperature for fixed J1 =−2, J4 = 8 and
two different crystal field values D = 1.6 and D = 2.6.



58

Fig. 4.8 shows the dependence on density of diluted sites of the compensation tem-

perature for same values values in fig. (4.7) with different lattice sizes. Similarly,

non-magnetic atoms and the crystal field play a significant role on the compensation

temperature of the system as well as the critical temperature. As it can be seen from

Fig. 4.8, the compensation temperature of diluted system linearly decreases for fixed

J and D with increasing density of diluted sites in the lattice, and on the other hand,

compensation temperature of the system decreases systematically when the crystal

field value is increased. Finally, we can say that compensation temperature of the

diluted mixed system does not affected from lattice size as well as the critical temper-

ature.



CHAPTER FIVE

COMPENSATION TEMPERATURE OF 3D MIXED

FERRO-FERRIMAGNETIC TERNARY ALLOY

5.1 Introduction

During the past several decades there has been intensive interest in the experimental

and theoretical research of the ferrimagnetic compounds because of their potential de-

vice applications in technologically important materials such as high-density magneto-

optical recording (Tanaka et al., 1987; Alex et al., 1990). In contrast to ferromagnets

and antiferromagnets, there is in ferrimagnetic materials two inequivalent moments,

interacting antiferromagnetically. These materials have a special temperature point at

which the resultant magnetization vanishes below the transition temperature Tc (Néel,

1948), because of the different dependence of the sublattice magnetization on tem-

perature. This point can appear at a temperature below the critical one, where the

sublattice magnetization cancel exactly each other, so it is called compensation point.

The occurrence of a compensation point is of highly technological importance, be-

cause to change the sign of resultant magnetization require only a small driving field

at this point. It has been shown experimentally that the coersive field is very strong

at the compensation point favoring the creation of small, stable, magnetic domains

(Hansen, 1987; Hernando & Kulik, 1994; Multigner et al., 1996). In magneto-optical

recording devices the coercivity is changed by local heating of the media with a fo-

cused beam. Temperature dependence of the coercivity near the compensation point

can be applied to writing and erasing in high-density magneto-optical recording me-

dia. Direct overwrite capability has been indicated in magneto-optic thin films with

compensation temperatures higher than room temperatures (Mansuripur, 1987).

In the past two decades there has been a growing interest in the preperation and

study of the magnetic properties of molecular-based magnets is to obtain

novel molecular magnetic materials with high transition temperature (Ferlay et al.,

1995;

Buschmann et al., 1997; Day & Underhill, 1999; Holmes & Giolami, 1999). The
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superiorities of these type of magnets can be obtained through a choice of proper spin

sources(e.g, transition metal ions, organic radicals) and coordinating ligands when

they compared to classical-metal and metal-oxides ones. In consequence of the multi-

compensation behavior appearing in the mixed ternary molecular magnets gave a

new impetus to this area research. Notably, the multi-metal prussian blue analogs

are a special class of among molecular-based magnets. These materials may display

one or even two compensation temperatures such as (X II
p MnII

1−p)1.5[CrIII(CN)6].nH2O

(X II = NiII,FeII) (Ohkoshi et al., 1997a) or (NiII
p MnII

q FeII
r )1.5[CrIII(CN)6].nH2O

(Ohkoshi et al., 1999), respectively and some of these compounds with high criti-

cal temperatures Tc (Mallah et al., 1993; Entley & Girolami, 1994, 1995; Ferlay et al.,

1995; Sato et al., 1996).

Furthermore Prussian blue analogs are available for the molecular design of mag-

netic properties because various types of metal ions can be conveniently incorporated

as spin centers (Güdel et al., 1973; Klenze et al., 1980; Gadet et al., 1992; Mallah

et al., 1993; Entley & Girolami, 1995; Ferlay et al., 1995; Sato et al., 1996). Thus

the magnetic properties like transition temperature, coercive field, etc. of these multi-

metal Prussian blue analogs can be tuned during the synthesis process by changing the

composition of different transition metal ions.

Up to the present, many striking properties have been discovered in these mate-

rials, for example, occurence of one (Ohkoshi et al., 1997a) or even two (Ohkoshi

et al., 1999) compensation points, magnetic pole inversion (Ohkoshi et al., 1997a,

Ohkoshi & Hashimoto, 1999a), the photoinduced magnetization effect (Sato et al.,

1996; Pejakovic et al., 2001). The reason of such an unusual behavior in the Prussian

blue analogs is that these compounds can incorporate both ferromagnetic (J > 0) and

antiferromagnetic (J < 0) superexchange interactions between the neighboring metal

ions through the cyanide bridging ligands. Therefore, these magnets are called mixed

ferro-ferrimagnets.

In general, the theoretical investigations of magnetic properties of the multi-metal

Prussian blue analogs are difficult because of their structural complexity. Up to now

analytical descriptions of their properties have been performed in the mean-field ap-
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proximation (MFA) (Ohkoshi & Hashimoto, 1999b; Bobak & Dely, 2004), the effec-

tive field theory (Bobak et al., 2002), variational method in pair approximation (Tucker

et al., 1998), and Monte Carlo simulation method (Carling et al., 2001; Buendia & Vil-

larroel, 2007; Dely et al., 2009).

Prussian blue analogs have been studied extensively in last decade in search of

three-dimensional molecular magnetic materials with high transition temperature

(Gadet et al., 1992; Ferlay et al., 1995; Entley & Girolami, 1995). Their common

cubic structure allows an easy modification of their spin structures and consequently

their magnetic properties, which are difficult to observe in conventional metal oxide

magnets, due to various types of magnetic interactions involved. The interaction be-

tween the neighboring spins is strongly influenced by the existence of cyanide (CN)

bridging ligands which are the main element responsible for the above mentioned

magnetic properties.

Recent researches introduce a simple ternary ferro-ferrimagnetic alloy model of

the type ABpC1−p consisting of different Ising spins which includes both ferromag-

netic JAB > 0 and antiferromagnetic JAC < 0 interactions. Magnetic properties of this

model have been performed by changing the proportion of magnetic ions p and in-

teraction ratio R = |JAC|/JAB. There are a few studies in mixed ferro-ferrimagnetic

ternary alloy Ising model by using Monte Carlo (MC) simulation method. One of

these works was presented by Buendı́a and Villarroel (Buendı́a & Villarroel, 2007)

in square lattice. They studied the behavior of compensation temperature of ternary

compound in this work. Taking this into account, in this study we carried out the

MC simulation method in three-dimensional(3D) lattice for the studies of magnetic

properties of the ABpC1−p ternary alloy corresponding to the Prussian blue analog of

the type (NiII
p MnII

1−p)1.5[CrIII(CN)6].nH2O (Ohkoshi et al., 1997a) by using the same

hamiltonian in (Buendı́a & Villarroel, 2007).

To simulate the structure of this model, we consider that A and X (X=B or C)

magnetic ions are alternately connected and have different spins SA = 3/2, SB = 1,

and SC = 5/2, respectively. The p parameter can control the type of magnetic ordering

and denotes the proportion of magnetic ions B and C which are randomly distributed
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Figure 5.1 The crystallographic structure of prus-
sian blue analog with two interpenetrating cubic lat-
tices.

over the lattice.

The purpose of this work is to clarify the effects of the concentration p and the inter-

action ratio R on the magnetic properties of the three-dimensional ferro-ferrimagnetic

ternary alloy model corresponding to the prussian blue analog with MC simulation

method.

5.2 Model and Its Monte Carlo Simulation

We consider a mixed ferro-ferrimagnetic ternary alloy model of the type ABpC1−p

consisting of three kinds of magnetic ions A, B, and C with different Ising spins

SA
i = 3/2, SB

j = 1, and SC
j = 5/2, respectively. To be consistent with a structure of

the Prussian blue analog (Ohkoshi et al., 1997a), we assume that the SA
i and either SB

j

or SC
j spins, which are randomly distributed in the three dimensional lattice, are linked

in an alternating fashion and include both ferromagnetic JAB > 0 and antiferromagnetic

JAC < 0 interactions.

To simulate this model, we performed Metropolis Monte Carlo simulation algo-

rithm (Binder, K., 1979) to the on a L×L×L three dimensional lattice with periodic
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boundary conditions. Configurations were generated by making single-spin-flip at-

tempts, which were accepted or rejected according to the Metropolis algorithm. We

choose L = 20 for the simulations. Data were generated by using 50000 Monte Carlo

steps per site after discarding 10000 steps.

Figure 5.2 Schematic illustration of a ternary metal
Prussian blue analogue containing both ferromagnetic
and antiferromagnetic interactions. CrIII and either
NiII or MnII , which are randomly incorporated in the
lattice, are linked in an alternating fashion (Hashimoto
K. & Ohkoshi S., 1999).

3D mixed Ising ABpC1−p model includes two interpenetrating cubic sublattices,

each one of L3/2 sites as in Fig. 6.1. The A (SA =±3/2,±1/2) ions of one sublattice

are alternately connected with B(SB = ±1,0) or C (SC = ±5/2,±3/2,±1/2) ions

randomly located on the other sublattice with concentration p or 1− p, respectively.

We choose these spin values corresponding to the Prussian blue analog of the type

(NiII
p MnII

1−p)1.5[CrIII(CN)6].nH2O (see fig. 5.2). Both localization of spin ions and

different interaction parameter in lattice of this compound can be seen in experimental

work in Ohkoshi et al. (Ohkoshi et al., 1997a).
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The hamiltonian of the model is the following:

H =− ∑
<nn>

SA
i [JABSB

j ε j + JACSC
j (1− ε j)]− JAA ∑

<nnn>
SA

i SA
k (5.2.1)

where ε j takes the value of unity if there is a spin X(B or C) at the site j, if not is zero.

The first sum in Eq. (5.2.1) is over the nearest-neighbor(nn) and the second one is over

the next-nearest-neighbor(nnn) spins. The nearest neighbor interactions are chosen as

JAB(JNiCr)> 0 and JAC(JMnCr)< 0 corresponding to Prussian blue analog.

The sublattice average magnetizations per site are calculated,

MA =
2
L3

⟨
∑

i
SA

i

⟩
, MB =

2
L3

⟨
NB

∑
j=1

SB
j

⟩
, MC =

2
L3

⟨
NC

∑
j=1

SC
j

⟩
(5.2.2)

where NB denotes the number of B ions NB = pL3/2, whilst NC represents the number

of C ions NB = (1− p)L3/2 on the same cubic lattice.

5.3 Results and Discussion

The simulation results of the ternary alloy model ABpC1−p have been given and also

the dependence of the critical and compensation temperatures on the concentration and

other interaction parameters in the Hamiltonian have been discussed in this section. It

is also noted that the critical temperature of the system for different interaction ratios

and concentrations have been obtained by using the method of the finite-size scaling

(Binder, K., 1979).

We show the critical temperature of the 3D mixed ternary model with JAA = 0 as a

function of R for various values of p in Fig. 5.4. When p = 1 and p = 0, the model

reduces to the ferromagnetic mixed spin-3/2 and spin-1 and ferrimagnetic mixed spin-

3/2 and spin-5/2 Ising system, respectively. It is easy to see from Fig. 5.4 that there

is a special value of the exchange interaction ratio Rc. When R = Rc = 0.513, the

critical temperature has a fixed value of Tc = 5.47. Namely, Tc does not depend on

concentration p at this special value. In other words, the critical temperature of the
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mixed spin-3/2 and spin-1 Ising system is equal to that of the mixed spin-3/2 and spin-

5/2 Ising one for Rc value. Thus, neither the spin-1 ions nor spin-5/2 ions substitution

to system change the critical temperature in this special case.
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This result may be compared with the counterparts in the literature. First one Bobák

et al. studied in (Bobak et al., 2003) for the ternary alloy composed of spins SA = 3/2,

SB = 1 and SC = 5/2. They have obtained Rc = 0.4781 value by using mean field

approximation and the second one is presented by Buendı́a and Villarroel (Buendı́a &

Villarroel, 2007) in square lattice by using MC simulation method (Rc = 0.49). The

value of Rc = 0.513 obtained in this work is very close to above mentioned values. If

we compare Fig. 5.4 with two dimensional work (see fig. 5.3) in Buendı́a & Villarroel

(Buendı́a & Villarroel, 2007) the results obtained this work is more similar to the

previous work in the literature as an example Bobák et al. (Bobak et al., 2003).

The dependence of critical temperature of the system on the interaction ratio R for

different values of p is very different above and below of Rc. Indeed, when R < Rc, the

critical temperature of the mixed spin-3/2 and spin-5/2 system is smaller than mixed

spin-3/2 and spin-1 system. On the contrary, when R > Rc, the critical temperature of

the mixed spin-3/2 and spin-5/2 system has the highest value and also we can say that

Tc of the system depends linearly on R parameter, as seen Fig. 5.4.

In Fig. 5.5 we indicate the critical temperature of the system as a function of p for
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several values of R for JAA = 0. The lines in Fig. 5.5 represent a part of the second-

order transition separating the paramagnetic and ferrimagnetic phases. This figure

clearly shows that the critical temperature of the three dimensional ABpC1−p system

is changed by the p concentration when interaction ratio R has fixed values. It is seen

from Fig. 5.5 that the critical temperature of the system increases with increasing of

p when R < Rc. On the contrary, when R > Rc the critical temperature of the system

decreases with increasing of p for fixed values of R. However, when the value of R is

equal to Rc the critical temperature of the system denoted by triangle-line in fig. 5.5

is independent of the concentration p. The straight line in this figure shows Rc value

obtained this work as Rc = 0.513 and critical temperature of the three dimensional

ternary model is consistent with previous result of Bobák et al. (Bobák et al., 2003).

In present study, it is observed that the system has one compensation point when

there is no next-nearest neighbor interaction between A ions (JAA = 0), however, it has

one or multi compensation points when A ions have next-nearest neighbor interaction

each other in lattice (JAA ̸= 0) and other conditions are satisfied. The value of JAA used

in this study is chosen based on previous MC study of Buendı́a & Villarroel (Buendı́a

& Villarroel, 2007). It is clearly seen that compensation behavior is strongly affected

by the concentration and interaction parameters but there is no compensation point for

all R and p values. The dependence of compensation behavior on concentration and

interaction parameters has been discussed below.

When the system has been simulated in intervals 0.0 ≤ p ≤ 1.0 and 0.1 ≤ R ≤

2.642, there exists compensation behavior in the range 0.0 ≤ p ≤ 0.4 for some value

of R. Namely, there is no compensation point when p > 0.4 and the maximum com-

pensation points are observed at p = 0.3. For this value of p when R > Rc, there is

one compensation temperature in all R interaction ratio values. Also, when R = 2.642

(the interaction ratio which is special value in Prussian blue analog in ref Ohkoshi et

al., 1997c), the system has compensation points for p ≤ 0.4.

It is shown in Fig. 5.7 that the temperature dependencies of the total magnetization

of the system for several values of p, when the fixed value of R = 1.0. According to

this figure, in the interval of 0.0 ≤ p < 0.3 there exists compensation behavior. How-
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ever, there is no compensation temperature in two-dimensional (2D) work (Buendı́a &

Villarroel, 2007) for p = 0 and p = 0.1 (see fig. 5.6). We can say that mixed spin-3/2

and spin-5/2 system shows compensation behavior in three-dimensional model as seen

Fig. 6.7. In addition, when our result compared to 2D work, it is seen that both critical

and compensation temperatures are higher than in their results. It is also noteworthy

that, although the compensation temperature depends considerably on concentration

p, the critical temperature is independent from it. For p = 0.0 and R = 1.0, while

critical and compensation temperatures are approximately 50 when JAA = 0.0, it is

seen from fig. 5.7 that they are higher than 50 when JAA ̸= 0. This result shows that

Tcrit and Tcomp temperatures are influenced by the existence of next nearest neighbor

interaction JAA for chosen parameters p = 0 and R = 1.0.

In Fig. 5.8 we plot total magnetization as a function of temperature for the fixed

value of JAA = 7.5 and R = 2.642. When the total magnetization varies with tem-

perature in interval of 0.0 ≤ p ≤ 0.5, it is seen that there exists a compensation be-

havior only for 0.2 ≤ p ≤ 0.3. While the system has one compensation point for

0.2 ≤ p < 0.3, there are two compensation points at p = 0.3. This result shows that

the system has multi-compensation behavior with suitable R, p and JAA parameters.
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The last figure shows dependence of Tcomp on different interaction parameter in

Hamiltonian for a fixed value of concentration parameter (p = 0.25). It is seen from

Fig. 5.10 that, while Tcomp depends strongly on JAC(JMnCr) parameter, it depends

scarcely on JAA(JCrCr) and JAB(JNiCr) parameters. Tcomp decreases slowly with in-

crease of JAA and JAB parameters. Contrarily, Tcomp quickly increases with increase

of −JAC parameter. These results indicate that compensation behavior has a strong

dependence on the parameter JAC whereas its dependence on JAA and JAB is relatively

weak. When this figure compared with in square lattice work in (Buendı́a & Villar-

roel, 2007), it is seen that the results of 2D and 3D lattice different from each other.

3D lattice has more extensive interval compensation behavior than 2D lattice (see fig.

5.9).



CHAPTER SIX

THE EFFECTS OF SINGLE-ION ANISOTROPY ON MAGNETIC

PROPERTIES OF THE PRUSSIAN BLUE ANALOG

6.1 Introduction

Prussian blue analogs which type of the ABpC1−p model are new molecular-based

magnetic materials (for more details see ref. (Miller, J. S. & Drillon, M., 2005).

They have been received considerable attention recently since they have potential

application in technology such as magnetic recording media or quantum computing

devices (Leuenberger & Loss, 2001). Prussian blue analogs, for instance,

(FeII
p MnII

1−p)1.5[CrIII(CN)6].nH2O (Ohkoshi et al., 1997a) which is ternary alloy con-

sisting of three different Ising spins SA = 3/2, SB = 2 and Sc = 5/2. This ternary alloy

has L×L×L lattice that consists of two interpenetrating face-centered cubic(fcc) sub-

lattices, each one comprising L3/2 sites. In this lattice formation, the Cr ions of one

sublattice are alternately connected with the Fe or Mn ions randomly located on the

other sublattice with the concentration p or 1− p, respectively. Hence it includes both

ferromagnetic (JFeCr > 0) and antiferromagnetic (JMnCr < 0) super-exchange interac-

tions between the neighboring metal ions through the cyanide bridging ligands due to

their fcc structure.

Magnetic Prussian blue analogs show unusual remarkable properties such as the

magnetic pole inversion (Ohkoshi et al., 1997a; Ohkoshi & Hashimoto, 1999), pho-

toinduced magnetization (Sato et al., 1996; Pejakovic et al., 2001), inverted magnetic

hysteresis loop (Ohkoshi et al., 2001) and the multi-compensation points (Ohkoshi et

al., 1997b; Ohkoshi et al., 1999b). It is known that the magnetic properties such as

compensation temperature point and critical temperature point of the considered Prus-

sian blue analogs can be tuned during a synthesis process by changing the mixing ratio

(i.e. concentration) p of the different incorporated metal ions. Up to now, in order to

understand unusual magnetic and thermal behavior of the ternary alloys which contain

three various kinds of magnetic ions with different Ising spins, many models which

correspond to ternary alloys have been investigated by the use of a mean-field (MFT)

(Ohkoshi & Hashimoto, 1999; Bobák & Dely, 2004; Dely & Bobák, 2006, 2007) or

72
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an effective-field theory (EFT) (Bobak et al., 2002), Monte Carlo (MC) simulations

(Buendia & Villarroel, 2007; Dely et al., 2009; Dely et al., 2010; Žukovič & Bobák,

2010; Kış Çam & Aydıner, 2010) and exact recursion relations on the Bethe lattice

(Deviren et al., 2009, Albayrak, 2011).

Although many theoretical studies have been devoted on the Prussian blue analogs,

but effect of the single-ion anisotropy on the magnetic properties of these compounds

has not been studied extensively. Therefore, in this study, we will investigate the

effects of single-ion anisotropy on magnetic properties of the ternary alloy model

ABpC1−p which type of the Prussian blue analog (FeII
p MnII

1−p)1.5[CrIII(CN)6].nH2O

consisting of three different Ising spins SA = 3/2, SB = 2, SC = 5/2 with help of Monte

Carlo simulation method. We will also discuss the concentration parameter p, inter-

action parameter R = |JAC|/JAB and temperature dependence of the three dimensional

ternary alloy model.

6.2 Model and Simulation Method

The Hamiltonian for the three dimensional ferro-ferrimagnetic ABpC1−p ternary

alloy model which correspond to the Prussian blue analog of the type

(FeII
p MnII

1−p)1.5[CrIII(CN)6].nH2O can be given as

H = − ∑
<i, j>

SA
i [JABSB

j ε j + JACSC
j (1− ε j)]

− D[
NA

∑
i=1

(SA
i )

2 +
NB

∑
j=1

(SB
j )

2ε j +
NC

∑
j=1

(SC
j )

2(1− ε j)] (6.2.1)

− h[
NA

∑
i=1

SA
i +

NB

∑
j=1

(SB
j )ε j +

NC

∑
j=1

(SC
j )(1− ε j)]

where SA =±3/2,±1/2, SB =±2,±1,0 and SC =±5/2,±3/2,±1/2 are spin oper-

ators which respectively correspond A, B and C in the ternary alloy model in the form

ABpC1−p. Also ε j is a random variable which takes the value of unity if there is a spin

SB or SC at the site j, otherwise is zero. In this Hamiltonian, JAB and JAC are the nearest
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Figure 6.1 Sematic illustration of mixed ferro-ferrimagnetic Prus-
sian blue analogue, (FeII

p MnII
1−p)1.5CrIII(CN)6: The carbon (small

grey spheres) ends of the cyano groups are bonded to CrIII (mid-
dle small spheres), and the nitrogen (small white spheres) ends are
bonded to either FeII (white spheres) (Hashimoto K. & Ohkoshi S.,
1999).

neighbor interaction parameters. In this study we have chosen as JAB > 0 and JAC < 0

so that the interaction in the Hamiltonian (6.2.1) corresponds to ferro-ferrimagnetic the

Prussian blue analog of the type (FeII
p MnII

1−p)1.5[CrIII(CN)6].nH2O (see fig. 6.1). As

it is known D and h denote single-ion anisotropy and external magnetic field, respec-

tively. Hamiltonian (6.2.1) represent the ABpC1−p ternary alloy model which consist

of two interpenetrating cubic sublattices. Thus one can see that first cubic sublattice is

filled by A (Cr) ions and the B (Fe) and then C (Mn) ions are randomly distributed on

the second cubic sublattice with the concentration p and 1− p, respectively.

In order to investigate effect of the single-ion anisotropy on the magnetic properties

in three dimensional ternary alloy model, we simulate the Hamiltonian (6.2.1). To

simulate this model, we employed Metropolis Monte Carlo simulation algorithm to

the L × L × L three-dimensional lattice with periodic boundary conditions for L =

20. One of the cubic sublattice is fully decorated with spin SA, and spins SB and

SC are randomly distributed on the other cubic sublattice with the concentration p or

1− p, respectively. All initial spin states in the L×L×L three-dimensional lattice are

randomly assigned. Configurations are generated by making single-spin-flip attempts,

which were accepted or rejected according to the Metropolis algorithm. To calculate

the averages, data, over 20 different spin configuration, is obtained by using 50000
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Monte Carlo steps per site after discarding 10000 steps. The magnetization per site

for this model was computed using these relations

MA =
2
L3

⟨
∑

i
SA

i

⟩
(6.2.2)

MB =
2
L3

⟨
NB

∑
j=1

SB
j

⟩
(6.2.3)

MC =− 2
L3

⟨
NC

∑
j=1

SC
j

⟩
(6.2.4)

where NB denotes the number of B ions NB = pL3/2, whilst NC represents the number

of C ions NC = (1− p)L3/2 on the same cubic lattice.

6.3 Monte Carlo Simulation Results

In this section we have given the numerical results obtained using by Monte Carlo

simulation and we have discussed effects of the single-ion anisotropy on the mag-

netic properties of the three dimensional ferro-ferrimagnetic ABpC1−p ternary alloy.

Numerical results and related discussions are presented follows.

In Fig. (6.2), the interaction ratio R dependence of critical temperature Tc and

single-ion anisotropy D dependence of the critical ratio value Rc of the three dimen-

sional ternary alloy model given by Hamiltonian (6.2.1) are presented. We have plotted

the critical temperature versus interaction ratio R for different values of the concentra-

tion p and D = 0 in Fig. 6.2(a). As it can be seen from this figure, the critical tem-

perature of the model linearly change dependent upon interaction ratio R and slope of

the linear curves decrease for increasing value of the p. Furthermore, all linear curves

cross each others at the critical Rc point. Linear curves present critical temperature of

the model for the parameters p, R and D. At critical Rc all critical temperature values

are equal for the different p values at fixed D value.
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Figure 6.2 (a) Critical temperatures Tc vs interaction ratio R for D = 0 and several values
of p concentration. (b) Critical interaction ratio Rc vs single ion anisotropy D.

We say that with variations of p from 0 to 1, the system is turn into from the

ferrimagnetic mixed spin-3/2 and spin-5/2 binary system to the ferromagnetic mixed

spin-3/2 and spin-2 binary system. The straight line with p = 1 correspond to the

critical temperatures of the mixed spin systems with SA = 3/2, SB = 2 which does

not affected by changing of the ratio R. Throughout this line the critical temperature

value of the mixed spin-3/2 and spin-2 Ising system is equal to the mixed spin-3/2 and

spin-5/2 system at Rc. The critical value of interaction ratio obtained in this work is

Rc = 0.98 for D = 0 which is close to another results obtained using by Monte Carlo

simulation (Rc = 0.83) in ref (Dely et al., 2010) and a MFT work (Rc = 0.8281) in Ref

(Dely & Bobák, 2007). To demonstrate and unify the dependence of the critical ratio

Rc on the single-ion anisotropy D, we plotted interaction ratio Rc versus single-ion

anisotropy D in Fig. 6.2(b) (Also, in Fig. 6.3, it is detailed shown that the critical

temperature Tc and critical ratio value Rc dependence on single-ion anisotropy D). As

it can be seen from this figure there is no symmetry in the Rc dependent upon D, more-

over, the value of the critical interaction ratio Rc for the model unexpectedly decreases

for increasing negative and positive D values as to nearly exponential form. The in-

teresting behavior in Fig. 6.2(b) may probably emerge from trend of the contribution

of the single-ion anisotropy into the critical temperature of the model for all different

p values. We can conclude that the critical temperature of the model is mainly deter-

mined by interaction between spins, however when the single-ion anisotropy is added
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Figure 6.3 Single-ion anisotropy D dependence on the critical ratio value Rc of the three
dimensional ternary alloy model.
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Figure 6.4 (a) Critical temperatures Tc vs contentration p for D = 0 and different values
of interaction ratio R = |JAC|/JAB. (b) Critical temperatures Tc vs single ion anisotropy D
for different p values.

into Hamiltonian, critical temperature curves being shift up or down for any p value.

Therefore, the intersection point of curves for all p values slides to left or slides right

systematically. Therefore, when D is decreased, interaction ratio Rc increases, even

this increasing continues for decreasing D in negative region.

The concentration ratio p and single-ion anisotropy D dependence of critical tem-

perature Tc of the three dimensional ternary alloy model given by Hamiltonian (6.2.1)

are presented Figs. 6.4(a) and (b), respectively. As it can be seen from Fig. 6.4(a)

that all critical temperature curves come together at p = 1 as linearly increasing for

R < Rc and as linearly decreasing for R > Rc. This figure shows that for the criti-

cal temperature values are independent from interaction value R at p = 1 in the case

D = 0. Indeed, we know that the interaction ratio R determines the interaction type

in the model Hamiltonian (6.2.1). Therefore, we can conclude from this figure that

the system behaves as ferrimagnetic for R < Rc and ferromagnetic for R > Rc. On the

other hand, as it can be seen from Fig. (6.4b) the critical temperature of the system

goes to a saturation value for different p when D value is increased from negative

to positive values. The other important result is that the critical temperature curves

being systematically shift dependent upon the concentration. These results are com-

patible with results in Fig. (6.2). When p = 1, the type of ABpC1−p ternary alloy
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model reduces spin-3/2 and spin-2 mixed spin system. This binary system has been

investigated in previous works (Bobák & Dely, 2007; Deviren et al., 2010; Espriella

& Buendı́a, 2011) in which variation of critical temperature with single ion anisotropy

is consistent with present work.
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Figure 6.5 Total magnetization vs. temperature for several values of concentration p in
absence of single ion anisotropy for (a) R = 0.5 and (b) R = 2.642.

In order to demonstrate the temperature dependence of the total magnetization M

and to show critical points of the three dimensional ternary alloy model, magnetization

profiles are given in Fig. (6.5) for various of p and fixed R values. As it can be seen

that the critical and compensation temperature of the model appear depending on rate

of concentration p and interaction ratio R. For example, for R = 0.5 in Fig. (6.5a)

the compensation temperature points appear in the interval of 0.12 ≤ p ≤ 0.22 at low

temperature values. However, for R = 2.642 in Fig. (6.5b) only one compensation

temperature point appear in the interval of 0.2 < p ≤ 0.35. Furthermore, Fig. (6.5a)

shows that value of the compensation temperature decreases for increasing p, however,

value of the critical temperature increases for the same p values in the case |JAC|< JAB.

On the other hand, Fig. (6.5b) also shows that value of the compensation temperature

increases for increasing p, however, value of the critical temperature decreases for the

same p values unlike Fig. (6.5a) in the case |JAC|> JAB. As a result, we can conclude

that total magnetization profile and the compensation and critical temperature points

in this profile change dependent upon concentration p and interaction ratio R.
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The behavior of total and sublattices magnetization is shown as a function of tem-

perature at R = 1.0 and p = 0.215 fixed values in fig. 6.6(a). As seen from this figure, it

can be observed that the magnitude of total magnetization is very small. When sublat-

tices and total magnetization were plotted together, total magnetization curve is seen

as on zero line. That is, this figure shows that, magnitude of spin-C (5/2)sublattice

magnetization is approximately equal to other two magnitudes of sublattices spin-A

(3/2) and spin-B (2) addition. So total magnetization curve was plotted on another

graphic in fig. 6.6(b) in interval 0.212 ≤ p ≤ 0.225. It can be seen from this figure,

this system has multi-compensation phenomena when p = 0.215 and R = 1.0. For the

small interval of 0.212 ≤ p ≤ 0.222, the system has two compensation points. The

same data were reported in (Dely, J., et. al. 2009). When this p region were plot-

ted, with increasing of p value, the first compensation point decreases but the second

compensation point increases with increasing of p value.
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Figure 6.6 (a)Sublattice magnetizations vs. temperature for fixed R = 1.0 and p =
0.215 values. (b) Total magnetization vs. temperature at various value of concentration
p.

We know that the Prussian blue analog (FeII
p MnII

1−p)1.5[CrIII(CN)6].nH2O is a com-

plex material. The concentration ratio p determines magnetic properties of this com-

plex material. In the limit of p = 0, ternary alloy model ABpC1−p reduces to relatively

more simple AC model, however, in the limit of p = 1, it reduces to other simple AB

model. It means that in the limit of p= 0, Fe atoms do not appear in the complex mate-

rial, hence Prussian blue analog reduces to binary system MnII
1.5[CrIII(CN)6].nH2O.

However, in the limit of p = 1, Mn atoms disappear in host material, hence it reduces
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to another binary system FeII
1.5[CrIII(CN)6].nH2O. It is expected that both binary

systems shows different magnetic behavior. In order to see the behavior of total mag-

netization M of ternary alloy model in the limit values of concentration p dependent

upon single-ion anisotropy, we have plotted the magnetization in the limit p = 0 and

p = 1 in Fig. (6.7) for various single-ion anisotropy values D.
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Figure 6.7 Magnetization vs. temperature for
MnIICrIII(CN)6 and FeIICrIII(CN)6 for R = 1.0 and
several values of anisotropy D.

As it can be seen from Fig. (6.7) that the ABpC1−p model of the Prussian blue

analog shows completely different magnetic behavior in the limit p = 0 and p = 1.

First of all, critical temperature values and magnitude of the magnetization of both

two systems are different for the same value of the anisotropy at fixed value of R. This

figure clearly show that the critical temperature of each binary system increases for

increasing single-ion anisotropy values. These results are compatible with the results

in Fig. (6.4b).

It is known that the compensation temperature points of the ternary alloy model

appear depending on p and R values. However we show in Figs. (6.5a) and (6.5b) that

system may not has a compensation point for all combination of p and R. Since in this

study we focus effects of the single-ion anisotropy on the system, we have discussed

in the Fig. (6.8) the behavior of the compensation temperature depending on D for
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Figure 6.8 (a) Total magnetization vs. temperature for fixed R = 1.0, p = 0.215
and different D values. (b) Total magnetization vs. temperature for fixed R = 2.642,
p = 0.25 and different D values. (c) Dependence of compensation and critical tem-
peratures on single ion anisotropy for fixed R = 2.642, p = 0.25 values.

various values of R and p.

Therefore, in order to demonstrate the single-ion anisotropy dependence of the

compensation temperature of the model, we have plotted total magnetization versus

temperature for different p, R and D values in Figs. (6.8a) and (6.8b). As it can be

seen from these figures that while p and R are responsible from appearing of different

magnetization profile as in Figs. (6.8a) and (6.8b), then the single-ion anisotropy is

responsible to determine values of the the compensation temperature points. Indeed,

single-ion anisotropy in the Hamiltonian (6.2.1) affects the position of the compensa-

tion point as well as in the case of the critical temperature. In fact, one can see from

Fig. (6.8c) that the compensation temperature increases for example at fixed p = 0.25

and R = 2.642 when the value of the D is increased. Similar behavior can be observed
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Figure 6.9 (a) Effects of magnetic field on compensation and critical temperatures
for R = 0.25 and p = 0.2 values. (b) Effects of magnetic field on compensation
and critical temperatures for R = 1.0 and p = 0.215 values. (c) Compensation point
versus magnetic field for R = 1.0 and p = 0.215 values.

in the critical temperature for the same values of the parameter p and R. In Fig. (6.8c),

behavior of the compensation (and the critical) temperature depending on single-ion

anisotropy are consistent with the results in Figs. (6.2b), (6.4a) and (6.7). Figure (6.8)

also shows that system has two compensation points for the some negative D values at

fixed p= 0.25 and R= 2.642. In addition we note that the magnetic pole inversion can

be observed in this Prussian blue analog as seen in Fig.(6.5b) dependent upon some

parameter values. For example this inversion appears for p = 0.25 and R = 2.642

values when around D > 13.2.

Finally we have also considered external magnetic field on the critical behavior of

the three dimensional ternary model in Fig. (6.9) for arbitrary fixed values of p and
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R in the case of D = 0. As expected that the values of the critical temperature for

p = 0.2 and R = 0.25 in Fig. (6.9a) and for p = 0.215 and R = 1.0 in Fig. (6.9b)

increase for increasing values of the external field. Besides, critical temperature point

disappear in the temperature axis for large value of the magnetic field as in Fig. (6.9b).

Similar behavior has been found in ref. (Yusuf et al., 2009). However, unlike critical

temperature, values of the the compensation temperature points decrease for increas-

ing magnetic fields in both figure for different values of the parameters. Furthermore,

multi-compensation point does not appear when the magnetic field is applied. This

behavior is presented in Fig.(6.9c) for p = 0.215 and R = 1.0.



CHAPTER EIGHT

CONCLUSION

In this thesis enclosure, three different ferrimagnetic mixed Ising model is inves-

tigated by using Monte Carlo simulation method. These different three model are

presented in fifth, sixth and seventh chapter. In first study, it is studied the compensa-

tion and critical temperatures of the mixed spin-1 and spin-1/2 randomly diluted two

dimensional ferrimagnetic lattice with Monte Carlo simulation technique. It is investi-

gated that the effect of the non magnetic atoms on the thermal and magnetic behavior

of the mixed spin system. It is found that the change of the thermal and magnetic be-

haviors are clearly depend on the number of non magnetic atoms in the lattice as seen

drawn figures. Especially, one can see that both of the compensation and the critical

temperatures linearly decrease with increasing number of non magnetic atoms. Sig-

nificant results in this study are assumed to be meaningful from technological point

of view. Finally we state that the nearest neighbor interaction J1 does not play a role

on the compensation and the critical temperatures as known from previous theoretical

studies. However, unlike the nearest neighbor interaction, we see in simulations that

crystal field D and the next nearest neighbor interactions J4 play an effective role on

them. The results of this study show that dilution plays a significant role on the criti-

cal and compensation points of a two dimensional mixed spin-1/2 and spin-1 system.

On the other hand, these numerical results indicate that the compensation tempera-

ture of the real ferrimagnetic spin systems can be changed by diluting the lattice with

non-magnetic atoms, in order to obtain desired compensation temperature.

In second study, it is investigated that the compensation temperature of the mixed

ferro-ferrimagnetic ABpC1−p ternary alloy composed of three different Ising spins

SA = 3/2, SB = 1 and SC = 5/2 in the presence of next nearest neighbor interac-

tion JAA between A ions by using Monte Carlo simulation method in cubic lattice.

The spin values in this lattice corresponds to the Prussian blue analog of the type

(NiII
p MnII

1−p)1.5[CrIII(CN)6].nH2O. It have been observed that the behavior of the

critical temperature and the existence of compensation points strongly depend on in-

teraction and concentration parameters. Particularly, it have been found that the critical

temperature of the model is independent on concentration of different types of spins at

85
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a critical Rc value and the model has one or two compensation temperature points in a

certain range of values of the concentration of the different spins. It is concluded that

magnetic properties of the system ABpC1−p can be controlled by changing the relative

concentration of the different species of ions. As a result, we would like to stress that

these theoretical results can be very useful for designing molecular magnets in exper-

imental studies since the existence of compensation in the ternary alloy ABpC1−p that

can be setup by adjusting the proportion of compounds.

In third study, by employing Monte Carlo simulation method to three dimensional

ferro-ferrimagnetic ABpC1−p ternary alloy model we have investigated magnetic prop-

erties and effects of the single-ion anisotropy on the magnetic properties of the Prus-

sian blue analog (FeII
p MnII

1−p)1.5[CrIII(CN)6].nH2O consisting of three different Ising

spins SA = 3/2, SB = 2 and Sc = 5/2. We have found that the critical temperature Tc of

the model linearly changes dependent upon interaction ratio R for any concentration p

value, and critical interaction ratio Rc decreases for increasing D values. On the other

hand, we have shown that the critical and compensation temperature of the model

smoothly increase for increasing D values. In addition, we have demonstrated that

magnetic pole inversion can appear and compensation temperature Tcomp decrease for

increasing external magnetic dependent upon some values of the Hamiltonian param-

eters. As a result, we have concluded that single-ion anisotropy may play important

role as a control parameter like mixing ratio p to arrange the critical and compensation

temperature points of the Prussian blue analog (FeII
p MnII

1−p)1.5[CrIII(CN)6].nH2O.
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