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ABSTRACT

In the transverse fillet weld joint under the tensile force, the stress
distributions of the weld metal and the welded plates are investigated
by the finite element method. Weld metal material and material of the
welded plates are accepted as the same. In the analysis, three and
six-node plane triangular finite elements are used. We have written
the programme in the APL programming language for the mesh gene-
ration of the domain of the problem and for calculation of the stresses.

In each direction under consideration of weld metal and welded
plates, the stress distributions are plotted in dimensionless  coordinates,
stresses versus lengths, for individual components of the calculated
plane stresses o, Oy and Txy and also, principle stresses oy and
0, and maximum shear stress T ... The distribution from the analysis
for the weld metal are compared with the experimental one, by photo-
elastic method, in literature. It is observed that the obtained charac-
teristic of the stress distribution for the weld metal is convenient
with the one byphotoelastic way. The analysis are also extended to the
welded plates, lap and center plates.

Stress distributions of the different lengths of lap plate,
are investigated, in addition to other distributions, for driving the
some conclusions to make the best one of transverse fillet weld joints
from point of view of the stress analysis.

Key words: Welding, fillet welds, transverse fillet welds, joints,
lap joints, stress distributions.
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Eksenel cekme kuvveti etkisinde, bindirme (kése) kaynaginda, kaynak
metalinde ve kaynaklanan levhalarda meydana gelen gerilme dagilimlari
sonlu eleman metodu ile incelendi. Incelemede, kaynak metali ve kay-
naklanan levhalar ayni malzemeden kabul edildi. Gerilme analizi yapi-
lirken ug¢ ve alti dugumlu dizlem Gggen sonlu elemanlar kullanildi.
Problem bélgesinin elemanlara bdlinmesi ve gerilmelerin hesaplanmast,
bilgisayarda, APL dilinde yazilan bir programla gerceklestirildi.

Kaynak metalinde ve kaynaklanan levhalarda cesitli dogrultular
Uzerinde, diizlem gerilme bilesenleri Dy, oy ve Tyy ve bunlara bagh
hesaplanan asal gerilme bilesenleri oy, 0, ve maksimum kayma gerilme-
sl Tpax degisimleri boyutsuz, uzunluk-gerilme eksenlerinde grafikler
halinde gosterildi. Kaynak metalinde meydana gelen gerilme dagilimlari,
literatiirde deneysel (fotoelastik) metotla elde edilen gerilme dagilimlari
ile k‘arsll‘astlrlldl. Buna ek olarak levhalardaki (merkez levha ve bin-
dirme levha) gerilme dagilimlarida incelendi.

Kaynaklanan levhalardan, bindirme levhasinin farklh boylari
icin gerilme dagilimi arastirildi. Bulunan sonuglardan gerilme analizi
acisindan, bindirme kaynad: ile yapilan birlestirmede en uygun bag-
lantinin boyutsal dzellikleri konusunda bazi sonuglar cikarilmaya cali-
sildt.

Anahtar soézclukler: Kay/nak, kose/(bindirme) kaynagt, kaynak/baglan—
tilar1, gerilme dagilimlari.
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NOMENCLATURE

The symbols are listed roughly in order of occurance in the text

Force
Height of the plates, length of weld legs
Length of the weld

Cross section of the weld or plate
Normal stress in the x-direction

Normal stress in the y-direction

a a a
‘<X>

—

Maximum principal stress

Q
N

Minimum pr.incipal stress

Shear stress

b=
x
<

Maximum shear stress
max

—

Displacement vector

Element displacements vector of x-direction
Element displacements vector of y-direction
Vector of strains € s g€ _and Y

)4 Xy
Vector- of primary strains due to mechanical forces

Mmoo o o o
‘e e

(14

a2}
(@]

Vector of sécondary strains due to thermal and residual effects
Stress vector, or normal stress
Matrix of elasticity
Strain energy density
" Strain-displacement transformation matrix of the element

Total potantial energy

T O A O Aa

Mechanical load vector

]

initial force vector

T
o]

Stiffness matrix

U X

-

Total load vector

Jakobian oparator

Coordinate in x—-direction

Vector of x-coordinates of the nodes of the element
Coordinate in y-direction

Vector of y-coordinates of the nodes of the element

Shape function of the node i

—

Nodal displacement in the x-direction

< £ Z <X < X X -

Nodal displacement in the y-direction

Number of element



Node number of element
Transpose of matrix
Natural coordinates
Shape functions vector

Vector of variables of isoparametric natural
coordinates '

Square matrix consists of constants

Companent of the strain in the x-direction

Companent of the strain 'i'ﬁ.,the. y—direEtion

Shearing strain ' ‘
Strain-displacement transformation matrix of the node i
Displacements of node i

Thermal and residual effect energy term

Elasticity modulus

Poisson's ratio

Non-dimensional stress coordinate axis equal to o /oy or o/o}
Non-dimensional length coordinate axis equal to Z/h‘ ‘
O oy, T 2
Lengths 1, L1, L2 etc.

a
o ndTm

o]
xy’ “1° ax

Nominal stress, F/hl

Nominal stress, 2F/h]
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CHAPTER |

1. INTRODUCTION
Process welding is used extensively in manufacturing today. Whenever
parts have to be assembled or fabricated, there is usually good cause
for considering the welding as one of joint processes in preliminary
design work. Especially, when the sections to be joined are thin,
welding may lead to significant savings.

A weldment is fabricated by weiding together a collection of
metal shapes, cut to particular configurations.
The one of the most important problems in welded joints is the
calculations of the stresses in the welds. Sometimes, the methods of
strength of materials in practice are not sufficientin determination of
stress distribution of weld joints in acceptable approximation. Attemps
to solve for the stress distribution in such welds, using methods of
elasticity, also, have not been very successfull..In such cases, we
may apply the one of the numerical analysis methods, such as the
finite element method.

The finite element, which is very powerfull and elegant
numerical analysis method, is used widely in stress analysis today.

Thus, in present study, we have investigated the stress
distributions in transverse fillet weld joint, in weld metal and in

parent (welded) metal by using the finite element method.



1.1. THE DEFINATION OF THE PROBLEM STUDIED

In the study, it is studied stress distributions in a weld joint, which
is called "transverse fillet weld joint", as shown in figure (1.3). It
is note that there are several fillet welds specified, by American
Welding Society (AWS) with respect to type of the weld

(see figure 1.1),

Type of weld
Beod | Fillet p:)l:.g Groove
slot Squaref V Bevel ] J

NNV YUY

Figure:1.1. Arc weld symbols

and/or position of parent plates (see figure 1.-b, ¢ and d) or loading

conditions {see figure 1.2. a, c¢)

— { N
N 3

b) A double filleted (lap)
joint

a) A parellel fillet weld

<L
F 3 L E VAN
c) A transverse fillet (lap) weld d) A butt joint

joint
Figure: 1.2. Some of the fillet weld joints




In figure (1.2a), the force is parellel to the weld direction and, the
type of weld is fillet, that is why it is titled as "a parellel fillet

weld".

In figure (1.2b), the joint has two fillets and plates are lapped one
another so it is called "double filleted (lap) joint".

Under the above explanations, the problem we have engaged can be
specified as the title "Transverse Fillet Weld Lap Joint".

But in practice, common usage for the weld joint is "Transverse

Fillet Weld Joint" so we will also use the same title in the next

chapters.

Wel Lap plate \

2F
-‘—lCenter plate }—EF—

=
2F 0 =
- =2 = 2F
~~ L‘s—
o5 et
v -

Figure: 1.3. A transverse fillet weld lap joint investigated




1.2. STRESS DISTRIBUTION IN FILLET WELDS IN LITERATURE

A typical transverse fillet weld is shown in figure(1.4). Attemps to
solve for the stress distribution in such welds, using the methods
of theory of elasticity, have not been very successful. Conventional
practice in welding engineering design has always been to base the
size of the weld upon the magnitude of the stress on the throat area
DB.

In figure (1.5)a portion of the weld has been selected from
figure (1.4)so as to treat the weld throat as a problem in free-body

analysis. The throat area is
A = h 1l Cos 459=0.707 h |

Where | is the length of the weld. Thus the stress o is

N F (1.1)
x -~ A T 0.707 h 1

This stress can be divided into two components, a shear stress T

and a normal stress ¢ . These are

T= 0, Cos 459 = hFI (1.2)
o= o Cos 4s° = % (1.3)

In figure (1.7) these are entered into a Mohr's circle diagram. The

largest principal stress is seen to be



F .2 F

_ F F 2 _F _
o, 3Tt v (577) * (57 = 1.618 4 (1.4)
also the minumum principal stress is
- _F __ _F 2, _F 2 __ _F_
92T THI YRy ) ()t = 0818 = (1.5)
and the maximum shear stress is
_ F_ .2 F .2 _ F
Tmax = 7 LzRT )t ()t = nme (1.6)

However, for design purposes it is customary to base the shear
stress on the throat area and to neglect the normal stress altogether.
Thus the equation for average stress is,

F _ F

1.414 ——— (1.7)

T=9 707 h1 ~ b

and is normally used in designing joints having fillet welds. Note that,

this gives a shear stress

1.414
1.118

= 1.26 times greater then that given by equation (1.6)

There are some experimental and analytical results that are helpful
in evaluating equation (1.7). A model of the transverse fillet weld of
figure (1.4) is easily constructed for photoelastic purposes and has the
advantage of a balanced loading condition. Norris constructed such
a model and reported the stress distribution along the sides AB and
BC of the weld. *An approximate graph of the results he obtained is
shown as figure (1.8a). Note that stress concentration exists at A and
B on the horizontal leg and at B on the vertical leg. Norris states
that he could not determine the stresses at A and B with any

certainty.

* C.H. Norris, "Photoelastic Investigation of Stress Distribution in
Transverse Fillet Welds", Welding J., vol. 24, 1945, p.557s.
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Figure: 1.4 A transverse fillet weld
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Figure: 1.5. A portion of the weld has been selected for free body
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Figure: 1.7. Morh's Circle
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(a) (b)

Figure: 1.8. Stress distribution in fillet welds. a) Stress distribution
on the legs as reported by Norris.. b) Distribution of
principal stresses and maximum shear stress as reported
by salakian

Salakiant presents data for the stress distribution across
the throat of a fillet weld figure(1.8b). This graph is of particular
interest because we have just learned that it is the throat stresses
that are used in design. Again, the figure shows stress concentration
at point B. Note that figure(1.8a)applies either to the weld metal or
to the parent metal and that figure (1.8b}) applies only to the weld

metal.

+A.G. Salakian and G.E.Claussen, ''Stress Distribution in Fillet Welds;
A Review of the Literature', Welding J., vol. 16, May 1937, pp. 1-24,



1.3. ON DETERMINATION OF STRESS DISTRIBUTION IN FILLET
WELD
As seen from the summary of studies about stress distribution in
fillet welds in literature, all of them experimental. It is given varia-
tion of the stress qualitatively. But there is no calculation of accu-
rate values of the stresses in the critical points inthe weld (A, B, C,
D). The graphs given in figure (1.8) are obtained photoelastic met-
hod. They belong to weld metal.| 7| and |10 |
In this investigation, we have calculated the stress in

parent metal (welded plates) by finite element method, as well as
weld metal. From the values of stresses calculated, we have plotted
variation of stresses in the transverse fillet weld, legs of weld as
well as in horizontal and vertical directions of the lap and center
plates welded. From the charecteristic of the variation stresses in
different directions of weld metal and parent metal, and from magni-
tudes of stresses at the critical points, we have tried to derive some
conclusions about the welding of transverse fillet weld joint.

in the study, we have used the finite element method. Thus,
we have showed the general procedure which how the method work,
and we havedeérived the formulation of the triangular finite element
used in the study. In the formulation, element stiffness matrix K
isderived by using minimum potential energy principle.

It is also emphasized that how we will achive the transformation

from thephysical case of the problem into the theoretical model.



CHAPTER 11

2. FINITE ELEMENT PROCEDURE

2.1, THE S'TlFFNESS DERIVATIVE DEVELOPMENT

Development of the elasticity equations for the finite element solutions
involves the use of matrix notation for the variables, as the equations
are representative of systems with many degrees of freedom. For
example, the finite element solution of this work employ the two-dimen-
sional, six node triangular element. The element has two degrees of
freedom at each node and its nodal displacement vector is expressed
as

T (2.1)

6=(u1, Vi, Uy, Vo, eee, Ug, v6)
Note that, this is the vector for an individual element, and T speci-
fies the transpose of the designated matrix. The total strain vector

at a point on the element is
+E (2.2)

in which E;e represents the primary strains which result from mecha-
nical forces, andEo represents the secondary strains which are due
to thermal or residual effects.

The stress vector at this point is

c=Dg¢ =D (¢ -¢ ) (2.3)
in this equation, D is a proportionately matrix consisting of elastic
constant of Young's modulus E and Poisson's ratio v. It is a square
symmetric matrix, and therefore

D =D (2.4)

The total strain vector and nodal displacement vector are related by

means of the B matrix, the terms of which are derivatives of the
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element shape function at the specified point
E=B¢ (2.5)

Theexpression for the strain energy density at the point of interest

is

- T -
H_Z OE"e—

oT (& - Eo) (2.6)

NI_.

From equations (2.3) and (2.4)

=" ey 0T = -y (2.7)
From equation (2.5)
Ak Ve (2.8)

Substituting the previous two equations into equation (2.6) results in

1 T _T T
I=— (6" B —£O)D(BG~ go) (2.9)

which expands to

1 T T ones 1 T_T 1T T, 1 T L

the third term of this expression” is equal to its transpose, and can

therefore be combined with the second term to produce

B' D £+ —;—— g;r DE, (2.1

T T

n=—;— s" BT DB S§- &'

The strain energy of the element Il is calculated by integreating the

strain energy density of the element volume V

1
2

1 T
ro S g,

I =/7 dV = s's/8T b BT dv) 6- GTIBTDE,OdV+

bgo av (2.12)
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The total potential energy of the element is defined as

Q=1T - &6 P (2.13)
where Pe is the mechanical load vector which causes the primary
strains, in addition

_ T
Po_f B Dg dv (2.14)

where P0 is the load vector related to the secondary strains in the

element. The element stiffness matrix is defined as

T

K=/ B DB dV (2.15)
and

_ 1.7

R = ZIEO DF,OdV (2.16)

Using equations (2.14) through (2.16), the total potential energy can
be- ‘written as

1 T o7

_ T
Q—TSKG §

T
Po+ R+3 Pe (2.17)

This expression is defined for element and the overall structural
application.

The total load vector can be written as
P, =P +P (2.18)

In the overall sense, the load vector Pe corresponds to loads that are
applied externally since the internal forces all cancel at the internal
nodes due to equlibrium considerations (2.6). The total potential energy
for the overall structure is

T

Q=—;—<S Ka-ant+R (2.19)
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In the current study, the thermal and residual effects are negligible

and, therefore,

P0 =R =20 (2.20)
and
1 T e
Q = 5 § K &6-86 Pe (2.21)

Applying minumum potential energy principle, which is,

3Q _
: =0 (2.22)

from equation (2.21)

aQ _ 23 1 T 45 _
35 - 58 ( 3 § K§) 8 Pe =0
and we have
K ¢§= Pe (2.23)
_ T
K=/ B DB dv (2.24)

where
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2.2. THE STIFFNESS MATRIX DERIVATION OF THE TRIANGLE
ELEMENT

When used in the solution of plane problems every member of triangle

elements, of three nodes or six nodes, has two (displacement) deg-

rees of freedom per node. The cartesian coordinates, used general

coordinate system, at any point on an element are expressed in terms

of node coordinates of the element by using shape functions as,

(2.25)

in which Ni is shape function of the node i; _xi and y; are cartesian
coordinates of the node i; and n denotes the node mumber of the
element.

The displacements (u, v) at any point on the an element are
expressed, in a similar way of equation (2.25) in terms of nodal

displacements by using shape functions as,

(2.26)

in which u; and v; are displacements of the node i.

The general coordinate system (cartesian coordinates x and y)
and the isoparametric natural coordinate system (coordinates H and S)
are illustrated in figure(2.1).

The shape functions are given |1]| in the figure(2.2).
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— X

Figure:2.1 Coordinate systems and nodal points

Include only if node i is define

=4 i=5 i=

N ‘1—H—S —lN —lN
>Ny | --e-- 7 Ng

1 1
N H -3 Nll -7 N5 .....
1 1

N s 1 ..... - TNS - 3 Ng

N,= [#H(1-H-S

N 4HS

N_=4S(1-H-5]

Figure: 2.2 Interpolation functions of three to six variable number

nodes two dimensional triangie
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H and S are isoparametric natural coordinates, and Hi and Si denote
the isoparametric natural coordinates of the node i.
For the six- node triangle element, the shape functions are

presented explicitly in the below.

N, =1 - 3H - 35 + 2H? + 4HS + 257
N2 = -H + 2H2
N3 = -S + 252
2 (2.27)

N, = 4H - 4H" - 4HS
Ng = 4HS

_ 2
Ns—llS—llHS—llS

The shape functions can be define as,

N =y Q (2.28)

in equation (2.28), N is the shape functions vector consists of the

node shape functions,

N = [N, Ny weey N (2.29)

P is of order n, the mumber of nodes in-the element, and consists of

variables of isoparametric natural coordinates. For six node-triangle,
y= [1, H, S, |—|2, HS, 52] (2.30)

and for three-node triangle,
v=[1, H S ] (2.31)

The square matrix Q is also of order n, and consists of constants.

For six node-triangle
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1T 0 0 0 0 0]
-3-1 0 4 0 O
_ -3 0-1 0 0 &
4= 2 2 2-4 0 O (2.32)
4 0 0 -4 4 -4
2 0 2 0 1-4 |
and for three node-triangle
1 0 0
@=1{-1 1 0 (2.33)
1 0 1

The coordinates of any point on the elements, given in equation (2.25)

can also be expressed by using the shape functions vector as,

x =N X
(2.34)
y =NY

in which N is shape functions vector given in equation (2.28),
X and Y are vectors in terms of x and y coordinates of the nodes of
‘the element, respectively.

XT

[‘xl, Xos wees x6]
T (2.35)

YO = [y Yor eees ¥g ]

1!

In similar manner

u =N du

(2.36)
v=N2d8v

In which u and v are displacements at any point on the triangle in
direction x and y respectively. And Su and dv are nodal displacements
vector in direction x and y respectively.
T _
Su = [ Up, Uy, e, u6]

T (2.37)
Sv = [v], Vas vees VG.]
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The strain-displacement relation for plane is given as

€ ou ]
X X
g ={Cy  ={ 2% (2.38)
Yy q
Y ou ERY
xy‘ L 3y X

Derivatives of displacements with respect to cartesian coordinates

expend to,

du  _ 3(N du)
ax 9 X
B aN1 oN> o Ng
= Tax M1t ax W2t T Tax Y
3v_ _  _3(N 8v)
oy oy
9Ny 3 Ny dNg
= T3y 1 3y 2 3y '6
and
u + ov_ _ 3(N Su) + 3(N 8v)
ay % ay d X
aNq 9 Ny 9 Ng
= + Fooot u
3y 1 3y 2 3y 6
dNjq oN>y 3 Ng
e e A s Vg Teeot ~— Ve

The strain vectors, therefore can be written as,
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o Ny N7 3 Ng
+
aXx 1 39 X 2 9 X 46
a N aN 9 N
£=1 ! vy + 2 vy + + 6 Vg
ay Y 3y
3N aN a9 N
L uj + 1 Vi + + 6 Ug +
ay ax 3y
and in the matrix form
o N oN o N
1 0 2 6 0
X X 9 X
a N 3 N aN
£ = 0 1 0 2 0 6
oy ay 3y
dN7  9N7 0 N3 o Ny o Ng o Ng
3y X ay ax dYy 9 X
and therefore,
E=BS (2.41)
in which
B=[8B,...] =B, By..., B.] (2.42)

In which B is strain-displacement transformation matrix, which

r (2.39)

L (2.40)

consists of the derivatives of shape functions with respect to x and

y coordinates.

§ is nodal displacements vector as,

Strain vector in equation (2.30) can be also expressed as,

[ By, -, BG]

[ 8.,

(2.43)

]T
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In which
9 Nj
92X 0
_ d Nj
B,= 0 oy (2.1u4)
oN; 9 Nj
| 9y d x
and
_ T
§.=[ u. vy | (2.15)

To be able to evaluate the stiffness matrix of an element, we need
to calculate the strain-displacement transformation matrix. The ele-
ment strains are obtained in terms of derivatives of element disp-
lacements with respect to geheral coordinates x and y. Because the
element displacements are difined in natural coordinates system using
equation (2.26) we need to relate the x-and y-derivatives to the H-
and S-derivatives, where we realize that equation (2.25) is of the

form

X
|

= f1 (H, s)
(2.46)

~
1]

f2 (H, s)

where fi denotes function of. The inverse relationship is

o
i

f3 (x, y)
(2.47)
S =f, (x, y)

We require the derivatives
3 2
X oy *

rule in the following form:

and and it seems natural to use chain

9 _ 9 dH 9 S
3x © 3H “ax ' 35 Tox (2.48)
with similar relationship for o .

3y
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However, to evaluate % in equation (2.48) we need to calculate
dH 3S
3 X and ox 7

which means that the explicit inverse relationship in equation (2.47)
would need to be evaluated. These inverse relationship are in
general difficult to establish explicitly, and it is necessary to
evaluate the required derivatives in the following way. Using the

chain rule, we have

o] [ _3x oy K
oH 9 H 9H 9 X
5 = 3 x By 3 (2.49)
39S 9S s Y

or in matrix notation

{_%} =.|J|{_%} (2.50)

Where J is the jakobian ope}'ator relating the natural coordinate to
general coordinate derivatives. We should note that jakobian opera-

tor can easily be found ‘using eguation (2.25).

9X 3y 3 Ny N2
3H 3H SH ' oH X1 Y

J= = (2.51)
ax 3y 3Ny 3N X2 Yy

35S 9S 39S ' 3s T
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In which
9 Ny P T T
s - o (W © (1,0,0,0,0,0 ] )—w,HQ[LO,O,O,O,o ]
aNZ ) T T
s = o (v # [0,1,0,0,0,0] )= w’HQ[o,Lo,o,o,o]
In which
P
vy < 3‘1:4 (2.52)

The variables vector y in equation (2.30) and the matrix of contants

Q in equation (2.32) are given
2

We.requiere % and use
0 _ -1 d
35X = |J SH (2.53)

which requires that the inverse of J ‘exists. This inverse exists
provided that there is one-to-one correspondence between the natural
and the local coordinates of the element, as expressed in equation
(2.46), (2.47) '

From equation (2.51)

; (BNi
Nj -1, | 3H
= [1,0] |J
= Lol T
EE
[ 3 N;
ON;j -1 |°H
3y"[°’1]'J|'aN;
S

After derivatives of the shape functions N; with respect to x and y
coordinates, we can construct the matrix B;j in equation (2.44) and

from that the matrix B in equation (2.42)
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From equation (2.24) the stiffness matrix is,

K=/ BT DB dv (2.54)

We can calculate the element stiffness matrix K by integrating the
variables coordinates H and S from 0 to 1 on the plane triangular
element.

Having calculated matrixes K of individual elements into which
the body is subdivided, the next step is to assemble these to form
what is called the "overall stiffness matrix" or "system stiffness
matrix" for the entire discretized domain of problem. This is done by
ensuring that equilibrium and compatibility conditions are satisfied at

all the nodes within the discretized domain.



CHAPTER 11

3. CONSTRUCTING THEORETICAL MODEL

3.1. FINITE ELEMENT MODEL OF THE PROBLEM FOR STRESS
ANALYSIS

The general arrangement of the transverse fillet weld joint investiga-

ted is shown in figure (3.1)

Lap plate

¢_§2F Center plate k—zﬁ

K
S

"Figure: 3.1. The general arrangement of the transverse fillet weld
joint investigated

fEReE

In the present study, the thickness of center plates and lap plates
are taken as equal. The thickness of plates is defined by h, legs of
the fillet weld have the same length and are equal to h, | defines
the length of weld.

The joint analysed is subjected to an axial tensile force 2F.
Thus the problem has symmetry with respect to loading condition
and geometric properties. On account of the symmetry, only a quarter

of the joint, which is shaded, was analysed as indicated in figure (3.2).

G
2  2p

Figure: 3.2. A quarter of the joint which is shaded analysed
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Figure: 3.3. Different directions of the model on which stresses distributions investigated
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The joint has also the symmetric section on every vertical
plane cutting it, we can treat the problem as the plane stress prob-
lem, by taking weld length of unit, which corresponds to thickness
of the plane. Under the light of these specifications, we can consruct

the finite element model of the problem as shown in figure (3.3)

3.1.1. Boundary Conditions ,

It can be observed that, in the problem, the points on the middle
line, x-axis, of the center plate have no vertical displacements. Hence
we can put the sliding supports at the points on the x-axis as shown
in figure (3.3). Again, the points on vertical line throughcenter of
the lap plate will not have horizontal displacements, thus we can also
put the sliding supports on the vertical line as shown in figure (3.3).

Thus we can shortly express the boundary conditions as follows:

1- The vertical displacement v of any point is zero if its y—coordinafe
is zero (see figure 3.3) |
so we have
v=20 if y =20
2- The horizontal displacement u of any point is zero if its x~coordi-
nate is equal to L; + L, (see figure 3.3)
so we have

u=2~09 if x =0

3.1.2. Mesh Generation

The plane domain of the problem is subdivided into plane triangular
finite elements in computer with respect to the certain specification.
It is obtained coordinate matrix of the nodal points and elements
matrix consisting of numbers of the nodes to which is connected the
individual element for calculation-of the element stiffness matrixes.

(see figure 3.4).
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3.2. DISPLACEMENT-STRAIN RELATIONS IN PLANE

In the plane, displacement strain relations are given as

_ Ju
X ox !
e = oV
y dy ‘' (3.1)
_ du v
Txy™ oy T Tx

3.3 STRESS-STRAIN RELATIONSHIPS

In the study, we shall assume that the material of the body is linearly

elastic, isotropic and homogeneous, so that its elastic properties are

completely specified by mutually independent constants E and v,

denoting elasticity modulus and Poisson's ratio respectively.
Stress-strain relationship in the plane is defined as (Hooke's

law)

o= D¢g (3.2)

in which D is the elasticity matrix for plane stress in an isotropic
material we have, by defination

o] VO

€ = X -

X E E
_ Voy o

gy = E + —Y—E (3.3)
= 2(0+v) o

Xy E Xy

Solving 'the above for the stress, we obtain matrix D as

1T v 0
E
D=—— 1|v 0 0 (3.4)
1-v2 (1)
-V
0 0 5

in which E is the elastic modulus and-.v is the Poisson's ratio.
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3.4. MATERIAL PROPERTIES

In the present study, the material of the weld metal and material of
the welded plates, lap and center plates, are the same, and isotropic
one. So we have used the elasticity matrix for plane stress of isotro-

pic material given in equation (3.4).

3.5. THE NUMERICAL VALUES USED IN THE STUDY
In the calculations, geometric dimensions are taken as
h = 15 mm

L= &h

L= 5h

The material properties are

Elasticity modulus E :.210. GPa

Poisson's ratio v :0.3

The axial force .F.:7600 N



CHAPTER 1V

4. RESULTS AND DISCUSSION

Plane stresses components 0,, 0, and T, are calculated using finite

Y Yy
element method; and principal stresses ¢y, 0, and maximum shear

stress T,,,, from them, in computer by APL programming language.

ma
Using the numerical values of stresses from computer, the

distribution of each components of plane stress state o,, o, and Txy

and also principal stresses 04, 0, and maximum shear stres); Tmax 1S
plotted, in non-dimensional stress coordinate axis versus length
coordinate axis, for every direction under consideration in the weld
metal and welded plates. Non-dimensional coordinates of stress n and
length x are determined by dividing the stress calculated and distance
interested by nominal stress o, and the thickness of the plate h

respectively. Nominal stress is equal to —l:_l .

4,1, THE STRESS DISTRIBUTION IN WELD METAL
It is interesting to consider the variations of stresses on the weld
legs AB and BC and throat of the weld DB figure (3.3).

4,1.1. The Stress Distribution On The Weld Leg BC

“The.. distributions of stresses O s oy, Ty 91799 and 1

xy max
are shown in figure (4.1), (4.2) and (4.3). On the leg BC the

maximum values of the all stresses occur at the point B. The value
of the maximum principal stress % reaches approximately, 3 times

of the nominal stress 04° Evaluated value of g, is 2.980  at the point

1

B, approximately. Minimum principal stress ¢, occurs as compression

2
stress, and its maximum value is calculated as 1.8600.
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Figure: 4.1. Normal stress distribution on the leg BC
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Figure: 4.2. Normal stress distribution on the leg BC
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4.1.2. The Stress Distribution On The Weld Leg AB

The distributions of the stress components are illustrated in figure
(4.3), (4.4) and (4.5). It is observed maximum stress 0y occurs at

the point A, the value of which reaches 5.5 times nominal stress o
(see figure 4.6).
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Figure: 4.4. Normal stress distribution on the leg AB
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4,1.3. The Stresses Across The Throat DB Of The Weld

All stresses except Txy ON the. BD take their maximum values at the
point B. Maximum value of o; at the B is 1.980, as stated in the
explanation of stress on the BC. The shear stress Txy approaches
zero at the B while the value of Tmax @Pproaches that of the prin-
cipal stress o, at the point B. These graphs are shown in figure

(4.7), (4.8) and (4.9).
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Figure: 4.7. Normal stress distribution on the
troath DB of the weld
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Figure: 4.8. Distributionsof normal stress and
shear stress onthe troath DB: of .
the weld
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4.2, THE DISTRIBUTIONS OF THE STRESSES IN THE WELDED
PLATES
As the legs AB and BC are adjacent to center plate and lap plate
respectively, and also, the material of the weld metal and material of
the plates are assumed as the same, the figure (4.1), (4.2) and (4.3)
show stress distribution on the BC of lap plate as well as the leg BC
of the weld metal. Again, the figure (4.4), (4.5) and (4.6) also show
the distribution on the AB of the center plate.

4,2.1. The stresses In The Center Plate

Distributions of stresses Oyr Oy and Txy along the EF, which is taken
in the middle thickness of the center plate, the E point is at 5h-dis-
tance from the plate end and the point F is on the end as shown in
figure (4.3), are shown in figure (4.10), (4.11) and (4.12). It is
note that the stress o, is constant until the point under the point

on the EF. After that, the O x increases and reachs the zero at the

point F. It is also remarkable that the stress o, is zero at the point

Y
E, which is 5h distance from the point F, and increases until x =4

and decrease after X =4 and takes zero at the x =4 and maximum

negative value of the point F. In left hand side of the point E in the

plate we have only the stress o, equal to nominal stress o of center
2F

1 1 i
plate. o, has the value of i
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Figure: 4.10. Normal stress distribution on the EF in the center plate
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Figure: 4.11. Distributions of normal stress and shear stress on the EF
in the center plate
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4.2.2. The Stresses In The Lap Plate

The lap plate in the joint, in fact is one of the additional plate parts
used to make a fillet weld joint as shown in figure (3.1). As the weld
leg BC is adjacent to lap plate left end the illustrations for the stres-
ses distributions of the leg BC in figure (4.‘1), (4.2) and (4.3)
represent also those of the lap plate.

Variation of o,-stress along the length of the lap plate is illustrated
for t/h-ratios. It is remarkable that.the o, ~stresses for all —:\— ratios
take uniform state after Xx=1.5 in which x=l/h. It is also observed

that the o, has maximum value 30, or n=3 for t/h=0 on x=0, which
corresponds to the point B. It was observed the same value at the

B (ox=300) in the figure (4.1) at the x=0 for t/h=1, Oy

mately zero, and it increases until 3 as the t/h ratio decreases. In

is approxi-

figure (4.14). It is very interesting that in the middle of the lap
pléte t/h=0.5, o -stress is equal to nominal stress o, (x=1) and it
does not change from x=0, to Xx=4 as seen in figure (4.14). At x=0,
maximum Oy occuring at t/h=0 and minimum o3 occuring at t/h=1
close to the nominal stress value g, as thex increases and they
maintain their uniform value after x=1.5. As seen in figure (4.14}.
The curves for o, upper ones and lower ones close to the stress
value in the middle thickness t/h=0.5 as shown in the figure (4.14).
The stress distributions of stresses Oy cy and Txy on the MN
across the lap plate are plotted in figure (4.13). In the MN section
which is sufficient distance from the right of the lap plate, stresses
Oy and Txys as it is expected should be zero and o, should be uni-
form and equal to 0,. The differences observed may arose truncation
and roundness errors in computer. They become smaller as the num-

ber of element or the nodes of individual element increase.
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Figure: 4.13. Stresses distributions on MN in the lap plate
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E.N. o, (MPa) Oy (MPa)
80 79.586 - 0.414

93 79.685 0.604

54 80.507 2.737

67 79.724 0.045

28 81.151 5.210

41 79.412 - 0.914

2 81.634 7.244

15 78.333 ~ 4.183

Table: 4.1. Some of the stresses values on the
JH in the center plate

Lo
- X _ 640.032 _
O = S = 3 = 80.004 MPa
. F 600 _
Oy = ThT = 75~ 80 MPa

|error : 80 - 80.004 = -0.004

Pericent : % 0.5

E.N: Numbers of elements.



CHAPTER V

CONCLUSIONS

In the light of the results obtained in this investigation it appears
to be possible to draw the following conclusions.

In the weld, peak stresses occur at the points A, B, C and D.
The biggest stress is 5.500 at the point A approximately, 300 at B,
1.2500 at D and zero stress at the point C, figure (4.3), (4.6) and
(3.9).

Maximum shearing stresses in the weld occur at the point A
and B, both of them is equal to 2.50 approximately, figure (4.3)
and (4.6).

In the weld, it appears also compression normal stresses,
maximum absolute value of which occurs at the B equal to 200, figure
(#.3) and (4.6). ‘

As the weld legs AB and BC are adjacent to center and lap
plates, respectively, the distribution for AB and BC are also repre-
sent those of center and lap plates respectively, figure (4.1, 2, 3,

4, 5 and 6).

Stresses at points on the middle line of the center plane in the

left hand side of HJ, figurel(3.3) v'vhich is at the h-distance from the

T and ©

1 i g .50 o
A, close to uniform values o’ 0.5 o and zero 17 Tmax 2

respectively, figure (4.11).

In the lap plate, stress in the part after h-distance from BC,
closg to uniform value; Oy close to Ty Oy and Txy to zero, figure
(4.13).

In the practice, average stress equation (1.1), value of which
is 1.4100 is normally used in designing joints having fillet weld, but
we have computed that maximum stress value occuring in the weld is
approximately 5.50, at the point A, so it is suggested that the equa-
tion used in designing, in practice, should be changed or the safety
number is taken higher.

In the designing of dimensions, in practice, it is accepted that
the element can be loaded until a stress at any point in it, reaches to

yielding point of its material.
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It might not be collapse the weld joint immediately, when
plastic deformation begins at A, because the stress concentration
reduces from A to B, so the problem should.be studied from point
of view of plastic analysis.

The results obtained have accuracy of 0.5 percent around
exct value, as seen in table (4.1). Those stresses belong to the
elements taken at a sufficient distance from the boundary end to
eliminate the influence of loading (or boundary) condition, from

point of view of Saint Venant's principle.
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APPENDIX

THE COMPUTER PROGRAMME

The general computer programme consists of four programmes. Three
of them are main programmes and the other is subprogramme. The
names of them are KKOOR, UCGEN, KAY and ASAL.

The programme ASAL is subprogramme of the KAY. By the
programme KKOOR, the domain is subdivided into triangular elements;
and the coordinates of the nodes connecting the elements are deter-
mined. This programme may make the mesh generation finner in
desired level with respect to specifications.

The programme UCGEN denotes the nodes te which individual
element connected as a matrix, dimensions of which are element num-
ber by number of nodes of individual element.

The programme KAY calculates stress components. The KAY
runs when the numbers of elements and number of nodes are given.

The KAY calculates the plane stress Oyr O and Txy. From these

. y
stresses, the ASAL-subprogramme included in the KAY computes

the principal stresses o and maximum shear stress Tm

o .
17 72 ax
The results obtained are recorded in SA in the programme ASAL

when desired all values of stresses are taken as output in order

. u are in MPa.
Ox’ cy, Txy, 01, 02 and Tmax The values ar
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Table 1. All of the values of the

stresses from computer
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