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ABSTRACT

A subgroup of an abelian group is said to be neat if divisibility of it's
element by every prime implies divisibility in this subgroup. Neatness is a
generalization of pureness. First we establish fundamental properties of neat
subgroups, then prove that the class of all short neat-exact sequences
determined by neat subgroups is proper in Buchsbaum's sense. Neat projective
groups are direct sums of cyclic groups of prime order and free group. Neat
injective groups are direct sums of cyclic groups of prime order and divisible
groups. Neat exact sequences are completely determined by projective (injective)
property of cyclic groups of finite order. The subgroup of the group of
extensions given by neat exact sequences is the frattini subgroup.



0z

Degismeli bir grubun alt grubunun her elemaninin herhangi bir asal say:
tarafindan  boliinebilirligi, elemanin bu asal say1r tarafindan alt grupta da
boliinebilirlii sonucunu veriyorsa bu alt gruba neat altgrup denir. Neat olma
durumu pure olma durumunun genellestirilmesidir. Ilk olarak neat altgruplarin
temel o6zellikleri verildi. Sonra neat altgruplar tarafindan olugturulan kisa neat
tam dizilerin smifimn  Buchsbaum'un anlaminda dizgin smf olusturdugu
ispatlandi. Neat projektif gruplar asal mertebeli devirli gruplann direkt toplamudir
ve serbest grupturlar. Neat injektif gruplar ise asal mertebeli devirli gruplarn
direkt toplamudir ve bolinebilir grupturlar. Neat tam diziler sonlu devirl
gruplarin  projektif ( injektif ) o6zellii ile saptanir. Neat tam diziler tarafindan
olusturulan grup geniglemelerinin altgrubu Frattini altgrubudur.



INTRODUCTION

Though homological algebra appeared as an algebraic instrument for the
solution of topological problems. Relative homological algebra originated from
two algebraic notions: pure subgroups of abelian groups and change of rings. We
study neat subgroups of abelian groups which is a generalization of pureness.

In the first chapter we give some necassary definitions and we prove the
fundamental properties of neat subgroups. Properties are similar to those of pure
subgroups, but in some cases there are essential distinctions.

In the second chapter we give the definition of a proper class of short exact
sequences and prove that the class of all short neat exact sequences is proper.

In the following chapter we study relative homological algebra determined by
neatness. We describe completely neat projective and neat injective groups and
prove that a short exact sequence is neat if and only if every cyclic group of
prime order is projective (injective) with respect to this sequence.

It is well known thatthe pure exact sequences give the ulm's subgroup of the
group of extensions. We prove in fourth chapter that the subgroupof the group
extensions determined by neat-exact sequences is the Frattini subgroups.

All the groups mentioned in that text are abelian groups . And 0 will be
used at the end of a proof or at the end of a statement that not neading a
proof.



1. SOME FACTS ABOUT NEAT SUBGROUPS.

Definitions.

Let G be a group and n be a non-negative integer (from now on n will
always be a non-negative integer), let g be an element of G, we say;

"n divides g in G " and denoted by (n|g) if there exists g’ in G such thatg=ng'. G
is called a Divisible Group, if every nonzero integer n, n divides every element g
in G. That is the equation g=nx is solvable in G, or equivalently G=nG.

Let A be a group and G be a subgroup of A.If for every non-negative
integer n, nG=Gn A, Or equivalently, for every n and for every g from G, if
n divides g in A implies n divides g in G, then G is called pure subgroup of
A If ka=GmpkA for k=1,23, ... and for some prime p ,then G is called
p- pure subgroup of A

Definition. For a subgroup G of A, if p divides g in A implies p divides
g in G for every prime p and for every element g of G, or in other words
pG=G N pA ,then G is called mneat subgroup of A.

If for some prime p, pG=G N pA . Then G is called p-neat subgroup of A.

Definitions. Let A be a group, then T(A)={ac A| na=o, for some ne Z'}
is called the torsion part of A. That is elements of A having finite order are
torsion elements of A.

If A=T(A) then A is called torsion group.

If A consists both elements of finite order and elements of infinite order,
then it is called a mixed group .

If every element in A has infinite order then A is called torsion free .

Tp= facAl pka=0, for some k=1,23,.... } is called p-subgroup of A

1) Every direct summand is neat subgroup
Proof . Let A=B®C , where B and C are subgroups of A. We want to
show B is neat in A.Let's take any b from B, if p divides bin B®C then,
there exists b' from B and ¢' from C such that b=p (b+ c).That is b=pb'+pc.
And we can also write b=1b+ 0, therefore since direct sum is uniquely determined,
the equality pb+pc =b+0 implies pb' =b .That means B is neatin A. [



2) Torsion part of a mixed group is a neat subgroup.

Proof. T(A)={ acA| na=0 for some neZ" }.T(A) is a subgroup of A, because
if a;,a, € T(A) then nja, =0 and n,a,=0 forsome n,, n, from Z*. But also
n,(n;a,)=0 and n,(n,a,)=0 impliying n,n, (a;-a,)=0,s0a, -a, becomes an
element of T(A).

For neatness of T(A) in A, let's take an element a from T(A), assume
that a=pa for some a' from A and there exists a non-negative integer m, such
that ma = 0 thus ma = m(pa) = O impliying (mp)a = 0. Since mp is also a
non-negative integer so a' is an element of T(A) . Therefore a=pa' tells us T(A)
is neat in A. [

3)Let A be a group, G be a subgroup of A. if A/G is torsion-free then G
isneatin A.

Proof. Let g be an element of G. Let g=pa for some a from A. Then
G =g+ G =p(atQ). Since A/G is torsion-free, a+ G=G ie. acG. So G is neat
in A. O

4) A p-neat, p-subgroup isneatin A .

Proof. Let G be a p-neat p-subgroup of A for some prime p.Let's take an
element g from G, if p divides g in A then p dividesg in G. Now , for any
prime q#p ged (g, p*) = 1. But since 0(g)=p* for some integer "k", q divides
every g from G.Because if (q,p¥)=1 then there exists non-negative integers
u and v such that uq+vpk=1 impliying
ugg +vpkg =g so,qug=g (pkg=0) where ug € G. So q dividesg in G.
Therefore G is neat in A. [l

5) In torsion - free groups, intersections of neat subgroups is neat .

Proof. Let NG, be intersection of torsion - free neat subgroups, where 1 is
an element of some index set I Let's take g=pa from NG, with acA, then g
is an element of every subgroup G, . Since every G, is neat in A then there
exists g from G, such that g=pg for every icl. Then that implies pg =pa,
so p(g-a)=0. Since groups are torsion free, g-a=0 impliying g=a.So,a
is an element of G, for any :el, that is acnG,, therefore NG, is neat in A

i



6) Let A and B be groups and f: A —> B be an isomorphism,let C be a
subgroup of A.If C is neat in A then f(C) is also neat in B.

Proof. Let f(c)=pb for some b from B and for any prime p. Then
since f is isomorphism there exists a from A such that b =f (a). So,
f(c)=pf(a)="F(pa) which implies c=pa because f is isomorphism. Since C is
neat in A, c=pc for some c' € C. So f(c)=f(pc')=pf(c'). Therefore
f(c)=pf(c') that means f(C) is neat in B. 0

7) Let A,B,C be groups satisfiying; A<B<C . If A is neat in C, then
A is neat in B.

Proof. We know that a = pc with ceC implies a = pa’ for some a'cA.
Assume that a=pb for some b from B. Then since B is a subgroup of C, b
is also an element of C. But then a=pa" because A is neat in C. Therefore A is
neat in B. [I

8) Let A,B and C be groups. If A is a subgroup of B and f(A) is neat in
f(B) for any monomorphism f: B — C, then A is neat in B .

Proof. Assume that a=pb then f(a)=f(pb) =p f(b). Since f (A) is neat in f(B)
then f(a)=p f(b) implies f(a)=f(pa’),so;a=pa .Hence A is neat in B. [

Lemma 1. Let C be a subgroup of B and B be a subgroup of A . Then,

(a)-If C is neat in B and B is neat in A then C is neat in A.

(b)-If B is neat in A then B/C is neat in A/C .

(¢)-If C is neat in A and B/C is neat in A/C then B isneatin A .

Proof. (a) Assume that C isneatin B . Then,

(1)....For any c¢ from C ; c=pb with b' from B implies c¢=pc for some ¢
from C.

Assume that B isneatin A . Then,

2)....... For any b from B ; b=pa with a from A implies b=pb" for some
b" from B.

Assume that c=pa for any ¢ from C and a from A But since C is a
subgroup of B, then c is an element of B then by (2) c=pb” for some b"
from B . Then that implies by (1) c=pc" forsome c" from C. Therefore c = pa'
where a'€A implies c=pc" for some c¢' from C. Hence Cisneatin A .

(b) Assume that Bis neat in A . Then
3)....... b=pa for a from A implies b=pb' for some b from B. Assume that
bj+C=p(a+C), with bjeB and a, € A, then b, +C=pa +C gives us
b,-pa, € C so b -pa=c; for some ¢, €C isan element of C. And it becomes



an element of B. Therefore pa;=b,-c, is an element of B, so we can write
pa, =by for some byeB,andby (3) bp =pb3 so,b; +C=pb3+C and that
implies by +C=p (b3 +C) Therefore B/C is neat in A/C.

(¢) If C is neat in A then,
c=pa implies c¢=pc;....(4)
If B/C is neat in A/C then b+C=p(a;+C) implies b+ C=p (b} +C)We
want to show B is neat in A. That's why assume that b= pa, forany b from
B and for some a, from A. Since b+ C=pa,+ C implies b+ C=pb, + C and
from here we can wrte pb; =b+c' for some c'in C so pb,-b=c" . Therefore
pb; - pa, =¢', impliying p(b; - a,) =c' and we know b,-a, is an element A.
So let's say b,-a,=a; thus payj=c and by (4) c'=pc" for some c¢" from
C but then pb;=b+c' will imply pb;=b+pc" so p(b;-c")=b and b;-c" is in
B . Let's say b, -c"=by, therefore pb,;,;=b.So B is neat in A.[l

Theorem 2 . Let B be a subgroup of A such that pB =0 for every prime p.
Then the following statements are equivalent .

(a) B is neat in A

(b) B satisfies BrpA =0

(c) B is a direct summand of A

Proof: (a) = (b) Assume that B is neat in A then pB =B npA and since
pB =0, then we get B npA=0.

(b) = (¢) Assume that B pA=0,let C be a B -high subgroup of A such
that pA < C . Existence of such a subgroup C is guaranteed by Zorn's lemma.
Because consider the set

o ={K|K<A, 6 pAcK, K~B=0 }
% 1s partially ordered with "< " @ is non - empty because at least pA e p . If
we take a chain I from g then it has an upper bound in g because U K;
(Kje3 ) is an upper bound in g .So every chain in & has an upper bound,
thus g is inductive. Therefore by zorn's lemma g has a maximal element call
as C.

pA<C imply that pa is an element of C for every a from A and for every
prime p. Now using lemma (9.8) in [F], we conclude that every a from A is an
element of B®C, A becomes a subgroup of B@C . Also we know BOC < A .
Therefore A =B®C.

(¢)=>(b) If B is a direct summand of A then by fact (1) B is neat in A 0

Corollary3. For a prime p any pA - high subgroup of A is a direct
summand of A .



Proof. Let B be a pA - high subgroup of A then B mn pA =0. So by
theorem (2), B is a direct summand of A. [l

Theorem 4. For a subgroup B of A, the following are equivalent
(a) B is neat in A.
(b) B/pB is a direct summand of A/pB for every primep .
(¢) If C<B and pB <C then B/C is a direct summand of A/C.

Proof . (a) = (b) Assume that B is neat in A then we know pB <B <A
then by lemmal B/pB is also neat in A/pB for any prime p, then we
can say p ( B/pB ) = pB. Therefore by theorem (2) part (c) B/pB is a direct
summand of A/pB .

(b) = (c) Let B/pB be a direct summand of A/pB, and assume that C <B
such that pB <C then there exists projection map f: A/pB — B/pB such
that f(b+pB)=Db+pB, where beB.

Let's define F:A/C — B/C as F(a+ C)=(gof)(atpB) where pB<C<B and
g :B/pB - B/C such that g(b+pB)=b+C

Well definiteness of g is easy. Let's take b+pB=0b+pB and from
here b-b' € pB , pB is a subgroup of C. Therefore b+ C=b+C. And we
know g(b+pB)=b+C , g(b+pB)=b'+C .Since b+C=b'+C , g is well
defined . Similarly, F is well defined . Because, Take a+ C=2a + C and also we
can write F(a+C)=(gof)(a+pB)=g(f(a+pB))=g(a+pB)=a+C and
F(a+C)=(gof)(a+pB)=g(f(a+pB))=g(a +pB)=a +C. Therefore F
is well defined. And since F is a projection map B/C is a direct summand of A/C

(c) =>(a) Let's assume if C<B and pB<C then B/C is a direct summand of
A/C . Let b=pa for any b from B and for some a from A.If we choose
C=1pB, then by above assumption there exists a projection f: A/pB — B/pB such
that f (patpB) = f (b + pB) = b + pB. Let f (a + pB ) = b' + pB. Then
pb'+pB=p(V+pB)=pf@+pB)=f(pa +pB)=f(b+pB)=b+pB for some
b' from B .and a' from A. Thus we get pb'+pB=b+pB. So, b-pb' € pB . Hence
we can write b - pb' = pb" . Therefore b=p (b'+b") . Since b' +b" € B, we can
say B is neat in A. [I



2.PROPER CLASS OF NEAT EXACT SEQUENCES.

Let { Aj} i€l be a set of abelian groups, { o } icl be a set of
homomorphisms with some index set I. A sequence

........ _) A'_] _) Ai "—) Ai+1 —) Ai+2

Such a sequence of abelian groups and homomorphisms is called an exact
sequence , if Im oy =Kera;+] for every il

An exact sequence O >A—2*3B £ C > O is called a
short exact sequence, and by definition of an exact sequence we can say o is a

monomorphism and f is an epimorphism.

Let R bea class of short exact sequences, we write oo R § to mean that a
short exact sequence O >A—23>B L5 C——> O (let's denote the
short exact sequence with (a,$) ) is one of the short exact sequences of R .

Rm 1s the class of all monomorphisms of elements of R. It means that there
exists an epimorphism f such that o R

Re is theclass of all epimorphisms of elements of R . It means that there
exists a monomorphism o such that o R B

Definition: R is called proper class (in Buchshaum's sense) and any one of
it's elements is called a proper short exact sequence, if the following holds :
1) If aR P then any short exact sequence which is isomorphic to (o,p) is
also in R .
2) for any abelian groups A and C, O > A > A®C -»C -0 is proper
exact sequence .
3) () If aoo' is defined with oec Ry, , o'e Ry, then ood' € Ry,
(i) If Bop' is defined with Be R , P'eMRe then Pof' € Re
4) () If o, are monomorphisms with coo'e Rm then o'eRm
(i) If B, ' are epimorphisms with PoB'eR, then BeR, .

v
o

Definition. An exact sequence O >A—2>B L5 C is

said to be neat exact, if Imo is neat in B.

Theorem 5. Neat exact sequences construct a proper class .

Proof. We will check proper class axioms

1) Let E: O >A—23>B—t5 C > O be a neat exact sequence .
Let E':0 »A—2 3B 5 >0 be another exact sequence which is
isomorphic to E. We will show that the exact sequence E' is also neat exact .

Then we have a diagram



0 »y A 25 B £ C >0 where 81, 8 ,83 are
1somorphisms.

And by commutativity of the diagram o' 0d1 =000, and also we can
say o (8 (A))=a' (A) because 8 is isomorphism.That's why ;8 (o« (A))=0c' (A)
and so & (x(A)) is a subgroup of B'. Now using the fact (6), since o (A) 1s
neat in B and 3 is isomorphism 8 (a0 (A)) is neat in B'. Therefore o (A') is
neat in B'.

2) Let's take two objects A,C. We want to show O > A—>A®C - C—->0
is neat exact. We know A is neat in A®C , because it is a direct summand . And
o(A) 1s also neat in A®C , because o is inclusion function . So our sequence is

neat exact .
3) () If o and o' are neat monomorphisms then we will show a'octis also

neat monomorphism.

We know that a(A) is neat in B and o'(B) is neat in B'. And we may
say o' (a(A)) is a subgroup of o'(B).Hence o (o (A)) is neat in o'(B) by
fact 8 . since o'(B) is a neat subgroup of B' o (o (A)) is neat in B'. by
lemma 1(a). So o'oa is neat epimorphism.

Let's see above work in the diagram :

0O— A 2> B—Ef» C —0
¢a ¢1B ¢8
O0——a(A) i B —— B/o(A)——> O
‘La'\a A) \La‘ \LS'
00— d'(o(A)) —> o' (B) —> o' (B)/ o’ (c(A)) —>O

2 \ \

0—>a'(a(A)) ——B'— > B'/a'(a(A)) ——O0

v

(ii) If P'op is defined with B: B — C and B: C — C' are neat epimorphisms
then we will show that B'of is also neat epimorphism. We will define D = Ker f'
and B' = Ker f'of. So B' will be a subgroup of B. Since Kerf is a
subgroup of C, we have an inclusion map o : Ker ' > C. We know that
D=XKer ' is neat in C, and also B'= Ker B'op becomes a subgroup of B. So



we have the following diagram with exact rows and columns. (In view of 3x3
lemma).

0 0 0
J J N2
0—>A—*3B—FE sp_ 50
d1, i e
0—>A—23B £t C—0
\L ‘LB'OB ‘LB
0 >0 > C—<> C >0
J \? J
0 0 0

Where 1 is an inclusion map, and o : A —> B is the same
homomorphism o : A —B with changed range.

Now, let b'=pb for any b' from B', for any prime p and for some b from
B. Then, we can write B(b") = B(pb) which implies B(b') = pB(b). Since B(b’) is an
element of D, then there exists d from D such that B(b') =pd . Blg is
epimorphism, that's why there exists x from B' such that B(x)=d. So,

B(®) = pd = pB(x) = B(px)
Therefore B(b') = B(px), so b' - px is an element of KerB, since Kerf =Ima we
can say b'-px=oa(a).But since b'=pb then pb - px =o(a) implies p(b - x) = a(a).
We know that aA) is neat in B, so afa) =po(a’) for some a from A. So,
o(a) = paua’) = aupa’)
mmplies a=pa', because o is monomorphism.

Therefore b' = px + o(a) = px + po(a) = p(x + o(2')) where x + afa’) is an
element of B'. Hence, B' is neat in B, that means i(B') is neat in B. So B'of is
neat epimorphism.

4) (). If a:B—>B' and o': A—>B are given monomorphisms with groups
A,B,B'. If coa: A—>B' is a neat monomorphism then we will show that o is
neat monomorphism.

We know that (coa)(A) is neat in B'. Since o'(A) is a subgroup of B, we
can say o(o'(A)) is a subgroup of a(B) and also o(B) is a subgroup of B
Therefore we can write

o(a'(A)) <a(B) <B'
By fact (7) oa(o'(A)) is neat in oB). And so, by fact (8) a'(A) is neat in B.
We can see the above work in the following diagram.



0 0 0

2 \s 2
0—>A—23B—>C—0

i, a {
0—>A—2* 3B 5C—0

J \2 J

0 0 0

(ii). Let B: B > B' and B': B' >C be given epimorphisms with groups B, B, C
If P'op: B —> C is neat epimorphism. Then, we will show that ' is also neat
epimorphism. So, Kerf'of 1s a subgroup of Kerfl'. Let A" =Kerf Thus, we
can define maps Plgergop : Kerf'of — Kerf', a''KerB' — B' ,o[gerpop: KerB'op — B
become inclusion maps. And let a: A" >B , a: A" — Ker'of be monomorphisms.
That is same monomorphism o is defined with different range.

We can put them on to a diagram as follows.

0 0 0
\2 J \’
0o—> A" 53 A" 5 X— 0
Yo Yo \
0——>Kerf'op —2LXrBof 3B B 5, C—50
VBl arrop Ip die
0—— Kerp' —=» B'—F£5 C—0
2 2 \
0 0 0

Let's take any x from Kerf, and assume that x=pb' for some b' from B
Since B is epimorphism, also BlKerpop 1is epimorphism. Therefore there
exists y in KerfB'of such that x = f(y), and there exists b in B such that b' = B(b).
So,

B(y) =x = pb' = pB(b) = B(pb)
implies y - pb is in Kerf, and since Kerf =Ima =A", we can write y - pb = a(a)
for some a from A". Let's say y'=y-o(a)=rpb then,

B(Y) =By - B(a(@) = B(y) =x

10



because, oo = 0 . (Sequence is exact.), since (B'of)y) =p'(x) =0, y is also
contained in Kerf'of. Now, since Kerf'of is neat in B, then there exists z in
Kerf'of such that y' =pz. Then,

x = B(y) = B(pz) = pB(2)
And B(z) is in Kerf'. Hence, Kerf' is neat in B' means that B' is neat
epimorphism. [

3. NEAT PROJECTIVITY AND NEAT INJECTIVITY

Definition. Let E0——>A—%3>B—L3C——0 be an exact sequence and
G be a group If every diagram

0 >A—>3B—t>C >0

can be completed by a suitable homomorphism y: G — B, That is Boy = ¢. For
any given homomorphism ¢: G — C, then G is called projective group .

Definition.L.et 0——>A —23B—f 3C——0 be an exact sequence and D
be a group. If every diagram

0—A—23>B—L>C—0
Le A
D
can be completed by a suitable homomorphism n: B — D, that is nooa =€ . For
any given homomorphism £: A — D, then Dis called Injective group.

Definition. If the sequences on the above diagrams are neat exact sequences.
Then projective group G is called neat projective and the injective group D is
called neat injective.

Lemma S. Let A and B be groups, if B is a subgroup of A such that A/B
1s a cyclic group of order p, then B is a direct summand of A.

Proof. A/B is a cyclic group of order p,say A/B=(a+B), o(a+B)=p.
Let's consider the natural projection m: A — A/B. Then m(a) =a +B and since
o(a+B)=p we can write ©(pa) =pn(a)=pa+B)=B. So pa is an element of

11



pa = px impliying p(a-x) = 0. Then =(a-x) = n(a) - ©(x) = n(a) because x is an
element of B.

Now we will show (a-x)B=0.Let y be an element of (a-x)B
then y=n(a-x) and since y is an element of B. n(y) =B that is
n(a + B) = nn(a) = nn(a-x) = 7(n(a-x)) = n(y) =B. Since o(a + B) =p, then pjn that
is n=n'p. Hence y=n(a-x) =n'p(a-x) =0

Let's show also A= (a-x)+B. Let's take an element z from A, since A/B
is cyclic we can write it in the form A={a+B), so z+ B =k(a+B) for some
nonnegative integer k. Then z-ka € B that is z-ka=b for some b from B. So,
z=ka+b=k(a-x)+ (kx +b) where k(a-x) e{a-x) and (kxtb) €B. Therefore
k(a-x) + (kx+b) € (a-x)+B. That means Ac {a-x)+B. And since
(a-x)+BcA at the same time, (a-x)+B=A

Hence, A=B @(a-x) Which means B is a direct summand of A. [

Theorem 6. An exact sequence E: 0——>A—>3>B—235C——>0 is neat
exact if and only if for every prime p the group Z(p) has the projective property
relative to E.

Proof. (=) Let E be a neat exact sequence, and ¢: Z(p) > C be any
homomorphism. Since Z(p) is simple group, then either Ker¢ =0 or Kerd = Z(p).
But if Ker¢p =Z(p) then ¢ becomes zero homomorphism and can be trivially lifted
to y: Z(p) > B by y(x)=0. Now let Ker¢p =0, that is ¢ be a monomorphism.
n:C — C/Im¢ is the natural homomorphism and let's define wof: B - C/Im¢ . So
i: Ker(no) — B is the inclusion map. if we take x from B(Ker(wof)) then
(moB)(x) =0 So, B(x) is an element of Kerr and because of the sequence is
exact, B(x) is also an element of Im¢, thus PB(Ker(woP) < Im¢. Since ¢ is
monomorphism ¢-1: Im¢p — Z(p) is well defined. And we can define

B Ker(mop) —> Z(p) as B' = ¢™1oBlger nop -
claim: Kerp =Kerf'.

To show that the claim is true, let's take an element a from Kerf, then B(a) =0,
so (roB)(a) =7(B(a)) =7(0). Thus B'(a) = ¢ (Blkernop)@ = ¢1(0) =0 Hence
Kerf3  Kerf'. Conversely let's take an element a from Kerfy. Then
B'(a) = ¢~'oBlker nop(@) = ¢1(B(a)) = 0. But since ¢ Imp — Z(p) is an isomorphism
B(a)=0. That is a is in KerP. So the claim is true. And since E is neat exact
Kerf = Ima = Kerf}' therefore we can define a!: Kerf' - A and it is an
isomorphism here. Hence E' is isomorphic to E, so E' is also neat exact. Since
Kernof / Kerf' is isomorphic to Z(p), appliying lemma5 we can say Kerf' is a
direct summand of KerroB. And since o': Kerp' — Kernof is inclusion map
o'(Kerf) is also a direct summand of Kerrmof.

12



Hence
0——Kerp' — Ker(nof) —2— Z(p) ——0
is a splitting sequence, so by a theorem in [R], there exists v: Zp — Kernof3
such that yop'= 1, Lets define y: Z(p) >B by y=10y=7v, so
Boy = Boioy = yof'od = ¢.
Therefore, Z(p) has the projective property relative to neat exact sequence E.

We can see the above work in the following diagram.

0 0 0
2 3 3
0——Kerf' — Ker(wof) —2— Z(p) >0
ol i o
0—>A =25 B —£5 C —0
2 Jop In
0 >0 > %m é — %m é —0
2 3 \
0 0 0

(<) Conversely, assume that every Z(p) has projective property relative to
neat exact sequences. So, let's take a neat exact sequence

0 >A —=> B —">B/A—0

For any a from A, let a=pb for some b from B, then p(b+ A)=A. That is
the order of (b+ A ) is p. Therefore we can say {(b+ A) is isomorphic to Z(p).
And since Z(p) has projective property, we can write the following diagram.

(b+A)

/u

0 > A = B —Z%2» BA — 0

A4

Here o becomes the inclusion map.We know that there exists y(b+A) > B
such that moy =o and y(b+ A)="b' for some b' from B. So,
pb = py(b + A) = w(p(b + A)) = y(0) =0.
Now, b'+ A=n(d")=mnoy(b+A)=a(b+A)=b+ A That is b'-b is an element
of A. Therefore p(b'-b)=pb'-pb=pb=a and since b'-b is in A, A is neat in
B. That's why o(A) is also neat in B. Because o is inclusion function. [

13



Theorem 7. Let E: 0——> A —2%3>B—£>C——> 0 be an exact sequence. E
is neat exact if and only if every Z(p) has injective property relative to exact
sequence E.

Proof. (=) Let E be a neat exact sequence and ¢:A — Z(p) be any
homomorphism. Since Z(p) has no proper subgroups, either $(A)=0 or ¢(A) = Z(p).
If ¢(A) =0 then ¢ becomes zero homomorphism and in that case it can be
trivially extended to y:B — Z(p) with y(x) =0. That's why we will admit ¢ as
epimorphism. Let's define o: Z(p) —» B/o(Kerd) such that o'(x) = (moo)(y) where y
is taken from ¢-1(x), and n:B — B/o(Kerd) is natural homomorphism. o' is well
defined , because if yedl(x) and y'e ¢-'(x) then ¢(y) =6(), so y-y is in Kerdp
that is oy - y)e a(Kerd). And clearly a(Kerd) is a subgroup of B, so we can
write the following exact sequence;

0 —> oKerp) ——-> B —2> Bfa(Kerp) —— 0
Hence o(Ker¢) = Imi =Kern, so w(oy-y)) =0 implies (moa)(y) = (moa)(y').And
since m, o, ¢ are homomorphisms, o is also a homomorphism. Let's take an
element a from ¢l(x) then (cd'od)(a) = '(x) = (moa)(a). So o makes the diagram
commutative.

o' 18 monomorphism, because take an element x from Kero/,that is o'(x)=0.
That is (moa)(y) =0 implies o(y)e Kerrn, and since Kerr = a(Kerd) then ofy) = az)
where z is from Kerd, so y=z and then ¢(y) =¢(z) =0, since x =¢(y) then x =0

Homomorphisms ¢ and © induce a homomorphism &: C — C' where
C = B/a(Kerp)) / Ima'. So we have the following diagram with exact rows.

0 0 0
{ S J

0 —>Ker¢ —> a®erp) —> 0 — 0
A $i \

0— A —*»> B —E C —0
\ e %

0 —> Z(p) —*->B/aKerp) —E»> C —>0
\ J J
0 0 0
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Since first two columns in this diagram are exact, the third one is also exact
by 3x3 lemma in [F] that is § is isomorphism and by theorem5-(3(ii)) dof is also
neat epimorphism, and by commutativity of the square Sof = f'om, so P'om is
also neat epimorphism, so by theorem5-(4(ii)) B' is neat epimorphism that is o is
neat monomorphism. So o'(Z(p)) is neat in B/a(Kerd) and we can easily say
po'(Z(p)) =0 because order of Z(p) is p. Hence by theorem2 o'(Z(p)) is a direct
summand of B/o(Kerd), that's why there exists a projection 0:B/o(Kerd) — o'(Z(p)),
and consider the isomorphism o':Z(p) — o'(Z(p)). Then define y: B/o(Kerd) — Z(p)
by y = (o')’08. Therefore, (voa')(x) = (()loBoa)(x) = ((o)loa)(x) = 174,)(X) = x.
So, yoo' = 1., (here (a)!oBoa’)(x) = (o) loa)(x) because o'(x)ec(Z(p)) implies
Bo(a'(x)) = &'(x). ). Hence let's define y:B — Z(p), that is y =yom. So,

yomooL =Yoo o = 1,00 = ¢ implies yoa = ¢
Therefore diagram is commutative.

(=) Conversely assume that every Z(p) has injective property relative to
exact sequence E: 0 >A—=2>B—~L5C > 0. We can assume that A<B
with regarding o as inclusion map. Assume that E is not neat exact, then o(A)

is not neat in B and since o is inclusion map, A is not neat in B. Hence
AnpB=pA. So we can take an element a from (A~pB)-pA and define
I'={ D| pA<D<A , ag¢D}. Clearly every chain {D,} has an upper bound, namely
UD; . Therefore by Zorn's lemma I' has a maximal element say M

Consider A/M, then p(A/M) =0 (because pA<M ) so A/M is isomorphic to
Z(p) by maximality of M. Therefore A/M is injective with respect to E, hence
there is y: B — A/M such that the following diagram is commutative.

0 sA—*>B—£25C

%A

AM

\4
O

that is yoo =7, ® being the natural projection. Since o is inclusion map
ofa)=a.y(a) is an element of y(pB), and we know y(pB) is a subgroup of

p(A/M) then y(a) becomes an element of p(A/M) and since p(A/M)=0 then
y(a)=0. But since agM, 0« 7(a) = y(o(a)) = w(a) which gives us a contradiction.

0
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Theorem 8. P is neat projective if and only if P=P' @ F, where P' is a
direct sum of cyclic groups of prime order and F is free.

Proof. (=) Let P be neat-projective. For each homomorphism o:Z(p) > P
take a group A, ,=Z(p) and let B:F - P be an epimorphism from a free group
F. Let A=(®A,,)®F where the first sum is taken over all prime p and
possible homomorphisms o, and let y: A—>P be such an homomorphism that
VA, =o and yjpr=B. (v exists by property of direct sum) then y is an
epimorphism and it can be easily seen that every Z(p) is projective with respect
to y, therefore y is a neat epimorphism by theorem 6. Since P is neat projective,
y is splitting, so P is isomorphic to a direct summand of F. Then p-component
Tp(p) of P is isomorphic to a subgroup of © A, and therefore is a direct sum
of cyclic groups of order p. So torsion part T(P)=P' is a direct sum of cyclic
groups of prime order. Since torsion part of A is a direct summand, P' also is a
direct summand of P. Let P=P' ®F, now clearly Fis isomorphic to a subgroup
of the free group F, hence is free itself

(<) Since every cyclic group of prime order is neat-projective, by theorem6
their direct sum also is neat-projective. Therefore every group P=P' @ F with P'
which is a direct sum of cyclic groups of prime order and with a free group F,
is neat-projective. [

Theorem 9. I is neat-projective if and only if I=1 @ D, where I' is a direct

summand of a direct product of cyclic groups of prime order and D is divisible.
Proof. (=) Let I be neat-injective, dual to theorem (8) let B=(IIB,,)® D’

where B, = Z(p), and o all possible homomorphisms a: 1 > Z(p), D' is a
divisible group with a monomorphism B:I-— D'. Again by the main property of
direct product there is a unique homomorphism y:I— B such that w oy=o and

w0y =P. It can beseen that y is a neat-monomorphism, therefore I is a direct

summand of B. Then I=T @D where D is divisible and T' is a direct summand
of TIB,,.

(<) Each B,, is neat-injective by theorem (7), their direct product and it's

direct summand I' also is neat-injective. Since divisible group D is neat-injective,
I=T @D is neat injective. [
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4. NEAT EXACT SEQUENCES FORM THE FRATTINI SUBGROUP OF EXT(C,A)

We can visualize the extension B of A by C as an exact sequence;
0 >A—>B—"C > 0
We can construct a category € such that objects are short exact sequences
and morphisms are triples as (o,B,y) of homomorphisms such that the following

diagram has commutative squares:

E:0 >A'—Y S>B Y5 > 0

E and E' are said to be equivalent with A=A' and C=C' (denoted by E~E')
if there is a morphism (1,,, 1)

B becomes isomorphism by S-lemma
Let E: 0 >A——>B—"—>C > 0 be an exact sequence. Define a

homomorphism o: A — A' as in the following diagram

then we can construct pushout diagram by theorem 10.1 in [F]:
E: 0 >A—>B—"C > 0
Yo Ip
A > B
with B'= A®B/H where H={ (u(a), -a(a)) |acA }. Then v is a monomorphism
and B'/Imv is isomorphic to C (see [A]). Therefore we can define a short exact

sequence in a natural way such that

oaE: 0——>A'—Y 5B —5>C'—— 0 and the following diagram
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oE:0 >sA—Y 5B Y>> > 0

is commutative.

Let's apply theorem 10.2 in [F] with C, then v:B'— C as

v ((@,b) + H) = (1cov)(b) + Vou'(a)

since oF is exact v ((a,b)+H) and by 10.2 in [F] the diagram is commutative.
So oE is the extension of A' by C. Here ax = (a,B,1c) is a morphism E — aE
in g

It is well known (see e.g. [F]) that all abelian extensions of the group A by
C form an abelian group under baer's addition which is called group of
extensions of A by C and is denoted by Ext(C,A). If R is a proper class then
all R-extensions of A by C form the subgroup Exty (C,A) of Ext (C,A). In
particular, 1if R is the class I of all pure exact sequences then

Exts (C,A) = Pext (C,A) = N n Ext (C,A) = ( Ext (C,A))]

where n is a positive integer. So it gives us Ulm's subgroup of Ext (C;A) ( see
theorem 53.3 in [F] and the remark next to it). We are going to prove that the
subgroup Extyx (C,A) = Next (C;A) of Ext (C,A) given by neat exact sequences is
the frattini subgroup of Ext(C,A).

Theorem 10. A short exact sequence E: 0 >A—>B—">C > 0 is
neat if and only if E is an element of pExt(C,A) for every prime p.

Proof. (=) Let E be neat and p be prime. A multiplication homomorphism
p:A >A defined by p(a) =pa is the composition p =00y of an epimorphism
v:A — pA defined by y(a) =pa and an inclusion 8:pA — A . Then we have the
following short exact sequences

0—>A[p] 5A—L5pA— 0 ... ¢))
0—>pA—23A—S5A/pA—> 0 ... )

where 6 is an inclusion and 7w is natural homomorphism. Appliying the functor
Ext(C,.) to (2) we shall have the following exact sequence:

........ — > Ext(CpA) —& > Ext(C,A) —Z— Ext(C, A] pA) —>0
Since E is neat m«(E) is also neat. p(A/pA)=0, hence A/pA is neat injective by
theorem? and therefore m.(E) is splitting. Then E becomes an element of Kern,

and since the sequence is exact Kern, =Im0., so Eclm0, that is E =0.(E') for
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some E' from Ext(C,pA). Now appliying Ext(C,.) to (1) we have the following
exact sequence.

................... > Ext(CA) —L Ext(CpA) ——0
that is y. is epimorphism. Then E'=v.(E") for some E" from Ext(C,A). Since
p«=p is the multiplication by p in Ext(C,A) then by lemma 52.1 in [F],
E = 0. v(E") = Oy)«(E") = p«{E") = pE" and pE" is an element of pExt(C,A)
therefore E is also an element of pExt(C,A).

(<=)Conversely let E be divisible by every prime p. Then E = p/E') = 0,y«(E)
and so 6.y«(E') is an element of Im6, which is equivalent to Kerm, because of
the sequence is exact. That is 7.(E) is splitting for every prime p.Constructing 7w.(E)
by means of pushout diagram (see p.123 in [F]) we shall have the following
commutative diagram with exact rows.

E: 0 s A—*s B—E5C—>0
Jfﬂ: Jfﬁ \Ll
nlE): 0—>A/pA—2>B —>C—> 0

T.(E) is splitting, that is there is a homomorphism &: B' —A/pA such that £08 = 1,4
To show that E is neat let o(a) =pb, where acA, beB;p be prime. Then
by commutativity of the diagram
8(a + pA) = dom(a) = Boa(a) = B(pb) = pB(b).
Appliying € to this equality we shall have
a+pA=_Eod(a + pA) = &(pB(b)) = pE(B(b)).
Let E(B(b)) =a + pA where a'cA. Then a + pA =pa + pA; hence a-pa €pA,
that is a-pa’ = pa" for some a" from A. Therefore a=p(a' + a") and oa) = pa(a+a”),
so afa) is an element of po(A). It means that o(A) is a neat subgroup in B,
that is E is a neat exact sequence.
It is well known that ~pA is the Frattini subgroup of A for every A, so we
have the following corollary.
Corollary 11. Ext\(C,A) is the frattini subgroup of Ext(C,A).
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