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ABSTRACT

The objective of this study is to examine the survival models and describing the

data obtained in a particular field by a suitable model.

In the first section, the goal of the study was described by comparing the methods
used in survival analysis. The second section gives general information about the
data types and the functions used in survival analysis. In the third section,
Exponential, Gompertz, Makeham, Gamma, Weibull and Lognormal distributions
which are the parametric methods used frequently in survival analysis, are examined
in order. In the fourth section, the nonparametric methods, which are Kaplan-Meier
product limit and Life table methods, were investigated.

In the fifth section of the study, the data obtained were grouped in a convenient
way and examined by using Kaplan-Meier product limit method. The related data
were taken from Ege University Faculty of Medicine, Branch of Radiation Oncology
and contains information about survival data and type of tamor belonging to NSCLC
patients. The differences in two groups were researched by logrank and Wilcoxon
tests.

In the last section, the results of the application are discussed. Using Kaplan-
Meier product limit method discovers the differences between the levels of variables
measured in classification level and the survival times of the patients according to
NSCLC are investigated.



OZET

Bu ¢aligmanin amaci, sagkalim modellerinin incelenmesi ve elde edilen 6zel bir

alandaki verilerin uygun bir modelle agiklanmasidir.

Birinci boliimde, safkalim analizlerinde kullamilan yontemler karsilagtirilarak
¢aligmanin amaci belirtilmigtir. fkinci boliimde, veri tipleri ve sagkalim analizlerinde
kullamlan fonksiyonlarla ilgili genel bilgiler verilmistir. Ugiincii boliimde, sagkalim
analizlerinde sikga kullanilan parametrik yontemlerden sirasiyla Exponential,
Gompertz, Makeham, Gamma, Weibull ve Lognormal dagihmlan incelenmistir.
Dordiincii bolimde, parametrik olmayan yontemlerden Kaplan-Meier product limit

ve Life table metodlar incelenmistir.

Besinci boliimde ise elde edilen veriler uygun bir sekilde gruplandinidiktan sonra
Kaplan-Meier product limit metoduyla incelenmigtir. Veriler, Ege Universitesi Tip
Fakiiltesi Radyasyon Onkolojisi Anabilim Dali’ndan elde edilmigtir ve NSCLC
hastalarma ait timor cinsi ve sagkalim bilgilerinden olugmaktadir. ki grup
arasindaki farkliliklar logrank ve Wilcoxon testleriyle incelenmistir.

Son boliimde, uygulamanmn sonuglari tartigiidi. Siiflama diizeyinde olgiilen
degiskenlerin diizeyleri arasindaki farklar Kaplan-Meier product limit metoduyla
ortaya gikarildi ve NSCLC’e gore hastalarin sagkalim siireleri incelenmigtir.
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CHAPTER ONE
INTRODUCTION

1.1 Introduction

Survival analysis is used in analyzing the data that occurs at the time of a
predefined event to happen. The main difficulty met in survival data analysis is the
lack of observation in some of the units examined or the time failure of the
individuals because of various reasons. These observations are named as censored
observations and are constructed of units or individuals with longer failure times
mostly. In order to use all the data and to reach at better results, censored

observations must be used correctly as other observations.

There are different approaches about the solution of related problems in survival
analysis. One of these approaches is estimating by using various parametric survival
distributions and another one is estimating by using nonparametric methods, which

does not depend on any distribution assumptions.

It causes a preference problem having both parametric and nonparametric
methods in analyzing censored survival data. Kaplan-Meier, which is a
nonparametric method, is one of the frequently used method because it can be
computed easily and is understandable. Although parametric models are powerful,

any corruption in their hypothesis causes biasedness in results.

If the distributions used in parametric analysis are convenient to the data
examined, parametric modeling gives better results. But the existence of stopped
observations especially, results some problems in researching the convenience of a

parametric distribution.



Depending on this information, the objective of this study is to choose the most
appropriate analysis method and to find the factors that effect the survival times. So,
firstly, the structure of the survival data was examined, then parametric and
nonparametric methods are introduced and lastly, an analysis was applied on the data
obtained from Ege University Faculty of Medicine, Branch of radiation Oncology. In
this analysis, the selection of the method is discussed and determining the factors that

effect survival times is focused.



CHAPTER TWO
STRUCTURE OF SURVIVAL DATA

Survival time can be defined as the time to the occurance of a given event and
survival data can include survival time, response to a given treatment, and patient

characteristics related to response and survival.

In this section, the types of censored observations used in survival analysis,

probability density, survival and hazard functions are mentioned.

2.1 Cencored Data

Many researchers consider survival data analysis to be merely the application of
two conventional statistical methods to a special type of problem; parametric if the
distribution of survival times is known to be normal and nonparametric if the
distribution is unknown. This assumption would be true if the survival times of all
the subjects were exact and known. However, some survival times are not (Lee,
1992).

Survival data are not appropriate to standard statistical procedures used in data
analysis. The first reason is survival data are generally not symmetrically distributed.
This difficulty could be resolved by first transforming the data to give a more
symmetric distribution, for example by taking logarithms. However, a more
satisfactory approach is to adopt an alternative distributional model for the original
data (Collett,1994).

The second reason is that survival times are frequently censored. In an experiment

in which subjects are followed over time until an event of intererest occurs, it is not



always possible to follow every subject until the event is observed. Subjects may
drop out of the study and be lost to follow-up, or be deliberately withdrawn, or the
end of the data collection period may arrive before the event is observed to happen.
For such a subject, all that is known is that the time to the event was at least as long
as the time to when the subject was last observed. The observed time to the event

under such circumstances is censored (PROPHET StatGuide).

Sometimes when survival data are analyzed, some subjects are unfailed, and their
failure times are known only to be beyond their present survival times. Such data are
said to be censored on the right or right censoring. Similarly, a failure time known
only to be before a certain time is said to be censored on the left or left censoring. If
all unfailed subjects have a common running time and all failure times are earlier, the
data are said to be singly censored on the right. Singly censored data arise when
subjects are started on the experiment together and the data are analyzed before all
subjects fail. Such data are singly time censored if the censoring time is fixed; then
the number of failures in that fixed time is random. Figure 2.1.a depicts such a
sample. Time censored data are also called Type I censored. Data are singly failure
censored if the experiment is stopped when a specified number of failures occurs, the
time to that fixed number of failures being random. Figure 2.1.b depicts such a
sample. Time censoring is more common in practise; failure censoring is more

common in the literature, as it is mathematically more tractable.

Much data censored on the right have differing survival times intermixed with the
failure times. Such data are called multiply censored (also progressively, hyper-, and
arbitrarily censored). Multiply censored data usually come from the field, because
subjects go into service at different survival times when the data are recorded. Such
data may be time censored or failure censored. Figure 2.1.c and Figure 2.1.d depict
such samples, respectively. And another type of censoring is inferval censoring.
Here, subjects are known to have experienced a failure within an interval of time.

Figure 2.1.e depicts such a sample (Nelson, 1982).
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Figure 2.1 Types of data (failure time X, running time > ).

Analyses of such censored and interval data have much the same purposes as
analyses of complete data, for example, estimation of model parameters and

prediction of future observations.
2.2 Functions of Survival Time

Survival times are data that measure the time to a certain event such as failure,
death, response, relapse, the development of a given disease etc. These times are

subject to random variations and form a distribution.

The distribution of survival times described by three functions: the probability
density function, the survival function (or survivorship function), and the hazard
function. These are mathematically equivalent in that each can be derived from the

others.



2.2.1 Probability Density Function

The actual survival time of an individual, ¢, can be regarded as the value of a
variable T, which can take any non-negative value. The different values that T can
take have a probability distribution, and we call T the random variable associated
with the survival time. The survival time T has a probability distribution with
underlying probability density function f(t). The density function is also known as

the unconditional failure rate.

This function is defined as the limit of the probability that an individual fails in
the short interval ¢ to ¢ + At per unit width At, or simply the probability of failure in

a small interval per unit time. It can be expressed as

Pfan individual dying in the interval (5, # + 4t)}
At

f@)=lm 2.1)

In practice, if there are no censored observations, the probability density function

F(®) is estimated as the proportion of patients dying in an interval per unit width.

_ number of patients dying in the interval beginning at time ¢

f(e
F® (total number of patients)(interval width)

(2.2)

However, we cannot determine this function when censored observations are

present. An appropriate method will be discussed in chapter four.

The distribution function of T is given by;
4
F(t)=P(T <t)= j f(w).du, (2.3)
0

and represents the probability that the survival time is less than some value ¢.



2.2.2 Survival (Survivorship) Function

Survival function is defined as the probability that an individual survives longer
than ¢ and denoted by S(7). In mathematical terms:

S(t) = P(an individual survives longer than ) = P(T>t) 24)
From the definition of the cumulative distribution function F(z) of T,
S(t) = 1 — P(an individual fails before time ¢) = 1 — F(t) (2.5)

The probability of surviving at least at the time zero is 1, and }imS (t) =0 means

the probability of surviving an infinite time is zero. In accordance with these, the

survival function always has a value between 0 and 1 inclusive, and is nonincreasing.

The function S(¢) is also known as the cumulative survival rate. To depict the
course of survival, Berkson(1942) recommended a graphic presentation of S(f). The
graph of S(z) is called the survival curve (Lee, 1992). Figure 2.2 shows a hypothetical
survival function for a population.

1.00 -

0.75

0.50

Survival Function, S()

0.00

Median
Figure 2.2 Survival function for a population.

The survival function is used to find percentiles for survival time, and to compare
the survival experience of two or more groups. The mean is usually used to describe

the central tendency of a distribution, but in survival distributions the median is often



better because a small number of individuals with exceptionally long or short

lifetimes will cause the mean survival time to be disproportionately large or small.

In practice, if there are no censored observations, the survival function is

estimated as the proportion of patients surviving longer than ¢;

_ number of patients surviving longer than ¢

S =

. (2.6)
total number of patients

Similar to the estimation of f{¢), when censored observations are present, (2.6) is
not applicable. Nonparametric methods of estimating S(f) for censored data will be

discussed in chapter four.

2.2.3 Hazard Function

The hazard function h(z) of survival time T gives the conditional failure rate. This
function is a time to failure function that gives the instantaneous probability of the
event (failure) given that it has not yet occured. That is, in a survival experiment
where the event is death, the value of the hazard function at time T is the probability
that an individual will die precisely at time T, given that the subject has survived to
time T or the limit of the probability that an individual fails in a very short interval, ¢
to ¢ + At per unit time, given that the individual has survived to time £

P{an individual of age? fails in the time interval (4, + An}
At

h(t)= AIEPO 2.7

From the formula (2.7), the hazard function can also be defined in terms of the
cumulative distribution function and the probability density function:

)= fUT >1)= P(j;'(t>)t) = ggz




therefore

_ f@®
h(t)= 1-F(@t)

(2.8)
In practice, when there are no censored observations, the hazard function is
estimated as the proportion of patients dying in an interval per unit time, given that

they have survived to the beginning of the interval:

number of patients dying per unit time in the interval
number of patients surviving at ?

h(t) = (2.9)

(Lee, 1992).

This function may increase with time, meaning that the longer subjects survive,
the more likely it becomes that they will die shortly. It may decrease with time,
meaning that the longer subjects survive, the more likely it is that they will survive
into the near future. It may remain constant, as for a population with an exponential
survival distribution. Or it may have a more complicated shape, like the well-known
bathtub curve for human mortality, where the hazard is high for newborns, drops
quickly, stays low through adulthood, and then rises again in old age.

Any function h(t) satisfying
1. ()20 for —e <t <o

2. Th(t).dt =00
0

is a hazard function of a distribution.

The cumulative hazard function is defined as
t
H(@) =J'h(x).dx . (2.10)
0

and is estimated as the negative logarithm of the survival function.
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Any continuous function H{(z) satisfying
1. H{(z) is an increasing function.

2. imH() =<

3. H(t) is continuous on the right

is a cumulative hazard function of a continuous distribution (Nelson, 1982).

2.3 Relationships of the Functions
The probability density function, the survival function and the hazard function are
mathematically equivalent. Given any one of them, the other two functions can be

derived.

1. From the equations (2.5) and (2.8) the hazard function can be shown as

_f0
W= @.11)

2. Since the probability density function is the derivative of the cumulative
distribution function,

f(t)=%[1—s(t)]=—s’(t) 2.12)

3. Substituting (2.12) into (2.13) yields

_So__4
hO) === 35198 SO @.13)



11

4, Integrating (2.13) from zero to ¢, we have

- jh(x).dx =log, S(¢)
0

or
H(5)=-log, 5()

or

S(t)=exp[—-H(t)]=exp|:—jh(x).dx] (2.14)
0

5. From (2.11) and (2.14) we supply
f(@® =h(t).expl- H()] (2.15)

It is said that f{#) and F(t) are common representations of the distribution of a
random variable. The hazard function A(z) is a more specialized characterization but
is particularly useful in modeling survival data. In many instances, information is
available as to how the failure rate will change with the amount of time on test. This
information can be used to model A(t) and easily translated into something that is
suggested for F(z) and f{t) using the above formulas.



CHAPTER THREE
PARAMETRIC MODELS

In this chapter, several theoretical distributions that have been used to describe

survival time are explained and their characteristics summarized.

3.1 The Exponential Distribution

The simplest and most important distribution in survival studies is the exponential
distribution. The exponential distribution plays a role in lifetime studies analogous to
that of the normal distribution in other areas of statistics. Applications in human and
animal studies of chronic and infectious diseases can be found.

The exponential distribution, with its property of a constant hazard rate, is
frequently used in reliability engineering as a survival model for inanimate objects
such as machine parts. The hazard of death at any time after the time origin of the
study is the same, that is for an individual; death is a random event independent of

time. Under this model, the hazard function may be written

h(t)=A (3.1)

A large A indicates high risk and short survival while a small A indicates low
risk and long survival. Figure 3.1 depicts the survival function, the probability
density function, and the hazard function of the exponential distribution with
parameter A. When A =1, the distribution is often referred to as the unit exponential
distribution.



sul 1)

t 0 t
(a) (b)

Figure 3.1 The exponential distribution: (a) survivorship
density function (c) hazard function.
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h(r)

0 t
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function (b) probability

When the survival time T follows the exponential distribution with a parameter

A, the probability density function is defined as

Ae7 ,120,A>0
)=
A {0 ,t<0

The cumulative distribution function is then
F(t)=1-e* ,t20
and the survival function is

St)=e* ,t20

(3.2)

(3.3)

3.4

When the natural logarithm of the survival function is taken, log, S(t)=-At,

which is a linear function of . Thus it is easy to determine whether data come from

an exponential distribution by plotting log, S(#) against 7, where $ (¢) is an estimate

of S(¢).

The mean and variance of the exponential distribution with parameter A are,

respectively, /A and 1/A% .
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3.2 The Gompertz Distribution

This distribution was suggested as a model for human survival by Gompertz in
1825. The distribution is usually defined by its hazard rate as

h(t) = Bc' ,t20, B>0,c>1 3.5)

Then the survivorship function is

() = exp[ 1: (-c )] (3.6)

c

The probability distribution function is given by h(¢)-S(t), and is clearly not a

very convenient mathematical form.

3.3 The Makeham Distribution

In 1860 Makeham modified the Gompertz distribution by taking the hazard rate
function to be

h(t)= A+ Bc' ,t20,B>0,c>1, A>-B 3.7)

Makeham was suggesting that part of the hazard at any age is independent of the
age itself, so a constant was added to the Gompertz hazard rate.

The survivorship function is

S(f) = exp Elzg(l—c')—At] (3.8)

-
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Again it is clear that the probability distribution function for this distribution is
not mathematically tractable, so the calculation of probabilities, moments, or other

quantities is somewhat difficult.

3.4 The Weibull Distribution

This distribution was proposed by Weibull (1939) and its applicability to various
failure situations discussed again by Weibull.

The Weibull distribution is a generalization of the exponential distribution.
However, unlike the exponential distribution, it does not assume a constant hazard

rate and therefore has broader application.

It is frequently used in industrial applications (Kao, 1959; Lieblein and Zelen,
1956; Nelson, 1972) and medical researches (Pike, 1966; Peto et al 1972, Williams
1978; Scott and Hahn 1980) (Basar, 1993).

The distribution is characterized by two parameters, ¥ and A. The value of ¥
determines the shape of the distribution curve and the value of A determines its

scaling. Consequently, ¥ and A are called shape and scale parameters, respectively.

The relationship between the value of A and survival time can be seen from Figure
3.2, which shows the hazard rate of the Weibull distribution with y=0.5, 1, 2, 4.
When y=1, the hazard rate remains constant as time increases; this is the exponential
case. The hazard rate increases when y > 1 and decreases when y <1 as t increases.
Thus, the Weibull distribution may be used to model the survival distribution of a

population with increasing, decreasing, or constant risk.
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(’h(r)

9
T

7 =035
1 i 1

1o , 1 2 3 1
Figure 3.2 Hazard functions of Weibull distribution with A =1.

The hazard function is defined as

h(t) = Ay (Af)"™ 3.9)

The probability density function and cumulative distribution functions are,

respectively,

fO=AyQAy) e t20,A,7>0 (3.10)
and

F()=1-e" (3.11)

The survivorship function is therefore
S@t)=e (3.12)
The mean of the Weibull distribution is

ra+1/
PRACELT/D

) (3.13)
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and the variance is

2o U102 )14
c ’NH”y] r(1+y]] (3.14)

3.5 The Gamma Distribution

The gamma distribution is a natural extension of the exponential distribution as
Weibull distribution and has sometimes been considered as a model in life test

problems.

The disadvantage of the gamma distribution is that it suffers from its survival and
hazard functions can only be expressed in terms of integrals. Especially the hazard
function for the gamma distribution is

A grle™

“TlI-T, )]

h(®) (3.15)

where I'(y) is the well-known gamma function defined as
T(y)=[x""e™dx=(y - D) ¥ >0
0

and T, (y)is the incomplete gamma function given by

At
Iu"" edu
e

This integral has to be evaluated by numerically.

I'ty)=
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The gamma distribution is characterized by shape and scale parameters, ¥ and A,

respectively. When 0<y<1, there is negative aging and the hazard rate decreases
monotonically from infinity to A as time increases from zero to infinity. When y>1,
there is positive aging and the hazard rate increases monotonically from zero to A as
time increases from zero to infinity. When y =1, the hazard rate equals A, a constant,
as in the exponential case. Figure 3.3 illustrates the gamma hazard function for A=1
and y<1, y=1,2,4. Thus the gamma distribution describes a different type of survival

pattern where the hazard rate is decreasing or increasing to a constant value as time

approaches infinity.
\h(t)
ol
y<1
1 Y= 1
y=2
y=4
0 i

Figure 3.3 Gamma hazard functions with A=1.

The probability density function of a gamma distribution is

f@®= %y)(ﬂ x)teM t>0,y>0,A>0 (3.16)

and the survival function is

S(f) = ! F(%—)(A X" e **dx (3.17)

for the gamma distribution.

The mean and variance of the gamma distribution are, y / A and y / A respectively.
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3.6 The Lognormal Distribution

This distribution is useful if the range of the data is several powers of 10. It is
often used for economic data, data on response of biological material to stimulus,
certain types of life data and also used for the distribution of repair times of

equipment.

Consider the survival time T such that log, T is normally distributed with mean

u and variance o>.

The lognormal probability density function and survival function are, respectively

1 1 2
t)= exp| ———\log_t— t>0,06>0 3.18
fO=— p[ 202( g u)] (3.18)
and
1 71 1 2
S = — - I - dx 3.19
0= 2ﬂ,’[xexp[ oo log. x u)] (3.19)

Let a=exp(—u). Then —u =log,a, f(t)and S(2) can be written as

1 1
f@:w T exp[- o7 (log, at)’] (3.20)
and
o1 Fexpl -1 2 |dx
S@=— 20_'!.exp[ 7 (logeax)]x =1-G(log, ax/c ) (3.21)

Where G(y) is the cumulative distribution function of a standard normal variable

y
G(y) = J%n— J‘ g
0



and the hazard function, from (3.16) and (3.17), has the form

2
S - )
to2n 20

1-G(log, at/c’)

h(t) =

and is plotted in Figure 3.4.
h(r)

1.6

T

1.4F

1.2 #=00=03

0.6
0.4

0.2 p=lo=1

I 1 1 1 1

#=016=0-1
u=030=10

20

(3.22)

0 1 2 3 4 5

. . , : - t
Figure 3.4 Hazard of the lognormal distribution with different parameters.

The hazard function increases initially to a maximum and then decreases to zero
as time approaches infinity. Therefore, the lognormal distribution is suitable for

survival patterns with an initially increasing and then decreasing hazard rate.



CHAPTER FOUR
NONPARAMETRIC MODELS

In this chapter, the methods of estimating the three survival functions (survival,
density and hazard) for censored data will be discussed. These methods are said to be
non-parametric or distribution-free, since they do not require specific assumptions to

be made about the underlying distributions of the survival times.

Nonparametric methods are less efficient than parametric methods when survival
times follow a theoretical distribution and more efficient when no suitable theoretical
distributions are known. Therefore, before attempting to fit a theoretical distribution,
nonparametric methods to analyze survival data are suggested. If the main objective
is to find a model for the data, estimates obtained by nonparametric methods and
graphs can be helpful in choosing a distribution.

In this chapter, Kaplan-Meier product limit method and life table method are

discussed.

4.1 Kaplan-Meier Product Limit Method

Kaplan-Meier product limit method is the most commonly used technique for
estimating the survival function for samples of small and moderate sizes and this

method was developed by Kaplan and Meier in 1958.

The simple case where all of the patients are observed to death so that the survival

times are exact and known. Let #,,f,,...,¢, be the exact survival times of the n

individuals under study. We assume that this group of patients as a random sample
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from a much larger population of similar patients. The n survival times #,5f; yss?,
ascending order such that ¢, St <..<t,, the survival function at 7, can be

estimated as

a n—i i
Sty)=—=1-— 4.1)
n n

where n-i is the number of individuals in the sample surviving lower than ¢, . If two
or more ¢, are equal (tied observations), the largest i value is used. For example, if

X X \ n—7
S(t5)=80e)=SCaq) ==

This gives a conservative estimate for the tied observations.

This method can only be applied if all the individuals are followed to death. But
some of these individuals may be censored, and there may also be more than one
observation with the same survival time. Accordingly, there are r death times
amongst the individuals, where r<n. These death times are arranged as

ty Sty S-Sty and the i'th is denoted ¢, for i=12,...,r. The number of
individuals who are alive just before time t,, including those who are about to die at
this time, will be denoted n,, for i =1,2,...,r and d, will denote the number who die

at this time.

The time interval from ¢, - to ¢, where & is an infinitesimal time interval,
then includes one death time. Since there are n, individuals who are alive just before
t; and d; deaths at ¢, the probability that an individual dies during the interval
from ¢, -8 to ¢, is estimated by d, /n; . The corresponding estimated probability of

survival through that interval is then (s, ~d, )/n, (Collett, 1994).
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The deaths of the individuals in the sample occur independently of one another.
Then, the estimated survival function at any time in the k’th constructed time interval

from gy tO f.y, for k=12,.,r, where 1, is defined to be oo, will be the
estimated probability of surviving beyond ¢, . This is the Kaplan-Meier estimate of

the survival function, which is given by

ke(n —d,
A by St<t,. k=12,.r
$o= I I( ] ® (k+1) 1, @2

Suppose that the following failure times are observed from 8 patients with small-
cell lung cancer. Five patients dead at 8, 10.5, 12.5, 15, and 15 months and three
patients are still alive at the end of the study after 11, 13.5, and 16 months.

The Kaplan-Meier estimate of the survival function S(t) is readily obtained

using equation (4.2), and the required calculations are set out in Table 4.1.

Table 4.1 Kaplan-Meier estimate of the survival function for the eight cancer

patients.
Time n, d, (n, —d,)/n, S@®
8.0 8 1 0.875 0.875
10.5 7 1 0.857 0.875x%0.857 =0.750
11.0+
12.5 5 1 0.800 0.750 % 0.800 = 0.600
13.5+
15.0 3 1 0.667 0.600 % 0.667 = 0.400 *
15.0 2 1 0.500 0.400 % 0.500 = 0.200 *
16.0+

* 0,200 is used as S (15.0) . It is conservative estimate.

If the largest observation is uncensored, the Kaplan-Meier estimate at that time
equals zero. But if the largest observation is censored the Kaplan-Meier estimate can

never equal zero and is undefined beyond the largest observation.
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The Kaplan-Meier survival estimate is a step-function, in which the estimated
survival probabilities are constant between adjacent death times and decrease at each
death time.

The median survival time is the most commonly used summary statistic in
survival analysis and a simple estimate of the median can be read from survival
curves estimated by the Kaplan-Meier method as the time 7 at which S@®)=0.5 (Lee,
1992, p77).

The Kaplan-Meier estimator can be viewed in any of the following ways;
1. The maximum likelihood estimator (Kaplan and Meier, 1958),
2. The estimator obtained from a product of estimators of conditional
probabilities (Kaplan and Meier, 1958),
3. The self-consistent estimator (Efron, 1967) and
4. The redistribute-to-the-right estimator (Efron, 1967; Peterson, 1975).
(Peterson, 1977).

4.1.1 Standard Error of the Kaplan-Meier Estimate
The Kaplan-Meier estimator is unbiased and consistent.

For the variance of the estimator, let us consider,

a k
SO=[]p  k=12,...r

i=1
(London, 1988, p167) where p, =(n, —d,)/n, is the estimated probability that an
individual survives longer through the time interval which begins at ¢.,,, i=12,...,r.

Taking logarithms,

~ k A
log $(2) =Y, log p, 4.3)

i=1



25

and the variance of log $(¢)is

k
varﬁog S (t)}= Z var(log D, ) 4.4)

i=1
The number of individuals who survive through the interval beginning at ¢, can
be assumed to have a binomial distribution with parameters r, and p,. The variance

of (n, - d,) is given by

var(n, -d,)=np,1-p,) @4.5)
therefore the variance of p, is estimated by p,(1- p,)/n; .

In order to obtain the variance of log p,, we make use of a general result for the

approximate variance of a function of a random variable. According to this result,

the variance of a function g(X) of the random variable X is given by

dg(X)

2
var{g(X)}= {-—2}—} var(X) 4.6)

This is known as the Taylor series approximation to the variance of a function of
a random variable (Collett, 1994, p23).

Using equation (4.6), the approximate variance of log p, is var(p, )/ p,> and then

the var(log p,) equals to (1- p,)/(n, p,). If we denote this formula by d, and n,;

(1‘ﬁ1)= di
b, n, (ni "di)

4.7

From equation (4.4)
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a k
varfog $(n)}= 2_(:_:(1—) @38)
i\ i

i=1

and a further application of the result in equation (4.6) gives

varﬁog §(t)}z [§(t)]z var{ﬁ'\(t)}

so that

vaff o=} i._@:i—i?) 49)

i=1

As a result, the standard error of the Kaplan-Meier estimate of the survival
function is the square root of equation (4.9), is given by

. R k d z
sefin)= [S(t)]{zn—(n—'_d—)} Sty S <t (4.10)
i\ i

i=1 H

This result is known as Greenwood’s formula (Collett, 1994).

4.1.2 Linear (Greenwood) Confidence Interval for Survival Function

“A pointwise confidence interval for the survival probability S(z) at a specified ¢
can be obtained by the usual normal-theory approximation using Greenwood’s
formula” (Oakes, 2001, p102).

The interval is computed from percentage points of the standard normal
distribution. Thus 100(1- )% confidence interval for the survival function at some

specified time ¢ is calculated from

$()£ z,,.504356))} @.11)
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But there is one difficulty with this procedure arises from the fact that the
confidence intervals are symmetric. When the estimated survival function is close to
zero or unity, symmetric intervals are inappropriate, since they can lead to
confidence limits for the survival function that lie outside the interval (0,1). A
pragmatic solution to this problem is to replace any limit that is greater than unity by
1.0, and any limit that is less than zero by 0.0.

4.1.3 Nelson-Aalen Hazard Estimator

The Nelson-Aalen estimator is recomended as the best estimator of the
cumulative hazard function, H(z). This estimator is give as

H@)= 4, 4.12)

)

The variance of this estimate is given by the formula

-d
o= e (4.13)
v (1 — Dn,
4.2 Life Table Method

The most straightforward way to describe the survival in a sample is to compute
the life table. The life table technique is one of the oldest methods for analyzing
survival data. Berkson ang Gage (1950) and Cutler and Ederer (1958) give a life
table method for estimating the survival function; Gehan (1969) provides methods
for estimating all three functions (survival, density, hazard). This method is also
sometimes referred to in the medical literature as the Cutler-Ederer method (1958).



28

If the data have been grouped into intervals or the sample size is very large or the
interest is in a large population, it may be more convenient to perform a life table
analysis (Lee, 1992).

The life table estimate of the survival function is obtained by first dividing the
period of observation into a series of time intervals. These intervals are usually equal
length, but need not necessarily to be equal. Suppose that the i’th of m such intervals,
i=12,...,m, extends from time ¢, to f,,,, and let d; and ¢, denote the number of
deaths and the number of censored survival times, respectively, in this time interval.
And also let n, be the number of individuals who are alive. We now make the
assumption that the censoring process is such that the censored survival times occur

uniformly throughout the i’th interval, so that the average number of individuals who

are at risk during this interval is

n =n, —c—z" (4.14)

This assumption is sometimes known as the actuarial assumption (Collett, 1994).

In the #’th interval, the probability of death can be estimated by d, /n; , so that the
corresponding survival probability is (n] —d, )/n; . According to this probability that
an individual survives beyond time ¢, , k =12,...,m, that is, until some time after the

start of the k’th interval. This will be the product of the probabilities that an
individual survives beyond the start of the k’th interval and through each of the k-1
preceding intervals, and so the life table estimate of the survival function is given by

S (t)= H[ h nldi ) ’ tk st< tk+1 ’ k= 1’2’°"sm (4.15)
i

i=l
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For example, we can compute Table 4.2, using 62 patients with small cell lung
cancer, which are originally reported by Maksymiuk et al. (1993), were also included
in Ying et al. (1995) paper.

Table 4.2 Life-table estimate of the survival function.

Time

Interval peiod n, ¢ n d, (n, -d)/n, S
1 - 6 0 60 2 0967 1.000
2 18- 60 O 600 9 0850 0.968
3 360- 51 0 510 16 0686 0.823
4 54- 35 0 350 7 0800 0.564
5 720- 28 2 210 5 0814 0.452
6 90- 21 1 205 6 0707 0.368
7 10800 14 5 115 2 0826 0.260
g8 12600 7 1 65 0 0923 0215
9 1440 6 0 60 0 0916 0.198
10 16200 6 3 45 0 0888 0.182
i1 1800 3 2 20 0 0750 0.162
12 1980- 1 1 05 0 ___ 0.000 0.121

The estimated probability of surviving until the start of the first interval, ¢, is

unity, while the estimated probability of surviving beyond ¢/, is zero.

The life table method is primarily designed for situations in which actual failure

and censoring times are unavailable and only d;’s and c,’s are given for the i’th
interval (Kalbfleisch et al, 1980).
4.2.1 Standard Error of the Life Table Estimate

The standard error of the life table estimate can be found as the standard error of
the Kaplan-Meier estimator. So, if the survival function of the life table estimate is

k(! _ .
$*()= H[ ™ n'di ), then the variance of §°(¢) is estimated by,
= i
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var&‘(t)}=l§‘(t)]z{i——d'—} A St<t), ,k=12,..m  (4.16)

i=1 ”f'(":' - d:)

As a result the standard error of the life table' estimate of the survival function is
the square root of equation (4.16), is given by

ni’(n; _di)

. %
s.e.{é'cr>}=k'(r>]{;—";—} @17

4.2.2 Confidence Interval for Survival Function of Life Table

This confidence interval is computed from percentage points of the standard
normal distribution. Thus 100(1—a )% confidence interval for the survival function

at some specified time # is calculated as similar as equation (4.11), that is

§° ()£ 2, .s.e.{SA‘ (t)} (4.18)

4.2.3 Hazard Function for Life Table Estimate

It is supposed that the observed survival times have been grouped into a series of
m intervals, as in the construction of the life table estimate of the survival function.
An appropriate estimate of the average hazard of death per unit time over each
interval is the observed number of deaths in that interval divided by the average time
survived in that interval. This latter quantity is the average number of persons at risk
in the interval, multiplied by the length of the interval. Assuming that the death rate
is constant during the i’th interval, the average time survived in that interval is
(n, —d,/2)z,, where 7, is the length of the i’th time interval. Thus the life table

estimate of the hazard function in the i’th time interval is given by
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= ’ A = + ’k =1’2w-a 4.1
K ()= w d/z)ri £, <t<t, m (4.19)

The asymptotic standard error of this estimate has been shown by Gehan (1969)
to be given by

o EO-I 0 2
sefp’ ()= N

(4.20)

(Collett, 1994).



CHAPTER FIVE
APPLICATION

In this study, methods of survival analysis are examined and it is objected to make
an analysis on real data. In order to get the data of the application, the physicians
who have made researches on cancer have been connected. As these researches are
difficult works prepared by large teams and by the reason of importance of the
research results to be published in the name of the team, the research data was used
limited in the light of ethical reasons.

5.1 General Informations

When a patient is diagnosed as cancer, the survival time of the patient varies
depending on the percentage location of the tumor, the characteristics, type of

operation and treatment and the opportunities of operation.

In this research, the data about 58 patients operated for non-small cell lung
cancer diagnose and applied to Ege University Faculty of Medicine Clinic of
Radiation Oncology” for radiotherapy are evaluated. The data cover some
information about the patients, which had medical treatment after the operation
between the dates November 31%, 1994 and November 28", 2001. Each record

comprises of the following information:

1) Personal data: Name-surname
Sex

Age

(*) Data are obtained from the records kept by Dr. Serdar OZKOK, Ege University.
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2) Follow-up data : Karnofsky performance status
Number of hemoglobin
Weight loss
Time without far metastasis
Time without local recurrence
Survival time
Censored / Failure

3) Tumor’s feature : Tumor stage
Nodal stage
Overall stage
Local recurrence
Far metastasis

Histopathology

4) Related with the operation : Type of Operation
Date of operation
Date of last follow-up
Localization

5) Characteristics of the treatment: ~ Dose of Radiotherapy
Delay in Radiotherapy

It is possible to obtain valuable and important results from the details of the

existing records in sight of medicine. But this subject is outlined from the interest of
this research.

5.2 Data

While limiting the study with the idea of finding a significant relationship
between the properties of the tumor and the survival time, only the age, tumor stage,
nodal stage, histopathology and survival time of the patient are considered. Details
are presented in Table 5.1.



Table 5.1 Data for 58 patients of NSCLC.

Age Histopathology

large-cell carcinoma
large-cell carcinoma
adenocarcinoma
large-cell carcinoma
adenocarcinoma
large-cell carcinoma
large-cell carcinoma
large-cell carcinoma
large-cell carcinoma
other

epidermoid
epidermoid
epidermoid
large-cell carcinoma
epidermoid
epidermoid
epidermoid
adenocarcinoma
large-cell carcinoma
epidermoid
epidermoid
epidermoid
epidermoid
adenocarcinoma
adenocarcinoma
adenocarcinoma
epidermoid
epidermoid
epidermoid
epidermoid
large-cell carcinoma
epidermoid
epidermoid
epidermoid
epidermoid

other

epidermoid
epidermoid
adenocarcinoma
other

epidermoid
epidermoid
adenocarcinoma
epidermoid
large-cell carcinoma
epidermoid

other

epidermoid
large-cell carcinoma
large-cell carcinoma
epidermoid
adenocarcinoma
adenocarcinoma
epidermoid
epidermoid
epidermoid

other

epidermoid

Tumor Stage

deﬂdﬁdda‘dﬂﬂdddSSd;'s‘d:‘sdSC!ddd333333333333333883333353333383:}

Nodal Stage

Survival Time
(month)

10
74
14
66+
10
17
54+
18+
24+

34
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Histopathology is defining the kind of tumor by microscopic investigation.
Epidermoid, adenocarcinoma, large-cell carcinoma and “other” (out of these tumor

types) are the expressions used in our study.

Tumor stage is defined according to the tumor’s size and its behavior in spreading
to other tissues around it. It consists T1, T2 and T3 phases.

Nodal stage is determined according to the lymph nodes to be effected. It has NO,
N1 and N2 phases. Data is summarized in Table 5.2.

Table 5.2 Number of patients and tumor characteristics.

Numper of Percent Censored | Failure
patients
Histology
epidermoid 30 51.7 10 20
adenocarcinoma 10 17.3 6 4
large-cell carcinoma 13 224 7 6
other 5 8.6 2 3
Tumor (T) stage
T1 1 1.7 1 0
T2 28 48.3 16 12
T3 29 50.0 8 21
Nodal (N) stage
NO 26 44.8 10 16
N1 28 48.3 13 15
N2 4 6.9 2 2
5.3 Methodology

As we have no information about the data of a parametric distribution and as there
are censored observations, it is not convenient to use one of the parametric methods.
While choosing one of the nonparametric methods, Kaplan-Meier analysis —~which is
more effective— is preferred instead of Life-Table because there is suitable data for

Kaplan-Meier analysis.
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5.4 Statistical Analysis

Statistical analysis is performed in three steps. In the first step, the survival
function is obtained due to the survival times of 58 patients and it is investigated if it
can be examined by one of the parametric models or not. Ensuring this is impossible,

the research for the factors that effect survival began.

In the second stage, it was investigated if only one of the factors of age,
histopathology, tumor stage and nodal stage effects the survival time or not. But it
was seen this is also not possible. So that, it was investigated if it is possible to

explain the survival times with two factors.
5.4.1 Overall Survival Function

~ Kaplan-Meier survival function about the 58 patients is obtained as presented by
the graph in Figure 5.1.

1 ,000]

S(t)
o
3
e
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0,0 25,0 50,0 75,0 100,0

time

Figure 5.1 Survival function for all patients.



37

The alternative models Exponential, Weibull, Gamma and Lognormal are
suggested to be suitable from the graph of survival function and the together graphs
are given in Figure 5.2 - 4. It is observed from these graphs and the test statistics that

none of these parametric distributions represent the data exists.
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Figure 5.2 Survival function estimate for Exponential distribution.
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Figure 5.3 Survival function estimate for Weibull distribution.
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Figure 5.4 Survival function estimate for Gamma distribution.
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Figure 5.5 Survival function estimate for Lognormal distribution.
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5.4.2 Kaplan-Meier Analysis with respect to Each Characteristic

Kaplan-Meier analysis is made in order to define if the survival varies depending
on the properties age, tumor stage, nodal stage and histopathology that we

considered.

While searching the effect of age, first 1/3 slice and the last 1/3 slice of the sorted
records according to age are compared. 20 patients are considered as young in 58
patients and ages of 35-53 are considered as age group. In old category, again 20 of
58 patients are considered as old and the age group is accepted as 61-75. The
analysis results for these two groups are given in Table 5.3, Table 5.4, Figure 5.6 and
Figure 5.7 in order.

Table 5.3 Kaplan-Meier Product-Limit survival distribution for young group of age.

Cumulative
Sample Survivorship Std Error Hazard Fn Std Error
Rank Size Time S(t) of S(t) H(t)=-Log(S(t)) of H(t)

1 20 7.0 0.950000 0.048734 0.051293 0.232377

2 19 10.0 0.900000 0.067082 0.105361 0.287780

3 18 10.0 0.850000 0.079844 0.162519 0.332431

4 17 11.0 0.800000 0.089443 0.223144 0.373837

5 16 14.0 0.750000 0.096825 0.287682 0.414889

6 15 17.0 0.700000 0.102470 0.356675 0.457298
7 14 18.0+

- 8 13 21.0 0.646154 0.107811 0.436718 0.508153

9 12 21.0 0.592308 0.111465 0.523729 0.563666

10 11 240 0.538462 0.113596 0.619039 0.625930
11 10 24.0+

12 9 31.0 0.478632 0.115661 0.736822 0.710545
13 8 34.0+
14 7 40.0+
15 6 54.0+
16 5 66.0+

17 4 72.0 0.358974 0.135142 1.024504 1.024076

18 3 74.0 0.239316 0.132900 1.429969 1.523318
19 2 75.0+
20 1 76.0+




Table 5.4 Kaplan-Meier Product-Limit survival distribution for old group of age.

Cumulative
Sample Survivorship Std Error Hazard Fn Std Error
Rank Size Time S(t) of S(t) H(t)=-Log(S(t)) of H(t)
1 20 6.0 0.950000 -0.048734 0.051293 0.232377
2 19 9.0 0.900000 0.067082 0.105361 0.287780
3 18 9.0 0.850000 0.079844 0.162519 0.332431
4 17 10.0 0.800000 0.089443 0.223144 0.373837
5 16 10.0 0.750000 0.096825 0.287682 0.414889
6 15 12.0 0.700000 0.102470 0.356675 0.457298
7 14 13.0 0.650000 0.106654 0.430783 0.502429
8 13 16.0 0.600000 0.109545 0.510826 0.551625
9 12 18.0 0.550000 0.111243 0.597837 0.606420
10 11 21.0+
11 10 24.0 0.495000 0.112899 0.703198 0.678798
12 9 24.0+
13 8 27.0+
14 7 32.0+
15 6 33.0+
16 5 41.0+
17 4 52.0 0.371250 0.136584 0.990880 0.995484
18 3 54.0 0.247500 0.136017 1.396345 1.490121
19 2 54.0+
20 1 61.0+
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Figure 5.6 Survival functions plot of young and old group for age.
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Figure 5.7 Cumulative hazard functions plot of young and old group for age.
Examining Figure 5.6, we can say that grouping by age does not make any

difference in survival time of all patients. In order to test this result statistically,
logrank and Wilcoxon tests are performed and chi-square and p-value results are

obtained as in Table 5.5.

Table 5.5 Test statistics for age.

Test Chi-Square d.f. p-value
Logrank 0.61 1 0.4364
Wilcoxon 0.49 1 0.4843

Examining Table 5.5 we have no clue about the survival times of young group for
age is longer than the survival times of old group for age because the p-values are
greater than o. = 0.05. This means the null hypothesis cannot be declined and it can

be said that there is no difference between the survival times.
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While investigating how the histopathology of the tumor effects survival, it was
decided as unreasonable to deal with the 4 groups in Table 5.2 separately even in
medical sight. Instead, a group of 30 epidermoid patients — called epidermoid, — and
another group of 23 patients considering adenocarcinoma and large-cell carcinoma -
called non-epidermoid, — is taken, and a group of 5 patients — named as “other” — is
excluded. The survival function seen in Figure 5.8 is obtained as a result of Kaplan-
Meier analysis, which compares the survival times of epidermoid and non-
epidermoid patients.

1,000+
- group

—— epidermoid
- non-epidermoid

S()
o
S
l

osooc L] LI ) 1 LI 1 ] 1 ] 1 ¥ 1 1 LI L] LA
0 25,0 50,0 75,0 100,0

time

o

Figure 5.8 Survival functions plot of epidermoid and non-epidermoid group for
histopathology.

Test statistics determines that there is not a significant difference between these
survival functions. (Table 5.6)

Table 5.6 Test statistics for histopathology.

Test Chi-Square d.f. p-value
Logrank 0.47 1 0.4912
Wilcoxon 0.35 1 0.5569
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While investigating the effect of tumor stage on survival, T2 and T3 phases are
compared as there is only 1 patient in T1 phase. There are 28 patients in T2 and 29
patients in T3. The survival function plot seen in Figure 5.9 is obtained when
Kaplan-Meier analysis is applied for T2 and T3 phases.
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Figure 5.9 Survival functions plot of T2 and T3 group for tumor stage.

Test statistics show that there is not a significant difference between these
survival functions. (Table 5.7)

Table 5.7 Test statistics for tumor stage.

Test Chi-Square df. p-value
Logrank 3.37 1 0.0665
Wilcoxon 2.04 1 0.1531

While investigating the effect on nodal stage to survival, the analyses are applied
to NO and N1 phases as there are only 4 patients in NO phase. There are 26 patients in
NO phase and 28 patients in N1 phase. The survival function plot shown in Figure
5.10 is obtained by applying Kaplan-Meier analysis for NO and N1 phases.
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Figure 5.10 Survival functions plot of NO and N1 group for nodal stage.

Test statistics show that there is not a significant difference between these
survival functions. (Table 5.8)

Table 5.8 Test statistics for nodal stage.

" Test Chi-Square d.f. p-value
Logrank 0.11 1 0.7453
Wilcoxon 0.04 1 0.8449

5.4.3 Kaplan-Meier Analysis for Pairwise Effect on Survival

It is seen that none of the factors affect survival alone but it is known that these
characteristics have effect on survival. Consequently, a certain characteristic is
considered as base and the effects of other factors on survival are examined. This
investigation is started from the histopathology characteristic of the tumor. The
information depending on the epidermoid or non-epidermoid type of cancer of

patients are summarized in Table 5.9.
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Table 5.9 Distribution of histopathology according to age, tumor stage and nodal

stage.
Histopathology Total number
Epidermoid Non-epidermoid ~ Other of the patients
Age
-53 7 12 1 20
54-60 13 4 1 18
Tumor stage
T1 0 1 0 1
T2 11 13 4 28
T3 19 - 9 1 29
Nodal stage
NO 15 9 2 26
N1 13 12 3 28

As in the previous analysis, Kaplan-Meier analysis is performed on 2 groups for
age and 2 groups for both tumor stage and nodal stage. P-values computed to test the
difference are given in Table 5.10. In this table, it is seen that tumor stage effects

survival on epidermoid patients and others have no effect.

Table 5.10 Test statistics.
Histopathology
Test Epidermoid ~ Non-epidermoid
Age Logrank 0.1099 0.9935
Wilcoxon 0.0595 0.8075
Tumor stage Logrank 0.0067" 0.6546
Wilcoxon 0.0176" 0.4883
Nodal stage Logrank 0.6426 0.8961
Wilcoxon 0.6195 0.9334




In the second comparison, analysis between tumor stage and other variables are

performed. The data used in this comparison are given in Table 5.11.

Table 5.11 Distribution of tumor stage according to age, histopathology and nodal

stage.
Tumor Stage Total number
T1 T2 T3 of the patients
Age
-53 0 11 9 20
54-60 0 7 11 18
61- 1 10 9 20
Histopathology
Epidermoid 0 11 19 30
Non-epidermoid 1 13 9 23
Other 0 4 1 5
Nodal stage
NO 0 11 15 26
N1 1 14 13 28
N2 0 3 1 4

It is tested if there is a difference in survival times for each variable and the p-
values are given in Table 5.12. In this table it is seen that age groups and

histopathology has effect on survival but no effect of others.

Table 5.12 Test statistics.
Tumor Stage
Test T2 T3
Age Logrank 0.2491 0.0159"
Wilcoxon 0.2677 0.0145"
Histopathology | Logrank 0.3794 0.0089"
Wilcoxon 0.2698 0.0312"
Nodal stage Logrank 0.5981 0.6322
Wilcoxon 0.8284 0.8299
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Lastly, nodal stage is compared with age, histopathology and tumor stage
separately. The data are summarized in Table 5.13.

Table 5.13 Distribution of nodal stage according to age, histopathology and tumor

stage.
Nodal Stage Total number
NO N1 N2 of the patients
Age
-53 12 7 1 20
54-60 8 8 2 18
61- 6 13 1 20
Histopathology
Epidermoid 15 13 2 30
Non-epidermoid 9 12 2 23
Other 2 3 0 5
Tumor stage
T1 0 1 0 1
T2 11 14 3 28
T3 15 13 1 29

In order to test the difference between the groups, again logrank and Wilcoxon
tests were used, and p-values have been obtained as in Table 5.14.

Table 5.14 Test statistics.
Nodal Stage
Test NO N1
Age Logrank 0.4089 0.6173
Wilcoxon 0.3257 0.6963
Histopathology | Logrank 0.3415 0.1891
Wilcoxon 0.3221 0.2939
Tumor stage Logrank 0.4444 0.1061
Wilcoxon 0.4927 0.3710

Examining Table 5.14, it can be said that none of the variables have effect on

survival time according to the nodal stage.



CHAPTER SIX
CONCLUSION

6.1 Conclusions

In this study, it was objected to investigate the survival models with an
application. Parametric and nonparametric methods were examined, respectively. In
the application part, various statistical analyses were applied on the data, which was
obtained from Ege University Faculty of Medicine, Branch of Radiation Oncology.

At the end of the analysis, it is observed that it is impossible to explain the data by
any of the available parametric models. The effects of various factors on survival are
investigated by using Kaplan-Meier analysis, log-rank and Wilcoxon tests. It was
determined that none of the characteristics alone has effect on survival but tumor
stage has effects on survivability with epidermoid type cancer patients and age and

histopathological situation has effects on survivability with the patients in T3 phase.



REFERENCES

Bagar, E. (1993), Yasam tablolan analizinde kullanilan baz istatistiksel tekniklerin
bobrek nakli verilerine uygulanmasi, Hacettepe Universitesi F.B.E.

Chai, Z. (1998). Asymptotic properties of Kaplan-Meier estimator for censored
dependent data. Statistics & Probability Letters, 37, 381-389.

Chen, Y.Y., Hollander, M.,& Langberg, N.A. (1982). Small-sample results for the
Kaplan-Meier estimator. J ournal of the American Statistical Association, 77,
141-144,

Collett, D. (1994). Modelling survival data in medical research. London: Chapman
& Hall.

Crowder, M.J., Kimber, A.C., Smith, R.L.,& Sweeting, T.J. (Eds.) (1991). Statistical
analysis of reliability data. London: Chapman & Hall.

Efron, B. (1981). Censored data and the bootstrap. Journal of the American
Statistical Association, 76, 312-319.

Everitt, B.S.,& Dunn, G. (Eds).(1998). Statistical analysis of medical data. London:
Arnold.

Gehan, E.A. (1969). Estimating survival functions from the life table. Journal of
Choronic Diseases, 21, 629-644.

Gentleman, R.,& Crowley, J. (1991). Graphical methods for censored data. Journal
of the American Statistical Association, 86, 678-683.

Glantz, S.A. (1977). Primer of bio-statistics.(4™ ed.). McGrawhill.

Kalbfleisch, J.D.,& Prentice, R.L. (1980). The statistical analysis of failure time data.
Canada: John Wiley & Sons.

Kleinbaum, D.G. (1996). Survival analysis-A self-learning text. Springer.

Kuo, C.W., Chen, Y.M,, et al. (2000). Non-small cell lung cancer in very young and
very old patients. Chest, 117, 354-357.



Lee, E.T. (1992). Statistical methods for survival data analysis. USA: John Wiley
& Sons.

London, D. (1988). Survival models and their estimation (2™ ed.). USA: Actex
Publications.

Nelson, W. (1982). Applied life data analysis. Canada: John Wiley & Sons.

Maguire, P.D., Marks, L.B., et al. (2001). 73.6 Gy and beyond: hyperfractionated,
accelerated radiotherapy for non-small-cell lung cancer. Journal of Clinical
Oncology, 19, 705-711.

* . Maksymiuk, A. W., Earle, J. R., et al. (1994). Sequencing and schedule effects of
cisplatin plus etoposide in small cell lung cancer results of a North Central Cancer
treatment group randomized clinical trial. Journal of Clinical Onkology, 12, 70-76.

Miller, R. G. (1981). Survival analysis. John Wiley & Sons.

Oakes, D. (2001). Biometrika centenary: survival analysis. Biometrika, 88, 99-142.

Peterson, A.V. (1997). Expressing the Kaplan-Meier estimator as function of

empirical subsurvival functions. Journal of the American Statistical Association,
72, 854-858.

Pocock, S.J. (1991). Clinical trials. John Wiley & Sons.

PROPHET StatGuide: Glossary,
/lwww.basic.nwu.edu/statguidefiles/sg_glos.html#independent

Ying, Z. Jung, S. H.,& Wei, L. J. (1995). Survival analysis with median regression
models. Journal of the American Statistical Association, 90, 178-184.




