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ABSTRACT

In this study, principal components regression and ridge regression are examined
among the methods used to remedy multicollinearity problem in multiple linear

regression model.

One of the assumptions in multiple linear regression is that there must be no
perfect linear relations among the regressors. The relationship among the regressors
is called multicollinearity. In case of multicollinearity, parameter estimations by least
square method have large variances and hypothesis tests result in contradictory.
There are various methods for dealing with multicollinearity problem. Biased
regression methods (BRM) are the ones that can explain the structure of

multicollinearity and provide small standard errors among the methods used.

In this study two of biased regression methods; principal components regression
and ridge regression are examined as theoretically and researched which methods

give the best consequence by simulation.

In the application, 50 repetitions have been generated for each of the sample sizes
of 40, 80 and 120. Least squares, ridge and principal components regression are used
for each sample. Regression coefficients for each estimator were computed and the
mean and the standard deviation of the estimates were used as statistical comparison
criteria. According to comparisons among the estimators the principal components

regression has been found to provide better estimates.
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OZET

Bu ¢aligmada, ¢oklu dogrusal regresyon modelinde, ¢oklu dogrusal baglanti
sorununu ortadan kaldirmak i¢in kullanilan y6ntemlerden, temel bilegenler regresyon

ve ridge regresyon incelenmisgtir.

Coklu dogrusal regresyon modelinin varsayimlarindan biri de bagimsiz
degiskenler arasinda tam iliski olmamasidir. Bagimsiz degiskenler arasinda énemli
derecede iligki olmasi, g¢oklu dogrusal baglant: olarak adlandiriir. Coklu dogrusal
baglant1 olmasi durumunda uygulanan en kiigiik kareler yontemi ile parametre
tahminleri biiyiik standart hatalara sahip olmakta ve hipotez testleri geligkili sonuglar
vermektedir. Bu sorunu ortadan kaldirmak igin kullanilan gesitli yéntemler vardir.
Kullanilan y&ntemlerden yanli regresyon yontemleri, hem ¢oklu dogrusal baglant:
yapisinin agiklanabildigi hem de standart hatasi daha kiiciik hata kareler ortalamal
tahminlerin bulunabildigi yontemlerdir.

Caligmada, yanl regresyon yontemlerinden temel bilegenler regresyon ile ridge
regresyon kuramsal agidan incelenmiy, benzetim g¢aligmasi ile hangi yéntemin daha
iyi sonug verdigi aragtirilmastir,

Benzetim ¢aligmasinda, genislikleri 40, 80 ve 120 olan érneklemlerin her birisi
icin 50 tekrar yapilmigy ve bu Orneklemlere en kiigiik kareler, ridge ve temel
bilesenler regresyon uygulanarak regresyon katsayilarinin tahminleri hesaplanmgtir.
Tahmin ediciler arasinda yapilan karsilagtirmalarda kriter olarak tahminlerin
ortalamasi ve tahminlerin standart hatas1 dikkate alinmigtir, Yapilan karsilagtirmalara
gore, temel bilesenler regresyon yonteminin digerlerinden daha iyi sonuglar verdigi

gbzlemlenmigtir.
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CHAPTER ONE
INTRODUCTION

1.1 Introduction

The term regression was introduced by Francis Galton. In a famous paper, Galton
found that, although there was tendency for tall parents to have tall children and for
short parents to have short children, the average height of children born of parents
of a given height tended to move or “regress” toward the average height in the
population as whole. Galton’s law of universal regression was confirmed by his
friend Karl Pearson, who collected more than a thousand records of héights of
members of family groups. He found that the average height of sons of a group of tall
fathers was less than their fathers height and the average height of sons of a group of
short fathers was greater than their fathers’ height, thus “regressing” tall and short
sons alike toward the average height of all men. In the words of Galton, this was

“regression to mediocrity.” (Gujarati,1995)

The modern mean of regression analysis is concerned with study of the one
response variable, on one or more predictor variables, for the purpose of constructing
models for predicting the population mean or making other inferences. In order to
reach these purposes, it obtains some assumptions. One of these assumptions which
often appears as a problem, is predictor variables having relationships with each
other. This is called multicollinearity. Various methods are used for solving this
problem. Two of these methods principal components regression and ridge
regression; are discussed in this study. These methods are known as biased
regression methods (BRM). They both explain the structure of multicollinearity and

provide small mean square error. Principal components regression is a method uses



vertical transformation variables instead of original variables and ridge regression
that is a method for minimizing the mean square error by adding a constant to the

diagonal of the correlation matrix.

The purpose of this study is examining principal components regression (PCR)
and ridge regression (RR) and researching which methods give the best consequence

by simulation.

This thesis contains five chapters. In chapter one, a short description of the entire
study is summarized. In chapter two, introduction to regression analysis and
multicollinearity problem are mentioned. In chapter three, ridge regression and
principal components regression are discussed. In chapter four, comparasion of these
methods using simulation and the solution is presented in tables. In chapter five, the

conclusions are presented.



CHAPTER TWO
REGRESSION ANALYSIS AND

MULTICOLLINEARITY PROBLEM

2.1 Introduction

The subject of regression analysis concerns the study of relationships among
variables, for the purpose of constructing models for prediction and making other

inferences. It treats two-variable (bivariate) or several variable (multivariate) data.

To obtain a useful prediction model, one should record the observations of all
variables that may significantly response. These other variables may than be
incorporated explicitly into the regression analysis. The name multiple regression
refers to a model of relationship where the response depends on two or more

predictor variables.

A response variable Y may depend on a predictor variable X but, after a straight-
line fit it may turn out that the unexplained data variation is large so R? is small and a
poor fit is indicated. At the same time, an attempt to transform one or both of the
variables may fail to dramatically improve the value of R. This difficulty may well
be due to the fact that the response depends not just on X but on the other factors as
well. When used alone, X fails to be a good predictor of Y because of the effects of

those other influencing variables.



The linear multiple regression model may be written as

}’1 =ﬁ0 +ﬁlXi1 +ﬂ2X12 +"'+ﬁkXik +£l

k
=By + ), B,X, +¢ i=1,.,n j=1, ..k 2.1)

j=1

where the subscript i denotes the observational unit from which the observations on Y
and the k predictor variables were taken. The second subscript designates the
predictor. The sample size will be denoted with n, i=1, ..., n and k will denote the
number of predictors. There are (k+1) parameters, when the linear model includes

the intercept f3,. For convenience, we will use p=k+1. The model may be more

conveniently stated using matrix rotation:

Y=XB+¢ 2.2)
where
Y: nx 1 vector of observations on the response variable, Y¥;
X : nx p matrix consisting of a column of ones, which is labeled 1 followed
by the k column vectors of the observations on the predictor variables

B : p x I vector of regression coefficients to be estimated,

€ : nx 1 vector of error terms.

Note that the term “linear” refers to the fact that the model is linearin f and €.

2.2  The Multiple Linear Regression Model

Multiple linear regression model makes several assumptions. One of these
assumptions is “There is no perfect multicollinearity. That is, there are no perfect
relationships among the predictors”. It states that X matrix has full columns rank
equal to p, the number of columns of the X matrix are linearly independent; that is

there is no exact linear relationship among the X variables. In other words there is no



multicollinearity. In scalar notation this is equivalent to saying that there are exists

no set of number A,;,4,,4,,...,4, not all zero such that
A Xy +A X+, +A4,X, =0 (2.3)

where X, =1 for all i (to allow for the column of 1’s in the X matrix.) In matrix

notation (2.3) can be represented as
AX =0 2.4)
where A’is a 1xp row vector and X is a px1 column vector.

If an exact linear relationship such as (2.3) exists the variables are said to be
collinear. If, on the other hand (2.3) holds true only if

Ay=A,=A,=-=0 2.5)

then the X variables are said to be linearly independent.

23 Sources Of Multicollinearity

There are four primary sources of multicollinearity. It may be due to the following

factors;

1. The data collection method employed; for example, sampling over a limited

range of the values taken by the predictors in the population.

2. Constraints on the model or in the population being sampled. For instance, in
the regression of electricity consumption on income (X5) and house size (X3)
there is a physical constraint in the population in that families with higher

incomes generally have larger homes than families with lower incomes.



3. Model specification; for example, adding polynomial terms to a regression

model, especially when the range of the X variable is small.

4. An overdetermined model. This happens when the model has more predictors
than the number of observations. This could happen in medical research
where there may be a small number of patients about whom information is

collected on a large number of variables.

2.4  Practical Consequences Of Multicollinearity

If multicollinearity is high (perfect), the regression coefficients of the X variables
are indeterminate and their standard errors are infinite. If multicollinearity is near
(less than perfect), the regression coefficients although determinate, possess large
standard errors (in relation to the coefficients themselves), which means the

coefficients cannot be estimated with great precision or accuracy.

In cases of near or high multicollinearity, one is likely to encounter the following

consequences: (Gujarati, 1995, pp.327-332)

1. Although BLUE (Best Linear Unbiased Estimate), the OLS (Ordinary Least
Squares) estimators have large variances and covariances, making precise

estimation difficult.

2. Because of consequence 1, the confidence intervals tend to be much wider,
leading to the acceptance of the “zero null hypothesis” (i.e. the true

population coefficient is zero) more readily.

3. Also because of consequence 1, the ¢ ratio of one or more coefficients tends

to be statistically insignificant.



4. Although the ¢ ratio of one or more coefficients is statistically insignificant,
R?, the overall measure of goodness of fit, can be very high.

5. The OLS estimators and their standard errors can be sensitive to small

changes in the data.
24.1 Large Variances and Covariances of OLS Estimators

Suppose that there are only two predictor variables, X; and X, The model

assuming that X;, X» and Y are scaled to unit length, is
Y=8X,+B,X,+¢€ (2.6)
and the least squares normal equations are

(xxX)B=x7Y Q2.7

1 r12 B1 — rl)‘
l:rl2 1 ]liﬁj_lirzyil 2.8)

where ry2 is the simple correlation between X; and X; and r;, is the simple correlation

between X; and Y, i=1,2. Now the inverse of (X X) is

1 ry

c=(x%x)" = (l-rf) (11’13) 2.9)

- a-nd)

and the estimates of the regression coefficients are

A ", — iyt A ., — Ly
13 _ 1y "2l ﬁ =2y 12l (2.10)
boa-n) Poa-n)



If there is strong multicollinearity between X; and X, then the correlation

coefficient 7, will be large. From equation (2.9);
V(B,)=C 0% > and cov(B,,B,)=C,0% — oo

depending on whether

n,—>+l or rn,—-1.

Therefore strong multicollinearity between X; and X, results in large variances
and covariances for the least squares estimators of the regression coefficients. This
implies that different samples taken at the same X levels could lead to widely

different estimates of the model parameters.

When there are more than two predictor variables multicollinearity produces

similar effects. It can be shown that the diagonal elements of the C = (XX )™ matrix

are

1

C. =
i 2
1-R’

j=12,..,k (2.11)

where R? is the coefficient of multiple determination from the regression of X; on
the remaining (k-1) predictor variables. If there is strong multicollinearity between X;
and any subset of the other (k-1) predictors, then the value of R} will be close to
unity. Since the variance of ﬁj is V(Bj) =C,0°=(1-R})"0?, strong
multicollinearity implies that the variance of the least squares estimate of the
regression coefficient is very large. Generally the covariance of B,. and B ; will also

be large if the predictors X;and X; are involved in a multicollinear relationship.



2.4.2 Wider Confidence Intervals

Because of the large standard errors, the confidence intervals for the relevant
population parameters tend to be larger. Therefore, in cases of high multicollinearity,
the sample data may be compatible with a diverse set of hypothesis. Hence the
probability of accepting a false hypothesis (i.e. type II error) increases.

2.4.3 “Insignificant” ¢ Ratios

To test the null hypothesis that, say, B,= 0, we use the ¢ ratio, that is Bz / se(ﬁ2 ),

and compare the estimated ¢ value with the critical ¢ value from the # table. In cases
of high collinearity the estimated standard errors increase dramatically, there by
making the ¢ values smaller. Therefore, in such cases, one will increasingly accept

the null hypothesis that the relevant true population value is zero.
2.4.4 A High R? but Few Significant ¢ Ratios

Consider the k-variable linear regression model From (2.1), in cases of high
collinearity, it is possible to find that one or more of the partial regression

coefficients are individually statistically insignificant on the basis of the ¢ test. Yet

the R?in such situations may be so high, say in excess of 0.9 that on the basis of the
F test one can convincingly reject the hypothesis that B, = 8, =...= 8, =0. Indeed

this is one of the signals of multicollinearity insignificant # values but a high overall
R? (and a significant F value)

24.5 Sensitivity of OLS Estimators and Their Standard Errors to Small
Changes in Data

As long as multicollinearity is not perfect, estimation of the regression
coefficients is possible but the estimates and their standard errors become very

sensitive to even the slightest change in data.
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In the presence of high collinearity one cannot estimate the individual regression
coefficients precisely but that linear combinations of these coefficients may be

estimated more precisely.

2.5  Detection Of Multicollinerity

Having studied the nature and consequences of multicollinearity, the natural
question is : “How does one know that collinearity is present in any given situation,
especially in models involving more than two predictors?” It is useful to bear in mind

Kmenta’s warning:

1. Multicollinearity is a question of degree and not of kind. The meaningful
distinction is not between the presence and the absence of multicollinearity,
but between its various degrees.

2. Since multicollinearity refers to the condition of the predictors that there are
assumed to be nonstochastic it is a feature of the sample and not of the
population. Therefore, we do not ‘test for multicollinearity’ but can, if we
wish, measure its degree in any particular sample” (Jan Kmenta, Elements of

Econometrics)

“When multicollinearity is present, we do not have one unique method of
detecting it or measuring its strength. What we have are some rules of thumb, some
informal and some formal, but rules of thumb all the same.” (Gujarati, 1995,
pp-335-339) Some of these rules are

High R? but few significant 7 ratios

High pair-wise correlations among predictors
Examination of the partial correlations
Auxiliary regression

Eigenvalues and condition index

SN O S o o

Tolerance and variance inflation factor
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2.5.1 High R? but Few Significant ¢ Ratios

This is the “classic” symptom of multicollinearity. If R? is high, say, in excess of
0.8, the F test in most cases will reject the hypothesis that the partial regression
coefficients are simultaneously equal to zero, but the individual # tests will show that
none or very few of the partial regression coefficients are statistically different from

ZCro.

Although this diagnostic is sensible, its disadvantage is that “it is too strong in the
sense that multicollinearity is considered as harmful only when all of the influences
of the predictors on Y cannot be disentangled.”

2.5.2 High Pair-wise Correlations among Predictors

Another suggested rule of thumb is that if the pair-wise or zero-order correlation
coefficient between two predictors is high, say, in excess of 0.8, then
multicollinearity is a serious problem. The problem with this criterion is that,
although high zero-order correlation may suggest collinearity, it is not necessary that
they be high to have collinearity in any specific case. To put the matter somewhat
technically, high zero-order correlations are a sufficient but not a necessary condition
for the existence of multicollinearity because it can exist even though the zero-order

or simple correlations are comparatively low (say, less than 0.50).

Therefore, in models involving more than two predictors, the simple or zero-order
correlation will not provide an infallible guide to the presence of multicollinearity.

Of course, if there are only two predictors, the zero-order correlation will suffice.
2.5.3 Examination of Partial Correlation

A study of the partial correlations may be useful, there is no guarantee that they
will provide an infallible guide to multicollinearity, for it may happen that both
R?and all the partial correlations are sufficiently high.
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2.5.4 Auxiliary Regressions

Since multicollinearity arises because one or more of the predictors are exact or
approximately linear combinations of the other predictors, one way of finding out
which X variable is related to other X variables is to regress each X; on the remaining
variables and compute the corresponding R, which we designate as R’, each one of
these regressions is called an auxiliary regression, auxiliary to the main regression of

Y on the X’s. Then following the relationship between F and R” established and the

variable

zxzzz: n%c -1 2.12)

i (1 R;:Z 3o
A % k)

follows the F distribution with k-1 and n-k df. In equation (2.12) R? is the

Ki- X2 X3 Xte
coefficient of determination in the regression of variable X; on the remaining X

variables.

If the computed F; exceeds the critical F at the chosen level of significance, it is
considered that the particular X; is collinear with other X’s if it does not exceed the
critical F It is not collinear with other X’s. In which case we may retain that variable
in the model. If F is statistically significant, we still have to decide whether the
particular X; should be dropped from the model.

Instead of formally testing all auxiliary R? values, one may adopt Klien’s rule of
thumb, which suggest that multicollinearity may be a trouble some problem only if
the R* obtained from an auxiliary regression is greater than the overall R?, that is, that
obtained from the regression of Y on all the predictors. Of course, like all other rules
of thumb, this one should be used judiciously.
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2.5.5 Eigenvalues and Condition Index

Eigenvalues and the condition index are used to diagnose multicollinearity. From
these eigenvalues, however we can derive what is known as the condition number
(CN) defined as

_ MaximumkEigenvalue

CN - (2.13)
MinimumkEigenvalue
and the condition index ( CI ) defined as
I = MaxfmumEfgenvalue -JoN 2.14)
MinimumEigenvalue

“Then we have this rule thumb. If CN is between 100 and 1000 there is moderate
to strong multicollinearity and if exceeds 1000 there is severe multicollinearity.
Alternatively, if the CI(=+/CN)is between 10 and 30, there is moderate to strong

multicollinearity and if exceeds 30 there is severe multicollinearity.” (Gujarati, 1995,
p.338)

“The condition indices of the X X matrix are

Cl = —i& j=12, ...k (2.15)

clearly the largest condition index is the condition number defined in equation (2.13).
The number of condition indices that are largely (say = 1000) are a useful measure
of the number of near linear dependencies in XX .” (Montgomery & Peck, 1992,
p-319)
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2.5.6 Tolerance and Variance Inflation Factor

For the k-variable regression model [Y, intercept, and k predictors] as we have

seen in (2.16) the variance of a partial regression coefficient can be expressed as

2
var(B,) = | —— 2.16)
DX\ 1-R;]
2
_ ;xg VIF, 2.17)

where B, is the regression coefficient of the predictor X ,,Rf is the R? in the
(auxiliary) regression of X ; on the remaining k predictors and VIF, is the variance

inflation factor. As Rj2 increases toward unity, that is as the collinearity of X; with

the other predictors increases, the VIF also increases and in the limit it can be

infinite.
Another measure of tolerance to detect multicollinearity is defined as

TOL, =(1-R?) =(VIF,) (2.18)

Clearly TOL; =1 if X is not correlated with other predictors whereas it is zero if
it is perfectly related to the predictors. VIF (or tolerance) as a measure of collinearity
is not free of criticism. As equation (2.17) shows, var( B ;) depends on three factors:

o2, Z x; and VIF,. A high VIF can be counterbalanced by a low o’or a high

Z ;(jz . To put it differently a high VIF is neither necessary nor sufficient to get high

variances and high standard errors. Therefore, high multicollinearity as measured by
a high VIF, may not necessarily cause high standard errors. In all this discussion, the

terms high and low are used in a relative sense.
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2.6 Methods For Dealing With Multicollinearity

What can be done if multicollinearity is serious? As in the case of detection, there
are no infallible guides because multicollinearity is essentially a sample problem.
Howeyver, one can try the following rules of thumb, the success depending on the
severity of the collinearity problem. Several techniques have been proposed for
dealing with the problems caused by multicollinearity. (Montgomery & Peck, 1992,
pp-325-358)

Collecting Additional Data
Model Respecification

Ridge Regression

Generalized Ridge Regression
Principal Components Regression

AU

Latent Root Regression Analysis

Such methods have been suggested as a possible solution to the multicollinearity
problem. In these methods Ridge Regression, Generalized Ridge Regression,
Principal Components Regression, Latent Root Regression Analysis are the biased
regression methods. Biased Regression Method (BRM) is often used as another
solution for the multicollinearity problem. BRM is preferred to Least Squares
because BRM both explains the structure of multicollinearity and provide small MSE.

Principal Components Regression that is a method which vertical transformation
variables are used instead of original variables and Ridge Regression that is a method
for minimizing the mean square error by adding a constant to the diagonal of the

correlation matrix will be dealed with in chapter three.



CHAPTER THREE
RIDGE REGRESSION AND

PRINCIPAL COMPONENTS REGRESSION

3.1 Introduction

In regression analysis when multicollinearity problem exists, generally it is used
the way either ignoring the model or eliminating one or more variable. There are two

advantages of choosing variable as follows:

a. The regression model that has few variables, both easy to practice and economic
comparing to the others.

b. Statistically small Mean Square Error (MSE) provides perfect estimate.

The least square estimators of the regression coefficients are the best linear
unbiased estimators. That is, of all possible estimators are both linear functions of the
data and unbiased for the parameters begin estimated, the least squares estimators
have the smallest variance. In the presence of multicollinearity, however, this
minimum variance may be unacceptably large. Lightening the least squares condition
that estimators be unbiased opens for consideration a much larger set of possible
estimators from which one with better properties in the presence of multicollinearity
might be found. Biased regression refers to this class of regression methods in which

unbiasedness is no longer required.

The biased regression methods prevent the multicollinearity problem by the
computationally suppressing the effects of the multicollinearity. Ridge regression
makes this by reducing the apparent magnitude of the correlations. Principal
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components regression prevents the problem by regressing Y on the important
principal components and then parceling out of the effect of the principal component

variables to the original variables.

3.2 Ridge Regression

When the sample data for regression exhibit multicollinearity the least squares

estimates of the B coefficients may be subject to extreme round off error as well as

inflated standard errors. Since their magnitudes and signs may change considerably
from sample to sample, the least squares estimates are not said to be stable. A
technique developed for stabilizing the regression coefficients in the presence of

multicollinearity is ridge regression.

Ridge regression is a modification of the method of the least squares to allow
biased estimators of the regression coefficients. At first place, the idea of biased
estimation may not seem very appealing. But consider the sampling distributions of

two different estimators of a regression coefficient [, one unbiased and the other

biased, showed in Figure 3.1

E(B) = B (unbiased)

V() large E(3*)% § (bissed)
V(@B*) small
8 B B E@B* B*

(a) (b)

Figure 3.1 Sampling Distributions of (a)Unbiased and (b)Biased Estimators of
(Montgomery & Peck, 1992, p.330)

Figure 3.1.a shows an unbiased estimator of B with fairly large variance. In
contrast, the estimator shown in Figure 3.1.b has a slight bias but with much less
variable. In this case, we would prefer the biased estimator over the unbiased

estimator since it will lead to more precise estimates of the true . One way to



18

measure the “goodness” of an estimator of B is to calculate the mean square error of

B, denoted by MSE( B ), where MSE( 3 ) defined as

MsE(B) = (EB - By?) 3.1)
= v +(EB)- BY 32)

the difference E(B) — B is called the bias of B . Therefore, MSE( B ) is just the sum

of the variance of ,3 and the squared bias:
MSE( B ) = V() + (biasin f8)? (3.3)

Let Bm denote the least squares estimate of f. Then since E( ﬁw) = B, the bias

is 0 and MSE(B5) = V(B.s).

We have mentioned the variance of the least squares regression coefficients, and
hence MSE( an ), will be quite large in the presence of multicollinearity. The idea
based on ridge regression is to introduce a small amount of bias in ridge estimator of

B, denoted by BR , comparing its mean square error for least squares

MSE(B) < MSE(B.) (34)

In this manner, ridge regression will lead to narrower confidence interval for the

B coefficients, and hence more stable estimates.

To obtain the ridge regression coefficients, the user must be specify the value of a

biasing constant ¢, (c20). In matrix notation, the ridge estimator BR is calculated as

follows:

B, =(XX+)' XY (3.5)
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note that when c=0 the ridge estimator is the least squares estimator
B =(xx)'xY (3.6)

Ridge regression builds on the fact that a singular square matrix can be made
nonsingular by adding a constant (c) to the diagonal of the matrix. That is, if XX is
singular, then (XX +cI) is nonsingular, where ¢ is some small positive constant.
When the value c¢ increases, the bias in the ridge estimates increases while the
variance decreases. The idea is to choose the c so that the total mean square error for

the ridge estimators is smaller than the total mean square error for the least square

estimates.

Various methods for choosing the value of ¢ have been proposed. Ridge trace,
variance inflation factor and Hoerl, Kennard and Baldwin method (1975) are given

next sections.
3.2.1 Ridge Trace

One commonly used graphical technique employing a ridge trace is shown in
Figure 3.2. Values of the estimated ridge regression coefficients are calculated for
different values of c¢ ranging from O to 1 and plotted. The plots for each of the

predictor variables in the model are overlaid to the ridge trace.

If multicollinearity is severe, the instability in the regression coefficients will be

obvious from the ridge trace. As c is increased, some of the ridge estimates will be
very dramatically change. At some value of c, the ridge estimates BR will stabilize.
The objective is to select a reasonably small value of ¢ at which the ridge estimates

ﬁR are stable.
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Ridge Trace
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Figure 3.2 Ridge trace

In Figure 3.2 the search would be between 0.01 and 0.1. The value selected on
this graph happens to be 0.066, the value obtained from the analytic search. It might
be inclined to use an even smaller value of ¢ such as 0.01. Mention that the smaller

value of ¢, the smaller amount of bias that is included in the estimates.

3.2.2 Variance Inflation Factor

VIF, is the method of determining biasing constant c.

VIF, = R ji=L2, ..,k 3.7

where R? is the coefficient of determination from the regression of X; on the other

independent variables. Note that VIF; will be large when Rj2 is large, that is, when

the predictor variable Xjis strongly related to the other predictor variables.
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A severe multicollinearity problem exists if the largest of the variance inflation

factors for the f°’s is greater than 10 or, equivalently, if the largest multiple

coefficient of determination, Rj2 , is greater than 0.90.

The ridge trace shown in Figure 3.2 is simultaneous plot of the values of the ¢
estimated ridge standardized regression coefficients for different values of ¢, usually

between 0 and 1. Extensive experience has indicated that the estimated regression
coefficients ﬁ ¢ may fluctuate widely as c is changed slightly from 0, and some may

even change signs. Gradually, however these wide fluctuation cease and the
magnitudes of the regression coefficients tend to move slowly toward zero as c is

increased further. At the same time, the values of (VIF) ; tend to fall rapidly as c is
changed from 0, and gradually the (VIF ) ; values also tend to change moderately as ¢

is increased further. One therefore examines the ridge trace and the VIF values and
chooses the smallest value of ¢ where it is deemed that the regression coefficient first
become stable in the ridge trace and the VIF values have become sufficiently small.

The choice is thus a judgmental one.
3.2.3 Hoerl, Kennard and Baldwin Method

Hoerl, Kennard and Baldwin (1975) suggest the use of

—~NA2
c={2-bd (38)
pB

where (p-1) is the number of parameters excluding S, and &2 is the mean square

error estimated from the ordinary least squares regression (c=0). The denominator of

equation (3.8) is the sum of squares of the ordinary least squares regression

coefficients B excluding the intercept.
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3.3  Principal Components Regression

Biased estimators of regression coefficients can also be obtained by using a
procedure known as principal components regression. Consider the canonical form of
the model,

Y=Za+e 3.9)

where
Z=XT oa=T7P TXXT=ZZ=A

“The A =diag(Ay,A,,...,A,)is a kxk diagonal matrix of the eigenvalues of

XX and T is a kxk orthogonal matrix whose columns are the eigenvectors

associated with A,,A,,...,4,. The columns of Z, which define a new set of

orthogonal regressors, such as
z=z,,2,,...,2,]
are referred to as principal components.” (Montgomery & Peck, 1992, p.353)
The least squares estimator of & is
A=(ZZ)'ZY=N'ZY (3.10)
and the covariance matrix of @ is
V(@) =0%(ZZ)" =0*A" (3.11)

Thus a small eigenvalue of XX means that the variance of the corresponding

orthogonal regression coefficient will be large.
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22=33z2=A (3.12)

s=1 t=1

we often refer to the eigenvalue A, as the variance of the s principal component. If
all the A, are equal to unity, the original regressors are orthogonal, while if an A, is

exactly equal to zero, this implies a perfect linear relationship between the original

regressors. One or more of the A, near zero implies that multicollinearity is present.

Note also that the covariance matrix of the standardized regression coefficients B is

V(B)=V(T&) =TA'T'c> (3.13)

. k
“This implies that the variance of f, is 6*(D #2/A,) . Therefore the variance of

s=1
B, is a linear combination of the reciprocals of the eigenvalues. This demonstrates
how one or more small eigenvalues can destroy the precision of the least squares

estimate Bs .” (Montgomery & Peck, 1992, p.354)

We have observed previously how the eigenvalues and eigenvectors of XX
provide specific information on the nature of the multicollinearity. Since Z=XT, we

have

k
Z = Zt,sX, (3.14)

t=1

where X, is the #” column of the X matrix and f; are the elements of the s* column of

T ( the s™ eigenvector of XX ). If the variance of the s™ principal component (A,)is

small, this implies that Z; is nearly a constant, and (3.14) indicates that there is a
linear combination of the original regressors that is nearly constant. This is the
definition of multicollinearity. Therefore (3.14) explains why the elements of the
eigenvector associated with a small eigenvalue of XX identify the regressors

involved in the multicollinearity.



24

The principal components regression approach combats multicollinearity by using
less than the full set of principal components in the model. To obtain the principal

components estimator, assume that the predictors are arranged in order of decreasing
eigenvalues, 4, >A, 2:--2 A, >0. Suppose that the last / of these eigenvalues are
approximately equal to zero. In principal components regression the principal

components corresponding to near-zero eigenvalues are removed from the analysis

and least squares applied to the remaining components. That is,

Qpc =Ba (3.15)
where bi=by=...=by =1 and br.i+1=bi1+2=...=b=0. Thus the principal components
estimator is

_ 8, -
é, k-1 components

a

Gpe =| -2 (3.16)

0
0
. I components

| 0]

or in terms of the standardized regressors (Montgomery & Peck, 1992, p.355)

ch = poc

=S xse, G.17)

t=1
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34  Comparison And Evaluation Of Biased Estimators

There is considerable evidence indicating the superiority of biased estimation to
least squares if multicollinearity is present. Jeffers (1967) was the first argue that
principal components can also provide information as to which predictors should be
selected. Following Jeffers’ work, method that utilize principal components to reduce
the number of original variables have been suggested by several authors such as
Mansfield et al.(1977).

There has also been some controversy surrounding whether the regressors and the
response should be centered and scaled so that X’X and XY are in correlation form.
This results in an artificial removal of the intercept from the model. Effectively the
intercept in the ridge model is estimated by Hoerl, Kennard and Baldwin (1970a,b)
use this approach, as Marquardt and Snee (1975) do, who note that centering tends to

minimize any nonessential ill-conditioning when fitting polynomials.

In practice the procedure for selected ¢ with ridge trace is straightforward, easy to
implement on a standard least squares computer program, and the analyst can learn
to interpret the ridge trace very quickly. It is also occasionally useful to find the
“optimum” value of ¢ suggested by Hoerl, Kennard and Baldwin (1975) and compare
the resulting models with the one obtained via the ridge trace.

Despite the objection noted, we believe that biased estimation methods are useful
techniques that the analyst should consider when dealing with multicollinearity.
Biased estimation methods certainly compare very favourably to other methods for
handling multicollinearity, such as variable elimination. As Marquart and Snee
(1975) note, it is often better to use some of the information in all of the regressors,
as ridge regression does, than to use all of the information in some regressors and
none of the information in others, as variable elimination does. Furthermore variable
elimination can be thought of as a form of biased estimation because, subset
regression models often produce biased estimates of the regression coefficients. In
effect, variable elimination often shrinks the vector of parameter estimates as ridge

regression does.



CHAPTER FOUR
COMPARISON OF PRINCIPAL COMPONENTS

REGRESSION WITH RIDGE REGRESSION AND
LEAST SQUARES REGRESSION BY
SIMULATION

4.1 Introduction

In the previous chapter, the definitions of ridge regression and principal
components regression methods were given. In this chapter, it will be given that how
principal components regression and ridge regression methods can be used to remove

multicollinearity.

In this chapter, first using a Minitab macro program a population was generated.
Second, random samples were drawn from this population with sample sizes of
n=40, 80 and 120. Least squares, ridge and principal components regression were
applied to each of these samples. Regression coefficients for each of these estimators
are computed and as statistical criteria to compare these estimators, the mean and the
standard deviation of the estimates were used. For these purposes the following steps

were followed.

1. The population is generated.

2. A sample size n=40 is selected from the population.

3. The least squares, ridge and principal components regression methods are
applied to sampled data.

4. Returning to step 2, this process is repeated for 50 times.
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Step 2, 3 and 4 are repeated for n=80 and 120.
6. The simulation values obtained for the least squares, ridge and principal
components regression are compared and researched which methods give the

best consequence by simulation.

4.2  Generating The Population

A Minitab macro program was written to draw a random samples from the

created population. Some parameters of this population are given in the Table 4.1

Table 4.1 Generated Population

X; X Y; (1=1,...,25) E(Y) o,
5 46 49 .o 63 58 5.0

10 10 48 51 Eoo 65 60 5.0
15 50 53 500 67 62 5.0

20 52 55 69 64 5.0

25 54 57 cog 7 66 5.0

20 30 59 59 r.. 75 68 50
35 58 61 75 70 5.0

40 60 63 77 72 5.0

45 62 65 506 79 74 5.0

30 50 64 67 00 81 76 5.0
55 66 69 83 78 5.0

60 71 71 85 80 5.0

65 70 73 87 82 5.0

40 70 72 77 89 84 5.0
75 74 77 91 86 5.0

80 76 79 93 88 5.0

85 78 81 . 95 90 5.0

50 90 80 83 R 97 92 5.0
95 82 85 99 94 5.0

100 84 87 101 96 5.0

105 86 89 103 98 5.0

60 110 88 91 105 100 5.0
115 90 93 107 102 5.0

120 92 95 vee 109 104 5.0

125 94 97 . 111 106 5.0

70 130 96 99 ven 113 108 5.0
135 98 101 vee 115 110 5.0

140 100 103 ces 117 112 5.0

145 102 105 cen 119 114 5.0

80 150 104 107 s 121 116 5.0
: 155 106 109 cee 123 118 5.0
160 108 111 ves 125 120 5.0

165 110 113 . 127 122 5.0

%0 170 112 115 . 129 124 5.0
175 114 117 ves 131 126 50

180 116 119 vee 133 128 5.0

185 118 121 ces 135 130 5.0

100 190 120 123 ven 137 132 5.0
195 122 125 cee 139 134 5.0

200 124 127 cas 141 136 5.0
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There are two predictor variables X; and X,. X; has 10 different values as
10,20,30,...,100. X, takes 4 different values according to each X; value. Therefore
there are 40 different groups of given X values. For each of X values there are 25 Y
values and these response values are distributed normally and independently mean

E(Y) and constant variance 6°=25.

The correlation matrix of ¥, X; and X; is given in Table 4.2. It can be seen that
there exists a high correlation between X; and X .

Table 4.2 Correlation Coefficients Between Variables

Y Xi
Xi 0.97362
X 0.97822 0.99530

4.3 An Application

The population was generated and a random sample of simulation 40 was selected
by the following Minitab macro program ‘SAM1.MTB’.

SAM1.MTB
RETR 'POPULATION'
SET C100
(1:25)
END
LET K100=1
SET C151
(0:975/25)K100
END
LET K1=100
EXEC 'SAM2' 40
STACK C101-C140 C150
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LET C99=C150+C151
LET K1=0

LET K3=40*K100
EXEC 'SAM3'K3
ERASE C1-C9
ERASE C13-C200
NAME C1="Y' C2=X1' C3="X2'
COPY C10C1

COPY C11 C2

COPY C12C3
ERASE C10-C12
SAVE ‘SAMOY’

SAM2.MTB

LET K1=K1+1
SAMPLE K100 C100 CK1

SAM3.MTB

LET K1=K1+1

LET K2=C99(K1)
LET C10(K1)=C2(K2)
LET C11(K1)=C3(K2)
LET C12(K1)=C4(K2)

In the following graph an Anderson-Darling test for normality is performed and
numerical results are displayed for a given sampled data. In the graph, a straight (or
close to straight) line indicates normality. A lot of curvature indicates non-normal
data. The null hypothesis is that the data are normal; the alternative hypothesis is that
the data are not normal. A p-value greater than the cut value of our choice (0.05),
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says no reject the null hypothesis. In Figure 4.1 shows that ¥ values have the normal
distribution (p-value>0.05).

Normal Probability Plot

999 ----+ L s S .
.
| (

Probability

I R e e S SRE &
——t — i —
50 60 70 80 90 100 110 120 130 140
Y
Average: 97.225 Anderson-Darling Normality Test
StDev: 24.6592 A-Squared: 0.476
N: 40 P-Value: 0.226

Figure 4.1 Normal Probability Plot of Y Values for n=40

Estimates of regression coefficients and the standard deviations of estimated

regression coefficients are given in the following Table 4.3.

Table 4.3 Least Squares Regression Coefficients for an Application Data

i Bt SB:

0 53.75167

1 0.23506 0.26627

2 0.29800 0.13251
R? =0.9658 S =4.6850
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These regression coefficients are denoted by of ﬁo , 3, and Bz . These coefficients

are calculated as f,=53.75167, f,=0.23506 and f3,=0.29800. Standard deviations

of coefficients are S 5 =0,26627 and § 5 =0.13251.

The ridge regression analysis is applied by using NCSS program. The results of

ridge regression are given in Table 4.4.

Table 4.4 Summary Statistics of the Ridge Regression for an Application Data

c | R | s | VIF ¢ =0.17546
i B Sy
0 56.61737
1 | 0.00000 | 0.9658 | 4.6850 | 106.6000 0.37849 0.02494
2 | 0.00010 | 0.9657 | 4.6890 | 102.2162 0.19307 0.01241
3 | 0.00050 | 0.9655 | 4.7044 | 87.1366
4 | 0.00100 | 0.9652 | 4.7231 | 72.5655
5 | 0.00500 | 0.9631 | 4.8620 | 25.2257
6 | 0.01000 | 0.9606 | 5.0223 | 11.1244
7 | 0.05000 | 0.9418 | 6.1097 | 1.0241
8 | 0.10000 | 0.9193 | 7.1933 | 0.4417
9 | 0.17546 | 0.8873 | 8.4980 | 0.2841
10 | 0.50000 | 0.7719 | 12.0914 | 0.1695
11 | 1.00000 | 0.6430 | 15.1258 [ 0.1135

In this table for different ¢ values R, S and VIF values are given. When ¢=0 the

ridge regression results are the same as least-squares results.

Since the least squares solution maximizes R-squared, the largest value of R-

squared occurs when c is zero. We want to select a value of ¢ that does not stray very

much from the least squares R-squared value.
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S is the square root of the mean squared error. Least squares minimizes this value,
so we want to select a value of ¢ that does not stray very much from the least squares

value.

VIF is the maximum variance inflation factor. Since we are looking for that value
of ¢ which results in all VIFs being less than 10, this value is very helpful in our

selection of c.

One of the methods for choosing the value of ¢ is the Hoerl, Kennard and Baldwin

method. The formula is given in equation (3.8).

Regarding all of these various statistics, from this table it is seen that the optimal ¢
value is 0.17546 for an application data. The coefficients are BO =56.61737,

ﬁl =0.37849 and 62 =0.19307. The standard deviations of these coefficients are

SB =0.02494 and S, =0.01241.
1 2

The principal components regression analysis is applied by using NCSS program.
Summary statistics for principal components regression analysis are given in the
Table 4.5. Here PC’s is the number of principal components included in the

regression reported in this row.

Table 4.5 Summary Statistics of the Principal Components Regression for an
Application Data

pCs | A cum. CN R S VIF B Sy

Percent

0 53.02580

1.99530 | 99.7600 1.00000 | 0.96530 | 4.71450 025060 | 0.41694 | 0.01299

2 | 0.00470 | 100.0000 | 424.40000 | 0.96580 | 4.68500 | 106.60000 | 0.20749 | 0.00647

First eigenvalue is 1.99530 and the second eigenvalue is 0.00470. The first
principal component accounts for 99.76% of the total variation in Y. Only first

eigenvalue is greater than 1. Second eigenvalue is close to 0.
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In this table Condition Number (CN) is largest eigenvalue divided by each
corresponding eigenvalue. CNs greater than 1000 indicate a severe multicollinearity
problem while condition numbers between 100 and 1000 indicate a mild
multicollinearity problem. When all PCs are included the CN value is 424.40.

Since the least squares solution maximizes R-squared, the largest value of R-

squared occurs at the bottom of the report when all PC’s are included.

S is the square root of mean squared error. Least squares minimizes this value, so
it is wanted to select the number of PC’s that does not stray very much from the least

squares value.

In this table VIF values are the maximum variance inflation factors. It is looking
for the number of PC’s which results in all VIFs begin less than 10. When all PC’s
are included the VIF value is 106.60.

Considering these statistics, the first principal component is chosen to use.

Principal components regression with 1 component omitted results the coefficients as
B,=53.02580, B,=0.41694 and f,=0.20749. The standard deviations of these
coefficients are Sﬂl =0.01299 and SB2 =0.00647.

The results of least squares, ridge and principal components regression coefficients

and standard deviations are summarized in Table 4.6 .

Table 4.6 Comparison Least Squares, Ridge and Principal Components
Regression Coefficients for an Application Data

Least Squares Ridge Regression Pnnc1lI{)a1 C011}p onents
egression
i ﬂi SB, ﬁ 1 Sﬁ, B i Sﬁf
0 53.75167 56.61737 53.02580
1 0.23506 | 0.26627 0.37849 | 0.02494 0.41694 | 0.01299
2 0.29800 | 0.13251 0.19307 | 0.01241 0.20749 | 0.00647
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As described in the literature, standard deviations of regression coefficients in the
biased regression methods are smaller than the least squares regression coefficients.
As it is seen from the table regression coefficients, the ridge regression and the
principal components regression result similar to each other. As supposed, ridge
regression method has result in smaller standard deviation values than the least
squares method. Among these three methods, PCR gives the smallest results of

standard deviation values.
4.4  Least Squares, Ridge And Principal Components Regession Results

The simulation results for n= 40, 80 and 120 will be given in the following
sections. For every sample least squares, ridge and principal components regression
will be analyzed.
4.4.1 Simulation Results and Interpretation for Sample Size 40

50 samples with n=40 are selected from the constructed population. The mean and

the standard deviation of estimated regression coefficients are given in the following
Table 4.7.

Table 4.7 Least Squares Regression Coefficients for n=40

i B, 54

0 55.58887 1.80166

1 0.04858 0.28385

2 0.37816 0.14089
R°=0.95939  S$=4.93422
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Means of these coefficients are calculated as Eo =55.58887, El=0.04858 and

Ez =0.37816. Standard deviations of coefficients are S, =1.80166, S, =0.28385 and

Sy, =0.14089.

The results of ridge regression are given in Table 4.8. In this table for different ¢

values R?, S and VIF values are given.

Table 4.8 Summary Statistics for the Ridge Regression when n=40

c | R | s | wiIF c=0.22129

i B S,
0 58.44952 1.72302
1 ]0.00000 | 0.95956 | 4.92015 [ 104.56876 0.35609 0.01752
2 | 0.00010 [ 0.95946 | 4.92722 | 99.80715 0.18514 0.01076
3 [0.00050 | 0.95906 | 4.95212 | 85.23575

4 10.00100 | 0.95855 | 4.98357 | 69.99839

5 [0.00500 | 0.95572 | 5.15456 | 25.43965

6 |0.01000 | 0.95291 | 5.31840 | 11.00959

7 | 0.05000 | 0.93295 [ 6.36111| 1.10812

8 |0.01000 | 0.90964 [ 7.38902| 0.56999

9 1022129 [0.85996 | 9.14367 | 0.44157

10 |0.50000 | 0.76089 | 12.03634 | 0.39422

11 | 1.00000 | 0.63739 | 14.83449 | 0.39585

Regarding all of these various statistics, from this table it is seen that the optimal ¢
value is 0.22129 for n=40. The values of R?, S and VIFs are 0.85996, 9.14367 and

0.44157 when ¢=0.22129. The mean value of coefficients are Eo =58.44952,

El=035609 and §2=0.18514. The standard deviations of these coefficients are

S,

=1.72302, SBl =0.01752 and S‘32 =0.01076.
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Summary statistics for principal components regression analysis are given in the

Table 4.9.

Table 4.9 Summary Statistics for Principal Components Regression when n=40

s Cum. 2 ry
PCs | A vercont | CN R S VIF B. S,
54.16945 1.40697
1 1.99530 99.7600 1.00000 | 0.95681 | 5.08765 0.25060 0.40423 | 0.01243
2 0.00470 | 100.0000 | 424.40000 { 0.95956 | 4.92015 | 106.60000 0.20117 | 0.00618

The first eigenvalue is 1.99530 and the first component accounts for 99.76% of the
total variation in Y. The values of CN, R?, S and VIFs are 1.00000, 0.95681, 5.08765,

and 0.25060 when the first component is chosen. Considering these statistics

principal components regression with 1 component omitted results the mean value of

coefficients as f3,=54.16945, f,=0.40423 and B,=0.20117. The standard deviations

of these coefficients are SBo =1.40697, Sal =0.01243 and S

B

y =0.00618.

The results of least squares, ridge and principal components regression coefficients

and standard deviations are summarized in Table 4.10.

Table 4.10 Comparison Least Squares, Ridge and Principal Components

Regression Coefficients when n=40

Least Squares Ridge Regression Princilgzlgr(;z;rilg;nents
i B, S, E, Sh E, Sy
0 55.58887 | 1.80166 | 58.44952 | 1.72302 | 54.16945 | 1.40697
1 0.04858 | 0.28385 0.35609 | 0.01752 0.40423 | 0.01243
2 0.37816 | 0.14089 0.18514 | 0.01076 0.20117 | 0.00618

As described in the literature, standard deviation is smaller than the least squares

method in both ways of biased regression. According to the regression coefficients,

the ridge regression and the principal components regression result similar to each

other. As supposed, ridge regression method has result in smaller standard deviation
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values than the least squares method. Among these three methods, PCR gives the

smallest results of standard deviation values.
4.4.2 Simulation Results and Interpretation for Sample Size 80

50 samples with n=80 are selected from the constructed population. The mean and
the standard deviation of estimated regression coefficients are given in the following

Table 4.11.

Table 4.11 Least Squares Regression Coefficients for =80

i 8, S,

0 55.82650 1.27708

1 0.01337 0.16200

2 0.39580 0.08043
R’=096054  §=4.78638

Means of these coefficients are calculated as f,=55.82650, f,=0.01337 and

Ez =0.39580. Standard deviation of coefficients are § 5, =1:27708, §, =0.16200 and

S, =0.08043.

The results of ridge regression are given in Table 4.12. In this table for different ¢

values R?, S and VIF values are given.
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c | R | s | wIF ¢=0.20556

i B, )
0 5829188 1.08844
1 |0.00000 | 0.96054 | 4.78638 | 106.60000 0.35776 0.00999
2 [0.00010 | 0.96044 | 4.79244 | 102.21620 0.18695 0.00597
3 {0.00050 | 0.96005 | 4.81540 | 87.13660

4 10.00100 | 0.95962 | 4.84174 | 72.56550

5 10.00500 [ 0.95688 | 5.00514 | 25.22570

6 [0.01000 [ 0.95408 | 5.16566 | 11.12440

7 [0.05000 [ 0.93487 | 6.15940 | 1.02410

8 [0.10000 [ 0.91246 | 7.14430 | 0.44170

9 [0.20556 [ 0.86901 | 8.71702 | 0.26543

10 {0.50000 [ 0.76611 | 11.68376 | 0.16950

11 [ 1.00000 | 0.63823 | 14.53194 | 0.11350

Regarding all of these various statistics, from this table it is seen that the optimal ¢
value is 0.20556 for n=80. The values of R*> S and VIFs are 0.86901, 8.71702 and

0.26543 when ¢=0.20556. The coefficients are calculated as Bo=58.29188,

B,=035776and B,=0.18695. The standard deviations of coefficients are
S, =1.08844, S, =0.00999 and S, =0.00597.
B b b

Summary statistics for principal components regression analysis are given in the

Table 4.13.
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Table 4.13 Summary Statistics for Principal Components Regression when n=80

. Cum. 2 Y
PC’s % percent CN R s VIF B i Sﬂ‘
0 54.26610 1.04973
1 1.99530 99.7600 1.0000 | 0.95808 | 4.93269 0.25060 0.40436 0.00774
2 0.00470 | 100.0000 | 424.4000 | 0.96054 | 4.78638 | 106.60000 0.20123 0.00385

The first eigenvalue is 1.99530 and the first component accounts for 99.76% of the
total variation in Y. The values of CN, R S and VIFs are 1.00000, 0.95808, 4.93269,
and 0.25060 when the first component is chosen. Considering these statistics
principal components regression with 1 component omitted results the mean of

coefficients are f,=54.26610, B,=0.40436 and f,=0.20123. The standard
deviations of coefficients are SBo =1.04973, SBl =0.00774 and SBz =0.00385.

The results of least squares, ridge and principal components regression coefficients

and standard deviations are summarized in Table 4.14 .

Table 4.14 Comparison Least Squares, Ridge and Principal Components

Regression Coefficients when n=80

Least Squares Ridge Regression Princilgzlgrcecsyz?gsnents
i B, Sy, B, S, B S,
0 55.82650 | 1.27708 | 58.29188 | 1.08844 | 54.26610 | 1.04973
1 0.01337 | 0.16200 | 0.35776 | 0.00999 | 0.40436 | 0.00774
2 0.39580 | 0.08043 0.18695 | 0.00597 0.20123 | 0.00385

As described in the literature, standard deviations of regression coefficients in the
biased regression methods are smaller than the least squares regression coefficients.
As it is seen from the table regression coefficients, the ridge regression and the
principal components regression result similar to each other. As supposed, ridge

regression method has result in smaller standard deviation values than the least
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squares method. Among these three methods, PCR gives the smallest results of
standard deviation values.

4.4.3 Simulation Results and Interpretation for Sample Size 120

50 samples with n=120 is selected from the constructed population. The mean and

the standard deviation of estimated regression coefficients are given in Table 4.15.

Table 4.15  Least Squares Regression Coefficients for n=120

i B, )

0 56.31434 1.12874

1 -0.00511 0.15327

2 0.40079 0.07535
R®=0.95841 S=4.84382

Means of these coefficients are calculated as Eo =56.31434, I§1= -0.00511 and

Ez =0.40079. Standard deviation of coefficients are S & =1.12874, S A =0.15327 and

Sy =0.07535.

The results of ridge regression are given in Table 4.16. In this table for different ¢
values R?, S and VIF values are given.
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Table 4.16 Summary Statistics for the Ridge Regression when 7=120

¢c | R | § | wviIF ¢=0.21672

i B, Sy
0 58.87980 0.94752
1 ]0.00000 | 0.95841 | 4.84382 | 106.60000 0.35223 0.00909
2 [ 0.00010 | 0.95830 | 4.84984 | 102.21620 0.18401 0.00512
3 | 0.00050 | 0.95792 | 4.87258 | 87.13660

4 [0.00100 | 0.95747 | 4.89858 | 72.56550

5 ]0.00500 | 0.95466 | 5.05816 | 25.22570

6 | 0.01000 | 0.95186 | 5.21315 | 11.12440

7 10.05000 | 0.93264 | 6.16920 | 1.02410

8 |0.10000 | 0.91027 | 7.12147 | 0.44170

9 |0.21672 | 0.86237 | 8.80972| 0.25424

10 | 0.50000 | 0.76429 [ 11.54607 | 0.16950

11 | 1.00000 | 0.63670 | 14.33466 | 0.11350

Regarding all of these various statistics, from this table it is seen that the
optimal ¢ value is 0.21672 for n=120. The values of R?, S and VIFs are 0.86237,
8.80972 and 0.25424 when ¢=0.21672. The mean of coefficients are calculated as

B,=58.87980, B,=0.35223 and B,=0.18401. The standard deviation of coefficients
are S, =0.94752, S, =0.00909 and S, =0.00512 .
Bo b b,

Summary statistics for principal components regression analysis are given in the
Table 4.17.

Table 4.17 Summary Statistics for Principal Components Regression when
n=120

pos | A Cum. CN R S VIF B, Sy,

percent
54.69707 | 0.92746

1.99530 99.7600 1.0000 | 0.95577 | 4.99475 0.2506 0.40012 | 0.00750

2 | 0.00470 | 100.0000 | 424.4000 | 0.95841 | 4.84382 | 106.6000 0.19912 | 0.00373
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The first eigenvalue is 1.99530 and the first component accounts for 99.76% of the
total variation in Y. The values of CN, R?, S and VIFs are 1.00000, 0.95577, 4.99475,
and 0.25060 when the first component is chosen. Cbnsidering these statistics
principal components regression with 1 component omitted results the mean of

coefficients are ﬁTO =54.69707, El=0.40012 and Ez =0.19912. The standard
deviations of coefficients are SB0 =0.92746, SBl =0.00750 and SB2 =0.00373.

The results of least squares, ridge and principal components regression coefficients

and standard deviations are summarized in Table 4.18 .

Table 418 Comparison Least Squares, Ridge and Principal Components
Regression Coefficients for n=120
Least Squares Ridge Regression Princilgzlgfei;rilggnents
1 B, ) B, ) B, S,
0 56.31434 | 1.12874 | 58.87980 | 0.94752 | 54.69707 | 0.92746
1 -0.00511 | 0.15327 0.35223 | 0.00909 0.40012 | 0.00750
2 0.40079 | 0.07535 0.18401 | 0.00512 0.19912 | 0.00373

As described in the literature, standard deviations of regression coefficients in the
biased regression methods are smaller than the least squares regression coefficients.
As it is seen from the table regression coefficients, the ridge regression and the
principal components regression result similar to each other. As supposed, ridge
regression method has result in smaller standard deviation values than the least
squares method. Among these three methods, PCR gives the smallest results of
standard deviation values.
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CHAPTER FIVE
CONCLUSION

51 Conclusions

In this study two of biased regression methods; principal components regression
and ridge regression are examined as theoretically and investigated which methods

give the best consequence by simulation.

In the application, 50 repetitions have been generated for each of the sample sizes
of 40, 80 and 120. Least squares, ridge and principal components regression are used
for each sample. Regeression coefficients for each estimator were computed and as

statistical comparison criteria, the mean and the standard deviation of the estimates

were used.

As described in the literature, standard deviations of regression coefficients in the
biased regression methods are found smaller than the least squares. It is seen from
the comparison of least squares, ridge and principal components regression

coefficients tables for each sample size.

At the same time El and B-z values of ridge regression and principal components

regression are quite similar to each other. 3, values of least squares regression and

principal components regression are similar. In this case, it can be said that the
principal components regression estimator gives closer unbiased estimates to least

squares is more effective because of its small variance.



The comparison table shows that for these three sample sizes, principal
components regression has given the smallest value of standard deviation of
regression coefficients. The ridge regression method followed the principal

components regression with small difference.

Finally, as for the regression coefficients obtained from samples of different
sample sizes, principal components regression method, which gives the smallest
standard deviation, can be preferred. At the same time ridge regression method,
which gives the similar results to principal components regression for both regression

coefficients and standard deviations of regression coefficients, can be used.
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