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ABSTRACT

In this study, the methods which are used for estimating the treatment effects in
the balanced incomplete block design and the estimated values of the treatment
effects obtained by using these methods have been compared.

When it is impossible to make the required number of treatments, which are
needed for each block in the randomized complete block design, the experiment is
designed in the balanced incomplete block design. In the balanced incomplete block
design, it is suggested that other methods should be used rather than the least squares
estimators to estimate the treatment effects. Therefore, in order to estimate the
treatment effects in the balanced incomplete block design, the intrablock, the

interblock and the combined estimates methods are introduced in literature.

In this study, the simulation studies were made by using the programs written in
statistical software Minitab. The intrablock, the interblock and the combined
estimates for the balanced incomplete block design and the least squares estimates
for the randomized complete block design of the treatment effects were calculated
2500 times by simulation. The results were compared and the most appropriate
estimator of the treatment effects for the balanced incomplete block design was
investigated. The means and the standard deviations of the estimates were considered

as the criteria of this comparison.

After the evaluation of the results, it was observed that each of the three methods
gave unbiased results when the block effects were insignificant for the balanced
incomplete block design. When the block effects were significant, it was seen that
the results of the means of the intrablock and the combined estimates were unbiased.
The interblock estimates results were observed as inappropriate. In both of the
situations in which the block effects were significant and insignificant, the standard



deviation of the intrablock estimates is lower than the standard deviations of the

interblock and the combined estimates.



OZET

Bu ¢aligmada, dengeli tamamlanmamig bloklar diizeninde deneme etkilerini
tahmin etmek igin kullanilabilen yéntemler tamtilmig ve bu ydntemler kullanilarak
elde edilen deneme etkilerinin tahmin degerleri karsilagtinlmistir,

Tamamlanmis rasgele bloklar diizeninde bir blokta, denenmesi gereken deneme
say1s1 kadar deneme yapma olanag1 olmadi: zaman, deneyi dengeli tamamlanmamsg
bloklar diizeni olarak diizenlemek yoluna gidilmektedir. Dengeli tamamlanmamig
bloklar diizeninde ise, deneme etkilerinin bilinen en kiigiik kareler tahmin edicileri
ile tahmin etmek yerine bagka yéntemlerin kullamlmas: Snerilmektedir. Bunun i¢in
literatiirde dengeli tamamlanmamig blok diizeninde deneme etkilerinin tahhini igin
bloklar ici (interblock), bloklar arasi (i’n&ablock), ve bilesik (combined) tahmin
edicileri olarak isimlendirilen yontemler yer almaktadur.

Bu ¢aligmada, Minitab istatistiksel paket programi kullamlarak hazirlanan
programlarla 2500 tekrarli benzetim galigmalari yapilmigtir. Caliymada dengeli
tamamlanmamg blok diizeninde deneme etkilerinin bloklar i¢i, bloklar arasi, ve
bilesik tahmin degerleri ile rasgele tamamlanmuis bloklar diizeninde deneme
etkilerinin en kiigiik kareler tahmin degerleri hesaplanmustir. Elde edilen sonuglar
karsilastirarak, dengeli tamamlanmami§ bloklar diizeni i¢in uygun deneme etkisi
tahmin edicisi aragtirilmistir. Kargilagtirmalarda 6lgiit olarak tahminlerin beklenen

degerleri ile standart sapmalar gz Oniine alinmugtir.

Yapilan degerlendirmeler sonucunda dengeli tamamlanmamig bloklar diizeni igin
blok etkisinin énemsiz oldugu durumda her ii¢ ydnteminde yansiz sonuglar verdigi
gbzlenmistir. Blok etkisi 6nemli oldugunda, bloklar igi ve bilesik tahmin y6ntemleri

sonucu elde edilen deneme etkileri tahmin degerlerinin yansiz sonuglar verdigi



goriilmiigtiir. Bloklar arasi tahmin yontemi sonucunda elde edilen deneme etkisi
tahmin degerlerinin ise uygun olmadi1 gbzlenmistir. Blok etkisinin hem 6nemli hem
de onemsiz oldugu durumlarda ise bloklar i¢i tahmin deBerlerinin standart
sapmalarmun, bloklar arasi ve bilesik tahmin degerlerinin standart sapmalarina gore

daha diisiik oldugu gézlenmistir.
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CHAPTER ONE
INTRODUCTION

1.1 Introduction

Much of research in engineering, science, and industry is empirical and makes
extensive use of experimentation. Statistical methods can greatly increase the efficiency

of these experiments and often strengthens the conclusions so obtained.

Design of experiments can be defined as a technique which includes the application
of the treatments whose effect will be measured under certain rules and conditions and
the measuring of the response given to these treatments by the experimental units and
coming to a conclusion by comparing the obtained results. The word “treatment” in this
description corresponds to the variable which effects to measure and to compare with

other treatments.

The three basic principles of experimental design are replication, randomization, and
blocking. By replication we mean a repetition of the basic experiment. Randomization is
the cornerstone underlying the use of statistical methods in experimental design. By
randomization we mean that both the allocation of the experimental material and the
order in which the individual runs or trials of the experiment to be performed are
randomly determined. Blocking is a technique used to increase the precision of an
experiment. A block is a portion of the experimental material that should be more
homogenous than the entire set of material. Blocking involves making comparisons

among the conditions of interest in the experiment within each block.



An experimental unit or experimental plot is the unit of material to which one
application of a treatment is applied. The treatment is the procedure whose effect is to be
measured and compared with other treatments. The basic objective of designing
experiments is to test whether the difference between different treatments applied on
experimental units is meaningful or not. The treatments are applied to experimantal units
according to the design type to be formed. Sometimes, in necessity of design, blocking is
used and treatments are applied to experimental units in blocks. In this type of designs
known as randomized complete block designs, all treatments are applied on the
experimental units in each block randomly. Because of shortages of experimental
apparatus or facilities or the pyhsical size of the block, we may not to be able to run all
the treatment combinations in each block. Therefore, it is not possible to use randomized
complete block design. The designs in which blocks do not contain all the treatments are
known as incomplete block designs. The most widely used incomplete block design is

balanced incomplete block design.

The purpose of this study is to examine the intrablock, the interblock and the
combined estimates of the treatment effects in the balanced incomplete block design and

to determine the most appropriate estimator by simulation method.

The study contains four chapters. The general information about the overall research
is in the first chapter. The second chapter examines the randomized complete block
design and the estimation of the treatment effects. In addition, this chapter gives general
information about the balanced incomplete block design and deals with the intrablock,
the interblock and the combined estimates of the treatment effects for this kind of

designs and searches for the appropriate treatment effects estimator.

The third chapter aims to find the treatment effect estimator by using simulation
method on statistical software program Minitab and to choose the most appropriate
treatment effects estimator. The fourth chapter contains the results obtained in this

research.



CHAPTER TWO
RANDOMIZED COMPLETE BLOCK AND

BALANCED INCOMPLETE BLOCK DESIGNS

2.1 Introduction

In a randomized block design each block contains every level of the “treatment”
factor. For this reason the design is sometimes called a complete randomized block
design. In certain experiments using randomized block designs, we may not be able
to run all the treatment combinations in each block. Situations like this occur Because
of shortages of experimental apparatus or facilities or the physical size of the block.
So for this type of problem it is possible to use randomized block designs in which
every treatment is not present in every block. These designs are known as *
randomized incomplete block designs, and they are the subject of this chapter. We

shall also discuss such topics as the recovery of interblock information.
2.2 Randomized Complete Blocks Designs

A randomized block design is a restricted randomized design in which the
experimental units are first sorted into homogeneous groups, which are called blocks,

and the treatments are then assigned at random within the blocks.

Throughout this chapter it is used the term “experimental unit” to denote the unit
that is allocated a treatment independently of the other units. The experimental unit
can contain several observational units; for instance, a class of students that receive a
certain method of teaching in common can be an experimental unit, while the

individual students are observational units. The distinction is, as it is seen, very



important, because, from the point of view of inference on the effects of treatments,
the experimental unit must be considered as a whole, and the variation between the
observational units within an experimental unit is usually of little value in assessing

the errors of estimates of treatment effects.

The key objective in blockihg the experimental units is to make them as
homogeneous as possible within blocks with respect to the response variable under
study, and to make the different blocks as heterogeneous as possible with respect to
the response variable. The design in which each treatment is included once in each

block is called a randomized complete block design.

The randomization procedure for a randomized block design is straightforward.
Within each block a random permutation is used to assign treatments to experimental

units. Independent permutations are selected for a several blocks.

In fact, a randomized complete block design may be viewed as corresponding to a
two-factor study (blocks and treatments are the factors), with one observation in each
cell. It is noted that the assumption of no interactions between the two factors permits
an analysis of factor effects when there is only one observation in each cell and the
factors have fixed effects.

The model for a randomized complete block design containing the assumption of
no interaction effects, when both the block and treatment effects are fixed and there

are b blocks (replications) and g treatments, is as follows:

yy=Hu+7,+B,+g, i=1,2,.,a;5=1,2,..b @.1)

where 4 is an overall mean, 7, is the effect of the ith treatment, f, is the effect in

the jth block, and ¢&; is the usual NID(0, o) random error term. Treatments and



blocks are considered initially as fixed factors. It is assumed that Zr, =0 and
i=l

b
> B,=0.

=

If the treatment effects are random, the only changes in model (2.1) are that the 7,
now represent independent normal variables with expectation zero and variance o’

and that the 7, are independent of the &;.

The least squares estimators of the parameters in the randomized complete block

model are obtained.

Table 2.1 Least Squares Estimators of the Parameters in the Randomized

Complete Block Design
Parameter Estimator
Z A=,
7, =5.-J.
B, B,=v,~-7.

2.3 Balanced Incomplete Block Designs

In the randomized blocks design the size of the block of experimental units must
be equal to the number of treatments to be compared. It is sometimes desirable or
necessary to have the block size smaller than the number of treatments. These

designs were introduced by Yates (1936).

When all treatment comparisons are equally important, the {treatment
combinations used in each block should be selected in a balanced manner, that is, so

that any pair of treatments occur together the same number of times as any other



pair. Thus, a balanced incomplete block design is an incomplete block design in
which any two treatments appear together an equal number of times. (Montgomery,
1991, p.176)

It can very well happen that the available blocks are not big enough to
accommodate a complete replication. The factor represented by “blocks” is often a
natural one, such as days, positions in a field, factory, and so on. If for example, only
3 observations can be taken in one day, while the “treatments” factor has 4 levels, A,
B, C, D, then a complete replicate cannot be observed in one day. However, a
“balanced” design, in which there are 3 replicates arranged in 4 blocks, can be
specified as in Table 2.2. The order in which the treatments are placed in each block

has been randomized.

Table 2.2 A Balanced Incomplete Blocks for Four Treatments
BLOCK

O w > =
o > ol 8

v
B
D
C

aQ » W~

This is called an “incomplete” randomized block design. It is described by the
adjective “balanced,” giving the name “balanced incomplete block™. The word
“balanced” does not simply mean that the blocks are of the same size, and each
treatment level appears the same number of times. In a balanced incomplete block
design it must also be true that each pair of treatment levels appears together in the
same block the same number of times (twice in Table 2.3).



Table 2.3 Four Treatments in Four Blocks of Three Plots

BLOCKS
TREATMENTS I i m v
A X X X
B X X X
C X X X
D X X X

Suppose that there are a treatments and b blocks. Each block can hold exactly &
treatments. The balanced incomplete block design is frequently used when k<a. In
this design, each treatment is replicated r times. Since each treatment is replicated r
times, and there are k plots in each block, there are N = ar =bk total observations.
If a=b, the design is said to be symmetric. Furthermore, the number of times each pair

of treatment appears in the same block is as given below.

()
A== 2.2)

The parameter 4 must be an integer. To derive the relationship for 4, consider
any treatment, say treatment 1. Since treatment 1 appears in 7 blocks and there are k-1
other treatments in each of those blocks, there are r(k —1) observations in a block

containing treatment 1. These r(k—1) observations also have to represent the

remaining a —1 treatments A times. Therefore A (a—1)=r(k-1).

A large number of balanced designs has been worked out and tabulated for r<10
and for k of various sizes. The set of (k) pairs for which designs have been shown
to exist with block size not bigger than ten, and total number of units not exceeding
100, are listed in Table 2.4. (Mead, 1988, p.152)



Table 2.4 Pairs of Values of (k,a) For Which A Balanced Incomplete Block
Design is Known to Exist For k<10 and bk<100.

k a b r A k a b r Y
3 4 4 3 2 4 13 13 4 1
3 5 10 6 3 4 16 20 5 1
3 6 10 5 2 5 6 6 5 4
3 6 20 10 4 5 18 10 5
3 6 10 5 2 5 10 18 9 4
3 1 7 3 1 5 11 11 5 2
3 9 12 4 1 6 7 7 6 5
3 10 30 9 2 6 12 8 5
3 13 26 6 1 6 10 15 9 5
4 5 5 4 3 6 11 11 6 3
4 6 15 10 6 6 16 16 6 2
4 7 7 4 2 7 8 7 6
4 8 14 7 3 8 9 9 8 7
4 9 18 8 3 9 10 10 9 8
4 10 15 6 2

The randomization procedure for balanced incomplete block design follows:

() Allot the entry numbers to the treatments at random unless there is a
specific reason for not doing so.

(ii)  Allot the groups to the b blocks at random.

(iii)  Randomly allot the treatments to the k experimental units within each
block. (Federer, 1955, p.415)

2.3.1 Balanced Incomplete Block Designs with Intrablock Analysis

“We consider now the usual method of analyzing balanced incomplete block
designs. This is called the intrablock analysis because the block differences are
eliminated and the estimates of all contrasts in the treatment effects can be expressed

in terms of comparisons between plots in the same block.” (John, 1971, p.223)



The experimental model for this design is

Yy =u+1,+ B +g, Fl2,..a =1,2,....b 2.3)

where y, is the i th observation in the j th block, x4 is the overall mean, 7, is the

effect of the i th treatment, f, is the effect of the jth block, imposing z'z', =0,

i=1

b
Z B,=0 and ¢g; is the NID(0, o) random error component. The mean u and the
Jj=1

treatment effects 7, are unknown constants. The block effects may be fixed or

random; it is treated as if they are fixed. It is important to note that the model

assumes that there is no interaction between treatments and blocks.

For comparing the treatment effects in the balanced incomplete block design,
firstly the hypothesis must be set.

H,:7,=0 i=1,2,..a

H,:r,#0 foratleastonei

The model in (2.3) represents this design. For the least squares method, the

normal equations are obtained to minimize the equation below;
L=Zny(yy_/‘_ri_ﬂj)z 24)
i

where n, =1 if the i th treatment appears in the j th block, and zero otherwise.

Note that since there are r blocks that contain j, there are r-values of j for which

n, =1, and n,=0 for the other b-r values of j. As a result the number of blocks



10

b
containing the ith treatment is Zny =r. Since there are k treatments contained in
=

the block j, there are k values of i for which n,=1, and n,;=0 for the other a-k values

of i. As a result the number of treatments appearing in the j th block is Zn,j =k.
i=1

From the minimization of (2.4), the estimating equations are

a 5
p:Ni+r) 7, +kz;,Bj=y_. 2.5
i=1 J=
b A
Tirp+re + Zln,jﬁj =y, (2.6)
J=
ki + lenyf, +kB =y, @7
i=

There are b+a+l equations, and only b+a-1 of these equations is linearly
independent. The estimators for the block and treatment effects can be obtained with

a b
the constraints Z 7, =0, z B, =0.

i=l j=1

The first step in solving for the treatment effects is to adjust the treatment effects

for the block effects by removing the block constants from the treatment equations.
b

This accomplished by multiplying the B equation by Zn,j / k and subtracting the
J=1

sum of all of these altered f equations from the 7, equation.

The resultant equation is

b

~ 1 g N 13
re; _;Zzntjng/fp =W _;ZJ’J =0 (2.8)

j:l p:l J=t
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where Q, is called an adjusted treatment total (adjusted for block effects) and

> 0,=0.

i=l

Suppose the ith treatment appears A times in the same block with the pth
treatment. Then it is used the following equations (Bose&Manvel, 1984, p.160).

b .
Zn,jnpj =r if i=p
=

b
Ynn, =2 if izp (2.9)
J=1

b b
. 2 _ —n? o _
If =p, than ;n,jnpj becomes jzl:n,j =r.But n, =n; since n, =0 or 1.

Now note that, when i#p, n,n, =1 if and only if both n, and n, are unity, that
is, both the treatments i and p occur in the block j. Now there are exactly A values
for j for which the pair of treatments i/ and p occur together in the block j. Hence

n;n, =1 for exactly A values of j for any fixed i and p, i+ p, and is zero for the other

values.

The Equation (2.8) may be rewritten as Equation (2.10). Hence the obtained

equation and next step are given in below.

. 1 b a . b a .
rr,—-; ZZnynpjz'p+ZZnynpjrp =0, (2.10)
j=lp=‘l J=lg=’l
p¢ =)

p=l

ket - AD 2, +rD. %, |= kO, 2.11)
pel e



The known conditions Zr, 0, Zz’ =7, and A= rk-1)

i=1 (a-1)
psei

ket —ri, + A1, = kQ,
r(k-1)%, + A%, = kQ,
And as a result estimation of the treatment effect is

k
7, = —}% i=1,2,....a

7, is called intrablock estimator of the treatment effect.

12

are used.

2.12)

(2.13)

The variance of 7; and of the estimate of the difference between two treatment

effects, 7, —7,, may be obtained by consideration of the variance and covariance of
O
k- 1 r
V(Q,) = ( ) 2
Cov(Q,,0;)=-7 (2.14)
And using equations (2.13) and (2.14), ¥(Z,) can be estimated.
k(a-1
V()= (—) (2.15)
. [k ’V 2%
V(-0 oo | V@ -0)=T o (2.16)

In assessing incomplete block designs, the efficiency of the design is measured by

comparing the variance of the balanced incomplete block design with the variance for
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a complete block design, with the same replication per treatment and assuming,

which is most realistic, the same o *. For a randomized complete block design with

r observations on each treatment,

20

V(E -£)=

The efficiency factor (Eff) of any balanced incomplete block design is a lower

limit to the efficiency of balanced incomplete blocks relative to randomized blocks.

From the variance for (£, —¢;) the efficiency of the balanced incomplete block

design is given as equation (2.17).

20
Aa
Ef-—LI—="2= 2.1
7 2ko? rk @.17)
Aa
It can be rewritten as below.
21
Ef-—%
1 ——
a

Hence it is clearly less than 1 since k<a (Mead, 1988, p.166). As Eff takes values

closer to 1 the efficiency of balanced incomplete block design increases.

Note that this efficiency depends critically on £ as is shown in numerical values of
Eff given in Table 2.5 (Mead, 1988, p.166).
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Table 2.5 Values of Eff For k=2,3,4,6,8 and ¢=4,6,8,12,16,24,32.
k

2 3 4 6 8
0.67 0.88
060 080 090
057 0.76 0.86 0.95
12 055 073 082 091 0.96
16 053 071 080 0.89 0.93
24 052 070 078 0.87 0.91
32 052 069 077 0.86 0.90

o O S| 8

The efficiency factor tells us the loss caused by using an incomplete design. For
balanced incomplete block designs the efficiency factor is smallest when the number
of units per block is small and the number of treatments large. Thus with two units
per block and a large number of treatments, the efficiency factor is 1/2. The
efficiency factor is near one when the number of treatments does not greatly exceed

the number of units per block is large.

‘If the efficiency factor is less than about 0.85 and if the number of blocks exceeds
about 10, a more complicated method of analysis may be used that makes any
possible loss of precision as compared with a randomized block design small.” (Cox,

1992, p.230)

This method that is mentioned in the previous paragraph is based on the idea that
if the variation between blocks is not too great, the block totals contain a certain
amount of information about the treatment effects. The method, which is called the

recovery of interblock information, will described in the following section.
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2.3.2 Balanced Incomplete Block Designs with the Recovery of Interblock
Analysis

The analysis of the balanced incomplete block design given in section 2.3.1 is
called the intrablock or within block analysis. However, in that analysis only the
information about treatments from comparisons within blocks was considered. The
differences between block totals also contain information about treatment

differences.

Yates (1940) introduced a new computing technique for balanced incomplete
block design when the blocks selected randomly. “Yates noted that, if the block

effects are uncorrelated random variables with zero means and variance 0'; , than one
may obtain additional information about the treatment effects 7;. Yates called the

method of obtaining this additional information the interblock analysis.”
(Montgomery, 1976, p.184)

It will be assumed that they are a random sample of 5 from an infinite population
that the g, are independently and identically distributed. This assumption is

appropriate if the blocks can be regarded as a random sample from a large finite
population. This might be the case for an example if the cars are known as block

were all of the same made and model.

In the balanced incomplete block model with blocks random, each treatment
appears r times, and there are k& plots in each block; every pair of treatments appears
together in 4 blocks. The model can be written

yy=u+r+p +g i=l2..a F12,..b (2.18)

The x and 7, are fixed unknown parameters, f; is distributed N (0, 0';) ; ey is

distributed N(0,0?); and all random variables are independent.
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The hypothesis in interblock analysis is constructed with the same as the

intrablock analysis. That is

Hy:t,=0 i=12,..a

H,:7,#0 foratleast one i

The intrablock estimators for 7, were given by the formula (2.13). When the
blocks are random, alternative estimators for 7, can be obtained from the block
totals. Next we shall show that there exists another unbiased estimator of 7
independent of the intrablock estimator 7;. This estimator will be denoted by 7, and
will be a function of the block totals y . The symbol B, will be used to denote the

total of all blocks that contain treatment i;

b
Bi=;nyy.j (2.19)

y, = ky+§n,,r, +(kB, + 2. ) (2.20)

i=1

where the term in parentheses may be regarded as error. The interblock estimators of

4 and 7, are found by minimizing the least squares function.

b a
L=).(y, —ky—gnyr,)z 2.21)

=

The following least squares normal equations

ubku +any’E,' =y (2.22)

i=1
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b a b .
T, kil + ZZnynpjz"'; = Zl:ny.y.j (2.23)
j::

Jj=1 p=1

With Z 7, = 0, the equation (2.22) can be rewrite as follows.

i=l
=y |bk=7 (2.24)

To obtain 7,, we use the following assumptions given in the previous section.

b
Znynpj =r if i=p

J=1

b
Znijnpj =1 ifi#p
Jj=1

Than the equation (2.23) becomes following equation.

b a b a b
rkii + Zznxj”pj?p +2. 2 mn,T, = 2y, (2.25)
J=1 p=1 J=1 p=l J=1
p# p=i
a a b
P +| AT, +r )T, |= Dy, (2.26)
HoET]

a a a
Using these equations .7 =0, Z'?p =-1, Z?p =0, the estimation of 7,is
i=1 p=1 p=1

obtained.

b
kel +(r—A)T = Zlnyy‘j @27
j::
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b
Zlnyy.j -kTJ—/
= (2.28)

Now it was determined the two estimators for the treatment effects. So it can be

said that the estimates 7, and 7, are uncorrelated.

The variance of 7, is given in equation (2.29). (Graybill, 1961, p.408)

~N _ k(a —1) 2 2
V(T)= __a(r Y (o +kop) (2.29)

Now it is considered that it always necessary or useful to calculate the full
analysis of variance with both sets of estimates or not. In practice often only the
intrablock analysis is calculated and it’s proper to consider when we should

additionally attempt to use the interblock information.

“The principle of using incomplete blocks stems from a recognition that o?

should be reduced by using smaller blocks. As the selection of blocks becomes more

successful the ratio o’ /(o +k0';) will become smaller and consequently the

contribution of the interblock information will become less. Thus the more successful
we are in making the within block analysis efficient the less benefit will accrue from

using the interblock information.” (Mead, 1988, p.171)

That is by choosing the blocks efficiently the precision of that intrablock
proportion of information will be made as much greater than the precision of the

interblock information as is possible.

That is we should expect to use the interblock information when the intrablock
proportion of information, which is measured by Eff, is not very large, or the gain
from using small blocks is not very substantial. Even when Eff is not large, it will be
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appropriate to use the interblock information only when the ratio (o +ko7;)/o” is

not large.

By applying interblock analysis, treatment effect estimates can be calculated and
by using intrablock and interblock estimation, combined estimates can be
determined. In this case in determining treatment effect estimates, combined

estimates are also used.
2.4 Combining the Intrablock and Interblock Estimates

The intrablock and interblock analyses provide two independent sets of estimates
of treatment effects. There must, inevitably, be combined estimate, calculated from
the two separate estimates of each treatment effect, which will be the best estimate.
Since both sets of estimates are unbiased by the general linear model theory, any
linear combination of the estimates will also be unbiased and the linear combination
with the smallest variance will be the best linear unbiased estimate. This minimum
variance combined estimate can be shown to require weighting each estimate

inversely by its variance.

Now we wish to combine the interblock and intrablock estimators to obtain a

single, unbiased, minimum variance estimate of each 7,. We know that 7, and 7, are

unbiased and also that

V(i) = ﬁ;’a—jgaz (intrablock)
and
VE) = ‘I:((ra_——jl'))_ (o +koj)  (interblock)

We use a linear combination of the two estimators. By a linear estimator of 7, we

. . . ~ ~ . * A ~ o
mean a linear combination of 7, and 7;; that is, 7, =&, 7, + &, 7, . The problem is to
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determine @, and @, such that 7, is unbiased [E(r,') = r,] and such that ¥(z,) isa

minimum, (Graybill, 1961, p409) The expectation of 7, is equated as follows.
7, =E(1)) = E(q,7, + &, T)) = a7, + a7, = (@, + &,)7,
It is seen from the above that:
a+a,=lora =1-q,
Now the variance of 7, is equated as follows.

V(z)=V (a7, + 7))
V() =aV(5)+aV (%)
V() =a V(%) +(1-e)' V(%)

The only unknown in ¥(7;) is . The value of @, that minimizes V(z;) is
found by

(v, ,. o
T =20y () - 20- @V 5 )=0

~ 1
%=V )((V(f,)w(?, ))J

and

.. 1
% =V, )((V(m TV, ))J
So

P 1
7, =V (F)E +V(£)7, {(V(f’) +V (7, )))

This implies that the best combined estimator is
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k(a-1) k(a-1)

2 242 2~
._a(r—l)(a thop)tu+ g O 12 230
“THash , KMa=D L . @30
Ad® a(r—-2) s

which can be simplified to equation (2.31).

kQ, (o? + kO';) + (any.j — kry)o?

. = -
T, = i=1,2,....a 2.31
' (r-2)o? +Aa(o? +ko}) @31)

Unfortunately, equation (2.31) cannot be used to estimate the 7, because the
variances o and a'j are unknown. The usual approach is to estimate o’ and 0';

from the data and replaces these parameters in equation (2.31) by the estimates. The

estimate usually taken for o is the error mean square from the intrablock error.
o= MS; , (2.32)

To obtain an analysis of variance, the model will be considered with blocks fixed.
Then, when an analysis of variance table is obtained, the model will be considered

with blocks random, and the appropriate mean squares and expected mean squares

will be equated, so as to give rise to estimators of ” and ;.

The total variation in the data is expressed by the total corrected sum of squares:

2

a b
S8 =2 % —XN-— (2.33)
=l j=l

Total variability may be partitioned into
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where the sum of squares for treatments is adjusted to separate the treatment and the
block effects. This is often called the method of treatments eliminating (adjusted for)
blocks. This adjustment is necessary because each treatment is represented in a
different set of r blocks. This method is called as Method A. Its analysis of variance
table is given in Table 2.6. (Graybill, 1961, p.412)

Table 2.6 Analysis of Variance For Incomplete Block Model

Method A
Source of d.f. Sum of Squares
Variation
Total bk-1 2, 2
A=Yy -2
i=l j=l bk
Treatment a1 k&,
Adjusted = ZEQ'
Blocks Unadj. b-1 byt g2
w532
=l
Intrablock Error bk-b-a+1 A=A-4 -4,

Another way of partitioning the total variability in the data is the method of blocks
eliminating (adjusted for) treatments. The total variability may be partitioned into

SSy = 85, + S ptocis anpunedy + S5z (2.35)

This method is called as Method B. Its analysis of variance table is given in Table
2.7. (Graybill, 1961, p.412)

Table 2.7 Analysis of Variance For Incomplete Block Model

Method B
Source of df Sum of Squares
Variation
Total bk-1 a b 2
B=X3 -0
i=l j=l
Treatment Unadj. a1 LI Y
B=y % L
= T bk
Blocks Adjusted b-1 Ee b y: &2
B, =— Q2 + 0 P/
A TR T
Intrablock Error bk-b-a+1 B,=B-B,~B,
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As it is seen in the Table 2.6 and Table 2.7, there are two methods of analysis that
could be used.

From the above it follows that
SS 1y agusteay + SS blocks = 587 + S8 Bocts (adgusted) (2.36)

or, in words, the sum of squares due to blocks(adj.) plus the sum of squares due to
treatments(unadj.) equals the sum of squares due to treatments(adj.) plus the sum of
squares due to blocks(unadj.). The expected mean square for intrablock error is as
shown because 435=Bj; and 43 has the same expectation whether the model has blocks
fixed or blocks random.

The estimate of o.; is found from the mean square for blocks adjusted for

treatments. This mean square is given as equation (2.37).

a b a
>N ;J’.zf 3y
MS Slocks(adi) = I}la + p - "’lr (-1 (2.37)

The result equation of expectation of MS,;,.4y, is as follows (Graybill, 1961,
p412).

a(r-1 '
E(MS yseagy) =0 +%a}, (2.38)

Thus, if MS,,;4y)> MSg, the estimate of o"'; is given as equation (2.39). If

MS ot aay < MSg , We set 65=0.
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vy (MSpoisiagy —MSz JO-1)
2 _ Blocks(adj.)
65 = o (2.39)

In order to obtain a single, unbiased, minimum variance estimates of each 7, 6',2,

and o? are replaced in equation (2.40). As a result, the equation (2.41) is obtained.

kQ,(c? + ko) + (in,jy_j - ky)o?

. J=l o
= i=1,2,....a 2.40
£ (r- 1)’ +da(o” +ka?) (2.40)

( b
kQ, (&2 + k&p) + (Znyy.j ~ kry)é?
- — if 630
£, =4 (r—A)6? + Aa(6* + k65 (2.41)
y, —({/a)y, if 62=0
L r

That is in determining of combined estimator of the treatment effects, it is used

the equation (2.41) according to the values of 7.

The problem of estimating a common mean of two normal distributions and the
related problem of recovery of interblock information has been studied in several

papers.

Yates (1940) was apparently the first to suggest that information could be
recovered in balanced incomplete block designs. Graybill and Deal (1959) initiated a
close study of the properties of combined interblock and intrablock estimates of
treatment differences. Further results were obtained by Seshadri (1963). Seshadri has
constructed an estimator by combining the intrablock and interblock estimates, which
is, in the sense of minimum variance, uniformly better than either of the components
whenever the balanced incomplete block design has more than 8 treatments. Another
striking feature of this theorem is that it advocates the use of interblock information
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in the balanced incomplete block design whenever @29, conforming to the
conventional theory which does not favor recovery of interblock information unless
the experiment is Jarge. Shah (1964) improved this result, and showed interblock
information should be recovered it a>6, and Stein (1966) showed recovery should be
made, provided a>4.

Weerakkody (1992) shows that the recovery of interblock information through the
estimated generalized least squares estimator may improve the estimation, provided

(b — a)>4. This suggests that the recovery of information significantly improves the
estimation when blocking effect is not significant.



CHAPTER THREE
SIMULATION RESULTS FOR TREATMENT

EFFECTS ESTIMATION

3.1 Introduction

The explanatibns 5Bout the estimation of treatment effects of randomized complete
block design and balanced incomplete block design and the variances of these estimates
have been explained in the previous chapter. In this chapter, the intrablock, the
interblock and the combined estimates of the balanced incomplete block design will be
discovered, and the subject of the most appropriate estimator for treatment effects will
be investigated. As mentioned in the previous chapter, the significance of the block
effects is effective on estimates of the treatment effects for balanced incomplete block
design. For this reason, searching for the most appropriate estimates for treatment effects
will be conducted separately for both the significance and the insignificance of the block
effects. In this study, a 4x4 randomized complete block design in which each treatment
was repeated only once and treatment levels were specifically selected and a balanced
incomplete block design formed from this randomized complete block design were used.

To achieve this, the steps below were followed:

1- For a randomized complete block design a normally distributed population was
generated. In this population the treatment effects are significant. There will be
two cases for the block effects: they are insignificant and significant. In the first
case the block effects will be considered as insignificant.
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2- A random 4x4 randomized complete block design was selected from this
population.

3- The least squares estimates of the treatment effects for randomized complete
block design were found.

4- Balanced incomplete block design was obtained by taking out the defined
treatments from each block in randomized complete block design.

5- Intrablock, interblock and combined estimates were determined for this balanced
incomplete block design.

6- By returning to Step 2, this process was repeated for 2500 times.

7- The simulation values obtained for the least squares estimates for randomized
complete block design and the intrablock, the interblock and the combined
estimates for balanced incomplete block design were compared and appropriate
method for treatment effect estimates were figured out.

8- This process was repeated for the condition in which the treatment effects and
the block effects are both significant.

3.2 Generating the Population

Independent populations which were normally distributed with fixed variance and

different averages were constructed for the 16 independent units in 4x4 randomized

complete block design. So, the assumption of NID(0, 6%) for the g, error terms in the

model equation of randomized complete block design which was designed as 4

treatment 4 blocks and 1 observation in each unit was provided.

yy=U+T + B, e, i=1234 j=1234 3.1)

Here, 0> was equal to 25. To generate the population, the following Minitab

program was used:



SET0.MTB

SET C199

4(50:80/10)

END

SET C91

4(1:4)

END

SET C92

(1:4)4

END

LET K1=0

LET K3=100

NAME C199=MEANS'

NAME C101=POP11' C102=POP21' C103=POP31' C104=POP41'
NAME C105=POP12' C106=POP22' C107=POP32' C108=POP42'
NAME C109=POP13' C110=POP23' C111=POP33' C112=POP43'
NAME C113=POP14' C114=POP24' C115=POP34' C116=POP44'
EXEC 'SET1' 16

STACK C101-C104 C151

STACK C105-C108 C152

STACK C109-C112 C153

STACK C113-C116 C154

STACK C101 C105 C109 C113 C161

STACK C102 C106 C110 C114 C162

STACK C103 C107 C111 C115 C163

STACK C104 C108 C112 C116 C164

STACK C101-C116 C150

DESC C150

DESC C101-C116

DESC C151-C154

DESC C161-C164

SET1.MTB

LET K1=K1+1

LET K2=C199(K1)

LET K3=K3+1

LET K4=SQRT(25)

RANDOM 1000 CK3;

NORMAL K2 K4.

LET CK3=(CK3-MEAN(CK3))/STDEV(CK3)
LET CK3=CK3*K4+K2

28
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The parameters related with these populations, which were constructed by using this
program, were given in Table 3.1.

Table 3.1 Generated Population Parameters in Which o = 25 and the Block

Effects are not Significant
BLOCKS MEAN
1 ) 3 ) ST.DEV.
1 50 50 50 50 50
5 5 5 5 5
23N DS 60 60 60 60 60
5 5 -5 5 5
é 3 70 70 70 70 70
5 5 5 5 5
g 4 80 80 80 80 80
5 5 5 5 5
MEAN 65 65 65 65| M=65
ST.DEV. 12.248 12.248 12.248 12.248 | 12.248

Although each treatment has different average in the population shown in Table 3.1,
the block averages are the same. The treatment effects and the block effects for the

generated population are given in the Table 3.2.

Table 3.2 The True Treatment and the Block Effects For the Generated Population

Treatments Blocks
7; B;
1 -15 0
2 -5 0
3 +5 0
4 +15 0

The following graphics show that the populations called POP1.1, POP1.2,...,
POP1.16 are distributed normally.
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POP1.1 POP2.1
Aaap Aeczean Derling Nonrelily Test e & Adraan Derfing Nomeilty Test
SDer.8 a8
N €I Puhe 058 N0 RV 068

Figure 3.1 Normal Probability Plot of Generated Populations

An Anderson-Darling test for normality is performed and the numerical results are

displayed with the graphs.

In these graphs, a straight (or close to straight) line indicates normality. A lot of
curvature indicates non-normal data. The null hypothesis is that the data are normal; the
alternative hypothesis is that the data are not normal. A p-value greater than the cut-
value of our choice (0.05), says not to reject the null hypothesis, that is, not to reject the

hypothesis that the population data are normal.

3.3 Forming the Randomized Complete Block Design and the Balanced Incomplete
Block Design From the Generated Population

Random samples were taken from each population in order to construct the 4x4
randomized complete block design with single observation. Sampling was done without

replacement.

After calculating the treatment effects for randomized complete block design by
using the simulation program, appropriate balanced incomplete block design was
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constructed from this design by deleting some units. Regarding the condition of being

balanced, the observation values in the 2m gt o and 15" units were erased.

The Minitab program was used to calculate the treatment effects estimates in
randomized complete block and balanced incomplete block design. The Minitab
program that calculates the treatment effects estimates in randomized complete block

design and balanced incomplete block design is as follows:

SET2.MTB

LET K1=100

LET K2=150

EXEC 'SET3' 16
STACK C151-C166 C90
GLM C90=C91 C92;
COEF C93.

ERASE C83

LET C83(1)=C93(2)
LET C83(2)=C93(3)
LET C83(3)=C93(4)
LET K20=SUM(C83)
LET K21=(-1)*K20
LET C83(4)=K21
DELETE 2 89 15 C90
COPY C90 C1

LET K1=4

LET K2=3

LET K3=2

LET K4=3

LET K5=4

STAT C1;

BY C2;

SUMS Cs.
STATC1;

BY C3;

SUMS C6.

LET C54=C50*C6
LET C55=C51*C6
LET C56=C52*C6
LET C57=C53*C6
LET C58=C46*C5



LET C59=C47*C5

LET C60=C48*C5

LET C61=C49*C5

LET C8(1)=SUM(C54)

LET C8(2)=SUM(C55)

LET C8(3)=SUM(C56)

LET C8(4)=SUM(C57)

LET C9(1)=SUM(C58)

LET C9(2)=SUM(C59)

LET C9(3)=SUM(C60)

LET C9(4)=SUM(C61)

LET C7(1)=C5(1)-(1/K2)*C8(1)

LET C7(2)=C5(2)-(1/K2)*C8(2)

LET C7(3)=C5(3)-(1/K2)*C8(3)

LET C7(4)=C5(4)-(1/K2)*C38(4)

LET C10(1)=C6(1)-(1/K2)*C9(1)

LET C10(2)=C6(2)-(1/K2)*C9(2)

LET C10(3)=C6(3)-(1/K2)*C9(3)

LET C10(4)=C6(4)-(1/K2)*C9(4)

LET C80=(K2/(K1*K3))*C7

LET K10=MEAN(C1)

GLM C1=C2 C3;

RESIDUALS C99.

LET C100=C99*C99

LET K13=SUM(C100)/(K1*K4-K1-K5+1)
LET C99=C10*C10

LET K14=(K4*SUM(C99)/(K3*K5))/(K5-1)
LET K15=((K14-K13)*(K5-1))/(K1*(K4-1))
LET C99=K2*C7*(K13+K2*K15)+(C8-K2*K4*K10)*K13
LET K21=(K4-K3)*K13+(K3*K1)*(K13+K2*K15)
LET C82=C99/K21

LET C81=(C8-K2*K4*K10)/(K4-K3)

LET K51=K51+1

LET C11(K51)=C80(1)

LET C12(K51)=C80(2)

LET C13(K51)=C80(3)

LET C14(K51)=C80(4)

LET C15(K51)=C81(1)

LET C16(K51)=C81(2)

LET C17(K51)=C81(3)

LET C18(K51)=C81(4)

LET C19(K51)=C82(1)

LET C20(K51)=C82(2)

LET C21(K51)=C82(3)

LET C22(K51)=C82(4)

32
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LET C23(K51)=C83(1)
LET C24(K51)=C83(2)
LET C25(K51)=C83(3)
LET C26(K51)=C83(4)
PRINT K51

SET3.MTB

LET K1=K1+1
LET K2=K2+1
SAMPLE 1 CK1 CK2

So, the balanced incomplete block design was obtained with the parameters given

below.
a=4, b=4 r=3, k=3 ,A =2 and N=12

By the help of the program, the necessary calculations for intrablock, interblock and

combined estimates were obtained. The equations used for these estimates are given

below in order:

~ k -

T, = % i=1,2,...,.a 3.4)
b
;"yy.j—kﬁ

T=— (3.5)
[ b
kQ, (6% +k63)+ (Y nyy, —kry)6?

- — if 65)0

£, =1 (r—A)6* +2Aa(6* +k6p) (3.6)
y.—(/a)y, LA
= - if 83=0
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After executing the program SET2.MTB for 2500 times, the intrablock, the

interblock and the combined estimates of the treatment effects were obtained.

3.4 A Sample Application

After generating the population to be used in this study, the randomized complete
block design and balanced incomplete block design were obtained from this population.
The estimates of the treatment effects were calculated by using the program written in

Minitab software package.

The results obtained by running SET2.MTB program only once are given in the
tables below:

Table 3.3 An Example For Randomized Complete Block Design Obtained by
Simulation
BLOCKS
1 2 3 4
52.6429| 50.7093| 49.7790| 44.2755
66.8400| 57.7852| 61.6684| 59.6934
78.0609( 70.9539( 61.2230| 79.7252
90.0230| 81.3956| 72.0152| 84.7867

%

Table 3.3 shows the randomized complete block design obtained by taking samples

S W N =

from the population. The analysis of variance for the randomized complete block design

is given in the Minitab printout.



Analysis of Variance (Balanced Designs)

Factor Type Levels Values

Treatments fixed 4 1 2 3
Blocks fixed 4 1 2 3
Analysis of Variance for RESPONSE

Source DF SS MS F P
T 3 2387.43 795.81 30.95 0.000
B 3 237.67 79.22 3.08 0.083
Error 9 231.43 25.71

Total 15 2856.53
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The p-value was compared with o=0.05 and it was observed that there were

differences between the treatment averages.
The treatment effects of the population and the randomized complete block design
treatment effects obtained by SET2.MTB program can be seen in Table 3.4. Estimated

values and true values are close to each other.

Table 3.4 Treatment Effects For the Population and For Randomized Complete

Block Design
Treatments Effects of the Treatments Effects
Population Estimates of the
Randomized Complete

Block Design

7, =-15 £,=-16.9969

T,=-5 t,=-4.85184

T, =+5 7,=6.14217

T, =+15 £,=15.7066

Balanced incomplete block design obtained from the randomized complete block

design is shown in Table 3.5.
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Table 3.5 Formed Balanced Incomplete Block Design
BLOCKS
1 2 3 4
52.6429 50.7093 | - 44.2755
- 57.7852| 61.6684| 59.6934
78.0609 70.9539| 61.2230 -

90.0230 - 72.0152| 84.7867

S

Hl W] D] —

:

Analysis of variance for balanced incomplete block design is given in Minitab

printout. Here the “GLM” command was used.

Analysis of Variance for response

Source DF Seq. SS aAdj. SS adj. MS F P
Treatments 3 1803.26 1740.74 580.25 26.39 0.002
Blocks 3 250.49 250.49 83.50 3.80 0.092
Error 5 109.94 109.94 21.99

Total 11 2163.69

The intrablock, the interblock and the combined estimates of the treatment effects in
balanced incomplete block design obtained by running program SET2.MTB and the
estimates of treatment effects of randomized complete block design are given in Table

3.6.

Table 3.6 Estimates of the Tl;eatment Effects

True £, For Intrablock | Interblock | Combined
Treatment Parameter | Randomized Estimates Esﬁrfatcs Estim'ates
Values Complete T 7 (7
Block Design

1 -15.0000 -16.9969 -18.2560 1.0527| -17.6910

2 -5.0000 -4.8518 -3.2087 24,7675 -3.8394

3 5.0000 6.1421 4,4539 7.2037 4.5343

4 15.0000 15.7066 17.0107 16.5110 16.9961
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3.5 Treatment Effects Estimates in the Balanced Incomplete Block Design and the
Randomized Complete Block Design by Simulation When the Block Effects are
Insignificant

In this section of the study, the estimates of the treatment effects for balanced
incomplete block design and randomized complete block design were obtained for the
situation in which the variance of the population was 25, 50 and 100. The population

parameters are shown in Table 3.7.

Table 3.7 The Generated Population in which o> = 25 and the Treatment Effects
are Significant and the Block Effects are Insignificant

BLOCKS MEAN
1 2 3 4 ST.DEV
: 50 50 50 50 50
. 5 5 5 5 5
é ) 60 60 60 60 60
5 5 5 5 5
3 70 70 70 70 70
g ' 5 5 5 5 5
. 80 80 80 80 80
5 5 5 5 5
MEAN 65 65 65 65|  p=65
ST.DEV. 12248 12248 12.248| 12248 12248

As seen in Table 3.7, the treatments have different averages in the population for
randomized complete block design. While estimating the treatment effects, the block
effects are considered as insignificant. The true treatment effects and the block effects of

the population are given in Table 3.8.
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Table 3.8 The True Treatment and the Block Effects For the Generated Population

Treatments Blocks
T B,
1 -15 0
2 -5 0
3 +5 0
4 +15 0

In order to determine the best estimates of the treatment effects, the program

SET2.MTB was run for 2500 times and the intrablock(?,), the interblock(7;) and the

combined(£;) estimates were obtained. These estimates related to the treatment effects

are independent from each other and they are normally distributed. Figure 3.2 shows that
the intrablock, the interblock and the randomized complete block design treatment
effects estimates have the normal distribution. When the block effects are insignificant,

the combined estimates values are not normally distributed according to the simulation

results.
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Figure 3.2 Normal Probability Plot of the Treatment Effects Estimates

The correlation of the treatment effects estimates for the intrablock and for the

randomized complete block design are given in Table 3.9.

Table 3.9 Correlation Between the Intrablock Estimates and the Randomized
Complete Block Design Estimates
Intra-1 Intra-2 Intra-3 Intra-4 Comp-1 Comp-2 Comp-3

Intra-2 | -0.345

Intra-3 [-0.332 -0.321

Intra-4 {-0.316 -0.361 -0.325

Comp-1 | 0.814 -0.296 -0.278 -0.234

Comp-2 [-0.307 0.824 -0.249 -0.290 -0.375

Comp-3 |-0.262 -0.259 0.816 -0.277 -0.328 -0.309

Comp-4 |-0.261 -0.274 -0.277 0.811 -0.317 -0.321  -349
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As seen in Table 3.9, the correlations between the values of the intrablock estimates

and the values of the treatment effects estimates of the randomized complete block

design are high.

Table 3.10 Correlation Between the Interblock Estimates and the Randomized
Complete Block Design Estimates

Inter-1 Inter-2 Inter-3 Inter-4 Comp-1 Comp-2 Comp-3

Inter-2 |-0.330

Inter-3 |[-0.333 -0.356

Inter<4 |-0.336 -0.317 -0.328

Comp-1 | 0302 -0.103 -0.105 -0.094

Comp-2 [-0.110 0286 -0.099 -0.078  -0.375

Comp-3 |-0.107 -0.088 0277 -0.087 -0.328  -0.309

Comp-4 [-0.092 -0.097 -0.069 0263 -0.317 -0.321 -0.349

In Table 3.10, the correlations between the interblock estimates and the treatment
effects estimates for randomized complete block design are low. Although the interblock
estimates are close to the values of the treatment effects estimates for randomized

complete block design, the correlation between them is low.

Table 3.11 Correlation Between the Combined Estimates and the Randomized
Complete Block Design Estimates

Comb-1 Comb-2 Comb-3 Comb-4 Comp-1 Comp-2 Comp-3
Comb-2 |-0.337

Comb-3 |-0.324 -0.330

Comb-4 [-0.311 -0.346 -0.352

Comp-1 | 0.761 0269 -0.234  -0.237

Comp-2 |-0.295 0.761 -0.221  -0.255 -0.375

Comp-3 | 0243 -0242 0733 -0252 -0328 -0.309

Comp-4 |.0.238  -0.255 -0.268 0.754 -0.317  -0.321  -0.349

When Table 3.11 is inspected, it can be seen that the correlations between the
combined estimates and the treatment effects estimates for the randomized complete

block design are high. The correlations between the intrablock estimates and the
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randomized complete block design estimates are higher than the correlations between

the combined estimates and the randomized complete block design estimates.

Table 3.12 gives the 7,, 7,, 7, estimates of the treatment effects in the balanced

incomplete block design.

Table 3.12 Estimates of the Treatment Effects Obtained by Simulation For o* = 25

Intrablock Interblock Combined 7, for
Estimates 7, Estimates 7, Estimates 7, Randomized
Complete Block
Design

Mean |StDev.| Mean | StDev. [ Mean | St.Dev. | Mean | St.Dev.
-15.014| 2.641| -15.060| 7.456| -15.052| 2.813} -15.031 2.192
-4965| 2.708| -4.848 7.482 49121 2.901| 4983 2.168
5.051| 2.610| 4.930( 7.559| 5.022 2.886 5077| 2.136
14928 2.660| 14.977| 7.353| 14.942| 2.894| 14.937| 2.138

Sl W N -

It can be seen in Table 3.12 that the treatment effects estimates of the balanced
incomplete block design are close to the treatment effects estimates in the randomized
complete block design. Examining the standard deviations of the treatment effects
estimates, it is observed that the standard deviations of the interblock estimates are high.
Among the estimation methods in the balanced incomplete block design, the lowest

standard deviation belongs.to the intrablock estimates values.

In order to examine the effect of the population variance on the treatment effects

estimates, the population variance was increased and the treatment effects estimates

were repeated for o = 50. These estimates values are given in Table 3.13.
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Table 3.13 Estimates of the Treatment Effects Obtained by Simulation For o2 =50

Intrablock Interblock Combined z, for
Estimates 7, Estimates 7, Estimates £, Randomized
Complete Block
Design

Mean |StDev| Mean | StDev.| Mean | St.Dev. | Mean | St.Dev.
-14.977( 3.612| -14.869| 10.592| -15.023 3.997| -14.995| 3.068
-4979| 3.793| -4.687| 10.785| -4.952| 4.175| -4.944| 3.075
4942 3.632 4.684| 10.286| 4.903 3987 4.952| 2.981
15.015| 3.674| 14.872} 10.584 15.071 4.090{ 14.988| 3.063

Bl W N -

The standard deviation of the treatment effects estimates increased because the
variance of the population was increased to 50. The standard deviation of interblock
estimates increased more and therefore the reliability of these estimates decreased.
When the interblock estimates were coinpared with the treatment effects estimates in the
randomized complete block design, it was seen that, the results of the interblock
estimates were more biased than the intrablock and the combined estimates. Even
though the standard deviation of the intrablock and the combined estimates increased
because of increasing the population variance to 50, these estimates were better than the

interblock estimates.

When the population variance was increased up to 100, the standard deviation of the
estimates increased more, as seen in the Table 3.14. The higher the population variance
is, the higher the variance of estimates gets. The minimum standard deviations are

obtained from the intrablock estimates.
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Table 3.14 Estimates of the Treatment Effects Obtained by Simulation For

o’ =100
Intrablock Interblock Combined z, for
Estimates 7, Estimates 7, Estimates 7, Randomized

Complete Block

Design
Mean |St.Dev| Mean | StDev. | Mean | St.Dev. | Mean | St.Dev.
1 -15.027| 5.239| -15.467| 15.147| -15.002 5.928| -15.136 4,360
2 -4919| 5.358| -4.632| 14.862| -4.968 6.183| -4.979 4.361
3 4.891| 5.266 4.683| 14.861 4.880 5.913 4.960 4.329
4 15.055| 5.131} 15.415| 14.966| 15.091 6.007| 15.155 4,286

Table 3.15 is constructed to examine the variation between the mean and the standard

deviation of the intrablock estimates according to the population variance.

Table 3.15 Intrablock Estimates For the Population Variance o> =25, 50, 100

o*=25 o?=50 o>=100
Mean {StDev| Mean | St.Dev. | Mean | St.Dev.
1 | -15.014{ 2.641| -14977| 3.612| -15.027| 5.239
2 4965 2.708| -4979| 3.793| -4919| 5.338
3 5.051| 2.610] 4.942| 3.632( 4.891 5.266
4 14928 2.660| 15.015 3.674| 15.055 5.131

It is seen that, the intrablock estimates are unbiased but the standard deviations of the

estimates are increasing when the population variance is increasing.




3.6 Treatment Effects Estimates in the Balanced Incomplete Block Design and the
Randomized Complete Block Design by Simulation When the Block Effects are

Significant

In this section, when the block effects are significant, all studies in the section 3.5
were repeated for the population variance is 25 and 50. Generated population parameters

are described in Table 3.16.

Table 3.16 Generated Population Parameters in which ¢* =25 and the Block
o Effects are Significant

BLOCKS MEAN
] 2 3 4 ST.DEV
| 50 60 70 80 65
n 5 5 5 5| 12248
% ) 60 70 80 90 75
5 5 5 5| 12248
5 s 70 80 90 100 85
g 5 5 5 5| 12248
. 80 90 100 110 95
5 5 5 5] 12248
MEAN 65 75 85 95 1=80
ST.DEV. 12.248 12.248 12.248 12.248 16.583

As seen in Table 3.16, the treatments and the blocks have different averages in the
generated population for the randomized complete block design. The true treatment and
block effects for the population are given in Table 3.17.

Table 3.17 The True Treatment and the Block Effects For the Generated

Population
Treatments Blocks
2] B,
1 -15 -15
2 =5 -5
3 +5 +5
4 +15 +15
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In order to decide on the best estimator in the balanced incomplete block design

which was obtained from the population with the block effects considered as significant,

SET2.MTB program was run for 2500 times and the intrablock(?,), the interblock(7,)

and the combined( #, ) estimates were obtained.

Figure 3.3 shows that the intrablock, the interblock, the combined and the

randomized complete block design estimates values have the normal distribution.

Normal Probabiiity Plot Normal Probability Plot
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Figure 3.3 Normal Probability Plot of the Treatment Effects Estimates

Table 3.18 gives the 7,, 7,, 7, estimates of the treatment effects in the balanced

incomplete block design.
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Table 3.18 Estimates of the Treatment Effects Obtained by Simulation For o? =25

Intrablock Interblock Combined 7, for
Estimates 7, Estimates 7, Estimates 7, Randomized

Complete Block

Design
Mean |StDev| Mean | StDev. | Mean | St.Dev. | Mean | St.Dev.
1 |-14.858 | 2.652 | 29.785 | 7.577 | -14.952 | 2.639 | -14.912 | 2.143
2 | -5.079 | 2.632 | 39.719 | 7453 | 4.799 | 2.639 | -5.083 | 2.129
3 | 5.034 | 2624 |-39974 | 7494 | 4753 | 2.628 | 5.044 | 2.166
4 | 14903 | 2.610 | 30.040 | 7.342 | 14998 | 2.596 | 14.951 | 2.150

Examining the estimates obtained by executing SET2.MTB program 2500 times, it is

seen that the interblock estimates differ from the true values of the treatment effects. In

this case, the values of the combined estimates which are the combined estimates of the

interblock and the intrablock estimates are closer to the treatment effect estimates of

randomized complete block design. The standard deviations of the interblock estimates

are higher than the standard deviations of the other estimates.

Table 3.19 shows the estimates of the treatment effects when the population variance

is 50.

Table 3.19 Estimates of the Treatment Effects Obtained by Simulation For o =50

Intrablock Interblock Combined z, for
Estimates 7, Estimates 7, Estimates 7, Randomized

Complete Block

Design
Mean |[StDev| Mean | St.Dev.| Mean | St.Dev. | Mean | St.Dev.
1 -15.130| 3.807| -30.068( 10.435| -15.304 3.775| -15.085 3.113
2 -5.005| 3.721| 39.985| 10.579| -4.470 3.750| -4.969 3.085
3 5.109| 3.707! -39.810| 10.488 4.576 3.740 5.029 3.016
4 15.026| 3.837| 29.893( 10.749] 15.199 3.804| 15.024 3.078
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It is seen that the interblock estimates are different than the other estimates. When the
standard deviations of the estimates are examined, it is seen that the combined estimates
and the intrablock estimates are better estimates of the treatment effects when the block

effects are significant.



CHAPTER FOUR
CONCLUSIONS

4.1 Conclusions

In this thesis, the treatment effects estimates obtained by using three methods in
the balanced incomplete block design have been compared with the treatment effects
estimates in the randomized complete block design. The intrablock, the interblock
and the combined estimates for the balanced incomplete block design and the least
squares estimates for the randomized complete block design of the treatment effects
were calculated 2500 times by simulation. In this study as the statistical comparison
criteria, mean of 2500 treatment effects estimates and standard deviation of those

estimates were used.

The populations were generated by using a macro program written in the Minitab
statistical software. Searching for the most appropriate estimator for the treatment
effects, the simulation study was conducted separately for both the insignificance and

the significance of the block effects in the generated population.

After the evaluation of the results, it was observed that each of the three methods
gave unbiased results for the balanced incomplete block design when the block
effects were insignificant. When evaluating the correlations between the treatment
effects estimates in the randomized complete block design and the treatment effects
estimates using the suggested methods in the balanced incomplete block design, it
was observed that the correlations between the intrablock estimates and the
randomized complete block design estimates are higher than the others. As for the
standard deviations of the treatment effects estimates, the values of the intrablock

estimates are lowest among the others.
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When the block effects were significant in the generated population, the
intrablock and the combined estimates give unbiased results but the interblock
estimates are different from the randomized complete block design estimates because
of the great variation between blocks. The standard deviations of the intrablock
estimates and the combined estimates are better estimates of the treatment effects
when the block effects were significant. Although the intrablock estimates and the
combined estimates give approximately similar results, in practice only using
intrablock estimation method is more convenient because of the computational
difficulties of the combined estimation method.
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