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ABSTRACT

The cis stereochemistry of 6-(4-methoxy-phenyl)-1,5,7a-triphenyl-tetrahydro-
imidazo [1,5-b][1,2,4] oxadiazol-2-one was studied by AM1 and PM3 semi-
empirical quantum mechanical models at restricted Hartree-Fock level and X-ray
crystallographic analysis. It crystallizes in the monoclinic space group P2;/n with a =
10.812(1) A, b=16.464(2) A, ¢ = 13.379(1) A, a = 90.00°, p= 98.39(1)°, y = 90.00°,
V =2356.07(4) A %, Z = 4, Deac = 1.3067 g/cm 3, F(000) = 976.41, p = 0.086 mm™ .
The structure was solved by direct methods and refined to R(obs) = 0.066 for 1257

independent reflections [ / > 40()]. The results from X-ray diffraction were seen to

be in generally consistence with theoretical calculations except for conformation of
the five membered heterocyclic rings. One of the five membered rings through 02,
N2, C3, N3, and C4 atoms is in twisted conformation and the other through N1, C1,
N2, C3, and C2 atoms are in envelope conformation. Cl1 atom has maximum
deviation [-0.291(5) A] from average ring plane of enveloped five membered ring.
C18...C23 and C12...C17 phenyl rings are attached to the five membered ring under
discussion as bisectional (neither equatorial nor axial) and equatorial respectively. 4-
methoxyphenyl ring is equatorially linked to this ring, and finally, phenyl ring
C24...C29 is also equatorially attached to the twisted five membered ring. Two inter-
and intramolecular weak interactions in addition to two asymmetric carbon atoms
were found in the structure. To investigate conformational flexibility of the title
molecule, heat of formation values belonged to each conformer corresponding to
certain values of selected four torsion angles were computed by varying in every 10°,

after the isolated (or free) molecular structure was optimized.
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OZET

6-(4-metoksi-fenil)-1,5,7a-trifenil-tetrahidro-imidazo [1,5-b][1,2,4] oksa diazol-
2-on bilesiginin cis stereokimyasi ve bigimlenimsel analizi sirasiyla tek kristal X-
1511 yontemi ve sinrlandirilmis Hartree-Fock — diizeyindeki AM1 ve PM3 yan
deneysel kuantum mekaniksel modeller kullamlarak gergeklestirildi. Yukarida adi
gecen molekiil P2/n uzay grubunda monoklinik paketleme sisteminde a = 10.812(1)
A, b =16464(2) A, c = 13.379(1) A, o = 90.00°, B= 98.39(1)°, y = 90.00°, V =
2356.07(4) A °, Z = 4, Deac = 1.3067 g/cm ®, F(000) = 976.41, p = 0.086 mm" '
seklinde siralanabilecek kristalografik parametrelere sahip olarak kristallegmistir.
Molekiiler ve kristalografik yapi dogrudan yontemlerle ¢ozildii ve I >40(l)
kosulunu saglayan 1257 bagimsiz yansima igin R(g6z.)=0.066 degerine aritildi. X-
i kinmimindan  elde edilen sonuglarin  bes tiyeli heterosiklik halkalarin
konformasyonlari disinda teorik hesaplamalarla genel bir uyum i¢inde oldugu
goriildii. 02, N2, C3, N3 ve C4 atomlarimin tanimladig: bes {iyeli halka biikiilmiis
konformasyonda yer alirken N1, C1, N2, C3 ve C2 atomlarimin tamimladig diger bes
liyeli halka ise zarf konformasyonundadir. C1 atomu zarf konformasyonundaki
halkadan konumsal olarak en biiyiik sapmaya [0.291(5) A] sahiptir. C18...C23 ve
C12...C17 fenil halkalari sézkonusu bu bes tiyeli halkaya sirasiyla estarafli (aksiyal
ya da ekvatoryal olmayan) ve ekvatoryal olarak baglanmistir. 4-metoksi fenil halkasi
da zarf konformasyonundaki halkaya ve son olarak C24...C29 fenil halkasi da
biikiilmiis bes tyeli halkaya ekvatoryal olarak baglanmigtir. Molekiil iki tane
asimetrik karbon atomu barindirmakla beraber iki tane molekiil i¢i ve iki tane de
molekiiller aras1 zay:if etkilesime sahiptir. Molekiilin bigimlenimsel esnekligini
incelemek igin, serbest molekiil optimize edildikten sonra, segilen dort burulum
agisimn degeri her 10° de bir degistirilerek elde edilen konformerlerinin olugum

enerjileri hesaplandi.
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CHAPTER ONE
INTRODUCTION

1.1 Introduction

In this research, the crystal structure of 6-(4-methoxy-phenyl)-1,5,7a-triphenyl-
tetrahydro-imidazo[1,5-b][1,2,4] oxadiazol-2-one, C, H,;N,0,, which is
incorporated one of the new compounds class, which is called as 5, 6, 7a-
tetrahydroimidazo [1,5-6][1,2,4] oxadiazol-2 (1H)-ones by cycloadditions of A3
imidazoline 3-oxides with aryl isocyanates and thermally or photochemically
induced retro cycloadditions reaction of compound A, as shown in Figure 1.2, was
determined and investigated by single crystal X-ray diffraction technique and its
molecular flexibility was investigated by AM1 and PM3 semi-empirical molecular
orbital theories (Dewar et al., 1985; Stewart, 1989). The chemical diagram of the

compound is given in Figure 1.1.

Figure 1.1 The chemical diagram of 6-(4-methoxy-phenyl)-1,5,7a-triphenyl-

CH,

tetrahydro-imidazo{1,5-b][1,2,4] oxadiazol-2-one.



1,3-Dipolar cycloaddition reactions are excellent for the synthesis of five
membered heterocyclic rings (Coskun, 1997). The commonly used 1,3-dipoles are
diazoalkanes, alkyl and allyl azides, nitrile imines, nitrile ylids and nitrones

(Norman, 1978).

The 1,3-dipolar cycloadditions reaction of nitrones with olefins, acetylenes,
isocyanates, isothiocyanates (Coskun, 1997), nitrile oxides (Corsaro et al., 2002) and
thiocarbonyl compounds have been reported. The 1,3-dipolar cycloaddition reaction
of pyridine 1-oxide with phenyl isocyanate gave 2-anilinopyridine. The C-
acylnitrone type of quinoxalin-2-one 4-oxides have also been reported to react with
aryl isocyanates to give 3-arylaminoquinoxalin-2-ones via an oxadiazolone

intermediate.

Figure 1.2 The chemical diagram of compound A with groups that can be substituted

various functional structures.

Cyclic nitrones 1, readily prepared by methods which had been already reported
as professing in references (Coskun & Stimengen, 1993), reacted with aryl
isocyanates in refluxing acetonitrile or THF to give corresponding
imidazooxadiazoline A as the sole regioisomer in excellent yields. The existence of

chiral nitrones derived from D-xylose with vinyl acetate has been recently reported



in the literature (Fischer et al., 2002). The steric hindrance of the aryl group at C-2 on
the nitrone seems to be responsible for the approach of the 2m fragment from
opposite side. The energy minimized conformations of the cis- and trans-
diastereomers showed that cis- should be thermodynamically more stable than the
trans. Spectral measurements about the molecule under studied had been stated in
(Coskun, 1997). H' NMR peaks are listed as follows: 8 3.72 (3H, s), 4.38 (2H, AB
system, Jag = 11.0), 5.88 (1H, s), 6.65 (2H, d, J = 8.0), 6.78 (2H, d, J = 8.0), 6.95
(2H, m), 7.25-7.50 (13H, m). Spin multiplicities are denoted by the symbols: s
(singlet), d (doublet), m (multiplet), and J (coupling coefficient). Chemical shift
values were reported in delta (8) units, using TMS as an internal standart. The

melting point of the white prisms obtained after recrystallization from acetonitrile is

143-144°C. IR (KBr) v,_, =1775cm ™.

e/

b

R4
H

Figure 1.3 Chemical Diagram of Compounds 1 with groups that can be substituted

various functional structures.

In our study, X-ray data for the crystal structures are collected with Enraf Nonius
CAD-4 diffractometer that is at X-Ray Laboratory, Department of Physics
Engineering, Faculty of Engineering, Hacettepe University. After this, the collected
data are solved by direct methods with SHELXS-97 (Sheldrick, 1998) program and
the atomic parameters are refined by least squares and difference-Fourier method
with SHELXL-97 (Sheldrick, 1998) program at Department of Physics, Faculty of
Arts & Sciences, Dokuz Eyliil University. In different steps of the study for
geometrical calculations and molecular graphics; WINGX (Farrugia, 1999),



ORTEP3 (Farrugia, 1997), PLATON (Spek, 1990), PLUTON (Spek, 1990;
Motherwell & Cleegg, 1978) package programs were used.

Conformational study about the molecule was performed by using AM1 and PM3
semi-empirical molecular orbital methods, which is greatly convenient with
experimental results, via HyperChem 6.0 package program (HyperCube Inc., 1996)

on the Intel Pentium II computer.



CHAPTER TW0
X-RAY DIFFRACTION DATA

2.1 Measurement Methods of Diffraction intensities

In this study, the data were collected with an Enraf-Nonius CAD-4 diffractometer.
A single crystal diffractometer consists of an X-ray source, an X-ray detector, a
goniometer that orients the crystal so that a chosen X-ray diffracted beam can be
received by the detector, and a computer that controls (Enraf-Nonius, 1993) the
goniometer and detector movements and performs the mathematical operations

required to position the crystal and the detector in the desired orientations

(Giacovazzo et al, 1998).

There are three well-known methods for measurement of diffraction intensity. In
first of these, both crystal and detector are not moved. While crystal is constant at the

reflection position, detector is constant at the 26 position and intensity measured.

In the “w-scan” mode, the detector is held at the 26 angle of the actual reflection

and the crystal rotated on the w -axis of the diffractometer.

In the “w/26 -scan” mode, both crystal and detector are moved. The crystal is

rotated by Aw, while the detector is rotated in the 2 -circle by an angular velocity,
which is twice of the crystal rotation.

The principles of “w-scan” and “ w/26 -scan” methods are shown in Figure 2.1(a)

and 2.1(b), respectively.



Ddete ctor 0
A28 detsctor

Aw

¥ o

@ ()
Figure 2.1 Diffractometer scan types. (a) w-scan (b) w/20 -scan

2.2 Scattering of X-rays by a Crystal

An Argand diagram may represent the combination of waves. The waves are
represented as vectors with real and imaginary components. We consider that the X-

rays diffracted by structure with N atoms. The resultant of N waves is,

F=fe*+fie" +t fie +oot fre™® 2.1)
— N :
F=Yfe" 2.2)
j=1
On an Argand diagram, (2.2) expresses a polygon of vectors (Figure 2.2); the

resultant F is given by
F =|Fle" (2.3)



Imaginary
4 axis
Ty
F
% .
/ |ising
i
%cosy
#
7 -~
i Real axis

Figure 2.2 Combination of N waves on an Argand diagram.

The amplitude |F| is given by

|\F|* = FF* (2.4)
where F° is the complex conjugate of F :
F* =|Fle™ (2.5)
By analogy we can write,
|F|= (4% + B*)" (2.6)
where
N N
A=Y f,cosg, and B=) f,sing, 2.7
Jj=1 J=1

A and B are, respectively, the real and imaginary components of F, and the

phase angle ¢ is given by

tan ¢ =§ (2.8)

In unit cell if we consider a structure, which has fractional coordinates x;,y,,z;

(=1, 2,..., N), the resultant of the path difference of the waves, which are scattered

by j.th atom, is as follows
8, =Mmx, +hy, +1z,) 2.9)



The phase difference can be written as

2r
cpj=(7)5j or @, =2zn(x; +hy, +1z,) (2.10)

2.3 Crystal Structure Factor

In (2.1), F is called structure factor. The term structure factor is used to represent

the scattering by the contents of one unit cell of a structure.

If we add (2.10) into (2.2); we can write

Fy =Y 7, explorilte, + 1y, +12, ) @.11)

J=l

for structure factor.

In order to evaluate the F,,,, we need also f, called the atomic scattering factors.

If we know their values, the calculation of atomic scattering factors are complicated.

Because; they are tabulated as functions of %, and denoted as f. The atomic

scattering factor depends upon the nature of the atom. f; depends upon the number of
extra nuclear electrons in the atom: its maximum value for a given atom j is Z, the

atomic number of the j.th atomic species. (Ladd & Palmer, 1988).

The variation of f; with 51_11/1_49 is shown in Figure 2.3.
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Figure 2.3 Atomic scattering factors: (a) stationary atom, (b) atom corrected

for thermal vibration.

2.4 Fourier Synthesis and Electron Density

Electron’s distribution around the atoms is presented electron density function.
Because of three dimension periodicity’s of the lattice, the electron density at the

point (x, Vs z) as p(x,y,z) can be represented as a triple Fourier series. Than we may
write

plx,y,2)= %; g Z Fo exp[— 2m‘(hx+ky+lz)] (2.12)

where V and F,,, are the unit-cell volume and the structure factor, respectively. From

(2.3) we can write

O, = arctan{%] (2.13)

"kl

where ®@,,, is phase angle of crystal structure factor. From Friedel’s law, which says,

the diffraction patterns have a center of symmetry,

Fhkl = F;;/;I- or (thl = CD;E[ (2.14)

if we unite (2.3) and (2.12) the electron density function can be written as
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+00

plx,,2) = %Z S° Sy expl2ni(in + ky+2) + @, ] @.15)

h k 1

-0

If we write this equation as trigonometric functions, the electron density function

is given as follows

plx,y,2)= %Z f > |Fyylcos2z (e + by +1z)- @, | (2.16)
h k !

As we can see from (3.16), if we know the structure factors, F),, the electron

densities can be calculated. The peaks at the electron density maps can be used for
determining the atom’s positions. The experimental measured diffraction intensity

give the amplitude of crystal structure factors.

But we need the phases, ®,,, for three dimensional electron density map. In this

study, “direct methods™ has been used in order to derive the phases.
2.5 Data Reduction

The general process of converting electronic measurements into feasible
diffraction data is called “data reduction”. For each intensity maxima, data reduction
includes an integration of the peak including corrections for the spot shape,
subtraction of the relative background intensity, corrections for the geometry of the
instrument, corrections for crystal decay, and averaging or merging of equivalent

data.

The first step involves both an integration of the peak and a subtraction of the
background. The integration step must include corrections for overly strong peaks
that have been recollected at shorter times or with attenuators. This step sometimes
includes corrections for the shape of the diffraction spot. The background, that is
presumed to run beneath the peak measurement, is measured both before and after

the peak or is sampled in various areas around the peak. Background scattering may
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be due to scattering from the sample mount, scattering from air, fluorescence
radiation from the sample or mount, and cosmic radiation. This step produces both
crude intensity and estimates of the standard uncertainties, often called estimated
standard deviations, in the intensity. The standard uncertainties that calculated
directly from counting statistics were found to be underestimates of the true
uncertainties. Now standard uncertainties in intensity include a small "instrument
instability" correction term. The following expression is usually applied in

calculating structure factor amplitudes.
Ly =KLpTAE|F,| 2.17)

In this equation, the symbols indicate;
K: scale factor
L: Lorentz factor
p: Polarization factor
T: Debye-Waller Temperature factor
A: Absorption factor
E: Extinction factor
To use in crystal structure analysis, diffraction intensity that are measured must be

corrected by these factors so that F,,, values are gained.

2.5.1 Lorentz Correction

Some peaks, such as those peaks near to the rotation axis, spend more time
passing through the Ewald sphere of reflection than do others. This difference in time
is corrected by a term called the Lorentz factor. For point detector systems
performing w-20 or w scan, this correction is simply

1

L=——
(sin 26)

(2.18)

Area detector intensity are generally not located in the horizontal plane, so different
formulas are used that is based upon whether the data are being collected using w or

f scans.
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2.5.2 Polarization Correction

At different scattering angles the scattered beam will be attenuated by the
polarization of the beam by the sample. If the incident radiation is plane polarized
(random orientation of the electric vector of the radiation) then the polarization

correction is given by

p=%~(1+cosz 26) (2.19)

If a monochromator is inserted in the incident beam, then the X-rays impinging on
the sample are already partially polarized from the monochromator crystal and a

different formula is used that depends upon the geometry of the monochromator.
2.5.3 Absorption Correction

The absorption of X-rays follows Beer's Law:
I=1,exp(- ux) (2.20)
where [ is transmitted intensity, /, is incident intensity, x is thickness of material, x

is linear absorption coefficient of the material. The linear absorption coefficient

depends on the substance, its density, and the wavelength of radiation. Since u

depends on the density of the absorbing material, it is usually tabulated as the mass

absorption coefficient 4, =(% ) The linear absorption coefficient is then

calculated from the formula:

s %)

where the summation is carried out over the » atom types in the cell, P, is the

percent by mass of the given atom type in the cell and p is the density of the crystal.
The absorption coefficients for crystals in this study are found 0.0105 mm for
C20H35N303 from Table 2.1. How to reduce crude X-ray diffraction intensity from
diffractometer was elaborately reported by Kopfmann and Huber (Kopfmann &
Huber, 1968).
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Table 2.1 Atomic mass and mass absorption coefficients for C;0H;5N303.

Atom || Number | Atomic mass || Total mass | Percentage Mass absorption
of atoms m (am.u.) (%0) P, coefficient (MoK,)
(amu.) (cm’/g)
C 29 12.01 348.29 75.14 0.70
H 25 1.01 25.25 5.44 0.37
N 3 . 14.01 42.03 9.07 1.10
0} 3 15.99 47.97 10.35 1.50

Absorption of X-rays by the sample is often the most difficult correction to
perform. The extent of absorption depends on the size and shape of the crystal as
well as the types and relative amounts of different atoms in the sample, and the
wavelength of radiation used in the experiment. Also absorption from the sample
mount may need to be included in the correction. Most researchers try to reduce the
effects of absorption by reshaping the sample, properly mounting the sample, using a
smaller crystal, or by using a higher energy radiation. There are four general classes

of absorption corrections, analytical, empirical, geometrical, and Fourier.
2.5.4 Debye-Waller Temperature Factor Correction

Thermal motion affects X-rays intensity. Normal scattering factor curves are
calculated through the electron distribution that belongs to a fix atom. But, in fact,
atoms in the crystal vibrate continuously around their points. The magnitude of
vibration depends on temperature, atom’s mass and interaction forces, which are
taken place by perimeter atoms. Vibration is usually so high at high temperatures.
Thermal motion causes that electron cloud is located into larger volume and this case
causes that scattering power of real atom decreases rapidly (Figure 2.3). The

variation of scattering power can be written as
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sin” @
exp(— B pe (2.22)
where B is isotropic temperature factor and is proportional to the average of atomic

vibration amplitude’s square |u ( ) (Aygtin, 1997).

B=8z%2 (2.23)

so, scattering factor for a real atom as follows
)
f=f exp(— B sn;} 0] (2.24)

where f, is scattering amplitude at 0 K and f is scattering factor at laboratory

temperature. After the Lorentz-polarization (L - p) correction is done, observed

average intensity becomes

Le = (|Ful) (2.25)
Theoretical average intensity for a structure with NV atoms in the unit-cell is
-l N
AN (2.26)
i=1
If we unite (2.25) and (2.26),
N 2
Zf,ﬁ CXP( Sl} 0] 2.27)
here B is constant for all atoms and can be calculated. Than, we can write
e sin® @ \&
Iobs = exp(— B /12 )Z_;‘ fo? (228)
In addition,
cal = Clobs (229)
sin® 6 |&
I, = Cexp(— B Iy ]Z 12 (2.30)
i=1
I
In| - |=InC - [23 sin ‘9} 2.31)
P d
i=]
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2

. I ., sin“@
The variation of ln| —<— | with 7

> fa

i=]

is shown in Figure 2.4. So we can find

the isotropic temperature factor, B, from the slop of the graphic.

n lcﬂi
Y
Zi-l Soi T
mC
slope={-2B}
sin* @
>
Figure 2.4 Wilson plot.
Here C depends on £ that is scale constant between 'F,,bs and |F_,|, and can be
written as
k= %/E or  |Fl=kF,] (2.32)

2.5.5 Extinction Correction

The extinction correction, E, is not automatically applied although the program
will often prompt when one might be necessary. Real crystals can be envisaged as a
mosaic of crystalline blocks, each block tilted very slightly with respect to the others
and separated by cracks and faults, When an X-ray beam is diffracted by underlying

blocks; thus the underlying blocks contribute less than expected to the overall effect.

F,,| is less than |F,,|,

obs

The above manifestation of extinction can be detected when

particularly for very intense reflections. The correction then involves rescaling to

wake the most intense Bragg reflections agree with those calculated.
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2.5.6 Anomalous Scattering Factor

In discussing the scattering of X-rays by atoms, we have implicitly assumed that
the frequency of the radiation used was far from that corresponding to any electronic
transition in the atoms being irradiated. But when this condition does not hold, the
scattering factor for that atom is no longer a scalar, but rather becomes a complex.
This situation is called “anomalous scattering” or “anomalous dispersion”. If we

write an expression for scattering factor:

=1 +Af" +iAf" (2.33)
where Af’ is a real correction, usually negative, and Af” is imaginary component
respect to f, and Af’. A possible situation is illustrated for normal case in Figure

2.5 (a) and for anomalous case in Figure 2.5 (b).

Imaginary Imagi:.xa:y
& axig 4 axs

ﬁﬁ(}c) Soa(R)
Af4(B)

Re alixis

@) (b)

Figure 2.5 Anomalous scattering of atom A with respect to the rest of the structure
R: (a) normal case- |F (hx = |F (E ] ; (b) anomalous case-|F (h)| # |F (h_ ] .
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CHAPTER THREE
SOLUTION OF CRYSTAL

STRUCTURE

3. 1 Introduction

The success-controlling step of a structure determination is normally the step of
finding the correct locations for the first atoms of the model structure: once model is
launched, the techniques for adding atoms to trial structure (Fourier techniques) and

refining the structure (least-square or Fourier methods) are more straightforward

procedures.

The number of techniques used for the initiation of a small molecule model is not

large.
3.2 The Phase Problem

There are several ways of describing the phase problem of crystallography:

Both the phases and the magnitudes of the Bragg reflections must be known to

form the image of the scattering material, but only the magnitudes are observed.

It’s a Catch-22 situation: atom positions can be calculated if phase information is

known, and phase information can be calculated if atom positions are known.



18

The phase problem makes the structure determination experiment become an
indirect process of modelling the crystal; if the reflection intensity of the model

match the measured values the model is assumed correct.

The phase problem is what makes crystallography fun: it puts an element of

‘puzzle solving’ into the structure determination experiment.

In the structure determination experiment the phase problem makes the major
hurdle that of getting the model structure started: the problem of how to use the large
amount of experimental data obtained to begin deducing the atom arrangements

which produce those data.

If the structure is centrosymmetric with the origin at the center of symmetry, the
phase angle, @,,,, for each reflection must be 0° or 180°. Thus

Fg = IFhk/|°°S((th1)= iIFhkll (3.1)

and the phase problem becomes the problem of determining the correct sign for each

of the thousands of structure factor amplitudes that were measured. For n unique

reflections, the number of combinations of phases possible are 2" (Gékge, 2002)

If the structure is not centrosymmetric the phase angle can have any value ranging
over an entire circle. Assuming the phase angles need to be known within +45° in
order to get a sufficiently good image of the structure. The number of possible phase

angle combinations becomes 4" (Gokge, 2002).

Reflection intensity is the focus of the front end of the structure determination
experiment (data collection) and the F’ or F? values are the focus of the later part of
the experiment (least-squares refinement). With this emphasis on reflection
amplitude it is important to note that the phase information can be more important
than the amplitude data for the determination of the structure (Lecture Notes, 2001,
pp-XV-1).
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3.3 The trial-and-error method

This method was about the only approach available in the 1920°s and 1930’s. One
part of the research was to find crystals, which had most, or all, of the atoms located
in special positions of highly symmetric space groups. In this way the choices for the
atom positions were limited. The description by Linus Pauling of the structural
research done in 1920’s at Cal Tech provides interesting insights into this era of

crystallography.

3.4 The Patterson Technique

This technique was the dominant method used in structure determination research
from the mid-1930’s until the mid-1960°s. This approach, which is still in use,
requires no phase information and uses all of the reflection data. The method
involves the unraveling of a map of inter-atomic vectors to determine the atom
arrangement, which produced the vector pattern. A Patterson map contains too many
vectors to unscramble if the number of unique atoms is greater than about 20, unless
one or more of the atoms are significantly heavier than the others. In this case the
vectors involving the heavy atoms dominate the vector map and can be used to locate

the heavy atoms in the unit-cell.

The last method that took place in 1960’s and 1970’s, and has been used in this

study, “direct methods”, will be discussed at length in a following sections.

3.5 Direct Methods

Up to the early sixties, the principal method used for structure determination was
by interpretation of the Patterson function. But this method could not apply to
determine structure of so-called light atoms compounds by chemists. For this reason,
chemists needed to its derivatives substituted by using heavy atoms such as bromine,
iodine or halogenated derivatives. The development of the so-called “Direct

Methods” of phase determination has removed this limitation.
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The name “Direct Methods” is derived from the fact that the phases of the
structure factors are derived from the magnitudes of the F’s rather than indirectly by
an interpretation of the Patterson function. A short and not too detailed representation

of principles of Direct Methods was presented in the next section.
3.5.1 Normalized Structure Factors and Intensity Statistics

Some structure factors that correspond to a net scattering from a few atoms more
or less in phase, so that |F,, | is a non-negligible fraction of what it would be if many
atoms scattered in phase. There is always a certain proportion of such reflections in
any structure, but it is not usually obvious which reflections these are, because of the
rapid decline in atomic scattering power (for X-rays) with increasing scattering angle

and with temperature. However, correction for these to effects is straightforward, and

is the essential step in the calculation of normalized structure factor magnitudes

qE hid

for that hkl. Each |F,,| is converted to the corresponding |E,,| by dividing by r. m.

), which represent the ratio of the |F,,| to its expectation value at the sin%

s. value of the atomic scattering factors in the structure, at the value of sin%

corresponding to that /kl, and by the average temperature factor for the atoms in the

structure:

F,
Ew= % (3.2)

. 2
where X = /gz sz exp{— B SH;Z 9} , with B an average isotropic temperature factor
J

(Lecture Notes, 2001, pp.XV-1).

Central Limit Theorem states that the distribution of a sum of » independent
random variables tends, as » goes to infinity, to abnormal or Gaussian distribution
function. The normal or Gaussian distribution function is given by

plx)= G\/l% exp[_ (;;:n f ] (3.3)




21

where m is the mean and ¢ is the standard deviation.

If the atoms in a crystal are considered to arranged randomly, and the number of

atoms is large, Central Limit Theorem can be applied to the distribution of the
intensity of diffraction from the crystal, since that intensity depends on F,,,, and F,
is just the sum of the scattering from many randomly distributed atoms. When the
calculation is made for |Ehk1| values instead of ]Fhk,l ’s, the results are particularly

simple, since the distribution of |E,,| is Gaussian. Table 4.1 presents some useful

results for the equal-atom case (Luger, 1980, pp.214).

Table 3.1 Some statistical properties of normalized structure factor magnitudes*.

Non-centrosymmetric | Centrosymmetric Hypercentric#
<| E|> 0.886 0.798 0.718
1.000 1.000 .
<I E|2> 1.000
<IE2 _ 1|> 0.736 0.968 1.145

* The symbol () represents an average overall skl.

* The hypercentric distribution applies to structures containing centrosymmetric

molecules that lie in general positions in centrosymmetric space groups.

3.5.2 Fundamental Formulae

The principles of direct methods are based on the fact that the experimental data,
that is the magnitude of structure factors. This was first pointed out by Harker-
Kasper inequalities (Harker & Kasper, 1948).

By application of the Cauchy-Schwarz inequality
[rmsea <(flre e flecof @) G4
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to the expression for the structurre factor, some remarkable results can be obtained.
With
F(h)= [p(F)e*""av (3.5)
v
supposing p(¥) =0 forall 7, and
f(h)=p(F)"” (3.6)
g(h)= p(F)"* e 3.7

where 4 = (h,k,l). We get

|F(ﬁ)|2 s( Vj p(F)dVJ[ Vj p(f)]e“'“ de] (3.8)
Since
2747 o1 3.9)
and
J’ p(F)AV =Z (3.10)

with F(000) being equal to the number of electrons in the unit cell, we get

|F(Z)| < F(000) (3.11)
which is, of course, a trivial result. However, with the additional provision of special
symmetry elements present in the unit cell, some important non-trivial results can be
derived. Let us assume, for example, that an inversion centre is present. Then F(h)

reduces to

Fy= [ pPNe™ +e™ Jav =2 [ p(F)cos(arh -F)dV (3.12)

vi2 vi2

Choosing f and g as above, we get

P <2z [p(P)lcos(arh - 7)) av (3.13)

vi2

with cos’ a = % (1+ cos2a) we get

F(h) < 22[ j (p/2)dV + j (p/2) cos(znzﬁ : F)dV] = % (Z + F(zﬁ))

vi2 viz2
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or with Z = F(000),

|F(E)[ < F(OOO)(F(OOO) 12+ F(Qh)/ 2) (3.14)
Defining
- _ F(h)
u(h) = F000) (3.15)
we get finally
Ju(i) = % (1-+ u(2h)) (3.16)

and with using # instead of (3.14) reduces to |u(ﬁ)l <1.

From (3.16) information about a phase, or, since we have a centrosymmetric

problem, about a sign, can be derived from the magnitude of u’s and the |u| ’s are

derive directly from the experimental data. Equation (3.16) is only used for strong
reflections. This is a limitation in direct methods due to the fact that suitable
reflections are usually rare, for instance 10%. Therefore, Harker-Kasper inequality is
no longer applied in practical structure analysis (Harker & Kasper, 1948; Gillis,
1948; Goedkoop, 1950; MacGillavry, 1950). A large number of investigations on
that subject have been initiated, of which one of the earlier important results was the
Sayre equation developed in 1952 (Sayre, 1952). It is one of the basic formulae of
“Direct Methods”.

A simple derivation of Sayre’s equation can be obtained using a simplified
structural model. Let us use point-shaped atoms of unique density having no thermal

motion, so that there is no overlap between pairs of atoms. For this model, let us

assume that p(¥) = [p(F )]2 .

The Fourier transform of p(7)is then denoted by F(k). Since transform of a

product can be expressed by a convolution operation (Convolution theorem), we get
L(p@) = {Tlp®]’ (3.17)

or, using F(h) for the Fourier transform,
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F(h)= j F(h"YF(h - h"Ydv'. (3.18)

Since normalized E- values are closely related to that model, and since for a single
crystals the integral the integral over the reciprocal lattice can be replaced a sum, we
get

E(hy=TY . E(h)E(h - 1. (3.19)
(3.19) is the Sayre equation, which is a key formula in the theory of “Direct
Methods”. The non-negative factor T does not affect its application, since it can be
calculated. Although we have derived this equation from a very special model, it is
valid generally. For a real structural model, only another factor T has to be
introduced. From Sayre’s equation, two formulae to be applied in actual phase
determination will be derived, depending on whether the structure is

centrosymmetric or acentric.

It must be noted at this point that the procedure in practical direct phase
determination is different in the centric and acentric case. This is because the centric
structure factors have phases restricted to 0 or m. Since it is, in general, less difficult
to decide between two possible values than to determine a phase out of the whole
range from 0 to 2, it has become customary, although not necessary, to handle these
two cases separately. If it could not be decided unambiguously by space group
determination whether a center of symmetry is present or not, the distribution and the

averages of E-values can be used as further criteria (Dunitz, 1979).

In the centrosymmetric case, the E values have a sign of + or -. Sayre’s equation
can then be interpreted as follows. For reflections % with \E(I:z.)l being sufficiently
large, it is likely that the sum on the right side of (3.19) will contain more terms
E(h) E(h - h') having the same as sign as E(%) itself, than terms of opposite sign.
Otherwise equation (3.19) could not hold. This is especially true for those terms for
which jE(ﬁ')] and ’E(E - E’)l are large, since they are the major contributors to the

sum. So there exists a more than 50% probability that for large E-values.
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s(h) = s(h")s(h - ") (3.20)
where s(ﬁ) denotes the sign of E(%). This equation remains valid if on the left side
ks replaced by — 7 , since s(h) = s(=h). Setting ~ =h, I =52 and 7 —h' =h,,
we get finally

s(hy) = s(h, )5 (i) (3.21)
or
s(hy)s(hy)s(hy) =1 (3.22)
if the reflections Z, , By, iz‘3 satisfy the equation
B+ by +hy =0 (3.23)

Reflection triplets for which (3.23) holds are said to be related by a %, relation. As

we shall see, these %, play an important role with all applications of direct methods.

From the derivation of (3.22), it is clear that this equation cannot hold exactly, so
that instead of writing “=” it would be better to write “~". Fortunately, the
probability that (3.22) is valid for a given structure can be calculated, as was first
done by Cochran and Woolfson (Woolfson, 1954; Cochran & Woolfson, 1955;
Cochran, 1952; Cochran, 1953; Cochran, 1954; Cochran, 1955; Zachariasen, 1952).

The probability in question under some approaches can be expressed by

1 1 1 =
p=5+5tanh[ﬁlE<h,>E(hz)E(h3)l) (3.24)

where N denotes total number of atoms in the unit cell.

Now we can interpret the sign relationship (3.22) together with (3.24) as follows.
If we have three reflections connected by a X, relation (3.23), and if the signs of two
of them are known, then the sign of the third reflection can be inferred from (3.22)
with a probability given by (3.24). This probability increases with the magnitudes of
contributing E ’s, but decreases with the number of atoms in the unit cell, thus with
size of the structure, as shown by (3.24). Several problems arise with this
interpretation of (3.22). The first is, where to obtain the known signs so that the sign

relationship can be applied? To overcome this problem appropriate starting set of
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phase is chosen from strong reflections and using known phases belonged to strong
reflections starting set is gradually expanded till all reflection regardless of their
intensity were included. Another question is, are the probabilities calculated from
(3.24) large enough so that sign determinations from (3.22) valid? To get an

impression of the magnitude of p, we have calculated p from (3.24) for various

values of N and for different magnitudes of E, assuming

’E(ﬁ, )’ = IE(I:Z2 ), = IE(E3 )‘ = E . The results were given in Table 3.2.

Table 3.2 Probabilities for the sign relationship calculated for various parameters E

and N .

E N= 40 80 120 160 200
3.0 1.00 1.00 0.99 0.99 0.98
2.0 0.93 0.86 0.81 0.78 0.76
1.0 0.58 0.55 0.54 0.54 0.53

If, in the latter stages of sign determination, a large number of signs is known, it
can happen that an unknown reflection is contained in more than one X, relation.

Then, of course,

s(hy=> . s(h")s(h - ") (3.25)
is a better approximation of Sayre’s equation, and in this case probability for the sign
of & to be “+” is given by

- 11 e DI
p+(h)=§+-2—tanh(—\/ﬁ‘E(h)lzﬁ,E(h )E(h—h)J (326)

while the probability p_(%) of a sign to be “- is given by

p_(h)=1-p, (k) (3.27)
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For the phase determination in the acentric case, a further formula can be derived
from Sayre’s equation. Separating (3.19) into its real and imaginary part, we get

B sin p(h) =T ;. |EGRHEC - ) sin(p(i") + p( - ) (3.28)

and

|E()| cos p() =T, |EGRYEGR - ) coslp(i’) + p(h = ")) (3.29)

By division, we get
3 | EGYEG ~ i) sinlp(R) + oG - )
> | ERYEG - B coslp(h’) + ok - )

tan p(h) = (3.30)

This is the well-known “tangent formula” derived by Karle and Hauptman
(Hauptman & Karle, 1956; Karle & Hauptman, 1950; Karle & Hauptman, 1956;
Karle & Hauptman', 1956; Karle & Hauptman, 1961). Just as (3.22) is the key
formula for phase determination in the centric case, the tangent formula is the key

formula for phase determination in the acentric case.
3.6 Criteria of Correctness Set of Phases

Phase determination has usually given more than one solution. For a few sets of
given phases, calculating and interpreting of electron density maps that help to
perceive right structure corresponding to these sets of phase have a long time. Instead
of, this computing some of appropriate functions which are referred to as criteria of
correctness set of phases or “figures of merit” (FOM) is easier than other ways.
FOM, 'makes possible the fact that correctness of each sets of phase is precedingly
estimated. Some of the FOMs are MABS, NQUAL, R,, CPHASE, y,, ... Let us

investigate prevalently used of them.
3.6.1 MABS

It is defined as
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A
=— 3.31
i (331)

which triplet relations studied in estimation of phase are connected with dependence
among relations in question. In order to obtain correct structure, 4, that is
theoretically estimated and 4 close on each other and MABS is approximately equal
to 1. In practice, for approaching to right phase set A must be bigger than 4, and
values of MABS must be ranging from 0.9 to 1.3.

3.6.2 NQUAL

It is defined as

_ Z[Z(ElEz )Z (E3E4Es )] 7
N = S S BB S EEE)] G2

For right structure solution, the value of NQUAL must be close to —1. For random

phases, it is equal to zero.

3.6.3 R, FOM

It is defined as

R, = IALO(ZM ~(a, )|J (3.33)
h

which this kind of fom proportionate with number of triplet that deviate from its
expected statistical distribution. For right set of phases, this value have to be
minimum. By computing different foms for each sets of phase deriving combined
criterion correctness sets of phase (combined figure of merit, CFOM) is very useful.
CFOM is more effective than other functions in separating sets of suitable phase.

Minimum values of CFOM put forward that set of phase is true.
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CHAPTER FOUR
CRYSTAL STRUCTURE

REFINEMENT

4.1 Refinement Methods

When an approximate structure has been obtained using direct, Patterson or other
methods, the atomic parameters that were determined with this method can be
refined. Additional atoms can be located and their parameters also refined. These

additional atoms are found using the Fourier synthesis method.

Two methods have been used for the refinement of the atomic positions and
displacement (or temperature) parameters. One method is based on Fourier
techniques, so called “Difference Fourier Method”, and the other is based on least-

squares techniques, so called “Least-Squares Method”.
4.1.1 Difference Fourier Method

One way of the completing and refining a structural model is the “difference
Fourier synthesis method”. In this method, we investigate the difference between
experimental and calculated electron densities. We can write,

1 ca o
pul)=5 3 X i expl-2ih-7) @41)
h k I
for calculated electron density,

] obs o
pulF)=7 2 X S Fk expl- 2w 7) “2)

h k



30

for experimental electron density. In order to see how much the initial model

derivates from the real structure, the difference series
— - = 1 obs ca . =
8p(F)= P ()= P F) =7, 20 2 > [Fee - P lexpl-2mih - 7)  (4.3)
h k !
should be computed where F2* and F,%: can be written as follows

Fgro =|F|exp(i@® ) and Fg' =|Fg!|explio™) (4.4)

Unfortunately the values of ®°* are not known and we have to assume

O ~ @, will hold better the better is the initial model. (4.3) then becomes

— 1 oos cai
AP(")=;; ; ZﬂFhkllz ~|Fad

lexp(- 27t -7 + 10 @.5)

If in the model an atom is missing, then p,,, (¥ ) will be zero at the corresponding
position, while p,, (F) will show a maximum. The difference synthesis will also

show a peak at the same position but it will be almost zero at the positions of model

atoms where p,,, (F)~ p., (7).

4.1.2 Least-Squares Method

By far the most widely used method of structure refinement is the “least-squares
method” (Sparks, 1961; Cruickshank, 1970; Rollet, 1965). The crystallographic
problem of determining the best set of atomic parameters that can be obtained form a

set of experimental structure factors is usually solved with this method.

We can write the calculated structure factor, for a better set of atomic coordinates

and temperature factors,

% in?
Fo =321, [_ B, sn,lq,z QJCOS[%(’”‘; +hy, +lz, ) (+:6)
j=1

where the structure is centrosymmetric and the temperature factor is isotropic. The
correct values of parameters for j.th atom is as follows:

(B, +AB,,x, +Ax,,y, +Ay,,2, + Az 4.7)
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and the observed structure factor can be written as

I sin’ @
FP = 212fj exp[— (Bj +AB; )—————/12 cos[27z{h(xj +Ax, )+ k(yj +Ay; )+ l(zj +Az, )}]
j:
(4.8)
The difference of two expressions
b w N aFcaI aFcal aFcal aFcal
AF, =Fp —Fag =) | =2 AB, + — M Ax +— M Ay + —H Az, | (4.9)
=1\ 9B, O, %, 0z,

In order to gain the best approximation for observed structure factors, which are

assumed to have no error in practice, the following expression must be minimum.

R =Y -Faf~0 ._ (4.10)
h

4.1.2.1 Overall Strategy

The overall strategy for crystallographic least-squares refinement depends on the
size and nature of the problem, but some techniques can be mentioned here.

1. At the start of the refinement, the number of parameters should be minimized
by refining only position and isotropic displacement parameters for the atoms
that have been found from direct or Patterson methods (Section 4.1 and 4.2).

2. From a difference electron density map, other non-hydrogen atoms can be
found and included in the refinement.

3. Anisotropic displacement parameters for the non-hydrogen atoms can be
added. Hydrogen atoms cannot always be observed in difference electron
density maps. However, hydrogen atoms can be placed at appropriate
positions by using “riding” model constrains.

4. A final difference electron density map should always be calculated, to insure
that no significant features of the structure have been left out of the
refinement. Special attention should be given to possible disorder (large
atomic displacement parameters for some atoms might be a clue), solvent
molecules left out of the refinement or atoms (including hydrogen) that have

been misplaced.
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5. The estimated standard deviation and correlation coefficients for the refined

parameters are calculated for the final refinement cycle.

4.2 Error Analysis
4.2.1 R Factors

Crystallographers often look first for the R-value as one of the simplest ways of
evaluating the general results of a structural refinement. “R-value” shows the

sensitivity between experimental and calculated data and can be written as
23 Y
2 2 2

R-values ranges 0.4 — 0.5 at the starting of refinement and 0.02 — 0.06 at the end of

obs cal
F hkl F hkl

. @.11)

R

where AF,, =

the refinement.

Another R factor is R,,-value; called weighted R-value is given by

> 3 Lary

h__k 4.12)

R, =
IIDISRT -k
h k {

where w is the weight function.( %’f ks , 2002)

4.2.2 Goodness of Fit

Another index obtained from the least-squares refinement is the “Goodness of

Fl ”’

Y 5 Sulrm - (Ff|
GOF =y|-+—+ 1 (4.13)

(n—m)

which is a measure of how well the distribution AF values fit the distribution

expected for the weight which were used. Here 7 is the number reflections and m is

the number of variables refined. GOF value must be nearly 1.0 in a perfect situation.



33

4.2.3 Final Difference Map

The final difference map provides a real-space counterpart for checking how well
the refined the model fits the experimental data, thus complimenting the R-factor
which is a reciprocal-space measure. The final difference map should be featureless,
with no peaks or holes of a magnitude greater than a few estimated standard

deviations of the map values.

4.2.4 Estimated Standard Deviations

Also we search for sensitivity of atomic parameters at the end of determination. In

order to determine the structure sensitively, the standard deviations must be less than

0.001 for coordinates, 0.01A for bond distances and 1° for angles.
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CHAPTER FIVE
COMPUTATIONAL METHODS

5. 1 What is the Computational Chemistry?

Chemistry is an experimentally subject. In many areas of molecular physics,
theoretical prediction of chemical properties can rival experimental measurement.
The choice of whether to find the structure of a molecule, its bond lengths and and
bond angles, by experimental spectroscopy or X-ray crystallography or by

computation may come down to one of the convenience or cost.

Computational Chemistry is a new discipline and one of the fastest growing areas
of chemistry. A sub-discipline of computational chemistry has grown up. This topic
is distinct from theoretical chemistry. The activity involves taking known theory and
developing the computer software to solve chemical problems. Its advent and
popularity have paralleled improvements in computing power during the last several

decades.

The challenges for computational chemistry are to characterize and predict the
structure and stability of chemical systems, to estimate energy differences between

different state, and to explain reaction pathways and mechanisms at the atomic level.

Methods prevalently used in computation process splits into two main classes:
One of them is molecular mechanics and the other is quantum mechanical
calculations. Furthermore, quantum mechanical calculations are also splited into two
parts called as semi-empirical methods and ab initio methods. Semi-empirical

methods separate into many different sub-class within itself such as Extended



Hiickel, CNDO, INDO, MINDO3, MNDO, MNDO/d, AM1, PM3, ZINDO/1,
ZINDO/S and so on. In following sections, on these methods have been dealed with

together its own outline.
5.2 Molecular Mechanics

Conformational analysis of a molecule is of importance to understand its stereo
chemical properties and molecular attitudes such as diversification of their

polimerization process.

Just as the 1960s witnessed an explosion in the application of quantum
mechanical methods that will be shown in the next chapter, there was a
complementary interest in so-called “force field” methods for conformational
analysis. The origin of these methods lies in vibrational spectra required the
development of potential function to describe the overall molecular behaviour. Two
different approaches were considered. In the first, the Central Force Field (CFF)
method, the molecular vibration was fitted to a function that was a sum of pairwise
interactions, without reference to the covalent structure of the molecule. The obvious
disadvantage of this approach is that although such description is correct in terms of
a quantum mechanical model of a molecule, it lacks the intuitive link with structure
with which chemists are happier. The second method, the Valance Force Field
(VFF), provides such a description in that the vibrational data is fitted to a potential
function consisting of bond length and bond angle dependent terms. This is much
more satisfactory and has the advantage of allowing comparisons between
molecules; unlike the CFF potential functions which will be very molecule
dependent. The major criticism of the VFF method is that the force constants
produced must attempt to incorporate intramolecular interactions such as dispersion
forces which result from electron correlation, and therefore are not simply a
representation of the intrinsic vibrational frequency. These spectroscopic force fields
provided the ideal starting point for what is now called molecular mechanics. By

bringing together features from both the CFF and VFF methods, it proved possible to
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derive energy functions that were at once chemically intuitive while still retaining the

concept of through space attractions and repulsion.

The theoretical basis of the molecular mechanics method can be derived by taking
an alternative approach to the Born-Oppenheimer approximation to that considered
in molecular orbital methods: in this case the nuclear motion is considered while
implying a fixed electron distribution associated each atom. To this end a model has
been developed whereby a molecule is represented as a collection of spheres
(possibly deformable) joined by springs. The motion of these atoms can then be
described by the laws of classical physics and simple potential energy functions can
be used. This allows much larger chemical system to be investigated. For instance,
proteins and other biomolecules can only be investigated by molecular mechanics

methods.

Although this method of calculation sounds ideal, the following caveats must be
kept in mind. First, as the method neglects explicit representation of electrons, it is
restricted principally to the discussion of molecular ground states. This also
disallows the investigation of reactions. Secondly, the results obtained will only be as
good as the potential functions and parameters used; much of potential energy
surface defined by the force field has little validity as, typically, only extrema (stable

conformations, rotational barriers etc.) are used in the parametrization procedure.

5.3. The Energy Calculation

The molecular representation introduced in the previous section was one that
treated molecules as a set of vibrating spheres. The next step is to define an energy
function which is consistent with this concept yet allows accurate calculations of
molecular properties. The force field commonly encountered today have resulted
from a number of generations of development. Typically, more structural and
thermodynamic data have become available, coupled with considerable increases in
computer power, allowing an extension of the functional form of energy calculation.

As more terms are included, the accuracy of the force field increases.
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The energy of a molecule is calculated as a sum of the steric and non-bonded
interactions present. Therefore each bond length, angle and dihedral is treated
individually while non-bonded interactions represent the influence of non-covalent
forces.

E,=E +E,+E_+E, (5.1

Here E,, E,, E, and E,, are respectively the total bond, angle, dihedral and

non-bonded energies. Explanations needed were done in following subsections.
5.3.1 Bond Stretch
The typical vibrational behaviour of a bond is near harmonic close to its

equilibrium value but shows dissociation at longer bond lengths, as shown in Figure

5.1

A810ug

Interatomic
lo Distance

Figure 5.1 Morse Potential (Continuous line) and Harmonic Potential
(Dashed line)

The most accurate description is the Morse potential function

E =Y D,l-e®] (5.2)
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where /; is the equilibrium bond length, D, the dissociation energy, and a a force

constant. However, the exponential calculation is computationally expensive

therefore most force fields have adopted a simple harmonic function
2
E =>k(-1,) (5.3)
k, being the stretching force constant describing the deformation. The bond stretch is

treated in the same fashion as a stretched spring. This equation has obvious limitation
in that it only approximately describes the actual behaviour of the bond. Further, at
extended bond length it is much too steep (see Figure 5.1), while it provides no
representation of dissociation at very large deformation. When discussing
minimization of poor geometries we will see that this can be an advantage as this

function can allow more extended bonds to remain intact.

Other variations on equation (5.3) have been used to accommodate more accurate
long distance behaviour. Most commonly this takes the form of an additional cubic

term

E =Y k(-1,) +k (-1,) (.4)
but this suffers from the problem of inversion at long distance. Attempts have been

made to remedy this by adding a quartic term which reverses the inversion.

5.3.2 Bond Angles

Historically, bond angles have been treated in the same way as bond lengths and

are usually described by a harmonic function.

E, =Y k,(0-6,) (5.5)

As before, k, is a force constant and 6, the equilibrium value for the bond angle.

Again, this term is not ideal for the full range of values observed so higher order
terms must be added. In very strained ring systems, however, it is usually not
possible to use the constants derived for unstrained and acyclic molecules so separate

three- and four-membered ring constants have been developed.
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5.3.3 Dihedral Angles

In very early force fields it was thought that this term could be omitted; gauche-
trans energy differences would then result from non-bonded interactions. This soon
proved to be an impossible task and dihedral angle terms were explicitly included.

The functional form of this term is a Fourier series

E, =ZV,, (1+ scosnw) (5.6)
where ¥, is the rotational barrier height, n the periodicity of rotation (e.g. in ethane

n=3; in ethene n=2 ) and s=1 for staggered minima and —1 for eclipsed minima.

Figure 5.2 shows the n=1, 2 and 3 curves.

LA
60 120 180 240 300 360 »n)

=3
= e PV .
RAALIIT .
.

Figure 5.2 Variation of energy with dihedral angle for one (--), two (") and
threefold (—) barriers.

5.3.4 Non-bonded Interactions

The interactions discussed in the previous sections can also be grouped together as
the bonded interactions, in the sense that they are defined by the connectivity of the
molecule. The non-bonded interactions, on the other hand, are distance-dependent

and are calculated as the sum over all atoms with a 1, 4 or greater separation. It is
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usual to consider these interactions as having two components: van der Waals and
electrostatic. The former can be considered as both a size parameter and
representative of electron correlation (resulting from instantaneous dipole
interactions), while the latter provides a quantitative measurement of the influence of

polarity on the energy and structure.

Many different functional forms have been used for van der Waals interactions

but the most common is the so-called 6-12, or Lennard-Jones potential

Ep=Y a[(%")n - 2(”7"')6} (.7)

¢ is the well depth and 7, is the minimum energy interaction distance (see Figure

~-12

5.3). Short-range repulsions are accounted for by the ™ term whereas London

dispersion-attraction forces are mediated by the ™ component. At short distance the
repulsive term dominates. Other form have been proposed for the van der Waals
interaction, so-called The Buckingham potential

E, =Ade” -Cr* (5.8)

12 term. In most circumstances this function

an exponential replaces the repulsive r
behaves similarly to the Lennard-Jones equation but at very short interatomic
distances the function inverts and goes to —o, an obvious danger in poorly

constructed model structures.

The second component of the non-bonded potential is the electrostatic term. This

is usually calculated using partial charges (q) on the atom centers with the energy

calculated using Coulomb’s law

9.4,
Ey=270-" (5.9)
i

with the dielectric constant D taking a value appropriate to a given solvent or made

proportional to the distance 7, between the charges. The electrostatic contribution is

one of the most controversial in molecular mechanics.
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5.3.5 Other terms
The five terms outlined above constitute the core of almost all molecular
mechanics force fields; in some case the entire energy function. In many situations,
however, it is necessary for additional terms to be included.
For systems where hydrogen bonding is vital for stability, e.g. biological

molecules, it has been common to include an additional, explicit hydrogen bond

energy function to ensure correct geometries. In certain protein force fields this takes

C, E,
E,=). Kr—{zJ -~ (}‘_{’H (5.10)

Other force field attempt to simulate hydrogen bonds using just the van der Waals

the form

and electrostatic terms without the inclusion of a special attractive potential.

Also, other commonly used terms, which are denominated cross terms, include
stretch-bend, bend-bend, bend-torsion, are defined respectively in following:

the stretch-bend term is
Ee=Y>kol-1,)0-6,) (5.11)

and the bend-bend term is

P =zzkao'(9“eoxa"“90) (5.12)
finally, torsion-bend term is
Eg = koo (06, )(9' -00')cosw (5.13)

where the k terms are the force constants; /, /,, 8, 8, and w are as before.

5.4 Quantum Mechanical Calculations

Molecular mechanics calculations have been remarkably different from quantum

mechanical calculations, because it has shortcomings such that covalent bonding of
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atoms in a molecule does not explain. Quantum mechanical calculations (QMCs) are
more preferable than molecular mechanical calculations that use principles of the
Newtonian mechanics, since nature of covalent bonding can only be explained by
quantum mechanical calculations. And also, choosing of calculating method to be
used in determining of electronic structure of an molecule, as have been in many
properties such as molecular orbitals, various geometric parameters, features of
reactivity from frontier molecular orbital theory and so forth, is also of great

importance in terms of time consuming or needed computer memory.

As mentioned before, QMCs are separated into two primary class called as ab
initio and semi-empirical methods. In following, quantum mechanical calculating
methods mentioned above were briefly disputed about their discriminative

properties.
5.4.1 SCF Theory

The most clearly defined molecular orbital calculations are based on the Hartree-
Fock (HF) or Self Consistent Field (SCF) method. For this reason, the method is of

great importance in terms of computational molecular mechanics.

Hartree-Fock (HF) equation is defined as follows
HSCF¢1 =£,4; (5.14)
where

H* =g+ J->K (5.15)
J J
and the shorthand notation used is defined by
2 1
J 8= flg,@ —av, p.0) (5.16)
12
and

K4 =[ [#,8, (2)}dv2 )¢,- M (5.17)
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with a “— sign on a summation indicating summing only over pairs of electrons of

the same spin.

The Hartree-Fock equations containX; or exchange terms in addition to the

obvious Coulombic interelectron interactions allowed for in the Hartree equations.
These exchange terms arise as a result of the Pauli principle that leads to
determinental wave function rather than products and exchange integrals between
various cross products of the expanded determinant. The determinental equation is

defined as

det{ H5" ~ &5, |=0 (5.18)
where S, is known overlapping of the atomic orbitals that are take part in covalent
bonding under discussion and defined as

Sy = JZ/dev (5.19)
where y,, s are atomic orbitals. This equation solved after calculating all the integrals
involved in H, and S, . Solution yields values of & which are substituted in the

secular equations to give new coefficients that determine to molecular wave function
to be found. The process may then be repeated until the coefficients resulting from
one cycle are identical within prescribed limits with those used in the previous cycle.

The results are then self-consistent.

The various simplified methods of calculating molecular orbitals are essentially
approximations of a greater or less drastic nature that result in a reduction of the

number of the integrals necessary to build the matrix element A, and S, in the

determinental equation.
5.4.2 Configuration Interaction

We have already met the variation principle which tell us that the more flexible a

wave function the better it will be in terms of the energy which results. One way of
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improving the wave functions, which we have as a result of self-consistent field or

approximate calculation is to allow the interaction of configuration.

Formally this means allowing a further linear mixing to give an improved wave

function,
IIJx‘mproved = Z GV, (5 1 9)
i=0

In this expression y, is the wave function we first find and the others are wave

functions that would be appropriate for excited configurations of the same symmetry.
The coefficients above are mixing coefficient whose values are chosen so that energy

improvement is maximized.

In many molecular orbital packages the effects of excited states are incorporated

using perturbation theory as introduced by Moller and Plesset.
5.4.3 Ab Initio Method

All molecular wave functions are approximate; some are just more approximate
than the others. We can solve the Schrodinger equation exactly for the hydrogen

atom but not even, despite what many textbooks say, for the hydrogen molecule ion,
H; . For the H; we make the Born-Oppenheimer approximation which separates

electronic and nuclear motion, and calculate electronic energy of the ion with a given
fixed internuclear distance and then obtain the total energy by adding the nuclear-
nuclear repulsion term. In this method Hartree-Fock determinental equation is solved
by using Hartree-Fock self-consistent field operator. While doing it, each molecular

orbital will be in the form

6= Cuu (5.20)
k

If the expansion is infinite then we would achieve the most flexible wave function
within the constraints of the self-consistent field Hamiltonian which we have

defined. The resulting energy would be the best we could obtain and is the Hartree-
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Fock limiting energy. In practice, if an expansion of thirty or forty terms is used for

¢, then little further improvement in energy results and we can safely assume that

we are close to the limit. Most of difficulties encountered in calculations are related
to matrix element of HF SCF Hamiltonian and calculate overlapping integrals. To
overcome this problem we usually use different types of basis set, which are chosen
to obey for our purposes. These functions chosen are separated into two main class
within itself in terms of its radial parts. One that is denominated as Slater Type
Orbital (STO) has radial weighting function in the form of e™ as zeta a parameter,
and other that is denominated as Gaussian Type Orbital (GTO) has a more tractable
form for the sake of facility of the calculations.

It is important to realize that even if we can afford to have long expansions of
molecular orbitals and even reach the Hartree-Fock limit, there are still defects in the

wave functions that arise from approximation in the actual Hartree-Fock equation.

There are two sources of error in the starting equations. The first comes about
because the whole theory is based on the Schrédinger equation, which is not
relativistically correct. Fast moving inner electrons may move with speeds which are
not negligible by comparison with the velocity of light and relativistic effects thus
contribute; mass is not constant. Since most chemical and biological transformations
of molecules do not involve core electrons this error is normally a constant and

causes no serious difficulty.

The second error is more than serious and is called the correlation energy error.
This error or deviation from true values of energy stems from nature of Ha.rtrec-Fock
method. In the method, progress accounting for interaction of one electron with
another is not correct especially further stages in calculation, because in these stages
correlation terms to be calculated were computed for interaction one electron with
negative charge density consisted of more than one, whereas electron-electron
correlation term can only be written in situation that both of electrons are also

considered as point charge. In Figure 5.3, it has been shown Hartree-Fock limitation
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and its utility in addition to influence of selection of basis set in ab initio method in
comparison with true energy values.

Energy
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True potential
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Figure 5.3 Energy values versus internuclear separation

5.4.4 Neglecting Differential Overlap (NDO)

Matrix element of Hartree-Fock self-consistent field Hamiltonian operator and
overlapping integrals for a molecule composed of a large number of atoms are
operations rigorous time consuming. While solving Hartree-Fock secular equation,

for the sake of rapidly arriving to desired results, some approximations were
proposed. Neglecting differential overlap is one of them.

In this approximation method, neglecting differential overlap of functions based
on different centers, we eliminate not only all three or four center integrals but also

most two or in occasion one-center integrals where different atomic orbitals are
involved for either of two electrons.

NDO approximation has various types in terms of order and parameterization

manner of neglecting in semi-empirical methods, as presented in the next subsection.
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Some of them are denominated as CNDO, INDO, MINDO, MNDO, ZINDO/1, and
ZINDO/S.

5.4.5 Semi-empirical Methods

Ab initio calculations are themselves not always perfectly successful in obtaining
experimental observations. And also, the numbers of integrals to be calculated for
even small molecules are numerous. In consequence, a great deal of effort has been
expanded devising so-called semi-empirical molecular orbital methods. These
calculations start with determinental equation but in following stage make various

approximations to diminish the amount of consuming time.

All the commonly used techniques are valence electron calculations whereas 1s
electrons can be neglected since these play little part in chemical or biochemical
activities. The 1s electron are defined as part of the core for first row atoms and both
K and L shell electrons for heavier atoms. Thus, the self-consistent Hamiltonian

becomes

H=H"+YJ,-> K, (5.21)
J J

and H “"contains kinetic energy and attraction to a core rather than to a bare

nucleus. Integrals involving H“™ are usually replaced by empirical or calculated
parameters.

Semi-empirical methods cannot give more accurate results than ab initio methods
due to the fact that it has parameters that are determined empirically. However, as
long as the parametrization is related to experimental data that are closely with
reference to parameters that are tried to be determined, then this approach works
perfectly. Generally, semi-empirical methods using this idea give wide agreement
with experimental results. Although results from semi-empirical methods can never
be better than ones from ab initio method, they are more feasible than ab initio

method, especially, in terms of time consumption.
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The precision of the semiempirical methods is limited by the accuracy of the
experimental data used in obtaining parameters. It should be noted, that it is
frequently necessary to transform the experimental data before comparing to
calculated results. It is also known that for precise comparison of ab initio total
energies and semiempirical heat of formations with the experimental values, entropy
corrections should be considered. This type of transformations were not performed
consistently during the parametrization procedure of the above mentioned
semiempirical methods. Parametrizing the semiempirical methods to reproduce the
best available theoretical results would solve this problem. However, two serious
problems remain: how to determine the best form of parametric functions and how to
find the best minimum on the parameter hypersurface (Dewar & Zoebisch, 1988).
The development of the corrections to CRF illustrates the difficulties. It was found
that the MNDO (Dewar & Thiel, 1977) parametrization is unable to describe

correctly the core-core repulsion in crowded molecules.

Calculating methods chosen for performing the present master thesis are AM1 and
PM3 methods. Next two subsections are dedicated to clarify details of AM1 and

PM3 models with its comparison.

5.4.5.1 AM1 Method

Austin Model 1 that is progressed in the Texas University at Austin by Dewar and
his collaborators have been improved through developing further either MNDO
(Mixed Neglecting Differential Overlapping) or MINDO/3 (Mixed Intermediate
Neglecting Differential Overlapping/3) approximations. While doing this
improvement, new parameters that can be adjusted to fit experimental results are

defined to arrive desired quantitative.

Extensive attempts to correct the errors in MNDO persuaded us that they had a
common cause, a tendency to overestimate repulsions between atoms beyond van der
Waals distance. The clear way to deal with this was to modify the core repulsion

functions (CRF) in MNDO. But vain all the attempts to find a suitable functions in
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order to enlighten on repulsions in question cannot be successful. Instead of this
effort, innovators of his method would rather utilize by modifying available
functions that represent the repulsions by additional Gaussian terms. The present
form of AMI1 probably represents about the best that can be achieved using the
NDDO approximation as a basis, without specific allowance for the contributions of

thermal energy. The CRF in it is as follows

CRF(AB)=z,2,y5(1+ F(4) + F(B)) (5.21)

where
F(4)=exp(~a,Ry)+ Y K, explL, (Ros — M, )] (5.22)
F(B)=exp(-ayR )+ Y Ky explLy (Rys - M, 1 (5.23)

The formalism used in AM1 method is essentially the same as that of used in
MNDO with exception of the CRF. The values of L parameters, which define the
widths of Gaussians, were not critical so a common value was used for most of them.
They were not included in the overall optimization. The M and K parameters were all
optimized. Note that the Gaussian terms, like the others in the CRF, refer to
individual atoms, not pairs of atoms. In MNDO parameters were determined first for
hydrocarbons and other elements were then added at a time. We had to do this
because the number of molecules that could be included in the basis set for
parameterization was limited by the computing time required. Development of a
greatly improved optimization procedure has made possible the use of a much larger
basis set, allowing parameters for C, H, O and N to be optimized in a single
operation with a basis set which included some organic species. Parameters

belonged to parameterization procedure used in AM1 are shown in Table 5.1.

Table 5.1 AM1 parameters for C, H, O and N atoms.

Parameters Elements

H C N o
Uss -11.396427  -52.028658 -71.860000  -97.830000
Upp -39.614239  -57.167581  -78.262380
s 1.188078 1.808665 2.315410 3.108032

Ep 1.685116 2.157940 2.524039
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B -6.173787  -15.715783  -20299110  -29.272773
B 27719283 -18.238666  -29.272773
o 2.882324  2.648274 2947286  4.455371
K, 0.122796 0.011355 0.025251  0.280962
K, 0.005090 0.045924 0.028953  0.081430
K; -0.018336  -0.020361  -0.005806

Ky -0.001260

Ly 5.000000 5.000000 5.000000  5.000000
L, 5.000000 5.000000 5.000000  7.000000
Ls 2.000000 5.000000 2.000000

L, 5.000000

M, 1.200000 1.600000 1.500000  0.847918
M, 1.800000 1.850000 2.100000  1.445071
Ms; 2.100000 2.050000 2.400000

M, 2.650000

The two strategies were used to modify the CRF and reduce excessive interatomic
repulsion at large separations. In the first, one or more attractive Gaussians were
added to compensate the excessive repulsions directly, centered in the region where
the repulsions were excessive. In the second, repulsion Gaussians were centered at
smaller internuclear separations, leading to an overall reduction of the main term in
the expression for the core repulsion and hence reducing the repulsion at larger
internuclear distances. In the case of carbon, hydrogen and nitrogen, both types of
Gaussians were included, while only repulsive Gaussians were needed for oxygen.
Attempts to use only repulsive Gaussians for the other elements led the poorer results

while use of attractive Gaussian alone led to no improvement over MNDO.

5.4.5.2 PM3 Method

PM3 is a reparameterization of AM1, which is based on the neglect of diatomic
differential overlap (NDDO) approximation. NDDO retains all one-center

differential overlap terms when Coulomb and exchange integrals are computed. PM3
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differs from AM1 only in the values of the parameters. The parameters for PM3 were
derived by comparing a much larger number and wider variety of experimental
versus computed molecular properties. Typically, non-bonded interactions are less
repulsive in PM3 than in AM1. PM3 is primarily used for organic molecules, but is

also parameterized for many main group elements.

The reparametrized AM1 method tried to remedy this problem by introducing
Gaussian correction functions (GCF) to CRF. These corrections are outside the
quantum-mechanical framework, their role is to adjust the nuclear-nuclear repulsion
terms. Utilizing the GCF the AM1 method provided consistently superior results
over the MNDO method. Later a fully optimized parameter set was produced by
Stewart (Stewart, 1989). This parameter set is called PM3. The difference in

parametrisation has been presented in Table 5.2, where a,, b, and c, are

parameters that characterize Gaussian Correction Functions.

Table 5.2. GCF parameters for PM3 and AM1 methods.”

PM3° AM1 ©
Atom (i) | k Ay by Cit Ay b, Cir
H 1] 11288 | 510 | 1.5375 | 0.1228 | 5.00 1.20
2 |-1.0603 | 6.00 | 1.5702 | 0.0050 | 5.00 1.80
3 -0.0183 | 2.00 2.10
C 1100507 | 600 | 08925 [ 0.0114 | 5.00 1.60
2] 0.0501 | 6.00 | 1.6422 | 0.0459 | 5.00 1.85
3 -0.0200 | 5.00 2.05
4 -0.0013 | 5.00 2.65
N 1]15017 | 590 | 1.7107 | 0.0253 | 5.00 1.50
2 |-1.5058 | 6.00 | 1.7161 | 0.0290 | 5.00 2.10
3 -0.0058 | 2.00 2.40
0 1]-1.1379 | 595 | 1.5984 | 0.2810 | 5.00 | 0.848
2 | 1.1311 | 6.00 | 1.6073 | 0.0814 | 7.00 | 1.445

Rounded values. ° (Stewart, 1989). © (Dewar et al., 1985).



52

~ CHAPTER SIX
COMPUTATION TYPES

6.1 Introduction

In computational molecular mechanics, many different calculation methods have
been appropriately improved to arrive our purposes, which are changing from one
situation to another. Remarkable ones of them are single point, geometry
optimization, transition state search, QSAR (Quantitative Structure Activity
Relationships) analysis and so on (Grant & Richards, 1995).

In this chapter, two calculation methods utilized in my thesis of were elaborately

discussed in the next sections.

6.2 Single Point Calculation

A single point calculation, as its name suggests, performs a calculation at only a
single point on the potential surface, which specifies definite geometrical parameter
set for given special molecular geometry. Normally, these calculations are for
stationary points on a potential energy surface. Occasionally, you may want to
characterize the potential energy surface by calculating the energies of a grid of
points on the surface. You can use those results to generate a contour plot of the
surface. You can use either molecular or quantum mechanical methods for single
point calculations. The calculation provides energy and the gradient of that energy.
The gradient is the root-mean-square of the derivative of the energy with respect to
Cartesian coordinates. At a minimum the forces on atoms (the gradient) are zero. The

size of the gradient can provide qualitative information to determine if a structure is
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close to a minimum. Single point computation can use quantum mechanical methods
to calculate several other properties. The properties include the dipole moment, total
electron density, total spin density, electrostatic potential, heats of formation, orbital
energy levels, vibrational normal modes and frequencies, infrared spectrum

intensities, and ultraviolet-visible spectrum frequencies and intensities.

For a diatomic molecule, this might be a calculation at R=2.0 A, for example.
The results of a single point calculation give the potential energy of the system at that
geometry, as well as the gradient at that point. For single parameter potential curves,
the gradient describes the steepness of the potential curve at that point along the
direction in which the energy decreases. For a polyatomic system, the situation is
more complicated, but essentially the same the gradient gives the direction in which
the energy goes most steeply downhill, along with the steepness of the down-hill
slope. The RMS gradient that is reported is just the root-mean-square average of the

Cartesian components of the gradient vector.

Most of using calculations needs to explore potential energy surface related to
circumstance under study. A single point calculation determines the total energy and
RMS (root mean square) gradient of a molecular system or of selected atoms. With a
semi-empirical or ab initio method, single point also calculates the electron and
charge distribution in the system. Single point the potential energy surface for the

molecular system.
6.3 Geometry Optimization

Geometry optimizations find the coordinates of a molecular structure that represent a

potential energy minimum. For a potential energy V and Cartesian coordinates r,,

the optimized coordinates satisfy this equation:
o _

0 6.1
or, @1

You might perform a geometry optimization calculation with one of these goals in

mind:
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e Characterize a potential energy minimum. A geometry optimization results in
a new structure at a minimum. You can examine atomic coordinates and
energy of this structure.

e Obtain a new stable structure as a starting point for a single point, quantum
mechanical calculation, which provides a large set of structural and electronic
properties.

There are three types of optimizers or algorithms: steepest descent, conjugate
gradient such as Fletcher-Reeves and Polak-Ribiere, and block diagonal such as
Newton-Raphson (Gill, 1981).

6.3.1 Steepest Descent

The steepest descent method is a first order minimizer. It uses the first derivative
of the potential energy with respect to the Cartesian coordinates. The method moves
down the steepest slope of the interatomic forces on the potential energy surface. The
descent is accomplished by adding an increment to the coordinates in the direction of
the negative gradient of the potential energy, or the force. The steepest descent
method rapidly alleviates large forces on atoms. This is especially useful for
eliminating the large non-bonded interactions often found in initial structures. Each
step in a steepest descent requires minimal computing time. Its disadvantage is that

convergence toward a minimum is very slow.
6.3.2 Conjugate Gradient

A conjugate gradient method differs from the steepest descent technique by using
both the current gradient and the previous search direction to drive the minimization.

A conjugate gradient method is a first order minimizer.

The advantage of a conjugate gradient minimizer is that it uses the minimization
history to calculate the search direction, and con-verges faster than the steepest
descent technique. It also contains a scaling factor, b, for determining step size. This

makes the step sizes optimal when compared to the steepest descent technique.
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6.3.3 Block Diagonal

The Newton-Raphson block diagonal method is a second order optimizer. It
calculates both the first and second derivatives of potential energy with respect to
Cartesian coordinates. These derivatives provide information about both the slope
and curvature of the potential energy surface. Unlike a full Newton-Raphson method,
the block diagonal algorithm calculates the second deriv-ative matrix for one atom at
a time, avoiding the second deriva-tives with respect to two atoms. This technique is
available only for the MM+ force field. As is true for the conjugate gradient
methods, you should not use this algorithm when the initial interatomic forces are

very large (meaning, the molecular structure is far from a minimum).

6.3.4 Eigenvector Following

The Eigenvector Following method is in some ways similar to the Newton-
Raphson method. Instead of explicitly calculating the second derivatives, it uses a.
diagonalized Hessian matrix to implicitly give the second derivatives of energy with

respect to atomic displacements. The initial guess is computed empirically.

This method is available for all semi-empirical methods except Extended Hiickel,
and for ab initio calculations. This algorithm may be used if the structure is far from

a minimum.
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CHAPTER SEVEN
EXPERIMENTAL DETAILS

7.1 The Crystal of C20H25N303
7.1.1 Data Collection of C,9H35N30;3 Crystal

Before starting data collection, the suitable crystals were selected from the
synthesized crystals by using stereomicroscope and polarization microscope. Than a

sample of size 0.08x0.05x0.26 mm’ was selected for the crystallographic study.

The diffraction measurements were performed at room temperature (293K ) on an
Enraf-Nonius CAD-4 diffractometer using graphite-monochromated MoK,

radiation. Orientation matrix and unit cell parameters were obtained from the setting
angles of 25 reflections at medium 6 (2.62 °< § <23.11 °). The systematic absences
and intensity symmetries indicated the monoclinic P2, /n space group. A total of

3067 intensities with 6,,=23.11° were collected in the w/28 scan mode, as
suggested by peak-shape analysis. The crystal and equipment stabilities were
checked by the intensities of three standard reflections monitored every 120 minutes.
No considerable amount intensity decay was observed throughout measurement
under discussion. The intensities were corrected for Lorentz and Polarization factors,

but not for absorption effect (4 = 0.086 mm™).
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7.1.2 Structure Solution & Refinement of C20H25N30; Crystal

The structure was solved by direct methods using SHELXS-97 for 1257 reflections

satisfying I > 40(I) and FOM values that used in phase determination are given in
Table 6.1. Since the (lE 2 - 1’) =0.898, structure is centrosymmetric. The refinement

(on F) was carried out by full-matrix least-squares method on the positional and
anisotropic temperature parameters of the non-hydrogen atoms. Refinement of the
structure was converged to R=0.066 for the observed reflections and R= 0.21 for all
data. The maximum peaks and minimum hole, observed in the final Ap map, were
0.220 and —0.230 ed?, respectively. The scattering factors were taken from SHELXL-
97. All of the H atoms were found in the difference-Fourier maps, and positions and
isotropic thermal parameters were refined. The C-H bond distances range from
0.93(3) to 1.02(3) A, while Uy, values for H atoms are in the range 0.048(5)-0.120(1)
A.

Table 7.1 FOM values for Co9H;5N303.

Set Code R, NQUAL MABS CFOM

1049361 0.061 -0.658 1.068 0.124

7.1.3 Experimental Results for C29H,5N30;3 Crystal

Table 7.2 Crystallographic data for C;0H;5N303.

Crystal Data ll
Chemical formula CooHosN,0, Jl
Color/shape White / prism )

Formula weight (a.m.u.) 463.52

Space group P2;/n (No.14)

Crystal system Monoclinic / Centric
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a, B,7(°) 90, 98.3860(10), 90
Cell volume (A”) 2356.07(4)
Formula unit cell (Z) 4

D, (g/cm’) 1.3067(1)

Fooo 976.0

Absorption coefficient (mm™) 0.086

Crystal size (mm’) 0.08x0.05x0.26
Data Collection

Diffractometer Enraf-Nonius CAD-4
Temperature (K) 293(2)

Scan type w/26
Radiation/Wavelength (4) MoK, /0.71070
Reflections measured 3285

Independent/ Observed reflections 3067/1257

Range of 4, k, |

0—11, 0—18,-14—14

Standard reflections

3

Standards interval time (min)

120

Standards decay % Less than 1%
Refinement

Data/Restraints/Parameters 3067/0/317
Extinction Coefficient 0.0030(8)
Final R indices [> 4 o(])] 0.0662

R indices (all data) 0.2104

GooF (onF 2) 0.953

Ap. [Ap,.. (e/ Al ) -0.23/0.22
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APrin [ DP (e/A3 )

-0.23/0.22

Weighting function

w = 1/[?(Fi) + (0.0579P)°], where
P=(F/+2F>)/3

Table 7.3 Atomic coordinates and equivalent isotropic thermal parameters (A2 )

Atom x y b4 U,
01 -0.1874(4)  0.2274(3) -0.1730(3) 70.065(2)
02 -0.0962(3)  0.2367(2) -0.0105(3) 0.056(2)
03 0.5531(4) -0.08753)  0.1661(3) 0.067(2)
N1 0.2016(4) 0.1566(3) 0.0694(3) 0.039(2)
N2 0.0303(4) 0.2355(3) 0.0437(3) 0.045(2)
N3 0.0288(4) 0.2432(3) -0.1287(3) 0.043(2)
Cl 0.0672(5) 0.1471(3) 0.0599(4) 0.041(2)
C2 0.2265(5) 0.2121(3) -0.0114(4) 0.052(2)
C3 0.1082(5) 0.2643(3) -0.0337(4) 0.038(2)
C4 -0.0936(6) 0.2341(4) -0.1122(5) 0.050(3)
C5 0.5149(6) -0.1675(4)  0.1872(5) 0.083(3)
Cé6 0.4596(6) -0.0328(4)  0.1418(4) 0.047(3)
C7 0.4973(5) 0.0445(4) 0.1232(5) 0.059(3)
C8 0.4125(6) 0.1068(4) 0.0986(4) 0.054(3)
C9 0.2849(5) 0.0915(3) 0.0917(4) 0.040(2)
C10 0.2483(5) 0.0142(4) 0.1108(4) 0.048(2)
Ci1 0.3344(5) -0.0480(3)  0.1361(4) 0.049(3)
C12 0.0182(5) 0.1154(3) 0.1516(4) 0.037(2)
C13 0.0671(6) 0.1410(4) 0.2473(5) 0.057(3)
Ci4 0.0207(7) 0.1134(4) 0.3292(5) 0.069(3)
C15 -0.0771(7)  0.0615(4) 0.3188(5) 0.064(3)
Clé6 -0.1307(6)  0.0331(4) 0.2257(6) 0.063(3)
C17 -0.0816(5)  0.0613(3) 0.1412(5) 0.054(3)



C19
C20
C21
C22
C23
C24
C25
C26
C27
C28
C29

0.1964(6)
0.2230(7)
0.1826(7)
0.1149(6)
0.0885(5)
0.0700(5)
0.1704(5)
0.2074(5)
0.1473(6)
0.0518(6)
0.0099(6)

0.3821(4)
0.4631(5)
0.5190(4)
0.4942(4)
0.4121(4)
0.2313(4)
0.2733(4)
0.2628(4)
0.2092(4)
0.1637(4)
0.1749(4)

0.0695(5)

0.0859(6)

0.0114(7)

-0.0777(6)
-0.0940(5)
-0.2235(4)
-0.2490(4)
-0.3411(4)
-0.4091(5)
-0.3828(5)
-0.2914(5)

0.058(3)
0.073(3)
0.070(3)
0.064(3)
0.053(3)
0.0389(1)
0.050(2)
0.051(2)
0.059(3)
0.067(3)
0.058(3)
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“U,, is defined as one third of the trace of the orthogonalized U, tensor.

Table 7.4 Anisotropic displacement parameters of non-hydrogen atoms.

Atom U, U, U, U, U, U,
ol 0.038(3) 0.093(3) 0.063(3) 0.022(3) 0.001(2) -0.002(2)
02 0.038(3) 0.078(3) 0.057(3) 0.022(3) 0.022(2) 0.011(2)
03 0.056(3) 0.053(3) 0.091(4) 0.019(3) 0.003(3) 0.015(2)
N1 0.032(3) 0.044(3) 0.044(3) 0.013(2) 0.007(2) 0.001(2)
N2 0.034(3) 0.052(3) 0.053(3) 0.017(3) 0.019(2) 0.012(2)
N3 0.030(3) 0.055(3) 0.048(3) 0.005(3) 0.010(2) -0.002(2)
Cl 0.035(3) 0.049(4) 0.039(4) 0.006(3) 0.001(3) -0.002(3)
C2 0.036(3) 0.056(4) 0.065(5) 0.014(4) 0.014(3) 0.010(3)
C3 0.030(3) 0.048(4) 0.041(4) 0.013(3) 0.017(3) 0.004(3)
C4 0.047(4) 0.050(4) 0.053(5) 0.018(4) 0.004(4) 0.013(3)
Cs 0.065(5) 0.056(5) 0.129(7) 0.025(5) 0.016(4) 0.017(4)
C6 0.051(4) 0.038(4) 0.053(5) 0.004(3) 0.006(3) 0.011(3)
c7 0.031(4) 0.062(5) 0.081(5) 0.009(4) 0.000(3) 0.003(4)
C8 0.051(4) 0.044(4) 0.066(5) 0.005(3) 0.006(3) -0.005(3)
C9 0.043(4) 0.030(4) 0.045(4) 0.001(3) 0.004(3) 0.000(3)
C10 0.044(4) 0.049(4) 0.050(4) 0.007(3) 0.005(3) -0.001(3)



C11
C12
C13
Cl14
C15
Cl6
C17
C18
C19
C20
C21
C22
C23
C24
C25
C26
C27
C28
C29

0.043(4)
0.043(4)
0.072(5)
0.063(5)
0.064(5)
0.050(4)
0.052(4)
0.034(3)
0.069(5)
0.077(5)
0.072(5)
0.075(5)
0.056(4)
0.033(3)
0.043(4)
0.047(4)
0.075(5)
0.078(5)
0.059(4)

0.041(4)
0.038(3)
0.064(5)
0.095(6)
0.079(5)
0.066(5)
0.048(4)
0.046(4)
0.053(4)
0.078(6)
0.048(5)
0.055(5)
0.046(4)
0.054(4)
0.058(4)
0.062(4)
0.064(5)
0.058(5)
0.066(5)

0.064(5) 0.012(3)
0.032(4) 0.010(3)
0.038(4) -0.001(4)
0.050(5) 0.000(4)
0.056(5) 0.017(4)
0.074(5) 0.015(4)
0.058(5) 0.005(4)
0.050(4) -0.002(4)
0.053(5) 0.003(4)
0.063(5) 0.002(5)
0.094(7) -0.011(5)
0.070(6) 0.015(4)
0.058(5) 0.011(4)
0.029(3) 0.004(3)
0.050(4) -0.006(4)
0.049(4) -0.002(4)
0.042(4) -0.005(4)
0.068(5) -0.007(4)
0.049(4) -0.002(4)

0.007(3) -0.002(3)
0.012(3) 0.005(3)
0.015(4) -0.010(4)
0.010(4) -0.004(4)
0.028(4) 0.006(4)
0.010(4) -0.008(3)
-0.005(3) -0.002(3)
0.013(3) -0.002(3)
0.008(4) -0.006(4)
0.008(4) -0.003(4)
0.029(5) -0.014(4)
0.035(4) 0.014(4)
0.016(3) 0.014(3)
0.002(3) 0.005(3)
0.015(3) -0.004(3)
0.021(3) -0.007(3)
0.023(4) -0.006(4)
0.019(4) -0.011(4)
0.011(4) -0.020(4)
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Table 7.5 Bond distances (A) in the title molecule.

Atoms Bond distance Atoms Bond distance
01 -C4 1.209(8) 02 -N2 1.452(6)
C18-C23 1.364(9) 02-C4 1.366(8)
C19-C20 1.375(11) 03 -C5 1.421(8)
C18-C19 1.400(9) C20-C21 1.380(11)
03-Cé6 1.357(8) C21-C22 1.367(12)
N1-C1 1.449(7) C22-C23 1.392(9)
NI1-C2 1.470(7) C24-C25 1.371(8)
N1-C9 1.404(7) C24-C29 1.392(9)
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N2-Cl1 1.516(7) C25-C26 1.361(8)
N2-C3 1.504(7) C26-C27 1.362(9)
N3-C3 1.468(7) C27-C28 1.363(9)
N3-C4 1.381(8) C28-C29 1.377(9)
N3-C24 1.418(7) Cl1-Hl 0.9790
C1-C12 1.499(7) C2-H2A 0.9702
C2-C3 1.534(7) C2-H2B 0.9698
C3-C18 1.525(7) C5-H5A 0.9602
Ce6-C7 1.370(9) C5-H5B 0.9608
C6-Cl11 1.368(9) C5-H5C 0.9587
C7-C8 1.383(9) C7-H7 0.9303
C8-C9 1.392(9) C8-H8 0.9300
C9-C10 1.368(8) C10-H10 0.9294
C10-C11 1.392(8) Cl1-HI1 0.9298
Ci12-C13 1.378(8) C13-H13 0.9295
C12-C17 1.390(7) Cl4-H14 0.9299
C13-Cl4 1.349(10) C15-H15 0.9308
C14-C15 1.351(10) Cl6-H16 0.9289
C15-C16 1.377(10) C17-H17 0.9302
C16-C17 1.397(10) C19-H19 0.9304
C20-H20 0.9298 C26-H26 0.9301
C21-H21 0.9292 C27-H27 0.9291
C22-H22 0.9296 C28-H28 0.9300
C23-H23 0.9298 C29-H29 0.9304
C25-H25 0.9299

Table 7.6 Bond Angles (°) in the molecule.

Atoms Bond Angle Atoms Bond Angle
N2 -02 -C4 110.04) C7 -C8 119.8(6)
Cs -03 -Cé 115.8(5) N1 -C9 118.3(5)



Cl
Cl
C2
02
02
Cl
C3
C3
C4
N1
N1
N2
N1
N2
N2
N2
N3
N3
C2
01
01
02
03
03
C7
Cé6
C27
C24
N1
N2
C12
N1

-C28
-C29

-C24
-C24
N2

C12
C12

-N3
-C2
-C18

-C18
-C18

107.0(4)
122.7(4)
116.8(4)
107.1(4)
103.5(4)
103.8(4)
109.9(4)
125.9(4)
124.1(5)
98.5(4)

115.8(4)
109.5(4)
104.7(4)
101.9(4)
103.0(4)
109.3(4)
113.7(4)
112.4(4)
115.1(4)
122.4(6)
129.2(6)
108.4(5)
115.4(6)
126.0(6)
118.6(6)
121.8(6)
121.0(6)
119.1(6)
110.78

110.82

110.75

110.80

N1
C8
C9
Cé
C1
C1
C13
Cl12
C13
Cl4
C15
Cl12
N1
C3
C19
C18
C19
C20
C21
C18
N3
N3
C25
C24
C25
C26
C15
Cl4
Cl6
C15
C17
C12

-C9
-C9
-C10
-Cl11
-C12
-C12
-Cl12
-C13
-C14
-C15
-C16
-C17

-C18
-C18
-C19
-C20
-C21
-C22
-C23
-C24
-C24
-C24
-C25
-C26
-C27
-C14
-C15
-C15
-C16
-C16
-C17

-C10
-C10
-Cl11
-C10
-C13
-C17
-C17
-Cl14
-C15
-Cl16
-C17
-Cl16
-C3
-C23
-C23
-C20
-C21
-C22
-C23
-C22
-C25
-C29
-C29
-C26
-C27
-C28
-H14
-H15
-H15
-H16
-H16
-H17

123.8(5)
117.8(5)
121.9(5)
120.0(5)
121.4(5)
120.2(5)
118.4(5)
120.9(6)
120.5(6)
121.9(6)
117.4(6)
120.9(6)
104.7(4)
124.9(6)
118.5(5)
120.8(6)
119.7(7)
120.2(7)
119.9(7)
120.9(6)
121.1(5)
119.9(5)
119.0(5)
120.6(5)
120.8(6)
119.3(6)
119.79

119.06

119.08

121.34

121.28

119.53
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N1 -C2 -H2A 110.80 C12 -C17 -H17 119.53

N1 -C2 -H2B 110.80 Cl6 -C17 -H17 119.61

C3 -C2 -H2A 110.77 C18 -Ci19 -H19 119.52

C3 -C2 -H2B 110.84 C20 -C19 -HI19 119.70

H2A -C2 -H2B 108.86 C19 -C20 -H20 120.15

03 -C5 -HS5A 10947 C21 -C20 -H20 120.20

03 -C5 -HSB 109.48 C20 -C21 -H21 11993

03 -C5 -H5C 109.55 C22 -C21 -H21 119.84

H5A -C5 -H5B 109.39 C21 -C22 -H22 120.04

H5A -C5 -H5C 109.43 C23 -C22 -H22 120.09

H5B -C5 -H5C 109.49 C18 -C23 -H23 119.50

c6 -C7 -H7 119.12 C22 -C23 -H23 119.59

c8 -C7 -H7 119.04 C24 -C25 -H25 119.71

C7 -C8 -H8 120.05 C26 -C25 -H25 119.69

c9 -C8 -H8 120.10 C25 -C26 -H26 119.59

c9 -C10 -H10  119.03 C27 -C26 -H26 119.59

C1t -Ci10 -H10  119.07 C26 -C27 -H27 12036

Cc6 -Cii -Hl1 119.98 C28 -C27 -H27 120.35

C10 -Ci1 -H11 120.00 C27 -C28 -H28 11948

C12 -Ci3 -H13 119.51 C29 -C28 -H28 11949

C14 -C13 -H13  119.55 C24 -C29 -H29 120.53

C13 -C14 -H14 119.70 C28 -C29 -H29 120.38

Table 7.7 Torsion angles (°) in the molecule.

Atoms Torsion Angles  Atoms Torsion Angles
N2 -02 -C4 -O1 173.5(6) N2 -02 -C4 -N3 -8.7(6)
C4 -02 -N2 -C3 21.3(5) C4 -02 -N2 -CI -88.0(5)
c5 -03 -Cé6 -Cll 0.0(8) cs -03 -C6 -C7 179.0(5)
C2 -N1 -C1 -Ci2 -161.3(4) C9 -N1I -C1 -N2 176.3(4)
C2 -N1 -ClI -N2 -44.7(5) C2 -N1 -C9 -C8 44.2(7)
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-2.9(8)
169.4(7)
85.5(7)
-31.5(9)
150.4(6)
20.8(6)
130.8(5)
107.8(5)
-69.8(7)
-105.8(5)
63.1(6)
-117.3(6)
-4.9(8)
-0.3(9)
-179.3(5)
179.6(5)
-24.4(5)
94.8(5)
-83.4(5)
167.6(4)
-30.7(5)
-47.5(7)
-0.3(9)
178.2(5)
-0.2(8)
-0.4(8)
178.6(6)
-1.7(10)
-1.2(10)
78.2(6)
-1.4(9)
0.3(11)
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-1.1(11)
-0.9(9)
2.9(9)
-0.4(10)
4.3(10)

Table 7.8 Weak interactions to be regarded as weak hydrogen bonds (A)

D—H..A

D—H

H.A

D..A

D—H..A(°)

C(11) -- H(11)-O(1) 0.9298
C(13) -- H(13)"O(1) 0.9295
C(23) -- H(23)"N(3)" 0.9298
C(29) -- H(29) O(1)" 0.9304

2.5091
2.5651
2.5386
2.4978

3.424(7)
3.471(8)
2.877(8)
2.965(8)

167.90
165.05
101.83
111.30

Symmetry operation:
(l) X, ) Z
(iy)

1/2+x, 1/2-y, 1/2+z

Table 7.9 Standard deviations of atoms from the some remarkable planes (°).

Plane 1 Plane 2 Plane 3 Plane 4
Deviations Deviations Deviations Deviations
Atoms ( A) Atoms ( A) Atoms ( A) Atoms ( A)

C1 f -0291(5) | 'C3 | 0.140(5) | C1 || -0.493(5) || "C1 | 0.006(5)
'C2 || -0.059(5) | "C4 || 0.001(7) | 'C2 | 0.036(5) | "C5 | 0.020(7)
"C3 || -0.1095) | N2 || -0.142(5) | "C3 | 0.588(5) | C6 || -0.010(5)
Nt | 0.218(4) | N3 | -0.093(5) | 'C4 || -0.436(7) | "C7 || -0.003(7)
N2 || 02414) | 02 || 0.0943) | NI || -0241(5) || "C8 || -0.001(5)
02) || -0.612(4) || 0(1) || 0.042(5) | N2 || 0.648(5) | C9 | -0.015(5)
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OB) || -0.112(4) | C2) | -0.921(5) | N3 | -0.363(5) | "C10 | -0.017(5)
N@3) || -1.468(4) | C(24) | -0.408(7) | 02 || 0.261(3) | "Cl1 | -0.010(5)
C(15) | 1.264(8) | C(29) | -1.240(7) || O(1) || -0.966(5) | 'N1 0.025(4)
C(18) | 0.874(6) | C27) | -0.999(7) | C(7) || -1.371(7) | O3 0.004(4)
T Asterisks indicate atoms passing through the planes.

Table 7.10 Dihedral angles between the planes (°).

Planes Dihedral Angle Planes Dihedral Angle
1-2 60.0(3) 1-3 28.3(3)
2-3 31.73) 3-4 47.6(2)
2-4 75.6(3) 1-4 27.6(3)

7.1.4 Molecular Graphics of Cz0H,5N3;0;3 Crystal

An ORTEP3 diagram of the molecular structure of the title compound is shown in

Figure 7.1, with the atom-numbering scheme. Figure 7.2 shows the packing of the

title compound in the unit cell and the network of weak interactions to be regarded as

weak hydrogen bonding formed among C, N and O atoms. A space-filling (CPK)

model with van der Waals radii assigned to each atom is given in Figure 7.3.
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Figure 7.2 Unit cell contents with the weak interactions scheme indicated

by dashed lines via PLUTO program.
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7.2 Computational Details for the Molecule

Geometry optimization of the title molecule was achieved by means of AM1 and
PM3 self-consistent fields molecular orbital SCF MO semi-empirical method at the
spin-restricted Hartree-Fock (RHF) level (Roothaan, 1951) via application of a
conjugate gradient method, which is called as Polak-Ribiere algorithm (Fletcher,
1990), with RMS gradient 0.1 kcal/A mol. To obtain conformational energy profiles
versus selected dihedral angles, geometry of the title compound from X-ray
crystallographic data was entirely optimized without any symmetry constraints. For a
selected dihedral angle, while keeping other dihedral angles constant, it was initially
set to zero and varied in every 10°. Heats of formation values corresponding to each
conformer were calculated as function of the four dihedral angles T1(C8-C9-N1-C2),
T2(C13-C12-C1-N1), T3(C25-C24-N3-C3) and T4(C19-C18-C3-C2) from -180° to
+180° via single point calculations on computed potential energy surface belonged to
the molecule. All the calculations were performed by using HyperChem 6.0 package

programme for Windows on Intel Pentium II computer.

Results from single point calculations belonged to optimized free molecular
geometry of the molecule were given in Table 7.11 and Table 7.12 and these results

were exhibited in Figure 7.4- Figure 7.7.

Table 7.11 Conformational energy values versus torsion angles from -180° to +180°

by AM1 semi-empirical method.

Heat of Formations (kcal/mol)

Torsion Angle (°) E;=E(T1) E;=Ex(T2) E;=E;(T3) E&~E4 (T4)
-180.00 106.94 105.76 108.80 - 109.81
-170.00 105.84 105.50 116.87 108.62
-160.00 104.80 105.03 125.85 107.02
-150.00 104.68 104.94 131.59 107.43
-140.00 105.66 106.60 129.28 111.79

-130.00 107.12 110.76 121.13 119.06
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118.71
111.69
107.46
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109.08
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103.37
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123.00
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115.54
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111.96
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115.64
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Table 7.12 Conformational energy values versus torsion angles from -180° to +180°

by PM3 semi-empirical method.

Heat of Formations (kcal/mol)

Torsion Angle (°) E;=E;(T1) E;=ExT2) Es;=E3TI3) E4E,(T4)

-180.00 47.19 50.66 66.69 48.65
-170.00 47.03 49.99 75.76 48.10
-160.00 47.37 49.34 88.84 47.33
-150.00 47.62 48.33 87.99 47.62
-140.00 47.37 47.17 70.94 48.35
-130.00 47.23 47.59 60.27 48.54
-120.00 47.37 48.20 51.68 53.96
-110.00 47.35 48.12 48.57 59.35
-100.00 47.37 49.75 47.61 62.80
-90.00 47.74 55.24 46.80 61.10
-80.00 47.82 60.43 46.59 57.05
-70.00 47.58 63.81 46.48 51.88
-60.00 47.46 63.92 46.54 49.13
-50.00 47.53 60.09 46.95 47.03
-40.00 47.43 54.95 47.67 46.88
-30.00 46.95 52.82 49.42 47.72
-20.00 46.82 51.05 52.95 47.87
-10.00 46.81 50.12 58.54 49.60
0.00 46.42 49.57 70.55 50.99
10.00 46.18 48.96 85.63 50.53
20.00 46.37 48.40 113.55 48.60
30.00 46.49 47.80 118.41 47.35
40.00 46.45 46.74 84.98 48.05
50.00 46.39 46.51 65.85 48.30
60.00 46.62 47.04 55.27 53.69
70.00 46.83 47.56 49.82 60.36

80.00 46.98 50.49 48.69 66.67



90.00 47.44 57.09 47.54 66.39

100.00 47.73 63.25 47.19 60.62
110.00 47.59 67.94 47.16 54.89
120.00 47.51 67.80 47.48 48.67
130.00 47.60 64.15 48.17 47.46
140.00 47.69 57.50 48.80 47.98
150.00 47.34 54.35 49.96 48.08
160.00 47.17 52.39 52.65 47.73
170.00 4731 51.22 57.19 48.24
180.00 47.19 50.66 66.69 48.65
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Figure 7.4 Calculated energy profiles of the molecule by AM1 and PM3 semi-

empirical method with respect to T1.
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Figure 7.5 Calculated energy profiles of the molecule by AM1 and PM3 semi-

empirical method with respect to T2.
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CHAPTER EIGHT
CONCLUSIONS

8.1 Conclusions Related to X-Ray Crystallographic Study

In this study, molecular and crystal structures of 6-(4-methoxy-phenyl)-1,5,7a-
triphenyl-tetrahydro-imidazo[1,5-5][1,2,4]oxadiazol-2-one, Cz9H,5N303 has been
determined by single crystal X-ray diffraction technique and then following results

have been concluded.

Results from X-ray crystallography, which are given in Table 7.5, Table 7.6 and
Table 7.7 are in consistence with ones reported for part of resembling compounds in
the literature (Zhaoa et al., 2000; Pulitia et al., 2000; Glowiaka & Kurdzielb, 2000;
Castineiras et al., 2000; Jina et al., 2001). Values of T1, T2, T3 and T4 dihedral
angles from X-ray investigations are 44.2(7)°, 40.4(7)°, -31.5(9)° and —-52.2(7)°,
respectively. When experimental data given in Table 8.1 are contrasted with data
from theoretical calculations related to optimized geometry of the title molecule,
both of them are seen to be generally in consistence. All phenyl and substituted
phenyl rings in the molecule, as expected, are nearly planar. Oxygen atom of the
methoxy group is located at the same plane where 4-methoxyphenyl lies in. The
angle between planes that are respectively defined by C18-23 and C24-29 atoms is
62.6(3)°. The fact that these phenyl rings have different orientation relative to other
phenyl rings can be explained by dominating both of weak interactions. One of the
five membered rings through O2, N2, C3, N3, and C4 atoms is in twisted
conformation and the other through N1, C1, N2, C3, and C2 atoms are in envelope
conformation (Cremer et al., 1975). C1 atom has maximum deviating [-0.291(5) A]

from average ring plane of five membered rings, which consists of N1, C1, N2, C3,
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and C2 atoms adopting envelope conformation. C18...C23 and C12...C17 phenyl
rings are attached to the five membered ring under discussion as bisectional (neither
equatorial nor axial) and equatorial respectively, in addition, 4-methoxypheny! ring
is equatorially linked to this ring, and finally, phenyl ring C24-C29 is also
equatorially attached to the twisted five membered ring. Five membered ring having
twisted conformation is fused with a ring having envelope conformation by bonding
(N2-axial (Evans et al., 1989), C3-bisectional). There are two asymmetric carbon
atoms (C1 and C3) are in the molecule. C1 and C3 carbon atoms have R and S chiral

configurations, respectively.

8.2. Conclusions Related to Computational Aspects

In order to define conformational flexibility of the title molecule, semi-empirical
calculations using AM1 and PM3 self-consistent field molecular orbital theories
parameterized by empirical data were performed. The molecular energy is thought as
separated into two parts. One of these parts is bonded energy term, which is
independent of changing in dihedral angles, and the other is non-bonded, which
depends on changing in dihedral angles such as dihedral, steric and electrostatic
contributions. Steric effects have been of great significance for the determination of

molecular energy profile as mentioned in the following interpretations.

Values of T1, T2, T3 and T4 dihedral angles in structure optimized by AM1 are
27.53°, 24.56°, -22.33° and -57.17°, respectively and by PM3 are 26.87°, 46.90°, -
65.32° and —44.87°, respectively. Molecular structure from X-ray crystallography is
of no enormous difference from those calculated by AM1 and PM3 methods.
Another significant differentiation to be taken into consideration between X-ray
structure and calculated molecular models is also that the five membered rings at
core of the molecule are adapted to different conformations from those obtained by
X-ray crystallographic study. These five membered rings prefer to be in nearly planar
conformations according to calculation results. While calculating, any semi-
empirical method as well as AM1 and PM3 cannot consider both intra- and

intermolecular interactions. For that reason, it is not astonishing that five membered
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rings of the molecule prefer to be in nearly planar conformation as different from
results obtained by X-ray crystallographic study. Although five membered rings of
the X-ray structure are non-planar, the most stable conformation is planar in terms of
five membered rings. A reason for arising situation under discussion is the fact that
the molecule is regarded as isolated (or free) molecule during calculations.
According to calculated heat of formation values with respect to selected dihedral
angles, the most stable conformer of the title molecule is of general consistence with
structure obtained from X-ray crystallography except for conformations of the five
membered rings. Also, many local maximums to be construed are observed in Figure
7.4. And also, optimized geometrical parameters belonged to the molecule, which
were given in Table 8.1 have been exhibited to compare with the values from
crystallographic studies. Since PM3 was parametrized better than AM1, it gives us

more appropriate results in terms of X-ray resuits.

Table 8.1 Selected bond distances (A) and bond angles (°) with ESDs in parentheses
and their values calculated by AM1 and PM3 semi-empirical method.

X-ray AM1 PM3
01 -C4 1.209(8) 1.226 1.212
02 -N2 1.452(6) 1.356 1.513
02 -C4 1.366(8) 1.412 1.361
03 -C5 1.421(8) 1.422 1.406
03 -Cé6 1.357(8) 1.382 1.382
N1 -Cl 1.449(7) 1.480 1.507
N1 -C2 1.470(7) 1.454 1.494
N1 -C9 1.404(7) 1.415 1.447
N2 -Cl 1.516(7) 1.480 1.499
N2 -C3 1.504(7) 1.549 1.513
N3 -C3 1.468(7) 1.483 1.512
N3 -C24 1.418(7) 1.408 1.451
C2 -C3 1.534(7) 1.578 1.547

N3 -C4 1.381(8) 1.404 1.440
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Cc5 -03 -C6  115.8(5) 115.9 117.36
Cl N1 -C2  107.0(4) 109.6 109.31
02 N2 -Cl  107.1(4) 108.8 109.67
Ol -C4 -02  122.4(6) 116.4 116.92
02 N2 -C3  103.5(4) 106.2 107.92
N2 -C3 -N3  101.9(4) 104.3 103.28
C3 N3 -C4  109.9(4) 108.1 108.67
N2 -02 -C4  110.0(4) 112.5 107.77
Cl N2 -C3  103.8(4) 105.6 110.14
N1 -Cl -N2  98.5(4) 110.1 105.89
N2 -C3 -C2  103.0(4) 106.0 105.63
02 -C4 -N3  1084(5 109.0 112.29
N3 -C3 -CI8 1124(4) 114.4 111.70
N1 -C2 -C3  104.7(4) 107.9 106.96

Because the most deviation from energy minimum in the energy profile as a
function of T1 are less than 5 kcal/mol by AM1 and 1.6 kcal/mol by PM3, these
variations related to T1 dihedral angle do not cause any remarkable effects on
conformational flexibility of the molecule. From this profile, four maximums are
seen in Figure 7.4 according to AM1. These local maximums and fluctuations from
PM3 seen in the figure are due to orientation of 4-meyhoxyphenyl ring relative to the
remaining parts of the molecule not to any steric hindrance among hydrogen atoms.
It is deduced from this profile that dihedral energy term, which is a non-bonded

interaction, should be considered as minor contribution to molecular energy.

The energy profile obtained as a function of T2 dihedral angle in both AM1 and
PM3 methods has a drastic maximum in vicinity close to 110° in Figure 7.5. The
peak arises from steric hindrance between hydrogen atoms aromatically linked to
C17 and C10, respectively. Another evident peak in this profile is one appeared in
vicinity close to -75°. This peak arises from steric hindrance between hydrogen

atoms aromatically linked to C10 and C13 atoms.
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For T3 dihedral angle, two evident peaks are observed in Figure 7.6 according to
AMI. The peak appeared in vicinity close to 30° is stemmed from steric hindrance
between hydrogen atoms aromatically and axially linked to C25 and C2, respectively
and the other appeared near -150° is stemming from breaking intra-molecular weak
interaction C29-H29Ol. In PM3 calculations for T3, solely two maximums are
observed. One that appears nearby 30° is sharper than the other appeared nearby -
155°. While breaking this intra-molecular weak interaction distance between
hydrogen and acceptor increases from 2.4978 A to 4.627 A and energy needed to
break this interaction is estimated 42.52 kcal/mol according to PM3. For this reason,
according to PM3, steric hindrance between hydrogen atoms is remarkable than the

intra-molecular weak interaction in terms of molecular flexibility.

The obtained energy profile as a function of T4 dihedral angle has a drastic
maximum in vicinity close to 80° in both AM1 and PM3 methods. This peak is due
to the steric hindrance between hydrogen atoms aromatically linked to C19 and C25,
respectively. According to PM3, as T4 in vicinity close to 0°, C23-H23...N3 weak
interaction is brought and the distance between hydrogen and the acceptor is
increased from 2.546 A to 2.895 A. It is inferred from Figure 7.7 that this breaking
energy is roughly 4.11 kcal/mol. When these two interactions are compared with the
each other in terms of their own strength, the fact that estimated breaking energy
value for interaction C29-H29°O1 is more than interaction C23-H23...N3 have been
also confirmed by X-ray investigation presented Table 7.8. Other remarkable peak in
Figure 7.7 is near -90°. This peak appears because of steric hindrance between

hydrogen atoms aromatically linked to C23 and C25, respectively.

In summary, the AM1 and PM3 optimized geometry of the molecule is of
generally consistence with ones crystallographically observed except for five
membered rings at the core of the molecule. In all crystallographic molecular and
crystal structures of the title molecule were elucidated and it was seen that results
obtained from each of these studies are generally in agreement and both of weak

interactions in addition to steric hindrance arising between ortho-hydrogens to be
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regarded as each of non-bonded contributions to molecular energy play an important
role in determination of the conformational flexibility of the molecule. As mentioned
before, when donations arising from both intra-and intermolecular contacts are taken
into account of, steric hindrances between ortho-hydrogen atoms dominate to those
expressed above and supply leading contribution to non-bonded energy term for the

molecule.
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