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ABSTRACT

In this study, time series of Poisson count model is concerned. In real situations,
mean-variance equality, which is the basic property of Poisson data, cannot be
provided. Generally, in such data variance exceeds mean, this is called
overdispersion. When the overdisperison is detected, then there may be

autocorrelation in latent process for Poisson regression model.

Correlation is assumed to result from a latent process which is added to the linear
predictor in a Poisson regression model. A quasi-likelihood approach is used as a
parameter estimation technique. Tests for the presence of the latent process and
autocorrelation of the latent process are examined. Asymptotic properties of the

regression coefficients are investigated by using a simulation study.

As an illustration, monthly number of deathes who were infected by pulmonary
tuberculosis for the years 1996 to 2002 in Izmir are investigated as a parameter-
driven model and the asymptotic properties of the regression coefficients are

investigated, then a suitable model is constructed for forecasting.

Keywords: Quasi-Likelihood Method, Latent Process, Poisson Regression,

Overdispersion, Autocorrelation.



OZET

Bu c¢aligmada, Poisson sayimlarmin zaman serisi modeli incelendi. Poisson
dagilan bir verinin temel 6zelliklerinden olan ortalama-varyans esitligi uygulamada
saglanamaz. Genellikle, asin yayilim olarak adlandirilan varyans degerinin
ortalamayr agtifn durum s6z konusu olur. Aginn yayilmin séz konusu oldugu
durumda, Poisson regresyon modeli igin gizli siiregte otokorelasyonun varligindan

§0z ?dilebilir.

Poisson regresyon modelinde dogrusal tahmin ediciye eklenen gizli siiregten
kaynaklanan bir korelasyon durumunun oldugu varsayilir. Bu durumda yan-
olabilirlilik yontemi, parametre tahmin ydntemi olarak kullamlabilir. Gizli siirecin
varlignin testi ve gizli siirecin otokorelasyon yapisi bu ¢aligmada incelenmistir. Ayn1
zamanda regresyon katsayilarimin asimptotik &zellikleri yapilan simulasyon

caliymasiyla arastirilmigtrr,

Yapilan uygulamada, 1996’dan 2002’ye kadar Izmir’deki akciger tiiberkulozu
oliimleri aylik olarak incelenmigtir. Yapilan gdziimleme sonucunda katsayilarin

asimptotik 6zellikleri saptanarak uygun bir model olusturulmaya ¢alsiimistir.

Anahtar Kelimeler : Yari-Olabilirlilik Yéntemi, Gizli Siireg, Poisson Regresyon,
Asint Yayilim, Otokorelasyon
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CHAPTER ONE
INTRODUCTION

In the last recent years, there has been a great interest in the analysis of time series
of counts. In order to get satisfactory modeling in the integer-valued characteristic of
the data, time series of count analysis methods are used. The Poisson regression
model is the basic member in such count data models. Although Poisson regression
model has the characteristic property that the expected values and the variances are
equal, generally the variance exceeds the mean in count data in real situations. This
is overdispersion in the Poisson model, so with some empirical support, there may be

autocorrelation in such data.

The techniques for the identification of a suitable model for the correlation
structure in the noise latent process have been studied for many years. In count
models with correlated latent process, there is a need for diagnostic techniques for
Poisson counts. When there is autocorrelation among residuals, a method will be
presented for valid statistical inference. Several regression application of time series
of counts find little or no serial correlation. Then there is no need to use these

mentioned models.

This study contains seven chapters. In chapter two, basic features of General
Regression Model and Generalized Linear Model are given. The structure of a
Poisson Regression model is examined. In order to identify the correlation structure
of the latent process, a consistent estimation procedure for the regression coefficient

is needed. Also, the estimation methods are studied .



In chapter three, general information about autocorrelation in a linear model is
given. First-order autocorrelation structure and its properties are mentioned.

Autocorrelation tests in count data model are proposed.

In chapter four, general information about the time series model is given.Time
series count data models are studied. Presence of the latent process tests and the

autocovariance and autocorrelation function of a latent process are determined.

In chapter five, as a consequence of the seasonality, the use of models having

trigonometric terms is investigated for the time series data.

Chapter six aims to construct a model for the monthly number of deathes who
were infected by pulmonary tuberculosis for the years 1996 to 2002 in Izmir. The
Quasi-Likelihood estimation method is used to estimate the regression coefficients.
Overdispersion is detected and then the presence of the latent process is decided. The
correlation structure of the latent process is determined. Simulation study is done to
investigate the asymptotic behaviour of these coefficients while there is
autocorrelation in the latent process. In the last chapter, the results of this study are

discussed.



CHAPTER TWO
POISSON REGRESSION MODEL

2.1 General Regression Model

A model
Y=Xp+e 2.1

is the form of the general linear models in which the error term ¢ is assumed to be

NID(0,6?) . The general model has the following features:

1. For mutually independent random variables, Y; ~ N(u,,6?) fori=1,2,...,n.

2. The ' explanatory variables provide a set of linear predictors
n; =Bixy +Byxpy +.+Bx,, fori=12,...n

3. The mean of the dependent variable for any observation is the linear
predictor formed from that observation’s values on the explanatory

variables. This means that the relationship between 1 and 2 is that p, =n,.

The regression function is related with the expected value of dependent variable to
the independent variables and the parameters, and the aim is to estimate the unknown
parameters under given experimental conditions and data. The maximum likelihood
or the least squares estirﬁation methods are most commonly used methods in

estimation. And these estimates are identical when the y;’s are independent and

normally distributed, then they are obtained using linear regression analysis.



New methods are developed for linear models with the help of statistical theory in

the following situations:

1. The distribution of the response variables is different from the Normal
distribution. (The response variable may be categorical data, not continuous.)
2. The relationship between the response variable and explanatory variable need

not be of the simple linear form in equation (2.1).

Many of the properties of Normal distribution are shared by a wider class of
distributions called The Exponential Family of Distributions. (Dobson,1990)

2.2 Genaralized Linear Model

A generalized linear model is defined in terms of a set of independent random
variables Y,,Y,,...,Y,. Each of Y,Y,,.,Y, has the distribution from the

exponential family with the following properties:

1. Distribution function for each Y, depends on a single parameter 6; (the
8,’s do not all have to be the same) and each has canonical form
£(y;;0;) = exply;b;(6;)+;(6,)+ 4 (v,)] (22)
2. In order that the subscripts on b,c and d are not necessary, all distribution
function of Y, have the same form (all Poisson or all Binomial), so the
jointpdfof Y,,Y,,....Y, is

f(y,,...,yn;e,,...,en)=exp[zn: yb(8,)+ Y c(0,)+ id(yi)] 2.3)

i=1 i=1 i=l

A smaller set of parameters BI,BZ,...,BP (p<n) is considered for the generalized
linear model. Linear combination of B°’s are equal to the same function of the

expected value p, of Y;. (Dobson,1990)



Generalized linear model has three components:

1. Response variables Y|,Y,,..,Y, are assumed to belong to the same
distribution from the exponential family.
2. A set of parameters P and explanatory variables,
X =[] - xqJ
3. A monotone link function g such that
g(lli ) =x;B

where

w; =E(Y)).

The general linear model characterizes the generalized linear model with two

extensions:

1. Itis applicable to any member of the exponential family of distributions.

2. There is a link function when connecting the linear predictor n to the mean

p of Y. (Wojtek&Krazanovski,1998)
2.2.1 Log-Linear Model

Association patterns among categorical variables are described by log-linear
models. Log-linear models are used to analyze the data in multi-dimensional table or
contingency table. The cell counts are modelled in a contingency table in terms of

associations among the variables. Log-linear models are special case of generalized

linear models family.

Let N =1J be the cells of an Ix J }contingency table. The probabilities {=;} form

the joint distribution of two categorical responses. And these responses are

statistically independent when = = m;n;, i=1,2,...,I, j=1,2,...,J. For the expected

frequencies {p; =nmy} is py =nm;7; for all i and j. In order to apply for the



Poisson sampling model for N cell counts with expectation {p; }, log-linear models

are constructed by using {p;} rather than {=; }. (Agresti,1990)

In Poisson models, the most commonly used link function is the log, which is also

the canonical link
logp; =n=x/P (24)

Using a log-link ensures that the fitted values of p; will remain in the parameter

space [0,0). A Poisson model with a log-link is sometimes called a log-linear

model.

i. Independent Model

The log expected frequency for cell (i,j) is an additive function of an i" row

effect and a j™ column effect. The model

logp; =p+a; +B; (2.5)
where

p : overall mean
a,: i® level of first variable (row effect)

B;: J" level of second variable (column effect)

is called the log-linear model of independence in a two way contingency table.
(Agresti, 1990)

ii. Saturated Model

If there is dependency between the variables, with all p;> 0, then the model will
be



loghy = p+a, +B; +(ap), (2.6)

Here (aB)ij shows the interaction between the variables. This model which is

called saturated model describes perfectly any set of positive expected frequencies.

There is no error term in (2.6), because columns and rows are the repetation of a
set of variable levels rather than construction of different part. In this case, based on
the assumption that there is no real interaction between the columns and rows,

(aB)ij can be assumed as error term of the model. (Ozmen,1998)

2.3 Poisson Distribution

In the Poisson distribution, the trails must be very large while the probability of
occurences of the outcome under observation must be small, in addition to this

independence of trials and consistency of probability from trial to trial properties are

required.

The probability function for the discrete random variable Y is

Yokt
fiy;p) =2 | y=0,1,2... @2.7)
y!
or
f(y; 1) = explylogp - - log y] 2.8)

which is in the canonical form with logp as the natural parameter.

Characteristics of the Poisson distribution are
1. The variance is equal to the mean
2. Poisson distribution with larger means tend to be well-approximated by a

Normal distribution.



2.4 Overdispersion

Since observed count data often exhibit overdispersion, the Poisson assumption of
mean-variance equality is no longer valid. Many authors have studied the effects of
overdispersion on inference made on a Poisson model. The quasi-likelihood models
suggest that the presence of overdispersion may result in less efficient regression
coefficient estimates, but when the true regression model is specified, these estimates
are true consistent estimates. (Wang et al., 1996) In fact, overdispersion is a real
aspect of the data while modelling. Although such excess variation has little effect on
estimation of the regression coefficients of primary interest, standard errors, tests and
confidence intervals may be seriously in error unless it is approximately taken into

account. (Breslow, 1990) Overdispersion may result in either seriously biased

parameter or standard error or both.

The generalized Poisson distribution is used when the sample mean and the
sample variance of this distribution are not equal. The generalized Poisson regression
(GPR) model is useful in predicting a response variable affected by one or more
covariates in the case of over-dispersed and under-dispersed count data. This
regression model is suitable for both types of dispersions or no dispersion at all. This
generalized Poisson distribution (GPD) is very useful model in many fields of study

such as genetics, queueing, insurance, labor absenteeism and marketing research, etc.

Score tests have been developed to diagnose whether observed data is
overdispersed respect to Poisson Regression by Fisher, Willimas (1982), Cameron

and Trivedi (1986,1990), Dean and Lawless (1989) and Dean (1992).

The score test statistics are obtained by fitting the linear regression of squared
residuals on the explanatory variables. Here residulas are deviance residuals for the
double exponential family formulation and Pearson residulas for the pseudo-
likelihood formulation. (Ganio & Schafer, 1992)



Three score tests proposed by Dean (1992) is used to determine whether the data
is overdispersed. The hypothesis is that there is no overdispersion against alternatives

representing different forms of overdispersion.

The test statistics are

P, = Z((jzgrzp) 2.9)
P = Z((yi 'ﬁi)z ’Yi)
T e

(2.10)

and

, ! (Li'ﬁi)z'yi)
P""Jz_nz . @.11)

Hi
corresponding to the following specification of overdispersion:

@) E(y:)=~ w;, Var(y;)=p;(1+ ;) for v small
® Ely;)=p;, Varly,)=p,(+a,).
() E(Yi)=“'ia Valf()’i)=l'1i(1+‘l?)-

Here [i; is the estimated value for the independent identical observations based on
Poisson regression, and H,:t=0 is tested and each asymptotically follows a
‘Standard Normal distribution. It should be noted that (a) has the approximate forms
for the first two moments, and (b) has the exact ones.

In cases where the dispersion parameter is not known, an estimate can be used to
obtain an approximation to the scaled deviance and Pearson’s chi-square statistic.

Fitting a model that contains a sufficient number of parameters so that all systematic
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variation is removed is one of the strategy in estimating the dispersion parameter ¢

2
from this model. An estimate of ¢ based on Pearson’s chi-square is ¢ = X where
n-p

A \2
v’ =Z£y‘—f1—‘)—- and n is the number of observations and p is the number of
B

parameters. Similarly, since the limiting chi-square distribution of the scaled

deviance D° =% has (n-p) degrees of freedom, where equating D" to its mean and

solving for ¢ yields @:—D— If this dispersion parameter ¢ is significantly larger
n-p

than 1, then overdispersion is indicated.

Unmeasured effects, clustering of events, or other concomitant influences
combine to produce more variation in the responses than is predicted by the Poisson
model. When this extra Poisson variation is present, there are three conseqeunces in

Poisson log-linear regression;

1. Parameter estimates are still unbiased.
2. Standard errors are small.

3. Tests give smaller p-values than they are truly warrented by the data.
Extra-Poisson variation in log-linear model is expected

1. When important explanatory variables are not available.

2. When individuals with the same level of explanatory variables may behave
differently.

3. When the events making up the count are clustered or spaced

systematically through time or space.
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2.5 Poisson Regression Analysis

The Poisson model describes a process when the succesive events occur at the
same time independently. Poisson regression analysis is proposed instead of known
linear regression analysis because of the fact that the normality assumption is not
provided since the dependent variable is discrete. In log-linear models which do not
have restriction on independent variables, there is no difference whether these

variables are discrete or continuous.

Poisson regression is used when the outcome is count with large size and being
rare events. The regression model may represent the number of failures of a piece of
equipment per unit time or the number of purchases of a particular commodity, or the
number of the bacteria per unit volume of suspension. (Frome et al., 1973)

In Poisson regression model, the normal link function is natural logarithm. The

predicted counts are permitted to have a Poisson distributed error distribution to

allow for discrepancies between the observed counts and those predicted by the

model.

Poisson regression analysis is the method for analyzing the relationship between

the explanatory variables and the dependent variable which is distributed as Poisson.

The expected value of Poisson distributed Y random variable is

E(Y,;) =p; =ngA; =n, explp+o; +B;) 2.12)
or it may be used as

E(Y;)=p; =exp(u+a; +B)) 2.13)

And also it can be rewritten as



12

E(Y;) = 1y =n,0(X,,B)=n,[exp(X B)] (2.14)

or

E(Yij)= Hy = P'(Xi’B) =e*P (2.15)

u(X,.,B) is the expected rate for i® sub-group. This rate function can be thought
as the regression function that relates the mean response to X;, the values of the

predictor variables for case i, and B, the values of regression coefficients.

Y; : the number of interested cases for i™ level of first variable and j® level of
second variable
n; : the total number of individuals for i® level of first variable and j® level of

second variable

K : risk function

If regression function can be assumed to have log-linear form with the number of

parameters p = 1+I+], then the regression function will be

u(xi,p)zexp(x'ig)=exp[i Xijﬂj} i=1,2,.n (2.16)

j=0

X, = [X;o ---Xip] : i row vector of nx p input matrix of dummy variables

B'=[p,on,,az,---,ai,Bl,Bz,---,Bj] : p x 1 dimensional vector of unknown

parameters

Log-linear models which are used in Poisson regression analysis are represented
by u; regression function. Since the independent variables are categorical and
qualitative, they must be taken into the model as dummy variables. Corner-point

constraint is used in coding the dummy variables. (Dobson.1990) Corner-point

constraint provides that the other parameters of corresponding (interested) variables
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are estimated by giving “0” to the parameter value of one of the level of the variable.

Under this constraint, the log-linear models which will be used in Poisson regression

analysis are given below:

Model I :

This is the model that the first and the second variables are neglected as

Inp; =p

Model 1T :

This is the model that the second variable is neglected as

1
]n“ij =p+ Z%Ui

=2

a, = 0 according to the corner-point constraint.

Model I1I:
This is the model that the first variable is neglected as

J
ln“ij =H+ZBSE.€

=

B, =0, according to the corner-point constraint.

Model IV :
This is the additive model as

1 J
Inp; =p.+ZoniUi +Z[3jEj

i=2 =2

a, =B, =0, according to the corner-point constraint.

Model V:

This is the saturated model as

1 J 1
Inp; =p+Y o,U;+ Y BE, +ZZ(aB)ij(UiEj)

i=2 =2 i=2 j=2

(2.17)

(2.18)

(2.19)

(2.20)

2.21)

a, =B, =0 and (aﬁ)h. = (01[3)].l =0, according to the corner-point constraint.
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A}

U; and E; are used as dummy variables.

Since the function p.(Xi,B) is exponential, § parameter estimation is found with

the help of iterative procedures. Number of expected conditions are
E(Y;)=p; = nn(X,,) i=1,2,...n 2.22)
then the maximum likelihood function relating to the Poisson distribution is

L= [Tt T A {2

i=l i vt

1

T, B o] - i .5
_ L

(2.23)

2.6. Generalized Poisson Regression Model

Generalized and restricted generalized Poisson regression model may be used
instead of Poisson Regression when there is overdispersion or underdispersion.

The mean of the Y; is given by

B(Wfx)=p, . (2.24)
The variance of the Y, is given by

Var(YJxi ) =L, . (2.25)

Here, is given in log-linear form, and ¢ represents dispersion parameter.
x 1581 g
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2.7 Estimation Methods for Poisson Regression Analysis

There are three common types of statistical estimation methods:
i ) Method of Maximum Likelihood
ii ) Nonlinear Least Squares Method

iii ) Quasi-likelihood Approach

The method of maximum likelihood is used for generalized linear models. By an
iterative procedure which is related to weighted least squares estimation, the
estimates have to be obtained numerically.

2.7.1 Maximum Likelihood Methods

Maximum likelihood estimators are the values of B parameters which correspond

to the maximum value of the likelihood function. Generally, working with log-
likelihood function is easier than the likelihood function itself. If the Poisson log-
likelihood function is taken, then the function will be

nLEy) =Yy, X, Bl > (X, 6)- > In(y,) (2.26)

i=1 i=1 i=l

Let Q denote the set of all possible value of parameter vector fi , which is the

maximum likelihood estimator of B, maximizes the likelihood function that is
L(ﬁ; y)z L(B;y) forall B in Q

and also ﬁ maximizes the log-likelihood function 1([3; y)= log L(ﬁ; y). (Since the

logarithmic function is monotonic.) Thus,

1B; )= 1(3;y) forall B in Q.
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Likelihood equations are obtained first by differentiating the log-likelihood

function with respect to each element B; of B, second solving the equations

dnL(B;y) _ 0

forj=1.2,..p
0B;

Then, it is needed to prove that the matrix of second derivatives

o’1(B; y)

9B;0B,

evaluated at B=[§ is negative definite, because checking that the solutions
corresponds to maxima of 1([3;). (Dobson, 1990) All local maxima of I(B;y) must be

identified at the edges of Q parameter space then the value B corresponding to the

largest one is the maximum likelihood estimator.

Since p(Xi.,B) regression function is exponential, likelihood function is not linear.
So, Newton-Raphson Iterative procedure is used to find the B maximum likelihood
estimator. First, initial values are appointed to B’s during iterative procedure.

Genarally, zero may be taken as initial value, but also trial value may be taken as

initial value. (Dobson, 1990)

2.7.2 Nonlinear Least Squares Method

Estimator of B holds consistency even though there is autocorrelation, by using
the estimation methods NLS and Poisson MLE. But in fact we have difficulty in

finding the consistent estimator of the variance matrix of these estimators. It is

assumed that autocorrelation is present at lag k, then

Wy =By, - B Ve - e KX, ] =01,k (2.27)
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is defined where p, = exp(x.p).

NLS estimator of minimizesZ(yt —exp(x'tB))z. Cameron and Trivedi
t=1

(1998) suggested that ﬁm_s is asymptotically normal with mean  and variance
matrix

V[BNLS]{iufx,x;]_lBm(iufx‘x;jﬂl (229)

t=] t=1

where

: n k n
Buis = 2 Wl XX, + D D Wty (X0 + %, %)) (229)

t=| =t =k

If w, =0 for j=0, there is no autocorrelation at all in y, .

Or with Poisson MLE we get the same result, with variance matrix

v, |- (Zu) Bp(i uj 2.30)

t=1

where

n k n
B, =) wox,x, + Y > wylkx; +x,x)) @31)

t=1 =l t=k

Generally, estimation by using Poisson MLE is more efficient than NLS, because

the Poisson MLE uses a working matrix that allows for heteroscedasticity (Cameron
&Trivedi, 1998).
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If lagged dependent variables are regressors and there is serial correlation in y,

after controlling regressors, then the results do not apply, so the NLS and Poisson

MLE estimators are inconsistent.
2.7.3 Quasi-Likelihood Approach

If the likelihood function is in complex form, with the help of mean-variance
relations, quasi-likelihood approach that is based on only the first and the second
moments of the distributions is suggested. The only assumptions on the distribution
of the data are first and second moments and some additional regularity conditions

relating to the regression equation E(Y)=p = p(B).

Quasi-likelihood considered as a function of mean p, and its variance V(p;)
where Var(Yi)z V(Mi) and Y; (i=1,2,...,n) are independent observations. p; are

assumed to be known function of B, parameters. Then for each observation, quasi-

likelihood function

Y .
CTTI) O b St Y 098 2.32
Qly;s;) Vo ) (2.32)

or equivalently

aQ(Yi’P'i)___ Yi —Hy
Oy, V(P«i)

If Y,’s come from a one-parameter exponential family, it is found that Q is the
log-likelihood function of the distribution. (Wedderburn, 1974) Log-likelihood
function and log quasi-likelihood function have the similar properties and
parameters are asymptotically normal. (McCullagh, 1983). For one-parameter
exponential family distributions, log-likelihood function and log quasi-likelihood

function are the same, so it is valid for one-parameter distribution Poisson.
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Maximum quasi-likelihood estimates may be estimated from the expected second

derivatives of Q as in the case of maximum-likelihood estimates from the log-
likelihood.

Q

Let z be the vector whose components are ——. According to the Quasi-

Likelihood function properties (Wedderburn,1974), z has 0 mean and dispersion

matrix with elements

2
_g 9Q
B, 0B;
*(TQ,) | . . L
Let K =W , if the observations are independent, then it is considered that
ivFj

Zzi has 0'mean and dispersion D=-E(K). Let [§ be the maximum quasi-likelihood

estimates of , then we have Zzi = K(B - fi) From here we get

B-p~ k'O z,) (2.33)

When we use expectation of K, instead of K, then we get

B~ p+D"'(Xz) (2.34)
and from here, D™ (z ;) has dispersion D',

When the mean-variance relation is not known completely, but the variance is
known, ﬁ can be calculated; for example when the variance-mean equality

assumption is violated in Poisson model, generally variance exceeds the mean, so it
causes overdispersion. Although this excess variation has little effect on parameter

estimates, standard errors, tests and confidence intervals may be wrong unless it is
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appropriately taken into account. (Breslow,1990) The variance in this case is

considered as
Var(Y,)= oV(y;) = ¢, (2.35)

where V(j1,) is a known function and ¢ is an unknown parameter. Here although it

is unkown, we can calculate f assuming ¢ =1 because, maximum quasi-likelihood
estimate of B is not affected by the value ¢. But only, ¢ is needed to estimate in

getting error estimates. Since it is considered that p is approximately linear in B, we

have

)

then

i

n-p (2.36)

(2.37)

For normal linear models, this gives the usual estimate of variance. (Wedderburn,
1974)

In the quasi-likelihood approach, variance ( ¢y, ) of the Poisson Regression model
is equal to the variance of the Generalized Poisson Regression Model, so the log
quasi-likelihood functions of the Poisson Regression and the Generalized Poisson
Regression are the same, then the quasi-likelihood estimates for both function will be
the same. However, the log-likelihood functions of the Poisson Regression and the

Generalized Poisson Regression are different, so the maximum likelihood estimates

are also different.
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Quasi-likelihood leads quite generally to consistent estimates of the regression
coefficients even if the variance function is misspeéiﬁed. (Breslow, 1990) In
application, testing significancy of added variables in a regression model is a
considerable problem. In this case, three tests are available under likelihood and
quasi-likelihood theory. These are Wald tests, which is based on comparison of
estimated coefficients with their standard errors; quasi-likelihood ratio test which is
based on comparison of deviances under full and reduced models; and the third is the

quasi-likelihood score test using the estimating equations themselves for inference.

2.8 Goodness of Fit Criterions in Poisson Regression Analysis

For the goodness of fit tests, nonparametric criterions like G?,3> ve T? are used

since normality assumption is not provided in Poisson regression model. There are
many alternative regression models for the given set of data; but the most suitable
one should be chosen. To reach this decision, the deviances D are compared for the

regression model where

D=-2In ELM
SLM

ELM : Estimated Likelihood Model
SLM : Saturated Likelihood Model

D=-2 (ﬂﬁ’—y) j (2.38)

InL({;y)

or more easily

D=2 [(yi h{# J -y, - B, )} (2.39)

i=l i
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D is distributed %> with n— p degrees of freedom, where p is the total number of
estimated parameters. If D is too large, the regression function spesification should

be rejected.

The regression model which has the minumum deviance among all possible

regression models is the best model for the given data set.

One of the other methods is Pearson test statistic defined as

MiFiZ (2.40)

(2.41)

where D, is the deviance relating to the minimal model and D is the deviance of

estimated model. If this criterion which is between 0 and 1 approaches to 1, then this

chosen model is the best.

In Poisson regression anlaysis, the test of the variables in the model and the test of
the contribution of the interaction term is applied according to the deviance
difference after providing the degrees of freedomn—p > 1 restriction. Comparing
this deviance difference with the y* table value, the contribution of the tested

variable is significant or not.

Model construction is thought as a process. The simplest model with only one
parameter which is representing the mean value generally gives little insight into the

processes behind the data. The most complicated model (saturated model) which has
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one parameter for each observation is also of little use, because it replaces the

observations themselves with an equal number of regression parameters.

For a given set of data, there will be larger discrepancies for the simpler model,

and smaller discrepancies for the complicated model.

The deviance is formed from the logarithm of the ratio of two likelihoods. One of
them is the likelihood of the current model or estimated model; the other is the

likelihood of the saturated model.

2.9 Other Model Selection Methods

Two widely used model selection criteria are Akaike’s Information Criterion
(AIC) and the Bayesian Information Criterion (BIC) (or it is called Schwarz
Information Criterion). These criterions are derived from the factor of Error Sum of
Squares. While ESS are decreasing, number of selected factors are increasing. So the
criterion sets the relationship between goodness of fit and complex model. Which

criterion of the model is less, then it is decided that model is acceptable.

The AIC arises from maximizing an estimated expected log-likelihood. It
penalizes the log-likelihood by the number of parameters fit to the data to avoid
overfitting. The basic of the BIC is a prior distribution on the parameter space

including all dimensions and models considered. (Wang et al., 1996)

When AIC selected the wrong model, it always choose a model with too many
components. BIC always choose the correct model, suggesting that BIC may not

overpenalize the number of parameters.
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CHAPTER THREE
AUTOCORRELATION

When we are analyzing time series data, serial independence assumption is
generally violated. Error terms for time periods may be correlated. This property is
known as autocorrelation or serial correlation. There are various number of factors
that cause the errors like, ommiting variables, measurement errors, ignoring
nonlinearities, determining wrong model, random unpredictible effects. The first

three effects can also lead to a serially correlated errors.

3.1 General Information about Autocorrelation in a Linear Model

The model
Y, =x,B+¢, (3.1)

is a linear model with time series errors while y,’s are continuous variable. While

working with such series, first of all autocovariance structure of the time series errors

€, is determined. (B, ,...,Bn) parameters are estimated by regressing the data vector

(yl seees ¥ ) onto the (x, ,...,xn) using Ordinary Least Squares (OLS) Method. These
estimates ignore the dependence structure of the €,. In this condition, these OLS

estimate has the same asymptotic efficiency as the maximum likelihood estimate.
The asymptotic covariance matrix of the OLS and ML estimate depends on the
covariance structure of the €, . If B is the consistent estimator, then Autocovariance
Function (ACVF) of €, can be consistently estimated from the sample ACVF of the

A

residuals which is defined as €, =y, - x,B.
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3.1.1 First-Order Autocorrelation

This is the simplest case of autocorrelation. If serial correlation is present, the
error for the period t is correlated with the error for the period k, such as

Cov(e,,g, )20 for t =k

Assumptionl
Y. =Bo +Bix, +¢, (3.2)
€, =pe, +&, -l<p<«l (3.3)

The error €, is related to the previous period’s error €, ;. lp] <1 for stationarity

condition. Because p is the coefficient of the error term lagged one period, then it is

called first-order autocorrelation coefficient. Equation 3.3 describes the first-order

autoregressive process AR(1).
Assumption2

&, errors are independently and identically distributed with zero mean and

constant variance so that E(&,)=0, E(&f)= c?,and E( &, )=0 for k=0

In the time series literature, a series in Assumption 2 is known as white noise
series with zero mean. Since €, depends on g, it is expected that they are
correlated. And it is seen that €, does not directly depend on €,_,; but g, is

- indirectly correlated with all past errors. If the covariance is positive, then there is

positive autocorrelation; if the covariance is negative, then there is negative

autocorrelation.
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3.1.2 Consequences of Autocorrelation

Under the Least Squares assumptions, the OLS estimates are unbiased and
consistent. Consequently, when the error terms are serially correlated, OLS estimates

are unbiased and consistent. The problem is with the efficiency of the estimates.

While we are minimizing the variance of the linear combination ) a g, ,

Var(z:a,e,)=2afcs2 +Y Y aa,Covle,.c,) : (34)

tzk

for efficiency.

If Cov(e,,e, )#0, the second term on the right-hand side will not vanish. So this

will not be equal with minimizing normal OLS equations, Zafcz, then OLS

estimates are not BLUE any more and hence not efficient. Note that if the lagged

dependent variable such as Y,_, are included as explanatory variables, then

autocorrelation causes inconsistent OLS estimates. The. estimated variance of-

regression coefficient will be unbiased and inconsistent, so tests of hypotheses are

invalid.

And also, if the serial correlation in €, is positive and X, is getting larger over

time, then the estimated residual variance 62 will be an underestimate, so R? will be
an overestimate. Also, t-statistics in such a case will tend to appear more significant

than they actually are.

3.1.3  Properties of Error When it is AR(1)
€, =pg,, +& =& +p(E, +pE ,)=E, +pE, +p’E,, +... 3.9)

Since E(g,)=0, then we have E(g,)=0, and also by the independence

assumption of the £ ’s,



27

o? =Varlg, )= Var(g, )+ p*Var(g _, )+ p*Var(g,, ) +...

2
O

l-p

=21 +p? +p* +.)=—* (3.6)
The infinite series will sum to a finite value only if |p[ <1. When the first-order

autocorrelation is less than 1 in absolute value, |p| <1, it means that the necessary
condition for the stationarity is provided. If p = 1, then the error process becomes
€, =¢€,, +&,. The value of error term at time t is equal to its past value in the

previous period plus a random effect. This process is called random walk model.

The covariance between €, and €,_,, for k #0, is given by

E(Stet—k):: E[(&t + p&x-—l + ngtﬁz + "'X&t—k + pE.»t—k—l + pZE.rt—k—z + )] (37)

All the cross-product terms of type & & _,, &,_,&,,.. have zero expectations

because on assumptions of indepenedency &, and &,_,. Only the square terms

remain. Therefore

COV(St ’ek):' E(sxst-k)z E(pk{;f_k + pk+2€3—k—l + Pk+4§f—k-2 + )

= p"cg(l-i— p? +p* +)

=p‘o; (3.8)

The correlation coefficient denoted r(k) between €, and € _, is autocorrelation

function

r(k) _ Cov(t»:t »€oy )

—_ Ak
Var(st) =P 3:9)

where for all lagsk =0,+1,+2,...
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Since |p| <1, as k increases, the autocorrelation function decreases in absolute

value. The autocorrelation coefficient for a lag k = 0 is p(0)=1 which is the largest
value. The smallest possible value is -1. Generally, the autocorrelation coefficients
drop down to zero for any substantial lag for noisy data. (Brown,1962) Pure random

noise would have zero correlation between samples which are not identically equal to

each other.

When vy, is positive, y,,, is also positive, or when y, is negative then y,,, is
also negative, so the autocovariance will be large and positive. Similarly, when y, is
positive and y,,, is negative or vice versa, the autocovariance will be large and

negative. In both situation, one can be used to forecast the other. When the
autocovariance is close to zero, the information about one observation doesn’t help

much in forecasting a late observation in the same sequence. (Brown, 1962)
3.2 Testing for Autocorrelation in Count Data Model

The aim is to detect the autocorrelation for the analysis; but for this, firstly
overdispersidn should be determined since if there is no overdispersion, this means
there is no autocorrelation and there is no need for correction in the covariance
matrix estimator of the Poisson maximum likelihood estimator nor for quasi-
likelihood estimator. When overdispersion is detected, then possible correction of the

Poisson maximum likelihood covariance matrix will be our interest, because we need

to see whether this overdispersion is generated by €, which has an autocorrelation.

When the time series correction is necessary, it is helpful to use residual based test
from Poisson Regression. Residual based test from dynamic regression makes clear
that after inclusion of lagged variables, whether there is still autocorrelation. By

using any of the estimators, autocorelation coefficients for €, can be estimated from

the residulas (Cameron& Trivedi, 1998).
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Let z, =y, —{i, be the residual from Poisson regression model. The standard

measure of time series correlation is the autocorrelation at lag k.

E(ztzt—k)

P, =itk (3.10)
© VERERL)

These residuals are nonstationary, with nonconstant variance because the variance
equals to the nonconstant mean. Thus, before using the standard tests of serial
correlation used in linear time series modeling, these raw residuals from Poisson

Regression need to be standardized.

One of the standardized residual is Pearson Residual

A A (.11)
W,

where [i, = p(xt,[:’))
VAV: =V[yt|x‘]=w(p‘,a)
where o are variance function parameters.

Box-Jenkins modeling in the continuous case can be applied using the

autcorrelation function if z'. is standardized at least asymptotically constant

variance where

L
2,7y
A t=k+1

P =EET);- (3.12)
Zi

t=1
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In the case of p, =0,k # 0, then we can say that there is no autocorrelation. Box-

Pierce portmanteau statistic for serial correlation where K is the maximum lag is

Qe =nY.p; (Box and Pierce (1970)) (3.13)

Q, =n(n + 2)2 pkk (Ljung and Box (1978)) (3.14)

k=1 11

where p, is the estimated autocorrelation at lag k.

Assuming z; is normalized to have constant variance, under the null hypothesis

that no autocorrelation, it is tested with *(K). As in the continuous case, for the

count data, the degree of serial correlation can depend on whether first differences or

levels are modeled.

Davis, Dunsmur and Wang (1998) suggested another test statistic, since there is a
problem with the correlated Poisson model. This problem is that the variance and
covariances have different forms of dependence on the mean function p, and there is
no single normalization of residuals. These normalization eliminate the dependence

from the variance and from the covariance terms required to construct

autocorrelations.

w5l %) 619

where K is the maximum lag and p, (k) is the autocorrelation function of &, is

proposed for testing for serial correlation in the mean of the observed count time
series. It is analogous to the Box-Jenkin’s statistics. Under the hypothesis, of
independence H? will have an approximate ¥’ distribution with K degrees of

freedom.
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CHAPTER FOUR

TIME SERIES MODEL

4.1 Linear Model

Time series models for a continuous dependent variable where the only
explanatory variables are lagged values of dependent variable is the standard class of
linear models. Autoregressive moving average, ARMA(p,q), model is the sample of
these linear models where p is the order of the autoregressive part and q is the order

of the moving average part.
Ye=PYer tee P Y +E HYVE L+ + Y8, t=PTl.n 4.1
is the ARMA(p,q) model where &, is N(O,cz).

Linear time series regression model (autoregressive or dynamic) has explanatory

variables and lagged dependent variables as regressors such as
Y =PYi +XB+E, (42)
where the error term &, is N(O,cs'2 )

The model is called a distributed lag model if there are only x, and lags of x, in
the model but if there is x, alone in the model, this model is called a static model.

One of the alternative time series regression model is serially correlated error model

with a static regression function such as
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Ye=xB+e, (4.3)

where the error term ¢, is serially correlated. As an example of the simplest form of

the autoregressive error can be written as
€ =P, +&, 4.4)

The coefficient of the model which autoregressive and serial correlation model is
combined is estimated by the method of least squares or by the method of maximum

likelihood if a distribution is specified for &, .

When the p takes the value p=1, then y, is nonstationary, due to a nonstationary

stochastic trend, so asymptotic normal theory of estimators no longer valid.

Nonstationary stochastic trends have not been studied for count regression
(Cameron&Trivedi, 1998).

4.2 Count Models

There are many possible time series models for count data. Different models of

the dependency of y, on past y, and current and past x, and the latent process or

error process €, causes different time series models.
Various Count Models:

1. Integer-valued ARMA (INARMA) Models : y, is the sum of an integer

whose value is determined by past y, and independent innovation.
Assumptions of Poisson or Negative Binomial distributions lead to a count
marginal distribution of y,. This is a generalization of the autoregressive

model in equation (4.2).
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2. Autoregressive Models (Markov Models) : Conditional distributions of y,
are count distributions such as Poisson or Negative Binomial. The mean
parameter of this conditional distributions of y, is a function of lagged
values of y, . Different from INARMA model in which marginal distributions
of y, is specified, here the conditional distributions of y, is specified. This

model is an extension of equation (4.2).

3. Serially Correlated Error Models or Latent Variable Models : y,

depends on a static component and a serially correlated latent variable. This is
an extension of the serially correlated error model in equation (4.3) and
equation (4.4).

4. State-Space Models or Time-Varying Parameter Models : y, is a count

distribution such as Poisson or Negative Binomial. In these distributions,

conditional mean or parameters of conditional mean depend on their values in

previous periods.
y( = X;Bt + 8!
B, ~B=0(B.. -B)+&, “5)

where €, is N(O,c’), p isa k x k matrix, and & isakx 1, N(O,Z) error

vector. This model is also widely used in Bayesian analysis of time series and

it is called dynamic linear.

5. Hidden Markov Models or Regime Shift Models : y, is a count

distribution  such as Poisson or Negative Binomial. In these distributions,

paramaters vary according to which of a finite number of regimes is currently

in effect.
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6. Discrete ARMA (DARMA) Models : This model introduce time
dependency through a mixture process (Cameron & Trivedi,1998).

4.2.1 Time Series Count Data Regression

The outcomes {Y, :t=1,..,n} are time series of counts. Log-linear models can
be used to describe p, =E(Y,) as a function of a p x 1 vector of covarites x, with

independent observations. Mean function is specified by a linear predictor modified

by a ‘latent’ process. If Y, is Poisson, likelihood methods can be used to estimate 3
in the case var(Y,)=p,. Quasi-likelihood methods which allow a variety of

variance-mean relations are appropriate in the: case of var(Y,)> u,. The two

common assumptions are

i) var(Y,)=p.

ii) var(Y,)=p, +plo’
where ¢ and o” are unknown scale parameters. (Zeger, 1988)

In time series data, neighbouring observations are dependent. For non-
Gaussian time series as count data following a Poisson distribution are divided two

groups by Cox (1981) : observation-driven models and parameter-driven models:

i ) Observation-driven : The conditional distribution of Y, is specified as a
function of past observations, Y,_,,...,Y,. Autoregressive models for Gaussian series

or Markov chains for discrete data is an example for this type of model. Assume that

Y |u, is Poisson(u, ), then the model,

logp, =x,B+a,, 4.6)
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where o, is a function of past observations Y,, s <t i.e. o, =7, Y, +..+¥, Y.,

is called as onservation-driven model.

ii ) Parameter-driven : A latent process is thought as generating autocorrelation.

Let 6, =logu, be the canonical parameter for the log-linear model. Here, 0, is
assumed to depend on an unobservable noise process (€,), s0 9, = 8e,, Y, Y, ).
If Y, given ¢, is Poisson, then it is E(Yt|st)=exp(x"Bkt. The latent process, €,,
introduces both overdispersion and autocorrelation in Y,. (Zeger, 1988) The

parameter-driven models has the advantage of incorporating both overdisperison and

autocorrelation and the model specifies an unobserved latent process.

Assume that Y, |u, is Poisson (1, ), then the model

logp, =x.B+a,, 4.7

where o, is a stationary Gaussian AR(1) latent process, i.e. a, =pa, , +e€, where

| <1, e, areiid. N(O,cs2 ), is called as paramater-driven model. As a property of

this kind of model,

E(Y,)= exp(x ,B)E(exp(:, ) = exp(x'tB) if E(exp(a,))=1

4.2.1.1 The Model

~ Let the Poisson probability density function is again defined as

n e"llt
P(y,)= ”‘y ' (t=1,2,....n) 4.8)

te

where Y, is the count or frequency variable at time t
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Conditional on €, is assumed as stationary latent process. The marginal moments
of Y, is determined as a function of the log-linear coefficients and the parameters of

g, since Y, follows a log-linear model (Zeger,1988).

To introduce both overdispersion and autocorrelation in, conditional on a latent

process €,, Y, is a sequence of independent counts with properties

E(Y‘|st):s,p.t =e:xp(x't[3)z—;t var(Yt|e‘)=s,pt =exp(x;[3)at 4.9)

Suppose that the &, is a stationary process with E(g,)=1 and
Cov(g,,€,, )=02p, (k) where o? is the variance and p, (k) the autocorrelation

function at lag k of the €, process (Brannas and Johansson, 1994). Then,

E(Y,)=p, =exp(x,B) , Var(Y,)=p, +o’n’ (4.10)
and
p, (t.k)=corr(Y,, Yo )=1 p.(k) —  (k#0) (4.11)
T e o)

The latent process, €,, introduces both overdispersion and autocorrelation into
¥, ; this autocorrelation function p y(t, k) varies with t and k. The autocorrelation in
y, must be less than or equal tog,. The degree of autocorrelation in y, relative to

€, decreases as ., and o decrease.

While using MLE method, we need to have both density for Y, |8t , and a

multivariate density for (g,,€,,...,€, ) . No closed-form solution is possible, except in
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trivial cases such as €, independently and identical distributed gamma if Y‘]s'

independently and identical distributed Poisson. (Cameron&Trivedi, 1998)

4.2.1.2 Estimation of B

Poisson maximum likelihood estimator is consistent even if the autocorrélation is
not accounted for. In such cases maximum quasi-likelihood estimator is used. The
conventional covariance matrix of this maximum likelihood estimator is inconsistent
(Brannas and Johansson, 1994).

E(Y,|x,)=exp(x.8) (4.12)

model is considered with exponential conditional mean where y, is dependent
variable and x, is static regressor. Estimator of 8 holds consistency even though

there is autocorrelation, by using the estimation methods Quasi Likelihood and
Poisson MLE. But in fact we have difficulty in finding the consistent estimator of the
variance matrix of these estimators. It is assumed that autocorrelation is present at
lag k, then

w, =By, ~p Ny —BeiJKimoxs]  §=0,.k (4.13)
is defined where p, = exp(x;B).

If lagged dependent variables are regressors and there is a serial correlation in Y,

after controlling regressors, then the results do not apply.

4.3 About the Latent Process

Before finding again the parameter estimates, it is needed to test for the existence

of a latent process. Once a latent process is detected, then autocorrelation should be
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tested. While covariance estimates are often biased, the standard estimates of

correlation proposed by Zeger are in use.
4.3.1 Test for a Latent Process

There are tests that are used to detect overdispersion in Poisson distribution.

Brannas and Johansson (1994) used the following statistic

Soo-8) -y

S = i=] (4 14)

5]

under the hypothesis Lagrange multiplier test of the Poisson distribution against
Negative Binomial or more general Katz distribution. Dean and Lawless (1989)

improved this test statistic for the small samples as

i[(yt "'fit)z =Y. +ﬁtﬁt]

§, =+ (4.15)

5]

where h, is the t™ diagonal element of the hat matrix. “Hat” matrix is

H= A"ZX(XTAX)_] XTA"?, where A =diag(y,,...,n,) and X =(x,,..,x,)" is the

design matrix (Fahrmeir &Tutz, 1994). Both of these test statistic asymptotically
distributed as N(0,1) under “there is no latent process” hypothesis.

Davis, Dunsmuir and Wang (1998) introduced an alternative test specifically
designed for overdisperison in the case of latent process in Poisson process. Since
this test uses higher moment properties of Poisson observation, it is more powerfull

than S, .
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Under the null hypothesis that there is no latent process (i.e.,s‘ El) the Pearson

residuals,

=8B (4.16)
iy

have approximately zero mean and unit variance.

1S,
23]
Q=——;——— (4.17)

Cq

(&

where

&2 =1(-1-Z":Ai+2] 4.18)

may be used to test the presence of a latent process. (Davis and Dunsmur, 1998) Q
statistic is distributed as N(0,1) approximately under the hypothesis that the variance

of a latent process is zero.

4.3.2 Estimation of the Autocorrelation Function and Autocovariance

Function of the Latent Process

In literature, there are many suggestions on various estimates of the

autocovariances. Zeger (1988) obtained the estimation of nuisance paramaters with

the help of moments method. In this method, o? is estimated as

Svo-a) -5

a2 t=]

&, = - (4.19)

PN

t=1

where var(Y,)=p, +o?u.
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Similarly, the autocorrelation function of €, (latent process) can be estimated by

bs (k)= 6':2 i {(Yt - ﬁ; vat—k - ﬁ'(—k )} = ?;(zk) (420)
t=k+l Z ﬁt ﬁ . €
t=k+1

where autocovariance function of €, (latent process) is given by

DRI (A

7, (k)= (Zeger, 1988) (4.21)

Zﬁ'tﬁt—k

t=k+l

The pattern of the estimated autocorrelations is useful for the identification of

basic autoregressive moving average (ARMA) model.
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CHAPTER FIVE
THE USE OF MODELS HAVING

TRIGONOMETRIC TERMS

It is suspected that data can be represented as a linear combination of these

function values

A

Y. =¥, +& (5.1)

where the residuals €, are caused by two elements. The first is the noise in the

observations: the observed values may be equal to true value plus a random
stochastic variation. The second is errors in the model : Because of various reasons,
the model can be identified wrong, or even the correct model is determined, there

will be errors in estimating the coefficients because of the noise in the observations.

Regression deals with the problem of estimating values for vector of coefficients
in the model. The fitting functions must be linearly independent. It means that any
function is used to express as a linear combination of other functions. Independent

variables may be emprical variables.

If the process can be represented in terms of previous values of the dependent
variable, then this means that it has autoregressive form. The autocovariance of the
data, or the mean, variance and autocorrelation coefficients contain all the
information necessary for coefficient estimation that minimize the sum of squared

residuals (least squares) in an autoregressive form (Brown, 1962).
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5.1 Regression with Trigonometric Terms

When the process to be forecast is periodic, it is appropriate to describe it in terms
of sines and cosines. Periodic function describes the repetation of the same values all
over again. The length of time before the sequence starts to repeat is called the
period and we are interested in the number of observations in these period. Quarterly
observations of an annual cycle will have 4 observations per period; 12 observations
per period are quite common because of the twelve hours in a half day, and twelve

months in a year or if a weekly cycle may be observed seven times.

Simple trigonometric identity can be shown as

y, =B, +B, sin(z—;‘t-J +B, cos&”—‘] (5.2)

In 1822, Fourier showed that any reasonable periodic function of time could be

represented by taking a sufficient number of terms in series

. (ZMJ . [4m] . [ant]
Yy, =C+a sinf — |+, sin| — |+...+ &, sin| —— |+...
p P p
+B, cos(z—ﬂl) +B, cos(in—tJ +..+ By cos(zlin—) + ..
p P p

If there is a complicated waveform in the data and if it is necessary to forecast this

(5.3)

form accurately, sufficient number of terms should be in the model. Trigonometric
model should be used only where there is a known cause that makes a periodic

phenomenon.

Three groups of model have been used to describe process for which forecasts are
required. First group includes simple polynomials of degree 0, 1 and 2. The second

group includes simple sinusoids which is required to represent periodic process with
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12 observations per period. Third group includes various combinations of linear and

sinusoidal change in the process. (Brown, 1963)

i) Simple Polynomials
1. Constant Process :
Ye=Bo G4
This model is used when the process does not change in any deterministic

way with time.

2. Linear Process
¥y =B +Bit (5.5)
This model is used when the process is growing (or falling) at a steady rate

in time. This rate may change by small random increments from time to

time.
3. Quadratic Process

1
Y. =B, +B1t+552t2 (5.6)

This model is used, for example, in forecasting future positions of an
automobile in which the accelaration is constant for substantial periods of

time, but in the long run changes by small, random increments. (Brown,
1962)

ii ) Simple Sinusoids
1. Simple 12-point sine

¥, =80 +B, sin(%) +B, cos(glj;—tj (5.7

This model is used when the first approximation to a periodic process,

such as a seasonal sales pattern observed once a month.
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2. Twelve-point sine with harmonic
. [ 2mt 2nt . [ 4mt 4nt
y, =B, +B, sm(—ﬁj +B, cos[—l—z—) +B, sm( 2 ) +B, cos( 5 j

This model includes one harmonic of the basic waveform.

(5.8)

3. Irregular 12-point Periodic Function
=B+ sm( ) +B.c (2"“) (5.9)
= 12 12

This model includes four harmonic frequencies and so this model can

describe almost any periodic process with an irregular pattern.

iii ) Linear and Sinusoidal Combinations

Linear Trend with Simple sine Wave

=B, +B,t+B, sm( )+B3 (2172“] (5.10)

This model would be used instead the first model of the Simple 12-point Sine,

where the sinusoidal variation is superimposed on a steady increase (or decrease).
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CHAPTER SIX
APPLICATION

6.1 The Data

As an illustration, monthly number of deathes who were infected by pulmonary
tuberculosis, for the years 1996 to 2002 in Izmir are investigated as a parameter-
driven model. These data are reported by Health Directorate of izmir Administrative

Province. Our interest is to determine a long-term decrease in the rate of pulmonary

tuberculosis infection.

Table 6.1 Monthly number of deathes who were infected by pulmonary tuberculosis,
for the years 1996 to 2002 in Izmir.

Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec
1996| 10 3 6 3 1 2 5 8 2 9 7 10

1997 O 10 12 3 4 3 3 0 4 5 5 3
1998 3 1 6 2 0 3 3 2 1 5 5 3
1999| 5 8 2 0 6 3 4 6 2 2 0 7
2000] 4 3 4 3 2 2 2 1 4 3 2 6
2001] 3 8 6 1 3 2 6 3 6 1 3 2

2002 3 0 0 1 4 1 2 1 0 1 2 3
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6.2 The Method

Our aim is to identify the B parameters, for the Poisson model

-u{x.8) y
tobop) - <—tBS

where
u(x,B)=E(y[x, )= exp(x, B)

The MLE of the parameter B is obtained by maximizing the loglikelihood

function

L®)= Yy, logn(x,.B)-u(x,.B)-log(y,))

i=1

On specifiying correct conditional mean function and conditional Poisson
distribution of Y, the MLE is consistent, efficient and asymptotically normally

distributed, with variance matrix consistently estimated with

iau(x,ﬁ) ou(x,B))"

A _|&5 B B
Var(B) = " (x, B)

In the case of rejection of the mean-variance equality assumption, the model is
misspecified. Here the Poisson estimator may also interpreted as a Quasi Maximum
Likelihood Estimator (QMLE). These QMLEs are robust in the sense of producing
consistent estimates of the parameters of a correctly specified conditional mean, even
whether the distribution is incorrectly specified. For these QL models, only a correct

spesification of p(x, B) is needed for consistency.
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Hovewer, the estimated standard errors won’t be consistent unless the conditional
distribution of Y is correctly specified. But, it is possible to get the robust standard
errors in order to make valid inferences even whether the distribution is incorrectly
specified by using QL standard errors. But it doesn’t posess any efficiency

properties.
6.3 The Model
Since there is seasonality, monthly number of infected people is regressed on a

linear trend with sine and cosine pairs at the annual and semi-annual frequencies.

Figure 6.1 shows the trend analysis of the response variable.

Trend Analysis for Y

Linear Trend Model

4 * ol
- Fis
1 — T — Al
— — Fiz
4
>
5 -
L
MOPE: ke
J 42D: 19,
b - MED: 20054
[ I T ] T I I | |
] 10 20 3 40 50 60 0 80 a0
Time

Figure 6.1 Trend Analysis for Monthly Number of Deathes
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Table 6.2 Coefficients and Standard Errors of Regression Parameters

QML PML Asym Simulations
Std. Std. s.e. Ave s.d.
Coeff. Coeff
Error Error (Coeff) (Coeff) (Coeff)

Intercept | 1259704 0069613 1.259704 0.059526 0.059951 1258452  0.060632
Trendx10” | -11.00053 3050726 -11.00053 2471986 2.472688 -10.58603 2.513145
cos(2m/12) | 0247722 (096764 0.247722 0082393 0.082619 0234196  0.082685
sin(2m/12) | 0087644 103449 .0.087644 0.086066 0.086446 -0.074159 0.087014
cos(2m/6) | 0082642 (003502 0.082642 0083067 0.083324 0.083165  0.086735

sin(2m/6) | 0.073830 0.10719  0.07383 0.083638 0.083871 0.072462  0.084761

An intercept term, a linear trend, and harmonics of 6 and 12 months are used as

regressors. The design matrix is
x, =(L,t' /1000, cos(2nt  /12) sin(2nt' /12), cos(2mt’ /6),sin(2mt /6))

where t =t—37 is the intercept term at January 1999. Here, trend function has the
formx , = (l,t/n)'. If the sample size in the linear component is omitted, then the

parameter estimate would not be consistent for negative values of the slope
parameter. This is due to the fact that the Poisson mean is converging to 0 rapidly.
(Davis et al., 1998)

A simulation study was done to investigate these estimates over many trails, and
1000 realizations on the parameter-driven model fitted to the data were generated
and this is also repeated 1000 times. On using the correct standard errors for the
trend term it is concluded that the trend term is significant. Simulations columns of
the Table 6.2 gives the true regression parameters. The latent process in this

simulation was assumed to be a lognormal AR(1) with p=0.81. On comparing the

true value of the parameters, it can be concluded that there is no significant bias.
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Non-negative assumption on &, provides the non-negativity of Y,. And also
E(e,)=1 is needed, because if E(g,)#1, then it can be absorbed into the intercept
term in the component of p,. In order to ensure the non-negativity constraint

a, =Ing,, then the model will be

y, =explxp+a,)

where o, is a stationary Gaussian process, so €, will be stationary lognormal

process.
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Figure 6.2 Autocorrelation Plot of Latent Process
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Figure 6.3 Partial Autocorrelation Plot of Latent Process



Table 6.3 Q statistics of Latent Process

Autocorrelation

Partial Correlation

AC PAC

Q-Stat Prob

S dededede

.
dedededede
.

s e e s e 4 s s e e .
e s e & e e e s s s =

Iﬁii**i I
l*

*
til

I
I
I
I
|
I
I
|
|
I
I
I
I
I
I
I
Ao
A
I
I
I
I
I
I
|
I
I
|
I
|
|
|
I
I
I

0.814 0.814
0.714 0.154
0.597 -0.059
0.431 -0.196
0.328 0.019
0.201 -0.085
0.105 -0.009
0.066 0.091

9 -0.039 -0.179
10 -0.084 -0.016
11 -0.160 -0.138
12 -0.191 0.088
13 -0.171 0.102
14 -0.198 -0.068
15 -0.201 -0.094
16 -0.185 -0.017
17 -0.219 -0.103
18 -0.210 -0.007
19 -0.231 -0.020
20 -0.220 0.040
21 -0.180 0.031
22 -0.130 0.092
23 -0.086 -0.038
24 -0.059 -0.069
25 -0.005 0.107
26 0.028 -0.039
27 0.040 0.001
28 0.025 -0.166

O~NOOTHWN -

29 0.042 0.081

30 0.040 -0.032
31 0.038 0.033
32 0.040 0.027
33 0.017 -0.064
34 0.014 0.014
35 0.011 -0.039

_36.-0.008_0.035_

57.607 0.000
102.52 0.000
134.34 0.000
151.13 0.000
160.99 0.000
164.75 0.000
165.78 0.000
166.20 0.000
166.35 0.000
167.04 0.000
169.58 0.000
173.23 0.000
176.22 0.000
180.25 0.000
184.46 0.000
188.08 0.000
193.24 0.000
198.08 0.000
204.02 0.000
209.50 0.000
213.20 0.000
215.17 0.000
216.04 0.000
216.46 0.000
216.47 0.000
216.56 0.000
216.76 0.000
216.84 0.000
217.08 0.000
217.29 0.000
217.48 0.000
217.71 0.000
217.74 0.000
217.77 0.000
217.79 0.000
217.80_0.000

If the sample autocorrelation function of the original observations either dies

down or cuts off fairly quickly, it can be assumed that the original series is

50

stationary. For the autoregressive models, theoretical partial autocorrelation function

of this model cuts off after lag k, and the theoratical autocorrelation function dies

down.

If there is no autocorrelation in the latent process, the autocorrelations and the

partial autocorrelations at all lags should be nearly zero and all Q-statistics should be

insignificant with large p-values.
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Table 6.4 Descriptive Statistics of the Simulation

By B B B By Bs

i‘ Mean 1.258452  -10.58603 0.234196  -0.074159 0.083165 0.072462
Median 1.261703  -10.66275 0.233171  -0.071803 0.086023 0.075050
Maximum 1.448640 -2.913805 0.553063 0.171008 0.351765°  0.388515
Minimum 1.026540 -18.69673  -0.024499 -0.350561 -0.219456  -0.201225
Std. Dev. 0.060632 2513145 0.082685 0.087014 0.086735 0.084761
Skewness -0.154144  -0.121542 0.017149  -0.136640 -0.102956  -0.049945
Kurtosis 3.132887 2.986629 3.078314 3.053805 3.389450 3.192151
Jarque-Bera 4.695835 2.469523 0.304563 3.232361 8.086281 1.954178
Probability 0.095568 0.290904 0.858747 0.198656 0.017542 0.376405
Observations 1000 1000 1000 1000 1000 1000

In simulation firstly, 1000 population is generated for the pulmonary tuberculosis
data, then the model is constructed 1000 times and the parameters are estimated by
using both Quasi-Likelihood and Maximum Likelihood methods. These are made

with the help of Eviews and Minitab code shown in Appendices.

Pearson _y’
df

conclude that there is overdispersion. When overdispersion is detected then we

Since ¢ (Dispersion Parameter = ) = 1.525 > 1 then we can

investigate the presence of latent process. With the help of Q = 2.57 statistics we

decide that there is latent process.

Table 6.5 Relative Efficiency for QL Estimation to ML Estimation

Regressors Relative Efficiency
Intercept 0.855099
Trendx10~ 0.810294
cos(2m /12) 0.851484
sin(2nt/12) 0.831966
cos(2n2/6) 0.888398
sin(2m /6) 0.780278
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Figure 6.5 Descriptive Statistics of the Pearson Residuals

Since Pearson residuals have the same correlation structure as €, (Zeger, 1988), it

is assumed that there is lag one autoregressive correlation structure with E(g,)=1.

The latent process has a lognormal distribution as depicted Figure 6.6.
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Figure 6.6 Probability Plot of the Latent Process

Months

E(Y,)=p, whether or not equal to var(Y, ) .

criterion

Variable Coeff. Std. Error
C 1.259704 0.069613
TREND  -11.00053 3.050726
COS12 0.247722 0.096764
SIN12 -0.087644 0.103449
COS6 0.082642 0.093502
SIN6 0.07383 0.10719
S.E. of regression 2.411857
Log likelihood -184.4295
LR statistic (5 df) 33.61566
Probability(LR stat) 2.84E-06
Akaike 4.534037
criterion
Schwarz 4.707666

MHEGY
230802

[-Y-2.:2:2.3
936842

100805
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The maximum quasi-likelihood estimator is consistent and asymptotically normal.

This is a robust approach in making consistent inferences about B only that

Table 6.6 Model with an Intercept Term, a Linear Trend, and Harmonics of 6 and 12



Table 6.7 Model with an Intercept Term, a Linear Trend, and Harmonics of 12

Months
Variable Coeff. Std. Error
C 1.263258 0.071392
TREND  -11.20847 3.046832
COS12 0.257259 0.102682
SIN12 -0.07705 0.100826
S.E. of regression 2.386169
Log likelihood -185.3152
LR statistic (3 df) 31.84426
Probability(LR stat) 5.64E-07
Akaike 4.5075
criterion
Schwarz 4.6232
criterion

Table 6.8 Model with an Intercept Term, a Linear Trend, and Harmonics of 6
Months

Variable Coeff. Std. Error

C 1.276383 0.074122
TREND  -11.01905 3.184534
COS6 0.100139 0.097493
SIN6 0.069366 0.115191

S.E. of regression 2.493434
Log likelihood -189.4683
LR statistic (3 df) 23.53815
Probability(LR stat) 3.12E-05
Akaike 4.606388
criterion
Schwarz 4.722141

criterion
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Table 6.9 Model with an Intercept Term and a Linear Trend

Variable Coeff. Std. Error
C 1.281134 0.075442
TREND  -11.21862 3.206079
S.E. of regression 2.479241
Log likelihood -190.5601
LR statistic (1 df) 21.35459
Probability(LR stat) 3.82E-06
Akaike 45847
criterion
Schwarz 4.6426
criterion

Since the parameter estimates are consistent and have robust covariance estimates,
also asymptotically efficient, and other model selection criterions, we choose the

second model for forecasting. Then the model will be

log Y =1.263258 -11.20847((t - 37)/1000) + 0.257259(cos 2I1(t - 37)/12)
0.077050(sin 211(t - 37)/12)

This model gives very close forecasts as in the first model. The model has the
significant trend function.This means that the pulmonary tuberculosis deathes are

decreasing by the time.

Even there is latent process with autocorrelation for this Poisson regression
model, consistent coefficient estimates and robust variance estimates can be

obtained by using Quasi Likelihood method, so valid inferences can be made.
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CHAPTER SEVEN
CONCLUSION

In this study, time dependent Poisson regression model is investigated. For the
Poisson data, generally variance exceeds mean, this case is called overdispersion. When
overdispersion presents, for this kind of time dependent Poisson data, presence of latent
process should be investigated. A latent process is thought as generating autocorrelation

in such models, these type of count model is called Parameter-Driven model.

Monthly number of deathes who were infected by the pulmonary tuberculosis data as
a Parameter-Driven model is examined for this study. Our aim is to identify a model for
forecasting. For this, firstly overdispersion is detected, then it is decided that there is a

latent process and the correlation structure of this latent process is determined.

In order to identify the latent process and its correlation structure, a consistent
estimation procedure for the regression coefficient is needed. For consistent estimation
procedure, a quasi-likelihood method which is based on only the first and the second
moments of the distribution is suggested. In the case of rejection of the mean-variance
equality assumption, the model is misspecified. These Quasi maximum likelihood
estimates are robust in the sense of producing consistent estimates of the parameters of
the correctly specified conditional mean, even whether the distribution is incorrectly

specified. For these QML models, only a correct specification of the mean function is

needed for consistency.

With simulation study, QMLEs asymptotic behaviour is examined. For this monthly

pulmonary tuberculosis data, parameter estimates are consistent, asymptotically normal



57

and asymptotically efficient. And also since the variance estimates of the parameters are

robust, we can make valid inferences about this model only that E(Y,)=p, whether or

not equal to Var(Y,).
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Appendix A MINITAB code for generating 1000 Poisson Data with Latent Process for
the pulmonary tuberculosis data

Letkl =k1+1
Letk2 =k2+1

Let k3 =Cl1(k2)
Random 1000 Ck1;

Poisson k3.



Appendix B Eviews Code for Generating Random Columns

'number of random columns
!Count = 1000

"Number of Data in Columns
IRowCount = 84

'Generating random columns...
For !Sayac = 1 To !Count
matrix(84, 1) Rnd {!Sayac}
For !I=1 To !RowCount
sym(1) Satir
mdint (Satir, 999)
Rnd{!Sayac}(!I, 1) = Y{!I}(Satir(1,1) + 1)
Next
series Ser{!Sayac}
mtos(Rnd {!Sayac}, Ser{!Sayac})
Delete Rnd{!Sayac}
Next
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Appendix C Eviews Code for Estimation of Every Simulated Data and Descriptive

Statistics of Parameter Estimates

'declare constant variable
IN=1000

'init
ltopl =0
ltop2 =0
top3=0
top4 =0
ltop5=0
1top6 =0

'al = standart errors
matrix(!N, 6) al

'a2= coefficients
matrix(!N, 6) a2

'calc equations
forli=1to IN
equation burcu. COUNT(D=P,H,R) Ser{!i} ¢ TREND COS12 SIN12 COS6 SIN6
FOR!j=1TO6
Al1(Y, 1j) = burcu.@stderrs(!j)
A2(!1, Yj) = burcu.@coefs(!J)
Next

top1 = ltop1 + burcu.@coefs(1)

ltop2 = !top2 + burcu.@coefs(2)

Itop3 = !top3 + burcu.@coefs(3)

ltop4 = !top4 + burcu.@coefs(4)

ltopS = !top5 + burcu.@coefs(5)

Itop6 = !top6 + burcu.@coefs(6)
Next

'find avg

ltopl = !topl/ IN
ltop2 = ltop2/ IN
Itop3 = !top3/ IN
ltop4 = !top4/ IN



!topS = ltop5/ IN
Itop6 = !top6/ IN

series toplam
toplam.fill !top1, !top2, !top3, !top4, !top$5, !top6
show toplam
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