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ABSTRACT

The feasible (cost efficient) shipment of the products to wholesalers or to
warehouses is a common problem for all companies. Such a problem is called a
transportation problem, which is a special case of the linear programming problem.
The general model, which corresponds to' the classical transportation problem,
comprises of the objective function, supply constraints, demand constraints, and
nonnegativity constraints. However, if the decision variables which are the amounts
of shipment have capacity constraints from various reasons such as capacity of
trucks, warehouse capacity etc., then a capacitated transportation model is used. The

objective is, generally, the minimization of cost.

In this research, capacitated transportation model and solution methods are
studied and applied to an actual industrial problem. In application, the objective is
defined as minimizing the total transportation cost, while satisfying the capacity
constraints on the decision variables as well as the demand and supply constraints.
The total number of decision variables and constraints in practice made the problem
so huge that the model became to be beyond the capability of the available software
packages. Thus, in order to obtain a solution, an approximate solution method is

developed.

In the beginning, the problem is simplified to a smaller capacitated transportation
problem and solved. With regards to the solution of the simplified model, sub
problems are defined. The WinQSB software package is used and results are

evaluated.

Keywords: Transportation Problem, Capacitated Transportation Problem
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OZET

Uriinlerin depolara ya da saticilara taginmasi, biitiin igletmeler igin ortak bir
problemdir. Bu tiir problemler dogrusal programlama problemlerinin 6zel bir hali
olan ulastirma problemi olarak adlandinlir. Klasik ulagtirma modeline karsilik gelen
genel model, ama¢ fonksiyonu, arz kisitlari, talep kisitlari ve negatif olmama
kisitlarindan olugur. Bununla birlikte, eger tasinan malin miktarina karsihk gelen
karar degiskenleri farkli sebeplerden dolayr kapasite kisitlarina sahipse, kapasiteli
ulagtirma modeli kullanilir. Amag genelde maliyet enkiigliklemesidir.

Bu aragtirmada, kapasiteli ulastirma modeli ve ¢6ziim yontemi ¢alisilarak, gergek
bir endiistri problemine uygulanmstir. Uygulamada amag, arz ve talep kisitlarinin
yaninda kapasite kisitlar1 da saglanarak tasima maliyetlerinin en kiigiiklenmesi olarak
tamimlanmugtir, Pratikte, toplam karar deBiskeni ve kisit sayisinin problemin
boyutunu ¢ok biiyilkk bir hale getirmesi sebebiyle, mevcut bilgisayar paket
programlanyla ¢oziilemediginden, en iyl ¢6ziimii elde etmek i¢in yaklasik bir ¢6ziim

yontemi gelistirilmistir.
Oncelikle, problem basitlestirilerek ¢6ziildi. Daha sonra, basitlestirilmis
problemin sonuglarina dayanarak alt problemler tamimland:. Problemleri ¢6zmek igin

WinQSB paket programi kullanilarak sonuglar yorumlandi.

Anahtar kelimeler: Ulastirma Problemi, Kapasiteli Ulastirma Problemi



2.2 Solution Methods for Transportation problem
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CHAPTER ONE
INTRODUCTION

Capacitated transportation model is a special cases of transportation model, which

includes upper bound constraints.

The capacitated transportation model has been applied to obtain solutions to real
life problems, and various articles describing these applications have been published.

Some of these articles are summarized below.

Richards E. W. and Bhadury J., in 1995, describe a project that was done for Shad
Valley Program, where it was required to assign students to seminars so as to
maximize the satisfaction of the students with their assignments. In the paper, two
models are proposed to determine optimal assignments. The first model is based on
the Capacitated Transportation Problem and a network formulation is proposed to
solve it. The second model is a two phase model whose first phase involves solving a
Bottleneck Capacitated Transportation Problem and the second phase solving a
Capacitated Transportation Problem. A simple search algorithm is proposed -that
solves the second model. Implementation of these models is described and the results

obtained are discussed. Extensions to the two models are also proposed.

Hojati M., in 1996, describes for the given area and its population units, he wish
to divide the area into m district has almost the same population of eligible
voters(within a given toleraﬁce), is contiguous, compact, and has a minimum number
of split population units. This fair representation problem has been a great concern of
the public for decades. The districting problem is also used in the design of sales
territories. Redistricting occurs often because of population shifts or for political

réasons.



For the political districting problem, he propose the following solution

methodology:

a) Use Langrangian relaxation to determine the centres of the districts, then

b) Use the transportation technique to assign population units to centres, and
finally

c) Resolve the splitting problem by solving a sequence of capacitated

transportation problems.

Special solution method have been developed for capacitated transportation

problem in the books which are Dantzig in 1966, and Dantzig and Thapa in 1997.

Although there are some studies about capacitated transportation problem, it is
still a subject to be improved. Hence, we study this model and applied it to real life
problem. Because the data was too large, we developed a solution method with two

phases.

The formulations and the details of the solution methods for transportation model
and capacitated transportation model is described in chapters two and three,
respectively. In the last chapter, a real life problem is modeled with capacitated
transportation model and the two phased solution procedure, which is developed
because the total number of constraints is too large to handle, is described and

applied to the data.



CHAPTER TWO
TRANSPORTATION PROBLEM

Linear programming is a widely used model type that can solve decision problems
with many thousands of variables. The word "programming" is used here in the sense
of "planning". Generally, the feasible values of the decisions are delimited by a set of
constraints that are described by mathematical functions of the decision variables.
The feasible decisions are compared using an objective function of the decision
variables. For a linear program the constraints and the objective function are required

to be linearly related to the variables of the problem.

A linear program (LP) is a problem that can be expressed as follows (the so-called

standard form):

Minimize cx
subject to
Ax

b
0

v

X

where x is the vector of variables to be solved for, A is a matrix, ¢ and b are vectors
of known coefficients. The expression "cx" is called the objective function, and the
equations "Ax=b" are called the constraints. All these entities must have consistent
dimensions, of course, and you can add "transpose" symbols to taste. The matrix A is
generally not square, hence you don't solve an LP by just inverting A: Usually A has
more columns than rows, and Ax=b is therefore quite likely to be under-determined,

leaving great latitude in the choice of x with which to minimize cx.



The objective function of an LP must be a linear function of the decision variables
and each of the LP constraints must be a linear inequality. The assumptions of LP,
which are proportionality, additivity, divisibility and certainty, are summarized

below.

1. Proportionality requires that the contribution of each variable in the objective
function or its usage of the resources be directly proportional to the level or

value of the variable.

2. The assumption of additivity concerns with the effect of conducting activities
jointly. Additivity requires that the objective function be the direct sum of the
individual contributions of the different variables. Similarly, the left side of
each constraint must be the sum of the individual usages of each variable

from the corresponding source.

3. The divisibility assumption is that activity units that can be divided into any
fractional levels, so that non-integer values for the decision variables are
permissible. Frequently, linear programming is still applied when an integer
solution is required. If the solution obtained is non-integer variables are

merely rounded to integer values.

4. The certainty assumption is that all the parameters of the model are known
constants. In real problems, this assumption is seldom satisfied precisely.
Linear programming models usually are formulated to select some future
course of action. Therefore, the parameters used would be based on a
prediction of future conditions, which inevitably introduces some degree of

uncertainty.

The transportation model is a special type of the linear programming model
concerning with selecting routes between manufacturing plants and distribution
warechouses or between regional distribution warehouses and local distribution

outlets.



As its name implies, the transportation method was first formulated as a special
procedure for finding the minimum cost program for distributing homogenous units
of a product from several points of supply (sources) to a number of points of demand

(destinations).

The objective of the typical problem of this type is to minimize the cost of moving
the resource. The simplex method can be used to solve this type of problem, although
it is not the easiest method to use. A special algorithm (a computational procedure)
called the transportation method or distribution method is available for solving
transportation problems. The transportation method greatly simplifies the
computation for a problem that can be expressed in the transportation-method
format. In fact, the transportation method allows us to solve manually a problem that
would require very lengthy calculations or a computer to solve by the simplex
method.( Dilworth, 1993, p. 157)

2.1 Transportation Model

The transportation model is a special class of the linear programming problem. It
deals with the situation in which a commodity is shipped from sources ( €.g., plants)
to destinations (e.g., warehouses). The objective is to determine the amounts of
shipped from each source to each destination that minimize the total shipping cost
while satisfying both the supply limits and the demand requirements. The model
assumes that the shipping cost on a given route is directly proportional td the number

of units shipped on that route.

The first article about the transportation model has been published by the Russian
mathematician L.V. Kantrovich. The standard transportation model and the solution
to it, has been stated by F.L. Hitchcock in 1941. In 1942 Kantrovich, and in 1947
T.C. Koopmans and G.B. Dantzig have contributed to develop the model.



2.1.1 Linear Programming Formulation for the Transportation Model

In transportation problem, there are m sources, supplying a,,a, _a,, of the product
and n destinations, demanding b,,b,,...,b, of the product, respectively. A unit
transportation cost from source i to destination J is ¢;. The objective of the problem
is to determine the x;’s which represent the amount to be transported from source i

to destination j to minimize the total cost.

Transportation model has two important assumptions which are homogeneity and
proportionality. Homogeneity is equality of the product types to be shipped and
proportionality is the contribution of each variable in the objective function or its

usage of the resources is directly proportional to the level or value of the variable.

The general problem is represented by the network in Figure 2.1.

Cyr Xy

C‘#‘; Xv-

Figure 2.1 Graphical representation of general transportation model

The general transportation model is represented by the network in Figure 2.1.
There are m sources and r destinations, each represented by a node. The arcs linking
the sources and destinations represent the routes between the sources and the
destinations. Arc (i) joining source i to destination j carries two pieces of

information; (1) the unit transportation cost from source i to destination j, c,, and (2)

ij)

number of units shipped from source i to destination j, x;. The amount of supply at



source i is a; and the amount of demand at destination j is b;. The objective of the

problem is to determine the unknowns x; that will minimize the total transportation

cost while satisfying all the supply and demand restrictions.

Because of the transportation model is a special type of the linear programming
model, the assumptions of linear programming model, which are defined in the

beginning of this chapter are valid for the transportation model.

Linearity in transportation models implies that both the proportionality and
additivity properties are satisfied. The additivity assumption is that, for each function
the total function value can be obtained by adding the individual contributions from
the respective shipments (or assignments). The divisibility assumptioh is that the
decision variables which are number of units shipped from source i to destination j,
can take non-integer values. The certainty assumption is that, all the parameters of
the model such as objective function coefficients, demand of destination j, supply of

source i-and technological coefficients, are all known.
Decision variables and parameters of the transportation model are given below:
Decision variables:

x; = the number of units shipped from source i to destination j

Parameters:

c; = the unit transportation cost from source i to destination
a, = total supply of source I

b, = total demand of destination j



A transportation model can be formulated as follows :

Objective function: Minz= Z ZC,.J.x,.j 2.1

=1 =l

Supply constraints:

The amount of product is shipped to destinations need to be at most that source’s

supply.

D> x; <a (i=1,2,3,....,m) (2.2)
j=1

Demand constraints:

The amount of product is received by destinations need to be at least that

destination’s capacity.
D> x;2b, (=1,23,...,n) (2.3)

Nonnegativity condition : x,20 i=12,...mj=1,2,...n) (2.4)

In general balanced transportation problem,

m n

zai = ij (2.5)

i=l Jj=1
is satisfied. It means that all the constraints must be binding.

And the transportation problem’s table is shown in Table 2.1.



Table 2.1 A transportation table

1 2 Supply
i X2 A
1 a,
n C1a C1a
X X2 Xan
2 &y
1 Ca Cau
Xl Zaa X
m am
Cul Caa Cun
Demand b, b,

To solve the transportation problem, different methods are developed. Some of

these methods are discussed in the next section.

2.2 Solution Methods for Transportation Models

Since the transportation problem is a special case of linear programming problem,

simplex or revised simplex methods which are used to solve linear programming

problems, can also be used to solve the transportation problem. Because of this, any

software package which involves linear programming or transportation problem

solution algorithms can be used when solving transportation problem.

The simplex algorithm can be improved to make the solution of transportation

problem much easier, while improving the simplex algorithm the general procedure

of simplex must be followed.
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The algorithm starts with an initial basic solution and seeks the optimal solution
by improving the basic solution in each step. When a better solution can not be
found, the current solution is defined as the final or another words the optimal

solution.

Various methods have been developed to obtain the initial basic feasible solution
and to test whether a better solution exists in each step for the transportation

problem.

The transportation problem which is a special class of the linear programming
problem, can be solved by its own solution methods. The transportation method is an
iterative process. It begins with a feasible solution, then improves it every iteration
until it can be improved no further. The objective function for a tramsportation
problem can be expressed in terms of cost or profit, and the algorithm can be worked
to reduce costs to a minimum value or to increase profit to a maximum. The costs
considered in a minimization problem are not limited ot transportation costs, so the
method has more versatility than the name implies. (Dilworth, 1993, p. 157) The

steps of this method are shown in below.

2.2.1 Properties of the Initial Basic Solution

A solution is said to be a feasible solution if it satisfies the equations (2.2), (2.3)
and (2.4). Satisfying (2.2) and (2.3) yields to satisfying (2.5). In order to be feasible,
a solution must have a balanced transportation model. But the unbalanced model can

also be solved.

A solution can be a basic solution if, number of assignment is equal to (m + n — 1)
and the assigned cell don’t form a loop in either direction. (m + n - 1) cells are

assigned the solution set, which consists of (m + n - 1) variables X;s

is called the

basic. The assigned cells don’t form a loop in either direction

Some examples of loops and nonloops are illustrated in Figure 2.2.
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2 3 1 2 3 1 2 3 4 5 6
1 » 1 - 1 T
- ™ 2 2 0——.——+ -— o1
—1 » J *
(@ (b) ©)

Figure 2.2 Examples of loops and nonloops: (a) not a loop; (b) loop, property

is violated; (c) not a loop.
2.2.2 Solution Steps

There are various methods for solving the transportation model. But, to find the
optimal solution, all of these methods need a “initial basic solution”. So there are two

steps for solving the model:

1. Finding an initial basic solution,

2. Finding the optimal solution.
First, we begin with explaining the initial basic solution.
2.2.3 Methods of Finding the Feasible Initial Basic Solution

Various techniques have been developed to find the feasible starting basic

solution, with satisfying both the requirements of being feasible and being basic.

Northwest Corner Method, Least-cost Method, Vogel’s Approximation Method,
and Russel’s Approximation Method are the four widely used methods for obtaining
the initial basic solutiori for the transportation problem. The simplest one of these
methods is Northwest Corner Method.

The difference between among the three method is “quality” of the starting basic
solution they produce, in the sense that a better starting solution yields a smaller

objective value. In general, the Vogel method yields the best starting basic solution,
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and the northwest-corner method yields the worst. The trade-off is that the nortwest-

corner method involves the least computations.(Taha, 1997, p. 181)

We are now ready to discuss the Northwest Corner Method that can be used to

find a basic feasible solution for a balanced transportation probiem.

If a set of values for the X; ’s satisfies all but one of the constraints of a balanced

transportation problem, the values for the x;’s will automatically satisfy the other

constraint.
e Northwest-Corner Method

In solving any linear programming problem, we should, in general, expect the
total number of iterations required to depend on how close the value of the objective
Sunction for the first feasible solution is to the actual minimum. Since the

. nortwest_corner rule does not consider the size of the c,

;» we cannot expect the

corresponding value of the objective function to be close to the minimum.(Gass,
1975, p. 267)

In this method, first assignment is made to the cell in the northwest corner of the
table. Since a source will be consumed or a destination will be satisfied in each
iteration, a row or column is crossed out. In each iteration, assignment is made to the
cell in the northwest corner of the resulting table of the previous iteration. The

iterations stop when all assignments are made.

1. Select the cell in the northwest corner of the table.

2. Assign the possible maximum value to this cell (x; =min[q;,b 1D

Special case: If a;=0or b; =0(degenerate), assign &, which stands for a very

very small value.
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3. Cross out the row or column with zero supply or demand to indicate that no
further assignments can be made in that row or column. If both the row and
the column net to zero simultaneously, cross out one only, and leave a zero
supply (demand) in the uncrossed out row (column).

4. Subtract the assigned value from the supply and the demand values.

5. If all of the cells are crossed out, then stop; else go back to 1.

Although the Northwest Corner algorithm is easy to apply, it is not the best

algorithm, because the ¢, values are not taken in consideration. Since the rest of the
methods make use of these c; values, they provide a better initial basic solution

which reduces the number of steps needed to obtain the optimal solution. Detailed
descriptions of these method’s algorithms can be found in every operations research
related book such as Dantzig(1966), Wagner(1969), Harvey(1979),
Lieberman(1990), Taha(1997), Winston(1994) etc. |

Of the three methods we have discussed for finding a basic feasible solution, the
northwest-corner method requires the least effort and Vogel’s method requires the
most efforts. Extensive research (Glover et al., 1974) has shown, however, that when
Vogel’s method is used to find an initial basic feasible solution, it usually takes
substantially fewer pivots than if the northwest-corner method or the minimum cost
method had been used. For this reason, the nortwest-corner and the minimum cost

method are rarely used to find a basic feasible solution to a large. transportation

problem.(Winston, 1991, p. 344).
2.2.4 Methods for Obtaining the Optimal Solution

When the initial basic solution is found by any of these methods, to test whether
this solution optimal or not, each nonbasic variable must be included in the solution
and the total cost must be compared. If the total cost decreases, a better solution is
found. On the other hand, If it increases, the nonbasic variables should not be a part

of the solution. In order to find the minimum value of the objective function the
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procedure which is described above should be -applied systematically. The two main

methods to obtain optimal solution:

a. Stepping-Stone Method, and
b. MODI Method.

Stepping-Stone Method was developed by W.W.Cooper and A. Charnes in 1953,
the Modified Distribution Method was developed by R.O. Ferguson in 1955 and
Vogel’s Approximation method was developed by W.R.Vogel and N.V.Reinfeld in
the years of 1956-57.

To develop an optimal solution for a transportation problem means evaluating
each unused cell to determine whether a shift into it is advantageous from a total cost
standpoint. If it is, the shift is made, and the process is repeated. When all cells have

been evaluated and appropriate shifts made, the problem is solved.

Although the general procedures, are the same for both of these methods they
differ in the process of determining the entering and leaving variables. The stepping
stone method uses the costs to determine the entering and leaving variables, which
makes the decision process easy to explain, whereas the MODI method uses the dual
variables to make his decision. But this difference doesn’t affect the economic
interpretations of the results of these two methods. Both of these methods will be
explained below, however, simplex and MODI method will be used in the following

chapters. The solution procedures of these two methods are described below.
a) Stepping-Stone Method

This method systematizes the procedure of finding an empty cell in the
transportation table worth making an assignment, and if such a cell is found,
transferring the value of an assigned cell to this cell by keeping the feasibility

conditions satisfied.
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The method has two main steps. The first one, determines if a cell is worth
making an assignment; or, in other words, the entering variable. The second one
-explains how the assignment will be done and how much will be assigned, which

determines the leaving variable.
While determining the entering variable;

Whether a cell is worth making an assignment or not, can be decided by the
assignment’s effect on the total cost. If the total cost decreases, then the cell is
assigned a value. To investigate the effect of a cell to the total cost, one unit is

assumed to be assigned to the cell.

The cost values of the assigned cells are called “stones™” and the empty cells are
called “water”. The cell to be investigated is marked with the “+” sign. The objective
is to loop back to the starting cell by only stepping on the “stone” cells. But, after
each step, a 90 degree left or right turn must be made. Such a move is called
“rectilinear”. While stepping, the starting cell is marked with a “+”, and the
following cells are marked with “-” and “+”, consecutively. The cost values of the
cells on the loop are summed, taking the signs of the cells into consideration, and the
value of the starting cell is found. For each unassigned cell, one and only one loop

exists. In a loop, there’s no unassigned cell, other than the starting cell.

In this method, there is no need to investigate all of the unassigned cells. The first
unassigned cell with the negative result can be chosen as the entering variable.
However, to choose the cell with the maximum absolute negative value as the
entering variable decreases the number of the iterations in order to find the optimal

solution.
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While determining the leaving variable;

After determining the entering variable, the leaving variable is determined and the

assigned value in this cell is shifted to the cell of the entering variable.

It is known that the number of assigned cells, or basic variables, must be equal to
(m + n - 1) in a basic solution. When a new cell is assigned, the number of basic
variables becomes (m + n), and the solution is, no longer, a basic solution. But, the
assigned value is shifted from a pre-assigned cell in a way that does not violate the

feasibility conditions, and the number of basic variables stays as (m + n - 1).

The leaving variable is chosen as the cell with the minimum value among the “-”
signed cells on the loop, which is formed by the stepping stone method in the
previous step. The assigned value of this cell is subtracted from the values of the “-”
signed cells and added to the values of the “+” signed cells. This way, a new variable

is added to the basic solution without violating the feasibility conditions.

The steps of stepping-stone method which is the first way of the methods to

determine optimal solution are described below.

A. Choose the entering variable by examining the unassigned cells on the basic

solution table obtained in the last step

1. Pick an unassigned cell

2. By stepping on the assigned cells, form a loop. After each step, turn left or
right.

3. Starting from the chosen cell, sign each cell on the loop with “+” and “-”,
consecutively.

4. Sum the cost values of the cells on the loop with their signs.

5. If the sum is negative, choose this cell as the entering variable; else go back to

step 1.
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6. If the sum is positive for all the unassigned cells, then the optimum solution is

found; stop.
B. Determine the leaving variable and make the assignment.

1. Take the loop for the entering variable with its signs into consideration.
2. Find the “-” signed cell on the loop with the minimum value. This is the

leaving variable.

Special case: If there are two or more cells with the minimum value, to prevent

degeneration, add & to the values of the cells, except the one with the maximum c;

value.

3. Subtract the minimum assigned value from the values of the “+” signed cells,

€ 9

and add the value to the values of the “-” signed cells.

4. Calculate the total cost.
C. For a better basic solution go back to A.

As a brief summary, this determines whether the initial solution found by the least
cost rule is optimum. We know from the simplex method that a given solution
minimizes the objective function only if the relative cost coefficients of the nonbasic
variables (net change in z per unit increase in the nonbasic variables) are greater

than or equal to zero.

Similar to the inner product rule used in the simplex method for calculating the

relative costs, there is a simple way to calculate all the c; coefficients

directly.(Ravindran et al., 1987, p. 83)
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b) MODI Method

There are two disadvantages of the Stepping-Stone Method. The first of these two
is the criterion which is used to decide which nonbasic variable will enter the basic
solution. In the Stepping-Stone Method, it is enough for a variable to result to a
negative value in order to be considered as the entering variable. Because this
method takes the first cell with negative value as the entering variable, another cell
with a greater decreasing effect on the total cost can be discarded. But, choosing the
cell with the absolute negative value as the entering variable decreases the number of
iterations to obtain the optimal value. This situation, which is ignored in the

Stepping-stone method, has taken into consideration in the MODI Method.

The second disadvantage of the Stepping-Stone Method is the necessity to form a
loop for each of the empty cells. Although forming loops is respectively easy for
small problems, it becomes quite hard when it comes to problems with large number
of variables, whereas in the MODI Method, only one loop is formed for the entering

variable.
i. Theoretical Basis of the MODI Method

Theorem 1. Assume that u ,u,,...,u, and v,,v,,...,v, arbitrarily constants;

m
according to this every obtained solution for a (m.n) transportation problem with q,,
b; side constraints. And ¢; cost values, is a solution to the transportation problem

with the same side constraints and ¢; —u, —v; cost values. The reverse case is also

true. Furthermore, the optimal solution for one of the problems is also optimal for the

other.

Proof : Let x; be a solution set for the first problem. According to this the total

transportation cost for any feasible basic solution becomes
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TC, = Z inicif
i i

On the other hand, the total cost for the same solution set for the second problem

is

6,3 Tnley-u-v)-% gxycy-zizxg)ui-z[gxg)vj

i\ J J

According to (2.2) the term in the first parenthesis is equal to a,; and according to

(2.3) the term in the second parenthesis is equal to b, . By substituting these values is

TC, =Y. Zx,.jcg.—(Zaiui-:-ijij:Z Y xc;~K=TC, —K
T 7 i 7 7

obtained. Since a;,u;,v;,b; are all constants this expression will be equal to a

constant K. Subtracting a constant from the objective function does not change the
solution set which minimizes the function; this only changes the value of the

function. Consequently, any set of x; which is a solution for the first problem with
c; costs, is also a solution for the second problem with the ¢; —u, —v; costs. An

optimal solution for one problem is also optimal for the other.

With the help of Theorem 1, constants can be added to or subtracted from the cost
matrix’s rows or columns without changing the optimal solution set. This way, it is

possible to make the cost values of the assigned cells to zero.
Theorem 2 : Let X be a feasible basic solution for a transportation problem :

1. If ¢; —u, —v, values for the assigned cells are zero and nonnegative for the

other cells then X is the optimal solution set.

2. If ¢; —u, —v, values for the assigned cells are zero but negative for at least

one of the other cells, then X is not the optimal solution set.
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Proof : Duality theorem is used to prove this theorem. It can also be proved by

making use of the simplex algorithm.
ii. Application of the Method

Application of the method is also mainly based on two steps. The first of this steps
is to determine which of the empty cells is to be assigned, and the second one is to
determine the leaving variable and the necessary shift of assignments. The MODI
method differs from the stepping stone method by the application of the first step.

While determining the entering variable;

Whether a cell is worth making an assignment or not, can be decided by the
assignment’s effect on the total cost. If the total cost decreases, then the cell is
assigned a value. In the MODI method, the entering variable is chosen among the
empty cells worth assigning with the most decreasing effect on the total cost. This is

done with the help of Theorem 1 and Theorem 2. »; and v, are subtracted from the

cost matrix’s rows and columns, respectively, in order to make the cost values of the

assign cells of the starting solution table zero. If none of the ¢, —u, —v ; values of

the unassigned cells are negative, then the optimal solution is obtained. The problem,

here, is determination of the ; and v;values. Since one u; for each row and one v,
for each column should be determined the total number of #, and v; is (m + n).

Since there are (m + n - 1 ) basic variables, according to Theorem 2, to calculate

(m+n)u; and v;, (m + n - 1) equations can be formed. In order to find the values of
(m + n) constants an . arbitrarily value (usually 0) is given to «, or v ; and the

remaining (m + n - 1) variables are calculated like above. The general approach is to

assign zero to the values of %, or v, which belongs to the row or column of the

starting solution table with the most assigned cells.
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While determining leaving variable;

After determining the enter variable the leaving variable must be determined and
the assignment of this cell must be shifted to the entering cell. The very same
procedure of the stepping stone method is used in the MODI method.

The steps of MODI method which is one of the methods to determine the optimal

solution are described below.

A. Determine the entering variable by evaluating the unassigned cells in the last

obtained feasible basic solution table.

1. Determine the values of »; and v; for each row and column in the table.

a. Make the value of %, or v; of the row or column with the most assigned

cells, equal to zero.

b. Use the calculated #; or v; to calculate the unknown u; or v, for each
assigned cell, which satisfies the equation ¢; ~u, ~v; = 0. Repeat this

until all values of U and V are calculated.

2. For each empty cell calculate d; =c; —u; —v; and write it to the upper right

corner of the cell.

3. Ifall d; are nonnegative then the optimal solution is obtained, stop. If at least
one negative d; exist the current solution is not optimal; choose the cell with

the absolute maximum d; among the negative ones as the entering variable.

B. Determine the leaving variable and necessary assignments

1. Form the loop for the entering cell and sign the cells on the loop.
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a. Starting from the entering cell and using only the assigned cells form a
loop. Each line on the loop must be either vertical of horizontal. After
each line a 90 degree turn must be made.

b. Starting from the entering cell, sign each cell on the loop with “+” and “-

” consecutively.

2. Choose the cell with the minimum assignment value among the cells sign with

66

, as the leaving variable.

Special Case: If there are two or more assignments with the same minimum value,

add ¢ to these cells, except the one which has the max c; value.

3. Subtract the minimum assignment value from the “-” signed cells’
assignments; and add this value to the “+” signed cells’ assignments.
4. Calculate the total cost.

C. For a better basic solution go to step A.

After illustrating the solution methods which are the methods to finding optimal

solution, we will explain some special cases of transportation problem.
2.3 Special Cases of Transportation Problems

Degeneracy exists-in a transportation problem when the number of filled cells is
less than the number of rows plus the number of columns minus one (m + n — 1).
Degeneracy may be observed during the initial allocation when the first entry in a
row or column satisfies both the row and column requirements. Degeneracy requires
some adjustment in the matrix to evaluate the solution achieved. The form of this
adjustment involves inserting some value in an empty cell so a closed path can be
developed to evaluate other empty cells. This value may be thought of as an

infinitely small amount, having no direct bearing on the cost of the solution.
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2.3.1 Degeneration

Degeneration in a transportation problem occurs when the solution fails to be a
basic solution, during the process of finding either the feasible starting basic solution
or the optimal solution. Degeneration may also occur when any of the sources is

equal to any of the demand.

for I{l,2,...,m} and J{1,2,...,n} , Zai = ij

iel jeJ

A basic solution has to have (m + n — 1) basic variables which don’t form a loop.
If the number of basic variables is different from (m + n — 1) or a loop can be formed,
then degeneration occurs. Since there are not enough assigned cells, for such a case,

it is impossible to

1. Form the loops for evaluating the empty cells in the stepping stone method,

2. Calculate the u;and v, values in the MODI method

Since none of the methods describe above lets more than (m + n — 1) basic
variable, the important case of degeneration is the case with less than (m + n - 1)

basic variables.
a. Degeneration during the process of finding the starting solution

According to the common second step of the least cost method, northwest corner
method and VAM, the chosen cell must be assigned a value until the demand is fully
satisfied or the source is completely consumed. In other words, the cell (i,/) can be

assigned the value x; = min(a,.,bj). But ifa, =b; then degeneration occurs. Because
by assigning x, =a, =b; to cell (i;)) the i™ row for the source and j column for the

demand must be crossed out. Since there will be less than (m + n - 1) basic variables
in the resulting solution table, this is a case of degeneration. All of the method above

have prevented this case of degeneration.
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b. Degeneration during the process of finding the optimal solution

In both of the MODI and Stepping Stone Methods, to make a variable enter the
solution, the related cell is taken as a starting point and a loop is formed. The cells
which form the loop are marked “+” and “-”, consecutively. The minimum value
among “-” signed cells is subtracted from the values of the other cells with “-” signs.

66 93

If two or more cells wit signs have a minimum value, this is the case of
degeneration. Because, when the assignment is subtracted from the cells with “-”
signs, the assignment with the minimum value is equal to 0. Although two or more
variables leave the basis, only one variable enter the basis. Because of having less

than (m +n—1) variables, degeneration occurs.
2.3.2 Unbalanced Transportation Model

When the total source is equal to the total demand, the transportation model is
called general transportation model or balanced transportation model. But in real life
this is not generally, the case. The methods described above, are useful, only, for the
balanced models. For this reason, an unbalanced problem can only be solved after it
has been turned into a balanced one. This can be accomplished by adding a dummy
source or destination. A model is unbalanced when the total source is different form

the total demand.

Probably the most usual circumstance is for the availability capacity to exceed
demand. Many companies try to maintain extra inventory or service capacity to
ensure flexibility and prompt response to demand. Usually the choice of the supply
location to be underutilized in such circumstances is an issue that affects only the
operations function. Operations managers can obtain useful guidance in reaching
capacity underutilization decisions by use of the transportation method.( Dilworth,
1979, p.167)
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a. Total source is greater than the total demand

When the total source is greater than the total demand, a dummy destination is
added to the problem, and the difference between these values is shipped to this

destination.

iai > Zn:bj
i=1 =1
by = Zai "ij

i=1 j=l

Since the destination is dummy, shipping means the assigned source is held and
that the cost is zero. After the dummy destination is added to the transportation table
with zero cost and demand which is equal to the surplus, the problem can be solved

with the methods above.
b. Total demand is greater than the total source

When the total demand is greater than the total source, although the total source is

completely shipped, the total demand will not be fully satisfied.

iai < fbj
=

i=1

n m
Ay = ij - Zai
=l

i=1

If this is the case, the problem can be balanced by adding a dummy source. The
shipping cost is zero, again. The problem is now balanced and can be solved with the

methods above.
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2.3.3 Constrained Shipping

Up to now, in all the transportation models it is assumed that shipment can be
made to all of the destinations from all of the sources. But, this may not always be
the case. The reason for this, can either be the expensive shippiﬁg costs or the
impossibility of connecting all nodes, i.e., the shipping from source i to destination j

is prohibited for those reasons, x; must be equal to zero in the result. For this reason,
c; which is placed the (/) cell is given M value which stands for a very very large

number. So that, even one unit of the assignments of that cell’s shipping cost very -

high, this cell’s assignment is prevented.
2.3.4 Certain Shipping

If certain shipping wants to be transport, because of the many reasons such as the

close destination between the source and the destination, technological requirement

i.e., then ¢; value is taken zero related with the source and the demand.

2.3.5 Alternative Optimal Solution

The equivalence of d; =0 means that to assigning (i,/) cell is not change the
optimal transportation cost. However, in the optimal solution table with doesn’t exist

—d, value, if one or more nonbasic variable’s d,, value is equal to zero, there are

other optimal solution with the same total transportation cost.
2.3.6 Maximization in the Transportation Problem

Suppose that the objective function of a transportation method problem were
written in terms of profit rather than cost. Optimization of such a problem would
require the maximization of the objective function. The only change in the
transportation algorithm is to move material into the unoccupied cell with the largest

positive value on each iteration. Cells in a dummy row or column represent material
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that actually will not be shipped or sold, so they still contribute zero to the objective

function and should have 0’s in their upper corner blocks.

“Nothing else should be changed in the procedure that was outlined previously. A
closed path is evaluated with a plus sign in the unoccupied cell where the path
begins, just as before. The amount that should be shifted in a path is still the smallest
amount in the negative corners.”(Dilworth, 1993, p.167)

The only important difference between the procedure for solving a
minimization problem and for a maximization problem lies in the rule for
improvement based on the empty cell evaluations. In maximization, the sign rule is
reversed and an optimal solution is obtained when the cell evaluations give all
negative values; a positive sign indicates additional benefit can be obtained by
transferring units into the corresponding cell location. As in minimization, the cell
that is introduced into the solution is the one that offers the greatest benefit per
unit.(Tersine, 1985, p.136).

2.4 Sensitivity Analysis for Transportation Problem

Sensitivity analysis is an effect of parameters on the optimal solution. Up to now,
we explained how the optimal solution is obtained for the transportation problem
with the constant data. Biit it is normal that the unit shipping cost , amount of source
and, amount of demands changes in the time. Changing these variables can change
the optimal solution. Sensitivity analysis helps us to obtain a better interpretation and
to determine how the optimal solution changes related to the differences on the

parameters. Two aspects of sensitivity analysis for the transportation problems are :

eSensitivity analysis of the cost

e Sensitivity analysis of supply and demand

In this section, the analysis that determines the range of a given parameter for

which the solution, as originally stated, remains optimal will be discussed.



28

2.4.1 Sensitivity Analysis of the Cost

When the unit cost of the basic and nonbasic variables change, optimal solution
can be affected by these variations. Sensitivity analysis investigates how much

optimal solution is influenced by the variations on the basic and nonbasic variables.
a. To change the objective function coefficient of a nonbasic variable

The values of u; and v, don’t change. If the unit transportation cost changes, x;

which is affected by this change, is the test amount of nonbasic variable. As long as

¢; —u; —v; 2 0, the optimum solution remains the same. It means each ¢; value is at
least, equal to u, +v;. Since we are not changing c;B™', the u;’s and the v,’s
remain unchanged. In objective coefficient row, only the coefficient of x; will

change. Thus, as long as the coefficient of x; in the optimal row 0 is nonpositive, the

current basis remains optimal.
b. To change the objective function coefficient of a basic variable

To determine the sensitivity of the cost coefficient of the basic variables;

When we are changing c,B~, the coefficient of each nonbasic variable in
objective function row may change, and to determine whether the current basis
remains optimal, the new ;’s and v;’s must be found and these values are used to

price out all nonbasic variables. As long as all nonbasic variables price out

nonpositive, the current basis remains optimal.
2.4.2 Sensitivity Analysis on the Supply and Demand
In the case of increasing or decreasing the amounts of supply and demand,

sensitivity analysis is used to determine whether the current basis remains optimal.

This change is observed in the balanced transportation problem.
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The #,’s and v;’s may be thought of as the negative of each constraint’s shadow

prices. If the increase in the amount of production or the amount of demand are

shown as Aag,and Ab;, respectively, then the value of objective function is equal to

New z value = Z Zcijx,.j + Aa, (1) + Abj(vj)
=t =l
1. If x; is abasic variable in the optimal solution, A is added to x;.
2. If x, is a nonbasic variable in the optimal solution, the loop is found which

involves x; and some of the basic variables is found. An odd cell is found in

the loop that is in row i. Starting from this odd cell, A is added and

subtracted from the values of the cells forming the loop, consecutively.



CHAPTER THREE
CAPACITATED TRANSPORTATION MODEL

Consider a linear optimization model having the form of a transportation model

with the addition of upper bound constraints x; <u; on the amounts to be shipped

over the various routes. A model of this form is said to be a capacitated
transportation model. Such models occur frequently in applications and it is
important to be able to efficiently handle the capacity constraints which may be far

more numerous than the ordinary constraints.

A capacitated transportation model can be analyzed by a modification of the
transportation algorithm analogous to the modification of the simplex algorithm for
upper bound constraints or by the out of kilter algorithm for capacitated network
models. Discussions of these algorithms may be found in-the books by Spivey and
Thrall (1970) and Poots and Oliver(1972), respectively (Harvey, 1979, pp. 205,
206).

3.1 Linear Programming Formulation for the Capacitated Transportation
Model

The capacitated transportation model satisfies all of the assumptions of the
classical transportation model, and consequently the assumptions of the linear

programming model. The general model is represented by the network in Figure 3.1.
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Figure 3.1 Graphical representation of a capacitated transportation model

The general capacitated transportation model is represented by the network in

Figure 3.1. A unit transportation cost from source / to destination j is denoted by c;.
The objective of the model is to determine the x,’s which represent the number of
units shipped from source i to destination j, total supply of source i is denoted by q,,
total demand of destination j is denoted by b,, the u, values, used in the upper

bound constraints, denote the maximum amount which can be shipped  from source i
to destination j. These upper bound constraints are the only difference between

capacitated and classical transportation models.

The decision variables, parameters, model and the constraints for a capacitated

transportation model can be described as follows :
Decision variables:

x; = the number of units shipped from source i to destination j

Parameters:

i=1,..., m:sources
Jj=1,..., n: destinations

¢, = the unit transportation cost from source i to desination j
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u, = the maximum amount which can be shipped from source i to destination j

a, = total supply of source I

b, = total demand of destination j

m n

Objective function : Minz= ,le jzl:cijxij 3.2)
Supply constraints : ,Z::x” =gq, (i=1,2,3,...,m) (3.3)
Demand constraints: g:x,j = bj G=1,2,3,..,n) (3.4
Capacity constraints: x; Suy =1,2,...,mj=12,...,n) (3.5)
Nonnegativity condition: x;, 20  (i=1,2,...,m;j=1,2,...,n) (3.6)

The table of the capacitated transportation problem is shown in Table 3.1.
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Table 3.1 A capacitated transportation table

1 2 « e n Supply
X Uy X12 Uy, Xin U,
1 ... a,
i ¢y, Cln
X3 Uy X2 Uy Xap Uy,
2 . e e a,
€y Cyy Con
'xml uml 'me umZ xmn umn
m . e o
am
Cmi Cra Coin
Demand b, b, . b,

3.2 Solution of Capacitated Transportation Problem

As in the classical transportation problem, an initial basic solution is found and

then the solution is improved to obtain the optimal solution.
« 3.2.1 Finding an Initial Basic Feasible Solution

While simple rules have been devised for finding an initial solution in an
uncapacitated transportation problem, it does not appear possible to construct such a

rule in the capacitated case.

First, the model is checked to determine whether it is balanced or not. If it is not

balanced, a dummy row or column is added. After this modification, the solution

phase begins.
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1. The cell with the minimum cost in the table is selected and assigned the
maximum value possible. If this assignment fully satisfies either the row’s
supply or the column’s demand then the variable is called a basic variable.
Otherwise if the assigned value is limited with the upper bound value of the
cell then it is called a bounded variable. This step is repeated until there exists

no possible assignment.

2. Next, the table is checked to determine if all of the demands and supplies are
fully satisfied. If this is not the case, then

a. Two cells, u, and v,, with suitable assignment are added to the row
and the column which are not fully satisfied.

b. A new table is formed, in which #, and v, have costs equal to 1, and
the others have costs equal to 0.

c. The assigned values of #, and v, are then moved to the appropriate
cells.

d. A new table, in which the costs are equal to the first table, is formed.

This new table is a basic feasible solution.

We will show how the solution steps, described above are adapted efficiently to
the capacitated transportation problem by solving a simple numerical example given
in Table 3.3 below.



Table 3.3 The capacitated transportation problem

1 2 3 4 Supply
Uy = 12 i, =13 Uiz = 5 ¥y = 20
1 25
g = 14 tigy =20 1y =10 tig =9
2 25
cn =8 ¢y =2 cp=7 ¢y =6
u31 = 18 u32 = 4 333 = 25 334 = ?
3 50
C31=9 632—3 C33=4 T34 =8
Demand 15 20 30 35

First, the cell with the minimum ¢, in Table 3.4 is selected which is c,, with a

value of 2. Then the maximum possible value is assigned to this cell, which sets x,,=

20. If the size of this assignment is finally limited by a row or column equation, it is

considered as a basic variable and make no more assignments in that row or column.

If, on the other hand, the value of the assignment is limited by its upper bound

restriction, then the variable is considered as a non-basic variable at its upper bound

and a bar is placed above the variable. In case of a tie between the two types of

limitations, the row or column is always considered as limiting and the variable is

taken as basic. Then the same procedure is repeated with the remaining cells.

Applied to Table 3.4, this routine yields the following assignments, in order :

x,,= 5(basic), x,,= 20(basic), x,,= 20(basic), x,,= S(basic), x,, = 15(basic),
X5, = 25(bounded), x,;,= 7(bounded).




Table 3.4 The solution table

12 1315 51| 20 20
10 5 6 7
1420 20 10 | S 3
8 2 7 6
15 18 4| 25 25 | 7 7
9 3 4 8

15 20 30

-1 1 1

S0
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Since the third row and fourth column still have 3 units unassigned, the solution is

not feasible. Extra “short” cells are added to the array: an i = 0 row and j = 0 column,

and c¢;= 0 replaces the original ¢;, and c;=1 in the shortage cells. This is

summarized in Table 3.5.

Note that c¢;,= ¢,, = 1 must equal u, and v, respectively, since the slack rows

and columns can be regarded as having prices u, and v, equal to zero.

Proceeding now with minimizing the sum of the artificial variables, in particular,

X4, + X5, a feasible solution can be achieved with only a single iteration, as given by

Table 3.6.
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Table 3.5 The capacitated transportation table with shortage cells

! 3-8, :
Y
12 13| 5 5020 20
25 -1
¢; =0 0 0 0
14 | 20-8, 20 10 | 5+8, 9
25 -1
0 0 0 0
| 3-8, 15 18 |6, 4|25 25| 7 7
' 50 1
: 1 0 0 0
15 20 30 35 U
-1 1 1 1 vy

To understand Table 3.6, The optimality conditions must be known.
3.2.2 Finding Optimal Solution
After achieving the initial basic feasible solution, this is checked to see if it is the

optimal solution, as in the classical transportation problem. The optimality conditions

are as follows:

' —
O<xj<u;, = d,=0
x‘fj=0 = dijZO
Xy =uy = d,jSO

where,

x; = the value of the x; which is the number of units shipped from source i to

destination j

u,; = the maximum amount can be shipped from source i to destination j
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; = the relative cost factor which is equal to ¢; —u, - v, .

If the initial basic feasible solution does not satisfy the optimality conditions, a
closed loop is constructed starting with the cell which violates the optimality
condition. Each corner of the resulting loop, must coincide with a current basic

variable. Next, we assign the amount 6 to the cell with violates the optimality.

1. If this cell is a bounded one, 8 is alternately added to or substracted from the
value of cells, starting with substracting 6 from the value of this cell.
2. If this-cell is a nonbasic one, 8 is alternately added to or substracted from the

value of cells, starting with adding 6 to the value of this cell.

Maximum value of 0 is determined based on three conditions;

1. The capacity values of the cells is not violated,
2. The supply limits and the demand requirements remain satisfied,

3. No negative assignments are allowed through any of the routes.

Table 3.6 Basic feasible solution

12 13| s 5 | 20 20
25 0

10 5 6 7

14 | 17 20 10 9
8 25 -1

8 2 7 6
15 18 | 3 4 | 25 25 | 7 7 ,
50 o0

9 3 4 8
15 20 30 35 X,
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The original cost factors, ¢;, are now restored. However, this solution is not
optimal, because x,, is a non-basic variable at its upper bound, whose relative cost
factor should be nonpositive, while in reality, ¢,, =¢,, —#, —v, =8 - 0 — 7 = +1.
Thus, it pays to decrease x,, from its upper bound value, keeping the other non-basic

variables fixed and adjusting the basic variables.

Table 3.7 First iteration in solving the problem

12 13 | 5 5 | 20 20
25 0

10 5 6 7

14 | 17-8 20 10 | 8+9 9
25 -1

8 2 7 6

15 18 | 3+0 4 25 25 | 7-¢ 7
50 0

9 3 4 8
15 20 30 35 i

9 3 6 7 V5

The greatest decrease, 6, that maintains feasibility is 6 = 1, and at this value it is

stopped by the upper bounding restriction,

X, =8+ 0<9.
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Table 3.8 Optimal solution
12 13 | § 5 20 20
25 -1
10 5 6 7
14 | 16 20 10 |9 9
23 -1
8 2 7 6
15 18 | 4 4 | 25 25 | 6 7
=11 0
9 3 4 8
15 20 30 35 x,
9 3 7 8 V;

The new array, given in Table 3.6, is optimal. Optimal assignments are
x,; =5 (basic), x,, =20 (basic), x,, =16(basic), x,, =9 (bounded), x,, =15(basic),
X5, = 4(basic), x,; =25 (bounded), x,, = 6(basic). Optimum value of the objective

function is 551.

3.3 Special Cases in Capacitated Transportation Problem

Degeneracy exist in a a capacitated transportation problem when the number of
filled cells is less than the number of rows plus the number of columns minus one
(m + n —1). Degeneracy may be observed during the initial allocation when the first
assignment in a row or column satisfies both the row and column requirements.
Degeneracy requires some adjustment in the matrix to evaluate the solution achieved.
The form of this adjustment involves inserting some value in an empty cell so a
closed path can be developed to evaluate other empty cells. This value may be
thought of as an infinitely small amount, having no direct bearing on the cost of the

solution.
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The special cases, which are degeneration, unbalanced transportation' problem,
certain shipping etc. for the capaciated and the classical transportation problems, and

their standardization procedures are the same.
3.4 Sensitivity Analysis for Capacitated Transportation Problem

Sensitivity analysis is important for several reasons. In many applications, the
values of parameters may change. If a parameter changes, sensitivity anlaysis often
makes it unnecessary to solve the problem again. Knowledge of sensitivity analysis
often enables the analyst to determine from the original solution how changes in
parameters change its optimal solution. Two aspects of sensitivity analysis for the

capacitated transportation problems are:

a. Sensitivity analysis of the cost

b. Sensitivity analysis of supply and demand

Sensitivity analysis will be applied to the optimal solution which is given in Table
3.8 of the problem.

3.4.1 Sensitivity Analysis of the Cost

When the unit cost of either the basic or the nonbasic variables change, optimal
solution can be affected. Sensitivity analysis investigates how much the optimal
solution is influenced by these variations. To determine the effect of changing the
model’s parameters on the solution, sensitivity analysis can be carried out. The

sensitivity anlaysis process is described below using the solution of the example.

a) Changing the objective function coefficient of a nonbasic variable

Since we are not changing c,B™', the u,’s and the v ,’s remain unchanged. In

objective coefficient row, only the coefficient of x; will change. Thus, as long as the
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coefficient of x, in the optimal row 0 is nonpositive, the current basis remains
optimal. The value of ¢; —u, —v, for the nonbasic variable x, is used as the test

criterion, to check if the optimal solution remains the same.

If the nonbasic variable x, is not bounded then the optimum solution remains the

same as long as ¢, —u, —v; 20. When ¢, takes a value less than #, +v,, d,

becomes negative and the optimality conditions are violated.

If the nonbasic variable is bounded, then the optimum solution does not change as

long as ¢, —u, —v, <0. When ¢; takes a value greater than u, +v,, d; becomes

positive and the optimality conditions are violated.

In the optimal solution of the example, x,,x,,,X;,%,;,X,, are nonbasic

variables. To keep the optimal solution unchanged, the intervals of A are, relatively,

as follows:

d,=10+A-(-1)-920 = A2-2 =¢, 28
d,=5+A—(-1)-320 = A2-3 =c,22
dy =8+A—-(-1)-920 = A20 ¢, >8
dy,=7+A-(-1)-720 = A2-1 =cy26

Since x,, and x,, are bounded variables, to keep the optimal solution unchanged,

the intervals of A are, relatively, as follows:

d,, =6+A-(-1)-8<0 = A<l =, <7

d,=4+A-0-7<0 = A<3 =c, <7
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b) Changing the objective function coefficient of a basic variable

To determine the sensitivity of the cost coefficient of the basic variables;

When we are changing c,B~', the coefficient of each nonbasic variable in
objective function row may change, and to determine whether the current basis
remains optimal, the new u,’s and v;’s must be calculated and these values are used

to price out all nonbasic variables and bounded variables. As long as all d, values

for the nonbasic variables are positive and d,, values for the bounded variables are

negative, the current basis remains optimal.

“1If ¢,, changes from 6 to (6 + A), then the new values for u, and b, are calculated

as follows:

u,=-1 v=9
u,=-1 v, =3
u3=0 V3=7+A

V4 =
Then the relative intervals of A are calculated as:

d,=10-(-1)-920 =
d,=5-(-1)-320 =
dy =8-(-1)-920 =
dy, =7-(-)-(7+A)20 = ALl
d,, =6-(-1)-8<0 =
dy;; =4-0-(7+A)<0 =

When c,, changes from 6 to (6+A), to keep the optimal solution unchanged, the

value of A must be between —3 and +1.



If ¢,, changes from 7 to (7 + A), then the new values of u, and b, are calculated

as follows;

Then the relative intervals of A are calculated as:

d, =10-(A-1)-920 =

d, =5-(A-1)=-320 = A<
d, =8-(-1)-920 = 02
dy=T-(-)-(7-0)20 = A>2-1
d,, =6-(-1)-8<0 = -1<0
d,, =4-0~(T-A)<0 = A<3

When c¢,, changes from 7 to (7 + A), to keep the optimal solution unchanged, the

value of A must be between -1 and 2.

If ¢, changes from 2 to 2+A, then the new values u, and b, are calculated as

follows:
u=-1 =9
u,=A-1 v, =3
u, =0 vy =T

Then the relative intervals of A are calculated as:

d, =10-(-1)-920 = 23>0
d,=5-(-1)=320 = 320
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d, =8—(A=1)-920 = A<0
d,, =7-(A-)-720 = A<l
d,, =6-(A-1)-8<0 = A2-1
dy; =4-0-7<0 = -350

When c,, changes from to 2+ A, to keep the optimal solution unchanged, the

value of A must be between -1 and 0.

If ¢, changes from 9 to 9+ A, then the new values of u; and b, are calculated as

follows:

u=-1 v =9+A
u,=-1v,=3
u, =0 v, =7

v, =8

Then the relative intervals of A are calculated as:

d, =10-(-)—=(9+A)20 = A<2
d,=5-(-1)-320 = 320
d, =8—(-I)=(9+A)20 = A<0
d,, =7—(-1)-720 = 120
d,, =6-(-1)-8<0 = -1<0
d, =4-0-7<0 = -3<0

When c;, changes from 9 to 9+ A, to keep the optimal solution unchanged, the

value of A must be less than 0.

If ¢, changes from 3 to 3+ A, then the new values of u, and b, are calculated as

follows:
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u, =-1 v, =9

u, =-A-1 v, =3+A

u, =0 vy =7
v, =

Then the relative intervals of A are calculated as:

d, =10-(-1)-920 =
d,=5-(-)-(3+A)20 = A<
d, =8—(-A-1)-920 = A
dy, =T-(-A-1)-720 = Ax-1
d,, =6-(-A-1)-8<0 = A<l
d,=4-0-7<0 = -3<0

When c,, changes from 3 to 3+A, to keep the optimal solution unchanged, the

value of A must be between 0 and 1.

If ¢;, changes from 8 to 8+ A, then the new values of «, and b, are calculated as

follows:
u, =-A-1 v, =9
u, =-1 v, =
u, =0 v, =7T+A

v, =8+A

Then the relative intervals of A are calculated as:

d, =10-(-A-1)~-920 = A20
d,=5-(-A-1)-320 = A<-3
d, =8-(-1)-920 = 020
dy=7-(-)-(7+4)20 = A<l
dyy=6-(-)-8+A)<0 = A>-1
dy; =4-0-(7+4)<0. => Ax2-3
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When ¢,, changes from 8 to 8+ A, to keep the optimal solution unchanged, the

value of A must be between 0 and 1.

3.4.2 Sensitivity Analysis on the Supply and Demand

In the case of increasing or decreasing the amounts of supply and demand,
sensitivity analysis is used to determine whether the current basis remains optimal.

This change is observed in the balanced capacitated transportation problem.

The u,’s and v, ‘s may be thought of as the negative of each constraint’s shadow

prices. If the increase in the amount of production or the amount of demand is shown

as Ag;and Ab,, respectively, then the value of objective function becomes

3

New z value = Zm: c;x; +4a, (,)+ Ab, (vj)
i=l =l

To arrange the current optimal solution, the procedure which is described below is

used.

a. If x, is a basic variable in the optimal solution, A is added to x,.
b. If x, is a nonbasic variable or bounded variable in the optimal solution,
the loop, which involves x; and some of the basic variables, is found. An

odd cell is found in the loop that is in row i. Starting from this odd cell A
is added and subtracted from the values of the cells forming the loop,

consequtively.

Here, the capacity constraints are the RHS of the inequalities and the interval of
A is computed by these values. Thus, the value of A is determined according to the
related cell capacity, because no variable can be assigned a value that is gfeater than

the capacity of the related cell.
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For basic variables, As long as x; +A<u,, the optimal solution remains the

same.

x3=5 and u,; =5,5tA<5 =A<0
x, =20 and u,, =20,20+A<2 = A<L0
Xy =16 and u,, =20, 16+A<20=A<4
Xy =15 and u,, =18, 15+A<18 = A<3
X, =4 and u;, =4,4+A<4 SAL0

X, =6 and u,, =7,6+A<7 =ALI]

For the nonbasic variables, a closed loop that starts and ends at the cell, of which

the sensitivity is investigated, is constructed.

To find out how many units can be assigned to x,,, without changing the optimal

solution, a loop is formed as in Table 3.9 and the following inequalities are solved.
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Table 3.9 Senisitivity anaylysis for x;,

+A 12 13| 5 5 | 20-A 20
i , > 25 -1
10 5 6 7
14 | 16 20 10 9 9
25 -1
8 2 7 6
15-A 18 | 4 4 25 25 | 6+A 7
9 3 4 8
15 20 30 35 ¥
9 3 7 8 Af;
A<g12
20-A<20
-3<A<0
6+A<7
15-A<18

With respect to the inequality, for x,,, as long as A is between -3 and 0, the

optimal solution remains the same.

To find out how many units can be assigned to x,, , without changing the optimal

solution, a loop is formed as in Table 3.10 and the following inequalities are solved.
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Table 3.10 Sensitivity analysis for x,,

12 | +A 13| 5 5| 20-A 20
25 -1
& >
10 5 6 7
14 | 16 20 10| 9 9
25 -1
8 2 7 6
15 18 | 4-A 4 | 28 25 | 6+A 7
9 3 4 8
15 20 30 35 i,
9 3 7 8 v;
A<13
20-A<20
<A<l
6+A<7
4-A<4

According to the inequality, for x,,, as long as A is between 0 and 1, the optimal

solution remains the same.

As for the variables x,, and x,;, no loop can be formed to determine the values of

the related A, so the value of A is 0 for these variables.

As for the variables x,, and x,,, since these are bounded variables with

maximum assigned values, no change can be made on these variables, and the value

of A is also taken O for these bounded variables.
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3.5 On the Equivalence of Capacitated and Classical Transportation Problems

It can be noted that each variable x; appears in three equations with non-zero

coefficients; not only in (3.3) and (3.4), which are the row and column equations
used in the classical problem, but in addition in the upper bounding inequality (3.5),

which may be rewritten as

Xyt Yy =ty (y;20)

where variable, y, represents slack. Consider the problem of finding x;, >0 and min

z satisfying
Objective function:
Minz = Z Z C;X;
=l j=1
Supply constraints:
>x, =a, (i=1,...,m)
J=l
Demand constraints:
—zx"7=—bj (]=13 ,n)
i=l
Capacity constraints:
=Xy =Yy = Uy (all 4, )
Yy txy =y (all 4, j)

The system can, however, be replaced by an obviously equivalent one in which

each variable enters only two equations just as in the classical transportation form.



CHAPTER FOUR
APPLICATION

The data, which will be used for the application, is taken from a company which
produces and distributes beverages. Since the information is confidential, neither the
name of the company nor the name of the brand will be included in this context. Due
to various reasons, such as competition with other companies and increasing costs,
the net income of the company has decreased in the last years. To overcome this
problem, the management decided to analyze the main processes with high costs.
Shipment of the products from the production plants to different locations is one of
the main items in this list. The objective of this application is to develop a shipping
plan, which consists of the amount of products to be shipped from the production
plants to the locations, with the minimum cost. To achieve this objective, supply,
demand and capacity constraints are formed for a one year period, and the
capacitated transportation model, which is described in chapter 4, is applied to the
data.

4.1 Definition of the Problem

The company has six production plants, which are located in Ankara, Bursa,
Corlu, Istanbul, izmir and Mersin, and the products are shipped from these plants to
78 cities across Turkey. When formulating the model, the 6 production plants should
be treated as sources and the 78 cities should be treated as destinations. But, this will
lead to a model with 468 variables and 552 constraints, of which 6 are supply
constraints, 78 are demand constraints and 468 are capacity constraints. In the

following tables, supply and demand amounts are given as a box. One box is equal to
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eight kilograms. For example, supply for Ankara is 8.257.576 boxes which
correspond 8.257.576 x 8 kilograms.

The original data which consists unit transportation costs of the shipments from

plant i to city j, and capacity of the cities and supply of the plants, demands of the
cities are given in Table 4.1 and Table 4.2, respectively.
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The general model of the capacitated transportation problem, the definitions of the

variables and parameters are defined as follows:
Decision variables:

x; = the number of boxes shipped from source i to destination j

Parameters:

i=1,...,6:plants
j=1,...,78: cities

¢, = the unit transportation cost from plant i to city j
u, = the maximum amount which can be shipped from plant i to city j
a, = total supply of plant i

b, = total demand of city j

Objective function:

6 78
Minz= Z Zcﬁx‘j

=t =1

Supply constraints:

78
> x, <a (i=1,2,3,...,6)
j=t

Demand constraints :

D x, 2b, (=1,2,3,...,78)
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Capacity constraints: x; Su, (i=1,2,...,6;j=1,2,...,78)

Nonnegativity condition: x; 20 (i=1,2,...,6;j=1,2,...,78)

Since, such a problem is beyond the capability of the available software packages,
to obtain an approximate optimal solution; the method described in the next section

is developed.
4.2 Solution Method

To find an approximate optimal solution, the problem is simplified and, with

regards to the solutions of the simplified model, sub problems are defined.
The solution process is as follows:

First, the definition of the original problem is stated. Then destination regions are
formed by grouping the cities with respect to their shipping costs, the amount of
demands and regional neighborhood, regions are formed. Treating these regions,
instead of cities, as destinations a new and simplified model is formed, which can be .

handled by software packages.

Next, the simplified problem is solved. If, in the optimal solution of the simplified
problem, only one plant satisfies a region’s demand then it is accepted that the
demands of the individual cities, forming this specific region, are shipped from the
related plant. When the demand of a region is satisfied by two or more plants, then a
new sub problem is formed, which consists of the cities in the region as destinations

and the plants with assignments as sources. The sub problems are solved.

Finally, the optimal solution table of the original problem is then formed, using
the results obtained from the simplified and sub problem’s solutions, and an

approximate optimal solution is found.
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In the beginning, the cities are grouped with respect to their shipping costs, the

amount of demands and regional neighborhood, and destination regions are formed.

These regions are presented on the map in Appendix 1, and can be listed as follows.

Region 1: Aksaray, Cankin, Kinkkkale, Kirsehir, Konya, Nevsehir
Region 2: Edirne, Kirklareli, Tekirdag

Region 3: Adapazan, Balikesir, Bilecik, Bolu, Bursa, Canakkale, Izmit,

Yalova

Region 4: Agrn, Ardahan, Batman, Bitlis, Hakkari, Igdir, Kars, Mardin, Mus,

Siirt, Sirnak, Van,

Region 5: Bartin, Karabiik, Kastamonu, Zonguldak,

Region 6: Amasya, Corum, Samsun, Tokat, Yozgat

Region 7: Artvin, Bayburt, Giresun, Giimiishane, Ordu, Rize, Trabzon
Region 8: Afyon, Eskisehir, Kiitahya, Usak

Region 9: Aydin, Denizli, Mugla

Region 10: izmir, Manisa

Region 11: Burdur, Isparta

Region 12: Karaman, Mersin

Region 13: Bingdl, Diyarbakir, Elaz18, Erzincan, Malatya, Tunceli
Region 14: Adana, Kayseri, Nigde, Osmaniye, Sivas

Region 15: Adiyaman, Gaziantep, Hatay, K.Maras, Urfa

Region 16: Istanbul

Region' 17: Sinop

Region 18: Ankara

Region 19: Antalya

Simplified problem is formulated with 6 plants and 19 regions. Definitions of the

decision variables, the objective function and the constraints are given below.
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Decision variables:

x, = the number of boxes shipped from plant i to region &

Parameters:

i=1,2,...,6: plants
k=1,2,...,19: regions

¢, = the unit transportation cost from plant i to region &
u, = the maximum amount which can be shipped from plant i to region &
a, = total supply of plant i

b, = total demand of region &

Objective function:
6 19
Min z =Z z CuXu
=1 j=l
Supply constraints:
19
DX <aq (i=1,2,3,...6)
j=l1
Demand constraints :
‘6
Y x, 2b, *k=1,2,3,...,19)
i=]
Capacity constraints : X, Suy, (=1,2,...,6;k=1,2,...,19)

Nonnegativity condition: x, =0 (¢=1,2,..,6;k=1,2,...,19)
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The unit transportation costs from plant i to region k are calculated by finding the
mean of the cities’ costs for that region, the maximum amount which can be shipped

from plant i to region k are calculated as sum of the cities’ u,, values for that region.

The data which consists unit transportation costs of the shipments from plant i to
region j, and capacity of the regions and supply of the plants, demands of the regions
are given in Table 4.3 and Table 4.4., respectively. In this simpler model, each region
is considered as if it is one destination. The shipping cost for a region is taken as the
mean of the costs of the cities in the region. When the shipping costs are calculated,
the costs of the empty cells are given as a 500.000 TL. Whereas, the demand and the
capacity of the region is taken as the sum of the demands/capacities of the related
cities. A minus sign (-) in any row denotes no shipment is possible from the related

source.

In capacity table, for the sake of simplicity, the capacity values are given as a
thousand boxes. An empty row in the table shows that there is no shipment between
the plant and the region.
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The model for the data in Table 4.3 and Table 4.4 is given follows;
The Objective function:

Min z = 1321x,, + 500000x,, +250734x,, +46.561x,, + 2297 x5 +1775x,,
+3908x,, +126087x,, +334094x,, +251066x,,, +1875x,,, + 250938x%,,,
+169359x,,, +1964x,, +102575x,,; +500000x, ; +5414x, , +654x, ,
+2438x,,, +3039x,, +2485x,, +1055x,, +213181x,, +2535x,; +3735x,,
+76786x,, +1479x,4 +3055x,, +1797x,,, + 2409x,,, +251865x,,,
+7117x,,, +4303x,,, +203781x,,; +1353x,,, +4250x,,, +2195x,,,
+3519x,,4 +3073x,, +902x,, +64263x,, +48948x,, +2781x,5 +3713x,,
+5750x,, +2609x,; +3534x,, +2875x,  +3063x,,, +3469x,,, +171292x,,,
+3863x,,, +5525x,,5 +1222x,,, +8125x,, +2500x,,5 +3500x,,, +2885x,,
+167396x,, +64180x,; +49109x,, +2609x,; +3525x,; +5545x,, +2438x,,
+3375x,9 +2688x,,, +2969x,,, +3281x,,, +171156x,,, +3800x,,,
+104200x,,5 +625x,,, +3500x,,, +2375x,,5 +3375x,,, + 500000x;,
+500000x,, +313180x,; +500000x,, +500000x,; +500000x,, +500000x,;,
+1895x5 +1562x,, +1071x,, +500000x;,, +251635x,,, + 500000x;,,
+500000x;,, + 500000x,5 +500000x;,, +500000x,,, +500000x;,
+2755x5,, +417064x,, +500000x,, +500000x, +293606x,, +375875x,;,
+500000x,, +500000x, +375708x,, + 500000x, +3563x,, +3375x,,,
+250324x,,, +86440x,,, +201038x,,, +2137x4 5 +3375x,,, +500000x,,,
+500000x;,, +3363x;,,
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Supply constraints:

XX X F Xy X5 T X T Xy T X T X9 F X0 H X X X
+ X, F X5 T X T X7 T X g T X0 S 8.257.576

Xyp F Xay F Xp3 + X5 T X5 + X6 + X7 + X5 + Xy + X510+ X5, + Xy, + Xy
F Xy F Xyps F Xgp6 F Xpp5 F Xy + Xy £ 6.742.424

X3 F X33+ Xgy + X3y + Xgg + Xy + X35 + Xy + X539 + X3 + X3 + X505 +Xqp4
+ X304 F X35 F X306 F Xy Xy + X5 <41.818.180

Xgp T Xy F X3t Xy + X5 + X4+ Xy +Xgg + X9 + X400+ Xy + X4, + X4,
FXg1s F Xgys + Xg06 F Xg17 F X405 + X4 $10.682.000

X5y F X5y + X3 + X5 + Xsg + Xgg + Xg7 + Xz + Xgg + X1 + Xy + Xg, + Xgp5
+ X5y + X5 F Xg1g + X517 F X515 + X510 < 8.711.861

Xg1 T Xga + Xgy + Xgq + Xgs + Xgg + X7 + Xgg + Xgg + Xg 10 + Xgp) + Xg15 + Xgy5

+ X614 T Xg15 + Xg16 T Xg17 + Xg15 T X5y < 48.218.540
Demand constraints;

X+ Xy X5 F X + X, + X6, 23.227.376

Xy + Xpy + Xy + Xy + Xy + X, 23.156.329

Xpy  Xoy F Xy + X4y + Xg; + X5 2 6.925.481
X4+ Xgy + Xy + Xy, + X, + X, 23.158.174

Xis + Xys F X5 + Xyg + X5 + Xgg = 2.222.917

Xig T Xog + Xyg + X6 + Xsg + Xgg 22.167.244
X7+ Xpy + Xy + X4y + Xgy + Xg; 2 3.873.035

Xyg + X + Xyg + Xyg + Xgg + Xgg 2 3.234.085
Xyg F Xog + Xgg + Xyg + Xsg + Xy = 4.394.265
Xi10 F X310 F X300 + X400 + Xsp + X0 = 5.378.981

X+ Xy F X5+ X+ Xsyy X6, 23.419.120



Xpp F Xy, X5, X4, + X5y, + Xg, 23.720.871
Xypz + Xpp3 + Xgp3 X5 + X3 + X3 24.527.576
Xppq X4 F Xyq F Xgp + X4 T X6y 2 5.538.689
Xpps T Xgs + Xgps + Xy + Xgps + Xgys = 8.546.712
X1+ Xg16 T Xapg + Xgp6 + X516 T Xgp6 2 3.443.627
X7 + Xypq + X5 + X4p0 + Xspp + X6y 2617.709

X F Xgpg + Xy + X8 + Xsi5 + Xg15 21.998.966

Xyp9 F Xppg + Xypg F Xy + X519 + X619 212.573.030

Capacity constraints:

x,, £28.512.000
x, <0

x,; <8.316.000
x,, < 32.670.000
x5 <11.880.000
X, <18.414.000
x; <20.790.000
x5 £11.880.000
X, £3.564.000
X110 < 3.564.000
X, <5.940.000
X, £4.752.000
x;,; <11.880.000
X4 <£20.196.000
x5 £11.880.000
X6 <0

x,; £2.970.000
x5 £14.256.000
X0 £2.970.000

x,, <17.820.000
X, <17.820.000
X, < 55.242.000
%y, <22.572.000
X5 < 7.128.000
Xy <12.474.000
X, <10.692.000
X <8.316.000
X, < 5.346.000
Xy <3.564.000
X1y < 5.940.000
%1, <2.970.000
%13 <17.820.000
Xyq <14.850.000
X5 <8.910.000
X6 < 5.940.000
X1, <1.782.000
Xps < 2.970.000
X5 < 2.970.000
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x,, <17.820.000
x,, <17.820.000
X, <38.610.000
%y, < 32.670.000
%55 <11.880.000
X, <14.850.000
X, <20.790.000
X5 < 24.354.000
X4y <21.384.000
X310 <14.256.000
Xy, < 5.940.000
%31, < 5.940.000
X3 <11.880.000
Xy14 <14.850.000
Xy,s <14.850.000
X416 <17.820.000
X317 < 2.970.000
X35 < 2.970.000
X310 < 2.970.000



x,, <17.820.000
x,, <11.880.000
%45 < 38.610.000
X4 <32.670.000
x,s <11.880.000
X, <14.850.000
X4, <20.790.000
X4 < 24.354.000
X, <21.384.000
X410 <14.256.000
X4, < 5.940.000

X,y <5.940.000

X4 <11.880.000
X414 <14.850.000
45 <11.880.000
X4 <17.820.000
X417 <2.970.000

X4 < 2.970.000

X4 < 2.970.000

x5, <0

x5, <0

x5, <21.384.000
x5, <0

x5 <0

x5 <0

x5; <0

x55 <8.316.000
X9 < 5.346.000
X510 < 7.128.000
x5 <0

X5, <£2.970.000
X513 <0

X514 0

X55 <0

X56 <0

X7, <0

X553 <0

X5 <2.970.000
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X <3.564.000
X, <0

X <0

xs, <14.850.000
xgs <2.970.000
X <0

%, <0

xes <2.970.000
X <0

Xg10 < 5.940.000
Xg <8.316.000
X¢1, £12.474.000
X3 <14.850.000
x5, <11.880.000
Xg5 <17.226.000
Xg16 <3.564.000
Xei7 S0

Xes <0

X610 <4.158.000

The above model has been solved with WinQSB and outputs are given in

Appendix 2. The transportation solution table with optimal assignments is given in

Table 4.5.



Table 4.5 Optimal solution for simplified model (box)

Cities

Plants R1 R2 R3 R4 RS R6 R7 RS R9 R10 R11 RI12 R13 R14 R15 R16 R17 R18 R19 Supply
Ankara - - - 3.158.174 - 2.167.244 - - - - - - - 457.127 - - - - 2.475.031 | 8.257.576
Bursa - - 2.214.848 - - - - - - - - - 4.527.576 - - - - - - 6.742.424
Corlu | 3.227.376 3.156.329 4.710.633 - 2.222.917 - 222.367 3.234.085 - 1.061.385 3.419.120 3.720.871 - 5.081.562 - - . 1.998.966 2.970.000 | 41.818.180
Dudullu - - - - - - 3.650.668 - y o o - - - - 3.443.627 617.709 - 2.970.000 | 10.682.000
Izmir - - - - - - - - 4.394.265 4.317.596 - g s - - - - - - 8.711.861
Mersin - - - - - - - - - - - - - - 8.546.712 - - - 4.158.000 | 48.218.540
Demand

3.227.376 3.156.329 6.925.481 3.158.174 2.222.917 2.167.244 3.873.035 3.234.085 4.394.265 5.378.981 3.419.120 3.720.871 4.527.576 5.538.689 8.546.712 3.443.627 617.709 1.998.966 12.573.031
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The assignments in the optimal table show the total amount of shipment to be

made from plants to the regions:

From Ankara:
to 4™ region , x,, =3.158.174

to 6™ region, x,, =2.167.244
to 14™ region, x,,, =457.127
to 19™ region, x,,, =2.475.031

From Bursa:

to 3" region, x,, =2.214.848
to 13" region, x,,, =4.527.576

From Corlu:

to 1% region, x,, =3.227.376
to 2" region, x,, =3.156.329
to 3" region, x,, =4.710.633
to 5" region, x,; =2.222.917
to 7% region, x,, =222.367

to 8" region, x,, =3.234.085
to 10™ region, x,,, =1.061.385
to 11" region, x,,, =3.419.120
to 12" region, x,,, =3.720.871
to 14™ region, x,,, =5.081.562
to 18™ region, x,,, =1.998.966
to 19™ region, x,,, =2.970.000

From Dudullu:
to 7" region, x,, =3.650.668



to 16™ region, x,,; =3.443.627
to 17" region, x,,, =617.709
to 19™ region, x,,, =2.970.000

From Izmir:

to 9" region, x,, =4.394.265
to 10" region, x,,, =4.317.596

From Mersin :

to 15" region, x,,; = 8.546.712

to 19" region, x,,, =4.158.000

The figures of the positive assignments are given in Figure 4.1.
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As seen in the Figure 4.1., the sub problems for region 3, 7, 10, 14, 19 must be
defined. Because, the assignments to 3™ region from Bursa is 2.214.848 and from
Corlu is 4.710.633, to 7 region from Corlu is 222.367 and from Dudullu is
3.650.668, to 10t region from Corlu is 1.061.385 and from Izmir is 4.317.596, to
14™ region from Ankara is 457.127 and from Corlu is 5.081.562 and finally, to 19®
region from Ankara is 2.475.031, from Corlu is 2.970.000, from Dudullu is
2.970.000 and from Mersin is 4.158.000.

e Phasell

When there are two or more assignments for a region in the optimal table of the
simplified model, the optimal assignments to the cities in the region, can be found by
forming a new model for these plants and cities and solving the model. The right -
hand side (RHS) values for these models are obtained from the assignments of the
first model’s optimal table. The data for these sub-models, which will be used when

solving them, are as follows:

Sub problem 1:

Because the demand of the 3™ region is shipped from plants Bursa and Corlu the
related sub problem consists of Adapazari, Balikesir, Bilecik, Bursa, Canakkale,

Izmit and Yalova as destinations and Bursa and Corlu as sources.

Table 4.6 Unit transportation cost for sub problem 1(TL. per box)

Cities
Adapazart  Bahkesir  Bilecik Bolu Bursa Canakkale fzmit  Yalova
Plants ) ) (3) @ &) 6 )] ®
Bursa 1.068 1.183 775 1.563 654 1.574 938 638
Corlu 1.750 2.491 2.750 1.875 1.863 1.750 1.625 -
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Table 4.7 Shipment capacities for sub problem 1(1000 boxes)

Cities
Adapazann  Balikesir Bilecik Bolu Bursa Canakkale fzmit Yalova
Plants ( Q) 3) “) &) (6) &) 6 Supply
Bursa 5.940 5.940 5.940 1.782 17.820 5.940 5.940 5.940 |2.214.848
Corlu 5.940 5.940 5.940 2970 5.940 5.940 5.940 - 4.710.633
Demand
509.987 1.245810 - 301.961 757.830  2.163.547  1.106.038  741.926  98.382

Model formulation for sub problem 1:
Objective function:

Min z = 1068x,, + 1183x,, + 775x,, +1563x,, + 654x,5 +1574x,, + 938x,,
+688x,4 +1750x,, +2491x,, +2750x,, +1875x,, +1863x,,
+1750x,, +1625x,, + 500000x,

Supply constraints:

X+ Xy F Xy X F X5 F X X + X5 $2.214.848

Ko+ Xgp + Xpy F Xp0 + Xp5 + Xy + X,p0 + X £4.710.633

1

Demand constraints:
X,y + X5, 2 509.987 X5+ X5 22.163.547
x,, +x,, 21.245.810 X + X6 21.106.038
X3+ %, 2 301.961 X7 + X,y 2741.926
X, + X, 2757.830 X5 + Xy =98.382
Capacity constraints:
x,, £5.940.000 %y <5.940.000

x,, <5.940.000 X, <5.940.000



x,, <5.940.000
x,, <1.782.000
x,5 <17.820.000
X, <5.940.000
x,; <5.940.000
X5 <5.940.000

X, £5.940.000
X,, £2.970.000
x,5 £5.940.000
X, £5.940.000
X, £5.940.000
X, £0
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The above models have been solved with WinQSB and output is given in

Appendix 3. The optimal solution table is given in Table 4.8.

Table 4.8 Optimal solution table for sub problem 1(box)

Cities
Adapazan  Balikesir  Bilecik Bolu Bursa Canakkale [zmit  Yalova
Plants (¢)] 2) 3) () ) (6) ) (6) Supply
Bursa - 1.245.810  301.961 - 568.695 - 98.382 {2.214.848
Corlu 509.987 - 757.830 1.594.852 1.106.038  741.926 - 4.710.633
Demand
509.987 1.245.810 301.961 757.830  2.163.547 1.106.038  741.926 98.382

The assignments in the optimal table show the total amount of shipment to be

made from plants to the cities.

Sub problem 2:

Because the demand of the 7 region is shipped from plants Corlu and Dudully,

the related sub problem consists of Artvin, Bayburt, Giresun, Giimiighane, Ordu,

Rize, Trabzon as destinations and Ankara and Dudullu as sources.

Table 4.9 Unit transportation cost for sub problem 2 (TL. per box)

Cities

Artvin Bayburt Giresun Gimiighane Ordu Rize Trabzon

Plants | (1) (2) €)] C)) @ _©® O
Corlu | 8875 5500 4.250 5313 4500 6500 5313
Dudullu | 8.625 5250 _ 4.063 5125 4313 6313 5.125
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Table 4.10 Shipments capacities for sub problem 2(1000 boxes)
Cities

Artvin  Bayburt Giresun Gimishane  Ordu Rize Trabzon

Plants [¢)] 2) 3 @ &) 6 €] Supply

Corlu | 2970 2970 2970 2970 2970 2970 2970 | 222367

Dudullu | 2970 2970 2970 . 2970 2970 2970 . 2.970 | 3.650.668

Demand | 226,043 287.714 408.193  164.689  356.123 289.916 2.140357

Model formulation for sub problem 2:

Objective function:

Min z = 8875x,, + 5500x,, +4250x,, +5313x,, +4500x,; + 6500x,,
+5313x,; +8625x,, +5250x,, +4063x,, +5125x,, +4313x,
+6313x, +5125x,,

Supply constraints:

X Hx, Xy H X, x5 X X, £222.367

Xy +Xp + Xg3 + Xpy +Xp5 + Xy + X5, £3.650.668
Demand constraints:

Xy + X%, 2226.043
X, + Xy 2287714
x5 +x,, 2408.193
X4 +X,, 2164.689
X5 + X5 2356.123
X+ Xy = 289.916

X, + Xy 2 2.140.357



Capacity constraints:

%,, <2.970.000
x,, £2.970.000
x,; <2.970.000
x,, €2.970.000
X5 <2.970.000
X, <2.970.000
%,; €2.970.000

X, <2.970.000
¥, <2.970.000
X, <2.970.000
X,, <2.970.000
X,5 <2.970.000
X, <2.970.000
X, <2.970.000

The above models have been solved with WinQSB and output is given Appendix

4. The optimal solution table is given in Table 4.11.

Table 4.11 Optimal solution table for sub problem 2 (box)

Cities
Artvin  Bayburt Giresun Giimiighane  Ordu Rize Trabzon
Plants 03] (€] 3) “ &) (6) ) Supply
Corlu - 222.367 - - - - 222.367
Dudullu | 226.043 287.714 185.826 164.689 356.123 289.916 2.140.357 | 3.650.668
Demand | 226,043 287.714 408.193  164.689  356.123 289.916 2.140.357
Sub Problem 3:

Because the demand of the 10™ region is shipped from plants Corlu and Izmir, the
related sub problem consists of Izmir, Manisa as destinations and Bursa and izmir as

sources.

Table 4.12 Unit transportation cost for sub problem 3 (TL. per box)

Cities
Izmir Manisa
Plants (1) (2
Corlu 2.875 2.875
Tzmir 1.114 1.027
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Table 4.13 Shipment capacities for sub problem 3 (1000 boxes)

Cities
Izmir Manisa
Plants (€)) 2) Supply
Gorlu 1.782 1.782 1.061.385
fzmir 5.346 1.782 4.317.596
Demand {2700.079  2.678.902

Model formulation for sub problem 3:
Objective function:

Min z = 2875x,, +2875x,, +1114x,, +1027x,,

Supply constraints:
x,, +x, <1.061.385

Xy +X, <4.317.596

Demand constraints:

Xy, + %, 22.700.079
X, + X, = 2.678.902

Capacity constraints:
x,, <1.782.000 X,, <5.346.000
x,, <1.782.000 X,, <1.782.000

The above models have been solved with WinQSB and output is given Appendix
5. The optimal solution table is given in Table 4.14.
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Table 4.14 Optimal solution table for sub problem 3 (box)

Cities

Plants

fzmir
(1)

Manisa

Q2

Supply

Corlu
fzmir

164.483

896.902

2.535.596 1.782.000

1.061.385
4.317.596

Demand

2.700.079  2.678.902

Sub problem 4:

Because the demand of the 14™ region is shipped from plants Ankara and Corlu,
the related sub problem consists of Adana, Kayseri, Nigde, Osmaniye, Sivas as

destinations and Corlu and Dudullu as sources.

Table 4.15 Unit transportation cost for sub problem 4 (TL. per box)

Cities
Adana  Kayseri Nigde Osmaniye Sivas
Plants (1) 2) (3) 4 (5
Ankara 1.884 1.563 1.563 1.938 2.875
Corlu 3.750 3.875 3.875 4.125 3.688

Table 4.16 Shipment capacities for sub problem 4 (1000 boxes)

Cities
Adana  Kayser Nigde Osmaniye  Sivas
Plants (1) 2} 3) 4 (5) Supply
Ankara 2.970 4.752 4.752 2.970 4.752 457.127
Corlu 2.970 2.970 2.970 2.970 2.970 | 5.081.562
Demand | 2.931.496 576.608 654.925 835108  540.552

Model formulation for sub problem 4:

Objective function:

Min z = 1884x,, +1563x,, +1563x,; +1938x,, +2875x,, +3750x,, +3875x,,
+3875x,, +4125x,, +3688x,



Supply constraints:

X, +X, x5 X, + X <457.127

Xy + X5 + X5 T Xy

Demand constraints:

+X,, <5.081.562

X, +X, >2.931.496

X;, + X, 2576.608
X;3 X, 2654.925
X, +x,, >835.108
X5 + X5 > 540.552

Capacity constraints:

x,, <2.970.000
x,, <4.752.000
X,; <4.752.000
x,, <2.970.000
x5 <4.752.000

X, <2.970.000
X,, £2.970.000
X,, £2.970.000
¥,, £2.970.000
X,5 <2.970.000
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The above models have been solved with WinQSB and output is given Appendix

6. The optimal solution table is given in Table 4.17.

Table 4.17 Optimal solution table for sub problem 4 (box)

Cities
Adana  Kayseri Nigde Osmaniye Sivas
Plants 1) (2) ©)] 4 5) Supply
Ankara 457.127 457.127
Corlu {2.931.496 576.608 197.798 835.108  540.552 |5.081.562
Demand

2.931.496 576.608 654.925

835.108  540.552
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Sub problem 5:

Because the 19. region consists of only one city there is no need o define a sub

problem for this region.

In the optimal solution, the shipments to Antalya, from Ankara is 2.475.031, from
Corlu is 2.970.000, from Dudullu 2.970.000, from Mersin is 4.158.000.

4.4 Results

In this thesis, the solution method with two steps was developed for the
capacitated transportation problem with too large data. The solution of phase 1 and
phase 2 were combined. Finally, we have been obtained approximate optimal

solution for the problem.

Approximate optimal solution for original data is represented in Table 4.18. The
problem with 6 plants and 78 cities must have 78 + 6 — 1 = 83 basic variables for
feasibility. As seen in the Table 4.18, 86 assignments have been occurs. 83 of these
assignments are basic variables and 3 of them bounded variables. So, we obtained an
approximate optimal solution to the original problem with 468 variables and 552

constraints, this way.



CONCLUSIONS

The general solution method of a capacitated transportation problem can be
described as follows: First, capacitated transportation model is formulated for the
problem. If the total number of the variables and the constraints is small enough to
handle with the available software packages, the problem is solved with a software
package. But if the number is large, either the number of destinations or the number
of sources is decreased in order to obtain a simplified model. However, the process
of decreasing the number of sources or destinations must rely on experience or some
experts’ opinions. Next, the obtained simplified model is solved by using a software

package.

If in the optimal solution of the simplified model, the demand of a grouped
destination is shipped from two or more sources or the supply of a grouped source is
shipped to two or more destinations then a subproblem is defined. This sub problem
is modeled with each of the original destinations as demand centers or each of the
original sources as supply centers. These sub problems are solved and by combining
these solutions with the solution of the simplified problem, the solution table for the

original problem is constructed.
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APPENDICES




A 1. The Regions

83



A 2. Optimal solution table for simplified problem

84

Decision |  Solution | UnitCost or Total ; Reduced Basis
Variable | Value ¢ Profit ¢ Contribution Q‘oﬁs_t_ _ Status
X1 0 1.321,0000 0 1470000 ' at bound
X12 0 500.000,0000 0 500997,0000 | atbound
X13 0 250.734,0000 0 1883700000 | atbound
'X14 | 3.158.174,0000 | 46.561,0000 | 147.047.700.000,0000 0 .. hesic
X135 0 2.297,0000 0 14150000  atbound
X16 ' 21672440000 | 17750000 | 3.846.858.000,0000 0 besic
X17 | 0 | 3.908,0000 ! 0 | 570000 atbound
XI8 0 '126.087,0000 0 125377,0000  at bound
X19 0 334,094,0000 0 3326270000 atbound
X110 0 | 251.066,0000 0 2500900000 at bound
X111 0 1.875,0000 0 711,0000 @ etbound
X112 0 250.938,0000 0 2493630000 | atbound
X113 0 169.359,0000 0 100933,0000 ' et bound
X114 | 457.127,0000 | 19640000 | 897.797.400,0000 0  ‘basic
X115 0 102.575,0000 0 1023370000 - stbound
X116 0 | 500.000,0000 0 501.069,0000 ot bound
X117 0 5.414,0000 0 36080000 . atbound
X118 0 | 6540000 0 | 530000  etbound
X119 | 2475031,0000 | 24330000 | 6.034.126000,0000 0 | basic
0 3.039,0000 0 63.1740000 & et bound
0 2.485,0000 0 64791,0000 @ at bound
22148480000 | 1.0550000 | 2.336.665.000,0000 0 . basic
| 0 213.181,0000 0 2279290000 | et bound
o | 2.535,0000 0 629620000 | atbound
0 3.735,0000 0 632690000 © atbound
0 76.786,0000 0 1342440000 . ot bound
0 | 1.479,0000 i 620780000 | atbound
0 | 30550000 0 62897,0000 | atbound
0 | 1.797,0000 0 62.1300000 | atbound -
0 2.409,0000 0 625540000 | et bound
] 251.865,0000 0 3116040000 | etbound
4527.576,0000 : 7.117,0000 | 32.222.760.000,0000 0 | basic
0 4303,0000 | 0| 636480000 | etbound -
0 203.781,0000 0| 2648520000 | stbound
0 | 1.353,0000 0 63.731,0000 ?myatbbund
i) 4.250,0000 0 637530000 | atbound -
0 2.195,0000 0 629030000 | atbound |
0 3.519,0000 0 623900000 | stbound
32273760000 | 3.073,0000 | 9.917.727.000,0000 0 basic
31563290000 | 902,0000 | 2.847.009.000,0000 0 U basic |
47106330000 | 642630000  302719.400.0000000, 0 ‘basic
0 43.943,0000 0 | 4330000  atbound .
| 2222917,0000 | 2781,0000 | 6.181932.000,0000 0 basic |




A 2. Optimal solution table for ‘smplxﬂed problem(continued)
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Decision, Salution UnitCost or { Total Reduced | DBasis |
Variable Value © Profitc() ' Contribution Cost i Status |
X3 0 3.713,0000 ;' 0 39,0000 stbound
X37 2223670000 57500000 | 1.278.610.000,0000 0 “basic |
X388 32340850000  2.609 091;9;_;_437 7280000000 | 0 basic
X0 35340000 ; o . 1680000 atbound
X310 10613850000 28750000  30514820000000 0 . ‘besic
X311 34191200000 3.063,0000 1042760000000 O basic
‘X312 3720871,0000 3.465,0000 | 12907.700.000,0000 0 basic |
X313 0 171.292,0000 0 100967,0000 | et bound
X314 | 5081562,0000 38630000 | 19.630.070.000,0000 0 basic
X313 0 5.525,0000 0 33830000 | atbound |
X316 0 1.222,0000 0 | 32,0000 stbound |
17 0 8.125,0000 | 0 | 4400000 ' etbound
X318 10989660000 2500,0000 | 4997.4150000000 | O U basic
X319 2970000,0000 3.500,0000 | 10.395.000.000,0000 0 T basic |
X4l 0 2.885,0000 0 17,0000 at bound
X42 0 167 396,0000 0 166.699,0000 | st bound
X4 0 64.180,0000 0 122,0000 at bound
X44 0 410900000 0 | 8540000 atbound |
x4 0 26090000 | 0 ' 330000 etbound
T x46 0 35250000 0 . 360000 . atbound
T X47 36506630000 55450000 | 20.242.950.000,0000 0 basic |
X8 0 2.438,0000 0 34,0000 atbound |
X49 0 3.375,0000 0 214,0000 atbound
X410 0 -~ 2.683,0000 0 18,0000 at bound
X411 0 2.969,0000 a 111,0000 st bound
X412 0 3281,0000 | 0 170000 | atbound |
X413 0 171. 1$60000 0 | 1010360000 | etbound |
X414 0 ~ 3.800,0000 | 0 142,0000 atbound |
X415 0 104.200,0000 0 102263,0000 | at bound
X416 34436270000 6250000 | 2.152.267.000,0000 0 basic
X417  617.7090000 , 3.500,0000 | 2.161981.000,0000 0 basic
X418 0 " 2.375,0000 0 £0,0000 at bound
X419 2970000,0000  3.375,0000 | 10.023.750.000,0000 0 basic
X51 0 500.000,0000 0 | 4987310000 | atbound
X52 0 500,000,000 0 500902,0000 | afbound
X53 0 "313.120,0000 0 250.721,0000 | &t bound
X54 0 500,000,000 0 4533440000 | at bound
X355 0 500.000,0000 0 4990230000 | et bound
X56 0 + 500,000,000 0 4983.130,0000 | et bound
X57 0 500,000,000 0 4960540000 | atbound |
X58 0 ' 1.895,0000 1 1.090,0000 atbound |
X59 43942650000 . 1.562,0000 | 6.363.842.000,0000 0 basic
X510 4317396,0000 ' 1.071,0000 | 4624.145.000,0000 0 basic




A 2. Optimal solution table for 31mp11ﬁed problem(continued)
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Decision ;  Solution vat Cost or Total * Reduced : ‘Basis
Vatiable Value . Profite Contribution Cost | Status
0  500.000,0000 0 | 4987410000 | atbound
0 1251.635,0000, 0 | 2499700000 | etbound
0 15000000000, O _ 4314790000 ' etbound
0 500.000,0000 | 0 | 4975410000 | atbound
0 500,000,000 0 " 499.667,0000 | atbound
0 + 500.000,0000 | 0 5009740000 | et bound -
0 ' 500.000,0000 | 0 4980990000 | atbound
0 500,000,000 0 4993040000 etbound
0 © 27550000 ! 0 220000 | atbound
0 41706400000 0 | 4135510000 | etbound
0 300.000,0000 0 . 4990980000 | atbound
0 508,000,000 | 0 | 4357370000 @ atbound
0 293.606,0000 0 | 2451460000 | atbound |
0 1 375.875,0000 0 | 3730040000 | atbound |
0 | 500,000,0000 0 4963260000 | atbound |
0 - 500,000,000 0 4542500000 | atbound
D 1375.708,0000 0 3730990000  atbound
0 . 500,000,000 0 . 4966340000  stbound
0 | 3.563,0000 0 6830000 | atbound
8 | 3375,0000 0 | 3120000 | etbound |
0 1250.324,0000 0 | 2468550000 | atbound |
0 | 86.440,0000 0 " 161150000 | atbound -
0 201,038,000, 0 ©197.1750000 | stbound
X615 8546?120000  2.137,0000 | 18.264320.000,0000 0 ! basic
X6 T 0 T33750000 0 25450000 | atbound
X670 500.000,0000 0 4962950000 | atbound
X618 | 0 500,000,000 0 | 4975000000 | sthound
X519 | 4158.000,0000 | 3363,0000 | 13.983.350.000,0000 | 0 basic
Objective | Function | (Min)= |663.539.400.000,0000 j
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A 2. Optimal solution table for simplified problem(continued)

o
]

? | LeftHand RightHand |  Slack Shadow
onstraint% Side i Direction Side ; or S!yplus Pnce
Ankera | 82575760000 <= 2575760000 . 0 | -18%9, o000
Bursa | 67424240000 <= 67424240000 0 .63:208,0000
Coru 350256100000 <= 41818.180,0000 _' 67925730000 0
Dudullu 106820000000 <= 106220000000 0 . 2050000

Immir | 87118610000 <= 87118610000 0 .18040000
Mersin 127047100000, <= 48218.540,0000 [3551383000000 O i
| 32273760000 | >= 32273760000 | 0 | 30730000
T abemwmOn | >= 313639000 | 0 03000
T eoraion >= | 692543,0000 | 0 642630000
31581740000 >= 31581740000 Y 2600000
22229170000 >=  22:0170000 0O - 2781,0000
21672840000 >= 21672440000 0 36740000
| 3873035000 >= 38730350000 ¢ 0 57500000
32340850000 >= | 32340850000 | 0 | 26090000
| 43042650000 1 >= 43942650000 ;O ~3366,0000
53789810000, >= 53789810000 | g . 28750000
| 34191200000 >= 7 34190200000 | 0 | 30630000
'37208710000  >= | 372087.,0000 | 0 3.469,0000 .
45275760000 1 >= | 45075760000 | O ”76’ 3250000
55386890000 |  >= | 55336890000 | 0 ©3263,0000 .
| 83467120000 | >= . 85467120000 0 | 2.137,0000 -
3436270000 1  »= | 34436770000 0 ' 830,0000
6177090000 ;  >= | 6177090000 . 0 37050000
19989660000 >= 19989660000 0 23000000 °
1257303000000  >= | 12.573030,0000 0 . 4337,0000 °
0 <= | 285120000000 28.512.000, uuou o
. > . g
' 0 <= 83160000000 83160000000 0
(BI5B740000 <= 326700000000 295118300000, 0 |
7B 7 <= | 113300000000 1138000000000 O .
T 2.167.244, oonu <= | 134140000000 1624676000000 O |
| 0 <= | 207900000000 207900000000 ©
‘, 0 <= | 118800000000 118%00000000 O |
o <= 35640000000 35640000000 0 .
0 <= | 33640000000  3.564000,0000 ”E“e
0 <= ' 55400000000 59400000000 0 |
0 <= | 47520000000 47520000000 O |
! 0 <= 118300000000 1188000000000 O |
| 457.127,0000 <= 20.196000,0000 (197388700000 O
5 0 <= 11880.000,0000 :11880000,0000, O
0 &= 0 0 0
o <= | 29700000000 29700000000 0 |
0 < wazseompon tazseoongom 0



A 2. Optimal solution table for simplified problem(continued)
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Decision . Solution | Unit Cost of | Total " Reduced Basis
Vatiable . Value ! Profit c()) i Contribution Cost Status
UI9 | 24750310000 | <= | 29700000000 | 4949690000 | 0
U2t 0 <= | 173200000000 |17820000,0000/ ©
vz | 0 <= | 17820000,0000° |178200000000; O
U23 | 2214848,0000 <= 552420000000 [53027.1500000, ©
UM 0 <= m5720000000 2257200000000 0
w25 0 1 <= 71280000000 7280000000 O
U 0 C <= 124740000000 124740000000 0
iz 0 = 10.693,000,0000 1 10.652 0000000, 0
Ul 0 <= 83160000000 [83160000000] 0
U® | 0 <= | 53460000000 |53460000000' 0 .
U210 0 <= 7 35640000000 | 35640000000, ©0
Ul | 0 <= 59400000000 | 59400000000, ©
vz © o <= 29700000000 ;29700000000 '  © |
U213 | 45775760000 | <= 178200000000 1132524200000, O
U214 | 0 <= 14830000,0000 | 14850000,0006 0
Tats | 0 <= 8910.000,0000 | 8910.000,0000 0
Ul | 0 <= 55400000000 | 59400000000 O |
U7 | 0 <= | 17820000000 | 17820000000, O .
uzg | 0 <= 29700000000 | 29700000000 | 0
s D <= 29700000000 297000000000 O |
U3\ 3273760000 <= 178700000000 1439260000 0
U32 3156390000 | <= 17 820,000,0000 ; o
U33 | 47106330000 | <= 386100000000 | 338993700000 0
U 0| < 326700000000 326700000000, 0 |
U35 | 22229170000 <= 11.880.000,0000 | 9.657.023,0000 0
Ul 0 <= | 148500000000 |148300000000] O
U37 | 222367,0000 <= 20790000,0000 |20.567630,0000] 0 |
U383 32340850000 | <= | 243540000000 2111992000000 0
u® | o <= 213840000000 (213840000000 0
U310 | 10613850000 | <= 142560000000 131946200000, 0
U3l ‘fa 4191200000 | <= 59400000000 | 25208800000 © |
U3l2 | 37208710000 <= 59400000000 | 22191200000 0 |
U313 | 0 <= 118200000000 |118800000000) O |
U3l4 | 50815620000 <= 14850000,0000 | 976343800001 0 .
Usls 0 <= | 148500000000 148500000000 O
U316 0 | <= 17.820000,0000 |17.820000,0000. O
U317 0 <= | 25700000000 29700000000 0
U318 | 19989660000 | <= 29700000000 | 9710340000 1 o
U319 | 29700000000 ] <= 2.970.000,0000 0 g37000
uaL 0 <= 178200000000 (17.820000,0000] 0 .
U4 0 | <= 11280.000,0000 |11880.000,0000] O
U4 0 | <= 386100000000 |3861000000000 @ |
U4 0 <= 326700000000 (326700000000, 0 |



A 2. Optimal s: solutlon table for 51mp11ﬁed problem(continued)
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Decxsmn . Solution Unit Cost or, Total Reduce& Basis
Variable Value i Profitc() |  Contrbution Cost Status
us | 0 | 118800000000 118800000000 0
U4 B | <= 148500000000 148500000000 O
U47 | 36506680000 <= | 207900000000  17.1393300000 0
Ul 0 <= | 243540000000 24354000,0000 O
U9 0 <= | 213340000000 213840000000 O
s © o <= | 142560000000 142560000000 0
uall 0 <= 55400000000 © 59400000000 0
U412 | 0 <= 59400000000 59400000000 0
U413 0 <= | 118800000000 118800000000 O
U414 0 <= | 148500000000 142500000000 0
UALs | 0 <= 118800000000 118800000000 O
U416 | 34436270000 <= | 178200000000 143763700000 0
U417 | 617.705,0000 <= | 20700000000 23522910000 O
u4g | 0 | <= | 25700000000 29700000000 O
U4l9 | 29700000000 <= 29700000000 0 757,000
Ust 0 L &= 0 ; 0 o
Us2 D i <= T 0 0 o
U3 g T <=7 213940000000 213840000000 O
0 B
0 <= T o T Tl 0
0 L &= e o s
0 | = 0 o0 o
0 | <« 23160000000 83160000000 0
4394265, 0000’ <= 53460000000 9517350000 0
U510 | 4317596 auou <= 7128000,0000 | 28104040000 20 .
Usll | 0 <= 0 ‘ o 0
Us12 0 <= 29700000000 25700000000 O
U513 0 e R
Us14 0 Coe= 0 % o 0
Us15 0 L <= 0 0o 0
U516 0 <= 0 j 0 0
usi7 0 R 0 0 0 |
U518 0 : <= D ; 1] 0 !
usly 0 <= 29700000000 | 29700000000 0
Ul | 0 | <= 7 35640000000 3.564.000,0000 0
U62 0 = 0 ‘ 0 0
Us3 0 L <= 0 | o o
Us4 0 <= 14850000,0000 1148500000000 0 |
Uss 0 <= 2970000,0000 | 2.970.000,0000 0
U6 0 <= 0 0 0
67 0 <= 0 0 0
Us8 0 <= | 29700000000 | 25700000000 O
Us9 0 k= 0 «o 0



A 2. Optimal solution table for simplified problem(continued)

90

Solution | Unit Cost or | Total Reduced Basis
' Value i Profit e( Coniribution Cost . Status
3 0 <= 5940000,0000 | 5940000,0000 ¢ O
! 0 <= 8316000,0000 | 8.316.000,0000 6
; 0 <= 124740000000 |1247400000000 0
] 0 <= 14850000,0000 |1485000000000 O
0 <= 11.880000,0000 |11.880.000,0000, O
35467120000 | <= 172260000000 | 86792880000 O
| 0 <= 33640000000 | 33640000000 O
“ . 0 P 0 ; - d WH’HHTM 0, B
/41580000000 | <= 41580000000 | 0 | 9740000




Solution | UnitCostor: Total :  Redured. Basis
Value Profitc() | Contribution Cost Status |
0 1.068,0000 0 5270000 | atbound
1.245810,0000: 1.183,0000 : 1.473.793.000,0000 : : a basic

301.961,0000 | 7750000 234 019.200,0000 0 basic

U
1.033,0000

0 5380000 o Ush00 " et bound
023220000 | 682,000 67 gsga0,0000 D basic
505.087,0000  1.750,0000 852477 200,0000 basic

0 2.491,0000 0
= e
IS S B e
1594 52)0000 1:863,0000 " 2671 205 000,000 basic
1108.032,0000 1.750,0000 : 1935 566 00,0000 - basic
741926,0000 | 1.625,0000 | 1.205,630.000,0000 D basic
0 300 000000 0 | 81030000 | ot bound

Function




A 3. Optimal solution table for sub problem l(continued) =
i LeftHand {  RightHand Stack Shadow
Constraint Side Direction _ Side or Surplus _ Price
Bursa 22148430000 <= 22148480000 i 0 12000000
Codu 471063300000 <= 4.710 633,000 1o
Adepezeri 509.987,0000 = 500 987,0000 0 | 1.750,0000
S {24500 Taassingd 6 e ey
Bilecik : 301561,0000 | 5= 01561,0000 | 0 '1.984,0000 |
Bolu | 757.830,0000 = 757 830,0000 0 . 1.875,0000 :
Burse |2.163.547,0000;  >= 2.163.547,0000 0 1,853,000
Canakiale  1.106§038,0000i = 1.106.038,0000 0 "'1750,0000
Izmit  : 741.926,0000 P 741 926,0000 0 1.625,0000
 Yslova | 98380000 >= | DBABJNON0 . 018970000
Rl S = R Pt S
B T L smooomn | agamoons o0
UI3 | 301961,0000 <= 5940000,0000 : 56380390000 O
‘Ul 0 <= 1782000,0000 | 17820000000 ©
U15 ¢ 558.595,0000 <= 178200000000 172513000000 O
....... S Rt SRS W oo e I
7 0 <= 5540000000
...... i - i A i
U2l 5099870000 ¢ <= | 5940000,0000 © 54300130000 O
U2 0 S 59400000000 : 5540000,0000 ¢ O
ipx) 8 <= 5540000,0000 | 5.640.000,0000 ¢
U2 111060320000 <= 5940000,0000 : 42339620000 O
U27 | 7419260000 <= 5940000,0000 : 51980740000 O
o : e : o s

92



A 4, Optimal solution table for sub problem 2

Decision | Solution | UnitCostor: Total . Reduced
Verable .~ Value . Proftc() = Contdbution = Cost
Lo 0 . BR7S0000 0 o ;630000 oo
"""" X12 a . 5.500,0000 : 0 © 63,0000

X4 a ' 5313,0000 °

x5 0 . 4.500,0000

%o 6.500,0000
f : 53130000 |

86250000

at baund |

¢ at hound

: . 755.011.000,0000
| 5.125,0000 @ 244.031.100,0000 |

0
: 0

¥25 3561230000 : 4313,0000 . 1.535959.000,0000 0 . basic
i
a

X26 ; 2%9.915,0000 ; 63130000  1830.240.000,0000
¥27  :2140357,0000; 51250000 : 10.969.330.000,0000:

Function | (Miny= | 20.329.750.000,0000




Shadaw
Price

-187,0000

Artvin | 226.043,0000 >= 226.043,0000 ] 8.212,0000 .
Bayburt 2877140000 >= 287 714,0000 0 54370000
Giresun | 408.193,0000 >= 408.193,0000 0 142500000

Bshane’ 154.589,0000 164,689,000 0 5.312,0000

356.123,000

£ 4.500,0000 -

‘fabzon ;21403570000 >

" 20701000,0000 o

Ut . 0 <=

2.970.000,0000

2,970,000,0000

2570.000,0000

2970.000,0000

0
12747633,0000; O
1297000000000 O

15 2.970.000,0000

o . 0 &= 2570000,0000  : 2970,000,0000
e R et et B
U2l | 2260430000 <= 25700000000 2.743957,00000 O

U2z | 2877140000 <= 29700000000 268228600000 O

U23 | 1858260000 <= 25700000000 278417400000 @

124 164.589,0000

289.916,0000

U27 21403570000 <=

2.970.000,0000

© 820.643,0000

[ ]

94



Decision | Solution ; Unit Cost ar Tatal . Reduced ©  Basis
Variable |  Value Profit o)) Contribution | Cost i Status

%1l 154.433,0000 2.875,0000 : 473.883.500,0000 0 : basic
X12 £96.902,0000 : 2.875,0000 :2.572.593.000,0000: a ¢ basic
X210 12.535505,0000; 1.114,0000 2.824.654.0[10,DUUD§ 0 hasic

1.830.114.000,0000 basic

7.706.250.000,0006

: ‘ : Shadow
Constraint Side Direction Side : orSurplus : Price

Cotlu §1.061.385,U!;l90 <= 1.061.385,0000 0 0

Izmir  4317.596,0000; <= 43175960000 0 -1761,0000;

Inmic  27000790000;  >= 27000750000 = D | 2.275,0000
Manisa : 2.678502,0000 : :

7.128.000,0000

53460000000 281040400000 D
1.782.000,0000 0 . 87,0000

1.782.000,0000




Decision | Solution | UnitCastor
Variable Vaue Profitc()
X1 D ©1.884,0000
X12 0 1.5630000 - 0 0
X131 457127,0000 : 1.5630000 = 714489.5000000 0 tasic |
............................... T i T P BNt
S S gt o e
X2  i29314960000° 3750,0000 1099311000000000 O
X2 | 5765080000 : 3.875,0000 : 2.234356.000,0000 0
X231 | 1977980000 | 3.875,0000 : 7664673000000 - D
| 41250000 : 34448200000000 O
s S ssaons assmgeon 1999555000080 0 beds
1468000000000
g

orSurplus |

457.127,0000 0 2312p000!
Coru 5081.562,0000 50815620000 o 0
Adena (29314960000  >= 2.931.496,0000 037500000
Keysed | 5766080000 |  >= | 576602,0000 032750000
wg eassom = gm0 amsom
Osmeniye 8351080000 . >= €351030000 | 0 41250000
""" Sivas | 5405520000 . >= 5405520000 O 3688,0000
Ul 293149600000 <= 29700000000 325040000 @ O
Uiz D L k= 47520000000 475200000000 O
457.127,0000 | 47520000000 42948730000 O

129700000000 O
S Arsapomnm 752000000 0
1293149600000 <= 25700000000 © 333040000 0 O
U22 | 5766080000 | <= 29700000000  2393392,0000 O
U3 | 1977980000 @ <= 29700000000 277220200000 O
U24 | €351080000 . <= 29700000000 213420200000 O
U25 | 5405520000 ¢ <= 29700000000 242044300000 O
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