

DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

AN AGENT DESIGN AND IMPLEMENTATION

USING XML AND RDF TECHNOLOGY

by

Çağlar DURMAZ

May, 2006

İZMİR

AN AGENT DESIGN AND IMPLEMENTATION

USING XML AND RDF TECHNOLOGY

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Master of

Science in Computer Engineering, Computer Engineering Orientation Program

by

Çağlar DURMAZ

May, 2006

İZMİR

ii

M.Sc THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “AN AGENT DESIGN AND

IMPLEMENTATION USING XML AND RDF TECHNOLOGY” completed by

Çaglar DURMAZ under supervision of Prof.Dr. Alp R. KUT and we certify that in

our opinion it is fully adequate, in scope and in quality, as a thesis for the degree of

Master of Science.

Prof. Dr. Alp R. KUT

Supervisor

 Jury Member Jury Member

Prof.Dr. Cahit HELVACI

Director

Graduate School of Natural and Applied Sciences

iii

ACKNOWLEDGMENTS

I would like to thank my supervisor, Prof. Dr. Alp KUT for his guidance

throughout my study. I would also like to thank Tevfik AKTUĞLU for suggesting

such a nice subject for my study.

Especially, I would like to express my gratitude to my family for their great

supports, encouragements, and helps throughout my study.

Çağlar DURMAZ

iv

AN AGENT DESIGN AND IMPLEMENTATION USING XML AND RDF

TECHNOLOGY

ABSTRACT

Firms basically meet their software requirements in two forms. First one is to

meet the software requirements as the need of software solution arises. Second one is

to meet requirements by getting an overall solution proposing software in one time.

First method usually causes a need of integrations among software systems. Second

method causes frequent customizations as the needs of firm changes.

This study proposes a solution for integrations and customizations of software

systems. It aims to present a solution model for bettering the inter business processes.

The model is based on the agent paradigm. As to this model, basically the inter

business actors are determined. Agents, representing these actors, are created.

Proposed model does not present an overall solution. The model wraps the present

applications in firms. It aims to increase the benefits of the present systems and their

rightly usages according to the evolving needs.

In this direction this model is implemented for a firm in production sector. The

system getting developed for the firm aims to speed up the production planning

processes.

Keywords: agent, multi-agent system, agent based workflow management system,

agent based process management system.

v

AJAN TASARIMI VE XML VE RDF TEKNOLOJİLERİNİ

KULLANARAK UYGULANMASI

ÖZ

Firmalar temel olarak yazılım gereksinimlerini iki şekilde karşılarlar. İlki, yazılım

ihtiyacı doğduğunda yazılım gereksinimini karşılamaktır. İkincisi, genel çözüm

sunan yazılımı bir kere alarak gereksinimleri karşılamaktır. İlk metot, yazılım

sistemleri arasında entegrasyon ihtiyacına sebep olur. İkinci metot, firmanın

ihtiyaçları değiştikçe sık uyarlamalara sebep olur.

Bu çalışma, yazılım sistemlerinin entegrasyonu ve uyarlamaları için bir çözüm

önermektedir. İşletme içi süreçlerin iyileştirilmesi için bir çözüm modeli sunmayı

amaçlamaktadır. Bu model ajan paradigmasına dayanmaktadır. Bu modele göre,

temel olarak işletme içi aktörler belirlenir. Bu aktörleri temsil eden ajanlar yaratılır.

Önerilen model toplu bir çözüm sunmaz. Model firmalardaki var olan

uygulamaları sarar. Model, gelişen ihtiyaçlara göre hali hazırdaki sistemlerin

faydalarını ve doğru kullanımlarını arttırmaya çalışır.

Bu doğrultuda model üretim sektöründeki bir firma için uygulanmıştır. Firma için

geliştirilen sistem, üretim planlama süreçlerini hızlandırmayı amaçlamaktadır.

Anahtar Sözcükler: ajan, çoklu ajan sistemi, ajan tabanlı iş akış yönetim sistemi,

ajan tabanlı süreç yönetim sistemi.

vi

 CONTENTS
Page

THESIS EXAMINATION RESULT FORM...ii
ACKNOWLEDGEMENTS ..iii
ABSTRACT ..iv
ÖZ...v

CHAPTER ONE - INTRODUCTION...1

1.1 Workflow Management and Agents..3

1.2 Implementation Framework for APMS ...4

1.3 The Aim of The Study ..4

CHAPTER TWO - LITERATURE REVIEW..6

2.1 Agents and Multi-Agent Systems..6

2.1.1 The Peer-to-Peer model..7

2.1.2 Complex Systems ..9

2.1.3 The Agent Paradigm ..10

2.1.4 Current Phase of Multi-Agent Systems ..13

2.1.5 Summary of Agent Paradigm ...14

2.2 Workflow and Workflow Management Systems14

2.3 Agent-Based Process Management Systems ...17

2.3.1 Agent-Enhanced Workflow Management...18

2.3.2 Agent-Based Workflow Management ..19

2.4 Critics About Agent-Based Workflow Management Systems....................21

CAHPTER THREE - REFERENCE TECHNOLOGIES25

3.1 FIPA...25

3.1.1 FIPA Abstract Architecture..26

3.1.2 Agent Management Reference Model ..26

3.1.3 Message Structure..28

3.1.4 FIPA-Request-Protocol ..29

3.1.5 Message Transport...30

3.2 Resource Description Framework (RDF) ..32

vii

3.2.1 Modeling ...33

3.2.2 Making Statements about Resources ..35

3.2.3 RDF/XML Syntax..36

3.2.4 Ontology..37

3.3 JADE (Java Agent DEvelopment Framework)..37

3.3.1 JADE Overview...39

3.3.2 Behaviours...40

3.3.3 Structure of A JADE Message..43

3.3.4 Interaction Protocols ..45

CHAPTER FOUR - SYSTEM SOLUTIONS FOR BUSINESS PROCESSES

...48

4.1 Problem Definition ...48

4.2 Analysis of Workflows ...49

4.3 Analysis of Legacy Systems ...50

4.4 Solution Model: Agent Based System...52

4.5 A Method For Pre-Designing A Workflow for Agent Based Systems54

4.5.1 Step-1 Define The Name of The Process..55

4.5.2 Step-2 Define Actors..55

4.5.3 Step-3 Duties of Each Agent ..55

4.5.4 Step-4 Define Relationships Among Actors55

4.5.5 Step-5 Define Data Structure of Messages Delivered Among Agents. 55

4.5.6 Step-6 Define Each Agent’s Goal In The Workflow...........................56

4.5.7 Step-7 Define Computing Steps Taken In Agents...............................56

CHAPTER FIVE – A SIMPLER FRAMEWORK FOR AGENT BASED

SYSTEMS...57

5.1 Framework Elements ..58

5.2 Details of SADE Framework ..59

5.2.1 Execution Steps of SADE Behaviours..62

5.2.2 SADE Behaviour and Step Class Diagrams..64

viii

CHAPTER SIX - PRODUCTION PLANNING APPLICATION..................71

6.1 Fan Coil Order Declaration Process ..72

6.1.1 Step 1, Defining Process ..73

6.1.2 Step 2, Defining Actors..74

6.1.3 Step 3, Duties of Each Agent ...74

6.1.4 Step 4, Relationships Among Actors ..75

6.1.5 Step-5,Defining Data Structure Messages Delivered Among Agents .75

6.1.6 Step 6, Goals of Agents..83

6.1.7 Step 7, Defining Computing Step Taken In Agents:83

6.2 Fan Coil Order Cancellation Process...95

6.3 Fan Coil Product Number Query Process..96

6.4 Reordering Materials Process ...97

CHAPTER SEVEN- CONCLUSION..98

1

CHAPTER ONE

INTRODUCTION

Firms meet their software needs in two main forms. First one is purchasing

several software programs, which are designed for specific domains, as the need of

software arises. Second is purchasing a software solution, which meets almost all of

the needs in an ordinary firm, at once.

As to their requirements, a lot of firms buy several software programs in different

times. These software programs are usually ongoing their functions separately

without being aware of each other. In fact, these software programs are the pieces of

one big system. These programs actually provide data input and output to each other,

but they are not interconnected. Because software solutions are demanded in

different times by different groups, no connection could be found. These connections

are provided in several ways by the company workers manually.

Besides, in present days a lot of firms have MRP/ERP system solutions. These

systems are tried to settle in the firm at once. This case arises because of the natural

necessity of these systems. They have a lot of aims such as resource planning,

production and process tracking, purchasing, and marketing. However, accountancy

departments get benefited of MRP/ERP systems most. Other departments such as

production, purchasing, marketing departments can not get the required return as

expected. These systems present not specific but a general solutions for the systems

of firms. Therefore, the software must be customized to the firm. The customization

efforts are often disappointing. This disappointment happens sometimes because of

the software itself, sometimes because of the customization team and sometimes

because of both. Even if, the software solutions are implemented into the firm

perfectly, some changes will be needed because the firms are in dynamic

environments and the needs of them are changing, evolving continuously.

2

Integration and customization needs will exist forever for the firms. Because

remarkable amount of time and money have already been spent for legacy systems

(A legacy system is an existing computer system or application program which

continues to be used because the organization does not want to replace or redesign

it.), legacy systems in firms can not be replaced by other new solutions easily.

Instead, new solutions can wrap legacy systems and so new abilities can be added

into the system without throwing them into trashcan. Legacy systems are also

reliable systems for the workers of the firm. They are reliable because these systems

have been tested for a long time. Besides that, workers always like to work in the

way they are familiar.

This study proposes a solution for integrations and customizations of software

systems. It aims to present a solution model for bettering the inter business systems.

The model is based on the agent paradigm. Briefly, this model offers that the inter

business actors are determined and agents, presenting these actors, are created.

This study suggests using software agents to meet dynamic software needs of

firms. Agents can be defined to be autonomous, problem-solving computational

entities capable of effective operation in dynamic and open environments. They have

ability of being wrapper around systems. Agents can use the abilities of legacy

systems and interact with other agents which use abilities of other domain systems.

For example, assume a firm in which a simple MRP software and purchasing

software are used separately by production and purchasing departments. To integrate

these two systems would be more economic than purchasing a bigger software

solution and implementing it. This integration can be realized by wrapping two

systems with two agents and letting agents to communicate each other to act like one

big system. This ability and other abilities of agents are introduced in chapter two.

The new paradigm of agent paradigm, multi-agent systems, and current phase of

multi agent systems are also discussed in chapter two.

3

1.1 Workflow Management and Agents

Workflow management is a promising technology aiming at the automation of

business processes to improve the speed and efficiency of an organization. In recent

years, workflow management systems (WfMS) have been widely used in business

process controlling and monitoring. With the increased complexity, uncertainty and

risk in business operations, there is an increased demand on flexible and dynamic

workflow management (Chung & his friends, 2003).

A workflow management system (WfMS) is the software that automates the co-

ordination and control of tasks during business process execution. The workflow

approach helps to separate the business logic represented by business process from

the underlying information systems that support the process. This separation allows

business processes to be designed without requiring major changes to be made to the

underlying computing infrastructure (O’Brien & Wiegand, 1998). The success of

workflow paradigm is based on its ability to support modeling, simulation,

automated execution, and monitoring of processes in an environment that is

distributed, heterogeneous, and only partially automated. While workflow

technology has seen an explosion of interest and advances in recent years, numerous

technical challenges have been addressed to provide flexible workflow management

systems required by complex and dynamic application domains (Chung & his

friends, 2003).

If a good system design based on agents is accomplished and every step of a

process is taken by agents, this leads the agent based system to be an Agent Based

Process Management System (APMS). In this scenario, the whole business process is

formed by the pieces of sub-networks within those agents. The process logic is

embedded in the agents, rather than being explicitly represented in a centric module.

(A traditional WfMS has a centric module that contains the logic of the process.)

Thus a central workflow engine is unable to get all the information of the whole

business process in order to control it. A more likely solution is to have one

4

workflow engine residing in each organization or unit. Through interactions among

the multiple workflow engines the whole business process is fulfilled.

This study suggests that integrations among application domains should be

implemented by agents if automation of processes in firms is desired. This

automation won’t be designed at one time. This will start with two communicating

agents solving a basic problem. The third one is included when another problem is

desired to be solved with agents and this will goes on till a whole process is

implemented. Any agent can’t have a full knowledge of the process but there is a big

and modular knowledge about the business processes in this system. The modularity

comes from the ability of changing of the way of problem solving inside an agent

without any change in other agent domains. So that, the policies and/or goals of firm

can be added, discarded and changed easily.

1.2 Implementation Framework for APMS

This study does not only introduce a model for interacting legacy systems and

establishing a process management system, it also presents an implementation

framework, which is called SADE (Simple Agent Development Environment), for

Agent Based Process Management Systems. SADE framework is introduced in

chapter five. In this implementation framework, several other frameworks and

standards are used. These are FIPA standards, Jade framework, RDF and Jena

framework. Chapter three gives an overview on these technologies.

The Foundation for Intelligent Physical Agents (FIPA) standard is a standard for

developing and setting computer software standards for heterogeneous and

interacting agents and agent-based systems. Jade (Java Agent Development

Environment) is a robust and efficient middle-ware for "agent" systems. It complies

with the FIPA specifications. Resource Description Framework (RDF) is a good

choice for message content language for messages sent among agents. Resource

Description Framework (RDF) is a family of specifications for a metadata model that

is often implemented as an application of XML. Jena is a Java framework for

building Semantic Web applications. It provides a programmatic environment for

5

RDF, RDFS (RDF Schema) and OWL (Web Ontology Language), including a rule-

based inference engine. Jena is used in SADE framework. Because Jena is

straightforward tool, it won’t be mentioned anymore in this study. Anyone can apply

to the web address of Jena, (http://jena.sourceforge.net/), for further information.

In chapter six, workflows about production planning are going to be implemented

by SADE framework. The system of an organization in sector HVAC (heating,

ventilation and air-conditioning) is examined for this study. Fan coil department of

the organization uses a simple program working on MS Access. (Fan Coil is an

indoor component of a heat pump system, used in place of a furnace, to provide

additional heating on cold days when the heat pump does not provide adequate

heating.) This simple desktop program is used for production planning. SADE

framework will wrap the abilities of this program and connect it with the other

legacy systems and departments of the firm. The multi-agent system getting

developed for the firm, aims to speed up the production planning processes.

1.3 The Aim of The Study

This study aims to present a solution model for integrations and customizations of

software systems and bettering the inter business systems. The model is based on the

agent paradigm. Briefly, this model offers that the inter business actors are

determined and agents, presenting these actors, are created.

This study does not only introduce a model for interacting legacy systems and

establishing a process management system, it also presents an implementation

framework, which is called SADE (Simple Agent Development Environment), for

Agent Based Process Management Systems. Also an application system about

production planning is implemented by using SADE.

6

CHAPTER TWO

LITERATURE REVIEW

This chapter reviews the major concepts, agent paradigm and multi-agent systems,

and related literature about integration of software applications in the subject of

workflow management.

2.1 Agents and Multi-Agent Systems

Agent based system is a collection of autonomous computational elements,

independent programs (hereafter we will refer to these elements as agents) that

perform collective behaviour in order to meet either their individual goals. Agents

can be defined to be autonomous, problem-solving computational entities capable of

effective operation in dynamic and open environments. Agents are deployed in

environments in which they interact, and sometimes cooperate, with other agents

(including both people and software) that have possibly conflicting aims. Such

environments are known as multi-agent systems.

Agent paradigm is based on the agent abstraction, a software component that is

autonomous, proactive and social (Bellifemine, Caire, Poggi, Rimassa, 2003):

• Autonomous: agents have a degree of control on their own actions, they own

their thread of control and, under some circumstances, they are also able to

take decisions;

• Proactive: agents do not only react in response to external events (i.e. a

remote method call) but they also exhibit a goal-directed behaviour and,

where appropriate, are able to take initiative;

• Social: agents are able to, and need to, interact with other agents in order to

accomplish their task and achieve the complete goal of the system via some

kind of agent communication language.

7

Agents can be distinguished from objects (in the sense of object-oriented

software) in that they are autonomous entities capable of exercising choice over their

actions and interactions, and may act to achieve individual objectives. They are able

to exercise autonomy by choosing how to perform the tasks assigned to them or by

deciding on operational tasks to satisfy user objectives. More importantly, they make

these choices in the context of dynamic environments in which they are deployed.

Agents cannot, therefore, be directly invoked like objects but can be assigned tasks

by their owners. Nevertheless, they may be constructed using a wide range of

technologies, including object technology, Web Services and others. (Luck,

McBurney, Shehory & Willmott , 2004)

2.1.1 The Peer-to-Peer model

A clarification of the proper model, peer-to-peer, for the realization of multi-agent

system may be beneficial at this stage.

“Client-Server” (C/S) is the reference model, well-known and widely-diffused, for

distributed applications. The model is based on a rigid distinction of roles between

the client nodes (resource requester) and the server nodes (resource providers). The

server nodes provide the services, more in general the capabilities of the distributed

system, but they are not capable of taking any initiative as they are fully reactive and

they can just wait for being invocated by the client nodes. Client nodes, as opposite,

concentrate all the initiative of the system: they access and use the services, typically,

but not necessarily, upon user requests, but they do never provide any capability.

Clients can appear and disappear at any time; generally, they have dynamic

addresses, while servers must typically provide some guarantees of stability and

generally listen to a well-known and static address. (Bellifemine, Caire, Poggi &

Rimassa, 2003)

Clients communicate with the servers, but they cannot communicate with other

clients. On the other hand, server can not communicate with their clients until the

clients have taken the initiative and decided to activate a communication session with

the server.

8

In the peer-to-peer model, in fact, there is no more any distinction of roles and

each peer is capable of a mix of initiative and capability: each node can initiate the

communication, be subject or object of a request, be proactive, provide capabilities;

the application logics is no more concentrated on the server but distributed between

all the peers of the network; each node is capable of discover each other, it can enter,

join or leave the network anywhere anytime. The system is fully distributed as well

as the value of the service is distributed across the network and new business models

might be enabled. (Bellifemine, Caire, Poggi & Rimassa, 2003)

An important consequence of the differences between the 2 models is the way the

nodes can be discovered. In the C/S systems, clients must know their servers but they

do not need to know other clients (of course, given that client-to-client

communication is never expected to happen). In P2P systems, who-knows-whom is

fully arbitrary and the system must provide proper services that allow peers to enter,

join, or leave the network at any time as well as to search and discover other peers.

These services are usually the white and yellow page mechanisms that allow

publishing and discovering the features and the services offered by a peer. On the

basis of the implementation of these mechanisms, two basic P2P network models can

be identified (see figure 2.1): pure P2P networks (also called decentralized), and

hybrid P2P networks (also called with central index). A pure P2P network is fully

decentralized and the peers are fully autonomous. The absence of any reference node

makes more difficult to maintain the coherence of the network and the discovery of

the peers, with a complexity and bandwidth that tends to grow exponentially with the

number of nodes. Also security is quite demanding as each node is entitled to join the

network without any control mechanism. The hybrid architectures, instead, are based

on a special node that provides a service that simplifies the look-up and discovery of

the active peers, their list of capabilities, and their list of provided services. These

types of networks, usually, generate less traffic and are more secure as they tend to

require so the registration and authentication of the peers. On the other hand, their

functioning depends on the availability of the index nodes that might become a

central point of failure and attack. (Bellifemine, Caire, Poggi & Rimassa, 2003)

9

Figure 2.1 Client/Server (left), pure P2P (right), hybrid P2P (centre)

2.1.2 Complex Systems

Modern software and technological systems are among the most complex human

artifacts, and are ever-increasing in complexity. Some of these systems, such as the

Internet, were not designed but simply grew organically, with no central human

control or even understanding. Other systems, such as global mobile satellite

communications networks or current PC operating systems, have been designed

centrally, but comprise so many interacting components and so many types of

interactions that no single person or even team of people could hope to comprehend

the detailed system operations. This lack of understanding may explain why such

systems are prone to error.

Whether such complex, adaptive systems are explicitly designed or not, their

management and control is vitally important to modern societies. Agent technologies

provide a way to conceptualize these systems as comprising interacting autonomous

entities, each acting, learning or evolving separately in response to interactions in

their local environments. Such a conceptualization provides the basis for realistic

computer simulations of the operation and behaviour of the systems, and of design of

control and intervention processes (Bullock & Cliff, 2004). For systems that are

centrally designed, such as electronic markets overlaid on the Internet, agent

technologies also provide the basis for the design and implementation of the system

itself. Indeed, it has been argued that agent technologies provide a valuable way of

10

coping with the increasing complexity of modern software systems (Zambonelli &

Parunak, 2002), particularly the characteristics of pervasive devices, ambient

intelligence, continuous operation (allowing no downtime for upgrades or

maintenance), and open systems.

2.1.3 The Agent Paradigm

Agent-based systems technology has generated lots of excitement in recent years

because of its promise as a new paradigm for conceptualizing, designing, and

implementing software systems. This promise is particularly attractive for creating

software that operates in environments that are distributed and open, such as the

internet (Sycara, 1998).

Most researchers in AI to date have dealt with developing theories, techniques,

and systems to study and understand the behavior and reasoning properties of a

single cognitive entity. AI has matured, and it endeavors to attack more complex,

realistic, and large-scale problems. Such problems are beyond the capabilities of an

individual agent. The capacity of an intelligent agent is limited by its knowledge, its

computing resources, and its perspective (Sycara, 1998).

The most powerful tools for handling complexity are modularity and abstraction.

Multi-agent systems (MASs) offer modularity. If a problem domain is particularly

complex, large, or unpredictable, then the only way it can reasonably be addressed is

to develop a number of functionally specific and (nearly) modular components

(agents) that are specialized at solving a particular problem aspect. This

decomposition allows each agent to use the most appropriate paradigm for solving its

particular problem. When interdependent problems arise, the agents in the system

must coordinate with one another to ensure that interdependencies are properly

managed. Furthermore, real problems involve distributed, open systems. An open

system is one in which the structure of the system itself is capable of dynamically

changing. The characteristics of such a system are that its components are not nor

known in advance; can change over time; and can consist of highly heterogeneous

agents implemented by different people, at different times, with different software

11

tools and techniques. Perhaps the best-known example of a highly open software

environment is the internet. The internet can be viewed as a large, distributed

information resource, with nodes on the network designed and implemented by

different organizations and individuals. In an open environment, information sources,

communication links, and agents could appear and disappear unexpectedly.

Currently, agents on the internet mostly perform information retrieval and filtering.

The next generation of agent technology will perform information gathering in

context and sophisticated reasoning in support of user problem solving tasks (Sycara,

1998).

A MAS can be defined as a loosely coupled network of problem solvers that

interact to solve problems that are beyond the individual capabilities or knowledge of

each problem solver (Durfee & Lesser 1989).

The characteristic of MASs are that (1) each agent has incomplete information or

capabilities for solving the problem and. thus, has a limited viewpoint; (2) there is no

system global control; (3) data are decentralized; and (4) computation is

asynchronous (Sycara, 1998). The motivations for the increasing interest in MAS

research include the ability of MASs to do the following:

First is to solve problems that are too large for a centralized agent to solve

because of resource limitations or the sheer risk of having one centralized system that

could be a performance bottleneck or could fail at critical times.

Second is to allow for the interconnection and interoperation of multiple existing

legacy systems. To keep pace with changing business needs, legacy systems must

periodically be updated. Completely rewriting such software tends to be prohibitively

expensive and is often simply impossible. Therefore, in the short to medium term,

the only way that such legacy systems can remain useful is to incorporate them into a

wider cooperating agent community in which they can be exploited by other pieces

of software. Incorporating legacy systems into an agent society can be done, for

12

example, by building an agent wrapper around the software to enable it to

interoperate with other systems (Genesereth & Ketchpel 1994).

Third is to provide solutions to problems that can naturally be regarded as a

society of autonomous interacting components agents. For example, in meeting

scheduling a scheduling agent that manages the calendar of its user can be regarded

as autonomous and interacting with other similar agents that manage calendars of

different users (Garrido & Sycara 1996).

Fourth is to provide solutions that efficiently use information sources that are

spatially distributed. Examples of such domains include sensor networks (Corkill &

Lesser 1983), seismic monitoring (Mason & Johnson 1989), and information

gathering from the internet.

Fifth is to provide solutions in situations where expertise is distributed. Examples

of such problems include concurrent engineering (Lewis & Sycara 1993), health

care, and manufacturing.

Sixth is to enhance performance along the dimensions of (1) computational

efficiency because concurrency of computation is exploited (as long as

communication is kept minimal, for example, by transmitting high-level information

and results rather than low-level data); (2) reliability, that is, graceful recovery of

component failures, because agents with redundant capabilities or appropriate inter-

agent coordination are found dynamically (for example, taking up responsibilities of

agents that fail); (3) extensibility because the number and the capabilities of agents

working on a problem can be altered; (4) robustness, the system’s ability to tolerate

uncertainty because suitable information is exchanged among agents; (5)

maintainability because a system composed of multiple components-agents is easier

to maintain because of Its modularity; (6) responsiveness because modularity can

handle anomalies locally, not propagate them to the whole system; (7) flexibility

because agents with different abilities can adaptively organize to solve the current

problem; and (8) reuse because functionally specific agents can be reused in different

13

agent teams to solve different problems. MASs are now research realities and are

rapidly having a critical presence in many human-computer environments (Sycara,

1998).

2.1.4 Current Phase of Multi-Agent Systems

Agent paradigm promises a lot of facilities for solving problems of complex,

integrated systems. Besides that, ready-made tools may not be considered to be

enough for some complex systems. And also designing methodologies for multi-

agents are not so mature.

Multi-agent systems are currently typically designed by one design team for one

corporate environment, with participating agents sharing common high-level goals in

a single domain. These systems may be characterized as closed. The communication

languages and interaction protocols are typically defined by the design team prior to

any agent interactions. Systems are usually only scalable under controlled, or

simulated, conditions. Design approaches, as well as development platforms, tend to

be ad hoc, inspired by the agent paradigm rather than using principled

methodologies, tools or languages. Although this is still largely true, there is now an

increased focus on, for example, taking methodologies out of the laboratory and into

development environments, with commercial work being done on establishing

industrial-strength development techniques and notations. As part of this effort, some

platforms now come with their own protocol libraries and force the use of

standardized messages, taking one step towards the short-term agenda.

It remains true that, for the foreseeable future, there will be a substantial

commercial demand for closed multi-agent systems, for two reasons. First, there are

very many problems that can be solved by multi-agent systems without needing to

deal with open systems, and this is where many companies are now realizing

business benefit. Second, in problems involving multiple organizations, agreement

among stakeholders on the objectives of the open system may not always be readily

achieved, and there may also be security concerns that arise from consideration of

open systems. While progress on Technologies for open systems will change the

14

nature of agent systems, the importance of closed, well protected systems must not

be underestimated.

2.1.5 Summary of Agent Paradigm

Agent paradigm presents a new view point for system designers. One of the

properties of complex, open systems is the existence of plenty actors in them. Every

actor has at least a goal and usually more then one goal. These goals usually conflicts

with each other. To find a solution in a traditional point of view like designing

system via object oriented software, would not represent the real system. If

traditional way is chosen, the system would always tend to take actions in several

same ways. The environmental changes may not be simulated as good as agent

systems. And also to put a new goal into the system is so painful in traditional way.

There will be a suspicious about whether if all the aspects may be considered or not.

On the contrary, agent paradigm provides modularity. A new goal is placed into

system without so much worry. Agent systems force the system designers to define

the environment, actors, and goals of actors at the beginning of projects.

2.2 Workflow and Workflow Management Systems

Although many organizations have adapted the Information Technology (IT) to

improve their working efficiency, the business processes within their organizations

and their partners have not been clearly described and solved. During the execution

of business processes, there are not enough techniques and methods to follow-up and

control the processes. This leads to the misunderstanding of responsibilities.

Workflow management technology tries to overcome these shortcomings. It

promises to provide an efficient way to model and control the complex business

processes within and between organizations.

A workflow is a composite activity consisting of tasks involving a number of

humans, databases, and specialized applications (Hubns & Singh 1998). Workflow

refers to group activity automation by task sequencing and information routing

(Takeda, Inaba & Sugiara, 1996) .Thus, workflow is a collection of tasks organized

15

to accomplish some definite business processes. An activity can be performed by one

or more software systems, one or a team of human, or a combination of them

(Turoff, Hiltz, Bieber, Fjermestad & Rana, 1999). This definition applies the

workflow concept to automate business processes. Workflow management involves

the (re)design and the (re)implementation of workflows as the needs and the goals of

an enterprise.

The production management system used by most of today’s manufacturers

consists of a set of separate application softwares, each for a different part of the

planning, scheduling, and execution processes (Vollmann, 1992).

Workflow is the implementation and automation of a particular business process.

A Workflow Management System (WMS) is the software which automates the co-

ordination and control of tasks during business process execution (Workflow

Management Coalition, 1996).

Different WMS exist to suit different types of business process; these have been

classified into administrative, ad hoc, production and collaborative workflow (Sheth,

1995):

• Administrative workflow systems involve repetitive, predictable processes

with simple task co-ordination rules. Examples of administrative workflows

would be routing documents with in an organization, which involves

standardized tasks, tightly linked, and performed regularly.

• Ad hoc workflow systems involve more human co-ordination where both

process and information are relatively unstructured. An example would be a

sales process which can be relatively unstructured and which becomes

structured during the execution of the business process. In a sales process

decisions can be made during its execution which will determine subsequent

tasks. Ad hoc workflow systems rely heavily on human involvement in

controlling and coordinating tasks.

16

• Production workflow systems handle complex business processes which are

more critical to an enterprise. These typically involve some form of

transaction processing and require accessing multiple information systems.

This would include processes such as customer handling and exception

handling processes.

• Collaborative workflow supports business critical processes which are less

structured and more suited to collaborative working technologies such as

Lotus Notes. This is where the group working technologies overlap with the

workflow market.

WMSs have certain limitations that need to be addressed. In commercial

environments decisions are not always clear cut but involve the balancing of various

vested interests and business policies, and resource levels can change. Such business

processes highlight a number of shortcomings in existing workflow management

systems (Trammel, 1996). They lack:

• Reactivity: workflow management systems require an a priori representation

of a business process and all potential deviations from that process.

• Semantics: many workflow management systems lack an appreciation of the

content of a business process and do not make decisions based on the nature

of the information generated by a business process.

• Resource management: workflow management systems do not control the

resourcing of a business process and so rely on a business process being

dimensioned beforehand.

• Heterogeneity: workflow management systems tend to take a centralized

view with a single workflow management engine that does not operate across

multiple-server platforms or multiple client operating systems.

Yan and his friends have added two lacks of WFMSs like below (Yan, Maamar &

Shen, 2001);

17

• Lack of automation: WFMSs only determine the process logic, but most of

the activities are still fulfilled by human. WFMSs can’t even start a workflow

without human’s intervention.

• Lack of generic interfaces: WFMSs need to exchange data between activities

or interface to other applications. Currently, these operations depend on API

calls. There should be some generic interfaces to eliminate the effort to

develop interfaces between WFMSs and other applications.

2.3 Agent-Based Process Management Systems

Integration of workflow and agent technology has recently attracted a lot of

attention of researchers in recent years. Agent-based Process Management Systems

(APMS) extend the automation of business process management beyond that covered

by WMS. The management of a business process can be viewed as consisting of

three stages: creation, provisioning and enactment (Jennings, 1996). The creation

stage is predominantly a manual activity which involves the analysis, modeling and

definition of the business process. The provisioning stage involves the assignment of

resource, including people, equipment, computing time, to support a business

process. This requires the negotiating, planning and scheduling to ensure that there is

sufficient resource to handle expected throughput of work for a given business

process. Lastly, the enactment stage involves the management activities required to

ensure that each instance of a business process is effectively executed. This includes

routing of work, passing of information, activation of automated activities, and the

handling of work lists (O’Brien & Wiegand, 1998).

Figure 2.2 Business process lifecycle

18

Existing workflow technology automates the enactment phase of the life-cycle.

APMS extend this into the automation of the provisioning stage of the life-cycle

model. Subsequently the dimensioning of business processes is brought on-line and

integrated with process enactment, resulting in improved re-deployment of resources

and increased flexibility during exception handling. Therefore, unlike WMS which

are focused solely on the enactment of process tasks, APMS have two objectives,

firstly, the timely execution of business tasks and secondly, the efficient use of

resources (O’Brien & Wiegand, 1998).

Applications of agents to workflow management systems can be classified into

two forms: agent-enhanced workflow management and agent-based workflow

management (Yan, Maamar & Shen, 2001).

2.3.1 Agent-Enhanced Workflow Management

Agent-enhanced workflow management is the basic form for application of agents

to workflow management (see figure 2.3). There is one central workflow engine,

which controls all the activities. Agents are invocated during the execution of one

work item to implement certain tasks. Workflow system controls the generation and

elimination of the agents. There are several things agents can achieve in this scenario

(Yan, Maamar & Shen, 2001):

• Human interface: it is part of the workplace environment the workflow

system provides to its user. The agent acts as a personal assist. Some typical

usages are sorting emails, replying email, reminding events, acquiring work

items. Example is A1 in figure 2.3.

• Autonomous activity: it implements the tasks autonomously without human’s

interruption. Example is A2 in figure 2.3.

• Interface to other applications: agent can provide interface to other

applications. Instead of defining API for application interoperation, semantic

messages can be defined to exchange high-level information. This is also a

direction for designing generic interface to applications.

19

Agents can carry out many tasks without human involvement. From the system

view, agent does not necessarily interact with each other. In fact, the workflow

engine controls their actions. The information exchanging is through workflow

engine. The workflow engine is responsible to create and eliminate the agents. The

agents in this scenario do not have to be “intelligent”. In most commercial WFMS

products, the agent is more like a piece of ordinary software like this scenario, e.g.

IBM WebSphere MQ Workflow (IBM, 2005) and InConcert (InConcert, 2000).

Figure 2.3 Agent Enhanced Workflow Management System

2.3.2 Agent-Based Workflow Management

An Agent-based workflow system is a distributed system consisting of multiple

agents (see figure 2.4). These agents are independent to each other and each is

responsible for process execution. In this scenario, the whole business process is

formed by the pieces of sub-networks within those agents. The process logic is

embedded in the agents, rather than being explicitly represented elsewhere (Yan,

Maamar & Shen, 2001).

20

Figure 2.4 Agent-based Workflow Management System

This scenario is quite interesting in real world; the business process is across

several units in a company or even spreads across several companies. Thus a central

workflow engine is unable to get all the information of the whole business process in

order to control it. Through interactions among the multiple workflow engines the

whole business process is fulfilled (Yan, Maamar & Shen, 2001).

Agents in this scenario take full responsibilities of a workflow management

system, which means agent has all the means to analyze, automate, integrate, and

inspect workflows. More important, agent should have means to communicate and

interact with each other. Besides that, agents’ high-level ability, such as learning,

negotiation, can add values to workflow system (Yan, Maamar & Shen, 2001).

Agents in this scenario should be much more complex than the first one. The main

features include: autonomous, communication, self-consistent, goal-oriented, and

react to environment. Other high-level features such as learning, negotiation are also

benefit. But since these techniques are not matured, these features are just promising

ones (Yan, Maamar & Shen, 2001).

The usage of agents in this scenario benefits workflow technology in the

following ways:

21

• Providing distributed system architecture. There are several system

architectures in multi-agent systems (Shen, 2000), which can be used in a

distributed system for implementing workflow management systems.

• Providing communication methods. Agent communication languages are

studied quite much. There are several communication languages based on

semantic messages, such as KQML. Theses languages can enable

interoperation of workflow systems, especially for the heterogeneous ones.

• Providing automation behavior. Agent has the ability to execute tasks on its

own without human involvement. Agent also has some decision power

according to its goal.

• Reacting to environment. Agent can adjust itself, for example, forming new

activity and new routing.

• Benefits of high level features. These high level features include learning,

negotiation, and planning. Though these features are not fully implemented

for industrial applications, they are what promising.

2.4 Critics About Agent-Based Workflow Management Systems

This study proposes a system which falls in Agent-Based Workflow Management

category because of the benefits listed in previous section. Nowadays, none

commercial products fall in this category. But several prototype systems exist in

research areas. Various system architectures are presented. ADEPT (Advanced

Decision Environment for Process Tasks) is an early architecture that focuses on

agent based workflow systems (Jennings, 1996). ADEPT focuses on the structure of

the agents and multi-agent systems like the frameworks of communication,

negotiations and protocols because ADEPT is improved early stages of multi-agent

systems. ADEPT does not contain so much design patterns on workflow

management but shows a guide line to researchers. Many researchers who are

interested in agent based process management systems mentioned the study of

ADEPT.

22

Dagenham (1998), presents an ad-hoc workflow system for processing

applications received by a university department from potential research students. In

his proposal, agents act as application agent, supervisor agent, control agent, and

admin agent. These agents delegate the functions of correspondent users. Another

routing agent is to mediate the communication between agents. Debenham’s system

has several components which do not exist in regular workflows. For example,

workers who are taking part in a workflow do not need another actor to communicate

each other.

Another kind of system architecture uses mobile agents (Budimac, 1999). Mobile

agent represents work item and the mobile agent takes care which of the path the

agent should go. On each node a server agent resides, which accepts mobile agents,

interface to user, invokes the function condition for each work item agent, and

prevent the work item idle in one node. This approach may be good solution if there

are a lot of tasks to be done at any time when the resources (humans or agents) are

not enough to carry the workload. If system does not contain so much workload, this

approach is much more complex than regular workflow systems. Design issues of

workflow will have more difficulties and this is not a favorable thing when dynamic

environment is considered. FIPA standard suggests using DF (Directory Facilitator),

which returns logical addresses of possible agents which supply desired service.

Afterwards the task assignment is accomplished by messaging with communicative

intentions with the agents. This approach is much closer to the peer-to-peer model.

The Council for the Central Laboratory of the Research Councils (CCLRC) is one

of Europe's largest multidisciplinary research organizations supporting scientists and

engineers world-wide. One of CCLRC’s departments, Business and Information

Technology Department (BITD), is studying at an agent based system called Pellucid

(A Platform for Organisationally Mobile Public Employees). Pellucid project is

concerned with knowledge management for public employees, specifically for those

who are organizationally mobile, moving from one department or post to another.

Pellucid is developing a customizable software platform for developing knowledge

management systems to aid such employees. It integrates several advanced

23

information technologies, including autonomous cooperating agents; responsive

interaction with the end-users; workflow and process modeling; organizational

memory; and metadata for accessing document repositories. The platform is a

prototype platform. A usable platform for commercial needs is not available yet. The

competences of the agent classes are as follows; personal assistant agents, shadow

personal assistant agents, environment tracking agents, role agents, task agents,

information search and access agents, monitoring agents. Personal assistant agents

are responsible of handling task initiation by employee; responding to requests for

information; presentation of information both spontaneously and on request. Shadow

personal assistant agents are responsible of memory of task performance by former

employees.

Environment tracking agents are responsible of tracking processes requiring

interaction with the external environment; feeding updates on environment into

workflow processes. Role agents are responsible of initiating and supervising tasks

within employees' broad roles; anticipation of employees' needs within their roles.

Task agents are responsible of generating, supervising and executing processes to

achieve particular tasks. Information search and access agents are responsible of

locating and retrieving information on request from diverse repositories. Monitoring

agents are responsible of monitoring communication and behaviour between

individual agents; detection of patterns and trends and storage in organizational

memory; dynamic modification of processes.

Concepts which are realized by personal assistant agent and role agents are

mandatory concepts for any agent based system. On the other hand, the aims of the

other agents except monitoring agent are confusing. Their functionalities can be

gathered in role agents. These are done by the employees in daily life of a firm.

There are not special employees who perform these functions. Thus, there is no need

for the special agents to follow these tasks. Supervisor who deals with system

performance can be represented by monitoring agent. This is a useful function.

However, it will be a hard work to build an agent like this. This can be achieved

easily via storing messages among agents in a central repository. Content language of

24

messages would be better if it has ability to represent knowledge; like RDF or OWL.

The framework presented in this study contains built-in content language in RDF.

RDF is especially chosen if any demand of knowledge representation of enterprise

arises after a while. Meanwhile the user is not pushed to use RDF. Any language can

be used with the framework.

Agent-enhanced workflow systems are widely adopted by commercial products,

while the agent-based workflow systems are still in prototypes in research

laboratories. However, the agent-based workflow systems are attracting more and

more attention for studying the interaction of multiple workflow systems, which are

the requirement of next generation of workflow systems.

25

CAHPTER THREE

REFERENCE TECHNOLOGIES

3.1 FIPA

The Foundation for Intelligent Physical Agents (FIPA) is a body for developing

and setting computer software standards for heterogeneous and interacting agents

and agent-based systems.

Mission of FIPA is “The promotion of technologies and interoperability

specifications that facilitate the end-to-end inter-working of intelligent agent systems

in modern commercial and industrial settings.”

Based on the first set of specifications released in 1997, at the end of 2002 FIPA

finally released the standard. The standard targets interoperability and, as a

consequence, it focuses on the external behaviour of the system components, leaving

open the implementation details and the internal architectures. FIPA, the standards

organization for agents and multi-agent systems was officially accepted by the IEEE

as its eleventh standards committee on 8 June 2005.

FIPA standard fully embraces the agent paradigm and, in particular, it defines the

reference model of an agent platform and a set of services that should be provided.

The collection of these services, and their standard interfaces, represents the

normative rules that allow a society of agents to exist, operate, and be managed.

Being agents social and needing to communicate, the Agent Communication

Language (ACL) is one of the main assets of the FIPA standard.

FIPA standard encapsulates standards dealing with agent platforms, interactions

between agents and agent platforms. The agent, itself, is outside of the scope of FIPA

standard.

26

FIPA specification establishes the logical reference model for the creation,

registration, location, communication, migration and retirement of agents. The FIPA

standard do not attempt to prescribe the internal architecture of agents nor how they

should be implemented, but it specifies the interface necessary to support

interoperability between agent systems. Because of this, FIPA specified the FIPA

Abstract Architecture not a concrete model.

3.1.1 FIPA Abstract Architecture

The primary focus of this FIPA Abstract Architecture is to create semantically

meaningful message exchange between agents which may be using different

messaging transports, different Agent Communication Languages, or different

content languages. This requires numerous points of potential interoperability. The

scope of this architecture includes:

A model of services and discovery of services available to agents and other

services, message transport interoperability, supporting various forms of ACL

representations, supporting various forms of content language, and, supporting

multiple directory services representations (Foundation For Intelligent Physical

Agents FIPA, 2002).

3.1.2 Agent Management Reference Model

Agent management provides the normative framework within which FIPA agents

exist and operate. It establishes the logical reference model for the creation,

registration, location, communication, migration and retirement of agents.

The entities contained in the reference model (see figure 3.1) are logical capability

sets (that is, services) and do not imply any physical configuration (FIPA, 2004a).

An agent is a computational process that implements the autonomous,

communicating functionality of an application. Agents communicate using an Agent

Communication Language. An Agent is the fundamental actor on an AP which

combines one or more service capabilities, as published in a service description, into

27

Figure 3.1 Agent Management Reference Model

a unified and integrated execution model. An agent must have at least one owner, for

example, based on organizational affiliation or human user ownership, and an agent

must support at least one notion of identity. This notion of identity is the Agent

Identifier (AID) that labels an agent so that it may be distinguished unambiguously

within the Agent Universe. An agent may be registered at a number of transport

addresses at which it can be contacted (FIPA, 2004a).

A Directory Facilitator (DF) is an optional component of the AP, but if it is

present, it must be implemented as a DF service. The DF provides yellow pages

services to other agents. Agents may register their services with the DF or query the

DF to find out what services are offered by other agents. Multiple DFs may exist

within an AP and may be federated (FIPA, 2004a).

28

An Agent Management System (AMS) is a mandatory component of the AP. The

AMS exerts supervisory control over access to and use of the AP. Only one AMS

will exist in a single AP. The AMS maintains a directory of AIDs which contain

transport addresses (amongst other things) for agents registered with the AP. The

AMS offers white pages services to other agents. Each agent must register with an

AMS in order to get a valid AID (FIPA, 2004a).

A Message Transport Service (MTS) is the default communication method

between agents on different APs.

An Agent Platform (AP) provides the physical infrastructure in which agents can

be deployed. The AP consists of the machine(s), operating system, agent support

software, FIPA agent management components (DF, AMS and MTS) and agents

(FIPA, 2004a).

3.1.3 Message Structure

The structure of a message is a key-value-tuple and is written in an agent-

communication-language, such as FIPA ACL. The content of the message is

expressed in a content-language. Content expressions can be grounded by ontologies

referenced within the ontology key-value-tuple. The messages also contain the

sender and receiver names, expressed as agent-names. Agent-names are unique name

identifiers for an agent. Every message has one sender and zero or more receivers.

The case of zero receivers enables broadcasting of messages such as in ad-hoc

wireless networks (FIPA, 2004a).

The FIPA ACL is based on the speech act theory and on the assumptions and

requirements of the agents paradigm described above. FIPA standardized an

extensible library of 22 communicative acts that allow representation of different

29

Figure 3.2 A Message

communicative intentions (FIPA, 2004a). These are; “Accept Proposal”, “Agree”,

“Cancel”, “Call for Proposal”, “Confirm”, “Disconfirm”, “Failure”, “Inform”,

“Inform If”, “Inform Ref”, “Not Understood”, “Propagate”, “Propose”, “Proxy”,

“Query If”, “Query Ref”, “Refuse”, “Reject Proposal”, “Request”, “Request When”,

“Request Whenever”, “Subscribe”. Ones which are used most are “Agree”,

“Refuse”, ”Inform”, and, “Request”.

FIPA also defined the structure of a message that allows representing and

conveying information useful to identify sender and receivers, the content of the

message and its properties (e.g. the encodings and the representation language), and,

in particular, information useful to identify and follow threads of conversation

between agents and to represent timeouts for the communication (FIPA, 2004a).

Common patterns of conversations have been also defined by FIPA, the so-called

interaction protocols, “FIPA-Request”, “FIPA-Query”, ”FIPA-RequestWhen”,

”FIPA-ContractNet”, “FIPA-IteratedContractNet”, “FIPA-AuctionEnglish”, “FIPA-

AuctionDutch”, “FIPA-Brokering”, ”FIPA-Recruiting”, “FIPA-Subscribe”, and,

“FIPA-Propose”.

3.1.4 FIPA-Request-Protocol

The FIPA Request Interaction Protocol (IP) allows one agent to request another to

perform some action. The Participant processes the request and makes a decision

whether to accept or refuse the request. If a refuse decision is made, then “refused”

30

becomes true and the Participant communicates a refuse. Otherwise, “agreed”

becomes true (FIPA, 2004b).

If conditions indicate that an explicit agreement is required (that is, “notification

necessary” is true), then the Participant communicates an agree. The agree may be

optional depending on circumstances, for example, if the requested action is very

quick and can happen before a time specified in the reply-by parameter (FIPA,

2004b). Once the request has been agreed upon, then the Participant must

communicate either:

• A failure if it fails in its attempt to fill the request,

• An inform-done if it successfully completes the request and only wishes to

indicate that it is done, or,

• An inform-result if it wishes to indicate both that it is done and notify the

initiator of the results.

Any interaction using this interaction protocol is identified by a globally unique,

non-null conversation-id parameter, assigned by the Initiator. The agents involved in

the interaction must tag all of its ACL messages with this conversation identifier.

This enables each agent to manage its communication strategies and activities, for

example, it allows an agent to identify individual conversations and to reason across

historical records of conversations (FIPA, 2004b).

3.1.5 Message Transport

When a message is sent it is encoded into a payload, and included in a transport-

message. The payload is encoded using the encoding-representation appropriate for

the transport. For example, if the message is going to be sent over a low bandwidth

transport (such a wireless connection) a bit efficient representation may be used

instead of a string representation to allow more efficient transmission.

31

Figure 3.3 Fipa Request Protocol

The transport-message itself is the payload plus the envelope. The envelope

includes the sender and receiver transport-descriptions. The transport-descriptions

contain the information about how to send the message (via what transport, to what

address, with details about how to utilize the transport). The envelope can also

contain additional information, such as the encoding-representation, data related

security, and other realization specific data that needs be visible to the transport or

recipient(s).

32

Figure 3.4 A Message Becomes a Transport-message

In figure 3.4, a message is encoded into a payload suitable for transport over the

selected message-transport. It should be noted that payload adds nothing to the

message, but only encodes it into another representation. An appropriate envelope is

created that has sender and receiver information that uses the transport-description

data appropriate to the transport selected. There may be additional envelope data also

included. The combination of the payload and envelope is termed as a transport-

message.

3.2 Resource Description Framework (RDF)

Resource Description Framework (RDF) is a family of specifications for a

metadata model that is often implemented as an application of XML. The RDF

family of specifications is maintained by the World Wide Web Consortium (W3C).

The RDF metadata model is based upon the idea of making statements about

resources in the form of a subject-predicate-object expression, called a triple in RDF

terminology. The subject is the resource, the "thing" being described. The predicate

is a trait or aspect about that resource, and often expresses a relationship between the

subject and the object. The object is the object of the relationship or value of that

trait.

33

This mechanism for describing resources is a major component in what is

proposed by the W3C's Semantic Web activity: an evolutionary stage of the World

Wide Web in which automated software can store, exchange, and utilize metadata

about the vast resources of the Web, in turn enabling users to deal with those

resources with greater efficiency and certainty. RDF's simple data model and ability

to model disparate, abstract concepts has also led to its increasing use in knowledge

management applications unrelated to Semantic Web activity.

A collection of RDF statements intrinsically represents a labeled, directed pseudo-

graph. As such, an RDF-based data model is more naturally suited to certain kinds of

knowledge representation than the relational model and other ontological models

traditionally used in computing today.

Until now, the Web has been designed for direct human processing, but the next-

generation Web called “Semantic Web”, aims at machine-processable information.

The Semantic Web will only be possible once further levels of interoperability

have been established. Standards must be defined not only for the syntactic form of

documents, but also for their semantic content.

XML and RDF are the current standards for establishing semantic interoperability

on the Web, but XML addresses only document structure. RDF better facilities

interoperation because it provides a data model that can be extended to address

sophisticated ontology representation techniques.

3.2.1 Modeling

All items that RDF expressions describe are called resources, and broadly

speaking, anything a Universal Resource Identifier can name is also a resource.

Consequently, RDF can describe not just things on the Web(such as pages, parts of

pages, or collections of pages) but also things not on the Web- as long as they can be

named using some URI scheme.

34

The RDF description model uses object-attribute-value triples: we can view

instances of the model as directed or labeled graphs (which resemble semantic

networks), or we can take a more object-centric view and think of RDF as a frame

based representation system. In RDF, these triples are known as statements.

There are a number of ways to show statements or sets of triples for discussion:

- English-like statements: The simplest way of modeling is using English-like

statements such as:

 John Smith is the creator of http://www.example.org/index.html

 More generally we could say that:

 subject has a predicate of object

- Directed labeled graphs: Another way of expressing our statements is to use

directed labeled graphs. These are often used in the relational database world-

where they are called nodes and arcs and would look like in figure 3.5:

Figure 3.5 Nodes and arcs diagram

- List the three parts of the triple: In this diagram the right-hand side is

rectangle rather than an oval – as we saw in the earlier diagram. This

indicates that the value is a string literal if the value was a resource then the

right-hand side would be an oval. In this layout we simply list the three parts

of the triple.

 <http://www.example.org/index.html>

 <http://purl.org/dc/elements/1.1/creator>

 “John Smith”.

35

3.2.2 Making Statements about Resources

The statement “John Smith is the creator of http://www.example.org/index.html”

can be modeled in RDF (if John Smith has a URI of

http://www.example.org/staffid/85740):

Figure 3.6 Making Statements about Resources

Since the URIref for the creator of the page is a full-fledged resource, additional

information about him can be recorded.

Figure 3.7 Making statements about resources

Using URIrefs as subjects, predicates, and objects in RDF statements allows us to

begin to develop and use a shared vocabulary on the Web. But people can still use

different URIrefs to refer to the same thing. However, the fact that these different

URIrefs are used in the commonly-accessible "Web space" creates the opportunity

36

both to identify equivalences among these different references, and to migrate toward

the use of common references.

3.2.3 RDF/XML Syntax

RDF uses XML syntax for the syntactic representation of model instances. RDF is

essentially a data model and does not strive to replace XML. Instead, it builds a layer

on top of it, making interoperable exchange of semantic information possible. RDF

lacks primitive data types, so strings are essentially the only literals available; XML

atomic data types will be used once W3C completes work on the XML Schema.

We often hear claims such as, “You don’t need RDF; you can do everything with

XML”. Sure, you could do that, but essentially you would end up reinventing the

wheel by building a similar layer on top of XML, that RDF already introduced.

RDF content should appear within an rdf:RDF element. Only one rdf:RDF

element should appear within a given page.

 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

...

</rdf:RDF>

rdf:Description is the basic syntax for defining RDF statements.

<rdf:Description rdf:about="subjectURI">

<predicate1 rdf:resource="objectURI"/>

<predicate2>objectLiteral</predicate2>

...

</rdf:Description>

produces the RDF graph below:

37

Figure 3.8 rdf:Description

3.2.4 Ontology

A common vocabulary of agreed upon definitions and relationships between those

definitions, to describe a particular subject domain.

Agents in multi-agent systems, request services and get responses via messages.

In other words, agents are prompted by messages. All agents in the multi-agent

systems must know how to prompt each other. When building a multi-agent system,

it may be so useful to compose a vocabulary to be used in messages.

The vocabularies may be used in several message types. Composing relationships

between messages is easier. When the messages are stored in a big repository, the

knowledge representation of the whole system may be accomplished easily.

3.3 JADE (Java Agent DEvelopment Framework)

JADE (Java Agent DEvelopment Framework) is a software Framework fully

implemented in Java language. It simplifies the implementation of multi-agent

systems through a middle-ware that complies with the FIPA specifications and

through a set of graphical tools that supports the debugging and deployment phases.

The agent platform can be distributed across machines (which not even need to share

the same OS) and the configuration can be controlled via a remote GUI. The

configuration can be even changed at run-time by moving agents from one machine

38

to another one, as and when required. JADE is completely implemented in Java

language and the minimal system requirement is the version 1.4 of JAVA (the run

time environment or the JDK) (Jade Group, 2006).

The synergy between the JADE platform and the LEAP (Lightweight Extensible

Authentication Protocol (LEAP) is a proprietary wireless LAN authentication

method developed by Cisco Systems.) libraries allows obtaining a FIPA-compliant

agent platform with reduced footprint and compatibility with mobile Java

environments down to J2ME-CLDC MIDP 1.0. The LEAP libraries have been

developed with the collaboration of the LEAP project and can be downloaded as an

add-on of JADE from this same Web site (Jade Group, 2006).

JADE is free software and is distributed by Telecom Italia, the copyright holder,

in open source software under the terms of the LGPL (Lesser General Public License

Version 2). Since May 2003, a JADE Board has been created that supervisions the

management of the JADE Project. Currently the JADE Board lists 5 members:

Telecom Italia , Motorola, Whitestein Technologies AG., Profactor GmbH, and

France Telecom R&D.

Jade (Java Agent Development Environment) is a robust and efficient

environment for distributed "agent" systems.

It is a good choice because:

• it has all the agent features that is needed (and more)

• it is efficient and tolerant of faulty programming

• it follows FIPA standards

• the user group is very active and implementers typically respond to problems

within 24 hours

On the negative side, JADE may be disappointing to AI people because it lacks

mechanisms for "intelligence", planning or reasoning. However, the JAVA base

39

means that JADE can interact relatively easily with Java implementations of Prolog

or Expert systems (JESS).

3.3.1 JADE Overview

In a typical Jade application, the various agents in the system are located in many

different "containers" executing on several computers; but there is ONE central agent

(the AMS) which keep track of all addresses. Similarly, there must be only one DF.

The Jade program which runs the AMS and the DF is called the "Main-Container"

and it must be started first. To ease interconnection between various containers, Jade

makes good use of the standard Java RMI registry facilities (on port 1099). The

Main-Container registers with the local RMI registry - even starting one if none

already exists - and all other containers will look for its address in that registry. If a

secondary container executes on the same computer as the Main-Container, it will

connect to the existing AMS and the DF automatically. Only if it runs on a different

computer, do we have to specify the host address of the Main-Container. Thus with

secondary Jade environments (containers), we will use the following options

(Vaucher, & Ncho, 2003):

-container: to indicate that the container is 'secondary' and should use the

services of the Main-Container.

-host : to indicate where the Main-Container may be found

Here is an example where we start 4 Jade containers on the same machine: 1) a

main container with no other agents, 2) a container with a Simple1 agent called Fred,

3) another secondary container with another Simple agent and 4) finally a container

for the RMA agent. Ideally we should start these containers in different windows so

that the individual outputs are not mixed up (Vaucher, & Ncho, 2003).

 java jade.Boot

 java jade.Boot -container Fred:Simple1

 java jade.Boot -container Harry:Simple1

 java jade.Boot -container -gui

40

It is in the nature of agents to operate independently and to execute in parallel

with other agents. The obvious way to implement this is to assign a java Thread to

each agent - and this is what is done in Jade (Vaucher, & Ncho, 2003).

However, there is often the need for further parallelism within each agent because

an agent may be involved in negotiations with other agents and each negotiation

should proceed at its own pace. We could use additional Threads to handle each

concurrent agent activity but this becomes very inefficient because Java Threads (in

spite of the light-weight connotation of the name) were not designed for large-scale

parallelism. Rather, they were designed to allow Java programs to exploit the real

parallelism of multi-processor architectures and, in current Java releases, each Java

Threads requires one OS Thread. This means that passing control from one Thread to

another, is about 100 times slower than simply calling a method (Vaucher, & Ncho,

2003).

In order to support efficiently parallel activities within an agent, Jade has

introduced a concept called Behaviour (Vaucher, & Ncho, 2003).

3.3.2 Behaviours

A behaviour is basically an Event Handler, a method which describes how an

agent reacts to an event. Formally, an event is a relevant change of state; in practical

terms, this means: reception of a message or a Timer interrupt. In Jade, Behaviours

are classes and the Event Handler code is placed in a method called action (Vaucher,

& Ncho, 2003).

Although the use of Behaviours promotes efficiency, it doesn't simplify

programming. Consider coding the steps in a negotiation: sending offers, waiting for

counter-offers and finally reaching agreement. This activity consists of an alternation

of active phases - when the agent decides what to do and sends messages - and

passive phases - when the agent waits for an answer. Threads can pause in the middle

of execution to wait for messages and continue without losing context. So if we use

Threads, the sequence of activities maps directly into sequences of instructions. Not

so when we use Behaviours (Vaucher, & Ncho, 2003).

41

Behaviour actions are methods, executed one after the other by the agent's Thread

after events. Like listeners in graphic interfaces, they cannot pause without blocking

all other activity [within the agent]. So this is the important thing to remember about

Behaviours is that: Each Behaviour execution corresponds to ONE SINGLE

instantaneous active phase (Vaucher, & Ncho, 2003).

To implement long-term activities like a negotiation, we have to provide as many

different Behaviours as there are active phases in the activity. We must also arrange

for them to be created and triggered in the right sequence (Vaucher, & Ncho, 2003).

Jade provides many useful Behaviours which can be extended to model the

complex activity typical of real agents. Basically there are 2 kinds of behaviour

classes: primitive, like the Simple or Cyclic behaviours and composite ones which

can combine both simple and composite behaviours to execute in sequence or in

parallel (Vaucher, & Ncho, 2003).

Primitive behaviours are

• SimpleBehaviour: an under-rated basic class that you can extend in various

ways and which often turns out to be the best solution when other promising

Behaviours are found to have some hidden quirks

• CyclicBehaviour: This behaviour stays active as long as its agent is alive and

will be called repeatedly after every event. Quite useful to handle message

reception.

o TickerBehaviour: a cyclic behaviour which periodically executes

some user-defined piece of code

• OneShotBehaviour: This executes ONCE and dies.... Not really that useful

since the one shot may be triggered at the wrong time.

o WakerBehaviour: which executes some user code once at a

specificied time

o ReceiverBehaviour: which triggers when a given type of message is

received (or a timeout expires).

42

Composite behaviours are

• ParallelBehaviour: controls a set of children behaviours that execute in

parallel. The important thing is the termination condition: we can specify that

the group terminates when ALL children are done, N children are done or

ANY child is done.

• SequentialBehaviour: this behaviour executes its children behaviours one

after the other and terminates when the last child has ended.

Jade provides other Behaviour but we consider them too complex for beginners.

They include:

• SimpleAchieveREInitiator

• SimpleAchieveREResponder

• FSMBehaviour

Figure 3.9 depicts how an Agent class can be constructed via JADE framework.

public class MyAgent1 extends Agent

{

 protected void setup()

 {

 addBehaviour(new MyFirstBehaviour ());

 }

}

Figure 3.9 Creating an agent

Figure 3.10 depicts how a “Behaviour” class can be constructed via JADE

framework.

43

class MyFirstBehaviour extends SimpleBehaviour

{

 public void action()

 {

 System.out.println("--- Message 1 --- ");

 finished = true;

 }

 private boolean finished = false;

 public boolean done() { return finished; }

}

Figure 3.10 Creating a behaviour

3.3.3 Structure of A JADE Message

Here is a list of all attributes of a Jade ACL message. As described in the API

documentation, Jade provides get and set methods to access all the attributes. We put

in bold the ones we use most (Vaucher, & Ncho, 2003).

• Performative - FIPA message type (INFORM, QUERY, PROPOSE, ...)

o Addressing

o Receiver

• Sender (initialized automatically)

• Content - This is the main content of the message

• ConversationID - Used to link messages in same conversation

• Language - Specifies which language is used in the content

• Ontology - Specifies which ontology is used in the content

• Protocol - Specifies the protocol

• ReplyWith - Another field to help distinguish answers

• InReplyTo - Sender uses to help distinguish answers

• ReplyBy - Used to set a time limit on an answer

44

When you create a message, you have to indicate its type - its performative in

ACL lingo - and set the content. This is shown in figure 3.11:

 ACLMessage msg = new ACLMessage(ACLMessage.INFORM

);

 msg.setContent("I sell seashells at $10/kg");

Figure 3.11 Initialization of ACL Message.

Our message uses the most common performative: INFORM whereby one agent

gives another some useful information. Other types are: QUERY to ask a question,

REQUEST to ask the other to do something and PROPOSE to start bargaining.

Performatives for answers include AGREE or REFUSE (Vaucher, & Ncho, 2003).

Sending message if we know Agent ID (AID) when the agent behavour is like in

figure 3.12.

 ACLMessage msg = new ACLMessage(ACLMessage.INFORM);

 msg.setContent("I sell seashells at $10/kg");

 AID dest = new AID("store1", AID.ISLOCALNAME);

 msg.addReceiver(dest);

 send(msg);

Figure 3.12 Sending message when AID is known

All messages have an attribute which contains the ID of the sender. Thus, we can

answer a message as in figure 3.13:

 ACLMessage msg = receive();

 ACLMessage reply = new ACLMessage(ACLMessage.INFORM);

 reply.setContent("Pong");

 reply.addReceiver(msg.getSender());

 send(reply);

Figure 3.13 Replying a received message

45

If we don’t know Agent ID, searching the DF (yellow page service) is usual way

of discovering new agents IDs which provide needed services.

JADE implements a Directory Facilitator (DF) agent as specified by FIPA. The

DF is often compared to the "Yellow Pages" phone book. Agents wishing to

advertise their services register with the DF. Visiting agents can then ask (search) the

DF looking for agents which provide the services they desire (Vaucher, & Ncho,

2003).

The DF is a centralized registry of entries which associate service descriptions to

agent IDs. The same basic data structure, the DFAgentDescription (DFD), is used

both for adding an entry or searching for services (Vaucher, & Ncho, 2003).

For agents to interact usefully in open systems, it is imperative that they use the

same language conventions and the same vocabulary. The DF entries thus

concentrate on listing the ontologies, protocols and languages which are supported

by the agents. Additionally, entries have sets of services which are characterized by a

name and name-value properties as well as the ontology/language/protocol

conventions they support. Figure 3.14 is the structure of a DF Agent description. It

appears quite complex, but most fields are optional and in actual practice we only

need to use 1 or 2 attributes (Vaucher, & Ncho, 2003).

Most of the attributes are sets of because an agent could handle messages in a

variety of formats; this is reflected in the naming conventions for methods which

most often start with add instead of set, for example: addOntologies(String onto).

3.3.4 Interaction Protocols

FIPA specifies a set of standard interaction protocols, which can be used as

standard templates to build agent conversations. For every conversation among

agents, JADE distinguishes the Initiator role (the agent starting the conversation) and

the Responder role (the agent engaging in a conversation after being contacted by

some other agent). JADE provides ready-made behaviour classes for both roles in

46

DFAgentDescription

 Name: AID // Required for registration

 Protocols: set of Strings

 Ontologies: set of Strings

 Languages: set of Strings

 Services: set of {

 { Name: String // Required for each service specified

 Type: String // Required ...

 Owner: String

 Protocols: set of Strings

 Ontologies: set of Strings

 Languages: set of Strings

 Properties: set of

 { Name: String

 Value: String

 }

 }

Figure 3.14 The structure of a DF Agent description

conversations following most FIPA interaction protocols. These classes can be found

in jade.proto package. They offer a set of callback methods to handle the states of the

protocols with a homogeneous API. All Initiator behaviours terminate and are

removed from the queue of the agent tasks, as soon as they reach any final state of

the interaction protocol. In order to allow the re-use of the Java objects representing

these behaviours without having to recreate new objects, all initiators include a

number of reset methods with the appropriate arguments.

Jade has classes called AchieveREInitiator, and, AchieveREResponder for FIPA

Request-Protocol. “AchieveREInitiator” class is extended and “handleAgree”,

“handleRefuse”, “handleInform”, “handleNotUnderstood” methods are overridden to

create a behaviour for the agent in initiator role (see figure 3.3) .

47

AchieveREResponder class is extended and “prepareResponse”, and,

“prepareResultNotification” are overridden to create a behaviour for the agent in

participant role.

48

CHAPTER FOUR

SYSTEM SOLUTIONS FOR BUSINESS PROCESSES

This chapter encapsulates the main problem definition of this study. Besides,

analysis of the problem in different ways and a solution model are also discussed in

this chapter.

4.1 Problem Definition

Tasks in firms are done by various workers. When these tasks are done, the

workers request services from each other. The requests and replies often result in

transaction data. These transaction data helps the workers to decide. For decades,

these data has been stored in digital environments where achieving and reporting

them is easier. Some of advanced digital systems support their users when they are

taking decisions. These are called decision support systems. These systems are very

helpful for middle and upper managers in firms. However, this capability of these

systems is rarely used by other workers who are not managers because the decisions

other than managerial decisions are determined by couple of situations. These

decisions are never considered as unimportant because they are taken everyday in

numerous times. When these decisions are taken, usually some standard procedures

are followed. These procedures are usually shown in workflow diagrams. Most of the

firms have workflow diagrams because they have or going to have various ISO

certificates.

Workflow can be defined as the movement of documents and/or tasks through a

work process. More specifically, workflow clarifies the questions like: how tasks are

structured, who performs them, what their relative order is, how they are

synchronized, how information flows to support the tasks and how tasks are being

tracked. Workflows are very useful when the tasks are predefined and the

relationships between the tasks are well known.

49

Workflows consist of nodes like transactions, tasks, and decisions. These nodes

are usually atomized. They can not be divided into smaller nodes. Tasks and

transaction nodes are so definitive and decisions in workflows are straightforward.

Decisions are usually taken by checking some values. These values indicate the

environment of the firm and are usually stored in database systems. According to

decisions actions are taken. These actions are taken numerous times in a work day.

These works become a noteworthy workload for workers. A system that can decide

and take actions in some circumstances on behalf of the workers would be so

beneficial. This would take a great deal of the workload from the workers. A system

can not be thought without human input. However, a computerized system which

need a few input can be built easily because workflows usually consist of

straightforward steps. Besides, the steps in workflows fit the nature of computerized

system because these steps are taken numerous times. The computers are very good

at iterative works as everyone knows.

In a summary, the problem definition is how a system that follows workflows on

be half of the workers should be designed.

4.2 Analysis of Workflows

The idea of workflow is to bring processes, people and information together. This

section will try to analyze these three components of workflows shortly.

 Process identifies the work to be done. Process may not be so definitive which

steps should be taken through the work. It may consider the main perspective of the

work and the goals to be reached at the end of the work. Workflow can also be

considered as a process. However, it is so definitive that every work step is defined.

Workflow can also consist of some sub-processes.

More than one participant, person (hereafter we will refer to the participants as

actors) exist in a workflow. The steps of workflows are under responsibilities of the

actors.

50

Actors request services from each other. Requests and responds among actors are

often called as transactions. Transactions hold data. When these data come together,

they turn into information. Besides, information from domain databases is added into

workflows by queries of actors. Figure 6.1 shows a workflow for ordering a product.

Another key property is the goals in workflow systems. Every actor has individual

goals in workflows. Some of them are conflicting goals, some of them not. For

example, assume Goal-1 is the goal of sale representative to get best delivery date

from production planner. Goal-2 is the goal of production planner to satisfy all sale

representatives.Goal-3 is the goal of production planner to check for the production

line work in a most efficient way. Goal-1 and Goal-2 are analogous but Goal-2 and

Goal-3 are conflicting. All these goals are considered when a workflow is designed.

4.3 Analysis of Legacy Systems

Organizations tend to focus only on data and data management. This comes up

with a data layer and a layer of application domains over data layer (see Figure 4.1).

Figure 4.1 A Legacy System

Managing a workflow needs inter-communications among application domains.

When a need of intercommunication among applications arises, legacy systems tend

51

to communicate over data layer. In fact, the business process in real life is going on

the basis of request-response manner. Person in one domain requests a service from

another person in another domain. He/she never manipulates other’s data where most

legacy systems solve intercommunication problems in that manner (see figure

4.2). Some others come up with a solution like building intermediate data layers,

such as views in database management systems, to communicate (see Figure 4.3).

Such solutions’ way is not the way in real business life.

Solving integration problems like the two ways above makes the domains too

dependent to each other. If one domain changes its database for a minor need, all

other domains must be revised if they will be affected of this change. If they will be

affected, all the domains should be adjusted. If a system has been built like a system

in Figure 4.3, there will be some independency. However, if the base table of the

view has been changed, it will affect the other. In every case, there will be lots of

neat work to do.

Figure 4.2 Application Domain A reaching database area of Domain B and

Application Domain B reaching database area of Domain A.

Companies tend to run their business in a process-oriented approach. Process-

oriented approach never makes distinction between work done by a human and a

52

computer. It concentrates on the actions should be taken for the goal. Software

solution should let the designers think in that manner. Having a tool that solves

problems in the way people solves in daily life is more realistic approach than the

opposite. Legacy systems tend to solve problems in domains. They present solutions

for departments. They don’t focus on inter department problems and

communications.

Figure 4.3 Application Domain A communicates with Application Domain

B via Database View A-B area and Application Domain B communicates

with Application Domain C via Database View B-C area.

4.4 Solution Model: Agent Based System

Many companies have business processes that are unique to its business model.

Because these processes tend to evolve over time as the business reacts to market

conditions, the software solution must be easily adaptable to the new conditions and

requirements. Because workflow is the essential part of the system and workflow

force firms to automate process vertically, communication of departments is so

important.

53

Legacy systems have served for companies for long times. Organization can not

throw them away easily even if they don’t meet new needs. Because so much funds

and time are spent to them, a legacy system gets the name of “legacy”. But dynamic

needs push the firms to change their software system solutions as well as their

business procedures. One way of solution is to evolve present systems using legacy

system technologies. However, it will lead more funds are spent into legacy systems.

This solution will not be long term solution. There will be a need of more funds into

legacy systems soon. Besides that, it will be harder to leave them.

Using new technologies without throwing present systems will be the most

appropriate choice to firms which don’t want to take risks of new systems. This can

be accomplished via wrapping legacy systems with new systems with needed

technologies.

Agent based systems have a great ability of wrapping systems. Agent based

systems focus on messaging among application domains. They don’t bring new

approach for the application domains. Legacy systems can do what they have done

before. Newly constructed agent based system can handle the inter communication of

application domains. Figure 4.4 shows the system proposed.

According to analysis, a solution model based on an agent based system is

concluded.

If we go back our main issue of how a system that follows workflows should be

designed. According to the proposed model, agents are actors in workflows. Every

actor in a workflow is represented by an agent. The requests and replies among

actors are handled by messages (these messages will be ACL messages in FIPA

compliant agent systems, JADE.). Tasks, duties and goals of agents are realized by

behaviours (in the sense of JADE framework). Behaviours use domain applications

abilities when an action must be taken.

54

Figure 4.4 Agent based system over legacy system

4.5 A Method For Pre-Designing A Workflow for Agent Based Systems

The followings are proposed steps that should be followed when designing the

solution model for a system. If a regular workflow diagram is ready before study, it

is easy to follow the steps mentioned below.

• Step-1 Define process

• Step-2 Define actors

• Step-3 Define duties of each agent

• Step-4 Define relationships among actors

• Step-5 Define data structure of messages delivered among agents

• Step-6 Define each agent’s goal in the workflow

• Step-7 Define computing steps taken in agents

55

4.5.1 Step-1 Define The Name of The Process

This step involves definition of the problem. The problem is the name and

description of the process as to our model. In this step, the workflow which is going

to be handled by agents is chosen. Give a name for the workflow and a brief

description.

4.5.2 Step-2 Define Actors

Define actors in the workflow to identify the agents. Each actor will be

represented by an agent.

4.5.3 Step-3 Duties of Each Agent

Define which agent will provide which service in this step. This will determine

which types of messages will be responded by which agents.

4.5.4 Step-4 Define Relationships Among Actors

Find an answer for the question; which agent can ask for a service? Some agents

in the system can’t ask for a specific service from an agent. Because services are not

only services, they also take actions and they manipulate the environment of the

system. For example, only a sale representative agent can place a product order. The

designer agent of a product can not place an order of its product.

4.5.5 Step-5 Define Data Structure of Messages Delivered Among Agents.

Define what information must be given to service provider agent to ask for a

specific service. Define the data should be in response of the request. For example,

order number and set of products must be in the message of order declaration to

production planner.

56

4.5.6 Step-6 Define Each Agent’s Goal In The Workflow

Define the goals of actors in workflow. Some of them are conflicting goals, some

of them not. If a workflow diagram preexists, it is said that the goals are almost

predefined.

4.5.7 Step-7 Define Computing Steps Taken In Agents

Define internal actions to be taken for each agent. Define circumstances in which

agent decides and take actions. Define circumstances in which agent must leave the

decisions and actions to user. For example, agent can place order under a certain

amount of worth. Only users of the agents can place orders over a certain amount.

57

CHAPTER FIVE

A SIMPLER FRAMEWORK FOR AGENT BASED SYSTEMS

As mentioned in chapter four, a process oriented system needs communication

ability among application domains. Chapter four depicts main characteristics of the

system that should be built. Besides that, it is concluded that an agent based system

will be our solution system. Issues about pre-designing of the agent systems are also

presented in that chapter.

Chapter five will propose a framework called SADE (Simple Agent Development

Environment) for agent based system. This framework is fully implemented in Java

language over JADE Framework. JADE simplifies the implementation of multi-

agent systems through a middle-ware that complies with the FIPA specifications.

More details about JADE can be found in chapter three.

Jade embodies extensive experience in the implementation of large Agent

systems. However, this maturity leads to difficulty for learners. Many Jade features

deal with sophisticated matters that beginners either don't need or don't understand.

Similarly, most documentation (reports and Javadoc) is suitable for experienced

users but quite inadequate for learners. The examples that come with the distribution

are fairly long. System administrators in firms, which are not in IT sector, don’t have

so much time to deal with design issues about multi-agent systems. The framework

introduced in this chapter aims to ease the design process of multi-agent systems.

Another purpose of the framework introduced in this study is to put the system

designers into a methodology discipline. It is also aimed that the designers focus on

the problem and avoid them thinking of design issues so much.

58

5.1 Framework Elements

Basic element of SADE framework is ofcourse agent. Actors in workflows are

represented by agents. There are two main agent types in SADE. One of these is

called “Core Agent” and the other one is “Gui Agent” (“Graphical User Interface

Agent”). “Gui Agent” is responsible from being an interface when the user input is

needed into the system. Users of the agents are the actors in the workflows. System

asks users to decide when a user decision is needed. This is accomplished by Gui

Agents. When the users need to start a process, they use Gui Agents again. Gui

Agent only shows the assignments of its user and transmits the input messages from

user to responsible Core Agent. In this sense, every Gui Agent has one only one Core

Agent. Core Agent carries the procedures of the processes. Workflows lie in Core

Agents. Every agent in workflow contains their individual inner steps and

communication steps that should be taken. Every agent knows what to do as humans

in a process. They don’t know the inner steps taken in other agents. They know only

the services can be got from other agents. SADE framework falls into Agent-based

Workflow Management System category (see figure 2.4 in literature review chapter).

To get the big picture, it should be started from designing the message structures.

So that it can be figured out that every actor roles in the workflow. SADE framework

let the designers to design the structures in property-value couples. There is an object

called “ObjectModel” in SADE framework. It can hold property-value couples in

types, “String”, ”Integer”, ”Long”, ”Duoble”, ”Date”, ”ObjectModel”, and

“ObjectBag”. “ObjectBag” object holds set of “ObjectModel”. There is no order

among “ObjectModel”s in “ObjectBag”.

“ObjectModel” holds an object type “EncoderDecoder”. This class does the job of

converting “ObjectModel”s into representation form of content part of ACL

messages and vice versa. As mentioned in related title in Chapter three, an ACL

message holds metadata about message and message content. “ObjectModel” object

does not ease only the creation of message content from objects but also conversion

from ACL message to object. The “ObjectModel” name is given instead of

59

“MessageModel” because the objects of this class are also used as data structures in

methods like retrieving data from databases and others.

Another essential part of SADE is handling the messages income and outcome.

Basically, request and respond architecture is used in regular workflows. Because of

that, the Request- protocol of FIPA is chosen as main transaction model. Jade

framework implements this protocol via AchieveREInitiator, and,

AchieveREResponder classes. These are easy to use. However, when a task needs

multi requests from other agents, it is getting harder to use these classes. Because of

that, these classes are extended and give simple names as Requester and Responder

respectively. The objects constructed from these classes request a FlowController

object.

FlowController holds a StepGroup object. The StepGroup objects encapsulates the

steps which the agent should follow in its part of workflow. It holds inner actions to

be taken and communication actions with other agents. StepGroup object holds

objects implementing Step interface (in the sense of Java language). Basically, Step

interface push the concrete classes, which implement the interface, to define the

action in step and next step to be executed. Eventually, every different type of action

must be implemented in different concrete Step classes.

FlowController is an interface for following the steps in right order. Jade

framework’s action methods of behaviour classes can not be interrupted and resumed

after a while. However, agents must wait for responds from other agent to continue

the steps that agents should take. There is not an easy way to accomplish ‘wait and

resume’ action in Jade framework. FlowController handles ‘wait and resume’ action

between requesting a service and receiving a respond.

5.2 Details of SADE Framework

To ease the construction and initialization of agents (core agent and gui agent of

domain), a property file must be located inside the folder with agent classes. The

property file contains core agent name, gui agent name, JDBC connection

60

parameters, ObjectModel dictionary class name and package, a property called

SomeOptionGettersOfAgentGUI, and another property called

TimeOutForGuiMessageResponds which specifies the time will be waited after

sending a message from gui agent. JDBC connection parameters , which are not

mandatory, are for database connectivity. ObjectModel dictionary is for encoding

and decoding ACL messages. SomeOptionGettersOfAgentGUI which holds class

name and package is for defining which messages can be sent to which agent by gui

agent.

Gui agent of a domain is created by extending AbstractGUIAgent class of SADE

framework. Gui agent does not need anything other than construction because

behaviours of gui agent are defined and limited. Gui agent, sends the message written

from user to its Core agent. Core agent takes care of the message. It holds the

knowledge base. If core agent does not respond in time, (response time is specified in

agent property file) Gui agent inserts the message into its inbox with a related

message which tells the reason that core agent did not respond in time to warn the

user. Each GUI agent has a graphical user interface like figure 5.1.

Inbox Table lists the messages has received from agents. Inbox Related Table lists

the messages that are related with the selected message in Inbox Table. These related

messages are very useful. Core agents sometimes do some part of tasks and gets

some intermediate data from other agents but can not get decision. In these

circumstances, agent leaves the decision to user. The intermediate data which are

composed of multiple messages is put into Inbox Related Table. So the user does not

need to collect the data once more. When any message is focused by a left mouse

click, the detail of message is shown in Inbox frame. Message can be sent from

Outgoing frame. Message Type inbox in Outgoing frame clarifies the type of the

message. Message Inbox is followed by an inbox for recipient agent. Send button is

for sending the message, naturally. Add Row button is shown up when message

contains a list of one type of data should be entered. Refresh button at upper left

refreshes the inbox table whether any new message has come. Delete button deletes

the message selected in Inbox message with the related messages. Every message in

61

tables is kept with unique URI address. Messages in inboxes are kept in a RDF file as

RDF triples. That’s why messages have URI addresses. Other columns of a message

in inbox are the agent id of sender, the title of message, and date and time so-called

message received.

Figure 5.1 Graphical user interface of Gui Agent

Core agent holds the processes as mentioned before. Extended JADE behaviours

which holds StepGroup objects takes the actions that should be taken in agents.

SADE behaviours are OneShot, Requester, Responder and Ticker SADE behaviour

objects. These classes are extended from JADE classes. The main characteristics of

the classes come from JADE classes. SADE extended classes add the function of

using StepGroup objects.

SADE OneShot behaviour extends JADE OneShotBehaviour. OneShotBehaviour

is behaviour that completes immediately and whose action method is executed only

once. SADE Ticker behaviour extends JADE TickerBehaviour. It is a behaviour that

62

never completes and whose action executes the same operations each time it is

called. SADE Requester and Responder extend AchieveREInitiator and

AchieveREResponder classes respectively. Requester class handles the operations at

the initiator part of the FIPA-Request protocol. Responder class handles the

operations at the participant part of the FIPA-Request protocol (see figure 3.3).

5.2.1 Execution Steps of SADE Behaviours

SADE behaviour classes hold StepGroup classes which hold the operations that

should be done. For example, a StepGroup conceptual informal drawing that is for

Requester behaviour may be as follows. In this section the StepGroup classes will be

explained conceptually, that is why the node names in figure 5.2 may not be the same

ones in the SADE framework. To use the exact names used in SADE framework may

cause the reader to misunderstand. The concepts mentioned here are fully realized in

SADE framework.

Figure 5.2 A StepGroup informal drawing

A Requester object gets an ACLMessage that will be sent as parameter. When the

reply comes, it follows steps according to the income message. Figure 5.2 illustrates

a StepGroup which handles a response message of which performative is Agree and

Refuse. Every StepGroup object must start with a StepStarterResumer object. This

63

object identifies the next step according to the message has come. Basically there are

five types of steps. They are Step Starter Resumer, Step Process, Step If, Step

Requester, Step Pauser. Steps in Step Process type have simply action methods

which are executed. They are inner actions that must be taken in agents. Steps in

StepIf type have a method that checks the condition that is declared to them. The

check method returns a true value or false value, and the value identifies the next

step to be executed. Steps in type of Step Requester initiate a new Requester object.

New Requester object waits until this Requester pauses. The pause action is made by

steps in type of Step Pauser. When an answer comes, Requester object runs the steps

where the StepGroup has paused.

The second Step Starter Resumer node is the step where answer message has

come. As it is clear, two Requester behaviour objects are taking place in the Step

Group at Figure 5.2. Step Groups can also contains other sub Step Groups. The sub

step groups are be called and executed in the same manner. Only one type of figure

left which has not been mentioned till now in figure 5.2. This is Data Store. As it can

be understood from the name of Data Store, it stores data for the Step Group. Steps

usually create intermediate data or need variables which hold the state of the

execution process. Data Store serves for the steps by holding any type of data which

steps can only store. It also holds the messages income and messages to be sent.

SADE behaviour classes get the messages to be sent from Data Store. Data Store

stores data in two fashions; globally and privately. Global data can also be reached

from the sub Step Groups. They can be read and updated by the sub Step Groups.

Sub Step Groups can also declare global data and store in Data Store. Private data

can only be reached by the steps in same Step Group. A data set by a Step in Step

Group A can not be read or updated by a Step in Step Group B. This prevents the

confusion of same variable names in other Step Groups accidentally. A global data

which holds information for the Sub Step Groups can be set from any main Step

Group or Sub Step Group.

64

 Figure 5.3 Steps taken by in separate agents.

In many firms, the descriptions of jobs are defined by workflows. Step Group

concept realizes the steps taking place inside an agent. Workflow diagrams depict the

inner operations of all agent and communication operations among actors in one

diagram. The agent paradigm does not cover the operations held in separate agents.

Step Group concept realizes the inner action that is taken by an agent and

communication part of its agent. Figure 5.3 tries to illustrate the steps in agent. The

counter part of the communication operation is held in other Step Group in another

agent. However, the frame gives chance to designers to think in the same fashion of

workflow diagrams. Designer writes the workflow steps as its natural way; step by

step. This is realized by ready objects which encapsulate the step types mentioned in

this title. All these ready objects implements “Step” interface. “Step” interface

defines an execution unit that must be in workflow. Designer needs to initialize the

proper object and connect it into other steps in Step Group. This study does not

include any graphical user interface for designing workflows. However, because the

execution units, “Step” instances, are defined as objects, it is not so hard to add a

designing tool into framework. This tool is considered to be implemented by RDF

statements but this is out of scope of this study. But SADE framework has a simple

tool for ready Step Groups to ease the debug operations while in development of

Step Groups. The tool gets a Step Group and outputs a simple RDF model represents

the Step Group. This RDF model can be viewed in any RDF viewer tool.

5.2.2 SADE Behaviour and Step Class Diagrams

Figure 5.4 shows the first class diagram of SADE framework. It contains two

agent type of SADE, AbstractCoreAgent and AbstractGuiAgent. They are abstract

65

classes, concrete classes extend these classes and then people get use of them.

AgentFactoriesConcrete class gets the property file located in the concrete agent

class folder and initiates the agent object. SADE agent object may have one or more

JADE Behaviour classes. There is not an obligation like a SADE agent must use a

SADE Behaviour. But to get the benefit of the StepGroup class functionalities,

SADE Behaviour classes must be used. StepGroup functionalities are got used via

 Figure 5.4 SADE class diagram part one

66

FlowController interface. Interfaces are used when designing SADE framework

because interfaces provide great flexibility. When different needs arise after or while

designing, interfaces provide the designers to change the attitudes of system without

manipulating other parts of the system.

Figure 5.5 shows the second main part of SADE framework, related with Step

Group concept. Classes which implement FlowController class contain StepGroup

objects and control them. An interface class exists as every time.

DefaultFlowController class can be constructed and used via FlowController

interface for flexibility. A StepGroup object has a DataStore object and a first step

object handle (in the manner of Java language). Most of the abilities of the system

described in this chapter are realized in AbstractStep class. The abilities like finding

next Step to be executed, setting a data into Data Store, and debugging the Step

Group are mainly solved in the scope of this class. But SADE users can not construct

an object from AbstractStep directly because it is abstract class. Usable concrete Step

classes are at the bottom of the class diagram in figure 5.5. They extend the

AbstractStep class so they leave the responsibility of main abilities to AbstractStep

and differentiate the actions to be executed. AbstractStep class pushes the

implementer classes define their action() method. If users of SADE framework are

not satisfied with the actions of ready usable Step classes, they can extend

AbstractStep with an action method they need. This architecture gives a great

flexibility to the framework. Note that the figure shows some concrete Step classes in

SADE framework. It would be a confusing diagram if all of the Step classes are

shown.

Other important part of the SADE framework is the part that handles the messages

sent among agents and their reflections in agents. Messages sent among agents are

not only messages. They contain very useful data for agents. They are data in the

form of messages. That’s why the name ObjectModel is chosen for them.

ObjectModel objects are stored in DataStore object as messages and also data. Every

ObjectModel object has an object of EncoderDecoder class. EncoderDecoder object

is responsible for converting the data into message and vice versa. EncoderDecoder

67

 Figure 5.5 SADE class diagram part one

class is not a concrete class. So that, concrete classes like RDFEncoderDecoder class

in figure 5.6 extend EncoderDecoder class. So user of SADE framework is not

limited about content language of the ACL messages. ObjectModel holds property-

value couples in the form of DataAttribute objects. DataAttribute object can hold a

Date, String, integer, double, or long value, ObjectModel or ObjectBag object.

ObjectModel stores the DataAttributes objects in a hash map with property names.

The method getDate() with a proper property name is used to reach the value of a

68

property in Date format. The other methods are shown in Figure 5.6. ObjectBag

objects stores a set of one type of ObjectModels. It can be considered as an array of

ObjectModel objects. Different types of ObjectModel objects can not be stored in

ObjectBag objects like arrays. ObjectModel class is an abstract class. So that, SADE

users must extend the ObjectModel class and define the attributes which will be

stored in them. ObjectModel can hold the SQL scripts. Because the data values are

kept in them, some special Step objects use the ready scripts in ObjectModel objects.

So that, there would no need to retrieve the values of attributes in ObjectModel and

form an SQL script. The SQL scripts are formed inside the ObjectModel with the

current state of object in execution time.

Figure 5.7 shows the main message structure of SADE in RDF format. The figure

illustrates the graph model of RDF statements. Every ObjectModel class has to

identify the main RDF node of its. In this example, the main node is

“http://www.company.org/order/orderDeliveryDate/deneme”. Every ObjectModel

class must also identify its context. The node labeled with

“j.0:OrderDeliveryDateDecObject “ is the context of the message. When any

ObjectModel is encoded in RDF, the “j:0message” node becomes root node of the

RDF model. “Decode” method defined in RDFEncoderDecoder class looks the node

with “message_context” property and understands the type of the ObjectModel. Then

method starts to decode from main node.

69

 Figure 5.6 SADE data structure of messages.

70

Figure 5.7 A SADE message in RDF format

 71

CHAPTER SIX

PRODUCTION PLANNING APPLICATION

In this chapter, workflows about production planning are going to be implemented

by SADE framework. The system of an organization in sector HVAC (heating,

ventilation and air-conditioning) is examined for this study. Fan coil department of

the organization uses a simple program working on MS Access. (Fan Coil is an

indoor component of a heat pump system, used in place of a furnace, to provide

additional heating on cold days when the heat pump does not provide adequate

heating.) This simple desktop program is used for production planning. Planning is

based on four parameters.

• Received fan coil orders from sale regions,

• Materials to produce the fan coil product, and their availability,

• The production time of products,

• Available week to produce are considered when planning facilities are

realized.

Sale regions are in diverse cities in Turkey. Offices in Istanbul, Ankara, Izmir,

Adana, and Antalya take the customers’ orders and pass these orders to the factory in

Izmir. After several communications among workers from four departments;

production planning, material planning, designing, purchasing, production planner

gives delivery date to sale region. All workers have desktop programs like MS Excell

and MS Access to follow their duties. The organization has an ERP software but the

software is not used for daily works. Accountant department is fully get benefit of

the software. Other departments input data because they ought to. They do not get

any output of the software because they don’t know the abilities of software and the

software do not meet their needs with the current configuration. Workers like to do

their works with desktop programs. This concludes a diverse programs run for one

system. The workers request services from each other by telephones, emails and

paper forms via fax. This type of communication causes a disorder. It is concluded to

72

build a software system that gathers these communications and operation tasks. As to

this study, the solution is using SADE framework.

Following sections in this chapter indicates the processes which are designed in

SADE framework for fan coil department. These processes are running processes in

SADE framework. First and the biggest process defined in this chapter is Fan Coil

Order Declaration Process. This process and the application of it are described in

detail in section 6.1. The others, Fan coil Order Cancellation Process, Fan coil

Product Number Query Process and Reordering Materials Process are briefly

described in this chapter.

6.1 Fan Coil Order Declaration Process

Fan coil order declaration workflow can be examined in figure 6.1. A production

planner in Izmir collects fan coil orders and makes his/her plan and declares delivery

dates of orders. Basically, production planner first looks for the first available

production date for the received order after calculating the total production time of

the order. Then production planner asks the material resource planner whether if

there will be enough material to produce the products in the production day. If the

answer is positive, the delivery date is declared to sale region. When material

resource planner receives an order with a production date, he/she asks designer of the

department which materials will be used for the products in the order. Material

resource planner gets the material list of the order and checks the availability of these

materials in the production week. If there will be enough material in the week, a

positive answer is sent to production planner. If there won’t be enough material,

he/she asks to purchasing department when these materials can be received. Material

resource planner gives this information to the production planner. Production planner

decides when the order is put into production and declares the delivery date of the

order. At this stage, another process, material order plan process, is followed. Fan

coil order declaration workflow can be examined in figure 6.1.

According to the method described in section 4.5, this process may be analyzed

like following sub sections.

73

Figure 6.1 Fan coil order declaration process.

6.1.1 Step 1, Defining Process

The subject of the process is fan coil order declaration. The order declaration is

for putting the order, which is sent from a sale region, in production plan and

determining a delivery date.

74

Orders’ containing may change in time. Sometimes the number of fan coils

changes, sometimes the fan coil configuration changes. That’s why the declarations

of orders must have a revision number to distinguish new order from revision of an

order. New orders have revision number 0. The others have numbers greater than 0.

Figure 6.1 can be described in this step. The figure has been described earlier in

this section so it is not preferred to be mentioned again.

6.1.2 Step 2, Defining Actors

The actors are sale region, production planner, material planner, designer, and

purchaser. According to the actors, there will be a core agent for every actor. Besides

that, there will be gui agents for sale region, production planner and material planner.

6.1.3 Step 3, Duties of Each Agent

Sale region gui agent gets the order declaration from its user. Sale region core

agent passes the order message to production planner core agent. Sale region user

declares a desired delivery date for the order. If the returned delivery date is after

desired delivery date, the core agent of sale region puts a warning message into

user’s inbox of the gui agent.

Production planner core agent receives the orders and finds first available date for

the order. Then it passes the order to the core agent of material planner with the

possible production date. If the answer of the material planner is positive, the

production planner core agent returns the delivery date for the order to the sale

region. If the answer is negative, the received message will have a material list that

must be ordered to suppliers. This message and the order message is put into user’s

inbox of gui agent by core agent. The decision of the production date and delivery

date is left to the user of production planner gui agent.

Core agent of material planner receives the order and first asks to the designer

which materials need for the production of the order. After it gets the list of material,

75

it checks the storeroom for their availability at the time the production will occur. If

there is enough material, it returns a positive message to production planner.

Otherwise, it sends a message, which contains the material list that is needed, to

purchaser core agent. Core agent of purchaser responds when the materials will be

received after the order of materials. This respond is sent to production planner as it

is.

Core agent of designer responds only the material list queries in this process. Core

agent of purchaser responds only the material list to be ordered.

6.1.4 Step 4, Relationships Among Actors

Sale region agent asks production planner the delivery date of the order.

Production planner asks the material planner if there will be enough material in the

proposed production date. Material planner asks the designer which materials are

needed in production and asks purchaser the materials’ lead times after material

orders. Figure 6.2 summarizes the relationships among actors in the sequence

diagram. JADE has a debugging tool called “Sniffer” which figures the messages

sent among agents. Figure 6.3 shows the messages sent during the flow of fan coil

order declaration process in the application by the help of “Sniffer” tool. The agents

shown in figure are core agents of domains. These two figures are very similar. This

also shows that agent systems have great capability of the simulation of real systems.

The first “Request” line in figure 6.3, shows the message sent from gui agent of

sale region to its core agent. The user of sale region agent starts the flow when he/she

enters an order into system. Couples of “Request- Inform” lines show the messages

for asking the agent addresses to DF (Directory Facilitator).

6.1.5 Step-5, Defining Data Structure of Messages Delivered Among Agents

The contents of messages sent among agents are decided to be encoded in RDF. The

graph forms of RDF messages are figured and the explanations of the message are at

the below of the figures.

76

 Figure 6.2 Sequence diagram of fon coil order declaration process is running.

Figure 6.3 JADE messages while fon coil order declaration process is running.

77

Figure 6.4 A request message which is sent from gui agent of sale region to its core agent.

The type of messages can be identified by the nodes which are pointed by

“message_context” labeled arcs. In other words, objects of “message_context”

predicates, define the message types. As to this description, 6.4 shows the message

(or RDF format of ObjectModel object) of “SendMyMessage”. This type of message

is used between a gui agent and a core agent. Core agent gets the message. Core

agent sends the literal object which is pointed by “outgoingMessage” predicate to

agent which is determined by “receiver_AgentID” predicate. The others nodes give

extra information about message that can be used for logging the messages.

Figure 6.5 shows the message sent from core agent of sale region to core agent of

production planner. This message and the literal node specified with

“outgoingMessage” predicate in figure 6.4 are literally same. Figure 6.5 depicts the

object Order_Declaration in RDF format. Order declaration number is specified in

the node which is pointed by “message” labeled arc in the figure. The orders usually

are revised because customers change their ideas occasionally. That’s why a revision

number is placed in the message. “revision_no” predicate specifies the revision

number. Revision number 0 means the first declaration of the order. Customers

usually want to know when they will receive the fan coils because fan coils must be

placed in the building in a certain stage of construction. That’s why sale region gives

78

a delivery date before asking to production planner when the sale region is trying to

sell the fan coil product. Because of that, desired delivery date is specified by

Figure 6.5 The message sent from core agent of sale region to core agent of production planner for

delivery date request with order declaration details.

“desired_delivery_date” predicate in the message. Of course, there will be a product

list in order declaration. It is denoted by “product_list” predicate in the graph.

Product list node is actually type of “Bag” (in the sense of RDF terminology). The

bag holds product numbers, amount of every product and the unit of the amounts. In

this example, fan coils can be ordered each by each. In figure 6.5, two sorts of fan

coil are ordered. One of them is ordered as a two pieces and the other one is ordered

as a one piece. You may consider the benefits of using RDF in this example. The

79

products are defined as resources and they have their own URIs. The resources of

firm have unique identifiers. This gives a great opportunity to build a knowledge

based system.

Figure 6.6 The message sent from core agent of production planner to core agent of material planner.

The message shown in figure 6.6 is sent from core agent of production planner to

material planner. The difference between the messages in figure 6.5 and 6.6 is the

existence of “production_date” predicate. All other properties are same. The material

planner checks for the material availability in the proposed production date. This

message is also sent to core agent of designer to get the material list. It is decided

that another message is not needed to be designed for this conversation.

80

Figure 6.7 The message sent from core agent of designer to core agent of material planner as response

to the message in figure 6.6.

Figure 6.7 depicts the message sent from core agent of designer to core agent of

material planner as response to the request of the material list of the order. Material

list is specified with “material_list” in the model. The node of order declaration

number is chosen as the subject of the predicate. When the models in figure 6.7 and

6.6 are joined together, the products and materials of the order can be gathered in one

RDF model. This will provide us to infer about what is going on the system.

81

Figure 6.8 The message sent from core agent of material planner to core agent of production planner

for declaring that the materials are going to be available at the production date.

Figure 6.8 shows the message from core agent of material planner to core agent of

production planner as response to question about the availability of production

materials in production day. This message means that there will be enough materials

to produce the fan coils of the order. The message contains the order number of the

order to avoid of misunderstanding between agents.

Figure 6.9 shows the message from core agent of production planner to core agent

of sale region as response to request for delivery date of the order sent from sale

region. This message defines the delivery date via “delivery_date” predicate.

Figure 6.10 shows the message sent from core agent of material planner to core

agent of purchaser for requesting the lead times of material order. The material order

is also associated with the order declaration for the opportunity of building a

knowledge system easily.

Figure 6.11 shows the message sent from core agent of purchaser to core agent of

material planner as to response of the request of lead times of the material order.

82

Figure 6.9 The message sent from core agent of production planner to core agent of sale region for

declaring that the delivery date of the order.

Figure 6.10 The message sent from core agent of material planner to core agent of purchaser for

requesting the lead times of material order.

83

Figure 6.11 The message sent from core agent of purchaser to core agent of material planner for

declaring the lead times of material orders.

6.1.6 Step 6, Goals of Agents

Core agent of sale region checks whether the desired date of order delivery is got

or not. Core agent of production planner aims to give earliest delivery date when an

order is received. Core agent of material planner checks the availabilities of materials

in a time interval. The other core agents of designer and purchaser do not have goals

in this workflow. They only respond the requests from material planner.

6.1.7 Step 7, Defining Computing Step Taken In Agents:

SADE framework has a simple tool for ready Step Groups to ease the debug

operations during development of Step Groups. The tool gets a Step Group and

outputs a simple RDF model represents the Step Group. This tool will be used in this

section. The outcome of the tool will be viewed as graphs by the help of Isaviz RDF

editor v2.1.

84

Nodes in different types are figured differently in figure 4.2. However, the tool

used in the scope of this study is not so definitive. It is a prototype tool. It only

creates an RDF model that may present the names of the steps in flow. The types of

the step nodes may be added and a special program that visualizes different nodes in

different styles can be developed. Nevertheless, the current RDF model can help to

understand the steps taken in agents.

Because the figures of some graphs in this section are too large to be viewed in

one page, the graphs are split into several figures. And also the RDF nodes are

numbered to make more understandable. The numbers in figures are not part of the

RDF model.

Figure 6.12 shows the first part of the steps taken in the core agent of sale region

when an order declaration is received from gui agent of sale region. The first nodes

of every step groups are the nodes that hold the step group name, data store and some

other initial values of the step group. These nodes are in type of StepGroup object.

So that the name of the step group in figure 6.12 is

Workflow_OrderDeclaration_SaleRegionCore. The first step after StepGroup object

is StarterResumerStep object. After initializations of step group, the incoming

message is stored into data store by node 3. The real message is wrapped with

another object, called SendingObjectModel, used between gui agents and core

agents. The wrapper object contains the destination of the message and some other

metadata about message. The core agent can understand what should be done with

the message by the wrapper object.

Besides that, in this case, the core agent of sale region has some duties other than

bypassing message. Because of that, the order declaration object should be extracted

and put into data store in node 4. Afterwards the order is inserted into database of

sale region. Node 6, sends the incoming message to planner as described in wrapper

message. Because the execution of step group pauses, SADE looks for any message

to be return to gui agent of sale region. In this stage, there is nothing to return. Thus,

85

this is mentioned in node 7. Node 8 make the flow pause to wait for the response

from production planner. Node 9 is executed when the message has come from

Figure 6.12 The steps taken in core agent of sale region, part one.

production planner. This node checks the incoming message type and chooses the

proper next step. In this flow, the paths to be followed for the messages in types of

refuse, agree and inform. Node 10, only, prints into command prompt a message that

86

says that a refuse message has come. Then the flow is ended. Node 11, only, prints

into command prompt a message that says that a agree message has come. Then the

flow is ended. When the inform message comes, node 12 put the message into data

store. If newly incoming message has no syntactic error the node 13 is executed.

Node 13 is pointed by the arc which is labeled as nextStep_UNDERSTOOD.

Otherwise, the nextStep_NOTUNDERSTOOD arc should be fallowed. In this flow

there is no arc labeled like that. Thus, the execution of flow will stop immediately, if

the incoming message has syntactic error. Node 13 puts the incoming message from

production planner into inbox of gui agent of sale region. Node 14 sends the

incoming message to gui agent of sale region. If any message is not sent to gui agent,

the time out procedure will run. Time out procedure puts the sent message and a

related timeout message into message inbox of gui agent. If any message is not sent

to gui agent from core agent of sale region, there will be a timeout message and

delivery date message for the same order declaration message.

Figure 6.13 The steps taken in core agent of sale region, part two.

Node 15, only, prints into command prompt a message that says that an inform

message has come. Node 16 tests if the incoming message is type of message that

87

determines the delivery date of the order. Production planner can also send a

message telling that the user of production planner agent will determine the delivery

date. That’s why the message is checked. If the test is failed, the execution of flow is

stopped because there is no specified node with nextFalseStep arc in the graph.

Otherwise, the delivery date of the order is inserted into database of the sale region in

node 17. Node 18 gets the delivery date and the desired delivery date from the

database into data store. Node 19 tests if delivery date is later than desired delivery

date. Node 20 creates a related message that tells desired delivery date is later than

the desired date. Node 21 inserts this message into inbox of sale region. The

execution is ended after node 21 is executed.

Figure 6.14 The steps taken in core agent of sale region, part three.

88

Figure 6.15 The steps taken in core agent of production planner, part one.

Figure 6.15 , 6.16 and 6.17 show the steps taken in core agent of production

planner. Node 1 denotes the name of the step group which is

WorkflowName_OrederDeclarationResponder. Node 2 starts the flow. Node 3

inserts the incoming message, which is declaration of fan coil order, into data store.

Node 4 queries the database for the first available production week and inserts the

date into data store. Node 5 gets the production date from data store and constructs

the message to be sent to material planner. Node 6 inserts the order into database of

production planner. If the insertion returns with an error, node 8 is executed. Node 8

89

sends sale region a refuse message. If the insertion is completed without error, the

message prepared in node 5 is sent to core agent of material planner in node 7. Node

9 pauses the execution of flow to wait for the response from material planner. Node

10 resumes the execution of the flow. Node 11 inserts the incoming message from

material planner into data store. Core agent of material planner can send a message

that tells that there are enough materials at production week or a message which

contains a material list that must be ordered. Node 12 tests if the incoming message

is a list of material that should be ordered.

Figure 6.16 The steps taken in core agent of production planner, part two.

Node 13 tests if the incoming message is message that tells the materials will be

ready in production date. If test is completed successfully, node 14 inserts the order

into production plan. Node 15 constructs the returned message to sale region. Node

16, 17 and 18 sets the fields of returned message like order declaration number,

delivery date. Node 19 finally sends the delivery date message.

90

Figure 6.17 The steps taken in core agent of production planner, part three.

Node 20 is executed when the material list to be ordered comes. Node 20 inserts

order declaration message into inbox of production planner. Node 21 inserts the

message which contains material list to be ordered. Node 22 prepares a message

telling that the order delivery date will be decided by user of the production planner

agent. This is needed because the sale region waits for an answer. If no answer is

sent, the sale region may wait for ever if a time out is not set. Node 23 and 24 sets

the fields of return message.

Figure 6.18, 6.19 and 6.20 show the steps taken in core agent of material planner.

Node 1 denotes the name of the step group. Node 2 starts the flow. Node 3 inserts the

incoming message, which is declaration of fan coil order, into data store. Node 4

sends the order declaration to the core agent of designer. Node 5 denotes that no

91

response message is sent in next pause of flow. Node 6 pauses the flow. Node 7

resumes the flow when the message from designer comes. If the incoming message

from designer is a agree message, it is sent to production planner in node 12. If it is

inform message, the material list for the production of the order sent from designer is

stored in data store in node 8. Node 9 adds probable production date which is sent

from production planner into material list object. This date is going to be used for the

query to test whether enough material will exist in the production date. Node 10

queries the database and stores the result via material list object which also contains

the probable production date.

Figure 6.18 The steps taken in core agent of material planner, part

one.

92

Figure 6.19 The steps taken in core agent of material planner, part two.

Node 11 tests if the result set, which is created by node 10, has any value that

identifies lack of material in production date. Node 13 reserves materials via

inserting proper lines into database. Node 14 constructs the positive message to be

sent to production planner. Node 15 and 16 set the order declaration number field

and order number field of returned message respectively. Node 17 sends the message

to production planner.

Node 18 queries the database and stores the result. Node 19 constructs the

message to be sent to purchaser. The message contains the materials which are

needed in production. Node 20 sends the message to purchaser. Node 21 pauses the

flow. Node 22 resumes the flow after the response from purchaser comes. Node 23

stores the incoming message into data store. Node 24 sends the message to

production planner. Finally flow is ended after the execution of node 24.

93

Figure 6.20 The steps taken in core agent of material planner, part three.

94

Figure 6.21 The steps taken in core agent of designer.

Figure 6.21 shows the steps taken in core agent of designer. Node 1 denotes the

name of the step group. Node 2 starts the flow. Node 3 inserts the incoming message,

which is declaration of fan coil order, into data store. Node 4 queries the database for

material list that is needed for order and stores the result set in data stores. Node 5

constructs the message that contains the material list of order. Node 6 sends the

message to material planer. The flow is ended after the execution of node 6.

Figure 6.22 shows the steps taken in core agent of designer. Node 1 denotes the

name of the step group. Node 2 starts the flow. Node 3 inserts the incoming message,

which is list of lacking materials, into data store. Node 4 queries the database for lead

times that will pass after material orders. Node 4 also stores the result set from the

95

Figure 6.22 The steps taken in core agent of purchaser.

query into the data stores. Node 5 constructs the message that contains lead times.

Node 6 sends the message to material planer. The flow is ended after the execution

of node 6.

6.2 Fan Coil Order Cancellation Process

Order cancellation process is very simple. Sale region declares the order

cancellation to production planner. The planner discards the order from production

plan and sends the order cancellation information to the material planner. Material

planner releases the materials of the order. The workflow diagram of order

cancellation can be examined in figure 6.23.

96

Figure 6.23 Fan coil order cancellation process.

6.3 Fan Coil Product Number Query Process

This process also is simple. A fan coil can have in plenty of possible

configurations. Every configuration has a diverse product number. Sale regions

sometimes need product numbers they don’t have in their database. They send a

configuration to designers of the fan coil. The designers return the product numbers.

The configuration may not be so definitive that one only one product number is

returned. Sale region may not define all the configuration properties. In this case, the

possible production numbers are returned with the short definitions of the products.

Thus, sale region may enter an order declaration to production planner. The product

number query workflow may be examined in figure 6.24.

97

Figure 6.24 Fan coil product number query process.

6.4 Reordering Materials Process

Fan coil department is using a just-in-time system to reduce their inventory levels

and associated carrying costs. When using a just-in-time system, you base your

purchasing and stock levels on upcoming work, rather than on past usage. There are

safety stock levels for materials of fan coil product. Safety stock is the minimum

number of the item that you must have on hand at all times. When these levels are

reached the reordering procedure must start.

The application built for the system checks the stock levels everyday whether if

the stocks are at safety stock limits. If any stock level of a material is at limit, a

message is sent to inbox of gui agent of material planner. The other procedure steps

are taken care of the user of the material planner.

 98

CHAPTER SEVEN

CONCLUSION

With the growth of the Internet and the World Wide Web, the computation power

of software systems is likely to be evaluated on the basis of the power of interaction

capability of the systems. Computing is something that happens by communication

between computational components. These components are viewed as providing

services to one another. They may not all have been designed together or even by the

same software development team. In addition to this, these components are not

necessarily activated by human users but may also carry out actions in an automated

and coordinated manner when certain conditions hold. How should we take this

approach into action? The answer lies with agent technologies.

Agents offer a new and more appropriate route to the development of complex

computational systems, especially in open and dynamic environments. However,

particular tools and techniques are needed. Some of them listed below.

• Methodologies for analysis and design issues are needed. Agent paradigm

is different than object paradigm. The methodologies used for object

oriented program can not fit to agent programming exactly.

• Agent architectures are needed for the design of individual software

components

• Tools and abstractions are required to enable developers to deal with the

complexity of implemented system

• Supporting infrastructure must be integrated. The infrastructures for

accommodation of agent systems and legacy systems are needed.

Why are agent technologies still used rarely in business environments? There are

a number of reasons for this.

99

• Research in the area of agent technology is also still only in its infancy. If we

compare with object-oriented (OO) programming approaches, we will

understand why it is so. The initial research on OO programming was in

1962. C++ programming language has come more than 20 years later and

first version of Java has come 32 years later. As a consequence of this,

knowledge of agent technologies is still not widespread among commercial

software developers.

• Because of immaturity of research and development in agent technologies,

more proven methodologies, tools are needed. Complementary, products and

services like integrating legacy systems with agent systems are needed. When

development in agent technologies is satisfactory, costs and risks of agent

systems will reduce.

• Many potential applications of agent technologies require the participation of

entities from more than one group or organization. Automated purchase

decisions along a supply-chain, for example, require the participation of the

companies along the chain, so that implementing a successful agent-based

application requires agreement and coordination from multiple companies.

That’s why the current agent systems are occasionally closed systems for one

organization.

For these reasons, the agent community is spending so much effort on developing

standards for agent communication and interaction, such as FIPA, so that agent

systems may interact without the need for prior coordinated technology adoption

decisions. More generally, the adoption of agent technologies in business

environments depends on how fast and how well agent technologies can be linked to

existing and proven software and software methods (legacy systems). Agent

technologies should be targeted at those application domains which are proven and

tested for a long time. After wrapping the legacy systems, newly built systems may

be pure agent systems. Using new technologies without throwing present systems

will be the most appropriate choice to firms which don’t want to take risk and cost of

new systems.

100

Software programs are being specialized in domains. These specialized domains

are getting smaller and smaller. There is no software program that works alone.

Every program gets input from its environment and provides output to its

environment in some way. The need of interaction and integration is going to be

getting more vital. New systems may have good skills on interacting with other

systems but legacy systems have always a problem on interacting with other systems.

The efforts on wrapping the legacy systems with interacting capabilities will be

supported most in next decade. To replace the legacy systems is so risky and

expensive. Wrapping with new technologies is the best choice. Agent technology is

the best promising technology so far for wrapping problems of legacy systems.

Another key issue of integrating systems is having a tool that solves problems in

the way people solve in daily life. If the tools used for integrations force the users to

think in another way they are accustomed, the integration process will be inclined to

failure. The simulation power of the integration model plays important role for the

integrated systems. Multi-agent systems offer strong models for representing

complex and dynamic real-world environments. For a reasonable time, companies

are using process management methods in their business. The systems that offer

process management have great competition opportunity in the market.

The workflow management systems are in widely usage today. Workflow

management technologies allow people and organizations to automate, manage and

improve the processes that govern interpersonal coordination and collaboration.

Many organizations have chosen traditional workflow management systems to

automate their processes. However, traditional workflow management systems lack

of reactivity, semantics, resource management, heterogeneity, automation and

generic interfaces (see section 2.2 for details).

Most of the needs of which traditional workflow management systems lack are

met by agent paradigm and standardization efforts on agent communication. Agent

based workflow management systems will meet most of the needs mentioned before.

Agent based workflow management systems are not only reactive and also proactive.

101

They are autonomous and social. These capabilities come from their individual

components; agents. Naturally they contain the abilities of agents. These capabilities

are gathered and implemented in agent development frameworks like JADE. FIPA

standards encapsulate standards dealing with agent platforms, interactions between

agents and agent platforms. The resource management is standardized in FIPA

specifications (by Directory Facilitator (DF) and FIPA communication protocols)

Heterogeneity need of the workflow systems is met by FIPA interaction standards

between agent platforms.

The semantics and generic interface needs of workflow systems are left. These

needs are met when the workflow system is in implementation phase. The semantics

need can be met by usage of strong definitive messaging languages like RDF or

OWL. Knowledge representation capabilities of messaging language will help

organizations to build semantics. The other need of generic interfaces is so important

for integrating with legacy systems. The work of integrating agent systems with

legacy systems must not be so complex. Otherwise, the cost of implementation will

be expensive. Risk of failure will be much more.

The framework, SADE, developed in this study helps its users to build their

semantics and integration of their legacy systems. System administrators in firms

don’t have so much time to deal with design issues about multi-agent systems.

Especially efforts on building generic interfaces will increase the usage of agents in

workflow and regular systems.

As a result, the companies in every sector choose software solutions having

process oriented solutions because they run their business on the process

management methods. However, companies do not tend to change their existing

systems because of the risk and cost of building systems from scratch. Process

management software models which do not push the implementers to leave the

existing systems have a good position in market. The best promising solution model

is using agent based process management systems so far because agent based

102

systems have a great simulation power of real complex systems and they have great

ability of being wrapper around existing systems.

Following research topics are identified as future research opportunities:

• Modeling: Business processes need to be well described. We need modeling

methods especially for the processes among organizations.

• Communication: Efficient communication languages, ontologies for

exchanging service definitions.

• Personal working environment: Good user interfaces by using interface

agents and personal assistant techniques.

• Integrated with other technologies: Integration with other technologies such

as project management, intelligent scheduling, and optimization, etc.

• Learning: Creation of new business process logic during run time through

learning.

103

REFERENCES

Ahmed, K., Ayers, D. & Birbeck, M. (2001). Professional XML Meta

Data.UK:Wrox Press.

Bellifemine, F., Caire, G., Poggi, A., & Rimassa, G. (2003). Retrieved March 12,

2006 from http://jade.tilab.com/papers/2003/WhitePaperJADEEXP.pdf

Bullock, V., & Cliff, D. (2004). Complexity, & Emergent Behaviour in ICT Systems.

Retrieved March 14, from http://www.foresight.gov.uk/Intelligent_Infrastructure_

Systems/Emergent_Behaviour.pdf

Budimac, Z., Ivanovic, M., & Popovic, A. (1999). Workflow Management System

Using Mobile Agents, In Lecture Notes in Computer Science, 168-198, Springer.

Chung, P.W.H., Cheung, L., Stader, J., Jarvis, P., Moore, J., & Macintosh A. (2003).

Knowledge-based process management—an approach to handling adaptive

workflow, Knowledge-Based Systems 16 (3) 49–160.

Durfee, E. H. , & Lesser, V. (1989). Negotiating Task Decomposition and Allocation

Using Partial Global Planning. In Distributed Artificial Intelligence, Volume 2

229-244. San Francisco, Calif.

FIPA (The Foundation for Intelligent Physical Agents) (2002). FIPA Abstract

Architecture Specification. Retrieved March 23, 2006, from

http://www.fipa.org/specs/fipa00001/SC00001L.html

FIPA (2004a) , FIPA Agent Management Specification Retrieved March 23, 2006,

from http://www.fipa.org/specs/managementspecs.tar.gz

FIPA (2004b), FIPA Request Interaction Protocol Specification. Retrieved March

25, 2006, from http://www.fipa.org/specs/fipa00026/SC00026H.html

104

Garrido, L., & Sycara, K (1996). Multiagent Meeting Scheduling: Preliminary

Experimental Results. In Proceedings of the Second International Conference on

Multiagent Systems, 95-102. Menlo Park, Calif.: AAAI Press.

Genesereth, M. R, & Ketchpel. S. P. (1994). Software Agents. Communications of

the ACM 37(7): 48-53.

Hubns, M., & Singh, M. (1998). Workflow agents. IEEE Computing July– August

94–96.

JADE (2006), Java Aggent Development Framework Group, Retreived March 12,

2006 from http://jade.tilab.com/

Jennings, N, Faratin, P, Johnson, MJ, O'Brien, PD and Wiegand, ME, (1996). Using

intelligent agents to manage business processes, Proceedings of the 1st

International Conference on the Practical Applications of Intelligent Agents and

Multi-Agent Technology London, UK, 345-360.

Lei, Y., & Singh, M.P. (1997). A Comparison of Workflow Metamodels, Workshop

on Behavioral Models and Design Transformations: Issues and Opportunities in

Conceptual Modeling at ER’97, Los Angeles: CA.

Lewis. C. M., & Sycara. K (1993). Reaching Informed Agreement in Multispecialist

Cooperation. Group Decision and Negotiation 2(3): 279-300.

Luck, M., McBurney, P., Shehory, O., & Willmott, S. (2004). Agent Technology:

Overview and Consultation Report. Retrieved March 15, 2006 from

http://www.agentlink.org/roadmap/al3rm.pdf

Manola, F. & Miller, E. (2002), RDF Primer, W3C Working Draft Retrieved March

23, 2006, from http://www.fipa.org/specs/managementspecs.tar.gz.

105

O’Brien, P.D. & Wiegand, W.E. (1998a). Agent based process management:

applying intelligent agents to workflow, The Knowledge Engineering Review 13 (2)

1–14.

O'Brien, P., D., & Wiegand, M., E., (1998b). The Knowledge Engineering Review

, Cambridge University Press, Vol. 13.2, 161-174

Shen, W., Norrie, D.H. & Barthes, J.P. (2000). Multi-Agent Systems for

Concurrent Intelligent Design and Manufacturing, Taylor and Francis, London:

UK.

Sheth, A, (1995). Workflow Automation: Applications, Technology and Research

Tutorial Notes from SIGMOD Conference, May.

Sycara, K. P. (1998). AI magazine Volume 19, No.2 Intelligent Agents Summer

1998.

Takeda, K., Inaba, M., Sugiara, K. (1996). User interface and agent prototyping for

flexible working, IEEE Multimedia 3, 40–50.

Turoff, M., Hiltz, S.R., Bieber, M., Fjermestad, J., Rana, A. (1999), Collaborative

discourse structures in computer mediated group communications, Proceedings of

the 32nd Annual Hawaii International Conference on Systems Sciences 5–8

January 9.

Vollmann, T., Berry, W. and Whybark, D. (1992). Manufacturing Planning and

Control Systems. Irwin: New York.

Vaucher, J. & Ncho A. (2003). JADE Tutorial and Primer. Retrieved March 6, 2006

from http://www.iro.umontreal.ca/%7Evaucher/Agents/Jade/JadePrimer.html

106

Workflow Management Coalition, (1996). Workflow Management Coalition

Terminology and Glossary, Doc. No. WFMC-TC-1011, Issue 2.0, June 1996.

Wooldridge M. (2000).Reasoning about Rational Agents, Cambridge:The MIT Press.

Yan,Y., Maamar, Z. & Shen, W., (2001). Integration of Workflow and Agent

Technology for Business Process Management, The Sixth International Conference

on CSCW in Design.

Zambonelli, F. & Parunak, H. V. (2002). Signs of a revolution in computer science

and software engineering, in P. Petta, R. Tolksdorf and F. Zambonelli (Eds.),

Engineering Societies for the Agents World, Lecture Notes in Artifi cial

Intelligence 2577, 13–28, Springer.

