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METHODS USED IN REDUCTION OF ERRORS ARISING FROM 

NONRESPONSE 

 

ABSTRACT 

 

Various types of survey errors, especially nonresponse errors, may seriously 

deteriorate data quality. Nonresponse has more one reason to worry about its harmful 

effects on the survey estimates. So, nonresponse and methods dealing with 

nonresponse have increasingly become a standard part of survey sampling. A 

nonresponse occurs in a survey when, for any reason, a selected unit does not 

respond. The usual methods of estimation in the presence of nonresponse give biased 

results. Because of this special estimation techniques are required to deal with the 

problem. Imputation and reweighting are two standard methods provided by the 

literature for treating nonresponse. In the recent years, scientist became increased to 

concern with the calibration approach to reweigthing method in the presence of 

nonresponse. The calibration approach generates the final weights which are as close 

as possible to specified design weights, while respecting known auxiliary population 

totals or unbiased estimates of these totals. This calibration procedure requires the 

formulation of a suitable auxiliary vector, through a selection from a possible larger 

set of auxiliary variables. 

 

In this study standard methods for the reduction of bias and errors arising from 

nonresponse are explained. The calibration approach is examined as theoretically and 

simulation is performed by macro generated in C++ programming language to study 

how alternative specifications of the auxiliary vector affect the quality of estimators 

derived by the calibration technique. In the application, the calibration estimators and 

quality measures such as relative bias, variance are computed and interpreted for the 

population total.  

  

Keywords: Nonresponse, nonresponse errors, calibration, auxiliary information,   

nonresponse adjustment, nonresponse bias, weighting 



 

 v 

YANITLAMAMADAN KAYNAKLANAN HATALARIN 

AZALTILMASINDA KULLANILAN YÖNTEMLER 

 

ÖZ 

 

Anket araştırmalarında karşılaşılan çeşitli problemlerden biri olan yanıtlamama 

hatası veri kalitesini ciddi şekilde bozmaktadır. Yanıtlamama, anket 

araştırmalarından elde edilecek tahminler üzerindeki tehlikeli etkilerinden dolayı 

kaygı duyulan bir durumdur. Bu nedenle yanıtlamama sorununu giderecek yöntemler 

örneklemenin standart bir bölümünü oluşturmaktadır. Yanıtlamamanın varlığı 

durumunda ideal koşullar için kullanılan tahmin yöntemleri yanlı sonuçlar 

vermektedir. Bu sorunun üstesinden gelmek için özel tahmin tekniklerinin 

kullanılması gerekmektedir. Yerine Atama (ikame) ve Yeniden Ağırlıklandırma 

yanıtlamama sorunu ile karşılaşıldığında kullanılan ve literatürde de belirtilen iki 

standart yöntemdir. Son yıllarda, bilim adamları, yanıtlamamanın varlığında, yeniden 

ağırlıklandırma yönteminde kalibrasyon yaklaşımını daha sık kullanmaktadırlar. 

Çünkü yardımcı bilginin etkin kullanımında kalibrasyon uyarlanabilir bir 

yaklaşımdır. Kalibrasyon yaklaşımı, yardımcı bilgi kitle toplamını veya yansız 

tahminin bilinmesini gerektirirken, tasarım ağırlıklarına olabildiğince yakın olması 

gereken son ağırlıkları yaratır. Kalibrasyon yöntemi, olası yardımcı değişken 

kümesinden seçim ile oluşturulan uygun yardımcı değişken vektörünün 

formulasyonunu gerektirir. 

 

Bu çalışmada, yanıtlamamadan kaynaklanan yanlılığın ve hataların azaltılabilmesi 

için kullanılan yöntemler tanıtılmıştır. Bu yöntemlerden biri olan Kalibrasyon 

yaklaşımı teorik olarak incelenmiştir. Yardımcı değişken vektörünün değişik 

durumlarının kalibrasyon tekniği ile hesaplanan tahmin edicilerin kalitesini nasıl 

etkilediğini görebilmek amacıyla C++ programlama dili kullanılarak bir simülasyon 

çalışması yapılmıştır. Uygulamada kitle toplamı için kalibrasyon tahminleri, göreli 

yanlılıklar, varyanslar hesaplanarak yorumlanmıştır. 
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CHAPTER ONE 

INTRODUCTION 

 

 The results of a sample survey are affected by many kinds of errors, one of the 

most important sources being nonresponse. Nonresponse has long been a matter of 

concern in survey sampling. Nonresponse means failure to obtain a measurement on 

one or more study variables for one or more elements k selected for the survey. It is 

present almost all surveys, but the extent and effect of the nonresponse can vary 

greatly from one type of survey to another. The main problem caused by 

nonresponse is that estimators of population characteristics must be assumed to be 

biased unless convincing evidence to the contrary is provided. If the nonrespondents 

are not a random subset of the sample, in other words, if their characteristics differ 

systematically then the achieved sample will produce biased population estimates. It 

is for this reason that survey researches are concerned about nonresponse. (Särndal, 

Swensson and Wretman, 1991) 

 

     In the best of surveys, nonresponse occurs, and special estimation techniques are 

required to deal with the problem. In the recent literature, the problem of 

nonresponse is viewed from two different but complementary angles: the prevention 

or avoidance of nonresponse before it has occured, and the special techniques 

required in estimation when nonresponse has occured. The principal methods for 

nonresponse adjustment are reweigthing and imputation. Reweigthing entails altering 

the weights of the respondents, compared to the weights that would have been used 

in the case of full response. Imputation entails replacing missing values by proxy 

values. In the recent years, there has been a great interest in the calibration approach 

to reweighting which has the favourable property of incorporating most “Standard” 

methods found in the different places in the literature. The calibration procedure 

generates final weights which are as close as possible  to specified initial (design) 

weights , while respecting known auxiliary population totals or unbiased estimates of 
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these totals. The calibration approach has only a single computational step and it 

requires no seperate  modelling of a nonresponse mechanism. For these reasons, 

the calibration approach to reweighting, is better suited for a routine treatment of 

nonresponse in organization. (Lundström& Särndal, 2001) 

 

This study contains seven chapters. In chapter two, general information about 

survey and survey errors are given. In  chapter three, methods for the estimation 

under ideal conditions that the survey has without nonresponse are given. These 

estimators’ features and variance estimators are mentioned. In chapter four, 

definition and sources of nonresponse are given. Common methods in the old 

literature dealing with nonresponse are investigated. The importance of  auxiliary 

information used for adjusting  nonresponse  is described. Two standard 

approaches for the reduction of nonresponse bias and errors are given in chapter 

five. At first, the imputation method  is introduced. In the second, reweighting 

method with two approach is explained. Especially, calibration approach which is 

the most powerful technique for the reduction of nonresponse bias is emphasized 

in details. Chapter six aims to emphasized how alternative specifications of the 

auxiliary vector kx   affect the quality of the estimators derived by the calibration 

technique. Simulation study is done to measure this quality that relative bias and 

variance are computed for the estimators.  
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CHAPTER TWO 

GENERAL INFORMATION ABOUT SURVEY ERRORS 

 

 

The objective of survey is to provide information about unknown characteristics, 

called parameters, of a finite collection of elements called a population for example, 

a population of individuals, of households, or of enterprises. A typical survey 

involves many study variables and produces estimates of different types of 

parameters, such as the total or the mean of a study variable, or the ratio of totals of 

two study variables. Sometimes different kinds of elements are measured in the same 

survey, as when both individuals and households are observed. (Särndal& 

Lundström, 2001) 

 

A government or some other users express a need for information about a social 

or economic issue and existing data sources are insufficient to meet this need is the 

origin of a survey. In the planning process to determine the survey objectives as 

clearly and unambiguously as possible is the first step. The next step, referred to as 

survey design, is to develop the methodology for the survey. (Särndal, Swensson and 

Wretman, 1991) 

 

Survey design involves making decisions on a number of future survey 

operations. The data collection method must be decided upon, a questionnaire must 

be designed and pretested, procedures must be decided on, interviewers must be 

selected and trained, the techniques for handling nonresponse must be decided on, 

and procedures for tabulation and analysis be thought out.  

 

There are three different types of survey and these are: 

 

� Survey based on administrative registers, 

� Census Survey, 

� Sample survey. 
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Kish (1979) explained advantages and disadvantages of these three types of 

survey.  

 

A survey will usually encounter various technical difficulties. No survey is perfect 

in all regards. The statistics that result from the survey are not error free. There are 

five types of error and these are: 

 

� Sampling error, 

� Nonresponse error, 

� Coverage error, 

� Measurement error, 

� Coding error. 

 

Errors in survey estimates are traditionally divided into two major categories: 

sampling error and nonsampling error.  

 

The sampling error is the error caused by observing a sample instead of the whole 

population. When statisticians speak about sampling error they mean the error caused 

by the fact that values of a study variable are recorded only for a sample of elements, 

not for all elements of the population. The sampling error is subject to sample-to-

sample variation. If the whole population were indeed observed, the sampling error 

would be zero. This situation is exceptional. There could be other errors, for 

example, measurement error and nonresponse error, but the sampling error would be 

zero. Statisticians usually measure “error” by a variance. Hence, the sampling error is 

measured by the variance of the estimator in use, assuming that there are no other 

errors. (Särndal & Lundström, 2001) 

The nonsampling errors include all other errors. The two principal categories of 

nonsampling errors are: 

 

� Errors due to nonobservation. Failure to obtain data from parts of the target 

population. 
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� Errors in observations. This kind of error occurs when an element is selected 

and observed, but the finally recorded value for that element, which the value 

that goes into the estimation and analysis phase, differs from the true value. 

Two major types are: 

 

(l) measurement error (error arising in the data collection phase)  

(2) processing error (error arising in the data processing phase). 

 

There are two principal types of nonobservation. These are: 

 

 (1) undercoverage, that is, failure of the frame to give access to all 

elements that belong to the target population, such elements will obviously 

not be selected, much less observed, and they have zero inclusion probability. 

 

 (2) nonresponse, that is, some elements actually selected for the 

sample turn out to be non-observations because of refusal or incapacity to 

answer, not being at home, and so on. Nonobservation generally results in 

biased estimates. 

 

Processing error comprises the errors arising from coding, transcription, 

imputation, editing, outlier treatment, and other types of preestimation data handling. 

 

 It becomes necessary at this point to distinguish target population from frame 

population. The target population is the set of elements about which information is 

wanted and parameter estimates are required. A survey aims at obtaining information 

about a target population. The delimitation of the target population must be clearly 

stated at the planning stage of the survey. The staticians’s interest does not lie in 

publishing information about individual elements of the target population, but in 

providing descriptives measures (totals or functions of totals) for various domains, 

that is, for various aggregates of population elements.  
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The frame population is the set of elements that are either listed directly as units 

in the frame or can be identified through a more complex frame concept, such as 

frame for selection in several stages.  Frame population is the set of all elements that 

could possibly be drawn that the sample is drawn from. The frame population and the 

target population are no always identical. 

 

 

 Figure 2.1. Source of errors  (Särndal Lundström, 2001) 

 

If a probability sample is selected from the frame population, valid statistical 

inference can be made about the frame population. If the frame population is 

different from the target population, valid inference about the target population may 

be possible, so goal of the survey may be missed. To construct a high quality frame 

for the target population is an important aspect of survey planning and adaequate 

resources must be set aside for this activity. 

 

Target population is defined as the set of elements that the survey aims to 

encompass at the time when the questionnaire is filled in. This point in time is called 

the reference time point for the target population. The sampling frame is usually 

constructed at an earlier date, sometimes as much as twelve months earlier; this time 

point is referred to as the reference time point for the frame population. The lag 
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between the two time points should be as short as possible, because the risk of 

coverage errors increases with the time lag. Three types of coverage error are 

commonly distinguished: 

 

� undercoverage,  

� overcoverage,  

� duplicate listings.  

 

Elements that are in the target population but not in the frame population 

constitute undercoverage. Especially in business surveys, a significant part of the 

undercoverage is made up of elements that are new to the target population but are 

not present in the frame population. These are commonly referred to as “births”. 

Undercoverage may, of course, also have other causes. 

 

Elements that are in the frame population but not in the target population 

constitute overcoverage. Elements that have ceased to exist somewhere between the 

two reference time points can be a significant source of overcoverage. These 

elements are often referred to as “deaths”.  

 

Duplicate listings refer to the type of errors occurring when a target population 

element is listed more than once in the frame. 

 

It follows that undercoverage elements have zero probability of being selected for 

any sample drawn from the frame population. This is an undesirable feature, because 

if the study variable values differ systematically for undercoverage elements and 

other population elements, there is a risk of biased estimates. Bias from overcoverage 

can usually be avoided if it is possible to identify the sample elements that belong to 

the overcoverage. One procedure is to treat these elements as a special domain. 

However, it is usually impossible to correctly classify all sample elements as 

belonging either to the target population or to the overcoverage. The problem 

becomes particularly acute for nonresponding elements, and biased estimates can be 

the result. 
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Measurement error can be traced to four principal sources: 

� The interviewer. 

� The respondent. 

� The questionnaire. 

�  The mode of the interview, that is, whether telephone, personal interview, 

self-administered questionnaire, or other medium is used. 

 

A survey consists of a number of survey operations. Especially in a large survey, 

the operations may extend over a considerable period of time, from the planning 

stage to the ultimate publication of results. The operations affect the quality of 

survey estimates. Särndal, Swensson and Wretman (1991)  distinguished five phases 

of survey operations, as follows: 

  

� Sample Selection: Errors in estimates associated with this phase are: 

 

(1) frame errors, of which undercoverage is particularly serious, and  

(2) sampling error, which arises because a sample, not the whole 

population, is observed. 

 

� Data Collection: Errors in estimates resulting from this phase include two 

type of errors: 

 

(1) measurement errors, for instance, the respondent gives incorrect 

answers, the interviewer understands or records incorrectly, the 

interviewer influences the responses, the questionnaire is misinterpreted,  

(2) error due to nonresponse, the survey is designed and conducted 

carefully, some of the desired data will be missing. The reason for this is 

that refuse to provide information or contact cannot be established with a 

selected element. At the result, nonresponding elements may be 
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systematically different than responding elements, there will be 

nonresponse error.  

 

� Data Processing: Errors in estimates associated with this phase include 

transcription errors (keying errors), coding errors, errors in imputed values, 

errors introduced by or not corrected by edit. 

 

� Estimation and Analysis: All errors from the phases (i) to (iii) above will 

affect the point estimates and they should ideally be accounted for in the 

calculation of the measures of precision. 

 

� Dissemination of Results and Postsurvey Evaluation 

 

If the operational definitions are clearly stated, the survey statistician can work 

toward the specification of a suitable survey design, including sampling frame, data 

collection method, staff required, sample selection, estimation method, and 

determination of the sample size required the obtain desired precision in the survey 

results. Särndal, Swensson and Wretman (1991) examined the some important 

aspects of survey planning. 

 

Ideally, survey planning should lead to an optimal specification for the survey as a 

whole. The term total survey design has come to be used for planning processes that 

aim at overall optimization in a survey. The concept arose out of a desire for an 

overall control of all sources errors in a survey.  

 

Several survey design is concerned with obtaining the best possible precision in 

the survey estimates while striking an overall economic balance between sampling 

and nonsampling errors. 

 

Särndal, Swensson and Wretman (1991) followed Dalenius (1974) and they 

summarized the total survey design process in a diagram that Figure 2.1. 
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Figure2.1. Total Survey Design (Särndal, Swensson and Wretman, 1991,  p.20) 

 

A survey aims at obtaining information about a target population. The 

delimitation of the target population must be clearly stated at the planning stage of 

the survey. The statistician's interest does not lie in publishing information about 
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(totals or functions of totals) for various domains, that is, for various aggregates of 

population elements. 

 

These unknown quantities are called parameters or parameters of interests. For 

example, three important objectives of a Labour Force Survey are to get information 

about the number of unemployed, the number of employed, the unemployment rate. 

These are examples of parameters. The first two parameters are population totals, the 

third is a ratio of population totals, namely, the number of unemploeds persons 

divided by the total number of persons divided by the total number of persons in the 

labour force. Examples of other population parameters are population means, for 

example, mean household income. And regression coefficients, for example 

regression coefficient of income (dependent variable) regressed on number of formal 

education (independent variable) , for a population individuals. 

 

It can be estimated any of these parameters with the aid of data on the elements of 

a probability sample from the population. It is then assumed that all sampled 

elements are measured for the variables whose totals define the parameter of interest. 

  

The computational load is increased by the fact that most surveys require 

estimation not only for the whole population but for a perhaps considerable number 

of subpopulations as well. They are called domains of study or domains of interest or 

simply domains. A domain of interest can be any subpopulation. Some domains may 

be very small in the sense that very few observed y-values fall into it. The precision 

of any estimate made for such a domain will be questionable. A special case arises 

when the domains form a set of mutually exclusive and exhaustive subpopulations. 

The domains are then said to form a partition of the population U. 

 

The domains of interests are denoted by Dd UUU ,...,,...,1 . If it is wanted to 

estimate the total of the variable y for each domain seperately, the targets of 

estimation are then the D quantities Dd YYY ,...,,...,1 .  If the survey is required to give 

accurate information about many domains, a complete enumeration of these domains 

may become necessary, especially if they are small.  
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Sampling design is used as a generic term for the (usually probabilistic) rule that 

governs the sample selection. It is assumed that there is a function ( ).p  such that  

( )sp  gives the probability of selecting s under the scheme in use. The 

function ( ).p will be called the sampling design. It plays central role because it 

determines the essential properties like sampling distribution, expected value, 

variance of random quantities calculated from a sample. Generally used sampling 

designs are: 

 

� Simple random sampling (SRS), 

� Stratified simple random sampling (STRS), 

� Cluster sampling, 

� Two-stage sampling, 

� Poisson sampling. 

 

With the possible exception of SRS, these designs require some planning before 

carried out. STSRS requires well-defined strata composition. Cluster sampling 

requires a decision on what clusters to use. Two-stage sampling requires that defined 

the first stage sampling unit (the psu’s) and the second stage elements (the ssu’s).  A 

strategy is the combination of a sampling design and an estimator. For a given 

parameter, the general aim is to find the best possible strategy, that is, one that 

estimates the parameter as accurately as possible. 

 

Two other important general concepts that are involved by every sampling design 

are: 

 

� Inclusion probabilities, 

� Design weights. 

 

The inclusion probability of an element is the probability with which it is selected 

under the given sampling design. 
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An interesting feature of a finite population of N labeled elements is that the 

elements can be given different probabilities of inclusion in the sample. The 

sampling statistician often takes advantage of the identifiability of the elements by 

deliberately attaching different inclusion probabilities to the various elements. This is 

one way to obtain more accurate estimates.  

 

It is supposed that a certain sampling design has been fixed. That is, ( )sp , the 

probability of selecting s, has a given mathematical form. The inclusion of a given 

element k in a sample is a random event indicated by the random variable kI , defined 

as 

 



 ∈

=
notif

Skif
I k 0

1
                  (2.1) 

 

( )SII kk =  is a function of the random variable S. kI  is called the sample 

membership indicator of element k. The basic properties of the statistics ( )SII kk =  

for Nk ,...,1=  is important. These are described as in the following.  

 

For arbitrary sampling design ( )sp , and for Nlk ,...,1, = , 

 

   kkIE π=)(                             (2.2) 

    ( ) ( )kkkIV π−π= 1                   (2.3) 

( ) lkkllk IIC πππ −=,                                                           (2.4) 

 

for more details, see Särndal, Swensson and Wretman (1991). 

 

The probability that element k will be included in a sample, denoted kπ , is 

obtained from the given design ( ).p  as follows: 

 

( ) ( ) ( )∑
∈

===∈=π
sk

kk spISk 1PrPr              (2.5) 
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Here, sk ∈  denotes that the sum is over those samples s that contain the given k. 

The probability that both of the elements k and l will be included is denoted klπ  and 

is obtained from the given ( ).p  as follows: 

 

( ) ( ) ( )∑
∈

===∈=π
slk

lkkl spIISlk
&

1Pr&Pr             (2.6)

  

lkkl π=π  for all k, l. If  (2.6) applies also k = l, for in that case 

 

( ) ( ) kkkk II π=====π 1Pr1Pr 2               (2.7) 

 

With a given design ( ).p  are associated the N quantities  

 

Nk πππ ,...,,...,1  

 

They constitute the set of first-order inclusion probababilities. Moreover, with 

( ).p  are associated the 21)( −NN  quantities 

  

     NNkl ,,...,...,, 11312 −ππππ  

 

which are called the set of second-order inclusion probabilities. For computation of 

variance estimates it is needed to second-order inclusion probabilities. Inclusion 

probabilities of higher order can be defined and calculated for a given design ( ).p .  

  

For example, the inclusion probabilities of first and second orders can be 

calculated that considered the simple random sampling without replacement. There 

are exactly 








−

−

1

1

n

N
 samples s that include the element k, and exactly 









−

−

2

2

n

N
 

samples s that include the element k and l ( )lk ≠ . All samples of size n have the 

same probability, 








n

N
1 , it is obtained from (2.5) and (2.6)  
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and 

    

  ( ) ( )
( )1

1

2

2

−

−
=

















−

−
== ∑

∈ NN

nn

n

N

n

N
sp

slk

kl

&

π       lk ≠ =1,...,N        (2.9)  

 

Unless otherwise stated, it ia assumed that the sampling design is such that all 

first-order inclusion probabilities kπ  are strictly positive, that is,  

 

   0>kπ  ,   all    Uk ∈               (2.10) 

 

This requirement ensures that every element has a chance to appear in the sample. 

In order that a sampling design be called a probability sampling design, the must 

satisfy (2.10). A sample s realized by such a design is called a probability sample. 

 

Another important property of a design occurs when the condition  

 

   0>klπ  ,   all    Ulk ∈≠              (2.11) 

 

holds. A sampling design is said to be measurable if (2.10) and (2.11) are satisfied. A 

measurable design allows the calculations of valid variance estimates and valid 

confidence interval based on the observed survey data. 

 

The design weight of an element is the inverse of this inclusion probability. And  

the design weight of element k is denoted as  

 

    
k

kd
π

=
1

               (2.12) 
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Similarly the design weight of element k&l is denoted as 

 

    
kl

kld
π

=
1

                                                                (2.13) 

            

The design weights are very important for computing point estimators. The 

sampling design may generate different probabilities of selection for different 

elements. For example, in SRS and STRS with proportional allocation, all inclusion 

probabilities are equal, but this is not the case in general. The inclusion probability 

can never exceed one. Consequently, a design weight is greater than or equal to one. 

The inclusion probability and the design weight is equal to for an element that is 

selected with certainty. 
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CHAPTER THREE 

ESTIMATION UNDER IDEAL CONDITIONS 

 

Nonresponse is normal characteristic of any survey. But it is undesirable, because 

without it the quality of the statistics and the accuracy of the estimates would 

generally be better. This can be not completely treated at the design stage of the 

survey, so a procedure is needed for dealing with these annoyance factor at the 

estimation stage. It is easier to develop the principles for estimation under the 

assumption that the annoyance factor is absent. The following methods are used for 

this state. (Lundström and Särndal, 2001) 

 

3.1 Horvitz-Thompson Estimator 

 

At the beginning of explanation of Horvitz-Thompson estimator, at first, it must 

be examined the π  estimator.  Let us consider a population consisting of N elements 

labeled k=1,...,N , { }
Nk1 u,...,u,...,u . Thus the finite population is denoted 

as { }N,...,k,...,1U = .  y denote a variable is called study variable, and ky be the value 

of y for the kth population element. Thus, the population total that we want to 

estimate is 

 

                           ∑=
U kyY                                         (3.1) 

 

The  π  estimator for the population total is  

 

                            ∑
π

=π s
k

ky
Ŷ                             (3.2) 

 

where kπ    is the inclusion probability that the kth unit is in the sample. πŶ  can be 

expressed as a linear function of indicators kI  , 
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                            ∑
π

=π U
k

k
k

y
IŶ                                       (3.3) 

 

where kI  is called the sample membership indicator of element k is a random 

variable and is defined by (2.1). 

 

The π  expansion has the effect of increasing the importance of the elements in 

the sample. Because the sample contains fewer elements than the population, an 

expansion is required to reach the level of the whole population.  

 

Horvitz and Thompson (1952) used the principle of π  expansion to estimate the 

total ∑=
U kyY , and formula (3.2) is often called the Horvitz-Thompson estimator. 

Thus the Horvitz-Thompson estimator can be defined as 

 

                            ∑=
s k

k

HT

y
Y

π
ˆ                                        (3.4) 

 

This estimator’s distribution structure depends on unit numbers. So, it depends on 

kI  random variables.  

 

Thus the design weight kd  is written in the estimate formula, the Horvitz-

Thompson estimator for the population total is 

  

  ∑=
s kkHT ydŶ                                                                                (3.5) 

 

Under any sampling design satisfying kπ  > 0 for all elements k, this estimator is 

unbiased for Y. The Horvitz-Thompson estimator is easily shown to be unbiased for 

Y as follows: 
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                       ( ) Yy
yy

IEYE
N

k

k

k

k
N

k

k

N

k k

k
kHT ==

π
π=









π
= ∑∑∑

=== 111

ˆ                                (3.6) 

 

where )( kIE is described by (2.2). (Lohr. 1999) 

 

3.1.1 Variance Estimation of the Horvitz-Thompson Estimator 

 

The variance of the Horvitz-Thompson estimator is  

 

  ( ) ( )
l

l

k

k

U lkklHT

yy
YV

ππ
ππ−π=∑∑ˆ                               (3.7) 

 

and the estimation of this variance is 

 

  ( ) ( )
l

l

k

k

U lkkl

kl

HT

yy
YV

ππ
ππ−π

π
=∑∑

1ˆˆ                                             (3.8) 

 

If the sampling design has been fixed, the variance and other statistical properties 

of HTŶ  are also fixed. In other words, the variance of HTŶ  cannot be changed after 

sampling and data collection because it is determined entirely by the choice of 

sampling design. As a consequence, then sampling design should be chosen so as to 

obtain a small variance for this estimator if the plan is to use the Horvitz-Thompson 

estimator. (Lundström and Särndal, 2001) 

 

3.2 The Generalized Regression Estimator  

 

The emphasis laid on the use of auxiliary information for improving the precision 

of estimates is characteristics of sampling theory. The regression estimator is one 

type of estimator that attempts to make efficient use of auxiliary information about 

the population. (Särndal, Swensson and Wretman, 1991) A wider and more efficient 

class of estimators is those that use auxiliary information explicitly at the estimation 

stage. Some information may already have been used at the design stage. Denote the 
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auxiliary vector by x, and its value for element k by  xk = ( x1k , ... , xjk , ... , xJk )
’
, a 

column vector with  J components, where  xjk  is the value, for element k, of the jth 

auxiliary variable. It is assumed that the population total ∑U kx  is accurately 

known.  

 

An estimator that uses this information is the generalized regression estimator 

(GREG estimator). This estimator is explained and illustrated by several examples in 

Sarndal, Swensson and Wretman (1991). The generalized regression estimator is 

given by 

 

      ( ) BxdxYY
U s kkkHTGREG

ˆˆˆ '

∑ ∑−+=                   (3.9) 

where  

 

     ( ) ( )∑∑
−

=
s kkkks kkkk yxqdxxqdB

1'ˆ              (3.10) 

 

is a vector of regression coefficients, obtained by fitting the regression of y on x, 

using the data (yk , xk)  for the elements sk ∈ . The data are weighted by kk qd , where 

the factor kq is specified by statistician. A simple choice is to take kq = 1 for all k. 

 

The GREG estimator is almost unbiased. The bias, although not exactly zero, 

tends to zero with increasing sample size and even for modest sample sizes it is 

normally so small that we do not need to consider it.  

 

The term ( ) Bxdx
U s kkk

ˆ'

∑ ∑−  in the formula for GREGŶ  can be viewed as a 

regression adjustment applied to the HT estimator, ∑=
s kkHT ydŶ . The effect is an 

important reduction of the variance of HTŶ , especially when there is a strong 

regression relationship between y and x.  
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 GREGŶ  the GREG estimator is in reality a whole set of estimators, corresponding 

to the different specifications that Särndal and Lundström (2001) gave to the 

auxiliary vector kx  and to the factor kq . If a number of auxiliary variables, or x-

variables, each with a known population total, are available at the estimation stage, it 

may be included in kx  those x-variables that promise to be the most efficient ones for 

reducing the variance. That is, some or all of the available x-variables are selected for 

inclusion in the auxiliary vector kx . Consequently, the vector kx to be used in GREGŶ  

can take a variety of forms, given that a certain quantity of auxiliary information. 

  

It can be waited until after sampling and data collection to specify which of the 

possible GREG estimators for use, because the decision on the x-variables to include 

in kx  need to be made until after these survey operations have been completed. 

 

The estimator GREGŶ  is expressed as a linearly weighted sum of the observed 

values ky . When do this, GREGŶ  is 

 

 ∑=
s

kkkGREG ygdŶ                                                                         (3.11) 

 

where the total weight given to the value ky  is the product of two weights, the design 

weight  kkd π= 1 and the weight kg . The weight kg depends both on the element k 

and on the whole sample s of which k is a member. It is given by  

 

  k

s

kkkk

s

kk

U

kkk xxxqdxdxqg

1

1
−









′

′









−+= ∑∑∑                           (3.12) 

 

The value of kg is near unity for a majority of the elements sk ∈ , and the greater 

the size of the sample s, the stronger is the tendency for the gk  to hover close to unity. 

It is rare to find elements with a weight kg  that is greater than 4 or less than 0. 
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Negative weights are allowed; such weights do not invalidate the theory, but some 

users would like all weights to be positive. 

 

The HT estimator is a special case of GREGŶ  , obtained when  

i. 1== kk qx  for all sk ∈ , 

ii. The design satisfies ∑ =
s

k Nd . 

the condition (ii) holds, for example, for the SRS and STSRS designs. 

 

When the weight system  kk qd  is applied to the auxiliary kx  , and sum over the 

elements, an estimate the population total of kx  is obtained. This estimate turns out 

to be exactly equal to the known value of that total, that is,  

 

  ∑ ∑=
s U

kkkk xxgd                           (3.13) 

 

The weight system is called calibrated or, sometimes, consistent. More 

specifically, it is calibrated to the known population total ∑
U

kx . 

 

3.2.1 The Variance Estimation of   the Generalized Regression Estimator  

 

An important survey objective is to estimate the variance ( )YV ˆ . The usual 

procedure is to start with the formula for the variance, and to transform it into an 

estimated variance. Once computed from the sample data, the estimated variance, 

denoted ( )YV ˆ , opens up the possibility of assessing the precision of Ŷ . For example 

( )YV ˆ  is used, and the point estimate Ŷ , to compute a confidence interval for the 

unknown parameter Y. 
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The expression is given for the variance of GREGŶ , in order to close approximation, 

is 

  ( )
lkU

kl

lk
GREG EE

d

dd
YV ∑∑ 








−= 1ˆ                        (3.14) 

 

where the residuals are those arising from the “population regression fit”. This fit, 

which cannot be carried out in practice, has the residuals  

  

  BxyE kkk
′−=                (3.15) 

where 

  















′= ∑∑

−

U

kkk

U

kkk yxqxxqB

1

             (3.16) 

  

( )
GREGYV ˆˆ  is a function of the regression residuals arising from the regression of ky  

on the auxiliary vector kx , and is such that the smaller these residuals, the smaller 

the estimated variance of estimator GREGŶ , which makes good intuitive sense. Then 

the variance estimator of the GREGŶ  is 

 

  ( ) ( )( )( )llkks kllkGREG egegdddYV ∑∑ −=ˆˆ             (3.17) 

where 

             Bxye kkk
ˆ′−=                 (3.18) 

 

with B̂  determined by (3.10). This formula requires that all first and second order 

inclusion probabilities be strictly positive.  
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CHAPTER FOUR 

NONRESPONSE 

 

4.1 Definition of Nonresponse 

 

     By nonresponse is meant that the desired data are not obtained for the entire set 

of elements s, designated for observation. The objective of the survey is to observe 

the sampled elements with respect to q study variables, qj y,...,y,...,y1 . These may 

corresponds to q items on a questionnaire. jky  denotes the value of the variable jy  

for the element k and sn  denotes the size of s. (Särndal, Swensson and Deville, 

1991) 

 

     By full response in the survey is meant that, after data collection and edit, the 

available data consist, for every sk∈ , of a complete q-vector of observed values 

 

( )
qkjkkk yyyy ,...,...,1=  

 

 these values form a data matrix of dimension qns × , with no value missing. In all 

other cases, there is nonresponse. That is after data collection and edit the qns ×  

data matrix is incomplete. One or more of the qns ×  desired jky  values are missing; 

there are some “blanks” instead of values in the data matrix. 

 

     Full response is seldom realized in a survey. There is variety of reasons for 

missing values jky . In a mail survey, the questionnaire may not be returned, or 

returned but not completely filled in. In a survey with personal interviewers, some 

individuals refuse to respond to some or all of the questions. Some individuals are 

not found at home, despite repeated calls. Illness or language problems may make it 

impossible to carry out the interview. A value supplied on a questionnaire or 

obtained at an interview may fail an edit check. Such a value may then be regarded 
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as false or strongly suspect and recorded as a blank. (Särndal, Swensson and Deville, 

1991) 

 

4.1.1 Response Set 

 

     jr   denotes the jth response set, that is, the subset of sample s for which 

acceptable responses to the jth item are recorded. It can thus write 

 

  =jr { sk:k ∈  and jky  is  recorded }. 

 

In the survey, there are q usually nonidentical response sets, qr,...,r1 . In the case 

of a sample survey, the set s is the selected with a known sampling design. The 

response set jr  is a sub selection from s. 

 

 

      Figure 4.1 Illustration of nonresponse and response set  

      and the sample. Lundström& Särndal, 2001, p.57)                                           

 

In the Figure 4.1, it is assumed that response is obtained for the element in a set 

denoted r. Full response implies that r = s. Nonresponse implies that r is a proper set 

of s. The nonresponse set is denoted o = s-r.    
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4.1.2 Measuring Nonresponse 

 

Nonresponse has more one reason to worry about its harmful effects on the survey 

estimates. The bias often increases with the rate of nonresponse. It is very difficult to 

get objective measures of the bias, but it is relatively simple to quantify the extent of 

the nonresponse. Different measures of the nonresponse are usually found in the 

quality declarations that statistical agencies and survey institutes often publish 

together with the survey results. The user can take this information into account 

when judging the credibility of the results. 

 

 A number of descriptive measures are used for the response, or its complement, 

the nonresponse. Two types of missing information for an element k can be 

distinguished from which response is solicited. 

 

4.1.2.1 Item Nonresponse 

 

The element k is an item nonresponse element if at least one, but not at all q, 

components of the vector   yk = (   y1k  ,…, yjk ,…, yqk  ) are missing. For example, the 

respondent returns a partially filled in questionnaire, or an interview results in 

responses to some but not all questions. 

 

In the item nonresponse, the missing values are replaced by the proxy value 

from the response set, mean imputation, hot-deck imputation and regression 

estimation. (Son, Jung, 2004) 

 

4.1.2.2 Unit Nonresponse 

 

 The element k is a   unit nonresponse element if the entire   vector of y -values,  

yk =  ( y1k ,…, yjk ,…, yqk ), is missing. An example is when the respondent fails to 

return the questionnaire, even after one or more reminders, or if he or she refuses to 

participate in a personal interview. 
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In the unit nonresponse it is adjusted the original design weight by new weight 

using auxiliary information which strong correlated with the variable of interested, 

such as the weighting adjustment, raking and calibration method. (Son and Jung, 

2004) 

 

In the following Table (4.1), Särndal and Lundström (2001) illustrated the results 

of a hypothetical data collection in a survey with 8 sampled elements. The symbol x 

indicates a presence of data, nr indicates that data are missing. In this table, for the 

two register variables all 8 sample element have data but elements 7 and 8 constitute 

the unit nonresponse, because neither of these has any response in the questionnaire 

part of the survey. Elements 2, 3 and 6 have the item nonresponse which values 

recorded for at least one questionnaire item Elements 1 to 6 forms the response set in 

this table.  

 

Table 4.1 Unit nonresponse, item nonresponse and response set (Lundström&  

Särndal, 2001, p.25)               

 

 

4.2 Sources of Nonresponse 

 

 Nonresponse refers to many sources of failure to obtain observations (responses, 

measurements) on some elements selected and designated for the sample. If accurate 

accounts are kept of all eligible elements that fall into the sample, the nonresponse 

rate can be measured. These are necessary for understanding the sources of 

nonresponse, for its control and reduction, for predicting it in future surveys, and for 

estimating its possible effects on the surveys. According to Kish (1969), when the 
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classification was done with respect to response set, there was no need that definition 

of sampling unit or observation unit angle of sources of nonresponse. Furthermore, 

reporting the extent of nonresponse has become an accepted responsibility for better 

surveys. (Kish, 1969) 

 

If the many possible sources of nonresponse are sorted into a few meaningful 

classes, these aims can be better served. A good classification of nonresponse 

depends on the survey situation. During classification of nonresponse sources, giving 

attention to the number of classes is very important. Because when the amount of 

classes is very high, nonresponse analysis is difficult or when the amount of classes 

is very low, some information can be lost in nonresponse analysis. Nonresponse can 

have many different causes; as a result, no single method can be recommended for 

every survey. (Teksoy, 1991) 

 

In the literature, various classification types are seen about sources of 

nonresponse. For example, while Moser and Kalton (1971) evaluated that the states 

“not at homes” and “out of the city” in different classes, Kish (1969) classified two 

of them in the same group. Kish (1969) classified the sources of nonresponse as 

follows: 

 

� Not at homes  

� Refusals 

� Incapacity or inability 

� Not found 

� Lost schedules 

 

These categories refer to nonresponse involving the entire interview or 

questionnaire.  
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Platek (1977) classifies sources of nonresponse as related to  

 

� Survey content,  

� Methods of data collection,  

� Respondent characteristic,  

 

and illustrates various sources using the diagram in Figure 4.2 Groves (1989) and 

Dillman (1978) discuss additional sources of nonresponse. The following that are 

classified by Lohr (1999) are some factors that may influence response rate and data 

accuracy.  

 

� Survey content. A survey on drug use or financial matters may have a 

large number of refusals. Sometimes the response rate can be increased for 

sensitive items by careful ordering of the questions or by using a randomized 

response technique. 

� Time of survey. Some calling periods or seasons of the year may yield 

higher response rates than others. The vacation month of August, for 

example, would be a bad time to take a one-time household survey in 

Germany. 

� Interviewers. Gower (1979) found a large variability in response rates 

achieved by different interviewers, with about 15% of interviewers reporting 

almost no nonresponse. Standard quality-improvement methods can be 

applied to increase the response rate and accuracy for interviewers. The same 

methods can be applied to the data-coding process. 

� Data-collection method. Generally, telephone and mail surveys have a 

lower response rate than in-person surveys and they also have lower costs. 

Mail, fax and internet surveys often have low response rates. Possible 

reasons in a mail survey should be explored before the questionnaire is 

mailed: Is the survey sent to the wrong address? Do recipients discard the 

envelope as junk mail even before opening it? Will the survey reach the 

intended recipient? Will the recipient believe that filling out the survey is 

worth time? 
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� Questionnaire design. Question wording has a large effect on the 

responses received; it can also affect whether a person responds to an item 

on the questionnaire. In a mail survey, a well-designed form for the 

respondent may increase data accuracy. 

� Respondent burden. Persons who respond to a survey are doing you an 

immense favor and the survey should be as nonintrusive as possible. A 

shorter questionnaire, requiring less detail, may reduce the burden to the 

respondent. Techniques such as stratified in reduce respondent burden 

because a smaller sample suffices to give the required precision. 

� Incentives and disincentives. Incentives, financial or otherwise, may 

increase the response rate. 

� Follow-up. The initial contact of the sample is usually less costly per 

unit than follow-ups of the initial nonrespondents. If the initial survey is by 

mail, a reminder may increase the response rate. Not everyone responds to 

follow-up calls, though, some persons will refuse to respond to the survey no 

matter how often they are contacted.  

 

 According to Lohr (1999), at least some information about nonrespondents is 

tried to obtain that can be used later to adjust for the nonresponse. There is no 

complete compensation for not having the data, but partial information may be 

better than none. Information about the race, sex, or age of a nonrespondent may 

be used later to adjust for nonresponse. Questions about income may well lead to 

refusals, but questions about cars, employment or education may be answered and 

can be used to predict income. If the pretests of the survey indicate a nonresponse 

problem that you do not know how to prevent, try to design the survey so that at 

least some information is collected for each observation unit.  

 

4.3 Dealing with Nonresponse  

 

Nonresponse is due to an effective reduction of sample size and bias estimates in 

survey results. The sample variance increases with the reduction of sample size so 
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that the precision of estimates is reduced. For these important reasons nonresponse 

problem is very important. (Teksoy, 1991) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

      Figure 4.2 Some Factors Affecting Nonresponse. (Lohr, 1999, p.260) 
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The best way to deal with nonresponse is to prevent it. After nonresponse has 

occurred, it is sometimes possible to model the data, but predicting the missing 

observations is never as good as observing them in the first place. Nonrespondents 

often differ in critical ways from respondents. If the nonresponse rate is not 

negligible, inference based upon only the respondents may be seriously flawed. 

(Lohr, 1999)  

 

According to Kish (1969), the following methods can be used in different 

situations to reduce either the percentages of nonresponse or its effects: 

 

� Development of Data collection method 

� Call-backs 

� Subsampling Nonresponses 

� Estimating the effect of nonresponse 

� Substitutions for Nonresponse 

� Kish and Hess Replacement Procedure 

� Politz and Simmons Method 

� Weighting Adjustment 

 

Strategies for dealing nonresponse are classified by Särndal, Swensson and 

Wretman, (1991) as follows: 

 

1. Effective measures are taken to reduce the nonresponse to insignificant levels 

before and during data collection, so that any remaining nonresponse causes little to 

the validity of the inferences. There are two approaches under this strategy and these 

are: 

 

Planning of the Survey: Special efforts must be made at the planning stage to 

foresee how alternative survey operations may influence the response. The choice of 

data collection method, such as personal interview, telephone interview, mail inquiry 
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or other, is important because of the length and the content of the questionnaire or 

schedule.  

 

Callbacks and Follow-Ups: In surveys with personal interviews, if the first 

attempted contact results in too many unsuccessful interviews, it is common to make 

one or more callbacks at more convenient times. Callbacks can also give valuable 

information about the selective effects of nonresponse. Follow-ups is generally used 

in mail surveys. 

 

2. Special, perhaps costly techniques for data collection and estimation are used 

that permit unbiased estimation. Two techniques in this strategy are: 

 

Subsampling of Nonrespondents: A long series of callbacks or follow-ups may 

prove costly and time consuming. An alternative approach is to take a subsample of 

the nonrespondents, and make every possible effort to obtain responses from all 

elements in the subsample. There are several schemes for subsampling the 

nonrespondents.  

 

Randomized Response: In some surveys, many respondents either refuse to 

participate or give false or evasive responses. A solution provided with methods is 

that protect anonymity. Such protection is built into the randomized response 

technique, introduced by Warner (1965). The assumption is that randomized 

response will ensure the cooperation of all selected individuals, as well as truthful 

responses. The method is used for surveys where data collection is by personal 

interview. 

 

3.  Model assumptions about the response mechanism and about relations between 

variables are used to construct estimators that “adjust” for a nonresponse that cannot 

be considered harmless. Two techniques in this strategy are: 
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Weighting Adjustment: To compensate for the values that are lost of nonresponse, 

weighting adjustment implies that higher than normal weights are applied in the 

estimation to the y values of the respondents. Weighting adjustment based on 

response distribution modeling and estimation of response probabilities.  

 

Imputation: Imputation implies the substitution of “good” artificial values for the 

missing values. There are two principal uses of imputation. At the first, imputation 

for the item nonresponse only. Then Imputed values are provided for missing values 

corresponding to elements k in the item nonresponse set. Weighting adjustment is 

then applied to compensate for the unit nonresponse. At the second, imputation for 

the item nonresponse as well as for the unit nonresponse. Then imputed values are 

provided for missing values. No weighting adjustment is applied and estimates are 

computed using original as well as imputed values. 

 

The nonresponse is affected by a number of the operations that define the survey. 

The ideal survey has no nonresponse. For satisfies this ideal, it requires careful 

planning and often considerable expense.  

 

4.4 Nonresponse Adjustment 

 

Nonresponse adjustment is a term for the various attempts made by statisticians to 

deal with nonresponse. By the word “adjustment” is meant that changes are made to 

an original or “ideal” estimation procedure, namely, the one intended for use in the 

ideal case of full response. The principal methods for nonresponse adjustment are 

reweigthing and imputation. (Lundström and Särndal, 2001) 

 

4.4.1 The Importance of Auxiliary Information 

 

Recent years have seen theoretical developments and increased use of methods 

that take account of substantial amounts of auxiliary. The key to successful 
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nonresponse adjustment lies in the use of “strong” auxiliary information. Such use 

will reduce both nonresponse bias and the variance. 

 

Register variables play an important role in many of surveys. They are used in 

creating an appropriate sampling design and/or in the computation of the survey 

estimates. In both uses, the register variables can be called auxiliary variable, 

because they assist and improve the procedures. Most often, the term “auxiliary 

variables” refers to a variable used at the estimation stage to create better alternatives 

to the simplest estimators. 

 

Auxiliary information can be used both at the design stage in constructing the 

sampling design and at the estimation stage in constructing the estimators. In the 

Reweigthing procedure for nonresponse second type of usage is valid. 

 

Terms frequently used in the following are auxiliary variable, auxiliary vector, 

auxiliary information and auxiliary population total or totals. It can be explain that 

use of these terms.   The minimum requirement to qualify as an auxiliary variable is 

that the values of the variable are available for every sampled element that is, for 

both responding and nonresponding elements. For many surveys, such variable 

values can be found in available registers, and are then usually known not only for 

the sampled elements but, more extensively, for all elements in the population. 

 

An auxiliary vector is made up of one or more auxiliary variables. There are two 

important steps in the process leading to the form of the auxiliary vector that will be 

ultimately used in the estimation.  These are: 

 

a. Making an inventory of potential auxiliary variables; 

b. Selecting and preparing the most suitable of these for entry into the auxiliary 

vector. 

 

The auxiliary variables deemed potentially useful for the estimation may come 

from several registers allowing the possibility of linking of elements. A rather long 



36 

 

list of potential variables may result from this searching look.  The next important 

step is the procedure by which is arrived at the final form of the auxiliary vector to be 

used in the estimation. This process requires considerable reflection and study. The 

decisions to be taken include the selection of variables from the available larger set, 

the setting appropriate group boundaries for converting a quantitative variable into a 

categorical variable, and fixing rules for collapsing very small groups into larger 

groups. 

 

The estimator scheduled for use in the survey will usually require a known 

population total for each variable in the auxiliary vector. The term “auxiliary 

information” is used with reference both to the auxiliary vector itself and to the 

known totals for the variables in the vector. When register variables are used in the 

construction of the sampling design, their values must be known for every element in 

the population, as when strata are constructed for a stratified design. When auxiliary 

variables are used at the estimation stage, such detailed information may not be 

necessary. It may suffice to know the population total for each auxiliary variable, 

which knowledge of individual variable values may be limited to the sampled 

elements only.  

 

Lundström and Särndal (2001) illustrates with an example that how nonresponse 

bias can be reduced by incorporating relevant auxiliary information in the estimation 

procedure. They also show that the calibration estimator provides an exact estimate 

of Y where a perfect linear relationship exists between the study variable and the 

auxiliary vector. Because of that if powerful auxiliary information can be identified 

and used then both the sampling error and the nonresponse bias will be small.  

 

To reduce the nonresponse bias and variance of the estimator, one should select an 

auxiliary vector that satisfies as far as possible one or both of the following 

principles: 

a.  auxiliary vector explains the variation of the response probabilities. 

b. the auxiliary vector explains the variation of the  main study variables. 

c. the auxiliary vector should identify the most important domains.  
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When principle (a) is fulfilled the nonresponse bias is reduced in the estimates for 

all study variables. However, if only principle (b) is fulfilled the nonresponse bias is 

reduced only in the estimates for the main study variables. Then the variance of these 

estimates will also be reduced. When principle (c) is fulfilled the effect is mainly a 

reduction of the variance for the domain estimates. (Lundström and Särndal, 2001) 

 

There exists a large literature on the selection of auxiliary information and on the 

resulting specification of the auxiliary vector. 
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CHAPTER FIVE 

 

METHODS FOR THE REDUCTION OF NONRESPONSE 

BIAS AND ERRORS 

 

5.1 Imputation  

 

5.1.1 Introduction 

 

Imputation entails replacing missing values by proxy values. Imputation is the 

procedure whereby missing values for one or more study variables  are ‘filled in’ 

with substitutes. These substitutes can be constructed according to some rule, or they 

can be observed values but for elements other than the nonrespondents. Thus 

imputed values are artificial and they contain error. Imputation error is similar to 

measurement error in that the true value is not recorded. (Särndal and Lundström, 

2001) 

 

 Imputed values can be classified into three major categories: 

   

(1) values constructed with the aid of a statitical prediction rule; 

(2) values observed not for the nonresponding elements themselves, but for 

responding elements 

(3) values constructed by expert opinion or ‘best possible judgment’. 

 

First and second categories use a statistical technique to produce a reasonably 

close substitute value, so they can be termed statistical rules. First category is often 

based on regression prediction. Second category  methods can also be described as 

donor-based, in that another value of another observed element is imputed. Third 

category methods are more subjective and often rely heavily expert skill.  
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Some of the more commonly used statistical rules are: 

 

(1)  ratio imputation; 

(2) (multiple) regression imputation; 

(3)  nearest  neighbour imputation; 

(4)  hot deck imputation; 

(5)  respondent mean imputation. 

 

Imputation is regarded by  both statisticians and subject matter specialists with 

some suspicion. This is because it goes against common statistical sense to use 

values known at the outset to be more or less wrong. (Särndal and Lundström, 2001) 

 

The imputed values must come as close as possible to the true unobserved values 

for which they are substitutes. Because of this, the construction of imputed values 

should be carried outr with professional care. Imputation may be disallowed for legal 

reasons. Some countries prohibit imputation, at least for some categories of observed 

elements.  

 

There are two frequently used approaches for imputation, both leading to 

rectangular data matrices, namely the ITIMP-approach and the UNIMP-approach.  

 

ITIMP-approach: Imputation is used to treat the item nonresponse only. In this 

procedure, values are imputed for the m elements for which at least one but not all y 

values are missing. The resulting rectangular data matrix has the dimensions m by J 

where J is the number of y variables. Reweighting is then applied to compensate for 

the unit nonresponse. 

 

UNIMP-approach: Imputation is used for both item nonresponse and unit 

nonresponse. In this procedure , values are imputed for all elements having at least 

one y value missing. The resulting completed rectangular data matrix has the 
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dimensions n by J, where n is the sample size. There is no nonresponse weight 

adjustment.  

 

If the element k is a nonrespondent and imputation is used for this element, the 

imputed value is denoted as kŷ . More than one imputation method may be used in 

the same survey,so not all kŷ  may result from the same method. 

 

The completed data set is defined as the set of values { }sky k ∈=.  , where  

 

  




∈

∈
=

oky

rky
y

k

k

k ˆ.                  (5.1) 

 

That is, the value ky.  equals the observed value ky  when k is a respondent, or the 

imputed value kŷ when k is a nonrespondent. Traditional descriptive statistics can be 

computed from the complete data set.  

 

5.1.2 Point Estimation when Imputation is Used 

 

The population total is wanted to estimate used for the variable, y, ∑=
U

kyY  

when imputation is used.  It is supposed that  imputed values are considered are as 

“good” as true observations. Such a belief is a justification for using exactly the same 

estimation method as in the ideal case of full response.  It will be employed the 

“standard estimator formula” and simply apply it to the completed data set. 

Consequently, when an estimate is computed, element k will receive the same weight 

whether its recorded y-value is a true observation, ky , or an imputed value, kŷ . This 

is worth pointing out, because some would argue that imputed values should be 

weighted according to some principle other than that used for truly observed values. 

Current practice for point estimation is in fact that survey statisticians treat imputed 

data as real, observed data. That is, the procedure is: determine an estimator suitable 

for full response, then, after imputation, compute this estimator for the completed 
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data set. (Särndal and Lundström, 2001) The estimator intended for use in the case of 

full response will be called the full response estimator. Here we assume that this 

estimator is the GREG estimator discussed in Chapter 3.2. of the form 

∑=
s

kkkGREG ygdŶ  as described by formulas (3.11) and (3.12). A special case is the 

Horwitz-Thompson estimator, ∑=
s kkHT ydŶ , discussed in Chapter 3.1. 

 

Now suppose there is nonresponse treated by imputation. Then have a completed 

data set, given by (5.1). It replaces the desired but not realised data set composed of 

full real observations. We apply the weighting, kk gd , of the full response estimator 

(3.11). This gives the imputed GREG estimator 

 

∑=
s

kkkI ygdY .
ˆ                              (5.2) 

 

which can also be written as 

 

∑∑ +=
o

kkk

r

kkkI ygdygdY ˆˆ                 (5.3) 

 

In current practice, point estimation in the presence of imputation is thus very simple, 

since the weights are not changed. By contrast, variance estimation becomes a 

complex issue. The imputed HT estimator is 

 

       ∑=
s

kkI ydY .
ˆ                                                                                        (5.4)                  
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5.2 Reweighting 

 

Weights are commonly assigned to respondent records in a survey data file in 

order to make the weighted records represent the population of inference as 

closely as possible. The weights are usually developed in a series of stages to 

compensate for unequal selection probabilities, nonresponse, noncoverage, and 

sampling fluctuations from known population values. The first stage of weighting 

for unequal selection probabilities is generally straightforward. Each sampled 

element whether respondent or nonrespondent is assigned a base weight that is 

either the inverse of the element’s selection probability or proportional to that 

inverse. The second stage of weight development is usually to attempt to 

compensate for unit, or total, nonresponse. The base weights of responding 

elements are adjusted to compensate for the nonresponding elements. The general 

strategy is to identify respondents who are similar to the nonrespondents in terms 

of auixiliary information that is available for both respondents and 

nonrespondents, and then to increase the base weights of respondents  so that they 

represent similar nonrespondents. The third stage of weight development involves 

a further adjustment to the weights to make the resultant weighted estimates from 

the sample conform to known population values for some key variables. (Kalton 

and Cervantes, 2003) 

 

Reweigthing entails altering the weights of the respondents, compared to the 

weights that would have been used in the case of full response. Since observations 

are lost by nonresponse, reweigthing will imply increased weights for all, almost all, 

of the responding elements. (Särndal and Lundström, 2001) 

 

5.2.1  Two-Phase Approach 

 

For a number of years, survey statisticians favored with the deterministic model of 

survey response for nonresponse. The population was assumed to consist of two non-

overlapping  parts, a response stratum and a nonresponse stratum. Every element in 

the former was assumed to respond with certainty if selected for the sample, and 
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every element in the latter stratum had probability zero to respond. An obvious 

criticism that could be levied against that model is that it is simplistic and unrealistic. 

Moreover the sizes of the two strata could usually not be assumed to be known. An 

approach that was sometimes used the total for the response stratum, and then to add 

a term to compensate for the nonresponse stratum. Several proposed techniques for 

nonresponse treatment are based on this model. And this model inspired much of the 

work on nonresponse in central statistical offices in the 1960s and 1970s. 

 

 In the 1980s, a more satisfactory two-phase approach to reweighting for 

nonresponse became popular. The name refers to a view of the selection process as 

one in which a desired sample s is first selected from the population U, whereupon a 

set of respondents, r, is realized as a subset of s. The approach is more realistic than 

the deterministic one in that it allows every element k to have its own individual 

response probability  kθθθθ  where  10 ≤≤ kθθθθ  for all k. This generality is not without a 

price: the reponse probabilities kθθθθ  are usually unknown and progress with this 

approach requires that the kθθθθ  be replaced with estimates, constructed with the aid of 

auxiliary information. (Särndal and Lundström, 2001) 

 

 The two-phase approach is discussed in the literature, for example, Särndal, 

Swensson and Wretman(1991).  And also, in their book, they develops the theory of 

two-phase sampling in the presence of auxiliary information. In the traditional 

formulation of two-phase sampling, a first sample is selected from U, certain variable 

are observed, then a smaller subsample is realized from the first sample, and the 

study variable(s) are observed for the elements of the subsample. All inclusion 

probabilities are known by design, those for the first phase as well as those for the 

second  phase.  

 

 Särndal, Swensson and Wretman (1991) adapts the two-phase theory to the 

case where sampling is followed by nonresponse. It is assumed for a moment that the 

response distribution srq  is known. In practice this is not the case. This implies 

that the first and second order response probabilites, 
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          ksrk θθθθ=∈Pr                                                  (5.5) 

and 

                   klsrlk θθθθ=∈&Pr                                               (5.6)

                          

are known. xk denotes the auxiliary vector to be used in the estimator. Under these 

conditions, the two-phase GREG estimator of the population total  ∑=
U kyY , as 

obtained from Särndal, Swensson and Wretman (1991), is given by 

 

kr kkkSSW ygdY θθθθθθθθ /ˆ ∑=                                                 (5.7)                                                                            

                                                       

 and 

            ( ) ( ) kr kkkkkU r kkkkkk xxxcdxdxcg
1

//1
−

∑∑ ∑ ′
′

−+= θθθθθθθθθθθθ             (5.8)                 

 

 The transformation of this estimator into one that is useful for a sample survey 

with nonresponse requires replacing the unknown kθθθθ  by estimates kθθθθ̂ . This step 

entails :  

 

(a) the formulation of a realistic model for the response mechanism with the 

response probabilities kθθθθ  as unknown parameters,  

(b) the estimation of these response probabilities, using any relevant auxiliary 

variables and the fact that some sample elements were observed to respond whereas 

the others did not. (Särndal, Swensson, Wretman, 1991) 

 

An often used model states that the population consists of nonoverlapping groups 

with the property that all elements within one and the same group respond with the 

same grup respond with the same probability, and in an independent manner. Such 

groups are known as response homogeneity groups (RHGs).  In a survey of 

individuals, the groups may be based on age by sex categories, for example. The 

auxiliary information required is that we can uniquely classify every sampled 

element, respondent or nonrespondent, into one of the groups. The  point estimator 
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obtained  from  (5.7)  when the unknown kθθθθ  are replaced by the estimates kθθθθ̂  

flowing from this RHG model is discussed in detail in Särndal, Swensson and 

Wretman (1992)’s book.  These authors also give an appropriate variance estimator, 

composed as a sum of two components, one measuring the sampling variance, the 

other the nonresponse variance. (Särndal, Swensson, Wretman, 1991) 

 

The point estimator is essentially unbiased  if the assumed RHG model is a true 

representation of the response pattern in the survey; it is diffucult in practice , 

because, that it in essence impossible to foresee the true response pattern. Other 

attempts at modelling the response mechanism have been made, including logistic 

regression modelling, as in Ekholm and Laaksonen(1991) , Alavi and Beaumont 

(2003). 

 

The two-phase approach to reweighting has the following characterisitics: 

 

� The modelling of the response mechanism constitutes separate step. 

� If a set of auxiliary variables is available, one subset of these varaibles is used 

in the estimation of the response mechanism. Another subset is used to 

formulate the auxiliary vector kx  required for the estimator (5.7) of  Y. In 

this formula kθ  is replaced by kθ̂ . 

 

In practice, the two-phase approach to reweighting requires analysis and decision 

making. The statician must decide on the best use of the total set of available 

auxiliary variables. If nothing else, these selection rasks will take time. Therefore, 

the calipration approach to reweighting is proposed that a simpler alternative to two-

phase approach. (Särndal and Lundström, 2001) 
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5.2.2 The Calibration Approach 

 

5.2.2.1 Introduction  

 

  Reweighting is treated by Särndal and Lundström (2001) with the calibration 

approach, which has the favourable property of incorporating most “Standard” 

methods found in the different places in the literature. 

 

In a survey, statistician usually control the sample selection process, and thus the 

design weights can be calculated. However the fact that some of the desired data will 

be missing. If the response probabilities were known, an unbiased two-phase 

estimator could be constructed. But, in practice response probabilities never known. 

In conventional techniques one determines proxies of the response probabilities by 

modelling the response distribution. There will always be some difference between 

this model and the true response distribution, su the estimator will suffer from 

nonresponse bias. (Lundström, 1997) 

 

  Särndal and Lundström (1999) can be practically certain that the nonresponse is 

not the result of a simple random selection mechanism so they try to adjust for the 

selection bias at the estimation stage. They suggests a simple and a unified approach 

is called calibration to the use of auxiliary information both the sampling error and 

the nonresponse bias in a survey. When population totals are used, the resulting point 

estimators are consistent in the sense that the final weights give perfect estimates 

when applied to each variable. This approach requires neither a response model nor a 

regression model but which nevertheless guarantees effective use of auxiliary 

information. 

 

The calibration estimators derived by Deville and Särndal (1992) are a family of 

estimators appealing a common base of auxiliary information. A calibration 

estimator uses calibrated weights, which are as close as possible, according to the 

given distance measure, to the original sampling design weights, kd  ,while also 

respecting a set of constraints, the calibration equation. They discusss the merits of 
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different metrics for the distance between kw   and kd . For every distance measure 

there is corresponding set of calibrated weights and a calibration estimator. 

  

 The calibration procedure generates final weights which are as close as possible  

to specified initial (design) weights , while respecting known auxiliary population 

totals or unbiased estimates of these totals. Calibration is used by Särndal and 

Lundström (2001) as a main tool for nonresponse. This calibration approach requires 

the formulation of a suitable auxiliary  vector, through a selection from a possible 

larger set of available auxiliary variables. This step follows a few basic and simple 

principles. The next step is computational.  

 

The calibration approach leads to a calibration estimator of Y, denoted WŶ  , and a 

corresponding variance estimator denoted )ˆ(ˆ
WYV . The term “weighting” is denoted 

by the index W . The calibration approach meets the objective of reducing both the 

sampling error and the nonresponse error. The approach is general in that it can be 

applied for most of the common sampling designs and with any number of variables 

present in the auxiliary vector.  

 

The calibration approach has only a single computational step, in which the 

calibrated weights are produced. It is thereby more direct than the two-phase 

approach because it requires no seperate  modelling of a nonresponse mechanism. 

For these reasons, the calibration approach, is better suited for a routine treatment of 

nonresponse in organization. 

 

There are many people studied about calibration in the literature. Some of them 

are as follows: 

 

Théberge (1999) extended the calibration technique to estimate population 

parameters other than totals and means. And he extended the technique to the case 

where there is no solution to the calibration equation. 
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Estevao and Särndal (2000) defined and developed an alternative to distance 

minimization approach , that is the functional form approach. In this approach the 

calibrated weights are given a simple mathematical form that depends on two 

parameters.  

 

Wu and Sitter (2001) proposed a model-calibration approach in order to use 

complete auxiliary information from survey data. 

 

Wu and Luan (2003) proposed optimal calibration estimators for the population 

mean under the two-phase sampling. The proposed optimal calibration estimators 

under two-phase sampling are applicable estimation problems under measurement 

errors or nonresponse. 

 

Wu (2003) showed that the model-calibration estimator for the finite population 

mean, which was proposed by Wu and Sitter (2001), is optimal among a class of 

calibration estimator. He also presented optimal calibration estimators for the finite 

population distribution function , the population variance, the variance of a linear 

estimator and other quadratic finite population functions.  

 

5.2.2.2  Point Estimation Under Calibration Approach 

 

It is  first considered that  the finite population of N elements { }NkU ,...,,...,1= . 

The objective is to estimate  the population total ∑=
U

kyY , where ky is the value of 

a study variable, y, for the kth element.  The sample of size n, s, drawn from U  with 

the probability p(s). When nonresponse occurs, the response set r of size m is 

obtained, where sr ⊆  and nm ≤ . 

 

If the survey that interests us had full response ( r = s ), the GREG estimator with 

a specified vector  kx  would be chosen. The population total of kx - vector, ∑
U

kx , 

is a  required input. This estimator would be a good choice , because of the reasons 

that written in below, 
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a) it is unbiased, 

b) its variance is small when kx  is a good explanatory vector for the 

study variable ky ,  

c) it is consistent in the sense that the weights satisfy  the calibration 

equation  ∑ ∑=
s U

kkkk xxgd . 

 

However, we are concerned here with surveys with nonresponse, so ky  values are 

available only for the elements k in the response set r, a subset of the sample. Then, 

whatever the estimation technique, there will be some bias. Desirable properties of 

the chosen estimator are now: 

 

a) a small nonresponse bias, 

b) a small total variance, 

c) agreement with the GREG estimator when r = s . 

 

The total variance is the sum of the sampling variance and the nonresponse 

variance. Property (a) is particularly important. 

 

The calibration estimator is, like the GREG estimator, formed as a linearly 

weighted sum of the observed ky  values. It is defined by 

 

∑=
r

kkw ywŶ                                                              (5.9)                                      

where   kkk dw ν=  and 

   k

r

kkkk

U r

kkkkk xxxcdxdxq

1

1
−








 ′
′









−+= ∑∑ ∑ν    , rk ∈ .                  (5.10) 

 

The principle behind the derivation that leads to calibtared weights  kw  is to 

minimize a function measuring the distance between the old weights , kd , and the 

new weights  , kw , subject to the calibration equation 
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  ∑ ∑=
r U

kkkk xxd ν .                                                              (5.11)       

              

The calibrated weights are “as close as possible” with respect to the given 

distance measure to the design weights kd , and they ensure consistency with the 

known auxiliary variable totals. 

 

( ).pE  denotes expectation with respect to the sampling design  p(s), a measure of 

average distance reminiscent of the chi-square statistic is ( )








−∑
s

kkkp ddwE
2

. 

For more generality in this expression, let the kth term have an individual known 

positive weight  kq1 , unrelated to kd , which gives the average distance 

 

( )








−∑
s

kkkkp qddwE
2

.                                   (5.12)                                       

                              

The uniform weighting 11 =kq  is likely to dominate in applications, but unequal 

weights kq1  are sometimes motivated. (Deville and Särndal, 1992) 

 

The objective is to derive new weights that modify as little as possible the original 

sampling weights kkd π1= , which have the desirable property of yielding unbiased 

estimates. The survey statistician wants to stay close to these weights. Deville and 

Särndal (1992) thus seek the minimum of calibration equation subject to (5.12). 

Acoording to them, this is equivalent to minimizing, for any particular s, the quantity 

( )∑ −
s

kkkk qddw
2

, subject to constraint, calibration equation. And this 

minimization leads to calibrated weight. 

 

For a successful reduction of both the sampling error and the response bias, strong 

auxiliary information is a prerequisite. It is assumed that there exists an auxiliary 

vector, x, containing such information. This vector’s value for the kth element is 



51 

 

denoted  kx . Särndal and Lundström (1999) define the two “information levels” 

called  Info-S and Info-U and they classified two information level in the following : 

 

a) Info-S : kx  is known for all sk ∈ ,  

b) Info-U: ∑
U

kx is known and moreover kx  is known for all sk ∈ . 

 

In first case (a) the information goes up to the sample level but in second case (b) 

the information goes up to the population level. Because of this, in case (b) the  

information is more extensive than in case (a). 

 

After having specified the auxiliary information, calibrated weights, denoted kw , 

are computed and the estimator ∑=
r

kkw ywŶ  of Y is constructed. This estimator is 

called w-estimator or calibration estimator. The weights kw  are  “as close as 

possible“  to the kd , and they also satisfy a calibration equation given for Info-S by 

 

    ∑ ∑=
r s

kkkk xdxw                                                           (5.13)                     

and for Info-U by 

 ∑ ∑=
r U

kkk xxw .                                    (5.14) 

 

Särndal and Lundström (1999) use the calibration technique for  ky  values are 

observed the response set only, rather than for the full sample. They seek new 

weights kw  that satisfy the calibration equation  (5.13) or (5.14). The distance 

function to be minimized is 

 

( )∑ −
r

kkkk qddw
2

                                               (5.15)
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where the kq  are specified positive factors. In the case of full response (r = s) , this 

distance function leads to the generalised regression estimator in Deville and Särndal 

(1992). 

  

5.2.2.3  Derivation of the Generalised Regression Estimator by Calibration 

 

Calibration estimators in the full response case are described in Deville and 

Särndal (1992). They seek an estimator of the form ∑=
s

kkDS ywŶ  with weights kw  

as close as possible to the desin weights kd  while respecting the calibration equation 

∑ ∑=
s U

kkk xxw . They minimize the distance measure , ( )∑ −
s

kkkk qddw
2

 ,by the 

Lagrange multiplier method subject to single constraint, calibration equation, 

∑ ∑=
s U

kkk xxw .  

 

Lagrange function  for the distance function under the single calibration equation 

can be written like this, 

 

                   =L ( ) ∑∑ ∑ ′−′−−
U

k

s s

kkkkkk xxwqddw )(2
λ .                      (5.16)                                              
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This minimization leads to the calibrated weight, 

 

   nkqdxdw kkkkk ,...,' 1=+= λ  

                     nkqxdw kkkk ,...,)( ' 11 =+= λ .                       (5.17)
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In this formulation, λ is the vector of Lagrange multipliers. To obtain this vector,  

determination of Lagrange  function is taken with respect to λ . 
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When we write λ obtained at (5.17) in the calibrated weight (5.18),  final form of 

the calibrated weight is  

 

( )















−
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∑

kk

s

kkkk
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kk qx
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XX
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'

'

ˆ
1                                              (5.19)                                              

                                                 

Deville and Särndal (1992)’s aim was to obtained the GREG estimator by 

calibration. Calibration estimator form of the population total was like that  
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∑=
s

kk ywŶ . If we write calibrated weight kw  obtained (5.19) in the calibration 

estimator formula, this estimator formula  leads to GREG estimator. 
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GREGsHTHT YBXXYY ˆˆ)ˆ(ˆˆ =−+=                                              (5.20)

                                            

where ∑=
s

kkHT ydŶ  denotes the Horvitz-Thompson estimator for the x vector , 

∑=
s

kkHT xdX̂  denotes the Horvitz-Thompson estimator for the  y study variable 

and   

 

      
∑

∑
′

=
kkkk

s

kkkk

s
xxqd

yxqd

B̂                                                         (5.21)                                                         

                                                      

is a weighted estimator of the multiple regression coefficient. It seen from that, we 

obtain GREG estimator  by calibration approach. 
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5.2.2.4 Deriving the Calibrated Weights  when ∑
U

kx is known 

 

For Info-U, minimization of (5.15) under the constraint (5.14) leads to w 

estimator. Lagrange function is 

 

L = ( ) ∑∑ ∑ ′−′−−
U

k

r r

kkkkkk xxwqddw )(2
λ                        (5.22)                                
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This minimization leads to the calibrated weight for nonresponse case, 

 

    mkqxdw kkkk ,...,1)1( ' =+= λ                                  (5.23)
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The w estimator form  is ∑=
r

kkw ywŶ . If we know information at the populution 

level , we calculate the calibrated weight , kw , like above. When we write this weight 

in the  w estimator , we obtain calibration estimator at the population level   ∑
U

kx .  

And this estimator is  

 

∑=
r

kkUwU ywŶ                                                                      (5.25)   

                                                                 

where UkkkU dw ν=  
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U r

kkkUk qxqdxxxdx
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−+= ∑∑ ∑ν .                     (5.26)          

                           

If the auxiliary total ∑
U

kx  is unknown, we can instead calibrate on the unbiased 

estimate ∑
s

kk xd . 

 

5.2.2.5  Deriving the Calibrated Weights  when ∑
U

kx is unknown 

 

It can be also produced a calibration estimator for a survey in which the auxiliary 

vector values kx  are known up to the level of the sample s . We still know enough to 

form the sample-based HT estimator of the total, namely, ∑
s

kk xd . For Info-S, 
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minimization of the distance (5.15) under the constraint (5.13) leads to w estimator. 

Lagrange function is 

 

L = ( ) ∑∑ ∑ ′−′−−
s

kk

r r

kkkkkk xdxwqddw )(2
λ                       (5.27)    
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And calibration estimator for information at the sample level ,∑
s

kk xd ,is  

               ∑=
r

kksws ywŶ                                                                                  (5.29)

                                                       

where skkks dw ν=  

           kk

s

kkkk

s r

kkkksk qxqdxxxdxd
'

1

'1
−

















−+= ∑∑ ∑ν .                            (5.30)                                                          

 

5.2.2.6  Calibration Estimators for Domains 

 

When the survey has nonresponse, and reweighting is carried out by the 

calibration approach, then the estimation of the domain dY  proceeds as follows: 

 

A set of calibrated weights are given by (5.26), if the auxiliary information 

consists of the known vector total ∑
U

kx . They were used in (5.25) to produce an 

estimator of the whole population total Y . For the domain total dY , the same weights 

are kept and changed only the study variable from  y  into dy . 

 

The resulting calibration estimator of the domain total dY  is therefore 

 

∑=
r

dkkdw ywŶ                                                                      (5.31)

                                                                             

where  kkk dw ν=  and  kν  is given by  (5.26). 

 

The domains of  interest  Dd UUU ,...,,...,1  form a partition of  U, as when the 

domains are regions making up a country in the some applicatios. The  D  domains 

estimates Dwdww YYY ˆ,...,ˆ,...,1̂  then have the appealing property that they add up to the 

calibration estimate made for the whole population, that is, 
wŶ  given by (5.9). This 

property follows from  
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 ∑∑ ∑∑ ∑∑ ====
== = r

wkk

r

D

d

dkk

D

d

D

d r

dkkdw YywywywY ˆˆ
11 1

. 

 

Similarly, it  can be adapted the calibration estimator  (5.29), which has auxiliary 

information up to the sample level. The calibrated weights are as in (5.30). To obtain 

an estimator of the domain total , the weights are again preserved and substitute 

ky for  dky . The result is  

 

         ∑=
r

dkskkdws ydY νˆ .                                                                     (5.32)                                                                 

                                                                     

5.2.2.7  Variance Estimation Under The Calibration Approach 

 

It is needed  to estimate the variance of the calibration estimators for statements of  

precision and confidence intervals. Särndal and Lundström (1999) started by 

examining the mean squared error (MSE) of calibration estimator. 

Jointly under  the sampling design ( )sp  and the response distribution ( )srq , the 

mean squared error of wŶ  is 

 

( ) ( ) ( )2,ˆ2ˆ
sNRpsNRspNRSAMwpq BEBYCovVVYMSE +++=                       (5.33)         

                         

where ( )spSAM YVV ˆ=  is the sampling variance, ( )sYVEV wqpNR
ˆ=  is the nonresponse 

error variance, ( )sYYEB wwqsNR
ˆˆ −=   is the nonresponse bias (conditionally on s), 

and ( )
sNRsp BYCov ,ˆ  is the covariance of sŶ  and 

sNR
B  under the sampling design. 

 

Särndal and Lundström (1999) showed that if the condition 

 

          0=
sNR

B  for all s                                                        (5.34)                                    
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is verified, then (5.33) becomes  

 

  ( ) ( )wpqwpq YVYV ˆˆ 0=  

where 

  ( ) NRSAMwpq VVYV +=ˆ0 .                                                         (5.35)

                  

There exists virtually no survey such that the condition (5.34) is exactly satisfied. 

Inevitably, whenever there is nonresponse, some bias is introduced. But calibration 

on strong auxiliary information may go a long way toward eliminating the 

conditional nonresponse bias 
sNR

B . When this is the case, the inferences (e.g. 

confidence intervals and so on) made by acting as if (5.34) is true will still be 

approximately valid. It can been worked under the the assumption that (5.34) holds 

approximately, so that ( ) ( ) NRSAMwpqwpq VVYVYV +=≈ ˆˆ 0 . 

 

It is diffucult to obtain expressions for variances of  point estimators wsŶ  and wUŶ  

because of their complexity. So there exists a question that how variance esimates 

should be constructed. The aim is to obtain variance estimators for  wsŶ  and wUŶ  that 

will work reasonably well and moreover, they  sould be simple to calculate.  

 

Finally, Särndal and Lundström(1999) imposed the condition that the variance 

estimators must be model free that they must be constructed without recourse to a 

nonresponse mechanism model. A strength of their approach is precisely the fact that 

point estimators are derived without appealing to such models. 

 

Särndal and Lundström (1999) relied on analogy with the estimator (5.7) for two-

phase sampling. An appropriate variance estimator for (5.7)  is given by formula 

(9.7.22) in Särndal, Swensson and Wretman (1991).  

 

To estimate the variance of wŶ  , Särndal and Lundström (1999) proposed to use 

formula (9.7.22) of  Särndal, Swensson and Wretman (1991) as follows: 



61 

 

 

� replace  
ask

π by kθ  and then replace kθ  by 
sk

k ν
=θ 1ˆ , skν  is given by  

(5.26). 

� it is assumed elements to respond independeently, so that , 

( ) lkklsrsk θθθ ==∈&Pr   for  

all lk ≠ . 

 

At the end of this, the variance estimator of wŶ  for info-U is 

 

                             ( ) NRSAMwU VVYV ˆˆˆˆ += .                                                         (5.36)                        

                                 

Explicit form of this varaince estimator is  
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where  skν  is given by  (5.30), 

 

                   ν
′−= Bxye kkk

ˆ                                                (5.38)                                                          
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−

ν
r

kkkskk

r

kkkskk yxqdxxqdB

1

ˆ                                               (5.39)              

 

and kg  is given by (3.16). 

 

A variance estimator for wŶ  for info-S is 

 

              ( )
NRSAMws VVYV ˆˆˆˆ +=                                                                    (5.40)  
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Explicit form of this variance estimator is  

 

( ) ( )( )( ) ( ) ( )( )
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             (5.41)                            

 

kg  and ke  is given, respectively by (3.12) and (5.34). 

 

Also, the variance estimator can be written for domain estimators dwŶ  given by 

(5.31) and dwsŶ  given by (5.32). An appropriate variance estiamtor for dwŶ  follows 

easily by replacing ky  by  dky  throughout the calculations defined by (5.36) to 

(5.39). That is, in (5.37) it must be replaced ke  by  

 

ν
′−= dkdkdk Bxye ˆ                                                           (5.42)

                                                                     

where 
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 For large response sets, the  nonresponse bias of  wŶ   is 

 

        ( ) ( ) θ∑ θ−−≈ k

U
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5.2.2.8  Examples of calibration estimators 

 

Many methodologists are accustomed to specific formulas corresponding to 

particular methods for nonresponse reweighting. Therefore, the objective is to show 

that the calibration approach reproduces formulas that many readers are familiar 

with. Thus, the explicit form of (5.25) and (5.29) are derived by Särndal and 

Lundström (1999) for some simple specifications of the auxiliary information and 

showed that commonly used estimators are obtained. They started with the simplest 

forms of kx  , then gradually increased the auxiliary information content and thereby 

also the complexity of the formulas.  

  

The Simplest Auxiliary vector:  The simplest formulation of the auxiliary vector is  

kx =1  for all k. This vector recognises no differences among elements. Specifying 

also kq =1 for all k. Then  (5.26) gives the weight for all k, 

 

m

n
k =ν                 (5.45)

         

and the calibration estimator (5.25) becomes 

 

  ∑ ==
r

EXPkw Yy
m

N
Y ˆˆ                           (5.46)

                      

As seen from that, when auxiliary vector is kx =1, the calibration estimator becomes 

the traditional expansion estimator. For this estimator bias expression for large 

response sets, Särndal and Lundström(1999) found that  
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where 
N

y

Y U

k∑
= . And the variance estimator  

 

  ( )
m

S

N

m
NYV r

EXP

2
2 1 








−=ˆˆ .              (5.48)

            

 One-way classification: In this case the target population is divided into non-

overlapping and exhaustive groups, pU  , p = 1,…,P , based on a specified 

classification criterion, for example age by sex groups. The auxiliary vector form is 

kx  = ( )′
Pkpkk γγγ ,...,,...,1  where 

 

   


 ∈

=
otherwise

Ukif p

pk
0

1
γ                           (5.49)

             

The component of  the key vector totals are denoted as follows: 

 

            =∑
U

kx ( )′
Pp NNN ,...,,...,1  

and 

            =∑
s

kx  ( )′
Pp nnn ,...,,...,1  

and  

          =∑
r

kx ( )′
Pp mmm ,...,,...,1 . 

 

 When kq =1 for all k, the weight is obtained from (5.22) 

 

                
p

p

k
Nm

nN
=ν                 (5.50)

             

for  prk ∈ , and the calibration estimator (5.25) becomes 
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=1
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where ∑=
p

p

r

k

p

r y
m

y
1

 and  mp is the number of respondents in group p. This 

estimator commonly called the poststratified estimator and denotes as PSTŶ .  

 

 When knowledge of the auxiliary vactor kx  = ( )′
Pkpkk γγγ ,...,,...,1  is limited to the 

elements of the sample s, the calibtarion estimator  (5.29) becomes 

 

WCL

P

p

rpws YyNY
p

ˆˆˆ ==∑
=1

                                                                   (5.52)           

 

with  pp n
n

N
N =ˆ  and  pn  is the number of sampled elements in group p. This 

estimator known as the weighting class estimator dented as WCEŶ .Under the this 

specifications bias expression is as follows: 
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where 
p

U

k

p
N

y

Y
p

∑
= . An the variance estimator is ,  
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 A single quantitative variable :  It is assumed that a quantitative auxiliary variable 

kx  is available. For example, the number of employees of enterprise k in a business 
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survey, k = 1,...  N. It is assumed that its population total, ∑
u

kx , known. If this is the 

only auxiliary variable, the auxiliary vector is uni-dimensional, kx = kx . When  kq  is 

specified as 1−= kk xq , then the calibration estimator (5.9) is  

 

             RA

r

r

U

kw Y
x

y
xY ˆˆ =







= ∑               (5.55)

                      

where  ∑=
r

kr y
m

y
1

 and  ∑=
r

kr x
m

x
1

. This estimator has the well known  form of 

a ratio estimator and denoted as  RAŶ . 

 

 With the same information it can be alternatively formulated the auxiliary vector 

as kx = ( )′
kx,1 . When kq =1 for all k, the calibration estimator (5.29) becomes, 

  

    ( ){ }
REGrrw YBxXyNY ˆˆˆ =−+=              (5.56)

                     

where ∑=
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kk

r r

kkk x
m

xy
m

xyB

2

2 11
/ˆ . This 

estimator has the well known  form of a regression estimator and denoted as  REGŶ . 

 

One –way classification and a quantitative variable:  The auxiliary information 

concerns a P-valued categorical variable and a quantitative variable, x, that may be 

an indicator of the size of an element.  It is assumed that every sampled elemet k  is 

placed into the appropriate group, that its value kx  is known. And fore each group 

the size pN  is known and the x total, ∑
pU

ky . There are more than one way to use this 

information. The auxiliary  vector is defined as  

 

  kx = ( )′γγγ kPkkpkkk xxx ,...,,...,1                                                       (5.57) 
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where  pkγ   is defined by  (5.49). It leads to a well known estimator, because if  

1−= kk xq  is let (5.29) becomes 
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p

r x
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x
1

.Thus, SEPRAŶ  has the form of a separate 

ratio estimator.  

 

Instead, the auxiliary vector  is formulated as 

 

kx = ( )′γγγγγγ kPkkpkkkPkpkk xxx ,...,,...,,,...,,..., 11              (5.59)

           

Then if kq =1 for all k, the estimator (5.29) becomes 
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The estimator  (5.60) is another well known form separate regression estimator. 

 

5.2.2.9 Analysis of the nonresponse bias for examples of calibration estimator 

 

The nonresponse bias given by (5.40) will be zero if a certain relation exists 

between the response probability kθ  and the auxiliary vector kx  , namely,  

 

    kkk xq λθ ′+=− 11         for  Uk ∈              (5.61)

                           

where λ is a column vector independent of k. If  (5.61) holds, the right hand side of 

(5.60) is zero, and the bias ( )
wpq YB ˆ  is thus approximately zero. When the ideal 

conditions is satisfied , nonresponse bias is approximately zero, ( ) 0≈wpq YB ˆ , because 

0=kEθ  for all  k . For many sampling designs, a reduction of the residuals will 

reduce the variance. Consequently, an auxiliary vector that explains the variation of 

the study variable is effective in reducing MSE. (Särndal & Lundström, 2001) 

 

Several special cases of the general calibtration estimator was obtained, 

corresponding to different formulations of the auxiliary vector kx  and the factor kq  

given Table 5.1. Särndal and Lundström (1999) revisited these estimators with the 

purpose of showing how the theoretical result (5.44) can guide the selection of 

relevant auxiliary information.  
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Table. 5.1. The specifications of the auxiliary vector kx  and the factor kq  leading to 

well known estimators (Lundström & Särndal, 2001) 

Estimator Auxiliary vector kx  Factor kq  

EXP 1 1 

PST and WCE ( )′
Pkpkk γγγ ,...,,...,1  1 

RA kx  1−
kx  

REG ( )′
kx,1  1 

SEPRA ( )′γγγ kPkkpkkk xxx ,...,,...,1  
1−

kx  

SEPREG ( )′γγγγγγ kPkkpkkkPkpkk xxx ,...,,...,,,...,,..., 11  1 

 

 

In the section (4.5.1), three principles are explained that the auxiliary vector ‘s 

satisfied. For the first principle, each of the six estimators in Table 5.1, the 

specifications of  kx  and kq  into (5.61) and the results are obtained in Table 5.2. It 

is assumed that the value of kθ is known for every k and the set of N points 

( ){ }Nkukk ,...,1:,1 =−θ  is examined in orded to see how closely 1−θk  agrees with ku . 

And ku  is defined as kkk xqu λ ′+= 1 . If the relationship is perfect, so that ku  equals 

1−θk  for every k. then the nonresponse bias is totally eliminated. This perfect 

relationship is stated in the Table 5.2. 
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Table 5.2. The relationship between 1−θk  and ku  needed to elminate the nonresponse 

bias for six well-known  estimators. a,  pa , b, pb  denote constants. (Lundström & 

Särndal, 2001) 

Estimator 
Form of the 1−θk  needed  

to eliminate bias 

Description of the 1−θk  

needed to eliminate bias 

EXP ak =−1θ  for all  Uk ∈  constant throughout 

PST and WCE pk a=−1θ  for all  pUk ∈  constant within groups 

RA ak =−1θ   for all  Uk ∈  constant throughout 

REG kk bxa +=−1θ  linear in kx  

SEPRA pk a=−1θ  for all  pUk ∈  constant within groups 

SEPREG kppk xba +=−1θ  linear in kx  within groups 

 

 

The six example of calibration estimators in Table 5.1 and Table 5.2 illustrate the 

following important principles  the more succeed in incorporating important 

auixuliury information into the auxiliary vector  the better are the chances that the 

nonresponse bias will be reduced to near zero levels.(Lundström & Särndal, 2001) 
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Table 5.3. The linearship between ky  and the auxiliary vector that eliminates the 

nonresponse bias for six well-known estimators. pββα ,,   denote constants. 

(Lundström & Särndal, 2001) 

Estimator 
Form of the ky  needed  

to eliminate bias 

Description of the ky  

needed to eliminate bias 

EXP α=ky  for all  Uk ∈  constant throughout 

PST and WCE pky β=  for all  pUk ∈  constant within groups 

RA kk xy α=   for all  Uk ∈  
linear in kx  through the 

origin within groups 

REG kk xy βα +=  linear in kx  

SEPRA kpk xy α=  for all  pUk ∈  
linear in kx  through the 

origin within groups 

SEPREG kppk xy βα +=  for all  pUk ∈  linear in kx  within groups 

 

 

For the second principle in section (4.5.1) , the auxiliary vector should explain the 

variation of the most important study variables. If there is perfect relationship , 

ky = ββββkx′ ,  holds for all Uk ∈ , then  YYw =ˆ . All population residuals kE   and the 

nonresponse bias are then zero. If ky = ββββkx′  is taken as a starting point for analysis, 

the six estimator is likely satisfy the pirinciple two.  

 

It is assumed that, it could be examined the N points ( ){ }Nkyy kk ,...,1:, 0 =  , 

where ky = ββββkx′ .  If the relationship is perfect, so that 0
ky  equals ky  for every k, then 

the nonresponse bias is totally eliminated. This perfect relationship is illustruated in 

Table 5.3. 
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CHAPTER SIX 
 

APPLICATION  
 

 
6.1 Introduction 

 

In the  previous chapter, the definition of calibration approach to reweighting 

under nonresponse problem was given. In the presence of available auxiliary 

information the calibration approach is  flexible for the reduction of nonresponse.  In 

this chapter, it is given through the simulation that how alternative  specifications of 

the auxiliary vector kx  affect the quality of estimators derived by the calibration 

technique. 

 

At the beginning of the application,  a population in the size of N = 1000 was 

generated by the Minitab macro program. Then, 100 random samples were drawn 

from this population with sample size of  n = 400. Throughout the application 

section the only one type of parameter estimated is a total for the entire population. 

The SRS design is used for drawing samples from population. In order to both 

computation of point estimators and quality measures that relative bias and variance 

for the population total, generated by different kx  vector specifications, a macro was 

written using C++ programming language.  

 

6.2 Application  

 

The population was generated by the Minitab macro program with the size of N = 

1000. The study variable ky  is a numerical variable measuring such as expense. The 

first auxiliary variable, Γ k, is categorical, indicating one out of four possible regions. 

The second auxiliary variable, denoted kx , is numerical too and defined such as 

revenues. In the simulation the square root of kx  was used as second auxiliary 

variable. Some of variables of this population is given Table 6.1. 
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 Table 6.1 Generated Population  

 
ky  kx  square root of kx  Γ k 

1 1556 1598 40 4 
2 1986 1773 42 2 
3 1332 715 27 4 
4 1128 1610 40 4 
5 1584 441 21 3 
6 1555 1566 40 4 
7 1572 1295 36 1 
8 1035 466 22 4 
9 1773 1877 43 3 
10 1877 1012 32 3 
11 2208 1741 42 3 
12 894 1541 39 2 
13 1341 1435 38 1 
14 1807 1419 38 3 
15 1544 1550 39 1 
16 1063 1109 33 4 
17 1397 1219 35 1 
18 1461 1702 41 1 
19 1212 1627 40 1 
20 1419 1414 38 3 
. . . . . 
. . . . . 
. . . . . 
. . . . . 
. . . . . 
. . . . . 
. . . . . 

981 1333 1519 40 4 
982 1862 1982 39 4 
983 1306 1446 45 4 
984 1413 1356 38 2 
985 1672 1394 37 2 
986 1516 1365 37 1 
987 1251 1398 37 2 
988 1759 1583 37 1 
989 1526 1673 40 1 
990 1283 1699 41 4 
991 1373 1641 41 1 
992 829 1789 41 4 
993 1469 1560 42 4 
994 1331 1298 39 3 
995 1245 1888 36 2 
996 1696 1402 37 2 
997 1563 1600 40 3 
998 1438 1745 42 4 
990 1654 1835 43 4 
1000 1282 1858 43 1 



74 

 

It is assumed that 850 of the 1000 data of population was responded. So the 

population used in the simulation consist of 850 responding elements.  The response  

rate was thus 85 per cent. From the population consisting of the 850 responding 

elements , repeated simple random samples are drawn. 100  random samples  with 

the size of n = 400 was selected by the following Minitab macro program 

‘SAMPLING.MTW’.  

 

SAMPLING.MTW 

 

SAMPLE 400 C1 CK1 

LET K1=K1+1 

END 

 
The macro was completed when the Minitab macro command was written as 

follows:  
  
 

MTB > LET K1=2 

MTB > EXEC 'C: \MTBWIN\DATA\SAMPLING.MTW’ 100 

 

 Table 6.2 Some key characteristics of the study variable y. 

Group ( Regions) Characteristics for the entire 

population 1 2 3 4 

Total (Y ) 1,282,671 353,209 306,795 305,314 317,353 

Mean (Y ) 1,509 1,542 1,511 1,511 1,469 

Number of 

elements (N) 
850 229 203 202 216 

 

In the chapter five, examples of calibration estimators obtained by the 

specifications of auxiliary vectors for the population total were given. These point 

estimators were computed through the C ++ programming language. For response set 

j (j=1,…, 100), 
)(

ˆ
jwY  is calculated, where 

)(

ˆ
jwY is the value of the point estimator wŶ  
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for response set j. Here, wsw YY ˆˆ =  given by (5.29) for Info-S, and wUw YY ˆˆ =  given by 

(5.25) for Info-U.  

 

  Table 6.3 Results of the point estimators with different auxiliary vectors, SRS n = 400 

Auxiliary vector 
Info 

Level 
Estimators Results 

1 s, U 
EXPŶ  

See Appendix-

2 

U PSTŶ  
See Appendix-

3 
( )′

Pkpkk γγγ ,...,,...,1  

s WCEŶ  
See Appendix-

4 

U 
See Appendix-

5 
kx  

s 

RAŶ  
See Appendix-

6 

U 
See Appendix-

7 
( )′kx,1  

s 

REGŶ  
See Appendix-

8 

U 
See Appendix-

9 
( )′γγγ kPkkpkkk xxx ,...,,...,1  

s 

SEPRAŶ  
See Appendix-

10 

U 
See Appendix-

11 
( )′γγγγγγ kPkkpkkkPkpkk xxx ,...,,...,,,...,,..., 11  

s 

SEPREGŶ  
See Appendix-

12 
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And two quality measures were studied for see the affects of auxiliary vectors on 

estimators. The first is simulation relative bias in per cent, 

 

( ) ( )[ ]
Y

YYE
YRB wSIM

wSIM

−
=

ˆ
100ˆ                                                                    (6.1)  

 

where ( )wSIM YE ˆ  is the simulation expectation of wŶ  denote as, 

 

 ( ) ∑
=

=
100

1

)(

100

ˆ
ˆ

j

jw

wSIM

Y
YE                       (6.2) 

and the second is simulation variance, 

 

( ) ( )[ ]
∑

=

−
=

100

1

)(

99

ˆˆ
ˆ

j

wSIMjw

wSIM

YEY
YV                 (6.3) 

The simulation results are given in Table 6.4. 

 

Table 6.4 Simulation relative bias and simulation variance for different point estimators, SRS with n = 400  

Auxiliary vector 
Info 

Level 
Estimators ( )wSIM YRB ˆ  ( )wSIM YV ˆ x106 

1  U 
EXPŶ  6.96 9.105 

( )′
Pkpkk γγγ ,...,,...,1  U PSTŶ  0.13 6.346 

kx  U 
RAŶ  1.57 1,614 

( )′kx,1  U REGŶ  0.09 2,492 

( )′γγγ kPkkpkkk xxx ,...,,...,1  U SEPRAŶ  0.10 1.372 

( )′γγγγγγ kPkkpkkkPkpkk xxx ,...,,...,,,...,,..., 11  U SEPREGŶ  0.11 1.342 
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In the simulations, we studied the point estimators generated by  different xk 

vector specifications, namely,  xk =1   for all k,   xk = ( )′
Pkpkk γγγ ,...,,...,1 ,   xk = kx , 

xk= ( )′kx,1 ,xk= ( )′γγγ kPkkpkkk xxx ,...,,...,1 ,xk= ( )′γγγγγγ kPkkpkkkPkpkk xxx ,...,,...,,,...,,..., 11  

When  xk =1 there is no auxiliary information. In this reason simulation results for 

estimator ( EXPŶ ) has more bias and variance. We compared the other estimators 

( PSTŶ , RAŶ , REGŶ , SEPRAŶ , SEPREGŶ ), which generated by  different  xk  vector 

specifications, with  xk =1. We would expect the nonresponse bias to diminish with 

increasing amounts of auxiliary information, and this is confirmed by Table 6.4.  
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CHAPTER SEVEN 

CONCLUSION  

 

 

The aim of this thesis is to introduce methods for the reduction of bias and errors 

arising from survey with nonresponse. In the recent years, scientist became increased 

to concern with the calibration approach to reweigthing method in the presence of 

nonresponse. Because of this reason, we interested in especially reweighting method 

with calibration approach. Calibration procedure requires the formulation of a 

suitable auxiliary vector, through a selection from a possible larger set of auxiliary 

variables. Different specifications of auxiliary variables leads to different form of 

calibration estimators.  

 

In application, we studied the point estimators generated by  different xk vector 

specifications, namely, xk =1 for all k, xk = ( )′
Pkpkk γγγ ,...,,...,1 ,  xk = kx , 

xk= ( )′kx,1 ,xk= ( )′γγγ kPkkpkkk xxx ,...,,...,1 ,xk= ( )′γγγγγγ kPkkpkkkPkpkk xxx ,...,,...,,,...,,..., 11   

Application shows that the calibration approach is highly flexible in its use of 

auxiliary information for the reduction of nonresponse bias. When  xk =1 there is no 

auxiliary information. In this reason simulation results for estimator ( EXPŶ ) has more 

bias and variance. We compared the other estimators ( PSTŶ , RAŶ , REGŶ , SEPRAŶ , SEPREGŶ ), 

which generated by  different  xk  vector specifications, with  xk =1. We would expect 

the nonresponse bias to diminish with increasing amounts of auxiliary information, 

and this is confirmed by Table 6.4.  

 

For instance, as shown in Table 6.4 when auxiliary information are not used its 

calculated that the relative bias of estimator is [RBSIM( EXPŶ ) =6.96 %] and variance 

is [VSIM( EXPŶ )=9,105x106]. When auxiliary vector , xk = ( )′
Pkpkk γγγ ,...,,...,1 , is used
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 in the estimation stage then the relative bias is obtained [RBSIM( PSTŶ ) =0.13%] and 

variance is [VSIM( PSTŶ ) =6,346x106]. This denotes that using the auxiliary 

information decreases the nonresponse bias and variance. 

 

Calibration approach may play considerable role in  reduction of nonresponse bias 

and it is better suited for a routine treatment of nonresponse in organization. 
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Appendix -1   C++  Program for calculation of estimators, biases and variances 
for 100 samples. 
 
#include<stdio.h> 
#include<stdlib.h> 
#include<math.h> 
main(){ 
 
float yk[1000],xk[1000],blg[1000]; 
float y_val[100][400],x_val[100][400],blg_val[100][400]; 
float var_yk, var_xk,bolge; 
float cov1[100],cov2[100],cov3[100],cov4[100]; 
float var1[100],var2[100],var3[100],var4[100]; 
float yrp1_ort[100],yrp2_ort[100],yrp3_ort[100],yrp4_ort[100]; 
float xrp1_ort[100],xrp2_ort[100],xrp3_ort[100],xrp4_ort[100]; 
float RBsim_Y[11],Esim_Y[11], VarSim_Y[11]; 
float y_pst[100]; 
float Yexp[100]; 
float Y_wce[100]; 
float Y_rau[100],xr_ort[100],yr_ort[100],Y_ras[100]; 
float Y_regu[100],Beta_sapka[100],Y_regs[100]; 
float yk_carp_xk_top[100], xk_kare_top[100]; 
float top_x[100],top_y[100]; 
float x_blgorn_top[100][4]; 
float Y_seprau[100], Y_sepras[100]; 
float Y_sepregu[100], Y_sepregs[100]; 
float Beta_sapka1[100],Beta_sapka2[100],Beta_sapka3[100],Beta_sapka4[100]; 
int m[100][4],M[100]; 
int n[100][4]; 
int Np_sapka[100][4]; 
int toplam_y,toplam_x; 
int i=0; 
FILE *cfPtr,*cfPtr1,*cfPtr2; 
 
/**********************************************************************************************/ 
/************************READING DATA FROM POPULATION FILE*******************/ 
/*********************************************************************************************/ 
 
if((cfPtr=fopen("b1000_kitle. dat","r"))==NULL) 
 printf("Dosyada veri yok\n"); 
else          { 
   fscanf(cfPtr,"%f%f%f",&var_yk,&var_xk,&bolge); 
   while(var_yk!=float(-1))     { 
    //printf("%.2f %.2f %.2f\n",var_yk,var_xk,bolge); 
      yk[i]=var_yk;   xk[i]=var_xk;   blg[i]=bolge; 
    fscanf(cfPtr,"%f%f%f",&var_yk,&var_xk,&bolge); 
    i=i+1; 
 
   } 
   fclose(cfPtr); 
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Appendix -1   Continued 
 
   //printf("\nyk[0]=%f\n blg[999]=%f,\nblg[998]=%f",yk[0],blg[999],blg[998]); 
} 
 
/**********************************************************************************************/ 
/************************* READING DATA FROM SAMPLE FILE ***********************/ 
/*********************************************************************************************/ 
 
if((cfPtr1=fopen("ilk_50.dat","r"))==NULL) 
 printf("Dosyada veri yok\n"); 
else          { 
 i=0; 
   
fscanf(cfPtr1,"%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f
%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f
%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f
%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f
%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f", 
   &blg_val[0][i],&y_val[0][i],&x_val[0][i],&blg_val[1][i],&y_val[1][i],&x_val[1][i], 
   &blg_val[2][i],&y_val[2][i],&x_val[2][i],&blg_val[3][i],&y_val[3][i],&x_val[3][i], 
   &blg_val[4][i],&y_val[4][i],&x_val[4][i],&blg_val[5][i],&y_val[5][i],&x_val[5][i], 
   &blg_val[6][i],&y_val[6][i],&x_val[6][i],&blg_val[7][i],&y_val[7][i],&x_val[7][i], 
   &blg_val[8][i],&y_val[8][i],&x_val[8][i],&blg_val[9][i],&y_val[9][i],&x_val[9][i], 
   &blg_val[10][i],&y_val[10][i],&x_val[10][i],&blg_val[11][i],&y_val[11][i],&x_val[11][i], 
   &blg_val[12][i],&y_val[12][i],&x_val[12][i],&blg_val[13][i],&y_val[13][i],&x_val[13][i], 
   &blg_val[14][i],&y_val[14][i],&x_val[14][i],&blg_val[15][i],&y_val[15][i],&x_val[15][i], 
   &blg_val[16][i],&y_val[16][i],&x_val[16][i],&blg_val[17][i],&y_val[17][i],&x_val[17][i], 
   &blg_val[18][i],&y_val[18][i],&x_val[18][i],&blg_val[19][i],&y_val[19][i],&x_val[19][i], 
   &blg_val[20][i],&y_val[20][i],&x_val[20][i],&blg_val[21][i],&y_val[21][i],&x_val[21][i], 
   &blg_val[22][i],&y_val[22][i],&x_val[22][i],&blg_val[23][i],&y_val[23][i],&x_val[23][i], 
   &blg_val[24][i],&y_val[24][i],&x_val[24][i],&blg_val[25][i],&y_val[25][i],&x_val[25][i], 
   &blg_val[26][i],&y_val[26][i],&x_val[26][i],&blg_val[27][i],&y_val[27][i],&x_val[27][i], 
   &blg_val[28][i],&y_val[28][i],&x_val[28][i],&blg_val[29][i],&y_val[29][i],&x_val[29][i], 
   &blg_val[30][i],&y_val[30][i],&x_val[30][i],&blg_val[31][i],&y_val[31][i],&x_val[31][i], 
   &blg_val[32][i],&y_val[32][i],&x_val[32][i],&blg_val[33][i],&y_val[33][i],&x_val[33][i], 
   &blg_val[34][i],&y_val[34][i],&x_val[34][i],&blg_val[35][i],&y_val[35][i],&x_val[35][i], 
   &blg_val[36][i],&y_val[36][i],&x_val[36][i],&blg_val[37][i],&y_val[37][i],&x_val[37][i], 
   &blg_val[38][i],&y_val[38][i],&x_val[38][i],&blg_val[39][i],&y_val[39][i],&x_val[39][i], 
   &blg_val[40][i],&y_val[40][i],&x_val[40][i],&blg_val[41][i],&y_val[41][i],&x_val[41][i], 
   &blg_val[42][i],&y_val[42][i],&x_val[42][i],&blg_val[43][i],&y_val[43][i],&x_val[43][i], 
   &blg_val[44][i],&y_val[44][i],&x_val[44][i],&blg_val[45][i],&y_val[45][i],&x_val[45][i], 
   &blg_val[46][i],&y_val[46][i],&x_val[46][i],&blg_val[47][i],&y_val[47][i],&x_val[47][i], 
   &blg_val[48][i],&y_val[48][i],&x_val[48][i],&blg_val[49][i],&y_val[49][i],&x_val[49][i]); 
   while(i!=399) 
      { 
      i=i+1; 
   
fscanf(cfPtr1,"%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f
%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f
%f 
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Appendix -1   Continued 
 
%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f
%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f
%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f", 
   &blg_val[0][i],&y_val[0][i],&x_val[0][i],&blg_val[1][i],&y_val[1][i],&x_val[1][i], 
   &blg_val[2][i],&y_val[2][i],&x_val[2][i],&blg_val[3][i],&y_val[3][i],&x_val[3][i], 
   &blg_val[4][i],&y_val[4][i],&x_val[4][i],&blg_val[5][i],&y_val[5][i],&x_val[5][i], 
   &blg_val[6][i],&y_val[6][i],&x_val[6][i],&blg_val[7][i],&y_val[7][i],&x_val[7][i], 
   &blg_val[8][i],&y_val[8][i],&x_val[8][i],&blg_val[9][i],&y_val[9][i],&x_val[9][i], 
   &blg_val[10][i],&y_val[10][i],&x_val[10][i],&blg_val[11][i],&y_val[11][i],&x_val[11][i], 
   &blg_val[12][i],&y_val[12][i],&x_val[12][i],&blg_val[13][i],&y_val[13][i],&x_val[13][i], 
   &blg_val[14][i],&y_val[14][i],&x_val[14][i],&blg_val[15][i],&y_val[15][i],&x_val[15][i], 
   &blg_val[16][i],&y_val[16][i],&x_val[16][i],&blg_val[17][i],&y_val[17][i],&x_val[17][i], 
   &blg_val[18][i],&y_val[18][i],&x_val[18][i],&blg_val[19][i],&y_val[19][i],&x_val[19][i], 
   &blg_val[20][i],&y_val[20][i],&x_val[20][i],&blg_val[21][i],&y_val[21][i],&x_val[21][i], 
   &blg_val[22][i],&y_val[22][i],&x_val[22][i],&blg_val[23][i],&y_val[23][i],&x_val[23][i], 
   &blg_val[24][i],&y_val[24][i],&x_val[24][i],&blg_val[25][i],&y_val[25][i],&x_val[25][i], 
   &blg_val[26][i],&y_val[26][i],&x_val[26][i],&blg_val[27][i],&y_val[27][i],&x_val[27][i], 
   &blg_val[28][i],&y_val[28][i],&x_val[28][i],&blg_val[29][i],&y_val[29][i],&x_val[29][i], 
   &blg_val[30][i],&y_val[30][i],&x_val[30][i],&blg_val[31][i],&y_val[31][i],&x_val[31][i], 
   &blg_val[32][i],&y_val[32][i],&x_val[32][i],&blg_val[33][i],&y_val[33][i],&x_val[33][i], 
   &blg_val[34][i],&y_val[34][i],&x_val[34][i],&blg_val[35][i],&y_val[35][i],&x_val[35][i], 
   &blg_val[36][i],&y_val[36][i],&x_val[36][i],&blg_val[37][i],&y_val[37][i],&x_val[37][i], 
   &blg_val[38][i],&y_val[38][i],&x_val[38][i],&blg_val[39][i],&y_val[39][i],&x_val[39][i], 
   &blg_val[40][i],&y_val[40][i],&x_val[40][i],&blg_val[41][i],&y_val[41][i],&x_val[41][i], 
   &blg_val[42][i],&y_val[42][i],&x_val[42][i],&blg_val[43][i],&y_val[43][i],&x_val[43][i], 
   &blg_val[44][i],&y_val[44][i],&x_val[44][i],&blg_val[45][i],&y_val[45][i],&x_val[45][i], 
   &blg_val[46][i],&y_val[46][i],&x_val[46][i],&blg_val[47][i],&y_val[47][i],&x_val[47][i], 
   &blg_val[48][i],&y_val[48][i],&x_val[48][i],&blg_val[49][i],&y_val[49][i],&x_val[49][i]); 
   } 
   fclose(cfPtr1); 
   //printf("\ny[0][0]=%f \n y[0][399]=%f",y_val[0][0],y_val[49][399]); 
} 
 
if((cfPtr2=fopen("ikinci_50.dat","r"))==NULL) 
 printf("Dosyada veri yok\n"); 
else          { 
 i=0; 
   
fscanf(cfPtr1,"%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f
%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f
%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f
%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f
%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f", 
   &blg_val[50][i],&y_val[50][i],&x_val[50][i],&blg_val[51][i],&y_val[51][i],&x_val[51][i], 
   &blg_val[52][i],&y_val[52][i],&x_val[52][i],&blg_val[53][i],&y_val[53][i],&x_val[53][i], 
   &blg_val[54][i],&y_val[54][i],&x_val[54][i],&blg_val[55][i],&y_val[55][i],&x_val[55][i], 
   &blg_val[56][i],&y_val[56][i],&x_val[56][i],&blg_val[57][i],&y_val[57][i],&x_val[57][i], 
   &blg_val[58][i],&y_val[58][i],&x_val[58][i],&blg_val[59][i],&y_val[59][i],&x_val[59][i], 
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   &blg_val[60][i],&y_val[60][i],&x_val[60][i],&blg_val[61][i],&y_val[61][i],&x_val[61][i], 
   &blg_val[62][i],&y_val[62][i],&x_val[62][i],&blg_val[63][i],&y_val[63][i],&x_val[63][i], 
   &blg_val[64][i],&y_val[64][i],&x_val[64][i],&blg_val[65][i],&y_val[65][i],&x_val[65][i], 
   &blg_val[66][i],&y_val[66][i],&x_val[66][i],&blg_val[67][i],&y_val[67][i],&x_val[67][i], 
   &blg_val[68][i],&y_val[68][i],&x_val[68][i],&blg_val[69][i],&y_val[69][i],&x_val[69][i], 
   &blg_val[70][i],&y_val[70][i],&x_val[70][i],&blg_val[71][i],&y_val[71][i],&x_val[71][i], 
   &blg_val[72][i],&y_val[72][i],&x_val[72][i],&blg_val[73][i],&y_val[73][i],&x_val[73][i], 
   &blg_val[74][i],&y_val[74][i],&x_val[74][i],&blg_val[75][i],&y_val[75][i],&x_val[75][i], 
   &blg_val[76][i],&y_val[76][i],&x_val[76][i],&blg_val[77][i],&y_val[77][i],&x_val[77][i], 
   &blg_val[78][i],&y_val[78][i],&x_val[78][i],&blg_val[79][i],&y_val[79][i],&x_val[79][i], 
   &blg_val[80][i],&y_val[80][i],&x_val[80][i],&blg_val[81][i],&y_val[81][i],&x_val[81][i], 
   &blg_val[82][i],&y_val[82][i],&x_val[82][i],&blg_val[83][i],&y_val[83][i],&x_val[83][i], 
   &blg_val[84][i],&y_val[84][i],&x_val[84][i],&blg_val[85][i],&y_val[85][i],&x_val[85][i], 
   &blg_val[86][i],&y_val[86][i],&x_val[86][i],&blg_val[87][i],&y_val[87][i],&x_val[87][i], 
   &blg_val[88][i],&y_val[88][i],&x_val[88][i],&blg_val[89][i],&y_val[89][i],&x_val[89][i], 
   &blg_val[90][i],&y_val[90][i],&x_val[90][i],&blg_val[91][i],&y_val[91][i],&x_val[91][i], 
   &blg_val[92][i],&y_val[92][i],&x_val[92][i],&blg_val[93][i],&y_val[93][i],&x_val[93][i], 
   &blg_val[94][i],&y_val[94][i],&x_val[94][i],&blg_val[95][i],&y_val[95][i],&x_val[95][i], 
   &blg_val[96][i],&y_val[96][i],&x_val[96][i],&blg_val[97][i],&y_val[97][i],&x_val[97][i], 
   &blg_val[98][i],&y_val[98][i],&x_val[98][i],&blg_val[99][i],&y_val[99][i],&x_val[99][i]); 
   while(i!=399) 
      { 
      i=i+1; 
   
fscanf(cfPtr1,"%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f
%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f
%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f
%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f
%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f", 
   &blg_val[50][i],&y_val[50][i],&x_val[50][i],&blg_val[51][i],&y_val[51][i],&x_val[51][i], 
   &blg_val[52][i],&y_val[52][i],&x_val[52][i],&blg_val[53][i],&y_val[53][i],&x_val[53][i], 
   &blg_val[54][i],&y_val[54][i],&x_val[54][i],&blg_val[55][i],&y_val[55][i],&x_val[55][i], 
   &blg_val[56][i],&y_val[56][i],&x_val[56][i],&blg_val[57][i],&y_val[57][i],&x_val[57][i], 
   &blg_val[58][i],&y_val[58][i],&x_val[58][i],&blg_val[59][i],&y_val[59][i],&x_val[59][i], 
   &blg_val[60][i],&y_val[60][i],&x_val[60][i],&blg_val[61][i],&y_val[61][i],&x_val[61][i], 
   &blg_val[62][i],&y_val[62][i],&x_val[62][i],&blg_val[63][i],&y_val[63][i],&x_val[63][i], 
   &blg_val[64][i],&y_val[64][i],&x_val[64][i],&blg_val[65][i],&y_val[65][i],&x_val[65][i], 
   &blg_val[66][i],&y_val[66][i],&x_val[66][i],&blg_val[67][i],&y_val[67][i],&x_val[67][i], 
   &blg_val[68][i],&y_val[68][i],&x_val[68][i],&blg_val[69][i],&y_val[69][i],&x_val[69][i], 
   &blg_val[70][i],&y_val[70][i],&x_val[70][i],&blg_val[71][i],&y_val[71][i],&x_val[71][i], 
   &blg_val[72][i],&y_val[72][i],&x_val[72][i],&blg_val[73][i],&y_val[73][i],&x_val[73][i], 
   &blg_val[74][i],&y_val[74][i],&x_val[74][i],&blg_val[75][i],&y_val[75][i],&x_val[75][i], 
   &blg_val[76][i],&y_val[76][i],&x_val[76][i],&blg_val[77][i],&y_val[77][i],&x_val[77][i], 
   &blg_val[78][i],&y_val[78][i],&x_val[78][i],&blg_val[79][i],&y_val[79][i],&x_val[79][i], 
   &blg_val[80][i],&y_val[80][i],&x_val[80][i],&blg_val[81][i],&y_val[81][i],&x_val[81][i], 
   &blg_val[82][i],&y_val[82][i],&x_val[82][i],&blg_val[83][i],&y_val[83][i],&x_val[83][i], 
   &blg_val[84][i],&y_val[84][i],&x_val[84][i],&blg_val[85][i],&y_val[85][i],&x_val[85][i], 
   &blg_val[86][i],&y_val[86][i],&x_val[86][i],&blg_val[87][i],&y_val[87][i],&x_val[87][i], 
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   &blg_val[88][i],&y_val[88][i],&x_val[88][i],&blg_val[89][i],&y_val[89][i],&x_val[89][i], 
   &blg_val[90][i],&y_val[90][i],&x_val[90][i],&blg_val[91][i],&y_val[91][i],&x_val[91][i], 
   &blg_val[92][i],&y_val[92][i],&x_val[92][i],&blg_val[93][i],&y_val[93][i],&x_val[93][i], 
   &blg_val[94][i],&y_val[94][i],&x_val[94][i],&blg_val[95][i],&y_val[95][i],&x_val[95][i], 
   &blg_val[96][i],&y_val[96][i],&x_val[96][i],&blg_val[97][i],&y_val[97][i],&x_val[97][i], 
   &blg_val[98][i],&y_val[98][i],&x_val[98][i],&blg_val[99][i],&y_val[99][i],&x_val[99][i]); 
   } 
   fclose(cfPtr2); 
   //printf("\ny[99][399]=%f",y_val[99][399]); 
   } 
 
/*********************************************************************************************/ 
/************COMPUTATION RESPONDING SIZE FOR 100 SAMPLES*************/ 
/********************************************************************************************/ 
 
for(int i=0;i<100;i++){ 
      m[i][0]=0;      m[i][1]=0;      m[i][2]=0;      m[i][3]=0; 
      n[i][0]=0; n[i][1]=0; n[i][2]=0; n[i][3]=0; 
      
x_blgorn_top[i][0]=0;x_blgorn_top[i][1]=0;x_blgorn_top[i][2]=0;x_blgorn_top[i][3]=0; 
  for(int j=0;j<400;j++) { 
    if(blg_val[i][j]==1){ 
       x_blgorn_top[i][0]=x_blgorn_top[i][0]+x_val[i][j]; 
         n[i][0]=n[i][0]+1; 
       if(y_val[i][j]!=0){ 
          m[i][0]=m[i][0]+1; 
         } 
      } 
      if(blg_val[i][j]==2){ 
       x_blgorn_top[i][1]=x_blgorn_top[i][1]+x_val[i][j]; 
       n[i][1]=n[i][1]+1; 
       if(y_val[i][j]!=0){ 
          m[i][1]=m[i][1]+1; 
         } 
      } 
      if(blg_val[i][j]==3){ 
       x_blgorn_top[i][2]=x_blgorn_top[i][2]+x_val[i][j]; 
       n[i][2]=n[i][2]+1; 
       if(y_val[i][j]!=0){ 
          m[i][2]=m[i][2]+1; 
         } 
    } 
      if(blg_val[i][j]==4){ 
       x_blgorn_top[i][3]=x_blgorn_top[i][3]+x_val[i][j]; 
       n[i][3]=n[i][3]+1; 
       if(y_val[i][j]!=0){ 
          m[i][3]=m[i][3]+1; 
         } 
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      } 
   } 
   M[i]=m[i][0]+m[i][1]+m[i][2]+m[i][3]; 
   //printf("\nx_blgorn_top[%d][0]=%f",i,x_blgorn_top[i][0]); 
   //printf("\nM[%d]=%d",i,M[i]); 
  /* printf("\nm[%d][1]=%d",i,m[i][0]); 
  printf("\nm[%d][2]=%d",i,m[i][1]); 
   printf("\nm[%d][3]=%d",i,m[i][2]); 
   printf("\nm[%d][4]=%d",i,m[i][3]); */ 
/*   printf("\nx_blgorn_top[%d][0]=%f",i,x_blgorn_top[i][0]); 
   printf("\nx_blgorn_top[%d][1]=%f",i,x_blgorn_top[i][1]); 
   printf("\nx_blgorn_top[%d][2]=%f",i,x_blgorn_top[i][2]); 
   printf("\nx_blgorn_top[%d][3]=%f",i,x_blgorn_top[i][3]);*/ 
 } 
 /*for(int t=0;t<25;t++){ 
 printf("\nx_blgorn_top[%d][0]=%f",t,x_blgorn_top[t][0]); 
   printf("\nx_blgorn_top[%d][1]=%f",t,x_blgorn_top[t][1]); 
   printf("\nx_blgorn_top[%d][2]=%f",t,x_blgorn_top[t][2]); 
   printf("\nx_blgorn_top[%d][3]=%f",t,x_blgorn_top[t][3]); 
   } 
 /*  printf("\nm[%d][1]=%d",t,m[t][0]); 
   printf("\nm[%d][2]=%d",t,m[t][1]); 
   printf("\nm[%d][3]=%d",t,m[t][2]); 
   printf("\nm[%d][4]=%d",t,m[t][3]); 
   } 
   /*for(int t=94;t<100;t++){ 
   printf("\nn[%d][1]=%d",t,n[t][0]); 
   printf("\nn[%d][2]=%d",t,n[t][1]); 
   printf("\nn[%d][3]=%d",t,n[t][2]); 
   printf("\nn[%d][4]=%d",t,n[t][3]);    */ 
   //} 
//printf("m[50][1]=%d\tm[50][2]=%d\tm[99][3]=%d\tm[99][4]=%d",m[50][0],m[50][1],m[
99][2],m[99][3]); 
 
/**********************************************************************************************/ 

 /*******COMPUTATION OF pN̂  VALUES FOR FOUR GROUP (REGION) **********/ 

/*********************************************************************************************/ 
 
//printf("\nn[1][1]=%d\nn[1][2]=%d\nn[1][3]=%d\nn[1][4]=%d",n[0][0],n[0][1],n[0][2],n[0
][3]); 
 for(int k=0;k<100;k++){ 
  Np_sapka[k][0]=int(2.125*n[k][0]); 
   Np_sapka[k][1]=int(2.125*n[k][1]); 
   Np_sapka[k][2]=int(2.125*n[k][2]); 
   Np_sapka[k][3]=int(2.125*n[k][3]); 
 
 } 
 /*for(int k=0;k<40;k++) 
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 printf("\nNp_sapka[%d][1]=%d\nNp_sapka[%d][2]=%d\nNp_sapka[%d][3]=%
d\nNp_sapka[%d][4]=%d\n", 
   k,Np_sapka[k][0],k,Np_sapka[k][1],k,Np_sapka[k][2],k,Np_sapka[k][3]); 
 
 
/**********************************************************************************************/ 

/**********COMPUTATION OF POINT ESTIMATORS EXPŶ  ,
URAŶ  AND 

SRAŶ *********/ 

/*********************************************************************************************/ 
 
for(int i=0;i<100;i++){ 
 toplam_y=0; toplam_x=0; 
 for(int j=0;j<400;j++){ 
    toplam_y=toplam_y+y_val[i][j]; 
      toplam_x=toplam_x+x_val[i][j]; 
   } 
   //printf("\ntoplam_y_%d=%d",i,toplam_y); 
   //printf("\ntoplam_x_%d=%d",i,toplam_y); 
   //printf("\nM_Toplam[%d]=%d",i,M_Toplam[i]); 
   Yexp[i]=float(850/float(M_Toplam[i])*toplam_y); 
   yr_ort[i]=toplam_y/M_Toplam[i]; 
   xr_ort[i]=toplam_x/M_Toplam[i]; 
   Y_rau[i]=32776*yr_ort[i]/xr_ort[i]; 
   Y_ras[i]=toplam_x*yr_ort[i]/xr_ort[i]; 
   //printf("\nYexp[%d]=%f",i,Yexp[i]); 
   //printf("\ntoplam_x=%d",toplam_x); 
   //printf("\nY_ras[%d]=%f",i,Y_ras[i]); 
   //printf("\nyr_ort[%d]=%f",i,yr_ort[i]); 
 //printf("\nxr_ort[%d]=%f",i,xr_ort[i]); 
   //printf("\nY_rau[%d]=%f",i,Y_rau[i]); 
} 
 
/**********************************************************************************************/ 

/*************COMPUTATION OF POINT ESTIMATORS 
UREGŶ  AND 

SREGŶ ***********/ 

/*********************************************************************************************/ 
 
for(int i=0;i<100;i++){ 
 top_x[i]=0; top_y[i]=0; 
 for(int j=0;j<400;j++){ 
    top_x[i]=top_x[i]+x_val[i][j]; 
      top_y[i]=top_y[i]+y_val[i][j]; 
   } 
   //printf("\ntop_x[%d]=%f",i,top_x[i]); 
   //printf("\ntop_y[%d]=%f",i,top_y[i]); 
 
} 
//printf("\ntop_x[0]=%f",top_x[0]); 
 
 



90 

 

 
Appendix -1   Continued 
 
//printf("\ntop_y[0]=%f",top_y[0]); 
for(int t=0;t<100;t++){ 
 yk_carp_xk_top[t]=0;xk_kare_top[t]=0; 
 for(int z=0;z<400;z++){ 
       yk_carp_xk_top[t]=yk_carp_xk_top[t]+y_val[t][z]*x_val[t][z]; 
       xk_kare_top[t]=xk_kare_top[t]+x_val[t][z]*x_val[t][z]; 
   } 
   //printf("\nyk_carp_xk_top[%d]=%f",t,yk_carp_xk_top[t]); 
   //printf("\nxk_kare_top[%d]=%f",t,xk_kare_top[t]); 
} 
//printf("\nyk_carp_xk_top[0]=%f",yk_carp_xk_top[0]); 
//printf("\nxk_kare_top[0]=%f",xk_kare_top[0]); 
for(int i=0;i<100;i++ ){ 
 Beta_sapka[i]=(yk_carp_xk_top[i]-top_x[i]*top_y[i]/M[i])/(xk_kare_top[i]-
top_x[i]*top_x[i]/M[i]); 
  //printf("\nBeta_sapka[%d]=%f",i,Beta_sapka[i]); 
 } 
 //printf("\nBeta_sapka[0]=%f",Beta_sapka[0]); 
 for(int j=0;j<100;j++){ 
  Y_regu[j]=850*(yr_ort[j]+(39-xr_ort[j])*Beta_sapka[j]); 
   //printf("\nYregu[%d]=%f",j,Y_regu[j]); 
 } 
 for(int i=0;i<100;i++){ 
  Y_regs[i]=400*(yr_ort[i]+(top_x[i]/M [i]-xr_ort[i])*Beta_sapka[i]); 
   //printf("\nornek_ort=%f",top_x[i]/M [i]) ; 
   //printf("\nYregs[%d]=%f",i,Y_regs[i]); 
 } 
 
/**********************************************************************************************/ 

/**********COMPUTATION OF POINT ESTIMATORS 
USEPRAŶ AND 

SSEPRAŶ ***********/ 

/*********************************************************************************************/ 
 
for(int i=0;i<100;i++){ 
 yrp1_ort[i]=0;yrp2_ort[i]=0;yrp3_ort[i]=0;yrp4_ort[i]=0; 
   xrp1_ort[i]=0;xrp2_ort[i]=0;xrp3_ort[i]=0;xrp4_ort[i]=0; 
 for(int j=0;j<400;j++){ 
    if(blg_val[i][j]==1){ 
         yrp1_ort[i]=yrp1_ort[i]+y_val[i][j]; 
         xrp1_ort[i]=xrp1_ort[i]+x_val[i][j]; 
      } 
      if(blg_val[i][j]==2){ 
         yrp2_ort[i]=yrp2_ort[i]+y_val[i][j]; 
         xrp2_ort[i]=xrp2_ort[i]+x_val[i][j]; 
      } 
      if(blg_val[i][j]==3){ 
         yrp3_ort[i]=yrp3_ort[i]+y_val[i][j]; 
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         xrp3_ort[i]=xrp3_ort[i]+x_val[i][j]; 
      } 
      if(blg_val[i][j]==4){ 
         yrp4_ort[i]=yrp4_ort[i]+y_val[i][j]; 
         xrp4_ort[i]=xrp4_ort[i]+x_val[i][j]; 
      } 
   } 
 
 yrp1_ort[i]=yrp1_ort[i]/float(m[i][0]);  xrp1_ort[i]=xrp1_ort[i]/float(m[i][0]); 
   yrp2_ort[i]=yrp2_ort[i]/float(m[i][1]);  xrp2_ort[i]=xrp2_ort[i]/float(m[i][0]); 
   yrp3_ort[i]=yrp3_ort[i]/float(m[i][2]);  xrp3_ort[i]=xrp3_ort[i]/float(m[i][0]); 
   yrp4_ort[i]=yrp4_ort[i]/float(m[i][3]);  xrp4_ort[i]=xrp4_ort[i]/float(m[i][0]); 
 
/* printf("\nyrp1_ort[%d]=%f",t,yrp1_ort[t]); 
printf("\nyrp2_ort[%d]=%f",t,yrp2_ort[t]); 
printf("\nyrp3_ort[%d]=%f",t,yrp3_ort[t]); 
printf("\nyrp4_ort[%d]=%f",t,yrp4_ort[t]);     */ 
 
/*printf("\nxrp1_ort[%d]=%f",i,xrp1_ort[i]); 
printf("\nxrp2_ort[%d]=%f",i,xrp2_ort[i]); 
printf("\nxrp3_ort[%d]=%f",i,xrp3_ort[i]); 
printf("\nxrp4_ort[%d]=%f",i,xrp4_ort[i]); 
}  */ 
} 
/*for(int t=0;t<25;t++){ 
 printf("\nxrp1_ort[%d]=%f",t,xrp1_ort[t]); 
printf("\nxrp2_ort[%d]=%f",t,xrp2_ort[t]); 
printf("\nxrp3_ort[%d]=%f",t,xrp3_ort[t]); 
printf("\nxrp4_ort[%d]=%f",t,xrp4_ort[t]); 
} */ 
 
 //printf("\nm[0][1]%d=",m[0][0]); 
 //printf("\nyrp1_ort[0]=%f",yrp1_ort[0]); 
 for(int i=0;i<100;i++){ 
 
 Y_seprau[i]=8848*yrp1_ort[i]/xrp1_ort[i]+7840*yrp2_ort[i]/xrp2_ort[i]+7841*yr
p3_ort[i]/xrp3_ort[i]+8269*yrp4_ort[i]/xrp4_ort[i]; 
   //printf("\nY_seprau[%d]=%f",i,Y_seprau[i]); 
 } 
 for(int j=0;j<100;j++){ 
 
 Y_sepras[j]=850/400*(x_blgorn_top[j][0]*yrp1_ort[j]/xrp1_ort[j]+x_blgorn_top[j
][1]*yrp2_ort[j]/xrp2_ort[j]+x_blgorn_top[j][2]*yrp3_ort[j]/xrp3_ort[j]+x_blgorn_top[j][3]
*yrp4_ort[j]/xrp4_ort[j]); 
  //printf("\nY_sepras[%d]=%f",j,Y_sepras[j]); 
 } 
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Appendix -1   Continued 
 
/**********************************************************************************************/ 

/*****************COMPUTATION OF POINT ESTIMATORS PSTŶ *********************/ 

/*********************************************************************************************/ 
 
for(int i=0;i<100;i++){ 
 y_pst[i]=229*yrp1_ort[i]+203*yrp2_ort[i]+202*yrp3_ort[i]+216*yrp4_ort[i]; 
   //printf("\ny_pst[%d]=%f",i,y_pst[i]); 
} 
/*printf("\nyrp1_ort[%d]=%f",0,yrp1_ort[0]); 
printf("\nyrp2_ort[%d]=%f",0,yrp2_ort[0]); 
printf("\nyrp3_ort[%d]=%f",0,yrp3_ort[0]); 
printf("\nyrp4_ort[%d]=%f",0,yrp4_ort[0]);     */ 
 
/**********************************************************************************************/ 

/*****************COMPUTATION OF POINT ESTIMATORS WCEŶ *********************/ 

/*********************************************************************************************/ 
 
for(int i=0;i<100;i++){ 
 Y_wce[i]=float(Np_sapka[i][0])*yrp1_ort[i]+float(Np_sapka[i][1])*yrp2_ort[i]+fl
oat(Np_sapka[i][2])*yrp3_ort[i]+float(Np_sapka[i][3])*yrp4_ort[i]; 
   //printf("\nY_wce[%d]=%f",i,Y_wce[i]); 
} 
/*printf("\nNp_sapka[0][0]=%d",Np_sapka[0][0]); 
printf("\nNp_sapka[0][1]=%d",Np_sapka[0][1]); 
printf("\nNp_sapka[0][2]=%d",Np_sapka[0][2]); 
printf("\nNp_sapka[0][3]=%d",Np_sapka[0][3]);         */ 
 
/**********************************************************************************************/ 

/*********COMPUTATION OF POINT ESTIMATORS 
USEPRREGŶ  AND 

SSEPREGŶ ********/ 

/********************************************************************************************/ 
 
for(int i=0;i<100;i++) { 
 cov1[i]=0;cov2[i]=0;cov3[i]=0;cov4[i]=0; 
   var1[i]=0; var2[i]=0; var3[i]=0; var4[i]=0; 
 for(int j=0;j<400;j++){ 
    if(blg_val[i][j]==1) { 
       if(x_val[i][j]!=0){ 
       cov1[i]=cov1[i]+(x_val[i][j]-xrp1_ort[i])*(y_val[i][j]-yrp1_ort[i]); 
         var1[i]=var1[i]+ (x_val[i][j]-xrp1_ort[i])*(x_val[i][j]-xrp1_ort[i]); 
         } 
      } 
      if(blg_val[i][j]==2) 
       if(x_val[i][j]!=0){ 
       cov2[i]=cov2[i]+(x_val[i][j]-xrp2_ort[i])*(y_val[i][j]-yrp2_ort[i]); 
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Appendix -1   Continued 
 
         var2[i]= var2[i]+(x_val[i][j]-xrp2_ort[i])*(x_val[i][j]-xrp2_ort[i]); 
         } 
      if(blg_val[i][j]==3) 
       if(x_val[i][j]!=0){ 
       cov3[i]=cov3[i]+(x_val[i][j]-xrp3_ort[i])*(y_val[i][j]-yrp3_ort[i]); 
         var3[i]=var3[i]+ (x_val[i][j]-xrp3_ort[i])*(x_val[i][j]-xrp3_ort[i]); 
         } 
      if(blg_val[i][j]==4) 
       if(x_val[i][j]!=0){ 
       cov4[i]=cov4[i]+(x_val[i][j]-xrp4_ort[i])*(y_val[i][j]-yrp4_ort[i]); 
         var4[i]=var4[i]+(x_val[i][j]-xrp4_ort[i])*(x_val[i][j]-xrp4_ort[i]); 
         } 
   } 
   cov1[i]=cov1[i]/(m[i][0]-1); var1[i]=var1[i]/(m[i][0]-1); 
   cov2[i]=cov2[i]/(m[i][1]-1); var2[i]=var2[i]/(m[i][1]-1); 
   cov3[i]=cov3[i]/(m[i][2]-1); var3[i]=var3[i]/(m[i][2]-1); 
   cov4[i]=cov4[i]/(m[i][3]-1); var4[i]=var4[i]/(m[i][3]-1); 
   /*printf("\ncov4[%d]=%f",i,cov4[i]); 
   printf("\nvar4[%d]=%f",i,var4[i]);*/ 
} 
 for(int n=0;n<100;n++){ 
  Beta_sapka1[n]=cov1[n]/var1[n]; 
   Beta_sapka2[n]=cov2[n]/var2[n]; 
   Beta_sapka3[n]=cov3[n]/var3[n]; 
   Beta_sapka4[n]=cov4[n]/var4[n]; 
   //printf("\nBeta_sapka4[%d]=%f",n,Beta_sapka4[n]); 
 } 
 
 for(int i=0;i<100;i++){ 
  Y_sepregu[i]=229*(yrp1_ort[i]+(39-
xrp1_ort[i])*Beta_sapka1[i])+203*(yrp2_ort[i]+(39-
xrp2_ort[i])*Beta_sapka2[i])+202*(yrp3_ort[i]+(39-
xrp3_ort[i])*Beta_sapka3[i])+216*(yrp4_ort[i]+(38-xrp4_ort[i])*Beta_sapka4[i]); 
 //printf("\nY_sepregu[%d]=%f",i,Y_sepregu[i]); 
 } 
 for(int i=0;i<100;i++){ 
  Y_sepregs[i]=Np_sapka[i][0]*(yrp1_ort[i]+(x_blgorn_top[i][0]/n[i][0]-
xrp1_ort[i])*Beta_sapka1[i])+Np_sapka[i][1]*(yrp2_ort[i]+(x_blgorn_top[i][1]/n[i][1]-
xrp2_ort[i])*Beta_sapka2[i])+ Np_sapka[i][2]*(yrp3_ort[i]+(x_blgorn_top[i][2]/n[i][2]-
xrp3_ort[i])*Beta_sapka3[i])+ Np_sapka[i][3]*(yrp4_ort[i]+(x_blgorn_top[i][3]/n[i][3]-
xrp4_ort[i])*Beta_sapka4[i]); 
    //printf("\nY_sepregs[%d]=%f",i,Y_sepregs[i]); 
 } 
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Appendix -1   Continued 
 
/**********************************************************************************************/ 
/******COMPUTATION OF SIMULATION RELATIVE BIAS AND SIMULATION******/ 

         VARIANCE FOR DIFFERENT POINT ESTIMATORS 
/**********************************************************************************************/ 
 
Esim_Y[0]=0; 
for(int i=0;i<100;i++) 
 Esim_Y[0]=Esim_Y[0]+Yexp[i]; 
Esim_Y[0]=Esim_Y[0]/100; 
printf("\nYexp_Esim=%f",Esim_Y[0]); 
Esim_Y[1]=0; 
for(int i=0;i<100;i++) 
 Esim_Y[1]=Esim_Y[1]+y_pst[i]; 
Esim_Y[1]=Esim_Y[1]/100; 
printf("\nYpst_Esim=%f",Esim_Y[1]); 
Esim_Y[2]=0; 
for(int i=0;i<100;i++) 
 Esim_Y[2]=Esim_Y[2]+Y_wce[i]; 
Esim_Y[2]=Esim_Y[2]/100; 
printf("\nYwce_Esim=%f",Esim_Y[2]); 
Esim_Y[3]=0; 
for(int i=0;i<100;i++) 
 Esim_Y[3]=Esim_Y[3]+Y_rau[i]; 
Esim_Y[3]=Esim_Y[3]/100; 
printf("\nYrau_Esim=%f",Esim_Y[3]); 
Esim_Y[4]=0; 
for(int i=0;i<100;i++) 
 Esim_Y[4]=Esim_Y[4]+Y_ras[i]; 
Esim_Y[4]=Esim_Y[4]/100; 
printf("\nYras_Esim=%f",Esim_Y[4]); 
 
Esim_Y[5]=0; 
for(int i=0;i<100;i++) 
 Esim_Y[5]=Esim_Y[5]+Y_regu[i]; 
Esim_Y[5]=Esim_Y[5]/100; 
printf("\nYregu_Esim=%f",Esim_Y[5]); 
Esim_Y[6]=0; 
for(int i=0;i<100;i++) 
 Esim_Y[6]=Esim_Y[6]+Y_regs[i]; 
Esim_Y[6]=Esim_Y[6]/100; 
printf("\nYregs_Esim=%f",Esim_Y[6]); 
Esim_Y[7]=0; 
for(int i=0;i<100;i++) 
 Esim_Y[7]=Esim_Y[7]+Y_seprau[i]; 
Esim_Y[7]=Esim_Y[7]/100; 
printf("\nYseprau_Esim=%f",Esim_Y[7]); 
Esim_Y[8]=0; 
for(int i=0;i<100;i++) 
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Appendix -1   Continued 
 
 Esim_Y[8]=Esim_Y[8]+Y_sepras[i]; 
Esim_Y[8]=Esim_Y[8]/100; 
printf("\nYsepras_Esim=%f",Esim_Y[8]); 
Esim_Y[9]=0; 
for(int i=0;i<100;i++) 
 Esim_Y[9]=Esim_Y[9]+Y_sepregu[i]; 
Esim_Y[9]=Esim_Y[9]/100; 
printf("\nYsepregu_Esim=%f",Esim_Y[9]); 
Esim_Y[10]=0; 
for(int i=0;i<100;i++) 
 Esim_Y[10]=Esim_Y[10]+Y_sepregs[i]; 
Esim_Y[10]=Esim_Y[10]/100; 
printf("\nYsepregs_Esim=%f",Esim_Y[10]); 
 
 
for(int i=0;i<11;i++){ 
 RBsim_Y[i]=0; 
 RBsim_Y[i]=100*(Esim_Y[i]-1282671)/1282671; 
} 
printf("\nYexp_RBsim=%f",RBsim_Y[0]); 
printf("\nYpst_RBsim=%f",RBsim_Y[1]); 
printf("\nYwce_RBsim=%f",RBsim_Y[2]); 
printf("\nYrau_RBsim=%f",RBsim_Y[3]); 
printf("\nYras_RBsim=%f",RBsim_Y[4]); 
printf("\nYregu_RBsim=%f",RBsim_Y[5]); 
printf("\nYregs_RBsim=%f",RBsim_Y[6]); 
printf("\nYseprau_RBsim=%f",RBsim_Y[7]); 
printf("\nYsepras_RBsim=%f",RBsim_Y[8]); 
printf("\nYsepregu_RBsim=%f",RBsim_Y[9]); 
printf("\nYsepregs_RBsim=%f",RBsim_Y[10]); 
 
VarSim_Y[0]=0; 
for(int i=0;i<100;i++) 
 VarSim_Y[0]=(VarSim_Y[0]+(Yexp[i]-Esim_Y[0])*(Yexp[i]-Esim_Y[0]))/99; 
printf("\nVarexp_sim=%f",VarSim_Y[0]); 
 
VarSim_Y[1]=0; 
for(int i=0;i<100;i++) 
 VarSim_Y[1]=(VarSim_Y[1]+(y_pst[i]-Esim_Y[1])*(y_pst[i]-Esim_Y[1]))/99; 
printf("\nVarpst_sim=%f",VarSim_Y[1]); 
 
VarSim_Y[2]=0; 
for(int i=0;i<100;i++) 
 VarSim_Y[2]=(VarSim_Y[2]+(Y_wce[i]-Esim_Y[2])*(Y_wce[i]-Esim_Y[2]))/99; 
printf("\nVarwce_sim=%f",VarSim_Y[2]); 
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Appendix -1   Continued 
 
VarSim_Y[3]=0; 
for(int i=0;i<100;i++) 
 VarSim_Y[3]=(VarSim_Y[3]+(Y_rau[i]-Esim_Y[3])*(Y_rau[i]-Esim_Y[3]))/99; 
printf("\nVarrau_sim=%f",VarSim_Y[3]); 
 
VarSim_Y[4]=0; 
for(int i=0;i<100;i++) 
 VarSim_Y[4]=(VarSim_Y[4]+(Y_ras[i]-Esim_Y[4])*(Y_ras[i]-Esim_Y[4]))/99; 
printf("\nVarras_sim=%f",VarSim_Y[4]); 
 
VarSim_Y[5]=0; 
for(int i=0;i<100;i++) 
 VarSim_Y[5]=(VarSim_Y[5]+(Y_regu[i]-Esim_Y[5])*(Y_regu[i]-
Esim_Y[5]))/99; 
printf("\nVarregu_sim=%f",VarSim_Y[5]); 
 
VarSim_Y[6]=0; 
for(int i=0;i<100;i++) 
 VarSim_Y[6]=(VarSim_Y[6]+(Y_regs[i]-Esim_Y[6])*(Y_regs[i]-Esim_Y[6]))/99; 
printf("\nVarregs_sim=%f",VarSim_Y[6]); 
 
VarSim_Y[7]=0; 
for(int i=0;i<100;i++)  
VarSim_Y[7]=(VarSim_Y[7]+(Y_seprau[i]-Esim_Y[7])*(Y_seprau[i]-Esim_Y[7]))/99; 
printf("\nVarseprau_sim=%f",VarSim_Y[7]); 
 
VarSim_Y[8]=0; 
for(int i=0;i<100;i++) 
 VarSim_Y[8]=(VarSim_Y[8]+(Y_sepras[i]-Esim_Y[8])*(Y_sepras[i]-
Esim_Y[8]))/99; 
printf("\nVarsepras_sim=%f",VarSim_Y[8]); 
 
VarSim_Y[9]=0; 
for(int i=0;i<100;i++) 
 VarSim_Y[9]=(VarSim_Y[9]+(Y_sepregu[i]-Esim_Y[9])*(Y_sepregu[i]-
Esim_Y[9]))/99; 
printf("\nVarsepregu_sim=%f",VarSim_Y[9]); 
 
VarSim_Y[10]=0; 
for(int i=0;i<100;i++) 
 VarSim_Y[10]=(VarSim_Y[10]+(Y_sepregs[i]-Esim_Y[10])*(Y_sepregs[i]-
Esim_Y[10]))/99; 
printf("\nVarsepregs_sim=%f",VarSim_Y[10]); 
 
/**********************************************************************************/ 
system("PAUSE"); 
} 
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Appendix-2 Results of Expansion Estimators obtained from simulation with 100 
samples for Info-S and Info-U. 
 
Y_EXP[0]=1284327.750000 
Y_EXP[1]=1295099.375000 
Y_EXP[2]=1310186.500000 
Y_EXP[3]=1276198.000000 
Y_EXP[4]=1282300.250000 
Y_EXP[5]=1275123.625000 
Y_EXP[6]=1278435.750000 
Y_EXP[7]=1274455.750000 
Y_EXP[8]=1298645.500000 
Y_EXP[9]=1281395.000000 
Y_EXP[10]=1295991.250000 
Y_EXP[11]=1274590.000000 
Y_EXP[12]=1298392.875000 
Y_EXP[13]=1278850.250000 
Y_EXP[14]=1281982.625000 
Y_EXP[15]=1292483.875000 
Y_EXP[16]=1299520.125000 
Y_EXP[17]=1302138.125000 
Y_EXP[18]=1271565.000000 
Y_EXP[19]=1298814.875000 
Y_EXP[20]=1251721.250000 
Y_EXP[21]=1274220.625000 
Y_EXP[22]=1289951.125000 
Y_EXP[23]=1293308.250000 
Y_EXP[24]=1286392.500000 
Y_EXP[25]=1277882.500000 
Y_EXP[26]=1278097.000000 
Y_EXP[27]=1278341.250000 
Y_EXP[28]=1285571.125000 
Y_EXP[29]=1287831.250000 
Y_EXP[30]=1282052.500000 
Y_EXP[31]=1299264.375000 
Y_EXP[32]=1265647.500000 
Y_EXP[33]=1291732.125000 
Y_EXP[34]=1280043.875000 
Y_EXP[35]=1287645.375000 
Y_EXP[36]=1280206.875000 
Y_EXP[37]=1293311.375000 
Y_EXP[38]=1292399.875000 
Y_EXP[39]=1285392.500000 
Y_EXP[40]=1281607.125000 
Y_EXP[41]=1280187.750000 
Y_EXP[42]=1285355.875000 
Y_EXP[43]=1273180.375000 
Y_EXP[44]=1290006.625000 
Y_EXP[45]=1283962.750000 
Y_EXP[46]=1273564.875000 
Y_EXP[47]=1276912.500000 
Y_EXP[48]=1270963.750000 
Y_EXP[49]=1292081.625000 

Y_EXP[50]=1287721.875000 
Y_EXP[51]=1279823.500000 
Y_EXP[52]=1289914.375000 
Y_EXP[53]=1286253.625000 
Y_EXP[54]=1316353.000000 
Y_EXP[55]=1277000.500000 
Y_EXP[56]=1283210.750000 
Y_EXP[57]=1286783.250000 
Y_EXP[58]=1270323.750000 
Y_EXP[59]=1282437.500000 
Y_EXP[60]=1290884.000000 
Y_EXP[61]=1274307.625000 
Y_EXP[62]=1287436.875000 
Y_EXP[63]=1279089.875000 
Y_EXP[64]=1281373.750000 
Y_EXP[65]=1286635.125000 
Y_EXP[66]=1317073.750000 
Y_EXP[67]=1286383.000000 
Y_EXP[68]=1263000.125000 
Y_EXP[69]=1291838.750000 
Y_EXP[70]=1271780.125000 
Y_EXP[71]=1296461.250000 
Y_EXP[72]=1282376.875000 
Y_EXP[73]=1275238.500000 
Y_EXP[74]=1260076.875000 
Y_EXP[75]=1293765.750000 
Y_EXP[76]=1281838.000000 
Y_EXP[77]=1282827.750000 
Y_EXP[78]=1286611.625000 
Y_EXP[79]=1278157.125000 
Y_EXP[80]=1294114.875000 
Y_EXP[81]=1291180.625000 
Y_EXP[82]=1293595.375000 
Y_EXP[83]=1276810.750000 
Y_EXP[84]=1271402.250000 
Y_EXP[85]=1281163.125000 
Y_EXP[86]=1262606.750000 
Y_EXP[87]=1290969.125000 
Y_EXP[88]=1287819.000000 
Y_EXP[89]=1269045.000000 
Y_EXP[90]=1287435.625000 
Y_EXP[91]=1285265.625000 
Y_EXP[92]=1279028.750000 
Y_EXP[93]=1276060.625000 
Y_EXP[94]=1274124.750000 
Y_EXP[95]=1271378.875000 
Y_EXP[96]=1290616.875000 
Y_EXP[97]=1293044.625000 
Y_EXP[98]=1294942.125000 
Y_EXP[99]=1280456.750000 
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Appendix -3 Results of Poststratified Estimators obtained from simulation with 
100 samples for Info-U. 
 
Y_PST[0]=1285282.125000 
Y_PST[1]=1295380.375000 
Y_PST[2]=1308894.125000 
Y_PST[3]=1276705.625000 
Y_PST[4]=1283470.000000 
Y_PST[5]=1275793.750000 
Y_PST[6]=1276496.875000 
Y_PST[7]=1272002.750000 
Y_PST[8]=1300646.500000 
Y_PST[9]=1281067.125000 
Y_PST[10]=1295356.375000 
Y_PST[11]=1272995.375000 
Y_PST[12]=1300639.500000 
Y_PST[13]=1278824.625000 
Y_PST[14]=1281641.125000 
Y_PST[15]=1293830.250000 
Y_PST[16]=1299637.375000 
Y_PST[17]=1297594.250000 
Y_PST[18]=1273351.000000 
Y_PST[19]=1298835.000000 
Y_PST[20]=1252246.750000 
Y_PST[21]=1273772.750000 
Y_PST[22]=1292573.000000 
Y_PST[23]=1294181.625000 
Y_PST[24]=1286726.875000 
Y_PST[25]=1278985.500000 
Y_PST[26]=1278776.500000 
Y_PST[27]=1279183.000000 
Y_PST[28]=1285616.875000 
Y_PST[29]=1288689.750000 
Y_PST[30]=1281577.875000 
Y_PST[31]=1299666.625000 
Y_PST[32]=1264983.875000 
Y_PST[33]=1289999.750000 
Y_PST[34]=1280260.625000 
Y_PST[35]=1289398.750000 
Y_PST[36]=1278340.500000 
Y_PST[37]=1294861.375000 
Y_PST[38]=1292408.250000 
Y_PST[39]=1285540.000000 
Y_PST[40]=1280964.500000 
Y_PST[41]=1278718.250000 
Y_PST[42]=1285232.625000 
Y_PST[43]=1273363.750000 
Y_PST[44]=1290360.000000 
Y_PST[45]=1284387.375000 
Y_PST[46]=1273011.750000 
Y_PST[47]=1276855.375000 
Y_PST[48]=1271823.125000 
Y_PST[49]=1291200.250000 
Y_PST[50]=1286118.375000 
Y_PST[51]=1279866.250000 
Y_PST[52]=1290183.000000 

 
Y_PST[53]=1285325.375000 
Y_PST[54]=1316973.750000 
Y_PST[55]=1277266.125000 
Y_PST[56]=1284031.625000 
Y_PST[57]=1286694.000000 
Y_PST[58]=1270533.000000 
Y_PST[59]=1283822.125000 
Y_PST[60]=1291086.500000 
Y_PST[61]=1274162.375000 
Y_PST[62]=1286774.750000 
Y_PST[63]=1276550.250000 
Y_PST[64]=1283448.000000 
Y_PST[65]=1286547.000000 
Y_PST[66]=1317161.375000 
Y_PST[67]=1286731.375000 
Y_PST[68]=1263710.250000 
Y_PST[69]=1291995.500000 
Y_PST[70]=1271461.875000 
Y_PST[71]=1296042.875000 
Y_PST[72]=1282148.750000 
Y_PST[73]=1276268.500000 
Y_PST[74]=1260300.875000 
Y_PST[75]=1292062.625000 
Y_PST[76]=1282199.375000 
Y_PST[77]=1284777.750000 
Y_PST[78]=1287113.000000 
Y_PST[79]=1278749.500000 
Y_PST[80]=1293365.750000 
Y_PST[81]=1290813.250000 
Y_PST[82]=1294025.250000 
Y_PST[83]=1276874.375000 
Y_PST[84]=1270815.000000 
Y_PST[85]=1281845.500000 
Y_PST[86]=1262791.125000 
Y_PST[87]=1291236.250000 
Y_PST[88]=1288219.625000 
Y_PST[89]=1267433.750000 
Y_PST[90]=1286969.375000 
Y_PST[91]=1284443.875000 
Y_PST[92]=1280572.000000 
Y_PST[93]=1274379.250000 
Y_PST[94]=1275169.500000 
Y_PST[95]=1274606.250000 
Y_PST[96]=1290238.750000 
Y_PST[97]=1291841.625000 
Y_PST[98]=1292623.000000 
Y_PST[99]=1280469.750000 
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Appendix - 4   Results of Weighting Class Estimators obtained from simulation 
with 100 samples for Info-S. 
  
Y_WCE[0]=1280919.875000 
Y_WCE[1]=1292065.875000 
Y_WCE[2]=1308944.500000 
Y_WCE[3]=1273277.500000 
Y_WCE[4]=1280425.875000 
Y_WCE[5]=1272173.375000 
Y_WCE[6]=1275219.125000 
Y_WCE[7]=1270866.875000 
Y_WCE[8]=1297613.625000 
Y_WCE[9]=1279148.125000 
Y_WCE[10]=1292878.000000 
Y_WCE[11]=1272338.000000 
Y_WCE[12]=1295206.000000 
Y_WCE[13]=1275743.375000 
Y_WCE[14]=1280422.875000 
Y_WCE[15]=1290024.375000 
Y_WCE[16]=1298353.125000 
Y_WCE[17]=1298005.500000 
Y_WCE[18]=1269429.500000 
Y_WCE[19]=1297215.375000 
Y_WCE[20]=1250342.500000 
Y_WCE[21]=1270946.000000 
Y_WCE[22]=1286875.750000 
Y_WCE[23]=1290534.375000 
Y_WCE[24]=1285257.000000 
Y_WCE[25]=1275674.250000 
Y_WCE[26]=1275019.125000 
Y_WCE[27]=1276299.625000 
Y_WCE[28]=1284183.375000 
Y_WCE[29]=1286249.750000 
Y_WCE[30]=1278942.875000 
Y_WCE[31]=1297537.875000 
Y_WCE[32]=1262675.875000 
Y_WCE[33]=1290075.750000 
Y_WCE[34]=1276930.875000 
Y_WCE[35]=1285429.000000 
Y_WCE[36]=1278852.000000 
Y_WCE[37]=1290432.125000 
Y_WCE[38]=1291121.875000 
Y_WCE[39]=1282492.625000 
Y_WCE[40]=1278340.000000 
Y_WCE[41]=1275363.875000 
Y_WCE[42]=1283332.625000 
Y_WCE[43]=1269778.750000 
Y_WCE[44]=1286850.125000 
Y_WCE[45]=1280674.500000 
Y_WCE[46]=1271771.125000 
Y_WCE[47]=1275656.125000 
Y_WCE[48]=1270069.625000 
Y_WCE[49]=1289141.750000 
Y_WCE[50]=1286036.000000 

Y_WCE[51]=1278193.375000 
Y_WCE[52]=1286408.000000 
Y_WCE[53]=1283451.125000 
Y_WCE[54]=1313807.000000 
Y_WCE[55]=1274347.125000 
Y_WCE[56]=1280537.625000 
Y_WCE[57]=1284076.875000 
Y_WCE[58]=1269467.625000 
Y_WCE[59]=1280087.125000 
Y_WCE[60]=1287743.125000 
Y_WCE[61]=1272637.000000 
Y_WCE[62]=1284091.875000 
Y_WCE[63]=1274470.375000 
Y_WCE[64]=1280763.250000 
Y_WCE[65]=1284825.000000 
Y_WCE[66]=1313801.625000 
Y_WCE[67]=1284593.000000 
Y_WCE[68]=1259877.875000 
Y_WCE[69]=1290479.375000 
Y_WCE[70]=1270166.125000 
Y_WCE[71]=1294759.250000 
Y_WCE[72]=1281017.250000 
Y_WCE[73]=1274852.500000 
Y_WCE[74]=1258184.000000 
Y_WCE[75]=1290329.750000 
Y_WCE[76]=1280415.125000 
Y_WCE[77]=1281845.000000 
Y_WCE[78]=1285340.250000 
Y_WCE[79]=1276365.125000 
Y_WCE[80]=1291541.125000 
Y_WCE[81]=1287517.875000 
Y_WCE[82]=1291963.375000 
Y_WCE[83]=1273811.000000 
Y_WCE[84]=1268508.375000 
Y_WCE[85]=1279205.000000 
Y_WCE[86]=1259797.125000 
Y_WCE[87]=1289414.875000 
Y_WCE[88]=1284627.625000 
Y_WCE[89]=1265406.250000 
Y_WCE[90]=1285493.125000 
Y_WCE[91]=1282817.000000 
Y_WCE[92]=1276194.500000 
Y_WCE[93]=1270986.125000 
Y_WCE[94]=1272588.750000 
Y_WCE[95]=1269135.875000 
Y_WCE[96]=1288954.125000 
Y_WCE[97]=1291162.875000 
Y_WCE[98]=1292810.250000 
Y_WCE[99]=1276166.250000 
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Appendix -5 Results of Ratio Estimators obtained from simulation with 100 
samples for Info-S. 
  
Y_RA[0]=467027.093750 
Y_RA[1]=529122.250000 
Y_RA[2]=529901.250000 
Y_RA[3]=521044.500000 
Y_RA[4]=510934.218750 
Y_RA[5]=506013.156250 
Y_RA[6]=510726.750000 
Y_RA[7]=520310.781250 
Y_RA[8]=531114.687500 
Y_RA[9]=522334.125000 
Y_RA[10]=518360.531250 
Y_RA[11]=515498.218750 
Y_RA[12]=509817.093750 
Y_RA[13]=513813.906250 
Y_RA[14]=516370.937500 
Y_RA[15]=520920.000000 
Y_RA[16]=535242.312500 
Y_RA[17]=514778.593750 
Y_RA[18]=518017.500000 
Y_RA[19]=535403.187500 
Y_RA[20]=494553.250000 
Y_RA[21]=512855.250000 
Y_RA[22]=534582.812500 
Y_RA[23]=493964.750000 
Y_RA[24]=509960.625000 
Y_RA[25]=522411.156250 
Y_RA[26]=521541.000000 
Y_RA[27]=512839.406250 
Y_RA[28]=519133.250000 
Y_RA[29]=528894.500000 
Y_RA[30]=517323.375000 
Y_RA[31]=516102.093750 
Y_RA[32]=505371.781250 
Y_RA[33]=506666.437500 
Y_RA[34]=510274.218750 
Y_RA[35]=512967.093750 
Y_RA[36]=524880.625000 
Y_RA[37]=522823.750000 
Y_RA[38]=520280.000000 
Y_RA[39]=522594.937500 
Y_RA[40]=511824.781250 
Y_RA[41]=516161.687500 
Y_RA[42]=516268.406250 
Y_RA[43]=507798.156250 
Y_RA[44]=520969.750000 
Y_RA[45]=516380.250000 
Y_RA[46]=514208.218750 
Y_RA[47]=521510.218750 
Y_RA[48]=518450.250000 
Y_RA[49]=515200.000000 

Y_RA[50]=509142.250000 
Y_RA[51]=509917.750000 
Y_RA[52]=514342.843750 
Y_RA[53]=512469.031250 
Y_RA[54]=517154.218750 
Y_RA[55]=504830.093750 
Y_RA[56]=520009.343750 
Y_RA[57]=509841.187500 
Y_RA[58]=495890.062500 
Y_RA[59]=507203.906250 
Y_RA[60]=503057.218750 
Y_RA[61]=519206.250000 
Y_RA[62]=527111.062500 
Y_RA[63]=497309.468750 
Y_RA[64]=517456.218750 
Y_RA[65]=515813.562500 
Y_RA[66]=523847.343750 
Y_RA[67]=515574.656250 
Y_RA[68]=501539.218750 
Y_RA[69]=537686.000000 
Y_RA[70]=503640.218750 
Y_RA[71]=508266.437500 
Y_RA[72]=507045.156250 
Y_RA[73]=508539.468750 
Y_RA[74]=508794.000000 
Y_RA[75]=519843.093750 
Y_RA[76]=517720.218750 
Y_RA[77]=507182.843750 
Y_RA[78]=520511.812500 
Y_RA[79]=525456.687500 
Y_RA[80]=515877.906250 
Y_RA[81]=511942.968750 
Y_RA[82]=516299.437500 
Y_RA[83]=504237.218750 
Y_RA[84]=503460.906250 
Y_RA[85]=523563.531250 
Y_RA[86]=509784.875000 
Y_RA[87]=531859.250000 
Y_RA[88]=530808.187500 
Y_RA[89]=517331.375000 
Y_RA[90]=524948.812500 
Y_RA[91]=515273.687500 
Y_RA[92]=512705.687500 
Y_RA[93]=509747.500000 
Y_RA[94]=512079.468750 
Y_RA[95]=484852.093750 
Y_RA[96]=519076.093750 
Y_RA[97]=535311.937500 
Y_RA[98]=519944.187500 
Y_RA[99]=514100.843750
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Appendix - 6 Results of Ratio Estimators obtained from simulation with 100 
samples for Info-U. 
 
Y_RA[0]=1302414.750000 
Y_RA[1]=1313627.625000 
Y_RA[2]=1329153.000000 
Y_RA[3]=1294652.000000 
Y_RA[4]=1300689.625000 
Y_RA[5]=1293789.500000 
Y_RA[6]=1297239.625000 
Y_RA[7]=1292927.000000 
Y_RA[8]=1317077.625000 
Y_RA[9]=1299827.125000 
Y_RA[10]=1314490.125000 
Y_RA[11]=1292927.000000 
Y_RA[12]=1317077.625000 
Y_RA[13]=1297239.625000 
Y_RA[14]=1300689.625000 
Y_RA[15]=1311040.000000 
Y_RA[16]=1317940.250000 
Y_RA[17]=1320527.750000 
Y_RA[18]=1289476.875000 
Y_RA[19]=1317940.250000 
Y_RA[20]=1269638.750000 
Y_RA[21]=1292927.000000 
Y_RA[22]=1308452.375000 
Y_RA[23]=1311902.500000 
Y_RA[24]=1305002.375000 
Y_RA[25]=1296377.000000 
Y_RA[26]=1296377.000000 
Y_RA[27]=1296377.000000 
Y_RA[28]=1304139.750000 
Y_RA[29]=1306727.375000 
Y_RA[30]=1300689.625000 
Y_RA[31]=1317940.250000 
Y_RA[32]=1283439.125000 
Y_RA[33]=1310177.500000 
Y_RA[34]=1298102.125000 
Y_RA[35]=1305864.875000 
Y_RA[36]=1298964.625000 
Y_RA[37]=1311902.500000 
Y_RA[38]=1311040.000000 
Y_RA[39]=1304139.750000 
Y_RA[40]=1299827.125000 
Y_RA[41]=1298964.625000 
Y_RA[42]=1304139.750000 
Y_RA[43]=1291201.875000 
Y_RA[44]=1308452.375000 
Y_RA[45]=1302414.750000 
Y_RA[46]=1292064.375000 
Y_RA[47]=1295514.500000 
Y_RA[48]=1289476.875000 
Y_RA[49]=1311040.000000 

Y_RA[50]=1305864.875000 
Y_RA[51]=1298102.125000 
Y_RA[52]=1308452.375000 
Y_RA[53]=1305002.375000 
Y_RA[54]=1335190.750000 
Y_RA[55]=1295514.500000 
Y_RA[56]=1301552.250000 
Y_RA[57]=1305002.375000 
Y_RA[58]=1288614.375000 
Y_RA[59]=1300689.625000 
Y_RA[60]=1309315.000000 
Y_RA[61]=1292927.000000 
Y_RA[62]=1305864.875000 
Y_RA[63]=1297239.625000 
Y_RA[64]=1299827.125000 
Y_RA[65]=1305002.375000 
Y_RA[66]=1336053.250000 
Y_RA[67]=1305002.375000 
Y_RA[68]=1280851.625000 
Y_RA[69]=1310177.500000 
Y_RA[70]=1290339.375000 
Y_RA[71]=1315352.625000 
Y_RA[72]=1300689.625000 
Y_RA[73]=1293789.500000 
Y_RA[74]=1278264.000000 
Y_RA[75]=1312765.000000 
Y_RA[76]=1300689.625000 
Y_RA[77]=1301552.250000 
Y_RA[78]=1305002.375000 
Y_RA[79]=1296377.000000 
Y_RA[80]=1312765.000000 
Y_RA[81]=1310177.500000 
Y_RA[82]=1311902.500000 
Y_RA[83]=1295514.500000 
Y_RA[84]=1289476.875000 
Y_RA[85]=1299827.125000 
Y_RA[86]=1280851.625000 
Y_RA[87]=1309315.000000 
Y_RA[88]=1306727.375000 
Y_RA[89]=1286889.250000 
Y_RA[90]=1341158.500000 
Y_RA[91]=1304139.750000 
Y_RA[92]=1297239.625000 
Y_RA[93]=1294652.000000 
Y_RA[94]=1292064.375000 
Y_RA[95]=1289476.875000 
Y_RA[96]=1309315.000000 
Y_RA[97]=1311902.500000 
Y_RA[98]=1313627.625000 
Y_RA[99]=1298964.625000 
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Appendix - 7 Results of Regression Estimators obtained from simulation with 
100 samples for Info-S. 
 
Y_REG[0]=604915.625000 
Y_REG[1]=608742.937500 
Y_REG[2]=615965.812500 
Y_REG[3]=601717.875000 
Y_REG[4]=601225.875000 
Y_REG[5]=600035.375000 
Y_REG[6]=599378.812500 
Y_REG[7]=598938.437500 
Y_REG[8]=609028.562500 
Y_REG[9]=602655.312500 
Y_REG[10]=610272.062500 
Y_REG[11]=599286.875000 
Y_REG[12]=611088.875000 
Y_REG[13]=603835.125000 
Y_REG[14]=603510.750000 
Y_REG[15]=607266.625000 
Y_REG[16]=611085.625000 
Y_REG[17]=612464.437500 
Y_REG[18]=597578.000000 
Y_REG[19]=606147.687500 
Y_REG[20]=587586.125000 
Y_REG[21]=600674.125000 
Y_REG[22]=604615.750000 
Y_REG[23]=609644.250000 
Y_REG[24]=605341.312500 
Y_REG[25]=600904.125000 
Y_REG[26]=601819.312500 
Y_REG[27]=599561.000000 
Y_REG[28]=603444.125000 
Y_REG[29]=606873.625000 
Y_REG[30]=603788.437500 
Y_REG[31]=610252.625000 
Y_REG[32]=595559.062500 
Y_REG[33]=607746.812500 
Y_REG[34]=602255.375000 
Y_REG[35]=604680.875000 
Y_REG[36]=600209.812500 
Y_REG[37]=607527.375000 
Y_REG[38]=607944.687500 
Y_REG[39]=603448.375000 
Y_REG[40]=603380.687500 
Y_REG[41]=602064.187500 
Y_REG[42]=603953.562500 
Y_REG[43]=598390.937500 
Y_REG[44]=605903.687500 
Y_REG[45]=604125.875000 
Y_REG[46]=598289.750000 
Y_REG[47]=598549.375000 
Y_REG[48]=598490.375000 
Y_REG[49]=608219.500000 

Y_REG[50]=606395.875000 
Y_REG[51]=603176.312500 
Y_REG[52]=606126.625000 
Y_REG[53]=606217.312500 
Y_REG[54]=619692.125000 
Y_REG[55]=600690.875000 
Y_REG[56]=605977.875000 
Y_REG[57]=605184.937500 
Y_REG[58]=597341.375000 
Y_REG[59]=600821.812500 
Y_REG[60]=607528.375000 
Y_REG[61]=599984.187500 
Y_REG[62]=605210.375000 
Y_REG[63]=601756.687500 
Y_REG[64]=603806.125000 
Y_REG[65]=605213.625000 
Y_REG[66]=620825.812500 
Y_REG[67]=606013.500000 
Y_REG[68]=595283.250000 
Y_REG[69]=605817.812500 
Y_REG[70]=598782.000000 
Y_REG[71]=608899.000000 
Y_REG[72]=602742.250000 
Y_REG[73]=599514.937500 
Y_REG[74]=594732.125000 
Y_REG[75]=609195.562500 
Y_REG[76]=603143.812500 
Y_REG[77]=603098.187500 
Y_REG[78]=605067.562500 
Y_REG[79]=600547.687500 
Y_REG[80]=608344.125000 
Y_REG[81]=608598.062500 
Y_REG[82]=609726.250000 
Y_REG[83]=602660.125000 
Y_REG[84]=597728.625000 
Y_REG[85]=603003.375000 
Y_REG[86]=595255.687500 
Y_REG[87]=609272.625000 
Y_REG[88]=605380.437500 
Y_REG[89]=598538.062500 
Y_REG[90]=608121.375000 
Y_REG[91]=605227.062500 
Y_REG[92]=601901.312500 
Y_REG[93]=601655.875000 
Y_REG[94]=602637.437500 
Y_REG[95]=598466.687500 
Y_REG[96]=607295.500000 
Y_REG[97]=608570.500000 
Y_REG[98]=609846.250000 
Y_REG[99]=604842.875000 
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Appendix -8 Results of Regression Estimators obtained from simulation with 
100 samples for Info-U. 
 
Y_REG[0]=1287140.750000 
Y_REG[1]=1290908.000000 
Y_REG[2]=1306963.375000 
Y_REG[3]=1280761.500000 
Y_REG[4]=1275479.000000 
Y_REG[5]=1276948.875000 
Y_REG[6]=1272113.000000 
Y_REG[7]=1271671.625000 
Y_REG[8]=1292993.875000 
Y_REG[9]=1280533.500000 
Y_REG[10]=1297853.500000 
Y_REG[11]=1272621.375000 
Y_REG[12]=1300820.250000 
Y_REG[13]=1285857.500000 
Y_REG[14]=1282584.500000 
Y_REG[15]=1288253.000000 
Y_REG[16]=1298125.500000 
Y_REG[17]=1301540.625000 
Y_REG[18]=1269515.625000 
Y_REG[19]=1285695.000000 
Y_REG[20]=1246682.500000 
Y_REG[21]=1278094.625000 
Y_REG[22]=1282841.125000 
Y_REG[23]=1296701.375000 
Y_REG[24]=1287339.875000 
Y_REG[25]=1276807.750000 
Y_REG[26]=1283524.000000 
Y_REG[27]=1273832.625000 
Y_REG[28]=1279280.375000 
Y_REG[29]=1291855.500000 
Y_REG[30]=1285465.000000 
Y_REG[31]=1292377.250000 
Y_REG[32]=1265990.875000 
Y_REG[33]=1291912.750000 
Y_REG[34]=1280035.750000 
Y_REG[35]=1283957.000000 
Y_REG[36]=1273681.875000 
Y_REG[37]=1289357.625000 
Y_REG[38]=1291756.250000 
Y_REG[39]=1280636.625000 
Y_REG[40]=1283298.750000 
Y_REG[41]=1278396.500000 
Y_REG[42]=1280559.250000 
Y_REG[43]=1270983.625000 
Y_REG[44]=1285606.625000 
Y_REG[45]=1284098.750000 
Y_REG[46]=1270561.125000 
Y_REG[47]=1270765.500000 
Y_REG[48]=1272708.000000 
Y_REG[49]=1292687.250000 
 

Y_REG[50]=1290344.750000 
Y_REG[51]=1282454.250000 
Y_REG[52]=1286337.375000 
Y_REG[53]=1290083.750000 
Y_REG[54]=1320194.750000 
Y_REG[55]=1276304.375000 
Y_REG[56]=1289454.500000 
Y_REG[57]=1285906.875000 
Y_REG[58]=1264702.250000 
Y_REG[59]=1271631.500000 
Y_REG[60]=1291409.625000 
Y_REG[61]=1279566.750000 
Y_REG[62]=1285689.875000 
Y_REG[63]=1280138.625000 
Y_REG[64]=1285316.000000 
Y_REG[65]=1286115.500000 
Y_REG[66]=1323861.875000 
Y_REG[67]=1290123.875000 
Y_REG[68]=1266403.000000 
Y_REG[69]=1285344.125000 
Y_REG[70]=1275916.500000 
Y_REG[71]=1290073.500000 
Y_REG[72]=1279166.500000 
Y_REG[73]=1272743.000000 
Y_REG[74]=1264662.250000 
Y_REG[75]=1295038.500000 
Y_REG[76]=1281655.625000 
Y_REG[77]=1281133.125000 
Y_REG[78]=1285550.625000 
Y_REG[79]=1275655.750000 
Y_REG[80]=1291979.125000 
Y_REG[81]=1295766.125000 
Y_REG[82]=1296680.625000 
Y_REG[83]=1282711.125000 
Y_REG[84]=1269878.500000 
Y_REG[85]=1281832.375000 
Y_REG[86]=1265486.750000 
Y_REG[87]=1295695.250000 
Y_REG[88]=1285523.375000 
Y_REG[89]=1273977.125000 
Y_REG[90]=1298113.500000 
Y_REG[91]=1287323.625000 
Y_REG[92]=1280367.375000 
Y_REG[93]=1280958.875000 
Y_REG[94]=1284355.500000 
Y_REG[95]=1272316.125000 
Y_REG[96]=1290757.375000 
Y_REG[97]=1293323.500000 
Y_REG[98]=1296800.750000 
Y_REG[99]=1288650.000000 
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Appendix - 9   Results of Separate Ratio Estimators obtained from simulation 
with 100 samples for Info-S. 

Y_SEPRA[0]=919132.062500 
Y_SERA[1]=1145824.625000 
Y_SEPRA[2]=1145872.625000 
Y_SEPRA[3]=996888.500000 
Y_SEPRA[4]=953533.937500 
Y_SEPRA[5]=1044577.750000 
Y_SEPRA[6]=1166152.750000 
Y_SEPRA[7]=970231.625000 
Y_SEPRA[8]=1063561.875000 
Y_SEPRA[9]=1144441.375000 
Y_SEPRA[10]=1218851.125000 
Y_SEPRA[11]=1077537.375000 
Y_SEPRA[12]=941753.375000 
Y_SEPRA[13]=1081902.250000 
Y_SEPRA[14]=1145788.375000 
Y_SEPRA[15]=961803.625000 
Y_SEPRA[16]=990727.187500 
Y_SEPRA[17]=1135999.625000 
Y_SEPRA[18]=1041721.500000 
Y_SEPRA[19]=1308258.750000 
Y_SEPRA[20]=1013878.375000 
Y_SEPRA[21]=1055638.500000 
Y_SEPRA[22]=1154879.250000 
Y_SEPRA[23]=974639.312500 
Y_SEPRA[24]=1054279.500000 
Y_SEPRA[25]=1060668.000000 
Y_SEPRA[26]=1130435.625000 
Y_SEPRA[27]=1181429.250000 
Y_SEPRA[28]=1089103.875000 
Y_SEPRA[29]=1080980.625000 
Y_SEPRA[30]=1097615.250000 
Y_SEPRA[31]=1137526.125000 
Y_SEPRA[32]=1142105.625000 
Y_SEPRA[33]=995865.000000 
Y_SEPRA[34]=1096791.750000 
Y_SEPRA[35]=994219.312500 
Y_SEPRA[36]=987482.000000 
Y_SEPRA[37]=1194929.250000 
Y_SEPRA[38]=1107384.125000 
Y_SEPRA[39]=1113074.875000 
Y_SEPRA[40]=1146085.250000 
Y_SEPRA[41]=939289.875000 
Y_SEPRA[42]=1077373.125000 
Y_SEPRA[43]=862808.937500 
Y_SEPRA[44]=1153920.000000 
Y_SEPRA[45]=1123376.625000 
Y_SEPRA[46]=1066140.125000 
Y_SEPRA[47]=1153695.375000 
Y_SEPRA[48]=1005824.437500 
Y_SEPRA[49]=1094939.000000 
 

Y_SEPRA[50]=859902.687500 
Y_SEPRA[51]=1059886.625000 
Y_SEPRA[52]=1129426.250000 
Y_SEPRA[53]=980046.625000 
Y_SEPRA[54]=1028151.562500 
Y_SEPRA[55]=1058291.375000 
Y_SEPRA[56]=1124413.750000 
Y_SEPRA[57]=1029781.812500 
Y_SEPRA[58]=969211.500000 
Y_SEPRA[59]=1002502.687500 
Y_SEPRA[60]=1142661.625000 
Y_SEPRA[61]=1116331.375000 
Y_SEPRA[62]=1150607.500000 
Y_SEPRA[63]=1045792.875000 
Y_SEPRA[64]=905149.875000 
Y_SEPRA[65]=1162456.500000 
Y_SEPRA[66]=1054394.500000 
Y_SEPRA[67]=1053945.500000 
Y_SEPRA[68]=1021565.125000 
Y_SEPRA[69]=1094684.875000 
Y_SEPRA[70]=1113118.875000 
Y_SEPRA[71]=1060901.125000 
Y_SEPRA[72]=1121834.750000 
Y_SEPRA[73]=1057242.750000 
Y_SEPRA[74]=1079877.500000 
Y_SEPRA[75]=1155529.375000 
Y_SEPRA[76]=1085787.250000 
Y_SEPRA[77]=1039942.562500 
Y_SEPRA[78]=1090312.125000 
Y_SEPRA[79]=926522.437500 
Y_SEPRA[80]=1083481.000000 
Y_SEPRA[81]=1105992.500000 
Y_SEPRA[82]=1022969.875000 
Y_SEPRA[83]=1045913.187500 
Y_SEPRA[84]=1087951.125000 
Y_SEPRA[85]=1111041.750000 
Y_SEPRA[86]=1105451.125000 
Y_SEPRA[87]=1141787.875000 
Y_SEPRA[88]=1175201.250000 
Y_SEPRA[89]=1122505.875000 
Y_SEPRA[90]=1114776.375000 
Y_SEPRA[91]=1003138.750000 
Y_SEPRA[92]=1109681.000000 
Y_SEPRA[93]=1222443.500000 
Y_SEPRA[94]=1237152.500000 
Y_SEPRA[95]=1163511.250000 
Y_SEPRA[96]=1153306.250000 
Y_SEPRA[97]=973217.312500 
Y_SEPRA[98]=1166485.625000 
Y_SEPRA[99]=1156250.875000 
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Appendix -10   Results of Separate Ratio Estimators obtained from simulation 
with 100 samples for Info-U. 

 
 
Y_SEPRA[0]=1291402.250000 
Y_SEPRA[1]=1431480.500000 
Y_SEPRA[2]=1450631.250000 
Y_SEPRA[3]=1244453.125000 
Y_SEPRA[4]=1221974.125000 
Y_SEPRA[5]=1348050.000000 
Y_SEPRA[6]=1491954.875000 
Y_SEPRA[7]=1218010.875000 
Y_SEPRA[8]=1329875.000000 
Y_SEPRA[9]=1428379.125000 
Y_SEPRA[10]=1560745.625000 
Y_SEPRA[11]=1355271.875000 
Y_SEPRA[12]=1224069.125000 
Y_SEPRA[13]=1369785.750000 
Y_SEPRA[14]=1451465.125000 
Y_SEPRA[15]=1218064.250000 
Y_SEPRA[16]=1224471.000000 
Y_SEPRA[17]=1479914.625000 
Y_SEPRA[18]=1316507.250000 
Y_SEPRA[19]=1641930.125000 
Y_SEPRA[20]=1305016.375000 
Y_SEPRA[21]=1332992.750000 
Y_SEPRA[22]=1424380.125000 
Y_SEPRA[23]=1301852.875000 
Y_SEPRA[24]=1367281.625000 
Y_SEPRA[25]=1326909.625000 
Y_SEPRA[26]=1414269.500000 
Y_SEPRA[27]=1512895.625000 
Y_SEPRA[28]=1368901.000000 
Y_SEPRA[29]=1353763.250000 
Y_SEPRA[30]=1395902.125000 
Y_SEPRA[31]=1459441.250000 
Y_SEPRA[32]=1453847.875000 
Y_SEPRA[33]=1290113.625000 
Y_SEPRA[34]=1399497.375000 
Y_SEPRA[35]=1271777.500000 
Y_SEPRA[36]=1223277.125000 
Y_SEPRA[37]=1509981.625000 
Y_SEPRA[38]=1397161.500000 
Y_SEPRA[39]=1389904.500000 
Y_SEPRA[40]=1461701.875000 
Y_SEPRA[41]=1187886.750000 
Y_SEPRA[42]=1362339.125000 
Y_SEPRA[43]=1111506.875000 
Y_SEPRA[44]=1452315.250000 
Y_SEPRA[45]=1436661.875000 
Y_SEPRA[46]=1346948.250000 
Y_SEPRA[47]=1439256.250000 
Y_SEPRA[48]=1255100.375000 
Y_SEPRA[49]=1399505.375000 
 
 
 
 

 
Y_SEPRA[50]=1114371.250000 
Y_SEPRA[51]=1353352.125000 
Y_SEPRA[52]=1438997.750000 
Y_SEPRA[53]=1250265.625000 
Y_SEPRA[54]=1360038.750000 
Y_SEPRA[55]=1359042.750000 
Y_SEPRA[56]=1410793.000000 
Y_SEPRA[57]=1318180.125000 
Y_SEPRA[58]=1272174.625000 
Y_SEPRA[59]=1291842.375000 
Y_SEPRA[60]=1501500.000000 
Y_SEPRA[61]=1396735.750000 
Y_SEPRA[62]=1442108.000000 
Y_SEPRA[63]=1373191.125000 
Y_SEPRA[64]=1149966.875000 
Y_SEPRA[65]=1484028.875000 
Y_SEPRA[66]=1353351.125000 
Y_SEPRA[67]=1337278.375000 
Y_SEPRA[68]=1306645.000000 
Y_SEPRA[69]=1336384.125000 
Y_SEPRA[70]=1448260.125000 
Y_SEPRA[71]=1386455.375000 
Y_SEPRA[72]=1444225.875000 
Y_SEPRA[73]=1348186.875000 
Y_SEPRA[74]=1360850.000000 
Y_SEPRA[75]=1479798.500000 
Y_SEPRA[76]=1365814.750000 
Y_SEPRA[77]=1347277.250000 
Y_SEPRA[78]=1368519.250000 
Y_SEPRA[79]=1153192.250000 
Y_SEPRA[80]=1386790.750000 
Y_SEPRA[81]=1417140.000000 
Y_SEPRA[82]=1304173.375000 
Y_SEPRA[83]=1345360.375000 
Y_SEPRA[84]=1416332.500000 
Y_SEPRA[85]=1389686.875000 
Y_SEPRA[86]=1399191.375000 
Y_SEPRA[87]=1409582.000000 
Y_SEPRA[88]=1452041.375000 
Y_SEPRA[89]=1409501.625000 
Y_SEPRA[90]=1425643.000000 
Y_SEPRA[91]=1274009.500000 
Y_SEPRA[92]=1431877.250000 
Y_SEPRA[93]=1570395.375000 
Y_SEPRA[94]=1578299.500000 
Y_SEPRA[95]=1582006.750000 
Y_SEPRA[96]=1459656.125000 
Y_SEPRA[97]=1198489.000000 
Y_SEPRA[98]=1480787.000000 
Y_SEPRA[99]=1466307.250000 
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Appendix -11   Results of Separate Regression Estimators obtained from 
simulation with 100 samples for Info-S. 

 
 
Y_SEPREG[0]=1235690.000000 
Y_SEPREG[1]=1303312.125000 
Y_SEPREG[2]=1314335.500000 
Y_SEPREG[3]=1247055.875000 
Y_SEPREG[4]=1313392.750000 
Y_SEPREG[5]=1236245.625000 
Y_SEPREG[6]=1308602.125000 
Y_SEPREG[7]=1281673.750000 
Y_SEPREG[8]=1295049.250000 
Y_SEPREG[9]=1269113.500000 
Y_SEPREG[10]=1288677.750000 
Y_SEPREG[11]=1268032.125000 
Y_SEPREG[12]=1289066.625000 
Y_SEPREG[13]=1258002.125000 
Y_SEPREG[14]=1296432.500000 
Y_SEPREG[15]=1307618.125000 
Y_SEPREG[16]=1301829.250000 
Y_SEPREG[17]=1296793.500000 
Y_SEPREG[18]=1267847.500000 
Y_SEPREG[19]=1285146.875000 
Y_SEPREG[20]=1292321.250000 
Y_SEPREG[21]=1259808.250000 
Y_SEPREG[22]=1296853.250000 
Y_SEPREG[23]=1282830.500000 
Y_SEPREG[24]=1274724.125000 
Y_SEPREG[25]=1272473.875000 
Y_SEPREG[26]=1259651.250000 
Y_SEPREG[27]=1294463.625000 
Y_SEPREG[28]=1303880.250000 
Y_SEPREG[29]=1268915.375000 
Y_SEPREG[30]=1268206.875000 
Y_SEPREG[31]=1308697.375000 
Y_SEPREG[32]=1248191.250000 
Y_SEPREG[33]=1276570.125000 
Y_SEPREG[34]=1275039.500000 
Y_SEPREG[35]=1332085.250000 
Y_SEPREG[36]=1317025.375000 
Y_SEPREG[37]=1289021.000000 
Y_SEPREG[38]=1293345.250000 
Y_SEPREG[39]=1286184.000000 
Y_SEPREG[40]=1280788.250000 
Y_SEPREG[41]=1274345.375000 
Y_SEPREG[42]=1308062.000000 
Y_SEPREG[43]=1269789.000000 
Y_SEPREG[44]=1286842.375000 
Y_SEPREG[45]=1278294.000000 
Y_SEPREG[46]=1268805.500000 
Y_SEPREG[47]=1278315.500000 
Y_SEPREG[48]=1264402.125000 
Y_SEPREG[49]=1291236.375000 

Y_SEPREG[50]=1267340.500000 
Y_SEPREG[51]=1266215.250000 
Y_SEPREG[52]=1316758.000000 
Y_SEPREG[53]=1264796.500000 
Y_SEPREG[54]=1292180.625000 
Y_SEPREG[55]=1278086.000000 
Y_SEPREG[56]=1273513.750000 
Y_SEPREG[57]=1286910.750000 
Y_SEPREG[58]=1294385.375000 
Y_SEPREG[59]=1337283.625000 
Y_SEPREG[60]=1313582.375000 
Y_SEPREG[61]=1254554.875000 
Y_SEPREG[62]=1275445.125000 
Y_SEPREG[63]=1262179.625000 
Y_SEPREG[64]=1258793.500000 
Y_SEPREG[65]=1286349.375000 
Y_SEPREG[66]=1288612.500000 
Y_SEPREG[67]=1262284.500000 
Y_SEPREG[68]=1244802.625000 
Y_SEPREG[69]=1306006.375000 
Y_SEPREG[70]=1262316.375000 
Y_SEPREG[71]=1322208.625000 
Y_SEPREG[72]=1280708.500000 
Y_SEPREG[73]=1284186.875000 
Y_SEPREG[74]=1255200.750000 
Y_SEPREG[75]=1272657.250000 
Y_SEPREG[76]=1285434.875000 
Y_SEPREG[77]=1287111.875000 
Y_SEPREG[78]=1280081.250000 
Y_SEPREG[79]=1282801.500000 
Y_SEPREG[80]=1302772.500000 
Y_SEPREG[81]=1272063.375000 
Y_SEPREG[82]=1264942.000000 
Y_SEPREG[83]=1251992.875000 
Y_SEPREG[84]=1244176.125000 
Y_SEPREG[85]=1280653.375000 
Y_SEPREG[86]=1253156.375000 
Y_SEPREG[87]=1290925.500000 
Y_SEPREG[88]=1313680.375000 
Y_SEPREG[89]=1236510.500000 
Y_SEPREG[90]=1270459.750000 
Y_SEPREG[91]=1268002.000000 
Y_SEPREG[92]=1272565.000000 
Y_SEPREG[93]=1256452.000000 
Y_SEPREG[94]=1246662.875000 
Y_SEPREG[95]=1264149.625000 
Y_SEPREG[96]=1284374.500000 
Y_SEPREG[97]=1277157.875000 
Y_SEPREG[98]=1275761.250000 
Y_SEPREG[99]=1265816.750000 
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Appendix - 12   Results of Separate Regression Estimators obtained from 
simulation with 100 samples for Info-U. 
 
 
Y_SEPREG[0]=1274673.500000 
Y_SEPREG[1]=1289335.875000 
Y_SEPREG[2]=1305351.000000 
Y_SEPREG[3]=1276190.250000 
Y_SEPREG[4]=1286484.500000 
Y_SEPREG[5]=1269585.250000 
Y_SEPREG[6]=1271853.375000 
Y_SEPREG[7]=1269989.750000 
Y_SEPREG[8]=1296678.125000 
Y_SEPREG[9]=1278449.250000 
Y_SEPREG[10]=1297747.125000 
Y_SEPREG[11]=1270148.250000 
Y_SEPREG[12]=1291605.375000 
Y_SEPREG[13]=1289537.500000 
Y_SEPREG[14]=1289134.125000 
Y_SEPREG[15]=1300001.875000 
Y_SEPREG[16]=1299859.875000 
Y_SEPREG[17]=1295882.000000 
Y_SEPREG[18]=1272502.000000 
Y_SEPREG[19]=1293795.000000 
Y_SEPREG[20]=1258480.750000 
Y_SEPREG[21]=1278293.875000 
Y_SEPREG[22]=1286990.500000 
Y_SEPREG[23]=1298361.875000 
Y_SEPREG[24]=1287499.750000 
Y_SEPREG[25]=1277741.375000 
Y_SEPREG[26]=1288129.000000 
Y_SEPREG[27]=1281379.625000 
Y_SEPREG[28]=1276901.375000 
Y_SEPREG[29]=1285983.750000 
Y_SEPREG[30]=1290811.750000 
Y_SEPREG[31]=1294980.000000 
Y_SEPREG[32]=1266003.500000 
Y_SEPREG[33]=1293341.250000 
Y_SEPREG[34]=1281716.500000 
Y_SEPREG[35]=1296605.375000 
Y_SEPREG[36]=1286708.000000 
Y_SEPREG[37]=1286724.500000 
Y_SEPREG[38]=1293243.500000 
Y_SEPREG[39]=1276796.250000 
Y_SEPREG[40]=1285399.625000 
Y_SEPREG[41]=1283856.375000 
Y_SEPREG[42]=1283253.875000 
Y_SEPREG[43]=1280589.000000 
Y_SEPREG[44]=1282505.375000 
Y_SEPREG[45]=1286013.750000 
Y_SEPREG[46]=1265075.500000 
Y_SEPREG[47]=1263668.125000 
Y_SEPREG[48]=1273088.375000 
Y_SEPREG[49]=1292210.875000 
 

 
Y_SEPREG[50]=1283720.875000 
Y_SEPREG[51]=1283118.875000 
Y_SEPREG[52]=1288199.750000 
Y_SEPREG[53]=1280552.875000 
Y_SEPREG[54]=1315632.625000 
Y_SEPREG[55]=1275255.625000 
Y_SEPREG[56]=1298603.375000 
Y_SEPREG[57]=1284934.250000 
Y_SEPREG[58]=1271084.750000 
Y_SEPREG[59]=1281321.000000 
Y_SEPREG[60]=1296672.250000 
Y_SEPREG[61]=1279927.125000 
Y_SEPREG[62]=1281569.875000 
Y_SEPREG[63]=1274452.750000 
Y_SEPREG[64]=1278867.875000 
Y_SEPREG[65]=1285376.000000 
Y_SEPREG[66]=1320853.125000 
Y_SEPREG[67]=1290925.000000 
Y_SEPREG[68]=1274669.500000 
Y_SEPREG[69]=1283176.500000 
Y_SEPREG[70]=1269636.500000 
Y_SEPREG[71]=1288213.625000 
Y_SEPREG[72]=1275851.375000 
Y_SEPREG[73]=1269952.125000 
Y_SEPREG[74]=1267190.375000 
Y_SEPREG[75]=1290852.375000 
Y_SEPREG[76]=1283985.000000 
Y_SEPREG[77]=1282517.000000 
Y_SEPREG[78]=1285245.375000 
Y_SEPREG[79]=1279894.125000 
Y_SEPREG[80]=1292141.375000 
Y_SEPREG[81]=1295685.500000 
Y_SEPREG[82]=1285116.000000 
Y_SEPREG[83]=1284968.875000 
Y_SEPREG[84]=1260604.000000 
Y_SEPREG[85]=1287823.250000 
Y_SEPREG[86]=1267576.125000 
Y_SEPREG[87]=1305098.125000 
Y_SEPREG[88]=1293131.000000 
Y_SEPREG[89]=1272392.500000 
Y_SEPREG[90]=1297979.375000 
Y_SEPREG[91]=1280844.250000 
Y_SEPREG[92]=1287412.625000 
Y_SEPREG[93]=1278142.500000 
Y_SEPREG[94]=1282494.625000 
Y_SEPREG[95]=1276088.625000 
Y_SEPREG[96]=1290801.500000 
Y_SEPREG[97]=1294795.375000 
Y_SEPREG[98]=1296287.625000 
Y_SEPREG[99]=1292287.250000 
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Appendix-13 Sampling sizes for four groups obtained for 100 samples.
  
n[0][1]=97 
n[0][2]=102 
n[0][3]=93 
n[0][4]=108 
n[1][1]=107 
n[1][2]=93 
n[1][3]=105 
n[1][4]=95 
n[2][1]=105 
n[2][2]=99 
n[2][3]=113 
n[2][4]=83 
n[3][1]=96 
n[3][2]=109 
n[3][3]=102 
n[3][4]=93 
n[4][1]=104 
n[4][2]=102 
n[4][3]=91 
n[4][4]=103 
n[5][1]=99 
n[5][2]=110 
n[5][3]=104 
n[5][4]=87 
n[6][1]=119 
n[6][2]=90 
n[6][3]=104 
n[6][4]=87 
n[7][1]=92 
n[7][2]=107 
n[7][3]=106 
n[7][4]=95 
n[8][1]=110 
n[8][2]=95 
n[8][3]=104 
n[8][4]=91 
n[9][1]=116 
n[9][2]=93 
n[9][3]=89 
n[9][4]=102 
n[10][1]=112 
n[10][2]=95 
n[10][3]=90 
n[10][4]=103 
n[11][1]=106 
n[11][2]=97 
n[11][3]=90 
n[11][4]=107 
n[12][1]=93 
n[12][2]=109 
n[12][3]=97 
n[12][4]=101 
n[13][1]=107 
n[13][2]=101 
n[13][3]=91 
n[13][4]=101 

n[14][1]=106 
n[14][2]=101 
n[14][3]=89 
n[14][4]=104 
n[15][1]=99 
n[15][2]=96 
n[15][3]=103 
n[15][4]=102 
n[16][1]=97 
n[16][2]=96 
n[16][3]=103 
n[16][4]=104 
n[17][1]=107 
n[17][2]=109 
n[17][3]=99 
n[17][4]=85 
n[18][1]=106 
n[18][2]=110 
n[18][3]=83 
n[18][4]=101 
n[19][1]=121 
n[19][2]=88 
n[19][3]=104 
n[19][4]=87 
n[20][1]=104 
n[20][2]=98 
n[20][3]=91 
n[20][4]=107 
n[21][1]=107 
n[21][2]=102 
n[21][3]=92 
n[21][4]=99 
n[22][1]=107 
n[22][2]=102 
n[22][3]=101 
n[22][4]=90 
n[23][1]=101 
n[23][2]=111 
n[23][3]=91 
n[23][4]=97 
n[24][1]=107 
n[24][2]=107 
n[24][3]=97 
n[24][4]=89 
n[25][1]=98  
n[25][2]=110 
n[25][3]=87  
n[25][4]=105 
n[26][1]=106 
n[26][2]=103 
n[26][3]=91  
n[26][4]=100 
n[27][1]=114 
n[27][2]=102 
n[27][3]=95  
n[27][4]=89  

n[28][1]=107 
n[28][2]=96  
n[28][3]=99  
n[28][4]=98 
n[29][1]=107 
n[29][2]=104 
n[29][3]=85  
n[29][4]=104 
n[30][1]=108 
n[30][2]=107 
n[30][3]=95  
n[30][4]=90  
n[31][1]=113 
n[31][2]=89  
n[31][3]=88  
n[31][4]=110 
n[32][1]=112 
n[32][2]=95  
n[32][3]=90  
n[32][4]=103 
n[33][1]=98  
n[33][2]=106 
n[33][3]=90  
n[33][4]=106 
n[34][1]=110 
n[34][2]=84  
n[34][3]=94  
n[34][4]=112 
n[35][1]=104 
n[35][2]=100 
n[35][3]=86  
n[35][4]=110 
n[36][1]=96  
n[36][2]=105 
n[36][3]=99  
n[36][4]=100 
n[37][1]=113 
n[37][2]=95  
n[37][3]=85  
n[37][4]=107 
n[38][1]=104 
n[38][2]=104 
n[38][3]=95  
n[38][4]=97  
n[39][1]=110 
n[39][2]=94  
n[39][3]=98  
n[39][4]=98  
n[40][1]=114 
n[40][2]=98  
n[40][3]=95  
n[40][4]=93  
n[41][1]=95  
n[41][2]=101 
n[41][3]=101 
n[41][4]=103
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Appendix-13 Continued 
 

 
 

n[42][1]=105 
n[42][2]=93  
n[42][3]=96  
n[42][4]=106 
n[43][1]=85  
n[43][2]=115 
n[43][3]=101 
n[43][4]=99  
n[44][1]=108 
n[44][2]=92  
n[44][3]=100 
n[44][4]=100 
n[45][1]=106 
n[45][2]=103 
n[45][3]=104 
n[45][4]=87 
n[46][1]=105 
n[46][2]=89  
n[46][3]=109 
n[46][4]=97  
n[47][1]=106 
n[47][2]=105 
n[47][3]=90  
n[47][4]=99 
n[48][1]=102 
n[48][2]=96  
n[48][3]=97  
n[48][4]=105 
n[49][1]=106 
n[49][2]=107 
n[49][3]=92  
n[49][4]=95  
n[50][1]=90  
n[50][2]=99  
n[50][3]=104 
n[50][4]=107 
n[51][1]=102 
n[51][2]=98  
n[51][3]=96  
n[51][4]=104 
n[52][1]=117 
n[52][2]=89  
n[52][3]=95  
n[52][4]=99  
n[53][1]=93  
n[53][2]=94  
n[53][3]=109 
n[53][4]=104 
n[54][1]=103 
n[54][2]=106 
n[54][3]=112 
n[54][4]=79  
n[55][1]=107 
n[55][2]=101 
n[55][3]=95  
n[55][4]=97  

n[56][1]=110 
n[56][2]=96  
n[56][3]=94  
n[56][4]=100 
n[57][1]=98  
n[57][2]=99  
n[57][3]=102 
n[57][4]=101 
n[58][1]=96  
n[58][2]=97  
n[58][3]=96  
n[58][4]=111 
n[59][1]=101 
n[59][2]=101 
n[59][3]=100 
n[59][4]=98  
n[60][1]=112 
n[60][2]=103 
n[60][3]=101 
n[60][4]=84  
n[61][1]=109 
n[61][2]=106 
n[61][3]=88  
n[61][4]=97  
n[62][1]=114 
n[62][2]=103 
n[62][3]=86  
n[62][4]=97  
n[63][1]=111 
n[63][2]=98  
n[63][3]=86  
n[63][4]=105 
n[64][1]=97  
n[64][2]=98  
n[64][3]=96 
n[64][4]=109 
n[65][1]=112 
n[65][2]=98  
n[65][3]=106 
n[65][4]=84  
n[66][1]=106 
n[66][2]=106 
n[66][3]=85  
n[66][4]=103 
n[67][1]=108 
n[67][2]=97 
n[67][3]=89  
n[67][4]=106 
n[68][1]=101 
n[68][2]=93  
n[68][3]=102 
n[68][4]=104 
n[69][1]=106 
n[69][2]=96  
n[69][3]=101 
n[69][4]=97  

n[70][1]=106 
n[70][2]=112 
n[70][3]=90  
n[70][4]=92  
n[71][1]=106 
n[71][2]=98  
n[71][3]=105 
n[71][4]=91  
n[72][1]=113 
n[72][2]=98  
n[72][3]=91  
n[72][4]=98  
n[73][1]=105 
n[73][2]=96  
n[73][3]=101 
n[73][4]=98  
n[74][1]=114 
n[74][2]=97  
n[74][3]=93  
n[74][4]=96  
n[75][1]=107 
n[75][2]=109 
n[75][3]=91  
n[75][4]=93  
n[76][1]=105 
n[76][2]=104 
n[76][3]=93  
n[76][4]=98  
n[77][1]=104 
n[77][2]=105 
n[77][3]=102 
n[77][4]=89  
n[78][1]=112 
n[78][2]=96  
n[78][3]=95  
n[78][4]=97  
n[79][1]=89  
n[79][2]=107 
n[79][3]=100 
n[79][4]=104 
n[80][1]=113 
n[80][2]=100 
n[80][3]=88  
n[80][4]=99  
n[81][1]=111 
n[81][2]=96  
n[81][3]=92  
n[81][4]=101 
n[82][1]=106 
n[82][2]=91 
n[82][3]=98  
n[82][4]=105 
n[83][1]=105 
n[83][2]=95  
n[83][3]=103 
n[83][4]=97
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 Appendix-13 Continued 
 
 
n[84][1]=111 
n[84][2]=98  
n[84][3]=106 
n[84][4]=85  
n[85][1]=106 
n[85][2]=105 
n[85][3]=84  
n[85][4]=105 
n[86][1]=109 
n[86][2]=84  
n[86][3]=100 
n[86][4]=107 
n[87][1]=107 
n[87][2]=97  
n[87][3]=96  
n[87][4]=100 
n[88][1]=112 
n[88][2]=103 
n[88][3]=87  
n[88][4]=98  
n[89][1]=106 
 
 
 

 
 
n[89][2]=106 
n[89][3]=95  
n[89][4]=93  
n[90][1]=106 
n[90][2]=96  
n[90][3]=96  
n[90][4]=102 
n[91][1]=96  
n[91][2]=102 
n[91][3]=98  
n[91][4]=104 
n[92][1]=102 
n[92][2]=110 
n[92][3]=84  
n[92][4]=104 
n[93][1]=117 
n[93][2]=94  
n[93][3]=86  
n[93][4]=103 
n[94][1]=122 
n[94][2]=90 
 
 
 

 
 
n[94][3]=88 
n[94][4]=100 
n[95][1]=118 
n[95][2]=106 
n[95][3]=93 
n[95][4]=83 
n[96][1]=113 
n[96][2]=96 
n[96][3]=94 
n[96][4]=97 
n[97][1]=99 
n[97][2]=104 
n[97][3]=97 
 [97][4]=100 
n[98][1]=112 
n[98][2]=90 
n[98][3]=91 
n[98][4]=107 
n[99][1]=112 
n[99][2]=95 
n[99][3]=99 
n[99][4]=94 
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Appendix-14 Sampling sizes for four groups obtained for 100 samples.
 
 
m[0][1]=76 
m[0][2]=83 
m[0][3]=68 
m[0][4]=78 
m[1][1]=94 
m[1][2]=78 
m[1][3]=93 
m[1][4]=80 
m[2][1]=93 
m[2][2]=83 
m[2][3]=93 
m[2][4]=72 
m[3][1]=83 
m[3][2]=91 
m[3][3]=87 
m[3][4]=81 
m[4][1]=79 
m[4][2]=90 
m[4][3]=80 
m[4][4]=84 
m[5][1]=87 
m[5][2]=90 
m[5][3]=88 
m[5][4]=72 
m[6][1]=97 
m[6][2]=79 
m[6][3]=85 
m[6][4]=72 
m[7][1]=81 
m[7][2]=91 
m[7][3]=94 
m[7][4]=76 
m[8][1]=87 
m[8][2]=78 
m[8][3]=95 
m[8][4]=81 
m[9][1]=95 
m[9][2]=84 
m[9][3]=78 
m[9][4]=83 
m[10][1]=100 
m[10][2]=77 
m[10][3]=73 
m[10][4]=85 
m[11][1]=90 
m[11][2]=86 
m[11][3]=74 
m[11][4]=90 
m[12][1]=77 
m[12][2]=88 
 

 
m[12][3]=84 
m[12][4]=83 
m[13][1]=90 
m[13][2]=86 
m[13][3]=75 
m[13][4]=85 
m[14][1]=95 
m[14][2]=82 
m[14][3]=71 
m[14][4]=87 
m[15][1]=79 
m[15][2]=84 
m[15][3]=84 
m[15][4]=92 
m[16][1]=81 
m[16][2]=90 
m[16][3]=87 
m[16][4]=89 
m[17][1]=93 
m[17][2]=91 
m[17][3]=80 
m[17][4]=66 
m[18][1]=87 
m[18][2]=100 
m[18][3]=70 
m[18][4]=83 
m[19][1]=107 
m[19][2]=71 
m[19][3]=91 
m[19][4]=74 
m[20][1]=86 
m[20][2]=82 
m[20][3]=75 
m[20][4]=88 
m[21][1]=88 
m[21][2]=85 
m[21][3]=77 
m[21][4]=87 
m[22][1]=95 
m[22][2]=87 
m[22][3]=87 
m[22][4]=77 
m[23][1]=80 
m[23][2]=89 
m[23][3]=71 
m[23][4]=79 
m[24][1]=87 
m[24][2]=97 
m[24][3]=79 
m[24][4]=72 
 

 
m[25][1]=88 
m[25][2]=93 
m[25][3]=71 
m[25][4]=88 
m[26][1]=94 
m[26][2]=91 
m[26][3]=75 
m[26][4]=85 
m[27][1]=98 
m[27][2]=88 
m[27][3]=73 
m[27][4]=74 
m[28][1]=90 
m[28][2]=81 
m[28][3]=82 
m[28][4]=86 
m[29][1]=89 
m[29][2]=96 
m[29][3]=69 
m[29][4]=91 
m[30][1]=91 
m[30][2]=95 
m[30][3]=80 
m[30][4]=74 
m[31][1]=93 
m[31][2]=78 
m[31][3]=75 
m[31][4]=89 
m[32][1]=96 
m[32][2]=75 
m[32][3]=78 
m[32][4]=85 
m[33][1]=82 
m[33][2]=82 
m[33][3]=75 
m[33][4]=91 
m[34][1]=91 
m[34][2]=75 
m[34][3]=79 
m[34][4]=88 
m[35][1]=82 
m[35][2]=86 
m[35][3]=75 
m[35][4]=90 
m[36][1]=82 
m[36][2]=88 
m[36][3]=85 
m[36][4]=87 
m[37][1]=98 
m[37][2]=82 
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Appendix-14 Continued  
                                        
 
m[37][3]=73 
m[37][4]=86 
m[38][1]=91 
m[38][2]=84 
m[38][3]=79 
m[38][4]=84 
m[39][1]=92 
m[39][2]=83 
m[39][3]=81 
m[39][4]=84 
m[40][1]=95 
m[40][2]=86 
m[40][3]=76 
m[40][4]=78 
m[41][1]=78 
m[41][2]=89 
m[41][3]=87 
m[41][4]=85 
m[42][1]=89 
m[42][2]=81 
m[42][3]=78 
m[42][4]=90 
m[43][1]=72 
m[43][2]=89 
m[43][3]=89 
m[43][4]=84 
m[44][1]=95 
m[44][2]=79 
m[44][3]=84 
m[44][4]=81 
m[45][1]=93 
m[45][2]=88 
m[45][3]=88 
m[45][4]=69 
m[46][1]=89 
m[46][2]=77 
m[46][3]=93 
m[46][4]=78 
m[47][1]=96 
m[47][2]=85 
m[47][3]=77 
m[47][4]=82 
m[48][1]=84 
m[48][2]=84 
m[48][3]=81 
m[48][4]=93 
m[49][1]=90 
m[49][2]=89 
m[49][3]=73 
m[49][4]=81 
m[50][1]=71 
 

 
m[50][2]=83 
m[50][3]=91 
m[50][4]=87 
m[51][1]=88 
m[51][2]=82 
m[51][3]=75 
m[51][4]=87 
m[52][1]=93 
m[52][2]=79 
m[52][3]=79 
m[52][4]=84 
m[53][1]=81 
m[53][2]=77 
m[53][3]=87 
m[53][4]=89 
m[54][1]=83 
m[54][2]=93 
m[54][3]=91 
m[54][4]=65 
m[55][1]=88 
m[55][2]=82 
m[55][3]=78 
m[55][4]=83 
m[56][1]=93 
m[56][2]=83 
m[56][3]=79 
m[56][4]=83 
m[57][1]=85 
m[57][2]=81 
m[57][3]=83 
m[57][4]=86 
m[58][1]=81 
m[58][2]=73 
m[58][3]=81 
m[58][4]=96 
m[59][1]=83 
m[59][2]=86 
m[59][3]=87 
m[59][4]=76 
m[60][1]=94 
m[60][2]=84 
m[60][3]=77 
m[60][4]=71 
m[61][1]=93 
m[61][2]=92 
m[61][3]=75 
m[61][4]=85 
m[62][1]=95 
m[62][2]=95 
m[62][3]=73 
m[62][4]=79 
 

 
m[63][1]=87 
m[63][2]=86 
m[63][3]=67 
m[63][4]=89 
m[64][1]=75 
m[64][2]=89 
m[64][3]=81 
m[64][4]=94 
m[65][1]=96 
m[65][2]=79 
m[65][3]=88 
m[65][4]=74 
m[66][1]=85 
m[66][2]=91 
m[66][3]=72 
m[66][4]=87 
m[67][1]=87 
m[67][2]=83 
m[67][3]=76 
m[67][4]=91 
m[68][1]=86 
m[68][2]=81 
m[68][3]=78 
m[68][4]=87 
m[69][1]=90 
m[69][2]=82 
m[69][3]=90 
m[69][4]=86 
m[70][1]=93 
m[70][2]=96 
m[70][3]=74 
m[70][4]=72 
m[71][1]=87 
m[71][2]=80 
m[71][3]=91 
m[71][4]=72 
m[72][1]=93 
m[72][2]=84 
m[72][3]=75 
m[72][4]=81 
m[73][1]=88 
m[73][2]=76 
m[73][3]=85 
m[73][4]=86 
m[74][1]=91 
m[74][2]=88 
m[74][3]=75 
m[74][4]=82 
m[75][1]=95 
m[75][2]=95 
m[75][3]=70
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Appendix-14 Continued 
 
 
m[75][4]=76 
m[76][1]=90 
m[76][2]=82 
m[76][3]=84 
m[76][4]=80 
m[77][1]=86 
m[77][2]=89 
m[77][3]=84 
m[77][4]=71 
m[78][1]=90 
m[78][2]=86 
m[78][3]=80 
m[78][4]=83 
m[79][1]=77 
m[79][2]=90 
m[79][3]=86 
m[79][4]=90 
m[80][1]=89 
m[80][2]=88 
m[80][3]=71 
m[80][4]=86 
m[81][1]=91 
m[81][2]=76 
m[81][3]=82 
m[81][4]=84 
m[82][1]=84 
m[82][2]=78 
m[82][3]=79 
m[82][4]=92 
m[83][1]=87 
m[83][2]=77 
m[83][3]=86 
m[83][4]=80 
m[84][1]=91 
m[84][2]=81 
m[84][3]=92 
m[84][4]=67 
m[85][1]=92 
m[85][2]=84 
m[85][3]=75 
m[85][4]=92 
m[86][1]=93 
m[86][2]=71 
m[86][3]=81 
m[86][4]=91 
m[87][1]=94 
m[87][2]=84 
m[87][3]=78 
m[87][4]=87 

m[88][1]=97 
m[88][2]=87 
m[88][3]=77 
m[88][4]=84 
m[89][1]=94 
m[89][2]=92 
m[89][3]=83 
m[89][4]=72 
m[90][1]=92 
m[90][2]=83 
m[90][3]=80 
m[90][4]=83 
m[91][1]=83 
m[91][2]=89 
m[91][3]=82 
m[91][4]=83 
m[92][1]=92 
m[92][2]=94 
m[92][3]=67 
m[92][4]=85 
m[93][1]=102 
m[93][2]=75 
m[93][3]=73 
m[93][4]=85 
m[94][1]=103 
m[94][2]=75 
m[94][3]=75 
m[94][4]=83 
m[95][1]=97 
m[95][2]=83 
m[95][3]=76 
m[95][4]=63 
m[96][1]=95 
m[96][2]=83 
m[96][3]=79 
m[96][4]=81 
m[97][1]=80 
m[97][2]=93 
m[97][3]=84 
m[97][4]=88 
m[98][1]=96 
m[98][2]=71 
m[98][3]=81 
m[98][4]=88 
m[99][1]=96 
m[99][2]=81 
m[99][3]=77 
m[99][4]=82 
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Appendix – 15 Size of Responding Elements for each of 100 samples.
  
 
M[0]=305 
M[1]=345 
M[2]=341 
M[3]=342 
M[4]=333 
M[5]=337 
M[6]=333 
M[7]=342 
M[8]=341 
M[9]=340 
M[10]=335 
M[11]=340 
M[12]=332 
M[13]=336 
M[14]=335 
M[15]=339 
M[16]=347 
M[17]=330 
M[18]=340 
M[19]=343 
M[20]=331 
M[21]=337 
M[22]=346 
M[23]=319 
M[24]=335 
M[25]=340 
M[26]=345 
M[27]=333 
M[28]=339 
M[29]=345 
M[30]=340 
M[31]=335 
M[32]=334 
M[33]=330 
M[34]=333 
M[35]=333 
M[36]=342 
M[37]=339 
M[38]=338 
M[39]=340 
M[40]=335 
M[41]=339 
M[42]=338 
M[43]=334 
M[44]=339 
M[45]=338 
M[46]=337 
M[47]=340 
M[48]=342 
M[49]=333 
M[50]=332 
M[51]=332 
M[52]=335 
M[53]=334 
M[54]=332 

M[55]=331 
M[56]=338 
M[57]=335 
M[58]=331 
M[59]=332 
M[60]=326 
M[61]=345 
M[62]=342 
M[63]=329 
M[64]=339 
M[65]=337 
M[66]=335 
M[67]=337 
M[68]=332 
M[69]=348 
M[70]=335 
M[71]=330 
M[72]=333 
M[73]=335 
M[74]=336 
M[75]=336 
M[76]=336 
M[77]=330 
M[78]=339 
M[79]=343 
M[80]=334 
M[81]=333 
M[82]=333 
M[83]=330 
M[84]=331 
M[85]=343 
M[86]=336 
M[87]=343 
M[88]=345 
M[89]=341 
M[90]=338 
M[91]=337 
M[92]=338 
M[93]=335 
M[94]=336 
M[95]=319 
M[96]=338 
M[97]=345 
M[98]=336 
M[99]=336 

 


