

DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

MORPHOLOGICAL ANALYSIS IN NATURAL
LANGUAGE PROCESSING FOR TURKISH
LANGUAGE AND A NEW APPROACH FOR

LEXICON DESIGN

by
Emel ALKIM

August, 2006

İZMİR

MORPHOLOGICAL ANALYSIS IN NATURAL
LANGUAGE PROCESSING FOR TURKISH
LANGUAGE AND A NEW APPROACH FOR

LEXICON DESIGN

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Master of Science

in Computer Engineering, Computer Engineering Program

by
Emel ALKIM

August, 2006

İZMİR

ii

M.Sc. THESIS EXAMINATION RESULT FORM

 We have read the thesis entitled “MORPHOLOGICAL ANALYSIS IN

NATURAL LANGUAGE PROCESSING FOR TURKISH LANGUAGE AND

A NEW APPROACH FOR LEXICON DESIGN” completed by Emel ALKIM

under supervision of Prof.Dr. Tatyana YAKHNO and we certify that in our opinion

it is fully adequate, in scope and in quality, as a thesis for the degree of Master of

Science.

 Prof.Dr. Tatyana YAKHNO

Supervisor

 Yrd. Doç.Dr. Latif SALUM Yrd.Doç.Dr. Adil ALPKOÇAK

 (Jury Member) (Jury Member)

Prof.Dr. Cahit HELVACI
Director

Graduate School of Natural and Applied Sciences

iii

ACKNOWLEDGMENTS

I would like to thank Prof.Dr. Tatyana YAKHNO, my supervisor for all her

support and patience she gave on me.

I also want to thank to my family, and friends; without their endless support I

would never finish this thesis.

Emel ALKIM

iv

MORPHOLOGICAL ANALYSIS IN NATURAL LANGUAGE

PROCESSING FOR TURKISH LANGUAGE AND A NEW APPROACH FOR

LEXICON DESIGN

ABSTRACT

The main motivation of this thesis is creating a system which can get text as input

and build a knowledge structure of it. Thus the system will be able to simulate

human beings’ knowledge base. Additionally the system will be able to answer

questions on the knowledge base.

The system is designed as a shell and has user interfaces for maintaining and

extending lexicon and morphological rules. Thus the system is easily extendible and

in one point of view, it is language independent. A linguist capable of supplying all

information on the language can develop a system specific for that language. Note

that; as the design of the system is done on an agglutinative language, some

extensions on the software may be needed for the execution of grammar rules on

different types of languages.

Keywords: Natural Language Processing, Categorical Lexicon, Morphological

Analysis, Agglutinative Language

v

TÜRKÇE İÇİN DOĞAL DİL İŞLEMEDE BİÇİMBİRİMSEL

ÇÖZÜMLEME VE SÖZLÜK TASARIMI İÇİN YENİ BİR YÖNTEM

ÖZ

Bu tezin temel motivasyonu girdi olarak metin alan ve bu metinden bir bilgi

yapısı oluşturan bir sistem yaratmaktır. Böylece sistem insanların bilgi tabanını taklit

edebilecektir. Ek olarak sistem bu bilgi tabanına dair soruları yanıtlayabilecektir.

Sistem bir kabuk olarak tasarlanmış olup; sözlük ve biçimbirim kurallarını

değiştirip geliştirmeye olanak sağlayan arayüzlerle desteklenmiştir. Böylece

kolaylıkla geliştirilebilir ve bir bakış açısından dilden bağımsız bir sistem

oluşturulmuştur. Yani bir dil hakkındaki bütün bilgiyi sağlayabilen bir dilbilimci o

dile özgü sistemi yaratabilir. Belirtmek gerekir ki; sistem tasarımı eklemeli bir dil

temel alınarak yapıldığı için, farklı tipteki bir dilin söz dizim kurallarının

işlenebilmesi için bazı yazılımda bazı geliştirmeler gerekebilir.

Anahtar Kelimeler : Doğal Dil İşleme, Kategorisel Sözlük, Biçimbirimsel

Çözümleme, Eklemeli Dil

vi

CONTENTS

Page

THESIS EXAMINATION RESULT FORM .. ii

ACKNOWLEDGMENTS .. iii

ABSTRACT... iv

ÖZ.. v

CONTENTS... vi

CHAPTER ONE - INTRODUCTION ... 1

1.1. OUTLINE OF THE THESIS.. 2

CHAPTER TWO - BACKGROUND... 4

2.1. LEVELS OF NLP .. 4

2.1.1. Phonetics .. 4

2.1.2. Morphology.. 5

2.1.3. Syntax ... 5

2.1.4. Semantics ... 7

2.1.5. Pragmatics ... 8

2.1.6. Discourse ... 9

2.2. MORPHOLOGICAL ANALYSIS IN DETAIL.. 11

2.3. PREVIOUS WORK... 16

2.3.1. Morphological Analysis ... 16

2.3.2. Work on Turkish... 20

CHAPTER THREE - MATERIALS AND METHODS 27

3.1. ENVIRONMENT .. 27

3.2. LEXICON ... 29

3.2.1. Linguistic Information in the Lexicon.. 31

3.3. MORPHOLOGICAL RULES .. 32

3.4. ALGORITHM OF MORPHOLOGICAL ANALYSIS ... 32

vii

CHAPTER FOUR - FORMAL MODEL... 36

4.1. FORMAL DESCRIPTIONS .. 36

4.1.1. Morphological Analyzer .. 36

4.1.2. Variation Rule .. 37

4.1.3. Order Rule.. 38

4.1.4. Group ... 38

4.2. DATA STRUCTURES... 38

4.2.1. Variation Rule .. 38

4.2.2. Order Rule.. 39

4.2.3. Group ... 39

4.3. EXAMPLES .. 39

4.3.1. Variation Rule .. 39

4.3.2. Order Rule.. 40

4.3.3. Group ... 41

CHAPTER FIVE - CHARACTERISTICS OF TURKISH 42

5.1. MORPHOLOGICAL CHARACTERISTICS ... 42

5.1.1. Morphophonemics (Rules of Phoneme Substitution) 42

5.1.2. Morphotactics (Rules of Morpheme Sequences).................................. 46

5.2. SYNTACTICAL CHARACTERISTICS ... 46

CHAPTER SIX - RESULTS... 47

6.1. INPUTS .. 47

6.2. OUTPUTS... 47

6.3. EVALUATION OF THE ALGORITHM .. 48

CHAPTER SEVEN - CONCLUSION ... 49

7.1. ACHIEVED SUCCESS .. 49

7.2. SHORTAGES... 50

7.3. FUTURE WORK .. 50

viii

REFERENCES... 51

APPENDIX A USER MANUAL……………………….......................................54

APPENDIX B THE LEXICON………………………………….........................65

APPENDIX C UML DIAGRAMS.…………………….......................................70

APPENDIX D ER DIAGRAMS...……………………………….........................78

1

 CHAPTER ONE

INTRODUCTION

Natural Language Processing is a promising branch of Artificial Intelligence

which is studied on since the first times of artificial intelligence studies. The most

interesting property of Natural Language Processing is that it is done very easily by

human beings whereas it is very hard to mimic for computers.

Natural language is an important area to study on and can be the key to

understanding the intelligence, as the connection to the intelligence is achieved by

natural language. Additionally, any single successful parsing of some natural

language text would include some kind of knowledge processing. Thus the work that

is needed to be done is very complicated and important.

The motivation of this thesis is to achieve a computer program which can retrieve

text as input, construct some kind of knowledge base from it and answer questions on

that text.

Thus, the creation of the knowledge base would show us the road to mimic human

knowledge base. When a human being hears a speech, the natural language input is

reflected to the brain by related sensors. Parsing can be named as “Making the

connections of the input to the previous knowledge that is located in the brain”. Thus

the input gathers meaning that can be useful.

The input of a NLP system is either text or speech, whereas the output must be of

a structural representation. The structure of the language should also be specified

briefly for constructing the output from the input.

Turkish is the selected natural language to be the design and the development base

natural language of this system. Turkish is an agglutinative language, such as

Finnish, Hungarian, Quechua and Swahili. An agglutinative language is a

morphologically complex language where the words are formed by adding suffixes

2

to roots. Thus the words can be relatively long and contain so much information in it

which may be equivalent to a sentence.

Although there are studies based on statistical approaches which omit

morphological analysis phase, most natural language processing studies those intend

to work on Turkish should apply some level of morphological analysis to extract the

appropriate information from the word as it is an agglutinative language.

1.1. Outline of the Thesis

This thesis documentation consists of seven parts: The second part gives brief

introduction to the background of natural language processing, some detailed

information on morphological analysis and the related work in addition to the

definitions needed for better understanding of the subject.

The third chapter defines the materials and effectors of the system. The methods

used for achieving the results are stated in terms of algorithm and the design issues

considered.

The fourth chapter defines the system formally, with the formal descriptions of

important concepts of the system.

The fifth chapter gives brief information on the characteristics of Turkish

language. General information about the morphological characteristics of Turkish is

supported in addition to the list of rules that are used by the analyzer.

The sixth chapter discusses the results achieved and evaluates the system

performance in levels of the algorithm and data achieved.

The seventh chapter concludes the documentation by stating the roadmap of the

study.

3

There are four appendices of the documentation:

• the user guide of the system,

• the graph illustration of the lexicon with samples of entities (not full list),

• class diagrams of the system,

• entity relationship (ER) diagrams of the database.

The user guide helps the user to use the system by screenshots and explanation of

the way that must be followed during design and altering of a system.

The graphical representations of the lexicon are listed just to achieve

understanding of the general structure of the lexicon.

The class diagrams of the system are supplied in the form of Unified Modelling

Language (UML) Diagrams to achieve better understanding of the software structure.

Entity relationship diagram for the database of the lexicon is illustrated in the last

appendix. Also the field lists of all tables are supplied to achieve better

understanding of database structure.

4

 CHAPTER TWO

BACKGROUND

Natural language processing is an interdisciplinary working subject which gathers

attention from five different domains.

Linguists: want to understand languages.

Psychologists: want to understand the processes of language comprehension and

production.

Philosophers: want to know how rational thought relates to language; how words

come to mean things.

AI Practitioners: want to develop models of human reasoning, involving language

processing.

Computer Scientists: want to develop better applications that involve the

processing of natural languages.

2.1. Levels of NLP

Natural language processing is considered to be achieved in five levels which are

defined briefly in the following pages.

2.1.1. Phonetics

Phonology is the study of the sound structure of language. Sounds are organized

into a system of contrasts, and analyzed in terms of phonemes, distinctive features, or

other such phonological units according to the theory used. A phoneme is the

minimal unit of the sound system of a language. Some languages have as few as 15;

others have as many as 80. No two languages have the same system of phonemes.

Distinctive features are used either to define phonemes or as an alternative to the

notion of phoneme. Example pairs include +nasal and -nasal, and +voice (voiced)

and -voice (voiceless). Nasal sounds are produced when there is complete closure in

the mouth and all the air thus escapes through the nose, as in the ‘n’ sound of ‘nasal’.

 5

Voiced sounds are produced while the vocal cords are vibrating, e.g., the ‘b’ sound in

‘bahçe’; voiceless or unvoiced sounds are produced when there is no such vibration,

as in the ‘p’ sound of ‘kitap’.

Problems of phonology include the ratio of noise to data, the varying speech rates

within and across individuals, and coarticulation. (SFU, n.d.)

2.1.2. Morphology

Morphology is the study of the structure of words. Morphology attempts to find

patterns and rules in the way that affixes are used. Using these rules and patterns, a

computer can check that words given as input are real words, and have been used

correctly, without resorting to storing a huge list of words and each of their uses.

(AIDEPOTa, n.d.)

A major morphological problem is ambiguity: the suffix ‘I’, for example, can

indicate third singular possessive or accusative of a noun. Another problem is

exceptions, for example, the third singular possessive of the noun ‘kitap’ is ‘kitabı’

(not ‘kitapı’).

Morphology level will be described in detail in the following pages.

2.1.3. Syntax

Syntax is the study on the structure of sentences.

Once the building blocks of a sentence have been determined to be correct using

morphology, syntax can be used to check they are properly combined. (AIDEPOTb,

n.d.)

The most widely used method of checking a sentence is syntactically correct is to

attempt to use a grammar to build up a parse tree.

 6

A grammar is a list of rules that turn symbols into words, and a parse tree is

simply a diagramatical way of showing the use of these rules to build up a sentence.

For example the following grammar starts at the symbol S and produces very

simple sentences.

S ==> V N

N ==> this

N ==> that

V ==> do

These rules show that the symbol S should be rewritten, or expanded, to the

symbols V and N (in that order). These symbols can, in turn, be rewritten to the right

hand sides of their rules. This process repeats until we have only terminals (words) in

our sentence.

Figure 2.1 Parse tree for 'do this'

A parse tree for the sentence "do this" would be as shown in Figure 2.1, wheras

the sentence "stop that" has no parse tree (according to the grammar we are using)

and is therefore syntactically incorrect.

This stage of NLP is often simply termed parsing since its main aim is simply to

build a parse tree. There are two main classes of parsing; top-down and bottom-up,

each having its advantages and disadvantages.

 7

Top down parsers start with the start symbol of the grammar and try different

combinations of rules until a sequence of rules is found that generate the sentence

being parsed.

Bottom up parsers start with the sentence and looks to find a sequence of rules

which could generate the list of words in question.

The problems with parsing become apparent when there is more than one choice

of rules to expand in order to create a sentence. This is often termed ambiguity and

poses a significant nightmare to many NLP applications; given a sentence with many

possible meanings, how do you determine the intended one.

2.1.4. Semantics

Semantics is the study of what words, sentences, etc., mean. (Actually, the

distinction between syntax and semantics is a source of great controversy in

linguistics. Some approaches (e.g., “Generative Semantics”) do not consider them to

be distinct. Some considers them to be completely separate, with syntax being

primary. Probably most folks today consider them to be separate, but with a blurry

dividing line, and with each affecting the other.) The extraction of the semantics can

be stated as:

sentence structure + word meaning -> sentence meaning

Once a parse tree has been built using syntactic analysis, the semantics, or

meaning, of the sentence needs to be found. This is a very difficult task as it requires

world knowledge. (AIDEPOTc, n.d.)

The need for semantic information can be illustrated by trying to follow a recipe.

Knowing that the recipe is correctly written does not help understand how to carry it

out. Knowledge of the relationships between food and it's preparation, the semantics

contained with the recipe, is needed.

 8

Another way of putting the difference between syntax and semantics into context

is with the following two sentences:

"Colourless green ideas sleep furiously"

"Green sleep colourless furiously green"

The first sentence is syntactically correct in modern English, but after semantic

analysis can be seen to be meaningless, whereas the second sentence, although made

from the same words, can be dismissed as nonsense by simply regarding it's syntax.

There are no steadfast ways of representing world knowledge or extracting the

semantics from a sentence except for very simple domains, although First Order

Predicate Calculus seems to be dominating as a representation method.

2.1.5. Pragmatics

Pragmatics is the study about how language is used. The extraction of the

pragmatics can be stated as:

sentence meaning + context more precise meaning

The easiest way to view the task of pragmatics is as determining an action given

the semantics of a request or sentence. (AIDEPOTd, n.d.)

Since finding the semantics of a sentence is extremely difficult, determining the

pragmatics is even harder.

There is as much ambiguity in this area of NLP as any other, if not more. For

example, consider the following question posed to a computer:

"Do you have the time?"

 9

A syntactically correct answer to this question could be "Yes" although this is

clearly not pragmatically correct as the answer required is the actual time.

To enable a computer to perform NLP "properly" it must be given enough world

knowledge (it must know everything about everything), or else it must be given the

ability to learn. Much current research is centered around giving computers the

ability to learn this world knowledge and therefore help make the semantic and

pragmatic stages of NLP more feasible.

2.1.6. Discourse

Discourse is the study of how terms actually occur and co-occur in large corpora;

World knowledge: all the general knowledge we have.

Discourse understanding includes perception, analysis (and thus syntactic,

semantic and pragmatic interpretation), disambiguation and incorporation. (Russell

& Norvig, 1997)

Discourse is about the higher level relations that hold among sequences of

sentences in a discourse or a narrative. It merges sometimes with literary theory, but

also with pragmatics. (UCSD, n.d.)

One thing to understand is that different sentences do different kinds of "work" in

a discourse. We have seen some examples of this already -- noun phrases that refer

to new entities, or back to previously introduced ones. Same for whole sentences:

Some introduce new events or relations; some used them to introduce something

new.

“A car began rolling down the hill”

“It collided with a lamppost.”

One important idea in discourse theory is the idea that much language is

performed in the context of some mutual activity. For example two people could be

 10

working on some project together. In this case, they are probably both somewhat

aware of the plan that they are both following, and so much of the pragmatic

information needed to understand what they are talking about can be thought of in

terms of that plan. And sometimes utterances can be understood as if they were steps

in the execution of a plan. For example:

“please pass the salt”

This could be thought of as a way to get me the salt, if having salt was part of a

plan.

Some people think of sentences like:

“can you pass the salt”

As "indirect speech acts" because they look like questions, but aren't really. One

way to think about sentences like this is that the hearer understands that this is

probably not a question, but is a conventionalized (and polite) means of asking for

the salt.

Another analysis of this sort of sentence is that you are trying to avoid rejection.

You do this by considering ways that your plan might fail. So you don't want to have

this happen:

“please pass the salt”

“I can't, I'm tied up with ropes.”

“oh, sorry.”

So you ask about potential problems first -- asking about ability. So that if there

is a problem, you don't have to ask directly and you won't be rejected. It is sort of

like:

 11

“Are you doing anything saturday night?”

“Yes, I'm feeding my goldfish”

So you don't have to be rejected if you actually ask for a date.

2.2. Morphological Analysis in Detail

2.2.1. Models of Morphology

There are three different models of morphology each based on a major of

approach to morphology.

2.2.1.1. Morpheme-based Morphology.

Morpheme-based morphology makes use of an Item and Arrangement approach

(Hockett, 1954).

In morpheme-based morphology, word forms are analyzed as sequences of

morphemes. Lexicon contains a list of all possible stem variants, together with rules

which state the distribution of each variant. A morpheme is defined as the minimal

meaningful unit of a language. This way of analyzing word forms as if they were

made of morphemes put after each other like beads on a string, is called Item-and-

Arrangement.

All morphemes are lexical items meaning that just as the root ‘çay’ (tea) is put in

the lexicon, the suffix ‘–CI’ (derives the word ‘çaycı’ (one who prepares and sells

tea) when attached to the root) has to be put in the lexicon.

However, applying such a model rigorously, quickly leads to complications with

many forms of allomorphy. Thus, theorists who wish to maintain a strict morpheme-

based approach often preserve the idea in cases like these by defining the character

changes by morphophonemics.

 12

In a classic Item and Arrangement theory, a word is built up by addition of

morphemes, each of which contributes a distinct meaning to the complex word; the

relationship between form and meaning is presumed most often to be one-to-one.

2.2.1.2. Lexeme-based morphology.

Lexeme-based morphology normally makes use of an Item-and-Process (Hockett,

1954) approach.

Instead of analyzing a word form as a set of morphemes arranged in sequence, a

word form is considered as the result of applying rules that effect changes to word

forms and stems. An inflectional rule takes a stem, does some changes to it, and

outputs a word-form; a derivational rule takes a stem, and outputs a derived stem; a

compounding rule takes word-forms, and outputs a compound stem.

The Item-and-Process approach bypasses the difficulty described above for Item-

and-Arrangement approaches. A single underlying form exists with alternating

allomorphs. Surface forms are derived from the application of feature changing rules

to the underlying form.

Item and Process theorists look at word formation as the operation of processes or

rules on base morphemes or words, each rule adding to or changing the form of the

base, and concomitantly having some characteristic semantic or morphosyntactic

effect; but again, the relationship between process and semantic or morphosyntactic

effect is typically one-to-one.

2.2.1.3. Word-based morphology.

Word-based morphology is a (usually) Word-and-Paradigm approach. The word

(rather than the stem) is the core unit represented in the lexicon (Mathews, 1972).

This kind of theory takes paradigms as a central notion. Instead of stating rules to

combine morphemes into word forms, or to generate word-forms from stems, word-

 13

based morphology states generalizations that hold between the forms of inflectional

paradigms. The major point behind this approach is that many such generalizations

are hard to state with either of the other approaches. The examples are usually drawn

from fusional languages, where a given "piece" of a word, which a morpheme-based

theory would call an inflectional morpheme, corresponds to a combination of

grammatical categories, for example: "third person plural". Morpheme-based theories

usually have no problems with this situation, since one just says that a given

morpheme has two categories. Item-and-Process theories, on the other hand, often

break down in cases like these, because they all too often assume that there will be

two separate rules here, one for third person, and the other for plural, but the

distinction between them turns out to be artificial.

The Word-and-Paradigm approach does not apply to word-formation. It maps

semantic and morphosyntactic properties onto words in a many to one fashion.

2.2.2. Morpheme

Words are formed by combination of one or more free morphemes and zero or

more bound morphemes. Morphemes are the smallest meaningful units in the

grammar of a language.

Free morphemes are units of meaning which can stand on their own as words.

Bound morphemes are also units of meaning; however, can not occur as words on

their own: they can only occur in combination with free morphemes. Morphemes

may be also classified, on the basis of word formation, characteristics into the

following types (Loos, Anderson, Day, Jordan & Wingate, 2004):

• Root: Bound or free, made up of a single free morpheme; a basis for

compounding and affixation.

• Stem: Bound or free, made up of one or more morphemes; a basis for

affixation.

 14

• Affix: Bound morphemes. There are six different types up to the

joining location:

o Prefix: occurs in the front of a root or stem,

o Suffix: occurs at the end of a root or stem,

o Infix: occurs inside of a root or stem,

o Circumfix: occurs in two parts on both outer edges of a root or

stem,

o Simulfix: replaces one or more phonemes in the root or stem,

o Suprafix: superimposed on one or more syllables in the root or

stem as a suprasegmental.

• Clitic: Phonologically bound but syntactically free morphemes that has

syntactic characteristics of a word, but shows evidence of being

phonologically bound to another word. There are two types of clitics:

o Proclitic: occurs at the beginning of a morpheme,

o Enclitic: occurs at the end of a morpheme.

(z-endings in Turkish “second plural person suffix” behave like clitics

(Good & Yu, 1999)).

2.2.3. Morphological Rules

The constraints on how the morphemes are combined to form the words are

defined by the morphological rules.

The linguistic rules for a morphological analyzer, which can be called the

morphological rules, achieve the validity of the words. The morphological rules can

be grouped in two types considering the characteristics and the application

considerations. The rules that apply to the phoneme substitutions are named

Morphophonemics, whereas the rules that ensures to the validity of the morpheme

sequences are named Morphotactics.

 15

2.2.3.1. Morphophonemics (Rules of Phoneme Substitution)

 The morphophonemics are the morphological rules which check the validity of

the word through the phonetic constraints. Morphophonemics can be considered as a

sub level between phonology and morphology, and can be used to handle some of the

exceptions which are mentioned at the beginning of this section.

They are at the phonology level as they apply phonological constraints. But they

are also at the morphology level as they are very important for the morphological

analysis process and the morphological structures are the affecters of the

phonological constraints.

Thus the morphophonemics can be defined as rules on character substitutions that

are affected by the morpheme addition.

A sample morphophonemic for Turkish language is “Final Stop Devoicing -

Voicing” (See Consonant Harmony in Chapter Five):

When a voiced consonant at the end of a morpheme is followed by a vowel, the

consonant becomes voiceless.

Figure 2.2 Morphophonemic
sample on ‘kitabı’

Figure 2.2 shows the sample morphophonemic applied to the noun ‘kitap’ (book);

voiceless consonant ‘p’ at the end of the stem changes to the voiced match ‘b’ when

it is followed by ‘ı’ (a vowel).

 kitap + ı kitabı

 16

2.2.3.2. Morphotactics (Rules of Morpheme Sequences)

The morphotactics are the patterns describing how morphemes come together to

form a valid word. Each morpheme must be a valid entity in the lexicon. The patterns

define which entities that are member of specified categories can be combined

together. Thus the morphotactics are ordered lists of identifiers of specific categories.

A sample morphotactic for Turkish language is “The Nominal Inflection Pattern”

(See page 46).

Table 2.1 Morphotactic sample on ‘kitabı’

nominal
root

plural
suffix
(optional)

possessive
suffix
(optional)

case
suffix
(optional)

relative
suffix
(optional)

Kitap - I - -

Figure 2.2 shows the sample morphotactic applied to the word ‘kitabı’ (his/her

book); the word is parsed and a nominal root and a possessive suffix are matched.

The parse is valid as the unmatched components are optional.

2.3. Previous Work

The previous work on related domains will be explained briefly in the following

of this chapter.

2.3.1. Morphological Analysis

In general, finite state or statistical methods are being used in the morphological

analyzers.

Statistic used for:

• speech recognition

• part-of-speech tagging

• parsing

• machine translation, info retrieval, summarization

 17

Symbolic reasoning used for:

• parsing

• semantic analysis

• generation

• MT, dialog management

• Hybrid approaches

2.3.1.1. Statistical Methods

Statistical natural language processing uses stochastic, probabilistic and statistical

methods to resolve some of the natural language processing problems, especially

those which arise because longer sentences are highly ambiguous when processed

with realistic grammars, yielding thousands or millions of possible analyses.

Methods for disambiguation often involve the use of corpora and Markov models.

The technology for statistical NLP comes mainly from machine learning and data

mining, both of which are fields of artificial intelligence that involve learning from

data.

In artificial intelligence stochastic programs work by using probabilistic methods

to solve problems, as in simulated annealing, neural networks and genetic

algorithms. A problem itself may be stochastic as well, as in planning under

uncertainty. A deterministic environment is much simpler for an agent to deal with.

In usage-based linguistic theories, where it is argued that competence, or langue,

is based on performance, or parole, in the sense that linguistic knowledge is based on

frequency of experience, grammar is often said to be probabilistic and variable rather

than fixed and absolute. This is so, because one's competence changes in accordance

with ones experience with linguistic units. This way, the frequency of usage-events

determines one's knowledge of the language in question.

The application of probability is fundamental to the building of statistical forms

out of data derived from samples. Such samples are chosen by predetermined and

arbitrary selection of related variables and arbitrary selection of intervals for

 18

sampling; these establish the degree of freedom. Many courses are given in statistical

method. Elementary probability considers only finite sample spaces; advanced

probability by use of calculus studies infinite sample spaces. The theory of

probability was first developed (c.1654) by Blaise Pascal, and its history since then

involves the contributions of many of the world's great mathematicians.

Statistical: We describe our knowledge (and ignorance) mathematically and

attempt to learn more from whatever we can observe. This requires us to

1. plan our observations to control their variability (experiment design),

2. summarize a collection of observations to feature their commonality by

suppressing details (descriptive statistics), and

3. reach consensus about what the observations tell us about the world we

observe (statistical inference).

In some forms of descriptive statistics, notably data mining, the second and third

of these steps become so prominent that the first step (planning) appears to become

less important. In these disciplines, data often are collected outside the control of the

person doing the analysis, and the result of the analysis may be more an operational

model than a consensus report about the world.

Wicentowski (2004) introduces a statistical method, which applies four supervised

and four unsupervised methods to 32 languages. Turkish is one of them with a

lexicon of 25497 entities (with 87 verbs, 29130 verb inflections).

2.3.1.2. Finite State Methods

Finite State Transition Networks (FSTN): A Finite State Transition Network

(FSTN) is a simple language model. A FSTN is neutral between recognition

(analysis of input) and generation (producing output in the specified language).

 19

Finite State Transducers (FST): Finite State Transducer (FST) is a variant of

FSTN with pairs of labels on arcs, defining a mapping between input and output.

FSTs can be used for translation.

Recursive Transition Networks (RTN): RTN can be regarded as a specification of

a machine, a pushdown automaton (PA). A pushdown automaton is an FSA that is

equipped with an extra memory, a stack. For an RTN, network traversal is defined

partially in terms of itself. This is the reason for the word 'recursive' in recursive

transition network.

Augmented Transition Networks (ATN): ATN consists of an RTN augmented by

a set of tests to be satisfied before an arc was traversed and a set of registers that

could be used to save intermediate results or global states.

Two-Level Morphology-KIMMO (Koskenniemmi, 1983): An alternate way of

implementation to handle the underlying and surface form differentiation.

Two level model has an important place in computational morphology, yet there

are some systems such as DECOMP which predates two level model by many years.

MIT’s DECOMP module and Hankamer’s Keçi system for Turkish can be stated

as successive morphological analyzers with a finite state model of morphotactics.

2.3.1.3. Two Level Morphology

Koskenniemi (1983) introduced a model named “two-level morphology” or

“KIMMO”. Koskenniemi's model is "two-level" in the sense that a word is

represented as a direct, letter-for-letter correspondence between its lexical or

underlying form and its surface form. For example, the word kitabım is given this

two-level representation (note that + is a morpheme boundary symbol and 0 is a null

character):

 Lexical form: k i t a p + I m

 20

 Surface form: k i t a b 0 ı m

PC-KIMMO, a language-independent morphological parser shell based on

KIMMO, uses finite state machines to apply language rules. PC-KIMMO Version 2

also includes an unification grammar. The rules for Turkish are constructed by

Kemal Oflazer and Türk Dil Kurumu (Oflazer, 1994), but the unification grammar is

not developed. And also PC-KIMMO is a text-based, command prompted program in

which it is really hard to add a new rule or create the grammar.

2.3.1.4. Other Tools for Computational Morphology

There are also works where the morphotactics are context free. One of them is

AMPLE an earlier contribution of SIL. AMPLE models morphotactics with a version

of categorical morphology. AMPLE has mechanisms that allow long distance

dependencies between affixes and thus in principle have greater than finite state

power. AMPLE has no direct model of phonological rules and it is therefore

necessary to list all the surface forms in which a morpheme might occur.

General trends in the computational morphology literature can be summarized as

follows (Öztaner, 1996):

Most morphological analyzers use finite state morphotactics inspite of the

existence of some context free systems.

In the majority of systems all morphemes are considered to be dictionary entries.

That is they use item and arrangement model.

2.3.2. Work on Turkish

Oflazer, Göçmen & Bozşahin (1994) proposed two interrelated Finite State

Machines (FSMs); one for the nominal morphotactics of Turkish and another for the

verbal morphotactics of Turkish. The FSMs are based on 22 two-level rules, derived

from Turkish morphology. Öztaner (1996) proposed a more complete representation

of Turkish morphology with 52 two-level rules.

 21

Two-level rules describe a word with its lexical and surface forms. The lexical

representation denotes the structure while the surface representation obeys

orthographic rules. The FSMs are designed as parsers, not generators, with the

assumption that the user enters legal inputs. The description has been implemented

using the PC-KIMMO environment and is based on a root word lexicon of about

23.000 root words.

Oflazer’s nominal and verbal FSMs were used in a programming project of the

Natural Language Processing course in Boğaziçi University and the morphological

part of a B.S. Thesis Project in the Computer Engineering Department of Boğaziçi

University in both of which the FSMs were implemented in Prolog.

Another approach to morphological analysis was studied in a Ph.D. Dissertation

in Boğaziçi University to implement a spelling checker and corrector. In that work,

the morphological structure of Turkish is investigated and defined in terms of

morphotactic rules that state the order of the suffixes and morphophonemic rules that

state the form of the suffixes. The results of this analysis are used in implementing

the Turkish morphological structure by using the Augmented Transition Network

(ATN) formalism. A large lexicon of Turkish was constructed and used for the

spelling checker part of the implementation. This lexicon is divided into the root

lexicon, the suffix lexicon and the proper noun lexicon. The parser of the spelling

checker is based on a root-matching algorithm. If the spelling checker could not

parse the given input, the corrector part produces the candidate alternatives of the

misspelled word, considering the transposition of two letters, one letter missing,

extra letter or wrong letter.

The thesis also contains statistical analyses of lexical and morphological elements,

and a corpus formed of different topics. The programming language used in

implementation was Pascal. The root lexicon used, consisted of 21.727 root words

and 9.528 proper nouns. There were 199 suffixes in the suffix lexicon.

 22

Another M.S. Thesis project, in Boğaziçi University uses lexicons constructed by

Güngör. The NLP-related part of the thesis implemented a morphological parser in

C++. The result of the morphological analysis is used to find the root of the given

Turkish word. The aim of the thesis is using this root-finding algorithm in a web-

based search to broaden appropriate search results.

Nalbat implemented conjugation of any Turkish verb as an MS-DOS based

application. The user inputs the verb, chooses sense, mood, tense and auxiliary tense

from the options, and then the conjugated verb is displayed on the screen. This

application is a good example for morphological generation. The program can be

downloaded from, but it has a CPU constraint, that is, the program may not run on

machines faster than 200 MHz.

Hamzaoğlu proposed a lexicon-based approach for machine translation from

Turkish to other Turkic languages in his thesis. The Azeri language is chosen as a

representative of Turkic languages and problems are defined and solved in this

scope. Syntactic structures of sentences are similar for Turkish and the Azeri

language; this feature enables employing no syntactic analysis. Only morphological

and semantic analyses are carried out. Although the syntaxes of the target and source

languages are not apart from each other, translation cannot be viewed as a word for

word translation, due to the existence of ambiguous words. The thesis explains

possible ways to resolve the ambiguities, and the implementation of a Turkish-Azeri

translator using the proposed approach. The lexicon has 6.900 root entries and about

10.000 proper nouns.

In contemporary linguistic research, currently the most popular and best-known

approaches to syntactic analysis can be listed as Transformational Grammars (TG),

General Phrase Structure Grammars (GPSG) and Head Driven Phrase Structure

Grammars (HPSG), which are enhanced variations of traditional Phrase Structure

Grammars, Systemic-Functional Grammars (SFG), and Categorical Grammars (CG).

Several researches based on these syntactic formalisms or similar derivatives of them

have been done for Turkish.

 23

In one of these works, Çiçekli and Korkmaz represented Turkish syntax by using

the SFG formalism and implemented the generation of simple Turkish sentences.

The application they developed could generate a Turkish sentence from the given

semantic representation. Indeed, this semantic representation is not produced

computationally; to be able to concentrate on the generation part of the work, Çiçekli

and Korkmaz assumed that this description was produced by an application program

that was not included in their implementation procedures. In the examples of the

paper, these semantic descriptions were given by hand. The generation process had

three basic stages. First, the semantic description was input to the unifier and output

of the unifier was a rich syntactic description of the sentence. Then, this syntactic

description was passed to the linearizer that produced the morphological description

of the sentence. The morphological unit, which was based on Oflazer’s FSMs,

generated the worded text. For the conversion of PS rules into Prolog clauses,

Definite Clause Grammars (DCG) notation is used. The DCG formalism was

developed by Pereira and Warren, based on Colmerauer’s Metamorphosis grammar

framework. Most Prolog interpreters will automatically recognize and handle the

DCG formalism.

Darcan’s M.S. thesis is an important example for Turkish semantics research from

a computational viewpoint, because of the approach it uses for man-machine

communication. The user inputs a Turkish query, the system transforms this query

into an intermediate meaning representation language, and finally this representation

is transformed into the target language SQL. The SQL query runs on an imaginary

studentcourse- instructor database. The analysis and generation processes include a

syntactic parser for analyzing queries, a decision tree working with suffix stripping

approach for morphological parsing, and a meaning representation generator for

intermediate level transformation of queries. There are two additional modules

incorporated in the system, namely a spelling corrector and a history keeper.

Another application, which dealt with semantics, as well as the other levels of

NLP, was ALİ which was the first program that could solve primary-school-level

 24

arithmetic problems stated in Turkish. When the user entered the problem text, the

morphological part of the program analyzed each word in the input. If there were

more than one parses of a word, all possibilities would be passed to the syntactic

part. It was the semantic stage of the program which decided the correct meaning

within the context. The syntactic part analyzed the sentences with a top-down, left-

to-right parser by using a set of phrase structure rules. These rules covered all the

target problem set and constituted a subset of basic Turkish sentence types. The

semantic and syntactic parts were apart from each other due to computational

limitations. Semantic processing started only after the syntactic parsing was

completed and results were passed as an input file to the semantic level. The

semantic processor used a complex and well-defined form of “templatematching”

approach. Semantic templates were prepared considering the types of sentences in

the target set of problems. When the appropriate template was matched with the

entered problem, an answer generator did the required mathematical calculations and

the answers were displayed in a human-readable form. The program also included

the commonsense knowledge necessary to find the correct answers for the problems

in the target set.

The Turkish Natural Language Processing Initiative (TNLP), funded by the

NATO Science for Stability Program III under contract TU-LANGUAGE, was a

collaborative research effort for computational analyses of Turkish text and

construction of software tools for NLP applications in Turkish. The participants were

Bilkent University’s Department of Computer Engineering and Information Science,

Middle East Technical University’s Department of Computer Engineering and Halıcı

Computing.

Within this extensive project, many applications were developed. An Online

Turkish Morphological Analyzer, which has been developed using the two-level

transducer technology of Xerox, is one of these. The user inputs the Turkish word

that will be analyzed and the output is given as a list. All possible outputs of words

are given if ambiguity exists. It is also possible for the user to enter more than one

word by separating them with spaces. If the user enters a misspelled or

 25

ungrammatical word, the program display asterisks as output, although some

misspelled words are also (incorrectly) accepted and analyzed by the program.

Another application of this project was a Turkish Spelling Corrector. The user

enters a Turkish word and possible correct forms would be seen if the word is

misspelled. This corrector will generate all possible Turkish words that are within a

small distance of the given incorrect word, where distance is measured by the

number of character insertions, deletions, changes and transpositions.

All of the above-mentioned related works did “analysis” on the subject they were

focused, but not all of them did “generation”. In any level of NLP, analysis means to

examine the given specific constituent of the natural language in terms of rules of the

constituents’ related level. In the morphological level, words are examined according

to the morphotactic and morphophonemic rules. In the syntactic level, phrasal

constituents are examined according to the grammatical relations. In the semantic

level, words, phrases or sentences are examined according to their meanings.

“Generation”, on the other hand, requires the synthesis of the information that will be

given as the input to produce a wellformed sentence expressing that information.

The problem of representing temporal knowledge, which manifests itself in the

question-answering task that has to be performed by our conversation program, is

considered in many disciplines, mainly computer science, linguistics, philosophy,

and psychology. Allen addresses the problems from the perspective of artificial

intelligence. The preconditions that a temporal representation system should consider

are given as significant imprecision (representing relative knowledge), uncertainty of

information (allowing indefinite temporal relations), variation in the grain of

reasoning (considering the time grains depending on the knowledge modeled), and

persistence (continued validity of the knowledge in the temporal reasoning).

One of the techniques used for modeling time is the state space approach. A state

is a description of the world at a time point. Actions are modeled as functions

between states. A state S1 is true until an action causes it to be false. The change is

 26

represented by deleting the state S1 and asserting a new state S2. This process

provides a notion of persistence, although the other preconditions are not provided.

An alternative temporal representation is the one used by database systems, in

which each fact is indexed by a date. A date may be represented as an integer in a

simple system or a representation based on calendar dates and times can be chosen

for a more precise system. It is the appropriate approach for systems that can assign a

date for any event. But it is not possible to represent a relation between events E1

and E2 if the only available knowledge is their not happening at the same time.

Temporal information can also be represented by using before/after chains. In this

approach, representing relative knowledge is quite easy. But extensions should be

considered in order to represent two events irrelevant to each other. In the situation

calculus, knowledge is represented as a series of situations, which are the description

of the world at a point of time. Actions and events are functions from one situation to

another. These features are similar to the state space approach, but the situation

calculus has a reverse notion of persistence, that is, a fact that is true for an instance

of time should be explicitly reproven for the succeeding points of time.

Allen himself proposes an interval-based approach. He claims that the events that

seem to be instantaneous are indeed decomposable, so representing them with time

points, which are not decomposable units, will not be useful. The work only

considers times of events, so they are better represented by intervals. There can be

the ‘before’, ‘meet’, ‘during’, ‘overlaps’, ‘starts’, ‘finishes’ relations, their inverses,

and the ‘=’ relation between the intervals. An indefinite piece of temporal knowledge

can be represented by more than one relation at a time. An algorithm and a

transitivity table between relations are given to assign the appropriate relations to

items of temporal knowledge.

27

CHAPTER THREE

MATERIALS AND METHODS

This study achieves a system that stores extra information in the lexicon. The

information can be syntactical, semantical or any type of information that can be

used for the analysis of the input text.

This chapter presents the main motivation of the study and defines the main

components of the system briefly. The design and development issues of the study

are clarified in detail using examples when necessary.

3.1. Environment

The system is developed using Java programming language with JBuilder

Development Environment (DE) and MySQL database system as the storage

environment.

Java programming language is selected as it is an object oriented programming

language which achieves environment independency. Java applets enable the

enhancement of user friendliness and can be published through web easily. JBuilder

DE is used for as the development environment as it is an easy to use development

environment which enables the applets to be designed visually.

The Java project developed consists of 3853 lines of code with 50 classes. The

classes are grouped and distributed into 10 packages according to their purpose and

use. The class diagrams will be supplied as Appendix C.

MySql Database is selected as it is a free and easy to maintain database engine.

The data needed by a root-driven, dictionary using morphological analyzer can be

grouped in two types: the lexicon and the morphological rules. The MySql database

 28

developed consists of five tables; responsible for holding lexicon entities, and the

morphological rules.

The lexicon is stored using two tables:

• One table of the lexicon ‘TNLP_GROUPS’, holds all the entities;

• The second ‘TNLP_GROUP_PARENTS_REL’ holds the relations of the

entities in the lexicon.

The detailed information about the structure of the lexicon can be found in the

following pages.

The storage of the morphological rules is managed by three distinct tables. One

main table, ‘TNLP_RULES’, is used for holding the list of rules with name and type

information of the specified rule.

The other two tables are used for holding the components of the rules. There are

two distinct tables as there are two distinct types of morphological rules (see

Morphological Rules section in Background chapter) and definitely as each rule type

needs different types of components. ‘TNLP_VARIATION_RULE’ holds the

components of the Morphophonemics, whereas ‘TNLP_ORDER_RULE’ holds the

components of the Morphotactics, Thus, the real information about each rule is

stored in the table specific for that type of rule.

The Entity Relationship Diagram and specifications of the table structures for the

database ‘lexicon’ are supplied as Appendix D.

The retrieval of prime numbers and the mathematical operations on prime

numbers are achieved by a package named: primes. The package consists of three

classes which are written by Langlois (2004).

 29

3.2. Lexicon

The system is designed in the light of morpheme based morphological analysis

approach, thus the lexicon is responsible for holding the list of valid morphemes. The

entities in the lexicon can be grouped as root words and affixes. Additionally the

linguistic information about each entity should be stored in the lexicon for using

throughout analysis purposes. Samples of linguistic information about an entity can

be its morphological category such as root or suffix, or type of the suffix such as

‘third plural person’, etc.

The root words are taken from an electronic dictionary developed by Prof.Dr.

Kemal Oflazer and his team. Some of the old words are eliminated and the rest is

inserted in our lexicon adding lexical information to each entity. The lexical

information about roots is represented by the categorization of them in different

levels. The categorization groups and distributes the roots in fifty nine categories

which are illustrated in Table 1 at Appendix B.

The affixes and the lexical information about them -the categories of affixes- are

taken from a Turkish grammar book about affix structure of Turkish (Adalı, 1979).

The categorization structure of affixes and the placement of affixes in the lexicon are

illustrated as a graph at Appendix B. The affixes are stored in a special format for

enabling alternations.

The database is defined as case sensitive and alternate characters are defined with

capital letters. For example, possessive suffix ‘ım, im, um, üm’ is stored as ‘Im’. In

this example, ‘I’ is an identifier which can be either ‘ı’, ‘i’, ‘u’, ‘ü’; the selection of

the appreciate character is achieved by morphonemics. The list of these identifiers is

illustrated in Table 3.1

 30

Table 3.1 List of Alternation Identifier
Identifier List of Alternations
‘I’ ‘ı’, ‘i’, ‘u’, ‘ü’
‘A’ ‘a’, ‘e’
‘D’ ‘d’, ‘t’
‘C’ ‘c’, ‘ç’

At the time, there are 4935 root words and 50 inflection affixes in the lexicon. The

distribution of root words through the categories is illustrated in Figure 3.1

respectively. The main structure of the lexicon and all the affixes are specified at

Appendix B.

Figure 3.1 Distribution of words through categories

The lexicon is designed as a categorical lexicon, to enhance the information that

can be stored in the lexicon. The entities and the categories in the lexicon form a

directed graph. The linguistic information about an entity in the lexicon is

represented by the categories which are ancestors of that entity; in other words, the

categories which are on the path to the root node.

The computation cost for such a system would be extremely high as the lexicon

will hold both the entities and the categories, and the retrieval of the linguistic

12 11 159 7 21 38 13 2 1 4 2 18 4 3 7 5

4196

432

0

1000

2000

3000

4000

5000

n
o
u
n

p
ro

n
o
u
n

d
e
te

rm
in

e
r

a
d
je

ct
iv

e

d
ir

e
ct

io
n

te
m

p
o
ra

l

m
a
n
n
e
r

q
u
a
n
ti
ta

ti
v
e

p
re

d
ic

a
ti
v
e

e
x
is

te
n
ti
a
l

a
tt

ri
b
u
ti
v
e

co
o
rd

in
a
ti
n
g

b
ra

ck
e
ti
n
g

se
n
te

n
ti
a
l

n
o
m

-s
u
b
ca

t

a
cc

-s
u
b
ca

t

d
a
t-

su
b
ca

t

a
b
l-

su
b
ca

t

 31

information about one entity would cause the traversal of the graph each time.

Therefore, to eliminate the computation cost, each entity in the lexicon is identified

by a prime number and the linguistic information about an entity is stored as the

multiplication of the prime identifiers of ancestor categories. Prime numbers are

unique and the multiplication process does not destroy their existence or uniqueness.

In other words, the multiplication of prime numbers is a data which all the primes

can be extracted from it with no information loss. Thus the retrieval and query of

linguistic information is just a division process.

3.2.1. Linguistic Information in the Lexicon

The linguistic information about words in the language can be either

morphosyntactic: such as stem, inflectional and derivational suffixes, syntactic: such

as grammatical category and complement structures, and semantic: such as multiple

senses and thematic roles (Yorulmaz, 1997).

The form-based structure of the traditional lexicons which could also be called

“one-dimensional” is not always sufficient enough for natural language systems.

Therefore this lexicon is designed as a “multi-dimensional” lexicon by storing the

linguistic information also in the lexicon forming a graph notation.

Any kind of information that is needed by the Natural Language Processing

system can be put in the lexicon if it can be expressed by a category. The categories

can be extended by the lexicon user (the linguist) at runtime. Thus, the lexicon is

extendible.

For a sample lexicon entity: “third singular person possessive suffix”, the lexicon

holds the information about:

If the affix can be added to a noun or verb,

If the affix is inflectional or derivational,

If the affix is a possessive,

If the affix shows a person whose count is singular and number is the third person.

 32

Thus the lexicon can answer a question like “What is the person number of ‘third

singular person possessive suffix’?” without any assumptions or extra knowledge.

3.3. Morphological Rules

The morphological rules ensure the validity of the word through the

morphological constraints. The morphological rules used by the system are

constructed in the light of the information on Chapter 5.1. Morphological

Characteristics of Turkish Language. New morphological rules can be added to the

system and existing morphological rules can be managed at runtime by a linguist

using the Rule Management Interface. The issues on how to manage morphological

rules to the system is defined briefly at Appendix A. User Guide.

3.4. Algorithm of Morphological Analysis

The algorithm designed for the morphological analyzing process takes input as

word and returns all the possible morphological structures of that word.

The algorithm can be summarized as:

• Extract all possible char sequences – token candidates from the input

word, place them on a two dimensional table named “Tokens’ Matrix” (as

illustrated in Table 3.2).

• Apply all morphophonemics (variation rules) to the each char sequence in

the table, generate possible modifications.

• Query the database for each char sequence and all possible modifications

(result of morphophonemics); store all database results for the character

sequence in “Tokens’ Matrix”.

• Till all token candidates in the table are processed, go to Step 2.

• Apply morphotactics (order rules) through “Tokens’ Matrix”.

• Store results.

The flowchart of the algorithm is illustrated in Figure 3.2.

 33

Figure 3.2 Flowchart of the algorithm

The analyzer uses the matrix structure to reduce the complexity, so that each

token candidate is processed only once. The use of tokens’ matrix is explained

briefly with a sample word in the following example.

Input
Word

Extract token
candidates

Tokens’ Matrix

Unprocessed token
left?

Get token from matrix

Apply morphophonemics

Apply morphotactics

Morphological results

Store results

Query lexicon
Store results in
Tokens’ Matrix

Y

N

Y

N

 34

Example 3.1

“kitabım” is chosen as the sample to illustrate the process flow of the algorithm.

The motivation of selecting this sample is the existence of the morphonemics

alternations, that we can see the application of the morphonemics by the algorithm.

The matrix structure for the word sample “kitabım” is illustrated on Table 3.2.

Each row of the matrix is filled by starting from the character at the number of the

row and getting one more character each time till the end of the word. For the third

row, the retrieval starts from third character of the word and produces five different

substrings till the end of the word.

The tokens’ matrix is traversed by getting the row, analyzing each column at the

row from left to right. The character sequence at each cell is input to the rules of

morphophonemics. The application of the morphonemics produces list of all the

possible alternations of that character sequence. Then all the possible character

sequences produced by morphophonemics are queried through the lexicon. Lastly the

morphotactics are applied to the tokens’ matrix to form a valid word structure.

The arrows on Table 3.2 points to the result of morphophonemics and the checks

point to the valid lexicon entities (the character sequences that are matched in the

lexicon). Note that we assume, the cells except from ‘kitab’ and ‘ım’ are not matched

by morphophonemics and the character sequences except from ‘kitap’ and ‘(I)m’ are

not matched in the lexicon.

 35

Table 3.2 Tokens’ matrix for the word ‘kitabım’

 √
kitap

K Ki kit kita kitab kitabı kitabım

İ İt ita itab itabı itabım

T Ta tab tabı tabım

A Ab abı abım

B Bı bım

I ım

M

Im
√

The morphotactics should be applied to construct a valid word structure. For

better understanding of the importance of the morphotactics, assume that we have

two ‘(I)m’ in the lexicon:

‘(I)m’ : possessive suffix,

‘(I)m’ :personal suffix.

Also we have just one morphotactic:

“noun + possessive suffix”.

The morphotactic will achieve the match of ‘(I)m’ as a possessive suffix.

Although there are two entities for character sequence ‘(I)m’ in the lexicon, the

personal suffix ‘(I)m’ cannot be a valid result as it cannot be added to the nouns, as

there is no morphotactic such as “noun + personal suffix”.

Then we have the structure:

 ‘kitap’ + ‘(I)m’

 noun + possessive suffix

36

 CHAPTER FOUR

FORMAL MODEL

This chapter states the formal model of the morphological analyzer in terms of

data that is used by the system. The structure of the morphological analyzer and the

data that is used by the analyzer are defined briefly with formal definitions. The

structure of the data that is used by the analyzer is also specified of data structures

definitions and sample instances.

4.1. Formal Descriptions

4.1.1. Morphological Analyzer

A morphological analyzer M is defined as:

 M = (R, G, F, I, S)

where

 R is a finite set of rules (of different types),

 G is a finite set of groups (entities of lexicon),

 F: (R x G x I) S is a function called morphological function,

 I is an input text to be analyzed, ordered list of the alphabet characters,

 S is a finite set of morphological result structures.

A rule R1 is defined as:

 R1 = (V | O)

where

 V is a variation rule,

 O is an order rule.

A morphological result structure is an ordered list of entities’ identification

numbers, ordered list of groups, where each group belongs G. Thus, a

morphological result structure S1 is defined as:

 S1 = (g1, g2, g3, …)

 37

where

 g1, g2, g3, … є G.

4.1.2. Variation Rule

A variation rule V is defined as:

 V = (CL, AL)

where

 CL is a finite set of conditions (conditions to be satisfied for the rule to be

interpreted),

 AL is a finite set of actions (actions to be taken when the rule is applied).

A condition C is defined as:

 C = (L, S, W, G, M, GL)

where

 L є GL is the group identifier of the lexical item to be matched,

 S є GL is the group identifier of the surface item to be matched,

 W is either first or last (determining the direction of the search),

 G є GL is the identifier of the group to be searched,

 M is either previous, this or next (determining which morpheme to

search),

 GL is a finite set of groups (entities of lexicon).

An action A is defined as:

 A = (L, S, W, G, M, GL)

where

 L є GL is the group identifier of the lexical item to be changed,

 S є GL is the group identifier of the surface item to be changed,

 W is either first or last (determining the direction of the search),

 G є GL is the identifier of the group to be searched,

 M is either previous, this or next (determining which morpheme to

search),

 GL is a finite set of groups (entities of lexicon).

 38

4.1.3. Order Rule

An order rule O is defined as:

 O = (OG, GL)

where

 OG is a finite ordered list of groups, where each group є GL,

 GL is a finite set of groups (entities of lexicon).

4.1.4. Group

A group G is defined as:

 G = (I, S, T)

where

 I є P is a unique identifier for the group, where P is the infinite set of all

prime numbers,

 S є L is a representing text for the group, where L is the finite set of all

valid strings accepted by the specific language,

 T is a multiplication of identifiers of specific groups.

4.2. Data Structures

4.2.1. Variation Rule

A variation rule V is defined as:

 V = (CL, AL)

where

 CL is a set of CONDITIONS,

 AL is a set of ACTIONS.

A condition C is defined as:

 C = (L, S, W, G, M, GL)

where

 L, S, G є integer and is prime number,

 W є integer, and is either ‘0’ or ‘1’ (first = 0; last = 1),

 39

 M є integer, and is either ‘0’, ‘1’ or ‘2’ (previous = 0; this = 1; next = 2),

 GL is set of GROUPS.

An action A is defined as:

 A = (L, S, W, G, M, GL)

where

 L, S, G є integer and is prime number,

 W є integer, and is either ‘0’ or ‘1’ (first = 0; last = 1),

 M є integer, and is either ‘0’ or ‘1’ (previous = 9; this = 1; next = 2),

 GL is set of GROUPS.

4.2.2. Order Rule

An order rule O is defined as:

 O = (OG, GL)

where

 OG is a finite ordered list of integers (prime numbers),

 GL is a finite set of GROUPS.

4.2.3. Group

A group G is defined as:

 G = (I, S, T, L, P)

where

 I є integer and is prime number,

 S є string,

 T є integer.

4.3. Examples

4.3.1. Variation Rule

The variation rule for consonant softening can be determined with one condition

and one action. Rule can be stated as:

 40

Condition: If the first character of the next morpheme is a vowel, (Table 4.1);

Action: Change ‘p’, the last character of the current morpheme, to ‘b’ (Table 4.2).

Table 4.1 Conditions

Table 4.2 Actions

The consonant softening rule CS is defined as:

 CS = (CL, AL)

where

 CL = {C1, C2},

 AL = {A1};

with a sample lexicon set GL:

 GL = {(2,character,1),(3,vowel,2),(5,p,2),(7,b,2),(11,ı,6)}.

The conditions C1 and C2 are defined as:

 C1 = (5, 7, 1, 2, 1, {(2,character,1),(3,vowel,2),(5,p,2),(7,b,2),(11,ı,6)}).

 C2 = (3, 3, 0, 2, 2, {(2,character,1), (3,vowel,2), (5,p,2), (7,b,2),

(11,ı,6)}).

The action A1 is defined as:

 A1 = (5, 7, 1, 2, 1, {(2,character,1), (3,vowel,2), (5,p,2), (7,b,2),

(11,ı,6)}).

4.3.2. Order Rule

The order rule for nominal pattern of Turkish can be determined with eight

morpheme categories in the order specified in Table 5.4.

Text of
Component

Lexical
Specification

Surface
Specification

Search
Function Group Location

the first
character of the
next morpheme

is a vowel

Vowel Vowel First Character Next
morpheme

Text of
Component

Lexical
Specification

Surface
Specification

Search
Function Group Location

Change ‘p’ to
‘b’ ‘p’ ‘b’ Last Character Current

morpheme

 41

And the morpheme categories can be defined as:

Plural Suffix: -lAr

Possessive Suffix: -(I)m -(I)mIz

 -(I)n -(I)nIz

 -(I) -lArI

Case Suffix: -(y)I -(y)lA

 -(y)A -(y)DA

 -DAn -(n)In

 -nI -nA

 -nDA -nDAn

Relative Suffix: -ki

Thus nominal pattern rule VP is defined as:

 NP = (OG, GL)

where

 OG = {3, 11, 13, 17, 19},

with a sample lexicon set GL:

 GL = {(2,root,1),(3,nominal_root,2),(5,affix,1),(7,suffix,5),(11,plural,35),

(13,possessive,35),(17,case,35),(19,relative,35),(23,ev,6),(29,kitap,6),(31,lAr,11*35),

(37,m,13*35) ,(41,I,17*35),(47,ki,19*35)}.

4.3.3. Group

The group G1 is defined as:

 G1 = (47, ki, 19*35).

A sample lexicon is illustrated at Appendix B.

42

 CHAPTER FIVE

CHARACTERISTICS OF TURKISH

5.1. Morphological Characteristics

Turkish is a morphologically complex, agglutinative language where the words

are formed by affixing roots.

The morphological characteristics of Turkish can be expressed by two types of

morphological rules: morphophonemics and morphotactics (See Background).

5.1.1. Morphophonemics (Rules of Phoneme Substitution)

There are two important morphophonemics in Turkish. This section defines these

rules which can be stated as the vowel and the consonant harmony.

Each valid word in Turkish –except foreign words- must apply these rules. The

roots and stems which are retrieved from foreign languages are exceptions to these

rules. Then the harmony is achieved within the last syllable of the root or the stem

and the suffix.

5.1.1.1. Vowel Harmony

Vowel harmony is defined with examples ‘okul’, ‘ev’ as roots ‘Im’ – possessive

suffix as suffix.

Major Vowel Harmony (Palatal assimilation): Front vowels are followed by

front vowels whereas back vowels are followed by back vowels:

{e, i, ü, ö} is followed by {e, i, ü, ö},

{a, ı, u, o} is followed by {a, ı, u, o}.

 43

Example 5.1

The purpose of this morphonemic can be defined as the constraints it defines for

the choose of the appreciate character for ‘I’:

okul + Im

 Constraint : 1. u is followed by {a, ı, u, o}.

ev + Im

 Constraint : 1. e is followed by {e, i, ü, ö}.

Minor Vowel harmony (Labial assimilation): Unrounded vowels are followed

by unrounded vowels whereas round vowels are followed by either unrounded-open

vowels or round-close vowels:

{e, i, a, ı} is followed by {e, i, a, ı},

{ü, ö, u, o} is followed by either {ü, u} or {e, a}.

Example 5.2

The purpose of this morphonemic can be defined as the constraints it defines for

the choose of the appreciate character for ‘I’:

okul + Im

 Constraint : 2. u is followed by either {ü, u} or {e, a}.

ev + Im

 Constraint : 2. e is followed by {e, i, a, ı}.

The appreciate character is chosen by the help of the constraints defined by both

harmonies and the alternation character list of ‘I’ (‘ı’, ‘i’, ‘u’, ‘ü’).

 44

okul + Im

 Constraint : 1. u is followed by {a, ı, u, o}.

 2. u is followed by either {ü, u} or {e, a}.

 3. ‘I’ is either (‘ı’, ‘i’, ‘u’, ‘ü’).

 Result: I is ‘u’.

 okul + Im okulum

ev + Im

 Constraint : 1. e is followed by {e, i, ü, ö}.

 2. e is followed by {e, i, a, ı}.

 3. ‘I’ is either (‘ı’, ‘i’, ‘u’, ‘ü’).

 Result: I is ‘i’.

 ev + Im evim

5.1.1.2. Consonant Harmony

Final Stop Devoicing - Voicing: Voiced consonants at the end of a morpheme

change to the appropriate voiceless consonant when followed by vowel:

{p} changes to {b},

{ç} changes to {c} when the root is polysyllable or there are {n, r, l, v} before

{ç},

{t} changes to {d},

{k} changes to {ğ} when there is vowel before {k},

{k} changes to {g} when there is {n} before {k},

{g} changes to {ğ} when there is {o} before {g}.

Example 5.3

kitap + Im kitabım

 45

‘p’ changes to ‘b’ as it is followed by a vowel. Table 5.1 shows the rule

occurrences on word ‘kitabım’; which consist samples of Final Stop Devoicing and

vowel harmony.

Table 5.1 Rule Occurences on Sample Word ‘kitabım’

Suffix - Initial Devoicing - Voicing: Voiced consonants at the end of a

morpheme are followed by a voiced consonant, whereas voiceless consonants at the

end of a morpheme are followed by a voiceless consonant. {D} and {C} are two

allomorphs. The suffixes are stored with allomorphs in the lexicon.

{D} changes to {d} by default, changes to {t} if there is voiceless consonant at

the end of the previous morpheme,

{C} changes to {ç} by default, changes to {c} if there is voiced consonant at the

end of the previous morpheme.

Example 5.4

kitap + CI kitapçı

‘C’ changes to ‘ç’ as ‘p’ at the end of the previous morpheme is voiceless. Table

5.2 shows the rule occurrences on word ‘kitapçı’; which consist samples of Suffix

Initial Devoicing and vowel harmony.

Table 5.2 Rule Occurences on Sample Word ‘kitapçı’

Stem Affix Word Rule Occurrence

kitap (I)m kitabım p changes to b, I changes to ı

Stem Affix Word Rule Occurrence

kitap CI kitapçı C changes to ç, I changes to ı

 46

5.1.2. Morphotactics (Rules of Morpheme Sequences)

Table 5.3 shows the verbal inflectional model for Turkish, a word inflected from

a verb has to apply this rule.

Table 5.3 Verbal Inflection Pattern (Oflazer, Göçmen & Bozşahin, 1994)

Voice suffixes are: reflexive, reciprocal, causative and passive suffixes.

The shortest verb can be constructed with one verbal root, one time suffix and one

person suffix. These three suffixes are obligatory, the others are optional. And in this

study compound verb suffixes are omitted.

Table 5.4 shows the nominal inflectional model for Turkish, a word inflected

from a noun has to apply this rule.

Table 5.4 Nominal Inflection Pattern (Oflazer, Göçmen & Bozşahin, 1994)

For the sample of ‘geliyordum’, the true result of the morphological analyzing

would be as stated in Table 5.5 and it is an appropriate structure up the rule above.

Table 5.5 Morphological Structure of 'geliyordum'

5.2. Syntactical Characteristics

Turkish is a verb final language in which the word order can be characterized as

subject – object – verb (SOV). Though other orders are grammatically possible, as

the case –not the location- of the noun phrase determine its grammatical function in

the sentence.

verbal
root

voice
suffixes

(optional)

Negation
suffix

(optional)

compound
verb s.

(optional)

main
tense
suffix

question
suffix

(optional)

second tense
s. (optional)

Person
suffix

nominal
root

plural suffix
(optional)

possessive
suffix

(optional)

case suffix
(optional)

relative
suffix

(optional)

Gel (i)yor dI m
Verbal
Root

Main Tense
S.

Second Tense
S.

Person
Suffix

47

 CHAPTER SIX

RESULTS

This chapter states the results of the study in terms of the process flow with

consideration of complexity issues.

6.1. Inputs

The inputs of the system are the input word, the lexicon and the list of

morphological rules.

The study introduced a system with a specialized categorical lexicon which can

store additional information of the lexicon. The lexicon can be extended continually

in the runtime and the success of the analysis is increased by the extension of the

lexicon.

The morphological rules can also be extended for retrieving more successful

analysis results.

6.2. Outputs

The output of a successful analysis is the set of possible morphological structures

that can be assigned to the word.

A morphological structure constructed by the analyzer is an ordered list of prime

numbers. The results of the morphological analyzer are a set of morphological

structures as a word can have more than one legal morphological structure and not

one the correct match can be done during the morphological analysis phase as it is

affected by syntax level, semantics level, etc. Thus, the results structure is a set of

ordered lists of prime numbers and each ordered list shows one legal morphological

structure of the input word.

 48

6.3. Evaluation of the Algorithm

The complexity of the algorithm of the morphological analyzer can be formulized

as:

 n2pd + tn2 ≈ n2 as p and t are constants, d too small,

where

 n is the number of characters in the word,

 p is the number of morphophonemics,

 d is the complexity of the division process (database lookup),

 t is the number of morphotactics.

49

 CHAPTER SEVEN

CONCLUSION

We gather most of the information about the world by natural language. Thus a

natural language processing system capable of building knowledge structures and

connecting them together to build a knowledge base is a promising approach to

Turkish Natural Language Processing as it is a step to mimicking human beings’

behaviour.

7.1. Achieved Success

The introduced system promises the storage of the lexicon as a knowledge

structure in which all entities are connected in the form of a graph. The system

achieves the storage of the relations within the lexicon entities, thus can answer

questions about the entity. The storage of information in the lexicon enables

building a knowledge base that will be helpful during the analysis of the text in all

levels.

The lexicon structure introduced in this thesis is open for extension not only as the

amount of information, also as the type of information that can be stored. The system

enables the growth of the depth of the lexicon as it does not limit the type of

information. This enables the growth of the success of the study at the phase of

actual using.

The result of the system is the valid possible morphological structures of the input

text. Each morphological structure is the list of the identifiers of lexicon entities, thus

morphological structures can also answer questions about the information stored in

the lexicon.

 50

7.2. Shortages

The main shortage of this study is the requirement of the linguist to store all the

information in the lexicon and all the rules by hand. The success of the system is

limited by the amount of information stored.

Other shortages are the boundary of the maximum prime number and the time

cost of the system on long input texts.

7.3. Future work

The success of the developed morphological analysis can be extended by:

• Extending the number of morphological rules,

• Extending the size and the depth of the lexicon (the linguistic information

about each entity in the lexicon).

New analysis engines can be designed and developed which will use the

information stored in the lexicon. The system is designed in the consideration of

these extensions. Thus, new rule types and new engines can be developed with less

effort and use the results of already developed systems.

The system can also be enhanced by adding some kind of self learning ability to

extend the lexicon programmatically. That will overcome the main shortage of the

system.

 51

REFERENCES

Adalı, O. (1979). Türkiye Türkçesinde Biçimbirimler. Ankara: Türk Dil Kurumu

Yayınları.

AIDEPOTa (n.d.) Natural Language Processing. Retrieved September 8, 2005, from

http://ai-depot.com/NaturalLanguage/Processing-Morphology.html

AIDEPOTb (n.d.) Natural Language Processing. Retrieved September 8, 2005, from

http://ai-depot.com/NaturalLanguage/Processing-Syntax.html

AIDEPOTc (n.d.) Natural Language Processing. Retrieved September 8, 2005, from

http://ai-depot.com/NaturalLanguage/Processing-Semantics.html

AIDEPOTd (n.d.) Natural Language Processing. Retrieved September 8, 2005, from

http://ai-depot.com/NaturalLanguage/Processing-Pragmatics.html

Çetinoğlu, A. (2001). A Prolog Based Natural Language Processing Infrastructure

For Turkish. Boğaziçi University.

Good J. & Yu A.C.L. (1999). Morphosyntax of Two Turkish Subject Pronominal

Paradigms. Pittsburgh: University of Pittsburgh and University of Chicago.

Hockett, C. (1954). Two models of grammatical description. Word 10, 210-231.

Koskenniemi K. (1983). Two-level morphology: A general computational model for

word-form recognition and generation.

Langlois, O. (2004). Finding primes & proving primality. Retrieved February 27,

2004 from http://www.utm.edu/research/primes/prove/prove2_3.html.

 52

Loos, E.E., Anderson, S., Day, D. H., Jordan, P. C. & Wingate, J. D. (2004).

Glossary of Linguistic Terms. Retrieved June 27, 2005 from

http://www.sil.org/linguistics/GlossaryOfLinguisticTerms/contents.htm.

Oflazer, K. (1994) Two_level description of Turkish morphology. Linguistic and

Literary Computing, Vol.9, No:2.

Oflazer, K., Göçmen E. & Bozşahin C. (1994). An Outline of Turkish Morphology.

Retreived November 5, 2004 from http://www.lcsl.metu.edu.tr/pubs.html.

Öztaner, S.M. (1996). A Word Grammar Of Turkish With Morphophonemic Rules.

Ankara: The Middle East Technical University.

Russell S.J. & Norvig P. (1997). Artificial Intelligence A Modern Approach. New

Jersey: Prentice Hall.

SFU (n.d.) Natural Language Laboratory at Simon Fraser University – About

Natural Language. Retrieved October 8, 2005, from

http://www.cs.sfu.ca/research/groups/NLL/1.html

Wicentowski, R. (2002). Modeling and Learning Multilingual Inflectional

Morphology in a Minimally Supervised Framework. Maryland: The Johns

Hopkins University.

Wikipedia, (2005). Morphology (linguistics). Retrieved June 07, 2005 from

http://en.wikipedia.org/wiki/Morphology_(linguistics).

UCSD (n.d.) Natural Language Processing. Retrieved September 8, 2005, from

http://cogsci.ucsd.edu/%7Ebatali/108b/lectures/natlang.txt

 53

Yorulmaz, A.K. (1997). Design and implementation of a computational lexicon for

Turkish. Ankara: Department of computer engineering and information science

and the institute of engineering and science of Bilkent University.

54

 APPENDIX A
USER MANUAL

This user manual describes how to use the developed morphological analyzer as a

stand alone program. Each interface of the program will be illustrated with

screenshots and described in detail.

1.1. Lexicon

The entities in the lexicon can be either real lexicon entities such as a stem ‘kitap’

or the category entity such as ‘stem’ itself. Thus, we will name all the values in the

lexicon as groups from now on.

The lexicon management interface enables the user to add new groups to the

lexicon and edit existing ones.

Figure 1 illustrates the lexicon management interface. Existing groups are listed at

the lower part of the screen. The listing can be done for dictionary entities,

categories, phonemes or all groups by choosing the appropriate type from the combo

box above the list and pressing the “Filter Lexicon Items” button.

The types in the combo box are mapped to the group types in the lexicon –which

will be described later in this section. Except that, the “Category” type at the combo

box represents unification of “Category” and “Category (Show in result text)” types.

The list is always alphabetically sorted.

55

Figure 1 Lexicon Management Interface

The upper part of the screen consist the containers used for showing and editing

the information about a group.

Any dictionary entity should be expressed with a string, should have a type and

the parents – the linguistic category - of it must be chosen.

The text box with label “Text” contains the textual representation of the group.

The combo next to the text box represents the type of the group. There are four

different types of groups:

Dictionary Entity: formal dictionary entities; words and affixes.

Category: groups which are stored for expressing linguistic information. Not

needed for visual representation of results.

Category (Show in result text): the categories that will be listed in the results

structure.

Phoneme: the letters are also stored in the lexicon with this specific type.

56

The list box with label “Parents” lists the parents of that group. The parents are

chosen by locating the specific group at the list below, selecting and added to the

parents list by pressing to the button “^^”, and removed by selecting from the parents

list and pressing to the button “vv”. The groups that are chosen as parent must be the

direct parents of the group.

The buttons on the right are used for controlling the process. “New” button

initiates the new group addition process by clearing the related containers. “Save”

button finalize the adding or editing process by saving the changes to the database.

“Cancel” button finalize the adding or editing process by discarding the changes.

1.1.1. Adding a New Group

The procedure that must be followed for adding a new group to the lexicon is

explained using the sample “Third singular possessive suffix – I”.

New group adding procedure is initiated by pressing the “New” button. The

related containers are cleared for new group insertion.

The textual representation “I” is typed to the text box with label “Text”. The

appropriate type for this group is chosen from the type combo box. The type of this

group is “Dictionary Entity” as it is an affix.

Then, the linguistic information about this group must be stored by selecting the

appropriate parents. For the sample “I”, the parents chosen must be “tnlp_third”

(expressing the number), “tnlp_singular” (expressing the count) and

“tnlp_possession” (expressing possession). “tnlp_suffix” (expressing being suffix)

must not be chosen as the other parents (“tnlp_third”, “tnlp_singular” and

“tnlp_possession”) are children of it. In other words any group having “tnlp_third” as

its parent is already a child of “tnlp_suffix”, thus no need to add it again.

57

Lastly, the adding procedure is completed by pressing “Save” button and the

group is stored in the lexicon or by pressing “Cancel” button and nothing is stored in

the lexicon.

1.1.2. Editing an Existing Group

When a group is selected, the information about that group is located in the upper

part of the screen for editing. Figure 2 illustrates the editing phase of the “Third

singular possessive – I”.

The editing procedure is alike adding procedure in so many ways. The only

difference is the values are initially set.

The required changes are done by typing the new text in the text box, selecting the

appropriate type from the combo box and changing the parents by adding new

parents and/or removing existing ones.

Lastly, the editing procedure is completed by pressing “Save” button and the

changes are saved or by pressing “Cancel” button and the changes are discarded.

Figure 2 Editing a lexicon group (Sample entry “I” selected for editing)

58

1.2. Morphological Rules

The morphological rules management interface enables the user to add new rules

to the system and edit existing ones.

There are two types of rules: morphophonemics and morphotactics. More

information about the rule types can be retrieved from Chapter 1 Background.

The interface illustrated in Figure 3 consists of list of existing rules identified with

their names. The list can be filtered using rule types by selecting the appropriate type

from the combo box above the list and pressing “Filter Rules” button.

Figure 3 Morphological Rule Management Interface

New rule adding procedure is initiated by selecting the appropriate rule type from

the type combo box and pressing “Add New Rule” button. The rule type must be

selected initially as each rule type has a different interface for managing the rule.

The editing procedure is initiated by selecting the relevant rule and pressing “Edit

Rule” button at the bottom of the list.

59

The adding and editing procedure for different rule types will be defined briefly

for the rest of this chapter.

1.2.1. Morphotactics

The morphotactics are rules about ordering. The interface for adding or editing a

morphotactic is illustrated in Figure 4 with sample of ’Verb Inflection Pattern’.

Any morphotactic should be expressed with a name and should have an ordered

list of groups.

The name of the rule is typed to the text box with label “Rule Name”. At the left

of the interface there is a group listing tool which achieves the same facilities with

the group list in the Lexicon Management Tool and works in the same manner. The

group list is updated by selecting the appropriate type at the combo box and pressing

“Filter” button.

At the right of the interface the current order components are listed. Note that

there can be more than one groups specified for one order number. For instance,

“Verb Inflection Pattern” has two different alternates for order number ‘4’. Both of

them are valid, but they can not be subject to the inflection at the same result

structure.

The component adding procedure is achieved by locating the appropriate group at

the “Lexicon Categories” list, selecting it and pressing “>>” button. Then the order

component editing interface which is illustrated in Figure 5 is displayed.

60

Figure 4 Morphotactic Editing Interface

Figure 5 Morphotactic Order Component Interface

Figure 4 illustrates the interface for adding a new order component to the

morphotactic. The number on the left identifies the order number for this component.

When a new component is being added this number is set to the last existing

components order number plus one, but it can be changed to any. The component

61

name is retrieved from the group selected for adding. The check box on the right is

checked if this order component is optional, is left unchecked if it is required for the

morphotactic.

Editing an existing order component is achieved by selecting the specific

component from the order components list and pressing “Edit Selected Component”

button. Then the order component editing interface is displayed again. The order

number, optional or not and component name can be changed.

Deleting a component is achieved by selecting the specific component from the

order components list and pressing “<<” button. Note that, the order numbers for the

following components are not updated; it must be done manually if necessary.

1.2.2. Morphophonemics

The morphophonemics are the rules about character substitutions. Figure 6

illustrates the interface for adding and editing a new morphophonemic.

Figure 6 Variation Rule Interface

62

The list on the left of the window, which is named “roots’ list”, consist all the

roots in the lexicon. The list on the right, which is named “affixes’ list”, consist all

the affixes in the lexicon. The box in the middle is named “components’ box” and is

filled with components to construct a sample word.

A new morphophonemic rule is added to the system by constructing a sample of

the rule. As morphophonemics are affected by morphemes the sample is constructed

by selecting root and affixes from the appropriate lists.

The sample word is constructed in the components’ box by firstly selecting a

sample root from the roots’ list and clicking the button at the bottom of the roots’ list,

and then firstly selecting a sample affix from the affixes’ list and clicking the button

at the bottom of the affixes’ list. When the sample word is constructed, “Correct

Text” button is clicked for listing the characters as small buttons.

The rule is stored by adding the appropriate conditions to be matched and the

appropriate actions defining the character substitution.

Each condition or action - substitution component - must be specified by clicking

the small character buttons that are subject to the substitution. When the user clicks a

button the character substitution component interface which is illustrated in Figure 7

is shown.

Each character substitution component specified using the character substitution

component interface is added to the list at the bottom of the window with a

representing text.

63

Figure 7 How to add a character substitution

The storage of a character substitution component is done by specifying the

character group to be matched, the function that is used for matching, the morpheme

to be considered, the condition the character group must satisfy and the substitution

that will take place (the result character group).

The first list specifies the condition the character group must satisfy, why this

substitution is applied. The character group chosen in this list must contain the

character which was clicked on, which is written on the green box at the top of the

window. This list can be filled by answering the question: “Is this substitution is

specific to this character only? If not, it is specific for which group?”

The second list specifies which character group would be the result of the

substitution, if this is an action substitution. If this is a condition substitution, it is

same as the first list.

The location, which can be ‘previous’, ‘this’ or ‘next’, specifies which morpheme

is subject to the substitution.

The function, which can be ‘first’ or ‘last’, specifies where to start the search –

beginning or end.

64

The last list specifies the character group to be matched using the function.

The editing of character substitution component is finalized by storing the

component by pressing “Add” button or discarding the component by pressing

“Cancel” button.

1.3. Morphological Analyzer

Figure 8 illustrates the morphological analyzer’s parsing interface. The input word

is written on the text box at the top of the window and the parsing process is initiated

by clicking the “Parse” button. The results of the parsing are listed on the list below.

Figure 8 Morphological Parser Interface (Sample parse "gitDIyDI")

Each alternate result is shown as ordered lists. Each component of the list is

represented by a text which consist the ancestor categories that are marked with type

“Category (Show in result text)”.

Figure 8 illustrates a sample parsing for the word “gitDIyDI”.

65

 APPENDIX B
THE LEXICON

Table 1 Lexicon word categories (Yorulmaz, 1997)
1.level 2.level 3.level 4.level
nominal noun common
 pronoun proper
 personal
 demonstrative
 reflexive
 indefinite
 quantification
 question
 sentential act infinitive
 fact participle

adjectival determiner article
 demonstrative
 quantifier
 adjective quantitative cardinal
 ordinal
 fraction
 distributive
 qualitative

adverbial direction
 temporal point-of-time
 time-period fuzzy
 day-time
 season
 manner qualitative
 repetition
 quantitative approximation
 comparative
 superlative
 excessiveness

verb predicative
 existential
 attributive

conjunction coordinating
 bracketing
 sentential

post- position nom-subcat
 acc-subcat
 dat-subcat
 abl-subcat
 gen-subcat
 ins-subcat

Table 1 lists the categories used for stem categorization. The categorization can be

viewed as a tree. The levels discriminate the levels of the tree; for example “proper”

66

in the ‘3. level’ at third row, is child of “pronoun” at the ‘2. level’ -which is a child

of “noun” at ‘1.level’. First four levels of the categorization which is introduced at

Yorulmaz (1997) is applied to the lexicon.

The structure of the lexicon is illustrated as graphs in the following pages. The

lexicon has a structure of a one way graph as any group in the lexicon can have more

than one parent. The arrows bind parents to the children. Note that, the list of

characters, stems and derivation suffixes are incomplete.

The green circles with doubled boundaries represent the nodes that will be

continued in the other figures.

The complexity of the figures are tried to be overcame using different colours for

some nodes and the arrows that leave the node.

Note that Ø symbol is used for empty string.

67

Figure 9 Graphical representation of the lexicon

root

structure language
alphabet

vowel consonant

stem affix türkçe english

back

front

close

open round

unrounded

e i ü ı u o ö a

voiced voiceless

c g

b d

p t

ç k

68

Figure 10 Graphical representation of stems in the lexicon with sample lexicon entities

nominal

adjectival

Post-position

determiner adjective

stem

noun pronoun

adverbial

direction manner

temporal quantative

verb

conjunction

predicative attributive

existential

coordinating sentential

bracketing

gen-subcat

abl-subcat

dat-subcat

acc-subcat

ins-subcat

nom-subcat

serçe yuvarlak azileri değil adeta takiben

69

Figure 11 Graphical representation of affixes in the lexicon with full list of lexicon entities

derivation

inflection

destination=verb

affix

source=noun

destination=noun

source=verb

lAr

count

number

plural object

determiner

modifier

predicate

possession

conversion

conditional negation voice

question
verbal

time1

time2

person

request

I Ø

Im In

sA

passive

reflexive

causative

recipcoral

mI

verbal
noun

verbal
adjective

gerund

Il n

n

Il

ş

r t DIr

ş

nIl

mA

mAk

mA

Iş

An DIk

AcAk
AsI

An

ArAk

ken

IncA
mAdAn

AlI Ip

r

future
past

present
simple

defined undefined

DI mIş

r
yor

AcAk

story

rumor

DI

mIş

optative
necessity

sA mAlI

demand

A

1 3 2

singular

plural

m

n sIn

sIn Ø

In

sInlAr

Iz lIm

nIz InIz sInIz

lAr

k

dative

locative

ablative

instrumental

equative

A

DA

DAn

lA

CA

nominative Ø

m I n Iz lAr Iz

70

APPENDIX C

UML DIAGRAMS

The Project consist of six main packages:

• analyzer

o interfaces

o ma

• connectivity

• manager

o grammar

o lexicon

• primes

• rule

• types.

The UML Diagrams of each package is illustrated below.

71

Figure 12 UML Diagram for nlp.analyzer package

72

Figure 13 UML Diagram for nlp.analyzer.interfaces package

Figure 14 UML Diagram for nlp.analyzer.ma package

73

Figure 15 UML Diagram for nlp.connectivity package

74

Figure 16 UML Diagram for nlp.manager.grammar package

75

Figure 17 UML Diagram for nlp.manager.lexicon package

76

Figure 18 UML Diagram for nlp.rule package

77

Figure 19 UML Diagram for nlp.types package

APPENDIX D

ER DIAGRAMS

Figure 20 Entity Relationship Diagram for lexicon database

R TYPE

R ID

TNLP RULES

R ID

ORDER ID

OR ID

TNLP ORDER RULE

G ID

OPTIONAL

R_ID

VR_ID

TNLP_VARIATION_
RULE

FUNC

SG_ID_LEX

SG_ID_SURF

TYPE

G PATH

G NAME

G ID

TNLP_GROUPS

G TYPE

G ID

P ID

REL ID

TNLP_GROUP_
PARENTS_REL

1

n
n

78

TNLP_GROUPS
G_ID Unsigned int Primary key,

Auto increment
unique identifier of the group,
Prime number

G_PATH Unsigned int Multiplication of the group identifiers of parents (all parents till
root)

G_NAME Varchar(20) Name of the group
G_TYPE Tinyint Type of group (“0” for normal groups, “1” for words and affixes; the

real data, “2” for conceptual type; to use during parse)

TNLP_GROUP_PARENTS_REL

REL_ID int Primary key,
Auto increment

Unique identifier of the relation (group, parent). A group can have more than
one child or parent (multiple inheritance).

G_ID Int Group identifier of the child

P_ID int Group identifier of the parent

79

TNLP_RULES

R_ID Int PK, AI Unique identifier of the rule

R_TYPE Tinyint The type of the rule. Variation and order are the implemented rules. Type information
is hold as an enumeration. “1” for Variation, “2” for Order rules. The class name of the
rule, the enumeration is known by the RulesList class.

TNLP_ORDER_RULE

OR_ID int Primary key,
Auto
increment

The unique identifier of the rule component. A rule has more than one entry
in this table so this auto increment id is used to achieve unique of the entry.

R_ID int The identifier of the related rule.

ORDER_ID Int The order of the component (for example: if the rule is “a+b+c”, order of “a”
is 1, “c” is 3).

G_ID Unsigned
Int

 The identifier of the group that must be met in the specified order.

OPTIONAL tinyint Binary flag to indicate if the specified group entry is optional or not.

80

TNLP_VARIATION_RULE

VR_ID Int Primary key,
Auto increment

The unique identifier of the rule component. A rule has more than one
entry in this table so this auto increment id is used to achieve unique of
the entry.

R_ID Int The identifier of the related rule.

LOC Tinyint The location of the element to find, in this substring “1”, previous “0”
or next “2” (Enumeration is defined by the specific rule class).

FUNC Tinyint The function which is used for search; “0” for exist, “1” for first, “2”
for last (Enumeration is defined by the specific rule class).

G_ID Unsigned
Int

 The identifier of the group whom an element is searched for.

SG_ID_LEX Int For condition: it is the group id which the element searched must be in
(in the lexical form).
For action: the group identifier of the lexical form.

SG_ID_SURF Int The SURFACE form of SG_ID_LEX.

TYPE Tinyint The job specifier, is this entry for defining condition or action. “1” for
condition, “2” for action

81

