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FAILURE ANALYSIS OF COMPOSITE LAMINATES CONTAINING 

THREE PIN LOADED HOLES 

 

ABSTRACT 

 

The aim of this investigation is to study the effect of different geometries on the 

failure behavior of glass-epoxy laminated composite plate which is subjected to a 

traction force by 3 rigid pins. The behavior of multi-pin loaded composite plates 

which have the stacking sequence of [0/90/±45]S and approx. 60% fiber volume 

fraction has been observed experimentally and numerically. 

 

45 different geometries are used in this study by using 3 different hole distance 

parameters (The ratio of ‘edge distance’ to ‘hole / pin diameter’ E/D:1, 2, 3, 4, 5 ; 

The ratio of ‘Longitudinal hole distance’ to ‘hole / pin diameter’ F/D:2, 4, 6 ; The 

ratio of ‘Transverse hole distance’ to ‘hole / pin diameter’ G/D:3, 4, 5) 

 

The three-dimensional finite element method was used to obtain stress distribution 

of the material. For analyzes, LUSAS 13.6 finite element analyze software has been 

used.. During the study geometric non-linear behavior and “Hashin Failure Criteria” 

have been selected to determine the “Failure Mode” and the “Failure Load”.  

 

The results of numerical and experimental study have been plotted and compared 

with each other. 

 

Keywords: glass-epoxy composite, pin loading, failure mode, failure load 
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ÜÇ PİM İLE YÜKLENMİŞ TABAKALI KOMPOZİTLERDE HASAR 

ANALİZİ 

 

ÖZ 

 

Bu araştırmanın amacı 3 rijid pim ile çeki yükü uygulanmış cam lifi-epoksi 

kompozit plakasının farklı geometrilerinin hasar davranışına etkilerini incelemektir. 

[0/90/±45]S dizilimine sahip ve hacimce fiber yüzdesi yaklaşık %60 olan çoklu-pim 

yüklemeli kompozit plakaların davranışı deneysel ve nümerik olarak incelenmiştir. 

 

Bu çalışmada 45 farklı geometri kullanılmış olup, 3 farklı delik mesafe 

parametresini(Kenar mesafesinin delik/pim çapına oranı E/D:1, 2, 3, 4, 5 ; 

Boylamasına delik mesafesinin delik/pim çapına oranı F/D:2, 4, 6 ; Enlemesine delik 

mesafesinin delik/pim çapına oranı G/D:3, 4, 5) içermektedir. 

 

Malzemenin gerilme dağılımlarını elde etmek üzere üç boyutlu sonlu eleman 

metodu kullanıldı. Analizlerde LUSAS 13.6 sonlu eleman analiz yazılımı seçildi. 

Çalışma esnasında, “Hasar modu” ve “Hasar Yükü”nü belirlemek üzere lineer 

olmayan geometrik davranış ve “Hashin hasar kriteri” tercih edildi. 

 

Nümerik ve deneysel çalışma sonuçları grafiğe aktarıldı ve kendi içlerinde 

karşılaştırıldı. 

 

Anahtar Sözcükler: cam lifi-epoksi kompoziti, pimle yükleme, hasar modu, 

hasar yükü  
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CHAPTER ONE 

 

INTRODUCTION 

 

Composite material means that two or more materials are combined on a 

macroscopic scale to form a useful third material. Here, the key word is the 

macroscopic examination of a material wherein the components can be identified by 

the naked eye. Different materials can be combined on a microscopic scale, such as 

in alloying metals, but the resulting material is, for all practical purposes, 

macroscopically homogeneous, i.e., the components can not be identified by the 

naked eye and essentially act together. The advantage of composite materials is that, 

if well designed, they usually exhibit the best qualities of their components. 

 

So composite materials are used in structures  comprehensively where high 

mechanical performance is required and in designing ratio of high strength to weight 

takes care initially. Getting high strength and stiffness values while keeping weight 

in the low values provides the composites to take the place of metal materials used 

for the time immemorial. 

 

In the structures made of composite laminates mechanical fasteners has a great 

importance at transferring loads and for this transaction a hole should be drilled on 

them. This holes cause stress concentration, inspite of these negativeness mechanical 

fasteners play an important role in airplane industry.  

 

A non-appropriate joint design; causes low yielding although composites have a 

high level strength stress distribution over the hole wall should be considered 

straightly for sufficiently qualified strength evaluation and a realistic failure 

prediction. 
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Because of the anisotropic and heterogeneous nature of the composites joint 

problem analysis is much harder than the isotropic materials; separately owing to the 

unknown contact stresses and contact area between fastener and laminate, pin-loaded 

hole analysis is more complicated in comparison with free hole. 

 

Chang (1984)a carried out analysis on T300/1034-C laminates has one pin-loaded 

hole and two pin-loaded holes (parallel; serial), never the less Chang (1984)b have 

developed a model  and a computer code for composite laminates having a pin loaded 

hole to determine failure strength and failure mode , when the material exhibits non- 

linearly elastic behavior. 

 

A large part of the literature published so far on mechanically-fastened joints 

present experimental results on the effect of the stacking sequence, geometric 

properties, clearance between the hole and the pin, and the degree of lateral clamping 

pressure exerted by the bolt. (Dano et al., 2000) 

 

Lekhnitskii (1968) and later Savin (1968) analyzed problems related to the 

determination of the stress distribution in anisotropic plates weakened by an opening 

and deformed by forces applied to the mid plane.  

 

Whitney and Nuismer (1974) introduced two related failure criteria: the point 

stress and the average stress failure criterion to evaluate the strength of composite 

plates containing through the thickness discontinuities. 

 

Chang, Scott and Springer (1982) have developed a user-friendly computer code 

(designated as BOLT) which can be used to calculate the maximum load and which 

can be applied to joints involving fiber-reinforced laminates with different ply 

orientations, different material properties, and different configurations, including 
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different hole sizes, hole positions and thickness. They have used Yamada failure 

criterion. 

 

Chang et al. (1984)a have extended their analysis to T300/1034-C laminates 

containing a pin-loaded hole or two pin-loaded holes in parallel or in series. 

 

Chang et al. (1984)b have developed a model and corresponding computer code to 

determine failure strength and failure mode of composite laminates containing a pin 

loaded hole even when the material exhibits non-linearly elastic behavior. 

  

Kretsis and Matthews (1985) showed that as the width of the specimen decreases, 

there is a point where the made of failure changes from one of bearing mode to one 

of tension mode, using E glass fiber-reinforced plastic and carbon fiber-reinforced 

plastic. A similar behavior between the end distance and the shear-out mode of 

failure was found. They concluded that lay-up had a great effect on both joint 

strength and failure mechanism. The bearing strength, failure load and failure modes 

are investigated in pin-loaded glass-vinylester laminated composite plate and the 

effects of changing the geometric parameters are observed. The three-dimensional 

finite element method is used to determine the failure load and failure mode using 

Hashin failure criteria. The mechanical properties of the laminated composite plate 

are obtained from standard tests. 

 

Chen, Chiu and Chin (1994) have studied the influence of weave structure on pin-

loaded strength of orthogonal 3D composites. They evaluated the influences of 

reinforcement type, weave structure, specimen width-to-diameter ratio and edge 

distance-to hole diameter ratio.  

 

Larry and Mahmood (1995) have numerically investigated 2D progressive 

damage modeling of graphite epoxy composite pinned-joint failure. They analyzed 
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laminates that have different ply angle directions. In addition, they used fiber tensile-

compressive, shearing, matrix tensile-compressive, and fiber-matrix shearing criteria. 

In their study, the specimens where the hole is located too close to the sides, W/D<3, 

or too close to the edge E/D<3, were characterized as weak.  

 

Khashaba (1996) has conducted an experimental study to determine the notched 

and pin bearing strength of GFRP composites having various values of fiber volume 

fractions. The results show that fiber volume fraction has a significant effect on load-

pin bearing displacement behavior and the value of W/D must be greater than 5 for 

the development of full bearing strength of the composite laminates. 

 

A three dimensional finite element model to perform stress analysis of single and 

multi bolted double shear lap connections of glass fiber reinforced plastic has been 

used by Hassan et al. (1996) with using ANSYS program.  

 

Mahmood and Larry (1996) have investigated non-linear three dimensional stress 

of pin-loaded composites which have [0°4/90°4]s and [90°4/0°4]s orientation ply angle.  

 

Aktaş and Karakuzu (1998) have carried out failure load, failure mode, and 

propagation of failure in composite plate pinned-joints, both theoretically and 

experimentally. 

 

Aktas and Karakuzu (1999) have carried out a failure analysis of mechanically 

fastened carbon-fiber reinforced epoxy composite plate of arbitrary orientation. In 

that work, failure load and failure mode have been analyzed experimentally and 

numerically using Tsai-Hill and fiber tensile-compressive failure criteria. They found 

that full bearing strength was developed when E/D and W/D ratios were equal to or 

greater than 4. 
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Camanho & Matthews (1999) have developed a 3D finite element model to 

predict damage progression and strength of mechanically fastened joints in carbon 

fibre reinforced plastics. To predict the failure mode, Hashin failure criteria has been 

used and compared with the experimental results.  

 

Dahsin (1999) has investigated thickness effect of pinned joints for composites. 

He has studied the interaction between the pin diameter and composite thickness. 

Results show that thick composites with small pins and thin composites with large 

pins had lower efficiencies for joint stiffness and joint strength than those having 

similar dimensions between pin diameter and composite thickness.  

 

Okutan, Aslan and Karakuzu (2001) have investigated the failure strength of pin-

loaded woven fiber-glass reinforced epoxy laminates experimentally and have 

observed the effects of changing the with-to-hole diameter (W/D) and the ratio of 

edge distance to hole diameter (E/D) on the bearing strength of woven laminated 

composites. They have tested single-hole pin loaded specimens for their tensile 

response. They have observed failure propagation and failure type on the specimens. 

 

Icten, Okutan and Karakuzu (2003) have investigated mechanical behaviour and 

damage development of pin-loaded woven glass fiber–epoxy composites, 

numerically and experimentally. To verify the numerical predictions of mechanical 

behaviour, a series of material configurations ([(0/90)3]S _ [(±45)3]S) and 20 different 

geometries. 

 

Khashaba et al. (2005) have investigated the influence of certain factors on the 

strength of bolted joints in [0/±45/90]s glass fiber reinforced epoxy (GFRE) 

composites. These factors were including the tightening torque and the washer outer 

diameter size. The mechanical properties (tensile, compressive, and in-plane shear) 

of GFRE laminates have been determined experimentally and theoretically. The 

experimental results showed that under the same tightening torque, the slope of load–
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displacement diagrams of bolted joints (stiffness) increased with decreasing washer 

size. 

 

Aktaş (2005) has carried out static and dynamic experimental studies to 

investigate both the static and dynamic bearing strengths of a pinned-joint carbon 

epoxy composite plate with [0°/45°/-45°/90°]s and [90°/45°/-45°/0°]s stacking 

configurations. The experiments showed that the static bearing strengths reach their 

upper limit when E/D and W/D ratios are equal to or greater than 4 for both [0°/ 

45°/-45°/90°]s and [90°/45°/-45°/0°]s stacking sequences. The fatigue strength, on 

the other hand, reduced by up to 65% as E/D and W/D ratios increased for both 

stacking configurations. 

 

Karakuzu et al. (2006)a have studied the bearing strength, failure mode and failure 

load in a woven laminated glass-vinylester composite plate with circular hole 

subjected to a traction force by a rigid pin. These are investigated for two variables; 

the distance from the free edge of the plate-to-the diameter of the hole (E/D) ratio (1, 

2, 3, 4, 5), and the width of rectangular plate-to-the diameter of the hole (W/ D) ratio 

(2, 3, 4, 5), numerically and experimentally. Hashin failure criteria is used in the 

failure analysis. 

 

Karakuzu et al. (2006)b have performed experimental and numerical study on the 

bearing strength, failure load and failure mode of pin loaded woven kevlar-epoxy 

plate was presented. In numerical study, Hashin, Hoffman and Maximum Stress 

failure criteria were used to predict the failure load and failure mode. Experimental 

results concerning damage progression and ultimate strength of the joint were 

obtained and compared with these predictions. To develop the full bearing strength 

the critical values of in-plane geometric parameters were investigated. In parametric 

studies, one of the variables was changed while the others are constant. It was seen 

that the results obtained numerically and experimentally are close to each other. 
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Wang et al. (2006) has carried out an experimental investigation to understand the 

bearing strength of stitched and unstitched uniweave T300/QY9512 laminates with 

single-lap single-bolt joint configuration. The objectives of the studies are to 

determine the effects of stitching node position, stacking sequence, and hygrothermal 

environment on the bearing strength and the load–displacement curves of stitched 

laminates. A three-dimensional finite element model is developed to investigate the 

bearing properties of mechanically fastened joints in unstitched and stitched 

laminates. Hashin's three-dimensional failure criterion is used to predict the 

progressive ply failure. The results showed that the bearing strength decreased when 

the stitching node position was close to the hole boundary. 

 

The objective of this research is to study the failure behavior and investigate the 

effect of different geometries and different ply orientations of glass-epoxy laminated 

composite plate which is subjected to traction force by 3 rigid pins. The numerical 

and experimental studies implemented with particular attention given to the 

sensitivity of the model to different geometric dimensions. The three-dimensional 

finite element method was used to obtain stress distribution of the material. During 

the study “Hashin Failure Criteria” has been selected to determine the “Failure 

Mode” and the “Failure Load”. The mechanical properties of the composite material 

were obtained from the standard test methods. 
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CHAPTER TWO 

 

STRUCTURAL ANALYSIS OF COMPOSITE MATERIALS 

 

2.1 Classical Analysis 

 

The use of classical methods of stress analysis has developed over many decades 

to give techniques that can be applied satisfactorily to a vast range of situations. Such 

analyses are based on the application of the equations of equilibrium and 

compatibility, together with the stress-strain relations for the material, to produce 

governing equations which must be solved to obtain displacements and stresses. 

Usually, assumptions must be made before a solution can be affected. So, for 

example, problems are considered as one-or two-dimensional, as when considering 

beams and plates, respectively. Often we take the material to be isotropic, but many 

analyses also exist for anisotropic materials. 

 

When the mechanical properties of composites are calculated, it is convenient to 

start by considering a composite in which all the fibres are aligned in one direction 

(i.e. a unidirectional composite). This basic ‘building block’ can then be used to 

predict the behavior of continuous fibre multidirectional laminates, as well as short 

fibre, non-aligned systems. 

 

The essential point about a unidirectional fibre composite is that its stiffness (and 

strength) are different in different directions. This behavior contrasts with a metal 

with a random orientation of grains, or other isotropic material, which has the same 

elastic properties in all directions. 
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In a unidirectional composite the fibre distribution implies that the behavior is 

essentially isotropic in a cross-section perpendicular to the fibres (Fig. 2.1). In other 

words, if we were to conduct a mechanical test by applying a stress in the ‘2’ 

direction or in the ‘3’ direction (both normal to the fibre’s longitudinal axis), we 

would obtain the same elastic properties from each test. We say the material is 

‘transversely isotropic’. Clearly the properties in the longitudinal (‘1’) direction are 

very different from those in the other two directions. We call such a material 

‘orthotropic’. The elastic properties are symmetric with respect to the chosen (1-2-3) 

axes, which are usually called the ‘principal material axes’.  

 

 

Figure 2.1 Orientation of principal material axes. 

 

2.1.1 Basic Stress-Strain Relations 

 

The stress-strain relations for the unidirectional material can readily be found, 

provided we take account of the fact that the properties are direction-dependent. 

Considering the composite illustrated in Fig. 2.1, we see that if the directions of the 

applied stresses coincide with the principal material axes (specially orthotropic), the 

strains in terms of the stresses are given by 
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The strain-stress relations in Eq. 2.1 can be inverted to obtain the stress-strain 

relations:  
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The stiffness matrix, C
ij 

, for an orthotropic material in terms of the engineering 

constants, is obtained by inversion of the compliance matrix, S
ij 

. The stiffness’ in Eq. 

(2.3) are 
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The principal directions of orthotropy often do not coincide with coordinate 

directions that are geometrically natural to the solution of the problem. For this 

reason, a method of transforming stress-strain relations from one coordinate system 

to another is needed.  

 

The principal material axes and θ, is the angle from the x axis to 1 axis, are shown 

in Figure 2.2. 

 

The stress transformations between x-y-z and 1-2-3 are,  
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Figure 2.2 Unidirectional lamina with principal axes rotating by θ relative to the  

x-y axes 

 

The strain-stress relations in x-y-z coordinates are; 

 

























































=































xy

xz

yz

zz

yy

xx

xy

xz

yz

zz

yy

xx

SSSS

SS

SS

SSSS

SSSS

SSSS

σ

σ

σ

σ

σ

σ

γ

γ

γ

ε

ε

ε

66362616

5545

4544

36332313

26232212

16131211

00

0000

0000

00

00

00

              (2.7) 

 

The transformed compliance coefficients Sij , referred to the (x, y, z) system,  
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The stress-strain relations in x-y-z coordinates are,  
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The transformed compliance coefficients Cij , referred to the (x, y, z) system,  
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Note that C14, C15, C16, C24, C25, C26, C34, C35, C36, C45, C46, and C56 are zero for 

an orthotropic material.  
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2.2 Finite Element Analysis: 

 

Finite Element (FE) analysis is merely an alternative approach to solving the 

governing equations of a structural problem. Hence, FE and classical methods will 

produce identical results for the same problem, provided the former method is 

correctly applied. 

 

The method consists of imagining the structure to be composed of discrete parts 

(i.e. finite elements), which are then assembled in such way as to represent the 

distortion of the structure under the specified loads. Each element has an assumed 

displacement field, and part of the skill of applying the method is in selecting 

appropriate elements of the correct size and distributions (the FE ‘mesh’). 

 

The FE method was initially developed for isotropic materials and the majority of 

elements available (the ‘library’) in any software package would be for such 

materials. To apply the technique to composites requires different element 

formulations that adequately represent their anisotropic, or orthotropic, stiffness and 

strength, as well as the laminated form of construction often used. 

 

2.2.1 Three-Dimensional Finite Element Method 

 

In the three-dimensional finite element formulation, the displacements, traction 

components, and distributed body force values are the functions of the position 

indicated by (x, y, z). The displacement vector u is given as 

 

u = (u,v,w)T                 (2.19) 
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where u, ν and w are the x, y and z components of u, respectively. The stress and 

strains are given by 

 

[ ]
[ ]Txyxzyzzzyyxx

T

xyxzyzzzyyxx

γγγεεεε

σσσσσσσ

,,,,,

,,,,,

=

=
               (2.20) 

 

From Figure 2.6, representing the three- dimensional problem in a general setting, 

the body force and traction vector are given by 

 

f = [ fx , fy , fz ] 
T
  ,    T = [ Tx , Ty , Tz ] 

T              (2.21) 

 

The body force f has dimensions of force per unit volume, while the traction force T 

has dimensions of force per unit area. 

 

 

Figure 2.6 Three dimensional problem 
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2.2.2 The sixteen-Node Brick Element 

 

The sixteen-node brick element is a simple three-dimensional element used in the 

analysis of solid mechanics problem. A 3D isoparametric solid continuum element 

capable of modeling curved boundaries. The element is numbered according to right-

hand screw rule in the local z-direction. Freedoms of the element are u, v, w at each 

node and node coordinates are x, y, z at each node. A typical sixteen-node brick 

element is shown in Figure 2.7 

 

 

Figure 2.7 Sixteen-node brick element 

 

Hashin failure criteria (1980) are polynomial failure criteria similar to the 

quadratic failure envelope except that in the Hashin formulation there are distinct 

polynomials corresponding to the different modes. Hashin-type failure criteria are 

ideal for use in finite element models, especially when adapted to progressive 

damage models. Hashin proposed a set of failure criteria for predicting failure of 

unidirectional composites based on each failure mode. 
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Tensile Fiber Mode: 

 

1)(
1 2

13
2

122

2

11 =++







σσ

σ

SX T

                

 

or  

                              (2.22) 

TX=11σ  

 

Compressive Fiber Mode: 

 

cX=11σ                    (2.23) 
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Compressive Matrix Mode: 

 

1)(
1

)(
1

)(
4

1
)(1

2

1

2

13

2

122

3322

2

232

2
3322233222

=++

−++++







−








σσ

σσσσσσσ

S

SSS

Y

Y TTT

c

c           (2.25) 

 

where; 
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σ11 is the normal stress in the direction of the fibers of the lamina.  

 

σ22, σ33 are the normal stresses in the transverse directions to the fibers of the 

lamina.  

 

σ23, σ13, σ12 are the shear stresses in the lamina. 

  

XT is the tensile strength of the fibers.  

 

XC is the compressive strength of the fibers.  

 

YT is the tensile strength in the transverse direction of the fibers.  

 

YC is the compression strength in the transverse direction of the fibers.  

 

S is the shear strength, in the 1-2 plane of the lamina.  

 

ST is the transverse shear strength in the 1-3 and 2-3 planes of the lamina.  
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CHAPTER THREE 

 

NUMERICAL STUDY 

 

3.1 Objective 

 

The objective of the numerical study is to determine the failure loads and failure 

modes of the composite plates considered in experimental analysis and compare the 

results with the each other. 

 

3.2 Explanation of the Numerical Study: 

 

The numerical studies have been carried out by LUSAS 13.6 finite element 

analysis software. All of the specimens with different pin-configurations have been 

modeled and analyzed so that the failure loads have been determined.  

 

Specimens modeled as a half model and symmetry boundary conditions were used 

to reduce the size of the model and calculation time. 

 

While modeling meshes were graded manually by specifying the number of 

elements on each of the boundary lines. (See Figure 3.1)  
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Figure 3.1 Modeling of the surfaces 

 

After creating the surfaces, they were swept through the depth of the plate to 

create a volume. Then the mesh dataset Composite Brick (HX16L) were assigned to 

the volume. (See Figure 3.2) 

 

Figure 3.2 Composite Brick (HX16L) meshes. 
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After defining the material properties of glass-epoxy composite material indicated 

in Table 4.1, the ply orientations and stacking sequence of the composite plate, the 

boundary conditions and distributed load were defined.  

 

The first boundary condition was the bottom surface of the symmetrically half 

model. It was defined as supported on xz plane. 

 

The second boundary condition was the supporting face of the holes. These faces 

have been defined to support the load by cylindrical coordinates just like the bearing 

load, and they’ve been defined as fixed x direction support for the both holes. 

 

Finally a distributed load was defined to the loading direction (x) of the model and 

after defining the failure criteria values, the analyses were carried out as geometric 

non-linear. (See Figure 3.3 & Figure 3.4) 

 

Figure 3.3 Boundary conditions of the model. 
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Figure 3.4 Boundary conditions of the model. 

 

For the analyses, “geometric non-linear analyze method” and “Hashin Failure 

Criteria” were selected. 

 

For each analyzed pin-configuration, failure loads have been determined and the 

stress contours have been plotted. 
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CHAPTER FOUR 

 

EXPERIMENTAL STUDY 

 

4.1 Objective 

 

The objective of this research is to investigate the effect of failure behavior of 

multi-pinned-joint in glass-epoxy laminated composite plate. The experimental 

studies have been implemented as two set of tests. The purpose of the first set of test 

was to determine the material properties. The second set of was implemented to 

determine the “Failure Modes” and the “Failure Loads” of the laminates with 

different hole/pin combinations. 

 

4.2 Problem Statement and Experimental Details 

 

The configuration and loading studied in this research are shown in Figure 4.1 and 

Figure 4.2. A uniform tensile load P was applied to the test plate which was 

supported by 3 rigid pins with different arrangements. Load was parallel to the plate 

and symmetric with respect to the centerline so that it can not create bending 

moments about x, y, z axes. 

 

The laminates with stacking arrangements of [0/90/±45]S were selected to 

investigate. (The 0˚ direction in the stacking notation denotes the x-axis or 

longitudinal direction.) The fiber-volume fraction of the composite is approximately 

60%. The thickness of the material is 1.7 mm. 

 

The geometry of test specimens is symmetrical about the y axes. (See Fig. 4.1)
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The 45 different geometries were used so that a variety of failure modes and 

failure strength could be observed.  

 

 

 
Figure 4.1 Geometry of test plates with 3 circular hole 

 

The main parameters of the test plate can be described as follows: 

 

• L – The length of the plate 

• D – Hole / pin diameter 

• E – Edge distance, the distance from the center of the holes to the free 

edge. 

• F – Longitudinal hole distance 

• G – Transverse hole distance, the distance between the holes along the 

transverse axis 

• E/D – The ratio of ‘edge distance’ to ‘hole / pin diameter’, it has been 

varied as 1, 2, 3, 4, 5 in the study. 

• F/D – The ratio of ‘Longitudinal hole distance’ to ‘hole / pin diameter’, it 

has been varied as 2, 4, 6 in the study. 
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• G/D – The ratio of ‘Transverse hole distance’ to ‘hole / pin diameter’, it, 

has been varied as 3, 4, 5 in the study. 

 

There are, in general, three basic joint failure modes related to composite failure: 

net-tension, shear out and bearing, although, in practice, combinations of these 

failure modes are possible. Typical damages due to each mechanism are shown in 

Figure 4.2. Especially, the appearance of the net-tension failure is catastrophic, 

immediate and without warning. Therefore, the designer should choose optimal pin 

arrangements to avoid such catastrophic and immediate failure at structural elements 

in practical applications. (Okutan et al. 2001) 

 

Figure 4.2 Typical failure mechanisms of the pinned-joint 
configuration (Jones, 1999) 

 
 

4.3 Determination of Mechanical Properties 

 

The elasticity modulus in direction of the fibers, E1, and the Poisson’s ratio ν12 can 

be determined by means of tension tests on unidirectional coupons that instrumented 

with electric resistance strain gages, as shown in Figure 4.3. One of them was placed 

to the fiber direction and the other one in the matrix direction.  
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Figure 4.3 Test specimen for determination of E1 and ν12 

 

The specimen which has the dimensions 150 mm x 12 mm x 1.7 mm was loaded 

step by step up to rapture by tensile test machine. For all steps, P, ε1 and ε2 values 

were measured.  

 

Then, ν12 and E1 were calculated by using the equations (4.1) 

 

A

P
=1σ , 

1

2
12

ε

ε
υ −= ,

1

1
1

ε

σ
=E                  (4.1) 

 

The similar test was performed to determine E2. The specimen which has the 

dimensions 150 mm x 25.6 mm x 1.7 mm was loaded step by step to rapture by 

tensile test machine. For all steps, P, ε1 and ε2 values were measured. (Figure 4.4) 

 

Then, E2 was calculated by using the equations (4.2) 

 

A

P
=2σ , 

2

2
2

ε

σ
=E                    (4.2) 
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Figure 4.4 Test specimen for determination of E2 

 

To find Xt, a specimen which has the dimensions 300 mm x 12 mm x 1.7 mm was 

loaded step by step to rapture by tensile test machine. (Figure 4.5) It was calculated 

from the equation (4.3) 

 

A

P
X ult

t =                     (4.3) 

 

 

Figure 4.5 Longitudinal 
tension test 

 

The similar test method was used to determine Yt (Figure 4.6). The specimen 

dimensions were 300 mm x 25.6 mm x 1.7 mm. The Yt value was calculated by the 

equation (4.4). 
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A

P
Y ult

t =                     (4.4) 

 

 

 Figure 4.6 Transversal                                         
 tension test 

 

To find Xc, a specimen, which has the dimensions 7.5 mm x 1.7 mm and whose 

fiber direction coincides with the loading direction was taken and it was subjected to 

compressive loading (Fig.4.7). Xc was also calculated by dividing the ultimate force 

by the cross-sectional area of the specimen. (Equation (4.5)) 

 

A

P
X ult

c =                     (4.5) 

 
Figure 4.7 Longitudinal 
compression test 
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The similar test method was used to determine Yc. (Figure 4.8) The specimen 

dimensions were 7.5 mm x 1.7 mm. The value was calculated by the equation (4.6). 

 

A

P
Y ult

c =                     (4.6) 

 

 

Figure 4.8 Transversal       
compression test 

 

To define the shear modulus G12, a specimen whose principal axis was on 45° was 

taken and a strain gauge was stuck on loading direction of the lamina (Fig.4.9). The 

specimen was loaded step by step up to rapture by the test machine and G12 was 

calculated by measurement of the strain in the tensile direction εx. 

 

 
Figure 4.9 Shear Test 
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Iosipescu testing method was used to define the shear strength S (Fig.5.10). The 

dimensions of the specimen were chosen as; L=80 mm, h=20 mm, w=12 mm and 

ti=1.7 mm. A compression test was applied to the specimen. In failure, S was 

calculated from  

 

ct

P
S

i

max=                        (4.5) 

 

where Pmax  is the failure force.  

 

 

                                         (a) 
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                               (b) 

Figure 4.10. (a) Iosipescu test specimen, (b) Iosipescu test specimen and testing fixture 

 

The mechanical properties of glass/epoxy composite plate which were obtained 

from the experimental study have been given in Table 4.1. 

 

Table 4.1 Mechanical properties of glass/epoxy 

E1 

(GPa) 

E2 

(GPa) 

G12 

(GPa) 
ν12 

Xc 

(MPa) 

Yc 

(MPa) 

Xt 

(MPa) 

Yt 

(MPa) 

S 

(MPa) 

37.461 7.998 3.965 0.2725 223.37 109.01 686.77 73.88 78.59 

 

Experiments were carried out in tension mode with the tensile machine. The lower 

edge of the specimen clamped and loaded from the steel pins by stretching the 

specimens at a ratio 0.5 mm/mm (Figure 4.11). The load – pin displacement 

diagrams for all composite configurations were plotted. 
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Figure 4.11 Tensile test setup – test fixture (grey), 

test specimen (yellow), and rigid pins (green) 
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CHAPTER FIVE 

 

RESULTS AND DISCUSSION 

 

In this study, maximum failure load and failure mode parameters were 

investigated experimentally and numerically. The specimens for each pin 

configuration were tested for experimental study. For the numerical study all pin 

configurations were modeled and analyzed by LUSAS 13.6 finite element analysis 

software. Geometric non-linear solution with Hashin failure criterion were selected 

for the numerical analysis. 

 

Failure load values and failure modes were investigated for three variables, E/D 

ratio (1, 2, 3, 4, 5), F/D ratio (2, 4, 6), G/D ratio (3, 4, 5). 

 

In the experimental study, load-displacement curves have been plotted and fixed 

E/D ratio-configurations were compared with each other respectively (Figure 5.1 to 

5.5). It was seen that curves are linear before the initial failure (elastic region).  

 

However, it was seen that the greater E/D ratio-configuration-specimens 

continued to carry the load up to 7 mm at nearly-constant load values. 

 

Load vs. Pin-displacement diagrams can be seen below in Figure 5.1 to Figure 5.2 

while; 

 

• Figure 5.1, 5.2, 5.3, 5.4 & 5.5 indicate the change of G/D ratio. 
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Figure 5.1 Load-Displacement curves of composite plates for E/D=1. (a) for F/D=2, (b) for 

F/D=4, (c)for F/D=6.    
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Figure 5.2 Load-Displacement curves of composite plates for E/D=2. (a) for F/D=2, (b) for  

F/D=4, (c) for F/D=6. 
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Figure 5.3 Load-Displacement curves of composite plates for E/D=3. (a) for F/D=2, (b) for  

F/D=4, (c) for F/D=6. 
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Figure 5.4 Load-Displacement curves of composite plates for E/D=4. (a) for F/D=2, (b) for  

F/D=4, (c) for F/D=6. 
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Figure 5.5 Load-Displacement curves of composite plates for E/D=5. (a) for F/D=2, (b) for  

F/D=4, (c) for F/D=6. 
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When we look at the failure modes, the lowest value of the E/D (E/D=1), have 

the combination of “Bearing” and “Shear-out” modes and also only  “Shear-out” 

mode. As known that these are not secured modes, in practice the ratio of E/D=1 

should not to be chosen. (Table 5.1) 

 

At the same time, E/D=2 versions of the arrangements F/D=4, G/D=3 and 

F/D=4, G/D=4 have the failure mode of “Shear-out”, and the arrangement of 

F/D=4, G/D=5 and F/D=6, G/D=4 have the failure mode of “Bearing” and “Shear-

out”, respectively. Although the configuration E/D=4, F/D=2, G/D=4 has the 

failure mode of “Shear-out”. 

 

The remaining configurations have the “Bearing” mode, which is the most 

secured failure mode. 

 

If we focused on the failure load values, these observations below can be 

determined: 

 

The laminates that have the value of E/D=1 are the weakest configurations. 

 

However, the configuration E/D=4, F/D=6, G/D=3 is the strongest and the most 

secured laminate. 
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Table 5.1 Results & comparisons of experimental with numerical failure loads and 

failure modes of the composite material (E/D=2) 

(B = bearing mode, S = shear-out mode) 

Failure Load (N) Failure Mode 
  

Experimental Numerical Exp. Num. 

G / D = 3 4369 3200 S S 

G / D = 4 4097 3800 S S F / D = 2 
G / D = 5 4184 3406 S S 

G / D = 3 3700 2834 B-S B-S 

G / D = 4 3825 3206 B-S S F / D = 4 
G / D = 5 3999 2988 B-S B 

G / D = 3 4347 2544 S B 

G / D = 4 4676 2684 S B 

E
 / 

D
 =

 1
 

F / D = 6 
G / D = 5 3506 2713 B-S B 

 

 

Table 5.2 Results & comparisons of experimental with numerical failure loads and 

failure modes of the composite material (E/D=2) 

(B = bearing mode, S = shear-out mode) 

Failure Load (N) Failure Mode 
  

Experimental Numerical Exp. Num. 

G / D = 3 5465 3838 B S 

G / D = 4 6126 4500 B S F / D = 2 
G / D = 5 5256 4669 B S 

G / D = 3 6729 3123 S B-S 

G / D = 4 6620 3522 S S F / D = 4 
G / D = 5 5697 3806 B-S S 

G / D = 3 6790 2728 B B 

G / D = 4 5918 2945 B-S B 

E
 / 

D
 =

 2
 

F / D = 6 
G / D = 5 6002 3016 B B 
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Table 5.3 Results & comparisons of experimental with numerical failure loads and 

failure modes of the composite material (E/D=3) 

(B = bearing mode, S = shear-out mode) 

Failure Load (N) Failure Mode 
  

Experimental Numerical Exp. Num. 

G / D = 3 4712 3838 B S 

G / D = 4 4816 4578 B S F / D = 2 
G / D = 5 5008 4568 B S 

G / D = 3 6233 3169 B B 

G / D = 4 6246 3565 B S F / D = 4 
G / D = 5 6273 4188 B S 

G / D = 3 6384 2749 B B 

G / D = 4 6168 2988 B B 

E
 / 

D
 =

 3
 

F / D = 6 
G / D = 5 6277 3063 B B 

 

 

Table 5.4 Results & comparisons of experimental with numerical failure loads and 

failure modes of the composite material (E/D=4) 

(B = bearing mode, S = shear-out mode) 

Failure Load (N) Failure Mode 
  

Experimental Numerical Exp. Num. 

G / D = 3 5570 3877 B B 

G / D = 4 5557 4514 B-S S F / D = 2 
G / D = 5 5591 4500 B S 

G / D = 3 5956 3175 B B 

G / D = 4 6120 3443 B B F / D = 4 
G / D = 5 5588 4182 B S 

G / D = 3 7120 2763 B B 

G / D = 4 6350 3342 B S 

E
 / 

D
 =

 4
 

F / D = 6 
G / D = 5 5927 3319 B S 
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Table 5.5 Results & comparisons of experimental with numerical failure loads and 

failure modes of the composite material (E/D=5) 

(B = bearing mode, S = shear-out mode) 

Failure Load (N) Failure Mode 
  

Experimental Numerical Exp. Num. 

G / D = 3 5642 4075 B B-S 

G / D = 4 5894 4550 B S F / D = 2 
G / D = 5 5730 4300 B B 

G / D = 3 6820 3180 B B 

G / D = 4 5867 3575 B S F / D = 4 
G / D = 5 5814 3534 B B 

G / D = 3 6230 2769 B B 

G / D = 4 6206 3319 B S 

E
 / 

D
 =

 5
 

F / D = 6 
G / D = 5 6164 2698 B B 

 

“Failure Load” vs. “Hole Ratio” diagrams can be seen below in Figure 5.7 to 

5.15 while; 

 

• Figure 5.7 (a to c) indicates the experimental results of the effect of F/D 

ratio on the failure load while G/D changes 

• Figure 5.8 (a to e) indicates the experimental results of the effect of 

G/D ratio on the failure load while E/D changes 

• Figure 5.9 (a to c) indicates the numerical results of the effect of F/D 

ratio on the failure load while G/D changes 

• Figure 5.10 (a to e) indicates the numerical results of the effect of G/D 

ratio on the failure load while E/D changes 

• Figure 5.11, 5.12, 5.13, 5.14 & 5.15 indicate the experimental & 

numerical failure load values of the whole versions while E/D changes 

 

When we focused on the results figure by figure these comments below can be 

written; 
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At G/D=3 in experimental results, for E/D=2 and E/D=5 the failure load values 

are nearly the same for each F/D. In addition, the maximum value occurred at the 

configuration of E/D=4, F/D=6. And also E/D=1 ratio has the weakest failure load 

values for each F/D. (Fig. 5.7.a) 

 

At G/D=4 in experimental results, for E/D=4 and E/D=5 there are no 

remarkable changes of the failure load values for each F/D. And E/D=1 ratio has 

the lowest failure load values as the configuration of E/D=1 at G/D=3. (Fig. 5.7.b) 

 

At G/D=5 in experimental results, for E/D=2, E/D=4 and E/D=5 there are no 

remarkable changes of the failure load values while F/D changes. For E/D=3, 

failure load values are linear for F/D=4 and F/D=6. And also E/D=1 ratio has the 

lowest failure load values as the configuration of G/D=3 and G/D=4. (Fig. 5.7.c) 

 

So we can say that when we keep the G/D ratio constant, E/D=1 ratio has the 

lowest failure load values for each F/D. 
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Figure 5.7 The experimental results of the effect of F/D ratio on the failure load (Change of 

G/D     ratio, (a) for G/D=3, (b) for G/D=4, (c) for G/D=5) 

 

At E/D=1 in experimental results, for F/D=2 failure load values are nearly same 

for G/D=4 and G/D=5. For F/D=4 failure loads are linear for each F/D. For F/D=6 

failure loads are nearly same for G/D=3 and G/D=4. (Fig. 5.8.a) 

 

At E/D=2 in experimental results, F/D=2 failure load values are nearly same for 

G/D=4 and G/D=5 and maximum failure load value in G/D=4 ratio. F/D=4 failure 

load values are nearly same for G/D=3 and G/D=4. (Fig. 5.8.b) 
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At E/D=3 in experimental results, the failure loads goes linearly for each F/D. 

For F/D=4 and F/D=6, failure load values are same. And also F/D=2 has the 

lowest failure load values. (Fig. 5.8.c)  

 

At E/D=4 in experimental results, F/D=2 failure load values are same for each 

G/D. F/D=6 failure values decrease linearly. (Fig. 5.8.d)  

 

At E/D=5 in experimental results, for F/D=2 and F/D=6 failure loads are on 

linear line. And also F/D=2 and F/D=4 have the same failure load values at G/D=4 

and G/D=5. (Fig. 5.8.e) 
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Figure 5.8 The experimental results of the effect of G/D ratio on the failure load (Change of 

E/D ratio, (a) for E/D=1, (b) for E/D=2, (c) for E/D=3, (d) for E/D=4, (e) for E/D=5) 
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At experimental result of E/D=1, the minimum failure load value occurred at 

maximum values of G/D and F/Ds. The failure load tended to stay linearly while 

G/D increase for F/D=2 and F/D=4. (Fig.5.11.a) 

 

At numerical result of E/D=1, the maximum failure load occurred at G/D=4 as 

same as experimental results but in opposition to experimental result at the 

minimum value of  F/D=2. (Fig.5.11.b) 

 

At experimental result of E/D=2, the minimum failure load value occurred at 

the maximum value of G/D and the minimum value of F/Ds. The maximum failure 

load value occurred at minimum value of G/D and maximum value of F/D. The 

failure load tended to decrease while G/D increased and F/D decreased. 

(Fig.5.12.a) 

 

At numerical result of E/D=2, in opposition to experimental values the 

minimum failure load value occurred at the minimum value of G/D and the 

maximum value of F/Ds. The maximum failure load value occurred at maximum 

value of G/D and minimum value of F/D. The failure load tended to decrease 

while G/D decreased and F/D increased. (Fig.5.12.b) 

At experimental result of E/D=3, the minimum failure load value occurred at 

three region of min F/D. The maximum failure load value occurred at minimum 

value of G/D and maximum value of F/D. The failure load tended to keep its 

linearity for F/D=4 and F/D=6.  (Fig.5.13.a) 

 

At numerical result of E/D=3, the minimum failure load value occurred at two 

region of max F/D. The maximum failure load value occurred at minimum value 

of minimum value of F/D.  (Fig.5.13.b) 
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At experimental result of E/D=4, the minimum failure load value occurred at 

four regions, the three of them at the minimum values of F/Ds, the other one is at 

the configuration of F/D=4, G/D=5. The maximum failure load value occurred at 

minimum value of G/D and maximum value of F/D. The failure load tended to 

decrease while G/D increased and F/D decreased.  (Fig.5.14.a) 

 

At numerical result of E/D=4, the minimum failure load value occurred at the 

minimum values of G/D and the maximum values of F/Ds. The maximum failure 

load value occurred at maximum value of G/D and minimum value of F/D. The 

failure load tended to increase while G/D and F/D increased.  (Fig.5.14.b) 

 

At experimental result of E/D=5, the maximum failure load value occurred at 

F/D=4, G/D=3. For F/D=2 and F/D=4, except this maximum failure load value, 

the other failure load values stay linearly as minimum failure load values.. And 

also the failure load values belong to F/D=6 keep their linearity by themselves.  

(Fig.5.15.a) 

 

At numerical result of E/D=5, the maximum failure load value occurred at 

F/D=2,  G/D=4. For F/D=4, the failure load values are same for G/D=4 and 

G/D=5. And also the minimum failure load value occurred at the maximum values 

of F/D. (Fig.5.15.b) 
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Figure 5.9 The numerical results of the effect of F/D ratio on the failure load. (Change of G/D            

ratio, (a) for G/D=3, (b) for G/D=4, (c) for G/D=5) 
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Figure 5.10 The numerical results of the effect of G/D ratio on the failure load (Change 

of E/D ratio, (a) for E/D=1, (b) for E/D=2, (c) for E/D=3, (d) for E/D=4, (e) for E/D=5) 
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   Figure 5.11 The experimental & numerical results of the composite plates with E/D=1. (a) for 

experimental results and (b) for numerical results. 
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   Figure 5.12 The experimental & numerical results of the composite plates with E/D=2. (a) for 

experimental results and (b) for numerical results. 
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   Figure 5.13 The experimental & numerical results of the composite plates with E/D=3. (a) for 

experimental results and (b) for numerical results. 
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(b) 

   Figure 5.14 The experimental & numerical results of the composite plates with E/D=4. (a) for 

experimental results and (b) for numerical results. 
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   Figure 5.15 The experimental & numerical results of the composite plates with E/D=5. (a) for 

experimental results and (b) for numerical results. 

 

The contours below are the couple of samples of the numerical study. The red 

regions below indicate that failure occurs since the Hashin failure criteria values 

are greater than 1. 
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Figure 5.16 Numerical study - Hashin failure criteria of the configuration 

E/D=2,F/D=6,G/D=3 

(x indicates the region which failure has been occurred with respect to Hashin failure criteria, the 

failure mode is “Bearing”, failure load is 2728N) 

 
 

Figure 5.17 Numerical study - Hashin failure criteria of the configuration 

E/D=4,F/D=4,G/D=4 

(x indicates the region which failure has been occurred with respect to Hashin failure criteria, the 

 failure mode is “Bearing”, failure load is 3443 N) 
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Figure 5.18 Numerical study - Hashin failure criteria of the configuration 

E/D=5,F/D=2,G/D=5  

(x indicates the region which failure has been occurred with respect to Hashin failure criteria,  

the failure mode is “Bearing”, failure load is 4300 N) 

 
 
 

Figure 5.19 Numerical study - Hashin failure criteria of the configuration 

E/D=2,F/D=2,G/D=3 

(x indicates the region which failure has been occurred with respect to Hashin failure criteria,  

the failure mode is “Shear-Out”, failure load is 3838 N) 
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Figure 5.20 Numerical study - Hashin failure criteria of the configuration E/D=3,F/D=2,G/D=4 

(x indicates the region which failure has been occurred with respect to Hashin failure criteria,  

the failure mode is “Shear-Out”, failure load is 4578 N) 

 

Figure 5.21 Numerical study - Hashin failure criteria of the configuration 

E/D=4,F/D=2,G/D=4 

(x indicates the region which failure has been occurred with respect to Hashin failure criteria,  

the failure mode is “Shear-Out”, failure load is 4514 N) 
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Figure 5.22 Numerical study - Hashin failure criteria of the configuration 

E/D=2,F/D=4,G/D=3 

(x indicates the region which failure has been occurred with respect to Hashin failure criteria, 

the failure mode is “Bearing + Shear-Out”, failure load is 3123 N) 

 
 

 

Figure 5.23 Numerical study - Hashin failure criteria of the configuration E/D=5,F/D=2,G/D=3 

(x indicates the region which failure has been occurred with respect to Hashin failure criteria, the 

failure mode is “Bearing + Shear-Out”, failure load is 4075 N. 
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CHAPTER SIX 

 

CONCLUSIONS 

 

In this study, “failure load” and “failure mode” parameters were investigated 

experimentally and numerically. The specimens for each pin configuration were 

tested for experimental study. For the numerical study all pin configurations were 

modeled and analyzed by LUSAS 13.6 finite element analysis software. Geometric 

non-linear solution with Hashin failure criterion were selected for the numerical 

analysis. Failure load values and failure modes were investigated for three variables, 

E/D ratio (1,2,3,4,5), F/D ratio (2,4,6), G/D ratio (3,4,5). In both the experimental 

and numerical studies, “Load-Displacement” and “Failure Load-Hole Distance 

Ratio” curves have been plotted and compared with each other. 

 

It was seen that curves are linear before the initial failure (elastic region). It can be 

say that most of the specimens were reached the failure loads between the 

displacements of 1 and 3 mm.  

 

However, it was seen that the greater E/D ratio-configuration-specimens 

continued to carry the load up to7 mm at nearly-constant load values. 

 

When we look at the failure modes of all , the lowest value of the E/D (E/D=1), 

have the “Shear-out”  and the “Bearing + Shear-out” modes. And also some of the 

combinations of E/D=2 has the failure modes of “Shear-out” and the “Bearing + 

Shear-out” modes. As known that these are not secured modes, in practice the ratio 

of E/D=1 and E/D=2 should not to be chosen. 
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At the same time, for the version of the arrangement E/D=4, F/D=2, G/D=8 the 

same failure mode “Bearing + Shear-out”, occurred. 

The remaining configurations had the “Bearing” mode, which is the most secured 

failure mode. 

 

In experimental results, it was seen that the failure load tend to increase while the 

E/D and F/D ratios increase. So the laminates which have the higher values of E/D 

and F/D ratios should be chosen. But this rule is not valid for G/D ratio. The failure 

load values are not depend on this ratio in this study. 

 

The configuration E/D=4, F/D=6, G/D=3 has the maximum failure load value and 

it is the strongest and the most secured laminate in experimental results. But in 

numerical results, this configuration has  very low failure load value. 

 

The configuration E/D=1, F/D=6, G/D=5 has the minimum failure load value and 

it is the weakest laminate in experimental results. 

 

In numerical analysis, the maximum failure load occurred at the version of E/D=2, 

F/D=2, G/D=5 and the minimum failure load value occurred at the version of  E/D= 

1, F/D=6, G/D=3. 
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