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ABSTRACT

In this work, we have studied the Kaneyoshi’s differential operator technique
in spin-1/2 Ising systems, i. e., the effective field theory ( EFT ) with correlations
on honeycomb, square and triangular lattices in which attention is focused on a
cluster comprising a central spin, labeled 0, and the z nearest-neighbor spins
with which it directly interacts. With the use of differential operator technique
and Ising spin identity, a new simple method is developed, by deriving a set of
linear equations for the spin-1/2 Ising systems with three coordination numbers z
(z = 3,4, 6) at calculating without the decoupling approximation of the canonical
ensemble averages < s; >, < $;5; >,< $;8;8; > and < §;85...5; > . By solving
numerically the set of linear equations derived individually for the Ising systems,
we have obtained the one, two and higher spin correlation functions as a function
of temperature. The anti-Curie point has not been observed in our systems.
Furthermore we have determined the phase diagrams of the spin-1/2 transverse

kT Q

Ising systems plotted in the (£F, %) space. The obtained critical values of %

and % are in good agreement with the theoretical studies in the literature.



OZET

Bu tezde Kaneyoshi’'nin diferansiyel operator teknigi (korelasyonlu efektif alan
teorisi) spin-1/2 sistemler icin, merkezi spin (0) ve etkilestigi z en yakin komsu
spinden olugan kiime goz ontine alinarak balpetegi, kare ve liggen 6rgiilere uygu-
land:. Diferansiyel operator teknigi ve Ising spin 6zdegligi kullanilarak gelistirilen
yeni yontemle spin-1/2 sistemler igin < s; >, < 5355 >, < 88,8 > ... < 8;85...8; >
ortalamalarini veren denklem sistemi decoupling yaklagimi kullanilmadan elde
edildi. Bu denklem sistemi ¢ozilerek birli, ikili ve daha ytksek korelasyon fonksiy-
onlarisicakhigin fonksiyonu olarak elde edildi. Yapilan ¢oziimler sonucu sistem-
lerde anti-Curie noktasina rastlanmadi. Bundan bagka spin-1/2 transverse Ising

sistemlerinin faz diyagramlar: (kTT, %) uzayinda ¢izildi. Elde edilen kritik degerlerin

% ve % literatiirdeki degerlerle uyum iginde oldugu goriildii.
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CHAPTER ONE
INTRODUCTION

The phase transition (critical phenomena) literature is replete with models : Ising
model, Heisenberg model, Potts model, Baxter model, F model, non-linear sigma
model, etc. The concept of model means that systems for which it is possible
(perhaps only in some limit or some dimension) to compute the partition function
exactly and that is the goal of the statistical mechanics. We specify the system
of interest as some sample region (), in which is defined the Hamiltonian Hyg.
The volume of the region is denoted as V(1) and the surface of the region (which
covers the region) is denoted as S(£2). Usually there will be boundary conditions
specified on the boundary of ). The system may exist as a continuum (e.g. fluid)

or on a lattice (e.g. magnet).

The Hamiltonian for the system can be written in a general form as follows;

Hq = =) K0, (1.0.1)

where K,, are the coupling constants and the ©, are the degrees of freedom
(or combinations of them) which are summed in the partition function. Coupling
constants are external parameters such as fields, exchange interaction parameters,
temperature... For example for Zeeman effect the coupling constant is external
field and corresponding degree of freedom is the magnetic moment at a lattice

site.

The partition function is given by

Z[{K,}] = Tre #Ha (1.0.2)



where B = 1/kgT (kg is the Boltzmann constant and T is the absolute temper-
ature). The operation Tr means sum over all degrees of freedom, or the sum
including every possible value of each degree of freedom. After performing this

operation Z depends only the coupling constants.

The free energy is defined by
Fg[[{n] = —kBTlong (1.0.3)

All information about the thermodynamics of the system can be extracted from

the free energy and its derivatives with respect to the coupling constants.

1.1 Thermodynamic limit

We know that from experiments, free energy is extensive for a large system, thus

for a finite system we can write that
Fo=V(Q)fs +S(Q)fs + O(L*?) (1.1.1)

where f, is the bulk free energy per unit volume (bulk free energy density) and
fs is the surface free energy per unit area, L is the characteristic linear dimension
of the system and d is the dimensionality of the system. The definitions are as

follows

Hl{EL} = 1imV(n)-+ooF—“Vu£—)”H
Al{ERY = limya)oe gt (1.1.2)
UK} = limsg)oe (Fn[{hn}l-;(fé?)fb[{xn}g

when the limits exist and independent of ). (The second is about the lattice
systems and there N(§2) is number of the lattice sites in the system). The limit
in these equations are known as thermodynamic limit. Some interesting notes

about the history of the thermodynamic limit can be found in Dresden, 1988

KSERUGRL LM WUBL LA
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The axes of the phase diagram are coupling constants (e.g. pressure, tempera-
ture). In the phase diagram, regions of analiticity of f[{/.}] are called phases.
The possible non-analyticities of f3[{K,}] are as follows

1. g}% is discontinuous. Then the transition is said to be first order phase

transition.
8f, . b 82%f, - . . .y . .
2. 37 is continuous but zz7* is discontinuous. Then the transition is said to
1] t
be continuous phase transition or second order phase transition.

1.2 S-1/2 Ising model

The system consist of the spins (i.e. particles which have non-zero magnetic
moments about the spin) on a lattice . A general form of the S-1/2 Ising model’s
Hamiltonian is

H= —ZH,'.SZ- - ZJZ'J‘SiSj - ZI{iijiSjSk - .. (1.2.1)

i ij ijk

where s; is the spin operator at a site ¢, H; is the magnetic field at a site ¢ and
Jijy Kijk,... are exchange interactions which couple two, three... spins. If one
neglects the three and higher spin interactions the model is named as nearest
neighbor Ising model, if one neglects the four and higher spin interactions the

model is named as next nearest Ising model etc.

Ising proposed his model in 1925 and solved it for a one dimensional sys-
tem(Ising, 1925). (He did not find any phase transition in one dimension. After
then the physicists say that the model has phase transition at absolute zero.) The
free energy of the two dimensional zero field Ising model was first obtained by On-
sager in 1944 (Onsager, 1944). He diagonalized the transfer matrix by irreducible
representations of a related matrix algebra. In 1949 his student Kaufman simpli-
fied this derivation by showing that the transfer matrix belongs to the group of
spinor operators (Kaufman, 1949). A completely different technique was discov-

ered by Kac and Ward in 1952 (Kac & Ward, 1952). They used combinatorial



arguments to write the partition function as a determinant which could be easily
evaluated. Hurst and Green (Hurst & Green, 1960) and Kasteleyn (Kasteleyn,
1963) also used combinatorial arguments. They wrote the partition function as a
Pfaffian. Another combinatorial solution was obtained by Vdovichenko in 1964
(Vdovichenko, 1964). After then in 1978 Baxter and Enting have shown that
the planar Ising models can be solved quite directly by using the star-triangle
relationas a reccurrence relation (Baxter & Enting, 1964). Recently in 2000 Lou
and Wu wrote the transfer matrices of the three dimensional Ising lattice in zero
external field but they could not evaluate it (Lou & Wu, 2000), and in 2000 Istrail
showed that the three dimensional Ising model cannot be solved analytically (Is-
trail, 2000). Until now physicists have not reached the exact solution of the two

dimensional Ising model with external field and three dimensional Ising model.

Besides all these, there have been some approximated solutions, series ex-
pansions and some computer simulations. In 1907 Weiss explained the magnetic
behavior of ferromagnetic domains with his mean molecular field theory. In 1934,
1935 Bragg and Williams developed the idea ”the work expended in transferring
an atom from an ordered position to a disordered one is directly proportional to
the degree of order prevailing in the system” and they introduced the concept of
long-range order (Bragg & Williams, 1934,Bragg & Williams, 1935). The mean
field approach leads naturally to the Bethe approximation (Bethe, 1935). In 1936
Peierls demonstrated that at a sufficiently low temperatures the Ising model in

two or three dimensions must exhibit a phase transition (Peierls, 1936) .

1.3 Analytic and symmetry properties of the

Ising model

The nearest neighbor Ising model’s Hamiltonian is

H = —.]ZS,‘Sj — HZS,’ (1.3.1)
iJ :



The magnetization per site is given by

1 0F
M= e (1.3.2)

The analytic properties of the Ising model’s free energy is as follows :

1. f<0

2. f(H,J,T,...) is continuous.

3. 0f/8T, 0f |0H,... exist almost everywhere.

4. The entropy per site S = —9f/0T > 0

5. 8f/0T is monotonically non-increasing with T i.e. 8%f/0T?* <0

6. 0f/0H is monotonically non-increasing with H i.e. 0*°f/0H? <0

The properties 5 and 6 imply that specific heat at constant magnetic field and

the isothermal susceptibility are greater than (or equal to) zero.

Cuy = -Tg%fle >0
iy (1.3.3)
XT = —3gslr >0

Proofs of the properties can be found in Goldenfeld, 1992

By inspection one can show that
> slsh= D s({-sp) (134)
{s;==%1} {s,-::!:l}
where ¢ is any function of the spin configuration. With this, two symmetry prop-

erties of the model is as follows

1. Time-reversal symmetry :

(1.3.1) implies that
H(H,J,{s:}) = H(-H, J,{-si}) (1.3.5)

T.C. TORSEROCRE T KURDLS
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by using (1.0.2) in (1.0.3) and with (1.3.5) one can show that
f(H,J,T) = f(-H,J,T) (1.3.6)
e.g. the free energy is even in H.

2. Sub-lattice symmetry :

One can divide the lattice into two sub-lattice A and B, where s{! are the

spins in the sub-lattice A and s? are the spins in the sub-lattice B such
that s#! are interact only with s? (and vice versa).Under no magnetic field

one can show that
H(0,—J,{s},{s7}) = H(0,J,{s},{~s7}) (1.3.7)
and it can be shown that this implies
F(0,J,T) = f(0,-J,T) (1.3.8)

this means that; in zero magnetic field, the ferromagnetic Ising model
(J > 0) and the anti-ferromagnetic Ising model (J < 0) have the same

thermodynamics.

The proofs can be found in Goldenfeld, 1992

1.4 Importance of thermodynamic limit and spon-

taneous symmetry breaking

Magnetization is given by

_ 10F(H)
M=-—C (1.4.1)
From the time reversal symmetry (F(H,J,T) = F(—H,J,T))
() = _LOFUD) __LOFCH) _ LORCH) o

N 0H = N 0H N 9(-H)



Thus

M(H)=-M(-H) (1.4.2)
At H = 0 we must have

M0)=-M(0)=0 (1.4.3)

This shows that the magnetization in zero external field must be zero!

But this is true only for finite systems. It fails in the thermodynamic limit,
because F(H) can develope a discontinuity in its first derivative 0F (H)/0H.
Indeed (1.3.7) does not imply (1.4.4) unless one makes the additional assumption
that F(H) is smooth at H = 0 and its left and right derivatives are equal. These

two conditions can be written as follows :

F(H)=F(0)+ O(H") (1.4.4)
where n > 1 and

However none of the properties of f(H) guarantee that smoothness. Instead

of (1.4.5) one can write f(H) as follows :
F(H)=F(0)—- M, |H|+O(H") (1.4.6)

where n > 1. (1.4.6) is not differentiable at H = 0 but still satisfy the condi-
tions of Ising model’s free energy which are given above. Thus for spontaneous

magnetization one can find

. 9f(H
My = limgooe =257 (1.4.7)
~M, = limy_o- -2

M, is a function of temperature. At zero temperature M, should be unity. As the
temperature rises towards T, the value of spontaneous magnetization is reduced,
as an increasingly greater fraction of spins are flipped by thermal fluctuations.

At T, the spontaneous magnetization has fallen to zero.

This set of phenomena are known as spontaneous symmetry breaking. T is

known as the critical point (Curie temperature).



1.5 Some important concepts

In phase transitions (or critical phenomena) the concept of order parameter is
very important. It is simply the measure of the order prevailing the system. For
example for ferromagnetic systems the magnetization defines the order of the
system then for ferromagnetic systems the order parameter is magnetization of
the system. For ferrimagnetic and antiferromagnetic systems the order param-
eter is sublattice magnetizations, for ferroelectric systems the order parameter
is electric polarization, for superfluid systems condensate wave function and the

superconductors ground state wave function.

The critical point is the point (temperature or some other coupling) for which

the system change its phase.

Critical point exponents (or simply critical exponents) is used to explain the
behaviours of the thermodynamic functions near the critical point. In general
the critical point exponents are defined as

3 = tim 2] (15.1)

t—0 In [¢]

where A is the critical point exponent about the thermodynamic function F()

and t = Tin is the reduced temperature. It is more usually written

F(t) ~ [t (1.5.2)

(1.5.2) explains the behaviour of the thermodynamic function F'(t) near the
critical point (7).

Another important concept is universality, it classifies the systems with three
parameters : the dimensionality of the space in which the system is embedded, the
number of the component of the order parameter of the system (dimensionality
of the order parameter) and the range of microscopic interactions in the system
(short ranged or long ranged) and universality asserts that the systems in same

universality class have same critical behaviour. Although the thermodynamics



of the systems depends on the specific values of the coupling constants in the
Hamiltonian, type of the lattice and everything other, the critical behaviour does

not depend on this details.

Thus when one can solve the system in one universality class and get the
critical exponents about that system, one can explain the critical behaviour of
the other systems in the same universality class and get the critical exponents

about them.

1.6 Extensions of the Ising model and impor-

tance of the critical phenomena

Extensions of the Ising models are very common. For example, one can study
the effects of disorder by assigning random values to J. When these values are
fixed the model is called spin glass. In the random-field Ising model (Gofman et
al., 1996), the values of the fields H; are assigned randomly at each site such that
the mean of H is zero. A particularly interesting model is the anisotropic next-
nearest-neighbor Ising model (ANNNI) (Bak & Boehm, 1980), for which the
nearest-neighbor interactions are ferromagnetic, but the next-nearest-neighbor
interactions are antiferromagnetic . Also of interest is the Blume-Emery-Giriffiths
model (Blume et al., 1971), which is a combination of a lattice gas and the spin
model. Here each site can have three values s; = 0, 1. This model was first used
to model liquid 3He —* He mixtures. In the g-state Potts model (Potts, 1952)
each site has one of the q values, and the interaction between two neighboring

sites is —J if the two sites have the same value; otherwise the interaction is zero.

The importance of the critical phenomena comes from the applications to
the other systems such as polymers, liquid crystals, lattice gauge theories, chaos
theory, percolation, fractals, disordered glassy systems, nonequilibrium driven

systems, hydrodynamics, self-organized systems and some social systems.



CHAPTER TWO
DIFFERENTIAL OPERATOR TECHNIQUE

2.1 Callen identity

The Hamiltonian of the S-1/2 Ising system is

H=-J) sis;—HY si (2.1.1)

<ig> ;

where J is the exchange interaction, s; is the z component of the spin operator at a
site 7, H is the external magneticfield, 8 = 1/kgT ,kp is the Boltzmann constant,
T is the absolute temperature and < ... > denotes the canonical ensemble average.
The first sum runs over the distinct pairs of spins and the second one runs over
N identical spins. The partition function and the average (expectation) value of

the spin variable at a site ¢ is

Z = Tre P (2.1.2)
1 —BH
< 8 >= ZTrsi.e (2.1.3)

here Tr means the sum over the accessible states of the system. The exact
relation for the average value of the spin variable can be derived from (2.1.3) and
(2.1.1).For this purpose , the Hamiltonian is separated into two parts (which are
commute with each other). One part is about the ¢ th site and the other part

does not depend on the site z.

H=H+H (2.1.4)
with
H = —s,.E; (2.1.5)
10
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where

Ei=J) sj+H (2.1.6)
J=1

E; can be treated as an operator expressing the local field at a site 7. Since the
Hamiltonian and its two parts are commute with each other (because [s;, s;] = 0

for i # j) (2.1.3) can be expressed as

1 a triys; exp(—BH;)
c>= = TpepH |16 2.1.7
<S> Z { re { trq) exp(—BH;) ( )

where tr) = E;ll is the trace associated with the variable at a site :. By

performing the partial trace
<8 > = %{Tre'ﬁH tanh(8E;) }
= < tanh(BE;) > (2.1.8)
This is the Callen identity (Callen, 1963). The derivation of (2.1.8) can be gen-

eralized as follows

< {fi}si >=< {f:} tanh(BE;) > (2.1.9)
where {f;} can be any function of Ising variables except the site ¢. Furthermore,
the above derivation of (2.1.8) can also be generalized to the spin-S Ising systems

then one obtains

< {f,} si>=85< {fz} Bs(ﬂEi) > (2.1.10)
where Bg(z) the Brillouin function
25 +1 25 +1 1 z
Bs(z) = 5g coth ( 55 :1:) ~ 55 coth (5?) (2.1.11)

(2.1.10) is the exact relation for the average magnetization of the Ising system.

But it is hard to evaluate this exact relation for the systems z = 3,4, 6, 10...

First approach to Callen identity was introduced by Matsudai and he noticed
the following exact relations which are valid for S — 1/2 systems (s; = =+1)
(Matsudai, 1973)

tanh(K's;) = As, A = tanh(K)
tanh(Ks; + Ks2) = B(s; + 1), B = > tanh(2K)
tanh(K'sy + Ksz 4+ Ks3) = Ci(s1 + sz + s3) + Ca(s15283),
C = i(tanh(3K) + tanh(K)),
)

4
C, = }(tanh(3K) — tanh(K)
(2.1.12)
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Similar relations can be expressed for higher number of spins. (But it is rather
difficult for the higher spin Ising systems). Instead of this, in 1979 Honmura and
Kaneyoshi introduced the differential operator technique and with this technique

they easily achieved this relations. (Honmura & Kaneyoshi, 1979)

2.2 Differential operator technique

The exponential differential operator operates on the function of z and it gives;
eV f(z) = f(z + a) (2.2.1)

where a is a constant, V = 0/0z is the differential operator and f(z) is an
arbitrary function of z. This can be seen with expanding the exponential term

in a Taylor series
eV f(z) = [l+aV+§Vz+...]f(m) = f(:c)+an(a:)+;—jV2f(m)+... = f(z+a).
Thus, the (2.1.9)and (2.1.10) can be written in a new form by using (2.2.1)

< {fi} si >=< {f;} tanh(BE;) >=< {f;} €%V tanh(Bz)|s=0 > (2.2.2)

< {fz} Sf >=5< {fz} Bs(ﬁEi) >=5< {fz} eE‘VBs(,B:E)lz._.o > (2.2.3)

Since the functions in the ensemble average are independent of this average, they

can go outside the ensemble average bracket
<{fi} si >=< {f;} %V > tanh(Bz)|s=0 (2.2.4)
<{f}si>= 85 < {fi} %Y > Bs(Bz)ls=o0 (2.2.5)
In general (2.2.4) and (2.2.5) can be written as
<A{fi} si >=<{£i} ¥V > f(@)lu=o (2.2.6)

(2.2.6) is the fundamental relation of the differential operator technique and this
is an exact relation for the system. f(z) may be given by (Jiang et al., 2000);

f(z) = _m—l_ {Z < ¢nlS7|pn > eXP(IB’\n)} (2.2.7)
Z=:1 exp(8An)

nx=1
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where A, are the eigenvalues of —H; and ¢,, are their corresponding eigenvectors.
H; is the Hamiltonian of the ¢ th spin (which includes the terms containing 7
th spin) on the lattice. If one wants to compute the average of the different
component of the spin ¢ then one must change S7 in (2.2.7) to that component’s
matrix representation.Thus f(z) depends on the system as well as the fields

acting on the system.

Average magnetizations, critical temperatures, internal energies, susceptibili-
ties and specific heats can be computed with the differential operator technique
and then one can gain the phase diagrams of the different systems. (2.2.6) is an
exact relation for the Ising system but for evaluating (2.2.6) one needs to make
some approximations, then it gives an approximate solutions for the system.
With these approximations, (2.2.6) can give MFA and Zernike approximation’s
results. (Kaneyoshi, 1993). Besides this, from (2.2.6) one can gain the results
which are same as the Bethe - Pierls approximation’s results (which is the best
approximation for the Ising systems as far as we know). But although to apply
Bethe-Pierls approximation technique to higher spin Ising systems is difficult,
it is rather simple to apply differential operator technique to higher spin Ising
systems. (2.2.6) can evaluate with the expansion of the exponential differential
operator in terms of the hyperbolic trigonometric functions. For instance for
S-1/2 and s-1 Ising system, the exponential differential operator can be written

by using Van der Waerden identity respectively (a is an arbitrary constant)

e* = cosh(a) + s;sinh(a), s; =1

(2.2.8)
e® = (s;)?cosh(a)+ s;sinh(a) +1 — (s;)2, s; = £1,0

and for higher spin Ising systems these identities become more complex and one

needs to use the approximated Van der Waerden identity. (Tucker, 1994)
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2.3 Spin-s systems

We can take any spin (sg) and it’s z nearest neighbors (ss5) in the system and
1% g

form a cluster. From (2.2.6) we get for the central spin in the cluster
< {fo} so >=< {fo}*V > f(z)|e=o (2.3.1)
and for the perimeter spin in the cluster

< {fs}ss >=<{fs} "V > f()]e=0 (2.3.2)

Here By = J is; and B = J Zz:.s,gﬂ- where z is the number of the nearest
neighbor spinz=iln the lattice, { f,gj}—ils any function of the spin variable except ss
and {fo} is any function of the spin variable except so. Instead of putting the
interactions of the perimeter spin’s nearest neighbor spins in the (2.3.2) one can
treat this interactions as an effective field. Thus we have two interactions of the
perimeter spin in the (2.3.2); one is the interaction of the perimeter spin with

the central spin and the other is the interaction of the perimeter spin with the

neighbor spins outside the cluster. The latter is treated with an effective field

(7)

By=J) 8545 =Jso+J Y ss4j =Jso+ (2~ 1)h (2.3.3)
Jj=1 7=1
i#—d

where h is the effective field per perimeter spin.

If we insert (2.3.3) in (2.3.2) and Ep in (2.3.1) we get the following equations

for the central and the perimeter spin’s average magnetizations :

I ss V
<{fo}so> = < {fo}e = > f(z)|s=0

=<{fo} [[¢** ¥ > f(2)ls=o0 (2.3.4)
é=1
<{fs}ss> = < {fs}el™rEDNY 5 f(2)],00
=< {fs} e’V > f(z + a)|s=0 (2.3.5)

where a = (z — 1)h. These equations are valid for spin-S Ising systems.
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2.4 S-1/2 systems

With (2.2.8) for S-1/2 systems, (2.3.4) and (2.3.5) becomes

<{fo}so> = <{fo} H [cosh(JV) + sssinh(JV)] > f(2)|z=0 (2.4.1)
é=1

<A{fs}ss > = < {fs}[cosh(JV) + sosinh(JV)] > f(z + &)|s=0 (2.4.2)

With {fs} =1 and {fo} = 1 we can get < sp > and < s; > which are the average

magnetizations of the central spin and the perimeter spin in our cluster.

<sp> = < f_[[cosh(JV) + s5sinh(JV)] > f(2)]z=o0 (2.4.3)
é=1

<85> = <[cosh(JV)+ sosinh(JV)] > f(z + a)|z=0 (2.4.4)

The average magnetizations of the perimeter spins in the cluster (s5) can be
considered wholly equal to each other. Because their average magnetization

equations (2.4.4) are the same.
<8 >=< 53 >=< 83 >= ... =< §,; > (2.4.5)
From (2.4.4) one can arrive the perimeter spin’s average magnetization

<s5> = [cosh(JV)]|f(z + a)le=ot < 50 > [sinh(JV)]f(z + a)|s=0

<85> = a3+a; <8 > (2.4.6)

where

a; = [cosh(JV)]f(z + a)|z=0
az = [sinh(JV)]f(z + @)|z=0 (2.4.7)

Here f(z) may vary from one S-1/2 system to other and it depends on the system
as well as the fields acting on the system (magnetic field, transverse field, etc...)

since one can write cosh(JV) and sinh(JV) in terms of the exp(JV)

cosh(JV) = -;—(ejv+e”)
sinh(JV) = %(er—eJV)

T.C YUKSE Yo
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then with (2.2.1)
= 1 J -J
a; = 3lf(e+J)-fla=J)]
One trick for evaluating (2.4.3) is the decoupling approximation. When (2.4.3)

is expanded for any z, the terms like < s18383... > can be written as

< 518383...8; >=< 8] >< 53 >< 853> ... < 5, > (2.4.9)
For S-1/2 Ising system s = s5 = ... = s2” = 1 and from this s = s = ... =

s2"*t1 = gy where n is the positive integer.(i.e. the odd powers of the central spin
operator is equal to central spin operator and the even powers of the central spin

operator is equal to 1 ).

Since (2.4.5) is valid for all S-1/2 Ising systems with decoupling approximation
(2.4.9), (2.4.3) can be written as follows

<sp> = < [cosh(JV)+ sgsinh(JV)]? > f(z)|s=0
<s> = (i) < 8§ >" sinh"(JV) cosh®* " (JV) f(z)|z=0  (2.4.10)

For z = 3,4, 6 central spin average magnetizations can be obtained by (2.4.10)
by choosing only the odd operators in (2.4.10) (Since f(z) is odd in z, only when

odd operators act on it gives results different from zero)

<so>=3< s> K+ < s3> Kay (2.4.11)

for z=3
<so>=4<s5>Ky+4<s3> Ky (2.4.12)

for z=4
<so>=6<s55> Kg1 +20 < 53> Koz +6 < 53 > Kes (2.4.13)

forz=6
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The coefficients for z = 3,4, 6

K31 = sinh(JV)cosh?(JV)f(2)]e=o

K3, = sinh®(JV)f(z)|s=0

Ky = sinh(JV)cosh®(JV)f(2)|z=0

Ky = sinh®(JV)cosh(JV)f(z)|z=0 (2.4.14)
Ke = sinh(JV)cosh®(JV)f(z)|e=0

Ke; = sinh3(JV)cosh®(JV)f(z)]s=0

Kez = sinh®(JV) cosh(JV)f(z)|s=0

With inserting (2.4.6) in the equations (2.4.11),(2.4.12) and (2.4.13) we can
find the central spin average magnetizations for the honeycomb, square and tri-
angular lattices. Then for finding the unknown effective field (h) one can use the

self-consistency condition for the effective field theories

< 89 >=< 85 > (2.4.15)

Since we choose the central spin randomly in the system, we must use (2.4.15).

After performing decoupling approximation one can find

<s§> = ad+3a1a2+ < so > (3aZay + a) (2.4.16)
<s3> = a+10adal + 5ajai+ < so > (5alag + 10a2ad + af) o

By using (2.4.16) in (2.4.11), (2.4.12) and (2.4.13) one can obtain the central

spin average magnetizations for the z = 3,4, 6

3.[{31(11 -+ 3.[{320,1(1% + ngaf

< = 2.4.17
So > 1-— (3[(31(12 + 3.[{32(1%042 + ngag) ( )
forz=3
< s >= 4R41,a,1 + 12I{42a1a§ + 4]-{42(1,:13 . (24]_8)
1-— (4[&410,2 + 12[(420%(12 + 4.[{42(12)
for z =4
< 5o >= 6.[{61&1 + 20]‘.,62&:13 + 60]‘:62(11(13 + 6[«;’63af + 60.[{630,:13013 + 30[&’63a1a§

1- (61{61 as + 60.[{62(1%(12 + 20'[{62 a‘;’ + 30.[{63(1‘11(12 + 60.[1,63(1%0,% + 6]\,630,3)
(2.4.19)
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for z=6
On the other hand from (2.4.15) and (2.4.6)

<so>= “ (2.4.20)

Thus the fundamental equations for z = 3,4, 6 can be found by equating (2.4.17),
(2.4.18) and (2.4.19) to (2.4.20)

3[\’310,1 + 3[(32&1&% + I{32(1:1$ ax
: = - =0 (2.4.21)
1-— (3.[{31(12 + 3K32a] a9 + ngaz) 1-— ag
for z =
4[«;'41’(11 + ].2.[&’42(&1(1% + 4[{42(7,:13 _ a -0 (2422)
1-— (4]&41(12 + 121{42(1%02 -+ 4[(420,2) 1-— a9
forz=14

6.[1’61(11 + 20.[{62&:13 + 601{62(11(1% + 6.[(63(1? + 60]&,63(1?0/% —+ 301{63a1a‘21
1— (6K61a2 + 60.[{62(1%&2 + 20](62a% -+ 30.[{63(1‘11612 + 60.[&’630,%(1% + 6.[{63(13)

o~ (2.4.23)

1—‘(12

for z = 6.

From these equations one can obtain the dependence of the effective field to
the temperature and the fields acting on the system for the z = 3,4,6 and then
one can obtain magnetizations, susceptibilities, internal energies, specific heats
and phase diagrams for these lattices. Also by determining the functions of the
various S-1/2 Ising systems (under the external magnetic field, transverse field,
etc.) from (2.2.7), one can obtain for these system’s phase diagrams from (2.4.21),
(2.4.22) and (2.4.23) for z = 3,4, 6.

The coefficients in (2.4.21), (2.4.22), (2.4.23) can be calculated by writing
cosh(JV), sinh(JV) and their products (which are form the odd operators in
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(JV) in terms of the e’V and by (2.2.1)

a = j(flet+d)+fla-T)
a; = Yfla+J)- fla=J))
Ky = %(f(3J) (J))
I‘-’sz = %(f(&]) - 3f(J))
Ky = Yf(4J)+2f(2J)) (2.4.24)
Ky = l(f(‘”) 2f(2J))
Ka = g3(f(67)+4f(47) +5f(27))
Koo = 3(f(6J)—3f(2J]))
Kes = 35(f(67) —4f(4J) +5f(2]))
In the S-1/2 Ising systems without any external field the Hamiltonian is
H=-J) ssi,  si=xz=l
<i,j>
and the function is calculated with this Hamiltonian from (2.2.7)
f(z) = tanh(Bz) (2.4.25)

In the S-1/2 Ising systems with external magnetic field the Hamiltonian is
H=-J) sis;—H)Y s
<G> i

and the function is calculated with this Hamiltonian from (2.2.7)
f(z) = tanh(Bz + BH) (2.4.26)

In the S-1/2 Ising systems with transverse field the Hamiltonian is
SROSERD
<i,3> s

( where 0 is the transverse field) and the function is calculated with this Hamil-

tonian from (2.2.7)

f(z) = W/ i tanh(8vV? 4 z2) (2.4.27)
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2.5 Thermodynamic properties

The susceptibility (under the magnetic field H) is given by;

x(T) = @%{’—@ (2.5.1)

Once effective field (k) is calculated from (2.4.21) (or from (2.4.22), (2.4.23)
for z = 4, z = 6) then one can obtain from (2.4.20) the magnetization then with

(2.5.1) the susceptibility.

The internal energy of the system can be obtained from the thermodynamic

average of the Hamiltonian
U=<H> (2.5.2)
For the systems S-1/2 with the Hamiltonian (2.1.1)

U 1
N = —5 < Eis;>—H<s; > (2'5'3)

where N is the total number of spins in the system. < E;s; > for S-1/2 can be
calculated from (2.4.2) with {f;} = E; or it can be evaluated from this relation:

_ 9 yE;
< Eis; >= [ay <e >] o f(@)]e=0

Then one can obtain this term

< E;s; >= 2J(sinh(JV)+ < 5o > cosh(JV))(cosh(JV)
+ < 50 > sinh(JV))*"! f(z)]z=0 (2.5.4)

Then, the specific heat can be calculated by using

_w
-~ oT

Thus, for example with (2.4.21), (2.4.24), (2.4.26) and (2.4.20), (2.5.1), (2.5.3),
(2.5.4), (2.5.5) we have a complete description of the S-1/2 Ising system with an

o(T) (2.5.5)

external magnetic field (and similarly for the other systems we get the complete

description of the system via suitable equations)



CHAPTER THREE
SOLUTIONS WITHOUT DECOUPLING
APPROXIMATION

3.1 Method

Instead of making decoupling approximation in (2.4.3) we can expand it for cer-
tain z and evaluate the terms like < s;5283...5, > via (2.4.2) by choosing suitable
{fs} and the terms like < ss383...5,—1 > via (2.4.1) by choosing suitable {fo}
. (e-g. for < spsy > the {fo} = sy in (2.4.1)). In this way we can obtain the
equations of all the correlations in our system. Then we can solve this system
of equations and get the correlations and magnetizations as a function of tem-
perature, external fields and effective field. Similar to the given formulation in
section 2 we use here effective field concept and then (2.4.1) and (2.4.2) are our
fundamental relations.
<{fo}so> = <{fo} []lcosh(JV)+ sssinh(JV)] > f(z)lo=o (3.1.1)
d=1
<{fs}ss > = <{fs}[cosh(JV)+ sgsinh(JV)] > f(z + a)|s=0 (3.1.2)
with {fo} = 1 and {f5} = 1 (8.1.1) and (3.1.2) reduce to the central spin and
the perimeter spin magnetization equations
<s> = < H[cosh(JV) + s5sinh(JV)] > f(2)|z=0 (3.1.3)

=1

<85> = < [cosh(JV)+ spsinh(JV)] > f(z + @)|z=0 (3.1.4)
and with the effective field concept (3.1.4) reduces to

<sg>=a;+ay<sp> (3.1.5)

21 <UBRULD

eI ol
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Here a,, a; are given by (2.4.8). Also we can use (2.4.5) here since we use effective
field concept. When we obtain the central and the perimeter spin magnetizations
(by substituting the correlations in ) as a function of the temperature, external
fields and effective field, with (2.4.15) we can obtain the temperature dependence
of the effective field (for fixed external fields). Then we can get all magnetizations
and correlations as a function of the temperature and external fields acting on

our system.

For obtaining critical temperature, we solve the self-consistency equation un-
der the assumption that effective field is so small in the vicinity of the critical
temperature. We set the effective field to zero or so small value in the self-
consistency equation then we solve the equation under this assumption to get

the critical temperature for certain external fields.

3.2 Honeycomb lattice

For the S5-1/2 Ising system with z = 3 (honeycomb lattice) we start by expanding
(3.1.3) for z = 3. We have to choose only odd operators in this expansion (like
sinh(J V) cosh?(JV)) because when even operators operate on f(z) (which is odd

in z) they give zero. Thus we obtain
< §g >= I(31(< S51 >+ < 8>+ <353 >) + 11’32(< 818983 >) (321)

The coefficients K3; and K3, are given by (2.4.24). We know that the correlations
are depended only on the distance between the spins. Then we can say that in

our systems some of the correlations are equal to the other.

< 8¢81 > = < 8983 >=< §pS3 >
< 8189 > = << 8183 >=< 8383 > (322)
< 808182 > = < 8508183 >=< 508283 >

Also from the validity of (2.4.5) in this formulation

< 81 >=< 83 >=< 83 > (3.2.3)
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The perimeter spin - perimeter spin correlations can be obtained by (3.1.2) and
the central spin -perimeter spin correlations can be obtained by (3.1.1). Also they
depend on the other correlations (like central spin - perimeter spin - perimeter
spin) From (3.2.1) by using s? = 1 (this is valid for all S-1/2 Ising system because
s = =+1)

< 8§p81 >= I(31(1+ < 8189 > + < 8183 >) + 1(32 < 89283 > (324)

and from (3.1.5)
< 8189 >=a; < 89 > +a9 < 8383 > (325)

from (3.2.4) and (3.2.5)

< sps152> = Kzi(< 81>+ < 89>+ < 818283 >) + K3z < 83 > (3.2.6)

< 8189283 > = ay < 8383 > +ay < 508283 > (3.2.7)

With (3.1.5), (3.2.1), (3.2.4), (3.2.5), (3.2.6), (3.2.7) we have 6 equations and 6
unknowns (two of them are magnetizations, two of them are two spin correlations,

two of them are three spin correlations.)

Ty — 3[(31:772 - 1{32376 = 0
To — U227 = I
z3 — (2K31 + Ks3)z4 = Ks
(3.2.8)
T4 — AQ1Z2 — Q23 = 0
T5s — (2Ks1 + K3p)z2 — Kz1z6 = 0
T — A1T4 — AoTs = 0
where
r = < 8>
Zg = <8 >=< 8 >=< 83 >
I3 = < 8p81; >=< 8§08 >=< 80983 >
(3.2.9)
Ty = < 8182 >=< 8183 >=< 8283 >
Ty = < 808182 >=< 88183 >=< 808283 >
e = < 818283 >

This system of equations can be represented by matrix equation A.X = B, where

A is the coefficient matrix, X is the vector whose elements are unknowns and
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B is the vector whose elements are the coefficients of the right hand side of the

system
[ 1 _3Ka, 0 0 0 —Ks
—ag 1 0 0 0 0
A= 0 0 1 —(2K31 + I{gz) 0 0
0 —ay —a9 1 0 0
0 —(2.[&’31 + I(32) 0 0 1 —.[{31
0 0 0 —ai —agy 1
/ Z1 \ 0
zg a
K
X = T3 B= 31
T4 0
Zs 0

e \ 0 )

One can solve this system easily with LU decomposition Method, Kramers
Method or some other methods. We use Kramers Method to solve this system
with Maple V R5 and we get the magnetizations and correlations as a function of
temperature and external fields for various S-1/2 Ising systems by using (2.4.25),
(2.4.26), (2.4.27) for the S-1/2 Ising systems with no external field, with external

magnetic field and with transverse field.

For obtaining the temperature dependence of the effective field for the system
with z = 3 we have to solve the self consistency equation (2.4.15). For this we
have to obtain the central spin and the perimeter spin average magnetization
namely z; and z, from the system of equations (3.2.8). When we apply the
Kramer’s Rule to the matrix A in this section we can get all the unknowns in
terms of the coefficients. The coefficients are given by (2.4.24) and here we use

the function (2.4.25) for the Ising system with z = 3 without external field.

After these, the temperature dependence of the effective field per spin 1s given
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by

1.1 1 1 /s
Y= Zln(ie% —ef — 3 + 3 €5 — ded 4 2et +4ez — 3)z (3.2.10)

where y = h/J and z = kT/J.

From (3.2.10) we can get the diagram of effective field per spin versus temper-
ature. Since we have the effective field as a function of temperature from (3.2.10)
then we can get the central spin magnetization as a function of temperature and
we can draw the magnetization versus temperature curve. (Because we have

solved all unknowns with matrix A). See Figure (3.1)

J 1 T T 1
1,0 < 7
m, h
— magnetization
0,5 | —— effective field 7
0,0 ! '
0 1 2 3

4 5
ke T/J

Figure 3.1: Magnetizations and effective fields versus temperature for different

two dimensional lattices

As we can see from Figure (3.1) magnetization starts from 1 at low tempera-
tures then shows sharp decreasing at certain temperature which is a characteristic
property of the magnetic phase transition. Also we can see that the critical tem-

peratures T = 1.8205 for honeycomb lattice, T, = 2.8854 for square lattice and
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T, = 4.9327 for triangular lattice are same as the differential operator technique

(and Bethe approximation) results. One interesting point is we do not have anti-

t to differential operator technique in the phase diagrams.

Again with the Kramer’s rule we can get all correlations as a function of

effective field and temperature, then their diagrams. See Figure (3.2) and Figure

(3.3)

-
N

—_
o

=)
[«
T

o
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T

o
E-N
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Spin Correlation Functions <SS, >
o

o
(o]
o
-—
N -
w
Sl

Figure 3.2: Two spin correlation functions versus temperature for different two

dimensional lattices

We can see from Figure (3.2) that two spin correlation functions about the

central spin are decreasing with temperature. After the critical temperatures

this decreasing is slower than before the critical temperature. Since two spin

correlation function is about the internal energy of the system, this behavior
behavior of the internal energy. At low temperatures two spin cor-

explains the
i.e. the internal energy is minimum, thus

relation functions show a maximum (
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the system has perfect order). While the temperature increases the correlations
decreases for the three type of lattice. This means that the internal energy is in-
creasing towards zero (i.e. the order of the system decreasing). After the critical
temperature the increasing internal energy of the system is getting slower and
while the temperature goes to infinity the internal energy of the system goes to
zero. Also we can estimate from Figure (3.2) the behavior of the specific heat
since the specific heat is the derivative of the internal energy with respect to
temperature and the internal energy is the negative of the two spin correlation

functions. From this we can estimate the divergence-like behavior of the specific

heat at the critical temperature.

-

Spin Correlation Functions <§pS$4S5>

4 5
k. T/J

o
o

Figure 3.3: Three spin correlation functions versus temperature for different two

dimensional lattices
From Figure (3.3) firstly we see the different behavior of the three spin cor-

relation functions about the central spin from the two spin correlation function;

they go to the zero while the temperature goes to the critical temperature.
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From the formulation we can say that the higher correlations (e.g. four, five
spin correlation functions) are decreasing faster than the two and three spin

correlation functions respectively.

From (3.5.2) and (3.5.3)we can obtain the internal energy and specific heat
as a function of temperature. Finally we can get the temperature dependence of

the susceptibility from (3.5.1)

3.3 Square lattice

The calculations are same as the honeycomb lattice. We start by expanding

(3.1.3) for z =4 and take the odd operators only

< 8§ > = I{4l(<31>+<52>+<83>+<S4>)+
Ky(< 518283 > + < 818284 >

+ < 818384 > + < 598384 >) (331)

The coeflicients Ky and Kjp are given by (2.4.24) and the perimeter spin mag-
netization, from (3.1.5)

< sy >=a;+ay <S> (3.3.2)

ai, ay are given by (2.4.8). for z = 4 equal correlations are as follows

< 8g81 > = < 8083 >=< 5983 >=< 8084 >

< 8189 > = < 8183 >=< 8184 >=< 8383 >
= < 8984 >=< 8384 >

< 808182 > = < 808183 >=< 895184 >=< 808253 > (3.3.3)
= < 508384 >=< 508384 >

< 818383 > = < 818284 >=< 818384 >=< 8598334 >

< 80818283 > = < 80818284 >=< 80818384 >=< 50528384 >

Also from (2.4.5)
< 81 >=< 83 >=< 83 >=< 84 > (3.3.4)
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From (3.3.1) and (3.3.2), with the condition s? = 1 we can generate the equations

of correlations as follows

< 8981 > =

< 8182 > =

< 8§p8182 > =

< 818283 >

< 8p818283 > =

< 81828384 > =

K (14 < s152 >

+ < 5183 > + < 8184 >)+
Kyo(< 8383 > + < 8984 >

+ < 8384 > + < 51828384 >)
a1 < 83 > +ag < 3983 >
Kn(< s>+ <s2>

+ < 818283 > + < 818984 >)
+Hpp(< s3>+ < 84>

(3.3.5)

+ < 898384 > + < 518384 >)

a1 < 8383 > +ag < 8p8283 >

Ky (< 8183 > + < $283 >

+ < 8187 > + < 51528384 >)

+ Ky (14 < 8384 > + < 8284 > + < 5184 >)

a1 < 828384 > Fag < 538258384 >

With (3.3.1), (3.3.2) and (3.3.5) we have 8 equations and 8 unknowns as follows

21 — 4Kt — 4K4026 = 0

Ty — Az = a

z3 — 3( K41 + Kao)z4 — Kaozs = Ky

T4 — Q12 — G2T3 = 0 (3.3.6)
zs — 2(Kq1 + Ka2) — 2(K + Kg2)zs = 0

Te— A1L4 — ATy = 0

27 — 3(Ka1 + Ka2)za — Ky = Ky

Tg — Q1T6 — A2T7 = 0
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where
ry = < 8 >
Ty = <8 >=< 8§ >=< 83 >=< 84 >
I3 = < 8081 >=< 8382 >=< 8983 >=< 8084 >
Ty = < 8189 >=< 8183 >=< 8184 >=< 5983 >
< 8284 >=< 8384 > (3.3‘7)
Ty = < 8038182 >=< §p8183 >=< 8508184 >=< 808283 >
< 8p8284 >=< 8038384 >
Tg = < 818283 >=< 8518284 >=< 818354 >=< 828384 >
T7 = < 80818283 >=< 809515284 >=< 809515354 >=< 80825384 >
zg = < 51528384 >

Again we use the Kramer’s Method to solve this system with Maple V R5
and we get the magnetizations and correlations as a function of temperature and
external fields for various S-1/2 Ising systems by using (2.4.25), (2.4.26), (2.4.27)
for the S-1/2 Ising systems with no external field, with external magnetic field

and with transverse field.

By getting z; and z, (which are the central spin average magnetization and
the perimeter spin average magnetization) from (3.3.6) system of equations and
substituting them in (2.4.15) we can get the effective field as a function of tem-

perature

3 2 1 [ g‘ 4
e + 5\/63 —be= + ez — 4)z (3.3.8)

where y = h/J and z = kT/J. Since all magnetization, correlations and ther-

1.1
y= gln(ie% -

modynamic functions depend on the effective field and temperature we can get

these quantities as a function of temperature via (3.3.8)

The diagrams of the effective field, magnetization, correlations and thermody-
namic functions versus temperature can be obtained with the same procedures

as honeycomb lattice. See Figure (3.1), Figure (3.2) and Figure (3.3).
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3.4 Triangular lattice

Again we start by expanding (3.1.3) for z = 6 and take the odd operators only

< 8¢ >

< 81 >
< 8081 >

< 8189 >

Ka(<s1i>+<s3>+<s3>

+<s4>+ <85>+ < s6>)

+Ke2(< 518283 > + < 818284 > + < 818285 >

+ < 818286 > + < 518384 > + < 818385 >

+ < 515386 > + < 818455 > + < $15486 >

+ < 818586 > + < 5258354 > + < 528385 >

4 < 828386 > + < 828485 > + < 838486 >

+ < 898586 > + < 838485 > + < 838486 >

+ < 835586 > + < 845586 >)

+Ke3(< 5182838485 > + < 8182835486 >

+ < 8152835586 > -+ < 5182848556 >

+ < 8153848586 > + < 5253548556 >)

a1+ az < so > (3.4.1)
Ko (14 < 5189 > + < 5183 > + < s184 >

+ < 8185 > + < 5156 >)

+Kga(< 5283 > + < 8384 > + < 8985 >
+<5236>+<3334>+<3335>

+ < 8386 > + < 8485 > + < 8486 >

+ < 8586 > + < 81828354 > + < 81828355 >

+ < 81828386 > + < 81828485 > + < 51825456 >

+ < 851828586 > + < 51838485 > + < 81835456 > +
< 81838586 > + < 51343556 >)+

Ko3(< 52838485 > + < 92838486 > + < 52535586 >
+ < 52848556 > + < 83543586 > + < 515283548556 >)

a; < 89 > +ay < 8082 >



< 808182 >

< 818983 >

< 89518253 >

= I{Gl(< S > 4 < 81 > 4+ < 815283 >

+ < 818984 > + < 818285 > + < 818236 >)
+Ke(< s3>+ <s84>+ <85>+ < 56>

4 < 838384 > + < 828355 > + < $38386 >

4+ < 838485 > + < 898486 > + < S35586 >

+ < 818384 > + < 818385 > + < 818386 >

+ < 518485 > + < 815486 > + < 818556 >

+ < 5189838485 > 4 < $15283548¢ >

+ < 5152538586 > + < $1528485S6 >)

+Ke3(< 838485 > + < 838456 > + < 838586 >

+ < 845586 > + < 5253548586 > + < 5153548556 >)
a1 < 8983 > +ag < 898983 >

Ko (< 8283 > + < 8183 > + < 8182 >

+ < 51828384 > + < 81828385 > + < S$1825386 >)
+Ke2(1+ < 8354 > + < 8385 >

4+ < 8386 > + < 8984 > + < 8985 >

+ < 8986 > + < 82835485 > + < 82838436 >

+ < 898385386 > + < 8184 > + < 8185 >

+ < 5186 > + < 81838485 > + < 81835486 >

+ < 81538586 > + < 81828455 > + < §1898485 >
+ < 51528586 > + < $15253345556 >)

+Ke3(< 8485 > + < 8486 > + < S586 >

+ < 83848586 > + < 53845556 > + < 51545556 >)

< 81828384 > = a1 < 828384 > +ag < 50898384 >
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< 8051528384 >

< 81892838485 >

< 808182838485 >

< 815283845586 >

33

st(< 828384 > + < 818384 > + < 818284 >

+ < 818983 > + < 8189838485 > + < $182538456 >)
+ Koo (< 84 > 4 < 83 > + < 538485 >

+ < 838486 > + < 89 > + < 838455 >

+ < 828488 > + < 828385 > + < 828356 >

+ < 82835848586 > + < 81 > + < 818485 >

+ < 818486 > + < 818355 > + < 518386 >

+ < 8183848586 > + < 518285 > + < 818286 >

+ < 5152848586 > + < 8152838586 >)+

+Ke3(< 85 > + < 56> + < 548586 >

+ < 838586 > + < 828586 > + < 18586 >)

a1 < 82838485 > +aq9 < 8082835485 >

Ko1(< 83838485 > + < 81838485 > + < 81828485 >
+ < 31828385 > + < 81828354 > + < 815253848556 > )+
Koo (< 8485 > + < 8385 > + < 8384 >

+ < 83848586 > + < 8385 > + < 8284 >

+ < 83545586 > + < 8383 > + < 82835585 >

+ < 82835486 > + < 8185 > + < 85184 >

+ < 81848586 > + < 8183 > + < 81838585 >

+ < 81838486 > + < 8189 > + < 81895585 >

+ < 81828486 > + < 81898388 >)

+Ko3(1+ < 8586 > + < 8456 >

+ < 8386 > + < 8286 > + < 8156 >)

a1 < 8283548585 > +ag9 < 508253545556 >



With (3.4.1) 12 equations are as follows

z1 — 6Kg129 — 20K6326—

6Ks3210

Ty — QT

z3 — (5K + 10K )z4 — (10K65+
5Ke3)zs — Kesz1a

Ty — 179 — A2T3

z5 — (2K + 4Ke)z2 — (4 K61+
12Ky + 4Ke3)zs — (4K61 + 2K63) 10
Tg — A1T4 — A2Ts

z7 — (3Ke1 + 9Kes + 3Kes)z4—
(3K + 9Kez + 3Ke3)zs — Ke1212
Tg — Q1T — AT7

zg — 4Ke3zy — (4Ke1 + 12Kg2)z6—
(2Ke1 + 4Ke2)z10

T10 — G128 — A3Tg

211 — (10Ks2 + 5Ke3)z4 — (5 K61+
10K42)zs — Ke1212

Z12 — Q110 — Q2711

34
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I\’Gl

(3.4.2)

Kes



where

I
)

Z3

T4

Is

Zg

Z7

Zg

n

< 8¢ >

< 81 >=< 8§ >=<K 83 >=<K 84 >=< 85 >=< S >

< 8081 >=< 88z >=< 5083 >
< 80984 >=< 80985 >=< 8pSg >

< 8182 >=< 8183 >=< 8184 >=< 85185 >
< 818 >=< 8283 >=< 8284 >=< 5385 >

< 8§98 >=< 8384 >=< 83585 >=< 5386 >

< 8485 >=< 848 >=< 858¢ >

< 808182 >=< 8098183 >=< 805184 >
< 808185 >=< 835186 >=< 508283 >
< 808284 >=< 8038285 >=< 898285 >
< 808384 > =< 8§p8385 >=< 808356 >
< 808485 >=< 80348 >=< 508536 >
< 818983 >=< 818284 >=< 818985 >
< 818285 >=< 818354 >=< 818355 >
< 81838 > =< 818485 >=< 818486 >
< 81858 >=< 898384 >=< 528385 >
< 898385 >=< 898485 >=< 838456 >
< 898585 >=< 838485 >=< 838486 >

< 83858 >=< 848586 >

< 80818283 >=< 8509818284 >=< 850515285 >
< 80818286 >=< 80815384 >=< 8081355 >
< 80818386 > =< 80818485 >=< 80815456 >
< 808138586 >=< 83828384 >=< 50828385 >
< 80828386 > =< 80528485 >=< 509528486 >

< 8083858 >=< 80838455 >=< 8083543¢ >

< 80833586 > =< 80845556 >

< 81828384 >=< 51828385 >=< 81528386 >=< 81828485 >
< 8182848 >=< 81828586 >=< 81838455 >=< 51535486 >

< 81838585 >=< 851545586 >—=< 8283584355 >=< 825835486 >

< 82838586 >=< 852848585 >

35

(3.4.3)



Tg

Z10

T1

Z12

36

< 80851828384 >=< 8981328385 >=< 85051528386 >
= < 8081828485 >=< 808182848 >=< 8081523556 >
= < 8051838485 >=< 8081538455 >=< 5051535586 >
= < 808158485385 >=< 80982838485 >=< 80352538486 >

= < 80828385588 >=< 80852545536 >

< 8182838455 >=< 818283848 >=< 81825838535 >

< 8189848586 >=< 818354558 >—=< S$953845585 >

< 808182838485 >=< 80518283548 >=< 805152535536 >
< 8508182843586 >=< 8381533438538 > =< 805253845556 >

< 818283584858 >

Il

Similar to the honeycomb and square lattice systems, these equations can be

represented by matrices an solved for various systems.

With a similar procedure explained above (for honeycomb and square lattices)

we can get the magnetization, correlations and thermodynamic functions as a

function of temperature; with self-consistency condition (2.4.15) and substituting

1, o which are obtained by solving system of equations (3.4.2). Then we find

the effective field for triangular lattice

where

1
-\/2e? — 206 +2e= M + 10e* — 10e¥ M + 20e= — 12) z(3.4.4)

M=‘\/eg¢g—106%—156%+206%+4

See Figure (3.1), Figure (3.2) and Figure (3.3).
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3.5 Thermodynamic properties

Once the magnetization is obtained from the formulation as a function of the
effective field, temperature and the external fields acting on the system and
effective field as a function of the temperature and the external fields then we
can obtain the magnetization as a function of the temperature and the external
fields. Thus we can obtain the susceptibility as a function of temperature and
external fields with

x(T)= ———amézﬂ) (3.5.1)

The internal energy per spin of the system is from (2.5.2),
U/N = —J(< 8081 > + < SpSgy > +...+ < 88, >) - H(< 3o >) (352)

Indeed (3.5.2) is same as (2.5.3). But this time instead of using (2.5.4) we use the
correlations which are obtained by the Kramer’s Rule from the matrix A. Thus
we can obtain the internal energy per spin easily then we can obtain the specific

heat via

U

= o5 (3.5.3)

C(T)

Then we can obtain the complete description (i.e. the dependence of magne-
tization, correlations and thermodynamic functions as a function to the temper-

ature and eternal fields) of our system easily in this formulation.

3.6 Spin-1/2 Ising systems under the transverse

field

In the S-1/2 Ising systems with transverse field the Hamiltonian is
H=-J Z 578t — QZsf (3.6.1)
<ig> i
where () is the transverse field acting on the system and s7 is the spin operator’s

r component at a site 5. We have to solve the system of equations (3.2.8),
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(3.3.6), (3.4.2) with parameters (2.4.24) and function (2.4.27) for obtaining the
magnetization and correlations as a function of effective field, transverse field and
temperature of the honeycomb, square and triangular lattices respectively. Then
by solving the self-consistency equation (2.4.15) for fixed. transverse field we can
get the temperature dependence of the effective field. Thus we can determine the
temperature dependence of the magnetization and the correlations for certain

transverse field.

For determining the transverse field dependence of the critical temperature
we must solve the self-consistency equation (2.4.15) with the assumption that
the effective field is very small near the critical temperature. Then substituting
zero (or a small value) effective field in (2.4.15) we can get the equation with
two unknowns : one is the critical temperature, and the other is the transverse
field. Then by solving this equation for fixed transverse fields we can get the
critical temperatures in that transverse field. In this way we can plot the critical
temperature vs transverse field curves for various two dimensional lattices. See

Figure (3.4)

From Figure (3.4) we can see the behavior of the critical temperature while
the transverse field increases. It slowly decreases for small transverse fields then
at a certain transverse fields value the critical temperatures of the three dif-
ferent systems have sharp decreasing. Finally at critical transverse field values
three systems critical temperatures takes the value zero. Due to this interesting

behavior of the critical temperature, transverse Ising systems are important.

While the critical temperatures at a zero transverse field are same as the dif-
ferential operator technique’s, the critical values of the transverse fields are a
little higher than the differential operator technique’s. The values of the critical
transverse fields are %ﬁ = 1.3785 for honeycomb lattice, % = 2.4434 for square
lattice and Qf = 4.5005 for triangular lattice. These values can be compared
with the values which are obtained by some other methods : Mean field approx-
imation (£ = 3 for honeycomb lattice, & = 4 for square lattice and %— = 6 for

J J
triangular lattice), pair approximation (Ma & Ma, 1993)) (% = 2 for honeycomb
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Figure 3.4: The phase diagram of the spin-1/2 transverse Ising model plotted in

the (%, %) space.

lattice, % = 3 for square lattice and % = 5 for triangular lattice), effective field
theory (Tamura et al., 1984,Elkouraychi et al, 1995) (% = 1.8300 for honeycomb
lattice, Qf = 2.7520 for square lattice and -QJ—° = 4.7060 for triangular lattice),
differential operator technique (Kaneyoshi, 1999) (%2 = 1.2268 for honeycomb
lattice, % = 2.3934 for square lattice and 97% = 4.4813 for triangular lattice)

and the renormalization group technique (Santos, 1982) (% = 1.5552 for square

lattice)



CHAPTER FOUR
CONCLUSIONS

In this work, we have studied the effective field theory ( EFT ) with correlations
on honeycomb, square and triangular lattices in which attention is focused on a
cluster comprising a central spin, labeled 0, and the z nearest-neighbor spins with
which it directly interacts. With the use of differential operator technique and
Ising spin identity, we have derived individually a set of linear equations for the
spin-1/2 Ising systems with three coordination numbers z (z = 3,4,6). In the
spin-1/2 Ising model, solution of the set of linear equations derived individually
for the Ising systems gives the thermal variations of the spin correlation functions,

the parameter » and the magnetization m.

After defining the fundamental concepts of the phase transition (critical phe-
nomena) and summarizing the fundamental properties of the Ising model in
chapter one, in chapter two we give briefly the differential operator technique
(its sources, applications to different Ising systems, etc.). In chapter three we
have developed a simple new technique under the differential operator technique
where instead of using decoupling approximation (< s18283...8;, >=< 81 ><
Sy >< 83 > ... < 8, >) by calculating these correlations in differential operator
technique. In this way we get the system of equations about three, two dimen-
sional Ising systems which have 3,4, 6 number of nearest neighbor spins. Finally
we get the phase diagrams of the two dimensional systems under no magnetic

field and under the transverse field, in chapter three.

This new technique allows us to determine all correlations in our system,

thus we get easily the internal energy which consist of the average of two spin

40
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correlation functions for those systems under no magnetic field.

Although we do not use the decoupling approximation in our technique we
find critical temperatures which are the same as the Bethe approximation (and
Kaneyoshi’s differential operator technique also). But we can calculate the cor-
relations easily within our technique and then the internal energy. Thus, for
instance if we use Hamiltonian (1.2.1) by taking the first three terms which is
investigated by another method in Doczi-Reger & Hemmer, 1981 we can easily
get the two and three spin correlation functions then internal energy and specific
heat. Or we can investigate the Ising system with two spin interactions and four
spin interactions on the square lattice which is investigated in (Horiguchi, 1985)
by another method we can easily obtain the two and four spin correlations and

then internal energy and specific heat.

Besides our results about the critical temperatures (which are the same as the
Bethe approximation’s results) with our method only the critical values of %- are
a little higher than that of Kaneyoshi’s critical values (Kaneyoshi, 1999) in the

transverse field spin-1/2 Ising model.

On the other hand the anti-Curie point behaviour has not been observed in our
systems whereas those were usually observed in the Bethe-Peierls approximation

at low temperature.

The reasons of our critical values being as same as the Bethe approximation
results (which is the best approximation for Ising systems as far as we know) are
due to the effective field. Although we do not take the decoupling approximation
in our method we still work with an effective field concept. We choose a central
spin and calculate exactly the interactions of this central spin with its z neighbors,
but we do not calculate the neighbor spin’s interactions with spins which are

outside the cluster exactly.

This method can be applied to a large variety of Ising systems. But this

time we encounter some difficulties. The number of equations are increasing
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in spin-1 and higher spin systems. Besides this with higher spins we have to
use approximated Van der Waerden identity instead of (2.2.8). With increasing
number of equations we must solve the system of equations numerically. In this
thesis we have solved our system of equations for spin-1/2 systems analytically.
In a certain spin-s system the external fields do not effect the number of equations
but effect the function f(z). This time we may need some numerical calculations

instead of analytical calculations also.
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