A TWO-LEVEL MORPHOLOGICAL ANALYZER
FOR TURKISH LANGUAGE

by
Hiilya CETIN iICER

September, 2004
IZMIR



A TWO-LEVEL MORPHOLOGICAL ANALYZER
FOR TURKISH LANGUAGE

A Thesis Submitted to the
Graduate School of Natural and Applied Sciences of
Dokuz Eyliil University
In Partial Fulfillment of the Requirements for

the Degree of Master of Science in Computer Engineering

by
Hiilya CETIN iICER

September, 2004
iZMIiR



M.Sc THESIS EXAMINATION RESULT FORM

We certify that we have read the thesis, entitled “A TWO-LEVEL
MORPHOLOGICAL ANALYZER FOR TURKISH LANGUAGE” completed
by HULYA CETIN ICER under supervision of ASSIST PROF. DR. ADIL
ALPKOCAK and that in our opinion it is fully adequate, in scope and in quality, as

a thesis for the degree of Master of Science.

Assist. Prof. Dr. Adil ALPKOCAK

Supervisor

Prof. Dr. Tatyana YAKHNO Prof. Dr. Bahar KARAOGLAN

Committee Member Committee Member

Approved by the
Graduate School of Natural and Applied Sciences

Prof. Dr. Cahit HELVACI

Director



ACKNOWLEDGMENTS

I would like to thank my supervisor Assist. Prof. Dr. Adil Alpkocak for guidance,

suggestions. He gave me great ideas and concentrate about this thesis.

I also thank to the Committee Members for their efforts and advices.

I am grateful to my family, my father Necdet CETIN, my mother Ferhunde
CETIN and my brother Cem CETIN for their infinite moral support and help

throughout my life.

And I preserved my special thank to my husband Oguz Kaan ICER because of

supporting and motivating me on each step of thesis.

Hiilya Cetin ICER



ABSTRACT

In this study, a morphological analyzer tool is developed for Turkish language
based on two-level model of morphology. The tool analyses surface forms and
returns all alternations of stems, suffixes and their types by using the two-level rules,
dictionary and morpheme order rules based on nominal and verbal model of the
Turkish language. The project also represents a visual interface to help analyzing and
debugging process. All alternations of results and the steps of processes are shown as
tree structures in XML format as well as all required Turkish rule definitions, words

and suffixes.

Keywords: morphology, morphotactics, morphophonemics, two-level description

of morphology, natural language processing, Turkish morphology



OZET

Bu tez c¢alismasinda Tiirk¢e soOzciikleri iki diizeyli model kullanilarak
bicimbilimsel ¢ozlimleyebilen bir arag gelistirilmistir. Arag, girilen kelimenin olasi
tim govdelerini, tiim eklerini ve bunlarin tiirlerini bulur. Uygulama temek olarak
ikidlizeyli bicimbilimsel kurallari, sozligii ve eklerin siralanigini ifade eden
kurallart kullanir. Eklerin siralanisim1 ifade eden kurallar Tiirk¢e’nin isim ve fiil
modeline dayanmaktadir. Bu tez kelimeleri bi¢cimbilimsel olarak ¢6ziimleyebilen ve
bu c¢oziimlemenin adimlarini izlemeye olanak veren bir gorsel arabirimle
desteklenmistir. Uygulamanin kullandig1 tiim veriler yaninda, ¢oziimleme sonuglari

ve bu sonuglara ulasirken izlenen adimlar da XML formatinda saklanmustir.

Anahtar Soézciikler: bi¢cimbilim, bi¢cimdizim, bigimbirim degismeleri, iki diizeyli

bicimbilimsel model, dogal dil isleme, Tiirk¢e bicimbilim



CONTENTS
Page
COMLENES -ttt et e e e e e e e e e e e e e e e e e s e e e e s e e eaeseeeeaereeennaereeenaanaee Vv
LISE OF TADIES oot et e e e e e e e e e e e e e e e e e e e e e eaaaaaeas IX
LSt OF FIGUIES ...eeiiieiiieeeee ettt ettt ettt et e e st eneee XI
Chapter One

INTRODUCTION

1.1 RevVIEW Of REIAtEd WOTKS ..eeeeeeeeeeeee e 2

1.2 Thesis OrganizZation .........c.cccccceercieeeiieeeiieeeiieesireeesseeesseeesseesssseesssseessssessnnns 3



2.1

2.2

Chapter Two
MORPHOLOGICAL ANALY SIS

MOTPROLOZY ...ttt et ettt ettt et 5
2.1.1 Inflectional MOTPhOIOZY ......oevvieeiiiiiieiieit et 5
2.1.2 Derivational MorpholOgy ..........cccveviieiiiiniieiieieeieecie et 6
Two-Level Model of Morphology ........occvveviieiiiiiiieiiecieeeee e 7
2.2.1 History of Two-Level Morphology .........cccoevieiiieniiiiieienieeiieeieeieeee 9
2.2.2 The Complexity of Two-Level Morphology ..........cccecvevveecieenieeciiennnenns 10
2.2.3 TWO-Level RUIES .....c.cooiiiiiiiiiiiieieceeeeee e 10
2.2.4 Two-Level Rule NOtation ........cccceeceeviererienieniieieniesiceie e 12
2.2.4.1 COrreSPONAECICE ....cevveviieiiieiieeiiesieeiteeereeieeeteesreesseeseesnneeseans 13
2.2.4.2 RUIE OPETALOT ....vveeivieiiieiiieiieeieeeieeiee e eteesveesreesaeeseessneeseaens 13
2.2.4.2 RUlE OPEIatOr .....eveeeiiieeiiieeiieecieeeeieeesieeesveeesevee e e esaaeeeeaeeenes 13
2.2.4.3 Environment or CONEXL........cevuerriierieeniienieeieenieesiee s 14

2.2.5 RUIE TYPELS evieeiiieeiieeeiie ettt ettt e e s tee e e e eevee e saaee e aaeeenaeas 14
2.2.5.1 Complex ENVIronments ..........ccccveeeeueeeniiieeniiieeniieesreeesveeesveeenns 19
2.2.5.2 Rules COMPONENL ......ccoviriiriieiiriiiniieieeienieenteeteeie e 21
2.2.5.2.1 Alphabetic Characters .......c...cccccvveevervieneenenieenenniennes 21

2.2.5.2.2 Feasible Pairs .......ccccoocvevieiiiiinieniieeeceeeeee e 23

2.2.5.2.3 SUDSELS ..veeeeiieiieeieeiie et 24

2.2.6 Implementing Two-Level Rules as Finite State Machines ..................... 24
2.2.6.1 How Two-Level Rules Work .......ccccoceviiviiiiniiniiiiiicceeee, 25
2.2.6.2 How Finite State Machines Work ..........ccccoveeviiiiniiniencnnennn. 28
2.2.6.2.1 Rule Types as a Finite State Machine ..........c..ccccceuee.e. 30

2.2.6.2.2 Regular Expressions and Automata .........c..cccceeevenneenee. 35

2.2.6.2.3 Finite State Automaton ..........cccceeceeeveenierseenieenieennne. 36

2.2.6.2.4 State Transition Table .......ccccoccevvieviniiniiiniiierieeee, 37

2.2.6.2.5 Formal Languages ..........cccceeverieerreenieeniienieeieeeneennes 39

2.2.6.2.6 Regular Languages and FSA’S ......ccccccevviievveniieneenen. 39



3.1

3.2

4.1

4.2

Chapter Three
TURKISH MORPHOLOGY
Turkish Language ........ccccoecoveeeiiiieiieecie ettt e eenaeeen 41
3.1.1 MOrphOphONEMIC’S ....ccviiiiiiiiieiie ettt et 42
3.1.1.1 Vowel Harmony .........ccccceeviieiiienieiiieieeeee e 43
3.1.1.2 Consonant Harmony ........ccccceceevieniieniiiniiiiecniecececeeeneene 46
3.1.1.3 Root Deformations ...........cccceereeeiienieeiiieiie e 50
Turkish MOTPROLOZY ...c.veeieiieiiiiiieiieeee e 52
3.2.1 MOTPROTACTICS ...eeeuvieiiieiiieeiie ettt ettt ettt et et e e e e 52
3.2.1.1 Nominal Paradigm ..........cccceeviiiiieiiinieeiiee e 52
3.2.1.2 Verbal Paradigm .........ccccoeviieiiiiiieiieeiieeee e 55
3.2.1.3 Verbal NOUNS ....cocuiiiiiiiiieiieieeieeeeee e 58
3.2.1.4 Suffix ClassifiCation..........cecereereriierienieeieseee e 59
Chapter Four
TURKISH RULE DEFINITIONS
Rule Definitions for Turkish Language ..........cccoceeviieniiiiniiieeiecee e 61
4.1.1 Alphabetic Characters ..........cccccveeeeieeriieeeieeeeieeeeire e e e e e 61
4.1.2 Feasible Pairs ........cccccioiiiiiiieieeeeee et 62
4.1.3 SUDSEES .eoueiieiiieiie ettt ettt ettt ettt ettt ettt et sabeeaee e 63
Two-Level Rules for Turkish ..........ccoooeiiiiiiiiiiee e 63
4.2.1 Default Correspondences for Turkish Language ...........cccocceevveeiiiennnnne 63
4.2.2 Two-Level Rules for Turkish Language ...........ccccoeveevieniieciieniieeiieae 64

4.2.3 Morpheme Order Rules for Turkish Language ..........cccceceevieiiieniennnnn. 79



10

Chapter Five
SOFTWARE DESIGN AND IMPLEMENTATION

5.1 Turkish Rule Definitions .........c..ccoceviiriiiiiiiniiniiiineeeicneeeeeceee e 81
5.2 Implementation of the Project .........coccooiiiiiiiiiiiiiiieeee e 90
5.3 Functions in LADTArY .......ccccooiiiiiiiiiiiiee et 99
5.4 How Analyzer WOrks ........couiiiiiiiiii i, 101
5.5 Test APPliCation ........o.oiiiieii i 104
CONCLUSION ..o 107
REFERENCES. ..., 108

APPENDIX A 109



Table 2.1
Table 2.2
Table 2.3
Table 2.4
Table 2.5

Table 2.6

Table 2.7

Table 2.8

Table 2.9

Table 2.10

Table 3.1
Table 3.2
Table 3.3
Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 4.6
Table 4.7

11

LIST OF TABLES

Page
Diagnostic properties of the four rule types ........ccccevvvevviverienieennnns 19
State transition table of an example automaton - L.............cccccvvennnnn. 29
State transition table of an example automaton - IT ........................... 30
State transition table for rule “a:c=>  d” ....cccoviiiiiiiii e, 31
State transition table of default correspondences for rule
A = 7 e 31
State transition table of default correspondences for rule
A <= 33
State transition table of default correspondences for rule
I <= A7 34
State transition table of default correspondences for rule
“AIC /ST diD7 s 35
State transition table for deterministic finite state automaton that as
ShOWN Figure 2.13 ..o 38
State transition table for non-deterministic finite state automaton that
as Shown Figure 2.14 ....c.oooiiiiiiiieeeeeee et 38
Nominal paradigm’s elements...........ccceeveeeviierieiieenieeieenie e 54
Verbal paradigm’s €lements............ccceerveerieeriienienieenee e 55
Turkish SUFFIXES....cooviiiiiiiiieee e 60
State transition table for default correspondences - I......................... 63
State transition table for default correspondences - II........................ 63
State transition table for default correspondences - I1I ...................... 64
State transition table for Rule 1 ..o 64
State transition table for Rule 2 ..., 65
State transition table for Rule 3 ..., 65

State transition table for RULE 4 .....cooeeeeeeeeeeee e 66



Table 4.8

Table 4.9

Table 4.10
Table 4.11
Table 4.12
Table 4.13
Table 4.14
Table 4.15
Table 4.16
Table 4.17
Table 4.18
Table 4.19
Table 4.20
Table 4.21
Table 4.22
Table 4.23
Table 4.24
Table 4.25
Table 4.26
Table 4.27
Table 4.28

12

State transition table for Rule 5 ..o 67
State transition table for Rule 6 ...........coccoiiiiiiiiicee 67
State transition table for Rule 7 ..o 68
State transition table for Rule 8 ..o, 69
State transition table for Rule 9 ... 69
State transition table for Rule 10 .........c.ccocoiiiiiiiiiiee 70
State transition table for Rule 11..........cccooooiiiiiiiiie e 71
State transition table for Rule 12..........ccoooiiiiiiiiieee e, 72
State transition table for Rule 13 ..........cccoooiiiiiiieee e, 73
State transition table for Rule 14..........cccoooiiiiiiiniiee s 73
State transition table for Rule 15.......ccccoocoviiniiiiiiiiece 74
State transition table for Rule 16.......c..ccccooviviiiiiiiniiniiiiec 74
State transition table for Rule 17 .......cccccooiiiiiiiiiiniiiiecee 75
State transition table for Rule 18 ..........ccccooiiniiiiiiiniiece 76
State transition table for Rule 19 .........ccccooiiiiiiiiiniecee 76
State transition table for Rule 20 .........ccccooiviiiiiiiniiieece 77
State transition table for Rule 21 .........ccccooviiiiiiiiiiiecee 77
State transition table for Rule 22 .........ccccoooiiiiiiiiinieece 78
State transition table for Rule 23 ..., 79
State transition table for nominal model ............ccoccoooiniiiniinin, 79
State transition table for verbal model............c.cccooiiiiiiiiiiii, 80



Figure 1.1
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11
Figure 2.12
Figure 2.13
Figure 2.14
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7

13

LIST OF FIGURES

Page
Parse tree and feature structure for word “enlargements” ................... 3
Main components of Karttunen’s KIMMO parser ..........ccccccveeeeuveennnns 9
Example of lexical, intermediate and surface tapes ..........ccccveeeuvennns 11
Example of context restriction rule ..........ccccveeveieeniiieenciie e 15
Example of surface coercion rule...........ccceeeevieeviieeiiieeieeeieeeees 16
Example of composite rule.........cceeeeviieiiieeiiieeiieceeeeeeee e 17
Example of exclusion rule..........cccoevieiiieiiiniiiinieiee e, 18
State diagram of an example automaton — I .......c.cccoceviiiiniininnnnn. 28
State diagram of an example automaton — Il ..........cccccoceeviniiniinnnnn. 29
State diagram for rule “a:c =>  d” ..coccooiiiiiiiii 31
State diagram for rule “a:c <= d” ..o 32
State diagram for rule “a:c <=>  d” ..coooieiiiiii 33
State diagram for rule “a:c /<= d:b” .ooooiiiiiiii, 34
State diagram for a deterministic finite state automaton.................... 37
State diagram for a non-deterministic finite state automaton............. 37
Turkish Nominal Model .........ccccooiiiiiiiiiiieieeceeeeee e 52
State diagram for nominal model ............c.coccviviiiiiiieniiiiiicieeees 53
Turkish Verbal Model .........ccoooiiiiiiiiiieieeeeeeee e 55
State diagram for verbal model ...........c.coceeeiieiiiiiiieiiee e, 55
ER DiIa@ram ......ccccviiiiiieeiiieeiie ettt ettt e e e e 56
Part of characters of Turkish language..........c.ccccovveviiieniiieciiicees 83
All Character types in Turkish language..........cccceeevveiiieenciecnieens 83
Part of feasible pairs of Turkish language...........ccccccovveeeiieeiiiennens 84
All Subsets for Turkish language ...........cccceeevieeciieniiiecieceee e 85
Part of Subset Content for Turkish language ...........ccccovcveveiiinncnnen. 85
RULE 19 “g:g /<=n_” as in XML document ..........c.c.ccceeeeruerruencnn. 85



Figure 5.8

Figure 5.9

Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure 5.16
Figure 5.17
Figure 5.18
Figure 5.19
Figure 5.20
Figure 5.21
Figure 5.22
Figure 5.23

14

Part of rule content data of Rule 191.......c.ccoooiiiiiiii, 87
All Suffix categories of Turkish language...........ccccceevveeiiiincieinnens 87
Part of suffixes of Turkish language ...........cccceevevviieiiiiniiiiieee 88
Part of words of Turkish language ..........cccceeeveeeviiiiiciiiieeee e 88
All word categories of Turkish language ...........cccoeecvveeviieeiiieennens 89
Morpheme Order TULES ........c.eeeiieiiieiiieiieeiee e 89
Detail contents of the Nominal rule...........ccooooeeriiiiniiniiinniiiieen 90
One of alternations of input word “ekmegi” ...........cccevvererieneennennn. 94
Example of Result Way.xml document as not detail............c..ccc... 95
Example Situation result - L.........ccccoooieiiiiiiniiiee e, 96
Example Situation result - I...........ccccoeviiiiiiiiiniieeeeeeee e, 96
Example Situation result - IIL..........cccoooiiiiiiiiiniieeeeeee e, 97
Example Situation result - IV ..o 97
Usage of the “read data” function..................coooiiiiiiiiinn, 104
Screen before analyzing operation ..............c..cooevieieiiiiniinnnn... 105
Example results of the analyzing operation ............................ 106



15

CHAPTER ONE
INTRODUCTION

Turkish is an agglutinative language and belongs to Altaic languages group. The
number of words in these languages is much more than the number of words in the
vocabularies. Word structures can grow to an unmanageable size so Turkish

morphology is very complex more over there are many exceptional cases in Turkish.

Turkish has been quite popular in linguistics literature but there have been very
few computational studies in the past. The most important methods are Hankamer’s
Keg¢i Project for Turkish (Hankamer, 1986), PC KIMMO for Finnish (Antworth,
1990) and Ample for Quechua (Weber et al., 1988). The most popular analyzer is
PC Kimmo. It uses the root driven approach. Because of this, PC KIMMO analyzer

can be used for Turkish.

This thesis presents an implementation of a morphological analyzer for Turkish.
This project aims to reach the stem of a word and all suffixes and determine the types
of stem and suffixes. This project implementation is based on PC KIMMO structure.
Turkish rule definitions in this project have been taken from Oflazer’s project.
(Oflazer, 1993)

PC KIMMO analyzer runs under MS-DOS based platforms and UNIX systems in
general. Our thesis is developed by Borland C++ Builder Version 6.0. It aims to
develop a new visual tool for analyzing words and debugging its processes. While
users debugging its processes they understand the wrong rules and right rules or
wrong and right root and suffixes. Additional two rules are developed to analyze the

morpheme order according to nominal and verbal model of the Turkish language.



16

This project consists of two parts: a library to analyze words and an example
application that uses this library. The library is a reusable software tool for analyses
of Turkish text. The application is developed for testing purposes. This library
analyzes the surface form of the word and returns stem and all suffixes and the types
of them. All data are stored in XML documents. All data are stored in the text
documents for PC-KIMMO project. Reading and understanding text documents is
difficult than XML documents. Because of this XML documents are used in this

project to store data.

Some Turkish letters can not be used as original letters in PC-KIMMO project.
For example “S” is used instead of Turkish letter “s” or “C” is used instead of
Turkish letter “¢”. In this project all Turkish letters are used as original letters. All
letters that can not be used in PC-KIMMO are the following: “O” as “6”, “U” as

Cﬂﬁ”’ ‘CS” as ‘¢$9’, CCC” as g,” 6619’ as 6‘19’, 66G7’ aS 66g7’.
1.1 Review of Related Works
PC KIMMO is an implementation of the two-level model of morphology.

Koskenniemi’s model is “two-level” that a word is represented as a direct, letter for

letter correspondence between lexical and surface form. (Antworth, 1995)

Example:
Surface Form: ekmegOim
Lexical Form: ekmek+Hm

PC KIMMO has two main functions: generator and recognizer. Surface form is
an input to recognizer function and returns a lexical form. Lexical form is the input

to generator function, which returns surface form.

PC KIMMO version 1 is produced in 1990. It is written in C and ran on the
personal computers, Macintosh and UNIX. Version 1 could not directly determine
the part of speech of a word. Example: PC KIMMO could tokenize the word
“enlargements” into the sequence of morphemes “en-large-ment-s”. It can gloss each

morpheme but it could not determine entire word was a plural noun. PC KIMMO



17

version 2 is produced to correct this deficiency in 1993 and a word grammar is added
to version 2. The word grammar provides parse trees and feature structures. Version
2 returns the input’s word parse tree and feature structure shown in Figure 1.1.
(Antworth, 1995)

Word
|
Stem INFL
| +5
Stem SUFFIX +PL
N +ment
PREFTX Stem +MNE25
en+ |
VE1+ RCOOT
large
large
Word:
[ head: [ pos: )

numker:FL ]]

Figure 1.1 Parse tree and feature structure for word “enlargements”

1.2 Thesis Organization

This thesis includes four chapters except introduction chapter and conclusion. The

thesis is organized as follows:

Chapter two gives information about morphological analysis. Firstly, morphology
is explained. And then it describes two-level model of morphology in detail. And
finally it gives general information about finite state machines, regular expressions,

formal languages and regular languages.

Chapter three gives information about Turkish morphology. Firstly, the
specifications of Turkish language are explained. And then Morphophonemic’s and

Morphotactics of Turkish are explained.

Chapter four gives rule definitions of Turkish language. These Turkish rule

definitions are used in this project.



18

Chapter five gives information about this project, its properties and

implementation details. It describes how analyzer works and the user interfaces.



19

CHAPTER TWO
MORPHOLOGICAL ANALYSIS

2.1 Morphology

In general, morphology is the study of word structure, or meaningful components
of words. The smallest meaningful components are called morphemes. Morphology

is also interested in how morphemes can be combined to form words.

The first question is what meaning bearing units are. We can say that “kuslar” has
two units. One of them is main meaning of word. In this example “kus” is the main
meaning of the word. These morphemes are called stems; other morphemes are also

called as affixes. In this example “lar” is an affix.

The second question is how morphemes can be combined to form words. There
are two kinds of processes to combine morphemes to form words: inflection and

derivation. So morphology is generally divided into two types.

2.1.1 Inflectional Morphology

Inflectional morphology covers the variant forms of nouns, verbs, etc. Inflectional
process is adding grammatical affixes to word stem. It doesn’t change the class of

stem. It changes in:

Person (like first, second, etc.)
Tense (like present, future, etc.)
Number (singular or plural)

Gender (Male, female or neuter)



20

Adding a plural affix (“lar”) to a noun stem is an inflectional process.

Stem Affix Word
kus + -lar = kuslar
bird + -S = birds

Here “kus” and “kuslar” are in the same class which is noun.

English nouns have only two kinds of inflection that are plural and possessive.

But in Turkish, there are more kinds of inflection.

2.1.2 Derivational Morphology

Derivational morphology is the formation of a new word. This process is simply
an affix addition to a word stem. It may change the class of the stem in some cases.
After derivation, the resulting class may be different from the stem. For example, in
the word “kalemlik”, the affix “-lik” is a derivational morpheme. It changes the
meaning of the word while it doesn’t change the class of stem. Because, “kalem” and

“kalemlik” are both noun.

Stem Affix Word
kalem + -lik = kalemlik
Noun Affix Noun

But in the next example, the affix “-ig” is a derivational morpheme in the word
“gelis”. It changes both the meaning of the word and class of the stem. Because

“gelig” is a noun while “gel” is a verb.

Stem Affix Word
gel + -1s = gelis
Verb Affix Noun



21

A very common way of derivation in English is the formation of new nouns from

verbs or adjectives. This process is called nominalization.

Stem Affix Word
computerize -ation computerization
Verb Affix Noun

In Turkish there are many kinds of derivation.

2.2 Two-Level Model of Morphology

Two-level morphology is a general computational model for word-form
recognition and generation. It is used to analyze the morphology of languages.
Kimmo Koskenniemi is a Finnish computer scientist who developed a model for
two-level morphology in his Ph.D. thesis in 1983. It is called KIMMO system. It was
a major breakthrough in the field of morphological parsing. (Antworth, 1995, pp.2).

Two-level morphology was the first general model. According to Koskenniemi’s

studies two-level morphology is based on three ideas:

e Rules are the symbol-to-symbol constraints and rules are applied in
parallel.

e The constraints can refer to the lexical and surface context or to both
contexts at the same time.

e Lexical lookup and morphological analysis are performed in tandem.

Koskenniemi's model is "two-level" in the sense that a word is represented as a
direct, letter-for-letter correspondence between its lexical or underlying form and its
surface form. “The lexical level denotes the structure of the functional components of
a word while the surface level denotes the standard orthographic realization of the

word with the given lexical structure.” (Oflazer, 1993, p.2)



22

For example, the word “ekmegim” is given in this two-level representation (where

“+ " 1s a morpheme boundary symbol and “0” is a null character):

Lexical form: ekmek+Hm
Intermediate form: ekmeg0Oim
Surface form: ekmegim

Surface form is an input to recognizer function and returns a lexical form. Lexical

form is the input to generator function which returns surface form.

KIMMO parser has two main components. The one of them is rule component
and the other one is lexical component or lexicon. Rules component consist of two-
level rules. The lexicon lists the all morphemes in their lexical form. All morphemes

consist stems and affixes.

The main components of KIMMO are shown in Figure 2.1. (Antworth, 1995,

pp-2). KIMMO has two processing functions: generator and recognizer.

In this thesis, a recognizer function has been implemented to part the word into

stem and affixes. But the generator function is not implemented in this thesis.

RULES LEXICON
A y
Surface Form > » Lexical Form
ekmegi RECOGNIZER ekmek + i
v
Surface Form Lexical Form
ekmegi <+—— GENERATOR |[¢— ckmek+i

Figure 2.1 Main components of Karttunen’s KIMMO parser



23

2.2.1 History of Two-Level Morphology

Twenty years ago there was no general language-independent method about
morphological analysis. There were some simple cut-and-paste programs to analyze
strings in particular languages. These programs were not reversible. Generative
phonologists who lived in that time described morphological alternations by means
of ordered rewrite rules, but it was not understood how such rules could be used for

analysis. (Oflazer, 1993)

Koskenniemi defined formalism for two-level rules in 1983. The semantics of
two-level rules were well defined. Koskenniemi and practitioners had to compile
rules by hand into finite-state transducers because there was no rule compiler
available at that time. So complex rules take hours of effort to compile and test.
(Karttunen, 2001)

The first two-level rule compiler was written in InterLisp by Koskenniemi and
Karttunen in 1985-87. They used Kaplan's implementation of the finite-state
calculus. Lauri Karttunen, Todd Yampol and Kenneth R. Beesley developed the
current C-version of the compiler, which is based on Karttunen's 1989 Common Lisp
implementation in consultation with Kaplan at Xerox PARC in 1991-92.(Karttunen,
2001)

In 2002, Kemal Oflazer described a full two-level morphological description of
Turkish word structures. The phonetic rules of contemporary Turkish have been
encoded using 22 two-level rules. These rules cover almost all the special cases, and

exceptions about Turkish words. In our study, Oflazer’s rules are applied.

2.2.2 The Complexity of Two-Level Morphology

“The use of finite-state machinery in the ‘two-level’ model by Kimmo
Koskenniemi gives it the appearance of computational efficiency, but closer
examination shows the model doesn’t guarantee efficient processing.” (Barton,
1986, pp 1).



24

In two level systems the general problem is extensive backtracking process.
NULL characters are used to insert and delete process. If NULL characters are
excluded, problems are NP-complete in the worst case. If NULL characters are

completely unrestricted, the problem is harder.

The next subsection presents how two level rules are used.

2.2.3 Two-Level Rules

Two-level model is defined as a set of correspondences between lexical and
surface representation. There is a similarity between two-level rules and the rules of
standard generative phonology. There is a difference in several crucial ways at the

same time.

Rulel is an example of a generative rule:
Rulel a -->c¢/_d

Rule2 is an example of the analogous two-level rule: Rule2 a:c=>  d

Their meanings and notation are different. Two level rules are declarative and
bidirectional. They state that certain correspondences hold between a lexical (that is,
underlying) form and its surface form. Lexical form represents a simple
concatenation of morphemes making up a word and surface form represents the
spelling of the word. Figure 2.2 shows an example of lexical, intermediate and

surface tapes.

Lexical Form k|i|t|la|p|+|H|m
Intermediate Form k|1 ]t|alb|0]|1 |m
Surface Form k|1 |t|la|b|1|m

Figure 2.2 Example of lexical, intermediate and surface tapes



25

Rule2 states that lexical “a” corresponds to surface “c” before “d”; it is not
changed into “c”, and it still exists after the rule is applied. Because two-level rules
express a correspondence rather than rewrite symbols, they apply in parallel rather
than sequentially. Thus no intermediate levels of representation are created as

artifacts of a rewriting process. Only the lexical and surface levels are allowed.

The two-level rules deal with each word as a correspondence between its lexical

representation (LR) and its surface representation (SR).

For example:

Lexical Representation: abad

Surface Representation: abcd

PC-KIMMO uses the notation “lexical character: surface character”, for instance
“a:a”, “b:b” or “k:g”. There are two types of correspondences. One of them is
default correspondences like a:a and the other one is special correspondences like
“k:g” and “¢:c”. The all of the default and special correspondences make up the set

of feasible pairs. All feasible pairs must be explicitly declared in the description.

Generative rules have three main characteristics:

e They are transformational rules. They convert or rewrite one symbol into
another symbol. Rule Rulel states that “a” becomes (is changed into) “c”

when it precedes “d”. After rule Rulel rewrites “a” as “c”, “a” no longer

exists.

e Sequentially applied generative rules convert underlying forms to surface
forms via any number of intermediate levels of representation; that is, the
application of each rule results in the creation of a new intermediate level

of representation.



26

e Generative rules are unidirectional. They can only convert underlying

form to surface form, not vice versa.

2.2.4 Two-Level Rule Notation

A two-level rule is made up of three parts:

1. Correspondence,
2. Rule operator,

3. Environment or context.

2.2.4.1 Correspondence

The correspondence “a : ¢” is the first part of the rule Rule2. Correspondence is a
pair of lexical and surface characters. Correspondence has the same meaning with
correspondence pair. The first part of rule Rule2 is the correspondence “a : c¢”. It

specifies a lexical “a” that corresponds to a surface “c”.

If the lexical and surface characters of a correspondence pair are identical, the

13

correspondence can be written as a single character. “ d” is the short notational

form of “_ d:d”. Rule3 is the full form of Rule2. So Rule2 is equivalent to Rule3.

Rule3 a:c=>__ dd

Rule4 ac=>dd

Rule3 and Rule4 are different from each other because of notation “ . In this

notation, “  d” means any character is accepted before character “d”. This notation

“d___” means any character can be after d.

There are two types of correspondences: Default correspondence and special

correspondence. They will be explained in subsection 2.2.5.2.2.



27

2.2.4.2 Rule Operator

The rule operator “=>" is the second part of Rule2. There are four operators: =>,
<=, <=>, /<=. These operators are shaped like an arrow. Rule operators determine the

relationship between the correspondence and the environment.
Semantics of the rule operators:
“=>"means “only but not always”
“<="“means “always but not only”
“<=>" means “always and only”

“/<=" means “never”’

The rule operator specifies the logical relation between the correspondence and

the environment of a two-level rule.

Four different rule types are used to represent the phonetic restrictions:

ab=>LC_ RC
ab<=LC_ RC
ab<=LC _ RC
ab/<=LC __RC

Here, LC means left context and RC means right context.
2.2.4.3 Environment or Context

The third part of the Rule2 is the environment or context, written as “ d”. As in
standard phonological notation, an underline, called an environment line, denotes the

position of the correspondence in the environment.

2.2.5 Rule Types



28

There are four types of rule:

The Context Restriction Rule: ab=>LC _RC

Rule2 a:c=>_d

Rule?2 is written with the rule operator “=>". The “=>"" operator means
the correspondence only occurs in the environment. Rule2 states that
lexical “a” corresponds to surface “c” only preceding “d”, but not
necessarily always in that environment. Thus other realizations of lexical
“a” may be found in that context, including ‘“a:a”. The “=>" operator
means context does not necessarily imply the correspondence. It means
that the “=>” rule is an optional rule. Rule2 would be used if the
occurrence of “a” and “c” freely varies before “d”. If the surface input
form is “abed” recognizer will produce both lexical form “abcd” and

“abad”. To state it negatively, Rule2 prohibits the occurrence of the

correspondence “a:c” everywhere except preceding “d”.

Rule3
ac=>_ dd Lexicon

A\ 4
A

Lexical Form

“abad” or RECOGNIZER Surface Form
“abcd” <+ +— “abcd

Figure 2.3 Example of context restriction rule

Example Rule “g:g => +:0 (X:0) VOWEL” (Oflazer, 1993)

({4

When a word ending with “g” and certain suffixes are added then the

[IP] [{P-&4]

g” may become “g”.



29

Surface form: dialoga
Intermediate form:  dialog00a

Lexical form: dialog+yA

The Surface Coercion Rule: ab<=LC _RC

The “<=" operator means the correspondence always occurs in the
environment. Rule4 states that lexical “a” always corresponds to surface
“c” proceeding “d”, but not necessarily only in that environment. The
“<=" operator is approximately equivalent to an obligatory rule in
generative phonology. It means that the context implies the
correspondence, but the correspondence doesn’t necessarily imply the
context. To state it negatively, if “a:—c” (where “—c” means the logical
negation of “c’’) means the correspondence of lexical “a” to surface not-c
(that is, anything except “c”), then Rule4 prohibits the occurrence of

“a:—c” in the specified context.

Rule4 .
ac<=_ dd g Lexicon
A A 4
Lexical Form Surface Form
“abae” «—] RECOGNIZER ———“ahce“

Figure 2.4 Example of surface coercion rule

There is no example rule for this operator in Turkish.

The Composite Rule ab<=LC _ RC

Rule5 a:c<=>  dd



30

The “<=>" operator means the correspondence always and only
occurs in the environment. The “<=>” operator is the combination of the

2

operators “<=" and “=>”. Rule5 states that lexical “a” corresponds to
surface “c” always and only preceding “d”. If this operator is used when
a correspondence obligatory occurs in a given environment and in no
other environment and the correspondence is allowed if and only if it is

found in the specified context.

Rule5 R
axc <=>  dud g h Lexicon
A\ 4 y
Lexical Form RECOGNIZER Surface Form
“abad” 7 <+—“abcd

Figure 2.5 Example of composite rule

Example Rule “H:0 <=> VOWEL:VOWEL (":") +:0 ” (Oflazer, 1993)

If the last character of the stem is a vowel and the first
character of the morpheme it is affixed to stem is “H” vowel then “H”

vowel is deleted.

Example:
Surface form: masam
Intermediate form: masa00m

Lexical form: masa+Hm

e The Exclusion Rule ab/<=LC _RC



31

The “/<=" operator means the correspondence never occurs in the
environment. This operator forbids the specified correspondence from
occurring in the specified context. This operator explains “exceptions”.
Lexical “a” cannot correspond to surface “c” preceding “d:e”. As the
operator symbol suggests, the “/<=" operator is similar to the “<=”
operator in that it does not prohibit the correspondence from occurring in

other environments.

Rule6
ac/<=__ de Lexicon

A 4

Lexical Form

“abad “ is false RECOGNIZER Surface Form
“abae” is true —“abce”

Figure 2.6 Example of exclusion rule

Example rule “g:g /<=n_” (Oflazer, 1993)

[{P) € 9

If foreign words ending with “g” and “g” is preceded by another

[19-&4]

consonant then it doesn’t become “g”. This consonant may be “n”.

Example:
Surface form: brifingim
Intermediate form:  brigfingOim

Lexical form: brifing+Hm

The diagnostic properties of the four rule types is shown in the Table 2.1
(Antworth, 1995, pp. 5)



32

Table 2.1 Diagnostic properties of the four rule types

Rules Is tic Is preceding I the only Must t always correspond to
allowed environment in which t:c | ¢ before 1 ?

preceding 1 ? | is allowed ?

ttc = i yes yes no
ttc <= i yes no yes
tc & i yes yes yes
tc/<= i no - -

2.2.5.1 Complex Environments

Complex environments contain optional elements, repeated elements and

alternative elements. These are elements:

1. ““” Symbol:

(Y

is a stress mark. “As and example we will use a vowel reduction rule,
which states that a vowel followed by some number of consonants followed by

stress (indicated by °) is reduced to schwa (e). “(Antworth, 1995, pp.6)
For example: (Antworth, 1995, pp. 5)

LR: bab’a bamb’a
SR: beb’a bemb’a

° 13 ( 113 and 113 ) ER] SymbOIS:

Parenthesis indicates an optional element.

Rulea:c=>__d(dy

This rule requires either one or two “d” characters.

Rule a:c=>(d)(d)’



33

This rule requires either zero, one or two “d” characters.

33 £0)
° *

Symbol:

An asterisk indicates zero or more instances of an element.

Rulea:c—> ¢*’

This rule requires either zero, one or more “c” characters.

Rule a:c > cc*®’

This rule requires either one or more “c’” characters.

“/” Symbol:

Vertical bar indicates disjunctive between expressions.

e “[“and “]” Symbols:

The square brackets delimit the disjunctive expressions from the rest of the

environment.
Rulel ae=>_ (C
Rule2 ae=>"‘__

These two rules use the “=>" operator. This operator allows the
correspondence to  occur only in the specified environment. “a:e” occurs only in a

pretonic syllable in ~ Rulel and in a tonic syllable in Rule2. So the two rules conflict

with each other. This type of rule conflict is called an environment conflict. If
we collapse there two rules into one then this conflict can be resolved like
this:

Rule3 ae=>[_ C|° ]



34

This rule means the “a:e” correspondence is permitted only in either pretonic

or tonic position.

2.2.5.2 Rules Component

2.2.5.2.1 Alphabetic Characters

Alphabet characters are used in lexical and surface forms. Alphabet characters
include all characters and special symbols. The NULL and BOUNDARY symbols
are also considered as alphabetic characters. Alphabet doesn’t include ANY symbol

and subset names.

There are special symbols to write rules like ANY, NULL, BOUNDARY symbol.

These special symbols explained below.

e “@” is an ANY symbol, not ANY character. ANY symbol is said to be a
"wildcard" character. ANY symbols indicate for any alphabetic character

in feasible pairs.

Example:
Feasible Pairs: {a:a, b:b, c:c, d:d, d:e, e:e}
Rule: ab=> d@

For this rule, “a” corresponds to “b” before any feasible pair whose
lexical character is “d”. “d:(@” means d:d and d:e. Because “@” means for
lexical character “d” is “d” and “e”. “@:1” is simplified to “.:1”. And also

“l:@” 1s simplified to “i:.”.

e The ANY symbol can also be used on the lexical side of a correspondence
or on the surface side of a correspondence or both of them. These usage
alternatives are “a:@”, “@:a”, “@:@”. “@:@” means all feasible pairs.



35

“0” (zero) is a NULL symbol. NULL symbol written as zero. There must
be an equal number of characters in both lexical and surface forms. Each
lexical character must map to exactly one surface character, and each

surface character must map to exactly one lexical character.

If necessary, analyzer inserts morpheme boundary character with
NULL symbol.

Lexical Representation: bicak+1

Surface Representation: bicagO1

Recognizer function implemented in this project doesn’t show 0’s
(zero) on output form and lexical form. Here recognizer inserts 0 (zero) in

surface form to symbolize “+” as morpheme boundary.

Recognizer can delete or insert characters with NULL symbol. We can
do almost anything with zero. The correspondence “H:0” represents the

deletion of “H”, while “0:H” represents the insertion of x.

Lexical Representation: masa+Hm

Surface Representation: masal0O0m

“Without zero, two-level phonology would be limited to the most trivial
phonological processes; with zero, the two-level model has the expressive

power to handle complex phonological or morphological phenomena.
(Antworth, 1995, pp. 6)

“+” 1s a morpheme boundary. This symbol is used only in a lexical form.

Morpheme boundary corresponds to a surface “0” (zero).



36

e “#” is used as word boundary symbol. “#” indicates a word boundary,

either initial or final. It can only correspond to another boundary (like

“HH).
Lexical Representation: dolap+1#
Surface Representation: dolabO1#

Recognizer doesn’t show “#” symbol on input and output form.

2.2.5.2.2 Feasible Pairs

A feasible pair is a specific correspondence between a lexical alphabetic character
and a surface alphabetic character. The set of all correspondence is called the set of

feasible pairs. Each feasible pair must be declared in rules environment.

e Default Correspondence

Some of correspondences are called default correspondences which lexical
and surface side are identical like “a:a”, “b:b” or “c:c”. But “a:b” is not a
default correspondence because “a” and “b” are not identical. Normally
default correspondences are not included in each rule. Generally default
correspondence can be written in one state table. A table of default
correspondences has only one state and each transition is back to state one.

Default corresponds must include "@:@" as a column header.

e Special Correspondence

If a correspondence is not default then it is called special correspondence.
Generally special correspondence can be written in separate tables. Subsets
can be wused in special correspondence. "@:@" indicate special

correspondences like "a:c" not “a:a”.



37

2.2.5.2.3 Subsets

A subset name defines a set of alphabet character. These set of characters indicate
the character classes. These character classes are defined in SUBSET statements in

the rules file.

Example: V is a set of vowels: V={a,e 1,1,0,0,u U}
C is a set of consonants: C={b,c,d,fg
g hk..z}
SUBSET SI ae
SUBSET S2 cyz
SUBSET S3 di1

Rule a:c=> d:d

This rule can be written as “Rule S1:S2 =>  S3:S3” or “Rule S1:S2 =>  S3”.
So this means that using the correspondence “S1:S2” as a column header in a rule

does not implicitly declare as feasible pairs all correspondences that match.

2.2.6 Implementing Two-Level Rules as Finite State Machines

How two-level rules work, how they can be implemented as finite state machines
and how the four types of two-level rules can be translated into finite state tables are

presented in this subsection.

2.2.6.1 How Two-Level Rules Work

A two-level description contains rules. These rules must also contain a set of
default correspondences, such as “a:a”, “b:b”, and so on. The sum of the special and
default correspondences is called feasible pairs. The total set of valid

correspondences or feasible pairs that can be used in the description.



38

The recognizer implemented in this thesis requires an input in surface form and it

outputs lexical form of given word. Now, let us see how two-level rules work in an

example:
Rulel ac=> d
Surface form abcd
Feasible Pairs {a:a, b:b, c:c, d:d, a:c }

Recognizer begins with the first character of surface form. Firstly it looks in
feasible pairs for “a:c”. If this correspondence is not exists in feasible pairs then
recognizer skips this correspondence. If this correspondence is exists in feasible pairs

then the recognizer analyze it.

Step 1: Recognizer finds “a” as surface character in feasible pair. There is only
one correspondence “a:a®“. So “a” is not converted and to any other character. Then
recognizer moves on to the second character of the input word. (LR: Lexical

Representation, SR: Surface Representation)

SR: a b C d
|

Rule: |
|

LR: a

Step 2: Recognizer analyzes “b” as surface character with same operation like step

1.
SR: a b c d
| \
Rule: | |
| \
LR: a b



39

[1Ph]

Step 3: Recognizer analyzes “c” as surface character with same operation like step
1. But in this case there is a different situation. Because there are two alternatives for
“c” as surface character in feasible pairs. Alternatives are ‘“a:c” and “c:c”.
Recognizer selects one alternative and moves the next character. When recognizer
reaches the final character it decides this alternative correct or not. Sometimes
recognizer reaches the next character to decide if these alternatives are true or false.

If it is false recognizer goes back and tries the second alternative for character “c”.

For first alternative:

SR: a b c d
| | |
Rule: | | 1
| | |
LR: a b a

Recognizer moves the second character for “d”. There is only one pair for “d” as
surface character in feasible pair that is “d:d”. Thus, the first alternative “a:c* is true
because Rulel means that lexical “a” is realized as surface “c” only (but not always)
in the environment preceding “d:d”. This satisties the environment of the Rulel and
exits Rulel. Since there are no more characters in the lexical form, the recognizer
outputs the lexical form “abad”. However the recognizer is not done yet. It will

continue backtracking and try to apply other alternatives.

SR: a b C d
| | | |
Rule: | ] 1 ]
| | | |
LR: a b a d

Recognizer also applies the second alternative “c:c”.
SR: a b c d

| | |
Rule: | | |



40

LR: a b C

And finally recognizer reaches the final character of surface form. Recognizer
finds the “d” character in feasible pairs as surface character again. There is only one
alternative in feasible pair that is “d:d”. So recognizer applies this alternative. Since
there are no more characters in the lexical form, the recognizer outputs the lexical

form “abcd”. Now recognizer is done.

SR: a b c d
| | | |
Rule: | | | |
| | | |
LR: a b c d

The procedure is essentially the same when two-level rules are used in generation
mode. In this situation lexical form is input and the corresponding surface forms are

output.

2.2.6.2 How Finite State Machines Work

“The basically mechanical procedure for applying two-level rules makes it
possible to implement the two-level model on a computer by using a formal language
device called a finite state machine.” (Antworth, 1995, pp.11). Finite State
Automaton (FSA) is the simplest finite state machine. It generates the well-formed

strings of a regular language. Regular language is a type of formal language.

“A Finite State Transducer (FST) is like an FSA except that it simultaneously
operates on two input strings. It recognizes whether the two strings are valid

correspondences of each other.” (Antworth, 1995, pp.12).

Two level rules can be implemented as FST, the only difference being that the

column headers are pairs of symbols, such as “a:a” and “b:b” or “b:c”. State-



41

transition tables are occurred after compiling rules. An automaton is represented with
state-transition table. The state-transition table indicates the start state, final and non-

final states and transitions between each state.

Here, we show an example:

Figure 2.7 State diagram of an example automaton - I

Table 2.2 State transition table of an example automaton - I

Input
State a b ¢
0. 1 0 2
1. 0 2 0
2: 0 0 O

The graph of automaton is represented in Figure 2.7 as Table 2.2. State 0 is initial
state. State 2 is a final state and marked with “:” of symbol. The “.” indicates non-
final state and ““:” indicates final states. “0” indicates an illegal or missing transition.
We can read the first row as “if we are in state 0 and we see the input ‘a’ then we
must go to state 1 or if we see the input ‘b’ then we must go to state 0 or if we see the

input ‘c’ we must go to state 2”.

An FSA operates only on a single input string and a finite state transducer (FST)

operates on two input strings simultaneously. For example, assume the first input



42

string to an FST is from language L1 above, and the second input string is from

language L.2. Here is an example correspondence of two strings:

L1: abbb
L2: accb

Cc:C

b:c

Figure 2.8 State diagram of an example automaton - 11
Figure 2.8 shows the FST in diagram form. Note that the only difference from an
FSA is that the arcs are labeled with a correspondence pairs consisting of a symbol

from each of the input languages.
This FST can also be represented as tables like Table 2.3.

Table 2.3 State transition table of an example automaton - 11

Input
State a b b c
a b ¢ ¢
0. 1 0 0 2
1. 0 2 1 0
2: 0 0 0 O

The upper or lexical language specifies the string “abbb” and the lower or surface
language specifies the string “accb”. However, note that a two-level rule does not

specify the grammar of a full language.



43

I will explain each rule type as a finite state machine in detail.

2.2.6.2.1 Rule Types as a Finite State Machine
e A “=>” Rule as a Finite State Machine

If rule is “a:c => _ d” then we can draw this state diagram to represent this

rule.

@@

A

d:d
Figure 2.9 State diagram for rule “a:c=>__d”

The column header “@:@” does not match for all feasible pairs. The
“@:@” arc (where @ is the ANY symbol) allows any pairs in feasible pairs
to pass successfully through the FST except “a:c” and “d:d”. Every feasible
pair must belong to one and only one column header. This FST can also be

represented as state transition table like Table 2.4.

Table 2.4 State transition table for rule “a:c=>__d”

Input
State a d @
c d @
l: 2 1 1
2. 0 1 O

Default correspondences of the system must be existed in a FST.



44

Table 2.5 State transition table of default correspondences for rule “a:c => d”

Input
State a b ¢ d @
a b ¢ d @
l: 1 1 1 1 1

Default corresponds must include "@:@" as a column header. "@:@"
indicate special correspondences like "a:c". If the correspondence "@:@" is
not exist then the FST would fail for special correspondence like "a:c".
Because all the rules apply in parallel in a two-level description. The
correspondence “a:c” is exists in Table 2.4 but this correspondence is not
exists in Table 2.5. But the correspondence "@:@" is occur in Table 2.5 so

this doesn’t fail.

State tables specify where correspondences must fail. Table 2.4 and Table
2.5 will work together to generate the lexical form of given surface form.

Table 2.4 fails when anything but "d:d" follows "a:c".

e A “<=" Rule as a Finite State Machine

If rule is “a:c <= d” then we can draw this state diagram to represent this

rule.

@:@ ,ac,dd

A

a:a

d:d

q0

A\ 4

@:@, a:c

Figure 2.10 State diagram for rule “a:c<=__d”

This FST can also be represented as state transition table like Table 2.6.



45

Table 2.6 State transition table of default correspondences for rule “a:c <= d”

Input
State a a d @
c a d @
l: 1 2 1 1
2: 1 2 0 1

In this state transition table we can see that the zero in the “d:d” column

indicates that the input has failed. State 1 and state 2 are final states. State

zero is a non-final state.
e A “<=>” Rule as a Finite State Machine

If rule is “a:c <=> _d” then we can draw this state diagram to represent

this rule.

@:@, d:d

Figure 2.11 State diagram for rule “a:c <=> d”

This FST can also be represented as state transition table like Table 2.7.



46

Table 2.7 State transition table of default correspondences for rule

“are<=>_ d”

Input
State a a d @
c @ d @
l: 32 1 1
2: 3 2 0 1
3. 0 0 1 O

This state transition table is a combination of the “=>" and “<="

tables.
e A “/<="Rule as a Finite State Machine

If rule is “a:c /<= __ d:b” then we can draw this state diagram to represent

following rule.

@:@, d:b
a:c

AN EA

@@

d:b

Figure 2.12 State diagram for rule “a:c /<= __d:b”

This rule type shares properties of the “<=" type rule. This FST can also be

represented as state transition table like Table 2.8.

Table 2.8 State transition table of default correspondences for rule “a:c

/<= __d:b”
Input
State a d @
c b @
1 2 1 1
2 2 0 1




47

2.2.6.2.2 Regular Expressions and Automata

A regular expression is a string that describes a whole set of strings according to
certain syntax rules. A string is a sequence of symbols or it is any sequence of
alphanumeric characters. Alphanumeric characters include letters, numbers, tabs,
spaces and punctuation. Regular expression is a formula for matching strings that
follow some pattern. Many text editors and utilities to search text in information
retrieval applications, word-processing applications and etc use these expressions.
Regular expressions are supported by class libraries such as scripting tools such as
awk, grep, sed, and increasingly in interactive development environments such as

Microsoft's Visual C++. It is used also in UNIX and UNIX-like utilities.

Regular expressions are made up of normal characters and metacharacters.
Normal characters include upper and lower case letters and digits. The
metacharacters have special meanings and are described in detail below.

e Regular expressions are case sensitive so lowercase /a/ is different from
uppercase /A/. The string /exam/ will not match /Exam/ according to this
rule. Square brackets can be used to solve this problem. The pattern /eE/

matches patterns containing e or E.

e Dash “-* is used in square brackets to specifies any one character in a

range. The pattern /[1-3]/ means one of the characters 1,2 or 3.

e Caret” is used to match the start of the line.

e Question mark /?/ is used to preceding character or nothing.

e Kleene * is used to match zero or more occurrences of the immediately

previous character or regular expression.

e Kleene + is used to specify one or more of the previous character.



48

(Y32

e Period character “.” is used to match any single character.

e $isused to match the end of a line.

2.2.6.2.3 Finite State Automaton

A finite state machine (FSM) or finite state automaton (FSA) is an abstract
machine that has only a finite, consonant amount of memory. Finite state automata
can be represented using a state diagram or state transition table. An FSA is
composed of states and directed transition arcs. At least there must be existed an
initial state, a final state and an arc between them. Each state has transitions to states.
There is a input string that determines which transition is followed. Finite state

machines are studied in automata theory. An automaton is a self-operating machine.

There two kinds of automata, one of them is deterministic and the other is non-
deterministic. In non-deterministic finite state automaton, each state there might
several possible choices for the next state as in Figure 2.14. So there can be more
than one transition from a given state for a given possible input. In deterministic
automaton, for each state there is at most one transition for each possible input as

shown Figure 2.13.

q0

Figure 2.13 State diagram for a deterministic finite state automaton



49

A

q0

Figure 2.14 State diagram for a non-deterministic finite state

automaton

If current state is q0 and input is “a” character then there are two choices for
next state for Figure 2.14. One choice is q0 and the other one is ql. But if current
state is q0 and the input is “a” character then there is only one choice for Figure 2.13.
This is the difference between deterministic and non-deterministic finite state

automaton.

2.2.6.2.4 State Transition Table

A state transition table is used to describe the transition function. It is used to
represent an automaton. States are indicated horizontally, and events are read
vertically. A state transition table represents the start state and the accepting states.
State transitions and actions are represented in the form of action/new-state.

[T 2]

Final states are represented by “:” symbol and non-final states are represented by

(134

.” symbol. Final states mean accepted states.

Table 2.9 State transition table for deterministic finite state automaton that as

shown Figure 2.13.

State | Input | Next State

q0. |a ql
ql: | b ql




50

Table 2.10 State transition table for non-deterministic finite state automaton

that as shown Figure 2.14.

State | Input | Next State

q0. |a {q0, q1}
ql: |b ql

All the possible inputs to the machine are enumerated across the columns of the

table. All the possible states are enumerated across the rows.

NFA (Non-Deterministic Finite State Automaton) is a non-deterministic then a
new input may cause the machine to be in more than one state. In this case,
parentheses {} are used with the list of all legal states in the parentheses like Table
2.13.

If you want, it is possible to draw a state diagram from the state transition table.
We can use these steps to do it. Firstly draw the circles to represent the states given
then for each state, draw an arrow from the source states to the destination states.

Finally determine start state and accept states.

2.2.6.2.5 Formal Languages

The origin of regular expressions lies in automata theory and formal language
theory. These theories are part of theoretical computer science. These fields study
models of computation and ways to describe and classify formal languages. An
automaton implicitly defines a formal language. A formal language is nothing but a
set of strings. Each string composed of symbols from an alphabet. A formal
language is a set of finite length words over some finite alphabet. This description is

used in mathematics, logic and computer science.

A formal language can be specified in variety of ways such as:
1. Some formal grammar produce strings, (Chomsky hierarchy)

2. Regular expression produce strings,



51

3. Some automaton accepted strings (like Turing machine or finite state

automaton)

From a set of related YES / NO questions those ones for which the answer is
YES, (decision problem)

2.2.6.2.6 Regular Languages and FSA’s

Regular language is a type of formal language. Regular languages can be
characterized as languages defined by regular expressions. If the set of all languages
that are regular, then the class of languages called regular languages. A language is
regular if it is accepted by some DFA (Deterministic Finite State Automaton), NFA

(Non-Deterministic Finite State Automaton), regular expression or regular grammar.

A single language is a set of strings over a finite alphabet and is there for
countable. A regular language may have an infinite number of strings. The strings of
a regular language can be enumerated, written down for length 0, length 1, length 2
and so forth.

Regular language is the language associated to a regular grammar. A grammar
G=( N,T, P, 0 ) in which every production is of the form:

A>aorA—>aBorA > A where A, BEN,a€T.

Regular languages over an alphabet T have the following properties:

(A = ‘empty string’, afp = ‘concatenation of a and p’, o*n = ‘a concatenated with

itself n times’):

A, {L},and { a} are regular languages for alla € T.

If L1 and L2 are regular languages over T the following languages also are

regular:



52

Ll UL2={a|a€Llora € L2},
LiIL2={af|a € L1,B € L2},
LI ={al...on|ak€L1,nEN },
™*-Ll={a €T "*|a€LIl},
Llnl2={oa|a€Llanda € L2 }.

Regular languages coincide with the languages accepted by non-deterministic
finite-state automata. Every non-deterministic finite state automaton is equivalent to
some deterministic finite state automaton. A language L is regular if and only if there

exists a finite-state automaton that accepts precisely the strings in L.

Regular languages are closed under operations: concatenation, union, intersection,
complementation, difference, reversal, Kleene star, substitution, homomorphism and

any finite combination of these operations.



53

CHAPTER THREE
TURKISH MORPHOLOGY

3.1 Turkish Language

Turkish is an agglutinative language like Finnish, Hungarian. It belongs to the
southwestern group of Turkic family. Turkic languages are in the Uralic-Altaic
language family. In agglutinative languages, words formed by combined root words
and morphemes. Word structures can grow by addition of morphemes. Morphemes
added to a stem can convert the word from nominal to a verbal structure or vice-

versa.

Turkish has a very productive morphology. There is a root and several suffixes are
combined to this root. It is possible to produce a very high number of words from the
same root with suffixes. The lexicon size may grow to unmanageable size.

A popular example of a Turkish word formation is:

OSMANLILASTIRAMAY ABILECEKLERIMiIZDENMISSINIZCESINE

This can be broken down into morphemes:

OSMAN-+LI+LAS+TIR+AMA+Y ABIL+ECEK+LER-+HMIZ+DEN+MIiS+SINiZ
+CESINE

In this example, one word in Turkish corresponds to a full sentence in English.

This example can be translated into English as “as if you were of those whom we



54

might consider not converting into an Ottoman”. In English, words contain only a

small number of affixes or none at all.

There are 29 letters in Turkish language. The eight of them are vowels and

twenty-one of them are consonants.

Vowel letters: {a,e,1,1,0,0,u, i}

Consonant letters: {b,c,¢,d,f, g g h,j,k, I, m,n, p,1,s,5,t,v,y, 7}

The number of vowels is more than many languages. Vowels of Turkish can be

classified in three groups according to their articulatory properties:

= Front and back,
=  Round and unrounded,

* High or low

We can partition the vowels as below in detail:

= Back vowels: {a, 1, 0,u}

* Front vowels: {e, i, 0, i}

»  Front unrounded vowels: {e, i}
* Front rounded vowels: {0, i}
= Back unrounded vowels: {a, 1}
= Back rounded vowels: {o, u}

= High vowels: {1,1u, i}

* Low unrounded vowels: {a, e}

3.1.1 Morphophonemic’s

Turkish word formation uses a number of phonetic harmony rules. When a suffix

is appended to a stem vowels and consonants change in certain ways.



55

2.1.1.1 Vowel Harmony

Vowel harmony is the best-known morphophonemic process in Turkish. It is
most interesting and distinctive feature. Vowel harmony is a left-to-right process. It
operates sequentially from syllable to syllable. Vowel harmony processes force
certain vowels in suffixes agree with the last vowel in the stems or roots they are
being affixed to. When vowels are affixed to a stem, they change according to the
vowel harmony rules. The first vowel in the suffix changes according to the last

vowel of the stem. Vowel harmony consists of two assimilations:

» Palatal assimilation (It is called in Turkish as “Biiyiik Unlii Uyumu”)

This is called “major vowel harmony” . This vowel harmony is common to
almost Turkic languages. This assimilation is about front/back feature of the
language. Back vowels are the set of {a, 1, 0, u} and the front vowels are the

set of {e, 1, 0, 1i}.

If the vowels of the following morphemes are back then the vowel of the

first morpheme in a word is back.

For example:
Surface Form: askilar
Intermediate Form:  askiOlar
Lexical Form: aski+1Ar
“lAr” is a plural suffix. “A” is resolved as “a” or “e¢” in general. But in this
example “A” is resolved as “a” because the vowels of the stem are back

vowels.

If the vowels of the following morphemes are front then the vowel of the

first morpheme in a word is front.

For example:

Surface Form: evler



56

Intermediate Form:  evOler

Lexical Form: ev+lAr

In this example “A” is resolved as “e” because the vowel of the stem is

front vowel.

If the last vowel is a long vowel then “A” is realized as an “e”. Long

vowels are “4, 01, 6. These vowels are in words of French origin in general.

For example:
Surface Form: saatler
Intermediate Form:  saat Oler

Lexical Form: saat+lAr

Surface Form: goller
Intermediate Form:  golOler

Lexical Form: gol+1AT

Surface Form: usuller
Intermediate Form:  usulOler

Lexical Form: usul+lAr

Labial assimilation (It is called in Turkish “Kii¢iik Unlii Uyumu”)

This is called “minor vowel harmony”. This assimilation is about
rounded/unrounded feature of the language. There are four alternatives about

this assimilation:

0 “H” is resolved as “1,i,u,ii” in general .“H” is resolved as “i” in this
example because the last vowel in the stem is a front-unrounded

vowel.

For example:

Surface Form: ¢Oliin



57

Intermediate Form: ¢6l10iin
Lexical Form: ¢Ol+Hn
“H” is resolved as “ii” if the last vowel in the stem is a long “0” or “6”

as defined below.

For example:
Surface Form: goliin
Intermediate Form:  golOiin

Lexical Form: gol+Hn

For example:

Surface Form: usuliin
Intermediate Form: usulQOiin
Lexical Form: ustl+Hn

73]
1

“H” is resolved as if the last vowel of the stem is a back-

unrounded vowel.

For example:

Surface Form: topalin
Intermediate Form: topalOin
Lexical Form: topal+Hn

[13%4]
1

“H” is resolved as if the last vowel in the stem is a front-

unrounded vowel.

For example:

Surface Form: defterim
Intermediate Form: defterOim
Lexical Form: defter+tHm

311
1

“H” is resolved as “i” if the last vowel in the stem is a long “a” also.

For example:



58

Surface Form: saatim
Intermediate Form: saatOim

Lexical Form: saat+Hm

There are some two-level rules for vowel harmony. These rules are:

* A:a=>[VOWEL:BACKV | Q:0]"'* CONS * @:0 * +:0* _

* A:e=>[VOWEL:FRONTV | E:0 | %:a | &:u|”":0]""* CONS * @:0 * +:0 *

» H:1=>[VOWEL:BKUNRV | Q:0] "' * CONS * +:0 * @:0 * _

» H:i=>[VOWEL:FRUNRYV | E:0 | FRUNRV:0 +:0 | %:a] "' * CONS * +:0 *
@:0* _

* H:u=>VOWEL:BKROV"'* CONS * +:0 * @:0 * _

» H:i=>[VOWEL:FRROV | &:u|”™0]"'* CONS *+:0 * @:0 * _

These rules will be explained in chapter four.

3.1.1.2 Consonant Harmony

Consonant harmony is another basic aspect of Turkish phonology. Consonants of
Turkish phonology can be classified into two main groups. These are voiceless and
voiced. Voiceless consonants are {“¢”, ’f”, ”h”, ”k”, ”p”, ’s”, ’s”, "t”}. Voiced
COnS()nantS are {66b’9, ”C”’ 7’d”, ’7g’7, ”g”, ”j”, ’71”’ 2 ”’ 2. ”, 2 ”’ ”V”’ 9. ”’ ,’Z”},
Consonant harmony rules doesn’t formulate easily because of irregular character of

borrowed and native words. There are some consonant harmony rules in Turkish:

= [f the end of the word is one the voiceless consonants (“p”, ’¢”, ”t”, ’k’) then

it changes to a corresponding voiced consonants (“b”, ’c”, ’d”, ’g”).
0 “p” changes to “b”.
For example:

Surface Form: kitabim

Intermediate Form: kitabOim



59

Lexical Form: kitap+Hm

There are some exceptions to this rule like “soyad”, “hemoroid”,

“Onad”, etc.

For example: “d” doesn’t change in this example.
Surface Form: soyadin

Intermediate Form: soyadOin

Lexical Form: soyad+Hn

“d” changes to “t”.

For example:

Surface Form: tattik
Intermediate Form: tatOtik
Lexical Form: tad+DHk

e =9

“k” changes to “g”.

For example:
Surface Form: ayagin
Intermediate Form: ayag00in

Lexical Form: ayak+nHn

“¢” changes to “c”.

For example:

Surface Form: agacin
Intermediate Form:  agacOin
Lexical Form: agactHn

b 1Y 2 9

There are some exceptions to this rule like “gd¢”, “a¢”, ”i¢”, etc.

For example: “¢” doesn’t change in this example.



60

Surface Form: agim
Intermediate Form:  a¢Oim

Lexical Form: ac+Hm

Let “D” indicate a suffix initial dental consonant that may resolve as either a

“t”

“dort”. “D” is resolved to a “t” is the last phoneme in the stem is resolved
as one of {“¢”, ”’f’, ”h”, k™, ”’p”, ”’s”, ’s”, ’t”’}. In other cases “D” is resolved

as a 6Gd’7

For Examples:
Surface Form: yulaftan
Intermediate Form: yulafOtan

Lexical Form: yulaf+Dan

Surface Form: masadan
Intermediate Form: masaOdan

Lexical Form: masa+Dan

If the last consonant of the stem is one of {“¢”, ’f”, “h”, “k”, “p”, “s”, “s”}

[IPN4)

and if the suffix begins with the “c” then “c” is resolved as a “¢”.

For Example:
Surface Form: yasga
Intermediate Form: yasOca
Lexical Form: yas+cA
There are some exceptions for this rule. These exceptions are “a¢”, “i¢”,

“hag”, etc.

If “k” is at the end of the stem and “k” preceded by an “n” then “k” becomes

[{P=t]

a“g”.

For Example:

Surface Form: celenge



61

Intermediate Form: ¢eleng00e

Lexical Form: celenkOyA

There are some exceptions for this rule also. One of the exception word is
“bank”.

If the final character of the stem is “g” and a vowel is beginning of the suffix

then “g” becomes a “g” in foreign origin words.

For Example:
Surface Form: analoga
Intermediate Form: analog0a

Lexical Form: analog+yA

There are some exceptions for this rule. Some exceptions are “lig”,

“pedagog”, etc.

If the final character of the stem is “g” and a consonant is beginning of the

suffix then “g” does not become a “g”.

For Example:
Surface Form: bumerangim
Intermediate Form: bumerangOim

Lexical Form: bumerang+Hm

There are very number of nominal words in Turkish. Some of these nominal
words ending with “su”. These words don’t obey the standard inflection rules.
When a suffix is starting with a vowel or a vowel-dropping consonant is

[

affixed then a stem final “y” is inserted to stem.

For Examples:
Surface Form: akarsuyunuz
Intermediate Form:  akarsuyOOunuz

Lexical Form: akarsuY-+yHnHz



62

Surface form: akarsular
Intermediate form:  akarsuOOlar

Lexical form: akarsuY-+lar

* When certain suffixes are affixed last consonant is duplicated in Arabic or

Persian origin words.

For Examples:
Surface Form: zammi
Intermediate Form: zammOO01

Lexical Form: zamO+yH

Surface Form: zamlar
Intermediate Form: zamOlar

Lexical Form: zam+1Ar

= “-sH” can be affixed to Arabic origin words. If these words ending with a

vowel then drops in exception to the general rule.

For Example:

Surface Form: camii
Surface Form: camisi
Intermediate Form: camiOi

Lexical Form: cami+sH

There are many numbers of words that have this property. Example words are

29 ¢ 9% ¢ 199 6y

“mevki”, “cami”, “terfi”, “zayi”, “ikna”, “merci”, etc.

3.1.1.3 Root Deformations

Turkish roots are not flexible in normally. There are some cases about various

deformations. There are three exception cases:



63

= Root is observed in personal pronouns

For examples:
Surface Form: bana
Intermediate Form: ban00a

Lexical Form: bent+yA

Surface Form: sana
Intermediate Form: san00a

Lexical Form: sentyA

If “ben” and “sen” roots take the plural suffix then their structures

completely change like this:

ben + lAr - biz (not benler)

sen + 1Ar = siz (not senler)

* Wide vowel at the end of the stem is narrowed when the suffix “Hyor” comes

after the verbs ending with the “A”.

For example:
Surface Form: kapiyor
Intermediate Form:  kapiOHyor

Lexical Form: kapa+Hyor

* When a suffix is beginning with a vowel comes after some nouns, which has
a vowel {I} in its last syllable, this vowel drops. This occurs generally

designating parts of the human body.

For example:
Surface Form: agzimiz
Intermediate Form:  ag01z0imiz

Lexical Form: ag$1z+HmHz



64

* Similar with the above rule, when the possessive suffix “HI” is affixed to

some verbs, and the last vowel of the verb is vowel “I” then this vowel drops.

ayir + 11 = ayril (not ayiril)

» If a plural suffix is affixed to a compound words then this suffix coming

before the possessive suffix at the end of the stem.

gozyast + 1Ar -> gozyaslar1 (not gdzyasilar)

3.2 Turkish Morphology

Turkish has very productive morphology. The lexicon size may grow to
unmanageable size. Because of this the number of words is very high. Turkish is

characterized by certain Morphophonemics, Morphotactics and syntactic features.

3.2.1. Morphotactics

There are two main classes for Turkish roots. These classes are nominal and
verbal. These classes are important for suffixes. If a suffix can be affixed to a
nominal root then this suffix cannot be affixed to a verbal root with the same
semantic function. But there are some suffixes can be affixed to nouns or verbs.
These paradigms will be explained in following subsection in detail. Two rules are
designed for Morphotactics for Turkish in this project: nominal order rule, verbal

order rule. State diagrams of these rules are shown in Figure 3.2 and Figure 3.4.

3.2.1.1 Nominal Paradigm

Nominal paradigm applies to nouns and adjectives. It describes the order of the

inflectional suffixes. It is shown in Figure 3.1.

Nominal Plural Possessive Case Relative
Root Suffix Suffix Suffix Suffix
Figure 3.1 Turkish Nominal Model




65

HING 3 AHE[

XgIng
PN

F 3

NG S AR

9P W TEUTUI OU T0] WEIZEP €S T'F AN

EITNG 258
X g
28E) JATEEAEE0]

IS AnatEsass0

HIIno 25ED)

HHING AR

g
B

100
RIS



66

Table 3.1 Nominal paradigm’s element

Plural Suffix -lAr
Possessive Suffix | -Hm, -HmHz, -Hn, - HnHz, -sH, -IArH
Case Suffix -yH, -ylA, -yA, -DA, -DAn, -nHn, -nH, - nA, -nDA, -
nDAn
Relative Suffix -ki

» Nominal root is the base. It may be an adjective or noun. All the elements of

noun paradigm are optional, except the nominal root.

*  The plural suffix can be added directly to the nominal root.

Example: kedi + 1Ar = kediler

» If the possessed noun is plural then plural suffix come before possessive

suffix.

Example: kedi + IArH - kedileri

When the third person plural possessive suffix “-IArH” comes after a

plural noun, one of the “-1ArH” drops.
Example: kedi + 1Ar + 1ArH - kedileri (not kedilerleri)

Some words have third person singular possessive suffix. If possessive
suffixes come after these words, possessive suffix is removed. Because
possessive suffix is already occur in word structure.

Example: safrakesesi + sH > safrakesesi (not safrakesesisi)

» (Case suffixes come after possessive suffix.

Example: masa + DA - masada



67

* The relative suffix “-ki” may be added to two type of case suffixes: One them

is “-nHn” is called genitive case suffixes. The other one is “-DA” is called

locative case suffixes.

Example:

kap1 + nHn + ki = kapininki

3.2.1.2 Verbal Paradigm

The verbal paradigm is more complicated than nominal paradigm. It is shown in

Figure 3.3. Verbal paradigm’s elements are shown in Table 3.2.

Verbal | Voice | Negation | Compound | Main | Question | Second | Person
Root | Suffixes | Suffix Verb Tense | Suffix Tense | Suffix
Suffix Suffix Suffix
Figure 3.3 Turkish Verbal Model
Table 3.2 Verbal paradigm’s elements
Reflexive -(H)n
Reciprocal -(H
Voice Suffixes P EDs
Causative -DHr, -Ht, -t, -Hr, -Ar
Passive - Hl, -Hn, -n
Negation Suffix -mA, -(y)AmA

Compound Verb Suffix

-(y)Adur, -(y)Ayaz, -(y)Abil, - (y)Akal,
-(y)Akoy, -(y)Agel, -(y)Agor, -(y)Aver

Main Tense Suffix

-DH, -sA, -mHs, -(y)A, -(y)AcAk, -mAIH, -(H)r,
-0, -Ar, -(H)yor, -mAktA

Question Suffix

-mH

Second Tense Suffix

-(y)DH, -(y)sA, -(y)mHs

Person Suffix

-m, -n, -k, -nHz, -1Ar, -(y)Hm, -sHn, -(y)Hz, -
sHnHz, -lHm, -(y)Hn, -(y)HnHz, -sHIAr




68

[9P OML [E 12410 WERISEIP a1 vg §'E aTn 3]

NG
=B XYING 4
punodizog

HIOE 484 i EGING
punodung oG 2910 4, 100
uoriEEa EQR A

g
UOTEANg

HNG
95T ] HJng
puoIag J5UaL
pHRSES EING WOHESIN
HEING 484
punodirog
NG
TN SEUS L U
uosiad TN

- Rt R |



69

Verbal root, the main tense suffix and the person suffix are obligatory. Others

are optional.

Voice suffixes can be divided four groups: reflexive, reciprocal, causative
and passive. These suffixes can be combined. They must be appearing in the

indicated order, and the reflexive and reciprocal are mutually exclusive.

Example: “0p-mek”, “Op-lis-mek”, “Op-lis-tlir-mek”, “Op-iis-tii-riill-mek”

The causative verb suffixes can be used repeatedly. For example, “ort”,

“Or-ttiir”, “Ort-tiirt”.

The passive and reflexive forms of some verbs’ meaning are different but
they have same structure. These two sentences have the same verb but their

meaning is different from each other. Example word is “yika-n-d1”.

“Balkon yikandi.”  The balkony were washed.
“Hiilya yikandi.” Hiilya washed herself.

There are two negation suffixes. These are “-mA” and “-(y)AmA”. These
meaning is different from each other. The meaning of “-mA” is “not” and the

meaning of “-(y)AmA” is “can/may not”.

Example:
“yemem’: I don’t eat

“yiyemem”: I can’teat

Compound verb suffixes is used to add verbs certain additional semantics. “-
(y)Agor” and “-(y)Aver” are the most frequently used. Example word is

“oku-yabil-ir”.

Main tense suffix is an obligatory. Every verb has a main tense suffix. There

are nine tenses:



70

Definite past: {“-DH”’}

Narrative past: {“-mHs”}

Future: {“-(y)AcAk”}

Aorist: {“-(H)r”,” -Ar’}
Progressive: {“-(H)yor”,” -mAktA”}
Conditional: {“-sA”}

Optative: {“-(y)A”}

Necessitative: {“-mAIH”}

O 0O 0O o o o o o o

Imperative: {*“-0”}

» There is only one question suffix that is “-mH“. This suffix is written

separate from the word it follows. Example word is “yaptin mi1?”

* Second tense suffixes are affixed to verb stems ending with a vowel with the

insertion of a Y in between. Example word is “oku-sa-ydi”.

» Person suffix defines the first, second and third singular or plural persons.

Example word is “gel-di-k”

3.2.1.3 Verbal Nouns

There are two types of sentences for Turkish. One of them is verb sentences and
the other one is noun sentences. There is a verb in the verb sentence. A verb
represents an action in the sentence. There is no explicit verb in the noun sentence so
there is no action. The verb “to be” in English is correspondence to the noun

sentences in Turkish.

Example:

“Su i¢iyorum” is a verb sentence. “igtim” is a verb.

“Akilliyim” is a noun sentence. There is no verb.



71

Negation suffix can be added to the verb: e.g.: “Su i¢-mi-yorum”. There is no
such a suffix in noun sentences. For negation process the word “degil” can be used:
e.g.: “Akilli degilim.”

Question suffix can be used noun and verb sentences: e.g.: “Su i¢ctim mi?” is a

verb sentence; “Akilli miyim?” is a noun sentence.

Tense information can be used in noun and verb sentences. But verb sentences use
nine tense but noun sentences use three tense. These three tense are definite past,
narrative past and conditional suffix. Noun sentences also use independent words:

Gﬂ'd", (134 b L 1

1di”, “imis”, “ise”. Example is “Akillli-ydi-m”.
3.2.1.4 Suffix Classification

There is a root and several suffixes are combined to this root in Turkish. It is
possible to produce a very high number of words from the same root with suffixes.
These suffixes help us to find the right stem of a word. When we analyze the word
“kalem” then we can not sure stem, because there are two solutions: “kalem” and
“kale-m”. When we analyze the word “kalemler” there is only one solution: “kalem-

ler”. The solution “kale-m-ler” is invalid.
There are two main classes of suffixes:

= Derivational suffixes,
= Inflectional suffixes,
0 Nominal verb suffixes,
0 Noun suffixes,
0 Tense & person verb suffixes,
(0]

Verb suffixes,

Derivational suffixes produce a new word. This new word has different meaning
than the word derivational suffixes are affixed. They change the class of the word.
For example they make nouns from verbs. Inflectional suffixes do not produce a new

word like derivational suffixes. They do not change the class of the word.



72

Turkish suffixes are shown in Table 3.3. The abbreviations used to show suffixes in a

generic way in this representation in below: (Eryigit & Adali, 2004)

U: {1,1,u,i}
C: {c,6}
A: {a,e}
D: {d,t}
I {11}

(): The letter in parentheses can be omitted.

Table 3.3 Turkish suffixes

Derivational suffixes | “-1Uk, “-CU”, “-CUk”, “-1Ag”, “-IA*, “-1An”, “-CA”,
Cﬂ_lU”’ “-SUZ”

Nominal Verb “-(y)Um”, “-sUn”, “~(y)Uz”, “-1Ar”, “-m”, “-n”, “-k”,

Suffixes “-nUz”, “-DUr”, “-cAsInA”, “-(y)DU”, “~(y)sA”,
“(y)mUs”, “(y)ken”

Noun Suffixes “1Ar”, “-(U)ym”, “~(UymUz", “~(U)n”, “-(U)nUz”, “-(s)U”,

‘G_lArI’,, C‘_(y)U,Q’ ‘C_nU,” ‘C(n)Un,” GC_(y)A7,’ ‘G_nAi,’ CG_DA”’
‘G_nDA’,’ C‘_DAn’Q, CC_nDAn,Q’ GC_(y)1A7,’ ‘Gki”’ “—(n)CA”

Tense & Person Verb | “-(y)Um”, “-sUn”, “-(y)Uz”, “-sUnUz”, “-1Ar”, “-mUs”,
Suffixes “-(y)AcAk”, “-(U)”, “-Ar”, “-(U)yor”, “-mAktA”,
“-mAll”, “-m”, “-n”, “-k”, “-nUz”, “-DU”, “-sA”, “-1Im”,
“-(y)A”, “-(y)UnUz”, “~(y)Un”, “-sUnlAr”, “-DUr”,
“-(y)DU”, “-(y)sA”, “-(y)mUs”, “-cAsInA”, “-(y)ken

Verb Suffixes “-m”, “-zsln”, “-z”, 7-ylz”, “-zslnlz”, “-zIAr”, “-mA”,
“-(y)AmA?”, “~(y)Adur”, “-(y)Uver”, “-(y)Agel”,
“~(y)Agor”, “-(y)Abil”, “-(y)Ayaz”, “-(y)Akal”,
“(y)Akoy”, ““mAK”, “(y)UeU, “(y)Up", “(y)AII",
“DUKGA”, “~(y)ArAk”, “~(y)UncA”, “~(y)Dan”, “-yA”,
“_(y)An”, “-(y)AcAk”, “-(y)AsI”, “-DUK”, “-mUs”,
“mAzIIk”, “-mA”, “-(y)Us”, “-Dan”, “-DA”, “~(y)IA”,
“_(y)A”, “-mAkslzIn”, “-mAdAn”, “-(U)n”, “-(U)s”,
“.(U)I”, “-Dur”, “~(U)t”




73

CHAPTER FOUR
TURKISH RULE DEFINITIONS

4.1 Rule Definitions for Turkish Language

This chapter describes the details of the definitions of Turkish rules. These

Turkish rule definitions have been taken from Oflazer’s project. (Oflazer, 1993)

4.1.1 Alphabetic Characters

Turkish alphabetic characters are: {b,c,¢,d, f, g, g h,j,k, I, m,n,p,1,s,5,t,v,y,
Z 7Z ’a )e ’1 7i7 07 67 u) 1.’.1, AJ H’ K’ J’ B) 9, DJ $7 Y) %9 &’ /\7 " X’ q’ W, E, Q) N’ +7 1’ 27
3) ‘1) 5) <3)’7) 85}

Null: “0”
Any: 66@’9
Boundary: “#”

Some capital letters are used in this representation. Their meanings are
following: Z = {s}, A ={ae}, H= {Liu,ii},J= {¢}, B={b}, D= {d,t}, Y =

{y}, % = {a}, & = {u}, » = {o}, . K represents a root-final lexical “k”. It never

[19-42]

becomes a surface “g”. When certain suffixes are affixed then some vowels are

deleted in the roots. These vowels are prefixed with a “$” in the lexical form. The

€629

apostrophe “’” is used to separate proper nouns from suffixes.



74

4.1.2 Feasible Pairs

Default correspondence rules are defined as feasible pairs and presented in section
4.2.1.

4.1.3 Subsets

A set of alphabet characters indicate the character classes. These character classes

are defined in subset statements.

CONS is the set of consonants: {b,c,¢,d, f,g, g h,j,k,,m,n,p,1,8,5,t,v,y, z, D,
Z,Y,K,J,B,9}

VOWEL is a set of lexical vowels. These are used in lexical level: {a,e, 1,1, 0,
6) u) l'i) A? H) %) &3 /\9 E’ Q}

SVOWEL a set of surface vowels: {1, 1, 0, 0, u, U, a, e}

BACKY is a set of back vowels: {a, 1, u, o}

FRONTY is a set of front vowels: {e, 1, 0, i}

HIGHYV: {1, 1, u, i}

FRUNRY is set of front unrounded vowels: {i, e}

FRROV is set of front rounded vowels: {0, 1i}

BKROV is set of back rounded vowels: {u, o}

BKUNRY is set of back unrounded vowels: {a, 1}

X is set of some consonants. These lexical consonants used as first letter in a suffix

but they may disappear on the surface form under certain conditions: {s, y, n}



75

NDCONS is a set of some consonants. These lexical consonants used as first letter in

a suffix but they are always realized on the surface: {c, Z, 1, d, D}
4.2 Two-Level Rules for Turkish

We can divide two-level rules for Turkish into two groups: default
correspondences and special correspondences. There are three rules as default
correspondences, twenty three rules as special correspondences. These
correspondences are presented following subsections.

4.2.1 Default Correspondences for Turkish Language

There are 3 default correspondences for Turkish language. Feasible pairs are all

these default correspondences’ pair.

RULE "defaults"

Table 4.1 State transition table for default correspondences - I

o
Ll
(=N
5]
g«
—
B8
j=]
]
©
<
-
<
N
N
1)
(¢}
o
=}
[=1
[=

o
L)
o
s
—| Qc
—
—_—
=i
=
-
7]
“n
-
<
«
N
w
})
[¢]
]
[}
[=1
c

RULE "defaults"

Table 4.2 State transition table for default correspondences - 11

RULE "defaults"




76

Table 4.3 State transition table for default correspondences -I11

A% & AT [ [x [q|w/E[Q[~[+[1]2[3]4[5]6]7]8]9]@
0Olalulol0||x|q|wlolo[~]0|1]2|3]4|5]|6|7|8|9|@

Lty jry1ry1 jry1jrjry1rjrjry1rjrp1jri1jl1

4.2.2 Two-Level Rules for Turkish Language

There are 23 rules for Turkish language and listed below. These rules are called as
special correspondence. They have been taken from Kemal Oflazer’s project. It is
called “Two-Level Description of Turkish Morphology™.

RULE 1: A:a=>[VOWEL:BACKV | Q:0]":' * CONS * @:0 * +:0* _

This rule force the agreement of an A vowel to a preceding vowel in the back ness

attribute.

Table 4.4 State transition table for Rule 1

AlQ|“|CONS| @ | + | VOWEL | @
al0]|“|CONS| 0 | 0 | BACKV | @
I (0211 1 1 1 3 1
2: 131212 2 2 |2 3 1
3: (31313 3 313 3 1
For example:
Surface Form: masalar

Intermediate Form: masaOlar

Lexical Form: masa+lAr

RULE 2: A:e=>[VOWEL:FRONTV | E:0 | %:a | &:u | 0] "' * CONS * @:0 * +:0

*



77

This rule force the agreement of an A vowel to a preceding vowel in the back ness

attribute also.

Table 4.5 State transition table for Rule 2

A [N CONS @ |+ |& |%|E | VOWEL | @
e o|° CONS |0 [0 [u |a |0 | FRONTV | @
110 (2|1 1 1 |1 |3 |4]5]6 1
2216 |22 |2 2 12 |3 (4216 1
3:16 2|3 |3 313 (3 |4]3]6 1
4:16 |2 |4 |4 4 14 |3 |4 |4 |6 1
5016 (2|5 |5 515 (3 |4]5]6 1
6:16 |26 |6 6 |6 |3 |46 |6 1
For example:
Surface Form: meseler
Intermediate Form: meseOler
Lexical Form: mese+1Ar

RULE 3: A:0<= +O0H:@yor

This rule forces the agreement of an H vowel to a preceding one in back ness and

roundedness.

Table 4.6 State transition table for Rule 3

A |A|+ |H |y |o |[R|@

0 @|0 @ |y |o |r|@
(2 |7 |1 1 |1 |1 [1]1
2. /0 (0|3 |0 |O |O |O]|O
3. {0 |0 |0 |4 [0 |0 |O]|O
4. 10 (0|0 (O |5 |0 |00
5.0 |0 |0 [0 O |6 [0]0
6. [0 |0 |O |O |[O |O |1]|O




7:12 |7 (8 |1 (1 |1 |1]I1
& (2 |7 |1 |9 |1 |1 |1]1
9: (2 |7 |1 |1 (101 |1]1
10:(2 |7 |1 |1 (1 |11]1]1
1:12 |7 |1 |1 (1 |1 ]0
Example:
Surface form: selamlryor
Intermediate form:  selamOl001yor
Lexical form: selam+1A+Hyor

RULE 4: H:u=> VOWEL:BKROV "' * CONS * +:0 * @:0 * _

78

This rule forces the agreement of an H vowel to a preceding one in back ness and

roundedness also.

Table 4.7 State transition table for Rule 4

H |VOWEL| ¢ |CONS |+ | @ | @
u | BKROV| “ |CONS | 0| 0 | @
1: 2 1 1 111
2: 1 2 2 2 2 2121
For example:
Surface Form: kolun

Intermediate Form: kolOun

Lexical Form: kol+Hn

RULE 5: H:ii=>[VOWEL:FRROV | &:u|”™o0]"'* CONS * +:0 * @:0 * _

This rule also forces the agreement of an H vowel to a preceding one in back ness

and roundedness.



79

Table 4.8 State transition table for Rule 5

H|~| [CONS| + | @] & | VOWEL | @
i|o| < |CONS| O] 0| u|FRROV| @
10|21 1 1 [ 1] 3 4 1
21 4 [ 2] 2 2 2 213 4 1
3 4|23 3 333 4 1
414 [ 2] 4 4 4143 4 1

For example:
Surface Form: goliin
Intermediate Form:  g610iin

Lexical Form: gbol+Hn

RULE 6: H:1=> [VOWEL:BKUNRV | Q:0] ":' * CONS * +:0 * @:0 * _

This rule also forces the agreement of an H vowel to a preceding one in back ness

and roundedness.

Table 4.9 State transition table for Rule 6

H|@]| - |[CONS| + | @ | VOWEL | @
1 [0| < |CONS| O | 0 | BKUNRV | @
Lo |21 1 1|1 3 1
2213 [ 22 2 2 | 2 3 1
320333 3 313 3 1

For example:
Surface Form: kumarin
Intermediate Form: kumarOin

Lexical Form: kumar+Hn

RULE 7: H:i=> [VOWEL:FRUNRV | E:0 | FRUNRV:0 +:0 | %:a]":' * CONS * +:0
% @0 %



80

This rule also forces the agreement of an H vowel to a preceding one in back ness

and roundedness.

Table 4.10 State transition table for Rule 7

H | % ‘| CONS | + | @ | FRUNRV | E| VOWEL | @
1| a ‘ICONS | 0] O 0 0 | FRUNRV | @
{021 1 1 1|1 3 5 6 1
2:16 |2 2 2 2|2 2 2 6 1
310121 1 4 11 3 5 6 1
4:16 | 2| 4 4 4 | 4 4 4 6 1
5006|1215 5 515 5 5 6 1
6:1 6 | 2] 6 6 6|6 6 6 6 1
For example:
Surface Form: kalemim
Intermediate Form: kalemOim
Lexical Form: kalem+Hm

RULE 8: H:0 <=> VOWEL:VOWEL (":') +:0 _

If the last character of the stem is a vowel and the first character of the morpheme

it is affixed to stem is “H” vowel then “H” vowel is deleted.

Table 4.11 State transition table for Rule 8

H|H]| VOWEL | * |+| @
0| @| VOWEL | * |0| @
10| 2 2 1[1] 1
2210 | 2 2 341
3]0 | 2 2 1[4 1
41110 2 1[1]1




81

Example:
Surface form: kasam
Intermediate form: kasaOOm

Lexical form: kasa+Hm

RULE 9: SVOWEL:0 <=>§:0 CONS +:0 (X:0) [A:@ |H@]| +O0H:@yor

If there is a vowel ellipsis phenomenon in the lexical form of the stem, it has to be
deleted on the surface form. For this situation “$” is used by Oflazer on Turkish
Morphology project so same symbol is used for this case. In the dictionary, some

words include this “$” symbol.

Table 4.12 State transition table for Rule 9

SVOWEL | SVOWEL [$[CONS |+ [H|A[X |y ] o |r|@

0 @ 0O|CONS |0 |@|@| 0|y |o|rl@

I: 11 16 2 1 |11 ]t|1]1]16]1]1
2: 7 3 2 1 |11t [1]1[3]1]1
3: 11 16 2 4 |17 1|1 [1]4]16]4]1
4 11 16 2 1 |5 |1 |11 ]1]16]1]1
5: 11 16 2 1 |[1]0]0[6]1]|16]1]1
6: 11 16 2 1 [1]o]olt [T [t6]1]1
7. 0 0 0| 8 |0|0|0|0|8]08]|0
8. 0 0 0| 0 |9]0]0]|0|0]00]O
9. 0 0 0| 0 |0|1]1]10|0]00]O
10. 0 0 0| 0 |o0|1]1]0|0]00]O
11 0 0 0] 0 |12]0]0]0|0]00]O
12. 0 0 0] 0 |0]|13]0]0|0]00]O
13. 0 0 0| 0 |[o0|o0|o0|o|14[00]0O
14. 0 0 0| 0 |0]0|0]|0|0][15/0]0
15. 0 0 0| 0 |0]0|0|0|O0]O0O[1]|O
16 11 16 2 1 |17 1|11 ]1]16]1]1
17 11 16 2 1 |1 18|11 ]1]16]1]1
18 11 16 2 1 |11 ]t1[1]19]16]1]1




82

19: 11 16 2 1 L1 |1 |1 ]1]201|1
20: 11 16 2 1 17111 ]1]16/0]1
Example:
Surface form: agzimi

Intermediate form:  ag00z01m001

Lexical form: ag$iz+Hm+yH
RULE 10: H:0 /<= VOWEL:0+:0 _yor

The suffix +Hyor is indicating the present continuous tense. This suffix is verbal
suffix. So “H” vowel is not deleted bur the last phoneme of the stem is vowel then

this vowel is deleted.

Table 4.13 State transition table for Rule 10

VOWEL| + | H| y | o r | @
0 0| 0]y ]| o r | @
l: 2 1|21 1 1 1
2: 2 3121 1 1 1
3: 2 1 | 4|1 1 1 1
4: 2 312 |5 1 1 1
5: 2 1 (21|61 1
6: 2 1 {21 1 |01
Example:
Surface form: dostiyor

Intermediate form:  d6s00tiyor

Lexical form: dése+Hyor

RULE 11: X:0 <=> CONS (") +:0 _(CONS) VOWEL

If a last phoneme of the stem is a consonant and the first phoneme of the first

€69 Ce .9

suffix is “s”, “y” or “n” then this phoneme is deleted.



83

Table 4.14 State transition table for Rule 11

X | X |CONS | + | VOWEL | @
0 | @ | CONS | 0 | VOWEL | @
I:] 0| 2 2 1 1 1 1
2:1 0 | 2 2 3| 4 1 1
3:1 0 | 2 2 1 | 4 1 1
4:1 7 | 5 2 1 1 1 1
501 0 | 6 6 3| 4 0 1
6:1 0 | 2 2 3| 4 0 1
7.1 0 | 8 8 0|0 1 0
8.1 0 | 0 0 0|0 1 0
Examples:
Surface form: bademi

Intermediate form: bademOO0i

Lexical form: badem+yH

Surface form: balonu
Intermediate form:  balon0Ou

Lexical form: balon+yH

Surface form: kalemi
Intermediate form:  kalemOO0i

Lexical form: kalem+sH

RULE 12: Dit<=>[h | @:¢|s | @k | @:p | @:t|f]|s] +:0 (@:0) _

“D” is known as a “d” by default. But in the following case “D” is known as “t”.
Whenever it is preceded by one of the consonants in the option list across a

morpheme boundary, “D” is known as “t”.



Table 4.15 State transition table for Rule 12

D/D|s |+ |f |l @ @|@|@|s | @|h|@
tl@|s |0 f| t|p|lk]|]s|¢c|h|@|
Loy 1|21 (12222 2]2]2]1
210 (1 (2312222 2|2]|2]1
3210124142222 ]2]|22]1
4: 1210 (2|1 |1 (222 ]2]|2|2]2]|1
Sc2 (1|21 }6|1 (6|1 |1]1]1 1|1
6:/!2 |1 (21|10} 10| 1]0]1 1|1
Example:
Surface form: dolapta
Intermediate form:  dolapOta
Lexical form: dolab+DA

RULE 13: {b,d}:{p, t} <=> #| +:0(X:0) [CONS | c:¢]

When a word end with one of “p,t

bl

or “p,t

b

beginning with a consonant then voiced obstruents “b,d” as “p,t”.

Table 4.16 State transition table for Rule 13

b|]d|b|]d|#]+]X] CONS [ ¢ |@

plt|l@|@|#|0)| 0| CONS | ¢ | @
Ll 2233111 1 1|1
2] 0000|140 0 0] 0
2 2233061 1 1|1
41003 3]0]0]s 1 110
50103 |3]0]0]0 I 110
G2 2 001 ]1]7 0 0| 1
70221001 ]1]1 0 0| 1

Example:

Surface form:

dolapei1

84

are followed by a morpheme



85

Intermediate form:  dolapO¢H

Lexical form: dolab+cH

RULE 14: cc<=[¢|s|@k|@:p| @:t|f|s|h] +0 [H:@ |A:@]

Table 4.17 State transition table for Rule 14

clc|le¢ |+ HIA|s | @q|l@|@]| f]|s | h|®@

¢l @|¢ | 0|0 @|s | k| p|t|f]s|h @
Lol 1 (21|11 (22222 2|2]1
22001 (2 (3|11 2|22 |2]2|2|2]1
305 (4 (21112121212 1222]1
4:10 11 (210022222221
5f0(0(O0}O] 1] L1L]O]O[O|O|O|O0O]O0O]O

RULE 15: ¢:.c <=>_ +:0 (X:0) VOWEL

When “c” is the first phoneme of the suffix and “c” is the last phoneme of the

stem then both “c’’s change to “¢” by mutual influence.

Table 4.18 State transition table for Rule 15

c| ¢ |+|X|VOWEL | @
¢|l@|0]0|VOWEL | @
|21 5]|1]1 1 1
2.1010 (310 0 0
3.0 0 |0 4 1 0
410000 1 0
501215161 1 1
6: 1215161 1 1
Example:
Surface form: haracg1

Intermediate form:  haracgOg1



Lexical form: hara¢+cH

RULE 16: k:§ <=> VOWEL _ +:0 (X:0) VOWEL

86

When the first phoneme is morpheme is a vowel and the last phoneme is the stem

is consonant “k” then “k” becomes “g”.

Table 4.19 State transition table for Rule 16

k | k | VOWEL |+| X | @
g | @ | VOWEL 0 | @
I: | 0 | 2 2 1|1 1
2:]1 6 | 3 2 1|1 1
3: 1 0 1 2 41 1 1
4: 1 0 1 0 1| 5 1
5:1 0 1 0 1] 1 1
6. | 0 | O 0 710 1] 0
7.1 0 |0 2 0 8]0
8. 1 0|0 2 0 0] O
Examples:
Surface form: ekmegim

Intermediate form:  ekmegOim
Lexical form: ekmek+Hm
Surface form: taragin
Intermediate form:  taragOin

Lexical form: tarak+Hn

RULE 17: k:ig <=>n_ +:0 (X:0) VOWEL

When the first phoneme is morpheme is a vowel and the last phoneme is the stem

is consonant “k” then “k” becomes

[{P=t]

g”.



Table 4.20 State transition table for Rule 17

k| k |n|+| VOWEL | X | @
g|l@|n|0|VOWEL | 0 | @
10| 1 |21 1 1)1
2.1613 121 1 1)1
3:]0] 1 |24 1 1)1
4:101 1121 0 5]1
501001121 0 1)1
6.0 007 0 00
7.0 0100 1 810
810000 1 00
Examples:
Surface form: dengi
Intermediate form:  deng001
Lexical form: denk+yH
Surface form: rengimiz
Intermediate form:  reng0im00iz
Lexical form: renk+Hm+yHz

RULE 18: g:;g=> +:0 (X:0) VOWEL

Some words has a foreign origin in Turkish. If these words ending with

certain suffixes are added then the

Table 4.21 State transition table for Rule 18

g

+

X

VOWEL | @
VOWEL

0

1

Rl Bl I 4 e
ol o o| M| tac

S| O W o= O

0
1
0
4
0

@
1 1
0
0
0

€ _ 9

g

becomes

87

and



88

Example:
Surface form: dialoga
Intermediate form:  dialog00a

Lexical form: dialog+yA

RULE 19: g:§/<=n_

[Pl (I}

If foreign words ending with “g” and “g” is preceded by another consonant then it

P-4

doesn’t become “g”. This consonant may be “n”.

Table 4.22 State transition table for Rule 19

nigl@
nigl@
211
2:12]0] 1
Example:
Surface form: bumerangim

Intermediate form:  bumerangOim

Lexical form: bumerang+Hm

RULE 20: g:g /<=1 _

66 9 [({P=2]

If foreign words ending with “g” then it doesn’t become “g” when “g” is preceded

(Y4
r.

by another consonant. This consonant may be

Table 4.23 State transition table for Rule 20

cl¢|@
¢ @ @
(211
212701




89

Example:
Surface form: morgunuz
Intermediate form:  morgOunuz

Lexical form: morg+HnHz
RULE 21: Yy <=> +:0[X:0|H:@]

Rule 21 and Rule 22 deal with nominal roots. These roots are ending with “su”.
Kemal Oflazer added a lexical “Y” to such nominal words. “Y” is realized as “0” at

the end of the word if followed by a consonant, which never drops in affixation.

Table 4.24 State transition table for Rule 21

Y[ Y[+ ]X|H @
yl@|0)|0@|@
{2141 ]1]1]1
2./0[0(|3]0]0]O
3.0(0(0(1]1]0
4: 1214|571 ]1]1
50214110011
Example:
Surface form: akarsuyunuz

Intermediate form:  akarsuy0Ounuz

Lexical form: akarsuY-+yHnHz

RULE 22: Y:0<=> #| +:0NDCONS:@

Table 4.25 State transition table for Rule 22
Y|Y |#]|+ | NDCONS | @

Ol@|#|0 @ @
213 (1)1 1 1




2./0[ 01|14 0
3:121310]|5 1
4.10[101(0|0 1
500213 (111 0
Example:
Surface form: akarsular
Intermediate form:  akarsuOOlar
Lexical form: akarsuY-+lar

RULE 23: .0 <=> #| +:.01

This rule remove

circumstances.

Table 4.26 State transition table for Rule 23

(1224

90

character from a lexical proper noun under certain

TR [+]1 @

0l@|#|0|1|@
L2 3 [1]1]1]1
2001400
3230511
41olo]oo]1]o0
s5/2 (31100

4.2.3 Morpheme Order Rules for Turkish Language

There are two main classes for Turkish roots: nominal and verbal. The

importances of these classes are presented in section 2.2.1. Two rules are produces

for these two paradigms in this project.



Rule about nominal paradigm:

The state diagram for the nominal model is shown in Figure 3.2. This rule is

produced this model for this project. State transition table for nominal model is

shown in Table 4.27.

Table 4.27 State transition table for nominal model

Plural | Possessive | Case | Relative
Suffix Suffix Suffix | Suffix
1: 2 3 4 5
2: 0 3 4 5
3: 0 0 4 5
4: 0 0 0 5
5: 0 0 0 0

Rule about verbal paradigm:

The state diagram for the verbal model is shown in Figure 3.4. This rule is produced

this model for this project. State transition table for verbal model is shown in Table

4.28.

Table 4.28 State transition table for verbal model

Voice | Negation | Compound | Main | Question | Second | Person
Suffixes | Suffix Verb Tense | Suffix | Tense | Suffix
Suffix Suffix Suffix

1 2 3 4 5 6 7 8
2 0 3 4 5 0 0 0
3 0 0 4 5 0 0 0
4 0 0 0 5 0 0 0
5 0 0 0 0 6 7 8
6 0 0 0 0 0 7 8
7 0 0 0 0 0 0 8
8 0 0 0 0 0 0 0




92

CHAPTER FIVE
SOFTWARE DESIGN AND IMPLEMENTATION

This chapter describes the design and implementation of Turkish
Morphological Analyzer project. The project consists of two parts: a library to
analyze words and an application that uses this library. This library is a reusable
software tool for analyses of Turkish text and the application is developed for testing

this library.

The application and the library are developed by Borland C++ Builder Version
6.0. This library reads Turkish rule definitions and analyzes the input word according

these Turkish rule definitions. All Turkish rule definitions are stored in XML files.

A drawing tool is developed for morphological analyzer of Turkish language.
(Duran & Kiirkgii, 2004). This tool is used to draw finite state machine. Turkish rules
in “Rule.xml” documents can be opened by this tool. Rules can be seen as finite state

machine and can be changed by this tool if necessary.

5.1 Turkish Rule Definitions

Entity relationship diagram for these tables are shown in Figure 5.1 and
Figure 5.2. All are in XML files.



Rule
PK (R _Id Kind
R_Desc PK |K_Id
Col :
State Kind
Yy
Rule Content Alphabet Feasible Pair
PK.,FK3 |R_Id PK |Ch Id PK.FK1 |Lex Ch Id
PK,FK1 |Sur_Ch_lId > < PK.,FK2 |Sur Ch Id
PK,FK2 |Lex_Ch_Id Character
PK Cur_State P Fkt | KL id < 7]
PK Lex Su
PK ur_Sul t
Next_State
Cur_State St
Subset Content
PK.FK1,FK2 | Sub Id
PK Ch Id
Subset
PK |Sub_Id
Order_Rule Subast
PK |Rule Kind I
Rule Kind_Desc
Order Rule Content Suffix_Category Suffix
PK,FK1 |Rule_Kind |d ——fpp PK [Sul C Id €4—— PK |Suf id
PK Cur State
PK Next State Suffbe Calepont Suffix
PK.,FK2 | Cat FK1 |Suf C_Id
Cur_State_ St
Word_Category Word
PK |WC Id < PK |W_ id
Word_Category Word
FK1 |WC_Id

Figure 5.1 ER Diagram

93



94

Turkish rule definitions contain the followings:

e Alphabetic Characters

Turkish alphabetic characters are stored in “Alphabet.xml”. Null, any
and boundary characters are not alphabetic character but in this project
these characters are stored in alphabetic characters document. Figure 5.2

shows a part of “Alphabet.xml” file.

Null character is “0”, any character is “@” and boundary character is
“#”. Types of these characters are stored in “Kind.xml”. Figure 5.3 shows

all character types.

«7uml version="1.0" encoding="I50-8858-9" 7=
- <ALPHABET=
ZCHARACTER Ch_Id="1" K_Id="3"=@«</CHARACTER:
ZCHARACTER Ch_Id="2" kK_Id="2">#</CHARACTER>
<CHARACTER Ch_Id="3" k_Id="4">0</CHARACTER>
<CHARACTER Ch_Id="4"K_Id="1">a</CHARACTER:>
LCHARACTER Ch_Id="5" K_Id="1">b</CHARACTER=
LCHARACTER Ch_Id="6" K_Id="1"»c«</CHARACTER>
LCHARACTER Ch_Id="7" K_Id="1"»g«</CHARACTER>
ZCHARACTER Ch_Id="8" k_Id="1">d</CHARACTER>
ZCHARACTER Ch_Id="9" k_Id="1"»e</CHARACTER>
ZCHARACTER Ch_Id="10" K_Id="1">f</CHARACTER:>

Figure 5.2 Part of characters of Turkish language

=7eml version="1.0" encoding="150-8859-9" 7>
- ZKIMND_SET=
<KIMD K_Id="1">ALPHABET</KIND=
<KIMND E_Id="2">BOUNDARY </ /KIND=
<KIND K_Id="3"=ANY < /KIND>
<KIMD K_Id="4"=NULL=/KIND:=
< KIND_SET=

Figure 5.3 All Character types in Turkish language

= Feasible Pairs



95

The all of the default and special correspondences makes up the set of
feasible pairs. Turkish feasible pairs are consist of the pairs in Turkish
rules. Turkish feasible pairs are stored in “Feasible Pair.xml”. Figure 5.4

shows a part of “Feasible Pair.xml” file.

“Lex Ch Id=4"and “Sur Ch_Id =3”is a feasible pair. Itdetermines
lexical character is “a” and surface character is “0”. This pair is shown

as “a:0” as shortly.

=?uml wersion="1.0" encoding="150-8859-9" 7=
- <FEASIBLE_PAIR_SET=
- <FEASIBLE_PAIR=
<lex Ch_Id=4=</Lex_Ch_Id=
<5Sur_Ch_Id=3</Sur_Ch_Id=
< /FEASIBLE_PAIR=
- Z=FEASIBLE_FAIR=
zlex Ch_Id=9</Lex Ch_Id=
<Sur_Ch_Id=3</Sur_Ch_Id=
</FEASIBLE PAIR
- <FEASIBLE_PAIR=
<lex _Ch_Id=14</Lex _Ch_Id=
=5ur_Ch_Id=3</Sur_Ch_Id:=
< /FEASIBLE_PAIR=

Figure 5.4 Part of feasible pairs of Turkish language

= Subsets

There are 12 subsets in Turkish rule definitions. Turkish subsets are
stored “Subset.xml” and “Subset Content.xml”. Figure 5.5 shows all
subsets and Figure 5.6 shows somesubset elements in  Turkish rule

definitions.



96

«7uml version="1.0" encoding="I50-8858-9" 7=
- <SLUBSET_SET=

<SUBSET Sub_Id="1"=X</SLBSET>
<SUBSET Sub_Id="2"=FRUMNRV</SIIBSET=
<SUBSET Sub_Id="3">=BKROV</SUBSET>
<SUBSET Sub_Id="4"=BKUNRY</SUBSET>
<SUBSET Sub_Id="5">HIGHY < /SIIBSET =
ZSUBSET Sub_Id="6">FROMNTY</SIUIBSET =
ZSUBSET Sub_Id="?">FRROWY</SIIBSET =
ZSUBSET Sub_Id="8">BACKVY</SUBSET=
<SUBSET Sub_Id="9"=8VOWEL</SLIESET =
<SUBSET Sub_Id="10"=¥OWEL</SLIESET =
<SUBSET Sub_Id="11">NDCOMNS</SUBSET>=
<SUBSET Sub_Id="12">CONS</SUBRSET>

</SLUBSET_SET=

Figure 5.5 All Subsets for Turkish language

Example: “X” is a subset and it includes three alphabetic characters in it.
“Sub Id = 17 identifies subset “X”. “Ch = 20“ identifies alphabetic
character “n”. “Ch = 25 identifies alphabetic character “s”. “Ch = 31

(1]

identifies alphabetic character “y”.

=Teml version="1.0" encoding="I50-8855-9" 7=
- «SUBSET_COMTEMT_SET=
- <SIBSET=
<Sub_Id=1</Sub_Id=
<Ch_Id=20</Ch_Id=
</SUBSET =
- <SIUBSET=
=5ub_Id=1=</Sub_Id=
zCh_Id=25</Ch_Id=
</SUUBSET>
- <SIBSET=
<Sub_Id=1</Sub_Id=
<Ch_Id=31</Ch_Id=
</SIUBSET >

Figure 5.6 Part of Subset Content for Turkish language

=  Rules

There are 23 rules in Turkish rule definitions. Turkish rules are stored

in “Rule.xml” and “Rule Content.xml”.



97

Figure 5.7 shows Rule number 19 in XML document. State transition
table for Rule number 19 is shown in Table 4.22 in chapter four. This
rule has three properties: description, number of columns and number od
states. These are stored in rule document. Number of columns determines

the number of feasible pair in this rule.

— =RULE=
<R_Id=191</F_Id=
<R_Desc=q:§ /<= n_</R_Descx
=Col=3=/Caol=
zState=2</Statex
</BULE>
- «<RULE=

Figure 5.7 RULE 19 “g:g /<=n_" as in XML document

Figure 5.8 shows the detailed contents of rule number 191. This rule
has three feasible pair: “n:n”, “g:8”, “@:@”. There are two states: “1”
and “2”. Two states are final in rule number 191. “Cur State St”
property determines the current state situation that is final or non-final
states. It may be “0” or “1”. If this property is “1” then this state is final

otherwise is non-final state.

“Lex_Subset” and “Sur Subset” properties determine whether the
feasible pair is a subset or a character. These properties may be “0” or
“1”. If “Lex_Subset” property is “0” then it means lexical part is a
character otherwise it is a subset. If “Sur_Subset” property is “0” then it

means surface part is a character otherwise it is a subset.

“Cur_State” property determines the current state number and

“Next State” property determines the next state number.



- <RULE_COMTEMNT =
<P _Id=191</F_Id=
<Sur_Ch_Id=20</Sur_Ch_Id=
<lex_ Ch_Id=20</Lex_Ch_Id=
<Cur_State=1</Cur_States
<Mext_State=2</Mext_Statex
<Cur_State_St=1</Cur_State_St=
zlLex_Subset=0</Lex_Subset>
=5ur_Subset=0</Sur_Subset>

</RULE_COMNTENT =

= <RULE_COMTENT=
<R_Id=191</F_Id=
<Sur_Ch_Id=20</Sur_Ch_Id=
<lex_Ch_ld=20</Lex_Ch_Id=
<Cur_State=2«/Cur_Statex
<Next_State»2</Mext_State>
<Cur_State_St»1l</Cur_State_St>
<Lex_Subset>0«</Lex_Subsets
“Sur_Subset>0</Sur_Subsets»

Z/RULE_COMTENT =

- <RULE_COMTENT=

<R _Id=191</F_Id=

98

Figure 5.8 Part of rule content data of Rule 19

= Suffix

There are many suffixes in Turkish language. These suffixes are

categorized in “Two-level description of Turkish Morphology” study of

Oflazer. (Oflazer, 1993). These suffixes are used to analyze word. After

each step of analyzing process, analyzer controls the string in suffix list

or word list.

<7sml version="1.0" encoding="utf-8" 7=

“SUFFIx_CATEGORY
“SUFFIx_CATEGORY
“SUFFIx_CATEGORY
ZSUFFIX_CATEGORY
<SUFFI_CATEGORY
<SUFFTX_CATEGORY
SUFFL+_CATEGORY
SUFFL+_CATEGORY
SUFFIx_CATEGORY
“SUFFIx_CATEGORY
“SUFFIx_CATEGORY

- «SUFFIx_CATEGORY_SET:=

Suf_C_Id="1"=Plural Suffix</SUFFI<_CATEGORY =
Suf_C_ld="2"=Possessive Suffix</SUFFIx_CATEGORY =
Suf_C_Id="3"=Case Suffix</SUFFI¥_CATEGORY =
Suf_C_ld="4"=Relative Suffix</SUFFIx_CATEGDORY =
Suf_C_Id="8"=¥Yoice Suffixes</SUFFI¥_CATEGORY =
Suf_C_Id="a"»MNegation Suffix</SUFFIX_CATEGORY =
Suf_C_Id="7">Compund ¥erb Suffix</SUFF[x_CATEGORY =
Suf_C_Id="8"=Main Tense Suffix«</SUFFIx_CATEGDORY >
Suf C_Id="9"=Question Suffix</SUFFIx_ CATEGORY >
Suf_C_Id="10"=Second Tense Suffix</SUFFIx_CATEGORY >
Suf_C_Id="11"=Person Suffix</SUFFIx_CATEGORY =

</SUFFIx_CATEGORY_SET=

Figure 5.9 All Suffix categories of Turkish language




99

Turkish suffix categories are stored in “Suffix Category.xml”
and Turkish suffixes are stored in “Suffix.xml”. Figure 5.9 shows all

suffix categories. A part of suffixes are shown in Figure 5.10.

<?aml wersion="1.0" encoding="150-3859-9" 7=
- <SUFFIX_SET=

<SUFFIX Suf Id="1" Suf C_Id="1"=lAr</SUFFIx>
<SUFFIX Suf_Id="2" Suf_C_Id="2">Hm</SUFFIx=
<SUFFIx Suf_Id="3" Suf_C_Id="2">HmHz«</SUFFlx=>
<SUFFIx Suf_[d="4" Suf_C_Id="2">Hn</SUFFIx>
<SUFFIX Suf_[d="5" Suf_C_Id="2"=HnHz</SUFFIx>
<SUFFIX Suf_[d="6" Suf_C_Ild="2"=sH«</SUFFIxx>
<SUFFIX Suf_[d="7" Suf_C_Ild="2"=lArH=/SUFFIx>
<SUFFIX Suf_Id="8" Suf_C_ld="3"»yH</SUFFIX>
<SUFFIX Suf_Id="9" Suf_C_Id="3">ylA</SUFFIX>
<SUFFIX Suf_Id="10" Suf_C_Id="3">yA</SUFFIx>
<SUFFIx Suf_Id="11" Suf_C_Id="3"=DA</SUFFIx>
<SUFFIX Suf_[d="12" Suf_C_Id="3">DAn</SUFFIx>
<SUFFIX Suf_[d="13" Suf_C_Id="3">nHn</SUFFIx>

Figure 5.10 Part of suffixes of Turkish language

Words

There are approximately 26.000 roots words in Turkish language.
These words are used to determine the stem of input word while
analyzing word. Turkish word categories are stored in
“Word Category.xml” and Turkish words are stored in “Word.xml”.
Figure 5.12 shows a part of word categories of Turkish language. A part

of words are shown in Figure 5.11.

<WORD W _Id="8" W _Id="1"=aba</ WCORD=
ZWORD W _Id="9" W _ Id="1"=abad< "ORD>
<WORD W _Id="10" W _Id="1"=abadan</WIRD>
WORD W Id="11" W _Id="1"=abadi</\WORD>
<WORD W_Id="12" WC_Id="1"=abajur</ORD:>=
<WORD W Id="13" WC_Id="1"=abakis< NORD=
<WORD W _Id="14" WC_Id="1"=abandone< " OR0=>
<WORD W _Id="15" WC_Id="1"=abani</ WORD=
ZWORD W _Id="16" WC_Id="1"=abanoz</WCIRD>=

Figure 5.11 Part of words of Turkish language



100

<7teml wersion="1.0" encoding="IS0-23859-9" 7=
- <WORD_CATEGORY =

<WORD_CATEGORY
<WORD_CATEGORY
<WORD_CATEGORY
<WORD_CATEGORY
<WORD_CATEGORY
<WORD_CATEGORY
<WORD_CATEGORY
<WORD_CATEGORY
<WORD_CATEGORY
<WORD _CATEGORY
<WORD_CATEGORY
<WORD_CATEGORY
<WORD _CATEGORY
<WORD_CATEGORY
<WORD_CATEGORY

< MWORD_CATEGORY =

WiZ_Id="14"=COMNNECTIVES </ "WORD_CATEGCORY =
Wi Id="5">COMPOUND-NOUNS </ WORD_CATEGORY >
WiZ_Id="3">¥ERBS</ WORD_CATEGORY =
WiZ_Id="13"=POSTPOSITIONS </ WORD_CATEGORY =
WiCId="1">NOUNS</WORD_CATEGORY =
WiC_Id="10">ACROMNYMS= WORD_CATEGORY =
WiZ_Id="8">SPECIAL-CASES</ WORD_CATEGORY >
WiZ_ Id="4"=PROPER-NOUNS </ \WORD_CATEGORY =
WiC_Id="2">ADIECTIVES </ \WORD_CATEGORY >
WiZ_Id="15">=QUESTIONS </ WORD_CATESORY =

WiZ Id="6">TECHNICAL=</WCORD_CATEGDREY =
WiCT_Id="11">EXCLAMATIOMNS < NORD_CATEGORY =
WiZ_ Id="90">DUPLICATION=/WORD_CATEGORY =

W Id="12"=PROMNOUNS < WORD_CATEGORY =
WiC_Id="7">ADVERBS </ \WORD_CATESCORY =

Figure 5.12 All word categories of Turkish language

There are

Morpheme Order Rules

two main classes for Turkish roots: nominal and verbal.

These are presented in section 3.2.1. These two paradigms are

represented in two rules. These rules are called morpheme order rules.

These

rules are stored in  “Order Rule.xml” and

“Order Rule Content.xml”. Figure 5.13 shows order rule’s header

information in XML document.

<?eml version="1.0" encoding="150-3859-9" 7=
- <0ORDER_PULE SET=
<Order_Rule Rule_Kind_Id="1"=Mominal</Crder_Rule:=
<0Order_Rule Rule_Kind_Id="2"=Yerbal</Order_Rulez
< /ORDER_RULE_SET=

Figure 5.13 Morpheme order rules

State transition table for nominal model is shown in Table 4.27 and

verbal model in Table 4.28 in chapter four. Nominal rule has two

properties: id and description. These are stored in rule document.



101

Figure 5.14 shows the detail contents of nominal rule. There are five

states that are final. There are five properties:

“Rule_Kind Id” determines the identity of nominal rule,

“Cur_State” determines the current state number,

“Next State” determines the next state number under certain

situation,

“Cat” determines the identity of the suffix categories.,

“Cur_State St” determines the current state situation that is

final or non-final states. It may be “0” or “1”. If this property

is ““1” then this state is final otherwise is non-final state.

<?uml version="1.0" encoding="150-8859-9" 7=

<0rder_Rule_Content
<0rder_Rule_Content
<Order_Rule_Content
<Order_Rule_Content
<Order_Rule_Content
<Order_Rule_Content
<0rder_PRule_Content
<Order_Rule_Content
<0rder_Rule_Content
<Uirder_Fuie_Content
=Order_Rule_Content
<Order_Rule_Content
<Order_Rule_Content
<0rder_Pule_Content
<Order_Rule_Content
«Order_Rule_Content
<Order_Rule_Content
<Order_Rule_Content
<0rder_Pule_Content
<Order_Rule_Content
<Order_Rule_Content

- <ORDERF_RULE_CONTEMT_SET=

Rule_Kind_Id="1"
Fule_Kind_Id="1"
Fule_Kind_Id="1"
Rule_Kind_Id="1"
Fule_Kind_Id="1"
Rule_Kind_Id="1"
Rule_Kind_Id="1"
Fule_Kind_Id="1"
Rule_Kind_Id="1"
Fule_Rind_14="1*
Rule_Kind_Id="1"
RFule_Kind_Id="1"
Rule_Kind_Id="1"
Rule_Kind_Id="1"
Fule_Kind_Id="1"
Rule_Kind_Id="1"
Rule_Kind_Id="1"
Rule_Kind_Id="1"
Rule_Kind_Id="1"
Fule_Kind_Id="1"
Rule_Kind_Id="1"

Cur_State="1"
Cur_State="1"
Cur_State="1"
Cur_State="1"
Cur_State="12"
Cur_State="2"
Cur_State="2"
Cur_State="2"
Cur_State="3"
Tur_Brate=*3"
Cur_State="3"
Cur_State="3"
Cur_State="4"
Cur_State="4"
Cur_State="4"
Cur_State="4"
Cur_State="5"
Cur_State="5"
Cur_State="5"
Cur_State="5"
Cur_State="5"

Next_State="2"
Mext State="3"
MNext_State="4"
Next_State="5"
Mext State="0"
Mext_State="3"
Next_ State="4"
Mext_State="5"
Next_State="0"
Mext State="0"
Mext_State="4"
Next_State="5"
MNext State="0"
Mext_State="0"
Next State="0"
MNext_State="5"
Next_State="0"
Mext State="0"
Mext_State="0"
Next State="0"
Mext State="0"

Cat="1"
Cat="2"
Cat="3"
Cat="4"
Cat="1"
Cat="2"
Cat="3"
Cat="4"
Cat="1"
Cat="2"
Cat="3"
Cat="4"
Cat="1"
Cat="2"
Cat="3"
Cat="4"
Cat="1"
Cat="2"
Cat="3"
Cat="4"
Cat="5"

Cur_State_St="1" />
Cur_State_St="1" /=
Cur_State_St="1" />
Cur_State_St="1" /=
Cur_State_St="1" /=
Cur_State_st="1" /=
Cur_State_St="1" /=
Cur_State_St="1" />
Cur_State_St="1" />
Cur_State_St="1" /=
Cur_State_st="1" /=
Cur_State_St="1" /=
Cur_State_St="1" /=
Cur_State_st="1" /=
Cur_State_St="1" /=
Cur_State_St="1" />
Cur_State_St="1" />
Cur_State_St="1" /=
Cur_State_st="1" /=
Cur_State_St="1" /=
Cur_State_St="1" /=

Figure 5.14 Detail contents of the Nominal rule

5. 2 Implementation of the Project

This project consists of two parts: a library to analyze words and an example
application that uses this library. The library is developed by Borland C++ Builder

Version 6.0. This library has two main functions: load data and analyze word.



102

Load data function must be run before analyze a word. This function
reads all data about the Turkish rule definitions from XML documents
and stored in memory as string array to faster operations. XML
documents are in Data folder in application directory. These arrays are
global variables for library. TXYMLDocument object is used to read XML
document in Borland C++ Builder. Load Data functions call these

functions:

o0 Fill Alphabet function finds alphabetic characters. It reads
“Kind.xml” document and gets the alphabetic character’s kind
identification then reads “Alphabet.xml”  document for this kind
identification. After reading data it stores these alphabetic characters

in Alphabet array.

0 Find Boundary Character function finds boundary symbol and stores
it in a global variable. It reads “Kind.xml” document and gets the
boundary symbol’s kind identification then reads ‘“Alphabet.xml”

document for this kind identification.

0 Find Any Character function finds any symbol and stores it in a
global variable. It reads “Kind.xml” document and gets the any
symbol’s kind identification then reads “Alphabet.xml” document for

this kind identification.

0 Find Null Character function finds NULL symbol and stores it in a
global variable. It reads “Kind.xml” document and gets the NULL
symbol’s kind identification then reads “Alphabet.xml” document for

this kind identification.

0 Fill Subset Content function finds subset contents. It reads
“Subset Content.xml” document. After reading data it stores these
subset content data in Subset Content array.

o0 Fill Rule function finds rule headers data. It reads ‘“Rule.xml”

document. After reading data, rule description data are stored in



103

Rule Description array. Other rule header data are stored in Rule

array

Fill Rule Content function finds rule content data. It reads
“Rule_Content.xml” document. After reading data, data are stored in

Rule Content array.

Fill Feasible Pair function finds feasible pairs data. It reads
“Feasible Pair.xml” document. After reading data, data are stored in
Feasible Pair array. Feasible Pair is a two-dimensional array. First
dimension represents to the pair of lexical and the second dimension

represents to the pair of surface.

Fill. Word Category function finds word categories data from
“Word Category.xml” document. After reading data, data are stored

in Word_Category array.

Fill. Word Entry function finds words data from “Word.xml”

document. After reading data, data are stored in Word array.

Fill Suffix Category function finds suffix categories data from
“Suffix_Category.xml” document. After reading data, data are stored

in Suffix _Category array.

Fill Suffix Entry function finds suffixes data from “Suffix.xml”

document. After reading data, data are stored in Suffix array.

Fill Order Rule function finds order rule headers data. It reads
“Order Rule.xml” document. After reading data, order rule
description data are stored in Order Rule Description array. Other

rule header data are stored in Order Rule array



104

0 Fill Order Rule Content function finds rule content data. It reads
“Order Rule Content.xml” document. After reading data, data are

stored in Order Rule Content array.

* Analyze word function aims to analyze words as stem and suffixes. It
determines the types of stem and suffixes at the same time. This function
gets the word that is a surface form as input. If analyzer founds a result
then it continues looking for additional results. It returns a structure that is
called MY RESULT. This structure has four elements: My Way,
My Alter, My Way File Name and My Alter File Name. All these

elements are string data type.

My Way includes the ways of all alternatives of analysis

My Alter includes all alternative results of analysis.

My Way File Name is the path of XML document for My Way
My Alter File Name is the path of XML document for My Alter

O O O O

This function also creates two XML documents: Result and
Result Way. 1t saves My Way and My Alter to these XML documents.
The data of My Way are stored in Result Way XML document and the
data of My Result are stored in Result XML document. These documents
are created in Debug folder in the application directory. These XML

documents are presented in following subsection.

Result.xml

The alternative outputs are in “Result.xml” document

containing the following data are stored in this document for each

alternation
= Stem: It is the stem of this alternation,
. Lexical Part: 1t is lexical form of this alternation,
. Intermadiate Part: It is an intermediate form of this

alternation,



105

. Morphemes: 1t is a set of all morphemes and their data of this

alternation. Each morpheme of the alternation has following data:

0 Affix: This is the morpheme,
0 Category: This is the category of this morpheme

Figure 5.15 shows the example that is one of the alternations of input

word “ekmegi”.

- ZALTER Lexical Form="ekmek+sH#"=
ZSTEM=ekmek</STEM=
ZLE=ICAL_PART=ekmek+sH# </LERICAL_PART =
ZINTERMEDIATE_PART>ekmed00i# </ INTERMEDIATE_PART =

- =MORPHEMES=
- «<MORPHEME=
<AFFIx=ekmek</AFFI==
<CATEGORY =MNOUNS </ CATEGORY =
< /MORPHEME =
- =MORPHEME=
ZAFFIs=sHs/AFFI=>
ZCATEGORY =POSSESSIVE-3</CATEGORY =
</ MORPHEME =
</MORPHEMES =
</ AL TER

Figure 5.15 One of alternations of input word “ekmegi”

Result Way.xml

The steps of the alternative outputs are in “Result Way.xml”
document. The purpose of this document is to allow to user to see how a
surface form is processed so if a rule is wrong or dictionary is incomplete
then the user can see the problem and change rules or dictionary if
necessary. Figure 5.16 shows an example of Result Way.xml document

as not detail.



— <AMNALYZE=
- <WORD:
ekmeqi

I s i T S e e A e ek i S i T S e

< MAORD

< ANALY ZE =

- =RECORDSET =
<RECCORD Feasible_Pair="a:0"=
ZLEx_PART=a</LEx_PART=
<5RF_PART=0</SRF_PART >
ZSITUATION=True</SITUATIOMN:
<LExICAL_FORM=a</LEXICAL_FORM:=
+ «<RECORDSET =
</RECORD=
<RECORD
<RECORD
<RECORD
<RECORD
«<RECORD
<RECORD
<RECORD
<RECORD
<RECORD
<RECORD
<RECORD
<RECORD
«<RECORD
<RECORD
<RECORD
<RECORD
<RECORD
<RECORD
<RECORD
<RECORD
</RECCORDSET =

Feasible_Pair=
Feasible_Pair=
Feasible_Pair=
Feasible_Pair=
Feasible_Pair=
Feasible_Pair=
Feasible_Pair=
Feasible_Pair=
Feasible_Pair=
Feasible_Pair=
Feasible_Pair=
Feasible_Pair=
Feasible_Pair=
Feasible_Pair=
Feasible_Pair=
Feasible_Pair=
Feasible_Pair=
Feasible_Pair=

Feasible_Pair="

Feasible_Pair=

"e:0"=
"1:0"=
"i:0"=
"o:0"=
"o:0"=
"w:n"=
"ii:0"=
"+:0"=
"H:0"=
"A:0"=
"n:0"=
"s:0"=
"y:D"=
R | R
"E:D"=
"Q:0"=
"i0"=
"&£

"Ae'>

e:e" Analyze="True">

Word: This is an input word,

following data for each recordset:

Figure 5.16 Example of Result_Way.xml document as not detail

The following data are stored in this document:

106

Recordset: This is a set of data of each feasible pair. There are

O Record: It has two parameters: Feasible Pair and Analyze.

Feasible Pair is the feasible pair (lexical:surface pair) that is



107

currently being considered. This parameter exists in every
Record. Analyze is a boolean parameter. If result is found then

this parameter will be true otherwise false.

Lex Part: This is the lexical character of the feasible pair,

Srf Part: This is the surface character of the feasible pair,

Situation: 1t represents the result of the one step of the

analyzing operation. There are four alternatives for situation.

= [f this step is accepted by all rules and lexical form is
in dictionary then situation will be true. This case is

shown in the Figure 5.17.

| <SITUATION=True</SITUATION: |

Figure 5.17 Example Situation result - I

» If current lexical form is not in the dictionary then
situation represents it. Word represents the lexical form
and state represents reason. This case is shown in

Figure 5.18.

- <SITUATION
- <DICTIOMARY =
<WORD=e1< WORD =
<STATE=Not in Dictionary</STATE:
< /DICTIOMARY =
</SITUATION=

Figure 5.18 Example Situation result - I1

= [f this feasible pair is not accepted at least one rule then
situation represents it. It contains information about
this rule that does not accept. RULE NUMBER
represents the number of rule, RULE DESCRIPTION



108

represents the description of the rule, and STATE
represents the set of current states. The leftmost
number is the state of rule 1, the second of is rule 2,

and so on. This case is shown in Figure 5.19.

- SITUATIOM=
- <RULE=
ZRULE_MUMBER=Invalid Rule 7</RULE_MNUMBER>
<RULE_DESCRIPTIOMN=H:0 < = YOWEL:YOWEL {":") +:0=/RULE_DESCRIPTICOM=
“STATE=111111110</STATE=
=/RULE=
</SITUATION=

Figure 5.19 Example Situation result - IT1

= If the stem of the input is a noun or adjective then
nominal order rule is applied. If the stem of the input is
a verb then verbal order rule is applied. If these two
rules fail then situation represents it. Rule Id
represents the identity of the order rule.
Rule Description represents the description of the

order rule. An example case is shown in Figure 5.20.

- <SITUATIOMN=
- =CORDER_RULE=
<RULE_ID=1</RULE_ID=
<RULE_DESCRIPTION=Invalid Rule Nominal</RULE_DESCRIPTION=
=/ORDEF_RULE=
=/SITUATION>

Figure 5.20 Example Situation result - IV

O Lexical Form: This is the current value of the result lexical

form.

O Recordset: This is the same with the recordset above. This is a

set of data for next feasible pair.

*  Rule Analyze is called by Analyze Word function for execution of analysis

operation. This function does the main operations. It a recursive function,




109

it computes lexical forms from the surface form by recursively. Its process
is left to right and one character of the surface input form is processed at a

time. Rule Analye function has following inputs:

0 Total Result Lexical is initially empty. This string gets longer

while analyzing. It holds the lexical form of the result.

0 Total Result Intermediate is initially empty. This string gets longer

while analyzing. It holds the intermediate form of the result.

0 xNode represents the step of analyzing process. Steps of analyzing

are stored in tree structure. xNode belongs to this structure.

O Result Node represents the correct results. Results are stored in tree

structure. Result Node belongs to this structure.

O My State is an array. It represents the current state of all rules. “1”

is the initial state for all rules, elements of this array is set to “1”.

O Sozcuk is a string variable. It represents the input word. This word is
in surface form. The symbol “#” concatenate to this word. The
symbol “#” means that the end of the word. This string gets shorter
while analyzing. After each of the steps the first character of this
variable is dropped i.e. initially it is “ekmegi#”, it is “kmegi#” in

the second step. If its length is 1 then process is finished.

O Result is initially empty. It holds the last morpheme that is found.

0 Kok is a boolean variable. It is initially true. If the stem of the input

word is found then this variable is set to false.



110

5.3 Functions in Library

The following some functions in library to help to analyze the surface form.

The role of the each function is represented in the following.

* Find In Dictionary

It has two inputs: word and statu. If statu is equal to false then this
function finds the word in set of words. If it is equal to true then this function
finds the word in set of suffixes. This function returns true or false. If it finds

then returns frue else false.

* Ara Rule Content

It has three inputs: Lexical Harf Id, Surface Harf Id and My State.
Lexical Harf Id is lexical part of current feasible pair and Surface Harf Id
is surface part of current feasible pair. My State is a set of current state

numbers for all rules.

This function returns a structure. This structure has two elements: count
and Set Feasible Pair. Count is an integer variable. It represents the
equivalent rules count. Set Feasible Pair is a five dimensional array. Its

elements represent:

First index represents the lexical character id,
Second index represents the surface character id,
Third index represents the next state,

Fourth index represents final/non-final state,

O O O O O

Fifth index represents the rule id,

* Determine Categories

This function is used to determine the categories for stem and all suffixes.

It has two inputs: Lexical and Result Node. Lexical is the one of the results



111

and Result Node is node of the result’s tree. It does not return any value. It

adds the category data in XML nodes.

* Find Character In_Subset

This function is used learn whether the input identification of character
exists in input identification of subset or not. It has two inputs: two inputs:
Harf Id and Subset Id. Harf Id is the identification of character. This
character is a part of current feasible pair. Subset Id is the identification of
the subset. This subset is in the current rule. The function returns frue or
false. If the input identification of character is in the identication of the subset

then function returns true otherwise returns false.

» Lexical Form Harf Karsiligi Bul

This function is used to determine the character of the input identification.
It has one input that is Harf Karsiligi. This input is integer data type that is
identification of a character. This function is used to determine the character
of this identification. If it finds the character then returns this character

otherwise returns null string.
* Find Parent Node
This function is used to determine the correct paths of results. It is called
when a result is found. It adds the Analyze parameter to the parent of correct

paths. If path is not correct there is no Analyze parameter in Record. This is

shown in Figure 5.18.

5.4 How Analyzer Works

The analyzer computes lexical forms from a surface form recursively. It

processes the surface input form by one character at a time. It goes left to right. It



112

tries suitable feasible pairs for each surface character. Analyzer finds suitable

feasible pairs according to surface character using this control:

Step 1

for (int i1=0; i<Feasible_ Pair_Count; i++)

{
if ((Feasible_Pair[i][1] = NULL) or
(Feasible_Pair[i][1] = Surface_Character))

// step 2
// step 3

Analyzer controls a boundary symbol in each step. If a boundary symbol is

reached then it controls the morpheme order in the following of operation.

Step 2
ifT (result_SubString(result_Length(),1) = Boundary_Character)
{

Current_Lexical _Form Feasible Pair[i][O];

my flag = true;

+
else
{
Current_Lexical_Form = Current_Lexical_Form +
Feasible_Pair[1][0];
my Flag = false;
+

Analyzer looks dictionary in every step for current lexical form. If current
lexical form is not in dictionary then operation fails. In this case analyzer goes back

and tries another feasible pair and does same looking operation. If current lexical



113

form is in dictionary then analyzer applies all rules in parallel using the function

Ara_Rule Content.

Step 3
if (Find_In_Dictionary(Current_Lexical Form,my flag) = true)

{
my_ Ffeasible pair = Ara Rule_Content(Feasible_ Pair[i][0],

Feasible Pair[i][1],

My State);
// step 4

else

my Fflag = false;
// write reason of fail as situation structure in
// Result_Way.xml like Figure 5.18.

Ara Rule Content returns a structure and assigns to my feasible pair.
Analyzer tries all possible results in my feasible pair. If a rule fails with current

feasible pair and current state then create a situation structure like Figure 5.19.

Step 4
for (k=0; k<my_ feasible_pair.count ; k++)
{
it ((my_feasible_pair.Set_Feasible_Pair[K][3] = 0)
or (Current_State_Situation = 0))
{
my flag = false;
// write reason of fail as situation structure
in // Result _Way.xml like Figure 5.19.

+
My State[k] = my_ Ffeasible_pair.Set_Feasible_Pair[k][2];



114

+
// stepb

The last operation is the control of morpheme order. Two rules are designed
according to nominal and verbal model of Turkish language to control morpheme

order of lexical form.

If boundary symbol is found in step 2 and stem of the surface form is found then
analyzer controls the morpheme order rule. If stem of the surface form is a noun or

an adjective then nominal rule is applied. If it is a verb then verbal rule is applied.

Step 5
IT ((Current_Lexical _Form.AnsilLastChar() = Boundary_Symbol) and
(stem = true))

{
// Tind morpheme category
for (x=0; x<Order_Rule_Content_Count; x++)
{
if((Order_Rule_Content[x][0] = Morp_Order_Rule.ld) and
(Order_Rule_Content[x][1] = Morp_Order_Rule.Cur_State)
and
(Order_Rule_Content[x][2] = Morp_Order_Rule.Morpheme_Cat))
{
my_flag_order = true;
break;
}
}
if ((ny_flag_order = false ) || (Order_Rule Content[x][3] = 0))
{

my flag = false;
// write reason of fail as situation structure in
// Result Way.xml like Figure 5.20.



115

After the entire controls, if my flag variable is frue then this feasible pair is

accepted, otherwise not. After all surface characters are processed, analyzer stops

and shows

the alternation results and the steps of these results as tree structure.

5.5 Test Application

There is a test application that uses library in this project. This application is

developed

by Borland C++ Builder 6.0. There are two main functions in it: Read

Data and Analyze Word. These functions call library’s functions.

ﬂ_; Morphological Analyzer,

Exit

Read Data function must be run before analyzing words. Figure 5.21

shows the usage of the read data function.

Analyze Word

Reszult

Figure 5.21 Usage of the “read data” function

Analyze Word function must be run after reading data process. It can

analyze only one word at the same time.



116

ﬂ_; Morphological Analyzer,

analyzer

Wword
ekmedi

W ay Result

Figure 5.22 Screen before analyzing operation

When a word is written text box on the screen and clicked the Analyze
Word button then test application shows the result of analyzing operation.
The screen before analyzing operation is shown in Figure 5.22 and the screen
after analyzing operation is shown in Figure 5.23. The steps of the alternative
outputs are shown on the left of the screen and the alternative outputs are

shown on the right of the screen in Figure 5.23.



117

I Morphological Analyzer

Anahyzer

Word
|ederratn Arahye Weed

Wy

Femlt

<xml version="1.0" encoding="windows=-1254" 7>
= CANALYZE>
- <WORD>
akmedi
- <RECORDSET>
- <RECORD Feasible_Par="a:l ">
<LE¥_PART>a</LEX _PART>
<SRF_PART>D</SRF_PART>
<SITUATION>True</SITUATION
<LEXICAL_FORM>a</LEXICAL_FORM>
- <RECORDSET>
= ¢RECORD Feasible_Pair="a:0">
<LEX_PART>»a</LEXN_PART>
<SPF_PART>D</SRF_PART>

<LEXICAL_FORM>aa</LEXICAL_FORM>
= CSITUATION>
- <RLULE>
<RULE_NUMBER>Inwalid
Rule
10</RULE_NUMBER>
<RULE _DESCRIPTION />
<5TATE>11111111
11111111111
1110</STATE>
< RIULE>
</SITUATION>
</RECORD>
= <RECORD Feasible_Pair="e:0">
<LEX_PART>@</LEX_PART>
<SRF_PART>»>D</SRF_PART>

<LEXICAL_FORM>ae</LEXICAL_FORM>

AW T b,

<7uml version="1.0" encoding="windows~-1254" 7>
= €RESULTS>
- <ALTER Lexical_Form="ekmek+nH#">
<STEM>okmak</STEM>
<LEXICAL_PART>akmek +nH#® < LEXICAL_PART>
<INTERMEDIATE_PART>ekmefDDis </ INTERMEDIATE_PART >
- <MORPHEMES>
= CMORPHEME>
<AFFlx>ekmek</AFFIX>
<CATEGORY>NOUNS</CATEGORY >
</ MORPHEME>
- ¢MORFHEME>
CAFFIM>nH</ AFFIX>
<CATEGORY>Case Suffix</CATEGORY>
</ MMORPHEME >
</MORPHEMES >
</ALTERS
- <ALTER Lexical_Form="akmeak+sH#¥F">
<STEM>akmak</STEM>
<LEXICAL_PART>ekmek+sH# </LEXICAL PART>
<INTERMEDIATE_PART vmr-!nﬂ__n_! <fINTERMEDIATE_PART>
- <MORPHEMES>
= ¢MORPHEME>
<AFFlx>akmek</AFFIX>
<CATEGORY>NOUNE< /CATEGORY >
</MORPHEME>
= «MORPHEME>
CAFFL>sHC/AFF >
<CATEGORY>Possessive Suffik</CATEGORY>
</MORPHEME >
</ MORPHEMES >
<fALTER>
- ALTER Lexical_Form="akmeak+yH#">
<STEM>ekmek</STEM>

Figure 5.23 Example results of the analyzing operation



118

CHAPTER SIX
CONCLUSION

The aims of the thesis were to implement a morphological analyzer for Turkish
language. This analyzer receives a surface form as input and gives lexical form of

this word as output.

Turkish rule definitions and words are stored in XML documents. Some words are
not stored as original i.e.: ag$1z, burSun. When certain suffixes are affixed then some
vowels can be deleted in these roots. These vowels are prefixed with a “$” in the
lexical form. These kinds of words are generally designating parts of the human
body. This exception must be solve in the future. “agiz” must be used instead of

“ag$1z” in the dictionary. New rules may be written for this purpose.

The application is developed with Borland C++ Builder Version 6.0. The
performance of this analyzer can be better. String classes of Borland C++ builder are
unsatisfying for high performance. The application can be recoded by using any
other programming languages that has stronger string classes to get higher

performance.

The analyzer is able to process one word at a time. In the future, the analyzer can
be improved to analyze the sentences by using word order rules, paragraphs by using
sentence order rules. Such analyzer can be able to analyze the style of an article. By
collecting the results of analyzing articles we may analyze the style of an author.

This process is called as stylometry.



119

REFERENCES

Antworth, E.L.(1995). Introduction to PC-KIMMO. North Texas Natural Language

Processing Workshop. University of Texas, Arlington, USA.

Antworth, E.L.(1995). Developing the Rules Component. North Texas Natural

Language Processing Workshop. University of Texas, Arlington, USA.

Antworth, E. L. (1995). Two-Level Phonology Revisited. North Texas Natural
Language Processing Workshop. University of Texas, Arlington, USA.

Antworth, E. L. (1995). Reference Manual. North Texas Natural Language

Processing Workshop. University of Texas, Arlington, USA.

Barton, G. E. (1986). Computational Complexity In Two-Level Morphology. In ACL

Proceedings, 24th Annual Meeting (Association for Computational Linguistics).

Cambridge

Beesley, K.R. & Karttunen, L.(2001). A Short History of Two-Level Morphology.
ESSLLI-2001 Special Event titled "Twenty Years of Finite-State Morphology.".
Helsinki, Finland.

Duran, A. & Kiirkgeii, L. (2004). A Drawing Tool For Morphologic Analyzer of
Turkish.
Dokuz Eylul University, Izmir, Turkey

Eryigit, G. & Adaly, E. (2004). An Affix Stripping Morphological Analyzer For
Turkish. Artifical Intelligence and Applications. Innsbruck, Austria.




120

Hankamer, J.. (1986). Finite State Morphology and Left to Right Phonology.
Proceedings of the Fifth West Coast Conference on Formal Linguistics, Stanford,
CA.

Jurafsky, D & Martin, J.H. Speech and language processing. Prentice Hall, New
Jersey 2000

Mengiisoglu, E. & Deroo, O. (2001). Turkish LVCSR: Database preparation and
Language Modeling for an Agglutinative Language. ICASSP. Salt-Lake City

Oflazer, K.(1993). Two-level Description of Turkish Morphology. Association for

Computational Linguistics. Morristown, NJ, USA

Oflazer, K. & Solak, A.(1993). Design and Implementation of a Spelling Checker
For Turkish. Literary and Linguistic Computing. Oxford Univ., USA

Oflazer, K., Go¢men, E. & Bozsahin, C. (1994) An Outline of Turkish morphology.
Technical Report, Middle East Technical University, Ankara, Turkey

Oflazer, K. & Giingordii, Z. (1994). Parsing Turkish Using the Lexical Functional

Grammar Formalism. International Conference On Computational

Linguisitics.USA

Oflazer, K. & Bozsahin, C. (1994). Turkish Natural Language Processing Initiative:

An overview. Proceedings of the Third Turkish Symposium on Artifical

Intelligence. Turkey.

Oflazer, K. & Giivenir, H.A. (1994). Using a Corpus For Teaching Turkish
Morphology. University of Twente. The Netherlands

Weber, D.J., Black, H.A & McConnel, S.R.. (1988). AMPLE: a tool for exploring

morphology. Summer Institute of Linguistics. Dallas.




121

WEB 1. (2003). Computational Linguistics and Phonetics Web Site. http:/www.
http://www.coli.uni-sb.de/ ~kris/nlp-with-prolog/html/node20htmli(12.12.2003)

WEB 2. (2003). Computational Linguistics and Phonetics Web Site. http:/www.
http://www.coli.uni-sb.de/ ~kris/nlp-with-prolog/html/node2 1html(12.12.2003)

WEB 3. (2004). School of Computing - University of Leeds Home Page.
http://www.comp.leeds.ac.uk/nti-kbs/ai5/Misc/morphemes.html (30.03.2004)

WEB 4. (2004). Bob’s Home Page. http://www.cromwell-
intl.com/turkish/nouns.html (16.06.2004)

WEB 5. (2004). Bob’s Home Page. http:/www.cromwell-
intl.com/turkish/orthography.html (16.06.2004)

WEB_6. (2004). Online Free Dictionary Web Site.
http://encyclopedia.thefreedictionary.com/Finite%20state%20automata
(20.07.2004)

WEB 7. (2004). Department of Computer Science of College of Sciences Web Site.
http://www.cs.odu.edu/~toida/nerzic/390teched/regular/fa/nfa-definitons.html
(28.07.2004)




APPENDIX A
CD CONTENTS

Root
Sources
Icons
FONTO02.ICO
DCLADO050.BPI
Drawing2.DDL
MA.bpr
MA .cpp
MA.obj
MA .res
MA.tds
Unitl.obj
UnitFonksiyon.cpp
UnitFonksiyon.obj
UnitFonksiyon.h
UnitMain.cpp
UnitMain.ddp
UnitMain.dfm
UnitMain.h
UnitMain.obj
UnitMorphological Analyzer.cpp
UnitMorphological Analyzer.ddp
UnitMorphological Analyzer.dfm
UnitMorphological Analyzer.h
UnitMorphological Analyzer.obj

122



123

UnitMorphological Analyzer.cpp

Executables
Data
Alphabet.xml
Feasible Pair.xml
Kind.xml
Order Rule.xml
Rule.xml
Rule Content.xml
Subset.xml
Subset Content.xml
Suffix.xml
Suffix Category.xml
Word.xml
Word Category.xml

Debug
Result.xml

Result Way.xml



