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SOLVING MIXED-MODEL ASSEMBLY LINE SEQUENCING PROBLEM 

USING ADAPTIVE GENETIC ALGORITHMS 

 

ABSTRACT 

 

     The focus of this M.Sc study is to introduce adaptive Genetic Algorithm (GA) 

based approaches for single- and multi-objective mixed-model assembly line 

sequencing problems (MMALSP), which deal with the determination of production 

launching orders so that the variations in part consumption rates (VPC) are 

minimized. In addition to this objective, minimization of total utility work (UW) and 

cost for sequence-dependent setups (SC) are also considered in multi-objective 

version of the MMALSP. 

 

     In order to solve single-objective MMALSPs, an adaptive GA based approach 

which incorporates adaptive parameter control techniques into a pure GA is proposed. 

The proposed approach, integrates an adaptive elitist strategy and a scheme for 

varying probability of mutation according to the feedback taken from the algorithm. 

Using this approach, the MMALSP is solved under the objective of minimizing VPC 

in a four level assembly environment, i.e. product, subassembly, component and raw 

material.  

 

     Later, by modifying the adaptive parameter control techniques and integrating 

them into a Pareto Stratum – Niche Cubicle GA, a multi-objective MMALSP with 

three objective functions (i.e., minimization of VPC, UW and SC) is solved. Finally, 

to evaluate the performance of the proposed approach, various sets of experiments 

have been carried out.  

 

Keywords: Mixed-model assembly line, model sequencing, adaptive genetic 

algorithm, multi-objective optimization, adaptive parameter control. 

 

 

 



v 

KARIŞIK-MODELLİ MONTAJ HATTI SIRALAMA PROBLEMLERİNDE 

ADAPTİF GENETİK ALGORİTMALARIN KULLANIMI 

 

ÖZ 

 

     Bu yüksek lisans çalışmasının esas amacı, tek- ve çok-amaçlı karışık-modelli 

montaj hattı sıralama problemleri (KMMHSP) için, parça kullanım oranlarındaki 

değişkenlikleri (PKOD) en küçükleyecek şekilde, model üretim sıralarının 

belirlenmesi sağlayan adaptif Genetik Algoritma (GA) yaklaşımlarını ortaya 

koymaktır. Çok-amaçlı problem, PKOD’a ek olarak, yardımcı işçi kullanımının 

(YİK) ve hazırlık sürelerinin (HS) en küçüklenmesi amaçlarını da dikkate almaktadır. 

 

     Çalışmada ilk olarak, tek-amaçlı KMMHSPlerini çözmek üzere, adaptif parametre 

kontrolü tekniklerini öz GA’ya uygulayan adaptif GA tabanlı bir yaklaşım 

önerilmiştir. Bu yaklaşım, adaptif bir elit stratejisi ve algoritmadan aldığı 

geribildirime göre mutasyon olasılığını düzenleyen bir yapı içermektedir. Önerilen 

yaklaşım kullanılarak KMMHSP problemi, son ürün, alt-montaj, bileşen ve ham 

madde olmak üzere dört seviye içeren bir montaj ortamında, PKOD’u en 

küçükleyecek şekilde çözülmüştür. 

 

     Çalışmanın devamında, daha önceden tek-amaçlı problemin çözümünde kullanılan 

adaptif parametre kontrol teknikleri modifiye edilerek Pareto Stratum – Niche 

Cubicle olarak bilinen GA’ya entegre edilmiş ve PKOD, YİK ve HS’nin en 

küçüklenmesini amaçlayan çok-amaçlı bir KMMHSP problemi çözülmüştür. Son 

olarak da, önerilen çözüm yöntemlerinin performanslarını değerlendirmek üzere 

çeşitli boyutlardaki problem setleri üzerinde deneyler yapılmıştır. 

 

Anahtar Kelimeler: Karışık-modelli montaj hattı, model sıralama, adaptif genetik 

algoritma, çok-amaçlı optimizasyon, adaptif parametre kontrolü. 
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CHAPTER ONE 

INTRODUCTION 

 

     In today’s many industries, varying customer demands and intense competition 

require a highly diversified product portfolio provided in a cost effective manner. In 

order to provide increased flexibility for product diversification, many manufacturers 

have upgraded their assembly lines, which were originally developed for a cost 

efficient mass production of a single standardized product. The current trend is to 

design mixed-model assembly lines (MMAL), which are capable of producing a 

variety of different product models simultaneously and continuously. 

 

     In a MMAL, the application of flexible workers and machinery leads to a 

substantial reduction in setup times and cost, so that different products with lot size 

of one can be jointly manufactured at the same line in intermixed sequences. In 

addition to the flexible resources being available, the production processes of 

manufactured goods require a minimum level of homogeneity (Boysen, Fliedner, & 

Scholl, 2007a). This is achieved by using a generic product model which is 

customizable by optional features. 

 

     The design of an MMAL involves several issues. The most important ones are 

resource planning, generic product modeling, line balancing and model sequencing. 

Resource planning is concerned with the selection of production means adequate for 

performing the assembly operations specified by the assembly planning. Balancing 

an assembly line means distributing work required to assemble a product among a set 

of work stations. In addition to the long and mid-term line balancing problems, there 

are short-term model sequencing problems, which aim at determining the production 

sequence of different models to be produced during the work shift. In this thesis 

study, we focus on the mixed-model sequencing problems. 

 

     Determining the sequence of launching models to the assembly line is of 

particular importance for efficient use of MMALs. In the literature, several 

objectives and methods have been proposed to judge the efficiency of different 
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production sequences including minimizing total utility work, minimizing variation 

of production rates, keeping a constant rate of part usage, minimizing total setup 

cost, minimizing the risk of stopping a conveyor, minimizing the overall line length, 

leveling workloads and so on. Which objectives to employ depends on the goals of 

the research and/or company. 

 

     Sequencing with a single objective can be meaningful when the objective 

unconditionally rules over all the others. In practice, however, several objectives, 

often conflicting with each other, need to be simultaneously considered (Hyun, Kim, 

& Kim, 1998). Such conflicts make it complicated to plan and control the production 

activities as the sequencing decision becomes a multi-objective problem.  

 

     An important issue that complicates the sequencing problem is its combinatorial 

nature. Typically, an enormous number of possible production sequences exist, even 

for relatively small problems, so that finding the optimal solution is usually 

impractical. In the literature, various solution approaches are proposed including 

dynamic programming (Yano & Rachamadugu, 1991), linear and integer 

programming (Drexl & Kimms, 2001; Ventura & Radhakrishnan, 2002), goal 

chasing methods (Celano, Costa, Fichera, & Perrone, 2004; Mane, Nahavandi, & 

Zhang, 2002; Monden, 1993), branch and bound (Drexl, Kimms, & Matthießen, 

2006), tabu search (McMullen, 1998; Scholl, Klein, & Domschke, 1998), simulated 

annealing (Cho, Paik, Yoon, & Kim, 2005; Kara, Özcan, & Peker, 2007a, 2007b; 

McMullen & Frazier, 2000), ant colony optimization technique (Boysen, Fliedner, & 

Scholl, 2007b; Gagné, Gravel, & Price, 2006), evolutionary and genetic algorithms 

(Hyun et al., 1998; Kim, Kim, & Kim, 2000, 2006; Mansouri, 2005; McMullen, 

Tarasewich, & Frazier, 2000; Ponnambalam, Aravindan, & Rao, 2003; Yu, Yin, & 

Chen, 2006) and several other heuristics. Among these, genetic algorithms have been 

shown to be quite successful in dealing with many manufacturing optimization 

problems. A genetic algorithm (GA) is a highly simplified computational model of 

biological evolution. In this study, we aim at solving mixed-model sequencing 

problems using GAs. 
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     The values of GA parameters greatly determine the performance of GAs. 

Choosing the right parameter values, however, is a time-consuming task. 

Furthermore, this task may need to be repeated for different instances of the problem. 

A recent trend in GA based research studies is to employ adaptive or self-adaptive 

parameter control mechanisms to remedy this situation (Bingul, Sekmen, & Zein-

Sabatto, 2000; Chang, Hsieh, & Wang, 2007; Eiben, Hinterding, & Michalewicz, 

1999; Herrera & Lozano, 2003; Huang, Chang, & Sandnes, 2006; Liu, Zhou, & Lai, 

2003; Shi, Eberhart, & Chen, 1999; Smith & Fogarty, 1997; Srinivas & Patnaik, 

1994; Zhao, Zhao, & Jiao, 2005). During the survey of current literature, we have not 

noted any study employing adaptive or self-adaptive parameter control mechanisms 

to solve MMAL sequencing problem (MMALSP). Based on this observation, in this 

study, an adaptive genetic algorithm based approach is developed in order to solve 

the MMALSP. 

 

     This study is organized as follows. In Chapter 2, detailed background information 

about the genetic algorithms, multi-objective optimization and mixed-model 

sequencing problem are given. In order to highlight the place of this study in the 

current literature, we extensively surveyed the relevant studies. Chapter 3 presents 

both the evaluation criteria we employed for classifying the current relevant literature 

and also the findings of this survey study. In Section 4, we present the details of the 

proposed adaptive GA based approach to solve the single-objective MMALSP and 

compare its performance with the pure GA. In Chapter 5, an adaptive GA based 

approach is developed to solve the multi-objective MMALSP and various sets of 

experiments are carried out to evaluate its performance. Finally, concluding remarks 

and the future research directions are given in Chapter 6. 
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CHAPTER TWO 

BACKGROUND INFORMATION 

 

     This section presents detailed background information about the mixed-model 

assembly line sequencing problem and genetic algorithms. First, the problem is 

explained in detail by presenting the problem statement, mathematical models, a 

summary of common problem parameters, line characteristics, and common 

objective functions employed to study this problem. Following, genetic algorithms 

including the related terminology, GA components and multi-objective GA 

approaches are presented. 

 

2.1 Mixed-model Assembly Line Sequencing 

 

     The sequencing problem appears when variations of the same basic product are 

produced on the same production line. These variations imply that the processing 

times on the individual stations differ, dependent on the model to be processed. This 

type of problem is called the mixed model assembly line sequencing problem 

(MMALSP) and is defined by various parameters which reflect the characteristics of 

the stations and the production line. This chapter first presents a short history of the 

sequencing problem, and later gives the problem statement and a summary of 

common problem parameters, line characteristics, and common objective functions 

employed to study this problem. 

 

     The mixed-model sequencing problem was first investigated by Wester & 

Kilbridge (1964), and since then, a large number of researches employing a variety 

of approaches (i.e., exact methodologies, meta-heuristics) have been carried out. 

During the literature survey, we noted that while some researchers dealt with only 

mixed-model sequencing problem, others focused on both line balancing and 

sequencing problems.  

 

     One of the early studies dealing with both problems in a hierarchical framework 

has been carried out by Thomopoulos (1967). In this study, line balancing procedure 
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was an adaptation of single-model line balancing techniques to mixed-model 

schedules. This procedure was followed by a sequencing procedure for determining 

the order in which models are launched to the line. The proposed approach resulted 

in an increase in the efficiency of the assembly line by providing near optimum 

solutions. 

 

     Another research that dealt with the aggregated problem of balancing and 

sequencing has been carried out by Merengo, Nava, & Pozetti (1999). As it was the 

case in Thomopoulos (1967), the authors proposed a hierarchical approach, in which 

they first dealt with the balancing problem. The balancing objectives were 

minimization of number of stations and number of incomplete units on the line, 

whereas sequencing algorithm aimed at keeping a constant rate of parts usage. Four 

balancing approaches were proposed and compared to each other. Also the results of 

the sequencing algorithm were compared to those of Miltenburg (1989) and shown to 

be better. 

 

     The evolution concept has been also introduced to the aggregated problem by 

several researchers (e.g. Kim et al., 2000, 2006; Miltenburg, 2002; Rekiek, De Lit, & 

Delchambre, 2000). In these studies, the authors have developed various 

evolutionary and genetic algorithm approaches to deal with the aggregated problem 

in both straight and U-shaped lines. 

  

     Another group of studies only focused on mixed-model sequencing problems. 

Dar-el & Cother (1975) proposed a new formulation for the sequencing problem 

under the objective function of minimizing the overall length of assembly line. The 

authors evaluated the effects of five factors (i.e., the number of models, the model 

cycle time deviation, the operator time deviation, the production demand deviation 

for each model, and the number of stations in the assembly line) on the overall 

assembly line length and suggested that the first three factors had major effects on 

the line length. Another finding was that for maximum efficiency in utilization of 

space the open-station interfaces should be preferred. 

 



6 

     Monden (1993) defined two goals for evaluating the performance of sequencing 

approaches. The first one was based on leveling the load at each workstation in order 

to minimize the risk of stopping the conveyor, and the other one was maintaining a 

constant feeding rate of every model. The author stated that the latter one was more 

applicable to JIT production systems. 

 

     Yano & Bolat (1989) provided a literature review on sequencing in mixed-model 

assembly lines. They also developed a heuristic which aims to minimize total utility 

work and compared their results with those of two automobile manufacturers’ 

existing algorithms.  

 

     Yano & Rachamadagu (1991) investigated the problem of sequencing jobs, each 

representing a combination of product options, on a paced assembly line. They 

developed an optimal procedure for the situation where a single station is affected by 

an option. They also provided a heuristic procedure for multiple stations. The 

procedure was compared with an existing procedure used in industry.  

 

     Miltenburg (1989) studied the sequencing problem with the objective of keeping a 

constant rate of part usage. It was assumed that each product requires approximately 

the same number and mix of parts. Hence a constant rate of usage of all parts used by 

the line was achieved by considering only the demand rates for the products, and 

ignoring the resulting part demand rates. Three algorithms were presented for an 

exact solution but since the algorithms’ worst case complexity was exponential, two 

heuristics were also proposed.  

 

     Bard, Dar-El, & Shtub (1992) proposed an analytical framework for sequencing 

MMALs and presented the characteristics of sequencing problems including open 

and closed stations, launching discipline, sequencing objectives, line movement, and 

operator schedules. Six variants of the sequencing problem were formulated and 

solved under the objective of assembly line length minimization. 
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     In recent years, the increased popularity of genetic algorithms has led researchers 

to propose several GA based approaches for the sequencing problem. The first 

research on the application of GAs to the sequencing problem in MMALs has been 

carried out by Kim, Hyun, & Kim (1996). This was followed by Hyun et al. (1998) 

who also considered the multi-objective nature of the sequencing problem. 

McMullen et al. (2000) combined multiple objectives into a single objective using 

the weighted-sum approach and solved this problem with GAs. 

 

     There are several other published researches dedicated to the MMALS problem, 

covering a broad range of solution methods. Boysen et al. (2007a) present a detailed 

classification scheme for MMALS problem which they then use to classify most of 

the published researches in this area. The reader may refer to this study for an 

extensive list of model sequencing related literature. 

 

2.1.1 Problem Statement and Mathematical Models 

 

     Most of the existing literature mentions the optimization of line balancing and 

model sequencing in a consecutive order (however, they usually focus on one of the 

two). Once the line is balanced and the design of the line is obtained, it is necessary 

to achieve a reasonable, if not optimum, order for the jobs to be processed 

consecutively (Färber & Coves, 2005).  

 

     Sequencing problems in MMALs can be considered from different points of view. 

In this section, we present mathematical models of three different versions of 

sequencing problem which aim at minimizing the total utility work (work overload), 

the variation of part consumption rates and the total setup cost, respectively. All 

models rely on the following assumptions made by Hyun et al. (1998): 

 

� Assembly line is a conveyor system moving at a constant speed ( cv ). 

� Line is partitioned into J  stations. 

� All stations are closed ones so that workers cannot cross stations’ boundaries. 
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� Minimum part set (MPS) production is used. MPS is a vector representing a 

product mix, such that ( ) ( )hDhDdd Mm ,...,,..., 11 = , where M  is the total 

number of models, mD  is the number of products of model type m  which 

needs to be assembled during an entire planning horizon and h  is the greatest 

common divisor or highest common factor of  MDDD ,...,, 21 . This strategy 

operates in a cyclical manner. The number of products produced in one cycle 

is ∑ =
=

M

m mdI
1

. Obviously h  times repetition of the MPS can meet the total 

demand in the planning horizon. 

� Products are launched onto the conveyor at a fixed rate. The launch interval 

( γ ) is set to ( )JIT × , where T  is the total operation time required to 

produce one cycle of MPS products ( ∑ ∑= =
=

J

j

M

m mjmdtT
1 1

, where jmt  is the 

operation time for model m  at station j ). 

� Processing times are deterministic. 

� Workers’ moving time is ignored. 

 

     2.1.1.1 Minimizing the Total Utility Work 

 

     During the line balancing phase, in order to avoid excessive station capacities, the 

cycle time is determined as an average for all models. As a consequence, the 

processing times of some models are higher than the cycle time, whereas that of 

others are lower. If several models with higher processing times follow each other at 

the same station, the worker will not be able to return to the left-hand border before 

the next work piece has arrived and thus be consecutively moved towards the right-

hand border of the station. This finally results in a work overload whenever the 

operations of a work piece can not be finished within the station’s boundaries. 

Depending on the exact type of boundaries considered this might necessitate one of 

the following reactions (Boysen et al., 2007a) : 

 

i. the whole assembly line is stopped until all stations have finished work on 

their current work piece, 
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ii. utility workers support the operator(s) of the station to finish work just before 

the station’s border is reached, 

iii. the unfinished tasks and all successors are left out and executed off-line in 

special finishing stations after the work piece has left the last station of the 

line, or 

iv. the production speed is accelerated at the risk of quality defects. 

 

     To avoid such costly compensations, mixed-model sequencing searches for 

sequences where those models with high processing times alternate with less work-

intensive ones at each station (Wester & Kilbridge, 1964). For this purpose, models 

are scheduled at each station and cycle, by explicitly taking into account processing 

times, worker movements, station borders and further operational characteristics of 

the line.  

 

     Let jL  be the fixed line length of station j  and ijU  be the amount of the utility 

work required for the thi product in a sequence at station j . The following model is 

presented by Hyun et al. (1998): 

 

Minimize   ∑ ∑
=

+

=









+

J

j

cji

I

i

ij vZU
1
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1
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=

   
1
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jiU ij ,0 ∀≥             (1.7) 

 

where ijZ  is the starting position of the work on the thi product in a sequence at 

station j , and imx  is 1 if the thi product in a sequence is model m ; otherwise imx  is 

0. The second term in the objective function takes into the account for the utility 

work that may be required at the end of a cycle. Eq. (1.1) ensures that exactly one 

product is assigned to each position in a sequence. Eq. (1.2) guarantees that demand 

for each model is satisfied. Eq. (1.3) indicates the starting position of the worker at 

each station j  on product 1+i  in a sequence. Utility work ijU  for the thi product in 

a sequence at station j  is determined by Eq. (1.4). 

 

     2.1.1.2 Minimizing the Variation of Part Consumption Rates 

 

     Keeping the part consumptions at a constant rate is considered to be an important 

goal for JIT production systems. These systems rely on continual and stable part 

supply. Therefore, it is important to keep part demand rates as constant as possible 

over time. This can be achieved by minimizing the variation of actual part 

consumption rates from the expected ones. 

 

g  level number (level 4: raw material, level 3: components, level 

2: subassemblies, level 1: final assembly) 

gn     number of outputs at level g , where 4,3,2,1=g  

1id     demand for product 1,...,2,1 ni =  

iglt  number of units of output i  at level g used to produce one unit 

of product l ,  gni ,...,2,1= ; 4,3,2=g ; 1,...,2,1 nl =  

∑
=

=
1

1

1

n

h

highig dtd  demand for output i  at level g  

∑
=

=
gn

i

igg dDT
1

    total demand for production at level g , where 4,3,2,1=g  
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gigig DTdr /=   ratio of level g  production devoted to output i , gni ,...,2,1= ; 

4,3,2,1=g . 

 

     1DT  products must be assembled on the final assembly line during the planning 

horizon. Let us say that there are 1DT  consecutive stages and a product is assigned to 

each of these stages. This is called a schedule. The schedule is represented in the 

model by the following variables: 

 

kix 1  number of units of product i  produced during stages k,...,2,1 . 

The notation k  is used throughout to denote the stage number. 

∑
=

×=
1

1

1 )(
n

h

khighigk xtx  number of units of output  i  at level g  produced during stages 

k,...,2,1 . 

∑
=

=
gn

i

igkgk xXT
1

  total production at level g  during stages k,...,2,1 . 

gw    weights, 4,3,2,1=g . 

 

     If production were strictly synchronized with demand we would find that after k  

stages the total output igkx  of part i  at level g  would be ( )
iggk rXT × . However, 

equality is not always possible. So we strive to schedule the system as to make igkx  

close to ( )
iggk rXT ×  for each i ; g  and k . Equipped with these definitions and 

notations, Miltenburg & Sinnamon (1989) formulated the scheduling problem as 

follows:  

 

     Select igkx ; 1,...,2,1 ni = ; 1,...,2,1 DTk =  to minimize the variation in parts 

consumption, i.e. 
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11 21 ...DT,,k, kXT k   ==         (2.1) 

)1(110 −−≤ kiki xx  and kix 1  is an integer, DTkni ,...2,1;,...2,1 1 ==   (2.2) 

111 ,....2,1,
1

nidx iDTi ==        (2.3) 

 

     Eq. (2.1) ensures that exactly k  products are scheduled during k  stages. Eq. (2.2) 

ensures that it is not possible to schedule less than zero units, more than one unit, or a 

fraction of a unit of any product. Eq. (2.3)  ensures that exactly the right number of 

each type of model is produced during the planning horizon (Ponnambalam et al., 

2003). 

 

     2.1.1.3 Minimizing the Total Setup Cost 

 

     In many industries, sequence-dependent setups are considered as an important 

issue in assembly operations. A setup is required each time two consecutive items in 

the production sequence are different. Therefore, this objective aims to minimize 

product changes in the production schedule by batching products as much as 

possible. A mathematical model considering sequence-dependent setups has been 

developed by Hyun et al. (1998) as follows: 
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where jmrc  is the setup cost required when the model type is changed from m  to r  

at station j  and imrx  is 1 if model types m  and r  are assigned, respectively at the 

thi  and th)1( +i  position in a sequence; otherwise imrx  is 0. Eq. (3.1) is a set of 

position constraints indicating that every position in a sequence is occupied by 

exactly one product. Eqs. (3.2) and (3.3) ensure that the sequence of products must 

be maintained while repeating the cyclic production. Eq. (3.4) imposes the restriction 

that all the demands must be satisfied in terms of MPS. 

 

2.1.2 Problem Complexity 

 

     The total number of sequences for a mixed-model assembly sequencing problem 

can be computed as follows: 

 

)!(

)!(

1

1

∏

∑

=

==
M

m m

M

m m

d

d
 sequences Total .      (4) 

 

     Here M  is the number of different models, m  is the model type and md  is the 

demand of model m . As the problem increases in size, the number of feasible 

solutions increases in the exponential way. Thus, problems with large number 

possible solutions cannot be usually solved optimality within a reasonable amount of 

time (Tavakkoli-Moghaddam & Rahimi-Vahed, 2006). Therefore, only a few exact 

procedures are proposed in the literature up to now. They either solve very restrictive 

problem versions or are intended to serve as reference procedures for evaluating 

heuristic methods (Scholl, 1999).  

 

     Also, when the multi-objective nature of the problem is considered, finding 

production sequences with desirable levels of all objectives is NP-hard (Hyun et al., 

1998). Conventional multi-objective optimization techniques including linear 

programming, gradient methods, methods of inequalities, goal attainment or 

weighted sum approach, all have some shortcomings as pointed out by Deb (1999): 
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“In dealing with multi-criterion optimization problems, classical search and 

optimization methods are not efficient, simply because (i) most of them cannot 

find multiple solutions in a single run, thereby requiring them to be applied as 

many times as the number of desired Pareto-optimal solutions, (ii) multiple 

application of these methods do not guarantee finding widely different Pareto-

optimal solutions, and (iii) most of them cannot efficiently handle problems with 

discrete variables and problems having multiple optimal solutions.” 

 

     Emulating the biological evolution mechanism and Darwin’s principal on 

“survival-of-the-fittest”, genetic algorithms have been recognized to be well suited 

for multi-objective optimization problems where conventional tools fail to work well 

(Tan, Lee, & Khor, 2002). 

 

2.1.3 Characteristics of MMALSP 

 

     Characteristics of this problem can be grouped into four categories: (i) station 

characteristics, (ii) line characteristics, (iii) operational characteristics, and (iv) 

objective functions. The following subsections briefly summarize these 

characteristics. 

 

     2.1.3.1 Station Characteristics 

 

     The station environment hosts various decision factors for the MMALS problem.  

  

     2.1.3.1.1 Station Boundaries. Depending on the nature of the tasks and the 

physical layout of the facility, stations in the assembly line may be closed or open at 

the either side of a station boundary. In a closed station, the operator is not allowed 

to move out of his work area when he assembles the products. On the other hand, in 

an open station, the operator is permitted to move outside his station up to some 

specific limits (such as the reach of the material handling equipment or range of 

power tools). In no instance are the operators permitted to interfere with each other, 

or to service a unit simultaneously (Bard et al., 1992; Sarker & Pan, 2001). 
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     2.1.3.1.2 Reaction on Work Overload. Whenever the operator of a station is not 

able to complete the assigned tasks before the work piece leaves the station (due to a 

restricted station length or due to the transport system), work overload occurs. Work 

overload may be compensated by the temporary employment of utility workers, 

stopping the line or another sanction. No matter which sanction is selected, work 

overload is inefficient and expensive and should be minimized (Becker & Scholl, 

2006). Boysen et al. (2007a) list the reaction alternatives on imminent work overload 

as follows: 

 

• In the general case, it is assumed that work overloads do not affect starting 

times of successive stations, so that in spite of an overload at station k , the 

successive station 1+k  can start processing the work piece as soon as the 

work piece reaches its left station border (provided that it finished work on 

the preceding work piece). This is always the case if (i) work overload is 

compensated by the timely assignment of a utility worker, who helps to finish 

the work within the station’s boundaries, (ii) the processing velocity is 

increased so that the work is finished in time or (iii) the unfinished tasks are 

left out and completed later at end-of-line repair shops or special in-line 

repair stations. Irrespective of the measure taken, the line can continue 

processing work pieces. 

• The work piece is taken off the transportation system, e.g., for disposal or off-

line completion, so that successive stations have empty cycles. 

• The line is stopped as soon as an unfinished work piece reaches a station’s 

definite border, which induces idle time at all other stations, and is, for 

instance, the typical compensation in the Japanese automobile industry 

• Overloads are (seen to be) compensated by variable station borders. 

Typically, the decision on the stations’ length is part of assembly line 

balancing and, thus, already fixed for short-term model sequencing. 

Nevertheless, such sequencing models can be utilized to either decide on the 

station extents on the basis of a representative medium-term model mix as an 

addition to the balancing information or as a surrogate model, e.g., for 
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assembly lines with open stations. A further differentiation of variable 

borders can be made as follows: 

o An early start model presupposes fixed left borders of stations, so that 

each station may only expand in downstream direction. Each worker 

starts processing in the first cycle at the left border of his station 

(reference point 0). When the operator has finished his work he walks 

back and starts work, when another work piece has already been 

launched into the station area. Otherwise, he goes back to the 

beginning of the station (reference point 0) and waits for the next 

work piece. 

o In a late start model the stations expand in both directions. Workers 

who completed their tasks move back until they reach the subsequent 

work piece, even if it puts them beyond their respective reference 

point 0, instead of incurring idle time by waiting at left station 

borders. 

 

     2.1.3.1.3 Processing Times. A further important characteristic defining different 

versions of MMALSP is the variability of task times. Whenever the expected 

variance of task times is sufficiently small, as in case of, e.g., simple tasks or highly 

reliable automated stations, the task times are considered to be deterministic. 

Considerable variations, which are mainly due to the instability of humans with 

respect to work rate, skill and motivation as well as the failure sensitivity of complex 

processes, require considering stochastic task times. Besides stochastic time 

variations, systematic reductions are possible due to learning effects or successive 

improvements of the production process (Becker & Scholl, 2006). 

 

     2.1.3.1.4 Concurrent Work. Concurrent work enables the worker(s) of a station to 

start processing although the previous station has not finished its work on the 

respective work piece. This necessitates open stations as well as work pieces of an 

appropriate size, so that workers do not impede each other (Boysen et al., 2007a). 
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     2.1.3.1.5 Setups. A mixed-model assembly line necessitates a considerable 

reduction of setup times and costs. Otherwise, a production of different models in an 

intermixed sequence is utterly impossible. Nevertheless, short setup operations, 

which consume just a fraction of the cycle time, may be relevant, e.g., due to tool 

swaps (Boysen et al., 2007a). Setup time/cost is concerned if an additional time/cost 

appears to change the setup of a station in order to be able to process the next job. If 

the setup time/cost is independent of the model, it can be simply added to the 

processing time/cost (Färber & Coves, 2005). 

 

     2.1.3.1.6 Parallel Stations. Tasks with comparatively large processing times may 

lead to inefficient line balances, as they force the cycle time to be inefficiently large 

inducing idle times at other stations. Thus, it might be preferable to install parallel 

stations, which alternately process identical work contents. Parallel stations can be 

implemented in two different ways: In spacial parallelization, the respective stations 

are located side by side and are alternately fed with work pieces over a switch. In 

chronological parallelization, a number, say p , of operators or teams of operators 

work at the same segment of the serial line covering p  sequential stations. The 

teams process the work pieces for p  cycles such that they circulate within the line 

segment each team being responsible for one out of p  successive work piece 

(Boysen et al., 2007a). 

 

     2.1.3.2 Assembly Line Characteristics 

 

     2.1.3.2.1 Number and Homogeneity of Stations. Assembly lines in real world are 

composed of more than one station. However, a restriction to a given number n  of 

stations or even a single station might be of value. When there is more than one 

station, another characteristic emerge from this situation: homogeneity of stations. In 

practical cases, an assembly line may consist of stations with diverging 

characteristics. For instance, open and closed stations can be mixed throughout the 

line, which is referred to as hybrid lines. The majority of existing sequencing 

approaches presuppose stations with homogeneous characteristics, which is very 

limiting for practical applications (Boysen et al., 2007a). 
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     2.1.3.2.2 Line Layout. Traditionally, an assembly line is organized as a serial line, 

where single stations are arranged along a (straight) conveyor belt (see Figure 2.1 a). 

Such serial lines are rather inflexible and have other disadvantages which might be 

overcome by a U-shaped assembly line (see Figure 2.1 b). Both ends of the line are 

closely together forming a rather narrow ‘‘U’’. Stations may work at two segments 

of the line facing each other simultaneously (crossover stations). Besides 

improvements with respect to job enrichment and enlargement strategies, a U-shaped 

line design might result in a better balance of station loads due to the larger number 

of task-station combinations (Becker & Scholl, 2006).  

 

 

Figure 2.1 Straight and U-shaped lines (Miltenburg, 2002) 

 

     In principle, the physical layout of the line is not relevant for the sequencing 

decision. However, a U-line allows operators to work on more than one work piece 

per cycle at different positions on the line, because crossover stations have access to 

two legs of the U-shaped line simultaneously. This influences the sequencing 

problem considerably (Boysen et al., 2007a). 

 

     2.1.3.2.3 Launching Discipline. There are two main launching strategies: (i) fixed 

rate launching, (ii) variable rate launching. Fixed rate launching (FRL) implies that 

each unit, regardless of model type, is equi-spaced on the line. Here, the reciprocal of 

the distance between successive units equals to the cycle time. When product 

variations are small, often common choice is FRL due to its simplicity. With 

increasing product diversification, though, variable rate launching (VRL), made 
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possible by the arrival of sophisticated controllers and sensors, is now becoming a 

practical alternative. VRL augments the flexibility of line operation as the launching 

interval can be dynamically adapted to prevent idle times and work overloads (Bard 

et al., 1992; Boysen et al., 2007a). 

 

     2.1.3.2.4 Worker Return Velocity. Whenever a worker finishes all operations, he 

needs to return upstream to start processing the next work piece. In the real world, 

walking a distance takes some time. Nevertheless, in a mathematical model two 

kinds of premises with regard to the return speed are possible (Boysen et al., 2007a): 

 

• If workers are considerably faster than the movement of the line, return times 

of workers can either be neglected or treated as fixed and directly added to 

station times. Because the assumption of infinite return speed of workers 

simplifies analysis and, in many cases, is a slight relaxation of reality only, 

most approaches act on this assumption. 

• If return times vary considerably from cycle to cycle and worker to worker, 

e.g., due to different processing times and, hence, different walking distances, 

an approach for mixed-model sequencing should take finite return speeds into 

account. 

 

     2.1.3.3 Operational Characteristics 

 

     Most production systems consist of multiple levels. Nevertheless, under the 

assumption of a final assembly which instantaneously pulls its material through the 

whole supply chain, it may be sufficient to solely consider the final production stage. 

A level production schedule at the final assembly automatically induces a level 

production schedule at all preceding stages, if a small lot production is directly 

triggered by the respective material usages. However, multiple production levels can 

also be considered explicitly. In this case, the deviations of all production levels are 

included within the objective function (Boysen et al., 2007a). 
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     2.1.3.4 Sequencing Objectives 

 

     It has been noted during the literature survey that the researchers employed 

various types of objective functions for sequencing in mixed model assembly lines. 

The most common ones are:  

 

� Keeping a constant rate of part usage. Some researchers who are particularly 

interested in just-in-time production systems have addressed the problem of 

keeping a constant rate of part usage. One basic requirement of JIT systems is 

continual and stable part supply. Since this requirement can be realized when 

the demand rate of parts is constant over time, the objective of keeping a 

constant rate of part usage is important to a successful operation of the 

systems. (Hyun et al., 1998). This objective can be achieved by matching 

demand with actual production.  

 

� Minimizing variation of production rates. Smoothing variation of production 

rates is considered as a substitute for the ultimate objective of keeping a 

constant rate of part usage under the assumption that products require 

approximately equal number and mix of parts (Mansouri, 2005). 

 

� Minimizing work overload. This objective minimizes the time (or space) by 

which station borders would be exceeded if no type of compensation (e.g., 

assigning utility workers, stopping the line, taking work piece off the line, 

etc.) was carried out. As work overload is usually avoided by the assignment 

of utility workers, this objective is also referred to as “minimization of total 

utility work” (Boysen et al., 2007a). Minimizing the utility work contributes 

to reducing not only labor cost but also the risk of stopping the conveyor and 

the required line length (Kim et al., 2000).  

 

� Minimizing the set-up cost/time. A setup is required each time two 

consecutive items in the production sequence are different. Many assembly 

operations often require sequence-dependent setups. For instance, an 
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automotive body station needs a setup when the door types are changed. 

(Hyun et al., 1998). 

 

� Minimizing line length. This objective can be followed with variable station 

borders. It is a surrogate for minimizing investment cost of the transportation 

system, which is considered to raise in proportion to an increase in length 

(Boysen et al., 2007a). 

 

� Minimizing throughput time. Throughput time is defined as time interval 

between the launching of the first work piece and the finishing of the last. 

This is highly correlated to the objective “minimize line length”. This 

objective also depends on non-fixed station lengths (Boysen et al., 2007a). 

 

� Leveling workloads for stations on the line. This goal is about sequencing 

mixed models to achieve balanced workloads over time in each assembly 

station (Ding, Zhu, & Sun, 2006). This objective has several benefits: 

establishing a sense of equity among workers, reducing line congestion and 

thus increasing the throughput rate (Kim et al., 2006). 

 

� Minimizing the duration of line stoppages. When the line is stopped no work 

pieces can be completed. Thus, this objective minimizes opportunity costs for 

lost sales (Boysen et al., 2007a). This objective was emerged from the 

autonomation concept in the Toyota production system (Xiabo, 1999). 

 

� Minimizing total idle time. Idle time represents unused (non-productive) 

capacities of machines and workers. Idle time occurs whenever a worker 

waits for a work piece to reach his station. Idle time in itself has its 

justification if unused capacities can be profitably utilized for performing 

other work (Boysen et al., 2007a). 
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     2.1.3.5 Hybrid Sequencing Problems 

 

     Design of the MMALs involves several issues other than the model sequencing 

problems (e.g. line balancing). Although those issues have been separately 

considered in the literature, several hybrid approaches are also developed to deal 

with integrated problems of sequencing and balancing.  

 

     The short-term decision problem of model sequencing is heavily interdependent 

with the long- to mid-term assembly line balancing. The line balance decides on the 

assignment of tasks to stations and thus determines the work content and material 

usage per station and model. This decision constitutes the input data of model 

sequencing. Thus, the amount of overload resulting from a planned model sequence 

by itself is a measure of efficiency for the achieved line balance. That is why some 

authors have proposed a simultaneous consideration of both planning problems 

(Boysen et al., 2007a). 

 

2.2 Genetic Algorithms 

 

     It is known that the MMAL sequencing problem falls into NP-hard class of 

combinatorial optimization problems and thus a large-sized problem may be 

computationally intractable. The computational time can be a critical factor in 

choosing the right method in solving this problem since real time alteration of model 

sequences is often necessary when demand pattern changes or part shortages occur. 

For this reason, in recent years meta-heuristics have been widely adopted by a 

number of researchers (Hyun et al., 1998). One of the most popular metaheuristics 

dealing with many manufacturing optimization problems is Genetic Algorithms.  

 

     A genetic algorithm (GA) is a search and optimization method, which simulates 

the natural behaviour of biological systems. After being introduced by John Holland 

(Holland, 1975), they have become increasingly popular among other heuristic 

methods and they have been successfully adapted to solve several combinatorial 

optimization problems in the literature. This popularity and success depend on their 
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several advantages on other methods. First, unlike some other heuristic methods, 

which iterate on a single solution, GAs work with a population of candidate 

solutions. This helps GAs to be useful in problem domains that have a complex 

fitness landscape as recombination (crossover) is designed to move the population 

away from local optima that a traditional hill climbing algorithm might get stuck in. 

Second, the inductive nature of the GA means that it doesn't have to know any rules 

of the problem — it works by its own internal rules. This is very useful for complex 

or loosely defined problems. Other advantages include but are not limited to 

scalability to higher dimensional problems and ease of adjustability to the problem at 

hand. Haupt & Haupt (2004) lists the advantages of GAs as follows: 

 

• Optimizes continuous or discrete variables, 

• Doesn’t require derivative information, 

• Simultaneously searches from a wide sampling of the cost surface, 

• Deals with a large number of variables, 

• Is well suited for parallel computers, 

• Optimizes variables with extremely complex cost surfaces (they can jump out 

of a local minimum), 

• Provides a list of optimum variables, not just a single solution, 

• May encode the variables so that the optimization is done with the encoded 

variables, and 

• Works with numerically generated data, experimental data, or analytical 

functions. 

 

     Genetic algorithms are a particular class of evolutionary algorithms that use 

techniques inspired by evolutionary biology such as inheritance, mutation, selection, 

and crossover (also called recombination). 

 

     In nature, the `fittest’ members of a population typically survive at higher rates 

compared to the `weakest’ members. These fittest members then reproduce with one 

another, resulting in a new generation of the population having attributes similar to 

that of their parents. In each new generation, mutations can also occur on an 
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infrequent basis. In this situation, offspring develop attributes of their own, 

independent of their parents. Mutations can add diversity and a certain amount of 

robustness to the population (McMullen, 2000). These natural phenomena can be 

exploited to find good solutions to combinatorial optimization problems.  

 

     Genetic algorithms can be defined as a computer simulation in which a population 

of abstract representations (called chromosomes) of candidate solutions (called 

individuals) to an optimization problem evolves toward better solutions. 

Traditionally, solutions are represented in binary as strings of 0s and 1s, but other 

encodings ( real-valued, tree, etc. ) are also possible. The evolution usually starts 

from an initial population of randomly generated individuals and proceeds 

throughout the generations. In each generation, the fitness of every individual in the 

population is evaluated, multiple individuals are stochastically selected from the 

current population (based on their fitness), and modified (crossed and possibly 

mutated) to form a new population. The new population is then used in the next 

iteration of the algorithm. Commonly, the algorithm terminates when either a 

maximum number of generations has been produced, or a satisfactory fitness level 

has been reached for the population. The goal here is eventually to find generations 

of solutions to a combinatorial optimization problem where the objective function 

value approaches the global optimum.  

 

2.2.1 Biological and GA Terminology 

 

     There are several terms in the context of genetic algorithms that are used in 

analogy to the real terms of biology. The definitions of these terms (Mitchell, 1999) 

are given below. 

 

     Chromosome. All living organisms consist of cells, and each cell contains the 

same set of one or more chromosomes—strings of DNA—that serve as a blueprint 

for the organism.  
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     Gene. A chromosome can be conceptually divided into genes— each of which 

encodes a particular protein. Very roughly, one can think of a gene as encoding a 

trait, such as eye color.  

 

     Allele. The different possible "settings" for a trait (e.g., blue, brown, hazel) are 

called alleles.  

 

     Locus. Each gene is located at a particular locus (position) on the chromosome. 

 

     Genome. Many organisms have multiple chromosomes in each cell. The complete 

collection of genetic material (all chromosomes taken together) is called the 

organism's genome.  

 

     Genotype. The term genotype refers to the particular set of genes contained in a 

genome. Two individuals that have identical genomes are said to have the same 

genotype.  

 

     Phenotype. The genotype gives rise, under fetal and later development, to the 

organism's phenotype — its physical and mental characteristics, such as eye color, 

height, brain size, and intelligence. 

 

     Recombination (Crossover). During sexual reproduction, recombination (or 

crossover) occurs: in each parent, genes are exchanged between each pair of 

chromosomes to form offspring. 

 

     Mutation. Offspring are subject to mutation, in which single nucleotides 

(elementary bits of DNA) are changed from parent to offspring, the changes often 

resulting from copying errors.  

 

     Fitness. The fitness of an organism is typically defined as the probability that the 

organism will live to reproduce (viability) or as a function of the number of offspring 

the organism has (fertility). 
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     In genetic algorithms, these terms have much simpler meanings. The term 

chromosome typically refers to a candidate solution to a problem, often encoded as a 

bit string. The "genes" are either single bits or short blocks of adjacent bits that 

encode a particular element of the candidate. An allele in a bit string is either 0 or 1; 

for larger alphabets more alleles are possible at each locus. Crossover typically 

consists of exchanging genetic material between parents. Mutation consists of 

flipping the bit at a randomly chosen locus (or, for larger alphabets, replacing the 

symbol at a randomly chosen locus with a randomly chosen new symbol). 

 

2.2.2 Components of GA 

 

     Design of a GA requires careful inspection and determination of the suitable 

choices for several factors including data structures, initial population formation, 

fitness function, selection and insertion strategies, genetic operators, genetic 

parameters, and termination criteria. Once they are decided, the genetic search 

process works as given in Figure 2.2. 

 

     Using the process flow presented in Figure 2.2, pseudocode representation for a 

traditional GA can be written as follows: 

 

Input Parameters (MaxGeneration, PopSize, PC:crossover rate, PM: mutation 

rate) 

Generate Initial Solutions 

Evaluate Fitness Values, Zs 

For i  = 1 to MaxGeneration 

 For j = 1 to PopSize / 2 

Choose Two Solutions (with a fitness bias) 

If Random Number < PC then Perform Crossovers 

If Random Number < PM then Perform Mutations 

  Next j 

Determine Zs for New Solutions 

Note Best of Generation 
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If Z(Best of Generation) is better than Z(Best Found thus Far) Then 

Replace Best Found thus Far with Best of Generation 

Endif 

Next i 

Present Best Found Thus Far 

 

 

 Figure 2.2 Flow-chart of a simple GA 

 

     The simple search procedure given in Figure 2.2 and the above pseudocode are 

the basis for most applications of GAs. Although the outline of the algorithm is 

common in most of the applications, the details of the components are determined 

according to the problem at hand. In the following sections, components of GA will 

be described in detail.   
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     2.2.2.1. Genetic Representation 

 

     Genetic representation is a way of representing solutions (individuals) in GAs. It’s 

accomplished by translating the solutions into chromosome representations. The 

chromosome format used in this translation process is called encoding.  

 

     Designing a good genetic representation that is expressive and evolvable is 

essential to the success of the algorithm. Most GA applications use fixed-length, 

fixed-order bit strings to encode candidate solutions. Variable length representations 

may also be used, but one must consider the trade-offs between possible gains and 

implementation complexity. Common genetic representations are (i) binary 

encoding, (ii) permutation encoding, (iii) real-valued encoding and (iv) tree 

encoding. 

 

     2.2.2.1.1 Binary Encoding. Binary encoding is the most common and simplest 

type of genetic representation.  In binary encoding every chromosome is a string of 

bits, 0 or 1. For example:  

 

Chromosome A  ����  1 0 1 0 1 1 1 1 

Chromosome B  ����  0 0 1 1 0 1 1 0 

 

     Popularity of binary encoding can be attributed to a number of reasons. Firstly, it 

is the simplest representation type, and hence initial GA researchers concentrated on 

such encodings. Also much of the existing GA theory is based on the assumption of 

fixed-length, fixed-order binary encodings. In addition, heuristics about appropriate 

parameter settings (e.g., for crossover and mutation rates) have generally been 

developed in the context of binary encodings (Mitchell, 1999). 

  

     However, it should be noted that this encoding is often not natural for many 

problems and sometimes corrections must be made after crossover and/or mutation 

operations. 
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     2.2.2.1.2 Permutation Encoding. Permutation encoding can be used in ordering 

problems, such as traveling salesman problem or task ordering problem. In 

permutation encoding, every chromosome is a string of numbers that represent a 

position in a sequence. For example: 

 

Chromosome A  ����  2 7 4 5 6 3 8 1 

Chromosome B  ����  1 4 7 8 5 2 6 3 

 

     Here, the two chromosomes, A and B, present two arbitrary orderings of numbers 

from 1 to 8. For this specific example, there are !8  alternative sequences. 

 

     Although being useful for ordering problems, for certain types of crossover and 

mutation operations, permutation encoding may require that some corrections be 

made to leave the chromosome consistent (i.e. have real sequence in it). 

 

     2.2.2.1.3 Real-Valued Encoding. For many applications, it is most natural to use 

an alphabet of many characters or real numbers to form chromosomes. Use of binary 

encoding for this type of problems would be difficult. In the real-valued encoding, 

every chromosome is a sequence of some values. Values can be anything connected 

to the problem, such as real numbers, characters or any object. For example: 

 

Chromosome A  ����  2.27  5.32  7.14  4.45  5.81  6.77 

Chromosome B  ����  D  B  A  A  C  B  D  B  B  B  A  C 

 

     Mitchell (1999) indicates that several empirical comparisons between binary 

encodings and multiple-character or real-valued encodings have shown better 

performance for the latter. But the performance of the chosen encoding depends very 

much on the problem and the details of the GA being used.  

 

     Real-valued encoding may be a good choice for certain problems, however, for 

this type of encoding it is often necessary to develop some new crossover and 

mutation operators which are specific to the problem at hand. 
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     2.2.2.1.4 Tree Encoding. In the tree encoding every chromosome is a tree of some 

objects, such as functions or commands in a programming language. For example: 

 

 

 Figure 2.3 Tree encoding examples 

 

     Tree encoding is useful for evolving programs or any other structures that can be 

encoded in trees. Programming language LISP is often used for this purpose, since 

programs in LISP are represented directly in the form of tree and can be easily parsed 

as a tree, the crossover and mutation can be done relatively easier (Obitko, 1998). 

 

     2.2.2.2 Fitness Function 

 

     The fitness function is defined over the genetic representation and measures the 

quality of the represented solution. Here the GA searches for a set of parameter 

values (a chromosome) that maximize or minimize the given fitness function. 

 

     The fitness function is always problem dependent. For instance, in the traveling 

salesman problem, the total distance traveled is minimized, whereas, in the knapsack 

problem, the total value of objects that can be put in a knapsack of some fixed 

capacity is maximized. Therefore, the fitness functions for these two problems are 

the sum of total distance traveled and sum of total value of objects in the knapsack, 

respectively.  
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     In the above-mentioned two problems, fitness functions can be defined 

mathematically, however, in some problems, it is hard or even impossible to define 

the fitness expression. When the form of fitness function is not known (for example, 

visual appeal or attractiveness) or the result of optimization is required to fit a 

particular user preference (for example, taste of coffee or color set of the user 

interface) human evaluation may be necessary. In these cases, interactive genetic 

algorithms which use human evaluation are usually preferred. 

 

     In following, various terms which are related to fitness function development in 

GAs are explained:  

 

     Fitness Landscape. In the context of population genetics, a fitness landscape is a 

representation of the space of all possible genotypes along with their fitnesses 

(Mithcell, 1999). A sample fitness landscape for the arbitrary function (5) is given in 

Figure 2.4. 
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 Figure 2.4 A sample fitness landscape 

 



32 

     Such plots are called landscapes because the plot of fitness values can form 

"hills," "peaks," "valleys," and other features analogous to those of physical  

landscapes.  

 

     Evolution causes populations to move along landscapes in particular ways, and 

adaptation can be seen as the movement toward local peaks. Likewise, in GAs the 

operators of crossover and mutation can be seen as ways of moving a population 

around on the landscape defined by the fitness function. 

 

     Global Optimum. A global optimum is a point in the fitness landscape whose 

value exceeds that of any other value (or is exceeded by every other value if it is a 

minimization problem).  

 

     Local Optimum. A local optimum is a point in the fitness landscape that has the 

property that no chain of mutations starting at that point can go up without first going 

down (Ashlock, 2005). 

 

     Making an analogy to a mountain range, the global optimum can be thought of as 

the top of the highest mountain, while the local optima are the peaks of every 

mountain or foothill in the range. Even rocks will have associated local optima at 

their high points. Note that the global optimum is one of the local optima. Also, note 

that there may be more than one global optimum if two mountains tie for highest. 

GAs search such fitness landscapes for highly fit individuals. 

 

     Once an appropriate representation is chosen and the fitness function is defined, 

GA proceeds to initialize a population of solutions usually randomly. 

 

     2.2.2.3 Initial Population 

 

     Initially, a number of individual solutions are generated to form an initial 

population. The population size depends on the nature and complexity of the 

problem. Traditionally, the population is generated randomly, covering the entire 



33 

range of possible solutions. Occasionally, the solutions may be seeded in areas where 

optimal solutions are likely to be found. Latter can be accomplished by several 

approaches such as a pre-run heuristic method, initial run of the GA, a case- or 

memory-based reasoning system. 

 

     After the initialization phase, the chromosomes are passed to the fitness function 

to determine the fitness values which are used to decide which chromosomes in the 

initial population are fit enough to survive and possibly reproduce offspring in the 

next generation. 

 

     2.2.2.4 Selection 

 

     Selection is the stage of a genetic algorithm in which the fitter individuals are 

chosen from a population for later breeding so that their offspring will in turn have 

even higher fitness.   

 

     The purpose of selection is to emphasize the fitter individuals in the population in 

hopes that their offspring will in turn have even higher fitness. Selection pressure is a 

critical parameter for GAs, and it has to be balanced with variation from crossover 

and mutation (the "exploitation/exploration balance"): too-strong selection means 

that a set of highly fit but suboptimal chromosomes will dominate the population, 

reducing the diversity needed for further change and progress (exploration problem), 

and the search will terminate prematurely; too-weak selection will result in too-slow 

evolution (exploitation problem).  

 

     As was the case for encodings, numerous selection schemes have been proposed 

in the GA literature (Mitchell, 1999). Certain selection methods rate the fitness of 

each solution and preferentially select the best solutions. Other methods rate only a 

random sample of the population, as this process may be very time-consuming. Most 

functions are stochastic and designed so that a small proportion of less fit solutions 

are selected. This helps to keep the diversity of the population large, preventing 
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premature convergence on poor solutions. The following section explains the widely 

used selection schemes in the literature. 

 

     2.2.2.4.1 Roulette Wheel and Stochastic Universal Sampling. Holland (1975) used 

fitness-proportionate selection which chooses parents in direct proportion to their 

fitness. If individual i has fitness fi, then its expected value (the expected number of 

times an individual will be selected to reproduce) is ff i / , where f  is the average 

of the fitness values of the entire population. The most common method to 

implement fitness-proportionate selection is the roulette wheel sampling. 

 

     The analogy to a roulette wheel can be envisaged by imagining a roulette wheel in 

which each candidate solution represents a pocket on the wheel; the size of the 

pockets are proportionate to the probability of selection of the solution. Selecting N 

chromosomes from the population is equivalent to spinning the roulette wheel N 

times, as each candidate is drawn independently. On each spin, the individual under 

the wheel's marker is selected to be in the pool of parents for the next generation. 

 

     Roulette wheel sampling method can be implemented as follows (Mitchell, 1999): 

 

1. Sum the total expected value of individuals in the population. Call this sum T. 

2. Repeat N times: 

a. Choose a random integer r between 0 and T. 

b. Loop through the individuals in the population, summing the expected 

values, until the sum is greater than or equal to r. The individual 

whose expected value puts the sum over this limit is the one selected. 

 

     It should be noted that while this method may lead elimination of candidate 

solutions even though they have a very high fitness value, on the other hand, it may 

allow the survival of some weak solutions. Allowing the survival of weak solutions 

can be considered as an advantage: as though a solution may be weak, it may include 

some component which could prove useful following the recombination process. 
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     Although roulette wheel method statistically results in the expected number of 

offspring for each individual, with the relatively small populations, the actual number 

of offspring allocated to an individual might be far from its expected value (an 

extremely unlikely series of spins of the roulette wheel could even allocate all 

offspring to the worst individual in the population). Hence, a different sampling 

method — stochastic universal sampling (SUS) — is proposed to minimize this 

"spread" (the range of possible actual values, given an expected value). Rather than 

spin the roulette wheel N times to select N parents, SUS spins the wheel once — but 

with N equally spaced pointers, which are used to select the N parents (Mitchell, 

1999). 

 

     However, SUS does not solve the major problems with fitness-proportionate 

selection. Typically, early in the search the fitness variance in the population is high 

and a small number of individuals are much fitter than the others. Under fitness-

proportionate selection, these individuals and their descendents will multiply quickly 

in the population, in effect preventing the GA from doing any further exploration. 

This is known as "premature convergence." In other words, fitness-proportionate 

selection early on often puts too much emphasis on "exploitation" of highly fit 

strings at the expense of exploration of other regions of the search space. Later in the 

search, all individuals in the population become very similar (the fitness variance is 

low), the real fitness differences for selection diminish, and evolution grinds to a near 

halt, implying that the rate of evolution depends on the variance of fitnesses in the 

population (Mitchell, 1999). 

 

     2.2.2.4.2 Sigma Scaling. To address premature convergence problems caused by 

the variance of fitnesses, the researchers have experimented with several "scaling" 

methods—methods for mapping "raw" fitness values to expected values so as to 

make the GA less susceptible to premature convergence. One example is "sigma 

scaling", which keeps the selection pressure (i.e., the degree to which highly fit 

individuals are allowed many offspring) relatively constant over the course of the run 

rather than depending on the fitness variances in the population. Under sigma 

scaling, an individual's expected value is a function of its fitness, the population 
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mean, and the population standard deviation. An example of sigma scaling would be 

as follows (Mitchell, 1999): 
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where ExpVal(i,t) is the expected value of individual i at time t, f(i) is the fitness of i, 

f(t) is the mean fitness of the population at time t, and σ (t) is the standard deviation 

of the population fitnesses at time t. This function, gives 1.5 expected offspring to an 

individual with fitness one standard deviation above the mean. If ExpVal(i,t) is less 

than 0, expected offspring may be reset to a small arbitrary number such as 0.1, so 

that individuals with very low fitness will have some small chance of reproducing. 

 

     Under sigma scaling, if a single chromosome dominates at the beginning of the 

run, the variability in fitnesses will also be large, and scaling by the variability will 

reduce the dominance. Later in the run, when populations are typically more 

homogeneous, scaling by this smaller variability will allow the highly fit 

chromosomes to reproduce. 

 

     2.2.2.4.3 Boltzman Selection. Sigma scaling keeps the selection pressure more 

constant over a run. But often different amounts of selection pressure are needed at 

different times in a run. Depending on how far along in the run the generation is, 

Boltzman selection scheme allows this kind of variation in the selection process by 

changing the selection pressure. Early on, it may be better to allow lower selection 

pressure, allowing the less fit chromosomes to reproduce at rates similar to the fitter 

chromosomes, thereby maintaining a wider exploration of the search space. Later in 

the run, increasing the selection pressure helps the GA to converge more quickly to 

the optimal solution, hopefully the global optimum. 

 

     Similar to simulated annealing approach, under Boltzmann selection, a 

continuously varying "temperature" controls the rate of selection according to a 
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preset schedule. The temperature starts out high, which means that selection pressure 

is low (i.e., every individual has some reasonable probability of reproducing). The 

temperature is gradually lowered, which gradually increases the selection pressure, 

thereby allowing the GA to focus to the best part of the search space while 

maintaining the "appropriate" degree of diversity. A typical implementation given in 

Mitchell (1999) is to assign an expected value to each individual i, 
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where T is temperature and t denotes the average over the population at time t. 

Experimenting with this formula will show that, as T decreases, the gap between the 

expected values of the best and worst individuals gets larger. The desire is to have 

this happen gradually over the course of the search, so temperature can gradually 

decrease according to a predefined schedule. 

 

     2.2.2.4.4 Rank Selection. In recent years, the researchers widely employed several 

alternative selection schemes, such as rank and tournament selection, which are 

proposed to overcome the problems present in fitness-proportionate selection 

approaches.  

 

     Rank selection, which prevents too-quick convergence, ranks the chromosomes 

according to their raw fitness values and then based on these rankings, assigns 

reproductive fitness values to them. This may be done linearly (linear ranking) or 

exponentially (exponential ranking). Ranking avoids the selection pressure exerted 

by the proportional fitness method, but it also ignores the absolute differences among 

the chromosome fitnesses. Moreover, ranking does not take variability into account 

and provides a moderate adjusted fitness measure, since the probability of selection 

between chromosomes ranked k  and 1+k  is the same regardless of the absolute 

differences in fitness. 
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     The downside of rank selection, which is caused by slowing down the selection 

pressure, is that the GA will in some cases be slower in finding highly fit individuals. 

However, in many cases the increased preservation of diversity that results from 

ranking leads to more successful search than the quick convergence that can result 

from fitness-proportionate selection. 

 

     2.2.2.4.5 Tournament Selection. The selection schemes (explicit fitness mapping 

methods) described above require an intermediate step of computing a modified 

fitness and in the case of rank selection, a sorting process was required to put the 

entire population in order by rank. To avoid these time-consuming procedures, 

tournament selection can be used as an alternative approach. This method is similar 

to the rank selection in terms of the selection pressure. 

 

     There are several variants of tournament selection. In the simplest, binary 

tournament selection, pairs of individual are picked at random from the population. 

Whichever has the higher fitness is copied into a mating pool. This is repeated until 

the mating pool is full. Larger tournaments may also be used, where the best of n  

randomly chosen individuals is copied into the mating pool. Using larger 

tournaments has the effect of increasing the selection pressure, since below average 

individuals are less likely to win a tournament, while above average individuals are 

more likely to (Beasley, Bull, & Martin, 1993).  

 

     A further generalization is probabilistic binary tournament selection. In this, the 

better individual wins the tournament with probability p , where .15.0 << p  Using 

lower values of p has the effect of decreasing the selection pressure, since below 

average individuals are comparatively more likely to win a tournament. By adjusting 

tournament size or win probability, the selection pressure can be made arbitrarily 

large or small (Beasly et al., 1993). 

 

     2.2.2.4.6 Elitism. Elitism refers to the selection strategy that forces the GA to 

retain some number of the best individuals at each generation, protecting them 

against destruction through crossover, mutation, or inability to reproduce.  
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     Those members of the population guaranteed to survive are called the elite. 

Elitism guarantees that a population with a fixed fitness function cannot slip back to 

a smaller maximum fitness in later generations, but it also causes the current elite to 

be more likely to have more children in the future causing their genes to dominate 

the population. Such domination can impair search of the space of genes, because the 

current elite may not contain the genes needed for the best possible creatures. A good 

compromise is to have a small number of elites (Ashlock, 2005). 

 

     Several researchers report that elitism significantly improves GA’s performance. 

 

     2.2.2.4.7 Steady-State Selection and Generation Gaps. The generation gap is 

defined as the proportion of individuals in the population which are replaced in each 

generation. Most work has used a generation gap of 1, which means the whole 

population is replaced in each generation. In some schemes, such as the elitist 

schemes described above, successive generations overlap to some degree—some 

portion of the previous generation is retained in the new population. However, a 

more recent trend has favoured steady-state replacement. This operates at the other 

extreme: in each generation only a few (typically two) individuals are replaced. 

 

     Steady-state GAs may be a better model of what happens in nature but no 

evidence has been found that steady-state replacement is fundamentally better than 

the generational one. They are often used in evolving rule-based systems in which 

incremental learning (and remembering what has already been learned) is important 

and in which members of the population collectively (rather than individually) solve 

the problem at hand. 

 

     2.2.2.5 Genetic Operators 

 

     A genetic operator is a process used in genetic algorithms to maintain genetic 

diversity. Genetic variation is a necessity for the process of evolution. Genetic 

operators used in genetic algorithms are analogous to those which occur in the 

natural world: crossover and mutation. Here, the decision of which genetic operators 
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to use depends greatly on the encoding strategy, fitness function and the details of the 

problem at hand. 

 

     2.2.2.5.1 Crossover. Crossover is a genetic operator which is used to vary the 

programming of a chromosome from one generation to the next. It is an analogy to 

reproduction and biological crossover, upon which genetic algorithms are based. It 

could be said that the main distinguishing feature of a GA is the use of crossover. In 

fact, the power of GAs arises from crossover. 

 

     Crossover causes a structured, yet randomized exchange of genetic material 

between solutions, with the possibility that good solutions can generate better ones 

(Srinivas & Patnaik, 1994). Ashlock (2005) gives the formal definition of crossover 

as follows: 

 

     A crossover operator for a set of genes G is a map 

 

Cross : G × G → G × G             (8.1) 

or 

Cross : G × G → G.      (8.2) 

 

     The points making up the pairs in the domain space of the crossover operator are 

termed parents, while the points either in or making up the pairs in the range space 

are termed children (offspring). The children are expected to preserve some part of 

the parents’ structure. 

 

a. Single-Point Crossover. Many different approaches have been tried for 

crossover in GAs. The simplest form is the single-point crossover in which a 

single crossover position is chosen at random and the parts of two parents 

after the crossover position are exchanged to form two offspring. This means 

that the information for each child comes from a different parent before and 

after the crossover point. One of the shortcomings of this method is positional 

bias: the schemas that can be created or destroyed by a crossover depend 
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strongly on the location of the bits in the chromosome. Single-point crossover 

treats some loci preferentially: the segments exchanged between the two 

parents always contain the endpoints of the strings, and loci near one another 

in the representation are kept together with a much higher probability than 

those that are farther apart. 

 

b. Two-Point Crossover. To overcome the positional bias problems, multiple-

point crossover methods have been developed. The most common approach is 

the two-point crossover where the segments between two randomly chosen 

loci are exchanged. While this method prevents the endpoint effect mentioned 

above, it is also less likely to disrupt schemas with large defining lengths and 

therefore it can combine more schemas than single-point crossover. 

 

c. Parameterized Uniform Crossover. Some practitioners believe strongly in the 

superiority of parameterized uniform crossover, in which an exchange 

happens at each bit position with probability p (typically 8.05.0 << p ). 

Parameterized uniform crossover has no positional bias—any schemas 

contained at different positions in the parents can potentially be recombined 

in the offspring. However, this lack of positional bias can prevent coadapted 

alleles from ever forming in the population, since parameterized uniform 

crossover can be highly disruptive of any schema (Mitchell, 1999). It must 

also be noted that this method is computationally expensive because of the 

large number of random numbers needed. 

 

Most applications of GAs use static crossover operators, that is to say that 

their mechanisms, parameters, and probability of application are fixed at the 

beginning and constant throughout the run of the algorithm. However, there is 

no single choice of operators which is optimal for all problems. In fact, the 

optimal choice of operators for a given problem will be time-variant i.e. it 

will depend on such factors as the degree of convergence of the population. 

Based on theoretical and practical approaches, a number of authors have 

proposed methods of adaptively controlling the operators, usually invoking 
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some kind of meta-learning algorithm, in order to try and improve the 

performance of the Genetic Algorithm as a function optimizer (Smith & 

Fogarty, 1997).   

 

d. Adaptive Crossover. A technique to use in these situations is adaptive 

crossover. In adaptive crossover, each creature has its gene augmented by a 

crossover template, a string of 0’s and 1’s with one position for each item in 

the original data structure. When two parents are chosen, the crossover 

template from the first parent chosen is used to do the crossover. In positions 

where the template has a 0, items go from first parent to the first child and the 

second parent to the second child. In positions where the template has a 1, 

items go from the first parent to the second child and from the second parent 

to the first child. The parental crossover templates are themselves crossed 

over and mutated with their own distinct crossover and mutation operators to 

obtain the children’s crossover templates. The templates thus coevolve with 

the creatures and seek out crossover operators that are currently useful. This 

can allow evolution to focus crossover activity in regions where it can help 

the most. The crossover templates that evolve during a successful run of an 

evolutionary algorithm may contain nontrivial useful information about the 

structure of the problem (Ashlock, 2005). 

 

Adaptive crossover can suffer from a common problem called a two-

timescale problem. The amount of time needed to efficiently find those fit 

genes that are easy to locate with a given crossover template can be a great 

deal less than that needed to find the crossover template in the first place. For 

some problems this will not be the case, for some it will, and intuition backed 

by preliminary data is the best tool currently known for telling which 

problems might benefit from adaptive crossover. If a problem must be solved 

over and over for different parameters, then saving crossover templates 

between runs of the evolutionary algorithm may help. In this case, the 

crossover templates are being used to find good representations, relative to 
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the crossover operator, for the problem in general while solving specific cases 

(Ashlock, 2005). 

 

     2.2.2.5.2 Crossover For Permutation Problems. As it is the case in the mixed-

model sequencing problems, sometimes an optimization process requires sorting the 

elements of a list in the correct order. For such problems, above-mentioned crossover 

operators may be inappropriate as they may produce invalid offspring. Since the 

chromosome is an ordered list (or there may be repeated elements of which quantities 

must not change), a direct swap would introduce duplicates and remove necessary 

candidates from the list. Consider the following two parent chromosomes for a 

mixed-model sequencing problem of 3 models where each model has a demand of 2. 

 

PARENTS 

parent1    [A A C C B B] 

parent2      [A B C C B A] 

 

     A simple single-point crossover between the second and third elements of the 

parent chromosomes produces the offspring 

 

SIMPLE CROSSOVER (INCORRECT) 

offspring1    [A A | C C B A] 

offspring2      [A B | C C B B] 

 

     Obviously this won’t work, since offspring1 contains three As and only one B 

while offspring2 has three Bs, and only one A.  Starkweather (1991) compares 

several possible solutions to this problem, which are briefly summarized here.  

 

a. Edge Recombination. The edge recombination operator is different from 

other genetic sequencing operators in that it emphasizes adjacency 

information instead of the order or position of items in the sequence. The 

edge table used by the operator is really an adjacency table listing the 

connections of elements found in the two parent sequences. The edges are 
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then used to construct offspring in such a way that the isolation of the 

elements in the sequence is avoided.  

 

     For example, for a traveling salesman problem of 10 cities, the tour [b a d 

f g e c j h i] contains the links [ba, ad, df, fg, ge, ec, cj, jh, hi, ib]. In order to 

preserve existent links in the two parent sequences a table is built which 

contains all the existent links in each parent tour. Building the offspring then 

proceeds as follows: (1) Select a starting element. This can be one of the 

starting elements from a parent, or can be chosen from the set of elements 

which have the fewest entries in the edge table. (2) Of the elements that have 

links to this previous element, choose the element which has the fewest 

number of links remaining in its edge table entry, breaking ties randomly. (3) 

Repeat step 2 until the new offspring sequence is complete. 

 

b. Order Crossover (OX). As the title implies, here the goal is to preserve the 

relative order of elements in the sequences to be combined. With this 

operator, the offspring inherits the elements between the two crossover 

points, inclusive, from the selected parent in the same order and position as 

they appeared in that parent. The remaining elements are inherited from the 

alternate parent in the order in which they appear in that parent, beginning 

with the first position following the second crossover point and skipping over 

all elements already present in the offspring.  

 

     The following example taken from Haupt & Haupt (2004) demonstrates 

the order crossover procedure. Consider two parent chromosomes of length 6: 

 

PARENTS 

parent1    [3 4 6 2 1 5] 

parent2      [4 1 5 3 2 6] 

 

     OX begins by choosing two crossover points and exchanging the integers 

between them. This results in holes (denoted below by X’s), which are left in 



45 

the spaces where integers are repeated. If the crossover points are after the 

second and fourth integers, the first stage leaves offspring that look like 

 

OX (First Stage) 

{

{ ] X  X  |    |  1  4 [    

] X  1  |   |  4  X [    

K

2L

J

1L

2  6

 3  5

offspring

offspring

 

 

     At this point the holes are pushed to the beginning of the offspring. All 

integers that were in those positions are pushed off the left of the 

chromosome and wrap around to the end of the offspring. At the same time 

the strings J and K that were exchanged maintain their positions: 

 

OX (Second Stage) 

] 1  4    X  X [    

] 4  1    X  X [    

2M

1M

2  6

3  5

offspring

offspring
 

 

     For the final stage the X’s are replaced with strings J and K: 

 

OX (Final Stage) 

{{

{{ ] 1  4     [    

] 4  1     [    

KJ

2N

JK

1N

2  63  5

3  52  6

offspring

offspring

 

 

     OX has the advantage that the relative ordering is preserved, although the 

absolute position within the string is not.  

 

c. Partially Mapped Crossover (PMX). In this method, a parent and two 

crossover sites are selected randomly and the elements between the two 

starting positions in one of the parents are directly inherited by the offspring. 

Each element between the two crossover points in the alternate parent is 

mapped to the position held by this element in the first parent. Then the 

remaining elements are inherited from the alternate parent. Just as in the OX 
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operator, the section of the first parent which is copied directly to the 

offspring   preserves order, adjacency and position for that section. However, 

it seems that more disruption occurs when mapping the other elements from 

the unselected parent. Using the same parent chromosomes of the OX 

example, Haupt & Haupt (2004) demonstrates the PMX procedure as follows: 

 

     If crossover points are between elements 1 and 2, and 3 and 4, then string 

K from parent2 is switched with string J from parent1 as follows: 

 

PMX (Step A) 

{

{ ] 6  2  3  |    |  4 [   

] 5  1  2  |    |  3 [    

K

2A 

J

1A

6  4

5  1

offspring

offspring

 

 

     All values exchanged between parents are shown in bold type. As it is 

seen, this process leads to making some values to double and some others to 

disappear. To remedy this, the switched strings, J and K, remain untouched 

throughout the rest of the procedure. The original doubles in offspring2A are 

exchanged with the original doubles in offspring1A (the original 4 in 

offspring2A exchanged with the original 1 in offspring1A, and the original 6 in 

offspring2A with the original 5 in offspring1A) to obtain the following final 

solution: 

 

PMX (Step B) 

]   2  3  |    |   [    

]   2  |   |  3 [    

2B

1B

56  41

6  4 5  1

offspring

offspring
 

 

     Each offspring contains part of the initial parent in the same position (not 

highlighted numbers) and includes each integer once and only once. 

 

d. Cycle Crossover (CX). This operator preserves the absolute positions of 

elements in the parent sequence. A parent sequence and a cycle starting point 
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are randomly selected. The element at the cycle starting point of the selected 

parent is inherited by the child. The element, which is in the same position in 

the other parent, is searched in the selected parent. When its position is found 

in the selected parent, the element is inherited to the same position in the 

child. This continues until the cycle is completed by encountering the initial 

item in the unselected parent. Any elements which are not yet present in the 

offspring are inherited from the unselected parent. Note that cycle crossover 

always preserves the position of elements from one parent or the other 

without any disruption. The example taken from Haupt & Haupt (2004) 

demonstrates the CX procedure as follows: 

 

     The information exchange begins at the left of the string and the first two 

digits are exchanged leading to 

 

CX (First Step) 

] 6  2  3  5  1   [    

] 5  1  2  6  4   [    

2W

1W

3

4

offspring

offspring
 

 

     Now that the first offspring has two 4s, the second 4 is exchanged with the 

other offspring to get: 

CX (Second Step) 

] 6  2  3  5     [    

] 5  1  2  6     [    

2X

1X

43

14

offspring

offspring
 

 

     Since there are two 1s in the first offspring, position 5 is exchanged with 

the second offspring: 

 

CX (Third Step) 

] 6    3  5     [    

] 5    2  6     [    

2Y

1Y

143

214

offspring

offspring
 

 

     The next position to exchange is position 4 where there is a repeated 2: 
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CX (Fourth Step) 

] 6      5     [    

] 5      6     [    

2Z

1Z

1243

2314

offspring

offspring
 

 

     At this point, 2 is exchanged with the 3 and there are no repeated integers 

in either string, so the crossover is complete. Now, it can be seen that each 

offspring has exactly one of each digit, and it is in the position of one of the 

parents. 

 

e. Position Based Crossover (PBX). This operator is intended to preserve 

position information during the recombination process. Several random 

locations in the sequence are selected along with one parent; the elements in 

those positions are inherited from that parent. The remaining elements are 

inherited in the order in which they appear in the alternate parent, skipping 

over all elements which have already been included in the offspring. Thus, 

the operator appears to be similar to OX, except that the elements copied 

from the selected parent come from random locations in the sequence and not 

from adjacent locations; although designed as a “position” operator, at 

preserving a position, it probably is less effective than PMX and CX.  

 

f. Immediate Successor Relation Crossover (ISRX). This operator is rarely used 

in the literature. Kim et al. (2000) states that for MMAL sequencing 

problems, it has been shown experimentally that a combined use of 

immediate successor relation crossover (ISRX) operator and inversion 

operator is superior to other possible operators. ISRX is a crossover operator 

that uses the information of immediate successor relations in parents. An 

immediate successor of a gene A is the gene immediately following A. The 

immediate successor of the last gene is the first one, by definition. This 

relation can be summarized in a tabular form as shown in Table 2.1, which 

maintains all the immediate successors for every gene type and the ratio of 

the immediate successors, called gene ratio. The overall procedure of creating 

offspring with the ISRX operator is as follows.  
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Step 1: Construct the initial ISRX table, set 1=i , and select an initial 

gene type ( ie ) randomly.  

Step 2: Inherit ie  at the i -th position in the offspring. If a complete 

offspring is built, then stop; otherwise, go to the next step.  

Step 3: Update the immediate successors by removing two randomly 

chosen elements among those having the gene type of ie , and also 

update the gene ratio.  

Step 4: Increase i  by 1, and set ie  to the gene type such that the 

number of elements having the type is the largest in the row of 1−ie . 

Ties are broken by selecting the one with the smallest gene ratio. 

When this also ties, one gene type is randomly selected. Return to 

Step 2.  

 

     Suppose two parent strings are (A A B B B C C C C) and (A B C A B C B 

C C). The ISRX operator begins with setting up the initial ISRX table, as 

shown in Table 2.1 (a). The first four iterations of the procedure are provided 

in Table 2.1. Repeating the procedure can produce an offspring of (B C A B 

C C B C A). The other offspring can be obtained by starting with a different 

initial gene type. 

 

 Table 2.1 ISRX table 

 

 

     2.2.2.5.3 Mutation. Mutation in GAs is a genetic operator in an analogy to 

biological mutation, which is used to maintain genetic diversity from one generation 

of a population of chromosomes to the next. Its importance arises from the fact that it 

allows the algorithm to avoid local minima by preventing the population of 
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chromosomes from becoming too similar to each other, thus slowing or even 

stopping evolution. It also helps to ensure that no point in the search space has a zero 

possibility of being examined. 

 

     Ashlock (2005) gives the formal definition of mutation operator as follows: 

 

     A mutation operator on a population of genes G is a function 

 

Mutate : G → G       (9) 

 

that takes a gene to another similar but different gene. Mutation operators are also 

called unary variation operators. 

 

     Crossover mixes and matches disparate creatures; it facilitates a broad search of 

the space of data structures accessible to a given genetic algorithm. Mutation, on the 

other hand, makes small changes in individual creatures. It facilitates a local search 

and also a gradual introduction of new ideas into the population (Ashlock, 2005). A 

common view in the GA community is that crossover is the major instrument of 

variation and innovation in GAs, with mutation insuring the population against 

permanent fixation at any particular locus and thus playing more of a background 

role. However, the appreciation of the role of mutation is growing as the GA 

community attempts to understand how GAs solve complex problems. Some 

comparative studies have been performed on the power of mutation versus crossover; 

however, it is not a choice between crossover and mutation but rather the balance 

among crossover, mutation, and selection that is all important. The most promising 

prospect for producing the right balances over the course of a run is to find ways for 

the GA to adapt its own mutation and crossover rates during a search (Mitchell, 

1999). 

 

     Common mutation operators can be summarized as follows. 
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a. Single-Point Mutation. This simple operator changes the value of the string at 

a single position. When used with binary encoding, if the selected location 

contains “0”, it becomes “1” (and vice-versa). 

 

b. Multiple-Point Mutation. This is basically a single-point mutation which is 

applied for a fixed number of locations of the chromosome. 

 

c. Probabilistic (Uniform) Mutation. This operator is a flexible version of 

multiple-point mutation, in which every location can be exposed to a 

mutation with a probability of α . 

 

d. Lamarckian Mutation. This is performed by looking at all possible 

combinations of k  or fewer point mutations and using the one that results in 

the best fitness value. 

 

     The point-mutation operators described above are the basic mutation operators 

which can be easily used with simple binary genetic algorithm. The success of the 

operators usually depends on the nature of the problem, and therefore several other 

operators are proposed in the literature such as swapping and shifting. 

 

e. Swap Mutation. This operator is performed by exchanging the values at two 

randomly selected locations. 

 

f. Shift Mutation. This operation can be performed by shifting either a single 

value by moving it through the existing string or the values between two 

selected locations.  

 

     2.2.2.5.4 Inversion. Genetic Algorithm theory as proposed by Holland (1975) was 

founded on four operators: selection, crossover, mutation and inversion. Although 

Holland included inversion as one of the defining operators of GAs, in the following 

years it has been rarely used.  
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     Inversion operator aims to mimic the property from nature that, in general, the 

function of a gene is independent of its location on the chromosome. This is 

performed by randomly selecting a segment on the chromosome and then inverting 

the order of the genes in that segment. 

 

     2.2.2.6 GA Parameters  

 

     Another important issue in implementing a genetic algorithm is how to set the 

values for the various parameters, such as the population size, crossover rate, 

mutation rate and termination criteria. 

 

     When defining a GA one needs to choose its components, such as variation 

operators (mutation and crossover) that suit the representation, selection mechanisms 

for selecting parents and survivors, and an initial population. Each of these 

components may have parameters, for instance: the probability of mutation, the 

tournament size of selection, or the population size. The values of these parameters 

greatly determine whether the algorithm will find a near-optimum solution and 

whether it will find such a solution efficiently. Choosing the right parameter values, 

however, is a time-consuming task. In recent years, this issue has received the 

attention of many researchers. Eiben et al. (1999) classifies these efforts into two 

major forms: parameter tuning and parameter control (Figure 2.5). 

 

 

  Figure 2.5 Taxonomy for parameter setting in GAs 

 

     Parameter Tuning. It refers to the commonly practiced approach that amounts to 

finding good values for the parameters before the algorithm is run and then keeping 
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these values fixed while the algorithm runs. With this method, typically one 

parameter is tuned at a time, which may cause some suboptimal choices, since 

parameters often interact in a complex way. Simultaneous tuning of more 

parameters, however, leads to an enormous amount of experiments. The technical 

drawbacks to parameter tuning based on experimentation can be summarized as 

follows: 

 

• Parameters are not independent, hence trying all different combinations 

systematically is practically impossible. 

• The process of parameter tuning is time consuming, even if parameters are 

optimized one at a time, regardless of their interactions. 

• For a given problem the selected parameter values are not necessarily 

optimal, even if the effort made for setting them is significant. 

 

     Parameter Control. This method forms an alternative, as it amounts to starting a 

run with initial parameter values which are changed during the run.  

 

     A general drawback of the parameter tuning approach, regardless of how the 

parameters are tuned, is based on the observation that a run of a GA is an 

intrinsically dynamic, adaptive process. The use of rigid parameters that do not 

change their values is thus in contrast to this spirit. Additionally, it is intuitively 

obvious that different values of parameters might be optimal at different stages of the 

evolutionary process. For instance, large mutation steps can be good in the early 

generations helping the exploration of the search space and small mutation steps 

might be needed in the late generations to help fine tuning the suboptimal 

chromosomes. This implies that the use of static parameters itself can lead to inferior 

algorithm performance.  

 

     The straightforward way to treat the above problem is to use parameters whose 

values may change over time, that is, by replacing a parameter p  by a function 

)(tp , where t  is the generation counter. As indicated earlier, however, the problem 

of finding optimal static parameters for a particular problem can be quite difficult, 
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and the optimal values may depend on many other factors (such as the applied 

recombination operator, the selection mechanism, etc.). Hence designing an optimal 

function )(tp  may be even more difficult. Another possible drawback to this 

approach is that the changes in parameter values are caused by a deterministic rule 

triggered by the progress of time, without taking any notion of the actual progress in 

solving the problem, i.e., without taking into account the current state of the search. 

Yet researchers, using such simple deterministic rules, managed to improve the 

performance of evolutionary algorithms on some particular problems. This can be 

explained simply by superiority of changing the values of parameters: suboptimal 

choice of )(tp  often leads to better results than a suboptimal choice of p .  

 

     Finding good parameter values for an evolutionary algorithm is a poorly 

structured, ill-defined, complex problem. But on these types of problems, GA’s are 

often considered to perform better than other methods! It is thus seemingly natural to 

use a genetic algorithm not only for finding solutions to a problem, but also for 

tuning the (same) algorithm to the particular problem. Technically speaking, this 

amounts to modifying the values of parameters during the run of the algorithm by 

taking the actual search process into account. Basically, there are two ways to do 

this. Either one can use some heuristic rules which take feedback from the current 

state of the search and modify the values of parameters accordingly, or incorporate 

parameters into the chromosomes, thereby making them subject to evolution. The 

first option, using a heuristic feedback mechanism, allows one to change the values 

of parameters, based on triggers other than elapsing time, such as population 

diversity measures, relative improvements, absolute solution quality, etc. The second 

option, incorporating parameters into the chromosomes, leaves changes entirely 

based on the evolution mechanism. In particular, the natural selection acting on 

solutions (chromosomes) will drive changes in parameter values associated with 

these solutions. Methods for parameter control  are summarized by Eiben et al (1999) 

as follows (see Figure 2.5): 

 

• Deterministic parameter control, in which the values of GA parameters are 

changed according to some deterministic rule. This rule modifies the 
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parameters deterministically without using any feedback from the search. 

Usually, a time-varying schedule is used, i.e., the rule will be used when a set 

number of generations have elapsed since the last time the rule was activated. 

• Adaptive parameter control, in which the values of GA parameters are 

changed according to some form of feedback provided by the algorithm. 

• Self-adaptive parameter control, in which the GA parameters are encoded 

into the chromosomes and are optimized simultaneously with a cost function. 

The encoded parameter values which lead to better individuals and are more 

likely to survive and produce offspring, will be therefore propagated to the 

next generations. 

 

     Between the two forms of parameter setting, parameter tuning is the more 

preferred one by the researchers. This can be credited to its easier implementation, 

but it requires a time-consuming trial-error phase before determining the suitable 

parameter set. The motivations behind the tested parameter sets usually depend on 

some facts such as the exploration – exploitation issue. 

 

     Any efficient optimization algorithm must use two techniques to find a global 

optimum: exploration to investigate new and unknown areas in the search space, and 

exploitation to make use of knowledge found at previously visited points to help 

finding better points. These two requirements are contradictory, and a good search 

algorithm must find a trade-off between the two (Beasley, 1993). For GAs, the 

balance between these two techniques is dictated by the values of crossover ( cp ) and 

mutation ( mp ) rates. Increasing values of cp  and mp  promotes exploration at the 

expense of exploitation. Moderately large values of cp  (0.5-1.0) and small values of 

mp  (0.001-0.05) are commonly employed values in GA practice (Srinivas & Patnaik, 

1994). If the GA uses a parameter control approach, crossover and mutation rates 

vary with time.  

 

     Another parameter of the GA is the population size, which can be defined as the 

number of data structures in the evolving population. In biology it is known that 



56 

small populations are likely to die out for lack of sufficient genetic diversity to meet 

environmental changes or because all members of the population share some 

defective gene. Analogous effects are possible even in simple evolutionary 

optimizers. On the other hand, a random initial population is usually jammed with 

average creatures. In the course of finding the global optimum, we may need a lot of 

randomness at some computational cost. There is thus a tension between the need for 

sufficient diversity to ensure solution and the need to avoid processing a population 

so large that it slows time-to-solution (Ashlock, 2005). 

 

     The last parameter in implementing the GA is the terminating condition. Common 

terminating conditions are as follows: 

 

• a solution is found that satisfies minimum criteria, 

• fixed number of generations are reached, 

• allocated budget (computation time/money) is reached, 

• a plateau such that successive iterations no longer produce better results has 

been reached, 

• manual inspection of solutions by GA user, 

• combinations of the above. 

 

2.2.3 Hybrid GA 

 

     A hybrid GA combines the power of the GA with the speed of a local optimizer. 

The GA excels at gravitating toward the global optimum. It is not especially fast at 

finding the optimum when in a locally quadratic region. Thus the GA finds the 

region of the optimum, and then the local optimizer takes over to find the optimum. 

Haupt & Haupt (2004) classify the Hybrid GA methods as follows: 

 

1. Running a GA until it slows down, then letting a local optimizer take over, 

2. Seeding the GA population with some local optima found from random 

starting points in the population, 
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3. Running a local optimizer on the best solution or on the best few solutions 

and adding the resulting chromosomes to the population after every specified 

number of iterations. 

 

2.2.4 Multi-objective GA 

 

     This section presents the multi-objective optimization concept and the GA 

approaches developed to deal with multi-objective optimization problems. First, 

we’ll discuss the multi-objective optimization concept and compare it to single 

objective optimization. This is followed by the definition of Pareto optimality, which 

will eventually lead to the related GA approaches for this concept. 

 

     2.2.4.1 Multi-objective Optimization 

 

     A multi-objective optimization can be defined as the problem of finding a set of 

design variables (DV) which optimizes a set of objective functions (OF) and 

simultaneously satisfies a set of constraint functions. A multi-objective optimization 

problem can be expressed as follows (Augusto, Rabeau, Dépincé, & Bennis, 2006):  

 

Find DV set: 

 

),(),...,,( 21 DVSxxxx
T

n ∈=       (10.1) 

 

which minimizes OF: 

 

(10.2) 

 

and simultaneously satisfies constraints: 

 

,0)( =xhi     ],...,1[ hqi ∈    (equality constraints)    (10.3) 

,0)( ≤xgi     ],...,1[ gqi ∈   (inequality constraints)    (10.4) 

 

),())(),...,(),(()( 21 OFSxfxfxfxf
T

k ∈=
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where n  is the number of DV (optimization parameters) which belong to the design 

variables space (DVS); k  is the number of OF to be optimized; OF are included in 

the objective function space (OFS). The space of DV contains both discrete and 

continuous variables; hq  is the number of equality constraint functions; and gq  is the 

number of inequality constraint functions. 

 

     For multiple-objective problems, the objectives are generally conflicting, 

preventing simultaneous optimization of each objective. The approaches to deal with 

multi-objective problems can be placed into two categories: a priori and a posteriori 

methodologies. In Figure 2.6 (Augusto et al., 2006), working principles of single-

objective a priori and multi-objective a posteriori techniques are compared to each 

other. 

 

 

Figure 2.6 Single-objective optimization methods vs. 

multi-objective 

  

     The first set contains single-objective optimization techniques which consist of 

combining the individual objective functions into a single composite function 

(scalarization) or moving all but one objective to the constraint set. In the former 

case, determination of a single objective is possible with methods such as utility 

theory, weighted sum method, etc., but the problem lies in the proper selection of the 

weights or utility functions to characterize the decision-maker’s preferences. In 

practice, it can be very difficult to precisely and accurately select these weights, even 
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for someone familiar with the problem domain. Compounding this drawback is that 

scaling amongst objectives is needed and small perturbations in the weights can 

sometimes lead to quite different solutions. In the latter case, the problem is that to 

move objectives to the constraint set, a constraining value must be established for 

each of these former objectives. This can be rather arbitrary. In both cases, an 

optimization method would return a single solution rather than a set of solutions that 

can be examined for trade-offs (Konak, Coit, & Smith, 2006). Consequently, single-

objective techniques can be considered as a priori methodologies.  

 

     Decision-makers often prefer a set of good solutions considering the multiple 

objectives. This can be accomplished by the second set of multi-objective 

optimization techniques which provide a set of alternative solutions. They are based 

on an a posteriori articulation of preference information in order to make a choice 

within a set of optimum solutions. These solutions form the Pareto optimal solution 

set.  

 

     2.2.4.2 Pareto Optimality 

 

     If we note **

2

*

1 ,...,, kfff  as the individual optima of each respective OF, the 

utopian solution, f ),...,,( **

2

*

1

*

kfff= , is the best theoretical solution which 

simultaneously optimizes all the objectives. Nevertheless, this utopian solution is 

rarely feasible because of the existence of constraints. Often f *  does not belong to 

the OFS and we use the Pareto frontier to define a set of solutions instead of the 

optimum solution (Figure 2.7). The Pareto-optimality is defined as a set, where every 

element is a solution of the problem for which no other solutions can be better with 

regard to all the OF. A solution in a Pareto-optimal set cannot be considered better 

than the others within the set of solutions without including preference information 

(Augusto et al., 2006). 
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Figure 2.7 Solution space 

 

     For a minimization problem, considering two solution vectors x  and y , it is said 

that x  dominates y  (also written as yx f ) iff: 

 

)()(:,...,2,1 yfxfki ii ≤∈∀       (11.1) 

and 

)()(:,...,2,1 yfxfkj jj <∈∃ .                 (11.2) 

 

     A Pareto optimal set is a set of solutions that are non-dominated with respect to 

each other. While moving from one Pareto solution to another, there is always a 

certain amount of sacrifice in one objective(s) to achieve a certain amount of gain in 

the other(s). Pareto optimal solution sets are often preferred to single solutions 

because they can be practical when considering real-life problems since the final 

solution of the decision-maker is always a trade-off. Pareto optimal sets can be of 

varied sizes, but the size of the Pareto set usually increases with the increase in the 

number of objectives (Konak et al., 2006). 

 

     2.2.4.3 GAs for Multi-Objective Optimization 

 

     Genetic algorithms seem particularly desirable to solve multi-objective 

optimization problems because they deal simultaneously with a set of possible 
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solutions (the so-called population) which allows to find an entire set of Pareto-

optimal solutions in a single run of the algorithm (Mansouri, 2005). The ability of 

GA to simultaneously search different regions of a solution space makes it possible 

to find a diverse set of solutions for difficult problems with non-convex, 

discontinuous, and multi-modal solutions spaces. The crossover operator of GA may 

exploit structures of good solutions with respect to different objectives to create new 

nondominated solutions in unexplored parts of the Pareto front. In addition, most of 

the multi-objective GAs do not require the user to prioritize, scale, or weigh 

objectives. Therefore, GAs have been the most popular heuristic approach to multi-

objective design and optimization problems (Konak et al., 2006). 

 

     The primary questions when developing genetic algorithms for multi-objective 

problems are how to evaluate fitness, how to determine which potential solution 

points should be passed on to the next generation, and how to incorporate the idea of 

Pareto optimality (Marler & Arora, 2004). Konak et al. (2006) and Marler & Arora 

(2004) describe the approaches that address these issues and serve as potential 

ingredients in a genetic multi-objective optimization algorithm. These approaches are 

briefly summarized in the following section. 

 

     2.2.4.3.1 Fitness Functions. In this section, we discuss the alternative ways of 

dealing with multiple objectives in genetic algorithm approaches. 

 

a. Weighted Sum Approaches. The classical and most straightforward approach 

to solve a multi-objective optimization problem is to assign a weight iw  to 

each normalized objective function )(xzi
′  so that the problem is converted to 

a single objective problem with a scalar objective function as follows: 

 

min )(...)()( 2211 xzwxzwxzwz kk
′++′+′= ,     (12) 

 

where )(xzi
′  is the normalized objective function )(xzi  and 1=∑ iw . This 

approach is called the a priori approach since the decision-maker must 
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quantify the relative importance of different objective functions before 

actually viewing points in the solution space.  

 

     Solving a problem with such objective for a given vector 

},...,{ 21 kwwww =  yields a single solution, and if multiple solutions are 

desired, the problem must be solved multiple times with different weight 

combinations. The main difficulty with this approach is to select a weight 

vector for each run (Konak et al., 2006). Selection of weights requires 

assumptions on the relative worth of the cost functions prior to running the 

GA. The use of randomly generated weights can help to overcome this 

problem by stipulating multiple search directions in a single run without 

using additional parameters. 

 

     Implementing this approach in a GA simply requires modifying the cost 

function to fit the form of Eq. 12 and it does not require any modification to 

the GA. This approach is not computationally intensive and results in a single 

best solution based on the assigned weights (Haupt & Haupt, 2004). 

 

b. Altering Objective Functions. One of the first treatments of multi-objective 

genetic algorithms is the vector evaluated genetic algorithms (VEGA). The 

general idea behind this approach involves randomly dividing the original 

population tP  into k  equal subsets, or sub-populations, kPPP ,...,, 21  where k  

is the number of objective functions. For each solution, fitness values are 

assigned according to the objective function iz  which is associated to the 

sub-population iP  that the solution belongs to. Then, solutions are selected 

from these sub-populations using the stochastic selection processes for 

crossover and mutation. Crossover and mutation are performed on the new 

population in the same way as for a single objective GA.  

 

     A similar approach to VEGA is to use only a single objective function 

which is randomly determined each time in the selection phase. The main 
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advantages of the alternating objectives are the ease of implementation and 

being computationally as efficient as a single-objective GA. In fact, this 

approach is a straightforward extension of a single objective GA to solve 

multi-objective problems. The major drawback of objective switching is that 

the population tends to converge to solutions which are superior in one 

objective, but poor at others (Konak et al., 2006). 

 

c. Pareto-Ranking Approaches. Pareto-ranking approaches explicitly utilize the 

concept of Pareto dominance in evaluating fitness or assigning selection 

probability to solutions. The population is ranked according to a dominance 

rule, and then each solution is assigned a fitness value based on its rank in the 

population, not its actual objective function value (Konak et al., 2006).  

 

     The means of determining the rank of an individual and assigning fitness 

values associated with this rank may vary from method to method, but the 

general approach is common. For a given population, the objective functions 

are evaluated for each individual. All non-dominated individuals receive a 

rank of one. Determining whether an individual is dominated or not 

(performing a non-dominated check) entails comparing the vector of 

objective function values of the individual to the vector of all other 

individuals. Then, the individuals with a rank of one are temporarily removed 

from consideration, and the others that are non-dominated relative to the 

remaining group are given a rank of two. This process is repeated until all 

individuals are ranked. Those individuals with the lowest rank have the 

highest fitness value. That is, fitness is determined such that it is inversely 

proportional to the rank (Marler & Arora, 2004). Although some of the 

ranking approaches can be used directly to assign fitness values to individual 

solutions, they are usually combined with various fitness sharing techniques 

to achieve the second goal in multi-objective optimization, finding a diverse 

and uniform Pareto front (Konak et al., 2006). 
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     2.2.4.3.2 Population Diversity. Maintaining a diverse population is an important 

consideration in multi-objective GA to obtain solutions uniformly distributed over 

the Pareto front (Konak et al., 2006). 

 

     A niche in genetic algorithms is a group of points that are close to each other, 

typically in the criterion space. Niche techniques are methods for ensuring that a 

population does not converge to a niche, i.e., a limited number of Pareto points. 

Thus, these techniques foster an even spread of points (in the criterion space). 

Genetic multi-objective algorithms tend to create a limited number of niches; they 

converge to or cluster around a limited set of Pareto points. This phenomenon is 

known as genetic drift (or population drift), and niche techniques force the 

development of multiple niches while limiting the growth of any single niche (Marler 

& Arora, 2004). Several approaches such as fitness sharing, crowding distance and 

cell-based density have been devised to prevent genetic drift. 

 

a. Fitness Sharing. Fitness sharing is a common niche technique. Its basic idea 

is to penalize the fitness of points in crowded areas, thus reducing the 

probability of their survival to the next generation. The fitness of a given 

point is divided by a constant that is proportional to the number of other 

points within a specified distance in the criterion space. In this way, the 

fitness of all the points in a niche is shared (Marler & Arora, 2004). This 

approach encourages the search in unexplored sections of a Pareto front, but 

on the other hand, it also introduces another parameter, niche size, to be taken 

into consideration. 

 

b. Crowding Distance. Crowding distance approaches aim at obtaining a 

uniform spread of solutions along the best-known Pareto front without using 

a fitness sharing parameter such as niche size or the k
th

 closest neighbor. As 

the performance of the above-mentioned fitness sharing methods in 

maintaining a spread of solutions depends largely on the chosen niche size 

value, and since these methods require the comparison of each solution with 

all other solutions in the population which is a computationally intensive 
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work, crowding distance methods have been more desirable to some 

researchers.  

 

     One of the applications of crowding distance is the nondominated 

searching genetic algorithm (NSGA-II) which is proposed by Deb, Pratap, 

Agarwal, & Meyarivan, (2002). In NSGA-II, first, the population is sorted 

according to each objective function value in ascending order of magnitude. 

Thereafter, for each solution point, the average distance of two points on 

either side of this point is calculated. This quantity serves as an estimate of 

the perimeter of the cuboid formed by using the nearest neighbors as the 

vertices and called the crowding distance. This calculation is continued with 

other objective functions. The overall crowding distance value is calculated as 

the sum of individual distance values corresponding to each objective. 

 

     NSGA-II uses this crowding distance measure as a tie-breaker in a 

selection technique called the crowded tournament selection operator: 

Randomly select two solutions x  and y ; if the solutions are in the same non-

dominated front, the solution with a higher crowding distance is the winner. 

Otherwise, the solution with the lowest rank is selected (Konak et al., 2006). 

 

c. Cell-Based Density. In this approach, the objective space is divided into k -

dimensional cells. The number of solutions in each cell is defined as the 

density of the cell, and the density of a solution is equal to the density of the 

cell in which the solution is located. This density information is used to 

achieve diversity similarly to the fitness sharing approach (Konak et al., 

2006). Density calculation results in a global density map of the objective 

function space which can be used to direct the search toward sparsely 

inhabited regions of the objective function space. This approach is also 

computationally more efficient than the niching or neighborhood-based 

density techniques. 
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     2.2.4.3.3 Elitism. Elitism in the context of single-objective GA means that the best 

solution found so far during the search always survives to the next generation. In this 

respect, all nondominated solutions discovered by a multi-objective GA are 

considered elite solutions. However, implementation of elitism in multi-objective 

optimization is not as straightforward as in single objective optimization mainly due 

to the large number of possible elitist solutions. It should be noted that unlike the 

earlier ones most recent multi-objective GA and their variations use elitism. Multi-

objective GAs use two strategies to implement elitism: (i) maintaining elitist 

solutions in the population, and (ii) storing elitist solutions in an external secondary 

list and reintroducing them to the population (Konak et al., 2006). 

 

a. Elitism in the population. Random selection does not ensure that a non-

dominated solution will survive to the next generation. A straightforward 

implementation of elitism in a multi-objective GA is to copy all non-

dominated solutions in population tP  to population 1+tP , then fill the rest of 

1+tP  by selecting from the remaining dominated solutions in tP . This 

approach will not work when the total number of nondominated parent and 

offspring solutions is larger than the population size, therefore several 

approaches are proposed to overcome this problem. Obviously, the main 

advantage of maintaining non-dominated solutions in the population is 

straightforward implementation. In this strategy, the population size is an 

important GA parameter since no external archive is used to store discovered 

non-dominated solutions (Konak et al., 2006). 

 

b. Elitism with external populations. This approach requires two sets of 

solutions to be stored. The second set is used for storing the nondominated 

solutions and it is updated each time a new solution is created by removing 

elitist solutions dominated by a new solution or adding the new solution if it 

is not dominated by any existing elitist solution. 
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CHAPTER THREE 

LITERATURE REVIEW: APPLICATIONS OF GENETIC ALGORITHMS 

IN MMALS 

 

     This chapter presents a review of recent literature related to MMALS using GAs. 

To classify the relevant literature, we employed two schemes: one for MMALSP 

(Appendix 1a) and another for GAs (Appendix 1b). It should be noted that the tuple 

notation used for classifying the current studies on MMALSP is similar to the one 

proposed in Boysen et al. (2007a). Having focused on studies related to MMALS 

using GAs, in this study we adopted this tuple notation to the specifications of GAs. 

 

     The first scheme considers only the MMALSP and has 4 main titles: i.e. station 

characteristics, assembly line characteristics, sequencing objectives and the number 

of production levels. The second scheme is developed to classify the specifications of 

GA approaches developed to deal with MMALSP. It has 7 main titles; i.e. genetic 

representation, fitness function, initial population, selection strategies, genetic 

operators, GA parameters and hybridization. The reader may refer to Chapter 2 for 

detailed information on these specific titles.  

 

3.1 Classification and Review of Related Literature 

 

     In order to highlight the place of this M.Sc study in the current literature, we 

extensively surveyed the relevant studies. 

 

     In previous survey papers, Bard et al. (1992) propose an analytical framework for 

sequencing MMALs and give the characteristics of sequencing problems such as 

launching discipline (fixed and variable rates), line movement (paced, unpacked and 

asynchronous), station restrictions (open- and closed-stations), operator schedules 

(early and late start) and design objectives (minimizing line length and throughput 

times). In a more recent study, Boysen et al. (2007a) present a detailed classification 

scheme for mixed-model sequencing problems. However, this scheme ignores the 

proposed solution approaches in the literature and only deals with the problem 
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characteristics. The scheme proposed by the authors is based on three elements: (i) 

characteristics of stations, (ii) characteristics of the assembly line, and (iii) 

objectives. In this study, we not only consider the characteristics of mixed-model 

sequencing problems, but also the GA characteristics adopted to deal with this 

problem. In particular, we adapt the tuple notation and structural framework 

proposed by Boysen et al. (2007a) and incorporate the specifications of the proposed 

genetic algorithms into this framework. Table 3.1 summarizes the literature on 

MMALS using GAs, with the help of the proposed tuple notation (see Appendix 1 

for abbreviations). 

 

     The first research on the application of GAs to the sequencing problem in 

MMALs has been carried out by Kim et al. (1996). The authors investigated a 

suitable genetic representation for the problem, and empirically found a set of genetic 

control parameters that yield good results. In addition, a new genetic operator, 

Immediate Successor Relation Crossover (ISRX), was introduced and several 

existing ones were modified. An extensive experiment was carried out to determine a 

proper choice of the genetic operators. The performance of the GA was compared 

with those of heuristic algorithm and of branch-and-bound method. The results of the 

experimental studies suggested that the proposed GA greatly reduced the 

computation time and it provided near optimal solution. Nevertheless, the paper 

aimed at solving single objective sequencing problems. In their next publication, 

Hyun et al. (1998), the authors developed a method to find diverse Pareto optimal 

solutions particularly for multiple objective sequencing problems in MMALS. This 

new method was based on a new evaluation and selection mechanism, called the 

Pareto stratum - niche cubicle. Three objective functions, i.e. minimizing total utility 

work, leveling part usage through production rates and minimizing total setup cost 

were considered simultaneously. The authors compared the proposed algorithm with 

three existing multiple objective GAs, i.e. vector evaluated genetic algorithm 

(VEGA), Pareto genetic algorithm (PGA) and niched Pareto genetic algorithm 

(NPGA) using various test-bed problems. The results indicating the diversity and 

quality of the solutions revealed that the proposed method outperformed other GAs, 

especially for large problems involving great variation in setup cost. The 
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characteristics of this study are summarized using the following expressions in Table 

3.1: 

 

Problem Type:   [ setup| | wo, vpr, setup(c)| ]   

Proposed GA Method:  [ | multi, pr, fsh| | rank, elit° | isrx, inv| | ] 

 

     The interpretation of these expressions is as follows:  

 

� Problem type includes standard station characteristics except that set-ups are 

not ignored; standard assembly line characteristics; three objective functions 

(i.e., minimizing work overload, minimizing variation of production rates and 

minimizing the set-up costs) and the standard number of production stages 

(i.e., final production stage only). 

 

� Proposed GA method uses the standard genetic representation (i.e., real-

valued); a multi-objective approach with pareto-ranking and fitness sharing; 

standard initial population generation (i.e., randomly); rank selection and 

elitist strategies; immediate successor relation crossover and inversion 

genetic operators; standard GA parameters and finally a none-hybrid 

approach. 

 

     McMullen et al. (2000) also examined the two objectives of minimization of 

number of setups and leveling part usage through production rates. These two 

objectives were combined into a single objective using the weighted sum approach. 

The proposed GA was compared against the tabu search  (TS) and simulated 

annealing (SA) approaches and was found that the performance of TS was not well 

in comparison to SA and GA. The authors also stated that GA and SA were equally 

well performing, although GA approach was computationally more expensive than 

SA. 
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Proposed GA Method 

[ | | | rank, elit | isrx, inv| | ] 

[ | multi, pr, fsh| | rank, elit° | isrx, inv| | ] 

[ | multi, wsum| | | ox, swap| | ] 

coevolutionary  [ | | | rou|  isrx, inv| ifix| ] 

[ | | hrstc| | pmx, pbx, shift| min| ] 

[ | | hrstc| rank, elit° | two, cx, swap| dtprm, ifix, min| ] 

[ | multi, pr, fsh| | rank, elit° | ox, inv| | ] 

[ | multi, pr, fsh| | sus, elit° | ox, swap, inv| dtprm, gfix, conv| ] 

[ | multi, pr, crwd| | rou, elit° | ox, inv| | ] 

endosymbiotic  [ | | | tour|  ox, inv| ifix| ] 

Problem Type 

[ open, var, setup| | len| ] 

[ setup| | wo, vpr, setup(c)| ] 

[ setup| | vpr, setup(n)| ] 

[ | | wo| ]  

[ sto, setup, par| | mspan| ] 

[ | u| vpr| mlev° ] 

[ setup| | wo, cpu, setup(c)| mlev(4)] 

[ setup| | vpr, setup(n)| ] 

[ | | vpr, mspan| ] 

[ | u| level| ]  

Problem 

Seq. 

Seq. 

Seq. 

Bal. & Seq. 

Bal. & Seq. 

Bal. & Seq. 

Seq. 

Seq. 

Seq. 

Bal. & Seq. 

Table 3.1 Overview on related literature 

Paper 

Kim et al., 

1996 

Hyun et al., 

1998 

McMullen et al., 

2000 

Kim et al., 

2000 

Rekiek et al., 

2000 

Miltenburg, 

2002 

Ponnambalam et al., 

2003 

Mansouri, 

2005 

Yu et al., 

2006 

Kim et al., 

2006 
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     Being a just-in-time related goal, leveling parts usage rates has been considered 

by several researchers. Generally it has been assumed that products require 

approximately same number and mix of parts, and therefore leveling parts usage 

rates objective was substituted by smoothing variation of production rates at the final 

assembly. Unlike this general trend, Ponnambalam et al. (2003) focused on four 

levels of production stages (i.e., product, subassembly, component, raw materials) 

and assumed that every product could have different part requirements. The authors 

solved the sequencing problem under the objective of minimizing the variation of 

parts usage rates. The second part of the research extends the work of Hyun et al. 

(1998) by incorporating this new objective function in the multi-objective GA 

framework. The authors reported that multiple-objective GA that uses the selection 

mechanism of Pareto stratum-niche cubicle performed better than that of weighted 

sum of multiple objective functions with variable weights. 

 

     Since it is easy to implement, most researchers used parameter tuning in their 

researches. Basically some initial experiments are carried out and the parameter 

configuration set which gives the best overall results is chosen for the rest of the 

experiments. Mansouri (2005) stated that using the high rates for crossover and 

mutation would increase diversity whereas the low rates would improve quality. 

Therefore it was decided to exploit both advantages by using a changing rate; using 

constant, high rates at the beginning followed by exponentially decreasing rates from 

a break point onward. Performance of the developed MOGA was compared against a 

total enumeration scheme in small problem sets. It was also compared against three 

search heuristics (i.e. GA, SA, TS) developed for the multi-objective mixed-model 

sequencing problem in small, medium and large problems. The results revealed that 

the proposed MOGA outperformed the benchmark algorithms in terms of the quality 

of solutions. Concerning diversity, no significant difference was observed between 

the MOGA and the benchmark algorithms. 

 

     While previous multi-objective approaches used fitness sharing methods (e.g. 

niche cubicle) for maintaining the diversity in the population, Yu et al. (2006) 

preferred dispersed-distance method which awards the solutions located in sparse 
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regions. The authors also used dispersed-distance measure along with pareto-ranks to 

compute a new fitness value for each individual. The proposed multi-objective GA 

which adopts the pareto ranking and dispersed-distance calculation methods was 

claimed to guarantee uniformly dispersed Pareto solutions. 

 

     The implementation of the evolution concept to the aggregated problem of 

balancing and sequencing was originated by Kim et al. (2000). Previously, this 

aggregated problem has been studied using a hierarchical approach, where the 

problems were treated sequentially in such a manner that one of them was solved 

first, and then the other was considered under the constraint of the first solution. Kim 

et al. (2000) claimed that such a hierarchical approach to an aggregated problem 

combining multiple sub-problems has a limitation to exploring the solution space and 

demonstrated this situation by comparing the results of their proposed symbiotic co-

evolutionary algorithm to those of the hierarchical GA approach. This new co-

evolutionary approach, as contrasted with the hierarchical one, had the ability to 

simultaneously deal with both balancing and sequencing problems in MMALs. Each 

of the balancing and sequencing problems was considered as one species, and was 

characterized by genes which were adequately designed to describe the features 

specific to the problem. Two populations, i.e. balancing population and sequencing 

population, were created so that the species coevolved while interacting within and 

between populations. Since the only considered objective was minimization of utility 

work for both problems, the proposed approach was a single objective optimization. 

 

     Another GA-based approach to this aggregated problem was developed by Rekiek 

et al. (2000). The authors have developed an iterative hierarchical approach, called 

balance for ordering (BFO). Proposed algorithm employed two modified genetic 

algorithms to solve grouping and ordering problems. Initially, the grouping GA is 

employed to solve balancing problem and then the resulting configuration is used as 

an input by the ordering GA to solve the sequencing problem. The solutions to both 

problems (i.e., the effective cycle time resulting from the current line configuration 

and the model sequence)  were compared to the desired cycle time. If the margin was 
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beyond acceptable then the line was rebalanced. This iterative procedure continues 

until a configuration with an acceptable effective cycle time is obtained. 

 

     Another line configuration which was widely adopted by researchers in recent 

years was U-shaped MMALs. One of these researches considering U-shaped lines 

for the aggregated problem was presented by Miltenburg (2002). The author 

proposed a GA-based approach to minimize the weighted sum of the variation of 

work content in the stations, and the variation of production for models and parts at 

all facilities. In contrast to Kim et al. (2000), in this study only one population was 

created for both problems. Single population has been achieved by concatenating 

balancing and sequencing chromosomes so that a single chromosome contains 

solutions for both problems. Genetic operators were separately applied to the 

subsequences of tasks and models. The comparison of the results from the two 

variations of the proposed GA and randomly created solutions indicated that the 

quality of the solutions found by the GA was good, especially when the GA was run 

under different weights.  

 

     Aggregated problem for U-shaped lines has been also investigated by Kim et al. 

(2006). In this research, the authors proposed an extension of their previous 

symbiotic co-evolutionary algorithm, called the endosymbiotic evolutionary 

algorithm (EEA). The main difference was the introduction of a third population 

which includes concatenated chromosomes similar to Miltenburg (2002). Moreover, 

the authors have considered the U-shaped line constraints. Using absolute deviations 

of workload as the minimization objective, the characteristics and search capability 

of EEA were compared and analyzed with those of the following three evolutionary 

approaches: hierarchical genetic algorithm, SPA (separated and population-based 

symbiotic evolutionary algorithm), and SNA (separated and neighborhood-based 

symbiotic evolutionary algorithm). The experimental results showed that for every 

test-bed problem, all the symbiotic evolutionary algorithms provided better outcomes 

than the hierarchical approach. They also reported that for every problem instance, 

EEA showed the best results. 
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     It should be noted that the implementation of adaptive genetic algorithms to 

MMALSP have been adopted by a few researchers. Miltenburg (2002) has proposed 

a deterministic parameter control approach in his single-objective genetic algorithm 

approach to solve the joint problem of balancing and sequencing in MMALs. The 

author assumed that diversity was more important in early populations than in later 

ones, hence he set the probability of mutation to 0.5 for the first ten populations and 

zero thereafter.  However, this study lacks a comparative study evaluating  the 

performance of this deterministic approach against existing approaches in the 

literature. 

 

     Experimenting with different parameter settings, Mansouri (2005) observed the 

effectiveness of high rates on more diversification of solutions along the frontier and 

hence, he stated that fixed rates did not result in quality as well as diverse frontiers at 

the same time. Moreover, he noted that the rate of improvement became constantly 

slower and slower until it ceased to improve amid generations and the low rates for 

crossover and mutation were found to be effective on improving quality of solutions 

in a less-diverse frontier. To exploit advantages of both scenarios, Mansouri 

proposed a new parameter control approach which changed the rates of the operators 

in such a way that high rates were allowed at the beginning followed by lower rates 

thereafter. Conducting several experiments on various schemes for changing rates of 

these two operators, the following formula was found to be promising to determine 

tR , i.e. the rate at generation t  based on an initial IR rate: 

 

 

  (13) 

 

 

 

where K  was a constant that was set to 0.33 after some trials. Initial rates for 

crossover and inversion operators were set to 0.6 and 0.8, respectively. Since the 

rates vary according to time ( t ), this approach is also categorized as a deterministic 

parameter control method. 
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3.2 Findings of the Literature Survey 

 

     Referring to the Classification Table (Table 3.1), we could list our findings based 

on problem specifications as follows: 

 

� More than half of the articles surveyed dealt with only the MMAL 

sequencing problem assuming that the line balancing problem was already 

solved. The others dealt with both balancing and sequencing problems using 

various approaches. 

� In general, researchers have a general tendency to assume that station borders 

are closed so that workers cannot move out of their stations. However, this 

may be too restrictive, since open-stations or hybrid lines composed of both 

closed and open stations along the line are very common in real world 

applications.  

� Most of the researches have considered deterministic processing times. 

However, in manual assembly lines, processing times are subject to 

significant variation.  

� Issues which may considerably increase the complexity of the problem such 

as parallelization and concurrent work have been largely ignored. 

� Nearly half of the articles have considered the issue of set-up cost 

minimization. 

� Except two articles (Kim et al., 2006; Miltenburg, 2002) that considered U-

shaped line layouts, majority of the surveyed articles considered straight 

layouts. 

� Fixed-rate model launching is a common assumption, whereas workers’ 

movement times or velocities are ignored.  

� More than half of the articles surveyed (i.e., 6 out of 10) have considered the 

JIT objective of uniform parts usage rates. 

� All of the researchers dealing with both balancing and sequencing MMALs, 

adopted single objective optimization approaches ignoring multi-objective 

nature of this aggregated problem. 
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     Likewise, referring to Table 3.1, we could list our findings based on GA 

specifications as follows: 

 

� Simultaneous consideration of balancing and sequencing problems have been 

achieved by three methods, i.e. single population (concatenated balancing and 

sequencing chromosomes; Miltenburg, 2002), two interacting populations 

(one for balancing and one for sequencing; Kim et al., 2000), and three 

interacting populations (one for balancing, one for sequencing and another for 

concatenated balancing and sequencing chromosomes; Kim et al., 2006). 

� For sequencing problems, usually multiple objectives have been taken into 

consideration, whereas aggregated problem has been solved for single 

objectives. 

� Pareto ranking approaches have been preferred to weighted sum approaches 

(scalar fitness functions) for multi-objective GAs. 

� Population diversity has been generally enhanced by fitness sharing 

approaches, e.g. niche cubicles. Yu et al. (2006) have used a crowding 

distance approach as an alternative to fitness sharing approaches.  

� The general tendency to generate the initial population is randomization. 

Only Rekiek et al. (2000) and Miltenburg (2002) have used heuristics to 

generate initial populations. 

� Majority of the articles (i.e., 7 out of 10) have used elitist strategies to 

preserve the best individuals. 

� As crossover and mutation operators, the majority of the researchers have 

preferred order crossover and inversion, respectively. When used together, 

these two operators have been shown to work successfully for MMALSP. 

� Parameter tuning has been widely adopted by the researchers (i.e. 8 out of 

10). Best configurations of GA parameters (e.g. crossover and mutation 

probabilities, population size, etc.) have been determined through several 

experiments prior to the run of the algorithm. These configurations are then 

used throughout their experiments.  
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     In the light of above listed findings, the following research directions can be 

suggested: 

 

� Single objective optimization can be preferred when the objective 

unconditionally rules over all the others. However, in balancing and 

sequencing problems, there are often several conflicting objectives that need 

to be simultaneously considered. Although there are several research papers 

that dealt with either multi-objective balancing or multi-objective sequencing 

problems, the aggregated problem of balancing and sequencing is only dealt 

with single-objective optimization approaches. Therefore, studying mixed-

model assembly line balancing and sequencing problem using multi-objective 

approaches seems to be an attractive research area. 

� The values of GA parameters greatly determine the performance of GAs. 

Choosing the right parameter values, however, is a time-consuming task. 

Furthermore, this task may need to be repeated for different instances of the 

problem. Parameter control has been proposed as an alternative to this tuning 

of parameters before the run of the algorithm. Miltenburg (2002) and 

Mansouri (2005) have used deterministic parameter control where crossover 

and mutation probabilities have been changed according to some 

deterministic rules. However, adaptive and self-adaptive parameter control 

mechanisms still remain untested for MMALSP. 

� During the literature survey, we noted quite number of studies employing 

multi-objective GA approaches including Vector Evaluated Genetic 

Algorithm (VEGA) (Schaffer, 1985), Multi-Objective Genetic Algorithm 

(MOGA) (Fonseca & Fleming, 1993), Niched Pareto Genetic Algorithm 

(NPGA) (Horn, Nafpliotis, & Goldberg, 1994), Non-dominated Sorting 

Genetic Algorithm (NSGA-II) (Deb et al., 2002), Pareto Stratum - Niche 

Cubicle Genetic Algorithm (PS-NC GA) (Hyun et al., 1998), Multiple 

Objective Genetic Local Search (MOGLS) (Jaszkiewicz, 1998), Strength 

Pareto Evolutionary Algorithm (SPEA2) (Zitzler, Laumanns, & Thiele, 

2001), Pareto Archive Evolution Strategy (PAES) (Knowles & Corne, 1999) 

and Multi-Objective Scatter Search (MOSS) (Beausoleil, 2006). However, 
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MMALS literature lacks applications of most of the above mentioned 

approaches. Hence, a comparative study evaluating the performance of these 

multi-objective GA approaches in solving MMALSP may be a valuable 

contribution to this research area. 

� GAs coupled with other heuristics such as local optimizers may perform 

better than the traditional GAs. These hybridization efforts aim to improve 

the convergence speed and/or solution diversity, either by building the initial 

population using solutions obtained by a heuristic or by letting a local 

optimizer to take over the search process when the GA progress slows down. 

Although, Rekiek et al. (2000) and Miltenburg (2002) have utilized some 

initial population heuristics to seed the initial population, current MMALS 

literature doesn’t have any hybrid applications combining GAs with local 

optimizers.  

 

3.3 Motivation For This Study 

 

     A recent trend in GA based research studies is to employ adaptive or self-adaptive 

parameter control mechanisms so that a better performance can be gained in dealing 

with various optimization problems (e.g., Bingul et al., 2000; Chang et al., 2007; 

Eiben et al., 1999; Herrera & Lozano, 2003; Huang et al., 2006; Liu et al., 2003; Shi 

et al., 1999; Smith & Fogarty, 1997; Srinivas & Patnaik, 1994; Zhao et al., 2005). 

During the survey of current literature, as mentioned above, however we have not 

noted any study employing adaptive or self-adaptive parameter control mechanisms 

to solve MMAL sequencing problem. Considering the intense competition in global 

markets to provide a rich product variety at low cost, we believe that developing new 

methodologies to solve MMAL sequencing problem efficiently is very important. 

Another aspect which will increase the efficiency of the proposed GA based 

methodologies is to consider this problem as a multi-objective mixed model 

sequencing problem. Having motivated by these research gaps this study aims at 

solving single- and multi-objective MMAL sequencing problems using adaptive 

genetic algorithm.  
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CHAPTER FOUR 

ADAPTIVE GA BASED APPROACH FOR SOLVING SINGLE OBJECTIVE 

MIXED MODEL ASSEMBLY LINE SEQUENCING PROBLEM 

 

     In this chapter, we focus on solving single objective MMALSP, which concerns 

with the minimization of part consumption rates. An adaptive GA based approach is 

proposed for the solution of this problem. The proposed approach tries to maintain a 

good balance between exploration and exploitation of the solution space by 

evaluating the progress results periodically. 

 

    The MMALSP is solved using two different GA-based approaches. While the first 

approach is simply implementation of the GA specifications described in 

Ponnambalam et al. (2003) which ignores any of the adaptive techniques, the second 

approach is novel to this M.Sc study which modifies the number of elite individuals 

and probability of mutation during the course of the run. Various sets of 

computational experiments are carried out to compare performance of the proposed 

adaptive GA and this commonly used approach. 

 

     The rest of this chapter is organized as follows. In section 4.1, the specifications 

of the proposed adaptive GA based approach are explained. In section 4.2, both the 

results of comparative experiments carried out on a set of benchmark problems and 

also the insights gained through these experimental studies are presented. 

 

4.1 Specifications of the Adaptive GA Based Approach 

 

     In this section, the components of the proposed adaptive GA based approach are 

introduced. The general structure of this proposed approach is given in Figure 4.1. 

As it can be seen from the figure, the genetic search process begins with the random 

creation of the initial population. Once the initial population is generated, the fitness 

value of each individual is evaluated using the VPC function presented in Eq. 2. This 

is followed by the calculation of survival probabilities which are used to select 

individuals for possible crossover and mutation. The selection process employs a 
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fitness proportionate selection method, the roulette wheel sampling. The selected 

individual pairs produce the offspring under various crossover and mutation 

operations. 

 

 

 Figure 4.1 General structure of the proposed GA 

 

     Following, the quality of these newly created offspring is evaluated. If the 

termination criteria are met, then this new generation becomes the final generation of 

the genetic search process and the best individual of the generation is presented. If 

the termination criteria are not satisfied, then before proceeding to the next 

generation, an adaptive elitist strategy is applied and individuals of the parent 
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generation that are worthy to survive are transferred to the next generation. Also, 

once in every 5 generations, the convergence performance is evaluated and the 

probability of mutation is changed accordingly. After the application of these 

adaptive techniques, the algorithm continues with the selection process in order to 

create the next generation. 

 

     The details regarding the specifications of the proposed adaptive GA based 

approach, such as chromosome representation, genetic operators, selection schemes 

and ranking are explained in the following subsections. 

 

4.1.1 Genetic Representation 

 

     Representation of feasible solutions is largely determined by problem-specific 

characteristics. A string representation, which is a real-valued encoding scheme, is 

most widely used because of its compatibility with natural gene and genetic 

operation. In this research, a solution is a sequence of all the models simply listed in 

their launching order. Obviously, there exists a one-to-one correspondence between 

the representation space and the solution space. Suppose that during a cycle three 

types of products, A, B, and C are required to be produced in quantities of 1, 2 and 3, 

respectively. For instance, a solution alternative to this sequencing problem will be 

represented as a string of (C B C A C B). 

 

4.1.2 Initial Population  

 

    An initial population is necessary to run the algorithm. Either heuristic procedures 

or random creations can be used to generate strings that form the initial population. 

Since the scope of this chapter is limited to analysis of the effects of adaptive 

approaches, it is preferred to create all initial populations randomly. 

 

     The initialization process can be summarized as follows: 
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Create an alphabetically ordered sequence according to the given demand 

for each model 

Eg. (3A, 2B, 2C)� AAABBCC 

For n=1 to Population Size 

Create a random number associated with every bit in the chromosome  

Eg. AAABBCC�5724369 

Obtain a shuffled sequence by sorting the random numbers in 

ascending order 

Eg. 2345679�ABBACAC 

  Inject the shuffled sequence 

Next n 

 

4.1.3 Fitness Evaluation 

 

     The aim of the optimization efforts is the minimization of variations in part 

consumption rates. Therefore, the fitness of each individual is evaluated using the 

VPC objective function given by Eq. 2. The pseudocode representation of the fitness 

evaluation process is given below: 

 

VPC=0, w ={1,1,1,1}. 

For K=1 to Total Demand 

For G=1 to Production Levels 

For I=1 to Output(I) 

Calculate xigk : number of units of output i at level g 

produced during stages 1, 2,…k. 

Calculate XTgk : total production at level g during 

stages 1, 2,…k. 

Calculate dig : demand for output i at level g; where i 

= 1, 2,…ng, and g = 2, 3, 4. 

Calculate DTg : total demand for production at level g; 

where g = 1, 2, 3, 4. 

            Calculate rig = dig / DTg. 
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             Variability = . 

             VPC = VPC + Variability. 

  Next I. 

 Next G. 

Next K. 

Return VPC. 

 

4.1.4 Fitness Conversion and Selection 

 

     Before proceeding to the actual selection phase, we need to convert current fitness 

values, VPCs, to a new fitness value which will be a suitable parameter for 

minimization objective. This step is required as the selection is performed using a 

fitness proportionate selection scheme. If the current fitness values were used 

instead, then individuals with better (lower) VPC values will have lower survival 

probabilities. In order to circumvent this undesired situation, individuals are assigned 

new fitness values which are inversely proportional to their original fitness values. 

These new fitness values will then be used to calculate survival probabilities. The 

pseudocode representation of the fitness evaluation process is given below: 

 

Calculate totalFitness:  the sum of all fitness values in the population. 

For every individual i calculate new fitness,  

newfiti = 1 – (fitnessi / totalFitness); 

Calculate totalNewFitness: the sum of all newfit in the population. 

For every individual i calculate survival probability,  

frequencyi =  newfiti / totalNewFitness; 

For every individual i calculate cumulative survival probability,  

cumulativei = ∑
=

i

j

jfrenquency
1

. 

 

     Once the new fitness values and cumulative survival probabilities are calculated, 

the selection process can begin. This process employs the roulette wheel selection 
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mechanism that creates a random number, r, between 0 and 1, and selects the 

chromosome, i, which satisfies the following condition: 

 

ii cumulativercumulative ≤<
−1       (14) 

 

     This selection process is repeated as many times as the size of the population. 

 

4.1.5 Crossover and Mutation 

 

     In this research, a slightly modified order crossover (OX) and inversion (INV) 

operators have been jointly used as crossover and mutation operators, respectively. 

The probability of crossover has been fixed at 0.8 while mutation probability starts 

with an initial value of 0.2 and varies according to the feedback coming from the 

algorithm. 

 

4.1.6 Adaptive Techniques 

 

     There are two adaptive techniques proposed in this research. The first technique is 

used to determine the number of elites to be transferred to the next generation. This 

procedure is used at the end of every generation and varying numbers of elites may 

be transferred depending on the quality of the offspring generation. The second 

technique is used to modify the probability of mutation depending on the progress 

results.  

 

     4.1.6.1 Adaptive Elitist Strategy 

 

     The sequences with better fitness values can be regarded as elite individuals. Such 

sequences are to be preserved for the next generation. In general, the number of elite 

individuals that will be transferred to the next generation is fixed before the run of 

the algorithm. However, this may result in inefficient elite transfers depending on the 

quality of the newly created generation. Therefore, we propose an adaptive strategy 

to determine the number of elites at every generation. According to this strategy, 
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assuming a population size of 50, all the parent individuals which have better fitness 

values than the 5
th

 best child individual are transferred to the next generation. 

Moreover, to circumvent some extreme situations such as mass transfers in a case of 

very poor offspring generation, a higher bound is set for the number of elites. This 

higher bound is half of the population size. This strategy results in varying numbers 

of elite transfers at every generation and it is directly dependent on the quality of the 

offspring. It ensures that good solutions do not disappear by chance during the 

genetic evolution. 

 

     4.1.6.2 Adaptive Mutation Probability 

 

     In the proposed adaptive approach, evaluation and adaptation are controlled by an 

AGA controller, which takes recent performance measures and GA control 

parameters as input, evaluates the progress of evolution, determines the next set of 

GA control parameters and returns the modified parameters as an output. These 

modified parameters are then used for the evolution of the next generation by various 

GA components. This process is illustrated in Figure 4.2.  

 

 

Figure 4.2  Performance evaluation and adaptation 

 

     The AGA controller has been developed using a similar approach described in 

Herrera & Lozano (2003) and it aims to adapt the mutation probability )( mp  during 

the run of the algorithm. Controller evaluates the algorithm performance in every G 

generations, and mp  is fixed over the generations in these time intervals. It takes into 

account the mp  value used during the last G generations and the improvement 

achieved on bf  (fitness value for the best element found so far). Then, it computes a 

new value for mp , which shall be used during the next G generations. To accomplish 

this task, a set of rules are defined and used by the controller. In Herrera & Lozano 
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(2003), the authors have employed a set of fuzzy rules; in other words, they fired 

multiple rules simultaneously for the same input. In this study, unlike theirs, we left 

out the fuzzy logic and fired one rule at a time.  

 

     In short, the goal of the AGA controller is to observe the effects of the value of 

mp  on performance of the GA during G generations, and produce a new value for 

mp  that properly replies against a possible poor rate of convergence, or allows the 

current performance to be improved even more in the case of past suitable progress.  

 

     4.1.6.2.1 Required Input. There are two categories of controller input as seen in 

Figure 4.2. These are performance measures (e.g., convergence of the objective 

function values) which are evaluated after every G generations and GA control 

parameters (e.g., crossover and mutation operators, probabilities, etc.) which have 

been modified G generations before. 

      

     Convergence (CM) is the measure of the progress made in best objective function 

values during a number of generations. For the single-objective problem, 

convergence measure can be calculated using the following equation: 

 

0
ffCM

b
=        (15) 

 

where b
f  is the objective function value of the current best element found so far and 

0
f  is the objective function value of the best element found before the last G 

generations. Since an elitist strategy is used, CM belongs to [0, 1]. If CM is high, 

then convergence is high, i.e. no progress is made during the last G generations, 

whereas if it is low, the GA finds a new best element, which outperforms the 

previous one.  

 

     The proposed algorithm uses a fuzzy concept in order to determine if a given CM 

value should be treated as low or high. This requires the use of a set of linguistic 

labels associated with membership functions. The set of linguistic labels for CM is 
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{Low, High}. The Low label corresponds to a CM with a value of 0.8 or lower, 

whereas the High label corresponds to a CM with a value of 0.95 or greater. If the 

CM value is in the (0.8, 0.95) range, then both labels are possible. In such a case, 

label is determined using a random number (r) as follows: 

 

CM label =












−

−
≤

otherwisehigh

CM
rlow

,
8.095.0

95.0
,

    (16) 

 

     Numerical representations of the linguistic CM labels are depicted in Figure 4.3a.  

 

     The mutation probability is used as the GA control parameter. Mutation helps to 

maintain the diversity in the population and it also helps to prevent the algorithm 

getting stuck in local optima. Thus, by adapting the mutation probability during the 

run, we hope to improve the algorithm performance. The set of linguistic labels 

associated with mutation probability is {Low, Medium, High}. Each of these labels 

corresponds to a triangular distribution as depicted in Figure 4.3b. For example, the 

low label corresponds to a triangular distribution with a lower limit of 0.10, a mode 

of 0.15 and an upper limit of 0.20. 

    

 

Figure 4.3  Meanings of the linguistic terms 
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     When combined with the above-mentioned CM performance measure, the current 

mutation probability (which is used for the last G generations) forms the necessary 

input for the next step – progress evaluation. 

 

     4.1.6.2.1 Progress Evaluation and Output. The goal of this step can be stated as 

observing the effects of several input types on the GA performance during the last G 

generations, and producing a new set of parameter values that properly replies 

against a poor performance in a specific measure, or allows performance to be 

improved even more. The proposed AGA controller attempts to accomplish this task 

using a set of rules, which describes the relation between the inputs and outputs. 

Table 4.1 shows the set of rules used by the proposed controller. 

 

Table 4.1 Rule base for the control of mp  

Rule CM mp  'mp  

1 High Low Medium 

2 High Medium High 

3 High High Low 

4 Low Low Low 

5 Low Medium Low 

6 Low High Medium 

 

     The rules presented in Table 4.1 are developed by using the following heuristics: 

 

� Heuristic 1. This heuristic involves decreasing the value of mp  when 

progress is made and increasing it when there are no improvements. If a 

stationary state is detected meaning that the CM is high, this could be due to 

very low value of mp  inducing a premature convergence, with the search 

process being trapped in a local optimum. Heuristic 1 deals with this problem 

by increasing the value of mp  so that more diversity is introduced with the 

possibility of escaping from the local optimum. It should be noted that the 

rules 1, 2, 4, 5 and 6 listed in Table 4.1 employ this heuristic. 

� Heuristic 2. This heuristic involves decreasing the value of mp  if there is still 

no progress while it is high. Another possible cause of a poor performance 
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may be the use of a too high value for mp , which does not allow the 

convergence towards better individuals. Heuristic 2 deals with this problem 

by decreasing the value of mp  value when both CM and mp  are high. It 

should be noted that the rule 3 listed in Table 4.1 employs this heuristic. 

 

     The progress evaluation can be summarized as follows: first the CM value is 

calculated, and then its linguistic label is determined as low or high. This information 

is matched with the current mp  label in Table 4.1 and the resulting 'mp  label is 

found. Finally, the new mutation probability is calculated according to the label of 

'mp . 

 

4.2 Computational Experiments and Analysis 

 

     To evaluate the performance of the proposed adaptive algorithm, we carried out 

experiments on both small and large sized problems.  Moreover, we compared the 

performance of the adaptive algorithm with the pure (non-adaptive) GA described in 

Ponnambalam et al. (2003). These two algorithms along with their main differences 

are listed in Table  4.2.  

 

Table 4.2 The algorithms compared 

  Standard Adaptive 

Algorithm 

definition 
[ | | | elit | ox, inv| | ] [ | | | elit | ox, inv| adprm | ] 

Mutation 

rate 
Fixed to 0.2 

Varies in the range of 

[0.10, 0.50] 

Number of 

elites 
10 

Varies in the range of 

[0, 25] 

 

4.2.1 Benchmark Problems 

 

     The experiments have been carried out using a set of 60 problems. The problems 

were generated so as to provide different sets of conditions in mixed-model assembly 
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line sequencing problems. The first factor considered is the number of models 

produced on the assembly line; three cases, i.e. 3-5 models, 6-8 models and 9-11 

models, are considered. The second factor considered is the MPS (minimum part 

set), which is to be repeated to satisfy the demand for a specified planning horizon. 

This factor is considered at three levels: (1) a random number between 10 and 20; (2) 

a random number between 20 and 30, and (3) a random number between 30 and 40, 

all chosen from a uniform distribution. The number of subassemblies, components 

and raw materials are chosen in the range of [3, 6]. Using these conditions, we have 

divided 60 problems into 6 problem sets, each containing 10 problems. These sets, 

accompanied by their average solution space, can be seen in Table 4.3. 

 

Table 4.3.  Problem sets 

 

 

     The data for the first four problem sets are taken from Ponnambalam et al. (2003) 

in which the generated problems were solved under the objective of minimizing the 

variation of part consumption rates. Moreover, to evaluate the performance of the 

proposed algorithm on large size problems, we generated the problem sets V and VI 

(see Table 4.3).  

 

     Using the classification schemes proposed in Chapter 3, we can define all these 

problems as follows: 

 

[ setup| | cpu| mlev
4
]. 

 

 

 

P. Set Average number of solutions 

I 1.6 * 10
7
 

II 3.4 * 10
9
 

III 8.2 * 10
12

 

IV 2.1 * 10
17

 

V 6.2 * 10
19

 

VI 1.0 * 10
30

 

Number of Models Total 
Demand [3, 5] [6, 8] [9, 11] 

[10, 20] I III  

[20, 30] II IV V* 

[30, 40]   VI* 

*additional problem sets 
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4.2.2 Parameter Setting 

 

     The algorithm is programmed in C, and implemented on a PC with a 2GHz CPU. 

The values of genetic parameters have been determined through preliminary 

experiments. For all problems, the population size has been set to 50. The initial rates 

for crossover and mutation are set to 0.8 and 0.2 respectively. While the crossover 

rate is fixed throughout the generations, the mutation rate varies in the range of 

[ ]500100 ., . . For the non-adaptive GA algorithm, the number of elites is set to 10. 

Adaptive controller is called once in every 5 generations and finally, for the 

termination of the algorithm, the maximum number of generations is set to 100.  

 

4.2.3 Analysis and Discussion of the Results 

 

     All of the instances in the problem sets were solved using both standard GA and 

adaptive GA algorithms. In order to get more reliable results, each algorithm has 

been run 10 times for each of the problem instances and the best and average 

performances for the solutions were recorded. The comparison of the performance of 

two approaches is based on both the best and also average values. 

 

     Tables 4.4-4.9 present the results of the computational experiments. For each of 

the 60 problems, the best and average VPC values are given for both standard and 

adaptive approaches. The percent of improvement achieved by using the adaptive 

approach is also given in each column. These improvement rates are calculated as 

follows: 

 

100×
−

std

adpstd

VPC

VPCVPC
      (17) 

 

where stdVPC  is the VPC value obtained by the standard approach and adpVPC  is the 

VPC value obtained by the adaptive approach. The last column of each table gives 

the average improvement rates achieved in that problem set. 
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Average

0,25%

1,10%

Average

6,05%

9,01%

10

34792,5

36465,6

34636,0

34853,6

0,45%

4,42%

20

19002,3

20653,1

17191,5

18237,0

9,53%

11,70%

9

8373,3

8968,1

8205,4

8443,8

2,01%

5,85%

19

29764,9

32242,9

26422,5

28823,3

11,23%

10,61%

8

37836,2

37866,5

37836,2

37926,9

0,00%

-0,16%

18

31176,8

34765,8

28194,8

30535,1

9,56%

12,17%

7

5109,2

5144,9

5109,2

5180,6

0,00%

-0,69%

17

29467,1

31072,2

28000,2

29185,7

4,98%

6,07%

6

101843,2

101892,3

101843,2

101843,2

0,00%

0,05%

16

56634,2

63943,2

56537,6

57890,0

0,17%

9,47%

5

2487,2

2487,2

2487,2

2488,4

0,00%

-0,05%

15

62746,9

65052,4

57690,0

59516,4

8,06%

8,51%

4

24696,8

24696,8

24696,8

24696,8

0,00%

0,00%

14

39713,6

43213,0

39713,6

41185,1

0,00%

4,69%

3

58144,6

58144,6

58144,6

58144,6

0,00%

0,00%

13

42618,9

45341,0

39390,4

40663,5

7,58%

10,32%

2

33274,2

33973,3

33274,2

33828,8

0,00%

0,43%

12

91294,0

99723,4

82684,4

86484,8

9,43%

13,28%

1

18789,9

19001,2

18789,9

18789,9

0,00%

1,11%

11

32499,5

34282,8

32499,5

33151,0

0,00%

3,30%

Standart

  Best

  Average

Adaptive

  Best

  Average

Improvement

  Best

  Average

Standart

  Best

  Average

Adaptive

  Best

  Average

Improvement

  Best

  Average

Table 4.4 Results for probems 1-10

Table 4.5 Results for probems 11-20
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Average

0,56%

3,32%

Average

7,44%

10,45%

30

26640,8

30997,1

27845,2

29183,2

-4,52%

5,85%

40

56268,8

63269,9

52395,0

56277,3

6,88%

11,05%

29

16974,8

18299,2

15974,6

17107,9

5,89%

6,51%

39

129720,7

139835,6

117859,1

124338,8

9,14%

11,08%

28

16552,1

16853,8

16552,1

16884,1

0,00%

-0,18%

38

59891,9

65672,9

55955,4

60209,4

6,57%

8,32%

27

15525,9

15744,2

15525,9

15825,7

0,00%

-0,52%

37

214156,3

239456,3

196741,7

209887,2

8,13%

12,35%

26

53684,7

55557,7

53684,7

54590,5

0,00%

1,74%

36

70552,3

79327,1

66140,6

71000,2

6,25%

10,50%

25

53684,7

55557,7

53684,7

54590,5

0,00%

1,74%

35

37264,8

40789,7

34099,3

35722,9

8,49%

12,42%

24

29338,0

30268,4

29338,0

29510,3

0,00%

2,50%

34

62113,0

69197,2

55564,6

60329,8

10,54%

12,81%

23

35495,6

36911,9

35281,3

36216,3

0,60%

1,88%

33

166179,1

180529,7

141574,9

155697,6

14,81%

13,76%

22

82285,2

86320,1

79305,3

82268,3

3,62%

4,69%

32

6922,8

7352,1

6898,4

7117,0

0,35%

3,20%

21

25532,5

28938,1

25532,5

26349,0

0,00%

8,95%

31

33799,1

38276,9

32701,2

34843,3

3,25%

8,97%

Standart

  Best

  Average

Adaptive

  Best

  Average

Improvement

  Best

  Average

Standart

  Best

  Average

Adaptive

  Best

  Average

Improvement

  Best

  Average

Table 4.7 Results for probems 31-40

Table 4.6 Results for probems 21-30
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Average

9,15%

9,60%

Average

11,61%

14,54%

50

188876,5

202115,8

168351,6

181134,9

10,87%

10,38%

60

387611,8

428665,8

322383,4

357715,7

16,83%

16,55%

49

20699,0

22257,7

17817,5

20000,8

13,92%

10,14%

59

108777,5

122648,4

100112,9

105830,8

7,97%

13,71%

48

351627,2

412425,9

307616,4

351429,4

12,52%

14,79%

58

93924,6

105789,1

87983,5

94587,9

6,33%

10,59%

47

421073,7

431897,9

391315,6

407504,7

7,07%

5,65%

57

445576,1

515615,7

365076,0

411040,0

18,07%

20,28%

46

662774,9

749974,8

635944,6

682996,6

4,05%

8,93%

56

879397,2

988347,2

782415,1

855853,2

11,03%

13,41%

45

656388,7

713458,9

544539,5

591872,2

17,04%

17,04%

55

145626,2

172189,6

135832,0

145739,6

6,73%

15,36%

44

579839,1

627423,4

548879,9

606382,8

5,34%

3,35%

54

2837580,1

3088061,7

2250754,1

2557965,8

20,68%

17,17%

43

174574,5

187735,9

165702,0

175620,9

5,08%

6,45%

53

129361,0

149703,9

123938,3

134109,2

4,19%

10,42%

42

233520,0

254572,8

210208,0

222725,3

9,98%

12,51%

52

407110,9

417454,6

344151,6

373339,1

15,46%

10,57%

41

396689,5

427642,1

374312,9

398617,3

5,64%

6,79%

51

348494,0

415278,3

317629,2

343039,8

8,86%

17,40%

Standart

  Best

  Average

Adaptive

  Best

  Average

Improvement

  Best

  Average

Standart

  Best

  Average

Adaptive

  Best

  Average

Improvement

  Best

  Average

Table 4.8 Results for probems 41-50

Table 4.9 Results for probems 51-60
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     It can be seen from these tables that except for one problem instance (i.e., 

problem 30
th

), the adaptive approach provided the best VPC values. However, 

considering the general improvement of adaptive algorithm over standard algorithm 

for this problem instance (see Table 4.6, average improvement of 5.85%), this result 

can be interpreted as coincidental. 

 

     In the terms of average values, out of 60 problems, adaptive approach provided 

the best results in 55 problems. Although the standard approach was the one with 

better results in the other five problem instances (i.e., 5, 7, 8, 27 and 28), the 

difference was always under 1%. This can be attributed to the fact that all of these 5 

problems belong to the first two problem sets whose possible solution spaces are 

rather small compared to the other four sets. It should also be noted that for these 5 

problems, both the standard and adaptive approaches were able to reach the same 

best VPC values in several replications. 

 

     In order to derive a general perspective, all results in Tables 4.4-4.9 are 

summarized in Figure 4.4. This figure provides the average improvement values 

achieved by the implementation of adaptive techniques for each problem set. The 

improvements on best and average values are gathered from the last column of each 

table.  

 

     The figure shows that the contribution of the adaptive techniques grows as the 

problem size gets larger. In the first two problem sets that contain rather small-sized 

problems, usually both approaches reach to the same VPC values. However, the gap 

between the standard and adaptive approach widens as the problems become 

complex. Especially in the sixth problem set, the improvement rates may reach up to 

20%.  

 

     Regarding to these findings, it could be stated that the adaptive parameter control 

approaches that alter the values of GA parameters depending on the feedback taken 

from the algorithm during the course of the run, has the potential to improve the 

performance of the pure GA approaches. Particularly, for large-sized problems, 
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adaptive methods have an unneglectable impact on the performance of the solution 

method.  

 

Improvement achieved by the adaptive approach
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Figure 4.4  Improvement by problem set 
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CHAPTER FIVE 

ADAPTIVE GA BASED APPROACH FOR SOLVING MULTI-OBJECTIVE 

MIXED MODEL ASSEMBLY LINE SEQUENCING PROBLEM 

 

     In this chapter, an adaptive GA based approach is introduced to solve multi-

objective MMALSP. The proposed approach combines the features of the multi-

objective GAs (MOGAs) and adaptive GAs (AGAs) in order to provide alternative 

solutions for the decision makers. An adaptive elitist strategy and a scheme for 

changing the probability of mutation have been developed for this purpose. 

 

     In order to evaluate the performance of the proposed adaptive GA algorithm, 

several experiments are carried out. Moreover, the results of the AGA are compared 

to the results of a standard (non-adaptive) MOGA that was proposed in 

Ponnambalam et al. (2003). The experiments also incorporate two initial population 

heuristics to observe the effects of employing different initialization schemes on the 

performance of the proposed algorithm. 

 

     The rest of this chapter is organized as follows: In section 5.1, the proposed 

adaptive based approach is discussed in detail and in section 5.2, the results of 

comparative experiments carried out on a set of benchmark problems are presented.  

 

5.1 Specifications of the Adaptive MOGA Based Approach 

 

     This section discusses in detail how the two algorithms, adaptive GA and multi-

objective GA were combined to solve MMALSP. The general structure of the 

proposed approach is given in Figure 5.1. 

 

     As it is seen in Figure 5.1, there are three major components in the proposed 

algorithm. The main component, the GA, incorporates the multi-objective GA 

(MOGA) which ranks the individuals and adaptive GA (AGA) which modifies the 

values of the GA parameters. 
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 Figure 5.1  General structure of the proposed multi-objective adaptive GA 

 

A pseudocode representation of the proposed algorithm is given below: 

 

(main) Read GA parameters and options. 

(mainloop) Read problem data. 

(initialize) Create and return an initial population. 

(evaluate) Calculate and return objective function values for all 

individuals 

(constructCubicle) Calculate niche-size, density and pareto 

stratums for the current population, assign ranks and survival 

probabilities according to these values (those with higher 

pareto stratum and lower density values are assigned higher 

ranks). 

(mainloop) Start generations loop (loop for a pre-determined number 

of generations) 
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(mainloop) Modify GA parameters if necessary (crossover and/or 

mutation operators, crossover and/or mutation probabilities, number 

of elites to be transfered, etc.) 

(evolve) Choose parents, choose appropriate GA operators, 

apply crossover and mutation, return a candidate population. 

(evaluate) Calculate and return objective function values for all 

individuals of the candidate population. 

(constructCubicle) Calculate niche-size, density and pareto 

stratums for the candidate population, assign ranks and 

survival probabilities according to these values. 

(domCompare) Compare the individuals of previous and 

candidate populations, mark those which are dominated by an 

individual from the other population. 

(eliteMulti) If adaptive elite system is enabled, transfer all the 

unmarked (by the domCompare function in the previous step) 

individuals of the previous generation into newly created 

generation. If it is disabled, transfer a pre-specified number of 

individuals from the previous generation into the new 

generation (here, the selection depends on ranks of the 

individuals, which were assigned by the previous 

constructCubicle function call).  

(eliteMulti) After elite transfers are completed, populate the 

remaining quota with the individuals of the candidate 

population, giving priority to individuals with higher ranks. 

(constructCubicle) Calculate niche-size, density and pareto 

stratums for the new generation, assign ranks and survival 

probabilities according to these values. 

(mainloop) End generations loop if pre-determined number of 

generations is reached. 

(mainloop) Display and print the best sequences found. 

(main) End program. 
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     The expression before each step in the pseudocode refers to the program module 

which is responsible from that operation. A chart presenting the code structure 

(program modules) of the proposed algorithm is given in Appendix 2. 

 

     The details regarding the specifications of the proposed multi-objective adaptive 

GA based approach, such as chromosome representation, genetic operators, selection 

schemes and ranking are explained in the following sections.  

 

5.1.1 Genetic Representation and Initial Population 

 

     Genetic representation of feasible solutions is the same as in the previous chapter. 

However, the creation of initial population introduces two new heuristics in addition 

to the totally random creation. As a result, some of the individuals in the initial 

population are generated using two different heuristics, and the rest are randomly 

generated.  

 

     The overall initialization process can be summarized as follows: 

 

Generate and inject palindromic sequences (IPH-1) 

Eg. (3A, 2B, 2C)� ABCACBA and ABCABCA 

Create an alphabetically ordered sequence according to the given demand 

for each model  

Eg. (3A, 2B, 2C)� AAABBCC 

 Inject the alphabetically ordered and reverse-ordered sequences (IPH-2) 

Eg. (3A, 2B, 2C)� AAABBCC and CCBBAAA 

For n=1 to (Population Size – (2 + 2)) 

Create a random number associated to every bit in the chromosome  

Eg. AAABBCC�5724369 

Obtain a shuffled sequence by sorting the random numbers in 

ascending order 

Eg. 2345679�ABBACAC 

  Inject the shuffled sequence 
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Next n 

     The heuristics used in the initialization process are explained in the following 

sections. 

 

     5.1.1.1 Initial Population Heuristic – 1 (IPH-1)  

 

     During the pilot studies, it has been noticed that the optimal sequences for some 

of the smaller sized problems (when variation in part consumption rates were to be 

minimized) were palindromic sequences. In the context of this research, a 

palindrome is a sequence of models that has the property of resulting in the same 

sequence regardless of starting the reading either in forward or backward direction; 

for instance ABCACACBA is a palindromic sequence. Based on this finding, in this 

study we used the heuristic IPH-1 to inject some palindromic sequences into the 

initial population hoping that this will help to start the search from a better point. 

 

     The procedure to generate the palindromic sequences is given below: 

 

i. For each product i of type m , compute the following position value, mipv , 

 

1

1

+
=
∑

=

m

M

m

m

mi
d

di

pv ,  i = 1,2,…, dm ; m = 1,2,…,M.    (18) 

 

where dm is the demand of model m and M is the number of different models.  

ii. Sort the products according to their position value ( mipv ) in ascending order. 

 

     Eq. 18 allows calculating mipv  values that are used to evenly distribute the 

products of a specific model, in the production sequence. Later, when the products 

are sorted in the second step, a palindromic sequence is obtained. During the sorting 

process, there may be situations where two or more products share the same position 

value. In such cases, ties are broken using two alternative methods each resulting in 

different production sequences: (i) the tied products are always sorted in alphabetical 
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order, (ii) the tied products in the first half of the production sequence are sorted 

alphabetically whereas the ones in the second half are sorted in reverse-alphabetical 

order. Although the symmetry in the second method provides the palindromic 

sequences that are searched for, in some cases, the first method provides sequences 

with better VPC results. Therefore, both sequences are injected into the initial 

population to ensure the better individual gets included. The following example 

demonstrates this procedure. 

 

     Example. Suppose that during a cycle four types of products, A, B, C and D are 

required to be produced in quantities of  3, 4, 3 and 2, respectively. Using Eq. 18, the 

position values are calculated as follows: 
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    When the position values are sorted in ascending order, the following graphic can 

be obtained. 

 

 

Figure 5.2.  Products sorted according to pvmi 

 

     As it can be seen from Figure 5.2, the distribution of models is symmetric with 

respect to 6. However, products of type A and C share the same position values, 
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{3,6,9}. When the tie-breaker methods are applied, the following two sequences are 

obtained. 

 

          Figure 5.3 Sequences obtained by using IPH-1 

 

     Using Eq.2, the VPC values of these two sequences are calculated as 3188.56 and 

2509.75, respectively. The implementation of GA to this problem results in a 

solution with VPC value of 2487.15 which is very close to the one obtained from the 

second sequence of IPH-1 (2509.75). 

 

     5.1.1.2 Initial Population Heuristic – II (IPH-2)  

 

     The second heuristic is used to inject two sequences into the initial population. 

These sequences are alphabetically ordered and alphabetically reverse-ordered 

sequences of the models to be produced. In doing so, it was hoped that the setup cost 

would be reduced as the injected sequences contained the minimum number of 

model changes. 

 

5.1.2 Objective Functions  

 

     To evaluate the fitness of each individual, the following three objective functions 

are employed: (i) total utility work (Eq. 1), (ii) variation of parts consumption rates 

(Eq. 2) and (iii) total setup costs (Eq. 3). Given a feasible sequence, the fitness of 

individual is evaluated using these three functions. 
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5.1.3 Ranking and Selection  

 

     Before proceeding to selection, each individual must be given a selection 

probability. For this purpose, there are several approaches proposed in the literature, 

which are mentioned in Section 2.2.2.4. In this study, the pareto stratum – niche 

cubicle (PS-NC) approach, which is proposed by Hyun et. al (1998), is used to 

determine the selection probability for each individual. This method is a combination 

of pareto ranking and fitness sharing schemes. The pareto ranking scheme focuses on 

improving the solution quality, hence it emphasizes the exploitation issue. The 

fitness of each string is determined by a non-dominated sorting procedure. This, 

however, has no real control over the solution diversity. Unlike Pareto ranking 

scheme, the fitness sharing scheme – niche-cubicle – emphasizes the exploration 

issue. This strategy introduces a niching concept which can improve the diversity of 

solutions in a population, however, it has limitations in finding good solutions. 

Therefore, these two methods are combined to round off the weakness of each other, 

and to attempt to simultaneously meet the two issues of exploration and exploitation.  

 

     This approach integrating two schemes, associates every individual with a rank 

which is determined by the sparseness of individuals and Pareto optimality. In the 

following paragraphs, the concepts of niche cubicle and Pareto strata are explained 

and then the overall selection procedure is given. 

 

     Niche-Cubicles. Niche cubicles are first constructed for every individual of a 

generation. A niche cubicle is a rectangular region whose center is the individual. 

The size of the niche cubicle is computed using Eq.19. Suppose a problem is solved 

under n  objectives. Let ltMAX  and ltMIN  be the maximum and the minimum of the 

lth objective function at generation t , respectively. Then, ltσ , the niche size for the 

lth objective is computed as follows: 

 

nl
sizepop

MINMAX

n

ltlt

lt ,...,2,1,
.

=
−

=   σ      (19) 

 



105 

where pop.size is the size of the population. The niche size is calculated at every 

generation. Figure 5.4 illustrates the construction of niche cubicles when n = 2 and 

pop.size = 25. Two niche cubicles are shown for arbitrarily chosen individuals, p1 

and p2. Since the size of every niche cubicle is same, the solution density of a niche 

cubicle can be simply measured by the number of individuals included in the cubicle. 

A solution located in a less dense cubicle is allowed to have a higher probability to 

survive in the next generation. For example, since the niche cubicle created for p1 is 

less dense than that for p2, p1 will have higher survival probability than p2 if both of 

these individuals are included in the same Pareto stratum, which is described below. 

 

 

  Figure 5.4.  Niche cubicles 

 

     Pareto Strata. Next, Pareto strata are identified. Given a population of solutions, 

some of them are non-dominated solutions. Such solutions form a Pareto stratum as 

illustrated in Figure 5.5, where two objectives, f1 and f2, are minimized 

simultaneously. Removing the stratum from the population uncovers the next Pareto 

stratum. This can be repeated until all the solutions are used up. A solution which is 

contained in a stratum found earlier, is allowed to have a higher probability to 

survive in the next generation. 
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Figure 5.5.  Pareto strata 

 

     The overall selection procedure combining the Pareto stratum and the niche 

cubicle is provided below. P(t) = {p1, p2,…, ppop.size} denotes the current population 

and pv is the individual whose rank is v.  

 

Step (0)  v = 0; u = 1 and Pu = P(t) 

Step (1)  For each individual in P(t); construct its niche cubicle and calculate 

the solution density of this cubicle. 

Step (2)  Find the uth Pareto stratum, PSu = {(pi, bi) | pi is a non-dominated 

solution to Pu, bi is the solution density of the niche cubicle associated 

with pi }. 

Step (3)  Sort the individuals of PSu in the increasing order of bi’s, and assign 

the rank (v + s) to the sth individual, for s = 1, 2,…, | PSu |. 

Step (4)  v = v + | PSu |; u = u + 1 and Pu = Pu - 1 - PSu – 1. If  Pu = Ø, go to 

step 3.2; otherwise, go to step 3.5. 

Step (5)  For each individual, determine the probability of survival using a 

rank-based selection scheme wherein the following geometric 

distribution is used. 
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Prob sizepopvqqp
v

v .,...,3,2,1,)1(][ 1 =−= −     (20) 

 

where q is the selection parameter (0 < q < 1). 

Step (6)  For each individual vp , calculate the cumulative probability of 

survival, CProb ][ vp , using Eq. 21. 

 

CProb ][][
1

i

v

i

v pp ∑
=

= Prob       (21) 

 

     For each parent selection process, using the roulette wheel selection mechanism a 

random number between 0 and 1, r, is generated and the individual vp , which 

satisfies the following condition, is selected as a parent: 

 

CProb ][ 1−vp  < r ≤  CProb ][ vp      (22) 

 

     This selection process is repeated as many times as the size of the population. In 

this selection, the primary concern is given to Pareto optimality. Individuals 

dominated by an individual p can never be more highly ranked than p. Solution 

density is considered secondarily for individuals in the same Pareto stratum. This 

contributes to maintaining a distribution of diverse solutions in a population. 

 

5.1.4 Crossover and Mutation 

 

     The crossover and mutation operators that are used in the solution of multi-

objective MMALSP are the same as the ones used for the single-objective GA 

presented in Chapter 4, namely order crossover (OX) and inversion (INV) operators. 

While the probability of crossover has been fixed at 0.8 during the whole run, 

mutation probability starts with an initial value of 0.2 and varies periodically 

according to the feedback coming from the algorithm. This variation process is 

handled by the AGA controller which will be explained later. 
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5.1.5 Comparison of Domination and Elitist Strategy  

 

     To determine which individuals from the previous generation will survive to the 

next generation, we propose an adaptive elitist strategy. The number of elites to be 

selected is determined after a domination check between the two populations. Both 

the parent and offspring populations are subject to a cross-population check, where 

non-dominated individuals of the parent population are identified. These elite 

individuals are then transferred directly to the new generation. The remaining 

population quota is completed with the offspring individuals, starting from the one 

with the highest rank.  

 

5.1.6 Performance Evaluation and Adaptation 

 

     This is where the adaptive GA features come into play. Evaluation and adaptation 

are controlled by a multi-objective AGA controller, which is a slightly modified 

version of the single-objective one presented previously in Chapter 4.  

 

     As it was the case in the single objective AGA controller, the multi-objective 

AGA controller uses the convergence measure to evaluate the progress made in best 

objective function values during a number of generations. Since there are three 

separate objective functions in this multi-objective environment, an overall 

convergence measure is calculated using the following equation: 

 

 )∏
=

=
3

1

0(
i

i

b

i ffCM       (23) 

 

where b

if  is the i-th objective function value of the current best element (for the i-th 

objective function) found so far and 0

if  is the i-th objective function value of the 

best element found before the last G generations. Once again, the use of an elitist 

strategy limits CM to the range of [0, 1].  
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     The set of linguistic labels for CM is {Low, High}. However, as the overall CM is 

calculated by multiplication of three CM values, the same level of progress may 

result in a lower CM value in a multi-objective environment than a single objective 

one. In order to circumvent this effect, the values of linguistic labels are toned down. 

The Low label now corresponds to a CM with a value of 0.7 or lower, whereas the 

High label still corresponds to a CM with a value of 0.95 or greater. If the CM value 

is in the (0.7, 0.95) range, then both labels are possible. In such a case, label is 

determined using a random number (r) as follows: 

 

CM  label =












−

−
≤

otherwisehigh

CM
rlow

,
7.095.0

95.0
,

    (24) 

 

     Numerical representations of the linguistic CM labels are depicted in Figure 5.7a.  

 

 

Figure 5.7  Meanings of the linguistic terms 

 

     The mutation probability is still used as the GA control parameter. The set of 

linguistic labels associated with mutation probability is {Low, Medium, High}. Each 

of these labels corresponds to a triangular distribution as depicted in Figure 5.7b.  

    

     The proposed multi-objective AGA controller uses the same set of rules to 

evaluate the progress and determine the new value for the probability of mutation 

(see Table 4.1).  
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5.1.7 Termination Check 

 

     Once the maximum number of generations is reached, the algorithm terminates 

and displays the individuals that are in the first Pareto stratum of the latest 

population. These solutions are the decision alternatives for the problem at hand. If 

check fails, the algorithm proceeds to the next generation. 

 

5.2 Computational Experiments and Analysis 

 

     In this section, we describe the method for evaluating the performance of the GA 

based solution approach proposed in section 5.1. First, the test problems and the 

algorithms compared are presented in Section 5.2.1, then the GA parameters are 

given in Section 5.2.2 and performance measures are introduced in Section 5.2.3. 

Finally, the test results and the insights gained through these experimental studies are 

given in Section 5.2.4.  

 

5.2.1 Problem Sets and the Algorithms Compared 

 

     In order to investigate the effectiveness of the proposed GA approach in solving 

the multi-objective MMAL sequencing problem, various experimental studies have 

been carried out using the same set of 60 problems given in the previous chapter (see 

Table 4.3).   

  

     The data for the first four problem sets are taken from Ponnambalam et al. (2003) 

in which the generated problems were solved under the objective of minimizing the 

variation of part consumption rates. In this study, in addition to minimizing the 

variation of part consumption rates, we considered two other objective functions, 

which are namely minimizing the total setup cost and minimizing the total utility 

work. These objective functions take into consideration sequence dependent setup 

costs, model assembly times and workstation lengths. It should be noted that in order 

to create a comparable problem set, we added all these features to all six problem 

sets given in Table 4.3.  
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     Using the classification schemes proposed in Chapter 3, we can define all these 

problems as follows: 

[ setup| | wo, cpu, setup
c
| mlev

4
]. 

 

     The characteristics and the search capability of the proposed adaptive algorithm 

are compared to those of the standard PS-NC genetic algorithm, which is similar to 

the one proposed in Ponnambalam et al. (2003). Moreover, to distinguish between 

the effects of using heuristics to create initial population and using adaptive 

algorithm, several variations of the standard and adaptive algorithms have been 

created. These algorithms along with their main differences are listed in Table 5.1. 

Each algorithm has been run 10 times for each problem to get reliable results. 

 

5.2.2 Parameter Setting 

 

     The values of genetic parameters have been determined through preliminary 

experiments. For all problems, the population size has been set to 100. The initial 

rates for crossover and mutation are set to 0.8 and 0.2 respectively. While the 

crossover rate is fixed throughout the generations, the mutation rate varies in the 

range of [ ]300100 ., . . For the non-adaptive GA algorithm, the number of elites is set 

to 20. The selection parameter, q, is fixed to popsize/3  (see Eq. 20), adaptive 

controller is called once in every 10 generations and finally, for the termination of 

the algorithm, the maximum number of generations is set to 250. 

 

5.2.3 Performance Measures 

 

     This section explains the performance metrics employed to compare the strengths 

and weaknesses of standard and adaptive genetic algorithm approaches. These 

performance metrics examine the fraction of first pareto stratum individuals in a 

population, the non-dominated individuals in the Pareto front, the ratio of non-

dominated individuals as well as the convergence performance for each objective 

function. In the data collection process, all these metrics are averaged on the number 

of replications made. 



1
1
2
 

 

Number of 
Elites 

20 

Varies 

Mutation 
Rate 

Fixed to 0.2 

Varies in the 
range of 

[0.10, 0.30] 

Initial Population 
Heuristics 

Random 

Random + IPH1 + 
IPH2 

Random + IPH1 

Random + IPH2 

Random 

Random + IPH1 + 
IPH2 

Random + IPH1 

Random + IPH2 

Definition 

[ | multi, pr, fsh| | rank, elit | ox, inv| | ] 

[ | multi, pr, fsh| hrstc | rank, elit | ox, inv| | ] 

[ | multi, pr, fsh| | rank, elit | ox, inv| adprm| ] 

[ | multi, pr, fsh| hrstc | rank, elit | ox, inv| adprm| ] 

Table 5.1 Algorithms  Compared 

Algorithm 

   Std 

   Std + Both* 

   Std + IPH1 

   Std + IPH2 

   Adp 

   Adp + Both* 

   Adp + IPH1 

   Adp + IPH2 

*Includes both of the two initial population heuristics, IPH-1 and IPH-2. 
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     5.2.3.1 Number of 1
st
 Pareto Stratum Individuals (NPS1) 

 

     This performance metric simply shows the number of individuals in the first 

Pareto stratum of the population. A higher number means more alternatives are 

available for decision makers. 

 

     5.2.3.2 Number of Non-dominated Individuals (NNI) 

 

     When a population is compared to another, some of its first Pareto stratum 

individuals might be dominated by those of the other population. The number of the 

remaining non-dominated individuals is denoted by NNI. The higher the value of 

NNI, the better the solution quality, and hence the better the algorithm performance 

is.  

 

     5.2.3.3 Ratio of Non-dominated Individuals (RNI) 

 

     The first two measures, NPS1 and NNI, are absolute values which may possibly 

lead to misjudgments about the performance of the algorithm. Hence we define a 

relative measure, RNI, which is the ratio of number of non-dominated individuals 

(NNI) to number of first Pareto stratum individuals (NPS1): 

 

1NPS

NNI
RNI =          (25) 

 

     Once again, the higher the value of RNI, the better the solution quality, and hence 

the better the performance of the algorithm is. 

 

     5.2.3.4 Convergence 

 

     Convergence pertains to the speed at which the algorithm approaches to the 

optimal or near-optimal solution. Since we use a multi-objective approach, 
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convergence values are calculated for each objective function separately. For the 

sake of simplification, actual values are normalized using the following equation: 

 

250,...2,1,
minmax

min
=

−

−
=′ g

BB

Bb
b

g

g          (26) 

 

where gb′  is the normalized best value obtained in generation g, gb  is the actual best 

value obtained in generation g, minB  is the minimum best value and maxB is the 

maximum best value obtained during the whole experiments. It follows from Eq. 26 

that gb′  is in the range of [0, 1], i.e. 10 ≤′≤ gb . For each objective function, gb  

values are calculated for the last generation to compare the convergence performance 

of algorithms. 

 

5.2.4 Experimental Results 

 

     In this section, the results of the experiments are presented and analyzed in terms 

of previously declared performance measures. The performance of the algorithms is 

compared for each of the six problem sets. The results are presented as averages of 

10 problems in each problem set. 

 

     Figures 5.1 to 5.3 depict the number of first pareto stratum individuals (NPS1), 

non-dominated individuals (NNI) and the ratio of non-dominated individuals (RNI), 

respectively. In each figure, it is possible to see the performance of each algorithm 

for every problem set.  

 

     Based on Figure 5.1, we can state that all of the algorithms tend to provide more 

alternative solutions as the problem size expands. Moreover, all of the adaptive 

algorithms provide larger number of solutions than the standard algorithms. Another 

finding is that, the heuristics do not seem to improve the performance of the 

algorithms except for the standard ones with IPH2 heuristics (Std+Both and 

Std+IPH2) in problem set 6. 
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     Figure 5.2 shows the average number of non-dominated individuals for each 

problem set. It is obvious from this figure that the adaptive algorithms outperform all 

the standard algorithms. The number of non-dominated individuals provided by the 

adaptive algorithms starts from 55 and tends to increase as the problem size expands, 

whereas the performance of the standard algorithms seems to be stabilized around 

20. The heuristics do not seem to affect the performance of none of the algorithms.  

 

     In Figure 5.3, the ratio of non-dominated individuals can be seen for each 

problem set. For the standard algorithms, the number of non-dominated individuals 

does not change while the total number of alternative solutions increases (see Figure 

5.1 and Figure 5.2). Thus, the ratio of non-dominated solutions decreases as the 

problem size expands. Unlike standard algorithms, for the adaptive algorithms, both 

the number of non-dominated individuals and the total number of alternative 

solutions increase (see Figure 5.1 and Figure 5.2). This results in a relatively stagnant 

ratio of non-dominated solutions throughout all the problem sets.  

 

     Figure 5.3 also shows that employing IPH2 heuristic (in Std+Both, Std+IPH2, 

Adp+Both and Adp+IPH2) usually causes the algorithms to have lower RNI values. 

This effect is more significant for standard algorithms. 

 

    In summary, from the inspection of Figures 5.1 to 5.3, it can be stated that the 

initial population heuristics, IPH1 and IPH2, do not have any significant effect on the 

domination performance of algorithms. It can also be stated that adaptive algorithms 

provide higher number of alternatives in all cases and unlike the standard ones, their 

RNI performance do not decrease as the problem size expands. 

 

     Figures 5.4 to 5.6 show the relations between the three objective functions. The 

graphic data has been taken from the first pareto stratum of a randomly selected 

replication for problem 60
th

. These individuals are then plotted in three diagrams 

showing the relations between VPC and SC, VPC and UW, and finally SC and UW 

values. From inspection of these figures, it’s clear that while VPC and SC objectives 

conflict with each other, UW objective function does not interfere with the other two. 
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  Figure 5.1 Number of alternative solutions 
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NNI by Problem Set
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  Figure 5.2 Number of non-dominated solutions 
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RNI by Problem Set
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  Figure 5.3 Ratio of non-dominated solutions 
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VPC vs. SC
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Figure 5.4 VPC – SC relation 
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Figure 5.5 VPC – UW relation 
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Figure 5.6 SC – UW relation 
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     Moreover, we compared the performance of standard and adaptive algorithms 

with respect to their convergence rate (see Figures 5.7 and 5.8). In both of the 

figures, the deviation from the best value given in y-axis is obtained by using Eq. 26 

based on the last generation of each run. These values are then plotted for all of the 

six problem sets. It should be noted that in these sets of comparative studies, the third 

objective function minimizing utility work is ignored since it does not interfere with 

the other two and generally it converges to a best value very quickly (see Figures 5.4 

to 5.6).  
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  Figure 5.7 VPC convergence performance 

 

     Figure 5.7 shows that, the results of the adaptive algorithms usually stay in the 5% 

vicinity of the best VPC values. However, standard algorithms start with a 5% 

vicinity and their performance worsens as the problem size expands. It can be also 

seen that employing the IPH2 heuristic affects the performance of VPC negatively 

for both the standard and adaptive algorithms. Unlike IPH2 heuristic, the IPH1 

heuristic, which is employed to have better initial populations for VPC optimization, 

does not seem to make any improvement on final VPC values. Another finding 
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during these experimental studies was that for some small sized problems, the IPH1 

heuristic provided the best values during the generation of initial population, actually 

before the start of the genetic search. 
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  Figure 5.8 SC convergence performance 

 

     In Figure 5.8, it can be seen that the adaptive algorithms outperform the standard 

algorithms. Also, the algorithms which employ the IPH2 heuristics provide better SC 

values. Although the standard algorithms which employ IPH2 heuristic (Std+Both, 

Std+IPH2) provide better SC values than the adaptive algorithms that do not employ 

it (Adp and Adp+IPH1), they are outperformed by their adaptive counterparts, 

Adp+Both and Adp+IPH2. An interesting outcome of this analysis is that the 

algorithms which employ only IPH1 heuristic usually provide worse results than the 

algorithms without any heuristics, whereas IPH1 heuristic improves the results when 

employed together with the IPH2 heuristic. Figure 5.8 also shows that the 

performance of the standard algorithms tends to decrease as the problem size 

expands.  
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     To sum up, the experimental results show that for every problem set, adaptive 

algorithm provides larger number of alternative solutions than the standard PS-NC 

algorithm. This makes it clear that the standard approach is less effective in 

exploration of the solution space. Besides the quantity of the solutions, it is also 

shown that the solution quality of the adaptive approach is much better when 

compared to the standard algorithm. This fact is reflected in both the number and 

ratio of non-dominated individuals (see Figure 5.2 and Figure 5.3). Lastly, the 

adaptive algorithm converges to better results which means it is much more effective 

in exploitation of the solution space. 
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CHAPTER SIX 

CONCLUSIONS 

 

     A mixed-model assembly line is a type of a production line which is capable of 

producing a variety of different product models simultaneously and continuously. 

Such an assembly line is widely used in the manufacturing industry to achieve 

increased flexibility for product diversification. 

 

    The design and planning of mixed-model assembly lines involve several long- and 

short-term problems. Among these problems, determining the sequence of products 

to be produced has received considerable attention from the researchers. This 

problem is known as the Mixed-Model Assembly Line Sequencing Problem. 

 

     MMALSP appears when variations of the same basic product are produced on the 

same production line. These variations imply that the processing times on the 

individual stations and part requirements may differ, depending on the model to be 

processed. Therefore the production sequences need to be determined such that they 

do not cause work overloads or idle times and they allow maintaining a smooth rate 

of production and/or part consumption. 

 

     In MMALS literature, several objectives have been proposed to judge the 

efficiency of different production sequences. Particularly, for JIT systems, continual 

and stable part supply is an important requirement. Since this requirement can be 

realized when the demand rate of parts is constant over time, minimizing the 

variations in part consumption rates is an important objective to be considered. 

Among other objectives, the minimization of work overload and sequence-dependent 

setups have also attracted researchers’ attention in the past years. 

 

     In the case of an objective that is more important than the others, MMALSP can 

be solved as a single-objective problem. However, as far as real world applications 

are concerned, there are usually more than one objective that need to be considered 

simultaneously. In such a case, MMALSP becomes a multi-objective problem.  
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     In this study, we aimed at addressing the mixed-model assembly line sequencing 

problem, where there are multiple conflicting objectives. It is known that these type 

of sequencing problems fall into NP-hard class of combinatorial optimization 

problems. Among the proposed solution approaches in the literature, genetic 

algorithms have been shown to be quite successful in dealing with many 

manufacturing optimization problems. A genetic algorithm is a highly simplified 

computational model of biological evolution that can provide desirable solutions to 

challenging problems of a combinatorial nature, within a reasonable amount of CPU 

time. Hence we proposed a genetic algorithm approach to solve the multi-objective 

mixed-model assembly line sequencing problem. 

 

     In this context, after an extensive survey of literature on GAs developed to solve 

MMALS problem, we presented a classification scheme for MMALS problem and 

GA approaches adopted to deal with this problem. Later, the experiments have been 

started with the simplest form of MMALSP, i.e., the single objective problem. This 

part of the study aimed at developing adaptive techniques to improve the 

performance of the standard GA in solving single objective MMALSP. To evaluate 

the performance of the adaptive approach, a number of comparative experiments 

have been carried out. As a result it was observed that, the adaptive GA based 

approach outperformed the standard GA which did not implement any of the 

parameter control techniques. It was also noted that, the improvements achieved by 

the implementation of adaptive techniques were more remarkable as the size of 

problems increased. 

  

     Moreover, to solve the multi-objective MMALSP, we proposed an adaptive 

approach involving a new elitist strategy and initial population heuristics and using 

over 60 test problems we compared its performance to that of the standard PS-NC 

algorithm presented in Ponnambalam et al. (2003). The experiments showed that the 

adaptive GA based approach outperformed the standard PS-NC algorithm in both the 

solution quantity and solution quality. As a result of this comparative study, we could 

state that both the exploration and exploitation performances of PS-NC genetic 
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algorithm can be improved noticeably by using adaptive techniques and a selective 

elitist strategy. 

 

     As a future work, several topics call for further attention. Future research may 

extend into three directions: (i) extending the adaptive approach by using variable 

population size, crossover rate, and several genetic operators; (ii) implementing self-

adaptive parameter control techniques, in which the GA parameters are encoded into 

the chromosomes and are optimized simultaneously with the objective functions; and 

(iii) tackling the aggregated problem of assembly line balancing and sequencing 

using multi-objective approaches. 
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APPENDIX – I. Classification Schemes 

a) Classification Scheme for Mixed-model Assembly Line Sequencing Problem 

 

α | β | γ | δ        

 

δ : Number of Production Levels ∈ { o , 
λ

mlev }  

o  : final stage only 
λ

mlev  : multiple production levels [ o=λ  : an arbitrary number of levels, ,...}3,2{∈λ : exactly λ  production levels ] 

   

γ : Objectives ∈ { o , cpu , vpr , 
λsetup , len , tput , mspan, ,level  stop , idle }   

o  : minimizing workoverload/ total utility work ( wo ), 

cpu  : keeping a constant rate of part usage, 

vpr  : minimizing variation of production rates, 

λsetup : minimizing the set-up cost/time [ t=λ : min. set-up times, =λ c: min. set-up costs, =λ n: min. number of setups], 

   len  : minimizing line length, 

   tput  : minimizing throughput time, 

   mspan : minimizing makespan, 

   level  : leveling workloads for stations on the line, 

   stop  : minimizing the duration of line stoppages, 

   idle  : minimizing total idle time. 

 

Remark: In the case of multi-objective optimization more than a single objective can be selected out of the set, separating by a 
semicolon. 

 

β : Assembly Line Characteristics ( 521 ,...,, βββ )  

1β  : Number of stations ∈ { o , n }  [ o = 1β : arbitrary number of stations, n = 1β : number of stations is n ] 

2β  : Homogeneity of stations ∈ { o , div }  [ o = 2β : stations characteristics are same,  = 2β div : diverging characteristics] 

1
3
5
 



α | β | γ | δ        

3β  : Line layout ∈ { o , u }  [ o = 3β : straight line,  = 3β u : u-shaped line] 

4β  : Launching discipline ∈ { o , vrl }  [ o = 4β : fixed rate launching,  = 4β vrl : variable rate launching] 

5
β  : Return velocity ∈ { o , fin }  [ o = 5β : infinite return speed,  = 5β fin : finite return speed] 

 

α : Station Characteristics ( 621 ,...,, ααα ) 
 

1α  : Station boundaries ∈ { o , open }  [ o = 1α : closed stations, open = 1α : station boundaries are open] 

2α  : Reaction on work overload ∈ { o , off , stop , var λ
 }  

o = 2α   : line continues processing,  

off = 2α      : workpiece is taken off the transportation system,  

 = 2α stop : line is stopped,  

 2 =α var λ
 : overloads are compensated by variable station borders [ o=λ  : early start, late=λ : late start model] 

3α  : Processing times ∈ { o , sto }  [ o = 3α : static and deterministic, sto = 3α : stochastic processing times] 

4α  : Concurrent work ∈ { o , cc }  [ o = 4α : concurrent work is not allowed, cc = 4α : concurrent work is allowed] 

5α  : Set-ups ∈ { o , setup }  [ o = 5α : set-ups are ignored, = 4α setup : set-ups are considered.] 

6α  : Parallel station ∈ { o , 
λpar }   

o = 6α   : no parallelization,  

= 6α λpar  : parallel stations are used. [ o=λ  : parallel stations are side by side, chr=λ : chronological 

parellelization] 
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b) Classification Scheme for Genetic Algorithm Approaches to MMALSP 

 

α | β | γ | δ | ε | ζ | η              

η : Hybridization  ∈ { o , hybrid) [o : none, hybrid : GA and another heuristic is used together]. 

ζ : GA parameters ( 1ζ , 2ζ , 3ζ ) 

1ζ   : Crossover and mutation probabilities ∈ { o , dtprm , adprm , sfprm } 

1ζ  = o    : parameter tuning, 

1ζ  = dtprm  : deterministic parameter control, 

1ζ  = adprm  : adaptive parameter control, 

      1ζ  = sfprm  : self-adaptive control      

2ζ  : Population size ∈ { o , one , vpop }   [o  : fixed size, one :  only one individual, vpop: varying size] 

3ζ  : Termination criteria  ∈ { o , min, tfix , conv , mnl, ifix } 

3ζ = o    : fixed number of generations (gfix), 

3ζ = min : satisfaction of minimum criteria, 

3ζ = tfix  : fixed time,  

3ζ = conv  : successive iterations no longer produce better results,  

3ζ = mnl : manuel inspection, 

3ζ = ifix : fixed number of reproduced individuals. 

ε : Genetic operators ( 1ε , 2ε , 3ε ) 

1ε  : Crossover Operator  ∈ { o , two , ucx , adpt , boltz , rank , tour , stdy }   

=1ε o    : single-point crossover, 

=1ε two  : two-point crossover,  

=1ε ucx  : uniform crossover, 

1
3
7
 



α | β | γ | δ | ε | ζ | η              
=1ε adpt  : adaptive crossover, 

=1ε edge  : edge-recombination, 

=1ε ox  : order crossover, 

=1ε pmx  : partially mapped crossover, 

=1ε cx  : cycle crossover, 

=1ε pbx  : position-based crossover,  

=1ε isrx  : immediate successor relation crossover. 

2ε  : Mutation operator  ∈ { o , mmut , um , lam , swap , shift }   

 2ε  = o   : single-point mutation, 

 2ε  = mmut  : multiple point mutation, 

2ε  = um  : uniform mutation, 

2ε  = lam  : lamarckian mutation, 

      2ε  = swap  : swap mutation, 

2ε  = shift  : shift mutation. 

3ε  : Inversion operator ∈ { o , inv }  [o  : not used,  inv : inversion operator is used] 

δ : Selection Strategies ( 1δ , 2δ ) 

1δ  : Selection method ∈ { o , rou , sus , sigma , boltz , rank , tour , stdy }   

1δ = o   : roulette wheel ( rou ), 

1δ = sus   : stochastic universal sampling, 

1δ = sigma   : sigma scaling, 

1δ = boltz  : boltzman selection, 

1δ = rank  : rank selection, 

1δ = tour  : tournament selection, 

1
3
8
 



α | β | γ | δ | ε | ζ | η              

1δ = stdy  : steady-state selection. 

2δ  : Elitist strategy ∈ { o , 
λ

elit }   

2δ = o   : elitism not used 

2δ = 
λ

elit  : elitism is used [ o=λ  : using the same population (internal),  ext=λ : external 

population] 

γ : Initial population ∈ { o , hrstc , mem  } [o : randomly created, hrstc : heuristics, mem : memory-based reasoning] 

β  : Fitness function ( 321 ,, βββ ) 

1β  : Objective function ∈ { o , multi }  [ o : single objective, multi : multi-objective] 

2β  : Fitness assignment ∈ { o , wsum , alt , pr } 

2β = o   : single objective function value,  

2β = wsum   : weighted sum,  

2β = alt  : altering objectives,  

2β = pr  : pareto ranking. 

 

3β  : Diversity mechanism ∈ { o , fsh , crwd , cell }  

3β = o   : none, 

      3β = fsh  : fitness sharing, 

3β = crwd  : crowding distance, 

3β = cell  : cell-based density. 

     
α  : Genetic representation ∈ { o , bin , per , tree ]  [ o : real-valued, bin : binary, per : permutation, tree : tree] 
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APPENDIX – II.  General Code Structure of the Proposed Adaptive MOGA 
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