
DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

SOLVING MIXED-MODEL ASSEMBLY LINE
SEQUENCING PROBLEM USING ADAPTIVE

GENETIC ALGORITHMS

by

Onur Serkan AKGÜNDÜZ

September, 2008

İZMİR

SOLVING MIXED-MODEL ASSEMBLY LINE
SEQUENCING PROBLEM USING ADAPTIVE

GENETIC ALGORITHMS

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Master of Science in

Industrial Engineering, Industrial Engineering Program

by

Onur Serkan AKGÜNDÜZ

September, 2008

İZMİR

ii

M.Sc THESIS EXAMINATION RESULT FORM

 We have read the thesis entitled “SOLVING MIXED-MODEL ASSEMBLY

LINE SEQUENCING PROBLEM USING ADAPTIVE GENETIC

ALGORITHMS” completed by ONUR SERKAN AKGÜNDÜZ under supervision

of PROF. DR. SEMRA TUNALI and we certify that in our opinion it is fully

adequate, in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Semra TUNALI

Supervisor

 Jury Member Jury Member

Prof.Dr. Cahit HELVACI

Director

Graduate School of Natural and Applied Sciences

iii

ACKNOWLEDGMENTS

 First and foremost I offer my sincerest gratitude to my supervisor and mentor,

Prof. Dr. Semra Tunalı, who has supported me throughout my thesis with her wisdom

and patience. Her inspiration, guidance and counsel were invaluable. I’m especially

grateful to her for allowing me the room to work in my own way while helping me to

maintain focus.

 I would also like to thank the members of jury, Prof. Dr. Bahar Karaoğlan and

Asst. Prof. Dr. Arslan M. Örnek, for accepting to serve on my dissertation jury in the

midst of all their activities.

 I would like to express my deep appreciation to my family who always give me

encouragement and support at each stage of my studies. Their undying patience has

given me the peace of mind needed to dedicate my efforts towards this thesis.

 Finally, I would like to thank everybody who was important to the successful

realization of thesis, as well as expressing my apology that I could not mention

personally one by one.

Onur Serkan AKGÜNDÜZ

iv

SOLVING MIXED-MODEL ASSEMBLY LINE SEQUENCING PROBLEM

USING ADAPTIVE GENETIC ALGORITHMS

ABSTRACT

 The focus of this M.Sc study is to introduce adaptive Genetic Algorithm (GA)

based approaches for single- and multi-objective mixed-model assembly line

sequencing problems (MMALSP), which deal with the determination of production

launching orders so that the variations in part consumption rates (VPC) are

minimized. In addition to this objective, minimization of total utility work (UW) and

cost for sequence-dependent setups (SC) are also considered in multi-objective

version of the MMALSP.

 In order to solve single-objective MMALSPs, an adaptive GA based approach

which incorporates adaptive parameter control techniques into a pure GA is proposed.

The proposed approach, integrates an adaptive elitist strategy and a scheme for

varying probability of mutation according to the feedback taken from the algorithm.

Using this approach, the MMALSP is solved under the objective of minimizing VPC

in a four level assembly environment, i.e. product, subassembly, component and raw

material.

 Later, by modifying the adaptive parameter control techniques and integrating

them into a Pareto Stratum – Niche Cubicle GA, a multi-objective MMALSP with

three objective functions (i.e., minimization of VPC, UW and SC) is solved. Finally,

to evaluate the performance of the proposed approach, various sets of experiments

have been carried out.

Keywords: Mixed-model assembly line, model sequencing, adaptive genetic

algorithm, multi-objective optimization, adaptive parameter control.

v

KARIŞIK-MODELLİ MONTAJ HATTI SIRALAMA PROBLEMLERİNDE

ADAPTİF GENETİK ALGORİTMALARIN KULLANIMI

ÖZ

 Bu yüksek lisans çalışmasının esas amacı, tek- ve çok-amaçlı karışık-modelli

montaj hattı sıralama problemleri (KMMHSP) için, parça kullanım oranlarındaki

değişkenlikleri (PKOD) en küçükleyecek şekilde, model üretim sıralarının

belirlenmesi sağlayan adaptif Genetik Algoritma (GA) yaklaşımlarını ortaya

koymaktır. Çok-amaçlı problem, PKOD’a ek olarak, yardımcı işçi kullanımının

(YİK) ve hazırlık sürelerinin (HS) en küçüklenmesi amaçlarını da dikkate almaktadır.

 Çalışmada ilk olarak, tek-amaçlı KMMHSPlerini çözmek üzere, adaptif parametre

kontrolü tekniklerini öz GA’ya uygulayan adaptif GA tabanlı bir yaklaşım

önerilmiştir. Bu yaklaşım, adaptif bir elit stratejisi ve algoritmadan aldığı

geribildirime göre mutasyon olasılığını düzenleyen bir yapı içermektedir. Önerilen

yaklaşım kullanılarak KMMHSP problemi, son ürün, alt-montaj, bileşen ve ham

madde olmak üzere dört seviye içeren bir montaj ortamında, PKOD’u en

küçükleyecek şekilde çözülmüştür.

 Çalışmanın devamında, daha önceden tek-amaçlı problemin çözümünde kullanılan

adaptif parametre kontrol teknikleri modifiye edilerek Pareto Stratum – Niche

Cubicle olarak bilinen GA’ya entegre edilmiş ve PKOD, YİK ve HS’nin en

küçüklenmesini amaçlayan çok-amaçlı bir KMMHSP problemi çözülmüştür. Son

olarak da, önerilen çözüm yöntemlerinin performanslarını değerlendirmek üzere

çeşitli boyutlardaki problem setleri üzerinde deneyler yapılmıştır.

Anahtar Kelimeler: Karışık-modelli montaj hattı, model sıralama, adaptif genetik

algoritma, çok-amaçlı optimizasyon, adaptif parametre kontrolü.

vi

CONTENTS

Page

M.Sc THESIS EXAMINATION RESULT FORM.. ii

ACKNOWLEDGMENTS ...iii

ABSTRACT... iv

ÖZ ... v

CHAPTER ONE - INTRODUCTION .. 1

CHAPTER TWO – BACKGROUND INFORMATION .. 4

 2.1 Mixed-Model Assembly Line Sequencing .. 4

 2.1.1 Problem Statement and Mathematical Models .. 7

 2.1.1.1 Minimizing the Total Utility Work.. 8

 2.1.1.2 Minimizing the Variation of Part Consumption Rates..................... 10

 2.1.1.3 Minimizing the Total Setup Cost ... 12

 2.1.2 Problem Complexity .. 13

 2.1.3 Characteristics of MMALSP.. 14

 2.1.3.1 Station Characteristics.. 14

 2.1.3.1.1 Station Boundaries ... 14

 2.1.3.1.2 Reaction on Work Overload .. 15

 2.1.3.1.3 Processing Times ... 16

 2.1.3.1.4 Concurrent Work.. 16

 2.1.3.1.5 Setups ... 17

 2.1.3.1.6 Parallel Stations.. 17

 2.1.3.2 Assembly Line Characteristics... 17

 2.1.3.2.1 Number and Homogeneity of Stations..................................... 17

 2.1.3.2.2 Line Layout .. 18

 2.1.3.2.3 Launching Discipline ... 18

 2.1.3.2.4 Worker Return Velocity... 19

 2.1.3.3 Operational Characteristics .. 19

vii

 2.1.3.4 Sequencing Objectives ... 20

 2.1.3.5 Hybrid Sequencing Problems... 22

 2.2 Genetic Algorithms .. 22

 2.2.1 Biological and GA Terminology.. 24

 2.2.2 Components of GA .. 26

 2.2.2.1. Genetic Representation ... 28

 2.2.2.1.1 Binary Encoding .. 28

 2.2.2.1.2 Permutation Encoding.. 29

 2.2.2.1.3 Real-Valued Encoding ... 29

 2.2.2.1.4 Tree Encoding .. 30

 2.2.2.2 Fitness Function ... 30

 2.2.2.3 Initial Population.. 32

 2.2.2.4 Selection... 33

 2.2.2.4.1 Roulette Wheel and Stochastic Universal Sampling................ 34

 2.2.2.4.2 Sigma Scaling .. 35

 2.2.2.4.3 Boltzman Selection .. 36

 2.2.2.4.4 Rank Selection ... 37

 2.2.2.4.5 Tournament Selection .. 38

 2.2.2.4.6 Elitism .. 38

 2.2.2.4.7 Steady-State Selection and Generation Gaps........................... 39

 2.2.2.5 Genetic Operators .. 39

 2.2.2.5.1 Crossover ... 40

 2.2.2.5.2 Crossover For Permutation Problems 43

 2.2.2.5.3 Mutation ... 49

 2.2.2.5.4 Inversion... 51

 2.2.2.6 GA Parameters ... 52

 2.2.3 Hybrid GA.. 56

 2.2.4 Multi-objective GA .. 57

 2.2.4.1 Multi-objective Optimization... 57

 2.2.4.2 Pareto Optimality ... 59

 2.2.4.3 GAs for Multi-Objective Optimization.. 60

 2.2.4.3.1 Fitness Functions.. 61

viii

 2.2.4.3.2 Population Diversity .. 64

 2.2.4.3.3 Elitism .. 66

CHAPTER THREE – LITERATURE REVIEW: APPLICATIONS OF

GENETIC ALGORITHMS IN MMALS ... 67

 3.1 Classification and Review of Related Literature ... 67

 3.2 Findings of the Literature Survey .. 75

 3.3 Motivation For This Study... 78

CHAPTER FOUR – ADAPTIVE GA BASED APPROACH FOR SOLVING

SINGLE OBJECTIVE MIXED MODEL ASSEMBLY LINE SEQUENCING

PROBLEM .. 79

 4.1 Specifications of the Adaptive GA Based Approach....................................... 79

 4.1.1 Genetic Representation .. 81

 4.1.2 Initial Population.. 81

 4.1.3 Fitness Evaluation .. 82

 4.1.4 Fitness Conversion and Selection .. 83

 4.1.5 Crossover and Mutation ... 84

 4.1.6 Adaptive Techniques.. 84

 4.1.6.1 Adaptive Elitist Strategy .. 84

 4.1.6.2 Adaptive Mutation Probability... 85

 4.1.6.2.1 Required Input.. 86

 4.1.6.2.1 Progress Evaluation and Output... 88

 4.2 Computational Experiments and Analysis ... 89

 4.2.1 Benchmark Problems ... 89

 4.2.2 Parameter Setting ... 91

 4.2.3 Analysis and Discussion of the Results ... 91

ix

CHAPTER FIVE – ADAPTIVE GA BASED APPROACH FOR SOLVING

MULTI-OBJECTIVE MIXED MODEL ASSEMBLY LINE SEQUENCING

PROBLEM .. 97

 5.1 Specifications of the Adaptive MOGA Based Approach 97

 5.1.1 Genetic Representation and Initial Population....................................... 100

 5.1.1.1 Initial Population Heuristic – 1 (IPH-1) .. 101

 5.1.1.2 Initial Population Heuristic – II (IPH-2) 103

 5.1.2 Objective Functions ... 103

 5.1.3 Ranking and Selection ... 104

 5.1.4 Crossover and Mutation ... 107

 5.1.5 Comparison of Domination and Elitist Strategy 108

 5.1.6 Performance Evaluation and Adaptation ... 108

 5.1.7 Termination Check... 110

 5.2 Computational Experiments and Analysis ... 110

 5.2.1 Problem Sets and The Algorithms Compared.. 110

 5.2.2 Parameter Setting ... 111

 5.2.3 Performance Measures ... 111

 5.2.3.1 Number of 1st Pareto Stratum Individuals (NPS1) 113

 5.2.3.2 Number of Non-dominated Individuals (NNI) 113

 5.2.3.3 Ratio of Non-dominated Individuals (RNI) 113

 5.2.3.4 Convergence .. 113

 5.2.4 Experimental Results .. 114

CHAPTER SIX – CONCLUSIONS .. 123

REFERENCES.. 126

APPENDICES ... 135

1

CHAPTER ONE

INTRODUCTION

 In today’s many industries, varying customer demands and intense competition

require a highly diversified product portfolio provided in a cost effective manner. In

order to provide increased flexibility for product diversification, many manufacturers

have upgraded their assembly lines, which were originally developed for a cost

efficient mass production of a single standardized product. The current trend is to

design mixed-model assembly lines (MMAL), which are capable of producing a

variety of different product models simultaneously and continuously.

 In a MMAL, the application of flexible workers and machinery leads to a

substantial reduction in setup times and cost, so that different products with lot size

of one can be jointly manufactured at the same line in intermixed sequences. In

addition to the flexible resources being available, the production processes of

manufactured goods require a minimum level of homogeneity (Boysen, Fliedner, &

Scholl, 2007a). This is achieved by using a generic product model which is

customizable by optional features.

 The design of an MMAL involves several issues. The most important ones are

resource planning, generic product modeling, line balancing and model sequencing.

Resource planning is concerned with the selection of production means adequate for

performing the assembly operations specified by the assembly planning. Balancing

an assembly line means distributing work required to assemble a product among a set

of work stations. In addition to the long and mid-term line balancing problems, there

are short-term model sequencing problems, which aim at determining the production

sequence of different models to be produced during the work shift. In this thesis

study, we focus on the mixed-model sequencing problems.

 Determining the sequence of launching models to the assembly line is of

particular importance for efficient use of MMALs. In the literature, several

objectives and methods have been proposed to judge the efficiency of different

2

production sequences including minimizing total utility work, minimizing variation

of production rates, keeping a constant rate of part usage, minimizing total setup

cost, minimizing the risk of stopping a conveyor, minimizing the overall line length,

leveling workloads and so on. Which objectives to employ depends on the goals of

the research and/or company.

 Sequencing with a single objective can be meaningful when the objective

unconditionally rules over all the others. In practice, however, several objectives,

often conflicting with each other, need to be simultaneously considered (Hyun, Kim,

& Kim, 1998). Such conflicts make it complicated to plan and control the production

activities as the sequencing decision becomes a multi-objective problem.

 An important issue that complicates the sequencing problem is its combinatorial

nature. Typically, an enormous number of possible production sequences exist, even

for relatively small problems, so that finding the optimal solution is usually

impractical. In the literature, various solution approaches are proposed including

dynamic programming (Yano & Rachamadugu, 1991), linear and integer

programming (Drexl & Kimms, 2001; Ventura & Radhakrishnan, 2002), goal

chasing methods (Celano, Costa, Fichera, & Perrone, 2004; Mane, Nahavandi, &

Zhang, 2002; Monden, 1993), branch and bound (Drexl, Kimms, & Matthießen,

2006), tabu search (McMullen, 1998; Scholl, Klein, & Domschke, 1998), simulated

annealing (Cho, Paik, Yoon, & Kim, 2005; Kara, Özcan, & Peker, 2007a, 2007b;

McMullen & Frazier, 2000), ant colony optimization technique (Boysen, Fliedner, &

Scholl, 2007b; Gagné, Gravel, & Price, 2006), evolutionary and genetic algorithms

(Hyun et al., 1998; Kim, Kim, & Kim, 2000, 2006; Mansouri, 2005; McMullen,

Tarasewich, & Frazier, 2000; Ponnambalam, Aravindan, & Rao, 2003; Yu, Yin, &

Chen, 2006) and several other heuristics. Among these, genetic algorithms have been

shown to be quite successful in dealing with many manufacturing optimization

problems. A genetic algorithm (GA) is a highly simplified computational model of

biological evolution. In this study, we aim at solving mixed-model sequencing

problems using GAs.

3

 The values of GA parameters greatly determine the performance of GAs.

Choosing the right parameter values, however, is a time-consuming task.

Furthermore, this task may need to be repeated for different instances of the problem.

A recent trend in GA based research studies is to employ adaptive or self-adaptive

parameter control mechanisms to remedy this situation (Bingul, Sekmen, & Zein-

Sabatto, 2000; Chang, Hsieh, & Wang, 2007; Eiben, Hinterding, & Michalewicz,

1999; Herrera & Lozano, 2003; Huang, Chang, & Sandnes, 2006; Liu, Zhou, & Lai,

2003; Shi, Eberhart, & Chen, 1999; Smith & Fogarty, 1997; Srinivas & Patnaik,

1994; Zhao, Zhao, & Jiao, 2005). During the survey of current literature, we have not

noted any study employing adaptive or self-adaptive parameter control mechanisms

to solve MMAL sequencing problem (MMALSP). Based on this observation, in this

study, an adaptive genetic algorithm based approach is developed in order to solve

the MMALSP.

 This study is organized as follows. In Chapter 2, detailed background information

about the genetic algorithms, multi-objective optimization and mixed-model

sequencing problem are given. In order to highlight the place of this study in the

current literature, we extensively surveyed the relevant studies. Chapter 3 presents

both the evaluation criteria we employed for classifying the current relevant literature

and also the findings of this survey study. In Section 4, we present the details of the

proposed adaptive GA based approach to solve the single-objective MMALSP and

compare its performance with the pure GA. In Chapter 5, an adaptive GA based

approach is developed to solve the multi-objective MMALSP and various sets of

experiments are carried out to evaluate its performance. Finally, concluding remarks

and the future research directions are given in Chapter 6.

4

CHAPTER TWO

BACKGROUND INFORMATION

 This section presents detailed background information about the mixed-model

assembly line sequencing problem and genetic algorithms. First, the problem is

explained in detail by presenting the problem statement, mathematical models, a

summary of common problem parameters, line characteristics, and common

objective functions employed to study this problem. Following, genetic algorithms

including the related terminology, GA components and multi-objective GA

approaches are presented.

2.1 Mixed-model Assembly Line Sequencing

 The sequencing problem appears when variations of the same basic product are

produced on the same production line. These variations imply that the processing

times on the individual stations differ, dependent on the model to be processed. This

type of problem is called the mixed model assembly line sequencing problem

(MMALSP) and is defined by various parameters which reflect the characteristics of

the stations and the production line. This chapter first presents a short history of the

sequencing problem, and later gives the problem statement and a summary of

common problem parameters, line characteristics, and common objective functions

employed to study this problem.

 The mixed-model sequencing problem was first investigated by Wester &

Kilbridge (1964), and since then, a large number of researches employing a variety

of approaches (i.e., exact methodologies, meta-heuristics) have been carried out.

During the literature survey, we noted that while some researchers dealt with only

mixed-model sequencing problem, others focused on both line balancing and

sequencing problems.

 One of the early studies dealing with both problems in a hierarchical framework

has been carried out by Thomopoulos (1967). In this study, line balancing procedure

5

was an adaptation of single-model line balancing techniques to mixed-model

schedules. This procedure was followed by a sequencing procedure for determining

the order in which models are launched to the line. The proposed approach resulted

in an increase in the efficiency of the assembly line by providing near optimum

solutions.

 Another research that dealt with the aggregated problem of balancing and

sequencing has been carried out by Merengo, Nava, & Pozetti (1999). As it was the

case in Thomopoulos (1967), the authors proposed a hierarchical approach, in which

they first dealt with the balancing problem. The balancing objectives were

minimization of number of stations and number of incomplete units on the line,

whereas sequencing algorithm aimed at keeping a constant rate of parts usage. Four

balancing approaches were proposed and compared to each other. Also the results of

the sequencing algorithm were compared to those of Miltenburg (1989) and shown to

be better.

 The evolution concept has been also introduced to the aggregated problem by

several researchers (e.g. Kim et al., 2000, 2006; Miltenburg, 2002; Rekiek, De Lit, &

Delchambre, 2000). In these studies, the authors have developed various

evolutionary and genetic algorithm approaches to deal with the aggregated problem

in both straight and U-shaped lines.

 Another group of studies only focused on mixed-model sequencing problems.

Dar-el & Cother (1975) proposed a new formulation for the sequencing problem

under the objective function of minimizing the overall length of assembly line. The

authors evaluated the effects of five factors (i.e., the number of models, the model

cycle time deviation, the operator time deviation, the production demand deviation

for each model, and the number of stations in the assembly line) on the overall

assembly line length and suggested that the first three factors had major effects on

the line length. Another finding was that for maximum efficiency in utilization of

space the open-station interfaces should be preferred.

6

 Monden (1993) defined two goals for evaluating the performance of sequencing

approaches. The first one was based on leveling the load at each workstation in order

to minimize the risk of stopping the conveyor, and the other one was maintaining a

constant feeding rate of every model. The author stated that the latter one was more

applicable to JIT production systems.

 Yano & Bolat (1989) provided a literature review on sequencing in mixed-model

assembly lines. They also developed a heuristic which aims to minimize total utility

work and compared their results with those of two automobile manufacturers’

existing algorithms.

 Yano & Rachamadagu (1991) investigated the problem of sequencing jobs, each

representing a combination of product options, on a paced assembly line. They

developed an optimal procedure for the situation where a single station is affected by

an option. They also provided a heuristic procedure for multiple stations. The

procedure was compared with an existing procedure used in industry.

 Miltenburg (1989) studied the sequencing problem with the objective of keeping a

constant rate of part usage. It was assumed that each product requires approximately

the same number and mix of parts. Hence a constant rate of usage of all parts used by

the line was achieved by considering only the demand rates for the products, and

ignoring the resulting part demand rates. Three algorithms were presented for an

exact solution but since the algorithms’ worst case complexity was exponential, two

heuristics were also proposed.

 Bard, Dar-El, & Shtub (1992) proposed an analytical framework for sequencing

MMALs and presented the characteristics of sequencing problems including open

and closed stations, launching discipline, sequencing objectives, line movement, and

operator schedules. Six variants of the sequencing problem were formulated and

solved under the objective of assembly line length minimization.

7

 In recent years, the increased popularity of genetic algorithms has led researchers

to propose several GA based approaches for the sequencing problem. The first

research on the application of GAs to the sequencing problem in MMALs has been

carried out by Kim, Hyun, & Kim (1996). This was followed by Hyun et al. (1998)

who also considered the multi-objective nature of the sequencing problem.

McMullen et al. (2000) combined multiple objectives into a single objective using

the weighted-sum approach and solved this problem with GAs.

 There are several other published researches dedicated to the MMALS problem,

covering a broad range of solution methods. Boysen et al. (2007a) present a detailed

classification scheme for MMALS problem which they then use to classify most of

the published researches in this area. The reader may refer to this study for an

extensive list of model sequencing related literature.

2.1.1 Problem Statement and Mathematical Models

 Most of the existing literature mentions the optimization of line balancing and

model sequencing in a consecutive order (however, they usually focus on one of the

two). Once the line is balanced and the design of the line is obtained, it is necessary

to achieve a reasonable, if not optimum, order for the jobs to be processed

consecutively (Färber & Coves, 2005).

 Sequencing problems in MMALs can be considered from different points of view.

In this section, we present mathematical models of three different versions of

sequencing problem which aim at minimizing the total utility work (work overload),

the variation of part consumption rates and the total setup cost, respectively. All

models rely on the following assumptions made by Hyun et al. (1998):

� Assembly line is a conveyor system moving at a constant speed (cv).

� Line is partitioned into J stations.

� All stations are closed ones so that workers cannot cross stations’ boundaries.

8

� Minimum part set (MPS) production is used. MPS is a vector representing a

product mix, such that () ()hDhDdd Mm ,...,,..., 11 = , where M is the total

number of models, mD is the number of products of model type m which

needs to be assembled during an entire planning horizon and h is the greatest

common divisor or highest common factor of MDDD ,...,, 21 . This strategy

operates in a cyclical manner. The number of products produced in one cycle

is ∑ =
=

M

m mdI
1

. Obviously h times repetition of the MPS can meet the total

demand in the planning horizon.

� Products are launched onto the conveyor at a fixed rate. The launch interval

(γ) is set to ()JIT × , where T is the total operation time required to

produce one cycle of MPS products (∑ ∑= =
=

J

j

M

m mjmdtT
1 1

, where jmt is the

operation time for model m at station j).

� Processing times are deterministic.

� Workers’ moving time is ignored.

 2.1.1.1 Minimizing the Total Utility Work

 During the line balancing phase, in order to avoid excessive station capacities, the

cycle time is determined as an average for all models. As a consequence, the

processing times of some models are higher than the cycle time, whereas that of

others are lower. If several models with higher processing times follow each other at

the same station, the worker will not be able to return to the left-hand border before

the next work piece has arrived and thus be consecutively moved towards the right-

hand border of the station. This finally results in a work overload whenever the

operations of a work piece can not be finished within the station’s boundaries.

Depending on the exact type of boundaries considered this might necessitate one of

the following reactions (Boysen et al., 2007a) :

i. the whole assembly line is stopped until all stations have finished work on

their current work piece,

9

ii. utility workers support the operator(s) of the station to finish work just before

the station’s border is reached,

iii. the unfinished tasks and all successors are left out and executed off-line in

special finishing stations after the work piece has left the last station of the

line, or

iv. the production speed is accelerated at the risk of quality defects.

 To avoid such costly compensations, mixed-model sequencing searches for

sequences where those models with high processing times alternate with less work-

intensive ones at each station (Wester & Kilbridge, 1964). For this purpose, models

are scheduled at each station and cycle, by explicitly taking into account processing

times, worker movements, station borders and further operational characteristics of

the line.

 Let jL be the fixed line length of station j and ijU be the amount of the utility

work required for the thi product in a sequence at station j . The following model is

presented by Hyun et al. (1998):

Minimize ∑ ∑
=

+

=

+

J

j

cji

I

i

ij vZU
1

)1(

1

/ (1)

S.T.

ix
M

m

im ∀=∑
=

1

1 (1.1)

mdx
I

i

mim ∀=∑
=

1

 (1.2)

() () jivγLvγtxvZZ cjc

M

m

jmimcijji ,,,0
1

)1(∀

×−×−+= ∑

=

+ minmax (1.3)

 jivLtxvZU cj

M

m

jmimcijij ,,0
1

∀

−+= ∑

=

 max (1.4)

mi xim ,10 ∀= or (1.5)

ji ZZ ijj ,0,01 ∀≥= (1.6)

10

jiU ij ,0 ∀≥ (1.7)

where ijZ is the starting position of the work on the thi product in a sequence at

station j , and imx is 1 if the thi product in a sequence is model m ; otherwise imx is

0. The second term in the objective function takes into the account for the utility

work that may be required at the end of a cycle. Eq. (1.1) ensures that exactly one

product is assigned to each position in a sequence. Eq. (1.2) guarantees that demand

for each model is satisfied. Eq. (1.3) indicates the starting position of the worker at

each station j on product 1+i in a sequence. Utility work ijU for the thi product in

a sequence at station j is determined by Eq. (1.4).

 2.1.1.2 Minimizing the Variation of Part Consumption Rates

 Keeping the part consumptions at a constant rate is considered to be an important

goal for JIT production systems. These systems rely on continual and stable part

supply. Therefore, it is important to keep part demand rates as constant as possible

over time. This can be achieved by minimizing the variation of actual part

consumption rates from the expected ones.

g level number (level 4: raw material, level 3: components, level

2: subassemblies, level 1: final assembly)

gn number of outputs at level g , where 4,3,2,1=g

1id demand for product 1,...,2,1 ni =

iglt number of units of output i at level g used to produce one unit

of product l , gni ,...,2,1= ; 4,3,2=g ; 1,...,2,1 nl =

∑
=

=
1

1

1

n

h

highig dtd demand for output i at level g

∑
=

=
gn

i

igg dDT
1

 total demand for production at level g , where 4,3,2,1=g

11

gigig DTdr /= ratio of level g production devoted to output i , gni ,...,2,1= ;

4,3,2,1=g .

 1DT products must be assembled on the final assembly line during the planning

horizon. Let us say that there are 1DT consecutive stages and a product is assigned to

each of these stages. This is called a schedule. The schedule is represented in the

model by the following variables:

kix 1 number of units of product i produced during stages k,...,2,1 .

The notation k is used throughout to denote the stage number.

∑
=

×=
1

1

1)(
n

h

khighigk xtx number of units of output i at level g produced during stages

k,...,2,1 .

∑
=

=
gn

i

igkgk xXT
1

 total production at level g during stages k,...,2,1 .

gw weights, 4,3,2,1=g .

 If production were strictly synchronized with demand we would find that after k

stages the total output igkx of part i at level g would be ()
iggk rXT × . However,

equality is not always possible. So we strive to schedule the system as to make igkx

close to ()
iggk rXT × for each i ; g and k . Equipped with these definitions and

notations, Miltenburg & Sinnamon (1989) formulated the scheduling problem as

follows:

 Select igkx ; 1,...,2,1 ni = ; 1,...,2,1 DTk = to minimize the variation in parts

consumption, i.e.

Minimize ∑∑∑
= = =

×−
1 4DT

k g

n

i

iggkigkg

g

rXTxw
1 1 1

2)]([(2)

 S.T.

12

11 21 ...DT,,k, kXT k == (2.1)

)1(110 −−≤ kiki xx and kix 1 is an integer, DTkni ,...2,1;,...2,1 1 == (2.2)

111 ,....2,1,
1

nidx iDTi == (2.3)

 Eq. (2.1) ensures that exactly k products are scheduled during k stages. Eq. (2.2)

ensures that it is not possible to schedule less than zero units, more than one unit, or a

fraction of a unit of any product. Eq. (2.3) ensures that exactly the right number of

each type of model is produced during the planning horizon (Ponnambalam et al.,

2003).

 2.1.1.3 Minimizing the Total Setup Cost

 In many industries, sequence-dependent setups are considered as an important

issue in assembly operations. A setup is required each time two consecutive items in

the production sequence are different. Therefore, this objective aims to minimize

product changes in the production schedule by batching products as much as

possible. A mathematical model considering sequence-dependent setups has been

developed by Hyun et al. (1998) as follows:

Minimize ∑∑∑∑
= = = =

J

j

I

i

M

m

M

r

jmrimr cx
1 1 1 1

 (3)

S.T.

∑∑
= =

∀=
M

m

M

r

imr ix
1 1

,1 (3.1)

,,1,...,1
1

)1(

1

rIixx
M

p

rpi

M

m

imr ∀−==∑∑
=

+

=

 (3.2)

,
1

1

1

rxx
M

p

rp

M

m

r ∀=∑∑
==

 Im (3.3)

∑∑
= =

∀=
I

i

m

M

r

imr mdx
1 1

, (3.4)

,,,10 rmiximr ∀= or (3.5)

13

where jmrc is the setup cost required when the model type is changed from m to r

at station j and imrx is 1 if model types m and r are assigned, respectively at the

thi and th)1(+i position in a sequence; otherwise imrx is 0. Eq. (3.1) is a set of

position constraints indicating that every position in a sequence is occupied by

exactly one product. Eqs. (3.2) and (3.3) ensure that the sequence of products must

be maintained while repeating the cyclic production. Eq. (3.4) imposes the restriction

that all the demands must be satisfied in terms of MPS.

2.1.2 Problem Complexity

 The total number of sequences for a mixed-model assembly sequencing problem

can be computed as follows:

)!(

)!(

1

1

∏

∑

=

==
M

m m

M

m m

d

d
 sequences Total . (4)

 Here M is the number of different models, m is the model type and md is the

demand of model m . As the problem increases in size, the number of feasible

solutions increases in the exponential way. Thus, problems with large number

possible solutions cannot be usually solved optimality within a reasonable amount of

time (Tavakkoli-Moghaddam & Rahimi-Vahed, 2006). Therefore, only a few exact

procedures are proposed in the literature up to now. They either solve very restrictive

problem versions or are intended to serve as reference procedures for evaluating

heuristic methods (Scholl, 1999).

 Also, when the multi-objective nature of the problem is considered, finding

production sequences with desirable levels of all objectives is NP-hard (Hyun et al.,

1998). Conventional multi-objective optimization techniques including linear

programming, gradient methods, methods of inequalities, goal attainment or

weighted sum approach, all have some shortcomings as pointed out by Deb (1999):

14

“In dealing with multi-criterion optimization problems, classical search and

optimization methods are not efficient, simply because (i) most of them cannot

find multiple solutions in a single run, thereby requiring them to be applied as

many times as the number of desired Pareto-optimal solutions, (ii) multiple

application of these methods do not guarantee finding widely different Pareto-

optimal solutions, and (iii) most of them cannot efficiently handle problems with

discrete variables and problems having multiple optimal solutions.”

 Emulating the biological evolution mechanism and Darwin’s principal on

“survival-of-the-fittest”, genetic algorithms have been recognized to be well suited

for multi-objective optimization problems where conventional tools fail to work well

(Tan, Lee, & Khor, 2002).

2.1.3 Characteristics of MMALSP

 Characteristics of this problem can be grouped into four categories: (i) station

characteristics, (ii) line characteristics, (iii) operational characteristics, and (iv)

objective functions. The following subsections briefly summarize these

characteristics.

 2.1.3.1 Station Characteristics

 The station environment hosts various decision factors for the MMALS problem.

 2.1.3.1.1 Station Boundaries. Depending on the nature of the tasks and the

physical layout of the facility, stations in the assembly line may be closed or open at

the either side of a station boundary. In a closed station, the operator is not allowed

to move out of his work area when he assembles the products. On the other hand, in

an open station, the operator is permitted to move outside his station up to some

specific limits (such as the reach of the material handling equipment or range of

power tools). In no instance are the operators permitted to interfere with each other,

or to service a unit simultaneously (Bard et al., 1992; Sarker & Pan, 2001).

15

 2.1.3.1.2 Reaction on Work Overload. Whenever the operator of a station is not

able to complete the assigned tasks before the work piece leaves the station (due to a

restricted station length or due to the transport system), work overload occurs. Work

overload may be compensated by the temporary employment of utility workers,

stopping the line or another sanction. No matter which sanction is selected, work

overload is inefficient and expensive and should be minimized (Becker & Scholl,

2006). Boysen et al. (2007a) list the reaction alternatives on imminent work overload

as follows:

• In the general case, it is assumed that work overloads do not affect starting

times of successive stations, so that in spite of an overload at station k , the

successive station 1+k can start processing the work piece as soon as the

work piece reaches its left station border (provided that it finished work on

the preceding work piece). This is always the case if (i) work overload is

compensated by the timely assignment of a utility worker, who helps to finish

the work within the station’s boundaries, (ii) the processing velocity is

increased so that the work is finished in time or (iii) the unfinished tasks are

left out and completed later at end-of-line repair shops or special in-line

repair stations. Irrespective of the measure taken, the line can continue

processing work pieces.

• The work piece is taken off the transportation system, e.g., for disposal or off-

line completion, so that successive stations have empty cycles.

• The line is stopped as soon as an unfinished work piece reaches a station’s

definite border, which induces idle time at all other stations, and is, for

instance, the typical compensation in the Japanese automobile industry

• Overloads are (seen to be) compensated by variable station borders.

Typically, the decision on the stations’ length is part of assembly line

balancing and, thus, already fixed for short-term model sequencing.

Nevertheless, such sequencing models can be utilized to either decide on the

station extents on the basis of a representative medium-term model mix as an

addition to the balancing information or as a surrogate model, e.g., for

16

assembly lines with open stations. A further differentiation of variable

borders can be made as follows:

o An early start model presupposes fixed left borders of stations, so that

each station may only expand in downstream direction. Each worker

starts processing in the first cycle at the left border of his station

(reference point 0). When the operator has finished his work he walks

back and starts work, when another work piece has already been

launched into the station area. Otherwise, he goes back to the

beginning of the station (reference point 0) and waits for the next

work piece.

o In a late start model the stations expand in both directions. Workers

who completed their tasks move back until they reach the subsequent

work piece, even if it puts them beyond their respective reference

point 0, instead of incurring idle time by waiting at left station

borders.

 2.1.3.1.3 Processing Times. A further important characteristic defining different

versions of MMALSP is the variability of task times. Whenever the expected

variance of task times is sufficiently small, as in case of, e.g., simple tasks or highly

reliable automated stations, the task times are considered to be deterministic.

Considerable variations, which are mainly due to the instability of humans with

respect to work rate, skill and motivation as well as the failure sensitivity of complex

processes, require considering stochastic task times. Besides stochastic time

variations, systematic reductions are possible due to learning effects or successive

improvements of the production process (Becker & Scholl, 2006).

 2.1.3.1.4 Concurrent Work. Concurrent work enables the worker(s) of a station to

start processing although the previous station has not finished its work on the

respective work piece. This necessitates open stations as well as work pieces of an

appropriate size, so that workers do not impede each other (Boysen et al., 2007a).

17

 2.1.3.1.5 Setups. A mixed-model assembly line necessitates a considerable

reduction of setup times and costs. Otherwise, a production of different models in an

intermixed sequence is utterly impossible. Nevertheless, short setup operations,

which consume just a fraction of the cycle time, may be relevant, e.g., due to tool

swaps (Boysen et al., 2007a). Setup time/cost is concerned if an additional time/cost

appears to change the setup of a station in order to be able to process the next job. If

the setup time/cost is independent of the model, it can be simply added to the

processing time/cost (Färber & Coves, 2005).

 2.1.3.1.6 Parallel Stations. Tasks with comparatively large processing times may

lead to inefficient line balances, as they force the cycle time to be inefficiently large

inducing idle times at other stations. Thus, it might be preferable to install parallel

stations, which alternately process identical work contents. Parallel stations can be

implemented in two different ways: In spacial parallelization, the respective stations

are located side by side and are alternately fed with work pieces over a switch. In

chronological parallelization, a number, say p , of operators or teams of operators

work at the same segment of the serial line covering p sequential stations. The

teams process the work pieces for p cycles such that they circulate within the line

segment each team being responsible for one out of p successive work piece

(Boysen et al., 2007a).

 2.1.3.2 Assembly Line Characteristics

 2.1.3.2.1 Number and Homogeneity of Stations. Assembly lines in real world are

composed of more than one station. However, a restriction to a given number n of

stations or even a single station might be of value. When there is more than one

station, another characteristic emerge from this situation: homogeneity of stations. In

practical cases, an assembly line may consist of stations with diverging

characteristics. For instance, open and closed stations can be mixed throughout the

line, which is referred to as hybrid lines. The majority of existing sequencing

approaches presuppose stations with homogeneous characteristics, which is very

limiting for practical applications (Boysen et al., 2007a).

18

 2.1.3.2.2 Line Layout. Traditionally, an assembly line is organized as a serial line,

where single stations are arranged along a (straight) conveyor belt (see Figure 2.1 a).

Such serial lines are rather inflexible and have other disadvantages which might be

overcome by a U-shaped assembly line (see Figure 2.1 b). Both ends of the line are

closely together forming a rather narrow ‘‘U’’. Stations may work at two segments

of the line facing each other simultaneously (crossover stations). Besides

improvements with respect to job enrichment and enlargement strategies, a U-shaped

line design might result in a better balance of station loads due to the larger number

of task-station combinations (Becker & Scholl, 2006).

Figure 2.1 Straight and U-shaped lines (Miltenburg, 2002)

 In principle, the physical layout of the line is not relevant for the sequencing

decision. However, a U-line allows operators to work on more than one work piece

per cycle at different positions on the line, because crossover stations have access to

two legs of the U-shaped line simultaneously. This influences the sequencing

problem considerably (Boysen et al., 2007a).

 2.1.3.2.3 Launching Discipline. There are two main launching strategies: (i) fixed

rate launching, (ii) variable rate launching. Fixed rate launching (FRL) implies that

each unit, regardless of model type, is equi-spaced on the line. Here, the reciprocal of

the distance between successive units equals to the cycle time. When product

variations are small, often common choice is FRL due to its simplicity. With

increasing product diversification, though, variable rate launching (VRL), made

19

possible by the arrival of sophisticated controllers and sensors, is now becoming a

practical alternative. VRL augments the flexibility of line operation as the launching

interval can be dynamically adapted to prevent idle times and work overloads (Bard

et al., 1992; Boysen et al., 2007a).

 2.1.3.2.4 Worker Return Velocity. Whenever a worker finishes all operations, he

needs to return upstream to start processing the next work piece. In the real world,

walking a distance takes some time. Nevertheless, in a mathematical model two

kinds of premises with regard to the return speed are possible (Boysen et al., 2007a):

• If workers are considerably faster than the movement of the line, return times

of workers can either be neglected or treated as fixed and directly added to

station times. Because the assumption of infinite return speed of workers

simplifies analysis and, in many cases, is a slight relaxation of reality only,

most approaches act on this assumption.

• If return times vary considerably from cycle to cycle and worker to worker,

e.g., due to different processing times and, hence, different walking distances,

an approach for mixed-model sequencing should take finite return speeds into

account.

 2.1.3.3 Operational Characteristics

 Most production systems consist of multiple levels. Nevertheless, under the

assumption of a final assembly which instantaneously pulls its material through the

whole supply chain, it may be sufficient to solely consider the final production stage.

A level production schedule at the final assembly automatically induces a level

production schedule at all preceding stages, if a small lot production is directly

triggered by the respective material usages. However, multiple production levels can

also be considered explicitly. In this case, the deviations of all production levels are

included within the objective function (Boysen et al., 2007a).

20

 2.1.3.4 Sequencing Objectives

 It has been noted during the literature survey that the researchers employed

various types of objective functions for sequencing in mixed model assembly lines.

The most common ones are:

� Keeping a constant rate of part usage. Some researchers who are particularly

interested in just-in-time production systems have addressed the problem of

keeping a constant rate of part usage. One basic requirement of JIT systems is

continual and stable part supply. Since this requirement can be realized when

the demand rate of parts is constant over time, the objective of keeping a

constant rate of part usage is important to a successful operation of the

systems. (Hyun et al., 1998). This objective can be achieved by matching

demand with actual production.

� Minimizing variation of production rates. Smoothing variation of production

rates is considered as a substitute for the ultimate objective of keeping a

constant rate of part usage under the assumption that products require

approximately equal number and mix of parts (Mansouri, 2005).

� Minimizing work overload. This objective minimizes the time (or space) by

which station borders would be exceeded if no type of compensation (e.g.,

assigning utility workers, stopping the line, taking work piece off the line,

etc.) was carried out. As work overload is usually avoided by the assignment

of utility workers, this objective is also referred to as “minimization of total

utility work” (Boysen et al., 2007a). Minimizing the utility work contributes

to reducing not only labor cost but also the risk of stopping the conveyor and

the required line length (Kim et al., 2000).

� Minimizing the set-up cost/time. A setup is required each time two

consecutive items in the production sequence are different. Many assembly

operations often require sequence-dependent setups. For instance, an

21

automotive body station needs a setup when the door types are changed.

(Hyun et al., 1998).

� Minimizing line length. This objective can be followed with variable station

borders. It is a surrogate for minimizing investment cost of the transportation

system, which is considered to raise in proportion to an increase in length

(Boysen et al., 2007a).

� Minimizing throughput time. Throughput time is defined as time interval

between the launching of the first work piece and the finishing of the last.

This is highly correlated to the objective “minimize line length”. This

objective also depends on non-fixed station lengths (Boysen et al., 2007a).

� Leveling workloads for stations on the line. This goal is about sequencing

mixed models to achieve balanced workloads over time in each assembly

station (Ding, Zhu, & Sun, 2006). This objective has several benefits:

establishing a sense of equity among workers, reducing line congestion and

thus increasing the throughput rate (Kim et al., 2006).

� Minimizing the duration of line stoppages. When the line is stopped no work

pieces can be completed. Thus, this objective minimizes opportunity costs for

lost sales (Boysen et al., 2007a). This objective was emerged from the

autonomation concept in the Toyota production system (Xiabo, 1999).

� Minimizing total idle time. Idle time represents unused (non-productive)

capacities of machines and workers. Idle time occurs whenever a worker

waits for a work piece to reach his station. Idle time in itself has its

justification if unused capacities can be profitably utilized for performing

other work (Boysen et al., 2007a).

22

 2.1.3.5 Hybrid Sequencing Problems

 Design of the MMALs involves several issues other than the model sequencing

problems (e.g. line balancing). Although those issues have been separately

considered in the literature, several hybrid approaches are also developed to deal

with integrated problems of sequencing and balancing.

 The short-term decision problem of model sequencing is heavily interdependent

with the long- to mid-term assembly line balancing. The line balance decides on the

assignment of tasks to stations and thus determines the work content and material

usage per station and model. This decision constitutes the input data of model

sequencing. Thus, the amount of overload resulting from a planned model sequence

by itself is a measure of efficiency for the achieved line balance. That is why some

authors have proposed a simultaneous consideration of both planning problems

(Boysen et al., 2007a).

2.2 Genetic Algorithms

 It is known that the MMAL sequencing problem falls into NP-hard class of

combinatorial optimization problems and thus a large-sized problem may be

computationally intractable. The computational time can be a critical factor in

choosing the right method in solving this problem since real time alteration of model

sequences is often necessary when demand pattern changes or part shortages occur.

For this reason, in recent years meta-heuristics have been widely adopted by a

number of researchers (Hyun et al., 1998). One of the most popular metaheuristics

dealing with many manufacturing optimization problems is Genetic Algorithms.

 A genetic algorithm (GA) is a search and optimization method, which simulates

the natural behaviour of biological systems. After being introduced by John Holland

(Holland, 1975), they have become increasingly popular among other heuristic

methods and they have been successfully adapted to solve several combinatorial

optimization problems in the literature. This popularity and success depend on their

23

several advantages on other methods. First, unlike some other heuristic methods,

which iterate on a single solution, GAs work with a population of candidate

solutions. This helps GAs to be useful in problem domains that have a complex

fitness landscape as recombination (crossover) is designed to move the population

away from local optima that a traditional hill climbing algorithm might get stuck in.

Second, the inductive nature of the GA means that it doesn't have to know any rules

of the problem — it works by its own internal rules. This is very useful for complex

or loosely defined problems. Other advantages include but are not limited to

scalability to higher dimensional problems and ease of adjustability to the problem at

hand. Haupt & Haupt (2004) lists the advantages of GAs as follows:

• Optimizes continuous or discrete variables,

• Doesn’t require derivative information,

• Simultaneously searches from a wide sampling of the cost surface,

• Deals with a large number of variables,

• Is well suited for parallel computers,

• Optimizes variables with extremely complex cost surfaces (they can jump out

of a local minimum),

• Provides a list of optimum variables, not just a single solution,

• May encode the variables so that the optimization is done with the encoded

variables, and

• Works with numerically generated data, experimental data, or analytical

functions.

 Genetic algorithms are a particular class of evolutionary algorithms that use

techniques inspired by evolutionary biology such as inheritance, mutation, selection,

and crossover (also called recombination).

 In nature, the `fittest’ members of a population typically survive at higher rates

compared to the `weakest’ members. These fittest members then reproduce with one

another, resulting in a new generation of the population having attributes similar to

that of their parents. In each new generation, mutations can also occur on an

24

infrequent basis. In this situation, offspring develop attributes of their own,

independent of their parents. Mutations can add diversity and a certain amount of

robustness to the population (McMullen, 2000). These natural phenomena can be

exploited to find good solutions to combinatorial optimization problems.

 Genetic algorithms can be defined as a computer simulation in which a population

of abstract representations (called chromosomes) of candidate solutions (called

individuals) to an optimization problem evolves toward better solutions.

Traditionally, solutions are represented in binary as strings of 0s and 1s, but other

encodings (real-valued, tree, etc.) are also possible. The evolution usually starts

from an initial population of randomly generated individuals and proceeds

throughout the generations. In each generation, the fitness of every individual in the

population is evaluated, multiple individuals are stochastically selected from the

current population (based on their fitness), and modified (crossed and possibly

mutated) to form a new population. The new population is then used in the next

iteration of the algorithm. Commonly, the algorithm terminates when either a

maximum number of generations has been produced, or a satisfactory fitness level

has been reached for the population. The goal here is eventually to find generations

of solutions to a combinatorial optimization problem where the objective function

value approaches the global optimum.

2.2.1 Biological and GA Terminology

 There are several terms in the context of genetic algorithms that are used in

analogy to the real terms of biology. The definitions of these terms (Mitchell, 1999)

are given below.

 Chromosome. All living organisms consist of cells, and each cell contains the

same set of one or more chromosomes—strings of DNA—that serve as a blueprint

for the organism.

25

 Gene. A chromosome can be conceptually divided into genes— each of which

encodes a particular protein. Very roughly, one can think of a gene as encoding a

trait, such as eye color.

 Allele. The different possible "settings" for a trait (e.g., blue, brown, hazel) are

called alleles.

 Locus. Each gene is located at a particular locus (position) on the chromosome.

 Genome. Many organisms have multiple chromosomes in each cell. The complete

collection of genetic material (all chromosomes taken together) is called the

organism's genome.

 Genotype. The term genotype refers to the particular set of genes contained in a

genome. Two individuals that have identical genomes are said to have the same

genotype.

 Phenotype. The genotype gives rise, under fetal and later development, to the

organism's phenotype — its physical and mental characteristics, such as eye color,

height, brain size, and intelligence.

 Recombination (Crossover). During sexual reproduction, recombination (or

crossover) occurs: in each parent, genes are exchanged between each pair of

chromosomes to form offspring.

 Mutation. Offspring are subject to mutation, in which single nucleotides

(elementary bits of DNA) are changed from parent to offspring, the changes often

resulting from copying errors.

 Fitness. The fitness of an organism is typically defined as the probability that the

organism will live to reproduce (viability) or as a function of the number of offspring

the organism has (fertility).

26

 In genetic algorithms, these terms have much simpler meanings. The term

chromosome typically refers to a candidate solution to a problem, often encoded as a

bit string. The "genes" are either single bits or short blocks of adjacent bits that

encode a particular element of the candidate. An allele in a bit string is either 0 or 1;

for larger alphabets more alleles are possible at each locus. Crossover typically

consists of exchanging genetic material between parents. Mutation consists of

flipping the bit at a randomly chosen locus (or, for larger alphabets, replacing the

symbol at a randomly chosen locus with a randomly chosen new symbol).

2.2.2 Components of GA

 Design of a GA requires careful inspection and determination of the suitable

choices for several factors including data structures, initial population formation,

fitness function, selection and insertion strategies, genetic operators, genetic

parameters, and termination criteria. Once they are decided, the genetic search

process works as given in Figure 2.2.

 Using the process flow presented in Figure 2.2, pseudocode representation for a

traditional GA can be written as follows:

Input Parameters (MaxGeneration, PopSize, PC:crossover rate, PM: mutation

rate)

Generate Initial Solutions

Evaluate Fitness Values, Zs

For i = 1 to MaxGeneration

 For j = 1 to PopSize / 2

Choose Two Solutions (with a fitness bias)

If Random Number < PC then Perform Crossovers

If Random Number < PM then Perform Mutations

 Next j

Determine Zs for New Solutions

Note Best of Generation

27

If Z(Best of Generation) is better than Z(Best Found thus Far) Then

Replace Best Found thus Far with Best of Generation

Endif

Next i

Present Best Found Thus Far

 Figure 2.2 Flow-chart of a simple GA

 The simple search procedure given in Figure 2.2 and the above pseudocode are

the basis for most applications of GAs. Although the outline of the algorithm is

common in most of the applications, the details of the components are determined

according to the problem at hand. In the following sections, components of GA will

be described in detail.

28

 2.2.2.1. Genetic Representation

 Genetic representation is a way of representing solutions (individuals) in GAs. It’s

accomplished by translating the solutions into chromosome representations. The

chromosome format used in this translation process is called encoding.

 Designing a good genetic representation that is expressive and evolvable is

essential to the success of the algorithm. Most GA applications use fixed-length,

fixed-order bit strings to encode candidate solutions. Variable length representations

may also be used, but one must consider the trade-offs between possible gains and

implementation complexity. Common genetic representations are (i) binary

encoding, (ii) permutation encoding, (iii) real-valued encoding and (iv) tree

encoding.

 2.2.2.1.1 Binary Encoding. Binary encoding is the most common and simplest

type of genetic representation. In binary encoding every chromosome is a string of

bits, 0 or 1. For example:

Chromosome A ���� 1 0 1 0 1 1 1 1

Chromosome B ���� 0 0 1 1 0 1 1 0

 Popularity of binary encoding can be attributed to a number of reasons. Firstly, it

is the simplest representation type, and hence initial GA researchers concentrated on

such encodings. Also much of the existing GA theory is based on the assumption of

fixed-length, fixed-order binary encodings. In addition, heuristics about appropriate

parameter settings (e.g., for crossover and mutation rates) have generally been

developed in the context of binary encodings (Mitchell, 1999).

 However, it should be noted that this encoding is often not natural for many

problems and sometimes corrections must be made after crossover and/or mutation

operations.

29

 2.2.2.1.2 Permutation Encoding. Permutation encoding can be used in ordering

problems, such as traveling salesman problem or task ordering problem. In

permutation encoding, every chromosome is a string of numbers that represent a

position in a sequence. For example:

Chromosome A ���� 2 7 4 5 6 3 8 1

Chromosome B ���� 1 4 7 8 5 2 6 3

 Here, the two chromosomes, A and B, present two arbitrary orderings of numbers

from 1 to 8. For this specific example, there are !8 alternative sequences.

 Although being useful for ordering problems, for certain types of crossover and

mutation operations, permutation encoding may require that some corrections be

made to leave the chromosome consistent (i.e. have real sequence in it).

 2.2.2.1.3 Real-Valued Encoding. For many applications, it is most natural to use

an alphabet of many characters or real numbers to form chromosomes. Use of binary

encoding for this type of problems would be difficult. In the real-valued encoding,

every chromosome is a sequence of some values. Values can be anything connected

to the problem, such as real numbers, characters or any object. For example:

Chromosome A ���� 2.27 5.32 7.14 4.45 5.81 6.77

Chromosome B ���� D B A A C B D B B B A C

 Mitchell (1999) indicates that several empirical comparisons between binary

encodings and multiple-character or real-valued encodings have shown better

performance for the latter. But the performance of the chosen encoding depends very

much on the problem and the details of the GA being used.

 Real-valued encoding may be a good choice for certain problems, however, for

this type of encoding it is often necessary to develop some new crossover and

mutation operators which are specific to the problem at hand.

30

 2.2.2.1.4 Tree Encoding. In the tree encoding every chromosome is a tree of some

objects, such as functions or commands in a programming language. For example:

 Figure 2.3 Tree encoding examples

 Tree encoding is useful for evolving programs or any other structures that can be

encoded in trees. Programming language LISP is often used for this purpose, since

programs in LISP are represented directly in the form of tree and can be easily parsed

as a tree, the crossover and mutation can be done relatively easier (Obitko, 1998).

 2.2.2.2 Fitness Function

 The fitness function is defined over the genetic representation and measures the

quality of the represented solution. Here the GA searches for a set of parameter

values (a chromosome) that maximize or minimize the given fitness function.

 The fitness function is always problem dependent. For instance, in the traveling

salesman problem, the total distance traveled is minimized, whereas, in the knapsack

problem, the total value of objects that can be put in a knapsack of some fixed

capacity is maximized. Therefore, the fitness functions for these two problems are

the sum of total distance traveled and sum of total value of objects in the knapsack,

respectively.

31

 In the above-mentioned two problems, fitness functions can be defined

mathematically, however, in some problems, it is hard or even impossible to define

the fitness expression. When the form of fitness function is not known (for example,

visual appeal or attractiveness) or the result of optimization is required to fit a

particular user preference (for example, taste of coffee or color set of the user

interface) human evaluation may be necessary. In these cases, interactive genetic

algorithms which use human evaluation are usually preferred.

 In following, various terms which are related to fitness function development in

GAs are explained:

 Fitness Landscape. In the context of population genetics, a fitness landscape is a

representation of the space of all possible genotypes along with their fitnesses

(Mithcell, 1999). A sample fitness landscape for the arbitrary function (5) is given in

Figure 2.4.

Z =
)(1.01

5.0sin
5.0

22

222

yx

yx

++

−+
+ (5)

 Figure 2.4 A sample fitness landscape

32

 Such plots are called landscapes because the plot of fitness values can form

"hills," "peaks," "valleys," and other features analogous to those of physical

landscapes.

 Evolution causes populations to move along landscapes in particular ways, and

adaptation can be seen as the movement toward local peaks. Likewise, in GAs the

operators of crossover and mutation can be seen as ways of moving a population

around on the landscape defined by the fitness function.

 Global Optimum. A global optimum is a point in the fitness landscape whose

value exceeds that of any other value (or is exceeded by every other value if it is a

minimization problem).

 Local Optimum. A local optimum is a point in the fitness landscape that has the

property that no chain of mutations starting at that point can go up without first going

down (Ashlock, 2005).

 Making an analogy to a mountain range, the global optimum can be thought of as

the top of the highest mountain, while the local optima are the peaks of every

mountain or foothill in the range. Even rocks will have associated local optima at

their high points. Note that the global optimum is one of the local optima. Also, note

that there may be more than one global optimum if two mountains tie for highest.

GAs search such fitness landscapes for highly fit individuals.

 Once an appropriate representation is chosen and the fitness function is defined,

GA proceeds to initialize a population of solutions usually randomly.

 2.2.2.3 Initial Population

 Initially, a number of individual solutions are generated to form an initial

population. The population size depends on the nature and complexity of the

problem. Traditionally, the population is generated randomly, covering the entire

33

range of possible solutions. Occasionally, the solutions may be seeded in areas where

optimal solutions are likely to be found. Latter can be accomplished by several

approaches such as a pre-run heuristic method, initial run of the GA, a case- or

memory-based reasoning system.

 After the initialization phase, the chromosomes are passed to the fitness function

to determine the fitness values which are used to decide which chromosomes in the

initial population are fit enough to survive and possibly reproduce offspring in the

next generation.

 2.2.2.4 Selection

 Selection is the stage of a genetic algorithm in which the fitter individuals are

chosen from a population for later breeding so that their offspring will in turn have

even higher fitness.

 The purpose of selection is to emphasize the fitter individuals in the population in

hopes that their offspring will in turn have even higher fitness. Selection pressure is a

critical parameter for GAs, and it has to be balanced with variation from crossover

and mutation (the "exploitation/exploration balance"): too-strong selection means

that a set of highly fit but suboptimal chromosomes will dominate the population,

reducing the diversity needed for further change and progress (exploration problem),

and the search will terminate prematurely; too-weak selection will result in too-slow

evolution (exploitation problem).

 As was the case for encodings, numerous selection schemes have been proposed

in the GA literature (Mitchell, 1999). Certain selection methods rate the fitness of

each solution and preferentially select the best solutions. Other methods rate only a

random sample of the population, as this process may be very time-consuming. Most

functions are stochastic and designed so that a small proportion of less fit solutions

are selected. This helps to keep the diversity of the population large, preventing

34

premature convergence on poor solutions. The following section explains the widely

used selection schemes in the literature.

 2.2.2.4.1 Roulette Wheel and Stochastic Universal Sampling. Holland (1975) used

fitness-proportionate selection which chooses parents in direct proportion to their

fitness. If individual i has fitness fi, then its expected value (the expected number of

times an individual will be selected to reproduce) is ff i / , where f is the average

of the fitness values of the entire population. The most common method to

implement fitness-proportionate selection is the roulette wheel sampling.

 The analogy to a roulette wheel can be envisaged by imagining a roulette wheel in

which each candidate solution represents a pocket on the wheel; the size of the

pockets are proportionate to the probability of selection of the solution. Selecting N

chromosomes from the population is equivalent to spinning the roulette wheel N

times, as each candidate is drawn independently. On each spin, the individual under

the wheel's marker is selected to be in the pool of parents for the next generation.

 Roulette wheel sampling method can be implemented as follows (Mitchell, 1999):

1. Sum the total expected value of individuals in the population. Call this sum T.

2. Repeat N times:

a. Choose a random integer r between 0 and T.

b. Loop through the individuals in the population, summing the expected

values, until the sum is greater than or equal to r. The individual

whose expected value puts the sum over this limit is the one selected.

 It should be noted that while this method may lead elimination of candidate

solutions even though they have a very high fitness value, on the other hand, it may

allow the survival of some weak solutions. Allowing the survival of weak solutions

can be considered as an advantage: as though a solution may be weak, it may include

some component which could prove useful following the recombination process.

35

 Although roulette wheel method statistically results in the expected number of

offspring for each individual, with the relatively small populations, the actual number

of offspring allocated to an individual might be far from its expected value (an

extremely unlikely series of spins of the roulette wheel could even allocate all

offspring to the worst individual in the population). Hence, a different sampling

method — stochastic universal sampling (SUS) — is proposed to minimize this

"spread" (the range of possible actual values, given an expected value). Rather than

spin the roulette wheel N times to select N parents, SUS spins the wheel once — but

with N equally spaced pointers, which are used to select the N parents (Mitchell,

1999).

 However, SUS does not solve the major problems with fitness-proportionate

selection. Typically, early in the search the fitness variance in the population is high

and a small number of individuals are much fitter than the others. Under fitness-

proportionate selection, these individuals and their descendents will multiply quickly

in the population, in effect preventing the GA from doing any further exploration.

This is known as "premature convergence." In other words, fitness-proportionate

selection early on often puts too much emphasis on "exploitation" of highly fit

strings at the expense of exploration of other regions of the search space. Later in the

search, all individuals in the population become very similar (the fitness variance is

low), the real fitness differences for selection diminish, and evolution grinds to a near

halt, implying that the rate of evolution depends on the variance of fitnesses in the

population (Mitchell, 1999).

 2.2.2.4.2 Sigma Scaling. To address premature convergence problems caused by

the variance of fitnesses, the researchers have experimented with several "scaling"

methods—methods for mapping "raw" fitness values to expected values so as to

make the GA less susceptible to premature convergence. One example is "sigma

scaling", which keeps the selection pressure (i.e., the degree to which highly fit

individuals are allowed many offspring) relatively constant over the course of the run

rather than depending on the fitness variances in the population. Under sigma

scaling, an individual's expected value is a function of its fitness, the population

36

mean, and the population standard deviation. An example of sigma scaling would be

as follows (Mitchell, 1999):

=

≠
−

+
=

0)(if 0.1

0)(if
)(2

)()(
1

),(

t

t
t

tfif

tiExpVal

σ

σ
σ (6)

where ExpVal(i,t) is the expected value of individual i at time t, f(i) is the fitness of i,

f(t) is the mean fitness of the population at time t, and σ (t) is the standard deviation

of the population fitnesses at time t. This function, gives 1.5 expected offspring to an

individual with fitness one standard deviation above the mean. If ExpVal(i,t) is less

than 0, expected offspring may be reset to a small arbitrary number such as 0.1, so

that individuals with very low fitness will have some small chance of reproducing.

 Under sigma scaling, if a single chromosome dominates at the beginning of the

run, the variability in fitnesses will also be large, and scaling by the variability will

reduce the dominance. Later in the run, when populations are typically more

homogeneous, scaling by this smaller variability will allow the highly fit

chromosomes to reproduce.

 2.2.2.4.3 Boltzman Selection. Sigma scaling keeps the selection pressure more

constant over a run. But often different amounts of selection pressure are needed at

different times in a run. Depending on how far along in the run the generation is,

Boltzman selection scheme allows this kind of variation in the selection process by

changing the selection pressure. Early on, it may be better to allow lower selection

pressure, allowing the less fit chromosomes to reproduce at rates similar to the fitter

chromosomes, thereby maintaining a wider exploration of the search space. Later in

the run, increasing the selection pressure helps the GA to converge more quickly to

the optimal solution, hopefully the global optimum.

 Similar to simulated annealing approach, under Boltzmann selection, a

continuously varying "temperature" controls the rate of selection according to a

37

preset schedule. The temperature starts out high, which means that selection pressure

is low (i.e., every individual has some reasonable probability of reproducing). The

temperature is gradually lowered, which gradually increases the selection pressure,

thereby allowing the GA to focus to the best part of the search space while

maintaining the "appropriate" degree of diversity. A typical implementation given in

Mitchell (1999) is to assign an expected value to each individual i,

t

Tif

Tif

e

e
tiExpVal

/)(

/)(

),(= (7)

where T is temperature and t denotes the average over the population at time t.

Experimenting with this formula will show that, as T decreases, the gap between the

expected values of the best and worst individuals gets larger. The desire is to have

this happen gradually over the course of the search, so temperature can gradually

decrease according to a predefined schedule.

 2.2.2.4.4 Rank Selection. In recent years, the researchers widely employed several

alternative selection schemes, such as rank and tournament selection, which are

proposed to overcome the problems present in fitness-proportionate selection

approaches.

 Rank selection, which prevents too-quick convergence, ranks the chromosomes

according to their raw fitness values and then based on these rankings, assigns

reproductive fitness values to them. This may be done linearly (linear ranking) or

exponentially (exponential ranking). Ranking avoids the selection pressure exerted

by the proportional fitness method, but it also ignores the absolute differences among

the chromosome fitnesses. Moreover, ranking does not take variability into account

and provides a moderate adjusted fitness measure, since the probability of selection

between chromosomes ranked k and 1+k is the same regardless of the absolute

differences in fitness.

38

 The downside of rank selection, which is caused by slowing down the selection

pressure, is that the GA will in some cases be slower in finding highly fit individuals.

However, in many cases the increased preservation of diversity that results from

ranking leads to more successful search than the quick convergence that can result

from fitness-proportionate selection.

 2.2.2.4.5 Tournament Selection. The selection schemes (explicit fitness mapping

methods) described above require an intermediate step of computing a modified

fitness and in the case of rank selection, a sorting process was required to put the

entire population in order by rank. To avoid these time-consuming procedures,

tournament selection can be used as an alternative approach. This method is similar

to the rank selection in terms of the selection pressure.

 There are several variants of tournament selection. In the simplest, binary

tournament selection, pairs of individual are picked at random from the population.

Whichever has the higher fitness is copied into a mating pool. This is repeated until

the mating pool is full. Larger tournaments may also be used, where the best of n

randomly chosen individuals is copied into the mating pool. Using larger

tournaments has the effect of increasing the selection pressure, since below average

individuals are less likely to win a tournament, while above average individuals are

more likely to (Beasley, Bull, & Martin, 1993).

 A further generalization is probabilistic binary tournament selection. In this, the

better individual wins the tournament with probability p , where .15.0 << p Using

lower values of p has the effect of decreasing the selection pressure, since below

average individuals are comparatively more likely to win a tournament. By adjusting

tournament size or win probability, the selection pressure can be made arbitrarily

large or small (Beasly et al., 1993).

 2.2.2.4.6 Elitism. Elitism refers to the selection strategy that forces the GA to

retain some number of the best individuals at each generation, protecting them

against destruction through crossover, mutation, or inability to reproduce.

39

 Those members of the population guaranteed to survive are called the elite.

Elitism guarantees that a population with a fixed fitness function cannot slip back to

a smaller maximum fitness in later generations, but it also causes the current elite to

be more likely to have more children in the future causing their genes to dominate

the population. Such domination can impair search of the space of genes, because the

current elite may not contain the genes needed for the best possible creatures. A good

compromise is to have a small number of elites (Ashlock, 2005).

 Several researchers report that elitism significantly improves GA’s performance.

 2.2.2.4.7 Steady-State Selection and Generation Gaps. The generation gap is

defined as the proportion of individuals in the population which are replaced in each

generation. Most work has used a generation gap of 1, which means the whole

population is replaced in each generation. In some schemes, such as the elitist

schemes described above, successive generations overlap to some degree—some

portion of the previous generation is retained in the new population. However, a

more recent trend has favoured steady-state replacement. This operates at the other

extreme: in each generation only a few (typically two) individuals are replaced.

 Steady-state GAs may be a better model of what happens in nature but no

evidence has been found that steady-state replacement is fundamentally better than

the generational one. They are often used in evolving rule-based systems in which

incremental learning (and remembering what has already been learned) is important

and in which members of the population collectively (rather than individually) solve

the problem at hand.

 2.2.2.5 Genetic Operators

 A genetic operator is a process used in genetic algorithms to maintain genetic

diversity. Genetic variation is a necessity for the process of evolution. Genetic

operators used in genetic algorithms are analogous to those which occur in the

natural world: crossover and mutation. Here, the decision of which genetic operators

40

to use depends greatly on the encoding strategy, fitness function and the details of the

problem at hand.

 2.2.2.5.1 Crossover. Crossover is a genetic operator which is used to vary the

programming of a chromosome from one generation to the next. It is an analogy to

reproduction and biological crossover, upon which genetic algorithms are based. It

could be said that the main distinguishing feature of a GA is the use of crossover. In

fact, the power of GAs arises from crossover.

 Crossover causes a structured, yet randomized exchange of genetic material

between solutions, with the possibility that good solutions can generate better ones

(Srinivas & Patnaik, 1994). Ashlock (2005) gives the formal definition of crossover

as follows:

 A crossover operator for a set of genes G is a map

Cross : G × G → G × G (8.1)

or

Cross : G × G → G. (8.2)

 The points making up the pairs in the domain space of the crossover operator are

termed parents, while the points either in or making up the pairs in the range space

are termed children (offspring). The children are expected to preserve some part of

the parents’ structure.

a. Single-Point Crossover. Many different approaches have been tried for

crossover in GAs. The simplest form is the single-point crossover in which a

single crossover position is chosen at random and the parts of two parents

after the crossover position are exchanged to form two offspring. This means

that the information for each child comes from a different parent before and

after the crossover point. One of the shortcomings of this method is positional

bias: the schemas that can be created or destroyed by a crossover depend

41

strongly on the location of the bits in the chromosome. Single-point crossover

treats some loci preferentially: the segments exchanged between the two

parents always contain the endpoints of the strings, and loci near one another

in the representation are kept together with a much higher probability than

those that are farther apart.

b. Two-Point Crossover. To overcome the positional bias problems, multiple-

point crossover methods have been developed. The most common approach is

the two-point crossover where the segments between two randomly chosen

loci are exchanged. While this method prevents the endpoint effect mentioned

above, it is also less likely to disrupt schemas with large defining lengths and

therefore it can combine more schemas than single-point crossover.

c. Parameterized Uniform Crossover. Some practitioners believe strongly in the

superiority of parameterized uniform crossover, in which an exchange

happens at each bit position with probability p (typically 8.05.0 << p).

Parameterized uniform crossover has no positional bias—any schemas

contained at different positions in the parents can potentially be recombined

in the offspring. However, this lack of positional bias can prevent coadapted

alleles from ever forming in the population, since parameterized uniform

crossover can be highly disruptive of any schema (Mitchell, 1999). It must

also be noted that this method is computationally expensive because of the

large number of random numbers needed.

Most applications of GAs use static crossover operators, that is to say that

their mechanisms, parameters, and probability of application are fixed at the

beginning and constant throughout the run of the algorithm. However, there is

no single choice of operators which is optimal for all problems. In fact, the

optimal choice of operators for a given problem will be time-variant i.e. it

will depend on such factors as the degree of convergence of the population.

Based on theoretical and practical approaches, a number of authors have

proposed methods of adaptively controlling the operators, usually invoking

42

some kind of meta-learning algorithm, in order to try and improve the

performance of the Genetic Algorithm as a function optimizer (Smith &

Fogarty, 1997).

d. Adaptive Crossover. A technique to use in these situations is adaptive

crossover. In adaptive crossover, each creature has its gene augmented by a

crossover template, a string of 0’s and 1’s with one position for each item in

the original data structure. When two parents are chosen, the crossover

template from the first parent chosen is used to do the crossover. In positions

where the template has a 0, items go from first parent to the first child and the

second parent to the second child. In positions where the template has a 1,

items go from the first parent to the second child and from the second parent

to the first child. The parental crossover templates are themselves crossed

over and mutated with their own distinct crossover and mutation operators to

obtain the children’s crossover templates. The templates thus coevolve with

the creatures and seek out crossover operators that are currently useful. This

can allow evolution to focus crossover activity in regions where it can help

the most. The crossover templates that evolve during a successful run of an

evolutionary algorithm may contain nontrivial useful information about the

structure of the problem (Ashlock, 2005).

Adaptive crossover can suffer from a common problem called a two-

timescale problem. The amount of time needed to efficiently find those fit

genes that are easy to locate with a given crossover template can be a great

deal less than that needed to find the crossover template in the first place. For

some problems this will not be the case, for some it will, and intuition backed

by preliminary data is the best tool currently known for telling which

problems might benefit from adaptive crossover. If a problem must be solved

over and over for different parameters, then saving crossover templates

between runs of the evolutionary algorithm may help. In this case, the

crossover templates are being used to find good representations, relative to

43

the crossover operator, for the problem in general while solving specific cases

(Ashlock, 2005).

 2.2.2.5.2 Crossover For Permutation Problems. As it is the case in the mixed-

model sequencing problems, sometimes an optimization process requires sorting the

elements of a list in the correct order. For such problems, above-mentioned crossover

operators may be inappropriate as they may produce invalid offspring. Since the

chromosome is an ordered list (or there may be repeated elements of which quantities

must not change), a direct swap would introduce duplicates and remove necessary

candidates from the list. Consider the following two parent chromosomes for a

mixed-model sequencing problem of 3 models where each model has a demand of 2.

PARENTS

parent1 [A A C C B B]

parent2 [A B C C B A]

 A simple single-point crossover between the second and third elements of the

parent chromosomes produces the offspring

SIMPLE CROSSOVER (INCORRECT)

offspring1 [A A | C C B A]

offspring2 [A B | C C B B]

 Obviously this won’t work, since offspring1 contains three As and only one B

while offspring2 has three Bs, and only one A. Starkweather (1991) compares

several possible solutions to this problem, which are briefly summarized here.

a. Edge Recombination. The edge recombination operator is different from

other genetic sequencing operators in that it emphasizes adjacency

information instead of the order or position of items in the sequence. The

edge table used by the operator is really an adjacency table listing the

connections of elements found in the two parent sequences. The edges are

44

then used to construct offspring in such a way that the isolation of the

elements in the sequence is avoided.

 For example, for a traveling salesman problem of 10 cities, the tour [b a d

f g e c j h i] contains the links [ba, ad, df, fg, ge, ec, cj, jh, hi, ib]. In order to

preserve existent links in the two parent sequences a table is built which

contains all the existent links in each parent tour. Building the offspring then

proceeds as follows: (1) Select a starting element. This can be one of the

starting elements from a parent, or can be chosen from the set of elements

which have the fewest entries in the edge table. (2) Of the elements that have

links to this previous element, choose the element which has the fewest

number of links remaining in its edge table entry, breaking ties randomly. (3)

Repeat step 2 until the new offspring sequence is complete.

b. Order Crossover (OX). As the title implies, here the goal is to preserve the

relative order of elements in the sequences to be combined. With this

operator, the offspring inherits the elements between the two crossover

points, inclusive, from the selected parent in the same order and position as

they appeared in that parent. The remaining elements are inherited from the

alternate parent in the order in which they appear in that parent, beginning

with the first position following the second crossover point and skipping over

all elements already present in the offspring.

 The following example taken from Haupt & Haupt (2004) demonstrates

the order crossover procedure. Consider two parent chromosomes of length 6:

PARENTS

parent1 [3 4 6 2 1 5]

parent2 [4 1 5 3 2 6]

 OX begins by choosing two crossover points and exchanging the integers

between them. This results in holes (denoted below by X’s), which are left in

45

the spaces where integers are repeated. If the crossover points are after the

second and fourth integers, the first stage leaves offspring that look like

OX (First Stage)

{

{] X X | | 1 4 [

] X 1 | | 4 X [

K

2L

J

1L

2 6

 3 5

offspring

offspring

 At this point the holes are pushed to the beginning of the offspring. All

integers that were in those positions are pushed off the left of the

chromosome and wrap around to the end of the offspring. At the same time

the strings J and K that were exchanged maintain their positions:

OX (Second Stage)

] 1 4 X X [

] 4 1 X X [

2M

1M

2 6

3 5

offspring

offspring

 For the final stage the X’s are replaced with strings J and K:

OX (Final Stage)

{{

{{] 1 4 [

] 4 1 [

KJ

2N

JK

1N

2 63 5

3 52 6

offspring

offspring

 OX has the advantage that the relative ordering is preserved, although the

absolute position within the string is not.

c. Partially Mapped Crossover (PMX). In this method, a parent and two

crossover sites are selected randomly and the elements between the two

starting positions in one of the parents are directly inherited by the offspring.

Each element between the two crossover points in the alternate parent is

mapped to the position held by this element in the first parent. Then the

remaining elements are inherited from the alternate parent. Just as in the OX

46

operator, the section of the first parent which is copied directly to the

offspring preserves order, adjacency and position for that section. However,

it seems that more disruption occurs when mapping the other elements from

the unselected parent. Using the same parent chromosomes of the OX

example, Haupt & Haupt (2004) demonstrates the PMX procedure as follows:

 If crossover points are between elements 1 and 2, and 3 and 4, then string

K from parent2 is switched with string J from parent1 as follows:

PMX (Step A)

{

{] 6 2 3 | | 4 [

] 5 1 2 | | 3 [

K

2A

J

1A

6 4

5 1

offspring

offspring

 All values exchanged between parents are shown in bold type. As it is

seen, this process leads to making some values to double and some others to

disappear. To remedy this, the switched strings, J and K, remain untouched

throughout the rest of the procedure. The original doubles in offspring2A are

exchanged with the original doubles in offspring1A (the original 4 in

offspring2A exchanged with the original 1 in offspring1A, and the original 6 in

offspring2A with the original 5 in offspring1A) to obtain the following final

solution:

PMX (Step B)

] 2 3 | | [

] 2 | | 3 [

2B

1B

56 41

6 4 5 1

offspring

offspring

 Each offspring contains part of the initial parent in the same position (not

highlighted numbers) and includes each integer once and only once.

d. Cycle Crossover (CX). This operator preserves the absolute positions of

elements in the parent sequence. A parent sequence and a cycle starting point

47

are randomly selected. The element at the cycle starting point of the selected

parent is inherited by the child. The element, which is in the same position in

the other parent, is searched in the selected parent. When its position is found

in the selected parent, the element is inherited to the same position in the

child. This continues until the cycle is completed by encountering the initial

item in the unselected parent. Any elements which are not yet present in the

offspring are inherited from the unselected parent. Note that cycle crossover

always preserves the position of elements from one parent or the other

without any disruption. The example taken from Haupt & Haupt (2004)

demonstrates the CX procedure as follows:

 The information exchange begins at the left of the string and the first two

digits are exchanged leading to

CX (First Step)

] 6 2 3 5 1 [

] 5 1 2 6 4 [

2W

1W

3

4

offspring

offspring

 Now that the first offspring has two 4s, the second 4 is exchanged with the

other offspring to get:

CX (Second Step)

] 6 2 3 5 [

] 5 1 2 6 [

2X

1X

43

14

offspring

offspring

 Since there are two 1s in the first offspring, position 5 is exchanged with

the second offspring:

CX (Third Step)

] 6 3 5 [

] 5 2 6 [

2Y

1Y

143

214

offspring

offspring

 The next position to exchange is position 4 where there is a repeated 2:

48

CX (Fourth Step)

] 6 5 [

] 5 6 [

2Z

1Z

1243

2314

offspring

offspring

 At this point, 2 is exchanged with the 3 and there are no repeated integers

in either string, so the crossover is complete. Now, it can be seen that each

offspring has exactly one of each digit, and it is in the position of one of the

parents.

e. Position Based Crossover (PBX). This operator is intended to preserve

position information during the recombination process. Several random

locations in the sequence are selected along with one parent; the elements in

those positions are inherited from that parent. The remaining elements are

inherited in the order in which they appear in the alternate parent, skipping

over all elements which have already been included in the offspring. Thus,

the operator appears to be similar to OX, except that the elements copied

from the selected parent come from random locations in the sequence and not

from adjacent locations; although designed as a “position” operator, at

preserving a position, it probably is less effective than PMX and CX.

f. Immediate Successor Relation Crossover (ISRX). This operator is rarely used

in the literature. Kim et al. (2000) states that for MMAL sequencing

problems, it has been shown experimentally that a combined use of

immediate successor relation crossover (ISRX) operator and inversion

operator is superior to other possible operators. ISRX is a crossover operator

that uses the information of immediate successor relations in parents. An

immediate successor of a gene A is the gene immediately following A. The

immediate successor of the last gene is the first one, by definition. This

relation can be summarized in a tabular form as shown in Table 2.1, which

maintains all the immediate successors for every gene type and the ratio of

the immediate successors, called gene ratio. The overall procedure of creating

offspring with the ISRX operator is as follows.

49

Step 1: Construct the initial ISRX table, set 1=i , and select an initial

gene type (ie) randomly.

Step 2: Inherit ie at the i -th position in the offspring. If a complete

offspring is built, then stop; otherwise, go to the next step.

Step 3: Update the immediate successors by removing two randomly

chosen elements among those having the gene type of ie , and also

update the gene ratio.

Step 4: Increase i by 1, and set ie to the gene type such that the

number of elements having the type is the largest in the row of 1−ie .

Ties are broken by selecting the one with the smallest gene ratio.

When this also ties, one gene type is randomly selected. Return to

Step 2.

 Suppose two parent strings are (A A B B B C C C C) and (A B C A B C B

C C). The ISRX operator begins with setting up the initial ISRX table, as

shown in Table 2.1 (a). The first four iterations of the procedure are provided

in Table 2.1. Repeating the procedure can produce an offspring of (B C A B

C C B C A). The other offspring can be obtained by starting with a different

initial gene type.

 Table 2.1 ISRX table

 2.2.2.5.3 Mutation. Mutation in GAs is a genetic operator in an analogy to

biological mutation, which is used to maintain genetic diversity from one generation

of a population of chromosomes to the next. Its importance arises from the fact that it

allows the algorithm to avoid local minima by preventing the population of

50

chromosomes from becoming too similar to each other, thus slowing or even

stopping evolution. It also helps to ensure that no point in the search space has a zero

possibility of being examined.

 Ashlock (2005) gives the formal definition of mutation operator as follows:

 A mutation operator on a population of genes G is a function

Mutate : G → G (9)

that takes a gene to another similar but different gene. Mutation operators are also

called unary variation operators.

 Crossover mixes and matches disparate creatures; it facilitates a broad search of

the space of data structures accessible to a given genetic algorithm. Mutation, on the

other hand, makes small changes in individual creatures. It facilitates a local search

and also a gradual introduction of new ideas into the population (Ashlock, 2005). A

common view in the GA community is that crossover is the major instrument of

variation and innovation in GAs, with mutation insuring the population against

permanent fixation at any particular locus and thus playing more of a background

role. However, the appreciation of the role of mutation is growing as the GA

community attempts to understand how GAs solve complex problems. Some

comparative studies have been performed on the power of mutation versus crossover;

however, it is not a choice between crossover and mutation but rather the balance

among crossover, mutation, and selection that is all important. The most promising

prospect for producing the right balances over the course of a run is to find ways for

the GA to adapt its own mutation and crossover rates during a search (Mitchell,

1999).

 Common mutation operators can be summarized as follows.

51

a. Single-Point Mutation. This simple operator changes the value of the string at

a single position. When used with binary encoding, if the selected location

contains “0”, it becomes “1” (and vice-versa).

b. Multiple-Point Mutation. This is basically a single-point mutation which is

applied for a fixed number of locations of the chromosome.

c. Probabilistic (Uniform) Mutation. This operator is a flexible version of

multiple-point mutation, in which every location can be exposed to a

mutation with a probability of α .

d. Lamarckian Mutation. This is performed by looking at all possible

combinations of k or fewer point mutations and using the one that results in

the best fitness value.

 The point-mutation operators described above are the basic mutation operators

which can be easily used with simple binary genetic algorithm. The success of the

operators usually depends on the nature of the problem, and therefore several other

operators are proposed in the literature such as swapping and shifting.

e. Swap Mutation. This operator is performed by exchanging the values at two

randomly selected locations.

f. Shift Mutation. This operation can be performed by shifting either a single

value by moving it through the existing string or the values between two

selected locations.

 2.2.2.5.4 Inversion. Genetic Algorithm theory as proposed by Holland (1975) was

founded on four operators: selection, crossover, mutation and inversion. Although

Holland included inversion as one of the defining operators of GAs, in the following

years it has been rarely used.

52

 Inversion operator aims to mimic the property from nature that, in general, the

function of a gene is independent of its location on the chromosome. This is

performed by randomly selecting a segment on the chromosome and then inverting

the order of the genes in that segment.

 2.2.2.6 GA Parameters

 Another important issue in implementing a genetic algorithm is how to set the

values for the various parameters, such as the population size, crossover rate,

mutation rate and termination criteria.

 When defining a GA one needs to choose its components, such as variation

operators (mutation and crossover) that suit the representation, selection mechanisms

for selecting parents and survivors, and an initial population. Each of these

components may have parameters, for instance: the probability of mutation, the

tournament size of selection, or the population size. The values of these parameters

greatly determine whether the algorithm will find a near-optimum solution and

whether it will find such a solution efficiently. Choosing the right parameter values,

however, is a time-consuming task. In recent years, this issue has received the

attention of many researchers. Eiben et al. (1999) classifies these efforts into two

major forms: parameter tuning and parameter control (Figure 2.5).

 Figure 2.5 Taxonomy for parameter setting in GAs

 Parameter Tuning. It refers to the commonly practiced approach that amounts to

finding good values for the parameters before the algorithm is run and then keeping

53

these values fixed while the algorithm runs. With this method, typically one

parameter is tuned at a time, which may cause some suboptimal choices, since

parameters often interact in a complex way. Simultaneous tuning of more

parameters, however, leads to an enormous amount of experiments. The technical

drawbacks to parameter tuning based on experimentation can be summarized as

follows:

• Parameters are not independent, hence trying all different combinations

systematically is practically impossible.

• The process of parameter tuning is time consuming, even if parameters are

optimized one at a time, regardless of their interactions.

• For a given problem the selected parameter values are not necessarily

optimal, even if the effort made for setting them is significant.

 Parameter Control. This method forms an alternative, as it amounts to starting a

run with initial parameter values which are changed during the run.

 A general drawback of the parameter tuning approach, regardless of how the

parameters are tuned, is based on the observation that a run of a GA is an

intrinsically dynamic, adaptive process. The use of rigid parameters that do not

change their values is thus in contrast to this spirit. Additionally, it is intuitively

obvious that different values of parameters might be optimal at different stages of the

evolutionary process. For instance, large mutation steps can be good in the early

generations helping the exploration of the search space and small mutation steps

might be needed in the late generations to help fine tuning the suboptimal

chromosomes. This implies that the use of static parameters itself can lead to inferior

algorithm performance.

 The straightforward way to treat the above problem is to use parameters whose

values may change over time, that is, by replacing a parameter p by a function

)(tp , where t is the generation counter. As indicated earlier, however, the problem

of finding optimal static parameters for a particular problem can be quite difficult,

54

and the optimal values may depend on many other factors (such as the applied

recombination operator, the selection mechanism, etc.). Hence designing an optimal

function)(tp may be even more difficult. Another possible drawback to this

approach is that the changes in parameter values are caused by a deterministic rule

triggered by the progress of time, without taking any notion of the actual progress in

solving the problem, i.e., without taking into account the current state of the search.

Yet researchers, using such simple deterministic rules, managed to improve the

performance of evolutionary algorithms on some particular problems. This can be

explained simply by superiority of changing the values of parameters: suboptimal

choice of)(tp often leads to better results than a suboptimal choice of p .

 Finding good parameter values for an evolutionary algorithm is a poorly

structured, ill-defined, complex problem. But on these types of problems, GA’s are

often considered to perform better than other methods! It is thus seemingly natural to

use a genetic algorithm not only for finding solutions to a problem, but also for

tuning the (same) algorithm to the particular problem. Technically speaking, this

amounts to modifying the values of parameters during the run of the algorithm by

taking the actual search process into account. Basically, there are two ways to do

this. Either one can use some heuristic rules which take feedback from the current

state of the search and modify the values of parameters accordingly, or incorporate

parameters into the chromosomes, thereby making them subject to evolution. The

first option, using a heuristic feedback mechanism, allows one to change the values

of parameters, based on triggers other than elapsing time, such as population

diversity measures, relative improvements, absolute solution quality, etc. The second

option, incorporating parameters into the chromosomes, leaves changes entirely

based on the evolution mechanism. In particular, the natural selection acting on

solutions (chromosomes) will drive changes in parameter values associated with

these solutions. Methods for parameter control are summarized by Eiben et al (1999)

as follows (see Figure 2.5):

• Deterministic parameter control, in which the values of GA parameters are

changed according to some deterministic rule. This rule modifies the

55

parameters deterministically without using any feedback from the search.

Usually, a time-varying schedule is used, i.e., the rule will be used when a set

number of generations have elapsed since the last time the rule was activated.

• Adaptive parameter control, in which the values of GA parameters are

changed according to some form of feedback provided by the algorithm.

• Self-adaptive parameter control, in which the GA parameters are encoded

into the chromosomes and are optimized simultaneously with a cost function.

The encoded parameter values which lead to better individuals and are more

likely to survive and produce offspring, will be therefore propagated to the

next generations.

 Between the two forms of parameter setting, parameter tuning is the more

preferred one by the researchers. This can be credited to its easier implementation,

but it requires a time-consuming trial-error phase before determining the suitable

parameter set. The motivations behind the tested parameter sets usually depend on

some facts such as the exploration – exploitation issue.

 Any efficient optimization algorithm must use two techniques to find a global

optimum: exploration to investigate new and unknown areas in the search space, and

exploitation to make use of knowledge found at previously visited points to help

finding better points. These two requirements are contradictory, and a good search

algorithm must find a trade-off between the two (Beasley, 1993). For GAs, the

balance between these two techniques is dictated by the values of crossover (cp) and

mutation (mp) rates. Increasing values of cp and mp promotes exploration at the

expense of exploitation. Moderately large values of cp (0.5-1.0) and small values of

mp (0.001-0.05) are commonly employed values in GA practice (Srinivas & Patnaik,

1994). If the GA uses a parameter control approach, crossover and mutation rates

vary with time.

 Another parameter of the GA is the population size, which can be defined as the

number of data structures in the evolving population. In biology it is known that

56

small populations are likely to die out for lack of sufficient genetic diversity to meet

environmental changes or because all members of the population share some

defective gene. Analogous effects are possible even in simple evolutionary

optimizers. On the other hand, a random initial population is usually jammed with

average creatures. In the course of finding the global optimum, we may need a lot of

randomness at some computational cost. There is thus a tension between the need for

sufficient diversity to ensure solution and the need to avoid processing a population

so large that it slows time-to-solution (Ashlock, 2005).

 The last parameter in implementing the GA is the terminating condition. Common

terminating conditions are as follows:

• a solution is found that satisfies minimum criteria,

• fixed number of generations are reached,

• allocated budget (computation time/money) is reached,

• a plateau such that successive iterations no longer produce better results has

been reached,

• manual inspection of solutions by GA user,

• combinations of the above.

2.2.3 Hybrid GA

 A hybrid GA combines the power of the GA with the speed of a local optimizer.

The GA excels at gravitating toward the global optimum. It is not especially fast at

finding the optimum when in a locally quadratic region. Thus the GA finds the

region of the optimum, and then the local optimizer takes over to find the optimum.

Haupt & Haupt (2004) classify the Hybrid GA methods as follows:

1. Running a GA until it slows down, then letting a local optimizer take over,

2. Seeding the GA population with some local optima found from random

starting points in the population,

57

3. Running a local optimizer on the best solution or on the best few solutions

and adding the resulting chromosomes to the population after every specified

number of iterations.

2.2.4 Multi-objective GA

 This section presents the multi-objective optimization concept and the GA

approaches developed to deal with multi-objective optimization problems. First,

we’ll discuss the multi-objective optimization concept and compare it to single

objective optimization. This is followed by the definition of Pareto optimality, which

will eventually lead to the related GA approaches for this concept.

 2.2.4.1 Multi-objective Optimization

 A multi-objective optimization can be defined as the problem of finding a set of

design variables (DV) which optimizes a set of objective functions (OF) and

simultaneously satisfies a set of constraint functions. A multi-objective optimization

problem can be expressed as follows (Augusto, Rabeau, Dépincé, & Bennis, 2006):

Find DV set:

),(),...,,(21 DVSxxxx
T

n ∈= (10.1)

which minimizes OF:

(10.2)

and simultaneously satisfies constraints:

,0)(=xhi],...,1[hqi ∈ (equality constraints) (10.3)

,0)(≤xgi],...,1[gqi ∈ (inequality constraints) (10.4)

),())(),...,(),(()(21 OFSxfxfxfxf
T

k ∈=

58

where n is the number of DV (optimization parameters) which belong to the design

variables space (DVS); k is the number of OF to be optimized; OF are included in

the objective function space (OFS). The space of DV contains both discrete and

continuous variables; hq is the number of equality constraint functions; and gq is the

number of inequality constraint functions.

 For multiple-objective problems, the objectives are generally conflicting,

preventing simultaneous optimization of each objective. The approaches to deal with

multi-objective problems can be placed into two categories: a priori and a posteriori

methodologies. In Figure 2.6 (Augusto et al., 2006), working principles of single-

objective a priori and multi-objective a posteriori techniques are compared to each

other.

Figure 2.6 Single-objective optimization methods vs.

multi-objective

 The first set contains single-objective optimization techniques which consist of

combining the individual objective functions into a single composite function

(scalarization) or moving all but one objective to the constraint set. In the former

case, determination of a single objective is possible with methods such as utility

theory, weighted sum method, etc., but the problem lies in the proper selection of the

weights or utility functions to characterize the decision-maker’s preferences. In

practice, it can be very difficult to precisely and accurately select these weights, even

59

for someone familiar with the problem domain. Compounding this drawback is that

scaling amongst objectives is needed and small perturbations in the weights can

sometimes lead to quite different solutions. In the latter case, the problem is that to

move objectives to the constraint set, a constraining value must be established for

each of these former objectives. This can be rather arbitrary. In both cases, an

optimization method would return a single solution rather than a set of solutions that

can be examined for trade-offs (Konak, Coit, & Smith, 2006). Consequently, single-

objective techniques can be considered as a priori methodologies.

 Decision-makers often prefer a set of good solutions considering the multiple

objectives. This can be accomplished by the second set of multi-objective

optimization techniques which provide a set of alternative solutions. They are based

on an a posteriori articulation of preference information in order to make a choice

within a set of optimum solutions. These solutions form the Pareto optimal solution

set.

 2.2.4.2 Pareto Optimality

 If we note **

2

*

1 ,...,, kfff as the individual optima of each respective OF, the

utopian solution, f),...,,(**

2

*

1

*

kfff= , is the best theoretical solution which

simultaneously optimizes all the objectives. Nevertheless, this utopian solution is

rarely feasible because of the existence of constraints. Often f * does not belong to

the OFS and we use the Pareto frontier to define a set of solutions instead of the

optimum solution (Figure 2.7). The Pareto-optimality is defined as a set, where every

element is a solution of the problem for which no other solutions can be better with

regard to all the OF. A solution in a Pareto-optimal set cannot be considered better

than the others within the set of solutions without including preference information

(Augusto et al., 2006).

60

Figure 2.7 Solution space

 For a minimization problem, considering two solution vectors x and y , it is said

that x dominates y (also written as yx f) iff:

)()(:,...,2,1 yfxfki ii ≤∈∀ (11.1)

and

)()(:,...,2,1 yfxfkj jj <∈∃ . (11.2)

 A Pareto optimal set is a set of solutions that are non-dominated with respect to

each other. While moving from one Pareto solution to another, there is always a

certain amount of sacrifice in one objective(s) to achieve a certain amount of gain in

the other(s). Pareto optimal solution sets are often preferred to single solutions

because they can be practical when considering real-life problems since the final

solution of the decision-maker is always a trade-off. Pareto optimal sets can be of

varied sizes, but the size of the Pareto set usually increases with the increase in the

number of objectives (Konak et al., 2006).

 2.2.4.3 GAs for Multi-Objective Optimization

 Genetic algorithms seem particularly desirable to solve multi-objective

optimization problems because they deal simultaneously with a set of possible

61

solutions (the so-called population) which allows to find an entire set of Pareto-

optimal solutions in a single run of the algorithm (Mansouri, 2005). The ability of

GA to simultaneously search different regions of a solution space makes it possible

to find a diverse set of solutions for difficult problems with non-convex,

discontinuous, and multi-modal solutions spaces. The crossover operator of GA may

exploit structures of good solutions with respect to different objectives to create new

nondominated solutions in unexplored parts of the Pareto front. In addition, most of

the multi-objective GAs do not require the user to prioritize, scale, or weigh

objectives. Therefore, GAs have been the most popular heuristic approach to multi-

objective design and optimization problems (Konak et al., 2006).

 The primary questions when developing genetic algorithms for multi-objective

problems are how to evaluate fitness, how to determine which potential solution

points should be passed on to the next generation, and how to incorporate the idea of

Pareto optimality (Marler & Arora, 2004). Konak et al. (2006) and Marler & Arora

(2004) describe the approaches that address these issues and serve as potential

ingredients in a genetic multi-objective optimization algorithm. These approaches are

briefly summarized in the following section.

 2.2.4.3.1 Fitness Functions. In this section, we discuss the alternative ways of

dealing with multiple objectives in genetic algorithm approaches.

a. Weighted Sum Approaches. The classical and most straightforward approach

to solve a multi-objective optimization problem is to assign a weight iw to

each normalized objective function)(xzi
′ so that the problem is converted to

a single objective problem with a scalar objective function as follows:

min)(...)()(2211 xzwxzwxzwz kk
′++′+′= , (12)

where)(xzi
′ is the normalized objective function)(xzi and 1=∑ iw . This

approach is called the a priori approach since the decision-maker must

62

quantify the relative importance of different objective functions before

actually viewing points in the solution space.

 Solving a problem with such objective for a given vector

},...,{ 21 kwwww = yields a single solution, and if multiple solutions are

desired, the problem must be solved multiple times with different weight

combinations. The main difficulty with this approach is to select a weight

vector for each run (Konak et al., 2006). Selection of weights requires

assumptions on the relative worth of the cost functions prior to running the

GA. The use of randomly generated weights can help to overcome this

problem by stipulating multiple search directions in a single run without

using additional parameters.

 Implementing this approach in a GA simply requires modifying the cost

function to fit the form of Eq. 12 and it does not require any modification to

the GA. This approach is not computationally intensive and results in a single

best solution based on the assigned weights (Haupt & Haupt, 2004).

b. Altering Objective Functions. One of the first treatments of multi-objective

genetic algorithms is the vector evaluated genetic algorithms (VEGA). The

general idea behind this approach involves randomly dividing the original

population tP into k equal subsets, or sub-populations, kPPP ,...,, 21 where k

is the number of objective functions. For each solution, fitness values are

assigned according to the objective function iz which is associated to the

sub-population iP that the solution belongs to. Then, solutions are selected

from these sub-populations using the stochastic selection processes for

crossover and mutation. Crossover and mutation are performed on the new

population in the same way as for a single objective GA.

 A similar approach to VEGA is to use only a single objective function

which is randomly determined each time in the selection phase. The main

63

advantages of the alternating objectives are the ease of implementation and

being computationally as efficient as a single-objective GA. In fact, this

approach is a straightforward extension of a single objective GA to solve

multi-objective problems. The major drawback of objective switching is that

the population tends to converge to solutions which are superior in one

objective, but poor at others (Konak et al., 2006).

c. Pareto-Ranking Approaches. Pareto-ranking approaches explicitly utilize the

concept of Pareto dominance in evaluating fitness or assigning selection

probability to solutions. The population is ranked according to a dominance

rule, and then each solution is assigned a fitness value based on its rank in the

population, not its actual objective function value (Konak et al., 2006).

 The means of determining the rank of an individual and assigning fitness

values associated with this rank may vary from method to method, but the

general approach is common. For a given population, the objective functions

are evaluated for each individual. All non-dominated individuals receive a

rank of one. Determining whether an individual is dominated or not

(performing a non-dominated check) entails comparing the vector of

objective function values of the individual to the vector of all other

individuals. Then, the individuals with a rank of one are temporarily removed

from consideration, and the others that are non-dominated relative to the

remaining group are given a rank of two. This process is repeated until all

individuals are ranked. Those individuals with the lowest rank have the

highest fitness value. That is, fitness is determined such that it is inversely

proportional to the rank (Marler & Arora, 2004). Although some of the

ranking approaches can be used directly to assign fitness values to individual

solutions, they are usually combined with various fitness sharing techniques

to achieve the second goal in multi-objective optimization, finding a diverse

and uniform Pareto front (Konak et al., 2006).

64

 2.2.4.3.2 Population Diversity. Maintaining a diverse population is an important

consideration in multi-objective GA to obtain solutions uniformly distributed over

the Pareto front (Konak et al., 2006).

 A niche in genetic algorithms is a group of points that are close to each other,

typically in the criterion space. Niche techniques are methods for ensuring that a

population does not converge to a niche, i.e., a limited number of Pareto points.

Thus, these techniques foster an even spread of points (in the criterion space).

Genetic multi-objective algorithms tend to create a limited number of niches; they

converge to or cluster around a limited set of Pareto points. This phenomenon is

known as genetic drift (or population drift), and niche techniques force the

development of multiple niches while limiting the growth of any single niche (Marler

& Arora, 2004). Several approaches such as fitness sharing, crowding distance and

cell-based density have been devised to prevent genetic drift.

a. Fitness Sharing. Fitness sharing is a common niche technique. Its basic idea

is to penalize the fitness of points in crowded areas, thus reducing the

probability of their survival to the next generation. The fitness of a given

point is divided by a constant that is proportional to the number of other

points within a specified distance in the criterion space. In this way, the

fitness of all the points in a niche is shared (Marler & Arora, 2004). This

approach encourages the search in unexplored sections of a Pareto front, but

on the other hand, it also introduces another parameter, niche size, to be taken

into consideration.

b. Crowding Distance. Crowding distance approaches aim at obtaining a

uniform spread of solutions along the best-known Pareto front without using

a fitness sharing parameter such as niche size or the k
th

 closest neighbor. As

the performance of the above-mentioned fitness sharing methods in

maintaining a spread of solutions depends largely on the chosen niche size

value, and since these methods require the comparison of each solution with

all other solutions in the population which is a computationally intensive

65

work, crowding distance methods have been more desirable to some

researchers.

 One of the applications of crowding distance is the nondominated

searching genetic algorithm (NSGA-II) which is proposed by Deb, Pratap,

Agarwal, & Meyarivan, (2002). In NSGA-II, first, the population is sorted

according to each objective function value in ascending order of magnitude.

Thereafter, for each solution point, the average distance of two points on

either side of this point is calculated. This quantity serves as an estimate of

the perimeter of the cuboid formed by using the nearest neighbors as the

vertices and called the crowding distance. This calculation is continued with

other objective functions. The overall crowding distance value is calculated as

the sum of individual distance values corresponding to each objective.

 NSGA-II uses this crowding distance measure as a tie-breaker in a

selection technique called the crowded tournament selection operator:

Randomly select two solutions x and y ; if the solutions are in the same non-

dominated front, the solution with a higher crowding distance is the winner.

Otherwise, the solution with the lowest rank is selected (Konak et al., 2006).

c. Cell-Based Density. In this approach, the objective space is divided into k -

dimensional cells. The number of solutions in each cell is defined as the

density of the cell, and the density of a solution is equal to the density of the

cell in which the solution is located. This density information is used to

achieve diversity similarly to the fitness sharing approach (Konak et al.,

2006). Density calculation results in a global density map of the objective

function space which can be used to direct the search toward sparsely

inhabited regions of the objective function space. This approach is also

computationally more efficient than the niching or neighborhood-based

density techniques.

66

 2.2.4.3.3 Elitism. Elitism in the context of single-objective GA means that the best

solution found so far during the search always survives to the next generation. In this

respect, all nondominated solutions discovered by a multi-objective GA are

considered elite solutions. However, implementation of elitism in multi-objective

optimization is not as straightforward as in single objective optimization mainly due

to the large number of possible elitist solutions. It should be noted that unlike the

earlier ones most recent multi-objective GA and their variations use elitism. Multi-

objective GAs use two strategies to implement elitism: (i) maintaining elitist

solutions in the population, and (ii) storing elitist solutions in an external secondary

list and reintroducing them to the population (Konak et al., 2006).

a. Elitism in the population. Random selection does not ensure that a non-

dominated solution will survive to the next generation. A straightforward

implementation of elitism in a multi-objective GA is to copy all non-

dominated solutions in population tP to population 1+tP , then fill the rest of

1+tP by selecting from the remaining dominated solutions in tP . This

approach will not work when the total number of nondominated parent and

offspring solutions is larger than the population size, therefore several

approaches are proposed to overcome this problem. Obviously, the main

advantage of maintaining non-dominated solutions in the population is

straightforward implementation. In this strategy, the population size is an

important GA parameter since no external archive is used to store discovered

non-dominated solutions (Konak et al., 2006).

b. Elitism with external populations. This approach requires two sets of

solutions to be stored. The second set is used for storing the nondominated

solutions and it is updated each time a new solution is created by removing

elitist solutions dominated by a new solution or adding the new solution if it

is not dominated by any existing elitist solution.

67

CHAPTER THREE

LITERATURE REVIEW: APPLICATIONS OF GENETIC ALGORITHMS

IN MMALS

 This chapter presents a review of recent literature related to MMALS using GAs.

To classify the relevant literature, we employed two schemes: one for MMALSP

(Appendix 1a) and another for GAs (Appendix 1b). It should be noted that the tuple

notation used for classifying the current studies on MMALSP is similar to the one

proposed in Boysen et al. (2007a). Having focused on studies related to MMALS

using GAs, in this study we adopted this tuple notation to the specifications of GAs.

 The first scheme considers only the MMALSP and has 4 main titles: i.e. station

characteristics, assembly line characteristics, sequencing objectives and the number

of production levels. The second scheme is developed to classify the specifications of

GA approaches developed to deal with MMALSP. It has 7 main titles; i.e. genetic

representation, fitness function, initial population, selection strategies, genetic

operators, GA parameters and hybridization. The reader may refer to Chapter 2 for

detailed information on these specific titles.

3.1 Classification and Review of Related Literature

 In order to highlight the place of this M.Sc study in the current literature, we

extensively surveyed the relevant studies.

 In previous survey papers, Bard et al. (1992) propose an analytical framework for

sequencing MMALs and give the characteristics of sequencing problems such as

launching discipline (fixed and variable rates), line movement (paced, unpacked and

asynchronous), station restrictions (open- and closed-stations), operator schedules

(early and late start) and design objectives (minimizing line length and throughput

times). In a more recent study, Boysen et al. (2007a) present a detailed classification

scheme for mixed-model sequencing problems. However, this scheme ignores the

proposed solution approaches in the literature and only deals with the problem

68

characteristics. The scheme proposed by the authors is based on three elements: (i)

characteristics of stations, (ii) characteristics of the assembly line, and (iii)

objectives. In this study, we not only consider the characteristics of mixed-model

sequencing problems, but also the GA characteristics adopted to deal with this

problem. In particular, we adapt the tuple notation and structural framework

proposed by Boysen et al. (2007a) and incorporate the specifications of the proposed

genetic algorithms into this framework. Table 3.1 summarizes the literature on

MMALS using GAs, with the help of the proposed tuple notation (see Appendix 1

for abbreviations).

 The first research on the application of GAs to the sequencing problem in

MMALs has been carried out by Kim et al. (1996). The authors investigated a

suitable genetic representation for the problem, and empirically found a set of genetic

control parameters that yield good results. In addition, a new genetic operator,

Immediate Successor Relation Crossover (ISRX), was introduced and several

existing ones were modified. An extensive experiment was carried out to determine a

proper choice of the genetic operators. The performance of the GA was compared

with those of heuristic algorithm and of branch-and-bound method. The results of the

experimental studies suggested that the proposed GA greatly reduced the

computation time and it provided near optimal solution. Nevertheless, the paper

aimed at solving single objective sequencing problems. In their next publication,

Hyun et al. (1998), the authors developed a method to find diverse Pareto optimal

solutions particularly for multiple objective sequencing problems in MMALS. This

new method was based on a new evaluation and selection mechanism, called the

Pareto stratum - niche cubicle. Three objective functions, i.e. minimizing total utility

work, leveling part usage through production rates and minimizing total setup cost

were considered simultaneously. The authors compared the proposed algorithm with

three existing multiple objective GAs, i.e. vector evaluated genetic algorithm

(VEGA), Pareto genetic algorithm (PGA) and niched Pareto genetic algorithm

(NPGA) using various test-bed problems. The results indicating the diversity and

quality of the solutions revealed that the proposed method outperformed other GAs,

especially for large problems involving great variation in setup cost. The

69

characteristics of this study are summarized using the following expressions in Table

3.1:

Problem Type: [setup| | wo, vpr, setup(c)|]

Proposed GA Method: [| multi, pr, fsh| | rank, elit° | isrx, inv| |]

 The interpretation of these expressions is as follows:

� Problem type includes standard station characteristics except that set-ups are

not ignored; standard assembly line characteristics; three objective functions

(i.e., minimizing work overload, minimizing variation of production rates and

minimizing the set-up costs) and the standard number of production stages

(i.e., final production stage only).

� Proposed GA method uses the standard genetic representation (i.e., real-

valued); a multi-objective approach with pareto-ranking and fitness sharing;

standard initial population generation (i.e., randomly); rank selection and

elitist strategies; immediate successor relation crossover and inversion

genetic operators; standard GA parameters and finally a none-hybrid

approach.

 McMullen et al. (2000) also examined the two objectives of minimization of

number of setups and leveling part usage through production rates. These two

objectives were combined into a single objective using the weighted sum approach.

The proposed GA was compared against the tabu search (TS) and simulated

annealing (SA) approaches and was found that the performance of TS was not well

in comparison to SA and GA. The authors also stated that GA and SA were equally

well performing, although GA approach was computationally more expensive than

SA.

7
0

Proposed GA Method

[| | | rank, elit | isrx, inv| |]

[| multi, pr, fsh| | rank, elit° | isrx, inv| |]

[| multi, wsum| | | ox, swap| |]

coevolutionary [| | | rou| isrx, inv| ifix|]

[| | hrstc| | pmx, pbx, shift| min|]

[| | hrstc| rank, elit° | two, cx, swap| dtprm, ifix, min|]

[| multi, pr, fsh| | rank, elit° | ox, inv| |]

[| multi, pr, fsh| | sus, elit° | ox, swap, inv| dtprm, gfix, conv|]

[| multi, pr, crwd| | rou, elit° | ox, inv| |]

endosymbiotic [| | | tour| ox, inv| ifix|]

Problem Type

[open, var, setup| | len|]

[setup| | wo, vpr, setup(c)|]

[setup| | vpr, setup(n)|]

[| | wo|]

[sto, setup, par| | mspan|]

[| u| vpr| mlev°]

[setup| | wo, cpu, setup(c)| mlev(4)]

[setup| | vpr, setup(n)|]

[| | vpr, mspan|]

[| u| level|]

Problem

Seq.

Seq.

Seq.

Bal. & Seq.

Bal. & Seq.

Bal. & Seq.

Seq.

Seq.

Seq.

Bal. & Seq.

Table 3.1 Overview on related literature

Paper

Kim et al.,

1996

Hyun et al.,

1998

McMullen et al.,

2000

Kim et al.,

2000

Rekiek et al.,

2000

Miltenburg,

2002

Ponnambalam et al.,

2003

Mansouri,

2005

Yu et al.,

2006

Kim et al.,

2006

71

 Being a just-in-time related goal, leveling parts usage rates has been considered

by several researchers. Generally it has been assumed that products require

approximately same number and mix of parts, and therefore leveling parts usage

rates objective was substituted by smoothing variation of production rates at the final

assembly. Unlike this general trend, Ponnambalam et al. (2003) focused on four

levels of production stages (i.e., product, subassembly, component, raw materials)

and assumed that every product could have different part requirements. The authors

solved the sequencing problem under the objective of minimizing the variation of

parts usage rates. The second part of the research extends the work of Hyun et al.

(1998) by incorporating this new objective function in the multi-objective GA

framework. The authors reported that multiple-objective GA that uses the selection

mechanism of Pareto stratum-niche cubicle performed better than that of weighted

sum of multiple objective functions with variable weights.

 Since it is easy to implement, most researchers used parameter tuning in their

researches. Basically some initial experiments are carried out and the parameter

configuration set which gives the best overall results is chosen for the rest of the

experiments. Mansouri (2005) stated that using the high rates for crossover and

mutation would increase diversity whereas the low rates would improve quality.

Therefore it was decided to exploit both advantages by using a changing rate; using

constant, high rates at the beginning followed by exponentially decreasing rates from

a break point onward. Performance of the developed MOGA was compared against a

total enumeration scheme in small problem sets. It was also compared against three

search heuristics (i.e. GA, SA, TS) developed for the multi-objective mixed-model

sequencing problem in small, medium and large problems. The results revealed that

the proposed MOGA outperformed the benchmark algorithms in terms of the quality

of solutions. Concerning diversity, no significant difference was observed between

the MOGA and the benchmark algorithms.

 While previous multi-objective approaches used fitness sharing methods (e.g.

niche cubicle) for maintaining the diversity in the population, Yu et al. (2006)

preferred dispersed-distance method which awards the solutions located in sparse

72

regions. The authors also used dispersed-distance measure along with pareto-ranks to

compute a new fitness value for each individual. The proposed multi-objective GA

which adopts the pareto ranking and dispersed-distance calculation methods was

claimed to guarantee uniformly dispersed Pareto solutions.

 The implementation of the evolution concept to the aggregated problem of

balancing and sequencing was originated by Kim et al. (2000). Previously, this

aggregated problem has been studied using a hierarchical approach, where the

problems were treated sequentially in such a manner that one of them was solved

first, and then the other was considered under the constraint of the first solution. Kim

et al. (2000) claimed that such a hierarchical approach to an aggregated problem

combining multiple sub-problems has a limitation to exploring the solution space and

demonstrated this situation by comparing the results of their proposed symbiotic co-

evolutionary algorithm to those of the hierarchical GA approach. This new co-

evolutionary approach, as contrasted with the hierarchical one, had the ability to

simultaneously deal with both balancing and sequencing problems in MMALs. Each

of the balancing and sequencing problems was considered as one species, and was

characterized by genes which were adequately designed to describe the features

specific to the problem. Two populations, i.e. balancing population and sequencing

population, were created so that the species coevolved while interacting within and

between populations. Since the only considered objective was minimization of utility

work for both problems, the proposed approach was a single objective optimization.

 Another GA-based approach to this aggregated problem was developed by Rekiek

et al. (2000). The authors have developed an iterative hierarchical approach, called

balance for ordering (BFO). Proposed algorithm employed two modified genetic

algorithms to solve grouping and ordering problems. Initially, the grouping GA is

employed to solve balancing problem and then the resulting configuration is used as

an input by the ordering GA to solve the sequencing problem. The solutions to both

problems (i.e., the effective cycle time resulting from the current line configuration

and the model sequence) were compared to the desired cycle time. If the margin was

73

beyond acceptable then the line was rebalanced. This iterative procedure continues

until a configuration with an acceptable effective cycle time is obtained.

 Another line configuration which was widely adopted by researchers in recent

years was U-shaped MMALs. One of these researches considering U-shaped lines

for the aggregated problem was presented by Miltenburg (2002). The author

proposed a GA-based approach to minimize the weighted sum of the variation of

work content in the stations, and the variation of production for models and parts at

all facilities. In contrast to Kim et al. (2000), in this study only one population was

created for both problems. Single population has been achieved by concatenating

balancing and sequencing chromosomes so that a single chromosome contains

solutions for both problems. Genetic operators were separately applied to the

subsequences of tasks and models. The comparison of the results from the two

variations of the proposed GA and randomly created solutions indicated that the

quality of the solutions found by the GA was good, especially when the GA was run

under different weights.

 Aggregated problem for U-shaped lines has been also investigated by Kim et al.

(2006). In this research, the authors proposed an extension of their previous

symbiotic co-evolutionary algorithm, called the endosymbiotic evolutionary

algorithm (EEA). The main difference was the introduction of a third population

which includes concatenated chromosomes similar to Miltenburg (2002). Moreover,

the authors have considered the U-shaped line constraints. Using absolute deviations

of workload as the minimization objective, the characteristics and search capability

of EEA were compared and analyzed with those of the following three evolutionary

approaches: hierarchical genetic algorithm, SPA (separated and population-based

symbiotic evolutionary algorithm), and SNA (separated and neighborhood-based

symbiotic evolutionary algorithm). The experimental results showed that for every

test-bed problem, all the symbiotic evolutionary algorithms provided better outcomes

than the hierarchical approach. They also reported that for every problem instance,

EEA showed the best results.

74

 It should be noted that the implementation of adaptive genetic algorithms to

MMALSP have been adopted by a few researchers. Miltenburg (2002) has proposed

a deterministic parameter control approach in his single-objective genetic algorithm

approach to solve the joint problem of balancing and sequencing in MMALs. The

author assumed that diversity was more important in early populations than in later

ones, hence he set the probability of mutation to 0.5 for the first ten populations and

zero thereafter. However, this study lacks a comparative study evaluating the

performance of this deterministic approach against existing approaches in the

literature.

 Experimenting with different parameter settings, Mansouri (2005) observed the

effectiveness of high rates on more diversification of solutions along the frontier and

hence, he stated that fixed rates did not result in quality as well as diverse frontiers at

the same time. Moreover, he noted that the rate of improvement became constantly

slower and slower until it ceased to improve amid generations and the low rates for

crossover and mutation were found to be effective on improving quality of solutions

in a less-diverse frontier. To exploit advantages of both scenarios, Mansouri

proposed a new parameter control approach which changed the rates of the operators

in such a way that high rates were allowed at the beginning followed by lower rates

thereafter. Conducting several experiments on various schemes for changing rates of

these two operators, the following formula was found to be promising to determine

tR , i.e. the rate at generation t based on an initial IR rate:

 (13)

where K was a constant that was set to 0.33 after some trials. Initial rates for

crossover and inversion operators were set to 0.6 and 0.8, respectively. Since the

rates vary according to time (t), this approach is also categorized as a deterministic

parameter control method.

75

3.2 Findings of the Literature Survey

 Referring to the Classification Table (Table 3.1), we could list our findings based

on problem specifications as follows:

� More than half of the articles surveyed dealt with only the MMAL

sequencing problem assuming that the line balancing problem was already

solved. The others dealt with both balancing and sequencing problems using

various approaches.

� In general, researchers have a general tendency to assume that station borders

are closed so that workers cannot move out of their stations. However, this

may be too restrictive, since open-stations or hybrid lines composed of both

closed and open stations along the line are very common in real world

applications.

� Most of the researches have considered deterministic processing times.

However, in manual assembly lines, processing times are subject to

significant variation.

� Issues which may considerably increase the complexity of the problem such

as parallelization and concurrent work have been largely ignored.

� Nearly half of the articles have considered the issue of set-up cost

minimization.

� Except two articles (Kim et al., 2006; Miltenburg, 2002) that considered U-

shaped line layouts, majority of the surveyed articles considered straight

layouts.

� Fixed-rate model launching is a common assumption, whereas workers’

movement times or velocities are ignored.

� More than half of the articles surveyed (i.e., 6 out of 10) have considered the

JIT objective of uniform parts usage rates.

� All of the researchers dealing with both balancing and sequencing MMALs,

adopted single objective optimization approaches ignoring multi-objective

nature of this aggregated problem.

76

 Likewise, referring to Table 3.1, we could list our findings based on GA

specifications as follows:

� Simultaneous consideration of balancing and sequencing problems have been

achieved by three methods, i.e. single population (concatenated balancing and

sequencing chromosomes; Miltenburg, 2002), two interacting populations

(one for balancing and one for sequencing; Kim et al., 2000), and three

interacting populations (one for balancing, one for sequencing and another for

concatenated balancing and sequencing chromosomes; Kim et al., 2006).

� For sequencing problems, usually multiple objectives have been taken into

consideration, whereas aggregated problem has been solved for single

objectives.

� Pareto ranking approaches have been preferred to weighted sum approaches

(scalar fitness functions) for multi-objective GAs.

� Population diversity has been generally enhanced by fitness sharing

approaches, e.g. niche cubicles. Yu et al. (2006) have used a crowding

distance approach as an alternative to fitness sharing approaches.

� The general tendency to generate the initial population is randomization.

Only Rekiek et al. (2000) and Miltenburg (2002) have used heuristics to

generate initial populations.

� Majority of the articles (i.e., 7 out of 10) have used elitist strategies to

preserve the best individuals.

� As crossover and mutation operators, the majority of the researchers have

preferred order crossover and inversion, respectively. When used together,

these two operators have been shown to work successfully for MMALSP.

� Parameter tuning has been widely adopted by the researchers (i.e. 8 out of

10). Best configurations of GA parameters (e.g. crossover and mutation

probabilities, population size, etc.) have been determined through several

experiments prior to the run of the algorithm. These configurations are then

used throughout their experiments.

77

 In the light of above listed findings, the following research directions can be

suggested:

� Single objective optimization can be preferred when the objective

unconditionally rules over all the others. However, in balancing and

sequencing problems, there are often several conflicting objectives that need

to be simultaneously considered. Although there are several research papers

that dealt with either multi-objective balancing or multi-objective sequencing

problems, the aggregated problem of balancing and sequencing is only dealt

with single-objective optimization approaches. Therefore, studying mixed-

model assembly line balancing and sequencing problem using multi-objective

approaches seems to be an attractive research area.

� The values of GA parameters greatly determine the performance of GAs.

Choosing the right parameter values, however, is a time-consuming task.

Furthermore, this task may need to be repeated for different instances of the

problem. Parameter control has been proposed as an alternative to this tuning

of parameters before the run of the algorithm. Miltenburg (2002) and

Mansouri (2005) have used deterministic parameter control where crossover

and mutation probabilities have been changed according to some

deterministic rules. However, adaptive and self-adaptive parameter control

mechanisms still remain untested for MMALSP.

� During the literature survey, we noted quite number of studies employing

multi-objective GA approaches including Vector Evaluated Genetic

Algorithm (VEGA) (Schaffer, 1985), Multi-Objective Genetic Algorithm

(MOGA) (Fonseca & Fleming, 1993), Niched Pareto Genetic Algorithm

(NPGA) (Horn, Nafpliotis, & Goldberg, 1994), Non-dominated Sorting

Genetic Algorithm (NSGA-II) (Deb et al., 2002), Pareto Stratum - Niche

Cubicle Genetic Algorithm (PS-NC GA) (Hyun et al., 1998), Multiple

Objective Genetic Local Search (MOGLS) (Jaszkiewicz, 1998), Strength

Pareto Evolutionary Algorithm (SPEA2) (Zitzler, Laumanns, & Thiele,

2001), Pareto Archive Evolution Strategy (PAES) (Knowles & Corne, 1999)

and Multi-Objective Scatter Search (MOSS) (Beausoleil, 2006). However,

78

MMALS literature lacks applications of most of the above mentioned

approaches. Hence, a comparative study evaluating the performance of these

multi-objective GA approaches in solving MMALSP may be a valuable

contribution to this research area.

� GAs coupled with other heuristics such as local optimizers may perform

better than the traditional GAs. These hybridization efforts aim to improve

the convergence speed and/or solution diversity, either by building the initial

population using solutions obtained by a heuristic or by letting a local

optimizer to take over the search process when the GA progress slows down.

Although, Rekiek et al. (2000) and Miltenburg (2002) have utilized some

initial population heuristics to seed the initial population, current MMALS

literature doesn’t have any hybrid applications combining GAs with local

optimizers.

3.3 Motivation For This Study

 A recent trend in GA based research studies is to employ adaptive or self-adaptive

parameter control mechanisms so that a better performance can be gained in dealing

with various optimization problems (e.g., Bingul et al., 2000; Chang et al., 2007;

Eiben et al., 1999; Herrera & Lozano, 2003; Huang et al., 2006; Liu et al., 2003; Shi

et al., 1999; Smith & Fogarty, 1997; Srinivas & Patnaik, 1994; Zhao et al., 2005).

During the survey of current literature, as mentioned above, however we have not

noted any study employing adaptive or self-adaptive parameter control mechanisms

to solve MMAL sequencing problem. Considering the intense competition in global

markets to provide a rich product variety at low cost, we believe that developing new

methodologies to solve MMAL sequencing problem efficiently is very important.

Another aspect which will increase the efficiency of the proposed GA based

methodologies is to consider this problem as a multi-objective mixed model

sequencing problem. Having motivated by these research gaps this study aims at

solving single- and multi-objective MMAL sequencing problems using adaptive

genetic algorithm.

79

CHAPTER FOUR

ADAPTIVE GA BASED APPROACH FOR SOLVING SINGLE OBJECTIVE

MIXED MODEL ASSEMBLY LINE SEQUENCING PROBLEM

 In this chapter, we focus on solving single objective MMALSP, which concerns

with the minimization of part consumption rates. An adaptive GA based approach is

proposed for the solution of this problem. The proposed approach tries to maintain a

good balance between exploration and exploitation of the solution space by

evaluating the progress results periodically.

 The MMALSP is solved using two different GA-based approaches. While the first

approach is simply implementation of the GA specifications described in

Ponnambalam et al. (2003) which ignores any of the adaptive techniques, the second

approach is novel to this M.Sc study which modifies the number of elite individuals

and probability of mutation during the course of the run. Various sets of

computational experiments are carried out to compare performance of the proposed

adaptive GA and this commonly used approach.

 The rest of this chapter is organized as follows. In section 4.1, the specifications

of the proposed adaptive GA based approach are explained. In section 4.2, both the

results of comparative experiments carried out on a set of benchmark problems and

also the insights gained through these experimental studies are presented.

4.1 Specifications of the Adaptive GA Based Approach

 In this section, the components of the proposed adaptive GA based approach are

introduced. The general structure of this proposed approach is given in Figure 4.1.

As it can be seen from the figure, the genetic search process begins with the random

creation of the initial population. Once the initial population is generated, the fitness

value of each individual is evaluated using the VPC function presented in Eq. 2. This

is followed by the calculation of survival probabilities which are used to select

individuals for possible crossover and mutation. The selection process employs a

80

fitness proportionate selection method, the roulette wheel sampling. The selected

individual pairs produce the offspring under various crossover and mutation

operations.

 Figure 4.1 General structure of the proposed GA

 Following, the quality of these newly created offspring is evaluated. If the

termination criteria are met, then this new generation becomes the final generation of

the genetic search process and the best individual of the generation is presented. If

the termination criteria are not satisfied, then before proceeding to the next

generation, an adaptive elitist strategy is applied and individuals of the parent

81

generation that are worthy to survive are transferred to the next generation. Also,

once in every 5 generations, the convergence performance is evaluated and the

probability of mutation is changed accordingly. After the application of these

adaptive techniques, the algorithm continues with the selection process in order to

create the next generation.

 The details regarding the specifications of the proposed adaptive GA based

approach, such as chromosome representation, genetic operators, selection schemes

and ranking are explained in the following subsections.

4.1.1 Genetic Representation

 Representation of feasible solutions is largely determined by problem-specific

characteristics. A string representation, which is a real-valued encoding scheme, is

most widely used because of its compatibility with natural gene and genetic

operation. In this research, a solution is a sequence of all the models simply listed in

their launching order. Obviously, there exists a one-to-one correspondence between

the representation space and the solution space. Suppose that during a cycle three

types of products, A, B, and C are required to be produced in quantities of 1, 2 and 3,

respectively. For instance, a solution alternative to this sequencing problem will be

represented as a string of (C B C A C B).

4.1.2 Initial Population

 An initial population is necessary to run the algorithm. Either heuristic procedures

or random creations can be used to generate strings that form the initial population.

Since the scope of this chapter is limited to analysis of the effects of adaptive

approaches, it is preferred to create all initial populations randomly.

 The initialization process can be summarized as follows:

82

Create an alphabetically ordered sequence according to the given demand

for each model

Eg. (3A, 2B, 2C)� AAABBCC

For n=1 to Population Size

Create a random number associated with every bit in the chromosome

Eg. AAABBCC�5724369

Obtain a shuffled sequence by sorting the random numbers in

ascending order

Eg. 2345679�ABBACAC

 Inject the shuffled sequence

Next n

4.1.3 Fitness Evaluation

 The aim of the optimization efforts is the minimization of variations in part

consumption rates. Therefore, the fitness of each individual is evaluated using the

VPC objective function given by Eq. 2. The pseudocode representation of the fitness

evaluation process is given below:

VPC=0, w ={1,1,1,1}.

For K=1 to Total Demand

For G=1 to Production Levels

For I=1 to Output(I)

Calculate xigk : number of units of output i at level g

produced during stages 1, 2,…k.

Calculate XTgk : total production at level g during

stages 1, 2,…k.

Calculate dig : demand for output i at level g; where i

= 1, 2,…ng, and g = 2, 3, 4.

Calculate DTg : total demand for production at level g;

where g = 1, 2, 3, 4.

 Calculate rig = dig / DTg.

83

 Variability = .

 VPC = VPC + Variability.

 Next I.

 Next G.

Next K.

Return VPC.

4.1.4 Fitness Conversion and Selection

 Before proceeding to the actual selection phase, we need to convert current fitness

values, VPCs, to a new fitness value which will be a suitable parameter for

minimization objective. This step is required as the selection is performed using a

fitness proportionate selection scheme. If the current fitness values were used

instead, then individuals with better (lower) VPC values will have lower survival

probabilities. In order to circumvent this undesired situation, individuals are assigned

new fitness values which are inversely proportional to their original fitness values.

These new fitness values will then be used to calculate survival probabilities. The

pseudocode representation of the fitness evaluation process is given below:

Calculate totalFitness: the sum of all fitness values in the population.

For every individual i calculate new fitness,

newfiti = 1 – (fitnessi / totalFitness);

Calculate totalNewFitness: the sum of all newfit in the population.

For every individual i calculate survival probability,

frequencyi = newfiti / totalNewFitness;

For every individual i calculate cumulative survival probability,

cumulativei = ∑
=

i

j

jfrenquency
1

.

 Once the new fitness values and cumulative survival probabilities are calculated,

the selection process can begin. This process employs the roulette wheel selection

84

mechanism that creates a random number, r, between 0 and 1, and selects the

chromosome, i, which satisfies the following condition:

ii cumulativercumulative ≤<
−1 (14)

 This selection process is repeated as many times as the size of the population.

4.1.5 Crossover and Mutation

 In this research, a slightly modified order crossover (OX) and inversion (INV)

operators have been jointly used as crossover and mutation operators, respectively.

The probability of crossover has been fixed at 0.8 while mutation probability starts

with an initial value of 0.2 and varies according to the feedback coming from the

algorithm.

4.1.6 Adaptive Techniques

 There are two adaptive techniques proposed in this research. The first technique is

used to determine the number of elites to be transferred to the next generation. This

procedure is used at the end of every generation and varying numbers of elites may

be transferred depending on the quality of the offspring generation. The second

technique is used to modify the probability of mutation depending on the progress

results.

 4.1.6.1 Adaptive Elitist Strategy

 The sequences with better fitness values can be regarded as elite individuals. Such

sequences are to be preserved for the next generation. In general, the number of elite

individuals that will be transferred to the next generation is fixed before the run of

the algorithm. However, this may result in inefficient elite transfers depending on the

quality of the newly created generation. Therefore, we propose an adaptive strategy

to determine the number of elites at every generation. According to this strategy,

85

assuming a population size of 50, all the parent individuals which have better fitness

values than the 5
th

 best child individual are transferred to the next generation.

Moreover, to circumvent some extreme situations such as mass transfers in a case of

very poor offspring generation, a higher bound is set for the number of elites. This

higher bound is half of the population size. This strategy results in varying numbers

of elite transfers at every generation and it is directly dependent on the quality of the

offspring. It ensures that good solutions do not disappear by chance during the

genetic evolution.

 4.1.6.2 Adaptive Mutation Probability

 In the proposed adaptive approach, evaluation and adaptation are controlled by an

AGA controller, which takes recent performance measures and GA control

parameters as input, evaluates the progress of evolution, determines the next set of

GA control parameters and returns the modified parameters as an output. These

modified parameters are then used for the evolution of the next generation by various

GA components. This process is illustrated in Figure 4.2.

Figure 4.2 Performance evaluation and adaptation

 The AGA controller has been developed using a similar approach described in

Herrera & Lozano (2003) and it aims to adapt the mutation probability)(mp during

the run of the algorithm. Controller evaluates the algorithm performance in every G

generations, and mp is fixed over the generations in these time intervals. It takes into

account the mp value used during the last G generations and the improvement

achieved on bf (fitness value for the best element found so far). Then, it computes a

new value for mp , which shall be used during the next G generations. To accomplish

this task, a set of rules are defined and used by the controller. In Herrera & Lozano

86

(2003), the authors have employed a set of fuzzy rules; in other words, they fired

multiple rules simultaneously for the same input. In this study, unlike theirs, we left

out the fuzzy logic and fired one rule at a time.

 In short, the goal of the AGA controller is to observe the effects of the value of

mp on performance of the GA during G generations, and produce a new value for

mp that properly replies against a possible poor rate of convergence, or allows the

current performance to be improved even more in the case of past suitable progress.

 4.1.6.2.1 Required Input. There are two categories of controller input as seen in

Figure 4.2. These are performance measures (e.g., convergence of the objective

function values) which are evaluated after every G generations and GA control

parameters (e.g., crossover and mutation operators, probabilities, etc.) which have

been modified G generations before.

 Convergence (CM) is the measure of the progress made in best objective function

values during a number of generations. For the single-objective problem,

convergence measure can be calculated using the following equation:

0
ffCM

b
= (15)

where b
f is the objective function value of the current best element found so far and

0
f is the objective function value of the best element found before the last G

generations. Since an elitist strategy is used, CM belongs to [0, 1]. If CM is high,

then convergence is high, i.e. no progress is made during the last G generations,

whereas if it is low, the GA finds a new best element, which outperforms the

previous one.

 The proposed algorithm uses a fuzzy concept in order to determine if a given CM

value should be treated as low or high. This requires the use of a set of linguistic

labels associated with membership functions. The set of linguistic labels for CM is

87

{Low, High}. The Low label corresponds to a CM with a value of 0.8 or lower,

whereas the High label corresponds to a CM with a value of 0.95 or greater. If the

CM value is in the (0.8, 0.95) range, then both labels are possible. In such a case,

label is determined using a random number (r) as follows:

CM label =

−

−
≤

otherwisehigh

CM
rlow

,
8.095.0

95.0
,

 (16)

 Numerical representations of the linguistic CM labels are depicted in Figure 4.3a.

 The mutation probability is used as the GA control parameter. Mutation helps to

maintain the diversity in the population and it also helps to prevent the algorithm

getting stuck in local optima. Thus, by adapting the mutation probability during the

run, we hope to improve the algorithm performance. The set of linguistic labels

associated with mutation probability is {Low, Medium, High}. Each of these labels

corresponds to a triangular distribution as depicted in Figure 4.3b. For example, the

low label corresponds to a triangular distribution with a lower limit of 0.10, a mode

of 0.15 and an upper limit of 0.20.

Figure 4.3 Meanings of the linguistic terms

88

 When combined with the above-mentioned CM performance measure, the current

mutation probability (which is used for the last G generations) forms the necessary

input for the next step – progress evaluation.

 4.1.6.2.1 Progress Evaluation and Output. The goal of this step can be stated as

observing the effects of several input types on the GA performance during the last G

generations, and producing a new set of parameter values that properly replies

against a poor performance in a specific measure, or allows performance to be

improved even more. The proposed AGA controller attempts to accomplish this task

using a set of rules, which describes the relation between the inputs and outputs.

Table 4.1 shows the set of rules used by the proposed controller.

Table 4.1 Rule base for the control of mp

Rule CM mp 'mp

1 High Low Medium

2 High Medium High

3 High High Low

4 Low Low Low

5 Low Medium Low

6 Low High Medium

 The rules presented in Table 4.1 are developed by using the following heuristics:

� Heuristic 1. This heuristic involves decreasing the value of mp when

progress is made and increasing it when there are no improvements. If a

stationary state is detected meaning that the CM is high, this could be due to

very low value of mp inducing a premature convergence, with the search

process being trapped in a local optimum. Heuristic 1 deals with this problem

by increasing the value of mp so that more diversity is introduced with the

possibility of escaping from the local optimum. It should be noted that the

rules 1, 2, 4, 5 and 6 listed in Table 4.1 employ this heuristic.

� Heuristic 2. This heuristic involves decreasing the value of mp if there is still

no progress while it is high. Another possible cause of a poor performance

89

may be the use of a too high value for mp , which does not allow the

convergence towards better individuals. Heuristic 2 deals with this problem

by decreasing the value of mp value when both CM and mp are high. It

should be noted that the rule 3 listed in Table 4.1 employs this heuristic.

 The progress evaluation can be summarized as follows: first the CM value is

calculated, and then its linguistic label is determined as low or high. This information

is matched with the current mp label in Table 4.1 and the resulting 'mp label is

found. Finally, the new mutation probability is calculated according to the label of

'mp .

4.2 Computational Experiments and Analysis

 To evaluate the performance of the proposed adaptive algorithm, we carried out

experiments on both small and large sized problems. Moreover, we compared the

performance of the adaptive algorithm with the pure (non-adaptive) GA described in

Ponnambalam et al. (2003). These two algorithms along with their main differences

are listed in Table 4.2.

Table 4.2 The algorithms compared

 Standard Adaptive

Algorithm

definition
[| | | elit | ox, inv| |] [| | | elit | ox, inv| adprm |]

Mutation

rate
Fixed to 0.2

Varies in the range of

[0.10, 0.50]

Number of

elites
10

Varies in the range of

[0, 25]

4.2.1 Benchmark Problems

 The experiments have been carried out using a set of 60 problems. The problems

were generated so as to provide different sets of conditions in mixed-model assembly

90

line sequencing problems. The first factor considered is the number of models

produced on the assembly line; three cases, i.e. 3-5 models, 6-8 models and 9-11

models, are considered. The second factor considered is the MPS (minimum part

set), which is to be repeated to satisfy the demand for a specified planning horizon.

This factor is considered at three levels: (1) a random number between 10 and 20; (2)

a random number between 20 and 30, and (3) a random number between 30 and 40,

all chosen from a uniform distribution. The number of subassemblies, components

and raw materials are chosen in the range of [3, 6]. Using these conditions, we have

divided 60 problems into 6 problem sets, each containing 10 problems. These sets,

accompanied by their average solution space, can be seen in Table 4.3.

Table 4.3. Problem sets

 The data for the first four problem sets are taken from Ponnambalam et al. (2003)

in which the generated problems were solved under the objective of minimizing the

variation of part consumption rates. Moreover, to evaluate the performance of the

proposed algorithm on large size problems, we generated the problem sets V and VI

(see Table 4.3).

 Using the classification schemes proposed in Chapter 3, we can define all these

problems as follows:

[setup| | cpu| mlev
4
].

P. Set Average number of solutions

I 1.6 * 10
7

II 3.4 * 10
9

III 8.2 * 10
12

IV 2.1 * 10
17

V 6.2 * 10
19

VI 1.0 * 10
30

Number of Models Total
Demand [3, 5] [6, 8] [9, 11]

[10, 20] I III

[20, 30] II IV V*

[30, 40] VI*

*additional problem sets

91

4.2.2 Parameter Setting

 The algorithm is programmed in C, and implemented on a PC with a 2GHz CPU.

The values of genetic parameters have been determined through preliminary

experiments. For all problems, the population size has been set to 50. The initial rates

for crossover and mutation are set to 0.8 and 0.2 respectively. While the crossover

rate is fixed throughout the generations, the mutation rate varies in the range of

[]500100 ., . . For the non-adaptive GA algorithm, the number of elites is set to 10.

Adaptive controller is called once in every 5 generations and finally, for the

termination of the algorithm, the maximum number of generations is set to 100.

4.2.3 Analysis and Discussion of the Results

 All of the instances in the problem sets were solved using both standard GA and

adaptive GA algorithms. In order to get more reliable results, each algorithm has

been run 10 times for each of the problem instances and the best and average

performances for the solutions were recorded. The comparison of the performance of

two approaches is based on both the best and also average values.

 Tables 4.4-4.9 present the results of the computational experiments. For each of

the 60 problems, the best and average VPC values are given for both standard and

adaptive approaches. The percent of improvement achieved by using the adaptive

approach is also given in each column. These improvement rates are calculated as

follows:

100×
−

std

adpstd

VPC

VPCVPC
 (17)

where stdVPC is the VPC value obtained by the standard approach and adpVPC is the

VPC value obtained by the adaptive approach. The last column of each table gives

the average improvement rates achieved in that problem set.

9
2

Average

0,25%

1,10%

Average

6,05%

9,01%

10

34792,5

36465,6

34636,0

34853,6

0,45%

4,42%

20

19002,3

20653,1

17191,5

18237,0

9,53%

11,70%

9

8373,3

8968,1

8205,4

8443,8

2,01%

5,85%

19

29764,9

32242,9

26422,5

28823,3

11,23%

10,61%

8

37836,2

37866,5

37836,2

37926,9

0,00%

-0,16%

18

31176,8

34765,8

28194,8

30535,1

9,56%

12,17%

7

5109,2

5144,9

5109,2

5180,6

0,00%

-0,69%

17

29467,1

31072,2

28000,2

29185,7

4,98%

6,07%

6

101843,2

101892,3

101843,2

101843,2

0,00%

0,05%

16

56634,2

63943,2

56537,6

57890,0

0,17%

9,47%

5

2487,2

2487,2

2487,2

2488,4

0,00%

-0,05%

15

62746,9

65052,4

57690,0

59516,4

8,06%

8,51%

4

24696,8

24696,8

24696,8

24696,8

0,00%

0,00%

14

39713,6

43213,0

39713,6

41185,1

0,00%

4,69%

3

58144,6

58144,6

58144,6

58144,6

0,00%

0,00%

13

42618,9

45341,0

39390,4

40663,5

7,58%

10,32%

2

33274,2

33973,3

33274,2

33828,8

0,00%

0,43%

12

91294,0

99723,4

82684,4

86484,8

9,43%

13,28%

1

18789,9

19001,2

18789,9

18789,9

0,00%

1,11%

11

32499,5

34282,8

32499,5

33151,0

0,00%

3,30%

Standart

 Best

 Average

Adaptive

 Best

 Average

Improvement

 Best

 Average

Standart

 Best

 Average

Adaptive

 Best

 Average

Improvement

 Best

 Average

Table 4.4 Results for probems 1-10

Table 4.5 Results for probems 11-20

9
3

Average

0,56%

3,32%

Average

7,44%

10,45%

30

26640,8

30997,1

27845,2

29183,2

-4,52%

5,85%

40

56268,8

63269,9

52395,0

56277,3

6,88%

11,05%

29

16974,8

18299,2

15974,6

17107,9

5,89%

6,51%

39

129720,7

139835,6

117859,1

124338,8

9,14%

11,08%

28

16552,1

16853,8

16552,1

16884,1

0,00%

-0,18%

38

59891,9

65672,9

55955,4

60209,4

6,57%

8,32%

27

15525,9

15744,2

15525,9

15825,7

0,00%

-0,52%

37

214156,3

239456,3

196741,7

209887,2

8,13%

12,35%

26

53684,7

55557,7

53684,7

54590,5

0,00%

1,74%

36

70552,3

79327,1

66140,6

71000,2

6,25%

10,50%

25

53684,7

55557,7

53684,7

54590,5

0,00%

1,74%

35

37264,8

40789,7

34099,3

35722,9

8,49%

12,42%

24

29338,0

30268,4

29338,0

29510,3

0,00%

2,50%

34

62113,0

69197,2

55564,6

60329,8

10,54%

12,81%

23

35495,6

36911,9

35281,3

36216,3

0,60%

1,88%

33

166179,1

180529,7

141574,9

155697,6

14,81%

13,76%

22

82285,2

86320,1

79305,3

82268,3

3,62%

4,69%

32

6922,8

7352,1

6898,4

7117,0

0,35%

3,20%

21

25532,5

28938,1

25532,5

26349,0

0,00%

8,95%

31

33799,1

38276,9

32701,2

34843,3

3,25%

8,97%

Standart

 Best

 Average

Adaptive

 Best

 Average

Improvement

 Best

 Average

Standart

 Best

 Average

Adaptive

 Best

 Average

Improvement

 Best

 Average

Table 4.7 Results for probems 31-40

Table 4.6 Results for probems 21-30

9
4

Average

9,15%

9,60%

Average

11,61%

14,54%

50

188876,5

202115,8

168351,6

181134,9

10,87%

10,38%

60

387611,8

428665,8

322383,4

357715,7

16,83%

16,55%

49

20699,0

22257,7

17817,5

20000,8

13,92%

10,14%

59

108777,5

122648,4

100112,9

105830,8

7,97%

13,71%

48

351627,2

412425,9

307616,4

351429,4

12,52%

14,79%

58

93924,6

105789,1

87983,5

94587,9

6,33%

10,59%

47

421073,7

431897,9

391315,6

407504,7

7,07%

5,65%

57

445576,1

515615,7

365076,0

411040,0

18,07%

20,28%

46

662774,9

749974,8

635944,6

682996,6

4,05%

8,93%

56

879397,2

988347,2

782415,1

855853,2

11,03%

13,41%

45

656388,7

713458,9

544539,5

591872,2

17,04%

17,04%

55

145626,2

172189,6

135832,0

145739,6

6,73%

15,36%

44

579839,1

627423,4

548879,9

606382,8

5,34%

3,35%

54

2837580,1

3088061,7

2250754,1

2557965,8

20,68%

17,17%

43

174574,5

187735,9

165702,0

175620,9

5,08%

6,45%

53

129361,0

149703,9

123938,3

134109,2

4,19%

10,42%

42

233520,0

254572,8

210208,0

222725,3

9,98%

12,51%

52

407110,9

417454,6

344151,6

373339,1

15,46%

10,57%

41

396689,5

427642,1

374312,9

398617,3

5,64%

6,79%

51

348494,0

415278,3

317629,2

343039,8

8,86%

17,40%

Standart

 Best

 Average

Adaptive

 Best

 Average

Improvement

 Best

 Average

Standart

 Best

 Average

Adaptive

 Best

 Average

Improvement

 Best

 Average

Table 4.8 Results for probems 41-50

Table 4.9 Results for probems 51-60

95

 It can be seen from these tables that except for one problem instance (i.e.,

problem 30
th

), the adaptive approach provided the best VPC values. However,

considering the general improvement of adaptive algorithm over standard algorithm

for this problem instance (see Table 4.6, average improvement of 5.85%), this result

can be interpreted as coincidental.

 In the terms of average values, out of 60 problems, adaptive approach provided

the best results in 55 problems. Although the standard approach was the one with

better results in the other five problem instances (i.e., 5, 7, 8, 27 and 28), the

difference was always under 1%. This can be attributed to the fact that all of these 5

problems belong to the first two problem sets whose possible solution spaces are

rather small compared to the other four sets. It should also be noted that for these 5

problems, both the standard and adaptive approaches were able to reach the same

best VPC values in several replications.

 In order to derive a general perspective, all results in Tables 4.4-4.9 are

summarized in Figure 4.4. This figure provides the average improvement values

achieved by the implementation of adaptive techniques for each problem set. The

improvements on best and average values are gathered from the last column of each

table.

 The figure shows that the contribution of the adaptive techniques grows as the

problem size gets larger. In the first two problem sets that contain rather small-sized

problems, usually both approaches reach to the same VPC values. However, the gap

between the standard and adaptive approach widens as the problems become

complex. Especially in the sixth problem set, the improvement rates may reach up to

20%.

 Regarding to these findings, it could be stated that the adaptive parameter control

approaches that alter the values of GA parameters depending on the feedback taken

from the algorithm during the course of the run, has the potential to improve the

performance of the pure GA approaches. Particularly, for large-sized problems,

96

adaptive methods have an unneglectable impact on the performance of the solution

method.

Improvement achieved by the adaptive approach

0,00%

2,00%

4,00%

6,00%

8,00%

10,00%

12,00%

14,00%

16,00%

I II III IV V VI

Problem set

A
v
e
ra

g
e
 i

m
p

ro
v
e
m

e
n

t

Best

Average

Figure 4.4 Improvement by problem set

97

CHAPTER FIVE

ADAPTIVE GA BASED APPROACH FOR SOLVING MULTI-OBJECTIVE

MIXED MODEL ASSEMBLY LINE SEQUENCING PROBLEM

 In this chapter, an adaptive GA based approach is introduced to solve multi-

objective MMALSP. The proposed approach combines the features of the multi-

objective GAs (MOGAs) and adaptive GAs (AGAs) in order to provide alternative

solutions for the decision makers. An adaptive elitist strategy and a scheme for

changing the probability of mutation have been developed for this purpose.

 In order to evaluate the performance of the proposed adaptive GA algorithm,

several experiments are carried out. Moreover, the results of the AGA are compared

to the results of a standard (non-adaptive) MOGA that was proposed in

Ponnambalam et al. (2003). The experiments also incorporate two initial population

heuristics to observe the effects of employing different initialization schemes on the

performance of the proposed algorithm.

 The rest of this chapter is organized as follows: In section 5.1, the proposed

adaptive based approach is discussed in detail and in section 5.2, the results of

comparative experiments carried out on a set of benchmark problems are presented.

5.1 Specifications of the Adaptive MOGA Based Approach

 This section discusses in detail how the two algorithms, adaptive GA and multi-

objective GA were combined to solve MMALSP. The general structure of the

proposed approach is given in Figure 5.1.

 As it is seen in Figure 5.1, there are three major components in the proposed

algorithm. The main component, the GA, incorporates the multi-objective GA

(MOGA) which ranks the individuals and adaptive GA (AGA) which modifies the

values of the GA parameters.

98

 Figure 5.1 General structure of the proposed multi-objective adaptive GA

A pseudocode representation of the proposed algorithm is given below:

(main) Read GA parameters and options.

(mainloop) Read problem data.

(initialize) Create and return an initial population.

(evaluate) Calculate and return objective function values for all

individuals

(constructCubicle) Calculate niche-size, density and pareto

stratums for the current population, assign ranks and survival

probabilities according to these values (those with higher

pareto stratum and lower density values are assigned higher

ranks).

(mainloop) Start generations loop (loop for a pre-determined number

of generations)

99

(mainloop) Modify GA parameters if necessary (crossover and/or

mutation operators, crossover and/or mutation probabilities, number

of elites to be transfered, etc.)

(evolve) Choose parents, choose appropriate GA operators,

apply crossover and mutation, return a candidate population.

(evaluate) Calculate and return objective function values for all

individuals of the candidate population.

(constructCubicle) Calculate niche-size, density and pareto

stratums for the candidate population, assign ranks and

survival probabilities according to these values.

(domCompare) Compare the individuals of previous and

candidate populations, mark those which are dominated by an

individual from the other population.

(eliteMulti) If adaptive elite system is enabled, transfer all the

unmarked (by the domCompare function in the previous step)

individuals of the previous generation into newly created

generation. If it is disabled, transfer a pre-specified number of

individuals from the previous generation into the new

generation (here, the selection depends on ranks of the

individuals, which were assigned by the previous

constructCubicle function call).

(eliteMulti) After elite transfers are completed, populate the

remaining quota with the individuals of the candidate

population, giving priority to individuals with higher ranks.

(constructCubicle) Calculate niche-size, density and pareto

stratums for the new generation, assign ranks and survival

probabilities according to these values.

(mainloop) End generations loop if pre-determined number of

generations is reached.

(mainloop) Display and print the best sequences found.

(main) End program.

100

 The expression before each step in the pseudocode refers to the program module

which is responsible from that operation. A chart presenting the code structure

(program modules) of the proposed algorithm is given in Appendix 2.

 The details regarding the specifications of the proposed multi-objective adaptive

GA based approach, such as chromosome representation, genetic operators, selection

schemes and ranking are explained in the following sections.

5.1.1 Genetic Representation and Initial Population

 Genetic representation of feasible solutions is the same as in the previous chapter.

However, the creation of initial population introduces two new heuristics in addition

to the totally random creation. As a result, some of the individuals in the initial

population are generated using two different heuristics, and the rest are randomly

generated.

 The overall initialization process can be summarized as follows:

Generate and inject palindromic sequences (IPH-1)

Eg. (3A, 2B, 2C)� ABCACBA and ABCABCA

Create an alphabetically ordered sequence according to the given demand

for each model

Eg. (3A, 2B, 2C)� AAABBCC

 Inject the alphabetically ordered and reverse-ordered sequences (IPH-2)

Eg. (3A, 2B, 2C)� AAABBCC and CCBBAAA

For n=1 to (Population Size – (2 + 2))

Create a random number associated to every bit in the chromosome

Eg. AAABBCC�5724369

Obtain a shuffled sequence by sorting the random numbers in

ascending order

Eg. 2345679�ABBACAC

 Inject the shuffled sequence

101

Next n

 The heuristics used in the initialization process are explained in the following

sections.

 5.1.1.1 Initial Population Heuristic – 1 (IPH-1)

 During the pilot studies, it has been noticed that the optimal sequences for some

of the smaller sized problems (when variation in part consumption rates were to be

minimized) were palindromic sequences. In the context of this research, a

palindrome is a sequence of models that has the property of resulting in the same

sequence regardless of starting the reading either in forward or backward direction;

for instance ABCACACBA is a palindromic sequence. Based on this finding, in this

study we used the heuristic IPH-1 to inject some palindromic sequences into the

initial population hoping that this will help to start the search from a better point.

 The procedure to generate the palindromic sequences is given below:

i. For each product i of type m , compute the following position value, mipv ,

1

1

+
=
∑

=

m

M

m

m

mi
d

di

pv , i = 1,2,…, dm ; m = 1,2,…,M. (18)

where dm is the demand of model m and M is the number of different models.

ii. Sort the products according to their position value (mipv) in ascending order.

 Eq. 18 allows calculating mipv values that are used to evenly distribute the

products of a specific model, in the production sequence. Later, when the products

are sorted in the second step, a palindromic sequence is obtained. During the sorting

process, there may be situations where two or more products share the same position

value. In such cases, ties are broken using two alternative methods each resulting in

different production sequences: (i) the tied products are always sorted in alphabetical

102

order, (ii) the tied products in the first half of the production sequence are sorted

alphabetically whereas the ones in the second half are sorted in reverse-alphabetical

order. Although the symmetry in the second method provides the palindromic

sequences that are searched for, in some cases, the first method provides sequences

with better VPC results. Therefore, both sequences are injected into the initial

population to ensure the better individual gets included. The following example

demonstrates this procedure.

 Example. Suppose that during a cycle four types of products, A, B, C and D are

required to be produced in quantities of 3, 4, 3 and 2, respectively. Using Eq. 18, the

position values are calculated as follows:

=

=

=

=

=

=

=

=

=

=

=

=

8

4

9

6

3

6.9

2.7

8.4

4.2

9

6

3

2

1

3

2

1

4

3

2

1

3

2

1

D

D

C

C

C

B

B

B

B

A

A

A

pv

pv

pv

pv

pv

pv

pv

pv

pv

pv

pv

pv

 When the position values are sorted in ascending order, the following graphic can

be obtained.

Figure 5.2. Products sorted according to pvmi

 As it can be seen from Figure 5.2, the distribution of models is symmetric with

respect to 6. However, products of type A and C share the same position values,

103

{3,6,9}. When the tie-breaker methods are applied, the following two sequences are

obtained.

 Figure 5.3 Sequences obtained by using IPH-1

 Using Eq.2, the VPC values of these two sequences are calculated as 3188.56 and

2509.75, respectively. The implementation of GA to this problem results in a

solution with VPC value of 2487.15 which is very close to the one obtained from the

second sequence of IPH-1 (2509.75).

 5.1.1.2 Initial Population Heuristic – II (IPH-2)

 The second heuristic is used to inject two sequences into the initial population.

These sequences are alphabetically ordered and alphabetically reverse-ordered

sequences of the models to be produced. In doing so, it was hoped that the setup cost

would be reduced as the injected sequences contained the minimum number of

model changes.

5.1.2 Objective Functions

 To evaluate the fitness of each individual, the following three objective functions

are employed: (i) total utility work (Eq. 1), (ii) variation of parts consumption rates

(Eq. 2) and (iii) total setup costs (Eq. 3). Given a feasible sequence, the fitness of

individual is evaluated using these three functions.

104

5.1.3 Ranking and Selection

 Before proceeding to selection, each individual must be given a selection

probability. For this purpose, there are several approaches proposed in the literature,

which are mentioned in Section 2.2.2.4. In this study, the pareto stratum – niche

cubicle (PS-NC) approach, which is proposed by Hyun et. al (1998), is used to

determine the selection probability for each individual. This method is a combination

of pareto ranking and fitness sharing schemes. The pareto ranking scheme focuses on

improving the solution quality, hence it emphasizes the exploitation issue. The

fitness of each string is determined by a non-dominated sorting procedure. This,

however, has no real control over the solution diversity. Unlike Pareto ranking

scheme, the fitness sharing scheme – niche-cubicle – emphasizes the exploration

issue. This strategy introduces a niching concept which can improve the diversity of

solutions in a population, however, it has limitations in finding good solutions.

Therefore, these two methods are combined to round off the weakness of each other,

and to attempt to simultaneously meet the two issues of exploration and exploitation.

 This approach integrating two schemes, associates every individual with a rank

which is determined by the sparseness of individuals and Pareto optimality. In the

following paragraphs, the concepts of niche cubicle and Pareto strata are explained

and then the overall selection procedure is given.

 Niche-Cubicles. Niche cubicles are first constructed for every individual of a

generation. A niche cubicle is a rectangular region whose center is the individual.

The size of the niche cubicle is computed using Eq.19. Suppose a problem is solved

under n objectives. Let ltMAX and ltMIN be the maximum and the minimum of the

lth objective function at generation t , respectively. Then, ltσ , the niche size for the

lth objective is computed as follows:

nl
sizepop

MINMAX

n

ltlt

lt ,...,2,1,
.

=
−

= σ (19)

105

where pop.size is the size of the population. The niche size is calculated at every

generation. Figure 5.4 illustrates the construction of niche cubicles when n = 2 and

pop.size = 25. Two niche cubicles are shown for arbitrarily chosen individuals, p1

and p2. Since the size of every niche cubicle is same, the solution density of a niche

cubicle can be simply measured by the number of individuals included in the cubicle.

A solution located in a less dense cubicle is allowed to have a higher probability to

survive in the next generation. For example, since the niche cubicle created for p1 is

less dense than that for p2, p1 will have higher survival probability than p2 if both of

these individuals are included in the same Pareto stratum, which is described below.

 Figure 5.4. Niche cubicles

 Pareto Strata. Next, Pareto strata are identified. Given a population of solutions,

some of them are non-dominated solutions. Such solutions form a Pareto stratum as

illustrated in Figure 5.5, where two objectives, f1 and f2, are minimized

simultaneously. Removing the stratum from the population uncovers the next Pareto

stratum. This can be repeated until all the solutions are used up. A solution which is

contained in a stratum found earlier, is allowed to have a higher probability to

survive in the next generation.

106

Figure 5.5. Pareto strata

 The overall selection procedure combining the Pareto stratum and the niche

cubicle is provided below. P(t) = {p1, p2,…, ppop.size} denotes the current population

and pv is the individual whose rank is v.

Step (0) v = 0; u = 1 and Pu = P(t)

Step (1) For each individual in P(t); construct its niche cubicle and calculate

the solution density of this cubicle.

Step (2) Find the uth Pareto stratum, PSu = {(pi, bi) | pi is a non-dominated

solution to Pu, bi is the solution density of the niche cubicle associated

with pi }.

Step (3) Sort the individuals of PSu in the increasing order of bi’s, and assign

the rank (v + s) to the sth individual, for s = 1, 2,…, | PSu |.

Step (4) v = v + | PSu |; u = u + 1 and Pu = Pu - 1 - PSu – 1. If Pu = Ø, go to

step 3.2; otherwise, go to step 3.5.

Step (5) For each individual, determine the probability of survival using a

rank-based selection scheme wherein the following geometric

distribution is used.

107

Prob sizepopvqqp
v

v .,...,3,2,1,)1(][1 =−= − (20)

where q is the selection parameter (0 < q < 1).

Step (6) For each individual vp , calculate the cumulative probability of

survival, CProb][vp , using Eq. 21.

CProb][][
1

i

v

i

v pp ∑
=

= Prob (21)

 For each parent selection process, using the roulette wheel selection mechanism a

random number between 0 and 1, r, is generated and the individual vp , which

satisfies the following condition, is selected as a parent:

CProb][1−vp < r ≤ CProb][vp (22)

 This selection process is repeated as many times as the size of the population. In

this selection, the primary concern is given to Pareto optimality. Individuals

dominated by an individual p can never be more highly ranked than p. Solution

density is considered secondarily for individuals in the same Pareto stratum. This

contributes to maintaining a distribution of diverse solutions in a population.

5.1.4 Crossover and Mutation

 The crossover and mutation operators that are used in the solution of multi-

objective MMALSP are the same as the ones used for the single-objective GA

presented in Chapter 4, namely order crossover (OX) and inversion (INV) operators.

While the probability of crossover has been fixed at 0.8 during the whole run,

mutation probability starts with an initial value of 0.2 and varies periodically

according to the feedback coming from the algorithm. This variation process is

handled by the AGA controller which will be explained later.

108

5.1.5 Comparison of Domination and Elitist Strategy

 To determine which individuals from the previous generation will survive to the

next generation, we propose an adaptive elitist strategy. The number of elites to be

selected is determined after a domination check between the two populations. Both

the parent and offspring populations are subject to a cross-population check, where

non-dominated individuals of the parent population are identified. These elite

individuals are then transferred directly to the new generation. The remaining

population quota is completed with the offspring individuals, starting from the one

with the highest rank.

5.1.6 Performance Evaluation and Adaptation

 This is where the adaptive GA features come into play. Evaluation and adaptation

are controlled by a multi-objective AGA controller, which is a slightly modified

version of the single-objective one presented previously in Chapter 4.

 As it was the case in the single objective AGA controller, the multi-objective

AGA controller uses the convergence measure to evaluate the progress made in best

objective function values during a number of generations. Since there are three

separate objective functions in this multi-objective environment, an overall

convergence measure is calculated using the following equation:

)∏
=

=
3

1

0(
i

i

b

i ffCM (23)

where b

if is the i-th objective function value of the current best element (for the i-th

objective function) found so far and 0

if is the i-th objective function value of the

best element found before the last G generations. Once again, the use of an elitist

strategy limits CM to the range of [0, 1].

109

 The set of linguistic labels for CM is {Low, High}. However, as the overall CM is

calculated by multiplication of three CM values, the same level of progress may

result in a lower CM value in a multi-objective environment than a single objective

one. In order to circumvent this effect, the values of linguistic labels are toned down.

The Low label now corresponds to a CM with a value of 0.7 or lower, whereas the

High label still corresponds to a CM with a value of 0.95 or greater. If the CM value

is in the (0.7, 0.95) range, then both labels are possible. In such a case, label is

determined using a random number (r) as follows:

CM label =

−

−
≤

otherwisehigh

CM
rlow

,
7.095.0

95.0
,

 (24)

 Numerical representations of the linguistic CM labels are depicted in Figure 5.7a.

Figure 5.7 Meanings of the linguistic terms

 The mutation probability is still used as the GA control parameter. The set of

linguistic labels associated with mutation probability is {Low, Medium, High}. Each

of these labels corresponds to a triangular distribution as depicted in Figure 5.7b.

 The proposed multi-objective AGA controller uses the same set of rules to

evaluate the progress and determine the new value for the probability of mutation

(see Table 4.1).

110

5.1.7 Termination Check

 Once the maximum number of generations is reached, the algorithm terminates

and displays the individuals that are in the first Pareto stratum of the latest

population. These solutions are the decision alternatives for the problem at hand. If

check fails, the algorithm proceeds to the next generation.

5.2 Computational Experiments and Analysis

 In this section, we describe the method for evaluating the performance of the GA

based solution approach proposed in section 5.1. First, the test problems and the

algorithms compared are presented in Section 5.2.1, then the GA parameters are

given in Section 5.2.2 and performance measures are introduced in Section 5.2.3.

Finally, the test results and the insights gained through these experimental studies are

given in Section 5.2.4.

5.2.1 Problem Sets and the Algorithms Compared

 In order to investigate the effectiveness of the proposed GA approach in solving

the multi-objective MMAL sequencing problem, various experimental studies have

been carried out using the same set of 60 problems given in the previous chapter (see

Table 4.3).

 The data for the first four problem sets are taken from Ponnambalam et al. (2003)

in which the generated problems were solved under the objective of minimizing the

variation of part consumption rates. In this study, in addition to minimizing the

variation of part consumption rates, we considered two other objective functions,

which are namely minimizing the total setup cost and minimizing the total utility

work. These objective functions take into consideration sequence dependent setup

costs, model assembly times and workstation lengths. It should be noted that in order

to create a comparable problem set, we added all these features to all six problem

sets given in Table 4.3.

111

 Using the classification schemes proposed in Chapter 3, we can define all these

problems as follows:

[setup| | wo, cpu, setup
c
| mlev

4
].

 The characteristics and the search capability of the proposed adaptive algorithm

are compared to those of the standard PS-NC genetic algorithm, which is similar to

the one proposed in Ponnambalam et al. (2003). Moreover, to distinguish between

the effects of using heuristics to create initial population and using adaptive

algorithm, several variations of the standard and adaptive algorithms have been

created. These algorithms along with their main differences are listed in Table 5.1.

Each algorithm has been run 10 times for each problem to get reliable results.

5.2.2 Parameter Setting

 The values of genetic parameters have been determined through preliminary

experiments. For all problems, the population size has been set to 100. The initial

rates for crossover and mutation are set to 0.8 and 0.2 respectively. While the

crossover rate is fixed throughout the generations, the mutation rate varies in the

range of []300100 ., . . For the non-adaptive GA algorithm, the number of elites is set

to 20. The selection parameter, q, is fixed to popsize/3 (see Eq. 20), adaptive

controller is called once in every 10 generations and finally, for the termination of

the algorithm, the maximum number of generations is set to 250.

5.2.3 Performance Measures

 This section explains the performance metrics employed to compare the strengths

and weaknesses of standard and adaptive genetic algorithm approaches. These

performance metrics examine the fraction of first pareto stratum individuals in a

population, the non-dominated individuals in the Pareto front, the ratio of non-

dominated individuals as well as the convergence performance for each objective

function. In the data collection process, all these metrics are averaged on the number

of replications made.

1
1
2

Number of
Elites

20

Varies

Mutation
Rate

Fixed to 0.2

Varies in the
range of

[0.10, 0.30]

Initial Population
Heuristics

Random

Random + IPH1 +
IPH2

Random + IPH1

Random + IPH2

Random

Random + IPH1 +
IPH2

Random + IPH1

Random + IPH2

Definition

[| multi, pr, fsh| | rank, elit | ox, inv| |]

[| multi, pr, fsh| hrstc | rank, elit | ox, inv| |]

[| multi, pr, fsh| | rank, elit | ox, inv| adprm|]

[| multi, pr, fsh| hrstc | rank, elit | ox, inv| adprm|]

Table 5.1 Algorithms Compared

Algorithm

 Std

 Std + Both*

 Std + IPH1

 Std + IPH2

 Adp

 Adp + Both*

 Adp + IPH1

 Adp + IPH2

*Includes both of the two initial population heuristics, IPH-1 and IPH-2.

113

 5.2.3.1 Number of 1
st
 Pareto Stratum Individuals (NPS1)

 This performance metric simply shows the number of individuals in the first

Pareto stratum of the population. A higher number means more alternatives are

available for decision makers.

 5.2.3.2 Number of Non-dominated Individuals (NNI)

 When a population is compared to another, some of its first Pareto stratum

individuals might be dominated by those of the other population. The number of the

remaining non-dominated individuals is denoted by NNI. The higher the value of

NNI, the better the solution quality, and hence the better the algorithm performance

is.

 5.2.3.3 Ratio of Non-dominated Individuals (RNI)

 The first two measures, NPS1 and NNI, are absolute values which may possibly

lead to misjudgments about the performance of the algorithm. Hence we define a

relative measure, RNI, which is the ratio of number of non-dominated individuals

(NNI) to number of first Pareto stratum individuals (NPS1):

1NPS

NNI
RNI = (25)

 Once again, the higher the value of RNI, the better the solution quality, and hence

the better the performance of the algorithm is.

 5.2.3.4 Convergence

 Convergence pertains to the speed at which the algorithm approaches to the

optimal or near-optimal solution. Since we use a multi-objective approach,

114

convergence values are calculated for each objective function separately. For the

sake of simplification, actual values are normalized using the following equation:

250,...2,1,
minmax

min
=

−

−
=′ g

BB

Bb
b

g

g (26)

where gb′ is the normalized best value obtained in generation g, gb is the actual best

value obtained in generation g, minB is the minimum best value and maxB is the

maximum best value obtained during the whole experiments. It follows from Eq. 26

that gb′ is in the range of [0, 1], i.e. 10 ≤′≤ gb . For each objective function, gb

values are calculated for the last generation to compare the convergence performance

of algorithms.

5.2.4 Experimental Results

 In this section, the results of the experiments are presented and analyzed in terms

of previously declared performance measures. The performance of the algorithms is

compared for each of the six problem sets. The results are presented as averages of

10 problems in each problem set.

 Figures 5.1 to 5.3 depict the number of first pareto stratum individuals (NPS1),

non-dominated individuals (NNI) and the ratio of non-dominated individuals (RNI),

respectively. In each figure, it is possible to see the performance of each algorithm

for every problem set.

 Based on Figure 5.1, we can state that all of the algorithms tend to provide more

alternative solutions as the problem size expands. Moreover, all of the adaptive

algorithms provide larger number of solutions than the standard algorithms. Another

finding is that, the heuristics do not seem to improve the performance of the

algorithms except for the standard ones with IPH2 heuristics (Std+Both and

Std+IPH2) in problem set 6.

115

 Figure 5.2 shows the average number of non-dominated individuals for each

problem set. It is obvious from this figure that the adaptive algorithms outperform all

the standard algorithms. The number of non-dominated individuals provided by the

adaptive algorithms starts from 55 and tends to increase as the problem size expands,

whereas the performance of the standard algorithms seems to be stabilized around

20. The heuristics do not seem to affect the performance of none of the algorithms.

 In Figure 5.3, the ratio of non-dominated individuals can be seen for each

problem set. For the standard algorithms, the number of non-dominated individuals

does not change while the total number of alternative solutions increases (see Figure

5.1 and Figure 5.2). Thus, the ratio of non-dominated solutions decreases as the

problem size expands. Unlike standard algorithms, for the adaptive algorithms, both

the number of non-dominated individuals and the total number of alternative

solutions increase (see Figure 5.1 and Figure 5.2). This results in a relatively stagnant

ratio of non-dominated solutions throughout all the problem sets.

 Figure 5.3 also shows that employing IPH2 heuristic (in Std+Both, Std+IPH2,

Adp+Both and Adp+IPH2) usually causes the algorithms to have lower RNI values.

This effect is more significant for standard algorithms.

 In summary, from the inspection of Figures 5.1 to 5.3, it can be stated that the

initial population heuristics, IPH1 and IPH2, do not have any significant effect on the

domination performance of algorithms. It can also be stated that adaptive algorithms

provide higher number of alternatives in all cases and unlike the standard ones, their

RNI performance do not decrease as the problem size expands.

 Figures 5.4 to 5.6 show the relations between the three objective functions. The

graphic data has been taken from the first pareto stratum of a randomly selected

replication for problem 60
th

. These individuals are then plotted in three diagrams

showing the relations between VPC and SC, VPC and UW, and finally SC and UW

values. From inspection of these figures, it’s clear that while VPC and SC objectives

conflict with each other, UW objective function does not interfere with the other two.

116

NPS1 by Problem Set

20

30

40

50

60

70

80

90

100

I II III IV V VI

Problem Set

N
u

m
b

e
r

o
f

1
s

t
P

a
re

to
 S

tr
a

tu
m

 I
n

d
iv

id
u

a
ls

Std

Std+Both

Std+IPH2

Std+IPH1

Adp

Adp+Both

Adp+IPH2

Adp+IPH1

 Figure 5.1 Number of alternative solutions

117

NNI by Problem Set

10

20

30

40

50

60

70

80

I II III IV V VI

Problem Set

A
v

g
.
N

u
m

b
e

r
o

f
N

o
n

-d
o

m
in

a
te

d
 I
n

d
iv

id
u

a
ls

Std

Std+Both

Std+IPH2

Std+IPH1

Adp

Adp+Both

Adp+IPH2

Adp+IPH1

 Figure 5.2 Number of non-dominated solutions

118

RNI by Problem Set

0,3

0,4

0,5

0,6

0,7

0,8

0,9

I II III IV V VI

Problem Set

R
a

ti
o

 o
f

N
o

n
-d

o
m

in
a

te
d

 I
n

d
iv

id
u

a
ls

Std

Std+Both

Std+IPH2

Std+IPH1

Adp

Adp+Both

Adp+IPH2

Adp+IPH1

 Figure 5.3 Ratio of non-dominated solutions

119

VPC vs. SC

0

50

100

150

200

250

0 1.000.000 2.000.000 3.000.000 4.000.000
VPC

S
C

Figure 5.4 VPC – SC relation

VPC vs. UW

78

80

82

84

86

88

90

92

94

96

98

0 1.000.000 2.000.000 3.000.000 4.000.000
VPC

U
W

Figure 5.5 VPC – UW relation

SC vs. UW

78

80

82

84

86

88

90

92

94

96

98

0 50 100 150 200 250
SC

U
W

Figure 5.6 SC – UW relation

120

 Moreover, we compared the performance of standard and adaptive algorithms

with respect to their convergence rate (see Figures 5.7 and 5.8). In both of the

figures, the deviation from the best value given in y-axis is obtained by using Eq. 26

based on the last generation of each run. These values are then plotted for all of the

six problem sets. It should be noted that in these sets of comparative studies, the third

objective function minimizing utility work is ignored since it does not interfere with

the other two and generally it converges to a best value very quickly (see Figures 5.4

to 5.6).

VPC Performance

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

I II III IV V VI

Problem Set

D
e

v
ia

ti
o

n
 f

ro
m

 t
h

e
 b

e
s

t
V

P
C

 v
a

lu
e

Std

Std+Both

Std+IPH2

Std+IPH1

Adp

Adp+Both

Adp+IPH2

Adp+IPH1

 Figure 5.7 VPC convergence performance

 Figure 5.7 shows that, the results of the adaptive algorithms usually stay in the 5%

vicinity of the best VPC values. However, standard algorithms start with a 5%

vicinity and their performance worsens as the problem size expands. It can be also

seen that employing the IPH2 heuristic affects the performance of VPC negatively

for both the standard and adaptive algorithms. Unlike IPH2 heuristic, the IPH1

heuristic, which is employed to have better initial populations for VPC optimization,

does not seem to make any improvement on final VPC values. Another finding

121

during these experimental studies was that for some small sized problems, the IPH1

heuristic provided the best values during the generation of initial population, actually

before the start of the genetic search.

SC Performance

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

I II III IV V VI

Problem Set

D
e

v
ia

ti
o

n
 f
ro

m
 t

h
e
 b

e
s

t
S

C
 v

a
lu

e

Std

Std+Both

Std+IPH2

Std+IPH1

Adp

Adp+Both

Adp+IPH2

Adp+IPH1

 Figure 5.8 SC convergence performance

 In Figure 5.8, it can be seen that the adaptive algorithms outperform the standard

algorithms. Also, the algorithms which employ the IPH2 heuristics provide better SC

values. Although the standard algorithms which employ IPH2 heuristic (Std+Both,

Std+IPH2) provide better SC values than the adaptive algorithms that do not employ

it (Adp and Adp+IPH1), they are outperformed by their adaptive counterparts,

Adp+Both and Adp+IPH2. An interesting outcome of this analysis is that the

algorithms which employ only IPH1 heuristic usually provide worse results than the

algorithms without any heuristics, whereas IPH1 heuristic improves the results when

employed together with the IPH2 heuristic. Figure 5.8 also shows that the

performance of the standard algorithms tends to decrease as the problem size

expands.

122

 To sum up, the experimental results show that for every problem set, adaptive

algorithm provides larger number of alternative solutions than the standard PS-NC

algorithm. This makes it clear that the standard approach is less effective in

exploration of the solution space. Besides the quantity of the solutions, it is also

shown that the solution quality of the adaptive approach is much better when

compared to the standard algorithm. This fact is reflected in both the number and

ratio of non-dominated individuals (see Figure 5.2 and Figure 5.3). Lastly, the

adaptive algorithm converges to better results which means it is much more effective

in exploitation of the solution space.

123

CHAPTER SIX

CONCLUSIONS

 A mixed-model assembly line is a type of a production line which is capable of

producing a variety of different product models simultaneously and continuously.

Such an assembly line is widely used in the manufacturing industry to achieve

increased flexibility for product diversification.

 The design and planning of mixed-model assembly lines involve several long- and

short-term problems. Among these problems, determining the sequence of products

to be produced has received considerable attention from the researchers. This

problem is known as the Mixed-Model Assembly Line Sequencing Problem.

 MMALSP appears when variations of the same basic product are produced on the

same production line. These variations imply that the processing times on the

individual stations and part requirements may differ, depending on the model to be

processed. Therefore the production sequences need to be determined such that they

do not cause work overloads or idle times and they allow maintaining a smooth rate

of production and/or part consumption.

 In MMALS literature, several objectives have been proposed to judge the

efficiency of different production sequences. Particularly, for JIT systems, continual

and stable part supply is an important requirement. Since this requirement can be

realized when the demand rate of parts is constant over time, minimizing the

variations in part consumption rates is an important objective to be considered.

Among other objectives, the minimization of work overload and sequence-dependent

setups have also attracted researchers’ attention in the past years.

 In the case of an objective that is more important than the others, MMALSP can

be solved as a single-objective problem. However, as far as real world applications

are concerned, there are usually more than one objective that need to be considered

simultaneously. In such a case, MMALSP becomes a multi-objective problem.

124

 In this study, we aimed at addressing the mixed-model assembly line sequencing

problem, where there are multiple conflicting objectives. It is known that these type

of sequencing problems fall into NP-hard class of combinatorial optimization

problems. Among the proposed solution approaches in the literature, genetic

algorithms have been shown to be quite successful in dealing with many

manufacturing optimization problems. A genetic algorithm is a highly simplified

computational model of biological evolution that can provide desirable solutions to

challenging problems of a combinatorial nature, within a reasonable amount of CPU

time. Hence we proposed a genetic algorithm approach to solve the multi-objective

mixed-model assembly line sequencing problem.

 In this context, after an extensive survey of literature on GAs developed to solve

MMALS problem, we presented a classification scheme for MMALS problem and

GA approaches adopted to deal with this problem. Later, the experiments have been

started with the simplest form of MMALSP, i.e., the single objective problem. This

part of the study aimed at developing adaptive techniques to improve the

performance of the standard GA in solving single objective MMALSP. To evaluate

the performance of the adaptive approach, a number of comparative experiments

have been carried out. As a result it was observed that, the adaptive GA based

approach outperformed the standard GA which did not implement any of the

parameter control techniques. It was also noted that, the improvements achieved by

the implementation of adaptive techniques were more remarkable as the size of

problems increased.

 Moreover, to solve the multi-objective MMALSP, we proposed an adaptive

approach involving a new elitist strategy and initial population heuristics and using

over 60 test problems we compared its performance to that of the standard PS-NC

algorithm presented in Ponnambalam et al. (2003). The experiments showed that the

adaptive GA based approach outperformed the standard PS-NC algorithm in both the

solution quantity and solution quality. As a result of this comparative study, we could

state that both the exploration and exploitation performances of PS-NC genetic

125

algorithm can be improved noticeably by using adaptive techniques and a selective

elitist strategy.

 As a future work, several topics call for further attention. Future research may

extend into three directions: (i) extending the adaptive approach by using variable

population size, crossover rate, and several genetic operators; (ii) implementing self-

adaptive parameter control techniques, in which the GA parameters are encoded into

the chromosomes and are optimized simultaneously with the objective functions; and

(iii) tackling the aggregated problem of assembly line balancing and sequencing

using multi-objective approaches.

126

REFERENCES

Ashlock, D. (2005). Evolutionary computation for modeling and optimization, NY:

Springer.

Augusto, O. B., Rabeau, S., Dépincé, Ph., & Bennis, F. (2006). Multi-objective

genetic algorithms: A way to improve the convergence rate. Engineering

Applications of Artificial Intelligence, 19(5), 501-510.

Bard, J. F., Dar-El, E., & Shtub, A. (1992). An analytic framework for sequencing

mixed model assembly lines. International Journal of Production Research, 30,

35-48.

Beasley, D., Bull, D. R. & Martin, R. R. (1993). An overview of genetic algorithms –

Part 1, Fundamentals, University Computing, 15(2), 58-69.

Beausoleil R. P. (2006). "MOSS" multiobjective scatter search applied to non-linear

multiple criteria optimization European Journal of Operational

Research, 169 (2), 426-449.

Becker, C., & Scholl, A. (2006). A survey on problems and methods in generalized

assembly line balancing. European Journal of Operational Research, 168, 694-

715.

Bingul, Z., Sekmen, A., & Zein-Sabatto, S. (2000). Evolutionary approach to multi-

objective problems using adaptive genetic algorithms. Proceedings of the IEEE

International Conference on Systems, Man, and Cybernetics, October 8–11,

Nashville, TN, 2000.

Boysen, N., Fliedner, M., & Scholl, A. (2007a). Sequencing mixed-model assembly

lines: Survey, classification and model critique. Jena Research Papers in

Business and Economics, (JBE) 2/2007.

127

Boysen, N., Fliedner, M., & Scholl, A. (2007b). Sequencing mixed-model assembly

lines to minimize part inventory cost, OR Spectrum, 2007.

Celano, G., Costa, A., Fichera, S., & Perrone, G. (2004). Human factor policy testing

in sequencing of manual mixed model assembly lines. Computers & Operations

Research, 31, 39–59.

Chang P.-C., Hsieh J.-C., & Wang C.-Y. (2007). Adaptive multi-objective genetic

algorithms for scheduling of drilling operation in printed circuit board

industry, Applied Soft Computing Journal, 7 (3), 800-806.

Cho, H., Paik, C., Yoon, H., & Kim, H. (2005). A robust design of simulated

annealing approach for mixed-model sequencing. Computers & Industrial

Engineering. 48(4), 753-764

Dar-El, E. M., & Cother, R. F. (1975). Assembly line sequencing for model mix.

International Journal of Production Research, 13 (5), 463-477.

Deb, K. (1999). Evolutionary algorithms for multi-criterion optimization in

engineering design. In Miettinen, K. et al. (Eds.) Evolutionary Algorithms in

Engineering and Computer Science: Recent Advances in Genetic Algorithms,

Evolution Strategies, Evolutionary Programming, Genetic Programming, and

Industrial Applications, NY: Wiley.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist

multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary

Computation, 6 (2), 182-197.

Ding F.Y., Zhu J., & Sun H. (2006). Comparing two weighted approaches for

sequencing mixed-model assembly lines with multiple objectives. International

Journal of Production Economics, 102 (1), 108-131.

128

Drexl, A., & Kimms, A. (2001). Sequencing JIT mixed-model assembly lines under

station-load and part-usage constraints. Management Science, 47, 489-491.

Drexl, A., Kimms, A., & Matthießen, L. (2006). Algorithms for the car sequencing

and the level scheduling problem. Journal of Scheduling, 9, 153–176.

Eiben, A.E., Hinterding, R., & Michalewicz, Z. (1999). Parameter control in

evolutionary algorithms, IEEE Transactions on Evolutionary Computing, 3(2),

124–141.

Färber, G., & Coves, A. (2005). Overview on sequencing in mixed model flowshop

production line with static and dynamic context. Reports de recerca de l'Institut

d'Organització i Control de Sistemes Industrials, Nº. 7.

Fonseca, C. M., & Fleming, P. J. (1993). Genetic algorithms for multiobjective

optimization: formulation, discussion, and generalization. In: The Proceedings of

the 5th International Conference on Genetic Algorithms, 416-423.

Gagné, C., Gravel, M., & Price, W. L. (2006). Solving real car sequencing problems

with ant colony optimization. European Journal of Operational Research, 174,

1427–1448.

Haupt, R. L., & Haupt, S. E. (2004). Practical genetic algorithms (2nd ed.), NJ: John

Wiley. &. Sons.

Herrera, F., & Lozano, M. (2003). Fuzzy adaptive genetic algorithms: design,

taxonomy, and future directions, Soft Computing, 7, 545–562.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI:

University of Michigan Press.

129

Horn, J., Nafpliotis, N., & Goldberg, D. E. (1994). A niched Pareto genetic algorithm

for multiobjective optimization. In: The First IEEE Conference on Evolutionary

Computation, 82–87.

Huang, Y. P., Chang, Y. T., & Sandnes, F.E. (2006). Using fuzzy adaptive genetic

algorithm for function optimization, Fuzzy Information Processing Society, 484-

489.

Hyun, C. J., Kim, Y. K., & Kim, Y. (1998). A genetic algorithm for multiple

objective sequencing problems in mixed model assembly lines. Computers and

Operations Research, 25, 675–690.

Jaszkiewicz, A. (1998). Genetic local search for multiple objective combinatorial

optimization. Technical report RA-014/98, Institute of Computing Science,

Poznan University of Technology.

Kara, Y., Özcan, U., & Peker, A. (2007a). Balancing and sequencing mixed-model

just-in-time U-lines with multiple objectives. Applied Mathematics and

Computation, 184, 566-588.

Kara, Y., Özcan, U., & Peker, A. (2007b). An approach for balancing and

sequencing mixed-model JIT U-lines, The International Journal of Advanced

Manufacturing Technology, 32 (11-12), 1218-1231.

Kim, Y. K., Hyun, C. J., & Kim, Y. (1996). Sequencing in mixed model assembly

lines: A genetic algorithm approach. Computers & Operations Research, 23,

1131–1145.

Kim, Y. K., Kim, J. Y., & Kim, Y. (2000). A coevolutionary algorithm for balancing

and sequencing in mixed model assembly lines. Applied Intelligence, 13, 247-

258.

130

Kim, Y. K., Kim, J. Y., & Kim, Y. (2006). An endosymbiotic evolutionary algorithm

for the integration of balancing and sequencing in mixed-model U-lines.

European Journal of Operational Research, 168, 838–852.

Knowles, J., & Corne, D. (1999). The Pareto archived evolution strategy: a new

baseline algorithm for Pareto multiobjective optimisation. In: Proceedings of the

1999 Congress on Evolutionary Computation (CEC'99), 98-105.

Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using

genetic algorithms: A tutorial. Reliability Engineering and System

Safety, 91 (9), 992-1007.

Liu, Z., Zhou, J., & Lai, S. (2003) New adaptive genetic algorithm based on ranking.

In: Proceedings of the Second Internationd Conference on Machine Learning

and Cybernetics, 1841- 1844.

Mane, A., Nahavandi, S., & Zhang, J. (2002). Sequencing production on an assembly

line using goal chasing and user defined algorithm, In Yücesan, E., Chen, C.-H.,

Snowdom, J.L., & Charnes, J.M. (Eds.) Proceedings of the 2002 Winter

Simulation Conference, 1269 – 1273.

Mansouri, S.A. (2005). A multi-objective genetic algorithm for mixed-model

sequencing on JIT assembly lines. European Journal of Operational Research,

167, 696–716.

Marler, R.T., & Arora, J.S. (2004). Survey of multi-objective optimization methods

for engineering, Structural and Multidisciplinary Optimization, 26, 369–395.

McMullen, P.R. (1998). JIT sequencing for mixed-model assembly lines with setups

using Tabu search, Production Planning & Control, 9, 504–510.

131

McMullen, P.R., & Frazier, G.V. (2000). A simulated annealing approach to mixed-

model sequencing with multiple objectives on a just-in-time line, IIE

Transactions, 32, 679-686.

McMullen, P.R., Tarasewich, P., & Frazier, G.V. (2000). Using genetic algorithms to

solve the multi-product JIT sequencing problem with set-ups. International

Journal of Production Research, 38, 2653-2670.

Merengo, C., Nava, F., & Pozetti, A. (1999). Balancing and sequencing manual

mixed-model assembly lines. International Journal of Production Research, 37,

2835–2860.

Miltenburg, J. (1989). Level schedules for mixed-model assembly lines in just-in-

time production systems, Management Science, 35, 192–207.

Miltenburg, J. (2002). Balancing and scheduling mixed-model U-shaped production

lines. The International Journal of Flexible Manufacturing Systems, 14, 119–151.

Miltenburg, J., & Sinnamon, G. (1989). Scheduling mixed-model multi-level just-in-

time production systems. International Journal of Production Research, 27,

1487–1509.

Mitchell, M. (1999). An introduction to genetic algorithms (5th ed.), Cambridge,

MA: Bradford Book, The MIT Press.

Monden, Y. (1993). Toyota production system, (2nd ed.), Norcross, GA: Industrial

Engineering Press.

Obitko, M. (1998). Encoding. Retrieved October 6, 2007, from

http://www.cs.unibo.it/~babaoglu/courses/cas/resources/tutorials/ga/encoding.ht

ml.

132

Ponnambalam, S. G., Aravindan, P., & Rao, M. S. (2003). Genetic algorithms for

sequencing problems in mixed model assembly lines. Computers & Industrial

Engineering, 45, 669–690.

Rekiek, B., De Lit, P., & Delchambre, A. (2000). Designing mixed-product assembly

lines. IEEE Transactions on Robotics and Automation, 16 (3), 268–280.

Sarker, B. R., & Pan, H. (2001). Designing a mixed-model, open-station assembly

line using mixed-integer programing. Journal of Operational Research Society,

52, 545–558.

Schaffer, J.D. (1985). Multiple objective optimization with vector evaluated genetic

algorithms. In: The First International Conference on Genetic Algorithms and

their Applications, 93–100.

Scholl, A. (1999). Balancing and sequencing of assembly lines, (2nd ed.),

Heidelberg.

Scholl, A., Klein, R., & Domschke, W. (1998). Pattern based vocabulary building

for effectively sequencing mixed-model assembly lines, Journal of Heuristics, 4,

359–381.

Shi, Y., Eberhart, R., & Chen, Y. (1999). Implementation of evolutionary fuzzy

systems, IEEE Transactions on Fuzzy Systems, 7(2), 109-119.

Smith, J. E., & Fogarty, T. C. (1997). Operator and parameter adaptation in genetic

algorithms. Soft Computing, 1(2), 81–87.

Srinivas, M., & Patnaik, L. M. (1994). Adaptive probabilities of crossover and

mutation in genetic algorithms. IEEE Transactions on Systems, Man and

Cybernetics, 24(4), 17–26.

133

Starkweather, T., McDaniel, S., Mathias, K., Whitley, D., & Whitley, C., A (1991).

Comparison of genetic sequencing operators. In: Proceedings of the Fourth

International Conference on Genetic Algorithms, 69-76.

Tan, K.C., Lee, T.H., & Khor, E.F. (2002). Evolutionary algorithms for multi-

objective optimization: Performance assessments and comparisons. Artificial

Intelligence Review, 17, 253–290.

Tavakkoli-Moghaddam, R., & Rahimi-Vahed, A.R. (2006). Multi-criteria sequencing

problem for a mixed-model assembly line in a JIT production system. Applied

Mathematics and Computation, 181, 1471–1481.

Thomopoulos, N.T. (1967). Line balancing-sequencing for mixedmodel assembly,

Management Science, 14 (2), 59–75.

Ventura, J.A., & Radhakrishnan, S. (2002). Sequencing mixed model assembly lines

for a just-in-time production system. Production Planning & Control, 13, 199-

210.

Wester, L., & Kilbridge, M. (1964). The assembly line model-mix sequencing

problem. In: Third international conference on Operation Research, 247–260.

Xiaobo, Z., Zhou, Z., & Asres, A. (1999). A note on Toyota's goal of sequencing

mixed models on an assembly line. Computers & Industrial Engineering, 36, 57-

65.

Yano, C. A., & Rachamadugu, R. (1991). Sequencing to minimize work overload in

assembly lines with product options. Management Science, 37, 572–586.

Yano, C.A., & Bolat, A. (1989). Survey, development, and application of algorithms

for sequencing paced assembly lines. Journal of Manufacturing and Operations

Management, 2, 172–198.

134

Yu, J., Yin, Y., & Chen, Z. (2006). Scheduling of an assembly line with a multi-

objective genetic algorithm. The international Journal of Advanced

Manufacturing Technology, 28, 551–555.

Zhao, S., Zhao, J., & Jiao, L. (2005). Adaptive genetic algorithm based approach for

evolutionary design and multi-objective optimization of logic circuits. In:

Proceedings of the 2005 NASA/DoD Conference of Evolution Hardware, 67-72.

Zitzler, E., Laumanns, M. & Thiele, L. (2001). SPEA2: Improving the strength

pareto evolutionary algorithm. TIK-Report 103, Eidgenoessisch-Technische

Hochschule (ETH), Zuerich.

APPENDIX – I. Classification Schemes

a) Classification Scheme for Mixed-model Assembly Line Sequencing Problem

α | β | γ | δ

δ : Number of Production Levels ∈ { o ,
λ

mlev }

o : final stage only
λ

mlev : multiple production levels [o=λ : an arbitrary number of levels, ,...}3,2{∈λ : exactly λ production levels]

γ : Objectives ∈ { o , cpu , vpr ,
λsetup , len , tput , mspan, ,level stop , idle }

o : minimizing workoverload/ total utility work (wo),

cpu : keeping a constant rate of part usage,

vpr : minimizing variation of production rates,

λsetup : minimizing the set-up cost/time [t=λ : min. set-up times, =λ c: min. set-up costs, =λ n: min. number of setups],

 len : minimizing line length,

 tput : minimizing throughput time,

 mspan : minimizing makespan,

 level : leveling workloads for stations on the line,

 stop : minimizing the duration of line stoppages,

 idle : minimizing total idle time.

Remark: In the case of multi-objective optimization more than a single objective can be selected out of the set, separating by a
semicolon.

β : Assembly Line Characteristics (521 ,...,, βββ)

1β : Number of stations ∈ { o , n } [o = 1β : arbitrary number of stations, n = 1β : number of stations is n]

2β : Homogeneity of stations ∈ { o , div } [o = 2β : stations characteristics are same, = 2β div : diverging characteristics]

1
3
5

α | β | γ | δ

3β : Line layout ∈ { o , u } [o = 3β : straight line, = 3β u : u-shaped line]

4β : Launching discipline ∈ { o , vrl } [o = 4β : fixed rate launching, = 4β vrl : variable rate launching]

5
β : Return velocity ∈ { o , fin } [o = 5β : infinite return speed, = 5β fin : finite return speed]

α : Station Characteristics (621 ,...,, ααα)

1α : Station boundaries ∈ { o , open } [o = 1α : closed stations, open = 1α : station boundaries are open]

2α : Reaction on work overload ∈ { o , off , stop , var λ
 }

o = 2α : line continues processing,

off = 2α : workpiece is taken off the transportation system,

 = 2α stop : line is stopped,

 2 =α var λ
 : overloads are compensated by variable station borders [o=λ : early start, late=λ : late start model]

3α : Processing times ∈ { o , sto } [o = 3α : static and deterministic, sto = 3α : stochastic processing times]

4α : Concurrent work ∈ { o , cc } [o = 4α : concurrent work is not allowed, cc = 4α : concurrent work is allowed]

5α : Set-ups ∈ { o , setup } [o = 5α : set-ups are ignored, = 4α setup : set-ups are considered.]

6α : Parallel station ∈ { o ,
λpar }

o = 6α : no parallelization,

= 6α λpar : parallel stations are used. [o=λ : parallel stations are side by side, chr=λ : chronological

parellelization]

1
3
6

b) Classification Scheme for Genetic Algorithm Approaches to MMALSP

α | β | γ | δ | ε | ζ | η

η : Hybridization ∈ { o , hybrid) [o : none, hybrid : GA and another heuristic is used together].

ζ : GA parameters (1ζ , 2ζ , 3ζ)

1ζ : Crossover and mutation probabilities ∈ { o , dtprm , adprm , sfprm }

1ζ = o : parameter tuning,

1ζ = dtprm : deterministic parameter control,

1ζ = adprm : adaptive parameter control,

 1ζ = sfprm : self-adaptive control

2ζ : Population size ∈ { o , one , vpop } [o : fixed size, one : only one individual, vpop: varying size]

3ζ : Termination criteria ∈ { o , min, tfix , conv , mnl, ifix }

3ζ = o : fixed number of generations (gfix),

3ζ = min : satisfaction of minimum criteria,

3ζ = tfix : fixed time,

3ζ = conv : successive iterations no longer produce better results,

3ζ = mnl : manuel inspection,

3ζ = ifix : fixed number of reproduced individuals.

ε : Genetic operators (1ε , 2ε , 3ε)

1ε : Crossover Operator ∈ { o , two , ucx , adpt , boltz , rank , tour , stdy }

=1ε o : single-point crossover,

=1ε two : two-point crossover,

=1ε ucx : uniform crossover,

1
3
7

α | β | γ | δ | ε | ζ | η
=1ε adpt : adaptive crossover,

=1ε edge : edge-recombination,

=1ε ox : order crossover,

=1ε pmx : partially mapped crossover,

=1ε cx : cycle crossover,

=1ε pbx : position-based crossover,

=1ε isrx : immediate successor relation crossover.

2ε : Mutation operator ∈ { o , mmut , um , lam , swap , shift }

 2ε = o : single-point mutation,

 2ε = mmut : multiple point mutation,

2ε = um : uniform mutation,

2ε = lam : lamarckian mutation,

 2ε = swap : swap mutation,

2ε = shift : shift mutation.

3ε : Inversion operator ∈ { o , inv } [o : not used, inv : inversion operator is used]

δ : Selection Strategies (1δ , 2δ)

1δ : Selection method ∈ { o , rou , sus , sigma , boltz , rank , tour , stdy }

1δ = o : roulette wheel (rou),

1δ = sus : stochastic universal sampling,

1δ = sigma : sigma scaling,

1δ = boltz : boltzman selection,

1δ = rank : rank selection,

1δ = tour : tournament selection,

1
3
8

α | β | γ | δ | ε | ζ | η

1δ = stdy : steady-state selection.

2δ : Elitist strategy ∈ { o ,
λ

elit }

2δ = o : elitism not used

2δ =
λ

elit : elitism is used [o=λ : using the same population (internal), ext=λ : external

population]

γ : Initial population ∈ { o , hrstc , mem } [o : randomly created, hrstc : heuristics, mem : memory-based reasoning]

β : Fitness function (321 ,, βββ)

1β : Objective function ∈ { o , multi } [o : single objective, multi : multi-objective]

2β : Fitness assignment ∈ { o , wsum , alt , pr }

2β = o : single objective function value,

2β = wsum : weighted sum,

2β = alt : altering objectives,

2β = pr : pareto ranking.

3β : Diversity mechanism ∈ { o , fsh , crwd , cell }

3β = o : none,

 3β = fsh : fitness sharing,

3β = crwd : crowding distance,

3β = cell : cell-based density.

α : Genetic representation ∈ { o , bin , per , tree] [o : real-valued, bin : binary, per : permutation, tree : tree]

 1
3
9

APPENDIX – II. General Code Structure of the Proposed Adaptive MOGA

1
4
0

