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SIMULATION OF ELECTRIC AND MAGNETIC FIELDS IN ANISOTROPICM  EDIA
ABSTRACT

In the thesis the time-dependent Maxwell's equations widltgwise constant coefficients are
considered. These equations describe the electromagweties in layered anisotropic media. The
main problem of the thesis is initial value problems for tagdred and three layered media. The
main results are the following. The explicit formulae foe #$olutions of the considered problems are
constructed. Finding the explicit formula the method ofrelsteristics and matching conditions have

been used. For simulation of electric and magnetic wavessiimtransformation in MATLAB is
used.

Keywords: Time-dependent Maxwell's system; electromagnetic wasassotropic layered media;

Method of characteristics; Matching conditions; SimwafiMATLAB



ANIZOTROP IK ORTAMDA ELEKTR IK VE MANYET IK ALANLARIN S IMULASYONU

0z

Tezde zamana & ve parcall sabit katsayili Maxwell denklemleri ele diin Bu denklemler,
katmanli anizotropik ortamdaki elektrik ve manyetik dddgatanimlar. Tezin ana problemi iki ve
Uc katmanli ortamlar icin baslangic @k problemleridir. Ana sonuclar su sekilde siralanabitle
alinan problemlerin ¢oztumleri igin kesin formdaller olugildu. Kesin formdllerin bulunabilmesi igin
karakteristikler metodu ve esleme kosullari kullanilgiektik ve manyetik dalgalarin similasyonlari

icin MATLAB’ta sembolik donustimler uygulandi.

Anahtar Sozctikler:Zamana bgli Maxwell denklemi; Elektromanyetik dalgalar; Katmaahizotropik

ortam; Elektromanyetik dalga yayihimi; Karakteristiklaretodu; Egsleme kosullari; Similasyon;

MATLAB
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CHAPTER ONE
INTRODUCTION

Equations of the time-dependent electric and magneticsfielthomogeneous anisotropic media

are given by the following relations called the Maxwell'ssm (Eom (2004)), (Kong (1986)):

—

0_E -

curlyH =& ot +J, (2.0.1)
q oH
curlkE = _//ZW’ (2.0.2)
div,(€E) = p, (1.0.3)
divy(.#H) =0, (1.0.4)

wherex = (x1,%,X3) is a space variable frofi®, t is a time variable fronR. E(x,t) = (Ey, Ez, E3),
H (x3,t) = (H1,Ha, H3) are electric and magnetic fields, = Ex(x,t), Hx = Hi(x,t); J(x,t) = (J1,J2, J3)
is the electric current densityy = J(x,t), k= 1,2,3; .# is the tensor of the magnetic permeability,

& is the tensor of the dielectric permittivity; is the density of electric charges.

In homogeneous non-dispersive electrically and magribtiaaisotropic media the relation be-
tween the electric and magnetic fieEsandH and the electric and magnetic flux densitizandB

represented as

where&’ = (&j(X))3x3 dielectric permittivity and# = (Lij (X))3x3 magnetic permeability are sym-
metric positive definite matrices. The matric&sand.# characterize the electric and magnetic

properties of the materials.

For an inhomogeneous isotropic mediu and & are positive scalar functions, if the medium
is homogeneous isotropic the#’ and& are positive constants (that i§6,= €. .# = u.#, where
 identity matrix). If we take&” = (&jj)3x3 and.# = (lij)3x3 as arbitrary matrices (Eom (2004))
then we say our medium is electrically and magnetically @nipic. If the dielectric permittivity
& = (&j)3x3is taken as arbitrary matrix and as a constant (that is# = p.#) then the medium is
electrically anisotropic. Another example of a medium igmetically anisotropic where we consider

the case# = (lij)3x3 is an arbitrary matrix and’ is a constant (that is{ = £.#) (Kong (1986)).

Let x be a space variable frof&® andt be a time variable froriR, then the Maxwell’s is given by

the relations (1.0.1)-(1.0.4), whe#e= (&)3x3 and.# = (lij)3«3 are symmetric positive definite

1



matrices. From relations (1.0.1)-(1.0.4) we can find thkovahg

7] .
a—f+d|va =0,

and is called the conservation law of charges.

We suppose that
E=0, H=0, p=0, for t<0,

this means that there is no electric charge at the tird®.

This problem is called initial value problem (IVP) for tintependent Maxwell’s system with
piecewise constant coefficients. This system describeslélotric and magnetic wave propagation in

layered anisotropic media.

To deal with electromagnetic wave propagation differembpgms and methods of their solving
have been made (Kong (1986), Monk (2003), Yakhno et al. (O®®r instance to solve the prob-
lem of electric field equation decomposition method has Iseggested (Lindell (1990)). Analytic
method of Green'’s functions constructions have been siudieisotropic and anisotropic materials
in (Haba (2004), Ortner & Wagner (2004) Yakhno (2005)). Modglossy anisotropic dielectric

wave-guides with the method of lines has been made for ingemeous biaxial anisotropic media.

Most of the electromagnetic wave problems have been solyedimerical methods, in particular
finite element method (Monk (2003), Cohen (2002)), bounddeynents method, finite difference
method, nodal method (Zienkiewicz & Taylor (2000), Cohealef2003)).

The main goal of the thesis is to find explicit formulae foruimin of the stated problem and

using these formulae to simulate electric and magnetic.field

This thesis is organized as follows. Firstly we solve theetidependent Maxwell’s system in free
space and this is done in Chapter Two. In Section 2.1 we givatems of the electric and magnetic
fields. Section 2.2 consists of assumptions and problermsétr the Maxwell’s equations. Using
these assumptions and the equations from the Section 2.bngérect our problem. In Section 2.3
we describe the procedure how to find the explicit formulastiie stated problem in Section 2.2.
In the following section we reduce the original problem ifitet order partial differential equations
and this is done in Section 2.3.1. Section 2.3.2 consistseofrtethod to get explicit formulae for the
reduced problem. Here we use the method of characteristigsttthe formulae. Using the results
the Section 2.3.2 and by back substitution of these formulaget the explicit formula for solution

of the IVP of the time-dependent Maxwell’s system in Sec2d 3.



In Chapter Three we solve the IVP related with the Maxwelf'stem for two layered anisotropic
media. Section 3.1 consists of the basic information abwatwo layered media and we state the
differences between the free space and two layered medaatiBgs of the electric and magnetic
fields are also given in this section. In Section 3.2 we stageassumptions and set up the problem.
For two layered media to solve the constructed problem nracbonditions are needed. These
matching conditions are given in this section. Section 8@sdbes the procedure to get the formulae
for solution of the problem. In Section 3.3.1 the reductidrnite IVP for Maxwell's system is
given. Explicit formulae for the reduced IVP are obtainedsiction 3.3.2 by using the method of
characteristics. Firstly we divide each layer into sulwagj this division process is based on the IVPs
that are considered in each region. For instance for thefigsecond layer we have two subregions.
One of the subregions of these layers only consists of IVBawit matching conditions whereas the
other one consists of an IVP and IVP with matching conditioelutions of the reduced IVPs for
each subregion is computed in Sections 3.3.2.1, 3.3.232.3, 3.3.2.4. But there some values in
that solutions that are not defined. These values are thehingtconditions and deriving process
of these conditions is given in Section 3.3.3. Using theltesf Section 3.3.2, 3.3.3 and by back
substitution of the solution of the reduced IVP we get explarmulae for the electric and magnetic
fields in two layered anisotropic media, these formulae tated in Section 3.3.4. In last section of
Chapter Three applying symbolic transformation in MATLA®Bedxplicit formulae simulation of the
electric and magnetic waves is obtained. These images esemied in Section 3.4 and analysis of

these images is given.

Solution of the electric and magnetic fields in three layaaribotropic media is considered in
Chapter Four. In Section 4.1 we describe the three layeretianaed give equations of the electric
and magnetic fields. Like as we did in Chapter One and Two we sta assumptions and construct
the main problem for three layered media.Here like two lagienedia to solve the considered prob-
lem we also need matching conditions and they are given itiddet.2. In Section 4.3 applying the
same procedure as we used in Chapter Three we get expliciufae of the problem. In Section
4.3.1 we make reduction of the IVP for Maxwell's system. ®eact#.3.2 describes how to solve the
reduced initial value problem. Firstly each layer of the radd separated into subregions by means
of the main characteristics. After that by considering 4 related to each subregion we reorga-
nize these regions and this organization constitutes fldten flat by flat we solve our problem. In
Sections 4.3.2.1, 4.3.2.2, 4.3.2.3 the reduced IVPs of tia problem are solved for the flat one, flat
two and flat three and using the method of characteristickogxformulae are obtained. Undefined
values in these formulas, matching conditions, are deliiv&kction 4.3.3. Since in the first flat we
considered only IVPs without matching conditions then wed® derive matching conditions only

for the second and third flat. In Section 4.3.2.1 and 4.3/%8d values are defined for the flats two



and three. Section 4.3.4 is the last section of the Chaptar Rere by using the results of the last two
sections we obtain explicit formulae of the electric and n&ig fields in three layered anisotropic

media.



CHAPTER TWO
METHOD OF CHARACTERISTICS FOR FINDING ELECTRIC AND MAGNETI C
FIELDS IN FREE SPACE

2.1 Equations of Electric and Magnetic Fields in Free Space

The propagation of electromagnetic waves in homogenetgdrieally and magnetically anisotropic
materials is described by the time dependent Maxwell’sssgstith matrices of dielectric permittiv-

ity and magnetic permeability.

In this chapter, we find explicit formulae for the solutiontbé Maxwell’'s system in free space.
Let x = (x1,%2,X3) be a space variable frof®, t be a time variable fronR, then the Maxwell’s

system is given by the following relations:

d(EE(x,1))

curlH (x,t) = — +3J(x1), (2.1.1)
curlE(x,t) = —w, (2.1.2)
ot
divi(FE(x,1)) = p(x.1), (2.1.3)
divk(.ZH (x,t)) =0, (2.1.4)
Hi1 Hi2 Hi3 €11 &2 &3
where.Z = | o1 o oz | @NdE = | &1 &» &3 | are symmetric positive definite ma-
M1 Hz2 Hs3 €31 €32 £33

trices with constant elements.

And the conservation law of charges is given by the followiglgtion:

0p(Xa,t)
ot

Definition 2.1.1. Let H(x) = (H1(x),H2(X),Hz(x)), Hk(X) be a function ofx = (x1,Xp,X3) € RS,
k= 1,2,3 then divergence dfi (x) is defined by:

. 0H1(x) 0H2(x) 0H3(X)
N (9X1 + (9X2 + (9X3

Definition 2.1.2. Let H(x) = (H1(x),Ha(X),Hz(x)), Hk(X) be a function ofx = (x1,Xp,X3) € RS,
k= 1,2,3 then curl ofH (x) is defined by:

OHz(X)  dHa(x) dHi(X) dHa(X) dHa(x)  IHi(X)
0% ox3 = 0%3 ox1 = X 0%

+ divyJ(x3,t) = 0. (2.1.5)

diviH (x)

curlyH (x) = ( ).



2.2 Assumptions and Problem Set Up For Maxwell's System In Fee Space

&2 0 O M1 0 O
Weassumethaf = 0 g, 0 |.,and Z=| 0 p 0 | aresymmetric posi-
0 O eé33 0 0 a3

tive definite matrices with constant elements.

Let the components of vectok(x,t) = (H1,Haz,Ha), E(x,t) = (Ey, Eo, E3) depend orx; andt
only, that is,H; = Hi(xa,t), E = Ei(xa,t), i =1,2,3; J= (J1,J2,J3), whereJ, = J(xa,t), i=1,2,3.

Moreover we suppose that:
E=0, H=0, p=0, J=0 for t <0, (2.2.1)

this means that there is no electric charges and currenimat & 0; electric and magnetic fields

vanish fort < 0.
Let further&s, s, .43, J(x3,t) be given.

The main problem is to find electric and magnetic fiel?i@@,,t), H(x3,t) respectively, satisfying

the IVP(2.1.1) — (2.1.5) and(2.2.1).

2.3 Finding Explicit Formula for Solution of the Problem

An explicit formula for solution of the Maxwell’s system ibtined in this section. The method
of deriving explicit formulae for the electric and magndi&ds consists of the following steps. On
the first step we reduce the initial value problem for the Mabks system into another initial value
problem; this reduced problem consists of first order lirgstial differential equations with initial
conditions. On the second step we use the method of chdsticteto solve the reduced problem.
As a result we get solution for it. On the last step using thienfdae obtained on the second step,
we get explicit formulae for the electric and magnetic figltisit is, the solution of the problem for

Maxwell's system.



2.3.1 Reduction of the Problem for Maxwell’s System

By considering the assumptions for the Maxwell's system asidg the definitions ofurl, and

divy we can rewritecurlyH anddivH in the following form:

I _ OHg(X) | dHa(x) = dH3(x)
dIVXH(X) N 0x1 - 0x2 - 0x3
OH3(x)
= o
= _ OH3(X)  dHa(X) dHi(X) dHs(x) dHa(x)  JHi(X)
curbH() = ( 9% %3 = %3 ox1 = 0xq 9%, )
_ (_ng(x)’dHl(x)’o)‘
0X3 0X3

Under assumptions from each component of Maxwell’'s system X)-(2.1.4) we get new sub

equations:
2(66) ~ e _ JEuB) ) (2.1.1a)
H = J (211) % ot _ a(fzzEz)
e ot Th @l G +a (21.1b)
0= (ESSES +is, (2110
o) ~9f — ) (21 2.4)
E = — )
curle = T (2.1.2) — (u;i 2 (2.1.2.b)
0= QW) - (212¢)
leX(éoE ’ 2 13 } 0 533E3 — 7 (2 13)
div(.#H) =0, (2.1.4) } Ol _ o (21.4)

To find E; andH, we will consider equation§2.1.1.a) and (2.1.2.b). These equations may be

written in the form:

a H 7] H a E
g_l)fé _ (H;i 2)’ (2.1.2.b) } (\/? 2) _ 8111“22 (\/fé 1) (2.3.2)



Summing (2.3.1) and (2.3.2) and subtracting (2.3.1) fror8.2 we find:

d(V/H2zH2 + /€11E1) L1 O(ViH2+veEuE) (2.3.3)
ot NG ox3 NCTY o

O(VHzH2 — VeuR)) 1 d(ViaH2—venk) & (2.3.4)
ot VE11H22 0x3 NG o

To find E; andH; we will consider equation$2.1.1.b) and(2.1.2.a). These equations may be

written in the form:

I(e2Es) | 9(v/e2E 9(vpuH
adi,l - (Esi 2 +j2, (21.1b) } (\/;? 2 = \/52:2/411 (\/1;17131 o 3?222’ (2.35)
F) H 7] H J E.
g8 = ) (2125) | AVEM) _ 1 dEE) (2:36)

Subtracting (2.3.5) from (2.3.6)and summing (2.3.5) an8.6} we find

0(\/H11H1 — /€22E2) N 1 0(y/HiH1 — V&xE) _ % (2.3.7)
ot VE2H11 ox3 VE2' o

J(yHiHi+VeE2E) 1 d(VHiHi+ VE2E) & (2.3.8)
ot V€211 0x3 VE2 o

To solve equations (2.3.3), (2.3.4), (2.3.7), (2.3.8) wik aenote,

VHz22H2 + /€11E1 = Uy,
VH22H2 — \/€11E1 = g,
VH11H1 — \/€22E2 = U,
VH11H1 + /€22E2 = U,

(2.3.9)

1 1
Vi = = = Vg = ;
! 2 v E11H22 3 v €22H11
i J N7) N7)

f1=

Ea— — ’f: ,f: =
vE1 2 V& 3 V€22 N V&2

whereu; = u;(xs,t), fi = fi(xs,t), i=1,234.



Then equations (2.3.3), (2.3.4), (2.3.7), (2.3.8) may b#evras:

ou;(Xs,t) i+1 _6ui(x3,t)

ST (1 3% = fi(xa,t), i=1,2,34. (2.3.10)

And, using (2.2.1) we get initial conditions for (2.3.10) as

Ui(x3,0) =0, i =1,2,3,4. (2.3.11)

As a result, we reduced the initial value problem (IVP) forxMell's system to another initial

value problem (IVP). This reduced problem consists of theaéigns (2.3.10) and (2.3.11).

2.3.2 Solving Initial Value Problem

Let us consider the equation (2.3.10). This equation is & dider linear partial differential
equation (PDE) with the independent variabtggndt.
In this equationv;, i = 1,2,3,4, are given constants (coefficients of the PDE (2.3.1@))s,t),
i =1,2,3,4, are given functions (inhomogeneous term of PDE (2.3, 10)s3,t),i = 1,2,3,4, is the

unknown function.

To find solution of the initial value problem (IVP)(2.3.1()-3.11) we use the method of charac-

teristics.

Firstly, let us write the equation (2.3.10) in termséo&ndT:

oy : oy
5+ (—1)'“\40—5' =i, —w<&<o, T>0, (2.3.12)

whereu; =y (&,1), fi=f(&,1),i=1234.

Then equations for characteristics are can be found as:
& —(—1itty, i=1,2,34,
dr __
=1

Then the characteristic, that is, passing through the grint) can be found as:

E = (_l)iJrlvi(T_t) + X3, I = 17 27374'

Now, we can write the equation (2.3.12) along these chaiatits in the following form:

du (=)™ (1 —t) +x3,T)

P = fi((—1)™ (T —t) + X3, T). (2.3.13)
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Integrating relation (2.3.13) from= 0to T =t we have:

/Otd[Ui(Vi(T;:)—FX;:,,T)]dT:/Ot fi((—1) i (T —t) + Xa, T)AT, (2.3.14)

wherei = 1,2,3,4.

That is,
Ui (Xs,t) = Uj(x3,0 +/ 1) y(T—1) 4+ x3, T)dT,

wherei = 1,2,3,4.

Finally, using the initial condition (2.3.11) we find the stibn of the initial value problem (IVP)
(2.3.10)-(2.3.11) in the following form:

Ui (Xs, 1) / f((—1) (T —t) + X8, T)dT, (2.3.15)

wherei = 1,2,3,4.

2.3.3 Finding Explicit Formulae For The Electric And Magnetic Fields

Now we obtain explicit formula for the solution of the origimproblem (2.1.1)-(2.1.5), (2.2.1). In
the subsection 2.3.1 the relations that depenHig®s, t) andEx(xs,t), k= 1,2, denoted by (Xs,t)’s
i =1,2,3,4. This was given in (2.3.9). Here by making back substitutbu; (x3,t)’'s i =1,2,3,4

into (2.3.9) we get explicit formulae for the electric andgnatic fields.

Then the formulas foHy(x3,t) and Ex(xs,t), k= 1,2 can be found by means @f(xs,t)’s
i=123,4as:

As aresult we get the formulas bl (x3,t) andEx(xs,t), k= 1,2, but still remain some unknown
functions. We have not considered the unknowagxs,t) andEz(xs,t). Finding solution of these
functions is easier than the other ones; since we considerfider ordinary differential equations

(ODEs) with initial conditions.

The solution ofH3(x3,t) follows from the equations (2.1.2.c) and (2.1.4).
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d(pssHs) _
ot - 0’

O(H33Hz)
0X3 - 0’

We see thaH3(x3,t) is independent of3 in the first relation and independenttoi the second

relation. This situation is valid if and only H3(xs,t) is a constant. Hence,
Hs(xs,t) =hs,  hs:arbitrary constant
Using the initial condition (2.2.1) we find the solutionld(xs,t) as:

H3(X3,t) =0.

To find solution ofEz(Xs,t) we consider a similar procedure. The equations that argedelaith
Es(xs,t) are (2.1.1.c) and (2.1.3).

O(essEs) &
HeB) — s,

0(633E3 p
- M

Using the conservation law of charges we see that these tatmres are equivalent to each other.
Hence, let us only consider the relation (2.1.1.c). Theraking integral with respect tofrom 0 to

t and using the initial condition fdE3(xs,t), we get the solution dE3(xs,t) as,

E3(Xs,t) ———/33 X3, T

Then the explicit formulae for the electric and magnetiafietan be stated as:

Hl(Xg,t) =32 “Jilgzz j(g [JZ(@(T_.[) + X3, ) ‘]2( \/W( _t) +X37T)]d-[7
t

Hz(x3,t):2\/ﬁ o [N Tmm (T 1) %3, T) + (-~ \/m( —t)+X3,T)]dr,
Ha(Xs,t) =0,

El(xg,t):%ﬂfg[—al(wgw(r—t)ﬂg, T) = (7 (T 1) +%6,7)]dT,

E2(%a,t) = 555 Jo [F2( g (T — 1) +%6. 1) + o~ g (T — 1) 6, T) T,

As a result we find the explicit formulae for the electric andgmnetic fields that is the explicit

solution of the Maxwell’s system in free space.



CHAPTER THREE
METHOD OF CHARACTERISTICS FOR FINDING ELECTRIC AND MAGNETI C
FIELDS IN TWO LAYERED MEDIA

3.1 Equations of Electric and Magnetic Fields in Two LayeredVedia

First Layer Second Layer

X3

Figure 3.1 Two layered media.

In this chapter, we consider the initial value problem far time-dependent Maxwell's system in
homogeneous, anisotropic materials in two layered mediaolve this problem we follow a similar
procedure as we applied in the last chapter for free spa¢ghéumain problem, which should be

solved, has some differences with the problem for free space

The first difference is domain, on which we study. In free gpa&e consider the whole space, that
IS, —o0 < X3 < o0, t > 0; but here we separate the whole space in two layers. Eaehdapsists of a
half space. Then we define the first layeras < x3 < 0,t > 0; and the second one as<x3 < o,
t > 0. We denote each layer by a notation writing the number ofdiier, on which we study, in

parentheses. This notation is shown like a power, thai#, wherek = 1, 2.

The second difference is the conditions, which are usedrem $pace we consider only initial
conditions, but here we also need another ones which asglaathtching conditions. To find explicit

formula for solution of the original problem, they shouldderived.

12
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The last difference is the initial value problem, which idweed from the original problem for
Maxwell's system. In free space there was just one initifllewgoroblem to be considered, but here
we also divide each layer into subregions and in each subrege consider different initial value
problems. In one of the subregion we consider an initial @gdtoblem as we did before, but in the

other one we solve an initial value problem with matchingditions.

As a result except these differences, we solve the main gmobly a similar process as we did

before.

Now, let x = (x1,%2,X3) € R® be a space variable aridc R be the time variable. Then the

Maxwell's system for two the layered media can be written as:
JEK

curl,H® = éo(k)T +J0, (3.1.1)
curhE® = — #® dljt(k)’ (3.1.2)
divg(EWEM) = p®) (3.1.3)
div (. WHN®) =0, (3.1.4)
wherek = 1,2 and denotes the media.
And the conservation law of charges is given by:
ag_i'ﬂ +divJ® =0, (3.1.5)

wherek =1, 2.

3.2 Assumptions and Problem Set Up For Maxwell’s System

We assume that the electric permittivity matek) = (sij)g‘X)S and the magnetic permeability
matrix.2Z® = (14;)¥,, k= 1,2, are symmetric positive definite matrices with constant eleis,

and they are in the form of:

e 0 o0 w0 o

k) _ k _ Kk
sW=1 0 &f o |andz=| 0o 4 o
0 0 ey 0 0

Let the components of vector functiord® (x) = (H{ H¥ H{),
EW(x) = (EX EX EY), k= 1,2, depend onxs andt only, that is,H* = H® (xs,t), EX =
EX(xg,t), i =1,2,3; JW = (3% 3 30), whered™ = 3% (xa,1), i = 1,2,3; k= 1,2.
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Moreover, we suppose that:
E®W =0, HW =0, p® =0, J¥W =0 for t <0, (3.2.1)

this means that there is no electric charges and currertts éittet < 0; electric and magnetic fields

vanish fort < 0.

The matching conditions are in the following form:
(E@ —EW)|yox =0,
(B® —DBW)|y,—0-A=0,
(H@ — A®)}\_oxi=0,

( 2 _ é(l))|x3:0 ‘A=0,

(3.2.2)

(o))

wheren = (0,0,1).
Let further that the matrice$®¥ and.# ¥ and the current electric densif{}¥ be givenk = 1,2.

The main problem is to finE™®, H® k= 1,2 satisfying(3.1.1) — (3.1.4) and(3.2.1), (3.2.2).

3.3 Finding Explicit Formula for Solution of the Problem

In this section we find explicit formula for the solution oftmitial value problem for Maxwell’s
system. The procedure of finding solution of the problem istaof the following steps. Firstly
we reduce the original problem to another initial value feoth On the second step we divide each
layer into subregions and solve the reduced initial valuwblgm related with each subregion. On the
third step we derive matching conditions. At the last stapgithe results of the first, second and
third step we find explicit formulae for the electric and megm fields; that is, the solution of the

Maxwell’s system.

3.3.1 Reduction Of The Problem For Maxwell’'s System

Here under assumptions applying the same procedure, aseseinugree space to reduce the
Maxwell's system into the first order partial differentiajuations, we get the reduced problem for
the original one. And using the initial conditioit.2.1) and the matching condition8.2.2) we get
an initial value problem related with each layer.

After repeating the procedure mentioned above; the firgrgodrtial differential equations reduced
from Maxwell’s system can be found in the following form:

(K . (K
Quet) | qyiaay 00U Dal) g 1034 (3.3.1)
ot 5X3
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where
K K), (K K) (K
=\ 1 el
K k), (K K) = (K
9 =\ g el
K k), (K K) = (K
=\ - e,
K K), (K K) (K
=+ e,
1 1
== (), (9 vl = = W,
€11 Mo €0 Hyp
K (k) K (k)
O 3 MO S 3 (0 _ b
t G AT Y AT N R
&1 €11 &) €2
ui(k) = ui(k) (X3,1), fi(k) = fi(k) (x3,t),i=1,23,4; andk = 1,2 denotes the media.
Initial conditions can be found as:
ui(k> ()(370) = 07 i= 17 27 3741 k= 17 2. (332)

Matching conditions are in the form:

UM (—0,t) = \/uPHP (—0,t) + (~1) Y /ePED (—0t) t>0, i=12
. 3.3.3
U0 = JuPHP (—0) + (10 ePEP (0, 150, i=3a (O
U2 (+0,0) = \/uPHP (+0.0) + (-1 e EP (+0,1) t>0, i=1,2
(3.3.4)

U2 (+0.0) = Y PHP (0.0 + (-1 [eDEP (+01), t>0, i=34 |

The reduced initial value problem related to the layer omesists 0f(3.3.1), (3.3.2), (3.3.3) for
k= 1; and for the second layer we consid8r3.1), (3.3.2), (3.3.4) for k= 2.

3.3.2 Solving Reduced Initial Value Problem For Maxwell’s System

Now, we solve the reduced initial value problem related weilch layer. We divide each layer
into subregions, since the problem in each subregion thgtdifi@r from the one related with other
subregion. This division depends on the characteristtatad with each layer. On the solution steps,
we describe this in details. These subregions, without imeiny the characteristics, are shown in

the Figure 3.2.

In the Figure 3.2, the subregions related with the first lag€&l andR2; R3 andR4 are related

with the second layer.
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First Layer Second Layer

R1 R3

X3

Figure 3.2 Subregions in two layered media.

The layer one, the half space, was defined-a®; < X3 < 0,t > 0. The reduced initial value

problem related with this layer consists(@&3.1), (3.3.2), (3.3.3) for k=1, that is:

. @
+ (_1)I+1Vi(1)dUIT)((X37t) = 1:i(l) (X37t)7 I = 17 27 37 47 (335)
3

aui(l) (X3,1)
ot

UM (x3,0) =0, x3<0, i =1,234, (3.3.6)

U (—0,t) = / I HP (—0,t) + (=)D /eVEP (—0t) t>0, i=1,2

. 337
u (—0,t) = / P HP (—0.t) + (-1 0\ /el ES (—0t), t>0, i=34 (3:3.7)

We use the method of characteristics to find solution of tHe (%3.5), (3.3.6), (3.3.7). Equa-

tion (3.3.5) can be written in terms of andr as:

duY(&,1) o mou (@D |
'T (-1 )'T =Y, 1), i=1,234 (3.3.8)
Equations for characteristics are:
% = (_1)i+1vi(l)7 I = 17273747
d
dr 1,
Then we have:
&= (—1)i+1vi(1) +c, i=1,234,

wherec is an arbitrary constant.

Hence, the characteristic, that is, passing through tha fj,t) can be found as:

E=(—)" Y (r—t)+x, i=1234 (3.3.9)
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Equation(3.3.8) along this characteristic may be written in the followingnfo

d (P-4

at D)V (1 —t) + x5, 7). (3.3.10)

The characteristics far= 1,2, 3,4 are drawn in Figure 3.3/{1) = vz(l) and vél) = vfll)) .

Figure 3.3 Characteristic lines in layer one.

We see from the Figure 3.3 that the characteristics ot andi = 3 are similar with different slopes,
and also foli = 2 andi = 4 we have similar results. When we divide the layer one intiremions,

the characteristics related witk= 1 andi = 3 have an significant role.

R1

Figure 3.4 Subregions of the first layer.
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R1 andR2 are the subregions of the layer one. We define the rdgloandR2 as:
Rl={(x,t): —oo<Xx3< —vi(l)t, t>0, i=1234};
R2={(xs,t): — vi(1>t <x3<0, t>0, i=1,234}.

In the regionR1 we consider an initial value problem without any matchingditions and in the

regionR2 we have an initial value problem with matching conditions.

3.3.2.1 Solving IVP in the RegiorlR

We have defined the regid®L in the following form:

Rl={—0<x3< —Vi(l)t, t>0,i=1234}

When we take the poirfixs,t) in the regionR1, we get an IVP. And solution of this problem can

be found using the following steps.

Consider the equatiof8.3.10). Integrating this equation with respecttdrom t =0to1 =t we
find:
W06 =ubs- (1 o)+ [P P -t e

where—co < x3 < —vi(1>t, i=1,234;t>0.

Using the initial condition(3.3.6), solution of the IVP can be found as:
Y (xa,) / D~ (1 - 1) + 3, 1)dT,

where—o < x3 < —vi( )t, i=1,234;t>0.

3.3.2.2 Solving IVP in the Regior2R

The regionR2 has been defined as:

R2={(xat): 0>xs>—-vt t>0 i=1234}

If we take the point(xs,t) in the regionR2, then there exists two cases to be considered for
(3.3.10). First case is that for = 1 andi = 3 we have IVP; and for the second one we should

consider an IVP with matching conditions fioe 2 andi = 4.
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Casel:

In this case we solve the same IVP foe 1 andi = 3 as we have solved in regidRl . The
solution of this IVP has been found as:

x3, / f (T—t)+Xx3, T)dT,

wherei =1 andi =3;t > 0.

Case?2:

Fori =2 andi = 4 we are solving an IVP with matching conditions

. Integrgtthe equation
(3.3.10) with respect tar fromt + % tot we find:

ui(l)(x3,t) () Ot+ +/ 5 f, t—T)+x3, T)dT,
wherei =2 andi =4;t > 0.

And, using the matching conditiaf8.3.7) this solution can be written as:

us (xs, 1)

1),,(1 X3 1
uéz)Hé)(—O,H—ﬁ)— eVEW (- OHW)
2

(
t 2
+ /t fz(l)(vz(l) (t—1)+x3,17)dT,

2
1 1),,(1 X3 1) (1 X3
W0et) = MY (0t )+ e B (-0 )

t Vy VE‘.)
+ [, eft-nend

Now, we solve the reduced IVP in the second layer. The se@yat Is defined agp > x3 > 0,

t > 0. The reduced initial value problem related with this lagensists 0f(3.3.1), (3.3.2), (3.3.3)
for k=2, that is:

@) @
u” 0a) | (_gyie1, @04 D) g2 1y 1234, (33.11)
ot (9X3
ui(z)(x3,0) =0, x>0, i=1,23,4, (3.3.12)
u? (+0,t) = / i HZ (+0,t) + (1) (9 /ePEP (+0,t) t>0, i=1,2

3.3.13
U2 (+0,t) = uﬁ>Hl><+o,t> <—1><> s§2>E£><+0,t>7 >0 i=aa [ OO0
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Then by following a similar procedure as we used in layer ¢ime solution of the IVR3.3.11),
(3.3.12), (3.3.13) can be found. After rewriting3.3.11) in terms ofé and 1 we find the following

equation:

AP (D" WD) e

. @ (1) (1 —t) + %5, 7). (3.3.14)

The characteristic lines of this layer are drawn in Figuie ®n the figura used for the values

i=1and =3.

0<x3< vi(z)t

R4 VPt < xg <
R3

Figure 3.5 Subregions of the second layer.

3.3.2.3 Solving IVP in the RegiorBR

The regionR3 is defined in the following form:
R3={(x3,t): o0 >x3> vi(z)t, t>0, i=1234}.
The solution of the IVP in that region is similar with the regR1. Hence the solution of the IVP
in regionR3 as can be found as:
t .
ui(z) (Xg,t) _ /(; fi(2) ((_1)I+1Vi(2) (T _ t) + Xa, T)dT,

wherei =1,2,3,4; c0 > X3 > vi(z)t, t>0.
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3.3.2.4 Solving IVP in the RegioiR

Firstly let us define the regioR4.

Ré={(xat): 0<xz<VvPt, t>0, i=1,234}

If we take the point(xs,t) in the regionR4, then there exists two cases to be considered for

(3.3.14). First case is that for = 2 andi = 4 we have IVP; and for the second one we should
consider a IVP with matching conditions foe 1 andi = 3.

Casel:

In this case we solve an IVP for= 2 andi = 4. And we find the same result as we have found
for the IVP inR3 for i = 2 andi = 4. Then solutions are:

t .
42060 = [ 1200 (1) 4010,

wherei =2 andi =4;t > 0.

Case2:

Now, we consider an IVP with matching conditions fet 1 andi = 3. Integrating the equation

(3.3.14) with respect ta from (t — %) tot we find:

X t .
U2 0a ) =u?(+0t= 2+ | B -t 4, T
Vi e

wherei =1 andi =3;t > 0.

And, using the matching conditio8.3.13) this solution can be written as:

ul? (xs,)

WIHP (10123 1 /e

X3
(+0,t— —-)

t ng) 11 =1 V:(Lz)

+ /ti . fl(z)(vf)(r—t)Jng,r)dr,
W2

2 2),(2 X3 2)=(2 X3

U2 (xa,t) = uil)Hi)H—O,t—ﬁ)— e E (+0,t — =)
3

2
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As a result solution of the reduced initial value problemtfeo layered media can be written as:

In R1:

x3, /f ()(T—t)+x3,r)dr, i=1,234,

where—co < x3 < —vi( >t; t>0, i=12234

In R2:
t
uoet) = [ fPWY (-t +xndr i=1and i=3,
0
1
ui(l)(X3,t) = ui(l)(—O,t—Fﬁ)—i- fi(l)(—vi(l)(t—T)+x3,r)dr, i=2and i=4,

Where—vi(l)t <x3<0t>0, i=1234.

In R3:
X37 /f I+1 ()( —t)+X3,T)dT, i:l7273747
wherevi(z)t <Xg<o; t>0,i=1234.
In R4:
ui(z)(x3,t) = ui(z)(+0,t +/ . (T—t)+x3,1)dr, i=1 and i=3,
‘<—

t
U2 (xat) = /Ofi(z)(—vi (T—t)+xs,1)d7, i=2 and i=4,

where 0< x3 < vi(z);t >0, i=1234

In the following subsection we derive the matching cond’ﬂ;iui( )( 0,t + - 25 ) fori=2and

i =4; andui(z)(+o,t - —) fori=1andi = 3.

3.3.3 Deriving Matching Conditions

The main goal of this subsection is to derive the matchinglitmms.

In last sections we have found the following relations:

ut(-on) | wd /el HY (~0,t) sas
(1) B (1) (1) (1) ’ (3.3.15)
;" (=0,1) Hyy —\/ & E;7(-0,t)
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1 1 1 1
oy | [ —yVer | [ HY-on (33.16)
1 1 ’ e
U (-0,t) vy /ey E&(-0,t)
2 2 2 2
u(1 )(+O,t) _ \/uz(z) \/ efl) Hz( )(+O,t) (3317)
us? (+0,t) 2 /el EP(tot) | -
2 g Hz, €11 1 :
2 2 2 2
u(3 )(+O,t) _ \/uil) - 52(2) Hl( )(+O,t) (3.3.18)
uP (+0,1) u? /e E? (+0,t)

HM(-0.) = HP (+0.1),
HY (—0,t) = HZ (+0,1),
EY(—0t) =EP(+01),
HY (—0,t) = HP (+0,1).

Firstly let us derive the matching conditiuél) (—0,t). To find this value we consider the relations

(3.3.15) and (3.3.17) above. Then we have:

1 1 1 1
w0y ) (Ve yen ) [ R0y
5 (-0, y —yeld )\ BV
-1
B\ (Ve - (e
- 2
uy /ey wy el us? (+0,1)
(1) (1) (1) (1)
1/VH 2 1/VH £
ey gy vahy ) o
— Hap €11 \/@ \/a U (+0,1)
(1) (1) 1) (1) (2)
e - RGP WA
Hao &1 Moy &7

Now using the above relation we get the following equalities

o Vg Vet e o
u;’(=0,t) = u;” (+0,1)
1 /W e
VB B o
2 1)
N

usM (—0,t) \/@@_@ £ﬁ>u(12>(+0,t)
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To deriveu(zl)(—o,t), firstly we defineu(12>(+0,t) by means of the first equality above. Then it

takes the following form:

N
ﬁ
N —~
NS
E
=N
CA

=

u?(+0t) = M (-0t

—
Nawt

=

N~
NE
I
=N
=

N~
NN
MY
[N

ﬁt&‘
N — N —
NE|NMNE
EE‘
AN RN
ﬁt&‘
N — N —
NSNS
EE‘
RrB|lRrE

CA

CS)

—

_l_

o

—

N—

+

At this step we substituta(lz)(+0,t), u(zz)(+0,t) and u(ll)(—o,t) into the equality related with
u(zl) (—0,t). Hereu(11>(—0,t) is the solution of the initial value problem RL for x3 =0 andu(zz) (40,1)

is the solution of the initial value problem R8 for x; = 0. Then we findi$” (—0,t) in the following

pron - BB b o
NN s
2\/@ \/; / —t),7)drt.
\/E 511 +\/@ \/; 511

Now, we derive the matching conditimxﬁl)(—o,t), which is related to the layer one and necessary

form:

to solve initial value problem iR2.

By a similar procedure as we did before, firstly we write théofeing equality using (3.3.16) and

(3.3.18). Then we get:

(1

1
Haa féz) 2
B ) | (e
- .

IJ:<Ll Eéz)
- (2)
“11 €22

ﬁ

NII—‘

“11
”11
”11

=

I\.)IH
I\.)IH

Cﬁ Cﬁ
R
T
o o
— —
N— N—
\_/
Il

N“—‘

@ﬁ

(2
&2

N

=
_——
0N}

From the equality above we get following relations:

o) = \/E 822+\/E\/; )(+0,t)
Do) =
2/u2 \[e
AR
2/u? \[e

oy - VEVE T
Doy -

N
A o
2\l

_l’_
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To deriveufll)(—o,t), firstly we defineu§2>(+0,t) by means of the first equality above. Then it

takes the following form:

N
=
oy
= N
N
NN
NN
N
-
i
ot

(ot =

?T?
[l g o S
RB|RE
EE
NCIRNS
_l_
?T?
[l Mg o SN
AR RN

@@
NE | NMNE
[
J}I\)

|
—~
+
o
-
N~—

=
g

=

o
[N
N2
NN
=

B
=N
N
NE

Hereug)(—o,t) is the solution of the initial value problem Rl for x3 = 0 anduf)(JrO,t) is the
solution of the initial value problem iR3 for x3 = 0. Then substituting these values au&a(+0,t)

into the relation related togl)(—o,t) we find it in the following form:

ur(-ot) = @@_@@ ! /tJél)(vél)(r—t),r)dr
2@ \/; ) (-1 /tJ(Z)(_
\/E 522+\/E \/@ \/@ 0

Applying the same procedure as we did lfé:l’ -0,t anduE,r >( 0,t), we can find the matching

—t),7)drt.

condltlonsu(1 )(+O,t) andué )(+O,t

~—

in the following form:

N
?}
N —
N
Y
=D

u?(40,t) = (”/% T—1),7)dr

1
8£1> \ 511

—
=
—

=
N —
NS
oM
+
=
N
N

=

B

NI

™M

R~ B, ~

NEIENG
|

V “g)' Ei? 1 o, @
+ . /Jl (=vy, (T —t),1)dr.
2 1 1 2 2
g el F g e el
2 2
2) _ 2 F‘il)'\/ Eéz) 1 /My,
us (+0,t) = - - - = - 0J2 (v (T—t),T)dr
IJ:E:L) : 52(2) + “J(.l) : 52(2) \/ Eéz)
(2 (1) (1) (2
. E _ . E _ t
N Hi1 -\ &2 —\/ Hay 2 (—1) J(2>(—v(2)(r—t),r)dr.
) ) 2 4

2 2) Jo
82(2) Y Eéz)

=

[y
NEN)
N
nNE
=

o
[

3.3.4 Finding Explicit Formulae For The Electric And Magnetic Fields

Now, we write the explicit formulae for the electric and matiafields, that is, the solution of the
Maxwell's system. In the last subsections firstly we redusedoriginal system to an initial value

problems; and then we solved these reduced initial valubl@mus; after that we derived matching
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conditions, which was necessary to solve some of the iniikle problems. And now, using all of

these we get the explicit formula for the original problem.

Firstly, by making back substitution ufk) (x3,t),1=1,2,3,4, k= 1,2 we turn back the original
problem, Maxwell’s system, from the reduced initial valuelgems. Theri—|i(k>(x3,t), Ei(k) (X3,1),

i=12,k=1,2 can be written by means uﬁ‘k) (x3,t)1=1,2,3,4, k= 1,2 in the following form:

1
HY = (U (xa,t) + Uy (xa,t)],

K
2 Ilil)
1
HyY = ) Uy (63, ) + U5 (x5,
24/ Hp;
1
B = — [ 0, t) — Uy (3, 1),
2 sil)
1
By = — =113’ (e, + U (xa.0)

2

wherek = 1,2 denotes the media.

After that, substitutingj-(k) (x3,t), 1=1,23,4, k= 1,2 and the derived matching conditions ex-

plicit formula for solution of the Maxwell’s system can beittgn in the following form:

Explicit formula for H(x3,t):

InR1: —oo<x3<—v§1)t; t>0:

1(X3,t) = 2 / J2 —t)+x3,r)—Jé”(—vél)(r—t)+x3,r)]dr,

InR2: —v§1>t<x3<0; t>0:

Ha(Xa,t) = / I “ 1)+ %, T)dT
U11 522

X3, T)dT

1) (2 2).(1 X
\/ufl)séz)—\/ woes ),
T T, fom b 2 eIl
€9 (\/Ull €2 T \/“11 £2)
o /D gD g 2
Hiy &2 /0 o J§2>(—v§2>(r—t)+%xs,r)dT

B 2 1) (2 2) (1
VeR(Juel +\/u2eld) Vs
/ (1) +xe, 1)dT |,
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INR4: 0<x3 < véz)t; t>0:

—t)+x3,T)dT

Hi(Xs,t) /
><3
2 U11 Y 522

2) (2) g (1

N 2\/@ /t v§> Jél)(vél)(r_t)+vix3 7)dt

> - 2%
VeR (/e +/uDe) 70

V3
(2) (1) (1) o(2) X3
&, — € -5
Vit - il | P -0 e mydn
0

- 2 3
2 2) (1 1 _(2
\/ 52(2) ( \/”J(.l) 52(2) + \/”J(.l) 52(2))
V 522

InR3: véz)t<x3<oo; t>0:

—t)+X3, )d ]

@-=—/ (1) 436, 1) + B2 (—v? (1 - 1)+, D)ldT.

Explicit formula for H(x3,1):

InR1: —oo<x3<—v£1)t; t>0:
1

5 | PR (-0 6,1+ 3 (v (Tt 4 e, T,

Ha(x3,t) =
InR2: —vil)t<x3<0; t>0:

/J
2 “22 \/;

D)2 (2) (1) g
Erql — & t+—3
\/ K22 €11 \/“22 11 / A ID W (1 - t) — xg, T)dT
0

- 1
1 12 2 (1
\/ 5£1> ( \/Uz(z) 81(.1) + \/Uz(z) 81(.1))

Ha(xs,t) = T—1)+X3,T)dT

AT 8 (2
. a2k S FCTIVCIR R e

[0 ubel +/uDed) 0 viY

11 (\/ Moz €11 1/ Hoo €11 1

\/7/ —t)+X3, )dT7 )
V1
In R4 : 0<x3<v£2)t; t>0:
(T—1)+ X3, T)dT

Ho(x3,t) = /
Uzz \V 511 t__
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NICRE e (1)
B Hoz €11 / v? Jil)(vil)(r—t)-l-%XSaT)dT
/5(1)(\/ (2)8(1)+\/ (1)5(1)) 0 Vi
11 u22 11 u22 11

X

(2) (1) (1) (2) 3
€7 — £ =
\/P‘zz 1 \/“22 11 / W 3P (v (1 —t) — xg, T)dT
0

_|_
2 2) (1 1) (2
Ve (el + \/ 7 e17)
\/ 511

InR3: viz)t<x3<oo; t>0:

_t)+x37 )d ]

vf) t

Ha(Xs,t) = —-

5 | P07 06 1)+ 37 (v (1) 46 T)ldr

Explicit formula for H(x3,t):
Explicit formula for H3(x3,t) can be find by the same way as we did in free space. Hence the
formula is in the following form:

Ha(Xs,t) =0, —oo<x3<o; t>0.

Explicit formula for B (x3,t):

InR1: —oo<x3<—v£1)t; t>0:

1 t
— [ FR -0 60 -3 (P -0+ Dl

El(Xg,t) =
25}1

In R2: —v£1>t<x3<0; t>0:

Ex(xa,t) = /Jl t) + xa, T)dT
2 511 511

\/“22 511 \/“22 511 /t+ e IV
1 (Vg
\/ 511 \/ “22 511 +y ”22 \/ 511
1) (1 X
- 2\/ 3y &7 / R INE ) v
0

—V; (T —1t) + = X3, T)dT
/(2 1) (2 2) (1 (v )
551)(\/“52) 551) + \/ Héz) 551)) Vi

o

l)(T—t)—x3,r)dr

—v1 T—t)+X3,17)d7 |,
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INR4: 0<x3 < vfz)t; t>0:

(2)(r—t)+x3,r)dr

1 1 t 2)
Ei(xs,t) = — / 37 (v
2 2) Ji— 28
2 5£1> V 5£1> v

2) (2 .
2 tsz i1 TP vy
R (2) (1) ERONL (v (T—t)-l-wx&r)dr
\/5(\/”22 &1+ \/HZZ &1 )

Vi
@0 [,0.2
VT [ v -0 - de
0

_|_
2 2 (1 1) (2
Ve (/ud Sif - \/ 7 €17
\/ 511

In R3: vfz)t<x3<oo; t>0:

—t)+X3, )d ]

1 t
B0 = 7 [0 -0 4+%,1) = 3P (v (1) 46,7
11

Explicit formula for B(xs,t):

InR1: —oo<x3<—v§1)t; t>0:

1 t
E2lat) = 7 / 3P v (1 —1) + %6, 1) = I (—v (T 1) + %, T)]dIT,
22

In R2: —v§1>t<x3<0; t>0:

/J
2 522 \/;

1.2 (2 (D) —
W7 €55 — A/ 1 € Uy
\/ 11 €22 \/ 11 £22 /0 Jé)( ()( T—t)— X3, T)dT

+
1 1.2 2.1
Vel (el +/ulel)

Ea(Xs,t) = t) +xs,T)dT

2,/ WD 3 (2)
_ Hu 22 / v Jéz)(—véz)(r—t)Jr%m,r)dr
/£<2>(\/ (12 \/ 2 (1)) Jo v
22 (\/ H11 &5 +\/ Hi1 &3 8
INR4: 0<x3< véz)t; t>0:
(T—t)+x3,T)dT

Ex(x3,t) = /
522 Y 522 t__
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2 (2)5(2) t— 28 (1)
"’lll 22 /0 véz) Jél)(vél)(-[_t)+viX3,T)dT

B 1 2) (1 1 (2 (2)
\ 52(2)(\/”&) Eéz) + \/IJ:E:L) 52(2)) Vs

X;

(2) (1) (1) (2) 3
€55 — £ e
\/“11 22 \/“11 -- / 5 32 (P (1 —t) —xa, T)dT
0

+ 7 3
2 2) (1 1) (2
Ve (el +/ule2)
1 /t® (
- 7 (—v3
2) Jo
\/ 52(2>

InR3: véz)t<x3<oo; t>0:

2>(r—t) +Xx3,7)dT |,

1 t
E06) =~ | FR 0 =040+ B (v (-1 . Dl
22

Explicit formula for E(x3,t):

The formula forEz(x3,t) can be found applying the same procedure as we did in free spaen

it can be written in the following form:

1 t
Es(Xs,t) = _W/ I (xa, T)dT, —0<x3<0; t>0,
€33 70

1

2
Eés)

't
Es(xs,t) = / Jéz) (X3,7)dT, O<Xxzg<oo; t>0.
0

3.4 Simulation Of Electric And Magnetic Fields

In this section we make simulation of the obtained expl@itriulae for the electric and magnetic

fields, that is the solution of the Maxwell’s system.

For all applications the current densityxs,t) is taken in the form

ID (xa,t) = 3(x3 —X0)3(t), I?(xa,t) =0,

whered(xz — x°)(t) is the Dirac delta function concentrated at the peint x° and for the time
t = 0 in the directiore? = (0,1,0).
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Using the procedure of Section 3.3 the explicit formulaetf@ components of the electric and
magnetic fields were computed for the given symmetric p@sitiefinite matrices’, .#. By these
formulae the images df1(xs,t), Ha(Xs,t), Ha(x3,1), Ex(X3,t), E2(X3,t), E3(xX3,t) were simulated for

fixed timet. Some of these images are presented in this section.

Examplel: Isotropic media

layer | permittivity tensor <5 | permeability tensor -# | source x°
3 00 2 00

1.Layer 0 30 020 -1
0 0 3 0 0 2
500 1 00

2.Layer 0 50 010 -
0 0 5 0 0 1

Example2: An electrically and magnetically anisotropicdioen

layer | permittivity tensor <5 | permeability tensor -# | source x°
16 0 O 2 00
1.Layer 0 20 O 0 40 -1
0 0 32 0 0 7
11 0 O 9 00
2.Layer 0 13 0 0 70 -
0O 0 44 0 0 4

Analysis of simulation

The explicit formula for the componeri;(xs,t) of the magnetic field was computed for the
given symmetric matrices# and&’ in the last section. The result of simulatibia(xs,t) is presented
in Figure 3.6 and Figure 3.7. IBExampld our media is isotropic whereas in other example we
have electrically and magnetically anisotropic media. Hese two examples we used Dirac delta
regularization and for regularization we taféxz) ~ 2—\/1% exp(—ﬁ—é) whereg = 0.001. For the first
layer the source is taken ag= —1, that is, the Dirac delta is concentrateckat= —1 and there is

no source at the second layer.

In figures the horizontal axigs is location and the vertical axis is the magnitudeHgfxs,t). In



@t=01

(b)t = 2.7

d)t=18

Figure 3.6 The magnetic field; (x3,t).
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@t=01

(b)t = 6.5

0.4

d)t=25

Figure 3.7 The magnetic field; (xs,t).
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the Figure 3.6a for = 0.1 at the poinixg = —1 the waves start their propagation. One of the moves
to plus infinity whereas the other moves to minus infinity. rrthe Figure 3.6b fot = 2.7 it can

be seen that the wave front which moves along the positieetiim touches the boundary»at= 0

and after that reflected and transmitted waves appear. hagnof the reflected wave is smaller
than the transmitted wave. The distance between the wawbs fiirst half space;-o < X3 < 0, is
equivalent and does not change. But the distance betweeeflbeted and transmitted wave become
larger time by time and this can be seen from the Figure 3.8d¢&jure 3.6d. Analysis of the Figure
3.7 inExampl@ is similar with the first one. From these two examples thivfdhg analysis can

be obtained. IfExampld we consider isotropic media andExampl& we considered anisotropic
media. And we see from the figures that for different mediasttapes, magnitudes and the speeds of
the waves are different. Reflection and transmission apdhe different times. And we conclude

the exactness of our formulae from these examples.



CHAPTER FOUR
METHOD OF CHARACTERISTICS FOR FINDING ELECTRIC AND MAGNETI C
FIELDS IN THREE LAYERED MEDIA

4.1 Equations of electric and Magnetic Fields in Three Layesd Media

In this section, we find the solution of the initial value plexin for the time-dependent Maxwell's
system in homogeneous, anisotropic materials in threeddymedia. We are applying a similar

process as we did in free space and two layered media.

Firstly, let us define our domain on which we will study. Likewssumed before, in this section
we also assume that the unknown and given functions andn/ectctions just depend on the third

component of the space variatde= (xq,x2,X3) € R3 and the time variablec R.

Now, we will separate the whole space into three layers whese< x3 < 0, 0< X3 < ¥,

{ < X3 < oo denote the first layer, the second layer and the third laygrectively.
t Xz =/

First Layer Second Layer Third Layer

X3

(0,0) (¢,0)

Figure 4.1 Three layered media.

We will denote these layers by a notation writing the numbehe layer, in which we study, in

parentheses. This notation will be shown like a power, thai{, wherek = 1,2, 3.
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Then the Maxwell’s system for three layered media can baewis:

JEK

curld® = @@(")7 + 3, (4.1.1)
. H ()
curl,EM = — 7® dl;t , (4.1.2)
divg(EWEM) = p®), (4.1.3)
divy (.7 WH®) =0, (4.1.4)
wherek = 1,2, 3 and denotes the media.
And the conservation law of charges is given by:

(k)

%mivxj(k) —0, k=123 (4.1.5)

4.2 Assumptions and Problem Set-up For Maxwell's System In firee Layered media

We assume that the electric permittivity matéx¥) = (Ei(jk))3><3 and the magnetic permeability

matrix .2Z ¥ = (ki )2'23 are symmetric positive definite matrices with constant eleis, and they

are in the form of:

e 0 o0 w0 o
k) _ k _ Kk
o 0 &f o o puf¥

Let the components of vector functiord® (x) = (H{ H¥ H{),
EW(x) = (EX EW,EY) depend ons andt only, that is,H = H® (xs,t), E¥ = EY (xs,1),
i=1,2,3; I =¥ 9 3, whered™ = 39 (xa,1),i = 1,2,3;k=1,2,3.

Moreover, we suppose that:
EW =0, H® =0, p® =0, J¥W =0 for t <0, (4.2.1)

this means that there is no electric charges and currertts éittet < 0; electric and magnetic fields

vanish fort <O0.
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Since we are studying in three layered media, we have matconditions between these layers.

These are given by the followings:

(4.2.2)

~—
I

3) _ ﬁ(Z))|X3:Z xA=0,
(|§(3) _ |§(2))‘)%:€ ‘A=0,

wheren = (0,0,1).
Let further&®, .#®, J¥ be givenk = 1,2, 3.

The main problem is to finB ¥, H® k= 1,2 3 satisfying(4.1.1) — (4.1.4) and(4.2.1), (4.2.2).

4.3 Finding Explicit Formula for Solution of the Problem

Following similar steps as we did for two layered media we @rglicit formulae for electric and

magnetic fields.

4.3.1 Reduction of the Problem For Maxwell’s System

Now using the assumptions and applying the same proceduwve dil in free space and two lay-
ered media, we reduce the Maxwell's system into the firstropdetial differential equations. Using
the initial conditiong(4.2.1) and the matching conditior{4.2.2) we get an initial value problem that

is related with each layer.

The first order partial differential equation, that is regddrom Maxwell's system, can be found
in the following form:

oy (xa.1)
ot

. (k)
+ (—1)'+1vi<">‘9“'67i§3”t) — 1M (xat), 1=1,2,3,4, (4.3.1)

where

Kk k) (k k) = (k
o=l el
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K K (K K) = (K
o — W - e
K K (K K) = (K
o =\ - el
e
PP S
511 ”22 Eéz) Hil)
K K K
L 3 0 10 _ 5 $0_ _ 5’
K / K K’
5&1) 511 52(2) Eéz)
ui(k) = u(k) (X3,t), k) (x3,1),i=1,23,4; andk = 1,2,3 denotes the media.
Initial conditions can be found as:
uM(x3,00=0, i=1,234; k=1,23. (4.3.2)
Matching conditions can be found as:
U (—0,t) = \/ P HEY (—0,t) + (—1) (D) /e VE? t>0, i=12
4.3.3
ut(—0t) = \/pl? H§>(—0,t) (—1)<> s§2>E§>(—o,t), t>0, i=34 (433)
u? (+0,t) = / I HZ (+0,t) + (=)D /el DEP (+0t), t>0, i=1,2;
4.3.4
u®(40,t) = uﬁ>H§>(+o,t) (—1)<> s§2>E§>(+0,t), t>0, i =34 (4.3.4)
ui(2>(£*,t): ug)Héz)(ﬁ,t)Jr(—1)(”1)\/sﬁ)Ef)(K*,t), t>0, i=12;
. 4.3.5
u? (0= t) = ZHP (- ) + (D)0 ePEP (07 1), t>0 i=34. (435)
u (e t) = IHD (7 ) + () [eDEP (1t 1), t>0, i=1,2;
(4.3.6)

u? (et 1) = uﬁ)Hl)(ﬁ,t) (—1)<> s§2>E§>(e+, t), t>0, ':3’4'J

Since we study in three layered media, we will consider thyées that are related with each
layer. These IVPs consist ¢4.3.1), (4.3.2), (4.3.3) for k=1, (4.3.1), (4.3.2), (4.3.4) and(4.3.5)
fork=2; and(4.3.1), (4.3.2), (4.3.6) for k = 3, respectively, for the first, second and third layer.

4.3.2 Solving Reduced Initial Value Problem For Maxwell’s System

Here we solve the reduced initial value problem (IVP) raelatéth each layer. Firstly, we divide
these layers into subregions. After that we decide what kihahitial value problem should be

considered in these subregions. That is, we should dedids ifecessary to use matching conditions
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or not. The following step is that we reorganize these subnsgby means of the initial value
problems. Then we get flats which consist of some of the sidmeg In each flat the initial value
problems which should be solved are the same kind. And otistap is solving the initial value

problems in each flat.

Now, let us divide our media into subregions by means of ttegadteristic lines related to each
layer. How to find these characteristic lines was shown ifaktechapters. Figure 4.2 shows us the

subregions and the characteristic lines related to eaehn layhree layered media.

/

Reni2
% - I:QSn—&-l y
R5n
Ri1

\ Rg

R4 Rio Rz
Rs

Ry R> Re Rs
X3
(0,0) (¢,0)

Figure 4.2 Subregions in three layered media.

After naming the subregions let us define our flats by meansieht Our first flat consists
of the regionsR;, R, andRs. In this flat we consider an initial value problem without ofang
conditions in each region. At the second flat we have twoahitalue problems and one of them is
with matching conditions. This flat consists of the regi®asRs, Rs andR;. The third flat consists
of the regionsRg, Rg, Rig, R11 andRy,. For this flat we do not solve the same kind of initial value
problem for all regions. For the regioig andR;2> we solve two initial value problems and one of
them is with matching conditions. For the regidRg Rip andR;; we solve initial value problems
all with matching conditions. Now let us define the other fléitat is, the fourth, the fifth and the
others. The form of these flats look like the third flat. If wend&e thenth flat with n > 3 then this
flat consists of the regiorRs,_», Rsn—1, Rsn, Rsn+1 andRsn. 2. And the initial value problems related

with each region at theth flat is in the same form as we did for the third flat.
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4.3.2.1 Finding Solution of the IVP at the First Flat
Here we solve an IVP without matching conditions in eacharegilt was stated that this flat

consists of the regionR;, R, andR3. Firstly we define these regions and then applying a similar

process we solve the IVP related with each region.

We define the regioR; as:
Ri={(at): —o<xg<—vlt t>0, i=1234}

(Note thatvi1> = vél) and vé” = vf).) Since the regiolR, is in the first layer we should consider the

reduced IVP related with this layer. This IVP consists oftblations (4.3.1) and (4.3.2) fér= 1.

Now let us define the regioR,:

g), t>0, i=1234}.

l
Ro={(Xs,t): |x3— E| < _(vi(z)t -7

RegionR, lies on the second layer. Hence the IVP related with thisoregonsists of the relations
(4.3.1) and (4.3.2) fok = 2.

And regionR3 can be defined as:
Re={(xa3,t): vIt<xs<o, t>0, i=1234}

Since the regiomis lies on the third layer we consider the relations (4.3.1) @n8.2) fork = 3, for
the IVP in this region.

Then we solve the following IVP for the regioRg, R, andRs.

au (xa,1)
ot

1 (00U (xa,t .
+(—1)'+1vi(k)%=fi(k)(x3,t), i—1234 k=123
3

19060 =0, i=1234 k=123

We use the method of characteristics to solve this IVP. Eouigt.3.1) can be written in terms

of £ andr as:
) _ )
au'ai(f’r) + (_1)I+1vi(k)au'57(§’r) = fi(k)(fy'[), i=1,234, k=123 (4.3.7)

Equations for characteristics are:
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wherei = 1,2,3,4 andk=1,2,3.

The equation of the characteristics passing through the pej,t) can be found as:

E=(—)" v (-t +x, i=1234, k=123

Equation (4.3.7) along these characteristics can be wiiitt¢éhe following form:

A (DI Tt

dr HEDII ) 4x67).

Integrating last relation with respect tdrom 0 tot we find:
0 (x,t) = U ((~1)'v 9t 1 36,0) + / (910 (1) + s, 1),
wherei =1,2,3,4 andk = 1,2, 3.

Using the initial condition (4.3.2) we find the solution oktheduced IVP at the first flat for the

regionsRy, R, andR; as:
906 = [ H(DIIE (04 x5, T

wherei =1,2,3,4 andk =1,2, 3.

4.3.2.2 Finding Solution of the IVP at the Second Flat

At this flat, we are solving two IVP’s and one of them is with ofahg conditions. This flat
consists of the regionRy, Rs, Rs, Ry. After some calculations we define the regions in the second

flat in the following form:

R={0a): —yPt<xs < —yP(t——), 0<t<—z. i=1234)
X3 X3 — ¢ _
Re={(x,t): O0<xz< =, — <t<——, t>0, i=1234};
2 @ @
l X3—€ X3 .
Re={(Xa,t): - <xg</l, =—— <t<—:, t>0, i=1,234};
2 e e
! |
o . X3—€ X3—€ Vi(S)E .
R ={(xa,t): £ <X3< oo, yE <t< NE + NER i =1,2 3,4}
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Solving IVP in the RegionR

We have defined this region as:

O<t< L i=1234
¥e

14
“(2) )7
V@

Rs: —vi(l)t <Xz < —vi(l) (t—
The IVP related tdr4 consists of the relations (4.3.1), (4.3.2) o= 1 and (4.3.3).

Firstly we separate this IVP with matching conditions im@tVP’s. For the case=1 andi = 3
we consider an IVP without matching conditions. For the ¢as® andi = 4 we have an IVP with

matching conditions.

Casel:
Here we consider the case foe 1 andi = 3. Applying the same procedure as we did for the
regionR; we can find the solution of the IVP as:

t
oot = [ (WY1 0,1, =13
0

Case?2:

In that case we have an IVP with matching conditionsi fer2 andi = 4.

Equation of the characteristic lines passing through thetggs,t) can be found as:

&= —vi(l)(r—t)+x3, i=24

After that by rewriting equation (4.3.1) fér= 1 in terms of¢ andt and then writing new equation
along the characteristic lines we can find the following eigua

dq(l)(—vi(1>(r—t)+x3, 7) f(l>

dr i

(L)

(v (T =) +X3,7).

Then integrating last relation with respectttérom (t + %) tot we find the solution of the IVP
Yi

fori=2,4 as:

fi(l)(_vi(l)(-[ —t)+x3,T)d1, i =24
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Then the solution of the IVP in the regidty can be written as:

f(g fi(l)(vi(l)(r _t) + X3, T)dT7 i = 1,3,

1)
U X3at - v .
ey Ui(l)(—O,t + %) +jtt+% fi(l)(—vi(l)(r —t)+x3,7)dr, =24

Solving IVP in the RegionR

We have defined this region as:

. 14 X3 X3 —/{ - .
R5.O<x3<§, ﬁ<t<ﬁ’ t>0, 1=1,23,4;

The IVP related td=s consists of the relations (4.3.1), (4.3.2) foe 2 and (4.3.4).

By a similar process as we applied in regiRpwe separate the IVP in the regidts into two
IVPs. But here for the case= 1,3 we have an IVP without matching conditions whereas for the

case = 2,4 we have IVP without matching conditions.

Casel:

In this case we solve an IVP fore= 2,4. and the solution of this IVP is in the following form:

t
u? (xa,t) :/ §2 (v (T —t) + xa,T)dT, i =24
0

Case2:

This case is similar with the Case2 in regiBp. Equation of the characteristic lines passing

through the pointxs,t) can be found in the following form:
¢ = vi(2>(r—t) +x3, i=1,3.

After that by rewriting equation (4.3.1) fér= 2 in terms of€ andt and then writing new equation
along the characteristic lines we can find the following eiqua

2 2
dq( )(Vi( )(T—t)—l-Xg,T) f(2)

dr i

(VP (T~ 1) +%8,1).
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Then integrating last relation with respectitérom (t — %) tot we find the solution of the IVP

fori=1,3 as:

t
%)Jr e
Vi e

u? (xa,t) = U (+0,t V(=1 +x,1)dr, i =13,

Then the solution of the IVP in the regidty can be written as:
@) U (+0,t - el 2P (1-1) +x,1)dr, 1=13;
Ui (X3>t): |
fo i (— - )( T—1)+X3,7)dT, i=24.

Solving IVP in the RegionR

We have defined this region as:

_E X3—€ X3
R6.§<X3<€,F<t<ﬁ,
| |

t>0, 1=1234;

The IVP related tdzs consists of the relations (4.3.1), (4.3.2) foe 2 and (4.3.5).

Firstly we separate this IVP into two cases as we did in theoneig4.

Casel:

Here we consider an IVP without matching conditionsifer1 andi = 3. And the solution is in

the following form:

x3, / f (T—t)+x3,7)dr, 1=13.

Case2:

In that case we have an IVP with matching conditionsi fer2 andi = 4.

Equation of the characteristic lines passing through thetggs,t) can be found as:

E=—vP(T—t)+xs i=24

Then integrating the equation (4.3.1) foe 2 along these characteristic lines with respect to

from (t + XST;)K) tot we find the solution of the IVP far= 2,4 as:

_ Xz —4 t .
Ui(z)(Xg,t) :ui(z)(g ’t+%)+,/t+xsé fi(z)(_vi(z)(-[_t)_|_x3’ T)dT7 I :274'
: X3t
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Then the solution of the IVP in the regidty can be written in the following form:

. IS fi(z)(vi(2>(r —t)+x3,T)dr, i=13;
U (x3,t) = i, .
COOUEY Wt s 4 1 (P (VP - e, =24
i Vi<2)
Solving IVP in the RegionR
We have defined this region as:
3)
X3 —/{ Xz3—{¢ vl
Riil<xg<oo, —— <t< "+ i=1234
v® v v

The IVP related td?; consists of the relations (4.3.1), (4.3.2) foe= 3 and (4.3.6). And solution of
this IVP is similar with the IVP in the regioRs.

Casel:

In this case we solve an IVP without matching conditionsifer2,4 and the solution of it is in

the following form:

x3, /f (T—t)+x3,7)d1, 1 =2,4.

Case?2:

Here we have an IVP with matching conditions fet 1, 3.

Equation of the characteristic lines passing through tlietggs,t) is in the following form:

= vi(3)(r—t)+x3, i=1,3

And integrating the equation (4.3.1) fke= 3 along these characteristic lines with respect fmom

(t—255) tot we find the solution of the IVP for= 1,3 as:
Yi

iy t .
q%mn:q%wn—“@>+[}wn@w@u—w+MJMnnzLa
Vi )

Vi

Then the solution of the IVP in the regidty can be written as:
, ud (et =gty 4t Wf PP (T 1) +xe,1)d1, 1=13;
U (1) =
1569 (- .3)( T—t)+x3,1)drT, i=24.
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4.3.2.3 Finding Solution of the IVP at the Third Flat

This flat consists of the regior&s, Rg, Rig, Ri1 andRy». For the region®g andRg we consider
two IVP’s and one of them is with matching conditions. Foraftiger regions we have two IVP’s with
matching conditions. After some calculations we define &ggans in the third flat in the following

form:

X3 4 i X3 20
NEREC I e

v Vi(Z) Vi( ) v

Rgz{(x3,t): —00 < X3<0, i:1,2,3,4};

l 20 2
Ry =< (X3,1): X732>+72><t<—£+— O<x3< =, 1I=1234;;
Y v 2

—/ 4 l
Rloz{(x3,t): X3—<t<ﬁ+— O<x3<§ and

Vi Vi Vi
X3 X3 20 /L .
— <t<——+—, =<X3<¥, 1=1234;,;
vi(2> Vi(2> Vi(2> 2 }
X3 20 X3 VA .
Ri1= ¢ (X3,t) — s <t< =+ —, 2<X3<¥, 1=12345;
{ Vi(2) Vi(Z) Vi(Z) Vi(2) 2
o X3—{ 14 X3—f0 2 .
RlZZ{(X:S,t)- —(3) +w <t<—(3) +w, £<X3<+007 |:1727374}.
2 Vi Vi Vi

Solving IVP in the RegionR

The IVP related tdRg and the form of the solution of this problem is the same withl¥P related
to Ra.

Then the solution of the IVP for the regid can be found in the following form:
O t) = JEED WP (T —1) 4 %3, T)dT, i=13;
L u§1>(—o,t+ﬁ)+ﬁ+% £ (P (T —t) 4%, T)dT, =24
The difference between the solution of the IVP’s for the osegiR, and Rg is that to find the
matching condition related to the regiéa we consider the solution of the IVP in the regi®s
whereas for the matching condition relatedRpwe consider the solution of the IVP for the region

Rs.

Solving IVP in the RegionR

The IVP related td=g is the same with the one we considered in the regl@nAnd the solution

steps are similar. But, here for both cases we have VP witichireg conditions.
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Casel:

Here we consider the case for 2,4. The characteristics lines passing through the point)

can be found in the following form:

E=—vP(T—t)+xs i=24

And integrating the equation (4.3.1) fer= 2 along the characteristics with respectrtérom
(t+ X%f) tot we find the solution of the IVP in the following form:
V.

. X3 t :
4060 =0t 2o+ [ AP ndr =24
| R

Case?2:

The form of the solution of the IVP in that case is the same wighCase? in the regidRs.

Then the solution of the IVP in regidRy can be written in the following form:

u? (+0,t - %) +ftt_% 2P (1 —t) 433, 1)dT, =13,

U (xa,t) =

ui(z)(é‘,t%—%)%—jaﬂ fi(z)(—vi(z)(r—t) +x3,T)dT, =24
i Vi<2>

The matching conditiormi(z)(+0,t — %) for i = 1,3 can be derived by means of the IVP in the
regionRg and the other matching conditicuﬁ1> (0 t+ %) can be derived by means of the IVP in

the regionR;.

Solving IVP in the Region 3

The IVP related tdr;o and the form of the solution is the same with the IVP in regRgnAnd it

is in the following form:

ui(2>(+0,t— %)—Fftt_% fi(2>(vi(2)(r—t)+x3, T)dr, i=13;

Ui

2)(X t) —
3,t) = ,
ui(z)(ﬁ,tJr’j—}f)Jrftl% 2=V (1 —t)+ x5, T)dT, i=2,4

The difference between the solutions of IVPs in this regiod the regionRy is that here, we

derive the matching conditiom‘(2>(+0,t — %) fori = 1,3 by means of the IVP in the regidgy.
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Solving IVP in the RegioniR

The IVP and the form of the solution of the IVP related witrstregion is the same with the region
Ry andRyp. Only difference is that when we derive matching conditlié%)i(JrO,t — %) fori=1,3

we consider the solution of the IVP in the regiBpand for the matching conditiom|(2> (0 ,t+ ’S’T;f)

for i = 2,4 we consider the solution of the IVP in the regiRp.

Solving IVP in the RegionR

The IVP related tdr;> and the form of the solution of this problem is the same with NP in
the regionR;. And the form of the solution can be written as:
3 - 3,3 . )
5 TGRS )+ (1) +x,1)dT, 1=13;

Ui (X3>t) = )
Tt (v (1 —t) %, T)dT, i =24

Only difference is that here we derive the matching conlditiba) (et t— Xv%f) fori=1,3 by

means of the IVP in the regidry ;.

4.3.3 Deriving Matching Conditions

Here we are deriving the matching conditions which are rezggsto find explicit formulae for
the electric and magnetic field vectors. For the first thredhilasolutions of the IVPs are found but
the values of the matching conditions have not be derivedtheofirst flat we solved IVPs without
matching conditions. But for the second and third flat we atdwed I\VVPs with matching conditions.

Hence, now we derive these matching conditions.

4.3.3.1 Deriving Matching Conditions at the Second Flat
Finding Matching Conditions For RegioryR

In order to get explicit formulas of the solution of the preiol in this region, we need to find the

valuesui(1>(—0,t + %) fori = 2,4 by means of the solution of the IVP in regi®g. For two layered

media these values were defined and they are exactly in the feam what we are looking for.
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Now let us write them.

\/“22 511 \/“22 511 ( ( 24/ “éz ££1> ( +0 0.
\/“22 511 + \/“22 511 \/“22 511 + \/“22 511

Then substituting the valueé —0,t andu(2 )(+0,t) we get the matching condltlaug

as:
1 2 2 [
u—ot) = ”52)' Eil)_ “52)' Eil). (-1 t;|(1>(v(1>(r—t) T)dt
S v /@, @ [0 [mot ’
Hoo -/ €11 T/ Koo -\ €11 €11
o /D [ t
+ ( 7222 12) = 12) Jf)(—véz)(r t),7)dt
1 1 0
Uzz)' 511) + “éz : 511) 8:51

And the matching conditiougl)(—o,t) was in the following form:

\/“11 €22 \/“11 522 el 2 “J(.l)EZ(Z) (

(_
\/“11 522 + \/“11 522 \/“11 522 + \/“11 522

Substituting the values(sl)(—o,t) anduf)(+0,t) into the relation above, the matching condition

(4+0,1).

ufll)(—o,t) can be found as:

1) (2 (2) (1)
W0t = \/“11 €22 —\/“11 €2 /J 1), 7)dt
foT \/ 0.2 \/ @ (1 2
Hi1 €2 +1\/ Hir €2 522
2y “:I(.l 52(2 /
\/“11 522 + \/“11 522 \ 522

Finding Matching Conditions For RegiornsR

—t),7)dt.

In order to get explicit formulas of the solution of the preiol in this region, we need to find the
valuesui(z)(+0,t - —) for i = 1,3 by means of the solution of the IVP in regiBg. For two layered

media these values have been found and they were in the foddarm:

( 2/ Uéz)sﬁ) u \/“22 511 \/“22 €11 e ( +0,1).
\/“22 811 + \/“22 811 \/“22 811 + \/“22 811

Then substituting the valueaé1 —0,t andué >(+O,t) we find the matching condition(lz)(JrO,t)
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as:

(2) .(2)
Wot) = — 2\/ Ko €11
1 2) (1 1)_(2
Vel o/ uéz) el +/ 1 eld)
gl t
\/IJ 22 1 \/IJ22 ) /Jiz)(—viz)(r—t),r)dr.
[ 0
511 \/“22 511 + \/“22 &7)

And ugz)(+0,t) was in the following form:

( 2/ “J(.l)EZ(? u \/“11 522 \/“11 €22 ¥l (+0 0.
\/“11 522 + \/“11 522 \/“11 522 + \/“11 522

Then substituting the valueaxé1 —0,t anduE1 >(+O,t) we find the matching conditiouf,)z)(JrO,t)

|
O\H‘
[
=
=
—
<
o
=
—~
|
—
SN—
SN—
o

as:

@2
2 £ t
u2(+0,t) = Hir £ /()Jél)(vél)(r—t),r)dr

V Séz) ( \/uil) Séz) + \/“£1> Séz) )
2 (1) 1.2
&5y — € t
\/Illl 22 \/“11 22 /3(2)( ) (r —t),1)dr.

- 2 (=V3
2 2) (1 1.2, Jo
\/ Eéz) ( \/Uh) Eéz) + \/IJ:E:L) Eéz))

Finding Matching Conditions For RegionsR

In order to get explicit formulas in this region, the matahaonditions
ui(z) (0 t+ ’j—;f) fori = 2,4 should be derived by means of the IVP in regitn
Firstly let us write (4.3.5) and (4.3.6) in the matrix form:

2) /) 2 2 2)
u? (0= 1) _ w2 /el Hi? (0= 1)

2) 2) ) ’
ug? (1) w2 /e E@ (1)

2) /) 2 2 2)
u? (0~ 1) _ VT HZ (0~ 1)

2) ) 2) /) ’
u’ (e Vit e SRRy

3 3 3 3
e\ (Vi e (e

3 3 ’
PSR Vs —/ed )\ ety
D0\ (Ve e\ (e

) 3

3 o 3
u® (e, 1) NS ES (1)

=
o
(NG
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And using the condition (4.2.2) we get the following relaso

HP () =HP (et 1),
HP (0.) =HP (e 1),
EZ () =7 (e ),
HZ (0= 1) = R (04 1).

Using these relations above we get the following equalities

@ \//122 11 +\/“22 £11 \//122 511 \//122 511 3
U (7,1 _ 2\/sz &y 2\/sz S ! (€7.1)
ey )| B veE EaEd |\ e

3.3
2\/“§2) S:El) 2\/“22 511

@ \//-111 €22 +\/”11 522 \//-111 522 \//-111 522 3
U3 (f_,t) _ 2\/u11 522 2\/;111 522 U3 (£+>t)
u&z) (@*70 \/llll 522 \/Hn £22 \/llll &2 Jr\/l111 522 uElS) (€+7t)

2\/”11 522 2\/“11 522

Then by the relations above we get the following equalities:

\/“22 511 + \/“22 3 \/“22 511 \/“22 €11 €+

us (6+,1);
2 U22>5£1) 2 “éz ££1>
\/Uzz 511 \/Uzz &1 3 \/Uzz 511 + \/Uzz (3 (0 1);
2 U22>5£1) 2 “éz ££1>

\/Un 522 Jr\/“11 522 3 \/Un €2 \/Un €2 (3 +1);
2\/myes) 2\/my ey

\/Un &2 \/“11 22 \/Un 522 Jr\/“11 3 +1),

2 “51) 552) 2 ”:I(.l) 552)

Then using the relations above we derive the matching dondiu(zz) (¢~,t)and

U (0=, t). Firstly let us writeu?) (¢, t):

\/“22 511 \/“22 €11 ye (g— 24/ “éz) 5£1) (3) 1),
\/Uzz 511 + \/“22 511 \/Uzz 511 + \/Uzz 511
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Hereu(12> (£7,1) is related with regioriRg andu(23) (¢7,1) is related with region

R;. Substituting these values we get the matching condu@mﬁ‘,t) as:

(2) .(3) (3) (2
&7 — £ t
I \/“22 11 \/“22 11 /J(z)(v(z)(r—t)JrE,r)dr

) = - 1
2 IRE 3 (2
\/ 5&1)(\/“52) 5&1) + \/“éz) 5&1)) °
/,,(2) (2 .
+ 2V a2 b /tJ(z)(v(2>(T—t) +/4,7)dT
IREINRCRE @, @2,Jo t * o
€11 (\/Uzz €1 + \/Uzz €11)

And the matching conditiouff) (¢~ ,t) has been found as:

\/“11 522 \/“11 €22 4@ (- 2 “J(.l) Eéz) (3) o+
2, 1),
\/Ull 522 + \/“11 522 \/Ull 522 + \/Ull 522

The valuesug2> (¢7,t) is related with regiorfRg anduf) (¢7,1) is related with regiorR;. Substitut-

ing these values we get the matching condili&)l(é‘,t) as:

(2).(3) (3) (2
2), Hi1 &2 —\/ Har €22 2, @
uﬁﬂ(e b = (Z)/ = (3)\/ e /()Jé)(vé)(r—t)Jré,r)dr
V 522(\/ Hi1 &2 +\/”11 €7)
2) (2
2y/ wyess t 1@ ,O /0
[® [, 2.0 B, Jo 2 (Ve (TmHFLTr
€22 (\/ Hiy &2 + \/“11 €7)

Finding Matching Conditions For Region;R

In order to get explicit formulas in this region we should fthé matching conditionsi(3> (0t t—
%gf) for i = 1,3 by means of the IVP in regioRe.
After writing (4.3.5) and (4.3.6) in the matrix form and ugisome of the relations of (4.2.2) we get

the following equalities:

\/“22 511 + \/“22 24~ 1) \/“22 511 \/“22 2

2 el g
\/“22 511 \/“22 11 20~ 1) \/“22 511 +\/I~‘22 W@ (- 1);

2y/ U22> SJ(.l) 2y “éz 851) 2
\/“11 522 +\/I~‘11 g 0+ \/“11 €22 \/“11 €22 2 (-t

1),
2 U11>5§2) 2 “:I(.l 82(2>
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\/”11 522 \/“11 E 0 \/”11 522 + \/”11 2 - 1),
24/ IJ:E:L) Eéz) 2y “J(.l) Eéz) |

Then using the relations above we derive the matching dondiu(13) (¢*,t) and

ug? (£%,). Firstly let us writeu;® (¢, 1):

( 24/ “2(2> 5£1) \/“22 511 \/“22 €11 ¥
\/Uzz 511 + \/“22 511 \/Uzz 511 + \/Uzz 511

Hereu(12> (£,1) is related with regioriRg andu(23) (¢7,1) is related with region

(+t)7

R;. Substituting these values we get the matching condu@r@ﬁ,t) as:

2./ u®e® .
u(13)(£+,t) = (\3/)”(222)711 — / J§2)(v£2)(r_t)+€’ Dt
0
\/5(\/“22 &1 + \/[122 &1 )
3) (2 2) (3
\/Il 21— \/“2(2)5&) 1@ (1) 40 1)d
@,/ (3.2 RO (—v, (T—t)+¢4,T)dT.
\/;(\/“22 &7 + \/[122 £71)
And the matching conditiougg’) (¢7,t) can be found in the following form:

( 24/ IJ:E:L) Eéz) u \/“11 522 \/“11 €22 ¥e)
\/Un 522 + \/“11 522 \/Un 522 + \/Un 522

The valuesug2> (¢~ ,t) is related with regiorRg anduf) (¢7,1) is related with regioriR;. Substitut-

(+t)7

ing these values we get the matching condilié%”\(ﬁ,t) as:

3.0
2 £ t
u2 (et M1 G2z /J<2>(v§2>(r—t)+e,r)dr

= 2
2 3 2 2 3 0
\/ £ ( \/Lél) £ + \/uil) &)
3).(2 (2) (3)
&5 — & t
\/IJll >0 \/IJ11 22 /J(S)( (3)(-[_t)_|_£"[)d'[.

- 2
3 3.2 2.3, Jo
\/ Eéz) ( \/“J(.l) 52(2) + \/IJ:E:L) Eéz) )

4.3.3.2 Deriving Matching Conditions at the Third Flat
Finding Matching Conditions For RegiongR

In order to get explicit formulas in this region we need tawvkethe matching condition:ﬁ(1> (=0, t+

%) for i = 2,4 by means of the solution of the IVP in regi®g. By following the same way as we
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did in the second flat at regidRy, we find these values in the following forms:

\/“22 €11 \/“22 €11 e 2/ “2(2) 5£1) (
(ot (+0,1),
\/“22 511 + \/“22 511 \/“22 511 + \/“22 511

Substituting the valuels(ll)(—o,t) related to regioriRg andu(zz)(+0,t) related to regiorRg we get:

£ £
\/“22 11 \/“22 11 / (1) (v(l)(r—t),r)dr
\/“22 511 + \/“22 511

(1) (1)
24/ £
Hzz 11 { ) +/ (T—t),r)dr ,
\/“22 511 + \/“22 511 P

Then substituting the valw%2 (0 t— f ) which was derived in regioRs, we get:
2

D _(2 2) (1

(1) B \/”2(2)81(.1)_\/”2(2)5251) RC\PANE)
u,’(—0,t) = — Ji7 (v (T —t),T)dT
2 /(@) \/ 1.2 \/ @@, Jo

€17 (\/ Mz €17 +\/ Ha3 €17)
2.3 3.2
2 u22)££1> { \/Néz)gil)_\/uz(z)gil)

2 2) .3 3.2
\/“22 511 + \/“22 511 \ 551)(\/%2)551) + \/Néz)“"il})

t—
/ V§2) Jf)(vfz) (t—t)+2¢,1)dr
0

[ @@ . 3
2V Hz E1y /t B TC T ) r)dr
0

+ 1 (—V;
3 2) (3 3) (2 ()
\ 5£1) (\/“2(2) 5£1) + \/”2(2) E£1)) V2
1 t
+ 2/ , Jf)(—véz)(r—t),r)dr .
\V 5£1> tiVé_z)

The form of the matching conditiunﬂl)(—o,t) was defined in regioRy as:

“11 522 “11 22 ( 21/ Hy7 & ( )
\/ \/ o [, () on
\/“11 522 + \/“11 522 \/“11 522 + \/“11 522

Substituting the valuesg)(—o,t) related to regiorRg and uff)(JrO,t) related to regiorRy into the

last relation we get:

1.2 2) (1
(1) B \/ﬁél)gz(z)—\/ﬁél)géz) b, @
u, (=0,t) = - — — 0J2 (vy3 7/ (T—t),T)dr
V 82(2)(\/“&) 82(2> + \/ “J(.l) 82(2>)
2/ ey

V4 t
( ) (0 ,t— Tz))—’- f£2>(—vf12>(r—t),r)dr ,

V t— L
\/“11 522 + \/“11 522 v
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And substituting the valuef) (0 t— ( 7), which was defined in regioRs, we get the matching
4

conditionufll)(—o,t) as

R 2) (1
(1) B \/“J(.l)EZ(Z)_\/uJ(.l)EZ(Z) b, @
u, (=0,t) = = e FIRE 0J2 (v37(T—t),T)dr
\/ 522(\/ Hi1 & "’\/“11 €7)
BRE 3 2
DD [ e D

2 2.3 3)_(2
\/“11 522 + \/“11 522 \/ 852)(\/”251) Eéz) + \/IJ:E:L) Eéz))
./0 Vf) Jéz)(véz)(r—t) +20,7)dt

(2) (2 . (3

2 3 t

Ha1 €27 / v? 353)(_‘,‘(13)“_'[) Ya (40, 1)dT
0

B 3 2) (3 3) (2 (2
\ Eéz) (\/IJ:EJ.) Eéz) + \/IJ:E:L) Eéz)) Va
1 /t 312
[o@ -
&2 WY

- (2)(r—t),r)dr.

Finding Matching Conditions For RegiongR

In order to get explicit formulas in this region we need toethe matching conditions

u®(40,t - 2%) for i = 1,3 by means the IVP related R andu 2t + ’S’T;f) for j = 2,4 by
means the IVP related ;. But in regionRgs we have derived the matching condition

uﬁz) (0~ t+ ’j—;f) for j = 2,4. Hence we only need to derive the first condition above.
j

The form ofui(z)(+0,t) for i = 1,3 was found at the second flat in regiBg and it was in the

2y/ u22>81(.1) \/Uzz €11 \/Uzz 11 2) ( Lot),
\/Uzz 511 + \/Uzz 511 \/Uzz 511 + \/Uzz 511

Substituting the valuelsl (—0,t) related to regioriRg andu2 )(+O,t) related to regiorRs we get:

24/ gl
+0 t) Uzz 11 / —t),7)dr
\/“22 811 + \/“22 811

following form:

—l—Ot

2l Vel
\/“22 811 + \/“22 811 v
Then substituting the valuﬂgz2 - f ) which was derived in regioRs, we get:
2

(2) (2
@ (4 0.4) = — 21/ Hp £11 tJ(l) M7 1). 1
U (0.0 = [, [, @1 PREN. RS (v (T =), ndr
€11 (\/ Hop €11 + \/”22 £71)



2) (3 3 (2
\/“22 511 \/“22 511 [ \/“éz) 551) - \/Uéz) E:I(.l)
2 2) (3 32
\/“22 511 + \/“22 511 \/ 551)(\/“52) 551) + \/“éz) 551))

t—
/ (2) Ji )(viz)(r—t)+2€, T)dt
0

[ 2.2 s .
2V Haz Fuy t i I (vl (-t ——Vé )E ¢, 1)dt

T, 2.9 S Jo U (v () =G+ 6T)

&1 (\/ Hoo €11 + \/Uzz 1)

V2
1 t
+ 2/ , Jf)(—véz)(r—t),r)dr .
V 551) t_v?)

The form of the matching conditioué2>(+0,t) was found in the regioRs as:

2 “:I(.l 52(2> \/“11 €2 \/“11 €2 (2

\/“11 522 + \/“11 522 \/“11 522 + \/“11 522

2 (40,t) )(+0,1).
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Substituting the valueissf,})(—o,t) related to regiorRg anduf) (40,1) related to regioriRs we get:

2) (2

) B 2y/ ”J(.l)EZ(Z) bW, Q)

b o) = M, Vs~ (1=t m)dr
0

€2 (\/ Hi1 522) + \/“11 €22

5 £ !
\/“11 22 \/“11 22 { - -ty £ (v (t—t),1)dr |,
vV

\/“11 822 + \/I"lll 822 4 vf)
Then substituting the valug,” (¢t ( ;) which was derived in regioRs, we get:
2
2. /i@ t
2 11 €22 1, 1
u,’(4+0,t) = /J VO (1 _t). 1)dr
) e T b T 0
22 \\/ Hi1 &5 + \/ Hi1 €2

2) (3 3) .2
\/Ull 522 \/Ull 522 [ \/Il£1>5§2) - \/U£1>5§2)
2 2) (3 3) .2
\/Un 522 + \/Un 522 \ géz)(\/lél) géz) + \/Uil) géz))
t
./O V‘<12> J§2>(v§2)(r—t)+2€, T)dt

o /@@ (L (3)
7€) / DIVt - Y4y nyde
0

B 3 2) (3 3) (2 (2
\ 552) (\/”:El) 552) + \/IJ:El) 552)) Va
1/t 2 2
- 2/ , J§>(—v§)(r—t),r)dr .
V 52(2> tfvfl_a
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Finding Matching Conditions For RegiomR

In order to get explicit formulas in this region we need toethe matching conditions
_ - . 2
( )(+0,t — v 25) fori=1,3 andu( (¢ ,t+%) for j = 2,4. The value ofui( J(+0,t — %) for

i = 1,3 is derived at the second flat in regiRg and

uﬁz) (0~ t+ ’j—;)’) for j = 2,4 was derived in the regioRs.
J

Finding Matching Conditions For RegiomR

In order to get explicit formulas in this region we need toidethe matching conditions
u?(40,t — %) fori = 1,3 andu? (¢t + X%f) for j = 2,4. The value ofl? (+0,t — —) for
i=13was derlved at the second flat in reglagl Now let us derlveu(z) (0 t+ ’%’) for j=2,4.

The form ofu}z) (¢7,t) for j = 2,4 was found in the regioRs as:

\/“22 511 \/“22 511 4@ (- 2 “éz) 5£1) (3) o+
2, 1),
\/“22 511 + \/“22 511 \/“22 511 + \/“22 511

Substituting the values (m‘(lz) (¢ ,t) related toRy1 andué3> (¢*,t) related toRy, into the last relation

above we get:

E‘t \/Uzz €11 \/sz €11 [ (—i—O,t—%)
\/Uzz 511 + \/Uzz 511

Vi
+/t7L (0P -t) 41, )dr]

24/ gl
“22 11 / —t)+¢,1)dT,
\/“22 511 + \/“22 511

Substitutingu(lz)(JrO,t %) which was derived in regioRs, we get:
1

2) (2
\/“22 €11 \/“22 511 { 2 Uéz)sil)

R 2) (1 1 _(2
\/Uzz 511 + \/“22 811 \ ‘9}1)(\/‘42) 5£1> + \/Néz) ‘9}1))

t— Lo (1)
A O R aTA Ll
0

Yol

2 (1) (1) .(2) [
&7 — £ BaNE]
ViSell - et / 2 3P (P (r—t) — £, T)dT
0

_|_
2 2) (1 1) (2
Ve (Julel +\/uded)
\/7 / (T—t)+¢,1)d }
t_i
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WHCRE t

Hop €11
T To.0 5.0, Jo !
€11 (\/sz &1 + \/“22 £7)

The form ofuff) (¢~ ,t) for j = 2,4 was found as:

\/Un 522 \/“11 22 @ 2 “:I(.l géz) (3) +
0+ (¢*,1),
\/”11 522 + \/“11 522 \/”11 522 + \/”11 522
Substituting the values (ué ) related toR; 1 anduE1 >(£+ t) related toRy into the last relation
we get:
\/Ull €22 \/Ull 522 14
(+0 t— (2))
\/Un 522 + \/Un 522 Vs

*/t 152 (v (r t>+e,r>dr]

(2)

24/ gl
ull 22 / —t)+¢,1)dr,
\/“11 522 + \/Un 522

Substitutinguéz)(JrO,t — W) which was derived in regioRs, we get:

2) 2
\/“11 522 \/“11 522 { 2y “J(.l) 552)
1 2) (1 1.2
\/“11 522 + \/“11 522 \/ 552)(\/“&) 52(2) + \/“J(.l) 552))
(1)

t— v
/ B B -0+ =50 mydr
0 V3

(2) (1) (1) o(2) L
&5 — 2 =@
e R | PPy -t
0

- 2 2) (1 1) (2
Ve (/ude +/ueld)
1 t
+ 2/ , Jéz)(véz)(r—t)+€,r)dr
V 552) -

2) (2
2 “:I(_l 522) /tJ(3)( (37

VR 2.3 3)_(2
Ve (ueld +y/ule)

Finding Matching Conditions For RegiomR

To get explicit formulas in this region we need to derive tregching condition:mi( )(€+ t— L))
fori=1,3.

The form ofu(f’) (¢*,t) was defined before in the following form:

( 24/ U22>5£1) \/Uzz €11 \/Uzz €11 (3 ( 1),
\/”22 511 + \/“22 511 \/”22 511 + \/”22 511
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Substituting the value ai(lz) (£7,1) related toR;; and u(23) (¢7,1) related toRy» into the last relation

above we get:

o 24/ P u? ¢
(40,t — NE] )
\/Uzz 511 + \/Uzz 511 ¢!

(2)

+/t_7 {22 (1 —t) +4,1)d ]

£ £
\/“22 11 \/“22 11 / (@3 (—v2(3)(r—t)+£,r)dr,
\/“22 511 + \/Uzz 511

Substitutingu(lz)(JrO,t %) which was derived in regioRs, we get:
1

2) (2
o 2y/ Ky €17 [ 2y/ Hsp €17
1 2) (1 1) (2
\/”22 511 + \/“22 511 Y 551)(\/“52) 551) + \/“éz) 551))
1)

t-— v
/ w3 T—1)+—5(.1)dT
0 Vi

2 1 1 2

\/“ éz)sil)_\/uéz)gil) @, @
! (2) (2) (1) 1.2, Jo v 7=y (T=t) — £, T)dT
\/;(\/“22 €1 + \/sz &7)

1 t
- 2/ , Jiz)(vf)(r—t)+€,r)dr
V 5£1) P

3).(2) (2) .(3)

N \/sz €11 — \/“22 o /t3(3)(_v(3)(r —t)4£,7)dT.
/.(3) \/ (3).(2) \/ 2,3 Jo ’ ’

€17 (\/ Moz €17 +\/ Mo €17)

The form ofugg’) (¢*,1) defined before as:

2 u11>€§2) \/Ull €22 \/Ull €2 (3 o
'(e+.1),
\/Un 522 + \/“11 522 \/Un 522 + \/Un 522
Substituting the values (uéz ) related toR; 1 anduE1 >(£+ t) related toRy into the last relation
we get:
2./ 3B
Hi1 & +0t fz))
\/Un 522 + \/Un 522 Vs

t
*/t g f§2><v§2><rt>+e,r>dr]
e

3 3
\/“11 22 \/Un 22/ 13 (1 —t) +£,1)dr,
\/“11 522 + \/Un 522
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Substitutingugz)(JrO,t — %) which was derived in regioRs, we get:
3

2 (2
{ 2 “J(.l) Eéz)

3
(3)([&- t) _ 2 ull)EZ
’ 3) (2 2) (3 1 2) (1 1) .2
\/HZE:I? Eéz) + \/HZE:I? Eéz) \/ Eéz)(\/ﬂﬁl) 52(2) + \/“J(.l) Séz))
t——t (1)
-/0 ) Jél)(vél)(r—t)Jrv—& T)dt

1
3
v
2) (1 1) (2
Videl - Vullsh o 1@, ¢,7)d
- (2) (2) (1) 1) (2, Jo 3 37 (v (T=-Y) = £,1)dr
\/;(\/ull &; +\/u11 )
1

t
+ / ,Jéz)(véz)(r—t)Jré,r)dr
[e(2) Jt——(5
22 V3

(3)(2) (2) (3)
&5 — € t
B \/Un 22 \/Ull 22 /\]f’)(_v‘(l?’)(r—t)—i—ﬁ,T)dT-
0

3 3.2 2) (3
\/ 52(2) ( \/Uh) 52(2) + \/“J(.l) 52(2) )

(3) (3
2

4.3.4 Finding Explicit Formula for Solution of the Problem

By using the relations in Section 4.3.1 the form of the expfamulae of the components of the

electric and magnetic fields can be written as following

K 1 k K
Hf ) = ) [Ug (%a.t) +U2>(X3vt)]’
2\/ K1y
K 1 k K
HY = ®) [ (. 1) + U (e, 1)),
2\/ Ky,
K 1 k K
EX — ® U (xa, 1) — U5 (v, 1)),
24/ &7
1
£ _ (9 (xa,t) + Ut (xg,1)].

[ L3
/ (kK
2 82(2)

Using the results that we get in sections 4.3.2 and 4.3.3@stituting these results into the relations

wherek = 1,2, 3.

above obtain the explicit formulae for the electric and nignfields for three layered anisotropic

media.

Explicit formulae of the electric and magnetic fields at thst filat

1 t
HY = ® /o 189 (v (1= 1)+ 36, 1) + £ (— W9 (1 1) + %, T)]dT;
24/ Hyy
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1 t
HY = — ® /o 19 (v (1= 1) 436, 1) + £ (—v (1 = 1) + %, T)]dT;
2 Uzz
EW = /f U1 —1) +x6,1) = (v (1—1) + x5, T))dT;
\/ 511

e = [t 006,04 (1) x5, T,

2\/@0

wherek =1,2, 3.

Explicit formulae of the electric and magnetic fields at tkeand flat

Explicit formulae for the regioir,:

X
HAY (xa,t) /Jz t) + X, T )+u§1>(—o,t+—v(31))
2

2”11[ 52 3

\/7/ V(1 —t)+%3,1)

d |

X
HY (a,t) = T—1)4%,7) + U (<0t+ =)

J )
2/ ug3 [ \/;/ 1
+ \/7/ —vl t)+x3,r)] dr;

Hé )(x3,t) =0;

X:
t)+%3,T) — U (—0,t + 22

J

/ ' 1)

2 511 [ V 511 ¢!
/ —vl T—1t)+Xs, T)] dr;

v/ e +

X
2 822 822 o
1
- 1) /tw_s‘]él)(_"él)(T—t)JrXs, r)] dr;
822 v(l)
E(l X3, = /J X37

The values, matching condition:é, (=0, t+ W) andug )(—O,t + W) derived before in the Section
1 3
4.3.3.1 for regiorRy.
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Explicit formulae for the regioiis:

1
H? 06t) = (a{()(wt / (1) +%.7)
2\/ 1 vy \/ -
- / 2T —1t) + 3, )] dr;
Y 522
e _ 1 (2
5 (Xs,t) = 7(2) up” (+0,t - - (T—1)+X3,7)
2\/ py \V €1
+ / D1 —1)+xs, )] dt;
Y 511
H{ (xa,t) = 0;
2 1 2 X3 1 t 2 2
EX0t) = —— u(1>(+0,t—w)——2/ IR e T)
2 5£1> Vi E:I(.l) L
1 t
. / 2 V(1 t) £ xe,1) | dr:
.2 Jo
11
Ezz)(x3,t) = > —u(3>(+0t / (T—1)+x3,T)
2 eéz) t*_

1 t
— /0 J§2>(—v§2>(r —t) + X3, T)] dr;

E:g X3, = /J3 X3,

The values, matching conditiomﬁ, (+0,t— W) andué )(+O,t ’?2 ) derived before in the Section
1 V3
4.3.3.1 for regiorRs.

Explicit formulae for the regioiis:

Xz — /¢

x5
¥e

H? (xg,t) = /J2 T—t) X3, T)+UD (0t 2=
U11 522

1
Vel ”Vg—a
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X:
H2(2)(X37t) = +X37 )+u(22)(£77t+ ) )

/J

2 “22 [ \/511 v
1

T /xfz‘]CI(.Z)(_VJ(.Z)(T_t)‘FX&T) dT;
11 v§

Hél)(x3,t) =0;

X3 — ¥
t)+ X3, T )+u(2)(£‘t+ 3

1 2 2
A /WJM—M “U+%, >] dr:;
€11

X3 — ¥
t)+ X3, T )+u§1)(£‘t+ 3

\/;{ \/;/J vézﬂ

1 2
— /t+x[\]£>(—v§>( —1) + X3, )] dr;

2 1 /e
E (xa,t) = _ﬁ/o I (xa, T)dT

The values, matching conditions(zz) (0 t+ T) anduf1 )(6 A+ 25 ’) derived before in the Sec-
Vi

3
tion 4.3.3.1 for regiorRs.

Explicit formulae for the regioiry:

3 1 3 X3 —{ 1 3), (3
HY (xat) = 5 !U(3>(f+,t NE )+—(3)/t ot B (T —1) +x,1)
24/ Mgy 3 \ €22 v§3)
1 t
- (3)/()J§3>(—v§3>(r—t)+X3,T) dr;
€2
3 1 3 X3 —{ 1 3, (3
HYY (xa,t) = R [u(1>(€+,t 3 )_—@/tx LI (Tt 4%, 1)
2\/ Hpz "1 E1 WY

1 t
® /0 WP r -0+, T)] dr;
€11

(
H§3)(x3,t) =0;
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3 1 3 X3 — 1 1 1 3),..(3
eVt = —— [t 2 = [ Pl r-0+xD)
2\/eld V1 el t‘W

(3)(T —1) + X3, T)] dr;

1 /t ] is) (
3) Jo
Y 551)

E£3)(X3,t) = - {ués)(ﬁ,t)@g /XS/ (3) (3)(T—t)—|—X3,T)
2 52(2) \/522
1 t
T /o Jés)( T—t)+X3,T ]
\/ €22

E(3 X37 - / 'J X37
533

The values, matching conditiona§,3> (01— Tg)) andué3) (0t t— ’S’Tgf) derived before in the Section
1

3
4.3.3.1 for regiorRy.

Explicit formulae of the electric and magnetic fields at thiedt flat

Explicit formulae for the regioifrg:

HY (e t) = [ /J (-1 %6, T) + U (-0t + )
2 Ull \V 522 V3

—v (T—t)+x3,7)| dT;
e ]

HY T t) 4%, T) U (0t + 2

5 (X3,t) = ! /J ) W)
2 “22 Y 511 Vi
! / Jil)(—vfl)(r—t)+x3,r) dr;
[e(L) Sty
11 Vi

Hél)(x3,t) =0;

T—1) 4%, 1) — UsY (—0,t + —=

2 ; / ; / )
( )
11 |: 11 vl

1
) [ e >] dr;

Ef (xs,t)




ESY (x,1)
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X
/ BV (T =)+, 1)+ U (<0t + =)
2 522 522 V3
/+ " —v3 T—t)+xs3,7)|dr;
522 el
E(l X3, = /J X3,
533

The values, matching conditiomél) (=0, t+ W) andugl)(—o,t + %) derived before in the Section
1 3

4.3.3.2 for regiorRg.

Explicit formulae for the regioiirg:

H? (xs,1)

H.? (xs,1)

E\? (xs,t)

Es” (xa,t)

2 (T —1)+%3,T)

(2)

1 X
= {ugz><+o,t )+
2\/ Uy 1

—l / t J(z)(v
@ S5 2
V€2 W

@, Xl 1 /‘ @, @ .
U, (0, t+ N ) = t+Xa/J2 (V3 (T—t)+x3,T)| dT;

3 &2 WY

2,/ s 1 €11 52)
L 1 t
P2 —— [ PP -0
(2) @) Jriss!
1 Ell W2

1 2 X3 1 t 2 2
ua><+o,t—w>—w/t L 20— 0.0
V1 &1 WP

X3 1 2, (2
{ug>(+0t V(2>)—ﬁ/tX_gJ§>(v§)(r—t)+x3,r)

@ |
W2 Bt \/7/ S 21 t)+X3,T)] dr;

1 t
E§2>(x3,t) =——= J§2) (X3, T)dT.
gés) 0
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The values, matching conditionsi(, >(+Ot 2%),i=13 andu(2> (0 t+ 25 ’) | = 2,4 derived
| J

before in the Section 4.3.3.2 for regiég.

Explicit formulae for the regioiiryg:

) 1 2 X3 1 t 2, .2
Ho (xat) = — @ ué)(+o,t—@)+ﬁ/t W BP0 %)
Hi1 "1 2 v
iy 1 t
s s [ - fdn
Vs &5 e
) 1 2 X3 1 t 2),.,2
H? (xg,t) = —— u<1)(+o,t—@)—ﬁ/t - I W (1) 4x3,7)
K22 "1 o

EX(xat) = {u&%m

F/t_ (T—1)+%,1)

_ X3—4¢ 1
— w )+—/ I (P (1) 4, 1) | T
i

1
Eéz)(x3,t) = {ug )(+0 t— (T—t)+X3,T)

2 eg)

P el
+ ()(é’t+ / (1 —1)+%.7)| dr;
ik ]

E(z X37 - / 'J X37
533

The values, matching conditionsi(, )(+0t ) i=13 andu(z) (0 t+ % ( ) j = 2,4 derived
J

before in the Section 4.3.3.2 for regi&io.

Explicit formulae for the regioiir:



Es” (xa,t)
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2 -
21/ Hy1 &7 v

iy 1 t
uE.rz)(E‘,tJr%)——/ XJJéz)(—véz)(r—t)+X3,T) dr;
V3 82(? )
V3

1 2 X3 1 t 2) /(2
|:ué)(+0,tv(2))+(2)/t Jé)(vé)(r—t)—l—x&l')
1

1 1/
5 |weot g [ STk
Ilz(2> v e

-/ 1 t
42 t—i—xi(2> )+ /tX3£J§2>(V£2>(rt)+x3,r)] dr;

1 €11 v
H (xa,t) =0;
1 u? /
0,t— T—t
= (+ t__ ) +X3,T)
21/ &7 \/

X3 —{ 1 t
u(zz)(ﬁ,tJrS—)Jr—/t ot Jiz)(vfz)(rt)+x3,r)] drt;

—t) + Xa, T)

1 2)
z eg?{ \/ =

(2)(g*t / XS[ - ( t)+x3,r)] dr;
V 522
E(2 X3, = / J X3,
The values, matching conditionsi(, )(+0t ) i=13 andu(z) (- t+% e ) j = 2,4 derived

| J

before in the Section 4.3.3.2 for regi&a;.

Explicit formulae for the regioiiry,:

J(3)(

/m 2
\/ 522

(3)(1' —1) + Xz, T)] dr;

v§3)(r—t)+x3,r)

2/

1 L
—= | %
\/ €22

! [u(;’) (et t—
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WP (T -1 +x,1)

1 () )+ X3—€ 1 t
P sz Ly
2 ué?[ v e
1 t
=5 [ H A0 r)} dr;
€11

HY (xat) =

Hés)(x3,t) =0;

3 1 3 X3 —1{ 1 3),. (3
EV 0t = —— (W25 - = [ PP r-0+xD)
2\/e] 1 CH e

(3)(T —1) + X3, T)] dr;

1 /t 19
/.3 Jo
&y

1
B0t = |7, = / VP )
2\/ &3 \/522 7§_
1 t
L g
Je2
22

1 t
E§3>(x3,t) =——3 J§3) (X3, T)dT
gés) 0

The values, matching conditiona§,3> (01— %gf) anduf) (0t t— %;f) derived before in the Section
1 3

4.3.3.2 for regiorRy,.



CHAPTER FIVE
CONCLUSION

In the thesis mathematical model for the electromagnetieyaopagation in homogeneous elec-
trically and magnetically anisotropic media is describgdh®e time-dependent Maxwell’s system.
Using the method of characteristics explicit formulae folusons of the time-dependent Maxwell's
system is obtained. These solutions are constructed fersipace and for layered media. Using
these formulae and symbolic transformation in MATLAB thecattic and magnetic waves are sim-
ulated and images are presented. Images of electric andetiadjelds for different isotropic and
anisotropic media have been obtained and their analysibd&s given. Our further plan is to get a

generalization of this work on layered media where we haveertayers than three.
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