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SIMULATION OF ELECTRIC AND MAGNETIC FIELDS IN ANISOTROPIC M EDIA

ABSTRACT

In the thesis the time-dependent Maxwell’s equations with piecewise constant coefficients are

considered. These equations describe the electromagneticwaves in layered anisotropic media. The

main problem of the thesis is initial value problems for two layered and three layered media. The

main results are the following. The explicit formulae for the solutions of the considered problems are

constructed. Finding the explicit formula the method of characteristics and matching conditions have

been used. For simulation of electric and magnetic waves symbolic transformation in MATLAB is

used.

Keywords: Time-dependent Maxwell’s system; electromagnetic waves;Anisotropic layered media;

Method of characteristics; Matching conditions; Simulation; MATLAB
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ANİZOTROP İK ORTAMDA ELEKTR İK VE MANYET İK ALANLARIN S İMÜLASYONU

ÖZ

Tezde zamana baǧlı ve parçalı sabit katsayılı Maxwell denklemleri ele alındı. Bu denklemler,

katmanlı anizotropik ortamdaki elektrik ve manyetik dalgaları tanımlar. Tezin ana problemi iki ve

üç katmanlı ortamlar için başlangıç deǧer problemleridir. Ana sonuçlar şu şekilde sıralanabilir. Ele

alınan problemlerin çözümleri için kesin formüller oluşturuldu. Kesin formüllerin bulunabilmesi için

karakteristikler metodu ve eşleme koşulları kullanıldı. Elektik ve manyetik dalgaların simülasyonları

için MATLAB’ta sembolik dönüşümler uygulandı.

Anahtar Sözcükler:Zamana bǎglı Maxwell denklemi; Elektromanyetik dalgalar; Katmanlıanizotropik

ortam; Elektromanyetik dalga yayılımı; Karakteristiklermetodu; Eşleme koşulları; Simülasyon;

MATLAB
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CHAPTER ONE

INTRODUCTION

Equations of the time-dependent electric and magnetic fields in homogeneous anisotropic media

are given by the following relations called the Maxwell’s system (Eom (2004)), (Kong (1986)):

curlx~H = E
∂~E
∂ t

+ ~J, (1.0.1)

curlx~E = −M
∂ ~H
∂ t

, (1.0.2)

divx(E ~E) = ρ , (1.0.3)

divx(M ~H) = 0, (1.0.4)

wherex = (x1,x2,x3) is a space variable fromR3, t is a time variable fromR. ~E(x, t) = (E1,E2,E3),

~H(x3, t)= (H1,H2,H3) are electric and magnetic fields,Ek = Ek(x, t), Hk = Hk(x, t); ~J(x, t)= (J1,J2,J3)

is the electric current density,Jk = Jk(x, t), k = 1,2,3; M is the tensor of the magnetic permeability,

E is the tensor of the dielectric permittivity;ρ is the density of electric charges.

In homogeneous non-dispersive electrically and magnetically anisotropic media the relation be-

tween the electric and magnetic fields~E and~H and the electric and magnetic flux densitiesD andB

represented as

D = E ~E, B = M ~H,

whereE = (εi j (x))3×3 dielectric permittivity andM = (µi j (x))3×3 magnetic permeability are sym-

metric positive definite matrices. The matricesE and M characterize the electric and magnetic

properties of the materials.

For an inhomogeneous isotropic mediumM andE are positive scalar functions, if the medium

is homogeneous isotropic thenM andE are positive constants (that is,E = εI M = µI , where

I identity matrix). If we takeE = (εi j )3×3 andM = (µi j )3×3 as arbitrary matrices (Eom (2004))

then we say our medium is electrically and magnetically anisotropic. If the dielectric permittivity

E = (εi j )3×3 is taken as arbitrary matrix andM as a constant (that is,M = µI ) then the medium is

electrically anisotropic. Another example of a medium is magnetically anisotropic where we consider

the caseM = (µi j )3×3 is an arbitrary matrix andE is a constant (that is,E = εI ) (Kong (1986)).

Let x be a space variable fromR3 andt be a time variable fromR, then the Maxwell’s is given by

the relations (1.0.1)-(1.0.4), whereE = (εi j )3×3 andM = (µi j )3×3 are symmetric positive definite

1
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matrices. From relations (1.0.1)-(1.0.4) we can find the following

∂ρ
∂ t

+divxJ = 0,

and is called the conservation law of charges.

We suppose that

~E = 0, ~H = 0, ρ = 0, f or t ≤ 0,

this means that there is no electric charge at the timet ≤ 0.

This problem is called initial value problem (IVP) for time-dependent Maxwell’s system with

piecewise constant coefficients. This system describes theelectric and magnetic wave propagation in

layered anisotropic media.

To deal with electromagnetic wave propagation different problems and methods of their solving

have been made (Kong (1986), Monk (2003), Yakhno et al. (2006)). For instance to solve the prob-

lem of electric field equation decomposition method has beensuggested (Lindell (1990)). Analytic

method of Green’s functions constructions have been studied for isotropic and anisotropic materials

in (Haba (2004), Ortner & Wagner (2004) Yakhno (2005)). Modeling lossy anisotropic dielectric

wave-guides with the method of lines has been made for inhomogeneous biaxial anisotropic media.

Most of the electromagnetic wave problems have been solved by numerical methods, in particular

finite element method (Monk (2003), Cohen (2002)), boundaryelements method, finite difference

method, nodal method (Zienkiewicz & Taylor (2000), Cohen etal. (2003)).

The main goal of the thesis is to find explicit formulae for solution of the stated problem and

using these formulae to simulate electric and magnetic field.

This thesis is organized as follows. Firstly we solve the time-dependent Maxwell’s system in free

space and this is done in Chapter Two. In Section 2.1 we give equations of the electric and magnetic

fields. Section 2.2 consists of assumptions and problem set-up for the Maxwell’s equations. Using

these assumptions and the equations from the Section 2.1 we construct our problem. In Section 2.3

we describe the procedure how to find the explicit formulas for the stated problem in Section 2.2.

In the following section we reduce the original problem intofirst order partial differential equations

and this is done in Section 2.3.1. Section 2.3.2 consists of the method to get explicit formulae for the

reduced problem. Here we use the method of characteristics to get the formulae. Using the results

the Section 2.3.2 and by back substitution of these formulaewe get the explicit formula for solution

of the IVP of the time-dependent Maxwell’s system in Section2.3.3.
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In Chapter Three we solve the IVP related with the Maxwell’s system for two layered anisotropic

media. Section 3.1 consists of the basic information about the two layered media and we state the

differences between the free space and two layered media. Equations of the electric and magnetic

fields are also given in this section. In Section 3.2 we state the assumptions and set up the problem.

For two layered media to solve the constructed problem matching conditions are needed. These

matching conditions are given in this section. Section 3.3 describes the procedure to get the formulae

for solution of the problem. In Section 3.3.1 the reduction of the IVP for Maxwell’s system is

given. Explicit formulae for the reduced IVP are obtained inSection 3.3.2 by using the method of

characteristics. Firstly we divide each layer into subregions, this division process is based on the IVPs

that are considered in each region. For instance for the firstand second layer we have two subregions.

One of the subregions of these layers only consists of IVP without matching conditions whereas the

other one consists of an IVP and IVP with matching conditions. Solutions of the reduced IVPs for

each subregion is computed in Sections 3.3.2.1, 3.3.2.2, 3.3.2.3, 3.3.2.4. But there some values in

that solutions that are not defined. These values are the matching conditions and deriving process

of these conditions is given in Section 3.3.3. Using the results of Section 3.3.2, 3.3.3 and by back

substitution of the solution of the reduced IVP we get explicit formulae for the electric and magnetic

fields in two layered anisotropic media, these formulae are stated in Section 3.3.4. In last section of

Chapter Three applying symbolic transformation in MATLAB to explicit formulae simulation of the

electric and magnetic waves is obtained. These images are presented in Section 3.4 and analysis of

these images is given.

Solution of the electric and magnetic fields in three layeredanisotropic media is considered in

Chapter Four. In Section 4.1 we describe the three layered media and give equations of the electric

and magnetic fields. Like as we did in Chapter One and Two we state our assumptions and construct

the main problem for three layered media.Here like two layered media to solve the considered prob-

lem we also need matching conditions and they are given in Section 4.2. In Section 4.3 applying the

same procedure as we used in Chapter Three we get explicit formulae of the problem. In Section

4.3.1 we make reduction of the IVP for Maxwell’s system. Section 4.3.2 describes how to solve the

reduced initial value problem. Firstly each layer of the media is separated into subregions by means

of the main characteristics. After that by considering the IVPs related to each subregion we reorga-

nize these regions and this organization constitutes flats.Then flat by flat we solve our problem. In

Sections 4.3.2.1, 4.3.2.2, 4.3.2.3 the reduced IVPs of the main problem are solved for the flat one, flat

two and flat three and using the method of characteristics explicit formulae are obtained. Undefined

values in these formulas, matching conditions, are derivedin Section 4.3.3. Since in the first flat we

considered only IVPs without matching conditions then we need to derive matching conditions only

for the second and third flat. In Section 4.3.2.1 and 4.3.2.2 these values are defined for the flats two
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and three. Section 4.3.4 is the last section of the Chapter Four, here by using the results of the last two

sections we obtain explicit formulae of the electric and magnetic fields in three layered anisotropic

media.



CHAPTER TWO

METHOD OF CHARACTERISTICS FOR FINDING ELECTRIC AND MAGNETI C

FIELDS IN FREE SPACE

2.1 Equations of Electric and Magnetic Fields in Free Space

The propagation of electromagnetic waves in homogeneous, electrically and magnetically anisotropic

materials is described by the time dependent Maxwell’s system with matrices of dielectric permittiv-

ity and magnetic permeability.

In this chapter, we find explicit formulae for the solution ofthe Maxwell’s system in free space.

Let x = (x1,x2,x3) be a space variable fromR3, t be a time variable fromR, then the Maxwell’s

system is given by the following relations:

curlx~H(x, t) =
∂ (E ~E(x, t))

∂ t
+ ~J(x, t), (2.1.1)

curlx~E(x, t) = −∂ (M ~H(x, t))
∂ t

, (2.1.2)

divx(E ~E(x, t)) = ρ(x, t), (2.1.3)

divx(M ~H(x, t)) = 0, (2.1.4)

whereM =











µ11 µ12 µ13

µ21 µ22 µ23

µ31 µ32 µ33











andE =











ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33











are symmetric positive definite ma-

trices with constant elements.

And the conservation law of charges is given by the followingrelation:

∂ρ(x3, t)
∂ t

+divx~J(x3, t) = 0. (2.1.5)

Definition 2.1.1. Let ~H(x) = (H1(x),H2(x),H3(x)), Hk(x) be a function ofx = (x1,x2,x3) ∈ R
3,

k = 1,2,3 then divergence of~H(x) is defined by:

divx~H(x) =
∂H1(x)

∂x1
+

∂H2(x)
∂x2

+
∂H3(x)

∂x3
.

Definition 2.1.2. Let ~H(x) = (H1(x),H2(x),H3(x)), Hk(x) be a function ofx = (x1,x2,x3) ∈ R
3,

k = 1,2,3 then curl of~H(x) is defined by:

curlx~H(x) = (
∂H3(x)

∂x2
− ∂H2(x)

∂x3
,
∂H1(x)

∂x3
− ∂H3(x)

∂x1
,
∂H2(x)

∂x1
− ∂H1(x)

∂x2
).

5
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2.2 Assumptions and Problem Set Up For Maxwell’s System In Free Space

We assume thatE =











ε11 0 0

0 ε22 0

0 0 ε33











,and M =











µ11 0 0

0 µ22 0

0 0 µ33











are symmetric posi-

tive definite matrices with constant elements.

Let the components of vectors~H(x, t) = (H1,H2,H3), ~E(x, t) = (E1,E2,E3) depend onx3 andt

only, that is,Hi = Hi(x3, t), Ei = Ei(x3, t), i = 1,2,3; ~J = (J1,J2,J3), whereJi = Ji(x3, t), i=1,2,3.

Moreover we suppose that:

~E = 0, ~H = 0, ρ = 0, ~J = 0 f or t ≤ 0, (2.2.1)

this means that there is no electric charges and currents at time t ≤ 0; electric and magnetic fields

vanish fort ≤ 0.

Let furtherE3×3, M3×3, ~J(x3, t) be given.

The main problem is to find electric and magnetic fields,~E(x3, t), ~H(x3, t) respectively, satisfying

the IVP(2.1.1)− (2.1.5) and(2.2.1).

2.3 Finding Explicit Formula for Solution of the Problem

An explicit formula for solution of the Maxwell’s system is obtained in this section. The method

of deriving explicit formulae for the electric and magneticfields consists of the following steps. On

the first step we reduce the initial value problem for the Maxwell’s system into another initial value

problem; this reduced problem consists of first order linearpartial differential equations with initial

conditions. On the second step we use the method of characteristics to solve the reduced problem.

As a result we get solution for it. On the last step using the formulae obtained on the second step,

we get explicit formulae for the electric and magnetic fields; that is, the solution of the problem for

Maxwell’s system.
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2.3.1 Reduction of the Problem for Maxwell’s System

By considering the assumptions for the Maxwell’s system andusing the definitions ofcurlx and

divx we can rewritecurlx~H anddivx~H in the following form:

divx~H(x) =
∂H1(x)

∂x1
+

∂H2(x)
∂x2

+
∂H3(x)

∂x3

=
∂H3(x)

∂x3
,

curlx~H(x) = (
∂H3(x)

∂x2
− ∂H2(x)

∂x3
,

∂H1(x)
∂x3

− ∂H3(x)
∂x1

,
∂H2(x)

∂x1
− ∂H1(x)

∂x2
)

= (−∂H2(x)
∂x3

,
∂H1(x)

∂x3
,0).

Under assumptions from each component of Maxwell’s system (2.1.1)-(2.1.4) we get new sub

equations:

curlx~H =
∂ (E ~E)

∂ t
+ ~J, (2.1.1)



















− ∂H2
∂x3

= ∂ (ε11E1)
∂ t + j1, (2.1.1.a)

∂H1
∂x3

= ∂ (ε22E2)
∂ t + j2, (2.1.1.b)

0 = ∂ (ε33E3)
∂ t + j3, (2.1.1.c)

curlx~E = −∂ (M ~H)

∂ t
, (2.1.2)



















− ∂E2
∂x3

= − ∂ (µ11H1)
∂ t , (2.1.2.a)

∂E1
∂x3

= − ∂ (µ22H2)
∂ t , (2.1.2.b)

0 = − ∂ (µ33H3)
∂ t , (2.1.2.c)

divx(E ~E) = ρ , (2.1.3)
}

∂ (ε33E3)
∂x3

= ρ , (2.1.3)

divx(M ~H) = 0, (2.1.4)
}

∂ (µ33H3)
∂x3

= 0. (2.1.4)

To find E1 andH2 we will consider equations(2.1.1.a) and(2.1.2.b). These equations may be

written in the form:

− ∂H2
∂x3

= ∂ (ε11E1)
∂ t + j1, (2.1.1.a)

}

∂ (
√

ε11E1)
∂ t = − 1√ε11µ22

∂ (
√µ22H2)

∂x3
− J1√

ε11
, (2.3.1)

∂E1
∂x3

= − ∂ (µ22H2)
∂ t , (2.1.2.b)

}

∂ (
√µ22H2)

∂ t = − 1√ε11µ22

∂ (
√

ε11E1)
∂x3

. (2.3.2)
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Summing (2.3.1) and (2.3.2) and subtracting (2.3.1) from (2.3.2) we find:

∂ (
√µ22H2 +

√
ε11E1)

∂ t
+

1√ε11µ22

∂ (
√µ22H2+

√
ε11E1)

∂x3
= − J1√

ε11
, (2.3.3)

∂ (
√µ22H2−

√
ε11E1)

∂ t
− 1√ε11µ22

∂ (
√µ22H2−

√
ε11E1)

∂x3
=

J1√
ε11

. (2.3.4)

To find E2 andH1 we will consider equations(2.1.1.b) and(2.1.2.a). These equations may be

written in the form:

∂H1
∂x3

= ∂ (ε22E2)
∂ t + j2, (2.1.1.b)

}

∂ (
√

ε22E2)
∂ t = 1√ε22µ11

∂ (
√µ11H1)

∂x3
− J2√

ε22
, (2.3.5)

− ∂E2
∂x3

= − ∂ (µ11H1)
∂ t , (2.1.2.a)

}

∂ (
√µ11H1)

∂ t = 1√ε22µ11

∂ (
√

ε22E2)
∂x3

. (2.3.6)

Subtracting (2.3.5) from (2.3.6)and summing (2.3.5) and (2.3.6) we find

∂ (
√µ11H1−

√
ε22E2)

∂ t
+

1√ε22µ11

∂ (
√µ11H1−

√
ε22E2)

∂x3
=

J2√
ε22

, (2.3.7)

∂ (
√µ11H1 +

√
ε22E2)

∂ t
− 1√ε22µ11

∂ (
√µ11H1+

√
ε22E2)

∂x3
= − J2√

ε22
. (2.3.8)

To solve equations (2.3.3), (2.3.4), (2.3.7), (2.3.8) we will denote,

√µ22H2+
√

ε11E1 = u1,

√µ22H2−
√

ε11E1 = u2,

√µ11H1−
√

ε22E2 = u3,

√µ11H1+
√

ε22E2 = u4,

(2.3.9)

ν1 = ν2 =
1√ε11µ22

; ν3 = ν4 =
1√ε22µ11

;

f1 = − J1√
ε11

; f2 =
J1√
ε11

; f3 =
J2√
ε22

; f4 = − J2√
ε22

,

whereui = ui(x3, t), fi = fi(x3, t), i = 1,2,3,4.
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Then equations (2.3.3), (2.3.4), (2.3.7), (2.3.8) may be written as:

∂ui(x3, t)
∂ t

+(−1)i+1νi
∂ui(x3, t)

∂x3
= fi(x3, t), i = 1,2,3,4. (2.3.10)

And, using (2.2.1) we get initial conditions for (2.3.10) as:

ui(x3,0) = 0, i = 1,2,3,4. (2.3.11)

As a result, we reduced the initial value problem (IVP) for Maxwell’s system to another initial

value problem (IVP). This reduced problem consists of the equations (2.3.10) and (2.3.11).

2.3.2 Solving Initial Value Problem

Let us consider the equation (2.3.10). This equation is a first order linear partial differential

equation (PDE) with the independent variablesx3 andt.

In this equationνi , i = 1,2,3,4, are given constants (coefficients of the PDE (2.3.10));fi(x3, t),

i = 1,2,3,4, are given functions (inhomogeneous term of PDE (2.3.10)); ui(x3, t), i = 1,2,3,4, is the

unknown function.

To find solution of the initial value problem (IVP)(2.3.10)-(2.3.11) we use the method of charac-

teristics.

Firstly, let us write the equation (2.3.10) in terms ofξ andτ :

∂ui

∂τ
+(−1)i+1νi

∂ui

∂ξ
= fi , −∞ < ξ < ∞, τ > 0, (2.3.12)

whereui = ui(ξ ,τ), fi = fi(ξ ,τ), i = 1,2,3,4.

Then equations for characteristics are can be found as:

dξ
ds = (−1)i+1νi , i = 1,2,3,4,

dτ
ds = 1.

Then the characteristic, that is, passing through the point(x3, t) can be found as:

ξ = (−1)i+1νi(τ − t)+x3, i = 1,2,3,4.

Now, we can write the equation (2.3.12) along these characteristics in the following form:

dui((−1)i+1νi(τ − t)+x3,τ)

dτ
= fi((−1)i+1νi(τ − t)+x3,τ). (2.3.13)
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Integrating relation (2.3.13) fromτ = 0 to τ = t we have:

∫ t

0

d[ui(νi(τ − t)+x3,τ)]

dτ
dτ =

∫ t

0
fi((−1)i+1νi(τ − t)+x3,τ)dτ , (2.3.14)

wherei = 1,2,3,4.

That is,

ui(x3, t) = ui(x3,0)+

∫ t

0
fi((−1)i+1νi(τ − t)+x3,τ)dτ ,

wherei = 1,2,3,4.

Finally, using the initial condition (2.3.11) we find the solution of the initial value problem (IVP)

(2.3.10)-(2.3.11) in the following form:

ui(x3, t) =

∫ t

0
fi((−1)i+1νi(τ − t)+x3,τ)dτ , (2.3.15)

wherei = 1,2,3,4.

2.3.3 Finding Explicit Formulae For The Electric And Magnetic Fields

Now we obtain explicit formula for the solution of the original problem (2.1.1)-(2.1.5), (2.2.1). In

the subsection 2.3.1 the relations that depend onHk(x3, t) andEk(x3, t), k= 1,2, denoted byui(x3, t)’s

i = 1,2,3,4. This was given in (2.3.9). Here by making back substitution of ui(x3, t)’s i = 1,2,3,4

into (2.3.9) we get explicit formulae for the electric and magnetic fields.

Then the formulas forHk(x3, t) and Ek(x3, t), k = 1,2 can be found by means ofui(x3, t)’s

i = 1,2,3,4 as:

H1(x3, t) = 1
2
√µ11

(u3 +u4),

H2(x3, t) = 1
2
√µ22

(u1 +u2),

E1(x3, t) = 1
2
√

ε11
(u1−u2),

E2(x3, t) = 1
2
√

ε22
(u4−u3).

As a result we get the formulas forHk(x3, t) andEk(x3, t), k= 1,2, but still remain some unknown

functions. We have not considered the unknownsH3(x3, t) andE3(x3, t). Finding solution of these

functions is easier than the other ones; since we consider first order ordinary differential equations

(ODEs) with initial conditions.

The solution ofH3(x3, t) follows from the equations (2.1.2.c) and (2.1.4).
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∂ (µ33H3)
∂ t = 0,

∂ (µ33H3)
∂x3

= 0,

We see thatH3(x3, t) is independent ofx3 in the first relation and independent oft in the second

relation. This situation is valid if and only ifH3(x3, t) is a constant. Hence,

H3(x3, t) = h3, h3 : arbitrary constant.

Using the initial condition (2.2.1) we find the solution ofH3(x3, t) as:

H3(x3, t) = 0.

To find solution ofE3(x3, t) we consider a similar procedure. The equations that are related with

E3(x3, t) are (2.1.1.c) and (2.1.3).

∂ (ε33E3)
∂ t = − j3,

∂ (ε33E3)
∂x3

= ρ ,

Using the conservation law of charges we see that these two relations are equivalent to each other.

Hence, let us only consider the relation (2.1.1.c). Then by taking integral with respect toτ from 0 to

t and using the initial condition forE3(x3, t), we get the solution ofE3(x3, t) as,

E3(x3, t) = − 1
ε33

∫ t

0
J3(x3,τ)dτ .

Then the explicit formulae for the electric and magnetic fields can be stated as:

H1(x3, t) = 1
2
√µ11ε22

∫ t
0

[

J2(
1√µ11ε22

(τ − t)+x3,τ)−J2(− 1√µ11ε22
(τ − t)+x3,τ)

]

dτ ,

H2(x3, t) = 1
2
√µ22ε11

∫ t
0

[

−J1(
1√µ22ε11

(τ − t)+x3,τ)+J1(− 1√µ22ε11
(τ − t)+x3,τ)

]

dτ ,

H3(x3, t) = 0,

E1(x3, t) = 1
2ε11

∫ t
0

[

−J1(
1√µ22ε11

(τ − t)+x3,τ)−J1(− 1√µ22ε11
(τ − t)+x3,τ)

]

dτ ,

E2(x3, t) = 1
2ε22

∫ t
0

[

J2(
1√µ11ε22

(τ − t)+x3,τ)+J2(− 1√µ11ε22
(τ − t)+x3,τ)

]

dτ ,

E3(x3, t) = − 1
ε33

∫ t
0 J3(x3,τ)dτ .

As a result we find the explicit formulae for the electric and magnetic fields that is the explicit

solution of the Maxwell’s system in free space.



CHAPTER THREE

METHOD OF CHARACTERISTICS FOR FINDING ELECTRIC AND MAGNETI C

FIELDS IN TWO LAYERED MEDIA

3.1 Equations of Electric and Magnetic Fields in Two LayeredMedia

6

?

-�

t

(0,0)
x3

First Layer Second Layer

Figure 3.1 Two layered media.

In this chapter, we consider the initial value problem for the time-dependent Maxwell’s system in

homogeneous, anisotropic materials in two layered media. To solve this problem we follow a similar

procedure as we applied in the last chapter for free space, but the main problem, which should be

solved, has some differences with the problem for free space.

The first difference is domain, on which we study. In free space we consider the whole space, that

is,−∞ < x3 < ∞, t > 0; but here we separate the whole space in two layers. Each layer consists of a

half space. Then we define the first layer as−∞ < x3 < 0, t > 0; and the second one as: 0< x3 < ∞,

t > 0. We denote each layer by a notation writing the number of thelayer, on which we study, in

parentheses. This notation is shown like a power, that is,�
(k), wherek = 1,2.

The second difference is the conditions, which are used. In free space we consider only initial

conditions, but here we also need another ones which are called matching conditions. To find explicit

formula for solution of the original problem, they should bederived.

12
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The last difference is the initial value problem, which is reduced from the original problem for

Maxwell’s system. In free space there was just one initial value problem to be considered, but here

we also divide each layer into subregions and in each subregion we consider different initial value

problems. In one of the subregion we consider an initial value problem as we did before, but in the

other one we solve an initial value problem with matching conditions.

As a result except these differences, we solve the main problem by a similar process as we did

before.

Now, let x = (x1,x2,x3) ∈ R
3 be a space variable andt ∈ R be the time variable. Then the

Maxwell’s system for two the layered media can be written as:

curlx~H
(k) = E

(k) ∂~E(k)

∂ t
+ ~J(k), (3.1.1)

curlx~E
(k) = −M

(k) ∂ ~H(k)

∂ t
, (3.1.2)

divx(E
(k)~E(k)) = ρ (k), (3.1.3)

divx(M
(k)~H(k)) = 0, (3.1.4)

wherek = 1,2 and denotes the media.

And the conservation law of charges is given by:

∂ρ (k)

∂ t
+divx~J

(k) = 0, (3.1.5)

wherek = 1,2.

3.2 Assumptions and Problem Set Up For Maxwell’s System

We assume that the electric permittivity matrixE (k) = (εi j )
(k)
3×3 and the magnetic permeability

matrix M (k) = (µi j )
(k)
3×3, k = 1,2, are symmetric positive definite matrices with constant elements,

and they are in the form of:

E
(k) =











ε (k)
11 0 0

0 ε (k)
22 0

0 0 ε (k)
33











,and M =











µ(k)
11 0 0

0 µ(k)
22 0

0 0 µ(k)
33











.

Let the components of vector functions~H(k)(x) = (H(k)
1 ,H(k)

2 ,H(k)
3 ),

~E(k)(x) = (E(k)
1 ,E(k)

2 ,E(k)
3 ), k = 1,2, depend onx3 and t only, that is,H(k)

i = H(k)
i (x3, t), E(k)

i =

E(k)
i (x3, t), i = 1,2,3; ~J(k) = (J(k)

1 ,J(k)
2 ,J(k)

3 ), whereJ(k)
i = J(k)

i (x3, t), i = 1,2,3; k = 1,2.
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Moreover, we suppose that:

~E(k) = 0, ~H(k) = 0, ρ (k) = 0, ~J(k) = 0 f or t ≤ 0, (3.2.1)

this means that there is no electric charges and currents at the timet ≤ 0; electric and magnetic fields

vanish fort ≤ 0.

The matching conditions are in the following form:

(~E(2)−~E(1))|x3=0×~n = 0,

(~D(2) −~D(1))|x3=0 ·~n = 0,

(~H(2)− ~H(1))|x3=0×~n = 0,

(~B(2) −~B(1))|x3=0 ·~n = 0,































(3.2.2)

where~n = (0,0,1).

Let further that the matricesE (k) andM (k) and the current electric density~J(k) be given,k = 1,2.

The main problem is to find~E(k), ~H(k), k = 1,2 satisfying(3.1.1)− (3.1.4) and(3.2.1), (3.2.2).

3.3 Finding Explicit Formula for Solution of the Problem

In this section we find explicit formula for the solution of the initial value problem for Maxwell’s

system. The procedure of finding solution of the problem consists of the following steps. Firstly

we reduce the original problem to another initial value problem. On the second step we divide each

layer into subregions and solve the reduced initial value problem related with each subregion. On the

third step we derive matching conditions. At the last step using the results of the first, second and

third step we find explicit formulae for the electric and magnetic fields; that is, the solution of the

Maxwell’s system.

3.3.1 Reduction Of The Problem For Maxwell’s System

Here under assumptions applying the same procedure, as we used in free space to reduce the

Maxwell’s system into the first order partial differential equations, we get the reduced problem for

the original one. And using the initial conditions(3.2.1) and the matching conditions(3.2.2) we get

an initial value problem related with each layer.

After repeating the procedure mentioned above; the first order partial differential equations reduced

from Maxwell’s system can be found in the following form:

∂u(k)
i (x3, t)

∂ t
+(−1)i+1ν(k)

i
∂u(k)

i (x3, t)
∂x3

= f (k)
i (x3, t), i = 1,2,3,4, (3.3.1)
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where

u(k)
1 =

√

µ(k)
22 H(k)

2 +

√

ε (k)
11 E(k)

1 ,

u(k)
2 =

√

µ(k)
22 H(k)

2 −
√

ε (k)
11 E(k)

1 ,

u(k)
3 =

√

µ(k)
11 H(k)

1 −
√

ε (k)
22 E(k)

2 ,

u(k)
4 =

√

µ(k)
11 H(k)

1 +

√

ε (k)
22 E(k)

2 ,

ν(k)
1 = ν(k)

2 =
1

√

ε (k)
11 µ(k)

22

; ν(k)
3 = ν(k)

4 =
1

√

ε (k)
22 µ(k)

11

;

f (k)
1 = − J(k)

1
√

ε (k)
11

; f (k)
2 =

J(k)
1

√

ε (k)
11

; f (k)
3 =

J(k)
2

√

ε (k)
22

; f (k)
4 = − J(k)

2
√

ε (k)
22

,

u(k)
i = u(k)

i (x3, t), f (k)
i = f (k)

i (x3, t), i = 1,2,3,4; andk = 1,2 denotes the media.

Initial conditions can be found as:

u(k)
i (x3,0) = 0, i = 1,2,3,4; k = 1,2. (3.3.2)

Matching conditions are in the form:

u(1)
i (−0, t) =

√

µ(1)
22 H(1)

2 (−0, t)+ (−1)(i+1)

√

ε (1)
11 E(1)

1 (−0, t) t > 0, i = 1,2

u(1)
i (−0, t) =

√

µ(1)
11 H(1)

1 (−0, t)+ (−1)(i)
√

ε (1)
22 E(1)

2 (−0, t), t > 0, i = 3,4.











(3.3.3)

u(2)
i (+0, t) =

√

µ(2)
22 H(2)

2 (+0, t)+ (−1)(i+1)

√

ε (2)
11 E(2)

1 (+0, t) t > 0, i = 1,2

u(2)
i (+0, t) =

√

µ(2)
11 H(2)

1 (+0, t)+ (−1)(i)
√

ε (2)
22 E(2)

2 (+0, t), t > 0, i = 3,4.











(3.3.4)

The reduced initial value problem related to the layer one consists of(3.3.1), (3.3.2), (3.3.3) for

k = 1; and for the second layer we consider(3.3.1), (3.3.2), (3.3.4) for k = 2.

3.3.2 Solving Reduced Initial Value Problem For Maxwell’s System

Now, we solve the reduced initial value problem related witheach layer. We divide each layer

into subregions, since the problem in each subregion that may differ from the one related with other

subregion. This division depends on the characteristics, related with each layer. On the solution steps,

we describe this in details. These subregions, without mentioning the characteristics, are shown in

the Figure 3.2.

In the Figure 3.2, the subregions related with the first layeris R1 andR2; R3 andR4 are related

with the second layer.
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k
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R2 R4

R3

t

x3

Figure 3.2 Subregions in two layered media.

The layer one, the half space, was defined as;−∞ < x3 < 0, t > 0. The reduced initial value

problem related with this layer consists of(3.3.1), (3.3.2), (3.3.3) for k = 1, that is:

∂u(1)
i (x3, t)

∂ t
+(−1)i+1ν(1)

i
∂u(1)

i (x3, t)
∂x3

= f (1)
i (x3, t), i = 1,2,3,4, (3.3.5)

u(1)
i (x3,0) = 0, x3 < 0, i = 1,2,3,4, (3.3.6)

u(1)
i (−0, t) =

√

µ(1)
22 H(1)

2 (−0, t)+ (−1)(i+1)

√

ε (1)
11 E(1)

1 (−0, t) t > 0, i = 1,2

u(1)
i (−0, t) =

√

µ(1)
11 H(1)

1 (−0, t)+ (−1)(i)
√

ε (1)
22 E(1)

2 (−0, t), t > 0, i = 3,4.











(3.3.7)

We use the method of characteristics to find solution of the IVP (3.3.5), (3.3.6), (3.3.7). Equa-

tion (3.3.5) can be written in terms ofξ andτ as:

∂u(1)
i (ξ ,τ)

∂τ
+(−1)i+1ν(1)

i
∂u(1)

i (ξ ,τ)

∂ξ
= f (1)

i (ξ ,τ), i = 1,2,3,4. (3.3.8)

Equations for characteristics are:

dξ
ds = (−1)i+1ν(1)

i , i = 1,2,3,4,

dτ
ds = 1.

Then we have:

ξ = (−1)i+1ν(1)
i +c, i = 1,2,3,4,

wherec is an arbitrary constant.

Hence, the characteristic, that is, passing through the point (x3, t) can be found as:

ξ = (−1)i+1ν(1)
i (τ − t)+x3, i = 1,2,3,4. (3.3.9)
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Equation(3.3.8) along this characteristic may be written in the following form:

du(1)
i ((−1)i+1ν(1)

i (τ − t)+x3,τ)

dτ
= f (1)

i ((−1)i+1ν(1)
i (τ − t)+x3,τ). (3.3.10)

The characteristics fori = 1,2,3,4 are drawn in Figure 3.3 (ν(1)
1 = ν(1)

2 andν(1)
3 = ν(1)

4 ) .

-�

6ξ = −ν(1)
1 τ

ξ = −ν(1)
3 τ

ξ = ν(1)
1 τ

ξ = ν(1)
3 τ

τ

ξ
(0,0)

Figure 3.3 Characteristic lines in layer one.

We see from the Figure 3.3 that the characteristics fori = 1 andi = 3 are similar with different slopes,

and also fori = 2 andi = 4 we have similar results. When we divide the layer one into subregions,

the characteristics related withi = 1 andi = 3 have an significant role.

-�

6ξ = −ν(1)
i τ

τ

ξ

R2

R1
−∞ < ξ < −ν(1)

i τ

0 > ξ > −ν(1)
i τ

Figure 3.4 Subregions of the first layer.
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R1 andR2 are the subregions of the layer one. We define the regionR1 andR2 as:

R1 = {(x3, t) : −∞ < x3 < −ν(1)
i t, t > 0, i = 1,2,3,4};

R2 = {(x3, t) : −ν(1)
i t < x3 < 0, t > 0, i = 1,2,3,4}.

In the regionR1 we consider an initial value problem without any matching conditions and in the

regionR2 we have an initial value problem with matching conditions.

3.3.2.1 Solving IVP in the Region R1

We have defined the regionR1 in the following form:

R1 = {−∞ < x3 < −ν(1)
i t, t > 0 , i = 1,2,3,4}.

When we take the point(x3, t) in the regionR1, we get an IVP. And solution of this problem can

be found using the following steps.

Consider the equation(3.3.10). Integrating this equation with respect toτ from τ = 0 toτ = t we

find:

u(1)
i (x3, t) = ui(x3− (−1)i+1 ·ν(1)

i t,0)+

∫ t

0
f (1)
i ((−1)i+1ν(1)

i (τ − t)+x3,τ)dτ ,

where−∞ < x3 < −ν(1)
i t, i = 1,2,3,4; t > 0.

Using the initial condition(3.3.6), solution of the IVP can be found as:

u(1)
i (x3, t) =

∫ t

0
f (1)
i ((−1)i+1ν(1)

i (τ − t)+x3,τ)dτ ,

where−∞ < x3 < −ν(1)
i t, i = 1,2,3,4; t > 0.

3.3.2.2 Solving IVP in the Region R2

The regionR2 has been defined as:

R2 = {(x3, t) : 0 > x3 > −ν(1)
i t, t > 0, i = 1,2,3,4}.

If we take the point(x3, t) in the regionR2, then there exists two cases to be considered for

(3.3.10). First case is that fori = 1 and i = 3 we have IVP; and for the second one we should

consider an IVP with matching conditions fori = 2 andi = 4.
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Case1:

In this case we solve the same IVP fori = 1 and i = 3 as we have solved in regionR1 . The

solution of this IVP has been found as:

u(1)
i (x3, t) =

∫ t

0
f (1)
i (ν(1)

i (τ − t)+x3,τ)dτ ,

wherei = 1 andi = 3; t > 0.

Case2:

For i = 2 andi = 4 we are solving an IVP with matching conditions. Integrating the equation

(3.3.10) with respect toτ from t + x3

ν (1)
i

to t we find:

u(1)
i (x3, t) = u(1)

i (−0, t +
x3

v(1)
i

)+

∫ t

t+
x3

v
(1)
i

f (1)
i (ν(1)

i (t − τ)+x3,τ)dτ ,

wherei = 2 andi = 4; t > 0.

And, using the matching condition(3.3.7) this solution can be written as:

u(1)
2 (x3, t) =

√

µ(1)
22 H(1)

2 (−0, t +
x3

v(1)
2

)−
√

ε (1)
11 E(1)

1 (−0, t +
x3

v(1)
2

)

+

∫ t

t+
x3

v
(1)
2

f (1)
2 (ν(1)

2 (t − τ)+x3,τ)dτ ,

u(1)
4 (x3, t) =

√

µ(1)
11 H(1)

1 (−0, t +
x3

v(1)
4

)+

√

ε (1)
22 E(1)

2 (−0, t +
x3

v(1)
4

)

+

∫ t

t+
x3

v
(1)
4

f (1)
4 (ν(1)

4 (t − τ)+x3,τ)dτ .

Now, we solve the reduced IVP in the second layer. The second layer is defined as;∞ > x3 > 0,

t > 0. The reduced initial value problem related with this layerconsists of(3.3.1), (3.3.2), (3.3.3)

for k = 2, that is:

∂u(2)
i (x3, t)

∂ t
+(−1)i+1ν(2)

i
∂u(2)

i (x3, t)
∂x3

= f (2)
i (x3, t), i = 1,2,3,4, (3.3.11)

u(2)
i (x3,0) = 0, x3 > 0, i = 1,2,3,4, (3.3.12)

u(2)
i (+0, t) =

√

µ(2)
22 H(2)

2 (+0, t)+ (−1)(i+1)

√

ε (2)
11 E(2)

1 (+0, t) t > 0, i = 1,2

u(2)
i (+0, t) =

√

µ(2)
11 H(2)

1 (+0, t)+ (−1)(i)
√

ε (2)
22 E(2)

2 (+0, t), t > 0, i = 3,4.











(3.3.13)
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Then by following a similar procedure as we used in layer one,the solution of the IVP(3.3.11),

(3.3.12), (3.3.13) can be found. After rewriting(3.3.11) in terms ofξ andτ we find the following

equation:

du(2)
i ((−1)i+1ν(2)

i (τ − t)+x3,τ)

dτ
= f (2)

i ((−1)i+1ν(2)
i (τ − t)+x3,τ). (3.3.14)

The characteristic lines of this layer are drawn in Figure 3.5. On the figurei used for the values

i = 1 andi = 3.

-�

6

ξ = ν(2)
i t

ξ

τ

R4

R3

0 < x3 < ν(2)
i t

ν(2)
i t < x3 < ∞

Figure 3.5 Subregions of the second layer.

3.3.2.3 Solving IVP in the Region R3

The regionR3 is defined in the following form:

R3 = {(x3, t) : ∞ > x3 > ν(2)
i t, t > 0, i = 1,2,3,4}.

The solution of the IVP in that region is similar with the regionR1. Hence the solution of the IVP

in regionR3 as can be found as:

u(2)
i (x3, t) =

∫ t

0
f (2)
i ((−1)i+1ν(2)

i (τ − t)+x3,τ)dτ ,

wherei = 1,2,3,4; ∞ > x3 > ν(2)
i t, t > 0.
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3.3.2.4 Solving IVP in the Region R4

Firstly let us define the regionR4.

R4 = {(x3, t) : 0 < x3 < ν(2)
i t, t > 0, i = 1,2,3,4}.

If we take the point(x3, t) in the regionR4, then there exists two cases to be considered for

(3.3.14). First case is that fori = 2 and i = 4 we have IVP; and for the second one we should

consider a IVP with matching conditions fori = 1 andi = 3.

Case1:

In this case we solve an IVP fori = 2 andi = 4. And we find the same result as we have found

for the IVP inR3 for i = 2 andi = 4. Then solutions are:

u(2)
i (x3, t) =

∫ t

0
f (2)
i ((−1)i+1ν(2)

i (τ − t)+x3,τ)dτ ,

wherei = 2 andi = 4; t > 0.

Case2:

Now, we consider an IVP with matching conditions fori = 1 andi = 3. Integrating the equation

(3.3.14) with respect toτ from (t − x3

v(2)
i

) to t we find:

u(2)
i (x3, t) = u(2)

i (+0, t − x3

v(2)
i

)+

∫ t

t− x3

v
(2)
i

f (2)
i ((−1)i+1ν(2)

i (τ − t)+x3,τ)dτ

wherei = 1 andi = 3; t > 0.

And, using the matching condition(3.3.13) this solution can be written as:

u(2)
1 (x3, t) =

√

µ(2)
22 H(2)

2 (+0, t − x3

v(2)
1

)+

√

ε (2)
11 E(2)

1 (+0, t − x3

v(2)
1

)

+

∫ t

t− x3

v
(2)
1

f (2)
1 (ν(2)

1 (τ − t)+x3,τ)dτ ,

u(2)
3 (x3, t) =

√

µ(2)
11 H(2)

1 (+0, t − x3

v(2)
3

)−
√

ε (2)
22 E(2)

2 (+0, t − x3

v(2)
3

)

+
∫ t

t− x3

v
(2)
3

f (2)
3 (ν(2)

3 (τ − t)+x3,τ)dτ .
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As a result solution of the reduced initial value problem fortwo layered media can be written as:

In R1:

u(1)
i (x3, t) =

∫ t

0
f (1)
i ((−1)(i+1)ν(1)

i (τ − t)+x3,τ)dτ , i = 1,2,3,4,

where−∞ < x3 < −ν(1)
i t; t > 0, i = 1,2,3,4.

In R2:

u(1)
i (x3, t) =

∫ t

0
f (1)
i (ν(1)

i (τ − t)+x3,τ)dτ , i = 1 and i= 3,

u(1)
i (x3, t) = u(1)

i (−0, t +
x3

ν(1)
i

)+
∫ t

t+
x3

ν(1)
i

f (1)
i (−ν(1)

i (t − τ)+x3,τ)dτ , i = 2 and i= 4,

where−ν(1)
i t < x3 < 0;t > 0, i = 1,2,3,4.

In R3:

u(2)
i (x3, t) =

∫ t

0
f (2)
i ((−1)(i+1)ν(2)

i (τ − t)+x3,τ)dτ , i = 1,2,3,4,

whereν(2)
i t < x3 < ∞; t > 0, i = 1,2,3,4.

In R4:

u(2)
i (x3, t) = u(2)

i (+0, t − x3

ν(2)
i

)+

∫ t

t− x3

ν(2)
i

f (2)
i (ν(2)

i (τ − t)+x3,τ)dτ , i = 1 and i= 3,

u(2)
i (x3, t) =

∫ t

0
f (2)
i (−ν(2)

i (τ − t)+x3,τ)dτ , i = 2 and i= 4,

where 0< x3 < ν(2)
i ; t > 0, i = 1,2,3,4.

In the following subsection we derive the matching conditions u(1)
i (−0, t + x3

ν (1)
i

) for i = 2 and

i = 4; andu(2)
i (+0, t − x3

ν (2)
i

) for i = 1 andi = 3.

3.3.3 Deriving Matching Conditions

The main goal of this subsection is to derive the matching conditions.

In last sections we have found the following relations:




u(1)
1 (−0, t)

u(1)
2 (−0, t)



 =





√

µ(1)
22

√

ε (1)
11

√

µ(1)
22 −

√

ε (1)
11









H(1)
2 (−0, t)

E(1)
1 (−0, t)



 , (3.3.15)
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u(1)
3 (−0, t)

u(1)
4 (−0, t)



 =





√

µ(1)
11 −

√

ε (1)
22

√

µ(1)
11

√

ε (1)
22









H(1)
1 (−0, t)

E(1)
2 (−0, t)



 , (3.3.16)





u(2)
1 (+0, t)

u(2)
2 (+0, t)



 =





√

µ(2)
22

√

ε (2)
11

√

µ(2)
22 −

√

ε (2)
11









H(2)
2 (+0, t)

E(2)
1 (+0, t)



 , (3.3.17)





u(2)
3 (+0, t)

u(2)
4 (+0, t)



 =





√

µ(2)
11 −

√

ε (2)
22

√

µ(2)
11

√

ε (2)
22









H(2)
1 (+0, t)

E(2)
2 (+0, t)



 . (3.3.18)

And using the condition (3.2.2) we get the following relations:

H(1)
1 (−0, t) = H(2)

1 (+0, t),

H(1)
2 (−0, t) = H(2)

2 (+0, t),

E(1)
1 (−0, t) = E(2)

1 (+0, t),

H(1)
2 (−0, t) = H(2)

2 (+0, t).

Firstly let us derive the matching conditionu(1)
2 (−0, t). To find this value we consider the relations

(3.3.15) and (3.3.17) above. Then we have:




u(1)
1 (−0, t)

u(1)
2 (−0, t)



 =





√

µ(1)
22

√

ε (1)
11

√

µ(1)
22 −

√

ε (1)
11









H(1)
2 (−0, t)

E(1)
1 (−0, t)





=





√

µ(1)
22

√

ε (1)
11

√

µ(1)
22 −

√

ε (1)
11









√

µ(2)
11 −

√

ε (2)
22

√

µ(2)
11

√

ε (2)
22





−1



u(2)
1 (+0, t)

u(2)
2 (+0, t)





=











1
2

(

√

µ(1)
22

√

µ(2)
22

+

√

ε (1)
11

√

ε (2)
11

)

1
2

(

√

µ(1)
22

√

µ(2)
22

−
√

ε (1)
11

√

ε (2)
11

)

1
2

(

√

µ(1)
22

√

µ(2)
22

−
√

ε (1)
11

√

ε (2)
11

)

1
2

(

√

µ(1)
22

√

µ(2)
22

+

√

ε (1)
11

√

ε (2)
11

)















u(2)
1 (+0, t)

u(2)
2 (+0, t)



 .

Now using the above relation we get the following equalities:

u(1)
1 (−0, t) =

√

µ(1)
22 ·

√

ε (2)
11 +

√

µ(2)
22 ·

√

ε (1)
11

2
√

µ(2)
22 ·

√

ε (2)
11

u(2)
1 (+0, t)

+

√

µ(1)
22 ·

√

ε (2)
11 −

√

µ(2)
22 ·

√

ε (1)
11

2
√

µ(2)
22 ·

√

ε (2)
11

u(2)
2 (+0, t),

u(1)
2 (−0, t) =

√

µ(1)
22 ·

√

ε (2)
11 −

√

µ(2)
22 ·

√

ε (1)
11

2
√

µ(2)
22 ·

√

ε (2)
11

u(2)
1 (+0, t)

+

√

µ(1)
22 ·

√

ε (2)
11 +

√

µ(2)
22 ·

√

ε (1)
11

2
√

µ(2)
22 ·

√

ε (2)
11

u(2)
2 (+0, t).
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To deriveu(1)
2 (−0, t), firstly we defineu(2)

1 (+0, t) by means of the first equality above. Then it

takes the following form:

u(2)
1 (+0, t) =

2
√

µ(2)
22 ·

√

ε (2)
11

√

µ(1)
22 ·

√

ε (2)
11 +

√

µ(2)
22 ·

√

ε (1)
11

u(1)
1 (−0, t)

−

√

µ(1)
22 ·

√

ε (2)
11 −

√

µ(2)
22 ·

√

ε (1)
11

√

µ(1)
22 ·

√

ε (2)
11 +

√

µ(2)
22 ·

√

ε (1)
11

u(2)
2 (+0, t).

At this step we substituteu(2)
1 (+0, t), u(2)

2 (+0, t) and u(1)
1 (−0, t) into the equality related with

u(1)
2 (−0, t). Hereu(1)

1 (−0, t) is the solution of the initial value problem inR1 for x3 = 0 andu(2)
2 (+0, t)

is the solution of the initial value problem inR3 for x3 = 0. Then we findu(1)
2 (−0, t) in the following

form:

u(1)
2 (−0, t) =

√

µ(1)
22 ·

√

ε (2)
11 −

√

µ(2)
22 ·

√

ε (1)
11

√

µ(1)
22 ·

√

ε (2)
11 +

√

µ(2)
22 ·

√

ε (1)
11

· (−1)
√

ε (1)
11

∫ t

0
J(1)

1 (ν(1)
1 (τ − t),τ)dτ

+
2
√

µ(1)
22 ·

√

ε (2)
11

√

µ(1)
22 ·

√

ε (1)
11 +

√

µ(2)
22 ·

√

ε (1)
11

· 1
√

ε (2)
11

∫ t

0
J(2)

1 (−ν(2)
2 (τ − t),τ)dτ .

Now, we derive the matching conditionu(1)
4 (−0, t), which is related to the layer one and necessary

to solve initial value problem inR2.

By a similar procedure as we did before, firstly we write the following equality using (3.3.16) and

(3.3.18). Then we get:





u(1)
3 (−0, t)

u(1)
4 (−0, t)



 =











1
2

(

√

µ(1)
11

√

µ(2)
11

+

√

ε (1)
22

√

ε (2)
22

)

1
2

(

√

µ(1)
11

√

µ(2)
11

−
√

ε (1)
22

√

ε (2)
22

)

1
2

(

√

µ(1)
11

√

µ(2)
11

−
√

ε (1)
22

√

ε (2)
22

)

1
2

(

√

µ(1)
11

√

µ(2)
11

+

√

ε (1)
22

√

ε (2)
22

)















u(2)
3 (+0, t)

u(2)
4 (+0, t)



 .

From the equality above we get following relations:

u(1)
3 (−0, t) =

√

µ(1)
11 ·

√

ε (2)
22 +

√

µ(2)
11 ·

√

ε (1)
22

2
√

µ(2)
11 ·

√

ε (2)
22

u(2)
3 (+0, t)

+

√

µ(1)
11 ·

√

ε (2)
22 −

√

µ(2)
11 ·

√

ε (1)
22

2
√

µ(2)
11 ·

√

ε (2)
22

u(2)
4 (+0, t),

u(1)
4 (−0, t) =

√

µ(1)
11 ·

√

ε (2)
22 −

√

µ(2)
11 ·

√

ε (1)
22

2
√

µ(2)
11 ·

√

ε (2)
22

u(2)
3 (+0, t)

+

√

µ(1)
11 ·

√

ε (2)
22 +

√

µ(2)
11 ·

√

ε (1)
22

2
√

µ(2)
11 ·

√

ε (2)
22

u(2)
4 (+0, t).
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To deriveu(1)
4 (−0, t), firstly we defineu(2)

3 (+0, t) by means of the first equality above. Then it

takes the following form:

u(2)
3 (+0, t) =

2
√

µ(2)
11 ·

√

ε (2)
22

√

µ(1)
11 ·

√

ε (2)
22 +

√

µ(2)
11 ·

√

ε (1)
22

u(1)
3 (−0, t)

−

√

µ(1)
11 ·

√

ε (2)
22 −

√

µ(2)
11 ·

√

ε (1)
22

√

µ(1)
11 ·

√

ε (2)
22 +

√

µ(2)
11 ·

√

ε (1)
22

u(2)
4 (+0, t).

Hereu(1)
3 (−0, t) is the solution of the initial value problem inR1 for x3 = 0 andu(2)

4 (+0, t) is the

solution of the initial value problem inR3 for x3 = 0. Then substituting these values andu(2)
3 (+0, t)

into the relation related tou(1)
4 (−0, t) we find it in the following form:

u(1)
4 (−0, t) =

√

µ(1)
11 ·

√

ε (2)
22 −

√

µ(2)
11 ·

√

ε (1)
22

√

µ(1)
11 ·

√

ε (2)
22 +

√

µ(2)
11 ·

√

ε (1)
22

· 1
√

ε (1)
22

∫ t

0
J(1)

2 (ν(1)
3 (τ − t),τ)dτ

+
2
√

µ(1)
11 ·

√

ε (1)
22

√

µ(1)
11 ·

√

ε (2)
22 +

√

µ(2)
11 ·

√

ε (1)
22

· (−1)
√

ε (2)
22

∫ t

0
J(2)

2 (−ν(2)
4 (τ − t),τ)dτ .

Applying the same procedure as we did foru(1)
2 (−0, t) andu(1)

4 (−0, t), we can find the matching

conditionsu(2)
1 (+0, t) andu(2)

3 (+0, t) in the following form:

u(2)
1 (+0, t) =

2
√

µ(2)
22 ·

√

ε (2)
11

√

µ(2)
22 ·

√

ε (1)
11 +

√

µ(1)
22 ·

√

ε (1)
11

· (−1)
√

ε (1)
11

∫ t

0
J(1)

1 (ν(1)
1 (τ − t),τ)dτ

+

√

µ(2)
22 ·

√

ε (1)
11 −

√

µ(1)
22 ·

√

ε (2)
11

√

µ(2)
22 ·

√

ε (1)
11 +

√

µ(1)
22 ·

√

ε (2)
11

· 1
√

ε (2)
11

∫ t

0
J(2)

1 (−ν(2)
2 (τ − t),τ)dτ .

u(2)
3 (+0, t) =

2
√

µ(2)
11 ·

√

ε (2)
22

√

µ(2)
11 ·

√

ε (1)
22 +

√

µ(1)
11 ·

√

ε (2)
22

· 1
√

ε (1)
22

∫ t

0
J(1)

2 (ν(1)
3 (τ − t),τ)dτ

+

√

µ(2)
11 ·

√

ε (1)
22 −

√

µ(1)
11 ·

√

ε (2)
22

√

µ(2)
11 ·

√

ε (1)
22 +

√

µ(1)
11 ·

√

ε (2)
22

· (−1)
√

ε (2)
22

∫ t

0
J(2)

2 (−ν(2)
4 (τ − t),τ)dτ .

3.3.4 Finding Explicit Formulae For The Electric And Magnetic Fields

Now, we write the explicit formulae for the electric and magnetic fields, that is, the solution of the

Maxwell’s system. In the last subsections firstly we reducedour original system to an initial value

problems; and then we solved these reduced initial value problems; after that we derived matching
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conditions, which was necessary to solve some of the initialvalue problems. And now, using all of

these we get the explicit formula for the original problem.

Firstly, by making back substitution ofu(k)
i (x3, t), i = 1,2,3,4, k = 1,2 we turn back the original

problem, Maxwell’s system, from the reduced initial value problems. ThenH(k)
i (x3, t), E(k)

i (x3, t),

i = 1,2, k = 1,2 can be written by means ofu(k)
i (x3, t) i = 1,2,3,4, k = 1,2 in the following form:

H(k)
1 =

1

2
√

µ(k)
11

[u(k)
3 (x3, t)+u(k)

4 (x3, t)],

H(k)
2 =

1

2
√

µ(k)
22

[u(k)
1 (x3, t)+u(k)

2 (x3, t)],

E(k)
1 =

1

2
√

ε (k)
11

[u(k)
1 (x3, t)−u(k)

2 (x3, t)],

E(k)
2 =

1

2
√

ε (k)
22

[−u(k)
3 (x3, t)+u(k)

4 (x3, t)],

wherek = 1,2 denotes the media.

After that, substitutingu(k)
i (x3, t), i = 1,2,3,4, k = 1,2 and the derived matching conditions ex-

plicit formula for solution of the Maxwell’s system can be written in the following form:

Explicit formula for H1(x3, t):

In R1 : −∞ < x3 < −ν(1)
3 t; t > 0:

H1(x3, t) =
ν(1)

3

2

∫ t

0
[J(1)

2 (ν(1)
3 (τ − t)+x3,τ)−J(1)

2 (−ν(1)
3 (τ − t)+x3,τ)]dτ ,

In R2 : −ν(1)
3 t < x3 < 0; t > 0:

H1(x3, t) =
1

2
√

µ(1)
11





1
√

ε (1)
22

∫ t

0
J(1)

2 (ν(1)
3 (τ − t)+x3,τ)dτ

+

√

µ(1)
11 ε (2)

22 −
√

µ(2)
11 ε (1)

22
√

ε (1)
22 (

√

µ(1)
11 ε (2)

22 +

√

µ(2)
11 ε (1)

22 )

∫ t+
x3

ν(1)
3

0
J(1)

2 (ν(1)
3 (τ − t)−x3,τ)dτ

−
2
√

µ(1)
11 ε (1)

22
√

ε (2)
22 (

√

µ(1)
11 ε (2)

22 +

√

µ(2)
11 ε (1)

22 )

∫ t+
x3

ν(1)
3

0
J(2)

2 (−ν(2)
3 (τ − t)+

ν(2)
3

ν(1)
3

x3,τ)dτ

− 1
√

ε (1)
22

∫ t

t+
x3

ν(1)
3

J(1)
2 (−ν(1)

3 (τ − t)+x3,τ)dτ



 ,
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In R4 : 0< x3 < ν(2)
3 t; t > 0:

H1(x3, t) =
1

2
√

µ(2)
11





1
√

ε (2)
22

∫ t

t− x3

ν(2)
3

J(2)
2 (ν(2)

3 (τ − t)+x3,τ)dτ

+
2
√

µ(2)
11 ε (2)

22
√

ε (1)
22 (

√

µ(2)
11 ε (1)

22 +

√

µ(1)
11 ε (2)

22 )

∫ t− x3

ν(2)
3

0
J(1)

2 (ν(1)
3 (τ − t)+

ν(1)
3

ν(2)
3

x3,τ)dτ

−

√

µ(2)
11 ε (1)

22 −
√

µ(1)
11 ε (2)

22
√

ε (2)
22 (

√

µ(2)
11 ε (1)

22 +

√

µ(1)
11 ε (2)

22 )

∫ t− x3

ν(2)
3

0
J(2)

2 (−ν(2)
3 (τ − t)−x3,τ)dτ

− 1
√

ε (2)
22

∫ t

0
J(2)

2 (−ν(2)
3 (τ − t)+x3,τ)dτ



 ,

In R3 : ν(2)
3 t < x3 < ∞; t > 0:

H1(x3, t) =
ν(2)

3

2

∫ t

0
[J(2)

2 (ν(2)
3 (τ − t)+x3,τ)+J(2)

2 (−ν(2)
3 (τ − t)+x3,τ)]dτ .

Explicit formula for H2(x3, t):

In R1 : −∞ < x3 < −ν(1)
1 t; t > 0:

H2(x3, t) =
ν(1)

1

2

∫ t

0
[−J(1)

1 (ν(1)
1 (τ − t)+x3,τ)+J(1)

1 (−ν(1)
1 (τ − t)+x3,τ)]dτ ,

In R2 : −ν(1)
1 t < x3 < 0; t > 0:

H2(x3, t) =
1

2
√

µ(1)
22



− 1
√

ε (1)
11

∫ t

0
J(1)

1 (ν(1)
1 (τ − t)+x3,τ)dτ

−

√

µ(1)
22 ε (2)

11 −
√

µ(2)
22 ε (1)

11
√

ε (1)
11 (

√

µ(1)
22 ε (2)

11 +

√

µ(2)
22 ε (1)

11 )

∫ t+
x3

ν(1)
1

0
J(1)

1 (ν(1)
1 (τ − t)−x3,τ)dτ

+
2
√

µ(1)
22 ε (1)

11
√

ε (2)
11 (

√

µ(1)
22 ε (2)

11 +

√

µ(2)
22 ε (1)

11 )

∫ t+
x3

ν(1)
1

0
J(2)

1 (−ν(2)
1 (τ − t)+

ν(2)
1

ν(1)
1

x3,τ)dτ

+
1

√

ε (1)
11

∫ t

t+
x3

ν(1)
1

J(1)
1 (−ν(1)

1 (τ − t)+x3,τ)dτ ,



 ,

In R4 : 0< x3 < ν(2)
1 t; t > 0:

H2(x3, t) =
1

2
√

µ(2)
22



− 1
√

ε (2)
11

∫ t

t− x3

ν(2)
1

J(2)
1 (ν(2)

1 (τ − t)+x3,τ)dτ



28

−
2
√

µ(2)
22 ε (2)

11
√

ε (1)
11 (

√

µ(2)
22 ε (1)

11 +

√

µ(1)
22 ε (1)

11 )

∫ t− x3

ν(2)
1

0
J(1)

1 (ν(1)
1 (τ − t)+

ν(1)
1

ν(2)
1

x3,τ)dτ

+

√

µ(2)
22 ε (1)

11 −
√

µ(1)
22 ε (2)

11
√

ε (2)
11 (

√

µ(2)
22 ε (1)

11 +

√

µ(1)
22 ε (2)

11 )

∫ t− x3

ν(2)
1

0
J(2)

1 (−ν(2)
1 (τ − t)−x3,τ)dτ

+
1

√

ε (2)
11

∫ t

0
J(2)

1 (−ν(2)
1 (τ − t)+x3,τ)dτ



 ,

In R3 : ν(2)
1 t < x3 < ∞; t > 0:

H2(x3, t) =
ν(2)

1

2

∫ t

0
[−J(2)

1 (ν(2)
1 (τ − t)+x3,τ)+J(2)

1 (−ν(2)
1 (τ − t)+x3,τ)]dτ .

Explicit formula for H3(x3, t):

Explicit formula for H3(x3, t) can be find by the same way as we did in free space. Hence the

formula is in the following form:

H3(x3, t) = 0, −∞ < x3 < ∞; t > 0.

Explicit formula for E1(x3, t):

In R1 : −∞ < x3 < −ν(1)
1 t; t > 0:

E1(x3, t) =
1

2ε (1)
11

∫ t

0
[−J(1)

1 (ν(1)
1 (τ − t)+x3,τ)−J(1)

1 (−ν(1)
1 (τ − t)+x3,τ)]dτ ,

In R2 : −ν(1)
1 t < x3 < 0; t > 0:

E1(x3, t) =
1

2
√

ε (1)
11



− 1
√

ε (1)
11

∫ t

0
J(1)

1 (ν(1)
1 (τ − t)+x3,τ)dτ

+

√

µ(1)
22 ε (2)

11 −
√

µ(2)
22 ε (1)

11
√

ε (1)
11 (

√

µ(1)
22 ·

√

ε (2)
11 +

√

µ(2)
22 ·

√

ε (1)
11 )

∫ t+
x3

ν(1)
1

0
J(1)

1 (ν(1)
1 (τ − t)−x3,τ)dτ

−
2
√

µ(1)
22 ε (1)

11
√

ε (2)
11 (

√

µ(1)
22 ε (2)

11 +

√

µ(2)
22 ε (1)

11 )

∫ t+
x3

ν(1)
1

0
J(2)

1 (−ν(2)
1 (τ − t)+

ν(2)
1

ν(1)
1

x3,τ)dτ

− 1
√

ε (1)
11

∫ t

t+
x3

ν(1)
1

J(1)
1 (−ν(1)

1 (τ − t)+x3,τ)dτ



 ,
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In R4 : 0< x3 < ν(2)
1 t; t > 0:

E1(x3, t) =
1

2
√

ε (2)
11



− 1
√

ε (2)
11

∫ t

t− x3

ν(2)
1

J(2)
1 (ν(2)

1 (τ − t)+x3,τ)dτ

−
2
√

µ(2)
22 ε (2)

11
√

ε (1)
11 (

√

µ(2)
22 ε (1)

11 +

√

µ(1)
22 ε (1)

11 )

∫ t− x3

ν(2)
1

0
J(1)

1 (ν(1)
1 (τ − t)+

ν(1)
1

ν(2)
1

x3,τ)dτ

+

√

µ(2)
22 ε (1)

11 −
√

µ(1)
22 ε (2)

11
√

ε (2)
11 (

√

µ(2)
22 ε (1)

11 +

√

µ(1)
22 ε (2)

11 )

∫ t− x3

ν(2)
1

0
J(2)

1 (−ν(2)
1 (τ − t)−x3,τ)dτ

− 1
√

ε (2)
11

∫ t

0
J(2)

1 (−ν(2)
1 (τ − t)+x3,τ)dτ



 ,

In R3 : ν(2)
1 t < x3 < ∞; t > 0:

E1(x3, t) =
1

2ε (1)
11

∫ t

0
[−J(2)

1 (ν(2)
1 (τ − t)+x3,τ)−J(2)

1 (−ν(2)
1 (τ − t)+x3,τ)]dτ .

Explicit formula for E2(x3, t):

In R1 : −∞ < x3 < −ν(1)
3 t; t > 0:

E2(x3, t) =
1

2ε (1)
22

∫ t

0
[−J(1)

2 (ν(1)
3 (τ − t)+x3,τ)−J(1)

2 (−ν(1)
3 (τ − t)+x3,τ)]dτ ,

In R2 : −ν(1)
3 t < x3 < 0; t > 0:

E2(x3, t) =
1

2
√

ε (1)
22



− 1
√

ε (1)
22

∫ t

0
J(1)

2 (ν(1)
3 (τ − t)+x3,τ)dτ

+

√

µ(1)
11 ε (2)

22 −
√

µ(2)
11 ε (1)

22
√

ε (1)
22 (

√

µ(1)
11 ε (2)

22 +

√

µ(2)
11 ε (1)

22 )

∫ t+
x3

ν(1)
3

0
J(1)

2 (ν(1)
3 (τ − t)−x3,τ)dτ

−
2
√

µ(1)
11 ε (1)

22
√

ε (2)
22 (

√

µ(1)
11 ε (2)

22 +

√

µ(2)
11 ε (1)

22 )

∫ t+
x3

ν(1)
3

0
J(2)

2 (−ν(2)
3 (τ − t)+

ν(2)
3

ν(1)
3

x3,τ)dτ

− 1
√

ε (1)
22

∫ t

t+
x3

ν(1)
3

J(1)
2 (−ν(1)

3 (τ − t)+x3,τ)dτ



 ,

In R4 : 0< x3 < ν(2)
3 t; t > 0:

E2(x3, t) =
1

2
√

ε (2)
22



− 1
√

ε (2)
22

∫ t

t− x3

ν(2)
3

J(2)
2 (ν(2)

3 (τ − t)+x3,τ)dτ
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−
2
√

µ(2)
11 ε (2)

22
√

ε (1)
22 (

√

µ(2)
11 ε (1)

22 +

√

µ(1)
11 ε (2)

22 )

∫ t− x3

ν(2)
3

0
J(1)

2 (ν(1)
3 (τ − t)+

ν(1)
3

ν(2)
3

x3,τ)dτ

+

√

µ(2)
11 ε (1)

22 −
√

µ(1)
11 ε (2)

22
√

ε (2)
22 (

√

µ(2)
11 ε (1)

22 +

√

µ(1)
11 ε (2)

22 )

∫ t− x3

ν(2)
3

0
J(2)

2 (−ν(2)
3 (τ − t)−x3,τ)dτ

− 1
√

ε (2)
22

∫ t

0
J(2)

2 (−ν(2)
3 (τ − t)+x3,τ)dτ



 ,

In R3 : ν(2)
3 t < x3 < ∞; t > 0:

E2(x3, t) =
1

2ε (2)
22

∫ t

0
[−J(2)

2 (ν(2)
3 (τ − t)+x3,τ)+J(2)

2 (−ν(2)
3 (τ − t)+x3,τ)]dτ .

Explicit formula for E3(x3, t):

The formula forE3(x3, t) can be found applying the same procedure as we did in free space. Then

it can be written in the following form:

E3(x3, t) = − 1

ε (1)
33

∫ t

0
J(1)

3 (x3,τ)dτ , −∞ < x3 < 0; t > 0,

E3(x3, t) = − 1

ε (2)
33

∫ t

0
J(2)

3 (x3,τ)dτ , 0 < x3 < ∞; t > 0.

3.4 Simulation Of Electric And Magnetic Fields

In this section we make simulation of the obtained explicit formulae for the electric and magnetic

fields, that is the solution of the Maxwell’s system.

For all applications the current densityJ(x3, t) is taken in the form

J(1)(x3, t) = e2δ (x3−x0)δ (t), J(2)(x3, t) = 0,

whereδ (x3 − x0)δ (t) is the Dirac delta function concentrated at the pointx3 = x0 and for the time

t = 0 in the directione2 = (0,1,0).
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Using the procedure of Section 3.3 the explicit formulae forthe components of the electric and

magnetic fields were computed for the given symmetric positive definite matricesE , M . By these

formulae the images ofH1(x3, t), H2(x3, t), H3(x3, t), E1(x3, t), E2(x3, t), E3(x3, t) were simulated for

fixed timet. Some of these images are presented in this section.

Example1: Isotropic media

layer permittivity tensor -E permeability tensor -M source -x0

1.Layer











3 0 0

0 3 0

0 0 3





















2 0 0

0 2 0

0 0 2











-1

2.Layer











5 0 0

0 5 0

0 0 5





















1 0 0

0 1 0

0 0 1











-

Example2: An electrically and magnetically anisotropic medium

layer permittivity tensor -E permeability tensor -M source -x0

1.Layer











16 0 0

0 20 0

0 0 32





















2 0 0

0 4 0

0 0 7











-1

2.Layer











11 0 0

0 13 0

0 0 44





















9 0 0

0 7 0

0 0 4











-

Analysis of simulation

The explicit formula for the componentH1(x3, t) of the magnetic field was computed for the

given symmetric matricesM andE in the last section. The result of simulationH1(x3, t) is presented

in Figure 3.6 and Figure 3.7. InExample1 our media is isotropic whereas in other example we

have electrically and magnetically anisotropic media. In these two examples we used Dirac delta

regularization and for regularization we takeδ (x3) ≈ 1
2
√

πε exp(− x2
3

4ε ) whereε = 0.001. For the first

layer the source is taken asx3 = −1, that is, the Dirac delta is concentrated atx3 = −1 and there is

no source at the second layer.

In figures the horizontal axisx3 is location and the vertical axis is the magnitude ofH1(x3, t). In
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(a) t = 0.1
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(c) t = 5
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(d) t = 18
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Figure 3.6 The magnetic fieldH1(x3, t).
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(a) t = 0.1

−10 −8 −6 −4 −2 0 2 4 6 8 10
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(b) t = 6.5
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(c) t = 10
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(d) t = 25

−10 −8 −6 −4 −2 0 2 4 6 8 10
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Figure 3.7 The magnetic fieldH1(x3,t).
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the Figure 3.6a fort = 0.1 at the pointx3 = −1 the waves start their propagation. One of the moves

to plus infinity whereas the other moves to minus infinity. From the Figure 3.6b fort = 2.7 it can

be seen that the wave front which moves along the positive direction touches the boundary atx3 = 0

and after that reflected and transmitted waves appear. Magnitude of the reflected wave is smaller

than the transmitted wave. The distance between the waves inthe first half space,−∞ < x3 < 0, is

equivalent and does not change. But the distance between thereflected and transmitted wave become

larger time by time and this can be seen from the Figure 3.6c and Figure 3.6d. Analysis of the Figure

3.7 in Example2 is similar with the first one. From these two examples the following analysis can

be obtained. InExample1 we consider isotropic media and inExample2 we considered anisotropic

media. And we see from the figures that for different media theshapes, magnitudes and the speeds of

the waves are different. Reflection and transmission appears at the different times. And we conclude

the exactness of our formulae from these examples.



CHAPTER FOUR

METHOD OF CHARACTERISTICS FOR FINDING ELECTRIC AND MAGNETI C

FIELDS IN THREE LAYERED MEDIA

4.1 Equations of electric and Magnetic Fields in Three Layered Media

In this section, we find the solution of the initial value problem for the time-dependent Maxwell’s

system in homogeneous, anisotropic materials in three layered media. We are applying a similar

process as we did in free space and two layered media.

Firstly, let us define our domain on which we will study. Like we assumed before, in this section

we also assume that the unknown and given functions and vector functions just depend on the third

component of the space variablex = (x1,x2,x3) ∈ R
3 and the time variablet ∈ R.

Now, we will separate the whole space into three layers where−∞ < x3 < 0, 0< x3 < ℓ,

ℓ < x3 < ∞ denote the first layer, the second layer and the third layer respectively.

� -

6

?

t x3 = ℓ

x3

(0,0) (ℓ,0)

First Layer Second Layer Third Layer

Figure 4.1 Three layered media.

We will denote these layers by a notation writing the number of the layer, in which we study, in

parentheses. This notation will be shown like a power, that is,�(k), wherek = 1,2,3.
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Then the Maxwell’s system for three layered media can be written as:

curlx~H
(k) = E

(k) ∂~E(k)

∂ t
+ ~J(k), (4.1.1)

curlx~E
(k) = −M

(k) ∂ ~H(k)

∂ t
, (4.1.2)

divx(E
(k)~E(k)) = ρ (k), (4.1.3)

divx(M
(k)~H(k)) = 0, (4.1.4)

wherek = 1,2,3 and denotes the media.

And the conservation law of charges is given by:

∂ρ (k)

∂ t
+divx~J

(k) = 0, k = 1,2,3. (4.1.5)

4.2 Assumptions and Problem Set-up For Maxwell’s System In Three Layered media

We assume that the electric permittivity matrixE (k) = (ε (k)
i j )3×3 and the magnetic permeability

matrix M (k) = (µi j )
(k)
3×3 are symmetric positive definite matrices with constant elements, and they

are in the form of:

E
(k) =











ε (k)
11 0 0

0 ε (k)
22 0

0 0 ε (k)
33











, M =











µ(k)
11 0 0

0 µ(k)
22 0

0 0 µ(k)
33











.

Let the components of vector functions~H(k)(x) = (H(k)
1 ,H(k)

2 ,H(k)
3 ),

~E(k)(x) = (E(k)
1 ,E(k)

2 ,E(k)
3 ) depend onx3 and t only, that is,H(k)

i = H(k)
i (x3, t), E(k)

i = E(k)
i (x3, t),

i = 1,2,3; ~J(k) = (J(k)
1 ,J(k)

2 ,J(k)
3 ), whereJ(k)

i = J(k)
i (x3, t), i = 1,2,3; k = 1,2,3.

Moreover, we suppose that:

~E(k) = 0, ~H(k) = 0, ρ (k) = 0, ~J(k) = 0 f or t ≤ 0, (4.2.1)

this means that there is no electric charges and currents at the timet ≤ 0; electric and magnetic fields

vanish fort ≤ 0.
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Since we are studying in three layered media, we have matching conditions between these layers.

These are given by the followings:

(~E(2)−~E(1))|x3=0×~n = 0,

(~D(2) −~D(1))|x3=0 ·~n = 0,

(~H(2)− ~H(1))|x3=0×~n = 0,

(~B(2) −~B(1))|x3=0 ·~n = 0,

(~E(3)−~E(2))|x3=ℓ×~n = 0,

(~D(3)−~D(2))|x3=ℓ ·~n = 0,

(~H(3)− ~H(2))|x3=ℓ×~n = 0,

(~B(3)−~B(2))|x3=ℓ ·~n = 0,































































































(4.2.2)

where~n = (0,0,1).

Let furtherE (k), M (k), ~J(k) be given,k = 1,2,3.

The main problem is to find~E(k), ~H(k), k= 1,2,3 satisfying(4.1.1)−(4.1.4) and(4.2.1), (4.2.2).

4.3 Finding Explicit Formula for Solution of the Problem

Following similar steps as we did for two layered media we findexplicit formulae for electric and

magnetic fields.

4.3.1 Reduction of the Problem For Maxwell’s System

Now using the assumptions and applying the same procedure aswe did in free space and two lay-

ered media, we reduce the Maxwell’s system into the first order partial differential equations. Using

the initial conditions(4.2.1) and the matching conditions(4.2.2) we get an initial value problem that

is related with each layer.

The first order partial differential equation, that is reduced from Maxwell’s system, can be found

in the following form:

∂u(k)
i (x3, t)

∂ t
+(−1)i+1ν(k)

i
∂u(k)

i (x3, t)
∂x3

= f (k)
i (x3, t), i = 1,2,3,4, (4.3.1)

where

u(k)
1 =

√

µ(k)
22 H(k)

2 +

√

ε (k)
11 E(k)

1 ,
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u(k)
2 =

√

µ(k)
22 H(k)

2 −
√

ε (k)
11 E(k)

1 ,

u(k)
3 =

√

µ(k)
11 H(k)

1 −
√

ε (k)
22 E(k)

2 ,

u(k)
4 =

√

µ(k)
11 H(k)

1 +

√

ε (k)
22 E(k)

2 ,

ν(k)
1 = ν(k)

2 =
1

√

ε (k)
11 µ(k)

22

; ν(k)
3 = ν(k)

4 =
1

√

ε (k)
22 µ(k)

11

;

f (k)
1 = − J(k)

1
√

ε (k)
11

; f (k)
2 =

J(k)
1

√

ε (k)
11

; f (k)
3 =

J(k)
2

√

ε (k)
22

; f (k)
4 = − J(k)

2
√

ε (k)
22

,

u(k)
i = u(k)

i (x3, t), f (k)
i = f (k)

i (x3, t), i = 1,2,3,4; andk = 1,2,3 denotes the media.

Initial conditions can be found as:

u(k)
i (x3,0) = 0, i = 1,2,3,4; k = 1,2,3. (4.3.2)

Matching conditions can be found as:

u(1)
i (−0, t) =

√

µ(1)
22 H(1)

2 (−0, t)+ (−1)(i+1)

√

ε (1)
11 E(1)

1 (−0, t), t > 0, i = 1,2;

u(1)
i (−0, t) =

√

µ(1)
11 H(1)

1 (−0, t)+ (−1)(i)
√

ε (1)
22 E(1)

2 (−0, t), t > 0, i = 3,4.











(4.3.3)

u(2)
i (+0, t) =

√

µ(2)
22 H(2)

2 (+0, t)+ (−1)(i+1)

√

ε (2)
11 E(2)

1 (+0, t), t > 0, i = 1,2;

u(2)
i (+0, t) =

√

µ(2)
11 H(2)

1 (+0, t)+ (−1)(i)
√

ε (2)
22 E(2)

2 (+0, t), t > 0, i = 3,4.











(4.3.4)

u(2)
i (ℓ−, t) =

√

µ(2)
22 H(2)

2 (ℓ−, t)+ (−1)(i+1)

√

ε (2)
11 E(2)

1 (ℓ−, t), t > 0, i = 1,2;

u(2)
i (ℓ−, t) =

√

µ(2)
11 H(2)

1 (ℓ−, t)+ (−1)(i)
√

ε (2)
22 E(2)

2 (ℓ−, t), t > 0, i = 3,4.











(4.3.5)

u(3)
i (ℓ+, t) =

√

µ(3)
22 H(3)

2 (ℓ+, t)+ (−1)(i+1)

√

ε (3)
11 E(3)

1 (ℓ+, t), t > 0, i = 1,2;

u(3)
i (ℓ+, t) =

√

µ(3)
11 H(3)

1 (ℓ+, t)+ (−1)(i)
√

ε (3)
22 E(3)

2 (ℓ+, t), t > 0, i = 3,4.











(4.3.6)

Since we study in three layered media, we will consider threeIVPs that are related with each

layer. These IVPs consist of(4.3.1), (4.3.2), (4.3.3) for k = 1; (4.3.1), (4.3.2), (4.3.4) and(4.3.5)

for k = 2; and(4.3.1), (4.3.2), (4.3.6) for k = 3, respectively, for the first, second and third layer.

4.3.2 Solving Reduced Initial Value Problem For Maxwell’s System

Here we solve the reduced initial value problem (IVP) related with each layer. Firstly, we divide

these layers into subregions. After that we decide what kindof initial value problem should be

considered in these subregions. That is, we should decide ifit is necessary to use matching conditions
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or not. The following step is that we reorganize these subregions by means of the initial value

problems. Then we get flats which consist of some of the subregions. In each flat the initial value

problems which should be solved are the same kind. And our last step is solving the initial value

problems in each flat.

Now, let us divide our media into subregions by means of the characteristic lines related to each

layer. How to find these characteristic lines was shown in thelast chapters. Figure 4.2 shows us the

subregions and the characteristic lines related to each layer in three layered media.

R1 R2 R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

6

R5n−2 R5n−1

R5n

R5n+1

R5n+2

(0,0) (ℓ,0)

x3

t

-�

Figure 4.2 Subregions in three layered media.

After naming the subregions let us define our flats by means of them. Our first flat consists

of the regionsR1, R2 and R3. In this flat we consider an initial value problem without matching

conditions in each region. At the second flat we have two initial value problems and one of them is

with matching conditions. This flat consists of the regionsR4, R5, R6 andR7. The third flat consists

of the regionsR8, R9, R10, R11 andR12. For this flat we do not solve the same kind of initial value

problem for all regions. For the regionsR8 andR12 we solve two initial value problems and one of

them is with matching conditions. For the regionsR9, R10 andR11 we solve initial value problems

all with matching conditions. Now let us define the other flats, that is, the fourth, the fifth and the

others. The form of these flats look like the third flat. If we denote thenth flat with n > 3 then this

flat consists of the regionsR5n−2, R5n−1, R5n, R5n+1 andR5n+2. And the initial value problems related

with each region at thenth flat is in the same form as we did for the third flat.
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4.3.2.1 Finding Solution of the IVP at the First Flat

Here we solve an IVP without matching conditions in each region. It was stated that this flat

consists of the regionsR1, R2 andR3. Firstly we define these regions and then applying a similar

process we solve the IVP related with each region.

We define the regionR1 as:

R1 = {(x3, t) : −∞ < x3 < −ν(1)
i t, t > 0, i = 1,2,3,4}.

(Note thatν(1)
1 = ν(1)

2 andν(1)
3 = ν(1)

4 .) Since the regionR1 is in the first layer we should consider the

reduced IVP related with this layer. This IVP consists of therelations (4.3.1) and (4.3.2) fork = 1.

Now let us define the regionR2:

R2 = {(x3, t) : |x3−
ℓ

2
| < −(ν(2)

i t − ℓ

2
), t > 0, i = 1,2,3,4}.

RegionR2 lies on the second layer. Hence the IVP related with this region consists of the relations

(4.3.1) and (4.3.2) fork = 2.

And regionR3 can be defined as:

R3 = {(x3, t) : ν(3)
i t < x3 < ∞, t > 0, i = 1,2,3,4}.

Since the regionR3 lies on the third layer we consider the relations (4.3.1) and(4.3.2) fork = 3, for

the IVP in this region.

Then we solve the following IVP for the regionsR1, R2 andR3.

∂u(k)
i (x3, t)

∂ t
+(−1)i+1ν(k)

i
∂u(k)

i (x3, t)
∂x3

= f (k)
i (x3, t), i = 1,2,3,4, k = 1,2,3;

u(k)
i (x3,0) = 0, i = 1,2,3,4, k = 1,2,3.

We use the method of characteristics to solve this IVP. Equation (4.3.1) can be written in terms

of ξ andτ as:

∂u(k)
i (ξ ,τ)

∂τ
+(−1)i+1ν(k)

i
∂u(k)

i (ξ ,τ)

∂ξ
= f (k)

i (ξ ,τ), i = 1,2,3,4, k = 1,2,3. (4.3.7)

Equations for characteristics are:

dξ
ds = (−1)i+1ν(k)

i ,

dτ
ds = 1,



41

wherei = 1,2,3,4 andk = 1,2,3.

The equation of the characteristics passing through the point (x3, t) can be found as:

ξ = (−1)i+1ν(k)
i (τ − t)+x3, i = 1,2,3,4, k = 1,2,3.

Equation (4.3.7) along these characteristics can be written in the following form:

du(k)
i ((−1)i+1ν(k)

i (τ − t)+x3,τ)

dτ
= f (k)

i ((−1)(i+1)ν(k)
i (τ − t)+x3,τ).

Integrating last relation with respect toτ from 0 tot we find:

u(k)
i (x3, t) = u(k)

i ((−1)iν(k)
i t +x3,0)+

∫ t

0
f (k)
i ((−1)(i+1)ν(k)

i (τ − t)+x3,τ)dτ ,

wherei = 1,2,3,4 andk = 1,2,3.

Using the initial condition (4.3.2) we find the solution of the reduced IVP at the first flat for the

regionsR1, R2 andR3 as:

u(k)
i (x3, t) =

∫ t

0
f (k)
i ((−1)(i+1)ν(k)

i (τ − t)+x3,τ)dτ ,

wherei = 1,2,3,4 andk = 1,2,3.

4.3.2.2 Finding Solution of the IVP at the Second Flat

At this flat, we are solving two IVP’s and one of them is with matching conditions. This flat

consists of the regionsR4, R5, R6, R7. After some calculations we define the regions in the second

flat in the following form:

R4 = {(x3, t) : −ν(1)
i t < x3 < −ν(1)

i (t − ℓ

ν(2)
i

), 0 < t <
ℓ

ν(2)
i

, i = 1,2,3,4};

R5 = {(x3, t) : 0 < x3 <
ℓ

2
,

x3

ν(2)
i

< t <
x3− ℓ

−ν(2)
i

, t > 0, i = 1,2,3,4};

R6 = {(x3, t) :
ℓ

2
< x3 < ℓ,

x3− ℓ

−ν(2)
i

< t <
x3

ν(2)
i

, t > 0, i = 1,2,3,4};

R7 = {(x3, t) : ℓ < x3 < ∞,
x3− ℓ

ν(3)
i

< t <
x3− ℓ

ν(3)
i

+
ν(3)

i ℓ

ν(2)
i

, i = 1,2,3,4}.
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Solving IVP in the Region R4

We have defined this region as:

R4 : −ν(1)
i t < x3 < −ν(1)

i (t − ℓ

ν(2)
i

), 0 < t <
ℓ

ν(2)
i

, i = 1,2,3,4;

The IVP related toR4 consists of the relations (4.3.1), (4.3.2) fork = 1 and (4.3.3).

Firstly we separate this IVP with matching conditions into two IVP’s. For the casei = 1 andi = 3

we consider an IVP without matching conditions. For the casei = 2 andi = 4 we have an IVP with

matching conditions.

Case1:

Here we consider the case fori = 1 andi = 3. Applying the same procedure as we did for the

regionR1 we can find the solution of the IVP as:

u(1)
i (x3, t) =

∫ t

0
f (1)
i (ν(1)

i (τ − t)+x3,τ)dτ , i = 1,3.

Case2:

In that case we have an IVP with matching conditions fori = 2 andi = 4.

Equation of the characteristic lines passing through the point (x3, t) can be found as:

ξ = −ν(1)
i (τ − t)+x3, i = 2,4.

After that by rewriting equation (4.3.1) fork= 1 in terms ofξ andτ and then writing new equation

along the characteristic lines we can find the following equation:

du(1)
i (−ν(1)

i (τ − t)+x3,τ)

dτ
= f (1)

i (−ν(1)
i (τ − t)+x3,τ).

Then integrating last relation with respect toτ from (t + x3

ν (1)
i

) to t we find the solution of the IVP

for i = 2,4 as:

u(1)
i (x3, t) = u(1)

i (−0, t +
x3

ν(1)
i

)+

∫ t

t+
x3

ν(1)
i

f (1)
i (−ν(1)

i (τ − t)+x3,τ)dτ , i = 2,4.
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Then the solution of the IVP in the regionR4 can be written as:

u(1)
i (x3, t) =











∫ t
0 f (1)

i (ν(1)
i (τ − t)+x3,τ)dτ , i = 1,3;

u(1)
i (−0, t + x3

ν (1)
i

)+
∫ t
t+

x3

ν(1)
i

f (1)
i (−ν(1)

i (τ − t)+x3,τ)dτ , i = 2,4.

Solving IVP in the Region R5

We have defined this region as:

R5 : 0 < x3 <
ℓ

2
,

x3

ν(2)
i

< t <
x3− ℓ

−ν(2)
i

, t > 0, i = 1,2,3,4;

The IVP related toR5 consists of the relations (4.3.1), (4.3.2) fork = 2 and (4.3.4).

By a similar process as we applied in regionR4 we separate the IVP in the regionR5 into two

IVPs. But here for the casei = 1,3 we have an IVP without matching conditions whereas for the

casei = 2,4 we have IVP without matching conditions.

Case1:

In this case we solve an IVP fori = 2,4. and the solution of this IVP is in the following form:

u(2)
i (x3, t) =

∫ t

0
f (2)
i (−ν(2)

i (τ − t)+x3,τ)dτ , i = 2,4.

Case2:

This case is similar with the Case2 in regionR4. Equation of the characteristic lines passing

through the point(x3, t) can be found in the following form:

ξ = ν(2)
i (τ − t)+x3, i = 1,3.

After that by rewriting equation (4.3.1) fork= 2 in terms ofξ andτ and then writing new equation

along the characteristic lines we can find the following equation:

du(2)
i (ν(2)

i (τ − t)+x3,τ)

dτ
= f (2)

i (ν(2)
i (τ − t)+x3,τ).
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Then integrating last relation with respect toτ from (t − x3

ν (2)
i

) to t we find the solution of the IVP

for i = 1,3 as:

u(2)
i (x3, t) = u(2)

i (+0, t − x3

ν(2)
i

)+

∫ t

t− x3

ν(2)
i

f (2)
i (ν(2)

i (τ − t)+x3,τ)dτ , i = 1,3.

Then the solution of the IVP in the regionR5 can be written as:

u(2)
i (x3, t) =











u(2)
i (+0, t − x3

ν (2)
i

)+
∫ t
t− x3

ν(2)
i

f (2)
i (ν(2)

i (τ − t)+x3,τ)dτ , i = 1,3;

∫ t
0 f (2)

i (−ν(2)
i (τ − t)+x3,τ)dτ , i = 2,4.

Solving IVP in the Region R6

We have defined this region as:

R6 :
ℓ

2
< x3 < ℓ,

x3− ℓ

−ν(2)
i

< t <
x3

ν(2)
i

, t > 0, i = 1,2,3,4;

The IVP related toR6 consists of the relations (4.3.1), (4.3.2) fork = 2 and (4.3.5).

Firstly we separate this IVP into two cases as we did in the region R4.

Case1:

Here we consider an IVP without matching conditions fori = 1 andi = 3. And the solution is in

the following form:

u(2)
i (x3, t) =

∫ t

0
f (2)
i (ν(2)

i (τ − t)+x3,τ)dτ , i = 1,3.

Case2:

In that case we have an IVP with matching conditions fori = 2 andi = 4.

Equation of the characteristic lines passing through the point (x3, t) can be found as:

ξ = −ν(2)
i (τ − t)+x3, i = 2,4.

Then integrating the equation (4.3.1) fork = 2 along these characteristic lines with respect toτ

from (t + x3−ℓ

ν (2)
i

) to t we find the solution of the IVP fori = 2,4 as:

u(2)
i (x3, t) = u(2)

i (ℓ−, t +
x3− ℓ

ν(2)
i

)+

∫ t

t+
x3−ℓ

ν(2)
i

f (2)
i (−ν(2)

i (τ − t)+x3,τ)dτ , i = 2,4.
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Then the solution of the IVP in the regionR6 can be written in the following form:

u(2)
i (x3, t) =











∫ t
0 f (2)

i (ν(2)
i (τ − t)+x3,τ)dτ , i = 1,3;

u(2)
i (ℓ−, t + x3−ℓ

ν (2)
i

)+
∫ t
t+

x3−ℓ

ν(2)
i

f (2)
i (−ν(2)

i (τ − t)+x3,τ)dτ , i = 2,4.

Solving IVP in the Region R7

We have defined this region as:

R7 : ℓ < x3 < ∞,
x3− ℓ

ν(3)
i

< t <
x3− ℓ

ν(3)
i

+
ν(3)

i ℓ

ν(2)
i

, i = 1,2,3,4.

The IVP related toR7 consists of the relations (4.3.1), (4.3.2) fork = 3 and (4.3.6). And solution of

this IVP is similar with the IVP in the regionR5.

Case1:

In this case we solve an IVP without matching conditions fori = 2,4 and the solution of it is in

the following form:

u(3)
i (x3, t) =

∫ t

0
f (3)
i (−ν(3)

i (τ − t)+x3,τ)dτ , i = 2,4.

Case2:

Here we have an IVP with matching conditions fori = 1,3.

Equation of the characteristic lines passing through the point (x3, t) is in the following form:

ξ = ν(3)
i (τ − t)+x3, i = 1,3.

And integrating the equation (4.3.1) fork = 3 along these characteristic lines with respect toτ from

(t − x3−ℓ

ν (3)
i

) to t we find the solution of the IVP fori = 1,3 as:

u(3)
i (x3, t) = u(3)

i (ℓ+, t − x3− ℓ

ν(3)
i

)+

∫ t

t− x3−ℓ

ν(3)
i

f (3)
i (ν(3)

i (τ − t)+x3,τ)dτ , i = 1,3.

Then the solution of the IVP in the regionR7 can be written as:

u(3)
i (x3, t) =











u(3)
i (ℓ+, t − x3−ℓ

ν (3)
i

)+
∫ t
t− x3−ℓ

ν(3)
i

f (3)
i (ν(3)

i (τ − t)+x3,τ)dτ , i = 1,3;

∫ t
0 f (3)

i (−ν(3)
i (τ − t)+x3,τ)dτ , i = 2,4.



46

4.3.2.3 Finding Solution of the IVP at the Third Flat

This flat consists of the regionsR8, R9, R10, R11 andR12. For the regionsR8 andR9 we consider

two IVP’s and one of them is with matching conditions. For theother regions we have two IVP’s with

matching conditions. After some calculations we define the regions in the third flat in the following

form:

R8 =

{

(x3, t) : − x3

ν(1)
i

+
ℓ

ν(2)
i

< t < − x3

ν(1)
i

+
2ℓ

ν(2)
i

, −∞ < x3 < 0, i = 1,2,3,4

}

;

R9 =

{

(x3, t) :
x3

ν(2)
i

+
ℓ

ν(2)
i

< t < − x3

ν(2)
i

+
2ℓ

ν(2)
i

, 0 < x3 <
ℓ

2
, i = 1,2,3,4

}

;

R10 =

{

(x3, t) :
x3− ℓ

−ν(2)
i

< t <
x3

ν(2)
i

+
ℓ

ν(2)
i

, 0 < x3 <
ℓ

2
and

x3

ν(2)
i

< t < − x3

ν(2)
i

+
2ℓ

ν(2)
i

,
ℓ

2
< x3 < ℓ, i = 1,2,3,4

}

;

R11 =

{

(x3, t) : − x3

ν(2)
i

+
2ℓ

ν(2)
i

< t <
x3

ν(2)
i

+
ℓ

ν(2)
i

,
ℓ

2
< x3 < ℓ, i = 1,2,3,4

}

;

R12 =

{

(x3, t) :
x3− ℓ

ν(3)
i

+
ℓ

ν(2)
i

< t <
x3− ℓ

ν(3)
i

+
2ℓ

ν(2)
i

, ℓ < x3 < +∞, i = 1,2,3,4

}

.

Solving IVP in the Region R8

The IVP related toR8 and the form of the solution of this problem is the same with the IVP related

to R4.

Then the solution of the IVP for the regionR8 can be found in the following form:

u(1)
i (x3, t) =











∫ t
0 f (1)

i (ν(1)
i (τ − t)+x3,τ)dτ , i = 1,3;

u(1)
i (−0, t + x3

ν (1)
i

)+
∫ t
t+

x3

ν(1)
i

f (1)
i (−ν(1)

i (τ − t)+x3,τ)dτ , i = 2,4.

The difference between the solution of the IVP’s for the regions R4 and R8 is that to find the

matching condition related to the regionR8 we consider the solution of the IVP in the regionR9

whereas for the matching condition related toR4 we consider the solution of the IVP for the region

R5.

Solving IVP in the Region R9

The IVP related toR9 is the same with the one we considered in the regionR5. And the solution

steps are similar. But, here for both cases we have IVP with matching conditions.
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Case1:

Here we consider the case fori = 2,4. The characteristics lines passing through the point(x3, t)

can be found in the following form:

ξ = −ν(2)
i (τ − t)+x3, i = 2,4.

And integrating the equation (4.3.1) fork = 2 along the characteristics with respect toτ from

(t + x3−ℓ

ν (2)
i

) to t we find the solution of the IVP in the following form:

u(2)
i (x3, t) = u(2)

i (ℓ−, t +
x3− ℓ

ν(2)
i

)+
∫ t

t+
x3−ℓ

ν(2)
i

f (2)
i (−ν(2)

i (τ − t)+x3,τ)dτ , i = 2,4.

Case2:

The form of the solution of the IVP in that case is the same withthe Case2 in the regionR5.

Then the solution of the IVP in regionR9 can be written in the following form:

u(2)
i (x3, t) =















u(2)
i (+0, t − x3

ν (2)
i

)+
∫ t
t− x3

ν(2)
i

f (2)
i (ν(2)

i (τ − t)+x3,τ)dτ , i = 1,3;

u(2)
i (ℓ−, t + x3

ν (2)
i

)+
∫ t
t+

x3−ℓ

ν(2)
i

f (2)
i (−ν(2)

i (τ − t)+x3,τ)dτ , i = 2,4.

The matching conditionu(2)
i (+0, t − x3

ν (2)
i

) for i = 1,3 can be derived by means of the IVP in the

regionR8 and the other matching conditionu(1)
i (ℓ−, t + x3

ν (2)
i

) can be derived by means of the IVP in

the regionR7.

Solving IVP in the Region R10

The IVP related toR10 and the form of the solution is the same with the IVP in regionR9. And it

is in the following form:

u(2)
i (x3, t) =















u(2)
i (+0, t − x3

ν (2)
i

)+
∫ t
t− x3

ν(2)
i

f (2)
i (ν(2)

i (τ − t)+x3,τ)dτ , i = 1,3;

u(2)
i (ℓ−, t + x3−ℓ

ν (2)
i

)+
∫ t
t+

x3−ℓ

ν(2)
i

f (2)
i (−ν(2)

i (τ − t)+x3,τ)dτ , i = 2,4.

The difference between the solutions of IVPs in this region and the regionR9 is that here, we

derive the matching conditionu(2)
i (+0, t − x3

ν (2)
i

) for i = 1,3 by means of the IVP in the regionR4.
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Solving IVP in the Region R11

The IVP and the form of the solution of the IVP related with this region is the same with the region

R9 andR10. Only difference is that when we derive matching conditionu(2)
i (+0, t − x3

ν (2)
i

) for i = 1,3

we consider the solution of the IVP in the regionR4 and for the matching conditionu(2)
i (ℓ−, t + x3−ℓ

ν (2)
i

)

for i = 2,4 we consider the solution of the IVP in the regionR12.

Solving IVP in the Region R12

The IVP related toR12 and the form of the solution of this problem is the same with the IVP in

the regionR7. And the form of the solution can be written as:

u(3)
i (x3, t) =











u(3)
i (ℓ+, t − x3−ℓ

ν (3)
i

)+
∫ t
t− x3−ℓ

ν(3)
i

f (3)
i (ν(3)

i (τ − t)+x3,τ)dτ , i = 1,3;

∫ t
0 f (3)

i (−ν(3)
i (τ − t)+x3,τ)dτ , i = 2,4.

Only difference is that here we derive the matching condition u(3)
i (ℓ+, t − x3−ℓ

ν (3)
i

) for i = 1,3 by

means of the IVP in the regionR11.

4.3.3 Deriving Matching Conditions

Here we are deriving the matching conditions which are necessary to find explicit formulae for

the electric and magnetic field vectors. For the first three flat the solutions of the IVPs are found but

the values of the matching conditions have not be derived. For the first flat we solved IVPs without

matching conditions. But for the second and third flat we alsosolved IVPs with matching conditions.

Hence, now we derive these matching conditions.

4.3.3.1 Deriving Matching Conditions at the Second Flat

Finding Matching Conditions For Region R4

In order to get explicit formulas of the solution of the problem in this region, we need to find the

valuesu(1)
i (−0, t + x3

ν (1)
i

) for i = 2,4 by means of the solution of the IVP in regionR5. For two layered

media these values were defined and they are exactly in the same form what we are looking for.
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Now let us write them.

u(1)
2 (−0, t) =

√

µ(1)
22 ε (2)

11 −
√

µ(2)
22 ε (1)

11
√

µ(1)
22 ε (2)

11 +

√

µ(2)
22 ε (1)

11

u(1)
1 (−0, t)+

2
√

µ(1)
22 ε (1)

11
√

µ(1)
22 ε (2)

11 +

√

µ(2)
22 ε (1)

11

u(2)
2 (+0, t).

Then substituting the valuesu(1)
1 (−0, t) andu(2)

2 (+0, t) we get the matching conditionu(1)
2 (−0, t)

as:

u(1)
2 (−0, t) =

√

µ(1)
22 ·

√

ε (2)
11 −

√

µ(2)
22 ·

√

ε (1)
11

√

µ(1)
22 ·

√

ε (2)
11 +

√

µ(2)
22 ·

√

ε (1)
11

· (−1)
√

ε (1)
11

∫ t

0
J(1)

1 (ν(1)
1 (τ − t),τ)dτ

+
2
√

µ(1)
22 ·

√

ε (1)
11

√

µ(1)
22 ·

√

ε (2)
11 +

√

µ(2)
22 ·

√

ε (1)
11

· 1
√

ε (2)
11

∫ t

0
J(2)

1 (−ν(2)
2 (τ − t),τ)dτ .

And the matching conditionu(1)
4 (−0, t) was in the following form:

u(1)
4 (−0, t) =

√

µ(1)
11 ε (2)

22 −
√

µ(2)
11 ε (1)

22
√

µ(1)
11 ε (2)

22 +

√

µ(2)
11 ε (1)

22

u(1)
3 (−0, t)+

2
√

µ(1)
11 ε (1)

22
√

µ(1)
11 ε (2)

22 +

√

µ(2)
11 ε (1)

22

u(2)
4 (+0, t).

Substituting the valuesu(1)
3 (−0, t) andu(2)

4 (+0, t) into the relation above, the matching condition

u(1)
4 (−0, t) can be found as:

u(1)
4 (−0, t) =

√

µ(1)
11 ε (2)

22 −
√

µ(2)
11 ε (1)

22
√

µ(1)
11 ε (2)

22 +

√

µ(2)
11 ε (1)

22

· 1
√

ε (1)
22

∫ t

0
J(1)

2 (ν(1)
3 (τ − t),τ)dτ

+
2
√

µ(1)
11 ε (1)

22
√

µ(1)
11 ε (2)

22 +

√

µ(2)
11 ε (1)

22

· (−1)
√

ε (2)
22

∫ t

0
J(2)

2 (−ν(2)
4 (τ − t),τ)dτ .

Finding Matching Conditions For Region R5

In order to get explicit formulas of the solution of the problem in this region, we need to find the

valuesu(2)
i (+0, t − x3

ν (2)
i

) for i = 1,3 by means of the solution of the IVP in regionR4. For two layered

media these values have been found and they were in the following form:

u(2)
1 (+0, t) =

2
√

µ(2)
22 ε (2)

11
√

µ(2)
22 ε (1)

11 +

√

µ(1)
22 ε (2)

11

u(1)
1 (−0, t)+

√

µ(2)
22 ε (1)

11 −
√

µ(1)
22 ε (2)

11
√

µ(2)
22 ε (1)

11 +

√

µ(1)
22 ε (2)

11

u(2)
2 (+0, t).

Then substituting the valuesu(1)
1 (−0, t) andu(2)

2 (+0, t) we find the matching conditionu(2)
1 (+0, t)
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as:

u(2)
1 (+0, t) = −

2
√

µ(2)
22 ε (2)

11
√

ε (1)
11 (

√

µ(2)
22 ε (1)

11 +

√

µ(1)
22 ε (2)

11 )

∫ t

0
J(1)

1 (ν(1)
1 (τ − t),τ)dτ

+

√

µ(2)
22 ε (1)

11 −
√

µ(1)
22 ε (2)

11
√

ε (2)
11 (

√

µ(2)
22 ε (1)

11 +

√

µ(1)
22 ε (2)

11 )

∫ t

0
J(2)

1 (−ν(2)
1 (τ − t),τ)dτ .

And u(2)
3 (+0, t) was in the following form:

u(2)
3 (+0, t) =

2
√

µ(2)
11 ε (2)

22
√

µ(2)
11 ε (1)

22 +

√

µ(1)
11 ε (2)

22

u(1)
3 (−0, t)+

√

µ(2)
11 ε (1)

22 −
√

µ(1)
11 ε (2)

22
√

µ(2)
11 ε (1)

22 +

√

µ(1)
11 ε (2)

22

u(2)
4 (+0, t).

Then substituting the valuesu(1)
3 (−0, t) andu(2)

4 (+0, t) we find the matching conditionu(2)
3 (+0, t)

as:

u(2)
3 (+0, t) =

2
√

µ(2)
11 ε (2)

22
√

ε (1)
22 (

√

µ(2)
11 ε (1)

22 +

√

µ(1)
11 ε (2)

22 )

∫ t

0
J(1)

2 (ν(1)
3 (τ − t),τ)dτ

−

√

µ(2)
11 ε (1)

22 −
√

µ(1)
11 ε (2)

22
√

ε (2)
22 (

√

µ(2)
11 ε (1)

22 +

√

µ(1)
11 ε (2)

22 )

∫ t

0
J(2)

2 (−ν(2)
3 (τ − t),τ)dτ .

Finding Matching Conditions For Region R6

In order to get explicit formulas in this region, the matching conditions

u(2)
i (ℓ−, t + x3−ℓ

ν (2)
i

) for i = 2,4 should be derived by means of the IVP in regionR7.

Firstly let us write (4.3.5) and (4.3.6) in the matrix form:




u(2)
1 (ℓ−, t)

u(2)
2 (ℓ−, t)



 =





√

µ(2)
22

√

ε (2)
11

√

µ(2)
22 −

√

ε (2)
11









H(2)
2 (ℓ−, t)

E(2)
1 (ℓ−, t)



 ,





u(2)
3 (ℓ−, t)

u(2)
4 (ℓ−, t)



 =





√

µ(2)
11 −

√

ε (2)
22

√

µ(2)
11

√

ε (2)
22









H(2)
1 (ℓ−, t)

E(2)
2 (ℓ−, t)



 ,





u(3)
1 (ℓ+, t)

u(3)
2 (ℓ+, t)



 =





√

µ(3)
22

√

ε (3)
11

√

µ(3)
22 −

√

ε (3)
11









H(3)
2 (ℓ+, t)

E(3)
1 (ℓ+, t)



 ,





u(3)
3 (ℓ+, t)

u(3)
4 (ℓ+, t)



 =





√

µ(3)
11 −

√

ε (3)
22

√

µ(3)
11

√

ε (3)
22









H(3)
1 (ℓ+, t)

E(3)
2 (ℓ+, t)



 .
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And using the condition (4.2.2) we get the following relations:

H(2)
1 (ℓ−, t) = H(3)

1 (ℓ+, t),

H(2)
2 (ℓ−, t) = H(3)

2 (ℓ+, t),

E(2)
1 (ℓ−, t) = E(3)

1 (ℓ+, t),

H(2)
2 (ℓ−, t) = H(3)

2 (ℓ+, t).

Using these relations above we get the following equalities:





u(2)
1 (ℓ−, t)

u(2)
2 (ℓ−, t)



 =











√

µ(2)
22 ε (3)

11 +

√

µ(3)
22 ε (2)

11

2
√

µ(3)
22 ε (3)

11

√

µ(2)
22 ε (3)

11 −
√

µ(3)
22 ε (2)

11

2
√

µ(3)
22 ε (3)

11
√

µ(2)
22 ε (3)

11 −
√

µ(3)
22 ε (2)

11

2
√

µ(3)
22 ε (3)

11

√

µ(2)
22 ε (3)

11 +

√

µ(3)
22 ε (2)

11

2
√

µ(3)
22 ε (3)

11















u(3)
1 (ℓ+, t)

u(3)
2 (ℓ+, t)



 .





u(2)
3 (ℓ−, t)

u(2)
4 (ℓ−, t)



 =











√

µ(2)
11 ε (3)

22 +

√

µ(3)
11 ε (2)

22

2
√

µ(3)
11 ε (3)

22

√

µ(2)
11 ε (3)

22 −
√

µ(3)
11 ε (2)

22

2
√

µ(3)
11 ε (3)

22
√

µ(2)
11 ε (3)

22 −
√

µ(3)
11 ε (2)

22

2
√

µ(3)
11 ε (3)

22

√

µ(2)
11 ε (3)

22 +

√

µ(3)
11 ε (2)

22

2
√

µ(3)
11 ε (3)

22















u(3)
3 (ℓ+, t)

u(3)
4 (ℓ+, t)



 .

Then by the relations above we get the following equalities:

u(2)
1 (ℓ−, t) =

√

µ(2)
22 ε (3)

11 +

√

µ(3)
22 ε (2)

11

2
√

µ(3)
22 ε (3)

11

u(3)
1 (ℓ+, t)+

√

µ(2)
22 ε (3)

11 −
√

µ(3)
22 ε (2)

11

2
√

µ(3)
22 ε (3)

11

u(3)
2 (ℓ+, t);

u(2)
2 (ℓ−, t) =

√

µ(2)
22 ε (3)

11 −
√

µ(3)
22 ε (2)

11

2
√

µ(3)
22 ε (3)

11

u(3)
1 (ℓ+, t)+

√

µ(2)
22 ε (3)

11 +

√

µ(3)
22 ε (2)

11

2
√

µ(3)
22 ε (3)

11

u(3)
2 (ℓ+, t);

u(2)
3 (ℓ−, t) =

√

µ(2)
11 ε (3)

22 +

√

µ(3)
11 ε (2)

22

2
√

µ(3)
11 ε (3)

22

u(3)
3 (ℓ+, t)+

√

µ(2)
11 ε (3)

22 −
√

µ(3)
11 ε (2)

22

2
√

µ(3)
11 ε (3)

22

u(3)
4 (ℓ+, t);

u(2)
4 (ℓ−, t) =

√

µ(2)
11 ε (3)

22 −
√

µ(3)
11 ε (2)

22

2
√

µ(3)
11 ε (3)

22

u(3)
3 (ℓ+, t)+

√

µ(2)
11 ε (3)

22 +

√

µ(3)
11 ε (2)

22

2
√

µ(3)
11 ε (3)

22

u(3)
4 (ℓ+, t).

Then using the relations above we derive the matching conditionsu(2)
2 (ℓ−, t) and

u(2)
4 (ℓ−, t). Firstly let us writeu(2)

2 (ℓ−, t):

u(2)
2 (ℓ−, t) =

√

µ(2)
22 ε (3)

11 −
√

µ(3)
22 ε (2)

11
√

µ(2)
22 ε (3)

11 +

√

µ(3)
22 ε (2)

11

u(2)
1 (ℓ−, t)+

2
√

µ(2)
22 ε (2)

11
√

µ(2)
22 ε (3)

11 +

√

µ(3)
22 ε (2)

11

u(3)
2 (ℓ+, t),
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Hereu(2)
1 (ℓ−, t) is related with regionR6 andu(3)

2 (ℓ+, t) is related with region

R7. Substituting these values we get the matching conditionu(2)
2 (ℓ−, t) as:

u(2)
2 (ℓ−, t) = −

√

µ(2)
22 ε (3)

11 −
√

µ(3)
22 ε (2)

11
√

ε (2)
11 (

√

µ(2)
22 ε (3)

11 +

√

µ(3)
22 ε (2)

11 )

∫ t

0
J(2)

1 (ν(2)
1 (τ − t)+ ℓ,τ)dτ

+
2
√

µ(2)
22 ε (2)

11
√

ε (3)
11 (

√

µ(2)
22 ε (3)

11 +

√

µ(3)
22 ε (2)

11 )

∫ t

0
J(2)

1 (ν(2)
1 (τ − t)+ ℓ,τ)dτ .

And the matching conditionu(2)
4 (ℓ−, t) has been found as:

u(2)
4 (ℓ−, t) =

√

µ(2)
11 ε (3)

22 −
√

µ(3)
11 ε (2)

22
√

µ(2)
11 ε (3)

22 +

√

µ(3)
11 ε (2)

22

u(2)
3 (ℓ−, t)+

2
√

µ(2)
11 ε (2)

22
√

µ(2)
11 ε (3)

22 +

√

µ(3)
11 ε (2)

22

u(3)
4 (ℓ+, t),

The valuesu(2)
3 (ℓ−, t) is related with regionR6 andu(3)

4 (ℓ+, t) is related with regionR7. Substitut-

ing these values we get the matching conditionu(2)
4 (ℓ−, t) as:

u(2)
4 (ℓ−, t) =

√

µ(2)
11 ε (3)

22 −
√

µ(3)
11 ε (2)

22
√

ε (2)
22 (

√

µ(2)
11 ε (3)

22 +

√

µ(3)
11 ε (2)

22 )

∫ t

0
J(2)

2 (ν(2)
3 (τ − t)+ ℓ,τ)dτ

−
2
√

µ(2)
11 ε (2)

22
√

ε (3)
22 (

√

µ(2)
11 ε (3)

22 +

√

µ(3)
11 ε (2)

22 )

∫ t

0
J(3)

2 (−ν(3)
4 (τ − t)+ ℓ,τ)dτ .

Finding Matching Conditions For Region R7

In order to get explicit formulas in this region we should findthe matching conditionsu(3)
i (ℓ+, t−

x3−ℓ

ν (3)
i

) for i = 1,3 by means of the IVP in regionR6.

After writing (4.3.5) and (4.3.6) in the matrix form and using some of the relations of (4.2.2) we get

the following equalities:

u(3)
1 (ℓ+, t) =

√

µ(3)
22 ε (2)

11 +

√

µ(2)
22 ε (3)

11

2
√

µ(2)
22 ε (2)

11

u(2)
1 (ℓ−, t)+

√

µ(3)
22 ε (2)

11 −
√

µ(2)
22 ε (3)

11

2
√

µ(2)
22 ε (2)

11

u(2)
2 (ℓ−, t);

u(3)
2 (ℓ+, t) =

√

µ(3)
22 ε (2)

11 −
√

µ(2)
22 ε (3)

11

2
√

µ(2)
22 ε (2)

11

u(2)
1 (ℓ−, t)+

√

µ(3)
22 ε (2)

11 +

√

µ(2)
22 ε (3)

11

2
√

µ(2)
22 ε (2)

11

u(2)
2 (ℓ−, t);

u(3)
3 (ℓ+, t) =

√

µ(3)
11 ε (2)

22 +

√

µ(2)
11 ε (3)

22

2
√

µ(2)
11 ε (2)

22

u(2)
3 (ℓ−, t)+

√

µ(3)
11 ε (2)

22 −
√

µ(2)
11 ε (3)

22

2
√

µ(2)
11 ε (2)

22

u(2)
4 (ℓ−, t);
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u(3)
4 (ℓ+, t) =

√

µ(3)
11 ε (2)

22 −
√

µ(2)
11 ε (3)

22

2
√

µ(2)
11 ε (2)

22

u(2)
3 (ℓ−, t)+

√

µ(3)
11 ε (2)

22 +

√

µ(2)
11 ε (3)

22

2
√

µ(2)
11 ε (2)

22

u(2)
4 (ℓ−, t).

Then using the relations above we derive the matching conditionsu(3)
1 (ℓ+, t) and

u(3)
3 (ℓ+, t). Firstly let us writeu(3)

1 (ℓ+, t):

u(3)
1 (ℓ+, t) =

2
√

µ(3)
22 ε (3)

11
√

µ(3)
22 ε (2)

11 +

√

µ(2)
22 ε (3)

11

u(2)
1 (ℓ−, t)+

√

µ(3)
22 ε (2)

11 −
√

µ(2)
22 ε (3)

11
√

µ(3)
22 ε (2)

11 +

√

µ(2)
22 ε (3)

11

u(3)
2 (ℓ+, t),

Hereu(2)
1 (ℓ−, t) is related with regionR6 andu(3)

2 (ℓ+, t) is related with region

R7. Substituting these values we get the matching conditionu(3)
1 (ℓ+, t) as:

u(3)
1 (ℓ+, t) = −

2
√

µ(3)
22 ε (3)

11
√

ε (2)
11 (

√

µ(3)
22 ε (2)

11 +

√

µ(2)
22 ε (3)

11 )

∫ t

0
J(2)

1 (ν(2)
1 (τ − t)+ ℓ,τ)dτ

+

√

µ(3)
22 ε (2)

11 −
√

µ(2)
22 ε (3)

11
√

ε (3)
11 (

√

µ(3)
22 ε (2)

11 +

√

µ(2)
22 ε (3)

11 )

∫ t

0
J(3)

1 (−ν(2)
2 (τ − t)+ ℓ,τ)dτ .

And the matching conditionu(3)
3 (ℓ+, t) can be found in the following form:

u(3)
3 (ℓ+, t) =

2
√

µ(3)
11 ε (3)

22
√

µ(3)
11 ε (2)

22 +

√

µ(2)
11 ε (3)

22

u(2)
3 (ℓ−, t)+

√

µ(3)
11 ε (2)

22 −
√

µ(2)
11 ε (3)

22
√

µ(3)
11 ε (2)

22 +

√

µ(2)
11 ε (3)

22

u(3)
4 (ℓ+, t),

The valuesu(2)
3 (ℓ−, t) is related with regionR6 andu(3)

4 (ℓ+, t) is related with regionR7. Substitut-

ing these values we get the matching conditionu(2)
3 (ℓ+, t) as:

u(2)
4 (ℓ−, t) =

2
√

µ(3)
11 ε (3)

22
√

ε (2)
22 (

√

µ(3)
11 ε (2)

22 +

√

µ(2)
11 ε (3)

22 )

∫ t

0
J(2)

2 (ν(2)
3 (τ − t)+ ℓ,τ)dτ

−

√

µ(3)
11 ε (2)

22 −
√

µ(2)
11 ε (3)

22
√

ε (3)
22 (

√

µ(3)
11 ε (2)

22 +

√

µ(2)
11 ε (3)

22 )

∫ t

0
J(3)

2 (−ν(3)
4 (τ − t)+ ℓ,τ)dτ .

4.3.3.2 Deriving Matching Conditions at the Third Flat

Finding Matching Conditions For Region R8

In order to get explicit formulas in this region we need to derive the matching conditionsu(1)
i (−0, t+

x3

ν (1)
i

) for i = 2,4 by means of the solution of the IVP in regionR9. By following the same way as we
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did in the second flat at regionR4, we find these values in the following forms:

u(1)
2 (−0, t) =

√

µ(1)
22 ε (2)

11 −
√

µ(2)
22 ε (1)

11
√

µ(1)
22 ε (2)

11 +

√

µ(2)
22 ε (1)

11

u(1)
1 (−0, t)+

2
√

µ(1)
22 ε (1)

11
√

µ(1)
22 ε (2)

11 +

√

µ(2)
22 ε (1)

11

u(2)
2 (+0, t),

Substituting the valuesu(1)
1 (−0, t) related to regionR8 andu(2)

2 (+0, t) related to regionR9 we get:

u(1)
2 (−0, t) =

√

µ(1)
22 ε (2)

11 −
√

µ(2)
22 ε (1)

11
√

µ(1)
22 ε (2)

11 +

√

µ(2)
22 ε (1)

11

∫ t

0
f (1)
1 (ν(1)

1 (τ − t),τ)dτ

+
2
√

µ(1)
22 ε (1)

11
√

µ(1)
22 ε (2)

11 +

√

µ(2)
22 ε (1)

11



u(2)
2 (ℓ−, t − ℓ

ν(2)
2

)+

∫ t

t− ℓ

ν(2)
2

f (2)
2 (−ν(2)

2 (τ − t),τ)dτ



 ,

Then substituting the valueu(2)
2 (ℓ−, t − ℓ

ν (2)
2

) which was derived in regionR6, we get:

u(1)
2 (−0, t) = −

√

µ(1)
22 ε (2)

11 −
√

µ(2)
22 ε (1)

11
√

ε (1)
11 (

√

µ(1)
22 ε (2)

11 +

√

µ(2)
22 ε (1)

11 )

∫ t

0
J(1)

1 (ν(1)
1 (τ − t),τ)dτ

+
2
√

µ(1)
22 ε (1)

11
√

µ(1)
22 ε (2)

11 +

√

µ(2)
22 ε (1)

11



−

√

µ(2)
22 ε (3)

11 −
√

µ(3)
22 ε (2)

11
√

ε (2)
11 (

√

µ(2)
22 ε (3)

11 +

√

µ(3)
22 ε (2)

11 )

·
∫ t− ℓ

ν(2)
2

0
J(2)

1 (ν(2)
1 (τ − t)+2ℓ,τ)dτ

+
2
√

µ(2)
22 ε (2)

11
√

ε (3)
11 (

√

µ(2)
22 ε (3)

11 +

√

µ(3)
22 ε (2)

11 )

∫ t− ℓ

ν(2)
2

0
J(3)

1 (−ν(3)
2 (τ − t)− ν(3)

2

ν(2)
2

ℓ+ ℓ,τ)dτ

+
1

√

ε (2)
11

∫ t

t− ℓ

ν(2)
2

J(2)
1 (−ν(2)

2 (τ − t),τ)dτ



 .

The form of the matching conditionu(1)
4 (−0, t) was defined in regionR4 as:

u(1)
4 (−0, t) =

√

µ(1)
11 ε (2)

22 −
√

µ(2)
11 ε (1)

22
√

µ(1)
11 ε (2)

22 +

√

µ(2)
11 ε (1)

22

u(1)
3 (−0, t)+

2
√

µ(1)
11 ε (1)

22
√

µ(1)
11 ε (2)

22 +

√

µ(2)
11 ε (1)

22

u(2)
4 (+0, t),

Substituting the valuesu(1)
3 (−0, t) related to regionR8 andu(2)

4 (+0, t) related to regionR9 into the

last relation we get:

u(1)
4 (−0, t) =

√

µ(1)
11 ε (2)

22 −
√

µ(2)
11 ε (1)

22
√

ε (1)
22 (

√

µ(1)
11 ε (2)

22 +

√

µ(2)
11 ε (1)

22 )

∫ t

0
J(1)

2 (ν(1)
3 (τ − t),τ)dτ

+
2
√

µ(1)
11 ε (1)

22
√

µ(1)
11 ε (2)

22 +

√

µ(2)
11 ε (1)

22



u(2)
4 (ℓ−, t − ℓ

ν(2)
4

)+
∫ t

t− ℓ

ν(2)
4

f (2)
4 (−ν(2)

4 (τ − t),τ)dτ



 ,
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And substituting the valueu(2)
4 (ℓ−, t − ℓ

ν (2)
4

), which was defined in regionR6, we get the matching

conditionu(1)
4 (−0, t) as:

u(1)
4 (−0, t) =

√

µ(1)
11 ε (2)

22 −
√

µ(2)
11 ε (1)

22
√

ε (1)
22 (

√

µ(1)
11 ε (2)

22 +

√

µ(2)
11 ε (1)

22 )

∫ t

0
J(1)

2 (ν(1)
3 (τ − t),τ)dτ

+
2
√

µ(1)
11 ε (1)

22
√

µ(1)
11 ε (2)

22 +

√

µ(2)
11 ε (1)

22





√

µ(2)
11 ε (3)

22 −
√

µ(3)
11 ε (2)

22
√

ε (2)
22 (

√

µ(2)
11 ε (3)

22 +

√

µ(3)
11 ε (2)

22 )

·
∫ t− ℓ

ν(2)
4

0
J(2)

2 (ν(2)
3 (τ − t)+2ℓ,τ)dτ

−
2
√

µ(2)
11 ε (2)

22
√

ε (3)
22 (

√

µ(2)
11 ε (3)

22 +

√

µ(3)
11 ε (2)

22 )

∫ t− ℓ

ν(2)
4

0
J(3)

2 (−ν(3)
4 (τ − t)− ν(3)

4

ν(2)
4

ℓ+ ℓ,τ)dτ

− 1
√

ε (2)
22

∫ t

t− ℓ

ν(2)
4

J(2)
2 (−ν(2)

4 (τ − t),τ)dτ .

Finding Matching Conditions For Region R9

In order to get explicit formulas in this region we need to derive the matching conditions

u(2)
i (+0, t − x3

ν (2)
i

) for i = 1,3 by means the IVP related toR8 andu(2)
j (ℓ−, t + x3−ℓ

ν (2)
j

) for j = 2,4 by

means the IVP related toR7. But in regionR6 we have derived the matching condition

u(2)
j (ℓ−, t + x3−ℓ

ν (2)
j

) for j = 2,4. Hence we only need to derive the first condition above.

The form ofu(2)
i (+0, t) for i = 1,3 was found at the second flat in regionR5 and it was in the

following form:

u(2)
1 (+0, t) =

2
√

µ(2)
22 ε (2)

11
√

µ(2)
22 ε (1)

11 +

√

µ(1)
22 ε (2)

11

u(1)
1 (−0, t)+

√

µ(2)
22 ε (1)

11 −
√

µ(1)
22 ε (2)

11
√

µ(2)
22 ε (1)

11 +

√

µ(1)
22 ε (2)

11

u(2)
2 (+0, t),

Substituting the valuesu(1)
1 (−0, t) related to regionR8 andu(2)

2 (+0, t) related to regionR6 we get:

u(2)
1 (+0, t) =

2
√

µ(2)
22 ε (2)

11
√

µ(2)
22 ε (1)

11 +

√

µ(1)
22 ε (2)

11

∫ t

0
f (1)
1 (ν(1)

1 (τ − t),τ)dτ

+

√

µ(2)
22 ε (1)

11 −
√

µ(1)
22 ε (2)

11
√

µ(2)
22 ε (1)

11 +

√

µ(1)
22 ε (2)

11



u(2)
2 (ℓ−, t − ℓ

ν(2)
2

)+

∫ t

t− ℓ

ν(2)
2

f (2)
2 (−ν(2)

2 (τ − t),τ)dτ



 ,

Then substituting the valueu(2)
2 (ℓ−, t − ℓ

ν (2)
2

) which was derived in regionR6, we get:

u(2)
1 (+0, t) = −

2
√

µ(2)
22 ε (2)

11
√

ε (1)
11 (

√

µ(2)
22 ε (1)

11 +

√

µ(1)
22 ε (2)

11 )

∫ t

0
J(1)

1 (ν(1)
1 (τ − t),τ)dτ
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+

√

µ(2)
22 ε (1)

11 −
√

µ(1)
22 ε (2)

11
√

µ(2)
22 ε (1)

11 +

√

µ(1)
22 ε (2)

11



−

√

µ(2)
22 ε (3)

11 −
√

µ(3)
22 ε (2)

11
√

ε (2)
11 (

√

µ(2)
22 ε (3)

11 +

√

µ(3)
22 ε (2)

11 )

·
∫ t− ℓ

ν(2)
2

0
J(2)

1 (ν(2)
1 (τ − t)+2ℓ,τ)dτ

+
2
√

µ(2)
22 ε (2)

11
√

ε (3)
11 (

√

µ(2)
22 ε (3)

11 +

√

µ(3)
22 ε (2)

11 )

∫ t− ℓ

ν(2)
2

0
J(3)

1 (−ν(3)
2 (τ − t)− ν(3)

2

ν(2)
2

ℓ+ ℓ,τ)dτ

+
1

√

ε (2)
11

∫ t

t− ℓ

ν(2)
2

J(2)
1 (−ν(2)

2 (τ − t),τ)dτ



 .

The form of the matching conditionu(2)
3 (+0, t) was found in the regionR5 as:

u(2)
3 (+0, t) =

2
√

µ(2)
11 ε (2)

22
√

µ(2)
11 ε (1)

22 +

√

µ(1)
11 ε (2)

22

u(1)
3 (−0, t)+

√

µ(2)
11 ε (1)

22 −
√

µ(1)
11 ε (2)

22
√

µ(2)
11 ε (1)

22 +

√

µ(1)
11 ε (2)

22

u(2)
4 (+0, t).

Substituting the valuesu(1)
3 (−0, t) related to regionR8 andu(2)

4 (+0, t) related to regionR6 we get:

u(2)
3 (+0, t) =

2
√

µ(2)
11 ε (2)

22
√

ε (1)
22 (

√

µ(2)
11 ε (1)

22 +

√

µ(1)
11 ε (2)

22

∫ t

0
J(1)

2 (ν(1)
3 (τ − t),τ)dτ

+

√

µ(2)
11 ε (1)

22 −
√

µ(1)
11 ε (2)

22
√

µ(2)
11 ε (1)

22 +

√

µ(1)
11 ε (2)

22



u(2)
4 (ℓ−, t − ℓ

ν(2)
4

)+

∫ t

t− ℓ

ν(2)
4

f (2)
4 (−ν(2)

4 (τ − t),τ)dτ



 ,

Then substituting the valueu(2)
4 (ℓ−, t − ℓ

ν (2)
4

) which was derived in regionR6, we get:

u(2)
3 (+0, t) =

2
√

µ(2)
11 ε (2)

22
√

ε (1)
22 (

√

µ(2)
11 ε (1)

22 +

√

µ(1)
11 ε (2)

22 )

∫ t

0
J(1)

2 (ν(1)
3 (τ − t),τ)dτ

+

√

µ(2)
11 ε (1)

22 −
√

µ(1)
11 ε (2)

22
√

µ(2)
11 ε (1)

22 +

√

µ(1)
11 ε (2)

22





√

µ(2)
11 ε (3)

22 −
√

µ(3)
11 ε (2)

22
√

ε (2)
22 (

√

µ(2)
11 ε (3)

22 +

√

µ(3)
11 ε (2)

22 )

·
∫ t− ℓ

ν(2)
4

0
J(2)

2 (ν(2)
3 (τ − t)+2ℓ,τ)dτ

−
2
√

µ(2)
11 ε (2)

22
√

ε (3)
22 (

√

µ(2)
11 ε (3)

22 +

√

µ(3)
11 ε (2)

22 )

∫ t− ℓ

ν(2)
4

0
J(3)

2 (−ν(3)
4 (τ − t)− ν(3)

4

ν(2)
4

ℓ+ ℓ,τ)dτ

− 1
√

ε (2)
22

∫ t

t− ℓ

ν(2)
4

J(2)
2 (−ν(2)

4 (τ − t),τ)dτ



 .
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Finding Matching Conditions For Region R10

In order to get explicit formulas in this region we need to derive the matching conditions

u(2)
i (+0, t − x3

ν (2)
i

) for i = 1,3 andu(2)
j (ℓ−, t + x3−ℓ

ν (2)
j

) for j = 2,4. The value ofu(2)
i (+0, t − x3

ν (2)
i

) for

i = 1,3 is derived at the second flat in regionR5 and

u(2)
j (ℓ−, t + x3−ℓ

ν (2)
j

) for j = 2,4 was derived in the regionR6.

Finding Matching Conditions For Region R11

In order to get explicit formulas in this region we need to derive the matching conditions

u(2)
i (+0, t − x3

ν (2)
i

) for i = 1,3 andu(2)
j (ℓ−, t + x3−ℓ

ν (2)
j

) for j = 2,4. The value ofu(2)
i (+0, t − x3

ν (2)
i

) for

i = 1,3 was derived at the second flat in regionR5. Now let us deriveu(2)
j (ℓ−, t + x3−ℓ

ν (2)
j

) for j = 2,4.

The form ofu(2)
j (ℓ−, t) for j = 2,4 was found in the regionR6 as:

u(2)
2 (ℓ−, t) =

√

µ(2)
22 ε (3)

11 −
√

µ(3)
22 ε (2)

11
√

µ(2)
22 ε (3)

11 +

√

µ(3)
22 ε (2)

11

u(2)
1 (ℓ−, t)+

2
√

µ(2)
22 ε (2)

11
√

µ(2)
22 ε (3)

11 +

√

µ(3)
22 ε (2)

11

u(3)
2 (ℓ+, t),

Substituting the values ofu(2)
1 (ℓ−, t) related toR11 andu(3)

2 (ℓ+, t) related toR12 into the last relation

above we get:

u(2)
2 (ℓ−, t) =

√

µ(2)
22 ε (3)

11 −
√

µ(3)
22 ε (2)

11
√

µ(2)
22 ε (3)

11 +

√

µ(3)
22 ε (2)

11

[

u(2)
1 (+0, t − ℓ

ν(2)
1

)

+

∫ t

t− ℓ

ν(2)
1

f (2)
1 (ν(2)

1 (τ − t)+ ℓ,τ)dτ





+
2
√

µ(2)
22 ε (2)

11
√

µ(2)
22 ε (3)

11 +

√

µ(3)
22 ε (2)

11

∫ t

0
f (3)
2 (−ν(3)

2 (τ − t)+ ℓ,τ)dτ ,

Substitutingu(2)
1 (+0, t − ℓ

ν (2)
1

) which was derived in regionR5, we get:

u(2)
2 (ℓ−, t) =

√

µ(2)
22 ε (3)

11 −
√

µ(3)
22 ε (2)

11
√

µ(2)
22 ε (3)

11 +

√

µ(3)
22 ε (2)

11



−
2
√

µ(2)
22 ε (2)

11
√

ε (1)
11 (

√

µ(2)
22 ε (1)

11 +

√

µ(1)
22 ε (2)

11 )

·
∫ t− ℓ

ν(2)
1

0
J(1)

1 (ν(1)
1 (τ − t)+

ν(1)
1

ν(2)
1

ℓ,τ)dτ

+

√

µ(2)
22 ε (1)

11 −
√

µ(1)
22 ε (2)

11
√

ε (2)
11 (

√

µ(2)
22 ε (1)

11 +

√

µ(1)
22 ε (2)

11 )

∫ t− ℓ

ν(2)
1

0
J(2)

1 (−ν(2)
1 (τ − t)− ℓ,τ)dτ

− 1
√

ε (2)
11

∫ t

t− ℓ

ν(2)
1

J(2)
1 (ν(2)

1 (τ − t)+ ℓ,τ)dτ
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+
2
√

µ(2)
22 ε (2)

11
√

ε (3)
11 (

√

µ(2)
22 ε (3)

11 +

√

µ(3)
22 ε (2)

11 )

∫ t

0
J(3)

1 (−ν(3)
2 (τ − t)+ ℓ,τ)dτ .

The form ofu(2)
4 (ℓ−, t) for j = 2,4 was found as:

u(2)
4 (ℓ−, t) =

√

µ(2)
11 ε (3)

22 −
√

µ(3)
11 ε (2)

22
√

µ(2)
11 ε (3)

22 +

√

µ(3)
11 ε (2)

22

u(2)
3 (ℓ−, t)+

2
√

µ(2)
11 ε (2)

22
√

µ(2)
11 ε (3)

22 +

√

µ(3)
11 ε (2)

22

u(3)
4 (ℓ+, t),

Substituting the values ofu(2)
3 (ℓ−, t) related toR11 andu(3)

4 (ℓ+, t) related toR12 into the last relation

we get:

u(2)
4 (ℓ−, t) =

√

µ(2)
11 ε (3)

22 −
√

µ(3)
11 ε (2)

22
√

µ(2)
11 ε (3)

22 +

√

µ(3)
11 ε (2)

22

[

u(2)
3 (+0, t − ℓ

ν(2)
3

)

+

∫ t

t− ℓ

ν(2)
3

f (2)
3 (ν(2)

3 (τ − t)+ ℓ,τ)dτ





+
2
√

µ(2)
11 ε (2)

22
√

µ(2)
11 ε (3)

22 +

√

µ(3)
11 ε (2)

22

∫ t

0
f (3)
4 (−ν(3)

4 (τ − t)+ ℓ,τ)dτ ,

Substitutingu(2)
3 (+0, t − ℓ

ν (2)
3

) which was derived in regionR5, we get:

u(2)
4 (ℓ−, t) =

√

µ(2)
11 ε (3)

22 −
√

µ(3)
11 ε (2)

22
√

µ(2)
11 ε (3)

22 +

√

µ(3)
11 ε (2)

22





2
√

µ(2)
11 ε (2)

22
√

ε (1)
22 (

√

µ(2)
11 ε (1)

22 +

√

µ(1)
11 ε (2)

22 )

·
∫ t− ℓ

ν(2)
3

0
J(1)

2 (ν(1)
3 (τ − t)+

ν(1)
3

ν(2)
3

ℓ,τ)dτ

−

√

µ(2)
11 ε (1)

22 −
√

µ(1)
11 ε (2)

22
√

ε (2)
22 (

√

µ(2)
11 ε (1)

22 +

√

µ(1)
11 ε (2)

22 )

∫ t− ℓ

ν(2)
3

0
J(2)

2 (−ν(2)
3 (τ − t)− ℓ,τ)dτ

+
1

√

ε (2)
22

∫ t

t− ℓ

ν(2)
3

J(2)
2 (ν(2)

3 (τ − t)+ ℓ,τ)dτ





−
2
√

µ(2)
11 ε (2)

22
√

ε (3)
22 (

√

µ(2)
11 ε (3)

22 +

√

µ(3)
11 ε (2)

22 )

∫ t

0
J(3)

2 (−ν(3)
4 (τ − t)+ ℓ,τ)dτ .

Finding Matching Conditions For Region R12

To get explicit formulas in this region we need to derive the matching conditionsu(3)
i (ℓ+, t− x3−ℓ

ν (3)
i

)

for i = 1,3.

The form ofu(3)
1 (ℓ+, t) was defined before in the following form:

u(3)
1 (ℓ+, t) =

2
√

µ(3)
22 ε (3)

11
√

µ(3)
22 ε (2)

11 +

√

µ(2)
22 ε (3)

11

u(2)
1 (ℓ−, t)+

√

µ(3)
22 ε (2)

11 −
√

µ(2)
22 ε (3)

11
√

µ(3)
22 ε (2)

11 +

√

µ(2)
22 ε (3)

11

u(3)
2 (ℓ+, t),



59

Substituting the value ofu(2)
1 (ℓ−, t) related toR11 andu(3)

2 (ℓ+, t) related toR12 into the last relation

above we get:

u(3)
1 (ℓ+, t) =

2
√

µ(3)
22 ε (3)

11
√

µ(3)
22 ε (2)

11 +

√

µ(2)
22 ε (3)

11

[

u(2)
1 (+0, t − ℓ

ν(2)
1

)

+

∫ t

t− ℓ

ν(2)
1

f (2)
1 (ν(2)

1 (τ − t)+ ℓ,τ)dτ





+

√

µ(3)
22 ε (2)

11 −
√

µ(2)
22 ε (3)

11
√

µ(3)
22 ε (2)

11 +

√

µ(2)
22 ε (3)

11

∫ t

0
f (3)
2 (−ν(3)

2 (τ − t)+ ℓ,τ)dτ ,

Substitutingu(2)
1 (+0, t − ℓ

ν (2)
1

) which was derived in regionR5, we get:

u(3)
1 (ℓ+, t) =

2
√

µ(3)
22 ε (3)

11
√

µ(3)
22 ε (2)

11 +

√

µ(2)
22 ε (3)

11



−
2
√

µ(2)
22 ε (2)

11
√

ε (1)
11 (

√

µ(2)
22 ε (1)

11 +

√

µ(1)
22 ε (2)

11 )

·
∫ t− ℓ

ν(2)
1

0
J(1)

1 (ν(1)
1 (τ − t)+

ν(1)
1

ν(2)
1

ℓ,τ)dτ

+

√

µ(2)
22 ε (1)

11 −
√

µ(1)
22 ε (2)

11
√

ε (2)
11 (

√

µ(2)
22 ε (1)

11 +

√

µ(1)
22 ε (2)

11 )

∫ t− ℓ

ν(2)
1

0
J(2)

1 (−ν(2)
1 (τ − t)− ℓ,τ)dτ

− 1
√

ε (2)
11

∫ t

t− ℓ

ν(2)
1

J(2)
1 (ν(2)

1 (τ − t)+ ℓ,τ)dτ





+

√

µ(3)
22 ε (2)

11 −
√

µ(2)
22 ε (3)

11
√

ε (3)
11 (

√

µ(3)
22 ε (2)

11 +

√

µ(2)
22 ε (3)

11 )

∫ t

0
J(3)

1 (−ν(3)
2 (τ − t)+ ℓ,τ)dτ .

The form ofu(3)
3 (ℓ+, t) defined before as:

u(3)
3 (ℓ+, t) =

2
√

µ(3)
11 ε (3)

22
√

µ(3)
11 ε (2)

22 +

√

µ(2)
11 ε (3)

22

u(2)
3 (ℓ−, t)+

√

µ(3)
11 ε (2)

22 −
√

µ(2)
11 ε (3)

22
√

µ(3)
11 ε (2)

22 +

√

µ(2)
11 ε (3)

22

u(3)
4 (ℓ+, t),

Substituting the values ofu(2)
3 (ℓ−, t) related toR11 andu(3)

4 (ℓ+, t) related toR12 into the last relation

we get:

u(3)
3 (ℓ+, t) =

2
√

µ(3)
11 ε (3)

22
√

µ(3)
11 ε (2)

22 +

√

µ(2)
11 ε (3)

22

[

u(2)
3 (+0, t − ℓ

ν(2)
3

)

+

∫ t

t− ℓ

ν(2)
3

f (2)
3 (ν(2)

3 (τ − t)+ ℓ,τ)dτ





+

√

µ(3)
11 ε (2)

22 −
√

µ(2)
11 ε (3)

22
√

µ(3)
11 ε (2)

22 +

√

µ(2)
11 ε (3)

22

∫ t

0
f (3)
4 (−ν(3)

4 (τ − t)+ ℓ,τ)dτ ,
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Substitutingu(2)
3 (+0, t − ℓ

ν (2)
3

) which was derived in regionR5, we get:

u(3)
3 (ℓ+, t) =

2
√

µ(3)
11 ε (3)

22
√

µ(3)
11 ε (2)

22 +

√

µ(2)
11 ε (3)

22





2
√

µ(2)
11 ε (2)

22
√

ε (1)
22 (

√

µ(2)
11 ε (1)

22 +

√

µ(1)
11 ε (2)

22 )

·
∫ t− ℓ

ν(2)
3

0
J(1)

2 (ν(1)
3 (τ − t)+

ν(1)
3

ν(2)
3

ℓ,τ)dτ

−

√

µ(2)
11 ε (1)

22 −
√

µ(1)
11 ε (2)

22
√

ε (2)
22 (

√

µ(2)
11 ε (1)

22 +

√

µ(1)
11 ε (2)

22 )

∫ t− ℓ

ν(2)
3

0
J(2)

2 (−ν(2)
3 (τ − t)− ℓ,τ)dτ

+
1

√

ε (2)
22

∫ t

t− ℓ

ν(2)
3

J(2)
2 (ν(2)

3 (τ − t)+ ℓ,τ)dτ





−

√

µ(3)
11 ε (2)

22 −
√

µ(2)
11 ε (3)

22
√

ε (3)
22 (

√

µ(3)
11 ε (2)

22 +

√

µ(2)
11 ε (3)

22 )

∫ t

0
J(3)

2 (−ν(3)
4 (τ − t)+ ℓ,τ)dτ .

4.3.4 Finding Explicit Formula for Solution of the Problem

By using the relations in Section 4.3.1 the form of the explicit formulae of the components of the

electric and magnetic fields can be written as following

H(k)
1 =

1

2
√

µ(k)
11

[u(k)
3 (x3, t)+u(k)

4 (x3, t)],

H(k)
2 =

1

2
√

µ(k)
22

[u(k)
1 (x3, t)+u(k)

2 (x3, t)],

E(k)
1 =

1

2
√

ε (k)
11

[u(k)
1 (x3, t)−u(k)

2 (x3, t)],

E(k)
2 =

1

2
√

ε (k)
22

[−u(k)
3 (x3, t)+u(k)

4 (x3, t)],

wherek = 1,2,3.

Using the results that we get in sections 4.3.2 and 4.3.3 and substituting these results into the relations

above obtain the explicit formulae for the electric and magnetic fields for three layered anisotropic

media.

Explicit formulae of the electric and magnetic fields at the first flat

H(k)
1 =

1

2
√

µ(k)
11

∫ t

0
[ f (k)

3 (ν(k)
3 (τ − t)+x3,τ)+ f (k)

4 (−ν(k)
3 (τ − t)+x3,τ)]dτ ;
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H(k)
1 =

1

2
√

µ(k)
22

∫ t

0
[ f (k)

1 (ν(k)
1 (τ − t)+x3,τ)+ f (k)

2 (−ν(k)
1 (τ − t)+x3,τ)]dτ ;

E(k)
1 =

1

2
√

ε (k)
11

∫ t

0
[ f (k)

1 (ν(k)
1 (τ − t)+x3,τ)− f (k)

2 (−ν(k)
1 (τ − t)+x3,τ)]dτ ;

E(k)
2 =

1

2
√

ε (k)
22

∫ t

0
[− f (k)

3 (ν(k)
3 (τ − t)+x3,τ)+ f (k)

4 (−νk
3(τ − t)+x3,τ)]dτ ,

wherek = 1,2,3.

Explicit formulae of the electric and magnetic fields at the second flat

Explicit formulae for the regionR4:

H(1)
1 (x3, t) =

1

2
√

µ(1)
11





1
√

ε (1)
22

∫ t

0
J(1)

2 (ν(1)
3 (τ − t)+x3,τ)+u(1)

4 (−0, t +
x3

ν(1)
3

)

− 1
√

ε (1)
22

∫ t

t+
x3

ν(1)
3

J(1)
2 (−ν(1)

3 (τ − t)+x3,τ)



dτ ;

H(1)
2 (x3, t) =

1

2
√

µ(1)
22



− 1
√

ε (1)
11

∫ t

0
J(1)

1 (ν(1)
1 (τ − t)+x3,τ)+u(1)

2 (−0, t +
x3

ν(1)
1

)

+
1

√

ε (1)
11

∫ t

t+
x3

ν(1)
1

J(1)
1 (−ν(1)

1 (τ − t)+x3,τ)



dτ ;

H(1)
3 (x3, t) = 0;

E(1)
1 (x3, t) =

1

2
√

ε (1)
11



− 1
√

ε (1)
11

∫ t

0
J(1)

1 (ν(1)
1 (τ − t)+x3,τ)−u(1)

2 (−0, t +
x3

ν(1)
1

)

− 1
√

ε (1)
11

∫ t

t+
x3

ν(1)
1

J(1)
1 (−ν(1)

1 (τ − t)+x3,τ)



dτ ;

E(1)
2 (x3, t) =

1

2
√

ε (1)
22



− 1
√

ε (1)
22

∫ t

0
J(1)

2 (ν(1)
3 (τ − t)+x3,τ)+u(1)

4 (−0, t +
x3

ν(1)
3

)

− 1
√

ε (1)
22

∫ t

t+
x3

ν(1)
3

J(1)
2 (−ν(1)

3 (τ − t)+x3,τ)



dτ ;

E(1)
3 (x3, t) = − 1

ε (1)
33

∫ t

0
J(1)

3 (x3,τ)dτ .

The values, matching conditions,u(1)
2 (−0, t + x3

ν (1)
1

) andu(1)
4 (−0, t + x3

ν (1)
3

) derived before in the Section

4.3.3.1 for regionR4.



62

Explicit formulae for the regionR5:

H(2)
1 (x3, t) =

1

2
√

µ(2)
11



u(2)
3 (+0, t − x3

ν(2)
3

)+
1

√

ε (2)
22

∫ t

t− x3

ν(2)
3

J(2)
2 (ν(2)

3 (τ − t)+x3,τ)

− 1
√

ε (2)
22

∫ t

0
J(2)

2 (−ν(2)
3 (τ − t)+x3,τ)



dτ ;

H(2)
2 (x3, t) =

1

2
√

µ(2)
22



u(2)
1 (+0, t − x3

ν(2)
1

)− 1
√

ε (2)
11

∫ t

t− x3

ν(2)
1

J(2)
1 (ν(2)

1 (τ − t)+x3,τ)

+
1

√

ε (2)
11

∫ t

0
J(2)

1 (−ν(2)
1 (τ − t)+x3,τ)



dτ ;

H(2)
3 (x3, t) = 0;

E(2)
1 (x3, t) =

1

2
√

ε (2)
11



u(2)
1 (+0, t − x3

ν(2)
1

)− 1
√

ε (2)
11

∫ t

t− x3

ν(2)
1

J(2)
1 (ν(2)

1 (τ − t)+x3,τ)

− 1
√

ε (2)
11

∫ t

0
J(2)

1 (−ν(2)
1 (τ − t)+x3,τ)



dτ ;

E(2)
2 (x3, t) =

1

2
√

ε (2)
22



−u(2)
3 (+0, t − x3

ν(2)
3

)− 1
√

ε (2)
22

∫ t

t− x3

ν(2)
3

J(2)
2 (ν(2)

3 (τ − t)+x3,τ)

− 1
√

ε (2)
22

∫ t

0
J(2)

2 (−ν(2)
3 (τ − t)+x3,τ)



dτ ;

E(2)
3 (x3, t) = − 1

ε (2)
33

∫ t

0
J(2)

3 (x3,τ)dτ .

The values, matching conditions,u(2)
1 (+0, t− x3

ν (2)
1

) andu(2)
3 (+0, t− x3

ν (2)
3

) derived before in the Section

4.3.3.1 for regionR5.

Explicit formulae for the regionR6:

H(2)
1 (x3, t) =

1

2
√

µ(2)
11





1
√

ε (2)
22

∫ t

0
J(2)

2 (ν(2)
3 (τ − t)+x3,τ)+u(2)

4 (ℓ−, t +
x3− ℓ

ν(2)
3

)

− 1
√

ε (2)
22

∫ t

t+
x3−ℓ

ν(2)
3

J(2)
2 (−ν(2)

3 (τ − t)+x3,τ)



dτ ;
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H(2)
2 (x3, t) =

1

2
√

µ(2)
22



− 1
√

ε (2)
11

∫ t

0
J(2)

1 (ν(2)
1 (τ − t)+x3,τ)+u(2)

2 (ℓ−, t +
x3− ℓ

ν(2)
1

)

+
1

√

ε (2)
11

∫ t

t+
x3−ℓ

ν(2)
1

J(2)
1 (−ν(2)

1 (τ − t)+x3,τ)



dτ ;

H(1)
3 (x3, t) = 0;

E(2)
1 (x3, t) =

1

2
√

ε (2)
11



− 1
√

ε (2)
11

∫ t

0
J(2)

1 (ν(2)
1 (τ − t)+x3,τ)+u(2)

2 (ℓ−, t +
x3− ℓ

ν(2)
1

)

− 1
√

ε (2)
11

∫ t

t+
x3−ℓ

ν(2)
1

J(2)
1 (−ν(2)

1 (τ − t)+x3,τ)



dτ ; ;

E(2)
2 (x3, t) =

1

2
√

ε (2)
22



− 1
√

ε (2)
22

∫ t

0
J(2)

2 (ν(2)
3 (τ − t)+x3,τ)+u(2)

4 (ℓ−, t +
x3− ℓ

ν(2)
3

)

− 1
√

ε (2)
22

∫ t

t+
x3−ℓ

ν(2)
3

J(2)
2 (−ν(2)

3 (τ − t)+x3,τ)



dτ ;

E(2)
3 (x3, t) = − 1

ε (2)
33

∫ t

0
J(2)

3 (x3,τ)dτ .

The values, matching conditions,u(2)
2 (ℓ−, t + x3−ℓ

ν (2)
1

) andu(2)
4 (ℓ−, t + x3−ℓ

ν (2)
3

) derived before in the Sec-

tion 4.3.3.1 for regionR6.

Explicit formulae for the regionR7:

H(3)
1 (x3, t) =

1

2
√

µ(3)
11



u(3)
3 (ℓ+, t − x3− ℓ

ν(3)
3

)+
1

√

ε (3)
22

∫ t

t− x3−ℓ

ν(3)
3

J(3)
2 (ν(3)

3 (τ − t)+x3,τ)

− 1
√

ε (3)
22

∫ t

0
J(3)

2 (−ν(3)
3 (τ − t)+x3,τ)



dτ ;

H(3)
2 (x3, t) =

1

2
√

µ(3)
22



u(3)
1 (ℓ+, t − x3− ℓ

ν(3)
1

)− 1
√

ε (3)
11

∫ t

t− x3−ℓ

ν(3)
1

J(3)
1 (ν(3)

1 (τ − t)+x3,τ)

+
1

√

ε (3)
11

∫ t

0
J(3)

1 (−ν(3)
1 (τ − t)+x3,τ)



dτ ;

H(3)
3 (x3, t) = 0;
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E(3)
1 (x3, t) =

1

2
√

ε (3)
11



u(3)
1 (ℓ+, t − x3− ℓ

ν(3)
1

)− 1
√

ε (3)
11

∫ t

t− x3−ℓ

ν(3)
1

J(3)
1 (ν(3)

1 (τ − t)+x3,τ)

− 1
√

ε (3)
11

∫ t

0
J(3)

1 (−ν(3)
1 (τ − t)+x3,τ)



dτ ;

E(3)
2 (x3, t) =

1

2
√

ε (3)
22



−u(3)
3 (ℓ+, t − x3− ℓ

ν(3)
3

)− 1
√

ε (3)
22

∫ t

t− x3−ℓ

ν(3)
3

J(3)
2 (ν(3)

3 (τ − t)+x3,τ)

− 1
√

ε (3)
22

∫ t

0
J(3)

2 (−ν(3)
3 (τ − t)+x3,τ)



dτ ;

E(3)
3 (x3, t) = − 1

ε (3)
33

∫ t

0
J(3)

3 (x3,τ)dτ .

The values, matching conditions,u(3)
1 (ℓ+, t− x3−ℓ

ν (3)
1

) andu(3)
3 (ℓ+, t− x3−ℓ

ν (3)
3

) derived before in the Section

4.3.3.1 for regionR7.

Explicit formulae of the electric and magnetic fields at the third flat

Explicit formulae for the regionR8:

H(1)
1 (x3, t) =

1

2
√

µ(1)
11





1
√

ε (1)
22

∫ t

0
J(1)

2 (ν(1)
3 (τ − t)+x3,τ)+u(1)

4 (−0, t +
x3

ν(1)
3

)

− 1
√

ε (1)
22

∫ t

t+
x3

ν(1)
3

J(1)
2 (−ν(1)

3 (τ − t)+x3,τ)



dτ ;

H(1)
2 (x3, t) =

1

2
√

µ(1)
22



− 1
√

ε (1)
11

∫ t

0
J(1)

1 (ν(1)
1 (τ − t)+x3,τ)+u(1)

2 (−0, t +
x3

ν(1)
1

)

+
1

√

ε (1)
11

∫ t

t+
x3

ν(1)
1

J(1)
1 (−ν(1)

1 (τ − t)+x3,τ)



dτ ;

H(1)
3 (x3, t) = 0;

E(1)
1 (x3, t) =

1

2
√

ε (1)
11



− 1
√

ε (1)
11

∫ t

0
J(1)

1 (ν(1)
1 (τ − t)+x3,τ)−u(1)

2 (−0, t +
x3

ν(1)
1

)

− 1
√

ε (1)
11

∫ t

t+
x3

ν(1)
1

J(1)
1 (−ν(1)

1 (τ − t)+x3,τ)



dτ ;
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E(1)
2 (x3, t) =

1

2
√

ε (1)
22



− 1
√

ε (1)
22

∫ t

0
J(1)

2 (ν(1)
3 (τ − t)+x3,τ)+u(1)

4 (−0, t +
x3

ν(1)
3

)

− 1
√

ε (1)
22

∫ t

t+
x3

ν(1)
3

J(1)
2 (−ν(1)

3 (τ − t)+x3,τ)



dτ ;

E(1)
3 (x3, t) = − 1

ε (1)
33

∫ t

0
J(1)

3 (x3,τ)dτ .

The values, matching conditions,u(1)
2 (−0, t + x3

ν (1)
1

) andu(1)
4 (−0, t + x3

ν (1)
3

) derived before in the Section

4.3.3.2 for regionR8.

Explicit formulae for the regionR9:

H(2)
1 (x3, t) =

1

2
√

µ(2)
11



u(2)
3 (+0, t − x3

ν(2)
1

)+
1

√

ε (2)
22

∫ t

t− x3

ν(2)
3

J(2)
2 (ν(2)

3 (τ − t)+x3,τ)

+ u(2)
4 (ℓ−, t +

x3− ℓ

ν(2)
3

)− 1
√

ε (2)
22

∫ t

t+
x3−ℓ

ν(2)
3

J(2)
2 (−ν(2)

3 (τ − t)+x3,τ)



dτ ;

H(2)
2 (x3, t) =

1

2
√

µ(2)
22



u(2)
1 (+0, t − x3

ν(2)
1

)− 1
√

ε (2)
11

∫ t

t− x3

ν(2)
1

J(2)
1 (ν(2)

1 (τ − t)+x3,τ)

+ u(2)
2 (ℓ−, t +

x3− ℓ

ν(2)
1

)+
1

√

ε (2)
11

∫ t

t+
x3−ℓ

ν(2)
1

J(2)
1 (−ν(2)

1 (τ − t)+x3,τ)



dτ ;

H(2)
3 (x3, t) = 0;

E(2)
1 (x3, t) =

1

2
√

ε (2)
11



u(2)
1 (+0, t − x3

ν(2)
1

)− 1
√

ε (2)
11

∫ t

t− x3

ν(2)
1

J(2)
1 (ν(2)

1 (τ − t)+x3,τ)

− u(2)
2 (ℓ−, t +

x3− ℓ

ν(2)
1

)+
1

√

ε (2)
11

∫ t

t+
x3−ℓ

ν(2)
1

J(2)
1 (−ν(2)

1 (τ − t)+x3,τ)



dτ ;

E(2)
2 (x3, t) =

1

2
√

ε (2)
22



−u(2)
3 (+0, t − x3

ν(2)
1

)− 1
√

ε (2)
22

∫ t

t− x3

ν(2)
3

J(2)
2 (ν(2)

3 (τ − t)+x3,τ)

+ u(2)
4 (ℓ−, t +

x3− ℓ

ν(2)
3

)− 1
√

ε (2)
22

∫ t

t+
x3−ℓ

ν(2)
3

J(2)
2 (−ν(2)

3 (τ − t)+x3,τ)



dτ ;

E(2)
3 (x3, t) = − 1

ε (2)
33

∫ t

0
J(2)

3 (x3,τ)dτ .
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The values, matching conditions,u(2)
i (+0, t − x3

ν (2)
i

), i = 1,3 andu(2)
j (ℓ−, t + x3−ℓ

ν (2)
j

), j = 2,4 derived

before in the Section 4.3.3.2 for regionR9.

Explicit formulae for the regionR10:

H(2)
1 (x3, t) =

1

2
√

µ(2)
11



u(2)
3 (+0, t − x3

ν(2)
1

)+
1

√

ε (2)
22

∫ t

t− x3

ν(2)
3

J(2)
2 (ν(2)

3 (τ − t)+x3,τ)

+ u(2)
4 (ℓ−, t +

x3− ℓ

ν(2)
3

)− 1
√

ε (2)
22

∫ t

t+
x3−ℓ

ν(2)
3

J(2)
2 (−ν(2)

3 (τ − t)+x3,τ)



dτ ;

H(2)
2 (x3, t) =

1

2
√

µ(2)
22



u(2)
1 (+0, t − x3

ν(2)
1

)− 1
√

ε (2)
11

∫ t

t− x3

ν(2)
1

J(2)
1 (ν(2)

1 (τ − t)+x3,τ)

+ u(2)
2 (ℓ−, t +

x3− ℓ

ν(2)
1

)+
1

√

ε (2)
11

∫ t

t+
x3−ℓ

ν(2)
1

J(2)
1 (−ν(2)

1 (τ − t)+x3,τ)



dτ ;

H(2)
3 (x3, t) = 0;

E(2)
1 (x3, t) =

1

2
√

ε (2)
11



u(2)
1 (+0, t − x3

ν(2)
1

)− 1
√

ε (2)
11

∫ t

t− x3

ν(2)
1

J(2)
1 (ν(2)

1 (τ − t)+x3,τ)

− u(2)
2 (ℓ−, t +

x3− ℓ

ν(2)
1

)+
1

√

ε (2)
11

∫ t

t+
x3−ℓ

ν(2)
1

J(2)
1 (−ν(2)

1 (τ − t)+x3,τ)



dτ ;

E(2)
2 (x3, t) =

1

2
√

ε (2)
22



−u(2)
3 (+0, t − x3

ν(2)
1

)− 1
√

ε (2)
22

∫ t

t− x3

ν(2)
3

J(2)
2 (ν(2)

3 (τ − t)+x3,τ)

+ u(2)
4 (ℓ−, t +

x3− ℓ

ν(2)
3

)− 1
√

ε (2)
22

∫ t

t+
x3−ℓ

ν(2)
3

J(2)
2 (−ν(2)

3 (τ − t)+x3,τ)



dτ ;

E(2)
3 (x3, t) = − 1

ε (2)
33

∫ t

0
J(2)

3 (x3,τ)dτ .

The values, matching conditions,u(2)
i (+0, t − x3

ν (2)
i

), i = 1,3 andu(2)
j (ℓ−, t + x3−ℓ

ν (2)
j

), j = 2,4 derived

before in the Section 4.3.3.2 for regionR10.

Explicit formulae for the regionR11:
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H(2)
1 (x3, t) =

1

2
√

µ(2)
11



u(2)
3 (+0, t − x3

ν(2)
1

)+
1

√

ε (2)
22

∫ t

t− x3

ν(2)
3

J(2)
2 (ν(2)

3 (τ − t)+x3,τ)

+ u(2)
4 (ℓ−, t +

x3− ℓ

ν(2)
3

)− 1
√

ε (2)
22

∫ t

t+
x3−ℓ

ν(2)
3

J(2)
2 (−ν(2)

3 (τ − t)+x3,τ)



dτ ;

H(2)
2 (x3, t) =

1

2
√

µ(2)
22



u(2)
1 (+0, t − x3

ν(2)
1

)− 1
√

ε (2)
11

∫ t

t− x3

ν(2)
1

J(2)
1 (ν(2)

1 (τ − t)+x3,τ)

+ u(2)
2 (ℓ−, t +

x3− ℓ

ν(2)
1

)+
1

√

ε (2)
11

∫ t

t+
x3−ℓ

ν(2)
1

J(2)
1 (−ν(2)

1 (τ − t)+x3,τ)



dτ ;

H(2)
3 (x3, t) = 0;

E(2)
1 (x3, t) =

1

2
√

ε (2)
11



u(2)
1 (+0, t − x3

ν(2)
1

)− 1
√

ε (2)
11

∫ t

t− x3

ν(2)
1

J(2)
1 (ν(2)

1 (τ − t)+x3,τ)

− u(2)
2 (ℓ−, t +

x3− ℓ

ν(2)
1

)+
1

√

ε (2)
11

∫ t

t+
x3−ℓ

ν(2)
1

J(2)
1 (−ν(2)

1 (τ − t)+x3,τ)



dτ ;

E(2)
2 (x3, t) =

1

2
√

ε (2)
22



−u(2)
3 (+0, t − x3

ν(2)
1

)− 1
√

ε (2)
22

∫ t

t− x3

ν(2)
3

J(2)
2 (ν(2)

3 (τ − t)+x3,τ)

+ u(2)
4 (ℓ−, t +

x3− ℓ

ν(2)
3

)− 1
√

ε (2)
22

∫ t

t+
x3−ℓ

ν(2)
3

J(2)
2 (−ν(2)

3 (τ − t)+x3,τ)



dτ ;

E(2)
3 (x3, t) = − 1

ε (2)
33

∫ t

0
J(2)

3 (x3,τ)dτ .

The values, matching conditions,u(2)
i (+0, t − x3

ν (2)
i

), i = 1,3 andu(2)
j (ℓ−, t + x3−ℓ

ν (2)
j

), j = 2,4 derived

before in the Section 4.3.3.2 for regionR11.

Explicit formulae for the regionR12:

H(3)
1 (x3, t) =

1

2
√

µ(3)
11



u(3)
3 (ℓ+, t − x3− ℓ

ν(3)
3

)+
1

√

ε (3)
22

∫ t

t− x3−ℓ

ν(3)
3

J(3)
2 (ν(3)

3 (τ − t)+x3,τ)

− 1
√

ε (3)
22

∫ t

0
J(3)

2 (−ν(3)
3 (τ − t)+x3,τ)



dτ ;



68

H(3)
2 (x3, t) =

1

2
√

µ(3)
22



u(3)
1 (ℓ+, t − x3− ℓ

ν(3)
1

)− 1
√

ε (3)
11

∫ t

t− x3−ℓ

ν(3)
1

J(3)
1 (ν(3)

1 (τ − t)+x3,τ)

+
1

√

ε (3)
11

∫ t

0
J(3)

1 (−ν(3)
1 (τ − t)+x3,τ)



dτ ;

H(3)
3 (x3, t) = 0;

E(3)
1 (x3, t) =

1

2
√

ε (3)
11



u(3)
1 (ℓ+, t − x3− ℓ

ν(3)
1

)− 1
√

ε (3)
11

∫ t

t− x3−ℓ

ν(3)
1

J(3)
1 (ν(3)

1 (τ − t)+x3,τ)

− 1
√

ε (3)
11

∫ t

0
J(3)

1 (−ν(3)
1 (τ − t)+x3,τ)



dτ ;

E(3)
2 (x3, t) =

1

2
√

ε (3)
22



−u(3)
3 (ℓ+, t − x3− ℓ

ν(3)
3

)− 1
√

ε (3)
22

∫ t

t− x3−ℓ

ν(3)
3

J(3)
2 (ν(3)

3 (τ − t)+x3,τ)

− 1
√

ε (3)
22

∫ t

0
J(3)

2 (−ν(3)
3 (τ − t)+x3,τ)



dτ ;

E(3)
3 (x3, t) = − 1

ε (3)
33

∫ t

0
J(3)

3 (x3,τ)dτ .

The values, matching conditions,u(3)
1 (ℓ+, t− x3−ℓ

ν (3)
1

) andu(3)
3 (ℓ+, t− x3−ℓ

ν (3)
3

) derived before in the Section

4.3.3.2 for regionR12.



CHAPTER FIVE

CONCLUSION

In the thesis mathematical model for the electromagnetic wave propagation in homogeneous elec-

trically and magnetically anisotropic media is described by the time-dependent Maxwell’s system.

Using the method of characteristics explicit formulae for solutions of the time-dependent Maxwell’s

system is obtained. These solutions are constructed for free space and for layered media. Using

these formulae and symbolic transformation in MATLAB the electric and magnetic waves are sim-

ulated and images are presented. Images of electric and magnetic fields for different isotropic and

anisotropic media have been obtained and their analysis hasbeen given. Our further plan is to get a

generalization of this work on layered media where we have more layers than three.
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